Basic Linux
Terminal Tips
and Tricks

Learn to Work Quickly on
the Comman d Line

Philip Kirkbride

ApPress

Basic Linux Terminal
Tips and Tricks

Learn to Work Quickly
on the Command Line

Philip Kirkbride

Apress’

Basic Linux Terminal Tips and Tricks: Learn to Work Quickly on the Command Line

Philip Kirkbride
Montreal, QC, Canada

ISBN-13 (pbk): 978-1-4842-6034-0 ISBN-13 (electronic): 978-1-4842-6035-7
https://doi.org/10.1007/978-1-4842-6035-7

Copyright © 2020 by Philip Kirkbride

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484260340. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6035-7

Dedicated to the open source community.

Table of Contents

About the AUtROKccvcmmimmmenmiensnns s Xix
About the Technical REVIEWETccsssusssassssassssnsssansssssssssssssssssassssnssssssssassssasssansssans XXi
AcknNoWIedgmentsccccuusemmmmmssssnnmmsssssnnssssssnssssssssnsnssssssnnnssssssnnnssssssnnnsssssnnnnssssnnns Xxiii
11T 11T (1 . XXV
Chapter 1: LINUX Primer.....ccccouuimmmmmmmssnssssmmmmmmmmmssssssssssesssssssssssssssssssssssssssssssssssssssnns 1
L= T N 1

L0 T QR N 1T 2
L0 DG T o o TR 3

(0 LT L] T TR] o TSR 4
Branches 0F 0SS ... e 5

D 0 o 6
0] 9

R3] T 4 T S 10

AICI <. R e e e e e R e e e e e nRe e 10
€T 1 0 T 11
AIDING LINUX ot s e s s s e s s s bbb e e s e b e e s b b e e s e nns 11
COmMMON COMMEANGS.......coeerereerreerenese e se e se e r e e e s e e e n e e s re e e nenns 12
Reading the Manual with the man Command............ccccovernrnnennnnnn s 12
NUMDBEred MaN PAGEScccueerrererrenrrere e s s s srs e sre s sessessessssessesseses 13
Useful Commands for Navigating..........ccocvvrerinnnnnieninssessese s sessessesessssessessessessssessesaes 14
Navigating the Filesystem With IS and Cdccvcvveriivrrnininrsrrere s enes 14
Invisible FileS (AOT filES) ...cvvrreririirier e s s n e e n 16
Get Current Directory With PWa ... e 16
LI W DT =] (0] o R 16
Recursively Make DIr€CLOMIESuoerrvererenerresesesesssese e sese s sesse s s s sess s e sessesenns 17

TABLE OF CONTENTS

D e e (=T W DT =T (0] 17
WOrKing With FIlEScccciiiecrsr st sr e e s s 17
EdItiNG FIlBS ...voviirec st e e e b e 18
Commands for Working With Files........cccocuvrvninnnnninr s sessessens 18
Create Files or Update Timestamps with the touch Utility.........ccooevvvnininninincnieiicinenes 19
Get File Contents With Cat ..o 20
Get Less Content with Head or Talil.........ccoocoveireecrrcrereer e 20
Copying Files With CP ..cc.coviiicr e 21
Removing Files With rM........co s 22
Moving Files With MV........coocii e 22
Interactively View File Contents With LESScccoecvrenrecrcsc st 22
COMPANNG FIlBS....couiueirieicrirc et 23
Compare with Comm COMMAN.......c..cccvrierrienrnrrne e se e 24
Compare with Cmp COmMMAN.........cccorirninrrrr e e 24
Compare with Diff COMMANccccvverernrerreriere s serere e s s e se s saesesessesaessssensesaens 24
ColorDiff Even Better Than Diff ... sessssseas 25
6T L0 TR 25
Command Information with type, which, whereis, or locate..........cccceeevrvrvrrrrcrcrrerre e 26
LT 0] TS 1T o 27
LSS PIPE .ttt e e e e e e b e e ne s 28
Scheduling Processes With Cron JoDS..........ccuvcrennnnnesnsse s sessesessenens 35
SUMIMAIY ...ttt b e e e e b b e e e e e Re e R e e e n e e e Re e be e nr e e nrnse e 36
Chapter 2: File/Folder Navigation..........cccucssuemmsnmssssmssssmssnssssnsssasssssssssnsssassssnsssansss 37
52T [37
0100 38
Get CUrrent LOCALIONcccevcrrereree s s se s e e 39
SYMBDOKIC LINKS.....veeeereeerrenerrssessssesssese s ssssessssssessssesessessssssessssessssesssssssssssssesssssssssssssssssssessnsenees 39
2L I] 40
Navigation Stack with pushd and popd..........ccceerrrrrrinnnrr s 4

3 1310 S 42
File Structure Visualization With Tree..........covrrieirncnrnnecre e 44

TABLE OF CONTENTS

Navigate Filesystem With Vim.......c.ccoo e 45
11T 111 O SRS 46
Chapter 3: History and Shortcutscccusmmmismmmssssmmsssssmssssssssssssssssssssssnsssssnssssanss 47
3 (0] 47
2T LI 110 (0 S 49
Emacs vs. Vim Keyboard BiNdiNGSccccorermrnsmnmnenennsesesssssssss s sessesessssessssesessessssssessenes 52
REVEISE SEAICHceeeceieciree s e ne e 53
File GIODDING OF WIlUCAIUScovrvecrererereer s 53

BT 1T 111 1T o SRRSO 55
Chapter 4: Scripts and Pipesccueemmmmnsemmmmnssssnmmmssssnmmsssssssmmssssssnssssssssssssssssnssnss 57
(o LT 0TS) RS 57
L3 11T 0= o OO 58
File PEIMISSIONS.....c.coiriiiririiree e 58
FIlE TYPES .ottt s e e e e e e e e e R R e e e R nnn 61
PIPES ottt ———————————————————————————————— 62
MUIIPIE PIPEIINES....cviiiirere ettt e e 63
Chain Commands With && @Nd [........cceceeriiiriiresrrre e 64
EXit COAES fOr && AN Il....cecoveeeerieerireserese s 65
USING && WILh [l ... e 66
3T:T 0] = o (OSSOSO 67
Redirect and Pipe at Once With tEecccccevvcrnrerres s 68

D 1N 69
Conditional EXpressions iN Bash ..o sessesessessssessessesssssssessessessssessessenes 70
D= (0] 7 o RS 71

Is @ Normal File With =f.......cccovicr s 71
Check if File EXiStS WIth = ... 72
Check if Exists and Size Greater Than 0 with -S..........cccovinnns 72
Check if Exists and is an Executable With -X..........cccovvmnnesens 72
Check Value Is a String of Length 0 With -zZ.......ccocovvvrininninrn e 73
Check Value Is a Non-empty String With —N........ccccccvivnnienniss e 74

vii

TABLE OF CONTENTS

Check That Strings Are EQUALcccveererreierienieresessessessessesessessessessssessessessssssssssessesssssnsessens 74
Check That Strings Are NOt EQUAL.........ccccvvierrerierierensersenessesessessessesessessessessssessessessessssessessens 74
Check STriNG SOt OFAEN........cccvvererrrerere e ser s s e se s saesa e e s e saesnesa e e naesnens 75
Check If NUMDErs Are EQUAL........ccoveerverereererseressesessessessessessssessessessssessessessssssessessesssssnsessens 76
Check If Numbers Are NOt EQUALcceevererieriereresseresessesesessessessssessessessssessessessessssessessens 76
Check If @ NUmDber IS LESS ThaNcccoviieiinenirinnsese s eaes 76
Check If a Number Is Less Than or EQUAL........c.ccecvvvrvienennnensenenessssessesessesessessessesessessessens 77
Check If a Number IS Greater TRaN..........ccoccevvnmnnnss s 77
Check If a Number Is Greater Than or EQUAL.........cocvovverernsensensenessssessesessssessesessesessessessens 78
Arithmetic with Double Parentheses...........cccornrinnnnn s 78
Subshell with Parentheses...........cccccvrn s 79
Expansion With CUIY BraCe.........ceevverervererensensereresessesessesssssssessesssssssessessessssessessesssssssessees 80
LOOP iN BASH ...t e e e s 81
WHIIE LOOPS ...t s s bbb e e b np e nns 83
(T 84
QUOLES IN BASH......ceecccceees s p e 84
Command Substitution Using BacKLiCKcccvrerrnnininnnnne s sessesessesessessessens 85
Defining FUNCLIONSccceeeeerecer s 86
Source Code from @ Fil.........ccoveerenernsernesrne s sr s 87
SUMIMAIY ..ttt e s b b e e e e e R e e e R e e n e e e Re e be e nr e e nrnra e 88
Chapter 5: USing SSH......ccccurmmmmmmssnnnmmmssssnnmmmmsssnsmsssssssssssssssssnssssssssesssssssssssssnnnsnnss 89
g LY (0] L1 S 89
BASIC SSH USE.....ceeueereecrircre e e e 90
Keypairs With SSH-KeYgeN ..o s 91
PEM and Other Key FileSccurininnininnsinserese s sss e s 92
Disable Password LOgin 0N SEIVEN ... sse s sessessessssessesse s 93
Server Nicknames with SSH Config File........c.ccocvvininnnnnsnnsr e 94
Run @ Command 0n CONNECLION............ccovermrrererrresese s senns 95
Break @ Hanging SSH SESSIONccovierieimrneriressne s ss s s senns 96
SEY SANE ..o 97
0] TS TS T I T 3T R 98

viil

TABLE OF CONTENTS

] 04 =1 o R 99
LOCAI SSH TUNNEL ...ttt 99
Create a SOCKS Proxy With SSH ... 100
REVErse SSH TUNNEL ..o s 102
Serving a Website 0Ver REVEISE PrOXY.......ccuuvuerrmesesssessssessssessssssssssssssssesssssssssssssssssssssssessnns 103
T 5 I (0 4R 1V 1] OO 104
Change Default POrt 0N SSH SEIVENccccvivivririerere st sersere s s s sse e ssesessessessesessessesnes 105
(00 T=T (8 =1 | R 105
Modify SSNA_CONTig......ccccviieriirsr s 106
£ 0T 111 T TS 106
Chapter 6: File Transfercccciummmmmssssssnnmmmmmmmssssssssnsmsmmsssssssssssssessssssssssssss 107
S I RO 107
3] 2 I PSSR 108
R3] 4 OO 110
RSYIC ...ttt E e e R e R RenE e e e e nne 111
Set Up Cron Job fOr RSYNC.......cccccvrerrisenesrrissssssese e se s ssssssssssssesessans 113
Two-Way SYNC With UNISON ..ot se s sss e sessesesnssens 114
SUMIMANY ..t s b e e e e R e R e e e e e AR e e e e e Re e Re R e e e e e Re b e e e e e Renrn 118
Chapter 7: Network SCanNing.....ccuuussseesssnsmesssssssssssssnsssssssssssssssssnsssssssssssssnssnnnsnsss 119
Check Connection With PiNG ... sesse e sessssenns 119
aArp-SCaAN METNOM. ... e 120
NMAP METNO.........o e 121
VIEW OPEN POMS......ceceruereertesereressesessessessessessssessessessssessessessessssessessesssssssessessesssssnsessessessssnsessens 123
Devices and POrtS @t ONCEccccocverrrienmserrressss s s es 126
EQSY DUL SIOW ...ttt e e e e s 126
Faster MEtNOM ..o s 126

LR 0] (=T [0 o O 126
Scanning the Internet with Masscan ... —————- 127
Run Scripts With NMAP.......cccoiiiii e s s st 128
Traceroute SCHIPL.....cc i ——————————— 129

TABLE OF CONTENTS

10T (T T) RS 129
Write Your Own Script fOr NMap.......ccociinnrrcrerr et 130
WiIreSNArK/ASNAIKcoveeeeeeeereeceeree e e nnee s 132
MOre NEtWOrK TOOIScccoveerereriresere e 134
D] TS 135
Netstat (DepreCated)ccvvrrrererenernse s 136
ifCONTig (DEPreCaE).....c.eeerreeeererer e 136
aArP (DEPrECAIEM)......covreeerreerreeseree e e 136

L0 TT LI (LT o= ur LT) 137

| SRR 137
T 137
10 = 138

LU (0T 0] R 139
11 R 140

DIttt ee e s e e e R R e e e aEeRe A SRR E AR SRS RS e RRE SRS A S e AE SRR eEe R eEeAEeReeE e e eEeRe e e e nneanees 141
ML= NFEADIES ... s 141
iptables (DepPreCated) ... ——————— 142
3T 1 OSSOSO 142
1110 142

11 0] 143
20 T 144
DN e ————————————————————— 145
LT 146
SUMIMANY ..ttt b e e e b e e e e R e R e e e e e Re e Re R e e e e e Re e R e e e e e Renns 146
Chapter 8: System Monitoring.....cucccmrmssssnnnmsssssnnnmssssssnssssssssnsesssssnnsssssssnnsessssnnnnss 147
L] o OSSR 147
TOP-LIKE PrOgramS......ccceeiiiiriinsieseriessee s s e sae s e s e sa e s s sa e sae s s saesae st sne s s e s s sne s s 150
0P 1t ——————————————————— 150
AL 1 ——————————————————————————— 151
ITEOP et —————————————————————————————————————— 152
(0] S 152

TABLE OF CONTENTS

0] (0] SR N 153
SIADTOP .. ———————————— 154
More 0N VIEWING PrOCESSESccvcererirrninese s ss s s e sss e s e sss e s e s ssssss e ssesnesssssssesnens 154
L1 W o (0T 156
Visualize Process Tree With PSIre.......cccieiiirvri i 157
ProCess NICE VAIUE.........ccovcerrrrenirenire s 159
Other Priority SYSTEMSciiviiiriere e s e s 160
Change NICE VAIUEccvcerueririeriere st sere s s se s sa s e s sae s s s a s e s saesa e e s naenaes 160
ZOMDI PIOCESS ...coviueereeerreeresesessese s ses e e s se s e e s e se e e s e sas e sae e sesnesnsnsnens 161
Check Available DiSK SPACEccccevirirrriress s s s 163
Find Largest Files 0N SYSIEM ... s s 164
Monitor Device NEtWOrK USE.........ccovenernsenenesesrenerrssesesssessese s sessssssssssssssssssssssssssssssssssssssenns 165
bmon — Monitor Each Network INterface.........c.ccuvverrenernsesnesensse s sessssesenns 165
nethogs — List Programs by Bandwidth USE...........cccvvrrmrnnennnnnnssssesess s 166
) (0] o OSSO S 167
Other Programs for MONItOriNgcccvvererenernesrnesess s s se s sessssessssessssesenns 169
SYSSIAL ... ———————————————— 169
(0T Lo 7L g VoSSR 170
LU= 3SR 171
[T 1 0] [0 TSROSO 172
Other SySStat ULIlItIESccovvveeerererrnsesrsesens s srans 173
VINSTAL.....ccic s ————————————— 174
r — Threads Waiting for RUNTIME.........ccoceeiiirnienncsn e 176
b — Threads BIOCKEd DY 1/0.......c.ccerecerreercse e 176
SWPA — Total SWaAP USEccceueiriirieriere e sss e s s ssssesaesnens 176
free — Total Free MEMOIYcoccvieinesire s s ss s 177
buff — Memory Used in BUFfErs ..o s s sessnnes 177
cache — Memory USed as CaChEccovcevrenmrenernsesese s s ses s 177
si — Memory Swapped In from DiSKccccuvririnnininnn s s sessessessens 177
s0 — Memory Swapped Out from DiSK........ccccucvernnnininnnnne s sessessens 178
bi — Blocks Received from BIOCK DEVICEc.cueerrrererrenerinsenesenesese s sessese e e sessssessnnes 178

xi

TABLE OF CONTENTS

bo — Blocks Sent 10 BIOCK DEVICE.........ccvviemneririnssssesesssss s sessssssens 178

iN = INtErruPtS PEr SECONM.......ccvierereriere e s sae s r e e sa e e e aenaen 178

CS — ContexXt SWILCHEScvecirireerr s 178

us — Time Spent Running Non-Kernel COe........couvrrrierierernenserernsensessesesessessessessssessessees 179

sy — Time Spent RUNNing KErnel COUEcccvverererreriereneesenseressesessesessessssessessessesessessessens 179

id = Time SPENTIUIC.......ceeeeecercere et se e s ae e e aennes 179

wa — Time Spent Waiting for /0ccvvvvvririennrersrie s sesse e ssssessessesaessssessessens 179

st — Time Stolen from Virtual Machingcccovvrinnnnss s 180
11110 N 180
Advanced Network Monitoring With SNOrccocvvvvvninrr e 182
1 10RO SRS 183
£ 10T 1117 183
Chapter 9: Hardware Details and /devV.......cccccusemmmmmsssmnmmmmnssssnnmmsssssnnmmsssssmsssssnn 185
Commands for Hardware DetailSc.cccverrnsenrnenenssesssessse s s ssssesenns 185
LT o3] T 186
Special Files in the /AeV/ FOIUE........covivierierrrirrereresesseressesessesse s ssessssessessessssesssssesssssssessesses 187
TEIEIYPEWIILEN ...t e s e e e s 188
stdin, stdout, and STABIT.........ccee e s s s ae e s 189
T] 190
/dev/random and /dev/urandomcccceeverernsennnnsessse s 191
L (T 192
What IS the KBIMEI? ...t 193
GEttiNg KErNel VEISION......cc.eveierrereresersereressesesessesaesssessessesssssssessesssssssessessesssssssesssssssessensenses 194
Configure and MouNnt @ DIVE ... s 195
Delete PArtitionccceoerecrenesiresere s e 196
Create Partitioncccvveevnerrese e e 197
FOrmat Partitionccccocvieenniesinesine e s 198
MOUNE PATIEION ...t s 199
System Link from Partition 10 ~/.......cccvvvvrinnnninerensssnese s sessesessessssessessesssssssessesses 199
Making Mounted Partition Persistent..........c.ccooucvviiniinnnnn s 200

xii

TABLE OF CONTENTS

111 EE =] 0150 N 201
1N 202

(014 TT0 =T oo o T 202

£ 11134 7 203
Chapter 10: Parsing TeXtcucccerrrmssssnmsssssssssssssssnssssssssnssssssssnnsssssssnnsssssssnnssssssnnnnss 205
0] o 205
1 RS 206
1 0 o S 208
1] 209
3T = G SRR 211
AWK 1o e R R R R e e nE s 214
2 o T 217
Using JQ t0 WOrk With JSON ... e 217
B30T 111 T o OSSO 220
Chapter 11: systemd.......ccccusemmmmmnssmnmmnmssssmmmmssssnmmsssnmmmsssssnssass s ———— 221
SYSTBMCLL...ceee e ——————— 221
Stop, Start, Disable, and ENADIE SEIVICESccvvrrerivreririererenserseresesessese e ssssesessesssssssessesaes 223
0] I T T=T (o] O 223
Get STatus 0F @ SEIVICE.......ccveriiricccrirrr et 223
STAM @ SEIVICE.....civieiccce s 224
DiSADIE @ SEIVICE.......cueeerererrreei e p e 224
ENADIE @ SEIVICE........cceierirrcccr e 224
0T 225
Find RUNNING SEIVICEScccciiiiiirire i sn s s e s st 227
(0101 o S 230
journalctl = Parsing DY TIME ... s 231
Other NIt SYSTEMS.......cceicceercrir e 232
£S5} 1 R 232
0 | S 233
31111117 OO 234

TABLE OF CONTENTS

Chapter 12: Vim.....cccciieemmmnnsssmnmmmssssmmmmsssssmmmssssmssssssssssssssssessssssssssssssssssssssnnns 235
1100 235
COMMON COMMANGS.........cccrereeereeereeeresese e se e e se s se e s e e e sesse e e e senae e s re e nes e e nns 236
Using Help COMMANG.........cccoiirrereresc s 237
Compound COMMANGSc..eviiirirererinsere e s bbb e s s b et nns 237
Selecting With ViSUAl MOGE.........ccuerirenrerienerin e sa s s sss e s s e saesnes 239
L0 L1 SO 241
FING TEXE. v veteteteeeeresesesee e b b e e e 242
Find @nd REPIACEcovcererirrsiren st p e s s s b 242
RUN @ COMMEAN.......ceieeeeecrerereree e ne e 243
Vim SOrt COMMANGcoeeeierineserese s s r e sr s e nne e 244
Show and Hide Ling NUMDEIS.......ccoucvreimninnnesrne e sesse s ssssssssssssssssesenns 244
BT 0 1R 244
£ 1134 7R 245

Chapter 13: EMACS.....cuureummmmssnnnmmssssssnmssssssssessssssssssssssnssssssssnnsssssssnnssssssnnnsssssnnnnnss 247
INSTAIING EMACS........coeieereecrercrerese e s e s e s e ne e e 248
Vim Bindings aka Emacs EVil MOUEccoverreernesrcser s 248
21T LT V10 | SOOI 250
Run Emacs in TErMINAL.........coveirinnisisis s s 251
Hints With WHICh-KEY-MOUE.........ccvrerrerirrerererirserrerere s ses e s sse e s e s ssesessesaessessssessesaens 251
EMACS ArtiSt IMOGE ... s 253
Org=MOUE ... e R e nnn 260
Tables iN Org=MOE.........coeeerrererereree e s nne e 262
EXpOrt from Org=-MOUE ..o s 263
(0T o Yo T 1 OSSOSO 265
Sync Org-Agenda with Google Calendar...........cccveerererrnierennnessene e ssesessessesaes 268
Outline Presentation MOE.........c.coviennennnsn s s sas 269
EMACS TRAMP ... e ne e 27
L0 ToT T LTS 273
£ 111 T 274

Xiv

TABLE OF CONTENTS

Chapter 14: Configure Bash........cccucccummmsssnnnmnsssssnnmmssssssnmssssssssssssssssssssssssssssssssnnnss 275
Configuration SCHPLSc..cccvreirrcrr e e 275
.bashrc_profile or .profile ... —————————— 275
72T 3 (S 276
DASN_IOQOUL ... ———————————— 276
GIODAI VEISIONS......cvcicciirissci e 277
Useful Configs fOr DASHIC.........cccvceriererirrerere e s ss s sae e s saesnesa e e s e snees 278
DEfiNING AlIASES ..ccueeieereeririerrie st rses e st e st e e e s s e s e e s ae s e s e e e e s ae s e e e e saeeae e e e e e nnesnenanans 278
CUSTOM FUNCHIONS ... e 278
AdAING 10 PATH......coeicicicicirere s 279
Changing PS1 PromPL.......coviiiierresrese s s s 280
PS2, PS3, N0 PSA........ooeieeeiriesrs sttt s 283
LI T=] 1T 285
Live ClOCK in TEIMINGLccvruieererrrssssse s s s 286
RUN @ Program 0N OPEN.......coccireeirescrirerere e ses e ses e sss e e se s s ses e sssse e s e sessesens 287
IMPOMING @ FIlE ...eeieceieesec e e e 288
AMPULTC et e e e e e R e Rt e e e ae 289
Other DOLFIlES ...veeeerecerreseriee s ne s 290
£ 1] 34 RS 291

Chapter 15: Tmux WOrkflowcccccmssmmssemmssnmsssnsssssmssnssssnsssassssssssassssassssnsssansssans 293
L2 E T (001410 ST 0] C O 293
Background Scripts With TMUX ... st snens 294
TMUX WIth SSH.....oeeee s nnn e 295
NAMEA SESSIONScuevrreerreerrresrre e e e e ne e e 296
SWItChiNG TMUX SESSIONSveveriererrrirsire s s p e e e nnen 296
KilliNG SESSIONSceueruertrierersersesenersessessssessessessesesessessssssessessesessessesaessessssessessessnsessessessessnsesaens 297
WINAOWS iN SESSIONScucueererririeisiressssesssse e s ss s se s s se s sssssssssssssssessans 297
Pane SPITiNG ..o ————— 300
{08 10 L T 302
HEID PAJE......ceiieeeircireerie e s e ne e 303

TABLE OF CONTENTS

Customize With IMUX.CONT ..o s 303
Configure Color and SLYIEccoveeriirrirre e e 304
Change Status Bar CONtENIS ...t 306
Remap COMMANGS ..o e s b e e nae 308
Screen Sharing With TMUX......ccveevnnessrse e s se s sessssenns 309
THEME PACKS......cciiiiiiiiriie s e s 309
LU (T o] 31
£ 1134 7P 313
Chapter 16: Terminal Tools for Working with Images and Videosc.cccuussanrcans 315
10110 T=] 1 T T G 315
Creating an Image With TEXEccccvvernrenmnnnmrnesse s ses s 316
Getting Image INFOrMationcccvicvniesns 317
I Lo TC I T4 I T USSP 318
T DB ettt ————————————————————————————— 319
CONVEIL FIlE TYPES .uvrveerirerirre sttt e st et e et 320
COMPIESS @ VIABOoviircrcrie it e s e e p e e e nnn 320
SIOW DOWN @ VIARO ...t 321
THAM AVIARO .vveerieeeree e s rnne e p e ne e nrnne e 321
Increase Volume iN @ VIABOccccvvrrinnmnissnssssssse s s s ssnsas 322
Download Videos With youtUDE-dl...........ccvcererrininern e eaens 322
Creating Charts With gnuPIOt.........cocevvirrrirr e se e s sr e e e naenaen 324
gnUPIOt 10 IMAGE File ..o e 326
Advanced Examples/Demo FOIUEN ...t se s snens 328
Startup ANIMALION ..o ———— 330
Make a Custom Boot ANiMation...........ccooveevvenenisennsessessne s ses s 332
£ 11134 R 332
Chapter 17: EXIrasccummsemmsssmssanmssnmsssnsssassssssssansssassssnsssansssassssnssssssssansssnsssansssans 333
07 | OSSR 333
Lo 0T LSOO 334
Improve Sound 0f eSPEAK VOICEccvveiiriererinrirene s e s st se s snens 335

XVi

TABLE OF CONTENTS

Output eSpeak t0 AUTIO FIlEccverererreriererir e s s s s se e ssesese s saessssessesaessesessesnesnes 336
Math on the CommMANd LINE.........ccoviienmnirrrrnssssse s sesesssssnsas 336
Tiling WIindow ManAQETS........cccveririnniniesiesnsissese s e s sse s sss e s s st ss s snesssssssessesnesesssssesnees 337
[L T LTS 341
Change Tile iN FOCUScovcerriirereserssesssese s s e sr s ss s e s sessssnsss e nensssnns 342
MOVE THIBS ... e 342
L0 6 o Lo 1O 343
(0T L1 0]SO 343
FUII-SCIEEN MOTE........cceeeeecerceree e 343
Modifying i3wm Config Filecoeomreecrreerrcrereers s 344
Bind Keys in i3WM CONTigcuccvrenerisernesnesesese s s ss s s ss s sesessssenns 344
Change Colors in i3Wm CONfig.......ccouerrrenmrinernenrnesensse s s sessesenns 345
LR TS] e LTS 0 1) T N OO 346
AREINALIVE SNEIIS.......ceiriieecir s 347
Z SREIL...eeeeeeee e R e e e e e 347
OR MY ZSH ...ttt bbb b e e e 348
T | T 348
ReMAPPING KYS ...coueeireirieerrsessnse s s nenss e 349
ClEAI CAPSIOCK.eiirrerererir e r e s s e e r e s e e s r e s R s e e e e ene e e e e s 350
Custom Shortcuts With XDINAKEYScccvrererirneriereresesseresessssessessessesessesessessssessessesssssssessesses 351
Additional RESOUITESc.cereieriecrercere e s re e e 352
BT 1] 11 1= OSSOSO 352
INA@X.ciieiiiesriesssansssasssn s s s s s rn s 353

Xvii

About the Author

Philip Kirkbride has been developing software for over 10 years. After college he worked
as a contractor developing websites and mobile apps in Southern Ontario, Canada.

He has since worked at several software and hardware startups and contributed to

open source projects. He is currently a research assistant on Dr. Fuhua (Oscar) Lin’s
Adaptive Cyberlearning research team, creating educational software used in COMP

272 Data Structures and Algorithms and COMP 372 Design and Analysis of Algorithms at
Athabasca University. He is also a mentor for Manning’s short course

Use Machine Learning to Detect Phishing Websites and co-author of 2 books on
JavaScript, Professional JavaScript (Packt, 2019), and The JavaScript Workshop (Packt,
2019). When he is not working or learning new things, he enjoys spending time outdoors.
He can be reached at kirkins@gmail.com.

Xix

About the Technical Reviewer

David Both is an Open Source Software and GNU/Linux
advocate, trainer, writer, and speaker. He has been

working with Linux and Open Source Software for more
than 20 years and has been working with computers for over
45 years. He is a strong proponent of and evangelist for the
"Linux Philosophy for System Administrators." David has
been in the IT industry for over 40 years. He is the author

of The Linux Philosophy for SysAdmins (Apress, 2018)

and the three-volume set, Using and Administering Linux
(Apress, 2019).

Acknowledgments

I'd like to thank the open source community and the developers of utilities explored in
this book. Most of the ideas and techniques shared here have been learned with the help
of the many developers online always willing to help with small and large problems. A
number of people have contributed feedback and suggestions including Jason, Omm,
and various users from the Unix SE and Telegram. I'd also like to acknowledge my
grandfather Douglas Kirkbride for encouraging my early interest in computers, my
parents, family, friends Colin, Matt, my thesis advisor Dr. Fuhua (Oscar) Lin, and the
tech community in Waterloo, Ontario (Communitech, BlackBerry, ect.) where I was able
to meet many talented people like Taylor Brynes who introduced me to SSH and Qbo
who increased my expectations of what a quality user experience is. As well as Jasmine
Samaras whose antics kept me entertained during the process of writing this book.

I'd also like to thank the editors at Apress - Louise Corrigan, Nancy Chen, and James
Markham - for helping to mold the idea into a book as well as the technical reviewer
David Both who has provided great feedback and adjustments.

xxiii

Introduction

Despite graphics being more advanced than ever, the Linux terminal, or command line,
continues to be one of the most useful tools for software developers, system admins,
and IT professionals to know. From the terminal, complex tasks can be launched in a
few words, when the equivalent action would take several steps in a GUI. In other cases,
things which can be done from the command line are simply not possible from the GUI
of an operating system.

In a world where many devices are embracing mobile-style interfaces which limit
users, the power of the Linux terminal can feel freeing. It gives you fine-grained control
of your system and the tasks you run. The only requirement is that you learn the magic
words that will manifest what you want to happen. This book is for those who want to
learn about the Linux terminal, bash, and terminal-based utilities.

Much of what you'll read here is applicable in many places due to the ubiquity of
Linux. Whether it be your desktop OS, a remote server running a website, or physical
hardware, if it’s running Linux, you can access the command line.

CHAPTER 1

Linux Primer

Most people growing up today are introduced to computers through a graphical
interface, whether it be through a video game console, a laptop, or an iPad. For most
people’s interactions with computers are done through a graphical interface of some
sort. Despite the popularity of graphical interfaces, most serious programming and
system administration are still done at the command-line level.

Graphics keep getting better. Innovations like voice-activated computing, wearables,
and IoT are introducing even more ways to interact with computers. New versions of
popular operating systems on both desktop and mobile are constantly changing. Yet it
seems underneath most of these new systems from IoT to Android, there is a command-
line world that exists in a stable state while everything built on top changes.

The persistence of the Linux operating system and the terminal command line as a
method of input speaks to its efficiency and usefulness. While the simple green text on a
black background may appear outdated, it is actually a gateway to magic-like efficiency.
Each command is like a spell. With a few keystrokes, we can perform tasks and tricks that
would take an eternity using a mouse and GUI. In some cases, we can even do things on
the command line that would otherwise be impossible using a GUL.

This book is for the person who wants to explore Linux from a command-line
perspective - whether you're completely new and learning from command line from
square one or you know your way around a Linux machine but want to learn some new
commands and utilities that could come in handy.

In this chapter, we’ll look at what Linux is, review some popular distributions (or
distros), and look at some basic commands for dealing with files and directories.

What Is Linux

Throughout this book, we’ll be looking at different command-line applications, built-

in commands, and techniques. Before we start, it's worth touching on “what is Linux.”
Some technical definitions will only include the Linux kernel (the core part which works
with the underlying hardware of a computer).

© Philip Kirkbride 2020
P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_1

https://doi.org/10.1007/978-1-4842-6035-7_1#DOI

CHAPTER 1 LINUX PRIMER

Often such definitions will define the distributions as GNU/Linux. GNU is a recursive
acronym which stands for “GNU is Not Linux.” It refers to all (or several) open source
applications which are popularly bundled with the Linux kernel. Some of these tools
include bash, coreutils, grep, groff, grub, and readline, just to name a few. That
said, not all the tools that commonly ship with the Linux kernel are created by the GNU
organization.

In common language, Linux refers to an operating system which is built around
the Linux kernel. This includes the kernel, the software that comes preinstalled, and
everything in between. For simplicity and compatibility with common language use,
we'll refer to Linux as the whole of an operating system, not just the kernel.

Unix vs. Linux

Linux is actually part of a larger group of operating systems which are known as “Unix-
like” operating systems. These operating systems are all inspired by the original Unix
operating system released in 1970. It includes several families of operating systems
beyond just Linux:

¢ MacOS (since 2015)

e Android (built on modified Linux kernel)

e Linux

e Solaris
e BSD

e NetBSD

You might be surprised to see popular operating systems like MacOS and Android
listed here. The impact of the original Unix operating system has been far reaching. The
original Unix OS had key features still present today including

¢ Kernel between hardware and user space
o All data stored as files
e System for users and permissions

o Directory layout still used today (varies between OSs)

CHAPTER 1 LINUX PRIMER

In Figure 1-1, a setup making use of PDP-11/20 (the device furthest right below the
experiment display system label) is shown. This is an example of an early system which
ran Unix in the 1970s.

Figure 1-1. PDP 11/35, a microprogrammed successor to the PDP-11/20; the
design team was led by Jim O’Loughlin

The impact of the widespread adoption of Unix-based standards has been far
reaching. Many of the core commands and utilities covered in this book will actually
work on systems besides Linux. If you open a terminal session on a Mac or even
Android, you'll find many of the commands here work just fine. Even Windows now
includes an optional Linux subsystem, and various aliases on their own commandline
system that direct Linux commands to their Windows equivilent, such as ‘1s’ which is an
alias for ‘dir’ on Windows.

POSIX Standard

POSIX stands for Portable Operating System Interface. It defines standard syntax for
scripts and a list of utilities that should be available. It’s used to guarantee compatibility
among Unix-like systems. If a program or operating system is POSIX compliant, you can
expect bash scripts to run on it.

CHAPTER 1 LINUX PRIMER

POSIX also guarantees that you will have access to a list of utilities including,
among others, cat, awk, cut, grep, and kill, just to name a few. It also defines how
the specified utilities should behave. In previous times, some utilities had competing
implementations which created problems for portability.

Choosing a Distro

The first major decision that most people face when switching to Linux is what
distribution (commonly refered to as distro) to use. Often people end up using what a
friend or colleagues at work are using or simply the first one we hear about. There are
dozens of popular distributions, each with strengths, weaknesses, and specific use cases
it excels at.

Throughout this book, I'll be making use of apt-get, the package manager which
comes installed on Ubuntu and other Debian-based operating systems. That said,
almost all of which is presented will work just as well on any Linux distribution; it’s just
a matter of finding the package in question for your distribution and installing it via the
provided package manager, manually installing it, or even building it from source.

There is an argument to be made for many popular Linux distributions. My personal
choice in using Ubuntu mainly comes down to the aspect of compatibility. Ubuntu is the
most widely used Linux distribution for desktop users. If you're working at a company
that makes use of Linux, you may find it useful to use the distro which is used there.
Despite the portability of bash and other aspects of Linux, there are differences between
distros and bugs which may exist in one but not another. So if you're using Linux Mint
but everyone else is using Fedora, you may be introducing unnecessary friction.

In my experience developing GUI-based applications for Linux, I found if I used
a distro different from the end-user during development, there would often be visual
differences which effected the design significantly or in some cases bugs present in only
a single distro. For instance the system font-family or font-size might differ between end-
user system and development system. Though in most cases the core functionality
works across most Linux systems. The high variability between Linux distros is one
reason much of the gaming industry is still yet to offer full support for Linux based
operating systems.

Another benefit to starting with a popular distro is that when reading online tutorials
and project documentation, you'll often see instructions for more popular Linux
distributions like Ubuntu but nothing for less popular ones. In addition, if you do have

4

CHAPTER 1 LINUX PRIMER

issues and you want to submit a bug, the project may not provide support for less used
distros.

With that said, there can be major benefits of running less used distros. As a young
hobbyist, I found that running minimal distros like Arch Linux forced me to learn
concepts about what components made up a Linux distro and how to navigate and
fix my system using the command line. Often this learning process manifests itself
in experimenting, breaking a system, fixing it, and in some cases having to reinstall
everything and start from scratch.

If that exploring distributions and the inner workings of Linux excites you, I
encourage you to explore Linux distros which are less used and may be more difficult
to set up. Gentoo even requires the user to compile from code all the programs used.
Getting up and running on a distro like Gentoo or Arch Linux can be an accomplishment
and a learning process within itself.

Aside from the factors of convenience and learning process, it’s also important
to consider where one distro may excel over another. For example, Arch Linux is
particularly useful for compiling custom operating systems for embedded or low-end
machines. Kali Linux is notorious for its use in penetration testing. Red Hat-based
distros are commonly used for enterprise servers. If penetration testing interests you,
Kali becomes the obvious choice; if you want to be a system admin at an enterprise
company, you may want to become comfortable with Fedora.

Branches of 0Ss

In the following sections, we're going to look at some of the more popular Linux
distributions. I've included a tree showing the family branches of operating systems, to
give you an idea of the relationship between different popular operating systems. Keep
in mind that the relationship between parent/child OSs may vary significantly (see
Figure 1-2).

CHAPTER 1 LINUX PRIMER

Kali

i Mint
Debian it
Pop0O5S

RHEL CentOS
Fedora sl

\ Arch ’ Manjaro
Gentoo \

\

Figure 1-2. Linux distribution families

Debian

First released in 1993, Debian is the backbone of several popular Linux distributions
including Ubuntu, Kali, and Linux Mint. It’s known for having a very good packaging
system apt, short for Advanced Package Tool. We’ll be using apt throughout this book,
and it is available on all the Debian-based operating systems listed later, though the
packages which are available through the manager will differ between OSs.

To install packages with apt, simply run the following command, substituting
<package> for the package you're looking to install:

sudo apt-get install <package>

Note sudo inthe preceding command is a keyword that lets a nonroot user
make changes to files or aspects of the system which may affect other users.
When using sudo, you’ll be prompted to enter your password before being able to
execute a command as a root. If you run a command and get back the message
“Permission denied,” you can simply prepend the command with sudo and it
should work. That said, make sure you understand the command in question
before using sudo as root permissions allow you to modify system files which are
critical for the running of the operating system.

CHAPTER 1 LINUX PRIMER

Ubuntu

Ubuntu is the most popular Linux distribution for desktop use, though it is commonly
used for servers as well. It builds upon Debian and adds support for several nonfree
software binaries and codecs that improve user experience for things like watching
videos online and gaming.

It has many of the advantages that Debian has like the strong package manager
apt and stability but is also designed to provide a good desktop experience. At present,
the latest version of Ubuntu uses the GNOME interface (i.e., the GUI desktop of the
operating system, which sits on top of lower-level software).

There are several variations of Ubuntu that use other desktop user interfaces that
may be preferable for lower-end hardware such as Xubuntu which uses xfce and
Lubuntu which uses 1xqt. These distributions generally just switch out the interface
without changing much else. If you look at Figure 1-3 which shows the stack of Linux OS,
the difference between Xubuntu/Lubuntu would for the most part simply be switching
out the interface level, as well as swaping some of the preinstalled applications.

A comparison is how web applications like Facebook often have different interfaces
to access the same core functionality. When using my phone, I can access Facebook
using their website, their app, or even a lightweight version called Facebook Lite. All of
these interfaces look different and may have enhancements or limitations, but ultimately
all the functions (posting, viewing, liking, etc.) access the same core functionality.

CHAPTER 1 LINUX PRIMER

User

Interface (Gnome/xfce/lxqt)

Libraries /Applications

Linux Kernel

I

' Hardware

Figure 1-3. Linux operating system stack

Kali

Kali is a Debian-based distribution which is primarily focused on offensive security

tools. It includes several preinstalled tools for digital forensics, penetration testing, and
reverse engineering. It comes with over 600 preinstalled tools including Wireshark,
Aircrack-ng, and Burp Suite. This makes it particularly useful for penetration testers.
That said, it isn’t recommended for everyday use.

It’s also worth noting that these tools can be installed on other systems either via
package manager or downloading them directly. The process is fairly straightforward for
package managers, but when downloading directly, the process can vary between tools.
For example, some packages might be installed via Python’s package manager Pip, while
others require you compile a binary or download a precompiled binary and put itin a
folder where your system finds executables, for example, /usr/bin.

CHAPTER 1 LINUX PRIMER

Another benefit of using Kali is that versions of tools on package managers on other
distros may be older versions. Since these packages are just one of many which require
maintainers to package, review, and update, they can fall behind, whereas on Kali, Linux
security-related tools are the focus, and thus more effort is put into keeping them up to
date.

Mint

Mint is another distribution that is based on Ubuntu which has become relatively
popular. Linux Mint is based on Ubuntu but has an alternative interface which makes
use of the Cinnamon desktop environment. It has the same repositories as Ubuntu so
any of the apt-get install commands throughout this book should provide the same
results as Ubuntu.

Pop0S

PopOS is another Ubuntu-based distribution that has gained traction. It provides an
alternative desktop experience to Ubuntu with the same packages, plus some additional
packages provided via PPAs (Personal Package Archives). These extra packages

include Nvidia graphics drivers, Steam, and other popular programs like Spotify. The
operating system is maintained by System76, a computer manufacturer based in Colorado
which focuses on producing quality hardware and values open source software.

Fedora

Fedora is the community-driven OS supported by Red Hat Linux. Fedora serves as

a testing ground for many features which are eventually pulled into RHEL (Red Hat
Enterprise Linux), Red Hat’s primary product. For Fedora, RHEL, and CentOS, packages
are installed using the command

dnf install <package>

In some cases, you may be able to simply swap apt-get for dnf if you're on a Fedora/
RHEL system. In other cases, the package may be named slightly different, or it may not
be available as a package.

CHAPTER 1 LINUX PRIMER

RHEL (Red Hat Enterprise Linux)

While Ubuntu may be the most popular distro used on desktops, RHEL is likely
the most used on enterprise servers. It is both open source and a paid product,
which includes enterprise-level support. If you plan to work as a system admin in a
corporate environment, it’s likely you’ll work with RHEL.

The focus is security, stability, and speed. For this reason, there may be less packages
available compared to Ubuntu or the more open version supported by Red Hat, Fedora.

Cent0S

While Fedora is a more experimental and open free version of RHEL, CentOS is
essentially the same OS as RHEL but completely free. When a license for RHEL is bought,
it comes with support which is not included with CentOS. CentOS provides a great
operating system for learning RHEL or simply using it without the need for external
support.

Slackware

Slackware is a Linux distribution that dates back to 1993. It has a small dedicated group
of fans but has not had a release in over 3 years, when it previously had a release at least
once a year.

OpenSUSE

OpenSUSE was originally derived from Slackware, but it has grown its own set of legs
and today has very little connection. While Slackware has been lacking in updates,
OpenSUSE is still very active and has large corporate backing similar to what is seen with
RHEL.

Arch

Arch Linux is a branch of Linux which is highly customizable and focuses on a rolling
release package manager. The rolling release package manager means that packages
provided are the most up to date possible. There are no major releases as is the case
with most operating systems. This is achieved by removing package maintainers who

10

CHAPTER 1 LINUX PRIMER

review and confirm any changes before a major release on other distributions. A rolling
release means it is possible to get the most up-to-date versions of applications, but on
the downside less effort is put into reviews which can potentially lead to stability and
security issues.

Packages are installed using the pacman package manager:

sudo pacman -S <package>

Another notable aspect of Arch Linux is the fact that by default it doesn’t ship with the
software required to run a desktop experience. Instead it is left up to the user to choose
the specific programs for things like sound, window manager, and graphical interface.

Manjaro

Manjaro is a version of Arch Linux which addresses the difficulty of getting started by
shipping with a preconfigured desktop experience. There are several variations as is the
case with Ubuntu having variations like Xubuntu and Kubuntu.

Gentoo

Gentoo is a highly customizable version of Linux, which allows customization down

to the kernel level. Instead of downloading precompiled applications, Gentoo actually
compiles from source code on the local computer. It is particularly useful when a highly
customized experience is needed.

Alpine Linux

Alpine Linux is a distro which essentially no one uses as their primary distro for desktop or
servers, yet it is extremely popular as a base image for Docker containers. If you use or modify
Docker containers, you'll likely run into Alpine Linux. It’s extremely small and by default
comes with nearly no applications though it does have its own package manager apk.

If you have an application or process you want to containerize with Docker, look
into Alpine Linux. Many of the programs and scripts here are compatible, though if any
programs are used, you'll have to install them first using apk.

11

CHAPTER 1 LINUX PRIMER

Common Commands

In the following subsections, we’ll look at common commands, most of which are
installed on most Linux systems by default.

Reading the Manual with the man Command

I'll mention many programs throughout this book. For most of them, I'll only go into
about 5-10% of their usage at best. If you want to explore these programs deeper, it’s
important you learn the man command which can be found on almost all Linux operating
systems.

man is short for manual. It is used by running the command and passing in the
name of another Linux command-line program. For example, if we wanted to get more

information on the command 1s, we would run the following:
man 1s

This returns a description of the program and how to use it, as shown in Figure 1-4.

File Edit View Search Terminal Help

Ls(1) User Commands LS(1)
NAME
1s - list directory contents
SYNOPSIS
s [OPTION]... [EILE]...
DESCRIPTION

List information about the FILEs (the current directory by default). Sort entries
alphabetically if none of -cftuvSUX nor --sort is specified.

Mandatory arguments to long options are mandatory for short options too.

-a, --all
do not ignore entries starting with .

-A, --almost-all
do not list implied . and ..

Manual page 1s(1) line 1 (press h for help or

Figure 1-4. Example of a man page

I encourage you to make regular use of man as you explore the Linux operating
system, as it can often save you the time of doing lengthy Internet searches. You can
navigate the man page by using the arrow keys and the page up or page down buttons.

12

CHAPTER 1 LINUX PRIMER

If you need to search through a man page to find some specific keyword, there is a
built-in search function. To search, press / and then type in your term and press enter.
You'll be taken to the first occurrence if one exists. To go to the next occurrence, tap n;
each tap of n will bring you to the next instance. If you want to go back an instance, press
capital N, as with n each press goes back an instance.

Numbered man Pages

In some cases, there may be multiple man pages for a single program. For example, with
the program stat, we can run

man 1 stat
Or we can run
man 2 stat

These commands will bring us to different man pages which concern different
aspects of the program. See Table 1-1 for a list of the different page numbers and what
information they include. Not all programs contain a page for each type. For example,
printf has a page 3 with information on C library functions but no page 2.

Table 1-1. Description of information
found in numbered man pages

Page Number Description

1 User commands

System calls

C library functions

Devices and special files

File formats and conventions
Games

Miscellaneous

0 N OO o BB W DN

System admin tools and daemons

13

CHAPTER 1 LINUX PRIMER

In most cases, we'll be interested in a program from a user command perspective
so we can just run man without a number which will default to 1 or the lowest numbered
page found.

man man
man -s 6 --regex -k '.*'

If you want to see the list shown in Table 1-1 on your own system you can run “man
man”. You might be wondering is their really a page number dedicated to games? The
answer is yes. The games section has been included since at least Unix System V in the
1980s. It is very seldomly used, but if you run the following command you'll get back a
list of packages that use it on your systemman -s 6 --regex -k '.*'.You might find
some interesting easter egg programs such as “espdiff” a joke program installed on
many machines which claims to read the user’s mind.

Useful Commands for Navigating

Some commands you'll want to get familiar with for navigating and creating new folders
are listed in Table 1-2.

Table 1-2. Commands for navigating and
working with files/directories

Command Description

Is List directory contents

cd Change directory

pwd Print working directory

mkdir Make directory

rmdir Remove directory (only works if empty)

Navigating the Filesystem with Is and cd

The first commands most users learn when introduced to the filesystem are 1s, short for
“list directory contents,” and cd, short for “change directory.”

14

CHAPTER 1 LINUX PRIMER

Knowing only these two commands allows you to navigate the filesystem - first by
running 1s to see which files and folders are in your current directory and then using cd
with one of the folder names to navigate into it.

One thing to keep in mind when using cd. At any time you can run cd without any
folder name to return to your home directory. If you go into a directory with cd and want
to return to the directory containing the one you're in, you can use . ., for example:

cd ..
Or if you wanted to return two folders up:
cd ../..

Some common things you might want to do with 1s are list additional details beyond
just the names of the files and folders; this can be done with the -1 flag:

1s -1

If you want to sort by time last modified, you can use the -t flag, which is best
combined with -1:

1s -1t

If you want to reverse the results so the oldest files are at the top, add the -1 flag for
reverse:

1s -1tr

You should get back output similar to that shown in Figure 1-5.

philip@philip-ThinkPad-T420:~/tmp/solarS$ 1ls -1ltr

total 36

druwxr-xr-x 2 philip philip 4096 Nov 7 08:26 libs
drwxr-xr-x 2 philip philip 4096 Nov 17 01:27 imgs
-rw-r--r-- 1 philip philip 8969 Nov 17 01:28 README.md
drwxrwxr-x 2 philip philip 4096 Dec 3 21:09 main
-rw-r--r-- 1 philip philip 12268 Dec 16 20:35 main.ino
philip@philip-ThinkPad-T420:~/tmp/solar$ ||

Figure 1-5. Result from running ls -ltr, | for additional information, t to sort by
time modified, and r to show results in reverse order

15

CHAPTER 1 LINUX PRIMER

Invisible Files (dot files)

It’s important to know that files which start with a . in Linux will not normally appear
when using 1s or a graphical file explorer. These files are meant for configuration and are
hidden for convenience. Often we’ll want to edit or look at these files so it’s important

to know about the -a flag for 1s. The -a stands for all and will show all files including
hidden ones.

1ls -a

Get Current Directory with pwd

With all this navigating, it’s easy to forget exactly where you are on the filesystem. If this
happens, there is an easy solution to figuring out exactly where you are. Simply run pwd
which will return the full path of your current location.

pwd

Make a Directory

Part of navigating the filesystem is creating new directories to put your files and
subfolders in. This is relatively easy with the mkdir command which takes the folder
name and will create the directory based on your current location. For example, if we
run the following command in our home directory:

mkdir music

we’ll end up with a folder called music. There is no limit to how many you can create
at once. Say we want to create two additional subfolders, we could run

mkdir music/rock music/classical

It’s also possible to use a full path instead of a relative one. For example, if 'm in my
home directory and I want to make a new folder in my /tmp folder:

mkdir /tmp/test

This isn’t unique to mkdir; essentially all programs where you can use a relative path
also allow you to make use of a full path; it only requires starting the path with a “/”.

16

CHAPTER 1 LINUX PRIMER

Recursively Make Directories

Often when creating a folder, you already have a structure which is multiple directories
deep in mind. For example, say we want to create a new folder called movies, with a
subfolder for horror and another subfolder for 2012. If we run

mkdir movies/horror/2012

We'll get back an error saying “No such file or directory” The -p tag provides a way
around this. -p stands for create parent directories, meaning if the parent directories of
the directory we want to create don’t exist, they will be created. Running the following
command works as expected, leaving us with three new folders:

mkdir -p movies/horror/2012

Delete a Directory

After creating a directory, you may decide that you want to delete it. One way of doing
this is with the rmdir command which is used similarly to mkdir; simply pass it the name
of the directory you want to remove:

rmdir music/classical

Unfortunately, rmdir has a major limitation in that it can only delete a completely
empty directory. Trying to use rmdir on any directory which contains a file or
subdirectory will return “Directory not empty” Thus, in practice many people instead
always use the command

Tm -r music

The -1 in this command stands for recursive. This command is practical as it will work
on both files and directories regardless of whether the directory contains any content.

Working with Files

Once you can navigate directories, the next thing you’ll want to do is work with files -
doing things like creating files, deleting, and copying, as well as reading files and
comparing their contents.

17

CHAPTER 1 LINUX PRIMER

Editing Files

We briefly mentioned nano in the last section; it’s a straightforward text editor similar
to ones most people are familiar with like notepad. You simply open a text file by
passing the file location as a command argument:

nano /tmp/myFile.txt

The file will open or one will be created if it doesn’t exist. You can enter text as you
would expect on most text editors, press backspace to delete text, and navigate using the
arrow keys. At the bottom of the screen, a list of actions that can be performed is shown,
for example ctrl+x to exit.

In later chapters, we’ll look at more powerful editors Vim and Emacs, but if you find
them difficult and getting in the way of you learning or doing what you want to do, you
can always fall back on nano or a GUI based text-editor.

Commands for Working with Files

Some of the most useful and basic commands for using Linux are listed in Table 1-3.
These commands come in handy for working with files. Most are used by providing a
file name as an argument. You can use man <command> on any listed command to get
additional information. We’ll look at the details of how these commands work and are
used as follows.

18

CHAPTER 1 LINUX PRIMER

Table 1-3. Commands for working with files

Command Description

touch Creates a file or updates the timestamp on an existing file

cat Outputs the full contents of a file

head Returns the first X lines of a file starting at the top

tail Returns the first X lines of a file starting at the bottom

cp Copies a file or directory

rm Removes a file or directory

mv Moves a file or folder

less Displays contents of file while allowing easy scrolling up and
down

diff Compares two files for differences

cmp Checks if two files are identical on a byte-by-byte level

file Gets information on file type

Create Files or Update Timestamps with the touch Utility

Sometimes you want to create a blank file, either as a placeholder that you plan to edit
later or possibly as an indicator, for example, with a lock file. The touch command allows
you to quickly create a blank file or multiple blank files. Simply run the command and
use the desired file name or names as the argument, for example:

touch notes.txt
Or for multiple:
touch file1 file2 file3

Another thing the touch command can be used for is updating the timestamp on a
file. After running a script, you may want to update a file with touch that was otherwise
unused so you can leave some trace of when the script finished. For example, you might
update a log file’s timestamp despite not adding any new logs so others (people or
programs) can infer that the script ran and no logs were produced. This is done in exactly

19

CHAPTER 1 LINUX PRIMER

the same way as creating a file except instead of providing the path to a file you want to
create, you provide the path to an existing file:

touch log.txt

After executing touch on an existing file, you can use 1s -1 in the directory of that
file to confirm that the timestamp has been updated. It's important to note that touch
will never modify the contents of an existing file so don’t worry about overwriting any

existing contents with a blank file.

Get File Contents with Cat

When using the command line, cat is one of the most useful commands to know. cat
simply takes the contents of a file and outputs them to the command line. This allows
you to either visually see contents of that file (without opening and closing a program)
or to use the contents of that file as the input for some other program, using a pipe (an
aspect of bash shell that we’ll look at more later in the book).

As an example of using cat, you can run the following which will output the contents
of a file on your system:

cat /etc/passwd

This file lists the users on your system and some related information, but
understanding the content isn’t important. What'’s important here is that you can use cat
to take the contents of any file on your system and show it as terminal output.

Get Less Content with Head or Tail

If you understand what cat does, you'll just as easily be able to understand the head and
tail commands. When you used cat, the full contents of a file were returned. With large
files, this means you may get several pages of content at once and have all your previous
work and commands pushed up the screen.

If you want to get a preview of a file but don’t want the whole thing, you can use head
which will return the first X lines of a file. By default, X is 10 so if you run

head /etc/passwd

20

CHAPTER 1 LINUX PRIMER

you should get back the first ten lines of the file (assuming the file has at least ten
lines). The tail function works exactly the same way as head, but instead of getting the
first X lines, it will get the last X lines. So if we run the following command, we’ll get the
last ten lines of our file:

tail /etc/passwd

If you want to modify how many lines are returned, you can specify the amount of
lines returned with the -n flag - if we want the first five lines, for example:

head -n 5 /etc/passwd

Aside from not filling up your screen with lots of text, the head and tail commands
can be useful during scripting, in cases where you know exactly how many lines from
some file you need. For example, you might have a script that wants to look at the last
20 lines in a log file to parse the text for some specific error; in such a case, we could
make use of tail -n 20 filename and pipe the output into your parsing script (more on
piping and scripts later).

Copying Files with cp

If you're doing system administration or software development, it’s likely you'll end up
using the cp command often. It’s a very simple but very useful command which stands
for copy. When using the command the first argument is the file you want to copy and
the second argument is the location to copy to, for example copying file1 to location
file2 would be done with:

cp filel file2

Running the preceding command would result in a new file called file2 which
contained the same contents as file1l.

In addition to copying files, cp can also be used to copy whole folders. To use cp with
folders, you need to specify the -r flag, which stands for recursive (similar to using the rm
command with folders). So copying a folder would be much the same as copying a file,

for example:

cp -r folder1l folder2

21

CHAPTER 1 LINUX PRIMER

Removing Files with rm

We've already made use of rm due to the limitations of rmdir in the section on
directories. Be aware that the rm command is primarily used for deleting files, and when
doing so, there is no need to include the -1 flag, for example:

m filel

Moving Files with mv

Another very popular built-in command, mv allows you to move a file or directory to
anew location. It’s used very similarly to cp except you only end up with one file, for
example, if we use

mv file1l file2

Our file called filel will now be named file2 - similar to moving a file on graphical
desktop OS like Mac or Windows. Also like many of the other commands we’ve looked at,
you can use mv with directories, but with mv there is no need to use a special flag, you can
simply use

mv folder1l folder2

Be aware that mv will overwrite a file without a warning if it already exists. For
example, if | moved filel to file2 but file2 already existed, my original file2 will be lost
forever. If you're worried about that happening, there is a special flag - i which will
prompt you before overwriting anything.

Interactively View File Contents with Less

We mentioned how using cat can become a headache because large file outputs end
up crowding your shell. We mentioned head and tail which allow you to view a small
portion, but in most cases, we want the option to view the whole file but scroll through it
slowly. This is what less is for.

Instead of outputting the contents of a file, Less opens an interactive viewer separate
from your terminal where you can scroll through the contents at your own pace. As with
cat, tail, and head, you simply run the command with the target file as your input:

less /etc/passwd

22

CHAPTER 1 LINUX PRIMER

You'll start at the top of the file and have the ability to scroll down and back up using
the arrow keys and page up/page down buttons. It’s a lot like scrolling through a man
page, you even have access to the same method of searching (vim style search). That is
by pressing “/’, typing the search term, and hitting enter. You'll be brought to the first
instance of the term, and from there you can press n to go to the next instance or N to go
one instance back (this method of searching is also used in Vim, a text editor we’ll look at
later in this book).

Note As you explore different programs on Linux, you may come across more
and assume it’s like 1ess but different; after all that’s the case with commands
head and tail. more is actually an older program which less is based on. more
has fewer features and is not as usable, for example, you can scroll down but not
back up. It’s likely you’ll find moxre on your system, but we recommend using less
in all situations where more could be considered.

Comparing Files

Comparing files is a task you may need to complete from time to time, certainly much
less common than something like mv or cat, but nonetheless it is file related and
useful command for software development. There are several programs which can be
used for comparing files.

By default cmp and comm are installed on most systems. However, in practice, diff is
much easier to use and colordiff is even better (same as diff but with color coding). For
practical purposes, diff or colordiff is recommended. In later chapters, we’ll look at
how you can alias diff to use colordiff.

To demonstrate comparing files, let’s move to the /tmp directory and create two
identical files. To get started with this, run the following commands:

cd /tmp
cp /etc/passwd file1
cp file1l file2

Next open up file2 with nano or your preferred text editor and change a single letter;
it can be a change as small as adding a single letter. With the change made, save and
close the file.

23

CHAPTER 1 LINUX PRIMER

Compare with Comm Command

Now that you have two almost identical files, we can test a few commands for comparing
the differences. The first we'll try is comm which can be run by passing 2 file names as
arguments (preferably similiar files for demonstration purposes):

comm file1 file2

This will return the contents of the file overlaid on one another, with three layers
of depth. The furthest right depth which will be used for most of the lines in the file are
lines which are contained in both files. Then when you get to the line where there is a
difference, you'll have two different indentations, one for file1 only lines and another
for file2 only lines.

It’s not pretty but it gets the job done and can be found on most systems. Though as
mentioned we recommend installing diff or colordiff.

Compare with Cmp Command

While comm can be completely replaced by diff, the command cmp is actually slightly
different. Instead of comparing the text of a file, it compares files on a byte-by-byte basis.
We can test the program by passing the command 2 file names:

cmp filel file2

With cmp you'll get back a single line which specifies the line and byte where the first
difference between the files occurs. In scripts where you simply want to compare if files
are identical, cmp can be the fastest option since it returns as soon as a single difference is
found instead of parsing the full file.

Compare with Diff Command

The diff command is similar to comm, but it is more readable and has additional features
and flags. It’s not installed by default on most systems so you'll have to install it first:

sudo apt-get install diff

24

CHAPTER 1 LINUX PRIMER

With diff installed, we're ready to compare our files, which can be done similarly to
comm and cmp:

diff file1 file2

Instead of returning all the lines in the files, diff will only return the lines which
differ. That means you’ll have two copies of each line which differs. The line in the first
file will be prepended with a < and the line from the second a >, allowing you to see
which lines belong to which file. Before the lines, you'll also see an indicator for what
line numbers are being compared. This allows you to hone in on the difference and
quickly find it in a text editor.

ColorDiff Even Better Than Diff

The main advantage that diff has over comm is the usability due to how differences are
shown. If your terminal supports color (most desktop terminals do), you might want

to install colordiff instead. colordiff is a wrapper for diff which enhances the
experience further by color coding the differences so you can quickly see what lines
belong to which files. Like diff it will need to be installed:

sudo apt-get install diff

With colordiff installed, compare the two files and observe the difference in
output:

colordiff file1 file2

Get File Type

If you're coming from Windows, you may be used to the concept that the extension of

a file determines the type and what program it’s run with. On Linux, file extensions are
often used, but this is simply for the benefit of the human reader. File extensions are not
mandatory and in some cases not used.

You may find a text file or program which has a name but no extension. In this
situation, you may find the file command to be useful. Given a file as input, it will
return information on the file type. For example, if we run the file command on filel
created in the last section, by passing the file location as an argument like below:

file file1
25

CHAPTER 1 LINUX PRIMER

You should get back the type “ASCII text.” If you have an image file handy on your
computer, try running file on it. In addition to the image type like JPG, you'll also get
additional metadata like the dimensions of the photo.

Command Information with type, which, whereis, or
locate

Similar to getting information about a file with file, we can get information on a
command using type, which, whereis, or locate. The first command type is built into
bash itself and searches your path and gets information on the command when found,

for example:
type 1s

On my system, it returns an alias (more aliases in a later chapter), as shown in
Figure 1-6.

ubuntu@ip-172-31-42-231: /tmpS type ls
1s is aliased to "ls --color=auto'
ubuntu@ip-172-31-42-231: /tmp$S I

Figure 1-6. Output from checking the type of 1s

Then with which we can find the location of the executable:
which 1s

Similiarly we can use whereis and find the executable location, source location, and
manual page files for the command. The whereis command should return multiple file
locations, as shown in Figure 1-7.

whereis 1s

ubuntu@ip-172-31-42-231: /tmpS which grep

/bin/grep

ubuntu@ip-172-31-42-231:/tmpS whereis grep

grep: /bin/grep /usr/share/man/manil/grep.1.9z fusr/share/info/grep.info.gz
ubuntu@ip-172-31-42-231:/tmp$S

Figure 1-7. Location of program shown using which and whereis

26

CHAPTER 1 LINUX PRIMER

In some cases, you may not remember the exact command so it doesn’t come up
when using which; in this case, you can also try locate which will search a database
index of the filesystem:

locate samba

There are two issues with locate; the first is that it can return lots of results, finding
every match for the text input for the complete path to every file on the system. Given
a username, ubuntu, for example, locate ubuntu would return every single file in the
home directory (as each file contains the username in the filepath), among others. The
second issue is that the database which powers locate (making it faster than a manual
filesystem search with find) is only updated once a day via cron. If you want to update
it manually, you can run sudo updatedb (run time can take anywhere from seconds to
minutes depending on system and size of the filesystem).

More on Sudo

Normally when logging in to your operating system, you'll be given a username, which
has permissions for a specific folder. Often the folder location will be

/home/<username>/

Normally each user has a dedicated home directory for which they have full
administrative privileges. Sometimes you'll need to make use of files and folders which are
outside the home folder. If you attempt to do something which requires permissions beyond
your user account, you'll get a message saying “Permission denied” or “are you root?”.

In this case, you'll have to retry the command by first appending sudo which
specifies you want to run the command as the root user. For example, the command

cat /etc/sudoers
instead becomes
sudo cat /etc/sudoers

When using sudo, you'll be prompted for your password. Of course the success of
sudo is dependent on your main user account being enabled to use sudo. The policy for

27

CHAPTER 1 LINUX PRIMER

which users can make use of sudo is defined in /etc/sudoers. In my default install of
Ubuntu, for example, there is the line

%sudo ALL=(ALL:ALL) ALL

This specifies that all users which are in the group sudo can use sudo. To see what
groups a user is in, you can run

groups <username>

Replace <username> with the username of your account, and you'll get back a list of
groups you're in.

If you need to run multiple commands in a row which all make use of sudo, you
may instead want to switch to root. By doing this, you can run commands that would
normally require sudo without it. To switch to root, run the following command and
enter your password when prompted:

sudo -i

Now you're free to run any command you want. To exit back to your normal user,
press ctrl+d.

Less Pipe

While we're talking about file type detection, it's worth mentioning less pipe, which
is a file type preprocessor for the command less which comes preinstalled on many
systems. Less pipe lets you view files in the terminal that normally wouldn’t be accessible
in the terminal, for example, PDF files.

To see if you have less pipe installed, run the following command:

echo $LESSOPEN

If you get back a pipe followed by the location of a file, for example, | /usr/local/
bin/lesspipe.sh %s, thenitis installed on your system. If you find that running the
command returns an empty string, then your system does not have lesspipe. If that is
the case, don’t worry as we'll cover installing (or updating) less pipe in the next section.

28

CHAPTER 1 LINUX PRIMER

Update/Install Less Pipe

Ubuntu and other operating systems will come with a version of lesspipe installed that
is good enough. So if you don’t want to change the defaults, feel free to skip this section.
To make full use of all the features listed here, you may need to update lesspipe.

On my system Ubuntu 18.04, I found the version of lesspipe was slightly outdated and
didn’t give me in-depth details about photo metadata which is available on the latest
version. The older version also might not support all the file formats listed in the next

section, though it should work for common ones like PDE.

As a preliminary step, git and make need to be installed. Git is a version control
program useful for programming and make is used for compling source code. We'll make
use of git throughout this book as a means to download publicly available code from
GitHub. You can install it by running:

sudo apt-get install git

As mentioned, we'll also make use of the make command. make is used for compiling
programs often written in C (though not limited to any language). If you download a
program and it contains a file called Makefile, that’s a good sign that the program can
be compiled with make. The make utility is often bundled with other tools like the gcc
compiler for C and C++ and common libraries. To install nake on Ubuntu, run:

sudo apt-get install build-essential

With git and make installed, we can start updating lesspipe; this process starts with
downloading the project code, moving into the folder, compiling the code, and testing
the setup:

git clone https://github.com/wofro6/lesspipe
cd lesspipe

make

make test

After running make test, observe the results and any programs which are missing.
For example, in my case, shown in Figure 1-8, I got a variety of suggested programs to
install. Without installing said programs, you may not be able to open the related file
type. You can decide which you want to install and which you don’t based on what file
types you find yourself using.

29

CHAPTER 1 LINUX PRIMER

less testok/a\ b.tgz:testok/a\"doc.gz ignored, needs antiword
less testok/a\#rtf ignored, needs unrtf
less testok/a\ b.tgz:testok/a\&pdf.gz NOT ok

less testok/a\ b.tgz:testok/a\;dvi.gz ok

less testok/a\ b.tgz:testok/a\(ps.gz NOT ok

less testok/a\ b.tgz:testok/a\)nroff.gz NOT ok

less -f testok/perlstorable.gz ignored, needs perlpackage
less testok/iso.image: /ISO.TXT\;1 ok

less testok/test.rpm:test.txt ignored, needs rpm2cpio
less testok/cabinet.cab:a\ text.gz ok

less testok/test.deb:. /test.txt NOT ok

less testok/test2.deb:./test. txt NOT ok

less testok/test3.deb:. /test.txt NOT ok

less testok/a\ b.tgz:testok/a\#b.sxw ignored, needs sxw2txt
less testok/a\ b.tgz:testok/a\~b.odt ignored, needs sxw2txt

Figure 1-8. Output from running make test after compiling lesspipe

Based on the feedback from the test script install the missing packages (feedback
from test script may differ based on your system):

sudo apt-get install antiword unrtf rpm2cpio

If you get back a message that a package isn’t found, you'll have to omit it or search
for the correct name on your OS package manager. For example, I found that sxw2txt
could be installed using the name odt2txt.

Next, run

sudo make install

That will replace your old version of lesspipe or install it if you didn’t have it. The
final step is to open your ~/.bashrc file and add the following lines to the bottom:

LESSOPEN="|/usr/local/bin/lesspipe.sh %s"; export LESSOPEN

With these steps done, you'll get the full power of less pipe to work with as many file
types as possible.

30

CHAPTER 1 LINUX PRIMER

Note The .bashxrc file contains account-wide configurations and variables that
can be accessed from the command line. For example, if we add a line saying
export FAVORITE COLOR="Blue" and then open a new terminal, we can
access the variable. Running echo $FAVORITE COLOR, for example, would

print “Blue” to the screen. Some programs will allow you to change settings

based on variables like this, for instance, a GUI-based program might look for
$FAVORITE_COLOR to set the colors for the layout. This particular variable isn’t
commonly used but demonstrates how programs can be configured this way. We’'ll
look at .bashrc more in a later chapter and how it can be used to improve your
command-line experience.

Regular Use of Less

As mentioned previously, less is used for viewing file text data in a way that allows you
to start at the top and slowly scroll your way down. Let’s review using less normally once
more before opening some other file types. First create a long file with several lines of text
using the command segq, short for sequence. The seq command takes a starting number

and an ending number as arguments and returns a sequence of numbers between them:
seq 1 999

This should output the numbers 1 to 999 (seq can be useful for custom scripts or
testing). Now run the same command again but direct the output to a file using the
special > character, which is used for directing text output into a file:

seq 1 999 > /tmp/numbers.txt

Note When creating files for tests, I'll often make the location /tmp; this folder
has the special property that everything in it will be deleted when you restart your
computer. If you know you’ll later delete a file as is the case with our numbers.
txt file, you should create it in the /tmp folder. That way you don’t have to worry
about having junk files laying around if you forget to delete it. Just be careful not to
leave anything important in your /tmp folder. Sometimes a script that starts out as
a throw away can develop into something you want to save for later.

31

CHAPTER 1 LINUX PRIMER

Now that we've created our file for testing purposes, open it using less /tmp/
numbers.txt. This will open the file with less starting at the top, as shown in Figure 1-9.
You can scroll down and up with the arrow keys or the page down and page up buttons.
To quit press q.

File Edit View Search Terminal Help

|

numbers. txt

Figure 1-9. Viewing a long filein less

Opening PDFs with Less Pipe

Less pipe also makes less capable of opening and reading PDF files. Similar to an image,
run less <filename.pdf> and you'll get a text version of the PDF in your terminal.

Opening Compressed Folder with Less Pipe

Compressed files and folders can be opened with 1ess when you have less pipe installed.
To demonstrate, create a folder with some files and compress them using tar (a common
utility for compressing and uncompressing files):

32

CHAPTER 1 LINUX PRIMER

cd /tmp

mkdir folder

cd folder

touch file1l file2 file3

cd ..

tar -zcvf folder.tar.gz folder

After running these commands, you'll have a compressed folder which contains
three empty files. Next let’s try opening it with less. You should get a list of folders and
files including the permissions of each file, as shown in Figure 1-10.

drwxr-xr-x philip/philip 0 2019-12-21 17:17 folder/

-rw-r--r-- philip/philip 0 2019-12-21 17:16 folder/filel
-rw-r--r-- philip/philip 0 2019-12-21 17:16 folder/file2
-rw-r--r-- philip/philip 0 2019-12-21 17:16 folder/file3

(END)

Figure 1-10. Output created from opening compressed folder with less

Image Metadata with Less Pipe

For the next example, you'll need to download an image or find an existing one on your
system. Navigate to the folder containing the image and open it using less; if you've
installed the latest version, you'll get back detailed metadata when opening an image
with less, as shown in Figure 1-11.

33

CHAPTER 1 LINUX PRIMER

File Edit View Search Terminal Help

==> append : to filename to view the raw data
Image: ibm-1570365855495-6786.jpg

Format: JPEG (Joint Photographic Experts Group JFIF format)

Mime type: image/jpeg

Class: DirectClass

Geometry: 1920x1200+0+0

Resolution: 96x96

Print size: 20x12.5

Units: PixelsPerInch

Type: TrueColor

Endianess: Undefined

Colorspace: sRGB

Depth: 8-bit

Channel depth:

red: 8-bit
green: 8-bit
blue: 8-bit

Channel statistics:
Pixels: 2304000
Red:
min: 28 (0.109804)
max: 255 (1)
mean: 119.868 (0.470069)
ibm-1570365855495-6786. jpg

Figure 1-11. Viewing image data in less with lesspipe

Other Files with Lesspipe

There are all kinds of files that can be opened and viewed with lesspipe. We won’t go in
depth on all of them, but here are a few others, so you know what is possible:

e All kinds of compressed folder including zip, gzip, 7-zip, and so on
o JavaJARfiles

o RARfiles

o RPM (Red Hat Package Manager files)

e« Microsoft Word, PowerPoint, and Excel

e ePub books

¢« HTML
e PDF
e MP4

34

CHAPTER 1 LINUX PRIMER

For a complete and up-to-date list, as well as any other companion programs you
might need to install for a file type, check out the official repository at https://github.
com/wofr06/lesspipe.

Note Some of the file types listed here depend on your system having some
additional packages installed. If you find a package you want to read isn’t working,
refer back to the install step where make test was run. If the file type you open
is tested and returns “ignored” and lists a package to install, you'll need to install
the said program. If the file type says “Not Ok” or says “Ok” but still doesn’t work,
you’ll need to visit the GitHub page listed earlier and check the issues tab for
others having similar problems (or opening your own issue if none are founa).

Scheduling Processes with Cron Jobs

Another important tool to know about is cron jobs. A cron job is a script or process that
runs at a specific time or interval. This can be useful for things like cleaning out a log
folder or backing up files at a set interval (we’ll look at this in the chapter 6).

To get started, run crontab with the -e flag, short for “edit”

crontab -e

The first time you run it, you'll be asked to select an editor. If you're not comfortable
with command-line editors (we’ll look at Vim and Emacs in later chapters), you should
choose nano as it’s the easiest to use. If you later decide you want to change the editor
used, you'll need to modify ~/.selected _editor or delete it to bring back the prompt.

Once crontab -e brings you to a file, go to the very bottom and create the example
job shown in Figure 1-12. Each of the five * symbols can be replaced with a number to
signify when they should run. The * symbol signifies a wildcard meaning it matches any
value. When all 5 values are wildcards is means the command will be run every minute,
of every hour, of everyday ect. The command shown in Figure 1-12 will create or update
the timestamp of the file /tmp/hello using touch every minute.

35

https://github.com/wofr06/lesspipe
https://github.com/wofr06/lesspipe

CHAPTER 1 LINUX PRIMER

* % % % * toych /tmp/hello

Command

‘ ‘ Day of week
Month of year
Day of month

Hours

Minutes

Figure 1-12. Labels for each element of a cron job

After adding the cron job, wait a minute or two and run 1s /tmp; you should see a
new file named hello. After confirming the cron job worked, be sure to delete the job to

keep your system clean.
Table 1-4 contains examples of cron schedules which use the various columns

including minutes, hours, weekdays, calendar days, and months.

Table 1-4. Examples of time intervals in cron

Cron Time Description

FE xR Every minute

Hrrxx The fifth minute of every hour
*/5**** Every 5 minutes

00001 Every Monday at midnight
0211~ January 1st, at 2:00am

Summary

In this chapter, we looked at choosing a Linux distro, finding information about a
program using man, common commands, creating scripts, and file permissions. We've
only touched on these topics briefly to get started. As we continue, we’ll go more in

depth especially on several of the topics listed.

36

CHAPTER 2

File/Folder Navigation

No matter what you're doing in the terminal, you’ll want to be aware of where you are in
the file structure of your system. You'll also want to know how to navigate to other folders
which have files you may need to work with. In this chapter, we’ll reiterate the basics and
look at other tools and methods for navigating the filesystem.

Basics

The most basic commands that anyone on terminal should be aware of are 1s to list
structure and cd for change directory. Entering 1s will return a list of files and folders in
your current directory, and then you can move into directories with cd followed by the
directory name. Table 2-1 lists some useful options that can be used with -1s.

Table 2-1. Options for Is

Command Description

-a Show hidden files and directories

--color Color highlighted output

-F Symbol at the end of file name to indicate type
-i Show file index number (inode number

| Long format with details

-t Sort by date time

-S Sort by file size

-r Reverse order

-R Recursively list current folder and subfolders

37
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_2

https://doi.org/10.1007/978-1-4842-6035-7_2#DOI

CHAPTER 2 FILE/FOLDER NAVIGATION

While 1s has several commonly used options, cd is almost never used with options
though it does have two, -P to not follow symbolic links and -L to force follow symbolic
links. While you won’t need options while working with cd, there are a few symbols you
should know.

When navigating, there are some global symbols which can be used as part of your
path shown in Table 2-2.

Table 2-2. Directory symbol

Command Description

Represents the current working directory
Represents the folder containing the working directory

~ Represents the home folder for the current user

These short forms are handy when using 1s or cd; we can be anywhere in the
filesystem, and if we want to return to our home folder, we can simply run

cd ~

inodes

We mentioned that 1s -1 will return a file index number or inode number, but what
exactly is an inode? Every time a file is created on a Linux system, it is assigned an inode
in the background. Each inode points to a place in memory where the file is located and
metadata related to the file including file size, file owner, and last time accessed.

All the inodes on your system are stored on a table which is preallocated a set amount
of memory. An interesting side effect of this is that you can run out of file space without
running out of disk space. To do this, you'd need to create enough tiny (or empty) files to
fill up the inode table, which nearly never happens. To get an idea of how many inodes you

could possibly store, run
df -i

You'll get back a list with a column called IFree for each drive on your system; this
represents the amount of free inodes on the drive. In my case, I have over 6.5 million free
inodes; thus to hit the maximum number of inodes, I'd have to create over 6.5 million files.

38

CHAPTER 2 FILE/FOLDER NAVIGATION

Though unlikely, it is possible. If you're curious and you'd like to simulate running out
of free inodes, here is a one liner that will use up all your inodes. Before using it, make sure
you're in the /tmp folder, so if you need to restart, all the files will be gone on the next boot.

cd /tmp

mkdir test

cd test

for i in $(seq 1 7000000) ; do touch $i ; done

You'll need to replace 7000000 with a number greater than the total amount of free
inodes on your drive. This command is purely for educational purposes and could take
hours to complete. Running out of inodes is extremely rare, but it can happen particularly
on systems which run for extended periods of time and have limited memory.

Get Current Location

Whenever you open a new terminal, you'll likely be in the home directory for your user.
So for user ubuntu, you'd be in /home/ubuntu/. This isn’t always the case and sometimes
you'll find yourself forgetting your location. You can find your current location by running

pwd

This will return the full path to your current location. It stands for “print working directory.’

Symbolic Links

In some cases, a directory is not a folder itself but a shortcut to another directory. These
are known as symbolic links, or soft links. You can create a symbolic link for an existing
file by running

In -s original file link file

This will create a file called 1ink file in your working directory which points to
original file. This new symbolic link file doesn’t contain any data itself. The symbolic
link only contains the filesystem address of the file it’s an alias for. This means you’ll have to
be careful when moving or renaming the aliased file as the system link will still point to the
original location.

39

CHAPTER 2 FILE/FOLDER NAVIGATION

When using the detailed version of the list structure command 1s -1, you'll see
an arrow pointing from 1ink file to the actual file location (Figure 2-1). The -1 flag
actually stands for “long” here.

philip@philip-ThinkPad-T420:~$ touch original_file

philip@philip-ThinkPad-T420:~$ cd /tmp

philip@philip-ThinkPad-T420:/tmp$ ln -s ~J/original_file link_file
philip@philip-ThinkPad-T420: /tmpS 1s -1

total 32

srwxrwxr-x 1 philip philip ® Jan 12 16:35 0eel13695b3b0036cc2e6dddaB78ben38-{B7A94ABO-
E370-4cde-98D3-ACC110C5967D}

FW======-= 1 philip philip @ Jan 12 16:34 config-err-Bvzuyl
lrwxrwxrwx 1 philip philip 26 Jan 12 17:05 -> /home/philip/ori
-rw-rw-r-- 1 philip philip 0 Jan 12 16:44 qtsingleapp-TexMak-44c1-3e8-lockfile
drwx------ 2 philip philip 4096 Jan 12 16:34 ssh-yvsmplzbiDgx

Figure 2-1. Details of a system link file

Orifyouuse 1s -F,you’'ll see an @ symbol at the end of files which are symbolic
links, as shown in Figure 2-2.

philip@philip-ThinkPad-T420:/tmp$ 1ls -F
0ee13695b3b0036cc2e6dddaB878be038-{87A94ABO-E37
config-err-Bvzuyl

link_file@
qtsingleapp-TexMak-44c1-3e8-lockfile
ssh-yvSmplzbiDgx/

Figure 2-2. Symbol @ specifying a system link

Symbolic links can also be applied to folders, making one folder which is a shortcut
to another.

Hard Links

Besides symbolic links, there are also hard links. A hard link is a clone of a file that points
to the inode for a file. Deleting the hard link (directory entry) for a file that has only a
single one also deletes the file. Multiple hard links can point to the same inode so long as
they are all in the same filesystem. Deleting one or more hard links to an inode does not
delete the inode or the file it points to until all of the hard links are deleted. A symbolic
link on the other hand is only a shortcut pointing to the original file. Unlike symbolic
links, a hard link cannot be applied to a folder, only to a file.

40

CHAPTER 2 FILE/FOLDER NAVIGATION
Creating a hard link is similar to creating a symbolic link but without the -s flag:
1n original file link file

Using 1s -1orls -F, youwill not be able to identify the hard link as being a special
type of file. Essentially, it is just as much a normal file on equal footing with the original
file; changing one will change the other. This is because both files point to the same
inode which in turn points to a single instance of the file. This means unlike soft links
you can move the location of either file without effecting the link.

As mentioned previously, every file on a Linux system has an associated inode. By using
1s -i, we can see the inode of each file in our current directory. Figure 2-3 shows an example
ofusing 1s -1ionahard link and the original file; notice that the inode is the same.

Ipht'liw@phtli.p-ThtnkPail-1‘42-6:-)H:rnp,,*'-tf.-sts sl
8156940 link_file 8156940 original_file
philip@philip-ThinkPad-T420: /tmp/test$S I

Figure 2-3. Output from ‘1s -1i’showing 2 files with the same inode number

Even when you move a file, the inode stays the same. The directory entry that points
to the inode moves from one directory to another. The inode remains unchanged, and
the locations of both the inode and the data belonging to the file are unchanged.

Navigation Stack with pushd and popd

cd and 1s are fairly well known, but there are a few more commands that can come in
handy once you get familiar with navigating file directories. The first of these is pushd.
pushd acts like cd but it creates a stack of directories so you can easily return to your
current directory later. For example, say you're in directory /tmp/ and you use pushd ~,
this moves you into the home directory just like ‘cd’ would,next do pushd /usr/local/
bin. This again changes your location like ‘cd’, but noice that a list of locations we’ve
visited is returned in Figure 2-4.

philip@philip-ThinkPad-T420:~$ cd /tmp
philip@philip-ThinkPad-T420: /tmp$S pushd ~

~ [tmp

philip@philip-ThinkPad-T420:~$ pushd /usr/local/bin
Jusr/local/bin ~ /tmp

philip@philip-ThinkPad-T420: /usr/local/bin$ I

Figure 2-4. List of folder locations shown in pushd stack
41

CHAPTER 2 FILE/FOLDER NAVIGATION

The current directory is shown on the left, and the furthest down the stack directory on
the right (in our case /tmp). Now if we run popd, we’ll pop our current directory from the
stack and move one to the right, in this case ~; then running it again we’ll return to /tmp.
This can be a useful alternative to cd when you want to keep track of a set of directories to
return to.

Another related command is simply running cd -. When you use the minus sign
after cd, you'll actually navigate into whatever directory you were in previously; you can
repeat this several times backtracking through all the directories you've visited.

Ranger

Another one of my most used Linux command-line programs is Ranger. Ranger is a

command-line program which makes file and directory exploration quick and easy,

especially on servers or devices which have no GUI-based directory explorer.
Install ranger by running

sudo apt-get install ranger

Once installed you can start it by simply running the command in the directory you
want to start in:

ranger

You'll get a three-pane view like shown in Figure 2-5. Pressing up and down will
change your selection on the middle pane. Press right to go deeper into the directory
displayed on the right, and left to explore the parent directory.

42

CHAPTER 2 FILE/FOLDER NAVIGATION

ihtltmihtltﬁ-ThtnkPad-Tllzo ihoneiihutpinrdutno
Desktop 2 sketch_junoéa
Documents 111
Downloads 282
ebooks 1
Music 0
packt 8
Pictures 627
Public (¢]
research 5
sketchbook 1
snap 2
Templates 0
tmp 11
Videos 0
VirtualBox VMs 1
vyper-venv 4
VyperContractGuIl 2
examples.desktop 8.77 K
texput.log 725 B
drwxrwxr-x 4 philip philip 2 2019-06-06 16:43 200K sum, 64.9G free 1/20 All

Figure 2-5. Navigation with Ranger

Navigating this way will quickly become second nature. Ranger also comes with
several keyboard shortcuts, inspired by the bindings in Vim. Some of my favorites include

S - Typing capital S will open the directory selected in the far left
pane to be opened in a bash session. From that point, if you press
ctrl+d or manually run exit, you’ll return to Ranger.

s - Typing lowercase s will open a small text box in the bottom left
of your screen where a shell command can be input. For example,
navigate to /tmp and after press s, enter the command mkdir
hello, and press enter. You'll see a new directory called hello
appear in /tmp.

Q - Typing capital Q will quit Ranger and return you to the
command line.

@ - Typing the @ symbol will allow you to enter a bash command
without leaving Ranger, for example, you enter touch hiand
press enter, and you'd see the current directory you're in add an
empty file of that name.

43

CHAPTER 2 FILE/FOLDER NAVIGATION

~ - Typing the ~ symbol will switch between the three levels of
directory view and a view that focuses on just the current one;
press it again to go back. The larger view is great when you're

dealing with long folder names or don’t want to get distracted.

o - Typing lowercase o will display a list of possible ways to sort
the files in the current directory, for example, by time changed or
alphabetically.

File Structure Visualization with Tree

Besides 1s, ranger is my most used program for viewing file structure. However, another
worth a mention is tree, which will need to be installed on most distros. ‘tree’ is also
very lightweight, instead of opening up a full program like ranger to explore the file
structure, ‘tree’ can be used to immediately create a visualization of your file structure -
for example, if I navigate into a project and run the following command

tree -L 2

Note Two here signifies how many levels (or directories) deep show; to go
deeper, simply increase the number.

the command will produce the visualization of file structure with a depth of two folders
down like shown in Figure 2-6.

44

CHAPTER 2 FILE/FOLDER NAVIGATION

phtltpﬁphtltp-fhtnkpad-T420:~ftmp/Cyber-Crtme-ntcro-CourseS tree -L 2

— attacks
brute-force.md
credential_stuffing.md
ddos.md
fuzzing.md
mitm.md
sql-injection.md

CNAME

_config.yml

cracking.md

data

t main.yml
pages.yml

docs

L— cyber-crime-overview.pdf

dorks.md

favicon.ico

glossary.md

hardware.md

imgs
cover.png
cybercrime-mindmap.png
openbullet.png

= 17

Figure 2-6. Filesystem tree displayed using tree

Navigate Filesystem with Vim

We'll have a dedicated chapter for editing with Vim, but it also has a built-in file/folder
explorer. With Vim open in normal mode, run the following command:

<Ex

This is short for : Explore which also works. Running the command will open a file

explorer within Vim, as shown in Figure 2-7, similar to Ranger but without a preview.

45

CHAPTER 2 FILE/FOLDER NAVIGATION

File Edit View Search Terminal Help

.wpscan/

.x2go/
.x2goclient/
.yarn/
Arduino/
Desktop/
Documents/
Downloads/
GNUstep/

Mail/

Pictures/
Public/
Templates/
Videos/
VirtualBox VMs/
VyperContractGul/
backup/

bin/

ebooks /
ice-sphere_bData/
mail/

obj/

[

93.1 56%
Figure 2-7. Vim Explore

Optionally you can pass an argument of the folder you want to open with explore in
Vim, for example:

:Ex /home

This will cause explore mode to open in the home folder instead of your current
working directory. You'll be able to navigate using normal Vim keybindings j for down
and k for up or using the arrow keys. You can press enter on a folder or file to open it.

Summary

In this chapter, we explored commands related to navigating the file directory. We also
looked at file attributes such as system links, hidden files, and metadata like time last
modified. We saw how inodes play a key role in how the underlying filesystem works by
associating file names to metadata and the underlying data in disk space.

In addition to looking at attributes of the filesystem, we introduced tools that make
exploring the filesystem easier. Ranger and Vim Explore both allow us to quickly navigate
files. While the additional flag options on 1s allow us to see file attributes which are
normally hidden.

46

CHAPTER 3

History and Shortcuts

In this chapter, we're going to look at using shell history, built-in keyboard shortcuts for
bash terminal, and file globbing. These techniques will help you move faster as you enter
new commands, repeat past ones, or modify partially written ones.

History

It’s great having lots of useful commands at your fingertips, but with so many it’s easy to
lose track. That’s where the history command comes in handy. The history command
should come preinstalled on most Linux systems. Running the command returns a list of
your last run commands.

By default most systems will only retain about 2000 commands before deleting old
history. I recommend increasing that number. You can do so by modifying your ~/.
bashrc; search for the lines containing HISTSIZE and HISTFILESIZE:

see HISTSIZE and HISTFILESIZE in bash(1)
HISTSIZE=10000
HISTFILESIZE=10000

It’s also possible to set your history to unlimited; simply declare an empty value:

HISTSIZE=
HISTFILESIZE=

To cut down on space when saving a larger number of commands, I like to turn on
ignoreboth and erasedups. ignoreboth is a shorthand that combines both ignoredups and
ignorespace. The ignoredups option causes commands run more than once in a row to
only be recorded once. The ignorespace option causes commands that start with a space
not to be saved to history. So, if for any reason you don’t want a command to be saved, just
prepend it with a space. The erasedups option will actually go through your whole history

47
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_3

https://doi.org/10.1007/978-1-4842-6035-7_3#DOI

CHAPTER 3 HISTORY AND SHORTCUTS

each time you run a command and remove any other instances of it. One potential downside
of erasedups is that if you get history, and then run multiple commands, the deleting of a
command can shift the numbers, in which case you'd have to run history again to update
the correct numbers, or accidentally run the wrong command.

HISTFILESIZE=10000

don't save duplicate lines or lines starting with space
See bash(1) for more options
HISTCONTROL=ignoreboth:erasedups

Another history option worth turning on is histappend to help with keeping track
of history when you're using multiple terminal sessions. By default, when a terminal
instance is closed, the history file is overwritten instead of appended. This causes only
the history of the last closed session to be saved. You can turn histappend on with

append to the history file, don't overwrite it
shopt -s histappend

Scrolling 10,000 lines can take a long time; that’s where grep comes in handy. Say
you remember using ffmpeg for cutting a video, but you don’t remember the exact flags
and inputs. Simply run

history | grep ffmpeg

Once you see the command you're looking for you can use the number on the left
handside to quickly run it again. Another example of history output is shown in Figure 3-1.

2007 emacs

2008 sudo apt-get install emacs
2009 vi hi/hi

2010 history

2011 cd

2012 vi ~/.bashrc

2013 history | grep ffmpeg

2014 history
philip@philip-ThinkPad-T420:~$ ||

Figure 3-1. Command history

Given the history output shown in Figure 3-1, we could run Emacs by entering

12007

48

CHAPTER 3 HISTORY AND SHORTCUTS

This workflow will speed up the rate at which you can enter commands significantly.
In some situations, you can combine these two steps into a single one by using !? instead
of just |. For example, if we wanted to run command 2012 from Figure 3-1 we could run

I?vi

What this does is search for the most recent command in your history that contains
vi. It doesn’t have to reference the start of the command either, as long as the string is
within the command. So the following would also result in command 2012 being run:

I?bash

Using the preceding methods of working with history can greatly increase the speed
with which you enter commands. However, you have to be careful since if the text is
found in a command other than the one you intended, it will automatically run.

Bash Shortcuts

Keyboard shortcuts come in handy on most programs, and this is true with bash. You
should be aware that a large amount of keyboard shortcuts for bash shell exist. Personally,
I only use a few of these commands, but the ones I do use have been extremely useful.

When you first start, you may find you only use one or two. It’s likely you'll slowly and
gradually learn commands, and once comfortable you may decide to add more to your
regular workflow. Start with a few useful commands listed here, and as you become used
to them, come back and try to incorporate more.

The most basic shortcut while using bash is the tab key. The tab key when double
tapped activates autocomplete, as shown in Figure 3-2. To demonstrate, try writing the
1s command followed by a space, and before pressing enter, tap tab twice.

philip@philip-ThinkPad-T420: /S 1s

bin/ 1ib/ opt/ sys/

boot/ 1ib32/ proc/ tmp/

cdrom/ 1ib64/ root/ usr/

dev/ 1ibx32/ run/ var/

etc/ lost+found/ sbin/ vmlinuz
home/ media/ snap/ vmlinuz.old
initrd.img mnt/ srv/

initrd.img.old nix/ swapfile

philip@philip-ThinkPad-T420:/$ s |}

Figure 3-2. Double tapping folders available for autocomplete

49

CHAPTER 3 HISTORY AND SHORTCUTS

You should see all the files in your working directory like in Figure 3-2. Tab can be
used in this way with nearly any command which takes a file as an input.

Note Keyboard shortcuts that make use of ctrl plus a letter are based on the
default keybindings for most distros. If you find that these shortcuts aren’t working on
your machine, you’ll want to see the next section “Emacs vs. Vim Keyboard Bindings”.
As it’s possible the default mode differs on your system or has been changed. It’s

also possible these shortcuts might not work if your distro has assigned some global
behaviour to the binding. For example, when using Xubuntu | found that some of my
most used bash keyboard shortcuts didn’t work. | ended up doing some research and
found a settings panel specific to the distro where | could remove some of the global
keyboard shortcuts which caused the application specific shortcuts to be active again.

Next to tab, my most used keyboard shortcuts are ctrl+b and ctrl+a.

ctrl+a = moves text cursor to the start of the command

ctrl+b = moves text cursor to the end of the command

So if you've written a long command and notice a typo before pressing enter, you can
use ctrl+a to quickly move back and fix it, then return to where you were with ctrl+b.

I often find myself using this in combination with 8. This tells bash to run the command
after && only after the first command runs successfully. Alternatively, you can use a single & if
you want the second command to run regardless of whether the first command is successful
(e.g. if tmp.txt doesn’t exist, with & the git add * won'’t run, whereas with & it will).

Say, for instance, you've entered the command git add *, but you realize you had
a file you wanted to delete first. Simply press ctrl+a to move your cursor to the first
charachter of the terminal input and change the command to

m tmp.txt 8& git add *

Instead of deleting what you've written and having to enter it again later, simply
write the prerequisite command at the start and chain it using 8&. There is something
satisfying about chaining several commands together and having them all run
successfully. I might think that because the moment after entering a chain of commands
can be the perfect time to pour a cup of coffee while waiting for them to process.

The other two commands I use are ctrl+c and ctrl+d.

ctrl+c = cancels the current command

ctrl+d = closes the current terminal

50

CHAPTER 3 HISTORY AND SHORTCUTS

Pressing ctrl+d simply closes your current terminal instance, producing the same result as
running the command exit. The obvious use is quickly closing a terminal window when you're
finishing it, but you can also use it to close other programs like tmux or end an ssh session.

Have you ever written a long command and realize you want to do something
completely different? When this happens, our instinct is to hold down the backspace
button, for what can seem like forever. Next time try ctrl+c, short for clear input,
instead. It'll give you a fresh input to write on without executing the command.

If you often find yourself running the command clear, you'll want to take note of ctr1+1.

ctrl+l = clears the screen of all text and leaves you with a new command line at the top
of the terminal session

A list of all the Emacs keyboard shortcuts (default mode on most systems) is shown
in Table 3-1.

Table 3-1. List of default (Emacs style) bash keyboard shortcuts

Sequence Description

ctrl+a Go to the beginning of the line

ctrl+e Go to the end of the line

alt+b Move cursor one word back

ctrl+b Move cursor one character back

alt+f Move cursor one word forward

ctrl+f Move cursor one character forward

alt+t Swap last two words

ctri+t Swap last two characters

alt+r If you've modified command from history, reset changes
ctrl+k Delete all after cursor

ctrl+u Delete all before cursor

ctrl+w Delete last word

ctrl+y Paste deleted words (works as undo for ctrl+w)

ctrl+l Clear past terminal output (same as clear command)
ctrl+z Background running process

51

CHAPTER 3 HISTORY AND SHORTCUTS

Emacs vs. Vim Keyboard Bindings

An interesting fact is the bash keyboard shortcuts are actually based on the keybindings
in Emacs, a popular open source text editor. Many of the keybindings that work in bash
will also work in Emacs. However, it is possible to enable Vim-like keybindings in bash.
To do so, run the following command:

set -0 vi

Running set -o vi will set Vim keybindings for your current session only; to enable
it permanently, you should add it to your .bashrc file. You can set bash and even more
programs to use Vim bindings at once by adding the following line to your . inputrc file:

set editing-mode vi
Alternatively, if you want to explicitly specify Emacs-style bindings, you can instead add
set editing-mode emacs

The . inputrc file affects the input of all programs which use the GNU readline library,
a popular library used by several utilities including bash, and other operating systems like
OpenBSD. Some of the programs that use GNU readline library include but not limited to

Abiword, Amanda, Atari800, Bacula, Bareos, GNU bc, BlueZ, Cdecl,
ConnMan, Freeciv, FreeRADIUS, GNU ftp, NetKit ftp, FVWM, GDB,
GPG, Guile, Hatari, Hunspell, Lftp, NetworkManager, nftables,
Parted, the rc shell, Samba, SQLite, GNU Units, VICE, Wesnoth,
WPA Supplicant, Lua REPL, Python REPL, Ruby REPL ...

Hence, any setting which is changed in .inputrc will affect them all. The . inputrc
file doesn’t exist by default but if added will affect the way bash receives input. Aside
from changing between the default emacs mode and vi mode, other behaviors of the
terminal can be modified. We’'ll look at . inputrc in depth in a later chapter.

The vi-style keybindings don’t have an equivalent set of shortcuts but rather mimic
the idea of having separate modes for typing and running commands. If you are using vi
mode and press esc, you'll switch to command mode where you can use some (but not all)
vi commands like 0 to go to the start of the line, $ to go to the end, w to go forward a word,
and b to go back a word.

If you're not familiar with Vim or vi and the various commands, we recommend
sticking with the default Emacs keybindings, though Vim is definitely worth learning

52

CHAPTER 3 HISTORY AND SHORTCUTS

and there will be a chapter dedicated to Vim further in the book. After reading it and
getting comfortable with using Vim, you may wish to return to your bash settings and
experiment with vi-style shortcuts. I use Vim as an editor but still prefer the Emacs style
keybindings on bash as they’re simple and the common default.

Reverse Search

Another shortcut that we didn’t discuss in the last section is ctrl+r for reverse search.
I prefer to use the history command, but many people prefer using the interactive
reverse search.

After pressing ctrl+r, you'll go into an interactive mode where if you start typing a
previously written command, it will show in the autocomplete as shown in Figure 3-3.

philip@philip-ThinkPad-T420: ~

File Edit View Search Terminal Help
(reverse-i-search) sys': Bystemctl status cups

Figure 3-3. Reverse search in terminal

Once you see the command you want to run, you can press enter to run it. Or you can
press tab to return to normal shell mode with the command ready to be run or modified.
For example, given the preceding command, I might press tab and then ctrl+e to go to the
end of the line, delete cups, and then write a different service to fetch status on.

If you've started writing a command in reverse search and autocomplete isn’t the
one you want, you can press ctrl+r to go one further back. So in the example shown,
pressing ctrl+r would show the next match in history which starts with sys.

File Globbing or Wildcards

File globbing is a feature in Linux which allows multiple files to be represented through
the use of wildcard characters. The most well-known wildcard character is * which
represents one or more of any character. For example, run

echo *

53

CHAPTER 3 HISTORY AND SHORTCUTS

This will run the command echo on all files in your current directory. The wildcard
can also be used in combination with other characters, for example:

1s /dev/sd*

It will not return all files in /dev/ but only files within the folder which start with “sd”

The * isn’t the only character that can be used, though it is by far the most common.
Another possible wildcard for globbing is ?. The ? character is similar to the * in that it
can represent any character, but it is only a single character rather than any amount. If
we modify our previous command to be

1s /dev/sd?

instead of getting back all files that start with “sd’, we now only get back files that start

with “sd” and have one additional character. Notice the difference in output between the
two in Figure 3-4.

philip@philip-ThinkPad-T420:/tmp$S ls /dev/sd*

Jdev/sda [dev/sdali [dev/sda2 [dev/sda3 [dev/sda4
philip@philip-ThinkPad-T420: /tmp$ ls /dev/sd?
Jdev/sda

philip@philip-ThinkPad-T420:/tmp$S ||

Figure 3-4. Comparing the * and ? wildcard characters

The last character that can be used, or rather character combination, is the square
bracket [], known as a set often used with characters inside. For example, if we wanted

to repeat our preceding command that used ? but also include other drives like sdb and
sdc (if they exist), we can do

1s /dev/sd[abc]

54

CHAPTER 3 HISTORY AND SHORTCUTS

This will match a single character as long as it is one specified inside the brackets, in
this case, a, b, or c.

Summary

In this chapter, we looked at using bash history, shortcuts, and file globbing. By making
use of these techniques, you'll significantly speed up your workflow by having to write

less as you enter commands.

55

CHAPTER 4

Scripts and Pipes

Creating Scripts

Once you get familiar with working with files and using various commands, you'll soon
find you want to combine several commands, sometimes creating long sequences that
can be somewhat time consuming. We’'ll go more in detail later on, but for now it’s good
to know this is possible. Creating a list of commands to run one after the other is as easy
as writing a grocery list of things you need to buy (once you know the basic steps).

You simply open a text file using any editor (rano was mentioned earlier, but you can
even use a desktop text editor if that’s easier). On the first line of the text file, you write or
paste in a special line called a “shebang” which indicates that the file is a script (more
details in the next section). Then you start listing off commands to be run line by line.

Creating scripts for commonly run sequences of commands can come in handy.
You can save the commands as a text file and then run the sequence as a single step. The
steps required for creating a script from a bird’s eye view are as follows:

1. Create a text file containing the commands.

2. Make the top line of the file a shebang (explained later).

3. Save file.

4. Make the file executable using permissions (explained later).
5. Runthe command ./myScript.sh.

Below is an example of a simple script called name. sh:
#!/usr/bin/env bash

echo First name: $1
echo Last name: $2

57
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_4

https://doi.org/10.1007/978-1-4842-6035-7_4#DOI

CHAPTER 4 SCRIPTS AND PIPES

This script takes two arguments, one for first name and one for last. These arguments
are represented in the code with $1 and $2. It would be executed by running

./name.sh Philip Kirkbride

When run two lines will output, the first line being “First name: Philip” and the
second line “Last name: Kirkbride” Unless of course you swap the input for your own
name in which case the names will be swapped out.

We'll look more at steps 2 and 4 in the preceding list which are needed before
actually running the script in the following sections.

Shebang

A shebang refers to the first line in a script, when that line begins with #!. The word
comes from the musical notation term for # sharp and the ! sometimes being called
“bang”; combining these two becomes “sharp-bang” or shebang for short.

The shebang when used as the first line of a file specifies the program which will be
used to interpret the script. The most popular one relevant to writing Linux scripts is

#!1/bin/bash

The same thing can be expressed using /usr/bin/env which increases portability by
using whatever version of bash is found in the user’s path.

#!/usxr/bin/env bash

The shebang is not limited to bash scripts. It should also be the first line when
writing scripts in other scripting languages such as python, ruby, or perl.

#!/usr/bin/env python

File Permissions

As mentioned previously, the fourth step in making an executable script is changing the
permissions on the file to allow execution. The short and simple way of doing this is to run

chmod +x name.sh

58

CHAPTER 4 SCRIPTS AND PIPES

This simply adds the execution permission to the file for our current user. After
running the command, you'll be able to make use of it simply by running the following
(assuming you're in the same directory as the file):

./name.sh

It's worth understanding the concept of permissions on Linux as it’s a crucial aspect
of the operating system. Every file has three different types of permissions:

¢ Read
e Write
o Execute

Each of these three permissions can be set separately for three groups:

e User
e Group
e Others

When using 1s -1, you can see the set permissions for each file expressed on the
left-hand side, as shown in Figure 4-1.

srwxrwxr-x 1 philip philip
“W-=====- 1 philip philip
drwxr-xr-x 2 philip philip
-rw-r--r-- 1 philip philip
drwxr-xr-x 2 root root

Figure 4-1. Permissions for files shown in the first column when running s -1

Note The first letter in this ten-letter sequence is used to indicate special

file types. The possible values are d=directory, c=character device, s=symlink,
p=named pipe, s=socket, b=block device, and D=door. We don’t have to deal with
these special types, but it’s worth knowing what the first letter is.

After the first letter which indicates special file types, there are nine more letters. We
can break these nine letters into three sets of three, as shown in Figure 4-2 - the first being
file permissions for file owner, the second for user group, and the third for all other users.

59

CHAPTER 4 SCRIPTS AND PIPES

- TWX r'w- r--
File type
User
Group
Others

Figure 4-2. Components of file permissions

For the three sections, we have three different letters which if present indicate that
groups has said permission:

e r=read
e W =write
e X =execute

In the example given, we have a file with all permissions for the owner, read and
write for the user group, and only the ability to read for all others who can access the file.
Permission data can also be displayed as a set of three numeric symbols where a
single number represents the combination of the permissions. Each of the permission

types is given a numeric value:

e 4=read
e 2 =write
e 1 =-execute

For any group we add up the permissions to get a number representing allowed
permissions. For example, read and write would be 6 (2 + 4), write and execute would be
3 (1 +2), and no permissions would be 0.

Using this notation, we would express rxw rw- r-- as 764. Either of these notations
can be used when changing permissions for a file. For example, we can run

chmod 777 numbers.sh

60

CHAPTER 4 SCRIPTS AND PIPES

This gives all permissions to all users. Or if we want to use the notation with letter, we
could run the following command to take away execution permission for all groups (note
the-; if we wanted to add, it would instead be +):

chmod -x numbers.sh

If we want to use number notation for a specific column (user, group, or others), we
can first specify the group, for example, add execution permission back but only for the

owner:

chmod u+x numbers.sh

File Types

While we've defined our script using the file type . sh, this is not actually required in
Linux. We can just as easily have named it name instead of name. sh, and it would work

just the same.

Note Some teams prefer scripts without the ‘. sh’ extension, for example, the
Google Shell Style Guide actually specifies the extension . sh should not be used.
Despite this several public repositories managed by Google contain shell scripts
which include the . sh. This just goes to show even at a company which states a
preference you can’t be sure if scripts will include the . sh extension.

A useful command for detecting file type is file. To experiment with this, first
change the file name of name. sh to name. Next run the following:

file name

You should get back a message saying the file type is Bourne-Again shell script. Next try
opening the file and editing the shebang to be the one for python, as listed in the shebang
section.

#!/usr/bin/env python

After saving try running file again. Repeat this process trying different shebangs,
including python, ruby, and perl. You should get results similar to those shown in

Figure 4-3.

61

CHAPTER 4 SCRIPTS AND PIPES

philip@philip-ThinkPad-T420: /tmpS file name
name: Bourne-Again shell script, ASCII text executable
philip@philip-ThinkPad-T420: /tmpS vi name
philip@philip-ThinkPad-T420: /tmpS file name
name: Python script, ASCII text executable
philip@philip-ThinkPad-T420:/tmp$ vi name
philip@philip-ThinkPad-T420: /tmpS file name
name: Ruby script, ASCII text executable
philip@philip-ThinkPad-T420: /tmp$ vi name
philip@philip-ThinkPad-T420:/tmpS file name
name: Perl script text executable
philip@philip-ThinkPad-T420: /tmp$S I

Figure 4-3. Results of changing file type by editing the shebang

Pipes

Pipes are one of the most common features of basic syntax. If you're familiar with them,
feel free to skip over this section. A pipe simply connects the output of one command as
the input to another command. We'll use a fun example to demonstrate the concept.

To start install fortune and cowsay:

sudo apt-get install fortune-mod cowsay

Fortune is a full little command-line program with a long history dating all the way
back to version 7 of Linux in the early 1990s. It simply generates a random quote, for

example, running the command on my computer now returned

“You never know how many friends you have until you rent a house on the
beach.”

Try it yourself by running fortune a few times. Each time it’s run, a random quote from a
long list is output. Now for fun let’s pipe the output into cowsay:

fortune | cowsay

Now we get back a random fortune inside a little piece of text art shown in Figure 4-4.

62

CHAPTER 4 SCRIPTS AND PIPES

philip@philip-ThinkPad-T420:~$ fortune | cowsay

/ I have never let my schooling interfere \
| with my education. |
I |
\ -- Mark Twain /

A A

\ (00)\
N N/\

[]-=--w |

Il Il
philip@philip-ThinkPad-T420:~$ [J

Figure 4-4. Piping fortune to cowsay

As the fortune generated is from a random list, the one you see should be different
from the one in Figure 4-4. What'’s happening here is that the output from the fortune
code is being used as the input for the cowsay command. The receiving command is
completely unaware of the process which generates said text.

We can, for instance, swap our fortune command with a simple echo:

echo hello world | cowsay

In this case, as you might expect, the cow says “hello world” There is no limit to how
many pipes can be used. We can further process our text before sending it to cow say
using another pipe in between the two commands:

echo hello world | rev | cowsay

In this case, our “hello world” text is reversed to “dlrow olleh” before it reaches the
cowsay command. In the next section, we’ll look more at using multiple pipes.

Multiple Pipelines

Throughout this book, we’ll be writing bash scripts in addition to simply exploring
command-line programs. As you start to write more bash scripts, you'll often find you
need to use pipe, not just once but several times.

With complex scripts that string together command-line programs with pipes,
you'll find your scripts start to look a little bit messy. One of the most useful formatting
techniques is the multiline pipeline. This is simply when you separate a series of pipes
into multiple lines by using \.

63

CHAPTER 4 SCRIPTS AND PIPES

If your command pipeline fits nicely on a single line like the following, you don’t
need to worry about spreading it out on multiple lines:

All fits on one line
commandl | command2

If however you're using multiple commands in a chain and it goes beyond a single
line or looks hard to read, spread it out to multiple lines as shown in the following:

Long commands
commandl \
| command2 \
| command3 \
| command4 \

The preceding example came from the Google Shell Style Guide, a great resource for
tips on making your shell scripts more readable. Some of the guidelines are related to
internal preferences at the company (e.g., using two spaces instead of tab), while other
tips are generally applicable to all shell scripts.

Once you become more comfortable writing shell scripts and find you're doing it
often, you should take a look at the Google Style Guide for shell scripts. It'll help you
consider factors that make your scripts more readable to other developers or system
admins who might come across your scripts.

https://google.github.io/styleguide/shell.xml

Chain Commands with && and |

In this section, we're going to talk about some logic syntax built into bash that can come
in handy - specifically, && which can be used as AND and | | which can be used as OR.

&& the operator for "and"
|| the operator for "or"

This is very useful when you need to use a long-running command followed by
another command. For example, say you're connected to an IoT device with slow Internet
connection, you need to update the system and, once that’s done, install a new program.
You could simply run

sudo apt-get update \
8& sudo apt-get install -y program-x

64

https://google.github.io/styleguide/shell.xml

CHAPTER 4 SCRIPTS AND PIPES

Note the -y flag used; this tells apt-get to answer yes when asked for confirmation.

This can be very useful in combination with tmux (a program for switching between
terminal instances quickly, which we’ll explore in depth in a later chapter). At a previous
job, I often found myself on site having to SSH into five to ten different IoT devices.
Stringing together multiple commands, I could give a device enough work to keep it busy
for 15 minutes and then immediately switch to another tmux session already connected
through SSH to another device and get to work immediately.

The or operator || can be just as useful when you know you need to run a second
command but only in the case that your first command fails. For example, say we have
a common problem on our IoT device where if a command fails, we’re likely out of disk
space; in said case we want to remove all logs:

sudo apt-get install -y program-x \
|| sudo rm -rf /var/log/*

Exit Codes for && and Il

It should be noted that whether the | | or 88 are triggered depends on the exit code of the
command that precedes it. It isn’t sufficient just to have output on standard error. For
example, let’s write a file at /tmp/err. sh with the following:

#!/usxr/bin/env bash
>&2 echo Error

Make the file executable with chmod +x /tmp/err.sh and then run the command
with a | | statement like the following:

/tmp/err.sh || echo error

Notice that you get back the standard error text, but the echo error command is
never run. This is due to the fact that our program is still returning an exit code of 0. We
can see the exit code by adding the following to the bottom of our script:

echo $?

Now when running the script, you should see an additional “0” output. If you'd like to
change the exit command, you can use the exit command. At the bottom of our script, add

exit 1

65

CHAPTER 4 SCRIPTS AND PIPES

Now if we run the script again with our | | statement, we'll see the echo error command
trigger. We aren’t limited to exit code 1 here, numbers 0-255 are all valid exit codes. The exit
code 0 specifies a successful execution, while codes 1-255 specify an error. Some of these exit
codes are normally used for specific errors; others are left for program-specific errors. A list of
standard error code numbers and their meanings are shown in Table 4-1.

Table 4-1. Standard meanings for exit codes

Code
0 Default, command ran without issue
1 Catchall for all nonspecific errors

126 Command invoked is not executable
127 Command not found

128 Invalid argument to exit

128+n Fatal error signal “n”

130 Script ended by ctrl+c

255* Exit status out of range

As you can see, even with these reserved error ranges, there is plenty of room for
you to define your own custom errors. This can be useful if there are multiple ways your
script can fail and you want a way to programmatically detect those particular cases.

Using && with I

You can also mix the operators together for more complex use cases. Say, for example,
we want to check if a string is in a text file using grep, then pass the word “true” or “false”
to the cowsay program. In that case, we need to introduce the use of brackets:

(grep -q dog /tmp/test 8& echo true || echo false) \
| cowsay

Similar to the use of brackets in math, the statement inside the brackets will be
evaluated and passed through a pipe to cowsay, as shown in Figure 4-5. If the file /tmp/
test exists and contains the word dog, we should see something like:

66

CHAPTER 4 SCRIPTS AND PIPES

philip@philip-ThinkPad-T420:~S (grep -q dog /tmp/test && echo true || echo false) \
> | cowsay
grep: /tmp/test: No such file or directory

< false >
\ A-_A
\ (e0)\
AN JAVAN

[[--=ew |

I [
philip@philip-ThinkPad-T420:~$ ||

Figure 4-5. Cowsay saying true or false based on a condition

Of course false is returned since the file /tmp/test doesn'’t exist. Try creating the file
with some text that includes “dog”. You can do that quickly with the command
echo dog > /tmp/test

Once you've run this command, running the previous command should instead
return true. The > symbol used here is a redirect which we’ll look at more closely in the
next section.

Redirects

As we saw in the last section, we can use the > character to send text into a file rather
than piping into another program. This can be done with the output from any program.
When using the standard redirect, you should be aware that any existing content in that
file will be overwritten. Running

echo dog > /tmp/test
echo cat > /tmp/test

will resultin /tmp/test only containing the text “cat” If you want to append text to the
file instead of replacing the content, you should instead use >>:

echo dog >> /tmp/test
echo cat >> /tmp/test

This will instead result in a file which contains two lines, one with “dog” and one
with “cat”.

67

CHAPTER 4 SCRIPTS AND PIPES

The output in a redirect by default contains both the output and any errors. We can
instead redirect errors to a separate location by adding

echo cat > /tmp/test 2> /tmp/error

However, with the preceding example, no errors are being created. To generate both
standard output and standard error in a single command, use 1s on an existing file and a

nonexistent file:
1s /tmp/test /tmp/nope777 > /tmp/test 2> /tmp/error

After running the preceding command, you should have content in both the /tmp/
test file and /tmp/error. As with a normal redirect, we can use >> to append instead of
replace the text:

1s /tmp/test /tmp/nope777 >> /tmp/test 2>> /tmp/error

If you run the preceding command multiple times, you'll end up with lines in each
file for each time it was run.

Redirect and Pipe at Once with tee

Redirecting output to a file and piping are both powerful tools, but what if you want
to do them both at once? A popular utility called tee exists for exactly this purpose. It
duplicates the input and sends it to both a file and the output as shown in Figure 4-6.

File
m
Ouput

Figure 4-6. Diagram of output from tee command

The tee command takes output from standard output, saves it to a file of your
choice, then passes that output to its own standard output. For example, say we have the
following command using a redirect to write the output “hello” to a file called greeting:

echo hello > greeting

Running the preceding command, we’ll end up with “hello” in our greeting file but
will see nothing in our standard output. The same program modified to use tee would be

echo hello | tee greeting
68

CHAPTER 4 SCRIPTS AND PIPES

With tee, we’ll end up with “hello” in our greeting file, but we also see “hello” in the
standard output. If you want tee to act like >> and append to a file rather than > which
replaces the text, you can use the -a flag.

Another example of using tee, say we want to pass a math equation to the math utility bc for
processing. We'll output the result to a file called math, but we also want to show the equation
that led to the result. We could make use of tee for this using the following command:

echo "7 * 7" | tee math.txt | bc >> math.txt

This causes the file math. txt to be written to twice. Once using tee and the input,
and a second time via ‘>>’. Thefile math.txt should contain:

7 %7
49

xargs

While wildcards are good for file expansion when running commands on multiple files,
sometimes you want to instead run a command on each line of output from another
command. For this we can use xargs to demonstrate; we’ll use a command that could
just as easily be done with a wildcard:

1s | xargs cat

The preceding command has the same output as cat *; it outputs the contents
of each file in your current directory. The difference is in how it is done. Rather than
expanding the wildcard and passing each file into a single cat command, we instead
take each line output from the 1s command and use it as the input for a separate cat
command for each line.

Using xargs allows you to do things which are not possible with a wildcard. For
example, say [want to remove all files of a certain type. An example I'll use is . swp files;
these are recovery files for the text editor Vim. In my case, they don’t contain any useful
data but were left behind by exiting the program abruptly (e.g., closing a terminal window
without closing the editor). I can run a find and remove on my home directory by running

find ~/ -name "*.swp" | xargs rm

This will take each result which is returned by find and run rm on it. I ran find before
and after the command to demonstrate all the . swp files are removed, as can be seen in
Figure 4-7.

69

CHAPTER 4 SCRIPTS AND PIPES

philip@philip-ThinkPad-T420:/tmpS sudo find ~/ -name "*.swp"
/home/philip/tmp/serial/serial_comm/.test. js.swp

/home /philip/.cache/yarn/v4/npm-jshint-2.9.7-038a3fa5c328fa3ab03ddfd85df88d3d87bedcbd/n
ode_modules/jshint/src/.precedence. js.swp

/home /philip/.cache/yarn/v4/npm-colors-1.3.2-2df8ff573dfbf255af562f8ce7181d6b971a359b/n
ode_modules/colors/lib/.colors. js.swp

/home/philip/research/.eqn.ms.swp
/home/philip/research/event-generation-from-knowledge-structure-for-mobile-larp-game/so
urce/client/src/modules/.SettingsPage. js.swp

/home /philip/research/event-generation-from-knowledge-structure-for-mobile-larp-game/so
urce/server-interface/node_modules/jshint/src/.precedence. js.swp
/home/philip/research/event-generation/src/modules/.SettingsPage. js.swp
philip@philip-ThinkPad-T420:/tmp$ sudo find ~/ -name "*.swp" | xargs rm
philip@philip-ThinkpPad-T420: /tmp$ sudo find ~/ -name "*.swp"
philip@philip-ThinkPad-T420: /tmp$ I

Figure 4-7. Results from searching for swp files with find

Conditional Expressions in Bash

As you start to combine several components of programs using & and | | via the command
line, you'll likely find it starts to get easier to write a dedicated script rather than manually
enter a long string of commands from the command line. As you move from command
line to writing a script, it'll be easier to use some of the more complicated syntax tools.

One of these tools is the if statement, which is more like a series of possible tests,
each with their own specific option. For example, if we want to check if a file exists, we’'d
use the -e option. Create a script and add the following:

if [-e /etc/passwd]; then
echo passwd exists
fi

When you run the script, you should get the output “passwd exists” Try changing /
etc/passwd to a file that doesn’t exist. Or if you'd like to test if the file doesn’t exist, you
can add a ! as shown in the following:

if [! -e /etc/passwd]; then
As with other languages, we can add an else to our if statement:

if [-e /etc/passwd]; then
echo passwd exists

else
touch /etc/passwd

fi

70

CHAPTER 4 SCRIPTS AND PIPES

The preceding syntax works for several different possible tests that can be run by
substituting the -e. The list is quite long and can be found by runningman bash and scrolling
down to the conditional expression section. Some of the more commonly used flags are
shown in Table 4-2.

Table 4-2. Conditional expression options

Code

-d True if exists and is a directory

-f True if exists and is a regular file

-e True if exists

-S True if file exists and has a size greater than 0

-X True if exists and is an executable

Is a Directory with -d

The -d flag can be used to confirm that a file exists and is a directory. This can be useful if
you want to make use of a directory but aren’t sure that it exists or if it does exist that it is
a directory and not a file. An example of using -d is shown here:

mkdir /tmp/test

if [-d /tmp/test]; then
rmdir /tmp/test

fi

Is a Normal File with -f

The flag - f is similar to -d but tells us if a file is a regular file, rather than a directory.
Again this can be used before making use of a file to ensure that it exists and is the right
type. An example of -e is shown here:

touch /tmp/test

if [-f /tmp/test]; then
m /tmp/test

fi

71

CHAPTER 4 SCRIPTS AND PIPES

Check if File Exists with -e

The -e is a sort of combination of both -f and -d as it only tests that a file exists and does
not consider whether what the type of the file is. An example of using -e is shown here:

touch /tmp/test

if [-e /tmp/test]; then
m -rf /tmp/test

fi

Check if Exists and Size Greater Than 0 with -s

If you're doing something with the contents of a file, you might also want to know if the
file in question has anything in it. In this case, you can use -s which will only return true
if the file exists and has a size greater than 0. An example of the use of -s is shown here:

touch /tmp/test

if [-s /tmp/test]; then
echo “doesn’t run”

fi

echo data > /tmp/test

if [-s /tmp/test]; then
echo “does run”

fi

Check if Exists and is an Executable with -x

If your use of a file is actually executing it as a program, you may want to confirm that the file
exists before doing so. This is where the -x comes in handy which checks the file permissions
of a file to confirm that it is executable. Though keep in mind that this only checks the file
permissions to confirm that a file is executable, it doesn’t actually check that the file contains
a script. In the following example, our executable file is actually just a blank file, yet after
running chmod +x /tmp/executable, the -x flag recognizes it as an executable:

touch /tmp/executable
if [-x /tmp/executable]; then
echo “doesn’t run”

72

CHAPTER 4 SCRIPTS AND PIPES

fi

chmod +x /tmp/executable

if [-x /tmp/executable]; then
echo “does run”
bash /tmp/executable

fi

It’s also possible to compare strings using a similar syntax. A list of flags for
comparing strings is shown in Table 4-3.

Table 4-3. String compare conditions

Code

-z S1 True if S1 is a string with length 0

-n S1 True if S1 is a string with a length
greater than 0

S1==S52 True if S1 is the same string as S2
S11=82 True if S1 is not the same string as S2
S1<S2 Trueif S1 sorts before S2

S1>S2 True if S2 sorts before S1

Check Value Is a String of Length 0 with -z

When programming or writing scripts, often an unset or empty variable can throw a
wrench into things. Bash provides a method for checking if a variable is empty using the
-z flag. An example is shown here:

S1=""

if [-z $S1]; then
echo "is empty string"
S1="something”

else
echo "not empty"

fi

73

CHAPTER 4 SCRIPTS AND PIPES

Check Value Is a Non-empty String with -n

If instead of checking for an empty value, you'd want to check that a value is not empty,
you can use -n. It’s essentially the opposite of -z and will return true for any non-empty
string. An example is as follows, in which we use the variable $51 only if it is not empty:

S1="something"
if [-n $S1]; then
echo $S1
else
echo "variable is empty"
fi

Check That Strings Are Equal

Like many programming languages, bash also provides a way to check that strings are equal to
one another. This can be done with the double equal sign ==. A simple example is as follows:

S1="something"
S2="something"
if [$S1 == $S2]; then
echo "same"
else
echo "not the same"
fi

Check That Strings Are Not Equal

As you might expect, we can test that strings are not equal in a similar way by using !=.
An example is as follows, which should return the text “same”:

S1="something"
S2="something"
if [$S1 != $S2]; then
echo "not the same"
else
echo "same"
fi

74

CHAPTER 4 SCRIPTS AND PIPES

Check String Sort Order

When working with strings, we can also use the > and < symbols to compare. On first seeing
these, you might expect that these compare mathematical values or which string is longer. In
actuality, the greater than and less than symbols used with strings check for sort order.

By default this is alphabetically. To demonstrate sorting, we can run the following
command; feel free to replace the letters with numbers or symbols:

letters='ay bvbc'
echo "$letters" | tr ' ' '\n' | sort | tr "\n' "'

Running the preceding command should return “ab b c vy’ You can ignore the tr
commands which simply convert the spaces to newlines and after sorting replace newlines with
spaces. You can experiment with the preceding command to get an idea of how things sort.

This sorting order is what is used for the > and < symbols. In the following, we have
an example of using <:

51="a"
S2="b"
if [$S1 < $S2]; then

echo $S1 sorts before $S2
else

echo $S2 sorts before $S1
fi

In addition to testing files and strings, there is also support for testing integers.
Table 4-4 outlines several methods for comparing integers. Note that in Table 4-4, N1
and N2 are variables which could contain any integer.

Table 4-4. Arithmetic operators

Code

N1 -eq N2 True if N1 is equal to N2

N1 -ne N2 True if N1 is not equal to N2

N1 -ltN2 True if N1 is less than N2

N1 -le N2 True if N1 is less than or equal to N2
N1 -gt N2 True if N1 is greater than N2

N1 -ge N2 True if N1 is greater than or equal to N2

75

CHAPTER 4 SCRIPTS AND PIPES

Check If Numbers Are Equal

When comparing numbers, there is a whole different set of flags that can be used. One of
these is the -eq flag which checks that two numbers are equal. An example of the use of
-eq is as follows; it should return “1 and 1 are equal”:

N1=1
N2=1
if [$S1 -eq $S2]; then

echo $N1 and $N2 are equal
else

echo $N1 and $N2 are not equal
fi

Check If Numbers Are Not Equal

For checking if numbers are not equal, use the -ne flag. This is essentially the same as
-eq but opposite. An example of using -ne is as follows; it should return “1 and 2 are not
equal”:

N1=1
N2=2
if [$S1 -ne $S2]; then
echo $N1 and $N2 are not equal
else
echo $N1 and $N2 are equal
fi

Check If a Number Is Less Than

We can also use a flag to check that a number is less than another number. An example
of using -1t is as follows; it should return “1 is less than 2”:

N1=1
N2=2
if [$S1 -1t $S2]; then

76

CHAPTER 4 SCRIPTS AND PIPES

echo $N1 is less than $N2
else

echo $N1 is not less than $N2
fi

Check If a Number Is Less Than or Equal

The flag - 1e is nearly identical to -1t with the sole exception that it also returns true if
numbers are equal to each other. An example is shown in the following where equal
numbers trigger true, though if $N1 was less than $S2, it would also trigger as true.
Running the code should return “2 is less than or equal to 2”:

N1=2
N2=2
if [$S1 -1le $S2]; then

echo $N1 is less than or equal to $N2
else

echo $N1 is not less than or equal to $N2
fi

Check If a Number Is Greater Than

Whenever you have the ability to check if a number is less than, you likely also have the
ability to check if it is greater than. This is the case with bash where you can use the -gt
flag to check if a number is greater than. The following is an example of the use of the -gt
flag. The following should return “3 is greater than 2”:

N1=3
N2=2
if [$S1 -gt $S2]; then

echo $N1 is greater than $N2
else

echo $N1 is not greater than $N2
fi

77

CHAPTER 4 SCRIPTS AND PIPES

Check If a Number Is Greater Than or Equal

If you'd prefer to match both greater than or equal, you can use -ge. An example of its
use is as follows. Running the following code should return “3 is greater than or equal
to 3"

N1=3
N2=3
if [$S1 -ge $S2]; then

echo $N1 is greater than or equal to $N2
else

echo $N1 is not greater than or equal to $N2
fi

While the preceding code can be handy, there is also syntax dedicated to arithmetic
expressions using double brackets which we'll look at in the next section.

Arithmetic with Double Parentheses

While comparing integers is possible using tests surrounded with square parentheses in
bash, it is preferred to use double parentheses which allow syntax anyone who programs
in another language would be comfortable with, for example:

if ((2 < 3)); then
echo 3 is greater than 2
fi

In the preceding code, exactly ((2 < 3)) will evaluate to true. We're using hard numbers
here, but in most cases, you'll be comparing variables which can be used in their place.

(N1 < N2))

If you want to use math to set a variable, you'll also need to make use of double
parentheses, preceded by a dollar sign, for example:

N1=$((2+1))
if ((N1<3)); then

echo 3 is greater than $N1
fi

78

CHAPTER 4 SCRIPTS AND PIPES

The $ is required anytime you want to make use of the result, whether you're setting
it to a variable or not - even if we just want to echo the result:

echo $((1+3))

Be aware that if you try to use arithmetic without the double parentheses, it will
append as if the number is a string, for example:

N1=2
N1+=1
echo $N1

The preceding code returns “21’, whereas

N1=2
((N1+=1))
echo $N1

will instead return 3.

Subshell with Parentheses

We've seen what double parentheses do, but what about single parentheses? When code
is placed inside parentheses, it’s run as a subshell. The current shell runtime is copied
and a new one is created. The effect of this is that nothing that happens within the
subshell affects the outer shell, for example:

S=Hi

(
echo $S
S=Hello
echo $S

)
echo $S

In the preceding script, we create a variable S. Then we open a subshell and echo the
value; notice that the subshell can see the value of the S variable that existed when it was
created. Then we change the value of S within the subshell.

79

CHAPTER 4 SCRIPTS AND PIPES

On the outside of the subshell, we echo the value again. The value will still be “Hi”
rather than “Hello” since the change was made inside the subshell.
Subshells themselves can in turn spawn their own subshells, which act as child

processes.

Expansion with Curly Brace

Another symbol which is built into bash is the curly braces { }. The curly braces can be
used for shell expansion of lists. For example

echo {1..100}

will expand into all numbers between 1 and 100.

philip@philip-ThinkPad-T420:~S echo {1..100}
12345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
67 68 69 716 T1 72 T2 14 15 76 17T #8.79 80 81 82 83 84 85 86 87T
88 89 90 91 92 93 94 95 96 97 98 99 100
philip@philip-ThinkPad-T420:~$ [}

Figure 4-8. Echoing 1 to 100 using expansion

We can also specify the amount to increment by. For example, if we want to
increment by 2 each time, we can instead do

echo {1..100..2}

Now we'll instead only get odd numbers (I, 3, 5, etc.). This same technique can be

applied to letters as well as numbers.
echo {a..z..2}

The preceding code will return all odd letters (a, ¢, ¢, etc.).
We can even combine these two, say we want two versions of each letter:

echo {a..c}{1..2}

This returns a small set including (al a2 b1 b2 c1 c2) though we can make it as
complex and long as we like. For example, say we wanted to print all combinations for

binary numbers with a total of five digits:
80

CHAPTER 4 SCRIPTS AND PIPES

echo {0..1}{0..1}{0..1}{0..1}{0..1}

Another example use case, say we wanted to create a list of files in /tmp:
touch /tmp/{file1,file2,file3}

Or even better:
touch /tmp/file{1..3}

Either of these commands will generate three files in the /tmp directory.

Loop in Bash

Like other languages, bash also provides a way to do loops over a set of items. For
example, given a set of names, we can print “hello” for each:

for name in jesse james jen
do

echo "Hello $name"
done

This can be useful with the expansion we looked at in the previous section, for
example:

for i in {1..100}
do

echo "Hello $i"
done

We can also do a traditional style loop with an i++ statement as you've likely seen in
other languages:

for ((i=1;i<=100;i++));
do

echo "Hello $i"
done

It’s also possible to make an infinite loop:

for ((;5))

81

CHAPTER 4 SCRIPTS AND PIPES

do
echo "Hello [CTRL+C to stop]"”
done

In some cases, you may want to break out of a loop early.

for i in {1..100}
do

if((i==10))

then

break

fi

echo "Hello $i"
done

In the preceding example cases, 1-9 run, but before 10 runs, we hit the break
keyword which stops the loop early. Alternatively, we can use the continue keyword to
end the current iteration without exiting the loop. As an example, we’ll cause continue
to trigger on all the even numbers. Be careful in regard to the spaces on the if line as
missing spaces can cause issues with the script running correctly.

for i in {1..100}
do
if [$((i%2)) -eq 0 I;
then
continue
fi
echo "Hello $i"
done

The preceding script will run the loop for numbers 1 to 100, but any numbers which
are found to be even will exit the loop early and make way for the next in line. This is
because in iterations where 1 is even, the continue keyword is read causing the iteration
to end early.

It’s also possible to use an array as the data provider for a loop. Arrays are defined
using bash as shown here:

array=(1 39 47)

82

CHAPTER 4 SCRIPTS AND PIPES
Then to make use of the array, it needs to be expanded using curly braces:

for i in ${array[@]}
do

echo "Hello $i"
done

While we've used integers here, you can just as easily use strings or another data type
in your array.

While Loops

In some situations, you may be better off using a while loop rather than a for loop.
Instead of having a set number of iterations, you might want to end the loop based on a
value not related to iterations. For example, say we want to see how many times we can
loop through some code in 7 seconds.

Note For the following example, you’ll need to put the code into a script file
and run chmod +x to add execution permission. This is because of our use of
the special variable $SECONDS. The $SECONDS variable contains the amount of
seconds a terminal, or in our case, script, has been running.

#!/usxr/bin/env bash

i=0
while [$SECONDS -1t 7]; do
i=$((i+1))

done
echo $i

Executing the script will return the amount of times the loop was able to run in 7 seconds. You
might be surprised with how high the number is. In my case, the loop ran 927375 times.
The while loop allows us to limit the running of a code section without a specific
number like the for loop. While we’ve used the example of time, you could also use some
external value. For example, if a website is down, you may want to keep checking every
few minutes until it is back up.
83

CHAPTER 4 SCRIPTS AND PIPES

working=false

while [$working == false]; do
curl google.com && working=true
echo $working
sleep 60

done

The preceding script will likely only run once as we’re checking www. google . com.
If you want to see how it would work when a website is down, try switching the
website to one that doesn’t exist (and thus will always fail).

The while loop also makes infinite loops particularly easy. To make a loop run
forever, simply make the checked value true as shown as follows. The following is an
example of a script that will say “hello” every minute until turned off:

while [true]; do

echo "hello"
sleep 60
done

Until Loops

An until loop is almost identical to a while loop except instead of checking that a value is
true, we instead check that a value is false. Notice the following script is almost identical
to our while loop, but instead of running while false, we're running until true:

working=false

until [$working == true]; do
curl google.com && working=true
echo $working
sleep 60

done

Quotes in Bash

Quotes in bash can be used to prevent special characters from being interpreted and
instead be interpreted as their literal value. For example, we echo the following symbols
which would otherwise cause an error without the quotes:

84

http://www.google.com

CHAPTER 4 SCRIPTS AND PIPES
echo '$ & *; |.'

By surrounding these special charachters with quotes, we cause them to take on
their literal meaning.

Double quotes are similar to single quotes but still allow for the processing of dollar
signs, back quotes, and backslashes. In the following example, the variable in double
quotes will be expanded while the one in single quotes will not be:

greeting=hello

echo '$greeting world'
echo "$greeting world"
Another example of this is how spaces are interpreted; consider the following two

commands:

touch hello world
touch “hello world”

As the space is the default delimiter in bash, the first command will process the input as
two separate arguments, whereas the one using quotes will treat the input a single file name.

Command Substitution Using Backtick

The backtick or back quote is completely different from both single and double quotes.
Instead of preventing interpretation of special characters, the backtick causes the
enclosed text to be interpreted before evaluation.

To demonstrate, we'll be making use of the following command which pipes an
addition statement into bc to generate a number:

echo 5 + 5 | bc

The preceding code will output the number 10. Now let’s say we want to make use of
this command in a larger command. For example, we’ll use the result of this command
as the name of a file to create.

touch /tmp/“echo 5 + 5 | bc”

In the preceding example, the command enclosed in backticks will be interpreted
before anything else. Once the backticks are interpreted, the command will be run as

touch /tmp/10

85

CHAPTER 4 SCRIPTS AND PIPES

This can be useful when you have a dynamic process for generating a filename or
some other aspect of your script.

Defining Functions

If you're writing a script, you may want to define a block of code as a reusable function.
This is useful when you'll be using the same piece of code in multiple places throughout
your script (programming concept DRY, short for don’t repeat yourself). By wrapping
some functionality as a named function, you can avoid rewriting the same code and also
updating in multiple locations if you decide to change the code used.

Creating functions is fairly easy in bash. We'll create a very minimal example to
stay with. To start we'll create a function called greet which takes a name as input and
outputs “hello” plus the name.

greet() {
echo hello $1

With the preceding code defined, we can now run
greet David

This will pass the input “David” to echo hello $1 within our greet function. Note
that variables passed into functions are not named but rather specified by the order
they’re input. If we wanted to process a second argument, we’d add it as $2 and a third
would be $3 and so on.

The lack of named parameters isn’t the only missing feature in bash. Another thing
people with experience in other languages expect to find while writing functions is the
ability to return a value from a function. Unfortunately, there is no return keyword that
can be used inside a function like you might expect. As a way around this, you can define
avariable inside the function and use it outside the function. To demonstrate this, we’ll
create a random time generator which could be used as part of a testing script.

Note We’ll use the shuf command for generating random numbers. You don’t
need to worry about installing it as it's GNU Coreutils and present on nearly all
Linux systems.

86

CHAPTER 4 SCRIPTS AND PIPES

random_time() {
hour=$(shuf -i 0-12 -n 1)
min=$(shuf -i 0-60 -n 1)

hour=$(printf %02d $hour)
min=$(printf %02d $min)
r_time=%$min:$hour

}

With our random time-generating function defined, let’s run it and echo the results.
We'll do this twice to make sure we get a different value each time.

random_time
echo $r time

random_time
echo $r time

Source Code from a File

If you're coming from another programming language, you're probably used to
importing source code from external files. Importing is relatively simple. Let’s say we've
saved our random_time function from the previous section as random. sh. First take the
random_time function from the previous section where we define and save it as a script
file called random_time. sh. Be sure to include a shebang on the first line (example
further down in this section for reference), and after saving run chmod +x on it.

Now that we have our random_time function saved as random_time.sh, we’ll make
use of it in another file in the same directory. To do this, create a new script file called
sourcing.sh; include the code shown here:

#!/usxr/bin/env bash

source random time.sh
random_time
echo r_time

If you're not in the same directory as the random_time. sh file, make sure to use the
full path. Once the file is imported, you can make use of any variables or functions which
are defined in the file.

87

CHAPTER 4 SCRIPTS AND PIPES

Summary

In this chapter, we started by looking at pipes and redirects which can be used for gluing
different Unix utilities and commands together, either through processing outputs
directly or saving to files.

Then we looked at various aspects of bash scripting syntax including conditional

expressions, functions, quotes, and importing files.

88

CHAPTER 5

Using SSH

In this chapter, we’ll look at SSH (Secure Shell). SSH is one of the most commonly used
tools in system administration. It allows you to connect to a remote server or device
through an encrypted connection. It’s also the basis for other programs which are built
on top of SSH, for example, X2Go which is a Linux equivalent to RDP (remote desktop
protocol) clients like VNC.

SSH can also be used for file transfer in a way similar to FTP (File Transfer Protocol)
by using the SFTP (Secure File Transfer Protocol) command (more on this in the next
chapter).

In some cases, SSH is simply used as a means to proxy traffic to hide the location or
IP address of a user or script. This can be done with SSH tunnels and SOCKS proxies.

History of SSH

While SSH only dates back to 1995, it actually builds on early programs like telnet
dating back to 1969. This is hinted at by the fact that SSH by default listens on port 22,
only one away from port 23 used by telnet. Historically, almost all Linux systems were
used through a system of time sharing in which a central computer could be connected
to via several different text-based terminals. These text-based terminals didn’t include
anything besides the software needed to remotely connect to the central computer.

This history has had a large influence on the Linux operating system. This is evident
in the fact that text-based tools like SSH are still widely used, allowing multiple users to
connect to a server to run jobs, access data, and manage systems.

The major flaw with earlier programs like telnet, short for teletype network, is that
they lacked security. With telnet communications between the client and server are
completely unencrypted clear text (including any passwords). Two-way encryption
and more advanced security features allowed SSH to quickly overcome earlier tools like
telnet in popularity.

89
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_5

https://doi.org/10.1007/978-1-4842-6035-7_5#DOI

CHAPTER 5 USING SSH

While telnet has nearly been completely replaced by SSH, there are still some fun services
which are online today including a recreation of Star Wars in ASCII, online text-based chess
over telnet, and a service for checking weather over telnet.

telnet towel.blinkenlights.nl
telnet freechess.org 5000

telnet rainmaker.wunderground.com

Figure 5-1 shows an opening text-based animation from towel.blinkenlights.nl.

........... @00ee@ @EEEQ
.......... @ @ @ @
........ @ee @ @
....... @@ @

| 0QEEE GeEee @ @ eeeee
== @ @ @ ==
Al e @ @eee @ @ e I
| @ @ @a@ @ |
I | @ @Oeeee @ @ @ |

Figure 5-1. Text-based recreation of Star Wars over telnet

Basic SSH Use

The most important command you’ll want to be familiar with for connecting to servers is
SSH. SSH is the program used to remotely connect to servers, computers, and embedded
devices. It provides a secure encrypted connection to a server or device and is widely
used. When it comes to remotely managing servers, there is really no alternative to SSH,
besides possibly vendor-specific management dashboards which are extremely limited.

90

CHAPTER5 USING SSH
To check if your system has SSH preinstalled, try running
which ssh

If you get back a file location for an ssh file, you're good to go. Otherwise go ahead
and install it:

sudo apt-get install ssh

If you already have a server or device running which is opening for connections, it
will be as simple as running

ssh <username>@<address>

After which you’ll be prompted to enter your password.

Keypairs with ssh-keygen

If you've successfully logged in to a server or device using SSH and password, one of the
first things you’ll want to do is switch to using public key authentication. There are two
major benefits:

o Keypairs are considered more secure than passwords.

o Keypairs are more convenient as they eliminate the need for
passwords.

A keypair is a set of two parts - firstly the private key which will remain on your
computer and should never be shared and secondly a public key which can be shared
publicly and used to sign requests which anyone with the public key can verify came
from you.

To get started creating a keypair, first run

ssh-keygen

You'll be prompted to choose a passphrase; this is optional. The passphrase is simply
used to encrypt your private key locally. That way if someone gets access to your laptop
and private key, they won't be able to read it, assuming you choose a strong passphrase.

If you've followed these instructions correctly, you should get some output which
looks like that shown in Figure 5-2.

91

CHAPTER 5 USING SSH

ubuntu@ip-172-31-58-133:~$ ssh-keygen -t RSA

Generating public/private RSA key pair.

Enter file in which to save the key (/home/ubuntu/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/ubuntu/.ssh/id_rsa.
Your public key has been saved in /home/ubuntu/.ssh/id_rsa.pub.
The key fingerprint is:

SHA256: iMk3dMiOCL61NVFHZZ7rEf7+b5mw0e9J43V69WCRSRE ubuntu@ip-172-31-58-133
The key's randomart image is:

+---[RSA 2048]----+

| it O Eo |
O = |

| o.== o |
| + + + 4+ + |
|]. ++ + S |
|.o oo (] |
| . . =0+=|
| +0+=+|
CPi el e |
+----[SHA256]----- -

ubuntu@ip-172-31-58-133:~$ JJ

Figure 5-2. Output from ssh-keygen

Next we'll copy our new public key to our remote SSH server/device; SSH has a built-
in command to make this easy:

ssh-copy-id <username>@<address>

You'll again be prompted for password to log in to the server. Once this command
successfully runs, you'll be able to log in to the server automatically without using the
server password. However, if you choose a passphrase to encrypt your private key, you
will need to enter this before making use of the key.

PEM and Other Key Files

In some cases, servers may make use of PEM files, short for Privacy-Enhanced Mail. A popular
example is Amazon EC2 servers. These keys are specified using the -1 flag, for example:

ssh -i <pem-file-location> <username>@<address>

An alternative to using the -1 flag is to add your key to the session with ssh-add, for
example:

ssh-add <pem-file-location>

92

CHAPTER5 USING SSH

This will add the key file to the authentication agent. It will remain active until SSH is
restarted, which mainly happens when the computer is restarted.

The preceding methods are not specific to PEM files but can be used with any key file
which is required by an SSH server. Others include PPY, short for Putty Private Key, or
.pub files, short for public key.

Disable Password Login on Server

We mentioned that one of the main benefits of using an ssh keypair is that it is more secure
than password authentication. To gain the benefit of this added security, you’ll have to
disable password logins on the server. When you first add the keypair, the server will allow
login with either of the two methods. As keypair is more secure, it is recommended that
you turn off the ability to use passwords to avoid any type of brute-force attacks.

Firstly, connect to the server using SSH. Then you'll need to find the file /
etc/ssh/sshd_config. Open sshd_config and modify the line which mentions
ChallengeResponseAuthentication; you'll need to ensure it is set to no like the
following:

ChallengeResponseAuthentication no

Secondly, in the same file, find the line mentioning PasswordAuthentication and
set it to no:

PasswordAuthentication no

These two settings will ensure the passwords can’t be used to log in to the server.
For this reason, it is very important you ensure that public key authentication is working
correctly before changing the values. Otherwise you may find yourself completely locked
out of the server.

Finally, there is one last step which is to have the SSH server reload the settings
which have been changed so they can take effect. To do that, run the command:

service sshd restart

This last step of restarting your SSH server is worth noting as it isn’t specific to this
setting. Whenever you make any change to your SSH configuration, you'll need to restart
the service on the server for those changes to take effect.

93

CHAPTER 5 USING SSH

Server Nicknames with SSH Config File

Another handy tip to make SSH a bit easier is to create a client-side SSH config file. You
can use this to create default username, server IP, and authentication key file for each
server you regularly log in to. This becomes particularly useful when you often have to
switch between multiple servers or devices.

The first thing you need to do is create the SSH config file, which should be located at
~/.ssh/config:

touch ~/.ssh/config
Next you'll need to make sure it has the correct permissions:
chmod 600 ~/.ssh/config

With this done, you can open up the config file and create an entry for each one of
your servers. As an example, I'll use an AWS server I'm currently using:

Host aws
Hostname ec2-35-174-116-189.compute-1.amazonaws.com
User ubuntu

Now instead of specifying the whole hostname and user, I could do
ssh -i ~/.ssh/file.pem aws

You may not need the -i ~/.ssh/file.pem, depending on whether your server
requires an identity file. Key file types . pub or . ppk can also be used with -1i.
We can simplify this further by adding the identity file to our config:

Host aws

Hostname ec2-35-174-116-189.compute-1.amazonaws.com
User ubuntu

IdentityFile ~/.ssh/file.pem

Now we can simply do
ssh aws

To add entries for multiple servers, simply add additional blocks below in the
config file. This makes connecting to different servers a lot easier as you don’t need to
remember the server address for each.

94

CHAPTER5 USING SSH

Note The IdentityFile can also be used to specify the RSA key for public/
private key login. Though by default the value will be ~/.ssh/id rsa. So if you're
using the default location for your key, you don’t need to add it.

Run a Command on Connection

Sometimes you just want to connect to a server to run a single command. Often this will
be related to having to perform some fix on several similar devices or servers in a row. In
one instance, a company [worked at had several devices which had a bug which broke
our configuration management setup. The fix was to simply remove a lock file on each of
these devices. We were able to quickly fix them all by creating a for loop that took the IP
of each device, connected, and then run the needed command.

Note If you often find yourself having to connect to multiple systems to run the
same command, modify a configuration, or update a program, you’ll want to check
out the program Ansible, a lightweight open source program for simultaneously
making the same change on several machines. Ansible is built on top of SSH, so
when you write a configuration to send to multiple devices, it’s actually connecting
over SSH and running commands under the hood. Other popular alternatives to
Ansible include Puppet, Chef, and Salt.

To do this, all you have to do is supply a command in quotes at the end of your ssh

command, for example:
ssh user@server.com "touch /tmp/testing123"

After connecting you'll almost immediately be disconnected and return to your local

machines command line, as shown in Figure 5-3.

philip@philip-ThinkPad-T420:~S ssh -t aws "touch /tmp/testing123"
Connection to ec2-35-174-116-189.compute-1.amazonaws.com closed.
philip@philip-ThinkPad-T420:~$ |J

Figure 5-3. Specifying a command to run on SSH connection

95

CHAPTER 5 USING SSH

If you want to run a command on connection but don’t want to disconnect

immediately, you can modify the command run on connection to start a bash session:
ssh user@server.com "touch /tmp/testing123; bash"

This will run the command and then put you in a bash session, without disconnecting.

Break a Hanging SSH Session

A common issue that can occur when using SSH is that you leave a session running in the
background or another window, and when you return, it is completely frozen. Connection
issues can also be a common cause of an SSH session hanging. When a client loses its
connection to the server, it will hang until the server reconnects. You might think to try
pressing ctrl+c, or ctrl+d, but even this won’t end the frozen SSH session.

When this happens, the easiest way to escape the session is to press enter followed
by ~ and then .. Doing so should exit the session and return a message like

Connection to yourServer.com closed.

This combination of keys is the most well known escape sequence, but it’s not the
only one. If you instead press enter, ~, then ?, you'll get back a list of all supported escape
sequences which include the ones in Table 5-1.

Table 5-1. List of escape sequences

Sequence Description

~. Terminate connection (and any multiplexed sessions)

~B Send a BREAK to the remote system

~C Open a command line

~R Request rekey

~V/v Decrease/increase verbosity (LogLevel)

~NZ Suspend ssh

~# List forwarded connections

~& Background ssh (when waiting for connections to terminate)
~? List all sequences

~~ Send the escape character by typing it twice

96

CHAPTER5 USING SSH

In most cases, you'll mainly want to use the regular ~., unless of course you just
entered a newline and you really did want to type the ~ character; in that case, just tap
it a second time. Also note that the ~ will only be read as an escape sequence if it’s the
first character on a line; if you're already partway into a line, you’'ll need to press enter or
clear the input first.

stty sane

Sometimes when you have to break connection, or if you ever have to connect to a device
using a serial port with a program like minicom or sometimes even SSH, you'll have

the terminal window glitch as shown in Figure 5-4. When this type of glitch happens,

the characters you type may not appear as you expect. This can result in unexpected
behavior, having chunks of the terminal screen unreadable or simply not looking right.

6eEL
v0s600h/00ze(bqee oeol.
oo[[§[[§ee0[[foeNQqbeeor4? PEA[BD%eeQNe\ oou/eGoHo o604 +=00SeHoSeoCH[[fo<" K890 oMeoo1XR
Le9 o&okeootovYe]A; leeS[ifee# | yiTeze[[§eonwHonez ' eopesce-oNek/[[HT v

eo+Z00"(QSe
qoxs@FeHa[lee3eeceke
osM Uebqef[i§"ee0
voootoree|i|ly

Co.0e09¢Q

+~0680000 |t ooe"QoIR~V[Heeg[i§e)) [[Ho*>Nee\32
onl 780eeFPor ' ~F o[[§coBoo
| ofl@v]eeio[l§ece7iu

[Hdeoc[ooe oke[By@SeTa00-2[[d. [Foee
0]00=200-2.0<z[§+& E00itX>G;0e "oveeeoeeA[§oSe[NedDesoss/[[lle[{feveaQbeveheeeviIsc
ooV; 000000000 §10H) [[Axe[eoccoo[Fo[[oce)oe h .00, olﬁé (Heor[]1*eobeoHe=epaev
okﬁj 1mee]7/[#' eec))eheliipeckesecoocIoT| foA Y 0@e L FLEW[Y VeveovoedNes\@ooMXe o
[§o=0Qeee,0%00a000l000omcer\eoe=ce SozooB[§ ! Mx[He X[egpekeceyxao eodr_eG9
oiH 04-000%70_{0{00“:-0 Too' J10oc:mf:m:n“wZooKS [§Geoe oavooo-:%“wwo
&Lh-eee
o[1e<ooot)osUnU He/eeSeEeeeseeveya>[ldpg[lH[HQeceedensesosIcowse>[#[HJaevecek
eoUnXeGomee6ed|idee[o[c[haoce/e60We@sxeeel! oooo[l{§oLo[HlIe [Heo[Boooozoo>aomelce
\[¢,0000¢ o¢fooeSo<e
voek[\[HooofRtDooMooo[H; 050000[§o 0000TADO{neo)} XW[TK- 000
o ““Eﬂow- FeSeeqyeeee/ hooue; oo 8t)eoV"o:Fo|ooo| ooe
oTe%o+e3el| 47 HooloooueT? 00
oit1zo[l[{He00[[§o=00eoo[[Joea[JCovove[[se_kebeIoes Gwooowsoﬁﬁ =oade[fja"ee- "o
o[i#600[))| 100000005007 0beV<oa<eoKoo[lq]
"000000300c8ZeTole
t~o7o#toth[Reflfe %6eYeHU[
e1%ouchoeflllils kze[§ 10y0¢0v>000000>0 1o[[UE#=peM{oH6% o0 "WCoPoBoo[[§(orHXWeoPg
¢000pDE! v>MbCKRheoorM) YeoesE " ov[iTulfee%e80Z0 ' 3a: ¢hFeAezH}aeb | 0K70000>00007C

Figure 5-4. ASCII garble glitch (aka mojibake) in terminal

97

CHAPTER 5 USING SSH

Or you might not be getting ASCII-type characters like in the figure, but your spacing
is off and the terminal is generally not acting as expected; see Figure 5-5 for the type of
strange spacing that can occur.

philip@philip-ThinkPad-T420:/S 1s

bin etc 1ib lost+found opt
sbin sys vmlinuz
boot home 1ib32 media proc snap
valinuz.old
cdrom 1initrd.img 1ib64 nmnt root srv us
r
dev initrd.img.old 1ibx32 nix run swapfile var

philip@philip-Thi
nkPad-T420:/$ i

Figure 5-5. Visual spacing glitch

If either of these glitches or anything visual in nature happens, you can use the stty
sane to fix your terminal without having to close and reopen. Simply run

stty sane

Another command that will work in this situation is reset, which is run stand-alone
without any arguments (not to be confused with reboot, which will restart the system).

reset

Stop SSH Hanging

It's great being able to disconnect from a hanging SSH session, but it’s even better when
you can avoid it from happening altogether. Depending on your system, this might not
be a problem by default, but it is possible to change the ServerAliveInterval settingin
your client’s /etc/ssh/ssh_config file.

This setting tells the client how often to send a signal to the server which confirms
that you're still connected and using the connection. Add the following lines if you don’t
already see an instance of ServerAliveInterval in your file:

Host *
ServerAliveInterval 100

98

CHAPTER5 USING SSH

You'll have to edit the same file, /etc/ssh/sshd_config, on the server you're having
issues with:

ClientAlivelInterval 60
TCPKeepAlive yes
ClientAliveCountMax 10000

This tells the server to send a keep alive message to the client every 60 seconds if
nothing is received to keep the session alive. TCPKeepAlive ensures firewalls don’t drop
idle connections, and ClientAliveCountMax specifies how long the server will keep
sending keep alive messages even without hearing anything from the client.

SSH Tunneling

SSH tunneling is the process of forwarding a port on one computer to a remote machine via
SSH. There are several uses for SSH tunneling which we’ll go over in the following sections.

Local SSH Tunnel

One of the simplest SSH tunnels is a local tunnel which binds a local port to an address
on a remote machine. For example, we can bind our local port 8080 to a website which is
accessed through a remote machine using the -L flag:

ssh -L 8080:textfiles.com:80 user@server.com

At the time of writing, this works great on the website textfiles.com (an interesting
piece of Internet history. Check out Jason Scott’s Defcon 17 talk for the story behind it).
Unfortunately, depending on the website you want to tunnel, it may or may not work.
Modern server software like nginx will actually check the hostname being used in your
browser and not work due to the mismatch.

In some cases websites won’t work over tunnel because they check what URL the
browser is using and will malfunction when ‘localhost’ is used. This is the case for most
popular web apps like Youtube. If you want to tunnel a website that doesn’t work you can
either map that URL to your own server’s IP by updating /etc/hosts or you can send a
false header which says your hostname is actually the intended website. You may need
to install curl depending on your OS.

sudo apt-get install curl

99

CHAPTER 5 USING SSH
Below is an example of using curl to manually set the host header with the -H flag:
curl -H "Host: youtube.com" -L localhost:8080

This should return the source code for YouTube. If you want a more practical way to
use an SSH tunnel for web browsing, we provide a better solution in the next section on
SOCKS proxy.

While this example shows us how a local SSH tunnel works, it doesn’t exactly show
why it might be used. For anything browsing related, the SOCKS proxy method shown in
the next section would be preferred.

SSH tunneling comes in handy when you want to make a service that’s running
on a server accessible via SSH. This is a particularly secure way to serve a web service
intended for a small group without having to worry about a lot of security issues. As the
website is only available to those accessing it through SSH on port 22, there is no threat
of attacks that might be able to target a publicly facing login page.

Create a SOCKS Proxy with SSH

SSH is great for connecting to remote servers and devices, but it can actually be used for
all sorts of things. One of those things is to create a SOCKS proxy connection that can be
used to direct traffic on a local computer, when using applications like web browsers.

SOCKS proxy has most of the benefits associated with using a VPN (virtual private
network) including

e Anonymous web browsing

e Bypass geolocation blocking

e Bypass website blocking on local network or from ISP
o Faster than a VPN

Keep in mind the first benefit “anonymous web browsing” is only going to be partially
true depending on who you plan to be anonymous from and the server you're using to
proxy traffic through. If you're trying to hide your identity from the government and you're
using a server which is registered under your name, this might not be effective.

However, from the perspective of a website that you're visiting, they’ll only see the TP
address of your end server. They may see, for example, that the traffic came from an AWS
server located in eastern USA.

100

CHAPTER5 USING SSH

Another caveat to keep in mind when using your own server as a SOCKS proxy is
that some server provider IPs may be tagged as such and limited by some services and
websites. This is due to the fact that many automated scripts and malicious services
originate from these types of servers. If you're using a server from a smaller hosting
provider, you might bypass this type of issue.

To get started, simply run the following, substituting the username and host for your
own:

ssh -D 8123 -f -C -q -N user@server.com

The flags included here are shown in Table 5-2.

Table 5-2. Flags used

Flag Description

-D 8123 Bind connection to port 8123

-f Fork process to background

-C Compress data before sending

-q Quiet mode

-N Do not execute a remote command

If this runs without error, you should have SOCKS proxy listening on port 8123 (feel
free to substitute the port number with another). We can double check using ps and grep:

ps aux | grep ssh

If running you should see the command you ran listed as a running process. Using
the proxy will depend on the specific application you're using. As an example, we’ll look
at Firefox. In Firefox open preferences and then scroll down to “Network Settings.” In
network settings, shown in Figure 5-6, you can configure “manual proxy configuration”
using “localhost” with your chosen port as SOCKS host.

101

CHAPTER 5 USING SSH

Configure Proxy Access to the Internet
No proxy
Auto-detect proxy settings for this network
Use system proxy settings
® Manual proxy configuration
HTTP Proxy Port 0

Use this proxy server for all protocols

SSL Proxy Port 0
FTP Proxy Port 0
SOCKS Host localhost Port 8123

SOCKSv4 ® SOCKSYVS
Figure 5-6. Setting up web browser to use SOCKS proxy

After updating your proxy on Firefox and saving, you'll want to verify that it's working
as expected. To do this, you'll want to find a website that checks your IP. My preferred
method is going to www. duckduckgo . com (privacy-oriented search engine) and searching
for “what is my ip.” Doing this should show your IP address and location, as shown in
Figure 5-7, without having to click through to any third-party website.

what is my ip)

All Images Videos News Maps Answer Settings ~

Your IP address is 35153.102.62 in A

Figure 5-7. DuckDuckGo showing the IP of our remote SSH server

Reverse SSH Tunnel

SSH is a great tool for connecting to remote servers and devices, but sometimes firewalls
and routers can get in the way. For example, if you have a Raspberry Pi running a Linux
server at home and want to SSH into it from outside your local network, you'll likely have
trouble due to restrictions from both routers and Internet providers.

102

http://www.duckduckgo.com

CHAPTER5 USING SSH

A great way around this is creating a reverse SSH tunnel. A reverse SSH tunnel relies
on the device in question to maintain an active outgoing connection. For example, our
Raspberry Pi would continually remain connected to our remote server. Since it’s the Pi
which has restrictions for incoming connections and not the other way around, there are
no issues with the Pi making an outgoing connection.

When we're ready to SSH into the Pi, we actually create our connection within
the tunnel which is the Pi’s outgoing connection. Thus, the Pi receives an incoming
connection within its own outgoing connection.

To set up a reverse SSH tunnel, first open a terminal session on the server in
question; in this case, our Raspberry Pi behind a firewall. Run the following:

ssh -R 9876:1ocalhost:22 user@server.com

The -R flag creates a smaller tunnel within the tunnel which is the main SSH
connection; the -R standing for remote as tunnel entry point is on the remote machine;
this is similar to the -L flag except the -L flag has the entry point on the local side.

Also note that we've selected port 9876 to be where the inner tunnel that enters on
the remote end will end up on our local side. Feel free to swap port 9876 with any unused
port on your device.

Once you're ready to connect to your device that’s running the reverse proxy, just
use SSH as you normally would but specify the port used in the previous step. So in our
example, we'd use the following command:

ssh -p 9876 user@server.com

Serving a Website over Reverse Proxy

This type of SSH tunneling is the basis for the popular development tool ngrok. Ngrok allows
developers to instantly publish a web application that’s running on their local machine on a
web URL for anyone to see. You can do the same thing using your own web server.

To demonstrate first we’ll create a minimal site running on port 8080. If you're
running a recent version of Ubuntu, you should have python3 installed by default;
otherwise you'll need to install it.

cd /tmp
echo Hello World > index.html
python3 -m http.server 8080

103

CHAPTER 5 USING SSH

After running these three lines, you will be able to go to localhost:8080 in your web
browser and see the text “Hello World.” With our small site running on port 8080, we can
now run the following command:

ssh -R 8080:1ocalhost:8080 user@myServer.com

This will mirror port 8080 on our local machine to port 8080 on the remote server,
thus allowing us to make our localhost website available to demo on a live IP.

SSH Proxy Jump

Sometimes you don’t want to connect to an SSH server directly. There are two main
reasons you might want to use a jump box:

¢ Reduce security risks by only allowing connections to the final

destination server from certain IPs or on a nonpublic network.

e Youdon’t want the final destination server to log your actual IP
address.

In the first scenario, your destination server might not be available on the public
Internet. In this case, the jump box acts as a DMZ (demilitarized zone) from which you
can connect. This means the protected box is completly hidden from port scanners or
any kind of malicious scripts scanning the open Internet.

You can make use of a jump server using the -J flag like the following:

ssh -] user@serverl.com user@server2.com

Making use of SSH config file will come in handy when using a jump server as you
don’t have the ability to specify an identity file to the jump server directly using the -1
flag, but if you're using an SSH config file as described in this chapter, you can define the
identity file there.

If your situation is more in line with trying to hide your origin, you might even want
to use a series of jump servers. With multiple jump servers, even the jump server which
connects to the destination server won’t know your IP. You can use multiple jump
servers by providing multiple separated by a comma:

ssh -J user@jumpl.com,user@jump2.com user@server.com

104

CHAPTER5 USING SSH

Change Default Port on SSH Server

There are a few reasons you might want to change the default port for your SSH server -
if you know you’ll be connecting to the server from a network which restricts outgoing
connections to anything other than port 80 or 443.

Or if you’ll be using password authentication and you want to lower the chances of
your server being found by crawlers who may attempt a brute-force attack, in this case,
use an uncommon port like 79279. If you're unsure if the random port you choose is
uncommon, you can check using nmap. nmap isn’t installed by default so you'll have to
install it with your package manager:

sudo apt-get install nmap
Once ‘nmap’ is installed use the following command:
nmap --top-ports 1000 localhost -v -0G -

This will return a list of the 1000 most popular ports which you can reference to see
if your port matches.

Open Firewall

Before changing the port, it’s important to make sure you don’t have a firewall or some
other configuration that would block incoming traffic. To check if you have a firewall
enabled, run

sudo ufw status

If ufw is running, you may need to configure it to accept traffic from your desired
port. If it’s not running, you still may need to deal with your cloud provider security
settings. For example, Amazon AWS security instances have security rules which are set
up outside the server itself, within their security group rules. Many other cloud providers
follow the same model, leaving only port 22 open (possibly also port 80 and 443) to make
servers secure by default. Check with your server provider to see if additional steps are
required to allow port access.

If ufw is running, you can tell it to allow your port by running

sudo ufw allow <port-number>

105

CHAPTER 5 USING SSH

Modify sshd_config

The settings for an SSH server can be modified by editing the file /etc/ssh/sshd_
config. Before changing the port on a live server make sure you are certain the port

is accessible. If you change the port to one which is blocking incoming requests it’s
possible that can lock yourself out of the server. To change the default port, simply find
the commented line that looks like

#Port 22
Uncomment the line and switch 22 with your chosen port:

Port 7929

Note The default port for an SSH server can also be specified in your client-side
SSH config file, so that you don’t need to specify it with the -p flag when you connect
to the server.

After updating the file, you need to restart the SSH service:

sudo service ssh restart

Summary

In this chapter, we looked at how to remotely connect to a server or device using SSH
and some common configurations. These configurations include turning off password
login to use keypair instead, switching default port, and stopping hanging by modifying
keep alive settings. We looked at SSH tunnelings and common uses like creating SOCKS
proxy.

While the list is hardly comprehensive of all the places and ways SSH is used, itis a
good foundation for being able to connect to remote servers with some commonly used

settings.

106

CHAPTER 6

File Transfer

In this chapter, we're going to look at various programs for transferring files between

machines.

FTP

One of the most common protocols to transfer files is FTP (File Transfer Protocol). To
get started using FTP, you should install 1ftp, a sophisticated file transfer program. This
program is primarily used for FTP but can also be used for other protocols:

sudo apt-get install 1ftp
With 1ftp installed, you can enter interactive mode using
1ftp

This will open up an interactive shell where you can run 1ftp-specific commands. It
should look similar to Figure 6-1.

File Edit View Search Terminal Help

philip@philip-ThinkPad-T420:~$ 1ftp
1ftp :~>]

Figure 6-1. lftp interactive mode

The 1ftp shell acts much like the normal bash shell giving you access to several
commands like 1s and cd. You also gain additional commands. To view the commands
available to you, simply enter ? and press enter.

The most important command to know is connect, which is simply used as

connect -u <username> <server-address>

107
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_6

https://doi.org/10.1007/978-1-4842-6035-7_6#DOI

CHAPTER6 FILE TRANSFER

After this, you'll be prompted for a password. Once connected, you can download
files using

get <file-name>
Or upload using

put <file-name>

Note If you're looking for FTP servers to practice with and don’t want to set
up your own FTP server, using a Google dork for finding unsecured FTP servers
can be useful. A Google dork is a search term used to find a specific application
or unsecured website using a search term. A good one for finding FTP servers is
intitle:"index of" inurl:ftp.

SFTP

Note When it comes to both SFTP and SCP (next section), you can actually test
these commands on your localhost, instead of specifying a remote server. Just use
localhost with your username. Of course going from localhost to localhost doesn’t
provide any additional benefits over a command like mv, but it does allow you to
test these commands without having a remote server setup.

You're likely familiar with FTP, short for File Transfer Protocol. It’s often used with GUI
programs like FileZilla for uploading and downloading files to a server. At the height of PHP’s
popularity, updating the www directory of your server using FileZilla was standard practice.
While programs like FileZilla are still widely used, those programs now make use
of a new secure version of FTP called FTPS. FTP has a major weakness which allows an
attacker to sniff traffic to the FTP server and obtain user credentials, when those users
connect to the server.
Another popular and easy-to-use alternative to FTP is SFTP. SFTP enables file
transfer that looks and feels like FTP but over port 22, the same port used for SSH

108

CHAPTER6 FILE TRANSFER

sessions. If you're already using SSH with your server, you should have no problems
using SFTP to connect to it. It doesn’t require any additional software installation on the
server or connecting client. Most installations of SSH should include SFTP, except in rare
instances of lightweight builds.

To get started, simply take the command you're already using to connect to your
server via ssh and use sftp instead, for example:

sftp ubuntu@myserver.com
Or if you're using a PEM file for authentication as is common with AWS servers, use
sftp -1 ~/.ssh/key.pem ubuntu@myserver.com

One thing to note before connecting is that the directory where you connect from
will be the directory which you intend to download or upload from.

Once logged in to the server, you'll be able to use some of the commands normally
available in an ssh session, but not all of them. Most importantly, you'll be able to
navigate through your filesystem using 1s and cd (just like with FTP).

In the case that you want to download a file, navigate to the folder in question and
use the get command:

get readme.txt

If everything is working as expected, you should see some output confirming the
download like shown in Figure 6-2.

-116-189.compute-1.3amazonaws.com
Connected to ec2-35-174-116-189.compute-1.amazonaws.com.
sftp> cd Downloads/

sftp> 1s

electrum-3.3.4 electrum-1tc-3.3.4.1

enl google-free-philip-private.ppk
mbrola-SuSElinux-ultral.dat mbrola-1inux-alpha
mbrola-1linux-1386 mbrola266a-1inux-ppc
mbrola3e2b-1linux-ppc mbrola_linux_l1ibcs
nordvpn-release_1.0.0_all.deb readme. txt

sftp> get readme, txt

Fetching /home/ubuntu/Downloads/readme.txt to readme.txt

/home fubuntu/Downloads/readme. txt 100% 31KB 125.4KB/s 00:00
sftp>

Figure 6-2. Using lftp to get a file from a remote server

109

CHAPTER6 FILE TRANSFER

From that point, break the sftp connection by pressing ctrl+c. Once back on your
local machine, run 1s and you should see the downloaded file.

The other function you'll likely want to make use of for uploading files is put.
Again as with get, navigate to the folder containing the file you want to upload before
connecting over sftp. Then connect with sftp; once on the server, navigate to where you
want to upload the file. Type in put, be sure to include the space after put, then press
tab. Pressing tab after put should show you a list of files in the directory. In Figure 6-3,
you can see image files for bird, cat, and dog.

philip@philip-ThinkPad-T420: /tmp/uploadsS !2?sftp

sftp -1 ~/.ssh/coinwatch.pem ubuntu@ec2-35-174-116-189.compute-1.amazonaws.con
Connected to ec2-35-174-116-189.compute-1.amazonaws.com.

sftp> c¢d /tmp

sftp> put

bird.jpg cat.jpg dog.jpg

sftp> put i

Figure 6-3. Using autocomplete to see what files can be put

From this point, I can simply finish typing one of the three options, or if you realize
you're in the wrong folder, you can start typing in an alternative path, for example, ../ or
/, and then press tab again to assist in finding the file you want to upload.

Note In the Chapter 5, we looked at creating an ~/.ssh/contig file to create
shortcuts that include the server, username, and other options. This same config
file will also work with both SFTP and SCP.

SCP

SCP, short for secure copy protocol, is another file protocol that usually ships with SSH. The
functionality is similar to SFTP, but it does not have the interactive aspects. An upload or
download with SCP has to be declared all in a single command, rather than first connecting
to a machine and then being able to navigate directories.

Overall it would seem SCP is worse than SFTP given it offers no extra features and
is less interactive. However, SCP offers the advantage of being faster than SFTP for file
transfer. For small to medium files, this may go unnoticed, but if you're moving a large
file, you may decide to go with SCP instead of SFTP. You might also consider using SCP

110

CHAPTER6 FILE TRANSFER

if you're transferring files as part of a script, and interactive mode would actually be a
hindrance rather than a benefit.

To download a file from a server, simply run scp followed by the username@
serverName, then :/file/location (without spaces), and then as the second argument
the path of where you want to save the file on your local machine, for example:

scp ubuntu@myserver.com:/tmp/myFile.txt ./

Many of the flags which work on ssh and sftp will also work with scp - for example,
if you need to use a PEM file to log in to your server:

scp -1 ~/.ssh/mykey.pem ubuntu@myserver.com:/tmp/myFile.txt ./
Ifyou instead need to upload a file to a server, just switch the order of the paths:

scp ./ ubuntu@myserver.com:/tmp/myFile.txt

Rsync

Note If you're using a password to log in to your server, you’ll need to set up
public key authentication, as described in Chapter 5, section “Keypairs with ssh-
keygen.” Aside from having SSH setup, the only thing your remote server will need
installed is rsync.

Rsync is another tool for uploading and downloading files on Linux systems, but it functions
more like an automatic backup system similar to the service offered by Dropbox. After setup,
it will monitor a target folder on one system, and if any files are added or changed, they’ll be
synced to a remote server. This is handy because unlike some custom backup scripts, it will
only save files which are new or changed, as opposed to an scp command that runs on a
regular interval backing up a folder.

To get started, install rsync:

sudo apt-get install rsync
To use the program, you'll need to run the following command:

rsync -r --progress \
~/backup ubuntu@<myserver.com>:/home/ubuntu/backup

111

CHAPTER6 FILE TRANSFER

In the preceding command, we are first specifying our local folder ~/backup which is
the folder we want to be backed up. After the folder, we specify the username and server
ubuntu@<myserver.com> which you'll replace with the information of your server. Then
without a space, we have : /home/ubuntu/back which is the folder location where we’ll
be backing files up to.

While we're specifying our local folder first, that isn’t a requirement. If we instead
wanted to back up the remote server to a local folder, we would just swap the order of the
arguments and instead run the following command:

Isync -r --progress \
ubuntu@<myserver.com>:/home/ubuntu/backup ~/backup

The optional flags we’re using are -1 which causes folders to be backed up
recursively and - -progress which provides some visual feedback about how far through
the backup process you are.

If you're using an identity file, you'll need to use the -e flag and specify the specific
SSH command used to start the session. We're using the example of adding an identity
file, but if you want to modify the SSH in any way, you can make use of the -e flag.
However, in some cases, such as changing the port used for SSH by the remote server,
rsync provides its own flag --port (as always you can check the man page for a complete
list of options).

rsync -r --progress \
-e "ssh -i /home/philip/.ssh/key.pem" \
~/backup ubuntu@myserver.com:/home/ubuntu/backup

As mentioned we’re making use of the -1 flag. Without the - option, files inside
folders will not be backed up. There are several options to be used with rsync; some of
the most common ones are listed in Table 6-1.

112

Table 6-1. Common rsync options

CHAPTER6 FILE TRANSFER

Short Flag Full Flag Description

-V --verbose More detailed output

-q --quiet No text output

-a --archive Archive files while syncing

-r --recursive Sync directories recursively

-b --backup Make backup

-u --update Don’t copy files if destination is newer

-l --links Copy symlinks

-n --dry-run Trial run

-e -rsh="command” Specify remote shell command

-z --compress Compress data during sync

-h --human-readable Sizes in human-readable format
--progress Show progress during sync

Set Up Cron Job for Rsync

We've seen how easy it is to back up a whole folder or group of folders using rsync, but

it’s not quite automatic yet. To make life a bit easier, we can create a cron job to automate

the process of calling the command at a regular interval.

To do this, we’ll create a cron job, but first let’s move our backup command in a script

file. You can create the file in any location you like; one common location for custom

scripts is /usr/local/bin/. Open up your script file, in our case we'll use /usr/local/

bin/backup.sh, add a shebang, and paste in the rsync command specific to your server

and backup folder location:

#!/usxr/bin/env bash

rsync -r --progress \

~/backup ubuntu@myserver.com:/home/ubuntu/backup

113

CHAPTER6 FILE TRANSFER

Make sure to substitute the user, server, and folders to your specific setup. If you want
to back up multiple folders, you can add additional rsync commands below the first one.
After saving, be sure to add the execution permission to your new file:

chmod +x /usr/local/bin/backup.sh

Finally, we'll create our cron job by running crontab -e and at the bottom of the file
adding

0 0 * * * /usr/local/bin/backup.sh

With this set, your system should back itself up at midnight everyday.

Two-Way Sync with Unison

We've seen how rsync can make backing up from one machine to another easy, but this isn’t
quite the same as popular services like Dropbox, which provide two-way synchronization. If
you need to synchronize files in two ways, the program to check out is unison which is built
on top of rsync but provides two-way synchronization.

Make sure to install unison on both machines you want to synchronize:

sudo apt-get install unison

As there is no option to specify a . pem key with unison, you'll have to just add it to
ssh and let ssh provide it when needed. You can do this by running (you'll have to run
this step every time your system restarts)

ssh-add <path/to/file.pem>
With this done, you're ready to run unison:

unison -auto -batch \
~/backup \
ssh://ubuntu@server.com//home/ubuntu/backup/

The -auto and -batch flags are recommended to make the process automated;
without them you’ll be manually asked to verify each file which is synchronized.

114

CHAPTER6 FILE TRANSFER

Automatically Sync When File Changed with Unison

Unfortunately, the version of unison which is available on some package managers
including Ubuntu’s does not include the companion binary unison-fsmonitor which
monitors the filesystem. This leaves you with two options:

1. Usea cron job to check at a regular interval as we did with rsync.
2. Manually compile unison from source code.

If you want to go with the simple method of using cron, simply refer to the last section
about rsync and replace the rsync command in backup.sh with a unison command;
you might also want to increase the frequency of the cron job. If you want to compile
from source to get the ability to automatically sync instantly when a file is changed, keep
reading and we'll walk through the steps needed to compile from source. To avoid any
errors make sure to have the same version of rsync on both machines synced.

First off, we’ll need to uninstall the package manager version of unison and install
ocaml which is the language that unison is written in:

sudo apt-get remove unison
sudo apt-get install ocaml

Next go to https://github.com/bcpierce00/unison/releases and take note of
the latest available version. At the time of writing, it’s 2.51.2. Take whatever the version
number is and set an environment variable, as we’'ll use it multiple times:

UNISON VERSION=2.51.2

With the version number set, run the following series of commands; notice we make
use of the environment variable we set for version number:

wget \
github.com/bcpierce00/unison/archive/v$UNISON_VERSION.tar.gz

tar -xzvf v$UNISON VERSION.tar.gz

rm v$UNISON VERSION.tar.gz

pushd unison-$UNISON_VERSION

make

sudo cp -t /usr/local/bin ./src/unison ./src/unison-fsmonitor

popd

rm -rf unison-$UNISON VERSION

115

https://github.com/bcpierce00/unison/releases

CHAPTER6 FILE TRANSFER

You'll need to run the preceding steps on uninstalling, building, and installing
unison on both servers you want to sync. Once you've done that, you can run the
following command on one of the two servers:

unison -batch -auto ~/backup \
ssh://ubuntu@server.com//home/ubuntu/backup/ \
-repeat watch

With this running, you can try creating a file in the backup directory on either server
and see the file get synced.

Note When setting up unison, be careful not to back up two home directories to
each other. During testing, we found that after each backup using home folders, a
log file would be updated, itself triggering another backup, causing an infinite loop.

Unison Settings File

As mentioned in our note, we ran into a bug trying to create backup between two home
directories due to log files. However, if desired it is possible to modify the location of
unison log files and many other aspects of how the program operates. The settings

for unison are specified in the file .unison/default.prf. If we wanted to change the
location of our logs, we could add the following line.

logfile = /tmp/unison.log

Other options that can be set include things like ignoring certain file types; see an
example of ignoring mp4 files here:

ignore = Name *.mp4

For additional information on what can be configured on unison, see the official
documentation at www.cis.upenn.edu/~bcpierce/unison/docs.html.

Create a Service to Keep Unison Running

While we've got the two-way sync automatically working on both servers, there are still a
few problems. Firstly, you're forced to keep a terminal window running with unison, and
secondly it will turn off if you restart your computer.

116

https://www.cis.upenn.edu/~bcpierce/unison/docs.html

CHAPTER6 FILE TRANSFER

As a solution to these two problems, we’re going to create a systemd service which
will turn unison on at startup and ensure it keeps running, so that your folders are always
synced without you having to run commands or think about it.

The first thing we're going to do is move all our command-line arguments used when
calling unison and convert them into a unison configuration file located at ~/.unison/
bidirsync.prf. Create ~/.unison/bidirsync.prf and add the following:

Unison preferences
label = bi-directonal sync with server

root = /home/<user>/backup
root = ssh://<user>@<server-name>//home/<user>/backup
batch = true

auto = true

repeat = watch

logfile = /home/<user>/.unison/unison.log
#debug=all

If your server requires an identity file like a PEM, you'll also need to add a line
specifying the file in the format shown as follows:

sshargs = -oldentityFile=/home/<user>/.ssh/<privkey-name>

Test the configuration by running unison bidirsync. Notice that bidirsyncis
both the name of the file we created and the label in our config file. You can use the
~/.unison/ folder to create as many unison configurations as you want and quickly run
them this way.

Now that we have a working configuration, we're going to create a systemd service (see
Chapter 11 for more information). First create a new folder ~/.config/systemd/user:

mkdir -p ~/.config/systemd/user

Then in that folder, create a file called unison.service. It should contain the
following (make sure to update User and Group to your own values):

[Unit]
Description=Unison

[Service]
Environment="PATH=/usr/local/bin:/usr/bin"

117

CHAPTER6 FILE TRANSFER

ExecStart=/usr/local/bin/unison bidirsync
User=<yourUser>

Group=<yourUser>

Restart=always

RestartSec=10

[Install]
WantedBy=multi-user.target

Once you've created the service file, you can run the following to start it:
sudo systemctl start unison
You can check that everything is working and see the logs by running

systemctl status unison

Summary

In this chapter, we looked at several services which can be used for downloading,
uploading, and synchronizing files across machines. We started with the classic ftp and
more secure alternatives like sftp and scp. Then we looked at rsync for synchronizing
folders easily and even unison which is capable of automatically keeping folders on
separate machines synchronized immediately after a change is made on either.

118

CHAPTER 7

Network Scanning

Often you'll want to see what devices are on your local network, including the device IP
addresses. This comes in handy in several situations including but not limited to

e You want to get the IP address of your router.

e You've arrived at a hotel and want to check the network for bugs or
hidden devices, like a rogue Raspberry Pi which could have been left
behind.

e You want to see the IP addresses of other computers on the network
to see if they have any insecurities.

e General curiosity about what devices are on the network.

In this chapter, we’ll go over how you can detect what devices are on the network and
what ports they have open. In some cases, it’s even possible to determine things like the
OS a device is running, the version of an application running on a certain port, or the
physical location of a server.

Check Connection with Ping

Before we get into scanning networks, it’s worth mentioning one of the simplest yet
useful commands. ping allows you to check that you're connected to the Internet and
that your target website is up. To check your connection to the Internet is good, many
people will send a ping to 8.8.8.8; this is Google’s primary DNS server and is known to
be very reliable. You can ping it with

ping 8.8.8.8

119
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_7

https://doi.org/10.1007/978-1-4842-6035-7_7#DOI

CHAPTER 7 NETWORK SCANNING

Note 8.8.8.8 is often used as a dummy server to send pings to, due to its
longevity and high uptime. However, since this is a live server used by a business
(Google), you may wish to be considerate and not add additional traffic to their
load. The website example.com is specifically reserved as an example site, by the
Internet Assigned Numbers Authority, to be used for such purposes. For this reason,
we’ll use example.com going forward instead of 8.8.8.8. However, it is good to

be aware that 8.8.8.8 is often used for this purpose so you can identify what is
happening if you see it in a script.

You'll get a response back every second or so which tells you the connection is good.
You can exit the program with ctrl+c; if you just want to ping once or a set number of
times, you can use the -c flag followed by a number. This can be useful if you want to do
something only if connected to the Internet or only if a target website is up, for example:

ping -c 1 example.com && echo connected

If we change the example.comwith an IP or website that isn’t live, the echo
connected will never run.

arp-scan Method

The easiest method is to install a program called arp-scan. arp-scan is a program
which sends arp packets to all devices on the network and displays responses which are
received.

On Ubuntu/Debian-based systems, you should be able to install it with
sudo apt-get install arp-scan

Once installed, use the --1localnet option to view all devices on your local network;
the command requires root permission:

sudo arp-scan --localnet

The program will return a list of devices including the IP address, unique MAC
address, and if possible the manufacturer of the device.

As I write this from my hotel room, I can see the local Cisco router, which not
surprisingly can be logged in to using the default username and password of the device.

120

CHAPTER 7 NETWORK SCANNING

In addition, I can sometimes see my Android phone which is also connected to the
network. For the android device, seeing it depends on whether a response was received
upon sending an arp packet, which often doesn’t happen when in sleep mode.

It can be useful to note the unique MAC address of a device, for example, if you want
to later see if a person is at another location. Say I'm at a friend’s house; I might record
the MAC address of his laptop and phone. Then later when at a large building on a single
network, for example, a library, I could scan the network to see if his device is connected,
thus knowing if he is at said location.

nmap Method

While I find arp-scan gives the most complete information for found devices, as it returns IP,
MAC address, and manufacturer, there are situations where devices will not be included in
the scan - if, for example, a device is present on the network but hasn’t been assigned an IP
address.

For a more complete list, use this second method. It will require installing nmap, short
for “network-mapper”. Again on Ubuntu/Debian, you should be able to install it with

sudo apt-get install nmap

Once installed, you’ll want to use option -sn, which stands for no port scan. In older
versions of nmap, the option -sP may be used instead of -sn. This option is often known
as a “ping sweep”.

The full command is as follows, making sure to use root permissions with sudo
(otherwise results will differ):

sudo nmap -sn 192.168.1.0/24

The preceding command assumes your network is using the IP range 192.168.1.%;
in some cases, the third number may differ. If you didn’t get back any result from the
nmap ping sweep, you should manually check the IP range being used by your network.
In that case, you can find out by running (the “a” is short for address)

ip a

In the results, look for the section with your wireless or Ethernet interface
(depending on which you’re using) and look for your own IP on the local network. In my
case, my wireless interface is called wlp3s0, and my local IP address range is 192.168.30.*
as shown in Figure 7-1.

121

CHAPTER 7 NETWORK SCANNING

philip@philip-ThinkPad-T420:~% ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
1ink/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_Lft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_lft forever
2: enp0s25: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
link/ether 00:21:cc:ba:c8:0d brd ff:ff:ff:ff:ff:ff
3: wlp3s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 15600 gdisc mq state UP group default qlen 1000
link/ether 10:0b:39:96:87:74 brd ff:ff:ff:ff:ff:ff
inet B Elé). 161/24 brd 192.168.30.255 scope global dynamic noprefixroute wlp3s@
valid_1ft 8e778sec preferred_1ft 80778sec
inet6 fe80::5a7e:221e:3122:8e4c/64 scope link noprefixroute
valid_1ft forever preferred_Lft forever
4: docker®: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 gdisc noqueue state DOWN group default
link/ether ©2:42:db:4b:6e:66 brd ff:ff:ff:ff:ff:ff
inet 172.17.0.1/16 brd 172.17.255.255 scope global docker®
valid_1ft forever preferred_Llft forever
philip@philip-ThinkPad-T420:~5 I

Figure 7-1. Finding IP address being used locally with ip a

So in my case, I actually need to run
sudo nmap -sn 192.168.30.0/24

The 0/24 in this command specifies a range in CIDR notation. There are three
options for specifying ranges with nmap:

e CIDR notation (0/24)
e Range (1-5)
e Wildcard (*)
Thus, the same command can be expressed as

nmap 192.168.1.0/24
nmap 192.168.1.0-255
nmap 192.168.1.*

Note Want to watch what is happening on the network live? Before running
nmap, open up a second terminal and run ip monitor. This will allow you to
watch everything happening on the network live. Alternatively, if you just want to
see activity form nmap, you can add the -d flag to your command.

122

CHAPTER 7 NETWORK SCANNING

View Open Ports

Once you have the IP address of a device, you often want to see what ports are open.
This goes for servers as well, which after all are simply devices located at an IP address
somewhere else on the Internet no different than a local computer, smartphone, or IoT
device. Situations where this might come in handy include

o Figuring out what type of device is on the network based on open
ports

o Finding open ports which may be exploitable by hacks

e Finding an open port which can be visited in your browser or by
other means for device interaction

Since we installed nmap previously, I'll assume you have it installed.

The most common way to scan for open ports of a device is to simply use nmap
followed by the IP address of the device you want to scan. For example, using the
previous tip, I was able to find that my hotel’s router has an IP address of 192.168.1.1; I
would then use the following command to find open ports:

nmap 192.168.1.1
This in my case outputs the following:

Host is up (0.82s latency).
Not shown: 999 closed ports
PORT STATE SERVICE

80/tcp open http

Note Getting this kind of output from nmap is dependent on a device actually
being located at the IP you input. It may be that 192.168.1.1 isn’t any device on
your network.

123

CHAPTER 7 NETWORK SCANNING

It shows port 80 is open; this is the basic http port where the web-based interface
serves the settings panel for the router.

You might want to check what ports are open on your own machine; you might be
surprised what you find:

nmap localhost

It’s important to point out that by default nmap only scans the 1000 most popular
ports on the specified device. When a server or device wants to be discreet, less popular
ports may be used. If you really want to scan all possible ports, you should use the -p-
flag, for example:

nmap -p- localhost

This will scan all 65535 ports, that is, over 65 times as many ports as the default, so it
takes a significantly longer time to complete.
The same method can be used on a web address, for example:

nmap -p- example.com

This will return open ports on the server for example.com. At the time of writing,
only ports 80 and 443 are open - port 80 for http traffic and port 443 for https. Later I'll list
some of the most common ports and their most likely use. Keep in mind the phrase “most
likely”; there is nothing stopping a server from using a port commonly used for one thing
for another thing. Some of the most commonly used ports are shown in Table 7-1.

Sometimes someone might run a service on an unexpected port, for example,
running ssh on port 80 instead of port 22, to subvert restrictive network policies that
don’t allow SSH. The firewall blocks port 22 in an attempt to stop the use of ssh on the
network, but if the server is listening on port 80 (normally used for web traffic), the
method of blocking becomes ineffective.

124

CHAPTER 7 NETWORK SCANNING

Table 7-1. Commonly vulnerable ports

Port Number Common Use
80 http

443 https

21 FTP

22 SSH

25 SMTP

135 Windows RCP
137 NetBIOS
3306 MySQL

3389 RDP

Another common use for running a service on a nondefault port is to avoid
exploit bots who might use scanning techniques like those used here. For example,
say someone is mass scanning IP addresses to find MySQL instances running on the
default port 3306; a server which instead had service running on port 7777 would go
undetected. Though with something like MySQL the best policy is to close the port off to
the public completely, making it only available to the internal applications which need it.
With something like SSH you might not have the option to turn off the port completely.
It’s for this reason that SSH key authentication is recommended over password
authentication, as it makes a brute force attack nearly impossible.

If you want to see a more complete list, you can parse the /usr/share/nmap/ file
which lists all services known to nmap. The list is too long to be useful so you may find
removing all entries marked as unknown to be useful:

cat /usr/share/nmap/nmap-services | grep -v unknown

Even after removing all unknown entries we still get over 12,000 results. I recommend
reversing the lines so you start with lower-numbered ports. You can do this you can do
this by piping the previous command into tac (cat command with lines reversed):

cat /usr/share/nmap/nmap-services \
| grep -v unknown \

125

CHAPTER 7 NETWORK SCANNING

| tac

This way you can scroll upward starting at port 1. Alternatively you could pipe the
results into ‘less’, the utlity explored in Chapter 1, to view the results with easy scrolling.

Devices and Ports at Once

If you want to scan all devices on your local network and also scan for open ports on
those devices, you can combine the two previous tips into a single command.
This can either be done the easy but slow way or the fast way.

Easy but Slow

The easy but slow way is to simply use nmap for the whole process in a single step, by
running nmap on an IP range instead of IP. This means nmap will be attempted for all IPs
in the specified range; simply add -p- if you want to scan all ports instead of the 1000
most popular:

sudo nmap 192.168.1.0/24

Note Depending on your network, this method can be very slow.

Faster Method

The faster way uses arp-scan to get the IPs, grep to extract them, and finally xargs with
nmap to perform the scan on each one. It looks like this:

sudo arp-scan --localnet \
| grep -o \
"[0-97M1,3\ . [0-9]\{1,3\}\.[0-9]\ {1,3\}\ . [0-9]\{1,3\}" \
| xargs nmap

0S Detection

If from your results you find some machine IP addresses that look interesting, you can
ask nmap to attempt to guess the OS running on the machine:

sudo nmap -0 <ip-address>

126

CHAPTER 7 NETWORK SCANNING

If you want to detect the OS of every device scanned using the script from the
previous section, you may instead want to use --osscan-1imit which will limit OS
detection scan to promising targets. Or if you want nmap to be more aggressive with
guessing OS and show closest match, use --osscan-guess.

Scanning the Internet with masscan

Masscan is an Internet-scale port scanner, useful for large scale surveys of
the Internet, or of internal networks. While the default transmit rate is only
100 packets/second, it can optional go as fast as 25 million packets/second,
a rate sufficient to scan the Internet in 3 minutes for one port.

—Imasscan man page

Note As with nmap, you'll want to build masscan from source if you want to
get the most up-to-date features (e.qg., --top-ports flag), though an older version
is available in most package managers. You can find the source at www.github.
com/robertdavidgraham/masscan.

Masscan is a tool very similar to nmap but which was released later and has the ability
to scan ports at a much faster rate. It’s easy to switch between the two as masscan uses
nmap-compatible syntax. You can even get a list of similar features between masscan and
nmap by running

masscan --nmap

While masscan is much faster than nmap, it has less features and is less accurate.
Often masscan will be used for initial reconnaissance to find targets, and once targets are
selected, nmap will be used for greater accuracy and detail.

When using masscan, you'll likely notice that it runs much slower than the maximum
possible speed described in the man pages. This is because there are several other
limiting factors to the speed at which masscan will run, including things like the rate at
which your router can upload and download traffic.

That said, we can run a script equivalent to an nmap one to compare:

time sudo masscan --top-ports 192.168.1.0/24

127

http://www.github.com/robertdavidgraham/masscan
http://www.github.com/robertdavidgraham/masscan

CHAPTER 7 NETWORK SCANNING
Once complete, try the same thing in nmap:
time sudo nmap 192.168.1.0/24

You'll find that masscan runs significantly faster as it doesn’t wait for a response
before sending the next request, though it will still have to scan each port once devices
are found to find which are open.

As mentioned in the description, the default speed is 100 packets per second, though
itis possible to increase this all the way to 25 million per second. That rate will be limited
by what your network and device can handle. If you want to change the rate, use the - -
rate flag, for example:

sudo masscan -p 22 --rate 1000 192.168.1.0/24

When scanning public ranges, be careful as sending massive amounts of unrestricted
to a very large range of IPs may trigger red flags for your Internet service provider. It may
be better to SSH into a cheap server and test large scans at high speeds from there.

Run Scripts with nmap

Beyond scanning ports and detecting OS, nmap provides advanced capability through
script modules. A large variety of these scripts are shipped with the program by default,
and additional ones can be installed or written from scratch. To get a complete list of the
scripts that come with nmap, check the usr/share/nmap/scripts folder:

1s /usr/share/nmap/scripts

At the time of writing, there are over 600 prewritten scripts shipped with nmap by default.

Note The version that is available from apt-get or other package management
systems likely isn’t the most up to date, as nmap is still a very active project. You
can find the most up-to-date version at www.github.com/nmap/nmap.

To use a script, simply pass it in with the --script flag like the following:
nmap --script http-headers example.com

In this example, we've used a script to get the http-headers of example.com; your
results should include headers for both ports 80 and 443, as shown in Figure 7-2.

128

http://www.github.com/nmap/nmap

CHAPTER 7 NETWORK SCANNING

80/tcp open http

| http-headers:

| Accept-Ranges: bytes

| Age: 444835

| Cache-Control: max-age=604800
| Content-Type: text/html; charset=UTF-8
| Date: Wed, 01 Apr 2020 20:49:01 GMT
| Etag: "3147526947"

| Expires: Wed, 08 Apr 2020 20:49:01 GMT
| Last-Modified: Thu, 17 Oct 2019 07:18:26 GMT
| Server: ECS (gdl/6560D)
| X-Cache: HIT

| Content-Length: 1256
| Connection: close

|

=

(Request type: HEAD)

Figure 7-2. Header information from http-headers nmap script

traceroute Script

Some scripts like the ones mentioned earlier can simply be run as is. Others may require
being used in conjunction with other options. For example, the traceroute-geolocation
works with data that comes from the --traceroute flag. So using this script requires both:

sudo nmap --traceroute \
--script traceroute-geolocation example.com

The --traceroute flagis used to trace all hops or intermediating routers; in
combination with the traceroute-geolocation, we can get the geolocation of each router
along the way. An example of results using the ‘- -traceroute’ flag are shown in Figure 7-3.

Host script results:
| traceroute-geolocation:

| HOP RTT ADDRESS GEOLOCATION

| 1 176.07 _gateway (192.168.1.254) -y

| 2 38.11 ipdsl-mex-roma-79-10.uninet.net.mx (201.154.119.39) 19.437,-99.011 Mexico ()

| 3 179.99 reg-qro-triara-27-hge6-5-8-2.uninet.net.mx (201.125.120.45) 19.437,-99.011 Mexico ()

I 4 186.56 74.125.50.242 37.751,-97.822 United States ()

| 5 186.58 209.85.245.223 37.751,-97.822 United States ()

| 6 186.60 168.170.236.181 37.751,-97.822 uUnited States ()

|2 T: 186.57 den@3s09-in-f14.1e100.net (216.58.217.14) 37.406,-122.078 United States (California)

Figure 7-3. Using nmap --traceroute to see the location of the server

http-enum Script

The http-enumscript is written to test several paths of a website to detect information that may
give hints as to what applications or content management system is running on the server.

129

CHAPTER 7 NETWORK SCANNING
sudo nmap --script http-enum example.com

http-enumis also an example of a script which can be passed an argument. If you
want the script to run with a base path, for example, example.com/blog instead of
website.com, you can do

sudo nmap --script http-enum --script-args \
http-enum.basepath="blog/"' example.com

Write Your Own Script for nmap

nmap comes with many useful scripts that are relatively unknown to the majority of people
who use it for the port scanning functionality. What is even less known is that you can
actually create your own scripts by writing NSE files and placing them in the scripts folder.

NSE stands for Nmap Scripting Engine and is a domain-specific language which is
built on top of the Lua programming language. As seen in the previous section, scripts
can be used for all kinds of things including

e Network discovery

e Version/OS detection

e Vulnerability detection

o Backdoor detection

e Vulnerability exploitation

Every NSE consists of three sections, in a single file:

e Header
e Rule
e Action

The header section normally contains a description and imports any needed
libraries. A very simple example is

-- Header --
local shortport = require "shortport”

130

CHAPTER 7 NETWORK SCANNING

The preceding script imports the shortport library which can be used to determine if
a port is of a service type. After the header comes the rule section. Our example app will
use the shortport library to check if the port is one commonly used for http:

-- Rule --
portrule = shortport.http

Next comes the action section of the script. We'll tell our script what to do in the case
that the port is one commonly used for http:

-- Action --

action = function(host, port)
return "Hello World!"

end

With these three sections written, save your script and save it as /usr/share/nmap/
scripts/testing.nse. Then run the following on a website:

sudo nmap --script testing <website.com>
If you've copied and run the script correctly, you should see a subsection under any

found http ports as shown in Figure 7-4.

Not shown: 986 closed ports

PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
25/tcp filtered smtp
26/tcp open rsftp
53/tcp open domain
80/tcp open http

| _testing: Hello World!
110/tcp open pop3
143/tcp open imap
443 /tcp open https

Figure 7-4. Output from the example script

Our “hello world” NSE script isn’t particularly useful but it gives you the outline of
the three main parts of an NSE script (header, rule, action). If you want to experiment
with making an advanced NSE script, look through the other prebuilt scripts in /usr/
share/nmap/scripts; these provide great examples or starting points for building your
own scripts.

131

CHAPTER 7 NETWORK SCANNING

Wireshark/tshark

Another tool worth knowing about that we won’t go in depth on here is Wireshark. It’s

a full-featured GUI application for packet analysis. It allows you to capture and analyze
traffic on your network. There is a terminal-oriented version of Wireshark called tshark.
Both versions are available on most package managers. If you want the Wireshark
experience but don’t have access to GUI on a machine, you can also check out the
community project termshark, which simulates the UI of Wireshark in the terminal.

Wireshark is commonly used for information security, network quality testing, and
quality assurance of software for network use.

While arp-scan and nmap are the easiest tools for finding devices on the network,
Wireshark is actually more powerful in being able to find devices which may be hidden.
If, for example, a device does not respond to any requests, nmap, masscan, arp-scan, and
ping will never be able to find it even with the IP. However, if those devices at some point
want to make use of the network and Wireshark is recording, they will be spotted and
their existence becomes known.

To see all traffic with tshark, simply run it without any options (root permissions
required):

sudo tshark

Depending on your network, this will return a fast scrolling screen showing traffic on
the network, similiar to that shown in Figure 7-5.

132

CHAPTER 7 NETWORK SCANNING

File Edit View Search

. o Sea Terminal Help
134 8.499327614 Ubiquiti_58:64:16 — Broadcast ARP 60 Who has 192.168.1.151? Tell 192.168.1.
91

135 8.601716327 HuaweiTe_b3:b8:33 — Broadcast ARP 60 Who has 192.168.1.94?7 Tell 192.168.1.2
54

136 B8.663641534 172.217.5.162 —192.168.1.112 TLSv1.2 122 Application Data

137 B.664446164 172.217.5.162 —+192.168.1.112 TCP 66 443 — 56656 [FIN, ACK] Seq=57 Ack=1 Win=2
99 Lens=0 TSval=1313636887 TSecr=2041651258

138 B.664682711 192.168.1.112 —+172.217.5.162 TCP 66 56656 —* 443 [FIN, ACK] Seq=1 Ack=58 Win=1
726 Lenm® TSvale2041891262 TSecr=1313636887

139 B.683288117 172.217.5.162 —+192.168.1.112 TCP 66 443 — 56656 [ACK] Seq=58 Ack=2 Win=299 Le
n=0 TSval=1313636905 TSecr=2041891262

140 B.707053698 fe80::1 —» ff02::1:ff2d:5e20 ICMPv6 86 Nelghbor Solicitation for 2806:107e
1C:1C654:60¢1:2b0:632d:5¢20 fron 00:78:1¢:b3:b8: 23

141 B.759968315 216.58.193.2 —+192.168.1.112 TLSv1.2 122 Application Data

142 8.760316239 192.168.1.112 = 216.58.193.2 TCP 66 48590 — 443 [FIN, ACK] Seqel AckeS57 Wine=50
1 Len=0 TSval=621818446 TSecr=2680395118

143 8.760899031 216.568.193.2 —192.168.1.112 TCP 66 443 — 48590 [FIN, ACK] SequS57 Ack=1 Win=25
3 Len=b TSval=2680395118 TSecr=621578444

144 8.760947064 192.168.1.112 —+216.58.193.2 TCP 66 48590 — 443 [ACK] Seqe2 Ack=58 Win=501 Len
=0 TSval=621818447 TSecr=2680395118

145 B8.777831117 216.58.193.2 —192.168.1.112 TCP 66 443 —» 48590 [ACK] SeqeS8 Acks=2 Win=253 Len
=0 TSval=2680395136 TSecr=621818446

146 8.806570877 HuaweliTe b3:b8:a3 —»Broadcast ARP 60 Who has 192.168.1.652? Tell 192.168.1.2
54

147 8.858286150 149.154.175.50 = 192.168.1.112 SSL 379 Continuation Data

Figure 7-5. Example output when running tshark

As traffic moves quickly, it's often more useful to save the output into a file:
sudo tshark > /tmp/output.txt

The command will keep running until you cancel by pressing “ctrl+c” The longer you
run it, the bigger your sample size will be. This file can later be parsed to extract more
specific details and analyzed at your own pace.

If you want to be more specific with the packets which are recorded, tshark has all
kinds of filters - for example, if we want to look at a specific device:

sudo tshark host <ip-address>

If you're going to be parsing through the results looking for a single device, this will save you
alot of time and effort. You can also filter by traffic type, for example, to only show http traffic:

sudo tshark -Y http
You can show the full path of the http request with
sudo tshark -Y http.request.full uri

There are all kinds of filters for tshark and the GUI equivalent Wireshark. We won’t
go into all of them, but it’s a powerful tool worth looking into if you want to analyze

133

CHAPTER 7 NETWORK SCANNING

local network traffic. Also keep in the GUI version Wireshark is the main version. It’s an

extremely useful tool and there are full books on making use of it.

More Network Tools

The tools outlined so far can come in handy often, but they're only a small subsection

of networking tools available on Linux. Table 7-2 is a longer list of networking tools for

Linux that you can research more in depth.

Note We’ve included several deprecated utilities in the list. While they’re no
longer maintained, they’re still widely used on older systems or by system admins
who continue using them. For this reason, they’re worth being aware of, though

we’ll make sure to list the up-to-date alternatives.

Table 7-2. Networking utilities

Port Number Common Use

dig Get domain information

netstat Network statistics (deprecated)

ifconfig List systems network interfaces (deprecated)

arp Work with ARP cache (deprecated)

route Show/manipulate the IP routing table (deprecated)

ip Show/manipulate routing, network devices, interfaces, and tunnels
ss Socket statistics

ngrep Like grep but for network traffic

traceroute Find route packet takes to get to server

mtr Network diagnostic tool

nc Short for “ncat,” like cat but for network data. Can also be used as a

networking interface module for other programs
nft Networking tool for packet filtering and classification

iptables Manage firewall settings (deprecated)

134

(continued)

CHAPTER 7 NETWORK SCANNING

Table 7-2. (continued)

Port Number Common Use

sysctl Configure kernel parameters at runtime (some related to networking like
socket buffer size)

ethtool Analyze Ethernet connections

whois Get whois information on a domain

Isof Find what programs are using which ports

hping Like ping but with additional methods and options

socat Short for “socket cat,” like nc (net caf) but with more features

Dig
Dig is a DNS lookup utility. If it’s not installed on your system, you can find it as part of
dnsutils on Debian-based package managers and bind-utils on Fedora, CentOS, and
Arch.

Dig is used by passing it a web domain as an argument and will return DNS
information on the website. Without options, the information from dig is somewhat
cluttered and lacks entries. We recommend using the options +noall and +answer:

dig +noall +answer

Dig should return all the DNS entries for the domain. Our example in Figure 7-6
includes a query to example.com and another query to yahoo.com. We included a
second query to show an example of output when a domain has multiple A records.

philip@philip-ThinkPad-T420:~$ dig +noall +answer example.com

example.com. 5734 IN A 93.184.216.34
philip@philip-ThinkPad-T420:~$ dig +noall +answer yahoo.com
yahoo.com. 363 IN A 72.30.35.9
yahoo.con. 363 IN A 72.30.35.10
yahoo.com. 363 IN A 98.138.219.231
yahoo.com. 363 IN A 98 138 °219°232
yahoo.com. 363 IN A 98.137.246.7
yahoo.com. 363 IN A 98.137.246.8

philip@philip-ThinkPad-T420:~$ ||

Figure 7-6. Dig queries on example.com and yahoo.com

135

CHAPTER 7 NETWORK SCANNING

Netstat (Deprecated)

Netstat is a multipurpose utility for checking network connections, routing tables,
network interface statistics, and other network diagnostics. While you may still see
references to netstat and it does work, it has been deprecated.

As netstat is deprecated, it is recommended you use the utilities which have
replaced it including dig, ip, and ss.

ifconfig (Deprecated)

Like netstat the utility ifconfig has been deprecated. Despite this, you may find it
present on many machines and potentially used within scripts. It’s a utility for working
with network interfaces. It is recommended you use the ip command which comes with
the iproute2 package instead.

If you remember earlier in this chapter, we used the command ip a to find out
network IP range. Before ip became the go-to utility for this, running ifconfig was
used to do the same thing. ifconfig also has the ability to interact with interfaces, for
example, enabling or disabling them (assuming your Ethernet interface is named eth0):

ifconfig etho up
Now that same thing can be done using ip with

ip link set etho up

arp (Deprecated)

arp stands for Address Resolution Protocol, and it is used to map the MAC addresses of
devices (globally unique identifying number) to IPs. Computers contain an ARP table
which maps MAP and IP addresses. To view all entries in the table, run the following

command:
arp -a

Since arp has now been deprecated, it is recommended you use ip for the same
functionality. The equivalent of the preceding function with ip would be

ip n

136

CHAPTER 7 NETWORK SCANNING

where n is short for neighbor. See the man page on arp or ip for more advanced
capabilities.

route (Deprecated)

The route command is used to show/manipulate the IP routing table. The simplest
command with ‘route’ is to run it without any options or arguments which will return
the IP routing table. The equivalent command with ip is as follows:

ipr
where 1 stands for route.

ip

As mentioned in the previous section, the ip utility is a replacement for several utilities
including ifconfig and ‘route’, it is included in the iproute2 package. Routes can

be seen by running ip route or ip r for short. There are additional route commands
for adding or deleting such as ip route del unreachable 10.1.0.0/24, where
“unreachable” is the route name and “10.1.0.0/24” is the route.

SS

ss is a utility for monitoring socket use. The initials in the name stand for socket
statistics. If ss is not installed, you can find it in most package managers included with
iproute2. When running ss stand-alone, you'll get back a long list of all connected
sockets as shown in Figure 7-7. To make reading the output more manageable, you can
pipe the results into less by running ss | less.

137

CHAPTER 7 NETWORK SCANNING

philip@philip-ThinkPad-T420:~5 ss

Netidstate Recv-Q Send-Q Local Address:Port Peer Address:
Port

u_segESTAB 0 0 @00012 45538 *
45539

u_strESTAB 0 0 * 48395 *
48396

u_strESTAB 0 0 * 47749 *
47750

u_strESTAB] (-] @/tmp/dbus-YLPpboub 45290 *
45289

u_strESTAB 0 0 * 43531 *
39901

u_strESTAB 0 [} * 40819 s
42945

u_strESTAB 0 0 * 40147 *
40148

u_strESTAB (<] 0 Jvarfrun/dbus/system_bus_socket 28943 *
26258

u_strESTAB [} [} * 51942 *
51045

u_strESTAB] [} * 31248 *
32231

u_strESTAB <] [¢] Jvar frun/dbus/system_bus_socket 26943 =
28327

u_strESTAB (¢] 0 Jrunfuser/1000/bus 69563 *

Figure 7-7. Example socket statistics returned from running ss

It's somewhat difficult to understand what all these sockets are by default. To make
things easier, you can add the flag -p which will tell you the process name and ID of
each socket connection. This allows you to associate a socket connection with a process
running on a machine.

ngrep

ngrep is a network utility which provides grep-like abilities for parsing network data. Given
some specific text to listen for, ngrep will monitor network traffic and report any connection
data which matches. As an example, we'll view traffic generated by visiting example.com; first
we'll tell ngrep to listen for the string “example” as shown in the following:

sudo ngrep example

ngrep is now actively parsing network traffic for the string “example”. If you view
example.com in your web browser, you should see a match occur. To demonstrate the
importance of https, let’s send some unencrypted data to example using curl. Open up a
second terminal with ngrep still running and run the following command:

curl --data "user=name8password=secret" example.com

138

CHAPTER 7 NETWORK SCANNING

You should see the request in your window running ngrep. If you look through
the text carefully, you should be able to see the user and password fields, as shown in

Figure 7-8.

T 192.168.30.161:54418 -> 93.184.216.34:80 [AP] #180
POST / HTTP/1.1..Host: example.com..User-Agent: curl/7.58.0..Accept: *i*..c
ontent-Length: 25..Content-Type: application/x-www-form-urlencoded....

b33

T 93.184.216.34:80 -> 192.168.30.161:54418 [A] #182
HTTP/1.1 200 OK..Accept-Ranges: bytes..Cache-Control: max-age=604800..Conte
nt-Type: text/html; charset=UTF-8..Date: Thu, 02 Apr 2020 19:28:28 GMT..Eta
g: "3147526947"..Expires: Thu, 09 Apr 2020 19:28:28 GMT..Last-Modified: Thu
, 17 Oct 2019 07:18:26 GMT..Server: EOS (vny/0454)..Content-Length: 1256...

.<!doctype html>.<html>.<head>. <title>Example Domain</title>.. <meta
charset="utf-8" />. <meta http-equiv="Content-type" content="text/html;
charset=utf-8" />. <meta name="viewport" content="width=device-width, i
nitial-scale=1" />. <style type="text/css">. body {. backgroun
d-color: #fofefz;. margin: 0;. padding: ©;. font-famil

y: -apple-system, system-ui, BlinkMacSystemFont, "Segoe UI", "Open Sans",

Helvetica Neue", Helvetica, Arial, sans-serif;. 5 3. div {.
width: 600px;. margin: 5em auto;. padding: 2em;.
background-color: #fdfdff;. border-radius: 0.5em;. box-shadow
: 2px 3px 7px 2px rgba(0,0,0,0.02);. 3o a:link, a:visited {. c
olor: #38488f;. text-decoration: none;. 1 @media (max-width:
700px) {. div {. margin: O auto;. width: auto;

Figure 7-8. Unencrypted data recorded using ngrep

If you run the same command but instead specify https, like shown here
curl --data "user=name8password=secret" https://example.com

you should still see the request but will not be able to see the data which was sent or
even the specific website that was visited.

traceroute

The traceroute utility allows you to send packets to a host and get detailed information
on the route taken to get to the host. This might sound familiar as in Chapter 7 we used
a ‘traceroute’ NES script to view the hops made by traffic going from our local machine
to a website. The ‘traceroute’ utility provides this functionality as a stand-alone utility,
if we run

traceroute example.com

139

CHAPTER 7 NETWORK SCANNING

we will see the IP addresses of all the machines our packets traveled to before reaching
our final destination. This starts with the local router and ends at the IP of the actual
website as shown in Figure 7-9.

philip@philip-ThinkPad-T420:~/tmp/presidio-research/data$ traceroute example.com
traceroute to example.com (93.184.216.34), 30 hops max, 60 byte packets

1 _gateway (192.168.30.1) 10.645 ms 15.118 ms 15.708 ms
192.168.100.1 (192.168.100.1) 16.391 ms 16.370 ms 20.346 ms
10.99.128.3 (10.99.128.3) 21.195 ms 21.693 ms 22.087 ms
® * *
10.180.59.75 (10.180.59.75) 28.628 ms 30.877 ms 31.408 ms
10.180.200.172 (10.180.200.172) 36.723 ms 31.901 ms 13.046 ms
fixed-187-190-234-77.totalplay.net (187.190.234.77) 22.643 ms 24.100 ms 1
8.999 ms

8 93.184.216.34 (93.184.216.34) 15.777 ms 17.218 ms 18.396 ms

9 93.184.216.34 (93.184.216.34) 16.487 ms 20.883 ms 17.562 ms
philip@philip-ThinkPad-T420:~/tmp/presidio-research/datas ||

NounbswN

Figure 7-9. Route taken to example.com shown with traceroute

mtr

The mtr utility is a network diagnostic tool which combines aspects of ping and
traceroute. The name mtr is actually short for “my traceroute. ” Instead of sending a
single set of packets like traceroute, mtr continuously sends additional packets after the
previous is received (similar to ping). An updating display shows detailed information
on the timing as shown in Figure 7-10. If you're having issues with a connection, mtr can
help you get an idea of where things go wrong along the way.

My traceroute [v0.92]

hilip-ThinkPad-T420 (192.168.30.161) 2020-04-02T15:18:08-0400
@hys: Help Display mode Restart statistics oOrder of fields quit
Packets Pings

Host Loss% Snt Last Avg Best HWrst StDev
1. _gateway 0.0% 14 7.8 B S 1.6 41.8 10.5
2. 192.168.160.1 0.0% 14 31.4 18.9 1.9 172.6 44.9
3. 10.99.128.3 0.0% 14 87.9 77.8 5.9 122.5 48.0
4. 72

S. 10.180.59.75 0.0% 14 5.9 9.2 4.9 38.1 8.6
6. 10.180.200.172 0.0% 14 15.8 18.3 12.2 40.5 7.8
7. fixed-187-190-234-77.totalplay.n 0.0% 4. 36.2 33.9 13.1 260.1 49.6
8. 93.184.216.34 0.0% 14 14.3 24.6 11.9 139.2 33.3

Figure 7-10. Continuously updating route data to example.com shown by mtr

140

CHAPTER 7 NETWORK SCANNING

nc

nc is short for network cat, name inspired from the cat utility. nc is a robust utility which
provides the ability to connect and listen for connections via TCP or UDP. This means it
can even be used for things like opening up a channel between two machines for chat or
file transfer (though other tools like SSH are preferred).

nc is often referred to as the “Swiss Army Knife of networking” and can be used for
several networking tasks including port scanning, serving a website, or spoofing headers.
While many use cases have better options like nmap for port scanning, it can still be
useful for some simple things like grabbing headers or spoofing your own headers.

To spoof your own headers, run

nc example.com 80

You'll then be able to add additional text. You can base your spoof header on the
following sample:

GET / HTTP/1.1
Host: example
Referrer: duckduckgo.com
User-Agent: fake-browser

With the header entered, press enter twice and you'll fetch the website using the
spoofed header. You'll get back a response including the header information for the site.

nft — nftables

nftables is an administration tool for nftables framework for packet filtering and
classification. While you can find nftables under that name on package managers,

the command for running it is actually nft. The “nf” in nftables stands for “net filter,”
and they’re used to filter network traffic. That can be either outgoing or incoming. For
example, you might not allow outgoing traffic to a particular IP or not allow incoming
traffic to a certain port. nftables works by keeping track of a series of system-wide rules
which can be added or dropped and are used during the traffic filtering process.

141

CHAPTER 7 NETWORK SCANNING

iptables (Deprecated)

The iptables utility has been deprecated in favor of nftables, its successor. iptables
is rule based but lacks features included with nftables like having a single rule to target
both ipv4 and ipv6 packets.

sysctl

The sysctl is used to configure kernel parameters at runtime. This is not necessarily only for
network issues though some are such as socket size. This might be done for servers which
regularly send and receive large files, as tuning socket buffer size can improve network
performance for the specific use case.

ethtool

The ethtool utility, short for Ethernet tool, can be used to get in-depth information
about your Ethernet connection. This includes things about the data transfer itself and
the physical hardware. To view information on your Ethernet interface, you first need to
get its name. This can be done with by running

ip a
Record the name of your Ethernet interface (likely includes an “e”) and pass it as an
argument to ethtool:

ethtool enp0s25

In my case, the Ethernet interface name is “enp0s25” but yours will likely be
different. One of the most common names for the Ethernet interface is “eth0” When you
use the interface as the argument for ethtool, you should get back information about
the hardware (even if you're not actively using Ethernet), like shown in Figure 7-11.

142

CHAPTER 7 NETWORK SCANNING

philip@philip-ThinkPad-T420:~/tmp/presidio-research/data$ ethtool enp@s25
Settings for enp0s25:

Supported ports: [TP]

Supported link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full

Supported pause frame use: No

Supports auto-negotiation: Yes

Supported FEC modes: Not reported

Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full

Advertised pause frame use: No

Advertised auto-negotiation: Yes

Advertised FEC modes: Not reported

Speed: Unknown!

Duplex: Unknown! (255)

Port: Twisted Pair

PHYAD: 2

Transceiver: internal

Auto-negotiation: on

MDI-X: Unknown (auto)

Cannot get wake-on-lan settings: Operation not permitted

Current message level: 0x00000007 (7)

drv probe link
Link detected: no

Figure 7-11. Ethernet interface information output from ethtool

whois

whois is a utility for retrieving website ownership information provided by registrars. It
can be used by simply providing a domain as the argument. For example, running the
following command should return ownership and contact information like that shown in
Figure 7-12:

whois yahoo.com

143

CHAPTER 7 NETWORK SCANNING

philip@philip-ThinkPad-T420:~/tmp/presidio-research/data$ whois yahoo.com
Domain Name: YAHOO.COM
Registry Domain ID: 3643624_DOMAIN_COM-VRSN
Registrar WHOIS Server: whois.markmonitor.com
Registrar URL: http://www.markmonitor.com
Updated Date: 2019-12-18T13:37:09Z
Creation Date:
Registry Expiry Date: 2023-01-19T05:00:00Z
Registrar: MarkMonitor Inc.
Registrar IANA ID: 292
Registrar Abuse Contact Email: abusecomplaints@markmonitor.com
Registrar Abuse Contact Phone: +1.2083895740

Domain
Domain
Domain
Domain
Domain
Domain

Name Server:
Name Server:
Name Server:
Name Server:
Name Server:

Status:
Status:
Status:
Status:
Status:
Status:

1995-01-18T05:00:00Z

clientDeleteProhibited https://icann.org/epp#clientDeleteProhibited
clientTransferProhibited https://icann.org/epp#clientTransferProhibited
clientUpdateProhibited https://icann.org/epp#clientUpdateProhibited
serverDeleteProhibited https://icann.org/epp#serverDeleteProhibited
serverTransferProhibited https://icann.org/epp#serverTransferProhibited
serverUpdateProhibited https://icann.org/epp#serverUpdateProhibited

NS1.YAHOO.COM
NS2.YAHOO.COM
NS3.YAHOO.COM
NS4.YAHOO.COM
NS5.YAHOO.COM

DNSSEC: unsigned
URL of the ICANN Whois Inaccuracy Complaint Form: https://www.icann.org/wicf/
>>> Last update of whois database: 2020-04-02T723:19:52Z <<<

Figure 7-12. whois information for yahoo.com

Isof

The 1sof stands for “list of open files”; by default it will return a long list which includes

all the open files on your system. In terms of networking, the main option you'll want
to know for 1sof is the -1 flag. The -1 flag tells 1sof to look for IP sockets. It can also be

useful to add -P to get the port being connected to. To demonstrate, try running

lsof -i -P

This should return a list of local ports which are connecting to ports on remote

servers and the program associated with said connection. An example of expected

output is shown in Figure 7-13.

144

CHAPTER 7 NETWORK SCANNING

philip@philip-ThinkPad- 1¢ze'~1tnp1prts\d\o research/datag lsof -1 -P

COMMAND PID USER TYPE DEVICE SIZE/OFF NODE NAME

kdeconnec 3848 philip Zlu IPVE 44474 8th UDP *:1716

kdeconnec 3848 philip 22u IPV6 44475 Bt TCP *:1716 (LISTEN)

brave 3zee philip d6u IPv4 326252 ot TCP philip-ThinkPad-T420:46242->dfw25534-1n-f10.1e100.net:443 (ESTABLISHED)
brave 3288 philip 41u IPv4 337746 8t TCP philip-ThinkPad-T420:39918->1084.16.80.80:443 (ESTABLISHED)

brave 3280 phillp 42u IPv4 334924 8té TCP philip-ThinkPad-T420:35068->dend3s09-1n-f3.1e100.net:443 (ESTABLISHED)
brave 3280 philip 43w IPv4 335528 8té TCP philip-ThinkPad-T420:42824->00-1n-f189.1e100.net:443 (ESTABLISHED)
brave 3280 phillp 4d4u IPv4 239061 ote UDP 224.6.0.251:5353

brave 3280 philip 46u IPv4 392336 ote TCP philip-ThinkPad-T420:39876->qrodlsid-in-f14.1e100.net:443 (ESTABLISHED)
brave 3280 philip 51u IPvd4 338216 8té TCP philip-ThinkPad-T420:39630->qro01s513-1in-f14.1e1060.net:443 (ESTABLISHED)
brave 3280 philip 52u IPv4 337669 8té TCP philip-ThinkPad-T420:39054-=qrodlsi3-in-fid.1el88.net:443 (ESTABLISHED)
brave 3280 philip 53u IPv4 238342 6te TCP philip-ThinkPad-T420:48006->151.101.50.49:443 (ESTABLISHED)

brave 3288 philip 54u IPv4 335535 8té TCP philip-ThinkPad-T420:37364->denB3s09-1in-f14._1e188 net:443 (ESTABLISHED)
brave 3288 philip 56u IPv4 401817 8te TCP philip-ThinkPad-T420:41970->ec2-3-228-157-109 compute-1.amazonaws.com:443 (CLOSE_WAIT)
brave 3280 philip 57u IPv4 338217 0té TCP philip-ThinkPad-T420:34434->qro01s18-in-f14.1e100.net:443 (ESTABLISHED)
brave 3280 philip 58u IPw4 397327 otd TCP philip-ThinkPad-T420:39984->qro01s14-in-f14.1e168.net:443 (ESTABLISHED)
brave 32860 philip 59u IPv4 399070 8te TCP philip-ThinkPad-T420:47272->qro82s12-in-f1.1e180.net:443 (ESTABLISHED)
brave 3288 philip 62u IPv4 400882 ats TCP philip-ThinkPad-T420:33628->qroB2s15-1n-f2.1e188.net:443 (ESTABLISHED)
brave 32868 philip 63u IPv4 338648 ate TCP philip-ThinkPad-T420:32782->151.101.50.217:443 (ESTABLISHED)

brave 3280 phillp 64u IPv4 396241 oté TCP philip-ThinkPad-T420:45910->qro0lsi4-1n-f22.1e160.net:443 (ESTABLISHED)
brave 3280 phillp 67u IPv4 393531 ote TCP philip-ThinkPad-T420:51406->qro2s11-1n-74.1e106.net:443 (ESTABLISHED)
brave 32868 philip Tou IPv4 397513 oté TCP philip-ThinkPad-T420:40560->104.26.1.240:443 (ESTABLISHED)

brave 3280 philip Tiu IPv4 400890 ote TCP philip-ThinkPad-T420:50484->104.28.5.9:443 (ESTABLISHED)

brave 3280 philip T2u IPv4 401123 oté TCP philip-ThinkPad-T420:41348->40.115.22.134:443 (ESTABLISHED)

brave 3280 philip T3u IPwv4 395253 otd TCP philip-ThinkPad-T420:56872->qro01s13-in-f5.1e108.net:443 (ESTABLISHED)
brave 3280 philip T5u IPw4 338733 oté TCP philip-ThinkPad-T420:44998->1084.26.2.23:443 (ESTABLISHED)

brave 3280 philip 81lu IPv4 396753 8td TCP philip-ThinkPad-T420:55782->151.101.1.69:443 (ESTABLISHED)

brave 3280 philip 83y IPv4 398093 otd TCP philip-ThinkPad-T420:56752->dfw06548-1n-f106.1e100.net:443 (ESTABLISHED)
brave 3288 philip 85u IPv4 396375 0td TCP philip-ThinkPad-T420:60280->104.26.3.165:443 (ESTABLISHED)

brave 3288 philip 86u IPv4 395111 otd TCP philip-ThinkPad-T420:57312->qro01s13-in-f1.1e100.net:443 (ESTABLISHED)
brave 3zse philip 8%5u IPv4 399913 ot TCP philip-ThinkPad-T420:41112->dfw25512-1in-f42.1e100.net:443 (ESTABLISHED)
brave 3z88 philip S8u IPv4 394941 6td TCP philip-ThinkPad-T420:45700->104.16.86.20:443 (ESTABLISHED)

brave 3zee philip 91u IPv4 395871 8t TCP philip-ThinkPad-T420:33252->151.101.48.134:443 (ESTABLISHED)

brave 3288 philip 93u IPv4 394794 8te TCP philip-ThinkPad-T420:68788->104.16.29.34:443 (ESTABLISHED)

brave 3zee philip 96u IPv4 394598 8t TCP philip-ThinkPad-T420:35284->dend3509-1n-f3.1e108.net:443 (ESTABLISHED)
brave 3288 philip S8u IPv4 395877 8te TCP philip-ThinkPad-T420:40588->104.26.1.240:443 (ESTABLISHED)}

brave 3286 philip 9% IPv4 398078 8té TCP philip-ThinkPad-T420:53482->qro82s11-1n-f14.1e180.net:443 (ESTABLISHED)
brave 3280 philip 101u IPv4 399416 ote TCP philip-ThinkPad-T420:51420->172.217.195.189:443 (ESTABLISHED)

hraira 2788 nhilin 18% TOuwA IGTICA AtA Tro nhilin . ThinkDad . TA20+CATCA wAdfulkcAQ . in_F1AL 12188 nat 443 FECTARI TCWERY

Figure 7-13. Example output from 1sof -i -P

hping

hping is an offensive security networking tool which takes its name from ping. Like ping
it sends packets over the network to a destination, but it has advanced options allowing
for the crafting of custom packets, specifying things like destination port and spoofed
source IP for both TCP and UDP. In addition, it has some built-in methods like the
--flood option which can be used for DDOS-like attacks, like SYN flood attack.

The current version is 3 and is integrated into both the command and name on most
package managers:

sudo apt-get install hping3

On offensive security operating systems like Kali Linux, you'll actually find hping
installed by default. An example of SYN flood attack is shown later. A SYN flood attack
involves opening several connections without finishing the handshake. It can be used to
test if your network is safe from these attacks; the following is an example of performing
a SYN flood attack, to test switch the IP used with the target device on your network:

hping3 --rand-source -S -d 500 -p 21 --flood 127.168.1.110

145

CHAPTER 7 NETWORK SCANNING

The preceding command combines a few options. The first --rand-source tells
hping to spoof a random IP address as its source. Then -S flag specifies the SYN packet
network, -d 500 is the size of the packets, -p 21 is the destination port, and finally
--flood turns on flooding mode which sends many requests.

socat

socat is similar to nc (netcat) but has more advanced features. Also like netcat, it takes
its name from cat, standing for “socket cat.” It can be found on most package managers
as socat. Anything that can be done with netcat is possible with socat, but it also has
some additional features like multiple clients on a single port and options for working
with UDP.

Summary

In this chapter, we looked at some networking techniques, particularly related to port
scanning. We also briefly looked at some popular networking tools that can be used for
working with networks through analysis, configuration, and opening communication
channels.

146

CHAPTER 8

System Monitoring

Another common task you'll find yourself wanting to do while maintaining a Linux
system is monitoring things like system processes, memory, and network use. This helps
you to gauge how much of your capacity you're making use of. Knowing what resources
might be running low gives you insights into how the system load might be reduced

or where resources should be increased. In this chapter, we’ll look at tools for doing
different types of monitoring.

Top

Whenever a system or device is experiencing performance issues, one of the first things
you’'ll want to do is check what programs are running and how much system resources
they’re using. The simple go-to for this is top which comes installed on most Linux
systems. Running it will list all currently running processes. You can quickly kill a process
without leaving top by pressing z and entering the process ID (PID) of your target
process.

If you find yourself using top often, you might consider installing htop. htop is an
enhanced version of top with an improved visual interface and shows the full path of the
process.

If you prefer using built-in tools like top, or you're on a machine where you
can’t install htop, you can actually use a combination of keyboard commands to get
something that looks almost identical to htop and in some ways better.

With top open, press zxcVm1t0 (as a sequence, not at the same time) and you'll end
up with something that looks like in Figure 8-1.

147
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_8

https://doi.org/10.1007/978-1-4842-6035-7_8#DOI

CHAPTER 8 SYSTEM MONITORING

top - ©01:50:39 up 1 day, 11:54, 2 users, load average: 1.21, 1.13, 1.03
320 2 261 L] 0

10[

12[

9([

12[

8[

OV LOONS

PID USER

Figure 8-1. top after running zxcVm1to

We can take it a level further by entering alternate display mode by pressing A; this
splits the screen into four separate field groups. Once in alternate display mode, you
can switch between field groups by pressing g which will promote you to enter the field
number. If you switch between each field group and enter zxcVm1t0, you'll end up with a
neat-looking multifield display as shown in Figure 8-2.

148

CHAPTER 8 SYSTEM MONITORING

- ©2:14:54 up 1 day, 12:18, 2 users, load average: 0.82, 0.87, 0.91
317 . ., 0)

_PID USER VIR RES SHR S %CPU XMEM TIME+ COMMAND

) root
root

2 root

) systemd+

1 systemd+ -
root
root

) root

Figure 8-2. Styled multi-tab top

Of course you're probably thinking that looks great but that’s a lot of steps to run
every time you open top. To save these settings, all you have to do is press W. This will
save whatever your current configuration in top, and it will look the same when you
reopen it.

If you want to go back to the defaults, simply delete the configuration file that was
created; by default it should be ~/.toprc.

149

CHAPTER 8 SYSTEM MONITORING

Top-Like Programs

There are several programs which are inspired by top and either monitor some specific
aspect of the system not available in top or provide the same information in a different
layout. In this section, we’ll go over some of the popular programs which take both their
name and format from top.

htop

This is a program very similar to top which provides an improved graphic interface by default
in comparison to top as shown in Figure 8-3. It is not installed by default on most distros but
is available via many package management systems such as apt on Debian/Ubuntu.

File Edit View Search Terminal Help

2850
31715
31595
31592
31719

2693
30857
30626

2860
31721
30837
31705
30878
F1 z : 5 F9

[

Jusr/bin/gnome-sh

il n
NN W
£ L
S T S I S T

oy
(=) o
WOoOOSNWSNSNWSWWw-S

/home/philip/bin/
Jusr/lib/xorg/Xor
/snap/spotify/41/
/snap/spotify/41/
Jusr/bin/pulseaud

[3%]

oo Q@0OO0
=
\ O

nmurnmunmunmnwmnunmn

/snap/spotify/41/
htop

o RN RN W
OO ONRKE O
MO~V rbadu~NWOuumunm-

(<< T < <]
w

v

Figure 8-3. htop running with default settings

150

CHAPTER 8 SYSTEM MONITORING

atop

This is an advanced system & process monitor which is similar to top but is suited for
long-running analysis. It provides the ability to output the results of system monitoring
as a log file for analysis. As shown in Figure 8-4, it has a simple loop but provides the
feature of exporting as logs not available in top or htop.

It is not preinstalled on most distros by default, but it is widely available in package
management systems including Debian and RHEL.

File Edit View Search Terminal Help

2020
#zombie 1
idle 275%
idle 68%
idle 68%
idle 69%
0% 70%

2230 12 71637

28075

2.0G
sda \ % read 0
transport i tcpo
network ipi ipo 74
| wlp3se 0% i pcko i 14 Kbps
| lo ---- i 3 | pcko 3 i 0 Kbps

avio 1.29 ms
udpo 6
deliv 109
so 66 Kbps
SO 0 Kbps

I
I
I
I
I
I
I
15.56G cache 3.5G 883.7M | slab 647.0M
I
I
|
|
I
I

PID SYSCPU USRCPU VGROW RGROW ST EXC THR S CPUNR CPU CMD 1/13
2850 0.16s 2.91s 4576K 4140K -- - TSI S 31% gnome-shell
30458 0.09s 2.43s 23764K -3988K -- 17985 26% brave
31719 0.24s «95s 0K 196K - T3NS 12% Telegram
31980 0.11s .00s -3292K -24.4M - 13 11% brave
2693 0.40s s 70S =-720KN=1128K -) 11% Xorg
12647 0.22s .49s -0.3G -4520K - 34 ¢ brave
30857 0.03s .67s 0K 52K spotify

v

wv
= Wwwwo N

-
Y
W

Figure 8-4. atop running with default settings

By default the log files from atop will be saved to the folder /var/log/atop/. These
log files can be read by passing them to atop with the - flag as shown in the following,
except substitute the atop 20200310 with the file name of the log you want to open:

atop -r /var/log/atop/atop_ 20200310

151

CHAPTER 8 SYSTEM MONITORING

iftop

This is inspired by top but specializes in monitoring network usage rather than CPU or
memory use. When given a network interface, it will listen to all incoming and outgoing
traffic and provide information such as origin port and which external servers are using the
network most. Due to accessing network interfaces, using iftop requires sudo permissions.
It is not installed by default on most distros but widely available. We’ll look at this
program further later in the chapter as part of a section on monitoring networking traffic.

ntop

A more advanced alternative to iftop is ntop which also monitors network traffic.
However, unlike the other programs here, it is a GUI-based system which is accessed via
the browser. While this makes it less lightweight, it does provide some more advanced
visualizations like that shown in Figure 8-5.

Unlike the other programs mentioned so far, you won't find ntop with its standard
name on package managers. Instead you’ll find it under the name ntopng:

sudo apt-get install ntopng

4] C @ A @ localhost:3000/?page=TopApplications
el 8 m O- Flows Hosts ~ Devic
Dashboard Talkers Hosts Ports Applications ASNs Senders

Top Application Protocols

5.1%

Figure 8-5. Applications page in ntop

152

CHAPTER 8 SYSTEM MONITORING

Once installed and started, it will run on port 3000 and provide several admin pages
with statistics and visualizations based on network use.

iotop

This is another program inspired by top which focuses on filesystem read and write
usage. Threads are listed in order of disk read and disk write usage. The package is
widely available on both Debian- and RHEL-based systems. Like iftop using iotop will
require sudo permissions to run. iotop contains the basic information of each process
like user and command, as well as disk write and I0> (which is the measure of the % of
time a process has spent on I0). See Figure 8-6 for an example of iotop in action.

File Edit View Search Terminal Help

Total DISK READ : 0.00 B/s | Total DISK WRITE : 1222.20 K/s
Actual DISK READ: 0.00 B/s Actual DISK WRITE: 1577.89 K/s
PRIO USER DISK READ DISK WRITE SWAPIN COMMAND
32535 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.37 % [kworker/~3-iwlwifi]
32444 be/4 philip 0.00 Bf/s 821.11 K/s 0.00 ¥ 0.16 % brave [Th~PoolForeg]
300 be/3 root 0.00 B/s 52.97 K/s ©0.00 % ©0.13 % [jbd2/sda4-8]
399 be/4 philip 0.00 B/s 348.12 K/s 0.00 % ©0.00 % brave --t~PoolForeg]
1 be/4 root 0.00 B/s 0.00 B/s ©0.00 % 0.00 % init splash
2 be/4 root 0.00 B/s 0.00 B/s 0.00 ¥ 0.00 % [kthreadd]
3 be/0® root 0.00 B/s 0.00 B/s ©0.00 % 0.00 % [rcu_gp]
4 be/0 root 0.00 B/s 0.00 Bf/s ©0.00 ¥ 0.00 % [rcu_par_gp]
6 be/0® root 0.00 B/s 0.00 B/s 0.00 ¥ 0.00 % [kworker/~H-kblockd]
8 be/0 root 0.00 B/s 0.00 B/s ©0.00 % 0.00 % [mm_percpu_wq]
9 be/4 root 0.00 B/s 0.00 Bf/s 0.00 ¥ 0.00 % [ksoftirqd/0]
10 be/4 root 0.00 B/s 0.00 B/s 0.00 ¥ 0.00 % [rcu_sched]
11 rt/4 root 0.00 B/s 0.00 B/s 0.00 ¥ 0.00 % [migration/e]
12 rt/4 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [idle_inject/0]
14 be/4 root 0.00 B/s 0.00 B/s 0.00 ¥ 0.00 % [cpuhp/O]
15 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [cpuhp/1]
16 rt/4 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [idle_inject/1]
17 rt/4 root 0.00 B/s 0.00 B/s 0.00 ¥ 0.00 % [migration/1]
18 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [ksoftirqd/1]
20 be/0 root 0.00 B/s 0.00 B/s ©0.00 ¥ 0.00 % [kworker/~H-kblockd]
21 be/4 root 0.00 B/s 0.00 B/s 0.60 ¥ ©.00 % [cpuhp/2]

Figure 8-6. io running with default settings

153

CHAPTER 8 SYSTEM MONITORING

slabtop

This is a top-style program for monitoring kernel slab cache information, shown in
Figure 8-7. It’s mainly good for those who need to worry about kernel-level issues.
Like iftop and iotop, using slabtop will require sudo permissions.

File Edit View Search Terminal Help

Active [Total Objects (% used) : 2183230 / 2275893 (95.9%)
Active / Total Slabs (% used) : 68434 / 68434 (100.0%)

Active /[Total Caches (% used) : 113 / 155 (72.9%)

Active / Total Size (% used) : 640422.24K |/ 674066.56K (95.0%)

Minimum / Average / Maximum Object : 0.01K / ©0.30K / 16.81K

JS ACTIVE IZE SLABS OBJ/SLAB CACHE SIZE NAME
658164 653079 0% 0.10K 16876 39 67504K buffer_head
409290 401842 0% 0.19K 19490 21 77960K dentry
280050 276303 0% 1,65k 9335 30 298720K ext4_inode_cache
122196 122105 0% 0.04K 1198 102 4792K ext4_extent_status
111180 108797 0% 0.13K 3706 30 14824K kernfs_node_cache
87087 80862 0% 0.20K 2233 39 17864K vm_area_struct
66688 59482 0% 0.06K 1042 64 4168K anon_vma_chain

52640 48079 0%
45312 41363 0%
40384 32679 0%
39882 35399 0%

.57K 1880 28 30080K radix_tree_node
03K 354 128 1416K kmalloc-32

.25K 1262 32 10096K filp

09K 867 46 3468K anon_vma

0000000000
v
=]
F

35532 33067 0% 1316 27 21056K inode_cache

30705 30587 0% .69K 1335 23 21360K squashfs_inode_cache
30272 27581 0% . 06K 473 64 1892K kmalloc-64

20064 17668 0% .65K 836 24 13376K proc_inode_cache
17850 17189 0% 02K 105 170 420K 1sm_file_cache

Figure 8-7. slabtop running with default settings

More on Viewing Processes

The programs listed like top and atop can be great for viewing processes. It’s also
possible to manually query all running tasks using ps and then pipe them through to
other programs. When running ps alone, you'll get a list of processes running in your
current terminal session. The list will likely be small only including bash and the ps
process itself, like in Figure 8-8.

154

CHAPTER 8 SYSTEM MONITORING

philip@philip-ThinkPad-T420: /etc/systemd/system$ ps
PID TTY TIME CMD

4477 pts/e 00:00:00 bash

14183 pts/o 00:00:00 ps

philip@philip-ThinkPad-T420: /etc/systemd/system$ I

Figure 8-8. Running ps in a fresh terminal

However, if your terminal has been open for a while and you’ve backgrounded

some processes, you may see more. We can create a background process manually to
demonstrate with the following steps:

1. Runsleep for 500 seconds and background the process sleep 500 8.

2. Run ps and observe the new process.

3. Take the PID from the sleep command and end the process with
kill kill 123.

4. Run ps again and observe the difference.
These steps should result in an additional process for sleep being returned by ps like

shown in Figure 8-9.

philip@philip-ThinkPad-T420:~5 sleep 500 &

i[1] 14823
lphtltp@phtltp-ThtnkPad-T420:~$ ps
PID TTY TIME CMD

14634 pts/1 00:00:00 bash

14823 pts/1 00:00:00 sleep

14826 pts/1 00:00:00 ps
|phtltp@pht1tp-ThtnkPad-T4ze:~$ kill 14823
philip@philip-ThinkPad-T420:~5 ps

PID TTY TIME CMD

14634 pts/1 00:00:00 bash

14832 pts/1 00:00:00 ps

[1]+ Terminated sleep 500
|phtltp@phtltp-rhtnkpad-T4ze:~$ o

Figure 8-9. ps with a background process

Of course, most of the time, you're going to want to see all the processes running
on your machine, not just the ones in your current terminal session. To get all running

processes, you canrun ps -e or ps -ef, the difference being the adding f shows more
details. The detailed ps view is shown in Figure 8-10.

155

CHAPTER 8 SYSTEM MONITORING

philip@philip-ThinkPad-T420: /etc/systemd/system$ ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 8 6 11:803 7 00:00:16 /sbin/init splash
root 2 8 ai11:e3 ? 00:00:00 [kthreadd]

root 3 20 6:11:83 7 00:00:00 [rcu_gp]

root 4 211037 00:00:00 [rcu_par_gp]

root 6 2 6:11:03 7 00:00:00 [kworker/0:0H-kb]
root 8 200G 11263 27 00:00:00 [mm_percpu_wq]
root 9 Z ar11 0307 00:00:00 [ksoftirqd/0]
root 10 2 811:93 ? 00:00:24 [rcu_sched]

root 11 2 6.11:83 7 00:00:00 [migration/0]
root 12 2N an11:03 7 00:00:00 [idle_inject/0]
root 14 200 112032 00:00:00 [cpuhp/0]

root 15 200110307 00:00:00 [cpuhp/1]

root 16 2116357 00:00:00 [idle_inject/1]
root 1h7) 20 6:11:63°7 00:00:00 [migration/1]
root 18 2 0 11:63"7 00:00:00 [ksoftirqd/1]
root 20 2 6 11:03 7 00:00:00 [kworker/1:0H-kb]

Figure 8-10. Running ps -ef to see system-wide processes

While we could use grep to parse processes by user, ps provides some built-in flags
that make this easy, for example, ps -u philip or by specific PID with ps --pid 123.
Either of these can be used with -e to get more details.

Kill a Process

Commands often used in conjunction with ps are kill and killall. When running ps,
we saw that there is a column that displays PID, short for process ID. If a process isn’t
running right, hanging, or we just want to end it, one way is using the kill command.
Simply pass it the PID, for example, given a PID of 123:

kill 123

If you want to match the process by name instead of PID, you can use killall, for

example, if Firefox was frozen and we wanted to force quit:
killall firefox

Another option very similar to killall is pkill. pkill can also match a service
by name but will include more matches, as unlike killall it does not require an exact

156

CHAPTER 8 SYSTEM MONITORING

match if you make use of the - i for pattern matching. For example, if we instead just pass
in “Firef’, we will still kill the process:

pkill -i Firef

The same style of command can be used with pgrep to find processes without killing
them. For example, if we run the following command with Firefox open, we’ll get a list of
PIDs associated with the program:

pgrep -i Firef

To make the preceding command a little bit more useful, add the -1 flag to get the
exact program name for each process or -a even more information.

Visualize Process Tree with pstree

Another concept to keep in mind is the fact that processes exist in a hierarchy, with some
processes having parent and child processes; this is visualized in Figure 8-11. When

you run ps in your terminal, for example, it is a child process of the terminal process.

If we run sleep 500 and then close the terminal, the child process sleep 500 will
automatically terminate with the termination of the parent process. However, this isn’t
always the case; in some cases, a child will continue running after the parent closes and
inherit the parent’s parents.

Our terminal process itself is the child of another process, likely systemd depending
on your Linux distribution. Thus, if a process continued running after closing the
terminal, in our case, the new parent would be systemd.

A great tool for visualizing this relationship is pstree which can be used to show all
processes running on our system, like ps but in a visualization showing the parent/child
relationships between processes. Try running it with the -p flag which will make sure
process ID is also returned. It should return a very long list of processes all stemming
from a single process with PID of 1 on the left.

157

CHAPTER 8 SYSTEM MONITORING

phLLip@phLllip-ThinkPad-T420:~5 pitree -p
srsnud(l)-——mmawr(ilﬁ)tiwmmcr}(uﬂ)
{ModerManager}(1267)

j—Me tworkManager(1151) client(105638)
NetworkManager)}(129e)
NetworkManager}{1294)

—ucwnts-:hcm(lus)—l:[accounts-damn}(1178)
{accounts-daemon) (1186)

-acpld(1138)

—apache2(1359)—T—apache2(4123)

—apache2(4124)

-opache2(4125)

—apache2(4126)

—apache2(4127)

—atop(10547)

-atopacctd(1181)

—avahi-daenon(1157)—avahi-daemon(1183)

Hbluetoothd(1170)

—bo‘l.td(l?bQ)T{boltﬂ}(1721)
(boltd}(1723)

—brave-browser-d(3865) ave(3613 rave(3017)—brave(3is21 rave(3117) brave}(3122)
brave}(3123)
brave}(3124)

rave(3129) brave}(3131)
brave}(3133)
{brave}(3134)
brave}(31315)

brave}(3143)

Figure 8-11. Running pstree with -p flag to show process IDs

As mentioned when we run a command in our terminal, it is actually a child process

of the terminal process. To demonstrate this, run the following commands:

sleep 500 &
pstree -p | grep -A 5 -B 5 pstree

This creates a sleep process in the background, gets pstree, and then greps for the
pstree process so we can find our current terminal process. The -A flag stands for get
five lines above the match and -B is get five lines below. The result should be similar to
that shown in Figure 8-12.

philip@philip-ThinkPad-T420:~$ pstree -p | grep -A 5 -B 5 pstree
grep: warning: GREP_OPTIONS is deprecated; please use an alias or script
| | -{gnome-shell-cal}(2679)
| -{gnome-shell-cal}(2685)
| -{gnome-shell-cal}(2686)
“-{gnome-shell-cal}(2868)
-gnome-terminal-(14625)-+-bash(14634)-+-grep(15911)
] | -pstree(15910)
] *-sleep(15909)
| -{gnome-terminal-}(14626)
| -{gnome-terminal-}(14627)
‘-{gnome-terminal-}(14628)
| -goa-daemon(2676) -+-{goa-daemon}(2687)
philip@philip-ThinkPad-T420:~$ I

Figure 8-12. Grepping pstree to see a specific process
158

CHAPTER 8 SYSTEM MONITORING

Notice the pstree process highlighted in green and the sleep process below it. They
both stem from the bash process, which itself is stemming from gnome-terminal.

Process Nice Value

When using top, you may have noticed the column marked “NI.” This refers to the “nice”
values which is a key concept in Linux. Every process has a nice value of -20 to 19. The
lower the number, the more priority the process gets in scheduling. One way to think about
itis that nice processes (e.g., 10 nice value) wait in queue, while not nice processes butt
ahead (-20 nice value), and really nice processes (19 nice value) let others butt ahead in
line. Of course this is a simplification as the nice value is relative to that of others in queue.

As mentioned you can view the nice value for processes in top under the column NI.
Another method is by using ps with the -o flag followed by the columns you want to see
(include ni), for example:

ps ax -o pid,ni,cmd

This will return the process ID, nice value, and command for all running processes as
shown in Figure 8-13.

philip@philip-ThinkPad-T420:~$ ps ax -o pid,ni,cmd
PID NI CMD
1 o0 /sbin/init splash
2 0 [kthreadd]
3 -20 [rcu_gp]
4 -20 [rcu_par_gp]
6 -20 [kworker/0:0H-kb]
8 -20 [mm_percpu_wq]
0 [ksoftirqd/e]
10 0 [rcu_sched]
11 - [migration/@]
12 - [idle_inject/0]

0

Figure 8-13. Getting command, PID, and nice value with ps

Notice that several of the commands started during the startup process (we can tell
because PID is close to 1) have a nice value of -20 as they’re considered to be vital for
running the OS.

You also might notice some processes marked with - (depending on your OS); these
are system-level processes which are governed by a different set of priorities (they always
run first). For the most part, you won’t need to worry about these lower-level processes.

159

CHAPTER 8 SYSTEM MONITORING

Other Priority Systems

As mentioned earlier, some processes are governed by different sets of priorities. The normal
processes that we're mainly concerned with in user space are governed by SCHED_OTHER.

The other main schedulers SCHED FIFO and SCHED RR are for real-time processes
which need to run before all normal processes. These two schedulers have the same
priority but different in how they schedule. FIFO stands for first in first out (e.g., first
come first serve), while RR stands for round robin (taking turns, until process completed).

You likely won't need to deal with these schedulers if you're not working at the
kernel level. If you're curious to see the real-time and absolute priority values for
processes, you can run

ps -e -o class,rtprio,pri,nice,cmd

From the output, you'll find several processes that have a higher absolute priority
than those listed as -20 nice value; these are real-time processes.

Change Nice Value

Now that you know about nice, how do you use it? You can change the nice value of
any running process with the renice command. Generally, changing nice valuesisn’t a
common task. However, there are few reasons you might want to do it. Say, for example,
you've created a custom script that cleans up old log files by compressing them and
sending them to a long-term storage service. You may want to give this process a high
nice value so that users making use of the server are always given a higher priority than
the backup process, which has no deadline or urgency.

Let’s create a process to work with:

sleep 500&

Take the process ID that is returned (1234 in our example) and use it with renice:
renice -n 19 1234

Now if we check the nice value using ps, we should see the value has updated.

ps -o ni 1234

160

CHAPTER 8 SYSTEM MONITORING

Zombie Process

In the following section, we’ll be compiling a C program to explore the idea of zombie
processes. It's somewhat technical and knowledge of zombie processes is not critical.
If you find this section too technical, feel free to skip ahead.

This section will require you to have a C compiler installed and the libraries used
here. They're all available in the build-essential package on Debian-based systems.

sudo apt-get install build-essential

Another concept worth understanding when looking at processes is zombies. A zombie
process is a child process which has exited, but has not been cleared by its parent process.
Most programs will remove their child processes quickly after they exit, so zombie processes
are rather rare. Despite the nefarious name, zombie processes are fairly harmless and won’t
have a negative impact on your machine’s performance.

To demonstrate, we'll create a C program to make our own zombie process.

#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main () {

// Create variable with type of process identification
pid t child pid;

// Fork main process creating a child
child pid = fork ();

// Both main script and forked child run the code below the fork point

// Child process will have a PID of 0 within script
if (child pid > 0) {
// Only parent process runs this section
sleep (500);
}
else {
// Only forked child runs this section, exiting immediately
exit (0);
}

161

CHAPTER 8 SYSTEM MONITORING

return 0;

}

After writing the preceding C program, save it as zombie. c. Next you'll need to
compile it by running

cc zombie.c -o zombie

Once you successfully compile zombie, we can demonstrate what a zombie process
looks at. Run the executable and background it:

./zombie &

Next we’ll use some of the previous commands to view the process. First run ps with
no options. You should see an entry for both the parent process zombie and the child
which will be followed by <defunct>, as shown in Figure 8-14; this indicates the process
is in a zombie state.

philip@philip-ThinkPad-T420: /tmpS ./zombie &
[1] 7449
|philip@philip-ThinkPad-T420: /tmp$ ps
PID TTY TIME CMD
7259 pts/o 00:00:00 bash
7449 pts/o 00:00:00 zombie
7450 pts/o 00:00:00 zombie <defunct>
7451 pts/o 00:00:00 ps

|ph1.ltpph‘l.ltp-ThtnkPad -1420: /tmps]

Figure 8-14. Creating a zombie process

If you were to run top, you'd also see an indication that a zombie process is running
in the top right, shown in Figure 8-15.

- 17:34:13 up 3:24, 1 user, load average: 1.08, 1.06, 1.00
Tasks: 313 total, 2 running, 251 sleeping, @ stopped, 1 zombie
%Cpud : 10.3/3.1 BCLLEEEEN

%Cpu1l 12.2/3.0 ASCEEREEEnen

%Cpu2 : 12.7/3.0 B6LHILEETTTEEnL

%Cpu3 : 15.4/1.7 VAN RNNNNNNRRRRR RN

KiB Mem : 25.8/16302604 [|I0LIIRIRERDIERIRRRTTTTT]]

KiB Swap: ©.8/2097148 [

Figure 8-15. View zombie count in top

162

CHAPTER 8 SYSTEM MONITORING

As mentioned, zombie processes are fairly harmless and are already technically
not running. Thus, running kill 7450 (based on the process ID in Figure 8-14) will be
ineffective. The only way a zombie process can be killed is by killing its parent.

kill 7449

Of course this is a problem if you want the program in question to keep running. Our
recommendation is to let the zombie processes deal with themselves as they generally
don’t cause problems.

Check Available Disk Space

Another common issue with servers or embedded devices is running out of disk space.
I've encountered a few situations where a device that stopped working had simply run
out of space to write to, as a result of a program which failed to compress or delete old
log files over a period of many months.

The easiest way to check available disk space is with the utility df, short for “free
space.” To find your available disk space, run the command

df -h

The preceding command will return a list of partitions with information about each.
One of these partitions will be the main one used by your system. You can find it by
looking at the “Mounted on” column and finding the one with a value of “/”.

The next thing you’ll want to look at for that partition is the “Size” and “Use%”. This will
tell you how much disk space you have in total and what percentage is currently used.

For a complete list of the columns returned by df, see Table 8-1. This table also
includes the inodes used column which can be enabled with the -1 flag and the type
column enabled with -T flag.

Notice we used the -h flag in the preceding example; this stands for “human
readable” Without the -h flag, df will still work but shows the space available in KB
rather than converting large amounts to MB or GB. Making use of -h is recommended
unless you have a specific reason for wanting all values in KB.

163

CHAPTER 8 SYSTEM MONITORING

Table 8-1. Information returned by the df command

Column Description

Filesystem The name of the filesystem

Size Size of the partition (hidden by default, show with -h)

1K-blocks Size of the system in 1K-blocks (replaced by size when using -h)
Used Amount of space used

Available Amount of space available

Use% Amount of space used shown as a percentage

Mounted On The directory location of the partition
IUsed inodes used on partition (hidden by default, show with -i)

Type Partition filesystem type (hidden by default, show with -T)

Find Largest Files on System

Ifyou find that you are low on system space, you might want to search for large files on
your system. Here is an example for getting anything over 100M:

sudo find / -xdev -type f -size +100M -exec 1s -la {} \; \
| sort -nk 5\
| tac

The preceding command is assuming you want to look at every file on the system. If
you instead want to only include files within a specific folder, you can modify the find
command’s first argument, for example, say I wanted to only search for files in the folder
for user philip, I would then use

sudo find /home/username -xdev -type f \
-size +100M -exec 1s -la {} \; \
| sort -nk 5\
| tac

If you only want to find files and directories with contents totaling over a GB, you can
instead do

164

CHAPTER 8 SYSTEM MONITORING

sudo du -ahx / | grep -E "\d*\.?\d*+G\s+'

Note It’s also possible to get and print size with find by combining the -size
and -printf flags; however, find only displays sizes in KB, which is hard to read
compared to GB. See man find for more details.

Monitor Device Network Use

Another statistic you might want to check is the network usage of a system as a whole as
well as a breakdown by process or networking interface. This can be useful on a device
with limited Internet access or expensive bandwidth, for example, an IoT device or even
laptop connected via a GSM SIM card. In such a situation, programs which use excessive
data can be very expensive.

Even if you're not on a system with limited data, it can be useful to see what programs
are using your Internet connection. If you see something that surprises you, you may want
to investigate further. There are a few good programs I use for network monitoring, each
slightly different.

bmon - Monitor Each Network Interface

With bmon, you can monitor each interface (e.g., Wi-Fi, Ethernet). This is great in the GSM
SIM card situation described earlier. Imagine you have a device which has both Wi-Fi and
5G. You likely don’t mind high network usage over the Wi-Fi interface but will want to ensure
5G use stays below a certain level.

Given this situation, you might write your software to detect what Internet interface
is being used and reduce or increase data use based on the connection type. bmon gives
you a way to ensure that such measures are actually working by breaking down how
much data was transmitted over each interface.

bmon won't be installed by default, but it is available on most package managers.
When opening it by running bmon in the terminal, you'll see an interface like that shown
in Figure 8-16. If your terminal window isn’t maximized, the bottom section with green/

red graphs may be hidden.

165

CHAPTER 8 SYSTEM MONITORING

philip@philip-Think Pad-T420: ~
File Edit View Search Terminal Help
lo bmon 4.0

Interfaces RX bps % TX bps
248 B

none (noque

:11:20 2619 ’ress ? for help

Figure 8-16. Running bmon

nethogs - List Programs by Bandwidth Use

Most of the time, you won'’t be interested in what interfaces are being used, but instead
will want to know what programs are using the most bandwidth. For this install and run
nethogs; you'll see an interface like shown in Figure 8-17. Keep in mind if you close the
program, it'll start from scratch again when you open it later. To get a clear picture of
use over time, you'll want to open nethogs and let it run over time. After coming back

a few hours or even days later, you'll have a better idea of which programs use the most
bandwidth.

166

CHAPTER 8 SYSTEM MONITORING

NetHogs version 0.8.5-2

PID USER PROGRAM RECEIVED

3077 philip ..ome/philip/Documents/Telegr wlp3s0 0.134 0.326 KB/sec

2879 philip ..pt/brave.com/brave-dev/brav wlp3s0 0.026 0.026 KB/sec

7750 philip nmap wlp3s0 0.000 0.000 KB/sec
? root unknown TCP 0.000 0.000 KB/sec

0.160

Figure 8-17. Running nethogs

iftop

Another option is iftop, yet another program in the top family. Instead of monitoring
by interface or application, iftop lets us monitor which external IP addresses are being
communicated with the most based on traffic size.

When starting iftop, you need to specify the network interface. If you don’t know
your network interfaces, you can get it by running

ip a
You'll get back a list of interfaces with lots of details; the interface is the key value on

the left. In my case, the Wi-Fi interface is called wlp3s0, as shown in Figure 8-18. You can

normally tell which interface is Wi-Fi because it will include a “w”.

3: wlp3s0@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
link/ether 10:0b:39:96:87:74 brd ff:ff:ff:ff:ff:ff
inet 10.177.13.190/8 brd 10.255.255.255 scope global dynamic noprefixroute wlp3se
valid_1ft 85994sec preferred_lft 85994sec
inet6 fe80::1f80:ad8f:8d2d:7577/64 scope link noprefixroute
valid_1ft forever preferred_Llft forever

Figure 8-18. Wi-Fi interface returned from ip a

Once you have the interface you want to monitor, pass it to iftop with the - i flag:
sudo iftop -i wlp3sO

This will result in a list of external IP addresses and amount of data which is being

uploaded and downloaded, as shown in Figure 8-19.

167

CHAPTER 8 SYSTEM MONITORING

; }QSKb ?BIKI:I ?Bﬁl(b TBle 977Kb
hilip-ThinkPad-T420 => 149.154.175.53 5.88Kb 1.66Kb 991b
<= 51.9Kb 12.0Kb 4.74Kb
philip-ThinkPad-T420 => 149.154.175.50 3.33kKb 765b 451b
<= 1.41Kb 338b 1.66Kb
philip-ThinkPad-T420 => _gateway 604b 367b 217b
<= 1.85Kb 462b 376b
224.0.0.251 => 172.20.5.152 eb eb ob
<= 560b 317b 262b
224.0.0.251 => 172.20.6.47 ob ob ob
<= 952b 196b 48b
224.0.0.251 => 172.20.12.174 ob ob ob
<= ob 84b 42b
philip-ThinkpPad-T420 => 151.101.1.69 ob 42b 10b
= 6b 42b 10b
philip-ThinkPad-T420 => gruf6s26-in-f4.1e100.net ob 42b 16b
<= ob 42b 10b
philip-ThinkPad-T420 => yule2s04-in-f14.1e100.net 208b 42b 10b
= 208b 42b 10b
cum: T72.7KB peak: 14.2Kb rates: 10.0Kb 2.95Kb 3.15Kb
52.6KB 56.3Kb 56.3Kb 13.7Kb 8.44Kb

~125KB 66.3kb 66.3kb 16.6Kb 11.6Kbl |

Figure 8-19. Monitoring Wi-Fi with iftop

To make things a bit cleaner, you can press s to hide the source on the left-hand
side (given they will mostly be local sources). Then press p to show the origin port. Port
is much more useful than source as it gives us a better idea of the origin program and a
way to dig deeper if we want to investigate a connection further. The iftop interface with
source replaced with port is shown in Figure 8-20.

; }95I<b ?leb 'ismb I&le 977Kb
* 152582 => grue6s28-in-rid.1e100.net:https 34.4Kb 6.89Kb 13.5kb
.z 4.23kb 867b 12.4Kb
* :56214 => 40.115.22.134:https 8b 1.24Kkb 317b
<= 6b 5.44Kb 1.36Kb
* 147412 => grul@si0-in-fi14.1e100.net:https 27.8Kb 5.48Kb 2.67Kb
<= 5.72Kkb 1.14Kb 571b
* 134976 => 149.154.175.53:https 1.02kb 543b 670b
<= 2.55Kkb 1.56Kb 7.16Kb
* ;37138 => _gateway:domain eb 66b 16b
<= b 388b 97b
* :51014 => 151.101.200.133:https ob 166b 26b
<= ob 108b 27b
* 151016 => 151.101.200.133:https ob 166b 26b
<= ob 108b 276
* :51018 => 151.161.200.133:https ob 166b 26b
<= ob 1e8b 27Tb
* :51020 => 151.101.200.133:https ob 106b 26b
<= ob 168b 276
cun: 1.30MB peak: 90.7kb rates: 62.7kb 14.7Kb 18.4Kb
g 2.23M8 268Kb 12.7kb 16.3Kb 38.1Kb
TOTAL: T 289Kd S 75.4kb 25.0Kkb 56.4Kbf|

Figure 8-20. Viewing traffic by outgoing port in iftop
168

CHAPTER 8 SYSTEM MONITORING

Other Programs for Monitoring
sysstat

Another program that can be used to monitor system use over a long period of time, similar
to atop but more comprehensive, is sysstat. Rather than checking the current status of the
system, sysstat is best used by letting it run in the background and then reading the daily
reports. It works by running a cron job every 10 minutes and recording system data.

It’s likely available by default, but if not, you can install with
sudo apt-get install sysstat

First open up /etc/default/sysstat and ensure the following line is set to true; by
default on Ubuntu, it will be set to false:

ENABLED="true"
Then enable it with systemctl:
sudo systemctl enable --now sysstat

After these simple steps, your system will start to save system data in the /var/log/
sysstat folder. A new file will be created for each day of the month, for example, if you
start on the 26th, the file would be /var/log/sysstat/sa26. You can view the data for
the current day by running

sar

Once it’s been running for a while, sar will return something like shown in Figure 8-21.

philip@philip-ThinkPad-T420:~5 sar

Linux 5.0.0-37-generic (philip-ThinkPad-T420) 12/28/2019 _XB6_64_ (4 CPU)
91:03:58 AM CPU Xuser Xnice Xsystem Xlowalt ¥steal %ldle
01:04:58 AM all 11.94 S R 0.08 84.22
01:05:01 AM all 11.95 3.03 0.08 84.93
91:15:01 AM all 8.88 2.50 0.23 88.39
01:25:01 AM all 4.07 1.01 0.03 94.89
Average: all 6.74 1.85 0.13 91.28
01:28:50 AM

01:35:01 AM CPU Xuser Xnice Xsystem Xiowait Xsteal %idle
01:45:01 AM all 2.36 0.10 0.62 0.08 96.84
01:55:01 AM all 0.25 0.19 0.01 99.55
Average: all 1.31 0.05 0.40 0.05 98.19

Figure 8-21. Running sar
169

CHAPTER 8 SYSTEM MONITORING

As mentioned, these stats are saved in the /var/log/sysstat folder. If you want to
view a previously monitored day, specify the file to open with sar:

sar -f /var/log/sysstat/sa27

Note that once you've been using sysstat for over a month, the files will start to
be overwritten. If you want to keep the logs for longer, you'll have to back them up
manually.

Load Average

Load average refers to the average number of threads running or waiting to run. There
are a number of ways you can get this information, the easiest being to run

uptime

This should return the amount of time the system has been running, users logged
in, and three different values for load average. The three different values are the average
over 1 minute, 5 minutes, and 15 minutes. Using these three values, you can get an idea
of whether load is increasing or decreasing.

If you're already using top regularly now, you can find the same three load average
values on the top line.

It’s important to keep in mind that load average is measured by threads in the queue
regardless of how many CPUs a computer has. A load average of two on a single CPU
machine is a higher rate of saturation than a load average of three on a machine with
two CPUs. Imagine each thread is a person at a grocery store waiting to pay for their
goods and each CPU is a cashier. Knowing how many people are waiting in line is not
necessarily useful without knowing the number of cashiers in the store.

A more useful statistic to consider is load average divided by CPUs. If the load
average divided by the number of CPUs is greater than 1, this could indicate that your
system is overloaded. Consider the concept of niceness explored earlier. If a process
with a nice value of 19 is running but the load average is always higher than the available
CPUs, it may never end up executing, as it keeps allowing the new processes which enter
the line to run first.

According to one rumor when the IBM 7094 at MIT was shut down in 1973, they
found a low-priority process that had been submitted in 1967 and had not yet been run.
This was exactly the situation described where a queue had always existed, and because

170

CHAPTER 8 SYSTEM MONITORING

the process had low priority, it kept waiting in line, always allowing newer high-priority
tasks to run first. This problem is often referred to as resource starvation.

Note If you forget how many CPUs are on a machine, you can always use 1scpu
and look for the row titled “CPU(s).”

Users

In the last section, we saw that the third value returned by uptime is actually users logged
in. If you end up seeing a number you didn’t expect, you can get more information on
the users currently logged in using either who or w. If your system has it, w is preferred as it
is a rewrite of who which includes more user details. Simply run

W

You'll get back a list of users and the TTY they're using. If a user is using multiple
TTYs, they’ll be listed multiple times. An example of a user using a single TTY is shown
in Figure 8-22.

philip@philip-ThinkPad-T420:~S w
14:55:23 up 26 min, 1 user, 1load average: 0.79, 0.81, 0.74
USER HEY FROM LOGIN@ IDLE JCPU PCPU WHAT
philip :0 :0 14:28 ?xdm? 1:32 0.00s /fusr/lib/gdm3/g
philip@philip-ThinkpPad-T420:~$ [}

Figure 8-22. Viewing logged in users with w

An example of a user using a multiple TTY (via tmux, a program for keeping terminal
sessions open but backgrounded) is shown in Figure 8-23.

171

CHAPTER 8 SYSTEM MONITORING

ubuntu@ip-172-31-58-133:~5 w

19:56:16 up 141 days, 18:35, 11 users, 1load average: 3.92, 4.27, 4.30

SER TTY FROM LOGING IDLE JCPU PCPU WHAT

buntu pts/e 200.57.229.98 19:41 0.00s ©0.41s ©0.03s w

buntu pts/1 tmux(6894).%16 250ct19 22:15m 3:06 3:06 python3 -m merc
buntu pts/2 tmux(6894).%23 270ct19 16days 5:23 5:20 node bot.is
buntu pts/4 tmux(6894).%13 28Sepl9 406days 9.81s 7.75s node ./bin/www
buntu pts/sS tmux(6894).%47 27Nov19 28days 2:11 2:09 node index.js
buntu pts/6 tmux(6894).%27 0O3Nov19 12days 3:53 3:51 node bot.js
buntu pts/7 tmux(6894).%28 ©@4Nov19 16days 5:39 5:36 node bot.js
buntu pts/8 tmux(6894).%32 ©O7Nov19 23days 7:42 7:41 node bot.]s
buntu pts/9 tmux(6894).%34 11Nov19 29days 1:42 1:40 node /home/ubun
buntu pts/10 tmux(6894).%53 @1Dec19 16days 5:15 5:13 node bot.js
buntu ptsf12 tmux(6894).%52 27Nov19 16days 8:04 0.00s sh -¢ node bot.
buntu@ip-172-31-58-133:-~§

Figure 8-23. Running w with several tmux sessions open

Log Folder

When monitoring or debugging a system, you'll want to be aware of system log folders.
One of the best places to look is /var/log, the system folder for miscellaneous logs.
Navigate into the folder and view the files:

cd /var/log
1s

You should see several different files and folders here depending on what services
are running and how long your system has been up. The contents of my log folder are
shown in Figure 8-24.

172

CHAPTER 8 SYSTEM MONITORING

philip@philip-ThinkPad-T420: /var/log$ 1s

alternatives.log atop dpkg.log.8.gz nordvpn
alternatives.log.1 auth.log dpkg.log.9.9z openvpn
alternatives.log.10.g9z auth.log.1 faillog
alternatives.log.2.gz auth.log.2.gz fontconfig.log speech-dispatcher
alternatives.log.3.9z auth.log.3.9z gdm3 syslog
alternatives.log.4.gz auth.log.4.gz gpu-manager.log syslog.1
alternatives.log.5.gz boot.log hp syslog.2.9z
alternatives.log.6.9z Dbootstrap.log installer syslog.3.g9z
alternatives.log.7.gz btmp journal syslog.4.gz
alternatives.log.8.gz btmp.1 kern.log syslog.5.9z
alternatives.log.9.gz cups kern.log.1 syslog.6.g9z
apache2 dist-upgrade kern.log.2.9z syslog.7.g9z
apport.log dpkg.log kern.log.3.9z sysstat
apport.log.1 dpkg.log.1 kern.log.4.9z tallylog
apport.log.2.9z dpkg.log.10.g9z lastlog tor
apport.log.3.9z dpkg.log.2.9z mall.err unattended-upgrades
apport.log.4.9z dpkg.log.3.9x mall.err.1 wtmp
apport.log.5.9z dpkg.log.4.9z mail.log wtmp.1
apport.log.6.gz dpkg.log.5.gz mall.log.1

apport.log.7.9z dpkg.log.6.9x mongodb

apt dpkg.l0g.7.9z mysql
philip@philip-ThinkPad-T420: /var/log$ [

Figure 8-24. Example of contents in /var/log

If you're on a Debian system like Ubuntu, the main log file will be /var/log/syslog.
If you're on a non-Debian system like CentOS, you should instead look for /var/log/
messages. We'll open it up with

less /var/log/syslog

You'll see all kinds of messages from different programs.
The program responsible for writing these logs on most systems is rsyslogd. It can
be customized by editing the /etc/rsyslog.conf file.

Note Aside from syslog, another good method for checking logs is systemd’s
journalctl; see the Journalctl section in Chapter 11.

Other sysstat Utilities

When you install and enable sysstat, you actually get a whole box of utilities and binaries
which process and display system data in various ways. These utilities are listed in Table 8-2.

173

CHAPTER 8 SYSTEM MONITORING

Table 8-2. sysstat utilities list

Command Description

sar Collects data and displays all system activities

sadc “System activity data collector” runs in the background
sal Runs from cron and processes data collected

sa2 Creates daily summary, runs from cron

sadf Exports sar reports to CSV, JSON, XML, etc.

iostat For viewing I/0 use

mpstat For viewing process-related stats
pidstat Views data by process ID

cifsiostat Views CIFS (Common Internet File System) stats; this is a Microsoft filesystem which
can be enabled in Linux by Samba

vimstat

vmstat is an older system monitoring tool which returns system information related to
system memory, processes, interrupts, paging, and block I/O. It isn’t installed on most
systems but can be found as vmstat on most package managers.

It takes two input values; the first is the sampling period in seconds, and the second
is how many samples to take. So if we run with inputs of 1 and 10 like the following:

vmstat 1 10

we get back ten rows. The first line is always the summary since boot. Then we get nine
rows each printed 1 second after the last, showing the average of a 1-second sample. An
example of running vmstat for ten periods of 1 second is shown in Figure 8-25.

174

CHAPTER 8 SYSTEM MONITORING

philip@philip-ThinkPad-T420:~5 vmstat 1 16

procs ----------- memory---------- --- SWap-- ----- lo---- -system-- ------ cpu-----

r b swpd free buff cache si so bi bo 1n c¢s us sy id wa st

e 0 0 11276964 160072 2132964 0 6 1406 228 645 1675 26 6 67 1 @
e o © 11276384 160072 2133788 (-] e (*] @ 726 1298 2 198 @ @
6 0 0 11265344 160072 2139180 0) 0 © 741 1345 4 294 0 ¢
2 0 O 11270888 160080 2133108 0 0 O 884 863 1459 5 292 0 ©
e 0 0 11284412 160080 2129292 0 0 0 © 8064 1529 5 292 0 ©
e 0 0 11278428 160080 2128300 0) 0 0 1141 2023 8 250 @ o
e o 0 11277952 160080 2128512 0) ® 512 787 1341 4 293 @ O
e o 9 11271400 160080 2134668 0 e 0 @ 701 1298 3 294 @ O
e o 0 11269888 160088 2136452 0 e 0 100 833 1477 2 197 @ @
10 0 11283244 160088 21287068 0) 0 @ 727 1268 1 199 6 o

philip@philip-ThinkPad-T420:~$ |}
Figure 8-25. Getting 9-second long samples with vmstat

Due to the compressed space used to show the table, it can be difficult to interpret
the column values. Table 8-3 lists the short forms and what they mean.

Table 8-3. List of vmstat columns

Sequence Description

r Threads waiting in queue for CPU

b Threads blocked on I/0

swpd Total swap used in KB

free Total free memory

buff Memory used as buffers

cache Memory used as cache

Si Memory swapped in from disk

S0 Memory swapped to disk

bi Blocks received from block device

bo Blocks sent to block device

in Interrupts per second

cs Context switches per second

us Time spent running non-kernel code
(continued)

175

CHAPTER 8 SYSTEM MONITORING

Table 8-3. (continued)

Sequence Description

sy Time spent running kernel code
id Time spent idle

wa Time spent waiting for I/0

st Time stolen from virtual machine

r — Threads Waiting for Runtime

As we mentioned when talking about load average, threads in a queue are processes waiting to
be run on a CPU. Thus, this column is essentially the same as load average. However, the first
line returned will be the average since starting your machine (if vmstat was already installed).
This gives you an average for the full runtime which isn’t available with top or uptime.

For the values below the top line, you'll be getting the value for the instant when the
sample is taken rather than an average.

b - Threads Blocked by 1/0

Threads blocked by I/0 are threads which have been put into a waiting state by the
kernel while it waits for a process reading or writing to storage. If you have a high
number of threads blocked by I/0, it may indicate that there are issues related to your
storage device or simply that a process which makes heavy use of I/0O is running.

swpd - Total Swap Used

Swap refers to disk space that has been allocated to act as RAM when actual RAM
memory is full. Swap memory is significantly slower than normal RAM and can cause
programs relying on said memory to run slowly. If you're often using swap memory, your
system may be in need of RAM, or alternatively a program may be needlessly using more
RAM than is necessary.

176

CHAPTER 8 SYSTEM MONITORING

free — Total Free Memory

This shows the total amount of unused memory on your system in KB. This is similar to
the free column which is shown when running the free command. This gives you an
idea of how close you are to using all your RAM.

buff — Memory Used in Buffers

This is similar to cache but specific to file metadata; see the following section for more
details.

cache — Memory Used as Gache

Sometimes memory will be used to cache data which is being accessed regularly by
programs. This speeds up programs but can make it appear that you have less RAM
available than is actually the case; this often happens if your system has been running
for a long time.

If you have a low value for free but a high value for cache, you still won’t need to
worry about swap being used as memory from buffers can be reallocated. If however
cache + buff + free added together are close to 0, it’s a sign that your machine is
strained for resources.

si — Memory Swapped In from Disk

As mentioned previously, data or metadata (as is the case with buffers) are often stored in
memory to increase the speed at which programs operate. We talked about how if more
memory ends up being needed for something else this memory can be freed up. In other
cases, the data cached in memory might be swapped out for other data.

With swapping this data actually contains aspects of the executing program itself,
for example, data structures produced by a program which only exist while the program
is running. This swapping is what the si column measures. si is the memory swapped
from disk per second.

The use of swap indicates that a system doesn’t have enough memory available for
caching and has resorted to using disk space. If you have consistent or high rates of swap,
it means your system doesn’t have enough memory.

177

CHAPTER 8 SYSTEM MONITORING

s0 — Memory Swapped Out from Disk

As the name hints, this goes hand in hand with memory swapped in. While swapping in
is the process of loading data back into memory from disk, swapping out is the process
where data is first saved to disk.

bi — Blocks Received from Block Device

This is essentially the amount of data which has been read from disk storage devices. By
default, blocks have a size of 512 bytes.

bo — Blocks Sent to Block Device

This is the amount of blocks saved to disk via block device.

in — Interrupts per Second

An interrupt is a signal which requires immediate handling. For example, when a key
is pressed on the keyboard, an interrupt is created which requires handling. In the
same way, when an incoming signal is produced from a network card connected to the
Internet, an interrupt is created. Interrupts can be viewed directly by looking at the file /
proc/interrupts.

Interrupts occurring is a normal part of system operation, but if interrupts are higher
than normal, there may be a hardware issue. A next step might be looking in /proc/
interrupts and finding what device is responsible for the high count.

cs — Context Switches

A context switch occurs when the CPU switches between one process and another
without having finished the first. A context switch requires saving the state of the first
process so that it can be finished at a later time. There is a cost associated with context
switching, as resources are required for saving the state of the first process and loading
the state back up later.

If you're seeing an abnormally high amount of context switching, it is likely related to
a specific program which is using multithreading badly.

178

CHAPTER 8 SYSTEM MONITORING

us — Time Spent Running Non-kernel Code

As the title says, us is time spent running non-kernel code. The kernel as we mentioned
previously is the core of Unix-like systems which connects the physical hardware to user-
level software. All “time spent” values are measured as a percentage of time, so a value of 2
would indicate 2% of the time during the period measured was spent on non-kernel code.

sy — Time Spent Running Kernel Code

This is the percentage of time spent running kernel code; an easy way to think of this is,
time spent on system processes outside the user level. An abnormally high value for time
spent on system processes could indicate hardware problems, memory bottlenecks, or
kernel-level locking issues.

id — Time Spent Idle

This is the percentage of time spent idle. This is used for comparing with us and sy.
Notice that adding us, sy, id, and wa (which we’ll look at next) should add up to around
100% (can be slightly off due to rounding). If you're not running a lot of programs in the
background while testing vmstat, it’s likely that the majority of time will be spent idle. A
low number for time spent idle indicates your system is doing a lot of processing.

wa - Time Spent Waiting for 1/0

The fourth category of “time spent” on vmstat is the percentage of time spent waiting
for I/0. In the section on b, we mentioned how threads can be blocked while waiting
to write to disk or while reading from disk. wa gives us a measure of how much CPU
time was lost while waiting for I/O. Having a high % of time spent waiting for I/O could
indicate our disk storage is slow or that we're simply doing a lot of reading and writing to
disk. If you're finding that waiting for I/O seems to be taking a lot of your system’s time,
you can possibly lower this percentage by upgrading the underlying hardware with disk
storage that has higher read/write speeds.

If you'd like to simulate a process that causes a high amount of disk reading and
writing to observe the effect in vmstat, you can run the following code snippet:

(cd /tmp &&

179

CHAPTER 8 SYSTEM MONITORING

(sync ; vmstat 1 & PID1=$! ; \
cat </dev/zero >test & PID2=$! ; \
sleep 3 ; kill $PID2 ; sync ; kill $PID1))

This snippet moves into the /tmp directory, starts vmstat, and then starts reading
zeros from /dev/zero and writing them to /tmp/test. PID1 and PID2 contain the
process IDs of both running processes and kill them after sleeping 3 seconds. When
running this command, you should see the wa value ramp up to some high values.

st — Time Stolen from Virtual Machine

Just like it sounds, the st value indicates the amount of time a virtual machine running
on your system spends waiting to gain access to the resources allocated to it. This is only
relevant if your system is running a virtual machine. Consistently having a value above 0
may indicate that you've allocated too much memory to virtual machines, meaning your
primary system has to steal time from them, or you simply don’t have enough memory to
run your hosted virtual machines and primary system.

nmon

The ‘nmon’ system monitoring tool can display CPU, memory, network, disks (mini
graphs or numbers), filesystems, NFS, top processes, resources (Linux version and
processors) and power micro-partition information. What makes nmon unique is that it
allows you to mix and match between these different statistics to create your own custom
display screen. nmon is not installed by default, but it can be found on most package
managers as nmon.

When you first open nmon by simply running the command with no options, you'll
see a start screen similar to Figure 8-26.

180

CHAPTER 8 SYSTEM MONITORING

[H for help] Hostname=philip-ThinkPRefresh= 2

For help type H or
nmon -2 - hint
nmon -h - full details

To stop nmon type q to Quit

screen updates
en updates

only busy s/procs
e optlions

= Top-proc

Figure 8-26. Running nmon

From here you can press any of the buttons listed at the bottom to toggle on

that particular statistic. If we press n, for example, the screen will display network

information; if we then press ¢, we'll be viewing both network and CPU information like

shown in Figure 8-27.

181

CHAPTER 8 SYSTEM MONITORING

1—169 [H for help] jostname=philip-T

CPU Utilisation

Figure 8-27. Viewing CPU and network info in nmon

The only limit to how many different stats you can view at once is your screen size.
At any time, you can remove a section by pressing the same button which was used to
activate it.

Advanced Network Monitoring with Snort

Another monitoring system worth mentioning is Snort, an open source network
intrusion prevention and detection system. Snort works by analyzing network traffic in
real time and checking it against a set of defined rules. Common rule sets include

o Checking IP addresses against blacklists

e Checking for abnormal amount of requests from an IP
o Checking content of requests

o Rules specific to certain services like FTP, SSH, or https

e Any custom rules

182

CHAPTER 8 SYSTEM MONITORING

Snort also allows the system administrator to connect rules to trigger actions such
as sending a notification to the system admin or blocking requests from the offending
IP. Snort is completely open source and several community-maintained rule sets exist,
there are also premium rule sets which are updated regularly and made available as a
paid service.

We won'’t go into detail about how to install or set up snort though it is available
from most package managers. The setup process is rather long and outside the scope of
this book, but it is worth looking into if the use case is applicable to your setup.

Nagios

Another open source full-suite network monitoring system complete with web-based
GUI is Nagios. It can be used to monitor resources across multiple machines and
infrastructure, with features including

o Alerts based on potential issues

e Monitor your websites to record any downtime

e Capture port use (http, SMTP, SNMP, FTP, SSH, POP, etc.)
» Extensive logs for network requests

As with Snort, the Nagios server is more useful for those running a medium- to large-
sized infrastructure for providing web-based services.

Summary

In this chapter, we looked at various programs and commands which can be used to
monitor Linux systems, from basic process monitoring with top or atop to more specific
monitoring programs like nethogs and iftop.

183

CHAPTER 9

Hardware Details and /dev

In this chapter, we'll look at some useful commands for checking the details of the
hardware on the machine you're using or connecting to. When connecting to a machine
via SSH, you may not know all the details about what kind of hardware you're dealing
with. Even if you're using a machine you're used to or some embedded device, you may
not know all the details. Additionally, if you are completely familiar with the hardware
of a device, you may be able to find hardware issues by checking the details to see if they
match up with what you've expected.

A missing folder within the /dev/ directory or device missing when running 1shw
may alert you to some hardware which has either failed to mount or is broken.

Commands for Hardware Details

In this section, we’ll look at commands and programs which can give you a better idea of
what kind of hardware is on the system you're using.

Everyone knows about 1s, but there is a whole list of hardware query commands
which take their name from the command. Some of them useful for finding out
information about the underlying hardware of a machine are listed in Table 9-1.

Table 9-1. Useful commands for getting hardware details

Command/Application Description

Ispci Lists all PCI devices
Isblk Lists all block devices
sudo fdisk —I Similar to 1sb1k but with more detailed information including sectors
Iscpu Lists information about the CPU architecture

(continued)
© Philip Kirkbride 2020 185

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_9

https://doi.org/10.1007/978-1-4842-6035-7_9#DOI

CHAPTER9 HARDWARE DETAILS AND /DEV

Table 9-1. (continued)

Command/Application Description

Ishw

Is /dev

Is -1 /sys/block

Isusb

cat /proc/cpuinfo
free -h

df -m

ipa

netstat -i
hdparm

uname -r

In-depth list of hardware details. Can also be run with the -short flag to
show a condensed version

The /dev folder on Linux systems

Lists hard disks attached and bus ID. You will likely also see several
virtual devices named loop

Displays information about USB buses in the system and the devices
connected to them

Provides data about the processor

Displays free memory, -h for human readable

Lists mounted filesystems

Lists network interfaces

Cleaner alternative to ifconfig for listing interfaces
Gets/sets SATA/IDE device parameters

Displays kernel version

The /dev/ Folder

Another folder that can be used to gain insights into connected hardware is the /dev

folder. The /dev folder contains many files and folders related to mounted devices,

as well as some other nonhardware files with special use cases. Table 9-2 shows an

extensive list of files which can be found in the /dev folder. Your system likely won’t have

them all.

Note All files which end in a number like jsO can have multiple instances; each
subsequent instance is named with the number incremented, in this case, js1,

js2,and so on.

186

CHAPTER9 HARDWARE DETAILS AND /DEV

Table 9-2. Examples of devices in

the /dev/ folder

Folder/File Description
/dev/dsp Digital signal processor
/dev/fd0 Floppy disk reader
/dev/fb0 Framebuffer device
/dev/jsO Analogue joystick
/dev/Ip0 Parallel printer
/dev/usb/Ip0 USB printer
/dev/cdrom CD ROM

/dev/dvd DVD

/dev/rtc Real-time clock
/dev/sda Hard drive
/dev/ttySO Serial port

This list is by no means complete. Essentially, any I/O device which can be
connected to your computer will show up in the /dev folder.

Special Files in the /dev/ Folder

In addition to physical devices, you'll also find some special files within the /dev/ folder.
These represent pseudo-devices with some special behavior. Table 9-3 shows a list of the

popular ones.

Table 9-3. Special files in the /dev/ folder

Folder/File Description

/dev/null A special file that discards anything thrown into it

/dev/random A special file that produces random output

/dev/urandom Same as random but does not block when system runs out of entropy

(continued)

187

CHAPTER9 HARDWARE DETAILS AND /DEV

Table 9-3. (continued)

Folder/File Description

/dev/stdin Standard input of processes

/dev/stdout Standard output of processes

/dev/stderr Standard output of errors from processes

/dev/zero A special file that returns all zeros

/dev/tty0 Teletypewriter (see the following note)

/dev/loop0 Pseudo-device that makes file available as a block device

Next we'll look at some of these special files a little more in depth.

Teletypewriter

TTY (teletypewriter) is a device which can be used to both send and receive text over

various mediums. The name originates from the historical teleprinters which predate

screen-based computers. Teletypewriters were commonly used at Bell since the early

1900s; see Figure 9-1 for an example. Bell would later create Unix in 1971 which includes

avirtual teletypewriter as a core concept.

Figure 9-1. Historical example of a teletypewriter from Bell Telephone

Magazine 1921

188

CHAPTER9 HARDWARE DETAILS AND /DEV

When typing in Unix terminal, you're actually inputting text into a virtual or pseudo
TTY which takes inputs and can return outputs. Of course in the case of the on-screen
terminal, it’s simulated hardware. At any one time, your system likely has several TTYs.
To see them all, simply run

1s /dev/ | grep tty

It’s likely too many to count manually; if you're curious as to how many, you can pipe
the resultinto wc -1 and get the amount of lines:

1s /dev/ | grep tty | wc -1

In my case, I have 98. Why so many? Well some of these TTYs represent normal
terminal sessions, while others have special use cases. For example, ttyO0 is a special
alias TTY which always points to the current terminal. TTYs may also be used to contain
processes or applications in the background. Try running

ps ax

This will return a list of processes; take note of the TTY column which shows the
parent TTY for some processes. Some processes may be listed as ?, which means they're
unbound to a terminal, running in the background.

It is also possible to attach your screen to some of these TTYs directly by pressing
ctrl+alt+F1, replace F1 with the terminal number in question (F1, F2, F3, etc.). On
many OS, tty1 will be used for X Server; thus, moving to another terminal will cause
your computer to seem to leave the OS completely (music turns off, can no longer see
applications or system menus).

stdin, stdout, and stderr

The special files stdin, stdout, and stderr are short for “standard in,” “standard out,”
and “standard error” They’re more akin to a stream of I/O than a file per se, but because
(almost) everything is represented as a file in Linux, these aspects of the operating
system have associated files.

If you open them, you'll find they’re completely empty though you can direct text
into them which is what is done in the background of the operating system, for example:

echo hello > /dev/stderr

189

CHAPTER9 HARDWARE DETAILS AND /DEV

It's worth knowing what stdin, stdout, and stderr are. You'll likely encounter them
even if not referred to by their file name directly. The system of converting “standard in”
to “standard out” and “standard error” via a process is visualized in Figure 9-2.

stdout

stdin Process

stderr

stdin, stdout, and stderr

Figure 9-2. Diagram of a process transforming standard input into standard
output and standard error

/dev/null

A commonly used special device file is /dev/null. This file is like a blackhole you send
input in, but nothing ever comes out. This may sound rather useless at first, but it can
actually be used to silence a process that otherwise would print output to the terminal or
log files.

To show an example, we’'ll use the ping command and redirect our output to /dev/
null. There are two types of output we can redirect, standard output (represented by 1)
and standard error (represented by 2).

In order to test redirecting both standard out and standard error to /dev/null, we're
going to create a file which simply writes one message to standard out and another to
standard error. I'm creating mine at /tmp/out. sh:

#!/usxr/bin/env bash
echo Working
>&2 echo Error

After saving the file, be sure to add the execution permission:

chmod +x /tmp/out.sh
190

CHAPTER9 HARDWARE DETAILS AND /DEV
Next let’s try running it:
/tmp/out.sh
Next try running it with the following redirection:
/tmp/out.sh 1>/dev/null

You should now only get back the error as standard output is directed to /dev/null
the blackbox. Let’s do the same thing but switch the 1 to a 2:

/tmp/out.sh 2>/dev/null

Asyou likely expected, now we only see the output but not the error. It’s also possible
to redirect both at once. For both the syntax is a little bit different:

/tmp/out.sh > /dev/null 2>&1

Figure 9-3 shows the expected output for each command.

philip@philip-ThinkPad-T420:~S /tmp/out.sh

Working

Error

philip@philip-ThinkPad-T420:~S /tmp/out.sh 1>/dev/null
Error

philip@philip-ThinkPad-T420:~S /tmp/out.sh 2>/dev/null
Working

philip@philip-ThinkPad-T420:~$ /tmp/out.sh > fdev/null 2>&1
philip@philip-ThinkPad-T420:~$

Figure 9-3. Redirecting to /dev/null

/dev/random and /dev/urandom

Another useful special device is random and urandom. These are both essentially the
same thing in that they both act as a device which inputs completely random data. Thus,
it serves as a pseudo-random number generator. Like most pseudo-random number
generators, it relies on some inputs to create entropy.

The entropy that is used for input is the result of random aspects of the state of the
system such as mouse movements, key presses, and other device inputs (e.g., speed of a
drive). Using this entropy, random characters are generated in the /dev/random and /
dev/urandom.

191

CHAPTER9 HARDWARE DETAILS AND /DEV

The main difference between random and urandom is that if random runs out of
entropy, it will block a program relying on it, whereas urandom will not. Generally,
urandom should be preferred.

To get an idea of the kind of data in /dev/urandom, let’s get the first 500 characters
using head:

head -c 500 /dev/urandom

This should return a long string of unreadable characters like shown in Figure 9-4.

philip@philip-ThinkPad-T420:~5 head -c 560 /dev/urandom

svoeele

eCoo\m}rox[[Beflo<eei

aee0XX|{HjeeeT)V cﬂﬂd}o[o}t koﬂﬂoolo)oﬂ]mon.on(4mooﬂ-ﬂo“ﬂ9ﬂoﬂ-ﬂ9o»ctoto
PooeUeET 0! o>d<[¢9eZ*H ﬂ]o;l[moznomoooomo»oo|00Rﬂ2“oﬂoo(ﬂu70
"eo.neS' u 6-0eL~0000eo]e@2e:wreo=0dee, B¢

soHovebss6ee[JUeevesef[ll[§e10¢
eD*eoceYT

xﬂl@o!]UoAO?obo‘om‘: o-gﬂ X “ozuoﬂooofo?-oroﬂ | oo[ESy[m- [ﬂEﬂo? 4 [ﬂ-okoo-o-ops[ﬂn
o' Yoooqro[[lfifeu* eoeUoffloe
o8> ' zoooS{@hen[[§eeBphilip@philip-ThinkPad-T420:~5 Hin

Figure 9-4. Example contents inside /dev/urandom

Of course this isn’t exactly usable. However, it can be used to generate useful random
data for programs. For example, say we want to generate a random number to use with a
program. We could use od, short for octal dump, to generate a human-readable number:

od -vAn -N1 -tul < /dev/urandom

The preceding example generates an unsigned number of 1 byte size (0-255). If we
wanted to instead do 2 bytes, we could run

od -vAn -N2 -tu2 < /dev/urandom

/dev/zero

Another special file you'll find in the /dev folder is zero. Reading this file will return a
stream of null 0s which goes on forever. To demonstrate /dev/zero, let’s create a file with
512 bytes of null 0s:

dd if=/dev/zero of=/tmp/zero count=1

192

CHAPTER9 HARDWARE DETAILS AND /DEV

If you open /tmp/zero after this, you should see something like in Figure 9-5
(depending on how your text editor interprets null character).

I R R B R R I R A L R R R Bl R R B B R I Il Sl R
~@~@~e~e~e~e"e~e"e~e"e~e"e~e"e"e"e"e~e~e~e~e~@"e"e"e"e"e"e~e~e~e"e"e"e"e"e~e~e"e
~@~@~e~e~e~e"e~e~e~e~e"e~e~e"e*e~e"e~e~e~e~e~@~e"e"e~e"e"@~e~e~e"e"e"e"e"e~e~e"e
~ererere~ererenere~e~e~e e~e~e e e"e"e~e"e"e~e"e"e"e~e"e"e"e~e~e"e"e"e"e"e"e~e e
~e~e~e~e~e~e~e~e~e~e~e~e~e~e"e"e~e"e~e~e~e"e~e~e"e"e~e"e"e~e~e~@"e~e"e"e~e~e~e"e
~ererere~ererererere~e~e e~e~e e~e"e"e~e"e"e*e"e"e"e~e"e"e~e~e"e"e~e"e~e~e~e~e e
~@r@~e~e~e~e~e~e"e~e~e~e"e~e~e"e~e"e~e~e"e~e*e"e"e"e~e"e"e"~e~e~e"e"e"e"e~e~e~e e
~ererere~eterenerere~e~e~e~e~e e~e"e"e"e"e"e"e"e"e"e"e"e"e~e"e~e"e"e"e"e"e"e~e e
~@rerenen~ererenererenere e~e e e~e"e"e"e"e"e"e e e e"e"e"e"e"e"e"e"e"e"e"e"e~e e
~@rerere~erereneretenerererere e e e e"e e e"e e e e"e"e"e"e"e"e"e"e e e e"e~e e
~@r@rerenerereneretene~e ene"e"e~e"e~e e
~er@tetenetereneretenererenererere e e"e e e e e e ee e e e e e"e e e e e e"e
~@retetenereneneretenerenenerererere ee e e e e e e e e eneee

i~

Figure 9-5. Example output from /dev/zero

This is mainly used for creating dummy files. It can also be used for zeroing out
memory on a computer. When a file is deleted on the computer, the underlying memory
still exists, but it has been marked as free space that can be used.

By creating large files that are all zeros, this underlying data can be removed, though
this method has been criticized, in favor of using random data instead of zeros, as
advanced methods can still recover this data.

A more thorough way of doing this would be to use the shred command, for
example:

shred /dev/sda

It will not only delete the contents of a drive but make them difficult to recover.

What Is the Kernel?

You've likely already heard references to the Linux kernel, but what exactly is it? The
Linux kernel is the core component of all Linux operating systems and is the part which
everything else is built around. The word kernel originally refers to the very center of a
nut or fruit. In the same way, the Linux kernel is at the very center of all Linux systems.

193

CHAPTER9 HARDWARE DETAILS AND /DEV

The Linux kernel controls all communications between the physical hardware of
a system and the inner software. Many developers and Linux users will never have to
interact with the kernel directly, yet it is worth knowing what this refers to.

The Linux kernel is responsible for things including

¢ Memory management
o Process management
e Device drivers

e System calls

e Security

Much of this happens without the user even being aware of it. The hierarchy of
hardware, kernel, and processes is visualized in Figure 9-6.

All programs and scripts
running in the user space J

Kernel f Core of the OS communicates
Srs between hardware and processes

Physical machine which includes

VICes

Figure 9-6. Userspace, kernel, and hardware stack

Getting Kernel Version

You can find out what version of the Linux kernel you're using by running
uname -1
For more complete information on the version, you can run

cat /proc/version

194

CHAPTER9 HARDWARE DETAILS AND /DEV

This will return more complete information on your kernel like shown in Figure 9-7.
In addition to the version, the identity of who compiled the kernel is listed, compiler
used, type of compile, and the date/time of compile.

'philip@philip-ThinkPad-T420:~5 uname -r

5.0.0-37-generic

philip@philip-ThinkPad-T420:~$ cat /proc/version

Linux version 5.0.0-37-generic (buildd@lcy@1-amd64-023) (gcc version 7.4.0 (Ubuntu 7.4.0-1
ubuntuil~18.04.1)) #40~18.04.1-Ubuntu SMP Thu Nov 14 12:06:39 UTC 2019
|philip@philip-Thinkpad-T420:~5 [l

|
I

Figure 9-7. Displaying kernel version

Configure and Mount a Drive

Often when setting up a server, either in person or in the cloud, the default storage space
won'’t be enough to store data on. In this section, we'll look at how to attach a drive to the
filesystem.

As mentioned in the section on /dev/, all connected drives will show up in the /dev/
folder. However, these will show as a single file not a folder which can be explored. In
order to have the drive treated as a filesystem, it needs to be mounted.

The first step in mounting the drive is figuring out which file it is in the /dev folder.
You can do this by running mount and grepping instances of “/dev/sd”:

mount | grep /dev/sd

This will list all drives connected followed by their mount point, as shown in
Figure 9-8.

philip@philip-ThinkPad-T420:~5 mount | grep /dev/sd
TR EE RS ALl rw, relatime,errors=remount-ro
J/dev/sdal on /boot/efi type vfat (rw,relatime,fmask=007
philip@philip-ThinkpPad-T420:~$ [i

Figure 9-8. Displaying mountable drives

Take note of the highlighted section /dev/sda4 on / type ext4. This tells us a
few things about the sda4 drive. Firstly, it is mounted as the root of our system / and

secondly the format is ext4.

195

CHAPTER9 HARDWARE DETAILS AND /DEV

The mount command will not list every device; to get a better view of things, try
running 1sblk, which should return a list like that shown in Figure 9-9.

philip@philip-ThinkPad-T420:~$ 1lsblk | grep sd

sda 8:0 0 223.6G 0O disk
sdal 8:1 @ 512M 0 part /boot/efi
sda2 8:2 0 16M 0 part
sda3 8:3 ® 92.3G 0 part
sdad 8:4 0 130.8G 0 part /
philip@philip-ThinkPad-T420:~$ |}

Figure 9-9. Viewing drives and partitions with Isblk

Notice that in this case we can see the relationship between sda (the physical drive)
and the partitions on that disk (sda 1 through 4).

In my case, sda3 is a partition previously used for a Windows install. As it’s no longer
needed, I'll format it and mount it. Whenever formatting double check that the drive
doesn’t have data you need and is in fact the correct partition name. After formatting the
partition, all data will be lost.

The steps we'll be taking:

1. Delete the windows partition
2. Create a new partition

3. Format the partition

4. Mount the partition

5. Ensure partition is always mounted on startup

Delete Partition
To delete the partition, first you'll enter fdisk interactive mode for the drive in question:
sudo fdisk /dev/sda

You'll be asked to enter a command; enter d for delete. Then enter the partition
number, in my case, 3. To make the changes final, enter the w command for write. The
deletion process will then start as shown in Figure 9-10.

196

CHAPTER9 HARDWARE DETAILS AND /DEV

philip@philip-ThinkPad-T420: /media$ sudo fdisk /dev/sda

Welcome to fdisk (util-linux 2.31.1).
Changes will remain in memory only, until you decide to write then.
Be careful before using the write command.

Command (m for help): d
Partition number (1-4, default 4): 3

Partition 3 has been deleted.

Command (m for help): w
The partition table has been altered.
Syncing disks.

Figure 9-10. Deleting a partition with fdisk

Now if yourun 1sblk | grep sdagain, we'll see one less partition.

Create Partition

Next we'll use the freed up space to create a new partition. Again open fdisk:
sudo fdisk /dev/sda

This time enter the command n for new. First you'll be asked to choose a number;
we'll use 3 to replace the deleted one. Next you'll be asked to choose the sector on
the hard drive to start the new partition. In most cases, the default will be the lowest
available position and is a good choice.

After choosing the starting sector, you'll be asked about the ending sector; you can
specify a specific location in memory or specify the size of the partition. We’'ll simply
choose the default option which will use all remaining space to create our partition. In
my case, I was also asked if want to remove the ntfs signature, which is a Windows-
specific thing; it is safe to remove. An example of the process is shown in Figure 9-11.

197

CHAPTER9 HARDWARE DETAILS AND /DEV

philip@philip-ThinkPad-T420: /media$ sudo fdisk /dev/sda

Welcome to fdisk (util-lipux 2.31.1)
Changes will remain in memory only, until you decide to write thenm.
Be careful before using the write command.

Ccommand (m for help): n

Partition number (3,5-128, default 3): 3

First sector (1083392-468862094, default 1083392):

Last sector, +sectors or +size{K,M,G,T,P} (1083392-194664447, default 194664447):

Created a new partition 3 of type 'Linux filesystem' and of size 92.3 GiB.

Do you want to remove the signature?NRAETILIEHR?

The signature will be removed by a write command.

Command (m for help): w
The partition table has been altered.
Syncing disks.

philip@philip-ThinkPad-T420: /medias I

Figure 9-11. Create a partition with fdisk

After the partition is created, you'll want to run the following command to have the
partition table reread:

partprobe

Format Partition

We now have a new /dev/sda3 file, but we still need to format it. We’ll do this using the
mkfs command, short for “make filesystem.”

sudo mkfs.ext4 /dev/sda3
Or:

sudo mkfs -t ext4 /dev/sda3

198

CHAPTER9 HARDWARE DETAILS AND /DEV

Mount Partition

With the partition formatted, we can now mount it to our filesystem. First you'll want
to create a folder which will be mounted to. The recommended locations for mounting
are /mnt and /media though these folders have different recommended uses. The /mnt
folder is for manually mounted drives, while /media is where automatically mounted
removable drives (e.g., USB portable drives) will appear.

However, technically, there is nothing stopping you from mounting a device
anywhere you'd like. In my case, I'll create a folder called /mnt/drive1:

sudo mkdir /mnt/driveil
Once created, let’s mount the drive to it:

sudo mount /dev/sda3 /mnt/driveil

System Link from Partition to ~/

It may seem awkward having your storage outside your home directory as it’s out of the
way and you won’t have permission by default. What you can do to deal with this is to
create system links to other folders within your home directory.

For example, say we want more space for a movie collection that will be located at ~/
Movies. First go into /mnt/drivel and create the folder:

sudo mkdir Movies
Next make yourself the owner of the directory:
sudo chown $USER:$USER /mnt/drivel/Movies

Now that we have permission to use ~/Movies, we'll create a symbolic link in our
home directory that acts as a shortcut, meaning we never have to go outside the home
directory to use it (be sure to use full path for the first argument):

1n -s /mnt/drive1l/Movies/ ~/

Now if you go to your home directory, you should see a Movies folder. Anything
which is saved into the ~/Movies folder will actually be saved onto our newly mounted
drive.

199

CHAPTER9 HARDWARE DETAILS AND /DEV

Making Mounted Partition Persistent

We have our partition working perfectly; you might think we’re done. Unfortunately, if we
now restart our machine, it will start back up without sda3 mounted. In order to make the
new partition mount to /mnt/drive1 on every startup, we need to do one more thing.

When starting up, the system looks at the file /etc/fstab to determine what drives
need to be mounted. Before we make an entry, let’s look at what values are needed:

1. UUID of block device (find with Isblk -d -fs <file>)
2. Folder to mount
3. Filesystem type
4. Mount options (use default or see man)
5. Should filesystem be dumped (normally 0)
6. Fsckorder (use I for main partition, 2 for others)
To get the UUID of the partition, run the following using your own partition location:

1sblk -d -fs /dev/sda3

Once you have the six values needed, open up /etc/fstab to edit. The values we’ll be
using are shown in the second uncommented line of Figure 9-12.

M Jetc/fstab: static file system information.

#

Use 'blkid' to print the universally unique identifier for a

device; this may be used with UUID= as a more robust way to name devices

that works even if disks are added and removed. See fstab(5).

#

<file system> <mount point> <type> <options> <dump> <pass>

[was on [dev/sdad4 during installation

UUID=0b794822-d885-4db1-849b-1bc97337d932 [extd errors=remount-ro @ 1

UUID=289826a6-f8dc-4171-b062-ef7fa2zbddedc /mnt/drivel ext4 defaults 0 2

[boot/efi was on /dev/sdal during installation

UUID=65B2-C1AE /[boot/fefi vfat umask=0077] > |

/swapfile none swap sw e 0

Figure 9-12. Editing /etc/fstab

Be careful when editing /etc/fstab as an incorrect entry will cause your system to go
into emergency mode on restart. If that happens, don’t panic, simply use the command
line in emergency mode to open /etc/fstab and comment out the line you added.

200

CHAPTER9 HARDWARE DETAILS AND /DEV
You can reduce any chance of errors by running
sudo findmnt --verify

This will pick up on things like mismatch between file type on disk and that declared
but is not 100% foolproof at catching errors.

Im-sensor

After installing 1Im-sensozr, you first need to let the application detect what sensors are on
your system. Do this with

sudo sensors-detect

It will ask several questions which you can reply “yes” to enable. In most cases, the
default responses are fine so you can just press enter. Once done with the setup process,
you can run

Sensors

This will return sensor, fan, and other data which are available as shown in Figure 9-13.

philip@philip-ThinkPad-T420:~S sensors
nouveau-pci-0100
Adapter: PCI adapter

GPU core: -0.02 V. (min = +0.85 V, max = +1.05 V)
temp1: -0.0°C (high = +95.0°C, hyst = +3.0°C)
(crlt = #185.6°C, hysti= +5.06°C)

(emerg = +135.0°C, hyst = +5.0°C)

coretemp-isa-0000
Adapter: ISA adapter

Package id 0: +54.0°C (high = +86.0°C, crit = +100.0°C)
Core 0O: +54.0°C (high = +86.0°C, crit = +100.0°C)
Core 1: +50.0°C (high = +86.0°C, crit = +100.0°C)

thinkpad-isa-0000
Adapter: ISA adapter
fani: 3525 RPM

Figure 9-13. Viewing sensors with Im-sensor

201

CHAPTER9 HARDWARE DETAILS AND /DEV

INXi

A program similar to 1shw that can be installed for an improved experience when getting
hardware information is i-nex. It can be installed with

sudo apt-get install inxi

By default, it will return very basic data on a single line of output. To get full details,
run with the -F flag:

inxi -Fxz

This should return a detailed list of hardware information as shown in Figure 9-14.

philip@philip-ThinkPad-T420:~$ inxi -F
Systen: Host: phllip-ThinkPad-T420 Kernel: 5.0.0-37-generic x86_64 bits: 64
Desktop: Gnome 3.28.4 Distro: Ubuntu 18.04.3 LTS
Machine: Device: laptop System: LENOVO product: 4186F98 v: ThinkPad T420 serial: N/A
Mobo: LENOVO model: 4180F98 serial: N/A
UEFI: LENOVO v: B3ET78WW (1.48) date: 01/21/2016
Battery BATO: charge: 66.5 Wh 79.4% condition: 83.7/94.0 Wh (89%)
CPU: Dual core Intel Core 15-2540M (-MT-MCP-) cache: 3072 KB
clock speeds: max: 3300 MHz 1: 926 MHz 2: 1143 MHz 3: 992 MHz 4: 1025 MHz
Graphics: Card-1: Intel 2nd Generation Core Integrated Graphics Controller
Card-2: NVIDIA GF119M [Quadro NVS 4200M]
Display Server: x11 (X.0rg 1.20.4) drivers: 1915,nouveau
Resolution: 1600x900@60.01hz
OpenGL: renderer: Mesa DRI Intel Sandybridge Mobile version: 3.3 Hesa 19.0.8
Audio: Card-1 Intel 6 Series/C200 Series Family High Def. Audio Controller
driver: snd_hda_intel
Card-2 NVIDIA GF119 HDMI Audio Controller driver: snd_hda_intel
sound: Advanced Linux Sound Architecture v: k5.0.0-37-generic
Network: Card-1: Intel 82579LM Gigabit Network Connection (Lewisville) driver: e1000e
IF: enp0s25 state: down mac: 00:21:cc:ba:c8:0d
Card-2: Intel Centrino Advanced-N 62065 [Taylor Peak] driver: iwlwifi
IF: wlp3s@ state: up mac: 10:6b:a9:96:87:74

Figure 9-14. Viewing hardware with inxi

dmidecode

While 1shw and inxi should be sufficient for most people looking to see basic hardware
details about a machine, dnidecode can be used to go even deeper.
For example, with dmidecode, you can see BIOS information using

sudo dmidecode -t bios

202

CHAPTER9 HARDWARE DETAILS AND /DEV

Running the command stand-alone as sudo dmidecode will return all system
information in detail including things like serial number and manufacturer which can’t
be found with less detailed utilities. When using it stand-alone, you may want to pipe to
less for easy reading:

sudo dmidecode | less
For motherboard, you can run
sudo dmidecode -t baseboard

There are all kinds of options that can be specified via -t to specify specific hardware
info; see the man page for more complete information.

Summary

In this chapter, we looked at several ways you can explore the underlying hardware of

a system using tools like 1shw, inxi, and dmidecode. We also looked at how connected
hardware will appear in the /dev/ folder which contains hardware devices and a number
of special files like /dev/null and /dev/urandom useful for various tasks. We interacted
with a hard drive in the /dev folder by using the mount command to mount it in the /mnt
directory.

203

CHAPTER 10

Parsing Text

No matter what you're doing on Linux, you'll likely find yourself needing to parse text
at some point. As Linux is largely file based, there is a huge need for utilities which can
parse large amounts of text to find specific values, format, and process it.

There are several utilities that can be used for parsing text. In this chapter, we’ll look
at several of these utilities and how you can see them to parse text.

grep

grep is one of the most commonly used command-line tools. It allows you to find a
specific string in a set of text. For example, given a file with several lines, we can find the
line with the text we're looking for. As an example, let’s find the root user in the /etc/
passwd file

cat /etc/passwd | grep root

You should get back a single entry as shown in Figure 10-1.

philip@philip-ThinkPad-T420:~$ cat /etc/passwd | grep root
root:x:0:0:root: /root: /bin/bash
philip@philip-ThinkPad-T420:~5 [J

Figure 10-1. Grepping root from /etc/passwd

Or even better, we can perform grep directly on a file itself without the need for a pipe:
grep root /etc/passwd

You can also do the inverse and find lines without, to do that add the -v flag which

stands for invert matches:

205
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_10

https://doi.org/10.1007/978-1-4842-6035-7_10#DOI

CHAPTER 10 PARSING TEXT
cat /etc/passwd | grep -v root

This should return similar entries for every other user on your system. The -v flag is
only one of many options that can be used with grep; see Table 10-1 for more.

Table 10-1. Options for grep

Flag Description

-e Regex pattern

-i Ignore uppercase/lowercase

-V Invert matches

-C Cont matches

-n Get X lines before match and show line number (requires
number input)

-h Don’t show file name before matched line (default when
grepping a single file)

-X Exact line match

-f Load regex from a file

-0 Only output the matched parts of a line

-A Show N lines after match (requires number input)

-B Show N lines before match (requires number input)

-C Show N lines before and after match (requires number inpuf)

cut

While grep can parse files to return the relevant lines in a file, sometimes there is the need
to parse the text in a line itself. For parsing a single line, cut works well. cut can be used to
split the contents of a line by character, byte, or custom delimiter, for example, with byte:

echo hello world | cut -b 1,2

The preceding command will return “he” as this is the content of the first and second
byte of “hello world” It’s also possible to do from byte X to the end of a line, for example:

echo hello world | cut -b 7-

206

CHAPTER 10 PARSING TEXT

This should return just “hello” cut doesn’t need to receive its input from a pipe; you
can also read from a file directly. When reading from a file, the same transformation will
be applied to every line. For example, let’s get the 1st to the 9th byte from every line in
the /etc/passwd file:

cut -b 1-9 /etc/passwd

You should get back a line for each user as shown in Figure 10-2.

philip@philip-ThinkPad-T420:~$ cut -b 1-9 /etc/passwd
root:x:0:
daemon:x:
bln:x:2:2
Syszx:3:3
sync:x:4:
games:x:5
man:x:6:1
lpix:7:7:
mail:x:8:
news:x:9:
uucp:x:10
proxy:x:1
www-data:

Figure 10-2. Grepping root from /etc/passwd

Note With normal text files, the -b and -c flags will act the same since a single
character is a byte long.

Of course in the preceding example, the result isn’t particularly useful; we've gotten
several usernames, but as not all users are the same length, some lines get extra data and
others get cut off. The most commonly used mode is -d for delimiter. For example, let’s get
just the usernames. We provide the character we want to use as a delimiter, in our example

each username is preceded by a “:”. Then we specify what section of the cut text we want to
return with the -f flag:

cut -d : -f 1 /etc/passwd

This should return a list of all users as shown in Figure 10-3.

207

CHAPTER 10 PARSING TEXT

philip@philip-ThinkPad-T420:~$ cut -d :

root
daemon
bin
sys
sync
games
man

lp
mail
news
uucp
proxy
www-data

-f 1 Jetc/passwd

Figure 10-3. Getting the first column of each line with cut

uniq

Another useful command when parsing text is uniqg, which is used for parsing out

duplicate lines. To test this command, let’s first create a file with some duplicate lines:

printf 'Hello %d\n' 1 1 1 2 2 3 > /tmp/hello.txt

The file /tmp/hello. txt should now contain six lines, three of which are unique. To

confirm, first cat the contents of the file, and then do a second cat piped into unig:

cat /tmp/hello.txt
uniq /tmp/hello.txt

Your contents should be similar to those shown in Figure 10-4.

philip@philip-ThinkPad-T420:
philip@philip-ThinkPad-T420:
Hello
Hello
Hello
Hello
Hello
Hello
philip@philip-ThinkPad-T420:
Hello 1

Hello 2

Hello 3

philip@philip-ThinkPad-T420:

WNNRE 2=

Figure 10-4. Using uniq

208

~§ printf 'Hello %d\n' 1 11 2 2 3 > /tmp/hello.txt
~$ cat /tmp/hello.txt

~$ uniq /tmp/hello. txt

s

CHAPTER 10 PARSING TEXT

It’s important to note that the unique feature only applies to duplicates which are
next to each other. If we add another “Hello 1” to the end of the file, for example, it will
still be printed as a unique line. Be sure to use >> and not > as a single redirect symbol will
overwrite the file rather than add to it:

echo Hello 1 >> /tmp/hello.txt
uniq /tmp/hello.txt

Notice how the first and last lines are the same like in Figure 10-5.

philip@philip-ThinkPad-T420:~$ echo Hello 1 >> /tmp/hello.txt
philip@philip-ThinkPad-T420:~$ uniq /tmp/hello.txt

Hello 1

Hello 2

Hello 3

Hello 1

philip@philip-ThinkPad-T420:~$ [}

Figure 10-5. Using uniq when duplicate lines aren’t next to each other

If we want to only print completely unique lines, we’ll have to first parse the file with
sort which we’ll look at in the next section.
Some options to be aware of which can be used with sort are shown in Table 10-2.

Table 10-2. Options for uniq

Flag Description
-C Count occurrences of each line
-d Only show repeated lines

-i Case insensitive

-S Skip first N characters on each line (requires number input
-u Only show unique lines
-w Only compare the first N lines (requires number input)

sort

The sort utility is used for sorting lines in a file. To demonstrate, let’s create a file which
has numbers 1-5, followed by those same numbers again:

209

CHAPTER 10 PARSING TEXT
seq 1 5 > /tmp/numbers.txt &&% seq 1 5 >> /tmp/numbers.txt

Next let’s view the output and then view the output a second time piping through
sort:

cat /tmp/numbers.txt
sort /tmp/numbers.txt

The output from the first command should be in the order 1, 2, 3, 4, 5, 1, 2, 3,4, 5,
whereas the second command will sort the numbersas 1,1, 2,2,

This can be particularly useful in combination with uniq, because you can ensure
alike lines are next to each other. Assuming you still have the /tmp/hello. txt file
created in the uniq section, let’s sort it and then get unique lines:

sort /tmp/hello.txt | uniq
With the combination of sort and uniq, you'll only get back one instance of each

line, as shown in Figure 10-6.

philip@philip-ThinkPad-T420:~S sort /tmp/hello.txt | uniq
Hello 1

Hello 2

Hello 3

philip@philip-ThinkPad-T420:~$ [

Figure 10-6. Using sort with uniq to only show a single instance of each line

The same effect can be accomplished with sort alone using the -u option:
sort -u /tmp/hello.txt

As with the other utilities we've covered, sort has some useful options shown in
Table 10-3.

210

CHAPTER 10 PARSING TEXT

Table 10-3. Options for sort

Flag Description
-r Reverse sort (can be combined with other options)
-n Sort numerically
-d Dictionary sort, considers only blank and alphanumeric
characters
-k Sort by column (requires number inpuf)
-u Only show unique lines
-M Sort by month (assumes month names in lines)
-V Version number sort
Regex

Regex isn’t a utility itself but a standard form of text parsing which is used by several utilities
and programming languages. Regex is short for regular expressions. A regular expression
provides a pattern by which a string is tested again. A simple example, say we want to match
either “Hello” or “Hi” The regular expression for that would be

(Hello|Hi)

grep has a special -E option for extended regex. So we can use the expression with
grep. Before we do that, let’s add a line that says “Hi 1” to the /tmp/hello. txt file we
made in the last section:

echo "Hi 1" >> /tmp/hello.txt
With that done, run the following:
grep -E "(Hello|Hi)" /tmp/hello.txt

You should get back a match on every line, with the part that matched highlighted,
like shown in Figure 10-7.

211

CHAPTER 10 PARSING TEXT

philip@philip-ThinkPad-T420:~$ grep -E '(Hello|Hi)' /tmp/hello.txt
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hi 1

philip@philip-ThinkPad-T420:~$ [

B WNRN R

Figure 10-7. Regex with grep

The same regex format can be used with several utilities and programming
languages: Perl, JavaScript, Python, and Ruby, just to name a few. For example, if you
have perl installed, you can use the exact same regex:

perl -pe '(Hello|Hi)' /tmp/hello.txt

Beyond one word or another, we can actually use wildcards or specific classes to
match again. Imagine you're writing software to validate serial codes for a product, and
they come in the pattern of “number number number letter letter number.” This pattern
can be expressed as

[0-9][0-9][0-9][a-zA-Z][a-zA-Z][0-9]

Notice that for letters we're using [a-zA-Z]; this indicates that we'll accept both
capital and lowercase. If we instead only wanted capital letters, we could do [A-Z].

Now let’s say we wanted to make our serial code a bit harder to guess so we want the
first number to be either 3, 5, or 8. We would update the expression using [358] for the
first character:

[358][0-9][0-9][a-zA-Z][a-zA-Z][0-9]

This same pattern can be applied with both letters and numbers, for example,
[123ABC] would match any of the characters listed. Another common similar use might
be phone numbers:

[0-91{3}[-1[0-9]{3}[-][0-9]{4}

212

CHAPTER 10 PARSING TEXT

The preceding example introduces a new element we haven’t used yet. Instead of
defining each character in the number, we can do the short form [0-9]{3}, meaning
three instances of [0-9]. So we have a three-digit number, followed by a dash, a three-
digit number followed by a dash, and then a four-digit number.

One downside of the preceding regex is that it explicitly requires the dash. You can
make any character optional by following it with ?. So if we want to take our same regex
and make the dash optional, we would end up with

[0-91{3}[-]1?[0-9]{3}[-]?[0-9]{4}

Notice the addition of the two ?. So now our regex will match phone numbers with
or without the dash. If you're from a country other than the USA/Canada, you may have
to further adjust the regex to match the pattern used in your locale. In addition, this
regex doesn’t take into account things like the possibility of using “()” around numbers.
However, using these simple elements, you can modify the regex to handle any type of
phone number format.

To test the phone number example, let’s open up the numbers. txt file created in the
section on sort. Then add a line which contains a phone number in the format “519-
555-0100" With that done, run the following command:

grep -E '[0-9]{3}[-]?[0-9]{3}[-]?[0-9]{4}" /tmp/numbers.txt

This should return only the newline added with the phone number.
Another common regex is for finding emails. This isn’t a comprehensive example but

one which will work for most phone numbers:
\S+@\S+\ . \S+

In this example, we're making use of \S which is any nonspace character followed
by +, meaning one or more of the previous characters. Thus, together \S+ means any
amount of nonspace characters. Then we have an “@” symbol followed by another \S+;
after that, we have \.; normally . is a wildcard character, but with the backslash, it takes
on the literal meaning of " Then we finish off with another \S+.

Just like with phone numbers, if we add an email to the /tmp/numbers. txt file we

made, we can test the regex as part of a command:

grep -E "\S+@\S+\.\S+' /tmp/numbers.txt

213

CHAPTER 10 PARSING TEXT

Table 10-4 contains a list of commonly used symbols in regex.

Table 10-4. Regex symbols

Special Charachter Description

\s Matches any space or tab

\S Matches any nonspace character

\d Matches any digit

\D Matches any nondigit character

\w Matches any word character

\W Matches any nonword character
Matches any character

A Start of line

$ End of line

* Matches preceding character zero to any
amount of times

+ Matches preceding character one or more
times

? Matches preceding character zero or one time

| Or symbol used for either or expression

awk

awk is a pattern scanning and processing language and command-line utility tool. It
excels at working with formatted text data. As an example, create the file /tmp/users.txt
with the following text:

Jesse 4557389203 jesse@gmail.com x1 1991 1
Matt 8839293940 matt@hotmail.com s 1983 1
Jeff 8493739304 jeff@outlook.com 1 1980 3
Sarah 4939304952 sarah@email.com m 1974 2

214

CHAPTER 10 PARSING TEXT

We'll use this file as sample data to process. Given the preceding data, we wanted to
look at all the emails. We could run

awk '{ print $3 }' /tmp/users.txt

This should print out all the information for the third column as specified by $3, as
shown in Figure 10-8.

philip@philip-ThinkPad-T420: /tmpS awk '{ print $3 }' /tmp/users.txt
jesse@gmatil.com

matt@hotmail.com

jeff@outlook.com

sarah@emall.com

philip@philip-ThinkPad-T420:/tmpsS |J

Figure 10-8. Printing third column in a file with awk

We can mix and match these values and format them as we like, for example, getting
the email and size and separating them by a space:

awk '{ print $3" "$4 }' /tmp/users.txt

Or say we want to generate a sentence (example output in Figure 10-9) using the
information for each row of data:

awk '{ print "Hello "$1", thanks for buying a "$4" shirt" }'\
/tmp/users.txt

philip@philip-ThinkPad-T420:/tmp$ awk '{ print "Hello "$1", thanks for buying a "S$4" shirt” }'\
> [tmpfusers.txt

Hello Jesse, thanks for buying a x1 shirt

Hello Matt, thanks for buying a s shirt

Hello Jeff, thanks for buying a 1 shirt

Hello Sarah, thanks for buying a m shirt

philip@philip-ThinkPad-T420: /tmpS .

Figure 10-9. Using columns as variables with awk

We can also use basic search functionality to find specific rows, for example:
awk "/Jeff/" /tmp/users.txt
This should return the row with user Jeff, as shown in Figure 10-10.

215

CHAPTER 10 PARSING TEXT

philip@philip-ThinkPad-T420: /tmp$ awk "/Jeff/" /tmp/users.txt
Jeff 8493739304 jeff@outlook.com 1 1980 3
philip@philip-ThinkPad-T420:/tmp$ [}

Figure 10-10. Searching for a string with awk

The regex we looked at previously is compatible with awk as well. Say we want to get
all users who are size “1” for large. We'll create some regex to find cases of “1” with a space
/s on either side:

awk "/\sl\s/" /tmp/users.txt

Or if we want to get both large and small, we can use the (...|...) pattern like we did
with (Hello|Hi). Remember each \s is actually a space and does not refer to the letter
itself. So \ss\s actually means “s ”:

awk "/(\sl\s|\ss\s)/" /tmp/users.txt

This should return entries with both small and large, as shown in Figure 10-11.

philip@philip-ThinkPad-T420: /tmpS awk "/(\sl\s|\ss\s)/" /tmp/users.txt
Matt 8839293940 matt@hotmail.com s 1983 1

Jeff 8493739304 jeff@outlook.com 1 1980 3
philip@philip-ThinkPad-T420:/tmps [}

Figure 10-11. Get users with size small or large using awk

Any regex can be used with awk; simply put it in between the / / as we've seen.

These are a few examples of where awk can be useful. It’s hardly comprehensive as
awk is actually its own programming language, and whole books have been written about
making use of it. If you're interested, other features include

e Creating .awk files invoked by awk directly

o Ability to define and use variables

e Support for writing stand-alone functions inside an awk script
e Built-in functions like a random number generator

e Support for if, else, and loops

216

CHAPTER 10 PARSING TEXT

sed

sed stands for stream editor, and it will be present on most Linux installations. There is
significant overlap between what awk and sed can do. They both can be used to search
text for matches or perform operations on data. For example, if we wanted to search for
the row in /tmp/users.txt like we did with awk, we could do

sed -n "/Jeff/p" /tmp/users.txt

The -n flag disables sed automatically printing the file, and instead we’ll only print
the lines we specify. Then the p at the end of our match pattern stands for print.

Overall, I would recommend learning awk over sed as it’s simpler to use and a more
complete tool for more situations. However, there are a few things which are simpler
with sed than awk. One of those things is finding and replacing text.

Let’s take our sample data and replace “Jeft” with “Jeffery”:

sed -i 's/Jeff/Jeffery/g' /tmp/users.txt

The -1 here enables edit in place so the file we're reading from is changed. Then the
s/ tells sed to use the substitute command. We then match Jeff, and on the other side of
the /, we specify the replacement. Finally, the /g at the end specifies that this is a global
change, rather than simply replacing the first match.

However, there is a small problem with the preceding command. If ran a second
time, it will try to replace “Jeff” in “Jeffery.” As with awk, we can specify matching of a
space with \s and then use a literal space in our replace section:

sed -1 's/Jeff\s/Jeffery /g' /tmp/users.txt

You might recognize the \s from the regex table. As with awk, regex syntax is
compatible with sed.

Using JQ to Work with JSON

Many of the older programs that are used on Linux were written in a time before JSON
became the standard for information sharing between web apps. While programs like
sed and grep are powerful for parsing and text manipulation, they are not well suited for
dealing with JSON. The most popular command-line program for dealing with JSON is
JQ, so much so that it has started to ship standard on many distributions such as Ubuntu.

217

CHAPTER 10 PARSING TEXT

JQ is a very fast JSON processor written in C. I asked the author if JQ stands for
JSON Query, and he said that would make sense but he didn’t intend for it to stand for
anything. Nonetheless, you can think of it as a way to query and work with JSON.

Note In this section, we’ll be using Open Trivia DB as an example API to fetch
JSON from. Feel free to substitute this for any other API. Of course you’ll have
to modify the commands specifically for the data you’re working with. Some
interesting APIs that don’t require getting an API key include

Open Trivia DB — www.opentb.com

TheSportsDB —www. thesportsdb. com

The simplest thing you can do with JQ is pipe valid JSON into it and receive back a
colored result, for example, with Open Trivia DB:

curl -s https://opentdb.com/api.php?amount=3 | jq

This should return the same JSON but color coded for easy reading as shown in
Figure 10-12.

philip@philip-ThinkPad-T420:~S curl -s https://opentdb.com/api.php?amount=3 | jq
{
"response_code": 0,
"results": [
{
"category": "Science: Computers”,
"type": "multiple”,
"difficulty”": "medium",
"question": "What does AD stand for in relation to Windows Operating Systems? ",
"correct_answer": "Active Directory”,
"incorrect_answers": [
'Alternative Drive",
'Automated Database”,
'Active Department”
]
1

Figure 10-12. Curl request being parsed with JQ

Already you'll find working with JQ is easier, especially if the server you're requesting
had originally serve the JSON in a compressed format. Also notice that for curl we used
the -s flag; without this, you'll see a little progress bar which needlessly wastes space.

218

http://www.opentb.com
http://www.thesportsdb.com

CHAPTER 10 PARSING TEXT

Of course this is just the beginning; JQ is much more than a simple pretty print. Let’s
take the same data and work with it a little bit. Say, for example, we only want to display
the first question from our query (keep in mind the questions are random each request).

curl -s https://opentdb.com/api.php?amount=3 \
| jq '[.results][o][o0]"

We simply add [0] to get the first element in the array, similar to C-like languages
you might be familiar with like JavaScript. In this situation, the results we actually
wanted were wrapped in an outer array that contained only our target array, so it ended
up being [0][0].

If you're familiar with working with arrays and objects in JavaScript or other
languages, doing more complex things will come very easily to you. Say now we want to
take the first question and select only the question text.

curl -s https://opentdb.com/api.php?amount=3 \
| §q '[.results][0][0]'.question

If the database format remains the same when you're reading this and you've copied
the command correctly, you should see a question text displayed on your screen. Let’s
think back to our section on pipes and send the result to cowsay (not installed by default)
just for fun.

curl -s https://opentdb.com/api.php?amount=3 \
| jq '[.results][o][0]'.question \
| cowsay

The output should look something like Figure 10-13.

philip@philip-ThinkPad-T420:~5 curl -s https://opentdb.com/apli.php?amount=3 \
> | 3q '[.results][e][®]'.question \
> | cowsay

/ "What was the unofficial name for \
\ Germany between 1919 and 19332?" /

\ (oo)_______
(=)\ JAVAN
[1----w |
T TR L LWL | ARy

Figure 10-13. UsingJQ to get a question and piping it to cowsay

219

CHAPTER 10 PARSING TEXT

We can expand on the preceding example to create a full command line-based quiz
game, by saving the result of the curl request in a script and fetching the questions and
answers to display separately. For a full example of a command-line quiz bot which
prints a list of potential answers and checks if the user responds with the correct answer,
see the following link:

https://github.com/Apress/basic-linux-terminal-tips-and-tricks

Summary

In this chapter, we looked at utilities for parsing text from the command line and scripts.
For plain text files or piped input, these include grep, cut, uniq, sort, awk, and sed.

We saw that regex is extremely useful for matching patterns of text and is supported by
several utilities and most popular programming languages. Finally, we saw how we can
work with JSON which is often returned from web APIs by using the program JQ.

220

https://github.com/Apress/basic-linux-terminal-tips-and-tricks

CHAPTER 11

systemd

We've explored looking at processes directly using tools like ps; another way to look
at the processes running on a system is from the daemon perspective. A daemon is
a long-running process which operates in the background of a system; often they’re
automatically started on system start by an init program like systemd. The “d” in systemd
comes from the concept of daemon, as it acts as a controller for all daemons running on
the system.

systemd is a scheduling system which has become widely used across Linux
distributions. It is often the subject of both praise and criticism. Its central role in
controlling system functionality in a number of areas including logging, scheduling,
service monitoring, and system init has led some to say it is too centralized and goes
against the Unix philosophy of each program doing one thing well. Defenders of systemd
would point out that it is actually a collection of several binaries like systemctl and
journald which each do one thing and work together to create a larger system.

Whatever you think of systemd, it has become so widespread that it’s nearly
impossible to avoid if you're using any popular Linux distribution. It was originally
developed in 2010 at Red Hat as a way to replace older init systems particularly SysV-
style init. By 2015 systemd had come to replace SysV init and other init systems on most
popular distributions including CentOS, RHEL, Debian, Ubuntu, and SUSE.

systemctl

If your system is running systemd, you should have a command-line program called
systemctl, short for system control. systemctl can be used to monitor, query, and
modify the services and processes which are controlled by systemd. See Figure 11-1 for a
visualization of the subtasks which are monitored and controlled by systemd.

221
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_11

https://doi.org/10.1007/978-1-4842-6035-7_11#DOI

CHAPTER 11 SYSTEMD

logs

network

systemd users

4

devices
services

Figure 11-1. Many uses of systemd

systemctl is the system control which connects various aspects of the system
keeping track of each service status, turning services on/off based on settings, and
parsing service output and moving it to log files.

Running systemctl without any flags will return a list of active systemd units, like
shown in Figure 11-2.

222

CHAPTER 11

SYSTEMD

3] -0-backlight-acpi_videol.device \oaded cctlw uluwvd

] o 00060812 oe o drm- cardl ~card1\x2dLVDS x2d2- nv_backlight.device loaded active plugged

s P di.device loaded active plugged
ye-devices-p e uxm.gn: a:pl videos. device loaded active plugged
sys-devi B-drm-cardd- cardo\x2dLVDS \x2d1-1ntel_backlight.device loaded active plugged
sys-devi P 16.3-tty-ttysd.device loaded active plugged
ys-devices-p :08-0500:00:19. 8- net -enpds2s. device loaded active plugged
y5-devi P 1b.8 d do.device loaded actlve plugged
sys-devi | "‘ t“ loaded active plugged

sys-devices-pclogne:08-0008:00:1F. 2 atal- MHO Tar

l)‘s d!\‘l(!‘i = pcl0a00:08-0808:00:1f. 2-atal- host- urgttﬂ 8:0- 0
BB08:08:1F.2-atal-hosto-

sys dwlﬂs puoeee 05-0008:08:17.2-atal- hosta- urgem CHRLT

¥ P 1f.2-atal-hosto-tar

S5 de Bod:oa:1rf hos urgeu,n.s,l:n: 1

Sys- devuu nln(l’em -serlalazso- Kty uyso ow\:.e

block-sd 1.device
hxi: sda sda? device
3.device
hxk sda-sdad.device
k-sda.device
0-block-sri. device

sys-devices-platforn- -ser Lal82sn- Ety-tiysi. derlr.e
EY5- dcv\.cn H\alfem i!rlalﬂso tty-tiysil.device

Lala: dev
:,-s ~devices-platforn- serulaz!n ny trys1d.device
y514. device
Sys-devices-platlori- “n.la:sn -tty-ttysis. device
sys-devices-platforn-serLalszse-tty-ttysis.device
sys-devices-platforn-serlald2se-tty-tiysi7.device
sys-devices-platforn-serlal8zso-tty-tty518.device
Y5 devt(es plali’em +ser LalBz50-tty-trys19. device

er Lal device
sys-devices-platfarn- -sertalazsp-tey- trysze.device
sys-devices-platforn-serlal8250- tty-ttys2l.device
sys-devices-platforn-serLal8z50-tty-tty522.device
sys-devices-platforn-ser Lal8250-tty-tty523. device

loaded active plugged
loaded active plugged
loaded active plugged
loaded actlve plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged
loaded active plugged

Figure 11-2. Example output from running systemctl

I sys/de

Isys/
srus HoAL Audlo Controller

.8/drn/

ofbackligh

Sanbisk ¢

SanDisk_50550A2436 Ht{ resnl' t\x?Breﬂrud\:Nﬂrtl tlon
sllﬁlxk tition

SanDlsk_SDSSBA248G 4

sawtsk_sossmz⪙

HL-DT-STOVDAANM_GTI3N
Jsys/devices/platforn/serialB2se/tey/ttyse
Isysfdevices/platforn/serialazse /tty/ttys1
Jsys fdevices fplatform/ser Lals2ss /Lty /teys10
[sys/devices/platforn/serializse/tty/ttysil
Isys/devices/platforn/serialazse/tty/ttysi2
Jsys/devices/platforn/sertalB25n/try/teyS1d
fsys/devices/platform/serialazse/tty/ttys1s
Jfeysfdevicesfplatform/serlalazsa/tey/teys1s
Jsys/devices platforn/serials2zse/ ty/tiysis
Isys/devices/platforn/serialezse/tty/itys17
Jays devices platforn/serialozsn /ety /etys1
[sys/devices/platform/serlalszse/tiy/ttys19
[sys devices platform/serlalazse/ty/ttys2
fsys/fdevices fplatforn/serialszss /oy /toys2o
Isys/devices/platforn/serialB2se/tty/ttys2l
Jays/devices platforn/seriala2so/tty/teys22
Jsys/devices platform/serialazse/tty/ttys23

Stop, Start, Disable, and Enable Services

We've already used some of the commands we’ll go over here, but it’s worth reiterating

as they're some of the most common commands you’ll want to use for managing

services with systemd.

Stop a Service

cardwardu L
6 krt(slcze! Series Chipset Family KT Controller

B2579LM Gigabit Metwork Connection (Lewisville) (Think
6 Serles/C280 Series Chipset Family High Definltlon Au
centrino Advanced-N ozes [Taylor Feak] f:on:rtm Advan

If a service is running and you want to stop it via systemd, simply run the following with

sudo; we’'ll use the printing service cups as an example (no output shown on success):

sudo systemctl stop cups

Get Status of a Service

Next to ensure the service is off, we'll use the status command. This can come in useful

in many situations when you're unsure of the status of a service.

sudo systemctl status cups

You'll get back not only the status of the service but the latest logs; see Figure 11-3

for an example. The addition of recent logs is a feature which was not present in the old

System V service command.

223

CHAPTER 11 SYSTEMD

philip@philip-ThinkPad-T420: /var/log$ systemctl status cups
@ cups.service - CUPS Scheduler

Loaded: loaded (/lib/systemd/system/cups.service; enabled; vendor preset: enabled)

Active: inactive (dead) since Mon 2019-12-23 19:40:27 EST; 46s ago

Docs: man:cupsd(8)

Process: 4044 ExecStart=/usr/sbin/cupsd -1 (code=exited, status=0/SUCCESS)
Main PID: 4044 (code=exited, status=0/SUCCESS)
Dec 23 12:09:30 philip-ThinkPad-T420 systemd[1]: Started CUPS Scheduler.
Dec 23 19:40:27 philip-ThinkPad-T420 systemd[1]: Stopping CUPS Scheduler...
Dec 23 19:40:27 philip-ThinkPad-T420 systemd[1]: Stopped CUPS Scheduler.
philip@philip-ThinkPad-T420: /var/log$

Figure 11-3. Getting the status of a specific program with systemctl

Notice the logs at the bottom which display a time and messages for starting and
stopping.

Start a Service

Next let’s turn the service back on; as you may have guessed, it can be done with the
following command:

sudo systemctl start cups

After running start, rerun the status command and confirm that cups is running again.

Disable a Service

Stop and start deal with the state of a service in the current session. Disable and enable
deal with the state of a service during the startup of a new session after a machine

is turned on. Simply using stop on a service will result in it restarting every time the
computer is stopped. To fully turn off a service for good, the disable command should be
used:

sudo systemctl disable cups

Again, after running, check the status and observe the differences.

Enable a Service

As you probably guessed, the opposite of disable is enable:

sudo systemctl enable cups

224

CHAPTER 11 SYSTEMD

After testing disabling a command, be sure to turn the service back to enabled if you
want it to continue starting on boot.

Unit Files

Programs communicate their configurations to systemd via unit files, which are ini

files located in the /etc/systemd/system/ folder. The simplest unit file just tells

systemd to keep the program running. Let’s create an example program and unit file to
demonstrate; call it logTime. sh. I've created mine in the /tmp folder since I don’t plan to
keep it.

#!1/usr/bin/env bash
while true
do
echo time is $(date)

sleep 5
done

Once you've written the script, give it executable permission with the following
command:

chmod +x logTime.sh

Go into the folder /etc/systemd/system; this is where you can place unit files which
configure programs to work with systemd. We'll create the simplest possible unit file for
our script which simply logs time; name the file logTime.service. You'll need to have
root permissions to edit and create files in /etc/systemd/system.

[Service]
ExecStart=/tmp/logTime.sh

With the unit file saved, you can now turn on the service.
sudo systemctl start logTime

Next we'll get the status of the daemon.
sudo systemctl status logTime

This should return some information telling us the service is active and show the
most recent logs, like shown in Figure 11-4.

225

CHAPTER 11 SYSTEMD

philip@philip-ThinkPad-T420:/etc/systemd/system$ sudo systemctl start logTime
philip@philip-ThinkPad-T420: /etc/systemd/system$ sudo systemctl status logTime
@ logTime.service
Loaded: loaded (/etc/systemd/system/logTime.service; static; vendor preset: enabled)
Active: active (running) since Sat 2019-12-14 10:06:08 EST; 8s ago
Main PID: 6832 (bash)
Tasks: 2 (limit: 4915)
CGroup: [system.slice/logTime.service
6832 bash /tmp/logTime.sh
6852 sleep 5

Dec 14 10:06:08 philip-ThinkPad-T420 systemd[1]: Started logTime.service.

Dec 14 10:06:08 philip-ThinkPad-T420 logTime.sh[6832]: time is Sat Dec 14 10:06:08 EST 2019
Dec 14 10:06:13 philip-ThinkPad-T420 logTime.sh[6832]: time is Sat Dec 14 10:06:13 EST 2019

Figure 11-4. Starting custom unit file and checking status

You can actively watch the logs as they are generated using journalctl.
sudo journalctl -u logTime -f

This can be useful when you want to investigate some specific service that is running
on your machine. If it doesn’t seem to be acting right or is taking too much resources,
looking at the logs may give you hints as to the issue.

There are several other options that can be set in the unit file. The following is a more
complete unit file with comments to describe what each line does:

[Unit]

Description of what the program does
Description=Log time every 5 seconds

List services needed for this service to work
After=time-sync.target

[Service]

Path to executable
ExecStart=/tmp/logTime.sh

Policy for restarting when stops
Restart=always

Working directory for executable
WorkingDirectory=/tmp

The user the process will run under
User=philip

User group for the process
Group=philip

226

CHAPTER 11 SYSTEMD

Set environment variables
Environment=MYVAR=var

[Install]

Which programs require the unit

multi-user.target is when linux start

Adding this line makes the program start when system is booting
WantedBy=multi-user.target

If you manually modify a service file, you'll need to do a soft reset on systemd with
the following command:

sudo systemctl daemon-reload

Even though the final line tells the program to turn on during boot, it needs to be
enabled to actually take the unit file into account.

sudo systemctl enable logTime
This will activate the service. If you want to disable the service, simply run
sudo systemctl disable logTime

The disable command is extremely useful. Say, for example, you check running
services and see a program that you aren’t using and don’t need. You kill the process or
turn it off, only to find that the next time you restart your computer, it's back again. If you
encounter that situation, systemctl disable may be able to solve it.

After you finish this section, make sure to delete the service file we created in /etc/
systemd/system. If you created the executable in the /tmp directory like we did here, the
service will fail after your first restart if you don’t remove it by deleting the service file.

Find Running Services

When you log in to a machine, you'll likely want to figure out what services are already
running. The command we previously looked at systemctl, for enabling and disabling
our logTime service, can also be used to get a complete list of services running on a
machine.

227

CHAPTER 11 SYSTEMD

systemctl is short for system control and is systemd’s command for controlling the
services on a system. Given that, nearly all services will be launched through systemd (at
least the ones that automatically start after a restart).

The simplest command you can do with systemctl is run it stand-alone:

systemctl

This will return a list of processes which are currently active on the system, as shown
in Figure 11-5.

UNIT LOAD ACTIVE SUB DESCRIPTION
sys-devices-pcioess: ©-0000:01:00.0-backlight-acpi_videol.device loaded active plugged /sys/devices/pcieeed:ee/es
sys-devices-pcigeee: .0-0600:01:00.08-drn-card1-card1\x2dLvDS\x2d2 -nv_backlight.device loaded active plugged [sys/d
sys-devices-pcioess: .0-0000:01:00.1-sound-cardl.device loaded active plugged GF119 HOMI Audio Controlle
sys-devices-pcleess: .@-backlight-acpi_videco.device loaded active plugged /sys/devices/pciogeo:ee/es
sys-devices-pcleess: .8-drm-carde-carde}x2dLvDS\x2d1-intel_backlight.device loaded active plugged /sys/devices/pcl
sys-devices-pcioegs: .3-tty-ttys4.device loaded active plugged 6 Series/C280 Series Chips
sys-devices-pcioees: .@-net-enpBs25.device loaded active plugged B2579LM Gigabit Network Co
sys-devices-pcleses: .8-sound-carde.device loaded active plugged 6 Series/c200 Series chips
sys-devices-pcioees: .1-0000:83:00.0-net-wip3se.device loaded active plugged Centrino Advanced-N 6205 [
sys-devices-pcioess: .2-atal-host@-target: 0:0:0:0-block-sda-sdal.device loaded active plugged SanDisk_SDSSDAZ

sys-devices-pcioees: .2-atal-host@-target
sys-devices-pcioees: .2-atal-hoste-target
sys-devices-pci@oeo:00-0600:00:1F.2-atal-hoste-target

:0-block-sda-sda2.device loaded active plugged SanDisk_SD55DA2

@-block-sda-sda3.device loaded active plugged SanDisk_SDSSDAZ

2 :8-block-sda-sda4.device loaded active plugged SanDisk_SDSSDAZ
sys-devices-pciOfeo:00-0000:00:1F.2-atal-hostO-targeto: 0:0:0-block-sda.device loaded active plugged SanDisk_SDSSDAZ40G

sys-devices-pclo0e:00-0000:06:1f.2-ata2-hostl-target1:0:0-1:0:0:0-block-sr@.device loaded active plugged HL-DT-STDVDRAM_GT33N

sys-devices-platform-seriala2sa-tty-ttyse.device loaded active plugged /sys/devices/platform/seri

sys-devices-platforn-serial82s0-tty-ttysi.device loaded active plugged [sys/devices/platform/seri

Figure 11-5. Output from systemctl

This lists everything and it can be hard to read through. If you want to look at
specifically unit file services that are running, you can use
systemctl list-units --type service

Another useful thing about this is that you can see services which are set to be
running but have failed for some reason, as is the case with postfix@-.service in
Figure 11-6.

networking.service loaded active exited Railse network interfaces
NetworkManager-walt-online.service loaded active exited Network Manager Wait Online
NetworkManager.service loaded active running Network Manager
nordvpnd.service loaded active running NordVPN Daemon
openvpn.service loaded active exited OpenVPN service
packagekit.service loaded active running PackageKit Daemon
polkit.service loaded active running Authorization Manager

@ postfix@-.service loaded failled falled Postfix Mail Transport Agent (instance -)
postgresql.service loaded active exited PostgreSQL RDBMS
postgresql@l@-main.service loaded active running PostgreSQL Cluster 1@-main
rsyslog.service loaded active running System Logging Service
rtkit-daemon.service loaded active running RealtimeKit Scheduling Policy Service
setvtrgb.service loaded active exited Set console scheme
snaid.seeded.servtce loaded active exited Walt until snapd is fully seeded

Figure 11-6. Listing services only with systemctl

228

CHAPTER 11 SYSTEMD

If we wanted to look at only failed services, we could add the --state failed flagto
our previous command.

Also, take note of the services that are active but have exited, meaning technically
they are working but not running. To see only programs which are currently running,
you can use the command:

systemctl list-units --type service --state failed

Another useful command will allow you to see all the unit files and their current
status:

systemctl list-unit-files --type service

This will output all the unit files and their current status, example shown in
Figure 11-7.

philipgphilip-ThinkPad-T420:~% systencti list-unit-files --type service

UNIT FILE STATE
accounts-daemon.service enabled
acpid.service disabled
alsa-restore.service static
alsa-state.service static
alsa-utils.service masked
anacron.service enabled
apache-htcacheclean.service disabled
apache-htcacheclean@.service disabled
apache2.service enabled
apache2@.service disabled
apparmor .service enabled
apport-autoreport.service static
apport-forward@.service static
apport.service generated
apt-dailly-upgrade.service statlic
apt-daily.service static
atop.service enabled
atopacct.service enabled
autovt@.service enabled
avahi-daemon.service enabled

Figure 11-7. Listing unit files with systemctl

There are several possible states, which are listed in Table 11-1. The most popular are
enabled, disabled, and static.

229

CHAPTER 11 SYSTEMD

Table 11-1. Possible service states with systemd

State Description

enabled Service is turned on

disabled Service is turned off

static Service can’t be turned on/off, dependency or single run
script

masked Locked so it can’t be turned on even manually

linked Made available through a system link

indirect Indirectly enabled

generated Dynamically generated via generator tool

transient Dynamically generated via runtime API

bad Invalid unit file

For more details on these states, you can run

man systemctl list-unit-files

journalctl

systemd doesn’t just handle scheduling tasks. It also plays a part in directing the logs that
are generated from running services. That’s where journalctl comes in, short for journal
control. As with systemctl, the simplest command you can run is journalctl by itself.

journalctl

This will return a list of all logs created through systemd. We can watch a live version
of this file as it updates by using the -f flag:

journalctl -f

This will display any logs as they happen; to exit, you can press ctrl+c.
journalctl has many options which spare you from having to come up with
complex parsers yourself; Table 11-2 contains a list of several useful options.

230

CHAPTER 11

Table 11-2. List of options for journalctl

Option Description

-f Get live stream of logs

-k Show kernel logs

-u <service> Show service for specific service
-b Show boot messages

-r Sort in reverse order

-p Sort by process priority

_PID=<number> Get logs from specific process ID
_UID=<number> Get logs from specific user ID

_GID=<number> Get logs from specific group ID

journalctl — Parsing by Time

SYSTEMD

In addition to the preceding flags, it is also possible to parse logs between specific times

using the --since and --until flags, for example:
journalctl --since yesterday
up until a time using basic hour notation
journalctl --until 13:00
or using a combination of the two
journalctl --since "2 days ago" --until yesterday
Traditional timestamps are also supported:

journalctl --since "2019-12-24 23:15:00" --until "2019-12-25"

231

CHAPTER 11 SYSTEMD

Other Init Systems

While systemd has become widely used, there are still several places where you'll find
other init systems - just to name a few examples:

e Minimal Linux versions like Alpine Linux
e Older versions of Linux
o Lessused operating systems

e Highly customized operating systems

SysV Init

Before systemd became the standard, classic Linux systems used SysV init. The word
“init” refers to the first process started during boot. You can still see it by running
ps -up 1

However, the script itself will likely be a systemd version of init. systemd was
purposefully designed to be SysV init compatible. With SysV init, the kernel starts the init
process, which handles changing the systems state for booting, rebooting, and shutting
down. With SysV, there are eight different runlevels defined in Table 11-3.

Table 11-3. Runlevels on SysV

Runlevel Directory Use

N -- System boot

0 /etc/rc0.d/ Halt system

1 /etc/rc1.d/ Single-user mode

2 /etc/rc2.d/ Multiuser mode

3 /etc/rc3.d/ Multiuser with networking

4 /etc/rc4.d/ Reserved for custom runlevels

5 /etc/rc5.d/ Graphic user interface started (X77)
6 /etc/rc6.d/ Reboot

232

CHAPTER 11 SYSTEMD

As the system starts, it moves between runlevels, not always sequentially, for example,
going into single-user mode (runlevel 1) is a special state. When your OS becomes broken
during initiation, for example, a script in /etc like /etc/fstab is broken, you will only
be able to log in to single-user mode with user root. Other levels are more sequential, for
example, normally one would pass through runlevels 2 and 3 before arriving at level 5.

The folder associated with each of the levels contained bash scripts associated with
the programs that need to be started at that level.

Note While runlevels are crucial to SysV-style init, they still exist in systemd init
with the same levels N, 0, and 1 - 6. On most systems, you can see your current
runlevel by running who -r.

Upstart

Another previously popular init system is Upstart (last release was in 2014). Upstart was
used on Ubuntu before they switched to systemd as of Debian 8. Despite this, you'll still
find Upstart in use today.

Upstart is made to look like other init systems and does not include a command called
“upstart”. If you're unsure your OS is running Upstart, you can check for the binary with

ps -eaf | grep '[u]pstart’

If you see some processes other than the grep call itself, your system has Upstart
installed. You can use it to check what services are running with

service --status-all

This will return a list of services and their status. You can interact with the services by
interacting with their init scripts directly, for example:

sudo /etc/init.d/ssh status
Or to restart a service, run

sudo /etc/init.d/ssh restart

233

CHAPTER 11 SYSTEMD

This method of interaction isn’t actually specific to Upstart. Even on systemd
systems, you'll find many programs have a /etc/init.d file which can be interacted with
directly like shown earlier.

Summary

In this chapter, we looked at the systemd system and how it is used to control what
programs are running on your system. We looked at how systemctl can be used to work
with these services by stopping, starting, enabling, and disabling. To look at services
running and their logs, we explored the use of journald. We even created our own unit
file to make a systemd service from scratch.

234

CHAPTER 12

V]
Im

Sooner or later, you're going to want to start using a terminal-based text editor, if not full
time, then at least when you're remotely logged in to a server or device.

Many system admins end up relying on nano, a simple text editor that is preinstalled
on many systems. The main advantage of nano is that it’s easily understood and usable
by new users. In the long run, using nano will slow you down significantly. With nano,
you end up having to hold down the arrow keys or delete for long periods as you try to
navigate a text document.

Vim creates a solution to this by creating a keyboard-based syntax for navigating
around a document and making changes quickly without the need for a mouse. In one
keystroke, you can go from the top of a document to the bottom G and back again with

two gg. Vim has all kinds of keystroke-based commands like this that help you move
quickly and edit.

Modes

As mentioned in the previous chapter, many keys are bound to special movements or
command, for example, G to go to the bottom of the document. So what about when you
actually want to type “G” into the document? This is where modes come in. There are
two main modes in Vim and a third less used but still important mode:

e Normal mode - For running commands like G
o Insert mode - For writing text like you would in other editors

e Visual mode - For selecting text, similar to highlighting text with a
mouse

235
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_12

https://doi.org/10.1007/978-1-4842-6035-7_12#DOI

CHAPTER 12 VIM

Common Commands

When you open a document in Vim, you'll be in normal mode by default. Normal mode
is where Vim-specific commands are run. Some of the most common you’ll want to be
familiar with are shown in Table 12-1.

Table 12-1. Vim commands

Command Description

:q Quit Vim

W Save the document
X Save and exit

i Enter insert mode

u Undo

ctrl+r Redo

<Esc> Return to normal mode from insert mode
.e <filename> Open a file with Vim already open

:h Help screen

Take note of how to exit Vim; it's a common issue and joke that newcomers to the

program have extreme difficulty with exiting the program.

Note Often people have trouble exiting Vim. When in normal mode, you can press
:g. If you’ve changed the file, you’ll get a prompt above an unsaved file. You can
save a file with :w and combine the two actions as :wq. Save and quit can also be
done with a slightly shorter command : x.

236

CHAPTER 12 VIM

Using Help Command

If ever you find yourself forgetting the Vim basics, you can open up the help page by
running :h. This will bring you to a general help page. If you need information on a
specific command, you can follow the :h with the command, for example:

:th G

This will bring up the specific help text for the G command, as shown in Figure 12-1.

File Edit View Search Terminal Help

G
G Goto line [count], default last line, on the first
non-blank character 1linewise . If 'startofline' not
set, keep the same column.
G is a one of jump-motions .

<C-End>
<C-End> Goto line [count], default last line, on the last
character 1inclusive . {not in Vi}

<C-Home> or gag <C-Home>
ag Goto line [count], default first line, on the first
non-blank character 1linewise . If 'startofline' not

set, keep the same column.

:[range]
:[range] Set the cursor on the last line number in [range].
[range] can also be just one line number, e.g., ":1"

ar = 'm"s
In contrast with G this command does not modify the

Figure 12-1. Help screen for G command

Compound Commands

One of the great things about Vim is that commands can be combined in a way that it
has a very simple language for combining commands. Certain power commands can be
strung together to create new commands. Doing things like “delete inside quotes” can be
accomplished in three keystrokes; simply press

di" // delete in quotes

237

CHAPTER 12 VIM

The preceding command represents three smaller components strung together:

d = delete
i=1in
" = quotes

Now that you know how to delete in quotes, how do you think you delete inside

brackets?
di) // delete in brackets
Delete the current word? Delete in paragraph?

diw // delete in word
dip // delete in paragraph

There are several different selectors similar to this that can be used in the same
“delete in X” sequence. All you have to do is swap out the last key in the three key
sequences. Some of these keys and symbols are shown in Table 12-2.

Table 12-2. Selectors that can be used with
the “deleted in” compound command

Key Description

¢ Quotes

GLL< Various bracket types
t HTML tag

p Paragraph

w Word

Note For any of the brackets like (, {, and [listed earlier, you can also use the
closing version of said bracket for the same effect.

We can also take all these statements and swap out the first letter to change the
meaning. Some example compound commands are shown in Table 12-3. In rare cases the
adjective might not be needed at all. For example ‘diw’ can be further simplified to ‘dw’.

238

CHAPTER 12 VIM

Table 12-3. Examples of compound commands

Verb (Number) Adjective Noun Description

c -- i t Create - in - HTML tag

d 4 -- I Delete four letters

c -- a < Delete - around - < bracket
d 2 -- w Delete two words

Selecting with Visual Mode

Vim has a third mode which provides functionality which is similar to that provided
by highlighting a block of text with your mouse in other programs. For example, open
up /etc/passwd with Vim (make sure not to use sudo or root as we don’t want to save
any changes to this file, better yet copy /etc/passwd into your /tmp folder and practice
editing the copy).

With the file open, press v; this will cause you to enter visual mode. Now that you're
in visual mode, press the down arrow on the keyboard or j; as you move down the text,
your highlighting will change. See Figure 12-2 for an example of what you should see.

root:¥:0:8:root: /root: /bin/bash
daemon:¥:1:1:daemon: /usr/sbin: /usr/sbin/nologin
bin:N:2:2:bin: /bin: /usr/sbin/nologin

slames:x:5:60:g9ames: fusr/games: fusr/sbin/nologin
man:x:6:12:man: fvar/cache/man: fusr/sbin/nologin
lp:x:7:7:1p:/var/spool/lpd: fusr/sbin/nologin
mail:x:8:8:mail:/var/mail: fusr/sbin/nologin
news:x:9:9:news:/var/spool/news: fusr/sbin/nologin
uucp:x:10:10:uucp: /var/spoolfuucp: fusr/sbin/nologin
proxy:x:13:13:proxy:/bin: fusr/sbin/nologin

Figure 12-2. Selecting text in visual mode

Now with the text highlighted, we can perform operations on it. If we press d, all of
our highlighted text will be deleted.

239

CHAPTER 12 VIM

Notice that we have the hanging selected character in the previous image for the
word “games”. A nice way to avoid this is to enter visual line select mode, which is the
same as visual select mode but only highlights full lines. To use visual line select, use
shift+v instead of just v.

While this might look similar to what you're used to using your mouse in a normal text
editor, Vim visual mode is actually much more powerful. Instead of selecting lines of text,
we can instead select a vertical chunk of code. To do this, first make sure you're in normal
mode by pressing esc. Now press ctrl+v and scroll down using j or the down arrow.

After scrolling down four lines, press 1 a few times or the right arrow key. Notice
we're doing the same thing we did above with visual mode but selecting a vertical chunk
of code, which will be highlighted as shown in Figure 12-3.

ELEEH B5:60:games: fusr/games: fusr/sbin/nologin
LW H-H12:man: /var/cache/man: fusr/sbin/nologin

H BB:1p: /var/spool/lpd: fusr/sbin/nologin

A H::8:mail:/var/mail: fusr/sbin/nologin
news:x:9:9:news: /var/spool/news: fusr/sbin/nologin
uucp:x:10:10:uucp: /var/spool/uucp: fusr/sbin/nologin
proxy:x:13:13:proxy:/bin: /usr/sbin/nologin

Figure 12-3. Selecting vertically in visual mode

From this point, we can perform an operation on the selected code like d for delete
or press esc to switch unselect and go back to normal mode. Another common use
for visual mode is to prepend all your lines with some common text. For example, say
we want to comment out the first four lines of code. Return to the top left-hand corner
and press ctrl+v. Next, scroll down four lines and press ctr1+I (must be capital I); this
enters into insert mode but we’ll actually be typing on all four lines at once.

Now if we type #, the change will be repeated on each line, like in Figure 12-4. When
you're happy with the inserted text, press esc to finish the operation. If we want to
uncomment the lines, we can use the technique of selecting a vertical chunk of code and
pressing d to delete what we've just added.

F games:x:5:60:games: fusr/games: fusr/sbin/nologin

man:x:6:12:man: /var/cache/man: fusr/sbin/nologin
lp:x:7:7:1lp:/fvar/spool/lpd: fusr/sbin/nologin

mail:x:8:8:mall:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news: fusr/sbin/nologin
uucp:x:10:10:uucp: fvar/spooljuucp: fusr/sbin/nologin

Figure 12-4. Adding a hash sign to the start of several lines at once

240

CHAPTER 12 VIM

Make sure not to save any of these changes. To exit Vim without saving, you can press
:q! in normal mode.

Vim Tutor

When you install Vim, it also comes with another executable called vimtutor. When you
run it, a tutorial will open that walks you through using Vim. The first lesson from Vim
tutor is shown in Figure 12-5.

Lesson 1.1: MOVING THE CURSOR

** To move the cursor, press the h,j,k,1 keys as indicated. **

N

k Hint: The h key is at the left and moves left.
< h L The 1 key is at the right and moves right.

3 The j key looks 1like a down arrow.

v

1. Move the cursor around the screen until you are comfortable.

2. Hold down the down key (j) until it repeats.
Now you know how to move to the next lesson.

3. Using the down key, move to Lesson 1.2.

NOTE: If you are ever unsure about something you typed, press <ESC> to place
you in Normal mode. Then retype the command you wanted.

NOTE: The cursor keys should also work. But using hjkl you will be able to
move around much faster, once you get used to it. Really!

Lesson 1.2: EXITING VIM
Figure 12-5. Vim tutor

It contains detailed lessons doing simple things like moving the cursor, editing,
deleting, and creating text. It's recommended you work your way through Vim tutor to
get the hang of doing common things in Vim.

241

CHAPTER 12 VIM

Find Text

Another common thing you’ll want to do when navigating text is finding some specific
string of text. This can be done in normal mode using the / key. First press / and then
type in the string you're searching for. You'll see your input in the bottom-left corner of
the screen. After inputting your search phrase press enter and your cursor will go to the
next instance of the string based on your cursors starting location.

With your cursor on the first instance, you can press n to go to the next instance or N
to go to the previous instance.

Searching can be a powerful way to navigate a document and is often followed by a
combination command like cw for “create word.”

Find and Replace

Sometimes when you're searching, what you really want to do is find all instances of a
variable or word and replace it with another name or word. This is also fairly easy in Vim
once you memorize the command.

:%s/o0ld/new/g

The %s here stands for substitute; then we have the old word, followed by what
we'll replace it with. The g in this case stands for global, meaning we want to replace all
instances of “old” with “new.” Running the same command without the g will replace
only the first instance found.

Another useful option that can be used with substitute is i for case insensitive (same
as with regex), for example:

:%s/old/new/gi

This will replace any match of the word regardless of whether it uses a capital or
lowercase for any of the letters.

242

CHAPTER 12 VIM

Run a Command

It’s also possible to run a Unix command from within Vim. As an example, let’s create a

file called “vim” in the /tmp folder:

:touch /tmp/vim

On pressing enter, you'll go into a shell instance where the results of the command
are shown. Then pressing enter again, you'll return to Vim. This can be handy for quick
commands without leaving Vim or changing windows.

In addition to running one-off commands, it’s also possible to run a full window
terminal within Vim. You can open a mini-terminal in Vim by running : terminal or

:term for short. It will open a new terminal session in the top half of the window like in

Figure 12-6.

philip@philip-ThinkPad-T420: /tmp/tests l

! /bin/bash [philip@philip-ThinkPad-T420:
root:x:0:0:root: /root:/bin/bash
daemon:x:1:1:daemon: fusr/sbin: fusr/sbin/nologin
bin:x:2:2:bin:/bin: fusr/sbin/nologin
sys:x:3:3:sys:/dev: fusr/sbin/nologin
sync:x:4:65534:sync: /bin:/bin/sync
games:x:5:60:games: fusr/games: fusr/sbin/nologin
man:x:6:12:man: /var/cache/man: fusr/sbin/nologin
1p:x:7:7:1p:/var/spool/lpd: fusr/sbin/nologin
mail:x:8:8:mail:/var/mail: fusr/sbin/nologin

Figure 12-6. Opening a terminal session inside Vim

The terminal window shows on top, and you can quickly move back and forth
between the in-app terminal and the text you're editing. To switch between the two

windows, press ctrl+w followed by w.

243

CHAPTER 12 VIM

To close the terminal window, first press ctrl+w and then press :q! followed by
enter in the same way you would to force close a normal window.

Vim Sort Command

Another handy built-in command is Vim'’s sort, which is similar to the command-line
sort utility we looked at in a previous chapter. To demonstrate sort, go into the /tmp
folder and create a file with ten random numbers between 1 and 99:

for i in “seq 107;
do echo ${RANDOM:0:2};
done > /tmp/numbers.txt

Now if we open up /tmp/numbers.txt, you should have ten unsorted numbers, each
on a different line. Next run the following in Vim:

:1,5!sort

After hitting enter, the first five lines should be sorted. The first number is the starting
line for the sort and the second the end. So if you run the same command again with a 10
instead of 5, all the numbers in the file should be in order.

Show and Hide Line Numbers

In the last section, we made use of line numbers with the sort command, and it was easy
since we started at line 1, but what if you are in the middle of a long file? If you need to
see the line numbers, you can run

:set number
Then to remove numbers again, run

:set nonumber

Swap Files

As you use Vim, you may notice the creation of files with the extension . swp. These
are backup files automatically created and deleted when you properly close Vim. If for

244

CHAPTER 12 VIM

some reason your SSH connection is disrupted or Vim closes unexpectedly, you'll have
a chance to recover your changes. Just reopen the file which has an associated . swp file,
and you'll see a screen like in Figure 12-7.

E325: ATTENTION
Found a swap file by the name ".vim.swp"
owned by: philip dated: Sat Jan 11 15:00:04 2020
file name: /tmp/vim
modified: YES
user name: philip host name: philip-ThinkPad-T420
process ID: 7187
While opening file "vim"
dated: Sat Jan 11 14:58:47 2020

(1) Another program may be editing the same file. If this is the case,
be careful not to end up with two different instances of the same
file when making changes. Quit, or continue with caution.

(2) An edit session for this file crashed.

If this is the case, use ":recover"” or "vim -r vim"

to recover the changes (see ":help recovery").

If you did this already, delete the swap file ".vim.swp"
to avoid this message.

Swap file ".vim.swp" already exists!
[0]pen Read-Only, (E)dit anyway, (R)ecover, (D)elete it, (Q)uit, (A)bort: l

Figure 12-7. Vim when opening a file that has a swap file

Notice the options displayed at the bottom of the page. To recover the changes, press
R. If you don’t want to recover the changes, you should press D; otherwise, you'll see this
message every time you open that file until the . swp file is removed.

Summary

In this chapter, we looked at how we can use the Vim text editor to increase productivity.
It allows you to quickly manipulate text without the use of a mouse which can cause you
to lose context. We looked at some of the three main modes Vim has - normal mode,
insert mode, and visual mode. We also saw how Vim has its own language that can be
used to create compound commands such as ciw which stands for “create in word.”
While this chapter only showed a small section of what is possible with Vim, hopefully it
serves as a starting point that allows you to make use of the editor and increase the speed
at which you can edit files.

245

CHAPTER 13

Emacs

In this chapter, we're going to talk about a very popular editor in the Linux world. Emacs
is one of the oldest and most liked editors. While Vim is quite compact and focuses
simply on the task of editing files, Emacs is more of a platform which “modes” can be
created for. Different modes in Emacs interpret commands and text in different ways.

Modes can be related to the type of text file being edited, for example, a mode
specific to programming Python, JavaScript, C++, and so on. However, modes can also
be like programs, for example, org-agenda which provides a fully functional agenda,
to-do lists, and calendar or EWW which provides a functional web browser without ever
leaving Emacs. There are even community-made modes which tie into external APIs,
for example, telega mode which provides a fully functional Telegram chat application
embedded into Emacs.

We won't look at every mode or even all the features which come standard in Emacs
as that would take a whole book in itself. Instead, we'll survey a few of the interesting
ones which are useful from the terminal and can provide a starting point if you wish to
delve deeper into the Emacs world.

Note When discussing Emacs, I'll use their standard syntax for describing
commands. When you see something like

M-x run-command

the “M-x” stands for press “x” while holding the modifier key, which on most
machines will be the ALT key.

The second thing you’ll see is RET; this simply stands for press the enter key.

247
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_13

https://doi.org/10.1007/978-1-4842-6035-7_13#DOI

CHAPTER 13 EMACS

Installing Emacs

A relatively up-to-date version of Emacs can be found on most package managers.
To install Emacs on a Debian-based system, run

sudo apt-get install emacs

At the time of writing, we found the GPG key that ships with the program to verify
packages on ELPA (Emacs Lisp Package Archive) was out of date. You can manually
update the key with the following command:

gpg --homedir ~/.emacs.d/elpa/gnupg \
--receive-keys 066DAFCB81E42C40

Depending on the time of reading, the key above 066DAFCB81E42C40 may need to be
changed. Check the GNU website link, https://elpa.gnu.org/packages/gnu-elpa-
keyring-update.html, where you can find the most up-to-date key to be used with the
command in the body of the “Full description.”

In order to tell Emacs to make use of the MELPA package archive, you'll have to
create a file in your home folder called .emacs. It should contain the following code:

(require 'package)
(add-to-list 'package-archives '("melpa" . "https://melpa.org/packages/"))
(package-initialize)

Vim Bindings aka Emacs Evil Mode

I'love Vim because you can find it almost anywhere, if not in full, then at least the limited
version vi. What makes Vim great for me is that the keybindings allow me to modify

and enter data extremely quickly. Yet when it comes to interesting modes, modules, and
extensions, I prefer Emacs for a lot of things.

Examples of interesting modules we'll look at include artist-mode, org-mode,
presentations, and tramp. Before we take a look at those modules, we’ll enable Vim
keybindings so we can use the best features of Vim we’ve looked at while running Emacs.
It's worth noting that several other programs and IDEs offer optional Vim keybindings
(with various levels of quality in implementation), for example, VS Code and Qt Creator.
Some terminal programs like Ranger even use them by default, while others like bash
allow you to set them with an option.

248

https://elpa.gnu.org/packages/gnu-elpa-keyring-update.html
https://elpa.gnu.org/packages/gnu-elpa-keyring-update.html

CHAPTER 13 EMACS

To enable Vim keybindings on Emacs, we first need to install the module “evil-
mode”; the name is half a joke about the Emacs vs. Vim rivalry and half word play based
on e (Emacs) + vi (Vim).

Before installing any package, you should update the local package list. This is
similar to updating your OS package manager, for example, on Debian apt-get update.
To update the Emacs package manager, run the following command:

M-x package-refresh-contents

To install evil-mode, you can use the built-in package manager MELPA. Run the
following:

M-x package-list-packages
This will show a list of all available packages on MELPA. Next we'll install evil-mode using
M-x package-install RET evil

This will install the package, and in the bottom left of the screen, you should see
“Done.” With the package installed, you should be able to run the following command to
enable the keybindings for your current session:

M-x evil-mode

However, after closing Emacs and reopening, the bindings will no longer be enabled.
To ensure that the bindings are enabled by default on opening Emacs, we’ll modify our
~/ .emacs file. Add the following two lines to the bottom of the file:

(require 'evil)
(evil-mode 1)

Note One of the major concepts in Emacs is that of modes. Changing modes can
change the way input keys react. The mode to make Emacs use Vim bindings is
itself a mode called evil-mode. There are two subcategories of modes in Emacs:
minor modes and major modes. Major modes are exclusive, while multiple minor
modes can be enabled at once, and each adds some features.

A community extension for using Vim bindings in other modes exists and is actively
being maintained/developed. You can read more about it at

www.github.com/emacs-evil/evil-collection

249

http://www.github.com/emacs-evil/evil-collection

CHAPTER 13 EMACS

Built-in Tutorial
Like Vim, Emacs has a built-in tutorial which can be accessed by pressing
C-h t

This should open up a page of text like shown in Figure 13-1.

> emacs24@philip-Aspire-ES1-522 - 4 X |
File Edit Options Buffers Tools Help

._f.i'l-l]-'—lx ¥ |Save yundo o o E': Q

Bmacs tutorial. See end for copying conditions. H

Emacs commands generally involve the CONTROL key (sometimes labeled
CTRL or CTL) or the META key (sometimes labeled EDIT or ALT). Rather than
write that in full each time, we'll use the following abbreviations:

C-<chr> means hold the CONTROL key while typing the character <chr>
Thus, C-f would be: hold the CONTROL key and type f.

M-<chr> means hold the META or EDIT or ALT key down while typing <chr>.
If there is no META, EDIT or ALT key, instead press and release the
ESC key and then type <chr>. We write <ESC> for the ESC key.

Important note: to end the Emacs session, type C-x C-c. (Two characters.)
To quit a partially entered command, type C-g.

The characters ">>" at the left margin indicate directions for you to

try using a command. For instance:

>> Now type C-v (View next screen) to move to the next screen.
(go ahead, do it by holding down the CONTROL key while typing v).
From now on, you should do this again whenever you finish

_-i--- TUTORIAL ~Top L1 (Fundamental -~

Figure 13-1. Emacs built-in tutorial in GUI mode

Before switching to the terminal mode as we’ll do in the next section, it's worth
exploring the default start page for options like “Open Home Directory” and the linked
documentation. In many ways, Emacs is built to be used from the GUI rather than in the
terminal. If you prefer the GUI version and it works for your setup, feel free to use it.

250

CHAPTER 13 EMACS

For the most part, not much is gained by using Emacs from terminal instead of the
GUL It does make it easier to go from terminal into a file and may feel comfortable for
those coming from Vim, but many Emacs power users swear by the GUI version and
keep it running at all times with multiple files opened and backgrounded in a single
instance.

Run Emacs in Terminal

By default, Emacs is a desktop GUI program. Of course if you're reading this book, you're
here for terminal-specific programs and workflow. You'll be happy to hear that Emacs
can be run in the terminal too just like Vim. To do so, you'll want to open the program
using the --no-window-system option, like this:

emacs --no-window-system
The same thing can be done using the short way -nw:
emacs -nw

Of course, you probably don’t want to write this every time you launch Emacs from
the terminal. What you can do instead is add an alias to your .bashrc file so that emacs
instead calls emacs --nw.In my case, I decided to use e, as typing five keys seems like a
lot of work. The .bashrc alias looks as follows:

alias e="emacs -nw'

Hints with which-key-mode

A great mode to install for if you're new to Emacs or even a veteran user is which-key-
mode. This mode causes a mini-buffer to pop up and display the possible keyboard
shortcuts that can be used from your current state. An example of the which-key
dialogue is shown in Figure 13-2.

251

CHAPTER 13 EMACS

GNU Emacs 26.3 (build 2, x86_64-pc-linux-gnu, GTK+ Version 3.22.30)
of 2019-09-16

-UUU:%%--F1 *GNU Emacs* op L1 <V> (Fundamental WK Undo-Tree)
— backward-kill-sentence — expand-abbrev
= +prefix — kmacro-start-macro
I —+prefix — kmacro-end-macro
— rectangle-mark-mode — calc-dispatch
— indent-rigidly — balance-windows
— set-selective-display — shrink-window-if-larger-tha..

C-x- (1 of 7) [C-h paging/help]

Figure 13-2. which-key-mode suggestions

Installing which-key-mode from MELPA is similar to the process for evil-mode.

M-x package-list-packages
M-x package-install RET which-key

Once which-key-mode is installed, you'll want to modify your ~/.emacs file to tell
which-mode to show suggestions in the mini-buffer as you type commands. We'll be
making use of the use-package command so we first need to import it. Under the code
chunk ending in (package-initialize) that we wrote in the last section, add

(unless (package-installed-p 'use-package) (package-refresh-contents)

(package-install 'use-package))
(require 'use-package)

This will allow us to make use of use-package in our command. Now at the bottom
of the file, add

(use-package which-key
rensure t
:config
(which-key-mode))

This ensures which-key-mode is turned on when Emacs opens.
With this done, close and reopen Emacs. Now if you type

C-x

you should see a mini-buffer showing all the keys that can be used to complete after C-x
and what they do, example shown in Figure 13-3.

252

CHAPTER 13 EMACS

---F1

-UU- s
'DEL — backward-kill-sentence) — kmacro-end-macro — split-window-right
| = +prefix — calc-dispatch I = +ctl-x-4-prefix
= +prefix + —balance-windows = 4+ctl-x-5-prefix
— rectangle-mark-mode = shrink-window-if-larger-tha.. — +2C-command
— indent-rigidly = set-fill-prefix = +prefix
—set-selective-display © —delete-window ; — comment-set-column
| — expand-abbrev — delete-other-windows —scroll-left
| — kmacro-start-macro — split-window-below —+what-cursor-position

C-x- (1 of 4) [C-h paging/help]

Figure 13-3. which-key-mode suggestions for C-x

If there are too many possibilities to be listed, the mini-buffer will be split into

sections. To switch between them, press
C-h

This will allow using n to go forward or p to go back a section.
which-key has some other built-in commands that can be run. For example, if you
want a general overview of commands available in your current major mode, run

M-x which-key-show-top-level

If you're in evil-mode, for example, you'll see the options available for evil-mode.
Being able to see all possible commands is especially useful when you're new to
Emacs so this mode is highly recommended.

Emacs Artist Mode

While I prefer to use Vim for text editing, I appreciate the uniqueness and interesting
modes which come with Vim'’s rival text editor Emacs. Some of these modes are built-in,
while others have to be installed using the built-in package manager MELPA.

One of these interesting modes is Emacs artist-mode. artist-mode provides a set of
tools for creating text-based art or diagrams. Figure 13-4 shows a diagram of a server
architecture which I included in both a presentation and README document.

253

CHAPTER 13 EMACS

Chart of Puppet Docker Stack

$ecccmcncnana + $omecmcmeaaaa +
| GUI | | Gul |
| | | |
Frmmmmmma L e +
| |
| |
R +=-=t L R R +
| PuttetDB | | Puppet Server |
| | | |
[<--eee- > |
| | | I
Feconn=a Aeennnna + trccccssnsccnsnnn=a +
|
|
temeeann tommemnn +
| Postgres |
| |
Frrrr s s s s s r e +

Figure 13-4. Example of a chart made in artist-mode

The real strength of these types of diagrams is the ability to both make and view them
on a terminal. When logging in to a server over SSH and coming across a README, normal
images cannot be displayed. However, the diagrams created with Emacs artist-mode can
be changed easily.

These kinds of images are particularly useful in nongraphical READMEs or manuals.
As an example, [used this kind of art in a presentation about a system for delivering
updates to IoT devices, in conjunction with Emacs presentation mode, another module
that we will look at next.

Note We’ll show you how to use artist-mode via the terminal version of Emacs
here, but this is one mode which is much easier to use in the GUI version. This is
due to the fact that with the GUI, you can draw text using the mouse and drag and
drop shapes, whereas in the terminal you need to use the keyboard for everything.
If your setup allows it, you may want to start Emacs in GUI mode and give drawing
text with your mouse in artist-mode a try.

Create a blank file with Emacs and then switch into artist-mode. Before switching
to artist-mode, you'll want to create a “canvas” of blank space (literal space characters)
where you'll draw your image. An easy way to do this with Vim bindings is to press i

254

CHAPTER 13 EMACS

to go into insert mode and hold down the space bar until your cursor goes as far right
as you want the canvas width to be. Then press esc to exit insert mode. Press y twice

to copy the blank line; next hold p until your cursor goes as far down as you want your
canvas to be. Your cursor should end up in a bottom-right location like in Figure 13-5.

File Edit View Search Terminal Help

File Edit Options Buffers Tools Hel

Figure 13-5. Creating a canvas of white space in Emacs to use with artist-mode

The space from the cursor to the top left is now all white space, which we will operate
while using artist-mode.
Next switch to artist-mode using the following command:

M-x artist-mode

You'll also want to turn off Vim bindings if you have them enabled as they don’t play
nicely with artist-mode. You can do that by running the same command which turns
them on:

M-x evil-mode

Once in artist-mode, we have a large variety of shape tools we can select from to draw
with. When using Emacs in terminal mode, all the shapes can be switched between by first

255

CHAPTER 13 EMACS

pressing ctrl+c, followed by ctrl+a, after that you but in the letter corresponding to the
specific shape (case insensitive, I have copied the shortcuts as they appear in Emacs GUI).

C-cC-aL ## Line
C-cCar ## Rectangle
C-c C-a s ## Square
C-cC-aP ## Poly-line
C-cC-ac ## Ellipse
C-cC-aT ## Text

C-c C-a z ## Spray-can
C-c C-a E ## Erase

C-c C-aV ## Vaporize

In our case, we're going to select rectangle; once you've selected the rectangle shape
with C-c¢ C-a r, move your cursor to the point where you want to start drawing from.
Then press enter and move your cursor around; you'll see that the rectangle changes
shape as you move it. When happy with the size and shape, press enter to finalize it.

Try making two rectangles like shown in Figure 13-6.

File Edit View Search Terminal Help

File Edit Options Buffers Tools Artist Help

i
Frmmmmmeemaaaaa +
I |
I |
| |
I |
I I
R +
e +
I |
I I
I |
I |
I I
e +

Figure 13-6. Two rectangles created in artist-mode

256

CHAPTER 13 EMACS
Next switch to the line tool using
C-cC-al

Move your cursor to the bottom middle of the top rectangle, then press enter to start
your line. Move it down to the top of the second rectangle so they’re connected like in
Figure 13-7.

File Edit View Search Terminal Help

File Edit Options Buffers Tools Artist Hel

Figure 13-7. Artist-mode connecting two rectangles with a line

To make it look more like an arrow going from the top rectangle to the bottom one,
we'll replace the + with a v. To do so, simply press v while your cursor is in the place
shown in the preceding picture. You should end up with something like Figure 13-8.

257

CHAPTER 13 EMACS

File Edit View Search Terminal Help

File Edit Options Buffers Tools Artist Hel

Figure 13-8. Making a line an arrow in artist-mode by replacing + with v

When not using a specific shape in artist-mode, pressing a key simply replaces the
text of where the cursor currently is with what you press. We can use this same effect to
add some labels to the rectangles. Move your cursor to where you want to add the labels
and simply type. You can add label text like shown in Figure 13-9.

258

CHAPTER 13 EMACS

File Edit View Search Terminal Help

File Edit Options Buffers Tools Artist Help

e +
| [
| Prototype |
| |
| |
| [
+--m--- LR +

|

I

|
Fommmon Vemmomm- -
| I
| Version 1 | |
| I
| |
| |
e +

Figure 13-9. Adding labels to our diagram in artist-mode

If you accidentally write it noncentered, you can simply put your cursor to the start
of the word and press the spacebar to overwrite the text with white space. The same goes
for if you accidentally mess up your shape while writing; simply add the missing text of
the shape manually this way.

With those two simple shapes and techniques, you can create relatively complex
graphics of architecture like the puppet pop machine one shown at the top of this
section. However, if you explore the other tools and have the time, there’s no limit to
the text art you can create. I'll leave you with some inspiration, a pop machine text art
graphic I found and used in the same presentation, shown in Figure 13-10. You can find
text art like this on sites like www.asciiworld.com and www.asciiart.eu.

259

http://www.asciiworld.com
http://www.asciiart.eu

CHAPTER 13 EMACS

File Edit View Search Terminal Help

File Edit Options Buffers Tools Hel
g* Intro

Smart Pop Machine
Using Puppet to monitor and update devices

| Bt s pRn Rt ER AR ERRRB R BHRRGHRURERRRRRRRER R |

|#] | BEBRERBRARRRES |
Tl L CL I T TR |##|
|#] \ | |##| Exact |##|

|
I I
I I |

#1 /=__\ ./.__\ |/,__\ |##]| Only [##|
N2 | 7

|#] i et — |##| Change |##|
[#] N RS [#e|_______ |##|
| #] E:d:2:2:2:2:3:2:2:2:2:2:2: 24
& Rt e s e [EZiz:2:2:2:3:20:0:2:2:2: 20
|#| = e +++ ffffff |#########ﬂ####l
[#1 \/ \] \ A |] B | #|
2 1 G K] R (N | TR 168 |
A e AT RO R A A | B e = A]
[#1 __//- \NI_// -__/l |#] |4]|5]6]| |##|
| #]|======== [#] [7]8]9] |##]
[#] 502 s srsessssianaaiinie, g e |##]
[#] ..-- o «==4_s |#| [=======] | ##|
#1\ \ | [I | BEL = i
(N e e [[TG o
BEl s e e N [V | ##|
B | N L NG S AN S | [B~ | ##|
[#] [#] [##]
[R>St Titiririitaesansanaian P —
| RERBHRRBBRRRBBBURBRERBRBRRGURBRERRRARBRERRRE |
NN AN RRNE s ###|
[#LELTERTEETTIPUSHE LT LI LEET L [#ees\ | |] || /###]

| HERRRRRRBHR R BB BB BB RHBRBURRRARBRRABRBRBGRY |

\\\\\\\\\\\\\\\\\\\\\\/HNHHH/{ég;{HHf

Figure 13-10. Pop machine text art

Org-Mode

Another useful mode to keep notes efficiently in raw text and even give presentations
(more on that in the next section) is Emacs org-mode. Emacs org-mode, short for
organization mode, provides the ability to write text under hierarchical headings with
the ability to easily expand and compress sections, for example, given the format shown
in Figure 13-11 (headings specified by *).

260

CHAPTER 13 EMACS

* Linux

An open-source opperating system

** Emacs

An extensible text-editor with several modes for editting
**% Evil-Mode

vim bindings for Emacs

*** Org-Mode

A mode for organizing notes in hierarchical format

Figure 13-11. Org-mode with expanded sections

To collapse a section, you simply put the cursor on the heading to collapse and press
tab. The level is defined by the number of stars in front of the heading like shown in
Figure 13-12.

* Linux

An open-source opperating system

#£IFnacs

An extensible text-editor with several modes for editting
*%% Evil-Mode...

*** Org-Mode...

Figure 13-12. Org-mode with condensed subsections

Collapsing a higher heading will hide all of its children, as shown in Figure 13-13.

* Linux
An open-source opperating system

H* Emacs. ..

Figure 13-13. Org-mode collapsing a section

261

CHAPTER 13 EMACS

As with artist-mode, it does not play well with Vim bindings. If you want to use both
Vim bindings and org-mode, there are some packages which try to add patches to org-
mode to make it work with Vim bindings, but I found it wasn’t worth the effort. Packages
include evil-org, org-evil, and syndicate. My recommendation is to simply not use
both modes at the same time. If you have evil-mode enabled on startup, you will have to
manually turn it off by running evil-mode before running org-mode.

There is no need to install any additional packages to use org-mode as it ships
standard with Emacs.

Tables in Org-Mode

Org-mode also has a built-in mode for making and working with tables. A table in org-
mode is specified by the | character. To generate a table, start by pressing

C-c |

This will open a dialog in the footer asking what size you'd like for the table, like in
Figure 13-14.

-UUU:**--F1 cal.org

Table size Columns x Rows [e.g. 5x2]:

Figure 13-14. Dialog at the bottom of the screen asking for dimensions of
the new table

For our example, we'll use 2x3. After entering the size, an empty table like that shown
in Figure 13-15 will be generated.

|
[--eteee |

|

|

Figure 13-15. Empty 2x3 table created in org-mode

Next fill out the form with some sample data. After doing so, the table will likely be
misaligned like in Figure 13-16.

262

CHAPTER 13 EMACS

| mode | description |

o
| org-mode | Create structrured documents |
| artist-mode | Create text art [|

Figure 13-16. Unformatted table in org-mode

To reformat the table, make sure you have your cursor somewhere on the table and
press ctrl+c twice.

C-c
C-c

After pressing a second time, org-mode will realign the table, resulting in a nicely
laid out table like shown in Figure 13-17.

| mode | description |

| org-mode | Create structrured documents |
| artist-mode | [@reate text art |

Figure 13-17. Formatted table in org-mode

You should now have a nicely formatted text-based table.

You can find additional features for working with tables such as converting CSV
format to a table and rearranging rows in The Org Manual page for tables: https://
orgmode.org/worg/org-tutorials/tables.html.

Export from Org-Mode

One of the handy things you can do with org-mode is export to several other file formats
using a simple command. Possible formats include

e PDF
¢ HTML
e LaTeX

263

https://orgmode.org/worg/org-tutorials/tables.html
https://orgmode.org/worg/org-tutorials/tables.html

CHAPTER 13 EMACS

e OpenDocument Text (ODT) file
e Plain text
o iCalendar
To get started, press
C-c C-e

This will open up an export menu which shows possible export options, as shown in
Figure 13-18.

te’

[€-b] Body only: off [c-v] Visible only: off
[€-s] Export scope: Buffer [€~T] Force publishing: Off
[c-a] Async export: Off

[¢] Export to iCalendar
[f] Current file [a] All agenda files
[c] Combine all agenda files

[h] Export to HTML
[H] As HTML buffer [h] As HTML file
[o] As HTML file and open

[1] Export to LaTeX

[L] As LaTeX buffer [1] As LaTeX file

[p] As PDF file [o] As PDF file and open
[e] Export to ODT

[o] As ODT file [0] As ODT file and open
[t] Export to Plain Text

[A] As ASCII buffer [a] As ASCII file

[L] As Latinl buffer [1] As Latini file

[U] As UTF-8 buffer [u] As UTF-8 file
[P] Publish

[f] Current file [p] Current project

[x] Choose project [a] All projects
[&] Export stack [#] Insert template
[q] exitl

Figure 13-18. Export type selection in org-mode
264

CHAPTER 13 EMACS

If we want to export to PDF, for example, press 1 and that subsection will be
highlighted. See Figure 13-19 for an example of the PDF subsection.

[1] Export to LaTeX
[L] As LaTeX buffer [1] As LaTeX file
[2] As PDF file [2] As PDF file and open

Figure 13-19. LaTeX subsection highlighted in org-mode export menu

We can now press p to export as a PDE Upon doing so, a PDF in the same directory
as your org file will be created.

Org-Agenda

When working with org files, it’s possible to use a special TODO indicator to mark text as
an agenda item. You can also tell org-agenda to keep track of certain files as part of a
globally accessible agenda, which includes things like a daily planner and calendar.

To demonstrate, create a file called /cal.org. Then, create sections for different priority
tasks (high priority, low priority like in Figure 13-20). Once you've created the file, press

C-c [

This will add the file to Emacs list of files to be queried by org-agenda. You can
remove a file by running

C-c]

Once afile is added, any TODO instance will be included in org-agenda. The TODO
has to be preceded by an * as shown in Figure 13-20.

File Edit Options Buffers Tools Org Tbl Text Hel
High Priority Tasks:

* Chapter on Emacs

= HWrite Script for Telegram Bot

Low Priority Tasks:
* Read Chapter from AI Book

Figure 13-20. TODO list in org-mode

265

CHAPTER 13 EMACS
Now if we press alt+x, enter org-agenda, and press enter:
M-x org-agenda RET

we'll get a list of options for org-agenda, as shown in Figure 13-21.

ress key for an agenda command:

Buffer, subtree/region restriction
Remove restriction

Export agenda views

Entries with special TODO kwd

Like m, but only TODO entries

Like s, but only TODO entries
Configure custom agenda commands
List stuck projects (!=configure)

Agenda for current week or day
List of all TODO entries
Match a TAGS/PROP/TODO query

s Search for keywords

/ Multi-occur

? Find :FLAGGED: entries

* Toggle sticky agenda views

#H#NOAOWNVZETAHAD VA

n Agenda and all TODOs: set of 2 commands

Figure 13-21. Org-agenda menu

Press t to see a list of all TODO items, as shown in Figure 13-22.

lobal list of TODO items of type: ALL
vailable with ‘N r’: (@)[ALL] (1)TODO (2)DONE

cal: TODO Chapter on Emacs
cal: TODO Write Script for Telegram Bot
cal: TODO Read Chapter from AI Book

Figure 13-22. All TODO items listed in org-agenda

In this agenda tab, we can now press n for next line and p for previous line. Go down
to one of your list items and press t. This will mark the task as done both in your agenda
and inline in the file where it was originally written. Keep in mind you can have as many
different files tracked by the agenda as you'd like. So if you want to have different files to
list different types of tasks, you can do that and have them all pulled into your agenda
(example of compiled TODO list shown in Figure 13-23).

266

CHAPTER 13 EMACS

Global list of TODO items of type: ALL
vailable with ‘N r’: (0)[ALL]

cal: T0D0 Chapter on Emacs
cal: DONE Write Script for Telegram BotLow Priority Task
cal: TODO Read Chapter from AI Book

Figure 13-23. Marking a TODO item as done in org-agenda

To exit the agenda, press q.
Org-agenda also has support for task deadlines. To add a deadline to a TODO item,
put your cursor over the TODO task and then press

C-c C-s

This will open up a prompt where you can input a date, as shown in Figure 13-24.

(Org Undo-Tree)

December 2019 January 2020 February 2020
Su Sa Su Sa Su Sa
1020340 5 6 2 HEE . R L 1
8 9010:11 12713 14 SE6T ON1e 11 2 Mg S GTAT 8
1516 17181926 21 12 13 14 15 16 17 18 91811 12 13 14 15
22 23 24 25 26 27 28 19 20 21 22 23 24 25 16 17 18 19 20 21 22

29 30 31 26 27 28 29 30 31 23 24 25 26 27 28 29
Calendar ? info / o other / . today Wed, Jan 8, 2020
Date+time [2020-01-08]: > <2020-01-10 Fri>

Figure 13-24. Adding a date to a TODO item in org-mode

After entering a date/time and pressing enter, you'll have an associated date placed
under the task, shown in Figure 13-25.

High Priority Tasks:
* QWobo Chapter on Emacs
SCHEDULED: <2020-01-10 Fri>
* DONE Write Script for Telegram BotLow Priority Task
* TODO Read Chapter from AI Book

Figure 13-25. Example of a TODO item with a scheduled date in org-mode

Now if you return to the org-agenda options by entering

M-x org-agenda RET

267

CHAPTER 13 EMACS

then pressing a to go to agenda weekly view, you'll see your tasks for the week displayed
by day, example shown in Figure 13-26.

eek-agenda (WO2):

onday 6 January 2020 W02
Tuesday 7 January 2020
jednesday 8 January 2020
Thursday 9 January 2020

Friday 10 January 2020

cal: Scheduled: TODO Chapter on Emacs
Saturday 11 January 2020
Sunday 12 January 2020

Figure 13-26. Weekly agenda view in org-agenda mode

A scheduled item will remain on your agenda until completed. Org-agenda also
offers the ability to create an entry that shows on the calendar but will pass whether or
not it is marked as DONE; to use this alternative timestamp, press C-c¢ . instead of C-c
s on an item. There is also a high-priority timestamp deadline which can be used by
pressing C-c d while on a TODO item.

Sync Org-Agenda with Google Calendar

Org-agenda is a great tool, but it doesn’t provide seamless integration between devices
like mobile phones or even other computers. There is a community package on MELPA
called org-calendar that makes pulling, pushing, and two-way sync between org-
agenda and Google Calendar easy.

After installing from MELPA, you'll have to set up a project on Google Developer
Console to make use of their calendar API. You can find the most up-to-date instructions
on setting up org-calendar on their GitHub page. Keep in mind the last commit was in
April 2017, so updates and support may be limited.

www.github.com/myuhe/org-gcal.el

268

CHAPTER 13 EMACS

Outline Presentation Mode

Another great mode that can be used in conjunction with Emacs artist-mode is Emacs
presentation mode. Outline presentation mode allows you to take an org-mode outline
and turn it into a presentation where each section acts as a slide. Unfortunately, this
mode isn’t distributed in the MELPA package manager. In order to install outline
presentation mode, you'll need to manually download the script and then add it to your
~/ .emacs. I found difficulty finding the original code online so I've uploaded the script to
GitHub. You should download it using GitHub:

cd /tmp
git clone https://github.com/kirkins/outline-presentation-mode

Then go into the downloaded folder and move the script to your ~/.emacs.d/extra/
folder (create the folder if it doesn’t exist).

cd /outline-presentation-mode
mv outline-presentation-mode.el ~/.emacs.d/extra/

Now with the Emacs script saved in your ~/.emacs.d/extra/ folder, you'll have to
modify your ~/.emacs file to load the script when Emacs starts. At the bottom of the file,
add the following:

(load-file (expand-file-name "~/.emacs.d/extra/outline-presentation-mode.el"))

Now when you open Emacs, you'll have the ability to open a file in outline
presentation mode. You likely don’t have an org-outline file presentation to test with; I've
made one available on a repository, you can download it with

git clone https://github.com/kirkins/puppet-pop-machine
cd puppet-pop-machine

Next, open the file called presentation.org in Emacs. With the file open, switch to
presentation-outline-mode:

M-x presentation-outline-mode

This will open the presentation file and show the outline of the presentation as
shown in Figure 13-27.

269

CHAPTER 13 EMACS

File Edit Options Buffers Tools Hel

W Puppt for IoT Updates and Monitoring

* %

Intro...

Scenario:...

Puppet is fi(x) = f(f(x))...
Puppet allows for custom facts...
Puppt has built in diagnostics...
External node classifier...

R10K - What is it...

R16K - for QA...

R10K - for development...

R10K - for release...

Puppet on Docker...

Webhooks. ..

Figure 13-27. presentation-outline-mode in Emacs

You can now hold down the alt key and tap n to go to the next slide; to go back, tap p.

A list of commands that can be used is shown in Table 13-1 (M signifies the modifier key
which is alt by default).

Table 13-1. Emacs outline mode commands

Command Description

M-n
M-p
M-f
M-b
M-a
M-y
M-s
M-r
M-q

Next slide

Previous slide

First slide of next section

Back to previous section slide

First slide

Expanded table of contents

Show the slide cursor is on in table of contents
Return to the slide you went to table of contents from

Quit presentation mode and return to org-mode

An example of what can be done for slides in plain text is shown in Figure 13-28.

270

CHAPTER 13

EMACS

File Edit Options Buffers Tools Help
p** Chart of ENC

Configuration Files

T p——— e e
| RC Cola | | Coke | | Coke beta #42
| I LI |
Fommmmmmmee $--+ Hem------ Fe-mmm-- R T

| | |
I | I
I | I
Ffeefprrscsncsssansan= freecscsasssssns +=4
| External Node Classifier |
| (ENC) |
| |
oo e Fommmmmm +
I | [|
Pop I | | |
Machines | | | |
e T S e I +
I I I | I I
I L I |] I
I I I | i I
I L | gl I
I Ll I | [I
+o-mmm-- + H------- + +e--mm- + e +

/demo: example of ENC/
https://github.com/kirkins/external_node_classifier

Figure 13-28. A chart made in artist-mode embedded in an outline

presentation slide

Emacs TRAMP

Emacs TRAMP stands for Emacs Transparent Remote Access, Multiple Protocols. It

allows you to access remote filesystems as if they're part of your local system by using

rlogin, telnet, or ssh in the background.

Emacs TRAMP is included with Emacs by default as of version 22.1 so you won't

have to do anything extra to install it.

271

CHAPTER 13 EMACS
To use ssh TRAMP, you'll first want to press
C-x C-f

This will open a prompt at the bottom of the screen that lets you navigate your
system to find a file. It should look something like in Figure 13-29.

presentation.org All L260
Find file: [tmp/puppet-pop-machine/

Figure 13-29. Find a file dialog at the bottom of the screen after pressing C-x C-f

Press backspace and delete the file path and instead put /ssh:<your server>, as
shown in Figure 13-30. To make things easier, I'm going to use a shortname defined in
my SSH config file called “aws” which already has my username and key file setup.

Figure 13-30. Entering /ssh:remotehostname in find a file dialog to activate
Emacs TRAMP

From this point, press tab and the system will start connecting to the remote
machine in the background, with a message like shown in Figure 13-31.

presentation.org
Waiting for prompts from remote shell... \

Figure 13-31. Dialog showing Emacs TRAMP connecting to remote server

Once connected, you'll be able to press tab and get a list of all the remote files as if it
were a folder on your local machine. An example of this is shown in Figure 13-32.

272

CHAPTER 13 EMACS

presentation.org All L1 <N> Git-master (Org Undo-Tree)
In this buffer, type RET to select the completion near point.

Possible completions are:

i o,

.Xauthority .aws/
.bash_logout .bashre

.cache/ .config/
.deeppavlov/ .electron/
.electrum/ .gemn/

.gnupg/ .Arssiy/

.local/ .mozilla/
.mysql_history .node-gyp/

.nvm/ .pki/

.putty/ .python_history
.rnd .selected_editor
.sudo_as_admin_successful .thumbnatils/
vim/ viminfo

.wajig/ .wget-hsts
.xsession-x2go-1p-172-31-58-133-errors .xsession-x2go-ip-172-31-58-133-errors.old
.yarnrc Desktop/
Downloads/ Music/

Public/ Templates/
authorized_keys backup/

nltk data packt

-Uuu: f letions* ALl L1 <E> (Completion List Undo-Tree) -------cccccemecacancccncncnnnnn-

:: [ssh:aws:
Figure 13-32. Autocomplete showing files on remote server via Emacs TRAMP

What'’s handy about this is you can edit a file on the remote machine, then switch to
a file on the local machine, and then go back to a file on the remote machine, and the
connection will stay open.

You could even have simultaneous connections with several remote machines and
switch between files seamlessly, all while keeping your local Emacs editor settings - as
opposed to if you SSH into those machines and have to use the config file for the editor
that’s on each local machine. For this reason, Emacs TRAMP is particularly useful for
anyone who has to switch between editing files on several machines regularly.

Other Modes

We've only looked at a few Emacs modes here, but there are lots out there. If you're
interested, here is a small list to get you started. Keep in mind I'm focusing on
application-like modes here, but there are also modes for almost every programming
language and config file type. See Table 13-2 for a list of other popular modes.

273

CHAPTER 13 EMACS

Table 13-2. Emacs modes

Name Description

shell Command-line shell in Emacs

dired Mode for navigating directories

eww Web browser in Emacs

magit Advanced git interface for doing things like merging
ivy Interactive interface for autocomplete
gnus Read email, RSS, Usenet groups, and more
rainbow-mode Set background for hex color codes
company Text completion

ediff Tool for comparing files and patches
flyspell-mode Spell-check highlights wrong words in red

If you have the mode installed, you can simply press alt+x and enter the name. If you
want to get a complete list of modes installed, press

C-h a

Then enter “mode”; this will list all the modes installed with a very short description.

Summary

In this chapter, we looked at the Emacs text editor and some of the many capabilities it
has via modes and embedded applications - from creating text art-style diagrams and
text tables to managing task lists and your personal calendar. As we've seen, Emacs can
be much more than a text editor and is more akin to a platform on which text-based
applications can build on top of.

274

CHAPTER 14

Configure Bash

In this chapter, we’ll look at various configurations that can be made to bash. Often
this is done by using configuration scripts that run when bash starts as well as other
configuration files that control installed utilities or lower-level libraries like . inputrc.

Configuration Scripts

We'll start with the three configuration files that are used for customizing bash directly.
These include .bashrc_profile, .bashrc, and .profile.

.bashrc_profile or .profile

The .bashrc_profile configuration script is similar to .bashrc, but it only runs once
when the user first logs in. On some systems, this file may be specified as .profile
instead, though if both .profile and .bash profile exist, then .bash profile will
be used.

.bashrc_profile is the entry point which defines the location of .bashrc. Here is an
example:

if [-n "$BASH VERSION"]; then
include .bashrc if it exists
if [-f "$HOME/.bashrc"]; then
. "$HOME/.bashrc"
fi
fi

The preceding code checks the language executing the script. If the language is bash,
it then checks that a .bashrc file is present in the home folder. If a . bashzxc file exists, it is
executed.

275
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_14

https://doi.org/10.1007/978-1-4842-6035-7_14#DOI

CHAPTER 14 CONFIGURE BASH

A more simple implementation might just include the following which says if
.bashrc exists, then load it:

test -r ~/.bashrc &% . ~/.bashrc

While normally .bashrc_profile simply loads .bashrc, it is possible to include
anything that would be done in .bashrc directly in .bashrc_profile.

Note The “.”in. ~/.bashrc earlier is shorthand for built-in bash command
source which allows you to load an external script into the script being run.

.hashrc

The ~/.bashrc file contains bash configurations. It can be used to define variables or
functions which will be available in all your sessions. Every time you open a new bash
terminal, the script is run.

As an experiment, try opening your .bashrc which should be accessible at ~/.
bashrc. Add a line with the following to the bottom of the file (though it should work
when added anywhere in the file):

export HELLO=world
Next reload the ~/.bashrc file by running (or close the terminal and reopen)
source ~/.bashrc

Now you should be able to use the variable $HELLO in bash and have it return a value
of “world,” for example, with echo:

echo $HELLO

.bash_logout

While the . profile script runs once on login, the .bash_logout is just the opposite.

It runs a single time when you log out. This can be useful if you want to do things like
remove temporary files. As an example, the default .bash_logout on my Ubuntu system
includes the following:

276

CHAPTER 14 CONFIGURE BASH

when leaving console clear the screen to increase privacy

if ["$SHLVL" = 1]; then
[-x /usr/bin/clear_console] & /usr/bin/clear console -q
fi

The preceding code says if the shell being logged out from is the base level, and the
file /usr/bin/clear_console exists, then run that file with -q flag.

The $SHLVL here is an environment variable which exists automatically. To get an
idea of how it works, try echo $SHLVL; this should return a value of 1. Then try

bash
echo $SHLVL

After running a bash session within your bash, the number will be 2. If you were in
turn to run another bash session in that session, the number would go to 3.

Note Depending on your distro and user, the file may or may not exist. For
example, we found that when using the root user, there was no .bash_logout by
default. When using Fedora instead of Ubuntu, we found the file did exist, but the
code contained was different.

Global Versions

In addition to the .bashrc in your home directory, you will have a global version at /etc/
bash.bashrc if you're on Debian-based systems and /etc/bashrc on Red Hat based. In
addition, you should have a /etc/profile which acts as the global version of .profile.
These files are used to set the initial state of bash for all users and are run before the local
profile, and . bashrc files are run for each user.

During the startup process when /etc/profile is running, there is also a folder
which executes several scripts called /etc/profile.d/. If you place an executable script
in this directory, it will be run at startup, as long as it has the extension . sh. Unlike
normal executables, the extension is required for these files to be executed.

277

CHAPTER 14 CONFIGURE BASH

Useful Configs for .bashrc

There are several useful things you can do with a .bashzrc file. Some of the most
common include creating aliases for commonly used tasks or adding simple functions to
be accessed system wide.

Defining Aliases

An alias is a short command which translates into a longer command. This makes it
more convenient to write the command. For example, many Ubuntu systems come by
default with the alias 11 as a short way of doing 1s -alF, which shows a more detailed
view of your current directory. When I open up my .bashrc, I see 11 defined along with
some other aliases that came by default:

alias 11="1ls -alF'
alias la='ls -A'
alias 1='1ls -CF'

One I add on my own machine is aliasing vi to vim. This allows me to run the same
command whether I'm running on a machine that has full Vim or just vi. If you're on
Fedora, you may find this alias exists by default.

alias vi="vim"

In the same spirit, you might want to upgrade diff to instead use colordiff (note
that colordiff may not be installed by default):

alias diff="colordiff"

Custom Functions

In some cases where you want to create a quick shortcut, you'll find you need to create

a short function rather than use an example. One common thing people like to do is
create a single function to create a folder with mkdir and then immediately move into
that directory with cd. Let’s create a command that does just that by adding the following
function to .bashrc:

mkcd() { mkdir -p "$1" 8& cd "$1"; }

278

CHAPTER 14 CONFIGURE BASH

After saving, close your terminal and reopen it, since the .bashrc file is run when
a new terminal opens up. Alternatively, you can run source .bashrc to reload the
configuration without restarting your terminal. Now if you run mkcd hello, you'll create
a folder called hello and move into it right away.

In some cases, you might just want to wrap an existing command that is somewhat
difficult to remember. For example, many systems make use of amixer for sound. It’s
possible to change the volume with amixer; we can wrap the existing command to make
it a bit easier:

volume() { amixer sset 'Master' $1%; }

This allows you to pass in any value between 0 and 100 to set the volume from the
terminal.

Adding to PATH

Another common change made in .bashrc is adding to the $PATH variables. This variable
keeps track of a list of folders on your system where executables are stored. When you
run an executable without specifying the full path, for example, nmap, the system will
check all the folders specified in your path. When a match is found, it is used.

If you install programming languages on your system, often they’ll automatically
modify your .bashrc file and add the folder where they keep executables to your
path. By doing this, they make all their modules available to you as part of your path.
The following is an example of a line created when installing the Rust programming
language.

export PATH="$HOME/.cargo/bin:$PATH"

Notice the : $PATH at the end. This specifies that we’re using our old $PATH and
prepending everything that appears before the :. Always make use of the existing $PATH
variable when appending or prepending to it. Otherwise, you might remove a folder
which was added in another file or location.

279

CHAPTER 14 CONFIGURE BASH

Changing PS1 Prompt

Another common customization in .bashrc is to change the color or content of the
prompt text. The prompt shown to the left of our cursor is controlled by the environment
variable PS1. If you run echo $PS1, you'll see an encoded version of the one on your
system.

It can be changed by updating the PS1 variable, for example, let’s turn the text red (to
experiment, run in the terminal directly rather than modifying .bashrc):

export PS1="\e[0;31m[\u@\h \W]\$ \e[m "

Running the preceding command should cause the prompt to change red. Next
try running the same command again but incrementing the 31, and observe how each
number results in a different color. An example of expected result is shown in Figure 14-1.

philip@philip-ThinkPad-T420:~S export PS1="\e[0;31m[\u@\h \W]\$S \e[m "

export PS1="\e[0;32m[\u@\h \W]\$S \e[m "
[philip@philip-ThinkPad-T420 ~]$ export PS1="\e[0;33m[\u@\h \W]\$ \e[m "
[philip@philip-ThinkPad-T420 ~]$ export PS1="\e[0;34m[\u@\h \W]\$S \e[m "
_ Lip-T T |5 export PS1="\e[0;35m[\u@\h \W]\$ \e[m "
[p@philip ' }: S export PS1="\e[0;36m[\u@\h \W]\S \e[m "
[philip@philip-ThinkPad-T420 ~]S export PS1="\e[0;37m[\u@\h \W]\$S \e[m "
[philip@philip-ThinkPad-T420 ~]$

Figure 14-1. Changing the color of bash prompt text

This code content is a bit hard to understand as it first starts with an escape character
which isn’t seen at all \e[0;. The presence of the escape character causes the title bar for
the window to include the working directory, like shown in Figure 14-2.

philip@philip-ThinkPad-T420: fetc/profile.d

inal Help
T420: /etc/profile.ds §

Figure 14-2. File path in the title bar due to \e[o; in PS1

After that we have 31m[to set the color. This is an ANSI escape sequence which
dates back to the 1970s; they were used as a way to embedded text which should be

280

CHAPTER 14 CONFIGURE BASH

interpreted as a command instead of text. At the very end of the line, we have \e[m which

resets the color; if not included, the text you type into the terminal would end up being

the same color as the alias. A list of different ANSI color codes is shown in Table 14-1.

Table 14-1. ANSI escape

sequences for color
Sequence Description
30m[Black

31m[Red

32m[Green

33m[Yellow
34m[Blue

35m[Magenta
36m[Cyan

37m[White

The \u translates to the username, the \h stands in for hostname, and the \W stands

in for the base of the working directory. If we instead wanted minimal prompt text, we

could replace it all with just

export PS1="->

or if we only wanted the working directory base:

export PS1="\W -> "

This results in a more minimal look, showing only the base of the working directory.

If you prefer the default way of displaying the full working directory rather than just the

base, you just need to replace the \W with the lowercase version \w. A list of PS1 symbols

is shown in Table 14-2.

281

CHAPTER 14 CONFIGURE BASH

Table 14-2. PS1 prompt commands

Charachter Description

h Hostname to first “.”

H Full hostname

S Shell name, e.g., “bash”

t Current time in 24-hour format

@ Current time in 12-hour format

u Username

w Complete path of working directory
w Current folder name

Another way to modify the color of your prompt is to use tput. This method is
actually a bit more flexible as it allows you to use 256 colors. However, you'll have to have
256 colors enabled in your terminal; to quickly see how many are supported, run

tput colors

If you get back a number less than 256, you'll need to make sure you have
xterm-256color enabled. You can do that by adding the following line to your .bashrc:

export TERM=xterm-256color

Make sure to run source ~/.bashrc after the update.

With 256 colors enabled, you can now use tput setaf with 1 of 256 color codes. You
can find a complete list by searching “256 color codes.” However, we can actually make
our own list that includes all the colors by running the following in bash:

for ¢ in {0..255}
do

if 1 (($c % 16)) ; then

printf "\n’
fi
printf '\e[48;5;%dm" "%5s" $c $c; printf "\e[om’
done

282

CHAPTER 14 CONFIGURE BASH

This script will go through each number from 0 to 255 and print the number with
a background color based on that code. Running it should produce a result like in
Figure 14-3.

for ¢ in {0..255}

> do

> H

> AF 100 Sc % 16)) 5 then

> printf '\n'

> fi

> printf '\e[48;5;%dm'"%5s" Sc Sc; printf '\e[om'
> done

232 233 234 235 236 237 238 239

240

Figure 14-3. Creating a table with all 256 color codes
We'll take our previous minimal PS1 and then wrap it with a tput command to set
the color and another to reset the color:

export PS1="$(tput setaf 166)\W -> $(tput sgro)"”

After experimenting directly in your terminal, if you find something you want to
make permanent, simply add it to the bottom of your .bashrc file. Then if you decide
you don’t want it anymore, you can remove the line in question.

PS2, PS3, and PS4

In addition to the PS1 environment variable, there is also a PS2. To see your PS2, run the

following:

echo $PS2
echo "hi

283

CHAPTER 14 CONFIGURE BASH

On the second line, be sure not to include the close “ This will cause the PS2 prompt
to show, indicating you need to finish the previous command. Notice how these two
symbols are the same like in Figure 14-4.

philip@philip-ThinkPad-T420:~S echo $PS2

>
philip@philip-ThinkPad-T420:~$ echo "hi

>

Figure 14-4. Comparing PS2 to interactive shell text prompt

u_n

Notice that the two commands earlier display the same “>”.
Besides PS1 and PS2, there are also PS3 and PS4, but they are not commonly used.
PS3is used when a select prompt is used in bash, for example:

PS3=">"
select i in red blue green exit
do

case $i in

red) echo "Red";;
blue) echo "Blue";;
green) echo "Green";;
exit) exit;;
esac
done

When run we'll see a select menu using our PS3 value beside where the user is
prompted to enter text, as shown in Figure 14-5.

1) red
2) blue
3) green
4i exit
>

Figure 14-5. Example of PS3 in a script using select

If no value is specified with PS3, the default will be #2.

284

CHAPTER 14 CONFIGURE BASH

Finally, PS4 is specific to debugging bash with the -x flag. This flag is used for
debugging; if we take our script that asks the user to pick a color and put it in a file, we
can run it with the -x flag:

bash -x ./choice.sh

When we do this, we’ll see the lines shown as they’re run and to the left will be the

 _n

value of PS4, in this case, a “+” sign. See Figure 14-6 for an example.

philip@philip-ThinkPad-T420:/tmp$ bash -x ./choice.sh
+ select 1 in red blue green exit
1) red

2) blue

3) green

4) exit

#2 1

+ case Si in

+ echo Red

Red

#2 i

Figure 14-6. Example of PS4 when using - x flag for debug mode

Themes

You can go through and change all aspects of visual display manually, or install a
community project that make pre-created terminal color themes available.

Some popular projects include “Bash-it” and “Oh My Bash”; however, these two
projects both come bundled with a large amount of functions and configurations. Other
projects such as Gogh are more minimal and provide just the themes.

o Bash-it-https://github.com/Bash-it/bash-it
o Oh My Bash - https://github.com/ohmybash/oh-my-bash
o Gogh - https://github.com/Mayccoll/Gogh

These all require running external bash scripts so make sure to do your own research
to check that the projects are still in good standing at the time of reading. It’s also worth
scanning through some of the scripts yourself and checking the public issue tracker just
to make sure the projects are still in good health before experimenting. This can be done
by viewing the last commit or release for a project. Also you can check the issues tab on a
project’s GitHub page to see recent feedback from users.

285

https://github.com/Bash-it/bash-it
https://github.com/ohmybash/oh-my-bash
https://github.com/Mayccoll/Gogh

CHAPTER 14 CONFIGURE BASH

Live Clock in Terminal

Another neat trick which demonstrates the many possibilities of spicing up your
terminal is adding a live clock. This can be done by running the following code snippet
(or placing it in your . bashrc to make permanent):

while sleep 1;

do
tput sc;
tput cup 0 $(($(tput cols)-11));
echo -e "\e[31m date +%r \e[39m";
tput rc;

done &

This creates a loop which runs once a second. It gets the width of your terminal
and moves the cursor 11 spaces to the left of the top right. Then it outputs the current
time using date and finally returns the cursor to the normal location with tput rc. An
example of the live clock effect is shown in Figure 14-7.

philip@philip-ThinkPad-T420: ~

File Edit View Search Terminal Help

Figure 14-7. Live clock in the upper right of the terminal

Alternatively, we can put the time in the prompt text if we don’t mind that it only
updates after each command. To do that, you can just take one of the commands we
used previously to update the prompt color and add \t which specifies the current time,
for example:

export PS1="\e[0;32m\t \W \$ \e[m "

After running the preceding command, you'll instead see the time in the prompt text.
If you want to use the 12-hour clock format instead, switch the t to T:

export PS1="\e[0;32m\T \W \$ \e[m "

286

CHAPTER 14 CONFIGURE BASH

Alternatively you can use the @ charachter for a complete 12-hour format with
AM/PM indicator:

export PS1="\e[0;32m\@ \W \$ \e[m "

Examples of the three prompt time formats are shown in Figure 14-8.

éph'l‘l.tp@phi‘l.tp-Th'lnkPad—T420:-$ export PS1="\e[0;32m\t \W \$ \e[m "
|13:20:02 ~ § export PS1="\e[0;32m\T \W \$ \e[m "

01:20:05 ~ § export PS1="\e[0;32m\@ \W \$ \e[m "

|01:20 PM ~ S

Figure 14-8. Time formats in bash prompt text

Run a Program on Open

Sometimes people will run programs on terminal start using .bashxrc for the added
aesthetic. This can include things like fortune or perhaps echoing out a text file
containing some TODO items.

Another common thing to run is the neofetch command. This isn’t installed by
default but can be found on most package managers. It’s a highly customizable system
information script. It’s used as a way of sharing their chosen setup with the world in a
screenshot while at the same time showing off the terminal theme they’'ve chosen. An

example of the output of Neofetch on my machine is shown in Figure 14-9.

287

CHAPTER 14 CONFIGURE BASH

= [40055585004/~. philip@philip-ThinkPad-T420

"I4SSEESSSEESEEESEEEEFIT 8039000 se-seressssssssassceese-ea-
-+555555555535555555yySSSS5+- 05: Ubuntu 18.04.3 LTS x86_64
.O555555555555555555dMMMNYS5550. Host: 4180F98 ThinkPad T420
JssssssssssshdmmNNAmyNMMMMhssssss/ Kernel: 5.0.0-37-generic
+ssssssssshmydMMMMMMMNddddysssssssss Uptime: 4 hours, 13 mins

[sssssssshNMMMy hhyyyyhmNMMMNhssssssss/ Packages: 3216
.55555555dMMMNhsssssssssshNMMMdssssssss. Shell: bash 4.4.20
+555shhhyNMMNyssssssssssssyNMMMyssssssse Resolution: 1600x900
ossyNMMMNyMMhsssssssssssssshmmmhssssssso DE: GNOME 3.28.4
0ssyNMMMNyMMhsssssssssssssshammhssssssso WM: GNOME Shell
+sssshhhyNMMNyssssssssssssyNMMMyssssssss WM Theme: Adwalta
.ssssssssdMMMNhsssssssssshNMMMdssssssss . Theme: Amblance [GTK2/3]

[sss5555shNMMMy hhyyyyhdNMMMNhssssssss)/ Icons: Ubuntu-mono-dark [GTK2/3]

sessssssssdmyd MMMMMMMMddddy cessssass Terninal: gnome-terminal
/ssssssssssshdmNNNNmyNMMMMhssssss/ CPU: Intel 15-2546M (4) @ 3.300GHz
.05555555555555555ssdMMMNysssso. GPU: NVIDIA Quadro NVS 4200M
-+5SS5SESEEES5SSSSSYYYSSES+- GPU: Intel Sandybridge Mobile
“I+5555555555555S5555+41 Memory: 5437MiB / 15920MiB
«=[4005555004/~.
|
-l Tl

philip@philip-ThinkPad-T420:~$ I

Figure 14-9. Output from Neofetch

Figure 14-9 is an example of running neofetch on my machine.

To run this command or any command on terminal open for that matter is as simple
as adding a line at the bottom of your .bashrc with the command. Any programs you
run from .bashrc will run when opening a new bash terminal.

Note The program screenfetch provides a similar alternative to neofetch
with a slightly different rendering for logos. It may also be slightly faster than
neofetch.

Importing a File

If your .bashrc file becomes large, you may want to separate it into multiple files. This
allows you to share and reuse parts and pieces without having to deal with one long file.

288

CHAPTER 14 CONFIGURE BASH

For example, you may want to separate all your aliases into a single file called .bash_
aliases. Simply move the alias lines into a new file and import the new file using
source:

source ~/.bash_aliases

The preceding code placed in .bashrc would cause .bash_aliases to be loaded and
run every time a new terminal is opened.

.inputrc

We mentioned . inputrc in an earlier chapter as a way to change bash (and several other
programs) keyboard shortcuts to Vim-based ones instead of the default Emacs-like ones.
The .1inputrc file affects all programs that make use of the GNU readline library
which includes several popular programs including bash as well as the REPLs for

programming languages like Ruby, Python, and MySQL.
As was mentioned earlier, one of the options in . inputrc is to switch to Vim
keyboard shortcuts by adding the lines

set editing-mode vi
set keymap vi

We can see all the default values for . inputrc by opening up the global file /etc/
inputrc, which provides starting values for all users. This file likely contains some
configurations as well as comments explaining what the configurations do.

One possible modification is turning off the sound which is output when you double
tap tab to activate autocomplete. You may not have even noticed but on many systems
when you press tab to activate autocomplete, an audio sound is made. This can be
turned off by adding

set bell-style none

Another option which is possible but rarely used is making autocomplete case
insensitive, so that if you write the name of a folder with or without a capital, it will
complete regardless of what case is used by the matched folder.

set completion-ignore-case On

289

CHAPTER 14 CONFIGURE BASH

You may have noticed you often have to tap the tab key twice to show all the
completions. If you'd prefer to see all the possible completions immediately instead, you
can add the following line:

set show-all-if-unmodified On

Sometimes pressing tab will cause a file to partially complete, but then you'll hit a
point where there are two or more possible ways to complete the file name. Normally,
it will complete up to the difference, and then you have to press tab again to see the
possible completions. If you'd rather it automatically complete what is possible and
show all endings in a single ending, enable show-all-if-ambiguous:

set show-all-if-ambiguous On

When you run a command like 1s, you may receive color-coded results depending
on your system. If you want to also enable this for autocomplete, you can add the
following line:

set colored-stats On

If you instead want a visual symbol to indicate file type similar to that shown when
running 1s -F, you can add the line

set visible-stats On

While it isn’t common to modify . inputrc, it does provide a few different options
which can’t be done elsewhere.

Aside from changing the notification sound and switching between Vim- and Emacs-
style keyboard shortcuts, you'll likely never need to modify your . inputrc though itis
also possible to modify the functionality of keyboard shortcuts or add new ones. To get a
complete list of all the possible options for . inputrc, run

man 3 readline

Other Dotfiles

The term dotfiles refers to hidden files starting with a dot that are used to configure
programs. While .bashrc is one of the most popular dotfiles, it’s far from the only one.

290

CHAPTER 14 CONFIGURE BASH

There are all kinds of dotfiles for both default programs and extras installed. Some other
examples that can be used to customize programs include

e .wgetrc

e .curlrc

o .gitconfig
e .vimrc

e .tmux.conf

Summary

In this chapter, we looked at .bashrc and .inputrc, two dotfiles which can be used
to customize the bash terminal. We saw some common modifications like adding to
the path, defining functions, and making aliases. We also looked at some less used
configuration files like .bash_logout and configuration options like terminal prompt
and colors.

291

CHAPTER 15

Tmux Workflow

In this chapter, we'll be looking at Tmux, short for terminal multiplexer - a utility which
is primarily used for managing backgrounded processes, but also has many other uses.
In addition to keeping processes running, Tmux can also be used for dividing your
terminal into smaller screens, creating a customized layout where you can monitor

several panes at once.

Background Scripts

Tmux is one of my most used programs. It’s primarily used for managing running shell
scripts, ssh sessions, and any type of bash shell process. In the past years, Tmux has
become so popular that it is shipping preinstalled on some Linux distributions like the
latest Ubuntu Desktop.

If Tmux isn’t installed on your machine, it should be available via your package
manager:

sudo apt-get install tmux

Once you start using terminal-based applications and processes, you will quickly
find you may want to run a process and keep it running without having to keep a
dedicated terminal window open on your user interface. Traditionally, this could be
done with a combination of built-in commands.

To demonstrate, let’s create an ongoing process that will update a file with the
current time every 3 seconds:

(while sleep 3; do date > /tmp/time; done)

With the preceding command running in your active terminal, press ctrl+z to pause
the process. Then run

bg

293
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_15

https://doi.org/10.1007/978-1-4842-6035-7_15#DOI

CHAPTER 15 TMUX WORKFLOW

Running bg will start the process again, but in the background. However, the process
will still be associated with the terminal session. Next let’s get a list of jobs running in the
current terminal session.

jobs

You'll get back a list of jobs running in the current terminal, each with an associated
number. You can use the job number to disassociate it with the terminal session by
running the following command:

disown %1

You'll need to replace the 1 with the number associated with the process you want to
disown. Once you've run that command, you can safely close the terminal window, and
the process will continue to run. You can confirm this by going into the /tmp folder and
ensuring that the time file is updating every 3 seconds.

Background Scripts with Tmux

The problem with the manual method is that there is no easy way to reattach a disowned
process or program. Instead it is recommended that you use Tmux to manage and switch
between virtual terminal windows. To create a new terminal session, simply run

tmux

You should see a small green bar at the bottom of the page which indicates your
window is a Tmux session. Now as an example program, run the following:

top

You should now see top running and listing all the running processes on your
machine. Now we will detach from the Tmux session and keep the window running in
the background on the operating system, so we can easily reattach later. To do this, press
ctrl+b (at the same time) followed by d.

Note It’s important to not press the d button at the same time here. With all Tmux
commands, you first press ctr1+b, then release, and then press the command-
specific key.

294

CHAPTER 15 TMUX WORKFLOW

You will now be back at your default terminal window, which can be closed without
affecting the Tmux session running in the background.
If you want to see all the Tmux sessions running on your computer, run

tmux 1s

This will return a list of Tmux sessions and their associated IDs. To reconnect to one
of these sessions, run the following (replacing 1 with the ID of the session you want to
attach to):

tmux a -t O

This can be useful in several situations including but not limited to

e You want to connect to multiple servers or IoT devices at once to run
commands which may take some time to complete.

e You want to background a command but keep the ability to
return to debug.

e You're using a terminal-based editor like Vim and want to switch
between multiple files without closing them.

Tmux with SSH

One of the most useful situations that you'll want to use Tmux in is working with
remote servers or devices over SSH. Often when connecting to a server, you'll need
to perform a long-running task. Without the ability to background and reattach to a
session easily, some resort to leaving the SSH session running on their desktop waiting
for the job to finish.

Not only does this restrict the user by forcing them to keep their computer on for
the duration of the command, it also introduces the risk of the connection breaking.
When a normal SSH session breaks, often the running script will be killed; thus after
reconnecting, you need to start back at square one.

Tmux gives you the freedom to start a command, disconnect from the session, and
then close SSH. When you return to the server and attach to the session, it will be as
if you never left. If you're actively in the Tmux session and your SSH connection gets
disrupted, no need to worry, as it will continue running and be available when you
reconnect.

295

CHAPTER 15 TMUX WORKFLOW

This makes Tmux ideal not only for long-running commands but also scripts
you intend to keep running permanently such as a web server or script. In the case
that something goes wrong, it becomes easy to connect to the session in question by
name, see the error in the program’s output, make necessary changes, and restart the
script.

Named Sessions

When we made our first Tmux session, we saw that it was automatically named 0 and we
reattached using tmux a -t 0. When creating a new session, it’s also possible to give the
session a nickname to help you what’s running in it. Let’s create a session called “top”:

tmux new -s top

Now if we detach from our session and use tmux 1s, we’ll “top” in the place of where
we previously saw “0”. If you've already created a session and you want to change the
name, you can run

tmux rename-session -t top new-name

Just switch out “top” for the name of your target session and “new-name” with your
desired new name.

Switching Tmux Sessions

tmux is highly customizable and has many quick keyboard shortcuts. Most of the
keyboard shortcuts will use ctrl+b followed by a letter. One of my most used keyboard
shortcuts is ctrl+b followed by s. In this case, s stands for switch and allows you to
quickly switch between open Tmux sessions without detaching.

For example, say you have a few ssh sessions open and want to switch from one to
another while waiting for a process to complete. Simply run ctrl+b s, and use the down
arrow to select the session you want to open. Then run whatever command you want in
another session and quickly press ctrl+b s again to switch back.

296

CHAPTER 15 TMUX WORKFLOW

Killing Sessions

There are a few ways you can kill an existing session. If you're already actively attached to
the session, simply press ctrl+d and the session will close in the same way your normal
terminal would.

Alternatively, you can kill a session without being attached to it with the kill-session
command. As with attach and renaming, you'll provide the name of the terminal in
question with the -t flag:

tmux kill-session -t new-name

The preceding command will kill the session with name “new-name”. It’s also
possible to close all sessions at once by killing the whole server. To do this, run

tmux kill-server

Be careful with this command as it stops any scripts you have running in Tmux

sessions immediately without warning.

Windows in Sessions

It's possible to create multiple windows within a single Tmux session, each running their
own bash session. Before we talk about creating and navigating between windows, we
should clarify the three levels of hierarchy that exist in Tmux and the technical definition
of a Tmux window, as it differs slightly from what we normally consider to be a window.
The hierarchy that terminal sessions exist within on Tmux is described in Table 15-1.

Table 15-1. Tmux levels of hierarchy

Term Description

Session A group of windows. Is the highest level of hierarchy in Tmux

Window A bash session contained within a Tmux session. A session can contain multiple
windows

Pane A pane is contained within a window. A window can be split up into multiple panes so

that more than one pane can be viewed at one time

297

CHAPTER 15 TMUX WORKFLOW

When we create a Tmux session, it automatically has a single window by default. To
create a second window, make sure you're inside a tmux session, and then run ctrl+b
followed by c. This will cause you to go into a new window.

Often windows are compared to tabs as they are workspaces that can be easily
switched between while in a session. Furthermore, in the bottom-left corner of the screen,
all the windows in a session are displayed, with the active window having a “*” at the end.
An example of the text indicating running Tmux windows is shown in Figure 15-1.

0] 0:bash 1:bash 2:bash* 3:bash-

Figure 15-1. List of windows in Tmux status bar

To get a better view of how the windows relate to our session, press ctr1l+b followed
by w. This will open up a list of all sessions and windows; it’s an easy way to move
between either. An example of the Tmux session list is shown in Figure 15-2.

File Edit View Search Terminal Help

p-ThinkPad-T420"
L 1: bash* (1 panes) "philip-ThinkPad-T420"

1 (sort: index)
ilip@philip-ThinkPad-T1420:~$ i

Figure 15-2. List of active sessions and windows in Tmux

298

CHAPTER 15 TMUX WORKFLOW

Notice how the two windows are listed as children of the session with label 0. You
can press the up and down arrow keys to move between the windows and press enter
to focus on one. To emphasize how windows are children of sessions, let’s detach from
Tmux completely by pressing ctrl+b followed by d.

Next create a new session by running tmux, and when the session opens, create a
new window with ctrl+b followed by c. Now if we again press ctr1+b followed by w, we

will see something like the session list shown in Figure 15-3.

File Edit View Search Terminal Help
(0) - 0: 2 windows
(1) t:> 0: bash- (1 panes) "philip-ThinkPad-T420"
> 1: [tmux]* (1 panes) "philip-ThinkPad-T420"
(3) - 1: 2 windows (attached)
4 > 0: bash- (1 panes) "philip-ThinkPad-T420"

-ThinkPad-T420"

1 (sort: index)
ilip@philip-ThinkPad-T420:~$ i

Figure 15-3. Two sessions each with two child windows

We have two sessions which each have two children windows. Let’s go into the
third window labeled “(4)” Now if from here we want to go back to “(5)’, we could
reopen the window list, but a shorter way would actually be ctrl+b followed by p
for previous. To go back to “(4)” again, you can press ctrl+b followed by n for next.
Alternatively, we can use the window number in place of p or n if we want to specify
the specific window.

This can be useful for sorting windows in sessions based on their use, for example,
having all windows for SSH sessions in a single session.

299

CHAPTER 15 TMUX WORKFLOW

Pane Splitting

Tmux also provides a powerful secondary functionality that allows you to split a window
up into separate sections, known as panes, each running its own bash instance. This can
be extremely useful when needing to run multiple terminal applications simultaneously
or when monitoring multiple full-screen terminal applications.

To get started, first make sure you have a Tmux session open, and then press ctrl+b
followed by ". This will split your window horizontally. An example of a window split
horizontally is shown in Figure 15-4.

philip@philip-ThinkPad-T420: ~

File Edit View Search Terminal Help
philip@philip-ThinkPad-T420:~$

philip@philip-ThinkPad-T420:~$ |J

-

LV] - = HNNHIA IS LIV IS

Figure 15-4. A Tmux window split into two panes

Or if you instead want to split the session horizontally, press ctr1+b followed by %.
An example of a vertically split window is shown in Figure 15-5.

300

CHAPTER 15 TMUX WORKFLOW

philip@philip-ThinkPad-T420: ~

File Edit View Search Terminal Help
philip@philip-ThinkPad-T420:~5 philip@philip-ThinkPad-T420:~5 |}

p-ThinkPad-T420" 16:17 27-Jan-20
Figure 15-5. Vertically split window in Tmux
It’s also possible to split an already split subsection to create as many windows as

you'd like per session. To do so, simply run the command to split horizontally or vertically
a second time. See Figure 15-6 for an example of a window split into three bash terminals.

File Edit View Search Terminal Help

philip@philip-ThinkPad-T420:~5 |} philip@philip-ThinkPad-T420:~5

philip@philip-ThinkPad-T420:-~5

p-ThinkPad-T420" 16:45 27-Jan-20

Figure 15-6. Combination of vertical and horizontal panes in Tmux

301

CHAPTER 15 TMUX WORKFLOW

Your pane setup will be saved if you decide to detach from Tmux or switch between
windows and sessions.

You can switch between panes by pressing ctr1+b followed by any arrow key.
Alternatively, ctr1+b followed by o will toggle to the next pane in line, and once it
reaches the last pane, cycle back to the first.

Clock Mode

If you're using window splitting to divide your workspace, you may end up wanting to
display a live clock in one of the windows. Tmux provides a small extra that makes this
easy. With a Tmux session active in a window, press ctrl+b and then t. An example of a
clock mode display is shown in Figure 15-7.

File Edit View Search Terminal Help

philip@philip-ThinkPad-T420:~$

B HE

philip@philip-ThinkPad-T420:~5

"philip-ThinkPad-7420" 16:46 27-3Jan-260

Figure 15-7. Tmux clock mode in a single pane

This should open up a live clock using your system time. To exit clock mode,
press g or esc.

302

CHAPTER 15 TMUX WORKFLOW

Help Page

Tmux also comes with a built-in help page which contains a list containing every
keyboard shortcut; there are several so it is multiple pages long. To activate it, press

ctrl+b, ?

You should get a scrollable page like shown in Figure 15-8; it can be exited with

escorq.

File Edit

pind-key -T copy-mode C-Space send-keys -X begin-selection 242/242
bind-key -T copy-mode C-a send-keys -X start-of-line

bind-key -T copy-mode Cc-b send-keys -X cursor-left

bind-key -T copy-mode C-c send-keys -X cancel

bind-key -T copy-mode C-e send-keys -X end-of-line

bind-key -T copy-mode c-f send-keys -X cursor-right

bind-key -T copy-mode C-g send-keys -X clear-selection

bind-key -T copy-mode c-k send-keys -X copy-end-of-line

bind-key -T copy-mode C-n send-keys -X cursor-down

bind-key -T copy-mode C-p send-keys -X cursor-up

bind-key -T copy-mode c-r command-prompt -i -I "#{pane_search_string}" -
p "(search up)" "send -X search-backward-incremental \"%%%\""

bind-key -T copy-mode C-s command-prompt -i -I "#{pane_search_string}" -
p "(search down)" "send -X search-forward-incremental \"%%%\""

bind-key -T copy-mode C-v send-keys -X page-down

bind-key -T copy-mode C-w send-keys -X copy-selection-and-cancel
bind-key -T copy-mode Escape send-keys -X cancel

bind-key -T copy-mode Space send-keys -X page-down

bind-key -T copy-mode . send-keys -X jump-reverse

bind-key -T copy-mode - send-keys -X jump-again

bind-key -T copy-mode F command-prompt -1 -p "(jump backward)" "send -
X

"philip-ThinkPad-T420" 19:06 27-Jan-20

Figure 15-8. Tmux help page

Customize with .tmux.conf

Tmux can be customized to change the key combinations used to trigger actions as well
as modifying the look and layout. All customization of Tmux is done by editing ~/.tmux.
conf; if that file doesn’t exist on your system, simply create it and tmux will make use

of it. This configuration file can be used for creating new keyboard shortcuts, as well as
changing the visual appearance of tmux.

303

CHAPTER 15 TMUX WORKFLOW

Tmux first looks in /etc/tmux. conf for a global configuration that applies to all users
and then looks in the home directory for the file . tmux. conf. So if you'd like to apply
settings across multiple users, you can make use of the global version. If you don’t have a
~/ . tmux. conf file, start this section by creating one.

touch ~/.tmux.conf

Configure Color and Style

Similar to changing colors in .bashrc, we can only use as many colors as are enabled. To
check what colors are enabled on your terminal, run

tput colors

If you get a number less than 256, you'll want to enable 256 by adding the following
to your .bashrc file:

export TERM=xterm-256color

The 256 colors available are the same as in the previous chapter. Besides using color
codes directly, we also have keywords for common colors including black, blue, cyan,
green, magenta, red, white, and yellow.

If we want to make the Tmux bar at the bottom of our terminal blue, for example, we
can add the following to our . tmux.conf:

set-option -g status-bg blue

This will change the background color to blue. If we want to change the text for the
Tmux bar, we can add

set-option -g status-fg white

This will result in a bottom bar styled like Figure 15-9.

philip@philip-ThinkPad-T420:~$ fi

[0] @:bash* "philip-ThinkPad-T420" 21:34 28-Jan-20

Figure 15-9. Tmux status bar with modified colors

304

CHAPTER 15 TMUX WORKFLOW

Note When updating the colors and style of tmux, you’ll need to make sure all
tmux windows have been terminated before the new style takes effect. If you have
even a single tmux window open in the background, change the style, and then
open a new window, the old values will still be active.

If we want to use one of the 256 color codes directly instead, we would do so with
color followed by the color code like the following:

set-option -g status-bg colori4

We can also change the color used for our windows open and have it display a color
different from the rest of the status bar.

set-option -g window-status-bg blue
set-option -g window-status-fg black

This becomes even more useful when you set the active window name to be a
different color:

set-option -g window-status-current-bg white

This creates the feeling of windows really being like tabs, as you get some visual
feedback when switching between windows. An example of the status bar with this style

enabled is shown in Figure 15-10.

i [i®=bash

Figure 15-10. Current window highlighting in Tmux status bar

In addition to the status bar, you can also change the colors used for pane borders.

set-option -g pane-border-bg green
set-option -g pane-border-fg yellow

305

CHAPTER 15 TMUX WORKFLOW
As with windows, there is a separate selector for the pane.

set-option -g pane-active-border-bg blue
set-option -g pane-active-border-fg yellow

An example of these styles applied is shown in Figure 15-11.

philip@philip-ThinkPad-T420:~5 i philip@philip-ThinkPad-T420:~5

philip@philip-ThinkPad-T420:~5

philip@philip-ThinkPad-T420:~$

Figure 15-11. Modified pane border colors in Tmux

Change Status Bar Contents

Similar to how text prompt in bash can be changed, the text in the Tmux status bar can
be changed. The left side and right side are controlled by two different variables. As an
example, let’s use some simple static text to update both the left and right sides. Like
with the last section, the following lines can be added to . tmux. conf file:

set -g status-left "Hello"
set -g status-right "World"

306

This results in replacing the default left and right status bar text as shown in

Figure 15-12.

CHAPTER 15 TMUX WORKFLOW

philip@philip-ThinkPad-T420:~$ |

Figure 15-12. Modifying status bar text in Tmux

Of course, in most cases, you'll want some interactive aspects like time, hostname,

and number of windows open. Like . bashrc special codes are reserved for these
elements. A list of codes that can be used in the status bar is shown in Table 15-2.

Table 15-2. Status bar codes

Code

Description

#1

#P
#S
#T
##
#H
#h

#(command)

#[attribute]

Index of current window
Index of current pane
Session name

Title of current window
Used for a literal #
Hostname up to first
Full hostname

Runs a command and
shows first line of output

Modifies color or attribute
of text by wrapping

307

CHAPTER 15 TMUX WORKFLOW

So if we wanted hostname followed by index of current window on the left side, for
example, run

set -g status-left "#h #I"

If the text gets cut off due to space constraints, you can resize the maximum space
available with

set -g status-left-length 200

The attribute tag can be combined with other codes and text to change the color of
text, for example:

set -g status-left "#[bg=red, fg=white]#h #I"

Remap Commands

Ifyou find a key combination you use often is uncomfortable, you can modity it. For
example, people who use GNU Screen before switching to Tmux often find themselves
wanting to use ctrl+a in place of ctrl+b for the prefix used before tmux keyboard
shortcuts. To bind the prefix command to ctrl+a, the following line should be added to
the config file:

set -g prefix C-a

This will cause ctrl+a to be used for the prefix for commands like detaching,
creating a new window, and so on. By default, your ctr1l+b will also still be connected to
the prefix command. If you want to detach a combination from a command, you have to
do it manually as another step.

unbind C-b

If you're running tmux while editing the . tmux. conf file, you'll have to manually
source the config for it to take effect.

tmux source-file ~/.tmux.conf

308

CHAPTER 15 TMUX WORKFLOW

If you're using Vim, you may want to add keybindings to make navigation possible
with h, j, k, and |, each mapped to a direction similar to that used in Vim.

Vim Movement

bind h select-pane -L # left
bind j select-pane -D # down
bind k select-pane -U # up
bind 1 select-pane -R # right

This will allow you to use ctrl+b followed by h to switch to the pane to your left as
well as the associated direction for the other keys.

Screen Sharing with Tmux

Another interesting use case that Tmux makes possible is screen sharing terminal
windows. If you have two people logged in to a server or device using the same user,
they’ll both have full access to all the Tmux sessions of that user. This includes the ability
to have both people connected to the same Tmux session at once and both seeing live
updates as either person interacts with the terminal.

This is a great way to do pair programming or work with another person to debug
a system. Unlike other methods of screen sharing, Tmux over SSH takes hardly any
bandwidth, and it provides the ability for both users to interact rather than simply having
one person watch the other.

Theme Packs

As with styling .bashrc, some projects exist which specialize in the customization
and theming of Tmux. One of the most popular is “Oh My Tmux” which in addition
to providing a pleasing theme adds some additional functionality like a battery
indicator. The default style that comes out of the box with “Oh My Tmux” is shown in
Figure 15-13.

309

CHAPTER 15 TMUX WORKFLOW

philip@philip-ThinkPad-T420: /tmpS git clone https://github.com/gpakosz/.tmux.
git

Cloning into '.tmux'...

remote: Enumerating objects: 644, done.

remote: Total 644 (delta @), reused 0 (delta 0), pack-reused 644
Receiving objects: 100% (644/644), 272.97 KiB | 731.00 KiB/s, done.
Resolving deltas: 100% (312/312), done.
philip@philip-ThinkPad-T420:/tmpS cd .tmux/
philip@philip-ThinkPad-T420: /tmp/.tmuxS cp .tm

.tmux.conf .tmux.conf.local

philip@philip-ThinkPad-T420: /tmp/.tmuxS$ cp .tmux.conf ~fl

BN 7 owem oox | 11:59 | 29 Jan [philip IFURPSTNOTTIFIZFTN |
Figure 15-13. Oh My Tmux theme

Another piece of functionality added by “Oh My Tmux” is a keyboard indicator
which indicates when the prefix ctr1l+b has been pressed and Tmux is waiting for

the command key. This keyboard symbol is shown in Figure 15-14; when shown, it
means the prefix has been pressed and Tmux is waiting for the command key.

EXEE £ T oosssssmmm 100% |

Figure 15-14. Oh My Tmux prefix pressed indicator in status bar

To install Oh My Tmux, simply clone the project and move .tmux.conf and .tmux.
conf.local to your home folder. Make sure to back up your original . tmux.cont if you
want to save anything.

git clone https://github.com/gpakosz/.tmux
cd .tmux
cp .tmux.conf* ~

Then all you have to do is open and/or restart Tmux.

310

CHAPTER 15 TMUX WORKFLOW

In addition to the style change, you'll also have some additional keybindings such as

the Vim keybindings that we configured manually - extra bindings for creating windows

with ctrl+b followed by - for a horizontal pane or _ for a vertical one.

As well as a new binding for ctrl+b followed by + to move a pane within a window

to a new window displaying only that pane using the full screen. For a complete list of
features and bindings, see the included README on the Oh My Tmux GitHub.

Tmuxinator

As you start using Tmux and creating custom workspaces by splitting your windows up

into panes, you may find you have certain setups you want to create often. For example,

say we want to run a window split up into systemctl, htop, and nmon like shown in

Figure 15-15.

File

Edit A earch Terminal H

UNIT

LOAD _ ACTIVE SUB _ DESC

sys-devices-pciones:
sys-devices-pclogeo:
sys-devices-pcioean:
sys-devices-pcigoed:
sys-devices-pcignes:
sys-devices-pcienes:
sys-devices-pcleses:
sys-devices-pcilenes:
sys-devices-pcifoeo:
sys-devices-pcionen:
sys-devices-pcienes:
sys-devices-pcieeas:
sys-devices-pcienes:
sys-devices-pciooes:
sys-devices-pcionen:

00-

00

00-

00

00-
60~
60-

00
00

00-
00-
60-
-0080:

00

00-

-00ee
/080 :
-6068
8060 :
-0000:
0060 :
0060 :
6060 :
-0000:
-0000:
0000 :
0060 :

0000

0000

:00:
60:
H: I H
ao:
[H
eo:
60:
00:
00:
00:
eo:
68:
100:
00:
H:

o1.
e1.
e1.

02

0-0000:01:00.0-backlight-acpi_
0-0000:01:00.0-drm-cardi-card1l
9-0000:01:00.1-sound-cardl.dev

.8-backlight-acpi_videof.device
0z.
16.
19.
1b.
ic.
if.
Pl
afi
if.
if.
if.

0-drm-card@-cardo\x2dLvVDS\x2d1
3-tty-ttys4.device loaded acti
8-net-enpBs25.device loaded ac
8-sound-card@.device loaded ac
1-0000:03:00.0-net-wlp3s0.devi
2-atal-hosto-target0:0:0-0:0:0
2-atal-hostO-target0:0:0-0:0:
2-atal-hoste-target@:0:0-0:0:
2-atal-hosto-target0:0:0-0:0:

2-ataz-hostl-target1:0:0-1:0:

sys-devices-platform-serialg82se-tty-ttyse.device loaded active
sys-devices-platform-serial82se-tty-ttysi.device loaded active

sys-devices-platform-serial82se-tty-ttysie.
sys-devices-platform-serial8zse-tty-ttysil.
sys-devices-platform-serial8z25e-tty-ttysiz.
sys-devices-platform-serial82se-tty-ttysis.
sys-devices-platform-serial8250-tty-ttysi4.
sys-devices-platform-serial8z5e-tty-ttys15.
sys-devices-platform-serialszse-tty-ttysis.
sys-devices-platform-serial82se-tty-ttysi7.
sys-devices-platform-serial825e-tty-ttysis.
sys-devices-platform-serial82se-tty-ttysi9.

]
[:]
5]
2-atal-host@-target0:0:0-0:0:0
L]
P
P

loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded

active
active
active
active

device
device
device
device
device
device
device
device
device
device

active
active
active
active
active

sys-devices-platforn-serial825e-tty-ttys2.device loaded active p

sys-devices-platform-serialg82se-tty-ttys20.device
sys-devices-platform-serial825e-tty-ttys21.device
sys-devices-platform-serial825e-tty-ttys22.device
sys-devices-platform-serial82se-tty-ttys23.device
sys-devices-platform-serialazse-tty-ttys24.device
sys-devices-platform-serial825e-tty-ttys2s.device

1 systemctl

loaded
loaded
loaded
loaded
loaded
loaded

active
active
active
active
active
active

active -

philip
philip
philip
philip
phtltp

phtltp
phtltp

phtltp
hllt

3183
F1 F2

- Na%ntng: Some Statistics may not shown -
T oossmmm— 100% | 13:23 | 29 Jan philip ISEETE{ITTTITIRCFL]

Figure 15-15. System monitoring workspace in Tmux

Tasks: 186, 597 thr; 1 run
Load average: .47 0.57 0.
Uptime: €0:17:21

VIRT RES PU% ME

8 3361IM 227TM 7.9 1

20 8 6 64036 5 7.2 0
20 (] 3936 R 2.6 @
26 -] 64036 S 2.6 B
20] 28948 1.3 3
20] 4 87336 § 1.3 1
20] GY¥S6.5 1.3 9
20 (] 30952 5 8.7 ©
26 e 54648 S 8.7 8
20] 12368 5 0.7 @
20 e 471205 0.7 ©
20 G M 91336 S 0 0 1
-]
F3F4F5F6FTE

311

CHAPTER 15 TMUX WORKFLOW

Tmuxinator is a Tmux launcher which allows you to make predefined layouts so that
you can easily open specific workspaces without manually doing it on each open. You'll
need to have the Ruby programming language installed to make use of Tmuxinator.

sudo apt-get install ruby
gem install tmuxinator

Tmuxinator also requires the environment variable EDITOR to be set; if you run echo
$EDITOR and it's empty, you'll need to set it in your . bashrc file. Swap out the value for
whatever your preferred editor is:

export EDITOR='vim'
With Tmuxinator installed, you can create a new layout by running
tmuxinator new system-monitor

A template for a YAML file will be opened in your chosen editor, including comments
to help guide you with the syntax. An example layout that opens a single window with
three panes is as follows (it uses htop and nmon so you'll need to make sure they’re
installed or use other programs instead):

name: system-monitor
root: ~/

windows:
- monitor:
layout: main-vertical
panes:
- systemctl
- htop
- nmon
- editor: vim

Note When you create a new layout in Tmuxinator, make sure to delete all

the boilerplate code that is there by default. Below the many comments in the
boilerplate is an example layout which will overwrite your code if not removed or
edited.

312

CHAPTER 15 TMUX WORKFLOW

The preceding example creates a window called “monitor” which contains three
panes with the programs listed as well as a second window that has Vim running.
Tmuxinator also provides other configuration variables such as root that defines what
directory the windows or panes start in or attach which specifies if the session should be
opened on creation.

For a full list of features and options, see the README included on the Tmuxinator
GitHub page.

Summary

In this chapter, we looked at how Tmux can improve your workflow when working with
long-running terminal sessions both locally and remotely. In addition to the basics,

we saw how Tmux also allows splitting our screen up between multiple bash sessions
to make custom layouts for any purpose. We further automated the creation of layouts
using tmuxinator, which allows layouts to be saved as YAML config files and quickly
opened in a single command.

We also saw how Tmux has a configuration file ~/.tmux. conf similar to the bash
configuration file, where we can override any keybindings and change the colors and
style of Tmux. Using even a small subsection of the techniques described here should
allow you to improve your terminal workflow significantly.

313

CHAPTER 16

Terminal Tools for Working
with Images and Videos

While the command line is primarily text based, there are surprisingly some great
tools for working with images and videos which rival or in some cases are the basis for
their GUI equivalents. For example, if you've used any type of website that modifies

or generates images, it’s likely it was using ImageMagick on the back end. In the same
way, if you've used any Linux-based video editor, there is a good chance it was built on
top of ffmpeg.

Given that many of these visual-based programs are simply calling the command-
line equivalents, you can save yourself some time by learning to use the command-
line versions for simple tasks like modifying images or videos. We'll also look at some
less used programs like gnuplot and how to modify the animation which is displayed
during startup.

ImageMagick

One of the most powerful utilities for manipulating images is actually native to the
command line. ImageMagick is widely used not only on the command line but also
in server-side code using languages like PHP, Python, and Node.js. These languages
essentially just provide a wrapper to the feature-rich command-line utility.

Some of the things you can do with ImageMagick include

e Convertimages
e Draw shapes
e Draw text and manipulate it

o Paint an image

315
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_16

https://doi.org/10.1007/978-1-4842-6035-7_16#DOI

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEOS

e Deform an image
o Crop an image

o Image filters

Creating an Image with Text

To get started, make sure you have ImageMagick installed; it can be found in most
package repositories. Unlike many programs, it isn’t called with the same name that
itis installed from. Instead ImageMagick makes other commands such as convert
available. As a starting point, let’s create a blank canvas with a size of 400 x 400
pixels:

convert -size 400x400 xc:white white.png

You should now have a blank white image that is 400 x 400 pixels.
Next let’s add some text to our image:

convert white.png -gravity North \
-pointsize 30 -annotate +0+100 \
'Basic Linux Terminal' white.png

The -gravity North option used here tells ImageMagick to place the text at the top
of the image; alternatively, we could use South, West, or East. Let’s create another section
of text at the bottom of the image using South; this one saying “Tips and Tricks”:

convert white.png -gravity South \
-pointsize 30 -annotate +0+100 \
'Tips and Tricks' white.png

Then pointsize specifies the font size, followed by annotate which adds space
around the text so it isn’t placed right against the top of the image.
After checking that the text rendered as expected, try rotating the text:

convert white.png -distort ScaleRotateTranslate 30 white.png

316

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEOS

You should now have a result that looks something like Figure 16-1.

Figure 16-1. Image generated by ImageMagick

To make the preceding preview easier to see, I actually added a 3 pixel black border,
making it easier to see where it starts and ends. This can be done with the command

convert -bordercolor Black -border 3x3 white.png white.png

Getting Image Information

Early on in the book, we saw that we can use the file command to get information on
file types. However, when it comes to images, there’s actually a lot more metadata that
you might want to see. ImageMagick provides another utility for examining image details
called identify. The simplest use is just running it with a file as input:

identify white.png

This returns basic information about the image including type, dimensions, color
spectrum, and size. You can get even more detailed information by adding the -verbose
flag; see Figure 16-2 for some example output from the identify -verbose command.

317

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEOS

philip@philip-ThinkPad-T420:/tmp$S identify -verbose white.png
Image: white.png
Format: PNG (Portable Network Graphics)
Mime type: image/png
Class: PseudoClass
Geometry: 406x406+0+0
Units: Undefined
Type: Grayscale
Base type: Grayscale
Endianess: Undefined
Colorspace: Gray
Depth: 8-bit
Channel depth:
gray: 8-bit
Channel statistics:
Pixels: 164836
Gray:
min: 0 (0)
max: 255 (1)
mean: 243.049 (0.953132)
standard deviation: 51.7609 (0.202984)
kurtosis: 16.6457
skewness: -4.27824
entropy: 0.0726504
Colors: 256

Figure 16-2. Image data using ImageMagick identify command

You may find that the -verbose flag actually returns too much data. If you want to pick
and choose what specific attributes to show, you can specify them directly, for example:

identify -format '%f - %m - %w \n' white.png

The preceding example specifies the file name, file type, and width followed by a
newline. You can find a full list of letters and the attribute they represent at https://
imagemagick.org/script/escape.php.

Label an Image

Another common task you might want to perform is adding a small label to a photo;
this can be handy when you plan to display the images online and want people to know
you're the original source if the image is saved and displayed somewhere else.

318

https://imagemagick.org/script/escape.php
https://imagemagick.org/script/escape.php

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEOS

To do this, we can simply use the built-in composite label which will add some text

to the top left of our photo in a single step:

composite label:'github.com/kirkins' white.png labeled.png

The result will look like the input image with the addition of our small but persistent

label in the top left, as shown in Figure 16-3.

Figure 16-3. Adding a label to an image using ImageMagick

ffmpeg

This is similar to ImageMagick but for videos instead of still images. ffmpeg can be

used for all kinds of common video editing tasks, and it is actually used in the code

of many popular video and audio editing GUI software suites including Audacity and

VLC media player.

Some of the things you can do with ffmpeg include

Convert video file type
Compress a video

Speed up/slow down a video
Trim a clip

Increase/decrease sound

319

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEOS

Convert File Types

One of the simplest and most common commands offered by ffmpeg is the simple
conversion of file types. In many cases, converting a video is very simple - just use the
-1 flag for input and specify the output type by using the desired file type extension
for your output. For example, if we want to convert an mp4 to a webm, simply run the
following:

ffmpeg -i video.mp4 video.webm
This same technique can be applied to audio files as well, for example, mp3 to ogg:
ffmpeg -i audio.mp3 audio.ogg

It’s even possible to take a video and output it as a gif, though you'll likely want to
stick to converting only short videos:

ffmpeg -i video.mp4 picture.gif

Another common conversion which is slightly more complicated is going from a
video file type to an audio-only file type. In this case, you'll need to add the -vn flag
which stands for “video no,” for example:

ffmpeg -i video.mp4 -vn song.mp3

Compress a Video

After recording a video locally and wanting to upload it to the Web, you may find the size
is too large for practical use. Instead of loading up some clunky video editing software,
you can run a one-liner with ffmpeg to compress it:

ffmpeg -i input.mp4 -b 1000000 output.mp4

In the preceding example, we're taking a video called input.mp4 and outputting it as
output.mp4 with a reduced bitrate of 1,000,000 bits or 1 megabit per second. To put that
in perspective, a DVD is generally 4-8 megabits per second, and Blu-ray is 24-40. The
size depends on both the dimensions of the video and the quality.

320

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEOS

Slow Down a Video

If you've ever wanted to watch something in slow motion but didn’t want to do the hard
work of opening up a full-fledged video editor, ffmpeg has a solution for you. Any video
(or sound file for that matter) can easily be sped up or slowed down with ffmpeg. This
can be done with the command:

ffmpeg -i video.webm -filter:v "setpts=2.0*PTS" slow.webm

In the preceding command, the 2.0 means that our video is spread out over two
times the original length. If we instead used setpts=0.5*PTS, we’d have the opposite
effect, speeding up the video by compressing it into half the length.

The same can be applied to audio such as an mp3 by using a different filter:

ffmpeg -i audio.mp3 -filter:a "atempo=2.0" slow.mp3

The preceding example will only affect the video, but the sound will play at normal
speed. If you want to change both, you'll need to add a second filter. For example, to slow
the sound at the same rate as the video add -filter:a "atempo=0.5":

ffmpeg -i video.webm \
-filter:v "setpts=2.0*PTS" \
-filter:a "atempo=0.5" slow.webm

Or to speed both video and sound to 2x, use

ffmpeg -i video.webm \
-filter:v "setpts=0.5*PTS" \
-filter:a "atempo=2" slow.webm

Trim a Video

Another common task you might want to use ffmpeg for is trimming a video so you can
create a new video from some subsection of the original video. If we wanted to cut the
contents starting at 3 seconds into the video with a duration of 8 seconds, we could run

ffmpeg -i vid.webm -ss 00:00:03 -t 00:00:08 -async 1 cut.webm

321

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEOS

This will result in a new video file called cut.webm which is 8 seconds in length going
from the 3-second mark to the 11-second mark. This same command can also be applied
to audio files like mp3.

Increase Volume in a Video

If you've ever come across a video where it was hard to hear the audio even on max
volume, this next command is for you. With ffmpeg we can actually upscale the audio of
a file so that it plays at a louder volume.

Volume is measured using “dB” which stands for decibels. If we want to increase the
audio on our video by 5 decibels, we would run the following:

ffmpeg -i in.mp4 -vcodec copy -af "volume=5dB" out.mp4

In the same way, we can lower the volume by using a negative value for the volume,
for example, -5dB which would turn down the volume by 5 decibels:

ffmpeg -i in.mp4 -vcodec copy -af "volume=-5dB" out.mp4

Download Videos with youtube-dI

Now that you're a little familiar with how you can modify, trim, and process videos with
ffmpeg, you may find yourself wanting to work with videos from around the Web, for
example, downloading a commonly listened song from YouTube and converting it to an
mp3 or cutting a clip from a funny video to turn into a gif to share with your friends.

youtube-dl is a very actively developed command-line tool for downloading
YouTube videos as well as over 1000 different websites including

e Vimeo

¢ SoundCloud

e Facebook

o Twitter

e News sites like Fox and CBC

That’s just a few out of the over 1000 supported sites. The full list can be found at
https://github.com/ytdl-org/youtube-dl/blob/master/docs/supportedsites.md.

322

https://github.com/ytdl-org/youtube-dl/blob/master/docs/supportedsites.md

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEQOS
The most common way to install youtube-d1l is via Python'’s package manager pip:
sudo -H pip install --upgrade youtube-dl

However, it’s also possible to download an executable from the official site with curl in
a single step if you prefer not to use pip. To get the most up-to-date options for installing,
check out the projects on GitHub at https://github.com/ytdl-org/youtube-dl.

The simplest command and likely your most used one is to simply use the utility
passing in the URL of the video you want to download:

youtube-dl https://www.youtube.com/watch?v=DfK83xEt] k

Be aware that by default the highest quality available will be downloaded, which with
the preceding video is over 1GB. If you want to download another format, you can see
the available formats for a video by using the -F flag. An example of returned available
formats is shown in Figure 16-4.

philip@philip-ThinkPad-T420: [tmpS youtube-dl -F https://www.youtube.com/watch?v=DfK83xEtJ_k
[youtube] DfK83xEt]_k: Downloading webpage

[voutube] DfK83xEt]_k: Downloading video info webpage

[info] Available formats for DfK83xEtJ_k:

format code extension resolution note

599 m4a audio only tiny 32k , mp4a.40.5 (22050Hz), 2.05MiB

600 webm audio only tiny 35k , opus (48008Hz), 2.31MiB

249 webm audio only tiny 52k , opus @ 56k (48080Hz), 3.37TMiB

250 webm audio only tiny 65k , opus @ 78k (48000Hz), 4.06MiB

251 webm audio only tiny 118k , opus @160k (48000Hz), 7.39MiB

140 m4a audio only tiny 130k , md4a_dash container, mp4a.48.2@128k (44180Hz), B.64MiB
598 webm 256x144 144p 29k , vp9, 13fps, video only, 1.66MiB

597 mpd 256x144 144p 40k , avcl.4d4eeb, 13fps, video only, 2.25MiB

160 mpd 256x144 144p 84k , avcl.4d4eec, 25fps, video only, 2.55MiB

278 webm 256x144 144p 96k , webm container, vp9, 25fps, video only, 5.40MiB
133 mp4 426x240 240p 150k , avc1.4d4015, 25fps, video only, 4.82MiB

242 webm 426x240 240p 191k , vp9, 25fps, video only, 8.20MiB

134 mp4d 640x360 360p 355k , avcl.4d401e, 25fps, video only, 13.96MiB

243 webm 640x360 360p 377k , vp9, 25fps, video only, 16.84MiB

244 webm 854x480 480p 695k , vp9, 25fps, video only, 30.07MiB

135 mp4 854x4860 480p 758k , avcl.4d401e, 25fps, video only, 30.08MiB

247 webm 1280x720 720p 1398k , vp9, 25fps, video only, 61.96MiB

136 mp4 1280x720 720p 1514k , avcl.4d4eif, 25fps, video only, 60.61MiB

248 webm 1920x1680 1080p 2598k , vp9, 25fps, video only, 125.16MiB

137 mp4 1920x1080 1080p 2821k , avcl.648028, 25fps, video only, 116.06MiB

271 webm 2560x1440 1448p B264k , vp9, 25fps, video only, 383.B1MiB

313 webm 3840x2160 2160p 17842k , vp9, 25fps, video only, 1.05GiB

18 mp4 640x360 360p 443k , avcl.42001E, mpda.40.2@ 96k (44100Hz), 29.57MiB
22 mp4 1280x720 720p 1037k , avcl.64001F, mp4a.40.2@192k (44100Hz) (best)

philip@philip-ThinkPad-T420: /tmp5

Figure 16-4. Viewing available formats with youtube-dl

323

https://github.com/ytdl-org/youtube-dl

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEOS

Take note of the first column “format code” for the video you want. The format code
can be specified with the - f flag allowing you to download a much smaller version, thus
speeding up the download and saving you date (or downloading audio only if you just
want to list). Given the preceding list, if we want to download the smallest video possible,
we could pick format code 598, which downloads almost instantly:

youtube-dl -f 598 https://www.youtube.com/watch?v=DfK83xEt] k

As mentioned, youtube-dl is a very active project with lots of options and features.
It’s definitely worth checking out some of those extra features on their GitHub README,
but for most situations, what we’ve seen here will get the job done.

Creating Charts with gnuplot

Another visual-based task which is possible from the command line is visualizing data
as graphs - either by viewing that data in the terminal itself or converting data into image
files for later use.

One program that makes this easy is gnuplot which is widely available in package
managers.

To demonstrate plotting a simple bar chart, let’s create a data file called days.dat
containing the following:

0 Monday 100
1 Tuesday 220
2 Wednesday 75

Next open gnuplot, which is done by simply entering the command with no inputs
or options.

With gnuplot open, first change the mode to dumb which causes the generated chart
to be displayed in the terminal as text art. By default, charts are generated in a qt-based
GUI which pops up after each command; despite not being completely terminal based,
the gt version of charts does look better. So if you prefer to use qt, simply skip this first
command:

set terminal dumb

324

Next we'll set the boxwidth for our chart and fillstyle:

set boxwidth 0.5
set style fill solid

Finally, tell gnuplot to plot the days.dat file using

plot "days.dat" using 1:3:xtic(2) with boxes

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEOS

The 1:3 here specifies that we're using column 1 of the data for the x-coordinates

and column 3 for the y-coordinates. Then xtic(2) says that we apply column 2 as the

label for each x value. If we instead use xtic(1), our day name labels would be replaced

with the index numbers. Finally, with boxes simply specifies the chart type. An example

of the visualization output is shown in Figure 16-5.

e e e e e e e +
+ * - * - |

200 |-+ * "days.da*" using 1:3:xtic(2) #wskenw_|
I - = |

| 5 iy I

180 |-+ * * +- |
| 5 * I

160 |-+ * * +- |
| s y I

| . ¥ I

140 |-+ * * +- |
I " X I

120 |-+ * * +-|
I A ks I

| * 3 I

130]_+ dhkhkkkhkhkhhkkhk * * +_|
] * * * * I

80 |-+ * * * * +-|
] * * * * khkhkkkhkhkhkihkih |

] * - * * + * * - * |

[+ I TR +

Monday Tuesday Wednesday

Figure 16-5. gnuplot displaying a bar chart in terminal

gnuplot can also be used to graph mathematical equations, for example, running

plot sin(x) generates the chart shown in Figure 16-6.

325

CHAPTER 16

TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEQOS

* *

I
0.8 |-+ * si.n(x* tt****t-l
I * * * |
0.6 |-+ > * * 4
| * * * * I
0.4 |*+ * * * *4- |
I* * * * * * |
0.2 |*+ * * * * *+_|
| * * * * * * I
0 |-* * * * * *.I
I * * * * *I
-0.2 |_+* * * * .'_i-l
| * * * * *l
-0.4 |_+* * * * .._*I
I * * * * * |
-0.6 |-+ * * * * +-
| * * * * l
-0.8 |-+ *] * +_|
| * ok i *k |
e B R e +
-10 -5 10

Figure 16-6. gnuplot displaying a line chart in terminal

Any equation can be graphed this way, for example, a simple equation representing a

line with a slope of 5 with a y-intercept of 3 can be generated with plot 5*x + 3.

gnuplot to Image File

It’s neat being able to display charts in the terminal, but in most cases, you're going to

want to export charts as images which can be used to convey information in reports or

presentations. In the same way we set gnuplot to use dumb mode, we can set it to export

as an image file. Run the following to switch to png mode:

set terminal png

Next, you'll have to tell gnuplot where you want to output the image file; otherwise,

you'll see the raw unprocessed png data on your screen, which isn’t useful at all.

set output "graph.png"

326

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEOS

Now, if we follow the exact same steps used to make our first bar chart, we’ll end
up with a “graph.png” file in our working directory. Each time you plot a graph to a file,
you’ll need to respecify the output file using the preceding command.

As we’re no longer working in the terminal, you'll likely want to add some color to

your charts. To do this, we’ll modify our original plot command to
plot "days.dat" using 1:3:0:xtic(2) with boxes lc var

We're adding a new value in 1:3:0 which creates a new variable using the index;
this variable is then used with 1c¢ var and incremented for each bar. The preceding
command should produce something like in Figure 16-7.

220

200

180

160

140

120

100

80

60

Monday
Tuesday
Wednesday

Figure 16-7. gnuplot bar chart exported to an image file

327

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEOS

There are a variety of built-in color schemes including podo, classic, and default.
To change the scheme, run the following replacing podo with the scheme you want:

set colorsequence podo

Advanced Examples/Demo Folder

We’ve looked at some basic examples of plotting data with gnuplot of plotting lines
and bar charts. However, this is only a fraction of what gnuplot is capable of. The
program can be used to create in-depth infographics. Doing this is out of the scope

of this book, but we’ll share a few examples from the gnuplot official demos folder:
https://github.com/gnuplot/gnuplot/tree/master/demo. See Figures 16-8, 16-9,
and 16-10 for examples of the demos contained. The code for these demos can be used
as a starting point for plotting your own data.

Immigration from different regions
(give each histogram a separate title)

900000
» 800000
=
& 700000
< 600000
2 500000
S 400000
o
5 300000
E 200000
= 100000 <l P -
. 1 |
7 7 7, 7e 7 7 e 7o 7
% ‘% ‘?, o} ‘96‘,‘%- % o,"’,") ‘9.9 ‘99 %%, ".9,'?9 ‘9,‘?} ,",'%“96-,
78, % ’.9 0. 70,70, 79 -foooo 29,79, 7%, %9, % 70,9, %0
‘b b*’b D% ‘b’o *%:' PVYO DoV VD 0
Northern Europe Southern Europe British Isles
(Same plot using rowstacked rather than clustered histogram)
Sweden wn Greece s reland
s Denmark Romania s United_Kingdom
s Norway mmmm Yugoslavia

Figure 16-8. gnuplot example chart histograms.8.gnu

328

https://github.com/gnuplot/gnuplot/tree/master/demo

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEOS

Both RGB color information

variablem:%_m ska AtalELBNRY from coords @ @

250 @

200

150
Blue

100

S0

Figure 16-9. gnuplot example chart rgb_variable.5.gnu

low resolution (6x6)

X axis

Figure 16-10. gnuplot example chart contours.11.gnu
329

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEQOS

Startup Animation

Another interesting modification we can make to our operating system is changing the
default animation screen at startup time. In some cases, this can actually be useful to
know, for example, if you're working on a custom embedded device or perhaps even a
gaming unit and want to have a themed startup screen.

A good example is the open source theme PlymouthTheme-Cat (https://github.
com/krishnan793/PlymouthTheme-Cat), which when installed and enabled will replace
your default startup screen with an animated cat, shown in Figure 16-11.

Figure 16-11. Custom startup animation

Making use of this theme requires that your OS is using Plymouth. Plymouth is a
package which provides a flicker-free graphical boot process and is installed by default
on Debian- and Fedora-based distros.

330

https://github.com/krishnan793/PlymouthTheme-Cat
https://github.com/krishnan793/PlymouthTheme-Cat

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEOS

First install the theme in your /usx/share/plymouth/themes; this can be done by
cloning directly into the folder:

sudo git clone \ https://github.com/krishnan793/PlymouthTheme-Cat.git \
/usr/share/plymouth/themes/PlymouthTheme-Cat

With the theme successfully downloaded to your theme folder, you’ll next want to
install the theme:

sudo update-alternatives --install \ /usr/share/plymouth/themes/default.
plymouth default.plymouth \ /usr/share/plymouth/themes/PlymouthTheme-Cat/
PlymouthTheme-Cat.plymouth 100

Once installed, set it to your default by running
sudo update-alternatives --config default.plymouth

This should bring up a selection menu; enter the number for the option listing
PlymouthTheme-Cat, as shown in Figure 16-12.

philip@philip-ThinkPad-T420:~% sudo update-alternatives --config default.plymouth
There are 2 choices for the alternative default.plymouth (providing fusr/share/plymouth/themes/default.plymouth).

Selection Path Priority Status

8 fusrfshare/plymouth/themes fubuntu-logofubuntu-logo.plymouth 160 auto mode
1 fusrfshare/plymouth/themes/PlymouthTheme-Cat/PlymouthTheme-Cat.plymouth 168 manual mode
2 fusrfshare/plymouth/themes/ubuntu-logofubuntu-logo.plymouth 108 manual mode

Press <enter> to keep the current choice[*], or type selection number: 1l

Figure 16-12. Selecting Plymouth theme to use

Finally, you'll need to update the initramfs image. This is the image which runs on
boot with the purpose of mounting the filesystem.

sudo update-initramfs -u

With this done, you can now restart your computer and enjoy the custom cat
animation during the boot process.

331

CHAPTER 16 TERMINAL TOOLS FOR WORKING WITH IMAGES AND VIDEOS

Make a Custom Boot Animation

While the cat animation is definitely well done, you may want to make your own custom
animation. The easiest way to experiment with making your own is to look at the source
of Plymouth Cat. Notice that the source contains 111 sequential PNG files starting at
progress-0.png and ending at progress-111.png. Sequentially viewed, these images
create the animation.

If you'd like to create your own, the best place to start is by replacing these images
with your own PNG files of the same dimensions and rerunning the steps used to install
Plymouth Cat. This will result in an animation based on the images you provided.

Once you're happy with the results, you can update the values in PlymouthTheme-
Cat.plymouth and rename the folder.

We won'’t go into the details of how to produce the image files, but applications like
GIMP and Photoshop both support exporting an animation as several PNG files.

Summary

In this chapter, we looked at utilities that make it possible to work with images and
videos without ever opening a bulky editor. This is great for common quick tasks like
converting file types, adding watermarks, or trimming video and audio content. In some
cases, as with gnuplot, we created new images using data, again without having to open
an image editor.

Finally, we saw how the splash screen shown during the startup process is actually
controlled by a program called Plymouth. We downloaded a simple animation and set it
as our startup animation. This is a fun modification that can be useful when setting up
custom-purpose hardware. For example, a Linux system that automatically boots into a
video game emulator or multimedia box hooked up to your TV can be made to seem like
a unique creation by adding a custom animation.

332

CHAPTER 17

Extras

We've looked at all kinds of commands and utilities throughout this book. Yet there are
several handy commands which defy any category. In this final chapter, we’ll look at fun
or useful commands and utilities that don’t necessarily fit into a category.

Cal

Another simple but useful command-line program is cal which provides a simple
calendar via the command line. One of the great things about cal is that it comes
installed standard on nearly all Linux distributions as it was present in the first edition
of Unix and is part of POSIX standard. The simplest use of cal is running it without
any flags or arguments, which just produces a visual of the month with the current day
highlighted, as shown in Figure 17-1.

philip@philip-ThinkPad-T420:~$ cal
December 2019

Su Mo Tu We Th Fr Sa

i 2 '3 56 7

g8 916 11 12 13 14

1526 1 18 19 28 21

2223 24 25 26 27 28

2936 31

Figure 17-1. Output of cal command

To visualize the whole year, you can add the -y flag, which will produce a similar
graphic but will show all the months in the current year formatted in month chunks like
in the figure.

333
© Philip Kirkbride 2020

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7_17

https://doi.org/10.1007/978-1-4842-6035-7_17#DOI

CHAPTER 17 EXTRAS

For the most part, that is the extent of my use of cal, a small program that I use
surprisingly often. It does however also offer the ability to look at specific years or
months, for example:

cal 2000 # display the year of 2000
cal june 2009 # display June of 2009

Looking back to the section on .bashrc, you might also consider adding a line which
simply has cal to show a calendar highlighting the current day when you open your
terminal - though personally I dislike the clutter that this adds.

espeak

If you're someone who likes to listen to text rather than read it, you'll really want to know
about espeak. espeak takes text input and reads it as audio or outputs that audio to an
audio file. The package can be found on the Ubuntu package manager.

sudo apt-get install espeak

After installing, the simplest thing you can do is pipe some text into espeak and listen
to the audio directly on your machine.

echo Hello World | espeak

If instead of using a pipe, you instead want to provide a file containing text, you can
use the -f flag as shown in the following:

echo Hello World > text.txt
espeak -f text.txt

The default voice is a bit flat, but that’s something we’ll look at improving in the next
section. Some of the built-in flags include things like changing the speed. The speed is
controlled by the -s flag which takes a value representing “words per minute” (default
175) and the -g flag which sets the gap between words in milliseconds (default 10).
Below are examples of slow at 100 wpm and fast at 250 wpm:

echo hello world | espeak -s 100 -g 20 # slow
echo hello world | espeak -s 250 -g 5 # fast

334

CHAPTER 17 EXTRAS

Improve Sound of espeak Voice

The voice used by espeak can be drastically improved by installing voices from the
open source speech engine MBROLA. Unfortunately, the website for MBROLA is
no longer online; however, it can still be accessed along with the voice files using
the Wayback Machine. To view information on the very outdated site, check out the
following link:

https://web.archive.org/web/20180625050250/http://www.tcts.fpms.ac.be/
synthesis/mbrola/
To download and install MBROLA, run the following commands:

cd /tmp

wget \
https://web.archive.org/web/20180627172600/http://www.tcts.fpms.ac.be/
synthesis/mbrola/bin/pclinux/mbr301h.zip

unzip mbr301h.zip

sudo cp mbrola-linux-i386 /usr/bin/mbrola

Next we’ll download the English voice files. If you want another language, you'll have
to find the appropriate file using the archived MBROLA website. To install the English
voices, run the following commands:

cd /tmp

wget \
https://web.archive.org/web/20160706052143/http://www.tcts.fpms.ac.be/
synthesis/mbrola/dba/en1/en1-980910.zip

unzip en1-980910.zip

sudo cp eni/enl /usr/share/mbrola/enl

With MBROLA and the English voice installed, you can now select the voice using
the -v flag as shown in the following (slowing the speed to 120 words per minute is
recommended):

echo Hello World | espeak -v mb-enl -s 120

335

https://web.archive.org/web/20180625050250/http://www.tcts.fpms.ac.be/synthesis/mbrola/
https://web.archive.org/web/20180625050250/http://www.tcts.fpms.ac.be/synthesis/mbrola/

CHAPTER 17 EXTRAS

Output espeak to Audio File

If you end up using espeak to convert large amounts of text, you'll likely want to output

it as an audio file rather than having it play directly. This gives you the freedom to pause,
play, and rewind as you wish - not to mention moving the file to other devices or sharing.
An example of how this can be done is as follows (we assume you have text in a file called
text. txt in the same directory; if not, copy and paste some text from a web page into a
text file):

espeak -f text.txt -w audio.wav

Unfortunately, espeak only has the option to output as a wav file, so if you want mp3
or some other type, you'll need to run an additional command to convert using ffmpeg.

ffmpeg -i audio.wav -vn -ar 44100 -ac 2 -b:a 192k audio.mp3

Math on the Command Line

We’ve made use of bc in a few past chapters, but it's worth mentioning because it is often
overlooked. The initials stand for basic calculator. It comes installed on most Unix-like
operating systems, as it is a POSIX standard. It provides the ability to do math on the
command line or write bc-specific scripts.

From the command line, bc is used by piping output from another command, for
example:

echo 1 +1 | bc

Running the preceding script will return an output of 2. There is support for the basic
operations you'd expect on any calculator for addition, subtraction, multiplication, and
division. In addition, you have some special commands, for example, to get the square
root of a number:

echo "sqrt(169)" | bc

Notice that when using any bc notation with a bracket, we need to surround it in
quotes; this is to avoid bash interpreting it as a subshell. Another special command
available in bc is length which returns the number of digits in a number:

echo "length(169)" | bc

336

CHAPTER 17 EXTRAS

The preceding script returns 3. Similarly, there is a function scale which counts the
digits to the right of a decimal place, for example, the following which returns 3:

echo "scale(169.777)" | bc

Rather than using a pipe, it’s also possible to start bc in an interactive mode. To do so,
run it with the -1 flag:

bc -1

In addition to being a command-line utility, bc can actually be used as a full scripting
language which has support for C syntax for number manipulation and the creation of
functions for code reuse.

Another command expr can also be found on many systems which evaluates math
statements without the pipe. However, using expr isn’t recommended as it is outdated:

expr 1 + 1

In the same vein, you'll also find dc on many systems which is also a reverse polish
notation calculator which predates the C language.

Tiling Window Managers

Another class of applications that power users should look into are tiling window
managers. A tiling window manager replaces the GUI interface for your Linux
operating system (gnome, xfce, Ixde, etc.) and provides a way to split your workspace
up into tiles.

Tiling window managers are touted for their aiding in making OS use a completely
mouseless process. Anything that could be done with a mouse is better done with
a keyboard when using a tiling window manager. For this reason, tiling window
managers are often promoted as a way of improving efficiency of command-line
interface use.

Personally, I find that the usefulness of tiling window managers depends on the task
at hand. If my workflow involves around a dozen different terminal sessions running
at once, I'll always almost opt for a tiling window manager. If however my workflow
involves a web browser, word editor, and a few terminal sessions, I'll instead opt for a
normal desktop experience with my terminal sessions in tmux.

337

CHAPTER 17 EXTRAS

In the past, there were several different competing tiling window managers, but

at current 13wm seems to be the most popular. While looking for popular alternatives,

I found that i3wm was the only tiling window manager for Linux with a stable release

in the last 12 months. For this reason, we’ll focus on i3wm as the best and most
common tiling window manager. If you're interested in researching additional window
managers, some alternatives include “Awesome window manager,” xmonad, dwm, and
ratpoison.

i3wm excels at being able to quickly switch between terminal sessions and groups of
terminal sessions. For example, I might have a page of terminals which are monitoring a
system with various tools, creating a sort of dashboard. Then in another window, I might
have some SSH sessions to different devices being tested.

If you're new to tiling window managers, I recommend installing it alongside a
traditional desktop rather than as your only installed desktop interface. This will make
things easier if you forget how to do something or are having difficulty doing some
particular thing within i3wm. If that’s the case, you can always switch back to Ubuntu
Desktop (or your chosen interface) and come back to i3wm later.

i3wm can be installed simply on most Linux distributions by running the equivalent
of the following on your package manager:

sudo apt-get install i3

With i3wm installed, log out or restart your computer. If you're on Ubuntu or Fedora,
on the login screen, you should see a settings icon, as shown in Figure 17-2. After clicking
the settings icon, a list of possible desktop interfaces should appear. Select the one
labeled 13.

338

CHAPTER 17 EXTRAS

Password:
Cancel {¥ Signin
* i3
i3 (with debug log)
Ubuntu
Ubuntu on Wayland

ubuntu-

Figure 17-2. Selecting i3 at the login screen

On your first login with i3wm enabled, you'll be asked if you want to create a
configuration file, as shown in Figure 17-3. We recommend using the defaults which will
set the Windows key as the i3wm modifier key used for keyboard shortcuts. However, at
the time of writing, we found that pressing <enter> and then choosing the default option
while generating a config worked better than choosing <esc> which seems to be causing
issues at this time.

i3: first configuration

You have not configured i3 yet.
Do you want me to generate a config at
/home/osboxes/.config/i3/config?

Yes, generate the config

No, I will use the defaults

Figure 17-3. i3 first configuration dialog box
339

CHAPTER 17 EXTRAS

Once installed, you can switch to i3wm on most platforms by logging out and at
the login screen selecting i3wm from a dropdown. Using i3wm like using Vim can be
daunting at first. You're met with a blank black screen and no obvious way to open
an application. Like Vim, i3wm is navigated and used through keyboard shortcuts
and commands. Table 17-1 shows a list of commands for i3wm (substitute the “win” or
Windows key for alt if you've selected it).

Table 17-1. i3wm keyboard shortcuts

Shortcut Description

win-+enter Open a new terminal tile

win+d Open a dialog at the top of the screen where you can type an
application name and press enter to open it

Win+j Move focus one tile left

win+k Move focus one tile down

win+l Move focus one tile up

win+; Move focus one tile right

win+shift+j Move focused tile left

win+shift+k Move focused tile down

win+shift+l Move focused tile up

win+shift+; Move focused tile right

win-+f Toggle between full-screen mode on focused tile

win+shift+q Kill the focused tile

win+<number> Switch to a workspace where <number> is any value between
0 and 9. Each number being a separate workspace with tiles

win+v Next tile will split space vertically

win+h Next tile will split space horizontally

win+r Enter resize mode for tile. From here arrow keys can be used to
expand or compact a tile either horizontally or vertically

win+shift+space Toggle floating mode on a tile. Floating mode allows you to
drag a window without concern for the grid

win+<mouse> Drag a floating mode tile with your mouse

CHAPTER 17 EXTRAS

Creating Tiles

The most basic commands you'll want to learn first are for creating new tiles which is

synonymous with opening applications, since all applications are contained in tiles on the

window manager’s grid. If you're opening a terminal, you can use win+enter. For all other

applications, press win+d; this will open a small dialog in the top left, as shown in Figure 17-4.
firefoxq

File Edit View Search Terminal Help

osboxes@osboxes:~$ l

Figure 17-4. i3 application search

As you type the name of an application, the dialog will show the state of
autocomplete, and if at any time it shows your target program, press open. This will open
your application as a tile. An example of Firefox open as a tab along with two terminals is

shown in Figure 17-5.

A ew Search Terminal Help @ New Tab

loshoxes@oshoxes:~%
@ | @ search with Google or enter address » =
k3
G searchtheweb 4
28 Top Sites
youtube facebock
[osboxesgosboxes:~$ |]
7 -
o'l
Y
"
wikipedia reddit
Firefox automatically sends some data to
@ Mozilla so that we can improve your Choose What | Share . X
expenence. —_—

Figure 17-5. i3 with multiple tiles open
341

CHAPTER 17 EXTRAS

Opening additional applications will automatically create additional tiles in your
workspace which will be distributed on the grid. As a consequence, program tiles will
be resized as you add additional tiles. If your screen starts to get crowded and you need
more space, you can make use of workspaces which we explain later. Or if you have tiles
you no longer need, you can focus them and press win+shift+q.

Your workspaces will be numbered and displayed in the status bar at the bottom of
the screen. In addition to your workspaces, the status bar shows basic information about
the time, Internet connection, and free space.

By default, your tiles will split the current focused tab horizontally when adding a
new one. To switch to vertical splitting, press win+v and your next created tiles will split
vertically. To switch back to horizontal splitting, press win+h. Try experimenting by
creating new tiles and switching between vertical and horizontal as well as deleting tiles
with win+shift+q as needed.

Once you have a workspace, split into multiple tiles, you may want to resize a tile. If
you press win+r, you'll go into resize mode for the highlighted tile where you can use the
arrow keys to expand or shrink the tile. There is also an indicator in the status bar that

will tell you when resize mode is active.

Change Tile in Focus

Now that you have multiple programs running as tiles in i3wm, you probably want to
know how to switch between tiles. The tile you're currently using in i3wm is said to be in
focus. If you want to change focus between tiles, just hold the win key and use the arrow
keys to navigate your focus. You should see a thin outline around your currently focused
window. Alternatively, you can use the letters - j, k, 1, and ; - which each correspond
to a direction. These keys are similar to the direction keys in Vim but not quite the
same. If you want to modify these keys so that they're the same as Vim, see the section
“Modifying i3wm Config File”

Move Tiles

In addition to changing your focus, you might also want to rearrange windows as you
create additional tiles or resize those tiles to create your perfect setup. The shortcuts for
moving tiles are nearly identical to that of moving focus except you need to hold both the

342

CHAPTER 17 EXTRAS

win and shift keys instead of just win. So to move right, you could do win+shift+right
arrow or win+shift+;. As mentioned, you can also resize a window. To enter resize
mode, press win+r while focused on the tile you want to resize. Once in resize mode, you
can use the arrow keys to expand or contract the tile.

Workspaces in i3wm

When you first open i3wm, you will see a small square in the bottom left which reads

“1” This number represents your current workspace. There are 10 workspaces on i3wm
numbered 1-9 and 0 as the tenth. You can switch between workspaces by pressing
win+<number> where <number> is any number between 0 and 9. Upon switching to a new
workspace, your screen will appear as a fresh 13wm instance with no tiles open.

So if you open four different tiles in workspace 1 and then switch to workspace 2,
you can create new tiles on a fresh layout and at any time switch back to workspace 1.
The programs within your workspaces will continue to run regardless of whether that
workspace is in focus.

Floating Tiles

While the tile grid system is essentially the core utility of i3wm, it is possible to create tiles
which exist outside of it and float overtop of everything else. To toggle a tile in and out of
float mode, put it in focus and press win+shift+space. Once the tile is in float mode, you
can hold win and drag it using your mouse. If you want to return the tile to the grid, press
win+shift+space again.

Full-Screen Mode

If you're working with a tile and you find it’s too small, you can switch the tile into full-
screen mode temporarily and switch back when you’re done. To switch to full-screen
mode on a tile, simply press win+f. To switch back out, press win+f while already in full
screen mode.

343

CHAPTER 17 EXTRAS

Modifying i3wm Config File

There are several settings and configurations that can be set by modifying the config file
for 13wm. The default location for the configuration file is ~/.config/i3/config.

Bind Keys in i3wm Config

The most common thing you'll want to modify in i3wm is which keys are responsible for
which functions. A common change people who are used to Vim keybindings like to
make is remapping the keys for focusing tiles. This is done by using the bindsym keyword
in your config file like in the following example:

bindsym $mod+h focus left
bindsym $mod+j focus down
bindsym $mod+k focus up

bindsym $mod+l focus right

If you decide to do this, you'll also need to remap the default use of $mod+h which
is used to split windows horizontally. It’s up to you as to what key you use for split

- n

horizontal, but in this example, we'll use “-’, with the line as follows:
bindsym $mod+minus split h

Also search through the file for any existing bindings using the same key
combinations, for example, “$mod+k”; if you find a duplicate, you'll need to remove one
as each key combination can only be mapped to a single function.

After making a change to the i3 config file, you will need to reload it. To do that
without restarting your system, run the following command:

i3-msg reload

In the preceding example, we mapped each of the Vim movement keys (plus the
modifier key “win” by default). It’s likely you'll also want to apply a similar change for
moving the focused window as shown in the following:

bindsym $mod+Shift+h move left
bindsym $mod+Shift+j move down
bindsym $mod+Shift+k move up
bindsym $mod+Shift+l move right

344

CHAPTER 17 EXTRAS

You can also bind custom functionality to unused key combinations. For example,
say we wanted a special key combination to open a new web browser window. We could
add the line shown here:

bindsym $mod+shift+z exec "firefox"

Using the preceding pattern, you can map key combinations to any application or
even your own custom scripts.

Change Colors in i3wm Config

As with other configuration files we’ve looked at in this book, the i3wm config file allows
for modifying the theme and color of your interface. We won’t look at every possible
configuration, but the following configuration will help you get started; it’s an example
of modifying the status bar at the bottom of the screen by changing the color of various
subelements (make sure to replace your existing instance of bar in the config file or you'll
end up with two status bars).

bar {
colors {
background #2f343f
statusline #2f343f
separator #4b5262
focused workspace #2f343f #bf616a #d8dee8
active workspace #2343 #21343f #d8dee8
inactive workspace #2343f #21343f #d8dee8
urgent workspacei #21343f #ebcb8b #2f343f

}

status_command i3status

Additionally, we can change the colors of the client itself (the five-color hex codes
should be contained on a single line).

client.focused #bf616a #21343f #d8dee8 #bf616a #d8dee8
client.focused inactive #2f343f #2f343f #d8dee8 #2f343f #2f343f
client.unfocused #21343f #21343f #d8dee8 #2343 #2f343f
client.urgent #21343f #21343f #d8dee8 #21343f #2f343f
client.placeholder #21343f #21343f #d8dee8 #21343f #21343f
client.background #21343f

345

CHAPTER 17 EXTRAS

I3status Config File

While most customizations to 13wm are made in the ~/.config/i3/config file, there is

a second config file which deals exclusively with the status bar. The status bar-specific
config file can be found at ~/.config/i3status/config. Not only does it allow you to
change colors and style of the status bar, it also allows for changing which content is
shown. Note that this file doesn’t exist by default. For additional information on the status
bar, you can run the following to see a status bar-specific man page:

man i3status

In this man page, you'll find an example config file which can be copied and used as
the basis for a custom status bar. Notice that all the subcomponents of the status bar are
first added to the variable called order which tracks what subcomponents to display and
in what order.

order += "cpu_temperature 0"
order += "load"

order += "tztime local"
order += "tztime berlin"

Then further down, each of these subcomponents is described with curly brackets.
For example, the “tztime berlin” component which displays Berlin time in addition to
the system’s local time is shown here:

tztime berlin {
format = "%Y-%m-%d %H:%M:%S %Z"
timezone = "Europe/Berlin”

In order to have a fully working config file, you'll also have to add the “tztime local”
component which is defined here:

tztime local {
format = "%Y-%m-%d %H:%M:%S %Z"

346

CHAPTER 17 EXTRAS

For the status bar changes to take effect, you'll need to fully restart i3 rather than
simply running the reload command. You can restart i3 by running

i3-msg restart

You can find several components in the man page to get you started. If you're looking
for additional resources for customizing i3wm and using as the basis for config files, I

recommend searching “i3wm config github.”

Alternative Shells

Before listing many of the alternative shells which are available, I want to note why I
don’t use any. Firstly, I like my default work environment to reflect that of what I might
find in “the wild.” That is, if I SSH into a machine or go to a company and use their server,
I feel right at home assuming they're using standard bash. If I had gotten used to using
an alternative shell, I would likely find myself trying to use shortcuts and commands
which simply don'’t exist by default.

The second major reason is that many alternative shells are not POSIX compliant,
meaning that scripts written specifically for one of these shells cannot be shared with
the wider community. I prefer to use standard POSIX-compliant bash, knowing that
almost everyone will be able to use the scripts written on my computer in their local
environment.

That said, many others do prefer alternative shells for the usability or other benefits
they might provide. If you're interested in exploring alternative shells, here are some
worth checking out:

e Z Shell
e Fish

Z Shell

The most popular alternative shell is Z Shell or “ZSH.” Z Shell is an extension of bash
which has a focus on improving user experience. Some of the features of Z Shell include

o Smarter autocomplete.

o Gitintegration (git status hints).

347

CHAPTER 17 EXTRAS

e Smart SSH autocomplete based on ~/.ssh/config &
~/.ssh/known_hosts.

o File name correction when making a typo.

e Wide variety of themes.

e All cd use is actually pushd; thus you can always use popd.

e Other smart autocomplete.

e Has a POSIX-compliant mode (though not compliant by default).

This is by no means a complete list of features.

Oh My ZSH

We looked at “Oh My Bash” in Chapter 14; “Oh My ZSH” is essentially the same thing but
for Z Shell. It contains several premade themes and configuration files specific to Z Shell.
More information can be found at https://github.com/ohmyzsh/ohmyzsh.

Fish
The second most popular alternative shell is Fish. As with ZSH, the focus of Fish is
improved user experience in the terminal. Some of the features include

e Autocomplete as your type (which considers your command history)

o Improved default color themes

e More interactive autocomplete with tab

e GUI-based configuration menu that can be accessed in the web

browser

One of the differences, which is highlighted, when comparing Fish and ZSH is that
ZSH requires configuration to enable many of its key features, whereas Fish is a more
out-of-the-box experience. This focus on “ease of use” can also be seen in the inclusion
of a web browser-based configuration menu that allows you to interactively change
things like color themes.

348

https://github.com/ohmyzsh/ohmyzsh

CHAPTER 17 EXTRAS

Remapping Keys

As you start customizing your Linux system more and more, you might get to the point
where you actually want to change the behavior of certain keys. For example, it’s quite
common to remap the use of Caps Lock to some other use due to the fact that it is not
often used.

The first step in doing any type of remapping is getting the keycode for the button
in question. The best way to do this is by running xev which will start an interactive
mode where you press a button and in return receive a keycode; an example is shown in
Figure 17-6.

root 0x5b7, subw 0x0, time 462602, (-183,-118), root:(411,201),
state 0x0, keycode 9 (keysym 0xfflb, Escape), same screen YES,
XLookupString gives 1 bytes: (1b) "

XFilterEvent returns: False

KeyPress event, serial 37, synthetic NO, window 0x3800001,

root 0x5b7, subw 0x0, time 465938, (-363,-85), root:(231,234),
state 0x0, keycode 66 (keysym oxffed, Hyper L), same_screen YES,
XLookupString gives 0 bytes:

XmbLookupString gives @ bytes:

XFilterEvent returns: False

KeyRelease event, serial 37, synthetic NO, window 0x3800001,
root 0x5b7, subw 0x0, time 466111, (-363,-85), root:(231,234),
state 0x2, keycode 66 (keysym Oxffed, Hyper L), same screen YES,
XLookupString gives 0 bytes:
XFilterEvent returns: False

FocusOut event, serial 37, synthetic NO, window 8x3800001,
mode NotifyNormal, detail NotifyNonlinear

PropertyNotify event, serial 37, synthetic NO, window 0x3800001,
atom 0x168 (NET WM STATE), time 467790, state PropertyNewValue

Figure 17-6. Finding keycodes using xev
In this example, we’ll remap the Caps Lock key (keycode 66). To edit the mapping,

open up ~/.Xmodmap. This configuration file is responsible for modifying keyboard
bindings. Add the following lines to map the Caps Lock key to the hyperkey.

349

CHAPTER 17 EXTRAS

clear capslock

keycode 66 = Hyper L

The preceding configuration removes the Caps Lock key’s normal use, sets it to
hyperkey using its keycode, and makes the hyperkey a modifier button.

The hyperkey is a key which existed on an old keyboard called the space-cadet
keyboard, shown in Figure 17-7. The space-cadet keyboard allowed the user to type over
8000 distinct characters using key combinations, such as the “Greek” key. The keyboard
was influential on the design of Lisp and Emacs, and the “hyperkey” is still referenced in
many places today, despite not being present on most, if any, keyboards.

ALY MODE RUB OUT

Figure 17-7. Special keys on the historic space-cadet keyboard. Courtesy of Dave
Fischer, Retro-Computing Society of Rhode Island, Wikimedia Commons, Creative
Commons Attribution-Share Alike 3.0 Unported License

On most systems, modifying the ~/ . Xmodmap file will be sufficient for remapping the Caps
Lock to the hyperkey. After making the change, you'll need to either restart your system or
reload the configuration manually. To reload manually, run the following command:

xmodmap ~/.Xmodmap

350

CHAPTER 17 EXTRAS

Now if you run xmodmap stand-alone without an argument, you should get back
information about the special keys on your system. The “lock” row should have nothing
in the second column, and for the row labeled “mod4’; you should see a list of keys
including “Hyper_L” at the end.

The “mod” here stands for modifier key, meaning it can be used in conjunction with
other keys to create an output, much the same as “alt” and “ctrl” keys. This is important
for the next section as it allows us to associate Caps Lock plus some other keys with
custom commands or scripts.

Custom Shortcuts with Xbindkeys

Now that you’'ve mapped your Caps Lock to hyperkey, you're probably wondering what
you can do with it. The main use of swapping the Caps Lock for hyperkey is to gain an
additional modifier key, similar to alt or ctrl. We can associate key combinations with
programs, tasks, and scripts.

In the section on i3, we created a custom command for opening Firefox with
win+shift+z. This is essentially the same idea, except we're using caps and don’t need to
use i3.

To make keyboard shortcuts, we first need to install xbindkeys:

sudo apt-get install xbindkeys

Next create a xbindkeys config file based on the default by running the following

command:
xbindkeys --defaults > ~/.xbindkeysrc
Next open up the ~/.xbindkeysrc file and add the following line at the end of the file:

"firefox"
Mod4 + f

The Mod4 here represents our hyperkey, since we associated the hyperkey (via caps)
with mod4 in the previous section. So we’re binding caps+f to open the Firefox browser.
We can replace firefox with any other program in our path. For example, try adding

351

CHAPTER 17 EXTRAS

the following code to your ~/.xbindkeysrc; after running it, check your /tmp folder and
you should see a file called hello. You can replace the quotes with any command and
associate it with whatever keyboard shortcut you’d like below:

"touch /tmp/hello”
Mod4 + t

With the Caps Lock key freed up for custom shortcuts, you have dozens of possible
key combinations you can make use of, and that’s not even making use of combining the
Caps Lock key with other modifiers like shift or alt.

Additional Resources

Additional resources I have found useful in exploring Linux terminal include
o http://unix.stackexchange.com/
o https://askubuntu.com
e https://linuxjourney.com/
o www.tldp.org/
o http://explainshell.com/
e www.linuxquestions.org/
o https://training.linuxfoundation.org/resources/

o https://google.github.io/styleguide/shell.xml

Summary

In this chapter, we looked at programs that can be used to take your terminal use one
step further. We looked at the built-in cal command which can be found on almost any
Linux system and allows you to get a quick overview of the coming year. We saw how
espeak can be used to convert text into an audio file.

After that, we looked at the tiling window manager i3wm, alternative shells, and how
you can modify your keyboard input to create dozens of custom keyboard shortcuts
which map to programs or custom scripts.

352

http://unix.stackexchange.com/
https://askubuntu.com/
https://linuxjourney.com/
http://www.tldp.org/
http://explainshell.com/
https://www.linuxquestions.org/
https://training.linuxfoundation.org/resources/
https://google.github.io/styleguide/shell.xml

Index

A
Alpine Linux, 11
Arch Linugx, 5, 10
arp-scan method, 120
Artist mode
adding labels, 259
built-in package manager MELPA, 253
canvas creation, 255
chart made, 254
nongraphical READMEs or manuals, 254
pop machine text art, 260
replacing + with v, 258
text-based art or diagrams, 253
two rectangles creation, 256, 257
Vim bindings, 255
ASCII garble glitch, 97
atop, 151

B

bash keyboard shortcuts, 51
.bash_logout script, 276
bash prompt text, 280
.bashrc file, 31, 275, 276
alias, 278
ANSI color codes, 281
color codes, 283
configs, 278
custom functions, 278, 279

© Philip Kirkbride 2020

global version, 277
import file, 288
live clock, 286, 287
$PATH, 279
PS1 prompt, 280, 282
PS2/PS3/PS4, 284, 285
run programs, 287
themes, 285
.bashrc_profile configuration script, 275

C

cal command, 333
Chain commands with && and ||, 64, 65
cowsay program, 66, 67
exit codes, 65
Conditional expressions
arithmetic operators, 75
-d flag, 71
double equal sign ==, 74
-e flag, 72
-eq flag, 76
-fflag, 71
-ge flag, 78
-gtflag, 77
-le flag, 77
-1t flag, 76
-ne flag, 76
non-empty strings, 74
options, 71

353

P. Kirkbride, Basic Linux Terminal Tips and Tricks, https://doi.org/10.1007/978-1-4842-6035-7

https://doi.org/10.1007/978-1-4842-6035-7#DOI

INDEX

Conditional expressions (cont.)
sorting, 75
string comparison, 73
x flag, 72
-z flag, 73
cowsay command, 63
Cron job
command-line
editors, 35
labels, 36
script or process, 35
time intervals, 36
ctrl+c command, 50
ctrl+d command, 50

D

Daemon, 221
Debian
install packages, 6
Kali, 8,9
Mint, 9
PopOs, 9
Ubuntu, 7, 8
Demilitarized zone (DMZ), 104
/dev/null, 190, 191

/dev/random and /dev/urandom, 191, 192

/dev/zero, 192, 193

Dig, 135

Distro
Arch Linux, 10
branches, OSs, 5, 6
Debian (see Debian)
Fedora, 5,9, 10
Gentoo, 5,11
OpenSUSE, 10
Red Hat, 5
Slackware, 10

354

Dotfiles, 290, 291

Double parentheses
arithmetic, 79
curly brace, 80, 81
preceded, dollar sign, 78
subshell, 79, 80
syntax, 78

E
Editing files
comparing
cmp command, 24
comm command, 24
diff command, 24
cp command, 21
file extension, 25
head/tail command, 20, 21
mv command, 22
open a text, 18
rmdir command, 22
touch command, 19
Emacs
artist-mode (see Artist mode)
built-in tutorial, 250, 251
desktop GUI program, 251
installation, 248
interpret commands, 247
major modes, 249
minor modes, 249
modes, 273, 274
org-mode (see Organization mode
(Org-mode))
outline presentation mode, 269-271
telega mode, 247
TRAMP, 271-273
Vim bindings, 248, 249
which-key-mode, 251-253

INDEX

-e option, 70 invisible files, 16
erasedups command, 47 Kali Linux, 5, 9
espeak command, 334, 335 Is and cd, filesytem navigation, 14, 15
navigating/creating, 14
F Red Hat-based distros, 5
Fedora
CentOS, 10 H
RHEL, 10 Harware details
File/folder navigation /dev folder, 186, 187
current location, 39 special files /dev folder, 187, 188
directory symbol, 38 query commands, 185
hard links, 40 history command, 47
index/inode number, 38, 39 htop, 147, 150

options for Is, 37
popd stack, 42
pushd stack, 41 |
ranger, 42, 44
symbolic/soft links, 39, 40

i3 application search, 341
i3 first configuration, 339

viewing file structure, tree, 44, 45 iftop, 152
Vim, 45, 46 i3wm
File globbing/wildcards, 53 alternative shells, 347
filesystem, 14, 15 bind keys, 344
File transfer color, 345
autocomplete, 110 config file, 346
Rsync, 111-113 floating file, 343
SCP, 110

full-screen mode, 343

two-way sync, 114 modifying the config file, 344
unison, 115-118

File Transfer Protocol (FTP), 89, 107
Filezilla, 108

First in first out (FIFO), 160

fortune command, 63

move tiles, 342

tiles in focus, 342

workspaces, 343
ImageMagick, 315

animation, 330-332

compress video, 320

G create image, 316, 317
Gentoo, 11 demo folder, 328, 329
Graphical interfaces, 1 download video, 322, 323
Arch Linux, 5 ffmpeg, 319
GUL 1 file types, 320

355

INDEX

ImageMagick (cont.)
gnuplot, 324-327
increase volume, 322
information, file types, 317, 318
label image, 318, 319
slow down video, 321
trim video, 321, 322
youtube-dl, 323

.inputrc file, 52, 289, 290

iotop, 153

J

Journalctl, 230, 231

K

Kernel
configuration, 195, 196
core component, 193
create partition, 197, 198
delete partition, 196, 197
format partition, 198
hierarchy, 194
mount partition, 199
physical hardware, 194
system link from partition to ~/, 199
version, 194, 195
Keyboard shortcuts, 49
Killing process, 156, 157

L

Less pipe, Linux
compressed files/folders, 32
installation, 28
less command, 32
opening/reading PDEF, 32

356

other files, 34, 35
seq command, 31
updation, 29

Iftp interactive mode, 107
Linux

command information, 26
distro (see Distro)
GNU/Linux, 2

GUL 1

GUI-based applications, 4
less pipe (see Less pipe, Linux)
manual (see Using man)
navigating/creating, 14
operating system, 1
POSIX, 3

sudo, 27

vs. Unix, 2, 3

List of open files (Isof), 144
Log folders

bi - blocks received from block
device, 178

bo - blocks sent to block device, 178

b - threads blocked by I/0, 176

buff, 177

cache, 177

contents, 173

context switches, 178

in - interrupts per second, 178

nmon, 180-182

rsyslogd, 173

r - threads waiting for runtime, 176

si - memory swapped in from disk, 177

so - memory swapped out
from disk, 178

st - time stolen from virtual
machine, 180

swap, 176

sysstat utilities, 173, 174

time spent idle, 179
time spent running kernel code, 179
time spent running non-kernel
code, 179
view files, 172
vmstat, 174, 175
wa - time spent waiting
for1/0, 179, 180
logTime service, 227
Loops, bash
break keyword, 82
continue keyword, 82
set of names, 81
traditional style, 81
until loop, 84
while loop, 83, 84
Is command, 49

Masscan, 127

MBROLA, 335

Mint, 9

Mounted partition
dmidecode, 202, 203
/etc/fstab, 200
i-nex, 202
Im-sensor, 201
starting up, 200

N

Neofetch, output from, 288
Netstat, 136
Network usage
bmon, monitor each
interface, 165
breakdown by process, 165

INDEX

iftop, 167, 168
internet connection, 165
nethogs, list program by
bandwidth, 166, 167
nmap method, 121
ntop, 152

(o)
Org-agenda
adding items, 267
menu, 266
org-calendar, 268
schedule date, 267
TODO items, 266, 267
weekly view, 268
Organization mode (org-mode)
collapsing section, 261
condensed subsections, 261
expanded sections, 261
export, 263, 265
hierarchical headings, 260
tables, 262, 263
TODO list, 265

P

Parsing text
awk, 214-216
cut, 206, 207
grep, 2, 205, 206
JSON, 217-220
Regex, 211-214
sed, 217
sort, 209, 211
uniq, 208, 209
$PATH variables, 279
PEM files, 92, 109

357

INDEX

Pipes
fortune to cowsay, 63
installation, 62
multiple commands, 64

PopOSs, 9

Portable Operating System Interface

(POSIX), 3
Process ID (PID), 147

Q

Quotes
backtick/back quote, 85
double, 85
echo, 84

R

Random time-generating function, 87
random_time.sh file, 87

Red Hat Enterprise Linux (RHEL), 10
Remote desktop protocol (RDP), 89
Rsync, 111, 112

S

Scanning networks
arp, 136
arp-scan, 120, 121
devices, 126
dig, 135
easy but slow, 126
ethtool, 142, 143
faster way, 126
hping, 145, 146
http-enum script, 129
ifconfig, 136
IP address, 122

358

iptables, 142

ip utility, 137

Isof, 144, 145

masscan, 127, 128

mtr utility, 140

nc utility, 141

netstat, 136

nftables, 141

ngrep, 138, 139

nmap script, 128, 129

NSE script, 131

OS detection, 126

own script, 130

ping, 119

ports, 123, 125

route command, 137

socat, 146

ss utility, 137, 138

sysctl, 142

tools, 134

traceroute script, 129, 139, 140

tshark, 132, 133

utilities, 134

web address, 124

whois, 143, 144

Wireshark, 132
SCHED_FIFO, 160
SCHED_RR, 160
Scripts

conditional expression (see

Conditional expressions)

creation, 57

file permission, 58, 59, 61

file types, 61, 62

function, definition, 86, 87

importing source code, 87

passwd exists, 70

shebang, 58

Secure File Transfer Protocol (SFTP), 89, 108
Secure shell (SSH)
benefits, 91
config file, 94
default port, 105
escape sequences, 96, 97
flags used, 101
firewall, 105
hanging session, 98
jump box, 104
local tunnel, 99, 100
login, 93
reverse proxy, 103
reverse tunnel, 103
run a command, 95
session hanging, 96
SOCKS proxy, 100, 102
stty sane, 98
tunneling, 99
use, 90, 91
slabtop, 154
Space-cadet keyboard, 350
Standard redirect
existing content, 67
math equation, 69
output, 68
tee command, output diagram, 68
xargs, 69, 70
Stdin, stdout, and stderr, 189, 190
Stream editor (sed), 217
sudo, 6
systemctl
output, 223
system control, 221
uses, 222
systemd
disable a service, 224
enable a service, 224

INDEX

Linux distribution, 221

listing service, 228

other init systems, 232

running service, 227

scheduling system, 221

service states, 230

start a service, 224

status of a service, 223, 224

stop a service, 223

systemctl, output, 228

SysV init, 232, 233

unit files, 225-227, 229

upstart, 233, 234
System monitoring

df command, 164

disk space, 163

finding large files, 164

kill command, 156, 157

load average, 170

log folder (see Log folders)

Nagios, 183

pstree, 157, 158

renice command, 160

sets of priorities, 160

Snort, 182, 183

sysstat, 169, 170

top, 147 (seeTop)

users, 171

T

Teletypewriter (TTY), 188, 189
Telnet, 90
Tiling window
managers, 337-339
Tmuxinator, 312, 313
Tmux workflow
active sessions, 298

359

INDEX

Tmux workflow (cont.)
background, 295
border colors, 306
child windows, 299
clock mode, 302
color/style, 304, 305
help page, 303
horizontal split, 301
killing sessions, 297
levels, 297
named sessions, 296
panes, 300
remap commands, 308, 309
screen sharing, 309
scripts, 293, 294
SSH, 295, 296
status bar, 298, 305-308
switching sessions, 296
system monitor, 311
theme, 309-311
.tmux.conf, 303
vertical split, 301
Windows in sessions, 297

Top
atop, 151
field groups, 148
htop, 150
iftop, 152
iotop, 153
keyboard commands, 147
multi-field display, 148, 149
ntop, 152
PID, 147
slabtop, 154
zxcVm1t0, 148

360

U

Ubuntu, 7, 8
GNOME, 7
Lubuntu, 7
Lxqt (see Graphical interfaces)
Xubuntu, 7
Xfce (see Graphical interfaces)
Using man
current directory, pwd, 16
mbkdir command, 16
multiple directories, 17
numbered man pages, 13
program description, 12
rmdir command, 17
working with files, 17

\'

Viewing processes
background, 155
ps -ef running, 156
running ps, 155

Vim, 235
common commands, 236
compound commands, 239
find/replace, 242
find text, 242
G command, 237
help command, 237, 238
insert, 240
keys/symbols, 238
line numbers, 244
modes, 235
run a command, 243
sort command, 244

swap file, 245
terminal window, 243
visual mode, 239, 240
Vim-like keybindings, 52
vi-style keybindings, 52
Vim tutor, 241
Visual spacing glitch, 98

w

whereis command, 26
Wildcard characters, 53, 54
Wireshark, 8, 132

INDEX

XY
$SECONDS variable, 83

xbindkeys, 351
xev command, 349

Y4

Zombie process
build-essential package, 161
count in top, 162
C program, 161
creation, 162

Z Shell (ZSH), 347

361

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Linux Primer
	What Is Linux
	Unix vs. Linux
	POSIX Standard
	Choosing a Distro
	Branches of OSs
	Debian
	Ubuntu
	Kali
	Mint
	PopOS

	Fedora
	RHEL (Red Hat Enterprise Linux)
	CentOS

	Slackware
	OpenSUSE

	Arch
	Manjaro

	Gentoo
	Alpine Linux

	Common Commands
	Reading the Manual with the man Command
	Numbered man Pages

	Useful Commands for Navigating
	Navigating the Filesystem with ls and cd
	Invisible Files (dot files)
	Get Current Directory with pwd
	Make a Directory
	Recursively Make Directories
	Delete a Directory
	Working with Files
	Editing Files
	Commands for Working with Files
	Create Files or Update Timestamps with the touch Utility
	Get File Contents with Cat
	Get Less Content with Head or Tail
	Copying Files with cp
	Removing Files with rm
	Moving Files with mv
	Interactively View File Contents with Less
	Comparing Files
	Compare with Comm Command
	Compare with Cmp Command
	Compare with Diff Command
	ColorDiff Even Better Than Diff
	Get File Type

	Command Information with type, which, whereis, or locate
	More on Sudo
	Less Pipe
	Update/Install Less Pipe
	Regular Use of Less
	Opening PDFs with Less Pipe
	Opening Compressed Folder with Less Pipe
	Image Metadata with Less Pipe
	Other Files with Lesspipe

	Scheduling Processes with Cron Jobs
	Summary

	Chapter 2: File/Folder Navigation
	Basics
	inodes
	Get Current Location
	Symbolic Links
	Hard Links
	Navigation Stack with pushd and popd

	Ranger
	File Structure Visualization with Tree
	Navigate Filesystem with Vim
	Summary

	Chapter 3: History and Shortcuts
	History
	Bash Shortcuts
	Emacs vs. Vim Keyboard Bindings
	Reverse Search
	File Globbing or Wildcards

	Summary

	Chapter 4: Scripts and Pipes
	Creating Scripts
	Shebang

	File Permissions
	File Types
	Pipes
	Multiple Pipelines
	Chain Commands with && and ||
	Exit Codes for && and ||
	Using && with ||

	Redirects
	Redirect and Pipe at Once with tee
	xargs

	Conditional Expressions in Bash
	Is a Directory with -d
	Is a Normal File with -f
	Check if File Exists with -e
	Check if Exists and Size Greater Than 0 with -s
	Check if Exists and is an Executable with -x
	Check Value Is a String of Length 0 with -z
	Check Value Is a Non-empty String with -n
	Check That Strings Are Equal
	Check That Strings Are Not Equal
	Check String Sort Order
	Check If Numbers Are Equal
	Check If Numbers Are Not Equal
	Check If a Number Is Less Than
	Check If a Number Is Less Than or Equal
	Check If a Number Is Greater Than
	Check If a Number Is Greater Than or Equal

	Arithmetic with Double Parentheses
	Subshell with Parentheses
	Expansion with Curly Brace

	Loop in Bash
	While Loops
	Until Loops

	Quotes in Bash
	Command Substitution Using Backtick

	Defining Functions
	Source Code from a File
	Summary

	Chapter 5: Using SSH
	History of SSH
	Basic SSH Use
	Keypairs with ssh-keygen
	PEM and Other Key Files
	Disable Password Login on Server
	Server Nicknames with SSH Config File

	Run a Command on Connection
	Break a Hanging SSH Session
	stty sane
	Stop SSH Hanging
	SSH Tunneling
	Local SSH Tunnel
	Create a SOCKS Proxy with SSH
	Reverse SSH Tunnel
	Serving a Website over Reverse Proxy
	SSH Proxy Jump
	Change Default Port on SSH Server
	Open Firewall
	Modify sshd_config
	Summary

	Chapter 6: File Transfer
	FTP
	SFTP
	SCP
	Rsync
	Set Up Cron Job for Rsync
	Two-Way Sync with Unison
	Automatically Sync When File Changed with Unison
	Unison Settings File
	Create a Service to Keep Unison Running

	Summary

	Chapter 7: Network Scanning
	Check Connection with Ping
	arp-scan Method
	nmap Method
	View Open Ports
	Devices and Ports at Once
	Easy but Slow
	Faster Method
	OS Detection

	Scanning the Internet with masscan
	Run Scripts with nmap
	traceroute Script
	http-enum Script
	Write Your Own Script for nmap
	Wireshark/tshark
	More Network Tools
	Dig
	Netstat (Deprecated)
	ifconfig (Deprecated)
	arp (Deprecated)
	route (Deprecated)
	ip
	ss
	ngrep
	traceroute
	mtr
	nc
	nft – nftables
	iptables (Deprecated)
	sysctl
	ethtool
	whois
	lsof
	hping
	socat

	Summary

	Chapter 8: System Monitoring
	Top
	Top-Like Programs
	htop
	atop
	iftop
	ntop
	iotop
	slabtop

	More on Viewing Processes
	Kill a Process
	Visualize Process Tree with pstree
	Process Nice Value
	Other Priority Systems
	Change Nice Value
	Zombie Process
	Check Available Disk Space
	Find Largest Files on System
	Monitor Device Network Use
	bmon – Monitor Each Network Interface
	nethogs – List Programs by Bandwidth Use
	iftop

	Other Programs for Monitoring
	sysstat
	Load Average
	Users

	Log Folder
	Other sysstat Utilities
	vmstat
	r – Threads Waiting for Runtime
	b – Threads Blocked by I/O
	swpd – Total Swap Used
	free – Total Free Memory
	buff – Memory Used in Buffers
	cache – Memory Used as Cache
	si – Memory Swapped In from Disk
	so – Memory Swapped Out from Disk
	bi – Blocks Received from Block Device
	bo – Blocks Sent to Block Device
	in – Interrupts per Second
	cs – Context Switches
	us – Time Spent Running Non-kernel Code
	sy – Time Spent Running Kernel Code
	id – Time Spent Idle
	wa – Time Spent Waiting for I/O
	st – Time Stolen from Virtual Machine
	nmon

	Advanced Network Monitoring with Snort
	Nagios
	Summary

	Chapter 9: Hardware Details and /dev
	Commands for Hardware Details
	The /dev/ Folder
	Special Files in the /dev/ Folder
	Teletypewriter
	stdin, stdout, and stderr
	/dev/null
	/dev/random and /dev/urandom
	/dev/zero
	What Is the Kernel?
	Getting Kernel Version
	Configure and Mount a Drive
	Delete Partition
	Create Partition
	Format Partition
	Mount Partition
	System Link from Partition to ~/
	Making Mounted Partition Persistent
	lm-sensor
	inxi
	dmidecode

	Summary

	Chapter 10: Parsing Text
	grep
	cut
	uniq
	sort
	Regex
	awk
	sed
	Using JQ to Work with JSON
	Summary

	Chapter 11: systemd
	systemctl
	Stop, Start, Disable, and Enable Services
	Stop a Service
	Get Status of a Service
	Start a Service
	Disable a Service
	Enable a Service

	Unit Files
	Find Running Services
	journalctl
	journalctl – Parsing by Time
	Other Init Systems
	SysV Init
	Upstart
	Summary

	Chapter 12: Vim
	Modes
	Common Commands
	Using Help Command
	Compound Commands
	Selecting with Visual Mode
	Vim Tutor
	Find Text
	Find and Replace
	Run a Command
	Vim Sort Command
	Show and Hide Line Numbers
	Swap Files
	Summary

	Chapter 13: Emacs
	Installing Emacs
	Vim Bindings aka Emacs Evil Mode
	Built-in Tutorial
	Run Emacs in Terminal
	Hints with which-key-mode
	Emacs Artist Mode
	Org-Mode
	Tables in Org-Mode
	Export from Org-Mode
	Org-Agenda
	Sync Org-Agenda with Google Calendar
	Outline Presentation Mode
	Emacs TRAMP
	Other Modes
	Summary

	Chapter 14: Configure Bash
	Configuration Scripts
	.bashrc_profile or .profile
	.bashrc
	.bash_logout
	Global Versions
	Useful Configs for .bashrc
	Defining Aliases
	Custom Functions
	Adding to PATH
	Changing PS1 Prompt
	PS2, PS3, and PS4
	Themes
	Live Clock in Terminal
	Run a Program on Open
	Importing a File
	.inputrc
	Other Dotfiles
	Summary

	Chapter 15: Tmux Workflow
	Background Scripts
	Background Scripts with Tmux
	Tmux with SSH
	Named Sessions
	Switching Tmux Sessions
	Killing Sessions
	Windows in Sessions
	Pane Splitting
	Clock Mode
	Help Page
	Customize with .tmux.conf
	Configure Color and Style
	Change Status Bar Contents
	Remap Commands
	Screen Sharing with Tmux
	Theme Packs
	Tmuxinator
	Summary

	Chapter 16: Terminal Tools for Working with Images and Videos
	ImageMagick
	Creating an Image with Text
	Getting Image Information
	Label an Image
	ffmpeg
	Convert File Types
	Compress a Video
	Slow Down a Video
	Trim a Video
	Increase Volume in a Video
	Download Videos with youtube-dl
	Creating Charts with gnuplot
	gnuplot to Image File
	Advanced Examples/Demo Folder
	Startup Animation
	Make a Custom Boot Animation
	Summary

	Chapter 17: Extras
	Cal
	espeak
	Improve Sound of espeak Voice
	Output espeak to Audio File
	Math on the Command Line
	Tiling Window Managers
	Creating Tiles
	Change Tile in Focus
	Move Tiles
	Workspaces in i3wm
	Floating Tiles
	Full-Screen Mode
	Modifying i3wm Config File
	Bind Keys in i3wm Config
	Change Colors in i3wm Config
	i3status Config File
	Alternative Shells
	Z Shell
	Oh My ZSH
	Fish
	Remapping Keys
	clear capslock
	Custom Shortcuts with Xbindkeys
	Additional Resources
	Summary

	Index

