

CompTIA®
Linux+ Study Guide

Fifth Edition

CompTIA®
Linux+ Study Guide

Exam XK0-005
Fifth Edition

Richard Blum

Christine Bresnahan

Copyright © 2022 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

978-1-119-87894-0
978-1-119-87895-7 (ebk.)
978-1-119-87896-4 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www
.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
www.wiley.com/go/permission.

Trademarks: WILEY, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John Wiley
& Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written
permission. CompTIA is a registered trademark of the Computing Technology Industry Association, Inc. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product
or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation.
This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other
professional services. If professional assistance is required, the services of a competent professional person should
be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of further information does
not mean that the author or the publisher endorses the information the organization or Website may provide or
recommendations it may make. Further, readers should be aware the Internet Websites listed in this work may have
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or for technical support, please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax
(317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2022930210

Cover image: © Jeremy Woodhouse/Getty Images

Cover design: Wiley

http://www.copyright.com
http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

Acknowledgments
First, all glory and praise go to God, who through His Son, Jesus Christ, makes all things
possible and gives us the gift of eternal life.

Many thanks go to the fantastic team of people at Sybex for their outstanding work on
this project. Thanks to Kenyon Brown, the senior acquisitions editor, for offering us the
opportunity to work on this book. Also thanks to Kim Wimpsett, the development editor, for
keeping things on track and making the book more presentable. Thanks, Kim, for all your
hard work and diligence. The technical proofreader, David Clinton, did a wonderful job of
double-checking all of the work in the book in addition to making suggestions to improve
the content. Thanks also goes to the young and talented Daniel Anez (theanez.com) for his
illustration work. We would also like to thank Carole Jelen at Waterside Productions, Inc.,
for arranging this opportunity for us and for helping us out in our writing careers.

Rich would particularly like to thank his wife Barbara for enduring his grouchy attitude
during this project and helping to keep up his spirits with baked goods.

http://theanez.com

About the Authors
Richard Blum, CompTIA Linux+ ce, CompTIA Security+ ce, LPIC-1, has also worked in the
IT industry for more than 35 years as both a system and network administrator, and he has
published numerous Linux and open source books. Rich is an online instructor for Linux
and web programming courses that are used by colleges and universities across the United
States. When he is not being a computer nerd, Rich enjoys spending time with his wife Bar-
bara and his two daughters, Katie and Jessica.

Christine Bresnahan, CompTIA Linux+, LPIC-1, started working with computers more than
35 years ago in the IT industry as a system administrator. Christine is an adjunct professor
at Ivy Tech Community College, where she teaches Linux certification and Python program-
ming classes. She also writes books and produces instructional resources for the classroom.

About the Technical Editor
David Clinton is a Linux Server Professional and an Amazon Web Services (AWS) solutions
architect with 10 years’ experience teaching technology subjects. Besides his books (Wiley/
Sybex, Manning, and independently published), he’s created dozens of video courses for
Pluralsight. He works with Linux administration, AWS, data analytics, security, and server
virtualization.

Contents at a Glance
Introduction	 xxxi

Assessment Test	 xliv

Answers to Assessment Test	 lv

Part  I	 Gathering Your Tools	 1

Chapter 1	 Preparing Your Environment	 3

Chapter 2	 Introduction to Services	 17

Chapter 3	 Managing Files, Directories, and Text	 43

Chapter 4	 Searching and Analyzing Text	 89

Part  II	 Starting Up and Configuring Your System	 131

Chapter 5	 Explaining the Boot Process	 133

Chapter 6	 Maintaining System Startup and Services	 157

Chapter 7	 Configuring Network Connections	 199

Chapter 8	 Comparing GUIs	 235

Chapter 9	 Adjusting Localization Options	 269

Part  III	 Managing Your System	 289

Chapter 10	 Administering Users and Groups	 291

Chapter 11	 Handling Storage	 329

Chapter 12	 Protecting Files	 363

Chapter 13	 Governing Software	 393

Chapter 14	 Tending Kernel Modules	 423

Part  IV	 Securing Your System	 437

Chapter 15	 Applying Ownership and Permissions	 439

Chapter 16	 Looking at Access and Authentication
Methods	 469

Chapter 17	 Implementing Logging Services	 503

Chapter 18	 Overseeing Linux Firewalls	 517

Chapter 19	 Embracing Best Security Practices	 547

xiv  Contents at a Glance

Part V	 Troubleshooting Your System	 571

Chapter 20	 Analyzing System Properties and Remediation	 573

Chapter 21	 Optimizing Performance	 607

Chapter 22	 Investigating User Issues	 623

Chapter 23	 Dealing with Linux Devices	 643

Chapter 24	 Troubleshooting Application and Hardware Issues	 667

Part VI	 Automating Your System	 697

Chapter 25	 Deploying Bash Scripts	 699

Chapter 26	 Automating Jobs	 727

Chapter 27	 Controlling Versions with Git	 749

Part VII	 Realizing Virtual and Cloud Environments	 771

Chapter 28	 Understanding Cloud and Virtualization
Concepts	 773

Chapter 29	 Inspecting Cloud and Virtualization Services	 791

Chapter 30	 Orchestrating the Environment	 813

Appendix 	 Answers to the Review Questions	 829

Index	 897

Contents
Introduction	 xxxi

Assessment Test	 xliv

Answers to Assessment Test	 lv

Part  I	 Gathering Your Tools	 1

Chapter 1	 Preparing Your Environment	 3

Setting Up a Learning Space	 4
Using That Old Laptop	 4
Creating a Virtualized Environment	 5
Jumping to the Cloud	 7

Exploring Linux Distributions	 8
Looking at Red Hat Enterprise Linux	 9
Looking at Ubuntu	 10
Looking at openSUSE	 11
Looking at Fedora	 12

Locating a Terminal	 14
Summary	 15

Chapter 2	 Introduction to Services	 17

What Is a Linux Server?	 18
Launching Services	 19
Listening for Clients	 20

Serving the Basics	 22
Web Servers	 22
Database Servers	 23
Mail Servers	 25

Serving Local Networks	 27
File Servers	 27
Print Servers	 28
Network Resource Servers	 29

Implementing Security	 31
Authentication Server	 31
Certificate Authority	 33
Access Server (SSH)	 33
Virtual Private Networks	 34
Proxy Server	 34
Monitoring	 34

xvi  Contents

Improving Performance	 35
Clustering	 35
Load Balancing	 35
Containers	 35

Summary	 36
Exam Essentials	 37
Review Questions	 38

Chapter 3	 Managing Files, Directories, and Text	 43

Handling Files and Directories	 44
Viewing and Creating Files	 44
Copying and Moving Files	 50
Removing Files	 56

Linking Files and Directories	 60
Establishing a Hard Link	 60
Constructing a Soft Link	 62

Reading Files	 63
Reading Entire Text Files	 64
Reading Text File Portions	 66
Reading Text File Pages	 70

Finding Information	 71
Viewing File Information	 72
Exploring File Differences	 72
Using Simple Pinpoint Commands	 75
Using Intricate Pinpoint Commands	 79

Summary	 82
Exam Essentials	 83
Review Questions	 84

Chapter 4	 Searching and Analyzing Text	 89

Processing Text Files	 90
Filtering Text	 90
Formatting Text	 95
Determining Word Count	 99

Redirecting Input and Output	 101
Handling Standard Output	 101
Redirecting Standard Error	 102
Regulating Standard Input	 104
Piping Commands	 106
Creating Here Documents	 108
Creating Command Lines	 109

Editing Text Files	 111
Appreciating Text Editors	 111
Learning about Stream Editors	 116

Summary	 123

Contents  xvii

Exam Essentials	 124
Review Questions	 125

Part  II	 Starting Up and Configuring Your System	 131

Chapter 5	 Explaining the Boot Process	 133

The Linux Boot Process	 134
Following the Boot Process	 134
Viewing the Boot Process	 135

The Firmware Startup	 136
The BIOS Startup	 136
The UEFI Startup	 137

Linux Bootloaders	 138
GRUB Legacy	 139
GRUB2	 143
Alternative Bootloaders	 145

System Recovery	 146
Kernel Failures	 146
Root Drive Failure	 148

Summary	 150
Exam Essentials	 150
Review Questions	 152

Chapter 6	 Maintaining System Startup and Services	 157

Looking at init	 158
Managing systemd Systems	 159

Exploring Unit Files	 160
Focusing on Service Unit Files	 162
Focusing on Target Unit Files	 167
Looking at systemctl	 168
Examining Special systemd Commands	 172

Managing SysV init Systems	 178
Understanding Runlevels	 178
Investigating SysV init Commands	 182

Digging Deeper into systemd	 187
Looking at systemd Mount Units	 187
Exploring Automount Units	 189
Focusing on Timer Unit Files	 190

Summary	 191
Exam Essentials	 191
Review Questions	 194

Chapter 7	 Configuring Network Connections	 199

Configuring Network Features	 200
Network Configuration Files	 201

xviii  Contents

Graphical Tools	 203
Command-Line Tools	 205

Command-Line Networking Tool	 214
Basic Network Troubleshooting	 217

Sending Test Packets	 217
Finding Host Information	 219

Advanced Network Troubleshooting	 222
The netstat Command	 222
Examining Sockets	 226
Monitoring the Network	 226

Summary	 228
Exam Essentials	 229
Review Questions	 231

Chapter 8	 Comparing GUIs	 235

Focusing on the GUI	 236
Getting to Know GNOME	 237
Probing KDE Plasma	 239
Considering Cinnamon	 241
Making Acquaintance with MATE	 243
Setting Up Accessibility	 245

Serving Up the GUI	 247
Figuring Out Wayland	 248
Examining X11	 250

Using Remote Desktops	 252
Viewing VNC	 252
Grasping Xrdp	 254
Exploring NX	 256
Studying SPICE	 257

Forwarding	 257
Local	 259
Remote	 260
Tunneling Your X11 Connection	 261

Summary	 262
Exam Essentials	 262
Review Questions	 264

Chapter 9	 Adjusting Localization Options	 269

Understanding Localization	 270
Character Sets	 270
Environment Variables	 271

Setting Your Locale	 272
Installation Locale Decisions	 272
Changing Your Locale	 272

Contents  xix

Looking at Time	 275
Working with Time Zones	 275
Setting the Time and Date	 276
Watching System Time	 280

Summary	 281
Exam Essentials	 282
Review Questions	 284

Part  III	 Managing Your System	 289

Chapter 10	 Administering Users and Groups	 291

Managing User Accounts	 292
Adding Accounts	 292
Maintaining Passwords	 304
Modifying Accounts	 306
Deleting Accounts	 308

Managing Groups	 309
Setting Up the Environment	 313

Perusing Bash Parameters	 313
Understanding User Entries	 314
Grasping Global Entries	 316

Querying Users	 316
Exploring the whoami Utility	 316
Understanding the who Utility	 317
Identifying with the id Program	 318
Displaying Access History with the last Utility	 319

Managing Disk Space Usage	 320
Summary	 323
Exam Essentials	 324
Review Questions	 325

Chapter 11	 Handling Storage	 329

Storage Basics	 330
Drive Connections	 330
Partitioning Drives	 331
Automatic Drive Detection	 331

Partitioning Tools	 332
Working with fdisk	 332
Working with gdisk	 334
The GNU parted Command	 336
Graphical Tools	 337

Understanding Filesystems	 337
The Virtual Directory	 338
Maneuvering around the Filesystem	 341

xx  Contents

Formatting Filesystems	 341
Common Filesystem Types	 341
Creating Filesystems	 343

Mounting Filesystems	 344
Manually Mounting Devices	 344
Automatically Mounting Devices	 345

Managing Filesystems	 346
Retrieving Filesystem Stats	 346
Filesystem Tools	 348

Storage Alternatives	 349
Multipath	 350
Logical Volume Manager	 350
Using RAID Technology	 354
Encrypting Partitions	 355

Summary	 358
Exam Essentials	 358
Review Questions	 360

Chapter 12	 Protecting Files	 363

Understanding Backup Types	 364
Looking at Compression Methods	 366
Comparing Archive and Restore Utilities	 368

Copying with cpio	 369
Archiving with tar	 372
Duplicating with dd	 377
Replicating with rsync	 380

Securing Offsite/Off-System Backups	 382
Copying Securely via scp	 382
Transferring Securely via sftp	 384

Checking Backup Integrity	 387
Digesting an MD5 Algorithm	 387
Securing Hash Algorithms	 388

Summary	 389
Exam Essentials	 389
Review Questions	 390

Chapter 13	 Governing Software	 393

Working with Source Code	 394
Downloading Source Code	 394
Bundling Source Code Packages	 395
Compiling Source Code	 399

Packaging Applications	 400
Installing and Managing Packages	 401
Understanding Repositories	 405

Contents  xxi

Using Application Containers	 413
Using Snap Containers	 414
Using Flatpak Containers	 416

Summary	 418
Exam Essentials	 419
Review Questions	 421

Chapter 14	 Tending Kernel Modules	 423

Exploring Kernel Modules	 424
Installing Kernel Modules	 428
Removing Kernel Modules	 431
Summary	 432
Exam Essentials	 432
Review Questions	 434

Part  IV	 Securing Your System	 437

Chapter 15	 Applying Ownership and Permissions	 439

Looking at File and Directory Permissions	 440
Understanding Ownership	 440
Controlling Access Permissions	 442
Exploring Special Permissions	 445
Managing Default Permissions	 446

Access Control Lists	 448
Context-Based Permissions	 450

Using SELinux	 451
Using AppArmor	 455

Understanding Linux User Types	 457
Types of User Accounts	 458
Escalating Privileges	 458

Restricting Users and Files	 459
Summary	 464
Exam Essentials	 465
Review Questions	 466

Chapter 16	 Looking at Access and Authentication
Methods	 469

Getting to Know PAM	 470
Exploring PAM Configuration Files	 471
Enforcing Strong Passwords	 474
Locking Out Accounts	 477
Limiting Root Access	 481

Exploring PKI Concepts	 483
Getting Certificates	 483
Discovering Key Concepts	 483

xxii  Contents

Securing Data	 484
Signing Transmissions	 485

Using SSH	 486
Exploring Basic SSH Concepts	 486
Configuring SSH	 488
Generating SSH Keys	 490
Authenticating with SSH Keys	 492
Authenticating with the Authentication Agent	 494
Using SSH Securely	 496

Using VPN as a Client	 498
Summary	 499
Exam Essentials	 499
Review Questions	 501

Chapter 17	 Implementing Logging Services	 503

Understanding the Importance of Logging	 504
The syslog Protocol	 504
The History of Linux Logging	 506

Basic Logging Using rsyslog	 507
Configuration	 507
Making Log Entries	 509
Finding Event Messages	 509

Journaling with systemd-journald	 510
Configuration	 510
Viewing Logs	 511

Summary	 513
Exam Essentials	 514
Review Questions	 515

Chapter 18	 Overseeing Linux Firewalls	 517

Providing Access Control	 518
Looking at Firewall Technologies	 520

Familiarizing Yourself with firewalld	 521
Investigating iptables	 525
Exploring nftables	 530
Understanding UFW	 533

Forwarding IP Packets	 539
Dynamically Setting Rules	 539

DenyHosts	 539
Fail2Ban	 540
IPset	 540

Summary	 542
Exam Essentials	 542
Review Questions	 544

Contents  xxiii

Chapter 19	 Embracing Best Security Practices	 547

User Security	 548
Authentication Methods	 548
Multifactor Authentication	 550
Unique User Accounts	 551
Enforce Strong Passwords	 551
Restricting the Root Account	 553
Separation of Data	 555
Disk Encryption	 556
Restricting Applications	 556
Preventing Unauthorized Rebooting	 557
Restricting Unapproved Jobs	 559
Banners and Messages	 559
Restricting USB Devices	 559
Looking for Trouble	 560
Auditing	 561

Network Security	 561
Denying Hosts	 561
Disabling Unused Services	 562
Changing Default Ports	 562
Using Encryption on the Network	 563

Summary	 564
Exam Essentials	 565
Review Questions	 567

Part V	 Troubleshooting Your System	 571

Chapter 20	 Analyzing System Properties and Remediation	 573

Troubleshooting the Network	 574
Exploring Network Issues	 574
Viewing Network Performance	 578
Reviewing the Network’s Configuration	 584

Troubleshooting Storage Issues	 587
Running Out of Filesystem Space	 587
Waiting on Disk I/O	 588
Measuring Disk Performance	 591
Failing Disks	 593

Troubleshooting the CPU	 594
Troubleshooting Memory	 595

Swapping	 596
Running Out of Memory	 599

Surviving a Lost Root Password	 600
Summary	 601

xxiv  Contents

Exam Essentials	 601
Review Questions	 603

Chapter 21	 Optimizing Performance	 607

Looking at Processes	 608
Monitoring Processes in Real Time	 610
Managing Processes	 614

Setting Priorities	 614
Stopping Processes	 615

Summary	 618
Exam Essentials	 619
Review Questions	 620

Chapter 22	 Investigating User Issues	 623

Troubleshooting Access	 624
Local	 624
Remote	 629
Authentication	 630

Examining File Obstacles	 631
File Permissions	 631
Directory Permissions	 632
Working with Advanced Permissions	 633
File Creation	 635

Exploring Environment and Shell Issues	 636
Summary	 638
Exam Essentials	 638
Review Questions	 639

Chapter 23	 Dealing with Linux Devices	 643

Communicating with Linux Devices	 644
Device Interfaces	 644
The /dev Directory	 647
The /proc Directory	 648
The /sys Directory	 650

Working with Devices	 651
Finding Devices	 651
Working with PCI Devices	 654
Working with USB Devices	 655
Supporting Monitors	 656
Using Printers	 658

Using Hot-Pluggable Devices	 659
Detecting Dynamic Devices	 660
Working with Dynamic Devices	 660

Summary	 662
Exam Essentials	 662
Review Questions	 664

Contents  xxv

Chapter 24	 Troubleshooting Application and Hardware Issues	 667

Dealing with Storage Problems	 668
Exploring Common Issues	 668
Dealing with Specialized Issues	 670

Uncovering Application Permission Issues	 674
Analyzing Application Dependencies	 677

Versioning	 677
Updating Issues	 677
Patching	 678
Dealing with Libraries	 679
Exploring Environment Variable Issues	 679
Gaining GCC Compatibility	 680
Perusing Repository Problems	 680

Looking at SELinux Context Violations	 681
Exploring Firewall Blockages	 682

Unrestricting ACLs	 682
Unblocking Ports	 683
Unblocking Protocols	 683

Troubleshooting Additional Hardware Issues	 684
Looking at Helpful Hardware Commands	 684
Investigating Other Hardware Problems	 688

Summary	 692
Exam Essentials	 692
Review Questions	 694

Part VI	 Automating Your System	 697

Chapter 25	 Deploying Bash Scripts	 699

The Basics of Shell Scripting	 700
Running Multiple Commands	 700
Redirecting Output	 701
Piping Data	 702
The Shell Script Format	 703
Running the Shell Script	 704

Advanced Shell Scripting	 705
Displaying Messages	 706
Using Variables	 706
Command-Line Arguments	 709
The Exit Status	 710

Writing Script Programs	 711
Command Substitution	 711
Performing Math	 712
Logic Statements	 714

xxvi  Contents

Loops	 717
Text Manipulation	 720

Summary	 721
Exam Essentials	 722
Review Questions	 724

Chapter 26	 Automating Jobs	 727

Running Scripts in Background Mode	 728
Running in the Background	 728
Running Multiple Background Jobs	 729

Running Scripts without a Console	 730
Sending Signals	 732

Interrupting a Process	 732
Pausing a Process	 732

Job Control	 734
Viewing Jobs	 734
Restarting Stopped Jobs	 736

Running Like Clockwork	 737
Scheduling a Job Using the at Command	 737
Scheduling Regular Scripts	 740

Summary	 744
Exam Essentials	 744
Review Questions	 746

Chapter 27	 Controlling Versions with Git	 749

Understanding Version Control	 750
Setting Up Your Git Environment	 752
Committing with Git	 755
Tags	 762
Merging Versions	 763
Summary	 766
Exam Essentials	 766
Review Questions	 768

Part VII	 Realizing Virtual and Cloud Environments	 771

Chapter 28	 Understanding Cloud and Virtualization
Concepts	 773

Considering Cloud Services	 774
What Is Cloud Computing?	 774
What Are the Cloud Services?	 775

Understanding Virtualization	 777
Hypervisors	 778
Types of Hypervisors	 779

Contents  xxvii

Hypervisor Templates	 781
Exploring Containers	 781

What Are Containers?	 781
Container Software	 782
Container Templates	 783
Working with Docker	 783

Summary	 786
Exam Essentials	 787
Review Questions	 788

Chapter 29	 Inspecting Cloud and Virtualization Services	 791

Focusing on VM Tools	 792
Looking at libvirt	 792
Viewing virsh	 793
Managing with Virtual Machine Manager	 794

Understanding Bootstrapping	 796
Booting with Shell Scripts	 796
Kickstarting with Anaconda	 797
Initializing with Cloud-init	 801

Exploring Storage Issues	 802
Considering Network Configurations	 804

Virtualizing the Network	 804
Configuring Virtualized NICs	 805

Summary	 808
Exam Essentials	 808
Review Questions	 810

Chapter 30	 Orchestrating the Environment	 813

Understanding Orchestration Concepts	 814
Probing Procedures	 815
Analyzing Attributes	 816

Provisioning the Data Center	 819
Coding the Infrastructure	 819
Automating the Infrastructure	 820
Comparing Agent and Agentless	 821
Investigating the Inventory	 821

Looking at Container Orchestration
Engines	 822

Embracing Kubernetes	 822
Inspecting Docker Swarm	 823
Surveying Mesos	 823

Summary	 823
Exam Essentials	 824
Review Questions	 825

xxviii  Contents

Appendix	 Answers to the Review Questions	 829

Chapter 2: Introduction to Services	 830
Chapter 3: Managing Files, Directories, and Text	 833
Chapter 4: Searching and Analyzing Text	 837
Chapter 5: Explaining the Boot Process	 841
Chapter 6: Maintaining System Startup and Services	 844
Chapter 7: Configuring Network Connections	 848
Chapter 8: Comparing GUIs	 851
Chapter 9: Adjusting Localization Options	 855
Chapter 10: Administering Users and Groups	 858
Chapter 11: Handling Storage	 861
Chapter 12: Protecting Files	 863
Chapter 13: Governing Software	 864
Chapter 14: Tending Kernel Modules	 866
Chapter 15: Applying Ownership and Permissions	 868
Chapter 16: Looking at Access and Authentication Methods	 869
Chapter 17: Implementing Logging Services	 871
Chapter 18: Overseeing Linux Firewalls	 872
Chapter 19: Embracing Best Security Practices	 874
Chapter 20: Analyzing System Properties and Remediation	 876
Chapter 21: Optimizing Performance	 878
Chapter 22: Investigating User Issues	 880
Chapter 23: Dealing with Linux Devices	 881
Chapter 24: Troubleshooting Application and Hardware Issues	 883
Chapter 25: Deploying Bash Scripts	 885
Chapter 26: Automating Jobs	 887
Chapter 27: Controlling Versions with Git	 889
Chapter 28: Understanding Cloud and Virtualization Concepts	 890
Chapter 29: Inspecting Cloud and Virtualization Services	 892
Chapter 30: Orchestrating the Environment	 894

Index	 897

Table of Exercises
Exercise 5.1	 Using Rescue Mode . 149

Exercise 7.1	 Determining the Network Environment . 228

Exercise 8.1	 Checking Your Display Server . 249

Exercise 9.1	 Experimenting with Time . 281

Exercise 11.1	 Experimenting with Filesystems . 357

Exercise 13.1	 Working with Packages . 418

Exercise 15.1	 Creating a Shared Directory . 463

Exercise 17.1	 Creating a Log or Journal Entry . 513

Exercise 19.1	 Creating an Encrypted Disk . 563

Exercise 21.1	 Managing a Running Process . 617

Exercise 23.1	 Adding a USB Storage Device to the Linux System 661

Exercise 24.1	 Troubleshooting Application Permission Issues . 675

Exercise 25.1	 Writing a Bash Script to View the Password Information
for System Users . 721

Exercise 26.1	 Manipulating Jobs from the Command Line . 743

Exercise 28.1	 Working with Containers . 785

Introduction
Linux has become one of the fastest-growing operating systems used in server environments.
Most companies utilize some type of Linux system within their infrastructure, and Linux
is one of the major players in the cloud computing world. The ability to build and man-
age Linux systems is a skill that many companies are now looking for. The more you know
about Linux, the more marketable you’ll become in today’s computer industry.

The purpose of this book is to provide you with the knowledge and skills you need to
succeed in the Linux world.

What Is Linux+?
The CompTIA Linux+ exam has become a benchmark in the computer industry as a method
of demonstrating skills with the Linux operating system. Obtaining CompTIA Linux+
certification means that you’re comfortable working in a Linux environment and have the
skills necessary to install and maintain Linux systems.

Previously, CompTIA had partnered with the Linux Professional Institute (LPI) to pro-
duce the Linux+ certification exams. However, with the release of exam XK0-004 in 2019
CompTIA moved to creating its own exam, and has continued that with the updated XK0-
005 exam. The updated Linux+ certification is still a single exam that covers hands-on
components of operating a Linux system. The updated Linux+ exam focuses on four
areas of Linux:

■■ System management

■■ Security

■■ Scripting, containers, and automation

■■ Troubleshooting

The XK0-005 exam uses performance-based, multiple-choice, and multiple-answer ques-
tions to identify employees who can perform the job of Linux system administrator. The
exam covers tasks associated with all major Linux distributions, not focusing on any one
specific distribution. It consists of 90 questions, and you will have 90 minutes to complete it.

Why Become Linux Certified?
With the growing popularity of Linux (and the increase in Linux-related jobs) comes hype.
With all of the hype that surrounds Linux, it’s become hard for employers to distinguish
employees who are competent Linux administrators from those who just know the buzz-
words. This is where Linux+ certification comes in.

With a Linux+ certification, you will establish yourself as a Linux administrator who
is familiar with the Linux platform and can install, maintain, and troubleshoot any type
of Linux system. By changing the exam to be more performance based, CompTIA has
established the new Linux+ exam as a way for employers to have confidence in knowing
their employees who pass the exam will have the skills necessary to get the job done.

xxxii  Introduction

How to Become Certified
The Linux+ certification is available for anyone who passes the XK0-005 exam. There are
no prerequisites to taking the exam, but CompTIA recommends having either the A+ and
Network+ certifications or a similar amount of experience, along with at least 12 months of
hands-on Linux administrator experience.

Pearson VUE administers the exam. The exam can be taken at any Pearson VUE testing
center. To register for the exam, call Pearson VUE at (877) 619-2096, or register online at
http://home.pearsonvue.com/comptia.

After you take the exam, you will be immediately notified of your score. If you pass, you
will get a certificate in the mail showing your Linux+ certification credentials along with a
verification number that employers can use to verify your credentials online.

The Linux+ exam is part of CompTIA’s Continuing Education (CE) track
of exams. It’s valid for three years, but it can be renewed by acquiring an
appropriate number of continuing education units (CEUs) and paying a
yearly fee.

Who Should Buy This Book
While anyone who wants to pass the Linux+ certification exams would benefit from this
book, that’s not the only reason for purchasing it. This book covers all the material someone
new to the Linux world would need to know to start out in Linux. After you’ve become
familiar with the basics of Linux, the book will serve as an excellent reference for quickly
finding answers to everyday Linux questions.

The book is written with the assumption that you have a familiarity with basic computer
and networking principles. No experience with Linux is required to benefit from this book,
but it will help if you know your way around a computer in either the Windows or macOS
world, such as how to use a keyboard, use optical disks, and work with USB thumb drives.

It will also help to have a Linux system available to follow along with. Many chapters
contain a simple exercise that will walk you through the basic concepts presented in the
chapter. This provides the crucial hands-on experience that you’ll need to both pass the exam
and do well in the Linux world.

While the CompTIA Linux+ exam is Linux distribution neutral, it’s impos-
sible to write exercises that work in all Linux distributions. That said,
the exercises in this book assume you have either Ubuntu 20.04 LTS or
Rocky Linux 8 available. You can install either or both of these Linux
distributions in a virtual environment using the Oracle VirtualBox soft-
ware, available at https://virtualbox.org.

http://home.pearsonvue.com/comptia
https://virtualbox.org

Introduction  xxxiii

How This Book Is Organized
This book consists of 30 chapters organized around the different objective areas of the
Linux+ exam:

■■ Chapter 1, “Preparing Your Environment,” helps you with finding and installing a
Linux distribution to use for experimenting with Linux and working on the exercises
in the book.

■■ Chapter 2, “Introduction to Services,” introduces you to the different server applications
and uses you’ll commonly see in Linux.

■■ Chapter 3, “Managing Files, Directories, and Text,” covers the basic Linux commands
for working with files and directories from the command line.

■■ Chapter 4, “Searching and Analyzing Text,” discusses the different tools Linux provides
for working with text files.

■■ Chapter 5, “Explaining the Boot Process,” takes you into the inner processes of how the
Linux operating system starts, showing you how to customize the Linux boot process.

■■ Chapter 6, “Maintaining System Startup and Services,” walks you through how the
Linux system starts applications at boot time by discussing the two methods used for
controlling program startups.

■■ Chapter 7, “Configuring Network Connections,” shows how to get your Linux system
working on a local area network, along with the tools available to help troubleshoot
network problems on your Linux system.

■■ Chapter 8, “Comparing GUIs,” discusses the graphical desktop environments avail-
able in Linux.

■■ Chapter 9, “Adjusting Localization Options,” shows how to change the character set
and date/time formats for your Linux system to accommodate the different formats used
in various countries.

■■ Chapter 10, “Administering Users and Groups,” explores how Linux handles user
accounts and how you can assign users to groups to manage access to files and
directories.

■■ Chapter 11, “Handling Storage,” examines the storage methods and formats available in
the Linux system.

■■ Chapter 12, “Protecting Files,” dives into the world of data backups, archiving, and
restoring.

■■ Chapter 13, “Governing Software,” explains how Linux manages software applications
and how to install software packages on the various Linux distribution types.

■■ Chapter 14, “Tending Kernel Modules,” discusses how Linux uses kernel modules to
support hardware and how you can manage the kernel modules on your Linux system.

xxxiv  Introduction

■■ Chapter 15, “Applying Ownership and Permissions,” explores the multiple methods
available for protecting files and directories on a Linux system. It discusses the standard
Linux-style permissions as well as the more advanced SELinux and AppArmor applica-
tions used to provide more advanced security for Linux systems.

■■ Chapter 16, “Looking at Access and Authentication Methods,” explores the methods
Linux can use to authenticate user accounts, both locally and in network environments.

■■ Chapter 17, “Implementing Logging Services,” shows how Linux logs system events
and how you can use the Linux system logs for troubleshooting problems on your
Linux system.

■■ Chapter 18, “Overseeing Linux Firewalls,” walks you through how to protect your
Linux system in a network environment.

■■ Chapter 19, “Embracing Best Security Practices,” discusses various common methods
you can implement to make your Linux environment more secure.

■■ Chapter 20, “Analyzing System Properties and Remediation,” explores the methods you
have available to troubleshoot different types of Linux problems. This includes network
issues, storage issues, and operating system issues.

■■ Chapter 21, “Optimizing Performance,” discusses how Linux handles running applica-
tions and the tools you have available to control how those applications behave.

■■ Chapter 22, “Investigating User Issues,” explores how to troubleshoot and fix common
user-related issues, such as the inability to access specific files or directories on
the system.

■■ Chapter 23, “Dealing with Linux Devices,” walks you through the types of hardware
devices Linux supports and how best to get them working on your Linux system.

■■ Chapter 24, “Troubleshooting Application and Hardware Issues,” focuses on trouble-
shooting methods for solving storage, application, and network problems that may
occur on your Linux system.

■■ Chapter 25, “Deploying Bash Scripts,” discusses how to create your own scripts to auto-
mate common tasks in Linux.

■■ Chapter 26, “Automating Jobs,” follows up on the topic of Bash scripts by showing you
how to schedule your scripts to run at specific times of the day, week, month, or year.

■■ Chapter 27, “Controlling Versions with Git,” explores the world of software version
control and demonstrates how you can use the common Git version control software to
manage your own applications and scripts.

■■ Chapter 28, “Understanding Cloud and Virtualization Concepts,” walks you through
the basics of what the cloud is and how to use Linux to create your own cloud com-
puting environment.

■■ Chapter 29, “Inspecting Cloud and Virtualization Services,” demonstrates how to imple-
ment cloud computing software in Linux.

■■ Chapter 30, “Orchestrating the Environment,” discusses how you can use containers and
orchestration engines in your Linux environment to control application development
environments and deploy applications in controlled environments.

Introduction  xxxv

What’s Included in the Book
We’ve included several study learning tools throughout the book:

■■ Assessment Test. At the end of this introduction is an assessment test that you can take
to check your level of Linux skills. Take the test before you start reading the book; it
will help you determine the areas in which you need extra help. The answers to the ques-
tions appear on a separate page after the last question in the test. Each answer includes
an explanation and a note telling you the chapter in which the material appears.

■■ Objective Map and Opening List of Objectives. An objective map shows you where each
of the Linux+ exam objectives is covered in this book. Also, each chapter opens with
a note as to which objective it covers. Use these to see exactly where each of the exam
topics is covered.

■■ Exam Essentials. At the end of each chapter, after the summary, is a list of exam essen-
tials covered in the chapter. These are the key topics you should take from the chapter as
you prepare for the exam.

■■ Chapter Review Questions. To test your knowledge as you progress through the book,
there are review questions at the end of each chapter. As you finish each chapter, answer
the review questions, and then check your answers against the answers provided in
Appendix. You can then go back and reread any sections that detail the topics of the
questions you missed.

The assessment test, review questions, and other testing elements
included in this book are not derived from the actual Linux+ exam ques-
tions, so don’t memorize the answers to these questions and assume you
will pass the exam. You should learn the underlying topics, as described
in the text of the book. This will help you answer the questions provided
with this book and pass the exam. Learning the underlying topics is also
the approach that will serve you best in the workplace, the ultimate goal
of the certification.

To get the most out of this book, you should read each chapter from start to finish and
then check your memory and understanding with the chapter review questions. Even if
you’re already familiar with a topic, it will help to review the material in the chapter. In
Linux there are often multiple ways to accomplish a task. Become familiar with the different
methods to help with the Linux+ exam.

Interactive Online Learning Environment and Test Bank
The interactive online learning environment that accompanies the book provides a test bank
with study tools to help you prepare for the certification exam and increase your chances of
passing it the first time. The test bank includes the following:

■■ Sample Tests. All of the questions in this book are provided, including the assessment
test, which you’ll find at the end of this introduction, and the chapter tests that include
the review questions at the end of each chapter. In addition, there is a practice exam.

xxxvi  Introduction

Use these questions to test your knowledge of the study guide material. The online test
bank runs on multiple devices.

■■ Flashcards. Questions are provided in digital flashcard format (a question followed by a
single correct answer). You can use the flashcards to reinforce your learning and provide
last-minute test prep before the exam.

■■ Other Study Tools. A glossary of key terms from this book and their definitions are
available as a fully searchable PDF.

Like all exams, the Linux+ certification from CompTIA is updated peri-
odically and may eventually be retired or replaced. At some point after
CompTIA is no longer offering this exam, the old editions of our books
and online tools will be retired. If you have purchased this book after the
exam was retired, or you are attempting to register in the Sybex online
learning environment after the exam was retired, please know that we
make no guarantees that this exam’s online Sybex tools will be available
once the exam is no longer available.

Go to www.wiley.com/go/sybextestprep to register and gain access to
this interactive online learning environment and test bank with study tools.

Conventions Used in This Book
This book uses certain typographic styles in order to help you quickly identify important
information and avoid confusion over the meaning of words such as onscreen prompts. In
particular, look for the following styles:

■■ Italicized text indicates key terms that are described at length for the first time in a
chapter. (Italics are also used for emphasis.)

■■ A monospaced font indicates the contents of configuration files, messages displayed
at text-mode Linux shell prompts, filenames, text-mode command names, and
Internet URLs.

■■ Italicized monospace text indicates a variable, or information that differs
from one system or command run to another, such as the name of a file or a process
ID number.

■■ Bold monospace text is information that you’re to type into the computer, usually at a
Linux shell prompt. This text can also be italicized to indicate that you should substitute
an appropriate value for your system. (When isolated on their own lines, commands are
preceded by nonbold monospace $ or # command prompts, denoting regular user or
system administrator user, respectively.)

In addition to these text conventions, which can apply to individual words or entire para-
graphs, a few conventions highlight segments of text, as in the following examples:

http://www.wiley.com/go/sybextestprep

Introduction  xxxvii

A note indicates information that’s useful or interesting but that’s some-
what peripheral to the main text. A note might be relevant to a small
number of networks, for instance, or it may refer to an outdated feature.

A tip provides information that can save you time or frustration and that
may not be entirely obvious. A tip might describe how to get around a
limitation or how to use a feature to perform an unusual task.

Warnings describe potential pitfalls or dangers. If you fail to heed a
warning, you may end up spending a lot of time recovering from a bug, or
you may even end up restoring your entire system from scratch.

A sidebar is like a note but longer. The information in a sidebar is useful, but it doesn’t fit
into the main flow of the text.

A case study is a real-world scenario, a type of sidebar that describes a task or an example
that’s particularly grounded in the real world. This may be a situation we or somebody
we know has encountered, or it may be advice on how to work around problems that are
common in real-world, working Linux environments.

E X E R C I S E

An exercise is a procedure that you should try on your own computer to help you learn
about the material in the chapter. Don’t limit yourself to the procedures described in the
exercises, though. Try other commands and procedures to truly learn about Linux.

The Exam Objectives
The exam objectives define the topics you can expect to find on the CompTIA Linux+ exam.
The exam developers have determined that these topics are relevant to the skills necessary
to become a competent Linux administrator and have based the exam questions on your

xxxviii  Introduction

ability to demonstrate your knowledge in these topics. The official CompTIA Linux+ XK0-
005 exam topics are listed here, along with references to where you can find them covered
in the book.

1.0 System Management

1.1 Summarize Linux fundamentals. (Chapters 5, 8, 11, and 23)
■■ Filesystem Hierarchy Standard (FHS)

■■ Basic boot process

■■ Kernel panic

■■ Device types in /dev
■■ Basic package compilation from source

■■ Storage concepts

■■ Listing hardware information

1.2 Given a scenario, manage files and directories.
(Chapters 3, 4, and 12)

■■ File editing

■■ File compression, archiving, and backup

■■ File metadata

■■ Soft and hard links

■■ Copying files between systems

■■ File and directory operations

1.3 Given a scenario, configure and manage storage using the
appropriate tools. (Chapter 11)

■■ Disk partitioning

■■ Mounting local and remote devices

■■ Filesystem management

■■ Monitoring storage space and disk usage

■■ Creating and modifying volumes using Logical Volume Manager (LVM)

■■ Inspecting RAID implementations

■■ Storage area network (SAN)/network-attached storage (NAS)

■■ Storage hardware

Introduction  xxxix

1.4 Given a scenario, configure and use the appropriate processes
and services. (Chapters 6, 21, and 26)

■■ System services

■■ Scheduling services

■■ Process management

1.5 Given a scenario, use the appropriate networking tools or
configuration files. (Chapters 7 and 20)

■■ Interface management

■■ Name resolution

■■ Network monitoring

■■ Remote networking tools

1.6 Given a scenario, build and install software. (Chapter 13)
■■ Package management

■■ Sandboxed applications

■■ System updates

1.7 Given a scenario, manage software configurations.
(Chapters 9, 14, and 17)

■■ Updating configuration files

■■ Configure kernel options

■■ Configure common system services

2.0 Security

2.1 Summarize the purpose and use of security best practices in a
Linux environment. (Chapters 16 and 19)

■■ Managing public key infrastructure (PKI) certificates

■■ Certificate use cases

■■ Authentication

■■ Linux hardening

xl  Introduction

2.2 Given a scenario, implement identity management
(Chapters 10 and 16)

■■ Account creation and deletion

■■ Account management

2.3 Given a scenario, implement and configure firewalls.
(Chapter 18)

■■ Firewall use cases

■■ Common firewall technologies

■■ Key firewall features

2.4 Given a scenario, configure and execute remote connectivity
for system management. (Chapter 16)

■■ SSH

■■ Executing commands as another user

2.5 Given a scenario, apply the appropriate access controls.
(Chapter 15)

■■ File permissions

■■ Security-enhanced Linux (SELinux)

■■ AppArmor

■■ Command-line utilities

3.0 Scripting, Containers, and Automation

3.1 Given a scenario, create simple shell scripts to automate
common tasks. (Chapters 4 and 25)

■■ Shell script elements

■■ Standard stream redirection

■■ Common script utilities

■■ Environment variables

3.2 Given a scenario, perform basic container operations.
(Chapter 28)

■■ Container management

■■ Container image operations

Introduction  xli

3.3 Given a scenario, perform basic version control using Git.
(Chapter 27)

■■ Common Git uses

■■ Git commands

3.4 Summarize common infrastructure as code technologies.
(Chapters 27 and 30)

■■ File formats

■■ Utilities

■■ Continuous integration/continuous deployment (CI/CD)

■■ Advanced Git topics

3.5 Summarize container, cloud, and orchestration concepts.
(Chapters 28, 29, and 30)

■■ Kubernetes benefits and application use cases

■■ Single-node, multicontainer use cases

■■ Container persistent storage

■■ Container networks

■■ Service mesh

■■ Bootstrapping

■■ Container registries

4.0 Troubleshooting

4.1 Given a scenario, analyze and troubleshoot storage issues.
(Chapters 20 and 24)

■■ High latency

■■ Low throughput

■■ Input/output operations per second (IOPS) scenarios

■■ Capacity issues

■■ Filesystem issues

■■ I/O scheduler

■■ Device issues

■■ Mount options problems

xlii  Introduction

4.2 Given a scenario, analyze and troubleshoot network resource
issues. (Chapters 7 and 20)

■■ Network configuration issues

■■ Firewall issues

■■ Interface errors

■■ Bandwidth limitations

■■ Name resolution issues

■■ Testing remote systems

4.3 Given a scenario, analyze and troubleshoot central processing
unit (CPU) and memory issues. (Chapters 7, 20, 21, and 24)

■■ Runaway processes

■■ Zombie processes

■■ High CPU utilization

■■ High load average

■■ High run queues

■■ CPU times

■■ CPU process priorities

■■ Memory exhaustion

■■ Out of memory (OOM)

■■ Swapping

■■ Hardware

4.4 Given a scenario, analyze and troubleshoot user access and file
permissions. (Chapter 22)

■■ User login issues

■■ User file access issues

■■ Password issues

■■ Privilege escalation

■■ Quota issues

4.5 Given a scenario, use systemd to diagnose and resolve
common problems with a Linux system. (Chapter 6)

■■ Unit files

■■ Common systemd problems

Introduction  xliii

How to Contact the Publisher
If you believe you’ve found a mistake in this book, please bring it to our attention. At John
Wiley & Sons, we understand how important it is to provide our customers with accurate
content, but even with our best efforts an error may occur.

In order to submit your possible errata, please email it to our Customer Service Team at
wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

mailto:wileysupport@wiley.com

xliv  Assessment Test

Assessment Test
1.	 What software package allows a Linux server to share folders and printers with Windows

and Mac clients?

A.	 Postfix

B.	 Apache

C.	 Samba

D.	 Kerberos

E.	 Docker

2.	 Which software package allows developers to deploy applications using the exact same envi-
ronment in which they were developed?

A.	 Postfix

B.	 Apache

C.	 Samba

D.	 Kerberos

E.	 Docker

3.	 The cat -n File.txt command is entered at the command line. What will be the result?

A.	 The text file File.txt will be displayed.

B.	 The text file File.txt will be displayed along with any special hidden characters in the file.

C.	 The text file File.txt will be displayed along with any special symbols representing
end-of-line characters.

D.	 The text file File.txt will be displayed along with line numbers.

E.	 The text file File.txt will be displayed in reverse order.

4.	 Which of the following are stream editors? (Choose all that apply.)

A.	 vim
B.	 sed
C.	 awk
D.	 gawk
E.	 nano

5.	 Which command in GRUB2 defines the location of the /boot folder to the first partition on
the first hard drive on the system?

A.	 set root=hd(0,1)
B.	 set root=hd(1,0)
C.	 set root=hd(1,1)
D.	 set root=hd(0,0)
E.	 set root=first

Assessment Test  xlv

6.	 If you see read or write errors appear in the system log, what tool should you use to correct
any bad sections of the hard drive?

A.	 mount
B.	 unmount
C.	 fsck
D.	 dmesg
E.	 mkinitrd

7.	 The init program is started on a Linux system and has a process ID number. What typically is
that process’s ID number?

A.	 0

B.	 1

C.	 2

D.	 10

E.	 Unknown

8.	 You need to determine the default target of a systemd system. Which of the following com-
mands should you use?

A.	 grep initdefault /etc/inittab
B.	 runlevel
C.	 systemctl is-enabled
D.	 systemd get-target
E.	 systemctl get-default

9.	 The Cinnamon desktop environment uses which window manager?

A.	 Mutter

B.	 Muffin

C.	 Nemo

D.	 Dolphin

E.	 LightDM

10.	 Your X11 session has become hung. What keystrokes do you use to restart the session?

A.	 Ctrl+C

B.	 Ctrl+Z

C.	 Ctrl+Q

D.	 Ctrl+Alt+Delete

E.	 Ctrl+Alt+Backspace

xlvi  Assessment Test

11.	 What folder contains the time zone template files in Linux?

A.	 /etc/timezone
B.	 /etc/localtime
C.	 /usr/share/zoneinfo
D.	 /usr/share/timezone
E.	 /usr/share/localtime

12.	 What systemd command allows you to view and change the time, date, and time zone?

A.	 timedatectl
B.	 localectl
C.	 date
D.	 time
E.	 locale

13.	 Which of the following files contain user account creation directives used by the useradd
command? (Choose all that apply.)

A.	 The /etc/default/useradd file

B.	 The /etc/useradd file

C.	 The /etc/adduser.conf file

D.	 The /etc/login.defs file

E.	 The /etc/login.def file

14.	 You need to display the various quotas on all your filesystems employing quota limits. Which
of the following commands should you use?

A.	 edquota -t
B.	 quotaon -a
C.	 quotacheck -cu
D.	 quotacheck -cg
E.	 repquota -a

15.	 What drive and partition does the raw device file /dev/sdb1 reference?

A.	 The first partition on the second SCSI storage device

B.	 The second partition on the first SCSI storage device

C.	 The first partition on the second PATA storage device

D.	 The second partition on the first PATA storage device

E.	 The second partition on the second SATA storage device

Assessment Test  xlvii

16.	 What tool creates a logical volume from multiple physical partitions?

A.	 mkfs
B.	 pvcreate
C.	 lvcreate
D.	 fdisk
E.	 vgcreate

17.	 Which of the following can be used as backup utilities? (Choose all that apply.)

A.	 The gzip utility

B.	 The zip utility

C.	 The tar utility

D.	 The rsync utility

E.	 The dd utility

18.	 A system administrator has created a backup archive and transferred the file to another
system across the network. Which utilities can be used to check the archive files integrity?
(Choose all that apply.)

A.	 The rsync utility

B.	 The md5sum utility

C.	 The sftp utility

D.	 The scp utility

E.	 The sha512sum utility

19.	 What tool should you use to install a DEB package file?

A.	 dpkg
B.	 tar
C.	 gcc
D.	 rpm
E.	 gzip

20.	 What tool do you use to install an RPM package file?

A.	 dpkg
B.	 tar
C.	 gcc
D.	 rpm
E.	 gzip

xlviii  Assessment Test

21.	 The lsmod utility provides the same information as what other utility or file(s)?

A.	 The modinfo utility

B.	 The /proc/modules file

C.	 The /etc/modules.conf file

D.	 The insmod utility

E.	 The /run/modprobe.d/*.conf files

22.	 Which utility should be used to remove a module along with any dependent modules?

A.	 The rmmod utility

B.	 The modinfo utility

C.	 The cut utility

D.	 The depmod utility

E.	 The modprobe utility

23.	 What special bit should you set to prevent users from deleting shared files created by
someone else?

A.	 SUID

B.	 GUID

C.	 Sticky bit

D.	 Read

E.	 Write

24.	 What command can you use to change the owner assigned to a file?

A.	 chmod
B.	 chown
C.	 chage
D.	 ulimit
E.	 chgrp

25.	 Which directory contains the various PAM configuration files?

A.	 The /etc/pam/ directory

B.	 The /etc/pam_modules/ directory

C.	 The /etc/modules/ directory

D.	 The /etc/pam.d/ directory

E.	 The /etc/pam_modules.d/ directory

26.	 Which of the following can override the settings in the ~/.ssh/config file?

A.	 The settings in the /etc/ssh/ssh_config file.

B.	 The ssh utility’s command-line options.

C.	 You cannot override the settings in this file.

D.	 The settings in the /etc/ssh/sshd_config file.

E.	 The settings in the sshd daemon’s configuration file.

Assessment Test  xlix

27.	 What command can you use to display new entries in a log file in real time as they occur?

A.	 head
B.	 tail
C.	 tail -f
D.	 head -f
E.	 vi

28.	 What command do you use to display entries in the systemd-journald journal?

A.	 journalctl
B.	 syslogd
C.	 klogd
D.	 systemd-journald
E.	 vi

29.	 The /etc/services file may be used by firewalls for what purpose?

A.	 To designate what remote services to block

B.	 To store their ACL rules

C.	 To map a service name to a port and protocol

D.	 To determine if the port can be accessed

E.	 To designate what local services can send out packets

30.	 Which of the following is true about netfilter? (Choose all that apply.)

A.	 It is used by firewalld.

B.	 It is used by UFW.

C.	 It provides code hooks into the Linux kernel for firewall technologies to use.

D.	 It is used by iptables.

E.	 It provides firewall services without the need for other applications.

31.	 Which of the following is a measurement of the maximum amount of data that can be trans-
ferred over a particular network segment?

A.	 Bandwidth

B.	 Throughput

C.	 Saturation

D.	 Latency

E.	 Routing

32.	 Which tool will allow you to view disk I/O specific to swapping?

A.	 ipcs -m
B.	 cat /proc/meminfo
C.	 free
D.	 swapon -s
E.	 vmstat

l  Assessment Test

33.	 What command-line command allows you to view the applications currently running on the
Linux system?

A.	 lsof
B.	 kill
C.	 ps
D.	 w
E.	 nice

34.	 What command-line commands allow you to send process signals to running applications?
(Choose two.)

A.	 renice
B.	 pkill
C.	 nice
D.	 kill
E.	 pgrep

35.	 Annika puts the file line PS1="My Prompt: " into her account’s $HOME/.bash_profile file. This
setting changes her prompt the next time she logs into the system. However, when she starts a
subshell, it is not working properly. What does Annika need to do to fix this issue?

A.	 Add the file line to the $HOME/.profile file instead.

B.	 Nothing. A user’s prompt cannot be changed in a subshell.

C.	 Add export prior to PS1 on the same line in the file.

D.	 Change her default shell to /bin/dash for this to work.

E.	 Change the last field in her password record to /sbin/false.

36.	 A user, who is not the owner or a group member of a particular directory, attempts to use the
ls command on the directory and gets a permission error. What does this mean?

A.	 The directory does not have display (d) set for other permissions.

B.	 The directory does not have execute (x) set for other permissions.

C.	 The directory does not have write (w) set for other permissions.

D.	 The directory does not have list (l) set for other permissions.

E.	 The directory does not have read (r) set for other permissions.

37.	 Which directories contain dynamic files that display kernel and system information?
(Choose two.)

A.	 /dev
B.	 /proc
C.	 /etc
D.	 /sys
E.	 /dev/mapper

Assessment Test  li

38.	 What directory contains configuration information for the X Windows System in Linux?

A.	 /dev
B.	 /proc
C.	 /etc/X11
D.	 /sys
E.	 /proc/interrupts

39.	 How would you fix a “mount point does not exist” problem?

A.	 Employ the fsck utility to fix the bad disk sector.

B.	 Employ the badblocks utility to fix the bad disk sector.

C.	 Use super user privileges, if needed, and create the directory via the vgchange command.

D.	 Use super user privileges, if needed, and create the directory via the mkdir command.

E.	 Use super user privileges, if needed, and create the directory via the mountpoint
command.

40.	 Peter is trying to complete his network application, Spider, but is running into a problem
with accessing a remote server’s files and there are no network problems occurring at this
time. He thinks it has something to do with the remote server’s ACLs being too restrictive.
You need to investigate this issue. Which of the following might you use for troubleshooting
this problem? (Choose all that apply.)

A.	 The firewall-cmd command

B.	 The ufw command

C.	 The iptables command

D.	 The getacl command

E.	 The setacl command

41.	 Which Bash shell script command allows you to iterate through a series of data until the data
is complete?

A.	 if
B.	 case
C.	 for
D.	 exit
E.	 $()

42.	 Which environment variable allows you to retrieve the numeric user ID value for the user
account running a shell script?

A.	 $USER
B.	 $UID
C.	 $BASH
D.	 $HOME
E.	 $1

lii  Assessment Test

43.	 What does placing an ampersand sign (&) after a command on the command line do?

A.	 Disconnects the command from the console session

B.	 Schedules the command to run later

C.	 Runs the command in background mode

D.	 Redirects the output to another command

E.	 Redirects the output to a file

44.	 When will the cron table entry 0 0 1 * * myscript run the specified command?

A.	 At 1 a.m. every day

B.	 At midnight on the first day of every month

C.	 At midnight on the first day of every week

D.	 At 1 p.m. every day

E.	 At midnight every day

45.	 Which of the following packages will provide you with the utilities to set up Git VCS
on a system?

A.	 git-vcs
B.	 GitHub
C.	 gitlab
D.	 Bitbucket
E.	 git

46.	 If you do not tack on the -m option with an argument to the git commit command, what
will happen?

A.	 The command will throw an error message and fail.

B.	 The commit will take place, but no tracking will occur.

C.	 You are placed in an editor for the COMMIT_EDITMSG file.

D.	 Your commit will fail, and the file is removed from the index.

E.	 Nothing. This is an optional switch.

47.	 At a virtualization conference, you overhear someone talking about using blobs on their
cloud-based virtualization service. Which virtualization service are they using?

A.	 Amazon Web Services

B.	 KVM

C.	 Digital Ocean

D.	 GitHub

E.	 Microsoft Azure

Assessment Test  liii

48.	 What is a networking method for controlling and managing network communications via
software that consists of a controller program as well as two APIs?

A.	 Thick provisioning

B.	 Thin provisioning

C.	 SDN

D.	 NAT

E.	 VLAN

49.	 Your company decides it needs an orchestration system (also called an engine). Which of the
following is one you could choose? (Choose all that apply.)

A.	 Mesos

B.	 Kubernetes

C.	 Splunk

D.	 Swarm

E.	 AWS

50.	 Which of the following is used in container orchestration? (Choose all that apply.)

A.	 Automated configuration management

B.	 Self-healing

C.	 DevOps

D.	 Agentless monitoring

E.	 Build automation

51.	 What type of cloud service provides the full application environment so that everyone on the
Internet can run it?

A.	 PaaS

B.	 Private

C.	 Public

D.	 SaaS

E.	 Hybrid

52.	 What type of hypervisor is the Oracle VirtualBox application?

A.	 PaaS

B.	 SaaS

C.	 Type II

D.	 Type I

E.	 Private

liv  Assessment Test

53.	 What file should you place console and terminal filenames in to prevent users from logging
into the Linux system as the root user account from those locations?

A.	 /etc/cron.deny
B.	 /etc/hosts.deny
C.	 /etc/securetty
D.	 /etc/login.warn
E.	 /etc/motd

54.	 What Linux program logs user file and directory access?

A.	 chroot
B.	 LUKS

C.	 auditd
D.	 klist
E.	 kinit

55.	 You’ve moved your present working directory to a new location in the Linux virtual
directory structure and need to go back to the previous directory where you were just
located. Which command should you employ?

A.	 cd
B.	 exit
C.	 cd ~
D.	 cd -
E.	 return

56.	 To copy a directory with the cp command, which option do you need to use?

A.	 -i
B.	 -R
C.	 -v
D.	 -u
E.	 -f

Answers to Assessment Test  lv

Answers to Assessment Test

1.	 C.  The Samba software package allows Linux servers and clients to communicate with Win-
dows and Mac clients or servers using the Microsoft SMB protocol, so option C is correct.
The Postfix software package provides email service for Linux servers, not Windows services,
so option A is incorrect. The Apache package is a web server; it doesn’t allow Linux servers
to share folders with Windows and Mac clients, so option B is incorrect. The Kerberos
package provides authentication services; it does not allow Linux servers to share folders, so
option D is incorrect. The Docker package provides container services for deploying applica-
tions on a Linux server; it does not allow the Linux server to share folders with Windows or
Mac clients, so option E is incorrect.

2.	 E.  The Docker package provides a method for developers to capture the entire development
environment for an application and deploy it into a production environment as a container,
so option E is correct. The Postfix package provides email services for a Linux server; it
doesn’t deploy applications, so option A is incorrect. The Apache package provides web
server services for a Linux server; it doesn’t deploy application environments, so option B is
incorrect. The Samba package allows a Linux server to interact in a Windows network with
Windows clients and servers; it does not provide an environment for deploying applications,
so option C is incorrect. The Kerberos package provides authentication services for Linux
servers; it doesn’t deploy applications, so option D is incorrect.

3.	 D.  The cat -n File.txt command will display the File.txt text file along with line
numbers. Therefore, option D is correct. The command in option A will simply display the
File.txt file. Thus, option A is a wrong answer. To see any special hidden characters
within the File.txt file, you would need to enter the command cat -A File
.txt. Therefore, option B is an incorrect choice. End-of-line characters need a different
cat command option, such as the -E switch. Therefore, option C is a wrong choice. The
cat command does not have a switch that will allow a text file’s contents to be displayed in
reverse order. Thus, option E is an incorrect choice.

4.	 B, C, D.  The sed, awk, and gawk utilities are all stream editors. Therefore, options B, C, and
D are correct. Both vim and nano are considered to be text editors. Therefore, options A and
E are incorrect choices.

5.	 A.  GRUB2 identifies the hard drives starting at 0, but the partitions start at 1, so the first
partition on the first hard drive would be 0,1 and option A is correct. Option B (1,0) defines
the second hard drive and an incorrect partition number, so it is incorrect. Option C defines
the first partition but the second hard drive, so it is incorrect. Option D defines the first hard
drive but an incorrect partition, so it is incorrect. Option E uses the keyword first, which
is not recognized by GRUB2, so it is incorrect.

6.	 C.  The fsck program can perform a filesystem check and repair multiple types of filesys-
tems on partitions, so option C is correct. The mount program is used to append a partition
to a virtual directory; it can’t correct a partition that contains errors, so option A is incorrect.
The unmount command removes a partition from the virtual directory, so option B is incor-
rect. Option D (the dmesg command) displays boot messages, and option E (the mkinitrd
command) creates an initrd RAM disk, so both are incorrect.

lvi  Answers to Assessment Test

7.	 B.  The init program is typically started immediately after the Linux system has tra-
versed the boot process, and it has a process ID (PID) number of 1. Therefore, option B is
the correct answer. The Linux kernel has the 0 PID number, and thus, option A is a wrong
answer. Options C, D, and E are also incorrect choices.

8.	 E.  The systemctl get-default command will display a systemd system’s default target.
Therefore, option E is the correct answer. The grep initdefault /etc/inittab
command will extract the default runlevel for a SysV init system. Thus, option A is a wrong
answer. The runlevel command will display a SysV init system’s previous and current run-
level. Therefore, option B is an incorrect answer. The systemctl is-enabled command
shows whether or not a particular service, whose name is passed as a command argument, is
configured to start at system boot. Thus, option C is a wrong choice. Option D is a made-up
command and therefore the wrong answer.

9.	 B.  The Cinnamon desktop environment uses the Muffin window manager. Therefore, option
B is the correct answer. Mutter is the window manager for the GNOME Shell desktop envi-
ronment, though Muffin did fork from that project. Thus, option A is a wrong answer. Nemo
is the file manager for Cinnamon, and therefore, option C is a wrong choice. Dolphin is the
file manager for the KDE Plasma desktop environment. Thus, option D is a wrong choice.
LightDM is the display manager for Cinnamon, and therefore, option E is also an incor-
rect choice.

10.	 E.  The Ctrl+Alt+Backspace will kill your X11 session and then restart it, putting you at
the login screen (display manager.) Therefore, option E is the correct answer. The Ctrl+C
combination sends an interrupt signal but does not restart an X11 session. Thus, option A is
a wrong answer. The Ctrl+Z keystroke combination sends a stop signal, but it will not restart
the X11 session. Therefore, option B is also an incorrect answer. The Ctrl+Q combination
will release a terminal that has been paused by Ctrl+S. However, it does not restart an X11
session, so it too is a wrong choice. The Ctrl+Alt+Delete keystroke combination can be set to
do a number of tasks, depending on your desktop environment. In some cases, it brings up a
shutdown, logout, or reboot menu. However, it does not restart the X11 session, so option D
is an incorrect choice.

11.	 C.  Both Debian-based and Red Hat–based Linux distributions store the time zone template
files in the /usr/share/zoneinfo folder, so option C is correct. The /etc/timezone
and /etc/localtime files contain the current time zone file for Debian- and Red Hat–
based systems, not the time zone template files, so options A and B are incorrect. The /usr/
share/timezone and /usr/share/localtime folders don’t exist in either Debian-
based or Red Hat–based Linux distributions, so options D and E are also incorrect.

12.	 A.  The timedatectl program is part of the systemd package and allows you to both view
and change the current time, date, and time zone for the Linux system, so option A is correct.
The localectl program is also part of the systemd package, but it handles localization
information and not time and date information, so option B is incorrect. The date command
allows you to view and change the time and date but not the time zone setting, so option C
is incorrect. The time command displays the elapsed CPU time used by an application, not
the current time, date, and time zone, so option D is incorrect. The locale command allows
you to view the localization settings for the Linux system, not the time, date, or time zone, so
option E is also incorrect.

Answers to Assessment Test  lvii

13.	 A, D.  The /etc/default/useradd file and /etc/login.defs file are files that contain
user account creation directives used by the useradd command. Therefore, options A and
D are the correct answers. Option B’s /etc/useradd file is a made-up file name, and thus
option B is a wrong choice. The /etc/adduser.conf file is only on Linux distributions
that use the adduser utility to create accounts. Thus, option C is an incorrect answer. The
/etc/login.def file is a made-up file name, and thus option E is also an incorrect choice.

14.	 E.  The repquota -a command will display the various quotas on all your filesystems
employing quota limits. Therefore, option E is the correct answer. The edquota -t
command will edit quota grace periods for the system. Therefore, option A is a wrong
answer. The quotaon -a command will automatically turn on quotas for all mounted non-
NFS filesystems in the /etc/fstab file, but it does not display filesystems’ quotas. Thus,
option B is an incorrect choice. The quotacheck utility creates either the aquota.group
file, if the -cg options are used, or the aquota.user file, if the -cu switches are used, or
both files if -cug is employed. However, it does nothing for displaying filesystems’ quotas.
Thus, options C and D are incorrect answers.

15.	 A.  Option A is the correct answer because Linux uses the /dev/sdxx format for SCSI and
SATA raw devices. The device is represented by a letter, starting with a, and the partition is
represented by a number, starting at 1. So /dev/sdb1 references the first partition on the
second SCSI or SATA device. Option B would be referenced by the /dev/sda2 file, so it is
incorrect. Option C would be referenced by the /dev/hdb1 file, so it is incorrect. Option
D would be referenced by /dev/hda2, so option D is incorrect, and option E would be
referenced by /dev/sdb2, so it is incorrect.

16.	 C.  The lvcreate program creates a logical volume from multiple partitions that you can
use as a single logical device to build a file system and mount it to the virtual directory, so
option C is correct. The mkfs program creates a filesystem on a partition but doesn’t create a
logical volume, so option A is incorrect. The pvcreate program identifies a physical volume
from a partition but doesn’t create the logical volume, so option B is incorrect. The fdisk
program creates and modifies physical partitions, not logical volumes, so option D is
incorrect. The vgcreate program creates a volume group for grouping physical partitions
but doesn’t create the logical volume, so option E is incorrect.

17.	 B, C, D, E.  The zip, tar, rsync, and dd utilities all can be used to create data backups.
Therefore, options B, C, D, and E are correct answers. The gzip utility can be used after a
backup is created or employed through tar options to compress a backup, so option A is the
only wrong choice.

18.	 B, E.  Both the md5sum and sha512sum utilities produce hashes on files, which can be com-
pared to determine if file corruption occurred, such as when transferring a file over the net-
work. Therefore, options B and E are the correct answers. The utilities mentioned in options
A, C, and D will allow you to securely transfer files but not check a file’s integrity. Therefore,
options A, C, and D are incorrect choices.

19.	 A.  The dpkg program is used for installing and removing Debian-based packages that
use the DEB file format, so option A is correct. The tar program is used for creating and
extracting tape archive formatted files that use the .tar file extension, so option B is incor-
rect. The gcc program is used for compiling source code into executable programs, so option

lviii  Answers to Assessment Test

C is incorrect. The rpm program is used for installing and removing Red Hat–based packages
that use the RPM file format, so option D is incorrect. The gzip program compresses files
and adds the .gz file extension to them, so option E is incorrect.

20.	 D.  The rpm program is used for installing and removing Red Hat–based packages that use
the RPM file format, so option D is correct. The dpkg program is used for installing and
removing Debian-based packages that use the DEB file format, so option A is incorrect. The
tar program is used for creating and extracting tape archive formatted files that use the
.tar file extension, so option B is incorrect. The gcc program is used for compiling source
code into executable programs, so option C is incorrect. The gzip program compresses files
and adds the .gz file extension to them, so option E is incorrect.

21.	 B.  The /proc/modules file has the same information that is displayed by the lsmod utility
(though the lsmod utility formats it much nicer). Therefore, option B is the correct answer.
The modinfo utility provides detailed module data, whereas lsmod shows only brief
information. Thus, option A is a wrong answer. The /etc/modules.conf file is a kernel
module configuration file, and it does not provide the same information as the lsmod utility.
Therefore, option C is also an incorrect answer. The insmod command is used to dynami-
cally load kernel modules, and thus it is a wrong answer. The /run/modprobe.d/*.conf
files are kernel module configuration files, and they do not provide the same information as
the lsmod utility. Therefore, option E is also an incorrect choice.

22.	 E.  The modprobe utility along with its -r switch is the utility to employ for removing
(unloading) a kernel module along with any of its dependencies. Therefore, option E is the
correct answer. The rmmod utility will remove a kernel module but not any of its depen-
dencies. Thus, option A is a wrong answer. The modinfo command does not unload kernel
modules but instead displays detailed information concerning a specified module. Therefore,
option B is an incorrect choice. The cut utility is used to filter text files and display the fil-
tered text to STDOUT. It is not involved in kernel module removal, and thus option C is a
wrong choice. The depmod utility is used to create a list of modules and their dependencies,
but it is not used to remove modules. Therefore, option D is an incorrect choice.

23.	 C.  The sticky bit assigned to a directory restricts all of the files in that directory so that only
the file owner can delete the file, even if a user account is in the group that has write permis-
sions, so option C is correct. The SUID bit allows a standard user to run an application with
the file owner permissions but doesn’t block users from deleting shared files, so option A is
incorrect. The GUID bit is used on a directory to ensure that all files created in the directory
have the same group as the directory, but it doesn’t prevent users in that group from deleting
files, so option B is incorrect. The Read and Write standard permission bits control access to
read to a file or write to a file, but they don’t block users from deleting a file, so options D
and E are both incorrect.

24.	 B.  The chown command allows you to set both the owner and group assigned to a file, so
option B is correct. The chmod command allows you to change the permissions for the file,
but not the owner of the file, so option A is incorrect. The chage command manages pass-
word aging for user accounts, not owners of files, so option C is incorrect. The ulimit
command allows the administrator to restrict system resources assigned to users but doesn’t
assign users to files, so option D is incorrect. The chgrp command allows you to change the
group assigned to a file but not the owner, so option E is incorrect.

Answers to Assessment Test  lix

25.	 D.  The /etc/pam.d/ directory contains the various PAM configuration files. Therefore,
option D is the correct answer. The other directory names are made up. Thus, options A, B,
C, and E are incorrect answers.

26.	 B.  The settings within the ~/.ssh/config file can be overridden by various ssh utility
options provided at the command line. Therefore, option B is the correct answer. The settings
in the /etc/ssh/ssh_config file can be overridden by both the settings in the ~/.ssh/
config file and the ssh utility’s command-line options, so option A is a wrong answer. The
/etc/ssh/sshd_config file is the sshd daemon’s configuration file, and it deals with
providing the SSH services, not in setting the configuration for the SSH client. Therefore,
both options D and E are incorrect choices.

27.	 C.  The -f option of the tail command displays new additions to a file in real time, so
option C is correct. The head and tail commands by themselves just list the existing
entries in a file, so options A and B are incorrect. The head command doesn’t support the -f
option, so option D is incorrect. The vi editor also only displays existing data in a file and
not newly added data, so option E is incorrect.

28.	 A.  The systemd-journald application uses its own binary file format for the journal
file and requires the journalctl file to read it, so option A is correct. The syslogd and
klogd applications are syslog loggers and not able to read the systemd-journald journal
file, so options B and C are incorrect. The systemd-journald application itself only adds
event messages to the journal and doesn’t read it, so option D is incorrect. Since the journal
file is in binary format, you can’t read it using standard text editor programs, so option E is
incorrect.

29.	 C.  The /etc/services file may be used by a firewall, such as UFW, to map a particular
service name to its port and protocol. Thus, option C is the correct answer. The file is not
used to designate remote services to block or store a firewall’s ACL rules. Therefore,
options A and B are wrong answers. The Linux firewall applications do not use the /etc/
services file to determine if a port can be accessed or what local services can send out
packets. Thus, options D and E are incorrect choices.

30.	 A, B, C, D.  Used by firewalld, UFW, and iptables, netfilter provides code hooks into
the Linux kernel for firewall technologies to use in order to implement fully functional fire-
wall capabilities. Therefore, options A, B, C, and D are all correct answers. Unfortunately,
netfilter cannot provide firewall services on its own. Thus, option E is the only incor-
rect choice.

31.	 A.  Bandwidth is a measurement of the maximum data amount that can be transferred bet-
ween two network points over a period of time. Therefore, option A is the correct answer.
Throughput is a measurement of the actual data amount that is transferred between two net-
work points, and thus option B is a wrong answer. Saturation occurs when network traffic
exceeds capacity, but it is not a measurement. Thus, option C is an incorrect answer. Latency
is the time between a source sending a packet and the packet’s destination receiving it. There-
fore, option D is a wrong choice. Routing is the process of forwarding IP packets to the
appropriate destination. Thus, option E is also an incorrect answer.

lx  Answers to Assessment Test

32.	 E.  The vmstat utility provides a lot of memory statistics, including disk I/O specific to
swapping. Therefore, option E is the correct answer. The ipcs -m command allows you
to see shared memory segments instead of disk I/O specific to swapping. Thus, option A
is the wrong answer. The cat /proc/meminfo command displays detailed information
concerning a system’s RAM. Therefore, option B is an incorrect answer. The free command
shows memory items such as free memory, used memory, and buffer/cache usage. Thus,
option C is a wrong choice. The swapon -s command displays swap space elements such as
type, name, and priority. Therefore, option D is also an incorrect choice.

33.	 C.  The ps command with the proper options displays the active applications running on the
Linux system, so option C is correct. The lsof command displays the files currently open
by applications but not all of the running applications, so option A is incorrect. The kill
command stops a running application based on its process ID; it doesn’t display all of the
running applications, so option B is incorrect. The w command displays all of the current
users on the system but not all of the running applications, so option D is incorrect. The
nice command allows you to start a new application with a specified priority level, but it
doesn’t allow you to display the currently running applications, so option E is incorrect.

34.	 B, D.  The pkill and kill commands allow you to send Linux process signals to running
applications, so options B and D are correct. The renice command allows you to change
the priority level of a running application but not send process signals to it, so option A is
incorrect. The nice command allows you to start an application with a specified priority
level but not send process signals to applications that are already running, so option C is
incorrect. The pgrep command allows you to display running applications, but it doesn’t
send process signals to them, so option E is incorrect.

35.	 C.  The problem is directly related to a missing export command prior to the PS1="My
Prompt: " in Annika’s environment file. When this environment variable is exported and
when it is set, it will be set in any started subshells. Thus, option C is the correct answer.
Since Annika’s environment file exists, the $HOME/.profile file is not used. Thus, option A
is a wrong answer. A user prompt can be changed in a subshell, so option B is also an incor-
rect answer. Changing Annika’s default shell will not fix this issue, so option D is a wrong
choice. If Annika changes the last field in her password record to /sbin/false, she will
no longer be able to log into the system using her account. Therefore, option E is an incor-
rect choice.

36.	 E.  In order for a user to list files in a directory, the directory needs to have read (r) set for
other permissions if the user is not the directory’s owner or does not belong to the direc-
tory’s set group. Therefore, option E is the correct answer. There is no display (d) permission
setting, so option A is a wrong answer. The execute (x) permission allows a user to change
their present working directory to that directory as long as all the parent directories also have
that permission set. Thus, option B is a wrong choice. The write (w) permission allows a user
to create files within that directory, so option C is an incorrect answer. There is no list (l)
permission setting, so option D is also an incorrect choice.

37.	 B, D.  The Linux kernel uses the /proc and /sys directories to produce dynamic files that
contain information about the kernel and system, so options B and D are correct. The /dev
folder contains files for communicating with devices, not kernel and system information, so

Answers to Assessment Test  lxi

option A is incorrect. The /etc directory contains application configuration files, not files
created by the kernel for displaying kernel and system information, so option C is incorrect.
The /dev/mapper directory is used for virtual files mapped to physical device files for LVM
and LUKS, not kernel information, so option E is incorrect.

38.	 C.  The /etc/X11 directory contains configuration files used by both the X.org and
XFree86 applications for controlling the X Windows graphical environment on the Linux
system, so option C is correct. The /dev directory contains device files used to send and
receive data from devices, not the X Windows configuration files, so option A is incorrect.
The kernel uses the /proc and /sys directories to create dynamic files that show kernel
and system information, not contain X Windows configuration files, so options B and D are
incorrect. The /proc/interrupts file contains information about hardware interrupts
currently used by hardware devices on the system, not X Windows configuration files, so
option E is incorrect.

39.	 D.  This problem concerns a missing directory. Therefore, to fix it, use super user privileges,
if needed, and create the directory via the mkdir command. Thus, option D is the correct
answer. The problem does not concern a bad disk sector (and you cannot fix bad disk sectors
with the badblocks utility), so options A and B are wrong answers. You would employ the
vgchange command for a missing volume in a logical volume but not a missing directory.
Therefore, option C is an incorrect answer. While the mountpoint command does allow
you to see if a particular directory is a mount point, it does not allow you to create a missing
directory. Thus, option E is an incorrect choice as well.

40.	 A, B, C.  Since the problem involves a remote server, you need to investigate the firewall
access control lists (ACLs) on both the local and remote systems. Therefore, depending on
the firewall employed, you can use the firewall-cmd, ufw, or iptables command in the
troubleshooting process. Thus, options A, B, and C are the correct answers. The getacl and
setacl commands deal with file inheritance issues, and therefore options D and E are incor-
rect choices.

41.	 C.  The for command allows you to iterate through a series of data one by one until the data
set is exhausted, so option C is correct. The if and case statements perform a single test
on an object to determine if a block of commands should be run; they don’t iterate through
data, so options A and B are incorrect. The exit command stops the shell script and exits
to the parent shell, so option D is incorrect. The $() command redirects the output of a
command to a variable in the shell script, so option E is incorrect.

42.	 B.  The $UID environment variable contains the numeric user ID value of the user account
running the shell script, so option B is correct. The $USER environment variable contains the
text user name of the user account running the shell script, not the numerical user ID value,
so option A is incorrect. The $BASH environment variable contains the path to the executable
Bash shell, so option C is incorrect. The $HOME environment variable contains the location
of the home directory of the user account running the shell, so option D is incorrect. The $1
positional variable contains the first parameter listed on the command-line command when
the shell script was run, so option E is incorrect.

http://x.org

lxii  Answers to Assessment Test

43.	 C.  The ampersand sign (&) tells the shell to run the specified command in background mode
in the console session, so option C is correct. The nohup command is used to disconnect
the command from the console session, so option A is incorrect. The at command is used to
schedule a command to run later, so option B is incorrect. The pipe symbol (|) redirects the
output from the command to another command, so option D is incorrect. The greater-than
symbol (>) redirects the output from the command to a file, so option E is incorrect.

44.	 B.  The cron table format specifies the times to run the script by minute, hour, day of month,
month, and day of week. Thus the format 0 0 1 * * will run the command at 00:00
(midnight) on the first day of the month for every month. That makes option B correct, and
options A, C, D, and E incorrect.

45.	 E.  This git package provides utilities to set up Git VCS on a system, so option E is the
correct answer. The git-vcs package is made up, so option A is a wrong answer. The
GitHub, gitlab, and Bitbucket packages are also made up, but they have similar names
as cloud-based remote repositories used with Git (GitHub, GitLab, BitBucket). Therefore,
options B, C, and D are also incorrect choices.

46.	 C.  If the -m option with an argument is not tacked onto the git commit command, you
are placed into the vim editor to edit the COMMIT_EDITMSG file. Thus, option C is the
correct answer. All the other options are made up and therefore incorrect.

47.	 E.  The Microsoft Azure cloud-based virtualization service provides blobs, which are large
unstructured data storage that is offered over the Internet and can be manipulated with .NET
code. Therefore, option E is the correct answer. Amazon Web Services (AWS) and Digital
Ocean are both cloud-based virtualization services, but they do not employ storage called
blob, so options A and C are wrong answers. KVM is a hypervisor, not a cloud-based virtual-
ization service, so option B is an incorrect answer. GitHub is a cloud-based remote repository
used in version control, so option D is also an incorrect choice.

48.	 C.  A software-defined network (SDN) is a networking method for controlling and managing
network communications via software that consists of a controller program as well as two
APIs. Thus, option C is the correct answer. Thick provisioning and thin provisioning refer
to virtual storage configurations, not networking methods, so options A and B are wrong
answers. Network address translation (NAT) is a virtualization network adapter configu-
ration, which operates similarly to a NAT router in a network. Therefore, option D is an
incorrect answer. A VLAN is a virtual (logical) LAN configuration, and thus, option E is an
incorrect choice as well.

49.	 B, D.  Only Kubernetes and Swarm are orchestration systems. Therefore, options B and D are
correct answers. Mesos needs Marathon to implement an orchestration engine, so option A
is a wrong answer. Splunk can be used as a monitoring tool in an orchestrated environment,
but it is not an orchestration system, so option D is also a wrong choice. Amazon Web Ser-
vices (AWS) is cloud-based virtualization services on which you can use orchestration tools,
but it is not an orchestration engine. Thus, option E is also an incorrect choice.

50.	 A, B, D, E.  The concepts listed in options A, B, D, and E are all used in container orchestra-
tion. While DevOps benefits from container orchestration and often employs it, it is not used
within container orchestration. Thus, option C is an incorrect choice.

Answers to Assessment Test  lxiii

51.	 D.  The software-as-a-service (SaaS) cloud service type provides full applications, allowing
anyone to connect to your application, so option D is correct. The platform-as-a-service
(PaaS) cloud service type doesn’t include an application; you must provide it yourself, so
option A is incorrect. Private, public, and hybrid are all methods of implementing cloud ser-
vices, not cloud service types, so options B, C, and E are all incorrect.

52.	 C.  The Oracle VirtualBox hypervisor installs on top of a host operating system, making
it a Type II hypervisor, so option C is correct. PaaS and SaaS are types of cloud services,
not hypervisors, so options A and B are incorrect. A private cloud service is a method for
implementing cloud services in an internal network, not a type of hypervisor, so option E is
incorrect.

53.	 C.  The /etc/securetty file provides a list of locations from which users can’t log in using
the root user account, so option C is correct. The /etc/cron.deny file prevents users from
scheduling jobs, not logging in as the root user account, so option A is incorrect. The /etc/
hosts.deny file blocks access from remote network hosts; it doesn’t block root access from
local terminals or the console, so option B is incorrect. The /etc/login.warn and /etc/
motd files contain messages that are displayed at login time; they don’t block users from log-
ging in as the root user account, so options D and E are incorrect.

54.	 C.  The auditd program monitors system activity, including user file and directory access,
and logs events based on rules you create. Thus, option C is correct. The chroot utility
restricts applications to a specific location in the virtual filesystem but doesn’t log user file
and directory access, so option A is incorrect. The LUKS system encrypts disk partitions but
doesn’t log user file and directory access, so option B is incorrect. The klist and kinit
programs are used for Kerberos user authentication, not logging user file and directory
access, so options D and E are both incorrect.

55.	 D.  The cd - command will return your process to its previous directory in the virtual
directory system, so option D is the correct answer. The cd and cd ~ commands both return
your process to your home directory, which was not necessarily the previous directory. There-
fore, options A and C are wrong answers. The exit command causes your process to exit
its current shell, not return to the previous directory, so option B is also an incorrect answer.
The return command is used in Bash shell scripts to return from a function or return from
a sourced script. Thus, option E is also an incorrect choice.

56.	 B.  The -R option used with the cp command allows you to copy a directory’s contents.
You can also employ the -r or --recursive option to achieve the same results. There-
fore, option B is the correct answer. The -i option will ask before overwriting a preexisting
directory but not copy recursively, so option A is a wrong answer. The -v option will provide
verbose information for the copy, which is helpful but does not allow a recursive copy to
occur. Thus, option C is also an incorrect answer. The -u option is handy in that it will only
allow the cp command to overwrite preexisting files with the same name, if the files being
copied are newer. However, it is not used to recursively copy, so option D is also an incorrect
answer. The -f option forces a copy to occur and overwrites any preexisting files with the
same name but does not force a recursive copy. Thus, option E is an incorrect choice.

PART

I
Gathering
Your Tools

Preparing Your
Environment

Chapter

1

Before beginning your journey to successfully pass the
CompTIA Linux+ certification exam, you need a learning space.
A learning space consists of Linux systems (virtual or physical),

where you can actively try out, practice, and explore various Linux commands and utilities.
Besides reading this book, having a private space to work freely will assist in your success.

You may already have experience working with Linux in your enterprise environment.
However, most likely you are using only one Linux distribution. Training with more than
one distribution is needed to pass the Linux+ exam.

In addition, your employer may frown upon any risky behavior on their systems. You
need to feel free to try out Linux commands that may cause a system to crash. Your own
learning space, containing various Linux distributions and their assorted tools, is a key
factor in successfully passing the Linux+ exam.

This chapter begins by looking at a few items concerning the setup of your learning space
environment. We will also explore various Linux distributions for your learning space. At the
chapter’s end, we’ll cover a method for accessing the Linux command line.

Setting Up a Learning Space
Your learning space needs to be an environment where you can freely explore Linux and its
various distributions (called distros for short) and utilities. Whereas some companies may
have a spare Linux server available for you to fully use, many of us are not so lucky. Even if
you are a student, with a nice lab environment already set up and available for your use, you
may want your own space, where you can explore without restrictions.

Although there are many different ways to set up your personal learning space, we will
focus on only a few, such as setting up Linux on an old laptop, implementing a virtualized
environment, and using the cloud. Hopefully the ideas here will spur you on to setting up a
helpful exploration and study environment.

Using That Old Laptop
If you’ve got a spare or old laptop sitting around, repurposing it as your Linux learning
space may work well for you. This is especially useful if you like to move your study envi-
ronment, such as, for example, moving to a different and quieter location in your home
when things get a little loud and crazy. An old desktop will also work, but you will be
less mobile.

Setting Up a Learning Space  5

Whatever system you choose, ensure that it has enough capacity to handle the minimum
hardware requirements for a learning space. If you plan on installing multiple Linux
distributions on a single system, booting them individually, and not using a virtualized envi-
ronment, then Table 1.1 will serve as your requirements guide.

Although you can use this learning space, it is certainly not ideal. In addition, you can
expect this type of Linux learning environment to boot and operate slowly. This learning
space environment should be used only if you have no other options.

Creating a Virtualized Environment
Creating a virtualized environment for your Linux learning space is ideal. This setting will
allow you to boot multiple Linux distributions at the same time, enable you to move quickly
between them, and provide compare and contrast experiences. In addition, you can explore
networking utilities more thoroughly in such an environment.

If you are unfamiliar with a virtualized environment, do not despair. Not
only are there many resources on the Internet that can get you up to
speed, but we also cover virtualization concepts in Chapter 28, “Under-
standing Cloud and Virtualization Concepts.”

There are several excellent and free virtualization products (called hypervisors or virtual
machine managers) that you can install. They include the following:

Oracle VirtualBox   This actively developed open source software is available at www
.virtualbox.org. It can run on Linux, Windows, Macintosh, and even Solaris. You
can use VirtualBox to run multiple Linux distributions at the same time, assuming your
hardware has enough resources. The website is loaded with helpful documentation and
has community forums to help you create your Linux learning space.

TABLE 1.1   Hardware requirements for using a single distribution at a time

Resource Minimum Recommended

Memory 2 GB >= 4 GB

Free disk space 25 GB >= 30 GB

Processor 2 GHz dual core > 2 GHz dual core

http://www.virtualbox.org
http://www.virtualbox.org

6  Chapter 1  ■  Preparing Your Environment

VMware Workstation Player   VMware Workstation Pro is a proprietary closed source
virtualization product. VMware offers a free version called Workstation Player, which is
available at www.vmware.com/products/workstation-player.html. This free ver-
sion does have its limits. Workstation Player will only allow you to run a single virtual
machine at time. Also, if you want to install it at your company’s site, you must pay a
fee to do so.

If you are using a Mac, VMware Workstation Player will not work on your
system. Instead, VMware offers a separate virtualization product called
VMware Fusion. It is available at www.vmware.com/products/fusion
.html. Unfortunately, Fusion is not free, but you can try it out for free.

Microsoft Hyper-V Server 2019   This closed source virtualization product is avail-
able on many current Windows 64-bit versions, such as Windows 10 Professional
and Enterprise. However, Windows 10 Home edition does not support it. You can use
Hyper-V to run multiple Linux distributions at the same time, assuming your hardware
has enough resources.

Please don’t feel limited by this list. It includes only a few suggested hypervisors for you
to investigate. If you have found a virtualization product that works better for your environ-
ment, use it for your learning space.

Prior to selecting and installing a particular hypervisor, determine if your laptop or chosen
system has enough capacity to handle the entire learning space’s minimum hardware require-
ments. If you plan on installing and running multiple Linux distributions at the same time,
use Table 1.2 as a guide for your needed hardware resources. However, be aware that the
virtualization products’ websites may provide more detailed information.

Using a virtualized learning space is very flexible. Figure 1.1 shows an example of this
type of elastic learning space environment.

TABLE 1.2   Hardware requirements for using a virtualization product

Resource Minimum Recommended

Memory 8 GB >= 8 GB

Free disk space 70 GB >= 100 GB

Processor x86_64

2 GHz dual core

x86_64

> 2 GHz dual core

https://www.vmware.com/products/workstation-player.html
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html

Setting Up a Learning Space  7

Notice in the learning space depicted in Figure 1.1 that there are two installations of both
the Ubuntu and Rocky Linux distributions. These distributions provide the ability to install
either a server-oriented environment or a graphical desktop-oriented environment. With Vir-
tualBox you can easily install both environments and compare them!

Hopefully you are starting to gather some ideas of how you want to configure your
private learning space. Before you do, there is one more platform category we need
to explore.

Jumping to the Cloud
If you do not own a laptop or desktop with enough resources to provide a multiple Linux
distribution learning space, consider the cloud. While cloud servers have become increas-
ingly popular for large environments, they can also provide an easy way to run just a single
Linux system.

There are many cloud service providers where you can start up various Linux distribution
virtual machines, such as Amazon Web Services (AWS), Microsoft Azure, and DigitalOcean.
Cloud services change rapidly, so you may not be able to find the Linux distribution versions

F IGURE 1.1   Learning space using Oracle VirtualBox

8  Chapter 1  ■  Preparing Your Environment

you need. However, it is worth your time to take a look at the various offerings from cloud
service providers. The cloud just might be a cheaper option for your learning space than a
new computer.

If you choose to use a cloud service, the service may not give you a way
to explore certain CompTIA Linux+ objectives, such as, for example, mod-
ifying how a Linux server boots via BIOS versus UEFI. Keep this in mind
as you explore your learning space venue.

Before you settle on the location for your learning space, consider the various recom-
mended Linux distributions and their versions. These are additional components of your suc-
cessful learning space environment.

Exploring Linux Distributions
The CompTIA Linux+ certification is vendor neutral. In practical terms, that means no
particular Linux distribution is the focus of the exam. If you have experience with Red Hat
Enterprise Linux (RHEL), you need to learn more about utilities and features on Ubuntu and
openSUSE distributions, and vice versa.

It is tempting to think that Linux distributions are all the same and that few differences
exist between them. Unfortunately, this is a fallacy. We like to compare the Linux kernel to a
car’s engine and a distribution to a car’s features. If you have ever rented a car, the car’s fea-
tures are often rather different than the features of the car you normally drive. When you get
into the rented car, you have to take a few minutes to adjust the seat, view the various car
controls, and figure out how to use them prior to taking off onto the roadway. This is also
true with learning new distributions. The good news is that if you have lots of previous expe-
rience with Linux, learning a new distribution is not that difficult.

Linux distributions are often based on other distributions or distribution
forks. Two popular distribution groups, which contain distributions help-
ful to passing the Linux+ exam, are Red Hat based and Debian based. Dif-
ferences between these two groups include software packages, names,
and their management tools; configuration filenames and/or locations;
software release schedules; firewall configuration utilities; and so on. Red
Hat Inc. tends to focus on businesses and enterprise computing, whereas
the Debian Project focuses on free software. Due to these various dif-
ferences, it is necessary to use distributions from both groups in your
learning space.

It is important to understand which Linux distros will help you in successfully passing the
CompTIA Linux+ certification exam. In addition, you should know which particular distri-
bution versions are helpful.

Exploring Linux Distributions  9

Looking at Red Hat Enterprise Linux
The original Red Hat Linux started life in 1995 as an open source project. It gained in pop-
ularity to the point where it was at one time the most popular Linux distribution, used in
educational environments, in corporate environments, and even by casual Linux hobbyists.

However, in 2003 Red Hat discontinued the Red Hat Linux project in favor of the Red
Hat Enterprise Linux (RHEL) project. The RHEL project is primarily focused on business
Linux environments. RHEL is a commercial package; thus under most situations you must
purchase a license to use it. In return, Red Hat provides full customer support to help with
setting up and troubleshooting the Linux system, unlike most other Linux distributions.

Fortunately for Linux hobbyists, there is an alternative way to run RHEL. Since Linux is
an open source software package, Red Hat is required to release the source code for RHEL.
A few other Linux distributions have popped up using the RHEL source code. The most
popular had been the Community Enterprise Operating System (CentOS). It was nearly
an exact duplicate of RHEL, and a great free study resource for the CompTIA Linux+
certification exam.

However, as is often the case in the fast-moving Linux world, things have changed. In
2014 CentOS joined Red Hat’s Open Source and Standards team, and in 2020 Red Hat
replaced the original CentOS project with a new development version called CentOS Stream.
Although you can still freely obtain CentOS Stream, it’s no longer an exact duplicate of the
current RHEL version, but rather a testing ground for new concepts, making it less beneficial
as a study resource.

But have no fear, the original developers of CentOS have started yet another distribution,
named Rocky Linux. Rocky Linux has gone back to the origins of CentOS—it’s an exact
duplicate of the latest RHEL version. You can obtain a Rocky Linux distribution ISO from
the Rocky website at www.rockylinux.org. Be aware that this distribution, like many
others, comes in multiple flavors. We recommend you obtain the Rocky BaseOS download
package, in the 8.x version series (at the time of this writing, at version 8.5).

As time goes on, new Rocky distribution versions will be available.
Although it is always tempting to get the latest and greatest version, it is
not beneficial to use it in your learning space. Remember that the Comp-
TIA Linux+ objectives are static until the next time the certification exam
is updated. Therefore, it is wise to use the distribution versions that were
available at the certification exam’s creation time.

As you install Rocky Linux, you’ll be prompted for the environment you want to install.
For learning Linux, it’s usually best to install a graphical desktop environment, because that
provides the easiest way to access all of the Linux features you’ll need to learn about.

After you install your Rocky Linux version 8.x BaseOS distribution, you should update
the software packages. Do this by logging into the root account using the password you set
up during installation and issuing the commands shown in Listing 1.1.

http://www.rockylinux.org

10  Chapter 1  ■  Preparing Your Environment

Listing 1.1:  Updating software on Rocky Linux

sudo dnf update
Loaded plugins: fastestmirror
[...]
Upgrade 3 Packages

Total download size: 1.3 M
Is this ok [y/d/N]: y
[...]
Complete!
#

While RHEL (and its derivatives) is a popular distro, you also need a distribution in the
Debian camp. Next, we’ll explore the Ubuntu distribution.

Looking at Ubuntu
The Ubuntu Linux distribution is managed by Canonical LTD and has been around since
2004. This free and popular Linux distro is based on the Debian distribution and is a must-
have in your personal Linux learning space.

You can obtain the Ubuntu distro ISO from www.ubuntu.com. There are several flavors
of Ubuntu, and if you’d like to ensure that you can follow the examples in this book, we rec-
ommend you download the Ubuntu Desktop version 20.04 LTS.

The LTS in the Ubuntu version name stands for Long-Term Support.
This is an indicator Canonical uses to show that it will provide mainte-
nance and security updates for an extended time period. In the case of
20.04 LTS, you can count on these updates through April 2025.

If you are unfamiliar with Ubuntu, you need to be aware of a few important items. By
default, you cannot log into the root account. Instead, when you need to use super user priv-
ileges, log into the account you set up at installation and put the command sudo in front of
your command-line commands. An example is shown in Listing 1.2.

Listing 1.2:  Using sudo on Ubuntu

$ sudo grep root /etc/shadow
root:!:17737:0:99999:7:::
$

If you have never issued command-line commands in a terminal, it is rec-
ommended you read this entire chapter prior to attempting to do so. You
will read more about terminals later in this chapter.

http://www.ubuntu.com

Exploring Linux Distributions  11

Another important item concerns installing Ubuntu. If you are connected to a network,
you can automatically update the distribution’s software when you install the distribution.
You will see this option listed in the installation process as Download updates during
the installation with a check box next to it. If you choose to not install updates dur-
ing the installation, you can update the software via the command line later on by manually
issuing the commands shown in Listing 1.3 in a terminal, using super user privileges.

Listing 1.3:  Updating software on Ubuntu

$ sudo apt-get update
[sudo] password for Christine:
Hit:1 http://us.archive.ubuntu.com/ubuntu bionic InRelease
Get:2 http://us.archive.ubuntu.com/ubuntu bionic-updates InRelease
[88.7 kB]
[...]
Fetched 1,053 kB in 2s (631 kB/s)
Reading package lists... Done
$
$ sudo apt-get dist-upgrade
Reading package lists... Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
The following packages will be upgraded:
[...]
Do you want to continue? [Y/n] Y
[...]
$

If you have room for only two Linux distros, Rocky Linux and Ubuntu make fine
choices. If you have additional resources, it would be worthwhile to add another distribu-
tion, openSUSE.

Looking at openSUSE
The openSUSE distro had its first release in 1994, under a different name, SUSE Linux. There
have been many companies involved in supporting it, with the Germany-based company
SUSE being the original.

This distro has a very loyal and solid following. Not only is the openSUSE distribution
strongly supported by community developers, the openSUSE users love it as well. One of
its unique and popular utilities is the Yet another Setup Tool (YaST). YaST, which can be
thought of as a command center utility, allows you to control many system services from one
interface.

12  Chapter 1  ■  Preparing Your Environment

You can obtain the openSUSE distribution ISO from https://software.opensuse
.org. This distro comes in two primary flavors, Leap and Tumbleweed. We recommend you
select openSUSE Leap in the version 15.x series.

The openSUSE community changed its distribution’s version num-
bering scheme in 2017. The version before 15.0 was 42.3. Be aware of this
dramatic change when you go to obtain openSUSE Leap.

Once you have successfully installed openSUSE, it is a good idea to update all the soft-
ware prior to exploring this distro. To update the software via the command line, manually
issue the commands shown in Listing 1.4 in a terminal, using super user privileges.

Listing 1.4:  Updating software on openSUSE

$ sudo zypper patch
[sudo] password for root:
Loading repository data...
Reading installed packages...
Resolving package dependencies...
[...]
 Note: System reboot required.
Continue? [y/n/...? shows all options] (y): y
[...]
Warning: One of the installed patches requires a
reboot of your machine. Reboot as soon as possible.
There are some running programs that might use files
deleted by recent upgrade. You may wish to check and
restart some of them. Run 'zypper ps -s' to list these programs.
$

You may have noticed that the last three distros use different commands for updating
software. This is another reason you need to have access to multiple distributions in your
learning space. We’ll look at one more important distro next.

Looking at Fedora
Fedora is maintained by the Fedora Project, which is sponsored by Red Hat. Innovative and
sometimes bleeding-edge software is one of this distribution’s great features. If you want to
try something new, Fedora is for you. This distro, like the others, comes in multiple flavors,
which are called editions by the Fedora Project. We recommend Fedora 34 Workstation
edition. You can get a copy of this Fedora ISO at https://getfedora.org.

https://software.opensuse.org
https://software.opensuse.org
https://getfedora.org

Exploring Linux Distributions  13

Be aware that this particular distro updates its versions every six months.
Therefore, you may need to retrieve Fedora 34 Workstation from this
location instead: https://dl.fedoraproject.org/pub/fedora/
linux/releases/34/Workstation.

The Fedora distro comes not only in multiple flavors, but also in multiple spins. A spin
is an extra special flavor of Fedora. For example, if you are not happy with the default GUI
that comes prepackaged with Fedora, you can opt for a spin that has a different GUI. If you
want to browse the various Fedora spins available, take a look at the Fedora Project spins’
website, https://spins.fedoraproject.org.

Similar to the Ubuntu distro, by default you cannot log into the root account. Instead,
when you need to use super user privileges, log into the account you set up at installation,
and put the command sudo in front of your command-line commands.

Once you’ve got Fedora Workstation successfully installed, update the software. To
update the software via the command line, log into the account you set up at installation,
and manually issue the commands shown in Listing 1.5 in a terminal, using super user
privileges.

Listing 1.5:  Updating software on Fedora

$ sudo su -c 'dnf upgrade'
[sudo] password for Christine:
[...]
Install 4 Packages
Upgrade 161 Packages

Total download size: 295 M
Is this ok [y/N]: y
Downloading Packages:
[...]
Complete!
$

If very few packages get updated, you may need to add an additional option to your
command. Issue the command sudo su -c 'dnf upgrade –refresh' in a command-
line terminal.

If you have spent your time on Linux in the GUI or are fairly new to Linux, you may be
unfamiliar with how to access a command-line terminal. The next section will help. If you
are a seasoned command-line user, you can skip this section.

https://dl.fedoraproject.org/pub/fedora/linux/releases/34/Workstation
https://dl.fedoraproject.org/pub/fedora/linux/releases/34/Workstation
https://spins.fedoraproject.org

14  Chapter 1  ■  Preparing Your Environment

Locating a Terminal
For exploring Linux and preparing to take the CompTIA Linux+ certification exam, you
need to spend some time at the command line. The terminal is your gateway to the command
line. Once you understand how to locate and use this terminal, you can start progressing
through the rest of this book’s contents.

The simplest way to reach a terminal in most distributions is by pressing the key
combination Ctrl+Alt plus one of the function keys (usually F2 or F3) after the system boots.
This will take you to a terminal named tty2. After entering the username and password you
created during the Linux distribution’s installation, you will be provided with a prompt.
Figure 1.2 shows a tty3 terminal on the openSUSE distribution.

At the terminal prompt, you can start entering commands. If you have newly installed
the distro, go ahead and update its software as directed earlier in this chapter. To leave this
terminal, simply type in the command exit.

If you’re using a graphical desktop environment, you can also access the
command line by using a terminal application.

F IGURE 1.2   openSUSE tty3 terminal

Summary  15

Summary
A learning space is a virtual or physical Linux system where you can explore, practice, and
try out various Linux commands and utilities. A private learning space is a necessity to be
successful in passing the CompTIA Linux+ certification exam. You can set up a learning
space on an old laptop, on a current laptop using a hypervisor, or within the cloud.

Having multiple Linux distributions in your learning space is also essential. Because the
distributions have differences, it is important to have them readily available to explore those
differences.

Once you have your Linux learning space set up, you can start to dive into the CompTIA
Linux+ certification objectives. We’ll begin covering those objectives in the next chapter.

Introduction
to Services

Chapter

2

Previous versions of the CompTIA Linux+ certification exam
included an objective on Linux server services, such as web
servers, file servers, and database servers. The XK0-005 exam

has dropped that as a formal objective, but there are other objectives that assume you know
what Linux server services are and how they accept connections from clients. While Linux
has had a rough time breaking into the desktop market, it has thrived in the server market,
so it is important to know how Linux servers work and what server software packages are
popular these days.

The popularity of Linux servers has much to do with their versatility, performance, and
cost. This chapter helps get you up to speed in how Linux servers operate and covers the
most common server software packages you can install and run in Linux to provide services
to your network clients.

What Is a Linux Server?
Before we dive into Linux server details, we will first explain what we mean by a Linux
server and show how a Linux server differs from a Linux desktop.

Both Linux desktops and Linux servers use the same Linux kernel, run the same shells,
and even have the ability to run the same programs. The difference comes in which programs
they primarily run and how those programs run on the system.

Linux desktops primarily focus on personal programs that you run from a graphical
desktop interface, such as when you browse the Internet or edit a document. The graphical
desktop provides an easy interface for users to interact with the operating system and all
files and programs. You start programs by selecting them from a menu system or clicking a
desktop icon. In the desktop world, everything is interactive.

Linux servers primarily operate without any human interaction. There’s no one sitting
at a desktop launching applications (and in fact, many servers don’t even have a dedicated
monitor and keyboard).

The server runs programs that provide shared resources (called services) to multiple users
(clients), normally in a network environment. Many services run all the time, even when no
clients are actively using them.

Server programs seldom rely on a graphical interface. Instead, they almost always utilize
the Linux shell’s command-line interface (CLI) to interact with a server administrator, and
often, the administrator connects to the server from a remote client to perform any interac-
tive work with the services.

What Is a Linux Server?  19

Since there’s little interaction with a human operator, servers must know how to launch
the programs that provide the services to clients on their own. How the server runs those ser-
vices can differ from server to server and service to service. The following sections describe
how Linux servers start services and how they provide access to those services to clients.

Launching Services
There are two primary ways Linux servers run service programs:

■■ As a background process, running at all times and listening for requests

■■ As a process spawned by a parent program that listens for the requests

When a Linux service program runs continually as a background process, it’s called a
daemon. Linux servers often utilize scripts to launch service daemons as soon as the server
boots up (see Chapter 6, “Maintaining System Startup and Services”).

Linux daemon programs often end with the letter d to indicate they’re daemon processes.
Listing 2.1 shows an example of the MySQL database server daemon running in the
background on a server.

Listing 2.1:  Listing the MySQL database server daemon process

$ ps ax | grep mysql
 5793 ? Sl 0:00 /usr/sbin/mysqld --daemonize --pid
file=/run/mysqld/mysqld.pid
 5900 pts/0 S+ 0:00 grep --color=auto mysql
$

The mysqld daemon program listens for network connections from clients. When the
daemon receives a request from a client, it processes the request and returns data to the
client via the same network channel.

Note that the name for a background program running in Linux is
“daemon” and not “demon,” as it is often confused with. Daemons are
from Greek mythology and were supernatural beings that provided help
to humans when needed.

The more services a Linux server supports, the more daemons it must have running in
the background, waiting for client requests. Each daemon requires memory resources on the
server, even when it’s just listening for clients. While today’s servers have lots of memory at
their disposal, that wasn’t always the case in the old days of Linux. Thus came the necessity
of super-servers.

Super-servers are programs that listen for network connections for several different appli-
cations. When the super-server receives a request for a service from a client, it spawns the
appropriate service program.

The original super-server program created for Linux was the internet daemon (inetd)
application. The inetd program ran as a daemon, listening for specific requests from clients

20  Chapter 2  ■  Introduction to Services

and launching the appropriate service program when needed. The inetd program uses the
/etc/inetd.conf configuration file to allow you to define the services for which it han-
dles requests.

The extended internet daemon (xinetd) application is an advanced version of inetd. It too
launches service programs as requested by clients, but it contains additional features, such as
access control lists (ACLs), more advanced logging features, and the ability to set schedules
to turn services on and off at different times of the day or week.

Linux systems that utilize the Systemd startup method (see Chapter 6)
can utilize systemd unit files to replace the functionality provided by
inetd or xinetd.

Listening for Clients
A standard Linux server supports lots of services. Usually, a single Linux server will support
multiple services at the same time. This means multiple clients will be making requests to
the server for multiple services. The trick is in getting requests from clients to the correct
server service.

Each service, whether it’s running as a daemon or running from a super-server, uses a
separate network protocol to communicate with its clients. Common service protocols are
standardized by the Internet Engineering Task Force (IETF) and published as Request for
Comments (RFC) documents. Each server software program communicates with its clients
using the protocol specified for its service, such as a web server using HTTP or an email
server using SMTP.

The network protocol for a service defines exactly how network clients communicate
with the service, using preassigned network ports. Ports are defined within the TCP and UDP
standards to help separate network traffic going to the same IP address. The IETF assigns
different services to different ports for communication. This works similarly to telephone
extensions used in a large business. You enter a single phone number to reach the business
and then select a separate extension to get to a specific individual within the office. With
services, clients use a common IP address to reach a server and then different ports to reach
individual services.

The IETF has defined a standard set of ports to common services used on the Internet.
These are called well-known ports. Table 2.1 shows just a few of the more common well-
known ports assigned.

A host of Linux services are available for serving applications to clients on the network.
The /etc/services file contains all of the ports defined on a Linux server.

The following sections explore the different types of services you will find on Linux
servers as well as common Linux applications that provide those services.

What Is a Linux Server?  21

TABLE 2 .1   Common Internet well-known port numbers

Port number Protocol Description

20 and 21 FTP File Transfer Protocol (FTP) is used for sending files to and
from a server.

22 SSH The Secure Shell (SSH) protocol is used for sending
encrypted data to a server.

23 Telnet Telnet is an unsecure protocol for providing an interactive
interface to the server shell.

25 SMTP The Simple Mail Transport Protocol (SMTP) is used for send-
ing email between servers.

53 DNS The Domain Name System (DNS) provides a name service to
match IP addresses to computer names on a network.

67 DHCP The Dynamic Host Configuration Protocol (DHCP) enables
client computers to obtain a valid IP address on a network
automatically.

80 HTTP The Hypertext Transfer Protocol (HTTP) allows clients to
request web pages from servers.

109 and 110 POP The Post Office Protocol (POP) allows clients to communicate
with a mail server to read messages in their mailbox.

137–139 SMB Microsoft servers use the Server Message Block (SMB) pro-
tocol for file and print sharing with clients.

143, 220 IMAP The Internet Message Access Protocol (IMAP) provides
advanced mailbox services for clients.

389 LDAP The Lightweight Directory Access Protocol (LDAP) provides
access to directory services for authenticating users, worksta-
tions, and other network devices.

443 HTTPS The secure version of HTTP provides encrypted communica-
tion with web servers.

2049 NFS The Network File System (NFS) provides file sharing between
Unix and Linux systems.

22  Chapter 2  ■  Introduction to Services

Serving the Basics
There are some basic Internet services that Linux servers are known to do well and that have
become standards across the Internet. The three Internet services Linux servers provide are
as follows:

■■ Web services

■■ Database services

■■ Email services

The following sections discuss each of these types of Linux services and show you the
open source software packages commonly used to support them.

Web Servers
By far the most popular use of Linux servers on the Internet is as a web server. Linux-based
web servers host the majority of websites, including many of the most popular websites.

As is true for many Linux applications, there are multiple programs that you can use
to build a Linux web server. These are the most popular ones you’ll run into and should
know about.

The Apache Server
Over the years, the Apache web server has become one of the most popular web servers
on the Internet. It was developed from the first web server software package created by the
National Center for Supercomputing Applications (NCSA) at the University of Illinois.

The Apache web server has become popular due to its modularity. Each advanced feature
of the Apache server is built as a plug-in module. When features are incorporated as mod-
ules, the server administrator can pick and choose just which modules a particular server
needs for a particular application. This helps reduce the amount of memory required to run
the Apache server daemons on the system.

The nginX Server
The nginX web server (pronounced like “engine-X”) is the relatively new kid on the block.
Released in 2004, nginX was designed as an advanced replacement for the Apache web
server, improving on performance and providing some additional features, such as working
as a web proxy, mail proxy, web page cache, and even load-balancing server. While the
Apache web server can be configured to provide some of these features by using modules,
such as load balancing, the nginX web server was designed to have these features built in to
increase performance.

The core nginX program has a smaller memory footprint than the larger Apache
program, making it ideal for high-volume environments. It’s capable of handling over 10,000
simultaneous network client connections.

Serving the Basics  23

While still relatively new, the nginX web server is gaining in popularity, especially in high-
traffic web environments. One configuration that’s becoming popular is to use a combination
of the nginX web server as a load-balancing front end to multiple Apache web servers on the
backend. This takes advantage of the nginX server’s capabilities of handling large traffic vol-
umes and the Apache web server’s versatility in handling dynamic web applications.

The lighthttpd Package
On the other end of the spectrum, there may be times you need a lightweight web server to
process incoming client requests for a network application. The lighthttpd package provides
such an environment.

The lighthttpd web server is known for low memory usage and low CPU usage, mak-
ing it ideal for smaller server applications, such as in embedded systems. It also incorpo-
rates a built-in database, allowing you to combine basic web and database services in a
single package.

Database Servers
Storing and retrieving data is an important feature for most applications. Although the use
of standard text files is often enough for simple data storage applications, there are times
when more advanced data storage techniques are required.

The advent of the relational database allowed applications to quickly store and retrieve
data. Relational database servers allowed multiple clients to access the same data from a
centralized location. The Structured Query Language (SQL) provides a common method for
clients to send requests to the database server and retrieve the data.

Many popular commercial database servers are available for Unix and Windows (and
even Linux); a few high-quality open source databases have risen to the top in the Linux
world. These database server packages offer many (if not most) of the same features as
the expensive commercial database packages and can sometimes even outperform the
commercial packages.

The following sections discuss the three most popular open source database servers you’ll
encounter when working in the Linux environment.

The PostgreSQL Server
The PostgreSQL database server started out as a university project and became an open
source package available to the public in 1996. The goal of the PostgreSQL developers was
to implement a complete object-relational database management system to rival the popular
commercial database servers of the day.

PostgreSQL is known for its advanced database features. It follows the standard atomi-
city, consistency, isolation, and durability (ACID) guidelines used by commercial databases
and supports many of the fancy features you’d expect to find in a commercial relational
database server, such as transactions, updatable views, triggers, foreign keys, functions, and
stored procedures.

24  Chapter 2  ■  Introduction to Services

PostgreSQL is very versatile, but with versatility comes complexity. In the past the Post-
greSQL database had a reputation for being somewhat slow, but it has made vast improve-
ments in performance. Unfortunately, old reputations are hard to shake, and PostgreSQL still
struggles to gain acceptance in the web world.

The MySQL Server
Unlike the PostgreSQL package, the MySQL database server didn’t originally try to com-
pete with commercial databases. Instead, it started out as a project to create a simple but fast
database system. No attempt was made to implement fancy database features; it just offers
basic features that performed quickly.

Because of its focus on speed, the MySQL database server became the de facto database
server used in many high-profile Internet web applications. The combination of a Linux
server running the Apache web server and the MySQL database server and utilizing the PHP
programming language became known as the LAMP platform and can be found in Linux
servers all over the world.

Since its inception, the MySQL database has added features that can rival those found
in PostgreSQL and commercial databases. However, staying true to its roots, MySQL still
maintains the option of utilizing the faster storage engine that it became famous for.

In 2008 the MySQL project was acquired by Sun Microsystems. In 2010,
when Oracle purchased Sun Microsystems, by default it also took con-
trol over MySQL development. This concerned many in the open source
community, and shortly after the purchase a group of MySQL developers
left Oracle to start the MariaDB project. MariaDB is a replica of MySQL,
using the same source code and having the same features (with some
new features added). Many Linux distributions now use MariaDB by
default instead of MySQL, so don’t be alarmed if you see that.

The MongoDB Server
With the rising popularity of object-oriented programming and application design, the use of
object-oriented databases has also risen. Currently one of the most popular object-oriented
methods of storing data is called NoSQL.

As its name suggests, a NoSQL database system stores data differently than the tradi-
tional relational database systems using SQL. A NoSQL database doesn’t create tables but
instead stores data as individual documents. Unlike relational tables, each NoSQL document
can contain different data elements, with each data element being independent from the
other data elements in the database.

One NoSQL database package that is gaining in popularity is the MongoDB package.
MongoDB was released in 2009 as a full NoSQL-compliant database management system. It
stores data records as individual JavaScript Object Notation (JSON) elements, making each
data document independent of the others.

The MongoDB database server supports many relational database features, such as
indexes, queries, replication, and even load balancing. It allows you to incorporate Java
Script in queries, making it a very versatile tool for querying data.

Serving the Basics  25

The MongoDB server installs with a default of no security—anyone can
connect to the server to add and retrieve data records. This “gotcha” has
been a problem for even some high-profile websites where data has been
breached. Please be careful when using a MongoDB database for your
web applications.

Mail Servers
At one time, email was the backbone of the Internet. Just about everyone had an email
address, and it was crucial to be plugged into an email server to communicate with the
world. While these days newer technology is taking over (such as texting, tweeting, and mes-
saging), email is still a vital operation for most Internet users. Just about every Linux server
installation uses some type of email server package.

Instead of having one monolithic program that handles all of the pieces required for
sending and receiving mail, Linux uses multiple small programs that work together in the
processing of email messages. Figure 2.1 shows you how most open source email software
modularizes email functions in a Linux environment.

email database

Linux server

Remote
MTAs

Mail Delivery Agent [MDA]

Mail User Agent [MUA]

Workstation

Mail Transfer Agent [MTA]

F IGURE 2 .1   The Linux modular email environment

26  Chapter 2  ■  Introduction to Services

As you can see in Figure 2.1, the Linux email server is normally divided into three sepa-
rate functions:

■■ The mail transfer agent (MTA)

■■ The mail delivery agent (MDA)

■■ The mail user agent (MUA)

MUA is the program that interacts with end users, allowing them to view and manipu-
late email messages. Therefore, the MUA programs don’t usually run on the server side but
rather on the client side. Graphical applications such as Evolution and K-Mail are popular
for reading email in Linux desktop environments. The MTA and MDA functions are found
on the Linux server. The following sections show the more common MTA and MDA appli-
cations you’ll see in Linux.

The Mail Transfer Agent
The mail transfer agent (MTA) is responsible for handling both incoming and outgoing email
messages on the server. For each outgoing message, the MTA determines the destination host
of the recipient address. If the destination host is a remote mail server, the MTA must establish
a communication link with another MTA program on the remote host to transfer the message.

There are quite a few MTA software packages for the Linux environment, but the Linux+
exam focuses on three of them:

■■ sendmail: The sendmail MTA package gained popularity by being extremely versatile.
Many of the features in sendmail have become synonymous with email systems—virtual
domains, message forwarding, user aliases, mail lists, and host masquerading. Unfor-
tunately, sendmail is very complex to configure correctly. Its large configuration file is
sometimes overwhelming for novice mail administrators to handle.

■■ Postfix: The Postfix MTA was written as a modular application, using several different
programs to implement the MTA functionality. One of Postfix’s best features is its sim-
plicity. Instead of one large complex configuration file, Postfix uses just two small con-
figuration files with plaintext parameters and value names to define the functionality.

■■ Exim: The Exim MTA package sticks with the sendmail model of using one large
program to handle all the email functions. It attempts to avoid queuing messages as
much as possible, instead relying on immediate delivery in most environments.

The Mail Delivery Agent
Often, Linux implementations rely on separate stand-alone mail delivery agent (MDA) pro-
grams to deliver messages to local users. Because these MDA programs concentrate only on
delivering messages to local users, they can add bells and whistles that aren’t available in
MTA programs that include MDA functionality.

The MDA program receives messages destined for local users from the MTA program and
then determines how those messages are to be delivered. Messages can be delivered directly
to the local user account or to an alternate location defined by the user, often by incorpo-
rating filters.

Serving Local Networks  27

There are two common MDA programs used in Linux:

■■ Binmail: The binmail program is the most popular MDA program used in Linux. Its
name comes from its normal location in the system, /bin/mail. It has become popular
thanks to its simplicity. By default, it can read email messages stored in the standard
/var/spool/mail directory, or you can point it to an alternative mailbox.

■■ Procmail: The procmail program was written by Stephen R. van den Berg and has become
so popular that many Linux implementations install it by default. The popularity of proc-
mail comes from its versatility in creating user-configured recipes that allow a
user to direct how the server processes received mail. A user can create a personal
.procmailrc file in their $HOME directory to direct messages based on regular expres-
sions to separate mailbox files, forward messages to alternative email addresses, or even
send messages directly to the /dev/null file to trash unwanted email automatically.

Serving Local Networks
Besides running large Internet web and database applications, Linux servers are also com-
monly used in local network environments to provide simple network services. Running a local
network requires lots of behind-the-scenes work, and the Linux server is up to the task. This
section walks through the most common services you’ll find used on all sizes of local networks.

File Servers
These days, the sharing of files has become a necessity in any business environment. Allow-
ing multiple employees to create and edit files in a common folder can greatly improve col-
laboration efforts in any project.

While sharing files via a web server is common in a wide area network environment, there
are easier ways to do that within a local network. There are two basic methods for sharing
files in a local network environment:

■■ Peer-to-peer

■■ Client-server

In a peer-to-peer network, one workstation enables another workstation to access files
stored locally on its hard drive. This method allows collaboration between two employees
on a small local network but becomes somewhat difficult if you need to share data between
more than two people.

The client-server method of file sharing utilizes a centralized file server for sharing files
that multiple clients can access and modify as needed. However, with the centralized file
server, an administrator must control who has access to which files and folders, protecting
them from unauthorized access.

In the Linux world, there are two common server software packages used for sharing
files: NFS and Samba.

28  Chapter 2  ■  Introduction to Services

NFS
The Network File System (NFS) is a protocol used to share folders in a network environ-
ment. With NFS, a Linux system can share a portion of its virtual directory on the network
to allow access by clients as well as other servers.

In Linux, the software package used to accomplish this is nfs-utils. The nfs-utils package
provides the drivers to support NFS as well as the underlying client and server software to
both share local folders on the network and connect to remote folders shared by other Linux
systems on the local network. Using nfs-utils, your Linux system can mount remotely shared
NFS folders almost as easily as if they were on a local hard drive partition.

Samba
These days, Microsoft Windows workstations and servers have become the norm in many
business environments. While Windows workstations and servers can use NFS, the default
file sharing method used in Windows is the System Message Block (SMB) protocol, created
by Microsoft. Although Microsoft servers use proprietary software, Microsoft has released
the SMB protocol as a network standard, so it’s possible to create open source software that
can interact with Windows servers and clients using SMB.

The Samba software package (note the clever use of embedding SMB in the name) was
created to allow Linux systems to interact with Windows clients and servers. With Samba,
your Linux system can act either as a client, connecting to Windows server shared folders,
or as a server, allowing Windows workstations to connect to shared folders on the Linux
system. Samba does take some work in configuring the correct parameters to manage access
to your shared folders.

Print Servers
In a business environment, having a printer for every person in the office is somewhat of a
wasted expense. The ability to share network printers has become a requirement for most
offices and has also become popular in many home environments.

The standard Linux print sharing software package is called the Common Unix Printing
System (CUPS). The CUPS software allows a Linux system to connect to any printer resource,
either locally or via a network, by using a common application interface that operates over
dedicated printer drivers. The key to CUPS is the printer drivers. Many printer manufacturers
create CUPS drivers for their printers, so Linux systems can connect with their printers. For
connecting to network printers, CUPS uses the Internet Printing Protocol (IPP).

Besides connecting to a network printer, the CUPS system also allows you to share a
locally attached printer with other Linux systems. This allows you to connect a printer to a
Linux server and share it among multiple users in a local network.

The Samba software package can also interact with printers shared on
Microsoft networks. You can connect your Linux workstation to printers
shared on Windows networks using Samba, or you can even share your
own locally attached Linux printer with Windows workstations.

Serving Local Networks  29

Network Resource Servers
Running a local network requires quite a few different resources to keep clients and servers
in sync. This is especially true for larger networks where network administrators must man-
age many different types of clients and servers.

Fortunately, Linux provides a few different service packages that network administrators
can use to make their lives easier. The following sections walk through some of the basic
network-oriented services that you may see on a Linux server.

IP Addresses
Every device on a local network must have a unique IP address to interact with other devices
on the network. For a small home network, that may not be too difficult to manage, but for
large business networks, that task can be overwhelming.

To help simplify that requirement, developers have created the Dynamic Host Configura-
tion Protocol (DHCP). Clients can request a valid IP address for the network from a DHCP
server. A central DHCP server keeps track of the IP addresses assigned, ensuring that no two
clients receive the same IP address.

These days you can configure many different types of devices on a network to be a DHCP
server. Most home broadband routers provide this service, as well as most server-oriented
operating systems, such as Windows servers and, of course, Linux servers.

The most popular Linux DHCP server package is maintained by the Internet Systems
Consortium (ISC) and is called DHCPd. Just about all Linux server distributions include this
in their software repositories.

Once you have the DHCPd server running on your network, you’ll need to tell your
Linux clients to use it to obtain their network addresses. This requires a DHCP client soft-
ware package. For Linux DHCP clients, there are three popular packages that you can use:

■■ dhclient

■■ dhcpcd

■■ pump

Most Debian- and Red Hat–based distributions use the dhclient package and even install
it by default when a network card is detected during the installation process. The dhcpcd
and pump applications are less known, but you may run into them.

Logging
Linux maintains log files that record various key details about the system as it runs. The log
files are normally stored locally in the /var/log directory, but in a network environment it
can come in handy to have Linux servers store their system logs on a remote logging server.

The remote logging server provides a safe backup of the original log files, plus a safe place
to store logs in case of a system crash or a break-in by an attacker.

30  Chapter 2  ■  Introduction to Services

There are two main logging packages used in Linux, and which one a system uses
depends on the startup software it uses (see Chapter 6):

■■ rsyslogd: The SysVinit and Upstart systems utilize the rsyslogd service to accept logging
data from remote servers.

■■ journald: The Systemd system utilizes the journald service for both local and remote log-
ging of system information.

Both rsyslogd and journald use configuration files that allow you to define just how data
is logged and what clients the server accepts log messages from.

Name Servers
Using IP addresses to reference servers on a network is fine for computers, but humans
usually require some type of text to remember addresses. Enter the Domain Name System
(DNS). DNS maps IP addresses to a host naming scheme on networks. A DNS server acts as
a directory lookup to find the names of servers on the local network.

Linux servers use the BIND software package to provide DNS naming services. The
BIND software package was developed in the very early days of the Internet (the early
1980s) at the University of California, Berkeley, and is released as open source software.

The main program in BIND is named, the server daemon that runs on Linux servers and
resolves hostnames to IP addresses for clients on the local network. The beauty of DNS is
that one BIND server can communicate with other DNS servers to look up an address on
remote networks. This allows clients to point to only one DNS name server and be able to
resolve any IP address on the Internet!

The DNS protocol is text based and is susceptible to attacks, such
as hostname spoofing. The DNSSEC protocol incorporates a layer of
encryption around the standard DNS packets to help provide a layer of
security in the hostname lookup process. Ensure that your BIND installa-
tion supports DNSSEC for the proper security.

Network Management
Being responsible for multiple hosts and network devices for an organization can be an over-
whelming task. Trying to keep up with what devices are active or which servers are running
at capacity can be a challenge. Fortunately for administrators, there’s a solution.

The Simple Network Management Protocol (SNMP) provides a way for an administrator
to query remote network devices and servers to obtain information about their configura-
tion, status, and even performance. SNMP operates in a simple client/server paradigm. Net-
work devices and servers run an SNMP server service that listens for requests from SNMP
client packages. The SNMP client sends requests for data from the SNMP server.

The SNMP standards have changed somewhat drastically over the years, mainly to
help add security and boost performance. The original SNMP version 1 (called SNMPv1)
provided for only simple password authentication of clients and passed all data as individual

Implementing Security  31

plaintext records. SNMP version 2 (called SNMPv2) implemented a basic level of security
and provided for the bulk transmission of monitoring data to help reduce the network
traffic required to monitor devices. The current version (SNMPv3) utilizes both strong
authentication and data encryption capabilities and provides a more streamlined
management system.

The most popular SNMP software package in Linux is the open source net-snmp
package. This package has SNMPv3 compatibility, allowing you to securely monitor all
aspects of a Linux server remotely.

Time
For many network applications to work correctly, both servers and clients need to have their
internal clocks coordinated with the same time. The Network Time Protocol (NTP) accom-
plishes this. It allows servers and clients to synchronize on the same time source across mul-
tiple networks, adding or subtracting fractions of a second as needed to stay in sync.

For Linux systems, the ntpd program synchronizes a Linux system with remote NTP
servers on the Internet. It’s common to have a single Linux server use ntpd to synchronize
with a remote time standard server and then have all other servers and clients on the local
network sync their times to the local Linux server.

Implementing Security
These days, security is at the top of every system administrator’s list of worries. With a seem-
ingly endless supply of people trying to break into servers, implementing security is a vital
role for every Linux administrator.

Fortunately, Linux provides several layers of security that you can implement in your
Linux server environment. The following sections walk through the server software packages
that you may run into as you implement security in your Linux servers.

Authentication Server
The core security for Linux servers is the standard userid and password assigned to each
individual user on the system and stored in either the /etc/passwd (on non-secure legacy
systems) or the /etc/shadow file. Each Linux server maintains its own list of valid user
accounts that have access on that server.

For a large network environment where users may have to access resources on multiple
Linux servers, trying to remember multiple userids and passwords can be a challenge. Fortu-
nately, there are a few different methods for sharing user account databases across multiple
Linux servers on a network.

32  Chapter 2  ■  Introduction to Services

NIS
The Network Information System (NIS) is a directory service that allows both clients and
servers to share a common naming directory. The NIS naming directory is often used as a
common repository for user accounts, hostnames, and even email information on local net-
works. The NIS+ protocol expands on NIS by adding security features.

The nis-utils package is an open source project for implementing an NIS or NIS+
directory in a Linux environment. It’s included in most Linux distribution repositories.

The NIS system was originally designed at Sun Microsystems and
released under the clever name Yellow Pages (YP). However, due to trade-
mark infringement, the name had to be changed to the more boring NIS.

Kerberos
Kerberos was developed at MIT as a secure authentication protocol. It uses symmetric-
key cryptography to securely authenticate users with a centralized server database. The
entire authentication process is encrypted, making it a secure method of logging into a
Linux server.

You can use the Kerberos authentication system for more than simple server logins. Many
common Linux server applications provide plug-in modules to interface with a Kerberos
database for authenticating application users.

LDAP
Network authentication systems have taken off in the commercial networking world. Micro-
soft’s Active Directory system is by far the most popular network authentication system
used today. However, the open source world isn’t too far behind, creating its own network
directory system.

The Lightweight Directory Access Protocol (LDAP) was created at the University of
Michigan to provide simple network authentication services to multiple applications and
devices on a local network. The most popular implementation of LDAP in the Linux world is
the OpenLDAP package.

OpenLDAP allows you to design a hierarchical database to store objects in your network.
In the hierarchical database, objects are connected in a treelike fashion to one another, as
shown in Figure 2.2.

The hierarchical databases allows you to group objects by types, such as users and
servers, or by location, or both. This provides a flexible way of designing authentication for
your local network.

The OpenLDAP package consists of both client and server programs. The client program
allows systems to access an OpenLDAP server to authenticate requests made by clients or
other network objects.

Implementing Security  33

Certificate Authority
The days of assigning every user on your server a userid and password are nearing an end (if
it hasn’t already come). The userid/password method of logging into a server is fraught with
security issues—sharing user accounts, simple passwords, and even accounts with no pass-
words assigned.

A better method of authenticating users is using certificates. A certificate is an encrypted
key that implements a two-factor authentication method. To log into a server, a user must
have two things:

■■ Something they possess, such as the certificate file

■■ Something they know, such as a PIN

A certificate identifies a specific user on the network. Only one user should have the cer-
tificate and know the PIN required to access the certificate. However, it’s important that the
server trusts the certificate as well. For that, you need a certificate authority.

The OpenSSL package provides standard certificate functions for both servers and clients.
You can set up your Linux server to create certificates for clients and then authenticate them
for network applications.

Access Server (SSH)
Remotely accessing servers in today’s environment is risky. There are plenty of people
around snooping on networks, looking for information they can steal. Logging into a server
from a remote location using a plaintext protocol such as Telnet or FTP is not a good
idea anymore.

dc=com

dc=sample

cn=Matthew cn=Chris cn=Sasha cn=Riley

F IGURE 2 .2   A sample LDAP directory tree

34  Chapter 2  ■  Introduction to Services

Instead, you should use a remote access protocol that incorporates encryption between
the client and server. The Secure Shell (SSH) provides a layer of encryption around data sent
across the network.

The most popular software package that implements SSH in the Linux environment is
the OpenSSH package. The OpenSSH package provides secure Telnet, FTP, and even remote
copy features using SSH.

The OpenSSH program also supports a feature called tunneling. With
tunneling, you can wrap any type of network transaction with an encryp-
tion layer, thus protecting any type of network application even if it’s not
directly supported by the OpenSSH software.

Virtual Private Networks
Remotely connecting to servers on your local network via the Internet can be a dan-
gerous thing. Your network traffic takes many hops between many intermediary networks
before getting to your servers, providing lots of opportunities for prying eyes to snoop on
your data.

The solution to remotely connecting to resources on a local network is the virtual private
network (VPN) protocol. The VPN protocol creates a secure point-to-point tunnel between
a remote client or server and a VPN server on your local network. This provides a secure
method for remotely accessing any server on your local network.

In Linux, a popular VPN solution is the OpenVPN package. The OpenVPN package runs
as a server service on a Linux server on your local network. Remote clients can use Open-
VPN to connect with the OpenVPN server to establish connectivity to the server and then,
once on the server, gain access to the rest of your local network.

Proxy Server
A web proxy server allows you to intercept web requests from local network clients. By
intercepting the web requests, you have control of how clients interact with remote web
servers. The web proxy server can block websites you don’t want your network clients to
see, and the server can cache common websites so that future requests for the same pages
load faster.

The most popular web proxy server in Linux is the Squid package. You can configure it to
work both as a filter and as a caching server. The nginX web server package discussed earlier
also has the ability to work as a web proxy server and is starting to gain in popularity.

Monitoring
If you have multiple Linux servers on your network, trying to keep up with what they’re all
doing can be a challenge. It’s always a good idea for system administrators to peek in on a

Improving Performance  35

server’s performance and log files just to be aware if anything bad is about to happen or has
already happened.

There are several monitoring tools available in the Linux world. The Nagios software
package is quickly becoming a popular tool, especially in cloud Linux systems. Nagios uses
SNMP to monitor the performance and logs of Linux servers and provide results in a simple
graphical window environment.

Improving Performance
Developers and administrators of high-volume Linux applications are always looking for
ways to improve the performance of the applications. There are three common methods for
improving performance that all Linux administrators should be aware of. This section covers
these methods.

Clustering
A computer cluster improves application performance by dividing application functions
among multiple servers. Each server node in the cluster is configured the same and can per-
form the same functions, but the cluster management software determines how to split the
application functions among the servers. Since each server in the cluster is working on only
part of the application, you can use less powerful servers within the cluster than if you had
to run the entire application on a single server.

The cluster management software is the key to the performance of the cluster. One of the
earliest attempts at creating clusters of inexpensive Linux servers was the Beowulf cluster. The
Beowulf cluster relied on parallel processing libraries, such as the Parallel Virtual Machine
(PVM) library, to distribute an application’s library calls between multiple Linux servers.

Newer versions of clustering include the Apache Hadoop project and the Linux Virtual
Server (LVS) project.

Load Balancing
Load balancing is a special application of clustering. A load balancer redirects entire client
requests to one of a cluster of servers. While a single server processes the entire request, the
client load is distributed among the multiple servers automatically.

Common Linux load-balancing packages include HAProxy, the Linux Virtual Server
(LVS), and even the nginX web server.

Containers
One of the biggest problems for application developers is creating a development environ-
ment that mirrors the actual server environment the applications run in. All too often a

36  Chapter 2  ■  Introduction to Services

developer will get an application working just fine in a workstation development environ-
ment only to see it crash and burn when ported to the server.

Linux containers help solve this problem by creating a self-contained environment
to encapsulate applications. A container packages all of the necessary application files,
library files, and operating system libraries into a bundle that you can easily move between
environments.

Several Linux server packages are available that support containers. Currently, the two
most popular ones are Docker and Kubernetes. You can use these packages to easily port
application containers to any Linux server, whether it’s a physical server, a virtual server, or
in the cloud.

Summary
Linux servers provide network applications that support both clients and network devices.
Server applications are called services and are launched by the Linux server without human
intervention. When a Linux server can launch services directly, they’re called daemons. The
daemon runs in the background and listens for client connection requests. A super-server
runs in the background and listens for client connection requests for multiple services. When
a connection request is accepted, the super-server launches the appropriate service.

Linux supports services for all types of applications. The Apache and nginX services pro-
vide web server applications for Linux. For database applications, PostgreSQL, MySQL,
and MongoDB are the most popular. If you’re looking to run an email server, the sendmail,
Postfix, or Exim application should do the trick. Linux also works well as a server for a local
network environment. There are open source packages for file, print, and network server
resources as well as packages for security authentication and certificate applications.

Finally, you can configure Linux servers for fault tolerance by clustering a large group of
small servers together to create one large server. The clustering software can either work to
split an application to run over several servers simultaneously or assign individual clients
to specific servers to implement load balancing. To support application development, Linux
servers also support containers. Containers allow developers to migrate the same environ-
ment used to develop an application to a production environment, ensuring that applications
will work the same in both development and production.

Exam Essentials  37

Exam Essentials
Describe the ways to start server programs in Linux.  Server programs in Linux can either
run continually in the background as a daemon process or be started from a super-server
daemon when requested by a client.

Explain how clients know how to contact a server program.  Server applications listen for
client connections on well-known ports. Clients must send a connection request to the server
on the well-known port for the application they want to interact with.

Explain the components commonly used in a LAMP stack.  The LAMP stack uses the Linux
operating system, the Apache web server, the MySQL database server, and the PHP program-
ming language to provide a platform for web applications.

Describe the difference between a relational database and a NoSQL database.  A relational
database stores data records in individual data tables. Each data type consists of one or more
data fields that contain individual data elements. A data record is an instance of data for
each data field in a table. A NoSQL database stores data values in documents. Each docu-
ment is independent of all of the other documents in the database. Each document can also
contain different data elements.

Understand the ways a Linux server can share files in a local network.  Linux servers can
use the nfs-utils package to communicate with other Linux servers to share folders using
NFS. The local Linux server can mount folders from the remote Linux server as if they
were local disks. Linux servers can also use the Samba package to share files on Windows
local networks with Windows clients and servers as well as map folders located on Win-
dows servers.

Understand which server packages are commonly used to support network features on a
local network.  The DHCPd package provides DHCP server services to assign IP addresses
to clients. The BIND package provides DNS server services to both clients and servers on
a local network for hostname resolution. The net-snmp package allows you to implement
remote device management using SNMP, and you can use the ntpd package to create an NTP
time server for the local network.

Describe how to create a network directory server using Linux.  The OpenLDAP package
allows you to create an LDAP directory of users and devices on the local network. Cli-
ents and other servers can use the LDAP directory to authenticate users and devices on
the network.

Explain how to improve the performance of a network application.  For network applica-
tions in a high-volume environment, you can improve performance by implementing either
a cluster or load balancing environment. In a cluster, you can split application functions
between multiple servers by using a cluster package such as Apache Hadoop. With load
balancing, you can distribute client connections between multiple servers using packages
such as HAProxy and Linux Virtual Server (LVS).

38  Chapter 2  ■  Introduction to Services

Review Questions
1.	 Which web server is used in the popular LAMP stack?

A.	 nginX

B.	 Apache

C.	 Lighthttpd

D.	 PostgreSQL

2.	 A ________ runs in the background and listens for client connection requests for a single
application.

A.	 Daemon

B.	 Super-server

C.	 Shell

D.	 Graphical desktop

3.	 Which open source database provided fast performance and became a popular choice for
web applications?

A.	 MongoDB

B.	 PostgreSQL

C.	 MySQL

D.	 NoSQL

4.	 How does a server know what client request is sent to which application daemon?

A.	 IP addresses

B.	 Ports

C.	 Ethernet addresses

D.	 Services

5.	 What popular open source web servers can also perform as a load balancer?

A.	 nginX

B.	 Apache

C.	 PostgreSQL

D.	 Lighthttpd

6.	 What format does MongoDB use to store data elements in the database?

A.	 Relational

B.	 YaML

C.	 JSON

D.	 Encrypted

Review Questions  39

7.	 Which part of the Linux mail process is responsible for sending emails to remote hosts?

A.	 MUA

B.	 MTA

C.	 MDA

D.	 Evolution

8.	 Which part of the Linux mail process allows you to create filters to automatically redirect
incoming mail messages?

A.	 MUA

B.	 MTA

C.	 MDA

D.	 Evolution

9.	 What protocol should you use to mount folders from remote Linux servers on your local
Linux server?

A.	 SNMP

B.	 NTP

C.	 DHCP

D.	 NFS

10.	 The ________ software package allows your Windows workstations to mount a folder stored
on a Linux server.

A.	 ntpd

B.	 Samba

C.	 DHCPd

D.	 Evolution

11.	 Which two software packages are used in Linux to maintain log files? (Choose two.)

A.	 rsyslogd

B.	 journald

C.	 ntpd

D.	 DHCPd

12.	 Which software program should you load on your Linux server to synchronize its time with
a standard time server?

A.	 DHCPd

B.	 BIND

C.	 ntpd

D.	 Samba

40  Chapter 2  ■  Introduction to Services

13.	 What software package allows a Linux server to print to a network printer?

A.	 DHCPd

B.	 BIND

C.	 ntpd

D.	 CUPS

14.	 If you see the named program running in the background on your Linux server, what service
does it provide?

A.	 Network time

B.	 Hostname resolution

C.	 Dynamic IP address allocation

D.	 Printing

15.	 Which authentication package used to be called by the name “Yellow Pages”?

A.	 Samba

B.	 Kerberos

C.	 NIS

D.	 BIND

16.	 What package do you need to install to allow your Linux server to provide IP addresses to
clients on your local network?

A.	 DHCPd

B.	 BIND

C.	 ntpd

D.	 Evolution

17.	 The ________ package allows you to create a secure tunnel across a private network to access
your local network remotely.

A.	 BIND

B.	 ntpd

C.	 OpenSSH

D.	 OpenSSL

18.	 What server role should you implement to block your local network clients from accessing
sports websites during business hours?

A.	 A DHCP server

B.	 A web server

C.	 A web proxy

D.	 A container

Review Questions  41

19.	 What server role should you implement to increase performance on your company’s website?

A.	 A load balancer

B.	 A web proxy

C.	 A DHCP server

D.	 A container

20.	 A ________ allows your developers to easily deploy applications between development, test,
and production.

A.	 web proxy

B.	 DHCP server

C.	 container

D.	 cluster

Managing Files,
Directories, and Text

✓✓ Objective 1.2: Given a scenario, manage files and directories

Chapter

3

In the original Linux years, to get anything done you had to
work with the Gnu/Linux shell. The shell is a special inter-
active utility that allows users to run programs, manage files,

handle processes, and so on. The shell provides a command-line interface, which furnishes
a prompt at which you can enter text-based commands. These commands are actually
programs. There are literally thousands of commands you can enter at the command
line. However, you need to use only a few hundred commands on a regular basis in your
daily job.

While it is highly likely that you have had multiple exposures to many of the commands
in this chapter, you may not know all of them. In addition, there may be some shell com-
mands you are using in an ineffective manner. Our purpose in this chapter is to improve
your Linux command-line tool belt. We’ll cover the basics of managing files and direc-
tories, reviewing text files, and finding information. The simple and oft-used ls command is
covered as well as the interesting diff utility. Commands and concepts in this chapter will
be built upon and used in later chapters.

Handling Files and Directories
Files on a Linux system are stored within a single directory structure, called a virtual
directory. The virtual directory contains files from all the computer’s storage devices and
merges them into a single directory structure. This structure has a single base directory called
the root directory, which is often simply called root.

Often one of the first skills learned at the command line is how to navigate the virtual
directory structure as well as how to create directories and remove them. Viewing files, cre-
ating them, copying and moving them, and deleting them are also important skills. The fol-
lowing sections describe how to use commands at the command line to accomplish these
various tasks.

Viewing and Creating Files
The most basic command for viewing a file’s name and its various metadata is the list
(ls) command. Metadata is information that describes and provides additional details
about data.

Handling Files and Directories  45

To issue the list command, you type ls and any needed options or arguments. The basic
syntax structure for the list command is:

ls [OPTION]... [FILE]...

In the list command’s syntax structure, [OPTION] means there are various options (also
called switches) you can add to display different file metadata. The brackets indicate that
switches are optional. The [FILE] argument shows that you can add a directory or filename
to the command’s end to look at metadata for either specific files or files within other virtual
directory structure locations. It too is optional, as denoted by the brackets.

Syntax structure is depicted for many command-line commands within
the Linux system’s manual pages, also called the man pages. To find a
particular command’s syntax structure, view its man page (e.g., man ls)
and look in the Synopsis section.

When you issue the ls command with no additional arguments or options, it displays
all the files’ and subdirectories’ names within the present working directory, as shown in
Listing 3.1.

Listing 3.1:  Using the ls and pwd commands

$ ls
Desktop Downloads Pictures Public Videos
Documents Music Project47.txt Templates
$
$ pwd
/home/Christine
$

Your present working directory is your login process’s current location within the virtual
directory structure. You can determine this location’s directory name by issuing the pwd
command, which is also shown in Listing 3.1.

To display more than file and directory name metadata, you need to add various options
to the list command. Table 3.1 shows a few commonly used options.

Table 3.1 has the best ls command options to memorize, because you will use them
often. However, it is worthwhile to try all the various ls command options and option
combinations. Take time to peruse the ls command’s options in its man pages. You can, for
example, try the -lh option combination, as shown in Listing 3.2, which makes the file size
more human-readable. When you experiment with various command options, not only will
you be better prepared for the Linux+ certification exam, you’ll also find combinations that
work well for your particular needs.

46  Chapter 3  ■  Managing Files, Directories, and Text

Listing 3.2:  Exploring the ls -lh command

$ pwd
/home/Christine/Answers
$
$ ls -l
total 32
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Everything
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Life
-rw-r--r--. 1 Christine Christine 29900 Aug 19 17:37 Project42.txt
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Universe
$
$ ls -lh
total 32K
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Everything
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Life
-rw-r––r––. 1 Christine Christine 30K Aug 19 17:37 Project42.txt
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Universe
$

Be aware that some distributions include, by default, an alias for the ls -l command.
It is ll (two lowercase L characters) and is demonstrated on a CentOS distribution in
Listing 3.3. An alias at the Linux command line is simply a short command that represents

TABLE 3 .1   The ls command’s commonly used options

Short Long Description

-a ––all Display all file and subdirectory names, including hidden files’ names.

-d ––directory Show a directory’s own metadata instead of its contents.

-F ––classify Classify each file’s type using an indicator code (*,/,=,>,@, or |).

-i ––inode Display all file and subdirectory names along with their associated
index number.

-l N/A Display file and subdirectory metadata, which includes file type, file
access permissions, hard link count, file owner, file’s group, modifi-
cation date and time, and filename.

-R N/A Show a directory’s contents, and for any subdirectory within the original
directory tree, consecutively show their contents as well (recursively).

Handling Files and Directories  47

another, typically complicated, command. You can view all the current aliases your process
has by typing alias at the command line.

Listing 3.3:  Exploring the ll command

$ ls -l
total 32
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Everything
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Life
-rw-r––r––. 1 Christine Christine 29900 Aug 19 17:37 Project42.txt
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Universe
$
$ ll
total 32
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Everything
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Life
-rw-r––r––. 1 Christine Christine 29900 Aug 19 17:37 Project42.txt
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Universe
$

If you’re working with lots of files and directories, sometimes it helps to see a graphical over-
view of things. If you don’t have access to a graphical desktop, you can still view things on the
command line in a pseudo-graphical format using the tree command, as shown in Figure 3.1.

F IGURE 3 .1   The tree command output

48  Chapter 3  ■  Managing Files, Directories, and Text

The output from the tree command creates a tiered structure, showing which files are
associated with which directory, making it easier to sort things out.

The touch command will allow you to create empty files on the fly. This command’s pri-
mary purpose in life is to update a file’s timestamps—access and modification. However, for
studying purposes, it is useful in that you can quickly create files with which to experiment,
as shown in Listing 3.4.

Listing 3.4:  Using the touch command

$ touch Project43.txt
$
$ ls
Everything Life Project42.txt Project43.txt Universe
$
$ touch Project44.txt Project45.txt Project46.txt
$
$ ls
Everything Project42.txt Project44.txt Project46.txt
Life Project43.txt Project45.txt Universe
$

Notice in Listing 3.4 that with the touch command you can create a single file or mul-
tiple files at a time. To create multiple files, just list the files’ names after the command, sepa-
rated by a space.

Directories are sometimes called folders. From a user perspective, a directory contains
files, but in reality a directory is a special file used to locate other files. A file for which the
directory is responsible has some of its metadata stored within the directory file. This meta-
data includes the file’s name along with the file’s associated index (inode) number. Therefore,
a file can be located via its managing directory.

You can quickly create directories, but instead of using touch, use the mkdir command.
The -F option on the ls command will help you in this endeavor. It displays any directories,
including newly created ones, with a / indicator code following each directory’s name. List-
ing 3.5 provides a few examples.

Listing 3.5:  Exploring the mkdir command

$ ls -F
Everything/ Project42.txt Project44.txt Project46.txt
Life/ Project43.txt Project45.txt Universe/
$
$ mkdir Galaxy
$
$ ls -F
Everything/ Life/ Project43.txt Project45.txt Universe/

Handling Files and Directories  49

Galaxy/ Project42.txt Project44.txt Project46.txt
$
$ pwd
/home/Christine/Answers
$
$ mkdir /home/Christine/Answers/Galaxy/Saturn
$
$ ls -F Galaxy
Saturn/
$

To create a subdirectory in your present working directory, you simply enter the mkdir
command followed by the subdirectory’s name, as shown in Listing 3.5. If you want to build
a directory in a different location than your present working directory, you can use an abso-
lute directory reference, as was done for creating the Saturn directory in Listing 3.5.

If you are creating directories and moving into them from your present
working directory, it is easy to become lost in the directory structure.
Quickly move back to your previous present working directory using
the cd - command or back to your home directory using just the cd
command with no options.

Be aware when building directories that a few problems can occur. Specifically this can
happen when attempting to create a directory tree, such as the example shown in Listing 3.6.

Listing 3.6:  Avoiding problems with the mkdir command

$ ls -F
Everything/ Life/ Project43.txt Project45.txt Universe/
Galaxy/ Project42.txt Project44.txt Project46.txt
$
$ mkdir Projects/42/
mkdir: cannot create directory 'Projects/42/': No such file or directory
$
$ mkdir -p Projects/42/
$
$ ls -F
Everything/ Life/ Project43.txt Project45.txt Projects/
Galaxy/ Project42.txt Project44.txt Project46.txt Universe/
$
$ ls -F Projects
42/
$

50  Chapter 3  ■  Managing Files, Directories, and Text

Notice that an error occurs when you attempt to use the mkdir command to build the
directory Projects and its 42 subdirectory. A subdirectory (42) cannot be created without
its parent directory (Projects) preexisting. The mkdir command’s -p option allows you to
overwrite this behavior, as shown in Listing 3.6, and successfully create directory trees.

It is tedious to enter the ls -F command after each time you issue the
mkdir command to ensure that the directory was built. Instead, use
the -v option on the mkdir command to receive verification that the
directory was successfully constructed.

Copying and Moving Files
Copying, moving, and renaming files and directories are essential skills. There are several
nuances between the commands to complete these tasks that are important for you to know.

To copy a file or directory locally, use the cp command. To issue this command, you use cp
along with any needed options or arguments. The basic syntax structure for the command is:

cp [OPTION]... SOURCE DEST

The command options, as shown in the structure, are not required. However, the source
(SOURCE) and destination (DEST) are required, as shown in a basic cp command example
within Listing 3.7.

Listing 3.7:  Using the cp command

$ pwd
/home/Christine/SpaceOpera/Emphasis
$
$ ls
melodrama.txt
$
$ cp melodrama.txt space-warfare.txt
$
$ ls
melodrama.txt space-warfare.txt
$
$ cp melodrama.txt
cp: missing destination file operand after 'melodrama.txt'
Try 'cp ––help' for more information.
$

In Listing 3.7, the first time the cp command is used, both the source file and its desti-
nation are specified. Thus no problems occur. However, the second time the cp command is
used the destination file’s name is missing. This causes the source file to not be copied and
generates an error message.

Handling Files and Directories  51

There are several useful cp command options. Many will help protect you from making a
grievous mistake, such as accidentally overwriting a file or its permissions. Table 3.2 shows a
few commonly used options.

To copy a directory, you need to add the -R (or -r) option to the cp command. This
option enacts a recursive copy. A recursive copy will not only create a new directory (DEST),
but it also copies any files the source directory manages, source directory subdirectories, and
their files as well. Listing 3.8 shows an example of how to do a recursive copy as well as
how not to do one.

Listing 3.8:  Performing a recursive copy with the cp command

$ pwd
/home/Christine/SpaceOpera
$
$ ls -F
Emphasis/
$

TABLE 3 .2   The cp command’s commonly used options

Short Long Description

-a ––archive Perform a recursive copy and keep all the files’ original attributes,
such as permissions, ownership, and timestamps.

-f ––force Overwrite any preexisting destination files with the same name as
DEST.

-i ––interactive Ask before overwriting any preexisting destination files with the
same name as DEST.

-n ––no-clobber Do not overwrite any preexisting destination files with the same
name as DEST.

-R, -r ––recursive Copy a directory’s contents, and for any subdirectory within the
original directory tree, consecutively copy its contents as well
(recursive).

-u ––update Only overwrite preexisting destination files with the same name
as DEST if the source file is newer.

-v ––verbose Provide detailed command action information as command
executes.

52  Chapter 3  ■  Managing Files, Directories, and Text

$ cp Emphasis Story-Line
cp: omitting directory 'Emphasis'
$
$ ls -F
Emphasis/
$
$ cp -R Emphasis Story-Line
$
$ ls -F
Emphasis/ Story-Line/
$
$ ls -R Emphasis
Emphasis:
chivalric-romance.txt melodrama.txt
interplanetary-battles.txt space-warfare.txt
$
$ ls -R Story-Line/
Story-Line/:
chivalric-romance.txt melodrama.txt
interplanetary-battles.txt space-warfare.txt
$

Notice that the first time the cp command is used in Listing 3.8, the -R option is not used,
and thus the source directory is not copied. The error message generated, cp: omitting
directory, can be a little confusing, but essentially it is telling you that the copy will not
take place. When the cp -R command is used to copy the source directory in Listing 3.8,
it is successful. The recursive copy option is one of the few command options that can be
uppercase, -R, or lowercase, -r.

To move or rename a file or directory locally, you use a single command: mv. The com-
mand’s basic syntax is nearly the same as the cp command:

mv [OPTION]... SOURCE DEST

The commonly used mv command options are similar to cp command options. However,
you’ll notice in Table 3.3 that there are fewer typical mv command options than common cp
options. As always, be sure to view the mv utility’s man pages, using the man mv command,
to review all the options for certification studying purposes and explore uncommon options,
which may be useful to you.

The move command is simple to use. A few examples of renaming a file as well as
employing the -i option to avoid renaming a file to a preexisting file are shown in
Listing 3.9.

Handling Files and Directories  53

Listing 3.9:  Using the mv command

$ ls
chivalric-romance.txt melodrama.txt
interplanetary-battles.txt space-warfare.txt
$
$ mv space-warfare.txt risk-taking.txt
$
$ ls
chivalric-romance.txt melodrama.txt
interplanetary-battles.txt risk-taking.txt
$
$ mv -i risk-taking.txt melodrama.txt
mv: overwrite 'melodrama.txt'? n
$

When renaming an entire directory, there are no additional required command options.
Just issue the mv command as you would for renaming a file, as shown in Listing 3.10.

Listing 3.10:  Renaming a directory using the mv command

$ pwd
/home/Christine/SpaceOpera
$
$ ls -F
Emphasis/ Story-Line/

TABLE 3 .3   The mv command’s commonly used options

Short Long Description

-f ––force Overwrite any preexisting destination files with the same name as
DEST.

-i ––interac-
tive

Ask before overwriting any preexisting destination files with the
same name as DEST.

-n ––no-clobber Do not overwrite any preexisting destination files with the same
name as DEST.

-u ––update Only overwrite preexisting destination files with the same name as
DEST if the source file is newer.

-v ––verbose Provide detailed command action information as the command
executes.

54  Chapter 3  ■  Managing Files, Directories, and Text

$
$ mv -i Story-Line Story-Topics
$
$ ls -F
Emphasis/ Story-Topics/
$

You can move a file and rename it all in one simple mv command, as shown in List-
ing 3.11. The SOURCE uses the file’s current directory reference and current name. The DEST
uses the file’s new location as well as its new name.

Listing 3.11:  Moving and renaming a file using the mv command

$ pwd
/home/Christine/SpaceOpera
$
$ ls
Emphasis Story-Topics
$
$ ls Emphasis/
chivalric-romance.txt melodrama.txt
interplanetary-battles.txt risk-taking.txt
$
$ ls Story-Topics/
chivalric-romance.txt melodrama.txt
interplanetary-battles.txt space-warfare.txt
$
$ mv Emphasis/risk-taking.txt Story-Topics/risks.txt
$
$ ls Emphasis/
chivalric-romance.txt interplanetary-battles.txt melodrama.txt
$
$ ls Story-Topics/
chivalric-romance.txt melodrama.txt space-warfare.txt
interplanetary-battles.txt risks.txt
$

In Listing 3.11, the file risk-taking.txt is located in the Emphasis directory. Employ-
ing a single mv command, it is moved to the Story-Topics directory and renamed to
risks.txt at the same time.

For lightning-fast copies of big files or when you are copying large groups of files, the
remote sync utility is rather useful. This tool is often used to create backups, can securely
copy files over a network, and is accessed via the rsync command.

Handling Files and Directories  55

When you’re copying files over a network to a remote host, the file
transfer process typically needs protection via encryption methods. The
rsync command can be tunneled through OpenSSH to provide data pri-
vacy. Also, the scp command can be employed to provide a secure file
copy mechanism. Both of these methods are covered in Chapter 12, “Pro-
tecting Files.”

To quickly copy a file locally, the rsync command syntax is similar to the mv command’s
syntax. It is as follows:

rsync [OPTION]... SOURCE DEST

Certain rsync options will assist you in making quick file copies. Certain switches are
helpful for copying large files or creating backups locally, so it’s a good idea to review the
commonly used rsync options listed in Table 3.4.

TABLE 3 .4   The rsync command’s commonly used local copy options

Short Long Description

-a ––archive Use archive mode.

-D N/A Retain device and special files.

-g ––group Retain file’s group.

-h ––human-
readable

Display any numeric output in a human-readable format.

-l ––links Copy symbolic links as symbolic links.

-o ––owner Retain file’s owner.

-p ––perms Retain file’s permissions.

N/A ––progress Display progression of file copy process.

-r ––recursive Copy a directory’s contents, and for any subdirectory within the original
directory tree, consecutively copy its contents as well (recursive).

N/A ––stats Display detailed file transfer statistics.

-t ––times Retain file’s modification time.

-v ––verbose Provide detailed command action information as command executes.

56  Chapter 3  ■  Managing Files, Directories, and Text

Archive mode, turned on by the -a (or ––archive) switch, is an interesting feature.
Using this one switch is equivalent to using the option combination of -rlptgoD, which is a
popular rsync command option set for creating directory tree backups.

An example of using the rsync utility to copy a large file is shown in Listing 3.12.
Notice that when the copy is complete, the utility outputs useful information, such as the
data transfer rate. If you want additional file transfer statistics, add the ––stats option to
your command.

Listing 3.12:  Moving and renaming a file using the rsync command

ls -sh /media/USB/Parrot-full-3.7_amd64.iso
3.6G /media/USB/Parrot-full-3.7_amd64.iso
#
rsync -v /media/USB/Parrot-full-3.7_amd64.iso /home/Christine/
Parrot-full-3.7_amd64.iso

sent 3,769,141,763 bytes received 35 bytes 3,137,030.21 bytes/sec
total size is 3,768,221,696 speedup is 1.00
#
ls -sh /home/Christine/Parrot-full-3.7_amd64.iso
3.6G /home/Christine/Parrot-full-3.7_amd64.iso
#

The remote sync utility will often display a speedup rating in its output.
This rating is related to conducting synchronized backups. If you are
using the rsync command to conduct periodic backups of a particular
directory to another directory location, the speedup rating lets you know
how many files did not need to be copied because they had not been
modified and were already backed up. For example, if 600 of 600 files had
to be copied to the backup directory location, the speedup is 1.00. If only
300 of 600 files had to be copied, the speedup is 2.00. Thus, whenever
you are using the rsync command to copy a single file to a new location,
the speedup will always be 1.00.

Removing Files
Tidying up an entire filesystem or simply your own directory space often starts with deleting
unneeded files and directories. Understanding the commands and their switches to do so is
paramount to avoid mistakes in removing these items.

The most flexible and heavily used deletion utility is the remove tool. It is employed via
the rm command, and the basic syntax is:

rm [OPTION]... FILE

Handling Files and Directories  57

There are many useful options for the rm utility, so be sure to view its man pages to see
them all. However, the most commonly used options are listed in Table 3.5.

To simply delete a single file, you can use the rm command designating the filename to
remove and not use any switches. However, it is always a good idea to use the -i (or
––interactive) option to ensure that you are not deleting the wrong file, as demonstrated
in Listing 3.13.

Listing 3.13:  Deleting a file using the rm command

$ ls Parrot-full-3.7_amd64.iso
Parrot-full-3.7_amd64.iso
$
$ rm -i Parrot-full-3.7_amd64.iso
rm: remove write-protected regular file 'Parrot-full-3.7_amd64.iso'? y
$
$ ls Parrot-full-3.7_amd64.iso
ls: cannot access Parrot-full-3.7_amd64.iso: No such file or directory
$
$ rm -i Parrot-full-3.7_amd64.iso
rm: cannot remove 'Parrot-full-3.7_amd64.iso': No such file or directory
$
$ rm -f Parrot-full-3.7_amd64.iso
$

TABLE 3 .5   The rm command’s commonly used options

Short Long Description

-d ––dir Delete any empty directories.

-f ––force Continue on with the deletion process, even if some files
designated by the command for removal do not exist, and do not
ask prior to deleting any existing files.

-i ––interactive Ask before deleting any existing files.

-I N/A Ask before deleting more than three files, or when using the -r
option.

-R, -r ––recursive Delete a directory’s contents, and for any subdirectory within the
original directory tree, consecutively delete its contents and the
subdirectory as well (recursive).

-v ––verbose Provide detailed command action information as command executes.

58  Chapter 3  ■  Managing Files, Directories, and Text

Notice also in Listing 3.13 that when the file has been deleted, if you reissue the rm -i
command, an error message is generated, but if you issue the rm -f command, it is silent
concerning the missing file. The -f (or --force) switch is useful when you are deleting
many files and desire for no error messages to be displayed.

Removing a directory tree or a directory full of files can be tricky. If you just issue the rm
-i command, you will get an error message, as shown in Listing 3.14. Instead, you need to
add the -R or -r option in order for the directory and the files it is managing to be deleted.

Listing 3.14:  Deleting a directory containing files using the rm command

$ cd SpaceOpera/
$
$ ls -F
Emphasis/ Story-Topics/
$
$ rm -i Emphasis/
rm: cannot remove 'Emphasis/': Is a directory
$
$ rm -ir Emphasis
rm: descend into directory 'Emphasis'? y
rm: remove regular empty file 'Emphasis/melodrama.txt'? y
rm: remove regular empty file 'Emphasis/interplanetary-battles.txt'? y
rm: remove regular empty file 'Emphasis/chivalric-romance.txt'? y
rm: remove directory 'Emphasis'? y
$
$ ls -F
Story-Topics/
$

If you have lots of files to delete, want to ensure that you are deleting the correct files, and
don’t want to have to answer y for every file to delete, employ the -I option instead of the
-i switch. It will ask before deleting more than three files as well as when you are deleting a
directory full of files and are using one of the recursive switches, as shown in Listing 3.15.

Listing 3.15:  Employing the rm command’s -I option

$ ls -F
Story-Topics/
$
$ rm -Ir Story-Topics/
rm: remove 1 argument recursively? y
$
$ ls -F
$

Handling Files and Directories  59

Deleting an empty directory, a directory containing no files, is simple. Use the remove
empty directories tool by issuing the rmdir command. You’ll find that adding the -v (or
--verbose) switch is helpful as well, as shown in Listing 3.16.

Listing 3.16:  Using the rmdir command

$ mkdir -v EmptyDir
mkdir: created directory 'EmptyDir'
$
$ rmdir -v EmptyDir/
rmdir: removing directory, 'EmptyDir/'
$

If you want to remove a directory tree, which is free of files but contains empty subdirectories,
you can also employ the rmdir utility. The -p (or --parents) switch is required along with
providing the entire directory tree name as an argument. An example is shown in Listing 3.17.

Listing 3.17:  Using the rmdir command to delete an empty directory tree

$ mkdir -vp EmptyDir/EmptySubDir
mkdir: created directory 'EmptyDir'
mkdir: created directory 'EmptyDir/EmptySubDir'
$
$ rmdir -vp EmptyDir/EmptySubDir
rmdir: removing directory, 'EmptyDir/EmptySubDir'
rmdir: removing directory, 'EmptyDir'
$

You may have a situation where you need to remove only empty directories from a
directory tree. In this case, you will need to use the rm command and add the -d (or --dir)
switch, as shown in Listing 3.18.

Listing 3.18:  Using the rm command to delete empty directories in a tree

$ mkdir -v EmptyDir
mkdir: created directory 'EmptyDir'
$
$ mkdir -v NotEmptyDir
mkdir: created directory 'NotEmptyDir'
$
$ touch NotEmptyDir/File42.txt
$
$ rm -id EmptyDir NotEmptyDir
rm: remove directory 'EmptyDir'? y
rm: cannot remove 'NotEmptyDir': Directory not empty
$

60  Chapter 3  ■  Managing Files, Directories, and Text

An important skill is understanding the commands used to create and remove directories
along with the various commands to view, create, copy, move, rename, and delete files. Also,
having a firm grasp on the commonly used command options is vital knowledge. This exper-
tise is a valuable tool in your Linux command-line tool belt.

Linking Files and Directories
Understanding file and directory links is an essential part of your Linux journey. While many
quickly pick up how to link files, they do not necessarily understand the underlying link
structure. And that can be a problem. In this section, we’ll explore linking files as well as
their implications.

There are two types of links. One is a symbolic link, which is also called a soft link. The
other is a hard link, and we’ll take a look at it first.

Establishing a Hard Link
A hard link is a file or directory that has one index (inode) number but at least two differ-
ent filenames. Having a single inode number means that it is a single data file on the filesys-
tem. Having two or more names means the file can be accessed in multiple ways. Figure 3.2
shows this relationship. In this diagram, a hard link has been created. The hard link has two
file names, one inode number, and therefore one filesystem location residing on a disk parti-
tion. Thus, the file has two names but is physically one file.

A hard link allows you to have a pseudo-copy of a file without truly copying its data. This
is often used in file backups where not enough filesystem space exists to back up the file’s
data. If someone deletes one of the file’s names, you still have another filename that links
to its data.

To create a hard link, use the ln command. For hard links, the original file must exist
prior to issuing the ln command. The linked file must not exist. It is created when the
command is issued. Listing 3.19 shows this command in action.

Filename #1 Filename #2

Disk

(inode #1234)

F IGURE 3 .2   Hard link file relationship

Linking Files and Directories  61

Listing 3.19:  Using the ln command to create a hard link

$ touch OriginalFile.txt
$
$ ls
OriginalFile.txt
$
$ ln OriginalFile.txt HardLinkFile.txt
$
$ ls
HardLinkFile.txt OriginalFile.txt
$
$ ls -i
2101459 HardLinkFile.txt 2101459 OriginalFile.txt
$
$ touch NewFile.txt
$
$ ls -og
total 0
-rw-rw-r––. 2 0 Aug 24 18:09 HardLinkFile.txt
-rw-rw-r––. 1 0 Aug 24 18:17 NewFile.txt
-rw-rw-r––. 2 0 Aug 24 18:09 OriginalFile.txt
$

In Listing 3.19, a new blank and empty file, OriginalFile.txt, is created via the touch
command. It is then hard-linked to HardLinkFile.txt via the ln command. Notice that
OriginalFile.txt was created prior to issuing the ln command and HardLinkFile.txt
was created by issuing the ln command. The inode numbers for these files are checked using
the ls -i command, and you can see that the numbers are the same for both files.

Also in Listing 3.19, after the hard link is created and the inode numbers are checked, a
new empty file is created, called NewFile.txt. This was done to compare link counts. Using
the ls -og command, the file’s metadata is displayed, which includes file type, permissions,
link counts, file size, creation dates, and filenames. This command is similar to ls -l but
omits file owners and groups. You can quickly find the link counts in the command output.
They are right next to the files’ sizes, which are all 0 since the files are empty. Notice that
both OriginalFile.txt and HardLinkFile.txt have a link count of 2. This is because
they are both hard-linked to one other file. NewFile.txt has a link count of 1 because it is
not hard-linked to another file.

If you want to remove a linked file but not the original file, use the unlink
command. Just type unlink at the command line and include the linked
filename as an argument.

62  Chapter 3  ■  Managing Files, Directories, and Text

When creating and using hard links, there are a few important items to remember:

■■ The original file must exist before you issue the ln command.

■■ The second file listed in the ln command must not exist prior to issuing the command.

■■ An original file and its hard links share the same inode number.

■■ An original file and its hard links share the same data.

■■ An original file and any of its hard links can exist in different directories.

■■ An original file and its hard links must exist on the same filesystem.

Constructing a Soft Link
Typically, a soft link file provides a pointer to a file that may reside on another filesystem.
The two files do not share inode numbers because they do not point to the same data.
Figure 3.3 illustrates the soft link relationship.

To create a symbolic link, the ln command is used with the -s (or ––symbolic) option.
An example is shown in Listing 3.20.

Listing 3.20:  Using the ln command to create a soft link

$ touch OriginalSFile.txt
$
$ ls
OriginalSFile.txt
$
$ ln -s OriginalSFile.txt SoftLinkFile.txt
$
$ ls -i
2101456 OriginalSFile.txt 2101468 SoftLinkFile.txt
$
$ ls -og
total 0
-rw-rw-r––. 1 0 Aug 24 19:04 OriginalSFile.txt
lrwxrwxrwx. 1 17 Aug 24 19:04 SoftLinkFile.txt -> OriginalSFile.txt
$

Filename #2 (inode #5678) Filename #1 (inode #1234)

Disk

F IGURE 3 .3   Soft-link file relationship

Reading Files  63

Similar to a hard link, the original file must exist prior to issuing the ln -s command.
The soft-linked file must not exist. It is created when the command is issued. In Listing 3.20,
you can see via the ls -i command that soft-linked files do not share the same inode
number, unlike hard-linked files. Also, soft-linked files do not experience a link count
increase. The ls -og command shows this, and it also displays the soft-linked file’s pointer
to the original file.

Sometimes you have a soft-linked file that points to another soft-linked file.
If you want to quickly find the final file, use the readlink -f command
and pass one of the soft-linked filenames as an argument to it. The read-
link utility will display the final file’s name and directory location.

When creating and using soft links, keep a few things in mind:

■■ The original file must exist before you issue the ln -s command.

■■ The second file listed in the ln -s command must not exist prior to issuing
the command.

■■ An original file and its soft links do not share the same inode number.

■■ An original file and its soft links do not share the same data.

■■ An original file and any of its soft links can exist in different directories.

■■ An original file and its soft links can exist in different filesystems.

Stale links can be a serious security problem. A stale link, sometimes
called a dead link, is when a soft link points to a file that was deleted or
moved. The soft-linked file itself is not removed or updated. If a file with
the original file’s name and location is created, the soft link now points
to that new file. If a malicious file is put in the original file’s place, your
server’s security could be compromised. Use symbolic links with caution
and employ the unlink command if you need to remove a linked file.

File and directory links are easy to create. However, it is important that you understand
the underlying structure of these links in order to use them properly.

Reading Files
Linux systems contain many text files. They include configuration files, log files, data files,
and so on. Understanding how to view these files is a basic but important skill. In the follow-
ing sections, we’ll explore several utilities you can use to read text files.

64  Chapter 3  ■  Managing Files, Directories, and Text

Reading Entire Text Files
The basic utility for viewing entire text files is the concatenate (cat) command. Though this
tool’s primary purpose in life is to join together text files and display them, it is often used
just to display a single small text file. To view a small text file, use the cat command with
the basic syntax that follows:

cat [OPTION]... [FILE]...

The cat command is simple to use. You just enter the command followed by any text file
you want to read, as shown in Listing 3.21.

Listing 3.21:  Using the cat command to display a file

$ cat numbers.txt
42
2A
52
0010 1010
*
$

The cat command simply spits out the entire text file to your screen. When you get your
prompt back (shown as the $ in Listing 3.21), you know that the line above the prompt is
the file’s last line.

There is a handy new clone of the cat command called bat. Its developer
calls it “cat with wings” because of the bat utility’s many additional fea-
tures. You can read about its features at https://github.com/sharkdp/bat.

One cat command option that is useful is the -n (or ––number) switch. Using this
option will display line numbers along with the file text, as shown in Listing 3.22.

Listing 3.22:  Employing the cat -n command to display a file

$ cat -n numbers.txt
 1 42
 2 2A
 3 52
 4 0010 1010
 5 *
$

Another useful command to view entire text files is the pr command. Its original use was
to format text files for printing. However, nowadays it is far more useful for displaying a file
when you need some special formatting. To view a small text file, use the pr command with
the basic syntax that follows:

pr [OPTION]... [FILE]...

Reading Files  65

The special formatting options are what set this command apart from simply using the
cat command. Table 3.6 shows some useful pr utility options for displaying a file.

To display one file, you need to use the page length option, -l (or --length), to shorten
the page length. If you do not use this switch and have a very short file, the text will scroll
off the screen. Also the -t (or --omit-header) option is useful if you only want to see
what text is in the file. Listing 3.23 shows the pr command in action.

Listing 3.23:  Employing the pr command to display a file

$ pr -tl 15 numbers.txt
42
2A
52
0010 1010
*
$

Where the pr utility really shines is displaying two short text files at the same time. You
can quickly view the files side by side. In this case, it is useful to employ the -m (or --merge)
option, as shown in Listing 3.24.

TABLE 3 .6   The pr command’s useful file display options

Short Long Description

-n ––columns=n Display the file(s) in column format, using n columns.

-l n ––length=n Change the default 66-line page length to n lines long.

-m ––merge When displaying multiple files, display them in parallel, with
one file in each column, and truncate the files’ lines.

-s c ––separator=c Change the default column separator from tab to c.

-t ––omit-header Do not display any file header or trailers.

-w n ––width=n Change the default 72-character page width to n characters
wide. The -s option overrides this setting.

66  Chapter 3  ■  Managing Files, Directories, and Text

Listing 3.24:  Using the pr command to display two files

$ pr -mtl 15 numbers.txt random.txt
42 42
2A Flat Land
52 Schrodinger's Cat
0010 1010 0010 1010
* 0000 0010
$

If you want to display two files side by side and you do not care how
sloppy the output is, you can use the paste command. Just like school
paste, it will glue them together but not necessarily be pretty.

When a text file is larger than your output screen, if you use commands such as cat and
pr, text may scroll off the screen. This can be annoying. Fortunately, there are several util-
ities that allow you to read portions of a text file, which are covered next.

Reading Text File Portions
If you just want to read a single file line or a small portion of a file, it makes no sense to use
the cat command. This is especially true if you are dealing with a large text file.

The grep utility can help you find a file line (or lines) that contain certain text strings.
While this utility, covered in more detail later, is primarily used to search for text patterns
within a file, it is also very useful in searching for a single string. The basic syntax for the
grep command is as follows:

grep [OPTIONS] PATTERN [FILE...]

When searching for a particular text string, you use the string for PATTERN in the
command’s syntax and the file you are searching as FILE. Listing 3.25 shows an example
of using the grep command.

Listing 3.25:  Using the grep command to find a file line

$ grep christine /etc/passwd
$
$ grep -i christine /etc/passwd
Christine:x:1001:1001::/home/Christine:/bin/bash
$

Be aware that the grep utility pays attention to case. If the string you enter does not
match a string exactly (including case) within the file, the grep command will return
nothing, as happened for the first command in Listing 3.25. If you employ the -i (or
--ignore-case) switch, grep will search for any instance of the string disregarding case,
as shown in Listing 3.25’s second command.

Reading Files  67

Another handy tool for displaying portions of a text file is the head utility. The head
command’s syntax is as follows:

head [OPTION]... [FILE]...

By default, the head command displays the first 10 lines of a text file. An example is
shown in Listing 3.26.

Listing 3.26:  Employing the head command

$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
$

A good command option to try allows you to override the default behavior of only
displaying a file’s first 10 lines. The switch to use is either -n (or ––lines=), followed by
an argument. The argument determines the number of file lines to display, as shown in
Listing 3.27.

Listing 3.27:  Using the head command to display fewer lines

$ head -n 2 /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
$
$ head -2 /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
$

Notice in Listing 3.27 that the -n 2 switch and argument used with the head command
display only the file’s first two lines. However, the second command eliminates the n portion
of the switch, and the command behaves just the same as the first command.

You can also eliminate the file’s bottom lines by using a negative argument with the -n
(or ––lines=) switch. This is demonstrated in Listing 3.28.

68  Chapter 3  ■  Managing Files, Directories, and Text

Listing 3.28:  Using the head command to not display bottom lines

$ head -n -40 /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
$
$ head ––40 /etc/passwd
head: unrecognized option '––40'
Try 'head ––help' for more information.
$

Notice in Listing 3.28 that the -n switch’s argument is negative this time (-40). This tells
the head command to display all the file’s lines except the last 40 lines. If you try to use a
negative argument without using the -n switch, as you can do with a positive argument,
you’ll get an error message, as shown in Listing 3.28.

If you want to display the file’s last lines instead of its first lines, employ the tail utility.
Its general syntax is similar to the head command’s syntax:

tail [OPTION]... [FILE]...

By default, the tail command will show a file’s last 10 text lines. However, you can over-
ride that behavior by using the -n (or ––lines=) switch with an argument. The argument
tells tail how many lines from the file’s bottom to display. If you add a plus sign (+) in
front of the argument, the tail utility will start displaying the file’s text lines starting at
the designated line number to the file’s end. There are three examples of using tail in these
ways shown in Listing 3.29.

Listing 3.29:  Employing the tail command

$ tail /etc/passwd
saslauth:x:992:76:Saslauthd user:/run/saslauthd:/sbin/nologin
pulse:x:171:171:PulseAudio System Daemon:/var/run/pulse:/sbin/nologin
gdm:x:42:42::/var/lib/gdm:/sbin/nologin
setroubleshoot:x:991:985::/var/lib/setroubleshoot:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
sssd:x:990:984:User for sssd:/:/sbin/nologin
gnome-initial-setup:x:989:983::/run/gnome-initial-setup/:/sbin/nologin
tcpdump:x:72:72::/:/sbin/nologin
avahi:x:70:70:Avahi mDNS/DNS-SD Stack:/var/run/avahi-daemon:/sbin/nologin
$
$ tail -n 2 /etc/passwd
tcpdump:x:72:72::/:/sbin/nologin

Reading Files  69

avahi:x:70:70:Avahi mDNS/DNS-SD Stack:/var/run/avahi-daemon:/sbin/nologin
$
$ tail -n +42 /etc/passwd
gnome-initial-setup:x:989:983::/run/gnome-initial-setup/:/sbin/nologin
tcpdump:x:72:72::/:/sbin/nologin
avahi:x:70:70:Avahi mDNS/DNS-SD Stack:/var/run/avahi-daemon:/sbin/nologin
$

One of the most useful tail utility features is its ability to watch log files. Log files typ-
ically have new messages appended to the file’s bottom. Watching new messages as they are
added is handy. Use the -f (or ––follow) switch on the tail command and provide the
log filename to watch as the command’s argument. You will see a few recent log file entries
immediately. As you keep watching, additional messages will display as they are being added
to the log file.

Some log files have been replaced on various Linux distributions, and
now the messages are kept in a journal file managed by journald. To
watch messages being added to the journal file, use the journalctl ––
follow command.

To end your monitoring session using tail, you must use the Control+C key
combination. An example of watching a log file using the tail utility is shown snipped in
Listing 3.30.

Listing 3.30:  Watching a log file with the tail command

$ sudo tail -f /var/log/auth.log
[sudo] password for Christine:
Aug 27 10:15:14 Ubuntu1804 sshd[15662]: Accepted password [...]
Aug 27 10:15:14 Ubuntu1804 sshd[15662]: pam_unix(sshd:sess[...]
Aug 27 10:15:14 Ubuntu1804 systemd-logind[588]: New sessio[...]
Aug 27 10:15:50 Ubuntu1804 sudo: Christine : TTY=pts/1 ; P[...]
Aug 27 10:15:50 Ubuntu1804 sudo: pam_unix(sudo:session): s[...]
Aug 27 10:16:21 Ubuntu1804 login[10703]: pam_unix(login:se[...]
Aug 27 10:16:21 Ubuntu1804 systemd-logind[588]: Removed se[...]
^C
$

If you are following along on your own system with the commands in
your book, your Linux distribution may not have the /var/log/auth.log
file. Try the /var/log/secure file instead.

70  Chapter 3  ■  Managing Files, Directories, and Text

Reading Text File Pages
One way to read through a large file’s text is by using a pager. A pager utility allows you to
view one text page at a time and move through the text at your own pace. The two com-
monly used pagers are the more and less utilities.

Though rather simple, the more utility is a nice little pager utility. You can move for-
ward through a text file by pressing the spacebar (one page down) or the Enter key (one line
down). However, you cannot move backward through a file. An example of using the more
command is shown in Figure 3.4.

The output displayed in Figure 3.4 was reached by issuing the command more /etc/
nsswitch.conf at the command line. Notice that the more pager utility displays at the
screen’s bottom how far along you are in the file. At any time you wish to exit from the more
pager, you must press the q key. This is true even if you have reached the file’s last line.

A more flexible pager is the less utility. While similar to the more utility in that you
can move through a file a page (or line) at a time, this pager utility also allows you to move
backward. Yet the less utility has far more capabilities than just that, which leads to the
famous description of this pager, “less is more.”

Figure 3.5 shows using the less utility on the /etc/nsswitch.conf text file. Notice
that the display does not look that dissimilar from Figure 3.4, but don’t let that fool you.

F IGURE 3 .4   Using the more pager

Finding Information  71

The less page utility allows faster file traversal because it does not read the entire file prior
to displaying the file’s first page. You can also employ the up and down arrow keys to traverse
the file as well as the spacebar to move forward a page and the Esc+V key combination to move
backward a page. You can search for a particular word within the file by pressing the ? key, typing
in the word you want to find, and pressing Enter to search backward. Replace the ? key with the /
key and you can search forward. As with the more pager, you do need to use the q key to exit.

By default, the Linux man page utility uses less as its pager. Learning
the less utility’s commands will allow you to search through various
man pages with ease.

The less utility has amazing capabilities. It would be well worth your time to peruse
the less pager’s man pages and play around using its various file search and traversal com-
mands on a large text file.

Finding Information
There are many ways to find various types of information on your Linux system. These
methods are important to know so that you can make good administrative decisions and/or
solve problems quickly. They will save you time as you perform your administrative tasks, as
well as help you pass the certification exam. In the following sections, we’ll explore several
tools that assist in finding information.

F IGURE 3 .5   Using the less pager

72  Chapter 3  ■  Managing Files, Directories, and Text

Viewing File Information
It’s not uncommon to look through a directory and see files that you’re not familiar with, or
perhaps even forgot why they’re there. Linux has a couple of handy commands that can help
you out with that.

The file command can provide basic information about the file type of a specified file,
as shown in Listing 3.31.

Listing 3.31:  Using the file command

$ file mytest
mytest: Bourne-Again shell script, ASCII text executable
$

The output from the file command shows that Linux recognizes the mytest file as a
shell script file, in ASCII text format, and as an executable file.

If you’d like to see information about when a file was created, modified, or last accessed,
use the stat command, as shown in Listing 3.32.

Listing 3.32:  Using the stat command

$ stat mytest
 File: mytest
 Size: 1016 Blocks: 8 IO Block: 4096 regular file
Device: 805h/2053d Inode: 1054186 Links: 1
Access: (0764/-rwxrw-r--)
Uid: (1000/ rich)
Gid: (1000/ rich)
Access: 2021-11-06 09:18:23.856584608 -0500
Modify: 2021-10-31 11:25:22.048406517 -0500
Change: 2021-10-31 11:25:22.048406517 -0500
 Birth: -
$

As seen in Listing 3.32, the output from the stat command provides basic information
about the file, such as the file’s name, size, inode number, and the physical device it’s stored
on. But it also provides some harder-to-find information, such as the last time the file was
accessed and modified.

Exploring File Differences
A handy command to explore text file differences is the diff command. It allows you to make
comparisons between two files, line by line. The basic syntax for the command is:

diff [OPTION]... FILES

Finding Information  73

With the diff utility you can perform a variety of comparisons. In addition, you can
format the output to make the results easier for viewing. Table 3.7 shows a few commonly
used options.

To simply see if differences exist between two text files, you enter the diff command
with the -q switch followed by the filenames. An example is shown in Listing 3.33. To help
you see the exact file differences, the pr command is employed first to display both files side
by side in a column format.

Listing 3.33:  Quickly comparing files using the diff -q command

$ pr -mtw 35 numbers.txt random.txt
42 42
2A Flat Land
52 Schrodinger's Cat
0010 1010 0010 1010
* 0000 0010
$
$ diff -q numbers.txt random.txt
Files numbers.txt and random.txt differ
$

For just a quick view of differences between files, modify the diff command’s output to
display the files in a column format. Use the -y (or --side-by-side) option along with

TABLE 3 .7   The diff command’s commonly used options

Short Long Description

-e ––ed Create an ed script, which can be used to make the first file
compared the same as the second file compared.

-q ––brief If files are different, issue a simple message expressing this.

-r ––recursive Compare any subdirectories within the original directory tree,
and consecutively compare their contents and the subdirecto-
ries as well (recursive).

-s ––report-
identical-files

If files are the same, issue a simple message expressing this.

-W n ––width n Display a width maximum of n characters for output.

-y ––side-by-side Display output in two columns.

74  Chapter 3  ■  Managing Files, Directories, and Text

the -W (or --width) switch for an easier display to read, as shown in Listing 3.34. The pipe
symbol (|) designates the second file’s lines, which are different from those in the first file.

Listing 3.34:  Using the diff command for quick file differences

$ diff -yW 35 numbers.txt random.txt
42 42
2A | Flat Land
52 | Schrodinger's
0010 1010 0010 1010
* | 0000 0010
$

The diff utility provides more than just differences; it also denotes what needs to be
appended, changed, or deleted to make the first file identical to the second file. To see the
exact differences between the files and any needed modifications, remove the -q switch. An
example is shown in Listing 3.35.

Listing 3.35:  Employing the diff command

$ diff numbers.txt random.txt
2,3c2,3
< 2A
< 52

> Flat Land
> Schrodinger's Cat
5c5
< *

> 0000 0010
$

The diff command’s output can be a little confusing. In Listing 3.35, the first output line
displays 2,3c2,3. This output tells you that to make the first file, numbers.txt, just like
the second file, random.txt, you will need to change the numbers.txt file’s lines 2 through
3 to match the random.txt file’s lines 2 through 3. The output’s next six lines show each
file’s text content that does not match, separated by a dashed line. Next, the 5c5 designates
that line 5 in numbers.txt needs to be changed to match line 5 in the random.txt file.

The diff command is rather powerful. Not only can it tell you the differ-
ences between text file lines, but it can also create a script for you to use.
The script allows you to modify the first compared text file and turn it into
a twin of the second text file. This function is demonstrated in the next
chapter.

Finding Information  75

The letter c in the diff utility’s output denotes that changes are needed. You may also
see an a for any needed additions or d for any needed deletions.

Using Simple Pinpoint Commands
Commands that quickly locate (pinpoint) files are very useful. They allow you to determine
if a particular utility is installed on your system, locate a needed configuration file, find help-
ful documentation, and so on. The beauty of the commands covered here is that they are
simple to use.

The which command shows you the full path name of a shell command passed as an
argument. Listing 3.36 shows examples of using this utility.

Listing 3.36:  Using the which command

$ which diff
/usr/bin/diff
$
$ which shutdown
/usr/sbin/shutdown
$
$ which line
/usr/bin/which: no line in (/usr/local/bin:/usr/bin:/usr/local/sbin:
/usr/sbin:/home/Christine/.local/bin:/home/Christine/bin)
$
$ echo $PATH
/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:
/home/Christine/.local/bin:/home/Christine/bin
$

In the first example in Listing 3.36, the which command is used to find the diff com-
mand’s program location. The command displays the full path name of /usr/bin/diff.
The shutdown utility is located in a sbin directory. However, the line program is not
installed on this system, and the which utility displays all the directories it searched to find
the program. It uses the PATH environment variable, whose contents are also displayed in
Listing 3.36, to determine which directories to search.

Environment variables are configuration settings that modify your pro-
cess’s environment. When you type in a command (program) name,
the PATH variable sets the directories Linux will search for the program
binary. It is also used by other commands, such as the which utility. Note
that directory names are separated by a colon (:) in the PATH list.

The which command is also handy for quickly determining if a command is using an
alias. Listing 3.37 shows an example of this.

76  Chapter 3  ■  Managing Files, Directories, and Text

Listing 3.37:  Using the which command to see a command alias

$ which ls
alias ls='ls ––color=auto'
 /usr/bin/ls
$
$ unalias ls
$
$ which ls
/usr/bin/ls
$

When the which utility is used on the ls command in Listing 3.37, it shows that cur-
rently the ls command has an alias. Thus, when you type ls, it is as if you have typed in the
ls ––color=auto command. After employing the unalias command on ls, the which
utility only shows the ls program’s location.

Another simple pinpoint command is the whereis utility. This utility allows you to not
only locate any command’s program binaries but also locate source code files as well as any
man pages. Examples of using the whereis utility are shown in Listing 3.38.

Listing 3.38:  Employing the whereis command

$ whereis diff
diff: /usr/bin/diff /usr/share/man/man1/diff.1.gz
/usr/share/man/man1p/diff.1p.gz
$
$ whereis line
line:
$

The first command issued in Listing 3.38 searches for program binaries, source code files,
and man pages for the diff utility. In this case, the whereis command finds a binary file as
well as two man page files. However, when whereis is used to locate files for the fictitious
line utility, nothing is found on the system.

A handy and simple utility to use in finding files is the locate program. This utility
searches a database, mlocate.db, which is located in the /var/lib/mlocate/ directory,
to determine if a particular file exists on the local system. The basic syntax for the locate
command is as follows:

locate [OPTION]... PATTERN...

Notice in the syntax that the locate utility uses a pattern list to find files. Thus, you can
employ partial filenames and regular expressions and, with the command options, ignore
case. Table 3.8 shows a few commonly used locate command options.

Finding Information  77

To find a file with the locate command, just enter locate followed by the filename. If
the file is on your system and you have permission to view it, the locate utility will display
the file’s directory path and name. An example of this is shown in Listing 3.39.

Listing 3.39:  Using the locate command to find a file

$ locate Project42.txt
/home/Christine/Answers/Project42.txt
$

Using the locate command PATTERN can be a little tricky, due to default pattern file
globbing. File globbing occurs when you use wildcards, such as an asterisk (*) or a question
mark (?), added to a filename argument in a command, and the filename is expanded into
multiple names. For example, passw*d could be expanded into the filename password
or passwrd.

If you don’t enter any wildcards into your pattern, the locate command, by default,
adds wildcards to the pattern. So if you enter the pattern, passwd, it is automatically turned
into *passwd*. Thus, if you just want to search for the base name passwd, with no file

TABLE 3 .8   The locate command’s commonly used options

Short Long Description

-A ––all Display filenames that match all the patterns, instead of displaying
files that match only one pattern in the pattern list.

-b ––basename Display only file names that match the pattern and do not include any
directory names that match the pattern.

-c ––count Display only the number of files whose name matches the pattern
instead of displaying file names.

-i ––ignore-
case

Ignore case in the pattern for matching filenames.

-q ––quiet Do not display any error messages, such as permission denied,
when processing.

-r ––regexp R Use the regular expression, R, instead of the pattern list to match
filenames.

-w ––wholename Display filenames that match the pattern and include any directory
names that match the pattern. This is default behavior.

78  Chapter 3  ■  Managing Files, Directories, and Text

globbing, you must add quotation marks (single or double) around the pattern and precede
the pattern with the \ character. A few examples of this are shown in Listing 3.40.

Listing 3.40:  Using the locate command with no file globbing

$ locate -b passwd
/etc/passwd
/etc/passwd-
/etc/pam.d/passwd
/etc/security/opasswd
/usr/bin/gpasswd
[...]
/usr/share/vim/vim74/syntax/passwd.vim
$
$ locate -b '\passwd'
/etc/passwd
/etc/pam.d/passwd
/usr/bin/passwd
/usr/share/bash-completion/completions/passwd
$

The first example in Listing 3.40 shows what would happen if you allow the default
file globbing to occur. Many more files are displayed than those named passwd. So
many files are displayed that the listing had to be snipped to fit. However, in the second
example, file globbing is turned off with the use of quotation marks and the \ character.
Using this pattern with the locate utility provides the desired results of displaying files
named passwd.

If you do not have permission to view a directory’s contents, the locate
command cannot show files that match your PATTERN, which are located
in that directory. Thus, you may have some files missing from your
display.

Keep in mind that the locate command’s PATTERN is really a pattern list. So, you can
add additional patterns. Just be sure to separate them with a space, as shown in Listing 3.41.

Listing 3.41:  Using the locate command with a pattern list

$ locate -b '\passwd' '\group'
/etc/group
/etc/passwd
/etc/iproute2/group
/etc/pam.d/passwd

Finding Information  79

/usr/bin/passwd
/usr/share/X11/xkb/symbols/group
/usr/share/bash-completion/completions/passwd
$

Another problem you can run into deals with newly created or downloaded files. The
locate utility is really searching the mlocate.db database as opposed to searching the
virtual directory structure. This database is typically updated only one time per day via a
cron job. Therefore, if the file is newly created, locate won’t find it.

The mlocate.db database is updated via the updatedb utility. You can run it manually
using super user privileges if you need to find a newly created or downloaded file. Be aware
that it may take a while to run.

Using Intricate Pinpoint Commands
While using simple commands to locate files is useful, they don’t work in situations where
you need to find files based on things such as metadata. Thankfully, there are more complex
commands that can help.

The find command is flexible. It allows you to locate files based on data, such as who
owns the file, when the file was last modified, permission set on the file, and so on. The basic
command syntax is:

find [PATH...] [OPTION] [EXPRESSION]

The PATH argument is a starting point directory, because you designate a starting point in
a directory tree and find will search through that directory and all its subdirectories (recur-
sively) for the file or files you seek. You can use a single period (.) to designate your present
working directory as the starting point directory.

There are also options for the find command itself that handle such
items as following or not following links and debugging. In addition,
you can have a file deleted or a command executed if a particular file is
located. See the find utility’s man page for more information on these
features.

The EXPRESSION command argument and its preceding OPTION control what
type of metadata filters are applied to the search as well as any settings that may
limit the search. Table 3.9 shows the more commonly used OPTION and EXPRESSION
combinations.

The find utility has many features. Examples help clarify the use of this command. List-
ing 3.42 provides a few.

80  Chapter 3  ■  Managing Files, Directories, and Text

Listing 3.42:  Employing the find command

$ find . -name "*.txt"
./Project47.txt
./Answers/Project42.txt

TABLE 3 .9   The find command’s commonly used options and expressions

Option Expression Description

-cmin n Display names of files whose status changed n minutes ago.

-empty N/A Display names of files that are empty and are a regular text file
or a directory.

-gid n Display names of files whose group id is equal to n.

-group name Display names of files whose group is name.

-inum n Display names of files whose inode number is equal to n.

-maxdepth n When searching for files, traverse down into the starting point
directory’s tree only n levels.

-mmin n Display names of files whose data changed n minutes ago.

-name pattern Display names of files whose name matches pattern. Many
regular expression arguments may be used in the pattern
and need to be enclosed in quotation marks to avoid unpre-
dictable results. Replace -name with -iname to ignore case.

-nogroup N/A Display names of files where no group name exists for the
file’s group ID.

-nouser N/A Display names of files where no username exists for the file’s
user ID.

-perm mode Display names of files whose permissions matches mode.
Either octal or symbolic modes may be used.

-size n Display names of files whose size matches n. Suffixes can be
used to make the size more human readable, such as G for
gigabytes.

-user name Display names of files whose owner is name.

Finding Information  81

./Answers/Everything/numbers.txt

./Answers/Everything/random.txt

./Answers/Project43.txt

./Answers/Project44.txt

./Answers/Project45.txt

./Answers/Project46.txt

./SpaceOpera/OriginalSFile.txt

./SpaceOpera/SoftLinkFile.txt
$
$ find . -maxdepth 2 -name "*.txt"
./Project47.txt
./Answers/Project42.txt
./Answers/Project43.txt
./Answers/Project44.txt
./Answers/Project45.txt
./Answers/Project46.txt
./SpaceOpera/OriginalSFile.txt
./SpaceOpera/SoftLinkFile.txt
$

The first example in Listing 3.42 is looking for files in the present working directory’s tree
with a txt file extension. Notice that the -name option’s pattern uses quotation marks to
avoid unpredictable results. In the second example, a -maxdepth option is added so that
the find utility searches only two directories: the current directory and one subdirectory
level down.

The find command is handy for auditing your system on a regular basis as well as when
you are concerned that your server has been hacked. The -perm option is useful for one of
these audit types, and an example is shown in Listing 3.43.

Listing 3.43:  Using the find command to audit a server

$ find /usr/bin -perm /4000
/usr/bin/newgrp
/usr/bin/chsh
/usr/bin/arping
/usr/bin/gpasswd
/usr/bin/chfn
/usr/bin/traceroute6.iputils
/usr/bin/pkexec
/usr/bin/passwd
/usr/bin/sudo
$

82  Chapter 3  ■  Managing Files, Directories, and Text

In Listing 3.43, the /usr/bin directory is being audited for the potentially dangerous SUID
permission by using the find utility and its -perm option. The expression used is /4000, which
will ask the find utility to search for SUID settings (octal code 4) and, due to the forward slash
(/) in front of the number, ignore the other file permissions (octal codes 000). The resulting file-
names all legitimately use SUID, and thus, nothing suspicious is going on here.

On older Linux systems, to enact a search as shown in Listing 3.41, you
would enter +4000 to designate the permission. The plus sign (+) is now
deprecated for this use and has been replaced by the forward slash (/)
symbol for the find command.

Earlier in this chapter we briefly covered the grep command for the purpose of reading a
portion of a text file. You can also use this clever utility to search for files on your system.

Suppose it has been a while since you last modified your /etc/nsswitch.conf configura-
tion file. A problem arises that requires you to make a change to the hosts: setting within the
file and you can’t remember its exact name. Instead of digging around using the ls command,
just employ the grep command as shown in Listing 3.44 and quickly find the file’s name.

Listing 3.44:  Using the grep command to find a file

$ sudo grep -d skip hosts: /etc/*
/etc/nsswitch.conf:hosts: files [...]
$

In Listing 3.44, the grep command is used to search all the files within the /etc/ directory
for the hosts: setting. The -d skip option is used to skip any directory files in order to
eliminate messages concerning them. The grep utility displays the configuration filename, fol-
lowed by a colon (:) and the file’s line where the setting is located. If you are not sure where
in the /etc/ directory tree the configuration file is placed, you can tack on the -R (or -r, or
––recursive) option to recursively search through the specified directory tree. If you don’t
have permission to search through various files, the grep command will issue annoying error
messages. You’ll learn in the next chapter how to redirect those error messages.

Quickly finding files as well as various types of information on your Linux server can help
you be a more effective and efficient system administrator. It is a worthwhile investment to
try any of this section’s commands or their options that are new to you.

Summary
Being able to effectively and swiftly use the right commands at the shell command line
is important for your daily job. It allows you to solve problems, manage files, gather
information, peruse text files, and so on.

This chapter’s purpose was to improve your Linux command-line tool belt. Not only will
this help you in your day-to-day work life, but it will also help you successfully pass the
CompTIA Linux+ certification exam.

Exam Essentials  83

Exam Essentials
Explain basic commands for handling files and directories.  Typical basic file and directory
management activities include viewing and creating files, copying and moving files, and
deleting files. For viewing and creating files and directories, use the ls, touch, and mkdir
commands. When needing to duplicate, rename, or move files, employ one of the mv, cp, or
rsync commands. For local large file copies, the rsync utility is typically the fastest. You
can quickly delete an empty directory using the rmdir utility, but for directories full of files,
you will need to use the rm -r command. Also, if you need to ensure that you are removing
the correct files, be sure to use the -i option on the rm utility.

Describe both structures and commands involved in linking files.  Linking files is easy to do
with the ln command. However, it is important for you to describe the underlying link struc-
ture. Hard-linked files share the same inode number, whereas soft-linked files do not. Soft or
symbolic links can be broken if the file they link to is removed. It is also useful to understand
the readlink utility to help you explore files that have multiple links.

Summarize the various utilities that can be employed to read text files.  To read entire text
files, you can use the cat, bat, and pr utilities. Each utility has its own special features. If
you need to read only the first or last lines of a text file, employ either the head or tail
command. For a single text line out of a file, the grep utility is useful. For reviewing a file a
page at a time, you can use either the less or the more pager utility.

Describe how to find information on your Linux system.  To determine two text files’ dif-
ferences, the diff utility is helpful. With this utility, you can also employ redirection and
modify the files to make them identical. When you need to quickly find files on your system
and want to use simple tools, the which, whereis, and locate commands will serve you
well. Keep in mind that the locate utility uses a database that is typically updated only one
time per day, so you may need to manually update it via the updatedb command. When
simple file location tools are not enough, there are more complex searching utilities, such as
find and grep. The grep command can employ regular expressions to assist in your search.

84  Chapter 3  ■  Managing Files, Directories, and Text

Review Questions
1.	 You are looking at a directory that you have not viewed in a long time and need to determine

which files are actually directories. Which command is the best one to use?

A.	 mkdir -v
B.	 ls
C.	 ls -F
D.	 ls -i
E.	 ll

2.	 You are using the ls command to look at a directory file’s metadata but keep seeing meta-
data for the files within it instead. What command option will rectify this situation?

A.	 -a
B.	 -d
C.	 -F
D.	 -l
E.	 -R

3.	 You have just created an empty directory called MyDir. Which command did you most
likely use?

A.	 mkdir -v MyDir
B.	 touch MyDir
C.	 cp -R TheDir MyDir
D.	 mv -r TheDir MyDir
E.	 rmdir MyDir

4.	 You have a file that is over 10 GB in size, and it needs to be backed up to a locally attached
drive. What is the best utility to use in this situation?

A.	 readlink -f
B.	 mv
C.	 cp
D.	 scp
E.	 rsync

Review Questions  85

5.	 A long-time server administrator has left the company, and now you are in charge of her
system. Her old user account directory tree, /home/Zoe/, has been backed up. Which
command is the best one to use to quickly remove her files and still indicate that you are
removing the correct directory, but without forcing you to confirm every file deletion?

A.	 cp -R /home/Zoe/ /dev/null/
B.	 mv -R /home/zoe/ /dev/null/
C.	 rm -Rf /home/Zoe/
D.	 rm -ri /home/Zoe/
E.	 rm -rI /home/Zoe

6.	 There is a large directory structure that needs to be renamed. What mv command options
should you consider employing? (Choose all that apply.)

A.	 -f
B.	 -i
C.	 -n
D.	 -r
E.	 -v

7.	 You are trying to decide whether to use a hard link or a symbolic link for a data file. The file
is 5 GB, has mission-critical data, and is accessed via the command line by three other people.
What should you do?

A.	 Create a hard link so that the file can reside on a different filesystem for data protection.

B.	 Create three hard links and provide the links to the three other people for data protec-
tion.

C.	 Create three symbolic links and protect the links from the three other people for data
protection.

D.	 Create a symbolic link so that the file can reside on a different filesystem.

E.	 Create a symbolic link so that the links can share an inode number.

8.	 A short text-based control file is no longer working properly with the program that reads
it. You suspect the file was accidentally corrupted by a control code update you performed
recently, even though the file’s control codes are all correct. Which command should you use
next on the file in your problem investigation?

A.	 cat -v
B.	 cat -z
C.	 cat -n
D.	 cat -s
E.	 cat -E

86  Chapter 3  ■  Managing Files, Directories, and Text

9.	 You have two short text files that have maximum record lengths of 15 characters. You want
to review these files side by side. Which of the following commands would be the best to use?

A.	 pr -m
B.	 pr -tl 20
C.	 cat
D.	 pr -mtl 20
E.	 pr -ml 20

10.	 You have a lengthy file named FileA.txt. What will the head -15 FileA.txt
command do?

A.	 Display all but the last 15 lines of the file.

B.	 Display all but the first 15 lines of the file.

C.	 Display the first 15 lines of the file.

D.	 Display the last 15 lines of the file.

E.	 Generate an error message.

11.	 You have issued the command grep Hal on a text file you generated using information
from a failed login attempts file. It returns nothing, but you just performed a test case by pur-
posely failing to log into the Hal account prior to generating the text file. Which of the fol-
lowing is the best choice as your next step?

A.	 Employ the tail command to peruse the text file.

B.	 Employ the cat command to view the text file.

C.	 Delete the text file and regenerate it using information from the failed login attempts file.

D.	 Issue the grep -d skip Hal command on the text file.

E.	 Issue the grep -i Hal command on the text file.

12.	 You are trying to peruse a rather large text file. A coworker suggests you use a pager. Which
of the following best describes what your coworker is recommending?

A.	 Use a utility that allows you to view the first few lines of the file.

B.	 Use a utility that allows you to view one text page at time.

C.	 Use a utility that allows you to search through the file.

D.	 Use a utility that allows you to filter out text in the file.

E.	 Use a utility that allows you to view the last few lines of the file.

13.	 Which of the following does not describe the less utility?

A.	 It does not read the entire file prior to displaying the file’s first page.

B.	 You can use the up and down arrow keys to move through the file.

C.	 You press the spacebar to move forward a page.

D.	 You can use the Esc+V key combination to move backward a page.

E.	 You can press the X key to exit from the utility.

Review Questions  87

14.	 Which diff option is the best option to allow you to quickly determine if two text files are
different from one another?

A.	 -e
B.	 -q
C.	 -s
D.	 -W
E.	 -y

15.	 You are working on a Linux server at the command line, and you try to issue a diff command
and receive a response stating that the command was not found. What is the next best step to
take in order to start the troubleshooting process?

A.	 Hit your up arrow key and press Enter.

B.	 Log out, log back in, and retry the command.

C.	 Enter the which diff command.

D.	 Enter the whereis diff command.

E.	 Reboot the server and retry the command.

16.	 You are trying to find a file on your Linux server whose name is conf. Employing the
locate conf command for your search shows many directories that contain the letters
conf. What is the best description for why this is happening?

A.	 The locate utility searches for only for directory names.

B.	 You did not employ the -d skip switch.

C.	 It is most likely because the locate database is corrupted.

D.	 You did not employ the appropriate regular expression.

E.	 It is due to file globbing on the pattern name.

17.	 You downloaded a large important file, fortytwo.db, from your company’s local website
to your Linux server but got interrupted by an emergency. Now you cannot remember where
you stored the file. What is the best first step to fixing this problem?

A.	 Issue the sudo updatedb command.

B.	 Issue the locate -b fortytwo.db command.

C.	 Issue the locate -b 'fortytwo.db' command.

D.	 Download the file from the company’s local website again.

E.	 Issue the locate fortytwo.db command.

88  Chapter 3  ■  Managing Files, Directories, and Text

18.	 You want to search for a particular file, main.conf, using the find utility. This file most
likely is located somewhere in the /etc/ directory tree. Which of the following commands is
the best one to use in this situation?

A.	 find -r /etc -name main.conf
B.	 find / -name main.conf
C.	 find /etc -maxdepth -name main.conf
D.	 find /etc -name main.conf
E.	 find main.conf /etc

19.	 Yesterday a coworker, Michael, was fired for nefarious behavior. His account and home
directory were immediately deleted. You need to audit the server to see if he left any files out
in the virtual directory system. Which of the following commands is the best one to use in
this situation?

A.	 find / -name Michael
B.	 find / -user Michael
C.	 find / -mmin 1440
D.	 find ~ -user Michael
E.	 find / -nouser

20.	 You need to figure out what configuration file(s) hold a hostname directive. Which of the
following commands is the best one to use?

A.	 which
B.	 whereis
C.	 grep
D.	 locate
E.	 find

Searching and
Analyzing Text

✓✓ Objective 1.2: Given a scenario, manage files and directories

✓✓ Objective 3.1: Given a scenario, create simple shell scripts
to automate common tasks

Chapter

4

Managing a Linux server involves many important steps and
decisions based on data. Trying to gather the information
you need in an agile and efficient manner is crucial. There

are many Linux structures and tools that can help you uncover the knowledge you
seek quickly.

In this chapter, we’ll add more items to your Linux command-line tool belt. We’ll cover
filtering and formatting text and the basics of redirection, all the way to editing text. Com-
mands and concepts in this chapter will be built upon and used in later chapters.

Processing Text Files
Once you have found or created a text file, you may need to process it in some way to
extract needed information. Understanding how to filter and format text will assist you in
this endeavor. In the following sections, we’ll take a look at tools and methods that will aid
you in processing text files.

Filtering Text
To sift through the data in a large text file, it helps to quickly extract small data sections. The
cut utility is a handy tool for doing this. It will allow you to view particular fields within a
file’s records. The command’s basic syntax is as follows:

cut OPTION... [FILE]...

Before we delve into using this command, here are a few basics you should understand
about the cut command:

Text File Records  A text file record is a single file line that ends in a newline line-
feed, which is the ASCII character LF. You can see if your text file uses this end-of-line
character via the cat -E command. It will display every newline linefeed as a $. If your
text file records end in the ASCII character NUL, you can also use cut on them, but you
must use the -z option.

Text File Record Delimiter  For some of the cut command options to be properly used,
fields must exist within each text file record. These fields are not database-style fields but
instead data that is separated by some delimiter. A delimiter is one or more characters
that create a boundary between different data items within a record. A single space can

Processing Text Files  91

be a delimiter. The password file, /etc/passwd, uses colons (:) to separate data items
within a record.

Text File Changes  Contrary to its name, the cut command does not change any data
within the text file. It simply copies the data you wish to view and displays it to you.
Rest assured that no modifications are made to the file.

The cut utility has a few options you will use on a regular basis. These options are listed
in Table 4.1.

A few cut commands in action will help demonstrate its capabilities. Listing 4.1 shows a
few cut utility examples.

Listing 4.1:  Employing the cut command

$ head -2 /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
$
$ cut -d ":" -f 1,7 /etc/passwd
root:/bin/bash
bin:/sbin/nologin
[...]
$

TABLE 4 .1   The cut command’s commonly used options

Short Long Description

-c nlist --characters nlist Display only the record characters in the nlist
(e.g., 1-5).

-b blist --bytes blist Display only the record bytes in the blist (e.g., 1-2).

-d d --delimiter d Designate the record’s field delimiter as d. This over-
rides the Tab default delimiter. Put d within quotation
marks to avoid unexpected results.

-f flist --fields flist Display only the record’s fields denoted by flist
(e.g., 1,3).

-s --only-delimited Display only records that contain the designated
delimiter.

-z --zero-terminated Designate the record end-of-line character as the
ASCII character NUL.

92  Chapter 4  ■  Searching and Analyzing Text

$ cut -c 1-5 /etc/passwd
root:
bin:x
[...]
$

In Listing 4.1, the head command is used to display the password file’s first two lines.
This text file employs colons (:) to delimit the fields within each record. The first use of the
cut command designates the colon delimiter using the -d option. Notice that the colon is
encased in quotation marks to avoid unexpected results. The -f option is used to specify
that only fields 1 (username) and 7 (shell) should be displayed.

The second example in Listing 4.1 uses the -c option. In this case, the nlist argument is
set to 1-5, so every record’s first five characters are displayed.

Occasionally it is worthwhile to save a cut command’s output. You can do
this by redirecting standard output, which is covered later in this chapter.

Another nice tool for filtering text is our old friend the grep command. The grep
command is powerful in its use of regular expressions, which will really help with filtering
text files. But before we cover those, peruse Table 4.2 for commonly used grep utility options.

TABLE 4 .2   The grep command’s commonly used options

Short Long Description

-c --count Display a count of text file records that contain a
PATTERN match.

-d action --directories=action When a file is a directory, if action is set to
read, read the directory as if it were a regular text
file; if action is set to skip, ignore the directory;
and if action is set to recurse, act as if the
- R, -r, or --recursive option was used.

-E --extended-regexp Designate the PATTERN as an extended regular
expression.

-i --ignore-case Ignore the case in the PATTERN as well as in any
text file records.

-R, -r --recursive Search a directory’s contents, and for any subdi-
rectory within the original directory tree, consec-
utively search its contents as well (recursively).

-v --invert-match Display only text files records that do not contain
a PATTERN match.

Processing Text Files  93

Many commands use regular expressions. A regular expression is a pattern template you
define for a utility, such as grep, which uses the pattern to filter text. Basic regular expres-
sions (BREs) include characters, such as a dot followed by an asterisk (.*), to represent mul-
tiple characters and a single dot (.) to represent one character. They also may use brackets to
represent multiple characters, such as [a,e,i,o,u], or a range of characters, such as [A-z].
To find text file records that begin with particular characters, you can precede them with a
caret (^) symbol. For finding text file records where particular characters are at the record’s
end, append a dollar sign ($) symbol to them.

You will see in documentation and technical descriptions different names
for regular expressions. The name may be shortened to regex or regexp.

Using a BRE pattern is fairly straightforward with the grep utility. Listing 4.2 shows
some examples.

Listing 4.2:  Using the grep command with a BRE pattern

$ grep daemon.*nologin /etc/passwd
daemon:x:2:2:daemon:/sbin:/sbin/nologin
[...]
daemon:/dev/null:/sbin/nologin
[...]
$
$ grep root /etc/passwd
root:x:0:0:root:/root:/bin/bash
operator:x:11:0:operator:/root:/sbin/nologin
$
$ grep ^root /etc/passwd
root:x:0:0:root:/root:/bin/bash
$

In the first snipped grep example within Listing 4.2, the grep command employs a
pattern using the BRE .* characters. In this case, the grep utility will search the password
file for any instances of the word daemon within a record and display that record if it also
contains the word nologin after the word daemon.

The next two grep examples in Listing 4.2 are searching for instances of the word root
within the password file. Notice that the first command displays two lines from the file. The
second command employs the BRE ^ character and places it before the word root. This regular
expression pattern causes grep to display only lines in the password file that begin with root.

The -v option is useful when auditing your configuration files with the grep utility. It
produces a list of text file records that do not contain the pattern. Listing 4.3 shows an
example of finding all the records in the password file that do not end in nologin. Notice
that the BRE pattern puts the $ at the end of the word. If you were to place the $ before the
word, it would be treated as a variable name instead of a BRE pattern.

94  Chapter 4  ■  Searching and Analyzing Text

Listing 4.3:  Using the grep command to audit the password file

$ grep -v nologin$ /etc/passwd
root:x:0:0:root:/root:/bin/bash
sync:x:5:0:sync:/sbin:/bin/sync
[...]
Christine:x:1001:1001::/home/Christine:/bin/bash
$

Extended regular expressions (EREs) allow more complex patterns. For example, a
vertical bar symbol (|) allows you to specify two possible words or character sets to match.
You can also employ parentheses to designate additional subexpressions.

If you would like to get a better handle on regular expressions, there
are several good resources. Our favorite is Chapter 20 in the book
Linux Command Line and Shell Scripting Bible, 4th Edition by Richard
Blum and Christine Bresnahan (Wiley, 2021).

Using ERE patterns can be rather tricky. A few examples employing grep with EREs are
helpful, such as the ones shown in Listing 4.4.

Listing 4.4:  Using the grep command with an ERE pattern

$ grep -E "^root|^dbus" /etc/passwd
root:x:0:0:root:/root:/bin/bash
dbus:x:81:81:System message bus:/:/sbin/nologin
$
$ egrep "(daemon|s).*nologin" /etc/passwd
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
[...]
$

In the first example, the grep command uses the -E option to indicate that the pattern is
an extended regular expression. If you did not employ the -E option, unpredictable results
would occur. Quotation marks around the ERE pattern protect it from misinterpretation.
The command searches for any password file records that start with either the word root
or the word dbus. Thus, a caret (^) is placed prior to each word, and a vertical bar (|) sepa-
rates the words to indicate that the record can start with either word.

In Listing 4.4’s second example, notice that the egrep command is employed. The egrep
command is equivalent to using the grep -E command. The ERE pattern here uses quotation
marks to avoid misinterpretation and employs parentheses to issue a subexpression. The sub-
expression consists of a choice, indicated by the vertical bar (|), between the word daemon and
the letter s. Also in the ERE pattern, the .* symbols are used to indicate there can be anything
in between the subexpression choice and the word nologin in the text file record.

Processing Text Files  95

Take a deep breath. That was a lot to take in. However, as hard as BRE and ERE patterns
are, they are worth using with grep to filter out data from your text files.

Formatting Text
Often to understand the data within text files, you need to reformat file data in some way.
There are a couple of simple utilities you can use to do this.

The sort utility sorts a file’s data. Keep in mind it makes no changes to the original file.
Only the output is sorted. The basic syntax of this command is as follows:

sort [OPTION]... [FILE]...

If you want to order a file’s content using the system’s standard sort order, simply enter
the sort command followed by the name of the file you wish to sort. Listing 4.5 shows an
example of this.

Listing 4.5:  Employing the sort command

$ cat alphabet.txt
Alpha
Tango
Bravo
Echo
Foxtrot
$
$ sort alphabet.txt
Alpha
Bravo
Echo
Foxtrot
Tango
$

If a file contains numbers, the data may not be in the order you desire using the sort utility.
To obtain proper numeric order, add the -n option to the command, as shown in Listing 4.6.

Listing 4.6:  Using the sort -n command

$ cat counts.txt
105
8
37
42
54
$

96  Chapter 4  ■  Searching and Analyzing Text

$ sort counts.txt
105
37
42
54
8
$ sort -n counts.txt
8
37
42
54
105
$

In Listing 4.6, notice that the file has different numbers listed in an unsorted order. The
second example attempts to numerically order the file, using the sort command with
no options. This yields incorrect results. However, the third example uses the sort -n
command, which properly orders the file numerically.

There are several useful options for the sort command. Commonly used switches are
shown in Table 4.3.

TABLE 4 .3   The sort command’s commonly used options

Short Long Description

-c --check Check if file is already sorted. Produces no output if file
is sorted. If file is not sorted, it displays the file name, the
line number, the keyword disorder, and the first unor-
dered line’s text.

-f --ignore-case Consider lowercase characters as uppercase characters
when sorting.

-k n1 [,n2] --key=n1 [,n2] Sort the file using the data in the n1 field. May optionally
specify a second sort field by following n1 with a comma
and specifying n2. Field delimiters are spaces by default.

-M --month-sort Display text in month of the year order. Months must
be listed as standard three-letter abbreviations, such as
JAN, FEB, MAR, and so on.

-n --numeric-sort Display text in numerical order.

-o file --output=file Create a new sorted file named file.

-r --reverse Display text in reverse sort order.

Processing Text Files  97

The sort utility is handy for formatting a small text file to help you understand the data
it contains. Another useful command for formatting small text files is one we’ve already
touched on: the cat command.

The cat command’s original purpose in life was to concatenate files for display. That is
where it gets its name. However, it is typically used to display a single file. Listing 4.7 is an
example of concatenating two files to display their text contents one after the other.

Listing 4.7:  Using the cat command to concatenate files

$ cat numbers.txt random.txt
42
2A
52
0010 1010
*
42
Flat Land
Schrodinger's Cat
0010 1010
0000 0010
$

Both files displayed in Listing 4.7 have the number 42 as their first line. This is the only
way you can tell where one file ends and the other begins, because the cat utility does not
denote a file’s beginning or end in its output.

Unfortunately, often the cat utility’s useful formatting options go unexplored. Table 4.4
has a few commonly used switches.

TABLE 4 .4   The cat command’s commonly used options

Short Long Description

-A --show-all Equivalent to using the option -vET combination.

-E --show-ends Display a $ when a newline linefeed is encountered.

-n --number Number all text file lines and display that number in
the output.

-s --squeeze-blank Do not display repeated blank empty text file lines.

-T --show-tabs Display a ^I when a Tab character is encountered.

-v --show-nonprinting Display nonprinting characters when encountered using
either ^ and/or M- notation.

98  Chapter 4  ■  Searching and Analyzing Text

Being able to display nonprinting characters with the cat command is handy. If a text file
is causing some sort of odd problem when you’re processing it, you can quickly see if any
nonprintable characters are embedded. Listing 4.8 contains an example of this method.

Listing 4.8:  Using the cat command to display nonprintable characters

$ cat bell.txt

$ cat -v bell.txt
^G
$

In Listing 4.8, the first cat command displays the file, and it appears to simply contain a
blank line. However, by employing the -v option, you can see that a nonprintable character
exists within the file. The ^G is in caret notation and indicates that the nonprintable Unicode
character BEL is embedded in the file. This character causes a bell sound when the file is
displayed.

Another handy set of utilities for formatting text are the pr and printf commands. The
pr utility was covered in Chapter 3, “Managing Files, Directories, and Text,” so let’s explore
the printf command. Its entire purpose in life is to format and display text data. It has the
following basic syntax:

printf FORMAT [ARGUMENT]...

The basic idea is that you provide text formatting via FORMAT for the ARGUMENT.
A simple example is shown in Listing 4.9.

Listing 4.9:  Employing the printf command

$ printf "%s\n" "Hello World"
Hello World
$

In Listing 4.9, the printf command uses the %s\n as the formatting description. It is
enclosed within quotation marks to prevent unexpected results. The %s tells printf to print
the string of characters listed in the ARGUMENT, which in this example is Hello World.
The \n portion of the FORMAT tells the printf command to print a newline character after
printing the string. This allows the prompt to display on a new line, instead of at the dis-
played string’s end.

While the pr utility can handle formatting entire text files, the printf
command is geared toward formatting the output of a single text line.
You must incorporate other commands and write a Bash shell script for it
to process a whole text file with it.

The formatting characters for the printf command are not too difficult once you have
reviewed them. A few common ones are listed in Table 4.5.

Processing Text Files  99

In Listing 4.10 the printf command is used to print a floating-point number, which has
three digits after the decimal point. Only two are desired, so the %.2f format is used.

Listing 4.10:  Using the printf command to format a floating-point number

$ printf "%.2f\n" 98.532
98.53
$

Formatting text data can be useful in uncovering information. Be sure to play around
with all these commands to get some worthwhile experience.

Determining Word Count
Besides formatting data, gathering statistics on various text files can also be helpful when
you are managing a server. The easiest and most common utility for determining counts in a
text file is the wc utility. The command’s basic syntax is as follows:

wc [OPTION]... [FILE]...

TABLE 4 .5   The printf command’s commonly used FORMAT settings

FORMAT Description

%c Display the first ARGUMENT character.

%d Display the ARGUMENT as a decimal integer number.

%f Display the ARGUMENT as a floating-point number.

%s Display the ARGUMENT as a character string.

\% Display a percentage sign.

\" Display a double quotation mark.

\\ Display a backslash.

\f Include a form feed character.

\n Include a newline character.

\r Include a carriage return.

\t Include a horizontal tab.

100  Chapter 4  ■  Searching and Analyzing Text

When you issue the wc command with no options and pass it a filename, the utility
will display the file’s number of lines, words, and bytes in that order. Listing 4.11 shows
an example.

Listing 4.11:  Employing the wc command

$ wc random.txt
 5 9 52 random.txt
$
 

There a few useful and commonly used options for the wc command. These are shown in
Table 4.6.

An interesting wc option for troubleshooting configuration files is the -L switch. Gener-
ally speaking, configuration file line length will be under 150 bytes, though there are excep-
tions. Thus, if you have just edited a configuration file and that service is no longer working,
check the file’s longest line length. A longer-than-usual line length indicates you might have
accidentally merged two configuration file lines. An example is shown in Listing 4.12.

Listing 4.12:  Using the wc command to check line length

$ wc -L /etc/nsswitch.conf
72 /etc/nsswitch.conf
$

In Listing 4.12, the file’s line length shows a normal maximum line length of 72 bytes.
This wc command switch can also be useful if you have other utilities that cannot process
text files exceeding certain line lengths.

TABLE 4 .6   The wc command’s commonly used options

Short Long Description

-c --bytes Display the file’s byte count.

-L --max-line-length Display the byte count of the file’s longest line.

-l --lines Display the file’s line count.

-m --chars Display the file’s character count.

-w --words Display the file’s word count.

Redirecting Input and Output  101

Redirecting Input and Output
When processing text and text files to help you to gather data, you may want to save
that data. In addition, you may need to combine multiple refinement steps to obtain the
information you need.

Handling Standard Output
It is important to know that Linux treats every object as a file. This includes the output
process, such as displaying a text file on the screen. Each file object is identified using a file
descriptor, an integer that classifies a process’s open files. The file descriptor that identifies
output from a command or script file is 1. It is also identified by the abbreviation STDOUT,
which describes standard output.

By default, STDOUT directs output to your current terminal. Your process’s current
terminal is represented by the /dev/tty file.

A simple command to use when discussing standard output is the echo command. Issue
the echo command along with a text string, and the text string will display to your process’s
STDOUT, which is typically the terminal screen. An example is shown in Listing 4.13.

Listing 4.13:  Employing the echo command to display text to STDOUT

$ echo "Hello World"
Hello World
$

The neat thing about STDOUT is that you can redirect it via redirection operators on the
command line. A redirection operator allows you to change the default behavior of where
input and output are sent. For STDOUT, you redirect the output using the > redirection
operator, as shown in Listing 4.14.

Listing 4.14:  Employing a STDOUT redirection operator

$ grep nologin$ /etc/passwd
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
[...]
$ grep nologin$ /etc/passwd > NologinAccts.txt
$
$ less NologinAccts.txt
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
[...]
$

102  Chapter 4  ■  Searching and Analyzing Text

In Listing 4.14, the password file is being audited for all accounts that use the /sbin/
nologin shell via the grep command. The grep command’s output is lengthy and was
snipped in the listing. It would be so much easier to redirect STDOUT to a file. This was
done in Listing 4.14 by issuing the same grep command but tacking on a redirection oper-
ator, >, and a filename to the command’s end. The effect was to send the command’s output
to the file NologinAccts.txt instead of the screen. Now the data file can be viewed using
the less utility.

If you use the > redirection operator and send the output to a file that
already exists, that file’s current data will be deleted. Use caution when
employing this operator.

To append data to a preexisting file, you need to use a slightly different redirection oper-
ator. The >> operator will append data to a preexisting file. If the file does not exist, it is
created and the outputted data is added to it. Listing 4.15 shows an example of using this
redirection operator.

Listing 4.15:  Using a STDOUT redirection operator to append text

$ echo "Nov 16, 2019" > AccountAudit.txt
$
$ wc -l /etc/passwd >> AccountAudit.txt
$
$ cat AccountAudit.txt
Nov 16, 2019
44 /etc/passwd
$

The first command in Listing 4.15 puts a date stamp into the AccountAudit.txt file.
Because that date stamp needs to be preserved, the next command appends STDOUT to the
file using the >> redirection operator. The file can continue to be appended to using the >>
operator for future commands.

Redirecting Standard Error
Another handy item to redirect is standard error. The file descriptor that identifies a
command or script file error is 2. It is also identified by the abbreviation STDERR, which
describes standard error. STDERR, like STDOUT, is by default sent to your terminal
(/dev/tty).

The basic redirection operator to send STDERR to a file is the 2> operator. If you need
to append the file, use the 2>> operator. Listing 4.16 shows an example of redirecting stan-
dard error.

Redirecting Input and Output  103

Listing 4.16:  Employing a STDERR redirection operator

$ grep -d skip hosts: /etc/*
grep: /etc/anacrontab: Permission denied
grep: /etc/audisp: Permission denied
[...]
$
$ grep -d skip hosts: /etc/* 2> err.txt
/etc/nsswitch.conf:#hosts: db files nisplus nis dns
/etc/nsswitch.conf:hosts: files dns myhostname
[...]
$
$ cat err.txt
grep: /etc/anacrontab: Permission denied
grep: /etc/audisp: Permission denied
[...]
$

The first command in Listing 4.16 was issued to find any files within the /etc/ directory
that contain the hosts: directive. Unfortunately, since the user does not have super user
privileges, several permission denied error messages are generated. This clutters up the
output and makes it difficult to see what files contain this directive.

To declutter the output, the second command in Listing 4.16 redirects STDERR to the
err.txt file using the 2> redirection operator. This makes it much easier to see what files
contain the hosts: directive. If needed, the error messages can be reviewed because they
reside now in the err.txt file.

Sometimes you want to send standard error and standard output to the
same file. In these cases, use the &> redirection operator to accomplish
the goal.

If you don’t care to keep a copy of the error messages, you can always throw them
away. This is done by redirecting STDERR to the /dev/null file, as shown snipped in
Listing 4.17.

Listing 4.17:  Using an STDERR redirection operator to remove error messages

$ grep -d skip hosts: /etc/* 2> /dev/null
/etc/nsswitch.conf:#hosts: db files nisplus nis dns
/etc/nsswitch.conf:hosts: files dns myhostname
[...]
$

104  Chapter 4  ■  Searching and Analyzing Text

The /dev/null file is sometimes called the black hole. This name comes from the fact
that anything you put into it, you cannot retrieve.

Regulating Standard Input
Standard input, by default, comes into your Linux system via the keyboard or other input
devices. The file descriptor that identifies an input into a command or script file is 0. It is also
identified by the abbreviation STDIN, which describes standard input.

As with STDOUT and STDERR, you can redirect STDIN. The basic redirection operator
is the < symbol. The tr command is one of the few utilities that require you to redirect stan-
dard input. An example is shown in Listing 4.18.

Listing 4.18:  Employing a STDIN redirection operator

$ cat Grades.txt
89 76 100 92 68 84 73
$
$ tr " " "," < Grades.txt
89,76,100,92,68,84,73
$

In Listing 4.18, the file Grades.txt contains various integers separated by a space. The
second command utilizes the tr utility to change those spaces into a comma (,). Because the tr
command requires the STDIN redirection symbol, it is also employed in the second command
followed by the filename. Keep in mind that this command did not change the Grades.txt
file. It only displayed to STDOUT what the file would look like with these changes.

It’s nice to have a concise summary of the redirection operators. Therefore, we have
provided one in Table 4.7.

A practical example of redirecting STDOUT and STDIN involves the diff utility,
covered in Chapter 3. The diff utility allows you to discover any disparities between two
text files and change the differing text file so that the two files are identical. It involves a few
steps. The first ones are shown in Listing 4.19 along with extra explanatory commands.

Listing 4.19:  Using diff with redirection operators

$ pr -mtl 15 numbers.txt random.txt
42 42
2A Flat Land
52 Schrodinger's Cat
0010 1010 0010 1010
* 0000 0010
$
$ cp numbers.txt n.txt
$
$ diff -e n.txt random.txt > switch.sh
$

Redirecting Input and Output  105

In Listing 4.19, the pr utility displays the two files numbers.txt and random.txt
side by side. You can see that differences exist between these two files. A new copy of the
numbers.txt file is created, so any changes are only made to the new file, n.txt, in case
anything goes wrong. The diff command uses the -e switch to create an ed script. This
script will make the n.txt file the same as the random.txt file.

Prior to enacting the created script, a few additional items must be added to it. In List-
ing 4.20, the echo command is used two times to append letters to the script.

Listing 4.20:  Update an ed script via redirection operators

$ echo w >> switch.sh
$ echo q >> switch.sh
$
$ cat switch.sh
5c
0000 0010
.

TABLE 4 .7   Commonly used redirection operators

Operator Description

> Redirect STDOUT to specified file. If file exists, overwrite it. If it does not exist,
create it.

>> Redirect STDOUT to specified file. If file exists, append to it. If it does not exist,
create it.

2> Redirect STDERR to specified file. If file exists, overwrite it. If it does not exist,
create it.

2>> Redirect STDERR to specified file. If file exists, append to it. If it does not exist,
create it.

&> Redirect STDOUT and STDERR to specified file. If file exists, overwrite it. If it
does not exist, create it.

&>> Redirect STDOUT and STDERR to specified file. If file exists, append to it. If it
does not exist, create it.

< Redirect STDIN from specified file into command.

<> Redirect STDIN from specified file into command and redirect STDOUT to spec-
ified file.

106  Chapter 4  ■  Searching and Analyzing Text

2,3c
Flat Land
Schrodinger's Cat
.
w
q
$

In Listing 4.20, the last command displays the ed script, switch.sh, to standard output.
This script will modify the n.txt file, as shown in Listing 4.21.

Listing 4.21:  Modifying a file via an ed script

$ diff -q n.txt random.txt
Files n.txt and random.txt differ
$
$ ed n.txt < switch.sh
21
52
$
$ diff -q n.txt random.txt
$

In Listing 4.21, the diff command does a simple comparison between the two files.
Notice that it sends a message to STDOUT that the files are different. Then the ed utility
is employed. To enact the script created by the diff command in Listing 4.21, the STDIN
redirection operator is used. The last command in Listing 4.21 shows that there are now no
differences between these two files.

Piping Commands
If you really want to enact powerful and quick results at the Linux command line, you
need to explore pipes. The pipe is a simple redirection operator represented by the ASCII
character 124 (|), which is called the vertical bar, vertical slash, or vertical line.

Be aware that some keyboards and text display the vertical bar not as a
single vertical line. Instead, it looks like a vertical double dash.

With the pipe, you can redirect STDOUT, STDIN, and STDERR between multiple com-
mands all on one command line. Now that is powerful redirection.

The basic syntax for redirection with the pipe symbol is as follows:

command 1 | command 2 [| command n]...

Redirecting Input and Output  107

The syntax for pipe redirection shows that the first command, command1, is executed. Its
STDOUT is redirected as STDIN into the second command, command2. Also, you can pipe
more commands together than just two. Keep in mind that any command in the pipeline has
its STDOUT redirected as STDIN to the next command in the pipeline. Listing 4.22 shows a
simple use of pipe redirection.

Listing 4.22:  Employing pipe redirection

$ grep /bin/bash$ /etc/passwd | wc -l
3
$

In Listing 4.22, the first command in the pipe searches the password file for any records
that end in /bin/bash. This is essentially finding all user accounts that use the Bash shell as
their default account shell. The output from the first command in the pipe is passed as input
into the second command in the pipe. The wc -l command will count how many lines have
been produced by the grep command. The results show that there are only three accounts
on this Linux system that have the Bash shell set as their default shell.

You can get creative using pipe redirection. Listing 4.23 shows a command employ-
ing over four different utilities in a pipeline to audit accounts using the /sbin/nologin
default shell.

Listing 4.23:  Employing pipe redirection for several commands

$ grep /sbin/nologin$ /etc/passwd | cut -d ":" -f 1 | sort | less
abrt
adm
avahi
bin
chrony
[...]
:

In Listing 4.23, the output from the grep command is fed as input into the cut
command. The cut utility removes only the first field from each password record, which
is the account username. The output of the cut command is used as input into the sort
command, which alphabetically sorts the usernames. Finally, the sort utility’s output is piped
as input into the less command for leisurely perusing through the account usernames.

In cases where you want to keep a copy of the command pipeline’s output as well as view
it, the tee command will help. Similar to a tee pipe fitting in plumbing, where the water flow
is sent in multiple directions, the tee command allows you to both save the output to a file
and display it to STDOUT. Listing 4.24 contains an example of this handy command.

108  Chapter 4  ■  Searching and Analyzing Text

Listing 4.24:  Employing the tee command

$ grep /bin/bash$ /etc/passwd | tee BashUsers.txt
root:x:0:0:root:/root:/bin/bash
user1:x:1000:1000:Student User One:/home/user1:/bin/bash
Christine:x:1001:1001::/home/Christine:/bin/bash
$
$ cat BashUsers.txt
root:x:0:0:root:/root:/bin/bash
user1:x:1000:1000:Student User One:/home/user1:/bin/bash
Christine:x:1001:1001::/home/Christine:/bin/bash
$

The first command in Listing 4.24 searches the password file for any user account records
that end in /bin/bash. That output is piped into the tee command, which displays the
output as well as saves it to the BashUsers.txt file. The tee command is handy when you
are installing software from the command line and want to see what is happening as well as
keep a log file of the transaction for later review.

Creating Here Documents
Another form of STDIN redirection can be accomplished using a here document, which
is sometimes called here text or heredoc. A here document allows you to redirect multiple
items into a command. It can also modify a file using a script, create a script, keep data in a
script, and so on.

A here document redirection operator is << followed by a keyword. This keyword can
be anything, and it signals the beginning of the data as well as the data’s end. Listing 4.25
shows an example of using the sort command along with a here document.

Listing 4.25:  Employing a here document with the sort command

$ sort <<EOF
> dog
> cat
> fish
> EOF
cat
dog
fish
$

In Listing 4.25, the sort command is entered followed by the << redirection operator
and a keyword, EOF. The Enter key is pressed, and a secondary prompt, >, appears, indi-
cating that more data can be entered. Three words to be sorted are entered. The keyword,

Redirecting Input and Output  109

EOF, is entered again to denote that data entry is complete. When this occurs, the sort
utility alphabetically sorts the words and displays the results to STDOUT.

Creating Command Lines
Creating command-line commands is a useful skill. There are several different methods you
can use. One such method is using the xargs utility. The best thing about this tool is that you
sound like a pirate when you pronounce it, but it has other practical values as well.

By piping STDOUT from other commands into the xargs utility, you can build
command-line commands on the fly. Listing 4.26 shows an example of doing this.

Listing 4.26:  Employing the xargs command

$ find tmp -size 0
tmp/EmptyFile1.txt
tmp/EmptyFile2.txt
tmp/EmptyFile3.txt
$
$ find tmp -size 0 | xargs /usr/bin/ls
tmp/EmptyFile1.txt tmp/EmptyFile2.txt tmp/EmptyFile3.txt
$

In Listing 4.26, the first command finds any files in the tmp subdirectory that are empty
(-size 0). The second command does the same thing, except this time, the output from the
find command is piped as STDIN into the xargs utility. The xargs command uses the ls
command to list the files. Notice that xargs requires not only the ls command’s name but
also its program’s location in the virtual directory tree.

While Listing 4.26’s commands are educational, they are not practical, because you
get the same information just using the find utility. Listing 4.27 shows a functional use of
employing the xargs utility.

Listing 4.27:  Using the xargs command to delete files

$ find tmp -size 0 | xargs -p /usr/bin/rm
/usr/bin/rm tmp/EmptyFile1.txt tmp/EmptyFile2.txt tmp/EmptyFile3.txt
?...y
$

The xargs command used in Listing 4.27 uses the -p option. This option causes the
xargs utility to stop and ask permission before enacting the constructed command-line
command. Notice that the created command is going to remove all three empty files with
one rm command. After you type y and press the Enter key, the command is enacted, and the
three files are deleted. This is a pretty handy way to find and remove unwanted files.

The other methods to create command-line commands on the fly use shell expansion. The
first method puts a command to execute within parentheses and precedes it with a dollar
sign. An example of this method is shown in Listing 4.28.

110  Chapter 4  ■  Searching and Analyzing Text

Listing 4.28:  Using the $() method to create commands

$ touch tmp/EmptyFile1.txt
$ touch tmp/EmptyFile2.txt
$ touch tmp/EmptyFile3.txt
$
$ ls $(find tmp -size 0)
tmp/EmptyFile1.txt tmp/EmptyFile2.txt tmp/EmptyFile3.txt
$

In Listing 4.28, the find command is again used to locate any empty files in the tmp
subdirectory. Because the command is encased by the $() symbols, it does not display to
STDOUT. Instead, the filenames are passed to the ls utility, which does display the files to
STDOUT. Of course, it would be more useful to delete those files, but they are needed in the
next few examples.

The next method puts a command to execute within backticks (`). Be aware that back-
ticks are not single quotation marks. You can typically find the backtick on the same key-
board key as the tilde (~) symbol. An example of this method is shown in Listing 4.29.

Listing 4.29:  Using the backtick method to create commands

$ ls `find tmp -size 0`
tmp/EmptyFile1.txt tmp/EmptyFile2.txt tmp/EmptyFile3.txt
$

Notice in Listing 4.29 that the created command-line command behaves exactly as the
constructed command in Listing 4.28. The command between the backticks executes and its
output is passed as input to the ls utility.

Backticks are not very popular anymore. While they perform the same
duty as do the $() symbols for creating commands, they are harder to
see and are often confused with single quotation marks.

Another method for creating commands is brace expansion. This handy approach allows
you to cut down on typing at the command line. Listing 4.30 provides a useful example of
brace expansion.

Listing 4.30:  Using brace expansion to create commands

$ rm -i tmp/EmptyFile{1,3}.txt
rm: remove regular empty file 'tmp/EmptyFile1.txt'? y
rm: remove regular empty file 'tmp/EmptyFile3.txt'? y
$

Notice in Listing 4.30 that two files are deleted. Instead of typing out the entire filenames,
you can employ curly braces ({}). These curly braces contain two numbers separated by

Editing Text Files  111

a comma. This causes the rm utility to substitute a 1 in the braces’ location for the first
filename and a 3 for the second file’s name. In essence, the brace expansion method allows
you to denote multiple substitutions within a command argument. Thus, you can get very
creative when building commands on the fly.

Editing Text Files
Manipulating text is performed on a regular basis when managing a Linux system. You may
need to employ either a stream editor or a full-fledged interactive text editor to accomplish
the task. In the following sections, we’ll cover both types of editors.

Appreciating Text Editors
Whether you need to modify a configuration file or create a shell script, being able to use an
interactive text file editor is an important skill. Also, it is a good idea to know more than just
one. Therefore, we’ll cover both the nano and the vim text editors.

The nano editor is a good text editor to start using if you have never dealt with an editor or
have only used GUI editors. To start using the nano text editor, type nano followed by the name
of the file you wish to edit or create. Figure 4.1 shows a nano text editor screen in action.

F IGURE 4 .1   Using the nano text editor

112  Chapter 4  ■  Searching and Analyzing Text

In Figure 4.1 you can see the four main sections of the nano text editor. They are
as follows:

Title Bar  The title bar is at the nano text editor window’s top line. It shows the current
editor version as well as the name of the file you are presently editing. In Figure 4.1, the
file being edited is the test1.txt file. If you simply typed nano and did not include a
filename, you would see New Buffer in the title bar.

Main Body  The nano text editor’s main body is where you perform the editing. If the
file already contains text, its first lines are shown in this area. If you need to view text
that is not in the main body, you can use either arrow keys, the Page Up or Page Down
key, and/or the page movement shortcut key combinations to move through the text.

Status Bar  The status bar does not always contain information. It only displays status
information for certain events. For example, in Figure 4.1, the text file has just been
opened in nano, so the status bar area displays [Read 3 lines] to indicate that
three text lines were read into the editor.

Shortcut List  The shortcut list is one of the editor’s most useful features. By glancing
at this list at the window’s bottom, you can see the most common commands and their
associated shortcut keys. The caret (^) symbol in this list indicates that the Ctrl key must
be used. For example, to remove text from the file, you highlight the text first, then press
and hold the Ctrl key and then press the K key. To see additional commands, press the
Ctrl+G key combination for help.

Within the nano text editor’s help subsystem, you’ll see some key com-
binations denoted by M-k. An example is M-W for repeating a search.
These are metacharacter key combinations, and the M represents the Esc,
Alt, or Meta key, depending on your keyboard’s setup. The k simply rep-
resents a keyboard key, such as W.

The nano text editor is wonderful to use for simple text file modifications. However, if
you need a more powerful text editor for creating programs or shell scripts, the vim editor is
a popular choice.

Before we start talking about how to use the vim editor, we need to talk about vim versus
vi. The vi editor was a Unix text editor, and when it was rewritten as an open source tool, it
was improved. Thus, vim stands for “vi improved.”

Often you’ll find that the vi command will start the vim editor. In other distributions, only
the vim command will start the vim editor. Sometimes both commands work. Listing 4.31 shows
using the which utility to determine what command a Red Hat Linux distribution is using.

Listing 4.31:  Using which to determine which command

$ which vim
/usr/bin/vim
$

Editing Text Files  113

$ which vi
alias vi='vim'
 /usr/bin/vim
$

Listing 4.31 shows that this Red Hat Linux distribution has aliased the vi command to
point to the vim command. Thus, for this distribution, both the vi and vim commands will
start the vim editor.

Some distributions, such as Ubuntu, do not have the vim editor installed
by default. Instead, they use an alternative, called vim.tiny, which will
not allow you to try all the various vim commands discussed here. You
can check your distribution to see if vim is installed by obtaining the
vim program filename. Type type vi and press Enter, and if you get an
error or an alias, then enter type vim. Once you receive the program’s
directory and filename, type the command readlink -f and follow it up
with the directory and filename. For example: readlink -f /usr/bin/
vi. If you see /usr/bin/vi.tiny, you need to either switch to a different
distribution to practice the vim commands or install the vim package (see
Chapter 13, “Governing Software”).

To start using the vim text editor, type vim or vi, depending on your distribution, fol-
lowed by the name of the file you wish to edit or create. Figure 4.2 shows a vim text editor
screen in action.

F IGURE 4 .2   Using the vim text editor

114  Chapter 4  ■  Searching and Analyzing Text

In Figure 4.2 the file being edited is the test1.txt file again. The vim editor loads the
file data in a memory buffer, and this buffer is displayed on the screen. If you open vim
without a filename or the filename you entered doesn’t yet exist, vim starts a new buffer area
for editing.

The vim editor has a message area near the bottom line. If you have just opened an
already created file, it will display the filename along with the number of lines and charac-
ters read into the buffer area. If you are creating a new file, you will see [New File] in the
message area.

The vim editor has three standard modes as follows:

Command Mode  This is the mode vim uses when you first enter the buffer area; this
is sometimes called normal mode. Here you enter keystrokes to enact commands. For
example, pressing the J key will move your cursor down one line. This is the best mode
to use for quickly moving around the buffer area.

Insert Mode  Insert mode is also called edit or entry mode. This is the mode where you
can perform simple editing. There are not many commands or special mode keystrokes.
You enter this mode from command mode, by pressing the I key. At this point, the mes-
sage --Insert-- will display in the message area. You leave this mode by pressing
the Esc key.

Ex Mode  This mode is sometimes also called colon commands because every
command entered here is preceded by a colon (:). For example, to leave the vim editor
and not save any changes you type :q and press the Enter key.

Since you start in command mode when entering the vim editor’s buffer area, it’s good to
understand a few of the commonly used commands to move around in this mode. Table 4.8
contains several moving commands for your perusal.

Quickly moving around in the vim editor buffer is useful. However, there are also sev-
eral editing commands that help to speed up your modification process. For example,
when you move your cursor to a word’s first letter and press CW, the word is deleted, and
you are thrown into insert mode. You can then type the new word and press Esc to leave
insert mode.

Keep in mind that some people stay in command mode to get where they
need to be within a file and then press the I key to jump into insert mode
for easier text editing. This is a convenient method to employ.

Once you have made any needed text changes in the vim buffer area, it’s time to save
your work. You can type ZZ in command mode to write the buffer to disk and exit your pro-
cess from the vim editor.

The third vim mode, Ex mode, has additional handy commands. You must be in
command mode to enter into Ex mode. You cannot jump from insert mode to Ex mode.
Therefore, if you’re currently in insert mode, press the Esc key to go back to command
mode first.

Editing Text Files  115

Table 4.9 shows several Ex commands that can help you manage your text file. Notice
that all the keystrokes include the necessary colon (:) to use Ex commands.

After reading through the various mode commands, you may see why some people
despise the vim editor. There are a lot of obscure commands to know. However, some people
love the vim editor because it is so powerful.

TABLE 4 .8   Commonly used vim command mode moving commands

Keystroke Description

h Move cursor left one character.

l Move cursor right one character.

j Move cursor down one line (the next line in the text).

k Move cursor up one line (the previous line in the text).

w Move cursor forward one word to front of next word.

e Move cursor to end of current word.

b Move cursor backward one word.

^ Move cursor to beginning of line.

$ Move cursor to end of line.

gg Move cursor to the file’s first line.

G Move cursor to the file’s last line.

nG Move cursor to file line number n.

Ctrl+B Scroll up almost one full screen.

Ctrl+F Scroll down almost one full screen.

Ctrl+U Scroll up half of a screen.

Ctrl+D Scroll down half of a screen.

Ctrl+Y Scroll up one line.

Ctrl+E Scroll down one line.

116  Chapter 4  ■  Searching and Analyzing Text

Some distributions have a vim tutorial installed by default. This is a handy
way to learn to use the vim editor. To get started, just type vimtutor at the
command line. If you need to leave the tutorial before it is complete, just
type in the Ex mode command :q to quit.

It’s tempting to learn only one text editor and ignore the other. This, of course, won’t help
you pass the CompTIA Linux+ certification exam. But, in addition, knowing at least two
text editors is useful in your day-to-day Linux work. For simple modifications, the nano text
editor shines. For more complex editing, the vim editor is king. Both are worth your time
to master.

Learning about Stream Editors
There are times where you will want to edit text files without having to pull out a full-
fledged text editor. In these cases, learning about two very popular stream editors is worth-
while. A stream editor modifies text that is passed to it via a file or output from a pipeline.
The editor uses special commands to make text changes as the text “streams” through the
editor utility.

The first stream editor we’ll explore is called the stream editor. The command to invoke
it is sed. The sed utility edits a stream of text data based on a set of commands you supply

TABLE 4 .9   Commonly used vim Ex mode commands

Keystrokes Description

:x Write buffer to file and quit editor.

:wq Write buffer to file and quit editor.

:wq! Write buffer to file and quit editor (overrides protection).

:w Write buffer to file and stay in editor.

:w! Write buffer to file and stay in editor (overrides protection).

:q Quit editor without writing buffer to file.

:q! Quit editor without writing buffer to file (overrides protection).

:! command Execute shell command and display results, but don’t quit editor.

:r! command Execute shell command and include the results in editor buffer area.

:r file Read file contents and include them in editor buffer area.

Editing Text Files  117

ahead of time. It is a quick editor because it makes only one pass through the text to apply
the modifications.

The sed editor changes data based on commands either entered into the command line or
stored in a text file. The process the editor goes through is as follows:

■■ Reads one text line at a time from the input stream

■■ Matches that text with the supplied editor commands

■■ Modifies the text as specified in the commands

■■ Outputs the modified text to STDOUT

After the sed editor matches all the prespecified commands against a text line, it reads
the next text line and repeats the editorial process. Once sed reaches the end of the text
lines, it stops.

Before looking at some sed examples, it is important to understand the command’s basic
syntax. It is as follows:

sed [OPTIONS] [SCRIPT]... [FILENAME]

By default, sed will use the text from STDIN to modify according to the prespecified
commands. An example is shown in Listing 4.32.

Listing 4.32:  Using sed to modify STDIN text

$ echo "I like cake." | sed 's/cake/donuts/'
I like donuts.
$

Notice in Listing 4.32 that the text output from the echo command is piped as input
into the stream editor. The sed utility’s s command (substitute) specifies that if the first text
string, cake, is found, it is changed to donuts in the output. Note that the entire command
after sed is considered to be the SCRIPT, and it is encased in single quotation marks. Also
notice that the text words are delimited from the s command, the quotation marks, and each
other by the forward slashes (/).

Keep in mind that just using the s command will not change all instances of a word
within a text stream. Listing 4.33 shows an example of this.

Listing 4.33:  Using sed to globally modify STDIN text

$ echo "I love cake and more cake." | sed 's/cake/donuts/'
I love donuts and more cake.
$
$ echo "I love cake and more cake." | sed 's/cake/donuts/g'
I love donuts and more donuts.
$

118  Chapter 4  ■  Searching and Analyzing Text

In the first command in Listing 4.33, only the first occurrence of the word cake was mod-
ified. However, in the second command a g, which stands for global, was added to the sed
script’s end. This caused all occurrences of cake to change to donuts.

You can also modify text stored in a file. Listing 4.34 shows an example of this.

Listing 4.34:  Using sed to modify file text

$ cat cake.txt
Christine likes chocolate cake.
Rich likes lemon cake.
Tim only likes yellow cake.
Samantha does not like cake.
$
$ sed 's/cake/donuts/' cake.txt
Christine likes chocolate donuts.
Rich likes lemon donuts.
Tim only likes yellow donuts.
Samantha does not like donuts.
$
$ cat cake.txt
Christine likes chocolate cake.
Rich likes lemon cake.
Tim only likes yellow cake.
Samantha does not like cake.
$

In Listing 4.34, the file contains text lines that contain the word cake. When the cake
.txt file is added as an argument to the sed command, its data is modified according to the
script. Notice that the data in the file is not modified. The stream editor only displays the
modified text to STDOUT.

The stream editor has some rather useful command options. Commonly used ones are
displayed in Table 4.10.

TABLE 4 .10   The sed command’s commonly used options

Short Long Description

-e script --expression=script Add commands in script to text processing. The
script is written as part of the sed command.

-f script --file=script Add commands in script to text processing. The
script is a file.

-r --regexp-extended Use extended regular expressions in script.

Editing Text Files  119

A handy option to use is the -e option. This allows you to employ multiple scripts in the
sed command. An example is shown in Listing 4.35.

Listing 4.35:  Using sed -e to use multiple scripts

$ sed -e 's/cake/donuts/ ; s/like/love/' cake.txt
Christine loves chocolate donuts.
Rich loves lemon donuts.
Tim only loves yellow donuts.
Samantha does not love donuts.
$

Pay close attention to the syntax change in Listing 4.35. Not only is the -e option
employed, but the script is slightly different too. Now the script contains a semicolon (;)
between the two script commands. This allows both commands to be processed on the
text stream.

If you have a lot of sed script commands, you can store them in a file. This is convenient
because you can use the script file over and over again. Listing 4.36 shows an example of
using a sed script one time.

Listing 4.36:  Using sed -f to use a script file

$ cat script.sed
s/cake/donuts/
s/like/love/
$
$ sed -f script.sed cake.txt
Christine loves chocolate donuts.
Rich loves lemon donuts.
Tim only loves yellow donuts.
Samantha does not love donuts.
$

In Listing 4.36, notice that the sed script has single sed commands on each file line.
No single quotation marks are employed here. Once the sed command is used along with
the -f option and script file argument, the changes are applied to the file data and dis-
played STDOUT.

The gawk utility is also a stream editor, but it provides a more powerful editing process
through its programming language. With the gawk programming language, you can do the
following:

■■ Define variables to store data.

■■ Use arithmetic and string operators to work on data.

■■ Use programming structures, such as loops, to add logic to your processing.

■■ Create formatted reports from data.

120  Chapter 4  ■  Searching and Analyzing Text

The gawk programming language is popular for creating formatted reports from large
datasets. You can create gawk programs and store them in files for repeated use.

A little confusion exists between awk and gawk, so let’s address that before delving
further into the gawk utility. The awk program was created for the Unix operating system,
so when the GNU project rewrote it, they named it GNU awk, or gawk for short. However,
on many distributions you can use either command, but they both actually call the gawk
program. Listing 4.37 shows an example of this on an Ubuntu distribution.

Listing 4.37:  Looking at the awk and gawk commands

$ which awk
/usr/bin/awk
$
$ readlink -f /usr/bin/awk
/usr/bin/gawk
$
$ which gawk
/usr/bin/gawk
$

In Listing 4.37, you can see that the awk command exists on this distribution. However,
when you follow the soft link trail to the actual program used, it points to the gawk program.
The gawk command exists as well.

Before looking at some gawk examples, it is important to understand the command’s
basic syntax. It is as follows:

gawk [OPTIONS] [PROGRAM]... [FILENAME]

Similar to sed, you can provide the program on the same command line as the gawk
command. It also employs the use of single quotation marks to enclose the script. However,
unlike sed, the gawk utility requires you to put your programming language commands bet-
ween two curly braces. An example is shown in Listing 4.38.

Listing 4.38:  Using gawk to modify STDIN text

$ echo "Hello World" | gawk '{print $0}'
Hello World
$
$ echo "Hello World" | gawk '{print $1}'
Hello
$
$ echo "Hello World" | gawk '{print $2}'

Editing Text Files  121

World
$

The print command displays text to STDOUT, but notice that different parts of STDIN
are shown, as you can see in Listing 4.38. This is accomplished through the gawk utility’s
defined data field variables. They are defined as follows:

■■ The $0 variable represents the entire text line.

■■ The $1 variable represents the text line’s first data field.

■■ The $2 variable represents the text line’s second data field.

■■ The $n variable represents the text line’s nth data field.

The gawk utility can also process text data from a file. An example of this is shown in
Listing 4.39.

Listing 4.39:  Using gawk to modify file text

$ cat cake.txt
Christine likes chocolate cake.
Rich likes lemon cake.
Tim only likes yellow cake.
Samantha does not like cake.
$
$ gawk '{print $1}' cake.txt
Christine
Rich
Tim
Samantha
$

The gawk programming language is rather powerful and allows you to use many typical
structures employed in other programming languages. In Listing 4.40, an attempt is made to
change the word cake in the output to donut.

Listing 4.40:  Using gawk structured commands to modify file text

$ gawk '{$4="donuts"; print $0}' cake.txt
Christine likes chocolate donuts
Rich likes lemon donuts
Tim only likes donuts cake.
Samantha does not donuts cake.
$

122  Chapter 4  ■  Searching and Analyzing Text

$ gawk '{if ($4 == "cake.") {$4="donuts"; print $0}}' cake.txt
Christine likes chocolate donuts
Rich likes lemon donuts
$

In Listing 4.40, the first attempt to substitute the words does not work properly. That is
a result of two text file lines having the word cake in data field $5 instead of data field $4.
The second gawk attempt employs an if statement to check if data field $4 is equal to the
word cake. If the statement returns true, the data field is changed to donuts and the text
line is displayed on STDOUT. Otherwise, the text line is ignored.

Using complex programming structures in gawk can be tricky on the command line. It’s
much better to put those commands in a file. However, you need to know a few common
gawk options prior to doing this. Table 4.11 has some typical gawk switches.

Using the field separator option is very handy when the data file’s fields are separated by
commas or colons. An example of pulling data from the password file using this switch is
shown in Listing 4.41.

Listing 4.41:  Using gawk structured commands to extact file data

$ gawk -F : '{print $1}' /etc/passwd
root
bin
daemon
[...]
$

You can put complex gawk programs into files to keep them for reuse. Listing 4.42 shows
an example of this.

TABLE 4 .11   The gawk command’s commonly used options

Short Long Description

-F d --field-separator d Specify the delimiter that separates the data file’s fields.

-f file --file=file Use program in file for text processing.

-s --sandbox Execute gawk program in sandbox mode.

Summary  123

Listing 4.42:  Using a gawk program file

$ cat cake.txt
Christine likes chocolate cake.
Rich likes lemon cake.
Tim only likes yellow cake.
Samantha does not like cake.
$
$ cat script.gawk
{if ($4=="cake.")
 {$4="donuts"; print $0}
else if ($5=="cake.")
 {$5="donuts"; print $0}}
$
$ gawk -f script.gawk cake.txt
Christine likes chocolate donuts
Rich likes lemon donuts
Tim only likes yellow donuts
Samantha does not like donuts
$	

In Listing 4.42, a more complex if structure statement is written using the gawk
programming language and saved to a file, script.gawk. This script not only employs an
if statement, it also incorporates an else if structure. Notice also that no single quotation
marks are needed when the gawk program is stored in a file. Using the -f switch, the
program is enacted on the cake.txt file, and the appropriate word is changed in every line.

Summary
Being able to process data to make agile decisions is important for administering your Linux
system. There are many Linux structures and tools, which can help you in uncovering the
information you need.

This chapter’s purpose was to continue to improve your Linux command-line tool belt.
The tools and structures added in this chapter will allow you to search and analyze text in
order to uncover knowledge in an efficient manner.

124  Chapter 4  ■  Searching and Analyzing Text

Exam Essentials
Summarize the various utilities used in processing text files.  Filtering text file data can be
made much easier with utilities such as grep, egrep, and cut. Once that data is filtered, you
may want to format it for viewing using sort, pr, printf, or even the cat utility. If you
need some statistical information on your text file, such as the number of lines it contains,
the wc command is handy.

Explain both the structures and commands for redirection.  Employing STDOUT, STDERR,
and STDIN redirection allows rather complex filtering and processing of text. The echo
command can assist in this process as well as here documents. You can also use pipelines of
commands to perform redirection and produce excellent data for review.

Describe the various methods used for editing text files.  Editing text files is part of a system
administrator’s life. You can use full-screen editors such as the rather complicated vim text
editor or the simple and easy-to-use nano editor. For fast and powerful text stream editing,
employ sed and its scripts or the gawk programming language.

Review Questions  125

Review Questions
1.	 The cat -E MyFile.txt command is entered, and at the end of every line displayed is a $.

What does this indicate?

A.	 The text file has been corrupted somehow.

B.	 The text file records end in the ASCII character NUL.

C.	 The text file records end in the ASCII character LF.

D.	 The text file records end in the ASCII character $.

E.	 The text file records contain a $ at their end.

2.	 The cut utility often needs delimiters to process text records. Which of the following best
describes a delimiter?

A.	 One or more characters that designate the beginning of a line in a record

B.	 One or more characters that designate the end of a line in a record

C.	 One or more characters that designate the end of a text file to a command-line text
processing utility

D.	 A single space or a colon (:) that creates a boundary between different data items in a
record

E.	 One or more characters that create a boundary between different data items in a record

3.	 Which of the following utilities change text within a file? (Choose all that apply.)

A.	 cut
B.	 sort
C.	 vim
D.	 nano
E.	 sed

4.	 You have a text file, monitor.txt, which contains information concerning the monitors
used within the data center. Each record ends with the ASCII LF character and fields are
delimitated by a comma (,). A text record has the monitor ID, manufacture, serial number,
and location. To display each data center monitor’s monitor ID, serial number, and location,
you’d use which cut command?

A.	 cut -d "," -f 1,3,4 monitor.txt
B.	 cut -z -d "," -f 1,3,4 monitor.txt
C.	 cut -f "," -d 1,3,4 monitor.txt
D.	 cut monitor.txt -d "," -f 1,3,4
E.	 cut monitor.txt -f "," -d 1,3,4

126  Chapter 4  ■  Searching and Analyzing Text

5.	 The grep utility can employ regular expressions in its PATTERN. Which of the following best
describes a regular expression?

A.	 A series of characters you define for a utility, which uses the characters to match the
same characters in text files

B.	 ASCII characters, such as LF and NUL, that a utility uses to filter text

C.	 Wildcard characters, such as * and ?, that a utility uses to filter text

D.	 A pattern template you define for a utility, which uses the pattern to filter text

E.	 Quotation marks (single or double) used around characters to prevent unexpected
results

6.	 You are a system administrator on a Red Hat Linux server. You need to view records in the
/var/log/messages file that start with the date May 30 and end with the IPv4 address
192.168.10.42. Which of the following is the best grep command to use?

A.	 grep "May 30?192.168.10.42" /var/log/messages
B.	 grep "May 30.*192.168.10.42" /var/log/messages
C.	 grep -i "May 30.*192.168.10.42" /var/log/messages
D.	 grep -i "May 30?192.168.10.42" /var/log/messages
E.	 grep -v "May 30.*192.168.10.42" /var/log/messages

7.	 Which of the following is a BRE pattern that could be used with the grep command?
(Choose all that apply.)

A.	 Sp?ce
B.	 "Space, the .*frontier"
C.	 ^Space
D.	 (lasting | final)
E.	 frontier$

8.	 You need to search through a large text file and find any record that contains either Luke or
Laura at the record’s beginning. Also, the phrase Father is must be located somewhere
in the record’s middle. Which of the following is an ERE pattern that could be used with the
egrep command to find this record?

A.	 "Luke$|Laura$.*Father is"
B.	 "^Luke|^Laura.Father is"
C.	 "(^Luke|^Laura).Father is"
D.	 "(Luke$|Laura$).* Father is$"
E.	 "(^Luke|^Laura).*Father is.*"

Review Questions  127

9.	 A file data.txt needs to be sorted numerically and its output saved to a new file newdata
.txt. Which of the following commands can accomplish this task? (Choose all that apply.)

A.	 sort -n -o newdata.txt data.txt
B.	 sort -n data.txt > newdata.txt
C.	 sort -n -o data.txt newdata.txt
D.	 sort -o newdata.txt data.txt
E.	 sort data.txt > newdata.txt

10.	 Which of the following commands can display the data.txt and datatoo.txt files’
content one after the other to STDOUT? (Choose all that apply.)

A.	 ls data.txt datatoo.txt
B.	 sort -n data.txt > datatoo.txt
C.	 cat -n data.txt datatoo.txt
D.	 ls -l data.txt datatoo.txt
E.	 sort data.txt datatoo.txt

11.	 A text file, StarGateAttacks.txt, needs to be specially formatted for review. Which of
the following commands is the best command to accomplish this task quickly?

A.	 printf
B.	 wc
C.	 pr
D.	 paste
E.	 nano

12.	 You need to format the string 42.777 into the correct two-digit floating number. Which of the
following printf command FORMAT settings is the correct one to use?

A.	 "%s\n"
B.	 "%.2s\n"
C.	 "%d\n"
D.	 "%.2c\n"
E.	 "%.2f\n"

13.	 A Unicode-encoded text file, MyUCode.txt, needs to be perused. Before you decide what
utility to use in order view the file’s contents, you employ the wc command on it. This utility
displays 2020 6786 11328 to STDOUT. Which of the following is true? (Choose all
that apply.)

A.	 The file has 2,020 lines in it.

B.	 The file has 2,020 characters in it.

C.	 The file has 6,786 words in it.

D.	 The file has 11,328 characters in it.

E.	 The file has 11,328 lines in it.

128  Chapter 4  ■  Searching and Analyzing Text

14.	 Which of the following best defines a file descriptor?

A.	 A letter that represents the file’s type

B.	 A number that represents a process’s open files

C.	 Another term for the file’s name

D.	 A six-character name that represents standard output

E.	 A symbol that indicates the file’s classification

15.	 By default, STDOUT goes to what item?

A.	 /dev/ttyn, where n is a number

B.	 /dev/null
C.	 >
D.	 /dev/tty
E.	 pwd

16.	 Which of the following commands will display the file SpaceOpera.txt to output as well
as save a copy of it to the file SciFi.txt?

A.	 cat SpaceOpera.txt | tee SciFi.txt
B.	 cat SpaceOpera.txt > SciFi.txt
C.	 cat SpaceOpera.txt 2> SciFi.txt
D.	 cp SpaceOpera.txt SciFi.txt
E.	 cat SpaceOpera.txt &> SciFi.txt

17.	 Which of the following commands will put any generated error messages into the black hole?

A.	 sort SpaceOpera.txt 2> BlackHole
B.	 sort SpaceOpera.txt &> BlackHole
C.	 sort SpaceOpera.txt > BlackHole
D.	 sort SpaceOpera.txt 2> /dev/null
E.	 sort SpaceOpera.txt > /dev/null

18.	 Which of the following commands will determine how many records in the file Problems
.txt contain the word error?

A.	 grep error Problems.txt | wc -b
B.	 grep error Problems.txt | wc -w
C.	 grep error Problems.txt | wc -l
D.	 grep Problems.txt error | wc -w
E.	 grep Problems.txt error | wc -l

Review Questions  129

19.	 You want to find any file named 42.tmp, which exists somewhere in your current directory’s
tree structure and display its contents to STDOUT. Which of the following will allow you to
build a command to do this? (Choose all that apply.)

A.	 xargs (find . -name 42.tmp) cat
B.	 cat `find . -name 42.tmp`
C.	 cat $(find . -name 42.tmp)
D.	 cat {find . -name 42.tmp}
E.	 find . -name 42.tmp | xargs cat

20.	 You want to edit the file SpaceOpera.txt and decide to use the vim editor to complete
this task. Which of the following are vim modes you might employ? (Choose all that apply.)

A.	 Insert

B.	 Change

C.	 Command

D.	 Ex

E.	 Edit

PART

II
Starting Up and

Configuring
Your System

Explaining
the Boot Process

✓✓ Objective 1.1: Summarize Linux fundamentals.

Chapter

5

Before you can log in and start using your Linux system, a
complicated process of booting the operating system must take
place. A lot happens behind the scenes in the Linux boot pro-

cess. It helps to know just what all goes on in case something goes wrong.
This chapter examines the boot and startup processes in Linux systems. First, we’ll look

at the role the computer firmware plays in getting the process started, and then we’ll discuss
Linux bootloaders and how to configure them. Next, the chapter discusses the Linux ini-
tialization process, showing how Linux decides which background applications to start at
bootup. The chapter ends by taking a look at some system recovery options you have avail-
able to help salvage a system that won’t boot.

The Linux Boot Process
When you turn on the power to your Linux system, it triggers a series of events that even-
tually leads to the login prompt. Normally you don’t worry about what happens behind the
scenes of those events; you just log in and start using your applications.

However, there may be times when your Linux system doesn’t boot quite correctly, or per-
haps an application you expected to be running in background mode isn’t. In those cases, it
helps to have a basic understanding of just how Linux boots the operating system and starts
programs so you can troubleshoot the problem.

The following sections walk through the steps of the boot process and how you can
watch the boot process to see what steps failed.

Following the Boot Process
The Linux boot process can be split into three main steps:

1.	 The workstation firmware starts, performing a quick check of the hardware (called a
Power-On Self-Test, or POST) and then looks for a bootloader program to run from a
bootable device.

2.	 The bootloader runs and determines what Linux kernel program to load.

3.	 The kernel program loads into memory and starts the necessary background programs
required for the system to operate (such as a graphical desktop manager for desktops or
web and database servers for servers).

While on the surface these three steps may seem simple, a ballet of operations happens
to keep the boot process working. Each step performs several actions as they prepare your
system to run Linux.

The Linux Boot Process  135

Viewing the Boot Process
You can monitor the Linux boot process by watching the system console screen as the
system boots. You’ll see lots of informative messages scroll by as the system detects hardware
and loads software.

Some graphical desktop Linux distributions hide the boot messages in a
separate console window when they start up. Often you can press either
the Esc key or the Ctrl+Alt+F1 key combination to view those messages.

Usually the boot messages scroll by quickly and it’s hard to see what’s happening. If you
need to troubleshoot boot problems, you can review the boot time messages using the dmesg
command. Most Linux distributions copy the boot kernel messages into a special ring buffer
in memory, called the kernel ring buffer. The buffer is circular and set to a predetermined
size. As new messages are logged in the buffer, older messages are rotated out.

The dmesg command displays the most recent boot messages that are currently stored in
the kernel ring buffer, as shown in Listing 5.1.

Listing 5.1  The dmesg command output from an Ubuntu workstation

$ dmesg
[0.000000] Linux version 5.11.0-40-generic (buildd@lgw01-amd64-
010) (gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0, GNU ld (GNU Binutils
 for Ubuntu) 2.34) #44~20.04.2-Ubuntu SMP Tue Oct 26 18:07:44 UTC 2021
 (Ubuntu 5.11.0-40.44~20.04.2-generic 5.11.22)
[0.000000] Command line: BOOT_IMAGE=/boot/vmlinuz-5.11.0-40-
generic root=UUID=5423117e-4aaf-4416-ada7-01e07073b2e1 ro quiet splash
[0.000000] KERNEL supported cpus:
[0.000000] Intel GenuineIntel
[0.000000] AMD AuthenticAMD
[0.000000] Hygon HygonGenuine
[0.000000] Centaur CentaurHauls
[0.000000] zhaoxin Shanghai
[0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point
registers'
[0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
[0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
[0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256
[0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832
bytes, using 'standard' format.
[0.000000] BIOS-provided physical RAM map:
[0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009fbff] usable
[0.000000] BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved

136  Chapter 5  ■  Explaining the Boot Process

[0.000000] BIOS-e820: [mem 0x00000000000f0000-0x00000000000fffff] reserved
[0.000000] BIOS-e820: [mem 0x0000000000100000-0x00000000dffeffff] usable
[0.000000] BIOS-e820: [mem 0x00000000dfff0000-0x00000000dfffffff] ACPI data
[0.000000] BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserved
[0.000000] BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved
[0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserved
[0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000021fffffff] usable
[0.000000] NX (Execute Disable) protection: active
[0.000000] SMBIOS 2.5 present.
[0.000000] DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox
12/01/2006
[0.000000] Hypervisor detected: KVM
[0.000000] kvm-clock: Using msrs 4b564d01 and 4b564d00
[0.000000] kvm-clock: cpu 0, msr 109001001, primary cpu clock
[0.000000] kvm-clock: using sched offset of 3933158608 cycles
[0.000001] clocksource: kvm-clock: mask: 0xffffffffffffffff max_cycles:
0x1cd42e4dffb, max_idle_ns: 881590591483 ns
[0.000003] tsc: Detected 1497.589 MHz processor

Most Linux distributions also store the boot messages in a log file, usually in the /var/
log folder. For both Debian-based and Red Hat–based systems, the file is usually /var/
log/boot.log, but some legacy Linux systems may use /var/log/boot.

While it helps to be able to see the different messages generated during boot time, it is
also helpful to know what generates those messages. This chapter discusses each of these
three boot steps and goes through some examples showing just how they work.

The Firmware Startup
All IBM-compatible workstations and servers utilize some type of built-in firmware to con-
trol how the installed operating system starts. On older workstations and servers, this firm-
ware was called the Basic Input/Output System (BIOS). On newer workstations and servers,
a method called the Unified Extensible Firmware Interface (UEFI) maintains the system
hardware status and launches an installed operating system.

The BIOS Startup
The BIOS firmware had a simplistic menu interface that allowed you to change some settings
to control how the system found hardware and define what device the BIOS should use to
start the operating system.

One limitation of the original BIOS firmware was that it could read only one sector’s
worth of data from a hard drive into memory to run. That’s not enough space to load an

The Firmware Startup  137

entire operating system. To get around that limitation, most operating systems (including
Linux and Microsoft Windows) split the boot process into two parts.

First, the BIOS runs a bootloader program, a small program that initializes the necessary
hardware to find and run the full operating system program. It’s often found at another loca-
tion on the same hard drive but sometimes on a separate internal or external storage device.

The bootloader program usually has a configuration file, so you can tell it where to find
the actual operating system file to run or even to produce a small menu allowing the user to
boot between multiple operating systems.

To get things started, the BIOS must know where to find the bootloader program on an
installed storage device. Most BIOS setups allow you to load the bootloader program from
several locations:

■■ An internal hard drive

■■ An external hard drive

■■ A CD or DVD drive

■■ A USB memory stick

■■ An ISO file

■■ A network server using either NFS, HTTP, or FTP

When booting from a hard drive, you must designate the hard drive, and the partition on
the hard drive, from which the BIOS should load the bootloader program. This is done by
defining a Master Boot Record (MBR).

The MBR is the first sector on the first hard drive partition on the system. There is only
one MBR for the computer system. The BIOS looks for the MBR and reads the program
stored there into memory. Since the bootloader program must fit in one sector, it must be
very small, so it can’t do too much. The bootloader program mainly points to the location
of the actual operating system kernel file, stored in a boot sector of a separate partition
installed on the system. There are no size limitations on the kernel boot file.

The bootloader program isn’t required to point directly to an operating
system kernel file; it can point to any type of program, including another
bootloader program. You can create a primary bootloader program that
points to a secondary bootloader program, which provides options to
load multiple operating systems. This process is called chainloading.

The UEFI Startup
As operating systems became more complicated, it eventually became clear that a new boot
method needed to be developed.

Intel created the Extensible Firmware Interface (EFI) in 1998 to address some of the
limitations of BIOS. By 2005, the idea caught on with other vendors, and the Universal EFI
(UEFI) specification was adopted as a standard. These days just about all IBM-compatible
desktop and server systems utilize the UEFI firmware standard.

138  Chapter 5  ■  Explaining the Boot Process

Instead of relying on a single boot sector on a hard drive to hold the bootloader program,
UEFI specifies a special disk partition, called the EFI System Partition (ESP), to store boot-
loader programs. This allows for any size of bootloader program, plus the ability to store
multiple bootloader programs for multiple operating systems.

The ESP setup utilizes the old Microsoft File Allocation Table (FAT) filesystem to store
the bootloader programs. On Linux systems, the ESP is typically mounted in the /boot/efi
directory, and the bootloader files are typically stored using the .efi filename extension,
such as linux.efi.

The UEFI firmware utilizes a built-in mini-bootloader (sometimes referred to as a boot
manager) that allows you to configure which bootloader program file to launch.

Not all Linux distributions support the UEFI firmware. If you’re using
a UEFI system, ensure that the Linux distribution you select supports
it. Also, many UEFI systems utilize a secure boot feature, which when
enabled only loads bootloader programs digitally signed by a known
signing certificate. Many of these systems only recognize Microsoft
certificates, making it complicated, but not impossible, to boot a Linux
system. To get around this most Linux distributions use chainloading to
first load a shim bootloader, signed by Microsoft, which then points to
the real Linux bootloader.

With UEFI, you need to register each individual bootloader file you want to appear at
boot time in the boot manager interface menu. You can then select the bootloader to run
each time you boot the system.

Once the firmware finds and runs the bootloader, its job is done. The bootloader step in
the boot process can be somewhat complicated. The next section dives into covering that.

Linux Bootloaders
The bootloader program helps bridge the gap between the system firmware and the
full Linux operating system kernel. In Linux there are several choices of bootloaders to
use. However, the main bootloader programs that have been used by default in Linux
distributions are as follows:

■■ Linux Loader (LILO)

■■ Grand Unified Bootloader (GRUB) Legacy

■■ GRUB2

In the original versions of Linux, the Linux Loader (LILO) bootloader was the only
bootloader program available. It was extremely limited in what it could do, but it accom-
plished its purpose—loading the Linux kernel from the BIOS startup. The LILO configu-
ration file is stored in a single file, /etc/lilo.conf, which defines the systems to boot.

Linux Bootloaders  139

Unfortunately, LILO doesn’t work with UEFI systems, so it has limited use on modern sys-
tems and is quickly fading into history.

The first version of the GRUB bootloader (now called GRUB Legacy) was created in
1999 to provide a more robust and configurable bootloader to replace LILO. GRUB quickly
became the default bootloader for all Linux distributions, whether they were run on BIOS or
UEFI systems.

GRUB2 was created in 2005 as a total rewrite of the GRUB Legacy system. It supports
advanced features, such as the ability to load hardware driver modules and using logic state-
ments to dynamically alter the boot menu options, depending on conditions detected on the
system (such as if an external hard drive is connected).

Since UEFI can load any size of bootloader program, it’s now pos-
sible to load a Linux operating system kernel directly without a special
bootloader program. This feature was incorporated in the Linux kernel
starting with version 3.3.0. However, this method isn’t common, as boot-
loader programs can provide more versatility in booting, especially when
working with multiple operating systems.

The following sections walk through the basics of both the GRUB Legacy and GRUB2
bootloaders, which should cover just about every Linux distribution that you’ll run into
these days.

GRUB Legacy
The GRUB Legacy bootloader was designed to simplify the process of creating boot menus
and passing options to kernels. GRUB Legacy allows you to select multiple kernels and/or
operating systems using both a menu interface and an interactive shell. You configure the
menu interface to provide options for each kernel or operating system you want to boot
with. The interactive shell provides a way for you to customize boot commands on the fly.

Both the menu and the interactive shell utilize a set of commands that control features
of the bootloader. The following sections walk through how to configure the GRUB Legacy
bootloader, how to install it, and how to interact with it at boot time.

Configuring GRUB Legacy
When you use the GRUB Legacy interactive menu, you need to tell it what options to show
using special GRUB menu commands.

The GRUB Legacy system stores the menu commands in a standard text configuration
file called menu.lst. This file is stored in the /boot/grub folder (while not a requirement,
some Linux distributions create a separate /boot partition on the hard drive). Red Hat–
derived Linux distributions (such as CentOS and Fedora) use grub.conf instead of menu
.lst for the configuration file.

140  Chapter 5  ■  Explaining the Boot Process

The GRUB Legacy configuration file consists of two sections:

■■ Global definitions

■■ Operating system boot definitions

The global definitions section defines commands that control the overall operation of
the GRUB Legacy boot menu. The global definitions must appear first in the configura-
tion file. There are only a handful of global settings that you can make; Table 5.1 shows
these settings.

For GRUB Legacy, to define a value for a command, you list the value as a command-line
parameter:

default 0
timeout 10
color white/blue yellow/blue

The color command defines the color scheme for the menu. The first pair defines the
foreground/background pair for normal menu entries, while the second pair defines the fore-
ground/background pair for the selected menu entry.

After the global definitions, you place definitions for the individual operating systems that
are installed on the system. Each operating system should have its own definition section.
There are a lot of boot definition settings that you can use to customize how the bootloader
finds the operating system kernel file. Fortunately, only a few commands are required to
define the operating system. The ones to remember are listed here:

■■ title—The first line for each boot definition section; this is what appears in the
boot menu.

■■ root—Defines the disk and partition where the GRUB /boot folder partition is on
the system.

TABLE 5 .1   GRUB Legacy global commands

Setting Description

color Specifies the foreground and background colors to use in the boot menu

default Defines the default menu option to select

fallback A secondary menu selection to use if the default menu option fails

hiddenmenu Doesn’t display the menu selection options

splashimage Points to an image file to use as the background for the boot menu

timeout Specifies the amount of time to wait for a menu selection before using the
default

Linux Bootloaders  141

■■ kernel—Defines the kernel image file stored in the /boot folder to load.

■■ initrd—Defines the initial RAM disk file, which contains drivers necessary for the
kernel to interact with the system hardware.

■■ rootnoverify—Defines non-Linux boot partitions, such as Windows.

The root command defines the hard drive and partition that contains the /boot folder
for GRUB Legacy. Unfortunately, GRUB Legacy uses a somewhat odd way of referencing
those values:

(hddrive, partition)

Also, unfortunately, GRUB Legacy doesn’t refer to hard drives the way Linux does; it
uses a number system to reference both disks and partitions, starting at 0 instead of 1. For
example, to reference the first partition on the first hard drive on the system, you’d use
(hd0,0). To reference the second partition on the first hard drive, you’d use (hd0,1).

The initrd command is another important feature in GRUB Legacy. It helps solve a
problem that arises when using specialized hardware or filesystems as the root drive. The
initrd command defines a file that’s mounted by the kernel at boot time as a RAM disk,
also called the initrd. The kernel can then load modules from the initrd RAM disk, which
then allows it to access hardware or filesystems not compiled into the kernel itself. The
initrd RAM disk file, located in the /boot directory, is called initrd.img-kversion,
where kversion is the kernel version number.

If you install new hardware on your system that’s required to be visible
at boot time, you’ll need to modify the initrd file. You can create a
new initrd RAM disk image containing modules for the new hardware
using the mkinitrd command in Red Hat–based systems. For Debian-
based systems, the file is called initramfs, and you create it using the
mkinitramfs command. Alternatively, you can use the dracut utility,
which creates the initramfs image from a framework and copies files
from the installed modules.

Listing 5.2 shows a sample GRUB configuration file that defines both a Windows and a
Linux partition for booting.

Listing 5.2  Sample GRUB Legacy configuration file

default 0
timeout 10
color white/blue yellow/blue

title Ubuntu Linux
root (hd1,0)
kernel (hd1,0)/boot/vmlinuz

142  Chapter 5  ■  Explaining the Boot Process

initrd /boot/initrd

title Windows
rootnoverify (hd0,0)

This example shows two boot options—one for an Ubuntu Linux system and one for a
Windows system. The Ubuntu system is installed on the first partition of the second hard
drive, whereas the Windows system is installed on the first partition of the first hard drive.
The Linux boot selection specifies the kernel file to load as well as the initrd image file to
load into memory.

You may have noticed that the kernel filename in the Listing 5.2 example
was called vmlinuz. No, that’s not a typo—the z at the end of the file-
name indicates that the kernel file is compressed using the bzImage com-
pression method, a very common method in most Linux distributions.
For kernel files that aren’t compressed, the kernel image file is usually
called vmlinux.

Installing GRUB Legacy
Once you build the GRUB Legacy configuration file, you must install the GRUB Legacy
program in the MBR. The command to do this is grub-install.

The grub-install command uses a single parameter—the partition on which to install
GRUB. You can specify the partition using either Linux or GRUB Legacy format. For
example, to use Linux format you’d use

grub-install /dev/sda

to install GRUB on the MBR of the first hard drive. To use GRUB Legacy format, you must
enclose the hard drive format in quotes:

grub-install '(hd0)'

If you’re using the chainloading method and prefer to install a copy of GRUB Legacy on
the boot sector of a partition instead of to the MBR of a hard drive, you must specify the
partition, again using either Linux or GRUB format:

grub-install /dev/sda1
grub-install 'hd(0,0)'

You don’t need to reinstall GRUB Legacy in the MBR after making changes to the config-
uration file. GRUB Legacy reads the configuration file each time it runs.

Interacting with GRUB Legacy
When you boot a system that uses the GRUB Legacy bootloader, you’ll see a menu that
shows the boot options you defined in the configuration file. If you wait for the timeout to
expire, the default boot option will process. Alternatively, you can use the arrow keys to
select one of the boot options and then press the Enter key to select it.

Linux Bootloaders  143

You can also edit boot options on the fly from the GRUB menu. First, arrow to the boot
option you want to modify and then press the E key. Use the arrow key to move the cursor
to the line you need to modify and then press the E key to edit it. Press the B key to boot the
system using the new values. You can also press the C key at any time to enter an interactive
shell mode, allowing you to submit commands on the fly.

GRUB2
Since the GRUB2 system was intended to be an improvement over GRUB Legacy, many of
the features are the same, with a few twists. For example, the GRUB2 system changes the
configuration file name to grub.cfg and stores it in the /boot/grub/ folder (this allows
you to have both GRUB Legacy and GRUB2 installed at the same time). Some Red Hat–
based Linux distributions also make a symbolic link to this file in the /etc/grub2.cfg file
for easy reference.

Configuring GRUB2
There are also a few changes to the commands used in GRUB2. For example, instead of
the title command, GRUB2 uses the menuentry command, and you must also enclose each
individual boot section with braces immediately following the menuentry command. Here’s
an example of a sample GRUB2 configuration file:

menuentry "Ubuntu Linux" {
 set root=(hd1,1)
 linux /boot/vmlinuz
 initrd /initrd
}
menuentry"Windows" {
 set root=(hd0,1)
}

Notice that GRUB2 uses the set command to assign values to the root keyword and an
equal sign to assign the device. GRUB2 utilizes environment variables to configure settings
instead of commands.

GRUB2 also changes the numbering system for partitions. While it still uses 0 for the first
hard drive, the first partition is set to 1. So, to define the /boot folder on the first partition
of the first hard drive, you now need to use

set root=hd(0,1)

In addition, notice that the rootnoverify and kernel commands are not used in
GRUB2. Non-Linux boot options are defined the same as Linux boot options using the root
environment variable, and you define the kernel location using the linux command.

The configuration process for GRUB2 is also different. While the /boot/grub/grub
.cfg file is the configuration file that GRUB2 uses, you should never modify that file.
Instead, there are separate configuration files stored in the /etc/grub.d folder. This allows

144  Chapter 5  ■  Explaining the Boot Process

you (or the system) to create individual configuration files for each boot option installed on
your system (for example, one configuration file for booting Linux and another for boot-
ing Windows).

For global commands, use the /etc/default/grub configuration file. The format for
some of the global commands has changed from the GRUB Legacy commands, such as
GRUB_TIMEOUT instead of just timeout.

Most Linux distributions generate the new grub.cfg configuration file automatically
after certain events, such as upgrading the kernel. Usually the distribution will keep a boot
option pointing to the old kernel file just in case the new one fails.

Installing GRUB2
Unlike with GRUB Legacy, you don’t need to install GRUB2; you simply rebuild the main
installation file by running the grub2-mkconfig program.

The grub2-mkconfig program reads configuration files stored in the /etc/grub.d
folder and assembles the commands into the single grub.cfg configuration file.

You can update the configuration file manually by running the grub2-mkconfig
command:

grub2-mkconfig -o /boot/grub2/grub.cfg

Notice that you must use the -o command-line option to redirect the output of the
grub2-mkconfig program to the grub.cfg configuration file. By default the grub2-
mkconfig program just outputs the new configuration file commands to standard output.

Debian-based Linux distributions, such as Ubuntu, use GRUB2 but com-
pile the programs to match the GRUB Legacy command names, such as
the grub-mkconfig command instead of grub2-mkcondig. Needless to
say, this can cause lots of confusion. You can tell which version of GRUB
is being used by using the command grub-mkconfig -V.

There may be situations where you do need to reinstall GRUB2 on the boot drive. To do
that, after creating the grub.cfg configuration file you can install it onto the primary hard
disk using the grub2-install command:
grub2-install /dev/sda

Instead of running both the grub2-mkconfig and grub2-install com-
mands, you can use the update-grub2 command (sometimes referred
to as grub2-update), which is a front end that performs both operations
from a single script.

Interacting with GRUB2
The GRUB2 bootloader produces a boot menu similar to the GRUB Legacy method. You
can use arrow keys to switch between boot options, the E key to edit a boot entry, or the C

Linux Bootloaders  145

key to bring up the GRUB2 command line to submit interactive boot commands. Figure 5.1
shows editing an entry in the GRUB2 boot menu on an Ubuntu system.

Some graphical desktops (such as Ubuntu) hide the GRUB boot menu
behind a graphical interface. Usually if you hold down the Shift key when
the system first boots, that will display the GRUB boot menu.

Alternative Bootloaders
While GRUB Legacy and GRUB2 are the most popular Linux bootloader programs in use,
you may run into a few others, depending on which Linux distributions you use.

The Syslinux project includes five separate bootloader programs that have special
uses in Linux:

■■ SYSLINUX: A bootloader for systems that use the Microsoft FAT filesystem (popular
for booting from USB memory sticks)

■■ EXTLINUX: A mini-bootloader for booting from an ext2, ext3, ext4, or btrfs filesystem

■■ ISOLINUX: A bootloader for booting from a LiveCD or LiveDVD

■■ PXELINUX: A bootloader for booting from a network server

■■ MEMDISK: A utility to boot older DOS operating systems from the other SYSLINUX
bootloaders

The ISOLINUX bootloader is popular for distributions that release a LiveDVD version.
The bootloader requires two files: isolinux.bin, which contains the bootloader program
image, and isolinux.cfg, which contains the configuration settings.

F IGURE 5 .1   Editing an Ubuntu GRUB2 menu entry

146  Chapter 5  ■  Explaining the Boot Process

The PXELINUX bootloader uses the Pre-boot eXecution Environment (PXE) standard,
which defines how a network workstation can boot and load an operating system from a
central network server. PXE uses DHCP to assign a network address to the workstation and
BOOTP to load the bootloader image from the server. The network server must support the
TFTP protocol to transfer the boot image file to the workstation.

To utilize PXELINUX, the TFTP server needs to have the PXELINUX bootloader
program, stored as /tftpboot/pxelinux.0, available for the workstations to down-
load. Each workstation must also have a configuration file available in the /tftpboot/
pxelinux.cfg directory. The files are named based on the MAC address of the workstation
and contain specific configuration settings required for that workstation.

Although PXE was designed to use TFTP to load the boot image, it has
been modified to also load the bootloader image stored on a network
server using NFS, HTTP, or even FTP.

System Recovery
There’s nothing worse than starting up your Linux system and not getting a login prompt.
Plenty of things can go wrong in the Linux startup process, but most issues come down to
two categories:

■■ Kernel failures

■■ Drive failures

The following sections walk through some standard troubleshooting practices you can
follow to attempt to recover a Linux system that fails to boot.

Kernel Failures
Kernel failures are when the Linux kernel stops running in memory, causing the Linux
system to crash. This is commonly referred to as a kernel panic. Kernel panics often are a
result of a software change, such as installing a new kernel without the appropriate module
or library changes or starting (or stopping) a program at a new runlevel. Often these types of
boot errors can be fixed by starting the system using an alternative method and editing the
necessary files to change the system.

Selecting Previous Kernels at Boot
One of the biggest culprits to a failed boot is when you upgrade the Linux kernel, either on
your own or from a packaged distribution upgrade. When you install a new kernel file, it’s
always a good idea to leave the old kernel file in place and create an additional entry in the
GRUB boot menu to point to the new kernel.

System Recovery  147

By creating multiple kernel entries in the GRUB boot menu, you can select which kernel
version to boot. If the new kernel fails to boot properly, you can reboot and select the older
kernel version.

Most Linux distributions do this automatically when adding a new kernel, keeping the
most recent older kernel available in the boot menu, as shown in Figure 5.2.

Single-User Mode
At times you may need to perform some type of system maintenance, such as adding a new
hardware module or library file to get the system to boot properly. In these situations, you
want the system to boot up without allowing multiple users to connect, especially in a server
environment. This is called single-user mode.

The GRUB menu allows you to start the system in single-user mode by adding the single
command to the linux line in the boot menu commands. To get there, press the E key on the
boot option in the GRUB boot menu.

When you add the single command, the system will boot into runlevel 1 (or for
systems using the Systemd startup method, the runlevel-1 target), which creates a single
login for the root user account. Once you log in as the root user account, you can modify the
appropriate modules, init scripts, or GRUB boot menu options necessary to get your system
started correctly.

Passing Kernel Parameters
Besides the single-user mode trick, you can add other kernel parameters to the linux
command in the GRUB boot menu. The kernel accepts parameters that alter the hardware
modules it activates or the hardware settings it looks for with specific devices (this is

F IGURE 5 .2   The Rocky Linux Grub boot menu with multiple kernel options

148  Chapter 5  ■  Explaining the Boot Process

especially true for sound and network cards). You can specify the different hardware settings
as additional parameters to the kernel in the linux command and then boot from that entry
in the GRUB menu.

Root Drive Failure
Perhaps the worst feeling for a Linux system administrator is seeing that the bootloader
can’t read the root drive device. However, this type of error may not be fatal, because it is
sometimes possible to recover from a corrupted root drive.

Using a Rescue Disk
Many Linux distributions provide a rescue disk for when fatal disk errors occur. The rescue
disk usually boots either from the CD drive or as a USB stick and loads a small Linux system
into memory. Since the Linux system runs entirely in memory, it can leave all of the work-
station hard drives free for examination and repair. From the system command-line prompt,
you can perform some diagnostic and repair tasks on your system hard drives.

The tool of choice for checking and fixing hard drive errors is the fsck command. The
fsck command isn’t a program; it’s an alias for a family of commands specific to differ-
ent types of filesystems (such as ext2, ext3, and ext4). You need to run the fsck command
against the device name of the partition that contains the root directory of your Linux
system. For example, if the root directory is on the /dev/sda1 partition, you’d run the fol-
lowing command:

fsck /dev/sda1

The fsck command will examine the inode table along with the file blocks stored on
the hard drive and attempt to reconcile them. If any errors occur, you will be prompted
on whether to repair them or not. If there are a lot of errors on the partition, you can add
the -y parameter to automatically answer yes to all the repair questions. After a successful
repair, it’s a good idea to run the fsck command once more to ensure that all errors have
been found and corrected. Continue running the fsck command until you get a clean run
with no errors.

Mounting a Root Drive
When the fsck repair is complete, you can test the repaired partition by mounting it into the
virtual directory created in memory. Just use the mount command to mount it to an available
mount directory:

mount /dev/sda1 /media

You can examine the filesystem stored in the partition to ensure that it’s not corrupted.
Before rebooting, you should unmount the partition using the umount command:

umount /dev/sda1

After successfully unmounting the partition, you can reboot your Linux system using the
standard bootloader and attempt to boot using the standard kernel and runlevels.

System Recovery  149

While booting Linux in single-user mode isn’t used all that often, it comes in handy to
know how to do it “just in case.” Exercise 5.1 walks though the steps to help you get some
practice in booting up a Linux system in single user mode.

E X E R C I S E 5 . 1  

Using Rescue Mode

This exercise will demonstrate how to start your Linux distribution in single-user mode
to examine filesystems and configurations without performing a complete bootup. To use
single-user mode, follow these steps:

1.	 First, start your Linux distribution as normal, and log in on the standard login prompt
(either the graphical desktop or the command-line login) as your normal user account.

2.	 Type runlevel to determine the default runlevel for your system. The first character
returned refers to the previous runlevel (N denotes no previous runlevel since the
system booted). The second character is the current runlevel. This is likely to be 2 on
Debian-based systems or 3 on command-line Red Hat–based systems or 5 on graphical
desktop Red Hat–based systems.

3.	 Now reboot your system, and press an arrow key when the GRUB2 menu appears
to stop the countdown timer. If you’re using a Linux distribution that hides the
GRUB2 menu (such as Ubuntu), hold down the Shift key when the system boots to
display the GRUB2 menu.

4.	 At the GRUB2 menu, use the arrow keys to go to the default menu entry (usually the
first entry in the list) and then press the E key. This takes GRUB2 into edit mode.

5.	 Look for either the linux or linux16 menu command lines. These define the kernel used
to start the session.

6.	 Go to the end of the linux or the linux16 line, and add the word single. Press Ctrl+X to
temporarily save the change and start your system using that menu entry.

7.	 The Linux system will boot into single-user mode. Depending on your Linux distribu-
tion, it may prompt you to enter the root user account or to press Ctrl+D to continue
with the normal boot. Enter the root user account password to enter single-user mode.

8.	 Now you are at the root user command prompt. Enter the command runlevel to view
the current runlevel. It should show runlevel 1. From here you can modify configuration
files, check filesystems, and change user accounts.

9.	 Reboot the system by typing reboot.

10.	 You should return to the standard boot process and GRUB2 menu options as before.
Select the standard GRUB2 menu option to boot your system and then log in.

11.	 At a command-line prompt, type runlevel to ensure that you are back to the normal
default runlevel for your Linux system.

150  Chapter 5  ■  Explaining the Boot Process

Summary
Although Linux distributions are designed to boot without any user intervention, it helps
to know the Linux boot process in case anything does go wrong. Most Linux systems use
either the GRUB Legacy or GRUB2 bootloader program. These programs both reside in the
BIOS Master Boot Record or in the ESP partition on UEFI systems. The bootloader loads the
Linux kernel program, which then runs the SysV init or Systemd programs to start individual
background programs required for the Linux system.

No discussion on Linux startup is complete without examining system recovery methods.
If your Linux system fails to boot, the most likely cause is either a kernel issue or a root
device issue. For kernel issues, you can often modify the GRUB menu to add additional
kernel parameters, or even boot from an older version of the kernel. For root drive issues
you can try to boot from a rescue mode into a version of Linux running in memory and then
use the fsck command to repair a damaged root drive.

Exam Essentials
Describe the Linux boot process.   The BIOS or UEFI starts a bootloader program from
the Master Boot Record, which is usually the Linux GRUB Legacy or GRUB2 program. The
bootloader program loads the Linux kernel into memory, which in turn looks for the init
program to run. The init program starts individual application programs and starts either
the command-line terminals or the graphical desktop manager.

Describe the Linux GRUB Legacy and GRUB2 bootloaders.   The GRUB Legacy boot-
loader stores files in the /boot/grub folder and uses the menu.lst or grub.conf config-
uration file to define commands used at boot time. The commands can create a boot menu,
allowing you to select between multiple boot locations, options, or features. You must use
the grub-install program to install the GRUB Legacy bootloader program into the
Master Boot Record. The GRUB2 bootloader also stores files in the /boot/grub folder, but
it uses the grub.cfg configuration file to define the menu commands. You don’t edit the
grub.cfg file directly but instead store files in the /etc/default/grub file or individual
configuration files in the /etc/grub.d folder. Run the grub-mkconfig program to gen-
erate the GRUB2 configuration from the configuration files and then redirect the output to
the /etc/grub.cfg file.

Describe alternative Linux bootloaders.   The LILO bootloader is used on older Linux sys-
tems. It uses the /etc/lilo.conf configuration file to define the boot options. The Sys-
linux project has created the most popular alternative Linux bootloaders. The SYSLINUX
bootloader provides a bootloader that runs on FAT filesystems, such as floppy disks and
USB memory sticks. The ISOLINUX bootloader is popular on LiveCD distributions, as it
can boot from a CD or DVD. It stores the bootloader program in the isolinux.bin file
and configuration settings in the isolinux.cfg file. The PXELINUX bootloader program

Exam Essentials  151

allows a network workstation to boot from a network server. The server must contain the
pxelinux.0 image file along with the pxelinux.cfg directory, which contains separate
configuration files for each workstation. The EXTLINUX bootloader is a small bootloader
program that can be used on smaller embedded Linux systems.

Describe how to recover from a kernel panic.   The GRUB bootloaders provide you with
options that can help if your Linux system fails to boot or stops due to a kernel panic issue.
You can press the E key at the GRUB boot menu to edit any boot menu entry, then add any
additional kernel parameters, such as placing the system in single-user mode. You can also
use a rescue disk to boot Linux into memory, then use the fsck command to repair any cor-
rupted hard drives, and finally use the mount command to mount them to examine the files.

152  Chapter 5  ■  Explaining the Boot Process

Review Questions
1.	 What program does the workstation firmware start at boot time?

A.	 A bootloader

B.	 The fsck program

C.	 The Windows OS

D.	 The mount command

E.	 The mkinitrd program

2.	 Where does the firmware first look for a Linux bootloader program?

A.	 The /boot/grub folder

B.	 The Master Boot Record (MBR)

C.	 The /var/log folder

D.	 A boot partition

E.	 The /etc folder

3.	 The ______ command allows us to examine the most recent boot messages.

A.	 fsck
B.	 init
C.	 mount
D.	 dmesg
E.	 mkinitrd

4.	 What folder do most Linux distributions use to store boot logs?

A.	 /etc
B.	 /var/messages
C.	 /var/log
D.	 /boot
E.	 /proc

5.	 Where does the workstation BIOS attempt to find a bootloader program? (Choose all
that apply.)

A.	 An internal hard drive

B.	 An external hard drive

C.	 A DVD drive

D.	 A USB memory stick

E.	 A network server

Review Questions  153

6.	 Where is the Master Boot Record located? (Choose all that apply.)

A.	 The first sector of the first hard drive on the system

B.	 The boot partition of any hard drive on the system

C.	 The last sector of the first hard drive on the system

D.	 Any sector on any hard drive on the system

E.	 The first sector of the second hard drive on the system

7.	 The EFI System Partition (ESP) is stored in the _______ directory on Linux systems.

A.	 /boot
B.	 /etc
C.	 /var
D.	 /boot/efi
E.	 /boot/grub

8.	 What file extension do UEFI bootloader files use?

A.	 .cfg
B.	 .uefi
C.	 .lst
D.	 .conf
E.	 .efi

9.	 Which was the first bootloader program used in Linux?

A.	 GRUB Legacy

B.	 LILO

C.	 GRUB2

D.	 SYSLINUX

E.	 ISOLINUX

10.	 Where are the GRUB Legacy configuration files stored?

A.	 /boot/grub
B.	 /boot/efi
C.	 /etc
D.	 /var
E.	 /proc

11.	 Where are GRUB2 configuration files stored? (Choose all that apply.)

A.	 /proc
B.	 /etc/grub.d
C.	 /boot/grub
D.	 /boot/efi
E.	 /var

154  Chapter 5  ■  Explaining the Boot Process

12.	 You must run the ______ command to generate the GRUB2 grub.cfg configuration file.

A.	 mkinitrd
B.	 mkinitramfs
C.	 grub-mkconfig
D.	 grub-install
E.	 fsck

13.	 What command must you run to save changes to a GRUB Legacy boot menu?

A.	 mkinitrd
B.	 mkinitramfs
C.	 grub-mkconfig
D.	 grub-install
E.	 fsck

14.	 The ____ firmware method has replaced BIOS on most modern IBM-compatible computers.

A.	 FTP

B.	 UEFI

C.	 PXE

D.	 NFS

E.	 HTTPS

15.	 What memory area does Linux use to store boot messages?

A.	 BIOS

B.	 The GRUB bootloader

C.	 The MBR

D.	 The initrd RAM disk

E.	 The kernel ring buffer

16.	 What command parameter would you add to the end of the GRUB2 linux command to force
a Linux system to start in single-user mode?

A.	 single
B.	 fsck
C.	 mkinitrd
D.	 mkinitramfs
E.	 dmesg

17.	 What is the term commonly used for when the Linux system halts due to a system error?

A.	 Kernel panic

B.	 Kernel ring buffer

C.	 initrd RAM disk

D.	 Bootloader

E.	 Firmware

Review Questions  155

18.	 The ________ command generates the GRUB2 configuration used for booting.

A.	 mkinitrd
B.	 grub-mkconfig
C.	 grub-install
D.	 mkinitramfs
E.	 dmesg

19.	 What program allows you to fix corrupted hard drive partitions?

A.	 mount
B.	 umount
C.	 fsck
D.	 dmesg
E.	 mkinitrd

20.	 Which command allows you to append a partition to the virtual directory on a running
Linux system?

A.	 mount
B.	 umount
C.	 fsck
D.	 dmesg
E.	 mkinitramfs

Maintaining System
Startup and Services

✓✓ Objective 1.4: Given a scenario, configure and use the
appropriate processes and services

✓✓ Objective 4.5: Given a scenario, use systemd to diagnose
and resolve common problems with a Linux system

Chapter

6

After your Linux system has traversed the boot process, it
enters final system initialization, where it needs to start various
services. A service, or daemon, is a program that performs a

particular duty. Several services were covered in Chapter 2, “Introduction to Services.”
The initialization daemon (init) determines which services are started and in what order.

This daemon also allows you to stop and manage the various system services.
The SysV init (SysV) was based on the Unix System V initialization daemon. While it’s

not used by many major Linux distributions anymore, you still may find it lurking around
that older Linux server at your company.

The systemd initialization method is the new kid on the block. Started around 2010, it
is now the most popular system service initialization and management mechanism. This
daemon reduces initialization time by starting services in a parallel manner.

Beyond initialization, these daemons are also responsible for managing these services well
past boot time. We’ll explore these concepts in this chapter.

Looking at init
Before we start examining the various service management methods, it’s a good idea to
take a look at the init program itself. Classically, service startups are handled by the init
program. This program can be located in the /etc/, the /bin/, or the /sbin/ directory.
Also, it typically has a process ID (PID) of 1.

The init program or systemd is the parent process for every service on a Linux system.
If your system has the pstree program installed, you can see a diagram depicting this rela-
tionship by typing in pstree -p 1 at the command line.

This information will assist you in determining which system initialization method your
current Linux distribution is using, systemd or SysV init. First find the init program’s loca-
tion, using the which command. An example is shown in Listing 6.1.

Listing 6.1  Finding the init program file location

which init
/sbin/init
#

Now that you know the init program’s location, using super user privileges, you can use
the readlink -f command to see if the program is linked to another program, as shown in
Listing 6.2.

Managing systemd Systems  159

Listing 6.2  Checking the init program for links

readlink -f /sbin/init
/usr/lib/systemd/systemd
#

You can see in Listing 6.2 that this system is actually using systemd. You can verify this
by taking a look at PID 1, as shown in Listing 6.3.

Listing 6.3  Checking PID 1

ps -p 1
 PID TTY TIME CMD
 1 ? 00:00:06 systemd
#

In Listing 6.3, the ps utility is used. This utility allows you to view processes. A process is
a running program. The ps command shows you what program is running for a particular
process in the CMD column. In this case, the systemd program is running. Thus, this Linux
system is using systemd.

Keep in mind that these discovery methods are not foolproof. Also, there are other system
initialization methods, such as the now-defunct Upstart. The following brief list shows a few
Linux distribution versions that used Upstart:

■■ Fedora v9–v14

■■ openSUSE v11.3–v12.2

■■ RHEL v6

■■ Ubuntu v6.10–v15.04

If you are using the distribution versions recommended in Chapter 1, “Preparing Your
Environment,” be aware that those distributions are all systemd systems.

Managing systemd Systems
The systemd approach introduced a major paradigm shift in how Linux systems manage ser-
vices. Services can now be started when the system boots, when a particular hardware com-
ponent is attached to the system, when certain other services are started, and so on. Some
services can be started based on a timer.

In the following sections, we’ll focus on starting, stopping, and controlling systemd
managed services. We’ll walk you through the systemd technique’s structures, commands,
and configuration files.

160  Chapter 6  ■  Maintaining System Startup and Services

Exploring Unit Files
The easiest way to start exploring systemd is through the systemd units. A unit defines a ser-
vice, a group of services, or an action. Each unit consists of a name, a type, and a configura-
tion file. There are currently 12 different systemd unit types, as follows:

■■ automount

■■ device

■■ mount

■■ path

■■ scope

■■ service

■■ slice

■■ snapshot

■■ socket

■■ swap

■■ target

■■ timer

The systemctl utility is the main gateway to managing systemd and system services. Its
basic syntax is as follows:

systemctl [OPTIONS...] COMMAND [NAME...]

You can use the systemctl utility to provide a list of the various units currently loaded
in your Linux system. A snipped example is shown in Listing 6.4.

Listing 6.4  Looking at systemd units

$ systemctl list-units
UNIT LOAD ACTIVE SUB DESCRIPTION
[...]
smartd.service loaded active running Self Monitor[...]
sshd.service loaded active running OpenSSH serv[...]
sysstat.service loaded active exited Resets Syste[...]
[...]
graphical.target loaded active active Graphical I[...]
[...]
$

In Listing 6.4 you can see various units as well as additional information. Units are iden-
tified by their name and type using the format name.type. System services (daemons) have
unit files with the .service extension. Thus, the secure shell (SSH) daemon, sshd, has a
unit filename of sshd.service.

Managing systemd Systems  161

Many displays from the systemctl utility use the less pager by default.
Thus, to exit the display, you must press the Q key. If you want to turn
off the systemctl utility’s use of the less pager, tack the ––no-pager
option on the command.

Groups of services are started via target unit files. At system startup, the default.target
unit is responsible for ensuring that all required and desired services are launched at system
initialization. It is set up as a symbolic link to another target unit file, as shown in Listing 6.5
on an Ubuntu distribution.

Listing 6.5  Looking at the default.target link

$ find / -name default.target 2>/dev/null
/usr/lib/systemd/system/default.target
[...]
$ readlink -f /usr/lib/systemd/system/default.target
/usr/lib/systemd/system/graphical.target
$ systemctl get-default
graphical.target
$

First, in Listing 6.5, the default.target unit’s full filename is located via the
find utility. The readlink command is then employed to find the actual target file,
which determines what services to start at system boot. In this case, the target unit file is
graphical.target.

Also notice in Listing 6.5 that the systemctl command is much easier to use than the
other two commands. It is simply systemctl get-default, and it displays the actual
target file. Due to the default.target file being located in different directories on the dif-
ferent distros, it is always best to use the systemctl utility. Table 6.1 shows the more com-
monly used system boot target unit files.

TABLE 6 .1   Commonly used system boot target unit files

Name Description

graphical
.target

Provides multiple users access to the system via local terminals and/or
through the network. Graphical user interface (GUI) access is offered.

multi-user
.target Provides multiple users access to the system via local terminals and/or

through the network. No GUI access is offered.

network-online
.target Provides a target that runs after the system has established a connec-

tion to the network. This is useful for starting applications that require
the network to be present.

runleveln
.target Provides backward compatibility to SysV init systems, where n is set to

1–5 for the desired SysV runlevel equivalence.

162  Chapter 6  ■  Maintaining System Startup and Services

In Table 6.1, you’ll notice that systemd provides backward compatibility to the classic
SysV init systems. The SysV runlevels will be covered later in this chapter.

The master systemd configuration file is the /etc/systemd/system.
conf file. In this file you will find all the default configuration settings
commented out via a hash mark (#). Viewing this file is a quick way to see
the current systemd configuration. If you need to modify the configura-
tion, just edit the file. However, it would be wise to peruse the file’s man
page first by typing man systemd-system.conf at the command line.

Focusing on Service Unit Files
Service unit files contain information, such as which environment file to use, when a service
must be started, what targets want this service started, and so on. These configuration files
are located in different directories.

Keep in mind that a unit configuration file’s directory location is critical, because if a file
is found in two different directory locations, one will have precedence over the other. The
following list shows the directory locations in ascending priority order:

1.	 /etc/systemd/system/

2.	 /run/systemd/system/

3.	 /usr/lib/systemd/system/

To see the various service unit files available, you can again employ the systemctl
utility. However, a slightly different command is needed than when viewing units, as shown
in Listing 6.6.

Listing 6.6  Looking at systemd unit files

$ systemctl list-unit-files
UNIT FILE STATE
[...]
dev-hugepages.mount static
dev-mqueue.mount static
proc-fs-nfsd.mount static
[...]
nfs.service disabled
nfslock.service static
ntpd.service disabled
ntpdate.service disabled
[...]
ctrl-alt-del.target disabled
default.target static
emergency.target static
[...]
$

Managing systemd Systems  163

Besides the unit file’s base name, you can also see a unit file’s state in Listing 6.6. Their
states are called enablement states and refer to when the service is started. There are at least
12 different enablement states, but you’ll commonly see these three:

■■ enabled: Service starts at system boot.

■■ disabled: Service does not start at system boot.

■■ static: Service starts if another unit depends on it. Can also be manually started.

To see what directory or directories store a particular systemd unit file(s), use the systemctl
utility. An example on an Ubuntu distribution is shown in Listing 6.7.

Listing 6.7  Finding and displaying a systemd unit file

$ systemctl cat cron.service
/lib/systemd/system/cron.service
[Unit]
Description=Regular background program processing daemon
Documentation=man:cron(8)
After=remote-fs.target nss-user-lookup.target

[Service]
EnvironmentFile=-/etc/default/cron
ExecStart=/usr/sbin/cron -f $EXTRA_OPTS
IgnoreSIGPIPE=false
KillMode=process
Restart=on-failure

[Install]
WantedBy=multi-user.target
$

Notice in Listing 6.7 that the first displayed line shows the cron.service unit file’s base
name and directory location. The next several lines are the unit configuration file’s contents.

For service unit files, there are three primary configuration sections:

■■ [Unit]
■■ [Service]
■■ [Install]

Within the service unit configuration file’s [Unit] section, there are basic directives. A
directive is a setting that modifies a configuration, such as the After setting shown in List-
ing 6.7. Commonly used [Unit] section directives are described in Table 6.2.

164  Chapter 6  ■  Maintaining System Startup and Services

There is a great deal of useful information in the man pages for systemd
and unit configuration files. Just type man -k systemd to find several
items you can explore. For example, explore the service type unit file
directives and more with the man systemd.service command. You
can find information on all the various directives by typing man systemd.
directives at the command line.

The [Service] directives within a unit file set configuration items, which are specific to
that service. Commonly used [Service] section directives are described in Table 6.3.

TABLE 6 .3   Commonly used service unit file [Service] section directives

Directive Description

ExecReload Indicates scripts or commands (and options) to run when unit is
reloaded.

ExecStart Indicates scripts or commands (and options) to run when unit is
started.

ExecStop Indicates scripts or commands (and options) to run when unit is
stopped.

Environment Sets environment variable substitutes, separated by a space.

TABLE 6 .2   Commonly used service unit file [Unit] section directives

Directive Description

After Sets this unit to start after the designated units.

Before Sets this unit to start before the designated units.

Description Describes the unit.

Documen
tation

Sets a list of Uniform Resource Identifiers (URIs) that point to documentation
sources. The URIs can be web locations, particular system files, info pages,
and man pages.

Conflicts Sets this unit to not start with the designated units. If any of the designated
units start, this unit is not started. (Opposite of Requires.)

Requires Sets this unit to start together with the designated units. If any of the designated
units do not start, this unit is not started. (Opposite of Conflicts.)

Wants Sets this unit to start together with the designated units. If any of the
designated units do not start, this unit is still started.

Managing systemd Systems  165

The [Service] Type directive needs a little more explanation than what is given in
Table 6.3. This directive can be set to at least six different specifications, of which the most
typical are listed here:

■■ forking: ExecStart starts a parent process. The parent process creates the service’s
main process as a child process and exits.

■■ simple: (Default) ExecStart starts the service’s main process.

■■ oneshot: ExecStart starts the service’s main process, which is typically a configura-
tion setting or a quick command, and the process exits.

■■ idle: ExecStart starts the service’s main process, but it waits until all other start jobs
are finished.

You will only find a unit file [Service] section in a service unit file. This
middle section is different for each unit type. For example, in auto mount
unit files, you would find an [Automount] section as the middle unit file
section.

Another [Service] configuration setting that needs additional explanation is the
Environment directive. Linux systems use a feature called environment variables to store
information about the shell session and working environment (thus the name environment
variable). If you want to ensure that a particular environment variable is set properly for
your service, you will want to employ the Environment directive. A snipped example on a
Rocky Linux distribution is shown in Listing 6.8.

Listing 6.8  Viewing a service unit file’s Environment directive

$ echo $PATH
/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:[...]
$

Directive Description

Environment File Indicates a file that contains environment variable substitutes.

RemainAfterExit Set to either no (default) or yes. If set to yes, the service is left active
even when the process started by ExecStart terminates. If set to
no, then ExecStop is called when the process started by ExecStart
terminates.

Restart Service is restarted when the process started by ExecStart ter-
minates. Ignored if a systemctl restart or systemctl stop
command is issued. Set to no (default), on-success, on-failure,
on-abnormal, on-watchdog, on-abort, or always.

Type Sets the startup type.

166  Chapter 6  ■  Maintaining System Startup and Services

$ systemctl ––no-pager cat anaconda.service
/usr/lib/systemd/system/anaconda.service
[Unit]
Description=Anaconda
[...]
[Service]
Type=forking
Environment=HOME=/root MALLOC_CHECK_=2 MALLOC_PERTURB_=204 PATH=/usr/bin:/
bin:/sbin:/usr/sbin:/mnt/sysimage/bin: [...]
LANG=en_US.UTF-8 [...]
[...]
$

In Listing 6.8, you can see that the PATH environment variable’s contents are displayed.
This environment variable is a colon-separated list of directories where the process looks
for commands. The anaconda.service unit file uses the Environment directive to set
particular environment variables to its own desired environment parameters. These parame-
ters are separated by a space. You can see in Listing 6.8 that one of those parameters set by
the Environment directive is PATH.

Some service type unit files use the EnvironmentFile directive, instead
of the Environment directive. This directive points to a file containing
environment parameters. The cron.service unit file shown in Listing 6.7
does just that.

The [Install] directives within a unit file determine what happens to a particular ser-
vice if it is enabled or disabled. An enabled service is one that starts at system boot. A dis-
abled service is one that does not start at system boot. Commonly used [Install] section
directives are described in Table 6.4.

TABLE 6 .4   Commonly used service unit file [Install] section directives

Directive Description

Alias Sets additional names that can be used to denote the service in systemctl
commands.

Also Sets additional units that must be enabled or disabled for this service. Often
the additional units are socket type units.

RequiredBy Designates other units that require this service.

WantedBy Designates which target unit manages this service.

Managing systemd Systems  167

Focusing on Target Unit Files
For systemd, you need to understand the service unit files as well as the target unit files. The
primary purpose of target unit files is to group together various services to start at system
boot time. The default target unit file, default.target, is symbolically linked to the target
unit file used at system boot. In Listing 6.9, the default target unit file is located and dis-
played using the systemctl command.

Listing 6.9  Finding and displaying the systemd target unit file

$ systemctl get-default
graphical.target
$
$ systemctl cat graphical.target
/usr/lib/systemd/system/graphical.target
[...]
[Unit]
Description=Graphical Interface
Documentation=man:systemd.special(7)
Requires=multi-user.target
Wants=display-manager.service
Conflicts=rescue.service rescue.target
After=multi-user.target rescue.service rescue.target display-manager.service
AllowIsolate=yes
$

Notice in Listing 6.9 that the graphical.target unit file has many of the same direc-
tives as a service unit file. These directives were described back in Table 6.2. Of course, these
directives apply to a target type unit file instead of a service type unit file. For example, the
After directive in the graphical.target unit file sets this target unit to start after the
designated units, such as multi-user.target. Target units, similar to service units, have
various target dependency chains as well as conflicts.

In Listing 6.9, there is one directive we have not covered yet. The AllowIsolate
directive, if set to yes, permits this target file to be used with the systemctl isolate
command. This command is covered later in this chapter.

Modifying Systems Configuration Files

Occasionally you may need to change a particular unit configuration file for your Linux
system’s requirements or add additional components. However, be careful when doing this
task. You should not modify any unit files in the /lib/systemd/system/ or /usr/lib/
systemd/system/ directory.

168  Chapter 6  ■  Maintaining System Startup and Services

To modify a unit configuration file, copy the file to the /etc/systemd/system/ directory
and modify it there. This modified file will take precedence over the original unit file left in
the original directory. Also, it will protect the modified unit file from software updates.

If you just have a few additional components, you can extend the configuration. Using
super user privileges, create a new subdirectory in the /etc/systemd/system/ directory
named service.service-name.d, where service-name is the service’s name. For
example, for the OpenSSH daemon, you would create the /etc/systemd/system/
service.sshd.d directory. This newly created directory is called a drop-in file directory,
because you can drop in additional configuration files. Create any configuration files with
names like description.conf, where description describes the configuration file’s
purpose, such as local or script. Add your modified directives to this configuration file.

After making these modifications, there are a few more needed steps. Find and compare
any unit file that overrides another unit file by issuing the systemd-delta command. It
will display any unit files that are duplicated, extended, redirected, and so on. Review this
list. It will help you avoid any unintended consequences from modifying or extending a ser-
vice unit file.

To have your changes take effect, issue the systemctl daemon-reload command for
the service whose unit file you modified or extended. After you accomplish that task, issue
the systemctl restart command to start or restart the service. These commands are
explained in the next section.

Looking at systemctl
You may have noticed that while there are various commands to manage systemd and
system services, it is easier and faster to employ the systemctl utility.

There are several basic systemctl commands available for you to manage system services.
One that is often used is the status command. It provides a wealth of information. A couple
of snipped examples on an Ubuntu distro are shown in Listing 6.10.

Listing 6.10  Viewing a service unit’s status via systemctl

$ systemctl status cron
 cron.service - Regular background program processing daemon
 Loaded: loaded (/lib/systemd/system/cron.service; disabled; vendor
preset: >
 Active: inactive (dead) since Sat 2021-11-20 14:28:12 EST; 5s ago
 Docs: man:cron(8)
 Process: 593 ExecStart=/usr/sbin/cron -f $EXTRA_OPTS (code=killed,
signal=T>
 Main PID: 593 (code=killed, signal=TERM)

Managing systemd Systems  169

Nov 20 14:13:44 ubuntu20 systemd[1]: Started Regular background program
process>
Nov 20 14:13:44 ubuntu20 cron[593]: (CRON) INFO (pidfile fd = 3)
Nov 20 14:13:44 ubuntu20 cron[593]: (CRON) INFO (Running @reboot jobs)
Nov 20 14:17:01 ubuntu20 CRON[2329]: pam_unix(cron:session): session opened
for>
Nov 20 14:17:01 ubuntu20 CRON[2330]: (root) CMD (cd / & & run-parts
--report >
Nov 20 14:17:01 ubuntu20 CRON[2329]: pam_unix(cron:session): session closed
for>
Nov 20 14:28:12 ubuntu20 systemd[1]: Stopping Regular background program
proces>
Nov 20 14:28:12 ubuntu20 systemd[1]: cron.service: Succeeded.
Nov 20 14:28:12 ubuntu20 systemd[1]: Stopped Regular background program
process>
$ systemctl status sshd
 ssh.service - OpenBSD Secure Shell server
 Loaded: loaded (/lib/systemd/system/ssh.service; enabled; vendor preset: e>
 Active: active (running) since Sat 2021-11-20 14:13:45 EST; 12min ago
 Docs: man:sshd(8)
 man:sshd_config(5)
 Main PID: 686 (sshd)
 Tasks: 1 (limit: 9469)
 Memory: 2.3M
 CGroup: /system.slice/ssh.service
 └686 sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups

Nov 20 14:13:44 ubuntu20 systemd[1]: Starting OpenBSD Secure Shell server...
Nov 20 14:13:45 ubuntu20 sshd[686]: Server listening on 0.0.0.0 port 22.
Nov 20 14:13:45 ubuntu20 sshd[686]: Server listening on :: port 22.
Nov 20 14:13:45 ubuntu20 systemd[1]: Started OpenBSD Secure Shell server.
$

In Listing 6.10, the first systemctl command shows the status of the cron service.
Notice the third line in the utility’s output. It states that the service is disabled. The fourth
line states that the service is inactive. In essence, this means that the cron service is not
running (inactive) and is not configured to start at system boot time (disabled). Another
item to look at within the cron service’s status is the Loaded line. Notice that the unit file’s
complete filename and directory location are shown.

The status of the sshd service is also displayed, showing that sshd is running (active) and
configured to start at system boot time (enabled).

170  Chapter 6  ■  Maintaining System Startup and Services

There are several simple commands you can use with the systemctl utility to manage
systemd services and view information regarding them. Common commands are listed in
Table 6.5. These systemctl commands generally use the following syntax:

systemctl COMMAND UNIT-NAME...

Notice the difference in Table 6.5 between the daemon-reload and the reload
command. This is an important difference. Use the daemon-reload command if you
need to load systemd unit file configuration changes for a running service. Use the reload
command to load a service’s modified configuration file. For example, if you modified the
ntpd service’s configuration file, /etc/ntp.conf, and wanted the new configuration to
take immediate effect, you would issue the command systemctl reload ntpd at the
command line.

TABLE 6 .5   Commonly used systemctl service management commands

Command Description

daemon-
reload

Load the unit configuration file of the running designated unit(s) to make unit
file configuration changes without stopping the service. Note that this is differ-
ent from the reload command.

disable Mark the designated unit(s) to not be started automatically at system boot time.

enable Mark the designated unit(s) to be started automatically at system boot time.

mask Prevent the designated unit(s) from starting. The service cannot be started using
the start command or at system boot. Use the ––now option to immediately
stop any running instances as well. Use the ––running option to mask the ser-
vice only until the next reboot or unmask is used.

restart Stop and immediately restart the designated unit(s). If a designated unit is not
already started, this will simply start it.

start Start the designated unit(s).

status Display the designated unit’s current status.

stop Stop the designated unit(s).

reload Load the service configuration file of the running designated unit(s) to make
service configuration changes without stopping the service. Note that this is dif-
ferent from the daemon-reload command.

unmask Undo the effects of the mask command on the designated unit(s).

Managing systemd Systems  171

Use caution when employing the systemctl mask command on a ser-
vice. This links the service to the /dev/null (black hole) to prevent any
kind of service startup. This has been described as the “third level of off.”
You will not be able to start the service manually. Also, the service will
not start at boot time if you did not employ the ––running option when
you used mask on it. You can reenable the ability to start the service by
using the systemctl unmask command on it.

Besides the commands in Table 6.7, there are some other handy systemctl commands
you can use for managing system services. An example on a CentOS distro is shown in
Listing 6.11.

Listing 6.11  Determining if a service is running by using systemctl

systemctl stop sshd
#
systemctl is-active sshd
inactive
#
systemctl start sshd
#
systemctl is-active sshd
active
#

In Listing 6.11, the OpenSSH daemon (sshd) is stopped using systemctl and its stop
command. Instead of the status command, the is-active command is used to quickly
display that the service is stopped (inactive). The OpenSSH service is started back up and
again the is-active command is used, showing that the service is now running (active).
Table 6.6 describes these useful service status checking commands.

TABLE 6 .6   Convenient systemctl service status commands

Command Description

is-active Displays active for running services and failed for any service that has
reached a failed state

is-enabled Displays enabled for any service that is configured to start at system boot and
disabled for any service that is not configured to start at system boot

is-failed Displays failed for any service that has reached a failed state and active
for running services

172  Chapter 6  ■  Maintaining System Startup and Services

Services can fail for many reasons: for hardware issues, a missing dependency set in the
unit configuration file, an incorrect permission setting, and so on. You can employ the sys-
temctl utility’s is-failed command to see if a particular service has failed. An example is
shown in Listing 6.12.

Listing 6.12  Determining if a service has failed by using systemctl

$ systemctl is-failed NetworkManager-wait-online.service
failed
$
$ systemctl is-active NetworkManager-wait-online.service
failed
$

In Listing 6.12, you can see that this particular service has failed. Actually, it was a failure
forced by disconnecting the network cable prior to boot, so you could see a service’s failed
status. If the service was not in failed state, the is-failed command would show an
active status.

The systemctl program is a handy tool to use when troubleshooting systemd issues,
such as unit name resolution problems and services not starting on time. Since the systemd
startup method can control so many aspects of your Linux system, it’s a good idea to have a
handle on just what systemctl can do for you.

Examining Special systemd Commands
The systemctl utility has several commands that go beyond service management. Also,
systemd has some special commands. You can manage what targets (groups of services) are
started at system boot time, jump between various system states, and even analyze your sys-
tem’s boot time performance. We’ll look at these various commands in this section.

One special command to explore is the systemctl is-system-running command. An
example of this command is shown in Listing 6.13.

Listing 6.13  Determining a system’s operational status

$ systemctl is-system-running
running
$

You may think the status returned here is obvious, but it means all is well with your
Linux system currently. Table 6.7 shows other useful statuses.

Managing systemd Systems  173

The maintenance operational status will be covered shortly in this chapter. If you
receive degraded status, however, you should review your units to see which ones have
failed and take appropriate action. Use the systemctl ––failed command to find the
failed unit(s), as shown snipped in Listing 6.14.

Listing 6.14  Finding failed units

$ systemctl is-system-running
degraded
$
$ systemctl ––failed
 UNIT LOAD ACTIVE SUB DESCRIPTION
• rngd.service loaded failed failed Hardware RNG Entropy Gatherer Daemon
[...]
$

Other useful systemctl utility commands deal with obtaining, setting, and jumping the
system’s target. They are as follows:

■■ get-default
■■ set-default
■■ isolate

You’ve already seen the systemctl get-default command in action within List-
ing 6.5. This command displays the system’s default target. As you may have guessed, you
can set the system’s default target with super user privileges via the systemctl set-
target command.

TABLE 6 .7   Operational statuses provided by systemctl is-system-running

Status Description

running System is fully in working order.

degraded System has one or more failed units.

maintenance System is in emergency or recovery mode.

initializing System is starting to boot.

starting System is still booting.

stopping System is starting to shut down.

174  Chapter 6  ■  Maintaining System Startup and Services

The isolate command is handy for jumping between system targets. When this
command is used along with a target name for an argument, all services and processes not
enabled in the listed target are stopped. Any services and processes enabled and not running
in the listed target are started. A snipped example is shown in Listing 6.15.

Listing 6.15  Jumping to a different target unit

systemctl get-default
graphical.target
#
systemctl isolate multi-user.target
#
systemctl status graphical.target
[...]
 Active: inactive (dead) since Thu 2018-09-13 16:57:00 EDT; 4min 24s ago
 Docs: man:systemd.special(7)

Sep 13 16:54:41 localhost.localdomain systemd[1]: Reached target Graphical
In...
Sep 13 16:54:41 localhost.localdomain systemd[1]: Starting Graphical
Interface.
Sep 13 16:57:00 localhost.localdomain systemd[1]: Stopped target Graphical
In[...]
Sep 13 16:57:00 localhost.localdomain systemd[1]: Stopping Graphical
Interface.
[...]
#

In Listing 6.15, using super user privileges, the systemctl isolate command caused
the system to jump from the default system target to the multiuser target. Unfortunately,
there is no simple command to show your system’s current target in this case. However, the
systemctl status command is useful. If you use the command and give it the previous
target’s name (graphical.target in this case), you should see that it is no longer active
and thus is not the current system target. Notice that a short history of the graphical target’s
starts and stops is also shown in the status display.

The systemctl isolate command can only be used with certain tar-
gets. The target’s unit file must have the AllowIsolate=yes directive
set.

Two extra special targets are rescue and emergency. These targets, sometimes called
modes, are described here:

Rescue Target   When you jump your system to the rescue target, the system mounts
all the local filesystems, only the root user is allowed to log into the system, networking

Managing systemd Systems  175

services are turned off, and only a few other services are started. The systemctl is-
system-running command will return the maintenance status. Running disk utilities
to fix corrupted disks is a useful task in this particular target.

Emergency Target   When your system goes into emergency mode, the system only
mounts the root filesystem, and it mounts it as read-only. Similar to rescue mode, it only
allows the root user to log into the system, networking services are turned off, and only
a few other services are started. The systemctl is-system-running command will
return the maintenance status. If your system goes into emergency mode by itself, there
are serious problems. This target is used for situations where even rescue mode cannot
be reached.

Be aware that if you jump into either rescue or emergency mode, you’ll only be able to
log into the root account. Therefore, you need to have the root account password. Also, your
screen may go blank for a minute, so don’t panic. An example of jumping into emergency
mode is shown in Listing 6.16.

Listing 6.16  Jumping to the emergency target unit

systemctl isolate emergency
Welcome to emergency mode! After logging in, type "journalctl -xb" to view
system logs, "systemctl reboot" to reboot, "systemctl default" or ^D to
try again to boot into default mode.
Give root password for maintenance
(or type Control-D to continue):
#
systemctl is-system-running
maintenance
#
systemctl list-units ––type=target
UNIT LOAD ACTIVE SUB DESCRIPTION
emergency.target loaded active active Emergency Mode
[...]
#
systemctl default
#

In Listing 6.16, the systemctl command is used to jump into emergency mode. Notice
that you do not have to add the .target extension on the emergency target unit’s filename.
This is true with all systemd targets. Once you reach emergency mode, you must enter the
root password at the prompt. Once you reach the command line, you can enter commands
listed in the welcome display or try some additional systemctl commands.

176  Chapter 6  ■  Maintaining System Startup and Services

Other targets you can jump to include reboot, poweroff, and halt. For
example, just type systemctl isolate reboot to reboot your system.

Notice in Listing 6.16 that when the systemctl is-system-running command is
issued, the response is maintenance instead of running. Also, when the list-units
command is employed, it shows that the emergency.target is active. The systemctl
default command will cause the system to attempt to jump into the default target.

If you are using GRUB2 as your bootloader, you can reach a different
target via the bootloader menu. Just move your cursor to the menu
option that typically boots your system and press the E key to edit it.
Scroll down and find the line that starts with the linux16 command.
Press the End key to reach the line’s end. Press the spacebar and type
systemd.unit=target-name.target, where target-name is the name of
the target you want your system to activate. This is useful for emergency
situations.

A handy systemd component is the systemd-analyze utility. With this utility, you
can investigate your system’s boot performance and check for potential system initializa-
tion problems. Table 6.8 contains common commands you can use with the systemd-
analyze utility.

TABLE 6 .8   Common systemd-analyze commands

Command Description

blame Displays the amount of time each running unit took to initialize. Units and their
times are listed starting from the slowest to the fastest.

time Displays the amount of time system initialization spent for the kernel, and the
initial RAM filesystem, as well as the time it took for normal system user space
to initialize. (Default)

critical-
chain

Displays time-critical units in a tree format. Can pass it a unit file argument to
focus the information on that particular unit.

dump Displays information concerning all the units. The display format is subject to
change without notice, so it should be used only for human viewing.

verify Scans unit files and displays warning messages if any errors are found. Will
accept a unit file name as an argument, but follows directory location prece-
dence.

Managing systemd Systems  177

Be aware that some of the longer systemd-analyze displays are piped into the less
pager utility. You can turn that feature off by using the ––no-pager option. In Listing 6.17,
using super user privileges, a few of these systemd-analyze commands are shown
in action.

Listing 6.17  Employing the systemd-analyze utility

systemd-analyze verify
#
systemd-analyze verify sshd.service
#
systemd-analyze time
Startup finished in 665ms (kernel) +
3.285s (initrd) + 58.319s (userspace) = 1min 2.269s
#
systemd-analyze ––no-pager blame
 30.419s NetworkManager-wait-online.service
[...]
 4.848s kdump.service
 4.707s firewalld.service
 4.565s tuned.service
 4.390s libvirtd.service
 4.221s lvm2-monitor.service
[...]
 632ms NetworkManager.service
 607ms network.service
[...]
 9ms sys-kernel-config.mount
#

The first command used in Listing 6.17 allows you to check all your system’s unit files
for problems. The second one only checks the sshd.service unit file. If you just receive a
prompt back from those two commands, it indicates there were no errors found.

The third command in Listing 6.17 provides time information concerning your sys-
tem’s initialization. Note that you could leave off the time keyword, and the systemd-
analyze utility would still display the system initialization time because that is the default
utility action.

The last command in Listing 6.17 employs the blame command. This display starts with
those units that took the longest to initialize. At the bottom of the list are the units that ini-
tialized the fastest. It is a handy guide for troubleshooting initialization problems. Now if
only you could use systemd-analyze blame to analyze your friends who are always late.

178  Chapter 6  ■  Maintaining System Startup and Services

The systemd initialization approach is flexible and reliable for operating Linux systems
and their services. The preceding sections provided an overview of the methods and com-
mands for managing systemd initialized systems.

Managing SysV init Systems
Many server administrators have gone through the process of moving from a SysV init
system to a systemd system. Recall that systemd is backward compatible with SysV init, so
understanding SysV init is important.

First, if you want to experiment with the original SysV init commands without interfer-
ence from systemd or the now defunct Upstart, find a Linux distribution that uses the SysV
init initialization method. One way to find one is to visit the DistroWatch website and use
their search tool at https://distrowatch.com/search.php. Scroll down to the Search
by Distribution Criteria section, and for Init software, select SysV. Any Linux distributions
still using SysV init will display in the search results.

To get clean SysV init listings for this book, we used a blast from the Linux distribution
past, Fedora 7. To grab an ISO copy of this old distribution, visit https://archives.
fedoraproject.org/pub/archive/fedora/linux/releases.

Using any older and no-longer-supported Linux distribution can open up
your system to a whole host of problems. If you do choose to take this
risk, minimize your exposure by putting the Linux distribution in a virtual-
ized environment; do not install any network interface cards (NICs) for the
virtual machine, and turn off access to the host machine’s filesystem.

The next section should provide you with enough of a SysV init understanding to help in
the Linux server migration process to systemd.

Understanding Runlevels
At system boot time, instead of targets to determine what groups of services to start, SysV
init uses runlevels. These runlevels are defined in Table 6.9 and Table 6.10. Notice that dif-
ferent distributions use different runlevel definitions.

TABLE 6 .9   Red Hat–based distribution SysV init runlevels

Runlevel Description

0 Shut down the system.

1, s, or S Single-user mode used for system maintenance.

2 Multiuser mode without networking services enabled.

3 Multiuser mode with networking services enabled.

https://distrowatch.com/search.php
https://archives.fedoraproject.org/pub/archive/fedora/linux/releases
https://archives.fedoraproject.org/pub/archive/fedora/linux/releases

Managing SysV init Systems  179

Note that runlevels 0 and 6 are not runlevels by definition. Instead, they denote a
transition from the current system state to the desired state. For example, a running system
currently operating at runlevel 5 is transitioned to a powered-off state via runlevel 0.

To determine your system’s current and former runlevel, you employ the runlevel
command. The first number or letter displayed indicates the previous runlevel (N indicates
that the system is newly booted), and the second number indicates the current runlevel. An
example is shown in Listing 6.18 of a newly booted Red Hat–based SysV init system, which
is running at runlevel 5.

Listing 6.18  Employing the runlevel command

runlevel
N 5
#

Instead of using a default target like systemd, SysV init systems employ a configuration
file, /etc/inittab. This file used to start many different services, but in later years it only
started terminal services and defined the default runlevel for a system. The file line defining
the default runlevel is shown in Listing 6.19.

TABLE 6 .10   Debian-based distribution SysV init runlevels

Runlevel Description

0 Shut down the system.

1 Single-user mode used for system maintenance.

2 Multiuser mode with GUI available.

6 Reboot the system.

Runlevel Description

4 Custom.

5 Multiuser mode with GUI available.

6 Reboot the system.

180  Chapter 6  ■  Maintaining System Startup and Services

Listing 6.19  The /etc/inittab file line that sets the default runlevel

grep :initdefault: /etc/inittab
id:5:initdefault:
#

Within Listing 6.19, notice the number 5 between the id: and the :initdefault: in
the /etc/inittab file record. This indicates that the system’s default runlevel is 5. The
initdefault is what specifies the runlevel to enter after the system boots.

Look back at Table 6.1 in this chapter. You’ll see that systemd provides
backward compatibility to SysV init via runlevel targets, which can be
used as the default target and/or in switching targets with the systemctl
isolate command.

Setting the default runlevel is the first step in configuring certain services to start at system
initialization. Next, each service must have an initialization script located typically in the
/etc/init.d/ directory. Listing 6.20 shows a snipped example of the various scripts in this
directory. Note that the -1F options are used on the ls command to display the scripts in a
single column and tack on a file indicator code. The * file indicator code denotes that these
files are executable programs (Bash shell scripts in this case).

Listing 6.20  Listing script files in the /etc/init.d/ directory

ls -1F /etc/init.d/
anacron*
atd*
[...]
crond*
cups*
[...]
ntpd*
[...]
ypbind*
yum-updatesd*
#

These initialization scripts are responsible for starting, stopping, restarting, reloading,
and displaying the status of various system services. The program that calls these initiali-
zation scripts is the rc script, and it can reside in either the /etc/init.d/ or the /etc/
rc.d/ directory. The rc script runs the scripts in a particular directory. The directory picked
depends on the desired runlevel. Each runlevel has its own subdirectory in the /etc/rc.d/
directory, as shown in Listing 6.21.

Managing SysV init Systems  181

Listing 6.21  Runlevel subdirectories in the /etc/rc.d/ directory

ls /etc/rc.d/
init.d rc0.d rc2.d rc4.d rc6.d rc.sysinit
rc rc1.d rc3.d rc5.d rc.local
#

Notice in Listing 6.21 that there are seven subdirectories named rcn.d, where n is a
number from 0 to 6. The rc script runs the scripts in the rcn.d subdirectory for the desired
runlevel. For example, if the desired runlevel is 3, all the scripts in the /etc/rc.d/rc3.d/
directory are run. Listing 6.22 shows a snippet of the scripts in this directory.

Listing 6.22  Files in the /etc/rc.d/rc3.d directory

ls -1F /etc/rc.d/rc3.d/
K01smolt@
K02avahi-dnsconfd@
K02NetworkManager@
[...]
K99readahead_later@
S00microcode_ctl@
S04readahead_early@
[...]
S55cups@
S99local@
S99smartd@
#

Notice in Listing 6.22 that the script names start with either a K or an S, are followed by
a number, and then have their service name. The K stands for kill (stop), and the S stands for
start. The number indicates the order in which this service should be stopped or started for
that runlevel. This is somewhat similar to the After and Before directives in the systemd
service type unit files.

The files in the /etc/rc.d/rcn.d/ directories are all symbolic links to the scripts in the
/etc/init.d/ directory. Listing 6.23 shows an example of this.

Listing 6.23  Displaying the /etc/rc.d/rc3.d/S55cups link

readlink -f /etc/rc.d/rc3.d/S55cups
/etc/rc.d/init.d/cups
#

The rc script goes through and runs all the K scripts first, passing a stop argument to
each script. It then runs all the S scripts, passing a start argument to each script. This
not only ensures that the proper services are started for a particular runlevel, it also allows

182  Chapter 6  ■  Maintaining System Startup and Services

jumping between runlevels after system initialization and thus stopping and starting certain
services for that new runlevel.

If you need to enact certain commands or run any scripts as soon as
system initialization is completed, there is a file for that purpose. The
/etc/rc.local script allows you to add additional scripts and or com-
mands. Just keep in mind that this script is not run until all the other SysV
init scripts have been executed.

Scripts are central to the SysV init process. To understand SysV init scripts, be sure to read
through Chapter 25, “Deploying Bash Scripts,” first. That chapter will help you understand
Bash shell script basics, which in turn will help you understand the SysV init script contents.

Investigating SysV init Commands
The various SysV init commands help in starting and stopping services, managing what
services are deployed at various runlevels, and jumping between runlevels on an already
running Linux system. We cover the various SysV init commands in this section.

Jumping between runlevels is a little different than jumping between systemd targets. It
uses the init or the telinit utility to do so. These two utilities are essentially twins and can
be interchanged for each other. To jump between runlevels on a SysV init system, the basic
syntax is as follows:

init Destination-Runlevel
telinit Destination-Runlevel

Listing 6.24 shows an example of jumping on a SysV init system from the current run-
level 5 to the destination runlevel 3. Note that the runlevel command is used to show the
previous and current runlevels.

Listing 6.24  Jumping from runlevel 5 to runlevel 3

runlevel
N 5
#
init 3
#
runlevel
5 3
#

Managing SysV init Systems  183

Keep in mind that you can shut down a SysV init system by entering init
0 or telinit 0 at the command line as long as you have the proper privi-
leges. You can also reboot a SysV init system by typing init 6 or telinit
6 at the command line.

To view a SysV init managed service’s status and control whether or not it is currently
running, use the service utility. This utility has the following basic syntax:

service SCRIPT COMMAND [OPTIONS]

The SCRIPT in the service utility refers to a particular service script within the
/etc/init.d/ directory. The service utility executes the script, passing it the designated
COMMAND. Service scripts typically have the same name as the service. Also, you only have to
provide a script’s base name and not the directory location. As an example, for the NTP ser-
vice script, /etc/init.d/ntpd, you only need to use the ntpd base name.

Table 6.11 describes the various commonly used items you can employ for the COMMAND
portion of the service utility. Keep in mind that if the COMMAND is not handled by the script
or handled differently than it’s commonly handled, you’ll get an unexpected result.

It helps to see examples of the service utility in action. Listing 6.25 provides a few for
your review.

Listing 6.25  Employing the service utility

service httpd status
httpd is stopped
#

TABLE 6 .11   Commonly used service utility commands

Command Description

restart Stop and immediately restart the designated service. Note that if a designated
service is not already started, a FAILED status will be generated on the stop
attempt, and then the service will be started.

start Start the designated service.

status Display the designated service’s current status.

stop Stop the designated service. Note that if a designated service is already stopped,
a FAILED status will be generated on the stop attempt.

reload Load the service configuration file of the running designated service. This allows
you to make service configuration changes without stopping the service. Note
that if you attempt the reload command on a stopped service, a FAILED status will
be generated.

184  Chapter 6  ■  Maintaining System Startup and Services

service httpd start
Starting httpd: [OK]
#
service httpd status
httpd (pid 14124 14123 [...]) is running...
#
service httpd stop
Stopping httpd: [OK]
#
service httpd status
httpd is stopped
#
service ––status-all
anacron is stopped
atd (pid 2024) is running...
[...]
ypbind is stopped
yum-updatesd (pid 2057) is running...
#

The last service utility example in Listing 6.25 is worth pointing out. This command
allows you to view all the services on your system along with their current status. Keep in
mind that this list will scroll by quickly, so it’s a good idea to redirect its STDOUT to the
less pager utility so that you can view the display more comfortably.

While some SysV init commands have been modified to work with sys-
temd utilities, others, such as service ––status-all, might produce
unpredictable or confusing results. As tempting as it is to hang on to past
commands, those habits may cause you problems in the future. It is best
to learn native systemd commands and employ them instead.

To configure various services to start at different runlevels, there are two different com-
mands you can use. The one you employ depends on which distribution you are using.
For Red Hat–based distros using SysV init, you’ll want to use the chkconfig utility.
For Debian-based Linux distributions using SysV init, the update-rc.d program is the
one to use.

The chkconfig utility has several different formats. They allow you to check what runlevels
a service will start or not start on. Also, you can enable (start at system boot) or disable (not
start at system boot) a particular service for a particular runlevel. Table 6.12 describes these
various commonly used chkconfig utility formats.

Managing SysV init Systems  185

The first command in Table 6.12 can be a little confusing. Be aware that when the utility
checks if the service is enabled at the current runlevel, a true or false is returned in the ?
variable. Listing 6.26 shows an example of using this command and displaying the vari-
able results.

Listing 6.26  Using the chkconfig utility to check service status

runlevel
3 5
#
chkconfig ––list sshd
sshd 0:off 1:off 2:on 3:on 4:on 5:on 6:off
#
chkconfig sshd
echo $?
0
chkconfig ––list ntpd
ntpd 0:off 1:off 2:off 3:off 4:off 5:off 6:off
#

TABLE 6 .12   Commonly used chkconfig utility formats

Command Description

chkconfig service Check if the service is enabled at the current runlevel. If yes, the
command returns a true (0). If no, the command returns a false (1).

chkconfig service on Enable the service at the current runlevel.

chkconfig service off Disable the service at the current runlevel.

chkconfig ––add
service

Enable this service at runlevels 0–6.

chkconfig ––del
service

Disable this service at runlevels 0–6.

chkconfig ––
levels [levels]
service on/off

Enable (on) or disable (off) this service at runlevels levels, where
levels can be any number from 0 through 6.

chkconfig ––list
service

Display the runlevels and whether or not the service is enabled (on)
or disabled (off) for each one.

186  Chapter 6  ■  Maintaining System Startup and Services

chkconfig ntpd
echo $?
1
#

Notice in Listing 6.26 that the system’s current runlevel is 5. The sshd service is checked
using the chkconfig ––list command, and you can see from the display that this ser-
vice does start on runlevel 5, indicated by the 5:on shown. Therefore, the chkconfig
sshd command should return a true. As soon as the command is entered and the prompt
is returned, an echo $? command is entered. This displays a 0, which indicates a true was
returned. Yes, 0 means true. That is confusing!

For the ntpd service in Listing 6.26, the service is not started at runlevel 5. Therefore, the
chkconfig ntpd command returns a false, which is a 1.

To enable services at multiple runlevels, you’ll need to employ the ––level option. For
this option, the runlevel numbers are listed one after the other with no delimiter in between.
An example is shown in Listing 6.27.

Listing 6.27  Using the chkconfig utility to enable/disable services

chkconfig ––list ntpd
ntpd 0:off 1:off 2:off 3:off 4:off 5:off 6:off
#
chkconfig ––level 35 ntpd on
#
chkconfig ––list ntpd
ntpd 0:off 1:off 2:off 3:on 4:off 5:on 6:off
#
chkconfig ––level 35 ntpd off
#
chkconfig ––list ntpd
ntpd 0:off 1:off 2:off 3:off 4:off 5:off 6:off
#

If you are using a Debian-based Linux SysV init distribution, instead of the chkconfig
utility, you’ll need to employ the update-rc.d utility. It has its own set of options and
arguments.

To start a program at the default runlevel, just use the following format:

update-rc.d service defaults

To remove the program from starting at the default runlevel, use the following format:

update-rc.d service remove

Digging Deeper into systemd  187

If you want to specify what runlevels the program starts and stops in, you’ll need to use
the following format:

update-rc.d –f service start 40 2 3 4 5 . stop 80 0 1 6 .

The 40 and 80 specify the relative order within the runlevel when the program should
start or stop (from 0 to 99). This allows you to customize exactly when specific programs are
started or stopped during the boot sequence.

As you can see, managing the SysV init scripts and their associated runlevels can be tricky.
However, if you have to take care of one of these systems, you now understand the tools that
can help you.

Digging Deeper into systemd
Though handling storage and various issues such as mounting filesystems are thoroughly
covered in Chapter 11, “Handling Storage,” we want to look at systemd’s mount and auto-
mount units while systemd is still fresh in your mind. We feel this will help you better retain
this important certification information.

Looking at systemd Mount Units
Distributions using systemd have additional options for persistently attaching filesystems.
Filesystems can be specified either within the /etc/fstab file or within a mount unit file.
A mount unit file provides configuration information for systemd to mount and control
designated filesystems.

On Linux servers using systemd, if you only use the /etc/fstab file,
systemd still manages these filesystems. The mount points listed in
/etc/fstab are converted into native units when either the server is
rebooted or systemd is reloaded. In fact, using /etc/fstab for persis-
tent filesystems is the preferred method over manually creating a mount
unit file. For more information on this process, type man systemd-fstab-
generator at the command line.

A single mount unit file is created for each mount point, and the filename contains the
mount point’s absolute directory reference. However, the absolute directory reference has
its preceding forward slash (/) removed, subsequent forward slashes are converted to dashes
(-), and any trailing forward slash is removed. Mount unit filenames also have a .mount
extension. For example, the mount point /home/temp/ would have a mount unit file named
home-temp.mount.

188  Chapter 6  ■  Maintaining System Startup and Services

A mount unit file’s contents mimic other systemd unit files, with a few special sections
and options. In Listing 6.28, using the /home/temp/ mount point, an example mount unit
file is shown.

Listing 6.28  Displaying an example systemd mount unit file

cat /etc/systemd/system/home-temp.mount
[Unit]
Description=Test Mount Units

[Mount]
What=/dev/sdo1
Where=/home/temp
Type=ext4
Options=defaults
SloppyOptions=on
TimeOutSec=4

[Install]
WantedBy=multi-user.target
#

Notice that the file has the typical three sections for a unit file, with the middle sec-
tion, [Mount], containing directives specific to mount type unit files. The What directive
can use the device filename or a universally unique identifier (UUID), such as /dev/disk/
by-uuid/UUID.

The SloppyOptions directive is helpful in that if set to on, it ignores any mount options
not supported by a particular filesystem type. By default, it is set to off. Another help-
ful directive is TimeOutSec. If the mount command does not complete by the number of
designated seconds, the mount is considered a failed operation.

Be sure to include the [Install] section and set either the WantedBy or the
RequiredBy directive to the desired target. If you do not do this, the filesystem will not be
mounted upon a server boot.

You can manually mount and unmount the unit using the standard systemctl utility
commands. Listing 6.29 contains an example of deploying the home-temp.mount unit file.

Listing 6.29  Deploying a systemd mount unit file

systemctl daemon-reload home-temp.mount
#
systemctl start home-temp.mount
#
ls /home/temp
lost+found
#

Digging Deeper into systemd  189

In Listing 6.29, the first command loads the newly configured mount unit file. The sec-
ond command has systemd mount the filesystem using the home-temp.mount unit file. The
second command is similar to how a service is started in that it uses the start command.
While you don’t have to have the home-temp.mount argument and the command will work
without it, (a) the argument does add clarity/education to the situation being discussed, and
(b) the argument prevents other services from being reloaded, which if other services were
restarted could prove problematic.

To ensure that the filesystem is properly mounted, like a service unit, you use the systemctl
utility to obtain a mounted filesystem’s status. An example is shown in Listing 6.30.

Listing 6.30  Checking a systemd mount unit’s status

systemctl status home-temp.mount
• home-temp.mount - Test Mount Units
 Loaded: loaded (/etc/systemd/system/home-temp.mount; [...]
 Active: active (mounted) since Sat 2019-09-14 16:34:2[...]
 Where: /home/temp
 What: /dev/sdo1
 Process: 3990 ExecMount=/bin/mount /dev/sdo1 /home/temp[...]
[...]
#

One additional step is required. To ensure that systemd will mount the filesystem per-
sistently, the mount unit file must be enabled to start at boot, as other systemd units are
enabled. An example is shown in Listing 6.31.

Listing 6.31  Enabling a systemd mount unit

systemctl enable home-temp.mount
Created symlink from
/etc/systemd/system/multi-user.target.wants/home-temp.mount to
/etc/systemd/system/home-temp.mount.
#

This should all look very familiar! Keep in mind that you should only use mount unit files
if you need to tweak the persistent filesystem configuration. If you do not, it’s best to use an
/etc/fstab record to persistently mount the filesystem.

Exploring Automount Units
With systemd, you can also configure on-demand mounting as well as mounting in parallel
using automount units. In addition, you can set filesystems to automatically unmount upon
lack of activity.

An automount unit file operates similarly to a mount unit file. The naming convention is
the same, except that the filename extension is .automount.

190  Chapter 6  ■  Maintaining System Startup and Services

Within an automount unit file, for the [Automount] section, only the following three
directives are available:

■■ Where
■■ DirectoryMode
■■ TimeOutIdleSec

The Where directive is required. It is configured the exact same way as it is in mount unit
files. With this directive, you set the mount point.

The DirectoryMode directive is not a required option. This setting determines the per-
missions placed on any automatically created mount point and parent directories. By default
it is set to the 0755 octal code.

You can also configure an automount point in the /etc/fstab file. How-
ever, keep in mind that if an automount point is configured in the /etc/
fstab file and it has a unit file, the unit file configuration will take prece-
dence.

The TimeOutIdleSec directive is also not required. This particular directive allows you
to set the maximum amount of time (in seconds) a mounted filesystem can be idle. Once the
time limit is reached, the filesystem is unmounted. By default this directive is disabled.

Focusing on Timer Unit Files
Timer unit files allow you to define events that occur at specific dates or times, similar to
how the cron program works (see Chapter 26, “Automating Jobs”). The timer unit files allow
you to fine-tune exactly when a program starts.

Timer unit files are designated by a .timer file extension and include a [Timer] section to
define the directives required to determine when to start the event. Table 6.13 describes these
directives.

TABLE 6 .13   Commonly used timer unit file [Timer] section directives

Directive Description

AccuracySec Specifies the accuracy of the timer. The default is one minute.

OnActiveSec Defines the timer relative to the moment the timer is activated.

OnBootSec Defines the timer relative to when the system was booted.

OnCalendar Defines the timer as a specific date/time value.

OnStartupSec Defines the timer relative to when the systemd program started.

OnUnitActiveSec Defines the timer relative to when the timer unit was last activated.

Exam Essentials  191

As you can see from Table 6.13, timer units provide several options for how to set the
timer. This allows you to choose exactly when a program should start on the system.

Summary
Managing your server’s final system initialization phase is the job of the initialization
daemon. This daemon must determine what services to start from the information you pro-
vide within the appropriate configuration files. In addition, the daemon can manage services
while the system is running.

The classic system initialization daemon, SysV init, is still around, though typically only
on older distributions. The popular and modern systemd is heavily used among current
Linux distributions. It not only allows faster server boot times, it offers additional services
as well, such as automounting filesystems. Often system administrators find themselves
migrating from SysV init systems to systemd servers, and thus it is important to understand
both system initialization methods.

Exam Essentials
Describe the init program.   Either the init program or systemd is the parent process for
every service on a Linux system. It typically has a PID of 1. The program is located in the
/etc/, the /bin/, or the /sbin/ directory. On systemd servers, this program is a symbolic
link to /usr/lib/systemd/systemd.

Summarize systemd unit concepts.   A systemd unit defines a service, a group of services, or
an action, and there are currently 12 different systemd unit types. To view load units, use the
systemctl list-units command. The four systemd units to focus on are service, target,
mount, and automount.

Directive Description

OnUnitInactiveSec Defines the timer relative to when the timer unit was last deactivated.

Persistent When set, the time the timer unit was last triggered is stored on disk.

RandomizedDelaySec Delays the timer activation by a random amount of time.

RemainAfterElapse When set, the expired timer unit remains loaded, allowing you to
query its status using systemctl.

Unit Defines the unit file to start when the timer elapses.

WakeSystem When set, the timer unit will cause the system to resume from being
suspended.

192  Chapter 6  ■  Maintaining System Startup and Services

Explain systemd service units and their files.   Service units control how services are started,
stopped, and managed. Their unit files contain configuration information via directives in
one of the three primary unit file sections: [Unit], [Service], and [Install]. Directives,
such as After and Before, configure when a service will be started. While the [Unit] and
[Install] file sections are common to all unit files, the [Service] section and its direc-
tives are unique to services. Unit files may exist in one of three directory locations, and their
location is important because if multiple files exist for a particular unit, one takes precedence
over the other depending on its whereabouts.

Explain systemd target units and their files.   Target units are responsible for starting groups
of services. At system initialization, the default.target unit ensures that all required and
desired services are launched. It is set up as a symbolic link to another target unit file. The
primary target units used for system initialization are graphical.target, multi-user
.target, and runleveln.target, where n = 1–5 for the desired SysV init runlevel expe-
rience. There are additional target units, which handle system power off, halt, and reboot as
well as emergency and rescue modes. The target type unit files are similar to service unit files,
but they typically contain fewer directives.

Demonstrate how to manage systemd systems via commands.   The systemctl utility con-
tains many commands that allow you to manage and control systemd units. You can jump
between targets using the systemctl isolate command. You can set particular services
to start at system boot time via the systemctl enable command and vice versa via the
systemctl disable command. Additional commands allow you to start, stop, restart, and
reload units as well as reload their unit files via the systemctl daemon-reload command.
Helpful commands such as systemctl is-system-running and systemctl get-
default aid you in assessing your current systemd system. You can employ the systemd-
analyze series of commands to evaluate your server’s initialization process and find ways to
improve it.

Summarize SysV init concepts.   The classic SysV init method consists of the /etc/inittab
file, which sets the default runlevel via the initdefault record. Runlevels determine what
services are started, and the default runlevel determines what services are started at system
initialization. The rc script starts and stops services depending on what runlevel is chosen. It
executes the scripts in the appropriate runlevel directory and passes the appropriate stop or
start parameter. The scripts located in the various runlevel directories are symbolic links to
the files within the /etc/init.d/ directory.

Demonstrate how to manage SysV init systems via commands.   You can determine a SysV
init system’s previous and current runlevel via the runlevel command. Runlevels can be
jumped into via the init or telinit command. Services can have their status checked;
have their configuration files be reloaded; or be stopped, started, or restarted with the
status command. You can view all currently loaded services on a SysV init system by using
the service ––status-all command. Services are enabled or disabled through either the
chkconfig or the update-rc.d command, depending on your distribution.

Exam Essentials  193

Describe systemd mount and automount unit files.   If your server employs systemd, besides
managing system initialization, it can also persistently attach filesystems. These filesystems
can be mounted or automounted via their associated unit files. Mount and automount unit
filenames are based on the filesystem mount point but use the .mount or .automount file-
name extension, respectively. Their unit file contents have three sections, similar to service
unit files, except the mount unit file’s middle section is [Mount], whereas the automount
unit file’s middle section is [Automount]. Each unit file has its own special directives that
designate what partition is supposed to be mounted at the mount point and other items such
as, for automount units, how long a filesystem must be idle before it can be unmounted.

194  Chapter 6  ■  Maintaining System Startup and Services

Review Questions
1.	 The init program may be located in which of the following directories? (Choose all

that apply.)

A.	 /etc/rc.d/
B.	 /etc/
C.	 /sbin/
D.	 /usr/lib/systemd/
E.	 /bin/

2.	 Which of the following is true concerning systemd service units? (Choose all that apply.)

A.	 Services can be started at system boot time.

B.	 Services can be started in parallel.

C.	 A service can be started based on a timer.

D.	 A service can be started after all other services are started.

E.	 A service can be prevented from starting at system boot time.

3.	 Which of the following is not a systemd target unit?

A.	 runlevel7.target
B.	 emergency.target
C.	 graphical.target
D.	 multi-user.target
E.	 rescue.target

4.	 You need to modify a systemd service unit configuration. Where should the modified file
be located?

A.	 /etc/system/systemd/
B.	 /usr/lib/system/systemd/
C.	 /etc/systemd/system/
D.	 /usr/lib/systemd/system/
E.	 /run/system/systemd/

5.	 On your server, you need Service-B to start immediately before Service-A. Within the systemd
Service-A unit configuration file, what directive should you check and potentially modify?

A.	 Conflicts
B.	 Wants
C.	 Requires
D.	 Before
E.	 After

Review Questions  195

6.	 For setting environment parameters within a unit configuration file, which directives should
you potentially employ? (Choose all that apply.)

A.	 Type
B.	 Environment
C.	 EnvironmentParam
D.	 EnvironmentFile
E.	 PATH

7.	 You attempt to jump to a systemd target using the systemctl isolate command, but
it will not work. You decide to look at the target unit file. What might you see there that is
causing this problem?

A.	 static
B.	 AllowIsolate=yes
C.	 Type=oneshot
D.	 AllowIsolate=no
E.	 disabled

8.	 You have modified an OpenSSH service’s configuration file, /etc/ssh/ssh_config. The
service is already running. What is the best command to use with systemctl to make this
modified file take immediate effect?

A.	 reload
B.	 daemon-reload
C.	 restart
D.	 mask
E.	 unmask

9.	 Your system uses systemd and has a service currently set to not start at system boot. You
want to change this behavior and have it start. What systemctl command should you employ
for this service?

A.	 restart
B.	 start
C.	 isolate
D.	 disable
E.	 enable

10.	 You need to change the system’s default target. What systemctl command should you use to
accomplish this task?

A.	 get-default
B.	 set-default
C.	 isolate
D.	 is-enabled
E.	 is-active

196  Chapter 6  ■  Maintaining System Startup and Services

11.	 Your systemd system is taking a long time to boot and you need to reduce the boot time.
Which systemd-analyze command is the best to start narrowing down which units need to be
investigated first?

A.	 time
B.	 dump
C.	 failure
D.	 blame
E.	 verify

12.	 Your older Debian-based Linux distribution system uses SysV init. It will soon be upgraded
to a Debian-based distro that uses systemd. To start some analysis, you enter the runlevel
command. Which of the following are results you may see? (Choose all that apply.)

A.	 N 5
B.	 3 5
C.	 N 2
D.	 2 3
E.	 1 2

13.	 You’ve recently become the system administrator for an older Linux server, which still
uses SysV init. You determine that its default runlevel is 3. What file did you find that
information in?

A.	 /etc/inittab
B.	 /etc/rc.d
C.	 /etc/init.d/rc
D.	 /etc/rc.d/rc
E.	 /etc/rc.local

14.	 Which directory on an old SysV init system stores the service startup scripts?

A.	 /usr/lib/systemd/system/
B.	 /etc/rc.d/rcn.d/
C.	 /etc/init.d/
D.	 /etc/systemd/system/
E.	 /run/systemd/system/

15.	 You are managing a SysV init system and need to perform some emergency maintenance
at runlevel 1. To do this, you need to jump runlevels. What command could you employ?
(Choose all that apply.)

A.	 telinit S
B.	 telinit 1
C.	 init one
D.	 init s
E.	 init 1

Review Questions  197

16.	 A customer has complained that a service on your SysV init system is not working. Which of
the following commands is the best command to use to check the service?

A.	 service start
B.	 service status
C.	 service ––status-all
D.	 service stop
E.	 service reload

17.	 You need to enable the DHCP service on your Red Hat–based SysV init system for runlevels
3 and 5. Which of the following commands should you use?

A.	 service enable dhcp 3,5
B.	 chkconfig ––levels 3,5 dhcp on
C.	 chkconfig ––levels 35 on dhcp
D.	 chkconfig ––levels 35 dhcp on
E.	 service enable dhcp 35

18.	 You need to enable the DHCP service on your Debian-based SysV init system for the default
runlevels. Which of the following commands should you use?

A.	 update-rc.d dhcp default
B.	 chkconfig ––default dhcp on
C.	 update-rc.d default dhcp
D.	 update-rc.d defaults dhcp
E.	 update-rc.d dhcp defaults

19.	 Which of the following would be the appropriate base name for a mount unit file that
mounts a filesystem at the /var/log/ mount point?

A.	 /var/log.mount
B.	 /var/log.unit
C.	 var-log.mount
D.	 var-log.unit
E.	 var/log.mount

20.	 You are managing a systemd system and need to create an automount unit file. Which of the
following directives should you review to possibly include in this file’s [Automount] sec-
tion? (Choose all that apply.)

A.	 Where
B.	 Options
C.	 DirectoryMode
D.	 TimeOutIdleSec
E.	 What

Configuring Network
Connections

✓✓ Objective 1.5: Given a scenario, use the appropriate
networking tools or configuration files

✓✓ Objective 4.2: Given a scenario, analyze and troubleshoot
network resource issues

Chapter

7

These days it’s almost a necessity to have your Linux system
connected to some type of network. Whether it’s because of the
need to share files and printers on a local network or the need

to connect to the Internet to download updates and security patches, most Linux systems
have some type of network connection.

This chapter looks at how to configure your Linux system to connect to a network as
well as how to troubleshoot network connections if things go wrong. There are a few dif-
ferent methods for configuring network settings in Linux, and you’ll need to know them all
for the Linux+ exam. First, we’ll cover the common locations for the configuration files in
Linux distributions. Next, we’ll examine the different tools you have at your disposal that
help make configuring the network settings easier. After that, the chapter discusses some
simple network troubleshooting techniques you can use to help find the problem if anything
goes wrong.

Configuring Network Features
There are five main pieces of information you need to configure in your Linux system to
interact on a network:

■■ The host address

■■ The network subnet address

■■ The default router (sometimes called gateway)

■■ The system hostname

■■ A DNS server address for resolving hostnames

There are three different ways to configure this information in Linux systems:

■■ Manually editing network configuration files

■■ Using a graphical tool included with your Linux distribution

■■ Using command-line tools

The following sections walk through each of these methods.

Configuring Network Features  201

Network Configuration Files
Every Linux distribution uses network configuration files to define the network settings
required to communicate on the network. However, there’s not a single standard configura-
tion file that all distributions use.

Instead, different distributions use different configuration files to define the network set-
tings. Table 7.1 shows the most common network configuration files that you’ll run into.

While each of the Linux distributions uses a different method of defining the network set-
tings, they all have similar features. Most configuration files define each of the required net-
work settings as separate values in the configuration file. Listing 7.1 shows an example from
a Debian-based Linux system.

Listing 7.1:  Sample Debian network static configuration settings

auto eth0
iface eth0 inet static
 address 192.168.1.77
 netmask 255.255.255.0
 gateway 192.168.1.254
iface eth0 inet6 static
 address 2003:aef0::23d1::0a10:00a1
 netmask 64
 gateway 2003:aef0::23d1::0a10:0001

The example shown in Listing 7.1 assigns both an IP and an IPv6 address to the wired
network interface designated as eth0.

Listing 7.2 shows how to define the IP network settings automatically using a DHCP
server on the network.

TABLE 7.1   Linux network configuration files

Distribution Network Configuration Location

Debian based /etc/network/interfaces file

Red Hat based /etc/sysconfig/network-scripts directory

openSUSE /etc/sysconfig/network file

202  Chapter 7  ■  Configuring Network Connections

Listing 7.2:  Sample Debian network DHCP configuration settings

auto eth0
iface eth0 inet dhcp
iface eth0 inet6 dhcp

If you just want to assign an IPv6 link local address, which uniquely identifies the device
on the local network, but not retrieve an IPv6 address from a DHCP server, replace the
inet6 line with this:

iface eth0 inet6 auto

The auto attribute tells Linux to assign the link local address, which allows the
Linux system to communicate with any other IPv6 device on the local network but not a
global address.

Since version 17.04, the Ubuntu distribution has deviated from the stan-
dard Debian method and utilizes the Netplan tool to manage network
settings. Netplan uses simple YAML text files in the /etc/netplan folder
to define the network settings for each network interface installed on the
system. By default, Netplan just passes the network settings off to the
Network Manager tool, so you don’t need to worry about how the Net-
plan configuration files are set.

For Red Hat–based systems, you’ll need to define the network settings in multiple files,
one for each network interface. The format of each file is:

ifcfg-interface

where interface is the device name for the network adapter, such as ifcfg-enp0s3. List-
ing 7.3 shows an example from a Rocky Linux system.

Listing 7.3:  Sample Rocky network interface configuration settings

TYPE=Ethernet
PROXY_METHOD=none
BROWSER_ONLY=no
BOOTPROTO=dhcp
DEFROUTE=yes
IPV4_FAILURE_FATAL=no
IPV6INIT=yes
IPV6_AUTOCONF=yes
IPV6_DEFROUTE=yes
IPV6_FAILURE_FATAL=no
IPV6_ADDR_GEN_MODE=stable-privacy
NAME=enp0s3
UUID=c8752366-3e1e-47e3-8162-c0435ec6d451

Configuring Network Features  203

DEVICE=enp0s3
ONBOOT=yes
IPV6_PRIVACY=no

This configuration indicates that the workstation is using the DHCP process to automati-
cally retrieve network information from a network server. For static IP addresses, you can set
the IP address, default gateway, and subnet mask in the configuration file.

Most Linux distributions use the /etc/hostname file to store the local hostname of the
system; however, some use /etc/HOSTNAME instead. You will also need to define a DNS
server so that the system can use DNS hostnames. Fortunately, this is a standard that all
Linux systems follow and is handled in the /etc/resolv.conf configuration file:

domain mydomain.com
search mytest.com
nameserver 192.168.1.1

The domain entry defines the domain name assigned to the network. By default the
system will append this domain name to any hostnames you specify. The search entry
defines any additional domains used to search for hostnames. The nameserver entry is
where you specify the DNS server assigned to your network. Some networks can have more
than one DNS server; just add multiple nameserver entries in the file.

For systems using the systemd startup method, you can use the
hostnamectl command to view or change the hostname information.
Also, to help speed up connections to commonly used hosts, you can
manually enter their hostnames and IP addresses into the /etc/hosts
file on your Linux system. The /etc/nsswitch.conf file defines
whether the Linux system checks this file before or after using DNS to
look up the hostname.

Graphical Tools
The Network Manager tool is a popular program used by many Linux distributions to
provide a graphical interface for defining network connections. The Network Manager
tool starts automatically at boot time and appears in the system tray area of the desktop
as an icon.

If your system detects a wired network connection, the icon appears as a mini-network
with blocks connected together. If your system detects a wireless network connection, the
icon appears as an empty radio signal. When you click the icon, you’ll see a list of the avail-
able wireless networks detected by the network card (as shown in Figure 7.1).

Click your access point to select it from the list. If your access point is encrypted, you’ll be
prompted to enter the password to gain access to the network.

204  Chapter 7  ■  Configuring Network Connections

Once your system is connected to a wireless access point, the icon appears as a radio
signal. Click the icon, and then select Edit Connections to edit the network connection set-
tings for the system, shown in Figure 7.2.

You can select the network connection to configure (either wireless or wired) and then
click the Edit button to change the current configuration.

The Network Manager tool allows you to specify all four of the network configuration
values by using the manual configuration option or to set the configuration to use DHCP to
determine the settings. The Network Manager tool automatically updates the appropriate
network configuration files with the updated settings.

F IGURE 7.2   The Network Connections window

F IGURE 7.1   Network Manager showing a wireless network connection

Configuring Network Features  205

Command-Line Tools
If you’re not working with a graphical desktop client environment, you’ll need to use
the Linux command-line tools to set the network configuration information. Quite a few
command-line tools are at your disposal. The following sections cover the ones you’re most
likely to run into (and that you’ll likely see on the Linux+ exam).

Network Manager Command-Line Tools
The Network Manager tool also provides two different types of command-line tools:

■■ nmtui provides a simple text-based menu tool.

■■ nmcli provides a text-only command-line tool.

Both tools help guide you through the process of setting the required network
information for your Linux system. The nmtui tool displays a stripped-down version of the
graphical tool where you can select a network interface and assign network properties to it,
as shown in Figure 7.3.

The nmcli tool doesn’t attempt to use any type of graphics capabilities; it just provides a
command-line interface where you can view and change the network settings. By default, the
command displays the current network devices and their settings, as shown in Listing 7.4.

F IGURE 7.3   The Network Manager nmtui command-line tool

206  Chapter 7  ■  Configuring Network Connections

Listing 7.4:  The default output of the nmcli command

$ nmcli
enp0s3: connected to enp0s3
 "Intel 82540EM Gigabit Ethernet Controller (PRO/1000 MT Desktop
 Adapter)
 ethernet (e1000), 08:00:27:73:1C:6D, hw, mtu 1500
 ip4 default
 inet4 10.0.2.15/24
 route4 0.0.0.0/0
 route4 10.0.2.0/24
 inet6 fe80::5432:eddb:51ea:fb44/64
 route6 ff00::/8
 route6 fe80::/64
 route6 fe80::/64

The nmcli command uses command-line options to allow you to set the net-
work settings:

nmcli con add type ethernet con-name eth1 ifname enp0s3 ip4
10.0.2.10/24 gw4 192.168.1.254

This way, you can set all of the necessary network configuration features in a single
nmcli command.

The iproute2 Utilities
The iproute2 package is a newer open source project that contains a set of command-line
utilities for managing network connections. While the package contains several different pro-
grams, the ip program is the most used.

The ip command is the Swiss army knife of network programs, and it’s becoming
a popular method for defining network settings from the command line. It uses several
command options to display the current network settings or define new network settings.
Table 7.2 shows these commands.

TABLE 7.2   The ip utility command options

Parameter Description

address Display or set the IPv4 or IPv6 address on the device.

addrlabel Define configuration labels.

l2tp Tunnel Ethernet over IP.

link Define a network device.

Configuring Network Features  207

Each command option utilizes parameters to define what to do, such as display network
settings or modify existing network settings. Listing 7.5 demonstrates how to display the
current network settings using the show parameter.

Listing 7.5:  The ip address output

$ ip address show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host

Parameter Description

maddress Define a multicast address for the system to listen to.

monitor Watch for netlink messages.

mroute Define an entry in the multicast routing cache.

mrule Define a rule in the multicast routing policy database.

neighbor Manage ARP or NDISC cache entries.

netns Manage network namespaces.

ntable Manage the neighbor cache operation.

route Manage the routing table.

rule Manage entries in the routing policy database.

tcpmetrics Manage TCP metrics on the interface.

token Manage tokenized interface identifiers.

tunnel Tunnel over IP.

tuntap Manage TUN/TAP devices.

xfrm Manage IPSec policies for secure connections.

208  Chapter 7  ■  Configuring Network Connections

 valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000
 link/ether 08:00:27:73:1c:6d brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global noprefixroute dynamic
enp0s3
 valid_lft 84411sec preferred_lft 84411sec
 inet6 fe80::5432:eddb:51ea:fb44/64 scope link noprefixroute
 valid_lft forever preferred_lft forever
$

This example shows two network interfaces on the Linux system:

■■ lo is the local loopback interface.

■■ enp0s3 is a wired network interface.

The local loopback interface is a special virtual network interface. Any local program can
use it to communicate with other programs just as if they were across a network. That can
simplify transferring data between programs.

The enp0s3 network interface is the wired network connection for the Linux system.
The ip command shows the IP address assigned to the interface (there’s both an IP and an
IPv6 link local address assigned), the netmask value, and some basic statistics about the
packets on the interface.

If the output doesn’t show a network address assigned to the interface, you can use the ip
command to specify the host address and netmask values for the interface:

ip address add 10.0.2.15/24 dev enp0s3

Then use the ip command with the route option to set the default router for the net-
work interface:

ip route add default via 192.168.1.254 dev enp0s3

Then make the network interface active by using the link option:

ip link set enp0s3 up

With the single ip command, you can manage just about everything you need for your
network connections.

The net-tools Legacy Tool
If you need to work on an older Linux distribution, the net-tools package may be all you
have to work with. The net-tools package was the original method in Linux for managing
individual aspects of the network configuration. There are four main command-line tools
that you need to use:

■■ ethtool displays Ethernet settings for a network interface.

■■ ifconfig displays or sets the IP address and netmask values for a network interface.

■■ iwconfig sets the SSID and encryption key for a wireless interface.

■■ route sets the default router address.

Configuring Network Features  209

The ethtool command allows you to peek inside the network interface card Ethernet set-
tings and change any properties that you may need to communicate with a network device,
such as a switch.

By default, the ethtool command displays the current configuration settings for the net-
work interface, as shown in Listing 7.6.

Listing 7.6:  Output from the ethtool command

$ ethtool enp0s3
Settings for enp0s3:
 Supported ports: [TP]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Supported pause frame use: No
 Supports auto-negotiation: Yes
 Supported FEC modes: Not reported
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Advertised pause frame use: No
 Advertised auto-negotiation: Yes
 Advertised FEC modes: Not reported
 Speed: 1000Mb/s
 Duplex: Full
 Port: Twisted Pair
 PHYAD: 0
 Transceiver: internal
 Auto-negotiation: on
 MDI-X: off (auto)
Cannot get wake-on-lan settings: Operation not permitted
 Current message level: 0x00000007 (7)
 drv probe link
 Link detected: yes
$

You can change features such as speed, duplex, and whether or not the network interface
attempts to auto-negotiate features with the switch.

The ifconfig command is a legacy command that allows you to set the network address
and subnet mask for a network interface:

$ sudo ifconfig enp0s3 down 10.0.2.10 netmask 255.255.255.0

210  Chapter 7  ■  Configuring Network Connections

You can also use the ifconfig command to view the current statistics for a network
interface, as shown in Listing 7.7.

Listing 7.7:  The network interface stats from the ifconfig command

$ ifconfig
enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
 inet6 fe80::a00:27ff:fe55:dfbd prefixlen 64 scopeid 0x20<link>
 ether 08:00:27:55:df:bd txqueuelen 1000 (Ethernet)
 RX packets 19067 bytes 28092762 (26.7 MiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 6431 bytes 414153 (404.4 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
 inet 127.0.0.1 netmask 255.0.0.0
 inet6 ::1 prefixlen 128 scopeid 0x10<host>
 loop txqueuelen 1000 (Local Loopback)
 RX packets 4 bytes 240 (240.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 4 bytes 240 (240.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

virbr0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
 inet 192.168.122.1 netmask 255.255.255.0 broadcast 192.168.122.255
 ether 52:54:00:10:7a:b8 txqueuelen 1000 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

$

Using the ifconfig command, you can see the link status of a network interface,
whether it is receiving or transmitting packets, and whether there were any dropped packets
or collisions. This can be a handy network troubleshooting tool.

Each command option utilizes parameters to define what to do, such as display network
settings or modify existing network settings. Listing 7.7 demonstrates how to display the
current network settings by using the ifconfig command without specifying a command-line
parameter.

With the net-tools package you must also set the default router using the separate
route command:

route add default gw 192.168.1.254

Configuring Network Features  211

You can also use the route command by itself to view the current default router config-
ured for the system:

$ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default 192.168.1.254 0.0.0.0 UG 0 0 0 enp0s3
192.168.1.0 * 255.255.255.0 U 1 0 0 enp0s3
$

The default router defined for this Linux system is 192.168.1.254 and is available from
the enp0s3 network interface. The output also shows that to get to the 192.168.1.0 net-
work, you don’t need a gateway because that’s the local network the Linux system is
connected to.

If your network is connected to multiple networks via multiple routers, you can manually
create the routing table in the system by using the add or del command-line option for the
route command. The format for that is:

route [add] [del] target gw gateway

where target is the target host or network and gateway is the router address.
If you’re working with a wireless network card, you must assign the wireless SSID and

encryption key values using the iwconfig command:

iwconfig wlp6s0 essid "MyNetwork" key s:mypassword

The essid parameter specifies the access point SSID name, and the key parameter spec-
ifies the encryption key required to connect to it. Notice that the encryption key is preceded
by an s:. That allows you to specify the encryption key in ASCII text characters; otherwise
you’ll need to specify the key using hexadecimal values.

If you don’t know the name of a local wireless connection, you can use the iwlist
command to display all of the wireless signals your wireless card detects. Just specify the
name of the wireless device, and use the scan option:

$ sudo iwlist wlp6s0 scan

Once you’ve set the wireless network card configuration, you can proceed to assign it an
IP address and default route the same as you would a wired network card.

You can fine-tune networking parameters for a network interface using
the /etc/sysctl.conf configuration file, or files stored in the /etc/
sysctl.d or /usr/lib/sysctl.d directories. This file defines kernel
parameters that the Linux system uses when interacting with the network
interface. This has become a popular method to use for setting advanced
security features, such as to disable responding to ICMP messages
by setting the icmp_echo_ignore_broadcasts value to 1, or if your
system has multiple network interface cards, to disable packet forward-
ing by setting the ip_forward value to 0.

212  Chapter 7  ■  Configuring Network Connections

Additional Network Features
If your network uses DHCP, you’ll need to ensure that a proper DHCP client program is
running on your Linux system. The DHCP client program communicates with the network
DHCP server in the background and assigns the necessary IP address settings as directed by
the DHCP server. There are three common DHCP programs available for Linux systems:

■■ dhcpcd
■■ dhclient
■■ pump

The dhcpcd program is becoming the most popular of the three, but you’ll still see the
other two used in some Linux distributions.

When you use your Linux system’s software package manager utility to install the DHCP
client program, it sets the program to automatically launch at boot time and handle the IP
address configuration needed to interact on the network.

If you’re working with a Linux server that acts as a DHCP server, the
/etc/dhcpd.conf file contains the IP address settings that the server
offers to DHCP clients. The file contains a section for each subnet the
DHCP server services:

 subnet 10.0.2.0 netmask 255.255.255.0 {
 option routers 192.168.1.254;
 option subnet-mask 255.255.255.0;

 option domain-name "mynetwork.com";
 option domain-name-servers 192.168.1.254;

 option time-offset -18000;
 # Eastern Standard Time

 range 10.0.2.1 10.0.2.100;
 }

One final network configuration setting you may run into has to do with network inter-
face bonding. Bonding allows you to aggregate multiple interfaces into one virtual net-
work device.

You can then tell the Linux system how to treat the virtual network device using three
different bonding types:

■■ Load balancing: Network traffic is shared between two or more network interfaces.

■■ Aggregation: Two or more network interfaces are combined to create one larger
network pipe.

Configuring Network Features  213

■■ Active/passive: One network interface is live while the other is used as a backup for fault
tolerance.

There are seven different bonding modes you can choose from, as shown in Table 7.3.

To initialize network interface bonding, you must first load the bonding module in the
Linux kernel:

$ sudo modprobe bonding

This creates a bond0 network interface, which you can then define using the ip utility:

$ sudo ip link add bond0 type bond mode 4

Once you’ve defined the bond type, you can add the appropriate network interfaces to the
bond using the ip utility:

$ sudo ip link set eth0 master bond0
$ sudo ip link set eth1 master bond0

The Linux system will then treat the bond0 device as a single network interface using the
load balancing or aggregation method you defined.

TABLE 7.3   Network interface bonding modes

Mode Name Description

0 balance-rr Provides load balancing and fault tolerance using interfaces in a round-
robin approach

1 active-
backup

Provides fault tolerance using one interface as the primary and the other
as a backup

2 balance-xor Provides load balancing and fault tolerance by transmitting on one inter-
face and receiving on the second

3 broadcast Transmits all packets on both interfaces

4 802.3ad Aggregates the interfaces to create one connection combining the inter-
face bandwidths

5 balance-tlb Provides load balancing and fault tolerance based on the current
transmit load on each interface

6 balance-alb Provides load balancing and fault tolerance based on the current receive
load on each interface

214  Chapter 7  ■  Configuring Network Connections

If you have multiple network interface cards on your Linux system and
choose to connect them to separate networks, you can configure your
Linux system to act as a bridge between the two networks. The brctl
command allows you to control how the bridging behaves. To do this,
though, you must set the ip_forward kernel parameter in the /etc/
sysctl.conf file to 1 to enable bridging.

Command-Line Networking Tool
Linux provides a wealth of networking tools for connecting to remote hosts, but none is
more versatile than the netcat program. The netcat program can act as either a network
server or network client, sending and receiving data packets using either TCP or UDP. This
section provides some examples of the versatility of the netcat program.

Depending on your Linux distribution, the netcat program may be available as either
netcat, or just nc. The format of the command is simply:

nc host port

where host is the IP address or hostname of the remote server and port is the port number
for the connection. By default netcat will attempt to establish a TCP connection with the
remote server. To establish a UDP connection, add the -u option.

There are lots of different options available to customize the connection. Table 7.4 lists
the netcat options.

TABLE 7.4   The netcat command options

Option Description

-4 Use only IPv4 addresses

-6 Use only IPv6 addresses

-C Use a carriage return/linefeed combination at the end of each line

-D Enable socket debugging

-d Do not read from STDIN

-h Displays the netcat help document

-i Specify a delay interval between text sent and received

-k Continuing listing for an incoming connection after the current connection termi-
nates

Command-Line Networking Tool  215

A great troubleshooting feature of nc is the ability to send HTTP requests directly to
servers and see the HTTP response as well as the HTML code returned. Listing 7.8 shows an
example of the output you would see.

Listing 7.8:  Using netcat to retrieve HTTP data

$ printf "GET / HTTP/1.0\r\n\r\n" | nc richblum.com 80
HTTP/1.1 200 OK
Date: Mon, 04 Dec 2021 16:14:35 GMT
Server: Apache
Vary: Accept-Encoding
Connection: close

Option Description

-l Listing for an incoming connection instead of initializing a new connection

-n Do not use DNS lookups for hostnames

-p Specifies the port used for the connection

-r Use a random source and/or destination port

-S Enables the MD5 signature option

-s Specify the IP address of the network interface used for sending packets

-T Specify the IP Type of Service (ToS) used for the connection

-t Reply to Telnet protocol options send from servers

-U Uses Unix domain sockets instead of network sockets

-u Use UDP instead of TCP

-v Enable verbose mode to display more information

-w Specify a timeout value for inactivity disconnections

-X Use SOCK or HTTP proxy server protocols

-x Specify the proxy server to use for the connection

-z Scan for listening applications rather than attempting to connect

216  Chapter 7  ■  Configuring Network Connections

Content-Type: text/html
,,,

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<link rel="stylesheet" type="text/css" href="main/mystyle.css" />
<link rel="stylesheet" media="print" type="text/css"
href="main/print.css" />
<title>Rich Blum's Blog</title>
</head>
,,,
$

The output in Listing 7.8 shows the HTTP options sent by the server, followed by the
HTML code for the web page.

You can also create a simple chat dialogue between two systems from the command-line.
On one system, just start nc in listen mode using the -l option:

$ nc -l 8000

Then on the other system, connect to that port on the remote system:

 $ nc hostname 8000

Now any text you type in one side displays on the other side! To break the connection,
just press Ctrl+C on either side of the connection.

Finally, another great use of the netcat program is as a quick way to transfer a file from
one system to another. Just redirect the output of the listening host to a file:

 $ nc -l 8000 > filename.txt

Then on the sending host, redirect the file as input to the sending nc command:

 $ nc hostname 8000 < myfile.txt

When the file transfer completes, both sides of the connection will automatically termi-
nate, and the new file will be available on the receiving host. This makes moving files bet-
ween systems a breeze!

If you need to test secure SSL connections with a network server, the
s_client package allows you to do that. It can utilize certificates to
establish connections with secure servers.

Basic Network Troubleshooting  217

Basic Network Troubleshooting
Once you have a Linux kernel installed, there are a few things you can do to check to make
sure things are operating properly. The following sections walk through the commands
you should know to monitor the network activity, including watching what processes are
listening on the network and what connections are active from your system.

Sending Test Packets
One way to test network connectivity is to send test packets to known hosts. Linux provides
the ping and ping6 commands to do that. The ping and ping6 commands send Internet
Control Message Protocol (ICMP) packets to remote hosts using either the IP (ping) or IPv6
(ping6) protocol. ICMP packets work behind the scenes to track connectivity and provide
control messages between systems. If the remote host supports ICMP, it will send a reply
packet back when it receives a ping packet.

The basic format for the ping command is to specify the IP address of the remote host:

$ ping 10.0.2.2
PING 10.0.2.2 (10.0.2.2) 56(84) bytes of data.
64 bytes from 10.0.2.2: icmp_seq=1 ttl=63 time=14.6 ms
64 bytes from 10.0.2.2: icmp_seq=2 ttl=63 time=3.82 ms
64 bytes from 10.0.2.2: icmp_seq=3 ttl=63 time=2.05 ms
64 bytes from 10.0.2.2: icmp_seq=4 ttl=63 time=0.088 ms
64 bytes from 10.0.2.2: icmp_seq=5 ttl=63 time=3.54 ms
64 bytes from 10.0.2.2: icmp_seq=6 ttl=63 time=3.97 ms
64 bytes from 10.0.2.2: icmp_seq=7 ttl=63 time=0.040 ms
^C
--- 10.0.2.2 ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 6020ms
rtt min/avg/max/mdev = 0.040/4.030/14.696/4.620 ms
$

The ping command continues sending packets until you press Ctrl+C. You can also use
the -c command-line option to specify a set number of packets to send and then stop.

For the ping6 command, things get a little more complicated. If you’re using an IPv6 link
local address, you also need to tell the command which interface to send the packets out on:

$ ping6 –c 4 fe80::c418:2ed0:aead:cbce%enp0s3
PING fe80::c418:2ed0:aead:cbce%enp0s3(fe80::c418:2ed0:aead:cbce) 56 data
bytes

218  Chapter 7  ■  Configuring Network Connections

64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=1 ttl=128 time=1.47 ms
64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=2 ttl=128 time=0.478 ms
64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=3 ttl=128 time=0.777 ms
64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=4 ttl=128 time=0.659 ms

--- fe80::c418:2ed0:aead:cbce%enp0s3 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 0.478/0.847/1.475/0.378 ms
$

The %enp0s3 part tells the system to send the ping packets out the enp0s3 network inter-
face for the link local address.

Yet another useful tool is the traceroute command. The traceroute command uses
a feature of ICMP packets that restrict the number of network “hops” they can make. By
manipulating that value in the packet, the traceroute command allows you to see the net-
work routers used to get the packets from the client to the server.

Finally, the mtr program is a package that utilizes data retrieved from ping and
traceroute commands to document network availability and latency in a real-time chart.
Figure 7.4 shows the output of the mtr command tracing the connectivity to the linux
.org server.

F IGURE 7.4   Using mtr to monitor network connectivity to a server

http://linux.org
http://linux.org

Basic Network Troubleshooting  219

Unfortunately, these days many hosts don’t support ICMP packets
because they can be used to create a denial-of-service (DOS) attack
against the host. Don’t be surprised if you try to ping a remote host and
don’t get any responses.

Finding Host Information
Sometimes the problem isn’t with network connectivity but with the DNS hostname system.
You can test a hostname using the host command:

$ host www.linux.org
www.linux.org is an alias for linux.org.
linux.org has address 107.170.40.56
linux.org mail is handled by 20 mx.iqemail.net.
$

The host command queries the DNS server to determine the IP addresses assigned to
the specified hostname. By default it returns all IP addresses associated with the hostname.
Some hosts are supported by multiple servers in a load balancing configuration. The host
command will show all of the IP addresses associated with those servers:

$ host www.yahoo.com
www.yahoo.com is an alias for atsv2-fp-shed.wg1.b.yahoo.com.
atsv2-fp-shed.wg1.b.yahoo.com has address 98.138.219.231
atsv2-fp-shed.wg1.b.yahoo.com has address 72.30.35.9
atsv2-fp-shed.wg1.b.yahoo.com has address 72.30.35.10
atsv2-fp-shed.wg1.b.yahoo.com has address 98.138.219.232
atsv2-fp-shed.wg1.b.yahoo.com has IPv6 address 2001:4998:58:1836::10
atsv2-fp-shed.wg1.b.yahoo.com has IPv6 address 2001:4998:58:1836::11
atsv2-fp-shed.wg1.b.yahoo.com has IPv6 address 2001:4998:44:41d::3
atsv2-fp-shed.wg1.b.yahoo.com has IPv6 address 2001:4998:44:41d::4
$

You can also specify an IP address for the host command, and it will attempt to find the
hostname associated with it:

$ host 98.138.219.231
231.219.138.98.in-addr.arpa domain name pointer media-router-
fp1.prod1.media.vip.ne1.yahoo.com.
$

220  Chapter 7  ■  Configuring Network Connections

Notice, though, that often an IP address will resolve to a generic server hostname that
hosts the website and not the website alias, as is the case here with the www.linux.org
IP address.

Another great tool to use is the dig command. The dig command displays all of the DNS
data records associated with a specific host or network. For example, you can look up the
information for a specific hostname:

$ dig www.linux.org

; <<>> DiG 9.9.4-RedHat-9.9.4-18.el7_1.5 <<>> www.linux.org
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 45314
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;www.linux.org. IN A

;; ANSWER SECTION:
www.linux.org. 14400 IN CNAME linux.org.
linux.org. 3600 IN A 107.170.40.56

;; Query time: 75 msec
;; SERVER: 192.168.1.254#53(192.168.1.254)
;; WHEN: Sat Feb 06 17:44:29 EST 2016
;; MSG SIZE rcvd: 72

$

Or you can look up DNS data records associated with a specific network service, such as
a mail server:

$ dig linux.org MX

; <<>> DiG 9.9.5-3ubuntu0.5-Ubuntu <<>> linux.org MX
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16202
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

http://www.linux.org

Basic Network Troubleshooting  221

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;linux.org. IN MX

;; ANSWER SECTION:
linux.org. 3600 IN MX 20 mx.iqemail.net.

;; Query time: 75 msec
;; SERVER: 127.0.1.1#53(127.0.1.1)
;; WHEN: Tue Feb 09 12:35:43 EST 2016
;; MSG SIZE rcvd: 68

$

If you need to look up DNS information for multiple servers or domains, the nslookup
command provides an interactive interface where you can enter commands:

$ nslookup
> www.google.com
Server:    192.168.1.254
Address:    192.168.1.254#53

Non-authoritative answer:
Name:   www.google.com
Address: 172.217.2.228
> www.wikipedia.org
Server:    192.168.1.254
Address:    192.168.1.254#53

Non-authoritative answer:
Name:   www.wikipedia.org
Address: 208.80.153.224
> exit

$

You can also dynamically specify the address of another DNS server to use for the name
lookups, which is a handy way to determine if your default DNS server is at fault if a name
resolution fails.

One final tool that can be useful is the whois command. The whois command
attempts to connect to the centralized Internet domain registry at http://whois
.networksolutions.com and retrieve information about who registered the requested
domain name. Listing 7.9 shows a partial output from the whois command.

http://whois.networksolutions.com
http://whois.networksolutions.com

222  Chapter 7  ■  Configuring Network Connections

Listing 7.9:  Partial output from the whois command

$ whois linux.com
 Domain Name: LINUX.COM
 Registry Domain ID: 4245540_DOMAIN_COM-VRSN
 Registrar WHOIS Server: whois.1api.net
 Registrar URL: http://www.1api.net
 Updated Date: 2021-03-18T15:40:08Z
 Creation Date: 1994-06-02T04:00:00Z
 Registry Expiry Date: 2022-06-01T04:00:00Z
 Registrar: 1API GmbH
 Registrar IANA ID: 1387
 Registrar Abuse Contact Email: abuse@1api.net
 Registrar Abuse Contact Phone: +49.68949396850
 Domain Status: clientTransferProhibited
https://icann.org/epp#clientTransferProhibited
 Name Server: NS1.DNSIMPLE.COM
 Name Server: NS2.DNSIMPLE.COM
 Name Server: NS3.DNSIMPLE.COM
 Name Server: NS4.DNSIMPLE.COM
...

Theoretically the registry contains complete contact information for the owner of the
domain, but these days due to privacy concerns that information is usually blocked. But
there is usually a contact email address for the domain in case you need to report suspected
abuse from the domain.

Advanced Network Troubleshooting
Besides the simple network tests shown in the previous section, Linux has some more
advanced programs that can provide more detailed information about the network envi-
ronment. Sometimes it helps to be able to see just what network connections are active on
a Linux system. There are two ways to troubleshoot that issue: the netstat command and
the ss command.

The netstat Command
The netstat command is part of the net-tools package and can provide a wealth of network
information for you. By default, it lists all of the open network connections on the system:

netstat
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State

Advanced Network Troubleshooting  223

Active UNIX domain sockets (w/o servers)
Proto RefCnt Flags Type State I-Node Path
unix 2 [] DGRAM 10825
 @/org/freedesktop/systemd1/notify
unix 2 [] DGRAM 10933
 /run/systemd/shutdownd
unix 6 [] DGRAM 6609
 /run/systemd/journal/socket
unix 25 [] DGRAM 6611 /dev/log
unix 3 [] STREAM CONNECTED 25693
unix 3 [] STREAM CONNECTED 20770
 /var/run/dbus/system_bus_socket
unix 3 [] STREAM CONNECTED 19556
unix 3 [] STREAM CONNECTED 19511
unix 2 [] DGRAM 24125
unix 3 [] STREAM CONNECTED 19535
unix 3 [] STREAM CONNECTED 18067
 /var/run/dbus/system_bus_socket
unix 3 [] STREAM CONNECTED 32358
unix 3 [] STREAM CONNECTED 24818
 /var/run/dbus/system_bus_socket
...

The netstat command produces lots of output because there are normally lots of pro-
grams that use network services on Linux systems. You can limit the output to just TCP or
UDP connections by using the –t command-line option for TCP connections or –u for UDP
connections:

$ netstat -t
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 1 0 10.0.2.15:58630 productsearch.ubu:https CLOSE_WAIT
tcp6 1 0 ip6-localhost:57782 ip6-localhost:ipp CLOSE_WAIT
$

You can also get a list of what applications are listening on which network ports by using
the –l option:

$ netstat -l
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 ubuntu02:domain *:* LISTEN
tcp 0 0 localhost:ipp *:* LISTEN
tcp6 0 0 ip6-localhost:ipp [::]:* LISTEN

224  Chapter 7  ■  Configuring Network Connections

udp 0 0 *:ipp *:*
udp 0 0 *:mdns *:*
udp 0 0 *:36355 *:*
udp 0 0 ubuntu02:domain *:*
udp 0 0 *:bootpc *:*
udp 0 0 *:12461 *:*
udp6 0 0 [::]:64294 [::]:*
udp6 0 0 [::]:60259 [::]:*
udp6 0 0 [::]:mdns [::]:*
...

As you can see, just a standard Linux workstation still has lots of things happening in the
background, waiting for connections.

Yet another great feature of the netstat command is that the –s option displays statistics
for the different types of packets the system has used on the network:

netstat -s
Ip:
 240762 total packets received
 0 forwarded
 0 incoming packets discarded
 240747 incoming packets delivered
 206940 requests sent out
 32 dropped because of missing route
Icmp:
 57 ICMP messages received
 0 input ICMP message failed.
 ICMP input histogram:
 destination unreachable: 12
 timeout in transit: 38
 echo replies: 7
 7 ICMP messages sent
 0 ICMP messages failed
 ICMP output histogram:
 echo request: 7
IcmpMsg:
 InType0: 7
 InType3: 12
 InType11: 38

Advanced Network Troubleshooting  225

 OutType8: 7
Tcp:
 286 active connections openings
 0 passive connection openings
 0 failed connection attempts
 0 connection resets received
 0 connections established
 239933 segments received
 206091 segments send out
 0 segments retransmited
 0 bad segments received.
 0 resets sent
Udp:
 757 packets received
 0 packets to unknown port received.
 0 packet receive errors
 840 packets sent
 0 receive buffer errors
 0 send buffer errors
UdpLite:
TcpExt:
 219 TCP sockets finished time wait in fast timer
 15 delayed acks sent
 26 delayed acks further delayed because of locked socket
 Quick ack mode was activated 1 times
 229343 packet headers predicted
 289 acknowledgments not containing data payload received
 301 predicted acknowledgments
 TCPRcvCoalesce: 72755
IpExt:
 InNoRoutes: 2
 InMcastPkts: 13
 OutMcastPkts: 15
 InOctets: 410722578
 OutOctets: 8363083
 InMcastOctets: 2746
 OutMcastOctets: 2826
#

The netstat statistics output can give you a rough idea of how busy your Linux system
is on the network or if there’s a specific issue with one of the protocols installed.

226  Chapter 7  ■  Configuring Network Connections

Examining Sockets
The netstat tool provides a wealth of network information, but it can often be hard to
determine just which program is listening on which open port. The ss command can come to
your rescue for that.

A program connection to a port is called a socket. The ss command can link which
system processes are using which network sockets that are active:

$ ss -anpt
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 100 127.0.0.1:25 *:*
LISTEN 0 128 *:111 *:*
LISTEN 0 5 192.168.122.1:53 *:*
LISTEN 0 128 *:22 *:*
LISTEN 0 128 127.0.0.1:631 *:*
LISTEN 0 100 ::1:25 :::*
LISTEN 0 128 :::111 :::*
LISTEN 0 128 :::22 :::*
LISTEN 0 128 ::1:631 :::*
ESTAB 0 0 ::1:22 ::1:40490
ESTAB 0 0 ::1:40490 ::1:22
users:(("ssh",pid=15176,fd=3))
$

The -anpt option displays both listening and established TCP connections and the pro-
cess they’re associated with. This output shows that the ssh port (port 22) has an established
connection and is controlled by process ID 15176, the ssh program.

Monitoring the Network
Often when troubleshooting network applications it helps to see what’s going on “behind
the scenes” in the network. Knowing what TCP or UDP packets are being sent between the
client and server can be crucial in determining what’s going wrong. Fortunately, Linux has a
few different tools that can help with that:

■■ tcpdump—the legacy command-line tool for watching network packets

■■ wireshark—a graphical tool for watching network packets and performing advanced
network analysis

■■ tshark—the command-line version of Wireshark

The tcpdump program is a legacy tool that’s been around for a long time, but it can still
be useful if that’s all you have to work with. It provides simple capturing of network data on
the system and can do rudimentary decoding of the packets to break out the different data
contained within the network packet.

Advanced Network Troubleshooting  227

The tcpdump program also provides basic filtering capabilities so that you can limit the
capture to a single host, client, or even network session.

The wireshark package is an open source graphical tool for performing advanced net-
work analysis of packets. Not only will wireshark capture and decode network packets,
but it also provides color coding of traffic types and can display groups of packets based on
applications. Figure 7.5 shows a sample wireshark display of simple network traffic.

If you don’t have a graphical desktop environment on your Linux system, you can still
use the power of wireshark from the command line with tshark. The tshark program
provides many of the same network analysis tools as wireshark, but in a more rudimentary
display format on the command line.

To see all network traffic on a network interface, you must have admin-
istrator privileges on your system. That usually means either logging in
with the root user account or using the sudo command from a normal
account to gain root privileges.

F IGURE 7.5   The wireshark network analysis window

228  Chapter 7  ■  Configuring Network Connections

E X E R C I S E 7. 1  

Determining the Network Environment

This exercise will demonstrate how to quickly assess the network configuration and pro-
grams for your Linux system without you having to dig through lots of configuration files.
To document your system network information, follow these steps (depending on your
distribution you may need to first install the netstat and iwlist programs from the soft-
ware repository):

1.	 Log in as root, or acquire root privileges by using su or by using sudo with each of the
following commands.

2.	 Type ip address show to display the current network interfaces on your system. You
will most likely see a loopback interface (named l0) and one or more network inter-
faces. Write down the IP (called inet) and IPv6 (called inet6) addresses assigned to each
network interface along with the hardware address and the network mask address.

3.	 If your system has a wireless network card, type iwlist wlan0 scan to view the
wireless access points in your area.

4.	 If your system has a wireless network card, type iwconfig to display the current
wireless settings for your network interface.

5.	 Type route to display the routes defined on your system. Note the default gateway
address assigned to your system. It should be on the same network as the IP address
assigned to the system.

6.	 Type cat /etc/resolv.conf to display the DNS settings for your system.

7.	 Type netstat –l to display the programs listening for incoming network connections.
The entries marked as unix are using the loopback address to communicate with other
programs internally on your system.

8.	 Type ss -anpt to display the processes that have active network ports open on
your system.

Summary
Connecting Linux systems to networks can be painless if you have the correct tools. To con-
nect the Linux system, you’ll need an IP address, a netmask address, a default router, a host-
name, and a DNS server. If you don’t care what IP address is assigned to your Linux system,
you can obtain those values automatically using DHCP. However, if you are running a Linux
server that requires a static IP address, you may need to configure these values manually.

Linux stores network connection information in configuration files. You can either man-
ually modify the files to store the appropriate network information or use a graphical or

Exam Essentials  229

command-line tool to do that. The Network Manager tool is the most popular graphical tool
used by Linux distributions. It allows you to configure both wired and wireless network set-
tings from a graphical window. The Network Manager icon in the system tray area shows
network connectivity as well as basic wireless information for wireless network cards.

If you must configure your network settings from the command line, you’ll need a few
different tools. For wireless connections, use the iwconfig command to set the wireless access
point and SSID key. For both wireless and wired connections, use the ifconfig or ip command
to set the IP address and netmask values for the interface. You may also need to use the route
command to define the default router for the local network.

To use hostnames instead of IP addresses, you must define a DNS server for your net-
work. You do that in the /etc/resolv.conf configuration file. You will also need to
define the hostname for your Linux system in either the /etc/hostname or the /etc/
HOSTNAME file.

Once your network configuration is complete, you may have to do some additional trou-
bleshooting for network problems. The ping and ping6 commands allow you to send ICMP
packets to remote hosts to test basic connectivity. If you suspect issues with hostnames, you
can use the host and dig commands to query the DNS server for hostnames.

For more advanced network troubleshooting, you can use the netstat and ss commands to
display what applications are using which network ports on the system.

Exam Essentials
Describe the command-line utilities required to configure and manipulate Ethernet network
interfaces.   To set the network address on a network interface you can use the nmtui,
nmcli, ip, or ifconfig commands. The nmtui and nmcli commands are available on
systems that utilize the Network Manager tool for managing network interfaces. The ip
command is from the iproute2 package, and the ifconfig command is from the legacy
net-tools package. If you use the ifconfig command you’ll also need to use the route
command to set the default router (or gateway) for the network.

Explain how to configure basic access to a wireless network.   Linux uses the iwlist
command to list all wireless access points detected by the wireless network card. You can
configure the settings required to connect to a specific wireless network using the iwconfig
command. At a minimum, you’ll need to configure the access point SSID value and most
likely specify the encryption key value to connect to the access point.

Describe how to manipulate the routing table on a Linux system.   For legacy systems use
the route command to display the existing router table used by the Linux system. You
can add a new route by using the add option or remove an existing route by using the del
option. You can specify the default router (gateway) used by the network by adding the
default keyword to the command. For systems that utilize the iproute2 package, you use
the ip route command to display and manipulate the routing table.

230  Chapter 7  ■  Configuring Network Connections

Summarize the tools you would need to analyze the status of network devices.   The nmtui,
nmcli, ifconfig and ip commands display the current status of all network interfaces
on the system. You can also use the netstat or ss command to display statistics for all
listening network ports.

Describe how Linux initializes the network interfaces.   Debian-based Linux systems use the
/etc/network/interfaces file to configure the IP address, netmask, and default router.
Red Hat–based Linux systems use files in the /etc/sysconfig/network-scripts folder.
The ifcfg-emp0s3 file contains the IP address and netmask settings, while the network file
contains the default router settings. These files are examined at bootup to determine the net-
work interface configuration. Newer versions of Ubuntu use the Netplan tool, which stores
the network configuration in the /etc/netplan folder.

Explain how to test network connectivity.   The ping and ping6 commands allow you to
send ICMP messages to remote hosts and display the response received. The traceroute
command allows you to view the network path used to reach a specific remote host. The mtr
command provides real-time connectivity and response statistics for a specific remote host.

Describe one graphical tool used to configure network settings in Linux.   The Network
Manager tool provides a graphical interface for changing settings on the network inter-
faces. The Network Manager appears as an icon in the desktop system tray area. If your
Linux system uses a wireless network card, the icon appears as a radio signal, while for
wired network connections it appears as a mini-network. When you click the icon, it shows
the current network status, and for wireless interfaces, it shows a list of the access points
detected. When you open the Network Manager interface, it allows you to either set static IP
address information or configure the network to use a DHCP server to dynamically set the
network configuration.

Review Questions  231

Review Questions
1.	 Which two commands can be used to set the IP address, subnet mask, and default router

information on an interface using the command line?

A.	 netstat
B.	 ping
C.	 nmtui
D.	 ip
E.	 route

2.	 Which tool does newer versions of Ubuntu use to set network address information?

A.	 netstat
B.	 Netplan

C.	 iwconfig
D.	 route
E.	 ifconfig

3.	 Which command displays the duplex settings for an Ethernet card?

A.	 ethtool
B.	 netstat
C.	 iwconfig
D.	 iwlist
E.	 route

4.	 Which command displays what processes are using which ports on a Linux system?

A.	 iwconfig
B.	 ip
C.	 ping
D.	 nmtui
E.	 ss

5.	 If your Linux server doesn’t have a graphical desktop installed, what two tools could you use
to configure network settings on a wired network card from the command line?

A.	 nmcli
B.	 iwconfig
C.	 ip
D.	 netstat
E.	 ping

232  Chapter 7  ■  Configuring Network Connections

6.	 What network setting defines the network device that routes packets intended for hosts on
remote networks?

A.	 Default router

B.	 Netmask

C.	 Hostname

D.	 IP address

E.	 DNS server

7.	 What device setting defines a host that maps a host name to an IP address?

A.	 Default router

B.	 Netmask

C.	 Hostname

D.	 IP address

E.	 DNS server

8.	 What is used to automatically assign an IP address to a client?

A.	 Default router

B.	 DHCP

C.	 ARP table

D.	 Netmask

E.	 ifconfig

9.	 What type of address is used so local applications can use network protocols to communicate
with each other?

A.	 Dynamic address

B.	 Loopback address

C.	 Static address

D.	 Hostname

E.	 MAC address

10.	 Which command would you use to find the mail server for a domain?

A.	 dig
B.	 netstat
C.	 ping6
D.	 host
E.	 ss

Review Questions  233

11.	 What command would you use to find out what application was using a specific TCP port
on the system?

A.	 ip
B.	 ss
C.	 host
D.	 dig
E.	 ifconfig

12.	 What directory do Red Hat–based systems use to store network configuration files?

A.	 /etc/sysconfig/network-scripts
B.	 /etc/network
C.	 /etc/ifcfg-eth0
D.	 /etc/ifconfig
E.	 /etc/iwconfig

13.	 Which configuration line sets a dynamic IP address for a Debian system?

A.	 iface eth0 inet static
B.	 iface eth0 inet dhcp
C.	 auto eth0
D.	 iface eth0 inet6 auto
E.	 BOOTPROTO=dynamic

14.	 Which file contains a list of DNS servers the Linux system can use to resolve hostnames?

A.	 /etc/dhcpd.conf
B.	 /etc/resolv.conf
C.	 /etc/nsswitch.conf
D.	 /etc/network/interfaces
E.	 /etc/sysctl.conf

15.	 Which ifconfig format correctly assigns an IP address and netmask to the eth0 interface?

A.	 ifconfig eth0 up 192.168.1.50 netmask 255.255.255.0
B.	 ifconfig eth0 255.255.255.0 192.168.1.50
C.	 ifconfig up 192.168.1.50 netmask 255.255.255.0
D.	 ifconfig up
E.	 ifconfig down

16.	 What command displays all of the available wireless networks in your area?

A.	 iwlist
B.	 iwconfig
C.	 ifconfig
D.	 ip
E.	 arp

234  Chapter 7  ■  Configuring Network Connections

17.	 What option sets the wireless access point name in the iwconfig command?

A.	 key
B.	 netmask
C.	 address
D.	 essid
E.	 channel

18.	 What command can you use to both display and set the IP address, netmask, and default
router values?

A.	 ifconfig
B.	 iwconfig
C.	 router
D.	 ifup
E.	 ip

19.	 What tool allows you to send ICMP messages to a remote host to test network connectivity?

A.	 netstat
B.	 ifconfig
C.	 ping
D.	 iwconfig
E.	 ss

20.	 You have a network application that fails to connect to a remote server. What command-line
tool should you use to watch the network packets that leave your system to ensure that they
use the correct network port?

A.	 nc
B.	 tcpdump
C.	 ping
D.	 traceroute
E.	 mtr

Comparing GUIs

✓✓ Objective 1.1: Summarize Linux fundamentals

Chapter

8

A graphical user interface (GUI) is a set of programs that allow
a user to interact with the computer system via icons, windows,
and various other visual elements. While some believe that you

should only administer a system via the text-based command line, it is still important to
understand the Linux GUI (pronounced “gooey”). You may need to use certain GUI utilities
to administer the system and its security.

Different Linux distributions come with various default desktop environments, which you
may need to install and manage for users who prefer a graphical-based UI. Administering the
underlying software is necessary too. In addition, you need to understand remote desktops
and their client-server model. Remote desktop interactions that travel over the network are
prone to privacy problems, so it is crucial to secure these GUI transmissions.

Access to the various GUI desktops should provide universal access for all. A GUI desktop
environment needs to be configured to work appropriately for any person who has problems
with vision, hearing, hand and finger control, and so on. Thus, we are pleased to present a
section on accessibility in this chapter.

Focusing on the GUI
With some operating systems, your GUI is fairly rigid. You may be able to move or add a
few icons, change a background picture, or tweak a few settings. However, with Linux, the
GUI choices are almost overwhelming and the flexibility is immense.

On Linux, a GUI is a series of components that work together to provide the graphical
setting for the user interface (UI). One of these components is the desktop environment.
A desktop environment provides a predetermined look and feel to the GUI. It is typically
broken up into the following graphical sections and functions:

Desktop Settings   Desktop settings consist of programs that allow you to make config-
uration changes to the desktop environment. For example, you may want desktop win-
dows to activate when the cursor hovers over them instead of when you click them.

Display Manager   The desktop environment’s login screen is where you choose a user-
name and enter a password to gain system access. If multiple desktop environments are
installed on the system, the display manager allows you to choose between them prior
to logging in. These login screens are often modified by corporations to contain a legal
statement about appropriate use of the system and/or a company logo.

Focusing on the GUI  237

File Manager   This program allows you to perform file maintenance activities graph-
ically. Often a folder icon is shown for directories within the manager program. You can
perform such tasks as moving a file, viewing directory contents, copying files, and so on.

Icons   An icon is a picture representation of a file or program. It is activated via mouse
clicks, finger touches (if the screen is a touchscreen), voice commands, and so on.

Favorites Bar   This window area contains popular icons, which are typically used more
frequently. These icons can be removed or added as desired. Some desktop environments
update the bar automatically as you use the system to reflect your regularly used icons.

Launch   This program allows you to search for applications and files. It can also allow
certain actions, such as start or open, to be performed on the search results.

Menus   These window areas are typically accessed via an icon. They contain files and/
or programs list as well as sublists of additional files and/or program selections.

Panels   Panels are slim and typically rectangular areas that are located at the very top
or bottom of a desktop environment’s main window. They can also be at the desktop’s
far left or right. They often contain notifications, system date and/or time, program
icons, and so on.

System Tray   A system tray is a special menu, commonly attached to a panel. It pro-
vides access to programs that allow a user to log out, lock their screen, manage audio
settings, view notifications, shut down or reboot the system, and so on.

Widgets   Widgets are divided into applets, screenlets, desklets, and so on. They are
programs that provide to the user information or functionality on the desktop. For
example, current sports news may be displayed continually to a screenlet. Another
example is a sticky note applet that allows the user to put graphical windows that look
like sticky notes on their desktop and add content to them.

Window Manager   These client programs determine how the windows (also called
frames) are presented on the desktop. These programs control items such as the size and
appearance of the windows. In addition, they manage how additional windows can be
placed, such as either next to each other or overlapping.

Many Linux users are very passionate about the desktop environment they use and for
good reason. There are several excellent ones from which you can choose. We’ll cover a few
of these desktop environments in the following sections and look at universal accessibility to
them as well.

Getting to Know GNOME
The GNOME desktop environment, created around the late 1990s, is very popular and
found by default on Linux distributions such as CentOS and Ubuntu. Currently a large vol-
unteer group that belongs to the GNOME Foundation maintains it. For more about the
GNOME project, visit www.gnome.org.

http://www.gnome.org

238  Chapter 8  ■  Comparing GUIs

GNOME 2 was a more traditional desktop user interface, and when GNOME 3 (now for-
mally called GNOME Shell) was released in 2011, with its nontraditional interface, many
users reacted strongly. This spurred a few GNOME project forks. However, over time and
with a few changes, GNOME Shell gained ground. For those who still prefer the traditional
GNOME 2 environment, the GNOME Classic desktop is available.

Figure 8.1 shows a GNOME Shell desktop environment on an Ubuntu distribution.

In Figure 8.1, notice the panel at the frame’s top, containing a clock and a system tray on
the far right. The Activities button on the panel’s far left allows you to switch between win-
dows and provides the Search bar. The favorites bar on the UI frame’s left side shows various
application icons as well as a multidot icon, which is the Apps button. The Apps button dis-
plays various application icons that allow you to quickly access a desired program.

Keep in mind that a default desktop environment may be modified
slightly for each Linux distribution. For example, GNOME Shell on Rocky
Linux does not have a favorites bar displaying unless you click Activities
in the panel, whereas GNOME Shell on Ubuntu automatically displays the
favorites bar.

The best way to understand a graphical interface is to try a desktop environment for
yourself. However, to help you with memorizing the assorted components that make up

F IGURE 8 .1   The GNOME Shell desktop environment

Focusing on the GUI  239

these different desktops, we are providing tables. Some of the GNOME Shell’s various com-
ponents are briefly described in Table 8.1.

An interesting feature of GNOME Shell is that the panel, which contains the system tray,
is available on the Display Manager as well as within the GNOME Shell.

Probing KDE Plasma
The Kool Desktop Environment (KDE) got its start in 1996, with its first version released in
1998. Through time the name KDE was no longer just referring to a desktop environment,
but instead it specified the project’s organization and the strong community that supported
it. KDE had many additional software projects besides its famous desktop environment.
Thus in 2009, KDE’s desktop environment was rebranded as KDE Plasma. For more about
the KDE group, visit www.kde.org.

Figure 8.2 shows a KDE Plasma desktop environment on an openSUSE LEAP
distribution.

In Figure 8.2, the panel is located at the primary UI frame’s bottom. This is a more tra-
ditional panel location used on older systems and one of the reasons KDE Plasma is known
for being a good desktop environment for those who are new to Linux. On this panel, the
system tray, which contains notifications, the time, and various other plasmoids (widgets),
is located on the panel’s right side. The Application Menu, a launcher for various programs
in addition to containing the favorites bar, is on the panel’s far-left side. Table 8.2 briefly
describes some of the KDE Plasma components.

TABLE 8 .1   GNOME shell desktop environment default components

Name Program Name and/or Description

Display manager GNOME Display Manager (GDM).

File manager GNOME Files (sometimes just called Files). Formerly called Nautilus.

Favorites bar GNOME Shell Dash (sometimes called the Dock).

Panels A single panel located at GNOME Shell frame’s top.

System tray Located on the right side of the single panel.

Window manager Mutter.

http://www.kde.org

240  Chapter 8  ■  Comparing GUIs

F IGURE 8 .2   The KDE Plasma desktop environment

TABLE 8 .2   KDE Plasma desktop environment default components

Name Program Name and/or Description

Display manager SDDM (Simple Desktop Display Manager)

File manager Dolphin

Favorites bar Displayed inside Application Menu

Panels A single panel located at the Plasma frame’s bottom

System tray Located on the right side of the single panel

Widgets Called plasmoids

Window manager Kwin

Focusing on the GUI  241

To help those users familiar with accessing files via folder icons, KDE Plasma offers
a folder view. Folders appear in the default UI on the openSUSE Leap distribution in
Figure 8.2. These icons on the primary desktop window allow you to launch the Dolphin file
manager and jump straight to the directory named on the folder icon.

Many desktop environments have multiple UIs called workspaces avail-
able for each user. Workspaces are individual desktops. For example,
you can have two GUI apps open on one workspace and just a terminal
emulator open on the other workspace. Switching between the work-
spaces can be done via mouse clicks or keystroke combinations, such as
Ctrl+Alt+Up Arrow/Down Arrow on Fedora 28’s Wayland desktop envi-
ronment. Using multiple workspaces can be very handy, especially if you
need to quickly look productive at work when your boss walks by.

Considering Cinnamon
The Cinnamon desktop environment got its start in 2011 when many users reacted strongly
to the release of GNOME 3 (now GNOME Shell). Developers of the Linux Mint distribu-
tion began creating Cinnamon as a fork of GNOME 3. It was officially “GNOME-free” as
of late 2013. Cinnamon is still managed by the Mint development team, and you can find
out more at their website, www.linuxmint.com.

Cinnamon, like KDE Plasma, is known for being a good UI for those who are new
to Linux. Figure 8.3 shows a Cinnamon desktop environment on a Fedora Workstation
distribution.

Notice the primary UI frame’s bottom panel on the right side. It has the system tray
containing audio controls, the time, and various other widgets. The Menu, a launcher for
various programs that also contains the favorites bar, is on the panel’s far left. Note that the
Cinnamon panel also contains icons for quick launching.

If you want to install a Cinnamon desktop environment on one of the
distributions you installed in Chapter 1, “Preparing Your Environment,”
we recommend you try it on Fedora 34 Workstation. Use an account that
has super user privileges. This is typically the account you set up dur-
ing the system installation. Access a terminal and enter the command
sudo dnf groupinstall -y "Cinnamon Desktop" at the command line. Be
sure to include the command’s quotation marks. When the installation
is complete, reboot your system. You can access the Cinnamon desktop
environment through a menu provided by the system’s display man-
ager’s gear icon.

http://www.linuxmint.com

242  Chapter 8  ■  Comparing GUIs

The Cinnamon desktop environment layout should be somewhat familiar because it is
similar to the KDE Plasma default layout. They both have folder icons on the main UI win-
dows. Table 8.3 briefly describes some of the Cinnamon components.

TABLE 8 .3   Cinnamon desktop environment default components

Name Program name and/or description

Display manager LightDM

File manager Nemo (a fork of Nautilus)

Favorites bar Displayed inside Application Menu

Panels A single panel (called the Cinnamon panel) located at the Cinnamon
frame’s bottom

System tray Located on the right side of the single panel

Widgets Cinnamon Spices

Window manager Muffin (a fork of GNOME Shell’s Mutter)

F IGURE 8 .3   The Cinnamon desktop environment

Focusing on the GUI  243

The Cinnamon Spices go beyond just applets and desklets for modifying your desktop
environment. They also include themes and extensions that you can download and install to
make your Cinnamon UI experience truly unique. The official Cinnamon Spices repository is
at https://cinnamon-spices.linuxmint.com.

Making Acquaintance with MATE
The MATE desktop environment also got its start in 2011, when GNOME 3 (now called
GNOME Shell) was released. It was started by an Arch Linux distribution user in Argentina.
Pronounced “ma-tay,” this desktop environment was officially released only two months
after it was announced and was derived from GNOME 2. The desktop environment is avail-
able on a wide variety of Linux distributions, such as Arch Linux, Debian, Fedora, Ubuntu,
Linux Mint, and so on.

MATE is named after a tea made from a plant’s dried leaves. The plant
(Ilex paraguariensis) is native to South America. Mate tea is the national
drink of Argentina. It is purported to have the health benefits of tea as
well as provide mental alertness similar to the benefit of drinking coffee.

If you’ve ever used the old GNOME 2 desktop environment, MATE will feel familiar.
Figure 8.4 shows a MATE desktop environment on an Ubuntu Desktop distribution.

F IGURE 8 .4   The MATE desktop environment

https://cinnamon-spices.linuxmint.com

244  Chapter 8  ■  Comparing GUIs

There are two panels in the MATE desktop environment: one is at the primary UI frame’s
top, and the other is at its bottom. The system tray, which contains audio controls, the time,
and various other widgets, is located on the top panel’s right side. Applications, a menu-
driven launcher for various programs, is on the top panel’s far-left side. Note that this top
panel also contains icons for quick launching.

If you want to install a MATE desktop environment on one of the
distributions you installed in Chapter 1, we recommend you try it on
Ubuntu Desktop 20.04. Use an account that has super user privileges.
This is typically the account you set up during the system installation.
Access a terminal and enter sudo apt-get update at the command line to
update your system’s repositories. When you get a prompt back, install
the tasksel program. The tasksel program is a graphical utility that
installs multiple related packages as a harmonized process. In other
words, it makes installing certain packages with lots of dependencies
easier. To install it, type sudo apt-get install tasksel at the command
line. Then you can install the MATE desktop environment by entering
sudo tasksel install ubuntu-mate-desktop. When the installation is
complete, reboot your system. You can access the MATE desktop envi-
ronment through a menu provided by the system’s display manager’s
gear icon.

On the bottom panel of the MATE desktop environment, in the lower-left corner is the
Show Desktop Button icon. This is handy if you have several windows open in the main
UI frame. Just click the Show Desktop Button, and all the windows currently open will be
hidden to the lower panel. You can restore all the windows on the lower panel by clicking
Show Desktop Button again. Table 8.4 briefly describes some of the MATE components.

TABLE 8 .4   MATE desktop environment default components

Name Program name and/or description

Display manager LightDM.

File manager Caja (a fork of Nautilus).

Favorites bar A Favorites menu is used instead and is accessed via the Applications
menu-driven launcher.

Panels One panel is located at the MATE frame’s bottom and the other panel
occupies the top of the MATE UI.

System tray Located on the right side of the top panel.

Windows manager Marco (a fork of Metacity).

Focusing on the GUI  245

You can add additional widgets to your MATE UI’s top panel. Just right-click the panel,
and from the drop-down context menu, select Add To Panel. This will open a window of
applets you can install.

Setting Up Accessibility
In a GUI environment, accessibility deals with a user’s ability to use the desktop environ-
ment. While the default desktop environment provided by a Linux distribution works for
many people, accessibility settings accommodate all potential users. This includes individ-
uals who may have vision impairment, challenges using the mouse, finger movement issues,
and so on. It’s important to know the desktop environment configurations concerning these
accommodations so that you can help provide access for all.

Each desktop environment will provide slightly different methods for configuring acces-
sibility. But most settings can be accomplished through desktop environment control panels,
such as the Universal Access panel in GNOME Shell settings.

Even though most desktop environments provide accessibility control
panels of different names, you can usually find the panels using the
environment’s search facilities. Good search terms include “universal
access,” “accessibility,” and “assistive technologies.”

Figure 8.5 shows the Universal Access menu opened from the Ubuntu login window. You
can find more accessibility settings in the access control panel by searching for “universal
access” in the GNOME Shell’s search feature.

For users with serious visual impairments or just poor eyesight, several accessibility
settings may help. Table 8.5 describes common visual impairment settings.

TABLE 8 .5   Common visual impairment accessibility settings

Name Description

Cursor Blinking Modifies the cursor blink rate to make it easier to locate the cursor on the
screen.

Cursor Size Modifies the cursor size.

High Contrast Increases the brightness of windows and buttons and darkens window
edges as well as text and the cursor.

Large Text Modifies the font size.

Screen Reader Uses a screen reader to read the UI aloud. Popular choices include Orca
screen reader and Emacspeak.

Sound Keys Beeps when Caps Lock or Num Lock is turned on (off). Also called toggle
keys.

Zoom Amplifies the screen or a screen portion to different magnification levels.

246  Chapter 8  ■  Comparing GUIs

If a blind user has access to a braille display, you can install the BRLTTY package, which is
available in most Linux distribution’s repositories. BRLTTY operates as a Linux daemon and
provides console (text mode) access via a braille display. You can find out more about this
software at its official headquarters, http://mielke.cc/brltty. Be aware that you can
also use the Orca screen reader with a refreshable braille display.

If you are not able to hear sound alerts on your Linux system, you can
enable visual alerts. Thus, if something occurs that normally produces a
sound, a visual flash is performed instead. You can set the visual alert to
flash a single window or flash the entire display.

For users with hand and/or finger impairments, several accessibility settings allow full
functional system use. Common settings are listed in Table 8.6.

TABLE 8 .6   Common hand and finger impairment accessibility settings

Name Description

Bounce Keys Keyboard option that helps compensate for single keys accidentally
pressed multiple times.

Double-Click
Delay

Mouse option that modifies the amount of time allowed between double
mouse clicks.

Gestures Mouse option that activates programs and/or options via combining both
mouse clicks and keyboard presses.

F IGURE 8 .5   Universal Access top panel menu in GNOME Shell

http://mielke.cc/brltty

Serving Up the GUI  247

AccessX was a program that provided many of the options in Table 8.6. Thus, you
will often see it referred to in the accessibility control panels, such as in the Typing Assist
(AccessX) option. One interesting AccessX setting is Enable By Keyboard, which allows you
to turn on or off accessibility settings via keystrokes on the keyboard.

Serving Up the GUI
Many players are involved in providing a Linux system user interface. The desktop environ-
ment components are only a piece of this puzzle. Figure 8.6 is a rudimentary depiction of
serving a GUI to a user.

In Figure 8.6, notice that the window manager is an intermediary in this scenario. A
window manager is a program that communicates with the display server (sometimes called
a window manager) on behalf of the UI. Each particular desktop environment has its own
default window manager, such as Mutter, Kwin, Muffin, Marco, and Metacity.

In the following sections, we will focus on the display server, a program that uses a com-
munication protocol to transmit the desires of the UI to the operating system, and vice versa.
The communication protocol is called the display server protocol and can operate over
a network.

Name Description

Hover Click Mouse option that triggers a mouse click when the pointer is hovered
over an item.

Mouse Keys Mouse option that allows you to use keyboard keys to emulate the mouse
functions.

Repeat Keys Keyboard option that modifies how long a key must be pressed down
as well as a delay to acknowledge the key repeat. Also called keyboard
repeat rate.

Screen Keyboard Keyboard option that displays a visual keyboard on the UI that can be
manipulated by a mouse or other pointing device to emulate key strokes.

Simulated
Secondary Click

Mouse option that sets a primary key to be pressed along with a mouse
click to emulate secondary mouse clicks.

Slow Keys Keyboard option that modifies how long a key must be pressed down to
acknowledge the key.

Sticky Keys Keyboard option that sets keyboard modifier keys, such as Ctrl and Shift,
to maintain their pressed status until a subsequent key is pressed.

248  Chapter 8  ■  Comparing GUIs

Another member in the display server team is the compositor. A compositor program
arranges various display elements within a window to create a screen image to be passed
back to the client.

Before computers printed documents, compositors were people. Physical
frames (called chases) held wooden blocks with letters or images carved
on them. A compositor arranged the wooden blocks into the frames to
make words and/or images. The compositor handed the frames to the
printer, who was also a person. The printer inked the blocks and then
pressed the frames onto paper, which resulted in a printed document. A
compositor program operates in a similar manner, except it uses multiple
elements composed into a single screen image and handed off to the
client.

Figuring Out Wayland
Wayland is a replacement for the X11 display server (described later). It was designed to
be simpler, more secure, and easier to develop and maintain. Wayland specifically defines
the communication protocol between a display server and its various clients. However,
Wayland is also an umbrella term that covers the compositor, the window server, and the
display server.

The Wayland protocol was initially released back in 2009, and it is now used by many
current Linux desktop environments, such as GNOME Shell and KDE Plasma. If you want
to dig down into Wayland, visit its website at https://wayland.freedesktop.org.

Exercise 8.1 helps walk you through the display environment in your Linux distribution
by using a couple of command-line commands to show the display settings.

Desktop
Environment

Window
Manager

Display
Server

F IGURE 8 .6   Serving the GUI components

https://wayland.freedesktop.org

Serving Up the GUI  249

E X E R C I S E 8 . 1 

Checking Your Display Server

You can quickly determine what display server your desktop uses, X11 or Wayland, with the
following steps:

1.	 Log into your system’s GUI. This will start a GUI session for you.

2.	 Open a terminal emulator application.

3.	 Type echo $WAYLAND_DISPLAY at the command line and press the Enter key. If you get
no response and just a command-line prompt back, most likely your system is using
X11. If you receive a response, then your desktop environment is probably using Way-
land. An additional test will help you ensure what is in use.

4.	 You need to get the GUI session number, so type loginctl and press Enter. Note the
session number.

5.	 Type the command loginctl show-session session-number -p Type at the
command line, where session-number is the number you obtained in the previous
step. If you receive Type=Wayland, then your desktop environment is using Wayland.
If instead you receive Type=X11, then your system is using the X11 display server.

The Wayland compositor is Weston, which provides a rather basic desktop experience.
It was created as a Wayland compositor reference implementation, which is a compositor
requirements example for developers who want to create their own Wayland compositor.
Thus, Weston’s core focus is correctness and reliability.

Wayland’s compositor is swappable. In other words, you can use a different compositor if
you need a more full-featured desktop experience. Several compositors are available for use
with Wayland, including Arcan, Sway, Lipstick, and Clayland. However, you may not need
to go out and get a Wayland compositor. Many desktop environments create their own Way-
land compositors, which are typically embedded within their window manager. For example,
Kwin and Mutter both fully handle Wayland compositor tasks.

If you have any legacy X11 applications that will not support Wayland, do
not despair. The XWayland software is available in the Weston package.
XWayland allows X-dependent applications to run on the X server and
display via a Wayland session.

If your UI is using Wayland but you are having GUI issues, you can try a few trouble-
shooting techniques. The following list steps through some basic approaches.

Try the GUI without Wayland.   If your Linux distribution has multiple flavors of the
desktop environment (with Wayland or with X11), log out of your GUI session and pick
the desktop environment without Wayland. If your UI problems are resolved, then you
know it has most likely something to do with Wayland.

250  Chapter 8  ■  Comparing GUIs

If you do not have multiple flavors of the desktop environment and you are using
the GNOME Shell user interface, turn off Wayland. Do this by using super user
privileges and editing the /etc/gdm3/custom.conf file. Remove the # from the
#WaylandEnable=false line and save the file. Reboot the system and log into a GUI
session and see if the problems are gone.

Check your system’s graphics card.   If your system seems to be running fine under X11
but gets problematic when under Wayland, check your graphics card. Go to the graphics
card vendor’s website and see if its drivers support Wayland. Many do, but there are a
few famous holdouts that shall go unnamed here.

Use a different compositor.   If you are using a desktop environment’s built-in com-
positor or one of the other compositors, try installing and using the Weston compositor
package instead. Remember that Weston was built for reliability. If Weston is not in
your distribution’s software repository, you can get it from https://github.com/
wayland-project/Weston. This site also contains helpful documentation. If using
Weston solves your GUI problem, then you have narrowed down the culprit.

Be aware that some desktop environment commands won’t work when
you have a Wayland session. For example, if you are using GNOME Shell,
the gnome-shell --replace command will do nothing but generate
the message Window manager warning: Unsupported session
type.

Examining X11
The X Window System (X for short) has been around since the 1980s, so it has endured the
test of time. On Linux the dominant server implementing X was XFree86 until 2004, when
a licensing change occurred. This change caused many Linux distributions to switch to the
X.org foundation’s implementation of X.

The X.Org’s server implements the X Window System version 11. Thus, you will see a
wide variety of names about the Linux X display server, such as X.org-X11, X, X11, X.Org
Server, and so on. We’ll use either X or X11 in this chapter.

Currently X11 is being rapidly replaced by Wayland. Not only does Wayland provide
better security, but it is far easier to maintain. There are many old and obscure options in
the older X11 configuration. However, you still may have distributions using X11, so it is
important to understand its basics.

If for some reason your X11 session becomes hung, you can quickly kill it
off; go back to the display manager screen and log back on to the system.
Just press the Ctrl+Alt+Backspace key combination. The X11 session will
stop and then restart for you, providing the display manager screen so
you can log on.

https://github.com/wayland-project/Weston
https://github.com/wayland-project/Weston
http://x.org

Serving Up the GUI  251

The X11 primary configuration file is /etc/X11/xorg.conf, though it sometimes is
stored in the /etc/ directory. Typically this file is no longer used. Instead, X11 creates a
session configuration on the fly using runtime autodetection of the hardware involved with
each GUI’s session.

However, in some cases, autodetect might not work properly and you need to make X11
configuration changes. In those cases, you can create the configuration file. To do this, shut
down the X server, open a terminal emulator, and using super user privileges, generate the
file via the Xorg -configure command. The file, named xorg.conf.new, will be in your
local directory. Make any necessary tweaks, rename the file, move the file to its proper loca-
tion, and restart the X server.

The xorg.conf file has several sections. Each section contains important configuration
information as follows:

■■ Input Device: Configures the session’s keyboard and mouse

■■ Monitor: Sets the session’s monitor configuration

■■ Modes: Defines video modes

■■ Device: Configures the session’s video card(s)

■■ Screen: Sets the session’s screen resolution and color depth

■■ Module: Denotes any modules that need to be loaded

■■ Files: Sets file path names, if needed, for fonts, modules, and keyboard layout files

■■ Server Flags: Configures global X server options

■■ Server Layout: Links together all the session’s input and output devices

Keep in mind that many desktop environments also provide dialog boxes in their UI,
which allow you to configure your GUI X sessions. Most likely you will have little to no
need to ever create or tweak the X11 configuration file. However, if you want to dig
into the X11 configuration file’s details, view its man page by issuing the man 5
xorg.conf command.

While most desktop environments use their own display manager, the
X display manager is a basic one available for use. It employs the X
Display Manager Control Protocol (XDMCP). The main configuration file
is /etc/X11/xdm/xdm-config.

If you need to troubleshoot X problems, two utilities can help: xdpyinfo and xwininfo.
The xdpyinfo command provides information about the X server, including the differ-
ent screen types available, the default communication parameter values, protocol extension
information, and so on.

The xwininfo utility is focused on providing window information. If no options are given,
an interactive utility asks you to click the window for which you desire statistics. The dis-
played stats include location information, the window’s dimensions (width and height), color
map ID, and so on.

252  Chapter 8  ■  Comparing GUIs

Be aware that the xwininfo command will hang if you are running a
Wayland session instead of an X session. Press Ctrl+C to exit out of the
hung command.

Although Wayland is replacing X as the default display server on many Linux systems, the
X server will be around for a while. Thus, understanding them both is invaluable not only
for certification purposes but also to work effectively.

Using Remote Desktops
Sitting down at a monitor directly attached to your Linux server is a rarity nowadays. Most
servers are either rack-mounted systems in condition-controlled environments or virtual
machines running on those rack-mounted systems. To access these servers, a user from a
desktop in another room typically employs the text-based OpenSSH utility. However, there
are times you need a fully functional desktop environment.

Remote desktop software uses a client-server model. The server runs on the remote Linux
system, and the client runs on the local system. For example, say you need to access a Linux
virtual machine located on a server somewhere else in the office building. You could use your
laptop, which is running the remote desktop client software, to log into the Linux virtual
machine, which is running the remote desktop server software, and get a full-fledged desktop
experience over the network.

In the following sections we’ll take a look at some common remote desktop implementa-
tions for Linux. They include VNC, Xrdp, NX, and SPICE.

Viewing VNC
Virtual Network Computing (VNC) was developed by the Olivetti & Oracle Research Lab.
It is multiplatform and employs the Remote Frame Buffer (RFB) protocol. This protocol
allows a user on the client side to send GUI commands, such as mouse clicks, to the server.
The server sends desktop frames back to the client’s monitor. RealVNC Ltd., which consists
of the original VNC project team developers, now trademarks VNC.

If you are using KVM virtual machines (covered in Chapters 28 and 29),
then typically, by default, you access their desktop environment via
VNC. However, there are other options available, such as SPICE, which
is covered later in this chapter.

The VNC server offers a GUI service at TCP port 5900 + n, where n equals the display
number, usually 1 (port 5901). On the command line, you point the VNC client (called a
viewer) to the VNC server’s hostname and TCP port. Alternatively, you can use the display
number instead of the whole TCP port number. The client user is required to enter a pre-
determined password, which is for the VNC server, not Linux system authentication. Once

Using Remote Desktops  253

the client user has authenticated with VNC, the user is served up the desktop environment’s
display manager output so that system authentication can take place.

The VNC server is flexible in that you can also use a Java-enabled web browser to access
it. It provides that service at TCP port 5800 + n. HTML5 client web browsers are sup-
ported as well.

Two types of desktop UIs are available for VNC clients: persistent and
static. Persistent desktops are UIs that do not change when presented.
This is similar to a local desktop experience; the user has certain win-
dows open, the user locks the screen and engages in an activity away
from the local system, the user comes back and unlocks the screen, and
the user finds the GUI in the exact same state it was left in. Persistent
desktops are available only via web browser access. Static desktops do
not provide a saved-state GUI.

The following are positive benefits when using VNC:

■■ It has lots of flexibility in providing remote desktops.

■■ Desktops are available for multiple users.

■■ Both persistent and static desktops are available.

■■ It can provide desktops on an on-demand basis.

■■ A SSH tunnel can be employed via ssh or a client viewer command-line option to
encrypt traffic.

The following are potential difficulties or concerns with VNC:

■■ The VNC server only handles mouse movements and keystrokes. It does not deal with
file and audio transfer or printing services for the client.

■■ VNC, by default, does not provide traffic encryption, so you must employ another
means of protection, such as tunneling through OpenSSH.

■■ The VNC server password is stored as plain text in a server file.

Besides VNC, there are alternatives that implement the VNC technology. A popular
implementation of VNC for Linux is TigerVNC (https://tigervnc.org). It also works
on Windows, so you can connect to either a remote Linux or remote Windows system. For
installing the server on a Linux system, use the tigervnc-server package name. You’ll
need to perform some setup to prepare for clients and configure the server to provide the
proper client requirements. There are several excellent tutorials on the web. If you want to
install the VNC client, just use the tigervnc package name.

When accessing a remote desktop via commands at the command line,
be sure to use a terminal emulator in the GUI environment. If you attempt
to use a text-mode terminal outside the GUI to issue these commands,
you will not be successful.

https://tigervnc.org

254  Chapter 8  ■  Comparing GUIs

Once you have the TigerVNC server installed, you control it with the vncserver and
vncconfig commands. After making the appropriate server firewall modifications, the client
can use the vncviewer command to connect to the server system and get a remote desktop.
For example, say a server (example.com) has been configured properly to serve a remote
desktop to you at display number 1. You would access the desktop from another system via
the vncviewer example.com:1 command. Figure 8.7 shows a TigerVNC connection from
a Fedora system into a CentOS server, which is providing the user with a GNOME Shell
desktop environment.

When configuring your VNC server, be sure to employ OpenSSH port forwarding for the
VNC server ports (covered later in this chapter.) Also configure your firewalls to allow traffic
through port 22 (or whatever port number you are using for SSH traffic).

Grasping Xrdp
Xrdp is an alternative to VNC. It supports the Remote Desktop Protocol (RDP). It uses
X11rdp or Xvnc to manage the GUI session.

Xrdp provides only the server side of an RDP connection. It allows access from several
RDP client implementations, such as rdesktop, FreeFDP, and Microsoft Remote Desktop
Connection.

F IGURE 8 .7   Using TigerVNC

http://example.com
http://example.com

Using Remote Desktops  255

Xrdp comes systemd ready, so you can simply install, enable, and start the server using
the systemctl commands. The package name on Linux is xrdp. Note that it may not be in
your Linux distribution’s standard repositories.

After installing and starting the Xrdp server, adjust the firewall so that traffic can access
the standard RDP port (TCP 3389). Now direct your RDP client choice to the server via its
hostname or IP address and, if necessary, provide the client with the RDP port number.

Depending on your RDP client, you may be presented with a screen that denotes that
the server is not trusted. If this is the server you just set up, you are fine to continue. You
will need to enter the Linux system’s user authentication information, but the login screen
depends on the Xrdp client software you are using. An example of Xrdp in action is shown
in Figure 8.8.

Figure 8.8 shows a connection from a Windows 10 system to a CentOS 7 Linux server,
which is running the Xrdp server. Notice the output from the commands run in the terminal
emulator. You can see that an X11 session is being deployed.

F IGURE 8 .8   Using Xrdp

256  Chapter 8  ■  Comparing GUIs

The following are positive benefits of using Xrdp:

■■ Xrdp uses RDP, which encrypts its traffic using TLS.

■■ A wide variety of open source RDP client software is available.

■■ You can connect to an already existing connection to provide a persistent desktop.

■■ Xrdp Server handles mouse movements and keystrokes as well as audio transfers and
mounting of local client drives on the remote system.

You can determine the various Xrdp configuration settings in the /etc/xrdp/xrdp.ini
file. An important setting in this file is the security_layer directive. If set to negotiate,
the default, the Xrdp server will negotiate with the client for the security method to use.
Three methods are available:

■■ tls provides SSL (TLS 1.0) encryption for server authentication and data transfer.
Be aware that this falls short of the encryption level needed for compliance with the
Payment Card Industry (PCI) standards.

■■ negotiate sets the security method to be the highest the client can use. This is problem-
atic if the connection is over a public network and the client must use the Standard RDP
Security method.

■■ rdp sets the security method to standard RDP Security. This method is not safe from net-
work attacks.

Xrdp is fairly simple to use. Also, because so many Windows-oriented users are already
familiar with Remote Desktop Connection, it typically does not take long to employ it in the
office environment.

Exploring NX
The NX protocol, sometimes called NX technology, was created by NoMachine (www
.nomachine.com) around 2001. NX is another remote desktop sharing protocol. Its v3.5
core technology was open source and available under the GNU GPL2 license. Yet when ver-
sion 4 was released, NX became proprietary and closed source.

However, several open source variations are available based on the NX3 technology,
including FreeNX and X2Go. Both are available on various Linux distributions but not nec-
essarily in their default software repositories.

The following are positive benefits of using NX products:

■■ They provide excellent response times, even over low-bandwidth connections that have
high-latency issues.

■■ They are faster than VNC-based products.

■■ They use OpenSSH tunneling by default, so traffic is encrypted.

■■ They support multiple simultaneous users through a single network port.

NX technology compresses the X11 data so that there is less data to send over the net-
work, which improves response times. It also heavily employs caching data to provide an
improved remote desktop experience.

http://www.nomachine.com
http://www.nomachine.com

Forwarding  257

Studying SPICE
Another interesting remote connection protocol is Simple Protocol for Independent Com-
puting Environments (SPICE). Originally it was a closed source product developed by
Qumranet in 2007. However, Red Hat purchased Qumranet in 2008 and made SPICE open
source. Its website is at www.spice-space.org.

SPICE (sometimes written as Spice) was developed to provide a good remote desktop
product that would allow connections to your various virtual machines. Now, typically
SPICE is used primarily for providing connections with KVM virtual machines, moving into
VNC’s territory.

Both VNC and Spice provide remote desktop connections to KVM virtual
machines. Virtual machines are covered in more detail in Chapters 28 and
29.

SPICE is platform independent and has some nice additional features as well:

■■ SPICE’s client side uses multiple data socket connections, and you can have mul-
tiple clients.

■■ It delivers desktop experience speeds similar to a local connection.

■■ It consumes low amounts of CPU so that you can use it with various servers that have
multiple virtual machines and not adversely affect their performance.

■■ It allows high-quality video streaming.

■■ It provides live migration features, which means there are no connection interruptions if
the virtual machine is being migrated to a new host.

While SPICE has a single server implementation, it has several client implementations.
These include remote-viewer and GNOME Boxes.

Another benefit of employing SPICE is its strong security features. Transmitted data can
either be sent plain text or have its traffic encrypted using TLS. Authentication between
the SPICE client and remote SPICE server is implemented using Simple Authentication and
Security Layer (SASL). This framework allows various authentication methods, as long as
they are supported by SASL. Kerberos is a supported method.

If you are still dealing with X11, you can use Xspice. X.Org-created Xspice acts as a
stand-alone SPICE server as well as an X server.

Forwarding
Providing data access to only those who are authorized is imperative. Whether it’s sending
plaintext data or remote desktop GUI client-server interaction information, both need to be
secured across the network.

http://www.spice-space.org

258  Chapter 8  ■  Comparing GUIs

One way to provide security is via SSH port forwarding, sometimes called SSH tunneling.
SSH port forwarding allows you to redirect a connection from one particular network
port to port 22, where the SSH service is waiting to receive it. This allows data traffic to
move back and forth through a secure encrypted tunnel, similar to a virtual private net-
work (VPN).

To use SSH port forwarding, you must have the OpenSSH service installed and enabled
on your Linux system. Fortunately, most distributions come with this service already
available. You can check to see if it is running by using the systemctl command, covered
in Chapter 6, “Maintaining System Startup and Services.” In Listing 8.1, a check of the
OpenSSH service on a system is conducted. It shows that OpenSSH is active (running) as
well as enabled (will start at boot time).

Listing 8.1  Checking the OpenSSH service status

$ systemctl is-active sshd
active
$ systemctl is-enabled sshd
enabled
$

If your system does not have the OpenSSH server, you can typically
install both the server and client via the openssh package. Chapter 13,
“Governing Software,” discusses installing and managing Linux pack-
ages.

Another item to check before attempting SSH port forwarding is the OpenSSH configu-
ration file, /etc/ssh/sshd_config. The directive AllowTcpForwarding should be set
to yes. If the directive is set to no, you must modify it to employ SSH port forwarding. In
Listing 8.2, a check is performed on the configuration file for this directive on an openSUSE
distribution.

Listing 8.2  Checking the AllowTCPForwarding directive

$ sudo grep "AllowTcpForwarding yes" /etc/ssh/sshd_config
#AllowTcpForwarding yes
$

Notice in Listing 8.2 that the directive is commented out by a pound sign (#). This is not
a problem because, by default, AllowTcpFowarding is set to yes.

SSH port forwarding comes in the following three flavors:

■■ Local

■■ Remote

■■ Dynamic

Forwarding  259

Each of these varieties allows you to perform various types of tunneled traffic. However,
since we are focusing on the GUI environment, we’ll only cover local and remote SSH port
forwarding for remote desktops.

Local
Local port forwarding sends traffic from the OpenSSH client on your system to the client’s
OpenSSH server. The client’s OpenSSH server then forwards that traffic on to the destination
server through a secured tunnel. In other words, the outbound traffic is rerouted to a differ-
ent outbound port and tunneled through OpenSSH before leaving the client system.

To enact this on the command line, the -L option of the ssh command is used along with
some additional arguments. Concerning remote desktops, the command has the follow-
ing syntax:

ssh -L local-port:127.0.0.1:remote-port -Nf user@destination-host

In the command’s syntax are the following arguments:

■■ destination-host is the computer you are logging into in order to use the desktop
environment residing there.

■■ user is the desktop host username you wish to use to authenticate so that the secure
tunnel can be established.

■■ local-port is the application’s port number you are employing on the client side.

■■ remote-port is the port where the application is listening on the destination host.

■■ 127.0.0.1 designates that you are using a local SSH port forwarding method.

Keep in mind that this command only establishes the tunnel; it does not provide a remote
desktop connection. Therefore, there are two additional important command options: the
-N option lets OpenSSH know that no remote terminal process is desired, and the -f option
indicates that after the user is authenticated to the server, the ssh command should move into
the background. These two options allow the user to issue additional commands, such as a
remote desktop command, after the secured tunnel is established.

A practical example can be described using VNC. Recall that VNC uses port 5900 + n,
where n equals the display number. Thus, if on the remote system your desktop is available
at display 2, you can issue the following command to use SSH port forwarding and forward
your local VNC port 5901 to the remote hosts’ port 5902:

ssh -L 5901:127.0.0.1:5902 -Nf Doug@example.com

Once the tunnel is established, you can use the VNC remote desktop commands to access
and view your desktop environment on the remote host. Keep in mind that you will need to
perform some firewall configurations to allow access to the remote host.

Fortunately TigerVNC provides a much simpler method for local SSH port forward-
ing. Just employ the -via localhost option on the vncviewer command, as shown in
Figure 8.9.

260  Chapter 8  ■  Comparing GUIs

The -via localhost option used in conjunction with the vncviewer command forces
the connection to use local SSH port forwarding. The last command argument is the destina-
tion host’s IPv4 address (you could also use a hostname), followed by a colon and the remote
desktop’s display number (1). This is far easier to use and certainly requires fewer commands
and options.

Remote
The remote SSH port forwarding method starts at the destination host (server), as opposed
to the remote client. Therefore, on the destination host, you create the remote desktop secure
tunnel with the following command syntax:

ssh -R local-port:127.0.0.1:remote-port -Nf user@client-host

There are some important differences in this command from the local method:

■■ The -R option is used instead of the -L option.

■■ client-host is the remote client’s IP address or hostname (where you will issue the
remote desktop commands).

■■ local-port is the port number you use on the client-host with the vncviewer command.

■■ remote-port is on the remote desktop server.

F IGURE 8 .9   Using local SSH port forwarding with TigerVNC

Forwarding  261

Tunneling Your X11 Connection
Another method that provides remote GUI interactions within a secure tunnel is X11 for-
warding. X11 forwarding allows you to interact with various X11-based graphical utilities
on a remote system through an encrypted network connection. This method is also enacted
using the OpenSSH service.

First you need to see if X11 forwarding is permitted. This setting is in the OpenSSH
configuration file, /etc/ssh/sshd_config. The directive X11Forwarding should be set
to yes in the remote system’s configuration file. If the directive is set to no, then you must
modify it to employ X11 forwarding. In Listing 8.3, a check is performed on the configura-
tion file for this directive on a CentOS distribution.

Listing 8.3  Checking the AllowTCPForwarding directive

grep "X11Forwarding yes" /etc/ssh/sshd_config
X11Forwarding yes
#

Once you have made any necessary configuration file modifications, the command to
use is ssh -X user@remote-host. Similar to earlier ssh command uses, user is the user
account that resides on the remote-host system. remote-host has the GUI utilities you
wish to employ and can be designated via an IP address or a hostname. Figure 8.10 shows
connecting from a remote Fedora client to a CentOS server and using a graphical utility on
that server.

F IGURE 8 .10   Forwarding X11

262  Chapter 8  ■  Comparing GUIs

It’s always a good idea to check your IP address to ensure that you have successfully
reached the remote system. In Figure 8.10, the ip addr show command is employed for
this purpose. Once you have completed your work, just type exit to log out of the X11 for-
warding session.

You may read about using X11 forwarding via the ssh -Y command,
which is called trusted X11. This does not mean the connection is more
secure. In fact, it is quite the opposite. When employing this command,
you are treating the remote server as a trusted system. This can cause
many security issues and should be avoided.

Summary
Creating, managing, and troubleshooting a GUI environment for yourself and the system’s
users involves an important skill set. You need to understand the distinct desktop environ-
ments, their supporting frameworks, and how to transmit them safely and securely across
the network.

The various desktop environments, such as GNOME Shell, KDE Plasma, MATE,
Cinnamon, and Unity, provide many various environments to meet different needs and
tastes. The currently evolving world of display servers, which include primarily Wayland and
the older X11, support these GUI desktops.

Linux provides GUI desktop environments with many accessibility features, which allow
almost any UI need to be met. The various keyboard and mouse settings help those with
hand or finger difficulties. There are also many utilities for the vision impaired, including
screen readers and zoom features.

Accessing a GUI across the network is accomplished through remote desktop soft-
ware. VNC, Xrdp, and NX are a few examples. SPICE is unique in that its primary focus is
providing remote desktop access to virtual machines.

Whether you are accessing a rack-mounted physical server or a virtual machine running
on that server, it is important to secure the remote desktop connection. This is accomplished
with SSH port forwarding and, if needed, X11 forwarding. If employed correctly, both allow
an encrypted tunnel for data and GUI interactions to travel securely.

Exam Essentials
Outline the various GUI sections and functions.   A desktop environment provides a
predetermined look and feel to the GUI. It has graphical sections, such as a favorites bar,
launch areas, menus, panels, and a system tray. The GUI also has typical functions like
desktop settings, a display manager, a file manager, icons to access programs, widgets, and a
window manager.

Exam Essentials  263

Describe the various GUI desktop environments.   The primary desktop environments used
for current Linux distributions include GNOME Shell, KDE Plasma, MATE, and Cinnamon.

Summarize available universal access utilities.   The distinct accessibility tools are located
in menus or panels. These panels have various locations around the desktop environments
and have names like Universal Access, Accessibility, Assistive Technologies, and so on. It is
best to use a desktop environment’s search feature to locate them. The various access tools
for vision-impaired users include cursor blinking, cursor size, contract modifications, text
size enlargement, sound keys, zoom functions, and screen readers. For those individuals who
need access to braille technologies, the brltty software is available. Displayed windows can
be set to flash instead of providing a sound alert for those who are hearing impaired. When
someone has trouble using the keyboard, there are many settings available, such as bounce
keys, repeat keys, screen keyboard, slow keys, and sticky keys. For mouse use difficulties, the
tools to explore are double-click delays, gestures, hover clicks, mouse keys, and simulated
secondary clicks.

Explain the display servers’ role.   A display server is a program or program group that
uses a communication protocol to convey information between the GUI and the operating
system. The communication protocol is called the display server protocol and can operate
over a network. One critical program used with the display server is the compositor. The
compositor arranges display elements within a window to create a screen image. Two impor-
tant display servers are Wayland and X11. X11 is an older display server, which has been
around for a while. Wayland is a newer display server, which adds many needed security fea-
tures and is easier to maintain.

Describe the available remote desktop software.   Remote desktop software provides a fully
functioning desktop environment over the network from a remote server. It uses a client-
server model, and there are several packages from which to choose. They include VNC,
Xrdp, NX, and SPICE.

Summarize SSH port and X11 forwarding.   SSH port forwarding, sometimes called SSH
tunneling, redirects a connection from one particular network port to the SSH service at
port 22. This allows data traffic to move back and forth through a secure encrypted tunnel,
similar to a virtual private network (VPN). SSH port forwarding has three distinct methods:
local, remote, and dynamic. Besides SSH port forwarding, X11 forwarding is also available.
It also provides a secure tunnel for GUI interactions. However, instead of a full desktop envi-
ronment, you can start X11-based graphical utilities from the remote system’s command line.

264  Chapter 8  ■  Comparing GUIs

Review Questions
1.	 Which of the following best describes a desktop environment?

A.	 A set of programs that allow a user to interact with the system via icons, windows, and
various other visual elements

B.	 A screen where you choose a username and enter a password to gain system access

C.	 A series of components that work together to provide the graphical setting for the user
interface

D.	 A program that allows you to perform file maintenance activities graphically

E.	 A set of programs that determine how the windows are presented on the desktop

2.	 Which of the following are GUI components? (Choose all that apply.)

A.	 Favorites bar

B.	 File manager

C.	 Icons

D.	 Command line

E.	 System tray

3.	 Which of the following is not used by default within GNOME Shell?

A.	 SDDM

B.	 Files

C.	 Mutter

D.	 GDM

E.	 Dock

4.	 Which of the following is the KDE Plasma files manager?

A.	 Nautilus

B.	 Plasmoid

C.	 Dolphin

D.	 Kwin

E.	 Nemo

5.	 Which of the following is true concerning the MATE desktop environment? (Choose all
that apply.)

A.	 MATE is a GNOME Shell fork.

B.	 MATE uses Metacity as its window manager.

C.	 MATE’s display manager is LightDM.

D.	 MATE’s file manager is Caja.

E.	 MATE is no longer being developed.

Review Questions  265

6.	 Which of the following describes the sound keys accessibility setting?

A.	 Sounds are made when the Caps Lock or Num Lock key is turned on or off.

B.	 A program that reads the GUI aloud, such as Orca.

C.	 A cursor blink rate modification to make it easier to locate the cursor on the screen.

D.	 Output to a refreshable braille display that is provided by the Orca screen reader.

E.	 The screen or a screen portion is amplified to different magnification levels.

7.	 A blind coworker who is programming on the Linux server is suddenly having odd prob-
lems with his braille display device. You determine that you need to restart the braille service.
Assuming the appropriate systemd unit file is available, which command would you use?

A.	 systemctl restart braille
B.	 systemctl reload braille
C.	 systemctl restart brailled
D.	 systemctl restart brltty
E.	 systemctl reload brltty

8.	 Which of the following best describes the slow keys accessibility setting?

A.	 A keyboard option that modifies how long a key must be pressed down to acknowledge
the key

B.	 A keyboard option that sets keyboard modifier keys, such as Ctrl and Shift, to maintain
their pressed status until a subsequent key is pressed

C.	 A keyboard option that modifies how long a key must be pressed down and that defines
a delay to acknowledge the key repeat

D.	 A keyboard option that sets a primary key to be pressed along with a mouse click to
emulate secondary mouse clicks

E.	 A keyboard option that displays a visual keyboard on the UI that can be manipulated by
a mouse or other pointing device to emulate keystrokes

9.	 Which of the following communicates with the Linux operating system to transmit the UI
wants and needs?

A.	 Window manager

B.	 Display manager

C.	 Desktop environment

D.	 Windows server

E.	 Display server

10.	 Which of the following is true of a compositor? (Choose all that apply.)

A.	 A compositor arranges various display elements within a window to create a screen
image.

B.	 Wayland is a compositor.

C.	 Mutter contains a compositor.

D.	 Kwin contains a compositor.

E.	 Weston is a compositor.

266  Chapter 8  ■  Comparing GUIs

11.	 Which of the following are true concerning Wayland? (Choose all that apply.)

A.	 Currently X11 is more secure than Wayland.

B.	 Wayland uses the $WAYLAND_DISPLAY environment variable.

C.	 Wayland’s only compositor is Weston.

D.	 XWayland supports legacy X11 programs.

E.	 Set WaylandDisable to true to disable Wayland in GNOME Shell.

12.	 Which of the following commands will help you determine whether your display server is
Wayland or X11?

A.	 $WAYLAND_DISPLAY
B.	 echo $AccessX
C.	 loginctl
D.	 echo $X11
E.	 runlevel

13.	 You use the command gnome-shell --replace at the command line and receive an
error message from the utility. What does this indicate?

A.	 The X11 display server is hung. You need to reboot the server.

B.	 The --replace option should be swapped for the -R option.

C.	 Your display server is Wayland.

D.	 XWayland is currently being used.

E.	 Wayland has been disabled for this session.

14.	 Which of the following is true concerning X11? (Choose all that apply.)

A.	 XFree86 is the dominant X server.

B.	 X.Org foundation develops an X server.

C.	 The X server is being replaced by Wayland.

D.	 X11 means a user can have 11 sessions.

E.	 X is short for X Window System.

15.	 Your system is running an X display server and a user’s graphical user interface is not acting
properly. Which of the following commands can you use first to diagnose potential prob-
lems? (Choose all that apply.)

A.	 xwininfo
B.	 Xorg -configure
C.	 xcpyinfo
D.	 xdpyinfo
E.	 loginctl

Review Questions  267

16.	 Which of the following are remote desktops? (Choose all that apply.)

A.	 SPICE

B.	 NX

C.	 Xrdp

D.	 VNC

E.	 Caja

17.	 Which of the following are remote desktops typically used with virtual machines? (Choose all
that apply.)

A.	 SPICE

B.	 NX

C.	 Xrdp

D.	 VNC

E.	 All of the above

18.	 Which of the following protocols does Xrdp employ?

A.	 Remote Frame Buffer protocol

B.	 Wayland protocol

C.	 NX technology protocol

D.	 Simple protocol for ICEs

E.	 Remote Desktop Protocol

19.	 You want to employ SSH port forwarding and use its local mode. Which ssh command
switches should you employ? (Choose all that apply.)

A.	 -N
B.	 -X
C.	 -f
D.	 -R
E.	 -L

20.	 You (username Samantha) are logged into a laptop (IP address 192.168.0.42) running
a Linux GNOME Classic desktop environment at your company desk in Building A. A
problem has occurred on a rack-mounted Linux system (IP address 192.168.0.7) in Building
C. You need to securely access a GUI application on the remote system that uses X11. What
command should you use?

A.	 ssh -Y Samantha@192.168.0.7
B.	 ssh -X Samantha@192.168.0.7
C.	 ssh -Y Samantha@192.168.0.42
D.	 ssh -X Samantha@192.168.0.42
E.	 ssh -L Samantha@192.168.0.42

Adjusting
Localization Options

✓✓ Objective 1.7: Given a scenario, manage software
configurations

Chapter

9

Linux has become a worldwide phenomenon. You’ll find Linux
desktops and servers all over the world, in many different
kinds of environments. However, because of its worldwide

popularity, Linux must support a wide variety of languages, date and time formats, and
monetary formats.

This chapter walks through how to configure your Linux system to blend in with the
local environment where it’s running. First, the chapter discusses how Linux handles differ-
ent language characters, including how it formats monetary values. Then it moves on to how
Linux handles times and dates as used in different countries.

Understanding Localization
The world is full of different languages. Not only does each country have its own lan-
guage (or sometimes, sets of languages), each country has its own way for people to write
numerical values, monetary values, and the time and date. For a Linux system to be useful in
any specific location, it must adapt to the local way of doing all those things.

Localization is the ability to adapt a Linux system to a specific locale. To accomplish this,
the Linux system must have a way to identify how to handle the characters contained in the
local language. The following sections discuss just how Linux does that.

Character Sets
At their core, computers work with ones and zeros, and Linux is no different. However, for
a computer to interact with humans, it needs to know how to speak our language. This is
where character sets come in.

A character set defines a standard code used to interpret and display characters in a
language. There are quite a few different character sets used in the world for representing
characters. Here are the most common ones you’ll run into (and the ones you’ll see on the
Linux+ exam):

■■ ASCII: The American Standard Code for Information Interchange (ASCII) uses 7 bits to
store characters found in the English language.

■■ Unicode: An international standard that uses a 3-byte code and can represent every
character known to be in use in all countries of the world.

■■ UTF: The Unicode Transformation Format (UTF), which transforms the long Unicode
values into either 1-byte (UTF-8) or 2-byte (UTF-16) simplified codes. For work in
English-speaking countries, the UTF-8 character set is replacing ASCII as the standard.

Understanding Localization  271

Once you’ve decided on a character set for your Linux system, you’ll need to know how
to configure your Linux system to use it, which is shown in the following section.

Environment Variables
Linux stores locale information in a special set of environment variables (see Chapter 25,
“Deploying Bash Scripts”). Programs that need to determine the locale of the Linux system
just need to retrieve the appropriate environment variable to see what character set to use.

Linux provides the locale command to help you easily display these environment vari-
ables. Listing 9.1 shows the locale environment variables as set on a Rocky Linux system
installed in the United States.

Listing 9.1  The Linux locale environment variables

$ locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_PAPER="en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="en_US.UTF-8"
LC_IDENTIFICATION="en_US.UTF-8"
LC_ALL=
$

The output of the locale command defines the localization information in this format:

language_country.character set

In the example shown in Listing 9.1, the Linux system is configured for United States
English, using the UTF-8 character set to store characters.

Each LC_ environment variable itself represents a category of more environment vari-
ables that relate to the locale settings. You can explore the environment variables contained
within a category by using the -ck option, along with the category name, as shown in
Listing 9.2.

Listing 9.2  The detailed settings for the LC_MONETARY localization category

$ locale -ck LC_MONETARY
LC_MONETARY
int_curr_symbol="USD "

272  Chapter 9  ■  Adjusting Localization Options

currency_symbol="$"
mon_decimal_point="."
mon_thousands_sep=","
mon_grouping=3;3
positive_sign=""
negative_sign="-"
. . .
monetary-decimal-point-wc=46
monetary-thousands-sep-wc=44
monetary-codeset="UTF-8"
$

The environment variables shown in Listing 9.2 control what characters and formats are
used for representing monetary values. Programmers can fine-tune each of the individual
environment variables to customize exactly how their programs behave within the locale.

Setting Your Locale
As shown in Listing 9.1, there are three components to how Linux handles localization. A
locale defines the language, the country, and the character set the system uses. Linux pro-
vides a few different ways for you to change each of these localization settings.

Installation Locale Decisions
When you first install the Linux operating system, one of the prompts available during the
installation process is for the default system language. Figure 9.1 shows the prompt from a
Rocky Linux 8 installation.

When you select a language from the menu, the Linux installation script automatically
sets the localization environment variables appropriately for that country and language to
include the character set necessary to represent the required characters. Often that’s all you
need to do to set up your Linux system to operate correctly in your locale.

Changing Your Locale
After you’ve already installed the Linux operating system, you can still change the localiza-
tion values that the system uses. There are two methods available to do that. You can manu-
ally set the LC_ environment variables, or you can use the localectl command.

Setting Your Locale  273

Manually Changing the Environment Variables
For the manual method, change the individual LC_ localization environment variables just as
you would any other environment variable, by using the export command:

$ export LC_MONETARY=en_GB.UTF-8

That works well for changing individual settings, but it would be tedious if you wanted to
change all the localization settings for the system.

Instead of having to change all of the LC_ environment variables individually, the LANG
environment variable controls all of them at one place:

$ export LANG=en_GB.UTF-8
$ locale
LANG=en_GB.UTF-8
LC_CTYPE="en_GB.UTF-8"
LC_NUMERIC="en_GB.UTF-8"
LC_TIME="en_GB.UTF-8"

F IGURE 9 .1   The language option in a Rocky Linux 8 installation

274  Chapter 9  ■  Adjusting Localization Options

LC_COLLATE="en_GB.UTF-8"
LC_MONETARY="en_GB.UTF-8"
LC_MESSAGES="en_GB.UTF-8"
LC_PAPER="en_GB.UTF-8"
LC_NAME="en_GB.UTF-8"
LC_ADDRESS="en_GB.UTF-8"
LC_TELEPHONE="en_GB.UTF-8"
LC_MEASUREMENT="en_GB.UTF-8"
LC_IDENTIFICATION="en_GB.UTF-8"
LC_ALL=
$

Some Linux systems require that you also set the LC_ALL environment variable, so it’s
usually a good idea to set that along with the LANG environment variable.

This method changes the localization for your current login session. If
you need to permanently change the localization, you’ll need to add the
export command to the .bashrc file in your $HOME folder so that it runs
each time you log in.

The localectl command
If you’re using a Linux distribution that utilizes the systemd set of utilities (see Chapter 6,
“Maintaining System Startup and Services”), you have the localectl command available. By
default, the localectl command just displays the current localization settings:

$ localectl
 System Locale: LANG=en_US.UTF-8
 VC Keymap: us
 X11 Layout: us
$

Not only does it show the LANG environment variable setting, it also shows the keyboard
layout mapping as well as the X11 graphical environment layout.

The localectl command supports many options, but the most common are to list all the
locales installed on your system with the list-locales option and to change the localization by
using the set-locale option:

$ localectl set-locale LANG=en_GB.utf8

That makes for an easy way to change the localization settings for your entire
Linux system.

Looking at Time  275

Looking at Time
The date and time associated with a Linux system are crucial to the proper operation of the
system. Linux uses the date and time to keep track of running processes, to know when to
start or stop jobs, and in logging important events that occur. Having your Linux system
coordinated with the correct time and date for your location is a must.

Linux handles the time as two parts—the time zone associated with the location of the
system and the actual time and date within that time zone. The following sections walk
through how to change both values.

Working with Time Zones
One of the most important aspects of time is the time zone. Each country selects one or more
time zones, or offsets from the standard Coordinated Universal Time (UTC) time, to deter-
mine time within the country. If your Linux environment includes having servers located in
different time zones, knowing how to set the proper time zone is a must.

Most Debian-based Linux systems define the local time zone in the /etc/timezone file,
while most Red Hat–based Linux systems use /etc/localtime. These files are not in a text
format, so you can’t simply edit the /etc/timezone or /etc/localtime file to view or
change your time zone. Instead, you must link that file to a template file stored in the /usr/
share/zoneinfo folder.

To determine the current time zone setting for your Linux system, use the date command,
with no options:

$ date
Sat Dec 4 08:20:23 EST 2021
$

The time zone appears as the standard three-letter code at the end of the date and time
display, before the year.

To view the current time zone template file that the system is using, just use the ls
command to display the active time zone file:

$ ls -al /etc/localtime
lrwxrwxrwx. 1 root root 38 Nov 30 09:06 /etc/localtime -> ../usr/share/
zoneinfo/America/New_York
$

To change the time zone for a Linux system, link the appropriate time zone template file
from the /usr/share/zoneinfo folder to the /etc/timezone or /etc/localtime loca-
tion. The /usr/share/zoneinfo folder is divided into subfolders based on location. Each
location folder may also be subdivided into more detailed location folders. Eventually, you’ll
see a time zone template file associated with your specific time zone, such as /usr/share/
zoneinfo/US/Eastern.

276  Chapter 9  ■  Adjusting Localization Options

Before you can copy the new time zone file, you’ll need to remove the original timezone
or localtime file:

$ sudo ln -s /usr/share/zoneinfo/America/Chicago /etc/localtime
$ date
Sat Dec 4 07:23:14 CST 2021
$

The new time zone appears in the output from the date command.

If you just need to change the time zone for a single session or program,
instead of changing the system time zone you can set the time zone using
the TZ environment variable. That overrides the system time zone for the
current session.

Setting the Time and Date
Once you have the correct time zone for your Linux system, you can work on setting the
correct time and date values. There are a few different commands available to do that.

Legacy Commands
There are two legacy commands that you should be able to find in all Linux distributions for
working with time and date values:

■■ hwclock displays or sets the time as kept on the internal BIOS or UEFI clock on the
workstation or server.

■■ date displays or sets the date as kept by the Linux system.

The hwclock command provides access to the hardware clock built into the physical work-
station or server that the Linux system runs on. You can use the hwclock command to set the
system time and date to the hardware clock on the physical workstation or server. Or, it also
allows you to change the hardware clock to match the time and date on the Linux system.

The date command is the Swiss Army knife of time and date commands. It allows you
to display the time and date in a multitude of formats in addition to setting the time and/or
date. The + option allows you to specify the format used to display the time or date value by
defining command sequences:

$ date +"%A, %B %d, %Y"
Saturday, December 04, 2021
$

Table 9.1 shows the different command sequences available in the date command.

Looking at Time  277

TABLE 9 .1   The date format command sequences

Sequence Description

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time

%C Century (e.g., 20)

%d Numeric day of month

%D Full numeric date

%e Day of month, space padded

%F Full date in SQL format (YYYY-MM-dd)

%g Last two digits of year of ISO week number

%G Year of the ISO week number

%h Alias for %b

%H Hour in 24-hour format

%I Hour in 12-hour format

%j Numeric day of year

%k Hour in 24-hour format, space padded

%l Hour in 12-hour format, space padded

%m Numeric month

%M Minute

%n A newline character

%N Nanoseconds

278  Chapter 9  ■  Adjusting Localization Options

Sequence Description

%p AM or PM

%P Lowercase am or pm

%r Full 12-hour clock time

%R Full 24-hour hour and minute

%s Seconds since 1970-01-01 00:00:00 UTC

%S Second

%t A tab character

%T Full time in hour:minute:second format

%u Numeric day of week; 1 is Monday

%U Numeric week number of year, starting on Sunday

%V ISO week number

%w Numeric day of week; 0 is Sunday

%W Week number of year, starting on Monday

%x Locale’s date representation as month/day/year or day/month/year

%X Locale’s full time representation

%y Last two digits of the year

%Y Full year

%z Time zone in +hhmm format

%:z Time zone in +hh:mm format

%::z Time zone in +hh:mm:ss format

%:::z Numeric time zone with : to necessary precision

%Z Alphabetic time zone abbreviation

TABLE 9 .1   The date format command sequences  (continued)

Looking at Time  279

As you can see from Table 9.1, the date command provides numerous ways for you to
display the time and date in your programs and shell scripts.

You can also set the time and date using the date command by specifying the value in the
following format:

date MMDDhhmm[[CC]YY][.ss]

The month, date, hour, and minute values are required, with the year and seconds
assumed, or you can include the year and seconds as well if you prefer.

The timedatectl Command
If your Linux distribution uses the Systemd set of utilities (see Chapter 6), you can use the
timedatectl command to manage the time and date settings on your system:

$ timedatectl
 Local time: Sat 2021-12-04 08:27:18 EST
 Universal time: Sat 2021-12-04 13:27:18 UTC
 RTC time: Sat 2021-12-04 13:27:17
 Time zone: America/New_York (EST, -0500)
System clock synchronized: yes
 NTP service: active
 RTC in local TZ: no
$

The timedatectl command provides one-stop shopping to see all of the time
information, including the hardware clock, called RTC, the date information, and the time
zone information.

You can also use the timedatectl command to modify any of those settings as well by
using the set-time option:

timedatectl set-time "2021-12-04 08:30:00"

You can also use the timedatectl command to synchronize the workstation or server
hardware clock and the Linux system time.

The Network Time Protocol
These days most Linux systems connected to the Internet utilize the Network Time Protocol
(NTP) to keep the time and date synchronized with a centralized time server. If your Linux
system does this, you won’t be able to alter the time or date by using either the date or
timedatectl command. Instead, you’ll need to point your Linux server to an appropriate
network time server.

There are three common NTP software implementations used in the Linux world:

■■ ntpd: Legacy software that uses the Simple Network Time Protocol (SNTP) to connect
to a network time server

280  Chapter 9  ■  Adjusting Localization Options

■■ chrony: An improved version of the ntpd software that utilizes security features

■■ timesyncd: Part of the Systemd startup utilities package that provides NTP services

The legacy ntpd software technically isn’t supported anymore, but due to its simplicity
a few Linux distributions still use it. Most Debian-based Linux distributions (including
Ubuntu) use the Systemd startup utilities and thus utilize the timesyncd service to provide
network time services. Although Red Hat–based systems also use Systemd, Red Hat has
chosen to implement the more versatile chrony software to supply network time services.

The timesyncd software stores its configuration settings in the /etc/
systemd/timesyncd.conf file. If multiple configuration files are
required, they are stored in the /etc/systemd/timesyncd.conf.d
directory. The chrony software stores its configuration settings in the
/etc/chrony/chrony.conf configuration file.

Watching System Time
The Linux+ exam also covers the time command, although it’s not related to the time and
date specifically. The time command displays the amount of time it takes for a program to
run on the Linux system:

$ time timedatectl
Local time: Sat 2021-12-04 08:40:40 EST
Universal time: Sat 2021-12-04 13:40:40 UTC
RTC time: Sat 2021-12-04 13:40:38
Time zone: America/New_York (EST, -0500)
System clock synchronized: yes
NTP service: active
RTC in local TZ: no

real 0m0.037s
user 0m0.004s
sys 0m0.006s
$

After the normal command output, you’ll see three additional lines of information:

■■ real: The elapsed amount of time between the start and end of the program

■■ user: The amount of user CPU time the program took

■■ sys: The amount of system CPU time the program took

This information can be invaluable when you’re troubleshooting programs that seem to
take additional system resources to process.

Summary  281

Exercise 9.1 walks through using the different locale, time, and date functions you have
available in Linux.

E X E R C I S E 9 . 1 

Experimenting with Time

This exercise will demonstrate how to check the current time, date, and time zone on your
Linux system.

1.	 Log in as root, or acquire root privileges by using su or by using sudo with each of the
following commands.

2.	 Type locale to display the current localization settings for your system. Write down the
current character set assigned for your system.

3.	 Change the localization to another country, such as Great Britain, by setting the LANG
environment variable. Type export LANG=en_GB.UTF-8 to make the change.

4.	 Type locale to display the updated localization settings.

5.	 If your Linux distribution uses the Systemd utilities, type localectl to display the
system localization defined on your system.

6.	 Change the localization by typing localectl set-locale "LANG=en_GB_UTF-8".

7.	 Change the localization back to your normal locale by using either the locale or the
localectl command.

8.	 Display the current date and time on your system by typing the date command.

9.	 Observe how long it takes to run the date command on your Linux system by typ-
ing time date. The output shows how long it took your Linux system to process
the request.

Summary
The Linux system supports many different languages by incorporating different character
sets. A character set defines how the Linux system displays and uses the characters contained
in the language. While Linux supports many different character sets, the most common ones
are ASCII, Unicode, UTF-8, and UTF-16. The ASCII character set is only useful for English
language characters, whereas the UTF-8 and UTF-16 character sets are commonly used to
support other languages.

The Linux system maintains the character set settings as a set of environment variables
that begin with LC_. The locale command displays all the localization environment vari-
ables. Each individual LC_ environment variable represents a category of other environment

282  Chapter 9  ■  Adjusting Localization Options

variables that fine-tune the localization settings even further. You can display those environ-
ment variable settings by adding the -ck option to the locale command.

You change the individual LC_ environment variables by using the Linux export
command. Instead of changing all the LC_ environment variables, you can set the special
LANG or LC_ALL environment variable. Changing either of those variables will automatically
change the other environment variables. Alternatively, if your Linux distribution supports
the Systemd utilities, you can use the localectl command to display and change localiza-
tion environment variable values.

You must define a time zone for your Linux system. Debian-based Linux distributions
use the /etc/timezone file to determine the system time zone, while Red Hat–based
Linux distributions use the /etc/localtime file. Both files utilize a binary format, so you
can’t edit them directly. Linux maintains a library of time zone files in the /usr/share/
zoneinfo folder. Just copy or link the appropriate time zone file from the /usr/share/
zoneinfo folder to the time zone file for your Linux system.

There are three commands that you can use in Linux to display or change the time and
date. The hwclock command displays the time as kept on the hardware clock for your Linux
system. You can set the Linux system time to that or set the hardware clock to your Linux
system time. The date command allows you to display the Linux system time and date in a
multitude of formats by using a command-line sequence. It also allows you to set the date
and time for the Linux system from the command line. For systems that use the Systemd util-
ities, the timedatectl command provides a single location to display all the system time and
date information.

The time command doesn’t have anything to do with the current system time but instead
provides information on the amount of time an individual application uses on the Linux
system. You can use the time command to see how much real time elapsed between when
the application started and when it finished as well as to display the amount of system or
user CPU time it required.

Exam Essentials
Describe how Linux works with different languages.   Linux stores and displays language
characters by using character sets. ASCII, Unicode, and UTF-8 are the most commonly used
character sets for Linux.

Explain how to change the current character set on a Linux system.   You can use the
export command to change the LANG or LC_ALL environment variable to define a new
character set. If your Linux distribution uses the Systemd utilities, you can also use the
localectl command to display or change the system character set.

Describe how the time zone is set on a Linux system.   Time zones are defined in Linux by
individual files in the /usr/share/zoneinfo folder. Debian-based Linux distributions copy
the appropriate time zone file to the /etc/timezone file, whereas Red Hat–based Linux
distributions use the /etc/localtime file. To change the time zone for an individual script
or program, use the TZ environment variable.

Exam Essentials  283

Summarize the tools you have available to work with the time and date on a Linux
system.   The hwclock command allows you to sync the Linux system time with the
hardware clock on the system, or vice versa. The date command allows you to display
the time and date in a multitude of formats or set the current time and date. The
timedatectl command is from the Systemd utilities and allows you to display lots of dif-
ferent information about the system and hardware time and date in addition to allowing you
to set them.

Describe how NTP works and how Linux systems use it.   The Network Time Protocol
(NTP) allows Linux systems to synchronize their time and date from a centralized server
across the network. There are three common software packages that implement NTP in
Linux: the ntpd package, the chrony package, and the timesyncd program from the
Systemd utilities.

Explain how you can see the amount of time it takes for an application to run on the
system.   The time command allows you to place a timer on a specific application as it runs
on the system. The output from the time command shows the actual elapsed time it took
the program to run and how much user and system CPU time the application required.

284  Chapter 9  ■  Adjusting Localization Options

Review Questions
1.	 Which character set uses 7 bits to store characters?

A.	 UTF-8

B.	 UTF-16

C.	 ASCII

D.	 Unicode

E.	 UTF-32

2.	 What two character sets use a transformation code to store characters?

A.	 UTF-8

B.	 UTF-16

C.	 ASCII

D.	 Unicode

E.	 locale

3.	 Which character set uses a 3-byte code and can represent characters from most languages
used in the world?

A.	 ASCII

B.	 LC_ALL
C.	 UTF-8

D.	 UTF-16

E.	 Unicode

4.	 What Linux command displays all the localization environment variables and their values?

A.	 date
B.	 time
C.	 hwclock
D.	 LANG
E.	 locale

5.	 What two environment variables control all the localization settings?

A.	 LC_MONETARY
B.	 LC_NUMERIC
C.	 LANG
D.	 LC_CTYPE
E.	 LC_ALL

Review Questions  285

6.	 ___________ is the ability to adapt a Linux system to a specific language.

A.	 locale
B.	 Localization

C.	 Character set

D.	 Unicode

E.	 ASCII

7.	 What Systemd utility allows you to change the localization on your Linux system?

A.	 timedatectl
B.	 time
C.	 date
D.	 localectl
E.	 locale

8.	 Which Linux command changes the value of a localization environment variable?

A.	 time
B.	 export
C.	 locale
D.	 date
E.	 hwclock

9.	 Which LC_ environment variable determines how Linux displays dollar and cents values?

A.	 LC_NUMERIC
B.	 LC_MONETARY
C.	 LC_CTYPE
D.	 LC_TIME
E.	 LC_COLLATE

10.	 A __________ determines the time relative to the UTC time in a specific location.

A.	 time zone

B.	 localization

C.	 character set

D.	 locale

E.	 hardware clock

11.	 Which Linux commands allow you to retrieve the time from the physical workstation or
server? (Choose all that apply.)

A.	 date
B.	 hwclock
C.	 time
D.	 locale
E.	 timedatectl

286  Chapter 9  ■  Adjusting Localization Options

12.	 What file do Red Hat–based systems use to define the time zone for the Linux system?

A.	 /etc/localtime
B.	 /etc/timezone
C.	 /usr/share/zoneinfo
D.	 /usr/share/timezone
E.	 /usr/share/localtime

13.	 Which folder contains template files for each time zone that Linux supports?

A.	 /etc/localtime
B.	 /usr/share/zoneinfo
C.	 /etc/timezone
D.	 $HOME
E.	 /usr/share/timezone

14.	 Which command displays the current date, system time, hardware time, and time zone?

A.	 date
B.	 timedatectl
C.	 time
D.	 hwclock
E.	 localectl

15.	 Which command do you use to display the current time and date using a specific output
format?

A.	 date
B.	 time
C.	 timedatectl
D.	 localectl
E.	 hwclock

16.	 Which commands allow you to set the Linux system time to the workstation BIOS clock
time? (Choose all that apply.)

A.	 hwclock
B.	 date
C.	 time
D.	 timedatectl
E.	 localectl

Review Questions  287

17.	 What network time package do Red Hat–based Linux systems use to synchronize the system
time with a network time server?

A.	 ntpd
B.	 chrony
C.	 localectl
D.	 timedatectl
E.	 timesyncd

18.	 Which environment variable can programmers use to temporarily change the time zone
setting for just their environment?

A.	 LANG
B.	 LC_MONETARY
C.	 LC_NUMBERIC
D.	 LC_ALL
E.	 TZ

19.	 Which character set has replaced ASCII as the default character set used in U.S. Linux
installations?

A.	 Unicode

B.	 UTF-16

C.	 UTF-8

D.	 UTF-32

E.	 locale

20.	 Which command lists all the localizations installed on your Linux system?

A.	 timecatectl
B.	 localectl
C.	 locale
D.	 LANG
E.	 LC_ALL

PART

III
Managing

Your System

Administering Users
and Groups

✓✓ Objective 2.2 Given a scenario, implement identity
management.

Chapter

10

If you want to buy a famous and expensive piece of art, you
should make sure it isn’t a fake. In other words, you want to
make sure it is authentic. The same is true for allowing users

access to a computer system. You want to make sure they are authentic users who have been
previously given authorization to access the system. This process, called authentication, is
defined as determining whether a person or program is who they claim to be. This chapter
covers administering the access controls Linux uses to check a user’s credentials and permit
or deny access to the system.

Besides user authentication, you need to know how to audit users, manage group mem-
berships, configure user environments, and, if needed, set up disk space usage limits for the
accounts. We’ll cover those topics as well.

Managing User Accounts
Adding and modifying user account credentials, which includes usernames, account
information, and passwords, is an important (but tedious) part of system administration.
In addition, you need to know how to delete these credentials when warranted. Managing
user accounts and looking at the underlying credential framework is covered in the follow-
ing sections.

Adding Accounts
To add a new user account on the system, the useradd utility is typically used. However, the
process actually involves several players besides the useradd command. A depiction of the
process is illustrated in Figure 10.1.

You can see in Figure 10.1 that there are several team players involved in the account
creation process. Notice that the /etc/skel directory is bolded. This is because, depending
on the other configuration files, it may not be used in the process. The same goes for the
/home/userid directory. It may not be created or it may have an alternative name, depend-
ing on the system’s account creation configuration. You’ll learn more about these direc-
tories shortly.

Before we jump into the useradd utility details, let’s look at the two files and the
directory involved in the creation side of the process.

Managing User Accounts  293

The /etc/login.defs File
This configuration file is typically installed by default on most Linux distributions. It con-
tains directives for use in various shadow password suite commands. Shadow password suite
is an umbrella term for commands dealing with account credentials, such as the useradd,
userdel, and passwd commands.

The directives in this configuration file control password length, how long until the user
is required to change the account’s password, whether or not a home directory is created by
default, and so on. The file is typically filled with comments and commented-out directives
(which make the directives inactive). Listing 10.1 shows only the active directives within
the /etc/login.defs file, after stripping out blank and comment lines on a Rocky Linux
distribution.

Listing 10.1:  Active directives in the /etc/login.defs configuration file

$ grep -v ^$ /etc/login.defs | grep -v ^\#
MAIL_DIR /var/spool/mail
UMASK 022
HOME_MODE 0700
PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_MIN_LEN 5
PASS_WARN_AGE 7
UID_MIN 1000
UID_MAX 60000

/etc/default/useradd

/etc/login.defs

/etc/skel directory

Your input /etc/group

/etc/shadow

/etc/passwd

/home/userid

User account
creation process

F IGURE 10 .1   Adding a user account

294  Chapter 10  ■  Administering Users and Groups

SYS_UID_MIN 201
SYS_UID_MAX 999
GID_MIN 1000
GID_MAX 60000
SYS_GID_MIN 201
SYS_GID_MAX 999
CREATE_HOME yes
USERGROUPS_ENAB yes
ENCRYPT_METHOD SHA512
$

Notice the UID_MIN directive in Listing 10.1. A User Identification Number (UID) is
the number used by Linux to identify user accounts. A user account, sometimes called a
normal account, is any account an authorized human has been given to access the system
and perform daily tasks, such as open desktop applications or run scripts. While humans
use account names, Linux uses UIDs. The UID_MIN indicates the lowest UID allowed for
user accounts. On the system in Listing 10.1, UID_MIN is set to 1000. This is typical, though
some systems set it at 500.

System accounts are accounts that provide services (daemons) or that perform special
tasks, such as the root user account. A system account’s minimum UID is set by the SYS_
UID_MIN directive, and its maximum is set by the SYS_UID_MAX directive. The settings in
this file are typical.

Keep in mind that these settings are for accounts created after the initial Linux distribu-
tion installation. For example, the root user account always has a UID of 0, which is below
the SYS_UID_MIN, as shown snipped in Listing 10.2.

Listing 10.2:  The root user account’s UID

$ gawk -F: '{print $3, $1}' /etc/passwd | sort -n
0 root
1 bin
2 daemon
3 adm
[...]

Some additional directives critical to common user account creation are covered briefly in
Table 10.1.

TABLE 10 .1   A few vital /etc/login.defs directives

Name Description

PASS_MAX_DAYS Number of days until a password change is required. This is the pass-
word’s expiration date.

PASS_MIN_DAYS Number of days after a password is changed until the password may
be changed again.

Managing User Accounts  295

The /etc/login.defs file is only one of the configuration files used for the user account
process’s creation side. The other file is covered next.

The /etc/default/useradd File
The /etc/default/useradd file is another configuration file that directs the process of
creating accounts. It typically is a much shorter file than the /etc/login.defs file. An
example from a Rocky Linux distribution is shown in Listing 10.3.

Listing 10.3:  The /etc/default/useradd configuration file

$ cat /etc/default/useradd
useradd defaults file
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel
CREATE_MAIL_SPOOL=yes
$
$ useradd -D
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel
CREATE_MAIL_SPOOL=yes
$

Name Description

PASS_MIN_LENGTH Minimum number of characters required in password.

PASS_WARN_AGE Number of days a warning is issued to the user prior to a password’s
expiration.

CREATE_HOME Default is no. If set to yes, a user account home directory is created.

ENCRYPT_METHOD The method used to hash account passwords.

296  Chapter 10  ■  Administering Users and Groups

Notice in Listing 10.3 that there are two different ways to display the active directives
in this file. You can use the cat command or invoke the useradd -D command. Both are
equally simple to use. One cool fact about the useradd -D command is that you can use it
to modify the directives within the /etc/default/useradd file.

In Listing 10.3, notice the HOME directive. It is currently set to /home, which means that
any newly created user accounts will have their account directories located within the /home
directory. Keep in mind that if CREATE_HOME is not set or set to no in the /etc/login
.defs file, a home directory is not created by default.

Some additional directives critical to common user account creation are covered briefly in
Table 10.2.

The SHELL directive needs a little more explanation. Typically it is set to /bin/bash,
which means when you access the command line, your user process is running the /bin/
bash shell program. This program provides you with the prompt at the command line and
handles any commands you enter there.

Be aware that some distributions, such as Ubuntu, set the SHELL direc-
tive by default to /bin/sh, which is a symbolic link to another shell. On
Ubuntu this links to the Dash shell instead of the Bash shell.

The /etc/skel Directory
The /etc/skel directory, or the skeleton directory (see Table 10.2) as it is commonly called,
holds files. If a home directory is created for a user, these files are to be copied to the user
account’s home directory when the account is created. Listing 10.4 shows the files within the
/etc/skel directory on a Fedora Workstation distribution.

Listing 10.4:  Files in the /etc/skel directory

$ ls -a /etc/skel
. .. .bash_logout .bash_profile .bashrc .mozilla
$

TABLE 10 .2   A few vital /etc/default/useradd directives

Name Description

HOME Base directory for user account directories.

INACTIVE Number of days after a password has expired and has not been changed until
the account will be deactivated. See PASS_MAX_DAYS in Table 10.1.

SKEL The skeleton directory.

SHELL User account default shell program.

Managing User Accounts  297

In Listing 10.4, the ls command was employed with the -a option so that hidden files
(files starting with a dot) are displayed. Recall that hidden files do not normally display
without the -a option on the ls command. These files are account environment files as
well as a Mozilla Firefox web browser configuration file directory. We’ll cover environment
files later in this chapter. You can modify any of these files or add new files and directories,
if needed.

The /etc/skel files are copied to user account home directories only
when the account is created. Therefore, if you make changes to the files
later, you’ll have to migrate those changed files to current user accounts
either by hand or by shell scripts.

Now that we’ve covered the files in the creation side of the user account creation pro-
cess, let’s look at the files and directories that are built or modified as part of the process. Go
back and look at Figure 10.1, if necessary, to refresh your memory of the various file and
directory names.

The /etc/passwd File
Account information is stored in the /etc/passwd file. Each account’s data occupies a
single line in the file. When an account is created, a new record for that account is added to
the /etc/passwd file. A snipped example is shown in Listing 10.5.

Listing 10.5:  Account records in the /etc/passwd file

$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
[...]
tcpdump:x:72:72::/:/sbin/nologin
user1:x:1000:1000:User One:/home/user1:/bin/bash
Christine:x:1001:1001:Christine B:/home/Christine:/bin/bash
[...]
$

The /etc/passwd file records contain several fields. Each field in a record is delimited by
a colon (:). There are seven fields in total, as described in Table 10.3.

TABLE 10 .3   The /etc/passwd file’s record fields

Field
No. Description

1 User account’s username.

2 Password field. Typically this file is no longer used to store passwords. An x in this
field indicates passwords are stored in the /etc/shadow file.

298  Chapter 10  ■  Administering Users and Groups

You would think that the password file would hold passwords, but due to its file permis-
sions, the password file can be compromised. Therefore, passwords are stored in the more
locked-down /etc/shadow file.

You may find yourself working for an organization that has passwords
stored in the /etc/passwd file. If so, politely suggest that the passwords
be migrated to the /etc/shadow file via the pwconv command. If the
organization refuses, walk, or even better run, to the door and go find a
job at a different company.

You may have noticed that in a /etc/password record, field #7 may contain either the
/sbin/nologin or /bin/false default shell. This is to prevent an account from inter-
actively logging into the system. The /sbin/nologin is typically set for system service
account records. System services (daemons) do need to have system accounts, but they do
not interactively log in. Instead, they run in the background under their own account name.
If a malicious person attempted to interactively log in using the account (and they made
it past other blockades, which you’ll learn about shortly), they are politely kicked off the
system. Basically, /sbin/nologin displays a brief message and logs you off before you
reach a command prompt. If desired, you can modify the message shown by creating the file
/etc/nologin.txt and adding the desired text.

The /bin/false shell is a little more brutal. If this is set as a user account’s default shell,
there are no messages shown, and the user is just logged out of the system.

The /etc/shadow File
Another file that is updated when an account is created is the /etc/shadow file. It contains
information regarding the account’s password, even if you have not yet provided a password

Field
No. Description

3 User account’s user identification number (UID).

4 User account’s group identification number (GID).

5 Comment field. This field is optional. Traditionally it contains the user’s full name.

6 User account’s home directory.

7 User account’s default shell. If set to /sbin/nologin or /bin/false, then the
user cannot interactively log into the system.

TABLE 10 .3   The /etc/passwd file’s record fields  (continued)

Managing User Accounts  299

for the account. Like the /etc/passwd file, each account’s data occupies a single file line. A
snipped example is shown in Listing 10.6.

Listing 10.6:  Account records in the /etc/shadow file

$ sudo cat /etc/shadow
root:!::0:99999:7:::
bin:*:17589:0:99999:7:::
daemon:*:17589:0:99999:7:::
[...]
user1:6bvqdqU[...]:17738:0:99999:7:::
Christine:Wb8I8Iw$6[...]:17751:0:99999:7:::
[...]
$

The /etc/shadow records contain several fields. Each field in a record is delimited by a
colon (:). There are nine fields in total, described in Table 10.4.

TABLE 10 .4   The /etc/shadow file’s record fields

Field No. Description

1 User account’s username.

2 Password field. The password is a salted and hashed password. A !! or ! indi-
cates a password has not been set for the account. A ! or * indicates the account
cannot use a password to log in. A ! in front of a password indicates the account
has been locked.

3 Date of last password change in Unix Epoch time (days) format.

4 Number of days after a password is changed until the password may be changed
again.

5 Number of days until a password change is required. This is the password’s expi-
ration date.

6 Number of days a warning is issued to the user prior to a password’s expiration.
(See field #5).

7 Number of days after a password has expired (see field #5) and has not been
changed until the account will be deactivated.

8 Date of account’s expiration in Unix Epoch time (days) format.

9 Called the special flag. It is a field for a special future use, is currently not used,
and is blank.

300  Chapter 10  ■  Administering Users and Groups

Notice that field #1 is the account’s username. This is the only field shared with the
/etc/passwd file.

Unix Epoch time, which is also called POSIX time, is the number of sec-
onds since January 1, 1970, although the /etc/shadow file expresses it
in days. It has a long history with Unix and Linux systems and will poten-
tially cause problems in the year 2038. You don’t have to drag out your
calculator to determine what a field’s date is using the Epoch. Instead, the
chage utility, covered later in this chapter, does that for you.

It’s vital to understand the different possible expirations. When password expiration has
occurred, there is a grace period. The user will have a certain number of days (designated
in field #7) to log into the account using the old password but must change the password
immediately. However, if password expiration has occurred and the user does not log in to
the system in time, the user is effectively locked out of the system.

With account expiration, there is no grace period. After the account expires, the user
cannot log into the account with its password.

You may have noticed that we have not yet covered the /etc/group file. It does get
modified as part of the account creation process. However, that discussion is saved for the
section “Managing Groups” later in this chapter.

The Account Creation Process
Distributions tend to vary greatly in their configuration when it comes to user accounts.
Therefore, before you launch into creating accounts with the useradd utility, it’s wise to
review some directives within each distro’s user account configuration files (see Tables 10.1
and 10.2). In Listing 10.7, the CREATE_HOME and SHELL directives are checked on a Rocky
Linux distribution.

Listing 10.7:  Checking user account directives on Fedora Workstation

$ grep CREATE_HOME /etc/login.defs
CREATE_HOME yes
$
$ useradd -D | grep SHELL
SHELL=/bin/bash
$

You can see on this Rocky Linux distribution that the home directory will be created by
default because CREATE_HOME is set to yes. The SHELL directive is pointing to the Bash
shell, /bin/bash, which is the typical shell for most interactive user accounts.

The useradd command, as mentioned earlier, is the primary tool for creating user
accounts on most distributions. Creating an account on a Rocky Linux distribution with the
useradd utility is shown in Listing 10.8.

Managing User Accounts  301

Listing 10.8:  Creating a user account on a Rocky Linux Workstation

$ sudo useradd DAdams
[sudo] password for Christine:
$
$ grep ^DAdams /etc/passwd
DAdams:x:1002:1002::/home/DAdams:/bin/bash
$
$ sudo grep ^DAdams /etc/shadow
DAdams:!!:17806:0:99999:7:::
$
$ sudo ls -a /home/DAdams/
. .. .bash_logout .bash_profile .bashrc .mozilla
$

Because the Rocky Linux distribution we are using in Listing 10.8 has the CREATE_HOME
directive set to yes and SHELL set to /bin/bash, there is no need to employ any useradd
command options. The only argument needed is the user account name, which is DAdams.
After the utility is used to create the account in Listing 10.8, notice that records now exist
for the new user account in both the /etc/passwd and /etc/shadow files. Also, a new
directory was created, /home/DAdams, which contains files from the /etc/skel directory.
Keep in mind at this point that no password has been added to the DAdams account yet, and
thus its record in the /etc/shadow file shows !! in the password field.

Now let’s take a look at creating an account on a different Linux distribution. The
Ubuntu Desktop distro does things a little differently. In Listing 10.9, you can see that
CREATE_HOME is not set, so it will default to no.

Listing 10.9:  Checking user account directives on Ubuntu Desktop

$ grep CREATE_HOME /etc/login.defs
$
$ useradd -D | grep SHELL
SHELL=/bin/sh
$

Also in Listing 10.9, notice that the SHELL directive is set to /bin/sh instead of the Bash
shell. This means that when you create an interactive user account, you will need to specify
Bash shell, if desired.

Therefore, when creating a user account on this Ubuntu distribution, if you want the
account to have a home directory and use the Bash shell, you will need to employ additional
useradd command options. The useradd utility has many useful options for various needs,
and the most typical ones are listed in Table 10.5.

302  Chapter 10  ■  Administering Users and Groups

We need to employ a few of the options in Table 10.5 to create a user account on the
Ubuntu Desktop distribution. An example is shown in Listing 10.10.

Listing 10.10:  Creating a user account on Ubuntu Desktop

$ sudo useradd -md /home/JKirk -s /bin/bash JKirk
[sudo] password for Christine:
$
$ grep ^JKirk /etc/passwd

TABLE 10 .5   The useradd command’s commonly used options

Short Long Description

-c --comment Comment field contents. Traditionally it contains the user’s
full name. Optional.

-d --home or

--home-dir
User’s home directory specification. Default action is set by
the HOME and CREATE_HOME directives.

-D --defaults Display /etc/default/useradd directives.

-e --expiredate Date of account’s expiration in YYYY-MM-DD format. Default
action is set by the EXPIRE directive.

-f --inactive Number of days after a password has expired and has not
been changed until the account will be deactivated. A -1
indicates that the account will never be deactivated. Default
action is set by the INACTIVE directive.

-g --gid Account’s group membership, which is active when user logs
into system (default group).

-G --groups Account’s additional group memberships.

-m --create-home If it does not exist, create the user account’s home directory.
Default action is set by the CREATE_HOME directive.

-M N/A or

--no-create-home
Do not create the user account’s home directory. Default
action is set by the CREATE_HOME directive.

-s --shell Account’s shell. Default action is set by the SHELL directive.

-u --uid Account’s User Identification (UID) number.

-r --system Create a system account instead of a user account.

Managing User Accounts  303

JKirk:x:1002:1002::/home/JKirk:/bin/bash
$
$ sudo grep ^JKirk /etc/shadow
JKirk:!:17806:0:99999:7:::
$
$ sudo ls -a /home/JKirk/
. .. .bash_logout .bashrc examples.desktop .profile
$
$ sudo ls -a /etc/skel
. .. .bash_logout .bashrc examples.desktop .profile
$

Notice in Listing 10.10 that three options are used along with the useradd command.
Because this system does not have the CREATE_HOME directive set, the -m option is needed to
force useradd to make a home directory for the account. The -d switch designates that the
directory name should be /home/JKirk. Because the SHELL directive is set to /bin/sh on
this system, the -s option is needed to set the account’s default shell to /bin/bash.

After the utility is used to create the account in Listing 10.10, notice that records now
exist for the new user account in the /etc/passwd and /etc/shadow files. Also, a new
directory was created, /home/JKirk, which contains files from this distro’s /etc/skel
directory. Keep in mind at this point that no password has been added to the JKirk account
yet, and thus its record in the /etc/shadow file shows ! in the password field.

The Ubuntu and Debian distributions promote the use of the adduser
program instead of the useradd utility. Their man pages refer to the
useradd command as a “low-level utility.” Some other distros include
a symbolic link to useradd named adduser, which may help (or not).
The adduser configuration information is typically stored in the /etc/
adduser.conf file.

Another way to view account records in the /etc/passwd and /etc/shadow files is
via the getent utility. For this program you pass only the filename followed by the account
name whose record you wish to view. The command is employed in Listing 10.11 to view
the account that was created in Listing 10.10.

Listing 10.11:  Using getent to view a user account on Ubuntu Desktop

$ getent passwd JKirk
JKirk:x:1002:1002::/home/JKirk:/bin/bash
$
$ getent shadow JKirk
$
$ sudo getent shadow JKirk
JKirk:!:17806:0:99999:7:::
$

304  Chapter 10  ■  Administering Users and Groups

Notice in Listing 10.11 that when super user privileges are not used with getent for the
shadow file, nothing is returned. This is because getent honors the security settings on the
/etc/shadow file.

If you need to modify the /etc/default/useradd file’s directive set-
tings, instead of using a text editor, you can employ the useradd -D
command. Just tack on the needed arguments. For example, to modify
the SHELL directive to point to the Bash shell, use super user privileges
and issue the useradd -D -s /bin/bash command.

When creating an account, you can create a password via the crypt utility and then add
it when the account is created via the -p option on the useradd utility. However, that is not
only cumbersome but considered a bad practice. In the next section, we’ll cover creating and
managing account passwords properly.

Maintaining Passwords
When you first create an interactive account, you should immediately afterward create a
password for that account using the passwd utility. In Listing 10.12, a password is created
for the new DAdams account on a Rocky Linux system.

Listing 10.12:  Using passwd for a new account on Fedora Workstation

$ sudo passwd DAdams
Changing password for user DAdams.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
$

You can also update a password for a particular user using the passwd utility and
pass the user’s account name as an argument, similar to what is shown in Listing 10.12. If
you need to update your own account’s password, just enter passwd with no additional
command arguments.

The passwd utility works hand in hand with pluggable authentication
modules (PAMs). For example, when you set or change a password via
the passwd utility, the pam-cracklib PAM checks the password to flag
easily guessed passwords or passwords that use words found in the dic-
tionary. PAM is covered in more detail in Chapter 16, “Looking at Access
and Authentication Methods.”

You can do more than set and modify passwords with the passwd utility. You can also
lock or unlock accounts, set an account’s password to expired, delete an account’s password,
and so on. Table 10.6 shows commonly used passwd switches; all of these options require
super user privileges.

Managing User Accounts  305

One option in Table 10.6 needs a little more explanation, and that is the -S option. An
example is shown in Listing 10.13.

Listing 10.13:  Using passwd -S to view an account’s password status

$ sudo passwd -S DAdams
DAdams PS 2021-10-01 0 99999 7 -1 (Password set, SHA512 crypt.)
$

In Listing 10.13, the DAdams account’s password status is displayed. The status contains
the account password’s state, which is either a usable password (P), no password (NP), or a
locked password (L). After the password state, the last password change date is shown, fol-
lowed by the password’s minimum, maximum, warning, and inactive settings. Additional
status is shown within the parentheses, which includes whether or not the password is set as
well as the hash algorithm used to protect it.

You can also use the chage utility to display similar password information, but in a more
human-readable format, as shown in Listing 10.14.

TABLE 10 .6   The passwd command’s commonly used options

Short Long Description

-d --delete Removes the account’s password.

-e --expire Sets an account’s password as expired. User is required to change
account password at next login.

-i --inactive Sets the number of days after a password has expired and has not
been changed until the account will be deactivated.

-l --lock Places an exclamation point (!) in front of the account’s password
within the /etc/shadow file, effectively preventing the user from log-
ging into the system via using the account’s password.

-n --minimum Sets the number of days after a password is changed until the pass-
word may be changed again.

-S --status Displays the account’s password status.

-u --unlock Removes a placed exclamation point (!) from the account’s password
within the /etc/shadow file.

-w --warning or
--warndays

Sets the number of days a warning is issued to the user prior to a
password’s expiration.

-x --maximum or
--maxdays

Sets the number of days until a password change is required. This is
the password’s expiration date.

306  Chapter 10  ■  Administering Users and Groups

Listing 10.14:  Using chage -l to view an account’s password status

$ sudo chage -l DAdams
Last password change : Oct 02, 2021
Password expires : never
Password inactive : never
Account expires : never
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7
$

The chage program can modify password settings as well. You can either employ various
command options (see its man pages for details) or use the chage utility interactively, as
shown in Listing 10.15.

Listing 10.15:  Using chage to change an account password’s settings

$ sudo chage DAdams
Changing the aging information for DAdams
Enter the new value, or press ENTER for the default

 Minimum Password Age [0]: 5
 Maximum Password Age [99999]: 30
 Last Password Change (YYYY-MM-DD) [2021-10-02]:
 Password Expiration Warning [7]: 15
 Password Inactive [-1]: 3
 Account Expiration Date (YYYY-MM-DD) [-1]:
$

Notice in Listing 10.15 that the password expiration warning is set to 15 days. This is a
good setting if your company allows two-week vacations.

Modifying Accounts
The utility employed to modify accounts is the usermod program. Similar to the passwd
command, you can lock and unlock accounts, as shown in Listing 10.16.

Listing 10.16:  Using usermod to lock an account

$ sudo usermod -L DAdams
$
$ sudo passwd -S DAdams
DAdams LK 2021-10-01 5 30 15 3 (Password locked.)
$
$ sudo getent shadow DAdams
DAdams: !6B/zCaNx[...]:17806:5:30:15:3::

Managing User Accounts  307

$
$ sudo usermod -U DAdams
$
$ sudo passwd -S DAdams
DAdams PS 2021-10-01 5 30 15 3 (Password set, SHA512 crypt.)
$

Notice in Listing 10.16 that the usermod -L command is used to lock the DAdams
account. The passwd -S command shows that the password status is LK, indicating it
is locked. In Listing 10.16, the snipped getent utility output shows that an exclamation
point (!) was placed in front of the DAdams account’s password, which is what is causing
the account to be locked. The lock is then removed via the usermod -U command, and the
status is rechecked.

You can make many modifications to user accounts via the usermod utility’s switches.
The commonly used options are shown in Table 10.7.

TABLE 10 .7   The usermod command’s commonly used options

Short Long Description

-c --comment Modify the comment field contents.

-d --home Set a new user home directory specification. Use with the -m
option to move the current directory’s files to the new location.

-e --expiredate Modify the account’s expiration date. Use YYYY-MM-DD format.

-f --inactive Modify the number of days after a password has expired and has
not been changed that the account will be deactivated. A -1 indi-
cates that the account will never be deactivated.

-g --gid Change the account’s default group membership.

-G --groups Update the account’s additional group memberships. If only speci-
fying new group membership, use the -a option to avoid removing
the other group memberships.

-l --login Modify the account’s username to the specified one. Does not
modify the home directory.

-L --lock Lock the account by placing an exclamation point in front of the
password within the account’s /etc/shadow file record.

-s --shell Change the account’s shell.

-u --uid Modify the account’s User Identification (UID) number.

-U --unlock Unlock the account by removing the exclamation point from the
front of the password within the account’s /etc/shadow file
record.

308  Chapter 10  ■  Administering Users and Groups

Notice that you can change an account’s default group and provide memberships to addi-
tional groups. Account groups are covered in detail later in this chapter.

Where usermod comes in really handy is in a situation where you’ve created an account
but forgot to check the distribution’s account creation configuration settings. Listing 10.17
shows an example of this on an Ubuntu Desktop distribution.

Listing 10.17:  Using usermod to modify an account

$ sudo useradd -md /home/DBowman DBowman
$
$ sudo getent passwd DBowman
DBowman:x:1003:1003::/home/DBowman:/bin/sh
$
$ sudo usermod -s /bin/bash DBowman
$
$ sudo getent passwd DBowman
DBowman:x:1003:1003::/home/DBowman:/bin/bash
$

In Listing 10.17, the user account DBowman is created, but when the account record is
checked using the getent utility, it shows that the /bin/sh shell is being used instead of the
Bash shell. To fix this problem, the usermod command is employed with the -s option, and
the account’s shell is modified to the /bin/bash shell instead.

Deleting Accounts
Deleting an account on Linux is fairly simple. The userdel utility is the key tool in this
task. The most common option to use is the -r switch. This option will delete the account’s
home directory tree and any files within it. Listing 10.18 shows an example of deleting
an account.

Listing 10.18:  Using userdel to delete an account

$ sudo ls -a /home/DBowman
. .. .bash_logout .bashrc examples.desktop .profile
$
$ sudo getent passwd DBowman
DBowman:x:1003:1003::/home/DBowman:/bin/bash
$
$ sudo userdel -r DBowman
userdel: DBowman mail spool (/var/mail/DBowman) not found
$
$ sudo ls -a /home/DBowman
ls: cannot access '/home/DBowman': No such file or directory

Managing Groups  309

$
$ sudo getent passwd DBowman
$

The first two commands in Listing 10.18 show that the /home/DBowman directory exists
and has files within it and that the account does have a record within the /etc/passwd file.
The third command includes the userdel -r command to delete the account as well as
the home directory. Notice that an error message is generated stating that the /var/mail/
DBowman file could not be found. This is not a problem. It just means that this file was not
created when the account was created. Finally, the last two commands show that both the
/home/DBowman directory and its files were removed and that the /etc/passwd file no
longer contains a record for the DBowman account.

Account Deletion Policies

Prior to deleting any accounts on a system, check with your employer’s human resources
staff and/or legal department or counsel. There may be policies in place concerning file
retention for terminated or retired employees as well as those individuals who have left the
company to change jobs. You may be required to back up files prior to deleting them from
the system and/or perform some other types of documentation. If your employer has no
such policy, it is a good idea to suggest that one be developed.

Managing Groups
Groups are organizational structures that are part of Linux’s discretionary access control
(DAC). DAC is the traditional Linux security control, where access to a file, or any object, is
based on the user’s identity and current group membership. When a user account is created,
it is given membership to a particular group, called the account’s default group. Though a
user account can have lots of group memberships, its process can have only one designated
current group at a time. The default group is an account’s current group, when the user first
logs into the system.

Groups are identified by their name as well as their group identification number (GID).
This is similar to how users are identified by UIDs in that the GID is used by Linux to iden-
tify a particular group, whereas humans use group names.

If a default group is not designated when a user account is created, then a new group is
created. This new group has the same name as the user account’s name, and it is assigned
a new GID. To see an account’s default group, you can use the getent command to view

310  Chapter 10  ■  Administering Users and Groups

the /etc/passwd record for that account. Recall that the fourth field in the record is the
account’s GID, which is the default group. Review Table 10.3 if you need a refresher on the
various /etc/passwd record fields. Listing 10.19 shows an example of viewing an account’s
default group information for the DAdams account, which was created on a Rocky Linux
distribution.

Listing 10.19:  Viewing an account’s group memberships

$ getent passwd DAdams
DAdams:x:1002:1002::/home/DAdams:/bin/bash
$
$ sudo groups DAdams
DAdams : DAdams
$
$ getent group DAdams
DAdams:x:1002:
$
$ grep 1002 /etc/group
DAdams:x:1002:
$

The first command in Listing 10.19 shows that the DAdams account’s default group has a
GID of 1002, but it does not provide a group name. The groups command does show the
group name, which is the same as the user account name, DAdams. This is typical when no
default group was designated at account creation time. The third command, another getent
command, shows that the group DAdams does indeed map to the 1002 GID. The fourth
command confirms this information.

To add a user to a new group or change the account’s default group, the group must pre-
exist. This task is accomplished via the groupadd utility. The group’s GID will be automat-
ically set by the system, but you can override this default behavior with the -g command
option. An example of creating a new group is shown in Listing 10.20.

Listing 10.20:  Using the groupadd utility to create a new group

$ sudo groupadd -g 1042 Project42
$
$ getent group Project42
Project42:x:1042:
$
$ grep Project42 /etc/group
Project42:x:1042:
$

Notice in Listing 10.20 that super user privileges are required to create a new group. The
getent utility, as well as the grep command, is used to show the new group record in the

Managing Groups  311

/etc/group file. The fields in the /etc/group file are delimited by a colon (:) and are
as follows:

■■ Group name

■■ Group password: An x indicates that if a group password exists, it is stored in the
/etc/gshadow file.

■■ GID

■■ Group members: User accounts that belong to the group, separated by a comma.

The Ubuntu and Debian distributions promote the use of the addgroup
program instead of the groupadd program. They consider the groupadd
command to be a low-level utility.

The new group created did not have a group password created for it. However, the x in
the Project42 group record within the /etc/group file does not prove this. To make sure
there is no group password, the /etc/gshadow file, where group passwords are stored, is
checked in Listing 10.21.

Listing 10.21:  Checking for a group password

$ sudo getent gshadow Project42
Project42:!::
$

The command in Listing 10.21 shows the Project42 group’s record within the /etc/
gshadow file. The second field contains an exclamation point (!), which indicates that no
password has been set for this group.

Group passwords, if set, allow user accounts access to groups to whom
they do not belong. If a group password is used, this password is typ-
ically shared among the various users who need access to the group.
This is a bad security practice. Passwords should never be shared. Each
account needs to have its own password, and access to groups should
only be allowed via group membership, not group passwords.

Once a new group is created, you can set group membership, which is simply adding
user accounts to the group. Listing 10.22 shows an example of doing this with the
usermod command.

Listing 10.22:  Employing usermod to add an account to a group

$ sudo groups DAdams
DAdams : DAdams
$

312  Chapter 10  ■  Administering Users and Groups

$ sudo usermod -aG Project42 DAdams
$
$ sudo groups DAdams
DAdams : DAdams Project42
$
$ getent group Project42
Project42:x:1042:DAdams
$

Notice that the usermod command in Listing 10.22 uses two options, -aG. The -G adds
the DAdams account as a member of the Project42 group, but the -a switch is important
because it preserves any previous DAdams account group memberships. After the DAdams
account is added as a Project42 group member, you can see in the last two command
results that the /etc/group file record for Project42 was updated.

If you need to modify a particular group, the groupmod command is helpful. A group’s
GID is modified with the -g option, while a group’s name is modified with the -n switch. In
Listing 10.23, the Project42 group’s GID is modified.

Listing 10.23:  Using groupmod to modify a group

$ getent group Project42
Project42:x:1042:DAdams
$
$ sudo groupmod -g 1138 Project42
$
$ getent group Project42
Project42:x:1138:DAdams
$

Notice that in Listing 10.23, the Project42 group’s GID is modified to 1138. The
getent command confirms that the /etc/group file was updated. If the 1138 GID was
already in use by another group, the groupmod command would have displayed an error
message and not changed the group’s GID.

To remove a group, the groupdel utility is employed. An example is shown in
Listing 10.24.

Listing 10.24:  Using groupdel to delete a group

$ sudo groupdel Project42
$
$ getent group Project42
$

Setting Up the Environment  313

$ sudo groups DAdams
DAdams : DAdams
$
$ sudo find / -gid 1138 2>/dev/null
$

Notice in Listing 10.24 after the Project42 group is deleted that the getent command
shows that the Project42 group record has been removed from the /etc/group file. What
is really nice is that any member of that deleted group has also had their group information
updated, as shown in the third command.

Once you have removed a group, it is important to search through the virtual directory
system for any files that may have access settings for that group. You can do this audit
using the find command and the deleted group’s GID. An example of this task is shown
as the fourth command. If you need help remembering how to use the find utility, go
back to Chapter 3, “Managing Files, Directories, and Text,” where the command was origi-
nally covered.

Besides adding, modifying, and deleting user accounts and groups, there are a few
other critical tasks involved with administering them. These topics are covered in the next
few sections.

Setting Up the Environment
After a user authenticates with the Linux system and before reaching the Bash shell’s
command-line prompt, the user environment is configured. This environment consists
of environment variables, command aliases, and various other settings. For example, the
PATH environment variable, covered in Chapter 3, is often manipulated in configuring the
user’s environment.

The user environment configuration is accomplished via environment files. These files
contain Bash shell commands to perform the necessary operations and are covered in the fol-
lowing sections along with a few environment variable highlights.

Perusing Bash Parameters
The Bash shell uses a feature called environment variables to store information about the
shell session and the working environment (thus the name environment variable). You can
view all the various environment variables set on your system by using the set, env, and
printenv commands. However, for the user environment purposes, we’re going to focus on
only a few of these variables. These are listed in Table 10.8.

314  Chapter 10  ■  Administering Users and Groups

Typically environment variable names are all uppercase. However, you
will sometimes see them written with a preceding dollar sign ($), such as
$PS1. This is because you can use or display what is stored in the envi-
ronment variable by adding the $. For example, echo $HISTSIZE will
display the history list’s maximum number of saved commands.

While you can modify these variables on the fly, the focus here is on how these param-
eters are persistently set or modified for user login processes. When you start a Bash shell
by logging in to the Linux system, by default Bash checks several files for the configuration.
These files are called environment files, which are sometimes called startup files. The environ-
ment files that Bash processes depend on the method you use to start the Bash shell. You can
start a Bash shell in three ways:

■■ As a default login shell, such as when logging into the system at a tty# terminal

■■ As an interactive shell that is started by spawning a subshell, such as when opening a
terminal emulator in a Linux GUI

■■ As a noninteractive shell (also called non-login shell) that is started, such as when
running a shell script

The environment files are actually shell scripts. Shell scripting is covered more thoroughly
in Chapter 25, “Deploying Bash Scripts.” The following sections take you through the var-
ious available environment files.

Understanding User Entries
There are four potential files found in the user’s home directory, $HOME, that are environ-
ment files. For a default login or interactive shell, the first file found in the following order is
run, and the rest are ignored:

■■ .bash_profile

TABLE 10 .8   A few environment variables associated with a user environment

Name Description

HISTCONTROL Governs how commands are saved within the history list

HISTSIZE Controls the maximum number of commands saved within the history list

PATH Sets the directories in which the shell searches for command programs

PS1 Configures the shell’s primary prompt

SHELL Sets the shell program’s absolute directory reference

USER Contains the current process’s user account name

Setting Up the Environment  315

■■ .bash_login
■■ .profile

Typically, the fourth file, .bashrc, is run from the file found in the preceding list. How-
ever, any time a noninteractive shell is started, the .bashrc file is run.

In Listing 10.25, on a Rocky Linux distribution, the user’s directory is checked for all
four environment files. Notice that two of them are not found. Therefore, only the
.bash_profile and .bashrc files are employed on this system.

Listing 10.25:  Reviewing a user account’s environment files

$ pwd
/home/Christine
$ ls .bash_profile .bash_login .profile .bashrc
ls: cannot access '.bash_login': No such file or directory
ls: cannot access '.profile': No such file or directory
.bash_profile .bashrc
$

When referring to a user account’s environment files, often symbols for
environment files denoting the user’s home directory are employed. For
example, you may see the .bashrc environment file referred to as the
$HOME/.bashrc or the ~/.bashrc file.

If you want to modify your shell’s primary prompt ($PS1) persistently, you can do so by
adding the modification to one of your local environment configuration files. Listing 10.26
shows the PS1 variable’s modification on a Fedora Workstation distribution.

Listing 10.26:  Persistentally setting a user account’s shell prompt

$ grep PS1 .bash_profile
PS1="To infinity and beyond: "
$

Notice in Listing 10.26 that the user’s prompt is still set to a $. The new prompt
designated in the $HOME/.bash_profile file will not take effect until the file is run, which
can be done manually or automatically when the user logs out and back into the shell.

These individual user environment files are typically populated from the /etc/skel
directory, depending on your account creation configuration settings. For future accounts,
you can make changes to the skeleton environment files. Just keep in mind that any
individual user who can access the command line has the ability to modify their own files.
Thus, for environment configurations that need to apply to all users, it is better to make a
global entry in one of the global environment files, which are covered next.

316  Chapter 10  ■  Administering Users and Groups

Grasping Global Entries
Global configuration files modify the working environment and shell sessions for all users
starting a Bash shell. As mentioned earlier, the global entries in these files can be modified by
the account user by adding user entries to their $HOME environment files.

The global environment files consist of the following:

■■ The /etc/profile file

■■ Files within the /etc/profile.d/ directory

■■ The /etc/bashrc or the /etc/bash.bashrc file

Whether your Linux system has the /etc/bashrc or the /etc/bash.bashrc file
depends on which distribution you are running. Either file is typically called from the user’s
$HOME/.bashrc file.

It is recommended that instead of changing the /etc/profile or other files for global
environment needs, you create a custom environment file, give it an .sh file extension, and
place it in the /etc/profile.d/ directory. All the .sh files within the /etc/profile.d/
directory are run via the /etc/profile environment file for logins to the Bash shell.

Now you know how to set up persistent changes to user environments both locally and
globally. Next, we’ll explore keeping an eye on those users.

Querying Users
Several utilities allow you to audit which users are currently accessing the system as well as
users who have accessed it in the past. You can also verify the account name you are using at
present and review various information concerning user accounts.

Exploring the whoami Utility
The whoami command will display what user account you are currently using. While this
may seem silly, it is important to know what account you are currently using, especially if
your organization has shared accounts or the distribution you’re using allows interactive
logins into the root account.

It is considered a bad security practice to share user accounts as well as
log directly into the root user account. If you need super user account
access, it is better to obtain sudo privileges. The sudo command is
covered thoroughly in Chapter 15, “Applying Ownership and Permis-
sions.”

The whoami command is demonstrated in Listing 10.27. Notice that it only displays the
current user account’s name.

Querying Users  317

Listing 10.27:  Employing the whoami utility

$ whoami
Christine
$

Understanding the who Utility
The who command provides a little more data than the whoami utility. You can view
information concerning your own account or look at every current user on the system.
Examples are shown in Listing 10.28.

Listing 10.28:  Using the who command

$ who
user1 tty2 2018-10-03 13:12
Christine pts/0 2018-10-03 14:10 (192.168.0.102)
$

Notice in Listing 10.28, when the who command is used by itself, it shows all the current
system users, the terminal they are using, the date and time they entered the system, and in
cases of remote users, their remote IP address.

Though it is a very short command, w provides a great deal of useful information. An
example is shown in Listing 10.29.

Listing 10.29:  Employing the w command

$ w
 09:58:31 up 49 min, 5 users, load average: 0.81, 0.37, 0.27
USER TTY LOGIN@ IDLE JCPU PCPU WHAT
user1 tty2 09:10 49:11 43.89s 0.30s /usr/libexe[...]
Christin pts/1 09:14 2.00s 0.04s 0.01s w
Rich tty3 09:56 1:35 0.85s 0.81s top
Kevin tty4 09:57 1:03 16.17s 16.14s ls --color=[...]
Tim tty5 09:57 38.00s 0.08s 0.03s nano data42[...]
$

Notice the w command’s verbose output in Listing 10.29. The first displayed line shows
the following information:

■■ The current time

■■ How long the system has been up

■■ How many users are currently accessing the system

■■ The CPU load averages for the last 1, 5, and 15 minutes

318  Chapter 10  ■  Administering Users and Groups

The next several lines concern current system user information. The columns are
as follows:

■■ USER: The account’s name

■■ TTY: The account’s currently used terminal

■■ LOGIN@: When the user logged into the account

■■ IDLE: How long it has been since the user interacted with the system

■■ JCPU: How much total CPU time the account has used

■■ PCPU: How much CPU time the account’s current command (process) has used

■■ WHAT: What command the account is currently running

The w utility pulls user information from the /var/run/utmp file. It also gathers addi-
tional data for display from the /proc/ directory files.

Identifying with the id Program
The id utility allows you to pull out various data about the current user process. It also dis-
plays information for any account whose identification you pass to id as an argument. The
id command provides a nice one-line summary, as shown in Listing 10.30.

Listing 10.30:  Employing the id command

$ id DAdams
uid=1002(DAdams) gid=1002(DAdams) groups=1002(DAdams)
$
$ id -un 1004
Kevin
$

If you don’t want all that information the first command provides in Listing 10.30,
you can filter the results by employing various id utility options, as shown in the second
command in Listing 10.30. A few of the more common ones are shown in Table 10.9.

TABLE 10 .9   The id command’s commonly used options

Short Long Description

-g --group Displays the account’s current group’s GID, which is either the account’s
default group or a group reached by using the newgrp command

-G --groups Displays all the account’s group memberships via each one’s GIDs

-n --name Displays the account’s name instead of UID or group name instead of
GID by using this switch with the -g, -G, or -u options

-u --user Displays the account’s UID

Querying Users  319

The id utility is very useful in shell scripts. In snipped Listing 10.31, you can see how
it is used to set the USER environment variable in the /etc/profile file on a Rocky
Linux system.

Listing 10.31:  Using the id utility within an environment file

$ grep USER /etc/profile
 USER="`/usr/bin/id -un`"
[...]
$

Displaying Access History with the last Utility
The last command pulls information from the /var/log/wtmp file and displays a list of
accounts showing the last time they logged in/out of the system or if they are still logged
on. It also shows when system reboots occur and when the wtmp file was started. A snipped
example is shown in Listing 10.32.

Listing 10.32:  Using the last command

$ last
Tim tty5 Thu Oct 4 09:57 still logged in
Kevin tty4 Thu Oct 4 09:57 still logged in
Rich tty3 Thu Oct 4 09:56 still logged in
Christin pts/1 192.168.0.102 Thu Oct 4 09:14 still logged in
user1 tty2 tty2 Thu Oct 4 09:10 still logged in
reboot system boot 4.17.12-200.fc28 Thu Oct 4 09:09 still running
Christin pts/0 192.168.0.102 Wed Oct 3 14:10 - 15:32 (01:22)
user1 tty2 Wed Oct 3 13:12 - 15:33 (02:21)
[...]
wtmp begins Thu Jul 26 16:30:32 2018
$

Be aware that the /var/log/wtmp file typically gets automatically rotated via the cron
utility, which is covered in Chapter 26, “Automating Jobs.” If you need to gather information
from old wtmp files, you can use the -f switch. For example, you could type last -f /var/
log/wtmp.1 to view data from the /var/log/wtmp.1 file.

The last command and the various other utilities covered in these sections are helpful
for auditing current users and checking your own account’s identity. They are more tools for
your Linux administration tool belt.

320  Chapter 10  ■  Administering Users and Groups

Managing Disk Space Usage
One way to prevent a filesystem from filling up with files and causing program or entire
system issues is to set limits on users’ disk space usage. This is accomplished with quotas.
Linux can put a cap on the number of files a user may create as well as restrict the total file-
system space consumed by a single user. Not only are these limits available for user accounts,
but they also may be set for groups.

The Linux system implements file number quota limits via their inode
numbers. Back in Chapter 3 we mentioned file inode (index) numbers.
Typically there is one inode number per file, unless a file is hard-linked.

There are essentially four steps for enabling quotas on a particular filesystem. You will
need to employ super user privileges to accomplish these steps. They are as follows:

1.	 Modify the /etc/fstab file to enable filesystem quota support.

2.	 If the filesystem is already mounted, unmount and remount it. If the filesystem was not
previously mounted, then just mount it.

3.	 Create the quota files.

4.	 Establish user or group quota limits and grace periods.

The necessary /etc/fstab file modification is fairly simple. You just edit the file and add
either usrquota or grpquota or both to the filesystem’s mount options (fourth field). An
example is shown in Listing 10.33.

Listing 10.33:  Setting filesystem quotas in the /etc/fstab file

$ grep /dev/sdb1 /etc/fstab
/dev/sdb1 /home/user1/QuotaFSTest ext4 defaults,usrquota,grpquota 0 0
$

Once you have the /etc/fstab file modified, if the filesystem is already mounted, you
will need to unmount it using the umount command. You then mount or remount the
system, using the mount -a command, which will mount any unmounted filesystems listed
in the /etc/fstab file. An example is shown in Listing 10.34.

Listing 10.34:  Mounting or remounting a quota-enabled filesystem

umount /dev/sdb1
mount -a
mount | grep /dev/sdb1
/dev/sdb1 on /home/user1/QuotaFSTest type ext4 (rw,relatime,seclabel,quota,usr
quota,grpquota,data=ordered)
#

Managing Disk Space Usage  321

Notice in Listing 10.34 that you can check if the mount was successful by using the
mount command and the grep utility. Also note that the mounted filesystem has both
usrquota (user quotas) and grpquota (group quotas) enabled.

Once the filesystem has been properly mounted with quota support enabled, you can cre-
ate the quota files needed to enforce limits. This is done with the quotacheck utility. The
-c switch creates the needed files through a scan of the filesystem, recording any current
quota usage. The -u option creates the aquota.user file, and the -g option creates the
aquota.group file. Therefore, if you are only implementing user and not group quotas, you
could leave off the -g switch, and vice versa. An example of using quotacheck is shown in
Listing 10.35.

Listing 10.35:  Using quotacheck to create user and group quota files

quotacheck -cug /home/user1/QuotaFSTest
#
ls /home/user1/QuotaFSTest
aquota.group aquota.user lost+found
#

If you are setting up quotas on more than one filesystem, you can issue
the quotacheck command one time. Just employ the -a option along
with the other command switches and it will create the desired quota
files for any quota-enabled filesystems designated as currently mounted
in the /etc/mtab file.

With the quota files created, you can start creating quota limits for user accounts and/or
groups by employing the edquota utility. To edit user quotas, use the -u option (which is
the default), and to edit group quotas, use the -g switch. A snipped example of editing a user
account’s quota is shown in Listing 10.36.

Listing 10.36:  Employing edquota to create user and group quota files

edquota -u user1
Disk quotas for user user1 (uid 1000):
Filesystem blocks soft hard inodes soft hard
/dev/sdb1 212 4096 6144 2 0 0
~
[...]

When you enter the edquota command, you are put into the vim (vi) editor for the
quota file, unless you have set the $EDITOR environment variable to point to another text
editor. In the quota file, there are two preset items that you cannot permanently modify:
blocks (blocks used) and inodes (number of current files). That is because this information
was obtained when the quotacheck command was previously run and it is not set via the
edquota utility.

322  Chapter 10  ■  Administering Users and Groups

You can, however, modify the soft and hard limits for both blocks and inodes. When you
set a hard block limit, you are setting the maximum number of blocks the user can fill with
data. When you set inode hard limits, you are setting the total number of files that the user
can create. Once the user hits either of these limits, no more disk space or file creation is
available for that account on this particular filesystem. Note that if set to 0, the limit is dis-
abled. Notice in Listing 10.36 that inode limits are disabled.

Soft limits are a little nicer. Once the user hits a set soft limit, they can go for an extended
period past this limit. It is called a grace period.

Once you have user (or group) quotas modified, you need to establish the grace period for
any soft limits set. To do this, you use the edquota -t command. These grace periods are
used for all users and groups. An example is shown in Listing 10.37.

Listing 10.37:  Employing edquota -t to set soft limit grace periods

edquota -t
Grace period before enforcing soft limits for users:
Time units may be: days, hours, minutes, or seconds
 Filesystem Block grace period Inode grace period
 /dev/sdb1 7days 7days
~

When you issue the edquota -t command, you are again thrown into the vim editor,
unless you have modified the $EDITOR environment variable. Grace periods can be set for
both blocks and inodes and can be a matter of days, hours, minutes, or even seconds, which
doesn’t seem very graceful.

If you have some sort of odd problem when enabling filesystem quotas,
you can quickly turn them off with the quotaoff command, using super
user privileges. The -a option will allow you to turn them off for all the
system’s quota-enabled filesystems. You will need to specify user quotas
(-u) and/or group quotas (-g) in the command. Once you have fixed the
issues, turn filesystem quotas back on using the quotaon command.

When you have modified a user’s quota limits and set grace periods, it’s a good idea to
double-check your modifications. The quota command can help here. An example is shown
in Listing 10.38.

Listing 10.38:  Using quota to check a user’s quota limits

quota -u user1
Disk quotas for user user1 (uid 1000):
Filesystem blocks quota limit grace files quota limit grace
/dev/sdb1 212 4096 6144 2 0 0
#

Summary  323

Notice in Listing 10.38 that no information is listed for the user account in the grace
column. This means that the user has not gone over a soft limit and is not currently in a
grace period.

After all that work, you should do another check. You can audit all your filesystems
employing quota limits with the repquota command. An example is shown in Listing 10.39.

Listing 10.39:  Using repquota to check all the filesystems’ quotas

repquota -a
*** Report for user quotas on device /dev/sdb1
Block grace time: 7days; Inode grace time: 7days
 Block limits File limits
User used soft hard grace used soft hard grace
--
root -- 12 0 0 1 0 0
user1 -- 212 4096 6144 2 0 0
#

This should keep your filesystems humming along. However, be aware that it is a good
idea to set up a periodic check of your filesystems’ quotas using the quotacheck utility. You
can automate this by setting up a cron job to do so, as covered in Chapter 26.

Summary
Managing the user account and group memberships for a Linux system involves many criti-
cal pieces. You need to understand the account creation process as well as the files used. You
must grasp the entire mechanism for times when troubleshooting authentication issues for a
particular user is necessary. In addition, being able to use various utilities for identifying var-
ious users can assist.

User accounts may be gathered together into various groups, which provide additional
access. These group memberships are part of the authorization in which users can gain entry
into various files and directories. Knowing the key areas of group administration is critical
for proper Linux system management.

Besides protecting your system through properly authenticated and authorization user
and group mechanisms, you can also shield your filesystems from overuse. In particular,
setting up filesystem user and group quotas will provide an additional layer of protection.

324  Chapter 10  ■  Administering Users and Groups

Exam Essentials
Describe the players in managing user accounts.   The /etc/login.defs and /etc/
default/useradd files configure various settings for the useradd command’s default
behavior. Because the directive settings within these files vary from distribution to distribu-
tion, it is wise to peruse them prior to employing the useradd utility to create accounts.
When an account is created, the /etc/passwd, /etc/shadow, and /etc/group files are all
modified. Depending on the user account creation configuration, a user home directory may
be created and files copied to it from the /etc/skel directory.

Summarize managing groups.   The commands involved in creating, modifying, and deleting
groups are the groupadd, groupmod, and groupdel commands. These commands cause
modifications to the /etc/group file. If you need to add a user to a group, you need to
employ the usermod utility. A user can easily switch from the account’s default group to
another group in which the account is a member by using the newgrp program. Account
group membership can be audited via the groups and getent commands as well as by
viewing the /etc/group file.

Outline the environment files.   The Bash shell uses environment variables to store
information about the shell session and the working environment. These variables are set
using environment files. Which environment files are run depends on how a user is logging
into a system as well as the distribution the account is on. User environment files are hidden
files in that they begin with a dot (.) and are potentially the .bash_profile, .bash_login,
.profile, and .bashrc files. Global files may include /etc/bashrc, /etc/bash
.bashrc, /etc/profile, and files within the /etc/profile.d/ directory.

Explain the various methods to query user account information.   There are several utilities
you can employ to determine user account information for users who are currently logged
into their accounts as well as those who are not. The “who” commands have three varia-
tions, which are the whoami, who, and w utilities. The id program is useful for matching UID
and GID numbers to particular user accounts. The last command is helpful for viewing not
only when a system has rebooted but also whether or not a user is currently logged into the
system or when the last time the account was accessed.

Describe how to manage filesystem usage quotas.   Prior to setting user account or group
quota limits on a system, you must enable quotas on the filesystem using the usrquota
and grpquota options in the /etc/fstab file. Once the filesystem is unmounted and then
remounted, you can create the needed user and/or group files with the quotacheck utility.
After that is accomplished, user or group limits are set with the edquota command. You can
also view and/or verify quotas using the repquota program.

Review Questions  325

Review Questions
1.	 Which of the following are fields within an /etc/passwd file record? (Choose all

that apply.)

A.	 User account’s username

B.	 Password

C.	 Password change date

D.	 Special flag

E.	 UID

2.	 Which of the following are fields in an /etc/shadow file record? (Choose all that apply.)

A.	 Password expiration date

B.	 Account expiration date

C.	 Password

D.	 Comment

E.	 Default shell

3.	 Which field contains the same data for both an /etc/passwd and an /etc/shadow
file record?

A.	 Password

B.	 Account expiration date

C.	 UID

D.	 GID

E.	 User account’s username

4.	 Which of the following commands will allow you to view the NUhura account’s record data
in the /etc/passwd file? (Choose all that apply.)

A.	 getent NUhura passwd
B.	 cat /etc/passwd
C.	 passwd NUhura
D.	 grep NUhura /etc/passwd
E.	 getent passwd NUhura

5.	 You use the useradd -D command to view account creation configuration directives. What
file does this command pull its displayed information from?

A.	 The /etc/passwd file

B.	 The /etc/shadow file

C.	 The /etc/group file

D.	 The /etc/login.defs file

E.	 The /etc/default/useradd file

326  Chapter 10  ■  Administering Users and Groups

6.	 You create an account using the appropriate utility, except for some reason the account’s
home directory was not created. Which of the following most likely caused this to occur?

A.	 The HOME directive is set to no.

B.	 You did not employ super user privileges.

C.	 The CREATE_HOME directive is not set.

D.	 The INACTIVE directive is set to -1.

E.	 The EXPIRE date is set and it is before today.

7.	 Your boss has asked you to remove KSingh’s account and all his home directory files from the
system immediately. Which command should you use?

A.	 usermod -r KSingh
B.	 rm -r /home/KSingh
C.	 userdel Ksingh
D.	 userdel -r KSingh
E.	 usermod -d KSingh

8.	 Which of the following will allow you to change an account’s /etc/shadow file record
data? (Choose all that apply.)

A.	 The passwd command

B.	 The usermod command

C.	 The userdel command

D.	 The getent command

E.	 The chage command

9.	 Which of the following commands will allow you to switch temporarily from your account’s
default group to another group you are a member of?

A.	 The usermod command

B.	 The newgrp command

C.	 The groups command

D.	 The groupadd command

E.	 The groupmod command

10.	 Which of the following commands is the best one to add JKirk as a member to a new
group called the NCC-1701 group and not remove any of the account’s previous group
memberships?

A.	 usermod -g NCC-1701 JKirk
B.	 usermod -G NCC-1701 JKirk
C.	 usermod -aG NCC-1701 JKirk
D.	 groupadd NCC-1701
E.	 groupmod NCC-1701 JKirk

Review Questions  327

11.	 Which of the following commands could be used to view the members of the NCC-1701
group? (Choose all that apply.)

A.	 groups NCC-1701
B.	 getent group NCC-1701
C.	 getent groups NCC-1701
D.	 grep NCC-1701 /etc/group
E.	 grep NCC-1701 /etc/groups

12.	 User environment files typically come from where?

A.	 /etc/skel
B.	 /home/userid
C.	 $HOME
D.	 ~
E.	 /etc/

13.	 A user has logged into the tty3 terminal. Which of the following user environment files is
executed first if found in the user’s home directory?

A.	 The .bash_login file

B.	 The .bashrc file

C.	 The .profile file

D.	 The .bash.bashrc file

E.	 The .bash_profile file

14.	 Which of the following files and directories may be involved in setting up the environment
for all system users? (Choose all that apply.)

A.	 /etc/bash_profile/
B.	 /etc/profile
C.	 /etc/profile.d/
D.	 /etc/bashrc
E.	 /etc/bash.bashrc

15.	 Which of the following commands displays information about the account issuing the
command? (Choose all that apply.)

A.	 whoami
B.	 who am i
C.	 cat $HOME/.bashrc
D.	 cat $HOME/.profile
E.	 id

328  Chapter 10  ■  Administering Users and Groups

16.	 Which of the following commands will display CPU load data along with information
concerning users who are currently logged into the system?

A.	 The who command

B.	 The id command

C.	 The whoami command

D.	 The w command

E.	 The last command

17.	 The last command, by default, pulls its data from what file?

A.	 The /var/run/utmp file

B.	 The /var/log/wtmp file

C.	 The /var/log/wtmp.1 file

D.	 The /etc/shadow file

E.	 The /etc/passwd file

18.	 Which of the following are options used in the /etc/fstab file to designate a filesystem as
one that uses quotas? (Choose all that apply.)

A.	 usrquota
B.	 quotaon
C.	 grpquota
D.	 quotacheck
E.	 aquota.user

19.	 A problem has occurred concerning group quotas on three filesystems. You need to quickly
remove all filesystems’ quota limits to temporarily resolve this issue. What is the best
command to employ?

A.	 vi /etc/fstab
B.	 quotaoff -a
C.	 quotacheck -cg
D.	 quotacheck -cu
E.	 umount

20.	 You need to edit quota grace periods. Which of the following commands should you use?

A.	 edquota -u
B.	 edquota -g
C.	 edquota -t
D.	 edquota -G
E.	 edquota --grace

Handling Storage

✓✓ Objective 1.1: Summarize Linux fundamentals.

✓✓ Objective 1.3: Given a scenario, configure and manage
storage using the appropriate tools.

Chapter

11

The world runs on data. Whether it’s an employee data-
base, a folder with all of your family pictures, or just your
weekly bowling scores, the ability to save and retrieve data

is a must for every application. Linux provides lots of different ways to store and manage
files for applications. This chapter first discusses the basics of how Linux handles storage
devices, and then it walks through how you use those methods to manage data in a Linux
environment.

Storage Basics
The most common way to persistently store data on computer systems is to use a hard disk
drive (HDD). Hard disk drives are physical devices that store data using a set of disk platters
that spin around, storing data magnetically on the platters with a movable read/write head
that writes and retrieves magnetic images on the platters.

These days, another popular type of persistent storage is called a solid-state drive (SSD).
These drives use integrated circuits to store data electronically. There are no moving parts
contained in SSDs, making them faster and more resilient than HDDs. Although currently
SSDs are more expensive than HDDs, technology is quickly changing that, and it may not be
long before HDDs are a thing of the past.

Linux handles both HDD and SSD storage devices the same way. It mostly depends on
the connection method used to connect the drives to the Linux system. The following sec-
tions describe the different methods that Linux uses in connecting and using both HDD and
SSD devices.

Drive Connections
While HDDs and SSDs differ in how they store data, they both interface with the Linux
system using the same methods. There are four main types of drive connections that you’ll
run into with Linux systems:

■■ Parallel Advanced Technology Attachment (PATA) connects drives using a parallel inter-
face, which requires a wide cable. PATA supports two devices per adapter.

■■ Serial Advanced Technology Attachment (SATA) connects drives using a serial interface,
but at a much faster speed than PATA. SATA supports up to four devices per adapter.

Storage Basics  331

■■ Small Computer System Interface (SCSI) connects drives using a parallel interface, but
with the speed of SATA. SCSI supports up to eight devices per adapter.

■■ Nonvolatile Memory Express (NVMe) connects solid-state drives using a parallel inter-
face for maximum data transfer speeds. The NVMe standard supports up to 12 devices
per adapter.

When you connect a drive to a Linux system, the Linux kernel assigns the drive device
a file in the /dev folder. That file is called a raw device, as it provides a path directly to the
drive from the Linux system. Any data written to the file is written to the drive, and reading
the file reads data directly from the drive.

For PATA devices, this file is named /dev/hdx, where x is a letter representing the
individual drive, starting with a. For SATA and SCSI devices, Linux uses /dev/sdx, where x
is a letter representing the individual drive, again starting with a. With NVMe devices, Linux
uses /dev/nvmex, again where x is a letter representing the individual drive. Thus, to refer-
ence the first SATA device on the system, you’d use /dev/sda, then for the second device
/dev/sdb, and so on.

Partitioning Drives
Most operating systems, including Linux, allow you to partition a drive into multiple sec-
tions. A partition is a self-contained section in the drive that the operating system treats as a
separate storage space.

Partitioning drives can help you better organize your data, such as segmenting operating
system data from user data. If a rogue user fills up the disk space with data, the operating
system will still have room to operate on the separate partition.

Partitions must be tracked by some type of indexing system on the drive. Systems that
use the old BIOS boot loader method (see Chapter 5, “Explaining the Boot Process”) use the
Master Boot Record (MBR) method for managing disk partitions. This method only sup-
ports up to four primary partitions on a drive. Each primary partition itself, however, can be
split into multiple extended partitions.

Systems that use the UEFI boot loader method (see Chapter 5) use the more advanced
GUID Partition Table (GPT) method for managing partitions, which supports up to 128
partitions on a drive. Linux assigns the partition numbers in the order that the partition
appears on the drive, starting with number 1.

Linux creates /dev files for each separate disk partition. It attaches the partition number
to the end of the device name and numbers the primary partitions starting at 1, so the first
primary partition on the first SATA drive would be /dev/sda1. MBR extended partitions
are numbered starting at 5, so the first extended partition is assigned the file /dev/sda5.

Automatic Drive Detection
Linux systems detect drives and partitions at boot time and assign each one a unique device
filename. However, with the invention of removable USB drives (such as memory sticks),
which can be added and removed at will while the system is running, that method needed to
be modified.

332  Chapter 11  ■  Handling Storage

Most Linux systems now use the udev application. The udev program runs in the
background at all times and automatically detects new hardware connected to the running
Linux system. As you connect new drives, USB devices, or optical drives (such as CD and
DVD devices), udev will detect them and assign each one a unique device filename in the
/dev folder.

Another feature of the udev application is that it also creates persistent device files
for storage devices. When you add or remove a removable storage device, the /dev name
assigned to it may change, depending on what devices are connected at any given time. That
can make it difficult for applications to find the same storage device each time.

To solve that problem, the udev application uses the /dev/disk folder to create links to
the /dev storage device files based on unique attributes of the drive. There are four separate
folders udev creates for storing links:

■■ /dev/disk/by-id links storage devices by their manufacturer make, model, and
serial number.

■■ /dev/disk/by-label links storage devices by the label assigned to them.

■■ /dev/disk/by-path links storage devices by the physical hardware port they are
connected to.

■■ /dev/disk/by-uuid links storage devices by the 128-bit universally unique identifier
(UUID) assigned to the device.

With the udev device links, you can specifically reference a storage device by a permanent
identifier rather than where or when it was plugged into the Linux system.

Partitioning Tools
After you connect a drive to your Linux system, you’ll need to create partitions on it (even if
there’s only one partition). Linux provides several tools for working with raw storage devices
to create partitions. The following sections cover the most popular partitioning tools you’ll
run across in Linux.

Working with fdisk
The most common command-line partitioning tool is the fdisk utility. The fdisk program
allows you to create, view, delete, and modify partitions on any drive that uses the MBR
method of indexing partitions.

To use the fdisk program, you must specify the drive device name (not the partition name)
of the device you want to work with:

$ sudo fdisk /dev/sda
[sudo] password for rich:
Welcome to fdisk (util-linux 2.23.2).

Partitioning Tools  333

Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help):

The fdisk program uses its own command line that allows you to submit commands to
work with the drive partitions. Table 11.1 shows the common commands you have available
to work with.

TABLE 11.1   Common fdisk commands

Command Description

a Toggle a bootable flag.

b Edit bsd disk label.

c Toggle the DOS compatibility flag.

d Delete a partition.

g Create a new empty GPT partition table.

G Create an IRIX (SGI) partition table.

l List known partition types.

m Print this menu.

n Add a new partition.

o Create a new empty DOS partition table.

p Print the partition table.

q Quit without saving changes.

s Create a new empty Sun disk label.

t Change a partition’s system ID.

u Change display/entry units.

v Verify the partition table.

w Write table to disk and exit.

x Extra functionality (experts only).

334  Chapter 11  ■  Handling Storage

The p command displays the current partition scheme on the drive:

Command (m for help): p

Disk /dev/sda: 10.7 GB, 10737418240 bytes, 20971520 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x000528e6

 Device Boot Start End Blocks Id System
/dev/sda1 * 2048 2099199 1048576 83 Linux
/dev/sda2 2099200 20971519 9436160 83 Linux

Command (m for help):

In this example, the /dev/sda drive is sectioned into two partitions, sda1 and sda2. The
Id and System columns refer to the type of filesystem the partition is formatted to handle.
We cover that in the section “Understanding Filesystems” later in this chapter. Both parti-
tions are formatted to support a Linux filesystem. The first partition is allocated about 1 GB
of space, whereas the second is allocated a little over 9 GB of space.

The fdisk command is somewhat rudimentary in that it doesn’t allow you to alter the
size of an existing partition; all you can do is delete the existing partition and rebuild it
from scratch.

To be able to boot the system from a partition, you must set the boot flag for the parti-
tion. You do that with the a command. The bootable partitions are indicated in the output
listing with an asterisk.

If you make any changes to the drive partitions, you must exit using the w command to
write the changes to the drive.

Working with gdisk
If you’re working with drives that use the GPT indexing method, you’ll need to use the
gdisk program:

$ sudo gdisk /dev/sda
[sudo] password for rich:
GPT fdisk (gdisk) version 1.0.3

Partition table scan:
 MBR: protective
 BSD: not present
 APM: not present
 GPT: present

Partitioning Tools  335

Found valid GPT with protective MBR; using GPT.

Command (? for help):

The gdisk program identifies the type of formatting used on the drive. If the drive
doesn’t currently use the GPT method, gdisk offers you the option to convert it to a
GPT drive.

Be careful with converting the drive method specified for your drive. The
method you select must be compatible with the system firmware (BIOS
or UEFI). If not, your drive will not be able to boot.

The gdisk program also uses its own command prompt, allowing you to enter com-
mands to manipulate the drive layout, as shown in Table 11.2.

TABLE 11.2   Common gdisk commands

Command Description

b Back up GPT data to a file.

c Change a partition’s name.

d Delete a partition.

i Show detailed information on a partition.

l List known partition types.

n Add a new partition.

o Create a new empty GUID partition table (GPT).

p Print the partition table.

q Quit without saving changes.

r Recovery and transformation options (experts only).

s Sort partitions.

t Change a partition’s type code.

v Verify disk.

w Write table to disk and exit.

x Extra functionality (experts only).

? Print this menu.

336  Chapter 11  ■  Handling Storage

You’ll notice that many of the gdisk commands are similar to those in the fdisk
program, making it easier to switch between the two programs. One of the added options
that can come in handy is the i option, which displays more detailed information about a
partition:

Command (? for help): i
Partition number (1-3): 2
Partition GUID code: 0FC63DAF-8483-4772-8E79-3D69D8477DE4 (Linux filesystem)
Partition unique GUID: 5E4213F9-9566-4898-8B4E-FB8888ADDE78
First sector: 1953792 (at 954.0 MiB)
Last sector: 26623999 (at 12.7 GiB)
Partition size: 24670208 sectors (11.8 GiB)
Attribute flags: 0000000000000000
Partition name: ''

Command (? for help):

The GNU parted Command
The GNU parted program provides yet another command-line interface for working with
drive partitions:

$ sudo parted
GNU Parted 3.2
Using /dev/sda
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sda: 15.6GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:

Number Start End Size File system Name Flags
 1 1049kB 1000MB 999MB fat32 boot, esp
 2 1000MB 13.6GB 12.6GB ext4
 3 13.6GB 15.6GB 2000MB linux-swap(v1)

(parted)

One of the selling features of the parted program is that it allows you to modify existing
partition sizes, so you can easily shrink or grow partitions on the drive.

Understanding Filesystems  337

The GNU parted package also contains the partprobe utility. The
partprobe command triggers the Linux system to reread the partition
table for a specific disk. While not necessary on a system with local hard
drives, systems that share drives may need to use this if one system
updates the partition table of a hard drive and the other system doesn’t
yet know about the update.

Graphical Tools
There are also some graphical tools available to use if you’re working from a graphical
desktop environment. The most common of these is the GNOME Partition Editor, called
GParted. Figure 11.1 shows an example of running the gparted command in an Ubuntu
desktop environment.

The gparted window displays each of the drives on a system one at a time, showing all
of the partitions contained in the drive in a graphical layout. You right-click a partition to
select options for mounting or unmounting, formatting, deleting, or resizing the partition.

Although it’s certainly possible to interact with a drive as a raw device, that’s not usually
how Linux applications work. There’s a lot of work trying to read and write data to a raw
device. Instead, Linux provides a method for handling all the dirty work for us, and we cover
it in the next section.

Understanding Filesystems
Just like storing stuff in a closet, storing data in a Linux system requires some method of
organization for it to be efficient. Linux utilizes filesystems to manage data stored on storage
devices. A filesystem utilizes a method of maintaining a map to locate each file placed in the

F IGURE 11.1   The GParted interface

338  Chapter 11  ■  Handling Storage

storage device. This and the following sections describe the Linux filesystem and show how
you can locate files and folders contained in it.

The Linux filesystem can be one of the most confusing aspects of working with Linux.
Locating files on drives, CDs, and USB memory sticks can be a challenge at first.

If you’re familiar with how Windows manages files and folders, you know that Windows
assigns drive letters to each storage device you connect to the system. For example, Win-
dows uses C: for the main drive on the system or E: for a USB memory stick plugged into
the system.

In Windows, you’re used to seeing file paths such as

C:\Users\rich\Documents\test.docx

This path indicates that the file is located in the Documents folder for the rich user
account, which is stored on the disk partition assigned the letter C (usually the first drive on
the system).

The Windows path tells you exactly what physical device the file is stored on. How-
ever, Linux doesn’t use this method to reference files. It uses a virtual directory structure.
The virtual directory contains file paths from all the storage devices installed on the system
consolidated into a single directory structure.

The Virtual Directory
The Linux virtual directory structure contains a single base directory, called the root
directory. The root directory lists files and folders beneath it based on the folder path used to
get to them, similar to the way Windows does it.

Be careful with the terminology here. Although the main admin user
account in Linux is called root, that’s not related to the root of the virtual
directory, usually called root, but denoted as just a single forward slash
(/). In fact, the root user account uses a special Home directory /root,
making things even more confusing!

For example, a Linux file path could look like this:

/home/rich/Documents/test.doc

First, note that the Linux path uses forward slashes instead of the backward slashes that
Windows uses. That’s an important difference that trips many novice Linux administrators.
As for the path itself, also notice that there’s no drive letter. The path only indicates that the
file test.doc is stored in the Documents folder for the user rich; it doesn’t give you any
clues as to which physical device contains the file.

Linux places physical devices in the virtual directory using mount points. A mount point
is a folder placeholder in the virtual directory that points to a specific physical device.
Figure 11.2 demonstrates how this works.

Understanding Filesystems  339

In Figure 11.2, there are two drives used on the Linux system. The first drive on the left is
associated with the root of the virtual directory. The second drive is mounted at the location
/home, which is where the user folders are located. Once the second drive is mounted to the
virtual directory, files and folders stored on the drive are available under the /home folder.

Since Linux stores everything in the virtual directory, it can get somewhat complicated.
Fortunately, there’s a standard format defined for the Linux virtual directory, called the
Linux filesystem hierarchy standard (FHS). The FHS defines core folder names and locations
that should be present on every Linux system and what type of data they should contain.
Table 11.3 shows just a few of the more common folders defined in the FHS.

Hard Drive 1

Hard Drive 2
bin

etc

home

mnt

barbara

katie

jessica

rich

F IGURE 11.2   The Linux virtual directory structure divided between two drives

TABLE 11.3   Common Linux FHS folders

Folder Description

/bin Executable programs necessary for the system to run in single-user mode

/boot Contains bootloader files used to boot the system

/dev Device files

/etc System service configuration files

/home Contains user data files

/lib Library files required by executable programs

340  Chapter 11  ■  Handling Storage

While the FHS helps standardize the Linux virtual filesystem, not all Linux
distributions follow it completely. It’s best to consult with your specific
Linux distribution’s documentation on how it manages files in the virtual
directory structure.

Folder Description

/media Used as a mount point for removable devices

/mnt Also used as a mount point for removable devices

/opt Contains data for optional third-party programs

/proc Virtual filesystem providing kernel and process information as files, updated in real
time

/root The home directory for the root user account

/sbin Executable programs required by the system

/sys Virtual filesystem providing device, driver, and some kernel information as files,
updated in real time

/tmp Contains temporary files created by system users

/usr Contains data for standard Linux programs

/usr/
bin

Contains local user programs and data

/usr/
local

Contains data for programs unique to the local installation

/usr/
sbin

Contains data for system programs and data

/var Files whose content is expected to change frequently, such as log files

TABLE 11.3   Common Linux FHS folders  (continued)

Formatting Filesystems  341

Maneuvering around the Filesystem
Using the virtual directory makes it a breeze to move files from one physical device to
another. You don’t need to worry about drive letters, just the locations in the virtual
directory:

$ cp /home/rich/Documents/myfile.txt /media/usb

In moving the file from the Documents folder to a USB memory stick, we used the full
path in the virtual directory to both the file and the USB memory stick. This format is called
an absolute path. The absolute path to a file always starts at the root folder (/) and includes
every folder along the virtual directory tree to the file.

Alternatively, you can use a relative path to specify a file location. The relative path to a
file denotes the location of a file relative to your current location in the virtual directory tree
structure. If you were already in the Documents folder, you’d just need to type

$ cp myfile.txt /media/usb

When Linux sees that the path doesn’t start with a forward slash, it assumes the path is
relative to the current directory.

Formatting Filesystems
Before you can assign a drive partition to a mount point in the virtual directory, you must
format it using a filesystem. Linux supports numerous filesystem types, with each having dif-
ferent features and capabilities. The following sections discuss the different filesystems that
Linux supports and how to format a drive partition for the filesystems.

Common Filesystem Types
Each operating system utilizes its own filesystem type for storing data on drives. Linux
not only supports several of its own filesystem types, it also supports filesystems of other
operating systems. The following sections cover the most common Linux and non-Linux file-
systems that you can use in your Linux partitions.

Linux Filesystems
When you create a filesystem specifically for use on a Linux system, there are six main file-
systems that you can choose from:

■■ btrfs: A newer, high-performance filesystem that supports files up to 16 exbibytes (EiB)
in size and a total filesystem size of 16EiB. It also can perform its own form of Redun-
dant Array of Inexpensive Disks (RAID) as well as logical volume management (LVM).

342  Chapter 11  ■  Handling Storage

It includes additional advanced features such as built-in snapshots for backup, improved
fault tolerance, and data compression on the fly.

■■ eCryptfs: The Enterprise Cryptographic File System (eCryptfs) applies a POSIX-
compliant encryption protocol to data before storing it on the device. This provides a
layer of protection for data stored on the device. Only the operating system that created
the filesystem can read data from it.

■■ ext3: Also called ext3fs, this is a descendant of the original Linux ext filesystem. It sup-
ports files up to 2 tebibytes (TiB), with a total filesystem size of 16 TiB. It supports jour-
naling as well as faster startup and recovery.

■■ ext4: Also called ext4fs, it’s the current version of the original Linux filesystem. It sup-
ports files up to 16 TiB, with a total filesystem size of 1 EiB. It also supports journaling
and utilizes improved performance features.

■■ XFS: A 64-bit high-performance journaling filesystem created by Silicon Graphics in
1993 and ported to Linux in 2001. It supports filesystems up to 8 exbibytes.

■■ swap: The swap filesystem allows you to create virtual memory for your system using
space on a physical drive. The system can then swap data out of normal memory into
the swap space, providing a method of adding additional memory to your system. This
is not intended for storing persistent data.

Most Linux distributions these days use the ext4fs filesystem as the default, although Red
Hat has recently chosen the XFS filesystem as the default. Both filesystems provide journal-
ing, which is a method of tracking data not yet written to the drive in a log file, called the
journal. If the system fails before the data can be written to the drive, the journal data can be
recovered and stored upon the next system boot.

Non-Linux Filesystems
One of the great features of Linux that makes it so versatile is its ability to read data
stored on devices formatted for other operating systems, such as Apple and Microsoft.
This feature makes it a breeze to share data between different systems running different
operating systems.

Here’s a list of common non-Linux filesystems that Linux can handle:

■■ CIFS: The Common Internet File System (CIFS) is a filesystem protocol created by
Microsoft for reading and writing data across a network using a network storage device.
It was released to the public for use on all operating systems.

■■ HFS: The Hierarchical File System (HFS) was developed by Apple for its macOS sys-
tems. Linux can also interact with the more advanced HFS+ filesystem.

■■ ISO-9660: The ISO-9660 standard is used for creating filesystems on CD-ROM devices.

■■ NFS: The Network File System (NFS) is an open source standard for reading and
writing data across a network using a network storage device.

■■ NTFS: The New Technology File System (NTFS) is the filesystem used by the Microsoft
NT operating system and subsequent versions of Windows. Linux can read and write
data on an NTFS partition as of kernel 2.6.x.

Formatting Filesystems  343

■■ SMB: The Server Message Block (SMB) filesystem was created by Microsoft as a pro-
prietary filesystem used for network storage and interacting with other network devices
(such as printers). Support for SMB allows Linux clients and servers to interact with
Microsoft clients and servers on a network.

■■ UDF: The Universal Disc Format (UDF) is commonly used on DVD-ROM devices for
storing data. Linux can both read data from a DVD and write data to a DVD using this
filesystem.

■■ VFAT: The Virtual File Allocation Table (VFAT) is an extension of the original Micro-
soft File Allocation Table (FAT) filesystem. It’s not commonly used on drives but is com-
monly used for removable storage devices such as USB memory sticks.

■■ ZFS: The Zettabyte File System (ZFS) was created by Sun Microsystems (now part of
Oracle) for its Unix workstations and servers. Another high-performance filesystem, it
has features similar to the btrfs Linux filesystem.

It’s generally not recommended to format a partition using a non-Linux filesystem if you
plan on using the drive for only Linux systems. Linux supports these filesystems mainly as a
method for sharing data with other operating systems.

Creating Filesystems
The Swiss Army knife for creating filesystems in Linux is the mkfs program. The mkfs
program is actually a front end to several individual tools for creating specific filesystems,
such as the mkfs.ext4 program for creating ext4 filesystems.

The beauty of the mkfs program is that you only need to remember one program name
to create any type of filesystem on your Linux system. Just use the -t option to specify the
filesystem type:

$ sudo mkfs -t ext4 /dev/sdb1
mke2fs 1.44.1 (24-Mar-2018)
Creating filesystem with 2621440 4k blocks and 655360 inodes
Filesystem UUID: f9137b26-0caf-4a8a-afd0-392002424ee8
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632
Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done
$

After you specify the -t option, just specify the partition device filename for the partition
you want to format on the command line. Notice that the mkfs program does a lot of things
behind the scenes when formatting the filesystem. Each filesystem has its own method for

344  Chapter 11  ■  Handling Storage

indexing files and folders and tracking file access. The mkfs program creates all the index
files and tables necessary for the specific filesystem.

Be very careful when specifying the partition device filename. When you
format a partition, any existing data on the partition is lost. If you specify
the wrong partition name, you could lose important data or make your
Linux system unable to boot.

Mounting Filesystems
Once you’ve formatted a drive partition with a filesystem, you can add it to the virtual
directory on your Linux system. This process is called mounting the filesystem.

You can either manually mount the partition in the virtual directory structure from the
command line or allow Linux to automatically mount the partition at boot time. The follow-
ing sections walk through both of these methods.

Manually Mounting Devices
To temporarily mount a filesystem to the Linux virtual directory, use the mount command.
The basic format for the mount command is

mount -t fstype device mountpoint

Use the -t command-line option to specify the filesystem type of the device:

$ sudo mount -t ext4 /dev/sdb1 /media/usb1
$

If you specify the mount command with no parameters, it displays all of the devices cur-
rently mounted on the Linux system. Be prepared for a long output, though, as most Linux
distributions mount lots of virtual devices in the virtual directory to provide information
about system resources. Listing 11.1 shows a partial output from a mount command.

Listing 11.1  Output from the mount command

$ mount
...
/dev/sda2 on / type ext4 (rw,relatime,errors=remount-ro,data=ordered)
/dev/sda1 on /boot/efi type vfat
 (rw,relatime,fmask=0077,dmask=0077,codepage=437,iocharset=iso8859
-1,shortname=mixed,errors=remount-ro)
...
/dev/sdb1 on /media/usb1 type ext4 (rw,relatime,data=ordered)

Mounting Filesystems  345

/dev/sdb2 on /media/usb2 type ext4 (rw,relatime,data=ordered)
rich@rich-TestBox2:~$

To save space, we trimmed down the output from the mount command to show only the
physical devices on the system. The main hard drive device (/dev/sda) contains two parti-
tions, and the USB memory stick device (/dev/sdb) also contains two partitions.

The mount command uses the -o option to specify additional features of
the filesystem, such as mounting it in read-only mode, user permissions
assigned to the mount point, and how data is stored on the device. These
options are shown in the output of the mount command. Usually you can
omit the -o option to use the system defaults for the new mount point.

The downside to the mount command is that it only temporarily mounts the device in
the virtual directory. When you reboot the system, you have to manually mount the devices
again. This is usually fine for removable devices, such as USB memory sticks, but for more
permanent devices it would be nice if Linux could mount them for us automatically. Fortu-
nately for us, Linux can do just that.

To remove a mounted drive from the virtual directory, use the umount command (note the
missing n). You can remove the mounted drive by specifying either the device filename or the
mount point directory.

Automatically Mounting Devices
For permanent storage devices, Linux maintains the /etc/fstab file to indicate which drive
devices should be mounted to the virtual directory at boot time. The /etc/fstab file is a
table that indicates the drive device file (either the raw file or one of its permanent udev file-
names), the mount point location, the filesystem type, and any additional options required to
mount the drive. Listing 11.2 shows the /etc/fstab file from an Ubuntu workstation.

Listing 11.2  The /etc/fstab file

$ cat /etc/fstab
/etc/fstab: static file system information.
#
Use 'blkid' to print the universally unique identifier for a
device; this may be used with UUID= as a more robust way to name devices
that works even if disks are added and removed. See fstab(5).
#
<file system> <mount point> <type> <options> <dump> <pass>
/ was on /dev/sda2 during installation
UUID=46a8473c-8437-4d5f-a6a1-6596c492c3ce / ext4
 errors=remount-ro 0 1
/boot/efi was on /dev/sda1 during installation

346  Chapter 11  ■  Handling Storage

UUID=864B-62F5 /boot/efi vfat umask=0077 0 1
swap was on /dev/sda3 during installation
UUID=8673447a-0227-47d7-a67a-e6b837bd7188 none swap sw
0 0
$

This /etc/fstab file references the devices by their udev UUID value, ensuring that the
correct drive partition is accessed no matter the order in which it appears in the raw device
table. The first partition is mounted at the /boot/efi mount point in the virtual directory.
The second partition is mounted at the root (/) of the virtual directory, and the third parti-
tion is mounted as a swap area for virtual memory.

You can manually add devices to the /etc/fstab file so that they are mounted automat-
ically when the Linux system boots. However, if they don’t exist at boot time, that will gen-
erate a boot error.

On Linux servers using systemd, if you only use the /etc/fstab file,
systemd still manages these filesystems. The mount points listed in
/etc/fstab are converted into native units when either the server is
rebooted or systemd is reloaded. In fact, using /etc/fstab for persis-
tent filesystems is the preferred method over manually creating a mount
unit file. For more information on this process, type man systemd-fstab-
generator at the command line.

If you use the encryptfs filesystem type on any partitions, they will
appear in the /etc/crypttab file and will be mounted automatically at
boot time. While the system is running, you can also view all of the cur-
rently mounted devices, whether they were mounted automatically by
the system or manually by users, by viewing the /etc/mtab file.

Managing Filesystems
Once you’ve created a filesystem and mounted it to the virtual directory, you may have
to manage and maintain it to keep things running smoothly. The following sections
walk through some of the Linux utilities available for managing the filesystems on your
Linux system.

Retrieving Filesystem Stats
As you use your Linux system, there’s no doubt that at some point you’ll need to monitor
disk performance and usage. There are a few different tools available to help you do that:

Managing Filesystems  347

■■ df displays disk usage by partition.

■■ du displays disk usage by directory, good for finding users or applications that are tak-
ing up the most disk space.

■■ iostat displays a real-time chart of disk statistics by partition.

■■ lsblk displays current partition sizes and mount points.

A quick way to get a snapshot of the disk space situation on your Linux system is to use
the df and du commands:

$ df -t xfs -h
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/rl-root 15G 6.6G 7.7G 47% /
/dev/sda1 1014M 351M 664M 35% /boot
$ sudo du -d 1
318632 ./boot
0 ./dev
0 ./proc
9448 ./run
0 ./sys
32400 ./etc
48 ./root
704712 ./var
5711056 ./usr
114656 ./home
369421 ./media
0 ./mnt
18856 ./opt
0 ./srv
12 ./tmp
7279241 .
$

The df command shows the overall disk space available on the system, and the du
command helps show what directories have the most data in them.

In addition to these tools, the /proc and /sys folders are special filesystems that the
kernel uses for recording system statistics. Two directories that can be useful when working
with filesystems are the /proc/partitions and /proc/mounts folders, which provide
information on system partitions and mount points, respectively. Additionally, the /sys/
block folder contains separate folders for each mounted drive, showing partitions and
kernel-level stats.

348  Chapter 11  ■  Handling Storage

If your Linux system uses specialized storage devices, there are often
additional command tools available other than the standard Linux tools.
For example, if your Linux system uses SCSI controllers you can use the
lssci command to display information about the hard drives connected
to the SCSI controllers, or for systems that use fiber-channel networks to
connect a storage area network (SAN) to your Linux system, the fcstat
command is very useful.

Some filesystems, such as ext3 and ext4, allocate a specific number of
inodes when created. An inode is an entry in the index table that tracks
files stored on the filesystem. If the filesystem runs out of inode entries in
the table, you can’t create any more files, even if there’s available space
on the drive. Using the -i option with the df command will show you the
percentage of inodes used on a filesystem and can be a lifesaver.

Filesystem Tools
Linux uses the e2fsprogs package of tools to provide utilities for working with ext filesystems
(such as ext3 and ext4). The most popular tools in the e2fsprogs package are as follows:

■■ blkid displays information about block devices, such as storage drives.

■■ chattr changes file attributes on the filesystem.

■■ debugfs manually views and modifies the filesystem structure, such as undeleting a file
or extracting a corrupted file.

■■ dumpe2fs displays block and superblock group information.

■■ e2label changes the label on the filesystem.

■■ resize2fs expands or shrinks a filesystem.

■■ tune2fs modifies filesystem parameters.

These tools help you fine-tune parameters on an ext filesystem, but if corruption occurs
on the filesystem, you’ll need the fsck program.

The XFS filesystem also has a set of tools available for tuning the filesystem. Here are the
two that you’ll most likely run across:

■■ xfs_admin displays or changes filesystem parameters such as the label or UUID assigned.

■■ xfs_info displays information about a mounted filesystem, including the block sizes and
sector sizes as well as label and UUID information.

If you’re using the btrfs filesystem, the btrfs command provides access to several utilities
for managing the filesystem:

■■ balance balances filesystem chunks across multiple devices

■■ check performs an offline check of a btrfs filesystem

Storage Alternatives  349

■■ device provides device management for btrfs filesystems by adding or deleting a
physical device.

■■ filesystem provides filesystem management utilities for an existing btrfs filesystem, such
as displaying information and resizing filesystems.

■■ quota allows you to set quotas on btrfs filesystems.

■■ restore allows you to restore files from a damaged btrfs filesystem.

While these ext, XFS, and btrfs tools are useful, they can’t help fix things if the filesystem
itself has errors. For that, the fsck program is the tool to use:

$ sudo fsck -f /dev/sdb1
fsck from util-linux 2.31.1
e2fsck 1.44.1 (24-Mar-2018)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/dev/sdb1: 11/655360 files (0.0% non-contiguous), 66753/2621440 blocks
$

As of this writing the XFS module for fsck does not repair XFS filesys-
tems. For now you’ll need to use the xfs_repair tool.

The fsck program is a front end to several different programs that check the various
filesystems to match the index against the actual files stored in the filesystem. If any discrep-
ancies occur, run the fsck program in repair mode, and it will attempt to reconcile the dis-
crepancies and fix the filesystem.

Storage Alternatives
Standard partition layouts on storage devices do have their limitations. Once you create and
format a partition, it’s not easy making it larger or smaller. Individual partitions are also sus-
ceptible to disk failures, in which case all of the data stored in the partition will be lost.

To accommodate more dynamic storage options, as well as fault-tolerance features, Linux
has incorporated a few advanced storage management techniques. The following sections
cover three popular techniques.

350  Chapter 11  ■  Handling Storage

Multipath
The Linux kernel now supports Device Mapper Multipathing (DM-multipathing), which
allows you to configure multiple paths between the Linux system and network storage
devices. Multipathing aggregates the paths providing for increased throughout while all of
the paths are active or for fault tolerance if one of the paths becomes inactive.

Linux DM-multipathing includes the following tools:

■■ dm-multipath: The kernel module that provides multipath support

■■ multipath: A command-line command for viewing multipath devices

■■ multipathd: A background process for monitoring paths and activating/
deactivating paths

■■ kpartx: A command-line tool for creating device entries for multipath storage devices

The DM-multipath feature uses the dynamic /dev/mapper device file folder in Linux.
Linux creates a /dev/mapper device file named mpathN for each new multipath storage
device you add to the system, where N is the number of the multipath drive. That file acts as
a normal device file to the Linux system, allowing you to create partitions and filesystems on
the multipath device just as you would a normal drive partition.

Logical Volume Manager
The Linux Logical Volume Manager (LMV) also utilizes the /dev/mapper dynamic device
folder to allow you to create virtual drive devices. You can aggregate multiple physical drive
partitions into virtual volumes, which you then treat as a single partition on your system.

The benefit of LVM is that you can add and remove physical partitions as needed to a
logical volume, expanding and shrinking the logical volume as needed.

Using LVM is somewhat complicated. Figure 11.3 demonstrates the layout for an LVM
environment.

Volume Group 1

Physical Volume 1

Logical Volume 1 Logical Volume 2 Logical Volume 3

/dev/sda /dev/sdb /dev/sdc

/dev/sda1 /dev/sda2 /dev/sda3

Physical Volume 2 Physical Volume 3

/dev/sdb1 /dev/sdb2 /dev/sdb3 /dev/sdc1 /dev/sdc2 /dev/sdc3

F IGURE 11.3   The Linux LVM layout

Storage Alternatives  351

In the example shown in Figure 11.3, three physical drives each contain three partitions.
The first logical volume consists of the first two partitions of the first drive. The second
logical volume spans drives, combining the third partition of the first drive with the first and
second partitions of the second drive to create one volume. The third logical volume con-
sists of the third partition of the second drive and the first two partitions of the third drive.
The third partition of the third drive is left unassigned and can be added later to any of the
logical volumes when needed.

For each physical partition, you must mark the partition type as the Linux LVM filesys-
tem type in fdisk or gdisk. Then, you must use several LVM tools to create and manage
the logical volumes. Table 11.4 lists the LVM tools available in Linux.

TABLE 11.4   Linux LVM commands

Command Description

lvchange Modifies settings for a logical volume

lvconvert Adds or removes a mirror to a non-mirrored logical volume

lvcreate Creates a logical volume

lvdisplay Displays information about a logical volume

lvextend Adds to an existing logical volume

lvmdump Creates a tarball of LVM settings

lvremove Removes an existing logical volume

lvrename Changes the name assigned to a logical volume

lvresize Changes the size of the logical volume

lvs Displays information about a logical volume

lvsscan Scans the system for logical volumes

pvchange Modifies settings for a physical volume

pvck Checks the consistency of the LVM metadata on a physical volume

pvcreate Creates a physical volume

pvdisplay Displays information about the physical volumes

pvmove Moves any used volumes from one device to another

352  Chapter 11  ■  Handling Storage

The logical volumes create entries in the /dev/mapper folder that represent the LVM
device you can format with a filesystem and use like a normal partition. Listing 11.3 shows
the steps you’d take to create a new LVM logical volume and mount it to your virtual
directory.

Command Description

pvremove Removes a physical volume

pvs Displays information about the physical volumes

pvscan Scans disks for LVM and non-LVM volumes

vgcfbackup Creates a text backup of the volume group metadata

vgcfrestore Restores volume group metadata from a backup file

vgchange Modifies settings for a volume group

vgck Checks the integrity of a volume group

vgconvert Changes the LVM metadata from one format to another

vgcreate Combines physical volumes into a volume group

vgdisplay Displays information about a volume group

vgexport Exports a volume group

vgextend Adds a physical volume to an existing volume group

vgimport Imports a volume group

vgimportclone Import and rename a duplicated volume group

vgmerge Combines two volume groups into a single volume group

vmremove Removes a physical volume from a volume group

vgrename Changes the name of an existing volume group

vgs Displays information about a volume group

vgscan Scans disks for LVM volume groups

TABLE 11.4   Linux LVM commands  (continued)

Storage Alternatives  353

Listing 11.3  Creating, formatting, and mounting a logical volume

$ sudo gdisk /dev/sdb

Command (? for help): n
Partition number (1-128, default 1): 1
First sector (34-10485726, default = 2048) or {+-}size{KMGTP}:
Last sector (2048-10485726, default = 10485726) or {+-}size{KMGTP}:
Current type is 'Linux filesystem'
Hex code or GUID (L to show codes, Enter = 8300): 8e00
Changed type of partition to 'Linux LVM'

Command (? for help): w

Final checks complete. About to write GPT data.
THIS WILL OVERWRITE EXISTING PARTITIONS!!

Do you want to proceed? (Y/N): Y
OK; writing new GUID partition table (GPT) to /dev/sdb.
The operation has completed successfully.

$ sudo pvcreate /dev/sdb1
 Physical volume "/dev/sdb1" successfully created.

$ sudo vgcreate newvol /dev/sdb1
 Volume group "newvol" successfully created

$ sudo lvcreate -l 100%FREE -n lvdisk newvol
 Logical volume "lvdisk" created.

$ sudo mkfs -t ext4 /dev/mapper/newvol-lvdisk
mke2fs 1.44.1 (24-Mar-2018)
Creating filesystem with 1309696 4k blocks and 327680 inodes
Filesystem UUID: 06c871bc-2eb6-4696-896f-240313e5d4fe
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736

Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done

354  Chapter 11  ■  Handling Storage

$ sudo mkdir /media/newdisk
$ sudo mount /dev/mapper/newvol-lvdisk /media/newdisk
$ cd /media/newdisk
$ ls -al
total 24
drwxr-xr-x 3 root root 4096 Jan 10 10:17 .
drwxr-xr-x 4 root root 4096 Jan 10 10:18 ..
drwx------ 2 root root 16384 Jan 10 10:17 lost+found
$

Although the initial setup of a LVM is complicated, it does provide great benefits. If you
run out of space in a logical volume, just add a new disk partition to the volume.

Using RAID Technology
Redundant Array of Inexpensive Disks (RAID) technology has changed the data storage
environment for most data centers. RAID technology allows you to improve data access
performance and reliability as well as implement data redundancy for fault tolerance by
combining multiple drives into one virtual drive. There are several versions of RAID com-
monly used:

■■ RAID-0: Disk striping, spreads data across multiple disks for faster access.

■■ RAID-1: Disk mirroring duplicates data across two drives.

■■ RAID-10: Disk mirroring and striping provides striping for performance and mirroring
for fault tolerance.

■■ RAID-4: Disk striping with parity adds a parity bit stored on a separate disk so that
data on a failed data disk can be recovered.

■■ RAID-5: Disk striping with distributed parity adds a parity bit to the data stripe so that
it appears on all of the disks so that any failed disk can be recovered.

■■ RAID-6: Disk striping with double parity stripes both the data and the parity bit so two
failed drives can be recovered.

The downside is that hardware RAID storage devices can be somewhat expensive (despite
what the I stands for) and are often impractical for most home uses. Because of that,
Linux has implemented a software RAID system that can implement RAID features on any
disk system.

The mdadm utility allows you to specify multiple partitions to be used in any type of
RAID environment. The RAID device appears as a single device in the /dev/mapper folder,
which you can then partition and format to a specific filesystem. You can view the current
status of the kernel’s RAID state by displaying the contents of the /proc/mdstat file.

Storage Alternatives  355

Encrypting Partitions
These days data security is a must in most business environments. With the popularity of
portable laptops and external storage devices, often sensitive corporate (and sometimes
personal) data is easily available for thieves to steal.

One line of defense to help protect data is encryption. Linux provides utilities to encrypt
individual files, but that can get tedious. A better solution is to encrypt the entire partition
where the data is stored. A popular tool for that is the Linux Unified Key Setup (LUKS). The
LUKS system was created in 2004 by Clemens Fruhwirth specifically for encrypting Linux
partitions.

The core utility in LUKS is the cryptsetup utility. It allows you to create encrypted par-
titions, then open them to make them available for formatting and mounting in the Linux
virtual directory.

The first step is to format a partition to use for encryption, using the luksFormat option:

$ sudo cryptsetup -y -v luksFormat /dev/sdb1

WARNING!
This will overwrite data on /dev/sdb1 irrevocably.

Are you sure? (Type 'yes' in capital letters): YES
Enter passphrase for /dev/sdb1:
Verify passphrase:
Key slot 0 created.
Command successful.
$

In this step you must specify the passphrase required to open the encrypted partition.
After you create the encrypted partition, you can make it available for use by using the

luksOpen option:

$ sudo cryptsetup -v luksOpen /dev/sdb1 safedata
Enter passphrase for /dev/sdb1:
Key slot 0 unlocked.
Command successful.
$

The luksOpen option requires that you know the passphrase used to encrypt the parti-
tion. The first parameter after the luksOpen option specifies the physical partition, and the
second parameter defines a name used to map the opened partition to a virtual device in the
/dev/mapper directory:

$ ls /dev/mapper -l
total 0

356  Chapter 11  ■  Handling Storage

crw-------. 1 root root 10,236 Dec 22 08:29 control
lrwxrwxrwx. 1 root root 7 Dec 22 08:29 rl-root -> ../dm-0
lrwxrwxrwx. 1 root root 7 Dec 22 08:29 rl-swap -> ../dm-1
lrwxrwxrwx. 1 root root 7 Dec 22 09:02 safedata -> ../dm-2
$

The /dev/mapper/safedata device file now references the opened encrypted partition
and can be handled as a normal Linux partition:

$ sudo mkfs -t ext4 /dev/mapper/safedata
mke2fs 1.45.6 (20-Mar-2020)
Creating filesystem with 257792 4k blocks and 64512 inodes
Filesystem UUID: e2f03597-0108-48b3-a66b-d58fdd9c427f
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376

Allocating group tables: done
Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information: done
$ sudo mount /dev/mapper/safedata /mnt/mydata
$

After you create the filesystem and mount the partition, you can create, modify, and
delete files and directories in the /mnt/mydata directory just as you would any other Linux
filesystem.

To close an encrypted partition so that it can’t be accessed, use the luksClose
command option:

$ sudo cryptsetup -v luksClose /dev/mapper/safedata
Command successful.
$ ls /dev/mapper -l
total 0
crw-------. 1 root root 10, 236 Dec 22 08:29 control
lrwxrwxrwx. 1 root root 7 Dec 22 08:29 rl-root -> ../dm-0
lrwxrwxrwx. 1 root root 7 Dec 22 08:29 rl-swap -> ../dm-1
$

When you close the encrypted partition, Linux removes it from the /dev/mapper
directory, making it inaccessible. To mount the partition again, you would need to use the
luksOpen option in the cryptsetup command and provide the passphrase.

Storage Alternatives  357

E X E R C I S E 11. 1 

Experimenting with Filesystems

This exercise will demonstrate how to partition, format, and mount a drive for use on a
Linux system using a USB memory stick. You’ll need to have an empty USB memory stick
available for this exercise. All data will be deleted from the USB memory stick.

1.	 Log into your Linux system and open a new command prompt.

2.	 Insert a USB memory stick into your system. If you’re using a virtual machine (VM)
environment, you may need to configure the VM to recognize the new USB device.
For VirtualBox, click the Devices menu bar item, select USB, and then select the USB
device name.

3.	 The Linux system should mount the device automatically. Type dmesg | tail to display
the last few lines from the system console output. This should show whether the USB
device was mounted and, if so, the device name assigned to it, such as /dev/sdb1.

4.	 Unmount the device using the command sudo umount /dev/xxxx, where xxxx is the
device name shown from the dmesg output.

5.	 Type fdisk /dev/xxx to partition the disk, where xxx is the device name, without the
partition number (such as /dev/sdb). At the command prompt, type p to display the
current partitions.

6.	 Remove the existing partition by typing d.

7.	 Create a new partition. Type n to create a new partition. Type p to create a primary par-
tition. Type 1 to assign it as the first partition. Press the Enter key to accept the default
starting location and then press Enter again to accept the default ending location. Type
y to remove the original VFAT signature if prompted.

8.	 Save the new partition layout. Type w to save the partition layout and exit the
fdisk program.

9.	 Create a new filesystem on the new partition. Type sudo mkfs -t ext4 /dev/xxx1,
where xxx is the device name for the USB memory stick.

10.	 Create a new mount point in your home folder. Type mkdir mediatest1.

11.	 Mount the new filesystem to the mount point. Type sudo mount -t ext4
/dev/xxx1 mediatest1, where xxx is the device name. Type ls mediatest1 to list any
files currently in the filesystem.

12.	 Remove the USB stick by typing sudo umount /dev/xxx1, where xxx is the
device name.

13.	 If you want to return the USB memory stick to a Windows format, you can change the
filesystem type of the USB memory stick to VFAT, or you can reformat it using the Win-
dows format tool in File Manager.

358  Chapter 11  ■  Handling Storage

Summary
The ability to permanently store data on a Linux system is a must. The Linux kernel sup-
ports both hard disk drive (HDD) and solid-state drive (SSD) technologies for persistently
storing data. It also supports the three main types of drive connections—PATA, SATA, and
SCSI. For each storage device you connect to the system, Linux creates a raw device file in
the /dev folder. The raw device is hdx for PATA drives and sdx for SATA and SCSI drives,
where x is the drive letter assigned to the drive.

Once you connect a drive to the Linux system, you’ll need to create partitions on the
drive. For MBR disks, you can use the fdisk or parted command-line tool or the gparted
graphical tool. For GPT disks, you can use the gdisk or gparted tool. When you partition a
drive, you must assign it a size and a filesystem type.

After you partition the storage device, you must format it using a filesystem that Linux
recognizes. The mkfs program is a front-end utility that can format drives using most of the
filesystems that Linux supports. The ext4 filesystem is currently the most popular Linux
filesystem. It supports journaling and provides good performance. Linux also supports more
advanced filesystems, such as btrfs, xfs, zfs, and of course, the Windows VFAT and NTFS
filesystems.

After creating a filesystem on the partition, you’ll need to mount the filesystem into the
Linux virtual directory using a mount point and the mount command. The data contained
in the partition’s filesystem appears under the mount point folder in the virtual directory. To
automatically mount partitions at boot time, make an entry for each partition in the /etc/
fstab file.

There are a host of tools available to help you manage and maintain filesystems. The df
and du command-line commands are useful for checking disk space for partitions and the
virtual directory, respectively. The fsck utility is a vital tool for repairing corrupted partitions
and is run automatically at boot time against all partitions automatically mounted in the
virtual directory.

Linux also supports alternative solutions for storage, such as multipath I/O for fault toler-
ance, logical volumes (in which you can add and remove physical partitions), software RAID
technology, and the ability to create encrypted partitions.

Exam Essentials
Describe how Linux works with storage devices.   Linux creates raw device files in the /dev
folder for each storage device you connect to the system. Linux also assigns a raw device file
for each partition contained in the storage device.

Explain how to prepare a partition to be used in the Linux virtual directory.   To use a
storage device partition in the virtual directory, it must be formatted with a filesystem that
Linux recognizes. Use the mkfs command to format the partition. Linux recognizes several
different filesystem types, including ext3, ext4, btrfs, xfs, and zfs.

Exam Essentials  359

Describe how Linux can implement a fault-tolerance storage configuration.   Linux supports
two types of fault-tolerance storage methods. The multipath method uses the mdadm utility
to create two paths to the same storage device. If both paths are active, Linux aggregates the
path speed to increase performance to the storage device. If one path fails, Linux automati-
cally routes traffic through the active path. Linux can also use standard RAID technology to
support RAID levels 0, 1, 10, 4, 5, or 6 for fault tolerance and high-performance storage.

Describe how Linux uses virtual storage devices.   Linux uses the logical volume manager
(LVM) to create a virtual storage device from one or more physical devices. The pvcreate
command defines a volume from a physical partition, and the vgcreate command creates
a volume group from one or more virtual volumes. The lvcreate command then creates a
logical volume in the /dev/mapper folder from one or more partitions in the volume group.
This method allows you to add or remove drives in a filesystem to grow or shrink the filesys-
tem area as needed.

List some of the filesystem tools available in Linux.   The df tool allows you to analyze the
available and used space in drive partitions, whereas the du tool allows you to analyze space
in the virtual directory structure. The e2fsprogs package provides a wealth of tools for
tuning ext filesystems, such as debugfs, dumpe2fs, tune2fs, and blkid. Linux also pro-
vides the xfs_admin and xfs_info tools for working with xfs filesystems. The fsck tool is
available for repairing corrupted filesystems and can repair most cases of file corruption.

360  Chapter 11  ■  Handling Storage

Review Questions
1.	 Which type of storage device uses integrated circuits to store data with no moving parts?

A.	 SSD

B.	 SATA

C.	 SCSI

D.	 HDD

E.	 PATA

2.	 What raw device file would Linux create for the second SCSI drive connected to the system?

A.	 /dev/hdb
B.	 /dev/sdb
C.	 /dev/sdb1
D.	 /dev/hdb1
E.	 /dev/sda

3.	 What program runs in the background to automatically detect and mount new
storage devices?

A.	 mkfs
B.	 fsck
C.	 umount
D.	 mount
E.	 udev

4.	 What folder does the udev program use to create a permanent link to a storage device based
on its serial number?

A.	 /dev/disk/by-path
B.	 /dev/sdb
C.	 /dev/disk/by-id
D.	 /dev/disk/by-uuid
E.	 /dev/mapper

5.	 Which partitioning tool provides a graphical interface?

A.	 gdisk
B.	 gparted
C.	 fdisk
D.	 parted
E.	 fsck

Review Questions  361

6.	 Linux uses ___________ to add the filesystem on a new storage device to the virtual directory
for users to access.

A.	 Mount points

B.	 Drive letters

C.	 /dev files

D.	 /proc folder

E.	 /sys folder

7.	 What filesystem is the latest version of the first Linux filesystem?

A.	 reiserFS

B.	 btrfs

C.	 ext3

D.	 ext4

E.	 nfs

8.	 What tool do you use to create a new filesystem on a partition?

A.	 fdisk
B.	 mkfs
C.	 fsck
D.	 gdisk
E.	 parted

9.	 What tool do you use to manually add a filesystem to the virtual directory?

A.	 fsck
B.	 mount
C.	 umount
D.	 fdisk
E.	 mkfs

10.	 The ___________ program is a handy tool for repairing corrupted filesystems.

A.	 fsck
B.	 mount
C.	 umount
D.	 fdisk
E.	 mkfs

Protecting Files

✓✓ Objective 1.2: Given a scenario, manage files and directories

Chapter

12

Protecting data includes creating and managing backups.
A backup, often called an archive, is a copy of data that can be
restored sometime in the future should the data be destroyed or

become corrupted.
Backing up your data is a critical activity, but even more important is planning your

backups. These plans include choosing backup types, determining the right compression
methods to employ, and identifying which utilities will serve your organization’s data needs
best. You may also need to transfer your backup files over the network. In this case, ensuring
that the archive is secure during transit is critical as well as validating its integrity once it
arrives at its destination. All of these various topics concerning protecting your data files are
covered in this chapter.

Understanding Backup Types
There are different classifications for data backups. Understanding these various cate-
gories is vital for developing your backup plan. The following backup types are the most
common types:

■■ System image

■■ Full

■■ Incremental

■■ Differential

■■ Snapshot

■■ Snapshot clone

Each of these backup types is explored in this section. Their advantages and disadvan-
tages are included.

System Image   A system image is a copy of the operating system binaries, configura-
tion files, and anything else you need to boot the Linux system. Its purpose is to quickly
restore your system to a bootable state. Sometimes called a clone, these backups are not
normally used to recover individual files or directories, and in the case of some backup
utilities, you cannot do so.

Full   A full backup is a copy of all the data, ignoring its modification date. This backup
type’s primary advantage is that it takes a lot less time than other types to restore a

Understanding Backup Types  365

system’s data. However, not only does it take longer to create a full backup compared to
the other types, it also requires more storage. It needs no other backup types to restore a
system fully.

Incremental   An incremental backup only makes a copy of data that has been modified
since the last backup operation (any backup operation type). Typically, a file’s modi-
fied timestamp is compared to the last backup type’s timestamp. It takes a lot less time
to create this backup type than the other types, and it requires a lot less storage space.
However, the data restoration time for this backup type can be significant. Imagine that
you performed a full backup copy on Monday and incremental backups on Tuesday
through Friday. On Saturday the disk crashes and must be replaced. After the disk is
replaced, you will have to restore the data using Monday’s backup and then continue
to restore data using the incremental backups created on Tuesday through Friday. This
is very time-consuming and will cause significant delays in getting your system back in
operation. Therefore, for optimization purposes, it requires a full backup to be com-
pleted periodically.

Differential   A differential backup makes a copy of all data that has changed since the
last full backup. It could be considered a good balance between full and incremental
backups. This backup type takes less time than a full backup but potentially more time
than an incremental backup. It requires less storage space than a full backup but more
space than a plain incremental backup. Also, it takes a lot less time to restore using
differential backups than incremental backups, because only the full backup and the lat-
est differential backup are needed. For optimization purposes, it requires a full backup
to be completed periodically.

Snapshot   A snapshot backup is considered a hybrid approach, and it is a slightly dif-
ferent flavor of backups. First a full (typically read-only) copy of the data is made to
backup media. Then pointers, such as hard links, are employed to create a reference
table linking the backup data with the original data. The next time a backup is made,
instead of a full backup, an incremental backup is made (only modified or new files are
copied to the backup media), and the pointer reference table is copied and updated. This
saves space because only modified files and the updated pointer reference table need to
be stored for each additional backup.

The snapshot backup type described here is a copy-on-write snapshot.
There is another snapshot flavor called a split-mirror snapshot, where the
data is kept on a mirrored storage device. When a backup is run, a copy
of all the data is created, not just new or modified data.

With a snapshot backup, you can go back to any point in time and do a full system
restore from that point. It also uses a lot less space than the other backup types. In
essence, snapshots simulate multiple full backups per day without taking up the same
space or requiring the same processing power as a full backup type would. The rsync
utility (described later in this chapter) uses this method.

366  Chapter 12  ■  Protecting Files

Snapshot Clone   Another variation of a snapshot backup is a snapshot clone. Once a
snapshot is created, such as an LVM snapshot, it is copied, or cloned. Snapshot clones
are useful in high data I/O environments. When performing the cloning, you minimize
any adverse performance impacts to production data I/O because the clone backup takes
place on the snapshot and not on the original data.

While not all snapshots are writable, snapshot clones are typically modifiable. If you are
using LVM, you can mount these snapshot clones on a different system. Thus, a snap-
shot clone is useful in disaster recovery scenarios.

Your particular server environment as well as data protection needs will dictate which
backup method to employ. Most likely you need a combination of the preceding types to
properly protect your data.

Looking at Compression Methods
Backing up data can potentially consume large amounts of additional disk or media space.
Depending on the backup types you employ, you can reduce this consumption via data com-
pression utilities. The following popular utilities are available on Linux:

■■ gzip
■■ bzip2
■■ xz
■■ zip

The advantages and disadvantages of each of these data compression methods are
explored in this section.

gzip   The gzip utility was developed in 1992 as a replacement for the old compress
program. Using the Lempel-Ziv (LZ77) algorithm to achieve text-based file compression
rates of 60–70 percent, gzip has long been a popular data compression utility. To com-
press a file, simply type gzip followed by the file’s name. The original file is replaced by
a compressed version with a .gz file extension. To reverse the operation, type gunzip
followed by the compressed file’s name.

bzip2   Developed in 1996, the bzip2 utility offers higher compression rates than
gzip but takes slightly longer to perform the data compression. The bzip2 utility
employs multiple layers of compression techniques and algorithms. Until 2013, this data
compression utility was used to compress the Linux kernel for distribution. To compress
a file, simply type bzip2 followed by the file’s name. The original file is replaced by a
compressed version with a .bz2 file extension. To reverse the operation, type bunzip2
followed by the compressed file’s name, which decompresses (inflates) the data.

Originally there was a bzip utility program. However, in its layered
approach, a patented data compression algorithm was employed. Thus,
bzip2 was created to replace it and uses the Huffman coding algorithm
instead, which is patent free.

Looking at Compression Methods  367

xz   Developed in 2009, the xz data compression utility quickly became very popular
among Linux administrators. It boasts a higher default compression rate than bzip2
and gzip via the LZMA2 compression algorithm. However, with certain xz command
options, you can employ the legacy LZMA compression algorithm, if needed or desired.
The xz compression utility in 2013 replaced bzip2 for compressing the Linux kernel
for distribution. To compress a file, simply type xz followed by the file’s name. The
original file is replaced by a compressed version with an .xz file extension. To reverse
the operation, type unxz followed by the compressed file’s name.

zip   The zip utility has the ability to operate on multiple files. If you have ever cre-
ated a zip file on a Windows operating system, then you’ve used this file format. Mul-
tiple files are packed together in a single file, often called a folder or an archive file, and
then compressed. Another difference from the other Linux compression utilities is that
zip does not replace the original file(s). Instead, it places a copy of the file(s) into the
archive file.

To archive and compress files with zip, type zip followed by the final archive file’s
name, which traditionally ends in a .zip extension. After the archive file, type one or
more files you desire to place into the compressed archive, separating them with a space.
The original files remain intact, but a copy of them is placed into the compressed zip
archive file. To reverse the operation, type unzip followed by the compressed archive
file’s name.

It’s helpful to see a side-by-side comparison of the various compression utilities using
their defaults. In Listing 12.1, an example on a Rocky Linux distribution is shown.

Listing 12.1  Comparing the various Linux compression utilities

cp /var/log/wtmp wtmp
#
cp wtmp wtmp1
cp wtmp wtmp2
cp wtmp wtmp3
cp wtmp wtmp4
#
ls -lh wtmp?
-rw-r--r--. 1 root root 210K Oct 9 19:54 wtmp1
-rw-r--r--. 1 root root 210K Oct 9 19:54 wtmp2
-rw-r--r--. 1 root root 210K Oct 9 19:54 wtmp3
-rw-r--r--. 1 root root 210K Oct 9 19:54 wtmp4
#
gzip wtmp1
bzip2 wtmp2
xz wtmp3
zip wtmp4.zip wtmp4
 adding: wtmp4 (deflated 96%)

368  Chapter 12  ■  Protecting Files

#
ls -lh wtmp?.*
-rw-r--r--. 1 root root 7.7K Oct 9 19:54 wtmp1.gz
-rw-r--r--. 1 root root 6.2K Oct 9 19:54 wtmp2.bz2
-rw-r--r--. 1 root root 5.2K Oct 9 19:54 wtmp3.xz
-rw-r--r--. 1 root root 7.9K Oct 9 19:55 wtmp4.zip
#
ls wtmp?
wtmp4
#

In Listing 12.1, first the /var/log/wtmp file is copied to the local directory using super
user privileges. Four copies of this file are then made. Using the ls -lh command, you can
see in human-readable format that the wtmp files are 210K in size. Next, the various com-
pression utilities are employed. Notice that when using the zip command, you must give it
the name of the archive file, wtmp4.zip, and follow it with any file names. In this case, only
wtmp4 is put into the zip archive. After the files are compressed with the various utilities,
another ls -lh command is issued in Listing 12.1. Notice the various file extension names
as well as the files’ compressed sizes. You can see that the xz program produces the highest
compression of this file, because its file is the smallest in size. The last command in List-
ing 12.1 shows that all the compression programs but zip removed the original file.

For the previous data compression utilities, you can specify the level of
compression and control the speed via the -# option. The # is a number
from 1 to 9, where 1 is the fastest but lowest compression and 9 is the
slowest but highest compression method. The zip utility does not yet
support these levels for compression, but it does for decompression.
Typically, the utilities use -6 as the default compression level. It is a good
idea to review these level specifications in each utility’s man page, since
useful but subtle differences exist.

There are many compression methods. However, when you use a compression utility
along with an archive and restore program for data backups, it is vital that you use a lossless
compression method. A lossless compression is just as it sounds: no data is lost. The gzip,
bzip2, xz, and zip utilities provide lossless compression. Obviously it is important not to
lose data when doing backups.

Comparing Archive and Restore Utilities
There are several programs you can employ for managing backups. Some of the more
popular products are Amanda, Bacula, Bareos, Duplicity, and BackupPC. Yet often these GUI

Comparing Archive and Restore Utilities  369

and/or web-based programs have command-line utilities at their core. Our focus here is on
those command-line utilities:

■■ cpio
■■ dd
■■ rsync
■■ tar

Copying with cpio
The cpio utility’s name stands for “copy in and out.” It gathers together file copies and stores
them in an archive file. The program has several useful options. The more commonly used
ones are described in Table 12.1.

To create an archive using the cpio utility, you have to generate a list of files and then
pipe them into the command. Listing 12.2 shows an example of doing this task.

Listing 12.2  Employing cpio to create an archive

$ ls Project4?.txt
Project42.txt Project43.txt Project44.txt
Project45.txt Project46.txt
$

TABLE 12 .1   The cpio command’s commonly used options

Short Long Description

-I N/A Designates an archive file to use.

-i --extract Copies files from an archive or displays the files
within the archive, depending on the other options
employed. Called copy-in mode.

N/A --no-absolute-filenames Designates that only relative path names are to be
used. (The default is to use absolute path names.)

-o --create Creates an archive by copying files into it. Called
copy-out mode.

-t --list Displays a list of files within the archive. This list is
called a table of contents.

-v --verbose Displays each file’s name as each file is processed.

370  Chapter 12  ■  Protecting Files

$ ls Project4?.txt | cpio -ov > Project4x.cpio
Project42.txt
Project43.txt
Project44.txt
Project45.txt
Project46.txt
59 blocks
$
$ ls Project4?.*
Project42.txt Project44.txt Project46.txt
Project43.txt Project45.txt Project4x.cpio
$

Using the ? wildcard and the ls command, various text files within the present working
directory are displayed first in Listing 12.2. This command is then used, and its STDOUT
is piped as STDIN to the cpio utility. (See Chapter 4, “Searching and Analyzing Text,” if
you need a refresher on STDOUT and STDIN.) The options used with the cpio command
are -ov, which create an archive containing copies of the listed files. They also display the
file’s name as they are copied into the archive. The archive file used is named Project4x.
cpio. Though not necessary, it is considered good form to use the .cpio extension on cpio
archive files.

You can back up data based on its metadata, and not its file location, via
the cpio utility. For example, suppose you want to create a cpio archive
for any files within the virtual directory system owned by the JKirk user
account. You can use the find / -user JKirk command and pipe it
into the cpio utility in order to create the archive file. This is a handy fea-
ture.

You can view the files stored within a cpio archive fairly easily. Just employ the cpio
command again, and use its -itv options and the -I option to designate the archive file, as
shown in Listing 12.3.

Listing 12.3  Using cpio to list an archive’s contents

$ cpio -itvI Project4x.cpio
-rw-r--r-- 1 Christin Christin 29900 Aug 19 17:37 Project42.txt
-rw-rw-r-- 1 Christin Christin 0 Aug 19 18:07 Project43.txt
-rw-rw-r-- 1 Christin Christin 0 Aug 19 18:07 Project44.txt
-rw-rw-r-- 1 Christin Christin 0 Aug 19 18:07 Project45.txt
-rw-rw-r-- 1 Christin Christin 0 Aug 19 18:07 Project46.txt
59 blocks
$

Comparing Archive and Restore Utilities  371

Though not displayed in Listing 12.3, the cpio utility maintains each file’s absolute
directory reference. Thus, it is often used to create system image and full backups.

To restore files from an archive, employ just the -ivI options. However, because cpio main-
tains the files’ absolute paths, this can be tricky if you need to restore the files to another
directory location. To do this, you need to use the --no-absolute-filenames option, as shown in
Listing 12.4.

Listing 12.4  Using cpio to restore files to a different directory location

$ ls -dF Projects
Projects/
$
$ mv Project4x.cpio Projects/
$
$ cd Projects
$ pwd
/home/Christine/Answers/Projects
$
$ ls Project4?.*
Project4x.cpio
$
$ cpio -iv --no-absolute-filenames -I Project4x.cpio
Project42.txt
Project43.txt
Project44.txt
Project45.txt
Project46.txt
59 blocks
$
$ ls Project4?.*
Project42.txt Project44.txt Project46.txt
Project43.txt Project45.txt Project4x.cpio
$

In Listing 12.4 the Project4x.cpio archive file is moved into a preexisting subdi-
rectory, Projects. By stripping the absolute path names from the archived files via the
--no-absolute-filenames option, you restore the files to a new directory location. If you
wanted to restore the files to their original location, simply leave that option off and just use
the other cpio switches shown in Listing 12.4.

372  Chapter 12  ■  Protecting Files

Archiving with tar
The tar utility’s name stands for tape archiver, and it is popular for creating data backups.
As with cpio, with the tar command, the selected files are copied and stored in a single file.
This file is called a tar archive file. If this archive file is compressed using a data compression
utility, the compressed archive file is called a tarball.

The tar program has several useful options. Commonly used ones for creating data
backups are described in Table 12.2.

To create an archive using the tar utility, you have to add a few arguments to the options
and the command. Listing 12.5 shows an example of creating a tar archive.

Listing 12.5  Using tar to create an archive file

$ ls Project4?.txt
Project42.txt Project43.txt Project44.txt
Project45.txt Project46.txt
$
$ tar -cvf Project4x.tar Project4?.txt
Project42.txt

TABLE 12 .2   The tar command’s commonly used tarball creation options

Short Long Description

-c --create Creates a tar archive file. The backup can be a full or
incremental backup, depending on the other selected
options.

-u --update Appends files to an existing tar archive file, but only
copies those files that were modified since the original
archive file was created.

-g --listed-incremental Creates an incremental or full archive based on metadata
stored in the provided file.

-z --gzip Compresses tar archive file into a tarball using gzip.

-j --bzip2 Compresses tar archive file into a tarball using bzip2.

-J --xz Compresses tar archive file into a tarball using xz.

-v --verbose Displays each file’s name as each file is processed.

Comparing Archive and Restore Utilities  373

Project43.txt
Project44.txt
Project45.txt
Project46.txt
$

In Listing 12.5, three options are used. The -c option creates the tar archive. The -v
option displays the filenames as they are placed into the archive file. Finally, the -f option
designates the archive filename, which is Project42x.tar. Though not required, it is
considered good form to use the .tar extension on tar archive files. The command’s last
argument designates the files to copy into this archive.

You can also use the old-style tar command options. For this style,
you remove the single dash from the beginning of the tar option. For
example, -c becomes c. Keep in mind that additional old-style tar
command options must not have spaces between them. Thus, tar cvf
is valid, but tar c v f is not.

If you are backing up lots of files or large amounts of data, it is a good idea to employ a
compression utility. This is easily accomplished by adding an additional switch to your tar
command options. An example is shown in Listing 12.6, which uses gzip compression to
create a tarball.

Listing 12.6  Using tar to create a tarball

$ tar -zcvf Project4x.tar.gz Project4?.txt
Project42.txt
Project43.txt
Project44.txt
Project45.txt
Project46.txt
$
$ ls Project4x.tar.gz
Project4x.tar.gz
$

Notice in Listing 12.6 that the tarball filename has the .tar.gz file extension. It is con-
sidered good form to use the .tar extension and tack on an indicator showing the compres-
sion method that was used. However, you can shorten it to .tgz if desired.

There is a useful variation of this command to create both full and incremental backups.
A simple example helps to explain this concept. The process for creating a full backup is
shown in Listing 12.7.

374  Chapter 12  ■  Protecting Files

Listing 12.7  Using tar to create a full backup

$ tar -g FullArchive.snar -Jcvf Project42.txz Project4?.txt
Project42.txt
Project43.txt
Project44.txt
Project45.txt
Project46.txt
$
$ ls FullArchive.snar Project42.txz
FullArchive.snar Project42.txz
$

Notice the -g option in Listing 12.7. The -g option creates a file, called a snapshot file,
FullArchive.snar. The .snar file extension indicates that the file is a tarball snapshot
file. The snapshot file contains metadata used in association with tar commands for cre-
ating full and incremental backups. The snapshot file contains file timestamps, so the tar
utility can determine if a file has been modified since it was last backed up. The snapshot file
is also used to identify any files that are new or determine if files have been deleted since the
last backup.

The previous example created a full backup of the designated files along with the
metadata snapshot file, FullArchive.snar. Now the same snapshot file will be used to
help determine if any files have been modified, are new, or have been deleted to create an
incremental backup, as shown in Listing 12.8.

Listing 12.8  Using tar to create an incremental backup

$ echo "Answer to everything" >> Project42.txt
$
$ tar -g FullArchive.snar -Jcvf Project42_Inc.txz Project4?.txt
Project42.txt
$
$ ls Project42_Inc.txz
Project42_Inc.txz
$

In Listing 12.8, the file Project42.txt is modified. Again, the tar command uses the
-g option and points to the previously created FullArchive.snar snapshot file. This time,
the metadata within FullArchive.snar shows the tar command that the Project42.
txt file has been modified since the previous backup. Therefore, the new tarball only con-
tains the Project42.txt file, and it is effectively an incremental backup. You can continue
to create additional incremental backups using the same snapshot file as needed.

Comparing Archive and Restore Utilities  375

The tar command views full and incremental backups in levels. A full
backup is one that includes all the files indicated, and it is considered a
level 0 backup. The first tar incremental backup after a full backup is con-
sidered a level 1 backup. The second tar incremental backup is consid-
ered a level 2 backup, and so on.

Whenever you create data backups, it is a good practice to verify them. Table 12.3 pro-
vides some tar command options for viewing and verifying data backups.

Backup verification can take several different forms. You might ensure that the desired
files (sometimes called members) are included in your backup by using the -v option on the
tar command in order to watch the files being listed as they are included in the archive file.
You can also verify that desired files are included in your backup after the fact. Use the -t
option to list tarball or archive file contents. An example is shown in Listing 12.9.

Listing 12.9  Using tar to list a tarball’s contents

$ tar -tf Project4x.tar.gz
Project42.txt
Project43.txt
Project44.txt
Project45.txt
Project46.txt
$

You can verify files within an archive file by comparing them against the current files. The
option to accomplish this task is the -d option. An example is shown in Listing 12.10.

Listing 12.10  Using tar to compare tarball members to external files

$ tar -df Project4x.tar.gz
Project42.txt: Mod time differs
Project42.txt: Size differs
$

TABLE 12 .3   The tar command’s commonly used archive verification options

Short Long Description

-d --compare
--diff

Compares a tar archive file’s members with external files and lists
the differences.

-t --list Displays a tar archive file’s contents.

-W --verify Verifies each file as the file is processed. This option cannot be
used with the compression options.

376  Chapter 12  ■  Protecting Files

Another good practice is to verify your backup automatically immediately after the tar
archive is created. This is easily accomplished by tacking on the -W option, as shown in
Listing 12.11.

Listing 12.11  Using tar to verify backed-up files automatically

$ tar -Wcvf ProjectVerify.tar Project4?.txt
Project42.txt
Project43.txt
Project44.txt
Project45.txt
Project46.txt
Verify Project42.txt
Verify Project43.txt
Verify Project44.txt
Verify Project45.txt
Verify Project46.txt
$

You cannot use the -W option if you employ compression to create a tarball. However,
you could create and verify the archive first and then compress it in a separate step. You can
also use the -W option when you extract files from a tar archive. This is handy for instantly
verifying files restored from archives.

Table 12.4 lists some of the options that you can use with the tar utility to restore data
from a tar archive file or tarball. Be aware that several options used to create the backup,
such as -g and -W, can also be used when restoring data.

Extracting files from an archive or tarball is fairly simple using the tar utility. List-
ing 12.12 shows an example of extracting files from a previously created tarball.

TABLE 12 .4   The tar command’s commonly used file restore options

Short Long Description

-x --extract
--get

Extracts files from a tarball or archive file and places them in the
current working directory

-z --gunzip Decompresses files in a tarball using gunzip

-j --bunzip2 Decompresses files in a tarball using bunzip2

-J --unxz Decompresses files in a tarball using unxz

Comparing Archive and Restore Utilities  377

Listing 12.12  Using tar to extract files from a tarball

$ mkdir Extract
$
$ mv Project4x.tar.gz Extract/
$
$ cd Extract
$
$ tar -zxvf Project4x.tar.gz
Project42.txt
Project43.txt
Project44.txt
Project45.txt
Project46.txt
$
$ ls
Project42.txt Project44.txt Project46.txt
Project43.txt Project45.txt Project4x.tar.gz
$

In Listing 12.12, a new subdirectory, Extract, is created. The tarball created back in
Listing 12.6 is moved to the new subdirectory, and then the files are restored from the
tarball. If you compare the tar command used in this listing to the one used in Listing 12.6,
you’ll notice that here the -x option was substituted for the -c option used in Listing 12.6.
Also notice in Listing 12.12 that the tarball is not removed after a file extraction, so you can
use it again and again, as needed.

The tar command has many additional capabilities, such as using tar
backup parameters and/or the ability to create backup and restore shell
scripts. Take a look at the GNU tar website, www.gnu.org/software/
tar/manual, to learn more about this popular command-line backup
utility.

Since the tar utility is the tape archiver, you can also place your tarballs or archive files
on tape, if desired. After mounting and properly positioning your tape, simply substitute
your SCSI tape device filename, such as /dev/st0 or /dev/nst0, in place of the archive or
tarball filename within your tar command.

Duplicating with dd
The dd utility allows you to back up nearly everything on a disk, including the old Master
Boot Record (MBR) partitions some older Linux distributions still employ. It’s primarily
used to create low-level copies of an entire hard drive or partition. It is often used in digital
forensics for creating system images, for copying damaged disks, and for wiping partitions.

https://www.gnu.org/software/tar/manual
https://www.gnu.org/software/tar/manual

378  Chapter 12  ■  Protecting Files

The command itself is fairly straightforward. The basic syntax structure for the dd utility
is as follows:

dd if=input-device of=output-device [OPERANDS]

The output-device is either an entire drive or a partition. The input-device is the
same. Just make sure that you get the right device for out and the right one for in; otherwise
you may unintentionally wipe data.

Besides the of and if, there are a few other arguments (called operands) that can assist in
dd operations. Commonly used ones are described in Table 12.5.

The status=LEVEL operand needs a little more explanation. LEVEL can be set to one of
the following:

■■ none only displays error messages.

■■ noxfer does not display final transfer statistics.

■■ progress displays periodic transfer statistics.

It is usually easier to understand the dd utility through examples. A snipped example of
performing a bit-by-bit copy of one entire disk to another disk is shown in Listing 12.13.

Listing 12.13  Using dd to copy an entire disk

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
[…]
sdb 8:16 0 4M 0 disk
⌙sdb1 8:17 0 4M 0 part
sdc 8:32 0 1G 0 disk
⌙sdc1 8:33 0 1023M 0 part
[…]
#

TABLE 12 .5   The dd command’s commonly used operands

Operand Description

bs=BYTES Sets the maximum block size (number of BYTES) to read and write at a
time. The default is 512 bytes.

count=N Sets the number (N) of input blocks to copy.

status=LEVEL Sets the amount (LEVEL) of information to display to STDERR.

Comparing Archive and Restore Utilities  379

dd if=/dev/sdb of=/dev/sdc status=progress
8192+0 records in
8192+0 records out
4194304 bytes (4.2 MB) copied, 0.232975 s, 18.0 MB/s
#

In Listing 12.13, the lsblk command is used first. When copying disks via the dd utility,
make sure the drives are not mounted anywhere in the virtual directory structure. The two
drives involved in this operation, /dev/sdb and /dev/sdc, are not mounted. With the dd
command, the if operand is used to indicate the disk we wish to copy, which is the /dev/
sdb drive. The of operand indicates that the /dev/sdc disk will hold the copied data. Also,
status=progress will display period transfer statistics. You can see in Listing 12.13 from
the transfer statistics that there is not much data on /dev/sdb, so the dd operation fin-
ished quickly.

You can also create a system image backup using a dd command similar to the one shown
in Listing 12.13, with a few needed modifications. The basic steps are as follows:

1.	 Shut down your Linux system.

2.	 Attach the necessary spare drives. You’ll need one drive the same size or larger for each
system drive.

3.	 Boot the system using a live CD, DVD, or USB so that you can either keep the system’s
drives unmounted or unmount them prior to the backup operation.

4.	 For each system drive, issue a dd command, specifying the drive to back up with the if
operand and the spare drive with the of operand.

5.	 Shut down the system, and remove the spare drives containing the system image.

6.	 Reboot your Linux system.

If you have a disk you are getting rid of, you can also use the dd command to zero out the
disk. An example is shown in Listing 12.14.

Listing 12.14  Using dd to zero an entire disk

dd if=/dev/zero of=/dev/sdc status=progress
1061724672 bytes (1.1 GB) copied, 33.196299 s, 32.0 MB/s
dd: writing to '/dev/sdc': No space left on device
2097153+0 records in
2097152+0 records out
1073741824 bytes (1.1 GB) copied, 34.6304 s, 31.0 MB/s
#

The if=/dev/zero uses the zero device file to write zeros to the disk. You need to per-
form this operation at least 10 times or more to thoroughly wipe the disk. You can also
employ the /dev/random and/or the /dev/urandom device files to put random data onto
the disk. This particular task can take a long time to run for large disks. It is still better to
shred any disks that will no longer be used by your company.

380  Chapter 12  ■  Protecting Files

Replicating with rsync
Originally covered in Chapter 3, “Managing Files, Directories, and Text,” the rsync utility
is known for speed. With this program, you can copy files locally or remotely, and it is won-
derful for creating backups.

Before exploring the rsync program, it is a good idea to review a few of the commonly
used options. Table 3.4 in Chapter 3 contains the more commonly used rsync options.
Besides the options listed in Table 3.4, there are a few additional switches that help with
secure data transfers via the rsync utility:

■■ The -e, or --rsh, option changes the program to use for communication between a
local and remote connection. The default is OpenSSH.

■■ The -z, or --compress, option compresses the file data during the transfer.

Back in Chapter 3 we briefly mentioned the archive option, -a (or --archive), which
directs rsync to perform a backup copy. However, it needs a little more explanation. This
option is the equivalent of using the -rlptgoD options and does the following:

■■ Directs rsync to copy files from the directory’s contents and for any subdirectory within
the original directory tree, consecutively copying their contents as well (recursively).

■■ Preserves the following items:

■■ Device files (only if run with super user privileges)

■■ File group

■■ File modification time

■■ File ownership (only if run with super user privileges)

■■ File permissions

■■ Special files

■■ Symbolic links

It’s fairly simple to conduct rsync backup locally. The most popular options, -ahv, allow
you to back up files to a local location quickly, as shown in Listing 12.15.

Listing 12.15  Using rsync to back up files locally

$ ls -sh *.tar
40K Project4x.tar 40K ProjectVerify.tar
$
$ mkdir TarStorage
$
$ rsync -avh *.tar TarStorage/
sending incremental file list
Project4x.tar
ProjectVerify.tar

Comparing Archive and Restore Utilities  381

sent 82.12K bytes received 54 bytes 164.35K bytes/sec
total size is 81.92K speedup is 1.00
$
$ ls TarStorage
Project4x.tar ProjectVerify.tar
$

Where the rsync utility really shines is with protecting files as they are backed up over
a network.

For a secure remote copy to work, you need the OpenSSH service up and running on the
remote system. In addition, the rsync utility must be installed on both the local and remote
machines. An example of using the rsync command to securely copy files over the network is
shown in Listing 12.16.

Listing 12.16  Using rsync to back up files remotely

$ ls -sh *.tar
40K Project4x.tar 40K ProjectVerify.tar
$
$ rsync -avP -e ssh *.tar user1@192.168.0.104:~
user1@192.168.0.104's password:
sending incremental file list
Project4x.tar
 40,960 100% 7.81MB/s 0:00:00 (xfr#1, to-chk=1/2)
ProjectVerify.tar
 40,960 100% 39.06MB/s 0:00:00 (xfr#2, to-chk=0/2)

sent 82,121 bytes received 54 bytes 18,261.11 bytes/sec
total size is 81,920 speedup is 1.00
$

Notice in Listing 12.16 that the -avP options are used with the rsync utility. These
options not only set the copy mode to archive but will provide detailed information as the
file transfers take place. The important switch to notice in this listing is the -e option. This
option determines that OpenSSH is used for the transfer and effectively creates an encrypted
tunnel so that anyone sniffing the network cannot see the data flowing by. The *.tar in the
command simply selects what local files are to be copied to the remote machine. The last
argument in the rsync command specifies the following:

■■ The user account (user1) located at the remote system to use for the transfer.

■■ The remote system’s IPv4 address, but a hostname can be used instead.

■■ Where the files are to be placed. In this case, it is the home directory, indicated by
the ~ symbol.

382  Chapter 12  ■  Protecting Files

Notice also in that last argument that there is a needed colon (:) between the IPv4 address
and the directory symbol. If you do not include this colon, you will copy the files to a new
file named user1@192.168.0.104~ in the local directory.

The rsync utility uses OpenSSH by default. However, it’s good prac-
tice to use the -e option. This is especially true if you are using any ssh
command options, such as designating an OpenSSH key to employ or
using a different port than the default port of 22. OpenSSH is covered
in more detail in Chapter 16, “Looking at Access and Authentication
Methods.”

The rsync utility can be handy for copying large files to remote media. If you have a
fast CPU but a slow network connection, you can speed things up even more by employing
the rsync -z option to compress the data for transfer. This is not using gzip compression
but instead applying compression via the zlib compression library. You can find more out
about zlib at https://zlib.net.

Securing Offsite/Off-System Backups
In business, data is money. Thus it is critical not only to create data archives but also to
protect them. There are a few additional ways to secure your backups when they are being
transferred to remote locations.

Besides rsync, you can use the scp utility, which is based on the Secure Copy Protocol
(SCP). Also, the sftp program, which is based on the SSH File Transfer Protocol (SFTP), is a
means for securely transferring archives. We’ll cover both utilities in the following sections.

Copying Securely via scp
The scp utility is geared for quickly transferring files in a noninteractive manner between two
systems on a network. This program employs OpenSSH.

It is best used for small files that you need to securely copy on the fly, because if it gets
interrupted during its operation, it cannot pick back up where it left off. For larger files or
more extensive numbers of files, it is better to employ either the rsync or the sftp utility.

There are some rather useful scp options. A few commonly used switches are listed in
Table 12.6.

https://zlib.net

Securing Offsite/Off-System Backups  383

Performing a secure copy of files from a local system to a remote system is rather simple.
You do need the OpenSSH service up and running on the remote system. An example is
shown in Listing 12.17.

Listing 12.17  Using scp to copy files securely to a remote system

$ scp Project42.txt user1@192.168.0.104:~
user1@192.168.0.104's password:
Project42.txt 100% 29KB 20.5MB/s 00:00
$

Notice that to accomplish this task, no scp command options are employed. The -v
option gives a great deal of information that is not needed in this case.

The scp utility will overwrite any remote files with the same name as the
one being transferred without asking or even displaying a message stat-
ing that fact. You need to be careful when copying files using scp that
you don’t tromp on any existing files.

A handy way to use scp is to copy files from one remote machine to another remote
machine. An example is shown in Listing 12.18.

Listing 12.18  Using scp to copy files securely from/to a remote system

$ ip addr show | grep 192 | cut -d" " -f6
192.168.0.101/24
$
$ scp user1@192.168.0.104:Project42.txt user1@192.168.0.103:~
user1@192.168.0.104's password:
user1@192.168.0.103's password:

TABLE 12 .6   The scp command’s commonly used copy options

Short Description

-C Compresses the file data during transfer

-p Preserves file access and modification times as well as file permissions

-r Copies files from the directory’s contents, and for any subdirectory within the original
directory tree, consecutively copies their contents as well (recursively)

-v Displays verbose information concerning the command’s execution

384  Chapter 12  ■  Protecting Files

Project42.txt 100% 29KB 4.8MB/s 00:00
Connection to 192.168.0.104 closed.
$

First in Listing 12.18, the current machine’s IPv4 address is checked using the ip addr
show command. Next the scp utility is employed to copy the Project42.txt file from one
remote machine to another. Of course, you must have OpenSSH running on these machines
and have a user account you can log into as well.

Transferring Securely via sftp
The sftp utility will also allow you to transfer files securely across the network. How-
ever, it is designed for a more interactive experience. With sftp, you can create directories
as needed, immediately check on transferred files, determine the remote system’s present
working directory, and so on. In addition, this program employs OpenSSH.

To get a feel for how this interactive utility works, it’s good to see a simple example. One
is shown in Listing 12.19.

Listing 12.19  Using sftp to access a remote system

$ sftp Christine@192.168.0.104
Christine@192.168.0.104's password:
Connected to 192.168.0.104.
sftp>
sftp> bye
$

In Listing 12.19, the sftp utility is used with a username and a remote host’s IPv4
address. Once the user account’s correct password is entered, the sftp utility’s prompt is
shown. At this point, you are connected to the remote system. At the prompt you can enter
any commands, including help, to see a display of all the possible commands and, as shown
in the listing, bye to exit the utility. Once you have exited the utility, you are no longer
connected to the remote system.

Before using the sftp interactive utility, it’s helpful to know some of the more common
commands. A few are listed in Table 12.7.

TABLE 12 .7   The sftp command’s commonly used commands

Command Description

bye Exits the remote system and quits the utility.

exit Exits the remote system and quits the utility.

get Gets a file (or files) from the remote system and stores it (them) on the local
system. Called downloading.

reget Resumes an interrupted get operation.

Securing Offsite/Off-System Backups  385

It can be a little tricky the first few times you use the sftp utility if you have never used
an FTP interactive program in the past. An example of sending a local file to a remote system
is shown in Listing 12.20.

Listing 12.20  Using sftp to copy a file to a remote system

$ sftp Christine@192.168.0.104
Christine@192.168.0.104's password:
Connected to 192.168.0.104.
sftp>
sftp> ls
Desktop Documents Downloads Music Pictures
Public Templates
Videos
sftp>
sftp> lls
AccountAudit.txt Grades.txt Project43.txt ProjectVerify.tar
err.txt Life Project44.txt TarStorage
Everything NologinAccts.txt Project45.txt Universe
Extract Project42_Inc.txz Project46.txt
FullArchive.snar Project42.txt Project4x.tar
Galaxy Project42.txz Projects
sftp>
sftp> put Project4x.tar
Uploading Project4x.tar to /home/Christine/Project4x.tar
Project4x.tar 100% 40KB 15.8MB/s 00:00
sftp>

Command Description

put Sends a file (or files) from the local system and stores it (them) on the remote
system. Called uploading.

reput Resumes an interrupted put operation.

ls Displays files in the remote system’s present working directory.

lls Displays files in the local system’s present working directory.

mkdir Creates a directory on the remote system.

lmkdir Creates a directory on the local system.

progress Toggles on/off the progress display. (Default is on.)

386  Chapter 12  ■  Protecting Files

sftp> ls
Desktop Documents Downloads Music Pictures
Project4x.tar Public Templates Videos
sftp>
sftp> exit
$

In Listing 12.20, after the connection to the remote system is made, the ls command is
used in the sftp utility to see the files in the remote user’s directory. The lls command is
used to see the files within the local user’s directory. Next the put command is employed
to send the Project4x.tar archive file to the remote system. There is no need to issue the
progress command because by default progress reports are already turned on. Once the
upload is completed, another ls command is used to see if the file is now on the remote
system, and it is.

Backup Rule of Three

Businesses need to have several archives in order to properly protect their data. The Backup
Rule of Three is typically good for most organizations, and it dictates that you should have
three archives of all your data. One archive is stored remotely to prevent natural disasters
or other catastrophic occurrences from destroying all your backups. The other two archives
are stored locally, but each is on a different media type. You hear about the various statistics
concerning companies that go out of business after a significant data loss. A scarier statistic
would be the number of system administrators who lose their jobs after such a data loss
because they did not have proper archival and restoration procedures in place.

The rsync, scp, and sftp utilities all provide a means to securely copy files. However, when
determining what utilities to employ for your various archival and retrieval plans, keep in
mind that one utility will not work effectively in every backup case. For example, generally
speaking, rsync is better to use than scp in backups because it provides more options. How-
ever, if you just have a few files that need secure copying, scp works well. The sftp utility
works well for any interactive copying, yet scp is faster because sftp is designed to acknowl-
edge every packet sent across the network. It’s most likely you will need to employ all of
these various utilities in some way throughout your company’s backup plans.

Checking Backup Integrity  387

Checking Backup Integrity
Securely transferring your archives is not enough. You need to consider the possibility that
the archives could become corrupted during transfer.

Ensuring a backup file’s integrity is fairly easy. A few simple utilities can help.

Digesting an MD5 Algorithm
The md5sum utility is based on the MD5 message digest algorithm. It was originally created
to be used in cryptography. It is no longer used in such capacities due to various known vul-
nerabilities. However, it is still excellent for checking a file’s integrity.

A simple example is shown in Listing 12.21 and Listing 12.22. Using the file that
was uploaded using sftp earlier in the chapter, md5sum is used on the original and the
uploaded file.

Listing 12.21  Using md5sum to check the original file

$ ip addr show | grep 192 | cut -d" " -f6
192.168.0.101/24
$
$ md5sum Project4x.tar
efbb0804083196e58613b6274c69d88c Project4x.tar
$

Listing 12.22  Using md5sum to check the uploaded file

$ ip addr show | grep 192 | cut -d" " -f6
192.168.0.104/24
$
$ md5sum Project4x.tar
efbb0804083196e58613b6274c69d88c Project4x.tar
$

md5sum produces a 128-bit hash value. You can see from the results in the two listings
that the hash values match. This indicates no file corruption occurred during its transfer.

A malicious attacker can create two files that have the same MD5 hash
value. However, at this point in time, a file that is not under the attacker’s
control cannot have its MD5 hash value modified. Therefore, it is impera-
tive that you have checks in place to ensure that your original backup file
was not created by a third-party malicious user. An even better solution
is to use a stronger hash algorithm.

388  Chapter 12  ■  Protecting Files

Securing Hash Algorithms
The Secure Hash Algorithms (SHA) is a family of various hash functions. Though typically
used for cryptography purposes, they can also be used to verify an archive file’s integrity.

Several utilities implement these various algorithms on Linux. The quickest way to find
them is using the method shown in Listing 12.23. Keep in mind that your particular distribu-
tion may store them in the /bin directory instead.

Listing 12.23  Looking at the SHA utility names

$ ls -1 /usr/bin/sha???sum
/usr/bin/sha224sum
/usr/bin/sha256sum
/usr/bin/sha384sum
/usr/bin/sha512sum
$

Each utility includes the SHA message digest it employs within its name. Therefore,
sha384sum uses the SHA-384 algorithm. These utilities are used in a similar manner to the
md5sum command. A few examples are shown in Listing 12.24.

Listing 12.24  Using sha512sum to check the original file

$ sha224sum Project4x.tar
c36f1632cd4966967a6daa787cdf1a2d6b4ee5592
4e3993c69d9e9d0 Project4x.tar
$
$ sha512sum Project4x.tar
6d2cf04ddb20c369c2bcc77db294eb60d401fb443
d3277d76a17b477000efe46c00478cdaf25ec6fc09
833d2f8c8d5ab910534ff4b0f5bccc63f88a992fa9
eb3 Project4x.tar
$

Notice in Listing 12.24 the different hash value lengths produced by the different com-
mands. The sha512sum utility uses the SHA-512 algorithm, which is the best to use for
security purposes and is typically employed to hash salted passwords in the /etc/shadow
file on Linux.

You can use these SHA utilities, just like the md5sum program was used in Listings 12.21
and 12.22, to ensure archive files’ integrity. That way, backup corruption is avoided as well
as any malicious modifications to the file.

Exam Essentials  389

Summary
Providing appropriate archival and retrieval of files is critical. Understanding your business
and data needs is part of the backup planning process. As you develop your plans, look at
integrity issues, archive space availability, privacy needs, and so on. Once rigorous plans are
in place, you can rest assured that your data is protected.

Exam Essentials
Describe the different backup types.   A system image backup takes a complete copy of files
the operating system needs to operate. This allows a restore to take place, which will get the
system back up and running. The full, incremental, and differential backups are tied together
in how data is backed up and restored. Snapshots and snapshot clones are also closely
related and provide the opportunity to achieve rigorous backups in high I/O environments.

Summarize compression methods.   The different utilities, gzip, bzip2, xz, and zip, pro-
vide different levels of lossless data compression. Each one’s compression level is tied to how
fast it operates. Reducing the size of archive data files is needed not only for backup storage
but also for increasing transfer speeds across the network.

Compare the various archive/restore utilities.   The assorted command-line utilities each
have their own strengths in creating data backups and restoring files. While cpio is one
of the oldest, it allows for various files through the system to be gathered and put into an
archive. The tar utility has long been used with tape media but provides rigorous and flex-
ible archiving and restoring features, which make it still very useful in today’s environment.
The dd utility shines when it comes to making system images of an entire disk. Finally, not
only is rsync very fast, but it also allows encrypted transfers of data across a network for
remote backup storage.

Explain the needs when storing backups on other systems.   To move an archive across the
network to another system, it is important to provide data security. Thus, often OpenSSH
is employed. In addition, once an archive file arrives at its final destination, it is critical to
ensure that no data corruption has occurred during the transfer. Therefore, tools such as
md5sum and sha512sum are used.

390  Chapter 12  ■  Protecting Files

Review Questions
1.	 Time and space to generate archives are not an issue, and your system’s environment is not a

high I/O one. You want to create full backups for your system only once per week and need
to restore data as quickly as possible. Which backup type plan should you use?

A.	 Full archive daily

B.	 Incremental archive daily

C.	 Differential archive daily

D.	 Full archive weekly; incremental daily

E.	 Full archive weekly; differential daily

2.	 The system admin took an archive file and applied a compression utility to it. The resulting
file extension is .gz. Which compression utility was used?

A.	 The xz utility

B.	 The gzip utility

C.	 The bzip2 utility

D.	 The zip utility

E.	 The dd utility

3.	 You need to quickly create a special archive. This archive will be a single compressed file,
which contains any files with the extension .snar across the virtual directory structure. Which
archive utility should you use?

A.	 The tar utility

B.	 The dd utility

C.	 The rsync utility

D.	 The cpio utility

E.	 The zip utility

4.	 An administrator needs to create a full backup using the tar utility, compress it as much as
possible, and view the files as they are being copied into the archive. What tar options should
the admin employ?

A.	 -xzvf
B.	 -xJvf
C.	 -czvf
D.	 -cJf
E.	 -cJvf

Review Questions  391

5.	 You need to create a low-level backup of all the data on the /dev/sdc drive and want to
use the /dev/sde drive to store it on. Which dd command should you use?

A.	 dd of=/dev/sde if=/dev/sdc
B.	 dd of=/dev/sdc if=/dev/sde
C.	 dd of=/dev/sde if=/dev/sdc count=5
D.	 dd if=/dev/sde of=/dev/sdc count=5
E.	 dd if=/dev/zero of=/dev/sdc

6.	 You need to create a backup of a user directory tree. You want to ensure that all the file
metadata is retained. Employing super user privileges, which of the following should you use
with the rsync utility?

A.	 The -r option

B.	 The -z option

C.	 The -a option

D.	 The -e option

E.	 The --rsh option

7.	 You decide to compress the archive you are creating with the rsync utility and employ the -z
option. Which compression method are you using?

A.	 compress
B.	 gzip
C.	 bzip2
D.	 xz
E.	 zlib

8.	 Which of the following is true concerning the scp utility? (Choose all that apply.)

A.	 Well suited for quickly transferring files between two systems on a network

B.	 Is faster than the sftp utility

C.	 An interactive utility useful for quickly transferring large files

D.	 Can be interrupted during file transfers with no ill effects

E.	 Uses OpenSSH for file transfers

9.	 You are transferring files for a local backup using the sftp utility to a remote system and the
process gets interrupted. What sftp utility command should you use next?

A.	 The progress command

B.	 The get command

C.	 The reget command

D.	 The put command

E.	 The reput command

392  Chapter 12  ■  Protecting Files

10.	 You have completed a full archive and sent it to a remote system using the sftp utility. You
employ the md5sum program on both the local archive and its remote copy. The numbers
don’t match. What most likely is the cause of this?

A.	 The local archive was corrupted when it was created.

B.	 The archive was corrupted when it was transferred.

C.	 You used incorrect commands within the sftp utility.

D.	 The numbers only match if corruption occurred.

E.	 You used incorrect utility switches on md5sum.

Governing Software

✓✓ Objective 1.6 Given a scenario, build and install software

Chapter

13

A Linux system is only as good as the software you install on
it. The Linux kernel by itself is pretty boring; you need appli-
cations such as web servers, database servers, browsers, and

word processing tools to actually do anything useful with your Linux system. This chapter
addresses the role of software on your Linux system and how you get and manage it. First
we discuss just how software is created in the age of open source and how you retrieve and
compile software code. Next, we explore the ways Linux makes things easier for us by bun-
dling prebuilt software packages to make installation and removal of applications a breeze.

Working with Source Code
The “source” part of the open source world refers to the availability of the actual program-
ming code used to create applications. While many commercial applications hide their source
code from prying eyes, open source projects make their program code openly available for
anyone to peruse and modify if needed. Most applications in the Linux environment are dis-
tributed as open source projects, so you’re free to download, modify, compile, and run those
applications on your Linux system.

While this may sound complicated, it really isn’t. The following sections walk through the
process of downloading, extracting, compiling, and running open source application code on
your Linux system.

Downloading Source Code
Once developers are ready to release their open source applications to the world, they pub-
lish them on the Internet. Developers for most open source packages use a website to host
their code and documentation, and many even provide user forums that allow customers to
discuss issues and possible improvements.

While you can use a graphical browser to connect to a website and download source
code, that’s not always available, especially in Linux server environments. Linux provides
a couple of command-line tools to help us download source code files directly from the
command line.

The wget application is a command-line tool from the GNU Project that allows you to
retrieve files from remote servers using FTP, FTPS, HTTP, or HTTPS. You specify the pro-
tocol, server name, and file to download using a standard URL format, where remotehost

Working with Source Code  395

is the full hostname for the location hosting the files, and filename is the name of the
source code file you wish to retrieve, including the folder path required:

wget http://remotehost/filename

The wget application supports lots of command-line options to help you
customize the connection and download. These especially come in handy
if you write scripts to automatically download files. Check out the manual
pages for wget to see the different options available.

Yet another solution is the cURL application. It does the same thing as wget but supports
many more protocols, such as DAP, DICT, FILE, Gopher, IMAP, LDAP, POP3, RTSP, SCP,
SFTP, SMTP, and TFTP. It too uses the standard URL format for you to specify the protocol,
server name, and file to download.

One nice feature of cURL is its ability to work with the secure HTTPS protocol. It will
warn you if the remote website is using a self-signed certificate or if the certificate is signed
by an untrusted certificate authority (CA).

A relatively recent advancement in software distribution is GitHub
(https://github.com). It provides a centralized location on the Inter-
net for projects that use the Git version control system (see Chapter 27,
“Controlling Versions with Git”). The code for many open source projects
is now posted in GitHub, even if there is already a dedicated website for
the project. You can use both wget and cURL to download project code
from GitHub.

Bundling Source Code Packages
Distributing the source code for applications can be a bit tricky. Source code projects often
consist of many different files:

■■ Source code files

■■ Header files

■■ Library files

■■ Documentation files

Trying to distribute a large batch of files for a project can be a challenge. Linux provides
somewhat of an odd solution for that.

The tar program was originally developed for archiving files and folders to tape drives
for backups (the tar name originally stood for tape archiver). These days it also comes in
handy for bundling project files to distribute on the Internet.

The tar command allows you to specify multiple files, or even multiple folders of files,
to bundle together into a single output file. You can then transfer the entire project bundle
as a single file and extract the files and folders on a remote system. It’s so versatile in what it

https://github.com

396  Chapter 13  ■  Governing Software

can do that there is a long list of command-line options available, which can become some-
what imposing.

For most bundling operations, three basic option groups are commonly used for the
tar command:

■■ -cvf: Create a new tar file

■■ -tvf: Display the contents of a tar file

■■ -xvf: Extract the contents of a tar file

To create a new tar archive file, specify the output file name and then the list of files and
folders to bundle, as shown in the example in Listing 13.1.

Listing 13.1:  Using the tar command to bundle files

$ tar -cvf test.tar test1.txt test2.txt test3.txt
test1.txt
test2.txt
test3.txt
$ ls -al
total 32
drwxr-xr-x 2 rich rich 4096 Dec 5 08:33 .
drwxr-xr-x 19 rich rich 4096 Dec 5 08:28 ..
-rw-r--r-- 1 rich rich 795 Dec 5 08:19 test1.txt
-rw-r--r-- 1 rich rich 1020 Dec 5 08:19 test2.txt
-rw-r--r-- 1 rich rich 2280 Dec 5 08:20 test3.txt
-rw-r--r-- 1 rich rich 10240 Dec 5 08:33 test.tar
$

In Listing 13.1, test.tar is the name of the archive file you want to create. For the input
files and folders, you can use wildcard characters to specify the names, or even redirect a listing
of files to the tar command, making it very versatile in scripts. One of the advantages of bun-
dling folders with tar is that it preserves the folder structure of your environment, including file
and folder ownership, making it easier to extract the files and re-create the original environment.

Though not required, it’s become somewhat of a de facto standard in
Linux to use a .tar filename extension to identify a tar archive file. This
is commonly called a tarball in Linux circles.

If you need to see what’s in a tar archive file, use the -tvf option group:

$ tar -tvf test.tar
-rw-r--r-- rich/rich 795 2018-12-05 08:19 test1.txt
-rw-r--r-- rich/rich 1020 2018-12-05 08:19 test2.txt
-rw-r--r-- rich/rich 2280 2018-12-05 08:20 test3.txt
$

Working with Source Code  397

Notice that both the file ownerships and the file permissions are retained within the tar
archive file. When you extract the files onto another system, they’ll be assigned to the userid
that matches the user number assigned to the original files.

Extracting the files and folders from a tar file is just a matter of using the -xvf
option group:

$ tar -xvf test.tar
test1.txt
test2.txt
test3.txt
$ ls -al
total 32
drwxr-xr-x 2 rich rich 4096 Dec 5 08:38 .
drwxr-xr-x 20 rich rich 4096 Dec 5 08:38 ..
-rw-r--r-- 1 rich rich 795 Dec 5 08:19 test1.txt
-rw-r--r-- 1 rich rich 1020 Dec 5 08:19 test2.txt
-rw-r--r-- 1 rich rich 2280 Dec 5 08:20 test3.txt
-rw-r--r-- 1 rich rich 10240 Dec 5 08:38 test.tar
$

The tar archive method makes bundling files for distribution easy, but it does tend to cre-
ate a very large file, which can be awkward to handle. Linux developers usually compress the
final tar archive file using some type of file compression utility.

In Linux there is a plethora of ways to create compressed files. Table 13.1 lists the most
popular methods you’ll run into.

By far the most common zip utility used in Linux for tar archive files is the GNU gzip
package. To compress a single file, use the gzip command with the filename, as shown in
Listing 13.2.

TABLE 13 .1   Linux compression methods

Method Filename extension Description

bzip2 .bz2 Improvement to the gzip method that reduces file sizes

compress .Z The original Unix compress utility

gzip .gz Fast compression method that produces moderate-sized files

xz .xz Creates smaller compressed files but can be very slow

398  Chapter 13  ■  Governing Software

Listing 13.2:  Compressing a tar archive file

$ gzip test.tar
$ ls -al
total 24
drwxr-xr-x 2 rich rich 4096 Dec 5 08:53 .
drwxr-xr-x 20 rich rich 4096 Dec 5 08:39 ..
-rw-r--r-- 1 rich rich 795 Dec 5 08:19 test1.txt
-rw-r--r-- 1 rich rich 1020 Dec 5 08:19 test2.txt
-rw-r--r-- 1 rich rich 2280 Dec 5 08:20 test3.txt
-rw-r--r-- 1 rich rich 204 Dec 5 08:33 test.tar.gz
$

As seen in Listing 13.2, gzip adds a .gz filename extension to the end of the file that’s
compressed.

Often with compressed tar archive files, you’ll see developers shorten the
.tar.gz filename extension pair to just .tgz.

To decompress a compressed tarball and extract the original files, you have a couple of
options. One option is to use a two-step approach. First use the gunzip command directly
on the compressed tar file:

$ gunzip test.tar.gz

This restores the original test.tar file. Then you extract the tar file using the standard
-xvf options of the tar command.

The second option is to decompress and extract the tarball file in one step by just adding
the -z option to the tar command line:

$ tar -zxvf test.tgz
test1.txt
test2.txt
test3.txt
$ ls -al
total 24
drwxr-xr-x 2 rich rich 4096 Dec 5 09:03 .
drwxr-xr-x 3 rich rich 4096 Dec 5 09:02 ..
-rw-r--r-- 1 rich rich 795 Dec 5 08:19 test1.txt
-rw-r--r-- 1 rich rich 1020 Dec 5 08:19 test2.txt
-rw-r--r-- 1 rich rich 2280 Dec 5 08:20 test3.txt
-rw-r--r-- 1 rich rich 204 Dec 5 09:02 test.tgz
$

Working with Source Code  399

One important thing to note is that when you use the gunzip program
directly, it removes the compressed file and replaces it with the original
file, but when you use the -z option with the tar command, it retains
the compressed file along with decompressing and extracting the
original files.

Compiling Source Code
Once you have the source code package files downloaded onto your Linux system, you’ll
need to compile them to create an executable file to run the application. Linux supports a
wide variety of programming languages, so you’ll need to know just what programming lan-
guage the application was written in. Once you know that, you’ll need to install a compiler
for the program code. A compiler converts the source code into an executable file the Linux
system can run.

The most common tool used for compiling programs in Linux is the GNU Compiler
Collection (gcc). While originally created to support only the C programming language, gcc
now supports an amazing array of different programming languages, such as Ada, C++, For-
tran, Go, Java, Objective-C, Objective-C++, and OpenMP.

Most Linux distributions don’t include the gcc program by default, so
most likely you’ll need to install it on your Linux system. For Ubuntu, it’s
part of the build-essentials package, while for Rocky Linux you’ll find
it in the Development Tools package group.

To compile simple one-file programs, just run the gcc command-line command against
the source code file to produce the executable file that you run on your system. The -o
option allows you to specify the name of the compiled output file; otherwise it defaults to
the ugly a.out filename:

$ cat hello.c
#include <stdio.h>
int main() {
 printf("Hello, this is my first C program!\n");
 return 0;
}
$ gcc -o hello hello.c
$./hello
Hello, this is my first C program!
$

As mentioned earlier, most larger applications require additional header and library files
besides the source code files to build the final application file. Depending on just how many
source code, header, and library files are required for an application, the gcc command

400  Chapter 13  ■  Governing Software

process can get very long and complicated. Separate library files need to be compiled in the
proper order before the main program file can be compiled, creating a difficult road map to
follow to generate the application.

There’s a simple solution available for you to help keep track of all that. The make utility
allows developers to create scripts that guide the compiling and installation process of appli-
cation source code packages so that even novices can compile and install an application from
source code.

Usually there are three steps involved with installing an application that uses a make script:

1.	 Run the configure utility, which analyzes your Linux system and customizes the make
script to build the application for your environment.

2.	 Run the make utility by itself to build the necessary library files and executable files for
the application.

3.	 Run make install as the root user account to install the application files in the appro-
priate locations on your system.

What makes C language programs so complicated is that they often split the applica-
tion functions into separate library files. Each library file contains one or more specialized
functions used in the application code.

The benefit of splitting functions into separate library files is that multiple applica-
tions that use the same functions can share the same library files. These files, called shared
libraries, make it easier to distribute applications but more complicated to keep track of
what library files are installed with which applications.

While not necessary for compiling the application source code, the ldd utility can come in
handy if you need to track down missing library files for an application. It displays a list of
the library files required for the specified application file:

$ ldd hello
 linux-vdso.so.1 (0x00007fff7dff4000)
 libc.so.6 => /lib64/libc.so.6 (0x00007fe154e57000)
 /lib64/ld-linux-x86-64.so.2 (0x00007fe15521c000)
$

My simple hello application requires two external library files, the standard linux-
vdso.so.1 and libc.so.6 files, which provide the ability for the printf() function to
display the output. The ldd utility also shows where those files were found on the Linux
system. That in itself can be helpful when troubleshooting issues with applications picking
up the wrong library files.

Packaging Applications
While the tar, gcc, and make programs make it easier to distribute, compile, and install
application source code, that’s still somewhat of a messy process for installing new applica-
tions. For most Linux users, all they want to do is download an application and use it.

Packaging Applications  401

To help solve that problem, Linux distributions have created a system for bundling
already compiled applications for distribution. This bundle is called a package, and it con-
sists of all the files required to run a single application. You can then install, remove, and
manage the entire application as a single package rather than as a group of disjointed files.

Tracking software packages on a Linux system is called package management. Linux
implements package management by using a database to track the installed packages on
the system. The package management database keeps track of not only what packages
are installed but also the exact files and file locations required for each application. Deter-
mining what applications are installed on your system is as easy as querying the package
management database.

As you would expect, different Linux distributions have created different package
management systems for working with their package management databases. However, over
the years, two main package management systems have risen to the top and have become
standards:

■■ Debian package management

■■ Red Hat package management

Because of their popularity, these are the two package management methods covered by
the Linux+ exam, so these are the two package management methods we’ll cover in detail in
this chapter.

Each package management system uses a different method of tracking application pack-
ages and files, but they both track similar information:

■■ Application files: The package database tracks each individual file as well as the folder
where it’s located.

■■ Library dependencies: The package database tracks what library files are required for
each application and can warn you if a dependent library file is not present when you
install a package.

■■ Application version: The package database tracks version numbers of applications so
that you know when an updated version of the application is available.

The following sections discuss the tools for using each of these package
management systems.

Installing and Managing Packages
Both the Debian and Red Hat package management systems have similar sets of tools for
working with software packages in the package management system. We’ll now take a look
at both systems and the tools to use with them.

Debian Package Tools
As you can probably guess, the Debian package management system is mostly used on
Debian-based Linux systems, such as Ubuntu. Debian bundles application files into a

402  Chapter 13  ■  Governing Software

single DEB package file for distribution. The core tool to use for handling DEB files is the
dpkg program.

The dpkg program is a command-line utility that has options to install, update, and
remove DEB package files on your Linux system. The basic format for the dpkg command is
as follows:

dpkg [options] action package-file

The action parameter defines the action to be taken on the file. Table 13.2 lists common
actions you’ll need to use.

Each action has a set of options that you can use to modify the basic behavior of the
action, such as to force overwriting an already installed package or ignore any depen-
dency errors.

To use the dpkg program, you must have the DEB software package available, either
from an installation DVD or by downloading the package from the Internet. Often you can
find DEB versions of application packages ready for distribution on the application website,
or most distributions maintain a central location for packages to download.

TABLE 13 .2   The dpkg command actions

Action Description

-C Searches for broken installed packages and suggests how to fix them

--configure Reconfigures an installed package

--get-selections Displays currently installed packages

-i Installs the package

-I Displays information about an uninstalled package file

-l Lists all installed packages matching a specified pattern

-L Lists the installed files associated with a package

-p Displays information about an installed package

-P Removes an installed package, including configuration files

-r Removes an installed package but leaves the configuration files

-S Locates the package that owns the specified files

Packaging Applications  403

The Debian distribution also provides a central clearinghouse for Debian
packages at www.debian.org/distrib/packages.

When you download a DEB package for a precompiled application, be careful that you
get the correct package for your workstation processor chip. Source code files are compiled
for specific processors, and trying to run the wrong one on your system will not work. Usu-
ally the processor type is added as part of the package name.

Once you download the DEB package, use dpkg with the -i option to install it:

$ sudo dpkg -i zsh_5.3.1-4+b2_amd64.deb
Selecting previously unselected package zsh.
(Reading database ... 204322 files and directories currently installed.)
Preparing to unpack zsh_5.3.1-4+b2_amd64.deb ...
Unpacking zsh (5.3.1-4+b2) ...
dpkg: dependency problems prevent configuration of zsh:
 zsh depends on zsh-common (= 5.3.1-4); however:
 Package zsh-common is not installed.
 
dpkg: error processing package zsh (--install):
 dependency problems - leaving unconfigured
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
Errors were encountered while processing:
 zsh
$

You can see in this example that the package management software checks to ensure that
any packages that are required for the application are installed and produces an error mes-
sage if any of them are missing. This gives you a clue as to what other packages you need
to install.

If you’d like to see all of the packages installed on your system, use the -l option:

$ dpkg -l
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name Version Architecture Description
+++-==============-============-============-===========================
ii accountsservic 0.6.45-1ubun amd64 query and manipulate accounts
ii acl 2.2.52-3buil amd64 Access control list utilities
ii acpi-support 0.142 amd64 scripts for handling ACPI
ii acpid 1:2.0.28-1ub amd64 Advanced Config and Power
ii adduser 3.116ubuntu1 all add and remove users
ii adium-theme-ub 0.3.4-0ubunt all Adium message style for Ubuntu

https://www.debian.org/distrib/packages

404  Chapter 13  ■  Governing Software

ii adwaita-icon-t 3.28.0-1ubun all default icon theme of GNOME
ii aisleriot 1:3.22.5-1 amd64 GNOME solitaire card game
...

You can also provide a search term on the command line to limit the packages returned in
the output:

$ dpkg -l openssh*
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name Version Architecture Description
+++-==============-============-============-=============================
ii openssh-client 1:7.6p1-4ubu amd64 secure shell (SSH) client
un openssh-server <none> <none> (no description available)
$

If you need to remove a package, you have two options. The -r action removes the
package but keeps any configuration and data files associated with the package installed.
This is useful if you’re just trying to reinstall an existing package and don’t want to have to
reconfigure things. If you really do want to remove the entire package, use the -P action,
which purges the entire package, including configuration files and data files from the system.

Be very careful with the -p and -P options. They’re easy to mix up. The
-p option lists the packages, whereas the -P option purges the packages.
Quite a difference!

The dpkg tool gives you direct access to the package management system, making it
easier to install applications on your Debian-based system.

Red Hat Package Tools
The Red Hat Linux distribution, along with other Red Hat–based distributions such as
Fedora, Rocky, and CentOS, use the RPM package file format. The main tool for working
with RPM files is the rpm program.

Similar to the dpkg tool, the rpm program is also a command-line program to install, modify,
and remove RPM software packages. The basic format for the rpm program is as follows:

rpm action [options] package-file

The actions for the rpm command are shown in Table 13.3.
To use the rpm command, you must have the RPM package file downloaded onto your

system. While you can use the -i action to install packages, it’s more common to use the -U
action, which installs the new package or upgrades the package if it’s already installed. Add-
ing the -vh option is a popular combination that shows the progress of the update and what
it’s doing:

Packaging Applications  405

$ sudo rpm -Uvh zsh-5.0.2-31.el7.x86_64.rpm
Preparing... ################################# [100%]
Updating / installing...
 1:zsh-5.0.2-31.el7 ################################# [100%]
$

You use the -q action to query the package management database for installed packages:

$ rpm -q zsh
zsh-5.0.2-31.el7.x86_64
$

If you need to remove an installed package, just use the -e action:

$ sudo rpm -e zsh
$ sudo rpm -q zsh
package zsh is not installed
$

The -e action doesn’t show if it was successful, but it will display an error message if
something goes wrong with the removal.

Understanding Repositories
The dpkg and rpm commands are useful tools, but they both have their limitations. If you’re
looking for new software packages to install, it’s up to you to find them. Also, if a package
depends on other packages to be installed, it’s up to you to install those packages first and in
the correct order. That can become somewhat of a pain to keep up with.

TABLE 13 .3   The rpm command actions

Action Description

-b Builds a binary package from source files

-e Uninstalls the specified package

-F Upgrades a package only if an earlier version already exists

-i Installs the specified package

-q Queries if the specified package is installed

-U Installs or upgrades the specified package

-V Verifies if the package files are present

406  Chapter 13  ■  Governing Software

To solve that problem, each Linux distribution has its own central clearinghouse of
packages, called a repository. The repository contains software packages that have been
tested and known to install and work correctly in the distribution environment. By placing
all known packages into a single repository, the Linux distribution can create a one-stop
shopping environment for installing all applications for the system.

Most Linux distributions create and maintain their own repositories of packages. There
are also additional tools for working with package repositories. These tools can interface
directly with the package repository to find new software and even automatically find and
install any dependent packages the application requires to operate.

Besides the officially supported distribution package repositories, many third-party
package repositories have sprung up on the Internet. Often specialized or custom software
packages aren’t distributed as part of the normal Linux distribution repository but are
available in third-party repositories. The repository tools allow you to retrieve those pack-
ages as well.

The following sections walk through how to use the Debian and Red Hat reposi-
tory tools.

Debian Repository Tools
The core tool used for working with Debian repositories is the apt suite of tools. This
includes the apt-cache program, which provides information about the package database,
and the apt-get program, which does the work of installing, updating, and removing pack-
ages. To make things easier, the apt program is a front-end script that can call either of the
core programs as needed.

The apt suite of tools relies on the /etc/apt/sources.list file to identify the loca-
tions of where to look for repositories. By default, each Linux distribution enters its own
repository location in that file, but you can add additional repository locations as well if you
install third-party applications not supported by the distribution.

There are a few useful command options in the apt-cache program for displaying
information about packages:

■■ depends: Displays the dependencies required for the package

■■ pkgnames: Displays all the packages installed on the system

■■ showpkg: Displays information about the specified package

■■ stats: Displays package statistics for the system

■■ unmet: Displays any unmet dependencies for installed packages

The workhorse of the apt suite of tools is the apt program. It’s what you use to
install and remove packages from a Debian package repository. Table 13.4 lists the
apt commands.

Packaging Applications  407

Installing a new package from the repository is as simple as specifying the package name
with the install action:

$ sudo apt install zsh
Reading package lists... Done
Building dependency tree
Reading state information... Done
Suggested packages:
 zsh-doc
The following NEW packages will be installed:
 zsh
0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 707 kB of archives.
After this operation, 2,390 kB of additional disk space will be used.

TABLE 13 .4   The apt program action commands

Action Description

autoremove Removes any unneeded packages automatically installed as a depen-
dency of another installed package

full-upgrade Works the same as upgrade but will remove any installed packages
required to upgrade the entire system

install Installs a new software package from the repository

list Displays the currently installed packages

purge Removes the specified application, along with any configuration or data
files

reinstall Attempts to reinstall an existing package from the repository

remove Removes the specified application, but keeps any configuration or data
files

satisfy Attempts to resolve software dependencies in the installed packages

search Searches for a specific package in the repository

show Displays information about the specified package

update Downloads package information from all configured repositories

upgrade Installs available upgrades from all installed packages

408  Chapter 13  ■  Governing Software

Get:1 http://us.archive.ubuntu.com/ubuntu focal/main amd64 zsh amd64
5.8-3ubuntu1 [707 kB]
Fetched 707 kB in 1s (731 kB/s)
Selecting previously unselected package zsh.
(Reading database ... 195185 files and directories currently installed.)
Preparing to unpack .../zsh_5.8-3ubuntu1_amd64.deb ...
Unpacking zsh (5.8-3ubuntu1) ...
Setting up zsh (5.8-3ubuntu1) ...
Processing triggers for man-db (2.9.1-1) ...
$

If any dependencies are required, the apt program retrieves those as well and installs
them automatically.

The upgrade action provides a great way to keep your entire Debian-
based system up-to-date with both package and kernel updates released
to the distribution repository. Running that command will ensure that
your packages and the Linux kernel have all the security and bug fixes
installed. However, that also means that you fully trust the distribution
developers to put only tested packages in the repository. Occasionally a
package may make its way into the repository before being fully tested
and cause issues.

Red Hat Repository Tools
In the past, the core tool used for working with Red Hat repositories has been the yum tool
(short for YellowDog Update Manager, originally developed for the YellowDog Linux distri-
bution). This tool has recently been replaced by the dnf tool, which is an updated version of
yum with additional features added. The dnf tool allows you to query, install, and remove
software packages on your system directly from a Red Hat repository.

Both the yum and dnf commands use the /etc/yum.repos.d folder to hold files that
list the different repositories it checks for packages. For a default Rocky Linux system, that
folder contains several repository files:

$ cd /etc/yum.repos.d
$ ls -al
total 88
drwxr-xr-x. 2 root root 4096 Nov 30 09:15 .
drwxr-xr-x. 150 root root 8192 Dec 27 09:34 ..
-rw-r--r--. 1 root root 1485 Sep 4 13:28 epel-modular.repo
-rw-r--r--. 1 root root 1564 Sep 4 13:28 epel-playground.repo
-rw-r--r--. 1 root root 1422 Sep 4 13:28 epel.repo
-rw-r--r--. 1 root root 1584 Sep 4 13:28 epel-testing-modular.repo
-rw-r--r--. 1 root root 1521 Sep 4 13:28 epel-testing.repo

Packaging Applications  409

-rw-r--r--. 1 root root 700 Oct 8 19:29 Rocky-AppStream.repo
-rw-r--r--. 1 root root 685 Oct 8 19:29 Rocky-BaseOS.repo
-rw-r--r--. 1 root root 1753 Oct 8 19:29 Rocky-Debuginfo.repo
-rw-r--r--. 1 root root 350 Oct 8 19:29 Rocky-Devel.repo
-rw-r--r--. 1 root root 685 Oct 8 19:29 Rocky-Extras.repo
-rw-r--r--. 1 root root 721 Oct 8 19:29 Rocky-HighAvailability.repo
-rw-r--r--. 1 root root 680 Oct 8 19:29 Rocky-Media.repo
-rw-r--r--. 1 root root 670 Oct 8 19:29 Rocky-NFV.repo
-rw-r--r--. 1 root root 680 Oct 8 19:29 Rocky-Plus.repo
-rw-r--r--. 1 root root 705 Oct 8 19:29 Rocky-PowerTools.repo
-rw-r--r--. 1 root root 736 Oct 8 19:29 Rocky-ResilientStorage.repo
-rw-r--r--. 1 root root 671 Oct 8 19:29 Rocky-RT.repo
-rw-r--r--. 1 root root 2335 Oct 8 19:29 Rocky-Sources.repo
$

Each file in the yum.repos.d folder contains information on a repository, such as the
URL address of the repository and the location of additional package files within the repos-
itory. The yum program checks each of these defined repositories for the package requested
on the command line.

The dnf program is very versatile. Table 13.5 shows the commands you can use with it.

TABLE 13 .5   The dnf action commands

Action Description

alias Defines an alias that points to a list of other dnf commands

autoremove Removes any packages installed as a dependency that is no longer needed

check Examines the local package database and reports any problems

check-update Checks the repository for updates to a specified package

clean Performs cleanup of temporary files kept for repositories

deplist Deprecated alias for the repoquery command

distro-sync Downgrades or installs packages to place the system in sync with the
current repositories

downgrade Downgrades the specified package to the version available in the repository

group Manages a set of packages as a single entity

help Displays help for the dnf command

410  Chapter 13  ■  Governing Software

TABLE 13 .5   The dnf action commands  (continued)

Action Description

history Displays previous dnf commands

info Displays information about an installed and available package

install Installs the current version of a package from the repository

list Displays all installed and available packages

makecache Downloads metadata for the repositories

mark Marks a specified package as being installed

module Manages module packages

provides Displays the package that installed the specified file

reinstall Attempts to reinstall the specified package

remove Removes the specified package from the system, including any packages
that depend on the specified package

repoinfo Displays information about the configured repositories

repolist Displays a list of the currently configured repositories

repoquery Searches the configured repositories for the specified package

repository-
packages

Runs commands on all packages in the repository

search Searches package metadata for specified keywords

shell Displays an interactive shell for entering multiple dnf commands

swap Removes and reinstalls the specified package

updateinfo Displays update advisory messages

upgrade Installs the latest version of the specified packages, or all packages if none
specified

upgrade-
minimal

Installs only the latest package versions that provide a bugfix or security fix

Packaging Applications  411

Installing new applications is a breeze with dnf:

$ sudo dnf install zsh
Last metadata expiration check: 0:00:19 ago on Mon 27 Dec 2021 20:04:03 AM EST.
Dependencies resolved.
==
 Package Architecture Version Repository
Size
==
Installing:
 zsh x86_64 5.5.1-6.el8_1.2 baseos 2.9 M

Transaction Summary
==
Install 1 Package

Total download size: 2.9 M
Installed size: 6.9 M
Is this ok [y/N]: y
Downloading Packages:
zsh-5.5.1-6.el8_1.2.x86_64.rpm 1.1 MB/s | 2.9 MB 00:02
--
Total 376 kB/s | 2.9 MB 00:07
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction
 Preparing :
1/1
 Installing : zsh-5.5.1-6.el8_1.2.x86_64
1/1
 Running scriptlet: zsh-5.5.1-6.el8_1.2.x86_64
1/1
 Verifying : zsh-5.5.1-6.el8_1.2.x86_64
1/1

Installed:
 zsh-5.5.1-6.el8_1.2.x86_64

Complete!
$

One nice feature of dnf is the ability to group packages for distribution. Instead of having
to download all of the packages needed for a specific environment (such as for a web server

412  Chapter 13  ■  Governing Software

that uses the Apache, MySQL, and PHP servers), you can download the package group that
bundles the packages together. This makes for an even easier way to get packages installed
on your system.

The openSUSE Linux distribution uses the RPM package management
system and distributes software in RPM files but doesn’t use the yum
or dnf tools. Instead, openSUSE has created its own package manager
called ZYpp. The main tool in the ZYpp package is the zypper program.

Graphical Package Tools
Both the Debian-based and Red Hat–based package management systems have graphical
tools for making it easier to install software in desktop environments. One tool that is avail-
able in both the Ubuntu and Rocky distributions is gnome-software.

The gnome-software program is a graphical front end to the PackageKit tool, which
itself is a front end that standardizes the interface to multiple package management tools,
including apt and yum. By including both PackageKit and gnome-software, Linux
distributions can provide a standard graphical interface for users to manage their software
packages. Figure 13.1 shows the gnome-software package as it appears in the Ubuntu
20.04 Linux distribution.

You can search for packages, view the installed packages, and even view the updated
packages available in the repository. If you’re using the Rocky Linux distribution, the
gnome-software interface looks the same, as shown in Figure 13.2.

F IGURE 13 .1   The Ubuntu Software package graphical tool

Using Application Containers  413

Finally, some standardization is happening across Linux distributions, at least where it
comes to graphical software package management tools.

Using Application Containers
A relatively new feature in the Linux world is the use of containers. Containers allow you to
bundle all of the files required for an application, including any dependencies, into one dis-
tribution package—the container. This ensures that you can install everything needed to run
an application at once, and that all the files required to run an application are available, no
matter what platform you install the container on.

The downside to this method, though, is that any dependencies shared among multiple
applications are duplicated for each application. However, this method ensures that each
application has exactly the correct dependencies (and versions) required to run properly, and

F IGURE 13 .2   The Rocky Linux software package graphical tool

414  Chapter 13  ■  Governing Software

it is quickly gaining in popularity, especially in environments where applications may need to
switch servers frequently.

As expected, there are multiple application container formats available in the Linux
world. This section discusses the two that are covered in the Linux+ exam.

Using Snap Containers
Canonical, the creators of the Ubuntu Linux distribution, have developed an application
container format called snap. The snapd application manages the snap packages installed on
the system and runs in the background. You use the snap command-line tool to query the
snap database to display installed snap packages, as well as to install, upgrade, and remove
snap packages.

To check whether snap is running on your system, use the snap version command:

$ snap version
snap 2.47.1+20.04
snapd 2.47.1+20.04
series 16
ubuntu 20.04
kernel 5.4.0-53-generic
$

If snap is running, you can see a list of the currently installed snap applications by using
the snap list command:

$ snap list
Name Version Rev Tracking Publisher Notes
core18 20200929 1932 latest/stable canonical* base
lxd 4.0.4 18150 4.0/stable/... canonical* -
snapd 2.47.1 9721 latest/stable canonical* snapd
$

To search the snap repository for new applications, use the snap find command:

$ snap find stress-ng
Name Version Publisher Notes Summary
stress-ng V0.11.24 cking-kernel-tools - A tool to load, stress
test and
 benchmark a computer system
$

To view more information about a snap application, use the snap info command:

$ snap info stress-ng
name: stress-ng
summary: A tool to load, stress test and benchmark a computer system

Using Application Containers  415

publisher: Colin King (cking-kernel-tools)
store-url: https://snapcraft.io/stress-ng
contact: colin.king@canonical.com
license: GPL-2.0
description: |
 stress-ng can stress various subsystems of a computer. It can stress load
 CPU, cache, disk, memory, socket and pipe I/O, scheduling and much more.
 stress-ng is a re-write of the original stress tool by Amos Waterland but
 has many additional features such as specifying the number of bogo
 operations to run, execution metrics, a stress verification on memory and
 compute operations and considerably more stress mechanisms.
snap-id: YMJsyW4vySPdys8BCA7jx8UiOVSVhUT6
channels:
 latest/stable: V0.11.24 2020-11-13 (5273) 3MB -
 latest/candidate: V0.11.24 2020-11-13 (5273) 3MB -
 latest/beta: V0.11.24 2020-11-13 (5273) 3MB -
 latest/edge: V0.11.24-44-20201121-7613-g2627a 2020-11-21 (5298) 3MB –
$

To install a new snap, use the snap install command.

$ sudo snap install stress-ng
[sudo] password for rich:
stress-ng V0.11.24 from Colin King (cking-kernel-tools) installed
$

You can check that the software container was installed by using the list command:

$ snap list
Name Version Rev Tracking Publisher Notes
core18 20200929 1932 latest/stable canonical* base
lxd 4.0.4 18150 4.0/stable/... canonical* -
snapd 2.47.1 9721 latest/stable canonical* snapd
stress-ng V0.11.24 5273 latest/stable cking-kernel-tools -
$

Finally, you can remove an installed application container by using the remove command:

$ sudo snap remove stress-ng
stress-ng removed
$

As the snap is removed, you’ll see some messages about the progress of the removal.
Instead of removing a snap, if you prefer you can just disable it without removing it. Just use
the snap disable command. To reenable the snap, use the snap enable command.

416  Chapter 13  ■  Governing Software

Using Flatpak Containers
The flatpak application container format was created as an independent open source project
with no direct ties to any specific Linux distribution. That said, battle lines have already been
drawn, with Red Hat–based Linux distributions oriented toward using flatpak instead of
Canonical’s snap container format.

While Red Hat desktop distributions install flatpak by default, the server
distributions don’t. However, you can easily install flatpak as a package
using the standard dnf or rpm method.

To display the current flatpak containers installed on the system, use the list command:

$ flatpak list
$

Not too exciting. When you first install flatpak there won’t be any containers installed,
but now you know that flatpak is installed.

By default Red Hat–based Linux distributions don’t configure any repositories for flatpak
(repositories in flatpak are called remotes). The most popular flatpak remote is Flathub. Cur-
rently, to set flatpak to point to the Flathub remote you use the following:

$ sudo flatpak remote-add --if-not-exists flathub
https://flathub.org/repo/flathub.flatpakrepo
[sudo] password for rich:
$

To find an application in the flatpak repository, you use the flatpak search command:

$ sudo flatpak search mosh
Name Description Application ID Version Branch Remotes
Mosh The Mobile Shell org.mosh.mosh 1.3.2 stable flathub
$

When working with a container, you must use its Application ID value and not its name.
To install the application, use the flatpak install command:

$ sudo flatpak install org.mosh.mosh
Looking for matches...
Found similar ref(s) for 'org.mosh.mosh' in remote 'flathub' (system).
Use this remote? [Y/n]: Y
Required runtime for org.mosh.mosh/x86_64/stable
(runtime/org.freedesktop.Platform/x86_64/21.08) found in remote flathub
Do you want to install it? [Y/n]: Y

org.mosh.mosh permissions:
 network ssh-auth

Using Application Containers  417

 ID Branch Op Remote Download
 1. org.freedesktop.Platform.GL.default 21.08 i flathub 130.9 MB / 131.2 MB
 2. org.freedesktop.Platform.Locale 21.08 i flathub 17.7 kB / 325.0 MB
 3. org.freedesktop.Platform.openh264 2.0 i flathub 1.5 MB / 1.5 MB
 4. org.freedesktop.Platform 21.08 i flathub 153.7 MB / 198.9 MB
 5. org.mosh.mosh stable i flathub 10.5 MB / 12.7 MB

Installation complete.
$

To check if the installation went well, use the flatpak list command again:

$ flatpak list
Name Application ID Version Branch Installation
Freedesktop Plat... org.freedesktop.Platform 21.08.7 21.08 system
Mesa ...freedesktop.Platform.GL.default 21.3.1 21.08 system
openh264 ...g.freedesktop.Platform.openh264 2.1.0 2.0 system
Mosh org.mosh.mosh 1.3.2 stable system
$

And finally, to remove an application container, use the flatpak uninstall command:

$ sudo flatpak uninstall org.mosh.mosh

 ID Branch Op
 1. [-] org.mosh.mosh stable r

Uninstall complete.
$

Working with flatpak containers is a bit different from using package management sys-
tems, but once you get comfortable with the format of things, it’s not all that different from
the standard package management system.

AppImage is yet another format for distributing software in the Linux
world. AppImage is a bit different in that standard users don’t need root
privileges to install an AppImage package on the system. Instead of
installing the software in the standard Linux system directories, AppIm-
age distributes applications as a compressed disk image that standard
users can mount in their Home directories and run. Of course, this means
each individual user on the system who wants to run the application has
to download a separate AppImage file to run the application.

418  Chapter 13  ■  Governing Software

E X E R C I S E 1 3 . 1 

Working with Packages

This exercise demonstrates how to work with a package management system to
install software.

1.	 Log into your Linux system and open a new command prompt.

2.	 Display the packages currently installed on your system. For Debian-based systems
such as Ubuntu, use the command sudo apt-cache pkgnames. For Red Hat–based sys-
tems such as Rocky, use the command sudo dnf list.

3.	 If it’s not already installed on your system, install the zsh shell package. For Debian-
based systems, use the command sudo apt install zsh. For Red Hat–based systems,
use the command sudo dnf install zsh. If the zsh package is already installed, try
installing the tcsh package, which is an open source version of the C shell found in
many Unix systems.

4.	 Display the installed packages on your system again to see if the newly installed
package appears.

5.	 Now remove the package from your system. For Debian-based systems, use the
command sudo apt remove zsh. For Red Hat–based systems, use the command sudo
dnf remove zsh.

6.	 Display the installed packages yet again to see if the package was properly removed.

Summary
The ability to easily install and remove applications is a must for every Linux system. In the
open source world, developers release their applications as source code bundles using the
tar and gzip utilities to create a tarball file. After you download a tarball file, you must
decompress and extract the files it contains to be able to compile the application. The gcc
program is the most common program for compiling many open source applications. You
use the configure and make utilities to create and run installation scripts to make it easier
to install applications from source code.

Most Linux distributions help simplify application installation by precompiling the source
code and bundling the necessary application files into a package. Package management
software makes it easier to track what applications are installed on your Linux system
and where their files are located. Debian-based Linux distributions use the DEB package
management format, with the dpkg tool, while Red Hat–based Linux distributions use the
RPM package management format, with the rpm tool.

While package management systems make it easier to install and remove packages,
it’s still somewhat of a hassle finding packages. Most Linux distributions now maintain

Exam Essentials  419

their own repository of packages and provide additional tools, making it easier to retrieve
and install packages from the repository. For Debian-based systems, the apt suite of tools,
including apt-cache and apt-get, and apt are used to retrieve packages from the repository
and maintain the package management database. For Red Hat–based systems, either yum or
dnf is the package tool to use.

Application containers are now becoming somewhat popular in the Linux world. An
application container bundles all software required to run an application, including depen-
dency applications and all libraries, into a single installation package. The two most popular
application container formats are snap and flatpak.

Exam Essentials
Describe how developers bundle their open source applications for distribution.  Linux
developers bundle source code files, headers, libraries, and documentation files into a single
file for distribution. They use the tar utility to archive multiple files and folders into a single
archive file and then often compress the archive file using the gzip utility. You can use the
wget or cURL program to download the source code distribution files and then use the gzip
and tar utilities to decompress and extract the source code files.

Explain how to generate an executable program from a source code tarball.  After you
decompress and extract the source code files from a distribution tarball file, you must
compile the source code to create an executable file for the application. First, you must
use the configure utility. This examines your Linux system to ensure that it has the
correct dependencies required for the application and configures the installation script to
find the dependencies. Next, you run the make utility. The make utility runs a script that
uses the gcc compiler to compile the necessary library and source code files to generate
the executable file for your system. Once that script completes, use the make script with
the install option to install the executable file on your Linux system.

Describe how Linux packages applications for distribution.  Linux uses a package
management system to track what applications are installed on your system. The distribution
bundles precompiled application files into a package, which you can easily download and
install. The package management database keeps track of which packages are installed and
the location of all the files contained within the package. You can also query the package
management database to determine what packages are installed and remove packages from
the system using the package management tools. Debian-based Linux systems use the dpkg
tool to interact with the package management database, whereas Red Hat–based Linux sys-
tems use the rpm tool.

Describe how Linux distributions use repositories.  While using packages makes installing,
tracking, and removing software applications easier, you still must be able to find the lat-
est packages for your applications. Most Linux distributions help with that by creating a
centralized repository of current application packages, along with tools to work with the

420  Chapter 13  ■  Governing Software

repository. For Debian-based systems, the apt suite of tools allows you to query the reposi-
tory for package information and download any new or updated packages. Red Hat–based
systems use the yum or dnf tool to interact with their repositories. All three tools allow you
to query the remote repository for packages, query the local package management database,
and install or remove packages as you need.

Explain how application containers differ from package management systems.  Application
containers such as snap and flatpak bundle all of the files required to run an application,
including any dependency applications, into a single package. While this can create duplicate
copies of dependent applications, it ensures that each application has exactly the correct ver-
sion of libraries and dependent applications installed to work, making it a breeze to move
applications from one system to another.

Review Questions  421

Review Questions
1.	 Which two programs should you use to download tarballs from an application’s website?

(Choose two.)

A.	 wget
B.	 cURL
C.	 dpkg
D.	 rpm
E.	 yum

2.	 Fred received an application in source code format. What script should he run to create the
executable application program?

A.	 dpkg
B.	 rpm
C.	 yum
D.	 make
E.	 wget

3.	 Sherri is trying to compile an application from source code. Before she can create the applica-
tion executable file, what script should she run to create the make script?

A.	 make
B.	 make install
C.	 configure
D.	 gcc
E.	 dpkg

4.	 What is the most common compiler used for open source Linux applications?

A.	 gcc
B.	 make
C.	 configure
D.	 dpkg
E.	 rpm

5.	 Harry has finished writing his application source code but needs to package it for distribu-
tion. What tool should he use so that it can be extracted in any Linux distribution?

A.	 dpkg
B.	 rpm
C.	 yum
D.	 apt-get
E.	 tar

422  Chapter 13  ■  Governing Software

6.	 What tar command-line options are commonly used together to extract and decompress files
from a tarball file?

A.	 -Uvh
B.	 -zxvf
C.	 -xvf
D.	 -zcvf
E.	 -cvf

7.	 What filename extension does the Rocky Linux distribution use for packages?

A.	 .deb
B.	 .rpm
C.	 .tgz
D.	 .tar
E.	 .gz

8.	 Sally needs to install a new package on her Ubuntu Linux system. The package was distrib-
uted as a DEB file. What tool should she use?

A.	 rpm
B.	 yum
C.	 dnf
D.	 dpkg
E.	 tar

9.	 What tools do you use to install packages from a Red Hat–based repository? (Choose two.)

A.	 dpkg
B.	 tar
C.	 yum
D.	 apt-get
E.	 dnf

10.	 What application container format do Red Hat–based Linux distributions utilize for
installing applications?

A.	 flatpak

B.	 rpm

C.	 dpkg

D.	 snap

E.	 gcc

Tending
Kernel Modules

✓✓ Objective 1.7: Given a scenario, manage software con-
figurations.

Chapter

14

A module (also called a kernel module) is a self-contained
driver library file. The advantage of using modules, instead of
compiling all their features into the kernel, is that they keep the

Linux kernel lighter and more agile. We can add certain kernel functionality as needed or
on demand because modules can be loaded and unloaded into the kernel dynamically. They
extend the functionality of the kernel without the need to reboot the system.

We’ll take a look at the various kernel module types, where their files are stored, and
module configuration file locations. We’ll also explore in this chapter how to dynamically
link and unlink the modules, view module information, and remove modules.

Exploring Kernel Modules
Kernel modules come in different flavors. They are as follows:

■■ Device driver: Facilitates communication with a hardware device.

■■ Filesystem driver: Required for filesystem I/O.

■■ Network driver: Used to implement network protocols.

■■ System calls: Provides additional functions for adding/modifying system services.

■■ Executable loader: Allows additional executable formats to load.

There are a few different files and directories you should be familiar with when working
with modules. Modules required to support a kernel are stored in the /lib/modules/
directory tree. Each Linux kernel version available on your system has its own subdirectory
within the /lib/modules/ directory. An example of this directory and its kernel version
subdirectories on an Ubuntu 20.04 distribution is shown in Listing 14.1.

Listing 14.1:  Viewing a /lib/modules directory

$ ls -F /lib/modules
5.11.0-40-generic/ 5.4.0-31-generic/ 5.4.0-47-generic/
5.4.0-26-generic/ 5.4.0-42-generic/ 5.4.0-48-generic/

$

Exploring Kernel Modules  425

Be aware that distributions may implement this directory a little differently. For instance,
Red Hat–based distributions have the /lib/modules/ directory hard-linked to the /usr/
lib/modules/ directory. Thus, they are the same directory, but with two different names.
An example on a Rocky Linux 8.5 system is shown snipped in Listing 14.2.

Listing 14.2:  Viewing a /lib/modules and a /usr/lib/modules directory

$ ls -F /lib/modules
4.18.0-305.19.1.el8_4.x86_64/ 4.18.0-348.2.1.el8_5.x86_64/
4.18.0-305.3.1.el8_4.x86_64/ 4.18.0-348.el8.x86_64/
$ ls -F /usr/lib/modules
4.18.0-305.19.1.el8_4.x86_64/ 4.18.0-348.2.1.el8_5.x86_64/
4.18.0-305.3.1.el8_4.x86_64/ 4.18.0-348.el8.x86_64/
$ ls -id /lib/modules
16808755 /lib/modules
$ ls -id /usr/lib/modules
16808755 /usr/lib/modules
$

Notice in Listing 14.2 that the two directories share the same inode number. Hard links
were originally covered in Chapter 3, “Managing Files, Directories, and Text.”

If needed, you can customize a module to define any unique parameters required, such
as hardware settings essential for the device to operate. On some older Linux distributions
there is a single configuration file, /etc/modules.conf, and on more modern distributions
there are configuration directories:

■■ /etc/modprobe.d/ or /etc/modules-load.d/ contains configuration files gener-
ated at system installation or created by an administrator.

■■ /lib/modprobe.d/ stores configuration files generated by third-party software
packages.

■■ /usr/lib/modprobe.d/, if it exists, is typically hard-linked to the /lib/
modprobe.d/directory.

■■ /run/modprobe.d/ stores configuration files generated at runtime.

Within each configuration directory are multiple configuration files that have a .conf
filename extension. An example on a Rocky Linux 8.5 distribution is shown in Listing 14.3.

Listing 14.3:  Viewing /etc/modprobe directories

$ ls /etc/modprobe.d
firewalld-sysctls.conf lockd.conf nvdimm-security.conf tuned.conf
kvm.conf mlx4.conf truescale.conf vhost.conf

426  Chapter 14  ■  Tending Kernel Modules

$ ls /lib/modprobe.d
dist-alsa.conf dist-blacklist.conf libmlx4.conf systemd.conf
$

In the Linux virtual directory system are many potential locations for kernel modules
as well as module configuration files. Therefore, it is wise to take a look around your own
Linux server and note their locations.

For systemd systems, the systemd-modules-load.service handles
loading kernel modules at boot time. You can find the various directories
it may load modules from by using grep on the service unit file and
searching for the ConditionDirectoryNotEmpty directive.

Many device driver kernel modules are loaded either at system boot time or dynamically
when hardware devices are attached to the system. If problems occur, you need to know
what utilities to use to help you diagnose the issue. There are three handy programs that can
help with modules:

■■ dmesg displays the current kernel ring buffer.

■■ lsmod shows brief module information.

■■ modinfo provides detailed module data.

When it comes to modules, a module failure sometimes triggers a kernel message. The
dmesg command is handy in that you can view kernel messages related to current events. At
boot time, your distribution may take a snapshot of the kernel ring buffer and store the data
in a file (typically the /var/log/dmesg file). Both of these ring buffer information sources
can help you track down kernel module problems.

A ring buffer is a fixed-size data structure in memory. It is not shaped
in a ring but instead more like a tube. In the kernel ring buffer, as new
messages enter the tube, the older messages are moved toward the
structure’s end and the oldest messages “drop out” of the tube’s end (are
deleted).

The dmesg utility will simply dump the current kernel ring buffer to STDOUT. It is help-
ful to employ the grep command to dig through the messages. A snipped example of this is
shown in Listing 14.4.

Listing 14.4:  Using dmesg with grep to display module messages

$ dmesg | grep -i driver
[…]
[1.674321] e1000: Intel(R) PRO/1000 Network Driver - version 7.3.21-k8-
NAPI
[3.614747] cdrom: Uniform CD-ROM driver Revision: 3.20
[…]

Exploring Kernel Modules  427

[48.828793] tun: Universal TUN/TAP device driver, 1.6
[8760.969714] usbcore: registered new interface driver usb-storage
[…]
$

You can employ different search terms to filter the dmesg utility’s output. For example, if
you want to find information only on a USB device issue, you could pipe the dmesg output
to the grep -i usb command.

The lsmod utility displays the status of modules currently within the Linux kernel. List-
ing 14.5 shows a snipped example of this on an openSUSE distribution.

Listing 14.5:  Employing lsmod to display module status

$ lsmod
Module Size Used by
af_packet 49152 4
[…]
bridge 172032 1 ebtable_broute
stp 16384 1 bridge
btrfs 1327104 1
[…]
scsi_dh_alua 20480 0
$

In the lsmod output, each module is listed on a separate line. The first column is the mod-
ule’s name.

Notice in Listing 14.5 the Used by column. The digit in this column indicates the
number of processes or other modules currently using the module. If it is another kernel
module using it, the other’s module’s name is displayed.

You can get the same information that the lsmod utility displays by
looking at the /proc/modules file’s contents. However, it is not as nicely
formatted.

You can find out more detailed information concerning a particular kernel module via the
modinfo utility. It may require super user privileges, as shown snipped in Listing 14.6.

Listing 14.6:  Using modinfo to display detailed module information

$ sudo modinfo bridge
filename: /lib/modules/[…]/kernel/net/bridge/bridge.ko
alias: rtnl-link-bridge
version: 2.3
license: GPL
suserelease: openSUSE Leap 15.0

428  Chapter 14  ■  Tending Kernel Modules

srcversion: D39BA7E56E769F636E31A8C
depends: stp,llc
retpoline: Y
intree: Y
vermagic: […]SMP mod_unload modversions retpoline
$

Notice the kernel module’s filename in Listing 14.6. Kernel module files typically have a
.ko file extension. Also notice that the module’s version number is displayed. This is helpful
if you need to track down known bugs related to a particular module.

It is possible to configure the kernel to not allow kernel modules to be
installed at runtime. While this is not common, you may run into this
situation, so it’s good to know it exists. You can check the current kernel
option settings using the sysctl command, with the -a option:

 $ sysctl -a
 [...]
 kernel.module_disable = 0
 [...]
 $

If the kernel.module_disable option is set to a value of 1, you won’t be
able to install modules. Most Linux distributions store kernel settings that are
applied at boot time in the /etc/sysctl.conf file, or as separate config-
uration files in the /etc/sysctl.d directory. Check those files to see if the
option is set, and edit the file if you need to add modules.

Installing Kernel Modules
Linux typically automatically loads modules as they are needed on the system. Often,
though, you may want to test a new module or try new module configurations. To do so, you
may need to manually install modules into the kernel. This is also called inserting or loading
a module. In this section, we’ll look at a few utilities that can help you load modules into the
kernel. They are as follows:

■■ insmod
■■ modprobe
■■ depmod

Installing Kernel Modules  429

The insmod utility allows you to insert a single module into the Linux kernel. Unfor-
tunately, because it is so basic, you have to provide an absolute directory reference to the
module file. Also, the command does not load any needed module dependencies. A snipped
example on an openSUSE distribution is shown in Listing 14.7.

Listing 14.7:  Using insmod to insert a single module into the kernel

$ lsmod | grep -i joydev
$
$ sudo insmod /lib/modules/[…]/kernel/drivers/input/joydev.ko
$
$ lsmod | grep -i joydev
joydev 24576 0
$

In Listing 14.7, the system is checked for a loaded module that has a module name of
joydev using the lsmod command. It is not found. Thus, the insmod command inserts
it into the kernel using its full filename and directory location. The lsmod command is
employed again to show that the module is now indeed loaded into the kernel.

The modprobe command is easier to use than the insmod utility because you can denote
modules by their module name. It also loads any additional modules that the inserted
module needs to operate (dependencies). A snipped example is shown in Listing 14.8, which
employs the -v switch on the modprobe command to display more information while it
inserts a module and all of its currently unloaded dependencies.

Listing 14.8:  Using modprobe to insert a module and its dependencies

$ sudo modprobe -v dm_mirror
insmod /lib/modules/[…]/kernel/drivers/md/dm-log.ko
insmod /lib/modules/[…]/kernel/drivers/md/dm-region-hash.ko
insmod /lib/modules/[…]/kernel/drivers/md/dm-mirror.ko
$
$ lsmod | grep -i dm_mirror
dm_mirror 28672 0
dm_region_hash 16384 1 dm_mirror
dm_log 16384 2 dm_mirror,dm_region_hash
dm_mod 139264 3 dm_mirror,dm_log,dm_multipath
$
$ sudo modinfo dm_mirror
filename: /lib/modules/[…]/kernel/drivers/md/dm-mirror.ko
license: GPL

430  Chapter 14  ■  Tending Kernel Modules

author: Joe Thornber
description: device-mapper mirror target
suserelease: openSUSE Leap 15.0
srcversion: A784B0C071D49F47F94E83B
depends: dm-region-hash,dm-mod,dm-log
retpoline: Y
intree: Y
vermagic: […]SMP mod_unload modversions retpoline
parm: raid1_resync_throttle:A percentage […]
$

The dm_mirror module allows volume managers to mirror logical volumes. In List-
ing 14.8, when the modprobe command is used to load this module, it loads two other
modules as well, which the dm_mirror module needs to work properly. Notice that the
modprobe utility is calling the insmod utility to perform the insertion work. Also notice
that the dm_mirror module has a slightly different filename, dm-mirror.ko, shown in the
modinfo utility’s output.

The modprobe program uses the modules.dep file to determine any module depen-
dencies. This file is typically located in the /lib/modules/ subdirectory, as shown snipped
in Listing 14.9.

Listing 14.9:  Viewing the modules.dep dependencies file

$ ls /lib/modules/[…]/modules.dep
/lib/modules/[…]/modules.dep
$
$ grep -i mirror /lib/modules/[…]/modules.dep
kernel/drivers/md/dm-mirror.ko:
kernel/drivers/md/dm-region-hash.ko
kernel/drivers/md/dm-log.ko
kernel/drivers/md/dm-mod.ko
$

In Listing 14.9, the modules.dep file is searched for the word mirror using the grep
utility. To see a particular module’s dependencies, you locate the module’s filename within
the file. After the colon (:), the module’s dependencies are listed by their full module file-
name. So for the dm_mirror modules (dm-mirror.ko), the module dependencies are the
dm-region-hash, dm-log, and dm-mod modules. This corresponds with what was shown
in the modinfo utility’s output in Listing 14.8.

You can employ the depmod command to scan through the system looking for any
hardware that was not automatically detected. This is useful for troubleshooting problems
with new devices. A snipped example is shown in Listing 14.10.

Removing Kernel Modules  431

Listing 14.10:  Using the depmod utility to update the modules.dep file

$ sudo depmod -v
[…]
/lib/modules/[…]/kernel/sound/soc/intel/
atom/snd-soc-sst-atom-hifi2-platform.ko needs
"snd_pcm_lib_preallocate_pages_for_all":
/lib/modules/[…]/kernel/sound/core/snd-pcm.ko
[…]
$

In Listing 14.10, the depmod utility scans the system, determines any needed modules,
reviews the modules’ dependencies, and updates the appropriate modules.dep file. Notice
that it also displays its activity to STDOUT.

Removing Kernel Modules
It’s a good idea to remove any kernel modules you are no longer using on your Linux
system. If you just need to remove (unload) a module with no dependencies, you can employ
the rmmod command. An example is shown in Listing 14.11.

Listing 14.11:  Using the rmmod utility to remove a module

$ lsmod | grep joydev
joydev 24576 0
$
$ sudo rmmod -v joydev
$
$ lsmod | grep joydev
$

Notice in Listing 14.11 that the rmmod utility understands module names, so you don’t
have to provide an absolute directory reference to the module file. Once the module is
unloaded, the lsmod utility no longer displays the module’s name in its output.

The modprobe utility is useful for removing modules that have one or more depen-
dencies. You just need to add the -r switch, and if you desire detailed information, include
the -v switch, as shown snipped in Listing 14.12.

Listing 14.12:  Using the modprobe utility to remove a module and its dependencies

$ sudo modprobe -rv dm_mirror
rmmod dm_mirror
rmmod dm_region_hash
rmmod dm_log
$

432  Chapter 14  ■  Tending Kernel Modules

In Listing 14.12, the module dm_mirror is unloaded along with its two dependencies.
Note that if the module was not loaded, you would not see any messages and just get a
command-line prompt back.

Summary
When kernel modules fail or when you need to test a new module, it is vital to understand
where module files as well as their configuration files are located. Equally important is the
ability to diagnose problems using the various command-line utilities available for this
purpose. Because modules can be dynamically linked and unlinked with the kernel, you
should understand how to perform these tasks using the correct tools. These additional tools
in your Linux tool belt will allow you to quickly resolve issues concerning kernel modules.

Exam Essentials

Describe the locations of kernel module files.   Kernel module files have a .ko file
extension and are typically located in a subdirectory of the /lib/modules/ directory. There
is a subdirectory for each particular Linux kernel version. Some distributions have additional
directories, such as /usr/lib/modules/, which are hard-linked to the /lib/modules/
directory.

Distinguish the locations of module configuration files.   Older Linux distributions use a
single file, /etc/modules.conf, as their kernel modules configuration file. More modern
distributions use configuration directories, which can be the /etc/modprobe.d/, /etc/
modules-load.d/, /lib/modprobe.d/, /usr/lib/modprobe.d/, and/or /run/
modprobe.d/ directory. Within configuration directories, module configuration files have a
.conf file extension.

Summarize the utilities used to troubleshoot modules.   Because when kernel modules fail
they often issue a kernel message, you can employ the dmesg utility to view recent kernel
messages or peruse the /var/log/dmesg file, if available, for boot time kernel prob-
lems. The lsmod utility displays all the currently loaded modules, the number of processes
and other modules using them, and the other modules’ names. The modinfo program is
very helpful because it displays detailed information concerning a module, including its
dependencies.

Compare the utilities used to install kernel modules.   The low-level insmod utility requires
a full module filename in order to insert a module into the kernel, which can be cumber-
some. In addition, it does not load any module dependencies. On the other hand, the
modprobe utility only requires the module’s name. Also, it searches the modules.dep file to
determine and load any module dependencies.

Exam Essentials  433

Explain the utilities used to remove kernel modules.   The rmmod utility is a low-level utility.
Though it does not require a full module filename in order to unlink a module from the
kernel, it does not unload any module dependencies. So you could end up with unneeded
modules, still linked to the kernel. The modprobe utility, using the -r option, will unload the
module and unlink any module dependencies.

434  Chapter 14  ■  Tending Kernel Modules

Review Questions
1.	 Which of the following is true concerning a kernel module? (Choose all that apply.)

A.	 It is a self-contained driver library file.

B.	 It is compiled into the Linux kernel.

C.	 It allows the addition of functionality when required.

D.	 It can be loaded when needed.

E.	 It keeps the Linux kernel lighter and more agile.

2.	 Where are module files stored? (Choose all that apply.)

A.	 A /lib/modules/kernel/ subdirectory

B.	 A /lib/modules/KernelVersion/ subdirectory

C.	 A /usr/lib/modules/kernel/ subdirectory

D.	 A /usr/lib/modules/KernelVersion/ subdirectory

E.	 A /lib/kernel/modules subdirectory

3.	 Where can a module’s configuration information be stored? (Choose all that apply.)

A.	 The /etc/modules.conf file

B.	 The /etc/modprobe.d/*.conf files

C.	 The /etc/modules.d/*.conf files

D.	 The /lib/modprobe.d/*.conf files

E.	 The /usr/lib/modprobe.d/*.conf files

4.	 You need to determine the dependencies of the unloaded xyz module. Which is the best
utility to employ to accomplish this task?

A.	 dmesg
B.	 insmod
C.	 lsmod
D.	 modprobe
E.	 modinfo

5.	 You need to install the xyz module, including all its needed dependencies. Which of the fol-
lowing utilities should you use?

A.	 insmod
B.	 modinfo
C.	 modprobe
D.	 lsmod
E.	 depmod

Review Questions  435

6.	 When you install a USB device on a Linux system, it appears that the device is not being
detected. Which of the following is the best command to troubleshoot this particular
situation?

A.	 lsmod
B.	 modinfo
C.	 dmesg
D.	 depmod
E.	 insmod

7.	 The modprobe utility uses the _____ file to determine any module dependencies.

A.	 modules.dep
B.	 /lib/modules
C.	 /usr/lib/modules
D.	 /etc/modprobe.d
E.	 /lib/modprobe.d

8.	 You need to insert the abc module into the Linux kernel. This module does not have any
dependencies. What is the best utility to use?

A.	 lsmod
B.	 modinfo
C.	 dmesg
D.	 depmod
E.	 insmod

9.	 You need to unload the abc module from the Linux kernel. This module does not have any
dependencies. What is the best utility to use?

A.	 insmod
B.	 unload
C.	 rmmod
D.	 modprobe
E.	 rm -f

10.	 You need to remove the xyz module and all of its dependencies. Which is the best command
to employ?

A.	 dmesg
B.	 modprobe -r
C.	 lsmod
D.	 paste
E.	 groupdel

PART

IV
Securing

Your System

Applying Ownership
and Permissions

✓✓ Objective 2.5: Given a scenario, apply the appropriate
access controls.

Chapter

15

Preventing unauthorized access to files and directories is a
major part of any Linux administrator’s job. Linux provides
a few different methods for protecting files, which can make

security a little bit complicated. This chapter dives into Linux file and directory security and
demonstrates how to implement it on your Linux system. First, you’ll see how Linux assigns
ownership to files and directories. Then, the chapter discusses the basic file and directory
security features that have been available since the dawn of Linux. Following that is an
examination of a couple of newer methods for adding more protection to files and applica-
tions on your system. A brief overview describes how Linux handles administrator privileges
when required to do work on the system.

Looking at File and Directory
Permissions
The core security feature of Linux is file and directory permissions. Linux accomplishes that
by assigning each file and directory an owner and allowing that owner to set the basic secu-
rity settings to control access to the file or directory. The following sections walk through
how Linux handles ownership of files and directories as well as the basic permission settings
that you can assign to any file or directory on your Linux system.

Understanding Ownership
Linux uses a three-tiered approach to protecting files and directories:

Owner: In the Linux system, each file and directory is assigned to a single owner.
The Linux system administrator can assign the owner specific privileges to the file or
directory.

Group: The Linux system also assigns each file and directory to a single group of users.
The administrator can then assign that group privileges that are specific to the file or
directory and that differ from the owner privileges.

Others: This category of permissions is assigned to any user account that is not the
owner or in the assigned user group.

Looking at File and Directory Permissions  441

You can view the assigned owner and group for a file or directory by adding the -l
option to the ls command, as shown in Listing 15.1.

Listing 15.1:  Viewing file owner and group settings

$ ls -l
total 12
-rw-rw-r-- 1 Rich sales 1521 Jan 19 15:38 customers.txt
-rw-r--r-- 1 Christine sales 479 Jan 19 15:37 research.txt
-rw-r--r-- 1 Christine sales 696 Jan 19 15:37 salesdata.txt
$

In Listing 15.1, the first column, -rw-rw-r--, defines the access permissions assigned
to the owner, group, and others. That will be discussed later in the chapter in the section
“Controlling Access Permissions.” The third column in Listing 15.1, the Rich or Christine
value, shows the user account assigned as the owner of the file. The fourth column, sales,
shows the group assigned to the file.

Many Linux distributions (such as both Ubuntu and Rocky Linux) assign
each user account to a separate group with the same name as the user
account. This helps prevent accidental sharing of files. However, it can
also make things a little confusing when you’re working with owner and
group permissions and you see the same name appear in both columns.
Be careful when working in this type of environment.

When a user creates a file or directory, by default the Linux system automatically assigns
that user as the owner and uses the primary group the user belongs to as the group for the
file or directory. You can change the default owner and group assigned to files and direc-
tories by using Linux commands. The following sections show how to do that.

Changing File or Directory Ownership
The root user account can change the owner assigned to a file or directory by using the
chown command. The chown command format looks like this:

chown [options] newowner filenames

The newowner parameter is the username of the new owner to assign to the file or
directory, and filenames is the name of the file or directory to change. You can specify
more than one file or directory by placing a space between each file or directory name:

$ sudo chown Christine customers.txt
$ ls -l
total 12
-rw-rw-r-- 1 Christine sales 1521 Jan 19 15:38 customers.txt
-rw-r--r-- 1 Christine sales 479 Jan 19 15:37 research.txt
-rw-r--r-- 1 Christine sales 696 Jan 19 15:37 salesdata.txt
$

442  Chapter 15  ■  Applying Ownership and Permissions

There are a few command-line options available for the chown command, but they are
mostly obscure and not used much. One that may be helpful for you is the -R option, which
recursively changes the owner of all files under the specified directory.

Changing the File or Directory Group
The file or directory owner, or the root user account, can change the group assigned to the
file or directory by using the chgrp command. The chgrp command uses this format:

chgrp [options] newgroup filenames

The newgroup parameter is the name of the new user group assigned to the file or
directory, and the filenames parameter is the name of the file or directory to change. If
you’re the owner of the file, you can only change the group to a group that you belong to.
The root user account can change the group to any group on the system:

$ sudo chgrp marketing customers.txt
$ ls -l
total 12
-rw-rw-r-- 1 Christine marketing 1521 Jan 19 15:38 customers.txt
-rw-r--r-- 1 Christine sales 479 Jan 19 15:37 research.txt
-rw-r--r-- 1 Christine sales 696 Jan 19 15:37 salesdata.txt
$

The chown command allows you to change both the owner and the
group assigned to a file or directory at the same time using this format:

chown newowner:newgroup filenames

This is often preferred over using the separate chgrp command.

Controlling Access Permissions
After you’ve established the file or directory owner and group, you can assign specific per-
missions to each. Linux uses three types of permission controls:

Read: The ability to access the data stored in the file or directory

Write: The ability to modify the data stored in the file or directory

Execute: The ability to run the file on the system, or the ability to list the files contained
in the directory

You can assign each tier of protection (owner, group, and others) different read, write,
and execute permissions. This creates a set of nine different permissions that are assigned to

Looking at File and Directory Permissions  443

each file and directory on the Linux system. The nine permissions appear in the ls output
as the first column of information when you use the -l option, as shown in Listing 15.1.
Figure 15.1 shows the order in which the permissions are displayed in the ls output.

In Figure 15.1, the first character denotes the object type. A dash indicates a file, and a d
indicates a directory.

The next three characters denote the owner permissions in the order of read, write, and
execute. A dash indicates the permission is not set, whereas the r, w, or x indicates the read,
write, or execute permission is set. In the example in Listing 15.1, all three files use rw- for
the owner permissions, which means the owner has permissions to read and write to the file
but cannot execute, or run, the file. This is common with data files.

The second set of three characters denotes the group permissions for the file or directory.
Again, this uses the read, write, and execute order, with a dash indicating the permission
is not set. After making the change to the customers.txt file for the marketing group,
the sales group can only read the research.txt and salesdata.txt files, but the
marketing group can both read and write the customers.txt file.

Finally, the third set of three characters denotes the permissions assigned to user accounts
that are not the owner or a member of the group assigned to the file or directory. The same
order of read, write, and execute is used. In the Listing 15.1 examples, other user accounts
on the system can read the files but not write or execute them.

Either the root user account or the owner of the file or directory can change the assigned
permissions by using the chmod command.

The format of the chmod command can be somewhat confusing. It uses two different
modes for denoting the read, write, and execute permission settings for the owner, group,
and others. Both modes allow you to define the same sets of permissions, so there’s no
reason to use one mode over the other.

In symbolic mode, you denote permissions by using a letter code for the owner (u), group
(g), others (o), or all (a) and another letter code for the read (r), write (w), or execute (x)

E

W

Owner Group Others

X
e
cr

− − − −r rw wx r

R
e
a
d

i
t
e

u
t
e

E

W
X
e
crR

e
a
d

i
t
e

u
t
e

E

W
X
e
crR

e
a
d

i
t
e

u
t
e

F IGURE 15 .1   File and directory permissions as displayed in the ls output

444  Chapter 15  ■  Applying Ownership and Permissions

permission. The two codes are separated with a plus sign (+) if you want to add the permis-
sion, a minus sign (-) to remove the permission, or an equal sign (=) to set the permission as
the only permission. Listing 15.2 shows an example of this.

Listing 15.2:  Changing file permissions

$ chmod g-w customers.txt
$ ls -al
total 12
-rw-r--r-- 1 Christine marketing 1521 Jan 19 15:38 customers.txt
-rw-r--r-- 1 Christine sales 479 Jan 19 15:37 research.txt
-rw-r--r-- 1 Christine sales 696 Jan 19 15:37 salesdata.txt
$

In Listing 15.2, the g-w code in the chmod command indicates that we are removing the
write permission for the group from the customers.txt file.

You can combine letter codes for both to make multiple changes in a single chmod
command, as shown in Listing 15.3.

Listing 15.3:  Combining permission changes

$ chmod ug=rwx salesdata.txt
$ ls -l
total 12
-rw-rw-r-- 1 Christine marketing 1521 Jan 19 15:38 customers.txt
-rw-r--r-- 1 Christine sales 479 Jan 19 15:37 research.txt
-rwxrwxr-- 1 Christine sales 696 Jan 19 15:37 salesdata.txt
$

The ug code assigns the change to both the owner and the group, whereas the rwx
code assigns the read, write, and execute permissions. We use the equal sign to set those
permissions.

The second mode available in chmod is called octal mode. With octal mode, the nine
permission bits are represented as three octal numbers, one each for the owner, group, and
other permissions. Table 15.1 shows how the octal number matches the three symbolic mode
permissions.

TABLE 15 .1   Octal mode permissions

Octal value Permission Meaning

0 --- No permissions

1 --x Execute only

2 -w- Write only

Looking at File and Directory Permissions  445

You must specify the three octal values in the owner, group, and others in the correct
order, as shown in Listing 15.4.

Listing 15.4:  Using octal mode to assign permissions

$ chmod 664 research.txt
$ ls -l
total 12
-rw-r--r-- 1 Christine marketing 1521 Jan 19 15:38 customers.txt
-rw-rw-r-- 1 Christine sales 479 Jan 19 15:37 research.txt
-rwxrwxr-- 1 Christine sales 696 Jan 19 15:37 salesdata.txt
$

The 664 octal mode set the owner and group permissions to read and write (6) but the
others permission to read only (4). You can see the results from the ls output. This is a
handy way to set all the permissions for a file or directory in a single command.

Exploring Special Permissions
There are three special permission bits that Linux uses for controlling the advanced behavior
of files and directories.

The Set User ID (SUID) bit is used with executable files. It tells the Linux kernel to run
the program with the permissions of the file owner and not the user account actually running
the file. This feature is most commonly used in server applications that must run as the root
user account to have access to all files on the system, even if the user launching the process is
a standard user.

The SUID bit is indicated by an s in place of the execute permission letter for the file
owner: rwsr-xr-x. The execute permission is assumed for the system to run the file. If the
SUID bit is set on a file that doesn’t have execute permission for the owner, it’s indicated by
an uppercase S.

Octal value Permission Meaning

3 -wx Write and execute

4 r-- Read only

5 r-x Read and execute

6 rw- Read and write

7 rwx Read, write, and execute

446  Chapter 15  ■  Applying Ownership and Permissions

To set the SUID bit for a file, in symbolic mode add s to the owner permissions, or in
octal mode include a 4 at the start of the octal mode setting:

chmod u+s myapp
chmod 4750 myapp

The Set Group ID (SGID, also called GUID) bit works differently in files and directories.
For files, it tells Linux to run the program file with the file’s group permissions. It’s indicated
by an s in the group execute position: rwxrwsr--.

For directories, the SGID bit helps us create an environment where multiple users can
share files. When a directory has the SGID bit set, any files users create in the directory are
assigned the group of the directory and not that of the user. That way, all users in that group
can have the same permissions as all the files in the shared directory.

To set the SGID bit, in symbolic mode add s to the group permissions, or in octal mode
include a 2 at the start of the octal mode setting:

chmod g+s /sales
chmod 2660 /sales

Finally, the sticky bit is used to protect a file from being deleted by those who don’t own
it, even if they belong to the group that has write permissions to the file. The sticky bit is
denoted by a t in the execute bit position for others: rwxrw-r-t.

The sticky bit is often used on directories shared by groups. The group members have
read and write access to the data files contained in the directory, but only the file owners can
remove files from the shared directory.

To set the sticky bit, in symbolic mode add t to the owner permissions, or in octal mode
include a 1 at the start of the octal mode setting:

chmod o+t /sales
chmod 1777 /sales

Managing Default Permissions
When a user creates a new file or directory, the Linux system assigns it a default owner,
group, and permissions. The default owner, as expected, is the user who created the file. The
default group is the owner’s primary group.

The user mask feature defines the default permissions Linux assigns to the file or
directory. The user mask is an octal value that represents the bits to be removed from the
octal mode 666 permissions for files or the octal mode 777 permissions for directories.

The user mask value is set with the umask command. You can view your current umask
setting by simply entering the command by itself on the command line:

$ umask
0022
$

The output of the umask command shows four octal values. The first octal value rep-
resents the mask for the SUID (4), GUID (2), and sticky (1) bits assigned to files and

Looking at File and Directory Permissions  447

directories you create. The next three octal values mask the owner, group, and others permis-
sion settings.

The mask is a bitwise mask applied to the permission bits on the file or directory. Any bit
that’s set in the mask is removed from the permissions for the file or directory. If a bit isn’t
set, the mask doesn’t change the setting. Table 15.2 demonstrates how the umask values
work in practice when creating files and directories on your Linux system.

You can test this by creating a new file and directory on your Linux system:

$ mkdir test1
$ touch test2
$ ls -l
total 4
drwxr-xr-x 2 rich rich 4096 Jan 19 17:08 test1
-rw-r--r-- 1 rich rich 0 Jan 19 17:08 test2
$

The umask value of 0022 created the default file permissions of rw-r--r-- , or octal
644, on the test2 file, and rwx-r-xr-x, or octal 755, on the test1 directory, as expected
(note that the directory entry starts with a d in the permissions list).

You can change the default umask setting for your user account by using the umask
command from the command line:

$ umask 027
$ touch test3
$ ls -l test3
-rw-r----- rich rich 0 Jan 19 17:12 test3
$

The default permissions for the new file have changed to match the umask setting.

TABLE 15 .2   Results from common umask values for files and directories

umask Created files Created directories

000 666 (rw-rw-rw-) 777 (rwxrwxrwx)

002 664 (rw-rw-r--) 775 (rwxrwxr-x)

022 644 (rw-r--r--) 755 (rwxr-xr-x)

027 640 (rw-r-----) 750 (rwxr-x---)

077 600 (rw-------) 700 (rwx------)

277 400 (r--------) 500 (r-x------)

448  Chapter 15  ■  Applying Ownership and Permissions

The umask value is normally set in a script that the Linux system runs at
login time, such as in the /etc/profile file. If you override the setting
from the command line, that will only apply for the duration of your
session. You can override the system default umask setting by adding it
to the .bash_profile file in your $HOME directory.

Access Control Lists
The basic Linux method of permissions has one drawback in that it’s somewhat limited.
You can only assign permissions for a file or directory to a single group or user account. In a
complex business environment with different groups of people needing different permissions
to files and directories, that approach doesn’t work.

Linux developers have devised a more advanced method of file and directory security
called an access control list (ACL). The ACL allows you to specify a list of multiple users or
groups and the permissions that are assigned to them. Just like the basic security method,
ACL permissions use the same read, write, and execute permission bits, but now they can be
assigned to multiple users and groups.

To use the ACL feature in Linux, you use the setfacl and getfacl commands. The
getfacl command allows you to view the ACLs assigned to a file or directory, as shown in
Listing 15.5.

Listing 15.5:  Viewing ACLs for a file

$ touch test
$ ls -l
total 0
-rw-r----- 1 rich rich 0 Jan 19 17:33 test
$ getfacl test
file: test
owner: rich
group: rich
user::rw-
group::r--
other::---
$

If you’ve only assigned basic security permissions to the file, those still appear in the
getfacl output, as shown in Listing 15.5.

To assign permissions for additional users or groups, you use the setfacl command:

setfacl [options] rule filenames

Access Control Lists  449

The setfacl command allows you to modify the permissions assigned to a file or
directory by using the -m option or to remove specific permissions using the -x option.
You define the rule with three formats:

u[ser]:uid:perms
g[roup]:gid:perms
o[ther]::perms

To assign permissions for additional user accounts, use the user format; for additional
groups, use the group format; and for others, use the other format. For the uid or gid value,
you can use either the numerical user identification number or group identification number
or the names. Here’s an example:

$ setfacl -m g:sales:rw test
$ ls -l
total 0
-rw-rw----+ 1 rich rich 0 Jan 19 17:33 test
$

This example adds read and write permissions for the sales group to the test file.
Notice that there’s no output from the setfacl command. When you list the file, only the
standard owner, group, and others permissions are shown, but a plus sign (+) is added to the
permissions list. This indicates that the file has additional ACLs applied to it. To view the
additional ACLs, use the getfacl command again:

$ getfacl test
file: test
owner: rich
group: rich
user::rw-
group::r--
group:sales:rw-
mask::rw-
other::---
$

The getfacl output now shows that there are permissions assigned to two groups. The
default file group (rich) is assigned read permissions, but now the sales group has read
and write permissions to the file. To remove the permissions, use the -x option:

$ setfacl -x g:sales test
$ getfacl test
file: test
owner: rich
group: rich

450  Chapter 15  ■  Applying Ownership and Permissions

user::rw-
group::r--
mask::r--
other::---

$

Linux also allows you to set a default ACL on a directory that is automatically inherited
by any file created in the directory. This feature is called inheritance.

To create a default ACL on a directory, start the rule with a d: followed by the normal
rule definition. That looks like this:

$ sudo setfacl -m d:g:sales:rw /shared/sales

This example assigns the read and write permissions to the sales group for the
/shared/sales directory. Now all files created in that folder will automatically be assigned
read and write permissions for the sales group.

Context-Based Permissions
Both the original permissions method and the advanced ACL method of assigning permis-
sions to files and directories are called discretionary access control (DAC) methods. The
permission is set at the discretion of the file or directory owner. There’s nothing an adminis-
trator can do to prevent users from granting full permission to others on all the files in their
directories.

To provide complete protection of your Linux system, it helps to utilize some type of
mandatory access control (MAC) method. MAC methods allow the system administrator
to define security based on the context of an object in the Linux system to override permis-
sions set by file and directory owners. MAC methods provide rules for administrators to
restrict access to files and directories not only to users but also to applications running on
the system.

You may also see the term role-based access control (RBAC) used in
security literature. The RBAC method is a subcategory of MAC, basing
security permissions on the roles users and processes play in the Linux
system.

There are currently two popular MAC implementations in Linux:

■■ SELinux for Red Hat–based systems

■■ AppArmor for the Ubuntu system

The following sections provide more detail on using SELinux and AppArmor in your
Linux environment.

Context-Based Permissions  451

Using SELinux
The Security-Enhanced Linux (SELinux) application is a project of the U.S. National
Security Agency (NSA) and has been integrated into the Linux kernel since version 2.6.x. It
is now a standard part of Red Hat–based Linux distributions, such as Fedora, Rocky, and
CentOS, and an optional installation for Debian-based distributions.

SELinux implements MAC security by allowing you to set policy rules for controlling
access between various types of objects on the Linux system, including users, files, direc-
tories, memory, network ports, and processes. Each time a user or process attempts to access
an object on the Linux system, SELinux intercepts the attempt and evaluates it against the
defined policy rules.

Enabling SELinux
The /etc/selinux/config file controls the basic operation of SELinux. There are two pri-
mary settings that you need to specify:

SELINUX: This setting determines the operation of SELinux. Set it to enforcing to
enable the policy rules on the system and to block any unauthorized access. When you
set it to permissive, SELinux monitors policy rules and logs any policy violations but
doesn’t enforce them. The disabled setting value completely disables SELinux from
monitoring actions on the system.

SELINUXTYPE: This setting determines which policy rules are enforced. The targeted
setting is the default and only enforces network daemon policy rules. The minimum
setting only enforces policy rules on specified processes. The mls setting uses multilayer
security, providing advanced policies following the Bell–LaPadula model of security
control, which is mandated by most U.S. government and military environments that
require high security. It uses security classifications such as top secret, unclassified, and
public. The strict setting enforces policy rules for all daemons but is not recom-
mended for use anymore.

To change the state of SELinux, you can also use the setenforce utility from the
command line. However, you can only use the utility to change SELinux between enforcing
and permissive modes. To disable SELinux, you must make the change in the SELinux con-
figuration file. To see the current mode of SELinux, use the getenforce utility:

$ sudo getenforce
Enforcing
$

For a more detailed listing of the SELinux status, use the sestatus utility:

$ sudo sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux

452  Chapter 15  ■  Applying Ownership and Permissions

Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Memory protection checking actual (secure)
Max kernel policy version: 33
$

After you’ve enabled SELinux, it starts enforcing access rules on the objects defined in a
set of policies. The next sections explain how SELinux policies work.

Understanding Security Context
SELinux labels each object on the system with a security context. The security context
defines what policies SELinux applies to the object. The security context format is as follows:

user:role:type:level

The user and role attributes are used only in the multilayer security mode and can get
quite complex. Systems running in the default targeted security mode only use the type
attribute to set the object security type and control access based on that. The level attribute
sets the security sensitivity level and clearance level. It is optional under the targeted security
mode and is mostly used in highly secure environments.

To view the security context assigned to objects, add the -Z option to common Linux
commands such as id, ls, ps, and netstat. For example, to view your user security con-
text, use the following command:

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
$

The unconfined_u user security context means the user account is not assigned to a
specific security policy; likewise, the unconfined_r for the role and the unconfined_t for
the type. The level security context of s0-s0:c0.c1023 means the security and clearance
levels for the object are also not set.

To view the security context for a file, use this:

$ ls -Z test1.txt
unconfined_u:object_r:user_home_t:s0 test1.txt
$

Again, the user attribute is unconfined_u, but now the type attribute is set to
user_home_t. You can use this attribute in a security policy to set the access for files in each
user account’s $HOME directory.

To examine the security context assigned to a process, use the following command:

$ ps -axZ | grep sshd

Context-Based Permissions  453

system_u:system_r:sshd_t:s0-s0:c0.c1023 1029 ? Ss 0:00
 /usr/sbin/sshd [...]
$

The process required for the sshd application is set to the system_u user security
context and system_r role security context. These indicate that the process is system
related. The type security context for the process is different, which means it can be con-
trolled with separate policies.

You’ll often see the security context referred to as a label in SELinux doc-
umentation and literature. SELinux must assign the label to each object
on the system when it’s first enabled, which can be a long process.

The semanage utility allows you to view and set the security context for user accounts on
the system. For files and directories, the Linux system sets their security context when they
are created, based on the security context of the parent directory. You can change the default
security context assigned to a file by using the chcon or the restorecon utility.

The chcon format is as follows:

chcon -u newuser -r newrole -t newtype filename

The newuser, newrole, and newtype values define the new user, role, and type security
contexts you want assigned to the specified file.

The restorecon utility restores the security context of a file or directory back to the
default settings as defined in the policies. You can use the -R option to recursively restore the
security context on all files under a specified directory.

The runcon utility allows you to start an application with a specified
security context, but be careful. If an application starts without having
access to any required configuration or logging files, strange things can,
and usually will, happen.

Using Policies
SELinux controls access to system objects based on policies. In the targeted security mode,
each policy defines what objects in a specific type security context can access objects in
another type security context. This is called type enforcement.

For example, an application labeled with the type security context sshd_t is only
allowed to access files labeled with the type security context sshd_t. This restricts access
from the application to only certain files on the system.

SELinux maintains policies as text files in the /etc/selinux directory structure. For
example, all policies for the targeted security mode are under the /etc/selinux/targeted
directory.

Creating your own policies can be somewhat complicated. Fortunately, SELinux includes
policy groups, called modules, that you can install as standard RPM packages. Use the
semodule utility to list, install, and remove policy modules in your system.

454  Chapter 15  ■  Applying Ownership and Permissions

To make things even easier, SELinux uses a method of enabling and disabling individual
policies without having to modify a policy file. A Boolean is a switch that allows you to
enable or disable a policy rule from the command line based on its policy name. To view the
current setting of a policy, use the getsebool command:

$ getsebool antivirus_can_scan_system
antivirus_can_scan_system --> off
$

To view all of the policies for the system, include the -a option, as shown in Listing 15.6.

Listing 15.6:  Using the -a option with the getsebool command

$ sudo getsebool -a
abrt_anon_write --> off
abrt_handle_event --> off
abrt_upload_watch_anon_write --> on
antivirus_can_scan_system --> off
antivirus_use_jit --> off
auditadm_exec_content --> on
authlogin_nsswitch_use_ldap --> off
authlogin_radius --> off
authlogin_yubikey --> off
awstats_purge_apache_log_files --> off
boinc_execmem --> on
cdrecord_read_content --> off
cluster_can_network_connect --> off
cluster_manage_all_files --> off
cluster_use_execmem --> off
cobbler_anon_write --> off
cobbler_can_network_connect --> off
cobbler_use_cifs --> off
cobbler_use_nfs --> off
collectd_tcp_network_connect --> off
condor_tcp_network_connect --> off
conman_can_network --> off
conman_use_nfs --> off
...

Listing 15.6 just shows a partial output from the getsebool command; there are lots of
different policies installed by default in most Red Hat Linux environments.

To change the Boolean setting, use the setsebool command:

$ sudo setsebool antivirus_can_scan_system on

Context-Based Permissions  455

$ getsebool antivirus_can_scan_system
antivirus_can_scan_system --> on
$

This setting only applies to your current session. To make the change permanent, you
must add the -P option to the command. Doing so gives you full control over the policy set-
tings defined for SELinux.

Each time SELinux denies an event due to a security policy, it logs the
action in the /var/log/audit/audit.log file. You can view this file
to see what events security policies are blocking on your system. The
audit2allow utility is a handy tool that can read an audit log entry and
generate a policy rule that would allow the denied event. However, be
careful with this tool, as there may have been a valid reason why the
event was denied.

Using AppArmor
Debian-based Linux distributions commonly use the AppArmor MAC system. AppArmor
isn’t as complex or versatile as SELinux; it only controls the files and network ports that
applications have access to.

As of Ubuntu 18.04LTS, AppArmor is installed by default, but the utilities
and profile packages aren’t. Use apt to install the apparmor-utils and
apparmor-profiles packages.

AppArmor also defines access based on policies but calls them profiles. Profiles are
defined for each application in the /etc/apparmor.d directory structure. Normally, each
application package installs its own profiles.

Each profile is a text file that defines the files and network ports the application is allowed
to communicate with and the access permissions allowed for each. The name of the pro-
file usually references the path to the application executable file, replacing the slashes with
periods. For example, the profile name for the mysqld application program is called
usr.sbin.mysqld.

AppArmor profiles can use variables, called tunables, in the profile
definition. The variables are then defined in files contained in the
/etc/apparmor.d/tunables directory. This allows you to easily make
changes to the variables to alter the behavior of a profile without having
to modify the profile itself.

To determine the status of AppArmor on your Linux system, use the aa-status
command, as shown in Listing 15.7.

456  Chapter 15  ■  Applying Ownership and Permissions

Listing 15.7:  The aa-status command output

$ sudo aa-status
apparmor module is loaded.
63 profiles are loaded.
42 profiles are in enforce mode.
 /snap/snapd/14066/usr/lib/snapd/snap-confine
 /snap/snapd/14066/usr/lib/snapd/snap-confine//mount-namespace-
capture-helper
 /snap/snapd/14295/usr/lib/snapd/snap-confine
 /snap/snapd/14295/usr/lib/snapd/snap-confine//mount-namespace-
capture-helper
 /usr/bin/evince
 /usr/bin/evince-previewer
 /usr/bin/evince-previewer//sanitized_helper
...
21 profiles are in complain mode.
 /usr/sbin/dnsmasq
 /usr/sbin/dnsmasq//libvirt_leaseshelper
 avahi-daemon
 chromium_browser
 chromium_browser//chromium_browser_sandbox
 chromium_browser//lsb:release
 chromium_browser//xdgsettings
 identd
...
3 processes have profiles defined.
3 processes are in enforce mode.
 /usr/sbin/cups-browsed (687)
 /usr/sbin/cupsd (679)
 /snap/snap-store/558/usr/bin/snap-store (1795) snap.snap-
store.ubuntu-software
0 processes are in complain mode.
0 processes are unconfined but have a profile defined.
$

The output from the aa-status command in Listing 15.7 shows all of the profiles in
enforce, complain, or disabled status. After you’ve installed the apparmor-utils package,
you have a few different useful commands for working with AppArmor at your disposal.
You can view a listing of active network ports on your system that don’t have a profile
defined by using the aa-unconfined command:

$ sudo aa-unconfined

Understanding Linux User Types  457

465 /lib/systemd/systemd-resolved not confined
747 /usr/sbin/avahi-daemon not confined
748 /usr/sbin/cupsd confined by '/usr/sbin/cupsd (enforce)'
804 /usr/sbin/cups-browsed confined by '/usr/sbin/cups-browsed (enforce)'
885 /usr/sbin/xrdp-sesman not confined
912 /sbin/dhclient confined by '/sbin/dhclient (enforce)'
935 /usr/sbin/xrdp not confined
982 /sbin/dhclient confined by '/sbin/dhclient (enforce)'
992 /usr/sbin/apache2 not confined
993 /usr/sbin/apache2 not confined
994 /usr/sbin/apache2 not confined
1094 /usr/sbin/mysqld confined by '/usr/sbin/mysqld (enforce)'
$

To turn off a specific profile, use the aa-complain command, which places the profile in
complain mode:

$ sudo aa-complain /usr/sbin/tcpdump
Setting /usr/sbin/tcpdump to complain mode.
$

In complain mode, any violations of the profile will be logged but not blocked. If you
want to completely disable an individual profile, use the aa-disable command:

$ sudo aa-disable /usr/sbin/tcpdump
Disabling /usr/sbin/tcpdump.
$

To turn a profile back on, use the aa-enforce command:

$ sudo aa-enforce /usr/sbin/tcpdump
Setting /usr/sbin/tcpdump to enforce mode.
$

Though not quite as versatile as SELinux, the AppArmor system provides a basic level of
security protection against compromised applications on your Linux system.

Understanding Linux User Types
One of the more confusing topics in Linux is the issue of user types. In Linux, not all users
are created equal, with some user accounts having different purposes, and therefore differ-
ent permissions, than others. The following sections discuss the different types of Linux user
accounts and how to change between them.

458  Chapter 15  ■  Applying Ownership and Permissions

Types of User Accounts
While in Linux all user accounts are created the same way using the useradd utility (see
Chapter 10, “Administering Users and Groups”), not all user accounts behave the same way.
There are three basic types of user accounts in Linux:

Root: The root user account is the main administrator user account on the system. It
is identified by being assigned the special user ID value of 0. The root user account has
permission to access all files and directories on the system, regardless of any permission
settings assigned.

Standard: Standard Linux user accounts are used to log into the system and perform
standard tasks, such as running desktop applications or shell commands. Standard
Linux users normally are assigned a $HOME directory, with permissions to store files
and create subdirectories. Standard Linux users cannot access files outside their
$HOME directory unless given permission by the file or directory owner. Most Linux
distributions assign standard user account user IDs over 1000.

Service: Service Linux user accounts are used for applications that start in the
background, such as network services like the Apache web server or MySQL data-
base server. By setting the password value in the shadow file to an asterisk, these user
accounts are restricted so that they cannot be used to log into the system. Also, the login
shell defined in the /etc/passwd file is set to the nologin value to prevent access to a
command shell. Service accounts normally have a user ID less than 1000.

Some Linux distributions, such as Ubuntu, don’t allow you to log in
directly as the root user account. Instead they rely on escalating privi-
leges (discussed in the next section) to allow standard user accounts to
perform administrative tasks.

Escalating Privileges
While the root user account has full access to the entire Linux system, it’s generally consid-
ered a bad practice to log in as the root user account to perform system-related activities.
There’s no accountability for who logs in with the root user account, and providing the root
user account password to multiple people in an organization can be dangerous.

Instead, most Linux administrators use privilege escalation to allow their standard Linux
user account to run programs with the root administrator privileges. This is done using three
different programs:

■■ su: The su command is short for substitute user. It allows a standard user account to
run commands as another user account, including the root user account. To run the su
command, the standard user must provide the password for the substitute user account.
While this solves the problem of knowing who is performing the administrator task, it
doesn’t solve the problem of multiple people knowing the root user account password.

Restricting Users and Files  459

■■ sudo: The sudo command is short for substitute user do. It allows a standard user
account to run any command as another user account, including the root user account.
The sudo command prompts the user for their own password to validate who they are.

■■ sudoedit: The sudoedit command allows a standard user to open a file in a text editor
with privileges of another user account, including the root user account. The sudoedit
command also prompts the user for their own password to validate who they are.

Although the su command is somewhat self-explanatory, the sudo and sudoedit com-
mands can be a bit confusing. Running a command with administrator privileges by supply-
ing your own user password seems a bit odd.

Each Linux system uses a file that defines which users are allowed to run the sudo
command, usually located at /etc/sudoers. The sudoers file contains a list of not only
user accounts but also groups whose users are allowed administrator privileges. There are
two common user groups that are used for these privileges. Debian-based distributions use
the sudo group, and Red Hat–based distributions use the wheel group (short for big wheel).

Never open the sudoers file using a standard editor. If multiple users
open the sudoers file at the same time, odd things can happen and cor-
rupt the file. The visudo command securely opens the file in an editor so
that you can make changes.

Restricting Users and Files
Finally, there are two commands that you should know about that don’t really have anything
to do with file ownership or permissions but instead are related to user and file restrictions.

The ulimit command helps you restrict access to system resources for each user account.
Listing 15.8 shows the output from running the ulimit command with the -a option,
which displays the settings for the user account.

Listing 15.8:  The ulimit command output

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 19567
max locked memory (kbytes, -l) 16384
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8

460  Chapter 15  ■  Applying Ownership and Permissions

POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 19567
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
$

As a user account consumes system resources, it places a load on the system, but in CPU
time and memory. If you’re working in a multiuser Linux environment, you may need to
place restrictions on how many resources each user account can consume. That’s where the
ulimit command comes in. Table 15.3 shows the command-line options you can use to
restrict specific resources for the user account.

TABLE 15 .3   The ulimit command options

Option Description

-a Lists the limits for the current user account

-b Sets the maximum socket buffer size

-c Sets the maximum core file size

-d Sets the maximum data segment size for processes

-e Sets the maximum allowed scheduling priority

-f Sets the maximum file size allowed to be written

-i Sets the maximum number of pending signals

-k Sets the maximum number of kqueues that can be allocated

-l Sets the maximum size of memory that can be locked

-m Sets the maximum resident set size

-n Sets the maximum number of open file descriptors

-p Sets the maximum pipe size in 512k blocks

-r Sets the maximum real-time scheduling priority value

-s Sets the maximum stack size

Restricting Users and Files  461

As you can tell from Table 15.3, with the ulimit command the Linux administrator
can place some pretty severe restrictions on just what an individual user account can do on
the system.

You can also set restrictions on what users can or can’t do with files and directories. File
and directory attributes define actions that the filesystem can allow or block on the file or
directory.

The chattr command modifies the attributes assigned to a file or directory. The format
of the chattr command is:

chattr [mode] files...

The mode option defines what attributes to set or unset. Table 15.4 defines the different
attributes available in Linux.

TABLE 15 .4   Linux file and directory attributes

Attribute Description

a Can only open in append mode when writing.

A The access time for the file is not modified when the file is open.

c Automatically compress the file on the disk.

C The file is not automatically copied on write for journaling filesystems.

d Do not back up the file with the dump program.

D All changes are synchronously written to disk without caching (applies to direc-
tories only).

Option Description

-t Sets the maximum amount of CPU time the user account is allowed

-u Sets the maximum number of processes the user can run simultaneously

-v Sets the maximum amount of virtual memory available to the user

-x Sets the maximum number of file locks

-P Sets the maximum number of pseudo-terminals the user account can log into

-T Sets the maximum number of threads the user can have

462  Chapter 15  ■  Applying Ownership and Permissions

To assign an attribute to a file or directory you precede the attribute with a plus sign:

$ sudo chattr +i test1.txt
$ rm test1.txt
rm: cannot remove 'test1.txt': Operation not permitted
$

This example sets the immutable attribute (i) to a file, making it impossible to delete the
file. This particular attribute can only be set by the root user account, thus the need to use
the sudo command. After setting the attribute, the file can no longer be deleted.

Attribute Description

e Linux is using extents for mapping blocks on the disk.

E The file is encrypted by the filesystem.

F When applied to a directory, all path lookups in the directory are case-insensitive.

i The file can’t be modified or deleted.

I Index the directory using a hash tree.

j If the filesystem supports journaling, data written to the file is written to the
journal before being written to the file.

N The file contains data stored in the inode table itself.

P When applied to a directory, files in the directory inherit the project ID of the
directory.

s If the file is deleted, its blocks are zeroed and written back to the disk.

S Changes to the file are written synchronously to the disk and not stored in a buffer.

t If the file contains a partial block fragment at the end, it will not be merged with
other files.

T The directory is deemed the top of a directory hierarchy for storage purposes.

U Save the contents of the file when deleted, allowing for the undelete feature.

V Apply file authentication to the file.

TABLE 15 .4   Linux file and directory attributes  (continued)

Restricting Users and Files  463

To display the current attributes applied to a file or directory, use the lsattr command:

$ lsattr test1.txt
----i--------------- test1.txt
$

To remove the attribute, use the minus sign with the chattr command:

$ sudo chattr -i test1.txt
$ lsattr test1.txt
-------------------- test1.txt
$ rm test1.txt
$

Not all filesystems support all the file and directory attributes. You’ll need
to consult the documentation for your specific filesystem to determine
what file and directory attributes are available for you to use.

Exercise 15.1 walks through how to set up a simple shared directory where multiple user
accounts can have read/write access to files.

E X E R C I S E 15 . 1  

Creating a Shared Directory

This exercise demonstrates how to use the GUID bit to create a directory where multiple
users can both read and write to files.

1.	 Log into your Linux system and open a new command prompt.

2.	 Create the first test user account by using the command sudo useradd -m test1.
Assign the test account a password by using the command sudo passwd test1.

3.	 Create a second test user account by using the command sudo useradd -m test2.
Assign that test account a password by using the command sudo passwd test2.

4.	 Create a new group named sales by using the command sudo groupadd sales.

5.	 Add both test user accounts to the sales group by using the commands sudo usermod
-G sales test1 and sudo usermod -G sales test2. You can check your work by exam-
ining the group file using the command cat /etc/group | grep sales. You should see
both the test1 and test2 user accounts listed as members of the group.

6.	 Create a new shared directory by using the command sudo mkdir /sales. Change the
default group assigned to the directory by using the command sudo chgrp sales
/sales. Grant members of the sales group write privileges to the /sales directory by
using the command sudo chmod g+w /sales. Set the GUID bit for the /sales directory
by using the command sudo chmod g+s /sales. This ensures that any files created in
the /sales directory are assigned to the sales group.

464  Chapter 15  ■  Applying Ownership and Permissions

E X E R C I S E 15 . 1   (c o n t i n u e d)

7.	 Log out from the Linux system; then log in using the test1 user account and open a
new command prompt.

8.	 Change to the /sales directory using the command cd /sales.

9.	 Create a new text file using the command echo "This is a test" > testfile.txt. You
can view the contents of the file using the command cat testfile.txt.

10.	 Log out from the Linux system; then log in using the test2 user account and open a
new command prompt.

11.	 Change to the /sales directory using the command cd /sales.

12.	 View the test file using the command cat testfile.txt.

13.	 Add to the test file using the command echo "This was added by the test2 user
account" >> testfile.txt. View the contents of the file using the command cat
testfile.txt to ensure that the test2 user account also has write access to the file.

14.	 Log out from the Linux system; then log in using your normal user account.

15.	 Change to the /sales directory and see if you can view the contents of the test file by
using the command cat testfile.txt.

16.	 Attempt to add text to the file by using the command echo "This was added by me"
>> testfile.txt. This command should fail, as you’re not a member of the sales
group nor the owner of the file.

Summary
File and directory security is a major responsibility of all Linux administrators. The Linux
system provides several layers of security that you can apply to files and directories to help
keep them safe.

Linux assigns a set of read, write, and execute permissions to all files and directories
on the system. You can define separate access settings for the file or directory owner, for a
specific group defined for the Linux system, and for all other users on the system. The group-
ing of three access level settings and permissions provides for nine possible security settings
applied to each file and directory. You can set those using the chmod command, using either
symbolic mode or octal mode.

A more advanced method of file and directory security involves setting an access control
list (ACL) for each file and directory. The ACL can define read, write, and execute permis-
sions for multiple users or groups. The setfacl command allows you to set these permis-
sions, and you use the getfacl command to view the current permissions.

The next level of security involves setting context-based permissions. Red Hat–based
Linux distributions use the SELinux program to allow you to set policy rules that control

Exam Essentials  465

access to files, directories, applications, and network ports based on the context of their use.
For Debian-based Linux distributions, the AppArmor program provides advanced security
for applications accessing files.

Linux handles security based on the user type. The root user account has full admin-
istrator privileges on the Linux system and can access any file, directory, or network port
regardless of any security settings. Service user accounts are used to start and run applica-
tions that require access to a limited set of files and directories. Service user accounts usually
can’t log into the system from a terminal, nor can they open any type of command-line shell.
The last type of user accounts is the standard user account. These accounts are for normal
system users who need to log into a terminal and run applications.

Exam Essentials

Describe the basic level of file and directory security available in Linux.   Linux provides
basic file and directory security by utilizing three categories of read, write, and execute per-
missions. The file or directory owner is assigned one set of permissions, the primary group
is assigned another set of permissions, and everyone else on the Linux system is assigned a
third set of permissions. You can set the permissions in the three categories separately to con-
trol the amount of access the group members and others on the Linux system have.

Explain how to modify the permissions assigned to a file or directory.   Linux uses the
chmod command to assign permissions to files and directories. The chmod command uses
two separate modes to assign permissions: symbolic mode and octal mode. Symbolic mode
uses a single letter to identify the category for the owner (u), group (g), everyone else (o),
and all (a). Following that, a plus sign, minus sign, or equal sign is used to indicate to add,
remove, or set the permissions. The permissions are also indicated by a single letter for read
(r), write (w), or execute (x) permissions. In octal mode an octal value is used to represent
the three permissions for each category. The three octal values define the full set of permis-
sions assigned to the file or directory.

Describe how Linux uses an access control list (ACL) to provide additional protection
to files and directories.   Linux allows you to set additional permissions for multiple users
and groups to each file and directory. The setfacl command provides an interface for you
to define read, write, and execute permissions for users or additional groups outside the
owner and primary group assigned to the file or directory. The getfacl command allows
you to view the additional permissions.

Describe how Linux uses context-based permissions for further file and directory
security.   Packages such as SELinux (for Red Hat–based distributions) and AppArmor
(for Debian-based distributions) provide role-based mandatory access control (RBMAC) to
enforce security permissions that override what the file or directory owner sets. The system
administrator can define policies (or profiles in AppArmor) that are evaluated by the Linux
kernel after any standard permissions or ACL rules are applied. You can fine-tune these per-
missions to control exactly what type of access the system allows to each individual file or
directory.

466  Chapter 15  ■  Applying Ownership and Permissions

Review Questions
1.	 What permissions can be applied to a file or directory? (Choose three.)

A.	 Read

B.	 Write

C.	 Delete

D.	 Modify

E.	 Execute

2.	 What user categories can be assigned permissions in Linux? (Choose three.)

A.	 Root

B.	 Owner

C.	 Group

D.	 Others

E.	 Department

3.	 Sam needs to allow standard users to run an application with root privileges. What special
permissions bit should she apply to the application file?

A.	 The sticky bit

B.	 The SUID bit

C.	 The GUID bit

D.	 Execute

E.	 Write

4.	 What are the equivalent symbolic mode permissions for the octal mode value of 644?

A.	 rwxrw-r--
B.	 -w--w--w-
C.	 -w-r--r--
D.	 rwxrw-rw-
E.	 rw-r—r--

5.	 Fred was assigned the task of creating a new group on the company Linux server and now
needs to assign permissions for that group to files and directories. What Linux utility should
he use to change the group assigned to the files and directories? (Choose all that apply.)

A.	 chgrp
B.	 chown
C.	 chmod
D.	 chage
E.	 ulimit

Review Questions  467

6.	 Sally needs to view the ACL permissions assigned to a file on her Linux server. What
command should she use?

A.	 ls -Z
B.	 ls -l
C.	 getfacl
D.	 chmod
E.	 setfacl

7.	 What SELinux mode tracks policy violations but doesn’t enforce them?

A.	 Disabled

B.	 Enforcing

C.	 Targeted

D.	 Permissive

E.	 MLS

8.	 Ted is tasked with documenting the SELinux security context assigned to a group of files in a
directory. What command should he use?

A.	 getsebool
B.	 setsebool
C.	 ls -Z
D.	 getenforce
E.	 ls -l

9.	 Mary is required to log into her Linux system as a standard user but needs to run an appli-
cation with administrator privileges. What commands can she use to do that? (Choose all
that apply.)

A.	 su
B.	 wheel
C.	 visudo
D.	 sudo
E.	 adm

10.	 What user groups are commonly used to assign privileges for group members to run
applications as the administrator? (Choose two.)

A.	 lp
B.	 adm
C.	 wheel
D.	 sudo
E.	 su

Looking at Access
and Authentication
Methods

✓✓ Objective 2.1: Summarize the purpose and use of security
best practices in a Linux environment.

✓✓ Objective 2.2: Given a scenario, implement identity
management.

✓✓ Objective 2.4: Given a scenario, configure and execute
remote connectivity for system management.

Chapter

16

Part of properly securing a system and its data involves
providing appropriate access and authentication methods.
There are many tools available to provide these services.

However, it is crucial to understand how they work and how to configure them
appropriately.

We’ll take a look at the various authentication and access methods, where their config-
uration files are stored, and how to properly configure them. We’ll cover some important
encryption and authentication topics as well.

Getting to Know PAM
Pluggable authentication modules (PAMs) provide centralized authentication services for
Linux and applications. Sun Microsystems started the Linux-PAM project in 1997 to explore
using pluggable authentication in a Linux environment. Today, PAM is typically used on all
Linux distributions.

PAM provides authentication libraries that compile into the application, becoming an
interface the application requiring authentication and an authentication method. It supports
lots of different underlying authentication libraries (called modules), including:

■■ Password: PAM supports using both the /etc/passwd and /etc/shadow password
files to authenticate using a text password.

■■ Certificate: PAM can use public key infrastructure (PKI) certificate stores to authenti-
cate users.

■■ Lightweight Directory Access Protocol (LDAP): PAM can connect to a centralized LDAP
server in an organization to support network logins.

■■ Kerberos: PAM supports the Kerberos authentication system, which issues a token to
clients when they log into the system. These tokens can then be used for authentication
on multiple network resources. This process is often referred to as single sign-on (SSO),
where you need to log in just once to access multiple resources on the network.

■■ Multifactor authentication (MFA): PAM supports several types of MFA environments,
such as biometrics, tokens, PKI, and onetime passwords emailed to users.

The beauty of PAM is that programs don’t need to change anything to utilize different authen-
tication methods—PAM controls that all with configuration files. Programs that use PAM ser-
vices are compiled with the PAM library, libpam.so, and have an associated PAM configuration
file. Applications that use PAM are called “PAM-aware.” You can quickly determine if a program
is PAM-aware by using the ldd command. A snipped example is shown in Listing 16.1.

Getting to Know PAM  471

Listing 16.1:  Using ldd to determine if application is PAM-aware

ldd /bin/login | grep libpam.so
 libpam.so.0 => /lib64/libpam.so.0 (0x00007fbf2ce71000)
#

In Listing 16.1, the ldd utility is employed to display all the program’s shared library
dependencies. The display output is piped into grep to search for only the PAM libpam
.so library. In this case, the application is compiled with the PAM library. Besides being com-
piled with the PAM libpam.so library, the application needs to have a configuration file
to use PAM.

Exploring PAM Configuration Files
PAM configuration files are located in the /etc/pam.d/ directory. Listing 16.2 shows this
directory’s files on a Rocky Linux distribution.

Listing 16.2:  Viewing the /etc/pam.d/ directory’s contents

$ ls /etc/pam.d/
atd gdm-fingerprint pluto su
chfn gdm-launch-environment polkit-1 sudo
chsh gdm-password postlogin sudo-i
cockpit gdm-pin remote su-l
config-util gdm-smartcard runuser system-auth
crond login runuser-l systemd-user
cups other smartcard-auth vlock
fingerprint-auth passwd sshd vmtoolsd
gdm-autologin password-auth sssd-shadowutils xserver
$

Notice in Listing 16.2 that there is a login configuration file. This file is displayed
snipped in Listing 16.3.

Listing 16.3:  Viewing the /etc/pam.d/login file’s contents

$ cat /etc/pam.d/login
#%PAM-1.0
[…]
auth include postlogin
account required pam_nologin.so
account include system-auth
password include system-auth
[…]
session optional pam_keyinit.so force revoke
[…]
$

472  Chapter 16  ■  Looking at Access and Authentication Methods

The records in a PAM configuration file have a specific syntax:

type control-flag pam-module [module-options]

The type (TYPE), sometimes called a context or module interface, designates a particular
PAM service type. The four PAM service types are shown in Table 16.1.

The PAM-MODULE portion of the /etc/pam.d/ configuration file record is simply the file-
name of the module that will be doing the work. For example, pam_nologin.so is shown
in the /etc/pam.d/login configuration file in Listing 16.3. Additional module options
can be included after the module’s filename.

A designated PAM-MODULE is called in the order in which it is listed within the PAM
configuration file. This is called the module stack. Each PAM-MODULE returns a status code,
which is handled via the record’s CONTROL-FLAG setting. Together these status codes and
settings create a final status, which is sent to the application. Table 16.2 lists the various con-
trol flags and their responses or actions.

TABLE 16 .1   TYPE in /etc/pam.d/ configuration file records

Interface Service description

account Implements account validation services, such as enforcing time-of-day restric-
tions as well as determining if the account has expired

auth Provides account authentication management services, such as asking for a
password and verifying that the password is correct

password Manages account passwords, such as enforcing minimum password lengths
and limiting incorrect password entry attempts

session Provides authenticated account session management for session start and
session end—such as logging when the session began and ended—as well as
mounting the account’s home directory, if needed

TABLE 16 .2   The CONTROL-FLAG settings for /etc/pam.d/ configuration file records

Control flag Description

include Adds status codes and response ratings from the designated PAM configura-
tion files into the final status.

optional Conditionally adds the module’s status code to the final status. If this is the
only record for the PAM service type, it is included. If not, the status code is
ignored.

requisite If the module returns a fail status code, a final fail status is immediately
returned to the application without running the rest of the modules within the
configuration file.

Getting to Know PAM  473

The /etc/pam.d/ configuration files’ module stack process of providing a final status
is a little confusing. A simplification to help you understand the progression is depicted in
Figure 16.1.

Using Figure 16.1 as a guide, imagine that the application subject (user) needs authenti-
cation to access the system. The appropriate /etc/pam.d/ configuration file is employed.
Going through the authentication module stack, the user passes through the various security
checkpoints. At each checkpoint, a guard (PAM module) checks a different requirement,
determines whether or not the user has the required authentication, and issues a fail or suc-
cess card. The final guard reviews the status cards along with their control flags listed on
a clipboard. This guard determines whether or not the subject may proceed through the
“System Access” doorway. Of course, keep in mind that if any of the checkpoints are listed
as requisite, and the user fails that checkpoint, they would be immediately tossed out.

F IGURE 16 .1   The PAM module stack process

Control flag Description

required If the module returns a fail status code, a final fail status will be returned to
the application, but only after the rest of the modules within the configuration
file run.

substack Forces the included configuration files of a particular type to act together
returning a single status code to the main module stack.

sufficient If the module returns a success status code and no preceding stack modules
have returned a fail status code, a final success status is immediately returned
to the application without running the rest of the modules in the configuration
file. If the module returns a fail status code, it is ignored.

474  Chapter 16  ■  Looking at Access and Authentication Methods

Enforcing Strong Passwords
When a password is modified via the passwd command, PAM is employed. These various
PAM modules can help to enforce strong passwords:

■■ pam_unix.so
■■ pam_pwhistory.so
■■ pam_pwquality.so

Typically you’ll find the pam_pwquality.so module installed by
default. However, for Ubuntu, you will need to manually install it. Use
an account with super user privileges and type sudo apt-get install
libpam-pwquality at the command line.

The pam_unix.so module performs authentication using account and password data
stored in the /etc/passwd and /etc/shadow files.

The pam_pwhistory.so module checks a user’s newly entered password against a his-
tory database to prevent a user from reusing an old password. The password history file,
/etc/security/opasswd, is locked down. Passwords are also stored salted and hashed,
using the same hashing algorithm employed for passwords stored in the /etc/shadow file.

To use the pam_pwhistory.so module, you must modify one of the /etc/pam.d con-
figuration files. Along with specifying the password type and the module name, you can set
one or more of the MODULE-OPTIONS listed in Table 16.3.

For Ubuntu, you need to put this configuration information in the /etc/pam.d/
common-password and /etc/pam.d/common-auth files. For other distributions, you
put this configuration in the system’s default /etc/pam.d/ files password-auth and
system-auth.

TABLE 16 .3   The MODULE-OPTIONS for password reuse prevention

Module option Description

enforce_for_root If this option is used, the root account must have its password
checked for reuse when resetting its password.

remember=N Designates that N passwords will be remembered. The default is 10,
and the maximum is 400.

retry=N Limits the number of reused password entries to N before returning
with an error. The default is 1.

Getting to Know PAM  475

If you directly modify the /etc/pam.d/password-auth and
system-auth files, they can be overwritten by the authconfig utility.
You can avoid this by creating a local file instead, such as password-
auth-local. Red Hat has an excellent description of how to accomplish
this task. Just use your favorite search engine and type Hardening Your
System with Tools and Services Red Hat to find this information.

A snipped example of the newly modified Rocky Linux /etc/pam.d/password-auth
file is shown in Listing 16.4.

Listing 16.4:  Viewing the modified /etc/pam.d/password-auth file

grep password /etc/pam.d/password-auth
[…]
password required pam_pwhistory.so
password sufficient pam_unix.so […] use_authtok
[…]
#

In Listing 16.4, the grep command is employed to search for PAM password type
records. The newly added pam_pwhistory.so module record uses a required control flag
and no options. Note that the next record is for the pam_unix.so module and it uses the
use_authtok option, which tells the module to use the password already entered instead
of prompting for it again. Typically, it is best to place the password history record directly
above this pam_unix.so record.

The pam_pwhistory.so module is not compatible with Kerberos and
LDAP. Before employing it, be sure to review its man pages.

Now that password history is being enforced, you can test it by trying to reset your pass-
word to the current password. A snipped example is shown in Listing 16.5.

Listing 16.5:  Trying to reuse an old password after password history is enforced

$ passwd
Changing password for user Christine.
Changing password for Christine.
(current) UNIX password:
New password:
BAD PASSWORD: The password is the same as the old one
[…]
passwd: Have exhausted maximum number of retries for service
$

476  Chapter 16  ■  Looking at Access and Authentication Methods

Using pam_pwquality.so, you can enforce rules for new passwords, such as setting a
minimum password length. You can configure needed directives in the /etc/security/
pwquality.conf file or pass them as module options. A snipped example of the file is
shown in Listing 16.6.

Listing 16.6:  Viewing the /etc/security/pwquality.conf file’s contents

$ cat /etc/security/pwquality.conf
Configuration for systemwide password quality limits
[…]
difok = 5
[…]
minlen = 9
[…]
dcredit = 1
[…]
$

The pam_pwquality.so module replaces the older, deprecated
pam_cracklib.so module. The modules act similarly. So if you are
familiar with the deprecated pam_cracklib.so, then you’ll recognize the
pam_pwquality.so configuration.

There are several password quality directives you can set in the pwquality.conf file.
Table 16.4 describes some common ones.

TABLE 16 .4   Common password quality directives in the pwquality.conf file

Directive Description

minlen = N Enforces the minimum number N of characters for a new password. (Default
is 9 and minimum allowed is 6.) The *credit settings affect this directive
as well.

dcredit = N If N is positive, adds N credits to password’s minlen setting for any
included digits. If N is negative, N digits must be in the password. (Default is
1.)

ucredit = N If N is positive, adds N credits to password’s minlen setting for any
included uppercase characters. If N is negative, N uppercase characters must
be in the password. (Default is 1.)

lcredit = N If N is positive, adds N credits to password’s minlen setting for any
included lowercase characters. If N is negative, N lowercase characters must
be in the password. (Default is 1.)

Getting to Know PAM  477

To help you understand Table 16.4’s credit directives, let’s focus on the dcredit setting.
If you set dcredit = -3, this means that three digits must be in the new password. If you
set dcredit = 3, this means that if there are three digits in the new password, the pass-
word required length minlen has now been reduced by three.

Once you have the pwquality.conf file directives completed, you’ll need to enable the
pam_pwquality.so module in the proper /etc/pam.d/ configuration file. This is similar
to how the pwhistory.so module is handled.

Locking Out Accounts
A brute-force attack occurs when a malicious user attempts to gain system access via trying
different passwords over and over again for a particular system account. To prevent these
attacks, you can lock out a user account after a certain number of failed attempts.

Be very careful when modifying PAM configuration files for user account
lockout. If they are configured incorrectly, you could lock out all accounts,
including your own and/or the root account.

The pam_tally2.so and pam_faillock.so modules allow you to implement
account lockout. Which one you choose depends on your distribution (for example,
pam_faillock is not installed by default on Ubuntu) as well as the various module options
you wish to employ.

The two modules share three key module options. They are as described in Table 16.5.

TABLE 16 .5   Key pam_tally2.so and pam_faillock.so module options

Module option Description

deny = N Locks account after N failed password entries. (Default is 3.)

silent Displays no informational messages to user.

unlock_time = N Unlocks a locked account after being locked for N seconds. If this option
is not set, an administrator must manually unlock the account.

Directive Description

ocredit = N If N is positive, adds N credits to password’s minlen setting for any
included other characters (not letters or numbers). If N is negative, N other
characters must be in the password. (Default is 1.)

difok = N Enforces the number N of characters that must be different in new pass-
word.

478  Chapter 16  ■  Looking at Access and Authentication Methods

On a current Ubuntu distribution, it is typically better to use the pam_tally2.so
module. Keep in mind that on a current CentOS distro, it may not work well. In Listing 16.7
a snipped display of a modified /etc/pam.d/common-auth file includes this module.

Listing 16.7:  Viewing an Ubuntu /etc/pam.d/common-auth file’s contents

$ cat /etc/pam.d/common-auth
auth required pam_tally2.so deny=2 silent
[…]
auth […] pam_unix.so nullok_secure
[…]
$

The pam_tally2.so configuration in Listing 16.7 allows only two failed login attempts
prior to locking the account. Also, it does not automatically unlock the account after a
certain time period.

On Ubuntu systems, the pam-auth-update utility is involved in
managing PAM modules. Before you modify PAM configuration files on
an Ubuntu system, it is a good idea to understand how this utility works.
Review its man pages for details.

The pam_tally2 command allows you to view failed login attempts. Listing 16.8 shows
an example of this on an Ubuntu distribution.

Listing 16.8:  Employing the pam_tally2 utility to view login failures

$ sudo pam_tally2
Login Failures Latest failure From
user1 4 11/08/19 16:28:14 /dev/pts/1
$

In Listing 16.8, the user1 account has four login attempt failures. Since the
pam_tally2.so module option is set to deny=2, the account is now locked. You cannot
unlock an account that has been locked by PAM via the usermod or passwd utility. Instead,
you have to employ the pam_tally2 command and add the -r (or --reset) and -u (or
--user) options as shown in Listing 16.9. This wipes out the login failure tally so that the
account is no longer locked out.

Listing 16.9:  Using the pam_tally2 utility to reset login failure tallies

$ sudo pam_tally2 -r -u user1
Login Failures Latest failure From
user1 4 11/08/19 16:28:14 /dev/pts/1
$
$ sudo pam_tally2
$

Getting to Know PAM  479

The pam_tally2.so module has useful module options in addition to
those shown in Table 16.5. Also, the pam_tally2 command has some
further helpful switches. These items share a man page. You can review it
by typing man pam_tally2 at the command line.

On a current Red Hat–based distribution, it is typically better to use the
pam_faillock.so module. Listing 16.10 shows a snipped display of a modified /etc/
pam.d/system-auth file that includes this module.

Listing 16.10:  Viewing a Rocky Linux /etc/pam.d/system-auth file’s contents

cat /etc/pam.d/system-auth
[…]
auth required pam_env.so
auth required pam_faillock.so preauth silent audit deny=2
auth required pam_faildelay.so delay=2000000
auth sufficient pam_unix.so nullok try_first_pass
auth [default=die] pam_faillock.so authfail audit deny=2
auth sufficient pam_faillock.so authsucc audit deny=2
[…]
account required pam_faillock.so
account required pam_unix.so
[…]
#

Notice in Listing 16.10 that there are four pam_faillock.so module records. In these
records are a few options and one control flag that have not yet been covered:

■■ preauth: If there have been a large number of failed consecutive authentication
attempts, block the user’s access.

■■ audit: If a nonexistent user account is entered, log the attempted account name.

■■ [default=die]: Returned code treated as a failure. Return to the application
immediately.

■■ authfail: Record authentication failure into the appropriate user tally file.

■■ authsucc: Identify failed authentication attempts as consecutive or nonconsecutive.

To have pam_faillock.so work correctly, you need to modify the password-auth
file as well and add the exact same records as were added to the Listing 16.10 file. It is also
located in the /etc/pam.d/ directory.

The faillock command allows you to view failed login attempts. Listing 16.11 shows
an example of this on a Rocky Linux distribution.

480  Chapter 16  ■  Looking at Access and Authentication Methods

Listing 16.11:  Using the faillock utility to view and reset login failure tallies

faillock
user1:
When Type Source Valid
2018-11-08 17:47:23 TTY tty2 V
2018-11-08 17:47:31 TTY tty2 V
#
ls -F /var/run/faillock
user1
#
faillock --reset --user user1
#
faillock
user1:
When Type Source Valid
#

Notice in Listing 16.11 that the faillock utility displays records for each failed login
attempt. In this case, since deny=2 is set, the user1 account is locked out. To unlock the
account, the faillock command is used again with the appropriate options. Another item
to note in Listing 16.11 is the /var/run/faillock directory. When the pam_faillock
.so module is configured, each user receives a failed login attempt tally file in this directory.
However, the file is not created until a login failure first occurs.

PAM Integration with LDAP

To allow multiple servers to share the same authentication database, many companies use
a network authentication system. Microsoft Active Directory is the most popular one used
today. However, in the open source world, Lightweight Directory Access Protocol (LDAP)
provides this service, with the favored implementation being the OpenLDAP package. Most
Linux distributions include both client and server packages for implementing LDAP in a
Linux network environment.

If you are using LDAP on your system, you can integrate it with PAM. The pam_ldap.so
module is the primary module for this purpose. It provides authentication and authoriza-
tion services as well as managing password changes for LDAP. The pam_ldap.so module’s
fundamental configuration file is the /etc/ldap.conf file.

Getting to Know PAM  481

You will need to modify the appropriate PAM configuration file(s). This may include manu-
ally editing the /etc/pam.d/system-auth file on a Red Hat–based system or using the
pam-auth-update utility on a Debian-based distribution to modify the /etc/pam.d/
common-* files. Depending on the system’s distribution, there may be additional configura-
tion activities for integrating PAM with LDAP. See your distribution-specific documentation
and/or man pages for more details.

Limiting Root Access
It is best to employ the sudo command (see Chapter 15, “Applying Ownership and Permis-
sions”) to gain super user privileges as opposed to logging into the root user account. Even
better is to have the root account disabled for login via its /etc/shadow file record. How-
ever, if you absolutely must log in to the root account, you can limit the locations where
this is done.

If properly configured, the pam_securetty.so PAM module and the /etc/securetty
file are used to restrict root account logins. They do so by limiting root logins only to devices
listed in the secure TTY file. A snipped listing of this file on an Ubuntu distro is shown in
Listing 16.12.

Listing 16.12:  Viewing the /etc/securetty file

$ cat /etc/securetty
/etc/securetty: list of terminals on which root is allowed to login.
See securetty(5) and login(1).
[…]
console

Local X displays […]
:0
:0.0
:0.1
[…]
Virtual consoles
tty1
tty2
tty3
tty4
[…]
$

482  Chapter 16  ■  Looking at Access and Authentication Methods

To understand the /etc/securetty file records, you need to know how TTY termi-
nals are represented. When you log into a virtual console, typically reached by pressing a
Ctrl+Alt+Fn key sequence, you are logging into a terminal that is represented by a /dev/
tty* file. For example, if you press Ctrl+Alt+F2 and log into the tty2 terminal, that terminal
is represented by the /dev/tty2 file. Notice that the /etc/securetty file records in List-
ing 16.12 only show the virtual console terminal name (e.g., tty4) and not its device file.

If you are in a terminal emulator or logged into a console terminal, you
can view your own process’s current terminal by entering tty at the
command line.

When you log into the system via its graphical interface, a who or w command’s output
will show something similar to :0 in your process’s TTY column. In Listing 16.12, you can
find records for those logins as well.

If you then open a terminal emulator program, you are opening a TTY terminal, called a
pseudo-TTY, that is represented by a /dev/pts/* file, such as /dev/pts/0. These TTY ter-
minals are not listed in the /etc/securetty file because the user has already logged into
the graphical environment.

If your system employs the pam_securetty.so module but there is no
/etc/securetty file, the root user can access the system via any device,
such as a console terminal or network interface. This is considered an
insecure environment.

The pam_securetty.so module is typically placed in either the /etc/pam.d/login
and/or the /etc/pam.d/remote configuration files. An example of this is shown snipped on
an Ubuntu distribution in Listing 16.13.

Listing 16.13:  Finding the files that use the pam_securetty.so module

$ grep pam_securetty /etc/pam.d/*
/etc/pam.d/login:auth […] pam_securetty.so
$

While this configuration will disable root account logins at tty* and :0
devices, it does not disable all root logins. The root account can still be
accessed via SSH utilities, such as ssh and scp. (SSH is covered later
in this chapter.) In addition, the su and sudo commands (covered in
Chapter 15) are not hampered from accessing the root account by this
PAM configuration.

On this Ubuntu distribution, only the login PAM configuration file includes the
pam_securetty.so module. Notice in Listing 16.13 that the PAM service type used for
this module is auth.

Exploring PKI Concepts  483

Exploring PKI Concepts
The primary purpose of cryptography is to encode data in order to hide it or keep it private.
In cryptography, plaintext (text that can be read by humans or machines) is turned into
ciphertext (text that cannot be read by humans or machines) via cryptographic algorithms.
Turning plaintext into ciphertext is called encryption. Converting text from ciphertext back
into plaintext is called decryption.

Cryptographic algorithms use special data called keys for encrypting and decrypting;
they are also called cipher keys. When encrypted data is shared with others, some of these
keys must also be shared. Problems ensue if a key from a trustworthy source is snatched
and replaced with a key from a nefarious source. The public key infrastructure (PKI)
helps to protect key integrity. The PKI is a structure built from a team of components that
work together to prove authenticity and validation of keys as well as the people or devices
that use them.

Getting Certificates
A few members of the PKI team are the certificate authority (CA) structure and CA-issued
digital certificates. After verifying a person’s identity, a CA issues a digital certificate to
the requesting person. The digital certificate provides identification proof along with an
embedded key, which now belongs to the requester. The certificate holder can now use
the certificate’s key to encrypt data and sign it using the certificate. This provides authen-
ticity and validation for those that will decrypt the data, especially if it is transmitted over
a network.

Digital certificates issued from a commercial CA take effort to obtain as well as money,
although progress is being made with open source CA sites, such as letsencrypt.org, that
offer free digital certificates. If you are simply developing a new application, are in its testing
phase, or are practicing for a certification exam, you can generate and sign your own certif-
icate. This type of certificate is called a self-signed digital certificate. While self-signed cer-
tificates are useful in certain situations, they should never be used in an Internet production
environment (although some organizations allow their use in Intranet applications).

Discovering Key Concepts
It is critical to understand cipher keys and their role in the encryption/decryption process.
Cipher keys come in two flavors:

Private Keys   Symmetric keys, also called private or secret keys, encrypt data using
a cryptographic algorithm and a single key. Plaintext is both encrypted and decrypted
using the same key, and it is typically protected by a password called a passphrase.
Symmetric key cryptography is very fast. Unfortunately, if you need others to decrypt
the data, you have to share the private key, which is its primary disadvantage.

http://letsencrypt.org

484  Chapter 16  ■  Looking at Access and Authentication Methods

Public/Private Key Pairs   Asymmetric keys, also called public/private key pairs, encrypt
data using a cryptographic algorithm and two keys. Typically the public key is used to
encrypt the data and the private key decrypts the data. The private key can be protected
with a passphrase and is kept secret. The public key of the pair is meant to be shared.

Asymmetric keys are used by system users as well as many applications, such as SSH.
Figure 16.2 provides a scenario of using a public/private key pair between two people.

Notice in Figure 16.2 that in order for Bob to encrypt data (a message in this case) for
Helen, he must use her public key. Helen in turn uses her private key to decrypt the data.
However, problems occur if Bob is not sure that he is really getting Helen’s public key. He
may be getting a public key from a nefarious user named Evelyn and accidentally send his
encrypted message to her. This is an on-path attack. Digital signatures, which are covered
later, help in this situation.

Securing Data
An important concept in PKI and cryptography is hashing. Hashing uses a one-way
mathematical algorithm that turns plaintext into a fixed-length ciphertext. Because it is one

F IGURE 16 .2   Asymmetric encryption example

Exploring PKI Concepts  485

way, you cannot “de-hash” a hashed ciphertext. The ciphertext created by hashing is called a
message digest, hash, hash value, fingerprint, or signature.

The beauty of a cryptographic message digest is that it can be used in data comparison.
For example, if hashing produces the exact same message digest for plaintext FileA and for
plaintext FileB, then both files contain the exact same data. This type of hash is often used
in cyberforensics.

Hashing is useful for things like making sure a large downloaded file was
not corrupted when it was being transferred. However, cryptographic
hashing must use an algorithm that is collision free. In other words, the
hashing algorithm cannot create the same message digest for two differ-
ent inputs. Some older hash algorithms, such as MD5, are not collision
free.

Be aware that simple message digests, called non-salted and non-keyed message digests,
are created only using the plaintext file as input. This hash can be strengthened by adding
salt, which is random data added along with the input file to protect the hash from certain
malicious attacks. A salted hash is used in the /etc/shadow file to protect passwords.

A keyed message digest is created using the plaintext file along with a private key. This
cryptographic hash type is strong against multiple malicious attacks and often employed in
Linux applications, such as SSH.

Signing Transmissions
Another practical implementation of hashing is in digital signatures. A digital signature is a
cryptographic token that provides authentication and data verification. It is simply a mes-
sage digest of the original plaintext data, which is then encrypted with a user’s private key
and sent along with the ciphertext.

The ciphertext receiver decrypts the digital signature with the sender’s public key so that
the original message digest is available. The receiver also decrypts the ciphertext and then
hashes its plaintext data. Once the new message digest is created, the data receiver can com-
pare the new message digest to the sent message digest. If they match, the digital signature is
authenticated, which means the encrypted data did come from the sender. Also, it indicates
that the data was not modified in transmission.

A malicious individual can intercept a signed transmission, replace the
ciphertext with new ciphertext, and add a new digital signature for that
data. Signing transmissions alone does not protect from an on-path
attack. It is best to employ this method along with digital certificates and
other security layers.

486  Chapter 16  ■  Looking at Access and Authentication Methods

Using SSH
When you connect over a network to a remote server, if it is not via an encrypted method,
network sniffers can view the data being sent and received. Secure Shell (SSH) has resolved
this problem by providing an encrypted means for communication. It is the de facto stan-
dard software used by those wishing to send data securely to/from remote systems.

SSH employs public/private key pairs (asymmetric) for its encryption. When an SSH con-
nection is being established between two systems, each sends its public key to the other.

Exploring Basic SSH Concepts
You’ll typically find OpenSSH (www.openSSH.com) installed by default on most
distributions. However, if for some reason you are unable to use basic SSH services, you
may want to check if the needed OpenSSH packages are installed (managing packages was
covered in Chapter 13, “Governing Software”). Table 16.6 shows the distributions used by
this book and their basic OpenSSH service package names.

To create a secure OpenSSH connection between two systems, use the ssh command. The
basic syntax is as follows:

ssh [options] username@hostname

If you attempt to use the ssh command and get a no route to host
message, first check if the sshd daemon is running. On a systemd
system, the command to use with super user privileges is systemctl
status sshd. If the daemon is running, check your firewall settings, which
are covered in Chapter 18, “Overseeing Linux Firewalls.”

For a successful encrypted connection, both systems (client and remote) must have the
OpenSSH software installed and the sshd daemon running. A snipped example is shown in
Listing 16.14 connecting from a Rocky Linux system to a remote openSUSE Linux server.

TABLE 16 .6   Various distros’ OpenSSH package names

Distribution OpenSSH package names

Rocky openssh, openssh-clients, openssh-server

Fedora openssh, openssh-clients, openssh-server

openSUSE openssh

Ubuntu openssh-server, openssh-client

http://www.openSSH.com

Using SSH  487

Listing 16.14:  Using ssh to connect to a remote system

$ ssh Christine@192.168.0.105
The authenticity of host '192.168.0.105 (192.168.0.105)' can't be established.
ECDSA key fingerprint is SHA256:BnaCbm+ensyrkflKk1rRSVwxHi4NrBWOOSOdU+14m7w.
ECDSA key fingerprint is MD5:25:36:60:b7:99:44:d7:74:1c:95:d5:84:55:6a:62:3c.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.0.105' (ECDSA) to the list of known hosts.
Password:
[…]
Have a lot of fun...
Christine@linux-1yd3:~> ip addr show | grep 192.168.0.105
 inet 192.168.0.105/24 […] dynamic eth1
Christine@linux-1yd3:~>
Christine@linux-1yd3:~> exit
logout
Connection to 192.168.0.105 closed.
$
$ ls .ssh
known_hosts
$

In Listing 16.14, the ssh command uses no options, includes the remote system account
username, and uses the remote system’s IPv4 address instead of its hostname. Note that you
do not have to use the remote system account username if the local account name is iden-
tical. However, in this case, you do have to enter the remote account’s password to gain
access to the remote system.

The OpenSSH application keeps track of any previously connected hosts in the ~/.ssh/
known_hosts file. This data contains the remote servers’ public keys.

The ~/ symbol combination represents a user’s home directory. You may
also see in documentation $HOME as the representation. Therefore, to
generically represent any user’s home directory that contains a hidden
subdirectory .ssh/ and the known_hosts file, it is written as ~/.ssh/
known_hosts or $HOME/.ssh/known_hosts.

If you have not used ssh to log in to a particular remote host in the past, you’ll get a
scary-looking message like the one shown in Listing 16.14. The message just lets you know
that this particular remote host is not in the known_hosts file. When you type yes at the
message’s prompt, it is added to the collective.

If you have previously connected to the remote server and you get a
warning message that says WARNING: REMOTE HOST IDENTIFICATION
HAS CHANGED, pay attention. It’s possible that the remote server’s public
key has changed. However, it may also indicate that the remote system is
being spoofed or has been compromised by a malicious user.

488  Chapter 16  ■  Looking at Access and Authentication Methods

The rsync utility, which was covered in Chapter 3, “Managing Files, Directories, and
Text,” can employ SSH to quickly copy files to a remote system over an encrypted tunnel. To
use OpenSSH with the rsync command, add the username@hostname before the destina-
tion file’s location. An example is shown in Listing 16.15.

Listing 16.15:  Using rsync to securely transfer a file over SSH

$ ls -sh Project4x.tar
40K Project4x.tar
$
$ rsync Project4x.tar Christine@192.168.0.105:~
Password:
$

In Listing 16.15, the Project4x.tar file is sent to a remote system using the rsync
command and OpenSSH. Notice that the remote system’s username and IP address has an
added colon (:). This is to designate that the file is being transferred to a remote system. If
you did not add the colon, the rsync command would not transfer the file. It would simply
rename the file to a name with Christine@ and tack on the IP address too.

After the colon, the file’s directory destination is designated. The ~ symbol indicates to
place the file in the user’s home directory. You could also give the file a new name, if desired.

You can also use the ssh command to send commands to a remote system. Just add the
command, between quotation marks, to the ssh command’s end. An example is shown in
Listing 16.16.

Listing 16.16:  Using ssh to send a command to a remote system

$ ssh Christine@192.168.0.105 "ls -sh Project4x.tar"
Password:
40K Project4x.tar
$

In Listing 16.16, the command checks if our file was properly transferred to the remote
system. The Project4x.tar file was successfully moved.

Configuring SSH
It’s a good idea to review the various OpenSSH configuration files and their directives.
Ensuring that your encrypted connection is properly configured is critical for securing
remote system communications. Table 16.7 lists the primary OpenSSH configuration files.

Using SSH  489

If you need to make SSH configuration changes, it is essential to know which configura-
tion file(s) to modify. The following guidelines can help:

■■ For an individual user’s connections to a remote system, create and/or modify the client
side’s ~/.ssh/config file.

■■ For every user’s connection to a remote system, create and modify the client side’s
/etc/ssh/ssh_config file.

■■ For incoming SSH connection requests, modify the /etc/ssh/sshd_config file on the
server side.

Keep in mind that in order for an SSH client connection to be successful,
besides proper authentication, the client and remote server’s SSH config-
uration must be compatible.

There are several OpenSSH configuration directives. You can peruse them all via the man
pages for the ssh_config and sshd_config files. However, there are a few vital directives
for the sshd_config file:

■■ AllowTcpForwarding: Permits SSH port forwarding. (See Chapter 8, “Comparing
GUIs.”)

■■ ForwardX11: Permits X11 forwarding. (See Chapter 8.)

■■ PermitRootLogin: Permits the root user to log in through an SSH connection. Typi-
cally, should be set to no.

■■ Port: Sets the port number the OpenSSH daemon (sshd) listens on for incoming con-
nection requests. (Default is 22.)

TABLE 16 .7   Primary OpenSSH configuration files

Configuration file Description

~/.ssh/config Contains OpenSSH client configurations. May be overridden by ssh
command options.

/etc/ssh/ssh_
config

Contains OpenSSH client configurations. May be overridden by ssh
command options or settings in the ~/.ssh/config file.

/etc/ssh/sshd_
config

Contains the OpenSSH daemon (sshd) configurations.

490  Chapter 16  ■  Looking at Access and Authentication Methods

An example of why you might change the client’s ssh_config or ~/.ssh/config file
is when the remote system’s SSH port is modified in the sshd_config file. In this case, if
the client-side configuration files were not changed to match this new port, the remote user
would have to modify their ssh command’s options. An example of this is shown snipped in
Listing 16.17. In this listing, the remote Ubuntu server has OpenSSH listening on port 1138,
instead of the default port 22, and the user must use the -p option with the ssh command
to reach the remote server.

Listing 16.17:  Using ssh to connect to a nondefault port on a remote system

$ ssh -p 1138 192.168.0.104
[…]
Christine@192.168.0.104's password:
Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-36-generic x86_64)
[…]
Christine@Ubuntu1804:~$
Christine@Ubuntu1804:~$ ip addr show | grep 192.168.0.104
 inet 192.168.0.104/24 […]
Christine@Ubuntu1804:~$
Christine@Ubuntu1804:~$ exit
logout
Connection to 192.168.0.104 closed.
$

To relieve the OpenSSH client users of this trouble, create or modify the ~/.ssh/config
file for individual users, or for all client users, modify the /etc/ssh/ssh_config file. Set
Port to 1138 in the configuration file. This makes it easier on both the remote users and the
system administrator.

Often system admins will change the OpenSSH default port from port
22 to another port. On public-facing servers, this port is often targeted
by malicious attackers. However, if you change the OpenSSH port on a
system using SELinux, you’ll need to let SELinux know about the change.
The needed change is often documented in the top of the /etc/ssh/
sshd_config file on SELinux systems.

Generating SSH Keys
Typically, OpenSSH will search for its system’s public/private key pairs. If they are not found,
OpenSSH automatically generates them. These key pairs, also called host keys, are stored in
the /etc/ssh/ directory in files. Listing 16.18 shows key files on a Fedora distribution.

Using SSH  491

Listing 16.18:  Looking at OpenSSH key files on a Fedora system

$ ls -1 /etc/ssh/*key*
/etc/ssh/ssh_host_ecdsa_key
/etc/ssh/ssh_host_ecdsa_key.pub
/etc/ssh/ssh_host_ed25519_key
/etc/ssh/ssh_host_ed25519_key.pub
/etc/ssh/ssh_host_rsa_key
/etc/ssh/ssh_host_rsa_key.pub
$

In Listing 16.18, both private and public key files are shown. The public key files end in
the .pub filename extension, whereas the private keys have no filename extension. The file-
names follow this standard:

ssh_host_KeyType_key

The key filename’s KeyType corresponds to the digital signature algorithm used in the
key’s creation. The different types you may see on your system are as follows:

■■ dsa
■■ rsa
■■ ecdsa
■■ ed25519

It is critical that the private key files be properly protected. Private key
files should have a 0640 or 0600 (octal) permission setting and be root
owned. However, public key files need to be world readable. File per-
missions were covered in Chapter 15, “Applying Ownership and Permis-
sions.”

There may be times you need to manually generate these keys or create new ones. In
order to do so, the ssh-keygen utility is employed. In Listing 16.19, a snipped example of
using this utility is shown on a Fedora system.

Listing 16.19:  Using ssh-keygen to create a new public/private key pair

$ sudo ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key
Generating public/private rsa key pair.
/etc/ssh/ssh_host_rsa_key already exists.
Overwrite (y/n)? y
Enter passphrase (empty for no passphrase):
Enter same passphrase again:

492  Chapter 16  ■  Looking at Access and Authentication Methods

Your identification has been saved in /etc/ssh/ssh_host_rsa_key.
Your public key has been saved in /etc/ssh/ssh_host_rsa_key.pub.
The key fingerprint is:
[…]
$

The ssh-keygen has several options. For the commands in Listing 16.19, only two are
employed. The -t option sets KeyType, which is rsa in this example. The -f switch des-
ignates the private key file to store the key. The public key is stored in a file with the same
name, but the .pub file extension is added. Notice that this command asks for a passphrase,
which is associated with the private key.

Authenticating with SSH Keys
Entering the password for every command employing SSH can be tiresome. However, you
can use keys instead of a password to authenticate. A few steps are needed to set up this
authentication method:

1.	 Log into the SSH client system.

2.	 Generate an SSH ID key pair.

3.	 Securely transfer the public SSH ID key to the SSH server computer.

4.	 Log into the SSH server system.

5.	 Add the public SSH ID key to the ~/.ssh/authorized_keys file on the server system.

Let’s look at these steps in a little more detail. First, you should log into the client system
via the account you will be using as the SSH client. On that system, generate the SSH ID key
pair via the ssh-keygen utility. You must designate the correct key pair filename, which is
id_TYPE, where TYPE is dsa, rsa, or ecdsa. An example of creating an SSH ID key pair on
a client system is shown snipped in Listing 16.20.

Listing 16.20:  Using ssh-keygen to create an SSH ID key pair

$ ssh-keygen -t rsa -f ~/.ssh/id_rsa
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/Christine/.ssh/id_rsa.
Your public key has been saved in /home/Christine/.ssh/id_rsa.pub.
[…]
$
$ ls .ssh/
id_rsa id_rsa.pub known_hosts
$

Using SSH  493

Notice in Listing 16.20 the key file’s name. The ssh-keygen command in this case gener-
ates a private key, stored in the ~/.ssh/id_rsa file, and a public key, stored in the
~/.ssh/id_rsa.pub file. You may enter a passphrase if desired. In this case, no passphrase
was entered.

Once these keys are generated on the client system, the public key must be copied to the
server system. Using a secure method is best, and the ssh-copy-id utility allows you to do
this. Not only does it copy over your public key, it also stores it in the server system’s
~/.ssh/authorized_keys file for you. In essence, it completes steps 3 through 5 in a
single command. A snipped example of using this utility is shown in Listing 16.21.

Listing 16.21:  Using ssh-copy-id to copy the SSH public ID key

$ ssh-copy-id -n Christine@192.168.0.104
[…]
Would have added the following key(s):

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCsP[…]
8WJVE5RWAXN[…]
=-=-=-=-=-=-=-=
$ ssh-copy-id Christine@192.168.0.104
[…]Source of key(s) to be installed: "/home/Christine/.ssh/id_rsa.pub"
[…]
Christine@192.168.0.104's password:

Number of key(s) added: 1
[…]
$

Notice in Listing 16.21 that the ssh-copy-id -n command is employed first. The -n
option allows you to see what keys would be copied and installed on the remote system
without actually doing the work (a dry run).

The next time the command is issued in Listing 16.21, the -n switch is removed. Thus,
the id_rsa.pub key file is securely copied to the server system, and the key is installed in
the ~/.ssh/authorized_keys file. Notice that when using the ssh-copy-id command,
the user must enter their password to allow the public ID key to be copied over to the server.

Now that the public ID key has been copied over to the SSH server system, the ssh
command can be used to connect from the client system to the server system with no need to
enter a password. This is shown along with using the scp command in Listing 16.22. Note
that at the IP address’s end, you must add a colon (:) when using the scp command to copy
over files.

494  Chapter 16  ■  Looking at Access and Authentication Methods

Listing 16.22:  Testing out password-less SSH connections

$ ssh Christine@192.168.0.104
Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-36-generic x86_64)
[…]
Christine@Ubuntu1804:~$ ls .ssh
authorized_keys known_hosts
Christine@Ubuntu1804:~$
Christine@Ubuntu1804:~$ exit
logout
Connection to 192.168.0.104 closed.
$
$ scp Project4x.tar Christine@192.168.0.104:~
Project4x.tar 100% 40KB 6.3MB/s 00:00
$
$ ssh Christine@192.168.0.104
Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-36-generic x86_64)
[…]
Christine@Ubuntu1804:~$ ls
Desktop Downloads Music Project4x.tar Templates
Documents examples.desktop Pictures Public Videos
Christine@Ubuntu1804:~$ exit
logout
Connection to 192.168.0.104 closed.
$

If your Linux distribution does not have the ssh-copy-id command, you
can employ the scp command to copy over the public ID key. In this case
you would have to manually add the key to the bottom of the ~/.ssh/
authorized_keys file. To do this you can use the cat command and the
>> symbols to redirect and append the public ID key’s standard output to
the authorized keys file.

Authenticating with the Authentication Agent
Another method to connect to a remote system with SSH is via the authentication agent.
Using the agent, you only need to enter your password to initiate the connection. After that,
the agent remembers the password during the agent session. A few steps are needed to set up
this authentication method:

1.	 Log into the SSH client system.

2.	 Generate an SSH ID key pair and set up a passphrase.

Using SSH  495

3.	 Securely transfer the public SSH ID key to the SSH server computer.

4.	 Log into the SSH server system.

5.	 Add the public SSH ID key to the ~/.ssh/authorized_keys file on the server system.

6.	 Start an agent session.

7.	 Add the SSH ID key to the agent session.

Steps 1 through 5 are nearly the same steps performed for setting up authenticating with
SSH ID keys instead of a password. One exception to note is that a passphrase must be cre-
ated when generating the SSH ID key pair for use with an agent. An example of setting up
an ECDSA key to use with an SSH agent is shown snipped in Listing 16.23.

Listing 16.23:  Generating and setting up an ID key to use with the SSH agent

$ ssh-keygen -t ecdsa -f ~/.ssh/id_ecdsa
Generating public/private ecdsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/Christine/.ssh/id_ecdsa.
[…]
$ ssh-copy-id -i ~/.ssh/id_ecdsa Christine@192.168.0.104
[…]
Number of key(s) added: 1
[…]
$

Once you have the key pair properly created with a passphrase on the remote system,
securely transmitted, and installed on the server’s authorized key file, you can employ the
ssh-agent utility to start an SSH agent session. After the session is started, add the private
ID key to the session via the ssh-add command. A snipped example of this is shown in
Listing 16.24.

Listing 16.24:  Starting an SSH agent session and adding an ID key

$ ssh-agent /bin/bash
[Christine@localhost ~]$
[Christine@localhost ~]$ ssh-add ~/.ssh/id_ecdsa
Enter passphrase for /home/Christine/.ssh/id_ecdsa:
Identity added: /home/Christine/.ssh/id_ecdsa (/home/Christine/.ssh/id_ecdsa)
[Christine@localhost ~]$
[Christine@localhost ~]$ ssh Christine@192.168.0.104
Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-36-generic x86_64)
[…]
Christine@Ubuntu1804:~$ exit

496  Chapter 16  ■  Looking at Access and Authentication Methods

logout
Connection to 192.168.0.104 closed.
[Christine@localhost ~]$
[Christine@localhost ~]$ exit
exit
$

Notice in Listing 16.24 that the ssh-agent command is followed by /bin/bash, which
is the Bash shell. This command starts a new session, an agent session, with the Bash shell
running. Once the private SSH ID key is added using the ssh-add command and entering
the private passphrase, you can connect to remote systems without entering a password or
passphrase again. However, if you exit the agent session and start it up again, you must re-
add the key and reenter the passphrase.

The ssh-add command allows you to remove ID in an agent session, if so
desired. Include the -d option to do so.

An SSH agent session allows you to enter the session one time and add the key, then con-
nect as often as needed to remote systems via encrypted SSH methods without entering a
password or passphrase over and over again. Not only does this provide security, it provides
convenience, which is a rare combination.

Using SSH Securely
There are a few things you can do to enhance SSH’s security on your systems:

■■ Use a different port for SSH than the default port 22.

■■ Disable root logins via SSH.

■■ Manage TCP Wrappers.

One item touched upon earlier in this chapter is not using port 22 as the SSH port for any
public-facing systems. You change this by modifying the Port directive in the /etc/ssh/
sshd_config file to another port number. Keep in mind that there are advantages and dis-
advantages to doing this. It may be a better alternative to beef up your firewall as opposed to
changing the default SSH port.

Another critical item is disabling root login via SSH. By default, any system that allows
the root account to log in and has OpenSSH enabled permits root logins via SSH. Because
root is a standard username, malicious attackers can use it in brute-force attacks. Since root
is a super user account, it needs extra protection.

To disable root login via SSH, edit the /etc/ssh/sshd_config file. Set the
PermitRootLogin directive to no, and either restart the OpenSSH service or reload its con-
figuration file.

TCP Wrappers are an older method for controlling access to network-based services.
If a service can employ TCP Wrappers, it will have the libwrap library compiled with it.

Using SSH  497

You can check for support by using the ldd command as shown snipped in Listing 16.25.
In this listing on an Ubuntu system, you can see that TCP Wrappers can be used by the
SSH service.

Listing 16.25:  Using the ldd command to check for TCP Wrappers support

$ which sshd
/usr/sbin/sshd
$
$ ldd /usr/sbin/sshd | grep libwrap
 libwrap.so.0 […]
$

TCP Wrappers employ two files to determine who can access a particular service. These
files are /etc/hosts.allow and /etc/hosts.deny. As you can tell by their names, the
hosts.allow file typically allows access to the designated service, while the hosts.deny
file commonly blocks access. These files have simple record syntax:

service: IPaddress…

The search order of these files is critical. For an incoming service request, the following
takes place:

■■ The hosts.allow file is checked for the remote IP address.

■■ If found, access is allowed, and no further checks are made.

■■ The hosts.deny file is checked for the remote IP address.

■■ If found, access is denied.

■■ If not found, access is allowed.

Because access is allowed if the remote system’s address is not found in either file, it is
best to employ the ALL wildcard in the /etc/hosts.deny file:

ALL: ALL

This disables all access to all services for any IP address not listed in the /etc/
hosts.allow file. Be aware that some distributions use PARANOID instead of ALL for the
address wildcard.

The record’s IPaddress can be either IPv4 or IPv6. To list individual IP addresses in the
hosts.allow file, you specify them separated by commas as such:

sshd: 172.243.24.15, 172.243.24.16, 172.243.24.17

Typing in every single IP address that is allowed to access the OpenSSH service is not
necessary. You can specify entire subnets. For example, if you need to allow all the IPv4
addresses in a Class C network access on a server, you specify only the first three address
octets followed by a trailing dot as such:

sshd: 172.243.24.

498  Chapter 16  ■  Looking at Access and Authentication Methods

TCP Wrappers were created prior to the time administrators used fire-
walls. While they are still used by some, their usefulness is limited, and
they are considered deprecated by many distributions. It is best to move
this protection to your firewall.

Using VPN as a Client
While SSH is great for securely connecting from a client to a server on the same local net-
work, it is not as useful for accessing a remote system over a public network. Fortunately,
virtual private networks (VPNs) work well in this situation. A VPN establishes a secure
encrypted connection between two systems on separate networks with a public network bet-
ween them. The encrypted connection acts as a separate private network, allowing you to
pass any type of data between the two systems securely. There are many different VPN pack-
ages available on Linux, such as OpenVPN.

When choosing software that will provide VPN as a client, it is vital to understand what
security methods a package employs. Making good VPN choices is critical for keeping your
virtual network private. In addition, you should consider the data packet transportation
method. When using a VPN, often UDP-based systems offer better performance over TCP-
based systems.

SSL/TLS   SSL/TLS is actually the same secure communication protocol. Originally it
was called SSL (Secure Sockets Layer). As the protocol advanced and improved through
time, the name was changed to TLS (Transport Layer Security). As long as you are using
a current version, this protocol provides secure data encryption over a network between
systems. Your VPN client application should use TLS 1.2 at a minimum. Earlier versions
of the protocol have known problems.

TLS is a stream-oriented protocol that prevents on-path attacks. It employs symmetric
encryption for the data and a public key for confirming the system’s identity. Data
includes a message authentication code to prevent alteration during transmission. In
addition, TLS has restrictions that curb captured data from being replayed at a later
time, called a replay attack.

Point-to-Point Tunneling Protocol (PPTP) is an older protocol that has
many documented weaknesses. It is vulnerable to on-path attacks, and
therefore any VPN client using this protocol should not be implemented
on your system.

DTLS   Datagram Transport Layer Security (DTLS) is also a secure communication
protocol, but it is designed to employ only UDP packets. Thus, it is sometimes known as
the UDP TLS. With TPC, which is a connection-based protocol, additional communica-
tion takes place to establish the connection. Because UDP is a connectionless protocol,

Exam Essentials  499

DTLS is faster, and it does not suffer the performance problems of other stream-based
protocols.

DTLS is based upon SSL/TLS, and it provides similar security protections. Thus, it is
favorable to use for VPN software.

IPSec   Internet Protocol Security (IPSec) is not a cryptographic protocol but a frame-
work that operates at the Network layer. By itself, it does not enforce a particular key
method or encryption algorithm. It is typically at a VPN application’s core.

It employs the Authentication Header (AH) protocol for authentication. IPSec also uses
the Encapsulating Security Payload (ESP) for authentication, data encryption, data integ-
rity, and so on. For key management, typically the Internet Security Association and Key
Management Protocol (ISAKMP) is employed, but it’s not required.

IPSec has two modes: tunnel mode and transport mode. In tunnel mode, all the data and
its associated headers added for transportation purposes (called a datagram) are pro-
tected. Thus, no one can see any data or routing information because the entire connec-
tion is secured. In transport mode, only the data is protected, and it is secured by ESP.

The OpenVPN package uses a custom protocol, sometimes called the
OpenVPN protocol. It does, however, use SSL/TLS for its key exchange.
This software product is multiplatform and does not have problems with
establishing VPNs through firewalls and NATs, like IPSec has known to
suffer. Therefore, the OpenVPN package is very popular.

There are many good choices for secure VPN clients. Creating a checklist of your environ-
ment’s required features is a good place to start.

Summary
Assessing your system’s and users’ needs for appropriate access and authentication methods
is vital for securing your system. Using the correct products and configuring them correctly
not only helps to keep systems secure, it provides less frustration for your users. It makes
your job easier as well.

Exam Essentials

Summarize various PAM modules and features.   PAM is a one-stop shop for various
applications to implement authentication services. For an application to use PAM, it must
be compiled with the libpam.so module and have an associated PAM configuration file.
The configuration files are located in the /etc/pam.d/ directory. Applications can enforce

500  Chapter 16  ■  Looking at Access and Authentication Methods

strong passwords employing any of the three PAM modules—pam_unix.so,
pam_pwhistory.so, and pam_pwquality.so (the latter of which was formerly called
pam_cracklib.so). PAM can also provide account lockouts to protect against brute-
force attacks. This is accomplished via the pam_tally.so or pam_faillock.so module,
depending on the system’s distribution. If your environment incorporates LDAP, it also can
be integrated with PAM. The PAM module to do so is the pam_ldap.so module.

Describe PKI and its components.   PKI protects cipher key integrity. This framework
includes the CA structure, which validates a person’s or device’s identity and provides a
signed digital certificate. The certificate includes a public key and can be sent to others so
they can verify that the public key is valid and does truly come from the certificate holder.
Self-signed certificates are available but should only be used for testing purposes. Symmetric
key encryption uses only a private key for both encrypting and decrypting data. Asymmetric
key encryption uses a public/private key pair, where commonly the public key is used for
encryption and the private key is used for decryption. Hashing data prior to encryption and
then encrypting the produced message digest allows you to add a digital signature to your
transmitted encrypted data. It provides a means of data integrity.

Explain the various SSH features and utilities.   The OpenSSH application provides SSH
services via the ssh command and sshd daemon. To configure SSH client connections,
you can either use ssh command-line options or employ the ~/.ssh/config or /etc/
ssh/ssh_config file. For the server side, the configuration file is /etc/ssh/
sshd_config. When you initially establish an SSH connection from a client to a remote
SSH server, the server’s key information is stored in the ~/.ssh/known_hosts file. If keys
need to be regenerated or you are setting up a password-less login, you can employ the
ssh-keygen utility to create the needed keys. When you are setting up a password-less
login, two files should be created, which are located in the ~/.ssh/ directory and named
id_rsa and id_rsa.pub. The public key is copied to the SSH server system and placed in
the ~/.ssh/authorized_keys file via the ssh-copy-id command. An alternative is to
use the ssh-agent and add the needed key via the ssh-add command.

Compare the various VPN client security implementations.   Typically used when needed
to traverse a public network, VPN software establishes a secure encrypted connection bet-
ween two systems. The protocols involved may be SLS/TLS, DTLS, and IPSec. The SLS/
TLS protocol is stream-oriented and protects against on-path attacks. DTLS only uses UDP
packets, which makes it faster than TCP packet-only protocols. IPSec operates at the Net-
work layer. It provides two modes—tunnel mode and transport mode. OpenVPN is the most
popular VPN software; it uses its own proprietary protocol but employs SLS/TLS for the
key exchange.

Review Questions  501

Review Questions
1.	 For an application to use PAM, it needs to be compiled with which PAM library?

A.	 ldd
B.	 pam_nologin.so
C.	 pam_unix.so
D.	 libpam
E.	 pam_cracklib

2.	 Which of the following are PAM control flags? (Choose all that apply.)

A.	 requisite
B.	 required
C.	 allowed
D.	 sufficient
E.	 optional

3.	 Which of the following will display failed login attempts? (Choose all that apply.)

A.	 tally2
B.	 pam_tally2
C.	 pam_tally2.so
D.	 pam_faillock
E.	 faillock

4.	 Leigh encrypts a message with Luke’s public key and then sends the message to Luke. After
receiving the message, Luke decrypts the message with his private key. What does this
describe? (Choose all that apply.)

A.	 Symmetric key encryption

B.	 Asymmetric key encryption

C.	 Public/private key encryption

D.	 Secret key encryption

E.	 Private key encryption

5.	 Which of the following best describes a digital signature?

A.	 Plaintext that has been turned into ciphertext

B.	 Ciphertext that has been turned into plaintext

C.	 A framework that proves authenticity and validation of keys as well as the people or
devices that use them

D.	 A digital certificate that is not signed by a CA but by an end user

E.	 An original plaintext hash, which is encrypted with a private key and sent along with the
ciphertext

502  Chapter 16  ■  Looking at Access and Authentication Methods

6.	 The OpenSSH application keeps track of any previously connected hosts and their public
keys in what file?

A.	 ~/.ssh/known_hosts
B.	 ~/.ssh/authorized_keys
C.	 /etc/ssh/known_hosts
D.	 /etc/ssh/authorized_keys
E.	 /etc/ssh/ssh_host_rsa_key.pub

7.	 Which of the following are OpenSSH configuration files? (Choose all that apply.)

A.	 ~./ssh/config
B.	 /etc/ssh/ssh_config
C.	 /etc/ssh/sshd_config
D.	 /etc/sshd/ssh_config
E.	 /etc/sshd/sshd_config

8.	 Which of the following files may be involved in authenticating with SSH keys?

A.	 /etc/ssh/ssh_host_rsa_key
B.	 /etc/ssh/ssh_host_rsa_key.pub
C.	 ~/.ssh/id_rsa_key
D.	 ~/.ssh/id_rsa_key.pub
E.	 ~/.ssh/id_rsa

9.	 Which of the following is true concerning TCP wrappers? (Choose all that apply.)

A.	 The /etc/hosts.allow file is consulted first.

B.	 The /etc/hosts.allow file should contain ALL: ALL to provide the best security.

C.	 If an application is compiled with the libwrap library, it can employ TCP Wrappers.

D.	 IP addresses of remote systems can be listed individually or as entire subnets.

E.	 TCP Wrappers are considered to be deprecated by many distributions, and firewalls
should be used instead.

10.	 Which of the following protocols or frameworks might be involved in using VPN software as
a client? (Choose all that apply.)

A.	 Tunnel

B.	 SSL/TLS

C.	 Transport

D.	 IPSec

E.	 DTLS

Implementing
Logging Services

✓✓ Objective 1.7: Given a scenario, manage software
configurations

Chapter

17

Lots of things happen on a Linux system while it’s running.
Part of your job as a Linux administrator is knowing just what
is happening and watching for when things go wrong. The pri-

mary tool for accomplishing that task is the logging service. All Linux distributions imple-
ment some type of logging service that tracks system events and stores them in log files.
This chapter explores the two most popular logging methods used in Linux distributions:
rsyslog and systemd-journald. First, the chapter explains Linux logging principles
to help give you an idea of what logging is all about. Then the chapter discusses both the
rsyslogd and the systemd-journald methods of generating logs.

Understanding the Importance
of Logging
All Linux distributions implement some method of logging. Logging directs short messages
that indicate what events happen, and when they happen, to users, files, or even remote hosts
for storage. If something goes wrong, the Linux administrator can review the log entries to
help determine the cause of the problem.

The following sections discuss the basics of how logging has been implemented in Linux
and show the main logging packages that you’ll most likely run into while working with var-
ious Linux distributions.

The syslog Protocol
In the early days of Unix, myriad logging methods were used to track system and application
events. Applications used different logging methods, making it difficult for system adminis-
trators to troubleshoot issues.

In the mid-1980s, Eric Allman defined a protocol called syslog for logging events from his
Sendmail mail application. The syslog protocol quickly became a standard for logging both
system and application events in Unix and made its way to the Linux world.

What made the syslog protocol so popular is that it defines a standard message format
that specifies the timestamp, type, severity, and details of an event. That standard can be used
by the operating system, applications, and even devices that generate errors.

The type of event is defined as a facility value. The facility defines what is generating the
event message, such as a system resource or an application. Table 17.1 lists the facility values
defined in the syslog protocol.

Understanding the Importance of Logging  505

As you can tell from Table 17.1, the syslog protocol covers many different types of events
that can appear on a Linux system.

Each event is also marked with a severity. The severity value defines how important the
message is to the health of the system. Table 17.2 shows the severity values as defined in the
syslog protocol.

TABLE 17.1   The syslog protocol facility values

Code Keyword Description

0 kern Messages generated by the system kernel

1 user Messages generated by user events

2 mail Messages from a mail application

3 daemon Messages from system applications running in background

4 auth Security or authentication messages

5 syslog Messages generated by the logging application itself

6 lpr Printer messages

7 news Messages from the news application

8 uucp Messages from the Unix-to-Unix copy program

9 cron Messages generated from the cron job scheduler

10 authpriv Security or authentication messages

11 ftp File Transfer Protocol application messages

12 ntp Network Time Protocol application messages

13 security Log audit messages

14 console Log alert messages

15 solaris-cron Another scheduling daemon message type

16-23 local0–local7 Locally defined messages

506  Chapter 17  ■  Implementing Logging Services

Combining the facility and severity codes with a short informational message provides
enough logging information to troubleshoot almost any problem in Linux.

The History of Linux Logging
Over the years there have been many open source logging projects for Linux systems. The
following have been the most prominent:

■■ Sysklogd: The original syslog application, this program includes two programs: the
syslogd program to monitor the system and applications for events and the klogd
program to monitor the Linux kernel for events.

■■ Syslogd-ng: This program added advanced features, such as message filtering and the
ability to send messages to remote hosts.

■■ Rsyslog: The project claims the r stands for rocket fast. Speed is the focus of the rsyslog
project, and the rsyslog application quickly became the standard logging package for
many Linux distributions.

■■ Systemd-journald: This is part of the Systemd application for system startup and ini-
tialization (see Chapter 6, “Maintaining System Startup and Services”). Many Linux
distributions are now using it for logging. It does not follow the syslog protocol but uses
a completely different way of reporting and storing system and application events.

The following sections dive into the details of the two most popular logging applications:
rsyslog and systemd-journald.

TABLE 17.2   The syslog protocol severity values

Code Keyword Description

0 emerg An event that causes the system to be unusable

1 alert An event that requires immediate attention

2 crit An event that is critical but doesn’t require immediate attention

3 err An error condition that allows the system or application to continue

4 warning A non-normal warning condition in the system or application

5 notice A normal but significant condition message

6 info An informational message from the system

7 debug Debugging messages for developers

Basic Logging Using rsyslog  507

Basic Logging Using rsyslog
The rsyslog application utilizes all of the features of the original syslog protocol, including
the configuration format and logging actions. The following sections walk you through how
to configure the rsyslog logging application and where to find the common log files it
generates.

Configuration
The rsyslog package uses the rsyslogd program to monitor events and log them as
directed, using the /etc/rsyslog.conf configuration file to define what events to listen for
and how to handle them. Many Linux distributions also use the /etc/rsyslog.d directory
to store individual configuration files that are included as part of the rsyslog.conf config-
uration. This allows separate applications to define their own log settings.

The configuration file contains rules that define how the program handles syslog events
received from the system, kernel, or applications. The format of an rsyslogd rule is
as follows:

facility.priority action

The facility entry uses one of the standard syslog protocol facility keywords. The
priority entry uses the severity keyword as defined in the syslog protocol, but with a twist.
When you define a severity, syslogd will log all events with that severity or higher (lower
severity code). Thus, the entry

kern.crit

logs all kernel event messages with a severity of critical, alert, or emergency. To log only mes-
sages with a specific severity, use an equal sign before the priority keyword:

kern.=crit

You can also use wildcard characters for either the facility or priority. The entry

*.emerg

logs all events with an emergency severity level.
The action entry defines what rsyslogd should do with the received syslog message.

The six action options you have available are as follows:

■■ Forward to a regular file

■■ Pipe the message to an application

■■ Display the message on a terminal or the system console

■■ Send the message to a remote host

■■ Send the message to a list of users

■■ Send the message to all logged-in users

508  Chapter 17  ■  Implementing Logging Services

Listing 17.1 shows the entries in the configuration file for an Ubuntu 20.04 system.

Listing 17.1:  The rsyslog.conf configuration entries for Ubuntu 20.04

auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
kern.* -/var/log/kern.log
mail.* -/var/log/mail.log
mail.err /var/log/mail.err
.emerg :omusrmsg:

The first entry shown in Listing 17.1 defines a rule to handle all auth and authpriv
facility type messages. This shows that you can specify multiple facility types by separating
them with commas. The rule also uses a wildcard character for the priority, so all severity
levels will be logged. This rule indicates that all security event messages will be logged to the
/var/log/auth.log file.

The second entry defines a rule to handle all events (*.*) except security events (the
.none priority). The event messages are sent to the /var/log/syslog file. The minus sign
in front of the filename tells rsyslogd not to sync the file after each write, increasing the
performance. The downside to this is if the system crashes before the next normal system
sync, you may lose the event message.

The kern.* entry defines a rule to store all kernel event messages in a separate log file,
located in the /var/log/kern.log file. This has become somewhat of a standard in Linux
distributions.

The *.emerg entry defines a rule to handle all emergency events. The omusrmsg
command indicates to send the event message to a user account on the system. By speci-
fying the wildcard character, this rule sends all emergency event messages to all users on
the system.

For comparison, Listing 17.2 shows the entries in the rsyslogd configuration file for a
Rocky Linux 8.5 system.

Listing 17.2:  The rsyslog.conf configuration file for Rocky Linux 8.5

*.info;mail.none;authpriv.none;cron.none /var/log/messages
authpriv.* /var/log/secure
mail.* -/var/log/maillog
cron.* /var/log/cron
.emerg :omusrmsg:
uucp,news.crit /var/log/spooler
local7.* /var/log/boot.log

Notice that Red Hat–based systems use the /var/log/messages file for informational
messages and the /var/log/secure file for security messages.

Basic Logging Using rsyslog  509

As you can guess, for busy Linux systems it doesn’t take long to generate
large log files. To help combat that, many Linux distributions install the
logrotate utility. It automatically splits rsyslogd log files into archive
files based on a time or the size of the file. You can usually identify
archived log files by the numerical extension added to the log filename.

Making Log Entries
If you create and run scripts on your Linux system (see Chapter 25, “Deploying Bash
Scripts”), you may want to log your own application events. You can do that with the
logger command-line tool:

logger [-isd] [-f file] [-p priority] [-t tag] [-u socket] [message]

The -i option specifies the process ID (PID) of the program that created the log entry
as part of the event message. The -p option allows you to specify the event priority. The
-t option allows you to specify a tag to add to the event message to help make finding the
message in the log file easier. You can specify the message either as text in the command line
or as a file using the -f option. The -d and -u options are advanced options for sending
the event message to the network. The -s option sends the event message to the standard
error output.

An example of using logger in a script would look like this:

$ logger This is a test message from rich

On an Ubuntu system, you can look at the end of the /var/log/syslog file to see the
log entry:

$ tail /var/log/syslog
...
Feb 8 20:21:02 myhost rich: This is a test message from rich

Notice that rsyslogd added the timestamp, host, and user account for the message. This
is a great troubleshooting tool!

Finding Event Messages
Generally, most Linux distributions create log files in the /var/log directory. Depend-
ing on the security of the Linux system, many log files are readable by everyone, but some
may not be.

As seen in Listing 17.1 and Listing 17.2, most Linux distributions create separate log files
for different event message types, although they don’t always agree on the log filenames.

It’s also common for individual applications to have a separate directory under the /var/
log directory for their own application event messages, such as /var/log/apache2 for the
Apache web server.

510  Chapter 17  ■  Implementing Logging Services

The easiest way to find the log files for your system is to examine the
/etc/rsyslog.conf configuration file. Just remember to also look for
additional configuration files in the /etc/rsyslog.d directory.

Since rsyslogd log files are text files, you can use any of the standard text tools available
in Linux, such as cat, head, tail, and, of course, vi to view them. One common trick for
administrators is to use the -f option with the tail command. That displays the last few
lines in the log file but then monitors the file for any new entries and displays those too.

While not part of rsyslogd, some Linux distributions also include the
lastb tool. It displays the event messages from the /var/log/wtmp log
file, used by many Linux distributions to log user logins.

Journaling with systemd-journald
The Systemd system services package includes the systemd-journald journal utility for
logging. Notice that we called it a journal utility instead of a logging utility. The systemd-
journald program uses its own method of storing event messages, completely different
from how the syslog protocol specifies.

The following sections discuss how to use the systemd-journald program to track
event messages on your Linux system.

Configuration
The systemd-journald service reads its configuration from the /etc/systemd/
journald.conf configuration file. When you examine this file, you’ll notice that there
aren’t any rules defined, only settings that control how the application works:

■■ The Storage setting determines how systemd-journald stores event messages. When
the setting is set to auto, it will look for the /var/log/journal directory and store
event messages there. If that directory doesn’t exist, it stores the event messages in the
temporary /run/log/journal directory, which is deleted when the system shuts down.
You must manually create the /var/log/journal directory for the event messages
to be stored permanently. If you set the Storage setting to persistent, systemd-
journald will create the directory automatically. When set to volatile, it only stores
event messages in the temporary directory.

■■ The Compress setting determines whether to compress the journal files.

Journaling with systemd-journald  511

■■ There are several file maintenance settings that control how much space the journal is
allowed to use as well as how often to split journal files for archive, based on either time
or file size.

■■ The ForwardToSyslog setting determines if systemd-journald should forward
any received messages to a separate syslog program, such as rsyslogd, running on the
system. This provides two layers of logging capabilities.

There are quite a few settings that allow you to customize exactly how
systemd-journald works in your system. For a full list and explanation of all the settings,
type man journald.conf at the command prompt.

Viewing Logs
The systemd-journald program doesn’t store journal entries in text files. Instead it uses
its own binary file format that works like a database. While this makes it a little harder to
view journal entries, it does provide for quick searching for specific event entries.

The journalctl program is our interface to the journal files. The basic format for the
journalctl command is as follows:

journalctl [options] [matches]

The options control data returned by the matches is displayed. Table 17.3 lists the
options available.

The matches parameter defines what type of journal entries to display. Table 17.4 lists
the matches available.

TABLE 17.3   The journalctl command options

Option Description

-a Displays all data fields

-e Jumps to the end of the journal and uses the pager utility to display the entries

-l Displays all printable data fields

-n number Shows the most recent number of journal entries

-r Reverses the order of the journal entries in the output

512  Chapter 17  ■  Implementing Logging Services

The journalctl command is great for when you are looking for specific event entries in
the journal; it allows you to filter out events using the matches and determine how to display
them using the options, as shown in Listing 17.3.

Listing 17.3:  Output from the journalctl command

[rich@localhost ~]$ journalctl -r _TRANSPORT=kernel
-- Logs begin at Fri 2019-02-08 12:47:04 EST, end at...
Feb 08 12:48:36 localhost.localdomain kernel: TCP: lp registered
Feb 08 12:48:17 localhost.localdomain kernel: fuse init (API version 7.22)
Feb 08 12:47:43 localhost.localdomain kernel: virbr0: port 1(virbr0-nic)
Feb 08 12:47:43 localhost.localdomain kernel: IPv6: ADDRCONF(NETDEV_UP)
Feb 08 12:47:43 localhost.localdomain kernel: virbr0: port 1(virbr0-nic)
Feb 08 12:47:35 localhost.localdomain kernel: e1000: enp0s8 NIC Link is Up
Feb 08 12:47:32 localhost.localdomain kernel: IPv6: ADDRCONF(NETDEV_CHANGE)
Feb 08 12:47:32 localhost.localdomain kernel: ip_set: protocol 6
Feb 08 12:47:32 localhost.localdomain kernel: IPv6: ADDRCONF(NETDEV_UP)
...

That makes digging through journal files much easier!
Exercise 17.1 walks you through monitoring the system logs in real time and watching as

you send a message to the logging facility on your Linux system.

TABLE 17.4   The journalctl matches parameter

Match Description

Fields Matches specific fields in the journal

Kernel Only displays kernel journal entries

PRIORITY=value Matches only entries with the specified priority

_UID=userid Matches only entries made by the specified user ID

_HOSTNAME=host Matches only entries from the specified host

_TRANSPORT=trans Matches only entries received by the specified transport method

_UDEV_SYSNAME=dev Matches only entries received from the specified device

OBJECT_PID=pid Matches only entries made by the specified application process ID

Summary  513

E X E R C I S E 17. 1  

Creating a Log or Journal Entry

This exercise demonstrates how to create a log or journal entry and view that entry in both
rsyslogd logs and systemd-journald journals.

1.	 Log into your Linux graphical desktop and open two new command prompt windows.
If you’re using virtual terminals, open two separate virtual terminal sessions.

2.	 Start monitoring the standard log file in one command prompt window or virtual
terminal session. On Ubuntu systems, use sudo tail -f /var/log/syslog. For Red
Hat–based systems such as Fedora, Rocky, and CentOS, use sudo tail -f /var/
log/messages.

3.	 In the second command prompt window or virtual terminal session, create a log event
by using the command logger This is a test log entry.

4.	 Observe the output in the first window or virtual terminal session. You should see the
new log entry appear at the end of the log file appropriate for your system.

5.	 Display the end of the journal by using the command journalctl -r. You should see
your log event message appear in the journal as well. Both Debian and Red Hat–based
systems use systemd-journald but also forward event messages to the rsyslogd
application, so you can often see events in both systems.

Summary
Logging events that occur on your Linux system or applications is crucial to being able
to troubleshoot problems. The Linux system has adopted the syslog protocol method for
handling event messages. The syslog protocol defines an event type, called the facility, and
an event severity. This helps you determine which events are important to act on and which
ones are just informational.

The rsyslogd logging application utilizes the syslog protocol to log system and applica-
tion events. The /etc/rsyslogd.conf configuration file controls what events are logged
and how they are logged. The rsyslogd application can log events to files, applications,
remote hosts, terminals, and even directly to users.

The Linux Systemd services package also includes its own method for logging
events called journaling. The systemd-journald application monitors the system and
applications for all events and sends them to a special journal file. The operation of
systemd-journald is controlled by the /etc/systemd/journald configuration file. You
must use the journalctl application to read events stored in the journal file.

514  Chapter 17  ■  Implementing Logging Services

Exam Essentials

Describe the logging protocol used by most Linux logging applications.   The syslog pro-
tocol has become the de facto standard for most Linux logging applications. It identifies
events using a facility code, which defines the event type, and a severity, which defines how
important the event message is. The sysklogd, syslogd-ng, and rsyslogd applications
all use the syslog protocol for managing system and application events in Linux.

Describe how the rsyslogd application directs events to specific locations.   The rsyslogd
application uses the /etc/rsyslogd.conf configuration file to define rules for handling
events. Each rule specifies a syslog facility and severity along with an action to take. Events
that match the facility and have a priority equal to or higher than the severity defined are
sent to the defined action. The action can be sending the event message to a log file, piping
the message to an application, or sending the event message to a remote host or to a user on
the system.

Explain how the Systemd service uses a different method for logging events.   The Systemd
service package uses the systemd-journald application, which doesn’t use the syslog pro-
tocol for logging events. Instead, systemd-journald creates its own binary journal files
for storing event messages. The binary journal file is indexed to provide faster searching for
events. The journalctl application provides the interface for sending search queries to the
journal files and displaying the search results.

Review Questions  515

Review Questions
1.	 What protocol became a de facto standard in Linux for tracking system event messages?

A.	 SMTP

B.	 FTP

C.	 NTP

D.	 syslog

E.	 journalctl

2.	 Nancy wants to write a rsyslogd rule that separates event messages coming from the
system job scheduler to a separate log file. Which syslog facility keyword should she use?

A.	 cron
B.	 user
C.	 kern
D.	 console
E.	 local0

3.	 What syslog severity level has the highest priority ranking in rsyslogd?

A.	 crit
B.	 alert
C.	 emerg
D.	 notice
E.	 err

4.	 What syslog severity level represents normal but significant condition messages?

A.	 crit
B.	 notice
C.	 info
D.	 alert
E.	 local0

5.	 What syslog application is known for its rocket-fast speed?

A.	 syslogd
B.	 syslog-ng
C.	 systemd-journald
D.	 klogd
E.	 rsyslogd

516  Chapter 17  ■  Implementing Logging Services

6.	 What configuration file does the rsyslogd application use by default?

A.	 rsyslog.conf
B.	 journald.conf
C.	 syslogd.conf
D.	 rsyslog.d
E.	 syslog.d

7.	 James needs to log all kernel messages that have a severity level of warning or higher to a
separate log file. What facility and priority setting should he use?

A.	 kern.=warn
B.	 kern.*
C.	 *.info
D.	 kern.warn
E.	 kern.alert

8.	 Barbara wants to ensure that the journal log files will be saved after the next reboot of her
Linux system. What systemd-journald configuration setting should she use?

A.	 Storage=auto
B.	 Storage=persistent
C.	 ForwardToSyslog=on
D.	 Storage=volatile
E.	 ForwardToSyslog=off

9.	 Katie wants to display the most recent entries in the journal log on her Linux system. What
journalctl option should she use?

A.	 -a
B.	 -l
C.	 -r
D.	 -e
E.	 -n

10.	 Tony is trying to troubleshoot errors produced by an application on his Linux system but has
to dig through lots of entries in the journal log file to find them. What journalctl match
option would help him by only displaying journal entries related to the specific application?

A.	 OBJECT_PID
B.	 Kernel
C.	 _TRANSPORT
D.	 _UID
E.	 _UDEV

Overseeing
Linux Firewalls

✓✓ Objective 2.3: Given a scenario, implement and
configure firewalls

Chapter

18

A firewall in a building is a fireproof wall that helps to prevent
fire from spreading throughout the structure. In computer secu-
rity, firewalls prevent the spread of unwanted, unauthorized, or

malicious network traffic.
Firewalls are implemented in different forms. You can provide layered security by using

multiple firewall structures. A firewall is either a hardware device or a software application,
network-based or host-based, and a network-layer or application-layer filter. In this chapter,
we’ll take a look at software application firewalls that are host-based and that operate at the
Network layer.

Providing Access Control
Firewalls provide access control to your system or network. An access control list (ACL)
implemented within a firewall identifies which network packets are allowed in or out. This is
often referred to as packet filtering.

Don’t confuse a firewall ACL with Linux file and directory ACLs, which
were covered in Chapter 15, “Applying Ownership and Permissions.”
Commands such as setfacl and getfacl are not associated with fire-
walls.

A firewall ACL identifies a network packet by reviewing its control information along
with other network data. This may include the following information:

■■ Source address

■■ Destination address

■■ Network protocol

■■ Inbound port

■■ Outbound port

■■ Network state

Once a network packet is identified, the firewall’s ACL rules also determine what happens
to that packet. The rules typically include the following actions:

■■ Accept

■■ Reject

Providing Access Control  519

■■ Drop

■■ Log

It’s important to distinguish between reject and drop. A reject action typically includes
a message sent back to the application sending the packet, whereas a drop action does not.
By dropping the network packet, the Linux system does not provide any information to a
potentially malicious outside attacker.

Firewall Logs

Logging firewall traffic is critical. Your organization’s requirements dictate the amount of
data to track. If your company must comply with regulations, such as the Health Insurance
Portability and Accountability Act (HIPAA) or the Payment Card Industry Data Security Stan-
dard (PCI DSS), the log data volume increases.

Besides compliance issues, firewall logs can be monitored, provide alerts, and/or take
needed actions to protect a system. These logs help determine if an attack is taking place.
Software utilities, such as Graylog’s open source product (www.graylog.com), allow you
to process firewall logs in real time.

Managing your firewall logs is a complex issue. The NIST Special Publication 800-92, Guide
to Computer Security Log Management, is a helpful publication that can guide your organi-
zation’s analysis requirements and determine what appropriate steps to take.

On Linux, the /etc/services file documents the different standard application ser-
vices names and their corresponding port numbers and protocols as well as any aliases.
This information is standardized by the Internet Assigned Numbers Authority (IANA). This
service catalog is used by various utilities such as the netstat network tool, and firewall
applications, such as UFW, to determine the appropriate port and protocol information for a
particular service.

Each non-comment record in the /etc/services file uses the following syntax:

ServiceName PortNumber/ProtocolName [Aliases]

By default port numbers 1 through 1023 are privileged ports. Only a super user can run
a service on a privileged port. Therefore, these designated ports help prevent malicious users
from setting up fake services on them.

http://www.graylog.com

520  Chapter 18  ■  Overseeing Linux Firewalls

The /etc/services file is not a configuration file. Most services have
configuration files, which allow you to change their default port if
desired. For example, the OpenSSH configuration file, /etc/ssh/
sshd_config, contains the Port directive, which is set to 22 by default,
and you can modify it, if needed.

Firewalls can operate in either a stateful or stateless manner. There are pros and cons to
both technologies:

Stateless   This technology is the older of the two. In this mode, the firewall focuses
only on individual packets. The firewall views each packet’s control information and
decides what to do with the packet based on the defined ACL rules. This simplicity
makes stateless firewalls fast.

However, because a stateless firewall does not track information such as active network
connections, network status, data flows, and traffic patterns, it is vulnerable to certain
malicious activity. This includes network attacks that spread themselves among mul-
tiple packets. In addition, a stateless firewall’s ACL rules are static. If an administrator
changes them, the firewall software typically must be restarted.

Stateful   This technology is the younger of the two. While it also employs packet fil-
tering, it does not treat packets as individuals, but instead as a team. It tracks active net-
work connections, such as TCP and UDP, and keeps an eye on network status. A stateful
firewall determines if packets have fragmented. Thus, it is not vulnerable to attacks that
spread themselves among multiple packets.

Stateful firewalls keep network information in memory. For example, when a TCP
connection’s first packet comes into a stateful firewall’s view, the firewall monitors
the connection process and tracks its states, such as SYN-SENT, SYN-RECEIVED,
and ESTABLISHED. Once the connection is made, the firewall creates a record in its
memory-based connection table. It uses this record for tracking the network connection.
Thus, instead of just using ACL rules for that connection’s packets, it employs the con-
nection table as well. This allows it to make faster decisions for established connections’
individual packets.

While the memory table allows faster access for established connections, building the
table’s record for new connections is slower. In addition, this makes the stateful firewall
more vulnerable to DDoS attacks than stateless ones.

Looking at Firewall Technologies
Embedded in the Linux kernel is netfilter. This software provides code hooks into the
kernel, which allow other packages to implement firewall technologies. From a functionality
standpoint, think of netfilter as a network sniffer that is planted in the Linux kernel and
offers up packet filtering services.

Looking at Firewall Technologies  521

The organization that maintains netfilter provides an informational website at
https://netfilter.org. They also manage the iptables firewall software, which
employs netfilter.

Another firewall technology that uses netfilter is firewalld. The newer firewalld
service allows modified filter rules to be updated dynamically with no need to restart the ser-
vice. For Red Hat–based distributions, if you configure your network environment during
the installation it will install the firewalld service by default.

Debian-based distributions use yet another firewall service that utilizes netfilter: the
Uncomplicated Firewall (UFW). This firewall configuration tool is an interface to the
netfilter firewall that provides easier rule management.

Although firewalld and UFW services provide easy-to-use interfaces to the netfilter
firewall, they have an additional layer that can slow down the packet filtering process. While
this is fine for most server environments, if you’re using Linux as a dedicated network fire-
wall, speed is of the essence. The nftable service provides low-level access to the netfilter
firewall similar to iptables but is not quite as complicated as iptables.

The following sections discuss each of these four firewall services.

Familiarizing Yourself with firewalld
The firewalld service provides packet filtering and user interfaces for the GUI environ-
ment and the command line. It offers support for IPv4 as well as IPv6, and much more. You
can find additional details from the firewalld official website at www.firewalld.org.

This firewall service is called the dynamic firewall daemon because you can change an
ACL rule without needing to restart the service. The rules are loaded instantaneously via its
D-Bus interface.

D-Bus is the message bus daemon. It provides communication services
between any two applications on a systemwide or per-session basis. It
can also register to be notified of events, making it a powerful commu-
nication tool. The firewalld service employs a dbus Python library
module to integrate D-Bus services.

A central part of firewalld is zones. Network traffic is grouped into a predefined rule
set, or zone. Each zone has a configuration file that defines this rule set, also called a trust
level. The traffic grouping can be a system’s network interface or a source address range,
which identifies traffic from other systems. Each network connection can be a member of
only one zone at a time.

By default, firewalld zone configuration files are stored in the /usr/lib/firewalld/
zones/ directory. Customized or user-created zone configuration files are stored in the
/etc/firewalld/zones/ directory. Table 18.1 shows the predefined zones on a system
employing firewalld. The zones are listed in the order of the least trusted to the most
trusted network connections.

https://netfilter.org
http://www.firewalld.org

522  Chapter 18  ■  Overseeing Linux Firewalls

The firewall-cmd utility allows you to view and interact with various firewalld
configuration settings. For example, to see all the predefined zones on a system, use the
--get-zones option, as shown on a Rocky Linux distribution in Listing 18.1.

Listing 18.1:  Viewing the predefined zones with the firewall-cmd command

$ firewall-cmd ––get-zones
block dmz drop external home internal public trusted work
$
$ ls /usr/lib/firewalld/zones
block.xml drop.xml home.xml public.xml work.xml
dmz.xml external.xml internal.xml trusted.xml
$

TABLE 18 .1   The predefined firewalld zones

Name Description

drop Drops all incoming network packets. Allows only outbound network connections.

block Accepts only network connections that originated on the system. Rejects
incoming network packets and sends an icmp-host-prohibited or
icmp6-adm-prohibited message back.

public Accepts only selected incoming network connections. Typically used in a public
setting, where other systems on the network are not trusted.

external Performs similar to public but is typically used on external networks, when
masquerading is enabled for the local systems.

dmz Performs similar to public but is used in a location’s demilitarized zone, which
is publicly accessible and has limited access to the internal network.

work Accepts only selected incoming network connections. Typically used in a work
setting, where other systems on the network are mostly trusted.

home Performs similar to work but is used in a home setting, where other systems on
the network are mostly trusted.

internal Performs similar to work but is typically used on internal networks, where other
systems on the network are mostly trusted.

trusted Accepts all network connections.

Looking at Firewall Technologies  523

The firewalld configuration files use Extensible Markup Language
(XML). Though you may be tempted to edit these files directly, it is better
to employ the firewalld utilities to modify and manage the firewall con-
figuration.

NetworkManager is also integrated with firewalld. Thus, when a new network device
is added via NetworkManager, firewalld automatically assigns it to the default zone.
The default zone is typically preset to the public zone, but it can be customized using
the firewall-cmd utility. You can view the system’s current default zone as shown
in Listing 18.2.

Listing 18.2:  Viewing the default zone with the firewall-cmd command

$ firewall-cmd --get-default-zone
public
$

If you need a different default zone, you can alter it. Just use super user privileges and
employ the ––set-default-zone=zone option.

You can also view all the currently active zones as well as their traffic grouping. Just
employ the ––get-active-zones switch as shown in Listing 18.3.

Listing 18.3:  Viewing the active zones with the firewall-cmd command

$ firewall-cmd ––get-active-zones
public
 interfaces: enp0s8
$

If desired, you can use the graphical firewalld configuration utility,
firewall-config, instead of using the command-line utility. Typically it
is easy to find this utility on firewalld systems by typing firewall into the
GUI’s search box.

Besides zones, firewalld also employs services. A service is a predefined configuration
set for a particular offered system service, such as DNS. The configuration information may
contain items such as a list of ports, protocols, and so on. For example, the DNS service con-
figuration set denotes that DNS uses both the TCP and UDP protocols on port number 53.
Listing 18.4 shows a snipped listing of the various predefined services on a Rocky
Linux distro.

524  Chapter 18  ■  Overseeing Linux Firewalls

Listing 18.4:  Viewing the predefined services with the firewall-cmd command

$ firewall-cmd ––get-services
[...]
amanda-client amanda-k5-client bacula bacula-client
[...]
dhcp dhcpv6 dhcpv6-client dns docker-registry
[...]
$
$ ls -1 /usr/lib/firewalld/services
amanda-client.xml
amanda-k5-client.xml
bacula-client.xml
bacula.xml
[...]
dhcp.xml
dns.xml
[...]
$

Using a firewalld service allows easier firewall configurations for a particular offered
system service, because you can simply assign them to a zone. An example is shown in
Listing 18.5.

Listing 18.5:  Assigning the DNS service to the dmz zone

firewall-cmd --add-service=dns --zone=dmz
success
#
firewall-cmd --list-services --zone=dmz
ssh dns
#

In an emergency situation, you can quickly disable all network traffic
via firewalld. Use super user privileges and issue the command
firewall-cmd ––panic-on at the command line. Once things have
calmed down, you can re-enable network traffic by typing firewall-cmd
––panic-off.

When you modify the firewalld configuration, by default you modify the runtime envi-
ronment. The runtime environment is the configuration actively employed by the
firewalld service.

The other firewalld environment is the permanent environment. This environment
is the firewall configuration stored within the configuration files. It is loaded when the
system boots (or when firewalld is restarted or reloaded) and becomes the active runtime
environment.

Looking at Firewall Technologies  525

Both of these firewalld environments have their place. The permanent environment
is useful for production, whereas the runtime configuration is useful for testing firewall
setting changes.

If you have tested firewall configuration changes in the runtime environment
and wish to make them permanent, it is easily done. Just issue the firewall-cmd
--runtime-to-permanent command using super user privileges. If you feel confident that
your runtime environment configuration modifications are correct, you can tack on
the --permanent option to the firewall-cmd command. This adds the changes to
both the runtime and permanent environment at the same time. See the man pages for the
firewall-cmd command for more information.

The iptables service should not run alongside firewalld. This is
easily shown on a systemd system. Use super user privileges and type
the systemctl show ––property=Conflicts firewalld command. You
will see iptables.service listed in the output as a conflict. Also, while
the iptables command is still available on many firewalld systems,
it should not be employed. Instead of the iptables command, use
either the firewall-cmd or firewall-config utility for setting up and
managing your firewall configuration. If you just cannot give up the past,
use the firewall-cmd command with its --direct switch. This allows
you to employ the firewalld direct interface and use commands similar
to iptables commands. Documentation notes that the direct interface
should be used only as a last resort.

Investigating iptables
The iptables firewall service uses a series process called chains to handle network packets
that enter the system. The chains determine the path each packet takes as it enters the Linux
system to reach the appropriate application. As an application sends packets back out to the
network to remote clients, these chains are also involved. Figure 18.1 shows different chains
involved with processing network packets on a Linux system.

Notice in Figure 18.1 that there are five separate chains to process packets:

PREROUTING

POSTROUTING

System processing

FORWARD

INPUT OUTPUT

F IGURE 18 .1   The packet processing chain

526  Chapter 18  ■  Overseeing Linux Firewalls

■■ PREROUTING handles packets before the routing decision process.

■■ INPUT handles packets destined for the local system.

■■ FORWARD handles packets being forwarded to a remote system.

■■ POSTROUTING handles packets being sent to remote systems, after the forward filter.

■■ OUTPUT handles packets output from the local system.

Each chain contains tables that define rules for handling the packets. There are five
table types:

■■ filter applies rules to allow or block packets from exiting the chain.

■■ mangle applies rules to change features of the packets before they exit the chain.

■■ nat applies rules to change the addresses of the packets before they exit the chain.

■■ raw applies a NOTRACK setting on packets that are not to be tracked.

■■ security applies mandatory access control rules.

Implementing network address translation (NAT) requires using the nat table to alter the
packets’ address in the OUTPUT chain. Implementing a firewall is a little trickier, as you apply
filter tables to the INPUT, OUTPUT, and FORWARD chains in the process. This provides
multiple locations in the process to block packets.

Each chain also has a policy value. The policy entry defines how a packet is han-
dled by default for the chain, when no rules apply to the packet. There are two different
policy values:

■■ ACCEPT: Pass the packet along to the next chain.

■■ DROP: Don’t pass the packet to the next chain.

The tool you use to view and alter the chains and filters in the iptables service is
the iptables command. Table 18.2 shows the commonly used iptables command-
line options.

TABLE 18 .2   The iptables command’s commonly used options

Option Description

-L [chain] Lists the rules in this chain. If chain is not specified, list all rules in all
chains.

-S [chain] Lists the rules’ details in this chain. If chain is not specified, list all
rules’ details in all chains.

[-t table] Applies the command to this table. If -t table is not specified, apply
the command to the filter table.

-A chain rule Adds this new rule to this chain.

Looking at Firewall Technologies  527

To quickly view the filter table’s chains and rules, use super user privileges and the
-L option on the iptables command. A snipped example on a Fedora system is shown in
Listing 18.6.

Listing 18.6:  Viewing the filter table’s chains and rules

$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT udp –– anywhere anywhere udp dpt:domain
[...]
Chain OUTPUT (policy ACCEPT)
target prot opt source destination
ACCEPT udp –– anywhere anywhere udp dpt:bootpc
OUTPUT_direct all –– anywhere anywhere
$

Notice that the -t filter option is not needed in this case. This is because the
iptables command applies commands to the filter table by default.

Keep in mind that you may see many more chains than the basic five
listed in Figure 18.1. This is especially true on a firewalld system. How-
ever, on a firewalld system, it is best to employ the firewall-cmd
command instead for accurate and detailed information.

If you want to block all packets leaving your Linux system, you would just change the
default OUTPUT chain to a DROP policy. Be careful here, because if you are using ssh to enter
your system, this will cause your connection packets to be dropped as well! Listing 18.7

Option Description

-I chain index
rule

Inserts this new rule to this chain at this index location.

-D chain rule Deletes this rule from this chain.

-R chain index
rule

Removes this rule from this chain at this index location.

-F [chain] Removes (flush) all rules from this chain. If chain is not specified,
remove all rules from all chains.

-P chain policy Defines this default policy for this chain.

528  Chapter 18  ■  Overseeing Linux Firewalls

shows a snipped example of blocking all outbound packets on a Fedora system. Notice how
the ping command operation is no longer permitted after this modification.

Listing 18.7  Employing the iptables command to drop all outbound packets

$ sudo iptables -P OUTPUT DROP
$
$ ping -c 3 192.168.0.105
PING 192.168.0.105 (192.168.0.105) 56(84) bytes of data.
ping: sendmsg: Operation not permitted
[...]
$ sudo iptables -P OUTPUT ACCEPT
$
$ ping -c 3 192.168.0.105
PING 192.168.0.105 (192.168.0.105) 56(84) bytes of data.
64 bytes from 192.168.0.105: icmp_seq=1 ttl=64 time=0.062 ms
[...]
$

In Listing 18.7, after the default OUTPUT chain is changed back to an ACCEPT policy, the
ping packets are permitted.

The iptables service firewall is managed by the iptables command
only for IPv4 packets. If you have IPv6 packets traversing your network,
you also have to employ the ip6tables command.

To change chain rules, you need to use some additional command-line options in the
iptables command. These rule options are shown in Table 18.3.

TABLE 18 .3   The iptables command’s commonly used chain options

Option Description

-d address Applies rule only to packets with this destination address

-s address Applies rule only to packets with this source address

-i name Applies rule only to packets coming in through the name network interface

-o name Applies rule only to packets going out through the name network interface

-p protocol Applies rule only to packets using this protocol, such as tcp, udp, or icmp

-j target Applies this target action (the rule) to the selected packets

Looking at Firewall Technologies  529

The -j option in Table 18.3 needs a little more explanation. This is the actual rule applied
to the identified packets. The most commonly used different target values are as follows:

■■ ACCEPT: Pass the packet along to the next chain.

■■ DROP: Don’t pass the packet to the next chain.

■■ REJECT: Don’t pass the packet, and send a reject notice to the sender.

Putting a rule together and adding it to a chain is a little tricky, so an example will help.
In snipped Listing 18.8, an Ubuntu system at IP address 192.168.0.104 is shown successfully
sending a ping to a remote Fedora system, whose IP address is 192.168.0.105.

Listing 18.8:  Sending a ping to a remote system successfully

$ ip addr show | grep 192.168.0.104
 inet 192.168.0.104/24 brd 192.168.0.255 [...] enp0s8
$
$ ping -c 1 192.168.0.105
PING 192.168.0.105 (192.168.0.105) 56(84) bytes of data.
64 bytes from 192.168.0.105: icmp_seq=1 ttl=64 time=0.305 ms

--- 192.168.0.105 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.305/0.305/0.305/0.000 ms
$

Now on the Fedora system, using super user privileges, the following command is issued:

sudo iptables -I INPUT 1 -s 192.168.0.104 -j REJECT

This new rule will be inserted (-I) into the INPUT chain’s filter table at index 1 (first rule
in the chain). Any packets coming from the source (-s) address of 192.168.0.104 (the
Ubuntu system) will be rejected (REJECT). Now that this rule is in place, when the Ubuntu
system tries to ping the Fedora system, it will fail, as shown in snipped Listing 18.9.

Listing 18.9:  Blocking a ping to a remote system that blocks the packets

$ ping -c 1 192.168.0.105
PING 192.168.0.105 (192.168.0.105) 56(84) bytes of data.
From 192.168.0.105 icmp_seq=1 Destination Port Unreachable

--- 192.168.0.105 ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

$

You aren’t stuck with the iptables’ default chains—you can actually
create your own. This is especially helpful if you’d like to employ the LOG
target to create log files of particular packets. Look in the man pages for
iptables as well as iptables-extensions for more details.

530  Chapter 18  ■  Overseeing Linux Firewalls

Although you don’t need to reload the iptables service to have new or modified rules
take effect, these rules have no persistency. In other words, if the system was rebooted or the
iptables service restarted, you would lose all those new or modified ACL rules.

As long as the iptables service is enabled to start at system boot, Red Hat and
Red Hat–based distributions, such as Fedora and Rocky Linux, will automatically load
iptables rules stored in these files:

■■ IPv4 rules: /etc/sysconfig/iptables
■■ IPv6 rules: /etc/sysconfig/ip6tables

Debian and Debian-based distributions, such as Ubuntu, need an additional software
package, iptables-persistent, installed and enabled. The files this package uses to load
persistent rules are as follows:

■■ IPv4 rules: /etc/iptables/rules.v4
■■ IPv6 rules: /etc/iptables/rules.v6

You won’t find these rule files for iptables service on the distribution
versions recommended for this book because they use newer firewall
technologies. If desired, you can use Fedora version 20 or older to play
with these iptables’ files.

If you need to save the current iptables rules, employ the iptables-save command.
This utility needs its output redirected to a file because by default, it sends the rules
to STDOUT.

To restore saved iptables rules, employ the iptables-restore command. This utility
needs its input redirected from a file. So, if you were testing an ACL change that was not
working well, you could quickly restore the iptables’ original rules. On an older Fedora
distribution, you use super user privileges and issue the iptables-restore < /etc/
sysconfig/iptables command to restore all the original IPv4 rules.

Exploring nftables
You may have noticed that the format to create rules in iptables can often get somewhat
complicated, especially compared to tools like firewalld. A good compromise is the
nftables service.

The nftables service provides low-level access to the netfilter chains similar to
iptables, making it extremely efficient and fast. However, the command syntax for
building rules in nftables has been simplified, making it easier to work with.

The nftables service utilizes the same concept of tables, chains, policies, and rules as
iptables. You can list the existing tables defined by using the list option of the nft
command, as shown in Listing 18.10.

Looking at Firewall Technologies  531

Listing 18.10:  Listing tables in nftables

$ sudo nft list tables
table ip filter
table ip6 filter
table bridge filter
table ip security
table ip raw
table ip mangle
table ip nat
table ip6 security
table ip6 raw
table ip6 mangle
table ip6 nat
table bridge nat
table inet firewalld
table ip firewalld
table ip6 firewalld
$

Notice in Listing 18.10 that in a Red Hat system the firewalld service creates its own
tables in netfilter, which nftables detects. To create a new table, use the add table
option in nft, as shown in Listing 18.11.

Listing 18.11:  Creating a new table using nftables

$ sudo nft add table ip rich
$ sudo nft list tables ip
table ip filter
table ip security
table ip raw
table ip mangle
table ip nat
table ip firewalld
table ip rich
$ sudo nft list table ip rich
table ip rich {
}
$

The add command created the table rich, but as Listing 18.11 shows, the table is empty
by default.

532  Chapter 18  ■  Overseeing Linux Firewalls

After you create a table, the next step is to create chains, which will contain the rules you
define for the firewall definitions. As you would expect, the add chain option does this. The
basic format for the add chain option looks like this:

nft add chain [family] table_name chain_name { type type hook
 hook priority value \; [policy policy \;] [comment \"text
comment\" \;] }

The type value can be filter, router, or nat (the same as in iptables), and the
hook value can be prerouting, input, forward, output, or postrouting (again the
same as in iptables). The priority value determines the order in which the chain is pro-
cessed; lower priority values are processed first. The policy value can be either accept or
drop. Listing 18.12 shows an example of creating a chain.

Listing 18.12:  Creating a new chain using nftables

$ sudo nft 'add chain ip rich test { type filter hook input
 priority 0; policy drop; }'
$ sudo nft list table ip rich
table ip rich {
 chain test {
 type filter hook input priority filter; policy drop;
 }
}
$

As seen in Listing 18.12, you must place single quotes around the add chain command.
The default policy for this chain is set to drop, so all incoming packets will be dropped,
unless they match a rule that says otherwise.

Once you have a chain created, you can define rules to apply to the chain using the add
rule option. The format for rules is one of the selling points of nftables. The format uses
simple syntax, similar to that used by the popular tcpdump monitoring program. List-
ing 18.13 shows an example of adding a rule for allowing SSH traffic.

Listing 18.13:  Adding a new rule using nftables

$ sudo nft 'add rule ip rich test tcp dport ssh accept'
$ sudo nft list table ip rich
table ip rich {
 chain test {
 type filter hook input priority filter; policy drop;
 tcp dport 22 accept
 }
}
$

Looking at Firewall Technologies  533

Listing 18.13 shows that the rule has been added to the test chain. You can then cre-
ate additional rules in the same chain, or create additional chains with different priorities to
contain additional rules.

To remove a rule from a table, use the flush table option:

$ sudo nft flush table rich
$ sudo nft list table ip rich
table ip rich {
 chain test {
 type filter hook input priority filter; policy drop;
 }
}
$

To remove a chain from a table use the delete chain option. To remove an entire table,
use the delete table option:

$ sudo nft delete table ip rich
$ sudo nft list tables ip
table ip filter
table ip security
table ip raw
table ip mangle
table ip nat
table ip firewalld
$

If you decide to use nftables for your firewall, it’s advisable to disable
any other firewall software, such as iptables, firewalld, or ufw. Since
they all use the same netfilter service, the rules in each firewall con-
figuration could conflict—or at least make things extremely complicated
when trying to sort out why things are being blocked or allowed.

Understanding UFW
The Uncomplicated Firewall (UFW) is the default firewall service on Ubuntu distributions. It
is configured with the ufw command-line utility or Gufw for the GUI.

534  Chapter 18  ■  Overseeing Linux Firewalls

By default, the UFW service is disabled. You start the service and set it to
start at boot time by using the sudo ufw enable command, but do not
use a system initialization tool, such as systemctl. This is because the
firewall services covered here are not traditional SysV or systemd ser-
vices but instead are interface services for the netfilter firewall. Thus,
if you choose to start UFW, be aware that neither the iptables nor the
firewalld service can be running.

There are several UFW commands that let you control the firewall’s state as well as view
its status. These commands are shown in Table 18.4. Each one requires super user privileges.

To view the current state of the UFW service, use sudo ufw status verbose if you
need more information than just status provides. Enabling the UFW firewall service and
viewing its current state is shown snipped in Listing 18.14.

Listing 18.14  Enabling UFW and viewing its status

$ sudo ufw enable
[...]
Firewall is active and enabled on system startup
$
$ sudo ufw status verbose
Status: active
Logging: on (low)
Default: deny (incoming), allow (outgoing), disabled (routed)
New profiles: skip
$

TABLE 18 .4   The ufw commands to control state and view status

Command Description

ufw enable Starts the UFW firewall and enables it to start at system boot

ufw disable Stops the UFW firewall and disables it from starting at system boot

ufw reset Disables the UFW firewall and resets it to installation defaults

ufw reload Reloads the UFW firewall

ufw status Displays the UFW firewall’s current state

Looking at Firewall Technologies  535

Viewing the verbose status of the UFW firewall provides information that helps to explain
its configuration:

■■ Status: UFW service is running and will start on system boot (active), or the services
stopped and a system boot does not change this (disabled).

■■ Logging: The service’s logging feature can be set to off; log all blocked packets (low),
which is the default; log all blocked, invalid, no-policy-match, and new connection
packets (medium) with rate limiting; log medium-log-level packets and all other packets
(high) with rate limiting; and log everything with no rate limits (full).

■■ Default: Shows the default policy for incoming, outgoing, and routed packets,
which can be set to either allow the packet, drop (deny) the packet, or reject the
packet and send a rejection message back.

■■ New profiles: Shows the default policy for automatically loading new profiles into
the firewall, which can be set to ACCEPT, DROP, REJECT, or SKIP, where ACCEPT is con-
sidered a security risk.

The various default UFW policies are stored in the /etc/default/ufw configuration
file. When first installed, these settings allow all outgoing connections and block all incoming
connections. You can make modifications to the firewall as needed using the ufw command
and its various arguments. A few common arguments are shown in Table 18.5.

When creating new UFW rules, you can use either simple or full syntax. Simple syntax
involves designating the rule using only the port number or its service name. You can also
add the protocol to the port number, as shown in Listing 18.15.

TABLE 18 .5   The ufw command’s commonly used arguments

Argument Description

allow Identifiers Sets the rule identified by Identifiers to allow packets

deny Identifiers Sets the rule identified by Identifiers to deny (drop) packets

reject Identifiers Sets the rule identified by Identifiers to reject packets

delete RULE | NUM Deletes the rule identified by RULE or NUM

insert NUM RULE Inserts the RULE at index NUM

default POLICY
DIRECTION

Modifies the default DIRECTION policy, where POLICY is allow,
deny, or reject, and direction is incoming, outgoing, or
routed

logging LEVEL Sets the logging level, where LEVEL is on, off, low (default),
medium, high, or full

536  Chapter 18  ■  Overseeing Linux Firewalls

Listing 18.15:  Using ufw simple syntax to add an ACL rule

$ sudo ufw allow 22/tcp
Rule added
Rule added (v6)
$
$ sudo ufw status
Status: active

To Action From
-- ------ ----
22/tcp ALLOW Anywhere
22/tcp (v6) ALLOW Anywhere (v6)

$

Notice that when the rule is added, that two rules were applied—one for IPv4 and one
for IPv6 packets. With full syntax, there are many options. For example, you can employ set-
tings such as those listed in Table 18.6.

TABLE 18 .6   The ufw command’s full syntax common settings

Setting Description

comment "string" Displays this comment for rejected traffic

in Applies rule only to incoming traffic

out Applies rule only to outgoing traffic

proto protocol Applies rule to this protocol

port port# Applies rule to this port#

from source Applies rule to traffic from this source, which may be a single IP
address, subnet, or any traffic

on interface Applies rule to traffic on this network interface

to destination Applies rule to traffic going to this destination, which may be a
single IP address, subnet, or any traffic

Looking at Firewall Technologies  537

You do not need to issue the ufw reload command after you add, delete,
or modify a rule. The change automatically takes effect.

You can specify a rule via a service name (e.g., telnet) with the ufw command. When
doing this, ufw checks the /etc/services file to determine the appropriate port and pro-
tocol information for that service.

An example of using the UFW full syntax is shown in Listing 18.16. In this case, network
packets coming from any systems in the 192.168.0.0 class C subnet will be denied access to
port 80 on this system.

Listing 18.16:  Using ufw full syntax to add an ACL rule

$ sudo ufw deny from 192.168.0.0/24 to any port 80
Rule added
$
$ sudo ufw show added
Added user rules (see 'ufw status' for running firewall):
ufw allow 22/tcp
ufw deny from 192.168.0.0/24 to any port 80
$$

View any user-added rules using the ufw show added command as shown in List-
ing 18.16. The UFW rules are stored in the /etc/ufw/ directory, and user-added rules are
placed into the user.rules file within that directory, as shown in Listing 18.17.

Listing 18.17:  Displaying the /etc/ufw/ directory’s contents

$ ls /etc/ufw/
after6.rules applications.d before.rules user6.rules
after.init before6.rules sysctl.conf user.rules
after.rules before.init ufw.conf
$

If you need to delete a rule, it’s easiest to do so by the rule number. First view the rules via
their numbers and then employ the ufw delete command, as shown in Listing 18.18.

Listing 18.18:  Deleting a rule via its number

$ sudo ufw status numbered
Status: active

 To Action From
 -- ------ ----
[1] 22/tcp ALLOW IN Anywhere
[2] 80 DENY IN 192.168.0.0/24

538  Chapter 18  ■  Overseeing Linux Firewalls

[3] 22/tcp (v6) ALLOW IN Anywhere (v6)

$
$ sudo ufw delete 2
Deleting:
 deny from 192.168.0.0/24 to any port 80
Proceed with operation (y|n)? y
Rule deleted
$

UFW uses profiles for common applications and daemons. These profiles are stored in the
/etc/ufw/applications.d/ directory. Use the ufw app list command to see the cur-
rently available UFW application profiles. An example is shown snipped in Listing 18.19.

Listing 18.19:  Viewing the available UFW application profiles

$ sudo ufw app list
Available applications:
 CUPS
 OpenSSH
$
$ sudo ufw app info OpenSSH
Profile: OpenSSH
Title: Secure shell server, an rshd replacement
Description: OpenSSH is a free implementation[...]

Port:
 22/tcp
$

You can also view detailed information on these profiles, as you can also see in List-
ing 18.19. The profiles not only provide application documentation but also allow you to
modify the ports and protocols used by the applications as well as create nontypical applica-
tion profiles for your system’s needs.

Do not modify the profiles in the /etc/ufw/applications.d/ directory.
Instead, create a subdirectory there and name it custom.d. This will pre-
vent your custom profiles from being overwritten during UFW software
package updates. See the ufw man pages for more details on profile
specifications.

Once you have created a new profile or updated an old one, use the ufw app update
all command to update UFW on the profile changes. Also, when using a profile to specify a
rule’s ports and protocols, you must employ app instead of port in your syntax for creating
new rules.

Dynamically Setting Rules  539

Forwarding IP Packets
There is a packet-forwarding feature in Linux. This feature is used for various purposes, such
as allowing Linux to forward packets to a remote host or for IP masquerading. You must
enable packet forwarding in the kernel prior to employing it. To enable that feature, just set
the ip_forward entry for IPv4 or the forwarding entry for IPv6. You can do that with the
sysctl command:

sudo sysctl –w net.ipv4.ip_forward=1
sudo sysctl -w net.ipv6.conf.all.forwarding=1

You can check the current kernel values by using the cat command in the /proc file-
system entries. If the files contain the number 1, the feature is enabled, as shown in List-
ing 18.20, and if it is disabled, the files will contain the number 0.

Listing 18.20:  Viewing the packet forwarding files

$ cat /proc/sys/net/ipv4/ip_forward
1
$ cat /proc/sys/net/ipv6/conf/all/forwarding
1
$

Once those kernel values are set, your Linux system is able to forward traffic from one
network interface to another network interface. If there are multiple network interfaces on
the Linux system, it knows which interface to use to send traffic to remote hosts via the rout-
ing table. Routing tables were covered in Chapter 7, “Configuring Network Connections.”

Dynamically Setting Rules
In protecting your system, it helps to have software that monitors the network and appli-
cations running on the system, looking for suspicious behavior. These applications are
called intrusion detection systems (IDSs). Some IDS applications allow you to dynamically
change rules so that these attacks are blocked. Two of those IDS programs are DenyHosts
and Fail2Ban.

Another helpful utility in your firewall toolbelt is one that allows you to quickly change
rules without having to type out long IP addresses or MAC addresses over and over again.
An IPset can help with this issue.

DenyHosts
The DenyHosts application is a Python script, which helps protect against brute-force
attacks coming through OpenSSH. The script can be run as a service or as a cron job.

540  Chapter 18  ■  Overseeing Linux Firewalls

It monitors sshd log messages in the distribution’s authentication log files, such as /var/
log/secure and /var/log/auth.log. If it sees repeated failed authentication attempts
from the same host, it blocks the IP address via the /etc/hosts.deny file.

To configure DenyHosts you modify its /etc/denyhosts.conf file. You also need to
have the TCP Wrappers files, /etc/hosts.allow and /etc/hosts.deny, ready to go.

DenyHosts works only with IPv4 OpenSSH traffic. For all others, you’ll
have to employ a different utility. Also, be aware that some distro repos-
itories claim DenyHosts is no longer being developed. Therefore, install
and use with caution.

Fail2Ban
The Fail2Ban service also monitors system logs, looking for repeated failures from the same
host. If it detects a problem, Fail2Ban can block the IP address of the offending host from
accessing your system. While DenyHosts works only with TCP Wrappers, Fail2Ban can work
with TCP Wrappers, iptables, firewalld, and so on.

The fail2ban-client program monitors both system and application logs, looking
for problems. It monitors common system log files such as the /var/log/pwdfail and
/var/log/auth.log log files, looking for multiple failed login attempts. When it detects a
user account that has too many failed login attempts, it blocks access from the host the user
account was attempting to log in from.

A great feature of Fail2Ban is that it can also monitor individual application log files,
such as the /var/log/apache/error.log log file for the Apache web server. Just as with
the system log files, if Fail2Ban detects too many connection attempts or errors coming from
the same remote host, it will block access from that host.

The /etc/fail2ban/jail.conf file contains the Fail2Ban configuration. It defines
the applications to monitor, where their log files are located, and what actions to take if it
detects a problem.

The downside to using Fail2Ban is that it can have false positives that
detect a problem when there really isn’t one. This can cause it to block
a valid client from accessing the system. Fortunately, Fail2Ban is robust
enough that you can configure it to release the block after a set time to
allow the client to reconnect correctly.

IPset
An IPset is a named set of IP addresses, network interfaces, ports, MAC addresses, or sub-
nets. By creating these sets, you can easily manage the groupings through your firewall and
any other application that supports IPsets.

Dynamically Setting Rules  541

The ipset utility is used to manage IPsets and requires super user privileges. When you
create an IPset, you need to first determine what name you will give it. After that, decide
how you want the IPset to be stored. Your storage choices are bitmap, hash, or list. There
are two ways to create an IPset via the ipset command:

ipset create IPset-Name storage-method:set-type
ipset -N IPset-Name storage-method:set-type

An example of creating a subnet IPset and adding members to it on a Rocky Linux distri-
bution is shown in Listing 18.21.

Listing 18.21:  Creating and populating a subnet IPset

ipset create BadGuyNets hash:net
#
ipset add BadGuyNets 1.1.1.0/24
ipset -A BadGuyNets 2.2.0.0/15
#

Once you have completed your IPset population, you can review your handiwork. Just
employ the ipset list command as shown snipped in Listing 18.22.

Listing 18.22:  Viewing a subnet IPset

ipset list
Name: BadGuyNets
Type: hash:net
[...]
Members:
1.1.1.0/24
2.2.0.0/15

Once it’s created and populated, block the IPset in either your iptables or firewalld
ACL rules. To make the IPset persistent, you save it via the ipset save command and redi-
rect its STDOUT to the /etc/ipset.conf file or use the -f option.

After you create an IPset, you need to start the ipset service. However,
you may not find a service file to start or enable on systemd systems.
Therefore, if your distribution uses systemd, you will need to either cre-
ate an ipset.service file or obtain one from a reliable source.

You can delete a single item from your named IPset by using the ipset del command.
To remove the entire IPset, you’ll need to destroy it, as shown in Listing 18.23.

542  Chapter 18  ■  Overseeing Linux Firewalls

Listing 18.23:  Deleting a subnet IPset

ipset destroy BadGuyNets
#
ipset list
#

Only the firewalld and iptables service commands directly support
IPset. However, you can use IPset with UFW, but it takes a little more
work. You must modify the before.init and after.init scripts within
the /etc/ufw/ directory. Find out more information about these scripts
in the man pages for ufw-framework.

Summary
Properly managing your system’s firewall application and its packet filtering ACL is vital
for securing your system. To do this, you must understand the underlying framework of the
firewall software, how to modify its ACL rules, and what additional applications can be used
alongside it to block malicious network traffic. Using the correct products and properly con-
figuring them not only helps to keep systems secure but makes your job easier as well.

Exam Essentials

Summarize various firewall features.   A firewall ACL identifies which network packets are
allowed in or out. A stateless firewall views each packet’s control information and decides
what to do with the packet based on the defined ACL rules. A stateful firewall tracks active
network connections, such as TCP and UDP; keeps an eye on network status; and can
determine if packets have fragmented. Firewalls employ the /etc/services file, which
documents the different standard application services names and their corresponding port
numbers, protocols, and aliases.

Describe firewalld and its commands.   For the firewalld service, network traffic is
grouped into a zone, which is a predefined rule set. Each zone has a configuration file that
defines this rule set, also called trust levels. The firewalld zone configuration files are
stored in the /usr/lib/firewalld/zones/ directory. Customized or user-created zone
configuration files are stored in the /etc/firewalld/zones/ directory. For firewalld,
a service is a predefined configuration set for a particular service, such as DNS. When you
modify the firewalld configuration, by default you modify the runtime environment,
which is the active situation. The permanent environment is the firewall settings within
the configuration files. The firewall-cmd utility allows you to view and interact with
firewalld.

Exam Essentials  543

Describe iptables and its commands.   The iptables firewall service uses a series process
called chains to handle network packets that enter the system. The chains determine the path
each packet takes to the appropriate application as it enters the Linux system. Each chain
has a policy value and contains tables that define rules for handling the packets. ACL rules
in iptables have target values for identified packets, which determine the action taken on
them. The iptables command allows you to view and interact with various iptables
configuration settings.

Describe UFW and its commands.   The Uncomplicated Firewall (UFW) is the default
firewall service on Ubuntu distributions. It is configured with the ufw command-line
utility or the Gufw for the GUI. Default UFW policies are stored in the /etc/default/
ufw configuration file. When creating new UFW rules, you can use either simple or full
syntax. User-added UFW rules are stored in the /etc/ufw/user.rules file. UFW uses
profiles for common applications and daemons, and they are stored in the /etc/ufw/
applications.d/ directory.

Explain how to dynamically change packet filtering.   The DenyHosts application is a
Python script, which helps protect against brute-force attacks coming through OpenSSH. It
monitors sshd log messages and modifies the /etc/hosts.deny file to block an identified
attack. The Fail2Ban service also monitors system logs, looking for repeated failures from
the same host. If it detects a problem, Fail2Ban blocks the IP address of the offending host.
An IPset is a named set of IP addresses, network interfaces, ports, MAC addresses, or sub-
nets. By creating these sets, you can easily block the groupings through a firewall.

544  Chapter 18  ■  Overseeing Linux Firewalls

Review Questions
1.	 Which of the following is true concerning firewalls on Linux that were covered in this

chapter? (Choose all that apply.)

A.	 They use ACLs for allowing packets.

B.	 They detect malicious behavior.

C.	 They inspect network packet control information.

D.	 They use iptables embedded in the Linux kernel.

E.	 They employ configuration files for persistency.

2.	 Which of the following options best describes packet filtering?

A.	 Identifying network packets via their control information and allowing them into the
system

B.	 Identifying network packets via their control information and determining what to do
based on ACL rules

C.	 Identifying network packets via their payload and determining what to do based on ACL
rules

D.	 Identifying network packets by their source address and determining what to do based
on ACL rules

E.	 Identifying network packets by their payload and determining what to do based on their
source address

3.	 Which of the following are benefits of a stateful firewall over a stateless firewall? (Choose all
that apply.)

A.	 It operates faster.

B.	 It is not as vulnerable to DDoS attacks.

C.	 It determines if packets are fragmented.

D.	 It operates faster for established connections.

E.	 It is vulnerable to DDoS attacks.

4.	 The firewalld service uses _____ , which is a predefined rule set.

A.	 netfilter
B.	 firewall-cmd
C.	 Services

D.	 reject
E.	 Zones

Review Questions  545

5.	 Peter, a Linux system administrator, has been testing a new firewalld configuration. The
test was successful. What should Peter do next?

A.	 Using super user privileges, issue the reboot command.

B.	 Using super user privileges, issue the firewall-cmd --panic-on command.

C.	 Nothing. If the test was successful, the runtime environment is the permanent environ-
ment.

D.	 Issue the firewall-cmd --runtime-to-permanent command using super user
privileges.

E.	 Issue another firewall-cmd command, but add the --permanent option to it.

6.	 Peter is a Linux system administrator of a system using the iptables service. He wants to add
a rule to block only incoming ping packets and not send a rejection message to the source.
What command should he employ?

A.	 sudo iptables -P INPUT DROP
B.	 sudo iptables -A INPUT -p icmp -j REJECT
C.	 sudo iptables -A INPUT -p icmp -j DROP
D.	 sudo iptables -D INPUT -p icmp -j DROP
E.	 sudo iptables -A OUTPUT -p icmp -j REJECT

7.	 Which of the following commands will allow you to view the various rules in a UFW firewall
with their associated numbers?

A.	 sudo ufw show numeric
B.	 sudo ufw status
C.	 sudo ufw status verbose
D.	 sudo ufw status numbered
E.	 sudo ufw enable

8.	 Which of the following is an example of UFW simple syntax for blocking all incoming and
outgoing OpenSSH connections without providing a blocking message?

A.	 sudo ufw deny 22/tcp
B.	 sudo ufw drop 22/tcp
C.	 sudo ufw reject 22/tcp
D.	 sudo ufw accept 22/tcp
E.	 sudo ufw block 22/tcp

9.	 Which of the following are true concerning both DenyHosts and Fail2Ban? (Choose all
that apply.)

A.	 It is an intrusion detection system (IDS).

B.	 It modifies the /etc/hosts.deny file.

C.	 It only handles OpenSSH traffic.

D.	 Its configuration file is named jail.conf.

E.	 It can work with TCP Wrappers, iptables, and firewalld.

546  Chapter 18  ■  Overseeing Linux Firewalls

10.	 Virginia is administering a Linux system with a firewall. She has already set up an IPset and
named it BlockThem. A new attack has begun to occur from the 72.32.138.96 address.
Along with super user privileges, what command should she issue to add this IPv4 address to
the IPset?

A.	 ipset create BlockThem hash:net
B.	 ipset -n BlockThem hash:net
C.	 ipset save -f /etc/ipset.conf
D.	 ipset -A BlockThem 72.32.138.0/24
E.	 ipset add BlockThem 72.32.138.96

Embracing Best
Security Practices

✓✓ Objective 2.1: Summarize the purpose and use of security
best practices in a Linux environment

Chapter

19

In this chapter we’ll explore some of the common practices
used to make your Linux system more secure. Fortunately,
many knowledgeable Linux administrators have blazed a trail

for us to follow to implement good security practices on our Linux systems. This chapter
divides these practices into three categories: user security, system security, and
network security.

User Security
While a great deal of work is spent in trying to keep unauthorized users out of Linux sys-
tems, as the Linux administrator you need to worry about the authorized users as well. The
following sections discuss techniques you can use on your Linux system to help identify
authorized users, know what they are doing, and provide easier access to network resources
after a user authenticates on a server.

Authentication Methods
The standard user ID/password combination has been used for decades in server environ-
ments. However, there are limitations to the user ID/password authentication method:

■■ Users might share their user ID and password with others.

■■ Passwords generated by users can often be easy to guess.

■■ Each server has its own database of user IDs and passwords. Users who need to log into
multiple servers must present their user ID and password multiple times.

Because of some of these limitations, Linux administrators have been using other authen-
tication methods. We’ll examine those you’ll come across on the Linux+ exam.

Kerberos
Students at MIT developed the Kerberos project to support the single sign-on (SSO) concept
on networks. With SSO, you need to log into the network only once to access any server on
the network. Three pieces are involved with the Kerberos authentication process:

■■ Authentication server (AS): Users log into the AS to initiate the authentication process.
The AS acts as the traffic cop, directing the login process through the multiple Kerberos
servers involved.

User Security  549

■■ Key distribution center (KDC): The AS passes the login request to the KDC, which
issues the user a ticket-granting ticket (TGT) and maintains it on the server. The TGT
has a timestamp and time limit for how long the ticket is valid. The KDC encrypts the
ticket to make it harder to duplicate or impersonate valid tickets.

■■ Ticket-granting service (TGS): After the KDC issues the user a ticket, the user can log
into servers on the network that support the Kerberos system. When the user attempts
to log into a server, that server contacts the TGS to determine if the user’s ticket is valid.
If the ticket is valid, the server uses the kinit utility to store the ticket in a creden-
tials cache, which maintains any tickets used to log into the server. To view the tickets
contained in the server’s credentials cache, use the klist command.

Kerberos centralizes the authentication process but still requires individual servers to
maintain their own database of the objects on the server that the user account has access to.
That itself can become complicated when working with multiple servers on a network.

LDAP
This is where the Lightweight Directory Access Protocol (LDAP) comes into play. LDAP
utilizes a hierarchical tree database structure to store information about both network users
and resources. Network administrators can enter permissions for various network resources
into the LDAP database structure. When a user account requests access to a resource on a
server, the server accesses the centralized LDAP database to determine if it should grant the
user access to the resource. This provides a centralized authorization database for all of the
servers in a network.

One nice feature of LDAP is that you can distribute the LDAP database among multiple
servers on the network. Each server can contain either a part of the LDAP database tree or
a copy of the entire tree. This can help speed up the lookup process, especially for networks
that are geographically separated.

While you can use LDAP for user authentication, many network admin-
istrators implement a combination of Kerberos for authentication and
LDAP for resource authorization. This utilizes the strengths of both pack-
ages and is the model on which Microsoft’s Active Directory is built.

RADIUS
As its name suggests, the Remote Authentication Dial-In User Service (RADIUS) protocol is
somewhat of an old authentication technology. It was originally created to provide central-
ized authentication services for dial-up bulletin board servers. However, its simplicity and
ease of implementation make it a popular option for modern authentication applications
requiring a simple authentication approach. You’ll commonly find RADIUS authentication
servers in network environments for authenticating network access, such as the IEEE 802.1x
authentication protection on network switches.

550  Chapter 19  ■  Embracing Best Security Practices

The RADIUS protocol allows an authentication server to authenticate not only the
user account but also other information about the user, such as a network address, phone
number, and access privileges. Though not as versatile as LDAP, it can provide some basic
database features for authentication to multiple devices on the network.

TACACS+
The Terminal Access Controller Access-Control System (TACACS) defines a family of pro-
tocols that provide remote authentication in a server environment. The original TACACS
authentication protocol was popular in the early days of Unix systems.

The original TACACS protocol uses a centralized authentication server to authenticate
user accounts from a single database server. Each server on a network submits the authen-
tication request individually to the centralized server, requiring users to log into each server
separately, even though there’s a common authentication database.

Cisco Systems updated the original TACACS protocol and called the
update TACACS+. The TACACS+ protocol incorporates full authentication,
authorization, and accounting features and also encrypts all data as it
traverses the network.

Multifactor Authentication
The user ID/password method of authenticating user accounts has been around for a long
time and is ripe with problems. There’s nothing to prevent a user from sharing their user ID
and password with others, allowing them to log into the system and perform actions.

Over the years other login methods have been developed to help provide a more secure
login environment. The idea of two-factor authentication requires a user to have two
pieces of information to log into a system: something they know (such as a password)
and something they possess. There are a few different types of possessions that two-factor
authentication utilizes:

■■ Biometrics: The most basic form of two-factor authentication is biometrics. Biometrics
uses a physical feature that you have to authenticate you. This includes features such as
fingerprints, iris scanning, and even facial recognition.

■■ Tokens: Digital tokens store a digital ID as an encrypted file. You must present the file
to the server to gain authorization to access the server. Tokens can be hardware tokens,
which are often stored on USB devices, such as thumb drives, or they can be software
tokens, files that reside on the network device.

■■ Public key infrastructure (PKI): PKI adds a level of complexity and security to tokens by
incorporating an asynchronous key environment. In an asynchronous key system, two
token keys are used together: a private key and a public key. The private key uniquely
matches its public key, and no other key will match. The user maintains control over
their private key but can share the public key with any server that requires it for login.

User Security  551

The user then presents the private key to the server for login. The server matches the
private key presented to the public key stored on the server.

■■ One-time password: With the one-time password setup, you log into a server using your
standard user ID and password, but then the server sends an additional password to
the email address or text message that’s on file for your user account. You must have
access to that account to receive the additional password and apply it to the login. This
ensures that the login attempt is being performed by the person who has control over
the account.

Unique User Accounts
The key to any type of security plan is to know what your authorized users are doing. This
helps in detecting rogue users purposely doing harm to the system, and it can help in detect-
ing novice users who accidentally do wrong things.

The main goal of monitoring users is nonrepudiation. Nonrepudiation means that every
action a user takes can be tracked back to that exact user. So that every action on the system
can be attributed to a specific user, every user must log in with a unique user account.
The various Linux system logs will track the actions that user account takes and when
they’re taken.

Don’t allow users to share their user accounts with others, and under no circumstances
should you assign the same user account to more than one person. This ensures that you
know what user to question when you see inappropriate actions tagged to a specific user
account appear in the system log files. That may not end the problem, but at least it gives
you a starting point in troubleshooting the issue.

Enforce Strong Passwords
Password-based authentication is only as good as the passwords your system users use.
Good security practices mandate that user passwords should be complex and change at a
regular interval. Unfortunately, on their own most users prefer to not use complex pass-
words, nor change them at any regular interval. Fortunately, Linux provides a few ways for
you to force your system users to follow good security practices with their passwords.

Chapter 10, “Administering Users and Groups,” introduced the /etc/login.defs con-
figuration file, which defines how the system handles user passwords. Using this file, you can
define some basic security settings for passwords with the following settings:

■■ PASS_MAX_DAYS: The number of days until a password change is required

■■ PASS_MIN_DAYS: The number of days after a password is changed until the password
may be changed again

■■ PASS_MIN_LENGTH: The minimum number of characters required in a password

■■ PASS_WARN_AGE: The number of days a warning is issued to the user prior to a
password’s expiration

552  Chapter 19  ■  Embracing Best Security Practices

These settings apply to the length and age of a password but not to the complexity level.
For that, you need to use features in the pluggable authentication modules (PAM) authenti-
cation services (see Chapter 16, “Looking at Access and Authentication Methods”).

As mentioned in Chapter 16, the PAM system provides libraries that control how the
Linux system authenticates user accounts for access. Each library uses settings that customize
the method and process used to authenticate users. Defining password complexity rules is
one of those library settings.

The pwquality.so library defines password rules that apply to the system user accounts.
By adding this library to the PAM rules, you can set additional password rules above what
the standard /etc/login.defs settings define.

The pwquality.so library is installed by default in Red Hat–based
distributions, but you must install it in Debian-based distributions.
For Debian-based distributions, such as Ubuntu, install the
libpam-pwquality software package.

In Red Hat–based distributions, you define the password quality settings in the
/etc/pam.d/system-auth configuration file. For Debian-based distributions, you define
them in the /etc/pam.d/common-password file. In both files the quality settings are
defined on this line:

password requisite pam_pwquality.so

The settings are added at the end of the line, in this format:

directive=value

Table 19.1 shows the standard password directives available in the pwquality
.so library.

TABLE 19 .1   PAM password standard directives

Directive Description

difok Specifies the number of character changes in a new password from
the old password

enforce_for_root Specifies if the password enforcement rules apply to the root user
account

maxrepeat Specifies the maximum number of characters that can repeat

minlen Specifies the minimum password length

reject_username Rejects a password if it contains the username spelled either for-
ward or in reverse

retry Specifies the number of password attempts that are allowed

User Security  553

You’ll notice in Table 19.1 that these directives don’t include any password com-
plexity directives. The complexity setting directives work a bit differently, using a concept
called credits.

With credits you define one or more types of password requirements, such as uppercase
letters, lowercase letters, numbers, or special characters, and then define how many of each
type the user passwords must contain (for example, one uppercase letter, two lowercase
letters, and one number). This system allows passwords to be any length, as long as
the mandated types and quantities are present, and in any order. Table 19.2 shows the
pwquality.so complexity directives.

The credit directives are somewhat odd in that you specify the values as negative num-
bers. For example, to specify a complexity rule that requires at least one numeric character,
two lowercase characters, and one uppercase character, you’d use the rule

password requisite pwquality.so dcredit=-1 lcredit=-2
ucredit=-1

The required characters can appear anywhere in the password, and there can be more
than the specified minimum present in the password value.

Restricting the Root Account
The root user account is important in that it has complete privileges over all aspects of the
Linux system. It’s imperative that you protect who can use the root user account and where
they can use it from.

There are several security best practices for helping restrict just how the root user account
is used on your Linux system. The following sections discuss some basic security ideas you
should think about.

TABLE 19 .2   The PAM password complexity directives

Directive Description

dcredit Number of numeric characters

lcredit Number of lowercase characters

ocredit Number of special characters

ucredit Number of uppercase characters

554  Chapter 19  ■  Embracing Best Security Practices

Completely Blocking Root Access
The su and sudo commands allow any user account to perform administrative jobs without
actually logging in as the root user account. This is better because they provide a way of log-
ging who is performing those administrative tasks. With the su and sudo commands, there
may not even be a reason to allow the root user account to log in at all.

To prevent anyone from logging into the Linux system as the root user account, you can
use a trick that involves the /etc/passwd file. The /etc/passwd file maintains several
pieces of information about user accounts, including the shell that Linux runs when the user
account logs into the system. The trick of locking out a user account is to replace the default
Bash shell assigned to the root user account with the /usr/sbin/nologin shell, like this:

root:x:0:0:root:/root:/usr/sbin/nologin

The nologin shell doesn’t produce a usable shell; it just displays a message on
the console:

$ /usr/sbin/nologin
This account is currently not available.
$

When you assign that as a user’s shell, the account can’t log into the system but just sees
the output message. Setting this for the root user account prevents it from being able to log
in, but the su command will still work just fine.

The /usr/sbin/nologin utility is also handy for securing service
accounts. Applications that need to continually run in background mode,
such as web and database servers, need to log into the system but not to
a Bash shell. Best security practices mandate that individual applications
each use their own login account (called a service account) rather than
log in as the root user account, thus limiting the damage that an attacker
can do if an application is compromised. The best way to restrict service
accounts is to assign the /usr/sbin/nologin shell as their default login
shell in the /etc/passwd file.

Blocking Root Access from Specific Devices
For Linux systems that use a console physically attached to the system, you may want to
block anyone from walking up to the system and logging in as the root user account.

To do this, create an /etc/securetty file on the system. The /etc/securetty file lists
all the devices the root user account is permitted to log in from. If this file is empty, the root
user account will not be able to log in from any physical console, although this does not
block the root user account from logging in via the network.

User Security  555

Blocking Root Access from SSH
To block the root user account from logging in from the network, you’ll need to modify the
OpenSSH program, which provides secure connections to your Linux system. You accom-
plish this by a setting in the OpenSSH configuration file.

The OpenSSH configuration file is located at /etc/ssh/sshd_config. Open the file in a
text editor, and look for this line:

#PermitRootLogin yes

Remove the pound sign to make the setting active, and change the yes to no to block the
root user account from logging in via SSH.

System Security
As the Linux administrator, it’s your job to ensure that the system keeps running and stays
secure under all conditions. The following sections describe a few techniques that can help
you with that task.

Separation of Data
When you install most Linux distributions, by default they create a single partition for the
root of the virtual directory (see Chapter 11, “Handling Storage”), using all of the avail-
able disk space on the system. Creating just a single partition on the entire disk provides for
maximum flexibility in using the disk space; both the Linux system and the users have access
to the entire disk. However, this can cause issues.

The Linux system continually writes data to the virtual directory. The kernel logs each
kernel event to a log file. As each user logs into the system, that event is logged to a log file.
On an active Linux system, the system writes lots of data to the disk.

But with all that logging there’s a catch. If the Linux system attempts to write to the disk
but there’s no room in the virtual directory filesystem to store any more data, the system
halts. This can be a crucial problem in a multiuser Linux system.

If all disk space is allocated to the single partition, the same disk space is used to manage
system files and user files. If a user decides to store their entire music library onto the Linux
system, that may fill up the disk space and not leave any room for the system logging. If the
system logging stops, no one can log into the Linux system!

In a multiuser environment, it’s always a good practice to separate the user data storage
from the system storage. When you use two separate partitions, if users fill up their storage
partition, the system can still operate in its own storage partition.

The most common way to do this is to create two partitions on the disk and then assign
one to the root (/) folder and the other to the /home directory in the virtual directory.

556  Chapter 19  ■  Embracing Best Security Practices

Disk Encryption
Data finding its way into the wrong hands has become a major issue in today’s world. There
are plenty of stories of important data being compromised from stolen laptops, systems
being compromised, and rogue applications uploading data to remote websites.

One method to help protect your data is to encrypt it, which makes the data significantly
harder for an attacker to use should it become compromised.

However, encrypting individual files is somewhat of a hassle. You need to decrypt the
files each time you need to access the data in them and then re-encrypt the files when you’re
done. Also, while you’re using the files in their decrypted state, you’re vulnerable to an
attack that can read the data.

Instead of encrypting individual files, the solution is to use disk encryption. Disk encryp-
tion works at the kernel level and encrypts every file that’s stored on the disk partition. You
don’t need to do anything special from your applications. As you read data from files on
the encrypted disk, the kernel automatically decrypts it, and as you write data to files on the
encrypted disk, the kernel automatically encrypts them.

The Linux Unified Key Setup (LUKS) application acts as the co-between when working
with files on a filesystem. It uses two components to interface between the kernel and
applications:

■■ dm-crypt: This module plugs into the kernel and provides the interface between a virtual
mapped drive and the actual physical drive. It does this using the /dev/mapper area.

■■ cryptmount: The cryptmount command creates the virtual mapped drive and interfaces
it with the physical drive via the dm-crypt module. This ensures that all data passed to
the virtual drive is encrypted before being stored on the physical drive.

Restricting Applications
Much like a busy freeway, if your Linux system supports multiple users running multiple
applications, sometimes collisions can occur. A rogue application can attempt to access data
intended for another application (either by accident or on purpose), causing problems for the
other applications.

One method of protecting applications from each other is incorporating a chroot jail. The
chroot utility runs a command in a new root directory structure, within the standard Linux
virtual filesystem. All disk access performed by the command is restricted to the new root
directory structure.

The format of the chroot utility is

chroot starting_directory command

The first parameter specifies the location to start the new root directory structure. The
second parameter defines the command to run within the new structure. As the command
runs, it references files and directories relative to the new root directory structure, not the
system root directory structure. You can create a chroot jail in any location within the virtual
filesystem on the Linux system.

User Security  557

Since the application running in the chroot jail thinks the new root
directory is the real directory structure, you must copy any Linux utilities
or libraries that it requires into the new root directory structure using the
same paths.

Preventing Unauthorized Rebooting
If your Linux server is located in a publicly accessible area, you may need to take precau-
tions to prevent an attacker from rebooting the server and taking control. There are three
common practices that you can follow to prevent that.

Preventing Access to the BIOS/UEFI
When you start a computer system, it uses either the Basic Input/Output System (BIOS) or
the newer Unified Extensible Firmware Interface (UEFI) to control how the system boots.
Access to either of these utilities can allow an attacker to redirect the system to boot from a
DVD disc or other portable medium.

To restrict this, it’s always a good idea to enable the password feature in the BIOS or
UEFI software. When a password is assigned, you must enter it to gain access to the BIOS or
UEFI menu system to make changes.

Preventing Access to the GRUB Bootloader
During the boot process, when Linux starts to boot, it uses the GRUB bootloader to load
the appropriate operating system image from a hard drive. The GRUB system also provides
a way for you to break out of the boot process and access the GRUB menu, where you can
alter where or how the Linux system boots.

To protect your Linux system from physical attack, you should also place a password on
the GRUB bootloader system to prevent unauthorized users from accessing the GRUB menu.
Since the GRUB configuration files are plaintext, for best security you should encrypt the
password value before storing it in the configuration file.

To do this on a Debian-based system, use the grub-mkpasswd-pbkdf2 utility:

$ grub-mkpasswd-pbkdf2
Enter password:
Reenter password:
PBKDF2 hash of your password is
grub.pbkdf2.sha512.10000.FE548777A9E101604D00DB
610E6BBB8E2269D4E98E17C1533C3B64EE3305B21D4F8AE089EE900668C78FCA4BE429D906
ED104
9A8EF5C80A7621E5E17866DC556.250AAB4CD88CB2FB80D29D04DF3C381946A76AC9E1059
B2C109
015217A63422C748A4E6E642517E15659FB69C4EAE55D953A4484C9C0D88DE37C099EAD79C27B
$

558  Chapter 19  ■  Embracing Best Security Practices

After you’ve created the encrypted password, you can add it to the password setting in
the GRUB configuration file. On the Ubuntu system, the file is /etc/grub.d/
40_custom. Add the lines

set superuser "userid"
password_pbkdf2 userid password

where userid is the user account you want to use to log into the GRUB boot menu and
password is the value provided from the grub-mkpasswd-pbkdf2 utility.

For Red Hat–based systems, the utility to generate the password is grub-md5-crypt. The
line to add to the GRUB menu file is

password –md5 password

Now when you reboot your Linux system, it will prompt you for the user account and
password before allowing you to enter the GRUB menu.

Disabling the Ctrl+Alt+Del Key Combination
The Windows operating system has used the Ctrl+Alt+Del key combination, commonly
called the three-finger salute, to reboot the entire system since the early days of Windows.
This action has carried over to the Linux world and is commonly supported by most Linux
distributions that run on IBM-compatible hardware.

If your Linux system has a physical console that is open to others, it’s a good idea to dis-
able the Ctrl+Alt+Del key combination from rebooting your system. How to disable the key
combination depends on what startup method your Linux system uses.

For systems that use the SystV init method, the Ctrl+Alt+Del action is defined in the
/etc/inittab file:

ca::ctrlaltdel:/sbin/shutdown -t3 -r now

The key combination triggers the /sbin/shutdown program, which initiates the shut-
down of the Linux system. To prevent that, you just need to modify what program the key
combination runs. For example, to just log the event, use the logger application:

ca::ctrlaltdel:/bin/logger -p authpriv.warning -t init "Ctrl+Alt+Del
was ignored"

Now if anyone attempts the Ctrl+Alt+Del key combination, the event will just trigger an
entry in the standard log file for the system and not reboot the system.

For systems that use the systemd startup method, you’ll need to disable the
ctrl-alt-del.target target using the systemctl command:

$ sudo systemctl mask ctrl-alt-del.target

Now systemd will ignore the Ctrl+Alt+Del key combination as well.

User Security  559

Restricting Unapproved Jobs
The at and cron utilities allow users to schedule jobs when they’re not logged into the system.
In some environments, that may be a security issue and needs to be prevented.

Both the at and cron utilities provide deny list and allow list files for either denying or
allowing user accounts to schedule jobs. These files are as follows:

■■ /etc/at.allow
■■ /etc/at.deny
■■ /etc/cron.allow
■■ /etc/cron.deny

As the filenames suggest, the .allow files contain lists of user accounts allowed to
schedule jobs, whereas the .deny files contain lists of user accounts prevented from sched-
uling jobs. The order in which Linux checks these can get a little complicated:

1.	 If a user is found in the .allow file, they are allowed to schedule a job, and no further
checks are performed.

2.	 If the user is not found in the .allow file, the system checks the .deny file.

3.	 If the user is found in the .deny file, they are not allowed to schedule a job.

4.	 If the user is not found in the .deny file, they are allowed to schedule a job.

So by default, if both the .allow and .deny files are empty or don’t exist, all user accounts
are allowed to schedule jobs on the Linux system.

Banners and Messages
Providing information to users is yet another vital job of the Linux system administrator.
Linux provides two ways for you to present canned messages to your system users as they
log into the system:

■■ /etc/login.warn: The system displays the contents of the login.warn file before the
login prompt at console logins. This is often used to display legal disclaimers and warn-
ings to attackers on your system.

■■ /etc/motd: The system displays the contents of the motd file (short for message of the
day) immediately after the user logs into the console or terminal session. This is often
used for informational messages, such as if there are any hardware failures on the
system or any scheduled downtime coming up.

Restricting USB Devices
USB devices have made life much easier for us, but they’ve also created some security con-
cerns. The ability to easily plug in a portable storage device and copy files can be a night-
mare for administrators responsible for protecting the data on the system.

560  Chapter 19  ■  Embracing Best Security Practices

For systems that require a high level of data protection, it’s a good idea to prevent users
from plugging in USB storage devices to copy data. While there’s no one command to
help with that task, you can implement a workaround by exploiting how the
modprobe utility works.

When a user plugs in a USB storage device, the kernel automatically looks for a module
to support the device. If none is installed, it calls the modprobe utility to automatically load
the appropriate kernel module to support the device. The modprobe utility uses configura-
tion files to define how it operates and where it looks for module files. The configuration file
is stored in the /etc/modprobe.d directory.

Besides the configuration file, within the modprobe.d directory is also the
blacklist.conf file. The blacklist.conf file defines modules that are blocked from
loading into the kernel. So one workaround is to block the module required to interface with
USB storage devices from loading.

When you install a USB storage device, the kernel loads two modules: uas and
usb:storage. To prevent that from happening, open the blacklist.conf text file and
add these lines:

blacklist uas
blacklist usb:storage

Save the file and then reboot the Linux system. Now if a user plugs in a USB storage
device, the system should ignore the kernel request to load the module necessary to interface
with the device. However, it will still allow other types of USB devices, such as keyboards
and mice, to operate just fine.

Looking for Trouble
With all the viruses, malware, and spyware floating around the Internet, these days it’s hard
to keep track of what applications can cause problems on your system. While it’s true that
fewer viruses have been written for Linux systems compared to Windows systems, they still
exist, and you still must be vigilant to protect your system.

As a Linux administrator, it’s your job to keep up-to-date on what attacks can be made
against your Linux system. The U.S. Department of Homeland Security has contracted with
the MITRE Corporation, a nonprofit organization, to publicly publish information system
security alerts, called Common Vulnerabilities and Exposures (CVE).

MITRE maintains a database of published CVE events and assigns each entry
with a unique CVE Identifier. You can view the current CVE events posted on the
cve.mitre.org website.

Each CVE event describes the risk involved with an event and the steps you should take
as a Linux administrator to mitigate the risk. It’s important to monitor the CVE database for
new attacks against Linux systems.

http://cve.mitre.org

Network Security  561

Auditing
The standard system logs available on your Linux system provide a wealth of information
about what’s going on in your Linux system, but they don’t quite cover everything. Events
occur that aren’t logged, such as when standard user accounts access files they shouldn’t or
outside attackers probe your system from the network.

Tracking this type of information requires a more robust security auditing system above
the standard rsyslog log events. The auditd package provides this extra level of logging
for us.

The auditd package allows you to define your own set of security rules to monitor and log
lots of different types of system events, such as the following events:

■■ File and directory access by users

■■ System calls made by applications

■■ Specific commands run by users

■■ Network access by users

■■ Network connection attempts made by external hosts

You define events to monitor by creating rules. There are three types of rules you
can create:

■■ System rules: Log system calls made by applications

■■ File system rules: Log access to files and directories

■■ Control rules: Rules that modify the auditd behavior

You can define the rules either in the /etc/audit/audit.rules file or on the fly by
using the auditctl utility. Rules defined using the auditctl utility are valid only until the
system reboots. Rules added to the audit.rules file are persistent.

Network Security
Placing your Linux system on a network is like having the front door to your house open
to the public. Any device on the network can attempt to access your Linux system from the
network. The following sections describe some basic security measures you can take to help
protect your Linux system when it’s connected to a network.

Denying Hosts
The most basic network security feature you can implement is to use the /etc/hosts.deny
file. The /etc/hosts.deny file creates a deny list of hosts you don’t want to allow to con-
nect to network resources on your Linux system. The TCP Wrappers program on the Linux

562  Chapter 19  ■  Embracing Best Security Practices

system (discussed in Chapter 16) reads the hosts.deny file and blocks any attempts from
those hosts to access your system. You can list hosts by name or IP address in the
hosts.deny file.

If you want to take a more extreme approach to network security, you can use the
/etc/hosts.allow file. As you can probably guess, when the hosts.allow file exists,
only hosts found in it are allowed access to network resources on the Linux system. The TCP
Wrappers application handles the hosts.allow and hosts.deny files in the same way the
at.allow and at.deny files work. If both files are empty or missing, all hosts are allowed
to access the network resources on the system.

Disabling Unused Services
There are many legacy network applications that have still hung around on Linux systems.
Unfortunately, many of those legacy network applications use unsecure methods of trans-
ferring user data as well as application data. Also unfortunately, many Linux distributions
may still activate these legacy network applications by default, providing a backdoor to your
Linux system that you may not even know exists.

Some of the more common legacy network services that may still be operational are
listed here:

■■ FTP: The original File Transfer Protocol (FTP) sends user account and application data
across the network in plaintext using TCP ports 21 and 22.

■■ Telnet: The original remote terminal application also sends all user and application data
across the network in plaintext using TCP port 23.

■■ Finger: An old legacy application that provides remote lookup services to find users on a
Linux system. This utility has been compromised and is not typically installed anymore,
but you can look for it on TCP port 79.

■■ Mail services: If your Linux system doesn’t need to send and receive email, it’s a good
idea to uninstall any mail applications that may be installed and silently running in the
background. The two most common Linux email packages are sendmail and Postfix.
Both use TCP port 25 to receive email messages from remote hosts.

Changing Default Ports
For an application to communicate on the network, it must use a network port. The port is a
unique number assigned to the application so that when a remote client communicates with
the server, the server knows which application to send the connection to.

There are three categories of network ports:

■■ Well-known ports: Ports between 0 and 1023 that have been formally assigned to
specific applications by the Internet Assigned Numbers Authority (IANA)

■■ Registered ports: Ports between 1024 and 49151, which are registered with IANA but
not officially assigned

■■ Private ports: Ports greater than 49151, which can be used by any application

Network Security  563

Most of the popular network applications have been allocated well-known ports by
IANA and are expected to be using those ports. These ports are listed in the
/etc/services file on the Linux system.

As an additional level of security, some Linux administrators prefer to move applica-
tions that normally use a well-known port to a private port. This may temporarily thwart
attackers trying to exploit the application, as the application is not listening for connections
on the port it normally should be. However, many advanced hackers use port scanning
tools to look for applications on nonstandard ports. If you do move an application to a
private port, you must ensure that any clients intending to use the application know that the
assigned port has been changed.

Most network applications define the default network port in their config-
uration file. Usually you can just edit the configuration file to change the
default port and restart the application. However, make sure any clients
that connect to the application also have the ability to change the port
they try to connect with to access the application.

Using Encryption on the Network
These days it’s never a good idea to send any type of data across the network in plain-
text. Instead of using the legacy FTP application to transfer data and telnet to use a remote
terminal, these tasks can be done using newer applications that employ encryption.

The Secure Sockets Layer (SSL) protocol, along with the newer Transport Layer Security
(TLS) protocol, is commonly used to encrypt data as it traverses the network. To implement
these protocols on a Linux system, you’ll need to install the OpenSSL package (discussed in
Chapter 2, “Introduction to Services”).

The OpenSSL package doesn’t provide the actual network applications but is a library
that provides the framework required to send and receive encrypted data on the network.
Both SSL and TSL require the use of certificates that are used to encrypt the data. They
use PKI, which requires a private key for the server and a public key that can be sent to
individual clients to authenticate and encrypt the network traffic.

In Exercise 19.1 you’ll get some practice creating an encrypted partition on a removable
USB stick. This helps protect your data in a mobile environment.

E X E R C I S E 19 . 1  

Creating an Encrypted Disk

This exercise demonstrates how to use LUKS to encrypt a removable USB storage device
so that any data stored on the device can be read only from your Linux system.

1.	 Log into your Linux graphical desktop.

2.	 Insert a blank USB storage device (or one with data you don’t mind losing) into a USB
port on your workstation.

564  Chapter 19  ■  Embracing Best Security Practices

E X E R C I S E 19 . 1   (c o n t i n u e d)

3.	 Open the Disks application from your graphical desktop menu.

4.	 Select the icon for the USB storage device from the left-side list of storage devices.

5.	 Click the minus button under the disk partition layout on the right side of the window.
Click the Delete button in the dialog box that appears (if the partition is a Linux partition
and is currently mounted, you will have to unmount it first).

6.	 When the partition is deleted, a plus button will appear under the partition. Click the
plus sign button to create a new partition.

7.	 Click the Next button to partition the entire USB drive.

8.	 In the Volume Name text box, type Test Drive.

9.	 In the Test section, select the radio button “Internal disk for use with Linux systems
only (ext4).”

10.	 Under that option, select the Password Protect Volume (LUKS) check box. Click Next.

11.	 Enter a password for the encrypted volume, and confirm it. Don’t forget the password
you choose, as you’ll need it to mount the new drive.

12.	 Click Create to start building the encrypted drive.

13.	 When the process completes, view the drive from your File Manager program.

14.	 Remove the USB drive and plug it into a non-Linux workstation. If the workstation
prompts you to reformat the drive, select Cancel.

15.	 Plug the drive back into your Linux workstation. At the password prompt, enter the
password you assigned in step 11. Linux will mount the drive and allow you to read
and write to the drive.

16.	 If you wish to convert the USB drive back for normal use, plug it into your workstation
and follow the prompts to reformat the drive.

Summary
There are many aspects to protecting a Linux system for use in today’s world. Most secu-
rity practices break down into user security, system security, and network security. For user
security, there are many different methods for authenticating users and authorizing them to
access resources. The Kerberos package provides a centralized login system for multiple net-
work servers. The LDAP package creates a distributed database for defining resources and
users and granting users access to the network resources. The RADIUS package is a simpler
authentication package that’s commonly used for network devices, such as switches and

Exam Essentials  565

routers. The TACACS+ protocol was developed by Cisco Systems to provide advanced net-
work authentication processes.

System security involves securing the Linux system environment itself. One step for
system security is to utilize separate partitions for the OS files and user data files. That way,
if an overzealous user fills up the disk space, it won’t stop the OS. Disk encryption has also
become an important tool these days, especially when storing data on removable devices.
Protecting applications from one another is yet another system security feature. With the
chroot jail process, you can create separate filesystem areas within the main filesystem so
that applications can’t trounce on each other’s files.

Network security has become a popular topic these days, and Linux provides several
tools that you can use to help out. The hosts.deny and hosts.allow files allow you to
either block specific hosts or allow only specific hosts when communicating via the network.
If your Linux system contains packages for some of the legacy network tools, such as FTP,
Telnet, and Finger, it’s a good idea to ensure that those software packages are disabled and
that users can’t run them. If you want to attempt to confuse potential attackers, you can
move the default TCP or UDP ports used by standard applications to alternative port num-
bers. Finally, the chapter discussed using the OpenSSL package to provide SSL- and TLS-
level encryption for network traffic.

Exam Essentials
Describe the different authentication methods available in Linux.   For network servers, the
four most popular user authentication methods are Kerberos, which uses a single sign-on
method of authenticating users; LDAP, which incorporates authorization as well as authen-
tication; RADIUS, which provides a simple authentication process; and TACACS+, which is
commonly used for network devices. Linux also supports several two-factor authentication
methods, including using biometric data such as fingerprints, iris scans, and facial recogni-
tion; both software and hardware tokens, which provide a digital certificate identifying the
user; and PKI, which allows users to create public and private keys so that they can keep
their private key secret and only disclose their public key to servers.

Describe the different types of system security that you should consider on Linux
systems.   The separation of system data and user data is a relatively simple security fea-
ture that you can implement. By creating a separate partition for user data, you will prevent
a user from filling up the entire disk space on the system and stopping the server. Using
encrypted storage is useful in environments where the storage device may leave the physical
area, such as in laptops or external storage devices. Restricting applications using chroot is
also helpful in preventing accidental or malicious applications from gaining data used by
other applications. Likewise, disabling USB storage devices is a good option for systems that
require control over data leaving the server. If your Linux system is in a vulnerable physical
location, it’s also a good idea to prevent unauthorized rebooting of the server by disabling
the Ctrl+Alt+Del key combination along with implementing a BIOS/UEFI password as well
as a GRUB boot menu password.

566  Chapter 19  ■  Embracing Best Security Practices

Explain the different methods of protecting your Linux system on the network.   For pro-
tecting your Linux system on the network, you can create a hosts deny list or allow list. The
hosts.deny file allows you to block suspicious hosts from accessing network resources on
your system. If you prefer, you can instead use the hosts.allow file to allow only specific
hosts to connect to applications on your system. It’s also a good idea to disable any unused
network applications, especially those that send and receive user accounts and data in plain-
text, such as FTP, Telnet, and Finger. It may also help to change the default ports used by
network applications to help deter attackers from finding them on your system. Finally, it’s a
good idea to incorporate encryption on any network application on your Linux system. The
OpenSSL package provides both SSL and TLS encryption services for any application.

Review Questions  567

Review Questions
1.	 Which authentication method issues tickets to users and helps with implementing the single

sign-on feature in a network of servers?

A.	 LDAP

B.	 Kerberos

C.	 RADIUS

D.	 TACACS+

E.	 Biometrics

2.	 Mary wants to implement two-factor authentication using fingerprint readers for her users
to authenticate with the Linux system. Which method of authentication should she look into
implementing?

A.	 LDAP

B.	 Tokens

C.	 Biometrics

D.	 PKI

E.	 Kerberos

3.	 Jaime is interested in using a distributed database method for authorizing users to access
resources located on multiple network servers. Which authentication method would be best
for her to use?

A.	 LDAP

B.	 Kerberos

C.	 Tokens

D.	 RADIUS

E.	 PKI

4.	 Fred wants to block users from logging in directly with the root user account from any
console or terminal session. What is the best way he can do that?

A.	 Implement biometric authentication.

B.	 Implement tokens.

C.	 Use Kerberos authentication.

D.	 Remove root user entry from the /etc/passwd file.

E.	 Set the default login shell for the root user to /usr/sbin/nologin.

568  Chapter 19  ■  Embracing Best Security Practices

5.	 Which directory should you place on a separate partition to separate user data from
system data?

A.	 /usr
B.	 /home
C.	 /etc
D.	 /sbin
E.	 /bin

6.	 Sally is concerned about an application that allows guests to connect to her Linux system and
access a database. What can she do to limit the application to a specific directory structure
on the Linux server so it can’t access system data?

A.	 Block the application network port.

B.	 Move the application port to a private port number.

C.	 Place the application in an encrypted partition.

D.	 Run the application with chroot.

E.	 Place the application in a separate partition.

7.	 Ted wants to provide encryption at the disk level so that users don’t need to encrypt
individual files as they store them. What Linux feature should he use?

A.	 LUKS

B.	 chroot
C.	 auditd
D.	 PKI

E.	 Kerberos

8.	 Ned notices in the logs that a user account schedules a job every day at noon that uses all of
the system resources. How can he prevent that user account from doing that?

A.	 Use chroot for the user account.

B.	 Use nologin as the user’s default shell.

C.	 Add the user account to the /etc/cron.deny file.

D.	 Add the user account to the /etc/hosts.deny file.

E.	 Create a /etc/motd message telling users to not schedule large jobs.

9.	 Tom sees an attacker continually attempt to break into a user account on his Linux system
from a specific IP address. What can he do to quickly mitigate this issue?

A.	 Place the application in a chroot jail.

B.	 Add the nologin shell to the user account.

C.	 Implement two-factor authentication.

D.	 Add the attacker’s IP address to the /etc/hosts.deny file.

E.	 Add the user account to the /etc/cron.deny file.

Review Questions  569

10.	 Despite his warnings, Fred continues to see users transfer files to his Linux server using unse-
cure FTP. How can he stop this?

A.	 Place a message in the /etc/motd file telling users to stop.

B.	 Move the FTP application to a different network port.

C.	 Place the user accounts in the /etc/hosts.deny file.

D.	 Place the user accounts in the /etc/cron.deny file.

E.	 Disable the FTP application ports.

PART

V
Troubleshooting

Your System

Analyzing System
Properties and
Remediation

✓✓ Objective 1.5: Given a scenario, use the appropriate
networking tools or configuration files.

✓✓ Objective 4.1: Given a scenario, analyze and troubleshoot
storage issues.

✓✓ Objective 4.2: Given a scenario, analyze and troubleshoot
network resource issues.

✓✓ Objective 4.3: Given a scenario, analyze and troubleshoot
central processing unit (CPU) and memory issues.

Chapter

20

Even well-maintained Linux systems run into problems. New
or modified applications introduce different performance vari-
ables, unforeseen incidents cause outages, and aging hardware

components may fail. Minimizing their effects requires understanding troubleshooting tech-
niques and tools as well as the interactions between various system components.

Troubleshooting the Network
When network problems occur (and they will), devise a troubleshooting plan. First, identify
symptoms, review recent network configuration changes, and formulate potential problem
cause theories. Next, using the Open Systems Interconnection (OSI) model as a guide, look
at hardware items (for example, cables), proceed to the Data Link layer (for example, net-
work card drivers), continue to the Network layer (for example, routers), and so on.

Exploring Network Issues
In order to properly create a troubleshooting plan, you need to understand various network
configuration and performance components. Understanding these elements assists in creating
theories about problem causes and helps your exploration process through the OSI model.

Speeding Things Up
Familiarity with a few network terms and technologies will help in troubleshooting network
problems and improving your network’s performance.

Bandwidth   Bandwidth is a measurement of the maximum data amount that can be
transferred between two network points over a period of time. This measurement is typ-
ically represented by the number of bytes per second.

As an example, think about road design. Some roads are designed to handle cars
traveling at 65 mph (~105 kph) safely. Other roads can only deal with traffic moving at
around 35 mph (~56 kph).

Throughput   Throughput is a measurement of the actual data amount that is trans-
ferred between two network points over a period of time. It is different from bandwidth
in that bandwidth is the maximum rate and throughput is the actual rate.

Troubleshooting the Network  575

Throughput may not reach the maximum bandwidth rate due to items such as a fail-
ing NIC or simply the protocol in use. Returning to the roadway analogy, though some
roads can handle cars traveling at 65 mph safely, some cars may travel slower due to
potholes on the road.

Saturation   Network saturation, also called bandwidth saturation, occurs when net-
work traffic exceeds capacity. In this case, a towel analogy is helpful. Imagine you have a
towel that has absorbed as much water as it can. Once it can no longer absorb any more
water, it has become saturated.

Saturation is also sometimes called congestion. Using our traffic analogy, when too
many cars are on a particular roadway, congestion occurs and traffic slows.

Latency   Latency is the time between a source sending a packet and the packet’s des-
tination receiving it. Thus, high latency is slow, which is typically a problem, and low
latency is fast, which is often desired.

High latency is often caused by low bandwidth or saturation. In addition, routers over-
loaded by network traffic may cause high network latency.

Jitter is a term used to indicate high deviations from a network’s average latency. For
streaming services such as video, jitter can have a serious negative impact.

Routing   Because a network is broken up into segments, you need routing to get
packets from point A to point B through the network’s various segments. Routers con-
nect these network segments and forward IP packets to the appropriate network seg-
ment toward their ultimate destination.

Routers contain buffers that allow them to hold on to network packets when their out-
bound queues become too long. However, if the router cannot forward its IP packets in
a reasonable time frame, it will drop packets located in its buffer. This condition often
transpires when network bandwidth saturation is occurring.

Some router manufacturers attempt to avoid packet loss by increasing
their routers’ buffer size. This leads to a condition called bufferbloat,
which increases network latency in congested segments due to packets
staying too long in the router’s buffer. You can find out more information
about bufferbloat, how to test your routers for it, and resolutions at
www.bufferbloat.net.

Dealing with Timeouts and Losses
A packet drop, also called packet loss, occurs when a network packet fails to reach its des-
tination. Unreliable network cables, failing adapters, network traffic congestion, and under-
performing devices are the main culprits of packet drop.

UDP does not guarantee packet delivery. Therefore, in services like VoIP that employ UDP,
minor packet loss does not cause any problems. Most VoIP software compensates for these

http://www.bufferbloat.net

576  Chapter 20  ■  Analyzing System Properties and Remediation

packet drops. You may hear what sounds like choppiness in a person’s voice as you speak
over a VoIP connection when it is experiencing minor packet drops.

TCP guarantees packet delivery and will retransmit any lost packets. Thus, if network
packet loss occurs for services employing TCP, it will experience delays. If the packet drops
are due to network traffic congestion, in some cases, the TCP packet retransmission only
makes matters worse. Keep in mind that IP allows routers to drop packets if their buffer is
full and they cannot send out their buffered packets fast enough. This will also cause TCP to
retransmit packets.

Packet drops on a router can also be caused by a denial-of-service (DoS)
attack, called a packet drop or black hole attack. A malicious user manu-
ally or through software gains unauthorized access to a router. The router
is then configured to drop packets instead of forwarding them.

In network communication, timeouts are typically preset time periods for handling
unplanned events. For example, you open a web browser and proceed to enter the address
to a site you wish to visit. The website is down, but still the browser attempts a connection.
After a predetermined amount of time (the designated timeout period), the browser stops
trying to connect and issues an error message.

You may experience network communication timeouts for a number of reasons:

■■ A system is down.

■■ An incorrect IP address was used.

■■ A service is not running or not offered on that system.

■■ A firewall is blocking the traffic.

■■ Network traffic is congested, causing packet loss.

Each of these items is worth exploring, if you or your system’s processes are experiencing
timeouts related to network communications.

Resolving the Names
The process of translating between a system’s fully qualified domain name (FQDN) and its
IP address is called name resolution. The Domain Name System (DNS) is a network protocol
that uses a distributed database to provide the needed name resolutions.

Most systems simply use client-side DNS, which means they ask other servers for name
resolution information. Using the /etc/resolv.conf and /etc/hosts files for config-
uring client-side DNS was covered in Chapter 7, “Configuring Network Connections.” How-
ever, there are a few additional items concerning name resolution problems and performance
that you need to know:

Name Server Location   With client-side DNS, when it comes to name server selection,
location matters. If the name server you have chosen to set in the /etc/resolv.conf
file is halfway around the world, your system’s name resolutions are slower than if you
chose a physically closer name server.

Troubleshooting the Network  577

Consider Cache   A caching-only name server holds recent name resolution query
results in its memory. If you are only employing client-side DNS, consider configuring
your system to be a caching-only server, using software such as dnsmasq. By caching
name resolutions, resolving speeds can improve significantly.

Secondary Server   If you are managing a DNS server for your company, besides a
primary server, consider configuring a secondary server. This name server receives its
information from the primary server and can increase name resolution performance by
offloading the primary server’s burden.

Configuring It Right
Network configuration was covered in Chapter 7. However, there are a few additional spe-
cial topics that may help you with troubleshooting.

Interface Configurations   Being able to view a NIC’s configuration and status is impor-
tant in the troubleshooting process. You may need to view its IP address, its MAC
address, subnet configuration, error rates, and so on. In addition, understanding config-
uration items such as whether or not a NIC has a static or DHCP-provided IP address is
part of this process.

Be aware that if you use NetworkManager on a system with firewalld as its firewall
service, when a new network device is added, it will automatically be added to the
firewalld default zone. If the default zone is set to public, the network device will
only accept selected incoming network connections. See Chapter 18, “Overseeing Linux
Firewalls,” for more details on firewalld.

Ports and Sockets   Ports and sockets are important structures in Linux networking.
Understanding the difference between the two will help in the troubleshooting process.

A port is a number used by protocols, such as TCP and UDP, to identify which service or
application is transmitting data. For example, port 22 is a well-known port designated
for OpenSSH, and DNS listens on port 53. TCP and UDP packets contain both the
packet’s source and destination ports in their headers.

A program connection to a port is a socket. A network socket is a single endpoint of a
network connection’s two endpoints. That single endpoint is on the local system and
bound to a particular port. Thus, a network socket uses a combination of an IP address
(the local system) and a port number.

Localhost vs. a Unix Socket   The localhost designation and a Unix socket are often
used for services, such as SQL. Being able to differentiate between the two is helpful.

Localhost is the hostname for the local loopback interface, which was first described
in Chapter 7. Localhost uses the IPv4 address of 127.0.0.1 and the IPv6 address of ::1.
Basically, it allows programs on the current system to test or implement networking ser-
vices via TCP without needing to employ external networking structures.

578  Chapter 20  ■  Analyzing System Properties and Remediation

Unix sockets, also called Unix domain sockets, are endpoints similar to network
sockets. Instead of between systems over a network, these endpoint sockets are between
processes on your local system. Your system’s Unix domain sockets perform interprocess
communications (IPC), which operate in a manner similar to a TCP/IP network. Thus,
these sockets are also called IPC sockets.

If you have a service configuration choice between the two, typically a Unix socket will
provide better performance than the localhost. This is due to the system employing
normal networking behavior that consumes resources, such as performing data check-
sums and TCP handshakes when using localhost. In addition, due to special Unix socket
files and the fact that Unix sockets understand file permissions, you can easily employ
access control by setting access rights to these files.

Adapters   Network adapters are system hardware that allows network communica-
tions. These communications can be wired or wireless. Adapters also come in USB form
factors but are not typically used in enterprise server environments.

Common problems that arise with network adapters are faulty or failing hardware and
incorrect or inefficient drivers. In regard to faulty hardware, error rates on adapters
generally should not exceed 0.01 percent of the adapter’s bits per second (bps)
throughput rate.

Though a network interface card (NIC) is an adapter, an adapter is not
always a NIC. For example, a USB network adapter is not a NIC.

RDMA (Remote Direct Memory Access)   A technology to consider, if your system’s
network needs low latency, is RDMA. It allows direct access between a client’s and serv-
er’s memory. The results are significantly reduced network latency, higher bandwidth,
and the side benefit of reducing the server’s CPU overhead.

Unfortunately, this technology requires special hardware. To use it on a standard Linux
system Ethernet NIC, you’ll need to employ soft-RoCE. This software provides RDMA
features over converged Ethernet (RoCE). What is really nice about soft-RoCE is that its
driver is part of the Linux kernel, starting at v4.8.

Viewing Network Performance
Starting the troubleshooting process requires knowledge of the various tools to use. Here we
provide a few tables to assist in your tool selection.

Since high latency (slowness) and network saturation tend to occur together, Table 20.1
shows tools you should use to tackle or monitor for these problems. Keep in mind that you
should already know the bandwidth of the network segment(s) you are troubleshooting
prior to using these tools.

Troubleshooting the Network  579

Some of these tools are not installed by default. Also, they may not be in
a distribution’s standard repositories. See Chapter 13, “Governing Soft-
ware,” for details on how to install software packages.

To employ the iperf utility for testing throughput, you’ll need two systems—one to act
as the server and the other as a client. The utility must be installed on both systems, and
you’ll need to allow access to its default port 5001 (port 5201 for iperf3) through their
firewalls. A snipped example of setting up and starting the iperf server on an Ubuntu
system is shown in Listing 20.1.

TABLE 20 .1   Commands to check for high latency, saturation

Command Description

iperf, iperf3 Perform network throughput tests. The iperf command is
version 2 of the utility, and iperf3 is version 3.

iftop -i adapter Displays network bandwidth usage (throughput) for adapter
in a continuous graph format.

mtr Displays approximate travel times and packet loss percent-
ages between the first 10 routers in the path from the source
to the destination in a continuous graph or report format.

nc Performs network throughput tests. (Called netcat)

netstat -s Displays summary statistics that are broken down by protocol
and contain packet rates, but not throughput. This command
is deprecated.

ping, ping6 Perform simple ICMP packet throughput tests and display
statistics on items such as round-trip times.

ss -s Displays summary statistics that are broken down by socket
type and contain packet rates but not throughput.

tracepath, tracepath6 Display approximate travel times between each router from
the source to the destination, discovering the maximum trans-
mission unit (MTU) along the way.

traceroute, traceroute6 Display approximate travel times between each router from
the source to the destination.

580  Chapter 20  ■  Analyzing System Properties and Remediation

Listing 20.1:  Setting up the iperf server

$ sudo ufw allow 5001
Rule added
Rule added (v6)
$
$ iperf -s -t 120
--
Server listening on TCP port 5001
[...]

The iperf command’s -s option tells it to run as a server. The -t option is handy,
because the service will stop after the designated number of seconds. This helps you avoid
using Ctrl+C to stop the server.

Once you have the server side ready, configure the client side and perform a throughput
test. A snipped example of setting up and starting an iperf client on a Fedora system is shown
in Listing 20.2. Though the last output summary lists a Bandwidth column header, it is really
showing you the achieved throughput.

Listing 20.2:  Setting up the iperf client and conducting a throughput test

$ sudo firewall-cmd --add-port=5001/udp
success
$ sudo firewall-cmd --add-port=5001/tcp
success
$
$ iperf -c 192.168.0.104 -b 90Kb -d -P 5 -e -i 10
--
Server listening on TCP port 5001 with pid 3857
[...]
Client connecting to 192.168.0.104, TCP port 5001 with pid 3857
[...]
[ID] Interval Transfer Bandwidth Write/Err Rtry Cwnd/RTT
[...]
[SUM] 0.00-10.04 sec 640 KBytes 522 Kbits/sec 5/0 2
[..]
[SUM] 0.00-11.40 sec 1.19 MBytes 873 Kbits/sec 850 5:5:0:0:0:0:0:835
$

Notice that a firewall rule was added for UDP traffic as well as TCP. This is necessary
because of the use of the -b switch on the iperf client, which requires UDP. There are many
options available with the iperf and iperf3 utilities. The ones used in Listing 20.2 are
described in Table 20.2.

Troubleshooting the Network  581

Another handy utility to test throughput is the netcat utility, whose command name
is nc. As with iperf, you need to set up both a server and a client to perform a test. List-
ing 20.3 shows an example of setting up a netcat server on an Ubuntu system. Notice how
the firewall is modified to allow traffic to the port selected (8001) for the netcat server.

Listing 20.3:  Setting up the nc server

$ sudo ufw allow 8001
Rule added
Rule added (v6)
$
$ nc -l 8001 > /dev/null

The -l option on the nc command tells it to go into listening mode and act as a server.
The 8001 argument tells netcat to listen on port 8001. Because netcat is being used to
test throughput, there is no need to display any received data. Thus, the data received is
thrown into the black hole file (/dev/null).

To conduct a test with netcat, employ a utility that will send packets to the server and
allow you to see the throughput rate. The dd command (covered in Chapter 12, “Protect-
ing Files”) works well, and an example of conducting a test on a Fedora system is shown in
Listing 20.4.

Listing 20.4:  Setting up the nc client and conducting a throughput test

$ dd if=/dev/zero bs=1M count=2 | nc 192.168.0.104 8001 -i 2
2+0 records in
2+0 records out
2097152 bytes (2.1 MB, 2.0 MiB) copied, 0.10808 s, 19.4 MB/s
Ncat: Idle timeout expired (2000 ms).
$

TABLE 20 .2   Basic iperf client-side options

Option Description

-c server-address Creates a client that connects to the server located at server-address.

-b size Sets target bandwidth to size bits/sec (default is 1 Mb).

-d Performs a bidirectional test between client and server.

-P n Creates and runs n parallel client threads.

-e Provides enhanced output. Not available on older utility versions.

-i n Pauses between periodic bandwidth reports for n seconds.

582  Chapter 20  ■  Analyzing System Properties and Remediation

Notice for the dd command, no output file (of) switch is used. This forces the command’s
output to go to STDOUT, which is then redirected via the pipe (|) into the nc command.
The nc command sends the output as packets through the network to the netcat server’s
IP address (192.168.0.104) at port 8001, where the listening server receives the packets.
The -i 2 option tells netcat to quit and return to the command line after 2 seconds of
idle time.

The throughput rate is displayed when dd completes its operation. You can increase the
test traffic sent by increasing the data amount designated by the dd command’s bs option
and the number of times it is sent via the count switch. In the Listing 20.4 example, only
1 Mb was sent two times.

On some distributions, you will find a netcat command. This command
is simply a softlink to the nc utility and provided for convenience.

High latency is sometimes caused by overloaded routers. Faulty hardware or improper
configurations, such as the router’s MTU being set too low, also contribute to the problem.
The tracepath and traceroute utilities not only display what path a packet takes
through the network’s routers but can provide throughput information as well, allowing you
to pinpoint potential problem areas.

The mtr utility can provide a nice graphical display or a simple report showing a packet’s
path, travel times, and items such as jitter. Listing 20.5 shows an example of using mtr to
produce a static report.

Listing 20.5:  Producing router performance reports with the mtr utility

$ mtr -o "L D A J" -c 20 -r 96.120.112.205
Start: 2018-12-21T13:47:39-0500
HOST: localhost.localdomain Loss% Drop Avg Jttr
 1.|-- _gateway 0.0% 0 0.8 0.1
 2.|-- _gateway 0.0% 0 3.8 7.1
 3.|-- 96.120.112.205 0.0% 0 15.5 1.8
$

The mtr command’s -o option allows you to specify what statistics to view. In this
example, packet loss (L), drop (D), travel time average (A), and jitter (J) are chosen. The
-c switch lets you set the number of times a packet is sent through the routers, and the -r
option designates that you want a static report. To show a continuous graphical display,
leave off the -c and -r options. The last mtr argument is the destination IP address.

A faulty or failing adapter also can contribute to high latency. If you suspect that errors,
packet drops, or timeouts are causing network problems, try employing the utilities in
Table 20.3 to display these statistics.

Troubleshooting the Network  583

Using the ip utility is shown snipped in Listing 20.6. Notice that even though no
packets have been dropped, it does show error rates hovering around 0.05 percent (RX
or TX packets / RX or TX errors). Any rate over 0.01 percent is enough to consider the
adapter faulty.

Listing 20.6:  Viewing network adapter statistics with the ip utility

$ ip -s link show enp0s8
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 [...]
[...]
 RX: bytes packets errors dropped overrun mcast
 201885893 3023900 1510 0 0 318
 TX: bytes packets errors dropped carrier collsns
 24443239380 15852137 7922 0 0 0
$

The ping and ping6 utilities, covered earlier in Table 20.1, are helpful in
discovering packet loss and timeout issues. In fact, they are often the first
tools employed when such problems are occurring.

If you have a rather tricky network problem, it may be worth your while to directly look
at the packets traveling over it. The tools to do so go by a variety of names, such as network
sniffers and packet analyzers. Three popular ones are Wireshark, tshark, and tcpdump.

Wireshark (a GUI program) and tshark (also called terminal-based Wireshark) are
closely linked, and that causes confusion when it comes to their installation. Table 20.4
lists the package names needed to obtain the correct tool for each distribution covered by
this book.

TABLE 20 .3   Commands to find failing/faulty network adapters

Command Description

ethtool -S adapter Shows adapter summary statistics.

ifconfig adapter Shows adapter summary statistics. This command is deprecated.

ip -s link show
adapter

Shows adapter summary statistics.

netstat -i adapter Shows adapter summary statistics. To view over time, add the
-c # switch, where # is the number of seconds between displays.
This command is deprecated.

584  Chapter 20  ■  Analyzing System Properties and Remediation

Once you have the proper package installed, you can employ the tool to analyze packets.
A simple snipped example of using tshark on an Ubuntu system is shown in Listing 20.7.
The tshark command’s -i option allows you to specify the interface from which to sniff
packets. The -c switch lets you specify the number of packets to capture.

Listing 20.7:  Using tshark to view packets

$ sudo tshark -i enp0s8 -c 10
[...]
Capturing on 'enp0s8'
 1 0.000000000 192.168.0.100 → 239.255.255.250 [...]
 2 0.493150205 fe80::597e:c86f:d3ec:8901 → ff02[...]
 3 0.683985479 192.168.0.104 → 192.168.0.101 SSH[...]
 4 0.684261795 192.168.0.104 → 192.168.0.101 SSH[...]
 5 0.684586349 192.168.0.101 → 192.168.0.104 TCP[...]
[...]
 10 1.198757076 192.168.0.104 → 192.168.0.101 SSH[...]
198 Server: Encrypted packet (len=144)
10 packets captured
$

Both tshark and tcpdump allow you to store the sniffed data into a file. Later the packet
information can be viewed using the Wireshark utility, if you prefer viewing data via a GUI
application.

Reviewing the Network’s Configuration
In the network troubleshooting process, you might want to check your various network
configurations. Network adapter configurations were covered in Chapter 7. You can use the
tools listed earlier in Table 20.3 as well as the nmcli utility to review adapter settings.

TABLE 20 .4   Listing Wireshark GUI and tshark package names

Distribution Wireshark GUI package tshark package

Rocky Linux 8 wireshark-gnome wireshark-cli

Fedora 35 wireshark wireshark

OpenSUSE Leap 15 wireshark wireshark

Ubuntu 20.04 LTS wireshark tshark

Troubleshooting the Network  585

Within a local network segment, routers do not use an IP address to locate systems.
Instead they use the system’s network adapter’s media access control (MAC) address. MACs
are mapped to their server’s IPv4 address via the Address Resolution Protocol (ARP) table
or IPv6 address Neighborhood Discovery (NDisc) table. An incorrect mapping or duplicate
MAC address can wreak havoc in your network. Table 20.5 has the commands you can use
to investigate this issue.

A misconfigured routing table can also cause problems. Double-check
your system’s routing table via the route command (deprecated) or the
ip route show command.

Incorrect DNS information for your own servers is troublesome. Also, if you are consid-
ering changing your client-side DNS configuration, there are some utilities that can help you
investigate slow query responses. The commands in Table 20.6 are good utilities to guide
your investigations.

TABLE 20 .5   Commands to check for incorrect MAC mappings or duplicates

Command Description

arp Displays the ARP table for the network’s neighborhood. Checks for incorrect or
duplicate MAC addresses.

ip neigh Displays the ARP and NDISC tables for the network’s neighborhood. Checks for
incorrect or duplicate MAC addresses.

TABLE 20 .6   Commands to research name server responses

Command Description

host FQDN Queries the DNS server for the FQDN and displays its IP address. Check the
returned IP address for correctness.

dig FQDN Performs queries on the DNS server for the FQDN and displays all DNS records
associated with it. Check the returned information for correctness.

nslookup Executes various DNS queries in an interactive or noninteractive mode. Check
the returned information for correctness.

whois Performs queries of Whois servers and displays FQDN information stored there.
Check the returned information for correctness.

586  Chapter 20  ■  Analyzing System Properties and Remediation

The nslookup utility is very handy for testing DNS lookup speeds. You follow the
command with the FQDN to look up and then the DNS server you desire to test. Use
it along with the time command to gather lookup time estimates, as shown snipped in
Listing 20.8.

Listing 20.8:  Testing DNS lookup speeds with the nslookup utility and the
time command

$ time nslookup www.linux.org 8.8.8.8
[...]
Name: www.linux.org
Address: 104.27.166.219
[...]
real 0m0.099s
[...]
$ time nslookup www.linux.org 9.9.9.9
[...]
Name: www.linux.org
Address: 104.27.167.219
[...]
real 0m0.173s
[...]
$

If your system employs IPsets in its firewall or other configurations, you
may want to review those as well. Use super user privileges and type in
ipset list to see the various IPsets and then review their use within con-
figuration files.

The Network Mapper (nmap) utility is often used for penetration testing. However, it is
also very useful for network troubleshooting. Though it’s typically not installed by default,
most distros have the nmap package in their standard repositories.

There are a number of different scans you can run with nmap. The snipped example in
Listing 20.9 shows using nmap inside the system’s firewall to see what ports are offering
which services via the -sT options.

Listing 20.9:  Viewing TCP ports and services using the nmap utility

$ nmap -sT 127.0.0.1
[...]
PORT STATE SERVICE
22/tcp open ssh
631/tcp open ipp
[...]
$

Troubleshooting Storage Issues  587

You can use nmap to scan entire network segments and ask for the mapper to fingerprint
each system in order to identify the operating system running there via the -O option. To
perform this scan, you need super user privileges, as shown in snipped Listing 20.10.

Listing 20.10:  Viewing network segment systems’ OSs using the nmap utility

$ sudo nmap -O 192.168.0.*
[...]
Nmap scan report for 192.168.0.102
[...]
Running: Linux 3.X|4.X
[...]
Nmap scan report for Ubuntu1804 (192.168.0.104)
[...]
Running: Linux 3.X|4.X
[...]

Do not run the network mapper utility outside your home network
without permission. For more information, read the nmap utility’s legal
issue guide at https://nmap.org/book/legal-issues.html.

Troubleshooting Storage Issues
Data storage is one of the areas where your systems can encounter problems. Trouble with
storage tends to focus on failing hardware, disk I/O latency, and exhausted disk space. We’ll
focus on those three issues in the following sections.

Running Out of Filesystem Space
Nothing can ruin system uptime statistics like application crashes due to drained disk space.
Two utilities that assist in troubleshooting and monitoring filesystem space are the du and
df commands, which were covered in Chapter 11, “Handling Storage.”

The df utility allows you to view overall space usage. In the example in Listing 20.11,
only the ext4 filesystems are viewed via the -t option, and the results are displayed in human-
readable format (-h), providing a succinct display.

Listing 20.11:  Viewing filesystem space totals using the df utility

$ df -ht ext4
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 9.8G 7.3G 2.0G 79% /
$

https://nmap.org/book/legal-issues.html

588  Chapter 20  ■  Analyzing System Properties and Remediation

If you see a filesystem whose usage is above desired percentages, locate potential problem
areas on the filesystem via the du command. First, obtain a summary by viewing the filesys-
tem’s mount point directory and only display space used by first-level subdirectories via the
-d 1 option. An example is shown snipped in Listing 20.12 for a filesystem whose mount
point is the / directory.

Listing 20.12:  Viewing subdirectory space summaries using the du utility

$ sudo du -d 1 /
[...]
2150868 /var
[...]
48840 /home
{...]

After you find potential problem subdirectories, start digging down into them via du to
find potential space hogs, as shown snipped in Listing 20.13.

Listing 20.13:  Finding potential space hogs using the du utility

$ sudo du /var/log
[...]
499876 /var/log/journal/e9af6ca5a8fb4a70b2ddec4b1894014d
[...]

If you find that the filesystem actually needs the disk space it is using, the only choice is
to add more space. If you set up the original filesystem on a logical volume, adding space via
LVM tools is fairly simple (creating a logical volume was covered in Chapter 11).

If you don’t have an extra physical volume in your volume group to add to the filesystem
volume needing disk space, do the following:

1.	 Add a spare drive to the system, if needed.

2.	 Create a physical volume with the pvcreate command.

3.	 Add the new physical volume to the group with vgextend.

4.	 Increase the logical volume size by using the lvextend command.

Waiting on Disk I/O
If a disk is experiencing I/O beyond what it can reasonably handle, it can slow down the
entire system. You can troubleshoot this issue by using a utility that displays I/O wait times,
such as the iostat command. I/O wait is a performance statistic that shows the amount of
time a processor must wait on disk I/O.

Troubleshooting Storage Issues  589

If you find that the iostat utility is not installed on your system, install
the sysstat package to obtain it. Package installation was covered in
Chapter 13.

The syntax for the iostat command is as follows:

iostat [OPTION] [INTERVAL] [COUNT]

If you simply enter iostat at the command line and press Enter, you’ll see a static sum-
mary of CPU, filesystem, and partition statistics since the system booted. However, in trou-
bleshooting situations, this is not worthwhile. There are a few useful iostat options to use
for troubleshooting:

-y: Do not include the initial “since system booted” statistics.

-N: Display registered device mapper names for logical volumes.

-z: Do not show devices experiencing no activity.

-p device: Only show information regarding this device.

The iostat command’s two arguments allow viewing of the statistics over time. The
[INTERVAL] argument specifies how many seconds between each display, and [COUNT] sets the
number of times to display. Keep in mind that if you use the -y option, you will not see the
first statistics until after the set interval.

An example using iostat with appropriate options for a troubleshooting situation is
shown snipped in Listing 20.14. In this case, only two statistics are shown 5 seconds apart.
You can see that there is a rather high I/O wait (%iowait column) percentage, indicating a
potential problem.

Listing 20.14:  Troubleshooting I/O wait using the iostat utility

$ iostat -yNz 5 2
[...]
avg-cpu: %user %nice %system %iowait %steal %idle
 26.80 0.00 42.27 30.93 0.00 0.00

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sda 409.90 3.30 9720.72 16 47145
[...]
avg-cpu: %user %nice %system %iowait %steal %idle
 22.67 0.00 65.79 11.54 0.00 0.00

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sda 535.83 0.00 9772.77 0 48277
[...]

590  Chapter 20  ■  Analyzing System Properties and Remediation

To locate the application or process causing high I/O, employ the iotop
utility. It is typically not installed by default but is available in the iotop
package.

For problems with high I/O, besides employing different disk technologies, you will want
to review the Linux kernel’s defined I/O scheduling. I/O scheduling is a series of kernel
actions that handle I/O requests and their associated activities. How these various operations
proceed is guided by selecting a particular I/O scheduler, shown in Table 20.7, within a con-
figuration file.

The configuration file used for determining which I/O scheduler to use is in a directory
associated with each disk. Listing 20.15 shows how to find the various disk directories and
their associated scheduler file on a Rocky Linux distribution.

Listing 20.15:  Locating a disk’s scheduler file

ls /sys/block
dm-0 dm-1 sda sdb sdc sdd sr0
#
cat /sys/block/sda/queue/scheduler
[mq-deadline] kyber bfq none

#

The scheduler used for the sda disk, mq-deadline, is in brackets. To change the current
I/O scheduler, you simply employ super user privileges and the echo command, as shown in
Listing 20.16.

TABLE 20 .7   I/O schedulers

Name Description

cfq Creates queues for each process and handles the various queues in a loop
while providing read request priority over write requests. This scheduler is
good for situations where more balance I/O handling is needed and/or the
system has a multiprocessor.

deadline Batches disk I/O requests and attempts to handle each request by a specified
time. This scheduler is good for situations where increased database I/O and
overall reduced I/O latency are needed, and/or an SSD is employed, and/or a
real-time application is in use.

noop Places all I/O requests into a single FIFO queue and handles them in order. This
scheduler is good for situations where less CPU usage is needed and/or an SSD
is employed.

Troubleshooting Storage Issues  591

Listing 20.16:  Changing a disk’s scheduler file temporarily

echo "bfq" > /sys/block/sda/queue/scheduler
#
cat /sys/block/sda/queue/scheduler
mq-deadline kyber [bfq] none

#

If you determine that due to hardware limitations, a new and different hard drive is
needed to handle the required I/O levels, the ioping utility can help you in the testing pro-
cess. The ioping utility is typically not installed by default, but it is commonly available in a
distribution’s standard repositories.

The ioping utility can destroy data on your disk! Be sure to thoroughly
understand the command’s options before employing it. If you desire a
safer alternative, take a look at the stress-ng tool. This utility allows
you to conduct stress tests for disks, your network, a system’s CPUs, and
so on.

Using the ioping command, you can test disk I/O latency, seek rates, and sequential
speeds. You can also try out asynchronous, cache, and direct I/O rates.

A snipped example in Listing 20.17 shows a simple test that reads random data chunks
(noncached) from a temporary file using the ioping command.

Listing 20.17:  Conducting a noncached read test using the ioping utility

ioping -c 3 /dev/sda
4 KiB <<< /dev/sda [...]: request=1 time=20.7 ms (warmup)
4 KiB <<< /dev/sda [...]: request=2 time=32.9 ms
4 KiB <<< /dev/sda [...]: request=3 time=25.5 ms

--- /dev/sda (block device 15 GiB) ioping statistics ---
2 requests completed in 58.4 ms, 8 KiB read, 34 iops, 137.0 KiB/s
generated 3 requests in 2.03 s, 12 KiB, 1 iops, 5.92 KiB/s
min/avg/max/mdev = 25.5 ms / 29.2 ms / 32.9 ms / 3.72 ms
#

The added -c 3 option specifies three tests. More thorough ioping tests help determine
if a disk will work for a particular application’s needs.

Measuring Disk Performance
One benchmark that’s helpful in determining the overall I/O performance for disk drives is
the input/output operations per second (IOPS) value. This value is the number of input or

592  Chapter 20  ■  Analyzing System Properties and Remediation

output operations a storage device can perform in a second. The IOPS values provide a way
to not only evaluate disk drive performance but compare different types of storage, such as a
single SATA or SSD drive versus a RAID or LVM setup.

A popular tool in the Linux environment for determining IOPS values is the flexible I/O
tool called fio. The tool is available as the fio package in both the Debian-based and Red
Hat–based software repositories, and it must be installed manually.

The fio tool performs multiple read/write operations on a file and directory you specify,
with a file size and block size that you specify. The larger the file, the more accurate the IOPS
reading you’ll obtain. Listing 20.18 shows an example of performing an fio test on a disk.

Listing 20.18:  Using the fio tool to determin disk I/O

fio --randrepeat=1 --ioengine=libaio --direct=1
--gtod_reduce=1 --name=fiotest --filename=fiotest --bs=4k
--iodepth=64 –size=1G –readwrite=randrw –rwmixread=75

fiotest: (g=0): rw=randrw, bs=(R) 4096B-4096B, (W) 4096B-4096B, (T)
4096B-4096B, ioengine=libaio, iodepth=64
fio-3.19
Starting 1 process
fiotest: Laying out IO file (1 file / 1024MiB)
[...]
 read: IOPS=23.4k, BW=91.4MiB/s (95.9MB/s)(768MiB/8396msec)
 bw (KiB/s): min=63425, max=101451, per=99.97%, avg=93588.81,
stdev=9628.66, samples=16
 iops : min=15856, max=25362, avg=23396.88, stdev=2407.19, samples=16
 write: IOPS=7818, BW=30.5MiB/s (32.0MB/s)(256MiB/8396msec); 0 zone resets
 bw (KiB/s): min=22658, max=33712, per=99.91%, avg=31245.31,
stdev=2927.74, samples=16
 iops : min= 5664, max= 8428, avg=7811.06, stdev=732.05, samples=16
 cpu : usr=2.80%, sys=34.02%, ctx=3045, majf=0, minf=7
 IO depths : 1=0.1%, 2=0.1%, 4=0.1%, 8=0.1%, 16=0.1%, 32=0.1%,
>=64=100.0%
 submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%,
>=64=0.0%
 complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.1%,
>=64=0.0%
 issued rwts: total=196498,65646,0,0 short=0,0,0,0 dropped=0,0,0,0
 latency : target=0, window=0, percentile=100.00%, depth=64
[...]
#

Troubleshooting Storage Issues  593

As you can see, the fio tool provides lots of detailed information about the read/write
test. You can consult the fio man pages to learn about all the details. In Listing 20.18, the
main IOPS information we’re interested in here appears in these two lines:

read: IOPS=23.4k, BW=91.4MiB/s
write: IOPS=7818, BW=30.5MiB/s

For this disk drive, the read IOPS value was 23400, and the write IOPS was 7818. It’s
normal for the write IOPS value to be significantly lower than the read IOPS value because it
takes longer to write data to the disk than to read it. Now you can use these values to com-
pare against other storage devices on your system.

Solid-state drives (SSDs) handle reads and writes a bit differently than
standard SATA or SCSI drives. When a file is deleted in the filesystem
stored on an SSD device, the fstrim application needs to run to deter-
mine which memory locations can be recovered (called SSD trimming).
Maintaining unnecessary memory locations can slow down the read and
write access to the SSD device. Most Linux distributions run the fstrim
utility at periodic intervals automatically for internal SSD devices, but if
you add an external SSD device to your Linux system, you may need to
manually run the fstrim utility yourself to help increase performance on
the device.

Failing Disks
If a small chunk of an HDD or SSD will not respond to I/O requests, the disk controller
marks it as a bad sector. When a bad sector is marked, typically the controller’s firmware will
attempt to move the data from the marked sector to a new location and remap the logical
sector to the new sector. Thus, the data is safe.

A random bad sector does not indicate a drive is failing. However, if you are seeing bad
sectors more and more on your disk, then it needs to be replaced. Thus, you should monitor
this situation.

If the drive has self-monitoring analysis and reporting technology
(SMART), you can employ the smartctl utility to check on its health.

Occasionally a file on the drive loses its matching inode number, called a mismatch
(covered in Chapter 3, “Managing Files, Directories, and Text”), or some other type of disk
corruption occurs. This leaves the data in place but nothing can access it, and the problem
must be repaired manually.

One utility that will allow you to check and repair an ext2, ext3, or ext4 filesystem is the
fsck command (covered in Chapter 11). The disk partition must be unmounted before you
can run the utility on it.

594  Chapter 20  ■  Analyzing System Properties and Remediation

For a btrfs filesystem, use the btrfs check command to check and/or
repair an unmounted btrfs drive. If you have an XFS filesystem, use the
xfs_check utility to check the disk and xfs_repair to check and repair
the drive.

Physical damage or wear can sometimes cause unusual sounds from a drive. You may
hear clicking, grinding, or scratching noises. These indicate a drive is failing and should be
replaced as soon as possible.

In the cases where you do need to replace a drive and rebuild your partition(s), keep in
mind that you can use the partprobe command. This nice utility allows your system to
reread a disk’s partition table without rebooting the system. You do need to use super user
privileges to invoke it.

Troubleshooting the CPU
You need to correctly size your CPU(s) for your server application needs. An undersized pro-
cessor will force you to obtain a new one, and an oversized processor will not be used to its
full potential. Both waste money.

For troubleshooting, you need to understand your CPU(s)’ hardware—the number of
cores, whether or not hyperthreading is used, cache sizes, and so on. You can easily view
your system’s current processors’ information. Use the less utility and pass it the
/proc/cpuinfo filename. The first processor listed in this file is shown as processor 0.

To look at CPU usage, you can employ the uptime command. It shows how long the
system has been up and running, but even more important, it displays CPU load aver-
ages. Load averages are the average amount of processes waiting for or using the CPU. For
example, if you have a single core processor, then a load average of 2 would mean that typi-
cally a process is using the CPU while another process waits.

The uptime utility displays three load average numbers—a 1-, 5-, and 15-minute average.
An example is shown in Listing 20.19.

Listing 20.19:  Displaying load averages with the uptime utility

$ uptime
 15:12:41 up 54 min, 2 users, load average: 0.95, 0.93, 0.90
$

This single-core CPU system has rather high load averages, which indicates a potential
serious problem. First, check for a runaway process. If there is not one, you will want to
investigate items such as interrupts from network and disks. The top utility can help here.

For a single-core CPU, a consistent load average above 0.70 indicates a
problem. Consistent load averages of 1.00 are at emergency levels.

Troubleshooting Memory  595

If you need to view CPU performance over time, the sar (system activity reporter) utility
is useful. It’s typically installed by default on most distributions, but if you need to install it,
use the sysstat package.

The sar utility uses data stored by the sadc program in the /var/log/sa/ directory,
which contains up to a month’s worth of data. By default, it displays data from the current
file. Used without any options or arguments, sar will display today’s stored CPU usage
information in 10-minute intervals, as shown snipped in Listing 20.20.

Listing 20.20:  Displaying CPU usage with the sar utility

$ sar -u
[...]
03:20:28 PM CPU %user %nice %system %iowait %steal %idle
03:30:18 PM all 32.15 0.00 67.85 0.00 0.00 0.00
03:40:01 PM all 19.07 0.00 26.88 0.00 0.00 54.05
[...]
Average: all 20.85 0.00 24.51 0.01 0.00 54.64
[...]

If your server is running multiple virtual machines, the %steal column of the sar utility
output is handy. This column shows how much CPU is being utilized by virtual machines on
the system.

You may be able to improve CPU performance by modifying certain
kernel parameters via the sysctl utility. For example, if your server has
multiple processors, they may experience jitter (similar to network jitter),
causing spikes in their performance and resulting in application slowness
(high latency). If set to 1, the skew_tick parameter can reduce this jitter.

Troubleshooting Memory
Processes use RAM to temporarily store data because it is faster to access than data stored
on a disk. One form of this is disk buffering, which improves disk read performance. Data
is read from the disk and stored for a period of time in a memory location called a buffer
cache. Subsequent accesses of that data are read from memory rather than disk, which signif-
icantly improves performance.

The speed that memory provides to processes is so valuable that the Linux kernel main-
tains and administers shared memory areas. These shared segments allow multiple running

596  Chapter 20  ■  Analyzing System Properties and Remediation

programs to read/write from/to a common shared memory data area, which considerably
speeds up process interactions.

You can see detailed information concerning your system’s RAM by viewing the /proc/
meminfo file. To view shared memory segments, use the ipcs -m command. You can view
memory statistics on a system using command-line tools such as free, sar, and vmstat.

Be aware that RAM bottlenecks often keep CPU usage artificially low. If
you increase the RAM on your system, your processor loads may also
increase.

Swapping
Memory is divided up into chunks called pages. When the system needs more memory, using
a memory management scheme, it takes an idle process’s memory pages and copies them to
disk. This disk location is a special partition called swap space or swap or virtual memory. If
the idle process is no longer idle, its memory pages are copied back into memory. This pro-
cess of copying memory pages to/from the disk swap space is called swapping.

If your system does not have properly sized memory, you should see high RAM usage via
the free command. In addition, the system will increase swapping, which results in increased
disk I/O. The vmstat tool is handy in this case because it will allow you to view disk I/O
specific to swapping as well as total blocks in and blocks out to the device. An example of
using the vmstat utility is shown in Listing 20.21.

Listing 20.21:  Displaying virtual memory statistics with the vmstat utility

$ vmstat
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 2 0 0 3149092 3220 355180 0 0 1978 43 812 783 27 17 26 29 0
$

On a Linux system, swap space is either a disk partition or a file. A swap partition is a
special disk partition that acts as the system’s swap space.

It is generally recommended that you do not store your swap partitions/
files on SSDs. This is due to their limited life span and wear-leveling.
Heavy swapping could cause an early SSD death.

A useful utility for viewing memory and determining if swap is a file or a partition is the
swapon -s command. If it’s available, you can obtain the same information from the
/proc/swaps file. An example of using the swapon -s command on a Rocky Linux distri-
bution is shown in Listing 20.22.

Troubleshooting Memory  597

Listing 20.22:  Displaying a swap partition with the swapon utility

$ swapon -s
Filename Type Size Used Priority
/dev/dm-1 partition 1769468 0 -2

$

Notice that on this Rocky Linux distro, the swap space is a partition. The priority column
within the preceding example’s swap space statistics is shown as a negative 2 (-2). If there
are multiple swap spaces, this priority number determines which swap is used first.

Another swapon -s example is enacted on an Ubuntu distribution and shown in
Listing 20.23. Notice that in this case, the swap space is a file.

Listing 20.23:  Displaying a swap file with the swapon utility

$ swapon -s
Filename Type Size Used Priority
/swapfile file 483800 0 -2
$

During the Linux OS installation, typically a swap partition or file is created and added to
the /etc/fstab configuration file. However, you may need to create additional swap
partitions/files—for example, if you increase your system’s RAM.

If your swap partition is on a logical volume, add additional space via
the LVM tools. Simply follow the steps covered in the section “Trouble-
shooting Storage Issues” earlier in this chapter as well as the following
section. However, you can have more than one system swap space. In
fact, in many cases it is desirable to do so for performance reasons.

For a new partition swap space, once you’ve created a new disk partition, use the mkswap
command to “format” the partition into a swap partition. You use the same command for a
new swap file and a logical volume. An example on a Rocky Linux system, using super user
privileges, is shown in Listing 20.24.

Listing 20.24:  Making a swap partition with the mkswap command

mkswap /dev/sde1
Setting up swapspace version 1, size = 1048572 KiB
no label, UUID=e5bd150a-2f06-42ed-a0a9-a7372abd9dee
#
blkid /dev/sde1
/dev/sde1: UUID="e5bd150a-2f06-42ed-a0a9-a7372abd9dee" TYPE="swap"
#

598  Chapter 20  ■  Analyzing System Properties and Remediation

Now that the swap partition or file has been properly prepared, activate it using the
swapon command. The free command is very useful here because it provides a simple view
of your current free and used memory. An example of these two commands is shown in
Listing 20.25.

Listing 20.25:  Activating a swap partition with the swapon command

free -h
 total used free shared buff/cache available
Mem: 3.7G 359M 3.0G 9.3M 352M 3.1G
Swap: 1.5G 0B 1.5G
#
swapon /dev/sde1
#
swapon -s
Filename Type Size Used Priority
/dev/dm-1 partition 1572860 0 -1
/dev/sde1 partition 1048572 0 -2
#
free -h
 total used free shared buff/cache available
Mem: 3.7G 366M 3.0G 9.3M 352M 3.1G
Swap: 2.5G 0B 2.5G
#

You can see that the swap space size has increased 1 GB by adding a second swap parti-
tion. The -h option on the free command displays memory information in a more human-
readable format.

The free command’s buffer cache output is displayed in the buff/cache
column. Older versions of this command would show two columns for
this data—buffers and cache. Linux divides up its buffer cache into dis-
tinct categories. Buffers are memory used by kernel buffers, while cache
is memory used by process page caches and slabs (contiguous memory
pages set aside for individual caches). The buff/cache column in the
modern free command’s output is simply a summation of these two
memory use categories.

Troubleshooting Memory  599

If desired, change the new swap partition’s priority from its current negative 2 (-2) to
a higher priority, using the swapon command, as shown in Listing 20.26. A higher number
designates that the swap partition is used before other partitions for swap.

Listing 20.26:  Changing a swap priority with the swapon command

swapoff /dev/sde1
#
swapon -p 0 /dev/sde1
#
swapon -s
Filename Type Size Used Priority
/dev/dm-1 partition 1572860 0 -1
/dev/sde1 partition 1048572 0 0
#

You must first use the swapoff command on the swap partition to disengage it from
swap space. After that, the swapon -p priority is used to change the preference priority.
You can set priority to any number between 0 and 32767.

If you want to move your system to a new swap partition or file, do not
use the swapoff command on a current swap partition/file until your
new swap partition is added to swap space. Otherwise, you may end up
with a hung system.

If all is well with the new swap partition, add it to the /etc/fstab file so that it is per-
sistent through system reboots. You can closely mimic the current swap file record’s settings,
but be sure to change the name to your new swap partition/file.

Running Out of Memory
By default, the Linux kernel allows itself to overcommit memory to various processes. This
is done for efficiency and performance. However, due to this allowance, the system can
become very low on free memory. In a critical low-memory situation, Linux first reclaims old
memory pages. If it doesn’t reclaim enough RAM to come out of a critical status, it employs
the out of memory killer (also called the OOM killer).

When triggered, the OOM killer scans through the various processes using memory and
creates a score. The score is based on the total memory a process (and its child processes) is
using and the smallest number of processes that can be killed to come out of a critical low-
memory status. The kernel, root, and crucial system processes are automatically given low
scores. If a process has a high score, it is killed off. The OOM killer scans and kills off high-
scoring processes until the system is back to normal memory status.

600  Chapter 20  ■  Analyzing System Properties and Remediation

If you want to modify the behavior of the OOM killer, you can do so via
the following kernel parameters with the sysctl command:
vm.panic_on_oom and kernel.panic.

You can force the kernel to prevent memory overcommit via the sysctl command,
changing the vm.overcommit_memory kernel parameter from its default of 0 to 1. How-
ever, this may not be the best solution. In many systems, it is better to fine-tune the memory
overcommit by setting vm.overcommit_memory to 2. This allows you to allocate as much
memory as defined in another kernel parameter, the overcommit_ratio. In this case, when
a process requests memory that causes the system to exceed the set overcommit ratio, the
allocation fails.

While you can modify kernel parameters with the sysctl command, the
settings are not persistent. To make the settings persistent, make the
appropriate edits to /etc/sysctl.conf or your distribution’s applicable
sysctl configuration file.

Surviving a Lost Root Password
Forgetting the root account’s password is troublesome for many reasons. The quick fix is to
reset it via the passwd command using your own account’s super user privileges. However,
if you were using the root account to gain super user privileges (which is a bad practice) or
your privileges do not allow you to change the root password, you are in trouble. But all
hope is not lost.

On older Linux distros and a few modern ones (Ubuntu), booting the system into single
user mode will allow you to access the root account and change its password via the passwd
command. To do so, follow these steps:

1.	 Boot (or reboot) the system. When the boot process reaches the boot menu, press the E
key on the boot menu line you wish to edit (the kernel version the system typically runs).

2.	 Find the line that contains linux or linux16 via an arrow key.

3.	 Go to the line’s end, press the spacebar once, and type 1.

4.	 Press Ctrl+X to boot the system.

5.	 Once the system is booted, press the Enter key if it states you are in Emergency or
Rescue mode.

6.	 Change the root account’s password using the passwd command.

7.	 Reboot the system using the reboot command.

Exam Essentials  601

On some modern Linux systems, such as Rocky Linux and Fedora distros, you’ll need a
slightly different approach. Follow these steps:

1.	 Boot (or reboot) the system. When the boot process reaches the boot menu, press the E
key on the boot menu line you wish to edit (the kernel version the system typically runs).

2.	 Find the line that contains linux or linux16 via an arrow key.

3.	 On that line, find ro. This is somewhere in the line’s middle.

4.	 Replace ro with rw init=/sysroot/bin/sh. Don’t replace anything else in that
line but ro.

5.	 Press Ctrl+X to boot the system.

6.	 Once the system is booted, press the Enter key if it states you are in Emergency or
Rescue mode.

7.	 Type chroot /sysroot to set up a jailed root environment.

8.	 Change the root account’s password using the passwd command.

9.	 If the system uses SELinux (Rocky Linux and Fedora typically do), force
SELinux to automatically relabel the system on the next boot by typing the touch
/.autorelabel command.

10.	 Reboot the system with the reboot command. (Note: You may need to type exit and press
Enter before trying to reboot your system.)

You’ll have to wait a while for the system to go through its SELinux relabel process.

Summary
Troubleshooting Linux performance issues requires planning ahead for adverse incidents. In
addition, you must understand the interactions between the various system properties, such
as processors, disks, networks, and memory. Properly sizing system components and config-
uring Linux will provide a more trouble-free environment.

Exam Essentials

Describe network troubleshooting tools.   If your network is experiencing high latency, the
tools to help troubleshoot this are iperf, iperf3, iftop, mtr, nc (netcat), ping, ping6,
ss, tracepath, tracepath6, traceroute, and traceroute6. These utilities also assist
in detecting network saturation problems. If failing or faulty adapters are a problem, the
tools to diagnose this issue are ethtool, ifconfig, ip, and netstat. These utilities along
with nmcli also help with NIC configuration problems. For incorrect or duplicate MAC

602  Chapter 20  ■  Analyzing System Properties and Remediation

addresses in a router, employ the arp or ip neigh command. To research slow or incorrect
name server responses, the host, dig, nslookup, and whois utilities help.

Summarize potential disk problems and solutions.   The du and df utilities help in pre-
venting the system from running out of filesystem space and with troubleshooting when it
does. If it is a logical volume, employ the LVM tools to add additional space when needed.
I/O wait times, which may slow overall system performance, are seen with the iostat
command. Changing a system’s I/O scheduler may help relieve this problem. The ioping
utility tests a disk to determine if it is usable for a particular application. To repair an ext*
filesystem, use the fsck command. The partprobe command works well for newly created
partitions in that it forces a reread of a disk’s partition table without rebooting the system.

Clarify CPU troubleshooting procedures.   It is important to understand your system’s
current processors’ information, which you can find in the /proc/cpuinfo file. To view
CPU usage, employ the uptime and/or the sar commands. If needed and appropriate, you
can tweak kernel parameters related to processor handling using the sysctl utility.

Explain memory problems and solutions.   To view detailed system RAM information, look
at the /proc/meminfo file’s contents. If your system does not have properly sized memory,
you can see high RAM usage via the free command. In addition, the vmstat tool allows
you to view disk I/O specific to swapping, which increases when RAM is improperly sized.
If you need to add additional swap space, the mkswap utility will “format” a partition/file
into swap, and the swapon command will put it into swap space. If you need to uncouple a
partition/file from swap space, use the swapoff utility. If memory use hits critical levels, the
kernel releases the OOM killer, which kills off particular processes to bring memory usage
back to reasonable levels. Memory management can be modified using certain kernel param-
eters and the sysctl tool.

Review Questions  603

Review Questions
1.	 Which of the following is true concerning network sockets? (Choose all that apply.)

A.	 Numbers used to identify which service is transmitting data

B.	 A single endpoint of a network connection’s two endpoints

C.	 Uses a combination of an IP address and a port number

D.	 Endpoints between processes on a local system

E.	 Provides better IPC than localhost

2.	 The system administrator, Preston, has noticed that the IPv4 network seems sluggish. He
decides to run some tests to check for high latency. Which of the following utilities should he
use? (Choose all that apply.)

A.	 iperf
B.	 ping
C.	 ip neigh
D.	 dig
E.	 traceroute

3.	 Scott has formulated a problem cause theory that routers are saturated with traffic and drop-
ping TCP packets from their queues. Which of the following tools should he employ to test
this theory? (Choose all that apply.)

A.	 mtr
B.	 ifconfig
C.	 ethtool -s
D.	 tracepath
E.	 traceroute

4.	 The network engineer, Keenser, believes the choices of name servers in the system’s
/etc/resolv.conf file are inefficient. Which of the following tools can he employ to test
new server choices?

A.	 dnsmasq
B.	 whois
C.	 nmap
D.	 nslookup
E.	 ipset list

604  Chapter 20  ■  Analyzing System Properties and Remediation

5.	 Mera, a Linux system admin, believes a new application on her system is producing too
much I/O for a particular partition, causing the system’s processor to appear sluggish. Which
tool should she use to test her problem cause theory?

A.	 iostat
B.	 ioping
C.	 du
D.	 df
E.	 iotop

6.	 From analysis, Arthur believes the system’s I/O throughput will improve by changing the I/O
scheduler. On his system is a real-time application, which uses a database located on a solid-
state drive. Which I/O scheduler should Arthur choose?

A.	 scheduler
B.	 deadline
C.	 queue
D.	 cfq
E.	 noop

7.	 Using the uptime command, you will see CPU load averages in what increments? (Choose
all that apply.)

A.	 1 minute

B.	 5 minutes

C.	 10 minutes

D.	 15 minutes

E.	 20 minutes

8.	 Mary wants to view her system’s processor performance over time. Which is the best utility
for her to employ?

A.	 uptime
B.	 sysstat
C.	 sar
D.	 cat /proc/cpuinfo
E.	 sysctl

9.	 Gertie needs to determine a swap space element’s type, name, and priority. Which command
should she use?

A.	 vmstat
B.	 free
C.	 fstab
D.	 swapoff
E.	 swapon -s

Review Questions  605

10.	 Elliot is administering a Linux system that has multiple swap spaces. One is on a logical
volume, but it needs more space to accommodate additional RAM that is to be installed in
the near future. What is the best way for Elliot to add swap space?

A.	 Add a partition and format it with the mkswap command.

B.	 Add a file and format it with the mkswap command.

C.	 Add a partition using the swapon utility.

D.	 Add a file using the swapon utility.

E.	 Use LVM tools to increase the logical volume.

Optimizing
Performance

✓✓ Objective 1.4: Given a scenario, configure and use the
appropriate processes and services.

✓✓ Objective 4.3: Given a scenario, analyze and troubleshoot
central processing unit (CPU) and memory issues.

Chapter

21

This chapter discusses how Linux handles applications running
on the system. Linux must keep track of lots of different pro-
grams, all running at the same time. Your goal as the Linux

administrator is to make sure everything runs smoothly. This chapter shows just how Linux
keeps track of all the active programs and how you can peek at that information. You’ll also
see how to use command-line tools to manage the programs running on your Linux system.

Looking at Processes
At any given time a large number of active programs are running on the Linux system. Linux
calls each running program a process. A process can run in the foreground, displaying output
on a console display or graphical desktop window, or it can run in the background, working
on data behind the scenes. The Linux system assigns each process a process ID (PID) and
manages how the process uses memory and CPU time based on that PID.

When a Linux system first boots, it starts a special process called the init process. The
init process is the core of the Linux system; it runs scripts that start all the other processes
running on the system, including the processes that start the text consoles and graphical win-
dows you use to log in (see Chapter 6, “Maintaining System Startup and Services”).

You can watch just which processes are currently running on your Linux system by using
the ps command. The default output of the ps command looks like this:

$ ps
PID TTY TIME CMD
 2797 pts/0 00:00:00 bash
 2884 pts/0 00:00:00 ps
$

By default, the ps command only shows the processes that are running in the current user
shell. In this example, we only had the command prompt shell running (Bash) and, of course,
the ps command itself.

The basic output of the ps command shows the PID assigned to each process, the
terminal (TTY) that they were started from, and the CPU time that the process has used.

The tricky feature of the ps command (and what makes it so complicated) is that at one
time there were two versions of it in Linux. Each version had its own set of command-line
parameters controlling the information it displayed. That made switching between systems
somewhat complicated.

Looking at Processes  609

Recently, the GNU developers decided to merge the two versions into a single ps
program, and of course, they added some additional parameters of their own. The current ps
program used in Linux supports three different styles of command-line parameters:

■■ Unix-style parameters, which are preceded by a dash

■■ BSD-style parameters, which are not preceded by a dash

■■ GNU long parameters, which are preceded by a double dash

This makes for lots of possible parameters and options to use with the ps command. You
can consult the ps man page to see all the possible parameters that are available. Most Linux
administrators have their own set of commonly used parameters that they remember for
extracting pertinent information. For example, if you need to see every process running on
the system, use the Unix-style -ef parameter combination, like this:

$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 09:02 ? 00:00:02 /sbin/init
root 2 0 0 09:02 ? 00:00:00 [kthreadd]
root 3 2 0 09:02 ? 00:00:00 [ksoftirqd/0]
root 4 2 0 09:02 ? 00:00:00 [kworker/0:0]
root 5 2 0 09:02 ? 00:00:00 [kworker/0:0H]
root 6 2 0 09:02 ? 00:00:00 [kworker/u2:0]
root 7 2 0 09:02 ? 00:00:02 [rcu_sched]
root 8 2 0 09:02 ? 00:00:01 [rcuos/0]
root 9 2 0 09:02 ? 00:00:00 [rcu_bh]
root 10 2 0 09:02 ? 00:00:00 [rcuob/0
...
$

This format provides some useful information about the processes running:

UID: The user responsible for running the process

PID: The process ID of the process

PPID: The process ID of the parent process (if the process was started by
another process)

C: The processor utilization over the lifetime of the process

STIME: The system time when the process was started

TTY: The terminal device from which the process was started

TIME: The cumulative CPU time required to run the process

CMD: The name of the program that was started in the process

Also notice in the -ef output that some process command names are shown in brackets.
That indicates processes that are currently swapped out from physical memory into virtual

610  Chapter 21  ■  Optimizing Performance

memory on the hard drive. Processes that are swapped into virtual memory are called sleep-
ing. Often the Linux kernel places a process into sleep mode while the process is waiting
for an event.

When the event triggers, the kernel sends the process a signal. If the process is in inter-
ruptible sleep mode, it will receive the signal immediately and wake up. If the process is in
uninterruptible sleep mode, it only wakes up based on an external event, such as hardware
becoming available. It will save any other signals sent while it was sleeping and act on them
once it wakes up.

If a process has ended but its parent process hasn’t acknowledged the
termination signal because it’s sleeping, the process is considered a
zombie. It’s stuck in a limbo state between running and terminating until
the parent process acknowledges the termination signal.

Monitoring Processes in Real Time
The ps command is a great way to get a snapshot of the processes running on the system,
but sometimes you need to see more information to get an idea of just what’s going on
in your Linux system. If you’re trying to find trends about processes that are frequently
swapped in and out of memory, it’s hard to do that with the ps command.

Instead, the top command can solve this problem. The top command displays process
information similar to the ps command, but it does it in real-time mode. Figure 21.1 shows
a snapshot of the top command in action.

F IGURE 21.1   The output of the top command

Monitoring Processes in Real Time  611

The first section of the top output shows general system information. The first line shows
the current time, how long the system has been up, the number of users logged in, and the
load average on the system.

The load average appears as three numbers: the 1-minute, 5-minute, and 15-minute load
averages. The higher the values, the more load the system is experiencing. It’s not uncommon
for the 1-minute load value to be high for short bursts of activity. If the 15-minute load value
is high, your system may be in trouble.

The second line shows general process information (called tasks in top): how many
processes are running, sleeping, stopped, or in a zombie state.

The next line shows general CPU information. The top display breaks down the CPU uti-
lization into several categories depending on the owner of the process (user versus system
processes) and the state of the processes (running, idle, or waiting). Table 21.1 describes
these categories of time.

Following that, there are two lines that detail the status of the system memory. The first
line shows the status of the physical memory in the system, how much total memory there is,
how much is currently being used, and how much is free. The second memory line shows the
status of the swap memory area in the system (if any is installed), with the same information.

Finally, the next section shows a detailed list of the currently running processes, with
some information columns that should look familiar from the ps command output:

PID: The process ID of the process

USER: The username of the owner of the process

TABLE 21.1   The top CPU categories

Category Symbol Description

User us The amount of time the CPU spends running application code

System sy The amount of time the CPU spends working with system
resources

Nice ni The amount of time the CPU spends running low-priority processes

Idle id The amount of time the CPU was not busy

Waiting wa The amount of time the CPU spends waiting for disk or network
operations to complete (also called iowait)

Hardware
Interrupt

hi The amount of time the CPU spends processing hardware inter-
rupts

Software
Interrupt

si The amount of time the CPU spends processing software interrupts

612  Chapter 21  ■  Optimizing Performance

PR: The priority of the process

NI: The nice value of the process

VIRT: The total amount of virtual memory used by the process

RES: The amount of physical memory the process is using

SHR: The amount of memory the process is sharing with other processes

S: The process status (D = interruptible sleep, R = running, S = sleeping, T = traced or
stopped, and Z = zombie)

%CPU: The share of CPU time that the process is using

%MEM: The share of available physical memory the process is using

TIME+: The total CPU time the process has used since starting

COMMAND: The command-line name of the process (program started)

By default, when you start top it sorts the processes based on the %CPU value. You
can change the sort order by using one of several interactive commands. Each interactive
command is a single character you can press while top is running and changes the behavior
of the program. These commands are shown in Table 21.2.

TABLE 21.2   The top interactive commands

Command Description

1 Toggles the single CPU and Symmetric Multiprocessor (SMP) state

b Toggles the bolding of important numbers in the tables

I Toggles Irix/Solaris mode

z Configures color for the table

l Toggles display of the load average information line

t Toggles display of the CPU information line

m Toggles display of the MEM and SWAP information lines

f Adds or removes different information columns

o Changes the display order of information columns

F or O Selects a field on which to sort the processes (%CPU by default)

Monitoring Processes in Real Time  613

You have lots of control over the output of the top command. Use the F or O command
to toggle which field the sort order is based on. You can also use the r interactive command
to reverse the current sorting. Using this tool, you can often find offending processes that
have taken over your system. A relatively new utility, the htop program is an improved
version of the top utility, available in most Linux distributions as an additional software
package that you can install. Figure 21.2 shows an example of the htop output display.

Command Description

< or > Moves the sort field one column left (<) or right (>)

r Toggles normal or reverse sort order

h Toggles showing of threads

c Toggles showing of the command name or the full command line (including
parameters) of processes

i Toggles showing of idle processes

S Toggles showing of the cumulative CPU time or relative CPU time

x Toggles highlighting of the sort field

y Toggles highlighting of running tasks

z Toggles color and mono mode

u Shows processes for a specific user

n or # Sets the number of processes to display

k Kills a specific process (only if process owner or if root user)

r Changes the priority (renice) of a specific process (only if process owner or if root
user)

d or s Changes the update interval (default 3 seconds)

W Writes current settings to a configuration file

q Exits the top command

614  Chapter 21  ■  Optimizing Performance

The htop output uses color-coding to make things easier to read, along with use of the
mouse to select items. Instead of cryptic letters for actions, it uses function keys to easily
perform display functions, such as sorting or filtering the output, searching the output, or
arranging the output in a tree to easily view parent and child processes. Perhaps one of
its more popular features that makes it improved over top is the ability to customize the
output display so that you only see the process information columns you’re interested in
monitoring.

Managing Processes
One of the jobs of a Linux system administrator is to be on the watch for runaway processes
that can take down the Linux system. You’ve already seen how to use the ps and top com-
mands to monitor how processes are doing on the system; the next step is to see how to stop
a runaway process.

Setting Priorities
By default, all processes running on the Linux system are created equal; that is, they all have
the same priority to obtain CPU time and memory resources. However, you may run some

F IGURE 21.2   The output from the htop command tree view

Managing Processes  615

applications that either don’t need to have the same level of priority or may need a higher
level of priority.

The nice and renice commands allow you to set and change the priority level assigned
to an application process. The nice command allows you to start an application with a non-
default priority setting. The format looks like this:

nice -n value command

The kernel is the final judge in determining whether it can start an appli-
cation with a different priority level, even if you tell it to. If the Linux
system is heavily loaded, the kernel can choose to ignore any nice or
renice commands.

The value parameter is a numeric value from –20 to 19. The lower the number, the
higher priority the process receives. The default priority is 0. The command parameter indi-
cates the program you want to start at the specified priority:

$ nice -n 10 ./myscript.sh
$

To change the priority of a process that’s already running, use the renice command:

renice priority [-p pids] [-u users] [-g groups]

The renice command allows you to change the priority of multiple running processes
based on a list of PID values, all of the processes started by one or more users, or all of the
processes started by one or more groups.

$ renice 15 -p 3178
$

Only the root user account can set a priority value less than 0 or decrease
the priority value (increase the priority) of a running process.

Stopping Processes
Sometimes a process gets hung up and just needs a gentle nudge to either get going again or
stop. Other times, a process runs away with the CPU and refuses to give it up. In both cases,
you need a command that will allow you to control a process. To do that, Linux follows the
Unix method of interprocess communication.

In Linux, processes communicate with each other using process signals. A process signal
is a predefined message that processes recognize and may choose to ignore or act on. The
developers program how a process handles signals. Most well-written applications have the
ability to receive and act on the standard Unix process signals. These signals are shown in
Table 21.3.

616  Chapter 21  ■  Optimizing Performance

While a process can send a signal to another process, there are two commands available
in Linux that allow you to send process signals to running processes.

The kill Command
The kill command allows you to send signals to processes based on their process ID (PID).
By default, the kill command sends a SIGTERM signal to all the PIDs listed on the command
line. Unfortunately, you can only use the process PID instead of its command name, making
the kill command difficult to use sometimes.

To send a process signal, you must either be the owner of the process or be logged in as
the root user.

$ kill 3940
 -bash: kill: (3940) - Operation not permitted
 $

The SIGTERM signal only asks the process to kindly stop running. Unfortunately, if you
have a runaway process, most likely it will ignore the request. When you need to get forceful,
the -s parameter allows you to specify other signals (either using their name or using their
signal number).

The generally accepted procedure is to first try the TERM signal. If the process ignores
that, try the SIGINT or SIGHUP signal. If the program recognizes these signals, it will try to
gracefully stop doing what it was doing before shutting down. The most forceful signal is the
SIGKILL signal. When a process receives this signal, it immediately stops running. Use this
as a last resort, as it can lead to corrupted files.

TABLE 21.3   Linux process signals

Number Name Description

1 SIGHUP Hangs up

2 SIGINT Interrupts

3 SIGQUIT Stops running

9 SIGKILL Unconditionally terminates

11 SIGSEGV Segments violation

15 SIGTERM Terminates if possible

17 SIGSTOP Stops unconditionally but doesn’t terminate

18 SIGTSTP Stops or pauses but continues to run in the background

19 SIGCONT Resumes execution after STOP or TSTP

Managing Processes  617

One of the scary things about the kill command is that there’s no output from it:

$ sudo kill -s SIGHUP 3940
$

To see if the command was effective, you’ll have to perform another ps or top command
to see if the offending process stopped.

Be careful of killing processes that may have open files. Files can be
damaged and unrepairable if the process is abruptly stopped. It’s usually
a good idea to run the lsof command first to see a list of the open files
and their processes.

The pkill Command
The pkill command is a powerful way to stop processes by using their names rather than the
PID numbers. The pkill command allows you to use wildcard characters as well, making it a
very useful tool when you’ve got a system that’s gone awry:

$ sudo pkill http*
$

This example will kill all of the processes that start with http, such as the httpd
services for the Apache web server.

Be careful with the search capability of the pkill command. It’s usu-
ally a good idea to check the search term against the currently running
processes to make sure you don’t accidentally kill any other processes
that match the search. The pgrep command allows you to display all
processes that match the search term. You can also use the pidof
command to view the PID of a specified program to ensure you have the
correct PID and application.

The following exercise demonstrates how to monitor the running processes on your
Linux system and how to remove a process you no longer want running.

E X E R C I S E 2 1. 1  

Managing a Running Process

1.	 Log into your Linux graphical desktop and open two new command prompt windows.
If you’re using virtual terminals, open two separate virtual terminal sessions.

2.	 In the first command prompt, enter a command to run the sleep program for 1000
seconds by typing sleep 1000.

618  Chapter 21  ■  Optimizing Performance

E X E R C I S E 2 1. 1   (c o n t i n u e d)

3.	 In the second command prompt window or virtual terminal session, look for the PID of
the sleep program by typing pgrep sleep.

4.	 Once you know the PID, use the kill command to stop it prematurely by typing sudo
kill -SIGHUP pid, where pid is the PID of the sleep program you found in step 3.

5.	 Observe the command prompt in the first window. It should return, indicating that the
sleep program is no longer running.

6.	 Check the running processes to ensure that the command is no longer running by
typing pgrep sleep.

Summary
Managing applications running on Linux systems is a crucial job for administrators. The
Linux system allocates CPU time and memory for each process, and knowing how each
process consumes those resources is helpful. You can view the running applications and the
resources they consume by using the ps command. There are many different ways to view
process information using the ps command, allowing you to customize the display exactly
how you like.

For real-time monitoring of applications, use the top command. With the top command,
you can view a real-time display of applications, their system state, and the resources they
consume. The top command allows you to sort the display based on many different features,
such as CPU usage or memory usage.

For managing applications as they run on the system, you can use the nice and renice
commands. The nice command allows you to start an application at a different priority level
than the applications that are already running. This allows users to run applications in the
background at a lower priority or allows the system administrator to start applications with
a higher priority. With the renice command, you can change the priority of an application
that’s already running.

If an application causes problems and needs to be stopped, you can use the standard
Linux kill command, but you need to know the process ID assigned to the application by the
system. The pkill command is customized for stopping applications by their name instead of
process ID. You can also use wildcard characters to stop multiple applications, but doing so
can be dangerous. To test which applications would be stopped, use the pgrep command to
search for running applications using the wildcard search.

Exam Essentials  619

Exam Essentials
Explain how to view the status of applications running on the Linux system.   The ps and
top commands display the status of applications running on the system. Both commands
display the status of each application, whether it’s running, sleeping, or waiting for resources.

Explain how you would find what applications are using the most resources on your
system.   The top command allows you to monitor the applications running on the Linux
system in real time. It displays the amount of CPU and memory each application is con-
suming and allows you to sort the display on any of the displayed data fields. This allows
you to easily monitor which applications are using the most CPU time or the most memory
at any given moment.

Describe how you can stop an application that’s causing problems on the Linux
system.   Linux applications are programmed to respond to Linux signals. The kill
command allows you to send Linux signals to running applications. If you send a KILL
signal to an application, it will stop running on the system. Alternatively, you can send an
INT signal to interrupt the application, allowing you to close it down gracefully if the appli-
cation responds. The pkill application allows you to send Linux signals to applications
based on their process name and lets you specify the process name using wildcard characters.
This combination can come in handy if you need to stop multiple applications spawned from
a single parent application.

620  Chapter 21  ■  Optimizing Performance

Review Questions
1.	 What are the three types of option styles available for the ps command? (Choose three.)

A.	 BSD style

B.	 Linux style

C.	 Unix style

D.	 GNU style

E.	 Numeric style

2.	 How do you identify the legacy Unix style options for the ps command?

A.	 Use a double dash in front of the option.

B.	 Use a single dash in front of the option.

C.	 Do not place a dash in front of the option.

D.	 Unix-style options are numerical.

E.	 Unix-style options use hexadecimal numbers.

3.	 By default, if you specify no command-line options, what does the ps command display?

A.	 All processes running on the terminal

B.	 All active processes

C.	 All sleeping processes

D.	 All processes run by the current shell

E.	 All processes run by the current user

4.	 Charles noticed that his Linux system is running slow and needs to find out what application
is causing the problem. What tool should he use to show the current CPU utilization of all
the processes running on his system?

A.	 top
B.	 ps
C.	 lsof
D.	 pkill
E.	 kill

5.	 What top command displays cumulative CPU time instead of relative CPU time?

A.	 l
B.	 F
C.	 r
D.	 y
E.	 S

Review Questions  621

6.	 Shelly thinks that one of the applications on her Linux system is taking up too much physical
memory and may have a problem. What column of data from the top display should
she focus on?

A.	 VIRT
B.	 RES
C.	 SHR
D.	 S
E.	 %MEM

7.	 Jessica has an application that crunches lots of numbers and uses a lot of system resources.
She wants to run the application with a lower priority so that it doesn’t interfere with other
applications on the system. What tool should she use to start the application program?

A.	 renice
B.	 pkill
C.	 nice
D.	 kill
E.	 pgrep

8.	 Jimmy noticed his Linux system was running slow. He ran the top command and found out
that a data-intensive application was consuming most of the CPU time. He doesn’t want to
kill the application but wants to give it a lower priority so that it doesn’t take up too much
CPU time. What tool should he use to change the priority of the running application?

A.	 renice
B.	 pkill
C.	 nice
D.	 kill
E.	 pgrep

9.	 Hank needs to stop an application from running on his Linux system. He knows the name
of the application file but not the process ID assigned to it. What tool can he use to stop the
application?

A.	 renice
B.	 pkill
C.	 nice
D.	 kill
E.	 pgrep

622  Chapter 21  ■  Optimizing Performance

10.	 Frankie used the ps command to find the process ID of an application that he needs to stop.
What command-line tool should he use to stop the application based on its process ID?

A.	 renice
B.	 pkill
C.	 nice
D.	 kill
E.	 pgrep

Investigating
User Issues

✓✓ Objective 4.4: Given a scenario, analyze and troubleshoot
user access and file permissions

Chapter

22

An old troubleshooting technique is to break a problem in
half: if the cause is not in the first half, it’s in the second half.
Break the second part in half and continue to analyze. In this

chapter, we’re splitting user issues into system access and file difficulties. We further divide
these problem categories while stepping you through various items to consider as you move
toward a solution.

Troubleshooting Access
If a user is having trouble accessing their desired applications, a mixed bag of authentication
issues can be the cause. We’ll take a look at local and remote access as well as authentication
scenarios.

Local
Local access refers to those users who are using a directly connected interface to the server.
These are typically server administrators but may be application users as well. Begin trouble-
shooting by gathering some basic information:

■■ Is this a newly created user account?

■■ What is the username being entered for the account?

■■ Has the user ever logged into the account?

■■ Is the user attempting to log in via the GUI or a text-based (virtual) terminal (for
example, tty2)?

Checking a Newly Created User Account
If the account is a newly created account, confirm that it was properly built. New system
administrators often create user accounts with the useradd command (see Chapter 10,
“Administering Users and Groups”) but forget to add its password with the passwd utility.
Use either the grep or the getent command to check the /etc/passwd and /etc/shadow
file records. An example is shown in Listing 22.1 for a new user account, JKirk, on an
Ubuntu Desktop distribution.

Troubleshooting Access  625

Listing 22.1:  Viewing a user account record with the getent command

$ sudo getent passwd JKirk
JKirk:x:1002:1002::/home/JKirk:/bin/bash
$
$ sudo getent shadow JKirk
JKirk:!:17806:0:99999:7:::
$

Notice that in the password field for the JKirk shadow record, there is an exclamation
mark (!). This indicates a password was not created for the account.

Make sure your system users know that usernames are case sensitive on
Linux. Other operating systems, such as Windows, have usernames that
are case insensitive, and this can cause confusion.

Checking Account Accesses
Look at the last time the account was successfully accessed. The lastlog utility searches
through the /var/log/lastlog file for users who have logged into the system, but it only
maintains the most recent login. The last command searches the /var/log/wtmp file for
users who have logged in/out and keeps records for the most recent logins and beyond. This
file is typically rotated with earlier versions and given a numeric extension. Thus, the next
oldest version of wtmp is wtmp.1. The last command’s -f option will help you search
through the various files, as shown in Listing 22.2.

Listing 22.2:  Viewing successful logins with the last command

$ sudo last -f /var/log/wtmp -f /var/log/wtmp.* | grep JPicard
JPicard tty3 Wed Jan 4 13:14 - 13:14 (00:00)
$
$ sudo lastlog -u JPicard
Username Port From Latest
JPicard tty3 Wed Jan 4 13:14:11 -0500 2023
$

Notice the last command shows that the JPicard account was logged into on January
4 at the tty3 terminal, and this is confirmed via the lastlog command.

You can also employ the lastb command. This command allows you to search for unsuc-
cessful login attempts, as shown in Listing 22.3. Notice that the JPicard account had two
failed login attempts at the tty4 terminal.

626  Chapter 22  ■  Investigating User Issues

Listing 22.3:  Viewing unsuccessful login attempts with the lastb command

$ sudo lastb -f /var/log/btmp -f /var/log/btmp.* | grep JPicard
JPicard tty4 Wed Jan 4 13:29 - 13:29 (00:00)
JPicard tty4 Wed Jan 4 13:29 - 13:29 (00:00)

Checking Privilege Elevation Issues
Most Linux distributions allow use of the sudo command to let users perform
administrative tasks as the root user account, which is called privilege elevation. If there’s a
user account that’s not allowed to use the sudo command, you need to check a few things.

First, take a look at the /etc/sudoers file to see what users and groups are allowed to
elevate their privileges. If the user account isn’t specified directly in the /etc/suoders file,
there may be some groups that are specified. Those would have entries that look like this:

Members of the admin group may gain root privileges
%admin ALL=(ALL) ALL

Allow members of group sudo to execute any command
%sudo ALL=(ALL:ALL) ALL

In this configuration from an Ubuntu system, users in the admin group are allowed to use
the sudo command for root privilege elevation, and members of the sudo group can gain
privileges to execute any command as any user account.

The next step is to see what groups the user account belongs to. The easiest way to do
that is by using the id command:

$ id rich
uid=1000(rich) gid=1000(rich) groups=1000(rich),4(adm),24(cdrom),27(sudo),
30(dip),46(plugdev),
120(lpadmin),131(lxd),132(sambashare)
$

The output from the id command shows all of the groups the user account belongs to. In
this example, the rich user account does belong to the sudo group, so it should have access
to use the sudo command for privilege elevation as any user account on the system.

Checking GUI Issues
If you find that the account successfully logged into the system in the past and has no recent
failed attempts, find out the user’s local access method. If using the GUI, have the user
attempt to log into a text-based terminal, such as the tty2 terminal. If the user cannot suc-
cessfully log into a terminal, then something else is amiss. The next few chapter sections after
this one will help.

If the user can successfully log into a text-based terminal but not the GUI, you’ve nar-
rowed down the problem. Determine what services are running. For older SysVinit sys-
tems, the runlevel command will show whether the graphical environment is current

Troubleshooting Access  627

(see Chapter 6, “Maintaining System Startup and Services”). For systemd systems, use the
command shown in the snipped example in Listing 22.4.

Listing 22.4:  Viewing the current systemd target using the systemctl command

$ sudo systemctl status graphical.target
 graphical.target - Graphical Interface
[...]
 Active: active since Wed [...]
[...]

The graphical.target is active, which indicates GUI services are available. Thus,
providing GUI services is not the problem. Begin investigating other potential GUI issues,
starting with the display manager (Chapter 8, “Comparing GUIs”).

If your system does not use a graphical environment, check to see
whether multiple users are allowed to log into the system. For systemd
systems, check if the multi-user.target is active. See Chapter 6 for
SysVinit systems.

Checking Terminal Issues
If the user typically logs into a text-based terminal but can’t, have them log into a different
terminal, either at a different virtual terminal or a graphical desktop. If the login is success-
ful, then look at the original terminal’s device file to determine if it is corrupted by using the
ls -l command. An example is shown snipped in Listing 22.5.

Listing 22.5:  Viewing terminal device files with the ls -l command

$ ls -l /dev/tty?
crw--w---- 1 root tty 4, 0 Jan 4 09:38 /dev/tty0
crw--w---- 1 gdm tty 4, 1 Jan 4 09:38 /dev/tty1
[...]
crw--w---- 1 root tty 4, 9 Jan 4 09:38 /dev/tty9
$

Notice the c at the beginning of each terminal’s device file record. This indicates the
device file is a character file. If you see a dash (-) instead, the file is corrupted. Rebuild it
using super user privileges and the mknod command.

If you are attempting to log into the root account or your own system
administrator account and have forgotten the password, follow the guide-
lines in Chapter 20, “Analyzing System Properties and Remediation,” in
the “Surviving a Lost Root Password” section.

628  Chapter 22  ■  Investigating User Issues

If the user attempts to log into a different text-based terminal and can’t, check to see if
getty services are running. These services provide the login prompts for the text-based ter-
minals. An example of checking for getty services on a systemd system is shown snipped in
Listing 22.6.

Listing 22.6:  Checking for getty services with the systemctl command

$ sudo systemctl status getty.target
 getty.target - Login Prompts
[...]
 Active: active since Wed 2023-01-04 09:38:13 EST; 6h ago
[...]

The getty.target is active, so getty services are available. If a user still cannot log into
the system, you’ll need to explore additional issues.

Check the /etc/security/access.conf file. This file is scanned when
a user attempts to log into the system. Its configuration accepts or blocks
users/groups from accessing the system. It can also prohibit certain
logins to the text-based terminals, as well as logins originating over the
network.

Checking Additional Local Issues
Determine if the account is locked. You can employ the passwd -S or the getent
command to check this, as shown snipped in Listing 22.7.

Listing 22.7:  Checking if an account is locked with the passwd and getent commands

$ sudo passwd -S KJaneway
KJaneway L 01/02/2019 0 99999 7 -1
$
$ sudo getent shadow KJaneway
KJaneway:!6[...]0:17898:0:99999:7:::
$

The L after the user KJaneway account’s name indicates the account is locked. However,
that code is also shown for accounts that have no password set. Thus, the getent command
is also employed. The exclamation point (!) at the front of the account password’s field ver-
ifies that the account is indeed locked. To unlock the account, if desired, use super user privi-
leges and the usermod -U or the passwd -u command.

Check the user’s keyboard. Sometimes incorrect keyboard mappings or
corrupted hardware can cause wrong characters to be sent to authentica-
tion programs.

Troubleshooting Access  629

The account may have expired. Account expiration dates are typically set up for tempo-
rary account users, such as contractors or interns. You can view this information using the
chage command, as shown snipped in Listing 22.8.

Listing 22.8:  Checking if an account is expired with the chage command

$ date
Wed Jan 4 16:17:48 EST 2023
$
$ sudo chage -l JArcher
[...]
Account expires : Jan 01, 2023
[...]

Notice that this account’s expiration date has passed. Therefore, the JArcher account
is now expired and the user cannot log into it. If this was a mistake or you need to modify
it, use super user privileges and the chage -E command to set a new expiration date for
the account.

Confirm that the user is using the correct password, and check if the account’s password
is expired. Employ the chage -l command to view this as well.

Remote
For remote access problems, first check that the system is accessible over the network (net-
work troubleshooting was covered in Chapter 20). If the system is accessible, determine how
the user is attempting to access the system.

If the user is employing OpenSSH, first confirm that the OpenSSH server is running
on the system and that the firewall is properly configured to allow access (firewalls were
covered in Chapter 18, “Overseeing Linux Firewalls”). Next review the sshd_config con-
figuration file. The AllowUsers and AllowGroups directives restrict access. Ensure that
these are correctly set. In addition, verify that there are no specific override settings for this
particular user at the file’s bottom. Be sure to review any configuration files on the client side
as well, such as ~/.ssh/config and /etc/ssh/ssh_config (OpenSSH was covered in
Chapter 16, “Looking at Access and Authentication Methods”).

Have the user tack the -vvv option onto their ssh command. This pro-
vides a great deal of verbose information, which may help in the trouble-
shooting process.

Determine whether authentication through OpenSSH is via a username and password
or via a token. If it is a username/password, check that the sshd_config directive
PasswordAuthentication is set to yes. If all is well with the configuration file, trouble-
shooting topics in the next section may help.

630  Chapter 22  ■  Investigating User Issues

If the OpenSSH authentication is token based, ensure that the private key was properly
copied over to the server from the remote system. Also, confirm that the public key is stored
in the ~/.ssh/authorized_keys file on the client side.

If the user’s X11 GUI is transferred over the network, make sure the
ForwardX11 directive is set and that the user is employing the -X option
with the ssh command. See Chapter 8 for additional details.

If your users are employing a remote desktop application, such as VNC, xrdp, NX,
or SPICE, review their configurations. More information can be found on these topics in
Chapter 8.

Authentication
Layered authentication software could be at the problem’s heart. One place to check is PAM
(covered in Chapter 16). Look through the PAM configuration files, such as /etc/
pam.d/sshd, to ensure that directives are properly set. Also employ the pam_tally2
or faillock utility to check if the user’s account is locked due to too many failed
login attempts.

Does your system employ other authentication products, such as LDAP (covered in
Chapter 16) or Kerberos (covered in Chapter 19, “Embracing Best Security Practices”)?
You’ll want to check their configuration files. Also take a look through their log files to
ensure that a policy violation has not locked out the user’s account.

Don’t forget to check your Linux kernel security module, such as SELinux or AppArmor
(covered in Chapter 15, “Applying Ownership and Permissions”). While the purpose of these
modules is to protect the system from attackers, sometimes policy violations can lock out
legitimate users. For AppArmor, policy violations are stored in either audit.log (produced
by auditd) or messages.log, depending on its configuration. If using the auditd service,
you can search for AppArmor policy violations in the audit.log file using the
ausearch command.

For SELinux, check the audit log file using the sealert command, as shown in List-
ing 22.9. Notice that no SELinux policy violations were logged.

Listing 22.9:  Checking SELinux policy violations with the sealert command

sealert -a /var/log/audit/audit.log
100% done
found 0 alerts in /var/log/audit/audit.log
#

For SELinux, use the id -Z command to view a user’s SELinux context.
See Chapter 15 for additional helpful SELinux and AppArmor commands.

Examining File Obstacles  631

For authentication issues, peruse through these various log files as well:

■■ /var/log/auth.log (Debian-based distros)

■■ /var/log/secure (Red Hat–based distros)

These log files typically contain information such as authentication failures and can pro-
vide you with a great deal of information. Use grep to search for a particular username,
if desired.

Examining File Obstacles
Various problems may ensue when managing files. Understanding the typical problems will
help in your file troubleshooting efforts.

File Permissions
You’re editing a configuration file using the vim editor, but when you try to save the file, you
get a “Can’t open file for writing” error message. That’s frustrating. Problems like this are
directly related to file permissions.

When encountering these issues, first use the ls -l command to view a file’s permis-
sion settings and ownerships (covered in Chapter 15). Note the file’s owner and group.
Then determine the permissions of the owner, group, and everyone else (world or other). An
example is shown in Listing 22.10.

Listing 22.10:  Determining file permissions with the ls -l command

$ ls -l HelloWorld.sh
-rwxr-xr--. 1 root wheel 72 Jan 4 09:29 HelloWorld.sh
$

In this case, the file is owned by root, who has permission to read, write to, and exe-
cute the file. The file’s group is wheel. Those members can read and execute the file. Finally,
everyone else who is not the file’s owner or does not belong to the file’s group can only
read the file.

If a problem occurs trying to access this file, determine the user’s username and group
memberships using the id command. Match their identity against the file’s permissions to
find the problem. An example is shown in Listing 22.11.

Listing 22.11:  Troubleshooting file access with the id command

$ whoami
Christine
$
$./HelloWorld.sh

632  Chapter 22  ■  Investigating User Issues

-bash: ./HelloWorld.sh: Permission denied
$
$ id Christine
uid=1001(Christine) gid=1001(Christine) groups=1001(Christine)

Christine cannot execute this file because she is not the file’s owner, nor is she in the file’s
group (see Listing 22.10). The third permission set applies to her and only allows her to
read the file. To let her run the file, add her to the wheel group, set her as the file’s owner, or
modify the file’s world permissions.

Directory Permissions
While the directory permission settings look very similar to file permissions, their effect is
different. Table 22.1 shows permission effects on actions (covered in Chapter 15) associated
with the entity to whom the permission applies (owner, group, or other).

A few examples will help you to understand these permissions. For example, the user
Christine can list the /etc directory’s contents, due to the directory’s read permission for
other (world), as shown snipped in Listing 22.12.

Listing 22.12:  Understanding directory permission effects of the read privilege

$ whoami
Christine
$ ls -ld /etc
drwxr-xr-x. 143 root root 12288 Jan 4 09:22 /etc
$
$ ls /etc
abrt gshadow- profile
adjtime gss profile.d
[...]

TABLE 22 .1   Directory permission effects

Permission Effect

r Allows user to display directory’s files

w Allows user to create, move (rename), modify attributes, and delete files within
the directory

x Allows user to change their present working directory to this directory (via the cd
command) as long as this permission is set in all parent directories as well

Examining File Obstacles  633

The next example, Listing 22.13, shows that the parent directory (/home) does allow
a user to use cd to change their present working directory to it. However, a subdirectory
(Samantha) blocks it by not granting the execute (x) privilege.

Listing 22.13:  Understanding directory permission effects of the execute privilege

$ whoami
Christine
$ ls -ld /home/
drwxr-xr-x. 5 root root 52 Nov 8 14:31 /home/
$ cd /home
$ pwd
/home
$
$ ls -ld /home/Samantha
drwx------. 5 Samantha Samantha 128 Nov 8 14:38 /home/Samantha
$
$ cd /home/Samantha
-bash: cd: /home/Samantha: Permission denied
$

If a subdirectory does grant execute permission but one of its parent
directories does not, a user will not be able to use cd to get to that subdi-
rectory. All directories in that path must have the execute permission set
on them for that user.

If you have a directory shared among users and they are able to delete each other’s files
but that is not desired, employ the sticky bit on the directory. This permission (covered in
Chapter 15) will solve the problem.

Working with Advanced Permissions
Besides the standard Linux file and directory permissions, you may run into a system that
utilizes one of the more advanced Linux permission features.

Access control lists (ACLs) allow you to specify permissions for multiple users or groups
besides the standard owner, group, and others set. If your Linux system utilizes ACLs, always
check the getfacl utility for additional ACL permissions applied to a file or directory:

$ getfacl test.txt
file: test.txt
owner: rich
group: rich
user::rw-

634  Chapter 22  ■  Investigating User Issues

group::r--
group:sales:rw-
mask::rw-
other::---
$

In this example the owner has assigned sales group read permissions to the file using
ACLs. To change ACL settings, use the setfacl utility.

Besides ACL permissions, Linux systems may also employ context-based permissions
using either SELinux (most common in Red Hat–based Linux distributions) or AppArmor
(most common in Debian-based Linux distributions).

To determine if SELinux is active on your Linux system, use the sestatus command:

$ sudo sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Memory protection checking actual (secure)
Max kernel policy version: 331
$

If SELinux is enabled, use the -Z command-line option for the ls command to view addi-
tional context permissions for files and directories:

$ ls -Z test1.txt
unconfined_u:object_r:user_home_t:s0 test1.txt
$

You can change the security context for a file by using the chcon command:

chcon -u newuser -r newrole -t newtype filename

SELinux controls access to objects using policies. The getsebool command allows
you to list the policies and determine if they’re active or disabled, and use the setsebool
command to activate or deactivate them.

To determine if AppArmor is active on your system, use the aa-status utility:

$ sudo aa-status
apparmor module is loaded.
...
$

Examining File Obstacles  635

AppArmor uses profiles to set context permissions. While this output has been trun-
cated, in the actual aa-status output you’ll see lots of information about the profiles
loaded in the enforce, complain, and disable modes. Use the aa-enforce, aa-complain,
or aa-disable command to change profile settings to accommodate your permission
requirements.

File Creation
A user goes to create a file and permission is denied. First check the directory permissions.
If all is well there, consider the following items:

Are quotas enforced on this partition?   The user may have hit a quota limit. Check the
partition’s /etc/fstab record for either usrquota or grpquota to see if quotas are
enabled on this filesystem (covered in Chapter 10) or use the repquota utility. If quotas
are enabled, check the user’s (or group’s) quota usage using the quota command. If the
user has exceeded quota limits and the grace period has passed, turn off quotas with
quotaoff, extend the user’s quotas, or have the user delete unneeded files.

Has the disk run out of space?   The df command (covered in Chapter 20) can help
you quickly determine if the partition on which the user is attempting to create a file has
run out of space. If you are out of space, take the appropriate action (also covered in
Chapter 20).

Has the partition run out of inodes?   Inode exhaustion is an unusual situation, but
it does happen. An inode number (covered in Chapter 3, “Managing Files, Directories,
and Text”) is a file’s associated index number. If a filesystem runs out of inodes, no addi-
tional files can be created on it. Check if this is the problem by employing the df -i
command, which shows each filesystem’s inode use.

If inodes are exhausted, you cannot extend them after filesystem creation. Instead, look
for directories that have a large amount of small unnecessary files, such as a temporary
directory, and remove what you can. A good practice is to put applications that create
many small files on their own large partitions formatted to provide higher amounts of
inode numbers. At filesystem creation, increase inode counts above their defaults by
using utility options like the mke2fs -i command.

What is the user’s umask setting?   The umask setting (covered in Chapter 15) subtracts
permissions from the default file and directory permission settings. Thus, when a user is
creating files and/or directories, the permissions set on them are affected by this setting.
Have the user enter umask at the command line (or check the user’s environment file)
to determine its setting. If it is set too high (for example, removing needed write permis-
sions for created subdirectories), you have found the cause of the problem.

636  Chapter 22  ■  Investigating User Issues

If a file cannot be deleted or renamed, check the file’s attributes using
the lsattr filename command. If you see an i among the dashes pre-
ceding the filename, the file has the immutable bit set. This bit prevents
even users with super user privileges from deleting the file. To remove
the file’s immutable bit, use super user privileges and issue the chattr -i
filename command.

Just as with access issues, check your Linux kernel security module (SELinux or AppAr-
mor) in situations where a user cannot create or delete files. Peruse the appropriate policy
violation log files (/var/log/messages or /var/log/audit/audit.log) using the
appropriate tools.

If your system uses SELinux but does not employ auditd, the SELinux
policy violation messages are stored in the /var/log/messages file.

After you have found the policy violation concerning the file or directory in question,
determine if the file/directory was mislabeled, the policy is incorrect, or possibly the wrong
security context was used. Take appropriate actions to remedy the situation.

Exploring Environment and Shell Issues
When dealing with user problems, a potential issue is the user account’s default shell. Check
it using the getent command, as shown on an Ubuntu distribution in Listing 22.14.

Listing 22.14:  Determining an account’s default shell with the getent command

$ getent passwd BSisko
BSisko:x:1007:1007::/home/BSisko:/bin/sh
$
$ readlink -f /bin/sh
/bin/dash
$

Notice that instead of the /bin/bash shell as the default shell, the /bin/sh shell is used.
On this system, the /bin/sh file is linked to the /bin/dash shell. If this is not desired, you
can change the user’s default shell via the usermod command (see Chapter 10).

If a user cannot log into the system, check to see that their default shell is
set to /sbin/false, /sbin/nologin, or something similar. These shells
are typically for daemons and prevent the daemon from logging into the
system.

Exploring Environment and Shell Issues  637

Incorrect or improperly set environment variables can cause various user difficulties.
Review a user’s environment files (covered in Chapter 10), such as the ~/.profile file.
While you’re at it, check the system’s global environment variable settings using the set,
env, or printenv command.

Ensure that environment variables are exported so that they are available in subshells (a
subshell may occur when a shell script is executed.) An example of this problem is shown in
Listing 22.15.

Listing 22.15:  Demonstrating what happens when variables are not exported

$ EDITOR='nano'
$ echo $EDITOR
nano
$
$ bash
$
$ echo $EDITOR
$
$ exit
exit
$

The user sets the environment variable EDITOR so that their default text editor is now
nano. However, when a new subshell is created via the bash command, the setting is lost.
To keep the setting persistent, it needs to be exported as well as stored in a user’s environ-
ment file. An example of exporting the variable is shown in Listing 22.16.

Listing 22.16:  Demonstrating the export command

$ export EDITOR='nano'
$
$ echo $EDITOR
nano
$
$ bash
$
$ echo $EDITOR
nano
$

It is also important to make sure you have environment variables in the correct file, global
or per user. Also, you must understand what type of login the user conducts in order to set
these variables in the right file (see Chapter 10).

638  Chapter 22  ■  Investigating User Issues

Summary
User issue troubleshooting is tricky. Many components are involved in access, authentica-
tion, file management, and the user’s shell and environment. Understanding common prob-
lems will assist in fixing an issue.

Exam Essentials
Summarize user access problems/solutions.   For impeded local access, research corrupted
terminal files, improperly configured GUI components, and expired passwords/accounts.
Remote access problems are often caused by misconfigured OpenSSH components or remote
desktop applications. Other issues can involve layered authentication software such as PAM
or a system’s kernel security module, such as SELinux or AppArmor.

Describe various file problems/solutions.   File access and management requires under-
standing of basic file and directory permissions as well as ownership and group member-
ship. Additional system items to review include filesystem quotas, disk space, inode use, and
umask settings. Check the kernel security module log files for policy violations as well. If a
user cannot delete a file, look for the immutable bit set on the file.

Explain user environment and shell issues.   Improperly configured environment variables
or ones that are not exported will cause user problems. Examine the various environment
files, both global and user, for issues. Difficulties may also arise from the user account’s
default shell setting.

Review Questions  639

Review Questions
1.	 Lamar, a contractor, claims he cannot log into his account locally. He was able to do so yes-

terday. No one else seems to be having problems accessing the system. What should you
check first?

A.	 Check if GUI services are running using the systemctl command.

B.	 Look at the OpenSSH server configuration files.

C.	 Determine if his account has expired by using the chage command.

D.	 See if the account is locked using the faillock utility.

E.	 Check for policy violations in the SELinux log files.

2.	 Irene normally logs into the system locally via the tty4 terminal but cannot today. She tries
her authentication at the tty3 terminal and logs in successfully. What should you check first?

A.	 Determine if getty services are running using the systemctl command.

B.	 Review access rules in the /etc/security/access.conf file.

C.	 See if the account is locked using the passwd -S command.

D.	 Use the last command to see when she last logged in.

E.	 Check if the tty4 device file is corrupted using the ls -l command.

3.	 Vincent is attempting to remotely log into the system using OpenSSH without success.
He asks you what he can do to help troubleshoot this problem. What should you recom-
mend first?

A.	 Check the /etc/ssh/sshd_config configuration file.

B.	 Add the -vvv option on to Vincent’s ssh command.

C.	 Add the -X option onto Vincent’s ssh command.

D.	 Confirm that Vincent’s public key is stored in the ~/.ssh/authorized_keys file.

E.	 Check the ~/.ssh/config configuration file.

4.	 Anton is struggling to determine why a particular user cannot log into a Rocky Linux system,
where SELinux is disabled and auditd is not used. Which of the following are the best log
files to peruse? (Choose two.)

A.	 /var/log/audit/audit.log
B.	 /var/log/messages
C.	 /var/log/auth
D.	 /var/log/secure
E.	 /var/log/lastlog

640  Chapter 22  ■  Investigating User Issues

5.	 Tarissa needs to run a shell script, which has the permissions of rwxr--r--, is owned by
root, and belongs to the wheel group. Tarissa’s user account is T2T1000, and she is a
member of the admin group. What can be done to allow her to run this script? (Choose all
that apply.)

A.	 Add Tarissa to the wheel group.

B.	 Create a new account for Tarissa named wheel.

C.	 Add w to the script file’s group permissions.

D.	 Add x to the script file’s group permissions.

E.	 Nothing. Tarissa can run the script now.

6.	 Miles needs to change his present working directory to the /home/miles directory. He does
not own the directory, nor is he a member of its group. Assuming needed parent directory
permissions are set, what needs to take place for this to successfully occur?

A.	 Nothing. The /home/miles directory is Miles’s home directory, so he can access it by
default.

B.	 The execute (x) permission needs to be added.

C.	 The write (w) permission needs to be added.

D.	 The read (r) permission needs to be added.

E.	 The dash (-) permission needs to be added.

7.	 Sarah, a system administrator, attempts to create a file and receives an error message indi-
cating the file cannot be created. Which of the following might be the problem? (Choose all
that apply.)

A.	 The filesystem on which she is attempting to create the file has quotas set, and she is
past her quota and grace period.

B.	 The filesystem on which she is attempting to create the file has run out of space.

C.	 The file that she is attempting to create has the immutable bit set and therefore cannot
be created.

D.	 The action is triggering either a SELinux or an AppArmor policy violation.

E.	 The filesystem is experiencing inode exhaustion and therefore cannot accommodate any
new files.

8.	 A user cannot delete one of their files but is able to delete other files in their directory. John, a
system administrator, is attempting to troubleshoot this issue. What command should he use
first on the file?

A.	 chown
B.	 chattr
C.	 chmod
D.	 umask
E.	 lsattr

Review Questions  641

9.	 Melissa wants to set her default editor to the vim editor and wants this to stay set when she
enters a subshell. What should she do?

A.	 Put EDITOR='vim' in the /etc/profile file.

B.	 Put export EDITOR='vim' in the /etc/profile file.

C.	 Put EDITOR='vim' in her ~/.profile file.

D.	 Put export EDITOR='vim' in her ~/.profile file.

E.	 Put export EDITOR='vim' in her ~/. bash.bashrc file.

10.	 Mark Watney, a system administrator, has his account, MW2015, modified by a new system
administrator intern. When Mark logs into the system and tries to group a list of commands
by using braces, it no longer works. No one else is having this problem. He suspects his
account’s default shell has been changed from /bin/bash to /bin/tcsh. Which of the
following will help determine if his suspicion is correct? (Choose all that apply.)

A.	 cat /etc/profile
B.	 echo $SHELL
C.	 sudo grep tcsh$ /etc/passwd
D.	 sudo getent shadow MW2015
E.	 sudo getent passwd MW2015

Dealing
with Linux Devices

✓✓ Objective 1.1: Summarize Linux fundamentals

Chapter

23

The typical Linux system has lots of different hardware devices
connected to it. The list can include hard drives, monitors, key-
boards, printers, audio cards, and network cards. Part of your

job as a Linux administrator is to make sure all of those devices are working, and working
properly. This chapter walks you through how to install and troubleshoot the different types
of hardware devices that can be connected to your Linux system. First, the chapter discusses
the different types of device interfaces you may need to work with on your Linux system
and how they communicate with the operating system. Following that, the chapter discusses
the Linux utilities available for you to monitor and troubleshoot how those devices on your
system are working. Finally, the chapter dives into the topic of hot-pluggable devices, a topic
that has become extremely important with the popularity of USB devices.

Communicating with Linux Devices
For any device to work on your Linux system, the Linux kernel must recognize it and know
how to talk to it. The kernel uses installed modules (see Chapter 14, “Tending Kernel Mod-
ules”) to know how to communicate with each type of hardware device on the system. If the
module for a particular hardware device isn’t loaded, then the kernel won’t be able to com-
municate with the device.

After the kernel module is installed, the kernel must know how to communicate with the
device. Linux supports several different types of hardware interfaces and methods for com-
municating with devices.

Device Interfaces
Each device you connect to your Linux system uses some type of standard protocol to com-
municate with the system hardware. The kernel module software must know how to send
data to and receive data from the hardware device using those protocols. There are currently
three popular standards used to connect devices.

PCI Boards
The Peripheral Component Interconnect (PCI) standard was developed in 1993 as a method
for connecting hardware boards to PC motherboards. The standard has been updated a
few times to accommodate faster interface speeds as well as increase data bus sizes on

Communicating with Linux Devices  645

motherboards. The PCI Express (PCIe) standard is currently used on most server and
desktop workstations to provide a common interface for external hardware cards.

Lots of different client devices use PCI boards to connect to a server or desktop
workstation:

Internal Hard Drives   Hard drives using the Serial Advanced Technology Attachment
(SATA) and the Small Computer System Interface (SCSI) connectors often use PCI
boards to connect with workstations or servers. The Linux kernel automatically recog-
nizes both SATA and SCSI hard drives connected to PCI boards.

External Hard Drives   Network hard drives using the Fibre Channel standard provide
a high-speed shared drive environment for server environments. To communicate on a
Fibre Channel network, the server usually uses PCI boards that support the Host Bus
Adapter (HBA) standard.

Network Interface Cards   Hard-wired network cards allow you to connect the work-
station or server to a local area network using the common RJ-45 cable standard. These
types of connections are mostly found in high-speed network environments that require
high throughput to the network.

Wireless Cards   There are PCI boards available that support the IEEE 802.11 standard
for wireless connections to local area networks. Although not commonly used in server
environments, they are popular in workstation environments.

Bluetooth Devices   The Bluetooth technology allows for short-distance wireless com-
munication with other Bluetooth devices in a peer-to-peer network setup. They are most
commonly found in workstation environments.

Video Accelerators   Applications that require advanced graphics often use video
accelerator cards, which offload the video processing requirements from the CPU to pro-
vide faster graphics. While these are popular in gaming environments, you’ll also find
video accelerator cards used in video processing applications for editing and processing
movies, and in applications that require advanced mathematical operations, such as
block chain generation.

Audio Cards   Similarly, applications that require high-quality sound often use specialty
audio cards to provide advanced audio processing and play, such as handling Dolby sur-
round sound to enhance the audio quality of movies.

The USB Interface
The Universal Serial Bus (USB) interface has become increasingly popular due to its ease of
use and its increasing support for high-speed data communication. Since the USB interface
uses serial communications, it requires fewer connectors with the motherboard, allowing for
smaller interface plugs.

646  Chapter 23  ■  Dealing with Linux Devices

The USB standard has evolved over the years. The original version 1.0 only supported
data transfer speeds up to 12 Mbps. The 2.0 standard increased the data transfer speed to
480 Mbps. The current USB standard, 4.0, allows for data transfer speeds up to 40 Gbps,
making it useful for high-speed connections to external storage devices.

A myriad of devices can connect to systems using the USB interface. You can find hard
drives, printers, digital cameras and camcorders, keyboards, mice, and network cards that
have versions that connect using the USB interface.

Linux and USB devices

There are two steps to get Linux to interact with USB devices. The first step is that the Linux
kernel must have the proper module installed to recognize the USB controller installed on
your server, workstation, or laptops. The controller provides communication between the
Linux kernel and the USB bus on the system. When the Linux kernel can communicate with
the USB bus, any device you plug into a USB port on the system will be recognized by the
kernel but is not necessarily usable. The second step is that the Linux system must have
a kernel module installed for the individual device type plugged into the USB bus. Linux
distributions have a wide assortment of modules installed by default. Should you run into a
USB device that doesn’t work on your Linux system, refer to Chapter 14 for information on
installing kernel modules.

The GPIO Interface
The general-purpose input/output (GPIO) interface has become popular with small utility
Linux systems designed for controlling external devices for automation projects. This
includes popular hobbyist Linux systems such as the Raspberry Pi and BeagleBone kits.

The GPIO interface provides multiple digital input and output lines that you can control
individually, down to the single-bit level. The GPIO function is normally handled by a spe-
cialty integrated circuit (IC) chip, which is mapped into memory on the Linux system.

The GPIO interface is ideal for supporting communications to external devices such as
relays, lights, sensors, and motors. Applications can read individual GPIO lines to determine
the status of switches, turn relays on or off, or read digital values returned from any type of
analog-to-digital sensors such as temperature or pressure sensors.

With the GPIO interface, you have a wealth of possibilities for using Linux to control
objects and environments. You can write programs that control the temperature in a room,
sense when doors or windows are opened or closed, sense motion in a room, or even control
the operation of a robot.

Communicating with Linux Devices  647

The /dev Directory
Once the Linux kernel can communicate with a device on an interface, it must be able to
transfer data to and from the device. For many devices, this is done using device files. Device
files are files that the Linux kernel creates in the special /dev directory to interface with
hardware devices.

To retrieve data from a specific device, a program just needs to read the Linux device
file associated with that device. The Linux operating system handles all the unsightliness of
interfacing with the actual hardware. Likewise, to send data to the device, the program just
needs to write to the Linux device file.

As you add hardware devices such as USB drives, network cards, or hard drives to your
system, Linux creates a file in the /dev directory representing that hardware device. Appli-
cation programs can then interact directly with that file to store and retrieve data on the
device. This is much easier than requiring each application to know how to directly interact
with a device.

There are two types of device files in Linux, based on how Linux transfers data to
the device:

■■ Character device files: Transfer data one character at a time. This method is often used
for serial devices such as terminals and USB devices.

■■ Block device files: Transfer large blocks of data. This method is often used for high-
speed data transfer devices such as hard drives and network cards.

The type of device file is denoted by the first letter in the permissions list, as shown in
Listing 23.1.

Listing 23.1:  Partial output from the /dev directory

$ ls -al sd* tty*
brw-rw---- 1 root disk 8, 0 Feb 16 17:49 sda
brw-rw---- 1 root disk 8, 1 Feb 16 17:49 sda1
crw-rw-rw- 1 root tty 5, 0 Feb 16 17:49 tty
crw--w---- 1 root tty 4, 0 Feb 16 17:49 tty0
crw--w---- 1 gdm tty 4, 1 Feb 16 17:49 tty1

The hard drive devices, sda and sda1, show the letter b, indicating that they are block
device files. The tty terminal files show the letter c, indicating that they are character
device files.

There are also a few special character device files that provide useful features for the shell.
Ones of note are as follows:

■■ /dev/null: When data is redirected to this device, the data is discarded. This is handy
for redirecting program messages that you don’t want displayed.

■■ /dev/random and /dev/urandom: These devices files provide access to the kernel’s
random number generator. The /dev/random device blocks requests until
enough random data has been generated to calculate a true random number.

648  Chapter 23  ■  Dealing with Linux Devices

The /dev/urandom device doesn’t block but just returns a random number using the
random data currently available. Though less accurate, it’s usually fine for most random
number uses.

■■ /dev/zero: When data is read from this device, it returns a NULL character (0x00).
This is an excellent resource for creating null files, or erasing previously stored data on a
disk partition.

Besides device files, Linux also provides a system called the device mapper. The device
mapper function is performed by the Linux kernel. It maps physical block devices to virtual
block devices. These virtual block devices allow the system to intercept the data written to or
read from the physical device and perform some type of operation on them. Mapped devices
are used by the Logical Volume Manager (LVM) for creating logical drives and by the Linux
Unified Key Setup (LUKS) for encrypting data on hard drives.

The device mapper creates virtual devices in the /dev/mapper directory.
These files are links to the physical block device files in the /dev
directory.

The /proc Directory
The /proc directory is one of the most important tools you can use when troubleshooting
hardware issues on a Linux system. It’s not a physical directory on the filesystem but instead
a virtual directory that the kernel dynamically populates to provide access to information
about the system hardware settings and status.

The Linux kernel changes the files and data in the /proc directory as it monitors the
status of hardware on the system. To view the status of the hardware devices and settings,
you just need to read the contents of the virtual files using standard Linux text commands.

There are different /proc files available for different system features, including the IRQs,
I/O ports, and DMA channels in use on the system by hardware devices. The following sec-
tions discuss the files used to monitor these features and how you can access them.

Interrupt Requests
Interrupt requests (called IRQs) allow hardware devices to indicate when they have data to
send to the CPU. The PnP system must assign each hardware device installed on the system a
unique IRQ address. You can view the current IRQs in use on your Linux system by looking
at the /proc/interrupts file using the Linux cat command, as shown in Listing 23.2.

Listing 23.2:  Listing system interrupts from the /proc directory

$ cat /proc/interrupts
 CPU0
 0: 36 IO-APIC 2-edge timer
 1: 297 IO-APIC 1-edge i8042

Communicating with Linux Devices  649

 8: 0 IO-APIC 8-edge rtc0
 9: 0 IO-APIC 9-fasteoi acpi
 12: 396 IO-APIC 12-edge i8042
 14: 0 IO-APIC 14-edge ata_piix
 15: 914 IO-APIC 15-edge ata_piix
 18: 2 IO-APIC 18-fasteoi vboxvideo
 19: 4337 IO-APIC 19-fasteoi enp0s3
...
$

In Listing 23.2, the first column indicates the IRQ assigned to the device. Some IRQs are
reserved by the system for specific hardware devices, such as 0 for the system timer and 1
for the system keyboard. Other IRQs are assigned by the system as devices are detected at
boot time.

I/O Ports
The system I/O ports are locations in memory where the CPU can send data to and receive
data from the hardware device. As with IRQs, the system must assign each device a unique
I/O port. This is yet another feature handled by the PnP system.

You can monitor the I/O ports assigned to the hardware devices on your system by
looking at the /proc/ioports file, as shown in Listing 23.3.

Listing 23.3:  Displaying the I/O ports on a system

$ cat /proc/ioports
0000-0cf7 : PCI Bus 0000:00
 0000-001f : dma1
 0020-0021 : pic1
 0040-0043 : timer0
 0050-0053 : timer1
 0060-0060 : keyboard
 0064-0064 : keyboard
 0070-0071 : rtc_cmos
 0070-0071 : rtc0
 0080-008f : dma page reg
 00a0-00a1 : pic2
 00c0-00df : dma2
 00f0-00ff : fpu
 0170-0177 : 0000:00:01.1
 0170-0177 : ata_piix
 01f0-01f7 : 0000:00:01.1
 01f0-01f7 : ata_piix

650  Chapter 23  ■  Dealing with Linux Devices

 0376-0376 : 0000:00:01.1
 0376-0376 : ata_piix
 03c0-03df : vga+
 03f6-03f6 : 0000:00:01.1
 03f6-03f6 : ata_piix
0cf8-0cff : PCI conf1
0d00-ffff : PCI Bus 0000:00
...
$

There are lots of different I/O ports in use on the Linux system at any time, so your
output will most likely differ from this example. With PnP, I/O port conflicts aren’t very
common, but it is possible that two devices are assigned the same I/O port. In that case, you
can manually override the settings automatically assigned by using the setpci command.

Direct Memory Access
Using I/O ports to send data to the CPU can be somewhat slow. To speed things up, many
devices use direct memory access (DMA) channels. DMA channels do what the name
implies; they send data from a hardware device directly to memory on the system, without
having to wait for the CPU. The CPU can then read those memory locations to access the
data when it’s ready.

As with I/O ports, each hardware device that uses DMA must be assigned a unique
channel number. To view the DMA channels currently in use on the system, just display the
/proc/dma file:

$ cat /proc/dma
 4: cascade
$

This output indicates that only DMA channel 4 is in use on the Linux system.

The /sys Directory
Yet another tool available for working with devices is the /sys directory. The /sys
directory is another virtual directory, similar to the /proc directory. It provides additional
information about hardware devices that any user on the system can access.

A number of information files are available within the /sys directory. They are broken
down into subdirectories based on the device and function in the system. You can take a
look at the subdirectories and files available within the /sys directory on your system by
using the ls command-line command, as shown in Listing 23.4.

Listing 23.4:  The contents of the /sys directory

$ ls -al /sys
total 4

Working with Devices  651

dr-xr-xr-x 13 root root 0 Feb 16 18:06 .
drwxr-xr-x 25 root root 4096 Feb 4 06:54 ..
drwxr-xr-x 2 root root 0 Feb 16 17:48 block
drwxr-xr-x 41 root root 0 Feb 16 17:48 bus
drwxr-xr-x 62 root root 0 Feb 16 17:48 class
drwxr-xr-x 4 root root 0 Feb 16 17:48 dev
drwxr-xr-x 14 root root 0 Feb 16 17:48 devices
drwxr-xr-x 5 root root 0 Feb 16 17:49 firmware
drwxr-xr-x 8 root root 0 Feb 16 17:48 fs
drwxr-xr-x 2 root root 0 Feb 16 18:06 hypervisor
drwxr-xr-x 13 root root 0 Feb 16 17:48 kernel
drwxr-xr-x 143 root root 0 Feb 16 17:48 module
drwxr-xr-x 2 root root 0 Feb 16 17:48 power
$

Notice the different categories of information available. You can obtain information
about the system bus, devices, kernel, and even kernel modules installed.

Working with Devices
Linux provides a wealth of command-line tools for using the devices connected to your
system as well as monitoring and troubleshooting the devices if there are problems. The fol-
lowing sections walk through some of the popular tools you’ll want to know about when
working with Linux devices.

Finding Devices
One of the first tasks for a new Linux administrator is to find the different devices installed
on the Linux system. Fortunately there are a few command-line tools to help out with that.

The lsdev command
The lsdev command-line command displays information about the hardware devices
installed on the Linux system. It retrieves information from the /proc/interrupts,
/proc/ioports, and /proc/dma virtual files and combines them in one output, as shown
in Listing 23.5.

Listing 23.5:  Output from the lsdev command

$ lsdev
Device DMA IRQ I/O Ports
...
acpi 9

652  Chapter 23  ■  Dealing with Linux Devices

ACPI 4000-4003 4004-4005 4008-400b 4020-4021
ahci d240-d247 d248-d24b d250-d257 d258-d25b
ata_piix 14 15 0170-0177 01f0-01f7 0376-0376 03f6-03f6
cascade 4
dma 0080-008f
dma1 0000-001f
dma2 00c0-00df
e1000 d010-d017
enp0s3 19
fpu 00f0-00ff
i8042 1 12
Intel d100-d1ff d200-d23f
keyboard 0060-0060 0064-0064
ohci_hcd:usb1 22
PCI 0000-0cf7 0cf8-0cff 0d00-ffff
pic1 0020-0021
pic2 00a0-00a1
piix4_smbus 4100-4108
rtc0 8 0070-0071
rtc_cmos 0070-0071
snd_intel8x0 21
timer 0
timer0 0040-0043
timer1 0050-0053
vboxguest 20
vboxvideo 18
vga+ 03c0-03df
$

This provides you with one place to view all the important information about the devices
running on the system, making it easy to pick out any conflicts that can be causing problems.

The lsdev tool is part of the procinfo package. You may need to manu-
ally install that package in some Linux distributions.

The lsblk command
The lsblk command-line command displays information about the block devices installed
on the Linux system. By default, the lsblk command displays all of the block devices, as
shown in Listing 23.6.

Working with Devices  653

Listing 23.6:  The output from the lsblk command

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 34.6M 1 loop /snap/gtk-common-themes/818
loop1 7:1 0 2.2M 1 loop /snap/gnome-calculator/222
...
sda 8:0 0 10G 0 disk
 sda1 8:1 0 10G 0 part
 ubuntu--vg-root 253:0 0 9G 0 lvm /
 ubuntu--vg-swap_1 253:1 0 976M 0 lvm [SWAP]
sr0 11:0 1 1024M 0 rom
$

If you notice at the end of Listing 23.6, the lsblk command also indicates blocks that
are related, as with the device-mapped LVM volumes and the associated physical hard drive.
You can modify the lsblk output to see additional information about the blocks by adding
command-line options. The -S option displays only information about SCSI block devices
on the system:

$ lsblk -S
NAME HCTL TYPE VENDOR MODEL REV TRAN
sda 2:0:0:0 disk ATA VBOX HARDDISK 1.0 sata
sr0 1:0:0:0 rom VBOX CD-ROM 1.0 ata
$

This is a quick way to view the different SCSI drives installed on the system.

The dmesg command
The kernel ring buffer records kernel-level events as they occur. Since it’s a ring buffer, the
event messages overwrite after the buffer area fills up. You can view the current messages
in the kernel ring buffer by using the dmesg command. It helps to monitor it whenever you
install a new device, as shown in Listing 23.7.

Listing 23.7:  Partial output from the dmesg command

[2525.499216] usb 1-2: new full-speed USB device number 3 using ohci-pci
[2525.791093] usb 1-2: config 1 interface 0 altsetting 0 endpoint 0x1 has
 invalid maxpacket 512, setting to 64
[2525.791107] usb 1-2: config 1 interface 0 altsetting 0 endpoint 0x81 has
 invalid maxpacket 512, setting to 64
[2525.821079] usb 1-2: New USB device found, idVendor=abcd, idProduct=1234
[2525.821088] usb 1-2: New USB device strings: Mfr=1, Product=2,
 SerialNumber=3

654  Chapter 23  ■  Dealing with Linux Devices

[2525.821094] usb 1-2: Product: UDisk
[2525.821099] usb 1-2: Manufacturer: General
 ▭
[2525.821104] usb 1-2: SerialNumber: [2525.927096] usb-storage 1-2:1.0: USB
Mass Storage device detected
[2525.927096] usb-storage 1-2:1.0: USB Mass Storage device detected
[2525.927950] scsi host3: usb-storage 1-2:1.0
[2525.928033] usbcore: registered new interface driver usb-storage
[2525.940376] usbcore: registered new interface driver uas
[2526.961754] scsi 3:0:0:0: Direct-Access General UDisk
 5.00 PQ: 0 ANSI: 2
[2526.966646] sd 3:0:0:0: Attached scsi generic sg2 type 0
[2526.992707] sd 3:0:0:0: [sdb] 31336448 512-byte logical blocks: (16.0
 GB/14.9 GiB)
[2527.009197] sd 3:0:0:0: [sdb] Write Protect is off
[2527.009200] sd 3:0:0:0: [sdb] Mode Sense: 0b 00 00 08
[2527.026764] sd 3:0:0:0: [sdb] No Caching mode page found
[2527.026770] sd 3:0:0:0: [sdb] Assuming drive cache: write through
[2527.127613] sdb: sdb1
[2527.229943] sd 3:0:0:0: [sdb] Attached SCSI removable disk

The output from the dmesg command shows the steps the kernel took to recognize the
new USB device that was plugged into the system.

Since the kernel is responsible for detecting devices and installing the correct modules, the
dmesg command is a great troubleshooting tool to use when a device isn’t working correctly.
It can help you determine if a hardware device module didn’t load correctly.

Working with PCI Devices
The lspci command allows you to view the currently installed and recognized PCI and
PCIe devices on the Linux system. There are lots of command-line options you can include
with the lspci command to display information about the PCI and PCIe cards installed on
the system. Table 23.1 shows some common ones that come in handy.

TABLE 23 .1   The lspci command-line options

Option Description

-A Defines the method to access the PCI information

-b Displays connection information from the card point of view

-k Displays the kernel driver modules for each installed PCI card

-m Displays information in machine-readable format

Working with Devices  655

The output from the lspci command without any options shows all devices connected
to the system, as shown in Listing 23.8.

Listing 23.8:  Using the lspci command

$ lspci
00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01)
00:02.0 VGA compatible controller: InnoTek Systemberatung GmbH VirtualBox
 Graphics Adapter
00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet
 Controller (rev 02)
00:04.0 System peripheral: InnoTek Systemberatung GmbH VirtualBox Guest
Service
00:05.0 Multimedia audio controller: Intel Corporation 82801AA AC'97 Audio
 Controller (rev 01)
00:06.0 USB controller: Apple Inc. KeyLargo/Intrepid USB
00:07.0 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)
00:0d.0 SATA controller: Intel Corporation 82801HM/HEM (ICH8M/ICH8M-E) SATA
Controller [AHCI mode] (rev 02)
$

You can use the output from the lspci command to troubleshoot PCI card issues, such
as if a card isn’t recognized by the Linux system.

Working with USB Devices
You can view the basic information about USB devices connected to your Linux system
by using the lsusb command. Table 23.2 shows the options that are available with
that command.

Option Description

-n Displays vendor and device information as numbers instead of text

-q Queries the centralized PCI database for information about the installed PCI cards

-t Displays a tree diagram that shows the connections between cards and buses

-v Displays additional information (verbose) about the cards

-x Displays a hexadecimal output dump of the card information

656  Chapter 23  ■  Dealing with Linux Devices

The basic lsusb program output is shown in Listing 23.9.

Listing 23.9:  The lsusb output

$ lsusb
Bus 001 Device 003: ID abcd:1234 Unknown
Bus 001 Device 002: ID 80ee:0021 VirtualBox USB Tablet
Bus 001 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
$

Most systems incorporate a standard USB hub for connecting multiple USB devices to
the USB controller. Fortunately, there are only a handful of USB hubs on the market, so all
Linux distributions include the device drivers necessary to communicate with each of these
USB hubs. That guarantees that your Linux system will at least detect when a USB device is
connected.

Supporting Monitors
Two basic elements control the video environment on your Linux system: the video card and
the monitor. To display any type of text or graphics, your Linux system must know how to
interact with both of them. This is where the X Window System software comes in.

The X Window System was developed at the Massachusetts Institute of Technology
(MIT) to provide a standard protocol for interacting with displays. The X Window System is
most commonly referred to as just X, or X11, since the last version defined is version 11.

The X11 system operates beneath the graphical desktop environment on your Linux
system, as shown in Figure 23.1.

TABLE 23 .2   The lsusb command options

Option Description

-d Displays only devices from the specified vendor ID

-D Displays information only from devices with the specified device file

-s Displays information only from devices using the specified bus

-t Displays information in a tree format, showing related devices

-v Displays additional information about the devices (verbose mode)

-V Displays the version of the lsusb program

Working with Devices  657

The job of X11 is to interact with the hardware level of your system’s video
environment—the video card, monitor, keyboard, and mouse—and provide a standard inter-
face that any desktop management software (such as KDE or GNOME) can use. Because of
this, the X11 software must be able to interact with all of those hardware devices.

The original X11 software for Linux was the XFree86 package. This was notorious for
being difficult to configure and get working with different types of video hardware. Because
of that, newer X11 packages have surfaced and have become more common:

■■ X.org: A user-friendly X11 software package for Linux, developed as a direct
replacement for XFree86, but using simple text-based configuration files. It stores con-
figuration files in a common /etc/X11 directory.

■■ Wayland: A simpler, more secure graphical software package, developed by Red Hat,
and released as open source software. Wayland is becoming more popular with Linux
distributions, quickly replacing even X.org. It stores separate configuration files for
each user in the ~/.config/weston.ini file in each user’s home directory.

Both the X.org and Wayland systems attempt to automatically detect the video card,
monitor, keyboard, and mouse installed on the system at each boot time and dynamically
change the configuration files accordingly. If you make any changes to the video card or
monitor, they will automatically detect the new equipment and alter the configuration
accordingly, making it a breeze to swap out new video equipment.

The X.org and Wayland packages include several different drivers that
support common video cards and monitors. For both packages, however,
if they don’t recognize the specific video card or monitor on your system,
they default to using generic drivers that may not produce the best-
quality video experience. If your Linux system uses a specialty graphics
card or monitor, it’s best to obtain the Linux drivers for them and follow
the documentation to manually install the updated drivers.

Graphical
Application

Video Card Monitor Keyboard Mouse

Graphical
Application

Graphical Desktop Manager

X Window System

Graphical
Application

F IGURE 23 .1   The standard Linux graphics environment

http://x.org
http://x.org
http://x.org
http://x.org

658  Chapter 23  ■  Dealing with Linux Devices

Using Printers
Just as with the video environment in Linux, printing in Linux can be somewhat complex.
With different types of printers available, trying to install the correct printer drivers as well
as using the correct printer protocol to communicate with them can be a nightmare.

Fortunately, the Common Unix Printing System (CUPS) solves many of those problems
for us. CUPS provides a common interface for working with any type of printer on your
Linux system. It accepts print jobs using the PostScript document format and sends them to
printers using a print queue system.

The print queue is a holding area for files sent to be printed. The print queue is normally
configured to support not only a specific printer but also a specific printing format, such as
landscape or portrait mode, single-sided or double-sided printing, or even color or black-
and-white printing. There can be multiple print queues assigned to a single printer or mul-
tiple printers that can accept jobs assigned to a single print queue.

The CUPS software uses the Ghostscript program to convert the PostScript document
into a format understood by the different printers. The Ghostscript program requires differ-
ent drivers for the different printer types to know how to convert the document to make it
printable on a certain type of printer. This is done using configuration files and drivers. For-
tunately, CUPS installs many different drivers for common printers on the market and auto-
matically sets the configuration requirements to use them. The configuration files are stored
in the /etc/cups directory.

To define a new printer on your Linux system you can use the CUPS web interface. Open
your browser and navigate to the URL http://localhost:631. Figure 23.2 shows the
web interface used by CUPS.

The CUPS web interface allows you to define new printers, modify existing printers, and
check on the status of print jobs sent to each printer. Not only does CUPS recognize directly
connected printers, but you can also configure network printers using several standard

F IGURE 23 .2   The CUPS main web page

http://localhost:631

Using Hot-Pluggable Devices  659

network printing protocols, such as the Internet Printing Protocol (IPP) or the Microsoft
Server Message Block (SMB) protocol.

Aside from the CUPS web interface, there are a few command-line tools you can use for
interacting with the print queues:

■■ lpc: Start, stop, or pause the print queue.

■■ lpq: Display the print queue status, along with any print jobs waiting in the queue.

■■ lpr: Submit a new print job to a print queue.

■■ lprm: Remove a specific print job from the print queue.

If you’re working from the command line, you can check the status of any print queue
as well as submit print jobs. For each of the commands, to specify the printer use the -P
command-line option along with the printer name, as shown in Listing 23.10.

Listing 23.10:  Printing from the command line in Linux

$ lpq -P EPSON_ET_3750_Series
EPSON_ET_3750_Series is ready
no entries
$ lpr -P EPSON_ET_3750_Series test.txt
$ lpq -P EPSON_ET_3750_Series
EPSON_ET_3750_Series is ready and printing
Rank Owner Job File(s) Total Size
active rich 1 test.txt 1024 bytes
$

The first line in Listing 23.10 uses the lpq command to check the status of the print
queue, which shows that the printer is ready to accept new jobs and doesn’t currently have
any jobs in the print queue. The lpr command submits a new print job to print a file. After
the new print job is submitted, the lpq command shows that the printer is currently printing
and shows the print job that’s being printed.

Red Hat–based systems use the Automatic Bug Reporting Tool (abrt) to
create a report if any kernel-level hardware errors are detected. Red Hat
Linux customers can send the report to tech support to help troubleshoot
the hardware issue.

Using Hot-Pluggable Devices
Computer hardware is generally categorized into two types:

■■ Cold-pluggable devices

■■ Hot-pluggable devices

660  Chapter 23  ■  Dealing with Linux Devices

Cold-pluggable devices are hardware that can be connected to the system only when the
system is completely powered down. These usually include things commonly found inside
the computer case, such as memory, PCI cards, and hard drives. You can’t remove any of
these things while the system is running.

Conversely, you can usually add and remove hot-pluggable devices at any time. They are
often external components, such as network connections, monitors, and USB devices. The
trick with hot-pluggable devices is that somehow the Linux kernel needs to know when
the device is connected and automatically load the correct device driver module to support
the device.

Linux provides an entire subsystem that interacts with hot-pluggable devices, making
them accessible to users. This subsystem is described in the following sections.

Detecting Dynamic Devices
The udev device manager is a program that is automatically started at boot time by the init
process (usually at run level 5 via the /etc/rc5.d/udev script) or the systemd systems and
runs in the background at all times. It listens to kernel notifications about hardware devices.
As new hardware devices are plugged into the running system, or existing hardware devices
removed, the kernel sends out notification event messages.

The udev program listens to these notification messages and compares the messages
against rules defined in a set of configuration files, normally stored under the /etc/udev/
rules.d directory. If a device matches a defined rule, udev acts on the event notification as
defined by the rule.

Each Linux distribution defines a standard set of rules for udev to follow. Rules define
actions such as mounting USB memory sticks under the /media folder when they’re installed
or disabling network access when a USB network card is removed. You can modify the rules
defined, but it’s usually not necessary.

Working with Dynamic Devices
While the udev program runs in the background on your Linux system, you can still interact
with it using the udevadm command-line tool. The udevadm command allows you to send
commands to the udev program. The format of the udevadm command is as follows:

udevadm command [options]

Table 23.3 shows the commands available to send to the udevadm program.

TABLE 23 .3   The udevadm commands

Command Description

control Modifies the internal state of udev

info Queries the udev database for device information

Using Hot-Pluggable Devices  661

The control command allows you to change the currently running udev program. For
example, by adding the -R option, you can force udev to reload the rules defined in the
/etc/udev/rules.d directory.

Exercise 23.1 walks you through how to view the kernel messages and device entries that
occur when you connect a USB storage device to the Linux system.

E X E R C I S E 2 3 . 1 

Adding a USB Storage Device to the Linux System

1.	 Log into your Linux graphical desktop and open a command prompt window.

2.	 At the command prompt, enter the lsusb command to view any USB controllers and
devices connected to your system.

3.	 Plug a USB storage device, such as a memory stick, into a USB port; then wait a minute
or so for the kernel to detect it.

4.	 Type the command dmesg, and observe the kernel ring buffer entries entered when the
kernel detected the new USB device. Note the device name assigned to the new device
(such as sdb1).

5.	 Type the lsusb command again and see if the new device appears in the output.

6.	 Type the command lsblk to view the device and partition in the block table and to note
where the partition is mounted in the virtual directory.

7.	 Type the command ls /dev/sd* to view the SCSI devices on the system. You should
see the USB device name that appeared in the dmesg output appear as a device file in
the /dev folder.

8.	 Use the graphical desktop interface to safely eject the USB storage device.

9.	 Type the command dmesg to view the kernel entries when the device was removed.

10.	 Type the command ls /dev/sd* to see if the device file has been removed.

Command Description

monitor Listens for kernel events and displays them

settle Watches the udev event queue

test Simulates a udev event

test-builtin Runs a built-in device command for debugging

trigger Requests device events from the kernel

662  Chapter 23  ■  Dealing with Linux Devices

Summary
There are lots of ways to connect hardware devices to Linux systems. Both PCI and USB
interfaces provide a standard way for connecting devices to the main motherboard so
they can communicate. The newer GPIO interface provides a way to interact with smaller
devices that use a single line for inputs and outputs that control sensors, switches, relays,
and motors.

Besides the physical interfaces, Linux also uses files to communicate with devices. When
you connect a device to the system, Linux automatically creates a file in the /dev directory
that’s used for applications to send data to and receive data from the devices. The kernel uses
the /proc directory to create virtual files that contain information about the devices and
system status. The /sys directory is also used by the kernel to create files useful for trouble-
shooting device issues.

Linux provides a handful of command-line tools that you’ll find useful when trying to
troubleshoot device problems. The lsdev command allows you to view the status and settings
for all devices on the system. The lsblk command provides information about block devices,
such as hard drives and network cards, that are connected. The dmesg command lets you
peek at the kernel ring buffer to view kernel event messages as it detects and works with
devices. The lspci and lsusb commands allow you to view the PCI and USB devices that are
connected to the Linux system.

Linux also provides software to help with monitors and printers. The X11 protocol, used
by the XFree86 and X.org software packages, detects and interfaces with the video card,
monitor, keyboard, and mouse connected to the system, providing a standard interface for
applications to use. The CUPS software provides a standard method for applications to send
documents to both local and network printers.

Finally, the chapter discussed how Linux handles hot-pluggable devices. The udev applica-
tion monitors the kernel events for information about new hardware detected on USB ports.
If a new device is detected, udev handles the device as defined in the rules set. The udevadm
application allows you to control how udev works on your system.

Exam Essentials
Describe how Linux systems communicate with devices.   Linux systems create files in the
/dev folder that applications use to send data to devices and retrieve data from devices.
Device files can be either character files, which send and receive data one character at a time,
or block files, which send and receive data in blocks.

Explain how you would find the hardware settings for a PCI board plugged into the Linux
system.   The lspci command displays the PCI devices currently connected to the system.
You can use that information with the lsdev command, which displays the interrupts, I/O
ports, and DMA channels used by each device. You can also find that information in the
/proc/interrupts, /proc/ioports, and /proc/dma files.

http://x.org

Exam Essentials  663

Explain how Linux can detect hot-pluggable devices.   The udev application runs in the
background, monitoring the kernel ring buffer for new devices. When a new device is added,
the udev application detects it from the kernel ring buffer messages and follows instructions
defined in rules contained in the /etc/udev/rules.d directory.

664  Chapter 23  ■  Dealing with Linux Devices

Review Questions
1.	 What type of hardware interface uses interrupts, I/O ports, and DMA channels to communi-

cate with the PC motherboard?

A.	 USB

B.	 GPIO

C.	 PCI

D.	 Monitors

E.	 Printers

2.	 What filesystem does the Linux system use to track ports used to communicate with
PCI boards?

A.	 /proc/ioports
B.	 /proc/interrupts
C.	 /sys
D.	 /dev
E.	 /proc/dma

3.	 Where does Linux create files to send data to and receive data from directly with devices?

A.	 /sys
B.	 /proc
C.	 /etc
D.	 /dev
E.	 /dev/mapper

4.	 Katie Jane created a new LVM volume on her Linux system. Where in the virtual directory
should she look to find the virtual file related to the new volume?

A.	 /dev
B.	 /dev/mapper
C.	 /proc
D.	 /sys
E.	 /etc

5.	 Joel installed a new PCI card in his Linux system but is now getting a conflict with another
device on the system. What command can he use to display the interrupts, I/O ports, and
DMA channels in use by all the existing devices?

A.	 lsdev
B.	 lsblk
C.	 lspci
D.	 lsusb
E.	 dmesg

Review Questions  665

6.	 Which Linux command displays the contents of the kernel ring buffer?

A.	 lsdev
B.	 lsblk
C.	 lspci
D.	 lsusb
E.	 dmesg

7.	 Which software packages implement the X Windows graphical system in Linux?
(Choose two.)

A.	 X.org
B.	 CUPS

C.	 Wayland

D.	 X11

E.	 udev

8.	 Sophia needs to connect her Linux system to a new network printer on the office network.
What software package does she need to ensure is installed so she can configure the new net-
work printer?

A.	 X.org
B.	 CUPS

C.	 Wayland

D.	 X11

E.	 udev

9.	 Which program runs in the background monitoring the kernel ring buffer messages for
new devices?

A.	 X.org
B.	 CUPS

C.	 Wayland

D.	 X11

E.	 udev

10.	 Which program allows you to reload the defined rules for detecting and installing
new devices?

A.	 udevadm
B.	 udev
C.	 lsusb
D.	 lspci
E.	 lsdev

http://x.org
http://x.org
http://x.org

Troubleshooting
Application and
Hardware Issues

✓✓ Objective 4.1: Given a scenario, analyze and troubleshoot
storage issues

✓✓ Objective 4.3: Given a scenario, analyze and troubleshoot
central processing unit (CPU) and memory issues

Chapter

24

A Linux system’s primary purpose is to serve. However, if one
of its applications or the hardware it uses is not functioning
properly, the system cannot fulfill its duty. Understanding

common and a few uncommon problems with both applications and hardware will help you
quickly resolve any issues.

Dealing with Storage Problems
Troubleshooting storage issues ranges from the easy-to-check items all the way to the strange
and obscure. For example, if you just installed a drive, test connections to ensure they are
tight. Disks that were previously working fine may suffer from degrading storage. These
issues and more are covered in the following sections.

Exploring Common Issues
If you are fairly new to Linux system administration, most likely you are unaware of
common storage problems. The following can help you prepare:

Degraded Storage/Mode  Degraded storage refers to the storage medium’s gradual
decay due to time or improper use, which causes data degeneration or loss. For example,
an SSD has limited endurance due to its finite number of program/erase (PE) cycles.
Thus, employing an SSD in your swap space is unwise.

Degraded mode refers to a situation in which one or more disks in a RAID array
have failed. In this case, troubleshooting efforts require you to employ the mdadm -D
command to view a particular array’s detailed status. If the status contains the word
degraded, add another partition to the array so that it can recover.

Missing Devices  Storage devices can go “missing” on Linux, but the cause varies. If
it is network attached storage (NAS), check your network first (see Chapter 20, “Ana-
lyzing System Properties and Remediation”).

If it is a locally attached device and other utilities, such as lsblk, are not displaying it,
use super user privileges and try the lspci -M command. This command will perform a
thorough scan of all PCI-attached devices.

The conduit to Linux devices is through the device files, such as /dev/sdb. Ensure that
the particular partition’s device file is available and not corrupted. If needed, rebuild it
using the mknod command.

Dealing with Storage Problems  669

Check that you (or the utility configuration) are using the correct device file name.
A whole disk is referred to by the device filename with no numbers, such as /dev/sdc.
A disk partition is specified by the device filename and its number, like /dev/sdc2.
When using an NvME SSD, the device filename, such as /dev/nvme0n1p1, has extra
items, including the namespace.

Missing Volumes  Another form of a lost device is a missing volume. If you perform a
pvscan on the physical devices that make up a logical volume and get a “Couldn’t find
device” message, you’ve got a missing volume. Typically, the cause is a failed or uninten-
tionally removed disk.

If a disk that was part of a logical volume’s group has failed, the missing disk’s UUID
will display in the pvscan message. You can replace the failed volume (pvcreate),
restore the group’s metadata (vgcfgrestore), recover the group (vgscan), and then
activate it (vgchange) using LVM tools.

Missing Mount Points  A “Mount point does not exist” error message implies the
obvious—the directory on which you are attempting to mount the filesystem does not
exist. It was either deleted or never created in the first place. Simply make it with appro-
priate privileges using the mkdir command.

However, this error message can also be generated for a not-so-obvious problem. It cen-
ters on employing the bind option, either at the command line via the mount command
or in the /etc/fstab file. This option moves a filesystem from its current mount point
to a new mount point. If it is not already mounted somewhere, you’ll get a “Mount
point does not exist” error message.

Before removing a directory, check if it is a mount point. You can do that
quickly by employing the mountpoint directory-name command.

Storage Integrity  A bad block (also called a bad sector) is a small chunk of a disk drive
that will not respond to I/O requests due to corruption or physical damage. A random
bad block does not indicate a drive is failing, but these storage devices need monitoring,
because increasing bad sectors indicate it needs replacing.

Besides using the fsck command (covered in Chapter 11, “Handling Storage”), you
can employ the badblocks utility to monitor a drive. It is different from fsck in that
it focuses on a particular partition and does not perform any repairs. It is wise to back
up and unmount a partition before checking for bad sectors. Use the nondestructive test
by issuing the badblocks -nsv partition-device-file command. The utility provides
progress as it runs, and when the tests are complete, it issues a final bad blocks status.

In addition, a disk’s manufacturer often provides its own set of testing programs. Typ-
ically these programs let you know whether or not to replace the drive but do not pro-
vide detailed data on bad sectors.

670  Chapter 24  ■  Troubleshooting Application and Hardware Issues

The dmesg command displays the kernel ring buffer, which can contain
messages such as disk I/O errors. These are indicators of potential prob-
lems.

Performance Issues  Poor storage performance adversely affects applications. Besides
using utilities such as iostat, ioping, iotop, and sar (covered in Chapter 20) to
monitor storage performance problems, you can also employ hdparm to determine a
drive’s read speeds. This utility is useful for PATA or SATA drives. SCSI drives that have
SCSI/ATA command translation are also supported.

The dstat utility is similar to iostat but provides additional helpful data for trou-
bleshooting storage performance problems. For example, this tool displays throughput
statistics associated with network use or per individual LV drives.

Another handy utility that works specifically with logical volumes is the dmstats utility.
This tool allows the setup and management of statistics for any devices charted by the
device mapper. You can determine device mapper filenames associated with logical vol-
umes using the lsblk -p utility.

A GUI tool that gauges disk performance is the gnome-disks utility. However, back up
any of the disk’s data before performing a write benchmark.

Resource Exhaustion  Resource exhaustion is a situation in which a system’s finite
resources are committed and unavailable to others. Running out of inode numbers or
disk space (covered in Chapter 20) are two examples.

Threat agents can engage in a storage resource exhaustion attack via
file descriptor leaks. A file descriptor is commonly used in programming
languages to access a file, pipe, or network socket. You can prevent this
attack type by setting the PAM nofile limit in the /etc/security/
limits.conf file. (PAM was covered in Chapter 16, “Looking at Access
and Authentication Methods.”)

Dealing with Specialized Issues
One of the first things you should check for an older storage device experiencing problems is
whether or not the device’s manufacturer has a new driver or firmware available. Often this
can resolve a tricky issue.

Another item to check is the device’s Linux module (driver). If it is not loaded or built
into the Linux kernel, your device will not function. Start with the dmesg utility to gain
some clues. A snipped example is shown in Listing 24.1.

Dealing with Storage Problems  671

Listing 24.1:  Looking up disk information via the dmesg command

dmesg | grep sde
[…]
 [5.566479] sd 6:0:0:0: [sde] Attached SCSI disk

The dmesg utility’s output is searched using grep to find information concerning the sde
disk (/dev/sde). The important clue here is that the disk is an attached SCSI disk.

The available SCSI disk driver information is stored within a /sys/ directory, as shown
in Listing 24.2.

Listing 24.2:  Determining the driver via the ls and udevadm commands

ls /sys/bus/scsi/drivers
sd sr
#
udevadm info -an /dev/sde | grep DRIVERS | grep sd
 DRIVERS=="sd"

Notice that the sd and sr drivers are used for SCSI devices. The udevadm command con-
firms which one is employed for the /dev/sde disk.

After the driver (module) is determined, use the lsmod command to see if it is currently
loaded into the kernel. A snipped example is shown in Listing 24.3.

Listing 24.3:  Determining if the module is loaded using the lsmod command

lsmod | grep sd
sd_mod 46322 5
[…]
modinfo sd_mod
filename: /lib/modules/3.10.0-
862.11.6.el7.x86_64/kernel/drivers/scsi/sd_mod.ko.xz
[…]
description: SCSI disk (sd) driver
[…]

If the module is not loaded, it may be built into the kernel. You can check this by looking
at the modules.builtin file, as shown snipped in Listing 24.4.

Listing 24.4:  Determining if the module is built in using the cat command

$ cat /lib/modules/$(uname -r)/modules.builtin | grep sd_mod
kernel/drivers/scsi/sd_mod.ko

If the module is not loaded or built into the kernel, dynamically load it using super user
privileges and the modprobe command (Chapter 14, “Tending Kernel Modules”).

672  Chapter 24  ■  Troubleshooting Application and Hardware Issues

Seeking SATA
An adapter is a piece of hardware that may have one or more software interfaces. The var-
ious storage interfaces, such as SATA drives, can have unique problems. On Linux, SATA
drives are self-configuring. They are typically connected to the SCSI bus and are denoted by
the /dev/sd* device files.

If you are using a Linux distro with a kernel version prior to 2.6.16
(released March 2006), be aware that SATA suspend and resume is not
supported. The system will hang when the device is accessed after a
resume operation. Fix this problem by adding SATA power management
support via a kernel patch.

On Linux, some SATA devices may fail earlier than others due to frequent head loads and
unloads. Often this is due to aggressive power management.

You can check for this situation on a SATA drive, if it uses self-monitoring analysis and
reporting technology (SMART), via the smartctl -a command. Look at the
Start_Stop_Count, which is the number of loads and unloads. For a particular disk, a
high count compared to other drives is indicative of this problem. Double-check it using the
hdparm -B command on the drive. If the command returns a low number, such as 1, then
aggressive power management is confirmed. You can modify this by using super user privi-
leges and typing hdparm -B 127 device-filename, which will not only remove the aggressive
power management but also typically improves performance and extends the drive’s life.

If you are using a virtual machine, the smartctl command will fail. This
is due to virtualized disks not supporting SMART.

Comprehending SCSI
On Linux, the SCSI framework consists of three integral parts:

■■ Upper: The device driver (for example, disk driver) layer

■■ Middle: The SCSI routing layer

■■ Lower: The host bus adapter (HBA) driver layer

The upper layer is closest to the application or user command, whereas the lower SCSI
layer is right next to the actual hardware. The HBA is either a circuit board or an integrated
circuit adapter, which connects to the disk drive. Just like device drivers, the HBA driver is
either loaded or built into the kernel.

Problems can occur if either the HBA or device driver is not loaded or built into the
kernel. Earlier, in Listing 24.3 and Listing 24.4, a check was done for a SCSI upper-layer
driver. In Listing 24.5, a snipped example shows looking for the HBA driver (module) and
checking whether or not it is loaded or built in.

Dealing with Storage Problems  673

Listing 24.5:  Determining a module name and if it is loaded

udevadm info -an /dev/sda | grep -i drivers
 DRIVERS=="sd"
[…]
 DRIVERS=="ahci"
[…]
#
lsmod | grep ahci
ahci 34056 3
[…]
#
modinfo ahci
[…]
description: AHCI SATA low-level driver
[…]

Notice that the HBA driver is the Advanced Host Controller Interface (ACHI) driver,
and it is loaded into the kernel. This particular driver allows you to hot-plug SATA drives,
which are treated as SCSI devices. In other words, the SATA drives are attached to the SCSI
framework.

When you attach a SATA drive as a hot-plugged SCSI device, you will need to enable it.
This is accomplished by either rebooting the system or modifying the /sys/class/
scsi_host/host#/scan file. The # is the drive’s SCSI host number. An example of deter-
mining the appropriate host number and modifying the file is shown snipped in Listing 24.6.

Listing 24.6:  Enabling a hot-plugged SATA drive

lsblk -S
NAME HCTL TYPE VENDOR MODEL REV TRAN
[…]
sde 6:0:0:0 disk ATA VBOX HARDDISK 1.0 sata
[…]
#
echo '- - -' > /sys/class/scsi_host/host6/scan

In this example, the lsblk -S command only shows attached SCSI framework devices,
and the SATA drive is sde (/dev/sde). The HTCL column in the output shows the device’s
host number (the first number prior to the first colon). In this case, the host number is 6.
After the disk’s host number is determined, the characters '- - -' are echoed into the
appropriate file (note the required spaces between each dash). This action forces the system
to scan the device attached to the SCSI framework at that host number, which enables
the drive.

674  Chapter 24  ■  Troubleshooting Application and Hardware Issues

Moderating RAID
A Linux system can employ software and hardware RAID. Software RAID arrays are imple-
mented through the Multiple Devices (md) driver. Check the status of your software RAID
array by viewing the /proc/mdstat file.

If it is SATA based and a drive goes offline, a software RAID array can hang. This occurs
if the HBA does not handle hot-plug action. Thus, it is wise to check if your lower SCSI
framework layer’s driver supports hot-plugging. If your HBA uses the AHCI module (driver),
hot-plugging is allowed.

Hardware-based RAID arrays are managed via a hardware device connected to the
Linux SCSI framework. A hardware RAID controller’s data, such as the manufacturer and
model number, are obtained using super user privileges and entering lspci -knn | grep
"RAID bus controller" at the command line. This is useful if you inherited a Linux system
and need to obtain manufacturer utilities to troubleshoot and monitor a hardware-based
RAID array.

Uncovering Application
Permission Issues
A user notifies you that an application has issued an I/O error when they attempt to run it.
The problem is possibly a permission issue. You will need to gather some information before
starting your troubleshooting:

1.	 Determine which account runs the application and the account’s name.

2.	 Discover the specific program action that raised the error.

3.	 Obtain a full directory reference for any files on which the application was attempting
to perform reads/writes or for any files it was attempting to create.

4.	 Record, if applicable, any additional applications it was trying to launch.

5.	 Document, if applicable, any local or remote services the application is attempting to
employ, such as NTP or a file server (Chapter 2, “Introduction to Services”).

If the application uses services, such as OpenSSH and/or an authentica-
tion server, it is important to know what service accounts are involved.
Record this information as well.

When you have these details, you are ready to proceed in your troubleshooting process.

Ownership  Look at the various application files involved using the ls -l command.
Determine what username owns the files and the permissions granted to those owners.

Uncovering Application Permission Issues  675

Don’t forget to look at the directory permissions as well. You’ll need to know the entire
directory tree’s owners and permissions.

If the application is not run under a username that owns the file or the directory tree,
you’ll need to go on to group memberships and possibly other permissions. File and
directory permission troubleshooting was covered in Chapter 22, “Investigating User
Issues,” if you need a refresher.

Group Memberships  Uncover the groups to which the end user running the applica-
tion belongs. If the application is run under a different account, check that account’s
group memberships.

When you have that information, you can check the application files involved. Identify
the group permissions of those files as well as the directory tree to uncover any potential
problems.

Executables  If the application cannot be run by a particular account, check the execute
privileges. Keep in mind that if the application kicks off additional programs, you will
need to check the privileges for those as well.

If you are using a script that changes its present working directory and it fails, then
check the directory tree it is trying to access. The execute privilege must be granted
on every single directory within the tree in order for an account to change its present
working directory to that particular location.

Inheritance  If the application is creating files in a particular directory and can no
longer access those files, check for forced inheritance via ACLs (covered in Chapter 15,
“Applying Ownership and Permissions”). If the directory has a default ACL, any files
created within that directory that do not have ACLs set specifically for them will inherit
their ACL from the directory. You can view default directory ACLs using the getfacl
-d or the --default command.

If you find that a directory’s default ACL is behind the problem, consider removing
the default ACL and defining the needed ACL on the directory. Another alternative is
to explicitly set the application file’s ACL, which will override the inherited directory
default ACL. Employ the setfacl utility to enact these changes.

You can try out basic application permission problem troubleshooting using
Exercise 24.1.

E X E R C I S E 2 4 . 1  

Troubleshooting Application Permission Issues

1.	 Log into your Linux system via a tty terminal, using a non-root account that can access
super user privileges via the sudo command.

2.	 At the command-line prompt, type touch /tmp/fileA.txt and press the Enter key. The
touch command was covered in Chapter 3, “Managing Files, Directories, and Text.”

676  Chapter 24  ■  Troubleshooting Application and Hardware Issues

3.	 Change the newly created file’s owner and group to root by typing sudo chown
root:root /tmp/fileA.txt and pressing Enter. If requested, enter the account’s sudo
password. The sudo and chown commands were covered in Chapter 15.

4.	 Next, you will create a small application using the nano text editor (covered in
Chapter 4, “Searching and Analyzing Text”). Type nano application.sh and press Enter.
This will put you into the nano text editor.

5.	 Type in the following, pressing the Enter key as needed:

#!/bin/bash
echo "Creating file /tmp/Activity.txt…"
echo "Hello World" > /tmp/Activity.txt
echo "Removing file…"
rm -ir /tmp/*.*
exit

6.	 Press Ctrl+O and then the Enter key to write out the text editor’s buffer to the
activity.sh file.

7.	 Press Ctrl+X to leave the text editor.

8.	 Run the application by typing bash activity.sh and pressing Enter.

9.	 When asked a question, type y at the prompt and press Enter. You should receive at
least one error message relating to the attempt to delete the /tmp/fileA.txt file,
but you may receive more error messages depending on what files and directories are
currently located in the /tmp/ directory.

10.	 Now you can begin the troubleshooting process. Since you ran the application, record
your user account’s name.

11.	 Document the action that causes the error to occur. (Hint: It was associated with the
/tmp/fileA.txt file.)

12.	 Record the problem file’s full directory reference. (Hint: Look at the previous step.)

13.	 Document that the application is not trying to launch any additional applications or
employing local or remote services.

14.	 Display the problem file’s directory’s ownership, group membership, and various per-
missions by typing ls -ld /tmp and pressing Enter.

15.	 Record the directory’s owner and its associated permissions.

16.	 Document the directory’s group and its associated permissions.

17.	 Record the directory’s other permissions. Note that if you see a t in the permissions,
this refers to the sticky bit (covered in Chapter 15).

18.	 Determine which of the three directory permission sets (owner, group, or other) would
apply to your user account and record it.

Analyzing Application Dependencies  677

19.	 Using Table 22.1 in Chapter 22 and the information you uncovered in the last several
steps, discover the cause of this application problem. Record your theory.

20.	 The application’s problem was caused by using the /tmp/*.* file wildcard designa-
tion as the rm -ir command’s argument. If the sticky bit is set on the /tmp/ directory,
your account can only delete files from that directory, which you own. Therefore, to
fix the problem, if desired, change the rm -ir /tmp/*.* line in the activity.sh
application to rm -i /tmp/activity.txt instead.

Analyzing Application Dependencies
In Chapter 13, “Governing Software,” we covered using package management commands,
such as apt-cache depends and yum deplist, to display a repository-managed applica-
tion’s dependencies. There are some special problems you can run into with programs and
their various dependencies. The more common ones associated with the certification exam
are examined here.

Versioning
Typically, application software programs and operating systems are continually updated.
These updates may improve performance or add additional functionality. To keep track of
the various application updates, a technique called versioning is employed. Versioning is the
management of multiple application software updates through a numbering process. Differ-
ent versions (releases) of an application have different numbers, which typically increase for
newer application updates.

For example, the Linux kernel version 2.6.0 was released in December 2003. Current
kernel versions can be found at www.kernel.org and have numerically higher numbers
compared to the 2.6.0 version. These higher numbers indicate newer releases.

You can use versioning to determine if application updates or patches have been released.
This is helpful when troubleshooting application software issues.

Updating Issues
If an application is experiencing problems, check for a new software update. If the applica-
tion is available through a repository, use your distro’s particular package management to
check for a new version (see Chapter 13).

Consider setting up a test system with the application environment and apply application
updates to it. You can conduct thorough planned tests prior to updating production applica-
tions. Before applying any production application updates, ensure that you have an excellent
backup. These two items should protect you from most bad situations.

If an application begins experiencing problems after a recent update, review the distro’s

http://www.kernel.org

678  Chapter 24  ■  Troubleshooting Application and Hardware Issues

package management history information. For example, on a system using RPM, using super
user privileges you can issue the command rpm -q package-name --last to see the latest
update history for the package-name package. On a Debian system, check the /var/log/
apt/history.log file. You’ll need to uninstall any installed packages or libraries causing
the problem using the appropriate package management utility (see Chapter 13).

On modern Ubuntu distro versions, unattended upgrades are con-
figured. This allows automatic security upgrades to software and
requires no human intervention. If you desire to turn this off, change the
APT::Periodic::Update-Package-Lists directive in the /etc/apt/
apt.conf.d/10periodic file from 1 to 0. Find out more about this fea-
ture by typing man unattended-upgrade at the command line.

When one software package depends on another package or library to operate properly, it
is called a dependency. A broken dependency (also called an unmet dependency) is an unde-
sirable situation, where a software package has been installed but one or more of its needed
packages or libraries are not installed. Sometimes a package upgrade can break depen-
dencies, resulting in what is called a broken package.

To check for broken dependencies, on a Debian package management system, use the
apt-get check command. The YUM package manager will not update programs that
cause a broken dependency, but if you installed a program using the rpm utility that caused
problems, you can issue the rpm -aV command on any Red Hat package managed system to
see damaged software packages.

Patching
A patch refers to program changes or configuration file updates for a particular application
or system service. Patches may correct serious problems or fix security vulnerabilities and
are often issued out of the normal software update cycle. Patching is the act of applying a
patch. It does not necessarily involve updating all your system’s software. There are many
conflicting theories on patch management, but at the heart of the issue is keeping your appli-
cations and Linux system running smoothly, safely, and effectively for your users.

A kernel patch release is a little different. It is a special source code package that only
contains the changes applied to the major kernel source code release. You just download
the patch source code package, use the Linux patch command to apply the patch updates
to the existing kernel source code files on your system, and then recompile the kernel. Typi-
cally, your package manager handles this for you when you update packages (software) on
the system.

Analyzing Application Dependencies  679

Dealing with Libraries
Application functions are often split into separate library files (shared libraries) so that mul-
tiple applications that use the same functions can share these library files. Libraries were first
covered in Chapter 13.

If an application begins experiencing problems after a software upgrade, it may be
related to a recently upgraded shared library the application employs. You can check which
libraries a program uses by typing ldd program-name at the command line. It is helpful to
redirect this command’s output into another file. Use the grep command to search package
management log files to determine if one of the application’s libraries was recently updated.
An example is shown snipped in Listing 24.7.

Listing 24.7:  Using ldd and grep to discover a recently upgraded library

$ which ssh
/usr/bin/ssh
$
$ ldd /usr/bin/ssh > lib.txt
$
$ cat lib.txt
[…]
 libk5crypto.so.3 […]
[…]
$
$ grep -B 2 -A 2 libk5crypto /var/log/apt/history.log
Start-Date: 2019-01-22 13:37:45
Commandline: /usr/bin/unattended-upgrade
Upgrade: libk5crypto3:amd64 (1.16-2build1, 1.16-2ubuntu0.1)
End-Date: 2019-01-22 13:37:49

$

The application used in this example is the OpenSSH ssh program. Notice one of its libraries
was recently upgraded. (The -B and -A options on the grep command allow you to pull addi-
tional lines below and above the found content.) If it began experiencing problems shortly after
this library upgrade, you have a probable cause. Check to see if a new upgrade or patch is avail-
able for this library. If not, you may have to uninstall it and install an earlier version.

Exploring Environment Variable Issues
If you have a newly installed application that is not executing, check the PATH environment
variable. This variable determines what directories are searched for a program that the Bash
shell does not directly handle. An example of displaying the variable’s contents is shown in
Listing 24.8.

680  Chapter 24  ■  Troubleshooting Application and Hardware Issues

Listing 24.8:  Viewing the PATH environment variable

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
$

If you need to modify this parameter for everyone, create a Bash script file (Bash scripts
are covered in Chapter 25, “Deploying Bash Scripts”) in the /etc/profile.d/ directory.
Be sure to use the .sh file extension. The file must be owned by root and belong to the root
group. Set the file’s other (world) permissions to r so that all users can read the file. The
script is read by the /etc/profile or /etc/bashrc file, depending on your distribution,
when a user logs into the system or starts a new shell.

If only certain users need this particular PATH modification, make it in their
~/.profile, ~/.bash_profile, or ~./bash_login file. Environment files were discussed
in Chapter 10, “Administering Users and Groups.”

Gaining GCC Compatibility
The most common tool used for compiling programs in Linux is the GNU Compiler Collec-
tion (GCC). If you have problems compiling an application on Linux with GCC, there are
several potential causes. They are as follows:

■■ GCC uses the system C library, which might not be compliant with the ISO C standard.

■■ There are several notable incompatibilities between GNU C and non-ISO versions of C.

■■ GCC uses corrected versions of system header files, which can cause issues.

Note that besides these issues, you might be using an older version of gcc and need to
update it. For example, if your system distro is CentOS 7 and you are using gcc v4.4.*, you
need to upgrade the GCC package.

You can find detailed documentation on the GCC compiler at its website—https://
gcc.gnu.org. This site includes FAQs and other useful information.

Perusing Repository Problems
The very first thing to check when you get an odd error message concerning a package that
cannot be found, updated, or installed is your network connection. Often a system that is
not network-connected causes this problem. However, various package repositories (also
called repos) can become corrupted.

On a system using a Debian package manager, such as Ubuntu, if you get a message
saying it cannot download repository information or something similar, use the apt-get
clean command. This command cleans up the database and any temporary download files.
After that, try to update the local repository with apt-get update, which attempts to
retrieve updated information about packages in the repository.

https://gcc.gnu.org
https://gcc.gnu.org

Looking at SELinux Context Violations  681

On a Debian package management system, consider using the apt-get
dist-upgrade command instead of apt-get upgrade to update all the
system’s packages. dist-upgrade prevents any software from being
upgraded that will break a dependent package.

On a system using a Red Hat package manager, such as Rocky Linux, you can employ the
yum clean all or zypper clean -a command, depending on your distro. Next, update
the local repository with the yum check-update or zypper refresh command.

If you are attempting to install or update packages from a nonstandard repository, you
may need to enable that repo on your system. To see a list of the enabled repositories on
your system, use the yum repolist or zypper repos command on Red Hat package
systems. For Debian package systems, you’ll need to issue the grep -v "#" /etc/apt/
sources.list command to see the enabled repositories.

Before you add any additional nonstandard repositories, back up the repository file(s),
such as these:

■■ /etc/apt/sources.list
■■ /etc/yum.repos.d/*.*
■■ /etc/zypp/repos.d/*.*

You have to manually edit the sources.list file to add and enable a new repository.
To add and enable a new repo with YUM, use the yum-config-manager --add-repo
repository-url command. The zypper command is similar but also requires a repository
name alias—zypper addrepo repository-url alias.

Keep in mind that we have only touched on a few of the more common problems you can
run into with programs and their various dependencies. Be sure to employ your distribution’s
man pages for additional help.

Looking at SELinux Context Violations
Application issues can be caused by your system’s Linux kernel security module, such as
SELinux (covered in Chapter 15). An incorrect policy configuration, which triggers a
violation, can prevent applications from serving their purpose. Check the audit log file
using the sealert command first. If this tool is not available, you can install it via the
setroubleshoot package.

A mislabeled file can cause problems, such as access being denied to applications. Use the
ls -Z command to view a file’s SELinux context. If it or its parent directory needs to have
their context changed, use the chcon utility to modify it, the semanage command to make it
permanent, and restorecon to fix the labels. Don’t forget to employ all three of those com-
mands or you won’t resolve the problem.

682  Chapter 24  ■  Troubleshooting Application and Hardware Issues

You can change the mode for SELinux temporarily from enforcing to per-
missive via the setenforce permissive command with super user
privileges. This allows you to make context changes and see if it triggers
any violations without actually blocking access. Once you’ve got the
correct SELinux policies in place, put it back into enforcing mode using
the setenforce enforcing command.

An application that is confined by SELinux needs the proper Booleans set to allow appro-
priate access. The getsebool command will allow you to review the application’s Booleans.
If you need to change them, employ super user privileges and the setsebool command.

If you are seeing a great deal of SELinux context violations in your log or
journal files and have not had application problems in the past, it is possible
that your system has an intruder. Use an intrusion detection tool to confirm.

Exploring Firewall Blockages
If an application is experiencing problems over the network and there are no network issues,
you may want to check the local and remote systems’ firewalls. Any application updates or
firewall modifications can trigger this problem. Firewalls were covered in Chapter 18, “Over-
seeing Linux Firewalls.”

Unrestricting ACLs
A firewall ACL identifies a network packet by reviewing its control information along with other
network data. Therefore, when troubleshooting an application issue related to a firewall, you’ll
need to gather the following information for the application packets traveling back and forth:

■■ Source address or hostname

■■ Destination address or hostname

■■ Network protocol(s) used

■■ Inbound port(s) used

■■ Outbound port(s) used

You also need to know both your source and destination systems’ firewall application
in use. When you’ve gathered this information, you can review the firewall settings on both
sides to determine if the ACLs are overly restrictive.

For example, if you are using firewalld on your application’s host system, you can quickly
check the current default zone, as shown in Listing 24.9.

Exploring Firewall Blockages  683

Listing 24.9:  Viewing the default zone with the firewall-cmd command

$ firewall-cmd --get-default-zone
drop
$

Notice that this system has its firewalld default set to the drop zone. This means
all incoming network packets are dropped and only outbound network connections are
allowed. If the application receives data or connections from other systems, then this firewall
ACL setting is overly restrictive.

Unblocking Ports
If your application relies on another system service (daemon), you’ll want to check rules
related to the service port. Blocking a port needed by the external service would adversely
affect the application. If your application is designed to use a port that is not dedicated to a
well-known service, check it as well.

For example, if you are providing public web services on your system, you need to allow
incoming and outbound packets associated with the HTTPS protocol port 443. If your system is
using the iptables firewall software, you can view the current ACL rules via the iptables -L
command. If the packet filter is blocking port 443 via a particular rule or policy, you can modify
the chain using a command similar to the one in Listing 24.10, which opens up port 443.

Listing 24.10:  Modifying the firewall with the iptables command

$ iptables -A INPUT -p tcp --dport 443 -j ACCEPT
$

Keep in mind you also need to modify the OUTPUT chain rules to allow your web server to
establish connections. In addition, if your application allows HTTP traffic, you must modify
rules for port 80 as well.

View firewall log file entries as you investigate application problems. If
needed, you can often increase the amount of information that is logged.
For example, the UFW firewall has a full setting, which logs everything.

Unblocking Protocols
Besides ports, be aware of the various protocols, such as UDP, TCP, and ICMP, that your
application employs. If it uses another system service, you must know the protocols it uses as
well. The /etc/services file can help.

For example, say an application is working with a DNS caching server on the local net-
work. DNS protocol uses port 53. Check the /etc/services (well-known ports) file to
find the transport protocols it employs, as shown snipped in Listing 24.11.

684  Chapter 24  ■  Troubleshooting Application and Hardware Issues

Listing 24.11:  Checking DNS’s protocols in the /etc/services file

$ grep 53 /etc/services
domain 53/tcp # Domain Name Server
domain 53/udp
[…]
$

Unblock port 53 on the DNS server system for both TCP and UDP, since DNS listens for
requests using those two transport protocols. Also, unblock them for both inbound and out-
bound packets.

Troubleshooting Additional
Hardware Issues
Linux requires hardware to operate. When hardware stops working correctly, Linux does
not function properly. Thus, understanding how to troubleshoot all hardware is an essential
skill for a Linux system administrator.

Looking at Helpful Hardware Commands
When you are troubleshooting hardware problems, there are many Linux command-line
tools that can help. The lspci, lsusb, and lsdev commands are a few, which were intro-
duced in Chapter 23, “Dealing with Linux Devices.” We’ll cover a couple more great utilities,
dmidecode and lshw, here.

Understanding the dmidecode Utility
Before looking at the dmidecode command, you need to know about the Distributed
Management Task Force (DMTF) and its standards. The DMTF is a nonprofit organization
whose goal is to simplify the management of network-accessible technologies, like servers,
through standards. In essence, it helps to make system administration easier.

DMTF created the Desktop Management Interface (DMI) and System Management
BIOS (SMBIOS) standards. The DMI specification consists of four components, which pro-
vide information about the hardware being used on a computer as well as some additional
helpful data. The SMBIOS standard consists of items, such as data structures, used to read
management information produced by a computer’s BIOS. These two standards interact with
each other and are widely adopted by hardware manufacturers.

To use these standards, you need two things—a DMI/SMBIOS-compliant computer and
a software interface to their data structures. The software interface on a Linux system is the
dmidecode utility.

Troubleshooting Additional Hardware Issues  685

The dmidecode utility pulls its information, by default, from the sysfs filesystem and
specifically from tables in the /sys/firmware/dmi/tables/ directory. You can check if
those tables exist on your system by using the command in Listing 24.12. Notice on this
system that the tables exist.

Listing 24.12:  Checking for tables in the sysfs filesystem

ls /sys/firmware/dmi/tables
DMI smbios_entry_point
#

The -h option on the dmidecode command describes the various options you can use to
uncover information in your hardware troubleshooting process. While you must use super
user privileges with the command for extracting table information, you don’t have to do so
for getting help. An example is shown in Listing 24.13.

Listing 24.13:  Looking at the dmidecode help facility

$ dmidecode -h
Usage: dmidecode [OPTIONS]
Options are:
 -d, --dev-mem FILE Read memory from device FILE (default: /dev/mem)
 -h, --help Display this help text and exit
 -q, --quiet Less verbose output
 -s, --string KEYWORD Only display the value of the given DMI string
 -t, --type TYPE Only display the entries of given type
 -u, --dump Do not decode the entries
 --dump-bin FILE Dump the DMI data to a binary file
 --from-dump FILE Read the DMI data from a binary file
 --no-sysfs Do not attempt to read DMI data from sysfs files
 -V, --version Display the version and exit
$

Of the various options, the most useful for troubleshooting is the -t, or --type, switch.
This allows you to pull specified information from the DMI/SMBIOS tables by providing an
argument, which is either a number or a keyword. The keyword argument can be one of the
following:

■■ baseboard
■■ bios
■■ cache
■■ chassis
■■ connector
■■ memory
■■ processor

686  Chapter 24  ■  Troubleshooting Application and Hardware Issues

■■ slot
■■ system

If the tables do not contain the needed information, you will only receive a message about
where the utility attempted to extract data and possibly DMI and/or SMBIOS standard ver-
sions supported. Two examples are shown in Listing 24.14. Notice that there is no memory
information available in the tables but that some system data is displayed.

Listing 24.14:  Looking at dmidecode table data

dmidecode -t memory
dmidecode 3.0
Getting SMBIOS data from sysfs.
SMBIOS 2.5 present.

#
dmidecode -t system
dmidecode 3.0
Getting SMBIOS data from sysfs.
SMBIOS 2.5 present.

Handle 0x0001, DMI type 1, 27 bytes
System Information
 Manufacturer: innotek GmbH
 Product Name: VirtualBox
 Version: 1.2
 Serial Number: 0
 UUID: 3909BE96-5CA6-4801-8236-D6113BB5D2CF
 Wake-up Type: Power Switch
 SKU Number: Not Specified
 Family: Virtual Machine

If you are using a virtualized Linux system, the information from the
dmidecode utility is suspect. Also, do not rely on this utility alone for
hardware information. Its man page even states, “More often than not,
information contained in the DMI tables is inaccurate, incomplete, or
simply wrong.”

Understanding the lshw Utility
Hardware information is stored in various /proc/ directory files on your system. While you
could go rooting around and dig it out yourself, the lshw utility does it for you. It provides

Troubleshooting Additional Hardware Issues  687

data on your system’s processor(s), memory, NIC(s), USB controller(s), disk(s), and so on. It
is typically installed by default on most distributions or available in a standard repository
(Chapter 13 covered installing software packages).

Two helpful options are -short, which produces a nice table-formatted hardware data
display, and -businfo, which shows information associated with SCSI, USB, IDE, and PCI
devices. An example of using the -short option is shown snipped in Listing 24.15.

Listing 24.15:  Using the -short option with the lshw command

lshw -short
H/W path Device Class Description
===
 system VirtualBox
/0 bus VirtualBox
/0/0 memory 128KiB BIOS
/0/1 memory 4GiB System memory
/0/2 processor Intel(R) Core(TM) […]
/0/100 bridge 440FX - 82441FX PMC [Natoma]
/0/100/1 bridge 82371SB PIIX3 ISA [Natoma/Triton II]
/0/100/1.1 scsi1 storage 82371AB/EB/MB PIIX4 IDE
/0/100/1.1/0.0.0 /dev/cdrom disk CD-ROM
/0/100/2 display VirtualBox Graphics Adapter
/0/100/3 enp0s3 network 82540EM Gigabit Ethernet Controller
/0/100/4 generic VirtualBox Guest Service
/0/100/5 multimedia 82801AA AC'97 Audio Controller
/0/100/6 bus KeyLargo/Intrepid USB
/0/100/6/1 usb1 bus OHCI PCI host controller
/0/100/7 bridge 82371AB/EB/MB PIIX4 ACPI
/0/100/8 enp0s8 network 82540EM Gigabit Ethernet Controller
/0/100/d scsi2 storage 82801HM/HEM (ICH8M/ICH8M-E) SATA […]
/0/100/d/0 /dev/sda disk 16GB VBOX HARDDISK
/0/100/d/0/1 volume 1GiB Linux filesystem partition
/0/100/d/0/2 /dev/sda2 volume 13GiB Linux LVM Physical Volume
partition
[…]
/0/4 input PnP device PNP0f03
/1 virbr0-nic network Ethernet interface
[…]
#

You can also employ the -class option with the lshw utility. This option provides
detailed information about a particular hardware component. The different classes avail-
able are displayed in the lshw -short command’s output. A snipped example of using the
-class option is shown in Listing 24.16.

688  Chapter 24  ■  Troubleshooting Application and Hardware Issues

Listing 24.16:  Using the -class option with the lshw command

$ sudo lshw -class display
 *-display
 description: VGA compatible controller
 product: VirtualBox Graphics Adapter
 vendor: InnoTek Systemberatung GmbH
[…]
 configuration: driver=vboxvideo latency=0
[…]
$

Another nice utility that can provide hardware information is the hwinfo
command. It provides additional data for your troubleshooting process. If
it is not installed by default on your distro, consider manually installing it.

Investigating Other Hardware Problems
Occasionally you have a hardware problem that is uncommon. Being able to quickly address
these unique issues will make you stand out from your peers.

Memory  Physical problems with RAM are tricky to diagnose. Some symptoms of this
issue include a system’s performance slows over time, the system appears to hang when a
memory-intensive application is running or at boot, kernel panics or segmentation faults
occur intermittently, files are sporadically corrupted, and/or program installations fail.

First, make sure it is not a memory capacity issue, which often shows symptoms similar
to hardware problems. Check using the free and vmstat utilities.

You can quickly determine hardware information about your RAM using the lshw
utility. Just issue the lshw -class memory command.

If you recently added new memory, most likely you obtained a faulty component.
Damage can also be done to RAM by power spikes or outages. In any case, you’ll want
to conduct a test on the memory. Typically you can conduct such a test via a system
reboot and accessing the memtest or memtest86+ option in the server’s boot menu. If
this option is not available, you can employ the memtester utility. This command-line
utility is typically not installed by default, but it is available either in your distribution’s
repository or as an RPM or dpkg file (see Chapter 13). When using this utility, you’ll
need to shut down any production applications and test the memory in chunks.

Printers  External hardware devices are typically plug-and-play for Linux, but odd
problems do arise. When dealing with printers, the issue typically comes down to either

Troubleshooting Additional Hardware Issues  689

an outdated/incorrect driver (PPD) or a bad connection. Start by checking the kernel
ring buffer with dmesg and taking a look at the printer error log files, such as /var/
log/cups/error_log.

Don’t buy a doorstop. Make sure the printer your company is interested in
purchasing is already supported by Linux.  There are several websites that
can help, such as www.openprinting.org/printers and tldp.org/
HOWTO/Printing-HOWTO/printers.html. In addition, use your favorite
search engine and enter Linux Compatible Printers to find more.

If the printer was recently installed, check its configuration. You can do this via a web
browser, if available, on the system by entering 127.0.0.1:631 in the address bar. If your
system does not have a GUI, you can look through the /etc/cups/printers.conf
file to review the printer’s configuration.

Determine how the printer connects to the system. Is it a network printer? Does it attach
via a USB cable? Is the printer directly connected into a parallel port? If it is a network-
connected printer, first check that the network is operational. If the printer is attached
with a USB cable, start by troubleshooting the USB connections (covered later in this
chapter). If it uses a parallel port on your system, it may be a bad adapter. If possible,
consider switching it to a different connection type, such as USB, or obtaining a new
printer with a more modern configuration.

Check if the printer’s PostScript Printer Definition (PPD) file or driver needs updating.
Go to the manufacturer or open source driver website to determine if an update is avail-
able. You can view all the currently available printer drivers on your system using the
lpinfo -m command. Keep in mind the problem may involve a needed printer firm-
ware update, so check for those as well.

Some manufacturers provide their own Linux tools to assist in printer
troubleshooting. For example, Hewlett Packard offers the hp-info and
hp-toolset utilities to help in managing and problem-solving their
printers’ issues.

Video  Hardware issues with video show up in sluggish displays, audio lag, glitches on
the screen, and so on. You may even see a black screen or receive no audio output. Some
problems can even cause the system to crash or hang.

As with many other hardware problems, first check the kernel ring buffer (dmesg) and
video log files. If your system is still using X11, check the journal file or the /var/log/
Xorg.0.log file. If you are employing Wayland, check the journal file via the
journalctl command.

http://www.openprinting.org/printers
http://tldp.org/HOWTO/Printing-HOWTO/printers.html
http://tldp.org/HOWTO/Printing-HOWTO/printers.html

690  Chapter 24  ■  Troubleshooting Application and Hardware Issues

A graphics processing unit (GPU) exists on either a graphics card or on a
motherboard. It is an assembly that performs some simple processing in
order to relieve the CPU of such duties. Often a graphics card is called a
GPU or GPU card.

To find out what graphics card driver your system is using, just type lspci -vnn at the
command line and redirect STDOUT to a file. Peruse the file for the word VGA. This will
show your graphics card driver data. You can also employ lshw -class display (or
video) and look for the driver information there. When you have the driver’s name, find
out additional details through the modinfo driver-name command.

Check the manufacturer’s or open source site to see if there is an updated graphics card
driver available. If not, try testing the card on another system to see if you need to replace it.

Some manufacturers provide their own utilities to manage their
GPU cards. For example, Nvidia provides the nvidia-smi and
nvidia-settings commands for their graphics cards.

Communications Ports  A communications port is a serial communications port.
Though a rarity nowadays, it is often used to connect hardware such as point-of-sale
devices. The device files that represent these serial ports are /dev/ttyS#.

When experiencing problems with a serial communications device, start the trouble-
shooting process by issuing dmesg | grep ttyS to find the device filename in use.
When you have the full device filename, employ the setserial utility. This will provide
detailed information on the serial device. Use super user privileges, and type setserial
-a device-file-name at the command line. Look for the interrupt request (IRQ) number
in the output.

When you know the IRQ of the serial device, you can check the interrupts file. If you do
not find the IRQ number in the /proc/interrupts file, this indicates that the appro-
priate driver for the serial device is not loaded.

If the driver is loaded, check the manufacturer’s website for a newly updated driver.
Also, check the serial device’s recommended configuration and make any modifications
needed using the setserial utility.

USB  If you have a USB device, such as a printer, directly attached to your system and
problems occur, there are some simple troubleshooting techniques you can employ. First,
ensure that the USB module (driver) is loaded into the kernel by using super user priv-
ileges and typing lsmod | grep usb at the command line. If you get a response, it is
loaded. If you just get a prompt back, then employ the modprobe command to load the
module (Chapter 14).

If the driver is already loaded, try detaching the device’s USB cable from the system.
Watch the journal file via the journalctl -f command. If you are on an older Linux
system, use the tail -f command on the appropriate log file, such as /var/log/

Troubleshooting Additional Hardware Issues  691

syslog or /var/log/rsyslog. After the watch is in place, plug the USB device’s
cable back in and see what log messages are generated. If the USB device is a printer,
also check the /var/log/cups/error_log for any pertinent information. You may
uncover some important details here.

When you have completed that activity, employ the lsusb -v command to see if the
device is showing up on the USB bus. If you see the device’s manufacturer and product
information, then Linux can see the device. If the lsusb utility is not installed on your
system, look through the kernel ring buffer using dmesg.

Check the USB’s device files for corruption. This topic was covered earlier in the chapter
in the Missing Devices list item in the section “Exploring Common Issues.”

If your USB device is still not working, try attaching it to a different USB port. However,
before doing so, put another watch on the appropriate journal or log files. You may also
want to try switching out your USB cable to see if that resolves the issue(s).

Keyboard Mapping  If you press a key on your keyboard and a different letter appears
on the screen, most likely you have a keyboard mapping issue. The fix depends on the
particular distribution you are using.

For Red Hat–based distros, type localectl with no options and your current key map
will display. To see the list of available key maps, enter localectl list-keymaps and
a list of available key mappings will display. This list can be rather large, so you might
want to redirect STDOUT to the less utility for your perusal. When you find the
appropriate key mapping name, permanently set it by typing localectl set-keymap
keymap-name at the command line.

You may wonder how you will enter these commands if your keyboard is
not properly mapped. Write the commands down, and then try the var-
ious keyboard keys until you find each key that corresponds with every
command letter or symbol and record it. Now use the recorded keyboard
keys to enter the commands. Ta-da!

For Debian-based distros, use super user privileges and enter the dpkg-reconfigure
keyboard-configuration command. This will take you into a text-based menu system
where you can select the appropriate keyboard mapping.

Hardware or Software Compatibility Issues  Before you purchase any new hardware
(or software for that matter), make sure it will work with your Linux distribution. Keep
in mind that while Linux is the number-one operating system kernel for super com-
puters and a strong contender in the server world, it does not always get the attention
it deserves from hardware manufacturers. Therefore, often drivers are not available for
brand-new devices, or you may end up with a manufacturer’s poorly written device
driver. Check with the Linux community to find well-developed drivers and hardware
device recommendations. You’ll save yourself a lot of trouble and headaches.

692  Chapter 24  ■  Troubleshooting Application and Hardware Issues

Summary
From application directory and file permissions to overly restrictive firewall ACLs and
incorrect SELinux contexts, there are many issues that can cause an application to not
function properly. In addition, hardware problems such as bad disk sectors, memory module
corruption, flaky USB cables, and device drivers that need updating all require a knowledge-
able troubleshooter. Having a firm grasp on this chapter’s concepts will help you achieve that
distinction.

Exam Essentials
Summarize application permission issues.  When an application throws an error
relating to either I/O or an attempt to launch another executable, it can be due to an
incorrect file or directory permission. Determine what user account the application is
running under as well as any files it is attempting to access and their residing directories.
With that information in hand, gather file ownership and group membership. Looking
at the various permissions associated with each of the three permission classifications
(owner, group, other) will begin to uncover the core problem. Include directory permis-
sions and default ACLs as well in the investigation.

Describe storage problems.  Common storage issues involve degraded storage, missing
devices and/or volumes, absent mount points, and performance issues. They also may
include storage integrity problems and/or resource exhaustion. The dmesg utility is
essential for its use in uncovering root causes of problems with SATA and SCSI drives as
well as the HBA. Uncovering and fixing RAID issues also requires the use of the Mul-
tiple Devices (md) utility and the /proc/mdstat file.

Explain application dependencies.  Using the appropriate utility and checking an appli-
cation’s version as well as available package versions will allow you to uncover whether
or not a poor performing application’s software has an upgrade available for it. Updat-
ing software packages, however, is not without problems. A software update may not
properly update a package’s dependencies or libraries, resulting in a broken application.
If the new update needs to be compiled, issues with the GCC can cause complications.
The system’s package repository can have uncovered troubles, which prevent a software
update from occurring.

Exam Essentials  693

Detail restrictive firewall ACLs.  Applications that communicate with data, services,
or end users over a network may run into problems with overly restrictive firewall set-
tings. Gather together the source address (or host), destination address, and network
protocols employed as well as the inbound and outbound ports used on both the client
and the server side. Using this basic information, review the firewall’s various ACLs. If a
firewall setting is blocking this needed access, review the potential needed changes prior
to enacting them.

Summarize uncommon hardware issues.  RAM, printers, video apparatus, serial ports,
USB devices, and keyboards can provide interesting problems to troubleshoot. Employ-
ing the dmidecode and lshw utilities as well as the dmesg, lspci, lsusb, and lsdev
commands provides assistance in uncovering the root causes. Missing or outdated mod-
ules (drivers), faulty cables, corrupted device files, and incorrect key maps are some of
the problem sources. You can save yourself some time and avoid issues in the first place
if you ensure that your hardware and software are compatible prior to installing them.

694  Chapter 24  ■  Troubleshooting Application and Hardware Issues

Review Questions
1.	 Peter’s system has a memory-intensive application running on it continually. To help improve

performance, he has replaced the old hard drives with solid-state drives instead of increasing
RAM. Which of the following is most likely true about this situation?

A.	 The SSD for application data will enter a degraded mode.

B.	 The SSD for swap will become degraded storage.

C.	 The SSD will need a namespace in its device filename.

D.	 The SSD will end up a missing volume.

E.	 The SSD will experience resource exhaustion.

2.	 Mary adds the first SCSI disk to a Linux system that currently has only IDE drives. The
system is not recognizing the new disk. Which of the following commands should she employ
to troubleshoot the problem? (Choose all that apply.)

A.	 ls /sys/bus/scsi/drivers
B.	 pvscan /dev/vg00/lvol0
C.	 lsmod | grep module-name
D.	 hdparm -B 127 device-filename
E.	 smartctl -a

3.	 The system administrator, Norman, runs a Python program and receives an IO Error:
[Error 13] Permission denied message. What information should he gather (or
know) to start troubleshooting this issue? (Choose all that apply.)

A.	 The disk type, where the program resides

B.	 His user account name

C.	 The program action that raised the error

D.	 Filename and directory location of the program’s I/O files

E.	 The program’s name

4.	 Harry has modified an application to create a file in a directory and then write data to it. The
program creates the file with no problems but cannot write data to it and receives a permis-
sion error. Which of the following is most likely the issue?

A.	 Directory ownership

B.	 File ownership

C.	 File group membership

D.	 Permission inheritance

E.	 Executable privileges

Review Questions  695

5.	 Ben updates his Ubuntu system’s packages using the sudo apt-get upgrade command,
and now the Apache Web service is not working properly. What command should he run?

A.	 sudo apt-get clean
B.	 sudo zypper clean -a
C.	 sudo ldd /usr/sbin/apache2
D.	 sudo rpm -aV
E.	 sudo apt-get check

6.	 Peter writes a new C++ application to use for managing his older Linux server. The new app
contains no programming or logic errors. However, when he tries to compile it, it does not
work. Which of the following is most likely the issue?

A.	 An incorrect application permission

B.	 An incorrect file permission

C.	 A missing or outdated GCC

D.	 A missing or outdated device

E.	 A repository problem

7.	 Mary confirms via the sealert utility that her application cannot access the file flash
.txt. What command should she use next?

A.	 ls -l flash.txt
B.	 ls -Z flash.txt
C.	 ls -l flash.txt-directory
D.	 setroubleshoot
E.	 restorecon

8.	 A clock-in/out application, which uses an NTP server on the local network, is throwing an
error concerning reaching the server. There are currently no network problems. Which of the
following are steps in the troubleshooting process for this issue? (Choose all that apply.)

A.	 Check the firewall ACLs on the NTP server.

B.	 Check the firewall ACLs on the application server.

C.	 Use the firewall-cmd --get-default-zone command.

D.	 Check the /etc/services file for NTP ports and transport protocols.

E.	 View firewall log entries.

9.	 Your system administrator team member Norman tells you the device located at the com-
munications port is not working. What command should you issue to start the trouble-
shooting process?

A.	 dmesg | grep -i COM
B.	 dmesg | grep -i ttys
C.	 sudo setserial -a /dev/COM1
D.	 sudo setserial -a /dev/ttyS0
E.	 cat /proc/interrupts

696  Chapter 24  ■  Troubleshooting Application and Hardware Issues

10.	 Harry’s newly installed USB printer is not working. The system employs CUPS. Which of
the following are steps that may be included in the troubleshooting process? (Choose all
that apply.)

A.	 Issue the less /etc/printcap command.

B.	 Use the lpinfo -m command to view available USB ports.

C.	 Put a watch on the appropriate log file and plug in the USB cable.

D.	 Use the dmesg and grep utilities to find printer information.

E.	 Use the lsusb -v command to see if the device is on the USB bus.

PART

VI
Automating

Your System

Deploying
Bash Scripts

✓✓ Objective 3.1: Given a scenario, create simple shell scripts
to automate common tasks

Chapter

25

Linux system administrators often need to perform the same
tasks over and over, such as checking available disk space on
the system or creating user accounts. Instead of entering mul-

tiple commands every time, you can write scripts that run in the shell to do these tasks auto-
matically for you. This chapter explores how Bash shell scripts work and demonstrates how
you can write your own scripts to automate everyday activities on your Linux system.

The Basics of Shell Scripting
Shell scripting allows you to write small programs that automate activities on your Linux
system. Shell scripts can save you time by giving you the flexibility to quickly process data
and generate reports that would be cumbersome to do by manually entering multiple com-
mands at the command prompt. You can automate just about anything you do at the
command prompt using shell scripts.

The following sections walk through the basics of what shell scripts are and how to get
started writing them.

Running Multiple Commands
So far in this book we’ve been entering a single command at the command prompt and
viewing the results. One exciting feature of the Linux command line is that you can enter
multiple commands on the same command line and Linux will process them all. Just place a
semicolon between each command you enter:

$ date ; who
Thu Feb 24 19:20:06 EST 2022
rich :0 2022-02-24 19:15 (:0)
$

The Linux Bash shell runs the first command (date) and displays the output; then it runs
the second command (who) and displays the output from that command immediately follow-
ing the output from the first command. Although this may seem trivial, this is the basis of
how shell scripts work.

The Basics of Shell Scripting  701

Redirecting Output
Another building block of shell scripting is the ability to store command output. Often,
when you run a command, you’d like to save the output for future reference. To help with
this, the Bash shell provides output redirection.

Output redirection allows us to redirect the output of a command from the monitor
to another device, such as a file. This feature comes in handy when you need to log data
from a shell script that runs after business hours, so you can see what the shell script did
when it ran.

To redirect the output from a command, you use the greater-than symbol (>) after the
command and then specify the name of the file that you want to use to capture the redirected
output. This is demonstrated in Listing 25.1.

Listing 25.1:  Redirecting output to a file

$ date > today.txt
$ cat today.txt
Thu Feb 24 19:21:12 EST 2022
$

The example shown in Listing 25.1 redirects the output of the date command to the file
named today.txt. Notice that when you redirect the output of a command, nothing dis-
plays on the monitor output. All of the text from the output is now in the file, as shown by
using the cat command to display the file contents.

The greater-than output redirection operator automatically creates a new file for the
output, even if the file already exists. If you prefer, you can append the output to an existing
file by using the double greater-than symbol (>>), as shown in Listing 25.2.

Listing 25.2:  Appending command output to a file

$ who >> today.txt
$ cat today.txt
Thu Feb 24 19:21:12 EST 2022
rich :0 2022-02-24 19:15 (:0)
$

The today.txt file now contains the output from the original date command in
Listing 25.1 and the output from the who command ran in Listing 25.2.

702  Chapter 25  ■  Deploying Bash Scripts

In Linux, everything is a file, including the input and output processes
of a command. Linux identifies files with a file descriptor, which is a
non-negative integer. The Bash shell reserves the first three file descrip-
tors for input and output. File descriptor 0 is called STDIN and points
to the standard input for the shell, which is normally the keyboard. File
descriptor 1 is called STDOUT, which points to the standard output for
the shell, typically the monitor. This is where the standard output mes-
sages go. File descriptor 2 is called STDERR, which is where the shell
sends messages identified as errors. By default, this points to the same
device as the STDOUT file descriptor, the monitor. You can redirect only
the errors from your shell script to a separate file from the normal output
by using 2> instead of the standard > output redirection character. This
allows you to specify a separate file for monitoring error messages from
commands.

Output redirection is a crucial feature in shell scripts. With it, we can generate log files
from our scripts, giving us a chance to keep track of things as the script runs in background
mode on the Linux system.

Piping Data
While output redirection allows us to redirect command output to a file, piping allows us to
redirect the output to another command. The second command uses the redirected output
from the first command as input data. This feature comes in handy when using commands
that process data, such as the sort command.

The piping symbol is the bar (|) symbol, which usually appears above the backslash key
on U.S. keyboards. Listing 25.3 shows an example of using piping.

Listing 25.3:  Piping command output to another command

$ ls | sort
Desktop
Documents
Downloads
Music
Pictures
Public
Templates
test.txt
today.txt
Videos
$

The Basics of Shell Scripting  703

The output from the ls command is sent directly to the sort command as input, but
behind the scenes. You don’t see the output from the ls command displayed on the mon-
itor; you only see the output from the last command in the pipe line, which in this case is the
sort command. There’s no limit on how many commands you can link together with piping.

The >, >>, and | symbols are part of a group of characters often referred
to as metacharacters. Metacharacters are characters that have special
meaning when used in the Linux shell. If you need to use a metacharacter
as a standard character (such as using the > character as a greater-than
symbol in your output instead of as a redirect symbol), you must identify
the metacharacter by either placing a backslash in front of it or enclos-
ing the metacharacter in single or double quotes. This method is called
escaping.

The Shell Script Format
Placing multiple commands on a single line, by using either the semicolon or piping, is a
great way to process data but can still get rather tedious. Each time you want to run the set
of commands, you need to type them all at the command prompt.

However, Linux allows us to place multiple commands in a text file and then run the text
file as a program from the command line. This is called a shell script because we’re scripting
out commands for the Linux shell to run.

Shell script files are plain-text files. To create a shell script file, you just need to use any
text editor that you’re comfortable with. If you’re working from a KDE-based graphical
desktop, you can use the KWrite program, or if you’re working from a GNOME-based
graphical desktop, you can use the GEdit program.

If you’re working directly in a command-line environment, you still have some options.
Many Linux distributions include either the pico or the nano editor to provide a graphical
editor environment by using ASCII control characters to create a full-screen editing window.

If your Linux distribution doesn’t include either the pico or the nano editor, there is still
one last resort: the vi editor. The vi editor is a text-based editor that uses simple single-letter
commands. It’s the oldest text editor in the Linux environment, dating back to the early days
of Unix, which may be one reason it’s not overly elegant or user-friendly.

Once you’ve chosen your text editor, you’re ready to create your shell scripts. First, for
your shell script to work you’ll need to follow a specific format for the shell script file. The
first line in the file usually specifies the Linux shell required to run the script. This is written
in somewhat of an odd format:

#!/bin/bash

The Linux world calls the combination of the pound sign and the exclamation symbol
(#!) the shebang. It signals to the operating system which shell to use to run the shell
script. Most Linux distributions support multiple Linux shells, but the most common is

704  Chapter 25  ■  Deploying Bash Scripts

the Bash shell. You can run shell scripts written for other shells as long as those shells are
installed on the Linux distribution.

If you don’t specify the shebang line in your shell script, Linux will run the
script using the default shell defined for your user account in the /etc/
passwd file. It’s usually recommended to specify a shell, even if it is your
default shell, to avoid any confusion or mistakes.

After you specify the shell, you’re ready to start listing the commands in your script. You
don’t need to enter all of the commands on a single line; Linux allows you to place them
on separate lines. Also, the Linux shell assumes each line is a new command in the shell
script, so you don’t need to use semicolons to separate the commands. Listing 25.4 shows an
example of a simple shell script file.

Listing 25.4:  A simple shell script file

$ cat test1.sh
#!/bin/bash
This script displays the date and who's logged in
date
who
$

The test1.sh script file shown in Listing 25.4 starts out with the shebang line identi-
fying the Bash shell, the standard shell in Linux. The second line in the code shown in List-
ing 25.4 demonstrates another feature in shell scripts. Lines that start with a pound sign are
called comment lines. They allow you to embed comments into the shell script program to
help you remember what the code is doing. The shell skips comment lines when processing
the shell script. You can place comment lines anywhere in your shell script file after the open-
ing shebang line.

Notice in Listing 25.4 we used the .sh filename extension on the shell
script file. While this is not required in Linux, it’s become somewhat of a
de facto standard among programmers. This helps identify that the text
file is a shell script that can be run at the command line.

Running the Shell Script
If you just enter a shell script file at the command prompt to run it, you may be a bit
disappointed:

$ test1.sh
test1.sh: command not found
$

Advanced Shell Scripting  705

Unfortunately, the shell doesn’t know where to find the test1.sh command in the
virtual directory. The reason for this is the shell uses a special environment variable called
PATH to list directories where it looks for commands. If your local HOME folder is not
included in the PATH environment variable list of directories, you can’t run the shell script
file directly. Instead, you need to use either a relative or an absolute path name to point to
the shell script file. The easiest way to do that is by adding the ./ relative path shortcut
to the file:

$./test1.sh
bash: ./test1.sh: Permission denied
$

Now the shell can find the program file, but there’s still an error message. This time the
error is telling us that we don’t have permissions to run the shell script file. A quick look
at the shell script file using the ls command with the -l option shows the permissions set
for the file:

$ ls -l test1.sh
-rw-r--r-- 1 rich rich 73 Feb 24 19:37 test1.sh
$

By default, the Linux system didn’t give anyone execute permissions to run the file. You
can use the chmod command to add that permission for the file owner:

$ chmod u+x test1.sh
$ ls -l test1.sh
-rwxr--r-- 1 rich rich 73 Feb 24 19:37 test1.sh
$

The u+x option adds execute privileges to the owner of the file. You should now be able
to run the shell script file and see the output:

$./test1.sh
Thu Feb 24 19:48:27 EST 2022
rich :0 2022-02-24 19:15 (:0)
$

Now that you’ve seen the basics for creating and running shell scripts, the next sections
dive into some more advanced features you can add to make fancier shell scripts.

Advanced Shell Scripting
The previous section walked you through the basics of how to group normal command-
line commands together in a shell script file to run in the Linux shell. We’ll add to that
by showing more features available in shell scripts to make them look and act more like
real programs.

706  Chapter 25  ■  Deploying Bash Scripts

Displaying Messages
When you string commands together in a shell script file, the output may be somewhat con-
fusing to look at. It would help to be able to customize the output by separating it and add-
ing our own text between the output from each listed command.

The echo command allows you to display text messages from the command line. When
used at the command line, it’s not too exciting:

$ echo This is a test
This is a test
$

But now you have the ability to insert messages anywhere in the output from the shell
script file. Listing 25.5 demonstrates how this is done.

Listing 25.5:  Using the echo statement in a script

$ cat test1.sh
#!/bin/bash
This script displays the date and who's logged in
echo The current date and time is:
date
echo
echo "Let's see who's logged into the system:"
who
$./test1.sh
The current date and time is:
Thu Feb 24 19:55:44 EST 2022

Let's see who's logged into the system:
rich :0 2022-02-24 19:15 (:0)
$

The shell script shown in Listing 25.5 adds three echo commands to the test1.sh
script. Notice that the first echo command doesn’t use any quotes, but the third one does.
The reason for that is the text output from the third echo command contains single quotes.
The single quote is also a metacharacter in the shell, which will confuse the echo command,
so you need to place double quotes around the text. Also notice that the second echo
command doesn’t have any text on the line. That outputs a blank line, which is useful when
you want to separate output from multiple commands.

Using Variables
Part of programming is the ability to temporarily store data to use later in the program. You
do that by using variables.

Advanced Shell Scripting  707

Variables allow you to set aside locations in memory to temporarily store information
and then recall that information later in the script by referencing the variable name.

There are two types of variables available in the Linux shell. The following sections
explain how to use both types in your shell scripts.

Environment Variables
Environment variables track specific system information, such as the name of the system, the
name of the user logged into the shell, the user’s user ID (UID), the default home directory
for the user, and the search path the shell uses to find executable programs. You can display
a complete list of active environment variables available in your shell by using the set
command, as shown in Listing 25.6.

Listing 25.6:  Using the set command

$ set
BASH=/bin/bash
BASHOPTS=checkwinsize:cmdhist:complete_fullquote:expand_aliases:extglob:extquote
:force_fignore:histappend:interactive_comments:progcomp:promptvars:sourcepath
BASH_ALIASES=()
BASH_ARGC=()
BASH_ARGV=()
BASH_CMDS=()
BASH_COMPLETION_VERSINFO=([0]="2" [1]="8")
BASH_LINENO=()
BASH_SOURCE=()
BASH_VERSINFO=([0]="4" [1]="4" [2]="19" [3]="1" [4]="release" [5]="x86_64-pc-lin
ux-gnu")
BASH_VERSION='4.4.19(1)-release'
CLUTTER_IM_MODULE=xim
COLORTERM=truecolor
COLUMNS=80
DBUS_SESSION_BUS_ADDRESS=unix:path=/run/user/1000/bus
DESKTOP_SESSION=ubuntu
DIRSTACK=()
DISPLAY=:0
EUID=1000
GDMSESSION=ubuntu
...

There are environment variables that track just about every feature of the command-line
shell. You can tap into these environment variables from within your scripts by using the
environment variable name preceded by a dollar sign, as shown in Listing 25.7.

708  Chapter 25  ■  Deploying Bash Scripts

Listing 25.7:  The test2.sh shell script file to display environment variables

$ cat test2.sh
#!/bin/bash
display user information from the system.
echo User info for userid: $USER
echo UID: $UID
echo HOME: $HOME
$

The $USER, $UID, and $HOME environment variables are commonly used to display
information about the logged-in user. If you run the test2.sh shell script shown in List-
ing 25.7, the output should look like this:

$ chmod u+x test2.sh
$./test2.sh
User info for userid: rich
UID: 1000
HOME: /home/rich
$

The values you see should be related to your user account. This allows you to dynam-
ically retrieve information about the user account running your shell script to customize
the output.

If you write shell scripts to distribute for other Linux administrators to
use, two additional helpful environment variables are the $SHELL vari-
able, which returns the current shell program the script is running in, and
the $PATH variable, which returns a list of directories the shell will look in
to find commands. It’s usually a good idea to check these two environ-
ment variables to make sure your script will run correctly in any Linux
environment.

User Variables
User variables allow you to store your own data within your shell scripts. You assign values
to user variables using the equal sign. Spaces must not appear between the variable name,
the equal sign, and the value. Here are a few examples:

var1=10
var2=23.45
var3=testing
var4="Still more testing"

The shell script automatically determines the data type used for the variable value. Var-
iables defined within the shell script are called local variables and are accessible only from

Advanced Shell Scripting  709

within the shell script. Global variables are defined outside the shell script at the main shell
level and are inherited by the script shell environment.

The set command displays all of the global variables set. If you need to
see the local variables set for your session, use the printenv command.
The export command allows you to mark a variable as exportable,
which means any child processes spawned from your shell will see it.
Finally, the env command allows you to run a script and modify environ-
ment variables internal to the script without affecting the system environ-
ment variables.

Just as with environment variables, you can reference user variables using the dollar sign.
Listing 25.8 shows an example of writing a shell script that uses user variables.

Listing 25.8:  Using user variables in a shell script

$ cat test3.sh
#!/bin/bash
testing variables
days=10
guest=Katie
echo $guest checked in $days days ago
$

Running the test3.sh script from Listing 25.8 produces the following output:

$ chmod u+x test3.sh
$./test3.sh
Katie checked in 10 days ago
$

After you store the data in a user variable, you can reference it anywhere in your
shell script!

Command-Line Arguments
One of the most versatile features of shell scripts is the ability to pass data into the script
when you run it. This allows you to customize the script with new data each time you run it.

One method of passing data into a shell script is to use command-line arguments.
Command-line arguments are data you include on the command line when you run the
command. Just start listing them after the command, separating each data value with a
space, in this format:

command argument1 argument2 ...

You retrieve the values in your shell script code using special numeric positional variables.
Use the variable $1 to retrieve the first command-line argument, $2 the second argument,
and so on. Listing 25.9 shows how to use positional variables in your shell script.

710  Chapter 25  ■  Deploying Bash Scripts

Listing 25.9:  Using command-line arguments in a shell script

$ cat test4.sh
#!/bin/bash
Testing command line arguments
echo $1 checked in $2 days ago
$ chmod u+x test4.sh
$./test4.sh Barbara 4
Barbara checked in 4 days ago
$./test4.sh Jessica 5
Jessica checked in 5 days ago
$

The test4.sh shell script uses two command-line arguments. The $1 variable holds
the name of the person, and the $2 variable holds the number of days ago they checked
in. When you run the test4.sh shell script, be sure to include both data values in the
command line. The shell won’t produce an error message if a positional variable doesn’t
exist; you just won’t get the results you expected:

$./test4.sh rich
rich checked in days ago
$

It’s up to you to check if the positional variable exists within your program code. We’ll
explore how to do that later when we discuss logic statements.

The Exit Status
When a shell script ends, it returns an exit status to the parent shell that launched it. The exit
status tells us whether or not the shell script completed successfully.

Linux provides us with the special $? variable, which holds the exit status value from the
last command that executed. To check the exit status of a command, you must view the $?
variable immediately after the command ends. It changes values according to the exit status
of the last command executed by the shell:

$ who
rich :0 2019-02-20 23:16 (:0)
$ echo $?
0
$

By convention, the exit status of a command that successfully completes is 0. If a
command completes with an error, then a positive integer value appears as the exit status.

Writing Script Programs  711

You can change the exit status of your shell scripts by using the exit command. Just
specify the exit status value you want in the exit command:

$ /bin/bash
$ exit 120
exit
$ echo $?
120
$

In this example we started a new child shell with the /bin/bash command and then used
the exit command to exit the child shell with an exit status code of 120. Back in the par-
ent shell, we then displayed the $? variable value to see if it matched what we had set in the
exit command. As you write more complicated scripts, you can indicate errors by chang-
ing the exit status value. That way, by checking the exit status, you can easily debug your
shell scripts.

Writing Script Programs
So far we’ve explored how to combine regular command-line commands within a shell script
to automate common tasks that you may perform as the system administrator. But shell
scripts allow us to do much more than just that. The Bash shell provides more programming-
like commands that allow us to write full-fledged programs within our shell scripts, such as
capturing command output, performing mathematical operations, checking variable and file
conditions, and looping through commands. The following sections walk you through some
of the advanced programming features available to you from the Bash shell.

Command Substitution
Quite possibly one of the most useful features of shell scripts is the ability to store and
process data. So far we’ve discussed how to use output redirection to store output from a
command to a file and piping to redirect the output of a command to another command.
There’s another technique, however, that can give you more flexibility in storing and using
data in your scripts.

Command substitution allows you to assign the output of a command to a user variable
in the shell script. After the output is stored in a variable, you can use standard Linux string
manipulation commands (such as sort or grep) to manipulate the data before displaying it.

To redirect the output of a command to a variable, you need to use one of two command
substitution formats:

■■ Placing backticks (`) around the command

■■ Using the command within the $() function

712  Chapter 25  ■  Deploying Bash Scripts

Both methods produce the same result—redirecting the output from the command into a
user variable. Listing 25.10 demonstrates using both methods.

Listing 25.10:  Demonstrating command substitution

$ var1=ˋdateˋ
$ echo $var1
Fri Feb 18 18:05:38 EST 2022
$ var2=$(who)
$ echo $var2
rich :0 2022-02-18 17:56 (:0)
$

The output from the command substitutions is stored in the appropriate variables. You
can then use those variables anywhere in your script program as a standard string value.

The backtick character is not the same as a single quote. It’s the character
usually found on the same key as the tilde character (~) on U.S. key-
boards. Because of the confusion between backticks and single quotes,
it’s become more popular in the Linux world to use the $() function
format.

Performing Math
Eventually you’ll want to do more than just manipulate text strings in your shell scripts.
The world revolves around numbers, and at some point you’ll probably need to do some
mathematical operations with your data. Unfortunately, this is one place where the Bash
shell shows its age. The mathematical features in the Bash shell aren’t quite as fancy as the
features found in newer shells, such as the Z shell. However, there are a couple of ways to
use simple mathematical functions in Bash shell scripts.

To include mathematical expressions in your shell scripts, you use a special format. This
format places the equation within the $[] characters:

result=$[25 * 5]

You can perform lots of different mathematical operations on data using this method,
but there is a limitation. The $[] format allows you to use only integers; it doesn’t support
floating-point values.

If you need to do floating-point calculations, things get considerably more complicated in
the Bash shell. One solution is to use the bc command-line calculator program. The bc calcu-
lator is a tool in Linux that can perform floating-point arithmetic:

$ bc
bc 1.07.1
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006, 2008, 2012-2017 Free

Writing Script Programs  713

 Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type 'warranty'.
12 * 5.4
64.8
3.156 * (3 + 5)
25.248
quit
$

Unfortunately, the bc calculator has some limitations of its own. The floating-point
arithmetic is controlled by a built-in variable called scale. You must set this variable to the
desired number of decimal places you want in your answers or you won’t get what you were
looking for:

$ bc -q
3.44 / 5
0
scale=4
3.44 / 5
.6880
quit
$

To embed a bc calculation into your script, things get a bit complicated. You must use
command substitution to capture the output of the calculation into a variable, but there’s a
twist. The basic format you need to use is as follows:

variable=$(echo "options; expression" | bc)

The first parameter, options, allows us to set the bc variables, such as the scale vari-
able. The expression parameter defines the mathematical expression to evaluate using bc.
While this looks pretty odd, it works:

$ var1=$(echo "scale=4; 3.44 / 5" | bc)
$ echo $var1
.6880
$

This is not ideal, but it works for small projects. If you have a larger programming project
that requires lots of calculations, we’d suggest looking into the Z shell. It supports lots of
advanced mathematical functions and features.

714  Chapter 25  ■  Deploying Bash Scripts

Logic Statements
So far all of the shell scripts presented process commands in a linear fashion—one command
after another. However, not all programming is linear. There are times when you’d like your
program to test for certain conditions, such as if a file exists or if a mathematical expression
is 0, and perform different commands based on the results of the test. For that, the Bash shell
provides logic statements.

Logic statements allow us to test for a specific condition and then branch to different
sections of code based on whether the condition evaluates to a True or a False logical value.
Because of this, logic statements are also commonly referred to as conditionals. There are a
couple of different ways to implement logic statements in Bash scripts.

The if Statement
The most basic logic statement is the if condition statement. The format for the if condition
statement is as follows:

if [condition]
then
 commands
fi

If the condition you specify evaluates to a True logical value, the shell runs the com-
mands in the then section of code. If the condition evaluates to a False logical value, the
shell script skips the commands in the then section of code.

The condition expression is often referred to as a comparison, as it compares two values.
Comparisons have quite a few different formats in Bash shell programming. There are
built-in tests for numerical values, string values, Boolean logic values, and even files and
directories. Table 25.1 lists the different built-in tests that are available.

TABLE 25 .1   Condition tests

Test Type Description

n1 -eq n2 Numeric Checks if n1 is equal to n2

n1 -ge n2 Numeric Checks if n1 is greater than or equal to n2

n1 -gt n2 Numeric Checks if n1 is greater than n2

n1 -le n2 Numeric Checks if n1 is less than or equal to n2

n1 -lt n2 Numeric Checks if n1 is less than n2

n1 -ne n2 Numeric Checks if n1 is not equal to n2

Writing Script Programs  715

Listing 25.11 shows an example of using if-then condition statements in a shell script.

Listing 25.11: if condition statements

$ cat test5.sh
#!/bin/bash
testing the if condition

Test Type Description

str1 = str2 String Checks if str1 is the same as str2

str1 != str2 String Checks if str1 is not the same as str2

str1 < str2 String Checks if str1 is less than str2

str1 > str2 String Checks if str1 is greater than str2

-n str1 String Checks if str1 has a length greater than zero

-z str1 String Checks if str1 has a length of zero

-d file File Checks if file exists and is a directory

-e file File Checks if file exists

-f file File Checks if file exists and is a file

-r file File Checks if file exists and is readable

-s file File Checks if file exists and is not empty

-w file File Checks if file exists and is writable

-x file File Checks if file exists and is executable

-O file File Checks if file exists and is owned by the current user

-G file File Checks if file exists and the default group is the same as the
current user

file1 -nt file2 File Checks if file1 is newer than file2

file1 -ot file2 File Checks if file1 is older than file2

716  Chapter 25  ■  Deploying Bash Scripts

if [$1 -eq $2]
then
 echo "Both values are equal!"
 exit
fi

if [$1 -gt $2]
then
 echo "The first value is greater than the second"
 exit
fi

if [$1 -lt $2]
then
 echo "The first value is less than the second"
 exit
fi
$

The test5.sh script shown in Listing 25.11 evaluates two values entered as parameters
on the command line:

$ chmod u+x test5.sh
$./test5.sh 10 5
The first value is greater than the second
$

Only the command from the if statement that evaluated to a True logical value was
processed by the shell script.

The case Statement
Often you’ll find yourself trying to evaluate the value of a variable, looking for a specific
value within a set of possible values, similar to what we demonstrated in Listing 25.11.
Instead of having to write multiple if statements testing for all of the possible conditions,
you can use a case statement.

The case statement allows you to check multiple values of a single variable in a list-
oriented format:

case variable in
pattern1) commands1;;
pattern2 | pattern3) commands2;;
*) default commands;;
esac

Writing Script Programs  717

The case statement compares the variable specified against the different patterns. If the
variable matches the pattern, the shell executes the commands specified for the pattern. You
can list more than one pattern on a line, using the bar operator to separate each pattern.
The asterisk symbol is the catchall for values that don’t match any of the listed patterns.
Listing 25.12 shows an example of using the case statement.

Listing 25.12:  The case statement

$ cat test6.sh
#!/bin/bash
using the case statement

case $USER in
rich | barbara)
 echo "Welcome, $USER"
 echo "Please enjoy your visit";;
testing)
 echo "Special testing account";;
jessica)
 echo "Don't forget to log off when you're done";;
*)
 echo "Sorry, you're not allowed here";;
esac
$ chmod u+x test6.sh
$./test6.sh
Welcome, rich
Please enjoy your visit
$

The case statement provides a much cleaner way of specifying the various options for
each possible variable value. In the example shown in Listing 25.12, it checks for specific
user accounts to output specific messages. If the user running the script is not one of those
user accounts, it displays yet another message.

Loops
When you’re writing scripts, you’ll often find yourself in a situation where it would come in
handy to repeat the same commands multiple times, such as applying a command against
all the files in a directory. The Bash shell provides some basic looping commands to accom-
modate that.

718  Chapter 25  ■  Deploying Bash Scripts

The for Loop
The for statement iterates through every element in a series, such as files in a directory or
lines in a text document. The format of the for command is as follows:

for variable in series ; do
 commands
done

The variable becomes a placeholder, taking on the value of each element in the series
in each iteration. The commands can use the variable just like any other variable that you
define in the script. Listing 25.13 shows how to use a for loop to iterate through all the files
in a directory.

Listing 25.13:  Using the for loop

$ cat test7.sh
#!/bin/bash
iterate through the files in the Home folder
for file in $(ls | sort) ; do
 if [-d $file]
 then
 echo "$file is a directory"
 fi
 if [-f $file]
 then
 echo "$file is a file"
 fi
done
$

If you run the test7.sh shell script, you should see a listing of the files and directories in
your home directory:

$./test7.sh
Desktop is a directory
Documents is a directory
Downloads is a directory
Music is a directory
Pictures is a directory
Public is a directory
Templates is a directory
test1.sh is a file
test2.sh is a file
test3.sh is a file

Writing Script Programs  719

test4.sh is a file
test5.sh is a file
test6.sh is a file
test7.sh is a file
today.txt is a file
Videos is a directory
$

That saves a lot of coding from having to check each file manually in a bunch of if or
case statements.

When working with files in a directory, it’s common to use wildcard
characters to specify a range of files. There are three methods you can
choose from:

■■ A question mark (?) represents one character. Thus, c?t would match
cat, cot, and cut.

■■ An asterisk (*) represents any character, multiple characters, or even no
characters. Thus, c*t would match cat, caveat, and ct.

■■ A bracketed set of characters matches only the characters in the brackets.
Thus, c[au]t would match cat and cut, but not cot.

This method of using wildcard characters for filenames is also called file glob-
bing and can be used in any situation where you iterate through multiple files.

The while Loop
Another useful loop statement is the while command. This is its format:

while [condition] ; do
 commands
done

The while loop keeps looping as long as the condition specified evaluates to a True
logical value. When the condition evaluates to a False logical value, the looping stops. The
condition used in the while loop is the same as that for the if statement, so you can test
numbers, strings, and files. Listing 25.14 demonstrates using the while loop to calculate the
factorial of a number.

Listing 25.14:  Calculating the factorial of a number

$ cat test8.sh
#!/bin/bash
number=$1

720  Chapter 25  ■  Deploying Bash Scripts

factorial=1
while [$number -gt 0] ; do
 factorial=$[$factorial * $number]
 number=$[$number - 1]
done
echo The factorial of $1 is $factorial

The shell script retrieves the first parameter passed to the script and uses it in the
while loop. The while loop continues looping as long as the value stored in the $number
variable is greater than 0. In each loop iteration that value is decreased by 1, so at some
point the while condition becomes False. When that occurs the $factorial variable con-
tains the final calculation. When you run the test8.sh program, you should get the follow-
ing results:

$./test8.sh 5
The factorial of 5 is 120
$./test8.sh 6
The factorial of 6 is 720
$

The while loop took all the hard work of iterating through the series of numbers. Now
you can plug any number as the command-line parameter and calculate the factorial value!

The opposite of the while command is the until command. It iterates
through a block of commands until the test condition evaluates to a True
logical value.

Text Manipulation
Perhaps one of the most powerful uses of shell scripts is quickly and easily manipulating
large amounts of data. Chapter 4, “Searching and Analyzing Text,” introduced many useful
command-line utilities for finding and manipulating text in text files; however, using these
utilities in shell scripts puts them on steroids.

Shell scripts allow you to process large quantities of data files line by line, searching for
specific data, or even replacing specific data with just a few simple commands. Here are
some common command-line features you have at your fingertips:

■■ globbing: Globbing allows you to use wildcard characters to search for multiple files
and directories in your scripts.

■■ parameter expansion: By placing braces around a variable name, such as ${test}, you
can utilize parameter expansion, which allows you to specify a substring value from the
variable based on an offset and length.

■■ read: The read utility allows you to read text files line by line to process using standard
text manipulation tools.

■■ regular expressions: The use of regular expressions allows you to find and replace
specific strings within files.

Summary  721

Exercise 25.1 walks you through how to write a Bash script to view the password
information for all user accounts configured on your Linux system.

For a thorough presentation of how to use shell scripts, check out Linux
Command Line and Shell Scripting Bible, 4th edition, by Christine Bresna-
han and Richard Blum (Wiley, 2021).

E X E R C I S E 2 5 . 1  

Writing a Bash Script to View the Password Information for System Users

1.	 Log into your Linux graphical desktop and open a command prompt window.

2.	 At the command prompt, open a text editor of your choice and create the text file
pwinfo.sh by typing nano pwinfo.sh, pico pwinfo.sh, or vi pwinfo.sh.

3.	 Enter the following code into the new text file:

 #!/bin/bash
 # pwinfo.sh - display password information for all users
 list=$(cut -d : -f 1 /etc/passwd)
 for user in $list ; do
 echo Password information for $user
 sudo chage -l $user
 echo "----------"
 done

4.	 Save the file using the appropriate save command for your editor.

5.	 Give yourself execute permissions to the file by typing chmod u+x pwinfo.sh.

6.	 Run the shell script by typing ./pwinfo.sh.

7.	 Enter your password at the sudo command prompt.

You should see the chage password information listed for all of the user accounts con-
figured on the system.

Summary
Basic shell scripting allows us to combine multiple commands to run them as a single
command. You can use output redirection to redirect the output of a command to a file that
you can read later, or you can use piping to redirect the output of one command to use as
input data for another command.

722  Chapter 25  ■  Deploying Bash Scripts

When you add multiple commands to a text file to run, you must start the text file with
the shebang line (#!), which identifies the Linux shell you want to use. You’ll also need to
give yourself execute permissions to run the file by using the chmod command with the u+x
option. You may also need to either specify the full path to the file when you run it from the
command prompt or modify the PATH environment variable on your system so that the shell
can find your shell script files.

The Bash shell provides additional features that you can add to your shell script files to
make them look more like real programs. The echo statement allows you to interject text
output between the command outputs in the script to help modify the output your script
produces. The shell also provides both environment and user variables that you can access
from within your shell script. Environment variables allow you to retrieve information about
the shell environment your script is running in, such as what user account started the shell
and information about that user account. User variables allow you to store and retrieve data
from within your script, making it act like a real program.

The Bash shell also provides advanced programming features that you can use in your
shell scripts. Command substitution allows you to capture the output from a command into
a variable so that you can extract information from the command output within your shell
script. The Bash shell supports rudimentary integer math operations but is not overly adept
with handling floating-point numbers. You’ll need help from other programs such as the bc
calculator to do that.

Finally, the Bash shell supports some standard programming features such as if and case
logic statements, allowing you to test numbers, strings, and files for specific conditions and
run commands based on the outcome of those conditions. It also supports both for and while
loops, which allow you to iterate through groups of data, processing each element within a
set of commands. These features can help make your Bash shell scripts perform just like a
real program.

Exam Essentials
Describe how to link multiple command-line commands together in a shell script.   The
Bash shell allows you to place multiple commands sequentially in a file and will then pro-
cess each command when you run the file from the command line. The output from each
command will appear in the command-line output.

Explain how you can handle data within a Bash shell script.   The Bash shell provides two
ways to handle data within commands. Output redirection allows you to redirect the output
of a command to a text file, which you, or another command, can read later. Piping allows
you to redirect the output of one command to use as the input data for another command.
The output never displays on the monitor when you run the shell script; the data transfer
happens behind the scenes.

Exam Essentials  723

Explain the type of data you can access from within a shell script.   The Bash shell provides
access to environment variables, which contain information about the shell environment
the script is running in. You can obtain information about the system as well as the user
account that’s running the shell script. The shell script also has access to positional variables,
which allow you to pass data to the shell script from the command line when you run the
shell script.

Describe how you can manipulate output data from a command before you use it in another
command within a shell script.   Command substitution allows you to redirect the output
of a command to a user variable in your shell script. You can then use standard Linux text
processing commands to manipulate the data, such as sort it or extract data records from it,
before redirecting the variable data to another command.

Describe how the Bash shell performs mathematical operations.   The Bash shell uses the
$[] symbol to define mathematical equations to process. The Bash shell can only perform
integer math, so this capability is somewhat limited.

Explain the different methods for implementing logic within a Bash shell script.   The Bash
shell supports both if statements and the case statement. They both allow you to perform
a test on a numerical value, a string value, or a file and then run a block of commands based
on the outcome of the test.

724  Chapter 25  ■  Deploying Bash Scripts

Review Questions
1.	 What character or characters make up the shebang used in Linux to define the shell used for

a shell script?

A.	 >>
B.	 #!
C.	 |
D.	 >
E.	 2>

2.	 Henry needs to store the output from his script into a new log file that he can read later.
What character or characters should he use to do that?

A.	 >>
B.	 #!
C.	 |
D.	 >
E.	 2>

3.	 Jasmine has created a new Bash shell script and wants to run it from the command line.
What chmod permissions should she assign to the file to run it as a shell script?

A.	 644
B.	 u+r
C.	 u+x
D.	 u+w
E.	 u=wr

4.	 What environment variable contains the username of the user who started the shell?

A.	 $USER
B.	 $UID
C.	 $HOME
D.	 $BASH
E.	 $1

5.	 Zuri is writing a Bash shell script and needs to assign a number to a variable. How should
he do that?

A.	 var1=$(10)
B.	 var1 = 10
C.	 var1=10
D.	 var1="10"
E.	 var1=`10`

Review Questions  725

6.	 Cameron is writing a Bash shell script and needs to test if a file exists and that it’s a file.
What line of code should he write to do that?

A.	 if [-e file]
B.	 if [-f file]
C.	 if [-d file]
D.	 if [-x file]
E.	 if [-w file]

7.	 What character or combination of characters do you use to redirect the output of one
command to another command?

A.	 >>

B.	 #!

C.	 |

D.	 >

E.	 2>

8.	 Christina is creating a Bash shell script and wants to make the script return a value of 2 if it
fails. What statement should she add to do that?

A.	 #!
B.	 $?
C.	 $1
D.	 exit
E.	 while

9.	 What command should you use to perform a command substitution to assign the output of a
command to a variable in your shell script?

A.	 >
B.	 >>
C.	 $[]
D.	 |
E.	 $()

10.	 What command should you use to perform a mathematical operation in your shell script?

A.	 >
B.	 >>
C.	 $[]
D.	 |
E.	 $()

Automating Jobs

✓✓ Objective 1.4: Given a scenario, configure and use the
appropriate processes and services.

Chapter

26

As you begin building shell scripts, you’ll probably start to
wonder how to run and control them on your Linux system. So
far in this book, we’ve only run commands and scripts directly

from the command-line interface in real-time mode. This isn’t the only way to run scripts in
Linux. There are quite a few other options available for running your shell scripts on Linux
systems. This chapter examines different ways you can use to get your scripts started. Also,
sometimes you might run into the problem of a script that gets stuck in a loop and you
need to figure out how to get it to stop without having to turn off your Linux system. This
chapter also examines the different ways you can control how and when your shell script
runs on your system.

Running Scripts in Background Mode
There are times when running a shell script directly from the command-line interface is
inconvenient. Some scripts can take a long time to process, and you may not want to tie up
the command-line interface waiting. While the script is running, you can’t do anything else in
your terminal session. Fortunately, there’s a simple solution to that problem. The following
sections describe how to run your scripts in background mode on your Linux system.

Running in the Background
Running a shell script in background mode is a fairly easy thing to do. To run a shell script
in background mode from the command-line interface, just place an ampersand symbol after
the command:

 $./test1.sh &
 [1] 19555
 $ This is a test program
 Loop #1
 Loop #2

 $ ls -l
 total 8
 -rwxr--r-- 1 rich rich 219 Feb 26 19:27 test1.sh
 $ Loop #3

Running Scripts in Background Mode  729

When you place the ampersand symbol after a command, it separates the command from
the Bash shell and runs it as a separate background process on the system. The first thing
that displays is the line

 [1] 19555

The number in the square brackets is the job number the shell assigns to the background
process. The shell assigns each process started a unique job number. The next number is the
process ID (PID) the Linux system itself assigns to the process. So every process running
in a shell has a unique job number, and every process running on the Linux system has a
unique PID.

As soon as the system displays these items, a new command-line interface prompt
appears. You are returned to the shell, and the command you executed runs safely in
background mode.

At this point, you can enter new commands at the prompt (as shown in the example).
However, while the background process is still running, it still uses your terminal monitor
for output messages. You’ll notice from the example that the output from the test1
.sh script appears in the output intermixed with any other commands that are run from
the shell.

When the background process finishes, it displays a message on the terminal:

 [1]+ Done ./test1.sh

This shows the job number and the status of the job (Done), along with the command
used to start the job.

Running Multiple Background Jobs
You can start any number of background jobs at the same time from the command-
line prompt:

 $./test1.sh &
 [1] 19582
 $ This is the test1 program output
 Test 1 Loop #1 output
 $./test2.sh &
 [2] 19597
 $ This is the test2 program output
 Test 2 Loop #1 output
 $./test3.sh &
 [3] 19612
 $ This is the test3 program output
 Test 3 Loop #1 output
 Test 1 Loop #2 output
 Test 2 Loop #2 output
 Test 3 Loop #2 output

730  Chapter 26  ■  Automating Jobs

Each time you start a new job, the shell assigns it a new job number, and the Linux
system assigns it a new PID. You can see that all of the scripts are running by using the
ps command:

 $ ps au
 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
 rich 19498 0.0 1.2 2688 1628 pts/0 S 11:38 0:00 -bash
 rich 19582 0.0 0.9 2276 1180 pts/0 S 11:55 0:00 /bin/bash ./test3.sh
 rich 9597 0.1 0.9 2276 1180 pts/0 S 11:55 0:00 /bin/bash ./test2.sh
 rich 19612 0.1 0.9 2276 1180 pts/0 S 11:55 0:00 /bin/bash ./test1.sh
 rich 19639 0.0 0.4 1564 552 pts/0 S 11:56 0:00 sleep 10
 rich 19640 0.0 0.4 1564 552 pts/0 S 11:56 0:00 sleep 10
 rich 19641 0.0 0.4 1564 552 pts/0 S 11:56 0:00 sleep 10
 rich 19642 0.0 0.5 2588 744 pts/0 R 11:56 0:00 ps au
$

Each of the background processes you start appears in the ps command output listing
of running processes. If all of the processes display output in your terminal session, things
can get pretty messy pretty quickly. Fortunately, there’s a simple way to solve that problem,
which we’ll discuss in the next section.

You need to be careful when using background processes from a
terminal session. Notice in the output from the ps command that each
of the background processes is tied to the terminal session (pts/0)
terminal. If the terminal session exits, the background process also
exits. Some terminal emulators warn you if you have any running
background processes associated with the terminal, while others
don’t. If you want your script to continue running in background mode
after you’ve logged off the console, there’s something else you need
to do. The next section discusses that process.

Running Scripts without a Console
There will be times when you want to start a shell script from a terminal session and then let
the script run in background mode until it finishes, even if you exit the terminal session. You
can do this by using the nohup command.

The nohup command runs another command blocking any SIGHUP signals that are sent
to the process. This prevents the process from exiting when you exit your terminal session
(nohup is short for “no hangup”).

Running Scripts without a Console  731

You can combine the nohup command with the ampersand to run a script in the
background and not allow it to be interrupted:

 $ nohup ./test1.sh &
 [1] 19831
 $ nohup: appending output to 'nohup.out'
 $

Just as with a normal background process, the shell assigns the command a job number,
and the Linux system assigns a PID number. The difference is that when you use the nohup
command, the script ignores any SIGHUP signals sent by the terminal session if you close
the session.

Because the nohup command disassociates the process from the terminal, the pro-
cess loses the output link to your monitor. To accommodate any output generated by the
command, the nohup command automatically redirects output messages to a file, called
nohup.out, in the current working directory.

The nohup.out file contains all of the output that would normally be sent to the
terminal monitor. After the process finishes running, you can view the nohup.out file for the
output results:

$ cat nohup.out
 This is a test program
 Loop #1
 Loop #2
 Loop #3
 Loop #4
 Loop #5
 Loop #6
 Loop #7
 Loop #8
 Loop #9
 Loop #10
 This is the end of the test program
 $

The output appears in the nohup.out file just as if the process ran on the
command line!

If you run another command using nohup, the output is appended to
the existing nohup.out file. Be careful when running multiple com-
mands from the same directory, as all of the output will be sent to the
same nohup.out file, which can get confusing.

732  Chapter 26  ■  Automating Jobs

Sending Signals
As discussed in Chapter 21, “Optimizing Performance,” the Bash shell can send signals to
processes running on the system. This allows you to stop or interrupt a runaway applica-
tion process if necessary. While the kill and pkill commands discussed in Chapter 21
are good for stopping background processes, applications running in the foreground
on the console are harder to control. Fortunately, there are two basic Linux signals
you can generate using key combinations on the keyboard to interrupt or stop a fore-
ground process.

Interrupting a Process
The Ctrl+C key combination generates a signal interrupt (SIGINT) signal and sends it to any
processes currently running in the shell. You can test this by running a command that nor-
mally takes a long time to finish and pressing the Ctrl+C key combination:

 $ sleep 100

 $

The Ctrl+C key combination doesn’t produce any output on the monitor; it just stops the
current process running in the shell.

Pausing a Process
Instead of terminating a process, you can pause it in the middle of whatever it’s doing. Some-
times this can be a dangerous thing (for example, if a script has a file lock open on a crucial
system file), but often it allows you to peek inside what a script is doing without actually
terminating the process.

The Ctrl+Z key combination generates a signal terminal stop (SIGTSTP) signal, stop-
ping any processes running in the shell. Stopping a process is different than terminating the
process, as stopping the process leaves the program still in memory and able to continue
running from where it left off. In the following section, “Job Control,” you’ll learn how to
restart a process that’s been stopped.

When you use the Ctrl+Z key combination, the shell informs you that the process has
been stopped:

 $ sleep 100

 [1]+ Stopped sleep 100
 $

Sending Signals  733

The number in the square brackets indicates the job number for the process in the shell. If
you have a stopped job assigned to your shell session, Bash will warn you if you try to exit
the shell:

 $ exit
 logout
 There are stopped jobs.
 $

You can view the stopped job by using the ps command:

 $ ps au
 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
 rich 20560 0.0 1.2 2688 1624 pts/0 S 05:15 0:00 -bash
 rich 20605 0.2 0.4 1564 552 pts/0 T 05:22 0:00 sleep 100
 rich 20606 0.0 0.5 2584 740 pts/0 R 05:22 0:00 ps au
 $

The ps command shows the status of the stopped job as T, which indicates the command
either is being traced or is stopped. The original Bash shell is shown as S, indicating that
it’s sleeping, waiting for the script to end. The ps command itself is shown with an R status,
indicating that it’s the currently running job.

If you really want to exit the shell with the stopped job still active, just type the exit
command again. The shell will exit, terminating the stopped job. Alternately, now that you
know the PID of the stopped job, you can use the kill command to send a signal kill
(SIGKILL) signal to terminate it:

 $ kill -9 20605
 $
 [1]+ Killed sleep 100
 $

When you kill the job, initially you won’t get any response. However, the next time you
do something that produces a shell prompt, you’ll see a message indicating that the job was
killed. Each time the shell produces a prompt, it also displays the status of any jobs that have
changed states in the shell.

Another popular key combination is Ctrl+D. Instead of sending
a signal, the Ctrl+D key combination sends an end-of-file (EOF)
character to the standard input of the shell. This can come in handy
when entering a data stream, indicating when the data is complete.
However, if you send the Ctrl+D key combination without any data, it
causes the shell to terminate. If the shell is your login shell, you will be
automatically logged out of the system.

734  Chapter 26  ■  Automating Jobs

Job Control
In the previous section you saw how to use the Ctrl+Z key combination to stop a job
running in the shell. After you stop a job, the Linux system lets you either kill or restart it.
Restarting a stopped process requires sending it a signal continue (SIGCONT) signal.

The function of starting, stopping, killing, and resuming jobs is called job control. With
job control, you have full control over how processes run in your shell environment.

The following sections describe the commands you can use to view and control jobs
running in your shell.

Viewing Jobs
The key command for job control is the jobs command. The jobs command allows you to
view the current jobs being handled by the shell. Listing 26.1 uses a shell script to demon-
strate viewing a stopped job.

Listing 26.1:  Stopping a running job

 $ cat test2.sh
 #!/bin/bash
 # testing job control

 echo "This is a test program $$"
 count=1
 while [$count -le 10] ; do
 echo "Loop #$count"
 sleep 10
 count=$[$count + 1]
 done
 echo "This is the end of the test program"
 $./test2.sh
 This is a test program 29011
 Loop #1

 [1]+ Stopped ./test2.sh
 $./test2.sh > test2.sh.out &
 [2] 28861
 $
 $ jobs
 [1]+ Stopped ./test2.sh
 [2]- Running ./test2/sh >test2.shout &
 $

Job Control  735

The script shown in Listing 26.1 uses the $$ variable to display the PID that the Linux
system assigns to the script; then it goes into a loop, sleeping for 10 seconds at a time for
each iteration. In the example, we start the first script from the command-line interface and
then stop it using the Ctrl+Z key combination. Next, another job is started as a background
process, using the ampersand symbol. To make life a little easier, we redirected the output of
that script to a file so that it wouldn’t appear on the monitor.

After the two jobs were started, we used the jobs command to view the jobs assigned to
the shell. The jobs command shows both the stopped and the running jobs along with their
job numbers and the commands used in the jobs.

The jobs command uses a few different command-line parameters, shown in Table 26.1.

You probably noticed the plus and minus signs in the output in Listing 26.1. The job
with the plus sign is considered the default job. It would be the job referenced by any job
control commands if a job number wasn’t specified in the command line. The job with the
minus sign is the job that would become the default job when the current default job finishes
processing. There will only be one job with the plus sign and one job with the minus sign at
any time, no matter how many jobs are running in the shell.

Listing 26.2 shows an example of how the next job in line takes over the default status
when the default job is removed.

Listing 26.2:  Demonstrating job control

 $./test2.sh
 This is a test program 29075
 Loop #1

 [1]+ Stopped ./test2.sh
 $./test2.sh

TABLE 26 .1   The jobs command parameters

Parameter Description

-l Lists the PID of the process along with the job number

-n Lists only jobs that have changed their status since the last notification from the
shell

-p Lists only the PIDs of the jobs

-r Lists only running jobs

-s Lists only stopped jobs

736  Chapter 26  ■  Automating Jobs

 This is a test program 29090
 Loop #1

 [2]+ Stopped ./test2.sh
 $./test2.sh
 This is a test program 29105
 Loop #1

 [3]+ Stopped ./test2.sh
 $ jobs -l
 [1] 29075 Stopped ./test2.sh
 [2]- 29090 Stopped ./test2.sh
 [3]+ 29105 Stopped ./test2.sh
 $ kill -9 29105
 $ jobs -l
 [1]- 29075 Stopped ./test2.sh
 [2]+ 29090 Stopped ./test2.sh
 $

In Listing 26.2 we started, then stopped, three separate processes. The jobs command
listing shows the three processes and their status. Note by the PID numbers that the default
process (the one listed with the plus sign) is 29105, the last process started.

We then used the kill command to send a SIGHUP signal to the default process. In the
next jobs listing, the job that previously had the minus sign, 29090, is now the default job.

Restarting Stopped Jobs
Under Bash job control, you can restart any stopped job as either a background process or a
foreground process. A foreground process takes over control of the terminal you’re working
on, so be careful about using that feature.

To restart a job in background mode, use the bg command along with the job number:

 $ bg 2
 [2]+ ./test2.sh &
 Test 2 Loop #2 output
 $ Test 2 Loop #3 output
 Test 2 Loop #4 output

 $ jobs
 [1]+ Stopped ./test2.sh
 [2]- Running ./test2.sh &
 $ Test 2 Loop #6 output

Running Like Clockwork  737

 Test 2 Loop #7 output
 Test 2 Loop #8 output
 Test 2 Loop #9 output
 Test 2 Loop #10 output
 This is the end of the test2 program

 [2]- Done ./test2.sh
 $

Since we restarted the job in background mode, the command-line interface prompt
appears, allowing us to continue with other commands. The output from the jobs command
now shows that the job is indeed running (as you can tell from the output now appearing on
the monitor).

To restart a job in foreground mode, use the fg command along with the job number:

 $ jobs
 [1]+ Stopped ./test2.sh
 $ fg 1
 ./test4
 Loop #2
 Loop #3

Since the job is running in foreground mode, we don’t get a new command-line interface
prompt until the job finishes.

Running Like Clockwork
We’re sure that, as you start working with scripts, there will be a situation in which you’ll
want to run a script at a preset time, usually at a time when you’re not there. There are two
common ways of running a script at a preselected time:

■■ The at command

■■ The cron table

Each method uses a different technique for scheduling when and how often to run scripts.
The following sections describe each of these methods.

Scheduling a Job Using the at Command
The at command allows you to specify a time when the Linux system will run a script. It
submits a job to a queue with directions on when the shell should run the job. Another
command, atd, runs in the background and checks the job queue for jobs to run. Most Linux
distributions start this automatically at boot time.

738  Chapter 26  ■  Automating Jobs

The atd command checks a special directory on the system (usually /var/spool/at) for
jobs submitted using the at command. By default, the atd command checks this directory
every 60 seconds. When a job is present, the atd command checks the time the job is set to
be run. If the time matches the current time, the atd command runs the job.

The following sections describe how to use the at command to submit jobs to run and
how to manage jobs.

The at Command Format
The basic at command format is pretty simple:

 at [-f filename] time

By default, the at command submits input from STDIN to the queue. You can specify a
filename used to read commands (your script file) using the -f parameter.

The time parameter specifies when you want the Linux system to run the job. You can get
pretty creative with how you specify the time. The at command recognizes lots of different
time formats. For example:

■■ A standard hour and minute, such as 10:15

■■ An AM/PM indicator, such as 10:15 p.m.

■■ A specific named time, such as now, noon, midnight, or teatime (4 p.m.)

If you specify a time that’s already past, the at command runs the job at that time on
the next day.

Besides specifying the time to run the job, you can also include a specific date, using a few
different date formats:

■■ A standard date format, such as MMDDYY, MM/DD/YY, or DD.MM.YY

■■ A text date, such as Jul 4 or Dec 25, with or without the year

■■ You can also specify a time increment in different formats:

■■ Now + 25 minutes

■■ 10:15 p.m. tomorrow

■■ 22:15 tomorrow

■■ 10:15 + 7 days

When you use the at command, the job is submitted to a job queue. The job queue holds
the jobs submitted by the at command for processing. There are 26 different job queues
available for different priority levels. Job queues are referenced using lowercase letters, a
through z.

By default all at jobs are submitted to job queue a, the highest-priority queue. If you want
to run a job at a lower priority, you can specify the letter using the -q parameter.

Running Like Clockwork  739

Retrieving Job Output
When the job runs on the Linux system, there’s no monitor associated with the job. Instead,
the Linux system uses the email address of the user who submitted the job. Any output des-
tined to STDOUT or STDERR is mailed to the user via the mail system.

Listing 26.3 shows a simple example of using the at command to schedule a job to run.

Listing 26.3:  Using the at command to start a job

$ date
Thu Feb 24 18:48:20 EST 2022
$ at -f test3.sh 18:49
job 2 at Thu Feb 24 18:49:00 2022
$ mail
Heirloom Mail version 12.5 7/5/10. Type ? for help.
"/var/spool/mail/rich": 1 message 1 new
>N 1 Rich Thu Feb 24 18:49 15/568 "Output from your job "
&
Message 1:
From rich@localhost.localdomain Thu Feb 24 18:49:00 2022
Return-Path: <rich@localhost.localdomain>
X-Original-To: rich
Delivered-To: rich@localhost.localdomain
Subject: Output from your job 2
To: rich@localhost.localdomain
Date: Thu, 24 Feb 2022 18:49:00 -0500 (EST)
From: rich@localhost.localdomain (Rich)
Status: R

"This script ran at 18:49:00"
"This is the end of the script"

&

As shown in Listing 26.3, when we ran the at command, it produced a warning message,
indicating what shell the system uses to run the script (the default shell assigned to /bin/
sh, which for Linux is the Bash shell) along with the job number assigned to the job and the
time the job is scheduled to run.

When the job completes, nothing appears on the monitor, but the system generates an
email message. The email message shows the output generated by the script. If the script

740  Chapter 26  ■  Automating Jobs

doesn’t produce any output, it won’t generate an email message, by default. You can change
that by using the -m option in the at command. This generates an email message, indicating
that the job completed, even if the script doesn’t generate any output.

Listing Pending Jobs
The atq command allows you to view what jobs are pending on the system:

 $ at -f test3.sh 10:15
 warning: commands will be executed using /bin/sh
 job 7 at 2022-03-04 10:15
 $ at -f test5 4PM
 warning: commands will be executed using /bin/sh
 job 8 at 2022-03-03 16:00
 $ at -f test5 1PM tomorrow
 warning: commands will be executed using /bin/sh
 job 9 at 2022-03-04 13:00
 $ atq
 7 2022-03-04 10:15 a
 8 2022-03-03 16:00 a
 9 2022-03-04 13:00 a
 $

The job listing shows the job number, the date and time the system will run the job, and
the job queue the job is stored in.

Removing Jobs
After you know the information about what jobs are pending in the job queues, you can use
the atrm command to remove a pending job:

 $ atrm 8
 $ atq
 7 2022-03-04 10:15 a
 9 2022-03-04 13:00 a
 $

Just specify the number of the job you want to remove. You can only remove jobs that
you submit for execution. You can’t remove jobs submitted by others.

Scheduling Regular Scripts
Using the at command to schedule a script to run at a preset time is great, but what if you
need that script to run at the same time every day or once a week or once a month? Instead
of having to continually submit at jobs, you can use another feature of the Linux system.

The Linux system uses the cron program to allow you to schedule jobs that need to run
on a regular basis. The cron program runs in the background and checks special tables,
called cron tables, for jobs that are scheduled to run.

Running Like Clockwork  741

The Cron Table
The cron table uses a special format for allowing you to specify when a job should be
run. The format for the cron table entry is as follows:

 min hour dayofmonth month dayofweek command

The cron table allows you to specify entries as specific values, ranges of values (such as
1–5) or as a wildcard character (the asterisk). For example, if you want to run a command at
10:15 a.m. every day, you would use the cron table entry of

 15 10 * * * command

Because you can’t indicate a.m. or p.m. in the cron table, you’ll need to use the 24-hour
clock format for p.m. times. The wildcard character used in the dayofmonth, month, and
dayofweek fields indicates that cron will execute the command every day of every month at
10:15 a.m. To specify a command to run at 4:15 p.m. every Monday, you would use

 15 16 * * 1 command

You can specify the dayofweek entry either as a three-character text value (mon, tue,
wed, thu, fri, sat, sun) or as a numeric value, with 0 being Sunday and 6 being Saturday.

Here’s another example: to execute a command at 12 noon on the first day of every
month, you’d use the format

 00 12 1 * * command

The dayofmonth entry specifies a date value (1–31) for the month.
When specifying the command or shell to run, you must use its full pathname. You

can add any command-line parameters or redirection symbols you like, as a regular
command line:

 15 10 * * * /home/rich/test4.sh > test4out

The cron program runs the script using the user account that submitted the job. Thus,
you must have the proper permissions to access the command and output files specified in
the command listing.

Building the Cron Table
All system users can have their own cron table (including the root user) for running sched-
uled jobs. Linux provides the crontab command for handling the cron table. To list an
existing cron table, use the -l parameter:

 $ crontab -l
 no crontab for rich
 $

To add entries to your cron table, use the -e parameter. When you do that, the crontab
command automatically starts the vi editor with the existing cron table or an empty file if it
doesn’t yet exist.

742  Chapter 26  ■  Automating Jobs

Working with Systemd Timers
Systems that utilize the systemd startup method (see Chapter 6, “Maintaining System Startup
and Services”) can also use the Systemd timer feature to automatically start programs. The
timer unit files allow you to define events that occur at specific dates or times, similar to how
the cron program works. The timer unit files, though, allow you to fine-tune exactly when a
program starts.

Timer unit files are designated by a .timer file extension and include a [Timer] section that
defines the directives required to determine when to start the event. Table 26.2 describes
these directives.

As you can see in Table 26.2, timer units provide several options for how to set the timer
that aren’t available in the cron program, such as the amount of time since the program last
completed. This allows you to choose exactly when a program should start on the system.

The following exercise walks you through working with jobs on your Linux system.

TABLE 26 .2   Commonly used timer unit file [Timer] section directives

Directive Description

AccuracySec Specifies the accuracy of the timer. The default is one minute
accuracy.

OnActiveSec Defines the timer relative to the moment the timer is activated.

OnBootSec Defines the timer relative to when the system was booted.

OnCalendar Defines the timer as a specific date/time value.

OnStartupSec Defines the timer relative to when the systemd program started.

OnUnitActiveSec Defines the timer relative to when the timer unit was last
activated.

OnUnitInactiveSec Defines the timer relative to when the timer unit was last deacti-
vated.

Persistent When set, the time the timer unit was last triggered is stored on
disk.

RandomizedDelaySec Delays the timer activation by a random amount of time.

RemainAfterElapse When set, the expired timer unit remains loaded, allowing you to
query its status using systemctl.

Unit Defines the unit file to start when the timer elapses.

WakeSystem When set, the timer unit will cause the system to resume from
being in a suspended state.

Running Like Clockwork  743

E X E R C I S E 2 6 . 1  

Manipulating Jobs from the Command Line

This exercise walks you through how to run, pause, stop, and view jobs running within the
Bash shell.

1.	 Log into your Linux graphical desktop and open a command prompt window.

2.	 At the command prompt, open a text editor of your choice and create the text file
jobtest.sh by typing nano jobtest.sh, pico jobtest.sh, or vi jobtest.sh.

3.	 Enter the following code in the new text file:

#!/bin/bash
jobtest.sh - run the sleep command in a loop for job testing
echo "This is a test program $$"
count=1
while [$count -le 10] ; do
 echo "Program: $$ Loop #$count"
 sleep 10
 count=$[$count + 1]
done
echo "This is the end of the test program"

4.	 Save the file using the appropriate save command for your editor.

5.	 Give yourself execute permissions to the file by typing chmod u+x jobtest.sh.

6.	 Run the shell script by typing ./jobtest.sh.

7.	 Pause the job by pressing Ctrl+Z.

8.	 Start another copy of the job in background mode by typing ./jobtest.sh &.

9.	 List the current shell jobs by typing jobs.

10.	 Restart the paused job in background mode by typing bg n, where n is the job number
assigned to the paused job.

11.	 List the current shell jobs by typing jobs. Note the status of the job that was previ-
ously paused.

12.	 Stop the running background jobs by using the kill -9 command along with the
appropriate PID values assigned to each job.

13.	 Type jobs to view the currently running jobs.

744  Chapter 26  ■  Automating Jobs

Summary
By default, when you run a script in a terminal session shell, the interactive shell is suspended
until the script completes. You can cause a script or command to run in background
mode by adding an ampersand sign (&) after the command name. When you run a script
or command in background mode, the interactive shell returns, allowing you to continue
entering more commands. Any background processes run using this method are still tied to
the terminal session. If you exit the terminal session, the background processes also exit.

To prevent this from happening, use the nohup command. This command intercepts any
signals intended for the command that would stop it, such as, for example, when you exit
the terminal session. This allows scripts to continue running in background mode even if you
exit the terminal session.

When you move a process to background mode, you can still control what happens
to it. The jobs command allows you to view processes started from the shell session. Once
you know the job ID of a background process, you can use the kill command to send
Linux signals to the process or use the fg command to bring the process back to the fore-
ground in the shell session. You can suspend a running foreground process by using the
Ctrl+Z key combination and then place it back in background mode using the bg command.

Besides controlling processes while they’re running, you can also determine when a pro-
cess starts on the system. Instead of running a script directly from the command-line inter-
face prompt, you can schedule the process to run at an alternative time. There are several
different ways to accomplish this. The at command allows you to run a script once at a
preset time. The cron program provides an interface that can run scripts at a regularly sched-
uled interval.

Exam Essentials
Describe how to run a shell script in background mode from your console or terminal
session.   To run a shell script in background mode, include the ampersand sign (&) after the
shell script command on the command line. The shell will run the script in background mode
and produce another command prompt for you to continue within the shell.

Explain how to disconnect a shell script from the console or terminal session so that it con-
tinues running if the session closes.   The nohup command disconnects the shell script from
the shell session and runs it as a separate process. If the console or terminal session exits, the
shell script will continue running.

Explain how to stop or pause a shell script running in the foreground on a console or
terminal session.   To stop a shell script running in the foreground of a console or terminal
session, press the Ctrl+C key combination. To pause a running shell script, press Ctrl+Z.

Exam Essentials  745

Describe how to list shell scripts running in background mode within a console or terminal
session.   The jobs command allows you to list the commands that are running within
the console or terminal session. The output from the jobs command displays both the job
number assigned by the shell and the process ID assigned by the Linux system.

Describe how to run a shell script at a specific time.   The at command allows you
to schedule a job to run at a specific time. You can specify the time by using an exact
value, such as 10:00 p.m., or by using common date and time references, such as 10:00
a.m. tomorrow.

Explain how to run a shell script automatically at a set time every day.   The cron process
runs every minute and checks for jobs that are scheduled to run. You must define the jobs to
run in the cron table by using the crontab command.

746  Chapter 26  ■  Automating Jobs

Review Questions
1.	 Frank wants to run his large number-crunching application in background mode on his

console session. What command does he need to use to do that?

A.	 >
B.	 &
C.	 |
D.	 >>
E.	 nohup

2.	 What command do you use to disconnect a shell script from the current console so that it can
continue to run after the console exits?

A.	 >
B.	 &
C.	 |
D.	 >>
E.	 nohup

3.	 When Melanie runs a shell script, she notices that it takes up all of the memory on her Linux
system and she needs to stop it. How can she do that?

A.	 Start it with the nohup command.

B.	 Start it with the ampersand (&) command.

C.	 Press Ctrl+C while the script is running.

D.	 Redirect the output using the pipe symbol.

E.	 Use the kill command to stop it.

4.	 How can you temporarily pause a shell script from running in foreground mode in a
console session?

A.	 Press the Ctrl+Z key combination.

B.	 Press the Ctrl+C key combination.

C.	 Start the command with the nohup command.

D.	 Start the command with the ampersand (&) command.

E.	 Start the command with the fg command.

5.	 How do you determine the default job running in a console session?

A.	 By the PID number

B.	 By the job number

C.	 By a plus sign next to the job number in the jobs output

D.	 By a minus sign next to the job number in the jobs output

E.	 By using the ps command

Review Questions  747

6.	 Barbara has an application running in background mode in her console session and needs to
bring it to foreground mode. What command should she use to do that?

A.	 bg
B.	 fg
C.	 nohup
D.	 &
E.	 at

7.	 What command allows you to run a shell script at a specific time?

A.	 nohup
B.	 &
C.	 at
D.	 |

E.	 >

8.	 Nick needs to run a report at midnight every day on his Linux system. How should
he do that?

A.	 Use the at command to schedule the job.

B.	 Run the job using the nohup command.

C.	 Run the job using the ampersand (&) symbol.

D.	 Schedule the job using cron.

E.	 Run the job using the atq command.

9.	 When will the cron table entry 10 5 * * * myscript run the specified shell script?

A.	 At 10:05 a.m. every day

B.	 On May 10th every year

C.	 On October 5th every year

D.	 At 5:10 p.m. every day

E.	 At 5:10 a.m. every day

10.	 Jane needs to check on what jobs are scheduled to run automatically for her user account.
What command should she use to list the cron table entries for her user account?

A.	 cron
B.	 at
C.	 crontab
D.	 jobs
E.	 nohup

Controlling
Versions with Git

✓✓ Objective 3.3: Given a scenario, perform basic version
control using Git

Chapter

27

Linux is a popular development platform. If you are admin-
istering a system for programmers, it is important to under-
stand the various tools they employ. In addition, you may find

yourself writing complex shell scripts that require similar tools. In this chapter, we take you
through the concepts of version control and the popular Git utility, which implements it.

Understanding Version Control
Two software developers, Natasha and Bruce, are working furiously on a new project called
StoneTracker. The project is broken up into several program files that now have names such
as UI-3.2.A-73.py due to all the modifications and revisions. Natasha and Bruce are con-
stantly telling each other what file they are working on so that the other one doesn’t acciden-
tally overwrite it. In addition, they have created several directory trees to store the various
project file amendments. The project has become bogged down with these complications and
the extra communication it requires. These developers need version control. Version control
(also known as source control or revision control) is a method or system that organizes var-
ious project files and protects modifications to them.

Version control methods or systems can control more than program files.
They can typically handle plaintext files, executable files, graphics, word
processing documents, compressed files, and more.

A version control system (VCS) provides a common central place to store and merge
project files so that you can access the latest project version. A VCS protects a file so that it is
not overwritten by another developer and eliminates any extra communications concerning
who is currently modifying it.

Additional benefits include situations around new developers entering the project. For
example, if Tony is a new team member, he can copy the latest StoneTracker project files via
the version control system and begin work.

Distributed version control systems make projects even easier. The developers can perform
their work offline, without any concerns as to whether or not they are connected to a network.
The development work takes place locally on their own systems until they send a copy of their
modified files and VCS metadata to the remote central system. Only at that time is a network
connection required. A side benefit is that now the work is backed up to a central location.

Understanding Version Control  751

A new version control system for Linux projects was created by Linus
Torvalds in 2005. He desired a distributed VCS that could quickly merge
files as well as provide other features that the Linux developers needed.
The result was Git, which is a popular high-performance distributed VCS.

Git is a distributed VCS, which is often employed in agile and continuous software
development environments. Figure 27.1 shows a conceptual depiction of the Git environ-
ment. To understand Git’s underlying principles, you need to know a few terms about its
configuration:

Working Directory   The working directory is where all the program files are cre-
ated, modified, and reviewed. It is typically a subdirectory within the developer’s home
directory tree. The developer’s computer system can be a local server or laptop, depend-
ing on workplace requirements.

Staging Area   A staging area is also called the index. This area is located on the same
system as the working directory. Program files in the working directory are registered
into the staging area via a Git command (git add). The staging area employs a hidden
subdirectory named .git, which is created with the git init command.

When files are cataloged into the staging area, Git creates or updates information in
the index file, .git/index, concerning those files. The data includes checksums, time-
stamps, and associated filenames.

Besides updating the index file, Git compresses the program file(s) and stores the
compressed file as an object(s), also called a blob, in a .git/objects/ directory. If a
program file has been modified, it is compressed and stored as a new object in the .git/
objects/ directory. Git does not just store file modifications; it keeps a compressed
copy of each modified file.

Local Repository   The local repository contains each project file’s history. It also
employs the .git subdirectory. Project tree and commit information is stored as objects
in the .git/objects/ directory via a Git command (git commit). This data is called

Working
Directory

Staging
Area

Local
Repository

Remote
Repository

F IGURE 27.1   Conceptual depiction of the Git environment

752  Chapter 27  ■  Controlling Versions with Git

a snapshot. Every commit creates a new snapshot. Old snapshots can be viewed, and
you can revert to previous ones if desired.

Remote Repository   The remote repository is typically a cloud-based location. How-
ever, it could also be another server on your local network, depending on your proj-
ect’s needs. Prominent remote repositories include GitHub, GitLab, BitBucket, and
Launchpad. However, by far, GitHub is the most popular.

Using Git as your VCS includes the following benefits:

■■ Performance: Except for sending/retrieving files to/from the remote repository, Git uses
only local files to operate, making it faster to employ.

■■ History: Git captures all the files’ contents at the moment the file is registered with the
index. When a commit is completed to the local repository, Git creates and stores a refer-
ence to that snapshot in time.

■■ Accuracy: Git employs checksums to protect file integrity.

■■ Decentralization: Developers can work on the same project, but they don’t have to be on
the same network or system.

Older VCSs required developers to be on the same network, which didn’t provide a great
deal of flexibility. They were also slower in operation, which is one reason Linus Torvalds
decided to create Git.

Setting Up Your Git Environment
The Git utility typically is not installed by default. Thus, you’ll need to install the git
package prior to setting up your Git environment. See Chapter 13, “Governing Software,”
for details on package installation.

After you have the git package installed on your system, there are four basic steps to
setting up your Git environment for a new project:

1.	 Create a working directory.

2.	 Initialize the .git/ directory.

3.	 Set up local repository options.

4.	 Establish your remote repository.

To begin the process for a new project, create a working directory. A subdirectory in your
local home folder will suffice. An example is shown in Listing 27.1.

Listing 27.1:  Creating a working directory using the mkdir command

$ mkdir MWGuard
$
$ cd MWGuard

Setting Up Your Git Environment  753

$ pwd
/home/Christine/MWGuard
$

In Listing 27.1 you create a simple subdirectory, MWGuard, for the project. After the
working directory is created, you use the cd command to move your present working
directory into it.

Within the working directory, initialize the .git/ directory. This task employs the git
init command. An example is shown in Listing 27.2.

Listing 27.2:  Initializing the .git/ directory via the git init command

$ git init
Initialized empty Git repository in /home/Christine/MWGuard/.git/
$
$ ls -ld .git
drwxrwxr-x. 7 Christine Christine 119 Feb 6 15:07 .git
$

The git init command creates the .git/ subdirectory. Because the directory name is
preceded with a dot (.), it is hidden from regular ls commands. Use the ls -a command or
add the directory name as an argument to the ls command, as was done in Listing 27.2, in
order to view its metadata.

You can have multiple .git/ directories. Just create a separate working
directory for each one.

If this is the first time you have built a .git/ subdirectory on your system, modify the
global Git repository’s configuration file to include your username and email address. This
information assists in tracking file changes. The git config command lets you perform
this task, as shown in Listing 27.3.

Listing 27.3:  Modifying a local Git repository’s config file using the git
config command

$ git config --global user.name "Christine Bresnahan"
$
$ git config --global user.email "cbresn377@ivytech.edu"
$
$ git config --get user.name
Christine Bresnahan
$
$ git config --get user.email
cbresn377@ivytech.edu
$

754  Chapter 27  ■  Controlling Versions with Git

By including the --global option on the git config command within Listing 27.3,
you store the user.name and user.email data in the global Git configuration file. Notice
that you can view this information by using the --get option and passing it the data’s name
as an argument.

Git configuration information is stored in the global ~/.gitconfig file and the local
repository, which is the working-directory/.git/config configuration file. (Some sys-
tems have a system-level configuration file, /etc/gitconfig.) To view all the various con-
figurations, use the git config ––list command, as shown in Listing 27.4.

Listing 27.4:  Viewing Git configuration settings using the git config
--list command

$ git config ––list
user.name=Christine Bresnahan
user.email=cbresn377@ivytech.edu
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true
$
$ cat /home/Christine/.gitconfig
[user]
 name = Christine Bresnahan
 email = cbresn377@ivytech.edu
$
$ cat /home/Christine/MWGuard/.git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
$

The settings that are displayed via the ––list option use a file-section.name
format. Notice that when the two Git configuration files (global and project’s local reposi-
tory) are displayed to STDOUT via the cat command in Listing 27.4, the section names are
shown along with the data they hold.

When your local Git environment is configured, it is time to establish your project’s
remote repository. For demonstration purposes, we chose the cloud-based remote repos-
itory GitHub. If you want to follow along, you can set up a free remote repository at
github.com/join.

http://user.name
http://file-section.name
http://github.com/join

Committing with Git  755

Though Git can work with any file type, its tools are aimed at plaintext
files. Therefore, you will not be able to use all the git utilities on non-text
files.

After you have your project’s remote repository established, you’ll need to record the
URL it provides. This web address is used for sending your project files to the remote reposi-
tory, which is covered later in this chapter.

Committing with Git
When you have your Git environment established, you can begin using version control.
There are four steps:

1.	 Create or modify the program file(s).

2.	 Add the file(s) to the staging area (index).

3.	 Commit the file(s) to the local repository.

4.	 Push the file(s) to the remote repository.

Depending on your team’s workflow, you may repeat certain steps before progressing to
the next one. For example, in a single day, a programmer adds files as they are completed to
the staging area. At the end of the day, the developer commits the project to the local repos-
itory and then pushes the project work to the remote repository for nonlocal team members
to access.

In Listing 27.5, a simple shell script was created called MyScript.sh to use as a Git
VCS example.

Listing 27.5:  Viewing a simple shell script named MyScript.sh

$ cat MyScript.sh
#!/bin/bash
#
echo "Hello World"
#
exit
$

After the program is created (or modified), it is added to the staging area (index). This is
accomplished through the git add command, as shown in Listing 27.6. The file is in the
working directory, and you perform the git add command while located in that directory.

756  Chapter 27  ■  Controlling Versions with Git

Listing 27.6:  Adding a program to the staging area via the git add command

$ pwd
/home/Christine/MWGuard
$
$ git add MyScript.sh
$
$ git status
On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm ––cached <file>..." to unstage)
#
new file: MyScript.sh
#
$

The git add command does not provide any responses when it is executed. Thus, to see
if it worked as desired, use the git status command, as shown in Listing 27.6. The git
status command shows that a new file, MyScript.sh, was added to the index. Notice also
the name branch master. Git branches are covered later in this chapter.

You can add all the files in the current working directory to the staging area’s index at the
same time. To accomplish this, issue the git add . command. Note the period (.) at the end
of the command. It is effectively a wildcard, telling Git to add all the working directory’s files
to the index.

If you have files in your working directory that you do not want added to
the staging area index, create a .gitignore file in the working directory.
Add the names of files and directories you do not want included in the
index. The git add . command will now ignore those files.

The staging area’s index filename is .git/index, and when the file command is used
on it, in Listing 27.7, the file type is shown as a Git index. Git uses this file to track changes
to the file.

Listing 27.7:  Looking at the staging area index file with the file command

$ file .git/index
.git/index: Git index, version 2, 1 entries
$

The next step in the process is to commit the project to the local repository. This will
create a project snapshot, which contains information such as the project’s current tree

Committing with Git  757

structure and commit data. Git stores this data in the .git/ directory. The commit is accom-
plished using the git commit command, as shown in Listing 27.8. The -m option adds a
comment line to the COMMIT_EDITMSG file, which is used to help track changes. When you
make commits later in the project’s life, it is useful to include additional information to the
-m option arguments, such as -m "Presentation Layer Commit".

Listing 27.8:  Committing a file with the git commit command

$ git commit -m "Initial Commit"
[master (root-commit) 6d2370d] Initial Commit
 1 file changed, 5 insertions(+)
 create mode 100644 MyScript.sh
$
$ cat .git/COMMIT_EDITMSG
Initial Commit
$
$ git status
On branch master
nothing to commit, working directory clean
$

When you have committed the project to the local repository, the git status command
will display the message shown in Listing 27.8 indicating that all the files have been
committed.

If you do not add the -m option and its argument to the git commit
command, you are placed into the vim editor to edit the .git/
COMMIT_EDITMSG file by hand. The vim editor was covered in Chapter 4,
“Searching and Analyzing Text.”

Now that the project is committed to the local repository, you can share it with other
development team members by pushing it to the remote repository. If the project is complete,
you can also share with others or the whole world.

If this is a new project, after you have set up your remote repository account, create a
Markdown file called README.md. The file’s content displays on the remote repository’s web
page and describes the repository. It uses what is called the Markdown language. An example
of creating this file, adding it to the staging area index, and committing it to the local reposi-
tory is shown in Listing 27.9.

Listing 27.9:  Creating, adding, and committing a README.md file

$ pwd
/home/Christine/MWGuard
$

758  Chapter 27  ■  Controlling Versions with Git

$ ls
MyScript.sh
$
$ echo "# Milky Way Guardian" > README.md
$ echo "## Programming Project" >> README.md
$
$ cat README.md
Milky Way Guardian
Programming Project
$
$ git add README.md
$
$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: README.md
#
$ git commit -m "README.md commit"
[master 4541578] README.md commit
 1 file changed, 2 insertions(+)
 create mode 100644 README.md
$

You can get fancy with your README.md file by using various features
of the Markdown language. Find out more about Markdown at http://
guides.github.com/features/mastering-markdown.

At any time you can review the Git log, but it’s always a good idea to do so before push-
ing the project to a remote repository. An example of how to view the log is shown in List-
ing 27.10. Each commit is given a hash number to identify it, which is shown in the log.
Also, notice the different comment lines along with dates as well as author information.

Listing 27.10:  Viewing the Git log via the git log command

$ git log
commit 45415785c17c213bac9c47ce815b91b6a9ac9f86
Author: Christine Bresnahan <cbresn377@ivytech.edu>
Date: Fri Feb 11 13:49:49 2022 -0500

http://guides.github.com/features/mastering-markdown
http://guides.github.com/features/mastering-markdown

Committing with Git  759

 README.md commit

commit 6d2370d2907345671123aeaaa71e147bd3f08f36
Author: Christine Bresnahan <cbresn377@ivytech.edu>
Date: Wed Feb 9 15:23:11 2022 -0500

 Initial Commit
$

Before you can push your project to the remote repository, you need to configure its
address on your system. This is done via the remote add origin URL command, where
URL is the remote repository’s address. An example is shown in Listing 27.11.

Listing 27.11:  Configuring the remote repository with the git remote command

$ git remote add origin https://github.com/C-Bresnahan/MWGuard.git
$
$ git remote -v
origin https://github.com/C-Bresnahan/MWGuard.git (fetch)
origin https://github.com/C-Bresnahan/MWGuard.git (push)
$

Notice in Listing 27.11 that you can check the status of the remote address using the git
remote -v command. It’s a good idea to check the address before pushing a project.

If you make a mistake, such as a typographical error, in the URL, you can
remove the remote repository’s address by using the git remote rm
origin command. After it is removed, set up the remote address again
using the correct URL.

After the remote repository URL is configured, push your project up to its location. An
example is shown in Listing 27.12.

Listing 27.12:  Pushing the project to the remote repository with git push

$ git push -u origin master
Username for 'https://github.com': C-Bresnahan
Password for 'https://C-Bresnahan@github.com':
Counting objects: 6, done.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (6/6), 561 bytes | 0 bytes/s, done.
Total 6 (delta 0), reused 0 (delta 0)
To https://github.com/C-Bresnahan/MWGuard.git
 * [new branch] master -> master
Branch master set up to track remote branch master from origin.
$

760  Chapter 27  ■  Controlling Versions with Git

Typically the remote repository will demand a username and a password, unless you have
set it up to use SSH keys (OpenSSH was covered in Chapter 16, “Looking at Access and
Authentication Methods”). When the project is pushed to the remote repository, you should
be able to view it. If it is a private repository, you’ll have to log into the remote repository
in order to see your work. Figure 27.2 shows the remote repository for this project. Keep in
mind that different providers will have different user interfaces for your projects.

What is really nice about the remote repository is that your project team can pull down
the latest files for the project using the git pull command. You’ll need to either set up
access for them to the remote repository or make it public. A snipped example of pulling files
is shown in Listing 27.13.

Listing 27.13:  Pulling the latest project files from the remote repository with git pull

$ whoami
Rich
$
$ git remote add origin https://github.com/C-Bresnahan/MWGuard.git
$
$ git pull -u origin master

F IGURE 27.2   MWGuard remote repository

Committing with Git  761

[...]
Auto-merging MyScript.sh
[...]
$

If the individual pulling down the project files already has a modified ver-
sion of a particular file in their local repository that was not uploaded to
the remote repository, the git pull command will fail. However, the
error message will instruct how to rectify this problem.

A new development team member can copy the entire project, including the .git/ files,
to their local system from the remote repository using the git clone command. A snipped
example is shown in Listing 27.14.

Listing 27.14:  Cloning a project from remote repository via git clone

$ whoami
Samantha
$
$ ls
$
$ git clone https://github.com/C-Bresnahan/MWGuard.git
Cloning into 'MWGuard'...
[...]
remote: Total 6 (delta 0), reused 6 (delta 0), pack-reused 0
Unpacking objects: 100% (6/6), done.
$
$ ls
MWGuard
$ cd MWGuard
$ ls -a
. .. .git MyScript.sh README.md
$
$ git log
commit 45415785c17c213bac9c47ce815b91b6a9ac9f86
Author: Christine Bresnahan <cbresn377@ivytech.edu>
Date: Fri Feb 11 13:49:49 2022 -0500

 README.md commit

commit 6d2370d2907345671123aeaaa71e147bd3f08f36
Author: Christine Bresnahan <cbresn377@ivytech.edu>

762  Chapter 27  ■  Controlling Versions with Git

Date: Wed Feb 9 15:23:11 2022 -0500

 Initial Commit
$

When the project is cloned from the remote repository, the working directory is auto-
matically created, along with the .git/ directory, the Git staging area (index), and the local
repository. The git log command shows the project’s history. This is an easy way for a new
team member to grab everything needed to begin working on the project.

Tags
As you start committing newer versions of files to your project and the project history
becomes longer, things can quickly get confusing. To help maintain some organization, the
Git software provides tagging.

Tagging allows you to mark specific commit versions with additional information, such
as a release number. You can then easily reference specific versions in the repository based on
the tags you assigned.

There are two tag formats available in Git:

■■ Lightweight: Only includes a tag name

■■ Annotated: Includes the tag name, plus additional metadata that can provide additional
information to help identify the version

To create a lightweight tag, just use the git tag command, along with the tag name:

$ git tag v2.0
$

The command doesn’t return any information, but you can verify that the tag was created
by using the git tag command without any parameters, which lists the existing tag names:

$ git tag
v0.1
v1.0
v1.5
v2.0
$

To create an annotated tag, include the -a parameter, along with the -m parameter to
specify the descriptive text you want to add:

$ git tag -a v2.1 -m "development code for 2.0 branch"
$

Tags can help you identify production versus development versions, making it easier to
identify where in the commit history release changes occur.

Merging Versions  763

Merging Versions
A helpful concept in Git is branches. A branch is an area within a local repository for a
particular project section. By default, Git stores your work in the master branch, as shown
in Listing 27.15.

Listing 27.15:  Viewing the branch in use with the git status command

$ git status
On branch master
nothing to commit, working directory clean
$

You can have multiple branches within a project. A simple example is having a branch
for production software (master), a branch for software in development (develop), and
a branch for testing development changes (test). You can designate the branch you wish
to work on to protect files in another branch from being changed. Using the example, you
certainly would not want your development code files going into the production branch
(master). Instead, you want them maintained in the develop branch until they are tested in
the test branch and ready for production.

Let’s take a look at a project that needs to use branches. The StoneTracker project is in
production, and its files are managed via the master branch, as shown in Listing 27.16.

Listing 27.16:  Viewing the current branch in use via the git branch command

$ git branch
* master
$

Notice the * master line in Listing 27.16. The asterisk (*) indicates that the current
branch is master and that it is the only branch. If there were more branches, they would
also be displayed. The current branch always has the asterisk next to it.

You can view the filenames within a particular branch by using the git ls-tree
command. The StoneTracker project’s committed files are shown in Listing 27.17.

Listing 27.17:  Viewing the file names in the master branch

$ git ls-tree ––name-only -r master
README.md
ST-Data.py
ST-Main.py
$

In the master branch (production), the StoneTracker project currently uses a text-based
user interface via its business tier, ST-Main.py. The development team needs to add a pre-
sentation layer, which will provide a GUI. To create this new program without affecting

764  Chapter 27  ■  Controlling Versions with Git

production, they create a new branch to the project using the git branch command shown
in Listing 27.18.

Listing 27.18:  Creating a new branch with the git branch branch-name command

$ git branch develop
$
$ git branch
 develop
* master
$

Notice in Listing 27.18 that when the new branch, develop, is created, it is not set as the
current branch. To change branches, the git checkout command is needed, as shown in
Listing 27.19.

Listing 27.19:  Switching to a branch via the git checkout branch-name command

$ git checkout develop
Switched to branch 'develop'
$
$ git branch
* develop
 master
$

Now that the branch is switched, development on the new user interface (ST-UI.py) can
occur without affecting the master branch. However, Git VCS is still employed, as shown in
Listing 27.20.

Listing 27.20:  Using GIT VCS on the develop branch

$ ls
README.md ST-Data.py ST-Main.py ST-UI.py
$
$ git add .
$
$ git status
On branch develop
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: ST-UI.py
#
$

Merging Versions  765

$ git commit -m "New User Interface"
[develop 1a91bc3] New User Interface
 1 file changed, 47 insertions(+)
 create mode 100644 ST-UI.py
$

When development (and testing) on the new user interface is completed, the develop
branch is merged with the master branch (production). To merge branches, use the git
merge branch-name-to-merge command. Merges must be performed from the target
branch. Therefore, in this case you must go back to the master branch prior to issuing the
command, as shown snipped in Listing 27.21.

Listing 27.21:  Merging a branch via the git merge command

$ git checkout master
Switched to branch 'master'
$ git branch
 develop
* master
$
$ git merge develop
Updating 0e08e81..1a91bc3
Fast-forward
 ST-UI.py | 47 [...]
 1 file changed, 47 insertions(+)
 create mode 100644 ST-UI.py
$
$ git ls-tree ––name-only -r master
README.md
ST-Data.py
ST-Main.py
ST-UI.py
$
$ git log
commit 1a91bc30050ef1c0595894915295cc458b2539b7
Author: Christine Bresnahan <cbresn377@ivytech.edu>
Date: Fri Feb 11 18:03:18 2022 -0500

 New User Interface

commit 0e08e810dd767acd64e09e45fff614288144da45
Author: Christine Bresnahan <cbresn377@ivytech.edu>

766  Chapter 27  ■  Controlling Versions with Git

Date: Fri Feb 11 16:50:10 2022 -0500

 Initial Production Commit
$

Notice in Listing 27.21 that now within the master branch, the new production tier
program, ST-UI.py, is managed. Also notice that the Git logs between the two branches
were also merged, as shown by the git log command.

There is another flavor of merging called rebasing. Instead of simply
merging the commits and history logs into a single branch, rebasing per-
forms new commits for all the files, which simplifies the history logs. To
rebase a project, replace git merge with the git rebase command.
Which one you employ is dependent on your organization’s development
workflow as well as team member preferences.

Summary
The distributed VCS utility Git is useful in many ways beyond the needs of developers.
Understanding how to set up working directories, staging areas, and local and remote repos-
itories is a wonderful skill set. Not only will you be able to use the appropriate lingo with
your programmers, you can implement Git for various other useful things to manage your
Linux systems.

Exam Essentials
Describe version control.   Version control is a method or system that organizes various
project files and protects modifications to them. A distributed VCS allows developers to
work offline and independently. The Git VCS provides a working directory, staging area
(index), and local repository and uses a remote repository provided by a third party. It is
popular due to high performance, maintained modification history, file protection, and
decentralization.

Explain how to set up your Git environment.   The git package provides the various Git
tools used for VCSs. Create a working directory for each project using the mkdir command.
The .git/ directory, used by both the staging area and the local repository, is initialized
via the git init command. Finally, a third party, such as GitHub, can provide the remote
repository to use with the various Git tools.

Exam Essentials  767

Detail committing with Git.   As needed, files are moved from the working directory to the
staging area (index) via the git add utility. The project’s workflow dictates when the pro-
grams are moved to the local directory via the git commit command and then on to the
remote repository via the git push utility. If a remote developer needs the latest project
files, the git pull command is used. For new team members who need all the project files,
including modification history, the git clone command is used.

Summarize Git branches.   A Git branch is a local repository area employed for a particular
project section, such as development or project testing. By default, the main branch is
called the master branch. New branches are created using the git branch branch-name
command. You can view the various branches available using the git branch utility, which
uses an asterisk to denote the current branch. To switch to another project branch, git
checkout branch-name is employed. After work on the branch is completed, its VCS files
and project files can be merged with another branch via the git merge branch-name-to-
merge command.

768  Chapter 27  ■  Controlling Versions with Git

Review Questions
1.	 Which of the following is true concerning version control? (Choose all that apply.)

A.	 Provides a common place to merge and store files

B.	 Requires filenames to contain version numbers

C.	 May be distributed or nondistributed

D.	 Helps to protect files from being overwritten

E.	 Can deal with files other than programs

2.	 Conceptually Git is broken up into distinct areas. Which of the following is one of those
areas? (Choose all that apply.)

A.	 Blob

B.	 Local repository

C.	 Remote repository

D.	 Index

E.	 Working directory

3.	 Which of the following are steps needed to set up a Git environment for the first time?
(Choose all that apply.)

A.	 Create a working directory.

B.	 Initialize the .git/ directory in the working directory.

C.	 Set up the local repository options.

D.	 Add files to the staging area when ready.

E.	 Establish the remote repository.

4.	 Natasha has created her working directory for a new project. What should she do next to set
up her Git project environment?

A.	 Issue the mkdir command.

B.	 Enter the git config ––list command.

C.	 Set up her GitHub repository.

D.	 Enter the git init command.

E.	 Start creating her program files.

5.	 When setting his Git configuration options, Bruce employs the ––global option on his
commands. What does this mean?

A.	 The configuration information is stored on GitHub.

B.	 The configuration information is stored in ~/.gitconfig.

C.	 The configuration information is stored in the working directory’s .git/config file.

D.	 The configuration information is stored in the working directory’s .git/index file.

E.	 The configuration information is stored in the working directory’s .git/objects
directory.

Review Questions  769

6.	 Bruce has set up his Git environment and finished working on his new GreenMass.sh
script. What should he do next?

A.	 Add the script to the staging area.

B.	 Issue the git init command.

C.	 Commit the script to the local repository.

D.	 Issue the git log command.

E.	 Commit the script to the remote repository.

7.	 There are 25 files in Natasha’s working directory and she only wants to add 22 of them to
the index. She plans on using the git add . command to be efficient. What should she do?

A.	 Move the three files out of her working directory.

B.	 Add the 22 files individually via the git add command.

C.	 Create a new working directory for the three files.

D.	 Add the three files’ names to a .gitignore file.

E.	 Temporarily delete the three files.

8.	 Natasha has completed her open source project, which is set to be released to the public
today. She has moved the files to the staging area, committed her work to the local reposi-
tory, and configured the remote repository’s address. What is her next step?

A.	 Go home and relax. She deserves it.

B.	 Clone the remote repository to her local system.

C.	 Push her project to the remote repository.

D.	 Pull her project from the remote repository.

E.	 Use the remote add origin URL command.

9.	 Which of the following commands allows you to switch to a new Git branch
called testing?

A.	 git branch testing
B.	 git ls-tree ––name-only -r testing
C.	 git branch
D.	 git commit -m "testing"
E.	 git checkout testing

10.	 Tony created a new branch of the StoneTracker project called report. He has completed
and tested his work. He now needs to merge it with the StoneTracker project’s master
branch. After switching branches to the master branch, what command should he employ?

A.	 git merge master
B.	 git merge report
C.	 git rebase master
D.	 git rebase report
E.	 git checkout master

PART

VII
Realizing Virtual

and Cloud
Environments

Understanding Cloud
and Virtualization
Concepts

✓✓ Objective 3.2: Given a scenario, perform basic container
operations.

✓✓ Objective 3.5: Summarize container, cloud, and
orchestration concepts.

Chapter

28

Cloud technology has greatly changed the landscape of the
computer world. Moving computer resources and applica-
tions into a shared network environment changes how many

companies do business and provide services to customers. This chapter introduces the main
concepts of just what a cloud is and the role that Linux plays in cloud computing. The
chapter starts out by defining what cloud computing is and what the different types of cloud
computing environments are. Next is a discussion of how virtualization plays an impor-
tant role in cloud computing and how that is implemented in Linux. Finally, you’ll learn
how containers fit into cloud computing and how they have changed the way developers do
their jobs.

Considering Cloud Services
Before diving into how Linux participates in cloud computing, it’s a good idea to define just
what a cloud is and what type of resources it provides.

What Is Cloud Computing?
The first mention of the term cloud came in documentation for the original ARPAnet net-
work environment in 1977, the precursor to the modern-day Internet. In that documenta-
tion, the cloud symbol was commonly used to represent the large network of interconnected
servers geographically dispersed. However, in this environment each server was self-
contained and self-sufficient; there was no distributed computing.

The term cloud computing is related to distributed computing. In distributed computing,
resources are shared among two or more servers to accomplish a single task, such as run
an application. This environment became the precursor to what we know today as cloud
computing, popularized by companies such as Amazon Web Services (AWS), Google Cloud
Platform, and Microsoft Azure.

With cloud computing, you can deliver computing resources across the Internet. Now cus-
tomers can purchase both hardware and software resources as needed from cloud computing
vendors. This includes servers, storage space, databases, networks, operating systems, and
even individual applications.

Figure 28.1 demonstrates the three different methods for providing cloud computing
services.

Considering Cloud Services  775

As shown in Figure 28.1, there are three primary methods for providing cloud computing
environments:

■■ Public: In public cloud computing environments, a third party provides all of the com-
puting resources outside the organization. This pool of resources is usually shared bet-
ween multiple organizations that also have access to the platform.

■■ Private: In private cloud computing environments, each individual organization builds
its own cloud computing resources to provide resources internally.

■■ Hybrid: In hybrid cloud computing environments, computing resources are provided
internally within the organization but also connected to an external public cloud to help
supplement resources when needed.

What Are the Cloud Services?
Cloud computing environments can customize the level of resources provided to customers,
depending on each customer’s needs. The following sections describe the three most popular
models for providing resource levels that you’ll find from cloud computing vendors.

Infrastructure as a Service (IaaS)
In the infrastructure-as-a-service (IaaS) model, the cloud computing vendor provides low-
level server resources to host applications for organizations. These low-level resources
include all of the physical components you’d need for a physical server, including CPU time,
memory space, storage space, and network resources, as shown in Figure 28.2.

Public Cloud

Private Cloud

Hybrid Cloud

F IGURE 28 .1   Cloud computing methods

776  Chapter 28  ■  Understanding Cloud and Virtualization Concepts

The server resources provided may be on a single server, or they may be distributed
among several servers. In a distributed environment, the servers may be co-located in a single
facility, or they may be separated into multiple facilities located in separate cities. This helps
provide for increased availability.

As shown in Figure 28.2, in an IaaS model the customer supplies the operating system
and any applications that it needs to run. Most IaaS environments support either the Linux
or Windows operating system. The customer is responsible for any system administration
work required for the operating system as well as any application administration. The
cloud computing vendor takes responsibility for maintaining the physical infrastructure
environment.

Platform as a Service (PaaS)
In the platform-as-a-service (PaaS) model, the cloud computing vendor provides the physical
server environment as well as the operating system environment to the customer, as shown in
Figure 28.3.

With the PaaS model, the cloud computing vendor takes responsibility for the
physical components as well as the operating system administration. It provides system
administration support to ensure that the operating system is properly patched and updated
to keep up with current releases and security features. This allows the customer to focus on
developing the applications running within the PaaS environment.

Software as a Service (SaaS)
In the software-as-a-service (SaaS) model, the cloud computing vendor provides a complete
application environment, such as a mail server, database server, or web server. The vendor
provides the physical server environment, the operating system, and the application software
necessary to perform the function. This is shown in Figure 28.4.

“The Customer”

“The Cloud”
Server Hardware

Infrastructure as a Service (IaaS) Host

VM/
Application

VM/
Application

Operating System

VM/
Application

F IGURE 28 .2   The IaaS cloud model

Understanding Virtualization  777

Understanding Virtualization
The downside to cloud computing environments is that they’re very computing intensive.
A lot of computer power is required to run a cloud computing environment, and that can
become costly.

The technology that made cloud computing possible is virtualization, and this is also
what has made Linux a popular choice for cloud computing vendors. The following sections
describe what virtualization is, the different types of virtualization available, and how to
implement virtualization in a Linux environment.

“The Customer”

“The Cloud”

VM/
Application

VM/
Application

Platform as a Service (PaaS) Host

Server Hardware

Operating System

VM/
Application

F IGURE 28 .3   The PaaS cloud model

“Customers”

“The Cloud”

Software as a Service (SaaS) Host

Operating System

Server Hardware

Application

F IGURE 28 .4   The SaaS cloud model

778  Chapter 28  ■  Understanding Cloud and Virtualization Concepts

Hypervisors
For organizations that run applications that support lots of clients, a standard performance
model dictates that you should separate the different functions of an application onto sepa-
rate servers, as shown in Figure 28.5.

As shown in Figure 28.5, the web server, the application server, and the database server
are located on separate servers. Customers only communicate with the front-end web server.
The web server passes the connections to the application, which in turn communicates with
the database server. From a performance standpoint, this model makes sense as you dedicate
separate computing resources to each element. Also, from a security standpoint this helps
compartmentalize access, making the job of any potential attackers a little more difficult.

However, with the increased capacity of servers, this model becomes somewhat inefficient.
Dedicating an entire physical server to just running a web server, another physical server to
just running the database server, and yet a third physical server to just running the applica-
tion software doesn’t utilize the full power of the servers and becomes costly.

This is where virtualization comes in. With virtualization, you can run multiple
virtual smaller server environments on a single physical server. Figure 28.6 demonstrates
this concept.

Web
Server

Application
Server

Database
Server

Clients

F IGURE 28 .5   Separating application resources

Web
Server

Application
Server

Physical Server

Database
Server

F IGURE 28 .6   Server virtualization concept

Understanding Virtualization  779

Each virtual server operates as a stand-alone server running on the physical server
hardware. This is called a virtual machine (VM). None of the virtual servers interacts with
each other, so they act just as if they were located on separate physical servers. However,
there needs to be a way for each virtual server to share the physical resources on the server
fairly so that they don’t conflict with one another.

This is where the hypervisor comes into play. The hypervisor, also called a virtual machine
monitor (VMM), acts as the traffic cop for the physical server resources shared between
the virtual machines. It provides a virtual environment of CPU time, memory space, and
storage space to each virtual machine running on the server. As far as each virtual machine is
concerned, it has direct access to the server resources, and it has no idea that the hypervisor
is in the middle controlling access to resources.

Since each virtual machine is a separate entity on the server, you can run different
operating systems within the different virtual machines. This allows you to easily experiment
with running applications in different operating systems, or just different versions of the
same operating system—all without having to purchase additional servers.

Types of Hypervisors
There are two different methods for implementing hypervisors. The following sections
discuss what they are and how they differ.

Type I Hypervisors
Type I hypervisors are commonly called bare-metal hypervisors. The hypervisor system runs
directly on the server hardware, with no go-between. The hypervisor software interacts
directly with the CPU, memory, and storage on the system, allocating them to each virtual
machine as needed. Figure 28.7 illustrates this setup.

Guest
OS

Guest
OS

Type I Hypervisor

Server Hardware

Guest
OS

Guest
OS

F IGURE 28 .7   Type I hypervisors

780  Chapter 28  ■  Understanding Cloud and Virtualization Concepts

In the Linux world, two popular Type I hypervisor packages are used:

■■ KVM: The Linux Kernel–based Virtual Machine (KVM) utilizes a standard Linux kernel
along with a special hypervisor module, depending on the CPU used (Intel or AMD).
Once installed, it can host any type of guest operating systems.

■■ XEN: The XEN Project is an open source standard for hardware virtualization. Not
only does it support Intel and AMD CPUs, but there’s also a version for ARM CPUs.
The XEN Project includes additional software besides the hypervisor software, such as
an API stack for managing the hypervisor from a guest operating system.

Type II Hypervisors
Type II hypervisors are commonly called hosted hypervisors because they run on top of an
existing operating system installation. The hypervisor software runs like any other applica-
tion on the host operating system. Figure 28.8 shows how a Type II hypervisor works.

The Type II hypervisor software runs guest virtual machines as separate processes on the
host operating system. The guest virtual machines support guest operating systems, which
are completely separated from the host operating system. Thus, you can use a Linux host
operating system and still run Windows or macOS guest operating systems.

The attraction of using a Type II hypervisor is that you can run it on an already
installed operating system. You don’t need to create a new server environment to run
virtual machines. With the Type I hypervisors, you must dedicate a server to hosting virtual
machines, whereas with a Type II hypervisor, your server can perform other functions while
it hosts virtual machines.

There are many different popular Windows and macOS Type II hypervisors, such
as VMware Workstation and QEMU, but for Linux the one commonly used is Oracle
VirtualBox.

Guest
OS

Guest
OS

Type II Hypervisor

Host OS

Server Hardware

Guest
OS

Guest
OS

F IGURE 28 .8   Type II hypervisors

Exploring Containers  781

Hypervisor Templates
The virtual machines that you create to run in the hypervisor must be configured to deter-
mine the resources they need and how they interact with the hardware. You can save these
configuration settings to template files so that you can easily duplicate a virtual machine
environment either on the same hypervisor or on a separate hypervisor server.

The open source standard for virtual machine configurations is called the Open Virtu-
alization Format (OVF). The OVF format creates a distribution package consisting of mul-
tiple files. The package uses a single XML configuration file to define the virtual machine
hardware environment requirements. Along with that file are additional files that define
the virtual machine requirements for network access, virtual drive requirements, and any
operating system requirements.

The downside to OVF templates is that they are cumbersome to distribute. The solution
to that is the Open Virtualization Appliance (OVA) format. The OVA template bundles all of
the OVF files into a single tar archive file for easy distribution.

Exploring Containers
While utilizing virtual machines is a great way to spin up multiple servers in a server envi-
ronment, they’re still somewhat clunky for working with and distributing applications.
There’s no need to duplicate an entire operating system environment to distribute an appli-
cation. The solution to this problem is containers. The following sections explore what
containers are and how they are changing the way developers manage and distribute appli-
cations in the cloud environment.

What Are Containers?
Developing applications requires lots of files. The application runtime files are usually co-
located in a single directory, but often additional library files are required for interfacing
the application to databases, desktop management software, or built-in operating system
functions. These files are usually located in various hard-to-find places scattered around the
Linux virtual directory.

Because of all the ancillary files required to run an application, all too often an applica-
tion will work just fine in development and then come crashing down when deployed to a
production environment that doesn’t accurately reproduce the development environment. In
the Windows world, this is commonly referred to as DLL hell, as different applications over-
write common DLL library files, breaking other applications. However, this isn’t limited to
the Windows world; it can also apply to the Linux world.

Containers are designed to solve this problem. A container gathers all of the files
necessary to run an application—the runtime files, library files, database files, and any
operating system–specific files. The container becomes self-sufficient for the application to
run; everything the application needs is stored within the container.

782  Chapter 28  ■  Understanding Cloud and Virtualization Concepts

If you run multiple applications on a server, you can install multiple containers. Each
container is still a self-contained environment for each particular application, as shown in
Figure 28.9.

The application containers are portable. You can run the same container in any host
environment and expect the same behavior for the application. This is ideal for application
developers. The developer can develop the application container in one environment, copy
it to a test environment, and then deploy the application container to a production environ-
ment, all without worrying about missing files.

By packaging and distributing an application as a container, the developer ensures
that the application will work for customers the same way it worked in the development
environment.

Since containers don’t contain the entire operating system, they’re more lightweight than
a full virtual machine, making them easier to distribute. The following sections describe two
of the most common container packaging systems used in Linux.

Chapter 19, “Embracing Best Security Practices,” discussed the use of
chroot jails as a method for separating applications running on a Linux
system. The first containers utilized this same method to separate appli-
cations. Today’s container packages use the chroot jail to separate appli-
cations but also incorporate advanced Linux features such as AppArmor
and SELinux, kernel namespaces, control groups (cgroups), and addi-
tional kernel capabilities.

Container Software
Linux has been in the forefront of container development, making it a popular choice for
developers. Two main container packages are commonly used in Linux:

■■ LXC: The LXC package was developed as an open source standard for creating con-
tainers. Each container in LXC is a little more involved than just a standard lightweight

Container

App
Files

Support
Files

Host Operating System

Container

App
Files

Support
Files

Container

App
Files

Support
Files

Container

App
Files

Support
Files

F IGURE 28 .9   Running an application in a container

Exploring Containers  783

application container but not quite as heavy as a full virtual machine, placing it some-
where in the middle. LXC containers include their own bare-bones operating system
that interfaces with the host system hardware directly, without requiring a host
operating system to handle that part. Because the LXC containers contain their own
mini–operating system, they are sometimes referred to as virtual machines, although
that term isn’t quite correct as the LXC containers still require a host operating system
to operate.

■■ Docker: The Docker package was developed by Docker Inc. and released as an open
source project. Docker is extremely lightweight, allowing several containers to run on
the same host Linux system. Docker uses a separate daemon that runs on the host Linux
system that manages the Docker images installed. The daemon listens for requests from
the individual containers as well as from a Docker command-line interface that allows
you to control the container environments.

Container Templates
Just like virtual machines, containers allow you to create templates to easily duplicate con-
tainer environments. The different types of Linux containers use different methods for dis-
tributing templates.

The LXC package uses a separate utility called LXD to manage containers. In recent
versions, LXD has become so popular that it is now packaged itself as container software,
although it still uses the LXC system images of the container.

Docker uses Docker container image files to store container configurations. The container
image file is a read-only container image that can store and distribute application containers.

Working with Docker
The Docker container software package provides an easy platform to run OS containers in
your Linux environment. However, because Docker shares the host OS kernel with the con-
tainers, you can only run Linux containers on a Linux Docker host.

You use the docker command-line tool to easily interact with the Docker system, starting,
stopping, and interacting with containers. Table 28.1 shows the commands available for you
to use with the docker command.

You can either build a new container image from a Docker configuration file or download
a preconfigured container image directly from a container repository, where other admins
have posted their containers. Docker itself maintains a container repository at http://
hub.docker.com.

The following exercise walks you through the steps to install and use Docker on your
Linux system to start hosting Linux containers.

http://hub.docker.com
http://hub.docker.com

784  Chapter 28  ■  Understanding Cloud and Virtualization Concepts

TABLE 28 .1   The docker utility commands

Command Description

attach Connects the host STDIN, STDOUT, and STDERR to the container

build Creates a new container image from a Docker configuration file

commit Creates a new image of an edited container on the local system

cp Copies files and directories between the local system and a container

exec Connects to a running container and executes a command

images Lists locally stored container images

inspect Displays detailed information about containers

kill Immediately stops a running container

login Logs into the Docker hub repository

logs Retrieves logs from a running container

ps Lists running containers

pull Retrieves a container from the Docker repository

push Commits a container image to the Docker repository

rm Deletes a stopped container

rmi Deletes a container image from local storage

run Starts a container image

stop Stops a running container

start Starts a stopped container

Exploring Containers  785

E X E R C I S E 2 8 . 1  

Working with Containers

1.	 Install the Docker software from your distribution’s software repository (see Chapter 13,
“Governing Software”). For Ubuntu, type the command sudo apt install docker.
For Red Hat–based distributions, such as Rocky Linux, the command is sudo dnf
install docker.

2.	 After installing the Docker software, you communicate with it by using the docker
command. Check to make sure Docker is running by typing sudo docker ps at the
command line:

$ sudo docker ps
Emulate Docker CLI using podman. Create /etc/containers/nodocker to quiet msg.
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
$

The output shows that Docker is running and lists any containers that are currently
running (currently none).

3.	 Retrieve the Docker customized container image for a generic Apache web server by
typing the command sudo docker pull docker.io/library/httpd:latest. This causes
Docker to query the Docker repository at http://hub.docker.com and retrieve
the latest version of a customized Apache web server running on a generic Linux OS
platform. If you need to use a specific version of Apache, you can specify it after the
container image name, such as httpd:2.4.

4.	 Deploy the httpd container image to your Docker environment by typing sudo docker
run -d -t -p 8088:80 --name myApache httpd. This command starts the container in
background mode (the -d option), connects a terminal to the container (the -t option),
exposes TCP 80 port on the container to port 8088 on the host (the -p option), and
gives the container a simple name to use for the docker commands. It’s important to
remember that containers are self-contained, so to connect to a port on the container
you must instruct Docker to expose the port to the host system. When you run this
command, Docker will display the ID assigned to the container. Verify that the container
is running by typing sudo docker ps.

$ sudo docker run -d -t -p 8088:80 --name myApache httpd
Emulate Docker CLI using podman. Create /etc/containers/nodocker to quiet msg.
43ee094b028d7b3c9a168cf29284428b156624f8bfc3fcf5cbb5c644c56548cc
$ sudo docker ps
Emulate Docker CLI using podman. Create /etc/containers/nodocker to quiet msg.
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
43ee094b028d docker.io/library/httpd:latest httpd-foreground 4 seconds ago
Up 5 seconds ago 0.0.0.0:8088->80/tcp myApache
$

http://hub.docker.com

786  Chapter 28  ■  Understanding Cloud and Virtualization Concepts

E X E R C I S E 2 8 . 1   (c o n t i n u e d)

The output shows that indeed the httpd container is running and that it has exposed
the TCP 80 port on the container to TCP port 8088 on the host system.

5.	 Connect to the Apache web server running in the container by opening the browser in
your host Linux desktop and typing http://localhost:8088. You will see the generic “It
works!” message produced by the Apache web server.

6.	 Open an interactive Bash shell in the running container by typing sudo docker exec -i
-t myApache bash. This connects to the container named myApache as an interactive
terminal (the -i and -t options) and runs the bash command-line command,
producing a shell prompt. You should see something like this:

$ sudo docker exec -it myApache bash
Emulate Docker CLI using podman. Create /etc/containers/nodocker to quiet msg.
root@43ee094b028d:/usr/local/apache2#

7.	 The Bash shell command prompt indicates that you are logged into the container OS
as the root user account and that it is in the /usr/local/apache2 directory. From
there you can view and modify the Apache web server configuration files or create
new web pages in the /usr/local/apache2/htdocs directory. To return to the host
system command line, type exit.

root@43ee094b028d:/usr/local/apache2# exit
exit
[rich@localhost ~]$

8.	 Stop the running container by typing sudo docker stop myApache. You can verify that
the container has stopped by typing sudo docker ps.

9.	 Delete the container from your Docker system by typing sudo docker rm myApache.

10.	 If you don’t want the httpd container image on your workstation anymore, type sudo
docker rmi httpd.

Summary
Cloud computing provides an easy way to expand the computing resources for a company
without having to purchase and administer your own hardware. There are three levels of
cloud computing that each provide different services. Infrastructure as a service (IaaS) pro-
vides hardware resources such as servers, storage, and network. Platform as a service (PaaS)
provides development environments that consist of an operating system and any libraries
required to develop, test, and deliver application software. Software as a service (SaaS)
runs applications from the cloud servers across the Internet.

Cloud computing environments use virtualization to implement many servers without lots
of physical hardware. With virtualization, one large server can host multiple smaller guest

Exam Essentials  787

systems. The hypervisor software manages the resources allocated to each guest system and
manages how those resources are used.

There are two types of hypervisor environments used. Type I hypervisors interact directly
with the system hardware. Guest systems receive system resources directly from the hypervi-
sor software. Type II hypervisors run on top of a host operating system. The host operating
system interacts with the system hardware and provides resources to the Type II hypervisor,
which in turn allocates the resources to the guest systems.

Containers are a different type of virtualization. Containers provide a consistent runtime
environment for a single application. When you deploy an application into a container, the
application container is guaranteed to run the same way no matter what server it runs on. By
deploying applications using containers, you’re guaranteed the application will run the same
way in the development, test, and production environments. Containers don’t contain as
much overhead as virtual machines, making them easier to distribute.

Exam Essentials
Describe the three primary methods of providing a cloud computing environment.   Public
clouds are hosted on servers owned and operated by a third party. The company doesn’t
own or operate any of the server hardware; it just utilizes space on those servers. Other com-
panies can rent space in the same public cloud. Private clouds are hosted on servers located
within the corporate network. All of the application files as well as data files reside within
the corporate network. Hybrid clouds utilize private cloud servers but also interface them
with public cloud servers. With the hybrid cloud, data could be located either externally in
the public cloud or internally on the private cloud.

Explain the three types of cloud services.   Infrastructure as a service (IaaS) provides
hardware-level services to customers. This includes servers, storage space, and the network
resources to connect them. Platform as a service (PaaS) provides on-demand environments
for developing software. In the PaaS cloud service, the server hardware, operating system,
and runtime libraries are all provided by the cloud service. Software as a service (SaaS) runs
applications in the cloud environment, allowing customers to access those applications via
the Internet.

Explain the two types of hypervisors.   Type I hypervisors run directly on the system
hardware. They act as a mediator between the hardware and the guest operating systems.
Type I hypervisors allocate resources to each guest operating system, ensuring that each one
gets enough. Type II hypervisors run on top of a host operating system. The host operating
system interacts with the server hardware; the hypervisor software must go through the host
operating system to access resources. Guest operating systems still only interact with the
hypervisor software.

Describe how containers differ from virtual machines.   Most container packages don’t
include a full operating system, but virtual machines do. Container packages only include the
library files and application runtime files necessary to run a specific application. This makes
the containers lightweight and easy to deploy.

788  Chapter 28  ■  Understanding Cloud and Virtualization Concepts

Review Questions
1.	 Which cloud service method utilizes only servers owned and operated by a third party?

A.	 Private

B.	 Public

C.	 Hybrid

D.	 Type II

E.	 Type I

2.	 Tom currently runs a cloud for his company on internal servers but needs some extra
processing power to run a new application. What method of cloud service can he check out
to leverage his existing cloud without needing to buy more internal servers?

A.	 Private

B.	 Public

C.	 Hybrid

D.	 Type I

E.	 Type II

3.	 Sally is interested in developing her application in the cloud without having to worry about
administering an operating system. What type of cloud service should she buy?

A.	 PaaS

B.	 Private cloud

C.	 IaaS

D.	 SaaS

E.	 Hybrid cloud

4.	 Which type of cloud service allows you to spin up your own operating systems on infrastruc-
ture provided by the cloud?

A.	 PaaS

B.	 Private cloud

C.	 IaaS

D.	 SaaS

E.	 Hybrid cloud

5.	 Which type of hypervisor interfaces directly with the host system hardware?

A.	 Private

B.	 Public

C.	 Type II

D.	 Type I

E.	 Hybrid

Review Questions  789

6.	 Henry already has installed Red Hat Linux on his server but now needs to install virtual
machines. What type of hypervisor package should he use?

A.	 Private

B.	 Public

C.	 Type II

D.	 Type I

E.	 Hybrid

7.	 Which type of hypervisor template bundles all of the configuration files into a single file for
distribution?

A.	 XML

B.	 JSON

C.	 OVA

D.	 OVF

E.	 YAML

8.	 Fred wants to package his application so that it’s guaranteed to run the same way no matter
what Linux distribution his customers use. How can he do this?

A.	 Package the application as a container.

B.	 Package the application as a hypervisor.

C.	 Deploy the application to a private cloud.

D.	 Deploy the application as a virtual machine.

E.	 Bundle the application as a tar file and deploy it.

9.	 What method should you use to easily move an application from a development environment
to a production environment without having to duplicate the operating system?

A.	 Public cloud

B.	 Private cloud

C.	 Type I hypervisor

D.	 Type II hypervisor

E.	 Container

10.	 Which Linux container package runs an engine as a process on the host operating system and
provides a command-line interface to control containers?

A.	 Snap

B.	 Docker

C.	 KVM

D.	 XEN

E.	 VirtualBox

Inspecting Cloud and
Virtualization Services

✓✓ Objective 3.5: Summarize container, cloud, and
orchestration concepts

Chapter

29

When designing and managing various cloud and virtualiza-
tion system configurations, you need to understand how virtual
and physical networks interoperate, the various disk storage

choices available, how to automate booting a system, and how you can quickly install Linux
distributions on your virtual machines. In addition, you need to be aware of some basic
virtual machine creation and management tools. In this chapter, we’ll continue our journey,
which started in Chapter 28, into cloud and virtualization topics.

Focusing on VM Tools
Various virtual machine utilities allow you to create, destroy, boot, shut down, and configure
your guest VMs. There are many open source alternatives from which to choose. Some work
only at the command line and sometimes are used within shell scripts, whereas others are
graphical. In the following sections, we’ll look at a few of these tools.

Looking at libvirt
A popular virtualization management software collection is the libvirt library. This
assortment includes the following elements:

■■ An application programming interface (API) library that is incorporated into several
open source VMMs (hypervisors), such as KVM

■■ A daemon, libvirtd, that operates on the VM host system and executes any needed
VM guest system management tasks, such as starting and stopping the VM

■■ Command-line utilities, such as virt-install and virsh, that operate on the VM
host system and are used to control and manage VM guest systems

While typically most command-line utilities that start with vir or virt employ the
libvirt library, you can double-check this using the ldd command. An example is shown
in Listing 29.1 on a Rocky Linux distribution that has hypervisor packages installed.

Listing 29.1:  Checking for libvirt using the ldd command

$ which virsh
/usr/bin/virsh
$
$ ldd /usr/bin/virsh | grep libvirt

Focusing on VM Tools  793

 libvirt-lxc.so.0 => /lib64/libvirt-lxc.so.0 (0x00007f4a3a10c000)
 libvirt-qemu.so.0 => /lib64/libvirt-qemu.so.0 (0x00007f4a39f08000)
 libvirt.so.0 => /lib64/libvirt.so.0 (0x00007f4a39934000)
$

A primary goal of the libvirt project is to provide a single way to manage virtual
machines. It supports a number of hypervisors, such as KVM, QEMU, Xen, and VMware
ESXi. You can find out more about the libvirt project at the Libvirt.org website.

Viewing virsh
One handy tool that uses the libvirt library is the virsh shell. It is a basic shell you can employ
to manage your system’s virtual machines.

If you’d like to try out the virsh shell, you can obtain it through the
libvirt-client or libvirt-clients package. For older distributions,
it may be located in the libvirt-bin package. Package installation was
covered in Chapter 13, “Governing Software.” Be aware that additional
software packages are needed to create virtual machines.

If you have a VMM (hypervisor) product installed, you can employ the virsh shell to
create, remove, start, stop, and manage your virtual machines. An example of entering and
exiting the virsh shell is shown in Listing 29.2. Keep in mind that super user privileges are
typically needed for shell commands involving virtual machines.

Listing 29.2:  Exploring the virsh shell

$ virsh
Welcome to virsh, the virtualization interactive terminal.

Type: 'help' for help with commands
 'quit' to quit

virsh #
virsh # exit

$

You don’t have to enter the virsh shell in order to manage your virtual machines. The
various virsh commands can be entered directly from the Bash shell, which makes it use-
ful for those who wish to use the commands in shell scripts to automate virtual machine
administration. An example of using the virsh utility interactively is shown in Listing 29.3.

http://libvirt.org

794  Chapter 29  ■  Inspecting Cloud and Virtualization Services

Listing 29.3:  Using the virsh utility interactively

$ virsh help setvcpus
 NAME
 setvcpus - change number of virtual CPUs

 SYNOPSIS
 setvcpus <domain> <count> [--maximum] [--config]
[--live] [--current] [--guest] [--hotpluggable]

 DESCRIPTION
 Change the number of virtual CPUs in the guest domain.

 OPTIONS
 [--domain] <string> domain name, id or uuid
 [--count] <number> number of virtual CPUs
 --maximum set maximum limit on next boot
 --config affect next boot
 --live affect running domain
 --current affect current domain
 --guest modify cpu state in the guest
 --hotpluggable make added vcpus hot(un)pluggable

$

An easier utility than virsh to use for creating virtual machines at the
command line is the virt-install utility. It is a Python program and is
typically available from either the virtinst or virt-install package,
depending on your distribution.

Managing with Virtual Machine Manager
Not to be confused with a hypervisor (VMM), the Virtual Machine Manager (also called
VMM) is a lightweight desktop application for creating and managing virtual machines. It is
a Python program available on many distributions that employ a GUI and is obtainable from
the virt-manager package.

The Virtual Machine Manager can be initiated from a terminal emulator within the
graphical environment via the virt-manager command. The VMM user interface is shown on
a Rocky Linux 8 distribution in Figure 29.1.

Focusing on VM Tools  795

You do need to use super user privileges to run the Virtual Machine Manager, and if the
virt-manager command is not issued from an account with those privileges, it will open
a pop-up window asking for the root account password or something similar, depending on
the distribution.

One nice feature the Virtual Machine Manager provides through its View menu is
performance statistic graphs. In addition, the GUI interface allows modification of guest
virtual machines’ configurations, such as their virtual networks (virtual network configura-
tions are covered later in this chapter).

F IGURE 29 .1   Virtual Machine Manager

796  Chapter 29  ■  Inspecting Cloud and Virtualization Services

The Virtual Machine Manager offers, by default, a virtual network com-
puting (VNC) client viewer (virt-viewer). Thus, a graphical (desktop
environment) console can be attached to any running virtual machine.
However, SPICE also can be configured to do the same. VNC and SPICE
were covered in Chapter 8, “Comparing GUIs.”

You can view screenshots of the Virtual Machine Manager, read its documentation, and
peruse its code at the Virt-manager.org website.

Understanding Bootstrapping
A bootstrap is a small fabric or leather loop on the back of a shoe. Nowadays you use them
to help pull a shoe onto your foot by hooking your finger in the loop and tugging. A phrase
developed from that little tool, “Pick yourself up by your bootstraps,” which means to
recover from a setback without any outside help.

Over time, the computer industry began mimicking that phrase with the terms bootstrap-
ping and booting. They are often used interchangeably, but typically booting a system refers
to powering up a system and having it start via its bootloader code. Bootstrapping a system
refers to installing a new system using a configuration file or image of an earlier system
installation.

Booting with Shell Scripts
Whether you are creating guest virtual machines in the cloud or on your own local host
machine, there are various ways to get them booted. Starting a few VMs via a GUI is not too
terribly difficult, but if your company employs hundreds of virtual machines, you need to
consider automating the process.

Using shell scripts for booting virtual machines is typically a build-your-own approach,
though there are many examples on the Internet. It works best for booting guest virtual
machines on a company-controlled host machine.

If you prefer not to start from scratch, take a look at GitHub for available
scripts. One popular project, which has several forks, is http://github
.com/giovtorres/kvm-install-vm.

You can create configuration files for your various virtual machines and read them into
the shell script(s) for booting as needed. The guest can be booted, when the host system
starts, at predetermined times, or on demand. This is a flexible approach that allows a great
deal of customization.

http://virt-manager.org
http://github.com/giovtorres/kvm-install-vm
http://github.com/giovtorres/kvm-install-vm

Understanding Bootstrapping  797

Booting School VMs with Shell Scripts

A school environment is an excellent setting for using guest virtual machines, especially in
computer science classes. VMs provide an economical and highly flexible solution.

On the servers, guest VMs are configured to employ either temporary or permanent
storage, depending on class needs. For example, students who do not need long-term
storage for their files on the VM are provided with guest virtual machines with transitory
virtual disks. Students who do need to store and later access their files, such as program-
ming students, are provided with guest machines with persistent storage.

These guest virtual machines are booted as needed via scripts. The scripts can be initiated
by an instructor prior to class or scheduled via a cron job (covered in Chapter 26, “Auto-
mating Jobs”) or even via systemd timers (systemd was covered in Chapter 6, “Maintaining
System Startup and Services”).

In the classroom, either thin clients or student (or school-provided) laptops are available for
accessing the guest virtual machines. The configuration and deployment of such machines
simplifies many school computing environment complications and typically lowers associ-
ated costs.

Kickstarting with Anaconda
You can quickly and rather easily bootstrap a new system (physical or virtual) using the
kickstart installation method. This RHEL-based technique for setting up and conducting a
system installation consists of the following:

1.	 Create a kickstart file to configure the system.

2.	 Store the kickstart file on the network or on a detachable device, such as a USB
flash drive.

3.	 Place the installation source (e.g., ISO file) where it is accessible to the kickstart process.

4.	 Create a boot medium that will initiate the kickstart process.

5.	 Kick off the kickstart installation.

Creating the Kickstart File
A kickstart file is a text file that contains all the installation choices you desire for a new
system. While you could manually create this file with a text editor, it is far easier to use an
anaconda file. For Red Hat–based distros, at installation, this file is created and stored in the

798  Chapter 29  ■  Inspecting Cloud and Virtualization Services

/root directory and is named anaconda-ks.cfg. It contains all the installation choices
that were made when the system was installed.

Ubuntu distributions do not create anaconda files at system installa-
tion. Instead you have to install the system-config-kickstart utility
(the package name is system-config-kickstart) and use it to create
your kickstart file. Ubuntu has a native bootstrapping product called
preseed. It may be wise to use it, as opposed to the Red Hat–based kick-
start method. Also, openSUSE distributions have their own utility called
AutoYaST, which is another bootstrap alternative to kickstart.

An example of a Rocky Linux 8 distribution’s anaconda file is shown snipped in
Listing 29.4.

Listing 29.4:  Looking at the anaconda-ks.cfg file

cat /root/anaconda-ks.cfg
#version=RHEL8
Use graphical install
graphical

repo --name="AppStream" --baseurl=file:///run/install/sources/mount-0000-
cdrom/AppStream

%packages
@^workstation-product-environment
@gnome-apps
@graphical-admin-tools
@office-suite
@system-tools
kexec-tools

%end

Keyboard layouts
keyboard --xlayouts='us'
System language
lang en_US.UTF-8

Understanding Bootstrapping  799

Network information
network --bootproto=dhcp --device=enp0s3 --ipv6=auto --activate
network --hostname=localhost.localdomain

Use CDROM installation media
cdrom

Run the Setup Agent on first boot
firstboot --enable

ignoredisk --only-use=sda
autopart
Partition clearing information
clearpart --none --initlabel

System timezone
timezone America/New_York --isUtc

Root password
rootpw --iscrypted 6O/.K9AvlGaortpbn4$g0caaipRohs6RRx9pkyNucLSgj0Zee4mkWS
MmaVcCIRZgl2ooRNU21Lcr3MMGPSTcGjrqd8IT8CL2WUwz6KtN0
%addon com_redhat_kdump --enable --reserve-mb='auto'

%end

%anaconda
pwpolicy root --minlen=6 --minquality=1 --notstrict --nochanges --notempty
pwpolicy user --minlen=6 --minquality=1 --notstrict --nochanges --emptyok
pwpolicy luks --minlen=6 --minquality=1 --notstrict --nochanges --notempty
%end
$

Notice in Listing 29.4 that the root password is stored in this file. If other user accounts
are created at installation time, those are stored here as well. While the values are encrypted,
the file should still be kept secured so as not to compromise any of your virtual or physical
systems this file is used to bootstrap.

In order to create the kickstart file for a system installation, start with the anaconda file
and copy it for your new machines. Typically ks.cfg is used as the kickstart filename. After
that, open the file in a text editor and make any necessary modifications.

Kickstart files use a special syntax, and unfortunately there are no man pages describing
it. Your best option is to open your favorite web browser and enter Kickstart Syntax Refer-
ence to find a Fedora or Red Hat documentation site.

800  Chapter 29  ■  Inspecting Cloud and Virtualization Services

Don’t let kickstart file typographical errors cause installation problems.
Besides giving the file a team review, use the ksvalidator utility to find
syntax issues in a kickstart file.

Storing the Kickstart File
For regular physical system installations, typically a configured kickstart file is stored on
removable media (such as a USB flash drive) or somewhere on the network, if you plan on
using a PXE or TFTP boot process. For virtual machine creation, you can store it locally on
the host system. In any case, make sure the file is properly protected.

Placing the Installation Source
The installation source is typically the ISO file you are employing to install the Linux distri-
bution. However, you can also use an installation tree, which is a directory tree containing
the extracted contents of an installation ISO file.

Often for a regular physical system, the ISO is stored on removable media or a network
location. However, for a virtual machine, simply store the ISO or installation tree on the host
system. You can even place it in the same directory as the kickstart file, as was done on the
system shown in Listing 29.5.

Listing 29.5:  Viewing the ks.cfg and ISO files’ location

ls VM-Install/
ks.cfg ubuntu-20.04.1-live-server-amd64.iso
#

Creating a Boot Medium
For a physical installation, the method and medium you choose depend on the various
system boot options as well as the type of system on which you will be performing the instal-
lation. A simple method for servers that have the ability to boot from USB drives or DVDs is
to store a bootable live ISO on one of these choices.

For a virtual machine installation, such as a virtual machine on a KVM hypervisor, there
is no need to create a boot medium. This just gets easier and easier!

Kicking Off the Installation
After you have everything in place, start the kickstart installation. For a physical system,
start the boot process, reach a boot prompt, and enter a command like linux ks=hd:sdc1:/
ks.cfg, depending on your hardware environment, your bootloader, and the location of
your kickstart file.

For a virtual system, you can simply employ the virt-install command if it’s available
on your host machine. Along with the other options used to create a virtual machine, you
add two options similar to these:

--initrd-inject /root/VM-Install/ks.cfg
--extra-args="ks=file:/ks.cfg console=tty0 console=ttyS0,115200n8"

Understanding Bootstrapping  801

If desired, you can create a shell script with a loop and have it reissue the virt-install
command multiple times to create/install as many virtual machines as you need.

Initializing with Cloud-init
Cloud-init is a Canonical product (the same people who produce the Ubuntu distributions).
It provides a way to bootstrap virtualized machines. On its Cloud-init.io website, Canonical
describes it best: “Cloud images are operating system templates and every instance starts
out as an identical clone of every other instance. It is the user data that gives every cloud in-
stance its personality and cloud-init is the tool that applies user data to your instances auto-
matically.”

The cloud-init service is written in Python and is available for cloud-based virtualiza-
tion services, such as Amazon Web Services (AWS), Microsoft Azure, and Digital Ocean as
well as with cloud-based management operating systems, like OpenStack. And your virtual
machines don’t have to be in a cloud to use cloud-init. It can also bootstrap local virtual
machines using VMM (hypervisor) products like VMware and KVM. In addition, it is sup-
ported by most major Linux distributions. It is called an industry standard for a reason.

Cloud-init allows you to configure the virtual machine’s hostname, temporary mount
points, and the default locale. Even better, pregenerated OpenSSH private keys can be
created to provide encrypted access to the virtualized system. Customized scripts can be
employed to run when the virtual machine is bootstrapped. This is all done through what is
called user-data, which is either a string of information or data stored in files that are typi-
cally Yet Another Markup Language (YAML)-formatted files.

If you would like to take a look at the cloud-init utility, you can install it
through the cloud-init package (package installation was covered in
Chapter 13). It is available on most major Linux distributions.

The /etc/cloud/cloud.cfg file is the primary cloud-init configuration file. The
command-line utility name is, as you might suspect, the cloud-init command. An example
of using cloud-init to get help is shown in Listing 29.6.

Listing 29.6:  Employing the -h option to get help on the cloud-init command

$ cloud-init -h
usage: /usr/bin/cloud-init [-h] [--version] [--file FILES] [--debug] [--force]

 {init,modules,single,query,dhclient-hook,features,analyze,devel,
collect-logs,clean,status}
 ...

optional arguments:
 -h, --help show this help message and exit

802  Chapter 29  ■  Inspecting Cloud and Virtualization Services

 --version, -v show program's version number and exit
 --file FILES, -f FILES
 additional yaml configuration files to use
 --debug, -d show additional pre-action logging (default: False)
 --force force running even if no datasource is found (use at
 your own risk)

Subcommands:
 {init,modules,single,query,dhclient-hook,features,analyze,devel,
collect-logs,clean,status}
 init initializes cloud-init and performs initial modules
 modules activates modules using a given configuration key
 single run a single module
 query Query standardized instance metadata from the command
 line.
 dhclient-hook run the dhclient hookto record network info
 features list defined features
 analyze Devel tool: Analyze cloud-init logs and data
 devel Run development tools
 collect-logs Collect and tar all cloud-init debug info
 clean Remove logs and artifacts so cloud-init can re-run.
 status Report cloud-init status or wait on completion.
$

You would only employ the cloud-init command on a host machine,
where virtual machines are created. For cloud-based virtualization ser-
vices, such as AWS or Microsoft Azure, you provide the user-data file
or information via their virtualization management interface to bootstrap
newly created virtual machines.

Exploring Storage Issues
It is easy to forget that your virtual machines don’t use real disks. Instead, their virtual disks
are simply files on a physical host’s disk. Depending on the VMM (hypervisor) employed and
the set configuration, a single virtual disk may be represented by a single physical file or mul-
tiple physical files.

When setting up your virtual system, it is critical to understand the various virtual
disk configuration options. The choices you make will directly affect the virtual machine’s
performance. Several virtualization services and products have a few terms you need to
understand before making these configurations.

Exploring Storage Issues  803

Provisioning   When a virtual machine is created, you choose the amount of disk
storage. However, it is a little more complicated than simply selecting the size. Virtual
disks are provisioned either thinly or thickly.

Thick provisioning is a static setting where the virtual disk size is selected and the
physical file(s) created on the physical disk is preallocated. Thus, if you select 700 GB as
your virtual disk size, 700 GB of space is consumed on the physical drive. Some hypervi-
sors (VMMs) have various versions of thick provisioning, such as lazy zero thick, that
have performance implications.

Thin provisioning is grown dynamically, which causes the hypervisor to consume only
the amount of disk space actually used for the virtual drive. Thus, if you select 700 GB
as your virtual disk size but only 300 GB of space is written to the virtual drive, then
only 300 GB of space is consumed on the physical drive. As more data is written to the
virtual drive, more space is utilized on the physical drive up to the 700 GB setting. Be
aware that the reverse is not necessarily true—when you delete data from the virtual
drive, it does not automatically free up disk space from the physical drive.

Thin provisioning is often done to allow overprovisioning. In this scenario, more disk
space is assigned virtually than is available physically. The idea is that you can scale up
the physical storage as needed. For example, if the host system is using LVM (covered
in Chapter 11, “Handling Storage”), additional volumes are added as needed to the
physical logical volume to meet virtual machine demand.

Persistent Volumes   The term persistent volume is used by many virtualization prod-
ucts, such as OpenStack and Kubernetes. In essence, a virtualized persistent volume is
similar to a physical disk in how it operates. Data is kept on the disk until the system or
user overwrites it. The data stays on the disk, whether the virtual machine is running or
not, and with some virtualization products, it can remain even after the virtual machine
using it is destroyed.

Blobs   Blob storage is a Microsoft Azure cloud platform term. Blob storage is large
unstructured data, which is offered over the Internet and can be manipulated with
.NET code. Typically, a blob consists of images, streaming video and audio, big data,
and so on.

Blob data items are grouped together into a container for a particular user account and
can be one of three different types:

■■ Block blobs are blocks of text and binary data. The blobs are not managed as
a group but instead are handled independently of one another. Their size limit
is 4.7 TB.

■■ Append blobs are also blocks of text and binary data. However, their storage is
enhanced to allow for efficient appending operations. Thus, this blob type is often
used for logging data.

■■ Page blobs are simply random access files, which can be up to 8 TB in size. They are
also used as virtual disks for Azure virtual machines.

804  Chapter 29  ■  Inspecting Cloud and Virtualization Services

Considering Network Configurations
Applications on physical systems are able to reach the outside world via a network interface
card (NIC) and an attached network. With virtualized systems and virtualized networks, the
landscape is a little different. Virtualized machines can have any number of virtualized NICs,
the hypervisor may provide virtualized internal switches, and the NIC configuration choices
are plentiful. The right configuration results in greater network and application performance
as well as increased security.

Virtualizing the Network
Network virtualization has been evolving over the last few years. While it used to mean the
virtualization of switches and routers running at OSI levels 2 and 3, it can now incorporate
firewalls, server load balancing, and more at higher OSI levels. Some cloud providers are
even offering network as a service (NaaS).

Two basic network virtualization concepts are virtualized local area networks (VLANs)
and overlay networks:

VLAN   To understand a VLAN, it is best to start with a local area network (LAN)
description. Systems and various devices on a LAN are typically located in a small area,
such as an office or building. They share a common communications line or wireless
link, they are often broken up into different network segments, and their network traffic
travels at relatively high speeds.

A VLAN consists of systems and various devices on a LAN, too. However, this group
of systems and various devices can be physically located across various LAN subnets.
Instead of physical locations and connections, VLANs are based on logical and virtual-
ized connections and use layer 2 to broadcast messages. Routers, which operate at layer
3, are used to implement this LAN virtualization.

Overlay Network   An overlay network is a network virtualization method that uses
encapsulation and communication channel bandwidth tunneling. A network’s com-
munication medium (wired or wireless) is virtually split into different channels. Each
channel is assigned to a particular service or device. Packets traveling over the channels
are first encapsulated inside another packet for the trip. When the receiving end of the
tunneled channel gets the encapsulated packet, the packet is removed from its capsule
and handled.

With an overlay network, applications manage the network infrastructure. Besides
the typical network hardware, this network type employs virtual switches, tunneling
protocols, and software-defined networking (SDN). Software-defined networking is a
method for controlling and managing network communications via software. It con-
sists of an SDN controller program as well as two application programming interfaces

Considering Network Configurations  805

called northbound and southbound. Other applications on the network see the SDN as
a logical network switch.

Overlay networks offer better flexibility and utilization than nonvirtualized network
solutions. They also reduce costs and provide significant scalability.

Configuring Virtualized NICs
Virtual NICs (adapters) are sometimes directly connected to the host system’s physical NIC.
Other times they are connected to a virtualized switch, depending on the configuration
and the hypervisor used. An example of a VM’s adapter using a virtual switch is shown in
Figure 29.2.

When configuring a virtual machine’s NIC, you have lots of choices. It is critical to
understand your options in order to make the correct selections.

Host-Only   A host-only adapter (sometimes called a local adapter) connects to a
virtual network contained within the virtual machine’s host system. There is no connec-
tion to the external physical (or virtual) network to which the host system is attached.

Virtual System

Virtual NIC

Hypervisor

Host System

Physical Network

Virtual Switch

Physical NIC

F IGURE 29 .2   Virtual machine using a virtual switch

806  Chapter 29  ■  Inspecting Cloud and Virtualization Services

The result is speed. If the host system has two or more virtual machines, the network
speed between the VMs is rather fast. This is because VMs’ network traffic does not
travel along wires or through the air but instead takes place in the host system’s RAM.

This configuration also provides enhanced security. A virtual proxy server is a good
example. Typically, a proxy server is located between a local system and the Internet.
Any web requests sent to the Internet by the local system are intercepted by the proxy
server, which then forwards them. It can cache data to enhance performance, act as a
firewall, and provide privacy and security. One virtual machine on the host can act as
a proxy server utilizing a different NIC configuration and have the ability to access the
external network. The other virtual machine employing the host-only adapter sends/
receives its web requests through the VM proxy server, increasing its protection.

Bridged   A bridged NIC makes the virtual machine like a node on the LAN or VLAN
to which the host system is attached. The VM gets its own IP address and can be seen on
the network.

In this configuration, the virtual NIC is connected to a host machine’s physical NIC. It
transmits its own traffic to/from the external physical (or virtual) network.

This configuration is employed in the earlier virtual proxy server example. The proxy
server’s NIC is configured as a bridged host, so it can reach the external network and
operate as a regular system node on the network.

NAT   A network address translation (NAT) adapter configuration operates in a way
that’s similar to how NAT operates in the physical world. NAT in the physical net-
working realm uses a network device, such as a router, to “hide” a LAN computer sys-
tem’s IP address when that computer sends traffic out onto another network segment.
All the other LAN systems’ IP addresses are translated into a single IP address to other
network segments. The router tracks each LAN computer’s external traffic, so when
traffic is sent back to that system, it is routed to the appropriate computer.

With virtualization, the NAT table is maintained by the hypervisor instead of a network
device. Also, the IP address of the host system is employed as the single IP address that is
sent out onto the external network. Each virtual machine has its own IP address within
the host system’s virtual network.

Physical and virtual system NAT has the same benefits. One of those is enhanced secu-
rity by keeping internal IP addresses private from the external network.

Dual-Homed   In the physical world, a dual-homed system (sometimes called a mul-
tihomed system) is a computer that has one or more active network adapters. Often a
physical host is configured with multiple NICs. This configuration provides redundancy.
If one physical NIC goes bad, the load is handled by the others. In addition, it provides
load balancing of external network traffic.

Considering Network Configurations  807

In the virtual world, many virtual machines are dual-homed or even multihomed,
depending on the virtual networking environment configuration and goals. Looking
back to our virtual proxy server example, it is dual-homed, with one internal net-
work NIC (host-only) to communicate with the protected virtual machine, and it has a
bridged adapter to transmit and receive packets on the external network. Figure 29.3
shows the complete network picture of this virtual proxy server.

The physical and virtual machine network adapter configuration has performance and
security implications. Understanding your internal virtual and external physical networks
and goals is an important part of making these choices.

Most container packages such as Kubernetes and Docker allow you to
create a service mesh between applications. The service mesh is a ded-
icated infrastructure layer on top of the network that helps facilitate
service-to-service communication. This enables separate parts of an
application to communicate with each other in a high-speed manner.

Virtual
Proxy Server

Virtual System

Bridged
Virtual NIC

Hypervisor

Host System

Physical Network

External
Virtual Switch

Internal
Virtual Switch

Physical NIC

Host-Only
Virtual NIC

Host-Only
Virtual NIC

F IGURE 29 .3   Virtual proxy server

808  Chapter 29  ■  Inspecting Cloud and Virtualization Services

Summary
Configuring your cloud and/or virtualization environment requires knowledge concerning
networking and storage options. In addition, you need to understand how to quickly boot
large numbers of virtual machines as well as bootstrap new ones. Discerning some of the
various virtual and cloud machine tools is important as well. With a firm grasp on these con-
cepts, you can participate in cloud and virtual system planning teams, which can successfully
migrate a company’s physical systems to a more modern and cost-effective environment.

Exam Essentials
Describe various VM tools.   The libvirt library is a popular software collection of
virtualization management components. It includes an API, a daemon (libvirtd), and
command-line utilities, such as virt-install and virsh. The virsh shell is one such tool
provided by the libvirt library that allows you to manage a system’s virtual machines. The
Virtual Machine Manager (also called VMM) is a lightweight desktop application for cre-
ating and managing virtual machines. You can initiate it from the command line by issuing
the virt-manager command in a terminal emulator.

Explain bootstrapping utilities.   The kickstart installation method employs a kickstart file
that contains all the bootstrap choices desired for a new system. Instead of starting from
scratch, the anaconda file, /root/anaconda-ks.cfg, is available on Red Hat–based dis-
tros and can be modified to configure a kickstart file. Ubuntu distributions do not employ
the kickstart installation method by default. Instead they use a bootstrapping product
named preseed. openSUSE distros also have their own alternative, which is AutoYaST.
The Canonical product, cloud-init, is a bootstrap utility that is available for local virtual
machines as well as cloud-based ones.

Detail the various virtual storage options.   Virtual disks can be provisioned either thick
or thin. Thick provisioning is a static setting where the virtual disk size is selected and the
physical file(s) created on the physical disk is preallocated. Thin provisioning is grown
dynamically, which causes the hypervisor to consume only the amount of disk space actually
used for the virtual drive. Drives can be either persistent or temporary. Temporary volumes
are discarded when the virtual machine is stopped, whereas persistent disks are kept not
only when the VM is shut down but sometimes even after it is deleted. Blob storage refers to
unstructured data offered on the Microsoft Azure cloud platform. This storage typically con-
sists of images, streaming video and audio, big data, and so on. There are three blob types—
block, append, and page.

Exam Essentials  809

Summarize virtual network configurations.   One network type is an overlay network. This
network virtualization method uses encapsulation and communication channel bandwidth
tunneling. Besides the typical network hardware, this network type employs virtual switches,
tunneling protocols, and software-defined networking (SDN). Network adapters (NICs)
also have many configuration virtualization options. A dual-homed virtual machine has two
virtualized NICs. A host-only adapter connects to a virtual network contained within the
virtual machine’s host system, and there is no connection to the external network. A bridged
NIC makes the virtual machine like a node on the network to which the host system is
attached. A NAT adapter creates a virtualized NAT router for the VM.

810  Chapter 29  ■  Inspecting Cloud and Virtualization Services

Review Questions
1.	 Which of the following is true concerning the libvirt library software collection? (Choose

all that apply.)

A.	 Provides an API library for hypervisors

B.	 Provides a complete hypervisor (VMM) application

C.	 Provides the virsh and virsh-install utilities

D.	 Provides the anaconda file used for bootstrapping

E.	 Provides the libvirtd daemon for host systems

2.	 Carol wants to automate the management of her virtual machines via a Bash shell script.
Which of the following utilities can she use in this script? (Choose all that apply.)

A.	 virsh
B.	 virtinst
C.	 virt-manage
D.	 virt-install
E.	 setvcpus

3.	 Nick is setting up a bootstrapping process on a RHEL system. He needs to store the instal-
lation tree. Which of the following are locations where he could store it? (Choose all
that apply.)

A.	 Network location

B.	 USB flash drive

C.	 On AutoYaST

D.	 Within the preseed directory

E.	 With the kickstart file

4.	 Which of the following is true concerning the cloud-init product? (Choose all that apply.)

A.	 It was created and maintained by Microsoft.

B.	 It is usable by cloud-based virtualization services.

C.	 It is usable by cloud-based management operating systems.

D.	 It is supported by most major Linux distributions.

E.	 It is a bootstrap product.

5.	 Ms. Danvers is designing a set of virtual machines for her company, Miracle. Currently, her
host machine uses LVM but only has enough disk space for 1 TB of data. Her three VMs will
need 200 GB of disk space immediately but are projected to grow to 300 GB each within the
next year. What should she do?

A.	 Configure the three VMs to use persistent storage.

B.	 Configure the three VMs to use temporary storage.

Review Questions  811

C.	 Configure the three VMs to use thick provisioned storage.

D.	 Configure the three VMs to use thin provisioned storage.

E.	 Configure the three VMs to use blob storage.

6.	 Mr. Fury is a programming professor at Galactic University. This next semester he has chosen
to use virtual machines for his students’ labs. The students will be creating a single program
that they’ll work on throughout the entire semester. What is the best choice of disk storage
for Mr. Fury’s student virtual machines?

A.	 Persistent storage

B.	 Temporary storage

C.	 Thick provisioned storage

D.	 Thin provisioned storage

E.	 Blob block storage

7.	 Which of the following is true about an overlay network? (Choose all that apply.)

A.	 It is a storage virtualization method.

B.	 It is a network virtualization method.

C.	 It is a method that employs encapsulation.

D.	 It is a method that employs bandwidth tunneling.

E.	 It is a method that employs page blobs.

8.	 Carol needs her virtual machines to all act as nodes on her host machine’s LAN and get their
own IP address that they will use to send/receive network traffic. Which virtual NIC type
should she configure on them?

A.	 Host-only

B.	 Bridged

C.	 NAT

D.	 Multihomed

E.	 Dual-homed

9.	 Ms. Danvers wants her three virtual machines’ IP address to be kept private, but she also
wants them to communicate on the host machine’s network using its IP address. Which
virtual NIC type should she configure on them?

A.	 Host-only

B.	 Bridged

C.	 NAT

D.	 Multihomed

E.	 Dual-homed

812  Chapter 29  ■  Inspecting Cloud and Virtualization Services

10.	 Nick has created five virtual machines on his host system. One virtual machine is employed
as a firewall for the other four machines, which are confined with host-only adapters.
The firewall VM operates on the host system’s network as a node. Which of the following
describe his firewall adapter configuration? (Choose all that apply.)

A.	 Host-only

B.	 Bridged

C.	 NAT

D.	 Multihomed

E.	 Dual-homed

Orchestrating
the Environment

✓✓ Objective 3.4: Summarize common infrastructure as code
technologies

Chapter

30

Orchestration refers to the organization of a process that is
balanced and coordinated and that achieves consistency in the
results. In music, an orchestra conductor helps to organize the

process that the musicians must traverse to produce beautiful music. The conductor analyzes
the musical score (music recipe), determines the desired sound, and orchestrates the various
individual musicians to reach the desired and consistent results.

Orchestration in the computing world has great similarities to a music orchestra, except
instead of musicians, the process involves technologies. For example, a few IT processes that
need orchestration are as follows:

■■ Application development

■■ Configuration management

■■ Disaster recovery

■■ Server monitoring

■■ Security

Notice in this list that many of these processes overlap. For example, security is an impor-
tant item not just in server monitoring, but for the other list members as well. Thus, IT
orchestration often involves multiple technology layers and tools. In this chapter, we’ll take a
look at the IT process orchestration subsets covered by the certification.

Understanding Orchestration Concepts
One particular IT orchestration process that is getting a lot of attention these days is
DevOps. This method improves software delivery operations. DevOps includes the following
components:

■■ Continuous integration

■■ Continuous testing

■■ Continuous delivery (or deployment)

■■ Infrastructure as code

■■ Infrastructure automation

■■ Monitoring and logging

Understanding Orchestration Concepts  815

The name DevOps comes from melding two job titles together. A soft-
ware developer and a system administrator (also called tech operations)
come together to work as a team in order to create a DevOps environ-
ment.

Probing Procedures
In DevOps, the idea is to quickly and continually provide new software features, bug fixes,
and desired modifications to the customer. The focus is on continual small changes to the
app as opposed to large, monolithic updates:

Continual App Processing   One DevOps layer involves software revision control (see
Chapter 27, “Controlling Versions with Git”) that quickly integrates app changes into
the main software branch (continuous integration). In addition, these changes undergo
automated testing to avoid breaking the app when the branch merges (continuous test-
ing). With the help of the two previous components, software is delivered to the cus-
tomer on a continual basis (continuous delivery).

Controlling the App Environment   To support this continuous app processing layer,
it is critical in DevOps that the development and production environments match.
This includes equivalent hardware, device drivers, operating system versions, software
libraries, and so on. The requirement provides a software development environment
that creates production code free from bugs and complications due to mismatched
environments.

In addition, environment changes must be controlled and tested in a manner similar
to how software revisions are orchestrated. For example, if a controlled update to the
Linux kernel in the development environment introduces an unforeseen app bug, the
environment can be rolled back to its previous version until the bug is addressed. Envi-
ronment updates are typically done in small chunks, much like app revisions are han-
dled, so that each environment modification can be properly and discretely managed.
Tested new environments are added to a registry where older environments are also
maintained in case a rollback to an earlier environment is needed.

Defining the App Environment   In DevOps, the development and production environ-
ments (infrastructure) have predefined specifications, such as what hardware to employ,
the essential operating system, and any needed software packages as well as critical code
libraries. The non-hardware specifications are typically implemented into the environ-
ment via automated code (configuration management).

Besides an environment’s configuration, security measures, such as firewall ACLs
(Chapter 18, “Overseeing Linux Firewalls”) and authentication policies (Chapter 16,
“Looking at Access and Authentication Methods”), must also be orchestrated. This too
is implemented into the environment via automated code (policy as code).

816  Chapter 30  ■  Orchestrating the Environment

Configuration management and policy as code fall under the umbrella term infrastruc-
ture as code. A benefit of using infrastructure as code is that the environments are
repeatable. Also, they can be versioned, which is needed to implement revision control
in the app environments for both policies and configuration. This DevOps component is
covered more in depth later in this chapter.

Deploying the App Environment   The app and its development environment are often
moved to a production status (production environment) in a continual manner. The
“continual manner” can be hourly, daily, weekly, or whatever meets the app’s business
requirements.

The benefit of employing infrastructure as code techniques is that the process of deploy-
ing the app and its environment can be easily automated (infrastructure automation).
Red Hat’s Ansible product is one tool used for this DevOps deployment.

Monitoring the App Environment   When the app is operating in its production envi-
ronment, it needs to be monitored and logged. Software metrics, infrastructure resource
usage, and performance statistics are just a few of the items to monitor and log. The
goal is to track the app environment and ensure that it is meeting predetermined condi-
tions (environment health). Often this monitoring is automated as well.

As business needs change, the logged data can be valuable for future desired environ-
ment states. It provides threshold and performance measurements that make much
easier decisions as to what app or environment infrastructure modifications are needed.

In addition, monitoring can provide alerts to potential failures or resource depletion
events. If a particular preset limit is crossed, the monitoring software can issue an alert
or even handle the event itself using predefined event rules.

Orchestration is the key to agile DevOps. Besides the methodology, various orchestra-
tion tools provide additional speed needed to succeed in the continual software delivery
business setting.

Keep in mind that we are only covering a few DevOps concepts here.
There are several other interesting DevOps topics, including microser-
vices. For a deep dive into DevOps, consider The DevOps Adoption Play-
book by Sanjeev Sharma (Wiley, 2017).

Analyzing Attributes
Virtualization, and more specifically containers (covered in Chapter 28, “Understanding
Cloud and Virtualization Concepts”), greatly assist in the DevOps process. Containers in
DevOps provide the following:

Static Environment   Containers provide a predetermined app environment (also called
a container image) that does not change through time (immutable). The container is

Understanding Orchestration Concepts  817

created with preset library and operating system versions and security settings.
All these settings are recorded. No software updates (such as via a sudo
apt-get dist-upgrade command) are issued within the image.

Version Control   After the software development process and prior to moving a mod-
ified app container image into production, the container and its recorded configuration
are registered with a version control system. The version control system can contain
previous app container images, including the one currently in production. Some com-
panies use a manual version control system implemented with backups.

Replace Not Update   After registration, the app container is ready to move into pro-
duction. Instead of the production app container image being updated to match the
development image, the production container is stopped. The development app con-
tainer image then replaces the production container and starts as the production envi-
ronment. Thus, an environment switch occurs.

High Availability   Replication is the process of creating multiple copies of the pro-
duction app container image and running them. This allows you to stop old currently
unused production app containers and replace them with the new production app con-
tainers, which provides continual uptime for your app users. With containers and rep-
lication, the old method of shutting down your production environment to update it
during a time period in the wee hours of the morning is gone.

To accomplish these tasks with container images, you need orchestration. Orchestration
principles provide tools, utilities, and guidance for implementing app container images in a
fast-paced environment, such as one that uses DevOps.

Moving to DevOps and Orchestration

Marty is a tech ops lead. He is in charge of managing the systems that support his com-
pany’s primary application, called Future.

Jennifer is lead programmer on the Future app. She and her team make desired enhance-
ments and fix bugs in its software. When her team has completed its modifications and test-
ing of the app, it is moved into production on Marty’s systems.

Unfortunately, in this environment, problems ensue. Jennifer’s development computers are
not kept in sync with Marty’s production systems as far as server, operating system ver-
sions, and libraries are concerned. This introduces additional bugs into the Future app code
and causes lots of extra work for both Jennifer and Marty. In addition, customer-desired
modifications are very slow to move into production. Marty and Jennifer tend to blame
each other.

818  Chapter 30  ■  Orchestrating the Environment

A coworker, Dr. Brown, has come back from DevOps training and proposes a radical (at
least for them) way to shift their company’s development and production process. He sug-
gests the following:

1.	 The development team employs a container for their environment to create Future
app changes.

2.	 The production application environment is also moved to a container, and its image is
put into a registry for container version control.

3.	 The Future app production container is replicated, with each replication running to
meet customer demand using a tool such as Kubernetes.

4.	 The development container’s configuration and security policies are determined by
Marty and Jennifer’s team and recorded (infrastructure as code) in a tool, such as
Puppet or SaltStack.

5.	 Instead of massive changes to the Future app, Jennifer’s team will create small
incremental changes to the code and use a version control system, such as Git.

6.	 These small software code changes are tested automatically via a tool, such as CircleCI
or Jenkins.

7.	 The tested modifications are released on a weekly basis.

8.	 After the testing and development have been completed on the app development
image, it is moved into the container registry for version control.

9.	 The current Future app production container images are stopped and the development
containers take their places. This is done so that the Future app users experience no
outages. If needed, Marty can roll back to the old production container image should
problems arise.

10.	 On the production containers, the Future app is monitored and data logged to track
performance and other metrics, using a tool such as Splunk. Performance events or
container outages may automatically trigger the replication of additional production
containers.

11.	 Jennifer and her development team create a new Future app development container
image for more customer-requested modifications, and the process is started all
over again.

The result of this DevOps implementation greatly reduces the Future app’s software errors,
increases the speed of desired customer modifications into production, and improves the
communication between the tech ops and software development team. Overall, it is a
win-win, as many companies are discovering today.

Provisioning the Data Center  819

Provisioning the Data Center
When implemented correctly, container orchestration provides a way to increase the speed
and agility of application deployment. Whether your company’s data center is local or in
the cloud, you can use orchestration concepts to quickly set up your app’s required infra-
structure. A few important infrastructure provisioning concepts are covered in the follow-
ing sections.

Coding the Infrastructure
Much like a physical data center, a container infrastructure needs to be managed and con-
trolled. In orchestration, the container’s configuration is treated in a manner similar to how
software revisions are treated:

Determine the infrastructure.   Along with the app requirements, the environment on
which the app is executed must be preplanned. This activity is a mutual one between
software development and tech ops. In this mutual activity, the container’s operating
system, libraries, services, security configuration, and any other supporting software or
networking utilities are chosen.

The determined infrastructure is frozen to provide a nonchanging (immutable) envi-
ronment for development and then production. Typically this app container infrastruc-
ture is only accessible via the app’s or developer’s API. Remote access services such as
OpenSSH are not provided in order to protect its immutable environment.

Document the infrastructure.   The preset app container infrastructure is typically
documented through an orchestration tool. The configuration management and policy
as code settings (covered earlier in this chapter) are loaded into the utility’s infrastruc-
ture as code portal, in a process called automated configuration management. The data
is later used to deploy and replicate the app containers through build automation.

Provide revision control.   The infrastructure as code information is not just docu-
mented—it is also inserted into an orchestration tool registry, providing version con-
trol. Every time a change occurs in the container image infrastructure, its modifications
are tracked.

Troubleshoot the infrastructure.   If an app container is deployed into production and
problems occur, tech ops, software developers, or both handle the troubleshooting pro-
cess. One item to check is the production container’s documented configuration (as well
as its revisions) to determine if any infrastructure items may be to blame.

This provides an easier method for tracking down that pesky new software library that
caused all the problems. Various orchestration tools allow a quick determination of
modified infrastructure components and quicker problem resolution.

820  Chapter 30  ■  Orchestrating the Environment

Handling the application’s infrastructure in this manner increases the agility of your app
container deployment. It also improves the time to production speed. The basic life cycle of
an orchestrated app container image is shown in Figure 30.1.

Notice that at the end of the container’s life cycle (typically when the new app container
image is ready), the container image is removed. However, the old app container image’s
configuration should be stored within a version control system (or backup storage) and thus
redeployed if any problems occur with the new app container image.

Automating the Infrastructure
With automated configuration management, not only can you troubleshoot the infrastruc-
ture more easily and roll the environment back to an earlier version, the deployment is
automated. Often more than one app container is needed for both performance and balance
loading. Your environment may require hundreds of running production app containers.

Manually configuring this infrastructure is tedious and certainly not fast or cost effective.
With orchestration tools and automated configuration management, you can easily replicate
the production app container and don’t even have to be involved in the process (build auto-
mation). You simply let your orchestration tool know that you need X number of production
app container images running at any one time.

Here are a few popular automation utilities in use today:

■■ Ansible: Owned by Red Hat, its main selling point is that remotely controlled servers
don’t need to run a separate agent software package. Ansible uses OpenSSH and Python
to communicate using JSON-based protocols to remote servers. The configuration file is
a standard text file, which can be stored in an encrypted vault.

Design
app container
configuration.

Document
app container
configuration.

Store container
configuration

in registry.

Remove
production

app container(s).

Monitor
production

app container(s).

Deploy/replicate
production

app container.

F IGURE 30 .1   Basic app container life cycle

Provisioning the Data Center  821

■■ Chef: A Ruby-based package that uses Ruby-based “recipes” for defining server
configurations; can run in either a client-server mode or a stand-alone mode.

■■ Puppet: Uses its own language to define system configurations for remote servers,
thus requiring little to no programming knowledge to configure. It uses a client-server
architecture, requiring remotely controlled servers to run a client application in the
background. Currently is available in both commercial and open source versions.

■■ SaltStack: Owned by VMWare, this is a Python-based configuration management tool
that stores server configuration data in a YAML data structures.

■■ Terraform: Owned by HashiCorp, this uses its own declarative language for storing
server configurations, which you can define using the standard JSON data format.
It has the ability to graph all resources, allowing operators to view infrastructure
dependencies.

Comparing Agent and Agentless
Orchestration monitoring, logging, and reporting tools let you track app containers’ health
(how well they are performing, and if each one is still alive). Concerns over how these tools
may adversely affect an app container’s health gave rise to the agent versus agentless dispute.

Agent monitoring tools are orchestration utilities that require software (an agent) to be
installed in the app container being monitored. These agents collect the data and transmit it
to another location, such as a monitor server. The monitor server manages the information,
provides analysis reporting, and also sends alerts for events, such as a container crashing.

Agentless monitoring tools are also orchestration utilities. In this case, an agent is not
installed in the app container being monitored. Instead, the tool uses preexisting and/or
embedded software in the container or the container’s external environment to conduct its
monitoring activity.

Besides monitoring, logging, and reporting utilities, several high-level
orchestration engines provide agentless orchestration too. One such
example is Red Hat’s Ansible.

Whether to use an agent-based or an agentless orchestration utility is hotly debated. Some
people feel that an agent is detrimental to an app container’s performance, whereas others
see only minor effects. Some tech ops insist that agentless tools are inflexible; others believe
installing and maintaining an agent in their containers is an unnecessary hassle. Whatever
side you choose, realize that most companies use a combination of agent and agentless
orchestration tools.

Investigating the Inventory
Orchestration monitoring utilities can automatically deal with an app container’s untimely
demise. When an app container shuts down, this triggers an event and the desired state is

822  Chapter 30  ■  Orchestrating the Environment

no longer met. A desired state is a predetermined setting that declares how many containers
should be deployed and running.

For example, imagine that your software application needs to have 10 production app
containers running to efficiently handle the workload. If one of those containers crashes, the
container inventory now switches to 9. This triggers an event in the monitoring utility that
the desired state is no longer being met.

Many orchestration utilities employ self-healing. With self-healing, if the desired state
is not currently being achieved, the orchestration tool can automatically deploy additional
production app containers. In the previous example, this means that the orchestration tool
would immediately start up an additional production app container using the container’s
stored configuration settings (build automation). No human involvement is needed.

When a new production app container is first deployed, the self-healing orchestration
property will cause containers to be deployed automatically until the desired state is met.
That’s handy.

Looking at Container Orchestration
Engines
Orchestration of containers, whether the containers are on your local servers or in the cloud,
requires various orchestration engines (also called orchestration systems). No one system can
do it all. The best combination is a set of general and specialized orchestration tools.

Embracing Kubernetes
Originally designed and used by Google, Kubernetes is an open source orchestration system
that is considered by many to be the de facto standard. Not only is Kubernetes very popular
and free, it is also highly scalable, fault tolerant, and (relatively) easy to learn.

In some documentation, you will see the word k8s in reference to
Kubernetes. The 8 replaces the “ubernete” portion of the Kubernetes
name.

This system contains years of Google’s orchestration experience, and because it is open
source, additional community-desired features have been added. This is one reason so many
companies have adopted its use for container orchestration.

Each Kubernetes managed service or application has the following primary components:

■■ Cluster service: Uses a YAML file to deploy and manage app pods

■■ Pod: Contains one or more running app containers

■■ Worker: Pod host system that uses a kubelet (agent) to communicate with
cluster services

■■ YAML file: Contains a particular app container’s automated configuration management
and desired state settings

Summary  823

This distributed component configuration allows high scalability and great flexibility. It
also works very well for continuous software delivery desired by companies employing the
DevOps model.

Inspecting Docker Swarm
Docker, the popular app container management utility, created its own orchestration system,
called Docker Swarm (also called Swarm). A group of Docker containers is referred to as a
cluster, which appears to a user as a single container. To orchestrate a Docker cluster, you
can employ Swarm.

With the Swarm system, you can monitor the cluster’s health and return the cluster to
the desired state should a container within the cluster fail. You can also deploy additional
Docker containers if the desired app performance is not currently being met. Swarm is
typically faster than Kubernetes when it comes to deploying additional containers.

Though not as popular as the Kubernetes orchestration system, Docker Swarm has its
place. It is often used by those who are new to orchestration and already familiar with
Docker tools.

Surveying Mesos
Apache Mesos is not a container orchestration system. Instead, Apache Mesos, created at the
University of California, Berkeley, is a distributed systems kernel. It is similar to the Linux
kernel, except that it operates at a higher construct level. One of its features is the ability to
create containers. The bottom line is that Apache Mesos combined with another product,
Marathon, does provide a type of container orchestration system framework. You could
loosely compare Mesos with Marathon to Docker with Swarm.

Mesos with Marathon provides high availability and health monitoring integration and
can support both Mesos and Docker containers. This orchestration framework has a solid
history for large container deployment environments.

To find out more about Mesos with Marathon, don’t use search engine terms like Mesos
orchestration. Instead, go straight to the source at https://mesosphere.github
.io/marathon.

Summary
Orchestration can involve processes in and out of the computing world, since many systems
require harmonious, balanced, and coordinated procedures that achieve consistency in the
results. DevOps is an IT method that benefits greatly from orchestration, including app con-
tainer orchestration. The gains from these items allow such things as continuous delivery of
software. Even outside of DevOps, app container orchestration is beneficial for many corpo-
rate environments.

https://mesosphere.github.io/marathon
https://mesosphere.github.io/marathon

824  Chapter 30  ■  Orchestrating the Environment

Exam Essentials
Describe orchestration procedures.   An app container is first designed with a chosen
operating system, libraries, and supporting software installed as security and authentication
policies. After the image design is complete, it is documented and stored, typically in a ver-
sion control registry. The app container is deployed and replicated as needed. At this point,
the app container moves into the monitoring phase, where it continues until the container
images are no longer needed.

Explain orchestrated app container attributes.   App container images are static (immu-
table) and do not change after they have been designed and documented. For a development
app container, only the app is modified, not the infrastructure or policies. A container image
is registered with a version control system to assist in troubleshooting as well as rollbacks,
if needed. When a new app container image is ready, the old production container image is
stopped, not updated. The new app container is started in its place. App containers can be
replicated. Thus, if additional app containers are needed, the new image is replicated to meet
the needs.

Summarize container monitoring.   Orchestration monitoring tools can have software
installed on the app container (agent) or use already embedded or other preexisting con-
tainer software (agentless). The monitoring utilities gather performance data and software
metrics and watch the app containers’ health. If the container inventory should drop below
the desired state, the orchestration tool can use automated configuration management and
build automation to replicate the number of containers to bring the app container inventory
back to the desired state.

Review Questions  825

Review Questions
1.	 Which of the following can use orchestration? (Choose all that apply.)

A.	 Software development

B.	 Music production

C.	 Server monitoring

D.	 DevOps

E.	 Containers

2.	 Connie, the tech ops lead, provides the development team with a development environment
that currently matches the production environment. She insists that besides the app modifica-
tions, the environment should not change. What attribute should this development environ-
ment have to meet Connie’s requirement?

A.	 Self-replicating

B.	 Immutable

C.	 Kubernetes

D.	 Infrastructure as code

E.	 Self-healing

3.	 Bill, the software development team leader, understands Connie’s (tech ops lead) desire for
a static and matching development environment. However, since they are employing con-
tainers, Bill suggests a better improvement. Which of the following should he suggest?

A.	 Modify the production container so that it matches the development container when the
app is ready for production.

B.	 Move the app from the development container to the production container when the
app is ready for production.

C.	 Stop any software updates on the development container from occurring before the app
is ready for production.

D.	 Replace the production container with the development container when the app is ready
for production.

E.	 Remove any updates on the development container that are not on the production con-
tainer when the app is ready for production.

4.	 Which of the following orchestrated container attributes best provides high availability to
an app user?

A.	 Immutability

B.	 Version control

C.	 Replication

D.	 Automation

E.	 Documentation

826  Chapter 30  ■  Orchestrating the Environment

5.	 In DevOps and container orchestration, non-hardware items such as the operating system
and libraries and security policies are documented within the orchestration tool, implemented
into the desired environment, and are called what?

A.	 Marathon

B.	 Build automation

C.	 A development environment

D.	 A container

E.	 Infrastructure as code

6.	 Ms. Ward needs to move an app container into production. She employs an orchestration
tool, which uses the predefined infrastructure as code to deploy and replicate the needed
production container images. What orchestration concept did Ms. Ward use?

A.	 Monitoring

B.	 Build automation

C.	 Replication

D.	 Version control

E.	 Docker Swarm

7.	 Which of the following is a benefit of automated configuration management in container
orchestration? (Choose all that apply.)

A.	 Containers can be deployed automatically.

B.	 Containers can be replicated automatically.

C.	 Troubleshooting infrastructure issues is easier.

D.	 Continuous software delivery is enabled.

E.	 Infrastructure modifications are tracked.

8.	 Mr. Abbot is recording requirements for the new orchestration tool. He needs the tool to
automatically deploy and replicate any containers that have crashed. What is this called?

A.	 Self-healing

B.	 Build automation

C.	 Continuous integration

D.	 Infrastructure as code

E.	 Pod builds

9.	 Which of the following are items that may be collected, used, or watched by an orchestration
monitoring tool? (Choose all that apply.)

A.	 Version control errors

B.	 App container performance

C.	 App metrics

D.	 App container health

E.	 Default states

Review Questions  827

10.	 Connie has picked an agentless orchestration monitoring utility for her app containers.
Which of the following reasons might she have used in reaching this decision? (Choose all
that apply.)

A.	 Connie wanted monitoring software installed on each app container.

B.	 She did not want monitoring software installed on each app container.

C.	 Connie was concerned about container performance being adversely affected by the
monitoring software.

D.	 She was not concerned about container performance being adversely affected by the
monitoring software.

E.	 Connie wanted to use what most companies use for orchestration monitoring.

Answers to the
Review Questions

Appendix

830  Appendix  ■  Answers to the Review Questions

Chapter 2: Introduction to Services
1.	 B.  The Apache web server has gained popularity as being combined with the Linux OS, the

MySQL database server, and the PHP programming server, making the LAMP stack. The
nginX server is a newer web server that is gaining in popularity but is not part of the LAMP
stack. The Lighthttpd web server has a small memory and CPU footprint, making it ideal for
embedded systems but not for large-scale LAMP applications. The PostgreSQL package is a
database server and not a web server.

2.	 A.  A daemon is a single application that runs in background listening for client connection
requests, so option A is the correct answer. A super-server listens for more than one applica-
tion, so option B doesn’t apply. The shell doesn’t listen for network connections; it launches
applications interactively, so option C is incorrect. The graphical desktop also allows you
to launch applications, but it doesn’t listen for client connection requests, so option D is
incorrect.

3.	 C.  When first released, the MySQL database server focused on speed, making it a popular
choice for high-volume Internet web applications, so option C is correct. The MongoDB
database server provides object-oriented database features but doesn’t focus on performance,
so option A is incorrect. The PostgreSQL database focused on implementing fancy data-
base features instead of speed, so option B is incorrect. NoSQL is a database storage method
that incorporates object-oriented data records and is not a database server package itself, so
option D is incorrect.

4.	 B.  Linux services listen on well-known ports for requests from clients, so option B is correct.
A server normally has a single IP address to support multiple applications, so option A is
incorrect. The server also normally has only a single Ethernet address, so option C is incor-
rect. The clients can’t launch individual services on the server, so option D is incorrect.

5.	 A.  The nginX web server can serve as a load balancer and send client requests to multiple
backend web servers, so option A is correct. The Apache and lighthttpd web servers don’t
support this feature, so options B and D are incorrect. The PostgreSQL server is a database
and not a web server, so option C is incorrect.

6.	 C.  The MongoDB database server uses the JSON format for storing data records. The
relational database is a type of database system and not a method for storing data, so option
A is incorrect. YaML is a plaintext method for creating configuration files, but it is not used
in MongoDB for storing data, so option B is incorrect. The MongoDB data is not normally
encrypted, so option D is also incorrect.

7.	 B.  The MTA package is responsible for connecting with remote mail hosts to deliver email
messages, so option B is correct. The MUA allows clients to connect to the email server
to read their messages, so option A is incorrect. The MDA allows you to create rules for
processing mail locally, not to remote servers, so option C is incorrect. Evolution is an email
MUA client application, not a server MTA package. The Evolution package is a graphical
email client, so option D is incorrect.

Chapter 2: Introduction to Services  831

8.	 C.  The MDA allows you to create filters to match email messages to redirect to other folders,
so option C is correct. The MUA is the user interface and doesn’t control how incoming mail
is delivered by the server, so option A is incorrect. The MTA delivers email to remote hosts
and accepts mail from remote hosts, so option B is incorrect. The Evolution package is a
graphical MUA package for clients and does not allow you to create filters to deliver email
messages, so option D is incorrect.

9.	 D.  The NFS protocol is used to share folder areas on the network with clients, so option D is
correct. SNMP is a network protocol used for managing remote devices, so option A is incor-
rect. NTP is a network protocol used for setting the time on servers, so option B is incorrect.
DHCP is a network program used for assigning IP addresses to network devices, so option C
is incorrect.

10.	 B.  The Samba software package allows a Linux server to communicate with Windows
servers and clients using the SMB protocol, so option B is correct. The ntpd daemon listens
for requests from a remote time server, so option A is incorrect. The DHCPd package pro-
vides DHCP services on the Linux server to assign network IP addresses; it doesn’t allow
workstations to map folders on the Linux server, so option C is incorrect. The Evolution
package is a graphical desktop program used to access email in the mail folder and is not a
server service, so option D is incorrect.

11.	 A, B.  The rsyslogd program is used by SysV init systems to log events, and the journald
program is used by Systemd systems to log events, so options A and B are the correct
answers. The ntpd program provides time services and not logging services, so option C is
incorrect. The DHCPd program is used for assigning IP addresses on a local network and not
for logging services, so option D is incorrect.

12.	 C.  The ntpd service uses NTP to synchronize the server time with a remote system, so option
C is correct. The DHCPd program assigns IP addresses to devices on the local network but
not time, so option A is incorrect. The BIND program provides hostname resolution services
but not time services, so option B is incorrect. The Samba package allows a Linux server to
interact with Windows clients and servers, but it doesn’t provide time services, so option D is
incorrect.

13.	 D.  The CUPS application provides printer drivers and services that allow Linux systems to
connect with local and remote printers, so option D is correct. The DHCPd program assigns
IP addresses to devices on the local network but doesn’t connect to remote printers, so option
A is incorrect. The BIND application provides hostname resolution services but can’t con-
nect to printers, so option B is incorrect. The ntpd program allows you to synchronize the
server time with a remote time clock but doesn’t connect to network printers, so option C is
incorrect.

14.	 B.  The named program is part of the BIND application, which provides hostname resolution
services, so option B is correct. The ntpd program is what provides network time, so option
A is incorrect. The DHCPd program provides dynamic IP address allocation on a local net-
work, so option C is incorrect. The CUPS application provides printing services on a Linux
system, so option D is incorrect.

832  Appendix  ■  Answers to the Review Questions

15.	 C.  The NIS package was formerly called Yellow Pages (YP), but the name had to be changed
due to trademark issues, so option C is correct. The Samba package, which provides Win-
dows client and server services in Linux, refers to a popular Latin dance, not the Yellow
Pages, so option A is incorrect. The Kerberos package, which does provide authentication
services in Linux, refers to the three-headed hound that guards Hades, not the Yellow Pages,
so option B is incorrect. The BIND application refers to binding a name to an IP address,
which is a similar function to the Yellow Pages, but it wasn’t formerly called Yellow Pages, so
option D is incorrect.

16.	 A.  The DHCPd program provides DHCP server services on a local network, so option A
is correct. The BIND package provides hostname resolution services; it doesn’t assign IP
addresses, so option B is incorrect. The ntpd package provides network time services but
not address services, so option C is incorrect. Evolution is a client MUA package for reading
email; it doesn’t provide IP addresses to clients, so option D is incorrect.

17.	 C.  The OpenSSH package allows you to use certificates to establish a secure connection bet-
ween two devices on the network, so option C is correct. The BIND package provides host-
name resolution, not secure connections, so option A is incorrect. The ntpd package provides
time services on the network, not secure connections, so option B is incorrect. The OpenSSL
package allows you to create certificates used for encrypted communication but doesn’t per-
form the communication itself, so option D is incorrect.

18.	 C.  A web proxy server allows you to intercept client web requests and block any requests
based on rules you define, so option C is correct. A DHCP server assigns IP addresses to
devices on the local network; it doesn’t intercept web requests, so option A is incorrect.
A web server hosts websites but doesn’t intercept requests made by local clients, so option B
is incorrect. A container allows developers to easily deploy web applications in different envi-
ronments but doesn’t intercept web requests from local clients, so option D is incorrect.

19.	 A.  A load balancer sends client requests to one server within a cluster of servers to balance
traffic among the servers, so option A is correct. A web proxy server intercepts web requests
from clients but can only filter or pass the request to the destination host, so option B is
incorrect. A DHCP server assigns IP addresses to devices on a local network but doesn’t help
increase performance of network applications, so option C is incorrect. A container allows a
developer to easily deploy web applications to different environments but can’t control what
traffic goes to which server, so option D is incorrect.

20.	 C.  A container allows developers to develop applications in a controlled environment that
can easily be deployed to other servers, so option C is correct. A web proxy intercepts web
requests from clients but doesn’t control how applications are deployed, so option A is incor-
rect. A DHCP server assigns IP addresses to devices on the local network but doesn’t control
how applications are deployed, so option B is incorrect. A cluster can help with application
performance by spreading the load among multiple servers but doesn’t control how devel-
opers deploy the application to the servers, so option D is incorrect.

Chapter 3: Managing Files, Directories, and  Text  833

Chapter 3: Managing Files,
Directories, and  Text
1.	 C.  Option C will append an indicator code of / to every directory name, so therefore it is

the best choice. The mkdir -v command creates a directory and lets you know whether or
not it was successful, but it does not indicate directories, so option A is a wrong answer. The
ls command only displays file and directory names, so option B is also a wrong answer. The
ls -i command will display filenames along with their inode number, but it does not indi-
cate directories, so option D is incorrect. While option E will work on some distributions to
produce a long listing that can indicate directories, this command is not aliased to ls -l on
every distribution, so therefore it is not the best command to use.

2.	 B.  The -d switch on the ls command will allow you to view a directory file’s metadata
instead of seeing metadata for the files managed by that directory. Therefore, option B is the
correct choice. Option A is a wrong answer because the -a switch forces the ls command
to display hidden files, which are files starting with a dot (.). The -F switch will append an
indicator code to each file but not allow you to view a directory’s metadata, so option C is a
wrong choice. The -l option is already being employed because you are viewing metadata,
so it does not need to be added. Therefore, option D is an incorrect answer. The -R switch
allows you to view file information recursively through a directory tree, and thus option E is
also a wrong choice.

3.	 A.  The mkdir -v command creates a directory and lets you know whether or not it was
successful, so option A is the correct answer. The touch command creates blank and empty
files, so option B is incorrect. The cp -R command will recursively copy an entire directory
full of files to another directory. Since you do not know if the directory TheDir is empty or
not, you most likely did not use this command, so option C is a wrong answer. The mv -r
command will rename a directory to a new directory name. Again, you do not know if
the directory TheDir is empty or not, so you most likely did not use this command, and
thus, option D is also a wrong answer. Option E is an incorrect answer because the rmdir
command deletes empty directories.

4.	 E.  The rsync utility allows you to perform fast local copies, so for a big file it is the best
utility to use in this case. Therefore, option E is the correct answer. The readlink -f
command finds the file being pointed to via a series of soft links, so option A is an incorrect
answer. The mv command will rename a file instead of creating a backup copy, so option
B is incorrect. The cp command does create a file copy. However, it is not as fast as the
rsync utility and therefore is not the best choice, making option C a wrong answer. The
scp command also creates a file copy; however, it also is not as fast as the rsync utility and
therefore is not the best choice, making option D a wrong answer.

5.	 E.  The rm -rI command will recursively delete the files in the /home/Zoe directory tree,
and it will ask before it starts, so you know you are deleting the correct tree. Therefore,
option E is the best answer. Option A is incorrect because the cp command simply copies

834  Appendix  ■  Answers to the Review Questions

files; it does not remove them. Option B is incorrect because not only is part of the directory
name using the wrong case, but there is no verification the correct directory is being moved
to the black hole device, /dev/null/. The rm -Rf command would work, but it is not
the best command to use because it does not ask before it starts, so you do not know if you
are deleting the correct tree. In fact, the -f option suppresses error messages, so option C is
wrong. Option D would also work, but it is not the best answer because it employs the -i
option. If Zoe has years of files in her home directory, you may be sitting there for a long
time deleting files due to the fact that you must confirm each file before it is deleted. There-
fore, option D is an incorrect answer.

6.	 B, C, E.  When renaming a directory, you only need to employ the mv command. However, it
is wise to use the -i option, so if the new directory name already exists, the utility will stop
and ask permission prior to proceeding. Even better is to use the -n option; that way, if the
new name you select is already being used, the mv command does not allow you to overwrite
it. Also, the -v option is worthwhile, so the mv command operates in verbose mode, telling
you what is going on. Therefore, options B, C, and E are all correct choices. The -f option
is not a wise choice because it forces the directory’s renaming, even if a directory already
exists that has that name. Therefore, option A is a wrong answer. Also, there is no -r switch,
because renaming a directory using the mv command does not require any recursive action.
Thus, option D is an incorrect choice.

7.	 B.  Option B is the correct answer because the hard links will prevent the three other
command-line interface users from accidentally deleting the data. If they delete their link’s
name, they will not delete the data. Option A is an incorrect choice because hard-linked files
must reside on the same filesystem together. Option C is also an incorrect choice because
if you do not provide the symbolic links to the other three data users, they will have to
access the data file directly and could delete it. While creating symbolic links will protect the
data by letting it reside on a different filesystem, if it is mission-critical data, the filesystem
employed should be rigorous enough to protect the data, and therefore your only threat
would be human. Thus, option D is an incorrect answer. Symbolic linked files do not share
an inode number. Therefore, option E is an incorrect choice.

8.	 A.  The cat -v command will show any nonprinting characters that may have gotten
embedded in the control file causing it to be corrupted, and therefore option A is the correct
answer. The -z option only lets you see end-of-line characters if they are NULL, and thus,
option B is a wrong choice. The -n option only numbers the text lines in output, so option C
is also a wrong answer. The cat -s command will display multiple blank lines in the file as
one blank line. This will not help in the investigation, so option D is an incorrect answer.
The -E option displays a $ whenever a newline linefeed is encountered, and while possibly
helpful, it is not the best option to use in this case. Therefore, option E is a wrong answer.

9.	 D.  Option D is the correct answer because the best command to use is the pr -mtl 20
command. This will display the files side by side, remove any file headers or trailers, and set
the page length to 20 lines so the files do not scroll off your screen. Of course, you may need
to adjust the line length depending on your screen’s resolution. Option A is incorrect because,
while it will display the files side by side, the display may scroll off your screen. Option B
is also incorrect, because the command will not display your files side by side. Option C
is a wrong answer choice because the cat command will not display the files side by side.

Chapter 3: Managing Files, Directories, and  Text  835

Option E’s command may work for you, but it is not the best choice because file headers or
trailers will not be removed. Therefore, option E is an incorrect answer.

10.	 C.  The head command can use either the -n 15 switch or the -15 switch to display a file’s
first 15 lines. Therefore, option C is the correct answer. To display all but the last 15 lines of
the file, you would need to employ the -n -15 switch, so option A is incorrect. To display
all but the first 15 lines, you need to use the tail command instead of the head command,
so option B is a wrong answer. Also, you need to use tail to display the last 15 lines of
the file, so option D is also an incorrect answer. Option E is a wrong choice because the
command will not generate an error message in this case.

11.	 E.  It is possible that the account name Hal is listed in the generated text file as hal. There-
fore, your best next step is to employ the -i option on the grep command. This will quickly
search the text file for the word Hal while ignoring case. Thus, option E is the correct
answer. Option A is a wrong choice because the tail command will not allow you to search
the file. Option B is also an incorrect answer, because the cat command will just display the
entire text file to the screen and is not an efficient method for finding a few text lines. While
you may end up having to regenerate the text file, prior to doing so you should check for
Hal, ignoring case. If you find the records, then you have saved yourself some time. Thus,
option C is also a wrong choice. Finally, the -d skip option on the grep command allows
the search to skip any directory files. This option is useless in this situation, and therefore
option D is an incorrect answer.

12.	 B.  A pager utility allows you to view one text page at a time and move through the text at
your own pace. Therefore, option B is the correct answer. A utility that only allows you to
view the first few lines of a file would not be useful in this case, and these utilities are not
called pagers. Therefore, option A is a wrong answer. While the less utility is a pager and
will allow you to search through the text file, the coworker mentioned pagers, which includes
the more utility. With the more utility you cannot search through text, so option C is an
incorrect choice. You do not need to filter out text in the file, and filter utilities are not called
pagers, so option D is a wrong answer. A utility that only allows you to view the last few
lines of a file would not be useful in this case, and these utilities are not called pagers. There-
fore, option E is an incorrect choice.

13.	 E.  You need to use the q key to exit from the less pager utility; therefore, only option E
does not describe less and is the correct answer. Option A is a wrong answer because less
does not read the entire file prior to displaying the file’s first page. You can also employ the
up and down arrow keys to traverse the file as well as the spacebar to move forward a page
and the Esc+V key combination to move backward a page, so options B, C, and D are incor-
rect answers.

14.	 B.  The -q (or --brief) option used with the diff command will allow you to quickly
determine if two text files are different from each other. Thus, option B is the correct answer.
The -e switch allows you to create an ed script to use later on, so option A is an incorrect
choice. The -s option does allow you to see if the files are the same and shows a simple mes-
sage stating this fact. However, it is focused on file differences, so it is not the best switch to
use. Therefore, option C is also a wrong answer. The diff command’s -W option allows you
to set a display width, and thus, option D is an incorrect choice. The -y switch displays the
two files in two columns, so option E is also a wrong selection.

836  Appendix  ■  Answers to the Review Questions

15.	 C.  Option C is the correct answer because the which command will allow you to quickly
see the location of the program you provide as an argument. If you see no response, you can
go on to the next troubleshooting step of determining if the program is not installed. Option
A is not correct because these actions will simply recall the original diff command and try
it again. Logging out and then back in again may reset some variables you accidentally cre-
ated, but it is not a good first step in this troubleshooting process. Therefore, option B is a
wrong answer. Entering the whereis diff command will provide additional information
concerning the diff command, such as program location and source code file locations
as well as man page locations. This additional information is not needed, so option D is an
incorrect choice. Rebooting a server just because a command does not work is not a good
first troubleshooting step. Therefore, option E is also a wrong answer.

16.	 E.  By default, the locate command uses file globbing, which adds wildcards to the pattern
you enter. Thus, conf is turned into *conf*. Therefore, option E best explains the results
and is the correct answer. The locate command will search for both file and directory
names for specified patterns unless options are provided to modify this behavior. Therefore,
option A is an incorrect answer. The locate command does not use the -d skip switch
(the grep command does use it, though), and thus, option B is a wrong answer. Because the
command operated normally, there is not a problem with the locate database, so option
C is an incorrect choice. Also, a regular expression switch was not used in the locate
command, so option D is also a wrong choice.

17.	 A.  The locate utility searches the mlocate.db database, which is typically only updated
one time per day via a cron job. Therefore, for this newly created file, the first thing you
should do is update mlocate.db via the updatedb command, using super user privileges.
Thus, option A is the correct answer. After you have updated the database, any of the com-
mands in option B, C, or E should work fairly well, with option B’s command being the best
choice. However, for the first step, options B, C, and E are wrong answers. Downloading the
file again is tedious and time-consuming and can possibly consume disk space unnecessarily.
Therefore, option D is an incorrect choice.

18.	 D.  When using the locate command, the path argument is listed first, which is a starting
point directory. The find utility will search through that directory and all its subdirectories
(recursively) for the file or files you seek. Also, the -name switch allows you to search for a
file by name, so option D is the correct answer. Option A is incorrect because there is no -r
switch, and no need for one. Option B is not the best command to use in this case because
the starting directory is /, which is the root of the virtual directory structure. It is much
better to start at the /etc directory, since the file is most likely located somewhere in that
directory tree. Using the -maxdepth switch may hamper the search because it sets the subdi-
rectory level to stop the search. Therefore, option C is a wrong answer. Option E is an incor-
rect choice, because the path and filename are flip-flopped and the -name switch is missing.

19.	 E.  The find / -nouser command will search through the entire virtual directory struc-
ture looking for any files that do not have a username associated with them. Since Michael’s
account and home directory were deleted, any files he owned out in the virtual directory
structure will not have a username associated with them, only a user ID (UID). Thus, option
E is the best answer. Option A is incorrect because the -name switch is for file names, not
usernames. Option B is also an incorrect answer, because the -user switch is used to search

Chapter 4: Searching and Analyzing Text  837

for files owned by a particular account. Since Michael’s account was deleted, his username
would no longer be associated with any files. Option C is a wrong answer because you do
not know when his files may have experienced data changes, as indicated by the -mmin
switch, and thus this is a bad method for trying to identify them. Option D is an incorrect
choice because the find command is starting the search process in the user’s home directory
instead of the root (/) of the virtual directory structure.

20.	 C.  The grep utility will allow you to search file contents quickly and effectively. Therefore,
option C is the correct answer. The which utility can help you locate a program’s location by
its name, but it does not search its contents, so option A is an incorrect choice. The whereis
command will search for a file’s program location, source code files, and man pages, but it
cannot search a file’s contents, so option B is also a wrong choice. The locate utility will
search for a file’s location using its name, but it cannot search a file’s contents, so option D is
an incorrect answer. The find command can find files using a file’s metadata, but it does not
search inside a file, so option E is a wrong choice.

Chapter 4: Searching and Analyzing Text
1.	 C.  A text file record is considered to be a single file line that ends in a newline linefeed that is

the ASCII character LF. You can see if your text file uses this end-of-line character by issuing
the cat -E command. Therefore, option C is the correct answer. The text file may have been
corrupted, but this command does not indicate it, so option A is an incorrect choice. The text
file records end in the ASCII character LF and not NUL or $. Therefore, options B and D are
incorrect. The text file records may very well contain a $ at their end, but you cannot tell by
the situation description, so option E is a wrong answer.

2.	 E.  To properly use some of the cut command options, fields must exist within each text file
record. These fields are data that is separated by a delimiter, which is one or more characters
that create a boundary between different data items within a record. Therefore, option E best
describes a delimiter and is the correct answer. Option A is made up and is a wrong answer.
Option B describes an end-of-line character, such as the ASCII LF. Option C is made up and
is a wrong answer. While a single space and a colon can be used as a delimiter, option D is
not the best answer and is therefore a wrong choice.

3.	 C, D.  Recall that many utilities that process text do not change the text within a file unless
redirection is employed to do so. The only utilities in this list that will allow you to modify
text are the text editors vim and nano. Therefore, options C and D are the correct answers.
The cut, sort, and sed utilities gather the data from a designated text file(s), modify it
according to the options used, and display the modified text to standard output. The text in
the file is not modified. Therefore, options A, B, and E are incorrect choices.

4.	 A.  The cut command gathers data from the text file, listed as its last argument, and
displays it according to the options used. To define field delimiters as a comma and display
each data center monitor’s monitor ID, serial number, and location, the options to use are -d
"," -f 1,3,4. Also, since the text file’s records end with an ASCII LF character, no special
options, such as the -z option, are needed to process these records. Therefore, option A is

838  Appendix  ■  Answers to the Review Questions

the correct choice. Option B uses the unneeded -z option and is therefore a wrong answer.
Option C is an incorrect choice because it reverses the -f and -d options. Options D and E
are wrong answers because they put the filename before the command switches.

5.	 D.  Option D is the best answer because a regular expression is a pattern template you define
for a utility, such as grep, which uses the pattern to filter text. While you may use a series
of characters in a grep PATTERN, they are not called regular expressions, so option A is a
wrong answer. Option B is describing end-of-line characters, and not regular expression char-
acters, so it also is an incorrect answer. While the ? is used in basic regular expressions, the *
is not (however, .* is used). Therefore, option C is a wrong choice. Quotation marks may be
employed around a PATTERN, but they are not considered regular expression characters, and
therefore option E is an incorrect answer.

6.	 B.  Option B is the best command because this grep command employs the correct syntax.
It uses the quotation marks around the pattern to avoid unexpected results and uses the
.* regular expression characters to indicate that anything can be between May 30 and
the IPv4 address. No additional switches are necessary. Option A is not the best grep
command because it uses the wrong regular expression of ?, which only allows one character
to exist between May 30 and the IPv4 address. Options C and D are not the best grep
commands because they employ the -i switch to ignore case, which is not needed in this
case. The grep command in option E is an incorrect choice, because it uses the -v switch,
which will display text records that do not match the PATTERN.

7.	 A, B, C, E.  A BRE is a basic regular expression that describes certain patterns you can use
with the grep command. An ERE is an extended regular expression and it requires the use of
grep -e or the egrep command. Options A, B, C, and E are all BRE patterns that can be
used with the grep command, so they are correct choices. The only ERE is in option D, and
therefore, it is an incorrect choice.

8.	 E.  To meet the search requirements, option E is the ERE to use with the egrep command.
Therefore, option E is the correct answer. Option A will return either a record that ends
with Luke or a record that ends with Laura. Thus, option A is the wrong answer. Option
B is an incorrect choice because it will return either a record that begins with Luke or a
record that begins with Laura and has one character between Laura and the Father is
phrase. Option C has the Luke and Laura portion of the ERE correct, but it only allows
one character between the names and the Father is phrase, which will not meet the search
requirements. Thus, option C is a wrong choice. Option D will try to return either a record
that ends with Luke or a record that ends with Laura and contains the Father is phrase,
so the egrep command will display nothing. Thus, option D is an incorrect choice.

9.	 A, B.  To sort the data.txt file numerically and save its output to the new file, newdata
.txt, you can either use the -o switch to save the file or employ standard output redirection
with the > symbol. In both cases, however, you need to use the -n switch to properly enact
a numerical sort. Therefore, both options A and B are correct. Option C is a wrong answer
because the command has the newdata.txt and data.txt flipped in the command’s
syntax. Options D and E do not employ the -n switch, so they are incorrect answers as well.

Chapter 4: Searching and Analyzing Text  839

10.	 C, E.  The commands in both options C and E will display the data.txt and datatoo
.txt files’ content one after the other to STDOUT. The cat -n command will also append
line numbers to it, but it will still concatenate the files’ content to standard output. Therefore,
options C and E are correct. Option A will just display the files’ names to STDOUT, so it
is a wrong answer. Option B will numerically sort the data.txt, wipe out the datatoo
.txt file’s contents, and replace it with the numerically sorted contents from the data.txt
file. Therefore, option B is an incorrect answer. Option D will show the two files’ metadata to
STDOUT instead of their contents, so it also is a wrong choice.

11.	 C.  The pr command’s primary purpose in life is to specially format a text file for printing,
and it can accomplish the required task fairly quickly. Therefore, option C is the best choice.
While the pr utility can handle formatting entire text files, the printf command is geared
toward formatting the output of a single text line. While you could write a shell script to
read and format each text file’s line via the printf command, it would not be the quick-
est method to employ. Therefore, option A is a wrong answer. Option B’s wc command will
perform counts on a text file and does not format text file contents, so it is also an incorrect
answer. The paste command will “sloppily” put together two or more text files side by side.
Thus, option D is a wrong answer. Option E is an incorrect choice because the nano text
editor would force you to manually format the text file, which is not the desired action.

12.	 E.  The printf FORMAT "%.2f\n" will produce the desired result of 42.78, and there-
fore option E is the correct answer. The FORMAT in option A will simply output 42.777, so
it is an incorrect choice. The FORMAT in option B will output 42 and therefore is a wrong
answer. The printf FORMAT setting in option C will produce an error, and therefore, it
is an incorrect choice. Option D’s printf FORMAT "%.2c\n" will display 42 and thus is
also an incorrect answer.

13.	 A, C.  The first item output by the wc utility is the number of lines within a designated text
file. Therefore, option A is correct. Option C is also correct, because the second item output
by the wc utility is the number of words within a designated text file. Option B is a wrong
answer because the file contains 2,020 lines and not characters. Option D is an incorrect
choice because you do not know whether or not the Unicode subset of ASCII is used for the
text file’s encoding. You should always assume the last number is the number of bytes within
the file. Use the -m or --chars switch on the wc command to get a character count. There-
fore, the file could have 11,328 bytes in it instead of characters. Option E is also a wrong
choice because the file has 2,020 lines in it.

14.	 B.  A file descriptor is a number that represents a process’s open files. Therefore, option B is the
correct answer. A file type code is a letter that represents the file’s type, displayed as the first
item in the ls -l output line. Therefore, option A is a wrong answer. Option C is also wrong,
because it is a made-up answer. Option D is incorrect because it describes only STDOUT, which
has a file descriptor number of 1 and is only one of several file descriptors. A file indicator
code is a symbol that indicates the file’s classification, and it is generated by the ls -F
command. Therefore, option E is also a wrong choice.

15.	 D.  By default, STDOUT goes to your current terminal, which is represented by the /dev/
tty file. Therefore, option D is the correct answer. The /dev/ttyn file, such as /dev/
tty2, may be your current terminal at a particular point in time, but /dev/tty always rep-
resents your current terminal, so option A is a wrong answer. Option C is incorrect because it

840  Appendix  ■  Answers to the Review Questions

is the symbol used at the command line to redirect STDOUT away from its default behavior.
The pwd command displays your present working directory, so option E is a wrong choice.

16.	 A.  The command in option A will display the SpaceOpera.txt file to output as well
as save a copy of it to the SciFi.txt file. Therefore, option A is the correct answer. Option
B is a wrong answer because it will only put a copy of SpaceOpera.txt into the SciFi
.txt file. Option C is an incorrect choice because this will display the SpaceOpera.txt
file to output and put any error messages into the SciFi.txt file. The cp command will
only copy one text file to another. It will not display the original file to output, so option D is
a wrong answer. Option E is a wrong choice because it will put a copy of SpaceOpera.txt
into the SciFi.txt file and include any error messages that are generated.

17.	 D.  The /dev/null file is also called the black hole, because anything you put into it cannot
be retrieved. If you do not wish to see any error messages while issuing a command, you
can redirect STDERR into it. Thus, option D is the correct answer. Options A, B, and C are
wrong answers because they perform redirection to a file called BlackHole instead of
/dev/null. Option E is also incorrect, because it redirects STDOUT to the /dev/null
file, and any error messages will be displayed.

18.	 C.  To find records within the Problems.txt file that contain the word error at least one
time, the grep command is employed. The correct syntax is grep error Problems.txt.
To count the records, the grep command’s STDOUT is piped as STDIN into the wc utility.
The correct syntax to count the records is wc -l. Therefore, option C is the correct answer.
The command in option A is incorrect because its wc command is counting the number of
bytes within each input record. Option B is a wrong answer, because its wc command is
counting the number of words within each input record. The command in option D has two
problems. First, its grep command syntax has the item for which to search and the file to
search backward. Also, its wc command is counting the number of words within each input
record. Therefore, option D is a wrong choice. Option E is an incorrect answer because its
grep command syntax has the item for which to search and the file to search backward.

19.	 B, C, E.  The xargs command, $() method, backticks (`), and brace expansion all allow
you to build a command-line command on the fly. In this case, only options B, C, and E are
using the correct command syntax to find any file named 42.tmp, which exists somewhere
in your current directory’s tree structure and display its contents to STDOUT. Therefore,
options B, C, and E are correct answers. Option A is using the wrong syntax for the xargs
command, and this command will generate an error message. Therefore, option A is a wrong
answer. Option D is using the wrong syntax for brace expansion, and thus, it is an incorrect
choice as well.

20.	 A, C, D, E.  The three modes of the vim editor are command (also called normal mode),
insert (also called edit or entry mode), and ex (sometimes called colon commands) mode.
Therefore, options A, C, D, and E are correct answers. The only incorrect choice for this
question is option B.

Chapter 5: Explaining the Boot Process  841

Chapter 5: Explaining the Boot Process
1.	 A.  The workstation firmware looks for the bootloader program to load an operating system.

The fsck program (option B) is used to check and repair damage to hard drives, so it isn’t
useful until after the Linux system has started. The Windows operating system only starts
after a Windows bootloader program can run, so option C is incorrect. The mount program
is a Linux tool for attaching a partition to the virtual directory, which isn’t available until
after the Linux system starts, so option D is also incorrect. The mkinitrd program is used
to create an initrd RAM disk used for booting, but it isn’t run when the workstation starts
up, so option E is incorrect.

2.	 B.  The workstation firmware looks at the first sector of the first hard drive to load the
bootloader program. This is called the Master Boot Record, so option A is correct. The boot-
loader program itself can use the chainloader feature to look for another bootloader in a
boot partition, but the firmware can’t do that, so option D is incorrect. Option A specifies the
configuration folder used to store the GRUB configuration file and the kernel image file, but
the actual GRUB bootloader program can’t be stored there. Option C specifies the common
log file folder, but that doesn’t contain the GRUB bootloader program. Option E also spec-
ifies a common Linux configuration file directory, but it’s not used to store the GRUB boot-
loader program that the firmware can access.

3.	 D.  The kernel ring buffer, which you can view by typing dmesg, contains messages from the
boot messages from the kernel; thus, option D is correct. The fsck program (option A) fixes
corrupted partitions, and the mount program (option C) is used to attach partitions to the
virtual directory, so neither of those is correct. Option B, the init program, is used to start
programs from the kernel, not display boot messages, so it also is incorrect. Option E, the
mkinitrd program, is used to create a new initrd RAM disk and is not related to the boot
messages, so it too is incorrect.

4.	 C.  Most Linux distributions store boot log files in the /var/log folder. The /etc folder
is most often used for storing system and application configuration files, not boot logs, so
option A is incorrect. Some Unix systems use the /var/messages folder for storing log
files, but Linux has not adopted this standard, so option B is also incorrect. The /boot
folder contains the GRUB configuration files along with the image files necessary to boot the
system, but it’s not where Linux stores boot logs and is thus incorrect. The /proc folder is
unique in that the Linux kernel dynamically stores information about the system there, but it
doesn’t store boot log information there.

5.	 A, B, C, D, E.  The BIOS firmware can look in multiple locations for a bootloader program.
Most commonly it looks at the internal hard drive installed on the system; however, if none
is found, it can search other places. Most workstations allow you to boot from an external
hard drive or from a DVD drive. Modern workstations now also provide the option to boot
from a USB memory stick inserted into a USB port on the workstation. Finally, many work-
stations provide the PXE boot option, which allows the workstation to boot remotely from a
network server.

842  Appendix  ■  Answers to the Review Questions

6.	 A.  The Master Boot Record (MBR) is only located in one place: on the first sector of the first
hard drive on the workstation; thus, option A is the only correct answer. The boot partition
in any hard drive may contain a bootloader, but it is not the Master Boot Record, which is
run first by the firmware; thus, option B is incorrect. The other locations are not valid loca-
tions for the Master Boot Record, so options C, D, and E are all incorrect.

7.	 D.  The ESP is stored in the /boot/efi directory on Linux systems. The UEFI firmware
always looks for the /boot/efi directory for bootloader programs, so option D is correct.
The /etc directory is used to store application and system configuration files, not boot-
loader programs, so option B is incorrect. The /var folder is used to store variable files such
as log files, not bootable files, so option C is incorrect. Option E, the /boot/grub file, is
used in GRUB Legacy and GRUB2 to store the bootloader configuration files, as well as the
kernel image files. However, it is not used to store the bootloader files themselves, so option
E is incorrect.

8.	 E.  The UEFI specification doesn’t require a specific extension for UEFI bootloader files, but
it has become somewhat common in Linux to use the .efi file extension to identify them;
thus, option E is correct. Option A and option D specify file extensions used to identify
GRUB2 (option A) and GRUB Legacy (option D) configuration files, not UEFI bootloader
files, so they are both incorrect. Option C specifies the .lst file extension, which is also used
for GRUB Legacy configuration files, so it too is incorrect. The .uefi file extension is not
used in Linux, so option B is incorrect.

9.	 B.  The Linux Loader (LILO) bootloader program was the first bootloader used in Linux,
so option B is correct. The GRUB Legacy bootloader, despite its name, wasn’t the first boot-
loader, but the second bootloader commonly used in Linux. The GRUB2 bootloader was
a later improvement over the GRUB Legacy bootloader, so options A and C are incorrect.
Option D, the SYSLINUX bootloader, provides features for use with Microsoft FAT parti-
tions, so that you can boot Linux from a floppy drive or USB memory stick, but it is a later
creation and not the first Linux bootloader. Option E, ISOLINUX, is also a later bootloader
that allows us to boot Linux from a CD or DVD drive.

10.	 A.  The GRUB Legacy configuration files are stored in the /boot/grub directory, so option
A is correct. Option B, the /boot/efi directory, is used to store UEFI bootloader programs,
not GRUB configuration files, so it is incorrect. Option C, the /etc directory, stores many
application and system configuration files, but not the GRUB Legacy configuration files. The
/var directory stores variable files such as log files but not configuration files, so option D is
incorrect. Likewise, Linux uses the /proc directory to provide dynamic kernel runtime data
and not configuration files.

11.	 B, C.  The GRUB2 bootloader stores configuration files in both the /boot/grub directory
and the /etc/grub.d directory, so options B and C are correct. Linux uses the /proc
directory to provide dynamic kernel runtime data and not configuration files, so option A is
incorrect. Option D, /boot/efi, stores UEFI bootloader program files, not GRUB2 config-
uration files, so it is also incorrect. Option E, /var, is used to store variable files, such as log
files, and not configuration files, so it is incorrect.

Chapter 5: Explaining the Boot Process  843

12.	 C.  The grub-mkconfig command combines the configurations defined in the /etc/
default/grub file and all of the files in the /etc/grub.d folder into a single grub
.cfg configuration file. The mkinitrd command (option A) is used to create a new initrd
RAM disk image file, so it is incorrect. Likewise, the mkinitramfs command (option B)
is also used to create initrd image files on Debian systems, so it too is incorrect. The
grub-install program is used by the GRUB Legacy bootloader to install the bootloader
in the MBR or a boot partition, but isn’t used to generate the GRUB2 configuration files, and
is thus incorrect. Option E is the fsck program, which checks and repairs hard drive parti-
tions, and is an incorrect answer for this question.

13.	 D.  The grub-install command installs any configuration changes into the GRUB MBR,
so option D is correct. The mkinitrd command creates a new initrd RAM disk image file,
so option A is incorrect. Likewise, the mkinitramfs command (option B) is also used to
create initrd image files on Debian systems, so it too is incorrect. The grub-mkconfig
command is used in GRUB2 systems to create an updated configuration file but not in GRUB
Legacy systems, so option C is incorrect. The fsck program checks and repairs hard drive
partitions, so option E is incorrect.

14.	 B.  The UEFI firmware method has replaced the BIOS in most IBM-compatible computers, so
option B is correct. FTP, PXE, NFS, and HTTPS are not firmware methods, but methods for
loading the Linux bootloader, so options A, C, D, and E are all incorrect.

15.	 E.  The kernel ring buffer is an area in memory reserved for storing output messages as the
Linux system boots, so option E is correct. Option A, BIOS, is firmware on the workstation,
not an area in memory, so it is incorrect. The GRUB bootloader, option B, is a program that
starts the Linux system and is not in memory, so it is also incorrect. The MBR is a location
on the hard drive to store the Linux bootloader, so option C is incorrect. The initrd RAM
disk is an area in memory that stores modules required for the boot process, but it doesn’t
store the boot messages as the system starts, so option D is incorrect.

16.	 A.  The single command parameter instructs the Linux system to start in single-user mode
after booting, so option A is correct. The fsck command checks and repairs hard drive par-
titions, so option B is incorrect. Both the mkinitrd and mkinitramfs commands create
initrd RAM disk files, so options C and D are incorrect. The dmesg command displays the
boot messages from the kernel ring buffer, so option E is incorrect.

17.	 A.  A kernel panic occurs when a Linux system halts unexpectedly due to a system error, so
option A is the correct term. The kernel ring buffer stores boot messages at boot time, so
option B is incorrect. The initrd RAM disk is an area in memory that stores module files
required to boot the system, so option C is incorrect. The bootloader and firmware are part
of the Linux boot process and don’t refer to when the system halts, so options D and E are
both incorrect.

18.	 B.  The grub-mkconfig command processes GRUB2 directives stored in the /etc/
grub.d folder to create the /etc/grub2.cfg configuration file, so option B is correct.
The mkinitrd and mkinitramfs commands are used to create an initrd RAM disk to
store module files, so options A and D are incorrect. The grub-install command is used
in GRUB Legacy to install the GRUB configuration file in the correct location but isn’t used
in GRUB2, so option C is incorrect. The dmesg command displays the system boot messages
and isn’t part of the GRUB2 bootloader, so option E is incorrect.

844  Appendix  ■  Answers to the Review Questions

19.	 C.  The fsck program can perform a filesystem check and repair multiple types of filesys-
tems on partitions. You should use it on any partition that can’t be mounted due to errors.
The mount program (option A) is used to append a partition to a virtual directory; it can’t
correct a partition that contains errors (and will usually refuse to mount them). The umount
command (option B) is also incorrect. It is used to remove a mounted partition from the
virtual directory. Option D (the dmesg command) displays boot messages, and option E (the
mkinitrd command) crates an initrd RAM disk, so both are incorrect.

20.	 A.  The mount command allows you to specify both the partition and the location in
the virtual directory where to append the partition files and folders. The files and folders
contained in the partition then appear at that location in the virtual directory. The umount
command (option B) is used to remove a mounted partition. Option C, the fsck command,
is used to fix a hard drive that is corrupted and can’t be mounted; it doesn’t actually mount
the drive itself. The dmesg command in option D is used to view boot messages for the
system, which may tell you where a hard drive is appended to the virtual directory, but it
doesn’t actually do the appending. Option E, the kninitramfs command, creates an initrd
RAM disk and doesn’t directly handle mounting hard drives to the virtual directory.

Chapter 6: Maintaining System Startup
and Services
1.	 B, C, E.  The init program may exist in the /etc/, /sbin/, or /bin/ directory, depending

on your distribution and its version, so therefore options B, C, and E are correct. The
/etc/rc.d/ directory is used in SysVint systems and is not a location for the init
program, so option A is a wrong answer. The /etc/lib/systemd/ directory is the
location of the systemd program, and thus option D is also an incorrect choice.

2.	 A, B, C, D, E.  This is a tricky question, because all of these statements are true concerning
systemd service units. It makes you realize that systemd-managed systems are very flexible.

3.	 A.  There is no runlevel7.target. The legitimate systemd targets, which provide
backward SysV init compatibility, go from runlevel0.target through runlevel6
.target. Therefore, option A is the correct answer. The emergency.target is a special
systemd target unit used to enter emergency mode. When your system goes into emergency
mode, the system only mounts the root filesystem and mounts it as read-only. Therefore,
option B is a systemd target unit and not a correct answer. The graphical.target is a
legitimate systemd target, which provides multiple users access to the system via local termi-
nals and/or through the network and offers a GUI. Thus, option C is an incorrect choice. The
multi-user.target is also a legitimate systemd target, just like the graphical
.target, except that it does not offer a GUI. Therefore, option D is also a wrong answer.
The rescue.target is like emergency.target, but it mounts the root filesystem for
reading and writing. Therefore, option E is an incorrect choice.

Chapter 6: Maintaining System Startup and Services  845

4.	 C.  Any modified systemd service unit configuration file should be stored in the /etc/
systemd/system/ directory. This will prevent any package upgrades from overwriting it
and keep the directory precedence from using the unmodified service unit copy, which may
reside in the /usr/lib/systemd/system/ directory. The directories in options A and B
are made up. The /usr/lib/systemd/system/ directory should only store unmodified
unit files, which are provided by default, and thus option D is an incorrect answer. The
/run/system/systemd/ directory is also made up.

5.	 E.  For starting Service-B immediately before starting Service-A, the Service-A unit configura-
tion file will need to employ the After directive, set to something like After=Service-B
.unit. Therefore, option E is the correct answer. The Conflicts directive sets the unit to
not start with the designated units. If any of the designated units start, this unit is not started.
Therefore, option A is a wrong answer. The Wants directive sets the unit to start together
with the designated units. If any of the designated units do not start, this unit is still started.
Therefore, option B is also an incorrect answer. The Requires directive sets the unit to start
together with the designated units. If any of the designated units do not start, this unit is not
started. Thus, option C is a wrong choice. The Before directive sets this unit to start before
the designated units. While this should be set in Service-B’s unit configuration file, it does
not apply, in this case, to Service-A’s configuration file. Therefore, option D is also an incor-
rect answer.

6.	 B, D.  Linux systems use environment variables to store information about the shell session
and working environment. If you need to ensure that a particular environment variable is
set properly for your service, you need to use the Environment directive and/or the
EnvironmentFile directive for setting environment parameters. Therefore, options B
and D are correct answers. The Type directive sets the unit startup type, which can be, for
example, forking. Thus, option A is a wrong answer. The EnvironmentParam is a made-
up directive. PATH is an environment variable, which you may modify for your unit’s envi-
ronmental parameters. However, it is not a directive.

7.	 D.  If a target unit file has the AllowIsolate=no setting, the target cannot be used
with the systemctl isolate command. Therefore, option D is the correct answer.
Option A’s static is an enablement state displayed for a unit file via the systemctl
--list-unit-files command. Thus, option A is a wrong answer. The
AllowIsolate=yes directive permits the target to be used with the systemctl isolate
command. Therefore, option B is also an incorrect choice. The Type=oneshot is a ser-
vice unit directive, and you would not find it in a target unit file. Thus, option C is a wrong
answer. Option E’s disabled is also an enablement state, like static, making option E a
wrong choice as well.

8.	 A.  The best command to make the modified file take immediate effect for the OpenSSH
service is systemctl reload. This command will load the service configuration file of
the running designated service without stopping the service. Therefore, option A is the best
answer. A daemon-reload will load the unit configuration file and not the service configu-
ration file. The restart command will stop and immediately restart the service. While this
will load the modified service configuration file, it will also disrupt the service for current
service users. The mask command prevents a particular service from starting; the unmask
command undoes the mask command’s effects.

846  Appendix  ■  Answers to the Review Questions

9.	 E.  To set a particular service unit to start at boot time, you need to use the systemctl
enable command followed by the service unit name. Therefore, option E is the correct
answer. The restart command will stop and immediately restart the service but does not
control whether or not a service unit is started at system boot. The start command will
start the service but does not control whether or not a service unit is started at system boot.
The isolate command is used with systemd target units, not service units. Option D’s
disable command will set a particular service unit to not start at boot time (disable it from
starting).

10.	 B.  To change the system’s default target, you need to employ the systemctl
set-default command, passing the target name as an argument and using super user
privileges. The get-default command will show you the system’s current default target.
The isolate command is used to jump to new targets and not to set default targets. The
is-enabled command displays enabled for any service that is configured to start at
system boot and disabled for any service that is not configured to start at system boot.
It only deals with services, and therefore option D is a wrong choice. The is-active
command also only deals with services.

11.	 D.  The blame command displays the amount of time each running unit took to initialize,
and the units and their times are listed starting from the slowest to the fastest. That way, you
can start investigating the units at the list’s top. The time command displays the amount of
time system initialization spent for the kernel, and the initial RAM filesystem, as well as the
time it took for normal system user space to initialize. However, it does not help you deter-
mine which unit configurations may be to blame for the slow boot. The dump command
displays data concerning all the units and the data is not in a format that lets you easily track
down what unit takes the most time to initialize at boot. Therefore, option B is an incor-
rect choice. Option C’s failure is a service state, indicating that the service has failed. The
verify command is handy in that it scans unit files and displays warning messages if any
errors are found. However, it does not provide configuration information that can assist you
in uncovering the reason a system is slow to boot.

12.	 C, E.  Debian-based Linux distributions that use SysV init only use runlevels from 0 through
2. The runlevel command shows the previous runlevel, or N for newly booted. There-
fore, the only options that this runlevel command would show on an older Debian-based
Linux distribution system, which uses SysV init, are C and E. Option A is incorrect, because
it shows 5 as the current runlevel, and Debian-based distros don’t use that runlevel. Option
B is also incorrect, because it also shows 5 as the current runlevel. Option D is incorrect
because it shows 3 as the current runlevel, and the Debian-based distros do not use that run-
level either.

13.	 A.  For SysV init systems, the default runlevel is stored within the /etc/inittab file within
the initdefault record. Therefore, option A is the correct answer. The /etc/rc.d is a
directory and not a file. Thus, option B is a wrong answer. The rc file is a script that can
reside in either the /etc/init.d/ or the /etc/rc.d/ directory. It runs the scripts that
start the various system services when jumping runlevels or booting the system. However, this
script does not contain any information concerning the default runlevel. Therefore, options C
and D are incorrect choices. The /etc/rc.local file allows you to issue certain commands
or run any scripts as soon as system initialization is completed. However, this script also does
not contain any information concerning the default runlevel.

Chapter 6: Maintaining System Startup and Services  847

14.	 C.  The directory that stores the service startup scripts for an old (and a new) SysV init
system is the /etc/init.d/ directory. Therefore, option C is the correct answer. The
/etc/rc.d/rcn.d/ directories are used on a SysV init system, but they contain symbolic
links to the scripts within the /etc/init.d/ directory. Thus, option B is an incorrect
answer. Options A, D, and E are all systemd directories. Therefore, they are incorrect choices.

15.	 A, B, D, E.  Runlevel 1 is also called single-user mode. You can employ either the init or the
telinit command to jump to that runlevel and pass them one of the three following argu-
ments: 1, s, or S. Therefore, options A, B, D, and E are correct answers. You cannot use the
one argument to reach runlevel 1, and therefore option C is the only wrong choice.

16.	 B.  The best command to use is the service status command, passing the service name
to it as an argument. This will display the service’s current status and allow you to start the
troubleshooting process quickly. Therefore, option B is the correct answer. The service
start command will start the designated service, but you do not know whether or not this
service was stopped. Thus it is not the best command to use, and option A is an incorrect
choice. The service --status-all command is not the best command to use because
it shows the status of all the various services. Thus, option C is a wrong answer. The
service stop command will stop the designated service and provide a FAILED status
if it was already stopped. However, this is not the best way to check a service’s status on a
SysV init system. The service reload command will load the designated service’s con-
figuration file and provide a FAILED status if the service is stopped. Yet again, this is not the
proper way to check a service’s status.

17.	 D.  To enable the DHCP service on your Red Hat–based SysV init system for runlevels 3 and
5, the correct command to use is the chkconfig --levels 35 dhcp on command.
Therefore, option D is the correct answer. Options A and E are incorrect, because you
cannot use the service command to enable SysV init services. Option B is a wrong answer
because you cannot use a delimiter, such as a comma, to separate the runlevel list. Option
C is an incorrect choice because this command has its service name and the on argument
flip-flopped.

18.	 E.  To enable the DHCP service on your Debian-based SysV init system for default runlev-
els, the correct command to use is update-rc.d dhcp defaults. Therefore, option
E is the correct answer. Option A is incorrect because the last command argument should
be defaults and not default. Option B is a wrong answer because you cannot use the
chckconfig command on a Debian-based distribution. Option C is an incorrect choice
because this command has the service name and the default argument flip-flopped. Also,
it is using the wrong argument—the argument should be defaults. The command used
in option D is incorrect because this command has the service name and the defaults
argument flip-flopped.

19.	 C.  The mount unit filenames are created by having the absolute directory reference’s pre-
ceding forward slash (/) removed, subsequent forward slashes are converted to dashes
(–), and trailing forward slashes are removed. Mount unit filenames also have a .mount
extension. Therefore, the mount unit file for the /var/log/ mount point would be var-
log.mount. Thus, option C is the correct answer. The /var/log.mount unit filename is
incorrect because the forward slashes were not removed or replaced. The /var/log.unit
base name is incorrect because the forward slashes were not removed or replaced. Also, the

848  Appendix  ■  Answers to the Review Questions

wrong file extension is used. The var-log.unit base name is incorrect because the wrong
file extension is used. The var/log.mount unit filename is incorrect because the middle
forward slash was not replaced by a dash.

20.	 A, C, D.  For systemd automount unit files, the only directives that can be included in the
[Automount] file section are Where, DirectoryMode, and TimeOutIdleSec. Thus,
options A, C, and D are correct answers. The Options and What directives are ones you
would see in a mount unit file’s [Mount] section. Therefore, options B and E are incor-
rect choices.

Chapter 7: Configuring Network
Connections
1.	 C, D.  The nmtui command provides an interactive text menu for selecting a network inter-

face and setting the network parameters, and the ip command provides a command-line
tool for setting network parameters, so both options C and D are correct. The netstat
command displays information about network connections, but it doesn’t set the network
parameters, so option A is incorrect. The ping command can send ICMP packets to a remote
host but doesn’t set the local network parameters, so option B is incorrect. The route
command sets the routing network parameters, but not the IP address or subnet mask, so
option E is incorrect.

2.	 B.  Starting with version 17.04, Ubuntu has switched to using the Netplan tool to set network
address information, so option B is the correct answer. The netstat command doesn’t set
network information, but instead displays active network connections, so option A is incor-
rect. The iwconfig command sets wireless network parameters, but not network address
information, so option C is incorrect. The route command sets default router information,
but not network address information, so option D is incorrect. The ifconfig command
does set network address information, but it isn’t used by the newer versions of Ubuntu, so
option E is incorrect.

3.	 A.  The ethtool command displays features and parameters for network cards, so option
A is the correct answer. The netstat command displays network statistics and connections,
so option B is incorrect. The iwconfig and iwlist commands are used to set wireless
network parameters and not Ethernet card settings, so options C and D are incorrect. The
route command sets or displays routing information and not Ethernet card settings, so
option E is incorrect.

4.	 E.  The ss command displays a list of the open ports on a Linux system, along with the
processes associated with each port, so option E is correct. The iwconfig command sets
wireless network information, not open ports, so option A is incorrect. The ip command dis-
plays or sets network information on a network interface but doesn’t display open ports, so
option B is incorrect. The ping command sends ICMP messages to a remote host but doesn’t
display any open ports, so option C is incorrect. The nmtui command allows you to con-
figure network parameters for a network interface but doesn’t display the open ports on the
system, so option D is incorrect.

Chapter 7: Configuring Network Connections  849

5.	 A, C.  The nmcli and the ip commands both allow you to set and change network settings
from the command line, so options A and C are both correct. The iwconfig command only
sets wireless network information, so option B is incorrect. The netstat command dis-
plays open ports but doesn’t change any network settings, so option D is incorrect. The ping
command sends ICMP packets to remote hosts for testing, but it also doesn’t set any network
settings, so option E is incorrect.

6.	 A.  The default router is used to send packets from the local network to remote networks, so
to communicate with a remote host you need to define the default router address, making
option A correct. The netmask only defines the local network; it doesn’t define what to do
with packets for remote hosts, so option B is incorrect. The hostname and IP address only
define features of the local host, so options C and D are incorrect. The DNS server defines
how to retrieve the IP address of a host based on its domain name, so option E is incorrect.

7.	 E.  The DNS server maps the hostname to an IP address, so you must have a DNS server
defined in your network configuration to be able to use hostnames in your applications.
Thus, option E is correct. The default router only defines how to send packets to remote
hosts; it doesn’t map the host name to the IP address, so option A is incorrect. The netmask
value defines the local network, but not how to map hostnames to IP addresses, so option B
is incorrect. The hostname and IP address define features of the local host, so options C and
D are incorrect.

8.	 B.  The Dynamic Host Configuration Protocol (DHCP) is used to assign dynamic IP
addresses to client workstations on a network, so option B is correct. The default router
can’t assign addresses to devices, so option B is incorrect. The ARP table maps the hardware
address of the network card to IP addresses but doesn’t assign the IP addresses, so option C
is incorrect. The netmask value determines the network address but not the IP address of the
host, so option D is incorrect. The ifconfig command can set the static IP address of the
host but doesn’t automatically assign the IP address, so option E is incorrect.

9.	 B.  The loopback address is a special address assigned to the loopback interface that allows
local applications to communicate with each other, making option B the correct answer.
Dynamic and static IP addresses are assigned to network interfaces, which interact with
remote systems, not local applications, so options A and C are incorrect. The hostname iden-
tifies the local host for remote connections, not for local applications, so option D is incor-
rect. The MAC address identifies the network card hardware address but isn’t used by local
applications, so option E is incorrect.

10.	 A.  The dig command can display individual host records for a domain, which you can
use to find the MX mail host for the domain, so option A is correct. The host command
only displays host IP address information; it can’t determine the server type from the DNS
records, so option D is incorrect. The netstat and ss commands display active network
connections, but not the remote host types, so options B and E are both incorrect. The ping6
command sends IPv6 ICMP packets to test remote hosts but can’t tell if the remote host is a
mail server, so option C is incorrect.

11.	 B.  The ss command can display both open ports and the applications that own them, so
option B is correct. The ip and ifconfig commands just display or set network settings,
so options A and E are incorrect. The host and dig commands only display hostname
information, so options C and D are also incorrect.

850  Appendix  ■  Answers to the Review Questions

12.	 A.  Red Hat–based systems use separate files to store the IP address and router information.
Those files are stored in the /etc/sysconfig/network-scripts folder, making option
A correct. Option B is where Debian-based systems store the interfaces file, which contains
the network configuration settings. The ifcfg-eth0 is a file used to store the configuration,
not a folder, so option C is incorrect. The ifconfig and iwconfig are commands and not
folders, so options D and E are incorrect.

13.	 B.  The Debian system uses the iface setting to set features for an interface, and you must
specify the dhcp option to dynamically obtain an IP address, making option B correct.
Options C and E are incorrect since they don’t use the iface setting. Option A sets a static
IP address for the interface and not a dynamic address, so it’s incorrect. Option D sets a link
local IPv6 address and not a dynamic IP address, so it’s incorrect.

14.	 B.  The DNS servers are listed in the /etc/resolv.conf configuration file using the name
server setting, so option B is correct. The /etc/dhcpd.conf file defines configuration set-
tings for a DHCP server, so option A is incorrect. The /etc/nsswitch.conf file defines
the order in which the system searches for a hostname, not the list of DNS servers used, so
option C is incorrect. The /etc/network/interfaces file defines the network interfaces
for a Debian-based system, not the list of DNS servers, so option D is also incorrect. The
/etc/sysctl.conf file defines kernel network parameters and not a list of DNS servers,
so option E is incorrect.

15.	 A.  The ifconfig command must specify the network interface, the IP address, then the
netmask option before the netmask address. You can use the up or down option to place
the network card in an active or inactive state by default, but it’s not required. Option A is
the only option that uses the correct values in the correct order. Option C is close but fails to
specify the network interface. Option B is not in the correct format, and options D and E fail
to list the necessary configuration settings.

16.	 A.  The iwlist command displays the available wireless network access points detected by
the wireless network card, so option A is correct. The iwconfig command configures the
network card to connect to a specific access point but doesn’t list all of the detected access
points, making option B incorrect. Option C specifies the ifconfig command, which is
used to assign an IP address to a wireless network card but doesn’t list the access points. The
ip command specified in option D likewise can be used to set the IP address of the card but
doesn’t list the access points. Option E, the arp command, maps hardware addresses to IP
addresses so that you can find duplicate IP addresses on your network, but it doesn’t list the
wireless access points.

17.	 D.  The SSID value defines the access point name, and it is set using the essid option in
the iwconfig command, making option D the correct answer. The key option specifies
the encryption key required to connect to the access point but not the access point name,
making option A incorrect. The netmask and address values aren’t set by the iwconfig
command, so options B and C are incorrect. The channel option defines the radio fre-
quency the access point uses, not the access point name, so option E is also incorrect.

18.	 E.  The ip command allows you to both display and set the IP address, netmask, and default
router values for a network interface, so option E is correct. The ifconfig command can
set the IP address and netmask values, but not the default router. The iwconfig command

Chapter 8: Comparing GUIs  851

is used to set the wireless access point settings, and the router command is used to set the
default router but not the IP address or netmask values. The ifup command only activates
the network interface; it can’t set the address values.

19.	 C.  The ping command sends ICMP packets to a specified remote host and waits for a
response, making option C the correct answer. The netstat command displays statistics
about the network interface, so it’s incorrect. The ifconfig command displays or sets
network information but doesn’t send ICMP packets, making option B incorrect. The
iwconfig command displays or sets wireless network information, but it doesn’t handle
ICMP packets, making option D incorrect. The ss command displays information about
open connections and ports on the system, so option E is also incorrect.

20.	 B.  The tcpdump command displays network packets that traverse the system network inter-
face, so you can use that for monitoring application packets on the network, making option
B the correct answer. The nc command allows you to manually send packets on the network,
but it doesn’t allow you to monitor application packets, so option A is incorrect. The ping
and traceroute commands only send ICMP packets to remote servers; they don’t monitor
packets, so options C and D are incorrect. The mtr command can display the connectivity
status to a remote server, but it doesn’t allow you to view application packets going to the
server, so option E is incorrect.

Chapter 8: Comparing GUIs
1.	 C.  A desktop environment is a series of components that work together to provide the

graphical setting for the user interface. Therefore, option C is the correct answer. A graphical
user interface (GUI) is a set of programs that allow a user to interact with the system via
icons, windows, and various other visual elements. Thus, option A is a wrong answer. A
display manager operates the screen where you choose a username and enter a password to
gain system access. Therefore, option B is an incorrect choice. A file manager is the program
that allows you to perform file maintenance activities graphically. Thus, option D is also a
wrong choice. A window manager is a set of programs that determine how the windows are
presented on the desktop. Therefore, option E is also an incorrect choice.

2.	 A, B, C, E.  A favorites bar, file manager, icons, and a system tray are all part of a graphical
UI. Therefore, options A, B, C, and E are correct choices. A command line is a location to
enter text-based commands, and while you can reach it from the GUI using a terminal emu-
lator, it is not considered to be part of the graphical UI. Therefore, option D is the only incor-
rect choice.

3.	 A.  SDDM (Simple Desktop Display Manager) is the default display manager for the KDE
Plasma desktop environment. Therefore, option A is the correct answer. Files, also called
GNOME files, is the file manager within the GNOME Shell desktop environment. Therefore,
option B is a wrong answer. Mutter is the GNOME shell window manager, and thus option
C is an incorrect answer. GDM stands for the GNOME Display Manager. Therefore, option
D is a wrong choice. Dock is another name for the GNOME Shell Dash, which is the favor-
ites bar within GNOME Shell. Thus, option E is also an incorrect choice.

852  Appendix  ■  Answers to the Review Questions

4.	 C.  The KDE Plasma’s file manager is named Dolphin. Therefore, option C is the correct
answer. Nautilus is the file manager on the Unity desktop environment, and therefore, option
A is a wrong answer. Plasmoid is another name for a KDE Plasma widget. Thus, option B is
an incorrect answer. Kwin is the KDE Plasma’s window manager, and therefore option D is
a wrong choice. Nemo is the default file manager on the Cinnamon desktop environment.
Thus, option E is an incorrect choice.

5.	 C, D.  MATE’s display manager is LightDM, and its file manager is Caja. Therefore, options
C and D are correct answers. MATE was a fork of the GNOME 2 desktop environment and
not GNOME Shell, so option A is a wrong answer. MATE uses a fork of Metacity, called
Marco, as its window manager, so option B is also a wrong choice. At the time this book was
being written, MATE was being actively developed, so option E is an incorrect choice.

6.	 A.  The sound keys accessibility setting provides beeps whenever the Caps Lock or Num Lock
key is turned on or off. Therefore, option A is the correct answer. A program that reads the
GUI aloud, such as Orca, is a screen reader. Thus, option B is a wrong answer. The cursor
blinking setting modifies the cursor blink rate to make it easier to locate the cursor on the
screen. Therefore, option C is also an incorrect answer. Output to a refreshable braille display
is provided by the Orca screen reader, which is a screen reader. Thus, option D is a wrong
choice. Zoom settings allow the screen or a screen portion to be amplified to different magni-
fication levels. Therefore, option E is also an incorrect choice.

7.	 D.  The braille display device would be using the brltty service. The proper systemctl
command to restart the services is in option D. Options A, B, and C all use incorrect names
for the braille service. The command in option E would reload any modified brltty config-
uration files but not restart the service. Therefore, option E is also an incorrect choice.

8.	 A.  Slow keys are a keyboard option that modifies how long a key must be pressed down to
acknowledge the key. Therefore, option A is the correct answer. Sticky keys are a keyboard
option that sets keyboard modifier keys, such as Ctrl and Shift, to maintain their pressed
status until a subsequent key is pressed. Thus, option B is a wrong answer. Repeat keys are
a keyboard option that modifies how long a key must be pressed down and that defines a
delay to acknowledge the key repeat. Therefore, option C is also a wrong choice. Simulated
secondary click is actually a mouse option, and it sets a primary key to be pressed along with
a mouse click to emulate secondary mouse clicks. Thus, option D is an incorrect answer. A
screen keyboard is a keyboard option that displays a visual keyboard on the UI that can be
manipulated by a mouse or other pointing device to emulate keystrokes. Therefore, option E
is also an incorrect choice.

9.	 E.  The display server uses a communication protocol to transmit the desires of the UI to
the operating system, and vice versa. Therefore, option E is the correct answer. A window
manager is a program that communicates with the display server on behalf of the UI. Thus,
option A is a wrong answer. A display manager controls the desktop environment’s login
screen, where you choose a username and enter a password to gain system access. Therefore,
option B is also a wrong choice. A desktop environment is a user environment that provides
a predetermined look and feel to a GUI, but it does not transmit the desires of the UI to the
operating system, so option C is a wrong answer. A window server is another name for a
window manager, and thus, option D is also an incorrect answer.

Chapter 8: Comparing GUIs  853

10.	 A, C, D, E.  A compositor arranges various display elements within a window to create a
screen image. Therefore, option A is a correct answer. Both Mutter and Kwin, even though
their primary duty is as a window manager, also contain compositors. Thus, options C and D
are correct answers too. Weston is a compositor for the Wayland display server, so option E is
also a correct choice. Wayland is a display server and not a compositor. Thus, option B is the
only wrong answer.

11.	 B, D.  Wayland does use the $WAYLAND_DISPLAY environment variable, so option B is
a correct answer. Also, XWayland supports legacy X11 programs. Therefore, option D is
an additional correct answer. Wayland is a replacement for the X11 display server, and it
is designed to be more secure. Thus, option A is a wrong answer. Wayland’s compositor is
swappable and there are several other compositors besides Weston available for use with
Wayland. Therefore, option C is a wrong choice. In order to disable Wayland in GNOME
Shell, you edit the /etc/gdm3/custom.conf file and set WaylandEnable to false.
Thus, option E is also an incorrect answer.

12.	 C.  The loginctl command will help you determine your current GUI session number.
You can then use the loginctl command again along with your session number to deter-
mine if your GUI session is Wayland or X11. Thus, option C is the correct answer. While you
can issue the command echo $WAYLAND_DISPLAY to help determine if your GUI session
is Wayland or X11, $WAYLAND_DISPLAY by itself does nothing. Therefore, option A is a
wrong answer. AccessX is a program that originally provided many universal access settings.
There is no environment variable used by Wayland or X11 called $AccessX, and thus,
option B is an incorrect answer. The $X11 environment variable is made up, so option D is
a wrong choice. The runlevel command allows you to determine your system’s current
run level and is not used in determining display servers. Therefore, option E is also an incor-
rect choice.

13.	 C.  When your display server is Wayland, some commands, such as gnome-shell
--replace, do not work in your GUI session. Therefore, option C is the correct answer. The
scenario does not indicate that the X11 display server is hung. So please don’t reboot your
server and know that option A is a wrong answer. The error message does not indicate that
the -R option should be used instead. Thus, option B is an incorrect answer. If XWayland
was being used, you would not receive an error message. Therefore, option D is also a wrong
choice. If Wayland was disabled for the session, the command would not generate an error
message. Thus, option E is an incorrect choice.

14.	 B, C, E.  The X.Org foundation does develop an X server, called X11. The X server is being
replaced by Wayland. X is short for X Window System, which is a display server. So options
B, C, and E are correct. XFree86 was the dominant server implementing X until 2004. Now
the dominant server is the X.Org foundation’s X11 server, so option A is a wrong answer.
The X.Org’s server implements the X Window System version 11, and that is why it is some-
times called X11. It is not due to the number of graphical sessions a particular user can have.
Therefore, option D is also an incorrect choice.

15.	 A, D.  The xwininfo and xdpyinfo commands provide information about the X server,
including the different screen types available, the default communication parameter values,

http://x.org
http://x.org
http://x.org

854  Appendix  ■  Answers to the Review Questions

and protocol extension information as well as individual window information. These two
utilities would be the best ones to start diagnosing the problem. Therefore, options A and
D are correct answers. Xorg -configure creates a new X11 configuration file for your
perusal, which may be useful later on in the troubleshooting process. However, this is not
the best command to start diagnosis. Therefore, option B is a wrong answer. The xcpyinfo
command is made up, making option C an incorrect answer. The loginctl command can
help you determine whether or not the user is using X11 or Wayland, but since you already
know that the X display server is running, issuing this command will not help. Thus, option
E is an incorrect answer as well.

16.	 A, B, C, D.  SPICE, NX, Xrdp, and VNC are all remote desktops. Therefore, options A, B, C,
and D are correct answers. Caja is the file manager in the MATE desktop environment and
not a remote desktop. Thus, option E is the only incorrect answer.

17.	 A, D.  SPICE and VNC are the remote desktops, which are typically used with virtual
machines. By default, VNC is used with KVM virtual machines. However, you can replace
VNC with SPICE. Thus, options A and D are the correct answers. NX and Xrdp are not typi-
cally used with virtual machines, and thus, options B, C, and E are not correct answers.

18.	 E.  The Xrdp remote desktop software uses the Remote Desktop Protocol (RDP). Thus,
option E is the correct answer. The Remote Frame Buffer (RFB) protocol is used by VNC.
Thus, option A is a wrong answer. The Wayland protocol is used by the Wayland display
server. Therefore, option B is also a wrong choice. Option C is also an incorrect answer,
because the NX technology protocol is used by the NX remote desktop. The Simple protocol
for ICEs, or Simple Protocol for Independent Computing Environments (SPICE), is used by
the Spice remote desktop. Thus, option D is also an incorrect choice.

19.	 A, C, E.  You need to indicate to the openSSH server that no terminal is required because you
are only establishing a tunnel. Therefore, the -N switch is needed. The -f switch will send
the openSSH tunnel into the background, freeing up your command-line interface so that you
can type remote desktop commands. The local mode of the ssh command requires that you
use the -L switch to specify the local system as well as the local and remote ports to be used.
Therefore, options A, C, and E are correct. The -X switch is not used in SSH port forwarding,
so option B is a wrong answer. The -R switch is used for remote mode SSH port forwarding.
Therefore, option D is also an incorrect choice.

20.	 B.  You need to employ X11 forwarding. To properly and securely access the remote Linux
system and run an X11-based application, the command in option B is the best choice. The
command in option A uses the trusted X11 via the -Y switch, which is not secure. Therefore,
option A is a wrong answer. The command in option C also uses the -Y switch, so option C
is also an incorrect answer. The command in option D uses the correct command switch but
sends the connection to the laptop instead of the rack-mounted Linux server. Thus, option D
is a wrong answer. The command in option E is using the -L switch, which is for local SSH
port forwarding, and it uses the wrong syntax for that switch and attempts to send the con-
nection to the laptop. Thus, option E is a very incorrect answer.

Chapter 9: Adjusting Localization Options  855

Chapter 9: Adjusting Localization
Options
1.	 C.  The ASCII character set uses a 7-bit code to store English language characters, so

option C is correct. The UTF-8 character set uses 1 byte (8 bits) to store characters, so option
A is incorrect. The UTF-16 character set uses 2 bytes (16 bits) to store characters, so option B
is incorrect. The Unicode character set uses 3 bytes (24 bits) to store characters, so option
D is incorrect, and the UTF-32 character set uses 4 bytes (32 bits) to store characters, so
option E is incorrect.

2.	 A, B.  The UTF-8 and UTF-16 character sets use a transformation process to reduce the
Unicode character set into 1 byte (UTF-8) or 2 byte (UTF-16) values, so options A and B
are correct. The ASCII character set doesn’t transform any characters, so option C is incor-
rect. The Unicode character set also doesn’t transform characters, so option D is incorrect.
locale is a Linux command and not a character set, so option E is incorrect.

3.	 E.  The Unicode character set uses 3 bytes to store characters, which provides enough space
to represent all the characters in the known world languages, so option E is correct. The
ASCII character set only supports English language characters, so option A is incorrect. The
LC_ALL environment variable defines a character set to use for the Linux system but isn’t a
character set in itself, so option B is incorrect. Both the UTF-8 and UTF-16 character sets are
a subset of the Unicode character set, so they can’t represent all the language characters in
use in the world, so options C and D are incorrect.

4.	 E.  The locale command displays all of the LC_ environment variables and their values, so
option E is correct. The date command only displays the time and date, not the localization
information, so option A is incorrect. The time command displays the amount of time an
application uses on the system, not the localization information, so option B is incorrect. The
hwclock command displays the hardware clock time, not the localization information, so
option C is incorrect. The LANG environment variable allows you to set all the LC_ environ-
ment variables in one place, but it doesn’t display all their settings, so option D is incorrect.

5.	 C, E.  The LANG and LC_ALL environment variables control all the localization environment
variable settings, so options C and E are correct. The LC_MONETARY, LC_NUMBERIC, and
LC_CTYPE environment variables each control a single category of localization environment
variables, but not all of the localization environment variables, so options A, B, and D are all
incorrect.

6.	 B.  Localization is the process of adapting a Linux system’s character set to use a local lan-
guage, so option B is correct. The locale command allows you to view the character sets,
but it doesn’t adapt the Linux system to the locale environment, so option A is incorrect. The
character set is used to specify language characters, but it doesn’t adapt the Linux system to
a specific language, so option C is incorrect. Unicode and ASCII are two types of character
sets, and they don’t adapt the Linux system to a specific language, so options D and E are
incorrect.

856  Appendix  ■  Answers to the Review Questions

7.	 D.  The localectl command is part of the Systemd package and allows you to display
and change the localization settings for your Linux system, so option D is correct. The
timedatectl command is also part of the Systemd package, but it only applies to time and
date changes and not the localization changes, so option A is incorrect. The time, date, and
locale programs are legacy programs and not part of the Systemd package, so options B, C,
and E are incorrect.

8.	 B.  The export command sets the value associated with an environment variable, so option
B is correct. The time command displays the amount of time an application used on the
system, not the values of an environment variable, so option A is incorrect. The locale
command displays the values of the localization environment variables but doesn’t allow
you to change them, so option C is incorrect. The date command displays and sets the time
and date values but not the localization environment variables, so option D is incorrect. The
hwclock command displays and sets the hardware clock but not the localization environ-
ment variables, so option E is incorrect.

9.	 B.  The LC_MONETARY environment variable determines the character set used for displaying
monetary values, so option B is correct. The LC_NUMERIC environment variable determines
how Linux displays numeric values, so option A is incorrect. The LC_CTYPE environment
variable determines the default character set used by programs but not necessarily only for
monetary values, so option C is incorrect. The LC_TIME environment variable determines
how the Linux system displays time, not monetary values, so option D is incorrect. The
LC_COLLATE environment variable determines how Linux sorts alpha characters, not how it
displays monetary values, so option E is incorrect.

10.	 A.  Each time zone determines the offset from UTC that applies to a specific location, so
option A is correct. The localization determines the character set used to display language
characters but not the time, so option B is incorrect. The character set determines how to
display the language characters but not the time, so option C is incorrect. The locale deter-
mines how Linux displays the time but not the actual time setting, so option D is incorrect.
The hardware clock is the time the physical workstation or server is set to in BIOS or UEFI;
it doesn’t necessarily represent the time relative to UTC and can even be stored as a UTC
value, so option E is incorrect.

11.	 B, E.  Both the hwclock and timedatectl commands retrieve the time and date from the
physical workstation or server, so options B and E are correct. The date command displays
the system time and date, not the time and date set on the physical hardware, so option A is
incorrect. The time command displays the amount of time a program uses on the system,
not the physical hardware time and date on the workstation or server, so option C is incor-
rect. The locale command displays the localization environment variables and their values,
not the hardware time and date, so option D is incorrect.

12.	 A.  Red Hat–based systems use the /etc/localtime file to store the appropriate time
zone file for the location where the system is running, so option A is correct. The /etc/
timezone file is normally used by Debian-based systems, so option B is incorrect. The
/usr/share/zoneinfo folder stores time zone files that you must copy to the /etc/
localtime file, so option C is incorrect. The /usr/share/timezone and /usr/share/
localtime folders are incorrect folder names, so options D and E and incorrect.

Chapter 9: Adjusting Localization Options  857

13.	 B.  The /usr/share/zoneinfo folder contains template files for each of the time zones
supported in Linux, so option B is correct. The /etc/localtime and /etc/timezone
files are the locations where you copy or link the appropriate time zone file to, but neither
of them is the template folder, so options A and C are incorrect. The $HOME folder contains
the user environment settings and user files but not the time zone template files, so option D
is incorrect. The /usr/share/timezone folder is an incorrect folder name, so option E is
incorrect.

14.	 B.  The timedatectl command from the Systemd package displays the current date, the
Linux system time, the hardware clock time, and the time zone, so option B is correct. The
date command displays the current system time, date, and time zone but not the hardware
time, so option A is incorrect. The time command displays the amount of time an applica-
tion uses on the CPU, not the current date and time, so option C is incorrect. The hwclock
command displays the current hardware time but not the system time, date, or time zone, so
option D is incorrect. The localectl command displays the localization settings for the
system but not the time, date, hardware time, or time zone, so option E is incorrect.

15.	 A.  The date command allows you to specify a format for displaying the time and date,
so option A is correct. The time command displays the amount of CPU time an applica-
tion consumes, not the current time and date, so option B is incorrect. The timedatectl
command displays the current time and date but doesn’t allow you to format the output, so
option C is incorrect. The localectl command displays the localization settings for the
system, but not the current time and date, so option D is incorrect. The hwclock command
displays the current hardware time but doesn’t allow you to specify the format, so option E is
incorrect.

16.	 A, D.  The hwclock and timedatectl commands allow you to synchronize the Linux
system time to the workstation BIOS time, so options A and D are correct. The date
command allows you to change the date and time, but it doesn’t allow you to synchronize
it with the workstation BIOS time, so option B is incorrect. The time command allows
you to display the amount of CPU time an application consumes, but it doesn’t allow you
to synchronize the system time with the workstation BIOS time, so option C is incorrect.
The localectl command is used for localization, not for setting the time, so option E is
incorrect.

17.	 B.  Red Hat–based Linux systems utilize the chrony software package for connecting to
network time servers. The ntpd package is a legacy software package and not often used,
so option A is incorrect. The localectl command isn’t used for setting time, so option C
is incorrect. While you can set the local time using the timedatectl command, you can’t
use it to set the time using a network time server, so option D is incorrect. Although Red
Hat–based systems utilize the Systemd utilities, they don’t use the timesyncd program for
network time, so option E is incorrect.

18.	 E.  The TZ environment variable overrides the default system time zone for session appli-
cations, so option E is correct. The LANG and LC_ALL environment variables set the entire
system time zone, not just the programming environment, so options A and D are incorrect.
The LC_MONETARY and LC_NUMERIC environment variables set the localization for money
values and numeric values, but they don’t change the time zone setting, so options B and C
are incorrect.

858  Appendix  ■  Answers to the Review Questions

19.	 C.  The UTF-8 character set duplicates the ASCII character set, and it’s the default used in
most U.S. Linux installations, so option C is correct. The Unicode, UTF-16, and UTF-32
character sets use more than 1 byte to represent characters, so they are not often used for
English language characters, making options A, B, and D incorrect. The locale command
displays the localization environment variables and their values—it is not a character set
code, so option E is incorrect.

20.	 B.  The localectl command uses the list-locales option to display all the localiza-
tions installed on the Linux system, so option B is correct. The timedatectl command
displays the local time and date, but it doesn’t provide information on which localization
files are installed, so option A is incorrect. The locale command displays the localization
environment variable settings but doesn’t list which localizations are installed, so option C is
incorrect. The LANG and LC_ALL environment variables set the current localization but can’t
display which ones are installed on the system, so options D and E are incorrect.

Chapter 10: Administering Users
and Groups
1.	 A, B, E.  The user account’s username, password (though it typically only contains an x), and

UID are all legitimate fields in an /etc/passwd file record. Therefore, options A, B, and
E are correct answers. The password change date and special flag are fields in the /etc/
shadow file. Thus, options C and D are incorrect choices.

2.	 A, B, C.  The password expiration date, account expiration date, and password are all
legitimate fields in a /etc/shadow file record. Therefore, options A, B, and C are correct
answers. The comment and default shell are fields in the /etc/passwd file. Thus, options D
and E are incorrect choices.

3.	 E.  The user account’s username is the only field within an /etc/passwd and an /etc/
shadow record that contains the same data. Therefore, option E is the correct answer. While
both files have a password field, they do not contain the same data. The password can only
exist in one of the two files, preferably the /etc/shadow file. Thus, option A is a wrong
answer. The account expiration date only exists in the /etc/shadow file, so option B is also
a wrong choice. The UID and GID fields only exist in the /etc/passwd file, so options C
and D are also incorrect answers.

4.	 B, D, E.  Though not very efficient, the cat /etc/passwd command would allow you to
view the NUhura account’s record within the /etc/passwd file. The grep NUhura
/etc/passwd and getent passwd NUhura commands also would allow you to see the
NUhura record. So options B, D, and E are correct choices. The getent command in option
A has got the username and filename flip-flopped, so it is an incorrect choice. Also, the
passwd NUhura command attempts to change the account’s password instead of display its
file record, so option C is also an incorrect answer.

Chapter 10: Administering Users and Groups  859

5.	 E.  The useradd -D command allows you to view the account creation configuration direc-
tives in the /etc/default/useradd file. Therefore, option E is the correct answer. The
/etc/passwd, /etc/shadow, and /etc/group files do not contain account creation
configuration directives, so options A, B, and C are wrong answers. While the /etc/login
.defs file does contain account creation configuration directives, you cannot display it with
the useradd -D command. Therefore, option D is also an incorrect choice.

6.	 C.  If the CREATE_HOME directive is not set or it is set to no, when a user account is created
no home directory will be created by default. Most likely this caused the problem, so option
C is the correct answer. The HOME directive determines what base directory name is used
when creating home directories for new accounts, so option A is a wrong answer. If you did
not employ super user privileges, you would not have been able to even create the account,
so option B is a wrong choice. The INACTIVE directive pertains to when an account will be
considered inactive, so option D is also an incorrect answer. The EXPIRE directive is involved
with account expiration and not home directory creation. Therefore, option E is also an
incorrect choice.

7.	 D.  To immediately remove the KSingh account and all his home directory files, using super
user privileges you would use the userdel -r KSingh command. Therefore, option D is
the correct answer. There is no -r option for the usermod command, so option A is a wrong
answer. The rm -r /home/KSingh command would only remove the account’s home
directory files and not delete the user account. Therefore, option B is an incorrect answer. The
userdel command without any options would only delete the account and not remove any
of its home directory files, so option C is a wrong choice. The -d option on the usermod
command is for changing an account’s home directory. Therefore, option E is also an incor-
rect choice.

8.	 A, B, C, E.  The passwd, usermod, userdel, and chage commands can all manipulate
(or remove) an account’s /etc/shadow file record data in some way. Therefore, options A,
B, C, and E are all correct. While the getent command will allow you to display selected
records from the /etc/shadow file, it will not allow you to manipulate data records within
the file. Therefore, option D is the only incorrect choice.

9.	 B.  The newgrp command will let you switch temporarily from your account’s default
group to another group with whom you have membership. Therefore, option B is the
correct answer. The usermod command could make that switch, but it is not best for tem-
porary situations, so it is an incorrect choice. The groups command allows you to display
group information, but not change groups, so it also is a wrong answer. The groupadd
and groupmod commands deal with group management, but not temporarily switching an
account’s default group. Therefore, options D and E are also incorrect choices.

10.	 C.  The usermod -aG NCC-1701 JKirk command would add JKirk to the NCC-1701
group as a member and not remove any of the account’s previous group memberships. There-
fore, option C is the correct answer. The usermod -g NCC-1701 JKirk command would
change the JKirk account’s primary group membership, so option A is a wrong answer. The
command in option B would add the JKirk account as a member to the NCC-1701 group,
but it would remove any of the account’s previous group memberships. Thus, option B is

860  Appendix  ■  Answers to the Review Questions

an incorrect answer. The groupadd NCC-1701 command would only add the NCC-1701
group. Therefore, option D is a wrong answer as well. The groupmod command is for mod-
ifying groups, and so the command in option E would have undesirable results. Thus, option
E is an incorrect choice.

11.	 B, D.  The getent group NCC-1701 and grep NCC-1701 /etc/group commands
would both allow you to see the various NCC-1701 group members. Therefore, options B
and D are correct answers. The groups command is for viewing an account’s various group
memberships. Therefore, option A is a wrong answer. It is always tempting to add an s to the
/etc/group filename, because of the groups command. However, it is the group file and
not the groups file. Thus, options C and E are incorrect choices.

12.	 A.  The skeleton directory, /etc/skel, typically contains the user environment files that are
copied to the account’s home directory when it is created. Therefore, option A is the correct
answer. Options B, C, and D all contain references to home (or potential home) directories.
That is where the user environment files end up, but not where they come from. Thus options
B, C, and D are wrong answers. The /etc/ directory is where the global environment files
reside. Therefore, option E is also an incorrect choice.

13.	 E.  The .bash_profile user environment file is run first if it is found in the user account’s
home directory. Therefore, option E is the right answer. The .bash_login and .profile
user environment files would be ignored if they existed alongside the .bash_profile file
within the user’s home directory. Thus, options A and C are wrong answers. The .bashrc
file is typically called to execute from one of the other user environment files for an inter-
active login session. Thus, option B is also an incorrect answer. The .bash.bashrc file,
though similar in name to a global environment file, does not exist. Therefore, option D is an
incorrect choice.

14.	 B, C, D, E.  Depending on the Linux distribution currently in use, the files (and directory) in
options B, C, D, and E may be involved in setting up the global environment. The directory in
option A, while similar to a user environment filename, is made up. Therefore, option A is the
only incorrect choice.

15.	 A, B, E.  The whoami, who am i, and id commands will all display information about the
current account that is issuing the commands. Therefore, options A, B, and E are correct
answers. While the cat commands may display user environment files in the account’s home
directory, they do not display information concerning the account. Thus, options C and D are
incorrect choices.

16.	 D.  The w command displays CPU load information for the last 1, 5, and 15 minutes as well
as data about users who are currently accessing the system. Therefore, option D is the correct
answer. The who command will display information concerning users who are currently
logged into the system, but not CPU load data. Thus, option A is a wrong answer. The id
command displays user account information, not CPU load data or active user info. There-
fore, option B is also a wrong choice. The whoami command only displays the username
of the current user issuing the command. Thus, option C is an incorrect answer. The last
command displays past and present system access information for user accounts but nothing
concerning CPU load data. Thus, option E is an incorrect choice.

Chapter 11: Handling Storage  861

17.	 B.  The last command by default pulls its data from the /var/log/wtmp file. Therefore,
option B is the correct answer. The w command uses data from the /var/run/utmp file, so
option A is a wrong choice. The last command can pull information from an older saved
wtmp file, such as /var/log/wtmp.1, but it does not do so by default. Thus, option C is a
wrong choice. The /etc/shadow and /etc/passwd files do not contain any data that can
be used with the last command. Therefore, options D and E are incorrect answers.

18.	 A, C.  The usrquota and grpquota options are /etc/fstab settings used to enable user
and group quotas for a filesystem. Therefore, options A and C are correct answers. Options B
and D contain commands that are used with managing filesystem quotas. Thus, options B and
D are wrong answers. The aquota.user is a file that is created when the quotacheck -cu
command is employed. Therefore, option E is an incorrect choice.

19.	 B.  To quickly remove quota limits on all filesystems, you would use the quotaoff -a
command. Therefore, option B is the correct answer. Editing the /etc/fstab would take
too long because you would have to remove the quota options and then unmount and
remount all the filesystems. Thus, option A is a wrong answer. The quotacheck utility cre-
ates either the aquota.group file, if the -cg options are used, or the aquota.user file,
if the -cu switches are used, or both files if -cug is employed. However, it does nothing for
quickly turning off filesystems’ quotas. Thus, options C and D are incorrect answers. The
umount command will not turn off filesystems’ quotas, and therefore option E is also an
incorrect choice.

20.	 C.  The edquota -t command will edit quota grace periods. Therefore, option C is the
right answer. The edquota -u command edits a designated user’s quota limits. Thus, option
A is a wrong answer. The edquota -g command edits a designated group’s quota limits.
Therefore, option B is also an incorrect answer. The edquota -G command and edquota
--grace command are made up. Thus, both options D and E are incorrect choices.

Chapter 11: Handling Storage
1.	 A.  The solid-state drive (SSD) storage device uses an integrated circuit to store data, so

option A is correct. SATA, SCSI, and PATA are drive connection types and not storage device
types, so options B, C, and E are all incorrect. The hard disk drive (HDD) storage devices
use disk platters and a read/write head to store data, not an integrated circuit, so option D is
incorrect.

2.	 B.  Linux creates files named sdx in the /dev folder for SCSI devices. For the second SCSI
device, Linux would create the file /dev/sdb, so option B is correct. The /dev/hdb file
would represent the second HDD drive connected to the system, so option A is incorrect,
and /dev/sda would represent the first SCSI device connected to the system, so option E is
incorrect. Options C and D both represent partitions and not entire drives, so they are both
incorrect.

862  Appendix  ■  Answers to the Review Questions

3.	 E.  The udev program runs in the background on Linux systems and detects and mounts
storage devices as they’re connected to the system, so option E is correct. The mkfs
program creates a filesystem on partitions; it doesn’t mount them, so option A is incor-
rect. The fsck program repairs filesystems but doesn’t mount them, so option B is
incorrect. The umount program unmounts filesystems, not mounts them, so option C
is incorrect. The mount program manually mounts filesystems but doesn’t run in the
background and automatically detect them, so option D is incorrect.

4.	 C.  The udev program creates files in the /dev/disk/by-id folder that are linked to the
raw device files for storage devices. These files are identified by manufacturer information,
including the serial number assigned to the device, so option C is correct. The /dev/disk/
by-path folder links files based on the drive’s connection to the system, so option A is
incorrect. The /dev/sdb file represents the raw device file assigned to the device, not a
permanent link file, so option B is incorrect. The /dev/disk/by-uuid folder contains
permanent link files based on the device UUID value, not the serial number, so option D is
incorrect. The /dev/mapper folder contains files for virtual drives for LVM and multipath
systems, not permanent links to raw device files, so option E is incorrect.

5.	 B.  The GNU gparted program provides a graphical window for managing device parti-
tions, so option B is correct. The gdisk, fdisk, and parted programs are all command-
line partitioning tools, so options A, C, and D are all incorrect. The fsck program is a tool
to repair filesystems, not create or modify partitions, so option E is incorrect.

6.	 A.  Linux uses mount points to insert a filesystem on a storage device to the virtual directory,
so option A is correct. Unlike Windows, Linux doesn’t assign drive letters to storage devices,
so option B is incorrect. The /dev files are used as raw devices for storage devices; they don’t
access the filesystem, so option C is incorrect. The /proc and /sys folders are used by the
kernel to display and change storage device information, not add the filesystem to the virtual
directory, so options D and E are incorrect.

7.	 D.  The ext filesystem was the original filesystem used in Linux, and ext4 is the latest version
of it, so option D is correct and option C is incorrect. The reiserFS and btrfs filesystems are
specialty filesystems created separately from the ext filesystem, so options A and B are also
incorrect. The nfs filesystem was created to allow sharing files and folders across networks
and wasn’t the original Linux filesystem, so option E is incorrect.

8.	 B.  The mkfs program allows you to create a new filesystem on a partition, so option B is
correct. The fdisk, gdisk, and parted programs are used to create or modify partitions
but not to work with the filesystem installed on them, so options A, D, and E are all incor-
rect. The fsck program repairs filesystems but can’t create them, so option C is incorrect.

9.	 B.  The mount program allows you to insert the filesystem on a partition into the virtual
directory, so option B is correct. The fsck program repairs filesystems but doesn’t insert
them into the virtual directory, so option A is incorrect. The umount program removes file-
systems from the virtual directory, as opposed to inserting them, so option C is incorrect.
The fdisk program partitions devices but doesn’t create filesystems or insert them into the
virtual directory, so option D is incorrect. The mkfs program creates filesystems but doesn’t
insert them into the virtual directory, so option E is also incorrect.

Chapter 12: Protecting Files  863

10.	 A.  The fsck program repairs corrupted filesystems, so option A is correct. The mount
program inserts filesystems into the virtual directory, but it can’t repair them, so option B
is incorrect. The umount program removes filesystems from the virtual directory but can’t
repair them, so option C is also incorrect. The fdisk program creates and modifies parti-
tions but doesn’t work with filesystems, so option D is incorrect. The mkfs program creates
filesystems but doesn’t repair them, so option E is incorrect.

Chapter 12: Protecting Files
1.	 E.  Scheduling a full archive weekly and implementing a differential backup daily (which

backs up all the data that is new or modified since the last full archive) will meet the require-
ments. Therefore, option E is the correct answer. Since you only want to create a full backup
one time per week, option A is a wrong answer. Doing an incremental every day without a
periodic full archive would result in a long time period to restore data. So option B does not
match the requirements and is an incorrect choice. Doing a differential archive daily also
does not fully match the requirements, because you are not conducting a full archive weekly.
Thus, option C is a wrong answer. Option D is not as time efficient for a data restore as
option E, because you would have to apply each incremental to restore data instead of one
differential archive. Therefore, option D is also an incorrect choice.

2.	 B.  The gzip utility compresses data files and gives them the .gz file extension. Therefore,
option B is the correct answer. The xz, bzip2, and zip compression utilities compress a
data file and give it a different file extension, so options A, C, and D are wrong answers. The
dd utility is not a compression program. Therefore, option E is also a wrong choice.

3.	 D.  To quickly create an archive of disparate files around the virtual directory structure, the
best utility to use is the cpio program. This is because you can employ the find command
to locate the files and then pipe the results into the cpio utility. Therefore, option D is the
correct answer. While the tar utility uses SNAR files, it is not the most efficient program to
use in this scenario, and thus, option A is a wrong answer. The dd utility is used for entire
disks or partitions, and therefore, option B is an incorrect answer. The rsync and zip pro-
grams are not the most efficient utilities to use in this scenario, so options C and E are also
incorrect choices.

4.	 E.  The tar options -cJvf will create a tarball using the highest compression utility, xz, and
allow the administrator to view the files via the verbose option while they are being copied
into the compressed archive. Thus, option E is the correct answer. The switches in options A
and B perform extracts (-x) and do not create, so they are wrong answers. The only thing
wrong with option C is that it employs gzip compression via the -z switch, so it is an incor-
rect choice. Option D leaves out the verbose switch, so it too is an incorrect choice.

5.	 A.  The dd command in option A will accomplish the job correctly and is the correct answer.
The dd commands in options B through D have the input and output files flip-flopped, so
they would destroy the data on the /dev/sdc drive. Therefore, options B, C, and D are
wrong answers. The dd command in option E would wipe the /dev/sdc drive using zeros.
Therefore, option E is also an incorrect choice.

864  Appendix  ■  Answers to the Review Questions

6.	 C.  The -a switch allows you to recursively back up a directory tree and preserves all the file
metadata. It is equivalent to using the -rlptgoD switches. Therefore, option C is the correct
answer. The -r switch only allows recursive operations but does not preserve metadata, such
as file ownership. Therefore, option A is a wrong answer. The -z switch employs compres-
sion and nothing else, so option B is a wrong choice. The -e and --rsh switches are used to
designate a remote program to use when sending files to a remote system. Thus, options D
and E are also incorrect choices.

7.	 E.  When you use the -z switch in conjunction with the rsync utility, you are employing
compression from the zlib library. Therefore, option E is correct. And thus, options A, B, C,
and D are incorrect choices.

8.	 A, B, E.  Options A, B, and E are all true statements regarding the scp utility and therefore
are correct answers. The scp program is not an interactive utility, and so option C is a wrong
answer. Also, the scp utility cannot be interrupted without ill effects (you have to start all
over), so option D is also an incorrect choice.

9.	 E.  The reput command will resume your interrupted operation of uploading a local backup
to a remote system. Therefore, option E is the correct answer. The progress command tog-
gles on and off the progress display, so option A is a wrong answer. The get command and
the reget command involve downloading a file from a remote system to a local system.
Thus, options B and C are wrong choices. Though the put command was probably used
prior to the operation’s start, it will not resume an upload, so option D is also an incor-
rect choice.

10.	 B.  In this scenario, the most likely cause is that the archive got corrupted when it was trans-
ferred to the remote system. Therefore, option B is correct. If the local archive was corrupted
when it was created, transferring would either corrupt it more or leave it the same. Therefore,
option A is a wrong answer. Using incorrect commands within the sftp utility or wrong
switches on the md5sum program will not typically cause corruption. Therefore, options C
and E are wrong choices. The numbers only match if corruption has not occurred, and thus,
option D is also an incorrect choice.

Chapter 13: Governing Software
1.	 A, B.  When developers distribute their applications as source code tarballs using the tar and

gzip utilities, you often need to download the file from a website. The wget and cURL pro-
grams allow you to download files from the command line, so options A and B are correct.
The dpkg tool is used for installing DEB package files, not tarballs, so option C is incorrect.
The rpm and yum tools are used for installing RPM package files, so options D and E are
incorrect.

2.	 D.  The make script runs the necessary compiler steps to compile all of the source code and
library files necessary to build the application executable file, so option D is correct. The
dpkg tool installs DEB package files, not source code files, so option A is incorrect. The rpm
and yum tools are used to install RPM package files, so options B and C are incorrect. The
wget program is used to download source code bundles, but not build them, so option E is
incorrect.

Chapter 13: Governing Software  865

3.	 C.  The configure tool assesses your Linux system to ensure that any dependencies are met
and that the proper compiler tools are installed and then builds the make script, so option C
is correct. The make script along with the install option runs the make script but doesn’t
create it, so options A and B are incorrect. The gcc program compiles the source code and
library files but doesn’t create the make script, so option D is incorrect. The dpkg installs
DEB package files but doesn’t create a make script, so option E is incorrect.

4.	 A.  The GNU Compiler Collection (gcc) is the most popular compiler used in Linux, so
option A is correct. The make utility runs make scripts to help build applications using gcc,
but it doesn’t compile the source code directly, so option B is incorrect. The configure
utility helps build the make script based on the location of the compiler program, but it
doesn’t compile the source code, so option C is incorrect. The dpkg and rpm programs are
package tools for installing DEB and RPM package files, respectively, and aren’t used to com-
pile source code files, so options D and E are both incorrect.

5.	 E.  The tape archive, or tar, application is often used for bundling source code projects into
a single distributable file, so option E is correct. The dpkg, rpm, yum, and apt-get pro-
grams all work with package management files, and are not for archiving source code files,
so options A, B, C, and D are all incorrect.

6.	 B.  The -zxvf command-line options for the tar program are commonly used to decom-
press and extract files from a tarball file, so option B is correct. The -Uvh option group
is commonly used for the rpm program to install packages, but it’s not valid for the tar
program, so option A is incorrect. The -xvf command-line option combination extracts
files from a tarball but doesn’t decompress them, so option C is incorrect. The -zcvf option
group will create a new tarball and compress it, not extract and decompress the files, so
option D is incorrect. The -cvf option group creates a new tarball file, but it doesn’t extract
files from an existing file, so option E is incorrect.

7.	 B.  The Rocky Linux distribution uses the Red Hat package management system, which uses
RPM files, so option B is correct. The .deb filename extension is used to identify Debian-
based package management files, so option A is incorrect. The .tgz filename extension is
used to identify compressed tar archive files, so option C is incorrect. The .tar filename
extension is used to identify tar archive files, so option D is incorrect, and the .gz filename
extension is used to identify files compressed with the gzip utility, so option E is incorrect.

8.	 D.  The dpkg program is used to install DEB package files on Debian-based systems, so
option D is correct. The rpm, yum, and dnf programs are all tools used for Red Hat–based
package management systems, not Debian-based systems, so options A, B, and C are all
incorrect. The tar program is used for creating and extracting tarball archive files, not DEB
files, so option E is incorrect.

9.	 C, E.  The yum and dnf programs are used to install RPM packages from Red Hat–based
repositories, so options C and E are correct. The dpkg and apt-get programs are used
for installing DEB files on Debian-based package management systems, so options A and D
are incorrect. The tar program is used for creating and extracting archive files, so option B
is incorrect.

866  Appendix  ■  Answers to the Review Questions

10.	 A.  Red Hat–based Linux distributions use the flatpak application container format to
install containers, making option A correct. The snap application container format is used in
Ubuntu, but not Red Hat, so option D is incorrect. The rpm and dpkg formats are used in
package management, not application containers, so options B and C are incorrect. The gcc
program is used for compiling source code into executable programs, so option E is incorrect.

Chapter 14: Tending Kernel Modules
1.	 A, C, D, E.  A kernel module is a self-contained driver library file, which is not precompiled

into the Linux kernel. It can be loaded and unloaded as needed, which provides additional
functionality when required. These kernel modules keep the Linux kernel lighter and more
agile. Therefore, options A, C, D, and E are all correct answers. The only incorrect answer is
option B, and it is wrong because kernel modules are not compiled into the kernel.

2.	 B, D.  Kernel module files, depending on the distribution, can be stored in a subdirectory of
/lib/modules/KernelVersion/ or /usr/lib/modules/KernelVersion/. If the
/usr/lib/modules/KernelVersion/ directory is used, it is typically hard-linked to
the /lib/modules/KernelVersion/ directory. Therefore, options B and D are correct
answers. The other directory names are made up. Thus, options A, C, and E are incor-
rect choices.

3.	 A, B, D, E.  Older Linux distributions store module configuration information in a single
configuration file, /etc/modules.conf. On more modern distributions, configura-
tion information is stored in *.conf files within the /etc/modprobe.d/, /lib/
modprobe.d/, /usr/lib/modprobe.d/, and run/modprobe.d/ directories. Therefore,
options A, B, D, and E are all correct answers. The /etc/modules.d/ directory is made up,
and thus option C is an incorrect choice.

4.	 E.  The modinfo utility will allow you to view detailed information concerning a module
passed as a command argument. This detailed information includes any dependencies. There-
fore, option E is the correct answer. The dmesg command is helpful for viewing any kernel
messages concerning module failures but does not display module dependency information.
Thus, option A is a wrong answer. The insmod utility is used for loading modules dynam-
ically, and therefore, option B is a wrong choice. The lsmod command displays currently
loaded modules. While it does show other modules that are currently using the module,
because it does not list dependencies or show information for unloaded modules, it is not
the best choice. Thus, option C is also an incorrect answer. The modprobe utility is used for
loading and unloading kernel modules, and therefore, it is not the best choice either. Thus,
option D is an incorrect choice.

5.	 C.  The modprobe utility will dynamically load the xyz utility, if you pass it as an argument
to the command, and also load any of its needed dependencies. Therefore, option C is the
correct answer. The insmod utility is used for loading modules dynamically. However, it will
not load any of the module’s dependencies, and therefore, option A is an incorrect choice.
The modinfo utility allows you to view detailed information concerning a module passed as
a command argument, but it does not load modules. Therefore, option B is a wrong answer.
The lsmod command displays currently loaded modules, and thus option D is an incorrect

Chapter 14: Tending Kernel Modules  867

answer. The depmod command is used for scanning through the system in order to update
the modules.dep file. Therefore, option E is also an incorrect choice.

6.	 D.  The Linux system typically will automatically detect new hardware and load any needed
modules. The depmod command will scan through the system looking for any hardware
that was not automatically detected. It determines any needed modules, reviews the mod-
ules’ dependencies, and updates the appropriate file. Therefore, option D is the correct
answer. The lsmod command displays currently loaded modules, and thus option A is an
incorrect answer. The modinfo utility allows you to view detailed information concerning
a module passed as a command argument. However, if you don’t know the device’s associ-
ated module, this utility is of little use. Therefore, option B is a wrong choice. The dmesg
command is helpful for viewing any kernel messages concerning module failures, so if it is a
module failure issue, you can view it using this command. However, since the device was not
detected, it is not the best command to start the troubleshooting process. Therefore, option
C is a wrong answer. The insmod utility is used for loading modules dynamically, and there-
fore, option E is an incorrect choice.

7.	 A.  The modprobe utility uses the modules.dep file to determine any module dependencies.
Therefore, option A is the correct answer. The other options contain directories involved in
the kernel module management, and thus options B, C, D, and E are wrong choices.

8.	 E.  The insmod utility will allow you to quickly insert a module, whose name is passed as an
argument to the command, into the Linux kernel. Therefore, option E is the correct answer.
The lsmod command displays currently loaded modules, and thus option A is an incorrect
answer. The modinfo utility allows you to view detailed information concerning a module
passed as a command argument, but it does not load modules. Therefore, option B is a wrong
answer. The dmesg utility displays the kernel’s ring buffer but does not allow you to insert
modules into it. Thus, option C is also a wrong choice. The depmod command is used for
scanning through the system in order to update the modules.dep file. Therefore, option D
is also an incorrect choice.

9.	 C.  The rmmod command will quickly unload a module, but none of its dependencies, from
the Linux kernel. Since the abc module does not have any dependencies, option C is the best
answer. The insmod utility is used for loading (inserting) a module and not unloading one.
Therefore, option A is a wrong answer. The unload command is made up, and thus option B
is also an incorrect answer. The modprobe command used without any switches is for load-
ing (inserting) modules, not unloading them. Thus, option D is a wrong choice. The rm -f
command is used in removing files, not unloading modules. Therefore, option E is an incor-
rect answer.

10.	 B.  The modprobe -r command will remove the module whose name is passed to it as an
argument and any of its dependent modules. Therefore, option B is the best answer. The
dmesg command is helpful for viewing kernel messages related to module failures but not
for unloading modules. Thus, option A is a wrong answer. The lsmod utility shows brief
module information for loaded modules but is not involved in the unlinking process. There-
fore, option C is also an incorrect answer. The paste command allows you to sloppily put
together two files side by side to STDOUT. However, it is not involved with kernel modules,
so option D is also a wrong choice. The groupdel utility is used for removing user groups,
and it also is not used with kernel modules. Therefore, option E is an incorrect choice.

868  Appendix  ■  Answers to the Review Questions

Chapter 15: Applying Ownership and
Permissions
1.	 A, B, E.  The basic Linux security permissions that you can set are read, write, and exe-

cute access, so options A, B, and E are correct. To delete a file a user must have write access
because there is no delete access permission, so option C is incorrect. To modify a file a user
must also have write access because there is no specific modify access permissions, so option
D is incorrect.

2.	 B, C, D.  The three categories Linux uses for assigning permissions are the owner, the group,
and all others on the system; thus answers B, C, and D are correct. The root user account
already has full permissions on all files and folders, so it’s not specified as a separate category,
so option A is incorrect. Linux doesn’t use a department category because departments must
be defined as groups, so option E is also incorrect.

3.	 B.  The Set User ID bit (SUID) allows all users to run applications as the root user account,
so option B is correct. The sticky bit prevents users from deleting files for which they have
group permissions but don’t own. It doesn’t allow users to run the file with root privileges, so
option A is incorrect. The GUID bit directs Linux to set all files in a directory with the direc-
tory’s group assignment and not that of the user account creating the file. However, it doesn’t
allow users to run files as the root user account, so option C is incorrect. The execute and
write bits set those permissions for the standard category of users, groups, or others. They
don’t allow users to run files as the root user account, so both options D and E are incorrect.

4.	 E.  The octal mode permission 644 represents read/write for the owner and read only for
the group and other categories. In symbolic mode that would be rw-r--r--, so option E
is correct. Option A, rwxrw-r--, would be octal mode 764, so it is incorrect. Option B,
-w--w--w-, would be octal mode 222, so it is incorrect. Option C, -w-r--r--, would be
octal mode 244, so it is also incorrect. Option D, rwxrw-rw-, would be octal mode 766, so
it too is incorrect.

5.	 A, B.  The chgrp command is used to change the group assigned to a file or directory;
however, you can also specify a new group with the chown command to change the owner
and the group at the same time, so both options A and B are correct. The chmod command
changes the permissions assigned to a file or directory but not the group, so option C is
incorrect. The chage command is used to control the password of user accounts, not the
group assigned to a file or directory, so option D is incorrect. The ulimit command is used
to restrict the system resources a user account can use, not to set the group assignment of a
file or directory, so option E is incorrect.

6.	 C.  The getfacl command retrieves all of the ACL permissions assigned to a file or
directory, so option C is correct. The -Z option added to the ls command displays SELinux
context settings, not ACL permissions, so option A is incorrect. The -l option of the ls
command displays the standard Linux file permissions, not the ACL permissions, so option B
is incorrect. The chmod command allows you to change the standard permissions assigned to

Chapter 16: Looking at Access and Authentication Methods  869

a file or directory, not display the ACL permissions, so option D is incorrect. The setfacl
command allows you to change the ACL permissions for a file or directory, but not view
them, so option E is incorrect.

7.	 D.  The permissive mode in SELinux logs policy violations but doesn’t prevent the action
from happening, so option D is correct. The disabled mode allows all actions to happen but
doesn’t log them, so option A is incorrect. The enforcing mode logs policy violations and
enforces them, so option B is incorrect. Options C and E, targeted and MLS, are not SELinux
modes but rather define what types of daemons to monitor; they are both incorrect.

8.	 C.  The -Z option of the ls command displays the SELinux security context assigned to a file
or directory, so option C is correct. The getsebool command displays the current setting
for a policy rule, not the security context of files, so option A is incorrect. The setsebool
command enables or disables a policy rule, and it doesn’t display the security context of
a file, so option B is incorrect. The getenforce command displays the current SELinux
mode, not the security context of files, so option D is incorrect. The -l option of the ls
command displays the standard permissions assigned to a file, not the SELinux security con-
text of the file, so option E is incorrect.

9.	 A, D.  The su command allows you to run an application as another user, including the root
user account, and the sudo command allows you to run an application as the root user
account, so options A and D are both correct. Both wheel and adm are user groups that pro-
vide administrator privileges, but they aren’t commands that run applications themselves, so
options B and E are both incorrect. The visudo command opens an editor to edit the sudo-
ers file so you can edit it, but it can’t run other applications, so option C is incorrect.

10.	 C, D.  Red Hat–based distributions use the wheel group and Debian-based distributions
use the sudo group to allow members to gain administrator privileges on the system to run
applications, so options C and D are correct. The lp group is used to grant access to system
printers, not run applications with administrator privileges, so option A is incorrect. The
adm group is commonly used in Debian-based systems to grant access to log files, but not
run applications with administrator privileges, so option B is incorrect. Option E, su, is a
command-line command for running commands as another user, not a user group, so it is
incorrect.

Chapter 16: Looking at Access and
Authentication Methods
1.	 D.  For an application to use PAM, it must be compiled with the libpam (also called

libpam.so) library. Thus, option D is the correct answer. Option A lists the ldd command,
which allows you to view modules compiled with various applications. Therefore, option A
is a wrong answer. Options B, C, and E are all PAM modules, but none are the PAM library
module needed to make an application PAM-aware. Therefore, options B, C, and E are incor-
rect choices.

870  Appendix  ■  Answers to the Review Questions

2.	 A, B, D, E.  requisite, required, sufficient, and optional are all PAM control
flags you may find in a PAM /etc/pam.d/ configuration file. Therefore, options A, B, D,
and E are correct. Option C, allowed, is made up and thus an incorrect choice.

3.	 B, E.  The pam_tally2 and faillock commands display failed login attempts, and there-
fore options B and E are correct answers. The tally2 command does not exist, and thus
option A is a wrong answer. The pam_tally2.so module is involved with locking out
accounts due to failed login attempts, but it does not display failed logins. Therefore, option
C is a wrong choice. The pam_faillock is made up, and thus, option D is also an incor-
rect choice.

4.	 B, C.  Asymmetric, or public/private, key encryption involves a message sender encrypting
a message with the receiver’s public key. When the receiver obtains the encrypted message,
it is then decrypted using the receiver’s private key. Therefore, options B and C are correct
answers. Symmetric key encryption is also called secret or private key encryption. It involves
the sender and receiver using the same secret key to encrypt and decrypt a message. There-
fore, options A, D, and E are incorrect choices.

5.	 E.  Option E best describes a digital signature and is therefore the correct answer. Option
A describes encryption and is thus a wrong answer. Option B describes decryption and
is also an incorrect choice. PKI is described in option C, and thus option C is a wrong
answer. Option D describes a self-signed digital certificate, and therefore it is an incorrect
choice as well.

6.	 A.  The OpenSSH application keeps track of any previously connected hosts and their public
keys in each user’s ~/.ssh/known_hosts file. Therefore, option A is the correct answer.
The ~/.ssh/authorized_keys file is used on an SSH server to keep track of authorized
public keys used for password-less authentication. Therefore, option B is a wrong answer.
Options C and D are made up and therefore incorrect choices. Option E is an RSA public key
that could be created by the ssh-keygen utility, so it is a wrong choice as well.

7.	 A, B, C.  The ~./ssh/config, /etc/ssh/ssh_config, and /etc/ssh/sshd_config
files are all OpenSSH configuration files. Therefore, options A, B, and C are correct choices.
The files listed in options D and E are made up and therefore incorrect answers.

8.	 E.  The only correct answer is option E. These identity keys are created with the filenames of
id_type for the private key and id_type.pub for the public key. The key in option E is
a private key using the RSA algorithm. Option A’s key is an RSA private key used in estab-
lishing a password authenticated SSH connection, so it is a wrong answer. The key listed in
option B is a public version of option A’s key, so it too is a wrong choice. The keys listed in
options C and D are made up, and thus they are wrong choices as well.

9.	 A, C, D, E.  Options A, C, D, and E are all true statements concerning TCP wrappers and
therefore are correct choices. You would never want to place ALL: ALL in the /etc/
hosts.allow file because it would block everyone from accessing the service. Instead, you
would want to place this record in the /etc/hosts.deny file to provide the best security
because it is checked last. Therefore, option B is a wrong choice.

Chapter 17: Implementing Logging Services  871

10.	 B, D, E.  Options B and E are protocols that may be involved in using VPN software as a
client, and therefore they are correct choices. IPSec is a framework, which may be involved at
the Network layer when using VPN software as a client, and thus option D is also a correct
answer. Tunnel and transport are modes of IPSec, but not frameworks or protocols, so
options A and C are incorrect choices.

Chapter 17: Implementing
Logging Services
1.	 D.  The syslog protocol created by the Sendmail project has become the de facto standard for

logging system event messages in Linux, so option D is correct. SMTP is a mail protocol, and
FTP stands for File Transfer Protocol, so both options A and B are incorrect. NTP stands for
Network Time Protocol, so option C is incorrect. Option E, journalctl, is a tool used to
read systemd-journald journal files, not a protocol for logging event messages, so it is
also incorrect.

2.	 A.  The cron application schedules jobs on Linux systems, so the cron facility keyword
represents event messages received from the job scheduler, so option A is correct. The user
keyword represents events received from users, so option B is incorrect. The kern keyword
represents events received from the kernel, so option C is incorrect. The console key-
word represents events received from a console on the system, so option D is incorrect. The
local0 keyword is not defined in the standard and is normally defined within the system
but doesn’t normally receive events from the job scheduler, so option E is incorrect.

3.	 C.  The emerg severity level has a priority of 0, the highest level in syslog, so option C is
correct. The crit severity level is at level 2, so it’s not the highest level and therefore option
A is incorrect. The alert keyword is assigned level 1, but it’s not the highest level, so option
B is incorrect. The notice keyword is assigned level 5 and is not the highest level, so option
D is incorrect. The err keyword is assigned level 3 and is not the highest level, so option E is
incorrect.

4.	 B.  The notice severity level represents system event messages that are significant but
normal, so option B is correct. The crit and alert keywords represent event messages that
are critical or that require special attention, so options A and D are incorrect. The info key-
word represents event messages that are only informational but not significant, so option C is
incorrect. The local0 keyword is not defined in the syslog protocol but by the local system,
so option E is incorrect.

5.	 E.  The rsyslogd application was designed to be a faster version of the syslogd appli-
cation, so option E is correct. The syslogd application is the original syslog application
and was not known for its speed, so option A is incorrect. The syslog-ng application was
designed to be more versatile than syslogd, but not faster, so option B is incorrect. The
systemd-journald application is known for faster queries in reading journal entries but
wasn’t designed to be faster in handling event messages, so option C is incorrect. The klogd
application is part of the original sysklogd application and is also not fast, so option D is
incorrect.

872  Appendix  ■  Answers to the Review Questions

6.	 A.  The rsyslogd application uses the rsyslog.conf configuration file by default, so
option A is correct. Option D, rsyslog.d, is commonly used as a folder for storing addi-
tional rsyslogd configuration files, but it isn’t the default configuration filename, so it
is incorrect. Options B and C are configuration files for other logging applications, not
rsyslogd, so they are incorrect. Option E is not a valid logging application configura-
tion filename.

7.	 D.  The rsyslogd application priorities log event messages with the defined severity or
higher, so option D would log all kernel event messages at the warn, alert, or emerg
severities and therefore it is correct. The option A facility and priority setting would only log
kernel messages with a severity of warning, so it is incorrect. Option B would log all kernel
event messages, not just warnings or higher, so it is incorrect. Option C would log all facility
type event messages but include the information or higher level severity, so it is incorrect.
Option E would log kernel event messages but only at the alert or emerg severity levels, not
the warning level, so it is incorrect.

8.	 B.  The Storage setting controls how systemd-journald manages the journal file.
Setting the value to persistent ensures that the journal file will remain in the /var/
log/journal directory, so option B is correct. Setting the value to auto only ensures that
the journal file will be persistent if the /var/log/journal directory exists, so option A is
incorrect. Setting the value to volatile ensures that the file does not persist, so option D is
incorrect. Options C and E refer to settings that control whether or not event messages are
passed to the rsyslogd application, so they are both incorrect.

9.	 C.  The -r option displays the journal entries in reverse order, so the most recent entry will
appear first. Thus, option C is correct. The -a option displays all of the data fields, but in the
normal order, so option A is incorrect. The -l option displays all printable data fields, but
in the normal order, so option B is incorrect. The -e option jumps to the end of the journal
file but displays the remaining entries in normal order instead of reverse order, so option D
is incorrect. The -n option displays a specified number of entries, but in normal order, so
option E is incorrect.

10.	 A.  The journalctl application allows you to filter event messages related to a specific
application by the application process ID (PID) using the OBJECT_PID match, so option A is
correct. The Kernel match retrieves event messages generated by the system kernel and not
applications, so option B is incorrect. The _TRANSPORT option filters event messages based
on how they were received and not by application, so option C is incorrect. Option D, _UID,
filters event messages based on the user ID value, not the application, so it is incorrect. Option
E, _UDEV, filters events by device ID and not by application, so it too is incorrect.

Chapter 18: Overseeing Linux Firewalls
1.	 A, C, E.  The Linux firewall applications covered in this chapter use access control lists

(ACLs) to identify which network packets are allowed in or out of the system. Therefore,
option A is a correct answer. They identify the network packets by inspecting their con-
trol information along with other network data. Thus, option C is also a correct choice.

Chapter 18: Overseeing Linux Firewalls  873

In addition, the Linux firewall applications use configuration files to maintain persistency,
which allows the firewall configuration to survive system reboots and/or the firewall appli-
cation being started or reloaded. Therefore, option E is also a correct answer. These firewalls
cannot detect malicious behavior; they only follow predefined rules. Therefore, option B is
a wrong answer. In addition, they use netfilter embedded in the Linux kernel and not
iptables (which is instead a firewall service), so option D is also an incorrect choice.

2.	 B.  Option B best describes packet filtering. Option A describes how packets are identified
but only allows them into the system, and therefore is not the best answer. A packet’s pay-
load refers to the data it is carrying. In packet filtering, packets are identified by their control
information, such as their source IP address. Therefore, option C is not the correct answer
either. Network packets can be identified by much more than just their source address, mak-
ing option D a wrong answer. Option E is also a wrong answer because it focuses on the
packet’s payload and not its control information.

3.	 C, D.  A stateful firewall uses a memory table to track an established connection’s packets,
making it faster for those connections. In addition, it can tell if packets are fragmented and
thus protects the system from attacks that spread among multiple packets. Therefore, options
C and D are the correct answers. Stateless firewalls operate faster overall, and they are not as
vulnerable to DDoS attacks. Thus, options A and B are wrong answers. While stateful fire-
walls are vulnerable to DDoS attacks, it is not a benefit. Therefore, option E is also an incor-
rect choice.

4.	 E.  With firewalld, network traffic is grouped into a zone, which is a predefined rule set,
also called a trust level. Therefore, option E is the correct answer. While firewalld does
employ the netfilter and the firewall-cmd commands, those items are not predefined
rule sets, so options A and B are wrong answers. A service is a predefined configuration set
for a particular service, such as DNS. Therefore, option C is an incorrect answer as well.
Option D is an incorrect choice because the zone that rejects packets is called block.

5.	 D.  The firewalld’s runtime environment is the active firewall, but if the configuration
is not saved as the permanent environment, it is not persistent. Therefore, after his success-
ful tests, he should issue the firewall-cmd --runtime-to-permanent command to
save the runtime environment to the permanent environment. Thus, option D is the correct
answer. Rebooting the system would lose the tested runtime environment, so option A is a
wrong answer. The --panic-on option blocks all incoming traffic, so option B is also an
incorrect answer. The runtime environment is different than the permanent environment in
this situation, so option C is a wrong choice. While the --permanent option will allow you
to modify the runtime and permanent environment at the same time, Peter did not do this, so
option E is also an incorrect answer.

6.	 C.  To achieve the desired result, Peter will need to modify the iptables INPUT chain for the
protocol ping uses, which is ICMP. Also, the target will need to be set to DROP, in order to
not send any rejection message. Therefore, option C is the correct iptables command to
use. The command in option A will set the policy to DROP for all incoming packets that
do not have a rule in the INPUT chain, but that does not target ping packets. Therefore,
option A is a wrong answer. The command in option B will send a rejection message, which
is not desired, so it is also an incorrect answer. The command in option D is attempting to
delete a rule, not add one. Therefore, option D is a wrong choice. The command in option E

874  Appendix  ■  Answers to the Review Questions

is modifying the OUTPUT chain instead of the INPUT chain, which will affect outbound net-
work packets. Thus, option E is an incorrect choice.

7.	 D.  The sudo ufw status numbered command will display the UFW firewall’s ACL
rules with their associated numbers. Therefore, option D is the correct answer. Option A is
made up and thus is a wrong answer. Both options B and C will show any rules, but they
will not include their numbers, so those options are incorrect answers. The UFW command
in option E enables the firewall but does not display ACL rules, so it is an incorrect
choice as well.

8.	 A.  While all these options use simple syntax, the ufw command in option A will block all
incoming and outgoing OpenSSH connections and not send a blocking (rejection) message.
Thus, option A is the correct answer. There is no drop argument in the ufw command, so
option B is a wrong answer. The command in option C would send a rejection message. Thus,
it is a wrong choice. The command in option D will allow OpenSSH connections, and there-
fore it is an incorrect answer. There is no block argument in the ufw command, so option E
is also an incorrect choice.

9.	 A, B.  Options A and B are true statements concerning both DenyHosts and Fail2Ban. Deny-
Hosts only works with OpenSSH traffic, while Fail2Ban can handle many different types of
traffic. So option C is a wrong answer. Fail2Ban’s configuration file is named /etc/
fail2ban/jail.conf, but the configuration file for DenyHosts is not. Therefore, option
D is an incorrect answer as well. DenyHosts can only work with TCP Wrappers, whereas
Fail2Ban can work with iptables, TCP Wrappers, firewalld, and so on. Thus, option E
is an incorrect choice.

10.	 E.  The command in option E will properly add the new IP address to the BlockThem IPset.
Thus, it is the correct answer. The commands in options A and B create the IPset and do
not add new addresses to it. Therefore, those options are wrong answers. The command
in option C will save the current IPset configuration to the IPset configuration file. While
this is something Virginia should do after the new address is added, it is not the currently
needed command. Thus, option C is a wrong answer. The command in option D adds an
entire subnet of addresses to the IPset and not a single IP address. Thus it is an incorrect
answer as well.

Chapter 19: Embracing Best
Security Practices
1.	 B.  The Kerberos authentication method uses a ticket-granting system to assign a ticket to the

user account after a successful authentication. Any server on the network that uses Kerberos
can then authenticate the user account using that ticket. Thus, option B is correct. The LDAP,
RADIUS, and TACACS+ authentication methods don’t use tickets for user authentication,
so options A, C, and D are all incorrect. The biometrics authentication method uses user
physical features to authenticate user accounts but doesn’t issue a ticket to allow single
sign-on, so option E is incorrect.

Chapter 19: Embracing Best Security Practices  875

2.	 C.  Biometrics uses physical features of users to authenticate them on the Linux system, so
option C is correct. LDAP and Kerberos are only single-factor authentication methods, so
options A and E are incorrect. Tokens and PKI are both two-factor authentication methods
but use digital tokens instead of physical features for authentication, so options B and D are
incorrect.

3.	 A.  The LDAP authentication method allows administrators to create a distributed database
that not only authenticates user accounts but tracks user authorization of network resources,
so option A is correct. The Kerberos and RADIUS authentication methods don’t use a distrib-
uted database, nor can they authorize users to access network resources, so options B and D
are incorrect. Tokens and PKI are two-factor authentication methods that don’t use distrib-
uted databases, nor do they authorize users to access network resources, so options C and E
are incorrect.

4.	 E.  When you specify the nologin utility as the default shell for a user account, users will
receive a message upon successful login that they aren’t allowed to access the system, so
option E is correct. Biometrics, tokens, and Kerberos are all authentication methods that
won’t prevent the root user account from logging in, so options A, B, and C are all incorrect.
Removing the root user account from the /etc/passwd file removes the root user account
from the system, which will break applications that require the root user account to run, so
option D is incorrect.

5.	 B.  All user data is normally stored under the /home directory structure on Linux systems,
so placing the /home directory on a separate disk partition would separate user data from
system data, making option B correct. The /usr, /etc, /sbin, and /bin directories all
contain system data and not user data, so options A, C, D, and E are all incorrect.

6.	 D.  The chroot program restricts an application to a specific area within the virtual filesys-
tem structure, so option D is correct. Blocking the application network port would prevent
guests from connecting to the application, so option A is incorrect. Moving the application
to a private port number wouldn’t restrict access to directories, so option B is incorrect. Plac-
ing the application in an encrypted partition or on a separate partition wouldn’t prevent the
application from accessing data outside of the application, so options C and E are incorrect.

7.	 A.  The Linux Unified Key Setup (LUKS) feature provides disk-level encryption so that all
files stored in a partition are automatically encrypted when written and decrypted when read,
so option A is correct. The chroot utility restricts an application to a specific location in the
virtual filesystem but doesn’t encrypt files, so option B is incorrect. The auditd utility cre-
ates detailed logs of system activity such as user file access but doesn’t encrypt files or disks,
so option D is incorrect. Both PKI and Kerberos are authentication methods and not disk
encryption methods, so both options D and E are incorrect.

8.	 C.  The /etc/cron.deny file is a list of user accounts prevented from scheduling jobs,
so adding the user to that file would stop them from scheduling the job, making option C
correct. The chroot program restricts applications to a specific location in the virtual file-
system; it doesn’t block users from scheduling jobs, so option A is incorrect. The nologin
program prevents user accounts from logging into the system, which is an extreme solution
to the problem, so option B isn’t a good solution. The /etc/hosts.deny file blocks hosts
from accessing the system and not users from scheduling jobs, so option D is incorrect.

876  Appendix  ■  Answers to the Review Questions

The /etc/motd file displays a message to all users as they log into the system, but it won’t
block them from scheduling jobs, so option E is incorrect.

9.	 D.  The fastest way to deter an attacker is to place their IP address in the /etc/hosts
.deny file, preventing them from accessing the system, so option D is correct. Placing appli-
cations into a chroot jail prevents the application from accessing files outside of the jail file-
system but doesn’t prevent the attacker from continuing to access a user account, so option
A is incorrect. Adding the nologin shell to the user account will prevent the attacker from
accessing the user account but will also block the valid user from accessing the account, so
option B is incorrect. Implementing two-factor authentication will help stop the attacker but
isn’t a quick solution, so option C is incorrect. Adding the user account to the /etc/cron
.deny file prevents the user account from scheduling jobs but won’t stop the attacker from
trying to log in as the user account, so option E is incorrect.

10.	 E.  Disabling the FTP application network ports will prevent users from being able to use the
FTP service, so option E is correct. Placing a message in the /etc/motd file to display when
users log in won’t prevent them from using the FTP service, so option A is incorrect. Moving
the FTP application to a different network port may temporarily solve the problem, but once
users find the alternative ports, they can continue using FTP, so option B is incorrect. The
/etc/hosts.deny file contains IP addresses or hostnames of remote hosts to block, not
user accounts, so option C is incorrect. The /etc/cron.deny file blocks users from sched-
uling jobs, not accessing network applications, so option D is incorrect.

Chapter 20: Analyzing System
Properties and Remediation
1.	 B, C.  A network socket is a single endpoint of a network connection’s two endpoints. That

single endpoint is on the local system, bound to a particular port, and uses a combination of
an IP address and a port number. Therefore, options B and C are correct answers. Ports use
numbers to identify which service or application is transmitting data, and thus option A is
a wrong answer. Unix sockets are endpoints between processes on a local system and pro-
vide better interprocess communication (IPC) than localhost. Therefore, options D and E are
incorrect choices.

2.	 A, B, E.  The iperf, ping, and traceroute utilities will help test the network for high
latency (slowness) in order to determine the cause. Thus, options A, B, and E are correct
answers. The ip neigh command is used to check the routing tables and is often employed
in situations where a duplicate or incorrect MAC address is causing problems on a local net-
work segment. Therefore, option C is a wrong answer. The dig utility checks name server
resolutions, not high latency. Thus, option D is also an incorrect choice.

3.	 A, D, E.  The mtr, tracepath, and traceroute utilities all allow Mr. Scott to view router
packets traveling through certain network segments and isolate which routers may be drop-
ping packets. Therefore, options A, D, and E are correct answers. The ifconfig tool is for
viewing and configuring network adapters. Therefore, option B is a wrong answer.

Chapter 20: Analyzing System Properties and Remediation  877

The ethtool -s command will show adapter statistics but not router information, and
therefore option C is also an incorrect choice.

4.	 D.  The nslookup utility can be used along with the time command to test new name
servers to see if they are more efficient (faster). Thus, option D is the correct answer. Option
A’s dnsmasq is caching-only name server software, so it is a wrong answer. The whois
utility performs queries of Whois servers, not name servers. Thus, option B is an incorrect
answer. The nmap utility is used for network mapping and analysis (or pentesting), and there-
fore, option C is a wrong choice. The ipset list command displays the various IPsets on
a system but is not involved with name resolution. Thus, option E is an incorrect choice.

5.	 A.  The iostat command displays I/O wait, which is a performance statistic showing the
amount of time a processor must wait on disk I/O. Therefore, option A is the correct answer.
The ioping utility is more for testing new disks on performance items such as disk I/O
latency, seek rates, sequential speeds, and so on. Therefore, option B is a wrong answer. The
du and df commands are useful for situations where disk space is an issue but do not pro-
vide I/O wait statistics. Therefore, options C and D are incorrect answers. The iotop utility
is helpful in locating an application or process causing high I/O but not CPU latency due to
high I/O. Thus, option E is also an incorrect answer.

6.	 B.  The deadline I/O scheduler is good for situations where increased database I/O and
overall reduced I/O latency are needed, and/or an SSD is employed, and/or a real-time appli-
cation is in use. Therefore, option B is the correct answer. Option A is the I/O scheduler
configuration file’s name, and therefore it is a wrong answer. Option C is one of the subdi-
rectories in the directory that contains the I/O scheduler configuration file, such as /sys/
block/sdc/queue/. Thus, option C is also an incorrect answer. The cfq scheduler is best
for situations where more balanced I/O handling is needed and/or the system has a multipro-
cessor. Therefore, option D is a wrong answer. The noop I/O scheduler is good for situations
where an SSD is employed but less CPU usage is needed. Therefore, option E is an incor-
rect choice.

7.	 A, B, D.  The uptime command displays CPU load averages in 1-, 5-, and 15-minute
increments. Thus, options A, B, and D are correct answers and options C and E are incor-
rect choices.

8.	 C.  The sar utility is the best one for viewing a system’s processor performance over time. It
uses data stored by the sadc program in the /var/log/sa/ directory, which contains up
to a month’s worth of data. Therefore, option C is the correct answer. The uptime utility is
handy to view processor performance, but sar is a better one for viewing it over time. Thus,
option A is a wrong answer. sysstat is a package that provides the sar utility, and there-
fore, option B is an incorrect answer. The /proc/cpuinfo file contains detailed processor
information, but it is not the best for viewing CPU performance. Thus, option D is also a
wrong choice. The sysctl utility is used to view or tweak kernel parameters. Therefore,
option E is an incorrect choice.

9.	 E.  The swapon -s command will allow Gertie to view a swap space element’s type, name,
and priority. Therefore, option E is the correct answer. The vmstat utility provides a lot
of memory statistics, including disk I/O specific to swapping as well as total blocks in and
blocks out to the device. However, it does not provide the information Gertie needs, so

878  Appendix  ■  Answers to the Review Questions

option A is a wrong answer. The free command shows memory items such as free memory,
used memory, and buffer/cache usage. Thus, option B is an incorrect answer. fstab is not a
command, but a file. This file is where swap partitions/files must have records in order for
the swap space to remain persistent through reboots. Therefore, option C is a wrong choice.
The swapoff utility disengages a partition/file from swap space, and thus, option D is an
incorrect choice.

10.	 E.  In this scenario, since multiple swap spaces already exist and the one swap partition or
file is on a logical volume, Elliot should add more swap space by using LVM tools to increase
the logical volume. Thus, option E is the correct answer. While Elliot would need to employ
mkswap and swapon on the logical volume after it is extended, options A, B, C, and D are
using those utilities on files or partitions, instead of logical volumes. Therefore, those options
are incorrect choices.

Chapter 21: Optimizing Performance
1.	 A, C, D.  The GNU ps command in Linux supports parameters that were supported by the

legacy BSD and Unix ps command, along with new options created by GNU, so options A,
C, and D are correct. There are no Linux style options used by the ps command, so option B
is incorrect. The ps command doesn’t support numeric options, so option E is also incorrect.

2.	 B.  The Unix style command-line options for the GNU ps command are identified by plac-
ing a single dash in front of the option, so option B is correct. The newer GNU options are
identified by using a double dash, so option A is incorrect. The legacy BSD style options are
identified by not placing anything in front of the option letter, so option C is incorrect. Unix
style options still use letters, not decimal or hexadecimal numbers, so options D and E are
both incorrect.

3.	 D.  With no command-line options, the GNU ps command displays only processes run by the
current shell, so option D is correct. To display all processes running on a specific terminal,
you need to add the -t option, so option A is incorrect. To display all active processes, you
must add the -A option, so option B is incorrect. To display the sleeping processes, you need
to use the -ef option, so option C is incorrect. To display all processes run by the current
user account, you need to add the -x option, so option E is incorrect.

4.	 A.  The top command displays the currently running processes on the system and updates
every 3 seconds, so option A is correct. The ps command displays currently running
processes but doesn’t update in real time, so option B is incorrect. The lsof command dis-
plays files currently opened by processes but not the processes themselves, so option C is
incorrect. The pkill and kill commands are used to stop running processes, not display
them, so options D and E are both incorrect.

5.	 E.  The S command displays the processes based on the cumulative CPU time for each pro-
cess, so option E is correct. The l command displays the processes based on the load average,
so option A is incorrect. The F command allows you to select the field used to sort the

Chapter 21: Optimizing Performance  879

display, so option B is incorrect. The r command reverses the sort order of the display, so
option C is incorrect. The y command highlights running tasks, so option D is incorrect.

6.	 B.  The RES column in the top output displays the amount of physical memory used by
the applications, so option B is correct. The VIRT column displays the amount of virtual
memory, not physical memory, so option A is incorrect. The SHR column displays the amount
of shared memory used, so option C is incorrect. The S column displays the status of the
application process, so option D is incorrect. The %MEM column displays the percentage of
physical memory the application is using but not the amount of physical memory, so option
E is incorrect.

7.	 C.  The nice command allows you to specify the priority level for an application, so option
C is correct. The renice command allows you to change the priority level of an applica-
tion that’s already running, but not one that hasn’t started yet, so option A is incorrect. The
pkill and kill commands are used to stop running processes, not change their priority
levels, so options B and D are incorrect. The pgrep command displays the application
processes matching a search term; it doesn’t change the priority level of the processes, so
option E is incorrect.

8.	 A.  The renice command allows you to change the priority level assigned to an application
that’s already running on the system, so option A is correct. The pkill and kill commands
allow you to stop an application but not change the priority level, so options B and D are
both incorrect. The nice command allows you to start an application with a specified pri-
ority level but not change the priority level of an application that’s already running, so option
C is incorrect. The pgrep command allows you to search for a running application based on
a search term but not change the priority level of it, so option E is incorrect.

9.	 B.  The pkill command allows you to send a HUP signal to a running process based on a
search term for the process name, so option B is correct. The renice command allows you
to change the priority level of an application that’s already running but not stop it, so option
A is incorrect. The nice command allows you to start an application at a specified priority
level but not stop an application that’s already running, so option C is incorrect. The kill
command allows you to stop an application that’s running, but you need to use the process
ID number and not the name, so option D is incorrect. The pgrep command allows you
to search for running applications based on their name but not stop them, so option E is
incorrect.

10.	 D.  The kill command allows you to stop an application that’s already running by speci-
fying its process ID, so option D is correct. The renice command allows you to change the
priority level of an application but not stop it, so option A is incorrect. The pkill command
allows you to stop an application, but by specifying its process name and not its process ID,
so option B is incorrect. The nice command allows you to start an application using a speci-
fied priority level but not stop an application, so option C is incorrect. The pgrep command
allows you to display running applications based on a search term for the application name
but not stop them, so option E is incorrect.

880  Appendix  ■  Answers to the Review Questions

Chapter 22: Investigating User Issues
1.	 C.  Since Lamar is a contractor, his account should have an expiration date set. Thus, the

first thing to check for his particular local access problem is whether or not the account has
expired. Option C is the correct answer. GUI services may not be running, but this is not the
first thing to check (and no one else is having problems, just Lamar). Thus, option A is an
incorrect choice. Lamar is not employing a utility such as OpenSSH, so option B is a wrong
answer. The account might be locked, but this is not the first thing to check, so option D is an
incorrect answer. SELinux policy violations also may be a problem, but you don’t know if the
system is running SELinux or AppArmor. Therefore, option E is also an incorrect choice.

2.	 E.  Since Irene normally logs into the system using the tty4 terminal and is having trouble
today but can log in using the tty3 terminal, the first thing to check is whether or not the tty4
device file is corrupted. Therefore, option E is the correct answer. If getty services were not
running, Irene could not log into the tty3 terminal, so option A is a wrong answer. Option B
is not the first item to check, so it is an incorrect answer. The account is not locked because
Irene can log in via the tty3 terminal. Thus, option C is an incorrect answer. Using the last
command is not helpful in this scenario, unless you think Irene is confused, so option D is an
incorrect choice as well.

3.	 B.  To enlist Vincent’s help, have him add the -vvv option on to his ssh command. This
will provide a great deal of information that will assist you as you track down the problem.
Therefore, option B is the correct answer. The /etc/ssh/sshd_config configuration file
is on the server side, and Vincent cannot reach the system, so option A is the wrong answer.
The -X option will only help if your system is forwarding X11 GUI servers over the network,
so option C is an incorrect answer. If Vincent is using token-based authentication via ssh,
then this will need to be checked, but it’s not the first item to address. Thus, option D is a
wrong choice. The config file may need to be checked, but it’s not the first item to address,
so option E is an incorrect choice as well.

4.	 D, E.  The best log files for Anton to peruse in this situation are /var/log/secure and
/var/log/lastlog using the lastlog command. Therefore, options D and E are the
correct answers. Since auditd is not employed, the file in option A is not available and is a
wrong answer. Since SELinux is not used, the file in option B is also an incorrect answer. This
system, Rocky Linux, is a Red Hat–based system and not Debian, so the /var/log/auth
file is not available. Thus option C is also an incorrect choice.

5.	 A, D.  From the choices listed, to allow Tarissa to run the script, add her to the wheel group
and add execute (x) to the shell script file’s permissions. Thus, options A and D are the
correct answers. Option B will do nothing for this situation and is a wrong answer. Add-
ing write (w) to the group permissions will not allow her (or the wheel group members) to
execute the file. Thus, option C is a wrong choice. Actions need to take place, so option E is
incorrect.

6.	 B.  For Miles to change his present working directory to /home/miles, the other section
must have the execute (x) permission. Therefore, option B is the correct answer. You do
not know Miles’s home directory configuration, so you cannot assume it is /home/miles.
Thus, option A is the wrong answer. The write (w) and read (r) permissions don’t allow a
user to change his present working directory to this directory. Therefore, options C and D

Chapter 23: Dealing with Linux Devices  881

are incorrect answers. The dash (-) in a file permission listing is not a permission but instead
shows the absence of a permission. Thus, option E is also an incorrect choice.

7.	 A, B, D, E.  Options A, B, D, and E contain potential causes of Sarah’s file creation problem
and are therefore correct answers. A file with an immutable bit cannot be deleted, and thus
option C is the only incorrect choice.

8.	 E.  The lsattr command used on the file will display whether or not the immutable bit is
set. If this bit is set, the user cannot delete the file until it is removed. Therefore, option E is
the correct answer. The chown command changes a file’s ownership, and thus option A is the
wrong answer. The chattr command can add or remove certain file attributes, such as the
immutable bit, but is not helpful at this point, so option B is an incorrect answer. The chmod
utility changes file permissions (modes), but it does not help in this situation, so option C is
a wrong choice. The umask command displays or sets what permissions are removed from
default permissions when a file or directory is created. This is not helpful here, so option D is
an incorrect choice.

9.	 D.  When the export EDITOR='vim' line is put in her ~/.profile file, the default
editor will be set to the vim editor for Melissa. It will also stay set when she enters a sub-
shell. Thus, option D is the correct answer. If option A or B was completed, then everyone on
the system would have the vim editor as their default editor. Therefore, options A and B are
incorrect answers. Option C would set the vim editor as Melissa’s default editor, but it would
not be set when she entered a subshell due to the missing export command. Thus, option
C is also an incorrect answer. The . bash.bashrc file does not reside in the user’s local
directory (it is located in the /etc directory) and is also not a hidden file, so option E is an
incorrect choice.

10.	 B, C, E.  The echo $SHELL command will show Mark his current shell. Though it could
be a modified environment variable, this will help to determine if his default shell has been
changed. Thus, option B is a correct answer. The sudo grep tcsh$ /etc/passwd
command will display any /etc/passwd file records that have /bin/tcsh as their default
shell, including Mark’s. Thus, option C is a correct answer too. The sudo getent passwd
MW2015 command will show Mark’s account’s password file setting, including its default
shell. Therefore, option E is also a correct answer. The option A command will display the
settings in the profile environment configuration file, but since Mark is the only one expe-
riencing the problem, the SHELL environment variable is not set with this method. Thus,
option A is a wrong answer. The command in option D will show the shadow file records
and not the password file records. Therefore, option D is an incorrect choice.

Chapter 23: Dealing with Linux Devices
1.	 C.  PCI boards use interrupts, I/O ports, and DMA channels to send and receive data with

the PC motherboard, so option C is correct. USB devices transmit data using a serial bus
connected to the motherboard and don’t use DMA channels, so option A is incorrect. The
GPIO interface uses memory-mapped specialty IC chips and not interrupts and I/O ports, so
option B is incorrect. Monitors and printers are hardware devices and not hardware inter-
faces, so options D and E are incorrect.

882  Appendix  ■  Answers to the Review Questions

2.	 A.  The Linux kernel uses the /proc/ioports file to track the I/O ports used by the
installed PCI boards on the system, so option A is correct. The kernel uses the /proc/
interrupts and /proc/dma files to track interrupts and the DMA channel, not I/O ports,
so options B and E are incorrect. The /sys directory contains files used to track kernel,
module, and system features, not I/O ports, so option C is incorrect. The /dev directory con-
tains files used to transfer data to and from devices, not track their I/O ports, so option D is
incorrect.

3.	 D.  The kernel creates files in the /dev directory for each device on the Linux system.
These files are used to send data to the device and read data from the device. Thus, option
D is correct. The /sys and /proc directories are used by the kernel to display system
information, not transfer data, so options A and B are incorrect. The /etc directory is used
for configuration files, not for transferring data, so option C is incorrect. The /dev/
mapper directory is used by virtual systems such as LVM and LUKS to create virtual files
that indirectly interface with devices through another application, not directly, so option E is
incorrect.

4.	 B.  The kernel uses the /dev/mapper directory to create virtual files that interface with
applications that manipulate data on a virtual LVM volume before being sent to a physical
hard drive device, so option B is correct. The /dev directory contains the physical device
files, not virtual files, so option A is incorrect. The kernel uses the /proc and /sys direc-
tories to display kernel and system information, not virtual files for LVM volumes, so options
C and D are incorrect. The /etc directory contains configuration files for applications, not
LVM volumes, so option E is incorrect.

5.	 A.  The lsdev command displays all the hardware information about all the devices connected
to the system, so option A is correct. The lsblk command only displays information on
block devices, so option B is incorrect. The lspci command only displays information about
PCI devices, so option C is incorrect. The lsusb command only displays information about
USB devices, so option D is incorrect. The dmesg command displays messages from the kernel
ring buffer, not information about the current devices, so option E is incorrect.

6.	 E.  The dmesg command displays the kernel event messages contained in the kernel ring
buffer, so option E is correct. The lsdev command displays hardware information about
devices, but not messages from the kernel, so option A is incorrect. The lsblk command
only displays information about block devices, not kernel event messages, so option B is
incorrect. The lspci command only displays information about PCI devices, not kernel
event messages, so option C is incorrect. The lsusb command only displays information
about USB devices, not kernel event messages, so option D is incorrect.

7.	 A, C.  The X.org and Wayland software packages implement the X Windows graphical
system for Linux, so options A and C are correct. The CUPS software package implements
PostScript printing for Linux, not X Windows graphical systems, so option B is incor-
rect. X11 is an X Windows standard but not a software package, so option D is incorrect.
The udev program is used to detect hot-pluggable devices, not implement the X Windows
graphical system, so option E is incorrect.

http://x.org

Chapter 24: Troubleshooting Application and Hardware Issues  883

8.	 B.  The CUPS software package provides an interface to convert PostScript documents and
send them to common printers, so option B is correct. The X.org and Wayland software
packages are used to implement the X Windows graphical system in Linux, not interface
with printers, so options A and C are incorrect. X11 is a standard for X Windows, not a soft-
ware package for printers, so option D is incorrect. The udev program detects hot-pluggable
devices but doesn’t interact directly with the printers, so option E is incorrect.

9.	 E.  The udev program runs in the background and monitors the kernel ring buffer for event
messages from new devices, so option E is correct. The X.org and Wayland software pack-
ages implement the X Windows graphical system but don’t listen for new devices, so options
A and C are incorrect. The CUPS package interfaces with printers on the Linux system and
doesn’t listen for new devices, so option B is incorrect. X11 is a standard for X Windows and
not a software package that listens for new devices, so option D is incorrect.

10.	 A.  The udevadm program allows you to send control messages to the udev application
running in background, signaling it to reload the rules defined in the /etc/udev/rules.d
directory, so option A is correct. The udev application can’t direct itself to reload the rules,
so option B is incorrect. The lsusb, lspci, and lsdev programs are used for displaying
hardware information for the system, not for directing the udev program to reload defined
rules, so options C, D, and E are all incorrect.

Chapter 24: Troubleshooting Application
and Hardware Issues
1.	 B.  Due to this application that is memory intensive and experiencing performance issues, the

system’s swap space is most likely receiving high I/O from RAM. SSDs have a finite number
of program/erase (PE) cycles, and continually writing and removing data from them, such as
occurs in swap, will cause them to become degraded storage faster than normal. Thus, option
B is the correct answer. Degraded mode refers to the mode a RAID enters when one or more
of its member disks have failed. Since it is not stated whether the application data is stored
on a RAID array, option A is a wrong answer. Only NVMe SSDs need to have a namespace
in their device filenames. Since it is not stated whether these SSDs are NVMe disks, option
C is also an incorrect answer. A missing volume occurs when a disk that is part of a logical
volume fails or is accidentally removed. Since it is not stated whether these SSDs are involved
with a logical volume, option D is a wrong choice. Resource exhaustion occurs when a
system’s finite resources are committed and unavailable to others. For disks, this includes
running out of inode numbers or disk space. While it is possible that at some point in time
the SSDs will experience resource exhaustion, there is not enough information provided to
declare that they will. Therefore, option E is also an incorrect choice.

2.	 A, C.  Since this is this system’s first SCSI disk and it is not being recognized, it is possible
that the appropriate modules (drivers) are not loaded. Thus, Mary should check to see if
the drivers are on the system via the command in option A and check if they are currently
loaded into the kernel using the command in option C. The pvscan utility is used for

http://x.org
http://x.org

884  Appendix  ■  Answers to the Review Questions

physical volumes being used for a logical volume’s volume group. Therefore, option B is a
wrong answer. The hdparm and smartctl commands in options D and E are employed for
checking and resetting power management configurations on a SATA device. Thus, they are
incorrect choices.

3.	 B, C, D.  For Norman to begin the process of troubleshooting this application permission
issue, he’ll need to either know or determine the information listed in options B, C, and D.
The disk type, where the program resides, does not assist in this troubleshooting process, so
option A is a wrong answer. The program’s name is also not helpful here, so option E is an
incorrect choice.

4.	 D.  Because the application can create the file in a particular directory with no problem but
cannot write to the file, it is most likely a permission inheritance issue via default directory
ACLs. Therefore, option D is the correct answer. If the directory ownership and their per-
missions were a problem, the application could not create a file in that directory. Therefore,
option A is a wrong answer. File ownership and group membership would have to be man-
ually changed by the application in order to cause this issue. Therefore, options B and C are
incorrect answers. Executable privileges are involved with being able to run a program file or
change a process’s present working directory, and thus, option E is an incorrect choice.

5.	 E.  The upgrade may have broken the Apache package by breaking a dependency. The sudo
apt-get check command will check for such a thing. Thus, option E is the correct answer.
The commands in options A and B will clean up the repository database and any tempo-
rary download files but not help to troubleshoot this issue. Therefore, options A and B are
wrong answers. The command in option C shows library files used by the Apache service, but
it does not help troubleshoot the problem and is therefore an incorrect answer. Option D’s
command checks for broken dependencies, but on a Red Hat–based system, and thus it is an
incorrect choice.

6.	 C.  If Peter cannot compile a flawlessly written C++ application, then the problem must lie
with the compiler, GCC. Thus, option C is the correct answer. Application and file permis-
sions would not cause this particular issue, so options A and B are wrong answers. A missing
or outdated device would not be the problem for this situation, so option D is also an incor-
rect answer. Since Peter wrote this application, instead of trying to obtain one from a package
repository, option E is an incorrect choice as well.

7.	 B.  The sealert utility is used to check the audit log file for SELinux context violations.
Therefore, the issue here revolves around SELinux. The ls -Z command will allow Mary to
view the flash.txt file’s SELinux context to determine if it needs to have it changed. Thus,
option B is the correct answer. The option A command will not show the file’s SELinux con-
text and is therefore a wrong answer. While the flash.txt directory might have a context
problem, the ls -l command will not show it, and thus option C is a wrong choice as well.
Option D’s setroubleshoot is a package and not a command, so it is a wrong answer.
Option E’s restorecon will fix SELinux labels, which may be used in the repair process but
not in troubleshooting, so it is an incorrect choice.

8.	 A, B, D, E.  For troubleshooting this issue, the firewall ACLs on both the NTP server and
the application server must be checked. Either side could be dropping or rejecting packets,
so options A and B are correct answers. If you do not have the NTP ports and transport

Chapter 25: Deploying Bash Scripts  885

protocols memorized, the /etc/services file needs checking. That information is critical
for reviewing server- and client-side firewall ACLs. Thus, option D is a correct answer too.
It is a good idea to view the firewall log entries because they may point to the exact cause
of the problem or provide valuable information. Therefore, option E is a right choice. The
firewall-cmd command is specific only to those systems that employ the firewalld
firewall. Therefore, option C is the only incorrect choice.

9.	 B.  The communications port is a serial port, represented by the /dev/ttyS# device files.
To find the right number (#), use the dmesg command to start the troubleshooting process.
Thus, option B is the correct answer. Since a serial port is not represented by files named
/dev/COM#, both options A and C are wrong answers. The setserial command is used
after you determined the appropriate filename for the serial device, so it is not the first step
and option D is an incorrect answer. The cat /proc/interrupts command is performed
after you find the correct IRQ via the setserial command, so option E is an incorrect
choice as well.

10.	 C, D, E.  The activities in options C, D, and E are all steps that may be included in trouble-
shooting this USB printer issue. A CUPS system uses the /etc/cups/printers.conf
file instead of the /etc/printcap file, so option A is a wrong answer. The lpinfo -m
command allows you to view available printer drivers, not USB ports, so option B is an
incorrect choice as well.

Chapter 25: Deploying Bash Scripts
1.	 B.  The #! character combination defines the shebang, which tells the Linux shell what shell

to use to run the shell script code, so option B is correct. The >> character combination
appends the output of a command to a file, so option A is incorrect. The | character pipes
the output of a command to another command, so option C is incorrect. The > character
redirects the output of a command to a new file or overwrites an existing file, so option D is
incorrect. The 2> character combination redirects error messages from a command to a file,
so option E is incorrect.

2.	 D.  The > character redirects all of the output from a command to a new file, or overwrites
an existing file, so option D is correct. The >> character combination appends all of the
output from a command to an existing file, so option A is incorrect. The #! combination
defines the shell to use, so option B is incorrect. The | character pipes output from one
command to another command, so option C is incorrect. The 2> character combination redi-
rects only error messages from a command to a new file, not all of the output, so option E is
incorrect.

3.	 C.  The u+x chmod permission assigns execute permissions to the file owner so that you can
run the file at the command prompt, which makes option C correct. The 644 octal permis-
sion assigns only read and write permissions to the file owner, not execute permissions, so
option A is incorrect. The u+r permission assigns read permissions, not execute permissions,
so option B is incorrect. The u+w permission assigns only write permissions and not execute
permissions, so option D is incorrect. The u=wr permission assigns both read and write per-
missions but not execute permissions to the file owner, so option E is incorrect.

886  Appendix  ■  Answers to the Review Questions

4.	 A.  The $USER environment variable contains the text username of the user account that
started the shell, so option A is correct. The $UID environment variable contains the numeric
user ID, not the text username, so option B is incorrect. The $HOME environment variable
contains the home directory location of the user account, not the username, so option C is
incorrect. The $BASH environment variable contains the location of the Bash shell execut-
able file, not the username of the user who started the shell, so option D is incorrect. The $1
variable is a positional variable, not an environment variable. It’s used to retrieve data from
the command-line command that launched the shell, not to identify the user who started the
shell, so option E is incorrect.

5.	 C.  To assign a value to a variable, you use the equal sign, but no spaces must be used bet-
ween the variable name, the equal sign, and the value, so option C is correct. Option A uses
the command substitution format, which doesn’t assign a value to a variable but to the
output of a command, so option A is incorrect. Option B places spaces between the variable
name, equal sign, and the value, so option B is incorrect. Option D places quotes around
the value, making it a string value and not a numeric value, so option D is incorrect. Option
E uses backtick characters around the value, which attempts to run it using command
substitution, which is incorrect.

6.	 B.  The -f file test checks if the specified object exists, and if it’s a file, so option B is
correct. The -e file test checks if the object exists, not the object type, so option A is incor-
rect. The -d file test checks if the object exists but is a directory, not a file, so option C is
incorrect. The -x file test checks if the current user account has execute permissions for
the file, not that the object exists and is a file, so option D is incorrect. The -w file test
checks if the current user account has write permissions for the file, not that the object exists
and is a file, so option E is incorrect.

7.	 C.  The bar character (|) pipes the output of one command to the input of another
command, so option C is correct. The >> character combination appends the output of a
command to an existing file, not to another command, so option A is incorrect. The she-
bang (#!) is used to identify the shell to use to run the script, not to redirect output from
a command to another command, so option B is incorrect. The > character redirects the
output of a command to a new file, not to another command, so option D is incorrect. The
2> character combination redirects the error messages from a command to a new file, not to
another command, so option E is incorrect.

8.	 D.  The exit command allows us to return a specific error status when the shell script exits,
so option D is correct. The #! shebang defines the shell to use to run the shell script, not the
exit status, so option A is incorrect. The $? character combination displays the exit status
from the last command; it doesn’t return a specific exit status, so option B is incorrect. The
$1 variable contains the first command-line parameter used when the shell script is launched
from the command line; it doesn’t set the exit status for the shell script, so option C is incor-
rect. The while command allows us to iterate through a set of commands until a specific
condition is met; it doesn’t return a specific exit status when the shell exits, so option E is
incorrect.

Chapter 26: Automating Jobs  887

9.	 E.  The $() command assigns the output of a command to a specified variable in the shell
script, so option E is correct. The > character redirects the output of a command to a file, not
to a variable, so option A is incorrect. The >> character combination appends the output of
a command to an existing file, not to a variable, so option B is incorrect. The $[] command
performs integer mathematical operations in the Bash shell, so option C is incorrect. The
| character redirects the output of a command to another command, not to a variable, so
option D is incorrect.

10.	 C.  The $[] command performs simple integer mathematical operations in the Bash shell,
so option C is correct. The > character redirects the output of a command to a new file, so
option A is incorrect. The >> character combination appends the output of a command to
an existing file, so option B is incorrect. The | character redirects the output of a command
to another command, so option D is incorrect. The $() command redirects the output of a
command to a variable in the shell script, so option E is incorrect.

Chapter 26: Automating Jobs
1.	 B.  The ampersand character (&) tells the shell to start the command in background

mode from the console session, so option B is correct. The greater-than sign (>) redirects
the output from the command to a file, so option A is incorrect. The pipe symbol (|)
redirects the output from the command to another command, so option C is incorrect. The
double greater-than sign (>>) appends the output from the command to a file, so option D is
incorrect. The nohup command disconnects the session from the console session, so option E
is incorrect.

2.	 E.  The nohup command disconnects the shell script from the current console session, so
option E is correct. The greater-than sign (>) redirects the output from the command to a file,
so option A is incorrect. The ampersand sign (&) runs the shell script in background mode, so
option B is incorrect. The pipe symbol (|) redirects the output from the command to another
command, so option C is incorrect. The double greater-than symbol (>>) appends the output
from the command to a file, so option D is incorrect.

3.	 C.  The Ctrl+C key combination stops the job currently running in foreground mode on
the console session, so option C is correct. Starting a command with the nohup command
disconnects the job from the console session, so you can’t stop it from the console with a
key command, making option A incorrect. Starting a job with the ampersand (&) command
places the job in background mode but doesn’t allow you to stop the job from running, so
option B is incorrect. The pipe symbol redirects the output from a shell script to another
command, so option D is incorrect. The kill command will stop a running shell script, but
if the shell script is running in your console session, you won’t be able to submit the kill
command from the command prompt, so option E is incorrect.

4.	 A.  The Ctrl+Z key combination pauses the job currently running in foreground mode
on the console session, so option A is correct. The Ctrl+C key combination stops the job
currently running in the foreground in the console session, rather than pauses it, so

888  Appendix  ■  Answers to the Review Questions

option B is incorrect. The nohup command disconnects a job from the console session
but doesn’t pause the job, so option C is incorrect. The ampersand sign (&) runs a job in
background mode in the console session, so option D is incorrect. The fg command resumes
a stopped job in foreground mode, so option E is incorrect.

5.	 C.  When you list the current jobs using the jobs command, there will be a plus sign next
to the default job number, so option C is correct. The minus sign next to a job number indi-
cates the job next in line to become the default job, so option D is incorrect. Neither the PID
nor the job number indicates the default job, so options A and B are both incorrect. The ps
command lists the running jobs but doesn’t indicate the default job in a console session, so
option E is incorrect.

6.	 B.  The fg command allows you to change a currently running or stopped job to run in
foreground mode on the current console session, so option B is correct. The bg command
changes a currently running or stopped job to run in background mode, so option A is incor-
rect. The nohup command disconnects a job from the console session, so option C is incor-
rect. The ampersand sign (&) places a job in background mode, not foreground mode, so
option D is incorrect. The at command runs a job in background mode at a specific time, so
option E is incorrect.

7.	 C.  The at command allows you to schedule a job to run at a specific time, so option C is
correct. The nohup command disconnects a job from the console session, so option A is
incorrect. The ampersand sign (&) runs a job in background mode, so option B is incorrect.
The pipe symbol (|) and the greater-than symbol redirect the job output to either a command
or a file, so options D and E are both incorrect.

8.	 D.  The cron program checks the cron tables for each user account and runs any scheduled
jobs automatically, so option D is correct. The at command only runs a specified command
once at a scheduled time, so option A is incorrect. The nohup and ampersand (&) commands
do not schedule jobs to run, so both options B and C are incorrect. The atq command dis-
plays the jobs already scheduled to run from the at command, so option E is incorrect.

9.	 E.  The times specified in the cron table are listed in the order of minute, hour, day of month,
month, and day of week. The hour is in 24-hour format, so the specified entry would run the
job at 5:10 a.m. every day, making option E correct. Options A, B, C, and D are all incorrect
times based on the specified entry.

10.	 C.  The crontab command allows you to list or edit the cron table for your own user
account, so option C is correct. The cron command is what reads the cron tables for each
user account and runs the specified jobs; it doesn’t list the jobs, so option A is incorrect. The
at command allows you to schedule a job to run at a specific time, so option B is incor-
rect. The jobs command allows you to view the currently running or stopped jobs in your
console session, so option D is incorrect. The nohup command disconnects the job from the
console session, so option E is incorrect.

Chapter 27: Controlling Versions with Git  889

Chapter 27: Controlling
Versions with Git
1.	 A, C, D, E.  Options A, C, D, and E all contain true statements concerning version control

and are therefore correct answers. Version control does not require filenames to contain ver-
sion numbers, and thus, option B is an incorrect choice.

2.	 B, C, D, E.  Conceptually Git is broken up into distinct areas, which are the working
directory, the staging area (also called the index), the local repository, and the remote repos-
itory. Therefore, options B, C, D, and E are correct answers. A blob is another name for an
object stored by Git in the .git/objects/ directory. Thus, option A is an incorrect choice.

3.	 A, B, C, E.  The steps listed in options A, B, C, and E are all involved in setting up a Git envi-
ronment for the first time. Adding files to the staging area is done after the environment is set
up and files have been created in the working directory. Therefore, option D is the only incor-
rect choice.

4.	 D.  Because Natasha is setting up her Git environment, she should next create and initialize
the .git/ directory in her working directory, via the git init command. Therefore,
option D is the correct answer. The mkdir command is employed to create the working
directory, which is already done, so option A is a wrong answer. The git config --list
command shows configuration data, which should be done after the .git/ directory is ini-
tialized, so option B is a wrong choice. While Natasha could set up her GitHub repository
now, it is not the best next step, so option C is a wrong answer. Starting to create program
files is an incorrect choice since Natasha is still setting up her Git environment. Therefore,
option E is incorrect.

5.	 B.  Since Bruce employed the --global option when setting his Git configuration options,
the information is stored in the global ~/.gitconfig file. Therefore, option B is the correct
answer. This Git configuration information is not stored on GitHub, and GitHub may not
even be employed as the remote repository in this case, so option A is a wrong answer. The
working directory’s .git/config file is the local file, not the global one, so option C is a
wrong choice. The .git/index file and .git/objects directory do not store this type of
data, so options D and E are incorrect choices.

6.	 A.  The next step Bruce should take is to add his new script to the staging area (index) via
the git add GreenMass.sh command. Therefore, option A is the correct answer. The
git init command is used to initialize the .git/ directory in the working directory and is
part of setting up the Git environment, so option B is a wrong answer. The script cannot yet
be committed to the local repository because it has not been added to the staging area. Thus,
option C is an incorrect choice. The git log command shows the commit history and is
not appropriate at this point, so option D is a wrong answer. The script cannot be committed
to the remote repository until it is committed to the local repository. Therefore, option E is
an incorrect choice.

890  Appendix  ■  Answers to the Review Questions

7.	 D.  Natasha is being efficient by employing the git add . command, which will add all
the files within the working directory to the staging area (index). To stay efficient, she should
create a .gitignore file in the working directory and add the names of the three files that
she wishes to keep out of the index to that file. This will prevent them from being added.
Therefore, option D is the correct answer. While Natasha could move the three files out of
her working directory, that is a sloppy and inefficient choice, so option A is a wrong answer.
She also could add the 22 files individually to the index, but that too is very inefficient, as
is creating a new working directory for the three files. Thus, options B and C are incorrect
answers. Temporarily deleting the three files would force Natasha to re-create them after
the other files are added to the index. This too is sloppy, and therefore option E is an incor-
rect choice.

8.	 C.  Natasha is ready to push her project to the remote repository, so option C is the correct
answer. While she may go home and relax later, if the project is released to the public, she
must upload it to the remote repository first. Therefore, option A is a wrong answer. Cloning
a remote repository is done when someone wants all the project files as well as the VCS his-
tory. In this scenario, Natasha already has that data, so option B is a wrong choice. Since the
project is complete, there is no need to pull down any files from the remote repository. There-
fore, option D is also an incorrect answer. The remote add origin URL command is
used to configure the remote repository’s address (URL), which Natasha has already accom-
plished. Thus, option E is an incorrect choice.

9.	 E.  The git checkout testing command will allow you to switch to a new Git branch
called testing. Thus, option E is the correct answer. The git branch testing
command creates a new branch called testing instead of switching to it. Thus, option
A is a wrong answer. The command in option B allows you to view the names of any files
managed by the testing branch, so it is an incorrect answer. The git branch command
shows you the current branches within this project and designates which one is current via an
asterisk, but it does not allow you to switch branches. Thus, option C is an incorrect answer.
The command in option D will perform a commit to the local repository and add a comment
of testing to the log file. Therefore, option D is also an incorrect choice.

10.	 B.  The git merge report command will merge the report branch into the master
branch as desired, so option B is the correct answer. The git merge master command
will attempt to merge the master branch into another branch, but since Tony is already in
the master branch, this will not work (and is not desired), so option A is a wrong answer.
The rebase arguments will attempt to perform a rebase instead of a merge. Thus, options C
and D are incorrect answers. The git checkout master command was already used by
Tony to reach the master branch, and thus option E is an incorrect choice.

Chapter 28: Understanding Cloud and
Virtualization Concepts
1.	 B.  Public cloud services utilize servers hosted by a third-party company, so option B is

correct. Private cloud services use servers hosted internally by the company, not by a third
party, so option A is incorrect. Hybrid cloud services utilize servers hosted both internally
and externally, not just by a third party, so option C is incorrect. Type I and Type II are types
of hypervisors and not cloud services, so options D and E are incorrect.

Chapter 28: Understanding Cloud and Virtualization Concepts  891

2.	 C.  A hybrid cloud service utilizes servers internal to the company as well as external at a
third-party location. This provides an easy way to increase server capabilities without having
to purchase your own hardware, so option C is correct. The entire private cloud is hosted
internally, so Tom would need to purchase additional servers to support the application,
so option A is incorrect. A public cloud is hosted in its entirety externally on a third-party
network, so Tom wouldn’t be able to use his current cloud servers, so option B is incorrect.
Type I and Type II are types of hypervisors and not cloud services, so options D and E are
incorrect.

3.	 A.  The platform-as-a-service (PaaS) cloud type provides a complete development envi-
ronment for customers, so option A is correct. The private and hybrid clouds are methods
of implementing a cloud and not types of clouds, so options B and E are incorrect. The
infrastructure-as-a-service (IaaS) cloud type provides only hardware to build an operating
system, so Sally would need more to develop her applications, making option C incorrect.
The software-as-a-service (SaaS) cloud type provides the full application—it doesn’t allow
you to develop your own applications—so option D is incorrect.

4.	 C.  The infrastructure-as-a-service (IaaS) cloud type allows you to install your own operating
systems on the cloud hardware, so option C is correct. The private and hybrid clouds are
methods of implementing clouds and not cloud types, so options B and E are incorrect.
The platform-as-a-service (PaaS) and software-as-a-service (SaaS) cloud types provide the
operating system, so you can’t install your own, making options A and D incorrect.

5.	 D.  Type I hypervisors interface directly with the system hardware and act as a go-between,
controlling resources for the guest virtual machines, making option D correct. Type II hyper-
visors run on top of a host operating system and don’t directly interface with the system
hardware, so option C is incorrect. Private, public, and hybrid are methods for implementing
cloud services and not hypervisors, so options A, B, and E are all incorrect.

6.	 C.  Type II hypervisors install on a host operating system and receive resources from the
host operating system, so option C is correct. Type I hypervisors install directly on the server
hardware without a host operating system, so option D is incorrect. Private, public, and
hybrid are methods of implementing cloud services and not types of hypervisors, so options
A, B, and E are all incorrect.

7.	 C.  The Open Virtualization Appliance (OVA) file format bundles all of the virtual machine
configuration files into a single tar file for distribution, so option C is correct. The Open
Virtualization Format (OVF) format defines several separate files for storing configuration
values, not a single file, so option D is incorrect. XML, JSON, and YAML are all configura-
tion file formats and not methods to bundle the configuration files, so options A, B, and E are
all incorrect.

8.	 A.  Containers bundle the application runtime files along with any library files required to
run the application. This ensures that the application will run in any environment, so option
A is correct. A hypervisor manages virtual machines on a system and doesn’t deploy appli-
cations, so option B is incorrect. Deploying the application to a private cloud would make
the application available to Fred’s internal network, but customers outside of his network
wouldn’t be able to run the application, so option C is incorrect. Deploying the application as
a virtual machine would make the application run consistently but would also require each
customer to install the same hypervisor package on their operating system, so option D is
incorrect. Bundling the application files as a tar file doesn’t ensure that the required system
library will be present on all of the customer workstations, so option E is incorrect.

892  Appendix  ■  Answers to the Review Questions

9.	 E.  Containers include all of the files necessary to run an application, no matter what the host
system, so option E is the correct answer. Public and private clouds don’t guarantee the same
development and production environments directly, so options A and B are both incorrect.
Type I and Type II hypervisors don’t host applications directly but need a virtual machine, so
options C and D are both incorrect.

10.	 B.  The Docker container package runs as a process on the host operating system and pro-
vides a command-line interface for controlling containers, so option B is correct. The Snap
package provides software application containers but doesn’t provide a command-line inter-
face to control them, so option A is incorrect. The KVM, XEN, and VirtualBox packages are
all hypervisor packages, not containers, so options C, D, and E are all incorrect.

Chapter 29: Inspecting Cloud and
Virtualization Services
1.	 A, C, E.  Options A, C, and E all contain true statements concerning the libvert library

software collection and are therefore correct answers. This software collection does not pro-
vide a complete hypervisor application (though many hypervisors incorporate it), so option B
is a wrong answer. Also the libvert library does not provide an anaconda file. Thus, option
D is also an incorrect choice.

2.	 A, D.  The virsh and virt-install utilities are ones that Carol can incorporate into her
Bash shell script for managing her virtual machines. Therefore, options A and D are correct
answers. virtinst is the name of a package file, which provides utilities such as virsh,
and thus, option B is a wrong answer. Option C, virt-manage, is a made-up utility, making
option C an incorrect answer. setvcpus is an argument you can use with the virsh utility,
as opposed to a utility itself, so option E is an incorrect choice.

3.	 A, B, E.  The question does not indicate whether this system will be a virtual one or not. Typ-
ically for a physical installation, using the kickstart method, the installation tree is stored in
a network location or removable media, such as a USB flash drive. Therefore, options A and
B are correct answers. For a virtual machine installation, often the installation tree (or ISO)
is stored alongside the kickstart file. Thus, option E is also a correct choice. AutoYaST and
preseed are alternatives to kickstart for the openSUSE and Ubuntu distributions, so options C
and D are incorrect choices.

4.	 B, C, D, E.  Options B, C, D, and E are true statements about the cloud-init application and
thus are correct answers. The only untrue is statement is in option A—the cloud-init product
was created and is maintained by Canonical.

5.	 D.  Ms. Danvers’ best choice is to configure the three virtual machines to use thin provi-
sioned storage. This method will allow the VMs to immediately consume 600 GB of the 1
TB of host disk space and grow over time as needed (which is called overprovisioning). As
the VMs’ data grows, she can purchase additional disk space for her host machine and add it
to the logical volume. Thus, option D is the correct answer. There is not enough information

Chapter 29: Inspecting Cloud and Virtualization Services  893

provided to determine whether or not the virtual machines’ disks should be configured as
permanent or temporary, so options A and B are wrong answers. Thick provisioning would
cause the three virtual machines to allocate 1.2 TB of disk space, which is not available,
and thus, option C is an incorrect answer. Blob storage is used on Microsoft Azure virtual
machines, and the question does not indicate that this is the cloud provider environment Ms.
Danvers is using. Thus, option E is an incorrect choice.

6.	 A.  Because Mr. Fury’s programming students will be creating a single program that they
are working on for the entire semester, the virtual machine storage needs to be configured
as persistent. This will allow the students to access and modify their program on the virtual
machine without having to re-create it each time their VM boots. Thus, option A is the
correct choice. If Mr. Fury uses temporary storage, the students would have to re-create their
program each time the VM boots, so option B is a wrong answer. Thickly or thinly provi-
sioned storage needs are not discussed in this question, so options C and D are also incorrect
answers. Blob storage is used on Microsoft Azure virtual machines, and the question does not
indicate that this is the cloud provider environment Mr. Fury is using. Therefore, option E is
an incorrect choice.

7.	 B, C, D.  Overlay networking is a network virtualization method that employs encapsulation
as well as channel bandwidth tunneling. Therefore, options B, C, and D are correct answers.
It is not a storage virtualization method, so option A is a wrong answer. Also, it does not
employ page blobs (which are a Microsoft Azure platform storage option), so option E is also
an incorrect choice.

8.	 B.  In order for Carol’s virtual machines to all act as nodes on her host machine’s LAN
and get their own IP address that they will use to send/receive network traffic, she needs
to configure them as bridged adapters. Thus, option B is the correct answer. A host-only
configured NIC will not be able to communicate on the external network, so option A is a
wrong answer. A NAT adapter will not allow the VMs to each operate as a node on the host
machine’s network, so option C is a wrong choice. Multihomed and dual-homed are descrip-
tions of the number of NICS employed by a VM, so options D and E are incorrect choices.

9.	 C.  A virtual machine with a NAT configured adapter will have its IP address kept private
and use the host machine’s IP address to communicate on the host machine’s network. Thus,
option C is the correct answer. A host-only configured NIC will not be able to communicate
on the external network, so option A is a wrong answer. A bridged adapter will not keep its
assigned IP address private, so option B is also an incorrect answer. Multihomed and dual-
homed are descriptions of the number of NICs employed by a VM, so options D and E are
incorrect choices.

10.	 A, B, E.  For Nick’s firewall VM to act as a firewall to the other four virtual machines,
it would need a host-only adapter to communicate with the other machines on the local
internal network. The firewall VM would also need a bridged NIC to act as a node on the
host machine’s network. Because this firewall VM has two virtual NICs, it is considered to
be dual-homed. Thus, options A, B, and E are correct choices. The NAT configuration type is
not needed or employed in this scenario, so option C is a wrong answer. Also, since there are
no more than two virtual adapters needed, it is not a multihomed (more than two) configura-
tion, and option D is an incorrect choice.

894  Appendix  ■  Answers to the Review Questions

Chapter 30: Orchestrating the
Environment
1.	 A, B, C, D, E.  All these choices contain items that can use orchestration and are correct

choices. Since orchestration refers to the organization of a process that is balanced and
coordinated and achieves consistency in the results, there are not many things that cannot
use orchestration. An exception would be a situation where you are trying to simulate
random chaos.

2.	 B.  To meet Connie’s requirement, the development environment must be immutable (not
modifiable). Therefore, option B is the correct answer. Self-replication will not assist in reach-
ing Connie’s requirement for an unchanging environment, so option A is a wrong answer.
Kubernetes is an orchestration engine, not an attribute, so option C is also an incorrect
choice. Infrastructure as code does not provide an unchanging environment, so option D is
a wrong answer. In orchestration, self-healing refers to a different issue than an unchanging
environment, so option E is also an incorrect choice.

3.	 D.  With container orchestration and DevOps, to keep the production and development envi-
ronment matching so that problems do not occur when an app is moved into production,
you simply replace the old production environment with the development environment. In
the case of containers, this means you stop the old production container and start the new
development container as the production container in its place. Thus, option D is the correct
answer and follows the “replace, not update” attribute. While the answer in option A would
work, it is terribly tedious, time-consuming, and full of potential problems. Therefore, it is a
wrong answer. The answer in option B is the old-school method of moving an app into pro-
duction, and it does not meet Connie’s desire for a static and matching environment. Thus, it
is also an incorrect answer. If before the app is ready for production, you stop any software
updates on the development container from occurring, that does not make the development
environment match the production environment alone. Thus, option C is a wrong choice.
Option E also would work but is even more tedious and full of potential problems than the
answer in option A. Therefore, it too is an incorrect choice.

4.	 C.  Replication allows an orchestrated container to be built and deployed in multiple cop-
ies automatically. This provides high availability when a container crashes as well as when a
new app container is being deployed. Therefore, option C is the correct answer. Immutability
prevents environment issues from causing application problems, but it is not the best propo-
nent of high availability, and thus, option A is a wrong answer. Version control allows you to
roll back and troubleshoot problems in a production environment, which does help provide
higher availability, but again it’s not the best attribute toward doing so. Therefore, option B
is also an incorrect answer. Option D provides speed in the orchestrated environment, which
also helps provide high availability to an app user, but it too is not the best advocate. Thus,
option D is also a wrong answer. While documentation helps in the troubleshooting process
and slightly contributes to higher availability, it is not the best either. Therefore, option E is
also an incorrect choice.

Chapter 30: Orchestrating the Environment  895

5.	 E.  Infrastructure as code is an umbrella term that encompasses both the configuration
management settings (operating system, libraries, additional software) and the policy as code
items (security policies, authentication settings). Thus, option E is the correct choice. Mar-
athon is the orchestration tool used with the Mesos application. Therefore, option A is a
wrong answer. Build automation uses infrastructure as code. Thus, option B is an incorrect
answer. A development environment can be built using infrastructure as a code. Therefore,
option C is also a wrong answer. A container also can be built using infrastructure as a code
but is not the code itself, so option D is an incorrect choice too.

6.	 B.  Ms. Ward is using build automation. Thus, option B is the correct answer. Monitoring
comes after containers are deployed, so option A is a wrong answer. Replication is part of
the process Ms. Ward used, but it does not describe the container deployment, so option C
is not the best answer and is an incorrect choice. Version control was hopefully used by Ms.
Ward so she can roll back or troubleshoot her application, if needed, but option D is not a
correct answer. Docker Swarm is an orchestration system, and thus, option E is also an incor-
rect answer.

7.	 A, B, C, E.  In container orchestration, automated configuration management allows con-
tainers to be deployed and replicated automatically (build automation). Also, troubleshooting
infrastructure issues is easier because the modifications are tracked in a version control
system. Thus, options A, B, C, and E are all correct answers. While automated configuration
management and orchestrated containers may be part of continuous software delivery, they
are not directly related. Therefore, option D is the only incorrect choice.

8.	 A.  Mr. Abbot needs an orchestration tool that can perform self-healing. Therefore, option
A is the correct answer. Build automation may be involved in self-healing, but it does not
describe the ability to deploy and replicate containers after they have crashed. Thus, option
B is a wrong answer. Continuous integration is a DevOps software revision control method
that encourages quickly integrating app changes into the main branch. Therefore, option C is
an incorrect answer. Infrastructure as code may be employed by build automation but does
not describe the ability to self-heal. Thus, option D is wrong choice. Pods are a component of
the Kubernetes orchestration engine. Thus, option E is also an incorrect answer.

9.	 B, C, D, E.  App container performance, metrics, container health, and default states are all
collected, watched, or used by an orchestration monitoring tool. Therefore, options B, C, D,
and E are all correct answers. Option A is the only incorrect choice because the version con-
trol system is not used or watched by an orchestration monitoring utility.

10.	 B, C.  Those who choose agentless orchestration monitoring tools typically do not want
to install monitoring software (an agent) on their app containers. Also, they are concerned
about this installed agent adversely affecting performance. Therefore, options B and C are the
correct answers. Since the answers in options A and D are opposite of options B and C, they
are wrong answers. Also, the industry is divided on which is the best to use (agent or agent-
less) for orchestration monitoring, so option E is also an incorrect choice.

Index

A
aa- complain command, 457, 635
aa-disable command, 457, 635
aa-enforce command, 457, 635
aa-status command, 456
aa-unconfined command, 456–457
absolute path, 341
access and authentication

about, 499
answers to review questions, 869–871
exam essentials, 499–500
managing access permissions, 442–445
pluggable authentication modules (PAMs),

470–482
public key infrastructure (PKI), 483–485
remote access, 629–630
review questions, 501–502
Secure Shell (SSH), 486–498
troubleshooting access, 624–631
using virtual private networks (VPNs) as a client,

498–499
Access Control Lists (ACLs)

about, 448–450
advanced permissions and, 633–635
providing access control, 518–520
unrestricting, 682–683

access server (SSH), 33–34
accessibility, setting up, 245–247
AccessX, 247
account interface, 472
AccuracySec directive, 190
active/passive, 213
add chain command, 532
add command, 531–532
address parameter, 206
Address Resolution Protocol (ARP), 585
addrlabel parameter, 206
Advanced Host Controller Interface (ACHI) driver,

673
advanced permissions, 633–635
After directive, 164
agent monitoring tools, 821

agentless monitoring tools, 821
aggregation, 212
alias command, 166, 409
Allman, Eric, 504
Also directive, 166
American Standard Code for Information

Interchange (ASCII), 270
anaconda file, 797–798
annotated tags, 762
Ansible, 820
answers

assessment test, lv–lxiii
to review questions

access and authentication methods, 869–871
application and hardware issues, 883–885
Bash scripts, 885–887
boot process, 841–844
cloud and virtualization concepts, 890–893
file protection, 863–864
file/directory management, 833–837
firewalls, 872–874
graphical user interface (GUI), 851–854
job automation, 887–888
kernel modules, 866–867
Linux devices, 881–883
localization, 855–858
logging, 871–872
network connections, 848–851
orchestration, 894–895
ownership and permissions, 868–869
performance optimization, 878–879
security, 874–876
services, 830–832
software, 864–866
storage, 861–863
system properties and remediation, 876–878
system startup and services, 844–848
text, 837–840
user issues, 880–881
users and groups, 858–861
version control, 889–890

Apache Hadoop project, 35
Apache web server, 22

898  AppArmor  –  Before directive

AppArmor, 455–457
append blobs, 803
AppImage, 417
application containers

about, 413–414
flatpak containers, 416–417
snap containers, 414–415

applications and hardware
packaging applications, 400–413
restricting applications, 556–557
troubleshooting

about, 688–692
answers to review questions, 883–885
application dependencies, 677–681
application permissions, 674–677
exam essentials, 692–693
firewall blockages, 682–684
hardware commands, 684–688
review questions, 694–696
SELinux context violations, 681–682
storage problems, 668–674

apt-cache program, 406–408
apt-get clean command, 680
apt-get program, 406–408
apt-get update command, 680
archive file, 367
archive utilities, 368–382
assessment test

about, xxxv
answers, lv–lxiii
questions, xliv–liv

asterisk (*), 93
asymmetric keys, 484
at command, 737–740
at utility, 559
atd command, 738
atomicity, consistency, isolation, and durability

(ACID) guidelines, 23
atq command, 740
attributes, analyzing, 816–818
audio cards, 645
audit2allow utility, 455
auditd package, 561
auditing, 561
auth interface, 472
authentication. See also access and authentication

about, 630–631
with authentication agents, 494–496
methods for, 548–550
with SSH keys, 492–494

Authentication Header (AH), 499

authentication server (AS), 31–33, 548
automated configuration management, 819
Automatic Bug Reporting Tool (abrt), 659
automatic drive detection, 331–332
automating

infrastructure, 820–821
jobs (See job automation)

automount units, 189–190
autoremove command, 407, 409
awk command, 120

B
background mode, running scripts in, 728–730
backticks (`), 110, 712
backups, types of, 364–366
bad block/sector, 669
balance, 348
bandwidth, 574
bandwidth saturation, 575
banners, 559
Bash parameters, 313–314
Bash scripts

about, 700, 721–722
advanced, 705–711
answers to review questions, 885–887
booting with, 796–797
command substitution, 711–712
command-line arguments, 709–710
displaying messages, 706–709
exam essentials, 722–723
exit status, 710–711
format, 703–704
logic statements, 714–717
loops, 717–720
performing math, 712–713
piping data, 702–703
redirecting output, 701–702
review questions, 724–725
running, 704–705
running in background mode, 728–730
running multiple commands, 700
running without consoles, 730–731
text manipulation, 720–721
writing, 711–721

Basic Input/Output System (BIOS), 136–137,
557

basic regular expressions (BREs), 93
bc calculator, 712–713
Before directive, 164

bg command  –  cloud and virtualization concepts  899

bg command, 736–737
BIND software package, 30
binmail program, 27
biometrics, for multifactor authentication, 550
black hole, 104
blame command, 176
blkid, 348
blob, 751
blob storage, 803
block blobs, 803
block device files, 647
blocking

root access from specific devices, 554
root access from SSH, 555

Bluetooth devices, 645
Blum, Richard (author), Linux Command Line and

Shell Scripting Bible, 4th Edition, 94, 721
bonding, 212, 213
boot manager, 138, 146–147
boot process

about, 134, 150
answers to review questions, 841–844
exam essentials, 150–151
firmware setup, 136–138
Linux, 134–136
Linux bootloaders, 138–146
review questions, 152–155
system recovery, 146–149

bootloader program, 137
bootloaders

about, 138–139
alternative, 145–146
GRUB Legacy, 139–143
GRUB2, 143–145

bootstrapping
booting with shell scripts, 796–797
kickstart installation method, 797–801

brace expansion, 110–111
brctl command, 214
Bresnahan, Christine (author)

Linux Command Line and Shell Scripting Bible,
4th Edition, 721

Linux Command Line and Shell Scripting Bible,
4th Edition, 94

bridged NIC, 806
broken dependency, 678
broken package, 678
brute-force attack, 477
BSD-style parameters, 609
btrfs check command, 594
btrfs filesystem, 341–342

buffer, 595
buffer cache, 595
bufferbloat, 575
build automation, 819
bye command, 384
bzip2 utility, 366, 397

C
cache, 577
caret (^), 93
case statement, 716–717
case study, xxxvii
cat command, 64–65, 97–98, 671, 753
cd command, 49
certificate authority (CA), 33, 483
certificates

PAM and, 470
PKI, 483

chage command, 306, 629
chainloading, 137
chains, iptables service and, 525–526
character device files, 647
character sets, 270–271
chases, 248
chattr command, 348, 461, 463
check command, 348, 409
check-update command, 409
Chef, 821
chgrp command, 442
chkconfig utility, 184–185
chmod command, 443
chown command, 442
chrony software, 280
chroot jail, 556–557
chroot utility, 556
Cinnamon desktop environment, 241–243
cipher key, 483
ciphertext, 483
clean command, 409
clients

listening for, 20–21
using VPNs as, 498–499

client-server network, 27
cloud and virtualization concepts

about, 786–787, 808
answers to review questions, 890–893
booting with shell scripts, 796–797
bootstrapping, 796–802

900  cloud computing  –  code listings

cloud computing, 774–775
cloud services, 775–777
cloud-init service, 801–802
configuring virtualized NICs, 805–807
containers, 781–786
exam essentials, 787, 808–809
hypervisor templates, 781
hypervisors, 778–780
kickstart installation method, 797–801
libvirt library, 792–793
network configurations, 804–807
review questions, 788–789, 810–812
storage issues, 802–803
virsh shell, 793–794
Virtual Machine Manager (VMM), 794–796
virtualization, 777–781
virtualizing networks, 804–805
VM tools, 792–796

cloud computing, 774–775
cloud services, 7–8, 775–777
cloud-init command, 801–802
cloud-init service, 801–802
clustering, 35, 823
code listings

aa-status command output, 456
account records

in /etc/passwd file, 297
in /etc/shadow file, 299

activating swap partitions with swapon
command, 598

active directives in /etc/login.defs file,
293–294

adding
programs to staging area via git add

command, 756
rules using nftables, 532–533

appending command output to files, 701
assigning DNS service to dmz zone, 524
auditing servers using find command, 81
awk command, 120
blocking ping to remote systems, 529
calculating factorials of numbers, 719–720
case statement, 717
chkconfig utility, 185–186
cloning projects from remote repositories with

git clone command, 761–762
combining permission changes, 444
committing files with git commit command,

757
comparing

files using diff command, 73, 74

Linux compression utilities, 367–368
compressing tar archive files, 398
configuring remote repository with git

remote command, 759
contents of /sys directory, 650–651
cp command, 50
creating

adding, and committing README.md files,
757–758

branches with git branch
branch-name command, 764

chains using nftables, 532
formatting, and mounting logical volumes,

353–354
hard links using ln command, 61
and populating subnet IPset, 541
and setting up ID keys to use with SSH

agents, 495
soft links using ln command, 62–63
swap partitions with mkswap command,

597
tables using nftables, 531
user accounts on Rocky Linux Workstation,

301
user accounts on Ubuntu Desktop, 302–303
working directories using mkdir command,

752–753
default output of nmcli command, 206
default.target link, 161
deleting

directories containing files using rm
command, 58

empty directories using rmdir command,
59

files using rm command, 57–58
rules, 537–538
subnet IPset, 542

demonstrating
command substitution, 712
export command, 637
job control, 735–736

deploying systemd mount unit files, 188
determining

account’s default shell with getent
command, 636

driver via ls and udevadm commands,
671

failed services by using systemctl, 172
file permissions with ls -l command, 631
if module is built in using cat command,

671

code listings  –  code listings  901

if module is loaded using lsmod command,
671

module name, 673
result when variables aren’t exported, 637
services running by using systemctl, 171
system’s operational status, 172

directory permission effects
of execute privilege, 633
of read privilege, 632

displaying
CPU usage with sar utility, 595
/etc/rc.d/rc3.d/S55cups link, 181
/etc/ufw/ directory’s contents, 537
fewer lines using head command, 67
files using cat command, 64
files using pr command, 65–66
I/O ports, 649–650
load averages with uptime utility, 594
swap files with swapon utility, 597
swap partitions with swapon utility, 597
systemd mount unit files, 188
virtual memory statistics with vmstat

utility, 596
dmesg command output from Ubuntu

workstation, 135–136
dmidecode table data, 686
enabling

hot-plugged SATA drive, 673
systemd mount units, 189
UFW and viewing status, 534

/etc/default/useradd file, 295
/etc/inittab file, 180
/etc/fstab file, 345–346
/etc/skel directory, 296–297
ethtool command, 209
files in /etc/rc.d/rc3.d directory, 181
finding

disk’s scheduler file, 590
and displaying systemd target unit files, 167
and displaying systemd unit files, 163
failed units, 173
files that use pam_securetty.so module,

482
files using grep command, 66
files using locate command, 77
init program file location, 158
potential space hogs using du utility, 588

gawk command, 120
id command, 318, 319
if statement, 715–716
ifconfig tool, 210

initializing .git/ directory via git init
command, 753

ip address output, 207–208
jumping

to emergency target unit, 175
between runlevels, 182
between target units, 174

last command, 319
Linux locale environment variable, 271
listing

MySQl database server daemon process, 19
script files, 180
system interrupts from /proc directory,

648–649
tables in nftables, 531

ll command, 47
ls command, 45
ls -lh command, 46–47
merging branches via git merge command,

765–766
mkdir command, 48–50
modifying

AllowTCPForwarding directive, 258,
261

disk’s scheduler file temporarilty, 591
DNS’s protocols in /etc/services file,

684
file permissions, 444
files using ed script, 106
firewall with iptables command, 683
for getty services with systemctl

command, 628
for group passwords, 311
for libvirt using ldd command,

792–793
local Git reporitory’s config file using git

config command, 753
swap priorities with swapon command, 599
for tables in sysfs filesystem, 685

mounting/remounting quota-enabled
filesystems, 320

moving and renaming files
using mv command, 54
using rsync command, 56

mv command, 53
output

from dmesg command, 653–654
from journalctl command, 512
from lsblk command, 653
from lsdev command, 651–652
from mount command, 344–345

902  code listings  –  code listings

performing
noncached read test using ioping utility,

591
recursive copy with cp command, 51–52

piping command output, 702
printing from command lin in Linux, 659
producing router performance reports with mtr

utility, 582
pulling project files from remote repository with

git pull command, 760–761
pushing projects to remote repository with git

push command, 759
pwd command, 45
redirecting output to files, 701
renaming directories using mv command,

53–54
reusing old passwords, 475
reviewing user account’s environment variables,

315
rmdir command, 59
root user account’s UID, 294
rsyslog.conf configuration entries for

Ubuntu, 508
rsyslog.conf configuration file for Rocky

Linux, 508
runlevel subdirectories, 181
sample Debian network DHCP configuration

settings, 202
sample Debian network static configuration

settings, 201
sample GRUB Legacy configuration file,

141–142
sample Rocky network interface configuration

settings, 202–203
sending ping to remote systems, 529
setting filesystem quotas in /etc/fstab file,

320
setting up

iperf client, 580
iperf server, 580
nc client, 581
nc server, 581

setting user account’s shell prompt, 315
settings for LC_MONETARY localization

category, 271–272
SHA utility names, 388
simple shell script file, 704
starting SSH agent sessions and adding ID keys,

495–496
stopping

display of bottom lines using head
command, 68

running jobs, 734
switching branches via git checkout

branch-name command, 764
systemd unit files, 162
systemd units, 160
testing DNS lookup speeds with nslookup

utility, 586
testing out password-less SSH connections, 494
troubleshooting

file access with id command, 631–632
I/O wait using iostat utility, 589

ulimit command, 459–460
updating

ed script via redirection operators, 105–106
software on Fedora, 13
software on openSUSE, 12
software on Rocky Linux, 10
software on Ubuntu, 11

using
$() method to create commands, 110
-a option with getsebool command, 454
backticks (`) method to create commands,

110
brace expansion to create commands,

110–111
cat command to concatenate files, 97
cat command to display nonprintable

characters, 98
chage -l to view account pssword status,

306
chage to change account password settings,

306
-class option with lshw command, 687
at command to start jobs, 739
command-line arguments in shell scripts,

710
cpio to create archives, 369–370
cpio to list archive’s contents, 370
cpio to restore files to different directory

locations, 371
cut command, 91–92
dd to copy entire disks, 378–379
dd to zero entire disks, 379
depmod utility to update modules.dep

file, 431
diff command, 74
diff command with redirection operators,

104

code listings  –  code listings  903

dmesg with grep to display module
messages, 436–437

echo command in scripts, 706
echo command to display text to STDOUT,

101
edquota -t to set soft limit grace periods,

322
edquota to create user and group quota

files, 321
faillock utility to view and reset login

failure tallies, 480
file command, 72
find command, 80–81
fio tool to determine disk I/O, 592–593
gawk command to extract file data, 122
gawk command to modify file text, 121–

122
gawk command to modify STDIN text,

120–121
gawk program files, 123
getent to view user accounts on Ubuntu

Desktop, 303
GIT VCS on develop branch, 764–765
grep command to audit password file, 94
grep command with BRE pattern, 93
grep command with ERE pattern, 94
groupadd utility to create groups, 310
groupdel to delete groups, 312–313
groupmod to modify groups, 312
-h option with cloud-init command,

801–802
head command, 67
here documents with sort command, 108
insmod to insert single modules into

kernels, 429
iptables command, 528
ldd and grep to discover libraries, 679
ldd to check for TCP Wrappers support,

497
ldd to determine if applications are

PAM-aware, 471
locate command with no file globbing, 78
locate command with pattern list, 78–79
for loop, 718–719
lsmod to display module status, 437
lspci command, 655
lsusb command, 656
md5sum to check files, 387
modinfo to display detailed module

information, 437–438

modprobe to insert modules and
dependencies, 429–430

modprobe to remove modules and
dependencies, 431–432

netcat to retrieve HTTP data, 215–216
octal mode to assign permissions, 445
pam_tally2 utility to reset login failure

tallies, 478
pam_tally2 utility to view login failures,

478
passwd for new accounts on Fedora

Workstation, 304
passwd -s to view account password

status, 305
pipe redirection, 107
printf command to format floating-point

numbers, 99
quota to check user’s quota limits, 322–323
quotacheck to create user and group

quota files, 321
repquota to check filesystem’s quotas, 323
rm command’s -I option, 58
rmod to remove modules, 431
rsync to back up files locally, 380–381
rsync to back up files remotely, 381
rsync to securely transfer files over SSH,

488
runlevel command, 179
scp to copy files from remote systems,

383–384
scp to copy files to remote systems,

383–384
sed -e to use multiple scripts, 119
sed -f to use script files, 119
sed stream editor to modify file text, 118
sed stream editor to modify STDIN text,

117–118
service utility, 183–184
set command, 707
sftp to access remote systems, 384
sftp to copy files to remote systems,

385–386
sha512sum to check files, 388
-short option with lshw command,

687
sort command, 95
sort -n command, 95–96
ssh to connect to nondefault ports on

remote systems, 490
ssh to connect to remote systems, 487

904  code listings  –  code listings

ssh to send commands to remote systems,
488

ssh-copy-id to copy SSH public ID keys,
493

ssh-keygen to create new public/privaye
key pairs, 491–492

ssh-keygen to create SSH ID key pairs,
492

stat command, 72
STDERR redirection operator, 103
STDERR redirection operator to remove

error messages, 103–104
STDOUT redirection operator, 101–102
sudo on Ubuntu, 10
systemd-analyze utility, 177
tail command, 68–69
tar command to bundle files, 396
tar to compare tarball members to external

files, 375–376
tar to create archive files, 372–373
tar to create full backups, 374
tar to create incremental backups, 374
tar to create tarballs, 373
tar to extract files from tarballs, 377
tar to list tarball’s contents, 375
tar to verify backed-up files automatically,

376
tee command, 108
test2.sh file to display environment

variables, 708
the touch command, 48
tshark to view packets, 584
ufw full syntax to add ACL rules, 537
ufw simple syntax to add ACL ru;es, 536
user variables in shell scripts, 709
userdel to delete accounts, 308–309
usermod to add accounts to groups,

311–312
usermod to lock acounts, 306–307
usermod to modify accounts, 308
virsh utility, 794
wc command, 100
wc command to check line length, 100
whereis command, 76
which command, 75, 112–113
xargs command, 109
xargs command to delete files, 109

verifying
if accounts are expired with chage

command, 629

if accounts are locked with passwd and
getent commands, 628

init program for links, 159
OpenSSH service status, 258
PID 1, 159
SELinux policy violations with sealert

command, 630
systemd mount unit’s status, 189
user account directives on Fedora

Workstation, 300
user account directives on Ubuntu Desktop,

301
viewing

account’s group membership, 310
ACLs for files, 448
active zones with firewall-cmd

command, 523
anaconda-ks.cfg file, 798–799
available UFW application profiles, 538
branches in use with git status

command, 763
command alias using which command, 76
current branch in use via git branch

command, 763
current systemd targets using systemctl

command, 627
default zone with firewall-cmd

command, 523, 683
disk information via dmesg command, 671
dmidecode help facility, 685
/etc/modprobe directories, 435–436
/etc/pam.d/ directory’s contents, 471
/etc/pam/d/login file’s contents,

471–472
/etc/securetty file, 481
/etc/security/pwquality.conf file’s

contents, 476
file names in master branch, 763
file owner and group settings, 441
filesystem space totals using df utility,

587–588
filter table’s chains and rules, 527
Git configuration settings using git

config --list command, 753
Git log via git log command, 758–759
ks.cfg file location, 800
/lib/modules directory, 434, 435
log files using tail command, 69
modified /etc/pam.d/password-auth

file, 475

coding  –  cp command  905

modules.dep dependencies file, 430
network segment systems, 587
OpenSSH key files on Fedora systems, 491
packet forwarding files, 539
PATH environment variable, 680
predefined services with firewall-cmd

command, 524
predefined zones with firewall-cmd

command, 522
Rocky Linux /etc/pam.d/system-auth

file’s contents, 479
service unit file’s Environment directive,

165–166
service unit’s status via systemctl,

168–169
simple shell scripts, 755
staging area index file with file command,

756
subdirectory space summaries using du

utility, 588
subnet IPset, 541
successful logins with last command, 625
TCP ports and services using nmap utility,

586–587
terminal device files with ls -l command,

627–628
Ubuntu /etc/pam.d/common-auth file’s

contents, 478
unsuccessful login attempts with lastb

command, 626
user account records with getent

command, 625
/usr/lib/modules directory, 435

virsh shell, 793
w command, 317
who command, 317
whoami command, 317
whois command, 222

coding, infrastructure, 819–820
cold-pluggable devices, 660
color command, 140
comma (,), 104
command lines, creating, 109–111
command-line arguments, 709–710
command-line tools

about, 205, 214–216
additional network features, 212–214
iproute2 package, 206–208
net-tools package, 208–211
Network Manager, 205–206

commands. See also specific commands
for hardware, 684–688
Logical Volume Manager (LMV), 351–352
piping, 106–108
running multiple, 700
substituting, 711–712
SysV init systems, 182–187

comment lines, 704
committing, with Git, 755–762
Common Internet File System (CIFS), 342
Common Unix Printing System (CUPS), 28,

658–659
Common Vulnerabilities and Exposures (CVE), 560
communication ports, troubleshooting, 689
Community Enterprise Operating System

(CentOS), 9
comparison

about, 714–716
of files, 72–75

compatibility, troubleshooting, 690
compiling source code, 399–400
compositor, 248
Compress setting, 510
compress utility, 397
compression methods, 366–368, 397
conditional statements, 714
configuration files, for PAMs, 471–473
configuration management, 815
configure utility, 400
configuring

GRUB Legacy, 139–142
GRUB2, 143–144
networks, 804–807
for networks, 577–578, 584–587
rsyslog program, 507–509
Secure Shell (SSH), 488–490
systemd-journald program, 510–511
virtualized NICs, 805–807

Conflicts directive, 164
consoles, running scripts without, 730–731
container image, 816–817
containers, 35–36, 781–786, 822–823
context interface, 472
context-based permissions, 450–457
continuous delivery, 815
continuous integration, 815
continuous testing, 815
control command, 660, 661
Coordinated Universal Time (UTC), 275
cp command, 50–52

906  cpio utility  –  display servers

cpio utility, 369–371
CPUs, troubleshooting, 594–595
creating
critical-chain command, 176
cron tables, 740–741
cron utility, 559
crypt utility, 304
cryptmount command, 556
cryptsetup command, 356
Ctrl+Alt+Del key combination, disabling, 558
cut command, 91–92, 107

D
daemon, 19
daemon-reload command, 170
data

piping, 702–703
securing, 484–485
separation of, 555

data centers, provisioning, 819–822
database servers, 23–25
datagram, 499
Datagram Transport Layer Security (DTLS),

498–499
date, setting, 276–280
date command, 276–279, 700, 701
D-Bus, 521
dd command, 378, 582
dd utility, 377–379
dead links, 63
Debian

network configuration files, 201
package tools, 401–404
repository tools, 406–408
SysV init runlevels, 179

debugfs, 348
default command, 140
default permissions, managing, 446–448
default ports, changing, 562–563
degraded mode, 668
degraded storage, 668
deleting accounts, 308–309
delimiter, 90–91
DenyHosts application, 539–540
denying hosts, 561–562
dependencies, application, 677–681
deplist command, 409
deploying Bash scripts. See Bash scripts
Description directive, 164

desired state, 821–822
Desktop Management Interface (DMI), 684
desktop settings, 236
/dev directory, 647–648
device, 349
device mapper, 648
Device Mappr Multipathing (DM-multipathing), 350
devices. See also Linux devices

blocking root access from specific, 554
interfaces, 644–646
USB, restricting, 559–560

/dev/null file, 647
DevOps, 815–816, 817–818
The DevOps Adoption Playbook (Sharma), 816
/dev/random file, 647
/dev/urandom file, 647–648
/dev/zero file, 648
df command, 347, 635
df utility, 587–588
dhclient program, 29, 212
dhcpcd program, 29, 212
diff command, 72–75, 104–105
differential backup, 365
dig command, 220
dig FQDN command, 585
digital certificates, 483
digital signatures, 485
direct memory access (DMA), 650
directories

changing groups, 442
changing ownership, 441–442
managing (See file/directory management)
permissions for, 632–633

disable command, 170
disabled service, 166
disabling

Ctrl+Alt+Del key combination, 558
unused services, 562

discretionary access control (DAC), 309, 450
disk buffering, 595
disk encryption, 556
disk I/O, 588–591
disks

failing, 593–594
managing usage of space, 320–323
measuring performance, 591–593

display manager, 236
display servers

about, 247
checking, 249
protocol for, 247

Distributed Management Task Force (DMTF)  –  Ex mode commands  907

Distributed Management Task Force (DMTF), 684
distributed version control systems, 750–751
distributions

about, 8
Fedora, 12–13
openSUSE, 11–12
Red Hat Enterprise Linux (RHEL), 9–10
Ubuntu, 10–11

distro-sync command, 409
DistroWatch, 178
dkpg command/program, 402
dm-crypt command, 556
dmesg command, 135–136, 653–654, 670, 671
dmesg utility, 436–437
dmidecode command, 684, 685
dmidecode utility, 684–686
dm-multipath tool, 350
dmstats utility, 670
dmz zone, 524
dnf command, 408
dnf tool, 408–412
DNSSEC protocol, 30
Docker, 36, 783–784
docker command, 783–784
Docker Swarm, 823
Documentation directive, 164
Domain Name System (DNS), 30, 576–577
dot (.), 93
downgrade command, 409
downloading source code, 394–395
drives

automatic drive detection, 331–332
connections for, 330–331
partitioning, 331

dstat utility, 670
du command, 347, 588
du utility, 588
dual-homed system (multihomes system), 806–807
dump command, 176
dumpe2fs, 348
dynamic devices

detecting, 660
working with, 660–661

Dynamic Host Configuration Protocol (DHCP), 29

E
e2fsprogs package, 348–349
e2label, 348
echo command, 101, 590–591, 706

ed script, 105–106
edquota command, 321–322
EFI System Partition (ESP), 138
emergency target, 175
enable command, 170
enabled service, 166
encrypting

about, 483
partitions, 355–356
using on networks, 563–564

end-of-file (EOF), 733
Enterprise Cryptographic File System (eCryptfs)

filesystem, 342
Environment directive, 164
Environment File directive, 165
environment variables

about, 165, 271–272
in Bash shell, 313–314
manually changing, 273–274
troubleshooting, 679–680
using, 707–708

environments
about, 4, 15
creating visualized environments, 5–7
distributions, 8–13
setting up, 313–316
setting up learning spaces, 4–8
terminal, 14
troubleshooting, 636–637

escalating privileges, 458–459
essid parameter, 211
/etc/default/useradd file, 295–296
/etc/fstab file, 320, 345–346
/etc/login.defs file, 293–295
/etc/login.warn file, 559
/etc/modprobe directories, viewing, 435–436
/etc/motd file, 559
/etc/pam.d/ file, 471, 472–473
/etc/pam.d/common-auth file, 478
/etc/pam/d/login file, 471–472
/etc/pam.d/password-auth file, 475
/etc/pam.d/system-auth file, 479
/etc/passwd file, 297–298
/etc/security file, 481–482
/etc/security/pwquality.conf file,

476–477
/etc/services file, 520, 684
/etc/shadow file, 298–300
/etc/skel directory, 296–297
ethtool tool, 208–211
Ex mode commands, 116

908  exam essentials  –  file protection

exam essentials
about, xxxv
access and authentication methods, 499–500
application and hardware issues, 692–693
Bash scripts, 722–723
boot process, 150–151
cloud and virtualization concepts, 787,

808–809
file protection, 389
file/directory management, 83
firewalls, 542–543
graphical user interface (GUI), 262–263
job automation, 744–745
kernel modules, 432–433
Linux devices, 662–663
localization, 282–283
logging, 514
network connections, 229–230
orchestration, 824
ownership and permissions, 465
performance optimization, 619
security practices, 565–566
services, 37
software, 419–420
storage, 358–359
system properties and remediation, 601–602
system startup and services, 191–193
text, 124
user issues, 638
users and groups, 324
version control, 766–767

exam objectives, xxxvii–xlii
ExecReload directive, 164
ExecStart directive, 164
ExecStop directive, 164
executables, 675
Execute permission, 442
exercises

about, xxxvii
adding USB storage devices to Linux system,

661
checking display servers, 249
creating encrypted disks, 563–564
creating log/journal entries, 513
creating shared directories, 463–464
determining network environment, 228
experimenting with filesystems, 357
experimenting with ime, 281
managing running processes, 617–618
manipulating jobs from command line, 743

troubleshooting application permission issues,
675–677

using rescue mode, 149
working with containers, 785–786
working with packages, 418
writing Bash scripts to view password

information for system users, 721
Exim MTA, 26
exit command, 14, 384, 711
exit status, 710–711
export command, 637, 709
EXPRESSION argument, 79
ext3fs filesystem, 342
ext4fs filesystem, 342
extended internet daemon (xinetd) application, 20
extended regular expressions (EREs), 94
Extensible Markup Language (XML), 523
external hard drives, 645
EXTLINUX bootloader, 145–146

F
facility values, 504–505
Fail2Ban service, 540
failing disks, 593–594
faillock command, 479–480
faillock utility, 480
fallback command, 140
Favorites bar, 237
fdisk command, 333–334
fdisk program, 332–334
Fedora

about, 12–13
OpenSSH and, 486

Fedora Project spins, 13
file command, 72, 756
file descriptor, 101
file manager, 237
file obstacles

advanced permissions, 633–635
directory permissions, 632–633
file creation, 635–636
file permissions, 631–632

file permissions, 631–632
file protection

about, 364, 389
answers to review questions, 863–864
backup types, 364–366
checking backup integrity, 387–388

file servers  –  fsck command  909

comparing archive and restore utilities,
368–382

compression methods, 366–368
exam essentials, 389
review questions, 390–392
securing offsite/off-system backups, 382–386

file servers, 27–28
File Transfer Protocol (FTP), 562
file/directory management

about, 44, 82
answers to review questions, 833–837
copying files, 50–56
creating files, 44–50
creating hard links, 60–62
creating soft links, 62–63
exam essentials, 83
exploring file differences, 72–75
finding information, 71–82
linking files and directories, 60–63
moving files, 50–56
reading files, 63–71
removing files, 56–60
review questions, 84–88
using intricate pinpoint commands, 79–82
using simple pinpoint commands, 75–79
viewing file information, 72
viewing files, 44–50

files
changing groups, 442
changing ownership, 441–442
creating, 635–636
restricting, 459–463

filesystem, 349
filesystem hierarchy standard (FHS), 339–340
filesystems

about, 337–338
creating, 343–344
formatting, 341–344
managing, 346–349
mounting, 344–346
navigating, 341
retrieving stats, 346–348
running out of space in, 587–588
tools for, 348–349
types, 341–343
virtual directory, 338–340

filter table, 527
filtering text, 90–95
find command, 79–82, 110
Finger, 562

fio tool, 592–593
firewall logs, 519
firewall-cmd command, 522–525, 527
firewall-config, 523
firewalld, 521–525, 682–683
firewalls

about, 518, 542
access control lists (ACLs), 518–520
answers to review questions, 872–874
DenyHosts application, 539–540
dynamically setting rules, 539–542
exam essentials, 542–543
Fail2Ban service, 540
firewalld service, 521–525
forwarding IP packets, 539
IPset, 540–542
iptables, 525–530
nftables, 530–533
review questions, 544–546
technologies for, 520–538
troubleshooting blockages, 682–684
Uncomplicated Firewall (UFW), 533–538

firmware startup, 136–138
flashcards, xxxvi
flatpak containers, 416–417
flatpak install command, 416–417
flatpak list command, 416, 417
flatpak search command, 416
flatpak uninstall command, 417
folders, defined, 367. See also directories
for loop, 718–719
forking: ExecStart, 165
formatting

filesystems, 341–344
of shell scripts, 703–704
text, 95–99

forward slash (/), 117
forwarding

about, 257–259
IP packets, 539

ForwardToSyslog setting, 511
frames, 237
free command, 596, 598
free disk space

hardware requirements for single distributions, 5
hardware requirements for virtualization

products, 6
FreeNX, 256
Fruhwirth, Clemens, 355
fsck command, 148, 593, 669

910  fsck program  –  hard links

fsck program, 349
full backup, 364–365
full syntax, 535
full-upgrade command, 407
fully qualified domain name (FQDN), 576

G
gawk command, 119–123
gcc command, 399–400
gdisk command, 335–336
gdisk program, 334–336
GEdit program, 703
general-purpose input/output (GPIO) interface, 646
get command, 384
getent command, 624–625, 628, 636
getent utility, 308
getfacl command, 449
getsebool command, 454, 634
Ghostscript program, 658
Git

committing with, 755–762
setting up environment, 752–755

git add command, 756
git branch command, 763–764
git checkout command, 764
git clone command, 761–762
git commit command, 757
git config command, 753
git init command, 753
git log command, 758–759
git merge command, 765–766
git package, 752
git pull command, 760–761
git push command, 759
git rebase command, 766
git remote command, 759
git status command, 757, 763
git tag command, 762
GitHub, 395
global entries, 316
global variables, 709
globbing, 720
GNOME desktop environment, 237–239
GNOME Partition Editor (GParted), 337
gnome-software program, 412
GNU Compiler Collection (gcc), 399, 680
GNU long parameters, 609
Gnu/Linux shell, 44
gparted command, 337
grace period, 322

graphic processing unit (GPU), 689
graphical tools, 203–204, 337, 412–413
graphical user interface (GUI)

about, 236–237, 262
answers to review questions, 851–854
Cinnamon desktop environment, 241–243
exam essentials, 262–263
forwarding, 257–262
GNOME desktop environment, 237–239
Kool Desktop Environment (KDE) Plasma,

239–241
local port forwarding, 259–260
MATE desktop environment, 243–245
NX protocol, 256
remote desktops, 252–257
remote SSH port forwarding, 260
review questions, 264–267
servers, 247–252
setting up accessibility, 245–247
Simple Protocol for Independent Computing

Environments (SPICE), 257
troubleshooting, 626–627
tunneling X11 connections, 261–262
Virtual Network Computing (VNC), 252–254
Wayland, 248–250
X11, 250–252
Xrdp, 254–256

graphical.target file, 161
Graylog, 519
grep command, 66, 82, 92–95, 102, 107,

679, 711
group command, 409
group identification number (GID), 309
group memberships, 675
groupadd utility, 310
groupdel command, 312–313
groupmod command, 312
groups. See users and groups
GRUB bootloader, preventing access to, 557–558
GRUB Legacy, 139, 142
GRUB2, 139
grub-install command, 142
GUID Partition Table (GPT) method, 331
gunzip command, 398–399
gzip utility, 366, 397

H
HAProxy, 35
hard disk drive (HDD), 330
hard links, creating, 60–62

hardware  –  ipcs -m command  911

hardware. See also applications and hardware
commands for, 684–688
requirements for, 5
troubleshooting compatibility, 690

hardware tokens, 550
hashing, 484–485
head command, 67–68, 91–92
Health Insurance Portability and Accountability

Act (HIPAA), 519
help command, 409
here documents, creating, 108–109
hiddenmenu command, 140
Hierarchical File System (HFS), 342
high latency, 575, 578–579, 582
HISTCONTROL environment variable, 314
history, of logging, 506
history command, 410
HISTSIZE environment variable, 314
Host Bus Adapter (HBA) standard, 645
host command, 219–220
host FQDN command, 585
host information, finding, 219–222
host key, 490
hosted hypervisors, 780
hostnamectl command, 203
host-only adapter (local adapter), 805–806
hosts, denying, 561–562
hot-pluggable devices, 659–661
htop command, 613–614
hwclock command, 276
hwinfo command, 687
hybrid cloud computing, 775
hypervisors, 5–6, 778–780

I
ICMP (Internet Control Message Protocol), 217
icons, 237
id command, 318–319, 626, 631–632
idle: ExecStart, 165
if statement, 714–716
ifconfig tool, 208–211
incremental backup, 365
index, 751
industry standard, 801
info command, 410, 660
information, finding, 71–82
infrastructre as code, 816
infrastructure

automating, 816, 820–821
coding, 819–820

infrastructure-as-a-service (IaaS), 775–776
inheritance, 450, 675
init process, 158–159, 608, 660
initrd command, 141
inode, 348
inode exhaustion, 635
input, redirecting, 101–111
inserting kernel modules. See installing, kernel

modules
insmod utility, 429–430
install command, 407, 410
installation tree, 800
installing

GRUB Legacy, 142
GRUB2, 144
kernel modules, 428–431
packages, 401–405

interactive online learning environment,
xxxv–xxxvi

interfaces
configurations for, 577
for devices, 644–646

internal hard drives, 645
Internet Assigned Numbers Authority (IANA), 519
internet daemon (inetd) application, 19–20
Internet Engineering Task Force (IETF), 20
Internet Printing Protocol (IPP), 28, 659
Internet Protocol Security (IPSec), 499
Internet Security Association and Key Management

Protocol (ISAKMP), 499
Internet Systems Consortium (ISC), 29
interrupt requests (IRQs), 648–649, 689
interruptible sleep mode, 610
interrupting processes, 732
intricate pinpoint commands, 79–82
intrusion detection systems (IDSs), 539
inventory, 821–822
I/O ports, 649–650
I/O scheduling, 590
I/O wait, 588
ioping utility, 591, 670
IOPS value, 592
iostat command, 347, 588–589
iostat utility, 589, 670
iotop utility, 670
ip addr show command, 262
IP addresses, 29
ip command, 206–208
IP packets, forwarding, 539
ip utility, 583
IPC sockets, 578
ipcs -m command, 596

912  iperf command  –  Lightweight Directory Access Protocol (LDAP)

iperf command, 580
iperf utility, 579–581
iproute2 package, 206–208
IPset, 540–542, 586
ipset del command, 541
ipset utility, 541
iptables command, 521, 526–529, 683
iptables service, 525–530
iptables software, 683
iptables-restore command, 530
IPv6 link local address, 202
is-active command, 171
is-enabled command, 171
is-failed command, 171, 172
ISO-9660 standard, 342
ISOLINUX bootloader, 145–146
iwconfig tool, 208–211

J
JavaScript Object Notation (JSON), 24
jitter, 575
job automation

about, 728, 744
answers to review questions, 887–888
exam essentials, 744–745
interrupting processes, 732
job control, 734–737
pausing processes, 732–733
restarting stopped jobs, 736–737
review questions, 746–747
running scripts in background mode, 728–730
running scripts without consoles, 730–731
scheduling jobs using at command, 737–740
scheduling regular scripts, 740–742
sending signals, 732–733
viewing jobs, 734–736

job control, 734–737
job number, 729
job queue, 738
jobs command, 735, 736
journalctl command, 511–512, 688, 689–690
journald package, 30
journaling, 342, 510–512

K
Kerberos

about, 32, 257
for authentication, 548–549

PAM and, 470
kernel command, 141, 143
kernel failures, 146–148
kernel modules

about, 424–428, 432
answers to review questions, 866–867
exam essentials, 432–433
installing, 428–431
removing, 431–432
review questions, 434–435

kernel ring buffer, 135
Kernel-based Virtual Machine (KVM), 780
kernels

passing parameters, 147
selecting at boot, 146–147

key distribution center (KDC), 549
keyboard mapping, troubleshooting, 690
keyed message digest, 485
kickstart file, 798–801
kickstart installation method, 797–801
kill command, 616–617, 733
Kool Desktop Environment (KDE) Plasma,

239–241
kpartx tool, 350
Kubernetes, 36, 822–823

L
l2tp parameter, 206
LAMP platform, 24
laptop, 4–5
last command, 319, 625
lastb command, 510, 625–626
lastlog command, 625
latency, 575, 578–579, 582
Launch, 237
ldd command, 679, 792–793
ldd utility, 400, 470–471, 497
learning space, setting up, 4–8
less command, 71, 107
less utility, 690
/lib/modules directory, viewing,

434, 435
libraries, 679
libvirt library, 792–793
lighthttpd package, 23
Lightweight Directory Access Protocol (LDAP)

about, 32–33
for authentication, 549
PAM and, 470
PAM integration with, 480–481

lightweight tags  –  LXC package  913

lightweight tags, 762
link parameter, 206
Linux+

about, xxxi
certification in, xxxi–xxxii

linux command, 143
Linux Command Line and Shell Scripting Bible,

4th Edition (Blum and Bresnahan), 94, 721
Linux devices

about, 662
answers to review questions, 881–883
communicating with, 644–651
/dev directory, 647–648
dynamic, 660–661
exam essentials, 662–663
finding, 651–654
hot-pluggable, 659–661
interfaces, 643–646
monitors, 656–657
PCI, 654–655
printers, 658–659
/proc directory, 648–650
review questions, 664–665
/sys directory, 650–651
USB, 655–656
working with, 651–659

Linux filesystems, 341–342
Linux Loader (LILO) bootloader, 138–139
Linux servers

about, 18–19
launching services, 19–20
listening for clients, 20–21

Linux Unified Key Setup (LUKS), 355, 556, 648
Linux Virtual Server (LVS) project, 35
list command, 407, 410
ll command, 47
lls command, 385, 386
lmkdir command, 385
ln command, 60–63
load averages, 594
load balancing, 35, 212
loading kernel modules. See installing, kernel

modules
local access, troubleshooting, 624–629
local loopback interface, 208, 577
local networks, serving, 27–31
local port forwarding, 259–260
local repository, 751–752
local variables, 708–709
locale, setting, 272–274
locale command, 271
localectl command, 272–273, 274

localhost, 577
localization

about, 270, 281–282
answers to review questions, 855–858
character sets, 270–271
environment variables, 271–272
exam essentials, 282–283
review questions, 284–287
setting locale, 272–274
setting time and date, 276–280
system time, 280–281
time zones, 275–276

locate command, 76–79
locking out accounts, 477–480
logging

about, 29–30, 513
answers to review questions, 871–872
configuring rsyslog, 507–509
configuring systemd-journald, 510–511
creating log entries, 509, 513
exam essentials, 514
finding event messages, 509–510
firewalls, 519
history of, 506
importance of, 504–506
journaling with systemd-journald,

510–513
review questions, 515–516
syslog protocol, 504–506
using rsyslog, 507–510
viewing logs, 511–512

logic statements, 714–717
Logical Volume Manager (LMV), 350–354,

648
logrotate utility, 509
loops, 717–720
losses, 575–576
low latency, 575
ls command, 44–46, 385, 386, 671, 703, 705
ls -F command, 50
ls -l command, 627–628, 631
ls -lh command, 46–47
lsattr command, 463, 636
lsblk command, 347, 379, 652–653, 673
lsdev command, 651–652
lshw command, 687–688
lshw utility, 686–688
lsmod command, 429, 671
lsmod utility, 437
lspci command, 654–655
lsusb command, 655–656, 690
LXC package, 782–783

914  maddress parameter  –  network configuration files

M
maddress parameter, 207
mail delivery agent (MDA), 26–27
mail servers, 25–27
Mail services, 562
mail transfer agent (MTA), 26
make utility, 400
makecache command, 410
man pages, 45, 71
mandatory access control (MAC) method, 450
MariaDB, 24
mark command, 410
mask command, 170
Master Boot Record (MBR), 137, 331, 377
MATE desktop environment, 243–245
MD5 algorithm, 387
mdadm utility, 354
media access control (MAC) address, 585
members, 375
MEMDISK bootloader, 145–146
memory

hardware requirements for single distributions,
5

hardware requirements forvirtualization
products, 6

printers, 687–688
running out of, 599–600
troubleshooting, 595–600, 687

menu commands (GRUB), 139
menuentry command, 143
menus, 237
merging versions, 763–766
Mesos, 823
message digest, 485
messages, 559, 706–709
metacharacters, 703
metadata, 44
Microsoft Active Directory, 480
Microsoft File Allocation Table (FAT)

filesystem, 138
Microsoft Hyper-V Server 2019, 6
Microsoft Server Message Block (SMB)

protocol, 659
missing devices, 668–669
missing mount points, 669
missing volumes, 669
MITRE Corporation, 560
mkdir command, 48–50, 385, 752–753

mkfs program, 343–344
mkswap command, 597
modinfo utility, 437–438
modprobe command, 429, 560
modprobe utility, 431–432
module command, 410
module interface, 472
module stack, 472
MongoDB database server, 24–25
monitor command, 207, 661
monitors, 656–657
more command, 70
mount command, 344–345
mount points, 338–339
mount units, 187–189
mounting

filesystems, 344–346
root drives, 148–149

moving files, 50–56
mroute parameter, 207
mrule parameter, 207
mtr utility, 582
multifactor authentication, 470, 550–551
multipath tool, 350
multipathd tool, 350
multi-user.target file, 161
mv command, 52–54
MySQL database server, 24

N
Nagio software package, 35
name resolution, 576–577
name servers, 30, 576
nano text editor, 111–112
nc command, 581
nc server, 581
negotiate method, 256
neighbor parameter, 207
netcat command, 214–215, 582
netcat utility, 214, 581
netfilter software, 520–521
netns parameter, 207
netstat command, 222–225
net-tools package, 208–211
network adapters, 578, 583
network address translation (NAT), 526, 806
network configuration files, 201–203

network connections  –  overprovisioning  915

network connections
about, 200, 228–229
advanced troubleshooting, 222–228
answers to review questions, 848–851
basic troubleshooting, 217–222
command-line networking tool, 214–216
configuring features, 200–214
exam essentials, 229–230
review questions, 231–234

Network File System (NFS), 28, 342
Network Information System (NIS), 32
network interface card (NIC), 578, 645
network management, 30–31
Network Manager tool, 203–204, 205–206, 523
Network Mapper (nmap) utility, 586
network resource servers, 29–31
network security. See security
network socket, 577
Network Time Protocol (NTP), 31, 279–280
network-online.target file, 161
networks

configuring, 804–807
troubleshooting, 574–587
virtualizing, 804–805

New Technology File System (NTFS), 342
nfs-utils, 28
nftables service, 530–533
nginX web server, 22–23
nice command, 615
NIST Special Publication 800-92, Guide to

Computer Security Log Management, 519
nmap utility, 586–587
nmcli tool, 205
nmtui tool, 205
nohup command, 730–731
non-keyed message digests, 485
non-Linux filesystems, 342–343
non-login shell, 314
nonrepudiation, 551
non-salted message digests, 485
Nonvolatile Memory Express (NVMe), 331
normal accounts, 294
northbound, 804–805
NoSQL, 24
nslookup command, 585–586
ntable parameter, 207
ntpd program, 31
ntpd software, 279
NX protocol, 256

O
objective map, xxxv
octal mode, 444
offsite/off-system backups, 382–386
OnActiveSec directive, 190
OnBootSec directive, 190
OnCalendar directive, 190
oneshot: ExecStart, 165
one-time password, for multifactor authentication,

551
OnStartupSec directive, 190
OnUnitActiveSec directive, 190
OnUnitInactiveSec directive, 191
Open Virtualization Appliance (OVA), 781
Open Virtualization Format (OVF), 781
OpenLDAP package, 32–33, 480
OpenSSH package, 34, 486, 629–630
OpenSSL package, 33, 563
openSUSE, 412

about, 11–12
network configuration files, 201
OpenSSH and, 486

OpenVPN package, 34, 498, 499
operands, 378
OPTION argument, 79
Oracle, 24
Oracle VirtualBox, xxxii, 5
orchestration

about, 814, 823
answers to review questions, 894–895
attributes, 816–818
automating infrastructure, 820–821
coding infrastructure, 819–820
comparing agent and agentless, 821
concepts, 814–818
container orchestration engines, 822–823
Docker Swarm, 823
exam essentials, 824
inventory, 821–822
Kubernetes, 822–823
Mesos, 823
probing, 815–816
provisioning data center, 819–822
review questions, 825–827

out of memory killer (OOM killer), 599–600
output redirection, 101–111, 701–702
overlay networks, 804–805
overprovisioning, 803

916  ownership and permissions  –  pluggable authentication modules (PAMs)

ownership and permissions
about, 440, 464–465, 674–675
access control lists (ACLs), 448–450
answers to review questions, 868–869
AppArmor, 455–457
changing file/directory group, 442
changing ownership, 441–442
context-based permissions, 450–457
controlling access permissions, 442–445
default permissions, 446–448
escalating privileges, 458–459
exam essentials, 465
file and directory permissions, 440–448
Linux user types, 457–459
restricting users and files, 459–463
review questions, 466–467
SELinux, 451–455
special permissions, 445–446
user account types, 458

P
PackageKit tool, 412
packages, installing and managing, 401–405
packaging applications, 400–413
packet drop, 575–576
packet filtering, 518
packet loss, 575–576
page blobs, 803
pam_tally2 utility, 478
panels, 237
Parallel Advanced Technology Attachment

(PATA), 330
Parallel Virtual Machine (PVM) library, 35
parameter expansion, 720
parted command, 336–337
partitioning

drives, 331
tools for, 332–337

partitions, encrypting, 355–356
partprobe utility, 337
passwd command, 304–305, 474–477, 478,

600–601, 628
password interface, 472
passwords

enforcing strong, 474–477, 551–553
lost root, 600–601
maintaining, 304–306
PAM and, 470

patch command, 678
patching, 678
PATH argument, 79, 314
pausing processes, 732–733
Payment Card Industry Data Security Standard

(PCI DSS), 519
PCI devices, 654–655
PCI Express (PCIe) standard, 645
Pearson VUE, xxxii
peer-to-peer network, 27
performance

improving, 35–36
optimizing

about, 618
answers to review questions, 878–879
exam essentials, 619
managing processes, 614–618
monitoring processes in real time, 610–614
processes, 608–610
review questions, 620–622
setting priorities, 614–615
stopping processes, 615–617

troubleshooting, 670
Peripheral Component Interconnect (PCI) standard,

644–645
permanent environment, 524
permissions. See ownership and permissions
persistency, 530
persistent device files, 332
Persistent directive, 191
physical frames, 248
ping utility, 583
ping6 command, 217
ping6 utility, 583
pinpoint commands

intricate, 79–82
simple, 75–79

piping
commands, 106–108
data, 702–703

pkill command, 617
platform-as-a-service (PaaS), 776
pluggable authentication modules (PAMs)

about, 304, 470–471
authentication and, 630–631
configuration files, 471–473
enforcing strong passwords, 474–477
integration with LDAP, 480–481
locking out accounts, 477–480
password strength and, 552–553

Point-to-Point Tunneling Protocol (PPTP)  –  redirection operator  917

Point-to-Point Tunneling Protocol (PPTP), 498
policies, using, 453–455
policy value, iptables service and, 526
ports, 577–578, 683
positional variables, 709–710
Postfix MTA, 26
PostgreSQL database server, 23–24
PostScript Printer Definition (PPD) file, 688
Power-On Self-Test (POST), 134
pr command, 64–66, 98, 105
Pre-boot eXecution Environment (PXE), 146
presistent volumes, 803
print command, 121
print queue, 658
print servers, 28
printenv command, 709
printers, 658–659, 687–688
printf command, 98–99
printf() function, 400
priorities, setting, 614–615
private cloud computing, 775
private keys, 483
private ports, 562–563
privilege escalation, troubleshooting, 626
privileged ports, 519
probing, procedures for, 815–816
/proc directory, 648–650
process ID (PID), 608
processes

about, 608–610
interrupting, 732
managing, 614–617
monitoring in real time, 610–614
pausing, 732–733
stopping, 615–617

processors
hardware requirements for single distributions,

5
hardware requirements forvirtualization

products, 6
procinfo package, 652
procmail program, 27
profiles, 455
progress command, 385
protocols, unblocking, 683–684
provides command, 410
provisioning

about, 803
data centers, 819–822

ps command, 608–612, 733
PS1 environment variale, 314
public cloud computing, 775
public key infrastructure (PKI)

about, 483–485
for multifactor authentication, 550–551

public/private key pairs, 484
pump package, 29
pump program, 212
Puppet, 821
purge command, 407
put command, 385
pwd command, 45
PXELINUX bootloader, 145–146

Q
querying users, 316–319
quota, 349
quota command, 322–323
quotacheck command, 321
quotaoff command, 322
quote command, 635

R
RandomizedDelaySec directive, 191
raw device, 331
rdp method, 256
Read permission, 442
read utility, 720
reading files, 63–71
readlink -f command, 63
rebasing, 766
rebooting, preventing unauthorized,

557–558
Red Hat Enterprise Linux (REHL)

about, 9–10
network configuration files, 201
repository tools, 408–412
SysV init runlevels, 178–179

Red Hat package tools, 404–405
redirecting

input and output, 101–111
output, 701–702
standard error, 102–104

redirection operator, 101–102

918  Redundant Array of Inexpensive Disks (RAID) technology  –  review questions

Redundant Array of Inexpensive Disks (RAID)
technology, 354, 674

reget command, 384
registered ports, 562–563
regular expressions, 93, 720
reinstall command, 407, 410
relative path, 341
reload command, 170, 183
RemainAfterElapse directive, 191
RemainAfterExit directive, 165
remote access, 629–630
Remote Authentication Dial-In User Service

(RADIUS), 549–550
Remote Desktop Protocol (RDP), 254–256
remote desktops

about, 252
NX protocol, 256
Simple Protocol for Independent Computing

Environments (SPICE), 257
Virtual Network Computing (VNC), 252–254
Xrdp, 254–256

Remote Direct Memory Access (RDMA), 578
remote repository, 752
remote SSH port forwarding, 260
remote sync utility, 56
remove command, 407, 410
removing

files, 56–60
jobs, 740
kernel modules, 431–432

renice command, 615
replicating

about, 817
with rsync, 380–382

repoinfo command, 410
repolist command, 410
repoquery command, 410
repositories

about, 405–406
Debian tools, 406–408
graphical package tools, 412–413
Red Hat tools, 408–412
troubleshooting, 680–681

repository-packages command, 410
repquota command, 323
reput command, 385
Request for Comments (RFC) documents, 20
RequiredBy directive, 166
Requires directive, 164
rescue disks, 148
rescue mode, 149

rescue target, 174–175
resize2fs, 348
resource exhaustion, 670
restart command, 170, 183
Restart directive, 165
restore, 349
restore utilities, 368–382
restorecon utility, 453
restricting

applications, 556–557
root account, 553–555
unapproved jobs, 559
USB devices, 559–560
users and files, 459–463

review questions
about, xxxv
access and authentication methods, 501–502
application and hardware issues, 694–696
Bash scripts, 724–725
boot process, 152–155
cloud and virtualization concepts, 788–789,

810–812
command-line tools, 205–214
file protection, 390–392
file/directory management, 84–88
finding host information, 219–222
firewalls, 544–546
graphical tools, 203–204
graphical user interface (GUI), 264–267
job automation, 746–747
kernel modules, 434–435
Linux devices, 664–665
localization, 284–287
logging, 515–516
monitoring networks, 226–228
netstat command, 222–225
network configuration files, 201–203
network connections, 231–234
orchestration, 825–827
ownership and permissions, 466–467
performance optimization, 620–622
security practices, 567–569
sending test packets, 217–219
services, 38–41
sockets, 226
software, 421–422
storage, 360–361
system properties and remediation, 603–605
system startup and services, 194–197
text, 125–129
user issues, 639–641

revision control  –  security  919

users and groups, 325–328
version control, 768–769

revision control. See version control
ring buffer, 436
rm command, 56–58, 111
rmdir command, 59
rmod utility, 431
Rocky Linux, 9, 486
role-based access control (RBAC), 450
root access, limiting, 481–482
root command, 140, 141
root directory, 44, 338
root drives, 148–149
root passwords, lost, 600–601
root user account, 458, 553–555
rootnoverify command, 141, 143
route parameter, 207, 208–211
routing, 575
rpm command, 404–405
RPM package management system, 412
rpm utility, 678
rsync command, 55–56, 381, 488
rsync utility, 380–382, 386
rsyslog program, 507–510
rsyslogd package, 30
Rule of Three, for backup, 386
rule parameter, 207
rules, dynamically setting, 539–542
runlevel command, 179, 626–627
runleveln.target file, 161
runlevels, 178–182
running

multiple commands, 700
scripts in background mode, 728–730
scripts without consoles, 730–731
shell scripts, 704–705

S
salted hash, 485
SaltStack, 821
Samba, 28
sample tests, xxxv–xxxvi
sar utility, 595, 670
satisfy command, 407
saturation, 575
scheduling

jobs using at command, 737–740
regular scripts, 740–742

scp command, 383
scp utility, 382–384, 386
SCSI, 672–673
sealert command, 630, 681
search command, 407, 410
secondary server, 577
Secure Copy Protocol (SCP), 382
Secure Hash Algorithm (SHA), 388
Secure Shell (SSH)

authenticating with authentication agents,
494–496

authenticating with SSH keys, 492–494
basic concepts, 486–488
blocking root access from, 555
configuring, 488–490
generating keys, 490–492
using securely, 496–498

Secure Sockets Layer (SSL) protocol, 563
security

about, 564–565
access server (SSH), 33–34
answers to review questions, 874–876
auditing, 561
authentication methods, 548–550
authentication server, 31–33
banners and messages, 559
certificate authority, 33
changing default ports, 562–563
context for, 452–453
of data, 484–485
denying hosts, 561–562
disabling unused services, 562
disk encryption, 556
enforcing strong passwords, 551–553
evaluating risk, 560
exam essentials, 565–566
implementing, 31–35
Kerberos, 32
Lightweight Directory Access Protocol (LDAP),

32–33
monitoring, 34–35
multifactor authentication, 550–551
Network Information System (NIS), 32
network security, 561–564
preventing unauthorized rebooting, 557–558
restricting applications, 556–557
restricting root account, 553–555
restricting unapproved jobs, 559
restricting USB devices, 559–560
review questions, 567–569

920  Security-Enhanced Linux (SELinux)  –  software

separation of data, 555
unique user accounts, 551
user security, 548–561
using encryption on networks, 563
virtual private networks (VPNs), 34
web proxy server, 34

Security-Enhanced Linux (SELinux), 451–455
sed command, 118–119
sed stream editor, 117
self-healing, 822
self-monitoring analysis and reporting technology

(SMART), 593, 672
self-signed digital certificate, 483
SELinux, 681–682
semanage utility, 453
sending

signals, 732–733
test packets, 217–219

sendmail MTA, 26
separation of data, 555
Serial Advanced Technology Attachment (SATA),

330, 645, 672
Server Message Block (SMB), 343
servers, GUI, 247–252
service commands, 183
service unit files, 162–166
service user account, 458
services

about, 18, 36
answers to review questions, 830–832
database servers, 23–25
disabling unused, 562
exam essentials, 37
implementing security, 31–35
improving performance, 35–36
Linux servers, 18–21
local networks, 27–31
mail servers, 25–27
review questions, 38–41
web servers, 22–23

session interface, 472
sestatus utility, 451–452
set command, 707, 709
Set Group ID (SGID) bit, 446
Set User ID (SUID) bit, 445–446
setenforce permissive command, 682
setfacl command, 448–449
setfactl utility, 634
setpci command, 650
setsebool command, 454–455, 682

settle command, 661
severity, of events, 505–506
sftp command, 384–385
sftp utility, 384–386
shared libraries, 400
Sharma, Sanjeev (author), The DevOps Adoption

Playbook, 816
shebang, 703–704
shell command, 410
SHELL environment variable, 314
shell issues, 636–637
shell scripting, 314
shell scripts. See Bash scripts
show command, 407
sidebar, xxxvii
signal continue (SIGCONT), 734
signal interrupt (SIGINT), 732
signal terminal stop (SIGTSTP), 732
signals, sending, 732–733
signing transmissions, 485
Simple Authentication and Security Layer (SASL),

257
simple: ExecStart, 165
Simple Network Management Protocol (SNMP),

30–31
simple pinpoint commands, 75–79
Simple Protocol for Independent Computing

Environments (SPICE), 257
simple syntax, 535
single-user mode, 147
skeleton directory, 296–297
Small Computer System Interface (SCSI), 331, 645
smartctl command, 672
snap command, 414
snap containers, 414–415
snap find command, 414
snap info command, 414–415
snap install command, 415
snap list command, 414, 415
snap remove command, 415
snap version command, 414
snapshot, 751–752
snapshot backup, 365
snapshot clone, 366
snapshot files, 374
sockets, 226, 577–578
soft links, creating, 62–63
soft-RoCE, 578
software

about, 394, 418–419

software-as-a-service (SaaS)  –  swap command  921

answers to review questions, 864–866
application containers, 413–418
container, 782–783
exam essentials, 419–420
packaging applications, 400–413
review questions, 421–422
source code, 394–400
troubleshooting compatibility, 690

software-as-a-service (SaaS), 776–777
software-defined networking (SDN), 804–805
solid-state drives (SSDs), 330, 593
sort command, 95–97, 107, 108, 711
source code

about, 394
bundling packages, 395–399
compiling, 399–400
downloading, 394–395

source control. See version control
southbound, 804–805
special permissions, 445–446
speed, of networks, 574–575
splashimage command, 140
split-mirror snapshot, 365
Squid package, 34
srandard user account, 458
ss command, 226
ssh command, 487, 490
SSH File Transfer Protocol (SFTP), 382
SSH port forwarding, 258
SSH tunneling, 258
ssh-add command, 496
ssh-agent command, 496
ssh-copy-id command, 494
SSL/TLS, 498
staging area, 751
stale links, 63
standard error, redirecting, 102–104
standard input, regulating, 104–106
standard output, handling, 101–102
start command, 170, 183
startup files, 314
stat command, 72
stateful firewalls, 520
stateless firewalls, 520
static environment, 816–817
status command, 170, 183
STDERR, 102–104, 105, 106–107, 702, 739
STDIN, 104–107, 702
STDOUT, 101–102, 105, 106–107, 702, 739
sticky bit, 446

stop command, 170, 183
stopping processes, 615–617
storage

about, 330, 358
alternatives to, 349–357
answers to review questions, 861–863
automatic drive detection, 331–332
automatically mounting devices, 345–346
creating filesystems, 343–344
Device Mapper Multipathing (DM-

multipathing), 350
drive connections, 330–331
encrypting partitions, 355–357
exam essentials, 358–359
fdisk program, 332–334
filesystem tools, 348–349
filesystems, 337–349
formatting filesystems, 341–344
gdisk program, 334–336
GNU parted command, 336–337
graphical tools, 337
integrity of, 669
of kickstart file, 800
Linux filesystems, 341–342
Logical Volume Manager (LMV), 350–354
managing filesystems, 346–349
manually mounting devices, 344–345
mounting filesystems, 344–346
navigating filesystems, 341
non-Linux filesystems, 342–343
partitioning drives, 331
partitioning tools, 332–337
Redundant Array of Inexpensive Disks (RADI)

technology, 354
retrieving filesystem stats, 346–348
review questions, 360–361
troubleshooting, 587–594, 668–674, 802–803
virtual directory, 338–340

Storage setting, 510
stream editors, 116–123
Structured Query Language (SQL), 23
su command, 458, 554
substitute user, 458
substitute user do, 459
sudo command, 10, 459, 481, 554, 626
sudo ufw enable command, 534
sudoedit command, 459
Sun Microsystems, 24, 32
super-servers, 19–20
swap command, 410

922  swap filesystem  –  tail command

swap filesystem, 342
swap space, 596
swapoff command, 599
swapon command, 598–599
swapon -s command, 596–597
swapon utility, 597
swapping, 596–599
Swarm, 823
switches, 45
symbolic mode, 443–444
symmetric keys, 483
syntax structure, 45
/sys directory, 650–651
sysctl command, 600
sysctl utility, 595
SYSLINUX bootloader, 145–146
Syslinux project, 145
syslog protocol, 504–506
syslogd program, 506
syslogd-ng program, 506
system accounts, 294
system image, 364
System Message Block (SMB), 28
system properties and remediation

about, 601
answers to review questions, 876–878
disk I/O, 588–591
exam essentials, 601–602
failing disks, 593–594
filesystem space, 587–588
lost root passwords, 600–601
measuring disk performance, 591–593
name resolution, 576–577
network configuration, 577–578, 584–587
network speed, 574–575
review questions, 603–605
running out of memory, 599–600
swammping memory, 594–599
timeouts and losses, 575–576
troubleshooting CPUs, 594–595
troubleshooting memory, 595–600
troubleshooting networks, 574–587
troubleshooting storage issues, 587–594
viewing network performance, 578–584

system recovery
kernel failures, 146–148
root drive failure, 148–149

system security, 555
system startup and services

about, 158, 191
answers to review questions, 844–848
automount units, 189–190

exam essentials, 191–193
init, 158–159
review questions, 194–197
runlevels, 178–182
service unit files, 162–166
systemctl commands, 167–178
systemd mount units, 187–189
systemd systems, 159–178, 187–191
SysV init commands, 182–187
SysV init systems, 178–187
target unit files, 166–167
time unit files, 190–191
unit files, 160–162

system time, 280–281
system tray, 237
systemctl command, 168–178, 255, 627, 628
systemctl daemon-reload command, 168
systemctl get-default command, 173
systemctl isolate command, 174
systemctl is-system-running command,

175, 176
systemctl status command, 174
systemd systems

about, 159–178
automount units, 189–190
managing, 159–178
mount units, 187–189
service unit files, 162–166
systemctl commands, 168–178
target unit files, 167–168
timer unit files, 190–191
unit files, 160–162

systemd timers, 742
systemd-analyze commands, 176
systemd-delta command, 168
system-delta command, 168
systemd-journald program

about, 506
journaling with, 510–512

systems configuration files, modifying, 167–168
SysV init systems

about, 178
commands, 182–187
managing, 178–187
runlevels, 178–182

T
tables, iptables service and, 526
tags, 762
tail command, 68–69

tar archive file  –  tune2fs  923

tar archive file, 372
tar command, 375, 376, 377, 395–396
tar utility, 372–377, 395
tarball, 372
target unit files, 167–168
TCP Wrappers, 496–498, 540, 561–562
tcpdump tool, 226–228
tcpmetrics parameter, 207
tee command, 107–108
Telnet, 562
templates

container, 783
hypervisor, 781

Terminal Access Controller Access-Control System
(TACACS), 550

terminals
locating, 14
troubleshooting, 627–628

Terraform, 821
test bank, xxxv–xxxvi
test command, 661
test packets, sending, 217–219
test-builtin command, 661
text

about, 90, 123
answers to review questions, 837–840
creating command lines, 109–111
creating here documents, 108–109
determining word count, 99–100
editing text files, 111–123
exam essentials, 124
filtering, 90–95
formatting, 95–99
handling standard output, 101–102
manipulating, 720–721
piping commands, 106–108
processing text files, 90–100
redirecting input and output, 101–111
redirecting standard error, 102–104
regulating standard input, 104–106
review questions, 125–129
stream editors, 116–123
text editors, 111–116

text editors, 111–116
text file changes, 91
text file record delimiter, 90–91
text file records, 90
thick provisioning, 803
thin provisioning, 803
threat agents, 670
three-finger salute, 558

throughput, 574–575
ticket-granting service (TGS), 549
TigerVNC, 253–254
time, 31, 276–280
time command, 176
time zones, 275–276
timedatectl command, 279
timeout command, 140
timeouts, 575–576
timer unit files, 190–191
timesyncd software, 280
title command, 140
tls method, 256
token parameter, 207
tokens, for multifactor authentication, 550
tools

for filesystems, 348–349
for partitioning, 332–337

top command, 610–614
touch command, 48
tr command, 104
traceroute command, 218
transferring, with sftp, 384–386
Transmission Control Protocol (TCP), 575–576
transmissions, signing, 485
Transport Layer Security (TLS) protocol, 498, 563
tree command, 48
trigger command, 661
troubleshooting

access, 624–631
application dependencies, 677–681
application permissions, 674–677
communication ports, 689
compatibility, 690
CPUs, 594–595
environment variables, 679–680
firewall blockages, 682–684
keyboard mapping, 690
local access, 624–629
memory, 595–600, 687
networks, 217–228, 574–587
repositories, 680–681
storage, 668–674, 802–803
storage issues, 587–594
updating, 677–678
USB devices, 689–690
video, 688–689

trust level, 521
tshark tool, 226–228
tunables, 455
tune2fs, 348

924  tunnel parameter  –  users and groups

tunnel parameter, 207
tunneling X11 connections, 261–262
tuntap parameter, 207
Type directive, 165
type enforcement, 453
Type I hypervisors, 779–780
Type II hypervisors, 780

U
Ubuntu

about, 10–11
OpenSSH and, 486
vim text editor and, 113

udev device manager, 660
udev program, 331–332, 660–661
udevadm command, 660–661, 671
ufw app list command, 538
ufw app update all command, 538
ufw commands, 534–538
ufw delete command, 537–538
ufw show added command, 537
ulimit command, 459–461
unapproved jobs, restricting, 559
unblocking

ports, 683
protocols, 683–684

Uncomplicated Firewall (UFW), 521, 533–538
Unicode, 270
Unicode Transformation Format (UTF), 270
Unified Extensible Firmware Interface (UEFI), 136,

137–138, 557
uninterruptible sleep mode, 610
Unit directive, 191
unit files, 160–162
Universal Access, 245–247
Universal Disc Format (UDF), 343
Universal Serial Bus (USB) interface, 645–646
Unix socket, 577–578
Unix-style parameters, 609
unlink command, 61
unmask command, 170, 446–447, 635
unrestricting Access Control Lists (ACLs), 682–683
until command, 720
update ommand, 407
updateinfo command, 410
updating, troubleshooting, 677–678

upgrade command, 407, 408, 410
upgrade-minimal command, 410
uptime utility, 594
USB devices

about, 655–656
restricting, 559–560
troubleshooting, 689–690

user accounts. See users and groups
User Datagram Protoclol (UDP), 575–576
user entries, 314–315
USER environment variable, 314
User Identification Number (UID), 294
user mask feature, 446
user security. See security
user variables, 708–709
useradd command, 292, 300–302, 624
userdel command, 308–309
usermod command, 306–308, 311–312, 478
users and groups

about, 292, 323, 638
adding accounts, 292–304
advanced permissions, 633–635
answers to review questions, 858–861,

880–881
authentication, 630–631
Bash parameters, 313–314
checking access to user accounts, 625–626
checking user accounts, 624–625
deleting accounts, 308–309
directory permissions, 632–633
environment and shell issues, 636–637
exam essentials, 324, 638
file creation, 635–636
file obstacles, 631–636
file permissions, 631–632
global entries, 316
id utility, 318–319
last utility, 319
local access, 624–629
maintaining passwords, 304–306
managing disk space usage, 320–323
managing groups, 309–313
managing user accounts, 292–309
modifying accounts, 306–308
querying users, 316–319
remote access, 629–630
restricting users, 459–463
review questions, 325–328, 639–641

/usr/lib/modules directory  –  xdpyinfo command  925

setting up environment, 313–316
troubleshooting access, 624–631
types of user accounts, 458
unique user accounts, 551
user entries, 314–315
who utility, 317–318
whoami utility, 316–317

/usr/lib/modules directory, viewing, 435
/usr/sbin/nologin utility, 554

V
van den Berg, Stephen R., 27
variables, 706–707
verify command, 176
version control

about, 750–752, 766, 817
answers to review questions, 889–890
committing with Git, 755–762
exam essentials, 766–767
merging versions, 763–766
review questions, 768–769
setting up Git environment, 752–755
tags, 762

version control system (VCS), 750–751
versioning, 677
vertical bar symbol (|), 94, 106–108
vi text editor, 112
video, troubleshooting, 688–689
video accelerators, 645
vim text editor, 112–116, 631
virsh utility, 793–794
virt-install command, 801
virtual directory, 44, 338–340
Virtual File Allocation Table (VFAT), 343
Virtual Machine Manager (VMM), 5–6,

794–796
virtual machine monitor (VMM), 778–780
virtual memory, 596
Virtual Network Computing (VNC),

252–254
virtual private networks (VPNs), 34, 498–499
virtualization. See cloud and virtualization

concepts
virtualized environments, creating, 5–7
virtualized local area networks (VLANs), 804

virtualized NICs, configuring, 805–807
VM tools, 792–796
vmstat utility, 596
VMware Fusion, 6
VMware Workstation Player, 6
vncviewer command, 254, 260

W
w command, 317
WakeSystem directive, 191
WantedBy directive, 166
Wants directive, 164
Wayland, 248–250, 657
wc command, 99–100
web proxy server, 34
web servers, 22–23
well-known ports, 20–21, 562–563
Weston, 250
wget application, 394–395
whereis command, 76
which command, 75–76, 112–113
while loop, 719–720
who command, 317–318, 700
whoami command, 316–317
whois command, 221–222, 585
widgets, 237
Wiley, xliii
window manager, 237
wireless cards, 645
Wireshark, 583–584
wireshark tool, 226–228
word count, determining, 99–100
working directory, 751, 752–753
Write permission, 442
writing script programs, 711–721

X
X Windows System, 656–657
X2Go, 256
X11 forwarding, 261–262
X11 Window System, 250–252, 261–262, 656–657
xargs command, 109
xdpyinfo command, 251

926  XEN Project  –  zypper command

XEN Project, 780
XFree86 package, 657
xfrm parameter, 207
XFS filesystem, 342
xfs_admin, 348
xfs_info, 348
X.org, 657
Xrdp, 254–256
xwininfo command, 251–252
xz utility, 367, 397

Y
Yellow Pages (YP), 32

Yet Another Markup Language (YAML),
801

Yet another Setup Tool (YaST), 11
yum command, 408

Z
Zettabyte File System (ZFS),

343
zip utility, 367
zombie, 610
zones, firewalld,

521–522
zypper command, 681

Online Test Bank
Register to gain one year of FREE access after activation to the online interactive test
bank to help you study for your CompTIA Linux+ certification exam—included with
your purchase of this book! All of the chapter review questions and the practice tests
in this book are included in the online test bank so you can practice in a timed and

graded setting.

Register and Access the Online Test Bank

To register your book and get access to the online test bank, follow these steps:

1.	Go to www.wiley.com/go/sybextestprep.
2.	Select your book from the list.
3.	Complete the required registration information, including answering the security

verification to prove book ownership. You will be emailed a pin code.
4.	Follow the directions in the email or go to www.wiley.com/go/sybextestprep.
5.	Find your book on that page and click the “Register or Login” link with it. Then

enter the pin code you received and click the “Activate PIN” button.
6.	On the Create an Account or Login page, enter your username and password, and

click Login or, if you don’t have an account already, create a new account.
7.	At this point, you should be in the test bank site with your new test bank listed at

the top of the page. If you do not see it there, please refresh the page or log out and
log back in.

http://www.wiley.com/go/sybextestprep
http://www.wiley.com/go/sybextestprep

WILEY END USER LICENSE AGREE-
MENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Table of Exercises
	Introduction
	The Exam Objectives
	How to Contact the Publisher

	Assessment Test
	Answers to Assessment Test
	Part I Gathering Your Tools
	Chapter 1 Preparing Your Environment
	Setting Up a Learning Space
	Using That Old Laptop
	Creating a Virtualized Environment
	Jumping to the Cloud

	Exploring Linux Distributions
	Looking at Red Hat Enterprise Linux
	Looking at Ubuntu
	Looking at openSUSE
	Looking at Fedora

	Locating a Terminal
	Summary

	Chapter 2 Introduction to Services
	What Is a Linux Server?
	Launching Services
	Listening for Clients

	Serving the Basics
	Web Servers
	Database Servers
	Mail Servers

	Serving Local Networks
	File Servers
	Print Servers
	Network Resource Servers

	Implementing Security
	Authentication Server
	Certificate Authority
	Access Server (SSH)
	Virtual Private Networks
	Proxy Server
	Monitoring

	Improving Performance
	Clustering
	Load Balancing
	Containers

	Summary
	Exam Essentials
	Review Questions

	Chapter 3 Managing Files, Directories, and Text
	Handling Files and Directories
	Viewing and Creating Files
	Copying and Moving Files
	Removing Files

	Linking Files and Directories
	Establishing a Hard Link
	Constructing a Soft Link

	Reading Files
	Reading Entire Text Files
	Reading Text File Portions
	Reading Text File Pages

	Finding Information
	Viewing File Information
	Exploring File Differences
	Using Simple Pinpoint Commands
	Using Intricate Pinpoint Commands

	Summary
	Exam Essentials
	Review Questions

	Chapter 4 Searching and Analyzing Text
	Processing Text Files
	Filtering Text
	Formatting Text
	Determining Word Count

	Redirecting Input and Output
	Handling Standard Output
	Redirecting Standard Error
	Regulating Standard Input
	Piping Commands
	Creating Here Documents
	Creating Command Lines

	Editing Text Files
	Appreciating Text Editors
	Learning about Stream Editors

	Summary
	Exam Essentials
	Review Questions

	Part II Starting Up and Configuring Your System
	Chapter 5 Explaining the Boot Process
	The Linux Boot Process
	Following the Boot Process
	Viewing the Boot Process

	The Firmware Startup
	The BIOS Startup
	The UEFI Startup

	Linux Bootloaders
	GRUB Legacy
	GRUB2
	Alternative Bootloaders

	System Recovery
	Kernel Failures
	Root Drive Failure

	Summary
	Exam Essentials
	Review Questions

	Chapter 6 Maintaining System Startup and Services
	Looking at init
	Managing systemd Systems
	Exploring Unit Files
	Focusing on Service Unit Files
	Focusing on Target Unit Files
	Looking at systemctl
	Examining Special systemd Commands

	Managing SysV init Systems
	Understanding Runlevels
	Investigating SysV init Commands

	Digging Deeper into systemd
	Looking at systemd Mount Units
	Exploring Automount Units
	Focusing on Timer Unit Files

	Summary
	Exam Essentials
	Review Questions

	Chapter 7 Configuring Network Connections
	Configuring Network Features
	Network Configuration Files
	Graphical Tools
	Command-Line Tools

	Command-Line Networking Tool
	Basic Network Troubleshooting
	Sending Test Packets
	Finding Host Information

	Advanced Network Troubleshooting
	The netstat Command
	Examining Sockets
	Monitoring the Network

	Summary
	Exam Essentials
	Review Questions

	Chapter 8 Comparing GUIs
	Focusing on the GUI
	Getting to Know GNOME
	Probing KDE Plasma
	Considering Cinnamon
	Making Acquaintance with MATE
	Setting Up Accessibility

	Serving Up the GUI
	Figuring Out Wayland
	Examining X11

	Using Remote Desktops
	Viewing VNC
	Grasping Xrdp
	Exploring NX
	Studying SPICE

	Forwarding
	Local
	Remote
	Tunneling Your X11 Connection

	Summary
	Exam Essentials
	Review Questions

	Chapter 9 Adjusting Localization Options
	Understanding Localization
	Character Sets
	Environment Variables

	Setting Your Locale
	Installation Locale Decisions
	Changing Your Locale

	Looking at Time
	Working with Time Zones
	Setting the Time and Date
	Watching System Time

	Summary
	Exam Essentials
	Review Questions

	Part III Managing Your System
	Chapter 10 Administering Users and Groups
	Managing User Accounts
	Adding Accounts
	Maintaining Passwords
	Modifying Accounts
	Deleting Accounts

	Managing Groups
	Setting Up the Environment
	Perusing Bash Parameters
	Understanding User Entries
	Grasping Global Entries

	Querying Users
	Exploring the whoami Utility
	Understanding the who Utility
	Identifying with the id Program
	Displaying Access History with the last Utility

	Managing Disk Space Usage
	Summary
	Exam Essentials
	Review Questions

	Chapter 11 Handling Storage
	Storage Basics
	Drive Connections
	Partitioning Drives
	Automatic Drive Detection

	Partitioning Tools
	Working with fdisk
	Working with gdisk
	The GNU parted Command
	Graphical Tools

	Understanding Filesystems
	The Virtual Directory
	Maneuvering around the Filesystem

	Formatting Filesystems
	Common Filesystem Types
	Creating Filesystems

	Mounting Filesystems
	Manually Mounting Devices
	Automatically Mounting Devices

	Managing Filesystems
	Retrieving Filesystem Stats
	Filesystem Tools

	Storage Alternatives
	Multipath
	Logical Volume Manager
	Using RAID Technology
	Encrypting Partitions

	Summary
	Exam Essentials
	Review Questions

	Chapter 12 Protecting Files
	Understanding Backup Types
	Looking at Compression Methods
	Comparing Archive and Restore Utilities
	Copying with cpio
	Archiving with tar
	Duplicating with dd
	Replicating with rsync

	Securing Offsite/Off-System Backups
	Copying Securely via scp
	Transferring Securely via sftp

	Checking Backup Integrity
	Digesting an MD5 Algorithm
	Securing Hash Algorithms

	Summary
	Exam Essentials
	Review Questions

	Chapter 13 Governing Software
	Working with Source Code
	Downloading Source Code
	Bundling Source Code Packages
	Compiling Source Code

	Packaging Applications
	Installing and Managing Packages
	Understanding Repositories

	Using Application Containers
	Using Snap Containers
	Using Flatpak Containers

	Summary
	Exam Essentials
	Review Questions

	Chapter 14 Tending Kernel Modules
	Exploring Kernel Modules
	Installing Kernel Modules
	Removing Kernel Modules
	Summary
	Exam Essentials
	Review Questions

	Part IV Securing Your System
	Chapter 15 Applying Ownership and Permissions
	Looking at File and Directory Permissions
	Understanding Ownership
	Controlling Access Permissions
	Exploring Special Permissions
	Managing Default Permissions

	Access Control Lists
	Context-Based Permissions
	Using SELinux
	Using AppArmor

	Understanding Linux User Types
	Types of User Accounts
	Escalating Privileges

	Restricting Users and Files
	Summary
	Exam Essentials
	Review Questions

	Chapter 16 Looking at Access and Authentication Methods
	Getting to Know PAM
	Exploring PAM Configuration Files
	Enforcing Strong Passwords
	Locking Out Accounts
	Limiting Root Access

	Exploring PKI Concepts
	Getting Certificates
	Discovering Key Concepts
	Securing Data
	Signing Transmissions

	Using SSH
	Exploring Basic SSH Concepts
	Configuring SSH
	Generating SSH Keys
	Authenticating with SSH Keys
	Authenticating with the Authentication Agent
	Using SSH Securely

	Using VPN as a Client
	Summary
	Exam Essentials
	Review Questions

	Chapter 17 Implementing Logging Services
	Understanding the Importance of Logging
	The syslog Protocol
	The History of Linux Logging

	Basic Logging Using rsyslog
	Configuration
	Making Log Entries
	Finding Event Messages

	Journaling with systemd-journald
	Configuration
	Viewing Logs

	Summary
	Exam Essentials
	Review Questions

	Chapter 18 Overseeing Linux Firewalls
	Providing Access Control
	Looking at Firewall Technologies
	Familiarizing Yourself with firewalld
	Investigating iptables
	Exploring nftables
	Understanding UFW

	Forwarding IP Packets
	Dynamically Setting Rules
	DenyHosts
	Fail2Ban
	IPset

	Summary
	Exam Essentials
	Review Questions

	Chapter 19 Embracing Best Security Practices
	User Security
	Authentication Methods
	Multifactor Authentication
	Unique User Accounts
	Enforce Strong Passwords
	Restricting the Root Account
	Separation of Data
	Disk Encryption
	Restricting Applications
	Preventing Unauthorized Rebooting
	Restricting Unapproved Jobs
	Banners and Messages
	Restricting USB Devices
	Looking for Trouble
	Auditing

	Network Security
	Denying Hosts
	Disabling Unused Services
	Changing Default Ports
	Using Encryption on the Network

	Summary
	Exam Essentials
	Review Questions

	Part V Troubleshooting Your System
	Chapter 20 Analyzing System Properties and Remediation
	Troubleshooting the Network
	Exploring Network Issues
	Viewing Network Performance
	Reviewing the Network’s Configuration

	Troubleshooting Storage Issues
	Running Out of Filesystem Space
	Waiting on Disk I/O
	Measuring Disk Performance
	Failing Disks

	Troubleshooting the CPU
	Troubleshooting Memory
	Swapping
	Running Out of Memory

	Surviving a Lost Root Password
	Summary
	Exam Essentials
	Review Questions

	Chapter 21 Optimizing Performance
	Looking at Processes
	Monitoring Processes in Real Time
	Managing Processes
	Setting Priorities
	Stopping Processes

	Summary
	Exam Essentials
	Review Questions

	Chapter 22 Investigating User Issues
	Troubleshooting Access
	Local
	Remote
	Authentication

	Examining File Obstacles
	File Permissions
	Directory Permissions
	Working with Advanced Permissions
	File Creation

	Exploring Environment and Shell Issues
	Summary
	Exam Essentials
	Review Questions

	Chapter 23 Dealing with Linux Devices
	Communicating with Linux Devices
	Device Interfaces
	The /dev Directory
	The /proc Directory
	The /sys Directory

	Working with Devices
	Finding Devices
	Working with PCI Devices
	Working with USB Devices
	Supporting Monitors
	Using Printers

	Using Hot-Pluggable Devices
	Detecting Dynamic Devices
	Working with Dynamic Devices

	Summary
	Exam Essentials
	Review Questions

	Chapter 24 Troubleshooting Application and Hardware Issues
	Dealing with Storage Problems
	Exploring Common Issues
	Dealing with Specialized Issues

	Uncovering Application Permission Issues
	Analyzing Application Dependencies
	Versioning
	Updating Issues
	Patching
	Dealing with Libraries
	Exploring Environment Variable Issues
	Gaining GCC Compatibility
	Perusing Repository Problems

	Looking at SELinux Context Violations
	Exploring Firewall Blockages
	Unrestricting ACLs
	Unblocking Ports
	Unblocking Protocols

	Troubleshooting Additional Hardware Issues
	Looking at Helpful Hardware Commands
	Investigating Other Hardware Problems

	Summary
	Exam Essentials
	Review Questions

	Part VI Automating Your System
	Chapter 25 Deploying Bash Scripts
	The Basics of Shell Scripting
	Running Multiple Commands
	Redirecting Output
	Piping Data
	The Shell Script Format
	Running the Shell Script

	Advanced Shell Scripting
	Displaying Messages
	Using Variables
	Command-Line Arguments
	The Exit Status

	Writing Script Programs
	Command Substitution
	Performing Math
	Logic Statements
	Loops
	Text Manipulation

	Summary
	Exam Essentials
	Review Questions

	Chapter 26 Automating Jobs
	Running Scripts in Background Mode
	Running in the Background
	Running Multiple Background Jobs

	Running Scripts without a Console
	Sending Signals
	Interrupting a Process
	Pausing a Process

	Job Control
	Viewing Jobs
	Restarting Stopped Jobs

	Running Like Clockwork
	Scheduling a Job Using the at Command
	Scheduling Regular Scripts

	Summary
	Exam Essentials
	Review Questions

	Chapter 27 Controlling Versions with Git
	Understanding Version Control
	Setting Up Your Git Environment
	Committing with Git
	Tags
	Merging Versions
	Summary
	Exam Essentials
	Review Questions

	Part VII Realizing Virtual and Cloud Environments
	Chapter 28 Understanding Cloud and Virtualization Concepts
	Considering Cloud Services
	What Is Cloud Computing?
	What Are the Cloud Services?

	Understanding Virtualization
	Hypervisors
	Types of Hypervisors
	Hypervisor Templates

	Exploring Containers
	What Are Containers?
	Container Software
	Container Templates
	Working with Docker

	Summary
	Exam Essentials
	Review Questions

	Chapter 29 Inspecting Cloud and Virtualization Services
	Focusing on VM Tools
	Looking at libvirt
	Viewing virsh
	Managing with Virtual Machine Manager

	Understanding Bootstrapping
	Booting with Shell Scripts
	Kickstarting with Anaconda
	Initializing with Cloud-init

	Exploring Storage Issues
	Considering Network Configurations
	Virtualizing the Network
	Configuring Virtualized NICs

	Summary
	Exam Essentials
	Review Questions

	Chapter 30 Orchestrating the Environment
	Understanding Orchestration Concepts
	Probing Procedures
	Analyzing Attributes

	Provisioning the Data Center
	Coding the Infrastructure
	Automating the Infrastructure
	Comparing Agent and Agentless
	Investigating the Inventory

	Looking at Container Orchestration Engines
	Embracing Kubernetes
	Inspecting Docker Swarm
	Surveying Mesos

	Summary
	Exam Essentials
	Review Questions

	Appendix Answers to the Review Questions
	Chapter 2: Introduction to Services
	Chapter 3: Managing Files, Directories, and Text
	Chapter 4: Searching and Analyzing Text
	Chapter 5: Explaining the Boot Process
	Chapter 6: Maintaining System Startup and Services
	Chapter 7: Configuring Network Connections
	Chapter 8: Comparing GUIs
	Chapter 9: Adjusting Localization Options
	Chapter 10: Administering Users and Groups
	Chapter 11: Handling Storage
	Chapter 12: Protecting Files
	Chapter 13: Governing Software
	Chapter 14: Tending Kernel Modules
	Chapter 15: Applying Ownership and Permissions
	Chapter 16: Looking at Access and Authentication Methods
	Chapter 17: Implementing Logging Services
	Chapter 18: Overseeing Linux Firewalls
	Chapter 19: Embracing Best Security Practices
	Chapter 20: Analyzing System Properties and Remediation
	Chapter 21: Optimizing Performance
	Chapter 22: Investigating User Issues
	Chapter 23: Dealing with Linux Devices
	Chapter 24: Troubleshooting Application and Hardware Issues
	Chapter 25: Deploying Bash Scripts
	Chapter 26: Automating Jobs
	Chapter 27: Controlling Versions with Git
	Chapter 28: Understanding Cloud and Virtualization Concepts
	Chapter 29: Inspecting Cloud and Virtualization Services
	Chapter 30: Orchestrating the Environment

	Index
	EULA

Linux+

