
Basic Linux
Terminal Tips
and Tricks

Learn to Work Quickly on
the Command Line
—
Philip Kirkbride

Basic Linux Terminal
Tips and Tricks
Learn to Work Quickly
on the Command Line

Philip Kirkbride

Basic Linux Terminal Tips and Tricks: Learn to Work Quickly on the Command Line

ISBN-13 (pbk): 978-1-4842-6034-0			 ISBN-13 (electronic): 978-1-4842-6035-7
https://doi.org/10.1007/978-1-4842-6035-7

Copyright © 2020 by Philip Kirkbride

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484260340. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Philip Kirkbride
Montreal, QC, Canada

https://doi.org/10.1007/978-1-4842-6035-7

Dedicated to the open source community.

v

About the Author���xix

About the Technical Reviewer���xxi

Acknowledgments���xxiii

Introduction��xxv

Chapter 1: �Linux Primer��� 1

What Is Linux��� 1

Unix vs. Linux��� 2

POSIX Standard�� 3

Choosing a Distro��� 4

Branches of OSs��� 5

Debian�� 6

Fedora�� 9

Slackware��� 10

Arch�� 10

Gentoo�� 11

Alpine Linux�� 11

Common Commands�� 12

Reading the Manual with the man Command�� 12

Numbered man Pages�� 13

Useful Commands for Navigating�� 14

Navigating the Filesystem with ls and cd�� 14

Invisible Files (dot files)��� 16

Get Current Directory with pwd��� 16

Make a Directory�� 16

Recursively Make Directories�� 17

Table of Contents

vi

Delete a Directory�� 17

Working with Files��� 17

Editing Files��� 18

Commands for Working with Files�� 18

Create Files or Update Timestamps with the touch Utility�� 19

Get File Contents with Cat�� 20

Get Less Content with Head or Tail��� 20

Copying Files with cp��� 21

Removing Files with rm�� 22

Moving Files with mv�� 22

Interactively View File Contents with Less��� 22

Comparing Files�� 23

Compare with Comm Command��� 24

Compare with Cmp Command�� 24

Compare with Diff Command��� 24

ColorDiff Even Better Than Diff��� 25

Get File Type��� 25

Command Information with type, which, whereis, or locate�� 26

More on Sudo��� 27

Less Pipe�� 28

Scheduling Processes with Cron Jobs��� 35

Summary��� 36

Chapter 2: �File/Folder Navigation�� 37

Basics�� 37

inodes�� 38

Get Current Location�� 39

Symbolic Links��� 39

Hard Links�� 40

Navigation Stack with pushd and popd�� 41

Ranger��� 42

File Structure Visualization with Tree��� 44

Table of Contents

vii

Navigate Filesystem with Vim�� 45

Summary��� 46

Chapter 3: �History and Shortcuts�� 47

History�� 47

Bash Shortcuts��� 49

Emacs vs. Vim Keyboard Bindings��� 52

Reverse Search�� 53

File Globbing or Wildcards�� 53

Summary��� 55

Chapter 4: �Scripts and Pipes��� 57

Creating Scripts��� 57

Shebang��� 58

File Permissions��� 58

File Types��� 61

Pipes�� 62

Multiple Pipelines��� 63

Chain Commands with && and ||��� 64

Exit Codes for && and ||�� 65

Using && with ||�� 66

Redirects�� 67

Redirect and Pipe at Once with tee�� 68

xargs��� 69

Conditional Expressions in Bash�� 70

Is a Directory with -d�� 71

Is a Normal File with -f��� 71

Check if File Exists with -e��� 72

Check if Exists and Size Greater Than 0 with -s��� 72

Check if Exists and is an Executable with -x�� 72

Check Value Is a String of Length 0 with -z�� 73

Check Value Is a Non-empty String with -n�� 74

Table of Contents

viii

Check That Strings Are Equal��� 74

Check That Strings Are Not Equal��� 74

Check String Sort Order�� 75

Check If Numbers Are Equal��� 76

Check If Numbers Are Not Equal�� 76

Check If a Number Is Less Than��� 76

Check If a Number Is Less Than or Equal��� 77

Check If a Number Is Greater Than��� 77

Check If a Number Is Greater Than or Equal��� 78

Arithmetic with Double Parentheses�� 78

Subshell with Parentheses��� 79

Expansion with Curly Brace�� 80

Loop in Bash�� 81

While Loops�� 83

Until Loops�� 84

Quotes in Bash��� 84

Command Substitution Using Backtick�� 85

Defining Functions��� 86

Source Code from a File��� 87

Summary��� 88

Chapter 5: �Using SSH��� 89

History of SSH�� 89

Basic SSH Use�� 90

Keypairs with ssh-keygen�� 91

PEM and Other Key Files�� 92

Disable Password Login on Server��� 93

Server Nicknames with SSH Config File��� 94

Run a Command on Connection��� 95

Break a Hanging SSH Session��� 96

stty sane�� 97

Stop SSH Hanging�� 98

Table of Contents

ix

SSH Tunneling�� 99

Local SSH Tunnel��� 99

Create a SOCKS Proxy with SSH�� 100

Reverse SSH Tunnel��� 102

Serving a Website over Reverse Proxy��� 103

SSH Proxy Jump�� 104

Change Default Port on SSH Server��� 105

Open Firewall��� 105

Modify sshd_config�� 106

Summary��� 106

Chapter 6: �File Transfer��� 107

FTP��� 107

SFTP��� 108

SCP�� 110

Rsync��� 111

Set Up Cron Job for Rsync�� 113

Two-Way Sync with Unison�� 114

Summary��� 118

Chapter 7: �Network Scanning�� 119

Check Connection with Ping�� 119

arp-scan Method�� 120

nmap Method��� 121

View Open Ports��� 123

Devices and Ports at Once��� 126

Easy but Slow��� 126

Faster Method�� 126

OS Detection��� 126

Scanning the Internet with masscan��� 127

Run Scripts with nmap��� 128

traceroute Script�� 129

Table of Contents

x

http-enum Script�� 129

Write Your Own Script for nmap��� 130

Wireshark/tshark��� 132

More Network Tools��� 134

Dig�� 135

Netstat (Deprecated)�� 136

ifconfig (Deprecated)�� 136

arp (Deprecated)��� 136

route (Deprecated)�� 137

ip�� 137

ss�� 137

ngrep�� 138

traceroute��� 139

mtr�� 140

nc�� 141

nft – nftables�� 141

iptables (Deprecated)��� 142

sysctl�� 142

ethtool�� 142

whois�� 143

lsof�� 144

hping�� 145

socat��� 146

Summary��� 146

Chapter 8: �System Monitoring��� 147

Top��� 147

Top-Like Programs��� 150

htop�� 150

atop�� 151

iftop�� 152

ntop�� 152

Table of Contents

xi

iotop��� 153

slabtop�� 154

More on Viewing Processes��� 154

Kill a Process��� 156

Visualize Process Tree with pstree�� 157

Process Nice Value��� 159

Other Priority Systems��� 160

Change Nice Value��� 160

Zombie Process��� 161

Check Available Disk Space��� 163

Find Largest Files on System��� 164

Monitor Device Network Use��� 165

bmon – Monitor Each Network Interface�� 165

nethogs – List Programs by Bandwidth Use��� 166

iftop�� 167

Other Programs for Monitoring�� 169

sysstat�� 169

Load Average�� 170

Users�� 171

Log Folder�� 172

Other sysstat Utilities��� 173

vmstat��� 174

r – Threads Waiting for Runtime��� 176

b – Threads Blocked by I/O��� 176

swpd – Total Swap Used�� 176

free – Total Free Memory��� 177

buff – Memory Used in Buffers�� 177

cache – Memory Used as Cache�� 177

si – Memory Swapped In from Disk��� 177

so – Memory Swapped Out from Disk�� 178

bi – Blocks Received from Block Device�� 178

Table of Contents

xii

bo – Blocks Sent to Block Device��� 178

in – Interrupts per Second�� 178

cs – Context Switches�� 178

us – Time Spent Running Non-kernel Code�� 179

sy – Time Spent Running Kernel Code��� 179

id – Time Spent Idle�� 179

wa – Time Spent Waiting for I/O��� 179

st – Time Stolen from Virtual Machine��� 180

nmon�� 180

Advanced Network Monitoring with Snort��� 182

Nagios�� 183

Summary��� 183

Chapter 9: �Hardware Details and /dev��� 185

Commands for Hardware Details��� 185

The /dev/ Folder��� 186

Special Files in the /dev/ Folder�� 187

Teletypewriter�� 188

stdin, stdout, and stderr��� 189

/dev/null��� 190

/dev/random and /dev/urandom�� 191

/dev/zero�� 192

What Is the Kernel?�� 193

Getting Kernel Version�� 194

Configure and Mount a Drive��� 195

Delete Partition�� 196

Create Partition�� 197

Format Partition��� 198

Mount Partition�� 199

System Link from Partition to ~/�� 199

Making Mounted Partition Persistent��� 200

Table of Contents

xiii

lm-sensor��� 201

inxi�� 202

dmidecode�� 202

Summary��� 203

Chapter 10: �Parsing Text��� 205

grep�� 205

cut�� 206

uniq�� 208

sort��� 209

Regex��� 211

awk�� 214

sed��� 217

Using JQ to Work with JSON�� 217

Summary��� 220

Chapter 11: �systemd�� 221

systemctl��� 221

Stop, Start, Disable, and Enable Services�� 223

Stop a Service�� 223

Get Status of a Service��� 223

Start a Service�� 224

Disable a Service�� 224

Enable a Service��� 224

Unit Files�� 225

Find Running Services��� 227

journalctl�� 230

journalctl – Parsing by Time�� 231

Other Init Systems�� 232

SysV Init��� 232

Upstart��� 233

Summary��� 234

Table of Contents

xiv

Chapter 12: �Vim��� 235

Modes�� 235

Common Commands�� 236

Using Help Command��� 237

Compound Commands��� 237

Selecting with Visual Mode�� 239

Vim Tutor�� 241

Find Text��� 242

Find and Replace��� 242

Run a Command��� 243

Vim Sort Command�� 244

Show and Hide Line Numbers�� 244

Swap Files�� 244

Summary��� 245

Chapter 13: �Emacs�� 247

Installing Emacs��� 248

Vim Bindings aka Emacs Evil Mode��� 248

Built-in Tutorial��� 250

Run Emacs in Terminal�� 251

Hints with which-key-mode��� 251

Emacs Artist Mode��� 253

Org-Mode��� 260

Tables in Org-Mode�� 262

Export from Org-Mode��� 263

Org-Agenda�� 265

Sync Org-Agenda with Google Calendar�� 268

Outline Presentation Mode��� 269

Emacs TRAMP�� 271

Other Modes��� 273

Summary��� 274

Table of Contents

xv

Chapter 14: �Configure Bash��� 275

Configuration Scripts��� 275

.�bashrc_profile or .profile�� 275

.�bashrc��� 276

.�bash_logout�� 276

Global Versions��� 277

Useful Configs for .bashrc�� 278

Defining Aliases��� 278

Custom Functions�� 278

Adding to PATH��� 279

Changing PS1 Prompt�� 280

PS2, PS3, and PS4�� 283

Themes�� 285

Live Clock in Terminal�� 286

Run a Program on Open��� 287

Importing a File�� 288

.�inputrc��� 289

Other Dotfiles��� 290

Summary��� 291

Chapter 15: �Tmux Workflow�� 293

Background Scripts�� 293

Background Scripts with Tmux�� 294

Tmux with SSH��� 295

Named Sessions�� 296

Switching Tmux Sessions�� 296

Killing Sessions�� 297

Windows in Sessions��� 297

Pane Splitting��� 300

Clock Mode�� 302

Help Page��� 303

Table of Contents

xvi

Customize with .tmux.conf�� 303

Configure Color and Style�� 304

Change Status Bar Contents�� 306

Remap Commands��� 308

Screen Sharing with Tmux��� 309

Theme Packs��� 309

Tmuxinator��� 311

Summary��� 313

Chapter 16: �Terminal Tools for Working with Images and Videos������������������������� 315

ImageMagick��� 315

Creating an Image with Text�� 316

Getting Image Information��� 317

Label an Image�� 318

ffmpeg�� 319

Convert File Types�� 320

Compress a Video�� 320

Slow Down a Video�� 321

Trim a Video��� 321

Increase Volume in a Video�� 322

Download Videos with youtube-dl��� 322

Creating Charts with gnuplot��� 324

gnuplot to Image File��� 326

Advanced Examples/Demo Folder��� 328

Startup Animation�� 330

Make a Custom Boot Animation��� 332

Summary��� 332

Chapter 17: �Extras��� 333

Cal�� 333

espeak��� 334

Improve Sound of espeak Voice��� 335

Table of Contents

xvii

Output espeak to Audio File��� 336

Math on the Command Line��� 336

Tiling Window Managers�� 337

Creating Tiles��� 341

Change Tile in Focus�� 342

Move Tiles�� 342

Workspaces in i3wm�� 343

Floating Tiles�� 343

Full-Screen Mode��� 343

Modifying i3wm Config File��� 344

Bind Keys in i3wm Config�� 344

Change Colors in i3wm Config��� 345

i3status Config File�� 346

Alternative Shells��� 347

Z Shell�� 347

Oh My ZSH��� 348

Fish�� 348

Remapping Keys�� 349

clear capslock�� 350

Custom Shortcuts with Xbindkeys��� 351

Additional Resources��� 352

Summary��� 352

�Index�� 353

Table of Contents

xix

About the Author

Philip Kirkbride has been developing software for over 10 years. After college he worked

as a contractor developing websites and mobile apps in Southern Ontario, Canada.

He has since worked at several software and hardware startups and contributed to

open source projects. He is currently a research assistant on Dr. Fuhua (Oscar) Lin’s

Adaptive Cyberlearning research team, creating educational software used in COMP

272 Data Structures and Algorithms and COMP 372 Design and Analysis of Algorithms at

Athabasca University. He is also a mentor for Manning’s short course

Use Machine Learning to Detect Phishing Websites and co-author of 2 books on

JavaScript, Professional JavaScript (Packt, 2019), and The JavaScript Workshop (Packt,

2019). When he is not working or learning new things, he enjoys spending time outdoors.

He can be reached at kirkins@gmail.com.

xxi

About the Technical Reviewer

David Both is an Open Source Software and GNU/Linux

advocate, trainer, writer, and speaker. He has been

working with Linux and Open Source Software for more

than 20 years and has been working with computers for over

45 years. He is a strong proponent of and evangelist for the

"Linux Philosophy for System Administrators." David has

been in the IT industry for over 40 years. He is the author

of The Linux Philosophy for SysAdmins (Apress, 2018)

and the three-volume set, Using and Administering Linux

(Apress, 2019).  

xxiii

Acknowledgments

I'd like to thank the open source community and the developers of utilities explored in

this book. Most of the ideas and techniques shared here have been learned with the help

of the many developers online always willing to help with small and large problems. A

number of people have contributed feedback and suggestions including Jason, Omm,

and various users from the Unix SE and Telegram. I’d also like to acknowledge my

grandfather Douglas Kirkbride for encouraging my early interest in computers, my

parents, family, friends Colin, Matt, my thesis advisor Dr. Fuhua (Oscar) Lin, and the

tech community in Waterloo, Ontario (Communitech, BlackBerry, ect.) where I was able

to meet many talented people like Taylor Brynes who introduced me to SSH and Qbo

who increased my expectations of what a quality user experience is. As well as Jasmine

Samaras whose antics kept me entertained during the process of writing this book.

I'd also like to thank the editors at Apress – Louise Corrigan, Nancy Chen, and James

Markham – for helping to mold the idea into a book as well as the technical reviewer

David Both who has provided great feedback and adjustments.

xxv

Introduction

Despite graphics being more advanced than ever, the Linux terminal, or command line,

continues to be one of the most useful tools for software developers, system admins,

and IT professionals to know. From the terminal, complex tasks can be launched in a

few words, when the equivalent action would take several steps in a GUI. In other cases,

things which can be done from the command line are simply not possible from the GUI

of an operating system.

In a world where many devices are embracing mobile-style interfaces which limit

users, the power of the Linux terminal can feel freeing. It gives you fine-grained control

of your system and the tasks you run. The only requirement is that you learn the magic

words that will manifest what you want to happen. This book is for those who want to

learn about the Linux terminal, bash, and terminal-based utilities.

Much of what you’ll read here is applicable in many places due to the ubiquity of

Linux. Whether it be your desktop OS, a remote server running a website, or physical

hardware, if it’s running Linux, you can access the command line.

1
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_1

CHAPTER 1

Linux Primer
Most people growing up today are introduced to computers through a graphical

interface, whether it be through a video game console, a laptop, or an iPad. For most

people’s interactions with computers are done through a graphical interface of some

sort. Despite the popularity of graphical interfaces, most serious programming and

system administration are still done at the command-line level.

Graphics keep getting better. Innovations like voice-activated computing, wearables,

and IoT are introducing even more ways to interact with computers. New versions of

popular operating systems on both desktop and mobile are constantly changing. Yet it

seems underneath most of these new systems from IoT to Android, there is a command-

line world that exists in a stable state while everything built on top changes.

The persistence of the Linux operating system and the terminal command line as a

method of input speaks to its efficiency and usefulness. While the simple green text on a

black background may appear outdated, it is actually a gateway to magic-like efficiency.

Each command is like a spell. With a few keystrokes, we can perform tasks and tricks that

would take an eternity using a mouse and GUI. In some cases, we can even do things on

the command line that would otherwise be impossible using a GUI.

This book is for the person who wants to explore Linux from a command-line

perspective – whether you’re completely new and learning from command line from

square one or you know your way around a Linux machine but want to learn some new

commands and utilities that could come in handy.

In this chapter, we’ll look at what Linux is, review some popular distributions (or

distros), and look at some basic commands for dealing with files and directories.

�What Is Linux
Throughout this book, we’ll be looking at different command-line applications, built-

in commands, and techniques. Before we start, it’s worth touching on “what is Linux.”

Some technical definitions will only include the Linux kernel (the core part which works

with the underlying hardware of a computer).

https://doi.org/10.1007/978-1-4842-6035-7_1#DOI

2

Often such definitions will define the distributions as GNU/Linux. GNU is a recursive

acronym which stands for “GNU is Not Linux.” It refers to all (or several) open source

applications which are popularly bundled with the Linux kernel. Some of these tools

include bash, coreutils, grep, groff, grub, and readline, just to name a few. That

said, not all the tools that commonly ship with the Linux kernel are created by the GNU

organization.

In common language, Linux refers to an operating system which is built around

the Linux kernel. This includes the kernel, the software that comes preinstalled, and

everything in between. For simplicity and compatibility with common language use,

we’ll refer to Linux as the whole of an operating system, not just the kernel.

�Unix vs. Linux
Linux is actually part of a larger group of operating systems which are known as “Unix-

like” operating systems. These operating systems are all inspired by the original Unix

operating system released in 1970. It includes several families of operating systems

beyond just Linux:

•	 MacOS (since 2015)

•	 Android (built on modified Linux kernel)

•	 Linux

•	 Solaris

•	 BSD

•	 NetBSD

You might be surprised to see popular operating systems like MacOS and Android

listed here. The impact of the original Unix operating system has been far reaching. The

original Unix OS had key features still present today including

•	 Kernel between hardware and user space

•	 All data stored as files

•	 System for users and permissions

•	 Directory layout still used today (varies between OSs)

Chapter 1 Linux Primer

3

In Figure 1-1, a setup making use of PDP-11/20 (the device furthest right below the

experiment display system label) is shown. This is an example of an early system which

ran Unix in the 1970s.

The impact of the widespread adoption of Unix-based standards has been far

reaching. Many of the core commands and utilities covered in this book will actually

work on systems besides Linux. If you open a terminal session on a Mac or even

Android, you’ll find many of the commands here work just fine. Even Windows now

includes an optional Linux subsystem, and various aliases on their own commandline

system that direct Linux commands to their Windows equivilent, such as ‘ls’ which is an

alias for ‘dir’ on Windows.

�POSIX Standard
POSIX stands for Portable Operating System Interface. It defines standard syntax for

scripts and a list of utilities that should be available. It’s used to guarantee compatibility

among Unix-like systems. If a program or operating system is POSIX compliant, you can

expect bash scripts to run on it.

Figure 1-1.  PDP 11/35, a microprogrammed successor to the PDP-11/20; the
design team was led by Jim O’Loughlin

Chapter 1 Linux Primer

4

POSIX also guarantees that you will have access to a list of utilities including,

among others, cat, awk, cut, grep, and kill, just to name a few. It also defines how

the specified utilities should behave. In previous times, some utilities had competing

implementations which created problems for portability.

�Choosing a Distro
The first major decision that most people face when switching to Linux is what

distribution (commonly refered to as distro) to use. Often people end up using what a

friend or colleagues at work are using or simply the first one we hear about. There are

dozens of popular distributions, each with strengths, weaknesses, and specific use cases

it excels at.

Throughout this book, I’ll be making use of apt-get, the package manager which

comes installed on Ubuntu and other Debian-based operating systems. That said,

almost all of which is presented will work just as well on any Linux distribution; it’s just

a matter of finding the package in question for your distribution and installing it via the

provided package manager, manually installing it, or even building it from source.

There is an argument to be made for many popular Linux distributions. My personal

choice in using Ubuntu mainly comes down to the aspect of compatibility. Ubuntu is the

most widely used Linux distribution for desktop users. If you’re working at a company

that makes use of Linux, you may find it useful to use the distro which is used there.

Despite the portability of bash and other aspects of Linux, there are differences between

distros and bugs which may exist in one but not another. So if you’re using Linux Mint

but everyone else is using Fedora, you may be introducing unnecessary friction.

In my experience developing GUI-based applications for Linux, I found if I used

a distro different from the end-user during development, there would often be visual

differences which effected the design significantly or in some cases bugs present in only

a single distro. For instance the system font-family or font-size might differ between end-

user system and development system. Though in most cases the core functionality

works across most Linux systems. The high variability between Linux distros is one

reason much of the gaming industry is still yet to offer full support for Linux based

operating systems.

Another benefit to starting with a popular distro is that when reading online tutorials

and project documentation, you’ll often see instructions for more popular Linux

distributions like Ubuntu but nothing for less popular ones. In addition, if you do have

Chapter 1 Linux Primer

5

issues and you want to submit a bug, the project may not provide support for less used

distros.

With that said, there can be major benefits of running less used distros. As a young

hobbyist, I found that running minimal distros like Arch Linux forced me to learn

concepts about what components made up a Linux distro and how to navigate and

fix my system using the command line. Often this learning process manifests itself

in experimenting, breaking a system, fixing it, and in some cases having to reinstall

everything and start from scratch.

If that exploring distributions and the inner workings of Linux excites you, I

encourage you to explore Linux distros which are less used and may be more difficult

to set up. Gentoo even requires the user to compile from code all the programs used.

Getting up and running on a distro like Gentoo or Arch Linux can be an accomplishment

and a learning process within itself.

Aside from the factors of convenience and learning process, it’s also important

to consider where one distro may excel over another. For example, Arch Linux is

particularly useful for compiling custom operating systems for embedded or low-end

machines. Kali Linux is notorious for its use in penetration testing. Red Hat–based

distros are commonly used for enterprise servers. If penetration testing interests you,

Kali becomes the obvious choice; if you want to be a system admin at an enterprise

company, you may want to become comfortable with Fedora.

�Branches of OSs
In the following sections, we’re going to look at some of the more popular Linux

distributions. I’ve included a tree showing the family branches of operating systems, to

give you an idea of the relationship between different popular operating systems. Keep

in mind that the relationship between parent/child OSs may vary significantly (see

Figure 1-2).

Chapter 1 Linux Primer

6

�Debian
First released in 1993, Debian is the backbone of several popular Linux distributions

including Ubuntu, Kali, and Linux Mint. It’s known for having a very good packaging

system apt, short for Advanced Package Tool. We’ll be using apt throughout this book,

and it is available on all the Debian-based operating systems listed later, though the

packages which are available through the manager will differ between OSs.

To install packages with apt, simply run the following command, substituting

<package> for the package you’re looking to install:

sudo apt-get install <package>

Note  sudo in the preceding command is a keyword that lets a nonroot user
make changes to files or aspects of the system which may affect other users.
When using sudo, you’ll be prompted to enter your password before being able to
execute a command as a root. If you run a command and get back the message
“Permission denied,” you can simply prepend the command with sudo and it
should work. That said, make sure you understand the command in question
before using sudo as root permissions allow you to modify system files which are
critical for the running of the operating system.

Figure 1-2.  Linux distribution families

Chapter 1 Linux Primer

7

�Ubuntu

Ubuntu is the most popular Linux distribution for desktop use, though it is commonly

used for servers as well. It builds upon Debian and adds support for several nonfree

software binaries and codecs that improve user experience for things like watching

videos online and gaming.

It has many of the advantages that Debian has like the strong package manager

apt and stability but is also designed to provide a good desktop experience. At present,

the latest version of Ubuntu uses the GNOME interface (i.e., the GUI desktop of the

operating system, which sits on top of lower-level software).

There are several variations of Ubuntu that use other desktop user interfaces that

may be preferable for lower-end hardware such as Xubuntu which uses xfce and

Lubuntu which uses lxqt. These distributions generally just switch out the interface

without changing much else. If you look at Figure 1-3 which shows the stack of Linux OS,

the difference between Xubuntu/Lubuntu would for the most part simply be switching

out the interface level, as well as swaping some of the preinstalled applications.

A comparison is how web applications like Facebook often have different interfaces

to access the same core functionality. When using my phone, I can access Facebook

using their website, their app, or even a lightweight version called Facebook Lite. All of

these interfaces look different and may have enhancements or limitations, but ultimately

all the functions (posting, viewing, liking, etc.) access the same core functionality.

Chapter 1 Linux Primer

8

�Kali

Kali is a Debian-based distribution which is primarily focused on offensive security

tools. It includes several preinstalled tools for digital forensics, penetration testing, and

reverse engineering. It comes with over 600 preinstalled tools including Wireshark,

Aircrack-ng, and Burp Suite. This makes it particularly useful for penetration testers.

That said, it isn’t recommended for everyday use.

It’s also worth noting that these tools can be installed on other systems either via

package manager or downloading them directly. The process is fairly straightforward for

package managers, but when downloading directly, the process can vary between tools.

For example, some packages might be installed via Python’s package manager Pip, while

others require you compile a binary or download a precompiled binary and put it in a

folder where your system finds executables, for example, /usr/bin.

Figure 1-3.  Linux operating system stack

Chapter 1 Linux Primer

9

Another benefit of using Kali is that versions of tools on package managers on other

distros may be older versions. Since these packages are just one of many which require

maintainers to package, review, and update, they can fall behind, whereas on Kali, Linux

security–related tools are the focus, and thus more effort is put into keeping them up to

date.

�Mint

Mint is another distribution that is based on Ubuntu which has become relatively

popular. Linux Mint is based on Ubuntu but has an alternative interface which makes

use of the Cinnamon desktop environment. It has the same repositories as Ubuntu so

any of the apt-get install commands throughout this book should provide the same

results as Ubuntu.

�PopOS

PopOS is another Ubuntu-based distribution that has gained traction. It provides an

alternative desktop experience to Ubuntu with the same packages, plus some additional

packages provided via PPAs (Personal Package Archives). These extra packages

include Nvidia graphics drivers, Steam, and other popular programs like Spotify. The

operating system is maintained by System76, a computer manufacturer based in Colorado

which focuses on producing quality hardware and values open source software.

�Fedora
Fedora is the community-driven OS supported by Red Hat Linux. Fedora serves as

a testing ground for many features which are eventually pulled into RHEL (Red Hat

Enterprise Linux), Red Hat’s primary product. For Fedora, RHEL, and CentOS, packages

are installed using the command

dnf install <package>

In some cases, you may be able to simply swap apt-get for dnf if you’re on a Fedora/

RHEL system. In other cases, the package may be named slightly different, or it may not

be available as a package.

Chapter 1 Linux Primer

10

�RHEL (Red Hat Enterprise Linux)

While Ubuntu may be the most popular distro used on desktops, RHEL is likely

the most used on enterprise servers. It is both open source and a paid product,

which includes enterprise-level support. If you plan to work as a system admin in a

corporate environment, it’s likely you’ll work with RHEL.

The focus is security, stability, and speed. For this reason, there may be less packages

available compared to Ubuntu or the more open version supported by Red Hat, Fedora.

�CentOS

While Fedora is a more experimental and open free version of RHEL, CentOS is

essentially the same OS as RHEL but completely free. When a license for RHEL is bought,

it comes with support which is not included with CentOS. CentOS provides a great

operating system for learning RHEL or simply using it without the need for external

support.

�Slackware
Slackware is a Linux distribution that dates back to 1993. It has a small dedicated group

of fans but has not had a release in over 3 years, when it previously had a release at least

once a year.

�OpenSUSE

OpenSUSE was originally derived from Slackware, but it has grown its own set of legs

and today has very little connection. While Slackware has been lacking in updates,

OpenSUSE is still very active and has large corporate backing similar to what is seen with

RHEL.

�Arch
Arch Linux is a branch of Linux which is highly customizable and focuses on a rolling

release package manager. The rolling release package manager means that packages

provided are the most up to date possible. There are no major releases as is the case

with most operating systems. This is achieved by removing package maintainers who

Chapter 1 Linux Primer

11

review and confirm any changes before a major release on other distributions. A rolling

release means it is possible to get the most up-to-date versions of applications, but on

the downside less effort is put into reviews which can potentially lead to stability and

security issues.

Packages are installed using the pacman package manager:

sudo pacman -S <package>

Another notable aspect of Arch Linux is the fact that by default it doesn’t ship with the

software required to run a desktop experience. Instead it is left up to the user to choose

the specific programs for things like sound, window manager, and graphical interface.

�Manjaro

Manjaro is a version of Arch Linux which addresses the difficulty of getting started by

shipping with a preconfigured desktop experience. There are several variations as is the

case with Ubuntu having variations like Xubuntu and Kubuntu.

�Gentoo
Gentoo is a highly customizable version of Linux, which allows customization down

to the kernel level. Instead of downloading precompiled applications, Gentoo actually

compiles from source code on the local computer. It is particularly useful when a highly

customized experience is needed.

�Alpine Linux
Alpine Linux is a distro which essentially no one uses as their primary distro for desktop or

servers, yet it is extremely popular as a base image for Docker containers. If you use or modify

Docker containers, you’ll likely run into Alpine Linux. It’s extremely small and by default

comes with nearly no applications though it does have its own package manager apk.

If you have an application or process you want to containerize with Docker, look

into Alpine Linux. Many of the programs and scripts here are compatible, though if any

programs are used, you’ll have to install them first using apk.

Chapter 1 Linux Primer

12

�Common Commands
In the following subsections, we’ll look at common commands, most of which are

installed on most Linux systems by default.

�Reading the Manual with the man Command
I’ll mention many programs throughout this book. For most of them, I’ll only go into

about 5–10% of their usage at best. If you want to explore these programs deeper, it’s

important you learn the man command which can be found on almost all Linux operating

systems.

man is short for manual. It is used by running the command and passing in the

name of another Linux command-line program. For example, if we wanted to get more

information on the command ls, we would run the following:

man ls

This returns a description of the program and how to use it, as shown in Figure 1-4.

I encourage you to make regular use of man as you explore the Linux operating

system, as it can often save you the time of doing lengthy Internet searches. You can

navigate the man page by using the arrow keys and the page up or page down buttons.

Figure 1-4.  Example of a man page

Chapter 1 Linux Primer

13

If you need to search through a man page to find some specific keyword, there is a

built-in search function. To search, press / and then type in your term and press enter.

You’ll be taken to the first occurrence if one exists. To go to the next occurrence, tap n;

each tap of n will bring you to the next instance. If you want to go back an instance, press

capital N, as with n each press goes back an instance.

�Numbered man Pages
In some cases, there may be multiple man pages for a single program. For example, with

the program stat, we can run

man 1 stat

Or we can run

man 2 stat

These commands will bring us to different man pages which concern different

aspects of the program. See Table 1-1 for a list of the different page numbers and what

information they include. Not all programs contain a page for each type. For example,

printf has a page 3 with information on C library functions but no page 2.

Table 1-1.  Description of information

found in numbered man pages

Page Number Description

1 User commands

2 System calls

3 C library functions

4 Devices and special files

5 File formats and conventions

6 Games

7 Miscellaneous

8 System admin tools and daemons

Chapter 1 Linux Primer

14

In most cases, we’ll be interested in a program from a user command perspective

so we can just run man without a number which will default to 1 or the lowest numbered

page found.

man man

man -s 6 --regex -k '.*'

If you want to see the list shown in Table 1-1 on your own system you can run “man

man”. You might be wondering is their really a page number dedicated to games? The

answer is yes. The games section has been included since at least Unix System V in the

1980s. It is very seldomly used, but if you run the following command you’ll get back a

list of packages that use it on your system man -s 6 --regex -k '.*'. You might find

some interesting easter egg programs such as “espdiff” a joke program installed on

many machines which claims to read the user’s mind.

�Useful Commands for Navigating
Some commands you’ll want to get familiar with for navigating and creating new folders

are listed in Table 1-2.

�Navigating the Filesystem with ls and cd
The first commands most users learn when introduced to the filesystem are ls, short for

“list directory contents,” and cd, short for “change directory.”

Table 1-2.  Commands for navigating and

working with files/directories

Command Description

ls List directory contents

cd Change directory

pwd Print working directory

mkdir Make directory

rmdir Remove directory (only works if empty)

Chapter 1 Linux Primer

15

Knowing only these two commands allows you to navigate the filesystem – first by

running ls to see which files and folders are in your current directory and then using cd

with one of the folder names to navigate into it.

One thing to keep in mind when using cd. At any time you can run cd without any

folder name to return to your home directory. If you go into a directory with cd and want

to return to the directory containing the one you’re in, you can use .., for example:

cd ..

Or if you wanted to return two folders up:

cd ../..

Some common things you might want to do with ls are list additional details beyond

just the names of the files and folders; this can be done with the -l flag:

ls -l

If you want to sort by time last modified, you can use the -t flag, which is best

combined with -l:

ls -lt

If you want to reverse the results so the oldest files are at the top, add the -r flag for

reverse:

ls -ltr

You should get back output similar to that shown in Figure 1-5.

Figure 1-5.  Result from running ls -ltr, l for additional information, t to sort by
time modified, and r to show results in reverse order

Chapter 1 Linux Primer

16

�Invisible Files (dot files)
It’s important to know that files which start with a . in Linux will not normally appear

when using ls or a graphical file explorer. These files are meant for configuration and are

hidden for convenience. Often we’ll want to edit or look at these files so it’s important

to know about the -a flag for ls. The -a stands for all and will show all files including

hidden ones.

ls -a

�Get Current Directory with pwd
With all this navigating, it’s easy to forget exactly where you are on the filesystem. If this

happens, there is an easy solution to figuring out exactly where you are. Simply run pwd

which will return the full path of your current location.

pwd

�Make a Directory
Part of navigating the filesystem is creating new directories to put your files and

subfolders in. This is relatively easy with the mkdir command which takes the folder

name and will create the directory based on your current location. For example, if we

run the following command in our home directory:

mkdir music

we’ll end up with a folder called music. There is no limit to how many you can create

at once. Say we want to create two additional subfolders, we could run

mkdir music/rock music/classical

It’s also possible to use a full path instead of a relative one. For example, if I’m in my

home directory and I want to make a new folder in my /tmp folder:

mkdir /tmp/test

This isn’t unique to mkdir; essentially all programs where you can use a relative path

also allow you to make use of a full path; it only requires starting the path with a “/”.

Chapter 1 Linux Primer

17

�Recursively Make Directories
Often when creating a folder, you already have a structure which is multiple directories

deep in mind. For example, say we want to create a new folder called movies, with a

subfolder for horror and another subfolder for 2012. If we run

mkdir movies/horror/2012

We’ll get back an error saying “No such file or directory”. The -p tag provides a way

around this. -p stands for create parent directories, meaning if the parent directories of

the directory we want to create don’t exist, they will be created. Running the following

command works as expected, leaving us with three new folders:

mkdir -p movies/horror/2012

�Delete a Directory
After creating a directory, you may decide that you want to delete it. One way of doing

this is with the rmdir command which is used similarly to mkdir; simply pass it the name

of the directory you want to remove:

rmdir music/classical

Unfortunately, rmdir has a major limitation in that it can only delete a completely

empty directory. Trying to use rmdir on any directory which contains a file or

subdirectory will return “Directory not empty”. Thus, in practice many people instead

always use the command

rm -r music

The -r in this command stands for recursive. This command is practical as it will work

on both files and directories regardless of whether the directory contains any content.

�Working with Files
Once you can navigate directories, the next thing you’ll want to do is work with files –

doing things like creating files, deleting, and copying, as well as reading files and

comparing their contents.

Chapter 1 Linux Primer

18

�Editing Files
We briefly mentioned nano in the last section; it’s a straightforward text editor similar

to ones most people are familiar with like notepad. You simply open a text file by

passing the file location as a command argument:

nano /tmp/myFile.txt

The file will open or one will be created if it doesn’t exist. You can enter text as you

would expect on most text editors, press backspace to delete text, and navigate using the

arrow keys. At the bottom of the screen, a list of actions that can be performed is shown,

for example ctrl+x to exit.

In later chapters, we’ll look at more powerful editors Vim and Emacs, but if you find

them difficult and getting in the way of you learning or doing what you want to do, you

can always fall back on nano or a GUI based text-editor.

�Commands for Working with Files
Some of the most useful and basic commands for using Linux are listed in Table 1-3.

These commands come in handy for working with files. Most are used by providing a

file name as an argument. You can use man <command> on any listed command to get

additional information. We’ll look at the details of how these commands work and are

used as follows.

Chapter 1 Linux Primer

19

�Create Files or Update Timestamps with the touch Utility
Sometimes you want to create a blank file, either as a placeholder that you plan to edit

later or possibly as an indicator, for example, with a lock file. The touch command allows

you to quickly create a blank file or multiple blank files. Simply run the command and

use the desired file name or names as the argument, for example:

touch notes.txt

Or for multiple:

touch file1 file2 file3

Another thing the touch command can be used for is updating the timestamp on a

file. After running a script, you may want to update a file with touch that was otherwise

unused so you can leave some trace of when the script finished. For example, you might

update a log file’s timestamp despite not adding any new logs so others (people or

programs) can infer that the script ran and no logs were produced. This is done in exactly

Table 1-3.  Commands for working with files

Command Description

touch Creates a file or updates the timestamp on an existing file

cat Outputs the full contents of a file

head Returns the first X lines of a file starting at the top

tail Returns the first X lines of a file starting at the bottom

cp Copies a file or directory

rm Removes a file or directory

mv Moves a file or folder

less Displays contents of file while allowing easy scrolling up and

down

diff Compares two files for differences

cmp Checks if two files are identical on a byte-by-byte level

file Gets information on file type

Chapter 1 Linux Primer

20

the same way as creating a file except instead of providing the path to a file you want to

create, you provide the path to an existing file:

touch log.txt

After executing touch on an existing file, you can use ls -l in the directory of that

file to confirm that the timestamp has been updated. It’s important to note that touch

will never modify the contents of an existing file so don’t worry about overwriting any

existing contents with a blank file.

�Get File Contents with Cat
When using the command line, cat is one of the most useful commands to know. cat

simply takes the contents of a file and outputs them to the command line. This allows

you to either visually see contents of that file (without opening and closing a program)

or to use the contents of that file as the input for some other program, using a pipe (an

aspect of bash shell that we’ll look at more later in the book).

As an example of using cat, you can run the following which will output the contents

of a file on your system:

cat /etc/passwd

This file lists the users on your system and some related information, but

understanding the content isn’t important. What’s important here is that you can use cat

to take the contents of any file on your system and show it as terminal output.

�Get Less Content with Head or Tail
If you understand what cat does, you’ll just as easily be able to understand the head and

tail commands. When you used cat, the full contents of a file were returned. With large

files, this means you may get several pages of content at once and have all your previous

work and commands pushed up the screen.

If you want to get a preview of a file but don’t want the whole thing, you can use head

which will return the first X lines of a file. By default, X is 10 so if you run

head /etc/passwd

Chapter 1 Linux Primer

21

you should get back the first ten lines of the file (assuming the file has at least ten

lines). The tail function works exactly the same way as head, but instead of getting the

first X lines, it will get the last X lines. So if we run the following command, we’ll get the

last ten lines of our file:

tail /etc/passwd

If you want to modify how many lines are returned, you can specify the amount of

lines returned with the -n flag – if we want the first five lines, for example:

head -n 5 /etc/passwd

Aside from not filling up your screen with lots of text, the head and tail commands

can be useful during scripting, in cases where you know exactly how many lines from

some file you need. For example, you might have a script that wants to look at the last

20 lines in a log file to parse the text for some specific error; in such a case, we could

make use of tail -n 20 filename and pipe the output into your parsing script (more on

piping and scripts later).

�Copying Files with cp
If you’re doing system administration or software development, it’s likely you’ll end up

using the cp command often. It’s a very simple but very useful command which stands

for copy. When using the command the first argument is the file you want to copy and

the second argument is the location to copy to, for example copying file1 to location

file2 would be done with:

cp file1 file2

Running the preceding command would result in a new file called file2 which

contained the same contents as file1.

In addition to copying files, cp can also be used to copy whole folders. To use cp with

folders, you need to specify the -r flag, which stands for recursive (similar to using the rm

command with folders). So copying a folder would be much the same as copying a file,

for example:

cp -r folder1 folder2

Chapter 1 Linux Primer

22

�Removing Files with rm
We’ve already made use of rm due to the limitations of rmdir in the section on

directories. Be aware that the rm command is primarily used for deleting files, and when

doing so, there is no need to include the -r flag, for example:

rm file1

�Moving Files with mv
Another very popular built-in command, mv allows you to move a file or directory to

a new location. It’s used very similarly to cp except you only end up with one file, for

example, if we use

mv file1 file2

Our file called file1 will now be named file2 – similar to moving a file on graphical

desktop OS like Mac or Windows. Also like many of the other commands we’ve looked at,

you can use mv with directories, but with mv there is no need to use a special flag, you can

simply use

mv folder1 folder2

Be aware that mv will overwrite a file without a warning if it already exists. For

example, if I moved file1 to file2 but file2 already existed, my original file2 will be lost

forever. If you’re worried about that happening, there is a special flag -i which will

prompt you before overwriting anything.

�Interactively View File Contents with Less
We mentioned how using cat can become a headache because large file outputs end

up crowding your shell. We mentioned head and tail which allow you to view a small

portion, but in most cases, we want the option to view the whole file but scroll through it

slowly. This is what less is for.

Instead of outputting the contents of a file, less opens an interactive viewer separate

from your terminal where you can scroll through the contents at your own pace. As with

cat, tail, and head, you simply run the command with the target file as your input:

less /etc/passwd

Chapter 1 Linux Primer

23

You’ll start at the top of the file and have the ability to scroll down and back up using

the arrow keys and page up/page down buttons. It’s a lot like scrolling through a man

page, you even have access to the same method of searching (vim style search). That is

by pressing “/”, typing the search term, and hitting enter. You’ll be brought to the first

instance of the term, and from there you can press n to go to the next instance or N to go

one instance back (this method of searching is also used in Vim, a text editor we’ll look at

later in this book).

Note A s you explore different programs on Linux, you may come across more
and assume it’s like less but different; after all that’s the case with commands
head and tail. more is actually an older program which less is based on. more
has fewer features and is not as usable, for example, you can scroll down but not
back up. It’s likely you’ll find more on your system, but we recommend using less
in all situations where more could be considered.

�Comparing Files
Comparing files is a task you may need to complete from time to time, certainly much

less common than something like mv or cat, but nonetheless it is file related and

useful command for software development. There are several programs which can be

used for comparing files.

By default cmp and comm are installed on most systems. However, in practice, diff is

much easier to use and colordiff is even better (same as diff but with color coding). For

practical purposes, diff or colordiff is recommended. In later chapters, we’ll look at

how you can alias diff to use colordiff.

To demonstrate comparing files, let’s move to the /tmp directory and create two

identical files. To get started with this, run the following commands:

cd /tmp

cp /etc/passwd file1

cp file1 file2

Next open up file2 with nano or your preferred text editor and change a single letter;

it can be a change as small as adding a single letter. With the change made, save and

close the file.

Chapter 1 Linux Primer

24

�Compare with Comm Command
Now that you have two almost identical files, we can test a few commands for comparing

the differences. The first we’ll try is comm which can be run by passing 2 file names as

arguments (preferably similiar files for demonstration purposes):

comm file1 file2

This will return the contents of the file overlaid on one another, with three layers

of depth. The furthest right depth which will be used for most of the lines in the file are

lines which are contained in both files. Then when you get to the line where there is a

difference, you’ll have two different indentations, one for file1 only lines and another

for file2 only lines.

It’s not pretty but it gets the job done and can be found on most systems. Though as

mentioned we recommend installing diff or colordiff.

�Compare with Cmp Command
While comm can be completely replaced by diff, the command cmp is actually slightly

different. Instead of comparing the text of a file, it compares files on a byte-by-byte basis.

We can test the program by passing the command 2 file names:

cmp file1 file2

With cmp you’ll get back a single line which specifies the line and byte where the first

difference between the files occurs. In scripts where you simply want to compare if files

are identical, cmp can be the fastest option since it returns as soon as a single difference is

found instead of parsing the full file.

�Compare with Diff Command
The diff command is similar to comm, but it is more readable and has additional features

and flags. It’s not installed by default on most systems so you’ll have to install it first:

sudo apt-get install diff

Chapter 1 Linux Primer

25

With diff installed, we’re ready to compare our files, which can be done similarly to

comm and cmp:

diff file1 file2

Instead of returning all the lines in the files, diff will only return the lines which

differ. That means you’ll have two copies of each line which differs. The line in the first

file will be prepended with a < and the line from the second a >, allowing you to see

which lines belong to which file. Before the lines, you’ll also see an indicator for what

line numbers are being compared. This allows you to hone in on the difference and

quickly find it in a text editor.

�ColorDiff Even Better Than Diff
The main advantage that diff has over comm is the usability due to how differences are

shown. If your terminal supports color (most desktop terminals do), you might want

to install colordiff instead. colordiff is a wrapper for diff which enhances the

experience further by color coding the differences so you can quickly see what lines

belong to which files. Like diff it will need to be installed:

sudo apt-get install diff

With colordiff installed, compare the two files and observe the difference in

output:

colordiff file1 file2

�Get File Type
If you’re coming from Windows, you may be used to the concept that the extension of

a file determines the type and what program it’s run with. On Linux, file extensions are

often used, but this is simply for the benefit of the human reader. File extensions are not

mandatory and in some cases not used.

You may find a text file or program which has a name but no extension. In this

situation, you may find the file command to be useful. Given a file as input, it will

return information on the file type. For example, if we run the file command on file1

created in the last section, by passing the file location as an argument like below:

file file1

Chapter 1 Linux Primer

26

You should get back the type “ASCII text.” If you have an image file handy on your

computer, try running file on it. In addition to the image type like JPG, you’ll also get

additional metadata like the dimensions of the photo.

�Command Information with type, which, whereis, or
locate
Similar to getting information about a file with file, we can get information on a

command using type, which, whereis, or locate. The first command type is built into

bash itself and searches your path and gets information on the command when found,

for example:

type ls

On my system, it returns an alias (more aliases in a later chapter), as shown in

Figure 1-6.

Figure 1-6.  Output from checking the type of ls

Figure 1-7.  Location of program shown using which and whereis

Then with which we can find the location of the executable:

which ls

Similiarly we can use whereis and find the executable location, source location, and

manual page files for the command. The whereis command should return multiple file

locations, as shown in Figure 1-7.

 whereis ls

Chapter 1 Linux Primer

27

In some cases, you may not remember the exact command so it doesn’t come up

when using which; in this case, you can also try locate which will search a database

index of the filesystem:

locate samba

There are two issues with locate; the first is that it can return lots of results, finding

every match for the text input for the complete path to every file on the system. Given

a username, ubuntu, for example, locate ubuntu would return every single file in the

home directory (as each file contains the username in the filepath), among others. The

second issue is that the database which powers locate (making it faster than a manual

filesystem search with find) is only updated once a day via cron. If you want to update

it manually, you can run sudo updatedb (run time can take anywhere from seconds to

minutes depending on system and size of the filesystem).

�More on Sudo
Normally when logging in to your operating system, you’ll be given a username, which

has permissions for a specific folder. Often the folder location will be

/home/<username>/

Normally each user has a dedicated home directory for which they have full

administrative privileges. Sometimes you’ll need to make use of files and folders which are

outside the home folder. If you attempt to do something which requires permissions beyond

your user account, you’ll get a message saying “Permission denied” or “are you root?”.

In this case, you’ll have to retry the command by first appending sudo which

specifies you want to run the command as the root user. For example, the command

cat /etc/sudoers

instead becomes

sudo cat /etc/sudoers

When using sudo, you’ll be prompted for your password. Of course the success of

sudo is dependent on your main user account being enabled to use sudo. The policy for

Chapter 1 Linux Primer

28

which users can make use of sudo is defined in /etc/sudoers. In my default install of

Ubuntu, for example, there is the line

%sudo ALL=(ALL:ALL) ALL

This specifies that all users which are in the group sudo can use sudo. To see what

groups a user is in, you can run

groups <username>

Replace <username> with the username of your account, and you’ll get back a list of

groups you’re in.

If you need to run multiple commands in a row which all make use of sudo, you

may instead want to switch to root. By doing this, you can run commands that would

normally require sudo without it. To switch to root, run the following command and

enter your password when prompted:

sudo -i

Now you’re free to run any command you want. To exit back to your normal user,

press ctrl+d.

�Less Pipe
While we’re talking about file type detection, it’s worth mentioning less pipe, which

is a file type preprocessor for the command less which comes preinstalled on many

systems. Less pipe lets you view files in the terminal that normally wouldn’t be accessible

in the terminal, for example, PDF files.

To see if you have less pipe installed, run the following command:

echo $LESSOPEN

If you get back a pipe followed by the location of a file, for example, |/usr/local/

bin/lesspipe.sh %s, then it is installed on your system. If you find that running the

command returns an empty string, then your system does not have lesspipe. If that is

the case, don’t worry as we’ll cover installing (or updating) less pipe in the next section.

Chapter 1 Linux Primer

29

�Update/Install Less Pipe

Ubuntu and other operating systems will come with a version of lesspipe installed that

is good enough. So if you don’t want to change the defaults, feel free to skip this section.

To make full use of all the features listed here, you may need to update lesspipe.

On my system Ubuntu 18.04, I found the version of lesspipe was slightly outdated and

didn’t give me in-depth details about photo metadata which is available on the latest

version. The older version also might not support all the file formats listed in the next

section, though it should work for common ones like PDF.

As a preliminary step, git and make need to be installed. Git is a version control

program useful for programming and make is used for compling source code. We’ll make

use of git throughout this book as a means to download publicly available code from

GitHub. You can install it by running:

sudo apt-get install git

As mentioned, we’ll also make use of the make command. make is used for compiling

programs often written in C (though not limited to any language). If you download a

program and it contains a file called Makefile, that’s a good sign that the program can

be compiled with make. The make utility is often bundled with other tools like the gcc

compiler for C and C++ and common libraries. To install make on Ubuntu, run:

sudo apt-get install build-essential

With git and make installed, we can start updating lesspipe; this process starts with

downloading the project code, moving into the folder, compiling the code, and testing

the setup:

git clone https://github.com/wofr06/lesspipe

cd lesspipe

make

make test

After running make test, observe the results and any programs which are missing.

For example, in my case, shown in Figure 1-8, I got a variety of suggested programs to

install. Without installing said programs, you may not be able to open the related file

type. You can decide which you want to install and which you don’t based on what file

types you find yourself using.

Chapter 1 Linux Primer

30

Based on the feedback from the test script install the missing packages (feedback

from test script may differ based on your system):

sudo apt-get install antiword unrtf rpm2cpio

If you get back a message that a package isn’t found, you’ll have to omit it or search

for the correct name on your OS package manager. For example, I found that sxw2txt

could be installed using the name odt2txt.

Next, run

sudo make install

That will replace your old version of lesspipe or install it if you didn’t have it. The

final step is to open your ~/.bashrc file and add the following lines to the bottom:

LESSOPEN="|/usr/local/bin/lesspipe.sh %s"; export LESSOPEN

With these steps done, you’ll get the full power of less pipe to work with as many file

types as possible.

Figure 1-8.  Output from running make test after compiling lesspipe

Chapter 1 Linux Primer

31

Note T he .bashrc file contains account-wide configurations and variables that
can be accessed from the command line. For example, if we add a line saying
export FAVORITE_COLOR="Blue" and then open a new terminal, we can
access the variable. Running echo $FAVORITE_COLOR, for example, would
print “Blue” to the screen. Some programs will allow you to change settings
based on variables like this, for instance, a GUI-based program might look for
$FAVORITE_COLOR to set the colors for the layout. This particular variable isn’t
commonly used but demonstrates how programs can be configured this way. We’ll
look at .bashrc more in a later chapter and how it can be used to improve your
command-line experience.

�Regular Use of Less

As mentioned previously, less is used for viewing file text data in a way that allows you

to start at the top and slowly scroll your way down. Let’s review using less normally once

more before opening some other file types. First create a long file with several lines of text

using the command seq, short for sequence. The seq command takes a starting number

and an ending number as arguments and returns a sequence of numbers between them:

seq 1 999

This should output the numbers 1 to 999 (seq can be useful for custom scripts or

testing). Now run the same command again but direct the output to a file using the

special > character, which is used for directing text output into a file:

seq 1 999 > /tmp/numbers.txt

Note  When creating files for tests, I’ll often make the location /tmp; this folder
has the special property that everything in it will be deleted when you restart your
computer. If you know you’ll later delete a file as is the case with our numbers.
txt file, you should create it in the /tmp folder. That way you don’t have to worry
about having junk files laying around if you forget to delete it. Just be careful not to
leave anything important in your /tmp folder. Sometimes a script that starts out as
a throw away can develop into something you want to save for later.

Chapter 1 Linux Primer

32

Now that we’ve created our file for testing purposes, open it using less /tmp/

numbers.txt. This will open the file with less starting at the top, as shown in Figure 1-9.

You can scroll down and up with the arrow keys or the page down and page up buttons.

To quit press q.

Figure 1-9.  Viewing a long file in less

�Opening PDFs with Less Pipe

Less pipe also makes less capable of opening and reading PDF files. Similar to an image,

run less <filename.pdf> and you’ll get a text version of the PDF in your terminal.

�Opening Compressed Folder with Less Pipe

Compressed files and folders can be opened with less when you have less pipe installed.

To demonstrate, create a folder with some files and compress them using tar (a common

utility for compressing and uncompressing files):

Chapter 1 Linux Primer

33

cd /tmp

mkdir folder

cd folder

touch file1 file2 file3

cd ..

tar -zcvf folder.tar.gz folder

After running these commands, you’ll have a compressed folder which contains

three empty files. Next let’s try opening it with less. You should get a list of folders and

files including the permissions of each file, as shown in Figure 1-10.

�Image Metadata with Less Pipe

For the next example, you’ll need to download an image or find an existing one on your

system. Navigate to the folder containing the image and open it using less; if you’ve

installed the latest version, you’ll get back detailed metadata when opening an image

with less, as shown in Figure 1-11.

Figure 1-10.  Output created from opening compressed folder with less

Chapter 1 Linux Primer

34

�Other Files with Lesspipe

There are all kinds of files that can be opened and viewed with lesspipe. We won’t go in

depth on all of them, but here are a few others, so you know what is possible:

•	 All kinds of compressed folder including zip, gzip, 7-zip, and so on

•	 Java JAR files

•	 RAR files

•	 RPM (Red Hat Package Manager files)

•	 Microsoft Word, PowerPoint, and Excel

•	 ePub books

•	 HTML

•	 PDF

•	 MP4

Figure 1-11.  Viewing image data in less with lesspipe

Chapter 1 Linux Primer

35

For a complete and up-to-date list, as well as any other companion programs you

might need to install for a file type, check out the official repository at https://github.

com/wofr06/lesspipe.

Note  Some of the file types listed here depend on your system having some
additional packages installed. If you find a package you want to read isn’t working,
refer back to the install step where make test was run. If the file type you open
is tested and returns “ignored” and lists a package to install, you’ll need to install
the said program. If the file type says “Not Ok” or says “Ok” but still doesn’t work,
you’ll need to visit the GitHub page listed earlier and check the issues tab for
others having similar problems (or opening your own issue if none are found).

�Scheduling Processes with Cron Jobs
Another important tool to know about is cron jobs. A cron job is a script or process that

runs at a specific time or interval. This can be useful for things like cleaning out a log

folder or backing up files at a set interval (we’ll look at this in the chapter 6).

To get started, run crontab with the -e flag, short for “edit”

crontab -e

The first time you run it, you’ll be asked to select an editor. If you’re not comfortable

with command-line editors (we’ll look at Vim and Emacs in later chapters), you should

choose nano as it’s the easiest to use. If you later decide you want to change the editor

used, you’ll need to modify ~/.selected_editor or delete it to bring back the prompt.

Once crontab -e brings you to a file, go to the very bottom and create the example

job shown in Figure 1-12. Each of the five * symbols can be replaced with a number to

signify when they should run. The * symbol signifies a wildcard meaning it matches any

value. When all 5 values are wildcards is means the command will be run every minute,

of every hour, of everyday ect. The command shown in Figure 1-12 will create or update

the timestamp of the file /tmp/hello using touch every minute.

Chapter 1 Linux Primer

https://github.com/wofr06/lesspipe
https://github.com/wofr06/lesspipe

36

After adding the cron job, wait a minute or two and run ls /tmp; you should see a

new file named hello. After confirming the cron job worked, be sure to delete the job to

keep your system clean.

Table 1-4 contains examples of cron schedules which use the various columns

including minutes, hours, weekdays, calendar days, and months.

Figure 1-12.  Labels for each element of a cron job

Table 1-4.  Examples of time intervals in cron

Cron Time Description

* * * * * Every minute

5 * * * * The fifth minute of every hour

*/5 * * * * Every 5 minutes

0 0 0 0 1 Every Monday at midnight

0 2 1 1 * January 1st, at 2:00am

�Summary
In this chapter, we looked at choosing a Linux distro, finding information about a

program using man, common commands, creating scripts, and file permissions. We’ve

only touched on these topics briefly to get started. As we continue, we’ll go more in

depth especially on several of the topics listed.

Chapter 1 Linux Primer

37
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_2

CHAPTER 2

File/Folder Navigation
No matter what you’re doing in the terminal, you’ll want to be aware of where you are in

the file structure of your system. You’ll also want to know how to navigate to other folders

which have files you may need to work with. In this chapter, we’ll reiterate the basics and

look at other tools and methods for navigating the filesystem.

�Basics
The most basic commands that anyone on terminal should be aware of are ls to list

structure and cd for change directory. Entering ls will return a list of files and folders in

your current directory, and then you can move into directories with cd followed by the

directory name. Table 2-1 lists some useful options that can be used with -ls.

Table 2-1.  Options for ls

Command Description

-a Show hidden files and directories

--color Color highlighted output

-F Symbol at the end of file name to indicate type

-i Show file index number (inode number)

-l Long format with details

-t Sort by date time

-S Sort by file size

-r Reverse order

-R Recursively list current folder and subfolders

https://doi.org/10.1007/978-1-4842-6035-7_2#DOI

38

While ls has several commonly used options, cd is almost never used with options

though it does have two, -P to not follow symbolic links and -L to force follow symbolic

links. While you won’t need options while working with cd, there are a few symbols you

should know.

When navigating, there are some global symbols which can be used as part of your

path shown in Table 2-2.

Table 2-2.  Directory symbol

Command Description

. Represents the current working directory

.. Represents the folder containing the working directory

~ Represents the home folder for the current user

These short forms are handy when using ls or cd; we can be anywhere in the

filesystem, and if we want to return to our home folder, we can simply run

cd ~

�inodes
We mentioned that ls -i will return a file index number or inode number, but what

exactly is an inode? Every time a file is created on a Linux system, it is assigned an inode

in the background. Each inode points to a place in memory where the file is located and

metadata related to the file including file size, file owner, and last time accessed.

All the inodes on your system are stored on a table which is preallocated a set amount

of memory. An interesting side effect of this is that you can run out of file space without

running out of disk space. To do this, you’d need to create enough tiny (or empty) files to

fill up the inode table, which nearly never happens. To get an idea of how many inodes you

could possibly store, run

df -i

You’ll get back a list with a column called IFree for each drive on your system; this

represents the amount of free inodes on the drive. In my case, I have over 6.5 million free

inodes; thus to hit the maximum number of inodes, I’d have to create over 6.5 million files.

Chapter 2 File/Folder Navigation

39

Though unlikely, it is possible. If you’re curious and you’d like to simulate running out

of free inodes, here is a one liner that will use up all your inodes. Before using it, make sure

you’re in the /tmp folder, so if you need to restart, all the files will be gone on the next boot.

cd /tmp

mkdir test

cd test

for i in $(seq 1 7000000) ; do touch $i ; done

You’ll need to replace 7000000 with a number greater than the total amount of free

inodes on your drive. This command is purely for educational purposes and could take

hours to complete. Running out of inodes is extremely rare, but it can happen particularly

on systems which run for extended periods of time and have limited memory.

�Get Current Location
Whenever you open a new terminal, you’ll likely be in the home directory for your user.

So for user ubuntu, you’d be in /home/ubuntu/. This isn’t always the case and sometimes

you’ll find yourself forgetting your location. You can find your current location by running

pwd

This will return the full path to your current location. It stands for “print working directory.”

�Symbolic Links
In some cases, a directory is not a folder itself but a shortcut to another directory. These

are known as symbolic links, or soft links. You can create a symbolic link for an existing

file by running

ln -s original_file link_file

This will create a file called link_file in your working directory which points to

original_file. This new symbolic link file doesn’t contain any data itself. The symbolic

link only contains the filesystem address of the file it’s an alias for. This means you’ll have to

be careful when moving or renaming the aliased file as the system link will still point to the

original location.

Chapter 2 File/Folder Navigation

40

When using the detailed version of the list structure command ls -l, you’ll see

an arrow pointing from link_file to the actual file location (Figure 2-1). The -l flag

actually stands for “long” here.

Or if you use ls -F, you’ll see an @ symbol at the end of files which are symbolic

links, as shown in Figure 2-2.

Symbolic links can also be applied to folders, making one folder which is a shortcut

to another.

�Hard Links
Besides symbolic links, there are also hard links. A hard link is a clone of a file that points

to the inode for a file. Deleting the hard link (directory entry) for a file that has only a

single one also deletes the file. Multiple hard links can point to the same inode so long as

they are all in the same filesystem. Deleting one or more hard links to an inode does not

delete the inode or the file it points to until all of the hard links are deleted. A symbolic

link on the other hand is only a shortcut pointing to the original file. Unlike symbolic

links, a hard link cannot be applied to a folder, only to a file.

Figure 2-1.  Details of a system link file

Figure 2-2.  Symbol @ specifying a system link

Chapter 2 File/Folder Navigation

41

Creating a hard link is similar to creating a symbolic link but without the -s flag:

ln original_file link_file

Using ls -l or ls -F, you will not be able to identify the hard link as being a special

type of file. Essentially, it is just as much a normal file on equal footing with the original

file; changing one will change the other. This is because both files point to the same

inode which in turn points to a single instance of the file. This means unlike soft links

you can move the location of either file without effecting the link.

As mentioned previously, every file on a Linux system has an associated inode. By using

ls -i, we can see the inode of each file in our current directory. Figure 2-3 shows an example

of using ls -i on a hard link and the original file; notice that the inode is the same.

Even when you move a file, the inode stays the same. The directory entry that points

to the inode moves from one directory to another. The inode remains unchanged, and

the locations of both the inode and the data belonging to the file are unchanged.

�Navigation Stack with pushd and popd
cd and ls are fairly well known, but there are a few more commands that can come in

handy once you get familiar with navigating file directories. The first of these is pushd.

pushd acts like cd but it creates a stack of directories so you can easily return to your

current directory later. For example, say you’re in directory /tmp/ and you use pushd ~,

this moves you into the home directory just like ‘cd’ would,next do pushd /usr/local/

bin. This again changes your location like ‘cd’, but noice that a list of locations we’ve

visited is returned in Figure 2-4.

Figure 2-3.  Output from ‘ls -i’ showing 2 files with the same inode number

Figure 2-4.  List of folder locations shown in pushd stack

Chapter 2 File/Folder Navigation

42

The current directory is shown on the left, and the furthest down the stack directory on

the right (in our case /tmp). Now if we run popd, we’ll pop our current directory from the

stack and move one to the right, in this case ~; then running it again we’ll return to /tmp.

This can be a useful alternative to cd when you want to keep track of a set of directories to

return to.

Another related command is simply running cd -. When you use the minus sign

after cd, you’ll actually navigate into whatever directory you were in previously; you can

repeat this several times backtracking through all the directories you’ve visited.

�Ranger
Another one of my most used Linux command-line programs is Ranger. Ranger is a

command-line program which makes file and directory exploration quick and easy,

especially on servers or devices which have no GUI-based directory explorer.

Install ranger by running

sudo apt-get install ranger

Once installed you can start it by simply running the command in the directory you

want to start in:

ranger

You’ll get a three-pane view like shown in Figure 2-5. Pressing up and down will

change your selection on the middle pane. Press right to go deeper into the directory

displayed on the right, and left to explore the parent directory.

Chapter 2 File/Folder Navigation

43

Navigating this way will quickly become second nature. Ranger also comes with

several keyboard shortcuts, inspired by the bindings in Vim. Some of my favorites include

S – Typing capital S will open the directory selected in the far left

pane to be opened in a bash session. From that point, if you press

ctrl+d or manually run exit, you’ll return to Ranger.

s – Typing lowercase s will open a small text box in the bottom left

of your screen where a shell command can be input. For example,

navigate to /tmp and after press s, enter the command mkdir

hello, and press enter. You’ll see a new directory called hello

appear in /tmp.

Q – Typing capital Q will quit Ranger and return you to the

command line.

@ – Typing the @ symbol will allow you to enter a bash command

without leaving Ranger, for example, you enter touch hi and

press enter, and you’d see the current directory you’re in add an

empty file of that name.

Figure 2-5.  Navigation with Ranger

Chapter 2 File/Folder Navigation

44

~ – Typing the ~ symbol will switch between the three levels of

directory view and a view that focuses on just the current one;

press it again to go back. The larger view is great when you’re

dealing with long folder names or don’t want to get distracted.

o – Typing lowercase o will display a list of possible ways to sort

the files in the current directory, for example, by time changed or

alphabetically.

�File Structure Visualization with Tree
Besides ls, ranger is my most used program for viewing file structure. However, another

worth a mention is tree, which will need to be installed on most distros. ‘tree’ is also

very lightweight, instead of opening up a full program like ranger to explore the file

structure, ‘tree’ can be used to immediately create a visualization of your file structure –

for example, if I navigate into a project and run the following command

tree -L 2

Note T wo here signifies how many levels (or directories) deep show; to go
deeper, simply increase the number.

the command will produce the visualization of file structure with a depth of two folders

down like shown in Figure 2-6.

Chapter 2 File/Folder Navigation

45

�Navigate Filesystem with Vim
We’ll have a dedicated chapter for editing with Vim, but it also has a built-in file/folder

explorer. With Vim open in normal mode, run the following command:

:Ex

This is short for :Explore which also works. Running the command will open a file

explorer within Vim, as shown in Figure 2-7, similar to Ranger but without a preview.

Figure 2-6.  Filesystem tree displayed using tree

Chapter 2 File/Folder Navigation

46

Optionally you can pass an argument of the folder you want to open with explore in

Vim, for example:

:Ex /home

This will cause explore mode to open in the home folder instead of your current

working directory. You’ll be able to navigate using normal Vim keybindings j for down

and k for up or using the arrow keys. You can press enter on a folder or file to open it.

�Summary
In this chapter, we explored commands related to navigating the file directory. We also

looked at file attributes such as system links, hidden files, and metadata like time last

modified. We saw how inodes play a key role in how the underlying filesystem works by

associating file names to metadata and the underlying data in disk space.

In addition to looking at attributes of the filesystem, we introduced tools that make

exploring the filesystem easier. Ranger and Vim Explore both allow us to quickly navigate

files. While the additional flag options on ls allow us to see file attributes which are

normally hidden.

Figure 2-7.  Vim Explore

Chapter 2 File/Folder Navigation

47
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_3

CHAPTER 3

History and Shortcuts
In this chapter, we’re going to look at using shell history, built-in keyboard shortcuts for

bash terminal, and file globbing. These techniques will help you move faster as you enter

new commands, repeat past ones, or modify partially written ones.

�History
It’s great having lots of useful commands at your fingertips, but with so many it’s easy to

lose track. That’s where the history command comes in handy. The history command

should come preinstalled on most Linux systems. Running the command returns a list of

your last run commands.

By default most systems will only retain about 2000 commands before deleting old

history. I recommend increasing that number. You can do so by modifying your ~/.

bashrc; search for the lines containing HISTSIZE and HISTFILESIZE:

see HISTSIZE and HISTFILESIZE in bash(1)

HISTSIZE=10000

HISTFILESIZE=10000

It’s also possible to set your history to unlimited; simply declare an empty value:

HISTSIZE=

HISTFILESIZE=

To cut down on space when saving a larger number of commands, I like to turn on

ignoreboth and erasedups. ignoreboth is a shorthand that combines both ignoredups and

ignorespace. The ignoredups option causes commands run more than once in a row to

only be recorded once. The ignorespace option causes commands that start with a space

not to be saved to history. So, if for any reason you don’t want a command to be saved, just

prepend it with a space. The erasedups option will actually go through your whole history

https://doi.org/10.1007/978-1-4842-6035-7_3#DOI

48

each time you run a command and remove any other instances of it. One potential downside

of erasedups is that if you get history, and then run multiple commands, the deleting of a

command can shift the numbers, in which case you’d have to run history again to update

the correct numbers, or accidentally run the wrong command.

HISTFILESIZE=10000

don't save duplicate lines or lines starting with space

See bash(1) for more options

HISTCONTROL=ignoreboth:erasedups

Another history option worth turning on is histappend to help with keeping track

of history when you’re using multiple terminal sessions. By default, when a terminal

instance is closed, the history file is overwritten instead of appended. This causes only

the history of the last closed session to be saved. You can turn histappend on with

append to the history file, don't overwrite it

shopt -s histappend

Scrolling 10,000 lines can take a long time; that’s where grep comes in handy. Say

you remember using ffmpeg for cutting a video, but you don’t remember the exact flags

and inputs. Simply run

history | grep ffmpeg

Once you see the command you’re looking for you can use the number on the left

handside to quickly run it again. Another example of history output is shown in Figure 3-1.

Figure 3-1.  Command history

Given the history output shown in Figure 3-1, we could run Emacs by entering

!2007

Chapter 3 History and Shortcuts

49

This workflow will speed up the rate at which you can enter commands significantly.

In some situations, you can combine these two steps into a single one by using !? instead

of just !. For example, if we wanted to run command 2012 from Figure 3-1 we could run

!?vi

What this does is search for the most recent command in your history that contains

vi. It doesn’t have to reference the start of the command either, as long as the string is

within the command. So the following would also result in command 2012 being run:

!?bash

Using the preceding methods of working with history can greatly increase the speed

with which you enter commands. However, you have to be careful since if the text is

found in a command other than the one you intended, it will automatically run.

�Bash Shortcuts
Keyboard shortcuts come in handy on most programs, and this is true with bash. You

should be aware that a large amount of keyboard shortcuts for bash shell exist. Personally,

I only use a few of these commands, but the ones I do use have been extremely useful.

When you first start, you may find you only use one or two. It’s likely you’ll slowly and

gradually learn commands, and once comfortable you may decide to add more to your

regular workflow. Start with a few useful commands listed here, and as you become used

to them, come back and try to incorporate more.

The most basic shortcut while using bash is the tab key. The tab key when double

tapped activates autocomplete, as shown in Figure 3-2. To demonstrate, try writing the

ls command followed by a space, and before pressing enter, tap tab twice.

Figure 3-2.  Double tapping folders available for autocomplete

Chapter 3 History and Shortcuts

50

You should see all the files in your working directory like in Figure 3-2. Tab can be

used in this way with nearly any command which takes a file as an input.

Note  Keyboard shortcuts that make use of ctrl plus a letter are based on the
default keybindings for most distros. If you find that these shortcuts aren’t working on
your machine, you’ll want to see the next section “Emacs vs. Vim Keyboard Bindings”.
As it’s possible the default mode differs on your system or has been changed. It’s
also possible these shortcuts might not work if your distro has assigned some global
behaviour to the binding. For example, when using Xubuntu I found that some of my
most used bash keyboard shortcuts didn’t work. I ended up doing some research and
found a settings panel specific to the distro where I could remove some of the global
keyboard shortcuts which caused the application specific shortcuts to be active again.

Next to tab, my most used keyboard shortcuts are ctrl+b and ctrl+a.

ctrl+a = moves text cursor to the start of the command

ctrl+b = moves text cursor to the end of the command

So if you’ve written a long command and notice a typo before pressing enter, you can

use ctrl+a to quickly move back and fix it, then return to where you were with ctrl+b.

I often find myself using this in combination with &&. This tells bash to run the command

after && only after the first command runs successfully. Alternatively, you can use a single & if

you want the second command to run regardless of whether the first command is successful

(e.g., if tmp.txt doesn’t exist, with && the git add * won’t run, whereas with & it will).

Say, for instance, you’ve entered the command git add *, but you realize you had

a file you wanted to delete first. Simply press ctrl+a to move your cursor to the first

charachter of the terminal input and change the command to

rm tmp.txt && git add *

Instead of deleting what you’ve written and having to enter it again later, simply

write the prerequisite command at the start and chain it using &&. There is something

satisfying about chaining several commands together and having them all run

successfully. I might think that because the moment after entering a chain of commands

can be the perfect time to pour a cup of coffee while waiting for them to process.

The other two commands I use are ctrl+c and ctrl+d.

ctrl+c = cancels the current command

ctrl+d = closes the current terminal

Chapter 3 History and Shortcuts

51

Pressing ctrl+d simply closes your current terminal instance, producing the same result as

running the command exit. The obvious use is quickly closing a terminal window when you’re

finishing it, but you can also use it to close other programs like tmux or end an ssh session.

Have you ever written a long command and realize you want to do something

completely different? When this happens, our instinct is to hold down the backspace

button, for what can seem like forever. Next time try ctrl+c, short for clear input,

instead. It’ll give you a fresh input to write on without executing the command.

If you often find yourself running the command clear, you’ll want to take note of ctrl+l.

ctrl+l = clears the screen of all text and leaves you with a new command line at the top

of the terminal session

A list of all the Emacs keyboard shortcuts (default mode on most systems) is shown

in Table 3-1.

Table 3-1.  List of default (Emacs style) bash keyboard shortcuts

Sequence Description

ctrl+a Go to the beginning of the line

ctrl+e Go to the end of the line

alt+b Move cursor one word back

ctrl+b Move cursor one character back

alt+f Move cursor one word forward

ctrl+f Move cursor one character forward

alt+t Swap last two words

ctrl+t Swap last two characters

alt+r If you’ve modified command from history, reset changes

ctrl+k Delete all after cursor

ctrl+u Delete all before cursor

ctrl+w Delete last word

ctrl+y Paste deleted words (works as undo for ctrl+w)

ctrl+l Clear past terminal output (same as clear command)

ctrl+z Background running process

Chapter 3 History and Shortcuts

52

�Emacs vs. Vim Keyboard Bindings
An interesting fact is the bash keyboard shortcuts are actually based on the keybindings

in Emacs, a popular open source text editor. Many of the keybindings that work in bash

will also work in Emacs. However, it is possible to enable Vim-like keybindings in bash.

To do so, run the following command:

set -o vi

Running set -o vi will set Vim keybindings for your current session only; to enable

it permanently, you should add it to your .bashrc file. You can set bash and even more

programs to use Vim bindings at once by adding the following line to your .inputrc file:

set editing-mode vi

Alternatively, if you want to explicitly specify Emacs-style bindings, you can instead add

set editing-mode emacs

The .inputrc file affects the input of all programs which use the GNU readline library,

a popular library used by several utilities including bash, and other operating systems like

OpenBSD. Some of the programs that use GNU readline library include but not limited to

Abiword, Amanda, Atari800, Bacula, Bareos, GNU bc, BlueZ, Cdecl,

ConnMan, Freeciv, FreeRADIUS, GNU ftp, NetKit ftp, FVWM, GDB,

GPG, Guile, Hatari, Hunspell, Lftp, NetworkManager, nftables,

Parted, the rc shell, Samba, SQLite, GNU Units, VICE, Wesnoth,

WPA Supplicant, Lua REPL, Python REPL, Ruby REPL …

Hence, any setting which is changed in .inputrc will affect them all. The .inputrc

file doesn’t exist by default but if added will affect the way bash receives input. Aside

from changing between the default emacs mode and vi mode, other behaviors of the

terminal can be modified. We’ll look at .inputrc in depth in a later chapter.

The vi-style keybindings don’t have an equivalent set of shortcuts but rather mimic

the idea of having separate modes for typing and running commands. If you are using vi

mode and press esc, you’ll switch to command mode where you can use some (but not all)

vi commands like 0 to go to the start of the line, $ to go to the end, w to go forward a word,

and b to go back a word.

If you’re not familiar with Vim or vi and the various commands, we recommend

sticking with the default Emacs keybindings, though Vim is definitely worth learning

Chapter 3 History and Shortcuts

53

and there will be a chapter dedicated to Vim further in the book. After reading it and

getting comfortable with using Vim, you may wish to return to your bash settings and

experiment with vi-style shortcuts. I use Vim as an editor but still prefer the Emacs style

keybindings on bash as they’re simple and the common default.

�Reverse Search
Another shortcut that we didn’t discuss in the last section is ctrl+r for reverse search.

I prefer to use the history command, but many people prefer using the interactive

reverse search.

After pressing ctrl+r, you’ll go into an interactive mode where if you start typing a

previously written command, it will show in the autocomplete as shown in Figure 3-3.

Once you see the command you want to run, you can press enter to run it. Or you can

press tab to return to normal shell mode with the command ready to be run or modified.

For example, given the preceding command, I might press tab and then ctrl+e to go to the

end of the line, delete cups, and then write a different service to fetch status on.

If you’ve started writing a command in reverse search and autocomplete isn’t the

one you want, you can press ctrl+r to go one further back. So in the example shown,

pressing ctrl+r would show the next match in history which starts with sys.

�File Globbing or Wildcards
File globbing is a feature in Linux which allows multiple files to be represented through

the use of wildcard characters. The most well-known wildcard character is * which

represents one or more of any character. For example, run

echo *

Figure 3-3.  Reverse search in terminal

Chapter 3 History and Shortcuts

54

This will run the command echo on all files in your current directory. The wildcard

can also be used in combination with other characters, for example:

ls /dev/sd*

It will not return all files in /dev/ but only files within the folder which start with “sd”.

The * isn’t the only character that can be used, though it is by far the most common.

Another possible wildcard for globbing is ?. The ? character is similar to the * in that it

can represent any character, but it is only a single character rather than any amount. If

we modify our previous command to be

ls /dev/sd?

instead of getting back all files that start with “sd”, we now only get back files that start

with “sd” and have one additional character. Notice the difference in output between the

two in Figure 3-4.

The last character that can be used, or rather character combination, is the square

bracket [], known as a set often used with characters inside. For example, if we wanted

to repeat our preceding command that used ? but also include other drives like sdb and

sdc (if they exist), we can do

ls /dev/sd[abc]

Figure 3-4.  Comparing the * and ? wildcard characters

Chapter 3 History and Shortcuts

55

This will match a single character as long as it is one specified inside the brackets, in

this case, a, b, or c.

�Summary
In this chapter, we looked at using bash history, shortcuts, and file globbing. By making

use of these techniques, you’ll significantly speed up your workflow by having to write

less as you enter commands.

Chapter 3 History and Shortcuts

57
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_4

CHAPTER 4

Scripts and Pipes
�Creating Scripts
Once you get familiar with working with files and using various commands, you’ll soon

find you want to combine several commands, sometimes creating long sequences that

can be somewhat time consuming. We’ll go more in detail later on, but for now it’s good

to know this is possible. Creating a list of commands to run one after the other is as easy

as writing a grocery list of things you need to buy (once you know the basic steps).

You simply open a text file using any editor (nano was mentioned earlier, but you can

even use a desktop text editor if that’s easier). On the first line of the text file, you write or

paste in a special line called a “shebang” which indicates that the file is a script (more

details in the next section). Then you start listing off commands to be run line by line.

Creating scripts for commonly run sequences of commands can come in handy.

You can save the commands as a text file and then run the sequence as a single step. The

steps required for creating a script from a bird’s eye view are as follows:

	 1.	 Create a text file containing the commands.

	 2.	 Make the top line of the file a shebang (explained later).

	 3.	 Save file.

	 4.	 Make the file executable using permissions (explained later).

	 5.	 Run the command ./myScript.sh.

Below is an example of a simple script called name.sh:

#!/usr/bin/env bash

echo First name: $1

echo Last name: $2

https://doi.org/10.1007/978-1-4842-6035-7_4#DOI

58

This script takes two arguments, one for first name and one for last. These arguments

are represented in the code with $1 and $2. It would be executed by running

./name.sh Philip Kirkbride

When run two lines will output, the first line being “First name: Philip” and the

second line “Last name: Kirkbride”. Unless of course you swap the input for your own

name in which case the names will be swapped out.

We’ll look more at steps 2 and 4 in the preceding list which are needed before

actually running the script in the following sections.

�Shebang
A shebang refers to the first line in a script, when that line begins with #!. The word

comes from the musical notation term for # sharp and the ! sometimes being called

“bang”; combining these two becomes “sharp-bang” or shebang for short.

The shebang when used as the first line of a file specifies the program which will be

used to interpret the script. The most popular one relevant to writing Linux scripts is

#!/bin/bash

The same thing can be expressed using /usr/bin/env which increases portability by

using whatever version of bash is found in the user’s path.

#!/usr/bin/env bash

The shebang is not limited to bash scripts. It should also be the first line when

writing scripts in other scripting languages such as python, ruby, or perl.

#!/usr/bin/env python

�File Permissions
As mentioned previously, the fourth step in making an executable script is changing the

permissions on the file to allow execution. The short and simple way of doing this is to run

chmod +x name.sh

Chapter 4 Scripts and Pipes

59

This simply adds the execution permission to the file for our current user. After

running the command, you’ll be able to make use of it simply by running the following

(assuming you’re in the same directory as the file):

./name.sh

It’s worth understanding the concept of permissions on Linux as it’s a crucial aspect

of the operating system. Every file has three different types of permissions:

•	 Read

•	 Write

•	 Execute

Each of these three permissions can be set separately for three groups:

•	 User

•	 Group

•	 Others

When using ls -l, you can see the set permissions for each file expressed on the

left-hand side, as shown in Figure 4-1.

Note T he first letter in this ten-letter sequence is used to indicate special
file types. The possible values are d=directory, c=character device, s=symlink,
p=named pipe, s=socket, b=block device, and D=door. We don’t have to deal with
these special types, but it’s worth knowing what the first letter is.

After the first letter which indicates special file types, there are nine more letters. We

can break these nine letters into three sets of three, as shown in Figure 4-2 – the first being

file permissions for file owner, the second for user group, and the third for all other users.

Figure 4-1.  Permissions for files shown in the first column when running ls -l

Chapter 4 Scripts and Pipes

60

For the three sections, we have three different letters which if present indicate that

groups has said permission:

•	 r = read

•	 w = write

•	 x = execute

In the example given, we have a file with all permissions for the owner, read and

write for the user group, and only the ability to read for all others who can access the file.

Permission data can also be displayed as a set of three numeric symbols where a

single number represents the combination of the permissions. Each of the permission

types is given a numeric value:

•	 4 = read

•	 2 = write

•	 1 = execute

For any group we add up the permissions to get a number representing allowed

permissions. For example, read and write would be 6 (2 + 4), write and execute would be

3 (1 + 2), and no permissions would be 0.

Using this notation, we would express rxw rw- r-- as 764. Either of these notations

can be used when changing permissions for a file. For example, we can run

chmod 777 numbers.sh

Figure 4-2.  Components of file permissions

Chapter 4 Scripts and Pipes

61

This gives all permissions to all users. Or if we want to use the notation with letter, we

could run the following command to take away execution permission for all groups (note

the-; if we wanted to add, it would instead be +):

chmod -x numbers.sh

If we want to use number notation for a specific column (user, group, or others), we

can first specify the group, for example, add execution permission back but only for the

owner:

chmod u+x numbers.sh

�File Types
While we’ve defined our script using the file type .sh, this is not actually required in

Linux. We can just as easily have named it name instead of name.sh, and it would work

just the same.

Note  Some teams prefer scripts without the ‘.sh’ extension, for example, the
Google Shell Style Guide actually specifies the extension .sh should not be used.
Despite this several public repositories managed by Google contain shell scripts
which include the .sh. This just goes to show even at a company which states a
preference you can’t be sure if scripts will include the .sh extension.

A useful command for detecting file type is file. To experiment with this, first

change the file name of name.sh to name. Next run the following:

file name

You should get back a message saying the file type is Bourne-Again shell script. Next try

opening the file and editing the shebang to be the one for python, as listed in the shebang

section.

#!/usr/bin/env python

After saving try running file again. Repeat this process trying different shebangs,

including python, ruby, and perl. You should get results similar to those shown in

Figure 4-3.

Chapter 4 Scripts and Pipes

62

�Pipes
Pipes are one of the most common features of basic syntax. If you’re familiar with them,

feel free to skip over this section. A pipe simply connects the output of one command as

the input to another command. We’ll use a fun example to demonstrate the concept.

To start install fortune and cowsay:

sudo apt-get install fortune-mod cowsay

Fortune is a full little command-line program with a long history dating all the way

back to version 7 of Linux in the early 1990s. It simply generates a random quote, for

example, running the command on my computer now returned

“You never know how many friends you have until you rent a house on the
beach.”

Try it yourself by running fortune a few times. Each time it’s run, a random quote from a

long list is output. Now for fun let’s pipe the output into cowsay:

fortune | cowsay

Now we get back a random fortune inside a little piece of text art shown in Figure 4-4.

Figure 4-3.  Results of changing file type by editing the shebang

Chapter 4 Scripts and Pipes

63

As the fortune generated is from a random list, the one you see should be different

from the one in Figure 4-4. What’s happening here is that the output from the fortune

code is being used as the input for the cowsay command. The receiving command is

completely unaware of the process which generates said text.

We can, for instance, swap our fortune command with a simple echo:

echo hello world | cowsay

In this case, as you might expect, the cow says “hello world”. There is no limit to how

many pipes can be used. We can further process our text before sending it to cow say

using another pipe in between the two commands:

echo hello world | rev | cowsay

In this case, our “hello world” text is reversed to “dlrow olleh” before it reaches the

cowsay command. In the next section, we’ll look more at using multiple pipes.

�Multiple Pipelines
Throughout this book, we’ll be writing bash scripts in addition to simply exploring

command-line programs. As you start to write more bash scripts, you’ll often find you

need to use pipe, not just once but several times.

With complex scripts that string together command-line programs with pipes,

you’ll find your scripts start to look a little bit messy. One of the most useful formatting

techniques is the multiline pipeline. This is simply when you separate a series of pipes

into multiple lines by using \.

Figure 4-4.  Piping fortune to cowsay

Chapter 4 Scripts and Pipes

64

If your command pipeline fits nicely on a single line like the following, you don’t

need to worry about spreading it out on multiple lines:

All fits on one line

command1 | command2

If however you’re using multiple commands in a chain and it goes beyond a single

line or looks hard to read, spread it out to multiple lines as shown in the following:

Long commands

command1 \

 | command2 \

 | command3 \

 | command4 \

The preceding example came from the Google Shell Style Guide, a great resource for

tips on making your shell scripts more readable. Some of the guidelines are related to

internal preferences at the company (e.g., using two spaces instead of tab), while other

tips are generally applicable to all shell scripts.

Once you become more comfortable writing shell scripts and find you’re doing it

often, you should take a look at the Google Style Guide for shell scripts. It’ll help you

consider factors that make your scripts more readable to other developers or system

admins who might come across your scripts.

https://google.github.io/styleguide/shell.xml

�Chain Commands with && and ||
In this section, we’re going to talk about some logic syntax built into bash that can come

in handy – specifically, && which can be used as AND and || which can be used as OR.

&& the operator for "and"

|| the operator for "or"

This is very useful when you need to use a long-running command followed by

another command. For example, say you’re connected to an IoT device with slow Internet

connection, you need to update the system and, once that’s done, install a new program.

You could simply run

sudo apt-get update \

 && sudo apt-get install -y program-x

Chapter 4 Scripts and Pipes

https://google.github.io/styleguide/shell.xml

65

Note the -y flag used; this tells apt-get to answer yes when asked for confirmation.

This can be very useful in combination with tmux (a program for switching between

terminal instances quickly, which we’ll explore in depth in a later chapter). At a previous

job, I often found myself on site having to SSH into five to ten different IoT devices.

Stringing together multiple commands, I could give a device enough work to keep it busy

for 15 minutes and then immediately switch to another tmux session already connected

through SSH to another device and get to work immediately.

The or operator || can be just as useful when you know you need to run a second

command but only in the case that your first command fails. For example, say we have

a common problem on our IoT device where if a command fails, we’re likely out of disk

space; in said case we want to remove all logs:

sudo apt-get install -y program-x \

 || sudo rm -rf /var/log/*

�Exit Codes for && and ||
It should be noted that whether the || or && are triggered depends on the exit code of the

command that precedes it. It isn’t sufficient just to have output on standard error. For

example, let’s write a file at /tmp/err.sh with the following:

#!/usr/bin/env bash

>&2 echo Error

Make the file executable with chmod +x /tmp/err.sh and then run the command

with a || statement like the following:

/tmp/err.sh || echo error

Notice that you get back the standard error text, but the echo error command is

never run. This is due to the fact that our program is still returning an exit code of 0. We

can see the exit code by adding the following to the bottom of our script:

echo $?

Now when running the script, you should see an additional “0” output. If you’d like to

change the exit command, you can use the exit command. At the bottom of our script, add

exit 1

Chapter 4 Scripts and Pipes

66

Now if we run the script again with our || statement, we’ll see the echo error command

trigger. We aren’t limited to exit code 1 here, numbers 0–255 are all valid exit codes. The exit

code 0 specifies a successful execution, while codes 1–255 specify an error. Some of these exit

codes are normally used for specific errors; others are left for program-specific errors. A list of

standard error code numbers and their meanings are shown in Table 4-1.

Table 4-1.  Standard meanings for exit codes

Code

0 Default, command ran without issue

1 Catchall for all nonspecific errors

126 Command invoked is not executable

127 Command not found

128 Invalid argument to exit

128+n Fatal error signal “n”

130 Script ended by ctrl+c

255* Exit status out of range

As you can see, even with these reserved error ranges, there is plenty of room for

you to define your own custom errors. This can be useful if there are multiple ways your

script can fail and you want a way to programmatically detect those particular cases.

�Using && with ||
You can also mix the operators together for more complex use cases. Say, for example,

we want to check if a string is in a text file using grep, then pass the word “true” or “false”

to the cowsay program. In that case, we need to introduce the use of brackets:

(grep -q dog /tmp/test && echo true || echo false) \

 | cowsay

Similar to the use of brackets in math, the statement inside the brackets will be

evaluated and passed through a pipe to cowsay, as shown in Figure 4-5. If the file /tmp/

test exists and contains the word dog, we should see something like:

Chapter 4 Scripts and Pipes

67

Of course false is returned since the file /tmp/test doesn’t exist. Try creating the file

with some text that includes “dog”. You can do that quickly with the command

echo dog > /tmp/test

Once you’ve run this command, running the previous command should instead

return true. The > symbol used here is a redirect which we’ll look at more closely in the

next section.

�Redirects
As we saw in the last section, we can use the > character to send text into a file rather

than piping into another program. This can be done with the output from any program.

When using the standard redirect, you should be aware that any existing content in that

file will be overwritten. Running

echo dog > /tmp/test

echo cat > /tmp/test

will result in /tmp/test only containing the text “cat”. If you want to append text to the

file instead of replacing the content, you should instead use >>:

echo dog >> /tmp/test

echo cat >> /tmp/test

This will instead result in a file which contains two lines, one with “dog” and one

with “cat”.

Figure 4-5.  Cowsay saying true or false based on a condition

Chapter 4 Scripts and Pipes

68

The output in a redirect by default contains both the output and any errors. We can

instead redirect errors to a separate location by adding

echo cat > /tmp/test 2> /tmp/error

However, with the preceding example, no errors are being created. To generate both

standard output and standard error in a single command, use ls on an existing file and a

nonexistent file:

ls /tmp/test /tmp/nope777 > /tmp/test 2> /tmp/error

After running the preceding command, you should have content in both the /tmp/

test file and /tmp/error. As with a normal redirect, we can use >> to append instead of

replace the text:

ls /tmp/test /tmp/nope777 >> /tmp/test 2>> /tmp/error

If you run the preceding command multiple times, you’ll end up with lines in each

file for each time it was run.

�Redirect and Pipe at Once with tee
Redirecting output to a file and piping are both powerful tools, but what if you want

to do them both at once? A popular utility called tee exists for exactly this purpose. It

duplicates the input and sends it to both a file and the output as shown in Figure 4-6.

The tee command takes output from standard output, saves it to a file of your

choice, then passes that output to its own standard output. For example, say we have the

following command using a redirect to write the output “hello” to a file called greeting:

echo hello > greeting

Running the preceding command, we’ll end up with “hello” in our greeting file but

will see nothing in our standard output. The same program modified to use tee would be

echo hello | tee greeting

Figure 4-6.  Diagram of output from tee command

Chapter 4 Scripts and Pipes

69

With tee, we’ll end up with “hello” in our greeting file, but we also see “hello” in the

standard output. If you want tee to act like >> and append to a file rather than > which

replaces the text, you can use the -a flag.

Another example of using tee, say we want to pass a math equation to the math utility bc for

processing. We’ll output the result to a file called math, but we also want to show the equation

that led to the result. We could make use of tee for this using the following command:

echo "7 * 7" | tee math.txt | bc >> math.txt

This causes the file math.txt to be written to twice. Once using tee and the input,

and a second time via ‘>>’. Thefile math.txt should contain:

7 * 7

49

�xargs
While wildcards are good for file expansion when running commands on multiple files,

sometimes you want to instead run a command on each line of output from another

command. For this we can use xargs to demonstrate; we’ll use a command that could

just as easily be done with a wildcard:

ls | xargs cat

The preceding command has the same output as cat *; it outputs the contents

of each file in your current directory. The difference is in how it is done. Rather than

expanding the wildcard and passing each file into a single cat command, we instead

take each line output from the ls command and use it as the input for a separate cat

command for each line.

Using xargs allows you to do things which are not possible with a wildcard. For

example, say I want to remove all files of a certain type. An example I’ll use is .swp files;

these are recovery files for the text editor Vim. In my case, they don’t contain any useful

data but were left behind by exiting the program abruptly (e.g., closing a terminal window

without closing the editor). I can run a find and remove on my home directory by running

find ~/ -name "*.swp" | xargs rm

This will take each result which is returned by find and run rm on it. I ran find before

and after the command to demonstrate all the .swp files are removed, as can be seen in

Figure 4-7.

Chapter 4 Scripts and Pipes

70

�Conditional Expressions in Bash
As you start to combine several components of programs using && and || via the command

line, you’ll likely find it starts to get easier to write a dedicated script rather than manually

enter a long string of commands from the command line. As you move from command

line to writing a script, it’ll be easier to use some of the more complicated syntax tools.

One of these tools is the if statement, which is more like a series of possible tests,

each with their own specific option. For example, if we want to check if a file exists, we’d

use the -e option. Create a script and add the following:

if [-e /etc/passwd]; then

 echo passwd exists

fi

When you run the script, you should get the output “passwd exists”. Try changing /

etc/passwd to a file that doesn’t exist. Or if you’d like to test if the file doesn’t exist, you

can add a ! as shown in the following:

if [! -e /etc/passwd]; then

As with other languages, we can add an else to our if statement:

if [-e /etc/passwd]; then

 echo passwd exists

else

 touch /etc/passwd

fi

Figure 4-7.  Results from searching for swp files with find

Chapter 4 Scripts and Pipes

71

The preceding syntax works for several different possible tests that can be run by

substituting the -e. The list is quite long and can be found by running man bash and scrolling

down to the conditional expression section. Some of the more commonly used flags are

shown in Table 4-2.

Table 4-2.  Conditional expression options

Code

-d True if exists and is a directory

-f True if exists and is a regular file

-e True if exists

-s True if file exists and has a size greater than 0

-x True if exists and is an executable

�Is a Directory with -d
The -d flag can be used to confirm that a file exists and is a directory. This can be useful if

you want to make use of a directory but aren’t sure that it exists or if it does exist that it is

a directory and not a file. An example of using -d is shown here:

mkdir /tmp/test

if [-d /tmp/test]; then

 rmdir /tmp/test

fi

�Is a Normal File with -f
The flag -f is similar to -d but tells us if a file is a regular file, rather than a directory.

Again this can be used before making use of a file to ensure that it exists and is the right

type. An example of -e is shown here:

touch /tmp/test

if [-f /tmp/test]; then

 rm /tmp/test

fi

Chapter 4 Scripts and Pipes

72

�Check if File Exists with -e
The -e is a sort of combination of both -f and -d as it only tests that a file exists and does

not consider whether what the type of the file is. An example of using -e is shown here:

touch /tmp/test

if [-e /tmp/test]; then

 rm -rf /tmp/test

fi

�Check if Exists and Size Greater Than 0 with -s
If you’re doing something with the contents of a file, you might also want to know if the

file in question has anything in it. In this case, you can use -s which will only return true

if the file exists and has a size greater than 0. An example of the use of -s is shown here:

touch /tmp/test

if [-s /tmp/test]; then

 echo “doesn’t run”

fi

echo data > /tmp/test

if [-s /tmp/test]; then

 echo “does run”

fi

�Check if Exists and is an Executable with -x
If your use of a file is actually executing it as a program, you may want to confirm that the file

exists before doing so. This is where the -x comes in handy which checks the file permissions

of a file to confirm that it is executable. Though keep in mind that this only checks the file

permissions to confirm that a file is executable, it doesn’t actually check that the file contains

a script. In the following example, our executable file is actually just a blank file, yet after

running chmod +x /tmp/executable, the -x flag recognizes it as an executable:

touch /tmp/executable

if [-x /tmp/executable]; then

 echo “doesn’t run”

Chapter 4 Scripts and Pipes

73

fi

chmod +x /tmp/executable

if [-x /tmp/executable]; then

 echo “does run”

 bash /tmp/executable

fi

It’s also possible to compare strings using a similar syntax. A list of flags for

comparing strings is shown in Table 4-3.

Table 4-3.  String compare conditions

Code

-z S1 True if S1 is a string with length 0

-n S1 True if S1 is a string with a length

greater than 0

S1 == S2 True if S1 is the same string as S2

S1 != S2 True if S1 is not the same string as S2

S1 < S2 True if S1 sorts before S2

S1 > S2 True if S2 sorts before S1

�Check Value Is a String of Length 0 with -z
When programming or writing scripts, often an unset or empty variable can throw a

wrench into things. Bash provides a method for checking if a variable is empty using the

-z flag. An example is shown here:

S1=""

if [-z $S1]; then

 echo "is empty string"

 S1=”something”

else

 echo "not empty"

fi

Chapter 4 Scripts and Pipes

74

�Check Value Is a Non-empty String with -n
If instead of checking for an empty value, you’d want to check that a value is not empty,

you can use -n. It’s essentially the opposite of -z and will return true for any non-empty

string. An example is as follows, in which we use the variable $S1 only if it is not empty:

S1="something"

if [-n $S1]; then

 echo $S1

else

 echo "variable is empty"

fi

�Check That Strings Are Equal
Like many programming languages, bash also provides a way to check that strings are equal to

one another. This can be done with the double equal sign ==. A simple example is as follows:

S1="something"

S2="something"

if [$S1 == $S2]; then

 echo "same"

else

 echo "not the same"

fi

�Check That Strings Are Not Equal
As you might expect, we can test that strings are not equal in a similar way by using !=.

An example is as follows, which should return the text “same”:

S1="something"

S2="something"

if [$S1 != $S2]; then

 echo "not the same"

else

 echo "same"

fi

Chapter 4 Scripts and Pipes

75

�Check String Sort Order
When working with strings, we can also use the > and < symbols to compare. On first seeing

these, you might expect that these compare mathematical values or which string is longer. In

actuality, the greater than and less than symbols used with strings check for sort order.

By default this is alphabetically. To demonstrate sorting, we can run the following

command; feel free to replace the letters with numbers or symbols:

letters='a y b v b c'

echo "$letters" | tr ' ' '\n' | sort | tr '\n' ' '

Running the preceding command should return “a b b c v y”. You can ignore the tr

commands which simply convert the spaces to newlines and after sorting replace newlines with

spaces. You can experiment with the preceding command to get an idea of how things sort.

This sorting order is what is used for the > and < symbols. In the following, we have

an example of using <:

S1="a"

S2="b"

if [$S1 < $S2]; then

 echo $S1 sorts before $S2

else

 echo $S2 sorts before $S1

fi

In addition to testing files and strings, there is also support for testing integers.

Table 4-4 outlines several methods for comparing integers. Note that in Table 4-4, N1

and N2 are variables which could contain any integer.

Table 4-4.  Arithmetic operators

Code

N1 -eq N2 True if N1 is equal to N2

N1 -ne N2 True if N1 is not equal to N2

N1 -lt N2 True if N1 is less than N2

N1 -le N2 True if N1 is less than or equal to N2

N1 -gt N2 True if N1 is greater than N2

N1 -ge N2 True if N1 is greater than or equal to N2

Chapter 4 Scripts and Pipes

76

�Check If Numbers Are Equal
When comparing numbers, there is a whole different set of flags that can be used. One of

these is the -eq flag which checks that two numbers are equal. An example of the use of

-eq is as follows; it should return “1 and 1 are equal”:

N1=1

N2=1

if [$S1 -eq $S2]; then

 echo $N1 and $N2 are equal

else

 echo $N1 and $N2 are not equal

fi

�Check If Numbers Are Not Equal
For checking if numbers are not equal, use the -ne flag. This is essentially the same as

-eq but opposite. An example of using -ne is as follows; it should return “1 and 2 are not

equal”:

N1=1

N2=2

if [$S1 -ne $S2]; then

 echo $N1 and $N2 are not equal

else

 echo $N1 and $N2 are equal

fi

�Check If a Number Is Less Than
We can also use a flag to check that a number is less than another number. An example

of using -lt is as follows; it should return “1 is less than 2”:

N1=1

N2=2

if [$S1 -lt $S2]; then

Chapter 4 Scripts and Pipes

77

 echo $N1 is less than $N2

else

 echo $N1 is not less than $N2

fi

�Check If a Number Is Less Than or Equal
The flag -le is nearly identical to -lt with the sole exception that it also returns true if

numbers are equal to each other. An example is shown in the following where equal

numbers trigger true, though if $N1 was less than $S2, it would also trigger as true.

Running the code should return “2 is less than or equal to 2”:

N1=2

N2=2

if [$S1 -le $S2]; then

 echo $N1 is less than or equal to $N2

else

 echo $N1 is not less than or equal to $N2

fi

�Check If a Number Is Greater Than
Whenever you have the ability to check if a number is less than, you likely also have the

ability to check if it is greater than. This is the case with bash where you can use the -gt

flag to check if a number is greater than. The following is an example of the use of the -gt

flag. The following should return “3 is greater than 2”:

N1=3

N2=2

if [$S1 -gt $S2]; then

 echo $N1 is greater than $N2

else

 echo $N1 is not greater than $N2

fi

Chapter 4 Scripts and Pipes

78

�Check If a Number Is Greater Than or Equal
If you’d prefer to match both greater than or equal, you can use -ge. An example of its

use is as follows. Running the following code should return “3 is greater than or equal

to 3”:

N1=3

N2=3

if [$S1 -ge $S2]; then

 echo $N1 is greater than or equal to $N2

else

 echo $N1 is not greater than or equal to $N2

fi

While the preceding code can be handy, there is also syntax dedicated to arithmetic

expressions using double brackets which we’ll look at in the next section.

�Arithmetic with Double Parentheses
While comparing integers is possible using tests surrounded with square parentheses in

bash, it is preferred to use double parentheses which allow syntax anyone who programs

in another language would be comfortable with, for example:

if ((2 < 3)); then

 echo 3 is greater than 2

fi

In the preceding code, exactly ((2 < 3)) will evaluate to true. We’re using hard numbers

here, but in most cases, you’ll be comparing variables which can be used in their place.

((N1 < N2))

If you want to use math to set a variable, you’ll also need to make use of double

parentheses, preceded by a dollar sign, for example:

N1=$((1+1))

if ((N1<3)); then

 echo 3 is greater than $N1

fi

Chapter 4 Scripts and Pipes

79

The $ is required anytime you want to make use of the result, whether you’re setting

it to a variable or not – even if we just want to echo the result:

echo $((1+3))

Be aware that if you try to use arithmetic without the double parentheses, it will

append as if the number is a string, for example:

N1=2

N1+=1

echo $N1

The preceding code returns “21”, whereas

N1=2

((N1+=1))

echo $N1

will instead return 3.

�Subshell with Parentheses
We’ve seen what double parentheses do, but what about single parentheses? When code

is placed inside parentheses, it’s run as a subshell. The current shell runtime is copied

and a new one is created. The effect of this is that nothing that happens within the

subshell affects the outer shell, for example:

S=Hi

(

 echo $S

 S=Hello

 echo $S

)

echo $S

In the preceding script, we create a variable S. Then we open a subshell and echo the

value; notice that the subshell can see the value of the S variable that existed when it was

created. Then we change the value of S within the subshell.

Chapter 4 Scripts and Pipes

80

On the outside of the subshell, we echo the value again. The value will still be “Hi”

rather than “Hello” since the change was made inside the subshell.

Subshells themselves can in turn spawn their own subshells, which act as child

processes.

�Expansion with Curly Brace
Another symbol which is built into bash is the curly braces {}. The curly braces can be

used for shell expansion of lists. For example

echo {1..100}

will expand into all numbers between 1 and 100.

We can also specify the amount to increment by. For example, if we want to

increment by 2 each time, we can instead do

echo {1..100..2}

Now we’ll instead only get odd numbers (1, 3, 5, etc.). This same technique can be

applied to letters as well as numbers.

echo {a..z..2}

The preceding code will return all odd letters (a, c, e, etc.).

We can even combine these two, say we want two versions of each letter:

echo {a..c}{1..2}

This returns a small set including (a1 a2 b1 b2 c1 c2) though we can make it as

complex and long as we like. For example, say we wanted to print all combinations for

binary numbers with a total of five digits:

Figure 4-8.  Echoing 1 to 100 using expansion

Chapter 4 Scripts and Pipes

81

echo {0..1}{0..1}{0..1}{0..1}{0..1}

Another example use case, say we wanted to create a list of files in /tmp:

touch /tmp/{file1,file2,file3}

Or even better:

touch /tmp/file{1..3}

Either of these commands will generate three files in the /tmp directory.

�Loop in Bash
Like other languages, bash also provides a way to do loops over a set of items. For

example, given a set of names, we can print “hello” for each:

for name in jesse james jen

do

 echo "Hello $name"

done

This can be useful with the expansion we looked at in the previous section, for

example:

for i in {1..100}

do

 echo "Hello $i"

done

We can also do a traditional style loop with an i++ statement as you’ve likely seen in

other languages:

for ((i=1;i<=100;i++));

do

 echo "Hello $i"

done

It’s also possible to make an infinite loop:

for ((; ;))

Chapter 4 Scripts and Pipes

82

do

 echo "Hello [CTRL+C to stop]"

done

In some cases, you may want to break out of a loop early.

for i in {1..100}

do

 if((i==10))

 then

 break

 fi

 echo "Hello $i"

done

In the preceding example cases, 1–9 run, but before 10 runs, we hit the break

keyword which stops the loop early. Alternatively, we can use the continue keyword to

end the current iteration without exiting the loop. As an example, we’ll cause continue

to trigger on all the even numbers. Be careful in regard to the spaces on the if line as

missing spaces can cause issues with the script running correctly.

for i in {1..100}

do

 if [$((i%2)) -eq 0];

 then

 continue

 fi

 echo "Hello $i"

done

The preceding script will run the loop for numbers 1 to 100, but any numbers which

are found to be even will exit the loop early and make way for the next in line. This is

because in iterations where i is even, the continue keyword is read causing the iteration

to end early.

It’s also possible to use an array as the data provider for a loop. Arrays are defined

using bash as shown here:

array=(1 39 47)

Chapter 4 Scripts and Pipes

83

Then to make use of the array, it needs to be expanded using curly braces:

for i in ${array[@]}

do

 echo "Hello $i"

done

While we’ve used integers here, you can just as easily use strings or another data type

in your array.

�While Loops
In some situations, you may be better off using a while loop rather than a for loop.

Instead of having a set number of iterations, you might want to end the loop based on a

value not related to iterations. For example, say we want to see how many times we can

loop through some code in 7 seconds.

Note  For the following example, you’ll need to put the code into a script file
and run chmod +x to add execution permission. This is because of our use of
the special variable $SECONDS. The $SECONDS variable contains the amount of
seconds a terminal, or in our case, script, has been running.

#!/usr/bin/env bash

i=0

while [$SECONDS -lt 7]; do

 i=$((i+1))

done

echo $i

Executing the script will return the amount of times the loop was able to run in 7 seconds. You

might be surprised with how high the number is. In my case, the loop ran 927375 times.

The while loop allows us to limit the running of a code section without a specific

number like the for loop. While we’ve used the example of time, you could also use some

external value. For example, if a website is down, you may want to keep checking every

few minutes until it is back up.

Chapter 4 Scripts and Pipes

84

working=false

while [$working == false]; do

 curl google.com && working=true

 echo $working

 sleep 60

done

The preceding script will likely only run once as we’re checking www.google.com.

If you want to see how it would work when a website is down, try switching the

website to one that doesn’t exist (and thus will always fail).

The while loop also makes infinite loops particularly easy. To make a loop run

forever, simply make the checked value true as shown as follows. The following is an

example of a script that will say “hello” every minute until turned off:

while [true]; do

 echo "hello"

 sleep 60

done

�Until Loops
An until loop is almost identical to a while loop except instead of checking that a value is

true, we instead check that a value is false. Notice the following script is almost identical

to our while loop, but instead of running while false, we’re running until true:

working=false

until [$working == true]; do

 curl google.com && working=true

 echo $working

 sleep 60

done

�Quotes in Bash
Quotes in bash can be used to prevent special characters from being interpreted and

instead be interpreted as their literal value. For example, we echo the following symbols

which would otherwise cause an error without the quotes:

Chapter 4 Scripts and Pipes

http://www.google.com

85

echo '$ & * ; |.'

By surrounding these special charachters with quotes, we cause them to take on

their literal meaning.

Double quotes are similar to single quotes but still allow for the processing of dollar

signs, back quotes, and backslashes. In the following example, the variable in double

quotes will be expanded while the one in single quotes will not be:

greeting=hello

echo '$greeting world'

echo "$greeting world"

Another example of this is how spaces are interpreted; consider the following two

commands:

touch hello world

touch “hello world”

As the space is the default delimiter in bash, the first command will process the input as

two separate arguments, whereas the one using quotes will treat the input a single file name.

�Command Substitution Using Backtick
The backtick or back quote is completely different from both single and double quotes.

Instead of preventing interpretation of special characters, the backtick causes the

enclosed text to be interpreted before evaluation.

To demonstrate, we’ll be making use of the following command which pipes an

addition statement into bc to generate a number:

echo 5 + 5 | bc

The preceding code will output the number 10. Now let’s say we want to make use of

this command in a larger command. For example, we’ll use the result of this command

as the name of a file to create.

touch /tmp/`echo 5 + 5 | bc`

In the preceding example, the command enclosed in backticks will be interpreted

before anything else. Once the backticks are interpreted, the command will be run as

touch /tmp/10

Chapter 4 Scripts and Pipes

86

This can be useful when you have a dynamic process for generating a filename or

some other aspect of your script.

�Defining Functions
If you’re writing a script, you may want to define a block of code as a reusable function.

This is useful when you’ll be using the same piece of code in multiple places throughout

your script (programming concept DRY, short for don’t repeat yourself). By wrapping

some functionality as a named function, you can avoid rewriting the same code and also

updating in multiple locations if you decide to change the code used.

Creating functions is fairly easy in bash. We’ll create a very minimal example to

stay with. To start we’ll create a function called greet which takes a name as input and

outputs “hello” plus the name.

greet() {

 echo hello $1

}

With the preceding code defined, we can now run

greet David

This will pass the input “David” to echo hello $1 within our greet function. Note

that variables passed into functions are not named but rather specified by the order

they’re input. If we wanted to process a second argument, we’d add it as $2 and a third

would be $3 and so on.

The lack of named parameters isn’t the only missing feature in bash. Another thing

people with experience in other languages expect to find while writing functions is the

ability to return a value from a function. Unfortunately, there is no return keyword that

can be used inside a function like you might expect. As a way around this, you can define

a variable inside the function and use it outside the function. To demonstrate this, we’ll

create a random time generator which could be used as part of a testing script.

Note  We’ll use the shuf command for generating random numbers. You don’t
need to worry about installing it as it’s GNU Coreutils and present on nearly all
Linux systems.

Chapter 4 Scripts and Pipes

87

random_time() {

 hour=$(shuf -i 0-12 -n 1)

 min=$(shuf -i 0-60 -n 1)

 hour=$(printf %02d $hour)

 min=$(printf %02d $min)

 r_time=$min:$hour

}

With our random time-generating function defined, let’s run it and echo the results.

We’ll do this twice to make sure we get a different value each time.

random_time

echo $r_time

random_time

echo $r_time

�Source Code from a File
If you’re coming from another programming language, you’re probably used to

importing source code from external files. Importing is relatively simple. Let’s say we’ve

saved our random_time function from the previous section as random.sh. First take the

random_time function from the previous section where we define and save it as a script

file called random_time.sh. Be sure to include a shebang on the first line (example

further down in this section for reference), and after saving run chmod +x on it.

Now that we have our random_time function saved as random_time.sh, we’ll make

use of it in another file in the same directory. To do this, create a new script file called

sourcing.sh; include the code shown here:

#!/usr/bin/env bash

source random_time.sh

random_time

echo r_time

If you’re not in the same directory as the random_time.sh file, make sure to use the

full path. Once the file is imported, you can make use of any variables or functions which

are defined in the file.

Chapter 4 Scripts and Pipes

88

�Summary
In this chapter, we started by looking at pipes and redirects which can be used for gluing

different Unix utilities and commands together, either through processing outputs

directly or saving to files.

Then we looked at various aspects of bash scripting syntax including conditional

expressions, functions, quotes, and importing files.

Chapter 4 Scripts and Pipes

89
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_5

CHAPTER 5

Using SSH
In this chapter, we’ll look at SSH (Secure Shell). SSH is one of the most commonly used

tools in system administration. It allows you to connect to a remote server or device

through an encrypted connection. It’s also the basis for other programs which are built

on top of SSH, for example, X2Go which is a Linux equivalent to RDP (remote desktop

protocol) clients like VNC.

SSH can also be used for file transfer in a way similar to FTP (File Transfer Protocol)

by using the SFTP (Secure File Transfer Protocol) command (more on this in the next

chapter).

In some cases, SSH is simply used as a means to proxy traffic to hide the location or

IP address of a user or script. This can be done with SSH tunnels and SOCKS proxies.

�History of SSH
While SSH only dates back to 1995, it actually builds on early programs like telnet

dating back to 1969. This is hinted at by the fact that SSH by default listens on port 22,

only one away from port 23 used by telnet. Historically, almost all Linux systems were

used through a system of time sharing in which a central computer could be connected

to via several different text-based terminals. These text-based terminals didn’t include

anything besides the software needed to remotely connect to the central computer.

This history has had a large influence on the Linux operating system. This is evident

in the fact that text-based tools like SSH are still widely used, allowing multiple users to

connect to a server to run jobs, access data, and manage systems.

The major flaw with earlier programs like telnet, short for teletype network, is that

they lacked security. With telnet communications between the client and server are

completely unencrypted clear text (including any passwords). Two-way encryption

and more advanced security features allowed SSH to quickly overcome earlier tools like

telnet in popularity.

https://doi.org/10.1007/978-1-4842-6035-7_5#DOI

90

While telnet has nearly been completely replaced by SSH, there are still some fun services

which are online today including a recreation of Star Wars in ASCII, online text-based chess

over telnet, and a service for checking weather over telnet.

telnet towel.blinkenlights.nl

telnet freechess.org 5000

telnet rainmaker.wunderground.com

Figure 5-1 shows an opening text-based animation from towel.blinkenlights.nl.

�Basic SSH Use
The most important command you’ll want to be familiar with for connecting to servers is

SSH. SSH is the program used to remotely connect to servers, computers, and embedded

devices. It provides a secure encrypted connection to a server or device and is widely

used. When it comes to remotely managing servers, there is really no alternative to SSH,

besides possibly vendor-specific management dashboards which are extremely limited.

Figure 5-1.  Text-based recreation of Star Wars over telnet

Chapter 5 Using SSH

91

To check if your system has SSH preinstalled, try running

which ssh

If you get back a file location for an ssh file, you’re good to go. Otherwise go ahead

and install it:

sudo apt-get install ssh

If you already have a server or device running which is opening for connections, it

will be as simple as running

ssh <username>@<address>

After which you’ll be prompted to enter your password.

�Keypairs with ssh-keygen
If you’ve successfully logged in to a server or device using SSH and password, one of the

first things you’ll want to do is switch to using public key authentication. There are two

major benefits:

•	 Keypairs are considered more secure than passwords.

•	 Keypairs are more convenient as they eliminate the need for

passwords.

A keypair is a set of two parts – firstly the private key which will remain on your

computer and should never be shared and secondly a public key which can be shared

publicly and used to sign requests which anyone with the public key can verify came

from you.

To get started creating a keypair, first run

ssh-keygen

You’ll be prompted to choose a passphrase; this is optional. The passphrase is simply

used to encrypt your private key locally. That way if someone gets access to your laptop

and private key, they won’t be able to read it, assuming you choose a strong passphrase.

If you’ve followed these instructions correctly, you should get some output which

looks like that shown in Figure 5-2.

Chapter 5 Using SSH

92

Next we’ll copy our new public key to our remote SSH server/device; SSH has a built-

in command to make this easy:

ssh-copy-id <username>@<address>

You’ll again be prompted for password to log in to the server. Once this command

successfully runs, you’ll be able to log in to the server automatically without using the

server password. However, if you choose a passphrase to encrypt your private key, you

will need to enter this before making use of the key.

�PEM and Other Key Files
In some cases, servers may make use of PEM files, short for Privacy-Enhanced Mail. A popular

example is Amazon EC2 servers. These keys are specified using the -i flag, for example:

ssh -i <pem-file-location> <username>@<address>

An alternative to using the -i flag is to add your key to the session with ssh-add, for

example:

ssh-add <pem-file-location>

Figure 5-2.  Output from ssh-keygen

Chapter 5 Using SSH

93

This will add the key file to the authentication agent. It will remain active until SSH is

restarted, which mainly happens when the computer is restarted.

The preceding methods are not specific to PEM files but can be used with any key file

which is required by an SSH server. Others include PPY, short for Putty Private Key, or

.pub files, short for public key.

�Disable Password Login on Server
We mentioned that one of the main benefits of using an ssh keypair is that it is more secure

than password authentication. To gain the benefit of this added security, you’ll have to

disable password logins on the server. When you first add the keypair, the server will allow

login with either of the two methods. As keypair is more secure, it is recommended that

you turn off the ability to use passwords to avoid any type of brute-force attacks.

Firstly, connect to the server using SSH. Then you’ll need to find the file /

etc/ssh/sshd_config. Open sshd_config and modify the line which mentions

ChallengeResponseAuthentication; you’ll need to ensure it is set to no like the

following:

ChallengeResponseAuthentication no

Secondly, in the same file, find the line mentioning PasswordAuthentication and

set it to no:

PasswordAuthentication no

These two settings will ensure the passwords can’t be used to log in to the server.

For this reason, it is very important you ensure that public key authentication is working

correctly before changing the values. Otherwise you may find yourself completely locked

out of the server.

Finally, there is one last step which is to have the SSH server reload the settings

which have been changed so they can take effect. To do that, run the command:

service sshd restart

This last step of restarting your SSH server is worth noting as it isn’t specific to this

setting. Whenever you make any change to your SSH configuration, you’ll need to restart

the service on the server for those changes to take effect.

Chapter 5 Using SSH

94

�Server Nicknames with SSH Config File
Another handy tip to make SSH a bit easier is to create a client-side SSH config file. You

can use this to create default username, server IP, and authentication key file for each

server you regularly log in to. This becomes particularly useful when you often have to

switch between multiple servers or devices.

The first thing you need to do is create the SSH config file, which should be located at

~/.ssh/config:

touch ~/.ssh/config

Next you’ll need to make sure it has the correct permissions:

chmod 600 ~/.ssh/config

With this done, you can open up the config file and create an entry for each one of

your servers. As an example, I’ll use an AWS server I’m currently using:

Host aws

 Hostname ec2-35-174-116-189.compute-1.amazonaws.com

 User ubuntu

Now instead of specifying the whole hostname and user, I could do

ssh -i ~/.ssh/file.pem aws

You may not need the -i ~/.ssh/file.pem, depending on whether your server

requires an identity file. Key file types .pub or .ppk can also be used with -i.

We can simplify this further by adding the identity file to our config:

Host aws

 Hostname ec2-35-174-116-189.compute-1.amazonaws.com

 User ubuntu

 IdentityFile ~/.ssh/file.pem

Now we can simply do

ssh aws

To add entries for multiple servers, simply add additional blocks below in the

config file. This makes connecting to different servers a lot easier as you don’t need to

remember the server address for each.

Chapter 5 Using SSH

95

Note T he IdentityFile can also be used to specify the RSA key for public/
private key login. Though by default the value will be ~/.ssh/id_rsa. So if you’re
using the default location for your key, you don’t need to add it.

�Run a Command on Connection
Sometimes you just want to connect to a server to run a single command. Often this will

be related to having to perform some fix on several similar devices or servers in a row. In

one instance, a company I worked at had several devices which had a bug which broke

our configuration management setup. The fix was to simply remove a lock file on each of

these devices. We were able to quickly fix them all by creating a for loop that took the IP

of each device, connected, and then run the needed command.

Note I f you often find yourself having to connect to multiple systems to run the
same command, modify a configuration, or update a program, you’ll want to check
out the program Ansible, a lightweight open source program for simultaneously
making the same change on several machines. Ansible is built on top of SSH, so
when you write a configuration to send to multiple devices, it’s actually connecting
over SSH and running commands under the hood. Other popular alternatives to
Ansible include Puppet, Chef, and Salt.

To do this, all you have to do is supply a command in quotes at the end of your ssh

command, for example:

ssh user@server.com "touch /tmp/testing123"

After connecting you’ll almost immediately be disconnected and return to your local

machines command line, as shown in Figure 5-3.

Figure 5-3.  Specifying a command to run on SSH connection

Chapter 5 Using SSH

96

If you want to run a command on connection but don’t want to disconnect

immediately, you can modify the command run on connection to start a bash session:

ssh user@server.com "touch /tmp/testing123; bash"

This will run the command and then put you in a bash session, without disconnecting.

�Break a Hanging SSH Session
A common issue that can occur when using SSH is that you leave a session running in the

background or another window, and when you return, it is completely frozen. Connection

issues can also be a common cause of an SSH session hanging. When a client loses its

connection to the server, it will hang until the server reconnects. You might think to try

pressing ctrl+c, or ctrl+d, but even this won’t end the frozen SSH session.

When this happens, the easiest way to escape the session is to press enter followed

by ~ and then .. Doing so should exit the session and return a message like

Connection to yourServer.com closed.

This combination of keys is the most well known escape sequence, but it’s not the

only one. If you instead press enter, ~, then ?, you’ll get back a list of all supported escape

sequences which include the ones in Table 5-1.

Table 5-1.  List of escape sequences

Sequence Description

~. Terminate connection (and any multiplexed sessions)

~B Send a BREAK to the remote system

~C Open a command line

~R Request rekey

~V/v Decrease/increase verbosity (LogLevel)

~^Z Suspend ssh

~# List forwarded connections

~& Background ssh (when waiting for connections to terminate)

~? List all sequences

~~ Send the escape character by typing it twice

Chapter 5 Using SSH

97

In most cases, you’ll mainly want to use the regular ~., unless of course you just

entered a newline and you really did want to type the ~ character; in that case, just tap

it a second time. Also note that the ~ will only be read as an escape sequence if it’s the

first character on a line; if you’re already partway into a line, you’ll need to press enter or

clear the input first.

�stty sane
Sometimes when you have to break connection, or if you ever have to connect to a device

using a serial port with a program like minicom or sometimes even SSH, you’ll have

the terminal window glitch as shown in Figure 5-4. When this type of glitch happens,

the characters you type may not appear as you expect. This can result in unexpected

behavior, having chunks of the terminal screen unreadable or simply not looking right.

Figure 5-4.  ASCII garble glitch (aka mojibake) in terminal

Chapter 5 Using SSH

98

Or you might not be getting ASCII-type characters like in the figure, but your spacing

is off and the terminal is generally not acting as expected; see Figure 5-5 for the type of

strange spacing that can occur.

If either of these glitches or anything visual in nature happens, you can use the stty

sane to fix your terminal without having to close and reopen. Simply run

stty sane

Another command that will work in this situation is reset, which is run stand-alone

without any arguments (not to be confused with reboot, which will restart the system).

reset

�Stop SSH Hanging
It’s great being able to disconnect from a hanging SSH session, but it’s even better when

you can avoid it from happening altogether. Depending on your system, this might not

be a problem by default, but it is possible to change the ServerAliveInterval setting in

your client’s /etc/ssh/ssh_config file.

This setting tells the client how often to send a signal to the server which confirms

that you’re still connected and using the connection. Add the following lines if you don’t

already see an instance of ServerAliveInterval in your file:

Host *

ServerAliveInterval 100

Figure 5-5.  Visual spacing glitch

Chapter 5 Using SSH

99

You’ll have to edit the same file, /etc/ssh/sshd_config, on the server you’re having

issues with:

ClientAliveInterval 60

TCPKeepAlive yes

ClientAliveCountMax 10000

This tells the server to send a keep alive message to the client every 60 seconds if

nothing is received to keep the session alive. TCPKeepAlive ensures firewalls don’t drop

idle connections, and ClientAliveCountMax specifies how long the server will keep

sending keep alive messages even without hearing anything from the client.

�SSH Tunneling
SSH tunneling is the process of forwarding a port on one computer to a remote machine via

SSH. There are several uses for SSH tunneling which we’ll go over in the following sections.

�Local SSH Tunnel
One of the simplest SSH tunnels is a local tunnel which binds a local port to an address

on a remote machine. For example, we can bind our local port 8080 to a website which is

accessed through a remote machine using the -L flag:

ssh -L 8080:textfiles.com:80 user@server.com

At the time of writing, this works great on the website textfiles.com (an interesting

piece of Internet history. Check out Jason Scott’s Defcon 17 talk for the story behind it).

Unfortunately, depending on the website you want to tunnel, it may or may not work.

Modern server software like nginx will actually check the hostname being used in your

browser and not work due to the mismatch.

In some cases websites won’t work over tunnel because they check what URL the

browser is using and will malfunction when ‘localhost’ is used. This is the case for most

popular web apps like Youtube. If you want to tunnel a website that doesn’t work you can

either map that URL to your own server’s IP by updating /etc/hosts or you can send a

false header which says your hostname is actually the intended website. You may need

to install curl depending on your OS.

sudo apt-get install curl

Chapter 5 Using SSH

100

Below is an example of using curl to manually set the host header with the -H flag:

curl -H "Host: youtube.com" -L localhost:8080

This should return the source code for YouTube. If you want a more practical way to

use an SSH tunnel for web browsing, we provide a better solution in the next section on

SOCKS proxy.

While this example shows us how a local SSH tunnel works, it doesn’t exactly show

why it might be used. For anything browsing related, the SOCKS proxy method shown in

the next section would be preferred.

SSH tunneling comes in handy when you want to make a service that’s running

on a server accessible via SSH. This is a particularly secure way to serve a web service

intended for a small group without having to worry about a lot of security issues. As the

website is only available to those accessing it through SSH on port 22, there is no threat

of attacks that might be able to target a publicly facing login page.

�Create a SOCKS Proxy with SSH
SSH is great for connecting to remote servers and devices, but it can actually be used for

all sorts of things. One of those things is to create a SOCKS proxy connection that can be

used to direct traffic on a local computer, when using applications like web browsers.

SOCKS proxy has most of the benefits associated with using a VPN (virtual private

network) including

•	 Anonymous web browsing

•	 Bypass geolocation blocking

•	 Bypass website blocking on local network or from ISP

•	 Faster than a VPN

Keep in mind the first benefit “anonymous web browsing” is only going to be partially

true depending on who you plan to be anonymous from and the server you’re using to

proxy traffic through. If you’re trying to hide your identity from the government and you’re

using a server which is registered under your name, this might not be effective.

However, from the perspective of a website that you’re visiting, they’ll only see the IP

address of your end server. They may see, for example, that the traffic came from an AWS

server located in eastern USA.

Chapter 5 Using SSH

101

Another caveat to keep in mind when using your own server as a SOCKS proxy is

that some server provider IPs may be tagged as such and limited by some services and

websites. This is due to the fact that many automated scripts and malicious services

originate from these types of servers. If you’re using a server from a smaller hosting

provider, you might bypass this type of issue.

To get started, simply run the following, substituting the username and host for your

own:

ssh -D 8123 -f -C -q -N user@server.com

The flags included here are shown in Table 5-2.

Table 5-2.  Flags used

Flag Description

-D 8123 Bind connection to port 8123

-f Fork process to background

-C Compress data before sending

-q Quiet mode

-N Do not execute a remote command

If this runs without error, you should have SOCKS proxy listening on port 8123 (feel

free to substitute the port number with another). We can double check using ps and grep:

ps aux | grep ssh

If running you should see the command you ran listed as a running process. Using

the proxy will depend on the specific application you’re using. As an example, we’ll look

at Firefox. In Firefox open preferences and then scroll down to “Network Settings.” In

network settings, shown in Figure 5-6, you can configure “manual proxy configuration”

using “localhost” with your chosen port as SOCKS host.

Chapter 5 Using SSH

102

After updating your proxy on Firefox and saving, you’ll want to verify that it’s working

as expected. To do this, you’ll want to find a website that checks your IP. My preferred

method is going to www.duckduckgo.com (privacy-oriented search engine) and searching

for “what is my ip.” Doing this should show your IP address and location, as shown in

Figure 5-7, without having to click through to any third-party website.

�Reverse SSH Tunnel
SSH is a great tool for connecting to remote servers and devices, but sometimes firewalls

and routers can get in the way. For example, if you have a Raspberry Pi running a Linux

server at home and want to SSH into it from outside your local network, you’ll likely have

trouble due to restrictions from both routers and Internet providers.

Figure 5-6.  Setting up web browser to use SOCKS proxy

Figure 5-7.  DuckDuckGo showing the IP of our remote SSH server

Chapter 5 Using SSH

http://www.duckduckgo.com

103

A great way around this is creating a reverse SSH tunnel. A reverse SSH tunnel relies

on the device in question to maintain an active outgoing connection. For example, our

Raspberry Pi would continually remain connected to our remote server. Since it’s the Pi

which has restrictions for incoming connections and not the other way around, there are

no issues with the Pi making an outgoing connection.

When we’re ready to SSH into the Pi, we actually create our connection within

the tunnel which is the Pi’s outgoing connection. Thus, the Pi receives an incoming

connection within its own outgoing connection.

To set up a reverse SSH tunnel, first open a terminal session on the server in

question; in this case, our Raspberry Pi behind a firewall. Run the following:

ssh -R 9876:localhost:22 user@server.com

The -R flag creates a smaller tunnel within the tunnel which is the main SSH

connection; the -R standing for remote as tunnel entry point is on the remote machine;

this is similar to the -L flag except the -L flag has the entry point on the local side.

Also note that we’ve selected port 9876 to be where the inner tunnel that enters on

the remote end will end up on our local side. Feel free to swap port 9876 with any unused

port on your device.

Once you’re ready to connect to your device that’s running the reverse proxy, just

use SSH as you normally would but specify the port used in the previous step. So in our

example, we’d use the following command:

ssh -p 9876 user@server.com

�Serving a Website over Reverse Proxy
This type of SSH tunneling is the basis for the popular development tool ngrok. Ngrok allows

developers to instantly publish a web application that’s running on their local machine on a

web URL for anyone to see. You can do the same thing using your own web server.

To demonstrate first we’ll create a minimal site running on port 8080. If you’re

running a recent version of Ubuntu, you should have python3 installed by default;

otherwise you’ll need to install it.

cd /tmp

echo Hello World > index.html

python3 -m http.server 8080

Chapter 5 Using SSH

104

After running these three lines, you will be able to go to localhost:8080 in your web

browser and see the text “Hello World.” With our small site running on port 8080, we can

now run the following command:

ssh -R 8080:localhost:8080 user@myServer.com

This will mirror port 8080 on our local machine to port 8080 on the remote server,

thus allowing us to make our localhost website available to demo on a live IP.

�SSH Proxy Jump
Sometimes you don’t want to connect to an SSH server directly. There are two main

reasons you might want to use a jump box:

•	 Reduce security risks by only allowing connections to the final

destination server from certain IPs or on a nonpublic network.

•	 You don’t want the final destination server to log your actual IP

address.

In the first scenario, your destination server might not be available on the public

Internet. In this case, the jump box acts as a DMZ (demilitarized zone) from which you

can connect. This means the protected box is completly hidden from port scanners or

any kind of malicious scripts scanning the open Internet.

You can make use of a jump server using the -J flag like the following:

ssh -J user@server1.com user@server2.com

Making use of SSH config file will come in handy when using a jump server as you

don’t have the ability to specify an identity file to the jump server directly using the -i

flag, but if you’re using an SSH config file as described in this chapter, you can define the

identity file there.

If your situation is more in line with trying to hide your origin, you might even want

to use a series of jump servers. With multiple jump servers, even the jump server which

connects to the destination server won’t know your IP. You can use multiple jump

servers by providing multiple separated by a comma:

ssh -J user@jump1.com,user@jump2.com user@server.com

Chapter 5 Using SSH

105

�Change Default Port on SSH Server
There are a few reasons you might want to change the default port for your SSH server –

if you know you’ll be connecting to the server from a network which restricts outgoing

connections to anything other than port 80 or 443.

Or if you’ll be using password authentication and you want to lower the chances of

your server being found by crawlers who may attempt a brute-force attack, in this case,

use an uncommon port like 79279. If you’re unsure if the random port you choose is

uncommon, you can check using nmap. nmap isn’t installed by default so you’ll have to

install it with your package manager:

sudo apt-get install nmap

Once ‘nmap’ is installed use the following command:

nmap --top-ports 1000 localhost -v -oG -

This will return a list of the 1000 most popular ports which you can reference to see

if your port matches.

�Open Firewall
Before changing the port, it’s important to make sure you don’t have a firewall or some

other configuration that would block incoming traffic. To check if you have a firewall

enabled, run

sudo ufw status

If ufw is running, you may need to configure it to accept traffic from your desired

port. If it’s not running, you still may need to deal with your cloud provider security

settings. For example, Amazon AWS security instances have security rules which are set

up outside the server itself, within their security group rules. Many other cloud providers

follow the same model, leaving only port 22 open (possibly also port 80 and 443) to make

servers secure by default. Check with your server provider to see if additional steps are

required to allow port access.

If ufw is running, you can tell it to allow your port by running

sudo ufw allow <port-number>

Chapter 5 Using SSH

106

�Modify sshd_config
The settings for an SSH server can be modified by editing the file /etc/ssh/sshd_

config. Before changing the port on a live server make sure you are certain the port

is accessible. If you change the port to one which is blocking incoming requests it’s

possible that can lock yourself out of the server. To change the default port, simply find

the commented line that looks like

#Port 22

Uncomment the line and switch 22 with your chosen port:

Port 7929

Note T he default port for an SSH server can also be specified in your client-side
SSH config file, so that you don’t need to specify it with the -p flag when you connect
to the server.

After updating the file, you need to restart the SSH service:

sudo service ssh restart

�Summary
In this chapter, we looked at how to remotely connect to a server or device using SSH

and some common configurations. These configurations include turning off password

login to use keypair instead, switching default port, and stopping hanging by modifying

keep alive settings. We looked at SSH tunnelings and common uses like creating SOCKS

proxy.

While the list is hardly comprehensive of all the places and ways SSH is used, it is a

good foundation for being able to connect to remote servers with some commonly used

settings.

Chapter 5 Using SSH

107
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_6

CHAPTER 6

File Transfer
In this chapter, we’re going to look at various programs for transferring files between

machines.

�FTP
One of the most common protocols to transfer files is FTP (File Transfer Protocol). To

get started using FTP, you should install lftp, a sophisticated file transfer program. This

program is primarily used for FTP but can also be used for other protocols:

sudo apt-get install lftp

With lftp installed, you can enter interactive mode using

lftp

This will open up an interactive shell where you can run lftp-specific commands. It

should look similar to Figure 6-1.

The lftp shell acts much like the normal bash shell giving you access to several

commands like ls and cd. You also gain additional commands. To view the commands

available to you, simply enter ? and press enter.

The most important command to know is connect, which is simply used as

connect -u <username> <server-address>

Figure 6-1.  lftp interactive mode

https://doi.org/10.1007/978-1-4842-6035-7_6#DOI

108

After this, you’ll be prompted for a password. Once connected, you can download

files using

get <file-name>

Or upload using

put <file-name>

Note  If you’re looking for FTP servers to practice with and don’t want to set
up your own FTP server, using a Google dork for finding unsecured FTP servers
can be useful. A Google dork is a search term used to find a specific application
or unsecured website using a search term. A good one for finding FTP servers is
intitle:"index of" inurl:ftp.

�SFTP

Note  When it comes to both SFTP and SCP (next section), you can actually test
these commands on your localhost, instead of specifying a remote server. Just use
localhost with your username. Of course going from localhost to localhost doesn’t
provide any additional benefits over a command like mv, but it does allow you to
test these commands without having a remote server setup.

You’re likely familiar with FTP, short for File Transfer Protocol. It’s often used with GUI

programs like FileZilla for uploading and downloading files to a server. At the height of PHP’s

popularity, updating the www directory of your server using FileZilla was standard practice.

While programs like FileZilla are still widely used, those programs now make use

of a new secure version of FTP called FTPS. FTP has a major weakness which allows an

attacker to sniff traffic to the FTP server and obtain user credentials, when those users

connect to the server.

Another popular and easy-to-use alternative to FTP is SFTP. SFTP enables file

transfer that looks and feels like FTP but over port 22, the same port used for SSH

Chapter 6 File Transfer

109

sessions. If you’re already using SSH with your server, you should have no problems

using SFTP to connect to it. It doesn’t require any additional software installation on the

server or connecting client. Most installations of SSH should include SFTP, except in rare

instances of lightweight builds.

To get started, simply take the command you’re already using to connect to your

server via ssh and use sftp instead, for example:

sftp ubuntu@myserver.com

Or if you’re using a PEM file for authentication as is common with AWS servers, use

sftp -i ~/.ssh/key.pem ubuntu@myserver.com

One thing to note before connecting is that the directory where you connect from

will be the directory which you intend to download or upload from.

Once logged in to the server, you’ll be able to use some of the commands normally

available in an ssh session, but not all of them. Most importantly, you’ll be able to

navigate through your filesystem using ls and cd (just like with FTP).

In the case that you want to download a file, navigate to the folder in question and

use the get command:

get readme.txt

If everything is working as expected, you should see some output confirming the

download like shown in Figure 6-2.

Figure 6-2.  Using lftp to get a file from a remote server

Chapter 6 File Transfer

110

From that point, break the sftp connection by pressing ctrl+c. Once back on your

local machine, run ls and you should see the downloaded file.

The other function you’ll likely want to make use of for uploading files is put.

Again as with get, navigate to the folder containing the file you want to upload before

connecting over sftp. Then connect with sftp; once on the server, navigate to where you

want to upload the file. Type in put , be sure to include the space after put, then press

tab. Pressing tab after put should show you a list of files in the directory. In Figure 6-3,

you can see image files for bird, cat, and dog.

From this point, I can simply finish typing one of the three options, or if you realize

you’re in the wrong folder, you can start typing in an alternative path, for example, ../ or

/, and then press tab again to assist in finding the file you want to upload.

Note  In the Chapter 5, we looked at creating an ~/.ssh/config file to create
shortcuts that include the server, username, and other options. This same config
file will also work with both SFTP and SCP.

�SCP
SCP, short for secure copy protocol, is another file protocol that usually ships with SSH. The

functionality is similar to SFTP, but it does not have the interactive aspects. An upload or

download with SCP has to be declared all in a single command, rather than first connecting

to a machine and then being able to navigate directories.

Overall it would seem SCP is worse than SFTP given it offers no extra features and

is less interactive. However, SCP offers the advantage of being faster than SFTP for file

transfer. For small to medium files, this may go unnoticed, but if you’re moving a large

file, you may decide to go with SCP instead of SFTP. You might also consider using SCP

Figure 6-3.  Using autocomplete to see what files can be put

Chapter 6 File Transfer

111

if you’re transferring files as part of a script, and interactive mode would actually be a

hindrance rather than a benefit.

To download a file from a server, simply run scp followed by the username@

serverName, then :/file/location (without spaces), and then as the second argument

the path of where you want to save the file on your local machine, for example:

scp ubuntu@myserver.com:/tmp/myFile.txt ./

Many of the flags which work on ssh and sftp will also work with scp – for example,

if you need to use a PEM file to log in to your server:

scp -i ~/.ssh/mykey.pem ubuntu@myserver.com:/tmp/myFile.txt ./

If you instead need to upload a file to a server, just switch the order of the paths:

scp ./ ubuntu@myserver.com:/tmp/myFile.txt

�Rsync

Note  If you’re using a password to log in to your server, you’ll need to set up
public key authentication, as described in Chapter 5, section “Keypairs with ssh-
keygen.” Aside from having SSH setup, the only thing your remote server will need
installed is rsync.

Rsync is another tool for uploading and downloading files on Linux systems, but it functions

more like an automatic backup system similar to the service offered by Dropbox. After setup,

it will monitor a target folder on one system, and if any files are added or changed, they’ll be

synced to a remote server. This is handy because unlike some custom backup scripts, it will

only save files which are new or changed, as opposed to an scp command that runs on a

regular interval backing up a folder.

To get started, install rsync:

sudo apt-get install rsync

To use the program, you’ll need to run the following command:

rsync -r --progress \

 ~/backup ubuntu@<myserver.com>:/home/ubuntu/backup

Chapter 6 File Transfer

112

In the preceding command, we are first specifying our local folder ~/backup which is

the folder we want to be backed up. After the folder, we specify the username and server

ubuntu@<myserver.com> which you’ll replace with the information of your server. Then

without a space, we have :/home/ubuntu/back which is the folder location where we’ll

be backing files up to.

While we’re specifying our local folder first, that isn’t a requirement. If we instead

wanted to back up the remote server to a local folder, we would just swap the order of the

arguments and instead run the following command:

rsync -r --progress \

 ubuntu@<myserver.com>:/home/ubuntu/backup ~/backup

The optional flags we’re using are -r which causes folders to be backed up

recursively and --progress which provides some visual feedback about how far through

the backup process you are.

If you’re using an identity file, you’ll need to use the -e flag and specify the specific

SSH command used to start the session. We’re using the example of adding an identity

file, but if you want to modify the SSH in any way, you can make use of the -e flag.

However, in some cases, such as changing the port used for SSH by the remote server,

rsync provides its own flag --port (as always you can check the man page for a complete

list of options).

rsync -r --progress \

 -e "ssh -i /home/philip/.ssh/key.pem" \

 ~/backup ubuntu@myserver.com:/home/ubuntu/backup

As mentioned we’re making use of the -r flag. Without the -r option, files inside

folders will not be backed up. There are several options to be used with rsync; some of

the most common ones are listed in Table 6-1.

Chapter 6 File Transfer

113

�Set Up Cron Job for Rsync
We’ve seen how easy it is to back up a whole folder or group of folders using rsync, but

it’s not quite automatic yet. To make life a bit easier, we can create a cron job to automate

the process of calling the command at a regular interval.

To do this, we’ll create a cron job, but first let’s move our backup command in a script

file. You can create the file in any location you like; one common location for custom

scripts is /usr/local/bin/. Open up your script file, in our case we’ll use /usr/local/

bin/backup.sh, add a shebang, and paste in the rsync command specific to your server

and backup folder location:

#!/usr/bin/env bash

rsync -r --progress \

 ~/backup ubuntu@myserver.com:/home/ubuntu/backup

Table 6-1.  Common rsync options

Short Flag Full Flag Description

-v --verbose More detailed output

-q --quiet No text output

-a --archive Archive files while syncing

-r --recursive Sync directories recursively

-b --backup Make backup

-u --update Don’t copy files if destination is newer

-l --links Copy symlinks

-n --dry-run Trial run

-e -rsh=“command” Specify remote shell command

-z --compress Compress data during sync

-h --human-readable Sizes in human-readable format

--progress Show progress during sync

Chapter 6 File Transfer

114

Make sure to substitute the user, server, and folders to your specific setup. If you want

to back up multiple folders, you can add additional rsync commands below the first one.

After saving, be sure to add the execution permission to your new file:

chmod +x /usr/local/bin/backup.sh

Finally, we’ll create our cron job by running crontab -e and at the bottom of the file

adding

0 0 * * * /usr/local/bin/backup.sh

With this set, your system should back itself up at midnight everyday.

�Two-Way Sync with Unison
We’ve seen how rsync can make backing up from one machine to another easy, but this isn’t

quite the same as popular services like Dropbox, which provide two-way synchronization. If

you need to synchronize files in two ways, the program to check out is unison which is built

on top of rsync but provides two-way synchronization.

Make sure to install unison on both machines you want to synchronize:

sudo apt-get install unison

As there is no option to specify a .pem key with unison, you’ll have to just add it to

ssh and let ssh provide it when needed. You can do this by running (you’ll have to run

this step every time your system restarts)

ssh-add <path/to/file.pem>

With this done, you’re ready to run unison:

unison -auto -batch \

 ~/backup \

 ssh://ubuntu@server.com//home/ubuntu/backup/

The -auto and -batch flags are recommended to make the process automated;

without them you’ll be manually asked to verify each file which is synchronized.

Chapter 6 File Transfer

115

�Automatically Sync When File Changed with Unison

Unfortunately, the version of unison which is available on some package managers

including Ubuntu’s does not include the companion binary unison-fsmonitor which

monitors the filesystem. This leaves you with two options:

	 1.	 Use a cron job to check at a regular interval as we did with rsync.

	 2.	 Manually compile unison from source code.

If you want to go with the simple method of using cron, simply refer to the last section

about rsync and replace the rsync command in backup.sh with a unison command;

you might also want to increase the frequency of the cron job. If you want to compile

from source to get the ability to automatically sync instantly when a file is changed, keep

reading and we’ll walk through the steps needed to compile from source. To avoid any

errors make sure to have the same version of rsync on both machines synced.

First off, we’ll need to uninstall the package manager version of unison and install

ocaml which is the language that unison is written in:

sudo apt-get remove unison

sudo apt-get install ocaml

Next go to https://github.com/bcpierce00/unison/releases and take note of

the latest available version. At the time of writing, it’s 2.51.2. Take whatever the version

number is and set an environment variable, as we’ll use it multiple times:

UNISON_VERSION=2.51.2

With the version number set, run the following series of commands; notice we make

use of the environment variable we set for version number:

wget \

 github.com/bcpierce00/unison/archive/v$UNISON_VERSION.tar.gz

tar -xzvf v$UNISON_VERSION.tar.gz

rm v$UNISON_VERSION.tar.gz

pushd unison-$UNISON_VERSION

make

sudo cp -t /usr/local/bin ./src/unison ./src/unison-fsmonitor

popd

rm -rf unison-$UNISON_VERSION

Chapter 6 File Transfer

https://github.com/bcpierce00/unison/releases

116

You’ll need to run the preceding steps on uninstalling, building, and installing

unison on both servers you want to sync. Once you’ve done that, you can run the

following command on one of the two servers:

unison -batch -auto ~/backup \

 ssh://ubuntu@server.com//home/ubuntu/backup/ \

 -repeat watch

With this running, you can try creating a file in the backup directory on either server

and see the file get synced.

Note  When setting up unison, be careful not to back up two home directories to
each other. During testing, we found that after each backup using home folders, a
log file would be updated, itself triggering another backup, causing an infinite loop.

�Unison Settings File

As mentioned in our note, we ran into a bug trying to create backup between two home

directories due to log files. However, if desired it is possible to modify the location of

unison log files and many other aspects of how the program operates. The settings

for unison are specified in the file .unison/default.prf. If we wanted to change the

location of our logs, we could add the following line.

logfile = /tmp/unison.log

Other options that can be set include things like ignoring certain file types; see an

example of ignoring mp4 files here:

ignore = Name *.mp4

For additional information on what can be configured on unison, see the official

documentation at www.cis.upenn.edu/~bcpierce/unison/docs.html.

�Create a Service to Keep Unison Running

While we’ve got the two-way sync automatically working on both servers, there are still a

few problems. Firstly, you’re forced to keep a terminal window running with unison, and

secondly it will turn off if you restart your computer.

Chapter 6 File Transfer

https://www.cis.upenn.edu/~bcpierce/unison/docs.html

117

As a solution to these two problems, we’re going to create a systemd service which

will turn unison on at startup and ensure it keeps running, so that your folders are always

synced without you having to run commands or think about it.

The first thing we’re going to do is move all our command-line arguments used when

calling unison and convert them into a unison configuration file located at ~/.unison/

bidirsync.prf. Create ~/.unison/bidirsync.prf and add the following:

Unison preferences

label = bi-directonal sync with server

root = /home/<user>/backup

root = ssh://<user>@<server-name>//home/<user>/backup

batch = true

auto = true

repeat = watch

logfile = /home/<user>/.unison/unison.log

#debug=all

If your server requires an identity file like a PEM, you’ll also need to add a line

specifying the file in the format shown as follows:

sshargs = -oIdentityFile=/home/<user>/.ssh/<privkey-name>

Test the configuration by running unison bidirsync. Notice that bidirsync is

both the name of the file we created and the label in our config file. You can use the

~/.unison/ folder to create as many unison configurations as you want and quickly run

them this way.

Now that we have a working configuration, we’re going to create a systemd service (see

Chapter 11 for more information). First create a new folder ~/.config/systemd/user:

mkdir -p ~/.config/systemd/user

Then in that folder, create a file called unison.service. It should contain the

following (make sure to update User and Group to your own values):

[Unit]

Description=Unison

[Service]

Environment="PATH=/usr/local/bin:/usr/bin"

Chapter 6 File Transfer

118

ExecStart=/usr/local/bin/unison bidirsync

User=<yourUser>

Group=<yourUser>

Restart=always

RestartSec=10

[Install]

WantedBy=multi-user.target

Once you’ve created the service file, you can run the following to start it:

sudo systemctl start unison

You can check that everything is working and see the logs by running

systemctl status unison

�Summary
In this chapter, we looked at several services which can be used for downloading,

uploading, and synchronizing files across machines. We started with the classic ftp and

more secure alternatives like sftp and scp. Then we looked at rsync for synchronizing

folders easily and even unison which is capable of automatically keeping folders on

separate machines synchronized immediately after a change is made on either.

Chapter 6 File Transfer

119
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_7

CHAPTER 7

Network Scanning
Often you’ll want to see what devices are on your local network, including the device IP

addresses. This comes in handy in several situations including but not limited to

•	 You want to get the IP address of your router.

•	 You’ve arrived at a hotel and want to check the network for bugs or

hidden devices, like a rogue Raspberry Pi which could have been left

behind.

•	 You want to see the IP addresses of other computers on the network

to see if they have any insecurities.

•	 General curiosity about what devices are on the network.

In this chapter, we’ll go over how you can detect what devices are on the network and

what ports they have open. In some cases, it’s even possible to determine things like the

OS a device is running, the version of an application running on a certain port, or the

physical location of a server.

�Check Connection with Ping
Before we get into scanning networks, it’s worth mentioning one of the simplest yet

useful commands. ping allows you to check that you’re connected to the Internet and

that your target website is up. To check your connection to the Internet is good, many

people will send a ping to 8.8.8.8; this is Google’s primary DNS server and is known to

be very reliable. You can ping it with

ping 8.8.8.8

https://doi.org/10.1007/978-1-4842-6035-7_7#DOI

120

Note  8.8.8.8 is often used as a dummy server to send pings to, due to its
longevity and high uptime. However, since this is a live server used by a business
(Google), you may wish to be considerate and not add additional traffic to their
load. The website example.com is specifically reserved as an example site, by the
Internet Assigned Numbers Authority, to be used for such purposes. For this reason,
we’ll use example.com going forward instead of 8.8.8.8. However, it is good to
be aware that 8.8.8.8 is often used for this purpose so you can identify what is
happening if you see it in a script.

You’ll get a response back every second or so which tells you the connection is good.

You can exit the program with ctrl+c; if you just want to ping once or a set number of

times, you can use the -c flag followed by a number. This can be useful if you want to do

something only if connected to the Internet or only if a target website is up, for example:

ping -c 1 example.com && echo connected

If we change the example.com with an IP or website that isn’t live, the echo

connected will never run.

�arp-scan Method
The easiest method is to install a program called arp-scan. arp-scan is a program

which sends arp packets to all devices on the network and displays responses which are

received.

On Ubuntu/Debian-based systems, you should be able to install it with

sudo apt-get install arp-scan

Once installed, use the --localnet option to view all devices on your local network;

the command requires root permission:

sudo arp-scan --localnet

The program will return a list of devices including the IP address, unique MAC

address, and if possible the manufacturer of the device.

As I write this from my hotel room, I can see the local Cisco router, which not

surprisingly can be logged in to using the default username and password of the device.

Chapter 7 Network Scanning

121

In addition, I can sometimes see my Android phone which is also connected to the

network. For the android device, seeing it depends on whether a response was received

upon sending an arp packet, which often doesn’t happen when in sleep mode.

It can be useful to note the unique MAC address of a device, for example, if you want

to later see if a person is at another location. Say I’m at a friend’s house; I might record

the MAC address of his laptop and phone. Then later when at a large building on a single

network, for example, a library, I could scan the network to see if his device is connected,

thus knowing if he is at said location.

�nmap Method
While I find arp-scan gives the most complete information for found devices, as it returns IP,

MAC address, and manufacturer, there are situations where devices will not be included in

the scan – if, for example, a device is present on the network but hasn’t been assigned an IP

address.

For a more complete list, use this second method. It will require installing nmap, short

for “network-mapper”. Again on Ubuntu/Debian, you should be able to install it with

sudo apt-get install nmap

Once installed, you’ll want to use option -sn, which stands for no port scan. In older

versions of nmap, the option -sP may be used instead of -sn. This option is often known

as a “ping sweep”.

The full command is as follows, making sure to use root permissions with sudo

(otherwise results will differ):

sudo nmap -sn 192.168.1.0/24

The preceding command assumes your network is using the IP range 192.168.1.*;

in some cases, the third number may differ. If you didn’t get back any result from the

nmap ping sweep, you should manually check the IP range being used by your network.

In that case, you can find out by running (the “a” is short for address)

ip a

In the results, look for the section with your wireless or Ethernet interface

(depending on which you’re using) and look for your own IP on the local network. In my

case, my wireless interface is called wlp3s0, and my local IP address range is 192.168.30.*

as shown in Figure 7-1.

Chapter 7 Network Scanning

122

So in my case, I actually need to run

sudo nmap -sn 192.168.30.0/24

The 0/24 in this command specifies a range in CIDR notation. There are three

options for specifying ranges with nmap:

•	 CIDR notation (0/24)

•	 Range (1-5)

•	 Wildcard (*)

Thus, the same command can be expressed as

nmap 192.168.1.0/24

nmap 192.168.1.0-255

nmap 192.168.1.*

Note W ant to watch what is happening on the network live? Before running
nmap, open up a second terminal and run ip monitor. This will allow you to
watch everything happening on the network live. Alternatively, if you just want to
see activity form nmap, you can add the -d flag to your command.

Figure 7-1.  Finding IP address being used locally with ip a

Chapter 7 Network Scanning

123

�View Open Ports
Once you have the IP address of a device, you often want to see what ports are open.

This goes for servers as well, which after all are simply devices located at an IP address

somewhere else on the Internet no different than a local computer, smartphone, or IoT

device. Situations where this might come in handy include

•	 Figuring out what type of device is on the network based on open

ports

•	 Finding open ports which may be exploitable by hacks

•	 Finding an open port which can be visited in your browser or by

other means for device interaction

Since we installed nmap previously, I’ll assume you have it installed.

The most common way to scan for open ports of a device is to simply use nmap

followed by the IP address of the device you want to scan. For example, using the

previous tip, I was able to find that my hotel’s router has an IP address of 192.168.1.1; I

would then use the following command to find open ports:

nmap 192.168.1.1

This in my case outputs the following:

Host is up (0.82s latency).

Not shown: 999 closed ports

PORT STATE SERVICE

80/tcp open http

Note  Getting this kind of output from nmap is dependent on a device actually
being located at the IP you input. It may be that 192.168.1.1 isn’t any device on
your network.

Chapter 7 Network Scanning

124

It shows port 80 is open; this is the basic http port where the web-based interface

serves the settings panel for the router.

You might want to check what ports are open on your own machine; you might be

surprised what you find:

nmap localhost

It’s important to point out that by default nmap only scans the 1000 most popular

ports on the specified device. When a server or device wants to be discreet, less popular

ports may be used. If you really want to scan all possible ports, you should use the -p-

flag, for example:

nmap -p- localhost

This will scan all 65535 ports, that is, over 65 times as many ports as the default, so it

takes a significantly longer time to complete.

The same method can be used on a web address, for example:

nmap -p- example.com

This will return open ports on the server for example.com. At the time of writing,

only ports 80 and 443 are open – port 80 for http traffic and port 443 for https. Later I’ll list

some of the most common ports and their most likely use. Keep in mind the phrase “most

likely”; there is nothing stopping a server from using a port commonly used for one thing

for another thing. Some of the most commonly used ports are shown in Table 7-1.

Sometimes someone might run a service on an unexpected port, for example,

running ssh on port 80 instead of port 22, to subvert restrictive network policies that

don’t allow SSH. The firewall blocks port 22 in an attempt to stop the use of ssh on the

network, but if the server is listening on port 80 (normally used for web traffic), the

method of blocking becomes ineffective.

Chapter 7 Network Scanning

125

Another common use for running a service on a nondefault port is to avoid

exploit bots who might use scanning techniques like those used here. For example,

say someone is mass scanning IP addresses to find MySQL instances running on the

default port 3306; a server which instead had service running on port 7777 would go

undetected. Though with something like MySQL the best policy is to close the port off to

the public completely, making it only available to the internal applications which need it.

With something like SSH you might not have the option to turn off the port completely.

It’s for this reason that SSH key authentication is recommended over password

authentication, as it makes a brute force attack nearly impossible.

If you want to see a more complete list, you can parse the /usr/share/nmap/ file

which lists all services known to nmap. The list is too long to be useful so you may find

removing all entries marked as unknown to be useful:

cat /usr/share/nmap/nmap-services | grep -v unknown

Even after removing all unknown entries we still get over 12,000 results. I recommend

reversing the lines so you start with lower-numbered ports. You can do this you can do

this by piping the previous command into tac (cat command with lines reversed):

cat /usr/share/nmap/nmap-services \

 | grep -v unknown \

Table 7-1.  Commonly vulnerable ports

Port Number Common Use

80 http

443 https

21 FTP

22 SSH

25 SMTP

135 Windows RCP

137 NetBIOS

3306 MySQL

3389 RDP

Chapter 7 Network Scanning

126

 | tac

This way you can scroll upward starting at port 1. Alternatively you could pipe the

results into ‘less’, the utlity explored in Chapter 1, to view the results with easy scrolling.

�Devices and Ports at Once
If you want to scan all devices on your local network and also scan for open ports on

those devices, you can combine the two previous tips into a single command.

This can either be done the easy but slow way or the fast way.

�Easy but Slow
The easy but slow way is to simply use nmap for the whole process in a single step, by

running nmap on an IP range instead of IP. This means nmap will be attempted for all IPs

in the specified range; simply add -p- if you want to scan all ports instead of the 1000

most popular:

sudo nmap 192.168.1.0/24

Note  Depending on your network, this method can be very slow.

�Faster Method
The faster way uses arp-scan to get the IPs, grep to extract them, and finally xargs with

nmap to perform the scan on each one. It looks like this:

sudo arp-scan --localnet \

 | grep -o \

 '[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}' \

 | xargs nmap

�OS Detection
If from your results you find some machine IP addresses that look interesting, you can

ask nmap to attempt to guess the OS running on the machine:

sudo nmap -O <ip-address>

Chapter 7 Network Scanning

127

If you want to detect the OS of every device scanned using the script from the

previous section, you may instead want to use --osscan-limit which will limit OS

detection scan to promising targets. Or if you want nmap to be more aggressive with

guessing OS and show closest match, use --osscan-guess.

�Scanning the Internet with masscan
Masscan is an Internet-scale port scanner, useful for large scale surveys of
the Internet, or of internal networks. While the default transmit rate is only
100 packets/second, it can optional go as fast as 25 million packets/second,
a rate sufficient to scan the Internet in 3 minutes for one port.

—masscan man page

Note  As with nmap, you’ll want to build masscan from source if you want to
get the most up-to-date features (e.g., --top-ports flag), though an older version
is available in most package managers. You can find the source at www.github.
com/robertdavidgraham/masscan.

Masscan is a tool very similar to nmap but which was released later and has the ability

to scan ports at a much faster rate. It’s easy to switch between the two as masscan uses

nmap-compatible syntax. You can even get a list of similar features between masscan and

nmap by running

masscan --nmap

While masscan is much faster than nmap, it has less features and is less accurate.

Often masscan will be used for initial reconnaissance to find targets, and once targets are

selected, nmap will be used for greater accuracy and detail.

When using masscan, you’ll likely notice that it runs much slower than the maximum

possible speed described in the man pages. This is because there are several other

limiting factors to the speed at which masscan will run, including things like the rate at

which your router can upload and download traffic.

That said, we can run a script equivalent to an nmap one to compare:

time sudo masscan --top-ports 192.168.1.0/24

Chapter 7 Network Scanning

http://www.github.com/robertdavidgraham/masscan
http://www.github.com/robertdavidgraham/masscan

128

Once complete, try the same thing in nmap:

time sudo nmap 192.168.1.0/24

You’ll find that masscan runs significantly faster as it doesn’t wait for a response

before sending the next request, though it will still have to scan each port once devices

are found to find which are open.

As mentioned in the description, the default speed is 100 packets per second, though

it is possible to increase this all the way to 25 million per second. That rate will be limited

by what your network and device can handle. If you want to change the rate, use the --

rate flag, for example:

sudo masscan -p 22 --rate 1000 192.168.1.0/24

When scanning public ranges, be careful as sending massive amounts of unrestricted

to a very large range of IPs may trigger red flags for your Internet service provider. It may

be better to SSH into a cheap server and test large scans at high speeds from there.

�Run Scripts with nmap
Beyond scanning ports and detecting OS, nmap provides advanced capability through

script modules. A large variety of these scripts are shipped with the program by default,

and additional ones can be installed or written from scratch. To get a complete list of the

scripts that come with nmap, check the usr/share/nmap/scripts folder:

ls /usr/share/nmap/scripts

At the time of writing, there are over 600 prewritten scripts shipped with nmap by default.

Note  The version that is available from apt-get or other package management
systems likely isn’t the most up to date, as nmap is still a very active project. You
can find the most up-to-date version at www.github.com/nmap/nmap.

To use a script, simply pass it in with the --script flag like the following:

nmap --script http-headers example.com

In this example, we’ve used a script to get the http-headers of example.com; your

results should include headers for both ports 80 and 443, as shown in Figure 7-2.

Chapter 7 Network Scanning

http://www.github.com/nmap/nmap

129

�traceroute Script
Some scripts like the ones mentioned earlier can simply be run as is. Others may require

being used in conjunction with other options. For example, the traceroute-geolocation

works with data that comes from the --traceroute flag. So using this script requires both:

sudo nmap --traceroute \

 --script traceroute-geolocation example.com

The --traceroute flag is used to trace all hops or intermediating routers; in

combination with the traceroute-geolocation, we can get the geolocation of each router

along the way. An example of results using the ‘--traceroute’ flag are shown in Figure 7-3.

�http-enum Script
The http-enum script is written to test several paths of a website to detect information that may

give hints as to what applications or content management system is running on the server.

Figure 7-2.  Header information from http-headers nmap script

Figure 7-3.  Using nmap --traceroute to see the location of the server

Chapter 7 Network Scanning

130

sudo nmap --script http-enum example.com

http-enum is also an example of a script which can be passed an argument. If you

want the script to run with a base path, for example, example.com/blog instead of

website.com, you can do

sudo nmap --script http-enum --script-args \

 http-enum.basepath='blog/' example.com

�Write Your Own Script for nmap
nmap comes with many useful scripts that are relatively unknown to the majority of people

who use it for the port scanning functionality. What is even less known is that you can

actually create your own scripts by writing NSE files and placing them in the scripts folder.

NSE stands for Nmap Scripting Engine and is a domain-specific language which is

built on top of the Lua programming language. As seen in the previous section, scripts

can be used for all kinds of things including

•	 Network discovery

•	 Version/OS detection

•	 Vulnerability detection

•	 Backdoor detection

•	 Vulnerability exploitation

Every NSE consists of three sections, in a single file:

•	 Header

•	 Rule

•	 Action

The header section normally contains a description and imports any needed

libraries. A very simple example is

-- Header --

local shortport = require "shortport"

Chapter 7 Network Scanning

131

The preceding script imports the shortport library which can be used to determine if

a port is of a service type. After the header comes the rule section. Our example app will

use the shortport library to check if the port is one commonly used for http:

-- Rule --

portrule = shortport.http

Next comes the action section of the script. We’ll tell our script what to do in the case

that the port is one commonly used for http:

-- Action --

action = function(host, port)

 return "Hello World!"

end

With these three sections written, save your script and save it as /usr/share/nmap/

scripts/testing.nse. Then run the following on a website:

sudo nmap --script testing <website.com>

If you’ve copied and run the script correctly, you should see a subsection under any

found http ports as shown in Figure 7-4.

Our “hello world” NSE script isn’t particularly useful but it gives you the outline of

the three main parts of an NSE script (header, rule, action). If you want to experiment

with making an advanced NSE script, look through the other prebuilt scripts in /usr/

share/nmap/scripts; these provide great examples or starting points for building your

own scripts.

Figure 7-4.  Output from the example script

Chapter 7 Network Scanning

132

�Wireshark/tshark
Another tool worth knowing about that we won’t go in depth on here is Wireshark. It’s

a full-featured GUI application for packet analysis. It allows you to capture and analyze

traffic on your network. There is a terminal-oriented version of Wireshark called tshark.

Both versions are available on most package managers. If you want the Wireshark

experience but don’t have access to GUI on a machine, you can also check out the

community project termshark, which simulates the UI of Wireshark in the terminal.

Wireshark is commonly used for information security, network quality testing, and

quality assurance of software for network use.

While arp-scan and nmap are the easiest tools for finding devices on the network,

Wireshark is actually more powerful in being able to find devices which may be hidden.

If, for example, a device does not respond to any requests, nmap, masscan, arp-scan, and

ping will never be able to find it even with the IP. However, if those devices at some point

want to make use of the network and Wireshark is recording, they will be spotted and

their existence becomes known.

To see all traffic with tshark, simply run it without any options (root permissions

required):

sudo tshark

Depending on your network, this will return a fast scrolling screen showing traffic on

the network, similiar to that shown in Figure 7-5.

Chapter 7 Network Scanning

133

As traffic moves quickly, it’s often more useful to save the output into a file:

sudo tshark > /tmp/output.txt

The command will keep running until you cancel by pressing “ctrl+c”. The longer you

run it, the bigger your sample size will be. This file can later be parsed to extract more

specific details and analyzed at your own pace.

If you want to be more specific with the packets which are recorded, tshark has all

kinds of filters – for example, if we want to look at a specific device:

sudo tshark host <ip-address>

If you’re going to be parsing through the results looking for a single device, this will save you

a lot of time and effort. You can also filter by traffic type, for example, to only show http traffic:

sudo tshark -Y http

You can show the full path of the http request with

sudo tshark -Y http.request.full_uri

There are all kinds of filters for tshark and the GUI equivalent Wireshark. We won’t

go into all of them, but it’s a powerful tool worth looking into if you want to analyze

Figure 7-5.  Example output when running tshark

Chapter 7 Network Scanning

134

local network traffic. Also keep in the GUI version Wireshark is the main version. It’s an

extremely useful tool and there are full books on making use of it.

�More Network Tools
The tools outlined so far can come in handy often, but they’re only a small subsection

of networking tools available on Linux. Table 7-2 is a longer list of networking tools for

Linux that you can research more in depth.

Note W e’ve included several deprecated utilities in the list. While they’re no
longer maintained, they’re still widely used on older systems or by system admins
who continue using them. For this reason, they’re worth being aware of, though
we’ll make sure to list the up-to-date alternatives.

Table 7-2.  Networking utilities

Port Number Common Use

dig Get domain information

netstat Network statistics (deprecated)

ifconfig List systems network interfaces (deprecated)

arp Work with ARP cache (deprecated)

route Show/manipulate the IP routing table (deprecated)

ip Show/manipulate routing, network devices, interfaces, and tunnels

ss Socket statistics

ngrep Like grep but for network traffic

traceroute Find route packet takes to get to server

mtr Network diagnostic tool

nc Short for “ncat,” like cat but for network data. Can also be used as a

networking interface module for other programs

nft Networking tool for packet filtering and classification

iptables Manage firewall settings (deprecated)

(continued)

Chapter 7 Network Scanning

135

�Dig
Dig is a DNS lookup utility. If it’s not installed on your system, you can find it as part of

dnsutils on Debian-based package managers and bind-utils on Fedora, CentOS, and

Arch.

Dig is used by passing it a web domain as an argument and will return DNS

information on the website. Without options, the information from dig is somewhat

cluttered and lacks entries. We recommend using the options +noall and +answer:

dig +noall +answer

Dig should return all the DNS entries for the domain. Our example in Figure 7-6

includes a query to example.com and another query to yahoo.com. We included a

second query to show an example of output when a domain has multiple A records.

Port Number Common Use

sysctl Configure kernel parameters at runtime (some related to networking like
socket buffer size)

ethtool Analyze Ethernet connections

whois Get whois information on a domain

lsof Find what programs are using which ports

hping Like ping but with additional methods and options

socat Short for “socket cat,” like nc (net cat) but with more features

Table 7-2.  (continued)

Figure 7-6.  Dig queries on example.com and yahoo.com

Chapter 7 Network Scanning

136

�Netstat (Deprecated)
Netstat is a multipurpose utility for checking network connections, routing tables,

network interface statistics, and other network diagnostics. While you may still see

references to netstat and it does work, it has been deprecated.

As netstat is deprecated, it is recommended you use the utilities which have

replaced it including dig, ip, and ss.

�ifconfig (Deprecated)
Like netstat the utility ifconfig has been deprecated. Despite this, you may find it

present on many machines and potentially used within scripts. It’s a utility for working

with network interfaces. It is recommended you use the ip command which comes with

the iproute2 package instead.

If you remember earlier in this chapter, we used the command ip a to find out

network IP range. Before ip became the go-to utility for this, running ifconfig was

used to do the same thing. ifconfig also has the ability to interact with interfaces, for

example, enabling or disabling them (assuming your Ethernet interface is named eth0):

ifconfig eth0 up

Now that same thing can be done using ip with

ip link set eth0 up

�arp (Deprecated)
arp stands for Address Resolution Protocol, and it is used to map the MAC addresses of

devices (globally unique identifying number) to IPs. Computers contain an ARP table

which maps MAP and IP addresses. To view all entries in the table, run the following

command:

arp -a

Since arp has now been deprecated, it is recommended you use ip for the same

functionality. The equivalent of the preceding function with ip would be

ip n

Chapter 7 Network Scanning

137

where n is short for neighbor. See the man page on arp or ip for more advanced

capabilities.

�route (Deprecated)
The route command is used to show/manipulate the IP routing table. The simplest

command with ‘route’ is to run it without any options or arguments which will return

the IP routing table. The equivalent command with ip is as follows:

ip r

where r stands for route.

�ip
As mentioned in the previous section, the ip utility is a replacement for several utilities

including ifconfig and ‘route’, it is included in the iproute2 package. Routes can

be seen by running ip route or ip r for short. There are additional route commands

for adding or deleting such as ip route del unreachable 10.1.0.0/24, where

“unreachable” is the route name and “10.1.0.0/24” is the route.

�ss
ss is a utility for monitoring socket use. The initials in the name stand for socket

statistics. If ss is not installed, you can find it in most package managers included with

iproute2. When running ss stand-alone, you’ll get back a long list of all connected

sockets as shown in Figure 7-7. To make reading the output more manageable, you can

pipe the results into less by running ss | less.

Chapter 7 Network Scanning

138

It’s somewhat difficult to understand what all these sockets are by default. To make

things easier, you can add the flag -p which will tell you the process name and ID of

each socket connection. This allows you to associate a socket connection with a process

running on a machine.

�ngrep
ngrep is a network utility which provides grep-like abilities for parsing network data. Given

some specific text to listen for, ngrep will monitor network traffic and report any connection

data which matches. As an example, we’ll view traffic generated by visiting example.com; first

we’ll tell ngrep to listen for the string “example” as shown in the following:

sudo ngrep example

ngrep is now actively parsing network traffic for the string “example”. If you view

example.com in your web browser, you should see a match occur. To demonstrate the

importance of https, let’s send some unencrypted data to example using curl. Open up a

second terminal with ngrep still running and run the following command:

curl --data "user=name&password=secret" example.com

Figure 7-7.  Example socket statistics returned from running ss

Chapter 7 Network Scanning

139

You should see the request in your window running ngrep. If you look through

the text carefully, you should be able to see the user and password fields, as shown in

Figure 7-8.

If you run the same command but instead specify https, like shown here

curl --data "user=name&password=secret" https://example.com

you should still see the request but will not be able to see the data which was sent or

even the specific website that was visited.

�traceroute
The traceroute utility allows you to send packets to a host and get detailed information

on the route taken to get to the host. This might sound familiar as in Chapter 7 we used

a ‘traceroute’ NES script to view the hops made by traffic going from our local machine

to a website. The ‘traceroute’ utility provides this functionality as a stand-alone utility,

if we run

traceroute example.com

Figure 7-8.  Unencrypted data recorded using ngrep

Chapter 7 Network Scanning

140

we will see the IP addresses of all the machines our packets traveled to before reaching

our final destination. This starts with the local router and ends at the IP of the actual

website as shown in Figure 7-9.

Figure 7-9.  Route taken to example.com shown with traceroute

Figure 7-10.  Continuously updating route data to example.com shown by mtr

�mtr
The mtr utility is a network diagnostic tool which combines aspects of ping and

traceroute. The name mtr is actually short for “my traceroute. ” Instead of sending a

single set of packets like traceroute, mtr continuously sends additional packets after the

previous is received (similar to ping). An updating display shows detailed information

on the timing as shown in Figure 7-10. If you’re having issues with a connection, mtr can

help you get an idea of where things go wrong along the way.

Chapter 7 Network Scanning

141

�nc
nc is short for network cat, name inspired from the cat utility. nc is a robust utility which

provides the ability to connect and listen for connections via TCP or UDP. This means it

can even be used for things like opening up a channel between two machines for chat or

file transfer (though other tools like SSH are preferred).

nc is often referred to as the “Swiss Army Knife of networking” and can be used for

several networking tasks including port scanning, serving a website, or spoofing headers.

While many use cases have better options like nmap for port scanning, it can still be

useful for some simple things like grabbing headers or spoofing your own headers.

To spoof your own headers, run

nc example.com 80

You’ll then be able to add additional text. You can base your spoof header on the

following sample:

GET / HTTP/1.1

Host: example

Referrer: duckduckgo.com

User-Agent: fake-browser

With the header entered, press enter twice and you’ll fetch the website using the

spoofed header. You’ll get back a response including the header information for the site.

�nft – nftables
nftables is an administration tool for nftables framework for packet filtering and

classification. While you can find nftables under that name on package managers,

the command for running it is actually nft. The “nf” in nftables stands for “net filter,”

and they’re used to filter network traffic. That can be either outgoing or incoming. For

example, you might not allow outgoing traffic to a particular IP or not allow incoming

traffic to a certain port. nftables works by keeping track of a series of system-wide rules

which can be added or dropped and are used during the traffic filtering process.

Chapter 7 Network Scanning

142

�iptables (Deprecated)
The iptables utility has been deprecated in favor of nftables, its successor. iptables

is rule based but lacks features included with nftables like having a single rule to target

both ipv4 and ipv6 packets.

�sysctl
The sysctl is used to configure kernel parameters at runtime. This is not necessarily only for

network issues though some are such as socket size. This might be done for servers which

regularly send and receive large files, as tuning socket buffer size can improve network

performance for the specific use case.

�ethtool
The ethtool utility, short for Ethernet tool, can be used to get in-depth information

about your Ethernet connection. This includes things about the data transfer itself and

the physical hardware. To view information on your Ethernet interface, you first need to

get its name. This can be done with by running

ip a

Record the name of your Ethernet interface (likely includes an “e”) and pass it as an

argument to ethtool:

ethtool enp0s25

In my case, the Ethernet interface name is “enp0s25” but yours will likely be

different. One of the most common names for the Ethernet interface is “eth0”. When you

use the interface as the argument for ethtool, you should get back information about

the hardware (even if you’re not actively using Ethernet), like shown in Figure 7-11.

Chapter 7 Network Scanning

143

�whois
whois is a utility for retrieving website ownership information provided by registrars. It

can be used by simply providing a domain as the argument. For example, running the

following command should return ownership and contact information like that shown in

Figure 7-12:

whois yahoo.com

Figure 7-11.  Ethernet interface information output from ethtool

Chapter 7 Network Scanning

144

�lsof
The lsof stands for “list of open files”; by default it will return a long list which includes

all the open files on your system. In terms of networking, the main option you’ll want

to know for lsof is the -i flag. The -i flag tells lsof to look for IP sockets. It can also be

useful to add -P to get the port being connected to. To demonstrate, try running

lsof -i -P

This should return a list of local ports which are connecting to ports on remote

servers and the program associated with said connection. An example of expected

output is shown in Figure 7-13.

Figure 7-12.  whois information for yahoo.com

Chapter 7 Network Scanning

145

�hping
hping is an offensive security networking tool which takes its name from ping. Like ping

it sends packets over the network to a destination, but it has advanced options allowing

for the crafting of custom packets, specifying things like destination port and spoofed

source IP for both TCP and UDP. In addition, it has some built-in methods like the

--flood option which can be used for DDOS-like attacks, like SYN flood attack.

The current version is 3 and is integrated into both the command and name on most

package managers:

sudo apt-get install hping3

On offensive security operating systems like Kali Linux, you’ll actually find hping

installed by default. An example of SYN flood attack is shown later. A SYN flood attack

involves opening several connections without finishing the handshake. It can be used to

test if your network is safe from these attacks; the following is an example of performing

a SYN flood attack, to test switch the IP used with the target device on your network:

hping3 --rand-source -S -d 500 -p 21 --flood 127.168.1.110

Figure 7-13.  Example output from lsof -i -P

Chapter 7 Network Scanning

146

The preceding command combines a few options. The first --rand-source tells

hping to spoof a random IP address as its source. Then -S flag specifies the SYN packet

network, -d 500 is the size of the packets, -p 21 is the destination port, and finally

--flood turns on flooding mode which sends many requests.

�socat
socat is similar to nc (netcat) but has more advanced features. Also like netcat, it takes

its name from cat, standing for “socket cat.” It can be found on most package managers

as socat. Anything that can be done with netcat is possible with socat, but it also has

some additional features like multiple clients on a single port and options for working

with UDP.

�Summary
In this chapter, we looked at some networking techniques, particularly related to port

scanning. We also briefly looked at some popular networking tools that can be used for

working with networks through analysis, configuration, and opening communication

channels.

Chapter 7 Network Scanning

147
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_8

CHAPTER 8

System Monitoring
Another common task you’ll find yourself wanting to do while maintaining a Linux

system is monitoring things like system processes, memory, and network use. This helps

you to gauge how much of your capacity you’re making use of. Knowing what resources

might be running low gives you insights into how the system load might be reduced

or where resources should be increased. In this chapter, we’ll look at tools for doing

different types of monitoring.

�Top
Whenever a system or device is experiencing performance issues, one of the first things

you’ll want to do is check what programs are running and how much system resources

they’re using. The simple go-to for this is top which comes installed on most Linux

systems. Running it will list all currently running processes. You can quickly kill a process

without leaving top by pressing z and entering the process ID (PID) of your target

process.

If you find yourself using top often, you might consider installing htop. htop is an

enhanced version of top with an improved visual interface and shows the full path of the

process.

If you prefer using built-in tools like top, or you’re on a machine where you

can’t install htop, you can actually use a combination of keyboard commands to get

something that looks almost identical to htop and in some ways better.

With top open, press zxcVm1t0 (as a sequence, not at the same time) and you’ll end

up with something that looks like in Figure 8-1.

https://doi.org/10.1007/978-1-4842-6035-7_8#DOI

148

We can take it a level further by entering alternate display mode by pressing A; this

splits the screen into four separate field groups. Once in alternate display mode, you

can switch between field groups by pressing g which will promote you to enter the field

number. If you switch between each field group and enter zxcVm1t0, you’ll end up with a

neat-looking multifield display as shown in Figure 8-2.

Figure 8-1.  top after running zxcVm1t0

Chapter 8 System Monitoring

149

Of course you’re probably thinking that looks great but that’s a lot of steps to run

every time you open top. To save these settings, all you have to do is press W. This will

save whatever your current configuration in top, and it will look the same when you

reopen it.

If you want to go back to the defaults, simply delete the configuration file that was

created; by default it should be ~/.toprc.

Figure 8-2.  Styled multi-tab top

Chapter 8 System Monitoring

150

�Top-Like Programs
There are several programs which are inspired by top and either monitor some specific

aspect of the system not available in top or provide the same information in a different

layout. In this section, we’ll go over some of the popular programs which take both their

name and format from top.

�htop
This is a program very similar to top which provides an improved graphic interface by default

in comparison to top as shown in Figure 8-3. It is not installed by default on most distros but

is available via many package management systems such as apt on Debian/Ubuntu.

Figure 8-3.  htop running with default settings

Chapter 8 System Monitoring

151

�atop
This is an advanced system & process monitor which is similar to top but is suited for

long-running analysis. It provides the ability to output the results of system monitoring

as a log file for analysis. As shown in Figure 8-4, it has a simple loop but provides the

feature of exporting as logs not available in top or htop.

It is not preinstalled on most distros by default, but it is widely available in package

management systems including Debian and RHEL.

By default the log files from atop will be saved to the folder /var/log/atop/. These

log files can be read by passing them to atop with the -r flag as shown in the following,

except substitute the atop_20200310 with the file name of the log you want to open:

atop -r /var/log/atop/atop_20200310

Figure 8-4.  atop running with default settings

Chapter 8 System Monitoring

152

�iftop
This is inspired by top but specializes in monitoring network usage rather than CPU or

memory use. When given a network interface, it will listen to all incoming and outgoing

traffic and provide information such as origin port and which external servers are using the

network most. Due to accessing network interfaces, using iftop requires sudo permissions.

It is not installed by default on most distros but widely available. We’ll look at this

program further later in the chapter as part of a section on monitoring networking traffic.

�ntop
A more advanced alternative to iftop is ntop which also monitors network traffic.

However, unlike the other programs here, it is a GUI-based system which is accessed via

the browser. While this makes it less lightweight, it does provide some more advanced

visualizations like that shown in Figure 8-5.

Unlike the other programs mentioned so far, you won’t find ntop with its standard

name on package managers. Instead you’ll find it under the name ntopng:

sudo apt-get install ntopng

Figure 8-5.  Applications page in ntop

Chapter 8 System Monitoring

153

Once installed and started, it will run on port 3000 and provide several admin pages

with statistics and visualizations based on network use.

�iotop
This is another program inspired by top which focuses on filesystem read and write

usage. Threads are listed in order of disk read and disk write usage. The package is

widely available on both Debian- and RHEL-based systems. Like iftop using iotop will

require sudo permissions to run. iotop contains the basic information of each process

like user and command, as well as disk write and IO> (which is the measure of the % of

time a process has spent on IO). See Figure 8-6 for an example of iotop in action.

Figure 8-6.  io running with default settings

Chapter 8 System Monitoring

154

�slabtop
This is a top-style program for monitoring kernel slab cache information, shown in

Figure 8-7. It’s mainly good for those who need to worry about kernel-level issues.

Like iftop and iotop, using slabtop will require sudo permissions.

�More on Viewing Processes
The programs listed like top and atop can be great for viewing processes. It’s also

possible to manually query all running tasks using ps and then pipe them through to

other programs. When running ps alone, you’ll get a list of processes running in your

current terminal session. The list will likely be small only including bash and the ps

process itself, like in Figure 8-8.

Figure 8-7.  slabtop running with default settings

Chapter 8 System Monitoring

155

However, if your terminal has been open for a while and you’ve backgrounded

some processes, you may see more. We can create a background process manually to

demonstrate with the following steps:

	 1.	 Run sleep for 500 seconds and background the process sleep 500 &.

	 2.	 Run ps and observe the new process.

	 3.	 Take the PID from the sleep command and end the process with

kill kill 123.

	 4.	 Run ps again and observe the difference.

These steps should result in an additional process for sleep being returned by ps like

shown in Figure 8-9.

Of course, most of the time, you’re going to want to see all the processes running

on your machine, not just the ones in your current terminal session. To get all running

processes, you can run ps -e or ps -ef, the difference being the adding f shows more

details. The detailed ps view is shown in Figure 8-10.

Figure 8-8.  Running ps in a fresh terminal

Figure 8-9.  ps with a background process

Chapter 8 System Monitoring

156

While we could use grep to parse processes by user, ps provides some built-in flags

that make this easy, for example, ps -u philip or by specific PID with ps --pid 123.

Either of these can be used with -e to get more details.

�Kill a Process
Commands often used in conjunction with ps are kill and killall. When running ps,

we saw that there is a column that displays PID, short for process ID. If a process isn’t

running right, hanging, or we just want to end it, one way is using the kill command.

Simply pass it the PID, for example, given a PID of 123:

kill 123

If you want to match the process by name instead of PID, you can use killall, for

example, if Firefox was frozen and we wanted to force quit:

killall firefox

Another option very similar to killall is pkill. pkill can also match a service

by name but will include more matches, as unlike killall it does not require an exact

Figure 8-10.  Running ps -ef to see system-wide processes

Chapter 8 System Monitoring

157

match if you make use of the -i for pattern matching. For example, if we instead just pass

in “Firef”, we will still kill the process:

pkill -i Firef

The same style of command can be used with pgrep to find processes without killing

them. For example, if we run the following command with Firefox open, we’ll get a list of

PIDs associated with the program:

pgrep -i Firef

To make the preceding command a little bit more useful, add the -l flag to get the

exact program name for each process or -a even more information.

�Visualize Process Tree with pstree
Another concept to keep in mind is the fact that processes exist in a hierarchy, with some

processes having parent and child processes; this is visualized in Figure 8-11. When

you run ps in your terminal, for example, it is a child process of the terminal process.

If we run sleep 500 and then close the terminal, the child process sleep 500 will

automatically terminate with the termination of the parent process. However, this isn’t

always the case; in some cases, a child will continue running after the parent closes and

inherit the parent’s parents.

Our terminal process itself is the child of another process, likely systemd depending

on your Linux distribution. Thus, if a process continued running after closing the

terminal, in our case, the new parent would be systemd.

A great tool for visualizing this relationship is pstree which can be used to show all

processes running on our system, like ps but in a visualization showing the parent/child

relationships between processes. Try running it with the -p flag which will make sure

process ID is also returned. It should return a very long list of processes all stemming

from a single process with PID of 1 on the left.

Chapter 8 System Monitoring

158

As mentioned when we run a command in our terminal, it is actually a child process

of the terminal process. To demonstrate this, run the following commands:

sleep 500 &

pstree -p | grep -A 5 -B 5 pstree

This creates a sleep process in the background, gets pstree, and then greps for the

pstree process so we can find our current terminal process. The -A flag stands for get

five lines above the match and -B is get five lines below. The result should be similar to

that shown in Figure 8-12.

Figure 8-11.  Running pstree with -p flag to show process IDs

Figure 8-12.  Grepping pstree to see a specific process

Chapter 8 System Monitoring

159

Notice the pstree process highlighted in green and the sleep process below it. They

both stem from the bash process, which itself is stemming from gnome-terminal.

�Process Nice Value
When using top, you may have noticed the column marked “NI.” This refers to the “nice”

values which is a key concept in Linux. Every process has a nice value of -20 to 19. The

lower the number, the more priority the process gets in scheduling. One way to think about

it is that nice processes (e.g., 10 nice value) wait in queue, while not nice processes butt

ahead (-20 nice value), and really nice processes (19 nice value) let others butt ahead in

line. Of course this is a simplification as the nice value is relative to that of others in queue.

As mentioned you can view the nice value for processes in top under the column NI.

Another method is by using ps with the -o flag followed by the columns you want to see

(include ni), for example:

ps ax -o pid,ni,cmd

This will return the process ID, nice value, and command for all running processes as

shown in Figure 8-13.

Notice that several of the commands started during the startup process (we can tell

because PID is close to 1) have a nice value of -20 as they’re considered to be vital for

running the OS.

You also might notice some processes marked with - (depending on your OS); these

are system-level processes which are governed by a different set of priorities (they always

run first). For the most part, you won’t need to worry about these lower-level processes.

Figure 8-13.  Getting command, PID, and nice value with ps

Chapter 8 System Monitoring

160

�Other Priority Systems
As mentioned earlier, some processes are governed by different sets of priorities. The normal

processes that we’re mainly concerned with in user space are governed by SCHED_OTHER.

The other main schedulers SCHED_FIFO and SCHED_RR are for real-time processes

which need to run before all normal processes. These two schedulers have the same

priority but different in how they schedule. FIFO stands for first in first out (e.g., first

come first serve), while RR stands for round robin (taking turns, until process completed).

You likely won’t need to deal with these schedulers if you’re not working at the

kernel level. If you’re curious to see the real-time and absolute priority values for

processes, you can run

ps -e -o class,rtprio,pri,nice,cmd

From the output, you’ll find several processes that have a higher absolute priority

than those listed as -20 nice value; these are real-time processes.

�Change Nice Value
Now that you know about nice, how do you use it? You can change the nice value of

any running process with the renice command. Generally, changing nice values isn’t a

common task. However, there are few reasons you might want to do it. Say, for example,

you’ve created a custom script that cleans up old log files by compressing them and

sending them to a long-term storage service. You may want to give this process a high

nice value so that users making use of the server are always given a higher priority than

the backup process, which has no deadline or urgency.

Let’s create a process to work with:

sleep 500&

Take the process ID that is returned (1234 in our example) and use it with renice:

renice -n 19 1234

Now if we check the nice value using ps, we should see the value has updated.

ps -o ni 1234

Chapter 8 System Monitoring

161

�Zombie Process
In the following section, we’ll be compiling a C program to explore the idea of zombie

processes. It’s somewhat technical and knowledge of zombie processes is not critical.

If you find this section too technical, feel free to skip ahead.

This section will require you to have a C compiler installed and the libraries used

here. They’re all available in the build-essential package on Debian-based systems.

sudo apt-get install build-essential

Another concept worth understanding when looking at processes is zombies. A zombie

process is a child process which has exited, but has not been cleared by its parent process.

Most programs will remove their child processes quickly after they exit, so zombie processes

are rather rare. Despite the nefarious name, zombie processes are fairly harmless and won’t

have a negative impact on your machine’s performance.

To demonstrate, we’ll create a C program to make our own zombie process.

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

int main () {

 // Create variable with type of process identification

 pid_t child_pid;

 // Fork main process creating a child

 child_pid = fork ();

 // Both main script and forked child run the code below the fork point

 // Child process will have a PID of 0 within script

 if (child_pid > 0) {

 // Only parent process runs this section

 sleep (500);

 }

 else {

 // Only forked child runs this section, exiting immediately

 exit (0);

 }

Chapter 8 System Monitoring

162

 return 0;

}

After writing the preceding C program, save it as zombie.c. Next you’ll need to

compile it by running

cc zombie.c -o zombie

Once you successfully compile zombie, we can demonstrate what a zombie process

looks at. Run the executable and background it:

./zombie &

Next we’ll use some of the previous commands to view the process. First run ps with

no options. You should see an entry for both the parent process zombie and the child

which will be followed by <defunct>, as shown in Figure 8-14; this indicates the process

is in a zombie state.

If you were to run top, you’d also see an indication that a zombie process is running

in the top right, shown in Figure 8-15.

Figure 8-14.  Creating a zombie process

Figure 8-15.  View zombie count in top

Chapter 8 System Monitoring

163

As mentioned, zombie processes are fairly harmless and are already technically

not running. Thus, running kill 7450 (based on the process ID in Figure 8-14) will be

ineffective. The only way a zombie process can be killed is by killing its parent.

kill 7449

Of course this is a problem if you want the program in question to keep running. Our

recommendation is to let the zombie processes deal with themselves as they generally

don’t cause problems.

�Check Available Disk Space
Another common issue with servers or embedded devices is running out of disk space.

I’ve encountered a few situations where a device that stopped working had simply run

out of space to write to, as a result of a program which failed to compress or delete old

log files over a period of many months.

The easiest way to check available disk space is with the utility df, short for “free

space.” To find your available disk space, run the command

df -h

The preceding command will return a list of partitions with information about each.

One of these partitions will be the main one used by your system. You can find it by

looking at the “Mounted on” column and finding the one with a value of “/”.

The next thing you’ll want to look at for that partition is the “Size” and “Use%”. This will

tell you how much disk space you have in total and what percentage is currently used.

For a complete list of the columns returned by df, see Table 8-1. This table also

includes the inodes used column which can be enabled with the -i flag and the type

column enabled with -T flag.

Notice we used the -h flag in the preceding example; this stands for “human

readable.” Without the -h flag, df will still work but shows the space available in KB

rather than converting large amounts to MB or GB. Making use of -h is recommended

unless you have a specific reason for wanting all values in KB.

Chapter 8 System Monitoring

164

�Find Largest Files on System
If you find that you are low on system space, you might want to search for large files on

your system. Here is an example for getting anything over 100M:

sudo find / -xdev -type f -size +100M -exec ls -la {} \; \

 | sort -nk 5 \

 | tac

The preceding command is assuming you want to look at every file on the system. If

you instead want to only include files within a specific folder, you can modify the find

command’s first argument, for example, say I wanted to only search for files in the folder

for user philip, I would then use

sudo find /home/username -xdev -type f \

 -size +100M -exec ls -la {} \; \

 | sort -nk 5 \

 | tac

If you only want to find files and directories with contents totaling over a GB, you can

instead do

Table 8-1.  Information returned by the df command

Column Description

Filesystem The name of the filesystem

Size Size of the partition (hidden by default, show with -h)

1K-blocks Size of the system in 1K-blocks (replaced by size when using -h)

Used Amount of space used

Available Amount of space available

Use% Amount of space used shown as a percentage

Mounted On The directory location of the partition

IUsed inodes used on partition (hidden by default, show with -i)

Type Partition filesystem type (hidden by default, show with -T)

Chapter 8 System Monitoring

165

sudo du -ahx / | grep -E '\d*\.?\d*+G\s+'

Note I t’s also possible to get and print size with find by combining the -size
and -printf flags; however, find only displays sizes in KB, which is hard to read
compared to GB. See man find for more details.

�Monitor Device Network Use
Another statistic you might want to check is the network usage of a system as a whole as

well as a breakdown by process or networking interface. This can be useful on a device

with limited Internet access or expensive bandwidth, for example, an IoT device or even

laptop connected via a GSM SIM card. In such a situation, programs which use excessive

data can be very expensive.

Even if you’re not on a system with limited data, it can be useful to see what programs

are using your Internet connection. If you see something that surprises you, you may want

to investigate further. There are a few good programs I use for network monitoring, each

slightly different.

�bmon – Monitor Each Network Interface
With bmon, you can monitor each interface (e.g., Wi-Fi, Ethernet). This is great in the GSM

SIM card situation described earlier. Imagine you have a device which has both Wi-Fi and

5G. You likely don’t mind high network usage over the Wi-Fi interface but will want to ensure

5G use stays below a certain level.

Given this situation, you might write your software to detect what Internet interface

is being used and reduce or increase data use based on the connection type. bmon gives

you a way to ensure that such measures are actually working by breaking down how

much data was transmitted over each interface.

bmon won’t be installed by default, but it is available on most package managers.

When opening it by running bmon in the terminal, you’ll see an interface like that shown

in Figure 8-16. If your terminal window isn’t maximized, the bottom section with green/

red graphs may be hidden.

Chapter 8 System Monitoring

166

�nethogs – List Programs by Bandwidth Use
Most of the time, you won’t be interested in what interfaces are being used, but instead

will want to know what programs are using the most bandwidth. For this install and run

nethogs; you’ll see an interface like shown in Figure 8-17. Keep in mind if you close the

program, it’ll start from scratch again when you open it later. To get a clear picture of

use over time, you’ll want to open nethogs and let it run over time. After coming back

a few hours or even days later, you’ll have a better idea of which programs use the most

bandwidth.

Figure 8-16.  Running bmon

Chapter 8 System Monitoring

167

�iftop
Another option is iftop, yet another program in the top family. Instead of monitoring

by interface or application, iftop lets us monitor which external IP addresses are being

communicated with the most based on traffic size.

When starting iftop, you need to specify the network interface. If you don’t know

your network interfaces, you can get it by running

ip a

You’ll get back a list of interfaces with lots of details; the interface is the key value on

the left. In my case, the Wi-Fi interface is called wlp3s0, as shown in Figure 8-18. You can

normally tell which interface is Wi-Fi because it will include a “w”.

Once you have the interface you want to monitor, pass it to iftop with the -i flag:

sudo iftop -i wlp3s0

This will result in a list of external IP addresses and amount of data which is being

uploaded and downloaded, as shown in Figure 8-19.

Figure 8-17.  Running nethogs

Figure 8-18.  Wi-Fi interface returned from ip a

Chapter 8 System Monitoring

168

To make things a bit cleaner, you can press s to hide the source on the left-hand

side (given they will mostly be local sources). Then press p to show the origin port. Port

is much more useful than source as it gives us a better idea of the origin program and a

way to dig deeper if we want to investigate a connection further. The iftop interface with

source replaced with port is shown in Figure 8-20.

Figure 8-19.  Monitoring Wi-Fi with iftop

Figure 8-20.  Viewing traffic by outgoing port in iftop

Chapter 8 System Monitoring

169

�Other Programs for Monitoring
�sysstat
Another program that can be used to monitor system use over a long period of time, similar

to atop but more comprehensive, is sysstat. Rather than checking the current status of the

system, sysstat is best used by letting it run in the background and then reading the daily

reports. It works by running a cron job every 10 minutes and recording system data.

It’s likely available by default, but if not, you can install with

sudo apt-get install sysstat

First open up /etc/default/sysstat and ensure the following line is set to true; by

default on Ubuntu, it will be set to false:

ENABLED="true"

Then enable it with systemctl:

sudo systemctl enable --now sysstat

After these simple steps, your system will start to save system data in the /var/log/

sysstat folder. A new file will be created for each day of the month, for example, if you

start on the 26th, the file would be /var/log/sysstat/sa26. You can view the data for

the current day by running

sar

Once it’s been running for a while, sar will return something like shown in Figure 8-21.

Figure 8-21.  Running sar

Chapter 8 System Monitoring

170

As mentioned, these stats are saved in the /var/log/sysstat folder. If you want to

view a previously monitored day, specify the file to open with sar:

sar -f /var/log/sysstat/sa27

Note that once you’ve been using sysstat for over a month, the files will start to

be overwritten. If you want to keep the logs for longer, you’ll have to back them up

manually.

�Load Average
Load average refers to the average number of threads running or waiting to run. There

are a number of ways you can get this information, the easiest being to run

uptime

This should return the amount of time the system has been running, users logged

in, and three different values for load average. The three different values are the average

over 1 minute, 5 minutes, and 15 minutes. Using these three values, you can get an idea

of whether load is increasing or decreasing.

If you’re already using top regularly now, you can find the same three load average

values on the top line.

It’s important to keep in mind that load average is measured by threads in the queue

regardless of how many CPUs a computer has. A load average of two on a single CPU

machine is a higher rate of saturation than a load average of three on a machine with

two CPUs. Imagine each thread is a person at a grocery store waiting to pay for their

goods and each CPU is a cashier. Knowing how many people are waiting in line is not

necessarily useful without knowing the number of cashiers in the store.

A more useful statistic to consider is load average divided by CPUs. If the load

average divided by the number of CPUs is greater than 1, this could indicate that your

system is overloaded. Consider the concept of niceness explored earlier. If a process

with a nice value of 19 is running but the load average is always higher than the available

CPUs, it may never end up executing, as it keeps allowing the new processes which enter

the line to run first.

According to one rumor when the IBM 7094 at MIT was shut down in 1973, they

found a low-priority process that had been submitted in 1967 and had not yet been run.

This was exactly the situation described where a queue had always existed, and because

Chapter 8 System Monitoring

171

the process had low priority, it kept waiting in line, always allowing newer high-priority

tasks to run first. This problem is often referred to as resource starvation.

Note I f you forget how many CPUs are on a machine, you can always use lscpu
and look for the row titled “CPU(s).”

�Users
In the last section, we saw that the third value returned by uptime is actually users logged

in. If you end up seeing a number you didn’t expect, you can get more information on

the users currently logged in using either who or w. If your system has it, w is preferred as it

is a rewrite of who which includes more user details. Simply run

w

You’ll get back a list of users and the TTY they’re using. If a user is using multiple

TTYs, they’ll be listed multiple times. An example of a user using a single TTY is shown

in Figure 8-22.

An example of a user using a multiple TTY (via tmux, a program for keeping terminal

sessions open but backgrounded) is shown in Figure 8-23.

Figure 8-22.  Viewing logged in users with w

Chapter 8 System Monitoring

172

�Log Folder
When monitoring or debugging a system, you’ll want to be aware of system log folders.

One of the best places to look is /var/log, the system folder for miscellaneous logs.

Navigate into the folder and view the files:

cd /var/log

ls

You should see several different files and folders here depending on what services

are running and how long your system has been up. The contents of my log folder are

shown in Figure 8-24.

Figure 8-23.  Running w with several tmux sessions open

Chapter 8 System Monitoring

173

If you’re on a Debian system like Ubuntu, the main log file will be /var/log/syslog.

If you’re on a non-Debian system like CentOS, you should instead look for /var/log/

messages. We’ll open it up with

less /var/log/syslog

You’ll see all kinds of messages from different programs.

The program responsible for writing these logs on most systems is rsyslogd. It can

be customized by editing the /etc/rsyslog.conf file.

Note A side from syslog, another good method for checking logs is systemd’s
journalctl; see the Journalctl section in Chapter 11.

�Other sysstat Utilities
When you install and enable sysstat, you actually get a whole box of utilities and binaries

which process and display system data in various ways. These utilities are listed in Table 8-2.

Figure 8-24.  Example of contents in /var/log

Chapter 8 System Monitoring

174

�vmstat
vmstat is an older system monitoring tool which returns system information related to

system memory, processes, interrupts, paging, and block I/O. It isn’t installed on most

systems but can be found as vmstat on most package managers.

It takes two input values; the first is the sampling period in seconds, and the second

is how many samples to take. So if we run with inputs of 1 and 10 like the following:

vmstat 1 10

we get back ten rows. The first line is always the summary since boot. Then we get nine

rows each printed 1 second after the 	 last, showing the average of a 1-second sample. An

example of running vmstat for ten periods of 1 second is shown in Figure 8-25.

Table 8-2.  sysstat utilities list

Command Description

sar Collects data and displays all system activities

sadc “System activity data collector” runs in the background

sa1 Runs from cron and processes data collected

sa2 Creates daily summary, runs from cron

sadf Exports sar reports to CSV, JSON, XML, etc.

iostat For viewing I/O use

mpstat For viewing process-related stats

pidstat Views data by process ID

cifsiostat Views CIFS (Common Internet File System) stats; this is a Microsoft filesystem which

can be enabled in Linux by Samba

Chapter 8 System Monitoring

175

Due to the compressed space used to show the table, it can be difficult to interpret

the column values. Table 8-3 lists the short forms and what they mean.

Table 8-3.  List of vmstat columns

Sequence Description

r Threads waiting in queue for CPU

b Threads blocked on I/O

swpd Total swap used in KB

free Total free memory

buff Memory used as buffers

cache Memory used as cache

si Memory swapped in from disk

so Memory swapped to disk

bi Blocks received from block device

bo Blocks sent to block device

in Interrupts per second

cs Context switches per second

us Time spent running non-kernel code

(continued)

Figure 8-25.  Getting 9-second long samples with vmstat

Chapter 8 System Monitoring

176

�r – Threads Waiting for Runtime
As we mentioned when talking about load average, threads in a queue are processes waiting to

be run on a CPU. Thus, this column is essentially the same as load average. However, the first

line returned will be the average since starting your machine (if vmstat was already installed).

This gives you an average for the full runtime which isn’t available with top or uptime.

For the values below the top line, you’ll be getting the value for the instant when the

sample is taken rather than an average.

�b – Threads Blocked by I/O
Threads blocked by I/O are threads which have been put into a waiting state by the

kernel while it waits for a process reading or writing to storage. If you have a high

number of threads blocked by I/O, it may indicate that there are issues related to your

storage device or simply that a process which makes heavy use of I/O is running.

�swpd – Total Swap Used
Swap refers to disk space that has been allocated to act as RAM when actual RAM

memory is full. Swap memory is significantly slower than normal RAM and can cause

programs relying on said memory to run slowly. If you’re often using swap memory, your

system may be in need of RAM, or alternatively a program may be needlessly using more

RAM than is necessary.

Sequence Description

sy Time spent running kernel code

id Time spent idle

wa Time spent waiting for I/O

st Time stolen from virtual machine

Table 8-3.  (continued)

Chapter 8 System Monitoring

177

�free – Total Free Memory
This shows the total amount of unused memory on your system in KB. This is similar to

the free column which is shown when running the free command. This gives you an

idea of how close you are to using all your RAM.

�buff – Memory Used in Buffers
This is similar to cache but specific to file metadata; see the following section for more

details.

�cache – Memory Used as Cache
Sometimes memory will be used to cache data which is being accessed regularly by

programs. This speeds up programs but can make it appear that you have less RAM

available than is actually the case; this often happens if your system has been running

for a long time.

If you have a low value for free but a high value for cache, you still won’t need to

worry about swap being used as memory from buffers can be reallocated. If however

cache + buff + free added together are close to 0, it’s a sign that your machine is

strained for resources.

�si – Memory Swapped In from Disk
As mentioned previously, data or metadata (as is the case with buffers) are often stored in

memory to increase the speed at which programs operate. We talked about how if more

memory ends up being needed for something else this memory can be freed up. In other

cases, the data cached in memory might be swapped out for other data.

With swapping this data actually contains aspects of the executing program itself,

for example, data structures produced by a program which only exist while the program

is running. This swapping is what the si column measures. si is the memory swapped

from disk per second.

The use of swap indicates that a system doesn’t have enough memory available for

caching and has resorted to using disk space. If you have consistent or high rates of swap,

it means your system doesn’t have enough memory.

Chapter 8 System Monitoring

178

�so – Memory Swapped Out from Disk
As the name hints, this goes hand in hand with memory swapped in. While swapping in

is the process of loading data back into memory from disk, swapping out is the process

where data is first saved to disk.

�bi – Blocks Received from Block Device
This is essentially the amount of data which has been read from disk storage devices. By

default, blocks have a size of 512 bytes.

�bo – Blocks Sent to Block Device
This is the amount of blocks saved to disk via block device.

�in – Interrupts per Second
An interrupt is a signal which requires immediate handling. For example, when a key

is pressed on the keyboard, an interrupt is created which requires handling. In the

same way, when an incoming signal is produced from a network card connected to the

Internet, an interrupt is created. Interrupts can be viewed directly by looking at the file /

proc/interrupts.

Interrupts occurring is a normal part of system operation, but if interrupts are higher

than normal, there may be a hardware issue. A next step might be looking in /proc/

interrupts and finding what device is responsible for the high count.

�cs – Context Switches
A context switch occurs when the CPU switches between one process and another

without having finished the first. A context switch requires saving the state of the first

process so that it can be finished at a later time. There is a cost associated with context

switching, as resources are required for saving the state of the first process and loading

the state back up later.

If you’re seeing an abnormally high amount of context switching, it is likely related to

a specific program which is using multithreading badly.

Chapter 8 System Monitoring

179

�us – Time Spent Running Non-kernel Code
As the title says, us is time spent running non-kernel code. The kernel as we mentioned

previously is the core of Unix-like systems which connects the physical hardware to user-

level software. All “time spent” values are measured as a percentage of time, so a value of 2

would indicate 2% of the time during the period measured was spent on non-kernel code.

�sy – Time Spent Running Kernel Code
This is the percentage of time spent running kernel code; an easy way to think of this is,

time spent on system processes outside the user level. An abnormally high value for time

spent on system processes could indicate hardware problems, memory bottlenecks, or

kernel-level locking issues.

�id – Time Spent Idle
This is the percentage of time spent idle. This is used for comparing with us and sy.

Notice that adding us, sy, id, and wa (which we’ll look at next) should add up to around

100% (can be slightly off due to rounding). If you’re not running a lot of programs in the

background while testing vmstat, it’s likely that the majority of time will be spent idle. A

low number for time spent idle indicates your system is doing a lot of processing.

�wa – Time Spent Waiting for I/O
The fourth category of “time spent” on vmstat is the percentage of time spent waiting

for I/O. In the section on b, we mentioned how threads can be blocked while waiting

to write to disk or while reading from disk. wa gives us a measure of how much CPU

time was lost while waiting for I/O. Having a high % of time spent waiting for I/O could

indicate our disk storage is slow or that we’re simply doing a lot of reading and writing to

disk. If you’re finding that waiting for I/O seems to be taking a lot of your system’s time,

you can possibly lower this percentage by upgrading the underlying hardware with disk

storage that has higher read/write speeds.

If you’d like to simulate a process that causes a high amount of disk reading and

writing to observe the effect in vmstat, you can run the following code snippet:

 (cd /tmp &&

Chapter 8 System Monitoring

180

 (sync ; vmstat 1 & PID1=$! ; \

 cat </dev/zero >test & PID2=$! ; \

 sleep 3 ; kill $PID2 ; sync ; kill $PID1))

This snippet moves into the /tmp directory, starts vmstat, and then starts reading

zeros from /dev/zero and writing them to /tmp/test. PID1 and PID2 contain the

process IDs of both running processes and kill them after sleeping 3 seconds. When

running this command, you should see the wa value ramp up to some high values.

�st – Time Stolen from Virtual Machine
Just like it sounds, the st value indicates the amount of time a virtual machine running

on your system spends waiting to gain access to the resources allocated to it. This is only

relevant if your system is running a virtual machine. Consistently having a value above 0

may indicate that you’ve allocated too much memory to virtual machines, meaning your

primary system has to steal time from them, or you simply don’t have enough memory to

run your hosted virtual machines and primary system.

�nmon
The ‘nmon’ system monitoring tool can display CPU, memory, network, disks (mini

graphs or numbers), filesystems, NFS, top processes, resources (Linux version and

processors) and power micro-partition information. What makes nmon unique is that it

allows you to mix and match between these different statistics to create your own custom

display screen. nmon is not installed by default, but it can be found on most package

managers as nmon.

When you first open nmon by simply running the command with no options, you’ll

see a start screen similar to Figure 8-26.

Chapter 8 System Monitoring

181

From here you can press any of the buttons listed at the bottom to toggle on

that particular statistic. If we press n, for example, the screen will display network

information; if we then press c, we’ll be viewing both network and CPU information like

shown in Figure 8-27.

Figure 8-26.  Running nmon

Chapter 8 System Monitoring

182

The only limit to how many different stats you can view at once is your screen size.

At any time, you can remove a section by pressing the same button which was used to

activate it.

�Advanced Network Monitoring with Snort
Another monitoring system worth mentioning is Snort, an open source network

intrusion prevention and detection system. Snort works by analyzing network traffic in

real time and checking it against a set of defined rules. Common rule sets include

•	 Checking IP addresses against blacklists

•	 Checking for abnormal amount of requests from an IP

•	 Checking content of requests

•	 Rules specific to certain services like FTP, SSH, or https

•	 Any custom rules

Figure 8-27.  Viewing CPU and network info in nmon

Chapter 8 System Monitoring

183

Snort also allows the system administrator to connect rules to trigger actions such

as sending a notification to the system admin or blocking requests from the offending

IP. Snort is completely open source and several community-maintained rule sets exist,

there are also premium rule sets which are updated regularly and made available as a

paid service.

We won’t go into detail about how to install or set up snort though it is available

from most package managers. The setup process is rather long and outside the scope of

this book, but it is worth looking into if the use case is applicable to your setup.

�Nagios
Another open source full-suite network monitoring system complete with web-based

GUI is Nagios. It can be used to monitor resources across multiple machines and

infrastructure, with features including

•	 Alerts based on potential issues

•	 Monitor your websites to record any downtime

•	 Capture port use (http, SMTP, SNMP, FTP, SSH, POP, etc.)

•	 Extensive logs for network requests

As with Snort, the Nagios server is more useful for those running a medium- to large-

sized infrastructure for providing web-based services.

�Summary
In this chapter, we looked at various programs and commands which can be used to

monitor Linux systems, from basic process monitoring with top or atop to more specific

monitoring programs like nethogs and iftop.

Chapter 8 System Monitoring

185
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_9

CHAPTER 9

Hardware Details and /dev
In this chapter, we’ll look at some useful commands for checking the details of the

hardware on the machine you’re using or connecting to. When connecting to a machine

via SSH, you may not know all the details about what kind of hardware you’re dealing

with. Even if you’re using a machine you’re used to or some embedded device, you may

not know all the details. Additionally, if you are completely familiar with the hardware

of a device, you may be able to find hardware issues by checking the details to see if they

match up with what you’ve expected.

A missing folder within the /dev/ directory or device missing when running lshw

may alert you to some hardware which has either failed to mount or is broken.

�Commands for Hardware Details
In this section, we’ll look at commands and programs which can give you a better idea of

what kind of hardware is on the system you’re using.

Everyone knows about ls, but there is a whole list of hardware query commands

which take their name from the command. Some of them useful for finding out

information about the underlying hardware of a machine are listed in Table 9-1.

Table 9-1.  Useful commands for getting hardware details

Command/Application Description

lspci Lists all PCI devices

lsblk Lists all block devices

sudo fdisk –l Similar to lsblk but with more detailed information including sectors

lscpu Lists information about the CPU architecture

(continued)

https://doi.org/10.1007/978-1-4842-6035-7_9#DOI

186

�The /dev/ Folder
Another folder that can be used to gain insights into connected hardware is the /dev

folder. The /dev folder contains many files and folders related to mounted devices,

as well as some other nonhardware files with special use cases. Table 9-2 shows an

extensive list of files which can be found in the /dev folder. Your system likely won’t have

them all.

Note  All files which end in a number like js0 can have multiple instances; each
subsequent instance is named with the number incremented, in this case, js1,
js2, and so on.

Command/Application Description

lshw In-depth list of hardware details. Can also be run with the -short flag to

show a condensed version

ls /dev The /dev folder on Linux systems

ls -l /sys/block Lists hard disks attached and bus ID. You will likely also see several

virtual devices named loop

lsusb Displays information about USB buses in the system and the devices

connected to them

cat /proc/cpuinfo Provides data about the processor

free -h Displays free memory, -h for human readable

df -m Lists mounted filesystems

ip a Lists network interfaces

netstat -i Cleaner alternative to ifconfig for listing interfaces

hdparm Gets/sets SATA/IDE device parameters

uname -r Displays kernel version

Table 9-1.  (continued)

Chapter 9 Hardware Details and /dev

187

This list is by no means complete. Essentially, any I/O device which can be

connected to your computer will show up in the /dev folder.

�Special Files in the /dev/ Folder
In addition to physical devices, you’ll also find some special files within the /dev/ folder.

These represent pseudo-devices with some special behavior. Table 9-3 shows a list of the

popular ones.

Table 9-2.  Examples of devices in

the /dev/ folder

Folder/File Description

/dev/dsp Digital signal processor

/dev/fd0 Floppy disk reader

/dev/fb0 Framebuffer device

/dev/js0 Analogue joystick

/dev/lp0 Parallel printer

/dev/usb/lp0 USB printer

/dev/cdrom CD ROM

/dev/dvd DVD

/dev/rtc Real-time clock

/dev/sda Hard drive

/dev/ttyS0 Serial port

Table 9-3.  Special files in the /dev/ folder

Folder/File Description

/dev/null A special file that discards anything thrown into it

/dev/random A special file that produces random output

/dev/urandom Same as random but does not block when system runs out of entropy

(continued)

Chapter 9 Hardware Details and /dev

188

Next we’ll look at some of these special files a little more in depth.

�Teletypewriter
TTY (teletypewriter) is a device which can be used to both send and receive text over

various mediums. The name originates from the historical teleprinters which predate

screen-based computers. Teletypewriters were commonly used at Bell since the early

1900s; see Figure 9-1 for an example. Bell would later create Unix in 1971 which includes

a virtual teletypewriter as a core concept.

Figure 9-1.  Historical example of a teletypewriter from Bell Telephone
Magazine 1921

Folder/File Description

/dev/stdin Standard input of processes

/dev/stdout Standard output of processes

/dev/stderr Standard output of errors from processes

/dev/zero A special file that returns all zeros

/dev/tty0 Teletypewriter (see the following note)

/dev/loop0 Pseudo-device that makes file available as a block device

Table 9-3.  (continued)

Chapter 9 Hardware Details and /dev

189

When typing in Unix terminal, you’re actually inputting text into a virtual or pseudo

TTY which takes inputs and can return outputs. Of course in the case of the on-screen

terminal, it’s simulated hardware. At any one time, your system likely has several TTYs.

To see them all, simply run

ls /dev/ | grep tty

It’s likely too many to count manually; if you’re curious as to how many, you can pipe

the result into wc -l and get the amount of lines:

ls /dev/ | grep tty | wc -l

In my case, I have 98. Why so many? Well some of these TTYs represent normal

terminal sessions, while others have special use cases. For example, tty0 is a special

alias TTY which always points to the current terminal. TTYs may also be used to contain

processes or applications in the background. Try running

ps ax

This will return a list of processes; take note of the TTY column which shows the

parent TTY for some processes. Some processes may be listed as ?, which means they’re

unbound to a terminal, running in the background.

It is also possible to attach your screen to some of these TTYs directly by pressing

ctrl+alt+F1, replace F1 with the terminal number in question (F1, F2, F3, etc.). On

many OS, tty1 will be used for X Server; thus, moving to another terminal will cause

your computer to seem to leave the OS completely (music turns off, can no longer see

applications or system menus).

�stdin, stdout, and stderr
The special files stdin, stdout, and stderr are short for “standard in,” “standard out,”

and “standard error.” They’re more akin to a stream of I/O than a file per se, but because

(almost) everything is represented as a file in Linux, these aspects of the operating

system have associated files.

If you open them, you’ll find they’re completely empty though you can direct text

into them which is what is done in the background of the operating system, for example:

echo hello > /dev/stderr

Chapter 9 Hardware Details and /dev

190

It’s worth knowing what stdin, stdout, and stderr are. You’ll likely encounter them

even if not referred to by their file name directly. The system of converting “standard in”

to “standard out” and “standard error” via a process is visualized in Figure 9-2.

�/dev/null
A commonly used special device file is /dev/null. This file is like a blackhole you send

input in, but nothing ever comes out. This may sound rather useless at first, but it can

actually be used to silence a process that otherwise would print output to the terminal or

log files.

To show an example, we’ll use the ping command and redirect our output to /dev/

null. There are two types of output we can redirect, standard output (represented by 1)

and standard error (represented by 2).

In order to test redirecting both standard out and standard error to /dev/null, we’re

going to create a file which simply writes one message to standard out and another to

standard error. I’m creating mine at /tmp/out.sh:

#!/usr/bin/env bash

echo Working

>&2 echo Error

After saving the file, be sure to add the execution permission:

chmod +x /tmp/out.sh

Figure 9-2.  Diagram of a process transforming standard input into standard
output and standard error

Chapter 9 Hardware Details and /dev

191

Next let’s try running it:

/tmp/out.sh

Next try running it with the following redirection:

/tmp/out.sh 1>/dev/null

You should now only get back the error as standard output is directed to /dev/null

the blackbox. Let’s do the same thing but switch the 1 to a 2:

/tmp/out.sh 2>/dev/null

As you likely expected, now we only see the output but not the error. It’s also possible

to redirect both at once. For both the syntax is a little bit different:

/tmp/out.sh > /dev/null 2>&1

Figure 9-3 shows the expected output for each command.

�/dev/random and /dev/urandom
Another useful special device is random and urandom. These are both essentially the

same thing in that they both act as a device which inputs completely random data. Thus,

it serves as a pseudo-random number generator. Like most pseudo-random number

generators, it relies on some inputs to create entropy.

The entropy that is used for input is the result of random aspects of the state of the

system such as mouse movements, key presses, and other device inputs (e.g., speed of a

drive). Using this entropy, random characters are generated in the /dev/random and /

dev/urandom.

Figure 9-3.  Redirecting to /dev/null

Chapter 9 Hardware Details and /dev

192

The main difference between random and urandom is that if random runs out of

entropy, it will block a program relying on it, whereas urandom will not. Generally,

urandom should be preferred.

To get an idea of the kind of data in /dev/urandom, let’s get the first 500 characters

using head:

head -c 500 /dev/urandom

This should return a long string of unreadable characters like shown in Figure 9-4.

Of course this isn’t exactly usable. However, it can be used to generate useful random

data for programs. For example, say we want to generate a random number to use with a

program. We could use od, short for octal dump, to generate a human-readable number:

od -vAn -N1 -tu1 < /dev/urandom

The preceding example generates an unsigned number of 1 byte size (0–255). If we

wanted to instead do 2 bytes, we could run

od -vAn -N2 -tu2 < /dev/urandom

�/dev/zero
Another special file you’ll find in the /dev folder is zero. Reading this file will return a

stream of null 0s which goes on forever. To demonstrate /dev/zero, let’s create a file with

512 bytes of null 0s:

dd if=/dev/zero of=/tmp/zero count=1

Figure 9-4.  Example contents inside /dev/urandom

Chapter 9 Hardware Details and /dev

193

If you open /tmp/zero after this, you should see something like in Figure 9-5

(depending on how your text editor interprets null character).

This is mainly used for creating dummy files. It can also be used for zeroing out

memory on a computer. When a file is deleted on the computer, the underlying memory

still exists, but it has been marked as free space that can be used.

By creating large files that are all zeros, this underlying data can be removed, though

this method has been criticized, in favor of using random data instead of zeros, as

advanced methods can still recover this data.

A more thorough way of doing this would be to use the shred command, for

example:

shred /dev/sda

It will not only delete the contents of a drive but make them difficult to recover.

�What Is the Kernel?
You’ve likely already heard references to the Linux kernel, but what exactly is it? The

Linux kernel is the core component of all Linux operating systems and is the part which

everything else is built around. The word kernel originally refers to the very center of a

nut or fruit. In the same way, the Linux kernel is at the very center of all Linux systems.

Figure 9-5.  Example output from /dev/zero

Chapter 9 Hardware Details and /dev

194

The Linux kernel controls all communications between the physical hardware of

a system and the inner software. Many developers and Linux users will never have to

interact with the kernel directly, yet it is worth knowing what this refers to.

The Linux kernel is responsible for things including

•	 Memory management

•	 Process management

•	 Device drivers

•	 System calls

•	 Security

Much of this happens without the user even being aware of it. The hierarchy of

hardware, kernel, and processes is visualized in Figure 9-6.

�Getting Kernel Version
You can find out what version of the Linux kernel you’re using by running

uname -r

For more complete information on the version, you can run

cat /proc/version

Figure 9-6.  Userspace, kernel, and hardware stack

Chapter 9 Hardware Details and /dev

195

This will return more complete information on your kernel like shown in Figure 9-7.

In addition to the version, the identity of who compiled the kernel is listed, compiler

used, type of compile, and the date/time of compile.

�Configure and Mount a Drive
Often when setting up a server, either in person or in the cloud, the default storage space

won’t be enough to store data on. In this section, we’ll look at how to attach a drive to the

filesystem.

As mentioned in the section on /dev/, all connected drives will show up in the /dev/

folder. However, these will show as a single file not a folder which can be explored. In

order to have the drive treated as a filesystem, it needs to be mounted.

The first step in mounting the drive is figuring out which file it is in the /dev folder.

You can do this by running mount and grepping instances of “/dev/sd”:

mount | grep /dev/sd

This will list all drives connected followed by their mount point, as shown in

Figure 9-8.

Take note of the highlighted section /dev/sda4 on / type ext4. This tells us a

few things about the sda4 drive. Firstly, it is mounted as the root of our system / and

secondly the format is ext4.

Figure 9-7.  Displaying kernel version

Figure 9-8.  Displaying mountable drives

Chapter 9 Hardware Details and /dev

196

The mount command will not list every device; to get a better view of things, try

running lsblk, which should return a list like that shown in Figure 9-9.

Notice that in this case we can see the relationship between sda (the physical drive)

and the partitions on that disk (sda 1 through 4).

In my case, sda3 is a partition previously used for a Windows install. As it’s no longer

needed, I’ll format it and mount it. Whenever formatting double check that the drive

doesn’t have data you need and is in fact the correct partition name. After formatting the

partition, all data will be lost.

The steps we’ll be taking:

	 1.	 Delete the windows partition

	 2.	 Create a new partition

	 3.	 Format the partition

	 4.	 Mount the partition

	 5.	 Ensure partition is always mounted on startup

�Delete Partition
To delete the partition, first you’ll enter fdisk interactive mode for the drive in question:

sudo fdisk /dev/sda

You’ll be asked to enter a command; enter d for delete. Then enter the partition

number, in my case, 3. To make the changes final, enter the w command for write. The

deletion process will then start as shown in Figure 9-10.

Figure 9-9.  Viewing drives and partitions with lsblk

Chapter 9 Hardware Details and /dev

197

Now if you run lsblk | grep sd again, we’ll see one less partition.

�Create Partition
Next we’ll use the freed up space to create a new partition. Again open fdisk:

sudo fdisk /dev/sda

This time enter the command n for new. First you’ll be asked to choose a number;

we’ll use 3 to replace the deleted one. Next you’ll be asked to choose the sector on

the hard drive to start the new partition. In most cases, the default will be the lowest

available position and is a good choice.

After choosing the starting sector, you’ll be asked about the ending sector; you can

specify a specific location in memory or specify the size of the partition. We’ll simply

choose the default option which will use all remaining space to create our partition. In

my case, I was also asked if I want to remove the ntfs signature, which is a Windows-

specific thing; it is safe to remove. An example of the process is shown in Figure 9-11.

Figure 9-10.  Deleting a partition with fdisk

Chapter 9 Hardware Details and /dev

198

After the partition is created, you’ll want to run the following command to have the

partition table reread:

partprobe

�Format Partition
We now have a new /dev/sda3 file, but we still need to format it. We’ll do this using the

mkfs command, short for “make filesystem.”

sudo mkfs.ext4 /dev/sda3

Or:

sudo mkfs -t ext4 /dev/sda3

Figure 9-11.  Create a partition with fdisk

Chapter 9 Hardware Details and /dev

199

�Mount Partition
With the partition formatted, we can now mount it to our filesystem. First you’ll want

to create a folder which will be mounted to. The recommended locations for mounting

are /mnt and /media though these folders have different recommended uses. The /mnt

folder is for manually mounted drives, while /media is where automatically mounted

removable drives (e.g., USB portable drives) will appear.

However, technically, there is nothing stopping you from mounting a device

anywhere you’d like. In my case, I’ll create a folder called /mnt/drive1:

sudo mkdir /mnt/drive1

Once created, let’s mount the drive to it:

sudo mount /dev/sda3 /mnt/drive1

�System Link from Partition to ~/
It may seem awkward having your storage outside your home directory as it’s out of the

way and you won’t have permission by default. What you can do to deal with this is to

create system links to other folders within your home directory.

For example, say we want more space for a movie collection that will be located at ~/

Movies. First go into /mnt/drive1 and create the folder:

sudo mkdir Movies

Next make yourself the owner of the directory:

sudo chown $USER:$USER /mnt/drive1/Movies

Now that we have permission to use ~/Movies, we’ll create a symbolic link in our

home directory that acts as a shortcut, meaning we never have to go outside the home

directory to use it (be sure to use full path for the first argument):

ln -s /mnt/drive1/Movies/ ~/

Now if you go to your home directory, you should see a Movies folder. Anything

which is saved into the ~/Movies folder will actually be saved onto our newly mounted

drive.

Chapter 9 Hardware Details and /dev

200

�Making Mounted Partition Persistent
We have our partition working perfectly; you might think we’re done. Unfortunately, if we

now restart our machine, it will start back up without sda3 mounted. In order to make the

new partition mount to /mnt/drive1 on every startup, we need to do one more thing.

When starting up, the system looks at the file /etc/fstab to determine what drives

need to be mounted. Before we make an entry, let’s look at what values are needed:

	 1.	 UUID of block device (find with lsblk -d -fs <file>)

	 2.	 Folder to mount

	 3.	 Filesystem type

	 4.	 Mount options (use default or see man)

	 5.	 Should filesystem be dumped (normally 0)

	 6.	 Fsck order (use 1 for main partition, 2 for others)

To get the UUID of the partition, run the following using your own partition location:

lsblk -d -fs /dev/sda3

Once you have the six values needed, open up /etc/fstab to edit. The values we’ll be

using are shown in the second uncommented line of Figure 9-12.

Be careful when editing /etc/fstab as an incorrect entry will cause your system to go

into emergency mode on restart. If that happens, don’t panic, simply use the command

line in emergency mode to open /etc/fstab and comment out the line you added.

Figure 9-12.  Editing /etc/fstab

Chapter 9 Hardware Details and /dev

201

You can reduce any chance of errors by running

sudo findmnt --verify

This will pick up on things like mismatch between file type on disk and that declared

but is not 100% foolproof at catching errors.

�lm-sensor
After installing lm-sensor, you first need to let the application detect what sensors are on

your system. Do this with

sudo sensors-detect

It will ask several questions which you can reply “yes” to enable. In most cases, the

default responses are fine so you can just press enter. Once done with the setup process,

you can run

sensors

This will return sensor, fan, and other data which are available as shown in Figure 9-13.

Figure 9-13.  Viewing sensors with lm-sensor

Chapter 9 Hardware Details and /dev

202

�inxi
A program similar to lshw that can be installed for an improved experience when getting

hardware information is i-nex. It can be installed with

sudo apt-get install inxi

By default, it will return very basic data on a single line of output. To get full details,

run with the -F flag:

inxi -Fxz

This should return a detailed list of hardware information as shown in Figure 9-14.

�dmidecode
While lshw and inxi should be sufficient for most people looking to see basic hardware

details about a machine, dmidecode can be used to go even deeper.

For example, with dmidecode, you can see BIOS information using

sudo dmidecode -t bios

Figure 9-14.  Viewing hardware with inxi

Chapter 9 Hardware Details and /dev

203

Running the command stand-alone as sudo dmidecode will return all system

information in detail including things like serial number and manufacturer which can’t

be found with less detailed utilities. When using it stand-alone, you may want to pipe to

less for easy reading:

sudo dmidecode | less

For motherboard, you can run

sudo dmidecode -t baseboard

There are all kinds of options that can be specified via -t to specify specific hardware

info; see the man page for more complete information.

�Summary
In this chapter, we looked at several ways you can explore the underlying hardware of

a system using tools like lshw, inxi, and dmidecode. We also looked at how connected

hardware will appear in the /dev/ folder which contains hardware devices and a number

of special files like /dev/null and /dev/urandom useful for various tasks. We interacted

with a hard drive in the /dev folder by using the mount command to mount it in the /mnt

directory.

Chapter 9 Hardware Details and /dev

205
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_10

CHAPTER 10

Parsing Text
No matter what you’re doing on Linux, you’ll likely find yourself needing to parse text

at some point. As Linux is largely file based, there is a huge need for utilities which can

parse large amounts of text to find specific values, format, and process it.

There are several utilities that can be used for parsing text. In this chapter, we’ll look

at several of these utilities and how you can see them to parse text.

�grep
grep is one of the most commonly used command-line tools. It allows you to find a

specific string in a set of text. For example, given a file with several lines, we can find the

line with the text we’re looking for. As an example, let’s find the root user in the /etc/

passwd file.

cat /etc/passwd | grep root

You should get back a single entry as shown in Figure 10-1.

Or even better, we can perform grep directly on a file itself without the need for a pipe:

grep root /etc/passwd

You can also do the inverse and find lines without, to do that add the -v flag which

stands for invert matches:

Figure 10-1.  Grepping root from /etc/passwd

https://doi.org/10.1007/978-1-4842-6035-7_10#DOI

206

cat /etc/passwd | grep -v root

This should return similar entries for every other user on your system. The -v flag is

only one of many options that can be used with grep; see Table 10-1 for more.

Table 10-1.  Options for grep

Flag Description

-e Regex pattern

-i Ignore uppercase/lowercase

-v Invert matches

-c Cont matches

-n Get X lines before match and show line number (requires
number input)

-h Don’t show file name before matched line (default when
grepping a single file)

-x Exact line match

-f Load regex from a file

-o Only output the matched parts of a line

-A Show N lines after match (requires number input)

-B Show N lines before match (requires number input)

-C Show N lines before and after match (requires number input)

�cut
While grep can parse files to return the relevant lines in a file, sometimes there is the need

to parse the text in a line itself. For parsing a single line, cut works well. cut can be used to

split the contents of a line by character, byte, or custom delimiter, for example, with byte:

echo hello world | cut -b 1,2

The preceding command will return “he” as this is the content of the first and second

byte of “hello world”. It’s also possible to do from byte X to the end of a line, for example:

echo hello world | cut -b 7-

Chapter 10 Parsing Text

207

This should return just “hello”. cut doesn’t need to receive its input from a pipe; you

can also read from a file directly. When reading from a file, the same transformation will

be applied to every line. For example, let’s get the 1st to the 9th byte from every line in

the /etc/passwd file:

cut -b 1-9 /etc/passwd

You should get back a line for each user as shown in Figure 10-2.

Note  With normal text files, the -b and -c flags will act the same since a single
character is a byte long.

Of course in the preceding example, the result isn’t particularly useful; we’ve gotten

several usernames, but as not all users are the same length, some lines get extra data and

others get cut off. The most commonly used mode is -d for delimiter. For example, let’s get

just the usernames. We provide the character we want to use as a delimiter, in our example

each username is preceded by a “:”. Then we specify what section of the cut text we want to

return with the -f flag:

cut -d : -f 1 /etc/passwd

This should return a list of all users as shown in Figure 10-3.

Figure 10-2.  Grepping root from /etc/passwd

Chapter 10 Parsing Text

208

�uniq
Another useful command when parsing text is uniq, which is used for parsing out

duplicate lines. To test this command, let’s first create a file with some duplicate lines:

printf 'Hello %d\n' 1 1 1 2 2 3 > /tmp/hello.txt

The file /tmp/hello.txt should now contain six lines, three of which are unique. To

confirm, first cat the contents of the file, and then do a second cat piped into uniq:

cat /tmp/hello.txt

uniq /tmp/hello.txt

Your contents should be similar to those shown in Figure 10-4.

Figure 10-3.  Getting the first column of each line with cut

Figure 10-4.  Using uniq

Chapter 10 Parsing Text

209

It’s important to note that the unique feature only applies to duplicates which are

next to each other. If we add another “Hello 1” to the end of the file, for example, it will

still be printed as a unique line. Be sure to use >> and not > as a single redirect symbol will

overwrite the file rather than add to it:

echo Hello 1 >> /tmp/hello.txt

uniq /tmp/hello.txt

Notice how the first and last lines are the same like in Figure 10-5.

Table 10-2.  Options for uniq

Flag Description

-c Count occurrences of each line

-d Only show repeated lines

-i Case insensitive

-s Skip first N characters on each line (requires number input)

-u Only show unique lines

-w Only compare the first N lines (requires number input)

If we want to only print completely unique lines, we’ll have to first parse the file with

sort which we’ll look at in the next section.

Some options to be aware of which can be used with sort are shown in Table 10-2.

�sort
The sort utility is used for sorting lines in a file. To demonstrate, let’s create a file which

has numbers 1–5, followed by those same numbers again:

Figure 10-5.  Using uniq when duplicate lines aren’t next to each other

Chapter 10 Parsing Text

210

seq 1 5 > /tmp/numbers.txt && seq 1 5 >> /tmp/numbers.txt

Next let’s view the output and then view the output a second time piping through

sort:

cat /tmp/numbers.txt

sort /tmp/numbers.txt

The output from the first command should be in the order 1, 2, 3, 4, 5, 1, 2, 3, 4, 5,

whereas the second command will sort the numbers as 1, 1, 2, 2, ….

This can be particularly useful in combination with uniq, because you can ensure

alike lines are next to each other. Assuming you still have the /tmp/hello.txt file

created in the uniq section, let’s sort it and then get unique lines:

sort /tmp/hello.txt | uniq

With the combination of sort and uniq, you’ll only get back one instance of each

line, as shown in Figure 10-6.

The same effect can be accomplished with sort alone using the -u option:

sort -u /tmp/hello.txt

As with the other utilities we’ve covered, sort has some useful options shown in

Table 10-3.

Figure 10-6.  Using sort with uniq to only show a single instance of each line

Chapter 10 Parsing Text

211

�Regex
Regex isn’t a utility itself but a standard form of text parsing which is used by several utilities

and programming languages. Regex is short for regular expressions. A regular expression

provides a pattern by which a string is tested again. A simple example, say we want to match

either “Hello” or “Hi”. The regular expression for that would be

(Hello|Hi)

grep has a special -E option for extended regex. So we can use the expression with

grep. Before we do that, let’s add a line that says “Hi 1” to the /tmp/hello.txt file we

made in the last section:

echo "Hi 1" >> /tmp/hello.txt

With that done, run the following:

grep -E '(Hello|Hi)' /tmp/hello.txt

You should get back a match on every line, with the part that matched highlighted,

like shown in Figure 10-7.

Table 10-3.  Options for sort

Flag Description

-r Reverse sort (can be combined with other options)

-n Sort numerically

-d Dictionary sort, considers only blank and alphanumeric

characters

-k Sort by column (requires number input)

-u Only show unique lines

-M Sort by month (assumes month names in lines)

-V Version number sort

Chapter 10 Parsing Text

212

The same regex format can be used with several utilities and programming

languages: Perl, JavaScript, Python, and Ruby, just to name a few. For example, if you

have perl installed, you can use the exact same regex:

perl -pe '(Hello|Hi)' /tmp/hello.txt

Beyond one word or another, we can actually use wildcards or specific classes to

match again. Imagine you’re writing software to validate serial codes for a product, and

they come in the pattern of “number number number letter letter number.” This pattern

can be expressed as

[0-9][0-9][0-9][a-zA-Z][a-zA-Z][0-9]

Notice that for letters we’re using [a-zA-Z]; this indicates that we’ll accept both

capital and lowercase. If we instead only wanted capital letters, we could do [A-Z].

Now let’s say we wanted to make our serial code a bit harder to guess so we want the

first number to be either 3, 5, or 8. We would update the expression using [358] for the

first character:

[358][0-9][0-9][a-zA-Z][a-zA-Z][0-9]

This same pattern can be applied with both letters and numbers, for example,

[123ABC] would match any of the characters listed. Another common similar use might

be phone numbers:

[0-9]{3}[-][0-9]{3}[-][0-9]{4}

Figure 10-7.  Regex with grep

Chapter 10 Parsing Text

213

The preceding example introduces a new element we haven’t used yet. Instead of

defining each character in the number, we can do the short form [0-9]{3}, meaning

three instances of [0-9]. So we have a three-digit number, followed by a dash, a three-

digit number followed by a dash, and then a four-digit number.

One downside of the preceding regex is that it explicitly requires the dash. You can

make any character optional by following it with ?. So if we want to take our same regex

and make the dash optional, we would end up with

[0-9]{3}[-]?[0-9]{3}[-]?[0-9]{4}

Notice the addition of the two ?. So now our regex will match phone numbers with

or without the dash. If you’re from a country other than the USA/Canada, you may have

to further adjust the regex to match the pattern used in your locale. In addition, this

regex doesn’t take into account things like the possibility of using “()” around numbers.

However, using these simple elements, you can modify the regex to handle any type of

phone number format.

To test the phone number example, let’s open up the numbers.txt file created in the

section on sort. Then add a line which contains a phone number in the format “519-

555-0100”. With that done, run the following command:

grep -E '[0-9]{3}[-]?[0-9]{3}[-]?[0-9]{4}' /tmp/numbers.txt

This should return only the newline added with the phone number.

Another common regex is for finding emails. This isn’t a comprehensive example but

one which will work for most phone numbers:

\S+@\S+\.\S+

In this example, we’re making use of \S which is any nonspace character followed

by +, meaning one or more of the previous characters. Thus, together \S+ means any

amount of nonspace characters. Then we have an “@” symbol followed by another \S+;

after that, we have \.; normally . is a wildcard character, but with the backslash, it takes

on the literal meaning of “.”. Then we finish off with another \S+.

Just like with phone numbers, if we add an email to the /tmp/numbers.txt file we

made, we can test the regex as part of a command:

grep -E '\S+@\S+\.\S+' /tmp/numbers.txt

Chapter 10 Parsing Text

214

Table 10-4 contains a list of commonly used symbols in regex.

Table 10-4.  Regex symbols

Special Charachter Description

\s Matches any space or tab

\S Matches any nonspace character

\d Matches any digit

\D Matches any nondigit character

\w Matches any word character

\W Matches any nonword character

. Matches any character

^ Start of line

$ End of line

* Matches preceding character zero to any

amount of times

+ Matches preceding character one or more

times

? Matches preceding character zero or one time

| Or symbol used for either or expression

�awk
awk is a pattern scanning and processing language and command-line utility tool. It

excels at working with formatted text data. As an example, create the file /tmp/users.txt

with the following text:

Jesse 4557389203 jesse@gmail.com xl 1991 1

Matt 8839293940 matt@hotmail.com s 1983 1

Jeff 8493739304 jeff@outlook.com l 1980 3

Sarah 4939304952 sarah@email.com m 1974 2

Chapter 10 Parsing Text

215

We’ll use this file as sample data to process. Given the preceding data, we wanted to

look at all the emails. We could run

awk '{ print $3 }' /tmp/users.txt

This should print out all the information for the third column as specified by $3, as

shown in Figure 10-8.

We can mix and match these values and format them as we like, for example, getting

the email and size and separating them by a space:

awk '{ print $3" "$4 }' /tmp/users.txt

Or say we want to generate a sentence (example output in Figure 10-9) using the

information for each row of data:

awk '{ print "Hello "$1", thanks for buying a "$4" shirt" }'\

 /tmp/users.txt

We can also use basic search functionality to find specific rows, for example:

awk "/Jeff/" /tmp/users.txt

This should return the row with user Jeff, as shown in Figure 10-10.

Figure 10-8.  Printing third column in a file with awk

Figure 10-9.  Using columns as variables with awk

Chapter 10 Parsing Text

216

The regex we looked at previously is compatible with awk as well. Say we want to get

all users who are size “l” for large. We’ll create some regex to find cases of “l” with a space

/s on either side:

awk "/\sl\s/" /tmp/users.txt

Or if we want to get both large and small, we can use the (...|...) pattern like we did

with (Hello|Hi). Remember each \s is actually a space and does not refer to the letter

itself. So \ss\s actually means “ s ”:

awk "/(\sl\s|\ss\s)/" /tmp/users.txt

This should return entries with both small and large, as shown in Figure 10-11.

Any regex can be used with awk; simply put it in between the / / as we’ve seen.

These are a few examples of where awk can be useful. It’s hardly comprehensive as

awk is actually its own programming language, and whole books have been written about

making use of it. If you’re interested, other features include

•	 Creating .awk files invoked by awk directly

•	 Ability to define and use variables

•	 Support for writing stand-alone functions inside an awk script

•	 Built-in functions like a random number generator

•	 Support for if, else, and loops

Figure 10-10.  Searching for a string with awk

Figure 10-11.  Get users with size small or large using awk

Chapter 10 Parsing Text

217

�sed
sed stands for stream editor, and it will be present on most Linux installations. There is

significant overlap between what awk and sed can do. They both can be used to search

text for matches or perform operations on data. For example, if we wanted to search for

the row in /tmp/users.txt like we did with awk, we could do

sed -n "/Jeff/p" /tmp/users.txt

The -n flag disables sed automatically printing the file, and instead we’ll only print

the lines we specify. Then the p at the end of our match pattern stands for print.

Overall, I would recommend learning awk over sed as it’s simpler to use and a more

complete tool for more situations. However, there are a few things which are simpler

with sed than awk. One of those things is finding and replacing text.

Let’s take our sample data and replace “Jeff” with “Jeffery”:

sed -i 's/Jeff/Jeffery/g' /tmp/users.txt

The -i here enables edit in place so the file we’re reading from is changed. Then the

s/ tells sed to use the substitute command. We then match Jeff, and on the other side of

the /, we specify the replacement. Finally, the /g at the end specifies that this is a global

change, rather than simply replacing the first match.

However, there is a small problem with the preceding command. If ran a second

time, it will try to replace “Jeff” in “Jeffery.” As with awk, we can specify matching of a

space with \s and then use a literal space in our replace section:

sed -i 's/Jeff\s/Jeffery /g' /tmp/users.txt

You might recognize the \s from the regex table. As with awk, regex syntax is

compatible with sed.

�Using JQ to Work with JSON
Many of the older programs that are used on Linux were written in a time before JSON

became the standard for information sharing between web apps. While programs like

sed and grep are powerful for parsing and text manipulation, they are not well suited for

dealing with JSON. The most popular command-line program for dealing with JSON is

JQ, so much so that it has started to ship standard on many distributions such as Ubuntu.

Chapter 10 Parsing Text

218

JQ is a very fast JSON processor written in C. I asked the author if JQ stands for

JSON Query, and he said that would make sense but he didn’t intend for it to stand for

anything. Nonetheless, you can think of it as a way to query and work with JSON.

Note  In this section, we’ll be using Open Trivia DB as an example API to fetch
JSON from. Feel free to substitute this for any other API. Of course you’ll have
to modify the commands specifically for the data you’re working with. Some
interesting APIs that don’t require getting an API key include

Open Trivia DB – www.opentb.com

TheSportsDB – www.thesportsdb.com

The simplest thing you can do with JQ is pipe valid JSON into it and receive back a

colored result, for example, with Open Trivia DB:

curl -s https://opentdb.com/api.php?amount=3 | jq

This should return the same JSON but color coded for easy reading as shown in

Figure 10-12.

Already you’ll find working with JQ is easier, especially if the server you’re requesting

had originally serve the JSON in a compressed format. Also notice that for curl we used

the -s flag; without this, you’ll see a little progress bar which needlessly wastes space.

Figure 10-12.  Curl request being parsed with JQ

Chapter 10 Parsing Text

http://www.opentb.com
http://www.thesportsdb.com

219

Of course this is just the beginning; JQ is much more than a simple pretty print. Let’s

take the same data and work with it a little bit. Say, for example, we only want to display

the first question from our query (keep in mind the questions are random each request).

curl -s https://opentdb.com/api.php?amount=3 \

 | jq '[.results][0][0]'

We simply add [0] to get the first element in the array, similar to C-like languages

you might be familiar with like JavaScript. In this situation, the results we actually

wanted were wrapped in an outer array that contained only our target array, so it ended

up being [0][0].

If you’re familiar with working with arrays and objects in JavaScript or other

languages, doing more complex things will come very easily to you. Say now we want to

take the first question and select only the question text.

curl -s https://opentdb.com/api.php?amount=3 \

 | jq '[.results][0][0]'.question

If the database format remains the same when you’re reading this and you’ve copied

the command correctly, you should see a question text displayed on your screen. Let’s

think back to our section on pipes and send the result to cowsay (not installed by default)

just for fun.

curl -s https://opentdb.com/api.php?amount=3 \

 | jq '[.results][0][0]'.question \

 | cowsay

The output should look something like Figure 10-13.

Figure 10-13.  Using JQ to get a question and piping it to cowsay

Chapter 10 Parsing Text

220

We can expand on the preceding example to create a full command line–based quiz

game, by saving the result of the curl request in a script and fetching the questions and

answers to display separately. For a full example of a command-line quiz bot which

prints a list of potential answers and checks if the user responds with the correct answer,

see the following link:

https://github.com/Apress/basic-linux-terminal-tips-and-tricks

�Summary
In this chapter, we looked at utilities for parsing text from the command line and scripts.

For plain text files or piped input, these include grep, cut, uniq, sort, awk, and sed.

We saw that regex is extremely useful for matching patterns of text and is supported by

several utilities and most popular programming languages. Finally, we saw how we can

work with JSON which is often returned from web APIs by using the program JQ.

Chapter 10 Parsing Text

https://github.com/Apress/basic-linux-terminal-tips-and-tricks

221
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_11

CHAPTER 11

systemd
We’ve explored looking at processes directly using tools like ps; another way to look

at the processes running on a system is from the daemon perspective. A daemon is

a long-running process which operates in the background of a system; often they’re

automatically started on system start by an init program like systemd. The “d” in systemd

comes from the concept of daemon, as it acts as a controller for all daemons running on

the system.

systemd is a scheduling system which has become widely used across Linux

distributions. It is often the subject of both praise and criticism. Its central role in

controlling system functionality in a number of areas including logging, scheduling,

service monitoring, and system init has led some to say it is too centralized and goes

against the Unix philosophy of each program doing one thing well. Defenders of systemd

would point out that it is actually a collection of several binaries like systemctl and

journald which each do one thing and work together to create a larger system.

Whatever you think of systemd, it has become so widespread that it’s nearly

impossible to avoid if you’re using any popular Linux distribution. It was originally

developed in 2010 at Red Hat as a way to replace older init systems particularly SysV-

style init. By 2015 systemd had come to replace SysV init and other init systems on most

popular distributions including CentOS, RHEL, Debian, Ubuntu, and SUSE.

�systemctl
If your system is running systemd, you should have a command-line program called

systemctl, short for system control. systemctl can be used to monitor, query, and

modify the services and processes which are controlled by systemd. See Figure 11-1 for a

visualization of the subtasks which are monitored and controlled by systemd.

https://doi.org/10.1007/978-1-4842-6035-7_11#DOI

222

systemctl is the system control which connects various aspects of the system

keeping track of each service status, turning services on/off based on settings, and

parsing service output and moving it to log files.

Running systemctl without any flags will return a list of active systemd units, like

shown in Figure 11-2.

Figure 11-1.  Many uses of systemd

Chapter 11 systemd

223

�Stop, Start, Disable, and Enable Services
We’ve already used some of the commands we’ll go over here, but it’s worth reiterating

as they’re some of the most common commands you’ll want to use for managing

services with systemd.

�Stop a Service
If a service is running and you want to stop it via systemd, simply run the following with

sudo; we’ll use the printing service cups as an example (no output shown on success):

sudo systemctl stop cups

�Get Status of a Service
Next to ensure the service is off, we’ll use the status command. This can come in useful

in many situations when you’re unsure of the status of a service.

sudo systemctl status cups

You’ll get back not only the status of the service but the latest logs; see Figure 11-3

for an example. The addition of recent logs is a feature which was not present in the old

System V service command.

Figure 11-2.  Example output from running systemctl

Chapter 11 systemd

224

Notice the logs at the bottom which display a time and messages for starting and

stopping.

�Start a Service
Next let’s turn the service back on; as you may have guessed, it can be done with the

following command:

sudo systemctl start cups

After running start, rerun the status command and confirm that cups is running again.

�Disable a Service
Stop and start deal with the state of a service in the current session. Disable and enable

deal with the state of a service during the startup of a new session after a machine

is turned on. Simply using stop on a service will result in it restarting every time the

computer is stopped. To fully turn off a service for good, the disable command should be

used:

sudo systemctl disable cups

Again, after running, check the status and observe the differences.

�Enable a Service
As you probably guessed, the opposite of disable is enable:

sudo systemctl enable cups

Figure 11-3.  Getting the status of a specific program with systemctl

Chapter 11 systemd

225

After testing disabling a command, be sure to turn the service back to enabled if you
want it to continue starting on boot.

�Unit Files
Programs communicate their configurations to systemd via unit files, which are ini
files located in the /etc/systemd/system/ folder. The simplest unit file just tells
systemd to keep the program running. Let’s create an example program and unit file to
demonstrate; call it logTime.sh. I’ve created mine in the /tmp folder since I don’t plan to
keep it.

#!/usr/bin/env bash

while true
 do
 echo time is $(date)
 sleep 5
 done

Once you’ve written the script, give it executable permission with the following
command:

chmod +x logTime.sh

Go into the folder /etc/systemd/system; this is where you can place unit files which
configure programs to work with systemd. We’ll create the simplest possible unit file for
our script which simply logs time; name the file logTime.service. You’ll need to have
root permissions to edit and create files in /etc/systemd/system.

[Service]
ExecStart=/tmp/logTime.sh

With the unit file saved, you can now turn on the service.

sudo systemctl start logTime

Next we’ll get the status of the daemon.

sudo systemctl status logTime

This should return some information telling us the service is active and show the

most recent logs, like shown in Figure 11-4.

Chapter 11 systemd

226

You can actively watch the logs as they are generated using journalctl.

sudo journalctl -u logTime -f

This can be useful when you want to investigate some specific service that is running

on your machine. If it doesn’t seem to be acting right or is taking too much resources,

looking at the logs may give you hints as to the issue.

There are several other options that can be set in the unit file. The following is a more

complete unit file with comments to describe what each line does:

[Unit]

Description of what the program does

Description=Log time every 5 seconds

List services needed for this service to work

After=time-sync.target

[Service]

Path to executable

ExecStart=/tmp/logTime.sh

Policy for restarting when stops

Restart=always

Working directory for executable

WorkingDirectory=/tmp

The user the process will run under

User=philip

User group for the process

Group=philip

Figure 11-4.  Starting custom unit file and checking status

Chapter 11 systemd

227

Set environment variables

Environment=MYVAR=var

[Install]

Which programs require the unit

multi-user.target is when linux start

Adding this line makes the program start when system is booting

WantedBy=multi-user.target

If you manually modify a service file, you’ll need to do a soft reset on systemd with

the following command:

sudo systemctl daemon-reload

Even though the final line tells the program to turn on during boot, it needs to be

enabled to actually take the unit file into account.

sudo systemctl enable logTime

This will activate the service. If you want to disable the service, simply run

sudo systemctl disable logTime

The disable command is extremely useful. Say, for example, you check running

services and see a program that you aren’t using and don’t need. You kill the process or

turn it off, only to find that the next time you restart your computer, it's back again. If you

encounter that situation, systemctl disable may be able to solve it.

After you finish this section, make sure to delete the service file we created in /etc/

systemd/system. If you created the executable in the /tmp directory like we did here, the

service will fail after your first restart if you don’t remove it by deleting the service file.

�Find Running Services
When you log in to a machine, you’ll likely want to figure out what services are already

running. The command we previously looked at systemctl, for enabling and disabling

our logTime service, can also be used to get a complete list of services running on a

machine.

Chapter 11 systemd

228

systemctl is short for system control and is systemd’s command for controlling the

services on a system. Given that, nearly all services will be launched through systemd (at

least the ones that automatically start after a restart).

The simplest command you can do with systemctl is run it stand-alone:

systemctl

This will return a list of processes which are currently active on the system, as shown

in Figure 11-5.

Figure 11-5.  Output from systemctl

Figure 11-6.  Listing services only with systemctl

This lists everything and it can be hard to read through. If you want to look at

specifically unit file services that are running, you can use

systemctl list-units --type service

Another useful thing about this is that you can see services which are set to be

running but have failed for some reason, as is the case with postfix@-.service in

Figure 11-6.

Chapter 11 systemd

229

If we wanted to look at only failed services, we could add the --state failed flag to

our previous command.

Also, take note of the services that are active but have exited, meaning technically

they are working but not running. To see only programs which are currently running,

you can use the command:

systemctl list-units --type service --state failed

Another useful command will allow you to see all the unit files and their current

status:

systemctl list-unit-files --type service

This will output all the unit files and their current status, example shown in

Figure 11-7.

Figure 11-7.  Listing unit files with systemctl

There are several possible states, which are listed in Table 11-1. The most popular are

enabled, disabled, and static.

Chapter 11 systemd

230

For more details on these states, you can run

man systemctl list-unit-files

�journalctl
systemd doesn’t just handle scheduling tasks. It also plays a part in directing the logs that

are generated from running services. That’s where journalctl comes in, short for journal

control. As with systemctl, the simplest command you can run is journalctl by itself.

journalctl

This will return a list of all logs created through systemd. We can watch a live version

of this file as it updates by using the -f flag:

journalctl -f

This will display any logs as they happen; to exit, you can press ctrl+c.

journalctl has many options which spare you from having to come up with

complex parsers yourself; Table 11-2 contains a list of several useful options.

Table 11-1.  Possible service states with systemd

State Description

enabled Service is turned on

disabled Service is turned off

static Service can’t be turned on/off, dependency or single run

script

masked Locked so it can’t be turned on even manually

linked Made available through a system link

indirect Indirectly enabled

generated Dynamically generated via generator tool

transient Dynamically generated via runtime API

bad Invalid unit file

Chapter 11 systemd

231

�journalctl – Parsing by Time
In addition to the preceding flags, it is also possible to parse logs between specific times

using the --since and --until flags, for example:

journalctl --since yesterday

up until a time using basic hour notation

journalctl --until 13:00

or using a combination of the two

journalctl --since "2 days ago" --until yesterday

Traditional timestamps are also supported:

journalctl --since "2019-12-24 23:15:00" --until "2019-12-25"

Table 11-2.  List of options for journalctl

Option Description

-f Get live stream of logs

-k Show kernel logs

-u <service> Show service for specific service

-b Show boot messages

-r Sort in reverse order

-p Sort by process priority

_PID=<number> Get logs from specific process ID

_UID=<number> Get logs from specific user ID

_GID=<number> Get logs from specific group ID

Chapter 11 systemd

232

�Other Init Systems
While systemd has become widely used, there are still several places where you’ll find

other init systems – just to name a few examples:

•	 Minimal Linux versions like Alpine Linux

•	 Older versions of Linux

•	 Less used operating systems

•	 Highly customized operating systems

�SysV Init
Before systemd became the standard, classic Linux systems used SysV init. The word

“init” refers to the first process started during boot. You can still see it by running

ps -up 1

However, the script itself will likely be a systemd version of init. systemd was

purposefully designed to be SysV init compatible. With SysV init, the kernel starts the init

process, which handles changing the systems state for booting, rebooting, and shutting

down. With SysV, there are eight different runlevels defined in Table 11-3.

Table 11-3.  Runlevels on SysV

Runlevel Directory Use

N -- System boot

0 /etc/rc0.d/ Halt system

1 /etc/rc1.d/ Single-user mode

2 /etc/rc2.d/ Multiuser mode

3 /etc/rc3.d/ Multiuser with networking

4 /etc/rc4.d/ Reserved for custom runlevels

5 /etc/rc5.d/ Graphic user interface started (X11)

6 /etc/rc6.d/ Reboot

Chapter 11 systemd

233

As the system starts, it moves between runlevels, not always sequentially, for example,

going into single-user mode (runlevel 1) is a special state. When your OS becomes broken

during initiation, for example, a script in /etc like /etc/fstab is broken, you will only

be able to log in to single-user mode with user root. Other levels are more sequential, for

example, normally one would pass through runlevels 2 and 3 before arriving at level 5.

The folder associated with each of the levels contained bash scripts associated with

the programs that need to be started at that level.

Note  While runlevels are crucial to SysV-style init, they still exist in systemd init
with the same levels N, 0, and 1 - 6. On most systems, you can see your current
runlevel by running who -r.

�Upstart
Another previously popular init system is Upstart (last release was in 2014). Upstart was

used on Ubuntu before they switched to systemd as of Debian 8. Despite this, you’ll still

find Upstart in use today.

Upstart is made to look like other init systems and does not include a command called

“upstart”. If you’re unsure your OS is running Upstart, you can check for the binary with

ps -eaf | grep '[u]pstart'

If you see some processes other than the grep call itself, your system has Upstart

installed. You can use it to check what services are running with

service --status-all

This will return a list of services and their status. You can interact with the services by

interacting with their init scripts directly, for example:

sudo /etc/init.d/ssh status

Or to restart a service, run

sudo /etc/init.d/ssh restart

Chapter 11 systemd

234

This method of interaction isn’t actually specific to Upstart. Even on systemd

systems, you’ll find many programs have a /etc/init.d file which can be interacted with

directly like shown earlier.

�Summary
In this chapter, we looked at the systemd system and how it is used to control what

programs are running on your system. We looked at how systemctl can be used to work

with these services by stopping, starting, enabling, and disabling. To look at services

running and their logs, we explored the use of journald. We even created our own unit

file to make a systemd service from scratch.

Chapter 11 systemd

235
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_12

CHAPTER 12

Vim
Sooner or later, you’re going to want to start using a terminal-based text editor, if not full

time, then at least when you’re remotely logged in to a server or device.

Many system admins end up relying on nano, a simple text editor that is preinstalled

on many systems. The main advantage of nano is that it’s easily understood and usable

by new users. In the long run, using nano will slow you down significantly. With nano,

you end up having to hold down the arrow keys or delete for long periods as you try to

navigate a text document.

Vim creates a solution to this by creating a keyboard-based syntax for navigating

around a document and making changes quickly without the need for a mouse. In one

keystroke, you can go from the top of a document to the bottom G and back again with

two gg. Vim has all kinds of keystroke-based commands like this that help you move

quickly and edit.

�Modes
As mentioned in the previous chapter, many keys are bound to special movements or

command, for example, G to go to the bottom of the document. So what about when you

actually want to type “G” into the document? This is where modes come in. There are

two main modes in Vim and a third less used but still important mode:

•	 Normal mode – For running commands like G

•	 Insert mode – For writing text like you would in other editors

•	 Visual mode – For selecting text, similar to highlighting text with a

mouse

https://doi.org/10.1007/978-1-4842-6035-7_12#DOI

236

�Common Commands
When you open a document in Vim, you’ll be in normal mode by default. Normal mode

is where Vim-specific commands are run. Some of the most common you’ll want to be

familiar with are shown in Table 12-1.

Take note of how to exit Vim; it’s a common issue and joke that newcomers to the

program have extreme difficulty with exiting the program.

Note  Often people have trouble exiting Vim. When in normal mode, you can press
:q. If you’ve changed the file, you’ll get a prompt above an unsaved file. You can
save a file with :w and combine the two actions as :wq. Save and quit can also be
done with a slightly shorter command :x.

Table 12-1.  Vim commands

Command Description

:q Quit Vim

:w Save the document

:x Save and exit

i Enter insert mode

:u Undo

ctrl+r Redo

<Esc> Return to normal mode from insert mode

:e <filename> Open a file with Vim already open

:h Help screen

Chapter 12 Vim

237

�Using Help Command
If ever you find yourself forgetting the Vim basics, you can open up the help page by

running :h. This will bring you to a general help page. If you need information on a

specific command, you can follow the :h with the command, for example:

:h G

This will bring up the specific help text for the G command, as shown in Figure 12-1.

�Compound Commands
One of the great things about Vim is that commands can be combined in a way that it

has a very simple language for combining commands. Certain power commands can be

strung together to create new commands. Doing things like “delete inside quotes” can be

accomplished in three keystrokes; simply press

di" // delete in quotes

Figure 12-1.  Help screen for G command

Chapter 12 Vim

238

The preceding command represents three smaller components strung together:

d = delete

i = in

" = quotes

Now that you know how to delete in quotes, how do you think you delete inside

brackets?

di) // delete in brackets

Delete the current word? Delete in paragraph?

diw // delete in word

dip // delete in paragraph

There are several different selectors similar to this that can be used in the same

“delete in X” sequence. All you have to do is swap out the last key in the three key

sequences. Some of these keys and symbols are shown in Table 12-2.

Table 12-2.  Selectors that can be used with

the “deleted in” compound command

Key Description

“ Quotes

(, {, [, < Various bracket types

t HTML tag

p Paragraph

w Word

Note  For any of the brackets like (, {, and [listed earlier, you can also use the
closing version of said bracket for the same effect.

We can also take all these statements and swap out the first letter to change the

meaning. Some example compound commands are shown in Table 12-3. In rare cases the

adjective might not be needed at all. For example ‘diw’ can be further simplified to ‘dw’.

Chapter 12 Vim

239

�Selecting with Visual Mode
Vim has a third mode which provides functionality which is similar to that provided

by highlighting a block of text with your mouse in other programs. For example, open

up /etc/passwd with Vim (make sure not to use sudo or root as we don’t want to save

any changes to this file, better yet copy /etc/passwd into your /tmp folder and practice

editing the copy).

With the file open, press v; this will cause you to enter visual mode. Now that you’re

in visual mode, press the down arrow on the keyboard or j; as you move down the text,

your highlighting will change. See Figure 12-2 for an example of what you should see.

Now with the text highlighted, we can perform operations on it. If we press d, all of

our highlighted text will be deleted.

Table 12-3.  Examples of compound commands

Verb (Number) Adjective Noun Description

c -- i t Create - in - HTML tag

d 4 -- l Delete four letters

c -- a < Delete - around - < bracket

d 2 -- w Delete two words

Figure 12-2.  Selecting text in visual mode

Chapter 12 Vim

240

Notice that we have the hanging selected character in the previous image for the

word “games”. A nice way to avoid this is to enter visual line select mode, which is the

same as visual select mode but only highlights full lines. To use visual line select, use

shift+v instead of just v.

While this might look similar to what you’re used to using your mouse in a normal text

editor, Vim visual mode is actually much more powerful. Instead of selecting lines of text,

we can instead select a vertical chunk of code. To do this, first make sure you’re in normal

mode by pressing esc. Now press ctrl+v and scroll down using j or the down arrow.

After scrolling down four lines, press l a few times or the right arrow key. Notice

we’re doing the same thing we did above with visual mode but selecting a vertical chunk

of code, which will be highlighted as shown in Figure 12-3.

From this point, we can perform an operation on the selected code like d for delete

or press esc to switch unselect and go back to normal mode. Another common use

for visual mode is to prepend all your lines with some common text. For example, say

we want to comment out the first four lines of code. Return to the top left-hand corner

and press ctrl+v. Next, scroll down four lines and press ctrl+I (must be capital I); this

enters into insert mode but we’ll actually be typing on all four lines at once.

Now if we type # , the change will be repeated on each line, like in Figure 12-4. When

you’re happy with the inserted text, press esc to finish the operation. If we want to

uncomment the lines, we can use the technique of selecting a vertical chunk of code and

pressing d to delete what we’ve just added.

Figure 12-3.  Selecting vertically in visual mode

Figure 12-4.  Adding a hash sign to the start of several lines at once

Chapter 12 Vim

241

Make sure not to save any of these changes. To exit Vim without saving, you can press

:q! in normal mode.

�Vim Tutor
When you install Vim, it also comes with another executable called vimtutor. When you

run it, a tutorial will open that walks you through using Vim. The first lesson from Vim

tutor is shown in Figure 12-5.

It contains detailed lessons doing simple things like moving the cursor, editing,

deleting, and creating text. It’s recommended you work your way through Vim tutor to

get the hang of doing common things in Vim.

Figure 12-5.  Vim tutor

Chapter 12 Vim

242

�Find Text
Another common thing you’ll want to do when navigating text is finding some specific

string of text. This can be done in normal mode using the / key. First press / and then

type in the string you’re searching for. You’ll see your input in the bottom-left corner of

the screen. After inputting your search phrase press enter and your cursor will go to the

next instance of the string based on your cursors starting location.

With your cursor on the first instance, you can press n to go to the next instance or N

to go to the previous instance.

Searching can be a powerful way to navigate a document and is often followed by a

combination command like cw for “create word.”

�Find and Replace
Sometimes when you’re searching, what you really want to do is find all instances of a

variable or word and replace it with another name or word. This is also fairly easy in Vim

once you memorize the command.

:%s/old/new/g

The %s here stands for substitute; then we have the old word, followed by what

we’ll replace it with. The g in this case stands for global, meaning we want to replace all

instances of “old” with “new.” Running the same command without the g will replace

only the first instance found.

Another useful option that can be used with substitute is i for case insensitive (same

as with regex), for example:

:%s/old/new/gi

This will replace any match of the word regardless of whether it uses a capital or

lowercase for any of the letters.

Chapter 12 Vim

243

�Run a Command
It’s also possible to run a Unix command from within Vim. As an example, let’s create a

file called “vim” in the /tmp folder:

:!touch /tmp/vim

On pressing enter, you’ll go into a shell instance where the results of the command

are shown. Then pressing enter again, you’ll return to Vim. This can be handy for quick

commands without leaving Vim or changing windows.

In addition to running one-off commands, it’s also possible to run a full window

terminal within Vim. You can open a mini-terminal in Vim by running :terminal or

:term for short. It will open a new terminal session in the top half of the window like in

Figure 12-6.

The terminal window shows on top, and you can quickly move back and forth

between the in-app terminal and the text you’re editing. To switch between the two

windows, press ctrl+w followed by w.

Figure 12-6.  Opening a terminal session inside Vim

Chapter 12 Vim

244

To close the terminal window, first press ctrl+w and then press :q! followed by

enter in the same way you would to force close a normal window.

�Vim Sort Command
Another handy built-in command is Vim’s sort, which is similar to the command-line

sort utility we looked at in a previous chapter. To demonstrate sort, go into the /tmp

folder and create a file with ten random numbers between 1 and 99:

for i in `seq 10`;

 do echo ${RANDOM:0:2};

done > /tmp/numbers.txt

Now if we open up /tmp/numbers.txt, you should have ten unsorted numbers, each

on a different line. Next run the following in Vim:

:1,5!sort

After hitting enter, the first five lines should be sorted. The first number is the starting

line for the sort and the second the end. So if you run the same command again with a 10

instead of 5, all the numbers in the file should be in order.

�Show and Hide Line Numbers
In the last section, we made use of line numbers with the sort command, and it was easy

since we started at line 1, but what if you are in the middle of a long file? If you need to

see the line numbers, you can run

:set number

Then to remove numbers again, run

:set nonumber

�Swap Files
As you use Vim, you may notice the creation of files with the extension .swp. These

are backup files automatically created and deleted when you properly close Vim. If for

Chapter 12 Vim

245

some reason your SSH connection is disrupted or Vim closes unexpectedly, you’ll have

a chance to recover your changes. Just reopen the file which has an associated .swp file,

and you’ll see a screen like in Figure 12-7.

Notice the options displayed at the bottom of the page. To recover the changes, press

R. If you don’t want to recover the changes, you should press D; otherwise, you’ll see this

message every time you open that file until the .swp file is removed.

�Summary
In this chapter, we looked at how we can use the Vim text editor to increase productivity.

It allows you to quickly manipulate text without the use of a mouse which can cause you

to lose context. We looked at some of the three main modes Vim has – normal mode,

insert mode, and visual mode. We also saw how Vim has its own language that can be

used to create compound commands such as ciw which stands for “create in word.”

While this chapter only showed a small section of what is possible with Vim, hopefully it

serves as a starting point that allows you to make use of the editor and increase the speed

at which you can edit files.

Figure 12-7.  Vim when opening a file that has a swap file

Chapter 12 Vim

247
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_13

CHAPTER 13

Emacs
In this chapter, we’re going to talk about a very popular editor in the Linux world. Emacs

is one of the oldest and most liked editors. While Vim is quite compact and focuses

simply on the task of editing files, Emacs is more of a platform which “modes” can be

created for. Different modes in Emacs interpret commands and text in different ways.

Modes can be related to the type of text file being edited, for example, a mode

specific to programming Python, JavaScript, C++, and so on. However, modes can also

be like programs, for example, org-agenda which provides a fully functional agenda,

to-do lists, and calendar or EWW which provides a functional web browser without ever

leaving Emacs. There are even community-made modes which tie into external APIs,

for example, telega mode which provides a fully functional Telegram chat application

embedded into Emacs.

We won’t look at every mode or even all the features which come standard in Emacs

as that would take a whole book in itself. Instead, we’ll survey a few of the interesting

ones which are useful from the terminal and can provide a starting point if you wish to

delve deeper into the Emacs world.

Note  When discussing Emacs, I’ll use their standard syntax for describing
commands. When you see something like

M-x run-command

the “M-x” stands for press “x” while holding the modifier key, which on most
machines will be the ALT key.

The second thing you’ll see is RET; this simply stands for press the enter key.

https://doi.org/10.1007/978-1-4842-6035-7_13#DOI

248

�Installing Emacs
A relatively up-to-date version of Emacs can be found on most package managers.

To install Emacs on a Debian-based system, run

sudo apt-get install emacs

At the time of writing, we found the GPG key that ships with the program to verify

packages on ELPA (Emacs Lisp Package Archive) was out of date. You can manually

update the key with the following command:

gpg --homedir ~/.emacs.d/elpa/gnupg \

 --receive-keys 066DAFCB81E42C40

Depending on the time of reading, the key above 066DAFCB81E42C40 may need to be

changed. Check the GNU website link, https://elpa.gnu.org/packages/gnu-elpa-

keyring-update.html, where you can find the most up-to-date key to be used with the

command in the body of the “Full description.”

In order to tell Emacs to make use of the MELPA package archive, you’ll have to

create a file in your home folder called .emacs. It should contain the following code:

(require 'package)

(add-to-list 'package-archives '("melpa" . "https://melpa.org/packages/"))

(package-initialize)

�Vim Bindings aka Emacs Evil Mode
I love Vim because you can find it almost anywhere, if not in full, then at least the limited

version vi. What makes Vim great for me is that the keybindings allow me to modify

and enter data extremely quickly. Yet when it comes to interesting modes, modules, and

extensions, I prefer Emacs for a lot of things.

Examples of interesting modules we’ll look at include artist-mode, org-mode,

presentations, and tramp. Before we take a look at those modules, we’ll enable Vim

keybindings so we can use the best features of Vim we’ve looked at while running Emacs.

It’s worth noting that several other programs and IDEs offer optional Vim keybindings

(with various levels of quality in implementation), for example, VS Code and Qt Creator.

Some terminal programs like Ranger even use them by default, while others like bash

allow you to set them with an option.

Chapter 13 Emacs

https://elpa.gnu.org/packages/gnu-elpa-keyring-update.html
https://elpa.gnu.org/packages/gnu-elpa-keyring-update.html

249

To enable Vim keybindings on Emacs, we first need to install the module “evil-

mode”; the name is half a joke about the Emacs vs. Vim rivalry and half word play based

on e (Emacs) + vi (Vim).

Before installing any package, you should update the local package list. This is

similar to updating your OS package manager, for example, on Debian apt-get update.

To update the Emacs package manager, run the following command:

M-x package-refresh-contents

To install evil-mode, you can use the built-in package manager MELPA. Run the

following:

M-x package-list-packages

This will show a list of all available packages on MELPA. Next we’ll install evil-mode using

M-x package-install RET evil

This will install the package, and in the bottom left of the screen, you should see

“Done.” With the package installed, you should be able to run the following command to

enable the keybindings for your current session:

M-x evil-mode

However, after closing Emacs and reopening, the bindings will no longer be enabled.

To ensure that the bindings are enabled by default on opening Emacs, we’ll modify our

~/.emacs file. Add the following two lines to the bottom of the file:

(require 'evil)

(evil-mode 1)

Note  One of the major concepts in Emacs is that of modes. Changing modes can
change the way input keys react. The mode to make Emacs use Vim bindings is
itself a mode called evil-mode. There are two subcategories of modes in Emacs:
minor modes and major modes. Major modes are exclusive, while multiple minor
modes can be enabled at once, and each adds some features.

A community extension for using Vim bindings in other modes exists and is actively
being maintained/developed. You can read more about it at

www.github.com/emacs-evil/evil-collection

Chapter 13 Emacs

http://www.github.com/emacs-evil/evil-collection

250

�Built-in Tutorial
Like Vim, Emacs has a built-in tutorial which can be accessed by pressing

C-h t

This should open up a page of text like shown in Figure 13-1.

Before switching to the terminal mode as we’ll do in the next section, it’s worth

exploring the default start page for options like “Open Home Directory” and the linked

documentation. In many ways, Emacs is built to be used from the GUI rather than in the

terminal. If you prefer the GUI version and it works for your setup, feel free to use it.

Figure 13-1.  Emacs built-in tutorial in GUI mode

Chapter 13 Emacs

251

For the most part, not much is gained by using Emacs from terminal instead of the

GUI. It does make it easier to go from terminal into a file and may feel comfortable for

those coming from Vim, but many Emacs power users swear by the GUI version and

keep it running at all times with multiple files opened and backgrounded in a single

instance.

�Run Emacs in Terminal
By default, Emacs is a desktop GUI program. Of course if you’re reading this book, you’re

here for terminal-specific programs and workflow. You’ll be happy to hear that Emacs

can be run in the terminal too just like Vim. To do so, you’ll want to open the program

using the --no-window-system option, like this:

emacs --no-window-system

The same thing can be done using the short way -nw:

emacs -nw

Of course, you probably don’t want to write this every time you launch Emacs from

the terminal. What you can do instead is add an alias to your .bashrc file so that emacs

instead calls emacs --nw. In my case, I decided to use e, as typing five keys seems like a

lot of work. The .bashrc alias looks as follows:

alias e='emacs -nw'

�Hints with which-key-mode
A great mode to install for if you’re new to Emacs or even a veteran user is which-key-

mode. This mode causes a mini-buffer to pop up and display the possible keyboard

shortcuts that can be used from your current state. An example of the which-key

dialogue is shown in Figure 13-2.

Chapter 13 Emacs

252

Installing which-key-mode from MELPA is similar to the process for evil-mode.

M-x package-list-packages

M-x package-install RET which-key

Once which-key-mode is installed, you’ll want to modify your ~/.emacs file to tell

which-mode to show suggestions in the mini-buffer as you type commands. We’ll be

making use of the use-package command so we first need to import it. Under the code

chunk ending in (package-initialize) that we wrote in the last section, add

(unless (package-installed-p 'use-package) (package-refresh-contents)

 (package-install 'use-package))

(require 'use-package)

This will allow us to make use of use-package in our command. Now at the bottom

of the file, add

(use-package which-key

 :ensure t

 :config

 (which-key-mode))

This ensures which-key-mode is turned on when Emacs opens.

With this done, close and reopen Emacs. Now if you type

C-x

you should see a mini-buffer showing all the keys that can be used to complete after C-x

and what they do, example shown in Figure 13-3.

Figure 13-2.  which-key-mode suggestions

Chapter 13 Emacs

253

If there are too many possibilities to be listed, the mini-buffer will be split into

sections. To switch between them, press

C-h

This will allow using n to go forward or p to go back a section.

which-key has some other built-in commands that can be run. For example, if you

want a general overview of commands available in your current major mode, run

M-x which-key-show-top-level

If you’re in evil-mode, for example, you’ll see the options available for evil-mode.

Being able to see all possible commands is especially useful when you’re new to

Emacs so this mode is highly recommended.

�Emacs Artist Mode
While I prefer to use Vim for text editing, I appreciate the uniqueness and interesting

modes which come with Vim’s rival text editor Emacs. Some of these modes are built-in,

while others have to be installed using the built-in package manager MELPA.

One of these interesting modes is Emacs artist-mode. artist-mode provides a set of

tools for creating text-based art or diagrams. Figure 13-4 shows a diagram of a server

architecture which I included in both a presentation and README document.

Figure 13-3.  which-key-mode suggestions for C-x

Chapter 13 Emacs

254

The real strength of these types of diagrams is the ability to both make and view them

on a terminal. When logging in to a server over SSH and coming across a README, normal

images cannot be displayed. However, the diagrams created with Emacs artist-mode can

be changed easily.

These kinds of images are particularly useful in nongraphical READMEs or manuals.

As an example, I used this kind of art in a presentation about a system for delivering

updates to IoT devices, in conjunction with Emacs presentation mode, another module

that we will look at next.

Note  We’ll show you how to use artist-mode via the terminal version of Emacs
here, but this is one mode which is much easier to use in the GUI version. This is
due to the fact that with the GUI, you can draw text using the mouse and drag and
drop shapes, whereas in the terminal you need to use the keyboard for everything.
If your setup allows it, you may want to start Emacs in GUI mode and give drawing
text with your mouse in artist-mode a try.

Create a blank file with Emacs and then switch into artist-mode. Before switching

to artist-mode, you’ll want to create a “canvas” of blank space (literal space characters)

where you’ll draw your image. An easy way to do this with Vim bindings is to press i

Figure 13-4.  Example of a chart made in artist-mode

Chapter 13 Emacs

255

to go into insert mode and hold down the space bar until your cursor goes as far right

as you want the canvas width to be. Then press esc to exit insert mode. Press y twice

to copy the blank line; next hold p until your cursor goes as far down as you want your

canvas to be. Your cursor should end up in a bottom-right location like in Figure 13-5.

The space from the cursor to the top left is now all white space, which we will operate

while using artist-mode.

Next switch to artist-mode using the following command:

M-x artist-mode

You’ll also want to turn off Vim bindings if you have them enabled as they don’t play

nicely with artist-mode. You can do that by running the same command which turns

them on:

M-x evil-mode

Once in artist-mode, we have a large variety of shape tools we can select from to draw

with. When using Emacs in terminal mode, all the shapes can be switched between by first

Figure 13-5.  Creating a canvas of white space in Emacs to use with artist-mode

Chapter 13 Emacs

256

pressing ctrl+c, followed by ctrl+a, after that you but in the letter corresponding to the

specific shape (case insensitive, I have copied the shortcuts as they appear in Emacs GUI).

C-c C-a L ## Line

C-c C-a r ## Rectangle

C-c C-a s ## Square

C-c C-a P ## Poly-line

C-c C-a C ## Ellipse

C-c C-a T ## Text

C-c C-a z ## Spray-can

C-c C-a E ## Erase

C-c C-a V ## Vaporize

In our case, we’re going to select rectangle; once you’ve selected the rectangle shape

with C-c C-a r, move your cursor to the point where you want to start drawing from.

Then press enter and move your cursor around; you’ll see that the rectangle changes

shape as you move it. When happy with the size and shape, press enter to finalize it.

Try making two rectangles like shown in Figure 13-6.

Figure 13-6.  Two rectangles created in artist-mode

Chapter 13 Emacs

257

Next switch to the line tool using

C-c C-a l

Move your cursor to the bottom middle of the top rectangle, then press enter to start

your line. Move it down to the top of the second rectangle so they’re connected like in

Figure 13-7.

To make it look more like an arrow going from the top rectangle to the bottom one,

we’ll replace the + with a v. To do so, simply press v while your cursor is in the place

shown in the preceding picture. You should end up with something like Figure 13-8.

Figure 13-7.  Artist-mode connecting two rectangles with a line

Chapter 13 Emacs

258

When not using a specific shape in artist-mode, pressing a key simply replaces the

text of where the cursor currently is with what you press. We can use this same effect to

add some labels to the rectangles. Move your cursor to where you want to add the labels

and simply type. You can add label text like shown in Figure 13-9.

Figure 13-8.  Making a line an arrow in artist-mode by replacing + with v

Chapter 13 Emacs

259

If you accidentally write it noncentered, you can simply put your cursor to the start

of the word and press the spacebar to overwrite the text with white space. The same goes

for if you accidentally mess up your shape while writing; simply add the missing text of

the shape manually this way.

With those two simple shapes and techniques, you can create relatively complex

graphics of architecture like the puppet pop machine one shown at the top of this

section. However, if you explore the other tools and have the time, there’s no limit to

the text art you can create. I’ll leave you with some inspiration, a pop machine text art

graphic I found and used in the same presentation, shown in Figure 13-10. You can find

text art like this on sites like www.asciiworld.com and www.asciiart.eu.

Figure 13-9.  Adding labels to our diagram in artist-mode

Chapter 13 Emacs

http://www.asciiworld.com
http://www.asciiart.eu

260

�Org-Mode
Another useful mode to keep notes efficiently in raw text and even give presentations

(more on that in the next section) is Emacs org-mode. Emacs org-mode, short for

organization mode, provides the ability to write text under hierarchical headings with

the ability to easily expand and compress sections, for example, given the format shown

in Figure 13-11 (headings specified by *).

Figure 13-10.  Pop machine text art

Chapter 13 Emacs

261

To collapse a section, you simply put the cursor on the heading to collapse and press

tab. The level is defined by the number of stars in front of the heading like shown in

Figure 13-12.

Collapsing a higher heading will hide all of its children, as shown in Figure 13-13.

Figure 13-11.  Org-mode with expanded sections

Figure 13-12.  Org-mode with condensed subsections

Figure 13-13.  Org-mode collapsing a section

Chapter 13 Emacs

262

As with artist-mode, it does not play well with Vim bindings. If you want to use both

Vim bindings and org-mode, there are some packages which try to add patches to org-

mode to make it work with Vim bindings, but I found it wasn’t worth the effort. Packages

include evil-org, org-evil, and syndicate. My recommendation is to simply not use

both modes at the same time. If you have evil-mode enabled on startup, you will have to

manually turn it off by running evil-mode before running org-mode.

There is no need to install any additional packages to use org-mode as it ships

standard with Emacs.

�Tables in Org-Mode
Org-mode also has a built-in mode for making and working with tables. A table in org-

mode is specified by the | character. To generate a table, start by pressing

C-c |

This will open a dialog in the footer asking what size you’d like for the table, like in

Figure 13-14.

For our example, we’ll use 2x3. After entering the size, an empty table like that shown

in Figure 13-15 will be generated.

Next fill out the form with some sample data. After doing so, the table will likely be

misaligned like in Figure 13-16.

Figure 13-14.  Dialog at the bottom of the screen asking for dimensions of
the new table

Figure 13-15.  Empty 2x3 table created in org-mode

Chapter 13 Emacs

263

To reformat the table, make sure you have your cursor somewhere on the table and

press ctrl+c twice.

C-c

C-c

After pressing a second time, org-mode will realign the table, resulting in a nicely

laid out table like shown in Figure 13-17.

You should now have a nicely formatted text-based table.

You can find additional features for working with tables such as converting CSV

format to a table and rearranging rows in The Org Manual page for tables: https://

orgmode.org/worg/org-tutorials/tables.html.

�Export from Org-Mode
One of the handy things you can do with org-mode is export to several other file formats

using a simple command. Possible formats include

•	 PDF

•	 HTML

•	 LaTeX

Figure 13-16.  Unformatted table in org-mode

Figure 13-17.  Formatted table in org-mode

Chapter 13 Emacs

https://orgmode.org/worg/org-tutorials/tables.html
https://orgmode.org/worg/org-tutorials/tables.html

264

•	 OpenDocument Text (ODT) file

•	 Plain text

•	 iCalendar

To get started, press

C-c C-e

This will open up an export menu which shows possible export options, as shown in

Figure 13-18.

Figure 13-18.  Export type selection in org-mode

Chapter 13 Emacs

265

If we want to export to PDF, for example, press l and that subsection will be

highlighted. See Figure 13-19 for an example of the PDF subsection.

We can now press p to export as a PDF. Upon doing so, a PDF in the same directory

as your org file will be created.

�Org-Agenda
When working with org files, it’s possible to use a special TODO indicator to mark text as

an agenda item. You can also tell org-agenda to keep track of certain files as part of a

globally accessible agenda, which includes things like a daily planner and calendar.

To demonstrate, create a file called /cal.org. Then, create sections for different priority

tasks (high priority, low priority like in Figure 13-20). Once you’ve created the file, press

C-c [

This will add the file to Emacs list of files to be queried by org-agenda. You can

remove a file by running

C-c]

Once a file is added, any TODO instance will be included in org-agenda. The TODO

has to be preceded by an * as shown in Figure 13-20.

Figure 13-19.  LaTeX subsection highlighted in org-mode export menu

Figure 13-20.  TODO list in org-mode

Chapter 13 Emacs

266

Now if we press alt+x, enter org-agenda, and press enter:

M-x org-agenda RET

we’ll get a list of options for org-agenda, as shown in Figure 13-21.

Press t to see a list of all TODO items, as shown in Figure 13-22.

In this agenda tab, we can now press n for next line and p for previous line. Go down

to one of your list items and press t. This will mark the task as done both in your agenda

and inline in the file where it was originally written. Keep in mind you can have as many

different files tracked by the agenda as you’d like. So if you want to have different files to

list different types of tasks, you can do that and have them all pulled into your agenda

(example of compiled TODO list shown in Figure 13-23).

Figure 13-21.  Org-agenda menu

Figure 13-22.  All TODO items listed in org-agenda

Chapter 13 Emacs

267

To exit the agenda, press q.

Org-agenda also has support for task deadlines. To add a deadline to a TODO item,

put your cursor over the TODO task and then press

C-c C-s

This will open up a prompt where you can input a date, as shown in Figure 13-24.

After entering a date/time and pressing enter, you’ll have an associated date placed

under the task, shown in Figure 13-25.

Now if you return to the org-agenda options by entering

M-x org-agenda RET

Figure 13-23.  Marking a TODO item as done in org-agenda

Figure 13-24.  Adding a date to a TODO item in org-mode

Figure 13-25.  Example of a TODO item with a scheduled date in org-mode

Chapter 13 Emacs

268

then pressing a to go to agenda weekly view, you’ll see your tasks for the week displayed

by day, example shown in Figure 13-26.

A scheduled item will remain on your agenda until completed. Org-agenda also

offers the ability to create an entry that shows on the calendar but will pass whether or

not it is marked as DONE; to use this alternative timestamp, press C-c . instead of C-c

s on an item. There is also a high-priority timestamp deadline which can be used by

pressing C-c d while on a TODO item.

�Sync Org-Agenda with Google Calendar
Org-agenda is a great tool, but it doesn’t provide seamless integration between devices

like mobile phones or even other computers. There is a community package on MELPA

called org-calendar that makes pulling, pushing, and two-way sync between org-

agenda and Google Calendar easy.

After installing from MELPA, you’ll have to set up a project on Google Developer

Console to make use of their calendar API. You can find the most up-to-date instructions

on setting up org-calendar on their GitHub page. Keep in mind the last commit was in

April 2017, so updates and support may be limited.

www.github.com/myuhe/org-gcal.el

Figure 13-26.  Weekly agenda view in org-agenda mode

Chapter 13 Emacs

269

�Outline Presentation Mode
Another great mode that can be used in conjunction with Emacs artist-mode is Emacs

presentation mode. Outline presentation mode allows you to take an org-mode outline

and turn it into a presentation where each section acts as a slide. Unfortunately, this

mode isn’t distributed in the MELPA package manager. In order to install outline

presentation mode, you’ll need to manually download the script and then add it to your

~/.emacs. I found difficulty finding the original code online so I’ve uploaded the script to

GitHub. You should download it using GitHub:

cd /tmp

git clone https://github.com/kirkins/outline-presentation-mode

Then go into the downloaded folder and move the script to your ~/.emacs.d/extra/

folder (create the folder if it doesn’t exist).

cd /outline-presentation-mode

mv outline-presentation-mode.el ~/.emacs.d/extra/

Now with the Emacs script saved in your ~/.emacs.d/extra/ folder, you’ll have to

modify your ~/.emacs file to load the script when Emacs starts. At the bottom of the file,

add the following:

(load-file (expand-file-name "~/.emacs.d/extra/outline-presentation-mode.el"))

Now when you open Emacs, you’ll have the ability to open a file in outline

presentation mode. You likely don’t have an org-outline file presentation to test with; I’ve

made one available on a repository, you can download it with

git clone https://github.com/kirkins/puppet-pop-machine

cd puppet-pop-machine

Next, open the file called presentation.org in Emacs. With the file open, switch to

presentation-outline-mode:

M-x presentation-outline-mode

This will open the presentation file and show the outline of the presentation as

shown in Figure 13-27.

Chapter 13 Emacs

270

You can now hold down the alt key and tap n to go to the next slide; to go back, tap p.

A list of commands that can be used is shown in Table 13-1 (M signifies the modifier key

which is alt by default).

An example of what can be done for slides in plain text is shown in Figure 13-28.

Figure 13-27.  presentation-outline-mode in Emacs

Table 13-1.  Emacs outline mode commands

Command Description

M-n Next slide

M-p Previous slide

M-f First slide of next section

M-b Back to previous section slide

M-a First slide

M-y Expanded table of contents

M-s Show the slide cursor is on in table of contents

M-r Return to the slide you went to table of contents from

M-q Quit presentation mode and return to org-mode

Chapter 13 Emacs

271

�Emacs TRAMP
Emacs TRAMP stands for Emacs Transparent Remote Access, Multiple Protocols. It

allows you to access remote filesystems as if they’re part of your local system by using

rlogin, telnet, or ssh in the background.

Emacs TRAMP is included with Emacs by default as of version 22.1 so you won’t

have to do anything extra to install it.

Figure 13-28.  A chart made in artist-mode embedded in an outline
presentation slide

Chapter 13 Emacs

272

To use ssh TRAMP, you’ll first want to press

C-x C-f

This will open a prompt at the bottom of the screen that lets you navigate your

system to find a file. It should look something like in Figure 13-29.

Press backspace and delete the file path and instead put /ssh:<your server>, as

shown in Figure 13-30. To make things easier, I’m going to use a shortname defined in

my SSH config file called “aws” which already has my username and key file setup.

From this point, press tab and the system will start connecting to the remote

machine in the background, with a message like shown in Figure 13-31.

Once connected, you’ll be able to press tab and get a list of all the remote files as if it

were a folder on your local machine. An example of this is shown in Figure 13-32.

Figure 13-29.  Find a file dialog at the bottom of the screen after pressing C-x C-f

Figure 13-30.  Entering /ssh:remotehostname in find a file dialog to activate
Emacs TRAMP

Figure 13-31.  Dialog showing Emacs TRAMP connecting to remote server

Chapter 13 Emacs

273

What’s handy about this is you can edit a file on the remote machine, then switch to

a file on the local machine, and then go back to a file on the remote machine, and the

connection will stay open.

You could even have simultaneous connections with several remote machines and

switch between files seamlessly, all while keeping your local Emacs editor settings – as

opposed to if you SSH into those machines and have to use the config file for the editor

that’s on each local machine. For this reason, Emacs TRAMP is particularly useful for

anyone who has to switch between editing files on several machines regularly.

�Other Modes
We’ve only looked at a few Emacs modes here, but there are lots out there. If you’re

interested, here is a small list to get you started. Keep in mind I’m focusing on

application-like modes here, but there are also modes for almost every programming

language and config file type. See Table 13-2 for a list of other popular modes.

Figure 13-32.  Autocomplete showing files on remote server via Emacs TRAMP

Chapter 13 Emacs

274

If you have the mode installed, you can simply press alt+x and enter the name. If you

want to get a complete list of modes installed, press

C-h a

Then enter “mode”; this will list all the modes installed with a very short description.

�Summary
In this chapter, we looked at the Emacs text editor and some of the many capabilities it

has via modes and embedded applications – from creating text art–style diagrams and

text tables to managing task lists and your personal calendar. As we’ve seen, Emacs can

be much more than a text editor and is more akin to a platform on which text-based

applications can build on top of.

Table 13-2.  Emacs modes

Name Description

shell Command-line shell in Emacs

dired Mode for navigating directories

eww Web browser in Emacs

magit Advanced git interface for doing things like merging

ivy Interactive interface for autocomplete

gnus Read email, RSS, Usenet groups, and more

rainbow-mode Set background for hex color codes

company Text completion

ediff Tool for comparing files and patches

flyspell-mode Spell-check highlights wrong words in red

Chapter 13 Emacs

275
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_14

CHAPTER 14

Configure Bash
In this chapter, we’ll look at various configurations that can be made to bash. Often

this is done by using configuration scripts that run when bash starts as well as other

configuration files that control installed utilities or lower-level libraries like .inputrc.

�Configuration Scripts
We’ll start with the three configuration files that are used for customizing bash directly.

These include .bashrc_profile, .bashrc, and .profile.

�.bashrc_profile or .profile
The .bashrc_profile configuration script is similar to .bashrc, but it only runs once

when the user first logs in. On some systems, this file may be specified as .profile

instead, though if both .profile and .bash_profile exist, then .bash_profile will

be used.

.bashrc_profile is the entry point which defines the location of .bashrc. Here is an

example:

if [-n "$BASH_VERSION"]; then

 # include .bashrc if it exists

 if [-f "$HOME/.bashrc"]; then

 . "$HOME/.bashrc"

 fi

fi

The preceding code checks the language executing the script. If the language is bash,

it then checks that a .bashrc file is present in the home folder. If a .bashrc file exists, it is

executed.

https://doi.org/10.1007/978-1-4842-6035-7_14#DOI

276

A more simple implementation might just include the following which says if

.bashrc exists, then load it:

test -r ~/.bashrc && . ~/.bashrc

While normally .bashrc_profile simply loads .bashrc, it is possible to include

anything that would be done in .bashrc directly in .bashrc_profile.

Note  The “.” in . ~/.bashrc earlier is shorthand for built-in bash command
source which allows you to load an external script into the script being run.

�.bashrc
The ~/.bashrc file contains bash configurations. It can be used to define variables or

functions which will be available in all your sessions. Every time you open a new bash

terminal, the script is run.

As an experiment, try opening your .bashrc which should be accessible at ~/.

bashrc. Add a line with the following to the bottom of the file (though it should work

when added anywhere in the file):

export HELLO=world

Next reload the ~/.bashrc file by running (or close the terminal and reopen)

source ~/.bashrc

Now you should be able to use the variable $HELLO in bash and have it return a value

of “world,” for example, with echo:

echo $HELLO

�.bash_logout
While the .profile script runs once on login, the .bash_logout is just the opposite.

It runs a single time when you log out. This can be useful if you want to do things like

remove temporary files. As an example, the default .bash_logout on my Ubuntu system

includes the following:

Chapter 14 Configure Bash

277

when leaving console clear the screen to increase privacy

if ["$SHLVL" = 1]; then

 [-x /usr/bin/clear_console] && /usr/bin/clear_console -q

fi

The preceding code says if the shell being logged out from is the base level, and the

file /usr/bin/clear_console exists, then run that file with -q flag.

The $SHLVL here is an environment variable which exists automatically. To get an

idea of how it works, try echo $SHLVL; this should return a value of 1. Then try

bash

echo $SHLVL

After running a bash session within your bash, the number will be 2. If you were in

turn to run another bash session in that session, the number would go to 3.

Note  Depending on your distro and user, the file may or may not exist. For
example, we found that when using the root user, there was no .bash_logout by
default. When using Fedora instead of Ubuntu, we found the file did exist, but the
code contained was different.

�Global Versions
In addition to the .bashrc in your home directory, you will have a global version at /etc/

bash.bashrc if you’re on Debian-based systems and /etc/bashrc on Red Hat based. In

addition, you should have a /etc/profile which acts as the global version of .profile.

These files are used to set the initial state of bash for all users and are run before the local

profile, and .bashrc files are run for each user.

During the startup process when /etc/profile is running, there is also a folder

which executes several scripts called /etc/profile.d/. If you place an executable script

in this directory, it will be run at startup, as long as it has the extension .sh. Unlike

normal executables, the extension is required for these files to be executed.

Chapter 14 Configure Bash

278

�Useful Configs for .bashrc
There are several useful things you can do with a .bashrc file. Some of the most

common include creating aliases for commonly used tasks or adding simple functions to

be accessed system wide.

�Defining Aliases
An alias is a short command which translates into a longer command. This makes it

more convenient to write the command. For example, many Ubuntu systems come by

default with the alias ll as a short way of doing ls -alF, which shows a more detailed

view of your current directory. When I open up my .bashrc, I see ll defined along with

some other aliases that came by default:

alias ll='ls -alF'

alias la='ls -A'

alias l='ls -CF'

One I add on my own machine is aliasing vi to vim. This allows me to run the same

command whether I’m running on a machine that has full Vim or just vi. If you’re on

Fedora, you may find this alias exists by default.

alias vi="vim"

In the same spirit, you might want to upgrade diff to instead use colordiff (note

that colordiff may not be installed by default):

alias diff="colordiff"

�Custom Functions
In some cases where you want to create a quick shortcut, you’ll find you need to create

a short function rather than use an example. One common thing people like to do is

create a single function to create a folder with mkdir and then immediately move into

that directory with cd. Let’s create a command that does just that by adding the following

function to .bashrc:

mkcd() { mkdir -p "$1" && cd "$1"; }

Chapter 14 Configure Bash

279

After saving, close your terminal and reopen it, since the .bashrc file is run when

a new terminal opens up. Alternatively, you can run source .bashrc to reload the

configuration without restarting your terminal. Now if you run mkcd hello, you’ll create

a folder called hello and move into it right away.

In some cases, you might just want to wrap an existing command that is somewhat

difficult to remember. For example, many systems make use of amixer for sound. It’s

possible to change the volume with amixer; we can wrap the existing command to make

it a bit easier:

volume() { amixer sset 'Master' $1%; }

This allows you to pass in any value between 0 and 100 to set the volume from the

terminal.

�Adding to PATH
Another common change made in .bashrc is adding to the $PATH variables. This variable

keeps track of a list of folders on your system where executables are stored. When you

run an executable without specifying the full path, for example, nmap, the system will

check all the folders specified in your path. When a match is found, it is used.

If you install programming languages on your system, often they’ll automatically

modify your .bashrc file and add the folder where they keep executables to your

path. By doing this, they make all their modules available to you as part of your path.

The following is an example of a line created when installing the Rust programming

language.

export PATH="$HOME/.cargo/bin:$PATH"

Notice the :$PATH at the end. This specifies that we’re using our old $PATH and

prepending everything that appears before the :. Always make use of the existing $PATH

variable when appending or prepending to it. Otherwise, you might remove a folder

which was added in another file or location.

Chapter 14 Configure Bash

280

�Changing PS1 Prompt
Another common customization in .bashrc is to change the color or content of the

prompt text. The prompt shown to the left of our cursor is controlled by the environment

variable PS1. If you run echo $PS1, you’ll see an encoded version of the one on your

system.

It can be changed by updating the PS1 variable, for example, let’s turn the text red (to

experiment, run in the terminal directly rather than modifying .bashrc):

export PS1="\e[0;31m[\u@\h \W]\$ \e[m "

Running the preceding command should cause the prompt to change red. Next

try running the same command again but incrementing the 31, and observe how each

number results in a different color. An example of expected result is shown in Figure 14-1.

This code content is a bit hard to understand as it first starts with an escape character

which isn’t seen at all \e[o;. The presence of the escape character causes the title bar for

the window to include the working directory, like shown in Figure 14-2.

After that we have 31m[to set the color. This is an ANSI escape sequence which

dates back to the 1970s; they were used as a way to embedded text which should be

Figure 14-1.  Changing the color of bash prompt text

Figure 14-2.  File path in the title bar due to \e[o; in PS1

Chapter 14 Configure Bash

281

interpreted as a command instead of text. At the very end of the line, we have \e[m which

resets the color; if not included, the text you type into the terminal would end up being

the same color as the alias. A list of different ANSI color codes is shown in Table 14-1.

The \u translates to the username, the \h stands in for hostname, and the \W stands

in for the base of the working directory. If we instead wanted minimal prompt text, we

could replace it all with just

export PS1="-> "

or if we only wanted the working directory base:

export PS1="\W -> "

This results in a more minimal look, showing only the base of the working directory.

If you prefer the default way of displaying the full working directory rather than just the

base, you just need to replace the \W with the lowercase version \w. A list of PS1 symbols

is shown in Table 14-2.

Table 14-1.  ANSI escape

sequences for color

Sequence Description

30m[Black

31m[Red

32m[Green

33m[Yellow

34m[Blue

35m[Magenta

36m[Cyan

37m[White

Chapter 14 Configure Bash

282

Another way to modify the color of your prompt is to use tput. This method is

actually a bit more flexible as it allows you to use 256 colors. However, you’ll have to have

256 colors enabled in your terminal; to quickly see how many are supported, run

tput colors

If you get back a number less than 256, you’ll need to make sure you have

xterm-256color enabled. You can do that by adding the following line to your .bashrc:

export TERM=xterm-256color

Make sure to run source ~/.bashrc after the update.

With 256 colors enabled, you can now use tput setaf with 1 of 256 color codes. You

can find a complete list by searching “256 color codes.” However, we can actually make

our own list that includes all the colors by running the following in bash:

for c in {0..255}

do

 :

 if ! (($c % 16)) ; then

 printf '\n'

 fi

 printf '\e[48;5;%dm'"%5s" $c $c; printf '\e[0m'

done

Table 14-2.  PS1 prompt commands

Charachter Description

h Hostname to first “.”

H Full hostname

s Shell name, e.g., “bash”

t Current time in 24-hour format

@ Current time in 12-hour format

u Username

w Complete path of working directory

W Current folder name

Chapter 14 Configure Bash

283

This script will go through each number from 0 to 255 and print the number with

a background color based on that code. Running it should produce a result like in

Figure 14-3.

We’ll take our previous minimal PS1 and then wrap it with a tput command to set

the color and another to reset the color:

export PS1="$(tput setaf 166)\W -> $(tput sgr0)"

After experimenting directly in your terminal, if you find something you want to

make permanent, simply add it to the bottom of your .bashrc file. Then if you decide

you don’t want it anymore, you can remove the line in question.

�PS2, PS3, and PS4
In addition to the PS1 environment variable, there is also a PS2. To see your PS2, run the

following:

echo $PS2

echo "hi

Figure 14-3.  Creating a table with all 256 color codes

Chapter 14 Configure Bash

284

On the second line, be sure not to include the close “. This will cause the PS2 prompt

to show, indicating you need to finish the previous command. Notice how these two

symbols are the same like in Figure 14-4.

Notice that the two commands earlier display the same “>”.

Besides PS1 and PS2, there are also PS3 and PS4, but they are not commonly used.

PS3 is used when a select prompt is used in bash, for example:

PS3=">"

select i in red blue green exit

do

 case $i in

 red) echo "Red";;

 blue) echo "Blue";;

 green) echo "Green";;

 exit) exit;;

 esac

done

When run we’ll see a select menu using our PS3 value beside where the user is

prompted to enter text, as shown in Figure 14-5.

If no value is specified with PS3, the default will be #?.

Figure 14-4.  Comparing PS2 to interactive shell text prompt

Figure 14-5.  Example of PS3 in a script using select

Chapter 14 Configure Bash

285

Finally, PS4 is specific to debugging bash with the -x flag. This flag is used for

debugging; if we take our script that asks the user to pick a color and put it in a file, we

can run it with the -x flag:

bash -x ./choice.sh

When we do this, we’ll see the lines shown as they’re run and to the left will be the

value of PS4, in this case, a “+” sign. See Figure 14-6 for an example.

�Themes
You can go through and change all aspects of visual display manually, or install a

community project that make pre-created terminal color themes available.

Some popular projects include “Bash-it” and “Oh My Bash”; however, these two

projects both come bundled with a large amount of functions and configurations. Other

projects such as Gogh are more minimal and provide just the themes.

•	 Bash-it – https://github.com/Bash-it/bash-it

•	 Oh My Bash – https://github.com/ohmybash/oh-my-bash

•	 Gogh – https://github.com/Mayccoll/Gogh

These all require running external bash scripts so make sure to do your own research

to check that the projects are still in good standing at the time of reading. It’s also worth

scanning through some of the scripts yourself and checking the public issue tracker just

to make sure the projects are still in good health before experimenting. This can be done

by viewing the last commit or release for a project. Also you can check the issues tab on a

project’s GitHub page to see recent feedback from users.

Figure 14-6.  Example of PS4 when using -x flag for debug mode

Chapter 14 Configure Bash

https://github.com/Bash-it/bash-it
https://github.com/ohmybash/oh-my-bash
https://github.com/Mayccoll/Gogh

286

�Live Clock in Terminal
Another neat trick which demonstrates the many possibilities of spicing up your

terminal is adding a live clock. This can be done by running the following code snippet

(or placing it in your .bashrc to make permanent):

while sleep 1;

do

 tput sc;

 tput cup 0 $(($(tput cols)-11));

 echo -e "\e[31m`date +%r`\e[39m";

 tput rc;

done &

This creates a loop which runs once a second. It gets the width of your terminal

and moves the cursor 11 spaces to the left of the top right. Then it outputs the current

time using date and finally returns the cursor to the normal location with tput rc. An

example of the live clock effect is shown in Figure 14-7.

Alternatively, we can put the time in the prompt text if we don’t mind that it only

updates after each command. To do that, you can just take one of the commands we

used previously to update the prompt color and add \t which specifies the current time,

for example:

export PS1="\e[0;32m\t \W \$ \e[m "

After running the preceding command, you’ll instead see the time in the prompt text.

If you want to use the 12-hour clock format instead, switch the t to T:

export PS1="\e[0;32m\T \W \$ \e[m "

Figure 14-7.  Live clock in the upper right of the terminal

Chapter 14 Configure Bash

287

Alternatively you can use the @ charachter for a complete 12-hour format with

AM/PM indicator:

export PS1="\e[0;32m\@ \W \$ \e[m "

Examples of the three prompt time formats are shown in Figure 14-8.

�Run a Program on Open
Sometimes people will run programs on terminal start using .bashrc for the added

aesthetic. This can include things like fortune or perhaps echoing out a text file

containing some TODO items.

Another common thing to run is the neofetch command. This isn’t installed by

default but can be found on most package managers. It’s a highly customizable system

information script. It’s used as a way of sharing their chosen setup with the world in a

screenshot while at the same time showing off the terminal theme they’ve chosen. An

example of the output of Neofetch on my machine is shown in Figure 14-9.

Figure 14-8.  Time formats in bash prompt text

Chapter 14 Configure Bash

288

Figure 14-9 is an example of running neofetch on my machine.

To run this command or any command on terminal open for that matter is as simple

as adding a line at the bottom of your .bashrc with the command. Any programs you

run from .bashrc will run when opening a new bash terminal.

Note  The program screenfetch provides a similar alternative to neofetch
with a slightly different rendering for logos. It may also be slightly faster than
neofetch.

�Importing a File
If your .bashrc file becomes large, you may want to separate it into multiple files. This

allows you to share and reuse parts and pieces without having to deal with one long file.

Figure 14-9.  Output from Neofetch

Chapter 14 Configure Bash

289

For example, you may want to separate all your aliases into a single file called .bash_

aliases. Simply move the alias lines into a new file and import the new file using

source:

source ~/.bash_aliases

The preceding code placed in .bashrc would cause .bash_aliases to be loaded and

run every time a new terminal is opened.

�.inputrc
We mentioned .inputrc in an earlier chapter as a way to change bash (and several other

programs) keyboard shortcuts to Vim-based ones instead of the default Emacs-like ones.

The .inputrc file affects all programs that make use of the GNU readline library

which includes several popular programs including bash as well as the REPLs for

programming languages like Ruby, Python, and MySQL.

As was mentioned earlier, one of the options in .inputrc is to switch to Vim

keyboard shortcuts by adding the lines

set editing-mode vi

set keymap vi

We can see all the default values for .inputrc by opening up the global file /etc/

inputrc, which provides starting values for all users. This file likely contains some

configurations as well as comments explaining what the configurations do.

One possible modification is turning off the sound which is output when you double

tap tab to activate autocomplete. You may not have even noticed but on many systems

when you press tab to activate autocomplete, an audio sound is made. This can be

turned off by adding

set bell-style none

Another option which is possible but rarely used is making autocomplete case

insensitive, so that if you write the name of a folder with or without a capital, it will

complete regardless of what case is used by the matched folder.

set completion-ignore-case On

Chapter 14 Configure Bash

290

You may have noticed you often have to tap the tab key twice to show all the

completions. If you’d prefer to see all the possible completions immediately instead, you

can add the following line:

set show-all-if-unmodified On

Sometimes pressing tab will cause a file to partially complete, but then you’ll hit a

point where there are two or more possible ways to complete the file name. Normally,

it will complete up to the difference, and then you have to press tab again to see the

possible completions. If you’d rather it automatically complete what is possible and

show all endings in a single ending, enable show-all-if-ambiguous:

set show-all-if-ambiguous On

When you run a command like ls, you may receive color-coded results depending

on your system. If you want to also enable this for autocomplete, you can add the

following line:

set colored-stats On

If you instead want a visual symbol to indicate file type similar to that shown when

running ls -F, you can add the line

set visible-stats On

While it isn’t common to modify .inputrc, it does provide a few different options

which can’t be done elsewhere.

Aside from changing the notification sound and switching between Vim- and Emacs-

style keyboard shortcuts, you’ll likely never need to modify your .inputrc though it is

also possible to modify the functionality of keyboard shortcuts or add new ones. To get a

complete list of all the possible options for .inputrc, run

man 3 readline

�Other Dotfiles
The term dotfiles refers to hidden files starting with a dot that are used to configure

programs. While .bashrc is one of the most popular dotfiles, it’s far from the only one.

Chapter 14 Configure Bash

291

There are all kinds of dotfiles for both default programs and extras installed. Some other

examples that can be used to customize programs include

•	 .wgetrc

•	 .curlrc

•	 .gitconfig

•	 .vimrc

•	 .tmux.conf

�Summary
In this chapter, we looked at .bashrc and .inputrc, two dotfiles which can be used

to customize the bash terminal. We saw some common modifications like adding to

the path, defining functions, and making aliases. We also looked at some less used

configuration files like .bash_logout and configuration options like terminal prompt

and colors.

Chapter 14 Configure Bash

293
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_15

CHAPTER 15

Tmux Workflow
In this chapter, we’ll be looking at Tmux, short for terminal multiplexer – a utility which

is primarily used for managing backgrounded processes, but also has many other uses.

In addition to keeping processes running, Tmux can also be used for dividing your

terminal into smaller screens, creating a customized layout where you can monitor

several panes at once.

�Background Scripts
Tmux is one of my most used programs. It’s primarily used for managing running shell

scripts, ssh sessions, and any type of bash shell process. In the past years, Tmux has

become so popular that it is shipping preinstalled on some Linux distributions like the

latest Ubuntu Desktop.

If Tmux isn’t installed on your machine, it should be available via your package

manager:

sudo apt-get install tmux

Once you start using terminal-based applications and processes, you will quickly

find you may want to run a process and keep it running without having to keep a

dedicated terminal window open on your user interface. Traditionally, this could be

done with a combination of built-in commands.

To demonstrate, let’s create an ongoing process that will update a file with the

current time every 3 seconds:

(while sleep 3; do date > /tmp/time; done)

With the preceding command running in your active terminal, press ctrl+z to pause

the process. Then run

bg

https://doi.org/10.1007/978-1-4842-6035-7_15#DOI

294

Running bg will start the process again, but in the background. However, the process

will still be associated with the terminal session. Next let’s get a list of jobs running in the

current terminal session.

jobs

You’ll get back a list of jobs running in the current terminal, each with an associated

number. You can use the job number to disassociate it with the terminal session by

running the following command:

disown %1

You’ll need to replace the 1 with the number associated with the process you want to

disown. Once you’ve run that command, you can safely close the terminal window, and

the process will continue to run. You can confirm this by going into the /tmp folder and

ensuring that the time file is updating every 3 seconds.

�Background Scripts with Tmux
The problem with the manual method is that there is no easy way to reattach a disowned

process or program. Instead it is recommended that you use Tmux to manage and switch

between virtual terminal windows. To create a new terminal session, simply run

tmux

You should see a small green bar at the bottom of the page which indicates your

window is a Tmux session. Now as an example program, run the following:

top

You should now see top running and listing all the running processes on your

machine. Now we will detach from the Tmux session and keep the window running in

the background on the operating system, so we can easily reattach later. To do this, press

ctrl+b (at the same time) followed by d.

Note  It’s important to not press the d button at the same time here. With all Tmux
commands, you first press ctrl+b, then release, and then press the command-
specific key.

Chapter 15 Tmux Workflow

295

You will now be back at your default terminal window, which can be closed without

affecting the Tmux session running in the background.

If you want to see all the Tmux sessions running on your computer, run

tmux ls

This will return a list of Tmux sessions and their associated IDs. To reconnect to one

of these sessions, run the following (replacing 1 with the ID of the session you want to

attach to):

tmux a -t 0

This can be useful in several situations including but not limited to

•	 You want to connect to multiple servers or IoT devices at once to run

commands which may take some time to complete.

•	 You want to background a command but keep the ability to

return to debug.

•	 You’re using a terminal-based editor like Vim and want to switch

between multiple files without closing them.

�Tmux with SSH
One of the most useful situations that you’ll want to use Tmux in is working with

remote servers or devices over SSH. Often when connecting to a server, you’ll need

to perform a long-running task. Without the ability to background and reattach to a

session easily, some resort to leaving the SSH session running on their desktop waiting

for the job to finish.

Not only does this restrict the user by forcing them to keep their computer on for

the duration of the command, it also introduces the risk of the connection breaking.

When a normal SSH session breaks, often the running script will be killed; thus after

reconnecting, you need to start back at square one.

Tmux gives you the freedom to start a command, disconnect from the session, and

then close SSH. When you return to the server and attach to the session, it will be as

if you never left. If you’re actively in the Tmux session and your SSH connection gets

disrupted, no need to worry, as it will continue running and be available when you

reconnect.

Chapter 15 Tmux Workflow

296

This makes Tmux ideal not only for long-running commands but also scripts

you intend to keep running permanently such as a web server or script. In the case

that something goes wrong, it becomes easy to connect to the session in question by

name, see the error in the program’s output, make necessary changes, and restart the

script.

�Named Sessions
When we made our first Tmux session, we saw that it was automatically named 0 and we

reattached using tmux a -t 0. When creating a new session, it’s also possible to give the

session a nickname to help you what’s running in it. Let’s create a session called “top”:

tmux new -s top

Now if we detach from our session and use tmux ls, we’ll “top” in the place of where

we previously saw “0”. If you’ve already created a session and you want to change the

name, you can run

tmux rename-session -t top new-name

Just switch out “top” for the name of your target session and “new-name” with your

desired new name.

�Switching Tmux Sessions
tmux is highly customizable and has many quick keyboard shortcuts. Most of the

keyboard shortcuts will use ctrl+b followed by a letter. One of my most used keyboard

shortcuts is ctrl+b followed by s. In this case, s stands for switch and allows you to

quickly switch between open Tmux sessions without detaching.

For example, say you have a few ssh sessions open and want to switch from one to

another while waiting for a process to complete. Simply run ctrl+b s, and use the down

arrow to select the session you want to open. Then run whatever command you want in

another session and quickly press ctrl+b s again to switch back.

Chapter 15 Tmux Workflow

297

�Killing Sessions
There are a few ways you can kill an existing session. If you’re already actively attached to

the session, simply press ctrl+d and the session will close in the same way your normal

terminal would.

Alternatively, you can kill a session without being attached to it with the kill-session

command. As with attach and renaming, you’ll provide the name of the terminal in

question with the -t flag:

​​tmux​​ ​​kill-session​​ ​​-t​​ new-name

The preceding command will kill the session with name “new-name”. It’s also

possible to close all sessions at once by killing the whole server. To do this, run

​​tmux​​ kill-server

Be careful with this command as it stops any scripts you have running in Tmux

sessions immediately without warning.

�Windows in Sessions
It’s possible to create multiple windows within a single Tmux session, each running their

own bash session. Before we talk about creating and navigating between windows, we

should clarify the three levels of hierarchy that exist in Tmux and the technical definition

of a Tmux window, as it differs slightly from what we normally consider to be a window.

The hierarchy that terminal sessions exist within on Tmux is described in Table 15-1.

Table 15-1.  Tmux levels of hierarchy

Term Description

Session A group of windows. Is the highest level of hierarchy in Tmux

Window A bash session contained within a Tmux session. A session can contain multiple

windows

Pane A pane is contained within a window. A window can be split up into multiple panes so

that more than one pane can be viewed at one time

Chapter 15 Tmux Workflow

298

When we create a Tmux session, it automatically has a single window by default. To

create a second window, make sure you’re inside a tmux session, and then run ctrl+b

followed by c. This will cause you to go into a new window.

Often windows are compared to tabs as they are workspaces that can be easily

switched between while in a session. Furthermore, in the bottom-left corner of the screen,

all the windows in a session are displayed, with the active window having a “*” at the end.

An example of the text indicating running Tmux windows is shown in Figure 15-1.

To get a better view of how the windows relate to our session, press ctrl+b followed

by w. This will open up a list of all sessions and windows; it’s an easy way to move

between either. An example of the Tmux session list is shown in Figure 15-2.

Figure 15-1.  List of windows in Tmux status bar

Figure 15-2.  List of active sessions and windows in Tmux

Chapter 15 Tmux Workflow

299

Notice how the two windows are listed as children of the session with label 0. You

can press the up and down arrow keys to move between the windows and press enter

to focus on one. To emphasize how windows are children of sessions, let’s detach from

Tmux completely by pressing ctrl+b followed by d.

Next create a new session by running tmux, and when the session opens, create a

new window with ctrl+b followed by c. Now if we again press ctrl+b followed by w, we

will see something like the session list shown in Figure 15-3.

We have two sessions which each have two children windows. Let’s go into the

third window labeled “(4)”. Now if from here we want to go back to “(5)”, we could

reopen the window list, but a shorter way would actually be ctrl+b followed by p

for previous. To go back to “(4)” again, you can press ctrl+b followed by n for next.

Alternatively, we can use the window number in place of p or n if we want to specify

the specific window.

This can be useful for sorting windows in sessions based on their use, for example,

having all windows for SSH sessions in a single session.

Figure 15-3.  Two sessions each with two child windows

Chapter 15 Tmux Workflow

300

�Pane Splitting
Tmux also provides a powerful secondary functionality that allows you to split a window

up into separate sections, known as panes, each running its own bash instance. This can

be extremely useful when needing to run multiple terminal applications simultaneously

or when monitoring multiple full-screen terminal applications.

To get started, first make sure you have a Tmux session open, and then press ctrl+b

followed by ". This will split your window horizontally. An example of a window split

horizontally is shown in Figure 15-4.

Or if you instead want to split the session horizontally, press ctrl+b followed by %.

An example of a vertically split window is shown in Figure 15-5.

Figure 15-4.  A Tmux window split into two panes

Chapter 15 Tmux Workflow

301

It’s also possible to split an already split subsection to create as many windows as

you’d like per session. To do so, simply run the command to split horizontally or vertically

a second time. See Figure 15-6 for an example of a window split into three bash terminals.

Figure 15-5.  Vertically split window in Tmux

Figure 15-6.  Combination of vertical and horizontal panes in Tmux

Chapter 15 Tmux Workflow

302

Your pane setup will be saved if you decide to detach from Tmux or switch between

windows and sessions.

You can switch between panes by pressing ctrl+b followed by any arrow key.

Alternatively, ctrl+b followed by o will toggle to the next pane in line, and once it

reaches the last pane, cycle back to the first.

�Clock Mode
If you’re using window splitting to divide your workspace, you may end up wanting to

display a live clock in one of the windows. Tmux provides a small extra that makes this

easy. With a Tmux session active in a window, press ctrl+b and then t. An example of a

clock mode display is shown in Figure 15-7.

This should open up a live clock using your system time. To exit clock mode,

press q or esc.

Figure 15-7.  Tmux clock mode in a single pane

Chapter 15 Tmux Workflow

303

�Help Page
Tmux also comes with a built-in help page which contains a list containing every

keyboard shortcut; there are several so it is multiple pages long. To activate it, press

ctrl+b, ?

You should get a scrollable page like shown in Figure 15-8; it can be exited with

esc or q.

�Customize with .tmux.conf
Tmux can be customized to change the key combinations used to trigger actions as well

as modifying the look and layout. All customization of Tmux is done by editing ~/.tmux.

conf; if that file doesn’t exist on your system, simply create it and tmux will make use

of it. This configuration file can be used for creating new keyboard shortcuts, as well as

changing the visual appearance of tmux.

Figure 15-8.  Tmux help page

Chapter 15 Tmux Workflow

304

Tmux first looks in /etc/tmux.conf for a global configuration that applies to all users

and then looks in the home directory for the file .tmux.conf. So if you’d like to apply

settings across multiple users, you can make use of the global version. If you don’t have a

~/.tmux.conf file, start this section by creating one.

touch ~/.tmux.conf

�Configure Color and Style
Similar to changing colors in .bashrc, we can only use as many colors as are enabled. To

check what colors are enabled on your terminal, run

​​tput​​ ​​colors

If you get a number less than 256, you’ll want to enable 256 by adding the following

to your .bashrc file:

export TERM=xterm-256color

The 256 colors available are the same as in the previous chapter. Besides using color

codes directly, we also have keywords for common colors including black, blue, cyan,

green, magenta, red, white, and yellow.

If we want to make the Tmux bar at the bottom of our terminal blue, for example, we

can add the following to our .tmux.conf:

set-option -g status-bg blue

This will change the background color to blue. If we want to change the text for the

Tmux bar, we can add

set-option -g status-fg white

This will result in a bottom bar styled like Figure 15-9.

Figure 15-9.  Tmux status bar with modified colors

Chapter 15 Tmux Workflow

305

Note  When updating the colors and style of tmux, you’ll need to make sure all
tmux windows have been terminated before the new style takes effect. If you have
even a single tmux window open in the background, change the style, and then
open a new window, the old values will still be active.

If we want to use one of the 256 color codes directly instead, we would do so with

color followed by the color code like the following:

set-option -g status-bg color14

We can also change the color used for our windows open and have it display a color

different from the rest of the status bar.

set-option -g window-status-bg blue

set-option -g window-status-fg black

This becomes even more useful when you set the active window name to be a

different color:

set-option -g window-status-current-bg white

This creates the feeling of windows really being like tabs, as you get some visual

feedback when switching between windows. An example of the status bar with this style

enabled is shown in Figure 15-10.

In addition to the status bar, you can also change the colors used for pane borders.

set-option -g pane-border-bg green

set-option -g pane-border-fg yellow

Figure 15-10.  Current window highlighting in Tmux status bar

Chapter 15 Tmux Workflow

306

As with windows, there is a separate selector for the pane.

set-option -g pane-active-border-bg blue

set-option -g pane-active-border-fg yellow

An example of these styles applied is shown in Figure 15-11.

�Change Status Bar Contents
Similar to how text prompt in bash can be changed, the text in the Tmux status bar can

be changed. The left side and right side are controlled by two different variables. As an

example, let’s use some simple static text to update both the left and right sides. Like

with the last section, the following lines can be added to .tmux.conf file:

set -g status-left "Hello"

set -g status-right "World"

Figure 15-11.  Modified pane border colors in Tmux

Chapter 15 Tmux Workflow

307

This results in replacing the default left and right status bar text as shown in

Figure 15-12.

Of course, in most cases, you’ll want some interactive aspects like time, hostname,

and number of windows open. Like .bashrc special codes are reserved for these

elements. A list of codes that can be used in the status bar is shown in Table 15-2.

Figure 15-12.  Modifying status bar text in Tmux

Table 15-2.  Status bar codes

Code Description

#I Index of current window

#P Index of current pane

#S Session name

#T Title of current window

Used for a literal

#H Hostname up to first

#h Full hostname

#(command) Runs a command and

shows first line of output

#[attribute] Modifies color or attribute

of text by wrapping

Chapter 15 Tmux Workflow

308

So if we wanted hostname followed by index of current window on the left side, for

example, run

set -g status-left "#h #I"

If the text gets cut off due to space constraints, you can resize the maximum space

available with

set -g status-left-length 200

The attribute tag can be combined with other codes and text to change the color of

text, for example:

set -g status-left "#[bg=red, fg=white]#h #I"

�Remap Commands
If you find a key combination you use often is uncomfortable, you can modify it. For

example, people who use GNU Screen before switching to Tmux often find themselves

wanting to use ctrl+a in place of ctrl+b for the prefix used before tmux keyboard

shortcuts. To bind the prefix command to ctrl+a, the following line should be added to

the config file:

set -g prefix C-a

This will cause ctrl+a to be used for the prefix for commands like detaching,

creating a new window, and so on. By default, your ctrl+b will also still be connected to

the prefix command. If you want to detach a combination from a command, you have to

do it manually as another step.

unbind C-b

If you’re running tmux while editing the .tmux.conf file, you’ll have to manually

source the config for it to take effect.

tmux source-file ~/.tmux.conf

Chapter 15 Tmux Workflow

309

If you’re using Vim, you may want to add keybindings to make navigation possible

with h, j, k, and l, each mapped to a direction similar to that used in Vim.

Vim Movement

bind h select-pane -L # left

bind j select-pane -D # down

bind k select-pane -U # up

bind l select-pane -R # right

This will allow you to use ctrl+b followed by h to switch to the pane to your left as

well as the associated direction for the other keys.

�Screen Sharing with Tmux
Another interesting use case that Tmux makes possible is screen sharing terminal

windows. If you have two people logged in to a server or device using the same user,

they’ll both have full access to all the Tmux sessions of that user. This includes the ability

to have both people connected to the same Tmux session at once and both seeing live

updates as either person interacts with the terminal.

This is a great way to do pair programming or work with another person to debug

a system. Unlike other methods of screen sharing, Tmux over SSH takes hardly any

bandwidth, and it provides the ability for both users to interact rather than simply having

one person watch the other.

�Theme Packs
As with styling .bashrc, some projects exist which specialize in the customization

and theming of Tmux. One of the most popular is “Oh My Tmux” which in addition

to providing a pleasing theme adds some additional functionality like a battery

indicator. The default style that comes out of the box with “Oh My Tmux” is shown in

Figure 15-13.

Chapter 15 Tmux Workflow

310

Another piece of functionality added by “Oh My Tmux” is a keyboard indicator

which indicates when the prefix ctrl+b has been pressed and Tmux is waiting for

the command key. This keyboard symbol is shown in Figure 15-14; when shown, it

means the prefix has been pressed and Tmux is waiting for the command key.

To install Oh My Tmux, simply clone the project and move .tmux.conf and .tmux.

conf.local to your home folder. Make sure to back up your original .tmux.conf if you

want to save anything.

git clone https://github.com/gpakosz/.tmux

cd .tmux

cp .tmux.conf* ~

Then all you have to do is open and/or restart Tmux.

Figure 15-13.  Oh My Tmux theme

Figure 15-14.  Oh My Tmux prefix pressed indicator in status bar

Chapter 15 Tmux Workflow

311

In addition to the style change, you’ll also have some additional keybindings such as

the Vim keybindings that we configured manually – extra bindings for creating windows

with ctrl+b followed by - for a horizontal pane or _ for a vertical one.

As well as a new binding for ctrl+b followed by + to move a pane within a window

to a new window displaying only that pane using the full screen. For a complete list of

features and bindings, see the included README on the Oh My Tmux GitHub.

�Tmuxinator
As you start using Tmux and creating custom workspaces by splitting your windows up

into panes, you may find you have certain setups you want to create often. For example,

say we want to run a window split up into systemctl, htop, and nmon like shown in

Figure 15-15.

Figure 15-15.  System monitoring workspace in Tmux

Chapter 15 Tmux Workflow

312

Tmuxinator is a Tmux launcher which allows you to make predefined layouts so that

you can easily open specific workspaces without manually doing it on each open. You’ll

need to have the Ruby programming language installed to make use of Tmuxinator.

sudo apt-get install ruby

gem install tmuxinator

Tmuxinator also requires the environment variable EDITOR to be set; if you run echo

$EDITOR and it’s empty, you’ll need to set it in your .bashrc file. Swap out the value for

whatever your preferred editor is:

export EDITOR='vim'

With Tmuxinator installed, you can create a new layout by running

tmuxinator new system-monitor

A template for a YAML file will be opened in your chosen editor, including comments

to help guide you with the syntax. An example layout that opens a single window with

three panes is as follows (it uses htop and nmon so you’ll need to make sure they’re

installed or use other programs instead):

name: system-monitor

root: ~/

windows:

 - monitor:

 layout: main-vertical

 panes:

 - systemctl

 - htop

 - nmon

 - editor: vim

Note  When you create a new layout in Tmuxinator, make sure to delete all
the boilerplate code that is there by default. Below the many comments in the
boilerplate is an example layout which will overwrite your code if not removed or
edited.

Chapter 15 Tmux Workflow

313

The preceding example creates a window called “monitor” which contains three

panes with the programs listed as well as a second window that has Vim running.

Tmuxinator also provides other configuration variables such as root that defines what

directory the windows or panes start in or attach which specifies if the session should be

opened on creation.

For a full list of features and options, see the README included on the Tmuxinator

GitHub page.

�Summary
In this chapter, we looked at how Tmux can improve your workflow when working with

long-running terminal sessions both locally and remotely. In addition to the basics,

we saw how Tmux also allows splitting our screen up between multiple bash sessions

to make custom layouts for any purpose. We further automated the creation of layouts

using tmuxinator, which allows layouts to be saved as YAML config files and quickly

opened in a single command.

We also saw how Tmux has a configuration file ~/.tmux.conf similar to the bash

configuration file, where we can override any keybindings and change the colors and

style of Tmux. Using even a small subsection of the techniques described here should

allow you to improve your terminal workflow significantly.

Chapter 15 Tmux Workflow

315
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_16

CHAPTER 16

Terminal Tools for Working
with Images and Videos
While the command line is primarily text based, there are surprisingly some great

tools for working with images and videos which rival or in some cases are the basis for

their GUI equivalents. For example, if you’ve used any type of website that modifies

or generates images, it’s likely it was using ImageMagick on the back end. In the same

way, if you’ve used any Linux-based video editor, there is a good chance it was built on

top of ffmpeg.

Given that many of these visual-based programs are simply calling the command-

line equivalents, you can save yourself some time by learning to use the command-

line versions for simple tasks like modifying images or videos. We’ll also look at some

less used programs like gnuplot and how to modify the animation which is displayed

during startup.

�ImageMagick
One of the most powerful utilities for manipulating images is actually native to the

command line. ImageMagick is widely used not only on the command line but also

in server-side code using languages like PHP, Python, and Node.js. These languages

essentially just provide a wrapper to the feature-rich command-line utility.

Some of the things you can do with ImageMagick include

•	 Convert images

•	 Draw shapes

•	 Draw text and manipulate it

•	 Paint an image

https://doi.org/10.1007/978-1-4842-6035-7_16#DOI

316

•	 Deform an image

•	 Crop an image

•	 Image filters

�Creating an Image with Text
To get started, make sure you have ImageMagick installed; it can be found in most

package repositories. Unlike many programs, it isn’t called with the same name that

it is installed from. Instead ImageMagick makes other commands such as convert

available. As a starting point, let’s create a blank canvas with a size of 400 x 400

pixels:

convert -size 400x400 xc:white white.png

You should now have a blank white image that is 400 x 400 pixels.

Next let’s add some text to our image:

convert white.png -gravity North \

 -pointsize 30 -annotate +0+100 \

 'Basic Linux Terminal' white.png

The -gravity North option used here tells ImageMagick to place the text at the top

of the image; alternatively, we could use South, West, or East. Let’s create another section

of text at the bottom of the image using South; this one saying “Tips and Tricks”:

convert white.png -gravity South \

 -pointsize 30 -annotate +0+100 \

 'Tips and Tricks' white.png

Then pointsize specifies the font size, followed by annotate which adds space

around the text so it isn’t placed right against the top of the image.

After checking that the text rendered as expected, try rotating the text:

convert white.png -distort ScaleRotateTranslate 30 white.png

Chapter 16 Terminal Tools for Working with Images and Videos

317

You should now have a result that looks something like Figure 16-1.

To make the preceding preview easier to see, I actually added a 3 pixel black border,

making it easier to see where it starts and ends. This can be done with the command

convert -bordercolor Black -border 3x3 white.png white.png

�Getting Image Information
Early on in the book, we saw that we can use the file command to get information on

file types. However, when it comes to images, there’s actually a lot more metadata that

you might want to see. ImageMagick provides another utility for examining image details

called identify. The simplest use is just running it with a file as input:

identify white.png

This returns basic information about the image including type, dimensions, color

spectrum, and size. You can get even more detailed information by adding the -verbose

flag; see Figure 16-2 for some example output from the identify -verbose command.

Figure 16-1.  Image generated by ImageMagick

Chapter 16 Terminal Tools for Working with Images and Videos

318

You may find that the -verbose flag actually returns too much data. If you want to pick

and choose what specific attributes to show, you can specify them directly, for example:

identify -format '%f - %m - %w \n' white.png

The preceding example specifies the file name, file type, and width followed by a

newline. You can find a full list of letters and the attribute they represent at https://

imagemagick.org/script/escape.php.

�Label an Image
Another common task you might want to perform is adding a small label to a photo;

this can be handy when you plan to display the images online and want people to know

you’re the original source if the image is saved and displayed somewhere else.

Figure 16-2.  Image data using ImageMagick identify command

Chapter 16 Terminal Tools for Working with Images and Videos

https://imagemagick.org/script/escape.php
https://imagemagick.org/script/escape.php

319

To do this, we can simply use the built-in composite label which will add some text

to the top left of our photo in a single step:

composite label:'github.com/kirkins' white.png labeled.png

The result will look like the input image with the addition of our small but persistent

label in the top left, as shown in Figure 16-3.

�ffmpeg
This is similar to ImageMagick but for videos instead of still images. ffmpeg can be

used for all kinds of common video editing tasks, and it is actually used in the code

of many popular video and audio editing GUI software suites including Audacity and

VLC media player.

Some of the things you can do with ffmpeg include

•	 Convert video file type

•	 Compress a video

•	 Speed up/slow down a video

•	 Trim a clip

•	 Increase/decrease sound

Figure 16-3.  Adding a label to an image using ImageMagick

Chapter 16 Terminal Tools for Working with Images and Videos

320

�Convert File Types
One of the simplest and most common commands offered by ffmpeg is the simple

conversion of file types. In many cases, converting a video is very simple – just use the

-i flag for input and specify the output type by using the desired file type extension

for your output. For example, if we want to convert an mp4 to a webm, simply run the

following:

ffmpeg -i video.mp4 video.webm

This same technique can be applied to audio files as well, for example, mp3 to ogg:

ffmpeg -i audio.mp3 audio.ogg

It’s even possible to take a video and output it as a gif, though you’ll likely want to

stick to converting only short videos:

ffmpeg -i video.mp4 picture.gif

Another common conversion which is slightly more complicated is going from a

video file type to an audio-only file type. In this case, you’ll need to add the -vn flag

which stands for “video no,” for example:

ffmpeg -i video.mp4 -vn song.mp3

�Compress a Video
After recording a video locally and wanting to upload it to the Web, you may find the size

is too large for practical use. Instead of loading up some clunky video editing software,

you can run a one-liner with ffmpeg to compress it:

ffmpeg -i input.mp4 -b 1000000 output.mp4

In the preceding example, we’re taking a video called input.mp4 and outputting it as

output.mp4 with a reduced bitrate of 1,000,000 bits or 1 megabit per second. To put that

in perspective, a DVD is generally 4–8 megabits per second, and Blu-ray is 24–40. The

size depends on both the dimensions of the video and the quality.

Chapter 16 Terminal Tools for Working with Images and Videos

321

�Slow Down a Video
If you’ve ever wanted to watch something in slow motion but didn’t want to do the hard

work of opening up a full-fledged video editor, ffmpeg has a solution for you. Any video

(or sound file for that matter) can easily be sped up or slowed down with ffmpeg. This

can be done with the command:

ffmpeg -i video.webm -filter:v "setpts=2.0*PTS" slow.webm

In the preceding command, the 2.0 means that our video is spread out over two

times the original length. If we instead used setpts=0.5*PTS, we’d have the opposite

effect, speeding up the video by compressing it into half the length.

The same can be applied to audio such as an mp3 by using a different filter:

ffmpeg -i audio.mp3 -filter:a "atempo=2.0" slow.mp3

The preceding example will only affect the video, but the sound will play at normal

speed. If you want to change both, you’ll need to add a second filter. For example, to slow

the sound at the same rate as the video add -filter:a "atempo=0.5":

ffmpeg -i video.webm \

 -filter:v "setpts=2.0*PTS" \

 -filter:a "atempo=0.5" slow.webm

Or to speed both video and sound to 2x, use

ffmpeg -i video.webm \

 -filter:v "setpts=0.5*PTS" \

 -filter:a "atempo=2" slow.webm

�Trim a Video
Another common task you might want to use ffmpeg for is trimming a video so you can

create a new video from some subsection of the original video. If we wanted to cut the

contents starting at 3 seconds into the video with a duration of 8 seconds, we could run

ffmpeg -i vid.webm -ss 00:00:03 -t 00:00:08 -async 1 cut.webm

Chapter 16 Terminal Tools for Working with Images and Videos

322

This will result in a new video file called cut.webm which is 8 seconds in length going

from the 3-second mark to the 11-second mark. This same command can also be applied

to audio files like mp3.

�Increase Volume in a Video
If you’ve ever come across a video where it was hard to hear the audio even on max

volume, this next command is for you. With ffmpeg we can actually upscale the audio of

a file so that it plays at a louder volume.

Volume is measured using “dB” which stands for decibels. If we want to increase the

audio on our video by 5 decibels, we would run the following:

ffmpeg -i in.mp4 -vcodec copy -af "volume=5dB" out.mp4

In the same way, we can lower the volume by using a negative value for the volume,

for example, -5dB which would turn down the volume by 5 decibels:

ffmpeg -i in.mp4 -vcodec copy -af "volume=-5dB" out.mp4

�Download Videos with youtube-dl
Now that you’re a little familiar with how you can modify, trim, and process videos with

ffmpeg, you may find yourself wanting to work with videos from around the Web, for

example, downloading a commonly listened song from YouTube and converting it to an

mp3 or cutting a clip from a funny video to turn into a gif to share with your friends.

youtube-dl is a very actively developed command-line tool for downloading

YouTube videos as well as over 1000 different websites including

•	 Vimeo

•	 SoundCloud

•	 Facebook

•	 Twitter

•	 News sites like Fox and CBC

That’s just a few out of the over 1000 supported sites. The full list can be found at

https://github.com/ytdl-org/youtube-dl/blob/master/docs/supportedsites.md.

Chapter 16 Terminal Tools for Working with Images and Videos

https://github.com/ytdl-org/youtube-dl/blob/master/docs/supportedsites.md

323

The most common way to install youtube-dl is via Python’s package manager pip:

sudo -H pip install --upgrade youtube-dl

However, it’s also possible to download an executable from the official site with curl in

a single step if you prefer not to use pip. To get the most up-to-date options for installing,

check out the projects on GitHub at https://github.com/ytdl-org/youtube-dl.

The simplest command and likely your most used one is to simply use the utility

passing in the URL of the video you want to download:

youtube-dl https://www.youtube.com/watch?v=DfK83xEtJ_k

Be aware that by default the highest quality available will be downloaded, which with

the preceding video is over 1GB. If you want to download another format, you can see

the available formats for a video by using the -F flag. An example of returned available

formats is shown in Figure 16-4.

Figure 16-4.  Viewing available formats with youtube-dl

Chapter 16 Terminal Tools for Working with Images and Videos

https://github.com/ytdl-org/youtube-dl

324

Take note of the first column “format code” for the video you want. The format code

can be specified with the -f flag allowing you to download a much smaller version, thus

speeding up the download and saving you date (or downloading audio only if you just

want to list). Given the preceding list, if we want to download the smallest video possible,

we could pick format code 598, which downloads almost instantly:

youtube-dl -f 598 https://www.youtube.com/watch?v=DfK83xEtJ_k

As mentioned, youtube-dl is a very active project with lots of options and features.

It’s definitely worth checking out some of those extra features on their GitHub README,

but for most situations, what we’ve seen here will get the job done.

�Creating Charts with gnuplot
Another visual-based task which is possible from the command line is visualizing data

as graphs – either by viewing that data in the terminal itself or converting data into image

files for later use.

One program that makes this easy is gnuplot which is widely available in package

managers.

To demonstrate plotting a simple bar chart, let’s create a data file called days.dat

containing the following:

0 Monday 100

1 Tuesday 220

2 Wednesday 75

Next open gnuplot, which is done by simply entering the command with no inputs

or options.

With gnuplot open, first change the mode to dumb which causes the generated chart

to be displayed in the terminal as text art. By default, charts are generated in a qt-based

GUI which pops up after each command; despite not being completely terminal based,

the qt version of charts does look better. So if you prefer to use qt, simply skip this first

command:

set terminal dumb

Chapter 16 Terminal Tools for Working with Images and Videos

325

Next we’ll set the boxwidth for our chart and fillstyle:

set boxwidth 0.5

set style fill solid

Finally, tell gnuplot to plot the days.dat file using

plot "days.dat" using 1:3:xtic(2) with boxes

The 1:3 here specifies that we’re using column 1 of the data for the x-coordinates

and column 3 for the y-coordinates. Then xtic(2) says that we apply column 2 as the

label for each x value. If we instead use xtic(1), our day name labels would be replaced

with the index numbers. Finally, with boxes simply specifies the chart type. An example

of the visualization output is shown in Figure 16-5.

gnuplot can also be used to graph mathematical equations, for example, running

plot sin(x) generates the chart shown in Figure 16-6.

Figure 16-5.  gnuplot displaying a bar chart in terminal

Chapter 16 Terminal Tools for Working with Images and Videos

326

Any equation can be graphed this way, for example, a simple equation representing a

line with a slope of 5 with a y-intercept of 3 can be generated with plot 5*x + 3.

�gnuplot to Image File
It’s neat being able to display charts in the terminal, but in most cases, you’re going to

want to export charts as images which can be used to convey information in reports or

presentations. In the same way we set gnuplot to use dumb mode, we can set it to export

as an image file. Run the following to switch to png mode:

set terminal png

Next, you’ll have to tell gnuplot where you want to output the image file; otherwise,

you’ll see the raw unprocessed png data on your screen, which isn’t useful at all.

set output "graph.png"

Figure 16-6.  gnuplot displaying a line chart in terminal

Chapter 16 Terminal Tools for Working with Images and Videos

327

Now, if we follow the exact same steps used to make our first bar chart, we’ll end

up with a “graph.png” file in our working directory. Each time you plot a graph to a file,

you’ll need to respecify the output file using the preceding command.

As we’re no longer working in the terminal, you’ll likely want to add some color to

your charts. To do this, we’ll modify our original plot command to

plot "days.dat" using 1:3:0:xtic(2) with boxes lc var

We’re adding a new value in 1:3:0 which creates a new variable using the index;

this variable is then used with lc var and incremented for each bar. The preceding

command should produce something like in Figure 16-7.

Figure 16-7.  gnuplot bar chart exported to an image file

Chapter 16 Terminal Tools for Working with Images and Videos

328

There are a variety of built-in color schemes including podo, classic, and default.

To change the scheme, run the following replacing podo with the scheme you want:

set colorsequence podo

�Advanced Examples/Demo Folder
We’ve looked at some basic examples of plotting data with gnuplot of plotting lines

and bar charts. However, this is only a fraction of what gnuplot is capable of. The

program can be used to create in-depth infographics. Doing this is out of the scope

of this book, but we’ll share a few examples from the gnuplot official demos folder:

https://github.com/gnuplot/gnuplot/tree/master/demo. See Figures 16-8, 16-9,

and 16-10 for examples of the demos contained. The code for these demos can be used

as a starting point for plotting your own data.

Figure 16-8.  gnuplot example chart histograms.8.gnu

Chapter 16 Terminal Tools for Working with Images and Videos

https://github.com/gnuplot/gnuplot/tree/master/demo

329

Figure 16-9.  gnuplot example chart rgb_variable.5.gnu

Figure 16-10.  gnuplot example chart contours.11.gnu

Chapter 16 Terminal Tools for Working with Images and Videos

330

�Startup Animation
Another interesting modification we can make to our operating system is changing the

default animation screen at startup time. In some cases, this can actually be useful to

know, for example, if you’re working on a custom embedded device or perhaps even a

gaming unit and want to have a themed startup screen.

A good example is the open source theme PlymouthTheme-Cat (https://github.

com/krishnan793/PlymouthTheme-Cat), which when installed and enabled will replace

your default startup screen with an animated cat, shown in Figure 16-11.

Making use of this theme requires that your OS is using Plymouth. Plymouth is a

package which provides a flicker-free graphical boot process and is installed by default

on Debian- and Fedora-based distros.

Figure 16-11.  Custom startup animation

Chapter 16 Terminal Tools for Working with Images and Videos

https://github.com/krishnan793/PlymouthTheme-Cat
https://github.com/krishnan793/PlymouthTheme-Cat

331

First install the theme in your /usr/share/plymouth/themes; this can be done by

cloning directly into the folder:

sudo git clone \ https://github.com/krishnan793/PlymouthTheme-Cat.git \

/usr/share/plymouth/themes/PlymouthTheme-Cat

With the theme successfully downloaded to your theme folder, you’ll next want to

install the theme:

sudo update-alternatives --install \ /usr/share/plymouth/themes/default.

plymouth default.plymouth \ /usr/share/plymouth/themes/PlymouthTheme-Cat/

PlymouthTheme-Cat.plymouth 100

Once installed, set it to your default by running

sudo update-alternatives --config default.plymouth

This should bring up a selection menu; enter the number for the option listing

PlymouthTheme-Cat, as shown in Figure 16-12.

Finally, you’ll need to update the initramfs image. This is the image which runs on

boot with the purpose of mounting the filesystem.

sudo update-initramfs -u

With this done, you can now restart your computer and enjoy the custom cat

animation during the boot process.

Figure 16-12.  Selecting Plymouth theme to use

Chapter 16 Terminal Tools for Working with Images and Videos

332

�Make a Custom Boot Animation
While the cat animation is definitely well done, you may want to make your own custom

animation. The easiest way to experiment with making your own is to look at the source

of Plymouth Cat. Notice that the source contains 111 sequential PNG files starting at

progress-0.png and ending at progress-111.png. Sequentially viewed, these images

create the animation.

If you’d like to create your own, the best place to start is by replacing these images

with your own PNG files of the same dimensions and rerunning the steps used to install

Plymouth Cat. This will result in an animation based on the images you provided.

Once you’re happy with the results, you can update the values in PlymouthTheme-

Cat.plymouth and rename the folder.

We won’t go into the details of how to produce the image files, but applications like

GIMP and Photoshop both support exporting an animation as several PNG files.

�Summary
In this chapter, we looked at utilities that make it possible to work with images and

videos without ever opening a bulky editor. This is great for common quick tasks like

converting file types, adding watermarks, or trimming video and audio content. In some

cases, as with gnuplot, we created new images using data, again without having to open

an image editor.

Finally, we saw how the splash screen shown during the startup process is actually

controlled by a program called Plymouth. We downloaded a simple animation and set it

as our startup animation. This is a fun modification that can be useful when setting up

custom-purpose hardware. For example, a Linux system that automatically boots into a

video game emulator or multimedia box hooked up to your TV can be made to seem like

a unique creation by adding a custom animation.

Chapter 16 Terminal Tools for Working with Images and Videos

333
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_17

CHAPTER 17

Extras
We’ve looked at all kinds of commands and utilities throughout this book. Yet there are

several handy commands which defy any category. In this final chapter, we’ll look at fun

or useful commands and utilities that don’t necessarily fit into a category.

�Cal
Another simple but useful command-line program is cal which provides a simple

calendar via the command line. One of the great things about cal is that it comes

installed standard on nearly all Linux distributions as it was present in the first edition

of Unix and is part of POSIX standard. The simplest use of cal is running it without

any flags or arguments, which just produces a visual of the month with the current day

highlighted, as shown in Figure 17-1.

To visualize the whole year, you can add the -y flag, which will produce a similar

graphic but will show all the months in the current year formatted in month chunks like

in the figure.

Figure 17-1.  Output of cal command

https://doi.org/10.1007/978-1-4842-6035-7_17#DOI

334

For the most part, that is the extent of my use of cal, a small program that I use

surprisingly often. It does however also offer the ability to look at specific years or

months, for example:

cal 2000 # display the year of 2000

cal june 2009 # display June of 2009

Looking back to the section on .bashrc, you might also consider adding a line which

simply has cal to show a calendar highlighting the current day when you open your

terminal – though personally I dislike the clutter that this adds.

�espeak
If you’re someone who likes to listen to text rather than read it, you’ll really want to know

about espeak. espeak takes text input and reads it as audio or outputs that audio to an

audio file. The package can be found on the Ubuntu package manager.

sudo apt-get install espeak

After installing, the simplest thing you can do is pipe some text into espeak and listen

to the audio directly on your machine.

echo Hello World | espeak

If instead of using a pipe, you instead want to provide a file containing text, you can

use the -f flag as shown in the following:

echo Hello World > text.txt

espeak -f text.txt

The default voice is a bit flat, but that’s something we’ll look at improving in the next

section. Some of the built-in flags include things like changing the speed. The speed is

controlled by the -s flag which takes a value representing “words per minute” (default

175) and the -g flag which sets the gap between words in milliseconds (default 10).

Below are examples of slow at 100 wpm and fast at 250 wpm:

echo hello world | espeak -s 100 -g 20 # slow

echo hello world | espeak -s 250 -g 5 # fast

Chapter 17 Extras

335

�Improve Sound of espeak Voice
The voice used by espeak can be drastically improved by installing voices from the

open source speech engine MBROLA. Unfortunately, the website for MBROLA is

no longer online; however, it can still be accessed along with the voice files using

the Wayback Machine. To view information on the very outdated site, check out the

following link:

https://web.archive.org/web/20180625050250/http://www.tcts.fpms.ac.be/

synthesis/mbrola/

To download and install MBROLA, run the following commands:

cd /tmp

wget \

https://web.archive.org/web/20180627172600/http://www.tcts.fpms.ac.be/

synthesis/mbrola/bin/pclinux/mbr301h.zip

unzip mbr301h.zip

sudo cp mbrola-linux-i386 /usr/bin/mbrola

Next we’ll download the English voice files. If you want another language, you’ll have

to find the appropriate file using the archived MBROLA website. To install the English

voices, run the following commands:

cd /tmp

wget \

https://web.archive.org/web/20160706052143/http://www.tcts.fpms.ac.be/

synthesis/mbrola/dba/en1/en1-980910.zip

unzip en1-980910.zip

sudo cp en1/en1 /usr/share/mbrola/en1

With MBROLA and the English voice installed, you can now select the voice using

the -v flag as shown in the following (slowing the speed to 120 words per minute is

recommended):

echo Hello World | espeak -v mb-en1 -s 120

Chapter 17 Extras

https://web.archive.org/web/20180625050250/http://www.tcts.fpms.ac.be/synthesis/mbrola/
https://web.archive.org/web/20180625050250/http://www.tcts.fpms.ac.be/synthesis/mbrola/

336

�Output espeak to Audio File
If you end up using espeak to convert large amounts of text, you’ll likely want to output

it as an audio file rather than having it play directly. This gives you the freedom to pause,

play, and rewind as you wish – not to mention moving the file to other devices or sharing.

An example of how this can be done is as follows (we assume you have text in a file called

text.txt in the same directory; if not, copy and paste some text from a web page into a

text file):

espeak -f text.txt -w audio.wav

Unfortunately, espeak only has the option to output as a wav file, so if you want mp3

or some other type, you’ll need to run an additional command to convert using ffmpeg.

ffmpeg -i audio.wav -vn -ar 44100 -ac 2 -b:a 192k audio.mp3

�Math on the Command Line
We’ve made use of bc in a few past chapters, but it’s worth mentioning because it is often

overlooked. The initials stand for basic calculator. It comes installed on most Unix-like

operating systems, as it is a POSIX standard. It provides the ability to do math on the

command line or write bc-specific scripts.

From the command line, bc is used by piping output from another command, for

example:

echo 1 + 1 | bc

Running the preceding script will return an output of 2. There is support for the basic

operations you’d expect on any calculator for addition, subtraction, multiplication, and

division. In addition, you have some special commands, for example, to get the square

root of a number:

echo "sqrt(169)" | bc

Notice that when using any bc notation with a bracket, we need to surround it in

quotes; this is to avoid bash interpreting it as a subshell. Another special command

available in bc is length which returns the number of digits in a number:

echo "length(169)" | bc

Chapter 17 Extras

337

The preceding script returns 3. Similarly, there is a function scale which counts the

digits to the right of a decimal place, for example, the following which returns 3:

echo "scale(169.777)" | bc

Rather than using a pipe, it’s also possible to start bc in an interactive mode. To do so,

run it with the -l flag:

bc -l

In addition to being a command-line utility, bc can actually be used as a full scripting

language which has support for C syntax for number manipulation and the creation of

functions for code reuse.

Another command expr can also be found on many systems which evaluates math

statements without the pipe. However, using expr isn’t recommended as it is outdated:

expr 1 + 1

In the same vein, you’ll also find dc on many systems which is also a reverse polish

notation calculator which predates the C language.

�Tiling Window Managers
Another class of applications that power users should look into are tiling window

managers. A tiling window manager replaces the GUI interface for your Linux

operating system (gnome, xfce, lxde, etc.) and provides a way to split your workspace

up into tiles.

Tiling window managers are touted for their aiding in making OS use a completely

mouseless process. Anything that could be done with a mouse is better done with

a keyboard when using a tiling window manager. For this reason, tiling window

managers are often promoted as a way of improving efficiency of command-line

interface use.

Personally, I find that the usefulness of tiling window managers depends on the task

at hand. If my workflow involves around a dozen different terminal sessions running

at once, I’ll always almost opt for a tiling window manager. If however my workflow

involves a web browser, word editor, and a few terminal sessions, I’ll instead opt for a

normal desktop experience with my terminal sessions in tmux.

Chapter 17 Extras

338

In the past, there were several different competing tiling window managers, but

at current i3wm seems to be the most popular. While looking for popular alternatives,

I found that i3wm was the only tiling window manager for Linux with a stable release

in the last 12 months. For this reason, we’ll focus on i3wm as the best and most

common tiling window manager. If you’re interested in researching additional window

managers, some alternatives include “Awesome window manager,” xmonad, dwm, and

ratpoison.

i3wm excels at being able to quickly switch between terminal sessions and groups of

terminal sessions. For example, I might have a page of terminals which are monitoring a

system with various tools, creating a sort of dashboard. Then in another window, I might

have some SSH sessions to different devices being tested.

If you’re new to tiling window managers, I recommend installing it alongside a

traditional desktop rather than as your only installed desktop interface. This will make

things easier if you forget how to do something or are having difficulty doing some

particular thing within i3wm. If that’s the case, you can always switch back to Ubuntu

Desktop (or your chosen interface) and come back to i3wm later.

i3wm can be installed simply on most Linux distributions by running the equivalent

of the following on your package manager:

sudo apt-get install i3

With i3wm installed, log out or restart your computer. If you’re on Ubuntu or Fedora,

on the login screen, you should see a settings icon, as shown in Figure 17-2. After clicking

the settings icon, a list of possible desktop interfaces should appear. Select the one

labeled i3.

Chapter 17 Extras

339

On your first login with i3wm enabled, you’ll be asked if you want to create a

configuration file, as shown in Figure 17-3. We recommend using the defaults which will

set the Windows key as the i3wm modifier key used for keyboard shortcuts. However, at

the time of writing, we found that pressing <enter> and then choosing the default option

while generating a config worked better than choosing <esc> which seems to be causing

issues at this time.

Figure 17-2.  Selecting i3 at the login screen

Figure 17-3.  i3 first configuration dialog box

Chapter 17 Extras

340

Once installed, you can switch to i3wm on most platforms by logging out and at

the login screen selecting i3wm from a dropdown. Using i3wm like using Vim can be

daunting at first. You’re met with a blank black screen and no obvious way to open

an application. Like Vim, i3wm is navigated and used through keyboard shortcuts

and commands. Table 17-1 shows a list of commands for i3wm (substitute the “win” or

Windows key for alt if you’ve selected it).

Table 17-1.  i3wm keyboard shortcuts

Shortcut Description

win+enter Open a new terminal tile

win+d Open a dialog at the top of the screen where you can type an

application name and press enter to open it

win+j Move focus one tile left

win+k Move focus one tile down

win+l Move focus one tile up

win+; Move focus one tile right

win+shift+j Move focused tile left

win+shift+k Move focused tile down

win+shift+l Move focused tile up

win+shift+; Move focused tile right

win+f Toggle between full-screen mode on focused tile

win+shift+q Kill the focused tile

win+<number> Switch to a workspace where <number> is any value between

0 and 9. Each number being a separate workspace with tiles

win+v Next tile will split space vertically

win+h Next tile will split space horizontally

win+r Enter resize mode for tile. From here arrow keys can be used to

expand or compact a tile either horizontally or vertically

win+shift+space Toggle floating mode on a tile. Floating mode allows you to

drag a window without concern for the grid

win+<mouse> Drag a floating mode tile with your mouse

Chapter 17 Extras

341

�Creating Tiles
The most basic commands you’ll want to learn first are for creating new tiles which is

synonymous with opening applications, since all applications are contained in tiles on the

window manager’s grid. If you’re opening a terminal, you can use win+enter. For all other

applications, press win+d; this will open a small dialog in the top left, as shown in Figure 17-4.

As you type the name of an application, the dialog will show the state of

autocomplete, and if at any time it shows your target program, press open. This will open

your application as a tile. An example of Firefox open as a tab along with two terminals is

shown in Figure 17-5.

Figure 17-5.  i3 with multiple tiles open

Figure 17-4.  i3 application search

Chapter 17 Extras

342

Opening additional applications will automatically create additional tiles in your

workspace which will be distributed on the grid. As a consequence, program tiles will

be resized as you add additional tiles. If your screen starts to get crowded and you need

more space, you can make use of workspaces which we explain later. Or if you have tiles

you no longer need, you can focus them and press win+shift+q.

Your workspaces will be numbered and displayed in the status bar at the bottom of

the screen. In addition to your workspaces, the status bar shows basic information about

the time, Internet connection, and free space.

By default, your tiles will split the current focused tab horizontally when adding a

new one. To switch to vertical splitting, press win+v and your next created tiles will split

vertically. To switch back to horizontal splitting, press win+h. Try experimenting by

creating new tiles and switching between vertical and horizontal as well as deleting tiles

with win+shift+q as needed.

Once you have a workspace, split into multiple tiles, you may want to resize a tile. If

you press win+r, you’ll go into resize mode for the highlighted tile where you can use the

arrow keys to expand or shrink the tile. There is also an indicator in the status bar that

will tell you when resize mode is active.

�Change Tile in Focus
Now that you have multiple programs running as tiles in i3wm, you probably want to

know how to switch between tiles. The tile you’re currently using in i3wm is said to be in

focus. If you want to change focus between tiles, just hold the win key and use the arrow

keys to navigate your focus. You should see a thin outline around your currently focused

window. Alternatively, you can use the letters – j, k, l, and ; – which each correspond

to a direction. These keys are similar to the direction keys in Vim but not quite the

same. If you want to modify these keys so that they’re the same as Vim, see the section

“Modifying i3wm Config File.”

�Move Tiles
In addition to changing your focus, you might also want to rearrange windows as you

create additional tiles or resize those tiles to create your perfect setup. The shortcuts for

moving tiles are nearly identical to that of moving focus except you need to hold both the

Chapter 17 Extras

343

win and shift keys instead of just win. So to move right, you could do win+shift+right

arrow or win+shift+;. As mentioned, you can also resize a window. To enter resize

mode, press win+r while focused on the tile you want to resize. Once in resize mode, you

can use the arrow keys to expand or contract the tile.

�Workspaces in i3wm
When you first open i3wm, you will see a small square in the bottom left which reads

“1”. This number represents your current workspace. There are 10 workspaces on i3wm

numbered 1–9 and 0 as the tenth. You can switch between workspaces by pressing

win+<number> where <number> is any number between 0 and 9. Upon switching to a new

workspace, your screen will appear as a fresh i3wm instance with no tiles open.

So if you open four different tiles in workspace 1 and then switch to workspace 2,

you can create new tiles on a fresh layout and at any time switch back to workspace 1.

The programs within your workspaces will continue to run regardless of whether that

workspace is in focus.

�Floating Tiles
While the tile grid system is essentially the core utility of i3wm, it is possible to create tiles

which exist outside of it and float overtop of everything else. To toggle a tile in and out of

float mode, put it in focus and press win+shift+space. Once the tile is in float mode, you

can hold win and drag it using your mouse. If you want to return the tile to the grid, press

win+shift+space again.

�Full-Screen Mode
If you’re working with a tile and you find it’s too small, you can switch the tile into full-

screen mode temporarily and switch back when you’re done. To switch to full-screen

mode on a tile, simply press win+f. To switch back out, press win+f while already in full

screen mode.

Chapter 17 Extras

344

�Modifying i3wm Config File
There are several settings and configurations that can be set by modifying the config file

for i3wm. The default location for the configuration file is ~/.config/i3/config.

�Bind Keys in i3wm Config
The most common thing you’ll want to modify in i3wm is which keys are responsible for

which functions. A common change people who are used to Vim keybindings like to

make is remapping the keys for focusing tiles. This is done by using the bindsym keyword

in your config file like in the following example:

bindsym $mod+h focus left

bindsym $mod+j focus down

bindsym $mod+k focus up

bindsym $mod+l focus right

If you decide to do this, you’ll also need to remap the default use of $mod+h which

is used to split windows horizontally. It’s up to you as to what key you use for split

horizontal, but in this example, we’ll use “-”, with the line as follows:

bindsym $mod+minus split h

Also search through the file for any existing bindings using the same key

combinations, for example, “$mod+k”; if you find a duplicate, you’ll need to remove one

as each key combination can only be mapped to a single function.

After making a change to the i3 config file, you will need to reload it. To do that

without restarting your system, run the following command:

i3-msg reload

In the preceding example, we mapped each of the Vim movement keys (plus the

modifier key “win” by default). It’s likely you’ll also want to apply a similar change for

moving the focused window as shown in the following:

bindsym $mod+Shift+h move left

bindsym $mod+Shift+j move down

bindsym $mod+Shift+k move up

bindsym $mod+Shift+l move right

Chapter 17 Extras

345

You can also bind custom functionality to unused key combinations. For example,

say we wanted a special key combination to open a new web browser window. We could

add the line shown here:

bindsym $mod+shift+z exec "firefox"

Using the preceding pattern, you can map key combinations to any application or

even your own custom scripts.

�Change Colors in i3wm Config
As with other configuration files we’ve looked at in this book, the i3wm config file allows

for modifying the theme and color of your interface. We won’t look at every possible

configuration, but the following configuration will help you get started; it’s an example

of modifying the status bar at the bottom of the screen by changing the color of various

subelements (make sure to replace your existing instance of bar in the config file or you’ll

end up with two status bars).

bar {
 colors {
 background #2f343f
 statusline #2f343f
 separator #4b5262
 focused_workspace #2f343f #bf616a #d8dee8
 active_workspace #2f343f #2f343f #d8dee8
 inactive_workspace #2f343f #2f343f #d8dee8
 urgent_workspacei #2f343f #ebcb8b #2f343f
 }
 status_command i3status

}

Additionally, we can change the colors of the client itself (the five-color hex codes

should be contained on a single line).

client.focused #bf616a #2f343f #d8dee8 #bf616a #d8dee8
client.focused_inactive #2f343f #2f343f #d8dee8 #2f343f #2f343f
client.unfocused #2f343f #2f343f #d8dee8 #2f343f #2f343f
client.urgent #2f343f #2f343f #d8dee8 #2f343f #2f343f
client.placeholder #2f343f #2f343f #d8dee8 #2f343f #2f343f
client.background #2f343f

Chapter 17 Extras

346

�i3status Config File
While most customizations to i3wm are made in the ~/.config/i3/config file, there is

a second config file which deals exclusively with the status bar. The status bar–specific

config file can be found at ~/.config/i3status/config. Not only does it allow you to

change colors and style of the status bar, it also allows for changing which content is

shown. Note that this file doesn’t exist by default. For additional information on the status

bar, you can run the following to see a status bar–specific man page:

man i3status

In this man page, you’ll find an example config file which can be copied and used as

the basis for a custom status bar. Notice that all the subcomponents of the status bar are

first added to the variable called order which tracks what subcomponents to display and

in what order.

order += "cpu_temperature 0"

order += "load"

order += "tztime local"

order += "tztime berlin"

Then further down, each of these subcomponents is described with curly brackets.

For example, the “tztime berlin” component which displays Berlin time in addition to

the system’s local time is shown here:

tztime berlin {

 format = "%Y-%m-%d %H:%M:%S %Z"

 timezone = "Europe/Berlin"

}

In order to have a fully working config file, you’ll also have to add the “tztime local”

component which is defined here:

tztime local {

 format = "%Y-%m-%d %H:%M:%S %Z"

}

Chapter 17 Extras

347

For the status bar changes to take effect, you’ll need to fully restart i3 rather than

simply running the reload command. You can restart i3 by running

i3-msg restart

You can find several components in the man page to get you started. If you’re looking

for additional resources for customizing i3wm and using as the basis for config files, I

recommend searching “i3wm config github.”

�Alternative Shells
Before listing many of the alternative shells which are available, I want to note why I

don’t use any. Firstly, I like my default work environment to reflect that of what I might

find in “the wild.” That is, if I SSH into a machine or go to a company and use their server,

I feel right at home assuming they’re using standard bash. If I had gotten used to using

an alternative shell, I would likely find myself trying to use shortcuts and commands

which simply don’t exist by default.

The second major reason is that many alternative shells are not POSIX compliant,

meaning that scripts written specifically for one of these shells cannot be shared with

the wider community. I prefer to use standard POSIX-compliant bash, knowing that

almost everyone will be able to use the scripts written on my computer in their local

environment.

That said, many others do prefer alternative shells for the usability or other benefits

they might provide. If you’re interested in exploring alternative shells, here are some

worth checking out:

•	 Z Shell

•	 Fish

�Z Shell
The most popular alternative shell is Z Shell or “ZSH.” Z Shell is an extension of bash

which has a focus on improving user experience. Some of the features of Z Shell include

•	 Smarter autocomplete.

•	 Git integration (git status hints).

Chapter 17 Extras

348

•	 Smart SSH autocomplete based on ~/.ssh/config &

~/.ssh/known_hosts.

•	 File name correction when making a typo.

•	 Wide variety of themes.

•	 All cd use is actually pushd; thus you can always use popd.

•	 Other smart autocomplete.

•	 Has a POSIX-compliant mode (though not compliant by default).

This is by no means a complete list of features.

�Oh My ZSH
We looked at “Oh My Bash” in Chapter 14; “Oh My ZSH” is essentially the same thing but

for Z Shell. It contains several premade themes and configuration files specific to Z Shell.

More information can be found at https://github.com/ohmyzsh/ohmyzsh.

�Fish
The second most popular alternative shell is Fish. As with ZSH, the focus of Fish is

improved user experience in the terminal. Some of the features include

•	 Autocomplete as your type (which considers your command history)

•	 Improved default color themes

•	 More interactive autocomplete with tab

•	 GUI-based configuration menu that can be accessed in the web

browser

One of the differences, which is highlighted, when comparing Fish and ZSH is that

ZSH requires configuration to enable many of its key features, whereas Fish is a more

out-of-the-box experience. This focus on “ease of use” can also be seen in the inclusion

of a web browser–based configuration menu that allows you to interactively change

things like color themes.

Chapter 17 Extras

https://github.com/ohmyzsh/ohmyzsh

349

�Remapping Keys
As you start customizing your Linux system more and more, you might get to the point

where you actually want to change the behavior of certain keys. For example, it’s quite

common to remap the use of Caps Lock to some other use due to the fact that it is not

often used.

The first step in doing any type of remapping is getting the keycode for the button

in question. The best way to do this is by running xev which will start an interactive

mode where you press a button and in return receive a keycode; an example is shown in

Figure 17-6.

In this example, we’ll remap the Caps Lock key (keycode 66). To edit the mapping,

open up ~/.Xmodmap. This configuration file is responsible for modifying keyboard

bindings. Add the following lines to map the Caps Lock key to the hyperkey.

Figure 17-6.  Finding keycodes using xev

Chapter 17 Extras

350

�clear capslock
keycode 66 = Hyper_L

The preceding configuration removes the Caps Lock key’s normal use, sets it to

hyperkey using its keycode, and makes the hyperkey a modifier button.

The hyperkey is a key which existed on an old keyboard called the space-cadet

keyboard, shown in Figure 17-7. The space-cadet keyboard allowed the user to type over

8000 distinct characters using key combinations, such as the “Greek” key. The keyboard

was influential on the design of Lisp and Emacs, and the “hyperkey” is still referenced in

many places today, despite not being present on most, if any, keyboards.

Figure 17-7.  Special keys on the historic space-cadet keyboard. Courtesy of Dave
Fischer, Retro-Computing Society of Rhode Island, Wikimedia Commons, Creative
Commons Attribution-Share Alike 3.0 Unported License

On most systems, modifying the ~/.Xmodmap file will be sufficient for remapping the Caps

Lock to the hyperkey. After making the change, you’ll need to either restart your system or

reload the configuration manually. To reload manually, run the following command:

xmodmap ~/.Xmodmap

Chapter 17 Extras

351

Now if you run xmodmap stand-alone without an argument, you should get back

information about the special keys on your system. The “lock” row should have nothing

in the second column, and for the row labeled “mod4”, you should see a list of keys

including “Hyper_L” at the end.

The “mod” here stands for modifier key, meaning it can be used in conjunction with

other keys to create an output, much the same as “alt” and “ctrl” keys. This is important

for the next section as it allows us to associate Caps Lock plus some other keys with

custom commands or scripts.

�Custom Shortcuts with Xbindkeys
Now that you’ve mapped your Caps Lock to hyperkey, you’re probably wondering what

you can do with it. The main use of swapping the Caps Lock for hyperkey is to gain an

additional modifier key, similar to alt or ctrl. We can associate key combinations with

programs, tasks, and scripts.

In the section on i3, we created a custom command for opening Firefox with

win+shift+z. This is essentially the same idea, except we’re using caps and don’t need to

use i3.

To make keyboard shortcuts, we first need to install xbindkeys:

sudo apt-get install xbindkeys

Next create a xbindkeys config file based on the default by running the following

command:

xbindkeys --defaults > ~/.xbindkeysrc

Next open up the ~/.xbindkeysrc file and add the following line at the end of the file:

"firefox"

 Mod4 + f

The Mod4 here represents our hyperkey, since we associated the hyperkey (via caps)

with mod4 in the previous section. So we’re binding caps+f to open the Firefox browser.

We can replace firefox with any other program in our path. For example, try adding

Chapter 17 Extras

352

the following code to your ~/.xbindkeysrc; after running it, check your /tmp folder and

you should see a file called hello. You can replace the quotes with any command and

associate it with whatever keyboard shortcut you’d like below:

"touch /tmp/hello"

 Mod4 + t

With the Caps Lock key freed up for custom shortcuts, you have dozens of possible

key combinations you can make use of, and that’s not even making use of combining the

Caps Lock key with other modifiers like shift or alt.

�Additional Resources
Additional resources I have found useful in exploring Linux terminal include

•	 http://unix.stackexchange.com/

•	 https://askubuntu.com

•	 https://linuxjourney.com/

•	 www.tldp.org/

•	 http://explainshell.com/

•	 www.linuxquestions.org/

•	 https://training.linuxfoundation.org/resources/

•	 https://google.github.io/styleguide/shell.xml

�Summary
In this chapter, we looked at programs that can be used to take your terminal use one

step further. We looked at the built-in cal command which can be found on almost any

Linux system and allows you to get a quick overview of the coming year. We saw how

espeak can be used to convert text into an audio file.

After that, we looked at the tiling window manager i3wm, alternative shells, and how

you can modify your keyboard input to create dozens of custom keyboard shortcuts

which map to programs or custom scripts.

Chapter 17 Extras

http://unix.stackexchange.com/
https://askubuntu.com/
https://linuxjourney.com/
http://www.tldp.org/
http://explainshell.com/
https://www.linuxquestions.org/
https://training.linuxfoundation.org/resources/
https://google.github.io/styleguide/shell.xml

353
© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7

Index

A
Alpine Linux, 11
Arch Linux, 5, 10
arp-scan method, 120
Artist mode

adding labels, 259
built-in package manager MELPA, 253
canvas creation, 255
chart made, 254
nongraphical READMEs or manuals, 254
pop machine text art, 260
replacing + with v, 258
text-based art or diagrams, 253
two rectangles creation, 256, 257
Vim bindings, 255

ASCII garble glitch, 97
atop, 151

B
bash keyboard shortcuts, 51
.bash_logout script, 276
bash prompt text, 280
.bashrc file, 31, 275, 276

alias, 278
ANSI color codes, 281
color codes, 283
configs, 278
custom functions, 278, 279

global version, 277
import file, 288
live clock, 286, 287
$PATH, 279
PS1 prompt, 280, 282
PS2/PS3/PS4, 284, 285
run programs, 287
themes, 285

.bashrc_profile configuration script, 275

C
cal command, 333
Chain commands with && and ||, 64, 65

cowsay program, 66, 67
exit codes, 65

Conditional expressions
arithmetic operators, 75
-d flag, 71
double equal sign ==, 74
-e flag, 72
-eq flag, 76
-f flag, 71
-ge flag, 78
-gt flag, 77
-le flag, 77
-lt flag, 76
-ne flag, 76
non-empty strings, 74
options, 71

https://doi.org/10.1007/978-1-4842-6035-7#DOI

354

sorting, 75
string comparison, 73
-x flag, 72
-z flag, 73

cowsay command, 63
Cron job

command-line
editors, 35

labels, 36
script or process, 35
time intervals, 36

ctrl+c command, 50
ctrl+d command, 50

D
Daemon, 221
Debian

install packages, 6
Kali, 8, 9
Mint, 9
PopOS, 9
Ubuntu, 7, 8

Demilitarized zone (DMZ), 104
/dev/null, 190, 191
/dev/random and /dev/urandom, 191, 192
/dev/zero, 192, 193
Dig, 135
Distro

Arch Linux, 10
branches, OSs, 5, 6
Debian (see Debian)
Fedora, 5, 9, 10
Gentoo, 5, 11
OpenSUSE, 10
Red Hat, 5
Slackware, 10

Dotfiles, 290, 291
Double parentheses

arithmetic, 79
curly brace, 80, 81
preceded, dollar sign, 78
subshell, 79, 80
syntax, 78

E
Editing files

comparing
cmp command, 24
comm command, 24
diff command, 24

cp command, 21
file extension, 25
head/tail command, 20, 21
mv command, 22
open a text, 18
rmdir command, 22
touch command, 19

Emacs
artist-mode (see Artist mode)
built-in tutorial, 250, 251
desktop GUI program, 251
installation, 248
interpret commands, 247
major modes, 249
minor modes, 249
modes, 273, 274
org-mode (see Organization mode

(Org-mode))
outline presentation mode, 269–271
telega mode, 247
TRAMP, 271–273
Vim bindings, 248, 249
which-key-mode, 251–253

Conditional expressions (cont.)

Index

355

-e option, 70
erasedups command, 47
espeak command, 334, 335

F
Fedora

CentOS, 10
RHEL, 10

File/folder navigation
current location, 39
directory symbol, 38
hard links, 40
index/inode number, 38, 39
options for ls, 37
popd stack, 42
pushd stack, 41
ranger, 42, 44
symbolic/soft links, 39, 40
viewing file structure, tree, 44, 45
Vim, 45, 46

File globbing/wildcards, 53
filesystem, 14, 15
File transfer

autocomplete, 110
Rsync, 111–113
SCP, 110
two-way sync, 114
unison, 115–118

File Transfer Protocol (FTP), 89, 107
FileZilla, 108
First in first out (FIFO), 160
fortune command, 63

G
Gentoo, 11
Graphical interfaces, 1

Arch Linux, 5
GUI, 1

invisible files, 16
Kali Linux, 5, 9
ls and cd, filesytem navigation, 14, 15
navigating/creating, 14
Red Hat–based distros, 5

H
Harware details

/dev folder, 186, 187
special files /dev folder, 187, 188
query commands, 185

history command, 47
htop, 147, 150

I
i3 application search, 341
i3 first configuration, 339
iftop, 152
i3wm

alternative shells, 347
bind keys, 344
color, 345
config file, 346
floating file, 343
full-screen mode, 343
modifying the config file, 344
move tiles, 342
tiles in focus, 342
workspaces, 343

ImageMagick, 315
animation, 330–332
compress video, 320
create image, 316, 317
demo folder, 328, 329
download video, 322, 323
ffmpeg, 319
file types, 320

INDEX

356

gnuplot, 324–327
increase volume, 322
information, file types, 317, 318
label image, 318, 319
slow down video, 321
trim video, 321, 322
youtube-dl, 323

.inputrc file, 52, 289, 290
iotop, 153

J
Journalctl, 230, 231

K
Kernel

configuration, 195, 196
core component, 193
create partition, 197, 198
delete partition, 196, 197
format partition, 198
hierarchy, 194
mount partition, 199
physical hardware, 194
system link from partition to ~/, 199
version, 194, 195

Keyboard shortcuts, 49
Killing process, 156, 157

L
Less pipe, Linux

compressed files/folders, 32
installation, 28
less command, 32
opening/reading PDF, 32

other files, 34, 35
seq command, 31
updation, 29

lftp interactive mode, 107
Linux

command information, 26
distro (see Distro)
GNU/Linux, 2
GUI, 1
GUI-based applications, 4
less pipe (see Less pipe, Linux)
manual (see Using man)
navigating/creating, 14
operating system, 1
POSIX, 3
sudo, 27
vs. Unix, 2, 3

List of open files (lsof), 144
Log folders

bi – blocks received from block
device, 178

bo – blocks sent to block device, 178
b – threads blocked by I/O, 176
buff, 177
cache, 177
contents, 173
context switches, 178
in – interrupts per second, 178
nmon, 180–182
rsyslogd, 173
r – threads waiting for runtime, 176
si – memory swapped in from disk, 177
so – memory swapped out

from disk, 178
st – time stolen from virtual

machine, 180
swap, 176
sysstat utilities, 173, 174

ImageMagick (cont.)

INDEX

357

time spent idle, 179
time spent running kernel code, 179
time spent running non-kernel

code, 179
view files, 172
vmstat, 174, 175
wa – time spent waiting

for I/O, 179, 180
logTime service, 227
Loops, bash

break keyword, 82
continue keyword, 82
set of names, 81
traditional style, 81
until loop, 84
while loop, 83, 84

ls command, 49

M
Masscan, 127
MBROLA, 335
Mint, 9
Mounted partition

dmidecode, 202, 203
/etc/fstab, 200
i-nex, 202
lm-sensor, 201
starting up, 200

N
Neofetch, output from, 288
Netstat, 136
Network usage

bmon, monitor each
interface, 165

breakdown by process, 165

iftop, 167, 168
internet connection, 165
nethogs, list program by

bandwidth, 166, 167
nmap method, 121
ntop, 152

O
Org-agenda

adding items, 267
menu, 266
org-calendar, 268
schedule date, 267
TODO items, 266, 267
weekly view, 268

Organization mode (org-mode)
collapsing section, 261
condensed subsections, 261
expanded sections, 261
export, 263, 265
hierarchical headings, 260
tables, 262, 263
TODO list, 265

P
Parsing text

awk, 214–216
cut, 206, 207
grep, 2, 205, 206
JSON, 217–220
Regex, 211–214
sed, 217
sort, 209, 211
uniq, 208, 209

$PATH variables, 279
PEM files, 92, 109

INDEX

358

Pipes
fortune to cowsay, 63
installation, 62
multiple commands, 64

PopOS, 9
Portable Operating System Interface

(POSIX), 3
Process ID (PID), 147

Q
Quotes

backtick/back quote, 85
double, 85
echo, 84

R
Random time-generating function, 87
random_time.sh file, 87
Red Hat Enterprise Linux (RHEL), 10
Remote desktop protocol (RDP), 89
Rsync, 111, 112

S
Scanning networks

arp, 136
arp-scan, 120, 121
devices, 126
dig, 135
easy but slow, 126
ethtool, 142, 143
faster way, 126
hping, 145, 146
http-enum script, 129
ifconfig, 136
IP address, 122

iptables, 142
ip utility, 137
Isof, 144, 145
masscan, 127, 128
mtr utility, 140
nc utility, 141
netstat, 136
nftables, 141
ngrep, 138, 139
nmap script, 128, 129
NSE script, 131
OS detection, 126
own script, 130
ping, 119
ports, 123, 125
route command, 137
socat, 146
ss utility, 137, 138
sysctl, 142
tools, 134
traceroute script, 129, 139, 140
tshark, 132, 133
utilities, 134
web address, 124
whois, 143, 144
Wireshark, 132

SCHED_FIFO, 160
SCHED_RR, 160
Scripts

conditional expression (see
Conditional expressions)

creation, 57
file permission, 58, 59, 61
file types, 61, 62
function, definition, 86, 87
importing source code, 87
passwd exists, 70
shebang, 58

INDEX

359

Secure File Transfer Protocol (SFTP), 89, 108
Secure shell (SSH)

benefits, 91
config file, 94
default port, 105
escape sequences, 96, 97
flags used, 101
firewall, 105
hanging session, 98
jump box, 104
local tunnel, 99, 100
login, 93
reverse proxy, 103
reverse tunnel, 103
run a command, 95
session hanging, 96
SOCKS proxy, 100, 102
stty sane, 98
tunneling, 99
use, 90, 91

slabtop, 154
Space-cadet keyboard, 350
Standard redirect

existing content, 67
math equation, 69
output, 68
tee command, output diagram, 68
xargs, 69, 70

Stdin, stdout, and stderr, 189, 190
Stream editor (sed), 217
sudo, 6
systemctl

output, 223
system control, 221
uses, 222

systemd
disable a service, 224
enable a service, 224

Linux distribution, 221
listing service, 228
other init systems, 232
running service, 227
scheduling system, 221
service states, 230
start a service, 224
status of a service, 223, 224
stop a service, 223
systemctl, output, 228
SysV init, 232, 233
unit files, 225–227, 229
upstart, 233, 234

System monitoring
df command, 164
disk space, 163
finding large files, 164
kill command, 156, 157
load average, 170
log folder (see Log folders)
Nagios, 183
pstree, 157, 158
renice command, 160
sets of priorities, 160
Snort, 182, 183
sysstat, 169, 170
top, 147 (seeTop)
users, 171

T
Teletypewriter (TTY), 188, 189
Telnet, 90
Tiling window

managers, 337–339
Tmuxinator, 312, 313
Tmux workflow

active sessions, 298

INDEX

360

background, 295
border colors, 306
child windows, 299
clock mode, 302
color/style, 304, 305
help page, 303
horizontal split, 301
killing sessions, 297
levels, 297
named sessions, 296
panes, 300
remap commands, 308, 309
screen sharing, 309
scripts, 293, 294
SSH, 295, 296
status bar, 298, 305–308
switching sessions, 296
system monitor, 311
theme, 309–311
.tmux.conf, 303
vertical split, 301
Windows in sessions, 297

Top
atop, 151
field groups, 148
htop, 150
iftop, 152
iotop, 153
keyboard commands, 147
multi-field display, 148, 149
ntop, 152
PID, 147
slabtop, 154
zxcVm1t0, 148

U
Ubuntu, 7, 8

GNOME, 7
Lubuntu, 7

Lxqt (see Graphical interfaces)
Xubuntu, 7

Xfce (see Graphical interfaces)
Using man

current directory, pwd, 16
mkdir command, 16
multiple directories, 17
numbered man pages, 13
program description, 12
rmdir command, 17
working with files, 17

V
Viewing processes

background, 155
ps -ef running, 156
running ps, 155

Vim, 235
common commands, 236
compound commands, 239
find/replace, 242
find text, 242
G command, 237
help command, 237, 238
insert, 240
keys/symbols, 238
line numbers, 244
modes, 235
run a command, 243
sort command, 244

Tmux workflow (cont.)

INDEX

361

swap file, 245
terminal window, 243
visual mode, 239, 240

Vim-like keybindings, 52
vi-style keybindings, 52
Vim tutor, 241
Visual spacing glitch, 98

W
whereis command, 26
Wildcard characters, 53, 54
Wireshark, 8, 132

X, Y
$SECONDS variable, 83
xbindkeys, 351
xev command, 349

Z
Zombie process

build-essential package, 161
count in top, 162
C program, 161
creation, 162

Z Shell (ZSH), 347

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Linux Primer
	What Is Linux
	Unix vs. Linux
	POSIX Standard
	Choosing a Distro
	Branches of OSs
	Debian
	Ubuntu
	Kali
	Mint
	PopOS

	Fedora
	RHEL (Red Hat Enterprise Linux)
	CentOS

	Slackware
	OpenSUSE

	Arch
	Manjaro

	Gentoo
	Alpine Linux

	Common Commands
	Reading the Manual with the man Command
	Numbered man Pages

	Useful Commands for Navigating
	Navigating the Filesystem with ls and cd
	Invisible Files (dot files)
	Get Current Directory with pwd
	Make a Directory
	Recursively Make Directories
	Delete a Directory
	Working with Files
	Editing Files
	Commands for Working with Files
	Create Files or Update Timestamps with the touch Utility
	Get File Contents with Cat
	Get Less Content with Head or Tail
	Copying Files with cp
	Removing Files with rm
	Moving Files with mv
	Interactively View File Contents with Less
	Comparing Files
	Compare with Comm Command
	Compare with Cmp Command
	Compare with Diff Command
	ColorDiff Even Better Than Diff
	Get File Type

	Command Information with type, which, whereis, or locate
	More on Sudo
	Less Pipe
	Update/Install Less Pipe
	Regular Use of Less
	Opening PDFs with Less Pipe
	Opening Compressed Folder with Less Pipe
	Image Metadata with Less Pipe
	Other Files with Lesspipe

	Scheduling Processes with Cron Jobs
	Summary

	Chapter 2: File/Folder Navigation
	Basics
	inodes
	Get Current Location
	Symbolic Links
	Hard Links
	Navigation Stack with pushd and popd

	Ranger
	File Structure Visualization with Tree
	Navigate Filesystem with Vim
	Summary

	Chapter 3: History and Shortcuts
	History
	Bash Shortcuts
	Emacs vs. Vim Keyboard Bindings
	Reverse Search
	File Globbing or Wildcards

	Summary

	Chapter 4: Scripts and Pipes
	Creating Scripts
	Shebang

	File Permissions
	File Types
	Pipes
	Multiple Pipelines
	Chain Commands with && and ||
	Exit Codes for && and ||
	Using && with ||

	Redirects
	Redirect and Pipe at Once with tee
	xargs

	Conditional Expressions in Bash
	Is a Directory with -d
	Is a Normal File with -f
	Check if File Exists with -e
	Check if Exists and Size Greater Than 0 with -s
	Check if Exists and is an Executable with -x
	Check Value Is a String of Length 0 with -z
	Check Value Is a Non-empty String with -n
	Check That Strings Are Equal
	Check That Strings Are Not Equal
	Check String Sort Order
	Check If Numbers Are Equal
	Check If Numbers Are Not Equal
	Check If a Number Is Less Than
	Check If a Number Is Less Than or Equal
	Check If a Number Is Greater Than
	Check If a Number Is Greater Than or Equal

	Arithmetic with Double Parentheses
	Subshell with Parentheses
	Expansion with Curly Brace

	Loop in Bash
	While Loops
	Until Loops

	Quotes in Bash
	Command Substitution Using Backtick

	Defining Functions
	Source Code from a File
	Summary

	Chapter 5: Using SSH
	History of SSH
	Basic SSH Use
	Keypairs with ssh-keygen
	PEM and Other Key Files
	Disable Password Login on Server
	Server Nicknames with SSH Config File

	Run a Command on Connection
	Break a Hanging SSH Session
	stty sane
	Stop SSH Hanging
	SSH Tunneling
	Local SSH Tunnel
	Create a SOCKS Proxy with SSH
	Reverse SSH Tunnel
	Serving a Website over Reverse Proxy
	SSH Proxy Jump
	Change Default Port on SSH Server
	Open Firewall
	Modify sshd_config
	Summary

	Chapter 6: File Transfer
	FTP
	SFTP
	SCP
	Rsync
	Set Up Cron Job for Rsync
	Two-Way Sync with Unison
	Automatically Sync When File Changed with Unison
	Unison Settings File
	Create a Service to Keep Unison Running

	Summary

	Chapter 7: Network Scanning
	Check Connection with Ping
	arp-scan Method
	nmap Method
	View Open Ports
	Devices and Ports at Once
	Easy but Slow
	Faster Method
	OS Detection

	Scanning the Internet with masscan
	Run Scripts with nmap
	traceroute Script
	http-enum Script
	Write Your Own Script for nmap
	Wireshark/tshark
	More Network Tools
	Dig
	Netstat (Deprecated)
	ifconfig (Deprecated)
	arp (Deprecated)
	route (Deprecated)
	ip
	ss
	ngrep
	traceroute
	mtr
	nc
	nft – nftables
	iptables (Deprecated)
	sysctl
	ethtool
	whois
	lsof
	hping
	socat

	Summary

	Chapter 8: System Monitoring
	Top
	Top-Like Programs
	htop
	atop
	iftop
	ntop
	iotop
	slabtop

	More on Viewing Processes
	Kill a Process
	Visualize Process Tree with pstree
	Process Nice Value
	Other Priority Systems
	Change Nice Value
	Zombie Process
	Check Available Disk Space
	Find Largest Files on System
	Monitor Device Network Use
	bmon – Monitor Each Network Interface
	nethogs – List Programs by Bandwidth Use
	iftop

	Other Programs for Monitoring
	sysstat
	Load Average
	Users

	Log Folder
	Other sysstat Utilities
	vmstat
	r – Threads Waiting for Runtime
	b – Threads Blocked by I/O
	swpd – Total Swap Used
	free – Total Free Memory
	buff – Memory Used in Buffers
	cache – Memory Used as Cache
	si – Memory Swapped In from Disk
	so – Memory Swapped Out from Disk
	bi – Blocks Received from Block Device
	bo – Blocks Sent to Block Device
	in – Interrupts per Second
	cs – Context Switches
	us – Time Spent Running Non-kernel Code
	sy – Time Spent Running Kernel Code
	id – Time Spent Idle
	wa – Time Spent Waiting for I/O
	st – Time Stolen from Virtual Machine
	nmon

	Advanced Network Monitoring with Snort
	Nagios
	Summary

	Chapter 9: Hardware Details and /dev
	Commands for Hardware Details
	The /dev/ Folder
	Special Files in the /dev/ Folder
	Teletypewriter
	stdin, stdout, and stderr
	/dev/null
	/dev/random and /dev/urandom
	/dev/zero
	What Is the Kernel?
	Getting Kernel Version
	Configure and Mount a Drive
	Delete Partition
	Create Partition
	Format Partition
	Mount Partition
	System Link from Partition to ~/
	Making Mounted Partition Persistent
	lm-sensor
	inxi
	dmidecode

	Summary

	Chapter 10: Parsing Text
	grep
	cut
	uniq
	sort
	Regex
	awk
	sed
	Using JQ to Work with JSON
	Summary

	Chapter 11: systemd
	systemctl
	Stop, Start, Disable, and Enable Services
	Stop a Service
	Get Status of a Service
	Start a Service
	Disable a Service
	Enable a Service

	Unit Files
	Find Running Services
	journalctl
	journalctl – Parsing by Time
	Other Init Systems
	SysV Init
	Upstart
	Summary

	Chapter 12: Vim
	Modes
	Common Commands
	Using Help Command
	Compound Commands
	Selecting with Visual Mode
	Vim Tutor
	Find Text
	Find and Replace
	Run a Command
	Vim Sort Command
	Show and Hide Line Numbers
	Swap Files
	Summary

	Chapter 13: Emacs
	Installing Emacs
	Vim Bindings aka Emacs Evil Mode
	Built-in Tutorial
	Run Emacs in Terminal
	Hints with which-key-mode
	Emacs Artist Mode
	Org-Mode
	Tables in Org-Mode
	Export from Org-Mode
	Org-Agenda
	Sync Org-Agenda with Google Calendar
	Outline Presentation Mode
	Emacs TRAMP
	Other Modes
	Summary

	Chapter 14: Configure Bash
	Configuration Scripts
	.bashrc_profile or .profile
	.bashrc
	.bash_logout
	Global Versions
	Useful Configs for .bashrc
	Defining Aliases
	Custom Functions
	Adding to PATH
	Changing PS1 Prompt
	PS2, PS3, and PS4
	Themes
	Live Clock in Terminal
	Run a Program on Open
	Importing a File
	.inputrc
	Other Dotfiles
	Summary

	Chapter 15: Tmux Workflow
	Background Scripts
	Background Scripts with Tmux
	Tmux with SSH
	Named Sessions
	Switching Tmux Sessions
	Killing Sessions
	Windows in Sessions
	Pane Splitting
	Clock Mode
	Help Page
	Customize with .tmux.conf
	Configure Color and Style
	Change Status Bar Contents
	Remap Commands
	Screen Sharing with Tmux
	Theme Packs
	Tmuxinator
	Summary

	Chapter 16: Terminal Tools for Working with Images and Videos
	ImageMagick
	Creating an Image with Text
	Getting Image Information
	Label an Image
	ffmpeg
	Convert File Types
	Compress a Video
	Slow Down a Video
	Trim a Video
	Increase Volume in a Video
	Download Videos with youtube-dl
	Creating Charts with gnuplot
	gnuplot to Image File
	Advanced Examples/Demo Folder
	Startup Animation
	Make a Custom Boot Animation
	Summary

	Chapter 17: Extras
	Cal
	espeak
	Improve Sound of espeak Voice
	Output espeak to Audio File
	Math on the Command Line
	Tiling Window Managers
	Creating Tiles
	Change Tile in Focus
	Move Tiles
	Workspaces in i3wm
	Floating Tiles
	Full-Screen Mode
	Modifying i3wm Config File
	Bind Keys in i3wm Config
	Change Colors in i3wm Config
	i3status Config File
	Alternative Shells
	Z Shell
	Oh My ZSH
	Fish
	Remapping Keys
	clear capslock
	Custom Shortcuts with Xbindkeys
	Additional Resources
	Summary

	Index

