Core Dump Analysis

A,

A =~~~ E 4- oo b o
AN O O JI 1010
V an \TA 91 o | o | ALSs

Dmitry Vostokov
Software Diagnostics Services

Published by OpenTask, Republic of Ireland

Copyright © 2015 by OpenTask

Copyright © 2015 by Software Diagnostics Services

Copyright © 2015 by Dmitry Vostokov

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, without the prior written permission of the

publisher.

You must not circulate this book in any other binding or cover, and you must impose the same
condition on any acquirer.

Product and company names mentioned in this book may be trademarks of their owners.

OpenTask books and magazines are available through booksellers and distributors worldwide.
For further information or comments send requests to press@opentask.com.

A CIP catalog record for this book is available from the British Library.
[SBN-13: 978-1-908043-97-9 (Paperback)
1st printing, 2015

Revision 1.01 (February, 2016)

Contents

Presentation SIAes and TranSCriPL ... i ettt e e e e e e e e e e e e e e raaeeaeeaaaaaeaaeaaaaeaes 5
(@70 oI D T¥ 1o o] o @]] [=Tot o) o PR 25
o ot o =T ol] PO PRPPP 31
=T ol 1T O PR UUPPR PR 36
EXEICISE AL ..ottt e e e e e e e e e s a e e e e s e a e 40
EXEICISE AZ2D ..ieieiiiieie ettt ettt et e e e s e e e e e e e e e e e e e e e et e e e e e e e e et e e e e e r e e e et e e e e e rene e e e e e e nnreeees 53
EXEICISE A2C ... eeeiieeiieieeee ettt e ettt e e e s e et e e e e e e e s bt e e e e e e e e e et e e e e e e r e et et e e e e e b e et et e e e e e reer e e e e e e e reneeeeeeanrreeas 58
EXEICISE A3 . eeeiiiiiee ittt ettt et e e ettt e e e e s ettt e e e e e s e a b e e e e e e e e e e r et et e e e e e e b e et e e e e e e e b e et et e e e e e e reeeeee e e e e rreneeeeeeaannrraees 62
(] (ol Y= Y PO TP PUPPPPPPPPPPT 66
EXEICISE AD .ottt e e e a e e s a e e e e e s ra s 72
EXEICISE AD ..ottt e e e e e e e e a s e e e s ba e 76
EXEICISE AT ettt ettt e e e e e a e et e e e s a e e e e s e s e e 93
EXEICISE A8 ..ottt e e s e e e b e e e e e s s earae 102
EXEICISE AD .ottt e a e e e b s e e e e e s b s s e e e e s s earae 117
EXEICISE ALD ..eiiiiiiiiiiiiiiiie et et e e e a et e e et a s et e e e s a s s e e e e s s aarres 132
EXEICISE ALL ..ottt e et e et e e e a et e et a e et e e e s ra e e e e e s saanree 149
EXEICISE AL ...ttt ettt e ettt e e e s et e e e s s et e e e s e n et e e e e s s et e e et e e e s s e b r e e e e e e e s aenrnee 157
PN o o BT 01U T ol I o Yo LT UUUR N 171
7Y o] 10 PP PPPPPRRRPPRE 173
LY o o) PP PPPPPRPRPPRE 174
Y o] o 171 5 JR U UPUPPTPPPRRN 175
Y o] o 7 PPN 177
Y o] o1 TP PPPPPRRRPPRE 179
LY o] o PP UPUPPTPPPPRNN 181
LY o] o 1 P OO PP UPPPPTPPPPRIN 183
FAY o] o1 OO PUPPPPTPPPRRNN 185
LY o] o)Y AP PUPPPPTPPPPRNN 187
LY o] o1 U PUPPPPTRPPPRN 189
FAY o] o1 P OO P P PUPPUPTPPPPRNN 191
1Y o] o O L TP U SR PPPUPPPPROPRI 193
APPLL / APPL2 oottt ettt e e e et te e e e ebbeeeaet——eeeabaaaeaabeeeeabaeeeaatbaeeeabaaeeaatbaaeeabreeeeaataeeeanraaeenn 195
Y= (=Yool o T A (=T o O T O OO P PO PO PP PPPTOPRRINt 197
LU 2o T =Yl (e = =) RSO 199

TaToleT oo (N AT ¥ [I - [ol YRR UPPPPN 200

) - ol QN I 1oL TSP P PO PSP TP PPRTOPRIS 201
NULL POINEEE (COUR).ciiiiiiieiiieieieiieecetttttt bttt ereeeeeeeeeeeeeeeeeeeeeeeeeaaeaeaeeeaeeeeeseeeeessesssesssssssssssssssssssssssssssrssrensnnnnns 202
Y o1 T g Y= N a1 =T L SRR 203
Dynamic Memory Corruption (ProCeSS NEAP).....c.uuiiiiiei it ettt e e e e ettt e e e e e eebtraeeeeeeesbtaaeeeeeesenstaaeaaeesansses 204
EXECUTION RESIAUR ..ttt e b e e st e e s e e s s b e e e e s be e e e snreeesaanneeesamreeesanraneesn 205
Coincidental Symbolic INfOrM@atioN........ouii i e e e e e e e st ee e e e e e e s nsbaeeeeaeeennnaeeeeas 207
Y =1 O M7= i Lo A AV =] ol e {o Lo [<) IR 208
LYo [oA VAT o N (1 =] ol ' Yo Yo [I UUU U UURRNt 209
LOCAl BUFFEI OVEITIOW ..ttt e b e e b et e st e s bt e e b et e s ab e e sabe e e beesbeeesbbeesabeesabeesabeean 210
(O o (o= o) o ISPt 211
o= =1 =) ¢ OO PPOPPPPPPPPPPPR 212
ACTIVE TRFAM .ttt ettt ettt e e st e e s bt e e e s b bt e e s ab e e e e sabb e e e s aabe e e e aabbe e e s nbeeeesabbeeeesasbeeesnbaeesanreneenn 213
Y Y D] o T T O U RO UUUUOPPRPPRt 214
(@1 g Tor= | I 2T=Y =J o o TSP UUUU RN 215

Presentation Slides and Transcript

Linux

Core Dump Analysis

~ A

Dmitry Vostokov
Software Diagnostics Services

Hello, everyone, my name is Dmitry Vostokov, and I teach this training course.

Prerequisites s e

used in practice exercises

Basic Linux troubleshooting

B 2015 Software Diagnostics Services

The prerequisites are hard to define. Some of you have software development experience and some
not. However, one thing is certain that to get most of this training you are expected to have basic
troubleshooting experience. Another thing I expect you to be familiar with is hexadecimal notation
and that you have seen or can read programming source code in some language. The ability to read
assembly language has some advantages but not necessary for this training. Windows memory dump
analysis experience may really help here and ease the transition but not absolutely necessary. If you
have read either Accelerated Mac OS X Core Dump Analysis or Accelerated Windows Memory
Dump Analysis book or both, you may find the similar approach here.

Training Goals

Review fundamentals

Learn how to collect core dumps

Learn how to analyze core dumps

8 2015 Software Diagnostics Services

Our primary goal is to learn core dump analysis in an accelerated fashion. So first we review
absolutely essential fundamentals necessary for core dump analysis. Also, this training is about user
process core dump analysis and not about kernel core dump analysis. An additional goal is to leverage
Windows or Mac OS X debugging, and memory dump analysis experience you may have.

Training Principles

Talk only about what | can show

Lots of pictures

Lots of examples

Original content

8 2015 Software Diagnostics Services

For me, there were many training formats to consider, and I decided that the best way is to
concentrate on hands-on exercises. Specifically, for this training, I developed 13 of them, and they
utilize the same pattern-driven approach I used in Accelerated Windows Memory Dump Analysis
and Accelerated Mac OS X Core Dump Analysis training.

10

Schedule Summary

DEVAN
Analysis Fundamentals (30 minutes)

Core dump collection methods (10 minutes)

Basic Core Memory Dumps (1 hour 20 minutes)
Day 2

Core Memory Dumps (2 hours)

8 2015 Software Diagnostics Services

This is a roughly planned schedule.

11

Part 1: Fundamentals

B 2015 Software Diagnostics Services

Now I present you some pictures. [use 64-bit examples. Most of the time fundamentals do not change
when we move to 32-bit Linux and the analysis process most of the time is the same.

12

Memory/Kernel/User Space

Kernel Space

BEBASEFFFFFFFFE]

User Space

NULL Pointers

8 2015 Software Diagnostics Services

If you are coming from Windows or Mac OS X background, you find fundamentals almost the same.
For every process Linux memory range is divided into kernel space part, user space part and an
inaccessible part to catch null pointers'. This non-accessible region is different from Mac OS X where it
is 1 GB. I follow the long tradition to use red color for kernel and blue color for user part. Please note
that there is a difference between space and mode. The mode is execution privilege attribute, for
example, code running in kernel space has higher execution privilege than code running in user space.
However, kernel code can access user space and access data there. We say that such code is running in
kernel mode. On the contrary, the application code from user space is running in user mode and
because of its lower privilege, it cannot access kernel space. This prevents accidental kernel
modifications. Otherwise, you could easily crash your system. I put addresses on the right. This
uniform memory space is called process virtual space because it is an abstraction that allows us to
analyze core dumps without thinking about how it is all organized in physical memory. When we look
at process dumps, we are concerned with virtual space only. In this training, we will only see user
space.

1 On my Debian64 system it is OXFFFF, as seen from /proc/sys/vm/mmap_min_addr value.

13

App/Process/Library

Kernel Space

BRAATFFFFFFFFFFF

User Space (PID 9200)

) 2015 Software Diagnostics Services

When an app is loaded, all its referenced dynamic libraries are mapped to virtual memory space.
Different sections of the same file (like code and data) may be mapped into a different portion of
memory. In contrast, modules in Windows are organized sequentially in virtual memory space. A
process then is setup for running, and a process ID is assigned to it. If you run another such app, it will
have the different virtual memory space.

14

Process Memory Dump

info sharedlibrary
Kernel Space Lists dynamic libraries

maintenance info sections
Lists memory regions

BOBBYEFFFEFFFEE]

User Space (PID 9208)

&
»

#
FH008000E1 8608
.

© 2015 Software Diagnostics Services

When we save a process core memory dump a user space portion of the process space is saved
without any kernel space stuff. However, we never see such large core dumps unless we have memory
leaks. This is because process space has gaps unfilled with code and data. These unallocated parts are
not saved in a core dump. However, if some parts were paged out and reside in a page file, they are
usually brought back before saving a core dump.

15

Lightweight Processes (Threads)

info threads
Lists threads
Kernel Space thread <n>
Switches between threads

thread apply all bt
Lists stack traces from all

threads
LWP 9400 LWP 9481

User Space (PID 9400)

©2015 Software Diagnostics Services

Now we come to another important fundamental concept in Linux core dump analysis: a thread or
lightweight process (LWP). It is basically a unit of execution, and there can be many threads (LWPs)
for a given process. Every thread just executes some code and performs various tasks. Every thread
has its ID (LWP ID). In this training, we also learn how to navigate between process threads. Note that
threads transition to kernel space via libc dynamic library similar to ntdll on Windows and
libsystem_kernel in Mac OS X. Threads additional to the main thread (POSIX Threads) originate from
libc and libpthread dynamic libraries similar to libsystem_c in Mac OS X.

16

Thread Stack Raw Data

Xi<n>a <address>
Prints n addresses with
corresponding symbol

Kernel Space A
mappings if any

LWP 9468 LWP 9481
Stack for LWP 9480 (TID)

1d
libpthread.so
stack for LWP 9481 (TID)

User Space (PID 9400)

©2015 Software Diagnostics Services

Every thread needs a temporary memory region to store its execution history and temporary data.
This region is called a thread stack. Please note that the stack region is just any other memory region,
and you can use any GDB data dumping commands there. We will also learn how to get thread stack
region address range. Examining raw stack data can give some hints to the past app behavior: the so-
called Execution Residue pattern.

17

Thread Stack Trace

Functional)

User Stack for LWP 18787

FunctionB{};

(gdb) bt

#0 @xeaea7fede7cbfasd FunctionD
#1 @xeaea7fede7cbfiee FunctiaonC
#2 @x0A000008004085ca FunctionB

Return address FunctionC+lle . #3 @x08000000004005da Functionad
Bxeea7 feos7abf 308

FunctionB()

FunctionC{);

Return address FunctionB+228
LRGSR L

Return address Functiona+iie
B/ eesda

FunctionD

® 2015 Software Diagnostics Services

Now we explain thread stack traces. Suppose we have source code where FunctionA calls FunctionB
at some point and FunctionB calls FunctionC and so on. This is a thread of execution. If FunctionA calls
FunctionB, you expect the execution thread to return to the same place where it left, and to resume
from there. This is achieved by saving a return address in the thread stack region. So every return
address is saved and then restored during the course of a thread execution. Although the memory
addresses grow from top to bottom on this picture return addresses are saved from bottom to
top.This might seem counter-intuitive to all previous pictures, but this is how you see the output from
GDB commands. What GDB does when you instruct it to dump a backtrace from a given thread is to
analyze the thread raw stack data and figure out return addresses, map them to a symbolic form
according to symbol files and show them from top to bottom. Note that FunctionD is not present in the
raw stack data on the left because it is a currently executing function called from FunctionC. However,
FunctionC called FunctionD, and the return address of FunctionC was saved. In the box on the right,
we see the result of GDB bt command.

18

GDB vs. WinDbg

(gdb) bt

#8 @xeaea7feds76bf48d in FunctionD ()
#1 0x00007 fe9676bf300 in FunctionC ()
#2 @wB00D00RER84085ca in FunctionB ()
#3 @w00eDeeRERe4085da in FunctionA ()

WinDbg Commands

2:200> kn

B0 eeve7fe9676bf308 Module! FunctionD+offset
81 90000000004085ca Module! FunctionC+13@
02 PEEEEEEEEE4805da AppA!FunctionB+228

B3 00PEEEEEEEEEEERE AppAlFunctionA+118

© 2015 Software Diagnostics Services

The difference from WinDbg (from Debugging Tools for Windows) here is that the return address is
on the same line for the function to return (except for FunctionD, where the address is the next
instruction to execute) whereas in WinDbg it is for the function on the next line.

19

Thread Stack Trace (no symbols)

User Stack for LWP 18787

Symbol file App.sym

FunctionA 22000 - 23000
FunctionB 32080 - 33000

Return address FunctionC+138
BxPE0eTFes676bf 388

Return address
‘BxBaasaBaa8ala85ca

(gdb) bt

#0 @x080a87 fed676bf48d in FunctionD ()
#1 Oxe8ea7fe9676bf388 in FunctionC ()
#2 0xABOAPAERRA4EASca in 22 ()

#3 0xA00APAERRA4EASda in 22 ()

Return address
Bx00080000004005da

® 2015 Software Diagnostics Services

Here I'd like to show you why symbol files are important and what stack traces you get without them.
Symbol files just provide mappings between memory address ranges and associated symbol names
like the table of contents in a book. So in the absence of symbols, we are left with bare addresses that
are saved in a dump. For example, without App symbols, we have the output shown in the box on the
right.

20

Exceptions (Access Violation)

stack for LWP 36€4 (TID)

(gdb) x <address>
@x<address>: Cannot access
signal 11 (segmentation fault) memory at address 8x<{address>

NULL pointer Ox8

©2015 Software Diagnostics Services

Now we talk about access violation exceptions. During the thread execution, it accesses various
memory addresses doing reads and writes. Sometimes memory is not present due to gaps in virtual
address space or different protection levels like read-only or no-execute memory regions. If a thread
tries to violate that, we get an exception that is also translated to a traditional UNIX signal. Certain
regions are forbidden to read and write such as the first 64KB. If we have such an access violation
there, then it is called a NULL pointer access. Note that any thread can have an exception (a victim
thread in Mac OS X). It is also sometimes the case that code can catch these exceptions preventing a
user from seeing error messages. Such exceptions can contribute to corruption, and we call then
hidden.

21

Exceptions (Runtime)

stack for LWP 3714 (TID)

libstdc++.s0

stack for LWP 3715 (TID)

User Space (PID 3714)

! throws exception

App

B 2015 Software Diagnostics Services

However, not all exceptions happen from invalid access. Many exceptions are generated by the code
itself when it checks for some condition, and it is not satisfied, for example, when code checks a buffer
or an array to verify whether it is full before trying to add more data. If it finds it is already full, the
code throws an exception translated to SIGABRT. We would see that in one of our practice examples
when C++ code throws a C++ exception. Such exceptions are usually called runtime exceptions.

22

Pattern-Oriented Diagnostic Analysis

a common recurrent identifiable problem together with a set of
recommendations and possible solutions to apply in a specific context.

a set of indicators (symptoms, signs) describing a problem.

a common recurrent analysis technique and method
of diagnostic pattern identification in a specific context.

common names of diagnostic and diagnostic analysis
patterns. The same language for any operating system: Windows, Mac OS X, Linux, ...

Problem Resolution

Information Collection

Information Extraction Problem ldentification Troubleshooting
(Seripts) —) =) —

(Checklists) (Patterns) Suggestions
Debugging Strategy

8 2015 Software Diagnostics Services

A few words about logs, checklists, and patterns. Core memory dump analysis is usually an analysis of
a text for the presence of diagnostic patterns. We run commands; they output text, and then we look
at that textual output and when we find suspicious diagnostic indicators we execute more commands.
Here pattern and command checklists can be very useful.

23

24

Core Dump Collection

25

26

Part 2: Core Dump Collection

B 2015 Software Diagnostics Services

Here I'd like to show you how to collect core dumps because by default this option is switched off on
Linux.

27

Enabling Collection

Temporary for the current user:

$ ulimit -c unlimited

Permanent for every user except root:
Edit the file:
Add or uncomment the line:
soft core unlimited
To limit root to 1GB add or uncomment this line:

root hard core 1000000

8 2015 Software Diagnostics Services

Usually, a process core dump is stored in the working directory of the process.

28

Generation Methods

Kill (requires ulimit):

$ kill -s SIGQUIT PID
$ kill -s SIGABRT PID

gcore:

$ gcore PID

29

30

Practice Exercises

31

32

Part 3: Practice Exercises

B 2015 Software Diagnostics Services

Now we come to practice. The goal is to show you important commands and how their output helps in
recognizing patterns of abnormal software behavior.

33

Links

Memory Dumps:

Links are the below on this page

Exercise Transcripts:

Included in this book

http: //www.patterndiagnostics.com/Training/ALCDA /ALCDA-Dumps.tar.gz

34

http://www.patterndiagnostics.com/Training/ALCDA/ALCDA-Dumps.tar.gz

Exercise 0

Goal: Install GDB and check if GDB loads a core dump
correctly

Patterns: Incorrect Stack Trace

8 2015 Software Diagnostics Services

35

Exercise 0

Goal: Install GDB and check if GDB loads a core dump correctly.

Patterns: Incorrect Stack Trace.

1. Download and install the latest version of GDB. For Debian64 we used the following command in root mode:
root@debian64# apt-get install gdb

2. Verify that GDB is accessible and then exit it (g command):

training@debian64:~/ALCDA$ gdb

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

(gdb) q
training@debian64:~/ALCDA$

3. Load a core dump and AppO executable:
training@debian64:~/ALCDA$ gdb -c ./App@/core -se ./App0/App0

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/App®@/App@...(no debugging symbols found)...done.
[New LWP 3142]

Core was generated by " ./App@'.

Program terminated with signal 6, Aborted.

#0 0x000000000041b145 in raise ()

4. Verify that the stack trace (back trace) is shown correctly with symbols:

(gdb) bt

#0 0x000000000041b145 in raise ()
#1 0x0000000000400eb0 in abort ()
#2 0x00000000004004d9 in bar ()
#3 0x00000000004004e7 in foo ()
#4 0x0000000000400502 in main ()

36

5. To avoid possible confusion and glitches we recommend to exit GDB after each exercise.

(gdb) q

training@debian64:~/ALCDA$

37

Process Core Dumps

Exercises A1-A12

8 2015 Software Diagnostics Services

All exercises were modeled on real-life examples using specially constructed applications. We will
learn how to recognize and use more than 30 analysis patterns.

38

Exercise A1

Goal: Learn how to list stack traces, disassemble functions,
check their correctness, dump data, get environment

Patterns: Manual Dump, Stack Trace, Stack Trace
Collection, Annotated Disassembly, Paratext, Not My
Version, Environment Hint

8 2015 Software Diagnostics Services

39

Exercise Al

Goal: Learn how to list stack traces, disassemble functions, check their correctness, dump data, get environment.

Patterns: Manual Dump, Stack Trace, Stack Trace Collection, Annotated Disassembly, Paratext, Not My Version,
Environment Hint.

1. Load a core dump core.3308 and App1 executable:

training@debian64:~/ALCDA$ gdb -c ./Appl/core.3308 -se ./Appl/Appl

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/Appl/Appl...done.

[New LWP 3309]

[New LWP 3310]

[New LWP 3311]

[New LWP 3312]

[New LWP 3313]

[New LWP 3308]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1linux-gnu/libthread_db.so.1".
Core was generated by " /home/training/ALCDA/Appl/Appl’.

#0 0x000000000042fdfl in nanosleep ()

2. List all threads:

(gdb) info threads

Id Target Id Frame

6 LWP 3308 0x000000000042fdf1 in nanosleep ()

5 LWP 3313 0x000000000042fdf1 in nanosleep ()

4 LWP 3312 0x000000000042fdf1 in nanosleep ()

3 LWP 3311 0x000000000042fdf1 in nanosleep ()

2 LWP 3310 0x000000000042fdf1l in nanosleep ()
* 1 LWP 3309 0x000000000042Fdf1 in nanosleep ()
3. Get all thread stack traces:

(gdb) thread apply all bt

Thread 6 (LWP 3308):

#0 0x000000000042fdf1l in nanosleep ()
#1 0x000000000042fccO in sleep ()

#2 0x00000000004006c1 in main ()

40

Thread 5 (LWP 3313):

#0
#1
#2
#3
#4
#5

#6
#7

0x000000000042fdf1
0x000000000042fcCcO
0x00000000004005F2
0x0000000000400602
0x000000000040061a
0x000000000040150

in
in
in
in
in
in

nanosleep ()

sleep ()

bar_five ()

foo_five ()

thread_five ()

start_thread (arg=<optimized out>)

at pthread_create.c:304
0x0000000000432429 in clone ()
0x0000000000000000 in ?? ()

Thread 4 (LWP 3312):

#0
#1
#2
#3
#4
#5

0x000000000042Fdf1
0x000000000042fcCO
0x00000000004005b5
0x00000000004005c5
0x00000000004005dd
0x000000000040150

in
in
in
in
in
in

nanosleep ()

sleep ()

bar_four ()

foo_four ()

thread_four ()

start_thread (arg=<optimized out>)

---Type <return> to continue, or q <return> to quit---
at pthread_create.c:304

#6 0x0000000000432439 in clone ()

#7 0x0000000000000000 in ?? ()

Thread 3 (LWP 3311):

#0
#1
#2
#3
#4
#5

#6
#7

0x000000000042fdf1
0x000000000042fccO
0x0000000000400578
0x0000000000400588
0x0000000000400520
0x000000000040150

in
in
in
in
in
in

nanosleep ()

sleep ()

bar_three ()

foo_three ()

thread_three ()

start_thread (arg=<optimized out>)

at pthread_create.c:304
0x0000000000432429 in clone ()
0x0000000000000000 in ?? ()

Thread 2 (LWP 3310):

#9
#1
#2
#3
#4
#5

#6

0x000000000042fdf1
0x000000000042fccO
0x000000000040053b
0x000000000040054b
0x0000000000400563
0x000000000040150

in
in
in
in
in
in

nanosleep ()

sleep ()

bar_two ()

foo_two ()

thread_two ()

start_thread (arg=<optimized out>)

at pthread_create.c:304

0x0000000000432429 in clone ()

---Type <return> to continue, or q <return> to quit---
#7 ©x0000000000000000 in ?? ()

Thread 1 (LWP 3309):

#0
#1
#2
#3
#4
#5

#6
#7

0x000000000042fdf1
0x000000000042fccO
0x00000000004004fe
0x000000000040050e
0x0000000000400526
0x000000000040150

in
in
in
in
in
in

nanosleep ()

sleep ()

bar_one ()

foo_one ()

thread_one ()

start_thread (arg=<optimized out>)

at pthread_create.c:304
0x0000000000432439 in clone ()
0x0000000000000000 in ?? ()

41

4, Switch to the thread #2 and get its stack trace:

(gdb) thread 2
[Switching to thread 2 (LWP 3310)]
#0 0x000000000042fdf1l in nanosleep ()

(gdb) bt

#0 0x000000000042fdfl in nanosleep ()

#1 0Ox000000000042fccO in sleep ()

#2 ©Ox000000000040053b in bar_two ()

#3 0x000000000040054b in foo_two ()

#4 0Ox0000000000400563 in thread_two ()

#5 0Ox00000000004015f0 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#6 0Ox0000000000432429 in clone ()

#7 0x0000000000000000 in ?? ()

5. Check that bar_two called sleep function:

(gdb) disassemble bar_two
Dump of assembler code for function bar_two:

0x000000000040052d <+0>: push %rbp
0x000000000040052e <+1>: mov %rsp,%rbp
0x0000000000400531 <+4>: mov $oxffffffff,%edi
0x0000000000400536 <+9>: callg ©x42fbed <sleep>
0Xx000000000040053b <+14>: pop %rbp
0x000000000040053Cc <+15>: retq

End of assembler dump.

We see that the address in the stack trace for bar_two function is the address to return to after calling sleep
function.

6. Compare with Intel disassembly flavor:

(gdb) set disassembly-flavor intel

(gdb) disassemble bar_two
Dump of assembler code for function bar_two:

0x000000000040052d <+0>: push rbp
0x000000000040052e <+1>: mov rbp,rsp
0x0000000000400531 <+4>: mov edi, Oxffffffff
0x0000000000400536 <+9>: call ©ox42fbed <sleep>
0x000000000040053b <+14>: pop rbp
0x000000000040053C <+15>: ret

End of assembler dump.

(gdb) set disassembly-flavor att

42

7. Get App1 data section from the output of pmap (pmap.3308):

3308: ./Appl
0000000000400000 732K
00000000006b6000 8K
00000000006b8000 28K
000000000227c000 140K
0000712257e66000 4K
0000712257e67000 8192K
0000712258667000 4K
0000712258668000 8192K
0000712258e68000 4K
0000712258e69000 8192K
0000712259669000 4K
0000712259662000 8192K
0000712259€62000 4K
00007f2259e6b000 8192K
00007ffc7d24d000 132K
000071 fc7d299000 4K
fHffffffff600000 4K
total 42028K
8.

r-x-- /hom
rw--- /hom
rw--- [
rw--- [
————— [
rw--- [
————— [
rw--- [
————— [
rw--- [
----- [
rw--- [
————— [
rw--- [
rw--- [
r-x-- [
R=X=1= [

e/training/ALCDA/Appl/Appl
e/training/ALCDA/Appl/Appl
anon]

anon
anon
anon
anon
anon
anon
anon
anon
anon
anon
anon
stack]
anon]
anon]

e e e e e e e e] e

Compare with the section information in the core dump:

(gdb) maintenance info sections
Exec file:
* /home/training/ALCDA/Appl/Appl', file type elf64-x86-64.

0x00400158->0x00400178
0x00400178->0x0040019C
0x00400120->0x004002d8
0x004002d8->0x004002e6
0x0040020->0x004003c0
0x004003c0->0x0048b1b8
0x0048b1c0->0x0048bd3e
0x0048bd40->0x0048bdal
0x0048bda4- >0x0048bdad
0x0048bdco->0x004a9d24
0x004a9d28->0x00429d88

at
at
at
at
at
at
at
at
at
at
at

---Type <return> to continue,

0x00429d88->0x00429d90
0x004a39d90- >0x00429d98
0x004239d98- >0x004b686C
Ox004b686C->0x004b6986
0x006b6988 - >0x006b69bO
0x006b69b0- >0x006b69€0
Ox006b69b0- >0x006b69CO
0x006b69C0O- >0x006b69d0
Ox006b69d0- >0x006b69d8
0x006b69e€0- >0x006b6a50
Ox006b6a50- >0x006b6260
Ox006b6a60- >0x006b62€c0O
0x006b6ae0- >0x006b7710
0x006b7800- >0x006beb68
0x006beb68->0x006beb98
0Xx00000000 - >0x00000038
0Xx00000000 - >0x00000390

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

---Type <return> to continue,

0x00000000 - >0x0000vac3
0x00000000->0x00011440
0x00000000->0x000021b1
0x00000000->0x00002ebc
0x00000000- >0x000038da
0x00000000- >0x0000878e
0x00000000- >0x00001280

at
at
at
at
at
at
at

0x00000158:
0x00000178:
0x000001a0:
0x000002d8:
0x000002f0:
0Xx000003c0:
0x0008b1co:
0x0008bd40:
0x0008bda4:
0x0008bdco:
0x000a9d28:

or q <retu

0x000a9d88:
0x000a9d90:
0x000a9d98:
0x000b686C :
0x000b6988 :
0x000b69b0 :
0x000b69b0 :
0x000b69¢0O:
0x000b69d0:
0x000b69e0:
0x000b6a50:
Ox000b6a60:
0x000b6ae0d:
0x000b77f0:
0x000b77f0:
0x000b77f0:
0x000b7830:

or q <retu

0x000b7bcO:
0x000b8683:
0x000c9ac3:
0x000cbc74:
0x000ceb30:
0x000d240a:
0x000dab98:

.note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
.note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
.rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS

.init ALLOC LOAD READONLY CODE HAS_CONTENTS

.plt ALLOC LOAD READONLY CODE HAS_CONTENTS

.text ALLOC LOAD READONLY CODE HAS_CONTENTS
__libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
__libc_thread_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
.fini ALLOC LOAD READONLY CODE HAS_CONTENTS

.rodata ALLOC LOAD READONLY DATA HAS_CONTENTS
__libc_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS
rn> to quit---

_ libc_atexit ALLOC LOAD READONLY DATA HAS_CONTENTS
__libc_thread_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS
.eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS
.gcc_except_table ALLOC LOAD READONLY DATA HAS_CONTENTS
.tdata ALLOC LOAD DATA HAS_CONTENTS

.tbss ALLOC

.init_array ALLOC LOAD DATA HAS_CONTENTS

.fini_array ALLOC LOAD DATA HAS_CONTENTS

.jcr ALLOC LOAD DATA HAS_CONTENTS

.data.rel.ro ALLOC LOAD DATA HAS_CONTENTS

.got ALLOC LOAD DATA HAS_CONTENTS

.got.plt ALLOC LOAD DATA HAS_CONTENTS

.data ALLOC LOAD DATA HAS_CONTENTS

.bss ALLOC

__libc_freeres_ptrs ALLOC

.comment READONLY HAS_CONTENTS

.debug_aranges READONLY HAS_CONTENTS

rn> to quit---

.debug_pubnames READONLY HAS_CONTENTS

.debug_info READONLY HAS_CONTENTS

.debug_abbrev READONLY HAS_CONTENTS

.debug_line READONLY HAS_CONTENTS

.debug_str READONLY HAS_CONTENTS

.debug_loc READONLY HAS_CONTENTS

.debug_ranges READONLY HAS_CONTENTS

43

Core file:
“/home/training/ALCDA/.

/Appl/core.3308', file type elf64-x86-64.

0Xx00000000->0x00002aa8 at 0x00000318: noted READONLY HAS_CONTENTS
0x00000000->0x000000d8 at 0x00000438: .reg/3309 HAS_CONTENTS
0x00000000->0x000000d8 at 0x00000438: .reg HAS_CONTENTS
0x00000000->0x00000200 at 0x0000052c: .reg2/3309 HAS_CONTENTS
0x00000000->0x00000200 at 0x0000052c: .reg2 HAS_CONTENTS
0x00000000->0x00000340 at 0x00000740: .reg-xstate/3309 HAS_CONTENTS
0x00000000->0x00000340 at 0x00000740: .reg-xstate HAS_CONTENTS
0x00000000->0x000000d8 at 0x00000bO4: .reg/3310 HAS_CONTENTS
0x00000000->0x00000200 at 0x0000ObT8: .reg2/3310 HAS_CONTENTS
0x00000000->0x00000340 at 0Ox0000PedC: .reg-xstate/3310 HAS_CONTENTS
0x00000000->0x000000d8 at 0x000011d0: .reg/3311 HAS_CONTENTS
0x00000000->0x00000200 at 0x000012c4: .reg2/3311 HAS_CONTENTS
0x00000000->0x00000340 at 0x000014d8: .reg-xstate/3311 HAS_CONTENTS
0x00000000->0x000000d8 at 0x0000189c: .reg/3312 HAS_CONTENTS
0x00000000->0x00000200 at 0x00001990: .reg2/3312 HAS_CONTENTS

---Type <return> to continue,

or q <return> to quit---

0x00000000->0x00000340 at 0x00001bad: .reg-xstate/3312 HAS_CONTENTS
0x00000000->0x000000d8 at 0x00001f68: .reg/3313 HAS_CONTENTS
0x00000000->0x00000200 at 0x0000205c: .reg2/3313 HAS_CONTENTS
0x00000000->0x00000340 at 0x00002270: .reg-xstate/3313 HAS_CONTENTS
0x00000000->0x000000d8 at 0x00002634: .reg/3308 HAS_CONTENTS
0x00000000->0x00000200 at 0x00002728: .reg2/3308 HAS_CONTENTS
0x00000000->0x00000340 at 0Ox0000293c: .reg-xstate/3308 HAS_CONTENTS
0x00000000->0x00000130 at 0x00002c90: .auxv HAS_CONTENTS
0x00400000- >0x00400000 at 0x00002dcO: loadl ALLOC READONLY CODE
0x006b6000- >0x006b8000 at 0x00002dcO: load2 ALLOC LOAD HAS_CONTENTS
0x006b8000->0x006bT000 at 0x00004dcO: load3 ALLOC LOAD HAS_CONTENTS
0x0227c000->0x0229f000 at 0x0000bdcO: load4 ALLOC LOAD HAS_CONTENTS

0x712257e67000->0x712258667000
0x712258668000->0x712258e68000
0x712258e69000->0x712259669000
0x71225966a000->0x712259e6a000
0x712259e6b000->0x71225a66b000

at
at
at
at
at

0x0002edco:
0x0082edco:
0x0102edcO:
0x0182edco:
0x0202edcO:

load5 ALLOC
load6 ALLOC
load7 ALLOC
load8 ALLOC
load9 ALLOC

LOAD HAS_CONTENTS
LOAD HAS_CONTENTS
LOAD HAS_CONTENTS
LOAD HAS_CONTENTS

0x7ffc7d24d000->0x7ffc7d26e000 at
Ox7ffc7d299000->0x7ffc7d29a000 at
oxffffffffff600000->0xffffffffff601000 at ©0x02850dcO:

0x0282edcO:
0x0284fdco:

9. Dump data with possible symbolic information:

(gdb) x/512a ©x006b600O

0x6b6000 : 0x0 OxCc2740000001C

ox6b6010: Ox50ff1d2880 0x80e0a7e100e4400
ox6b6020: 0x80e470b46 0©xc29400000014
ox6b6030: ox8fffd28bo 0x0

0x6b6040: 0XC2ac00000014 Ox15fffd28a8
0x6b6050: 0x0 0xCc2c400000014

0x6b6060: Ox8fffd28bo ©xo

0x6b6070: 0xc2dco0000014 ox8fffd28a8
0x6b6080: 0x0 0xc21400000014

0x6b6090: Ox8fffd28a0 ©x0

0x6b60a0: 0XxC30c0000001cC Ox24fffd2898
ox6b60b0o : 0x80e0a5a300e4400 0xb42
ox6b60co: 0xCc32c00000014 ox8fffd28a8
0x6b60d0: o0x0 0xCc34400000014

Ox6b60e0 : ox8fffd28a@ ©0x0

0x6b60f0: OxCc35c0000002c ox110f+fd2898
0x6b6100: 0xe580283100e4100 0x44100e0ae4020580
0x6b6110: 0x44100e490b41080e 0x80e
0x6b6120: 0xCc38c00000014 Ox1fffd2978
0x6b6130: 0x0 OxCc3a40000003C

0x6b6140: 0x166fffd29700xd430286100e4100
0x6b6150: 0x58d048e038f4a06 ©x8150078347068c49

44

LOAD HAS_CONTENTS

load1® ALLOC LOAD HAS_CONTENTS
load1ll ALLOC LOAD READONLY CODE HAS_CONTENTS

loadl2 ALLOC LOAD READONLY CODE HAS_CONTENTS

0x6b6160:
0x6b6170:

0x6b6180:
0x6b6190:
0x6b6120:
0x6b61b0:
0x6b61cO:
0x6b61d0:
ox6b61e0:
0x6b61f0:
0x6b6200:
0x6b6210:
0x6b6220:
0x6b6230:
0x6b6240:
0x6b6250:
0x6b6260:
0x6b6270:
0x6b6280:
0x6b6290:
0x6b62a0:
0x6b62b0:
0x6b62c0O:
0x6b62d0:
0x6b62€0:
0x6b620:

0x6b6300:
0x6b6310:
0x6b6320:
0x6b6330:
0x6b6340:
0x6b6350:
Ox6b6360:
0x6b6370:
0x6b6380:
0x6b6390:
0x6b6320:
0x6b63b0:
0x6b63cO:
0x6b63d0:
Ox6b63€0:
0x6b63f0:
0x6b6400:
0x6b6410:
0x6b6420:
0x6b6430:
0x6b6440:
0x6b6450:
0x6b6460:
0x6b6470:

0x70c0a8702098008

0x20cCc6a2020b4bo8

ox8 0xc3e400000034
---Type <return> to continue, or q <return> to quit---
oxe6fffd2aa® 0xd430286100e4100

0x783088109805006
0x8070c0a5b02038f
0xc41c00000034
0xd430286100e4100
0x8153078348068c45

0x4e048e058d41068c
0x8020cc655020b41
Oxclfffd2b58
0x58d048e038f4a06
0x20cCc68102098008

ox8 0xc45400000034
oxflfffd2bfe 0xd430286100e4100

0x815e098007834806
0xb4508070c0a6103
0xc48c00000014

0x81048e058d068c08
0x8020cc69d02
Oxlafffd2cb8

ox0 0OxCc4a40000002cC
0x99fffd2cco 0xd430286100e4100

0x58d048e03814606 0Ox730207834f068c4c
0x8070c 0xc4d400000014
ox46fffd2d3e oxe

0xc4ec00000014 ox1bfffd2d68

ox0 0xc5040000004c
Oxa3fffd2d70 0xe42028f100e4200

0x48d200e45038e18

0x480783380e410686
0x200e42280e41300e
0xb4908

0x300e44058c280e45
0x41380e0a5202500e
0xe42100e42180e42

0xc55400000044

oxc8fffd2ddo 0xe460281100e4200
---Type <return> to continue, or q <return> to quit---

0x48d200e42038e18
0x470783380e410686
0x42200e42280e4130
0xc59c0000002C
Ox80ePa7a100e4400
0xe460b47080e0a49
0xc5cc00000024
0xe4b028c04834a00

0x300e44058c280e45
Oxe41380ea202500e
0x80e42100e42180e
ox67fffd2e58
0xb47080e0a490b42
o0x8

0x13cfffd2e98
0x80€0a7202038640

0xb4l 0©xc5f400000034
0x109fffd2fbo0xe480286100e4100

0xa68300e44038318
0x41180e0a97020b49
0xC62Cc00000024
0x80e0a77100e4400

0x80e41100e41180e
0xb47080e41100e
ox6bff+d3088
0xb49080e0a470b45

0xb49080e0a470xc6540000004c
0x178fffd30d00xe450281100e4200

0x48d200e42038e18
0x440783380e410686
0xe42280e41300e41
0xb41080e

0x300e41058c280e42
0x380e02015103700e
0x42100e42180e4220

OXCc6a40000004c

0x157fffd32000xe490281100e4200

0x48d200e42038e18
0x420783380e410686
0x200e42280e41300e

0x300e45058c280e48
0x41380e012703700e
0xe42100e42180e42

---Type <return> to continue, or q <return> to quit---
ox8 Oxc61400000024
Oxbofffd3310 0x8d4d058606834a00

0x6b6480:
0x6b6490:
0x6b6420:
0x6b64bo:
0x6b64cO:
0x6b64d0:
0x6b64€0:

0x48c400e4c028e03
OxCc71c0000004c
0xe4a0281100e4200
0x300e41058c280e45
0x380e0a015403700e

0x80e8c02
0x194fffd3398
0x48d200e45038e18
0x420783380e470686
0xe42280e41300e44

45

0x6b64f0:
0x6b6500:
0x6b6510:
0x6b6520:
0x6b6530:
0x6b6540:
0x6b6550:
0x6b6560:
0x6b6570:
Ox6b6580:
0x6b6590:
0x6b6520:
Ox6b65b0:
Ox6b65CO:
Ox6b65d0:
0x6b65€0:
Ox6b650:

0x42100e42180e4220 0xb47080e
0XC76C00000024 Ox6bfffd34e8
0x80e0a77100e4400 0xb49080e0a470b45
0xb49080e0a470xc7940000004c
0x673fffd35300xe420281100e4200
0x48d200e42038e18 0x300e41058c280e42
0x470783380e410686 ©x380e0a7d0201900e
0xe42280e41300e44 0x42100e42180e4220
0xb45080e 0xCc7e400000024
oxcffffd3b60 ©x8c4d058606834200
0x28e400e4c038d04 0Ox80eabo2
0xC80c0000004C Ox4b3fffd3co8
0xe420281100e4200 0x48d200e42038e18
0x300e41058c280e42 0x470783380e410686
0x380e0af20201a00e 0©0xe42280e41300e43
0x42100e42180e4220 0xb41080e
0xc85c00000014 Ox8afffd4e78

---Type <return> to continue, or q <return> to quit---

0x6b6600:
0x6b6610:
0x6b6620:
0x6b6630:
0x6b6640:
Ox6b6650:
Ox6b6660 :
0x6b6670:
Ox6b6680:
0x6b6690:
Ox6b6620:
Ox6b66b0O :
Ox6b66CO:
0x6b66d0 :
0x6b66€0:
Ox6b66f0:
0x6b6700:
0x6b6710:
0x6b6720:
0x6b6730:
0x6b6740:
0x6b6750:
0x6b6760:
0x6b6770:

0x80e6C200e460200 0Oxc87400000014
ox9fffd4ofe oxe

OxCc88c0000V01C Ox26fffd40e8
0xa420283100e4100 0©x80e510b45080e
OXxCc8ac0vvvrv1C Ox72fffd40f8
0Xxa7e0283100e5b00 0©x80e4f0Ob45080e
0xc8cc0000014 Ox9fffd4158

0x0 Oxc8e40000001c

Oxlafffd4150 0xe540283100e4100

0x8 0xCc9040000003C
0x113fffd41500xe44028c100e4200
0x483200e44038618 0©x100e41180e0ab902
0xe0a560b4a080e42 0Ox47080e42100e4118
oxb 0xCc94400000014

ox5fffd4230 ox0

0xc95c00000014 Ox25fffd4228
0x80e49100e5400 0xCc97400000044
Ox1f8fffd42400xe42028e100e4200
0x48c200e45038d18 0x300e440586280e41
0xacb02700e440683 0x200e41280e44300e
0xe42100e42180e42 0xb4108
0xc9bcovvLLv2C Ox7cfffd43+8
0x80e0a76100e4400 ©xb49080e0a570b46
0xe470b49080e0ad7 0x8

---Type <return> to continue, or q <return> to quit---

0x6b6780:
0x6b6790:
0x6b6720:
0x6b67b0:
Ox6b67CO:
0x6b67d0:
0x6b67€0:
Ox6b67f0:
0x6b6800:
0x6b6810:
0x6b6820:
0x6b6830:
0x6b6840:
0x6b6850:
0x6b6860:
0x6b6870:
0x6b6880:

0xc9ec00000024 0x13cfffd4448
0x52020283100e4500 ©0xedb020b41080e0a
0x8 0xCcald0000004c
0x242fffd45600xe45028e100e6200
0x48c200e45038d18 ©x300e410586280e44
Ox7e0301800e440683 0x280ec341300e0a01
0x180ecc42200ec641 0Ox80ece42100ecd42
0xb45 0Oxca6400000034
Oxlaafffd47600x43180e47100e4200
0x43200e420281038e 0x300e41280e42048d
0x4501900e44380e41 0x58c06860783

0XxCca9c00vvvlc Ox87fffd48ds8
0x8302864a600e4e00 ©0Ox3
Oxcabc0o000014 Ox15fffd4948

ox0 0x901ff{{00000000
0x601910070044c 0x5c01a41001ffff00
0x3c10502130000 ox1ffff0000050481

46

0x6b6890: 0x1b10001b603670a 0x961201ffff000046

0x6b68a0: 0x309b6000004eb02 Ox1b60296000b82

0x6b68b0: 0x301b90co1ffff00 ©x2ac02830003e5

0x6b68cO: 0x501c61101ffff00 ©OxB8aeP68b01Td0000

0x6b68d0: Oxffffoo000508b400 0©x9500018105660a01

0x6b68e0: 0x801ffff00000501 ©x561004d053d

0x6b68f0: 0x1d301c11e@1ffff ©xba20503190000

---Type <return> to continue, or q <return> to quit---

0x6b6900: 0xa406cb0000050684 ©x2a50990000b8a02

0x6b6910: 0x5720a01ffff0000 ©x502950001d5

0x6b6920: 0x920301990b01ffff Oxff000VB502Ccec0002

0x6b6930: 0x1f705600a01ff ox1ffff00000502b3

0x6b6940: 0x850002c903028a0b 0OxcO1ffff00000503

0x6b6950: 0x970004db029601eb 0©xa@lffff00000505

0x6b6960: 0x501ef0001b3056b ©x5650201ff {0000

0x6b6970: 0x501e90001ad0Ox1f705600a01ffff

0x6b6980: 0x502b300 ox6bdeco <_res>

0x6b6990: ox6b7640 <_nl _global_locale> ox6b7640 <_nl global_locale>
0x6b69a0: Ox6b7660 <_nl_global_locale+32> 0x6b7648 <_nl global_locale+8>
Ox6b69b0 <___init_array_start>: 0x4004b0 <frame_dummy> 0x42f4cO <init_cacheinfo>

Ox6b69cO
Ox6b69d0
0x6b69e0
ox6b69f0
Ox6b6200

<__fini_array_start>:
<__JCR_LIST__>: ©xe
<_dl_argv>:
<_dl_random>:
<__stack_prot>:

0x6b72c@ <program_invocation_short_name>
Ox7ffc7d26c9b9
0x1000000

0x400480 <_ do_global dtors_aux> @x46fccO <fini>

0x0

ox7ffc7d26c7e8
0x0

0x0

Ox6b6al0 <env_path list>: OxFfffffffffffffff oxo

0x6b6a20
0x6b6a30
0x6b6a40

<capstr>: 0x6bel30 <result.11783> ox1
<max_capstrlen>: 0x0 0x0
<rtld_search_dirs>: 0x227d190 ox0

---Type <return> to continue, or q <return> to quit---

Ox6b6a50: 0x403c00 <pthread_cancel> 0x0

Ox6b6a60 <_GLOBAL_OFFSET_TABLE_>: ox0 ox0

Ox6b6a70 <_GLOBAL_OFFSET_TABLE_+16>: 0x0 Ox41leadd <___stpcpy_ssse3>

Ox6b6a80 < GLOBAL_OFFSET_TABLE_+32>: 0x41b040 <__ strcpy_ssse3> 0Ox426950 <__ _memmove_ssse3>
0x6b6290 < GLOBAL_OFFSET_TABLE_+48>: 0x423f00 <__ rawmemchr_sse42> 0x453760
<__strstr_sse42>

Ox6b6aa® < GLOBAL _OFFSET_TABLE_+64>: Ox470340 <__strncpy_ssse3>0x425300 <__memcmp_sse4 1>
Ox6b6ab0 < GLOBAL_OFFSET_TABLE_+80>: 0x421820 <__strcasecmp_l ssed42> 0x41da30
<__memset_sse2>

Ox6b6acO <_GLOBAL_OFFSET_TABLE_+96>: 0x412080 <__ strcmp_sse42> 0x47f710
<__strncasecmp_1_sse42>

Ox6b6ado <_GLOBAL_OFFSET_TABLE_+112>: ©0x421810 <__strcasecmp_sse42> 0x418b50
<__strchr_sse42>

Ox6bb6aed <data_start>: ox0 ox0

ox6b6afo <__nptl_nthreads>: ox6 ox0

Ox6b6b00O <stack used>: 0x7122586669¢0O 0x7f225266a9¢0O

ox6b6b10 <stack _cache>: ox6b6b10 <stack _cache> ox6b6b10 <stack_cache>
Ox6b6b20 < sched _fifo_min_prio>: oxffffffffffffffff 0ox800000

ox6b6b30 <_dl_tls_static_size>: ©x1160 0x48c997 <_nl_default_default_domain>
ox6b6b40 <locale alias_path.12333>: 0x48c9c9 Ox6bc6ed <initial>

ox6b6b50: ox0 ox0

Ox6b6b60 < IO 2 1 stdin_>:0xfbad2088 0x0

---Type <return> to continue, or q <return> to quit---

ox6b6b70
ox6b6b80
ox6b6b90
0x6b6bad
ox6b6bbo
Ox6b6bco
Ox6b6bdo

<_I0_2_1 stdin_+16>:
<_I0_2 1 stdin_+32>:
<_I0_2 1 stdin_+48>:
I0_2 1 stdin_+64>:
I0 2 1 stdin_+80>:
I0 2 1 stdin_+96>:
I0_2_

<_
<_
<_
<_ 1 stdin_+112>:

o0x0 o0x0
0x0 o0x0
o0x0 o0x0
o0x0 ox0
0x0 o0x0
0x0 ox0
o0x0 Oxffffffffffffffff

47

Ox6b6bed < I0 2 1 stdin_+128>:
ox6b6bfO <_I0 _2_1_stdin_+144>:
Ox6b6c00 < I0 2 1 stdin_+160>:
Ox6b6c10 < I0 2 1 stdin_+176>:
Ox6b6c20 < I0 2 1 stdin_+192>:
Ox6b6c30 < I0 2 1 stdin_+208>:
ox6b6c40 < _I0 2 1 stdout >:
Ox6b6c50 < _I0 2 1 stdout +16>:
Ox6b6c60 < _I0 2 1 stdout_+32>:
ox6b6c70 <_IO0_2_1_stdout_+48>:
ox6b6c80 < I0 2 1 stdout +64>:
0x6b6c90 < IO 2 1 stdout_ +80>:
Ox6b6cad <_I0_2 1 stdout_+96>:
Ox6b6cbO < _I0 2 1 stdout_+112>
Ox6bbccO <_I0 2 1 stdout_+128>
ox6b6cdo <_IO 2 1 stdout_+144>
ox6b6ced < _I0 2 1 stdout_+160>
---Type <return> to continue,
Ox6b6cfO < _I0 2 1 stdout_+176>
Ox6b6d00 < IO 2 1 stdout_+192>
Ox6b6d10 < IO 2 1 stdout +208>
ox6b6d20 < _I0 2 1 stderr_>:
ox6b6d30 < _I0 2 1 stderr_+16>:
o0x6b6d40 <_I0_2 1 stderr_+32>:
ox6b6d50 <_I0 2 1 stderr_+48>:
ox6b6d60 <_I0 2 1 stderr_+64>:
0x6b6d70 < IO 2 1 stderr_+80>:
Ox6b6d80 <_I0_2 1 stderr_+96>:
Ox6b6d90 < IO 2 1 stderr +112>:
Ox6b6da® <_I0_2 1 stderr_+128>:
ox6b6dbo < _I0_2 1 stderr_+144>:
ox6b6dcO < _I0_2 1 stderr_+160>:
ox6b6ddo <_I0_2 1 stderr_+176>:
ox6b6ded < _I0_2 1 stderr_+192>:
ox6b6dfO < I0 2 1 stderr_+208>:
Ox6b6e00 < I0 list all>:
ox6b6el0: 0x0 0x0
0x6b6e20 < IO wide_data_0>:
0x6b6e30 < IO wide_data_0+16>:
0x6b6e40 < IO wide_data_0+32>:
0x6b6e50 < IO wide_data_0+48>:

Ox6b6e60 <_I0_wide_data_0+64>:
---Type <return> to continue,
ox6b6e70 <_I0_wide_data_0+80>:
0x6b6e80 <_I0_wide_data_0+96>:
0x6b6e90
Ox6b6ead
Ox6b6ebo
ox6b6eco
ox6b6edo
Ox6b6eed
ox6b6efo
ox6b6100
ox6b6f10
ox6b6f20
ox6b6f30
ox6b6f40
ox6b6150
ox6b6160
ox6b6f70:

0x0 o0x0

or

<_I0 wide_data_0+112>:
<_I0 wide_data_0+128>:
<_I0 _wide_data_0+144>:
<_I0_wide_data_0+160>:
<_I0_wide_data_0+176>:
<_I0 wide_data_0+192>:
<_I0 wide_data_0+208>:
<_IO0 wide_data_0+224>:
<_IO0 wide_data_0+240>:
<_I0_wide_data_0+256>:
<_I0_wide_data_0+272>:
<_I0_wide_data_0+288>:
<_I0_wide_data_0+304>:
<_I0_wide_data_0+320>:

oxo ox6bcb20 <_IO_stdfile_©_ lock>
oxffffffIIfffff oxe
Ox6b6e20 < _I0_wide_data_0>0x0

ox0 ox0

ox0 ox0

ox0 0x48d440 < _I0 file jumps>
Oxfbad2084 0x0

0x0 o0x0

0x0 ox0

ox0 0x0

0x0 0x0

0x0 0x0

0x0 ox6b6b60 <_I0 2 1 stdin_>
ox1 OxffffffffHfffffff

oxe Ox6bcb30 <_IO_stdfile_1_lock>

oxfffffffffffff oxe
ox6b6180 < IO _wide_data_1>0x0

g <return> to quit---

0x0 0x0

0x0 0x0

ox0 0x48d440 < _I0 file jumps>

Oxfbad2086 0x0

0x0 0x0

ox0 0x0

0x0 0x0

ox0 0x0

ox0 0x0

ox0 ox6b6c40 <_I0_2 1 stdout >
0x2 Oxffffffffffffffff

oxe Ox6bcb4@ <_IO_stdfile_2_ lock>

oxffffffFHHfffffff oxe
0x6b70e0 <_I0_wide_data_2>0x0

0x0 0x0
0x0 0x0
ox0 0x48d440 < _I0 file jumps>

ox6b6d20 < I0 2 1 stderr_>0x0

0x0 0x0
0x0 0x0
ox0 0x0
ox0 0x0
ox0 ox0
q <return> to quit---
ox0 ox0
ox0 ox0
0x0 0x0
0x0 o0x0
0x0 ox0
ox0 0x0
ox0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
ox0 0x0
ox0 0x0
0x0 ox0
ox0 ox0
ox0 ox0

0x48d1cO <_I0_wfile_jumps>0Ox0

48

0x6b6f80 < IO wide_data_1>: ox0 ox0
Ox6b6f90 < IO wide_data_1+16>: 0x0 ox0
Ox6b6fad < _I0_wide_data_1+32>: ©Ox0 ox0
Ox6b6fbo < _I0 _wide_data_1+48>: ©0x0 ox0
Ox6b6fcO <_I0_wide_data_1+64>: 0x0 ox0
ox6b6fdo < IO wide_data_1+80>: 0Ox0 (]
ox6b6fed < _I0 wide_data_1+96>: ©0x0 ox0
---Type <return> to continue, or q <return> to quit---
ox6b6ffO < _I0 _wide_data_1+112>: ©x0 oxe

The output is in the following format:
address: valuel value2

Because the size of each value is 8 bytes the next address is +16 bytes or +10;.,. The addresses can have associated
symbolic names:

address <name>: valuel value2

For example, from the output above:

ox6b6afo <__nptl_nthreads>: ox6 oxe
Each value may also have an associated symbolic value:

address <name>: valuel <namel> value2

For example, from the output above:
0x6b69e0 <_dl_argv>: 0x6b72c0O <program_invocation_short_name> ox7ffc7d26c7e8

10. Explore the contents of memory pointed to by __ nptl_nthreads, _dl_argv, program_invocation_short_name
and Ox7ffc7d26c7e8 addresses:

(gdb) x/u @x6b6afe
ox6b6afo <__ _nptl nthreads>: 6

(gdb) x/u &__nptl_nthreads
ox6b6afo <__ nptl nthreads>: 6

(gdb) x/2a 0x6b69e0
0x6b69e0@ < _dl_argv>: 0x6b72c0@ <program_invocation_short_name> Ox7ffc7d26c7e8

(gdb) x/2a & dl_argv
Ox6b69e0 <_dl_argv>: Ox6b72c0O <program_invocation_short_name> Ox7ffc7d26c7e8

(gdb) x/a @x6b72c@
Ox6b72cO <program_invocation_short_name>: ox7ffc7d26d9a9

(gdb) x/a &program_invocation_short_name
Ox6b72c0O <program_invocation_short_name>: ox7ffc7d26d9a9

(gdb) x/a @x7ffc7d26d9a9
ox7ffc7d26d9a9: "Appl"

49

(gdb) x/10a Ox7ffc7d26c7e8

Ox7ffc7d26c7e8: 0x0 ox1

Ox7ffc7d26c7f8: ox7ffc7d26d9a7 0x0
Ox7ffc7d26c808: Ox7ffc7d26d9ae Ox7ffc7d26d9be
Ox7ffc7d26c818: Ox7ffc7d26d9c9 Ox7ffc7d26d9d9
Ox7ffc7d26c828: ox7ffc7d26d9e7 ox7ffc7d26dfes

(gdb) x/10c ©x7ffc7d26d9a7

Ox7ffc7d26d9a7: 46 '.' 47 '/' 65 'A' 112 'p’ 112 'p' 49 '1' @ '\eeo' 83 'S’
ox7ffc7d26d9af: 72 'H' 69 'E'

(gdb) x/s @x7ffc7d26d9a7

Ox7ffc7d26d9a7: "./Appl"

(gdb) x/5s @x7ffc7d26d9a7

ox7ffc7d26d9a7: "./Appl"

ox7ffc7d26d9ae: "SHELL=/bin/bash"

ox7ffc7d26d9be: "TERM=1inux"

Ox7ffc7d26d9c9: "HUSHLOGIN=FALSE"

ox7ffc7d26d9d9: "USER=training"

11. Explore the contents of memory pointed to by environ variable address:
(gdb) x/a &environ

ox6bd4c8 <environ>: @x7ffc7d26c808

(gdb) x/10a Ox7ffc7d26c808

Ox7ffc7d26c808: ox7ffc7d26d9ae ox7ffc7d26d9be
Ox7ffc7d26c818: ox7ffc7d26d9c9 ox7ffc7d26d9d9
Ox7ffc7d26c828: ox7ffc7d26d9e7 ox7ffc7d26dfe8
Ox7ffc7d26c838: ox7ffc7d26df20 ox7ffc7d26df5e
Ox7ffc7d26c848: ox7ffc7d26df7c ox7ffc7d26df8d

(gdb) x/4s @x7ffc7d26d9ae

Ox7ffc7d26d9ae: "SHELL=/bin/bash"
Ox7ffc7d26d9be: "TERM=1inux"
Ox7ffc7d26d9c9: "HUSHLOGIN=FALSE"
ox7ffc7d26d9d9: "USER=training"

12. Get the list of loaded modules:

(gdb) info sharedlibrary
No shared libraries loaded at this time.

We don’t see any shared libraries because they were statically linked. We also created the version of a dynamically
linked App1.shared executable. If we load its core dump we see the list of shared libraries:

training@debian64:~/ALCDA$ gdb -c ./Appl/core.5476 -se ./Appl/Appl.shared

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/Appl/Appl.shared...(no debugging symbols
found)...done.

[New LWP 5477]

50

[New LWP 5478]
[New LWP 5479]
[New LWP 5480]
[New LWP 5481]
[New LWP 5476]

warning: Can't read pathname for load map: Input/output error.

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-1linux-gnu/libthread_db.so.1".
Core was generated by " /home/training/ALCDA/Appl/Appl.shared’.

#0 0x00007f25a013e48d in nanosleep () from /lib/x86_64-1linux-gnu/libc.so0.6

(gdb) info sharedlibrary

From To Syms Read Shared Object Library
0x0000712520423690 0x00007f25a042ece8 Yes (*) /1ib/x86_64-1inux-gnu/libpthread.so.0
0x00007125200b1b80 0©x000O7f25a01c9c2c Yes (*) /1ib/x86_64-1linux-gnu/libc.so.6
0x000071252063aaf0 0Ox00007f25a0652c83 Yes (*) /1ib64/1d-1inux-x86-64.s0.2

(*): Shared library is missing debugging information.

13. Disassemble bar_two function and follow the indirect sleep function call:

(gdb) disassemble bar_two
Dump of assembler code for function bar_two:

0x00000000004005F9 <+0>: push %rbp
0x00000000004005fa <+1>: mov %rsp,%rbp
0x00000000004005Fd <+4>: mov $oxffffff,%edi
0Xx0000000000400602 <+9>: callqg 0©x4004a0 <sleep@plt>
0x0000000000400607 <+14>: pop %rbp
0Xx0000000000400608 <+15>: retq

End of assembler dump.

(gdb) disassemble 0x4004a0
Dump of assembler code for function sleep@plt:

0x0000000000400420 <+0>: jmpq *@x20090a (%rip) # 0x600dbo <sleep@got.plt>
0x00000000004004a6 <+6>: pushg $6x2
0x00000000004004ab <+11>: jmpq 0x400470

End of assembler dump.
14. Dump the annotated value as a memory address interpreting its contents as a symbol:

(gdb) x/a @x600dbe
0x600db0 <sleep@got.plt>: Ox7f25a013e220 <sleep>

51

Exercise A2D

Goal: Learn how to identify exceptions, find problem threads
and CPU instructions

Patterns: NULL Pointer (data), Active Thread

8 2015 Software Diagnostics Services

52

Exercise A2D

Goal: Learn how to identify exceptions, find problem threads and CPU instructions.

Patterns: NULL Pointer (data), Active Thread.

1. Load a core dump and App2D executable:

training@debian64:~/ALCDA$ gdb -c ./App2D/core -se ./App2D/App2D

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/App2D/App2D...done.

[New LWP 3484]

[New LWP 3482]

[New LWP 3487]

[New LWP 3486]

[New LWP 3485]

[New LWP 3483]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-1linux-gnu/libthread_db.so.1".
Core was generated by " ./App2D'.

Program terminated with signal 11, Segmentation fault.

#0 0x0000000000400500 in procA ()

2. List all threads:

(gdb) info threads

Id Target Id Frame

6 Thread 0x7f560d467700 (LWP 3483) 0x0000000000432439 in clone ()
Thread 0x7f560c465700 (LWP 3485) 0x000000000042fe31 in nanosleep ()
Thread 0x7f560bc64700 (LWP 3486) 0x000000000042fe31 in nanosleep ()
Thread 0x7f560b463700 (LWP 3487) 0©x000000000042fe31 in nanosleep ()
Thread 0x18b9860 (LWP 3482) 0©x000000000042fe31 in nanosleep ()
Thread 0x7f560cc66700 (LWP 3484) 0x0000000000400500 in procA ()

BN WAV

3. The problem thread seems to be the current thread:
(gdb) thread 1

[Switching to thread 1 (Thread 0x7f560cc66700 (LWP 3484))]
#0 0x0000000000400500 in procA ()

53

(gdb) bt

#0 0x0000000000400500 in procA ()

#1 0Ox000000000040057a in bar_two ()

#2 0x000000000040058a in foo_two ()

#3 0x00000000004005a2 in thread_two ()

#4 0x0000000000401630 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#5 0x00000000004324e9 in clone ()

#6 0Ox0000000000000000 in ?? ()

4. Disassemble the problem instruction and check CPU register(s) details (NULL data pointer):

(gdb) x/i ©x400500
=> 0x400500 <procA+16>: movl $0x1, (%rax)

(gdb) info r $rax
rax ox0 0o

(gdb) x $rax
0x0: Cannot access memory at address 0x0

5. List all thread stack traces and identify other anomalies such as non-waiting active threads:

(gdb) thread apply all bt

Thread 6 (Thread ©x7f560d467700 (LWP 3483)):

#0 ©x00000000004324a9 in clone ()

#1 ©x0000000000401560 in ?? () at pthread_create.c:217
#2 0x00007f560d467700 in ?? ()

#3 ©x0000000000000000 in ?? ()

Thread 5 (Thread 0x7f560c465700 (LWP 3485)):

#0 0x000000000042fe31 in nanosleep ()

#1 0x000000000042fde@ in sleep ()

#2 0Ox00000000004005b7 in bar_three ()

#3 0Ox00000000004005c7 in foo_three ()

#4 0x00000000004005df in thread_three ()

#5 0Ox0000000000401630 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#6 0x00000000004324e9 in clone ()

#7 0Ox0000000000000000 in ?? ()

Thread 4 (Thread 0x7f560bc64700 (LWP 3486)):

#0 0Ox000000000042fe31 in nanosleep ()

#1 ©x000000000042fde0@ in sleep ()

#2 0Ox000000000040051a in procB ()

#3 0x00000000004005f4 in bar four ()

#4 0x0000000000400604 in foo_four ()

---Type <return> to continue, or q <return> to quit---

#5 0x000000000040061c in thread_four ()

#6 0Ox0000000R0V401630 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#7 ©x00000000004324€9 in clone ()

#8 0x0000000000000000 in ?? ()

54

Thread 3 (Thread ©x7f560b463700 (LWP 3487)):

#0 0Ox000000000042fe31 in nanosleep ()

#1 0Ox000000000042fdO@ in sleep ()

#2 0x0000000000400631 in bar_five ()

#3 0x0000000000400641 in foo_five ()

#4 0Ox0000000000400659 in thread five ()

#5 0Ox0000000000401630 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#6 0x00000000004324e9 in clone ()

#7 0x0000000000000000 in ?? ()

Thread 2 (Thread 0x18b9860 (LWP 3482)):
#0 0Ox000000000042fe31 in nanosleep ()
#1 0Ox0000000000421fdOO in sleep ()
#2 0x0000000000400700 in main ()

Thread 1 (Thread 0x7f560cc66700 (LWP 3484)):

#0 0x0000000000400500 in procA ()

---Type <return> to continue, or q <return> to quit---

#1 0Ox000000000040057a in bar_two ()

#2 0Ox000000000040058a in foo_two ()

#3 0Ox00000000004005a2 in thread_two ()

#4 0Ox0000000000401630 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#5 0x00000000004324e9 in clone ()

#6 0x0000000000000000 in ?? ()

6. Check the CPU instruction and the stack pointer of the thread #6 for any signs of stack overflow
(unaccessible stack addresses below the current stack pointer):

(gdb) thread 6
[Switching to thread 6 (Thread 0x7f560d467700 (LWP 3483))]
#0 0x0000000000432429 in clone ()

(gdb) bt

#0 0Ox0000000000432429 in clone ()

#1 0Ox0000000000401560 in ?? () at pthread_create.c:217
#2 0Ox00007f560d467700 in ?? ()

#3 0x0000000000000000 in ?? ()

(gdb) x/i @x4324a9
=> 0x4324a9 <clone+57>: test %rax,%rax

(gdb) x/xg $rsp
0x71560d466€90: 0x0000000000401560

(gdb) x/xg $rsp-8
0x7f560d466e88: 0x0000000000000000

(gdb) x/xg $rsp-x10
0x7f560d466e80: 0x0000000000000000

55

7. Switch to the thread #2 and verify that main function was recently engaged in thread creation (this may
correlate with the last thread #6 caught in being created):

(gdb) thread 2
[Switching to thread 2 (Thread 0x18b9860 (LWP 3482))]
#0 0x000000000042fe31 in nanosleep ()

(gdb) bt

#0 0x000000000042fe31 in nanosleep ()
#1 0x000000000042fde0 in sleep ()

#2 0Ox0000000000400700 in main ()

(gdb) disassemble main
Dump of assembler code for function main:

0x0000000000400660 <+0>: push %rbp

0x0000000000400661 <+1>: mov %rsp,%rbp

0x0000000000400664 <+4>: sub $0x40,%rsp

0x0000000000400668 <+8>: mov %edi, -0x34(%rbp)

0x000000000040066b <+11>: mov %rsi,-0x40(%rbp)

0x000000000040066F <+15>: lea -0x8(%rbp) ,%rax

0Xx0000000000400673 <+19>: mov $0x0, %ecx

0x0000000000400678 <+24>: mov $0x40054F , %hedx

0x000000000040067d <+29>: mov $0x0,%esi

0x0000000000400682 <+34>: mov %rax,srdi

0Xx0000000000400685 <+37>: callg 0x4019c@ <__ pthread_create_2_1>

0x000000000040068a <+42>: lea -0x10(%rbp) ,%rax

0x000000000040068e <+46>: mov $0x0, %ecx

0x0000000000400693 <+51>: mov $0x40058c, %edx

0x0000000000400698 <+56>: mov $0x0, %esi

0x000000000040069d <+61>: mov %rax,%rdi

0x0000000000400620 <+64>: callg ©0x4019c@ <__ pthread_create_2_1>

0x00000000004006a5 <+69>: lea -0x18(%rbp) ,%rax

0xX00000000004006a9 <+73>: mov $0x0, %ecx

0X0000PVV4RV6ae <+78>: mov $0x4005c9, %edx

0x00000000004006b3 <+83>: mov $0x0, %esi

0x00000000004006b8 <+88>: mov %rax,srdi

0x00000000004006bb <+91>: callg ©0x4019c0 <__ pthread_create_2 1>
---Type <return> to continue, or q <return> to quit---

0x00000000004006CO <+96>: lea -0x20(%rbp) ,%rax

0x00000000004006Cc4 <+100>: mov $0x0, %ecx

0x00000000004006Cc9 <+105>: mov $0x400606 , hedx

0Xx00000000004006Cce <+110>: mov $0x0, %esi

0x00000000004006d3 <+115>: mov %rax,srdi

0x00000000004006d6 <+118>: callg ©0x4019c@ <_ pthread_create_2_1>

0x00000000004006db <+123>: lea -0x28(%rbp) ,%rax

0x00000000004006df <+127>: mov $0x0, %ecx

0x00000000004006e4 <+132>: mov $0x400643, %edx

0x00000000004006€9 <+137>: mov $0x0, %esi

0Xx00000000004006ee <+142>: mov %rax,%rdi

0x00000000004006F1 <+145>: callg 0x4019c0 <__ pthread_create_2_1>

0x0000000000400616 <+150>: mov $0x3, %edi

0x00000000004006fb <+155>: callg ©x42fc20 <sleep>

0x0000000000400700 <+160>: mov $0x0, %eax

0x0000000000400705 <+165>: leaveq

0x0000000000400706 <+166>: retq

End of assembler dump.

56

Exercise A2C

Goal: Learn how to identify exceptions, find problem threads
and CPU instructions

Patterns: NULL Pointer (code), Active Thread

8 2015 Software Diagnostics Services

57

Exercise A2C

Goal: Learn how to identify exceptions, find problem threads and CPU instructions.

Patterns: NULL Pointer (code), Active Thread.

1. Load a core dump and App2C executable:

training@debian64:~/ALCDA$ gdb -c ./App2C/core -se ./App2C/App2C

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/App2C/App2C...done.

[New LWP 3423]

[New LWP 3419]

[New LWP 3424]

[New LWP 3422]

[New LWP 3421]

[New LWP 3420]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-1linux-gnu/libthread_db.so.1".
Core was generated by " ./App2C'.

Program terminated with signal 11, Segmentation fault.

#0 0x0000000000000000 in ?? ()

2. List all threads:

(gdb) info threads

Id Target Id Frame

6 Thread 0x7f5ef3b7e700 (LWP 3420) 0x0000000000432439 in clone ()
Thread 0x7f5ef337d700 (LWP 3421) 0x0000000000432439 in clone ()
Thread 0x7f5ef2b7c700 (LWP 3422) ©x00000000004324a9 in clone ()
Thread 0x7f5ef1b7a700 (LWP 3424) 0x000000000042fe31 in nanosleep ()
Thread 0x145a860 (LWP 3419) 0©x000000000042fe31 in nanosleep ()
Thread 0x7f5ef237b700 (LWP 3423) 0x0000000000000000 in ?? ()

BN WAV

3. The problem thread seems to be the current thread:

(gdb) bt

#0 0x0000000000000000 in ?? ()

#1 0x0000000000400531 in procB ()

#2 0x00000000004005f8 in bar_four ()

#3 0x0000000000400608 in foo_four ()

#4 0Ox0000000000400620 in thread_four ()

#5 0Ox0000000000401630 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#6 0x00000000004324e9 in clone ()

#7 0Ox0000000000000000 in ?? ()

58

4. Check the CPU instruction and a dereferenced pointer for any signs of a NULL pointer:

(gdb) disassemble procB
Dump of assembler code for function procB:

0XxX0000000000400516 <+0>: push %rbp
0x0000000000400517 <+1>: mov %rsp,%rbp
0x000000000040051a <+4>: sub $0x10,%rsp
0x000000000040051e <+8>: movq $0x@, -0x8(%rbp)
0x0000000000400526 <+16>: mov -0x8(%rbp) ,%rdx
0xX000000000040052a <+20>: mov $0x0, %eax
0x000000000040052f <+25>: callqg *%rdx
0x0000000000400531 <+27>: leaveq
0x0000000000400532 <+28>: retq

End of assembler dump.

(gdb) info r rdx
rdx ox0 ©

5. List all thread stack traces and identify other anomalies such as non-waiting active threads:
(gdb) thread apply all bt

Thread 6 (Thread @x7f5ef3b7e700 (LWP 3420)):

#0 0Ox0000000000432429 in clone ()

#1 0Ox0000000000401560 in ?? () at pthread_create.c:217
#2 0x00007f5ef3b7e700 in ?? ()

#3 0Ox0000000000000000 in ?? ()

Thread 5 (Thread 0x7f5ef337d700 (LWP 3421)):

#0 0Ox0000000000432429 in clone ()

#1 0x0000000000401560 in ?? () at pthread_create.c:217
#2 0x00007f5ef337d700 in ?? ()

#3 0x0000000000000000 in ?? ()

Thread 4 (Thread @x7f5ef2b7c700 (LWP 3422)):

#0 0Ox0000000000432429 in clone ()

#1 0Ox0000000000401560 in ?? () at pthread_create.c:217
#2 0x00007f5ef2b7c700 in ?? ()

#3 0Ox0000000000000000 in ?? ()

Thread 3 (Thread @x7f5eflb7a700 (LWP 3424)):

#0 0Ox000000000042fe31 in nanosleep ()

#1 0Ox0000000000421fdOO® in sleep ()

#2 0Ox0000000000400635 in bar_five ()

#3 0Ox0000000000400645 in foo_five ()

---Type <return> to continue, or q <return> to quit---

#4 0Ox000000000040065d in thread_five ()

#5 0Ox0000000000401630 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#6 0Ox00000000004324e9 in clone ()

#7 ©x0000000000000000 in ?? ()

Thread 2 (Thread 0x145a860 (LWP 3419)):
#0 0x000000000042fe31 in nanosleep ()
#1 0x000000000042fd00 in sleep ()
#2 0Ox0000000000400704 in main ()

59

Thread 1 (Thread ©x7f5ef237b700 (LWP 3423)):

#0
#1
#2
#3
#4
#5

#6
#7

0x0000000000000000
0x0000000000400531
0x000000000040058
0x0000000000400608
0x0000000000400620
0x0000000000401630

in
in
in
in
in
in

22 ()

procB ()

bar_four ()

foo_four ()

thread_four ()

start_thread (arg=<optimized out>)

at pthread_create.c:304
0x00000000004324e9 in clone ()
0x0000000000000000 in ?? ()

60

Exercise A3

Goal: Learn how to identify spiking threads

Patterns: Spiking Thread

8 2015 Software Diagnostics Services

61

Exercise A3

Goal: Learn how to identify spiking threads.

Patterns: Spiking Thread.

1. The application App3 was consuming CPU (from top output):

total,
total,

SHR & %CPU %M COMMAND
] E Appa

0.0 1]

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

; g 0.0

oot ¢ 3 0 c 0.0

raot i 8 i : 0.0

g2 root 2 5 i 0 oS 0.0

root

! root
i root
root
root

ed]
Gd-linux-gnuslibthread_db.so.1".

62

2. Load a core dump core.3712 and App3 executable:

training@debian64:~/ALCDA$ gdb -c ./App3/core.3712 -se ./App3/App3

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/App3/App3...done.

[New LWP 3713]

[New LWP 3714]

[New LWP 3715]

[New LWP 3716]

[New LWP 3717]

[New LWP 3712]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/l1ib/x86_64-1inux-gnu/libthread_db.so.1".
Core was generated by "~ /home/training/ALCDA/App3/App3'.

#0 0x00000000004329d1 in nanosleep ()

2. List all threads:

(gdb) info threads

Id Target Id Frame

6 LWP 3712 0x00000000004329d1 in nanosleep ()

5 LWP 3717 0x00000000004007a3 in isnan ()

4 LWP 3716 0x00000000004329d1 in nanosleep ()

3 LWP 3715 0x00000000004329d1 in nanosleep ()

2 LWP 3714 0x00000000004329d1 in nanosleep ()
* 1 LWP 3713 0x00000000004329d1 in nanosleep ()
3. Switch to the problem thread #5:

(gdb) thread 5
[Switching to thread 5 (LWP 3717)]
#0 0x00000000004007a3 in isnan ()

(gdb) bt

#0 Ox00000000004007a3 in isnan ()

#1 0x0000000000400743 in sqrt ()

#2 0Ox0000000000400528 in procB ()

#3 0Ox0000000000400639 in bar_five ()

#4 0x0000000000400649 in foo_five ()

#5 0Ox0000000000400661 in thread_five ()

#6 0Ox0000000000403e30 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#7 0Ox0000000000435089 in clone ()

#8 0Ox0000000000000000 in ?? ()

4. Disassemble the problem instruction and check if it is normal:

(gdb) x/i @x4007a3
=> 0x4007a3 <isnan+35>: retq

63

5. Disassemble the return address for procB function to come back to see an infinite loop:

(gdb) disassemble 0x400528
Dump of assembler code for function procB:

0x0000000000400500 <+0>: push %rbp
0x0000000000400501 <+1>: mov %rsp,%rbp
0x0000000000400504 <+4>: sub $0x20,%rsp
0Xx0000000000400508 <+8>: movabs $0x3fd5555555555555, %rax
0x0000000000400512 <+18>: mov %rax, -ox8(%rbp)
0x0000000000400516 <+22>: mov -0x8(%rbp) ,%rax
0x000000000040051a <+26>: mov %rax, -0x18(%rbp)
0x000000000040051e <+30>: movsd -0x18(%rbp) ,%xmmeo
0x0000000000400523 <+35>: callg 0x400710 <sqrt>
0Xx0000000000400528 <+40>: movsd %xmm@, -0x18(%rbp)
0x000000000040052d <+45>: mov -0x18(%rbp) ,%rax
0x0000000000400531 <+49>: mov %rax, -0x8(%rbp)
0x0000000000400535 <+53>: jmp 0x400516 <procB+22>

End of assembler dump.

64

Exercise A4

Goal: Learn how to identify heap regions and heap
corruption

Patterns: Heap Corruption

8 2015 Software Diagnostics Services

65

Exercise A4

Goal: Learn how to identify heap regions and heap corruption

Patterns: Heap Corruption.

1. Load a core dump and App4 executable:

training@debian64:~/ALCDA$ gdb -c ./App4/core -se ./App4/App4

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/App4/App4...done.

[New LWP 11060]

[New LWP 11057]

[New LWP 11062]

[New LWP 11061]

[New LWP 11059]

[New LWP 11058]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-1linux-gnu/libthread_db.so.1".
Core was generated by " ./App4d'.

Program terminated with signal 11, Segmentation fault.

#0 0x000000000041482e in _int_malloc ()

2. List threads:

(gdb) info threads

Id Target Id Frame

6 Thread 0x7efd13f93700 (LWP 11058) 0©x00000000004325c9 in clone ()
Thread 0x7efd13792700 (LWP 11059) 0©x00000000004325c9 in clone ()
Thread 0x7efd12790700 (LWP 11061) 0©x000000000042ff51 in nanosleep ()
Thread 0x7efd11f8f700 (LWP 11062) 0x000000000042ff51 in nanosleep ()
Thread 0x1ab2860 (LWP 11057) ©x000000000042ff51 in nanosleep ()
Thread 0x7efd12f91700 (LWP 11060) 0x000000000041482e in _int_malloc ()

RN WRAU

3. The identifed problem thread #1 is the current thread. List its stack trace:

(gdb) bt

#0 0x000000000041482e in _int_malloc ()

#1 0x0000000000416d88 in malloc ()

#2 ©Ox00000000004005dc in proc ()

#3 0Ox00000000004006ee in bar_three ()

#4 0Ox00000000004006fe in foo_three ()

#5 0x0000000000400716 in thread_three ()

#6 0Ox0000000000401760 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#7 0Ox0000000000432609 in clone ()

#8 0x0000000000000000 in ?? ()

66

4. We see that the segmentation fault happened internally in malloc function when proc was allocating heap
memory. Diassemble proc function:

(gdb) disassemble proc
Dump of assembler code for function proc:

0x0000000000400410 <+0>: push %rbp
0x00000000004004F1 <+1>: mov %rsp,%rbp
0x0000000000400414 <+4>: sub $0x40, %rsp
0x00000000004004F8 <+8>: mov $0x400,%edi
0x00000000004004Fd <+13>: callg ©ox416d20 <malloc>
0x0000000000400502 <+18>: mov %rax, -ox8(%rbp)
0x0000000000400506 <+22>: mov $0x400, %edi
0x000000000040050b <+27>: callg ©x416d20 <malloc>
0x0000000000400510 <+32>: mov %rax, -0x10(%rbp)
0x0000000000400514 <+36>: mov $0x400, %edi
0x0000000000400519 <+41>: callg ox416d20 <malloc>
0x000000000040051e <+46>: mov %rax, -0x18(%rbp)
0x0000000000400522 <+50>: mov $0x400,%edi
0x0000000000400527 <+55>: callg ©x416d20 <malloc>
0x000000000040052C <+60>: mov %rax, -0x20(%rbp)
0x0000000000400530 <+64>: mov $0x400, %edi
0x0000000000400535 <+69>: callg ©x416d20 <malloc>
0x000000000040053a <+74>: mov %rax, -0x28(%rbp)
0x000000000040053e <+78>: mov $0x400, %edi
0x0000000000400543 <+83>: callg ©x416d20 <malloc>
0x0000000000400548 <+88>: mov %rax, -0x30(%rbp)
0x000000000040054Cc <+92>: mov $0x400, %edi
0x0000000000400551 <+97>: callg ©x416d20 <malloc>
---Type <return> to continue, or q <return> to quit---
0x0000000000400556 <+102>: mov %rax, -0x38(%rbp)
0x000000000040055a <+106>: mov -0x30(%rbp) ,%rax
0x000000000040055e <+110>: mov %rax,srdi
0x0000000000400561 <+113>: callg ©0x416c50 <free>
0x0000000000400566 <+118>: mov -0x20(%rbp) ,%rax
0x000000000040056a <+122>: mov %rax,srdi
0x000000000040056d <+125>: callg 0x416c50 <free>
0Xx0000000000400572 <+130>: mov -0x10(%rbp) ,%rax
0Xx0000000000400576 <+134>: mov %rax,%rdi
0x0000000000400579 <+137>: callg 0x416c50 <free>
0x000000000040057e <+142>: mov -0x10(%rbp) ,%rax
0x0000000000400582 <+146>: movl $0x6c6c6548, (%rax)
0x0000000000400588 <+152>: movl $0x7243206T,0x4 (%rax)
0x000000000040058F <+159>: movl $0x21687361,0x8(%rax)
0x0000000000400596 <+166>: movb $0x0,0xc(%rax)
0x000000000040059a <+170>: mov -0x20(%rbp),%rax
0x000000000040059e <+174>: movl $0x6c6c6548, (%rax)
0x00000000004005a4 <+180>: movl $0x7243206f,0x4(%rax)
0x00000000004005ab <+187>: movl $0x21687361,0x8(%rax)
0x00000000004005b2 <+194>: movb $0x0,0xc(%rax)
0Xx00000000004005b6 <+198>: mov -0x30(%rbp) ,%rax
0x00000000004005ba <+202>: movl $0x6c6c6548, (%rax)
0x00000000004005cO <+208>: movl $0x7243206f,0x4(%rax)
0x00000000004005c7 <+215>: movl $0x21687361,0x8(%rax)
---Type <return> to continue, or q <return> to quit---
0x00000000004005ce <+222>: movb $0x0@,0xc(%rax)
0x00000000004005d2 <+226>: mov $0x200, %edi
0x00000000004005d7 <+231>: callg ©x416d20 <malloc>
0x00000000004005dc <+236>: mov %rax, -0x10(%rbp)
0Xx00000000004005e0 <+240>: mov $0x400,%edi
0x00000000004005e5 <+245>: callg ©x416d20 <malloc>

67

0x00000000004005ea <+250>: mov %rax, -0x20(%rbp)

0x00000000004005ee <+254>: mov $0x200,%edi
0x00000000004005F3 <+259>: callg ©x416d20 <malloc>
0x00000000004005F8 <+264>: mov %rax, -0x30(%rbp)
0x00000000004005fC <+268>: mov $0x12c,%edi
0x0000000000400601 <+273>: callg 0x42fd40 <sleep>
0x0000000000400606 <+278>: mov -0x38(%rbp) ,%rax
0Xx000000000040060a <+282>: mov %rax,%rdi
0x000000000040060d <+285>: callg ©0x416c50 <free>
0x0000000000400612 <+290>: mov -0x30(%rbp),%rax
0Xx0000000000400616 <+294>: mov %rax,%rdi
0Xx0000000000400619 <+297>: callg 0x416c50 <free>
0x000000000040061e <+302>: mov -0x28(%rbp) ,%rax
0Xx0000000000400622 <+306>: mov %rax,srdi
0Xx0000000000400625 <+309>: callg 0x416c50 <free>
0x000000000040062a <+314>: mov -0x20(%rbp) ,%rax
0x000000000040062e <+318>: mov %rax,%srdi
0x0000000000400631 <+321>: callg 0x416c50 <free>

---Type <return> to continue, or q <return> to quit---
0x0000000000400636 <+326>: mov -0x18(%rbp) ,%rax
0Xx000000000040063a <+330>: mov %rax,%rdi
0x000000000040063d <+333>: callg ©0x416c50 <free>
0x0000000000400642 <+338>: mov -0x10(%rbp) ,%rax
0x0000000000400646 <+342>: mov %rax,%rdi
0x0000000000400649 <+345>: callg 0x416c50 <free>
0x000000000040064e <+350>: mov -0x8(%rbp),%rax
0x0000000000400652 <+354>: mov %rax,srdi
0x0000000000400655 <+357>: callg 0x416c50 <free>
0Xx000000000040065a <+362>: mov $oxffffff,%edi
0x000000000040065F <+367>: callg ©ox42fd4e <sleep>
0x0000000000400664 <+372>: leaveq
0x0000000000400665 <+373>: retq

End of assembler dump.

We see that before the problem malloc call there were three buffer writes to memory addresses pointed to by
values located at the following addresses: rbp-0x10, rbp-0x20, and rbp-0x30 (highlighted in red in disassembly).
However, before buffer writes there were free function calls with values located at the same addresses: rbp-0x30,
rbp-0x20, and rbp-0x10 (highlighted in blue in disassembly).

5. We have the standard function prolog (highlighted in green in disassembly). Switch to the stack frame #2 to
check the addresses, their values, and memory contents they point to:

(gdb) frame 2
#2 0x00000000004005dc in proc ()

(gdb) x/xg $rbp-0x10
Ox7efd12f90d30: 0x0000000001ab5020

(gdb) x/s @x1ab5020
0x1ab5020: "Hello Crash!"

(gdb) x/xg $rbp-0x20
0x7efd12f90d20: 0x0000000001ab5840

(gdb) x/s @x1ab5840
0x1ab5840: "Hello Crash!"

68

6. We know the addresses passed to heap management functions, for example, Ox1abxxxx. Find the heap
region in the section list:

(gdb) maintenance info sections
Exec file:
“/home/training/ALCDA/App4/Appd', file type elf64-x86-64.

0x00400158->0x00400178 at 0x00000158: .note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
0x00400178->0x0040019c at 0x00000178: .note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
0x00400120->0x004002d8 at 0x000001a0: .rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004002d8->0x004002e6 at 0x000002d8: .init ALLOC LOAD READONLY CODE HAS_CONTENTS
0x00400210->0x004003cO at 0x000002f0: .plt ALLOC LOAD READONLY CODE HAS_CONTENTS
0x004003c0->0x0048b318 at Ox000003cO: .text ALLOC LOAD READONLY CODE HAS_CONTENTS
0x0048b320->0x0048be%¢ at 0x0008b320: _ libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
0x0048bead->0x0048bf01 at 0x0008bead: _ libc_thread_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
0x0048bf04->0x0048bf0d at 0x0008bf04: .fini ALLOC LOAD READONLY CODE HAS_CONTENTS
0x0048bf20->0x004a9e84 at 0x0008bf20: .rodata ALLOC LOAD READONLY DATA HAS_CONTENTS
0x00429e88->0x004a9%¢ee8 at 0Ox000a%e88: _ libc_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS

---Type <return> to continue,

or g <return> to quit---

0x004a9ee8->0x004a9ef0 at Ox000a%ee8: _ libc_atexit ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004a9ef0->0x004a9ef8 at Ox000a%ef0: _ libc_thread_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004a9ef8->0x004b69ec at 0Ox000a9%ef8: .eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004b69ec->0x004b6b06 at Ox00Ob69ec: .gcc_except_table ALLOC LOAD READONLY DATA HAS_CONTENTS
0x006b6b08->0x006b6b30 at Ox00Ob6bO8: .tdata ALLOC LOAD DATA HAS_CONTENTS
0x006b6b30->0x006b6b6O at Ox000b6bL30: .tbss ALLOC

0x006b6b30->0x006b6b4O at Ox000b6b30: .init_array ALLOC LOAD DATA HAS_CONTENTS
0x006b6b40->0x006b6b50 at Ox00Ob6b40: .fini_array ALLOC LOAD DATA HAS_CONTENTS
0x006b6b50->0x006b6b58 at Ox00Ob6b5O: .jcr ALLOC LOAD DATA HAS_CONTENTS
0Xx006b6b6O->0x006b6bdO at Ox00ObELEO: .data.rel.ro ALLOC LOAD DATA HAS_CONTENTS
0x006b6bd0->0x006b6bed at Ox000b6bdO: .got ALLOC LOAD DATA HAS_CONTENTS
0x006b6be0->0x006b6Cc60 at ©x000b6bed: .got.plt ALLOC LOAD DATA HAS_CONTENTS
OX006b6CH0->0x006b7970 at Ox00Ob6CE60O: .data ALLOC LOAD DATA HAS_CONTENTS
0x006b7980->0x006bece8 at Ox000b7970: .bss ALLOC

0x006bece8->0x006bed18 at ©0x000b7970: _ libc_freeres_ptrs ALLOC

0x00000000- >0x00000038 at Ox00Ob7970: .comment READONLY HAS_CONTENTS

0x00000000->0x00000390 at 0x00Ob79b0: .debug_aranges READONLY HAS_CONTENTS

---Type <return> to continue,

or q <return> to quit---

0x00000000->0x00000ac3 at 0x000b7d40: .debug_pubnames READONLY HAS_CONTENTS
0x00000000->0x00011440 at 0x000b8803: .debug_info READONLY HAS_CONTENTS
0x00000000->0x000021b1 at 0x000c9c43: .debug_abbrev READONLY HAS_CONTENTS
0x00000000->0x00002ebc at 0x000cbdf4: .debug line READONLY HAS_CONTENTS
0x00000000- >0x000038da at Ox000cecbd: .debug_str READONLY HAS_CONTENTS
0x00000000->0x0000878e at 0x000d258a: .debug_loc READONLY HAS_CONTENTS
0x00000000->0x00001280 at 0x000dadl8: .debug_ranges READONLY HAS_CONTENTS

Core file:
*/home/training/ALCDA/.

/App4/core', file type elf64-x86-64.

0x00000000->0x00002aa8 at 0x00000430: noted READONLY HAS_CONTENTS
0x00000000->0x000000d8 at 0x000004b4: .reg/11060 HAS_CONTENTS
0x00000000->0x000000d8 at 0x000004b4: .reg HAS_CONTENTS
0x00000000->0x00000130 at 0x00000644: .auxv HAS_CONTENTS
0X00000000->0x00000200 at 0x00000788: .reg2/11060 HAS_CONTENTS
0x00000000->0x00000200 at 0x00000788: .reg2 HAS_CONTENTS
0X00000000->0x00000340 at 0x0000V99c: .reg-xstate/11060 HAS_CONTENTS
0X000000V0->0x00000340 at Ox0VVVO99C: .reg-xstate HAS_CONTENTS
0x00000000->0x000000d8 at 0x00000d60: .reg/11057 HAS_CONTENTS
0x00000000->0x00000200 at 0x00000e54: .reg2/11057 HAS_CONTENTS
0X00000000->0x00000340 at 0x00001068: .reg-xstate/11057 HAS_CONTENTS
0x00000000->0x000000d8 at 0x0000142c: .reg/11062 HAS_CONTENTS
0x00000000->0x00000200 at 0x00001520: .reg2/11062 HAS_CONTENTS
0x00000000->0x00000340 at 0x00001734: .reg-xstate/11062 HAS_CONTENTS
0x00000000->0x000000d8 at 0x00001af8: .reg/11061 HAS_CONTENTS

---Type <return> to continue,

or q <return> to quit---

0x00000000->0x00000200 at Ox00001bec: .reg2/11061 HAS_CONTENTS
0x00000000->0x00000340 at 0Ox00001e00: .reg-xstate/11061 HAS_CONTENTS
0x00000000->0x000000d8 at 0x000021c4: .reg/11059 HAS_CONTENTS
0x00000000->0x00000200 at 0Ox000022b8: .reg2/11059 HAS_CONTENTS
0x00000000->0x00000340 at 0x000024cc: .reg-xstate/11059 HAS_CONTENTS

69

---Type <return> to continue, or q

7.

0Xx00000000- >0x000000d8 at
0Xx00000000- >0x00000200 at
0Xx00000000- >0x00000340 at
0Xx00400000- >0x00401000 at
0x00401000->0x00401000 at
0Xx006b6000- >0x006b800O at
OXx006b8000- >0x006bT000 at Ox00006000:
0x01ab2000->0x01ad5000 at 0x0000d000:

0x00002890:
0x00002984 :
0x00002b98:
0x00003000:
0x00004000:
0x00004000:

.reg/11058 HAS_CONTENTS

.reg2/11058 HAS_CONTENTS

.reg-xstate/11058 HAS_CONTENTS

loadla ALLOC LOAD READONLY CODE HAS_CONTENTS
loadlb ALLOC READONLY CODE

load2 ALLOC LOAD HAS_CONTENTS

load3 ALLOC LOAD HAS_CONTENTS

load4 ALLOC LOAD HAS_CONTENTS

0x7efd1178f000->0x7efd11790000
0x7efd11790000->0x7efd11190000
0x7efd11f90000->0x7efd11f91000
0x7efd11f91000->0x7efd12791000
0x7efd12791000->0x7efd12792000

at
at
at
at
at

0x00030000:
0x00031000:
0x00831000:
0x00832000:
0x01032000:

load5 ALLOC
load6 ALLOC
load7 ALLOC
load8 ALLOC
load9 ALLOC

LOAD READONLY HAS_CONTENTS
LOAD HAS_CONTENTS
LOAD READONLY HAS_CONTENTS
LOAD HAS_CONTENTS
LOAD READONLY HAS_CONTENTS

Ox7etd12792000->0x7efd12192000 at 0x01033000: loadle ALLOC
<return> to quit---

Ox7efd12192000->0x7efd12f93000 at 0x01833000: loadll
Ox7efd12f93000->0x7efd13793000 at 0x01834000: loadl2
0x7efd13793000->0x7efd13794000 at 0x02034000: loadl3
0x7efd13794000->0x7efd13194000 at 0x02035000: loadld
Ox7fff1b488000->0x7fff1b4aak00 at ©x02835000: loadls
Ox7fff1b544000->0x7fff1b545000 at 0x02857000: loadl6
OXFfffffffff600000->0xffffffffff600000 at 0x02858000:

LOAD HAS_CONTENTS

ALLOC
ALLOC
ALLOC
ALLOC

LOAD
LOAD
LOAD
LOAD

READONLY HAS_CONTENTS

HAS_CONTENTS

READONLY HAS_CONTENTS

HAS_CONTENTS

ALLOC LOAD HAS_CONTENTS

ALLOC LOAD READONLY CODE HAS_CONTENTS
loadl7 ALLOC READONLY CODE

Check the faulting instruction and the problem memory address:

(gdb) bt

#0
#1
#2
#3
#4
#5
#6

#7
#8

in
in
in
in
in

0x000000000041482e
0x0000000000416d88
0x00000000004005dc
0x00000000004006ee
0x00000000004006e
0x0000000000400716 in thread_three ()

0x0000000000401760 in start_thread (arg=<optimized out>)
at pthread_create.c:304

0x0000000000432609 in clone ()

0x0000000000000000 in ?? ()

_int_malloc ()
malloc ()

proc ()
bar_three ()
foo_three ()

(gdb) x/i $rip

=> 0x41482e <_int_malloc+622>:

mov %rbx,0x10(%r12)

(gdb) x $ri2+exie
0x21687371: Cannot access memory at address 0x21687371

(gdb) p (char[4])0x21687371
$1 = "gsh!"

We see that “sh!” fragment correlates with “Hello Crash!” buffer overwrite that we saw previously.

70

Exercise A5

Goal: Learn how to identify stack corruption

Patterns: Local Buffer Overflow, Execution Residue

8 2015 Software Diagnostics Services

71

Exercise A5

Goal: Learn how to identify stack corruption.

Patterns: Local Buffer Overflow, Execution Residue.

1. Load a core dump and App5 executable:

training@debian64:~/ALCDA$ gdb -c ./App5/core -se ./App5/App5

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/App5/App5...done.

[New LWP 12864]

[New LWP 12863]

[New LWP 12865]

[New LWP 12868]

[New LWP 12867]

[New LWP 12866]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-1linux-gnu/libthread_db.so.1".
Core was generated by " ./App5"'.

Program terminated with signal 11, Segmentation fault.

#0 0x0000000000000000 in ?? ()

2. List threads and show stack trace of the problem thread:

(gdb) info threads

Id Target Id Frame

6 Thread 0x7fc3dc9dd700 (LWP 12866) 0x000000000042fedl in nanosleep ()
Thread 0x7fc3dcldc700 (LWP 12867) 0©x000000000042fedl in nanosleep ()
Thread 0x7fc3db9db700 (LWP 12868) 0x000000000042fedl in nanosleep ()
Thread 0x7fc3dd1de700 (LWP 12865) 0x000000000042fedl in nanosleep ()
Thread 0x8ee860 (LWP 12863) ©x000000000042fedl in nanosleep ()
Thread 0x7fc3dd9df70@ (LWP 12864) 0x0000000000000000 in ?? ()

RN WAV

(gdb) bt
#0 0x0000000000000000 in ?? ()
#1 0x0000000000000000 in ?? ()

72

3. We don’t see expected stack trace frames as in a normal thread stack trace:
(gdb) thread apply 3 bt

Thread 3 (Thread 0x7fc3dd1de700 (LWP 12865)):

#0 0x000000000042fedl in nanosleep ()

#1 0x0000000000421da@ in sleep ()

#2 0x0000000000400619 in bar_two ()

#3 0Ox0000000000400629 in foo_two ()

#4 0Ox0000000000400641 in thread_two ()

#5 0Ox00000000004016d0 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#6 0Ox0000000000432589 in clone ()

#7 0Ox0000000000000000 in ?? ()

4. Dump raw stack data around the current stack pointer and find an ASCII buffer around a return address:

(gdb) x/100a $rsp

0x7fc3dd9debc8: 0x0 0x0
0x7fc3dd9debd8: ox0 ox0
0x7fc3dd9debe8: 0x0 0x0
0x7fc3dd9debf8: ox0 ox0
ox7fc3dd9deco8: () ()
0x7fc3dd9decl8: ox0 ox0
ox7fc3dd9dec28: ox0 ox0
0x7fc3dd9dec38: ox0 ox0
0x7fc3dd9dec48: 0x0 0x0
0x7fc3dd9dec58: 0x0 0x0
0x7fc3dd9dec68: 0x0 0x0
0x7fc3dd9dec78: 0x0 0x0
0x7fc3dd9dec88: 0x0 0x0
0x7fc3dd9dec98: 0x0 0x0
0x7fc3dd9deca8: 0x0 0x7fc3dd9ded38
0x7fc3dd9dechb8: 0x422077654e20794d ©x7542207265676769
0x7fc3dd9decc8: 0Xx72656666 ox0
0x7fc3dd9decd8: 0x0 0x0
Ox7fc3dd9dece8: 0x0 0x0
ox7fc3dd9decf8: () ()
0x7fc3dd9dedo8: ox0 ox0
0x7fc3dd9ded18: ox0 ox0
0x7fc3dd9ded28: 0x7fc3dd9ded48 0x4005cc <procA+40>
0x7fc3dd9ded38:

---Type <return> to continue, or q <return> to quit---
0x7fc3dd9ded48: 0x0
0x7fc3dd9ded58: ox0 ox0
0x7fc3dd9ded68: ox0 ox0
0x7fc3dd9ded78: 0x0 0x0
0x7fc3dd9ded88: ox0 ox0
0x7fc3dd9ded98: 0x7fCc300000000 oxe
0x7fc3dd9deda8: ox0 ox0
0x7fc3dd9dedb8: ox0 ox0
0x7fc3dd9dedc8: 0x0 0x0
ox7fc3dd9dedd8: ox0 ()
ox7fc3dd9dede8: ox0 ox0
0x7fc3dd9dedf8: 0x0 0x0
0x7fc3dd9dee08: 0x0 0x0
0x7fc3dd9deel8: 0x0 0x7fc3ddodf700
0x7fc3dd9dee28: 0x722f707d72b64fb1l 0©x48cla® <default_attr>
0x7fc3dd9dee38: 0x7fc3dd9df9ce 0x0
0x7fc3dd9dee48: 0x3 0x8da8cb46a9964fb1l

73

0x7fc3dd9dee58: 0x722f70fd5f9a4fbl ©0x0

0x7fc3dd9dee68: ox0 ox0

0x7fc3dd9dee78: 0x0 0x0

0x7fc3dd9dee88: 0x0 0x7fc3ddodf700
0x7fc3dd9dee98: 0x432589 <clone+121> 0x0
0x7fc3dd9deea8: 0x0 0x0

0x7fc3dd9deeb8: 0x0 0x0

---Type <return> to continue, or q <return> to quit---
0x7fc3dd9deec8: 0x0 0x0

0x7fc3dd9deed8: ox0 ox0

(gdb) x/s @x7fc3dd9ded38
0x7fc3dd9ded38:

74

Exercise A6

Goal: Learn how to identify stack overflow, stack boundaries,
reconstruct stack trace

Patterns: Stack Overflow, Execution Residue

8 2015 Software Diagnostics Services

75

Exercise A6

Goal: Learn how to identify stack overflow, stack boundaries, reconstruct stack trace.

Patterns: Stack Overflow, Execution Residue.

1. Load a core dump and App6 executable:

training@debian64:~/ALCDA$ gdb -c ./App6/core -se ./App6/App6

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/App6/App6...done.

[New LWP 13251]

[New LWP 13252]

[New LWP 13253]

[New LWP 13254]

[New LWP 13255]

[New LWP 13250]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-1linux-gnu/libthread_db.so.1".
Core was generated by " ./App6'.

Program terminated with signal 11, Segmentation fault.

#0 0x00000000004004fb in procF ()

2. List threads:

(gdb) info threads

Id Target Id Frame

6 Thread 0x199f860 (LWP 13250) 0x000000000042fe91 in nanosleep ()
Thread 0x7eff44905700 (LWP 13255) 0x000000000042fe91 in nanosleep ()
Thread 0x7eff45106700 (LWP 13254) 0x000000000042fe91 in nanosleep ()
Thread 0x7eff45907700 (LWP 13253) 0x000000000042fe91 in nanosleep ()
Thread 0x7eff46108700 (LWP 13252) 0x000000000042fe91 in nanosleep ()
Thread 0x7eff46909700 (LWP 13251) 0x00000000004004fb in procF ()

BN WAV

3. If we try to print the problem stack trace we get the endless number of frames, so we quit:

(gdb) bt

#0 0x00000000004004fb in procF
#1 0x000000000040054b in procF
#2 0x000000000040054b in procF
#3 0x000000000040054b in procF
#4 0x000000000040054b in procF
#5 0x000000000040054b in procF
#6 0x000000000040054b in procF
#7 0x000000000040054b in procF
#8 0x000000000040054b in procF
#9 0x000000000040054b in procF
#10 0x000000000040054b in procF

AN AN AN AN A A A A
N N N N N N N N N N

76

#11 0x000000000040054b in procF
#12 0x000000000040054b in procF
#13 0x000000000040054b in procF
#14 0x000000000040054b in procF
#15 0x000000000040054b in procF
#16 0x000000000040054b in procF
#17 0x000000000040054b in procF
#18 0x000000000040054b in procF
#19 0x000000000040054b in procF
#20 0x000000000040054b in procF
#21 0x000000000040054b in procF
#22 Ox000000000040054b in procF
#23 0x000000000040054b in procF
---Type <return> to continue, or
#24 0x000000000040054b in procF
#25 0x000000000040054b in procF
#26 0x000000000040054b in procF
#27 0x000000000040054b in procF
#28 0x000000000040054b in procF
#29 0x000000000040054b in procF
#30 0x000000000040054b in procF
#31 0x000000000040054b in procF
#32 0x000000000040054b in procF
#33 0x000000000040054b in procF
#34 0x000000000040054b in procF
#35 0x000000000040054b in procF
#36 0x000000000040054b in procF
#37 0x000000000040054b in procF
#38 0x000000000040054b in procF
#39 0x000000000040054b in procF
#40 0x000000000040054b in procF
#41 0x000000000040054b in procF
#42 0x000000000040054b in procF
#43 0x000000000040054b in procF
#44 Ox000000000040054b in procF
#45 0x000000000040054b in procF
#46 0x000000000040054b in procF
#47 0x000000000040054b in procF
---Type <return> to continue, or
#48 0x000000000040054b in procF
#49 0x000000000040054b in procF
#50 0x000000000040054b in procF
#51 0x000000000040054b in procF
#52 0x000000000040054b in procF
#53 0x000000000040054b in procF
#54 0x000000000040054b in procF
#55 0x000000000040054b in procF
#56 0x000000000040054b in procF
#57 0x000000000040054b in procF
#58 0x000000000040054b in procF
#59 0x000000000040054b in procF
#60 0x000000000040054b in procF
#61 Ox000000000040054b in procF
#62 0x000000000040054b in procF
#63 0x000000000040054b in procF
#64 0x000000000040054b in procF
#65 0x000000000040054b in procF
#66 0x000000000040054b in procF
#67 0x000000000040054b in procF
#68 0x000000000040054b in procF

AN AN AN AN AN AN AN AN AN AN AN AN A

AN AN AN AN A A A A A A A AN AN AN A A A A A AANAA A

S N N N I I Q) N N N S I S U U N N N P N N N N Q) N N N N N N N N N N N N N

AN A

<return> to quit---

<return> to quit---

77

#69 0x000000000040054b in procF ()
#70 0x000000000040054b in procF ()
#71 0x000000000040054b in procF ()
---Type <return> to continue, or

#72
#73
#74
#75
#76
#77
#78
#79
#80
#81
#82
#83
#84
#85
#86
#87
#88
#89
#90
#91
#92
#93
#94
#95

0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF

g <return> to quit---

AN AN AN AN AN A A A AN AN AN A AN AN AN AN A A A A A A
N N

---Type <return> to continue, or q <return> to quit---
#96 0x000000000040054b in procF ()
#97 0x000000000040054b in procF ()
#98 0x000000000040054b in procF ()
#99 0x000000000040054b in procF ()

#100
#101
#102
#103
#104
#105
#106
#107
#108
#109
#110
#111
#112
#113
#114
#115
#116
#117
#118
#119

0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b
0x000000000040054b

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF

---Type <return> to continue, or

Quit

It looks like a stack overflow.

Q A A A A A A A A A A A A AN AN AN AN AN AN AN
N N N N N N N N N N N N N N N N N N N

<return> to quit---q

78

4, Check if this is a stack overflow indeed. Stack region can be identified from pmap.13250 from the thread

number. Since the problem thread has LWP 13251 it should be located just below the main stack region:

13250: ./App6

000PRRRORR400000 732K r-x-- /home/training/ALCDA/App6/App6
00000000006b6000 8K rw--- /home/training/ALCDA/App6/App6
00000000006b8000 28K rw--- [anon]

0000000001991000 140K rw--- [anon]

00007ef{44105000 4K ----- [anon]

00007eff44106000 8192K rw--- [anon]

00007ef144906000 4K ----- [anon]

00007eff44907000 8192K rw--- [anon]

00007ef{45107000 4K ----- [anon]

00007eff45108000 8192K rw--- [anon]

00007ef145908000 4K ----- [anon]

00007eff45909000 8192K rw--- [anon]

00007ef{46109000 4K ----- [anon]

00007eff46102000 8192K rw--- [anon]

00007ffde0705000 132K rw--- [stack]

00007ffde0788000 4K r-x-- [anon]

ffffffffff600000 4K r-x-- [anon]

total 42028K

5. Check that manually based on the stack pointer value and section bundary addresses:
(gdb) x $rsp

Ox7eff46109ecO: 0x0

(gdb) frame 1
#1 0Ox000000000040054b in procF ()

(gdb) x $rsp
0x7eff4610a0e0: oxo

(gdb) frame 2

#2 0Ox000000000040054b in procF ()

(gdb) x $rsp

0x7eff4610a300: ox0e

(gdb) maintenance info sections
Exec file:

*/home/training/ALCDA/App6/App6', file type

0Xx00400158->0x00400178
0x00400178->0x0040019C
0x004001a0->0x004002d8
0x004002d8->0x004002e6
0x0040020->0x004003c0O
0x004003c0->0x0048b258
0x0048b260->0x0048bdde
0x0048bde0->0x0048be4d 1
0x0048be44 - >0x0048be4d
0x0048be60->0x004a9dc4
0x004a9dc8->0x004a9e28

at
at
at
at
at
at
at
at
at
at
at

---Type <return> to continue,

0x004a9e28->0x004a9e30
0x004a9e30->0x004a9e38
0x004a9e38->0x004b694C
0x004b694c->0x004b6266
0Xx006b6a68- >0x006b6290
0x006b6a90- >0x006b6aCcO

at
at
at
at
at
at

0Xx00000158:
0x00000178:
0x000001a0:
0x000002d8:
0x00000210:
0x000003¢0o:
0x0008b260:
0x0008bde0:
0x0008be44 :
0x0008be60:
0x000a9dc8:

or g <retu

0x000a9%e28:
0x000a9e30:
0x000a9%e38:
0x000b694C:
0x000b6a68:
0x000b6a90:

elf64-x86-64.

.note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
.note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
.rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS

.init ALLOC LOAD READONLY CODE HAS_CONTENTS

.plt ALLOC LOAD READONLY CODE HAS_CONTENTS

.text ALLOC LOAD READONLY CODE HAS_CONTENTS

__libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
__libc_thread_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
.fini ALLOC LOAD READONLY CODE HAS_CONTENTS

.rodata ALLOC LOAD READONLY DATA HAS_CONTENTS
__libc_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS

rn> to quit---

_libc_atexit ALLOC LOAD READONLY DATA HAS_CONTENTS
__libc_thread_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS
.eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS
.gcc_except_table ALLOC LOAD READONLY DATA HAS_CONTENTS

.tdata ALLOC LOAD DATA HAS_CONTENTS

.tbss ALLOC

79

0x006b6290->0x006b62ad at Ox00Ob6a9%0: .init_array ALLOC LOAD DATA HAS_CONTENTS
0x006b6aad->0x006b6abd at Ox00Ob6aad: .fini_array ALLOC LOAD DATA HAS_CONTENTS
0x006b6ab0->0x006b6ab8 at ©x00Ob6abO: .jcr ALLOC LOAD DATA HAS_CONTENTS
0x006b6aco->0x006b6b30 at Ox00Ob6acOd: .data.rel.ro ALLOC LOAD DATA HAS_CONTENTS
0x006b6b30->0x006b6b4O at Ox000b6b30: .got ALLOC LOAD DATA HAS_CONTENTS
0x006b6b40->0x006b6bCO at Ox000b6b40: .got.plt ALLOC LOAD DATA HAS_CONTENTS
0x006b6bCco->0x006b78d0 at Ox00Ob6bCcO: .data ALLOC LOAD DATA HAS_CONTENTS
0x006b78e0->0x006bec48 at 0x000b78d0: .bss ALLOC

0x006bec48->0x006bec78 at 0x000b78d0: _ libc_freeres_ptrs ALLOC
0Xx00000000->0x00000038 at 0x00Ob78d0: .comment READONLY HAS_CONTENTS
0x00000000- >0x00000390 at 0Ox000b7910: .debug_aranges READONLY HAS_CONTENTS

---Type <return> to continue,

or g <return> to quit---

0x00000000->0x00000ac3 at Ox000b7cad: .debug_pubnames READONLY HAS_CONTENTS
0x00000000->0x00011440 at 0x000b8763: .debug_info READONLY HAS_CONTENTS
0x00000000->0x000021b1 at 0x000c9ba3: .debug_abbrev READONLY HAS_CONTENTS
0x00000000->0x00002ebc at 0x000cbd54: .debug_line READONLY HAS_CONTENTS
0x00000000- >0x000038da at 0x000cecld: .debug_str READONLY HAS_CONTENTS
0x00000000->0x0000878e at 0Ox000d24ea: .debug loc READONLY HAS_CONTENTS
0x00000000->0x00001280 at 0x000dac78: .debug_ranges READONLY HAS_CONTENTS

Core file:
“/home/training/ALCDA/.

0x00000000->0x00002aa8
0x00000000- >0x000000d8
0x00000000- >0x000000d8
0x00000000->0x00000130
0x00000000- >0x00000200
0x00000000- >0x00000200
0x00000000- >0x00000340
0x00000000- >0x00000340
0x00000000- >0x000000d8
0x00000000- >0x00000200
0x00000000- >0x00000340
0x00000000->0x000000d8
0x00000000- >0x00000200
0x00000000- >0x00000340
0x00000000->0x000000d8

0x00000000- >0x00000200
0x00000000- >0x00000340
0x00000000- >0x000000d8
0x00000000- >0x00000200
0x00000000- >0x00000340
0x00000000- >0x000000d8
0x00000000- >0x00000200
0x00000000- >0x00000340
0x00400000->0x00401000
0x00401000->0x00401000
0x006b6000- >0x006b8000
0x006b8000->0x006bT000
0x01991000->0x019c2000

/App6/core', file type elf64-x86-64.

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

---Type <return> to continue,

at
at
at
at
at
at
at
at
at
at
at
at
at

0x00000430:
0x000004b4 ;
0x000004b4 :
0x00000644 :
0x00000788:
0x00000788:
0x0000099cC :
0x0000099cC :
0x00000d60 :
0x00000e54 :
0x00001068:
0x0000142c:
0x00001520:
0x00001734:
0x00001af8:

note® READONLY HAS_CONTENTS
.reg/13251 HAS_CONTENTS

.reg HAS_CONTENTS

.auxv HAS_CONTENTS

.reg2/13251 HAS_CONTENTS

.reg2 HAS_CONTENTS
.reg-xstate/13251 HAS_CONTENTS
.reg-xstate HAS_CONTENTS
.reg/13252 HAS_CONTENTS
.reg2/13252 HAS_CONTENTS
.reg-xstate/13252 HAS_CONTENTS
.reg/13253 HAS_CONTENTS
.reg2/13253 HAS_CONTENTS
.reg-xstate/13253 HAS_CONTENTS
.reg/13254 HAS_CONTENTS

or g <return> to quit---

0x00001bec:
0x00001e00:
0x000021c4:
0x000022b8:
0x000024cc:
0x00002890:
0x00002984 :
0x00002b98:
0x00003000:
0x00004000:
0x00004000:
0x00006000:
0x0000d000 :

.reg2/13254 HAS_CONTENTS
.reg-xstate/13254 HAS_CONTENTS
.reg/13255 HAS_CONTENTS
.reg2/13255 HAS_CONTENTS
.reg-xstate/13255 HAS_CONTENTS
.reg/13250 HAS_CONTENTS
.reg2/13250 HAS_CONTENTS
.reg-xstate/13250 HAS_CONTENTS
loadla ALLOC LOAD READONLY CODE HAS_CONTENTS
loadlb ALLOC READONLY CODE
load2 ALLOC LOAD HAS_CONTENTS
load3 ALLOC LOAD HAS_CONTENTS
load4 ALLOC LOAD HAS_CONTENTS

0x7eff44105000->0x7ef{44106000
0x7eff44106000->0x7ef{44906000
0x7eff44906000->0x7ef{44907000
0x7eff44907000->0x7ef45107000
0x7eff45107000->0x7eff45108000
0x7eff45108000->0x7ef{45908000

---Type <return> to continue, or q

0x7eff45908000->0x7eff45909000
0x7eff45909000- >0x7ef 46109000
0x7eff46109000->0x7ef{4610a000
0x7eff4610a000->0x7eff4690a000
0x7ffde0704000->0x7ffde0726000
0x7ffde0788000->0x7ffde0789000

at
at
at
at
at
at

0x00030000:
0x00031000:
0x00831000:
0x00832000:
0x01032000:
0x01033000:

load5 ALLOC
load6 ALLOC
load7 ALLOC
load8 ALLOC
load9 ALLOC

LOAD READONLY HAS_CONTENTS
LOAD HAS_CONTENTS
LOAD READONLY HAS_CONTENTS
LOAD HAS_CONTENTS
LOAD READONLY HAS_CONTENTS

loadlo

<return> to quit---

at
at
at
at
at
at

0x01833000:
0x01834000:
©x02034000:
9x02035000:
0x02835000:
0x02857000:
oxFFFfffffff600000->0xffffffffff600000 at ©x02858000:

loadll
load12
loadi3
load14
load15
loadi6

80

ALLOC

ALLOC
ALLOC
ALLOC
ALLOC
ALLOC
ALLOC

LOAD

LOAD
LOAD
LOAD
LOAD
LOAD
LOAD

HAS_CONTENTS

READONLY HAS_CONTENTS
HAS_CONTENTS

READONLY HAS_CONTENTS
HAS_CONTENTS

HAS_CONTENTS

READONLY CODE HAS_CONTENTS

load17 ALLOC READONLY CODE

6. Dump the bottom of the raw stack to see execution residue such as thread startup:

(gdb) x/1024a Ox7eff46902000-0x2000

Ox7eff46908000: ox0 ox0
0x7eff46908010: 0x0 0x0
0x7eff46908020: ox0 ox0
0x7eff46908030: ox0 ox0
Ox7ef146908040: ox0 ox0
0x7eff46908050: 0x0 0x0
0x7eff46908060: ox0 ox0
0x7eff46908070: 0x7eff46908290 0x40054b <procF+91>
0x7eff46908080: ox0 0xX600000000
Ox7eff46908090: oxffffffff ox7
0x7eff469080a0: oxffffffff 0x0
0x7eff469080b0: 0x0 0x0
Ox7eff469080c0: ox0 ox0
Ox7eff469080d0: ox0 ox0
Ox7eff469080e0: ox0 ox0
Ox7eff46908010: ox0 ox0
0x7eff46908100: ox0 ox0
0x7eff46908110: ox0 ox0
Ox7eff46908120: 0x0 0x0
0x7eff46908130: 0x0 ox0
0x7eff46908140: 0x0 0x0
0x7eff46908150: 0x0 0x0
0x7eff46908160: ox0 ox0
Ox7eff46908170: 0x0 0x0

---Type <return> to continue, or q <return> to quit---
0x7eff46908180: 0x0 0x0
0x7eff46908190: 0x0 0x0
Ox7eff469081a0: 0x0 0x0
Ox7eff469081b0: ox0 ox0
Ox7eff469081c0O: 0x0 0x0
0x7eff469081d0: ox0 o0x0
0x7eff469081e0: 0x0 0x0
0x7eff469081f0: (0 (0
0x7eff46908200: ox0 ox0
0x7eff46908210: 0x0 0x0
0x7eff46908220: 0x0 0x0
0x7eff46908230: 0x0 0x0
Ox7eff46908240: 0x0 0x0
Ox7eff46908250: ox0 ox0
0x7eff46908260: 0x0 0x0
0x7eff46908270: 0x0 0x0
0x7eff46908280: ox0 ox0
Ox7ef£46908290: ox7eff469084b0 0x40054b <procF+91>
Ox7eff469082a0: ox0 0x500000000
0x7eff469082b0: oOxffffffff 0x6
0x7eff469082c0: oxffffffff 0x0
0x7eff469082d0: ox0 ox0
0x7eff469082€0: 0x0 0x0
0x7eff46908210: 0x0 0x0

---Type <return> to continue, or g <return> to quit---
0x7eff46908300: 0x0 0x0
0x7eff46908310: 0x0 0x0
Ox7eff46908320: ox0 ox0
Ox7eff46908330: ox0 ox0
Ox7eff46908340: ox0 ox0
0x7eff46908350: ox0 ox0
0x7eff46908360: ox0 ox0

81

0x7eff46908370: ox0e ox0e

0x7eff46908380: ox0 ox0
0x7eff46908390: () ()
ox7eff469083a0: ox0 ox0
0x7eff469083b0: oxe oxe
0x7eff469083c0: () ()
0x7eff469083d0: (D (D
Ox7eff469083€0: ox0 ox0
0x7eff46908310: () ()
0x7eff46908400: ox0 ox0
0x7eff46908410: (D (D
0x7eff46908420: ox0 ox0
0x7eff46908430: (] (]
Ox7eff46908440: oxe oxe
0x7eff46908450: ox0 ox0
0x7eff46908460: ox0 ox0
0x7eff46908470: () ()

---Type <return> to continue, or q <return> to quit---
0x7eff46908480: () ()
0x7eff46908490: (] (%
0x7eff46908420: (D (D
0x7ef{469084b0: Ox7eff469086d0 0x40054b <procF+91>
0x7eff469084c0: (D 0x400000000
ox7eff469084d0: oxffffffff 0x5
Ox7eff469084€0: oxffffffff 0x0
0x7eff4690840: () ()
0x7eff46908500: () ()
Ox7eff46908510: (% (%
Ox7eff46908520: oxe oxe
0x7eff46908530: ox0 ox0
0x7eff46908540: (D (D
0x7eff46908550: () ()
0x7eff46908560: (] (]
0x7eff46908570: () ()
0x7eff46908580: () ()
0x7eff46908590: (D (D
0x7eff46908520: () ()
0x7eff469085b0: ox0 ox0
0x7eff469085c0: ox0 ox0
0x7eff469085d0: ox0 ox0
0x7eff469085€0: () ()
Ox7eff46908510: () ()

---Type <return> to continue, or q <return> to quit---
Ox7eff46908600: oxe oxe
Ox7eff46908610: (% (%
0x7eff46908620: (D (D
0x7eff46908630: () ()
0x7eff46908640: () ()
0x7eff46908650: () ()
0x7eff46908660: () ()
0x7eff46908670: (D (D
0x7eff46908680: () ()
0x7eff46908690: ox0 ox0
0x7eff46908620: ox0 ox0
0x7eff469086b0: ox0 ox0
Ox7eff469086¢0: ox0 ox0
0x7ef{469086d0: ox7eff46908810 0x40054b <procF+91>
0x7eff469086€0: () 0X300000000
Ox7eff46908610: oxffffffff ox4
0x7eff46908700: oxffffffff oxe

82

Ox7eff46908710: 0x0 0x0

Ox7eff46908720: 0x0 0x0
0x7eff46908730: 0x0 0x0
0x7eff46908740: 0x0 0x0
0x7eff46908750: 0x0 0x0
0x7eff46908760: 0x0 0x0
0x7eff46908770: 0x0 0x0
---Type <return> to continue, or q <return> to quit---
0x7eff46908780: 0x0 0x0
Ox7eff46908790: 0x0 0x0
Ox7eff469087a0: 0x0 0x0
Ox7eff469087b0: ox0 ox0
0x7eff469087c0O: 0x0 0x0
0x7eff469087d0: 0x0 0x0
Ox7eff469087€0: 0x0 0x0
ox7eff46908710: ox0 ox0
0x7eff46908800: 0x0 0x0
0x7eff46908810: 0x0 0x0
0x7eff46908820: 0x0 0x0
0x7eff46908830: 0x0 0x0
0x7eff46908840: 0x0 0x0
0x7eff46908850: 0x0 0x0
0x7eff46908860: 0x0 0x0
ox7eff46908870: 0x0 0x0
Ox7eff46908880: ox0 ox0
Ox7eff46908890: 0x0 0x0
Ox7eff469088a0: 0x0 0x0
0x7eff469088b0: 0x0 0x0
0x7eff469088c0: 0x0 0x0
Ox7eff469088d0: 0x0 0x0
0x7eff469088€0: 0x0 0x0
0x7ef{46908810: ox7eff46908b10 0x40054b <procF+91>
---Type <return> to continue, or q <return> to quit---
0x7eff46908900: 0x0 0Xx200000000
0x7eff46908910: oxffffffff ox3
0x7eff46908920: oxffffffff 0x0
0x7eff46908930: 0x0 0x0
Ox7ef146908940: 0x0 0x0
Ox7eff46908950: 0x0 0x0
Ox7ef146908960: 0x0 0x0
Ox7eff46908970: 0x0 0x0
0x7eff46908980: 0x0 0x0
0x7eff46908990: 0x0 0x0
0x7eff469089a0: 0x0 0x0
0x7eff469089b0: 0x0 0x0
0x7eff469089c0: 0x0 0x0
0x7eff469089d0: 0x0 0x0
0x7eff469089€0: 0x0 0x0
Ox7eff469089f0: ox0 ox0
Ox7eff46908a00: 0x0 0x0
0x7eff46908a10: 0x0 0x0
0x7eff46908a20: 0x0 0x0
Ox7eff46908a30: ox0 ox0
Ox7eff46908a40: 0x0 0x0
Ox7eff46908a50: ox0 ox0
0x7eff46908a60: 0x0 0x0
0x7eff46908a70: 0x0 0x0
---Type <return> to continue, or q <return> to quit---
0x7eff46908a80: 0x0 0x0
0x7eff46908a90: 0x0 0x0

83

Ox7eff46908aa0:
Ox7eff46908abo:
0x7eff46908ac0:
0x7eff46908ad0:
0x7eff46908a€0:
Ox7eff46908af0:
0x7eff46908b00:
0x7eff46908b10:
0x7eff46908b20:
ox7eff46908b30:
0x7eff46908b40:
Ox7eff46908b50:
0x7eff46908b60:
0x7eff46908b70:
ox7eff46908b80:
0x7eff46908b90:
0x7eff46908ba0d:
0x7eff46908bbo:
0x7eff46908bcO:
0x7eff46908bdo:
0x7eff46908be0:
0x7eff46908bf0:
---Type <return> to
Ox7eff46908c00:
0x7eff46908c10:
0x7eff46908c20:
Ox7eff46908c30:
0x7eff46908c40:
0x7eff46908c50:
Ox7eff46908c60:
0x7eff46908c70:
0x7eff46908c80:
0x7eff46908c90:
0x7eff46908ca0:
Ox7eff46908cbo:
Ox7eff46908ccO:
Ox7eff46908cdo:
Ox7eff46908ce0:
0x7eff46908cf0O:
Ox7eff46908d00:
Ox7eff46908d10:
0x7eff46908d20:
ox7eff46908d30:
ox7eff46908d40:
ox7eff46908d50:
0x7eff46908d60:
0x7eff46908d70:
---Type <return> to
ox7eff46908d80:
Ox7eff46908d90:
0x7eff46908da0d:
0x7eff46908dbo:
Ox7eff46908dcO:
0x7eff46908ddo:
Ox7eff46908de0:
0x7eff46908df0:
0x7eff46908€00:
0x7eff46908e10:
0x7eff46908e20:
Ox7eff46908e30:

0x0 0x0

ox0 ox0

ox0 ox0

ox0 ox0

ox0 ox0

0x0 0x0

0x0 0x0

0x7ef{46908d30 0x40054b <procF+91>
0x0 0x100000000

OxXFFFFFFFF OX2
OxFFFFFFFf OxO

ox0 0x0

ox0 ox0

ox0 ox0

ox0 ox0

0x0 0x0

0x0 0x0

ox0 ox0

ox0 ox0

ox0 ox0

0x0 0x0

0x0 0x0

continue, or g <return> to quit---

ox0 ox0

0x0 0x0

ox0 ox0

0x0 ox0

ox0 ox0

ox0 ox0

ox0 ox0

(2 0x0

0x0 0x0

ox0 ox0

ox0 ox0

0x0 ox0

0x0 0x0

0x0 0x0

0x0 0x0

0x0 0x0

ox0 ox0

ox0 ox0

ox0 ox0

Ox7eff46908d40 0x40055b <procE+14>
ox7eff46908d50 0x400575 <bar_one+24>
Ox7eff46908d60 0x400585 <foo_one+14>
0x7eff46908d80 0x40059d <thread_one+22>
0x0 0x0

continue, or g <return> to quit---
ox0 0x401690 <start_thread+208>
0x0 0x7eff46909700

0x0 0x0
0x0 0x0
0x0 0x0
ox0 ox0
ox0 ox0
0x0 0x0
ox0 ox0
ox0 ox0
0x7eff46909700

0x48c160 <default_attr>

0xdf48debbbo4adfea

0x7eff469099c0

84

Ox7eff46908e40: 0x0 0x3

Ox7eff46908e50: 0x22b6539aabbadfea 0xdf48de3b9cebdfea
0x7eff46908€60: 0x0 0x0
0x7eff46908e70: 0x0 0x0
0x7eff46908e80: 0x0 0x0
0x7eff46908e90: Ox7eff46909700 0x432549 <clone+121>
0x7eff46908ea0: 0x0 0x0
0x7eff46908eb0: 0x0 0x0
0x7eff46908ecO: 0x0 0x0
Ox7eff46908ed0: ox0 ox0
Ox7eff46908ee0: 0x0 0x0
Ox7eff46908ef0: ox0 ox0
---Type <return> to continue, or q <return> to quit---
0x7eff46908100: ox0 ox0
Ox7eff46908110: ox0 ()
0x7eff46908120: ox0 ox0
0x7eff46908130: 0x0 0x0
0x7eff46908140: ox0 ox0
0x7eff46908150: ox0 ox0
0x7eff46908160: ox0 ox0
0x7eff46908170: 0x0 0x0
0x7eff46908180: 0x0 0x0
0x7eff46908190: 0x0 0x0
ox7eff46908fa0: ox0 ox0
ox7eff46908fbo: ox0 ox0
Ox7eff46908fcO: ox0 ox0
Ox7eff46908fdo: ox0 ox0
0x7eff46908fe0: 0x0 0x0
Ox7eff46908ff0: 0x0 0x0
0x7eff46909000: 0x0 0x0
0x7eff46909010: (2 0x0
0x7eff46909020: 0x0 0x0
0x7eff46909030: ox0 ox0
0x7eff46909040: ox0 ox0
Ox7eff46909050: ox0 ox0
0x7eff46909060: 0x0 0x0
0x7eff46909070: 0x0 0x0
---Type <return> to continue, or q <return> to quit---
Ox7ef146909080: ox0 ox0
0x7eff46909090: 0x0 0x0
Ox7eff469090a0: ox0 ox0
0x7eff469090b0: ox0 ox0
0x7eff469090c0: 0x0 0x0
0x7eff469090d0: ox0 ox0
0x7eff469090€0: 0x0 0x0
0x7eff46909010: o0x0 0x0
0x7eff46909100: 0x0 0x0
0x7eff46909110: 0x0 0x0
0x7eff46909120: 0x0 0x0
0x7eff46909130: 0x0 0x0
0x7eff46909140: 0x0 0x0
0x7eff46909150: 0x0 0x0
0x7eff46909160: 0x0 0x0
0x7eff46909170: 0x0 0x0
0x7eff46909180: 0x0 0x0
0x7eff46909190: 0x0 0x0
0x7eff469091a0: 0x0 0x0
0x7eff469091b0: ox0 ox0
0x7eff469091cO: 0x0 0x0
0x7eff469091d0: 0x0 0x0

85

Ox7eff469091e0:
Ox7eff4690910:

---Type <return> to

Ox7ef146909200:
Ox7eff46909210:
Ox7ef£46909220:
Ox7eff46909230:
Ox7ef£46909240:
Ox7eff46909250:
0x7eff46909260:
0x7eff46909270:
0x7eff46909280:
Ox7ef146909290:
0x7eff469092a0:
0x7eff469092b0:
0x7eff469092c0:
Ox7eff469092d0:
0x7eff469092€0:
Ox7eff469092f0:
Ox7ef146909300:
Ox7eff46909310:
Ox7eff46909320:
Ox7eff46909330:
0x7eff46909340:
0x7eff46909350:
Ox7eff46909360:
0x7eff46909370:

---Type <return> to

Ox7eff46909380:
0x7eff46909390:
0x7eff469093a0:
Ox7eff469093b0:
0x7eff469093c0:
Ox7eff469093d0:
Ox7eff469093€0:
Ox7eff469093f0:
Ox7eff46909400:
0x7eff46909410:
0x7eff46909420:
0x7eff46909430:
0x7eff46909440:
Ox7eft46909450:
Ox7eft46909460:
Ox7eff46909470:
Ox7ef146909480:
Ox7eff46909490:
0x7eff469094a0:
Ox7eff469094b0:
0x7eff469094c0:
0x7eff469094d0:
0x7eff469094€0:
Ox7eff469094f0:

---Type <return> to

0x7eff46909500:
0x7eff46909510:
Ox7eff46909520:
Ox7eff46909530:
Ox7eff46909540:
Ox7eff46909550:
Ox7eff46909560:

0x0 0x0
ox0 ox0
continue,
ox0 ox0
ox0 ox0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
ox0 ox0
0x0 0x0
ox0 0x0
ox0 0x0
ox0 ox0
ox0 ox0
0x0 0x0
0x0 0x0
ox0 ox0
ox0 ox0
ox0 ox0
0x0 0x0
0x0 0x0
0x0 0x0
ox0 ox0
0x0 0x0
ox0 ox0
0x0 ox0
continue,
ox0 ox0
ox0 ox0
(2 0x0
0x0 0x0
ox0 ox0
ox0 ox0
0x0 ox0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
ox0 ox0
ox0 ox0
ox0 ox0
ox0 ox0
ox0 ox0
ox0 ox0
o0x0 0x0
0x0 0x0
0x0 0x0
ox0 ox0
0x0 0x0
0x0 0x0
0x0 0x0
continue,
ox0 ox0
ox0 ox0
0x0 0x0
ox0 ox0
ox0 ox0
ox0 ox0
0x0 0x0

or q <return> to quit---

or q <return> to quit---

or g <return> to quit---

86

0x7eff46909570:
0x7eff46909580:
0x7eff46909590:
0x7eff469095a0:
0x7eff469095b0:
0x7eff469095c0:
0x7eff469095d0:
0x7eff469095€0:
0x7eff46909510:
Ox7eff46909600:
0x7eff46909610:
Ox7eff46909620:
0x7eff46909630:
0x7eff46909640:
Ox7eff46909650:
0x7eff46909660:
0x7eff46909670:
---Type <return> to
0x7eff46909680:
0x7eff46909690:
0x7eff469096a0:
0x7eff469096b0:
0x7eff469096¢0:
0x7eff469096d0:
0x7eff469096€0:
Ox7eff46909610:
Ox7eff46909700:
0x7eff46909710:
0x7eff46909720:
0x7eff46909730:
0x7eff46909740:
0x7eff46909750:
0x7eff46909760:
0x7eff46909770:
Ox7eff46909780:
0x7eff46909790:
0x7eff469097a0:
0x7eff469097b0:
Ox7eff469097c0O:
0x7eff469097d0:
Ox7eff469097€0:
0x7eff46909710:
---Type <return> to
0x7eff46909800:
0x7eff46909810:
0x7eff46909820:
0x7eff46909830:
0x7eff46909840:
Ox7eff46909850:
Ox7eff46909860:
0x7eff46909870:
Ox7eff46909880:
0x7eff46909890:
Ox7eff469098a0:
0x7eff469098b0:
0x7eff469098c0:
0x7eff469098d0:
0x7eff469098€0:
0x7eff46909810:
0x7eff46909900:

0x0 0x0

ox0 ox0

ox0 ox0

ox0 ox0

ox0 ox0

0x0 0x0

0x0 0x0

0x0 0x0

0x0 0x0

ox0 ox0

0x0 0x0

ox0 0x0

ox0 ox0

ox0 ox0

ox0 ox0

0x0 0x0

0x0 0x0

continue, or g <return> to quit---
ox0 ox0

ox0 ox0

0x0 0x7eff46909db8
0x6b7720 <_nl _global locale> Ox6b7720 < _nl global locale>

0x6b7740 < _nl _global locale+32> 0x6b7728 <_nl global locale+8>
0x0 0x0

0x0 0x0

ox0 ox0

0x7eff46909700 0x19a1680
0x7eff46909700 ox1

ox0 0xe63e8b268d639000
ox6ff56fad6f5dd825 ©Ox0

(2 0x0
0x0 0x0
ox0 ox0
ox0 ox0
0x0 ox0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
ox0 ox0
ox0 ox0
ox0 ox0
continue, or g <return> to quit---
ox0 ox0
ox0 ox0
o0x0 0x0
0x0 0x0
0x0 0x0
ox0 ox0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
ox0 ox0
ox0 ox0
0x0 0x0
ox0 ox0
ox0 ox0
ox0 ox0
0x0 0x0

87

0x7eff46909910:
0x7eff46909920:
0x7efft46909930:
0x7efft46909940:
0x7efft46909950:
0x7eff46909960:
0x7efft46909970:

---Type <return> to

Ox7eff46909980:
0x7eff46909990:
0x7eff469099a0:
0x7eff469099b0:
0x7eff469099c0:
Ox7eff469099d0:
0x7eff469099€0:
0x7eff46909910:
0x7eff46909200:
0x7eff46909a10:
0x7eff46909a20:
0x7eff46909a30:
Ox7eff46909a40:
0x7eff46909a50:
Ox7eff46909a60:
0x7eff46909a70:
0x7eff46909a80:
Ox7eff46909a90:
Ox7eff46909aa0:
0x7eff46909abo:
0x7eff46909ac0:
0x7eff46909ad0o:
0x7eff46909a€0:
0x7eff46909af0:

---Type <return> to

Ox7eff46909b00:
0x7eff46909b10:
Ox7eff46909b20:
Ox7eff46909b30:
0x7eff46909b40:
0x7eff46909b50:
0x7eff46909b60:
0x7eff46909b70:
Ox7eff46909b80:
Ox7eff46909b90:
0x7eff46909ba0d:
ox7eff46909bbo:
Ox7eff46909bcO:
Ox7eff46909bdo:
0x7eff46909be0:
0x7eff46909bf0:
Ox7eff46909c00:
0x7eff46909c10:
Ox7eff46909c20:
0x7eff46909c30:
0x7eff46909c40:
0x7eff46909c50:
0x7eff46909c60:
0x7eff46909c70:

---Type <return> to

0x7eff46909c80:
0x7eff46909c90:

0x0 0x0

ox0 ox0

ox0 ox0

ox0 ox0

ox0 ox0

0x0 0x0

0x0 0x0

continue, or g <return> to quit---
0x0 0x0

ox0 ox0

0x0 0x0

ox0 0x0

Ox6bbbed <stack used> Ox7eff461089cO
0x33c2000033c3 0x7eff469099€0
0x7eff469099¢€0 oOxffffffffffffffeo0
0x0 0x0

0x7eff46908e20

ox0 ox0

ox0 ox0

ox0 ox0

0x0 0x0

0x0 0x0

0x0 0x0

ox0 ox0

0x0 0x0

ox0 ox0

0x0 ox0

ox0 ox0

ox0 ox0

ox0 ox0

(2 0x0

0x0 0x0

continue, or g <return> to quit---
ox0 ox0

0x0 ox0

0x0 0x0

0x0 0x0

0x0 0x0

0x0 0x0

ox0 ox0

ox0 ox0

ox0 ox0

ox0 ox0

ox0 ox0

ox0 ox0

o0x0 0x0

0x0 0x0

0x0 0x0

ox0 ox0

0x0 0x0

0x7eff46909a10

0x0 0x0

0x0 0x0

ox0 ox0

ox0 ox0

0x0 0x0

ox0 ox0

continue, or g <return> to quit---
ox0 ox0

0x0 0x0

88

Ox7eff46909ca0: 0x0 0x0

Ox7eff46909cbo: 0x0 0x0
0x7eff46909ccO: 0x0 0x0
0x7eff46909cdo: 0x0 0x0
0x7eff46909ce0: 0x0 0x0
0x7eff46909cf0O: 0x0 0x0
0x7eff46909d00: 0x0 0x0
0x7eff46909d10: 0x0 0x0
0x7eff46909d20: 0x35e98b19e80ac 0x0
Ox7eff46909d30: ox0 ox0
0x7eff46909d40: 0x400587 <thread_one> ox0
0x7eff46909d50: ox0 ox0
0x7eff46909d60: 0x0 0x0
0x7eff46909d70: 0x0 0x0
Ox7eff46909d80: ox0 ()
Ox7eff46909d90: Ox7eff46109000 0x801000
0x7eff46909da0: 0x1000 0x1000
0x7eff46909dbo: 0x0 0x0
0x7eff46909dcO: 0x0 0x0
0x7eff46909ddo: 0x0 0x0
0x7eff46909de0: 0x0 0x0
0x7eff46909df0: 0x0 0x0
---Type <return> to continue, or g <return> to quit---
Ox7eff46909€00: 0x0 0x0
0x7eff46909e10: 0x0 0x0
0x7eff46909e20: 0x0 0x0
Ox7eff46909e30: ox0 ox0
0x7eff46909e40: 0x0 0x0
0x7eff46909e50: 0x0 0x0
Ox7eff46909e60: 0x0 0x0
0x7eff46909e70: 0x0 0x0
0x7eff46909€80: 0x0 0x0
0x7eff46909€90: 0x0 0x0
0x7eff46909€a0: 0x0 0x0
Ox7eff46909eb0: ox0 ox0
Ox7eff46909ecO: 0x0 0x0
Ox7eff46909ed0: 0x0 0x0
Ox7eff46909¢ee0: 0x0 0x0
Ox7eff46909ef0: ox0 ox0
0x7eff46909100: ox0 ox0
0x7eff46909110: 0x0 0x0
0x7eff46909120: 0x0 0x0
0x7eff46909130: 0x0 0x0
0x7eff46909140: 0x0 0x0
0x7eff46909150: 0x0 0x0
0x7eff46909160: 0x0 0x0
0x7eff46909170: 0x0 0x0
---Type <return> to continue, or q <return> to quit---
0x7eff46909180: ox0 ox0
0x7eff46909190: 0x0 0x0
0x7eff46909fa0: 0x0 0x0
0x7eff469091b0: 0x0 0x0
0x7eff46909fcO: ox0 ox0
0x7eff46909fdo: ox0 ox0
0x7eff46909fe0: ox0 ox0
0x7eff46909ff0: 0x0 0x0

89

7. See that the reconstruction of the stack trace is possible because of standard function prologue and

epilogue:
[...]
0x7eff46908070: 0x7eff46908290 0x40054b <procF+91>
Ox7ef£46908290: Ox7ef{469084bo 0x40054b <procF+91>
Ox7ef{469084b0O: 0x40054b <procF+91>
Ox7eff469088f0 0x40054b <procF+91>
0x7eff46908810: ox7eff46908b10 0x40054b <procF+91>
0x7eff46908b10: 0x7eff46908d30 0x40054b <procF+91>
0x7ef{46908d30: 0x7eff46908d40 0x40055b <procE+14>
0x7ef{46908d40: 0x7eff46908d50 0x400575 <bar_one+24>
0x7ef{46908d50: 0x7eff46908d60 0x400585 <foo_one+14>
0x7eff46908d60: 0x7eff46908d80 0x40059d <thread_one+22>
0x7ef{46908d80: ox0 0x401690 <start_thread+208>

(gdb) disass procF
Dump of assembler code for function procF:

0x0000000000400410 <+0>: push %rbp
0x00000000004004F1 <+1>: mov %rsp,%rbp
0X0000000000400414 <+4>: sub $0x210,%rsp
0x00000000004004fb <+11>: mov %edi, -0x204 (%rbp)
0x0000000000400501 <+17>: lea -0x200(%rbp),%rsi
0x0000000000400508 <+24>: mov $0x0, %eax
0x000000000040050d <+29>: mov $0x40, %edx
0x0000000000400512 <+34>: mov %rsi,%rdi
0x0000000000400515 <+37>: mov %rdx, %rcx

0Xx0000000000400518 <+40>:
0x000000000040051b <+43>:
0x0000000000400525 <+53>:
0x000000000040052b <+59>:
0x000000000040052e <+62>:
0x0000000000400534 <+68>:
0x000000000040053e <+78>:
0x0000000000400544 <+84>:
0x0000000000400546 <+86>:
=> 0x000000000040054b <+91>:
0x000000000040054Cc <+92>:
End of assembler dump.

rep stos %rax,%es:(%rdi)

movl $Oxffffffff,-0x200(%rbp)
mov -0x204(%rbp) , %eax

add $0x1, %eax

mov %eax, -0x1f8(%rbp)

movl $Oxffffffff,-0x1fo(%rbp)
mov -0x1f8(%rbp) ,%eax

mov %eax, %edi

callg 0x4004f0 <procF>

leaveq

retq

8. Use back trace command variant to get to the bottom of the stack trace:

(gdb) bt -20

#15399 0x000000000040054b in
#15400 0x000000000040054b in
#15401 0x000000000040054b in
#15402 0x000000000040054b in
#15403 0x000000000040054b in
#15404 0x000000000040054b in
#15405 0x000000000040054b in
#15406 0x000000000040054b in
#15407 0x000000000040054b in
#15408 0x000000000040054b in
#15409 0x000000000040054b in
#15410 0x000000000040054b in
#15411 0x000000000040054b in
#15412 0x000000000040055b in procE ()
#15413 Ox0000000000400575 in bar_one ()
#15414 0x0000000000400585 in foo_one ()
#15415 0x000000000040059d in thread_one ()

procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF

AN AN AN AN AN AN A AN A
R N O S e U W S W e g

N
N’ N

90

#15416 0x0000000000401690 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#15417 0x0000000000432549 in clone ()

#15418 0x0000000000000000 in ?? ()

91

Exercise A7

Goal: Learn how to identify active threads

Patterns: Divide by Zero, Active Thread

8 2015 Software Diagnostics Services

92

Exercise A7

Goal: Learn how to identify active threads.

Patterns: Divide by Zero, Active Thread.

1. Load a core dump and App7 executable:

training@debian64:~/ALCDA$ gdb -c ./App7/core -se ./App7/App7

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/App7/App7...done.

[New LWP 14843]

[New LWP 14844]

[New LWP 14842]

[New LWP 14841]

[New LWP 14840]

[New LWP 14845]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-1linux-gnu/libthread_db.so.1".
Core was generated by " ./App7'.

Program terminated with signal 8, Arithmetic exception.

#0 0x000000000040056f in procD ()

2. List and identify the possible problem threads:

(gdb) info threads

Id Target Id Frame

6 Thread 0x7f0f6706a700 (LWP 14845) Ox00000000004004fb in procF ()
Thread 0xe3f860 (LWP 14840) 0x000000000042ff91 in nanosleep ()
Thread 0x7f016906e700 (LWP 14841) 0x000000000042ff91 in nanosleep ()
Thread 0x7f0f6886d700 (LWP 14842) 0x000000000042ff91 in nanosleep ()
Thread 0x7f0f6786b700 (LWP 14844) ©x000000000042ff91 in nanosleep ()
Thread 0x7f0f6806c700 (LWP 14843) 0x000000000040056f in procD ()

BN WAV

3. List stack trace for the current problem thread #1 and identify the problem instruction:

(gdb) bt

Thread 1 (Thread 0x7f0f6806c700 (LWP 14843)):

#0 0x000000000040056Ff in procD ()

#1 0x0000PPPV0V400587 in procC ()

#2 0Ox000000000040070d in bar_three ()

#3 0Ox000000000040071d in foo_three ()

#4 0Ox0000000000400735 in thread_three ()

#5 0Ox00000000004017a0 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#6 0x0000000000432649 in clone ()

#7 0x0000000000000000 in ?? ()

93

(gdb) x/i $rip
=> 0x40056f <procD+18>: idivl -ex8(%rbp)

(gdb) info r $rax
rax ox1 1

(gdb) x/w $rbp-0x8
ox7f0f6806bd28: 0x00000000

4. Check the currently executing instruction of identified non-waiting thread #6 and compare the stack pointer
with the stack region boundaries since we suspect stack overflow:

(gdb) thread 6
[Switching to thread 6 (Thread 0x7f0f6706a700 (LWP 14845))]
#0 0x00000000004004fb in procF ()

(gdb) bt

#0 0x00000000004004fb in procF
#1 0Ox000000000040054b in procF
#2 0x000000000040054b in procF
#3 0x000000000040054b in procF
#4 0x000000000040054b in procF
#5 0x000000000040054b in procF
#6 ©x000000000040054b in procF
#7 0©x000000000040054b in procF
#8 0x000000000040054b in procF
#9 0x000000000040054b in procF
#10 0x000000000040054b in procF
#11 Ox000000000040054b in procF
#12 0x000000000040054b in procF
#13 0x000000000040054b in procF
#14 0x000000000040054b in procF
#15 0x000000000040054b in procF
#16 0x000000000040054b in procF
#17 0x000000000040054b in procF
#18 0x000000000040054b in procF
#19 0x000000000040054b in procF
#20 0x000000000040054b in procF
#21 0x000000000040054b in procF
#22 0x000000000040054b in procF
#23 Ox000000000040054b in procF
---Type <return> to continue, or
#24 0x000000000040054b in procF
#25 0x000000000040054b in procF
#26 0x000000000040054b in procF
#27 0x000000000040054b in procF
#28 0x000000000040054b in procF
#29 0x000000000040054b in procF
#30 0x000000000040054b in procF
#31 0x000000000040054b in procF
#32 0x000000000040054b in procF
#33 0x000000000040054b in procF
#34 0x000000000040054b in procF
#35 0x000000000040054b in procF
#36 0x000000000040054b in procF
#37 0x000000000040054b in procF
#38 0x000000000040054b in procF
#39 0x000000000040054b in procF
#40 0x000000000040054b in procF
#41 0x000000000040054b in procF

AN AN AN AN A A A AN AN AN AN AN AN AN A A A A A AN A A A

<return> to quit---

S/ e N N N S S N S S S N N N N e Q) N N N N N N N N N N N N N N S S S S N N N N N

AN AN AN A A A A A A AN AN A AN A A

94

#42 0x000000000040054b in procF
#43 0x000000000040054b in procF
#44 0x000000000040054b in procF
#45 0x000000000040054b in procF
#46 0x000000000040054b in procF
#47 0x000000000040054b in procF
---Type <return> to continue, or
#48 0x000000000040054b in procF
#49 0x000000000040054b in procF
#50 0x000000000040054b in procF
#51 0x000000000040054b in procF
#52 Ox000000000040054b in procF
#53 0x000000000040054b in procF
#54 0x000000000040054b in procF
#55 0x000000000040054b in procF
#56 0x000000000040054b in procF
#57 0x000000000040054b in procF
#58 0x000000000040054b in procF
#59 0x000000000040054b in procF
#60 0x000000000040054b in procF
#61 0x000000000040054b in procF
#62 0x000000000040054b in procF
#63 0x000000000040054b in procF
#64 0x000000000040054b in procF
#65 0x000000000040054b in procF
#66 0x000000000040054b in procF
#67 Ox000000000040054b in procF
#68 0x000000000040054b in procF
#69 0x000000000040054b in procF
#70 0x000000000040054b in procF
#71 0x000000000040054b in procF
---Type <return> to continue, or
#72 0x000000000040054b in procF
#73 0x000000000040054b in procF
#74 Ox000000000040054b in procF
#75 0x000000000040054b in procF
#76 0x000000000040054b in procF
#77 0x000000000040054b in procF
#78 0x000000000040054b in procF
#79 0x000000000040054b in procF
#80 0x000000000040054b in procF
#81 0x000000000040054b in procF
#82 0x000000000040054b in procF
#83 0x000000000040054b in procF
#84 0x000000000040054b in procF
#85 0x000000000040054b in procF
#86 0x000000000040054b in procF
#87 0x000000000040054b in procF
#88 0x000000000040054b in procF
#89 Ox000000000040054b in procF
#90 0x000000000040054b in procF
#91 0x000000000040054b in procF
#92 0x000000000040054b in procF
#93 0x000000000040054b in procF
#94 0x000000000040054b in procF
#95 0x000000000040054b in procF
---Type <return> to continue, or q
#96 0x000000000040054b in procF ()
#97 0x000000000040054b in procF ()
#98 0x000000000V40054b in procF ()

AN AN A AAAAA

AN AN AN AN A A A A A AN AN AN AN AN A A AN AN A AN A A A

R N G N S S N N N N A G S S N N N = I G N N N N D S N S N e U U 0 W W O W W W W W « B S e I W e g

AN A

<return> to quit---

<return> to quit---

<return> to quit---

95

#99 0x000000000040054b in procF (

#100 0x000000000040054b in procF
#101 0x0000000VV40054b in procF
#102 0x00000000040054b in procF
#103 0x000000000040054b in procF
#104 0x000000000040054b in procF
#105 0x000000000040054b in procF
#106 0x000000000040054b in procF
#107 0x000000000040054b in procF
#108 0x000000000040054b in procF
#109 0x000000000040054b in procF
#110 0x0000000V40054b in procF
#111 Ox000000000040054b in procF
#112 0x000000000040054b in procF
#113 0x000000000040054b in procF
#114 0x000000000040054b in procF
#115 Ox000000000040054b in procF
#116 0x000000000040054b in procF
#117 Ox000000000040054b in procF
#118 0x00000000040054b in procF
#119 0x000000000040054b in procF
---Type <return> to continue, or
#120 0x000000000040054b in procF
#121 0x000000000040054b in procF
#122 0x000000000040054b in procF
#123 0x000000000040054b in procF
#124 Ox000000000040054b in procF
#125 0x000000000040054b in procF
#126 0x000000000040054b in procF
#127 0x000000000040054b in procF
#128 0x000000000040054b in procF
#129 0x000000000040054b in procF
#130 0x000000000040054b in procF
#131 Ox00000000P40054b in procF
#132 0x000000000040054b in procF
#133 0x000000000040054b in procF
#134 0x000000000040054b in procF
#135 0x000000000040054b in procF
#136 0x000000000040054b in procF
#137 0x000000000040054b in procF
#138 0x000000000040054b in procF
#139 0x000000000040054b in procF
#140 0x000000000040054b in procF
#141 0x000000000040054b in procF
#142 0x000000000040054b in procF
#143 0x000000000040054b in procF
---Type <return> to continue, or
#144 0x000000000040054b in procF
#145 0x000000000040054b in procF
#146 Ox000000000040054b in procF
#147 0x000000000040054b in procF
#148 0x000000000040054b in procF
#149 0x000000000040054b in procF
#150 0x000000000040054b in procF
#151 0x000000000040054b in procF
#152 0x000000000040054b in procF
#153 0x000000000040054b in procF
#154 0x000000000040054b in procF
#155 0x000000000040054b in procF
#156 0x000000000040054b in procF

N N N N N N N N N N N N N N N N N N N

AN AN AN A A A A A A A Q AN AN AN AN AN AN AN AN AN AN AN AN AN A A A AN A A A A Q AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN A
P W W W S W W e W =4 W g W U I W W W W W S e P S

N N N N N N N N N N N N N

<return> to quit---

<return> to quit---

96

#157 0x000000000040054b in procF
#158 0x000000000040054b in procF
#159 0x000000000040054b in procF
#160 0x00000000040054b in procF
#161 0x000000000040054b in procF
#162 0x000000000040054b in procF
#163 0x000000000040054b in procF
#164 0x000000000040054b in procF
#165 0x000000000040054b in procF
#166 Ox00000000VV40054b in procF
#167 0x000000000040054b in procF
---Type <return> to continue, or
#168 0x000000000040054b in procF
#169 0x000000000040054b in procF
#170 0x000000000040054b in procF
#171 0x000000000040054b in procF
#172 0x000000000040054b in procF
#173 0x000000000040054b in procF
#174 0x000000000040054b in procF
#175 0x000000000040054b in procF
#176 0x000000000040054b in procF
#177 0x000000000040054b in procF
#178 0x000000000040054b in procF
#179 0x000000000040054b in procF
#180 0x0000000V40054b in procF
#181 0x000000000V40054b in procF
#182 0x000000000040054b in procF
#183 0x000000000040054b in procF
#184 0x000000000040054b in procF
#185 0x000000000040054b in procF
#186 0x00000000V40054b in procF
#187 0x000000000040054b in procF
#188 0x00000000PV40054b in procF
#189 0x00000000040054b in procF
#190 0x0000000V40054b in procF
#191 0x0000000V40054b in procF
---Type <return> to continue, or
#192 0x000000000040054b in procF
#193 0x000000000040054b in procF
#194 0x000000000040054b in procF
#195 0x000000000040054b in procF
#196 0x00000000040054b in procF
#197 0x000000000040054b in procF
#198 0x000000000040054b in procF
#199 0x000000000040054b in procF
#200 0x000000000040054b in procF
#201 0x000000000040054b in procF
#202 0x000000000040054b in procF
#203 0x000000000040054b in procF
#204 0x000000000040054b in procF
#205 0x000000000040054b in procF
#206 0x000000000040054b in procF
#207 0x000000000040054b in procF
#208 0x000000000040054b in procF
#209 0x0000000V40054b in procF
#210 0x000000000040054b in procF
#211 Ox00000000PV40054b in procF
#212 0x000000000040054b in procF
#213 0x000000000040054b in procF
#214 0x000000000040054b in procF

P W W A S e W W W g

S N

AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN A A A A Q A A AN AN AN AN AN AN AN AN AN AN AN A AN A A A A AN Q A A A A A A AN AN AN A

N N

<return> to quit---

<return> to quit---

97

#215 0x000000000040054b in procF ()
---Type <return> to continue, or q <return> to quit---
#216 0x000000000040054b in procF ()

#217 0Ox000000000040054b in procF ()
#218 0x000000000040054b in procF ()
#219 0x000000000040054b in procF ()
#220 0x000000000040054b in procF ()
#221 0x000000000040054b in procF ()
#222 0x000000000040054b in procF ()
#223 0x000000000040054b in procF ()
#224 0x00000000040054b in procF ()
#225 Ox000000000040054b in procF ()
#226 0x000000000040054b in procF ()

#227 0x000000000040055b in procE ()

#228 0x000000000040079b in bar_five ()

#229 0x00000000004007ab in foo_five ()

#230 0x00000000004007c3 in thread five ()

#231 Ox0000000000401720 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#232 0x0000000000432649 in clone ()

#233 0x0000000000000000 in ?? ()

(gdb) x/i $rip
=> Ox4004fb <procF+11>: mov %edi, -0x1004 (%rbp)

(gdb) disassemble $rip
Dump of assembler code for function procF:

0x0000000000400410 <+0>: push %rbp
0x00000000004004F1 <+1>: mov %rsp,%rbp
0x00000000004004F4 <+4>: sub $0x1010, %rsp

=> 0x00000000004004fb <+11>: mov %edi, -0x1004 (%rbp)
0x0000000000400501 <+17>: lea -0x1000(%rbp),%rsi
0Xx0000000000400508 <+24>: mov $0x0, %eax
0x000000000040050d <+29>: mov $0x200, %edx
0x0000000000400512 <+34>: mov %rsi,%rdi
0Xx0000000000400515 <+37>: mov %rdx, %rcx
0x0000000000400518 <+40>: rep stos %rax,%es:(%rdi)
0x000000000040051b <+43>: movl $Oxffffffff,-0x1000(%rbp)
0x0000000000400525 <+53>: mov -0x1004 (%rbp) , %eax
0x000000000040052b <+59>: add $0x1, %eax
0x000000000040052e <+62>: mov %eax, -oxff8(%rbp)
0x0000000000400534 <+68>: movl $Oxffffffff,-oxffo(%rbp)
0x000000000040053e <+78>: mov -0xff8(%rbp),%eax
0x0000000000400544 <+84>: mov %eax, xedi
0Xx0000000000400546 <+86>: callg 0x4004f0 <procF>
0x000000000040054b <+91>: leaveq
0x000000000040054Cc <+92>: retq

End of assembler dump.

(gdb) info r rsp
rsp ox7f0f661850e0 ox7f0f661f850e0

(gdb) maintenance info sections

Exec file:
“/home/training/ALCDA/App7/App7', file type elf64-x86-64.
0x00400158->0x00400178 at 0x00000158: .note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
0x00400178->0x0040019c at 0x00000178: .note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004001a0->0x004002d8 at 0x000001a0: .rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004002d8->0x004002e6 at 0x000002d8: .init ALLOC LOAD READONLY CODE HAS_CONTENTS
0x00400210->0x004003cO at 0x000002f0: .plt ALLOC LOAD READONLY CODE HAS_CONTENTS
0x004003c0->0x0048b358 at 0x000003cO: .text ALLOC LOAD READONLY CODE HAS_CONTENTS
0x0048b360->0x0048bede at 0x0008b360: _ libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS

98

0x0048beed->0x0048bf41 at
0x0048bf44->0x0048bf4d at
0x0048bf60->0x004a9%ec4 at
0x004a9ec8->0x004a9f28 at
---Type <return> to continue,

0x0008beed: _ libc_thread_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
0x0008bf44: .fini ALLOC LOAD READONLY CODE HAS_CONTENTS

0x0008bf60: .rodata ALLOC LOAD READONLY DATA HAS_CONTENTS

0x000a9%ec8: _ libc_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS

or q <return> to quit---

0x00429128->0x004a9f30 at Ox000a9f28: _ libc_atexit ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004a9130->0x004a9f38 at 0x000a9f30: _ libc_thread_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004a9f38->0x004b6acc at Ox000a9f38: .eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004b6acc->0x004b6be6 at Ox0@0Ob6acc: .gcc_except table ALLOC LOAD READONLY DATA HAS_CONTENTS
0x006b6be8->0x006b6Cc10 at Ox00Ob6be8: .tdata ALLOC LOAD DATA HAS_CONTENTS
0x006b6Cc10->0x006b6c40 at ©0x000b6c10: .tbss ALLOC

0x006b6Cc10->0x006b6C20 at ©x00Ob6Cc10O: .init_array ALLOC LOAD DATA HAS_CONTENTS
0x006b6Cc20->0x006b6Cc30 at Ox00Ob6c20: .fini_array ALLOC LOAD DATA HAS_CONTENTS
0x006b6C30->0x006b6C38 at ©x000b6c30: .jcr ALLOC LOAD DATA HAS_CONTENTS
0x006b6Cc40->0x006b6CcbO at ©x000b6c40: .data.rel.ro ALLOC LOAD DATA HAS_CONTENTS
0x006b6CcbO->0x006b6CcCcO at Ox00Ob6CcbO: .got ALLOC LOAD DATA HAS_CONTENTS
0x006b6CcCO->0x006b6d40 at Ox000b6CcCcO: .got.plt ALLOC LOAD DATA HAS_CONTENTS
0x006b6d40->0x006b7a50 at Ox00Ob6d40: .data ALLOC LOAD DATA HAS_CONTENTS
0x006b7a60->0x006bedc8 at Ox00Ob7a50: .bss ALLOC

0x006bedc8->0x006bedf8 at ©x000b7a50: _ libc_freeres_ptrs ALLOC

0X00000000- >0x00000038 at Ox0VOb7a50: .comment READONLY HAS_CONTENTS

0x00000000- >0x00000390 at 0x00Ob7290: .debug_aranges READONLY HAS_CONTENTS

---Type <return> to continue,

or g <return> to quit---

0x00000000->0x00000ac3 at Ox000b7e20: .debug_pubnames READONLY HAS_CONTENTS
0x00000000->0x00011440 at 0x000b88e3: .debug_info READONLY HAS_CONTENTS
0Xx00000000->0x000021b1 at 0x000c9d23: .debug_abbrev READONLY HAS_CONTENTS
0x00000000- >0x00002ebc at Ox000cbed4: .debug line READONLY HAS_CONTENTS
0x00000000- >0x000038da at Ox0P00ced90: .debug _str READONLY HAS_CONTENTS
0x00000000->0x0000878¢e at 0Ox000d266a: .debug loc READONLY HAS_CONTENTS
0x00000000->0x00001280 at 0x000dadf8: .debug_ranges READONLY HAS_CONTENTS

Core file:
" /home/training/ALCDA/.

/App7/core', file type elf64-x86-64.

0X00000000->0x00002aa8 at 0x00000430: noted® READONLY HAS_CONTENTS
0x00000000->0x000000d8 at 0x000004b4: .reg/14843 HAS_CONTENTS
0x00000000->0x000000d8 at 0x000004b4: .reg HAS_CONTENTS
0x00000000->0x00000130 at 0x00000644: .auxv HAS_CONTENTS
0X00000000->0x00000200 at 0x00000788: .reg2/14843 HAS_CONTENTS
0x00000000->0x00000200 at 0x00000788: .reg2 HAS_CONTENTS
0x00000000->0x00000340 at 0Ox0000099c: .reg-xstate/14843 HAS_CONTENTS
0x00000000->0x00000340 at Ox000V99c: .reg-xstate HAS_CONTENTS
0x00000000->0x000000d8 at 0x00000d60: .reg/14844 HAS_CONTENTS
0X00000000->0x00000200 at 0x00000e54: .reg2/14844 HAS_CONTENTS
0x00000000->0x00000340 at 0x00001068: .reg-xstate/14844 HAS_CONTENTS
0x00000000->0x000000d8 at 0x0000142c: .reg/14842 HAS_CONTENTS
0X00000000->0x00000200 at 0x00001520: .reg2/14842 HAS_CONTENTS
0x00000000->0x00000340 at 0x00001734: .reg-xstate/14842 HAS_CONTENTS
0x00000000->0x000000d8 at 0x00001af8: .reg/14841 HAS_CONTENTS

---Type <return> to continue,

or g <return> to quit---

0x00000000->0x00000200 at 0x00001bec: .reg2/14841 HAS_CONTENTS
0x00000000->0x00000340 at 0x00001e00: .reg-xstate/14841 HAS_CONTENTS
0x00000000->0x000000d8 at 0x000021c4: .reg/14840 HAS_CONTENTS
0x00000000->0x00000200 at 0x000022b8: .reg2/14840 HAS_CONTENTS
0x00000000->0x00000340 at Ox000024cc: .reg-xstate/14840 HAS_CONTENTS
0x00000000->0x000000d8 at 0x00002890: .reg/14845 HAS_CONTENTS
0X00000000->0x00000200 at 0x00002984: .reg2/14845 HAS_CONTENTS
0x00000000->0x00000340 at Ox00002b98: .reg-xstate/14845 HAS_CONTENTS
0x00400000->0x00401000 at 0x00003000: loadla ALLOC LOAD READONLY CODE HAS_CONTENTS
0x00401000->0x00401000 at 0x00004000: loadlb ALLOC READONLY CODE
0x006b6000->0x006b80OO at 0x00004000: load2 ALLOC LOAD HAS_CONTENTS
0x006b8000->0x006bTO0O at 0x00006000: load3 ALLOC LOAD HAS_CONTENTS
0x00e31000->0x00e62000 at 0x0000d0O: load4 ALLOC LOAD HAS_CONTENTS

0x7f0f6686a000->0x7f0f6686b000
0x7f0f6686b000->0x7f0f6706b00O
0x7t0f6706b000O->0x7f0f6706c000
0x7t0f6706c000->0x7f0f6786c000
0x7f0f6786Cc000->0x7f0f6786d000
0x7t0f6786d000->0x7f0f6806d000

at
at
at
at
at
at

0x00030000:
0x00031000:
0x00831000:
0x00832000:
0x01032000:
0x01033000:

load5 ALLOC
load6é ALLOC
load7 ALLOC
load8 ALLOC
load9 ALLOC

LOAD READONLY HAS_CONTENTS
LOAD HAS_CONTENTS
LOAD READONLY HAS_CONTENTS
LOAD HAS_CONTENTS
LOAD READONLY HAS_CONTENTS

load1e ALLOC LOAD HAS_CONTENTS

99

---Type <return> to continue, or q
0x710f6806d000->0x710f6806€000
0x7f0f6806€000->0x7f0f6886€000
0x710f6886e000->0x7f0f68861000
0x710f68861000->0x7f0f69061000
Ox7ffff76e9000->0x7ff{ff770b000o
Ox7ffff77c5000->0x7fff{77c6000

<return> to quit---

at
at
at
at
at
at

0x01833000:
0x01834000:
0x02034000:
0x02035000:
0x02835000:
0x02857000:
oxFfFfffffff600000->0xffffffffff600000 at ©x02858000:

loadl1l ALLOC
loadl2 ALLOC
load13 ALLOC
load14 ALLOC
load15 ALLOC
loadl6 ALLOC

LOAD
LOAD
LOAD
LOAD
LOAD
LOAD

READONLY HAS_CONTENTS
HAS_CONTENTS

READONLY HAS_CONTENTS
HAS_CONTENTS

HAS_CONTENTS

READONLY CODE HAS_CONTENTS

load17 ALLOC READONLY CODE

We see that the stack pointer value 0x7f0f66f850¢€0 is inside the stack region address range 0x7f0f6686b000 -

0x7f0f6706b000.

100

Exercise A8

Goal: Learn how to identify runtime exceptions, past
execution residue and stack traces, identify handled
exceptions

Patterns: C++ Exception, Execution Residue, Coincidental
Symbolic Information, Handled Exception

8 2015 Software Diagnostics Services

101

Exercise A8

Goal: Learn how to identify runtime exceptions, past execution residue and stack traces, identify handled
exceptions.

Patterns: C++ Exception, Execution Residue, Coincidental Symbolic Information, Handled Exception.

1. Load a core dump and App8 executable:

training@debian64:~/ALCDA$ gdb -c ./App8/core -se ./App8/App8

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/App8/App8...done.

[New LWP 15203]

[New LWP 15204]

[New LWP 15205]

[New LWP 15206]

[New LWP 15207]

[New LWP 15202]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1linux-gnu/libthread_db.so.1".
Core was generated by " ./App8'.

Program terminated with signal 6, Aborted.

#0 0x00000000004524b5 in raise ()

2. List all thread stack traces:
(gdb) thread apply all bt

Thread 6 (Thread 0x1ae3880 (LWP 15202)):
#0 0x00000000004431f1 in nanosleep ()
#1 0Ox00000000004430c0 in sleep ()

#2 0Ox00000000004008f9 in main ()

Thread 5 (Thread ©x7f4cab440700 (LWP 15207)):

#0 0x00000000004431f1 in nanosleep ()

#1 0Ox00000000004430c0 in sleep ()

#2 0x0000000000400771 in procNE() ()

#3 0x0000000000400834 in bar five() ()

#4 0x000000000040083f in foo five() ()

#5 0Ox0000000000400852 in thread_five(void*) ()

#6 0Ox00000000004140f0 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#7 0Ox0000000000445879 in clone ()

#8 0x0000000000000000 in ?? ()

102

Thread 4 (Thread @x7f4cabc41700 (LWP 15206)):

#0 0x00000000004431f1 in nanosleep ()

#1 0x00000000004430c0 in sleep ()

#2 0x0000000000400771 in procNE() ()

#3 0x0000000000400806 in bar four() ()

#4 0x0000000000400811 in foo four() ()

---Type <return> to continue, or q <return> to quit---

#5 0Ox0000000000400824 in thread_four(void*) ()

#6 0Ox00000000004140f0 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#7 0Ox0000000000445879 in clone ()

#8 0x0000000000000000 in ?? ()

Thread 3 (Thread 0x7f4cac442700 (LWP 15205)):

#0 0x00000000004431f1 in nanosleep ()

#1 0©x00000000004430cO in sleep ()

#2 0x000000000040073c in procH() ()

#3 0x00000000004007d8 in bar_three() ()

#4 0Ox00000000004007e3 in foo_three() ()

#5 0Ox00000000004007f6 in thread_three(void*) ()

#6 0x00000000004140f0 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#7 0Ox0000000000445879 in clone ()

#8 0x0000000000000000 in ?? ()

Thread 2 (Thread 0x7f4cacc43700 (LWP 15204)):

#0 0Ox00000000004431f1 in nanosleep ()

#1 0x00000000004430c0 in sleep ()

#2 0x0000000000400771 in procNE() ()

#3 0Ox00000000004007aa in bar_two() ()

#4 0x00000000004007b5 in foo two() ()

---Type <return> to continue, or q <return> to quit---

#5 0x00000000004007c8 in thread_two(void*) ()

#6 0Ox00000000004140f0 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#7 0Ox0000000000445879 in clone ()

#8 0Ox0000000000000000 in ?? ()

Thread 1 (Thread 0x7f4cad444700 (LWP 15203)):
#0 0x00000000004524b5 in raise ()
#1 0Ox000000000041ca60® in abort ()
#2 0Ox000000000040562d in _ gnu_cxx::__verbose_terminate_handler() ()
#3 0Ox0000000000405146 in __cxxabivl::__terminate(void (*)()) ()
#4 0Ox0000000000405173 in std::terminate() ()
#5 0Ox000000000040165e in __cxa_throw ()
#6 0Xx000PPPVVV4006a3 in procB() ()
#7 0x00000000004006Fa in procA() ()
#8 0x0000PPPVVV40075c in procNH() ()
#9 0x000000000040077c in bar_one() ()
#10 0x00000000P400787 in foo_one() ()
#11 Ox000000000040079a in thread one(void*) ()
#12 0x00000000004140f0 in start_thread (arg=<optimized out>)
at pthread_create.c:304
#13 0x0000000000445879 in clone ()
#14 0x0000000000000000 in ?? ()

We have C++ exception processing in thread #1.

103

3. Go to the thread #2, identify execution residue of work functions and check their correctness:

(gdb) thread 2
[Switching to thread 2 (Thread Ox7f4cacc43700 (LWP 15204))]
#0 0x00000000004431f1 in nanosleep ()

(gdb) bt

#0 0x00000000004431f1 in nanosleep ()

#1 0x00000000004430c0 in sleep ()

#2 0x0000000000400771 in procNE() ()

#3 0Ox00000000004007aa in bar_two() ()

#4 0Xx00000000004007b5 in foo two() ()

#5 0Ox00000000004007c8 in thread two(void*) ()

#6 0x0000000R0V4140f0 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#7 0x0000000000445879 in clone ()

#8 0x0000000000000000 in ?? ()

(gdb) x/512a $rsp-2000

Ox7f4cacc42360: 0x0 0x0
Ox7f4cacc42370: 0x0 0x0
Ox7f4cacc42380: () ()
Ox7f4cacc42390: 0x0 0x0
Ox7f4cacc423a0: 0x0 0x0
Ox7f4cacc423b0: 0x0 0x0
Ox7f4cacc423co: 0x0 0x0
Ox7f4cacc423do: 0x0 0x0
Ox7f4cacc423e0: 0x0 0x0
Ox7f4cacc423f0: 0x0 0x0
Ox7f4cacc42400: 0x0 0x0
Ox7f4cacc42410: 0x0 0x0
Ox7f4caccd2420: 0x0 0x0
Ox7f4cacc42430: 0x0 0x0
Ox7f4caccd2440: 0x0 0x0
Ox7f4cacc42450: 0x0 0x0
Ox7f4caccd2460: 0x0 0x0
Ox7f4caccd2470: 0x0 0x0
Ox7f4cacc42480: 0x0 0x0
Ox7f4cacc42490: 0x0 0x0
Ox7f4cacc424a0: 0x0 0x0
Ox7f4cacc424bo: 0x0 0x0
Ox7f4cacc424co: 0x0 0x0
Ox7f4cacc424do: 0x0 0x0
---Type <return> to continue, or g <return> to quit---
Ox7f4caccd24e0: 0x0 0x0
Ox7f4cacc424f0: () ()
Ox7f4cacc42500: ox0 ox0
Ox7f4cacc42510: 0x0 0x0
Ox7f4cacc42520: 0x0 0x0
Ox7f4cacc42530: 0x0 0x0
Ox7f4cacc42540: 0x0 0x0
Ox7f4cacc42550: 0x0 0x0
Ox7f4cacc42560: 0x0 0x0
Ox7f4cacc42570: 0x0 0x0
Ox7f4cacc42580: 0x0 0x0
Ox7f4cacc42590: 0x0 0x0
Ox7f4cacc425a0: ox0 ox0
Ox7f4cacc425bo: 0x0 0x0
Ox7f4cacc425c0o: 0x0 0x0
Ox7f4cacc425do: 0x0 0x0

104

continue, or g <return> to quit---

continue, or g <return> to quit---

Ox7f4cacc425e0: ox0 ox0
Ox7f4cacc425f0: ox0 ox0
0x7f4cacc42600: 0x0 0x0
Ox7f4cacc42610: 0x0 0x0
Ox7f4caccd2620: 0x0 0x0
Ox7f4cacc42630: 0x0 0x0
Ox7f4cacc42640: 0x0 0x0
Ox7f4cacc42650: 0x0 0x0
---Type <return> to
Ox7f4cacc42660: 0x0 0x0
Ox7f4cacc42670: 0x0 0x0
Ox7f4cacc42680: 0x0 0x0
Ox7f4cacc42690: 0x0 0x0
Ox7f4cacc426a0: 0x0 0x0
Ox7f4cacc426bo: ox0 ()
Ox7f4cacc426c0: ox0 ox0
Ox7f4cacc426do: 0x0 0x0
Ox7f4cacc426€0: 0x0 0x0
Ox7f4cacc426f0: 0x0 0x0
Ox7f4caccd2700: 0x0 0x0
Ox7f4cacc42710: 0x0 0x0
Ox7f4caccd2720: 0x0 0x0
Ox7f4cacc42730: 0x0 0x0
Ox7f4cacc42740: 0x0 0x0
Ox7f4cacc42750: 0x0 0x0
Ox7f4cacc42760: 0x0 0x0
Ox7f4cacc42770: 0x0 0x0
Ox7f4cacc42780: 0x0 0x0
Ox7f4caccd2790: 0x0 0x0
Ox7f4cacc427a0: 0x0 0x0
Ox7f4cacc427b0: 0x0 0x0
Ox7f4caccd27co: 0x0 0x0
Ox7f4cacc427do: 0x0 0x0
---Type <return> to
Ox7f4cacc427e0: 0x0 0x0
Ox7f4cacc427f0: 0x0 0x0
Ox7f4cacc42800: 0x0 0x0
Ox7f4cacc42810: 0x0 0x0
Ox7f4cacc42820: 0x0 0x0
Ox7f4cacc42830: ox0 ox0
Ox7f4cacc42840: 0x0 0x0
Ox7f4cacc42850: 0x0 0x0
0x7f4cacc42860: 0x7f4cacc42870
ox7f4cacc42870: Ox7f4cacc42880
Ox7f4cacc42880: Ox7f4cacc42890
0x7f4cacc42890: 0x7f4cacc428a0
Ox7f4cacc428a0: 0x7f4cacc428bo
0x7f4cacc428bo: 0x7f4cacc428cO
ox7f4cacc428cO: ox7f4cacc428d0
ox7f4cacc428do: ox7f4cacc428e0
Ox7f4cacc428e0: Ox7f4cacc42cfo
Ox7f4cacc428f0: 0x0 0x0
Ox7f4cacc42900: 0x0 0x0
Ox7f4cacc42910: 0x0 0x0
Ox7f4cacc42920: 0x0 0x0
Ox7f4cacc42930: 0x0 0x0
Ox7f4cacc42940: 0x0 0x0
Ox7f4cacc42950: 0x0 0x0
---Type <return> to continue,
Ox7f4cacc42960: 0x0 0x0

0x4005af
0x4005ba
0x4005c5
0x4005d0
0x4005db
0x4005e6
0x4005f1
0x4005fc
0x40060e

<_Zeéwork_8v+9>
<_zZework_7v+9>
<_zZeéwork_6v+9>
<_zZeéwork_5v+9>
<_zZeéwork_4v+9>
<_zZeéwork_3v+9>
<_zZeéwork_2v+9>
<_Zéwork_1v+9>
<_Z4workv+16>

or q <return> to quit---

105

Ox7f4cacc42970: o0x0 0x0

Ox7f4cacc42980: 0x0 0x0
Ox7f4cacc42990: 0x0 0x0
Ox7f4cacc429a0: 0x0 0x0
Ox7f4cacc429b0: 0x0 0x0
Ox7f4cacc429co: 0x0 0x0
Ox7f4cacc429do: 0x0 0x0
Ox7f4cacc429e0: 0x0 0x0
Ox7f4cacc429f0: 0x0 0x0
Ox7f4cacc42a00: 0x0 0x0
Ox7f4cacc42alo: 0x0 0x0
Ox7f4cacc42a20: 0x0 0x0
Ox7f4cacc42a30: 0x0 0x0
Ox7f4caccd2a40: 0x0 0x0
Ox7f4cacc42a50: ox0 ()
Ox7f4cacc42a60: ox0 ox0
Ox7f4cacc42a70: 0x0 0x0
Ox7f4cacc42a80: 0x0 0x0
Ox7f4cacc42a90: 0x0 0x0
Ox7f4cacc42aa0: 0x0 0x0
Ox7f4cacc42abo: 0x0 0x0
Ox7f4cacc42aco: 0x0 0x0
Ox7f4cacc42ado: 0x0 0x0

---Type <return> to continue, or q <return> to quit---
Ox7f4cacc42ae0: ox0 ox0
Ox7f4cacc42afo: ox0 ox0
Ox7f4cacc42boo: 0x0 0x0
Ox7f4cacc42ble: 0x0 0x0
Ox7f4cacc42b20: ox0 0x4431e6 <nanosleep+38>
Ox7f4cacc42b30: ox0 0x4430c0 <sleep+224>
Ox7f4cacc42b4o: 0x0 0x0
Ox7f4cacc42b50: 0x0 0x0
Ox7f4cacc42b6o: 0x0 0x0
Ox7f4cacc42b70: 0x0 0x0
Ox7f4cacc42b8o: 0x0 0x0
Ox7f4cacc42b9o: 0x0 0x0
Ox7f4cacc42ba0: 0x0 0x0
Ox7f4cacc42bbo: ox0 ox0
Ox7f4cacc42bco: ox0 ox0
Ox7f4cacc42bdo: ox0 ox0
Ox7f4caccd2be0: 0x0 0x0
Ox7f4cacc42bfo: 0x0 0x0
Ox7f4caccd2c00: 0x0 0x0
Ox7f4caccd2clo: 0x0 0x0
Ox7f4caccd2c20: 0x0 0x0
Ox7f4cacc42c30: 0x0 0x0
Ox7f4cacc42c40: 0x0 0x0
Ox7f4cacc42c50: 0x0 0x0

---Type <return> to continue, or q <return> to quit---
Ox7f4cacc42c60: 0x10000 0x0
Ox7f4cacc42c70: 0x0 0x0
Ox7f4cacc42c80: 0x0 0x0
Ox7f4cacc42c90: 0x0 0x0
Ox7f4cacc42ca0: ox0 ox0
Ox7f4cacc42chbo: ox0 ox0
Ox7f4caccd2ccO: 0x0 0x0
Ox7f4caccd2cdo: 0x0 0x0
Ox7f4caccd2ce0: oxfffffed2 Ox3ad3affa
Ox7f4caccd2cfo: Ox7f4cacc42dee 0x0
Ox7f4caccd2deo: Ox7f4cacc42d20 0x49c740 <default_attr>

106

Ox7f4cacc42dio:
Ox7f4cacc42d20:
Ox7f4cacc42d30:
Ox7f4cacc42d40:
Ox7f4cacc42d50:
Ox7f4cacc42d60:
Ox7f4cacc42d70:
Ox7f4cacc42d8e:
Ox7f4cacc42d90:
Ox7f4caccd2da0:
Ox7f4cacc42dbo:
Ox7f4cacc42dco:
Ox7f4cacc42ddo:
---Type <return> to
Ox7f4cacc42deo:
Ox7f4cacc42dfo:
Ox7f4cacc42e00:
Ox7f4caccd2el0:
Ox7f4caccd2e20:
Ox7f4caccd2e30:
Ox7f4caccd2e40:
Ox7f4cacc42e50:
Ox7f4cacc42e60:
Ox7f4cacc42e70:
Ox7f4cacc42e80:
Ox7f4caccd2e90:
Ox7f4caccd2ead:
Ox7f4caccd2ebo:
Ox7f4caccd2ecO:
Ox7f4cacc42edo:
Ox7f4caccl2ee0:
Ox7f4caccdefo:
Ox7f4cacc42f00:
Ox7f4cacc42fio:
Ox7f4cacc42f20:
Ox7f4cacc42f30:
Ox7f4cacc42f40:
Ox7f4cacc42f50:
---Type <return> to
Ox7f4cacc42f60:
Ox7f4cacc42f70:
Ox7f4cacc42180:
Ox7f4cacc42190:
Ox7f4cacc42fa0:
Ox7f4cacc42fbo:
Ox7f4cacc42fco:
Ox7f4cacc42fdo:
Ox7f4cacc42fe0:
Ox7f4cacc42ffo:
Ox7f4cacc43000:
Ox7f4cacc43010:
Ox7f4cacc43020:
Ox7f4cacc43030:
Ox7f4cacc43040:
Ox7f4cacc43050:
0x7f4cacc43060:
0x7f4cacc43070:
Ox7f4cacc43080:
Ox7f4cacc43090:
Ox7f4cacc430a0:

ox7f4cacc439co 0x400771 <_Z6procNEv+19>
ox7f4cacc42d30 0x4007aa <_Z7bar_twov+9>
Ox7f4cacc42d40 0x4007b5 <_Z7foo_twov+9>
Ox7f4cacc42d60 0x4007c8 <_Z10thread_twoPv+17>
0x0 0x0

ox0 0x4140f0 <start_thread+208>
ox0 Ox7f4cacc43700

0x0 0x0

0x0 0x0

ox0 ox0

0x0 0x0

0x0 0x0

0x0 0x0

continue, or g <return> to quit---
0x0 0x0

0x0 0x0

ox7f4cacc43700 0x4987c54266ee5578
0x49c740 <default_attr> Ox7f4cacc439co
0x0 0x3

Oxb71e9cca3cPe5578 ©x4987c5c0e7825578
ox0 ox0

0x0 0x0
0x0 0x0
Ox7f4cacc43700 0x445879 <clone+121>
0x0 0x0
ox0 ox0
0x0 ox0
ox0 ox0
ox0 ox0
ox0 ox0
(2 0x0
0x0 0x0
ox0 ox0
ox0 ox0
0x0 ox0
0x0 0x0
0x0 0x0
0x0 0x0
continue, or q <return> to quit---
ox0 ox0
ox0 ox0
ox0 ox0
ox0 ox0
ox0 ox0
ox0 ox0
o0x0 0x0
0x0 0x0
0x0 0x0
ox0 ox0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
ox0 ox0
ox0 ox0
0x0 0x0
ox0 ox0
ox0 ox0
ox0 ox0
0x0 0x0

107

Ox7f4cacc430bo: 0x0 0x0

Ox7f4cacc430c0: ox0 ox0
Ox7f4cacc430do: 0x0 0x0
---Type <return> to continue, or q <return> to quit---
Ox7f4cacc430e0: 0x0 0x0
Ox7f4cacc430f0o: 0x0 0x0
0x7f4cacc43100: 0x0 0x0
Ox7f4cacc43110: 0x0 0x0
0x7f4cacc43120: 0x0 0x0
Ox7f4cacc43130: 0x0 0x0
Ox7f4cacc43140: 0x0 0x0
Ox7f4cacc43150: 0x0 0x0
Ox7f4cacc43160: 0x0 0x0
Ox7f4cacc43170: 0x0 0x0
Ox7f4cacc43180: ox0 ()
Ox7f4cacc43190: 0x0 0x0
0x7f4cacc431a0: 0x0 0x0
Ox7f4cacc431bo: 0x0 0x0
Ox7f4cacc431cO: 0x0 0x0
Ox7f4cacc431de: 0x0 0x0
Ox7f4cacc431e0: 0x0 0x0
Ox7f4cacc431fo: 0x0 0x0
Ox7f4cacc43200: 0x0 0x0
Ox7f4cacc43210: 0x0 0x0
Ox7f4cacc43220: 0x0 0x0
Ox7f4cacc43230: ox0 ox0
Ox7f4cacc43240: 0x0 0x0
Ox7f4cacc43250: 0x0 0x0
---Type <return> to continue, or q <return> to quit---
Ox7f4cacc43260: () ()
0x7f4cacc43270: 0x0 0x0
Ox7f4cacc43280: 0x0 0x0
Ox7f4cacc43290: 0x0 0x0
Ox7f4cacc432a0: 0x0 0x0
Ox7f4cacc432bo: 0x0 0x0
Ox7f4cacc432cO: 0x0 0x0
Ox7f4cacc432do: 0x0 0x0
Ox7f4cacc432e0: ox0 ox0
Ox7f4cacc432f0: ox0 ox0
Ox7f4cacc43300: ox0 ox0
Ox7f4cacc43310: ox0 ox0
Ox7f4cacc43320: 0x0 0x0
Ox7f4cacc43330: 0x0 0x0
Ox7f4cacc43340: 0x0 0x0
Ox7f4cacc43350: 0x0 0x0

(gdb) disassemble 0x4005e6
Dump of assembler code for function _Z6work_ 3v:

0x00000000004005dd <+0>: push %rbp
0x00000000004005de <+1>: mov %rsp,%rbp
0x00000000004005e1 <+4>: callg 0x4005d2 <_zZéwork_4v>
0x00000000004005€6 <+9>: pop %rbp
0x00000000004005e7 <+10>: retq

End of assembler dump.

108

4, Go to the thread #3, identify handled exception processing code, and check its validity:

(gdb) thread 3
[Switching to thread 3 (Thread 0x7f4cac442700 (LWP 15205))]
#0 0x00000000004431f1 in nanosleep ()

(gdb) bt

#0 0x00000000004431f1 in nanosleep ()

#1 0x00000000004430c0 in sleep ()

#2 0x000000000040073c in procH() ()

#3 0x00000000004007d8 in bar_three() ()

#4 0x000000000V4007e3 in foo three() ()

#5 0Ox00000000004007f6 in thread_three(void*) ()

#6 0Ox00000000004140f0 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#7 0x0000000000445879 in clone ()

#8 0x0000000000000000 in ?? ()

(gdb) x/512a $rsp-2000

0x7f4cac441350: 0x0 0x0

0x7f4cac441360: 0x0 0x0

0x7f4cac441370: 0x0 0x0

0x7f4cac441380: 0x0 0x0

0x7f4cac441390: 0x0 0x0

0x7f4cac4413a0: ox0 ox0

0x7f4cac4413b0: (D (D

0x7f4cac4413co: ox0 ox0

0x7f4cac4413do: ox0 ox0

0x7f4cacd413e0: ox0 ox0

0x7f4cac4413f0: ox0 ox0

Ox7f4cac441400: 0x0 0x0

Ox7f4cac441410: 0x0 0x0

Ox7f4cac441420: 0x0 0x0

0x7f4cac441430: (D (D

0x7f4cac441440: 0x0 0x0

0x7f4cac441450: 0x0 0x0

0x7f4cacd41460: 0x0 0x0

0x7f4cacd41470: ox0 ox0

Ox7f4cac441480: ox0 ox0

0x7f4cac441490: ox0 ox0

0x7f4cac4414a0: (2] ox0

0x7f4cacd414b0: ox0 ox0

0x7f4cacd414co: ox0 ox0

---Type <return> to continue, or q <return> to quit---
0x7f4cac4414do: ox0 ox0

Ox7f4cacd414e0: ox0 ox0

ox7f4cac4414f0: Ox6cdc20 <object.5602> ox0
0x7f4cac441500: Ox1lb ©0x411e96 <fde_single_encoding_compare+118>
0x7f4cac441510: 0x4005a6 <_Z6work_8v> 0x400520 <_Z6work_9v>
0x7f4cac441520: ©x1lae91a0 ox1

0x7f4cac441530: ©x1lae91a0 0x2

0x7f4cac441540: 0x411e20 <fde_single_encoding_compare> ©0x4116de <frame_downheap+78>
0x7f4cac441550: ox0 Ox6cdc20 <object.5602>

0x7f4cac441560: 0x4ca398 <__ EH_FRAME_BEGIN__+66800> 0x1ae9190
0x7f4cac441570: 0x1ae91a0 0x6cdc20 <object.5602>
0x7f4cac441580: 0x411e20 <fde_single_encoding_compare> ©0x2de
Ox7f4cac441590: ox6cdc20 <object.5602> ox0
0x7f4cac4415a20: Ox1lb Ox6e4e60 <main_arena>

0x7f4cac4415b0: 0x411e20 <fde_single_encoding_compare> ©ox1
0x7f4cac4415c0: ox2 Oxlae5d10

109

Ox7f4cac4415do:
Ox7f4cac4415e0:
Ox7f4cac4415f0:
0x7f4cac441600:
Ox7f4cac441610:
Ox7f4cac441620:
0x7f4cac441630:

---Type <return> to

Ox7f4cac441640:
Ox7f4cac441650:
Ox7f4cac441660:
Ox7f4cac441670:
0x7f4cac441680:
0x7f4cac441690:
Ox7f4cac4416a0:
Ox7f4cac4416bo:
0x7f4cac4416cO:
0x7f4cac4416do:
Ox7f4cac4416€0:
Ox7f4cac4416f0:
0x7f4cac441700:
0x7f4cac441710:
Ox7f4cac441720:
Ox7f4cac441730:
Ox7f4cac441740:
0x7f4cac441750:
Ox7f4cac441760:
Ox7f4cac441770:
Ox7f4cac441780:
Ox7f4cac441790:
Ox7f4cacd417a0:
0x7f4cac4417b0:

---Type <return> to

Ox7f4cacd417co:
Ox7f4cac4417deo:
Ox7f4cac4417e0:
Ox7f4cac4417f0:
0x7f4cac441800:
Ox7f4cac441810:
Ox7f4cac441820:
Ox7f4cac441830:
Ox7f4cac441840:
0x7f4cac441850:
0x7f4cac441860:
0x7f4cac441870:
Ox7f4cac441880:
0x7f4cac441890:
0x7f4cac4418a0:
Ox7f4cac4418bo:
Ox7f4cac4418cO:
Ox7f4cac4418de:
Ox7f4cac4418e0:
Ox7f4cac4418f0:
0x7f4cac441900:
Ox7f4cac441910:
0x7f4cac441920:
0x7f4cac441930:

---Type <return> to

0x7f4cacd41940:.
0x7f4cac441950:

ox1fe ©ox7fdcac441610

0x10 0Ox4badc8 <_ EH_FRAME_BEGIN__ +544>
0x10 ©0x412599 <search_object+1209>
Ox7f4cac441630 0x400714 <_Z5procHv+13>
Ox7f4cac441638 0x714c0000001b

oxb ox7f4cac441cd8

0x400707 <_Z5procHv> 0x42

continue, or g <return> to quit---
Ox7f4cac441cfo 0x7f4cac441600

ox0 Ox6cdc20 <object.5602>

Ox7f4cac441a98 0x416700 <pthread_cancel>
0x6cdc20 <object.5602> 0x7f4cac441a98
Ox1lb ©0x4130a0 <_Unwind_Find_FDE+208>
Ox7f4cac441ct8
Ox4cadoc
0x0 0x0
() Ox4baedd <__ EH_FRAME_BEGIN__ +565>
() Ox7f4cac4419f0

Ox4baedd <__ EH_FRAME_BEGIN__ +565> ox3
Ox7f4cac441760
ox3 0x4ba033 < EH_FRAME_BEGIN__ +395>
oxfffffffffffffff8 ©x4caddc

ox4006fa <_Z5procAv+9>

0x7f4cac441900 0x7f4cac4419f0
ox4 Oxlae5c90
0x7f4cac441900 0x0

ox3 0x410c3b <_Unwind_RaiseException_Phase2+59>
0x0 0x0

0x0 0x0
0x0 0x0
Oxffffffffffffffe8 ox1
o0x0 o0x0
o0x0 o0x0

continue, or g <return> to quit---
oxfffffffffffffffeo ox1

0x0 ox0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
ox0 ox0
ox0 ox0
ox0 ox0
ox0 ox0
OxffffHfffHffff{f8 ox1
ox0 ox0
o0x0 0x10
X6 0x0

ox1 0x400748 <_Z5procHv+65>
0x401b60 <__ gxx_personality veO> Oxfffffffffffffffs
ox1 0x4105ff <uw_install context_1+191>

0x7f4cac441die 0x0

0x7f4cac4419f0 0x7f4cac441cao

Ox1lae5c90 0x411265 <_Unwind_RaiseException+309>
Ox7f4cac441c68 Ox7f4cac441c70

0x0 Ox7f4cac441c78

0x0 0x0

0x7f4cacd41cao 0x0

continue, or g <return> to quit---

ox0 ox0

0x0 0x0

110

0x401c2a <__gxx_personality ve+202>

0x41022c <uw_frame_state_for+828>

0x7f4cac441960:
0x7f4cac441970:
0x7f4cac441980:
0x7f4cac441990:
0x7f4cac4419a0:
0x7f4cac4419b0:
0x7f4cac4419co:
0x7f4cac4419de:
0x7f4cac4419e0:
Ox7f4cac4419f0:
0x7f4cac441a00:
Ox7f4cac441al0:
Ox7f4cac441a20:
Ox7f4cac441a30:
Ox7f4cac441a40:
Ox7f4cac441a50:
0x7f4cac441a60:
Ox7f4cac441a70:
0x7f4cac441a80:
0x7f4cac441a90:
0x7f4cac441aa0:
0x7f4cac441abo:
---Type <return> to
Ox7f4cac44laco:
Ox7f4cac44lado:
Ox7f4cac44lae0:
Ox7f4cac44lafo:
0x7f4cac441b0o0:
Ox7f4cac441ble:
Ox7f4cac441b20:
0x7f4cac441b30:
0x7f4cac441b40:
0x7f4cac441b50:
0x7f4cac441b60:
0x7f4cac441b70:
0x7f4cac441b80:
0x7f4cac441b90:
0x7f4cac441ba0:
0x7f4cac441bbo:
Ox7f4cac441bco:
Ox7f4cac441bdeo:
Ox7f4cac441be0:
Ox7f4cac441bfo:
Ox7f4cac441c00:
Ox7f4cacd41cle:
Ox7f4cacd41c20:
0x7f4cac441c30:
---Type <return> to
Ox7f4cac441c40:
Ox7f4cac441c50:
Ox7f4cac441c60:
Ox7f4cac441c70:
Ox7f4cac441c80:
Ox7f4cac441c90:
Ox7f4cac441ca0:
Ox7f4cacd41cbo:
Ox7f4cacd4lcco:
Ox7f4cacd4lcdo:
Ox7f4cacd4lce0:
Ox7f4cacd4lcfo:

Ox7f4cac441c80 Ox7f4cac441c88
0x7f4cac441c90 0x7f4cac441c98
0x7f4cac441ca8 0x0

ox7f4cac441cbo 0x401651 <__ cxa_throw+81>
ox0 ox0

ox0 0x411130 <_Unwind_RaiseException>
0x4000000000000000 0x0

0x0 0x0

0x0 0x0

ox0 ox0

0x0 Ox7f4cac441cd8

ox0 0x0

0x7f4cac441dee 0x7f4cac4418de
ox0 ox0

ox0 ox0

Ox7f4cac441ce0 Ox7f4cac441ce8
0x7f4cac441c90 0x7f4cacd441c98
0x7f4cac441des 0x0
ox7f4cac441d1e 0x40072a <_Z5procHv+35>
Ox4cad0c ox0

Ox0 Ox400707 <_Z5procHv>
0x4000000000000000 0x0

continue, or g <return> to quit---
0x0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 0x0

oxffffffffffffffe8 ©0x4431e6 <nanosleep+38>
0x0 0x4430c0O <sleep+224>

(2 0x0

0x0 0x7f4cac441cd8

ox0 ox0

0x7f4cac441dee 0x7f4cac4418do
0x0 ox0

0x0 0x0

Ox7f4cacd41ce0 Ox7f4cacd41ce8
Ox7f4cac441c90 0x7f4cac441c98
0x7f4cac441des 0x0

ox0 ox0

ox0 ox0

OxffffffffHffff{f8 ox1

ox0 ox0

ox0 0x10

(0 ox0

ox1 0x400748 <_Z5procHv+65>
0x401b60 <__ gxx_personality ve> oxfffffffffffff{fs

continue, or g <return> to quit---
ox1 0x10

0x10000 ox0

0x0 0x0

0x0 0x0

0x0 0x0

0x0 0x0

0x0 0x0

0x0 0x0

0x0 0x0

oxfffffed2 ©x3ad34c4d

0x49c740 <default_attr> ox0
Ox7f4cac441d20 0x49c740 <default_attr>

111

Ox7f4cac441doo:
Ox7f4cac441die:
Ox7f4cac441d20:
0x7f4cac441d30:
Ox7f4cac441d40:
0x7f4cac441d50:
0x7f4cac441d60:
0x7f4cac441d70:
0x7f4cac441d8e:
Ox7f4cac441d90:
0x7f4cac441da0:
Ox7f4cac441dbe:
---Type <return> to
Ox7f4cac441dco:
Ox7f4cac441dde:
Ox7f4cac441deo:
Ox7f4cac441dfo:
0x7f4cacd41e00:
Ox7f4cacd4lelo:
Ox7f4cacd41e20:
Ox7f4cacd4le30:
Ox7f4cacd4ledo:
Ox7f4cac441e50:
Ox7f4cac441e60:
Ox7f4cac441e70:
Ox7f4cac441e80:
Ox7f4cac441e90:
Ox7f4cacd4lead:
Ox7f4cacd4lebo:
Ox7f4cac44leco:
Ox7f4cacd4ledo:
Ox7f4cacd4lee0:
Ox7f4cacd4lefo:
Ox7f4cac441f00:
Ox7f4cac441fi0:
Ox7f4cac441120:
Ox7f4cac441f30:
---Type <return> to
Ox7f4cac441f40:
Ox7f4cac441f50:
Ox7f4cac441f60:
Ox7f4cac441f70:
Ox7f4cac441180:
Ox7f4cac441f90:
Ox7f4cacd41fa0:
Ox7f4cac441fbo:
Ox7f4cac441fco:
Ox7f4cac441fdo:
Ox7f4cac441fe0:
Ox7f4cac441ffo:
0x7f4cac442000:
0x7f4cac442010:
0x7f4cac442020:
0x7f4cac442030:
Ox7f4cac442040:
0x7f4cac442050:
0x7f4cac442060:
0x7f4cac442070:
0x7f4cac442080:
0x7f4cac442090:

Ox7f4cac4429co 0x40073c <_Z5procHv+53>

ox0 ox0

Ox7f4cac441d30 0x4007d8 <_Z9bar_threev+9>
Ox7f4cac441d40 0x4007e3 <_7Z9foo_threev+9>
Ox7f4cac441d60 0x4007f6 <_Z12thread_threePv+17>
0x0 0x0

ox0 ox4140f0 <start_thread+208>
() Ox7f4cac442700

0x0 0x0

ox0 ox0

0x0 0x0

ox0 0x0

continue, or g <return> to quit---
ox0 ox0

ox0 ox0

0x0 0x0

0x0 0x0

0x7f4cacd42700 0x4987c54266ee5578
0x49c740 <default_attr> Ox7f4cac4429co
ox0 o0x3

Oxb71e9dca5cPe5578 ©x4987c5c0e7825578
0x0 0x0

0x0 0x0

ox0 ox0

Ox7f4cac442700 0x445879 <clone+121>
ox0 ox0

0x0 ox0

ox0 ox0

ox0 ox0

ox0 ox0

(2 0x0

0x0 0x0

ox0 ox0

ox0 ox0

0x0 ox0

0x0 0x0

0x0 0x0

continue, or q <return> to quit---
0x0 0x0

ox0 ox0

ox0 ox0

ox0 ox0

ox0 ox0

ox0 ox0

ox0 ox0

o0x0 0x0

0x0 0x0

0x0 0x0

ox0 ox0

0x0 0x0

0x0 0x0

0x0 0x0

0x0 0x0

ox0 ox0

ox0 ox0

0x0 0x0

ox0 ox0

ox0 ox0

ox0 ox0

0x0 0x0

112

0x7f4cacd420a0: 0x0 0x0

Ox7f4cac4420b0: 0x0 0x0
---Type <return> to continue, or q <return> to quit---
Ox7f4cac4420c0: 0x0 0x0
0x7f4cac4420do: 0x0 0x0
Ox7f4cac4420e0: 0x0 0x0
Ox7f4cac4420f0: 0x0 0x0
0x7f4cac442100: 0x0 0x0
Ox7f4cac442110: 0x0 0x0
Ox7f4cac442120: 0x0 0x0
Ox7f4cac442130: 0x0 0x0
Ox7f4cac442140: 0x0 0x0
0x7f4cac442150: ox0 ox0
Ox7f4cac442160: ox0 ox0
Ox7f4cac442170: 0x0 0x0
0x7f4cac442180: 0x0 0x0
0x7f4cac442190: 0x0 0x0
Ox7f4cac4421a0: 0x0 0x0
Ox7f4cac4421bo: 0x0 0x0
Ox7f4cacd421cO: 0x0 0x0
Ox7f4cac4421de: 0x0 0x0
Ox7f4cac4421e0: 0x0 0x0
Ox7f4cac4421f0: 0x0 0x0
Ox7f4cac442200: 0x0 0x0
Ox7f4cac442210: 0x0 0x0
Ox7f4cacd42220: 0x0 0x0
Ox7f4cac442230: 0x0 0x0
---Type <return> to continue, or q <return> to quit---
Ox7f4cacd42240: ox0 ox0
Ox7f4cac442250: 0x0 0x0
Ox7f4cacd42260: (2 0x0
Ox7f4cacd42270: 0x0 0x0
Ox7f4cac442280: ox0 ox0
Ox7f4cacd42290: ox0 ox0
Ox7f4cacd422a0: 0x0 0x0
Ox7f4cac4422bo: 0x0 0x0
Ox7f4cacd422cO: 0x0 0x0
Ox7f4cac4422do: 0x0 0x0
Ox7f4cac4422e0: 0x0 0x0
Ox7f4cac4422f0: 0x0 0x0
0x7f4cac442300: 0x0 0x0
Ox7f4cac442310: ox0 ox0
Ox7f4cac442320: ox0 ox0
Ox7f4cac442330: ox0 ox0
Ox7f4cac442340: ox0 ox0

(gdb) disassemble 0x411265
Dump of assembler code for function _Unwind_RaiseException:

0x0000000000411130 <+0>: push %rbp
0x0000000000411131 <+1>: mov %rsp,%rbp
0x0000000000411134 <+4>: push %rl5
0x0000000000411136 <+6>: lea 0x10(%rbp),%rsi
0x000000000041113a <+10>: push %ril4
0x000000000041113¢Cc <+12>: push %ril3
0x000000000041113e <+14>: lea -0x3a0(%rbp),%ri3
0x0000000000411145 <+21>: push %ri2
0x0000000000411147 <+23>: mov %rdi,%rl2
0Xx000000000041114a <+26>: mov %rl13,%rdi
0x000000000041114d <+29>: push %rbx
0x000000000041114e <+30>: lea -0x2b0 (%rbp) , %rbx

113

0x0000000000411155 <+37>: push %rdx

0x0000000000411156 <+38>: push %rax
0x0000000000411157 <+39>: sub $0x368,%rsp
0x000000000041115e <+46>: mov ox8(%rbp) ,%rdx
0x0000000000411162 <+50>: callg ©x410ca@ <uw_init_context_1>
0x0000000000411167 <+55>: mov $0x1le, %ecx
0x000000000041116C <+60>: mov %rbx,%rdi
0x000000000041116Ff <+63>: mov %rl3,%rsi
0x0000000000411172 <+66>: rep movsq %ds: (%rsi),%es: (%rdi)
0x0000000000411175 <+69>: jmp 0x4111bc <_Unwind_RaiseException+140>
0x0000000000411177 <+71>: nopw Oxe(%rax,%rax,1)
---Type <return> to continue, or q <return> to quit---
0x0000000000411180 <+80>: test %eax,%eax
0x0000000000411182 <+82>: jne 0x4111f0 <_Unwind_RaiseException+192>
0x0000000000411184 <+84>: mov -0x70(%rbp) ,%rax
0x0000000000411188 <+88>: test %rax, srax
0x000000000041118b <+91>: je 0x411llad <_Unwind_RaiseException+125>
0x000000000041118d <+93>: mov %rbx,%r8
0x0000000000411190 <+96>: mov %rl2,%rcx
0x0000000000411193 <+99>: mov (%r12),%rdx
0x0000000000411197 <+103>: mov $0x1,%esi
0x000000000041119¢c <+108>: mov $0x1,%edi
0x00000000004111a1 <+113>: callg *%rax
0x00000000004111a3 <+115>: cmp $0x6, %eax
0x00000000004111a6 <+118>: je 0x411200 <_Unwind_RaiseException+208>
0x00000000004111a8 <+120>: cmp $0x8, %eax
0x00000000004111ab <+123>: jne 0x4111f0 <_Unwind_RaiseException+192>
0x00000000004111ad <+125>: lea -0x1ce(%rbp),%rsi
0x00000000004111b4 <+132>: mov %rbx, %rdi
0x00000000004111b7 <+135>: callg 0x410a60 <uw_update_context>
0x00000000004111bc <+140>: lea -0x1co(%rbp),%rsi
0x00000000004111c3 <+147>: mov %rbx, %rdi
0x00000000004111c6 <+150>: callg ox40fefo@ <uw_frame_state_for>
0x00000000004111cb <+155>: cmp $0x5, %eax
0x00000000004111ce <+158>: jne 0x411180 <_Unwind_RaiseException+80>
0x00000000004111d0 <+160>: mov -0x28(%rbp) ,%rbx
---Type <return> to continue, or g <return> to quit---
0x00000000004111d4 <+164>: mov -0x20(%rbp),%ri2
0x00000000004111d8 <+168>: mov -0x18(%rbp),%ri3
0x00000000004111dc <+172>: mov -0x10(%rbp),%ri4
0x00000000004111e0 <+176>: mov -0x8(%rbp),%rl5
0x00000000004111e4 <+180>: leaveq
0x00000000004111e5 <+181>: retq
0x00000000004111e6 <+182>: nopw %cs:0x0(%rax,%rax,1)
0x00000000004111f0 <+192>: mov $0x3, %eax
0x00000000004111f5 <+197>: jmp 0x4111d0 <_Unwind_RaiseException+160>
0x00000000004111f7 <+199>: nopw @xe(%rax,%rax,1)
0x0000000000411200 <+208>: mov -0x1fe(%rbp),%rdx
0x0000000000411207 <+215>: mov -0x220(%rbp),%rax
0x000000000041120e <+222>: mov $0x1le, %ecx
0x0000000000411213 <+227>: movq $0x0,0x10(%r12)
0x000000000041121c <+236>: mov %rbx,%rdi
0x000000000041121F <+239>: mov %rl3,%rsi
0x0000000000411222 <+242>: shr $0x3f,%rdx
0x0000000000411226 <+246>: sub %rdx, %rax
0x0000000000411229 <+249>: mov %rax,ox18(%ri2)
0x000000000041122e <+254>: rep movsq %ds: (%rsi),%es: (%rdi)
0x0000000000411231 <+257>: mov %rbx,%rsi
0x0000000000411234 <+260>: mov %rl2,%rdi
0x0000000000411237 <+263>: callg 0x410c00 < _Unwind_RaiseException_Phase2>

114

0x000000000041123¢Cc <+268>: cmp $0x7, %eax
---Type <return> to continue, or q <return> to quit---

0x000000000041123F <+271>: jne 0x4111d0 <_Unwind_RaiseException+160>
0x0000000000411241 <+273>: mov %rbx,%rsi

0x0000000000411244 <+276>: mov %rl3,%rdi

0x0000000000411247 <+279>: callg ©0x410540 <uw_install context_1>
0x000000000041124C <+284>: mov -0x218(%rbp),%ri2
0x0000000000411253 <+291>: mov -0x220(%rbp),%rdi
0x000000000041125a <+298>: mov %rax, %rbx

0x000000000041125d <+301>: mov %rl2,%rsi

0Xx0000000000411260 <+304>: callg ©x411120 <_Unwind_DebugHook>
0x0000000000411265 <+309>: mov %rbx, %rcx

0x0000000000411268 <+312>: mov %r12,0x8(%rbp,%rbx,1)
0x000000000041126d <+317>: mov -0x38(%rbp) ,%rax
0x0000000000411271 <+321>: lea ox8(%rbp,%rcx,1),%rcx
0x0000000000411276 <+326>: mov -0x30(%rbp) ,%rdx
0x000000000041127a <+330>: mov -0x28(%rbp) ,%rbx
0x000000000041127e <+334>: mov -0x20(%rbp),%ri2
0x0000000000411282 <+338>: mov -0x18(%rbp),%ri3
0x0000000000411286 <+342>: mov -0x10(%rbp) ,%ri4
0x000000000041128a <+346>: mov -0x8(%rbp),%ris
0x000000000041128e <+350>: mov ox0(%rbp),%rbp
0x0000000000411292 <+354>: mov %rcx,%rsp

0x0000000000411295 <+357>: retq

End of assembler dump.

115

Exercise A9

Goal: Learn how to identify heap leaks

Patterns: Heap Leak, Execution Residue, Module Hint

8 2015 Software Diagnostics Services

116

Exercise A9

Goal: Learn how to identify heap leaks.

Patterns: Heap Leak, Execution Residue, Module Hint.

1. The application App9 was found consuming more and more memory. Several core memory dumps were
saved at different times with corresponding pmap logs. Load a core dump core.16531.2 and App9 executable:

training@debian64:~/ALCDA$ gdb -c ./App9/core.16531.2 -se ./App9/App9

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/App9/App9...done.

[New LWP 16532]

[New LWP 16533]

[New LWP 16534]

[New LWP 16535]

[New LWP 16536]

[New LWP 16531]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1linux-gnu/libthread_db.so.1".
Core was generated by " /home/training/ALCDA/App9/App9"’.

#0 0x000000000042febl in nanosleep ()

2. Notice the size of the largest section and quit gdb:

(gdb) maintenance info sections

Exec file:
" /home/training/ALCDA/App9/App9"', file type elf64-x86-64.
0x00400158->0x00400178 at 0x00000158: .note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
0x00400178->0x0040019c at 0x00000178: .note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004001a0->0x004002d8 at 0x000001a0: .rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004002d8->0x004002e6 at 0x000002d8: .init ALLOC LOAD READONLY CODE HAS_CONTENTS
0x00400210->0x004003cO at 0x000002f0: .plt ALLOC LOAD READONLY CODE HAS_CONTENTS
0x004003c0->0x0048b278 at Ox000003cO: .text ALLOC LOAD READONLY CODE HAS_CONTENTS
0x0048b280->0x0048bdfe at 0x0008b280: _ libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS

0x0048be00->0x0048be61 at 0x0008bedd: _ libc_thread_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS

0x0048be64->0x0048be6d at 0x0008be64: .fini ALLOC LOAD READONLY CODE HAS_CONTENTS

0x0048be80->0x0042a9ded at 0x0008be80: .rodata ALLOC LOAD READONLY DATA HAS_CONTENTS

0x004a9de8->0x004a9e48 at 0x000a9de8: _ libc_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS
---Type <return> to continue, or q <return> to quit---

0x004a9e48->0x004a9e50 at Ox000a9%e48: libc_atexit ALLOC LOAD READONLY DATA HAS_CONTENTS

0x004a9e50->0x004a9e58 at Ox000a%e50: _ libc_thread_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS

0x00429e58->0x004b69ac at Ox000a9e58: .eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004b69ac->0x004b6ac6 at 0Ox00Ob69ac: .gcc_except table ALLOC LOAD READONLY DATA HAS_CONTENTS
0x006bb6ac8->0x006b6afd at Ox000b6ac8: .tdata ALLOC LOAD DATA HAS_CONTENTS
0x006bb6af0->0x006b6b20 at Ox00Ob6afO: .tbss ALLOC

0x006b6af0->0x006b6bOO at Ox00Ob6afO: .init_array ALLOC LOAD DATA HAS_CONTENTS
0x006b6b00O->0x006b6D1O at ©x000b6bOO: .fini_array ALLOC LOAD DATA HAS_CONTENTS
0x006b6b10->0x006b6b18 at Ox00Ob6b1O: .jcr ALLOC LOAD DATA HAS_CONTENTS
0x006b6b20->0x006b6b9O at Ox00Ob6b20: .data.rel.ro ALLOC LOAD DATA HAS_CONTENTS

117

0x006b6b90->0x006b6bad at 0x000b6b90: .got ALLOC LOAD DATA HAS_CONTENTS
0x006b6bad->0x006b6Cc20 at Ox00Ob6bad: .got.plt ALLOC LOAD DATA HAS_CONTENTS
0x006b6C20->0x006b7930 at Ox000b6c20: .data ALLOC LOAD DATA HAS_CONTENTS
0x006b7940->0x006beca8 at 0x000b7930: .bss ALLOC

0x006beca8->0x006becd8 at 0x000b7930: _ libc_freeres_ptrs ALLOC
0x00000000->0x00000038 at 0x000b7930: .comment READONLY HAS_CONTENTS
0Xx00000000->0x00000390 at Ox0POb7970: .debug_aranges READONLY HAS_CONTENTS

---Type <return> to continue,

or q <return> to quit---

0X00000000->0x000Pac3 at 0x00Ob7dOO: .debug pubnames READONLY HAS_CONTENTS
0X00000000->0x00011440 at 0Ox000b87c3: .debug_info READONLY HAS_CONTENTS
0x00000000->0x000021b1 at 0x000c9cO3: .debug_abbrev READONLY HAS_CONTENTS
0x00000000- >0x00002ebc at 0x000cbdb4: .debug_line READONLY HAS_CONTENTS
0x00000000->0x000038da at Ox000cec70: .debug _str READONLY HAS_CONTENTS
0x00000000- >0x0000878e at 0x000d254a: .debug_loc READONLY HAS_CONTENTS
0x00000000->0x00001280 at ©x000dacd8: .debug_ranges READONLY HAS_CONTENTS

Core file:
“/home/training/ALCDA/.

/App9/core.16531.2"', file type elf64-x86-64.

0x00000000->0x000022a8 at 0x00000318: note® READONLY HAS_CONTENTS
0x00000000->0x000000d8 at 0x00000438: .reg/16532 HAS_CONTENTS
0x00000000->0x000000d8 at 0x00000438: .reg HAS_CONTENTS
0Xx00000000->0x00000200 at 0x000V52c: .reg2/16532 HAS_CONTENTS
0x00000000->0x00000200 at 0x0000052c: .reg2 HAS_CONTENTS
0Xx00000000->0x00000340 at Ox000VV740: .reg-xstate/16532 HAS_CONTENTS
0x00000000- >0x00000340 at Ox000PO740: .reg-xstate HAS_CONTENTS
0x00000000- >0x000000d8 at 0x0000ObO4: .reg/16533 HAS_CONTENTS
0x00000000- >0x00000200 at 0x0000ObT8: .reg2/16533 HAS_CONTENTS
0x00000000- >0x00000340 at Ox000PLedC: .reg-xstate/16533 HAS_CONTENTS
0x00000000- >0x000000d8 at 0x000011d0: .reg/16534 HAS_CONTENTS
0x00000000->0x00000200 at 0x000012c4: .reg2/16534 HAS_CONTENTS
0x00000000- >0x00000340 at 0x000014d8: .reg-xstate/16534 HAS_CONTENTS
0x00000000->0x000000d8 at 0x0000189c: .reg/16535 HAS_CONTENTS
0x00000000->0x00000200 at 0x00001990: .reg2/16535 HAS_CONTENTS

---Type <return> to continue, or g <return> to quit---
0x00000000->0x00000340 at Ox00001bad: .reg-xstate/16535 HAS_CONTENTS
0x00000000- >0x000000d8 at 0x00001f68: .reg/16536 HAS_CONTENTS
0x00000000- >0x00000200 at 0x0000205c: .reg2/16536 HAS_CONTENTS
0X00000000->0x00000340 at 0x00002270: .reg-xstate/16536 HAS_CONTENTS
0x00000000- >0x000000d8 at 0x00002634: .reg/16531 HAS_CONTENTS
0x00000000- >0x00000200 at 0x00002728: .reg2/16531 HAS_CONTENTS
0x00000000- >0x00000340 at Ox0000293c: .reg-xstate/16531 HAS_CONTENTS
0x00000000->0x00000130 at 0x00002c90: .auxv HAS_CONTENTS
0x00400000->0x00400000 at 0x00002dcO: loadl ALLOC READONLY CODE
0x006b6000->0x006b80VO at 0x00002dcO: load2 ALLOC LOAD HAS_CONTENTS
0x006b8000O- >0x006bTOOO at ©0x00004dcO: load3 ALLOC LOAD HAS_CONTENTS
0x00986000->0x04bcad00 at 0x0000bdcO: load4 ALLOC LOAD HAS_CONTENTS
0x715ecad9b000->0x7f5ecac9boo0 at 0x0424fdcO: load5 ALLOC LOAD HAS_CONTENTS
Ox7f5ecac9c000->0x7f5ecb49c000 at 0x04adfdcO: load6 ALLOC LOAD HAS_CONTENTS
0x7f5ecb49d000->0x7f5ecbc9do00 at 0x0524fdc@: load7 ALLOC LOAD HAS_CONTENTS
0x7f5ecbc9e000->0x7f5ecc49e000 at Ox05a4fdcO: load8 ALLOC LOAD HAS_CONTENTS
0x7f5ecc49f000->0x7f5eccc9fPO0 at 0x0624fdcO: load9 ALLOC LOAD HAS_CONTENTS
Ox7fffe9d7b000->0x7fffe9d9c000 at 0x06a4fdcO: loadl® ALLOC LOAD HAS_CONTENTS
Ox7fffe9d9do0o->0x7fffe9d9e000 at Ox06a70dcO: loadll ALLOC LOAD READONLY CODE HAS_CONTENTS

OxfTffffffff600000->0xffffffffff601000 at 0x06a71dcO: loadl2 ALLOC LOAD READONLY CODE HAS_CONTENTS

(gdb) q

118

3. Load a core dump core.16531.3 and App9 executable:

training@debian64:~/ALCDA$ gdb -c ./App9/core.16531.3 -se ./App9/App9

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/App9/App9...done.

[New LWP 16532]

[New LWP 16533]

[New LWP 16534]

[New LWP 16535]

[New LWP 16536]

[New LWP 16531]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/l1ib/x86_64-1inux-gnu/libthread_db.so.1".
Core was generated by " /home/training/ALCDA/AppS/App9’.

#0 0x000000000042febl in nanosleep ()

4, Notice that the size of the largest section increased considerably after some time.

(gdb) maintenance info sections
Exec file:
" /home/training/ALCDA/App9/App9"', file type elf64-x86-64.

0x00400158->0x00400178 at 0x00000158: .note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
0x00400178->0x0040019c at 0x00000178: .note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004001a0->0x004002d8 at 0x000001a0: .rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004002d8->0x004002e6 at 0x000002d8: .init ALLOC LOAD READONLY CODE HAS_CONTENTS
0x00400210->0x004003cO at 0x000002f0: .plt ALLOC LOAD READONLY CODE HAS_CONTENTS
0x004003c0->0x0048b278 at 0x000003cO: .text ALLOC LOAD READONLY CODE HAS_CONTENTS
0x0048b280->0x0048bdfe at 0x0008b280: _ libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
0x0048be00->0x0048be61 at 0x0008be0O: _ libc_thread_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
0x0048be64->0x0048be6d at 0x0008be64: .fini ALLOC LOAD READONLY CODE HAS_CONTENTS
0x0048be80->0x0042a9ded at 0x0008be80: .rodata ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004a9de8->0x004a9e48 at 0x000a9de8: _ libc_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS

---Type <return> to continue,

or g <return> to quit---

0x004a9e48->0x004a9e50 at Ox000a9%e48: libc_atexit ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004a9e50->0x004a9e58 at 0Ox000a%e50: _ libc_thread_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS
0x00429e58->0x004b69ac at Ox000a9e58: .eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS
0x004b69ac->0x004b6ac6 at Ox00Ob69ac: .gcc_except_table ALLOC LOAD READONLY DATA HAS_CONTENTS
0x006bbac8->0x006b6af0 at Ox000Ob6ac8: .tdata ALLOC LOAD DATA HAS_CONTENTS
0x006bb6af0->0x006b6b20 at Ox00Ob6afO: .tbss ALLOC

0x006b6af0->0x006b6bOO at Ox00Ob6afO: .init_array ALLOC LOAD DATA HAS_CONTENTS
0x006b6b00O->0x006b6D1O at Ox000b6bOO: .fini_array ALLOC LOAD DATA HAS_CONTENTS
0x006b6b10->0x006b6b18 at Ox00Ob6b1O: .jcr ALLOC LOAD DATA HAS_CONTENTS
0x006b6b20->0x006b6b9O at Ox00Ob6b20: .data.rel.ro ALLOC LOAD DATA HAS_CONTENTS
0x006b6b90->0x006b6bad at ©x000b6b90: .got ALLOC LOAD DATA HAS_CONTENTS
0x006b6bad->0x006b6Cc20 at Ox00Ob6bad: .got.plt ALLOC LOAD DATA HAS_CONTENTS
0x006b6C20->0x006b7930 at Ox00Ob6c20: .data ALLOC LOAD DATA HAS_CONTENTS
0x006b7940->0x006beca8 at ©x000b7930: .bss ALLOC

0x006beca8->0x006becd8 at ©x000b7930: libc_freeres_ptrs ALLOC

0x00000000- >0x00000038 at 0x000b7930: .comment READONLY HAS_CONTENTS

0x00000000- >0x00000390 at 0x000b7970: .debug_aranges READONLY HAS_CONTENTS

---Type <return> to continue,

or q <return> to quit---

0x00000000->0x00000ac3 at 0x000b7d00: .debug_pubnames READONLY HAS_CONTENTS
0x00000000->0x00011440 at 0x000b87c3: .debug_info READONLY HAS_CONTENTS
0x00000000->0x000021b1 at 0x000c9cO3: .debug_abbrev READONLY HAS_CONTENTS
0x00000000->0x00002ebc at 0x000cbdb4: .debug_line READONLY HAS_CONTENTS
0x00000000->0x000038da at Ox000cec70: .debug_str READONLY HAS_CONTENTS

119

0X00000000- >0x0000878e
0X00000000- >0x00001280
Core file:

at oxeeed254a:
at oxeeedacd8:

.debug_loc READONLY HAS_CONTENTS
.debug_ranges READONLY HAS_CONTENTS

" /home/training/ALCDA/.

/App9/core.16531.3"', file type elf64-x86-64.

0Xx00000000->0x00002aa8 at 0x00000318: noted READONLY HAS_CONTENTS
0x00000000->0x000000d8 at 0x00000438: .reg/16532 HAS_CONTENTS
0x00000000->0x000000d8 at 0x00000438: .reg HAS_CONTENTS
0x00000000->0x00000200 at 0x0000052c: .reg2/16532 HAS_CONTENTS
0x00000000->0x00000200 at 0x0000052c: .reg2 HAS_CONTENTS
0x00000000->0x00000340 at 0x0000V740: .reg-xstate/16532 HAS_CONTENTS
0x00000000->0x00000340 at 0x00000740: .reg-xstate HAS_CONTENTS
0x00000000->0x000000d8 at 0x00000bo4: .reg/16533 HAS_CONTENTS
0x00000000->0x00000200 at Ox00000bT8: .reg2/16533 HAS_CONTENTS
0x00000000->0x00000340 at 0Ox00000edc: .reg-xstate/16533 HAS_CONTENTS
0x00000000->0x000000d8 at 0x000011d0: .reg/16534 HAS_CONTENTS
0x00000000->0x00000200 at 0x000012c4: .reg2/16534 HAS_CONTENTS
0x00000000->0x00000340 at 0x000014d8: .reg-xstate/16534 HAS_CONTENTS
0x00000000->0x000000d8 at 0x0000189c: .reg/16535 HAS_CONTENTS
0x00000000- >0x00000200 at 0x00001990: .reg2/16535 HAS_CONTENTS

---Type <return> to continue,

or g <return> to quit---

0x00000000->0x00000340 at Ox00001bad: .reg-xstate/16535 HAS_CONTENTS
0x00000000->0x000000d8 at 0x00001f68: .reg/16536 HAS_CONTENTS
0X00000000->0x00000200 at 0x0000205c: .reg2/16536 HAS_CONTENTS
0x00000000->0x00000340 at 0x00002270: .reg-xstate/16536 HAS_CONTENTS
0x00000000->0x000000d8 at 0x00002634: .reg/16531 HAS_CONTENTS
0X00000000->0x00000200 at 0x00002728: .reg2/16531 HAS_CONTENTS
0x00000000->0x00000340 at 0x0000293c: .reg-xstate/16531 HAS_CONTENTS
0x00000000->0x00000130 at 0x00002c90: .auxv HAS_CONTENTS

0x00400000- >0x00400000 at 0x00002dcO: loadl ALLOC READONLY CODE
0x006b6000->0x006b8000 at 0x00002dcO: load2 ALLOC LOAD HAS_CONTENTS
0x006b8000->0x006bT0RO at 0x00004dcO: load3 ALLOC LOAD HAS_CONTENTS
0x00986000->0x08calo00 at 0x0000bdcO: load4 ALLOC LOAD HAS_CONTENTS

Ox7f5ecad9b0o0->0x7f5ecac9booo
Ox7f5ecac9cP00->0x7f5ecb49c000
0x7f5ecb49d000->0x7f5ecbc9dooo
Ox7f5ecbc9e000->0x7f5ecc49e000
Ox7f5ecc49f000->0x7f5eccc9f000
Ox7fffe9d7b000->0x7fffe9d9c000

at
at
at
at
at
at

0x08326dc0O:
0x08b26dco:
0x09326dc0O:
0x09b26dcO:
0x0a326dco:
Ox0ab26dcO:

load5 ALLOC
load6 ALLOC
load7 ALLOC

LOAD HAS_CONTENTS
LOAD HAS_CONTENTS
LOAD HAS_CONTENTS
load8 ALLOC LOAD HAS_CONTENTS
load9 ALLOC LOAD HAS_CONTENTS
load1@ ALLOC LOAD HAS_CONTENTS

Ox7fffe9d9deee->0x7fffe9d9e000 at Ox0ab47dc@: loadll ALLOC LOAD READONLY CODE HAS_CONTENTS
oxffffffffff600000->0xffffffffff601000 at 0x0ab48dcO: loadl2 ALLOC LOAD READONLY CODE HAS_CONTENTS

5. Examine section contents for any execution residue and hints (we choose some smaller address range from
the section address range):

(gdb) x/1000a ©x7cal000

0x7caloeo: 0x0 0x0

©x7calele: 0x0 0x111

0x7calo20: 0x657461636f6c6Cc61 0OXx79726f6d656d2064
0x7cale30: 0x0 0x0

Ox7caloso: 0x4004f0 <procD> ox0
©x7calese: ox0 0x0

0X7calo6o: 0x0 ox0

0x7calo’o: ox0 ox0

©Xx7calo80: ox0 ox0

0x7cale9e: 0x0 0x0

©x7caloan: o0x0 0x0

0x7calobo: 0x0 0x0

©x7caloco: ox0 ox0

0x7caledo: 0x0 0x0

©x7caloe0: 0x0 0x0

Ox7calofo: 0x0 0x0

©x7calleo: ox0 ox0

©x7callle: ox0 0x0

Ox7call2e: o0x0 o0x111

120

0x7call3e: 0x657461636f6c6Cc61 0Xx79726f6d656d2064
0x7callso: 0x0 0x0

0x7call5o: 0x4004f0 <procD> 0x0

©x7calleo: o0x0 ox0

©x7call7o: ox0 ox0

---Type <return> to continue, or g <return> to quit---
0x7call80: 0x0 0x0

©x7callon: o0x0 0x0

©x7calla0: ox0 0x0

0x7callbe: ox0 ox0

Ox7callco: 0x0 0x0

Ox7callde: ox0 ox0

Ox7calleO: ox0 ox0

Ox7callfo: 0x0 0x0

0x7cal200: ox0 ox0

©x7cal2le: 0x0 0x0

©x7cal220: ox0 0x0

©x7cal230: 0x0 0x111

0x7cal240: 0x657461636f6c6Cc61 ©Ox797261f6d656d2064
©x7cal250: o0x0 ox0

0x7cal26o: 0x4004f0 <procD> 0x0

0x7cal270: 0x0 0x0

0x7cal280: 0x0 0x0

©x7cal29e: 0x0 ox0

©x7cal2a0: ox0 0x0

0x7cal2bo: 0x0 0x0

0x7cal2co: 0x0 0x0

0x7cal2de: 0x0 0x0

Ox7cal2e0: ox0 ox0

Ox7cal2fe: ox0 ()

---Type <return> to continue, or q <return> to quit---
©x7cal300: ox0 0x0

©x7cal3lo: 0x0 ox0

©x7cal320: ox0 ox0

©x7cal33e: 0x0 0x0

©x7cal34e: 0x0 0x111

0x7cal350: 0x657461636f6Cc6Cc61 ©OXx79726Ff6d656d2064
0x7cal360: 0x0 0x0

Ox7cal37eo: 0x4004f0 <procD> ox0

©x7cal38e: ox0 ox0

©x7cal3oe: ox0 ox0

©x7cal3a0: ox0 ox0

0x7cal3bo: 0x0 0x0

©x7cal3co: ox0 ox0

©x7cal3de: 0x0 0x0

0x7cal3e0: 0x0 o0x0

0x7cal3fo: 0x0 0x0

©Xx7caldeo0: 0x0 0x0

©x7caldle: 0x0 ox0

0x7cald2e0: 0x0 0x0

0x7cald3e: 0x0 0x0

©x7caldde: 0x0 0x0

©x7callse: 0x0 ox111

0x7caldeo: 0x657461636f6c6Cc61 0OXx79726f6d656d2064
0x7call7o: 0x0 0x0

---Type <return> to continue, or q <return> to quit---
0x7calls8o: 0x4004f0 <procD> 0x0

©x7caldoo: o0x0 ox0

0x7caldan: 0x0 ox0

0x7caldbo: 0x0 0x0

121

©x7caldco: ox0 0x0

0x7caldde: 0x0 0x0

Ox7calde0: 0x0 ox0

Ox7calafo: 0x0 0x0

©x7cal5e0: ox0 ox0

©x7cal5le: 0x0 0x0

©x7cal520: 0x0 0x0

©x7cal530: o0x0 0x0

©x7cal540: ox0 0x0

©x7cal550: ox0 ox0

©x7cal560: 0x0 0x111

0x7cal570: 0x657461636f6c6c61 0x79726f6d656d2064
©x7cal580: o0x0 ox0

0x7cal590: 0x400410 <procD> ox0
Ox7cal5a0: ox0 ox0

0x7cal5bo: 0x0 0x0

©x7cal5co: ox0 0x0

©x7calbde: 0x0 0x0

©x7cal5e0: 0x0 ox0

Ox7cal5fo: 0x0 0x0

---Type <return> to continue, or g <return> to quit---
0X7cal6oo: 0x0 0x0

0x7cal6lo: 0x0 0x0

0x7cal620: 0x0 ox0

©x7cal630: ox0 0x0

©x7cal6do: 0x0 ox0

©x7cal650: 0x0 0x0

OX7cal660: ox0 ox0

0x7cal670: ox0 o0x111

0x7cal680: 0x657461636f6c6Cc61 0Xx79726f6d656d2064
0x7cal69%e0: o0x0 ox0

0x7cal6ao: 0x4004f0 <procD> 0x0
0x7cal6bo: 0x0 0x0

©x7cal6co: ox0 ox0

0x7cal6ede: ox0 ox0

0x7cal6ed: 0x0 0x0

0x7cal6efo: 0x0 0x0

©x7cal7ee: 0x0 0x0

Ox7cal7lo: 0x0 0x0

0x7cal720: ox0 ox0

©x7cal730: ox0 ox0

©x7cal740: ox0 ox0

©x7cal750: ox0 ox0

0x7cal760: ox0 ox0

©x7cal770: ox0 ox0

---Type <return> to continue, or g <return> to quit---
©x7cal780: o0x0 ox111

0x7cal79e0: 0x657461636f6Cc6Cc61 ©Ox797261f6d656d2064
0x7cal7a0: 0x0 0x0

0x7cal7be: 0x4004f0 <procD> ox0
©x7cal7co: 0x0 0x0

0x7cal7de: 0x0 0x0

Ox7cal7e0: 0x0 0x0

0x7cal7fo: () ox0

©x7cal800: ox0 ox0

©x7cal8lo: ox0 0x0

0x7cal820: ox0 ox0

©x7cal830: o0x0 ox0

0x7cal840: 0x0 ox0

©x7cal850: 0x0 0x0

122

©x7cal860: ox0 0x0

©x7cal870: ox0 ox0

©Xx7cal880: 0x0 ox0

©x7cal890: o0x0 ox111

©x7cal8an: 0x657461636f6c6Cc61 0OXx79726f6d656d2064
©x7cal8bho: ox0 ox0

0x7cal8co: 0x4004f0 <procD> 0x0

0x7cal8de: 0x0 0x0

©x7cal8e0: ox0 0x0

Ox7cals8fa: ox0 ox0

---Type <return> to continue, or q <return> to quit---
0Xx7caloeo: 0x0 ox0

©x7calole: ox0 ox0

0x7calo20: ox0 ox0

©x7calo30: ox0 ox0

0x7calodo: 0x0 0x0

©x7calose: ox0 0x0

©Xx7caloco: 0x0 ox0

©x7calo70: 0x0 ox0

©Xx7calo80: ox0 ox0

©x7calg9ge: 0x0 0x0

0x7cal9an: 0x0 o0x111

0x7calobo: 0x657461636f6Cc6Cc61 ©Ox79726Ff6d656d2064
0x7cal9co: 0x0 0x0

@x7calode: 0x4004f0 <procD> ox0

©x7calde0: 0x0 ox0

0x7calofo: 0x0 0x0

0x7calafo: ox0 ox0

©x7calalo: ox0 ox0

Ox7cala2o0: 0x0 ox0

©x7cala3o: 0x0 (2

©x7calado: ox0 0x0

©x7calabo: 0x0 ox0

©x7cala6o: ox0 ox0

©x7cala7o: 0x0 0x0

---Type <return> to continue, or q <return> to quit---
0x7cala80: 0x0 0x0

©x7calage: 0x0 0x0

©x7calaald: 0x0 0x0

0x7calabo: 0x0 ox111

©x7calaco: 0x657461636f6c6Cc61 0Xx79726f6d656d2064
©x7calade: ox0 ox0

Ox7calae0: 0x400410 <procD> 0x0

Ox7calafo: 0x0 0x0

0x7calboo: 0x0 0x0

©x7calbile: 0x0 0x0

0x7calb2eo: 0x0 0x0

©x7calb30: 0x0 0x0

©x7calb4o: ox0 ox0

©x7calb50: ox0 ox0

0x7calb6o: 0x0 0x0

©x7calb70: 0x0 0x0

0x7calb8e: 0x0 0x0

0x7calb9eo: 0x0 0x0

0x7calbao: 0x0 0x0

0x7calbbe: 0x0 0x0

©x7calbco: 0x0 ox111

©x7calbde: 0x657461636f6Cc6Cc61 ©Ox797261f6d656d2064
Ox7calbe0: ox0 ox0

Ox7calbfo: 0x4004f0 <procD> ox0

123

---Type <return> to continue, or q <return> to quit---
©x7calcoo: ox0 ox0

©x7calclo: 0x0 ox0

©x7calc20: o0x0 ox0

©x7calc30: ox0 ox0

©x7calc4o: 0x0 0x0

©x7calc50: 0x0 0x0

©Xx7calc60: o0x0 0x0

©x7calc70: ox0 0x0

©x7calc80: ox0 ox0

0x7calc9o: 0x0 0x0

©x7calcal: 0x0 ox0

0x7calchbo: 0x0 0x0

Ox7calcco: ox0 ox0

Ox7calcdo: 0x0 0x111

Ox7calceo0: 0x657461636f6c6Cc61 0OXx79726f6d656d2064
Ox7calcfo: ox0 ox0

Ox7caldoeo: 0x4004f0 <procD> ox0

Ox7caldle: 0x0 0x0

0x7cald20: 0x0 0x0

©x7cald30: 0x0 0x0

©x7cald4e: 0x0 0x0

0x7cald50: 0x0 0x0

0x7caldeo: 0x0 0x0

0x7cald70: 0x0 0x0

---Type <return> to continue, or q <return> to quit---
0x7cald8e: ox0 0x0

0x7cald9oe: 0x0 0x0

0x7calda0: 0x0 0x0

0x7caldbo: 0x0 0x0

©x7caldco: 0x0 0x0

0x7caldde: 0x0 0x0

0x7calde0: 0x0 ox111

Ox7caldfo: 0x657461636f6Cc6Cc61 ©OXx797261f6d656d2064
0x7cale00: 0x0 0x0

Ox7calelo: 0x4004f0 <procD> ox0

Ox7cale0: 0x0 0x0

Ox7cale30: 0x0 0x0

Ox7caledo: 0x0 0x0

Ox7cale50: ox0 ox0

Ox7cale6O: ox0 ox0

Ox7cale70: ox0 ox0

Ox7cale80: ox0 ox0

Ox7cale90: ox0 ox0

Ox7calead: ox0 ox0

Ox7calebo: 0x0 0x0

Ox7caleco: o0x0 0x0

Ox7caledo: 0x0 0x0

Ox7caleeO: 0x0 ox0

Ox7calefo: ox0 ox111

---Type <return> to continue, or q <return> to quit---
0x7calfoo: 0x657461636f6Cc6Cc61 ©OXx79726Ff6d656d2064
Ox7calflo: ox0 ox0

Ox7calf2eo: 0x4004f0 <procD> ox0

Ox7calf30: () ox0

0x7calf4o: 0x0 0x0

0x7calf50: 0x0 0x0

0x7calf60: 0x0 0x0

0x7calf70: 0x0 0x0

0x7calf8o: 0x0 0x0

124

0x7calf9o: () ox0

Ox7calfa0: () ox0

0x7calfbo: 0x0 0x0

Ox7calfco: 0x0 0x0

Ox7calfde: 0x0 0x0

Ox7calfe0: 0x0 0x0

Ox7calffo: 0x0 0x0

0X7Ca2000: o0x0 ox111

0x7ca2010: 0x657461636f6c6Cc61 ©Ox797261f6d656d2064
0x7ca2020: ox0 ox0

0x7ca2030: 0x4004f0 <procD> ox0
0X7Ca2040: 0x0 ox0

0X7Cca2050: ox0 ox0

OX7Cca2060: ox0 ox0

0x7ca2070: ox0 ox0

---Type <return> to continue, or q <return> to quit---
©X7Cca2080: ox0 0x0

©X7Cca2090: 0x0 ox0

©X7Cca20a0: 0x0 ox0

0x7ca20bo: 0x0 0x0

0X7Cca20co: 0x0 0x0

0x7ca20de: 0x0 0x0

0X7Ca20e0: 0x0 0x0

Ox7ca20fa: () ox0

©x7ca2l00: ox0 0x0

Ox7ca2llo: o0x0 ox111

Ox7ca2120: 0x657461636f6c6c61 0x79726f6d656d2064
Ox7ca2130: o0x0 ox0

Ox7ca2140: 0x400410 <procD> ox0
Ox7ca2l50: 0x0 ox0

0Xx7ca2l60: 0x0 (2

©x7ca2l70: ox0 0x0

©x7ca2180: 0x0 ox0

©x7ca2l190: ox0 ox0

Ox7ca2la0: 0x0 0x0

0x7ca2lbo: 0x0 0x0

Ox7ca2lco: 0x0 0x0

0x7ca2lde: 0x0 0x0

Ox7ca2le0: 0x0 0x0

0x7ca2lfo: () ox0

---Type <return> to continue, or q <return> to quit---
©X7Cca2200: ox0 ox0

©x7ca2210: ox0 ox0

0Xx7ca2220: ox0 o0x111

0x7ca2230: 0x657461636f6c6Cc61 0Xx79726f6d656d2064
0x7ca2240: ox0 ox0

0x7ca2250: 0x4004f0 <procD> 0x0
©X7Ca2260: 0x0 0x0

0x7ca2270: 0x0 ox0

0X7Cca2280: 0x0 0x0

0x7ca2290: 0x0 0x0

OXx7ca22a0: 0x0 0x0

0x7ca22bo: 0x0 0x0

©x7ca22co: 0x0 ox0

0x7ca22do: 0x0 0x0

OXx7cCca22e0: ox0 0x0

0x7ca22fo: 0x0 0x0

©X7ca2300: o0x0 ox0

©x7ca2310: 0x0 ox0

0x7ca2320: 0x0 0x0

125

©x7ca2330: ox0 Ox111

0x7ca2340: 0x657461636f6c6c61 0x79726f6d656d2064
©x7ca2350: o0x0 ox0

0x7ca2360: 0x4004f0 <procD> 0x0

©x7ca2370: ox0 ox0

---Type <return> to continue, or g <return> to quit---
0Xx7ca2380: 0x0 0x0

©Xx7ca2390: o0x0 0x0

©x7ca23a0: ox0 0x0

0x7ca23bo: ox0 ox0

0x7ca23co: 0x0 0x0

0x7ca23de: 0x0 ox0

Ox7ca23e0: ox0 ox0

0x7ca23fo: 0x0 0x0

OXx7Cca2400: ox0 ox0

Ox7ca2410: 0x0 0x0

0Xx7ca2420: ox0 0x0

©x7ca2430: 0x0 ox0

0x7ca2440: 0x0 ox111

0x7ca2450: 0x657461636f6c6Cc61 0OXx79726f6d656d2064
0x7ca2460: o0x0 ox0

0x7ca2470: 0x4004f0 <procD> 0x0

0x7ca2480: 0x0 0x0

0x7ca2490: 0x0 ox0

Ox7ca24a0: ox0 0x0

0x7ca24bo: 0x0 0x0

Ox7ca24co: 0x0 0x0

0x7ca24de: 0x0 0x0

Ox7ca24e0: ox0 ox0

Ox7ca24fe: ox0 ()

---Type <return> to continue, or q <return> to quit---
©Xx7ca2500: ox0 0x0

©x7ca2510: 0x0 ox0

©x7ca2520: ox0 ox0

©x7ca2530: 0x0 0x0

Ox7ca2540: 0x0 0x0

©x7ca2550: 0x0 0x111

0x7ca2560: 0x657461636f6c6Cc61 0OXx79726f6d656d2064
0x7ca2570: 0x0 0x0

©x7ca2580: 0x4004f0 <procD> ox0

©x7ca2590: ox0 ox0

©x7ca25a0: ox0 ox0

0x7ca25bo: 0x0 0x0

©x7ca25co: ox0 ox0

©x7ca25do: 0x0 0x0

Ox7ca25e0: 0x0 o0x0

0x7ca25f0o: 0x0 0x0

0X7Ca2600: 0x0 0x0

©x7ca2610: 0x0 ox0

OXx7Cca2620: 0x0 0x0

0x7ca2630: 0x0 0x0

0x7ca2640: 0x0 0x0

Ox7ca2650: 0x0 0x0

0Xx7Cca2660: 0x0 ox111

0x7ca2670: 0x657461636f6c6Cc61 0Xx79726f6d656d2064
---Type <return> to continue, or q <return> to quit---
0x7ca2680: ox0 ox0

0x7ca2690: 0x4004f0 <procD> 0x0

0X7Cca26a0: 0x0 ox0

0x7ca26bo: 0x0 0x0

126

Ox7ca26co: ox0 0x0

0x7ca26do: 0x0 0x0

OX7Cca26e0: 0x0 ox0

0x7ca26f0: 0x0 0x0

OX7ca2700: ox0 ox0

©x7ca2710: 0x0 0x0

0X7ca2720: 0x0 0x0

0Xx7ca2730: o0x0 0x0

Ox7ca2740: ox0 0x0

©x7ca2750: ox0 ox0

0X7Cca2760: 0x0 0x0

0x7ca2770: 0x0 0x111

0x7ca2780: 0x657461636f6c6Cc61 0OXx79726f6d656d2064
0x7ca2790: 0x0 ox0

0x7ca27a0: 0x400410 <procD> ox0
0x7ca27bo: 0x0 0x0

©x7ca27co: ox0 0x0

0x7ca27de: 0x0 0x0

Ox7ca27e0: 0x0 ox0

0x7ca27fo: 0x0 0x0

---Type <return> to continue, or g <return> to quit---
0X7Cca2800: 0x0 0x0

0x7ca2810: 0x0 0x0

0x7ca2820: 0x0 ox0

©x7ca2830: ox0 0x0

©x7ca2840: 0x0 ox0

0x7ca2850: 0x0 0x0

OX7ca2860: ox0 ox0

©x7ca2870: ox0 ox0

Ox7ca2880: 0x0 ox111

0x7ca2890: 0x657461636f6Cc6Cc61 ©OXx797261f6d656d2064
©x7ca28a0: o0x0 o0x0

0x7ca28bo: 0x4004f0 <procD> ox0
OXx7ca28co: ox0 ox0

0x7ca28de: 0x0 0x0

0Xx7Cca28e0: 0x0 0x0

0x7ca28f0: 0x0 0x0

©x7ca2900: 0x0 0x0

0x7ca2910: 0x0 0x0

©Xx7Cca2920: ox0 ox0

©x7ca2930: ox0 ox0

©X7ca2940: ox0 ox0

©Xx7ca2950: ox0 ox0

0X7ca2960: ox0 ox0

©x7ca2970: ox0 ox0

---Type <return> to continue, or g <return> to quit---
©X7ca2980: o0x0 0x0

©X7Cca2990: 0x0 ox111

0x7ca29a0: 0x657461636f6c6c61 0x79726f6d656d2064
0x7ca29beo: ox0 ox0

0x7ca29cO: 0x4004f0 <procD> ox0
0x7ca29de: 0x0 0x0

Ox7ca29e0: 0x0 0x0

0x7ca29fo: () ox0

©x7ca2a00: ox0 ox0

©x7ca2alo: ox0 0x0

0Xx7cCca2a20: ox0 ox0

©x7ca2a30: o0x0 ox0

OXx7ca2a40: 0x0 ox0

©x7ca2a50: 0x0 0x0

127

©x7ca2a6o: ox0 0x0

©x7ca2a70: ox0 ox0

©Xx7ca2a80: 0x0 ox0

©Xx7ca2a9%0: o0x0 ox0

Ox7ca2aaf: ox0 0x111

©x7ca2abo: 0x657461636f6Cc6Cc61 ©OXx79726Ff6d656d2064
©x7ca2aco: o0x0 0x0

Ox7ca2ade: 0x4004f0 <procD> ox0

©Xx7ca2ae0: ox0 0x0

Ox7ca2afo: ox0 ox0

---Type <return> to continue, or q <return> to quit---
0x7ca2boo: ox0 ox0

©x7ca2ble: 0x0 0x0

0x7ca2b20: 0x0 0x0

0x7ca2b30: 0x0 0x0

0x7ca2b40: 0x0 0x0

0x7ca2b50: 0x0 0x0

0x7ca2b6o: 0x0 0x0

0x7ca2b70: 0x0 0x0

0x7ca2b8e: 0x0 0x0

©x7ca2b9e: 0x0 0x0

0x7ca2bao: 0x0 0x0

©x7ca2bbe: 0x0 0x111

@x7ca2bco: 0x657461636f6c6Cc61 0OXx79726f6d656d2064
©x7ca2bde: ox0 ox0

Ox7ca2bed: 0x4004f0 <procD> ox0

0x7ca2bfo: 0x0 0x0

OX7cCca2co0: ox0 ox0

©x7ca2clo: ox0 ox0

Ox7ca2c20: 0x0 ox0

©x7ca2c30: 0x0 (2

©x7ca2c4do: ox0 0x0

©x7ca2c50: 0x0 ox0

OX7cCca2c60: ox0 ox0

©x7ca2c70: 0x0 0x0

---Type <return> to continue, or q <return> to quit---
OXx7ca2c80: 0x0 0x0

©x7ca2c90: 0x0 0x0

©x7ca2cal: 0x0 0x0

0x7ca2cho: 0x0 0x0

©x7ca2cco: ox0 ox111

©x7ca2cdo: 0x657461636f6Cc6Cc61 ©Ox797261f6d656d2064
Ox7ca2ce0: o0x0 ox0

Ox7ca2cfo: 0x400410 <procD> ox0

0x7ca2deo: 0x0 0x0

0x7ca2dle: 0x0 0x0

0x7ca2d20: 0x0 0x0

0x7ca2d30: 0x0 0x0

0x7ca2d40: ox0 ox0

0x7ca2d50: ox0 ox0

0x7ca2d60: 0x0 0x0

0x7ca2d70: 0x0 0x0

0x7ca2d8e: 0x0 0x0

0x7ca2d9eo: 0x0 0x0

0x7ca2da0: 0x0 0x0

0x7ca2dbo: 0x0 0x0

0x7ca2dco: 0x0 0x0

0x7ca2dde: 0x0 ox111

Ox7ca2de0: 0x657461636f6c6c61 ©Ox797261f6d656d2064
Ox7ca2dfo: ox0 ox0

128

---Type <return> to continue, or q <return> to quit---
0x7ca2e00: 0x4004f0 <procD> ox0
Ox7ca2elo: 0x0 ox0

Ox7ca2e20: o0x0 ox0

Ox7ca2e30: ox0 ox0

Ox7ca2edo: 0x0 0x0

Ox7ca2e50: 0x0 0x0

OX7Cca2e60: o0x0 0x0

Ox7ca2e70: ox0 0x0

Ox7ca2e80: ox0 ox0

0x7ca2e9%0: 0x0 0x0

Ox7ca2eald: 0x0 ox0

0x7ca2ebo: 0x0 0x0

Ox7calecO: ox0 ox0

0x7ca2edo: 0x0 0x0

Ox7calee0: o0x0 ox111

Ox7ca2ef0: 0x657461636f6Cc6Cc61 ©Ox79726Ff6d656d2064
0x7ca2f00: ox0 ox0

Ox7ca2fleo: 0x4004f0 <procD> ox0
0x7ca2f20: 0x0 0x0

0x7ca2f30: 0x0 0x0

(gdb) x/s @x7ca2efo
Ox7ca2efo: "allocated memory"

6. Compare pmap logs pmap.16531.1, pmap.16531.2, and pmap.16531.3 (the first one was saved before the
leak started and the other two correspond to core dumps we looked at):

16531: ./App9

0000000000400000 732K r-x-- /home/training/ALCDA/App9/App9
00000000006b6000 8K rw--- /home/training/ALCDA/App9/App9
00000000006b8000 28K rw--- [anon]

0000000000986000 1460K rw--- [anon]

00007f5ecad9a000 4K ----- [anon]

00007f5ecad9b000 8192K rw--- [anon]

00007f5ecac9booo 4K ----- [anon]

00007f5ecac9c00® 8192K rw--- [anon]

00007f5ecb49c000 4K ----- [anon]

00007f5ecbh49do0O 8192K rw--- [anon]

00007f5ecbc9doee 4K ----- [anon]

00007f5echc9e000 8192K rw--- [anon]

00007f5ecc49e000 4K ----- [anon]

00007f5ecc49f000 8192K rw--- [anon]

00007fffe9d7booe 132K rw--- [stack]

00007fffe9d9dooe 4K r-x-- [anon]

ffffffffff600000 4K r-x-- [anon]

total 43348K

129

16531: ./App9
0000000000400000 732K r-x-- /home/training/ALCDA/App9/App9

00000000006b6000 8K rw--- /home/training/ALCDA/App9/App9
00000000006b8000 28K rw--- [anon]
0000000000986000 67856K rw--- [anon]
00007f5ecad9a000 4K ----- [anon]
00007f5eca49b000 8192K rw--- [anon]
00007f5ecac9booe 4K ----- [anon]
00007f5ecac9c000 8192K rw--- [anon]
00007f5ecb49c000 4K ----- [anon]
00007f5ech49de0O 8192K rw--- [anon]
00007f5ecbc9dooe 4K ----- [anon]
00007f5echc9e000 8192K rw--- [anon]
00007f5ecc49e000 4K ----- [anon]
00007f5ecc49f000 8192K rw--- [anon]
00007fffe9d7boo0o 132K rw--- [stack]
00007fffe9d9doee 4K r-x-- [anon]
ffffffffff600000 4K r-x-- [anon]
total 109744K

16531: ./App9

0000000000400000 732K r-x-- /home/training/ALCDA/App9/App9
00000000006b6000 8K rw--- /home/training/ALCDA/App9/App9
00000000006b8000 28K rw--- [anon]
0000000000986000 134252K rw--- [anon]
00007f5eca49a000 4K ----- [anon]
00007f5eca49b000 8192K rw--- [anon]
00007f5ecac9boee 4K ----- [anon]
00007f5ecac9c00® 8192K rw--- [anon]
00007f5ecb49c000 4K ----- [anon]
00007f5ecb49do0® 8192K rw--- [anon]
00007f5ecbc9odoee 4K ----- [anon]
00007f5echbc9e000 8192K rw--- [anon]
00007f5ecc49e€000 4K ----- [anon]
00007f5ecc49f000 8192K rw--- [anon]
00007fffe9d7boo0 132K rw--- [stack]
000071 ffe9d9d0o0 4K r-x-- [anon]
600000 4K r-x-- [anon]
total 176140K

130

Exercise A10

Goal: Learn how to identify heap contention wait chains,
synchronization issues, advanced disassembly, dump arrays

Patterns: Double Free, Heap Contention, Wait Chain,
Critical Region, Self-Diagnosis

8 2015 Software Diagnostics Services

131

Exercise A10

Goal: Learn how to identify heap contention wait chains, synchronization issues, advanced disassembly, dump
arrays.

Patterns: Heap Corruption, Heap Contention, Wait Chain, Critical Region, Self-Diagnostics.

1. When we launched App10 we got this console output and a core dump was saved:

training@debiané4:~/ALCDA/Appl0$./ApplO
*** oglibc detected *** ,/App1@: double free or corruption (!prev): 0x0000000001b681a@ ***
======= Backtrace: =========

[0x412042]

[0x416c27]

[0x400586 |

[0x40067¢]

[0x40068¢€]

[0x4006a6 |

[0x4016c0]

[0x432589]

00400000-004b8000 r-xp 00000000 08:01 28961 /home/training/ALCDA/Appl@/Appl0o
006b8000-006b900O rw-p 00Ob8OVO 08:01 28961 /home/training/ALCDA/Apple/Appl0
006b9000-006d4000 rw-p 00000000 00:00 O

01ab1000-029ccO00 rw-p 000000 00:00 O [heap]

712654000000-712654021000 rw-p 00000000 00:00
712654021000-712658000000 ---p 00000000 00:00
7f265c000000-71265cf3f000 rw-p 00000000 00:00
7f265cf3f000-712660000000 ---p 0000000 00:00
712663374000-712663375000 ---p 00000000 00:00
7f2663375000-712663b75000 rw-p 00000000 00:00
7f2663b75000-712663b76000 ---p 00000000 00:00
712663b76000-712664376000 rw-p 00000000 00:00
7f2664376000-712664377000 ---p 00000000 00:00
7f2664377000-712664b77000 rw-p 00000000 00:00
7f2664b77000-712664b78000 ---p 00000000 00:00
7f2664b78000-712665378000 rw-p 00000000 00:00
7f2665378000-72665379000 ---p 00000000 00:00
7f2665379000-712665b79000 rw-p 00000000 00:00

[OIORIORO IR IR R RN R IR ORI)

7f£d51920000-7ffd51941000 rw-p 00000000 00:00 [stack]
7f£d519ce000-7ffd519cf000 r-xp 00OP0O00 00:00 O [vdso]
FEFFfFffff600000-ffffffffff601000 r-xp 00OO0R00 00:00 O [vsyscall]

Aborted (core dumped)

132

2. Load a core dump and App10 executable:

training@debian64:~/ALCDA$ gdb -c ./Appl@/core -se ./Appl0/Appleo

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/Appl0/Appl@...done.

[New LWP 17002]

[New LWP 17003]

[New LWP 16998]

[New LWP 16999]

[New LWP 17001]

[New LWP 17000]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/l1ib/x86_64-1inux-gnu/libthread_db.so.1".
Core was generated by " ./Apple’'.

Program terminated with signal 6, Aborted.

#0 0Ox000000000043ef65 in raise ()

3. Check all threads and identify problem top frames:

(gdb) info threads
Id Target Id Frame
6 Thread 0x7f2665377700 (LWP 17000) 0x00000000004151al in _int_malloc ()
5 Thread 0x7f2664b76700 (LWP 17001) _ 111 unlock_wake_private ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/lowlevellock.S:343
4 Thread 0x7f2665b78700 (LWP 16999) _ 111 lock_wait_private ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/lowlevellock.S:97
Thread 0x1ab1860 (LWP 16998) 0x000000000042fedl in nanosleep ()
2 Thread 0x7f2663b74700 (LWP 17003) _ 111 lock_wait_private ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/lowlevellock.S:97
* 1 Thread 0x7f2664375700 (LWP 17002) 0x000000000043ef65 in raise ()

w

4, Check thread 2 and find where it was being executed:

(gdb) thread 2
[Switching to thread 2 (Thread 0x7f2663b74700 (LWP 17003))]
#0 _ 111 lock _wait_private ()
at ../nptl/sysdeps/unix/sysv/1linux/x86_64/lowlevellock.S:97
97 ../nptl/sysdeps/unix/sysv/1linux/x86_64/lowlevellock.S: No such file or directory.

(gdb) bt

#0 111 lock wait_private ()
at ../nptl/sysdeps/unix/sysv/1linux/x86_64/lowlevellock.S:97

#1 0x0000000000418836 in L lock 9558 ()

#2 0Ox0000000000416clc in free ()

#3 Ox0000000000400586 in proc ()

#4 0x000PPPPVVV40R6bb in bar five ()

#5 0x00000000004006cb in foo_five ()

#6 Ox00000000004006e3 in thread_five ()

#7 0Ox00000000004016cO in start_thread (arg=<optimized out>)
at pthread_create.c:304

#8 0x0000000000432589 in clone ()

#9 0x0000000000000000 in ?? ()

133

(gdb) disassemble proc
Dump of assembler code for function proc:

0x0000000000400410 <+0>: push %rbp
0x00000000004004F1 <+1>: mov %rsp,%rbp
0x00000000004004F4 <+4>: push %rbx
0X000000VV4004AT5 <+5>: sub $0x18,%rsp
0x00000000004004F9 <+9>: callg ©x40ac70 <rand>
0x00000000004004fe <+14>: mov %eax, %ecx
0x0000000000400500 <+16>: mov $0x68db8bad, %edx
0x0000000000400505 <+21>: mov %ecx, seax
0x0000000000400507 <+23>: imul %edx
0x0000000000400509 <+25>: sar $0xc, %edx
0x000000000040050C <+28>: mov %ecx, %eax
0x000000000040050e <+30>: sar $0x1f, %eax
0x0000000000400511 <+33>: mov %edx, %ebx
0x0000000000400513 <+35>: sub %eax, %ebx
0x0000000000400515 <+37>: mov %ebx, %eax
0x0000000000400517 <+39>: mov %eax, -0x14(%rbp)
0x000000000040051a <+42>: mov -0x14(%rbp) ,%eax
0x000000000040051d <+45>: imul $0x2710, %eax, %eax
0x0000000000400523 <+51>: mov %ecx, %edx
0x0000000000400525 <+53>: sub %eax, sedx
0Xx0000000000400527 <+55>: mov %edx, %eax
0x0000000000400529 <+57>: mov %eax, -0x14(%rbp)
0x000000000040052C <+60>: callg ©x40ac70 <rand>

---Type <return> to continue, or q <return> to quit---
0x0000000000400531 <+65>: mov %eax, %ecx
0Xx0000000000400533 <+67>: mov $0x68db8bad, %edx
0Xx0000000000400538 <+72>: mov %ecx,keax
0x000000000040053a <+74>: imul %edx
0x00000000V040053C <+76>: sar $0xc, %edx
0x000000000040053f <+79>: mov %ecx, %eax
0x0000000000400541 <+81>: sar $0x1f, %eax
0x0000000000400544 <+84>: mov %edx, %ebx
0Xx0000000000400546 <+86>: sub %eax, %ebx
0x0000000000400548 <+88>: mov %ebx, %eax
0x000000000040054a <+90>: mov %eax, -0x18(%rbp)
0x000000000040054d <+93>: mov -0x18(%rbp) ,%eax
0x0000000000400550 <+96>: imul $0x2710,%eax, %eax
0x0000000000400556 <+102>: mov %ecx, sedx
0x0000000000400558 <+104>: sub %eax, sedx
0x000000000040055a <+106>: mov %edx, %eax
0x000000000040055¢Cc <+108>: mov %eax, -0x18(%rbp)
0x000000000040055F <+111>: mov -0x14(%rbp) ,%eax
0x0000000000400562 <+114>: cltq
0Xx0000000000400564 <+116>: mov ox6b8fco(,%rax,8),%rax
0x000000000040056C <+124>: test %rax,%rax
0x000000000040056F <+127>: je 0x400597 <proc+167>
0x0000000000400571 <+129>: mov -0x14(%rbp) ,%eax
0x0000000000400574 <+132>: cltq

---Type <return> to continue, or g <return> to quit---
0Xx0000000000400576 <+134>: mov ox6b8fca(,%rax,8),%rax
0x000000000040057e <+142>: mov %rax,srdi
0Xx0000000000400581 <+145>: callqg 0x416bco <free>
0Xx0000000000400586 <+150>: mov -0x14(%rbp) ,%eax
0x0000000000400589 <+153>: cltq
0x000000000040058b <+155>: movq $0x0,0x6b8fco(,%rax,8)
0x0000000000400597 <+167>: mov -0x18(%rbp) ,%eax
0x000000000040059a <+170>: cltq

134

0x000000000040059C <+172>: mov %rax,srdi

0x000000000040059F <+175>: callg ©x416c90 <malloc>
0x00000000004005a4 <+180>: mov %rax, srdx
0x00000000004005a7 <+183>: mov -0x14(%rbp) ,%eax
0x00000000004005aa <+186>: cltq

0Xx00000000004005ac <+188>: mov %rdx,0x6b8fco(,%rax,8)
0x00000000004005b4 <+196>: jmpg ©x4004f9 <proc+9>

End of assembler dump.
5. Check the thread #4 and find where it was being executed:

(gdb) thread 4
[Switching to thread 4 (Thread 0x7f2665b78700 (LWP 16999))]
#0 111 lock wait _private ()
at ../nptl/sysdeps/unix/sysv/1linux/x86_64/lowlevellock.S:97
97 in ../nptl/sysdeps/unix/sysv/1linux/x86_64/lowlevellock.S

(gdb) bt

#0 111 lock_wait_private ()
at ../nptl/sysdeps/unix/sysv/1linux/x86_64/lowlevellock.S:97

#1 0x0000000000418836 in _L lock 9558 ()

#2 0x0000000000416c1lc in free ()

#3 0Ox0000000000400586 in proc ()

#4 0Ox00000000004005c7 in bar_one ()

#5 0x00000000004005d7 in foo one ()

#6 0Ox00000000004005ef in thread_one ()

#7 0x0000000RV4016cO in start_thread (arg=<optimized out>)
at pthread_create.c:304

#8 0Ox0000000000432589 in clone ()

#9 0Ox0000000000000000 in ?? ()

(gdb) disassemble proc
Dump of assembler code for function proc:

0x0000000000400410 <+0>: push %rbp
0x00000000004004F1 <+1>: mov %rsp,%rbp
0x00000000004004F4 <+4>: push %rbx
0x00000000004004F5 <+5>: sub $0x18,%rsp
0x00000000004004F9 <+9>: callg ©x40ac70 <rand>
0x00000000004004fe <+14>: mov %eax, %ecx
0x0000000000400500 <+16>: mov $0x68db8bad, %edx
0x0000000000400505 <+21>: mov %ecx, seax
0x0000000000400507 <+23>: imul %edx
0X00000VVR400509 <+25>: sar $0xc, %edx
0Xx000000000040050C <+28>: mov %ecx, %eax
0x000000000040050e <+30>: sar $0x1f, %eax
0x0000000000400511 <+33>: mov %edx, %ebx
0Xx0000000000400513 <+35>: sub %eax, %ebx
0x0000000000400515 <+37>: mov %ebx, %eax
0x0000000000400517 <+39>: mov %eax, -0x14(%rbp)
0x000000000040051a <+42>: mov -0x14(%rbp) ,%eax
0x000000000040051d <+45>: imul $0x2710, %eax, %eax
0x0000000000400523 <+51>: mov %ecx, %edx
0x0000000000400525 <+53>: sub %eax, %edx
0x0000000000400527 <+55>: mov %edx, %eax
0x0000000000400529 <+57>: mov %eax, -0x14(%rbp)
0x000000000040052C <+60>: callg ©x40ac70 <rand>
---Type <return> to continue, or q <return> to quit---
0x0000000000400531 <+65>: mov %eax, %ecx
0x0000000000400533 <+67>: mov $0x68db8bad, %edx
0x0000000000400538 <+72>: mov %ecx, %eax

135

0Xx000000000040053a <+74>: imul %edx

0x000000000040053C <+76>: sar $0xc, %edx
0x000000000040053f <+79>: mov %»ecx,keax
0x0000000000400541 <+81>: sar $0x1f,%eax
0x0000000000400544 <+84>: mov %edx, %ebx
0x0000000000400546 <+86>: sub %eax, sebx
0x0000000000400548 <+88>: mov %ebx, %eax
0x000000000040054a <+90>: mov %eax, -0x18(%rbp)
0x000000000040054d <+93>: mov -0x18(%rbp) ,%eax
0x0000000000400550 <+96>: imul $0x2710, %eax, %eax
0x0000000000400556 <+102>: mov %ecx, sedx
0x0000000000400558 <+104>: sub %eax, kedx
0x000000000040055a <+106>: mov %edx, %eax
0x000000000040055¢Cc <+108>: mov %eax, -0x18(%rbp)
0x000000000040055f <+111>: mov -0x14(%rbp) ,%eax
0x0000000000400562 <+114>: cltq
0Xx0000000000400564 <+116>: mov ox6b8fco(,%rax,8),%rax
0x000000000040056C <+124>: test %rax,%rax
0x000000000040056F <+127>: je 0x400597 <proc+167>
0x0000000000400571 <+129>: mov -0x14(%rbp) ,%eax
0x0000000000400574 <+132>: cltq

---Type <return> to continue, or q <return> to quit---
0x0000000000400576 <+134>: mov ox6b8fco(,%rax,8),%rax
0x000000000040057e <+142>: mov %rax,srdi
0x0000000000400581 <+145>: callg ©x416bco <free>
0x0000000000400586 <+150>: mov -0x14(%rbp) ,%eax
0x0000000000400589 <+153>: cltq
0x000000000040058b <+155>: movq $0x0,0x6b8fco(,%rax,8)
0x0000000000400597 <+167>: mov -0x18(%rbp) ,%eax
0Xx000000000040059a <+170>: cltq
0x000000000040059C <+172>: mov %rax,srdi
0x000000000040059f <+175>: callg ©x416c90 <malloc>
0x00000000004005a4 <+180>: mov %rax, srdx
0x00000000004005a7 <+183>: mov -0x14(%rbp) ,%eax
0x00000000004005aa <+186>: cltq
0x00000000V4005ac <+188>: mov %rdx,0x6b8fco(,%rax,8)
0x00000000004005b4 <+196>: jmpq 0x4004f9 <proc+9>

End of assembler dump.
6. Check the thread #5 and find where it was being executed:

(gdb) thread 5
[Switching to thread 5 (Thread 0x7f2664b76700 (LWP 17001))]
#0 111 unlock wake private ()
at ../nptl/sysdeps/unix/sysv/1linux/x86_64/lowlevellock.S:343
343 in ../nptl/sysdeps/unix/sysv/1linux/x86_64/lowlevellock.S

(gdb) bt

#0 _ 111 unlock wake_private ()
at ../nptl/sysdeps/unix/sysv/1inux/x86_64/lowlevellock.S:343

#1 0x000000000041886d in _L_unlock 9670 ()

#2 0Ox0000000000416d22 in malloc ()

#3 ©Ox00000000004005a4 in proc ()

#4 0Ox0000000000400641 in bar_three ()

#5 0Ox0000000000400651 in foo_three ()

#6 0x0000000000400669 in thread_three ()

#7 0x00000000004016cO in start_thread (arg=<optimized out>)
at pthread_create.c:304

#8 0x0000000000432589 in clone ()

#9 0x0000000000000000 in ?? ()

136

(gdb) disassemble proc
Dump of assembler code for function proc:

0x0000000000400410 <+0>: push %rbp
0x00000000004004F1 <+1>: mov %rsp,%rbp
0x00000000004004F4 <+4>: push %rbx
0X000000VV4004AT5 <+5>: sub $0x18,%rsp
0x00000000004004F9 <+9>: callg ©x40ac70 <rand>
0x00000000004004fe <+14>: mov %»eax, %ecx
0x0000000000400500 <+16>: mov $0x68db8bad, %edx
0x0000000000400505 <+21>: mov %ecx, seax
0x0000000000400507 <+23>: imul %edx
0x0000000000400509 <+25>: sar $0xc, %edx
0x000000000040050C <+28>: mov %ecx, %eax
0x000000000040050e <+30>: sar $0x1f, %eax
0x0000000000400511 <+33>: mov %edx, %ebx
0x0000000000400513 <+35>: sub %eax, %ebx
0x0000000000400515 <+37>: mov %ebx, %eax
0x0000000000400517 <+39>: mov %eax, -0x14(%rbp)
0x000000000040051a <+42>: mov -0x14(%rbp) ,%eax
0x000000000040051d <+45>: imul $0x2710, %eax, %eax
0x0000000000400523 <+51>: mov %ecx, %edx
0x0000000000400525 <+53>: sub %eax, sedx
0Xx0000000000400527 <+55>: mov %edx, %eax
0x0000000000400529 <+57>: mov %eax, -0x14(%rbp)
0x000000000040052C <+60>: callg ©x40ac70 <rand>

---Type <return> to continue, or q <return> to quit---
0x0000000000400531 <+65>: mov %eax, %ecx
0Xx0000000000400533 <+67>: mov $0x68db8bad, %edx
0Xx0000000000400538 <+72>: mov %ecx,%eax
0x000000000040053a <+74>: imul %edx
0x00000000V040053C <+76>: sar $0xc, %edx
0x000000000040053f <+79>: mov %ecx,keax
0x0000000000400541 <+81>: sar $0x1f, %eax
0x0000000000400544 <+84>: mov %edx, %ebx
0Xx0000000000400546 <+86>: sub %eax, %ebx
0x0000000000400548 <+88>: mov %ebx, %eax
0x000000000040054a <+90>: mov %eax, -0x18(%rbp)
0x000000000040054d <+93>: mov -0x18(%rbp) ,%eax
0x0000000000400550 <+96>: imul $0x2710,%eax, %eax
0x0000000000400556 <+102>: mov %ecx, sedx
0x0000000000400558 <+104>: sub %eax, sedx
0x000000000040055a <+106>: mov %edx, %eax
0x000000000040055¢Cc <+108>: mov %eax, -0x18(%rbp)
0x000000000040055F <+111>: mov -0x14(%rbp) ,%eax
0x0000000000400562 <+114>: cltq
0Xx0000000000400564 <+116>: mov ox6b8fco(,%rax,8),%rax
0x000000000040056C <+124>: test %rax,%rax
0x000000000040056F <+127>: je 0x400597 <proc+167>
0x0000000000400571 <+129>: mov -0x14(%rbp) ,%eax
0x0000000000400574 <+132>: cltq

---Type <return> to continue, or g <return> to quit---
0Xx0000000000400576 <+134>: mov ox6b8fca(,%rax,8),%rax
0x000000000040057e <+142>: mov %rax,srdi
0x0000000000400581 <+145>: callg ©x416bco <free>
0Xx0000000000400586 <+150>: mov -0x14(%rbp) ,%eax
0x0000000000400589 <+153>: cltq
0x000000000040058b <+155>: movq $0x0,0x6b8fcao(,%rax,8)
0x0000000000400597 <+167>: mov -0x18(%rbp) ,%eax
0x000000000040059a <+170>: cltq

137

0x000000000040059C <+172>: mov %rax,srdi

0x000000000040059F <+175>: callg ©x416c90 <malloc>
0x00000000004005a4 <+180>: mov %rax, srdx
0x00000000004005a7 <+183>: mov -0x14(%rbp) ,%eax
0x00000000004005aa <+186>: cltq

0Xx00000000004005ac <+188>: mov %rdx,0x6b8fco(,%rax,8)
0x00000000004005b4 <+196>: jmpg ©x4004f9 <proc+9>

End of assembler dump.

We see some buffer 0x6b8fc0 “sandwiched” between free and malloc calls that internally call “lock” and “unlock”
functions.

7. Check the thread #6 and find where it was being executed:

(gdb) thread 6
[Switching to thread 6 (Thread 0x7f2665377700 (LWP 17000))]
#0 0Ox00000000004151al1 in _int malloc ()

(gdb) bt

#0 0x00000000004151al1 in _int_malloc ()

#1 0x0000000000416cf8 in malloc ()

#2 0x00000000004005a4 in proc ()

#3 0x0000000000400604 in bar_two ()

#4 0Ox0000000000400614 in foo_two ()

#5 0x000000000040062c in thread_two ()

#6 0x000000PRV4016cO in start_thread (arg=<optimized out>)
at pthread_create.c:304

#7 0Ox0000000000432589 in clone ()

#8 0x0000000000000000 in ?? ()

(gdb) disassemble proc
Dump of assembler code for function proc:

0x0000000000400410 <+0>: push %rbp
0x00000000004004F1 <+1>: mov %rsp,%rbp
0x00000000004004F4 <+4>: push %rbx
0xX00000000V04004f5 <+5>: sub $0x18,%rsp
0x00000000004004F9 <+9>: callg ©x40ac70 <rand>
0x00000000004004fe <+14>: mov %eax, %ecx
0x0000000000400500 <+16>: mov $0x68db8bad, %edx
0Xx0000000000400505 <+21>: mov %ecx,%eax
0x0000000000400507 <+23>: imul %edx
0x0000000000400509 <+25>: sar $0xc, %edx
0x000000000040050C <+28>: mov %ecx,%eax
0x000000000040050e <+30>: sar $0x1f, %eax
0x0000000000400511 <+33>: mov %edx, %ebx
0x0000000000400513 <+35>: sub %eax, %ebx
0x0000000000400515 <+37>: mov %ebx, %eax
0x0000000000400517 <+39>: mov %eax, -0x14(%rbp)
0x000000000040051a <+42>: mov -0x14(%rbp) ,%eax
0x000000000040051d <+45>: imul $0x2710, %eax, %eax
0x0000000000400523 <+51>: mov %ecx, sedx
0x0000000000400525 <+53>: sub %eax, %edx
0x0000000000400527 <+55>: mov %edx, %eax
0x0000000000400529 <+57>: mov %eax, -0x14(%rbp)
0Xx000000000040052Cc <+60>: callg ©x40ac70 <rand>
---Type <return> to continue, or q <return> to quit---
0x0000000000400531 <+65>: mov %eax, %ecx
0x0000000000400533 <+67>: mov $0x68db8bad, %edx
0x0000000000400538 <+72>: mov %ecx, %eax
0x000000000040053a <+74>: imul %edx

138

0x000000000040053 ¢
0x000000000040053f
0x0000000000400541
0x0000000000400544
0x0000000000400546
0x0000000000400548
0x000000000040054a
0x000000000040054d
0x0000000000400550
0x0000000000400556
0x0000000000400558
0x000000000040055a
0x000000000040055
0x000000000040055f
0x0000000000400562
0x0000000000400564
0x000000000040056
0x000000000040056F
0x0000000000400571
0x0000000000400574
---Type <return> to co
0x0000000000400576
0x000000000040057 e
0x0000000000400581
0Xx0000000000400586
0x0000000000400589
0x000000000040058b
0x0000000000400597
0x000000000040059a
0x000000000040059
0x000000000040059F
0x00000000004005a4
0x00000000004005a7
0x00000000004005aa
0x00000000004005ac
0x00000000004005b4
End of assembler dump.

8.

(gdb) thread 1
[Switching to thread 1
#0 0Ox000000000043ef65

(gdb) bt
#0 0Ox000000000043ef65
#1 0©Ox0000000000409fcO
#2 0©x000000000040bf5b
#3 0Ox0000000000412042
#4 0Ox0000000000416c27
#5 ©x0000000000400586
#6 ©x000000000040067e
#7 ©x000000000040068e
#8 ©x000000PV0V4006a6
#9 0x00000000004016CO
at pthread_create.

<+76>:
<+79>:
<+81>:
<+84>:
<+86>:
<+88>:
<+90>:
<+93>:
<+96>:
<+102>:
<+104>:
<+106>:
<+108>:
<+111>:
<+114>:
<+116>:
<+124>:
<+127>:
<+129>:
<+132>:
ntinue, or
<+134>:
<+142>:
<+145>:
<+150>:
<+153>:
<+155>:
<+167>:
<+170>:
<+172>:
<+175>:
<+180>:
<+183>:
<+186>:
<+188>:
<+196>:

sar
mov
sar
mov
sub
mov
mov
mov
imul
mov
sub
mov
mov
mov
cltq
mov
test
je
mov
cltq

$0xc, %edx
%ecx,%eax

$0x1f, %eax

%edx, %ebx

%eax, %ebx

%ebx, %eax

%eax, -0x18(%rbp)
-0x18(%rbp) ,%eax
$0x2710, %eax, %eax
%ecx, sedx

%eax, sedx

%edx, %eax

%eax, -0x18(%rbp)
-0x14(%rbp) , %eax

ox6b8fca(,%rax,8),%rax
%rax,%rax

0x400597 <proc+167>
-0x14(%rbp) ,%eax

g <return> to quit---

mov
mov
callq
mov
cltq
movq
mov
cltq
mov
callq
mov
mov
cltq
mov

jmpq

ox6b8fco(,%rax,8),%rax
%rax,%rdi

ox416bco <free>
-0x14(%rbp) , %eax

$0x0,0x6b8fcaO(,%rax,8)
-0x18(%rbp) ,%eax

%rax,%srdi
0x416c90 <malloc>
%rax, %rdx
-0x14(%rbp) ,%eax

%rdx,0x6b8fco(,%rax,8)
0x4004f9 <proc+9>

Check the thread #1 and identify a diagnostic message:

(Thread 0x7f2664375700 (LWP 17002))]

in raise (

in
in
in
in
in
in
in
in
in
in
c:304

raise (
abort (

free ()
proc ()

)

)
)

bar_four ()
foo_four ()
thread_four ()

start_thread (arg=<optimized out>)

#10 0x0000000000432589 in clone ()

#11 Ox0000000000000000

in 2?2 ()

__libc_message ()
malloc_printerr ()

139

(gdb) disassemble __libc_message
Dump of assembler code for function __ libc_message:

0x000000000040bCOO <+0>: push %rbp
0x000000000040bCcO1 <+1>: movzbl %al,%eax
0x000000000040bCcO4 <+4>: mov %rsp,%rbp
0x000000000040bCO7 <+7>: push %rl5
0x000000000040bCO9 <+9>: push %ril4
0x000000000040bcOb <+11>: push %ril3
0x000000000040bcod <+13>: push %ril2
0x000000000040bcoOf <+15>: push %rbx
0x000000000040bCc10 <+16>: sub $0x718,%rsp
0x000000000040bc17 <+23>: mov %rdx, -exde (%rbp)
0x000000000040bcle <+30>: lea ox0(,%rax,4),%rdx
0x000000000040bc26 <+38>: mov $0x40bc74, %eax
0x000000000040bc2b <+43>: mov %edi, -0x72c(%rbp)
0x000000000040bc31 <+49>: mov %rcx, -exc8(%rbp)
0x000000000040bCc38 <+56>: sub %rdx, %rax
0x000000000040bc3b <+59>: lea -0x31(%rbp),%rdx
0x000000000040bc3f <+63>: mov %r8,-0xce(%rbp)
0x000000000040bc46 <+70>: mov %r9, -0xb8(%rbp)
0x000000000040bc4d <+77>: mov $0x48d89b, %edi
0x000000000040bc52 <+82>: jmpq *%rax
0x000000000040bc54 <+84>: movaps %xmm7, -0xf (%rdx)
0x000000000040bc58 <+88>: movaps %xmm6, -0x1f(%rdx)
0x000000000040bc5c <+92>: movaps %xmm5, -0x2f(%rdx)

---Type <return> to continue, or q <return> to quit---
0x000000000040bc60 <+96>: movaps %xmm4, -0x3f (%rdx)
0x000000000040bc64 <+100>: movaps %xmm3, -0x4f (%rdx)
0x000000000040bc68 <+104>: movaps %xmm2, -0x5f(%rdx)
0x000000000040bc6Cc <+108>: movaps %xmml, -0x6f (%rdx)
0x000000000040bc70 <+112>: movaps %xmm@, -0x7f(%rdx)
0x000000000040bc74 <+116>: lea 0x10(%rbp) ,%rax
0x000000000040bc78 <+120>: movl $0x10,-0x100(%rbp)
0x000000000040bc82 <+130>: movl $0x30, -0xfc(%rbp)
0x000000000040bc8c <+140>: mov %rsi,-0x728(%rbp)
0x000000000040bc93 <+147>: mov %rax, -oxf8(%rbp)
0x000000000040bc9a <+154>: lea -0xe0d(%rbp),%rax
0x000000000040bcal <+161>: mov %rax, -oxfo(%rbp)
0x000000000040bca8 <+168>: mov -0x100(%rbp) , %rax
0x000000000040bcaf <+175>: mov %rax, -0x120(%rbp)
0x000000000040bcb6 <+182>: lea 0x10(%rbp) ,%rax
0x000000000040bcba <+186>: mov %rax, -0x118(%rbp)
0x000000000040bccl <+193>: lea -0xe0(%rbp),%rax
0x000000000040bcc8 <+200>: mov %rax, -0x110(%rbp)
0x000000000040bcct <+207>: callg ©x43fbc@ <__secure_getenv>
0x000000000040bcd4 <+212>: test %rax,%rax
0x000000000040bcd7 <+215>: je Ox40bce2 <__ libc_message+226>
0x000000000040bcd9 <+217>: cmpb $0x0, (%rax)
0x000000000040bcdc <+220>: jne 0x40beb@ <__ libc_message+688>
0x000000000040bce2 <+226>: xor %eax, seax

---Type <return> to continue, or q <return> to quit---
0x000000000040bced <+228>: mov $0x902, %esi
0x000000000040bce9 <+233>: mov $0x48d8ae, %edi
0x000000000040bcee <+238>: callg ©0x430639 <__open_nocancel>
0x000000000040bcf3 <+243>: cmp $oxffffffff,%eax
0x000000000040bcf6 <+246>: mov %eax, -0x730(%rbp)
0x000000000040bcfc <+252>: je 0x40bebd <_ libc_message+688>
0x000000000040bd02 <+258>: mov -0x728(%rbp),%rax
0x000000000040bdO9 <+265>: movzbl (%rax),%rlsd
0x000000000040bdod <+269>: test %rl5b,%rl5b

140

0x000000000040bd10 <+272>: je 0x40bed6 <__libc_message+726>

0x000000000040bd16 <+278>: mov -0x728(%rbp),%ri2
0x000000000040bd1d <+285>: xor %rlad,%rlad
0x000000000040bd20 <+288>: xor %rl3d,%rl3d
0x000000000040bd23 <+291>: mov %rl2,%rax
0x000000000040bd26 <+294>: nopw %cs:0x0(%rax,%rax,1)
0x000000000040bd30 <+304>: movzbl (%rax),%edx
0x000000000040bd33 <+307>: jmp 0x40bd49 <_ libc_message+329>
0x000000000040bd35 <+309>: nopl (%rax)
0x000000000040bd38 <+312>: mov $0x25,%esi
0x000000000040bd3d <+317>: callg 0x424040 <strchrnul>
0x000000000040bd42 <+322>: movzbl (%rax),%edx
0x000000000040bd45 <+325>: test %dl,%d1l
0x000000000040bd47 <+327>: je 0x40bd60 <__ libc_message+352>
0x000000000040bd49 <+329>: cmp $0x25,%d1
---Type <return> to continue, or q <return> to quit---
0x000000000040bd4c <+332>: lea ox1(%rax),%rdi
0x000000000040bd50 <+336>: jne 0x40bd38 <_ libc_message+312>
0x000000000040bd52 <+338>: cmpb $0x73,0x1(%rax)
0x000000000040bd56 <+342>: lea ox1(%rax),%rdi
0x000000000040bd5a <+346>: jne 0x40bd38 < libc_message+312>
0x000000000040bd5¢C <+348>: nopl ©xe(%rax)
0x000000000040bd60 <+352>: cmp $0x25,%r15b
0x000000000040bd64 <+356>: je 0x40bda8 <__ libc_message+424>
0x000000000040bd66 <+358>: mov %rax, %rcx
0x000000000040bd69 <+361>: mov %r12,%rbx
0x000000000040bd6C <+364>: sub %rl2,%rcx
0x000000000040bd6f <+367>: mov %rax,%rl2
0x000000000040bd72 <+370>: sub $0x30,%rsp
0x000000000040bd76 <+374>: mov %rl2,%rax
0x000000000040bd79 <+377>: lea oxf(%rsp),%rdx
0x000000000040bd7e <+382>: and $oxffffrfrrrffffffo,%rdx
0x000000000040bd82 <+386>: mov %rbx, (%rdx)
0x000000000040bd85 <+389>: mov %rl3,0x10(%rdx)
0x000000000040bd89 <+393>: lea Ox1(%ri4),%ebx
0x000000000040bd8d <+397>: mov %rcx,0x8(%rdx)
0x000000000040bd91 <+401>: movzbl (%ri2),%rlsd
0x000000000040bd96 <+406>: mov %rdx,%rl3
0x000000000040bd99 <+409>: test %riS5b,%ril5b
0x000000000040bd9c <+412>: je 0x40bde8 <__ libc_message+488>
---Type <return> to continue, or q <return> to quit---
0x000000000040bd9%e <+414>: mov %ebx,%rldd
0x000000000040bdal <+417>: Jjmp 0x40bd30 <_ libc_message+304>
0x000000000040bda3 <+419>: nopl ©x0(%rax,%rax,1)
0x000000000040bda8 <+424>: cmpb $0x73,0x1(%r12)
0x000000000040bdae <+430>: jne 0x40bd66 <__ libc_message+358>
0x000000000040bdbO <+432>: mov -0x100(%rbp) , %edx
0x000000000040bdb6 <+438>: cmp $ox2f, %edx
0x000000000040bdb9 <+441>: ja 0x40bebf <__libc_message+703>
0x000000000040bdbf <+447>: mov %edx, %eax
0x000000000040bdcl <+449>: add -0xfo(%rbp),%rax
0x000000000040bdc8 <+456>: add $0x8, %edx
0Xx000000000040bdcb <+459>: mov %edx, -0x100(%rbp)
0x000000000040bdd1 <+465>: mov (%rax),%rbx
0x000000000040bdd4 <+468>: add $0x2,%r12
0x000000000040bdd8 <+472>: mov %rbx, %rdi
0x000000000040bddb <+475>: callg ©x41bb9o <strlen>
0x000000000040bde@ <+480>: mov %rax, %rcx
0x000000000040bde3 <+483>: jmp 0x40bd72 <_ libc_message+370>
0x000000000040bde5 <+485>: nopl (%rax)

141

0x000000000040bde8 <+488>:
0x000000000040bdeb <+491>:
0x000000000040bded <+493>:
0x000000000040bdf0O <+496>:
0x000000000040bdf4 <+500>:
---Type <return> to continue, or
0x000000000040bdf8 <+504>:
0x000000000040bdfb <+507>:
0x000000000040bdfe <+510>:
0x000000000040be01 <+513>:
0x000000000040be@6 <+518>:
0x000000000040be0a <+522>:
0x000000000040bele <+526>:
0x000000000040bel2 <+530>:
0x000000000040bel6 <+534>:
0x000000000040bela <+538>:
0x000000000040beld <+541>:
0x000000000040be20 <+544>:
0x000000000040be24 <+548>:
0x000000000040be27 <+551>:
0x000000000040be30 <+560>:
0x000000000040be33 <+563>:
0x000000000040be36 <+566>:
0x000000000040be39 <+569>:
0x000000000040be3d <+573>:
0x000000000040bed41 <+577>:
0x000000000040bed5 <+581>:
0x000000000040be49 <+585>:
0x000000000040be4c <+588>:
0x000000000040be50 <+592>:
---Type <return> to continue, or
0x000000000040be53 <+595>:
0x000000000040be55 <+597>:
0x000000000040be5¢c <+604>:
0x000000000040be62 <+610>:
0x000000000040be68 <+616>:
0x000000000040bebb <+619>:
0x000000000040bebe <+622>:
0x000000000040be71 <+625>:
0x000000000040be74 <+628>:
0x000000000040be76 <+630>:
0x000000000040be7a <+634>:
0x000000000040be7d <+637>:
0x000000000040be7f <+639>:
0x000000000040be85 <+645>:
0x000000000040be87 <+647>:
0x000000000040be89 <+649>:
0x000000000040be8c <+652>:
0x000000000040be8e <+654>:
0x000000000040be93 <+659>:
0x000000000040be99 <+665>:
0x000000000040be9b <+667>:
0x000000000040beal <+673>:
0x000000000040bea5 <+677>:
0x000000000040beab <+678>:
---Type <return> to continue, or
0x000000000040bea8 <+680>:
0x000000000040beaa <+682>:
0x000000000040beac <+684>:
0x000000000040beae <+686>:

movslq %ebx,%r9

xor %ecx,%ecx

mov %r9,%rax

shl $0x4, %rax

add $0x10, %rax

g <return> to quit---
sub %rax,srsp

movslqg %rildd,%rax

mov %rlad,%rlad

lea oxf(%rsp),%rs

shl $0x4, %rax

shl $0x4,%r14

and $oxfffiffrfffffffffo,%rs
lea (%r8,%rax,1),%rdx
sub $0x10, %rax

mov %r8,%rl12

sub %rld,%rax

lea (%rax,%r8,1),%rdi
mov %rl3,%rax

nopw Ox0(%rax,%rax,1)
mov (%rax),%rsi

mov %rcx,%rl3

mov %rsi, (%rdx)

mov ox8(%rax),%rsi
mov %rsi,ox8(%rdx)
add Ox8(%rax),%rl3
sub $0x10, %rdx

cmp %rdi,%rdx

mov 0x10(%rax) ,%rax
mov %rl3,%rcx

g <return> to quit---

jne 0x40be30 <__ libc_message+560>
movslq -0x730(%rbp),%rlie

mov $0x14,%r15d

nopw Ox@(%rax,%rax,1)

mov %r9, %rdx

mov %r8,%rsi

mov %rle,%rdi

mov %rl5d,%eax

syscall

cmp $oxfFrfffffffffffffc,%rax

mov %rax,%rla

je 0x40be68 <__libc_message+616>
mov -0x72c(%rbp) ,%ecx

test %ecx,%ecx

jne Ox40bef2 < libc_message+754>
cmp %rld,%rl3

jne 0x40bed6 <__libc_message+726>
mov $0x1, %eax

mov -0x72c(%rbp) , %edx

test %edx,%edx

jne 0x40bf49 < libc_message+841>
lea -0x28(%rbp),%rsp

pop %rbx

pop %r12

g <return> to quit---

pop %rl3

pop %»rld

pop %rl5

leaveq

142

0x000000000040beat <+687>: retq

0x000000000040bebd <+688>: movl $0x2,-0x730(%rbp)
0x000000000040beba <+698>: jmpg ©x40bde2 <_ libc_message+258>
0x000000000040bebf <+703>: mov -0xf8(%rbp),%rax
0x000000000040bec6b <+710>: lea ox8(%rax) ,%rdx
0x000000000040beca <+714>: mov %rdx, -oxf8(%rbp)
0x000000000040bedl <+721>: jmpg 0x40bddl <__ libc_message+465>
0x000000000040bed6 <+726>: mov -0x728(%rbp),%rsi
0x000000000040bedd <+733>: lea -0x120(%rbp) ,%rdx
0x000000000040beed <+740>: mov $0x3, %edi

0x000000000040bee9 <+745>: callg ©x431520 <vsyslog>
0x000000000040beee <+750>: xor %eax, seax

0x000000000040befO <+752>: jmp 0x40be93 <_ libc_message+659>
0x000000000040bef2 <+754>: lea ox1(%ri3),%rdi
0x000000000040bef6 <+758>: callg ©x416c90 <malloc>
0x000000000040befb <+763>: test %rax,%rax

0x000000000040befe <+766>: mov %rax, -0x738(%rbp)
0x000000000040bf0O5 <+773>: je 0x40be89 <_ libc_message+649>
0x000000000040bf07 <+775>: xor %rl5d,%rl5d
0x000000000040bf0a <+778>: nopw Ox0(%rax,%rax,1)

---Type <return> to continue, or g <return> to quit---
0x000000000040bT10 <+784>: mov ox8(%ri2),%rdx
0x000000000040bf15 <+789>: mov (%r12),%rsi
0x000000000040bf19 <+793>: mov %rax,%rdi
0x000000000040bf1lc <+796>: add $0x1, %ri1sd
0x000000000040bf20 <+800>: add $0x10,%r12
0x000000000040bf24 <+804>: callg ©x41e5b@ <mempcpy>
0x000000000040bF29 <+809>: cmp %ebx,%r15d
0x000000000040bf2Cc <+812>: jl 0x40bf10 <__ libc_message+784>
0x000000000040bf2e <+814>: movb $0x0, (%rax)
0x000000000040bf31 <+817>: mov -0x738(%rbp),%rdi
0x000000000040bf38 <+824>: xchg %rdi,0x2c5721(%rip) # 0x6d1660 <__abort_msg>
0x000000000040bf3f <+831>: callg ©0x416bco <free>
0x000000000040bf44 <+836>: jmpg ©x40be89 <__ libc_message+649>
0x000000000040bf49 <+841>: cmpl $0x1,-0x72c(%rbp)
0x000000000040bf50 <+848>: jle 0x40bf56 < libc_message+854>
0x000000000040bf52 <+850>: test %al,%al
0x000000000040bf54 <+852>: jne 0x40bf5b < libc_message+859>
0x000000000040bf56 <+854>: callg ©x409e40 <abort>
0x000000000040bf5b <+859>: lea -0x320(%rbp), %rbx
0x000000000040bf62 <+866>: mov $0x40, %esi
0x000000000040bT67 <+871>: mov %rbx, %rdi
0x000000000040bf6a <+874>: callg ©ox432e70 <backtrace>
0x000000000040bf6f <+879>: cmp $0x2, %eax

---Type <return> to continue, or q <return> to quit---
0x000000000040bf72 <+882>: mov %eax,%rl2d
0x000000000040bf75 <+885>: jle Ox40bf56 < libc_message+854>
0x000000000040bf77 <+887>: mov -0x730(%rbp),%edi
0x000000000040bf7d <+893>: mov $0x1d, %edx
0x000000000040bF82 <+898>: mov $0x48d8b7,%esi
0x000000000040bF87 <+903>: lea -0x720(%rbp),%ri3
0x000000000040bf8e <+910>: callg ©x430759 <__write_nocancel>
0x000000000040bf93 <+915>: mov -0x730(%rbp) , %edx
0x000000000040bf99 <+921>: lea -0x1(%r12),%esi
0x000000000040bf9%e <+926>: lea 0x8(%rbx),%rdi
0x000000000040bfa2 <+930>: callg ©x432f50 <backtrace_symbols_ fd>
0x000000000040bfa7 <+935>: mov -0x730(%rbp),%edi
0x000000000040bfad <+941>: mov $0x1d, %edx
0x000000000040bfb2 <+946>: mov $0x48d8d5, %esi
0x000000000040bfb7 <+951>: callg ©0x430759 <__write_nocancel>

143

0x000000000040bfbc <+956>: xor %esi,%esi

0x000000000040bfbe <+958>: mov $0x48d8f3, %edi
0x000000000040bfc3 <+963>: xor %eax, keax
0x000000000040bfc5 <+965>: callg ©x430639 <__open_nocancel>
0x000000000040bfca <+970>: mov %eax,%rl2d
0x000000000040bfcd <+973>: mov $0x400, %edx
0x000000000040bFd2 <+978>: mov %rl3,%rsi
0x000000000040bFd5 <+981>: mov %rl2d,%edi
0x000000000040bfd8 <+984>: callg ©0x4306f9 <__ read_nocancel>
---Type <return> to continue, or q <return> to quit---
0x000000000040bfdd <+989>: movslqg %eax,%rbx
0x000000000040bfe® <+992>: test %rbx,%rbx
0x000000000040bfe3 <+995>: jle ox40bffd <_ libc_message+1021>
0x000000000040bfe5 <+997>: mov -0x730(%rbp),%edi

0x000000000040bfeb <+1003>: mov %rbx, %rdx

0x000000000040bfee <+1006>: mov %r13,%rsi

0x000000000040bff1 <+1009>: callg ©0x430759 <__write_nocancel>

0x000000000040bff6 <+1014>: cltq

0x000000000040bf18 <+1016>: cmp %rbx, %rax

0x000000000040bffb <+1019>: je ox40bfcd <__libc_message+973>

0x000000000040bffd <+1021>: movslq %rl2d,%rdi

0X000000000040c000 <+1024>: mov $0x3, %eax

0x000000000040c005 <+1029>: syscall

0x000000000040c007 <+1031>: Jjmpq Ox40bf56 <_ libc_message+854>
End of assembler dump.

(gdb) x 0x6d1660
0x6d1660 < abort_msg>: 0x00007126540008b0

(gdb) x/s @x7f26540008b0
0x7126540008b0: "¥** glibc detected *** ,/Appl@: double free or corruption (!prev):
0x0000000001b681a0 ***\n"

9. Check the address that was being freed:

(gdb) bt

#0 0x000000000043ef65 in raise ()

#1 0Ox0000000000409fcO in abort ()

#2 0Ox000000000040bf5b in _ libc_message ()

#3 0x0000000000412042 in malloc_printerr ()

#4 0Ox0000000000416c27 in free ()

#5 ©Ox0000000000400586 in proc ()

#6 0Ox000000000040067e in bar_four ()

#7 0Ox000000000040068e in foo_four ()

#8 0Ox00000000004006a6 in thread_four ()

#9 0Ox00000000004016c0 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#10 0x0000000000432589 in clone ()

#11 0x0000000000000000 in ?? ()

(gdb) frame 5
#5 0Ox0000000000400586 in proc ()

144

(gdb) disassemble proc
Dump of assembler code for function proc:

0x0000000000400410 <+0>: push %rbp
0x00000000004004F1 <+1>: mov %rsp,%rbp
0x00000000004004F4 <+4>: push %rbx
0x00000000004004F5 <+5>: sub $0x18,%rsp
0x00000000004004F9 <+9>: callg ©x40ac70 <rand>
0x00000000004004fe <+14>: mov %eax, %ecx
0x0000000000400500 <+16>: mov $0x68db8bad, %edx
0x0000000000400505 <+21>: mov %ecx, seax
0x0000000000400507 <+23>: imul %edx
0x0000000000400509 <+25>: sar $0xc, %edx
0x000000000040050C <+28>: mov %»ecx,%eax
0x000000000040050e <+30>: sar $0x1f, %eax
0x0000000000400511 <+33>: mov %edx, %ebx
0Xx0000000000400513 <+35>: sub %eax, %ebx
0x0000000000400515 <+37>: mov %ebx, %eax
0x0000000000400517 <+39>: mov %eax, -0x14(%rbp)
0x000000000040051a <+42>: mov -0x14(%rbp) ,%eax
0x000000000040051d <+45>: imul $0x2710, %eax, %eax
0x0000000000400523 <+51>: mov %ecx, sedx
0x0000000000400525 <+53>: sub %eax, %edx
0x0000000000400527 <+55>: mov %edx, %eax
0x0000000000400529 <+57>: mov %eax, -0x14(%rbp)
0x000000000040052C <+60>: callg ©x40ac70 <rand>

---Type <return> to continue, or q <return> to quit---
0x0000000000400531 <+65>: mov %eax, %ecx
0x0000000000400533 <+67>: mov $0x68db8bad, %edx
0Xx0000000000400538 <+72>: mov %ecx, %eax
0x000000000040053a <+74>: imul %edx
0x00000000V40053C <+76>: sar $0xc, %edx
0x000000000040053f <+79>: mov %ecx, %eax
0x0000000000400541 <+81>: sar $0x1f, %eax
0x0000000000400544 <+84>: mov %edx, %ebx
0x0000000000400546 <+86>: sub %eax, %ebx
0Xx0000000000400548 <+88>: mov %ebx, %eax
0x000000000040054a <+90>: mov %eax, -0x18(%rbp)
0x000000000040054d <+93>: mov -0x18(%rbp) ,%eax
0x0000000000400550 <+96>: imul $0x2710,%eax, %eax
0x0000000000400556 <+102>: mov %ecx, sedx
0x0000000000400558 <+104>: sub %eax, sedx
0x000000000040055a <+106>: mov %»edx, %eax
0x000000000040055¢Cc <+108>: mov %eax, -0x18(%rbp)
0x000000000040055F <+111>: mov -0x14(%rbp) ,%eax
0Xx0000000000400562 <+114>: cltq
0x0000000000400564 <+116>: mov ox6b8fco(,%rax,8),%rax
0x000000000040056C <+124>: test %rax,%rax
0x000000000040056F <+127>: je 0x400597 <proc+167>
0x0000000000400571 <+129>: mov -0x14(%rbp) ,%eax
0x0000000000400574 <+132>: cltq

---Type <return> to continue, or q <return> to quit---
0Xx0000000000400576 <+134>: mov ox6b8fca(,%rax,8),%rax
0x000000000040057e <+142>: mov %rax,srdi
0x0000000000400581 <+145>: callg ©x416bco <free>

=> 0x0000000000400586 <+150>: mov -0x14(%rbp) ,%eax
0x0000000000400589 <+153>: cltq
0x000000000040058b <+155>: movq $0x0,0x6b8fco(,%rax,8)
0x0000000000400597 <+167>: mov -0x18(%rbp) ,%eax
0x000000000040059a <+170>: cltq
0Xx000000000040059C <+172>: mov %rax,%rdi

145

0x000000000040059f <+175>: callg ©x416c90 <malloc>
0x00000000004005a4 <+180>: mov %rax, %rdx
0x00000000004005a7 <+183>: mov -0x14(%rbp) ,%eax
0x00000000004005aa <+186>: cltq
0x00000000004005ac <+188>: mov %rdx,0x6b8fcO(,%rax,8)
0x00000000004005b4 <+196>: jmpq 0x4004f9 <proc+9>

End of assembler dump.

(gdb) x/dw $rbp-0x14

ox7f2664374d2c: 5084

(gdb) x/xg 0x6b8fco+5084*8

0x6c2ead <pAllocBuf+40672>: 0x000071265c6fc360

10. Dump the first 1000 elements of array pAllocBuf (0x6b8fc0) found in proc function disassembly:

(gdb) print/x *@x6b8fc0@1000

$0 = {0x1lcbd6ed, 0x0, Ox5c3be260, Ox7f26, Ox0, 0x0, Ox0, Ox0, Ox1flbadod, 0x0,
0x0, 0x0, 0x25da380, Ox0, Ox0, Ox0, Oxl1lcf9240, Ox0, Ox0, Ox0, Ox0, 0Ox0,
Ox20aldoo, 0x0, Ox5ca57a%90, Ox7f26, Ox27254c0, Ox0, Ox0, Ox0, Ox0, 0Ox0,
0x1c578c0, 0x0, oOx1f12f70, Ox0, Ox5c646el10, Ox7f26, Ox5ce6d7b0, Ox7f26,
Ox5c6fafdo, Ox7f26, Oxlfcdbed, Ox0, 0x0, 0x0, Ox5c4d6680, Ox7f26,
0x5c9cea20d, Ox7f26, Ox0, Ox0, Ox5ce85c40, Ox7f26, Ox5ccfdl70, Ox7f26,
Ox1bcdoco, 0x0, Ox1f9f660, Ox0, Ox0, Ox0, 0x29329a0, Ox0, OX5c070600,
Ox7f26, 0x0, 0x0, Ox5cc61f0, Ox7f26, Ox5caca2ed, Ox7f26, Ox5caedado,
Ox7f26, 0x5cb43450, Ox7f26, Ox5cded670, Ox7f26, Ox5c2b7a40, Ox7f26, Ox0,
0x0, Ox255ea90, 0x0, ©x1bo3850, Ox0, Ox0, Ox0, Ox5cb9d570, ©x7f26, Ox0, 0Ox0,
Ox5c5e6910, Ox7f26, Ox20f8740, Ox0, 0x0, Ox0, 0x1led4b790, 0x0, Ox5c28f3b0,
Ox7f26, 0x0, 0x0, Ox1f6d790, 0x0, Ox5c63d3ed, Ox7f26, Ox5c84bcld, Ox7f26,
Ox27495€0, 0x0, Ox5ccb2950, Ox7f26, Ox5c1fall3d, Ox7f26, Ox5c363ead, OX7f26,
Ox1c6d620, Ox0, Ox5c6e41bo, Ox7f26, Ox5ccb67bd, Ox7f26, Ox0, Ox0, Ox2477a20,
0x0, 0x0, Ox0, Ox0, 0x0, 0x5c323d80, Ox7f26, Ox5c6b9%eed, Ox7f26, ©x1flabeO,
0x0, Ox5cdb8bbo, Ox7f26, 0x221fd00, Ox0, ©x0, Ox0, Ox2691b60, Ox0, Ox0, 0Ox0,
0x5c5d4890, 0x7f26, Ox5cab7920, Ox7f26, Ox5c779f40, Ox7f26, Ox5c46dclo,
Ox7f26, 0x0, 0x0, Ox5cb74cdo, Ox7f26, ©x0, Ox0, Ox5c7bO8cO, Ox7f26,
0x20df200, 0x0, Oxlel63e0, OxO, Ox5cPe5f30, Ox7f26, Ox5c183aal, Ox7f26,
0x2415d80, Ox0, Ox0, Ox0, 0x23e48a0, Ox0, Ox0, Ox0, Ox5c3cP4a0, Ox7f26,
0x24d9690, Ox0, 0x0, 0x0, Ox5c86dbad, Ox7f26, Ox5c6b1310, OX7f26, Ox0, 0X0,
0x5c142a20, 0x7f26, ©xlaee3ad, Ox0, 0x293bd80, Ox0, 0x0, 0x0...}

(gdb) x/1000xg Ox6b8fCO

0x6b8fcO <pAllocBuf>: 0x0000000001cbd6ed 0x000O7f265c3be260
ox6b8fdO <pAllocBuf+1l6>: ©x0000000000000000 ©x0000000000000000
ox6b8fed <pAllocBuf+32>: 0©x0000000001f1badd ©x0000000000000000
ox6b8ff0 <pAllocBuf+48>: 0©x00000000025da380 ©x0000000000000
0x6b9000 <pAllocBuf+64>: 0©x0000000001cf9240 0©x0000000000V0V00
0x6b9010 <pAllocBuf+80>: ©x0000000000000000 0x00000000020a1d00
0x6b9020 <pAllocBuf+96>: 0©x00007f265ca57a90 0©x00000000027254c0
0x6b9030 <pAllocBuf+112>: ©x0000000000000000 ©x000000000VV0000
0x6b9040 <pAllocBuf+128>: ©x0000000001c578cO 0©Ox0000VOVVV1f12170
0x6b9050 <pAllocBuf+144>: 0Ox00007f265c646e10 0©x00007f265ce6d7bo
0x6b9060 <pAllocBuf+160>: ©x00007f265c6fafdd ©x0000000001fcdbe0d
0x6b9070 <pAllocBuf+176>: ©x0000000000000000 0©x00007f265c4d6680
0x6b9080 <pAllocBuf+192>: ©x00007f265c9Ccea2d 0©x0000000000000000
0x6b9090 <pAllocBuf+208>: ©x00007f265ce85c40 0©x00007f265ccfd170
0x6b90a0 <pAllocBuf+224>: 0©x0000000001bcdocOd 0©x0000000001f9f660
0x6b90b0 <pAllocBuf+240>: 0x0000000000000000 0©x0000000002932920
0x6b90cO <pAllocBuf+256>: 0©x000071265c070600 0©x0000000000000000
0x6b90dO <pAllocBuf+272>: 0Ox000071f265ccO61f0 0©Ox00O7f265caca2ed
0x6b90e0d <pAllocBuf+288>: 0x00007f265caedadd 0x00007f265cb43450

146

0x6b901f0 <pAllocBuf+304>: 0Ox000071265cded4670 0©x000071265c2b7a40
0x6b9100 <pAllocBuf+320>: 0©x0000000000000000 0©x00000000V255e290
0x6b9110 <pAllocBuf+336>: 0x0000000001b03850 0©x000VVVVOLVVVO
0x6b9120 <pAllocBuf+352>: 0Ox000071f265cb9d570 0©x0000000000000000
0x6b9130 <pAllocBuf+368>: 0x00007f265c5e6910 0©0x00000000020+8740
---Type <return> to continue, or g <return> to quit---

0x6b9140 <pAllocBuf+384>: 0x0000000000000000 0©0x0000000001e4b790
0x6b9150 <pAllocBuf+400>: 0x00007f265c28f3b0 0©x0000000000000000
0x6b9160 <pAllocBuf+416>: 0x0000000001f6d790 0©0x00VO7f265c63d3e0
0x6b9170 <pAllocBuf+432>: 0©x000071265c84bcl® 0©x00000000027495€0
0x6b9180 <pAllocBuf+448>: 0x00007f265ccb2950 0©x00007f265c1fal30
0x6b9190 <pAllocBuf+464>: 0Ox000071265c363ea® 0©x0000000001c6d620
0x6b91a0 <pAllocBuf+480>: 0x00007f265c6e41bd 0©x00007f265ccb67b0o
Ox6b91b0 <pAllocBuf+496>: 0x0000000000000000 0©0x0000V002477220
0x6b91cO <pAllocBuf+512>: 0x000000000000CC0 X000V 0
0x6b91d0 <pAllocBuf+528>: ©x000071265c323d80 0©x00007f265c6b9eed
0x6b91e0 <pAllocBuf+544>: 0x0000000001flabed 0x00007f265cdb8bbo
Ox6b91f0 <pAllocBuf+560>: 0x0000000002211fd00 ©x0000VV000VVV0
0x6b9200 <pAllocBuf+576>: 0x0000000002691b60 ©x000000000000V00
0x6b9210 <pAllocBuf+592>: 0Ox000071f265c5d4890 0©x000O7f265cab7920
0x6b9220 <pAllocBuf+608>: 0x00007f265c779f40 0©x00007f265c46dclo
0x6b9230 <pAllocBuf+624>: 0x0000000000000000 0x00VV7f265cb74cdo
0x6b9240 <pAllocBuf+640>: 0x0000000000000000 0©0x00VV7f265c7bO8cO
0x6b9250 <pAllocBuf+656>: 0x00000000020df200 0©x0000000001e163e0
0x6b9260 <pAllocBuf+672>: 0Ox000071265c0e5f30 0©x000071265c1832a0
0x6b9270 <pAllocBuf+688>: 0x00000000024f5d80 ©x000000000000000
0x6b9280 <pAllocBuf+704>: 0x00000000023e4830 0©x0000000000000000
0x6b9290 <pAllocBuf+720>: 0x00007f265c3c042a0 0x00000000024d9690
Ox6b92a0 <pAllocBuf+736>: 0x0000000000000000 0x00VO7{265c86dbad
0x6b92b0 <pAllocBuf+752>: 0©x00007f265c6b1310 Ox0000000000000000

---Type <return> to continue, or q <return> to quit---q

Quit

147

Exercise A11

Goal: Learn how to identify synchronization wait chains,
deadlocks, hidden and handled exceptions

Patterns: Wait Chains, Deadlock, Execution Residue,
Handled Exception

8 2015 Software Diagnostics Services

148

Exercise A11

Goal: Learn how to identify synchronization wait chains, deadlocks, hidden and handled exceptions.

Patterns: Wait Chains, Deadlock, Execution Residue, Handled Exception.

1. Load a core dump core.18781 and App11 executable:

training@debian64:~/ALCDA$ gdb -c ./Appll/core.18781 -se ./Appll/Appll
GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/Appll/Appll...done.

[New LWP 18782]

[New LWP 18783]

[New LWP 18784]

[New LWP 18785]

[New LWP 18786]

[New LWP 18781]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-1linux-gnu/libthread_db.so.1".
Core was generated by " /home/training/ALCDA/Appll/Appll’.

#0 0x000000000043e4f1 in nanosleep ()

2. List all thread stack traces and identify possible wait chain and deadlock:
(gdb) thread apply all bt

Thread 6 (LWP 18781):

#0 0x000000000043e4f1 in nanosleep ()
#1 0Ox000000000043e3cO in sleep ()

#2 0Ox0000000000400789 in main ()

Thread 5 (LWP 18786):

#0 0x000000000043e4f1 in nanosleep ()

#1 0Ox000000000043e3cO in sleep ()

#2 0x000000000040069c in bar_five() ()

#3 0x000PPPPVVV40R6a7 in foo five() ()

#4 0Ox00000000004006ba in thread_five(void*) ()

#5 0Ox0000000000401f560 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#6 0Ox0000000000440b49 in clone ()

#7 0Ox0000000000000000 in ?? ()

Thread 4 (LWP 18785):
#0 _ 111 lock_wait ()
at ../nptl/sysdeps/unix/sysv/1linux/x86_64/lowlevellock.S:136
#1 0Ox0000000000410fa3 in _L_lock 926 ()
#2 0x0000000000410ddb in __ pthread_mutex_lock (mutex=0x6c5900)
at pthread_mutex_lock.c:61

149

#3 0Ox00000000004005ac in procB() ()

---Type <return> to continue, or q <return> to quit---

#4 0x0000000000400669 in bar_four() ()

#5 0x0000000000400674 in foo_four() ()

#6 0Ox0000000000400687 in thread_four(void*) ()

#7 0Ox0000000000401f560 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#8 0x0000000000440b49 in clone ()

#9 0Ox0000000000000000 in ?? ()

Thread 3 (LWP 18784):

#0 0Ox000000000043e4f1 in nanosleep ()

#1 0x000000000043e3cO in sleep ()

#2 0x000000000040063b in bar_three() ()

#3 0x0000000000400646 in foo_three() ()

#4 0Ox0000000000400659 in thread_three(void*) ()

#5 0Ox0000000000401f560 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#6 0x0000000000440b49 in clone ()

#7 0x0000000000000000 in ?? ()

Thread 2 (LWP 18783):
#0 _ 111 lock wait ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/lowlevellock.S:136
#1 0x0000000000410fa3 in _L_lock_926 ()
#2 0x0000000000410ddb in __ pthread_mutex_lock (mutex=0x6c59490)
---Type <return> to continue, or q <return> to quit---
at pthread_mutex_lock.c:61
#3 0Ox0000000000400577 in procA() ()
#4 0x0000000000400608 in bar_two() ()
#5 0x0000000000400613 in foo_two() ()
#6 0Ox0000000000400626 in thread_two(void*) ()
#7 0Ox0000000000401f560 in start_thread (arg=<optimized out>)
at pthread_create.c:304
#8 0x0000000000440b49 in clone ()
#9 0Ox0000000000000000 in ?? ()

Thread 1 (LWP 18782):

#0 0x000000000043e4f1 in nanosleep ()

#1 0Ox000000000043e3cO in sleep ()

#2 0x00000000004005da in bar_one() ()

#3 0x00000000004005e5 in foo_one() ()

#4 0Ox00000000004005f8 in thread_one(void*) ()

#5 0Ox000000000040f560 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#6 0Ox0000000000440b49 in clone ()

#7 0Ox0000000000000000 in ?? ()

3. Check the thread #4 and its waiting code:

(gdb) thread 4
[Switching to thread 4 (LWP 18785)]
#0 _ 111 lock_wait ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/lowlevellock.S:136
136 ../nptl/sysdeps/unix/sysv/1linux/x86_64/lowlevellock.S: No such file or directory.

150

(gdb) bt
#0 _ 111 lock_wait ()
at ../nptl/sysdeps/unix/sysv/1inux/x86_64/lowlevellock.S:136
#1 0x0000000000410fa3 in _L lock 926 ()
#2 0x0000000000410ddb in _ pthread_mutex_lock (mutex=0x6c5900)
at pthread_mutex_lock.c:61
#3 ©Ox00000000004005ac in procB() ()
#4 0x000PPPPVVV400669 in bar four() ()
#5 0x0000000000400674 in foo four() ()
#6 0x0000000000400687 in thread_four(void*) ()
#7 0Ox00000VPRV4OT560 in start_thread (arg=<optimized out>)
at pthread_create.c:304
#8 0x0000000000440b49 in clone ()
#9 0x0000000000000000 in ?? ()

(gdb) disassemble procB
Dump of assembler code for function _Z5procBv:

0Xx0000000000400594 <+0>: push %rbp

0x0000000000400595 <+1>: mov %rsp,%rbp

0x0000000000400598 <+4>: mov $0x6c5940, %edi
0x000000000040059d <+9>: callqg 0x410da@ <__pthread_mutex_lock>
0x00000000004005a2 <+14>: mov $0x6c5900, %edi
0x00000000004005a7 <+19>: callqg 0x410da@ <__pthread_mutex_lock>
0x00000000004005ac <+24>: mov $0x1le, %edi

0x00000000004005b1 <+29>: callg ©0x43e2e0 <sleep>
0x00000000004005b6 <+34>: mov $0x6c5900, %edi
0x00000000004005bb <+39>: callg ©0x410da@ <__ pthread_mutex_lock>
0x00000000004005c0 <+44>: mov $0x6c5940, %edi
0Xx00000000004005c5 <+49>: callg ©ox410da@ <__ pthread_mutex_lock>
0x00000000004005ca <+54>: pop %rbp

0x00000000004005cb <+55>: retq

End of assembler dump.
We see the thread #4 owns mutex 0x6c5940 but is waiting for mutex 0x6c5900.

4. Check the thread #2 and its waiting code:

(gdb) thread 2
[Switching to thread 2 (LWP 18783)]
#0 111 lock wait ()
at ../nptl/sysdeps/unix/sysv/1inux/x86_64/lowlevellock.S:136
136 in ../nptl/sysdeps/unix/sysv/linux/x86_64/lowlevellock.S

(gdb) bt
#0 _ 111 lock wait ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/lowlevellock.S:136
#1 0x0000000000410fa3 in _L_lock 926 ()
#2 0x0000000000410ddb in __ pthread_mutex_lock (mutex=0x6c5940)
at pthread_mutex_lock.c:61
#3 0x0000000000400577 in procA() ()
#4 0x0000000000400608 in bar_two() ()
#5 0x0000000000400613 in foo_two() ()
#6 0x0000000000400626 in thread_two(void*) ()
#7 0Ox0000000000401560 in start_thread (arg=<optimized out>)
at pthread_create.c:304
#8 0x0000000000440b49 in clone ()
#9 0x0000000000000000 in ?? ()

151

(gdb) disassemble procA
Dump of assembler code for function _Z5procAv:

0x0000000000400546 <+0>: push %rbp
0x0000000000400547 <+1>: mov %rsp,%rbp
0x000000000040054a <+4>: mov $0x6c5900, %edi
0x000000000040054F <+9>: callg 0x410da@ <__pthread_mutex_lock>
0x0000000000400554 <+14>: callqg 0x400520 <_Z5procCv>
0x0000000000400559 <+19>: mov $0x6c5900, %edi
0x000000000040055e <+24>: callg ©x411al10 <__pthread_mutex_unlock>
<+29>: mov $0x14,%edi
0Xx0000000000400568 <+34>: callg ©0x43e2e0 <sleep>
0x000000000040056d <+39>: mov $0x6c5940, %edi
0x0000000000400572 <+44>: callg ©x410da@ <__pthread_mutex_lock>
0x0000000000400577 <+49>: mov $0x6c5940, %edi
0x000000000040057C <+54>: callg ©ox411al1@ <_ pthread_mutex_unlock>
0x0000000000400581 <+59>: jmp 0x400592 <_Z5procAv+76>
<+61>:

0x0000000000400586 <+64>:
0x000000000040058b <+69>:
0x0000000000400590 <+74>:
0x0000000000400592 <+76>: pop %rbp
0x0000000000400593 <+77>: retq

End of assembler dump.

We see that the thread 2 is waiting for 0x6c5940 mutex but shouldn’t own 0x6c5900 mutex because it should have

unlocked it unless something happened in procC. We also notice catch exception processing which transfers

execution for the block of code wiating for mutex 0x6c5940.

5. Disassemble procC code:

(gdb) disassemble procC
Dump of assembler code for function _Z5procCv:

0x0000000000400520 <+0>: push %rbp

0x0000000000400521 <+1>: mov %rsp,%rbp

0x0000000000400524 <+4>: mov $0x4,%edi

0x0000000000400529 <+9>: callq 0x400960 <__ cxa_allocate_exception>
0x000000000040052e <+14>: movl $0x0, (%rax)

0x0000000000400534 <+20>: mov $0x0, %edx

0x0000000000400539 <+25>: mov $0x6c4180,%esi

0x000000000040053e <+30>: mov %rax,%rdi

0x0000000000400541 <+33>: callg ©x400ecO <__cxa_throw>

End of assembler dump.

We see that code throws an exception so perhaps it was caught in the caller procA and mutex unlock wasn’t called

thus causing a deadlock.
6. Check if there was any exception processing:

(gdb) x/300a $rsp-2400

0x7f001b4a7318: 0x0 0x0
0x7f001b4a7328: (C) (C)
0x7f001b4a7338: () ()
0x7f001b4a7348: 0x0 0x0
0x7f001b4a7358: ox0 ox0
0x7f001b4a7368: ox0 ox0
0x7f001b4a7378: ox0 ox0
0x7f001b4a7388: ox0 ox0
0x7f001b4a7398: ox0 ox0
0x7f001b4a73a8: ox0 ox0

152

0x7f001b4a73b8:
0x7f001b4a73c8:
0x7f001b4a73d8:
0x7f001b4a73e8:
0x7f001b4a73f8:
0x7f001b4a7408:
0x7f001b4a7418:
0x7f001b4a7428:
0x7f001b4a7438:
0x7f001b4a7448:
0x7f001b4a7458:
0x7f001b4a7468:
0x7f001b4a7478:
0x7f001b4a7488:
---Type <return> to
0x7f001b4a7498:
0x7f001b4a74a8:
0x7f001b4a74b8:
0x7f001b4a74c8:
0x7f001b4a74d8:
0x7f001b4a74e8:
0x7f001b4a74f8:
0x7f001b4a7508:
0x7f001b4a7518:
0x7f001b4a7528:
0x7f001b4a7538:
0x7f001b4a7548:
0x7f001b4a7558:
0x7f001b4a7568:
0x7f001b4a7578:
0x7f001b4a7588:
0x7f001b4a7598:
0x7f001b4a75a8:
0x7f001b4a75b8:
0x7f001b4a75c8:
0x7f001b4a75d8:
0x7f001b4a75e8:
0x7f001b4a75f8:
---Type <return> to
0x7f001b4a7608:
0x7f001b4a7618:
0x7f001b4a7628:
0x7f001b4a7638:
0x7f001b4a7648:
0x7f001b4a7658:
0x7f001b4a7668:
0x7f001b4a7678:
0x7f001b4a7688:
0x7f001b4a7698:
0x7f001b4a76a8:
0x7f001b4a76b8:
0x7f001b4a76c8:
0x7f001b4a76d8:
0x7f001b4a76e8:
0x7f001b4a76f8:
0x7f001b4a7708:
0x7f001b4a7718:
0x7f001b4a7728:
0x7f001b4a7738:
0x7f001b4a7748:

0x0 0x0
ox0 ox0
ox0 ox0
ox0 ox0
ox0 ox0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
ox0 ox0
0x0 0x0
ox0 0x0
ox0 ox0
ox0 ox0
continue, or g <return> to quit---
0x0 0x0
0x0 0x0
ox0 ox0
ox0 ox0
ox0 ox0
0x0 0x0
0x0 0x0
0x0 0x0
ox0 ox0
0x0 0x0
() 0x6c58c0O <object.5602>
0x0 ox1b

0x40d306 <fde_single_encoding_compare+118>
0x400546 <_Z5procAv> 0x121b380

ox1 0x121b380

ox2 0x40d290 <fde_single_encoding_compare>
ox40cbde <frame_downheap+78> ox0
Ox6c58c0 <object.5602> Ox4c2bf8 <__EH_FRAME_BEGIN__ +56848>
0x121b370 0x121b380

0x6c58c0O <object.5602> 0x40d290 <fde_single_encoding_compare>
0x135 0x6c58cO <object.5602>

ox0 ox1b

ox6dcb4@ <main_arena>

0x400520 <_Z5procCv>

0x40d290 <fde_single_encoding_compare>

continue, or q <return> to quit---

0x0 ox1

0©x1218960 oxa3

0x7f001b4a7660 0x0

Ox4b4ed0 < EH_FRAME_BEGIN__+88> Ox2
0x40da09 <search_object+1209> 0x7t001b4a7680
0x400558 <_Z5procAv+18> 0x7f001b4a7688
0x71000000001b oxb

0x7f001b4a7doo 0x400546 <_Z5procAv>
Oxd4e 0x7f00lb4a7cfo

0x7f001b4a7650 0x0

0x6c58c0O <object.5602> ox7f001b4a7ae8
0x411c70 <pthread_cancel> 0x6c58c0® <object.5602>
ox7f001b4a7ae8 ox1b

0x40e510 <_Unwind_Find_FDE+208> 0x7f001b4a7de8

0x4014ea <__gxx_personality ve+202> Ox4c2c4c
0x400546 <_Z5procAv> 0x0

0x0 0x0

0x4b4e55 < EH_FRAME_BEGIN__ +109> ox0
0x7f001b4a7a40 0x4b4e55 < EH_FRAME_BEGIN__ +109>
ox3 0x71f001b4a77bo

0x40b69c <uw_frame_state_for+828> ox3

153

Ox7f001b4a7758: Ox4b4e33 <__EH_FRAME_BEGIN_ _+75> Oxfffffffffffffffs

0x7f001b4a7768: Ox4dc2c4c 0x7f001b4a7950
0x7f001b4a7778: 0x7f001b4a7a40 x4

---Type <return> to continue, or q <return> to quit---
0x7f001b4a7788: 0x1218930 0x7f001b4a7950
0x7f001b4a7798: 0x0 0x3

0x7f001b4a77a8: 0x40cPab < _Unwind_RaiseException_Phase2+59> 0x@
0x7f001b4a77b8: 0x0 0x0

0x7f001b4a77c8: ox0 ox0

0x7f001b4a77d8: ox0 ox0

0x7f001b4a77e8: 0x0 0x0

0x7f001b4a77f8: ox0 ox0

0x7f001b4a7808: ox0 oxfffffffffffffffo
0x7f001b4a7818: ox1 0x0

0x7f001b4a7828: ox0 ox0

0x7f001b4a7838: ox0 ox0

0x7f001b4a7848: 0x0 0x0

0x7f001b4a7858: 0x0 0x0

0x7f001b4a7868: 0x0 0x0

0x7f001b4a7878: 0x0 0x0

0x7f001b4a7888: 0x0 0x0

0x7f001b4a7898: 0x0 0x0

0x7f001b4a78a8: ox0 Oxff {8
0x7f001b4a78b8: ox1 ox0

0x7f001b4a78c8: ox0 ox0

0x7f001b4a78d8: 0x10 0Ox6

0x7f001b4a78e8: () ox1

0x7f001b4a78f8: 0x400593 <_Z5procAv+77> 0x401420 <__gxx_personality ve>
---Type <return> to continue, or q <return> to quit---
0x71001b4a7908: oxffHffFfffffH{ff8 oxi
0x7f001b4a7918: 0x40babf <uw_install_ context_1+191> Ox7f001b4a7d20
0x7f001b4a7928: 0x0 0x7f001b4a7a40
0x7f001b4a7938: 0x7f001b4a7cf0O 0x1218930
0x7f001b4a7948: 0x40c6d5 <_Unwind_RaiseException+309> 0x7f001b4a7cb8
0x7f001b4a7958: 0x7f001b4a7ccO 0x0
0x7f001b4a7968: 0x7f001b4a7cc8 0x0
0x7f001b4a7978: 0x0 0x7f001b4a7cf0
0x7f001b4a7988: ox0 ox0

0x7f001b4a7998: ox0 ox0

0x7f001b4a79a8: ox0 0x7f001b4a7cdo
0x7f001b4a79b8: 0x7f001b4a7cd8 0x7f001b4a7ce0d
0x7f001b4a79c8: 0x7f001b4a7ce8 0x7f001b4a7cf8
0x7f001b4a79d8: 0x0 0x7f001b4a7doo
0x7f001b4a79e8: 0x400f11 <__cxa_throw+81> 0x0
0x7f001b4a79f8: 0x0 0x0

0x7f001b4a7a08: 0x0 0x4000000000000000
0x7f001b4a7al8: ox0 ox0

0x7f001b4a7a28: ox0 ox0

0x7f001b4a7a38: ox0 0x7f001b4a7cb8
0x7f001b4a7a48: ox7f001b4a7cco ox0
0x7f001b4a7a58: 0x7f001b4a7doo 0x0
0x7f001b4a7a68: 0x0 0x7f001b4a7d10
0x7f001b4a7a78: 0x7f001b4a7920 ox0

---Type <return> to continue, or q <return> to quit---
0x7f001b4a7288: ox0 ox0

0x7f001b4a7a98: ox0 0x7f001b4a7cdo
0x7f001b4a7aa8: 0x7f001b4a7cd8 0x7f001b4a7ce0
0x7f001b4a7ab8: 0x7f001b4a7ce8 0x7f001b4a7d18
0x7f001b4a7ac8: ox0 0x7f001b4a7d20
0x7f001b4a7ad8: Ox4c2cac

154

0x7f001b4a7ae8: ox0 ox0

0x7f001b4a7af8: 0x400546 <_Z5procAv> 0x4000000000000000
0x7f001b4a7bo8: 0x0 0x0

0x7f001b4a7b18: 0x0 0x0

0x7f001b4a7b28: 0x43e4fd <nanosleep+61> ox0
0x7f001b4a7b38: 0x43e3cO <sleep+224> oxe
0x7f001b4a7b48: 0x0 0x4000000000000000
0x7f001b4a7b58: 0x0 0x0

0x7f001b4a7b68: 0x0 0x0

0x7f001b4a7b78: 0x0 0x7f001b4a7cb8
0x7f001b4a7b88: 0x7f001b4a7ccO 0x0
0x7f001b4a7b98: 0x7f001b4a7doo oxe
0x7f001b4a7ba8: 0x0 0x7f001b4a7d10
0x7f001b4a7bb8: 0x7f001b4a7920 0x0
0x7f001b4a7bc8: ox0 ()

0x7f001b4a7bd8: ox0 ox0

0x7f001b4a7be8: 0x0 0x0

0x7f001b4a7bf8: 0x0 0x0

---Type <return> to continue, or q <return> to quit---
0x7f001b4a7c08: 0x0 0x0

0x7f001b4a7c18: 0x0 0x0

0x7f001b4a7c28: 0x0 (%7 I B 2 T e e)
0x7f001b4a7c38: ox1 0x0

0x7f001b4a7c48: 0x0 0x0

0x7f001b4a7c58: 0x10 ©x10000

0x7f001b4a7c68: ox0 ox0

We see a reference from exception processing block in procA and also 0x400f11

<__cxa_throw+81>. We check whether the symbolic information we found is not coincidental:

(gdb) disaassemble __cxa_throw
Dump of assembler code for function ___cxa_throw:

0x0000000000400eCcO <+0>: mov ox2c3bf1(%rip),%rax # Ox6c4ab8
0x0000000000400eCc7 <+7>: push %rbx

0x0000000000400eCc8 <+8>: lea -0x20(%rdi),%rbx

0x0000000000400ecc <+12>: mov %rsi,-0x70(%rdi)

0x0000000000400ed0 <+16>: mov %rdx, -0x68(%rdi)

0x0000000000400ed4 <+20>: movl $0x1,-0x80(%rdi)

0x0000000000400edb <+27>: mov (%rax),%rax

0x0000000000400ede <+30>: mov %rax, -0x60(%rdi)

0x0000000000400ee2 <+34>: mov ox2c3baf (%rip),%rax # 0x6c4a98
0x0000000000400ee9 <+41>: mov (%rax),%rax

0x0000000000400eec <+44>: mov %rax, -0x58(%rdi)

0x0000000000400ef0 <+48>: movabs $0x474e5543432b2b00, %rax
0x0000000000400efa <+58>: mov %rax, -0x20(%rdi)

0x0000000000400efe <+62>: lea -0x95(%rip),%rax # 0x400e70

<_ZL23__gxx_exception_cleanupl9 Unwind_Reason_CodeP17_Unwind_Exception>
0x0000000000400105 <+69>: mov %rax, -0x18(%rdi)

0x0000000000400109 <+73>: mov %rbx,%rdi

0x0000000000400F0C <+76>: callg 0©x40c5a0@ <_Unwind_RaiseException>
0x00000000004001f11 <+81>: mov %rbx,%rdi

0x0000000000400114 <+84>: callg ©0x4019a0 <__cxa_begin_catch>
0x0000000000400f19 <+89>: callg ©0x40l1lae@ <_ZSt9terminatev>

End of assembler dump.

155

Exercise A12

Goal: Learn how to dump memory for post-processing, get
the list of functions and module variables, load symbols,
Inspect arguments and local variables

Patterns: Module Variable

8 2015 Software Diagnostics Services

156

Exercise A12

Goal: Learn how to dump memory for post-processing, get the list of functions and module variables, load symbols,
inspect arguments and local variables.

Patterns: Module Variable.

1. Load a core dump core.19138 and App12 executable :

training@debian64:~/ALCDA$ gdb -c ./Appl2/core.19138 -se ./Appl2/Appl2
GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/training/ALCDA/Appl2/Appl2...(no debugging symbols found)...done.
[New LWP 19139]

[New LWP 19140]

[New LWP 19142]

[New LWP 19143]

[New LWP 19144]

[New LWP 19138]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/l1ib/x86_64-1linux-gnu/libthread_db.so.1".
Core was generated by " /home/training/ALCDA/Appl2/Appl2".

#0 0x000000000043e4f1 in nanosleep ()

2. List all thread stack traces:
(gdb) thread apply all bt

Thread 6 (LWP 19138):

#0 0Ox000000000043e4f1 in nanosleep ()
#1 0Ox000000000043e3cO in sleep ()

#2 0Ox0000000000400789 in main ()

Thread 5 (LWP 19144):

#0 0x000000000043e4f1 in nanosleep ()

#1 0x000000000043e3cO in sleep ()

#2 0x000000000040069c in bar five() ()

#3 0x00000000004006a7 in foo five() ()

#4 0Ox00000000004006ba in thread_five(void*) ()
#5 0Ox0000000000401f560 in start_thread ()

#6 0x0000000000440b49 in clone ()

#7 0Ox0000000000000000 in ?? ()

Thread 4 (LWP 19143):

#0 0Ox0000000000411eac in _ 111 lock wait ()

#1 0Ox0000000000410fa3 in L _lock 926 ()

#2 0x0000000000410ddb in pthread_mutex_lock ()
#3 0x00000000004005ac in procB() ()

#4 0x0000000000400669 in bar_four() ()

157

#5 0Ox0000000000400674 in foo_four() ()

#6 0Ox0000000000400687 in thread_four(void*) ()
---Type <return> to continue, or q <return> to quit---
#7 ©x0000000RV40f560 in start_thread ()

#8 ©x0000000000440b49 in clone ()

#9 0x0000000000000RRO in ?? ()

Thread 3 (LWP 19142):

#0 0x000000000043e4f1 in nanosleep ()

#1 0Ox000000000043e3cO in sleep ()

#2 0x00000000PR40063b in bar_three() ()

#3 0x0000000000400646 in foo_three() ()

#4 0Ox0000000000400659 in thread_three(void*) ()
#5 0Ox0000000000401f560 in start_thread ()

#6 0x0000000000440b49 in clone ()

#7 ©x0000000000000000 in ?? ()

Thread 2 (LWP 19140):

#0 0x0000000000411eac in _ 111 lock wait ()

#1 0x0000000000410fa3 in L lock 926 ()

#2 0Ox0000000000410ddb in pthread mutex_lock ()
#3 0x0000000000400577 in procA() ()

#4 0x0000PPVV0V400608 in bar two() ()

#5 0©x0000000000400613 in foo_two() ()

#6 0Ox0000000000400626 in thread_two(void*) ()
#7 0Ox000000000040f560 in start_thread ()

#8 0Ox0000000000440b49 in clone ()

---Type <return> to continue, or q <return> to quit---
#9 0x0000000000000000 in ?? ()

Thread 1 (LWP 19139):

#0 0x000000000043e4f1 in nanosleep ()

#1 0Ox000000000043e3cO in sleep ()

#2 0x00000000004005da in bar_one() ()

#3 0Ox00000000004005e5 in foo_one() ()

#4 0Ox00000000004005f8 in thread one(void*) ()
#5 0Ox0000000000401560 in start_thread ()

#6 0x0000000000440b49 in clone ()

#7 0x0000000000000000 in ?? ()

3. App12 is an executable with stripped off debug symbols. Change the symbol file to App12.debug which is the
same executable as App12 but with debug symbols included:

(gdb) symbol-file ./Appl2/Appl2.debug
Reading symbols from /home/training/ALCDA/Appl2/Appl2.debug...done.

4, List all thread stack traces:
(gdb) thread apply all bt

Thread 6 (LWP 19138):

#0 0x000000000043e4f1 in nanosleep ()

#1 0x000000000043e3cO in sleep ()

#2 0Ox0000000000400789 in main (argc=1, argv=0x7fff5d1572d8) at main.cpp:85

Thread 5 (LWP 19144):

#0 0Ox000000000043e4f1 in nanosleep ()

#1 0Ox000000000043e3cO in sleep ()

#2 0Ox000000000040069c in bar_five () at main.cpp:69
#3 0Ox00000000004006a7 in foo_five () at main.cpp:69

158

#4 0Ox00000000004006ba in thread_five (arg=0x0) at main.cpp:69

#5 0Ox0000000000401560 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#6 0x0000000000440b49 in clone ()

#7 0x0000000000000000 in ?? ()

Thread 4 (LWP 19143):
#0 111 lock wait ()
at ../nptl/sysdeps/unix/sysv/1inux/x86_64/lowlevellock.S:136
#1 0x0000000000410fa3 in _L_lock_926 ()
#2 0x0000000000410ddb in _ pthread_mutex_lock (mutex=0x6c5900)
at pthread_mutex_lock.c:61
#3 0Ox00000000004005ac in procB () at main.cpp:42
---Type <return> to continue, or q <return> to quit---
#4 0x0000000000400669 in bar_four () at main.cpp:68
#5 0x0000000000400674 in foo_four () at main.cpp:68
#6 0Ox0000000000400687 in thread_four (arg=e0x@) at main.cpp:68
#7 0Ox0000000000401f560 in start_thread (arg=<optimized out>)
at pthread_create.c:304
#8 0x0000000000440b49 in clone ()
#9 0Ox0000000000000000 in ?? ()

Thread 3 (LWP 19142):
#0 0x000000000043e4f1 in nanosleep ()
#1 0Ox000000000043e3cO in sleep ()
#2 0Ox000000000040063b in bar_three () at main.cpp:67
#3 0Ox0000000000400646 in foo_three () at main.cpp:67
#4 0Ox0000000000400659 in thread_three (arg=6x0) at main.cpp:67
#5 0Ox0000000000401f560 in start_thread (arg=<optimized out>)
at pthread_create.c:304
#6 0Ox0000000000440b49 in clone ()
#7 0Ox0000000000000000 in ?? ()

Thread 2 (LWP 19140):
#0 111 lock_wait ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/lowlevellock.S:136
#1 0x0000000000410fa3 in L lock 926 ()
#2 0x0000000000410ddb in _ pthread_mutex_lock (mutex=0x6c5940)
---Type <return> to continue, or q <return> to quit---
at pthread_mutex_lock.c:61
#3 0Ox0000000000400577 in procA () at main.cpp:35
#4 0Ox0000000000400608 in bar_two () at main.cpp:66
#5 0x0000000000400613 in foo_two () at main.cpp:66
#6 Ox0000000000400626 in thread two (arg=0x0) at main.cpp:66
#7 0Ox0000000000401f560 in start_thread (arg=<optimized out>)
at pthread_create.c:304
#8 0x0000000000440b49 in clone ()
#9 0x0000000000000000 in ?? ()

Thread 1 (LWP 19139):

#0 0x000000000043e4f1 in nanosleep ()

#1 0Ox000000000043e3cO in sleep ()

#2 0Ox00000000004005da in bar_one () at main.cpp:65

#3 0x00000000004005e5 in foo_one () at main.cpp:65

#4 Ox00000000004005f8 in thread_one (arg=0x0) at main.cpp:65

#5 0Ox0000000000401f560 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#6 0x0000000000440b49 in clone ()

#7 0x0000000000000000 in ?? ()

159

5. Switch to the thread #6 and its frame #2, and list arguments and locals:

(gdb) thread 6
[Switching to thread 6 (LWP 19138)]
#0 0x000000000043e4f1 in nanosleep ()

(gdb) bt

#0 0x000000000043e4f1 in nanosleep ()

#1 0Ox000000000043e3cO in sleep ()

#2 0Ox0000000000400789 in main (argc=1, argv=0x7fff5d1572d8) at main.cpp:85

(gdb) frame 2
#2 0Ox0000000RV400789 in main (argc=1, argv=0x7fff5d1572d8) at main.cpp:85
85 sleep(-1);

(gdb) info args
argc =1
argv = Ox7fff5d1572d8

(gdb) info locals
No locals.

6. Examine argv array:

(gdb) print argv[e]
$1 = ox7fff5d1579a3 "./Appl2"

(gdb) print *argv@1e
$2 = {Ox7fff5d1579a3 "./Appl2", 0x0, Ox7fff5d1579ab "SHELL=/bin/bash",

Ox7fff5d1579bb "TERM=linux", @x7fff5d1579c6 "HUSHLOGIN=FALSE",

Ox7fff5d1579d6 "USER=training",

Ox7fff5d1579e4
"LS_COLORS=rs=0:di=01;34:1n=01;36:mh=00:pi=40;33:50=01;35:do=01;35:bd=40;33;01:cd=40;33;01:0r=4
0;31;01:5u=37;41:5g=30;43:ca=30;41:tw=30;42:0w=34;42:5t=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:
*.arj=01;31"...,

Ox7fff5d157f05 "MAIL=/var/mail/training",

Ox7fff5d157f1d "PATH=/usr/local/bin:/usr/bin:/bin:/usr/local/games: /usr/games",
Ox7fff5d157f5b "PWD=/home/training/ALCDA/Appl2"}

7. Dump the region 0x8b8000 - 0x8db000 to a binary file:

(gdb) dump memory ./Appl2/mem.raw Ox8b8000 ©x8dbooo
(gdb) q

8. List all functions:

(gdb) info functions
All defined functions:

File pthread_mutex_init.c:
int _ pthread mutex_init(pthread mutex t *, const pthread mutexattr t *);

File pthread_mutex_trylock.c:
int _ pthread_mutex_trylock(pthread_mutex_t *);

File pthread_mutex_unlock.c:

int _ pthread_mutex_unlock(pthread mutex_t *);

int _ pthread_mutex_unlock_usercnt(pthread_mutex_t *, int);
static int _ pthread mutex_unlock full(pthread mutex t *, int);

160

File pthread_key create.c:
int _ pthread_key create(pthread_key t *, void (*)(void *));

File pthread_key delete.c:
int pthread_key delete(pthread_key t);

File pthread_getspecific.c:
void *_ pthread _getspecific(pthread_key t);

File pthread_setspecific.c:
int _ pthread_setspecific(pthread_key t, const void *);
---Type <return> to continue, or q <return> to quit---

File pthread_cancel.c:
int pthread_cancel(pthread_t);

File tpp.c:

void _ init_sched_fifo_prio(void);

int _ pthread_current_priority(void);

int _ pthread_tpp_change_priority(int, int);

File nptl-init.c:

void _ pthread_initialize minimal_internal(void);

static void sigcancel_handler(int, siginfo_t *, void *);
static void sighandler_setxid(int, siginfo_t *, void *);

File events.c:
void _ nptl _create_event(void);
void _ nptl _death_event(void);

File unwind.c:
void _ pthread_unwind(__pthread_unwind_buf t *);
void _ pthread_unwind_next(__pthread_unwind_buf t *);
static void unwind_cleanup(_Unwind_Reason_Code, struct _Unwind_Exception *);
static _Unwind_Reason_Code unwind_stop(int, _Unwind_Action,

_Unwind_Exception_Class, struct _Unwind Exception *, struct _Unwind_Context
---Type <return> to continue, or g <return> to quit---

*, void *);

File ../sysdeps/unix/sysv/1linux/x86_64/sigaction.c:
int _ libc_sigaction(int, const struct sigaction *, struct sigaction *);

File ../nptl/sigaction.c:
int _ sigaction(int, const struct sigaction *, struct sigaction *);

File pthread_mutex_ lock.c:
int _ pthread_mutex_lock(pthread mutex_t *);
static int _ pthread_mutex_lock_ full(pthread mutex_t *);

File allocatestack.c:
void _ deallocate_stack(struct pthread *);

File pthread_create.c:
struct pthread *__find_in_stack_list(struct pthread *);

File allocatestack.c:
struct pthread *__find_thread_by id(pid_t);
void _ free_stacks(size_t);

File pthread_create.c:

161

void _ free_tcb(struct pthread *);
---Type <return> to continue, or q <return> to quit---

File allocatestack.c:
int _ make_stacks_executable(void **);

File pthread_create.c:
void _ nptl deallocate_tsd(void);

File allocatestack.c:
int _ nptl_setxid(struct xid_command *);

File pthread_create.c:
int _ pthread_create_2 1(pthread_t *, const pthread_attr_t *, void *(*)(
void *), void *);

File allocatestack.c:

void _ pthread_init_static_tls(struct link_map *);
void _ reclaim_stacks(void);

void _ wait_lookup_done(void);

File ../nptl/sysdeps/pthread/createthread.c:
static int do_clone(struct pthread *, const struct pthread_attr *, void *,
int, int (*)(void *), int);

File allocatestack.c:
---Type <return> to continue, or q <return> to quit---
static void setxid_mark_thread(struct xid_command *, struct pthread *);

File pthread_create.c:
static int start_thread(void *);

File main.cpp:

void bar_five();

void bar_four();

void bar_one();

void bar_three();

void bar_two();

void foo_five();

void foo_four();

void foo_one();

void foo_three();

void foo_two();

int main(int, char const**);
void procA();

void procB();

void procC();

void *thread_five(void*);
void *thread_four(void*);
void *thread_one(void*);
void *thread_three(void*);
---Type <return> to continue, or g <return> to quit---
void *thread_two(void*);

Non-debugging symbols:
0x00007fff5d19d970 _ vdso_clock_gettime
0x00007fff5d19d970 clock_gettime
0x00007fff5d19d9f0 _ vdso_gettimeofday
0x00007fff5d19do9f0O gettimeofday
0x00007fff5d19da80 _ vdso_time

162

:~_ fundamental_type_info()
:~_ fundamental_type_info()
:~__fundamental_type_inf---Type

__do_upcast(__cxxabivl:: class_type info const*, void**)

:__do_catch(std::type_info const*, void**, unsigned int)
:what() const

:~__concurrence_lock_error()
:~__concurrence_lock_error()
:__concurrence_unlock_error::~__concurrence_unlock_error()
:__concurrence_unlock_error::~__concurrence_unlock_error()
:~__concurrence_lock_error()
:__concurrence_unlock_error::~__concurrence_unlock_error()

0x00007fff5d19da86 time

0x00007fff5d19daa® _ vdso_getcpu

0x00007fff5d19daa® getcpu

0Xx00000000004002d8 _init

0x00000000004003cO _GLOBAL__sub_I eh_alloc.cc
0x00000000004003f8 _start

0x0000000000400424 call gmon_start

0x0000000000400440 deregister_tm_clones
0x0000000000400470 register_tm_clones
0x00000000004004b0 _ do_global_dtors_aux
0x00000000004004€0 frame_dummy

0x0000000000400790 _ cxxabivl:: fundamental_type_info:
0x0000000000400790 _ cxxabivl::_ fundamental_type_info:
0x00000000004007b0 _ cxxabivl::_ fundamental_type_info:
<return> to continue, or q <return> to quit---

o()

0x00000000004007d0 std::type_info::~type_info()
0x00000000004007d0 std::type_info::~type_info()
0x00000000004007€0 std::type_info:: is pointer_p() const
0x00000000004007f0 std::type_info::__is function_p() const
0x0000000000400800 std::type_info::

const

0x0000000000400810 std::type_info::~type info()
0x0000000000400830 std::type_info:

const

0x0000000000400880 _ gnu_cxx::__concurrence_lock_error:
0x0000000000400890 _ gnu_cxx::__concurrence_unlock_error::what() const
0x000000000040082a0 _ gnu_cxx::__concurrence_lock_error:
0x000000000040082a0 _ gnu_cxx::__concurrence_lock_error:
0x00000000004008CcO _ gnu_CXX:

0x00000000004008CcO _ gnu_CXX:

0x00000000004008e0 _ gnu_cxx::__concurrence_lock_error:
0x0000000000400900 _ gnu_CXX:

---Type <return> to continue, or q <return> to quit---q
Quit

9. List all variables:

(gdb) info variables

All defined variables:

File vars.c:

size_t _ default_stacksize;

int __is_smp;

struct pthread_key_struct _ pthread_keys[1024];

int _ pthread_multiple_ threads;

File pthread_mutex_init.c:
static const struct pthread_mutexattr default_attr;

File tpp.c:
int _ sched_fifo_max_prio;
int _ sched_fifo_min_prio;

File nptl-init.c:

int _ _have_futex_clock_realtime;

size t _ static_tls_align_mil;

size t _ static_tls_size;

struct xid_command *__xidcmd;

static _Bool _ nptl _initial_report_events;

163

static const char nptl_version[5];

File ../nptl/sysdeps/pthread/createthread.c:
---Type <return> to continue, or q <return> to quit---
int *__libc_multiple_threads_ptr;

File pthread_create.c:
unsigned int _ nptl _nthreads;
int _ pthread_debug;

File allocatestack.c:
list_t _ stack_user;

File ../nptl_db/structs.def:

const uint32_t _thread_db__ nptl _initial_ report_events[3];
const uint32_t _thread_db__ nptl_last_event[3];

const uint32_t _thread_db__ nptl nthreads[3];

const uint32_t _thread_db__ pthread_keys[3];

File ../nptl_db/db_info.c:
const uint32_t _thread_db_const_thread_area;

File ../nptl_db/structs.def:

const uint32_t _thread_db_dtv_dtv[3];

const uint32_t _thread_db_dtv_t_pointer_val[3];

const uint32_t _thread_db_link_map_1 tls modid[3];

const uint32_t _thread_db_list_t next[3];

const uint32_t _thread_db_list_t prev[3];

---Type <return> to continue, or q <return> to quit---
const uint32_t _thread_db_pthread_cancelhandling[3];
const uint32_t _thread_db_pthread dtvp[3];

const uint32_t _thread_db_pthread_eventbuf[3];

const uint32_t _thread_db_pthread_eventbuf_eventmask[3];
const uint32_t _thread_db_pthread_eventbuf_eventmask_event_bits[3];
const uint32_t _thread_db_pthread_key data_data[3];

const uint32_t _thread_db_pthread_key data_level2 data[3];
const uint32_t _thread_db_pthread_key data_seq[3];

const uint32_t _thread_db_pthread_key_struct_destr[3];
const uint32_t _thread_db_pthread_key_struct_seq[3];
const uint32_t _thread_db_pthread_list[3];

const uint32_t _thread_db_pthread_nextevent[3];

const uint32_t _thread_db_pthread pid[3];

const uint32_t _thread_db_pthread_report_events[3];

const uint32_t _thread_db_pthread_schedparam_sched_priority[3];
const uint32_t _thread_db_pthread_schedpolicy[3];

const uint32_t _thread_db_pthread_specific[3];

const uint32_t _thread_db_pthread start_routine[3];

const uint32_t _thread_db_pthread_tid[3];

const uint32_t _thread_db_sizeof_ list_t;

const uint32_t thread db_sizeof pthread;

const uint32_t _thread_db_sizeof pthread_key_ data;

const uint32_t _thread_db_sizeof pthread key data_ level2;
const uint32_t _thread_db_sizeof pthread_key_ struct;
---Type <return> to continue, or q <return> to quit---
const uint32_t _thread_db_sizeof td_eventbuf_t;

const uint32_t _thread_db_sizeof_ td_thr_events_t;

const uint32_t _thread_db_td_eventbuf_t_eventdata[3];
const uint32_t _thread_db_td_eventbuf_t_eventnum[3];
const uint32_t _thread_db_td_thr_events_t_event_bits[3];

164

File pthread_create.c:

static struct pthread *_ _nptl_last_event;
static td_thr_events_t _ nptl_threads_events;
static const struct pthread_attr default_attr;

File allocatestack.c:

static uintptr_t in_flight_stack;

static list_t stack_cache;

static size_t stack_cache_actsize;
static int stack_cache_lock;

static const size_t stack_cache_maxsize;
static list_t stack_used;

File main.cpp:
pthread_mutex_t mutexA;
pthread_mutex_t mutexB;

Non-debugging symbols:

---Type <return> to continue, or q <return> to quit---
0x0000000000000000 _ libc_resp

0x0000000000000008 _ libc_tsd_ LOCALE
0x0000000000000010 _nl_current_LC_CTYPE
0x0000000000000018 _nl current_LC_MONETARY
0x0000000000000020 _nl_current_LC_NUMERIC
0x0000000000000028 (anonymous namespace)::get_global()::global
0x0000000000000038 _ libc_errno

0x0000000000000040 _ libc_tsd_MALLOC
0x0000000000000048 _ libc_tsd CTYPE_B
0Xx0000000000000050 _ libc_tsd_CTYPE_TOUPPER
0x0000000000000058 _ libc_tsd_CTYPE_TOLOWER
0Xx000000000000060 data.11299

0x0000000000400120 _ rela_iplt_start
0x00000000004002d8 _ rela_iplt_end

0x0000000000495c20 IO stdin_used

0x0000000000495c40 typeinfo name for __ cxxabivl:: fundamental_ type_info
0x0000000000495c68 typeinfo name for void
0x000000000495c6a typeinfo name for void*
0x0000000000495c6d typeinfo name for void const*
0x0000000000495c71 typeinfo name for bool
0x0000000000495c73 typeinfo name for bool*
0x0000000000495c76 typeinfo name for bool const*
0x0000000000495c7a typeinfo name for wchar_t
0x0000000000495c7c typeinfo name for wchar_t*

---Type <return> to continue, or q <return> to quit---q
Quit

165

10. List segment info:

(gdb) info target

Symbols from "/home/training/ALCDA/Appl2/Appl2.debug".

Local core dump file:

*/home/training/ALCDA/./Appl2/core.19138",
0x0000000000400000 - 0x0000VVVVV400000

0X00000000006C3000
0X00000000006C6000
0x00000000008b8000
0x00007f1bed271000
0x00007f1beda72000
0x00007f1bee273000
0x00007f1beea74000
0x00007f1bef275000
0x00007fff5d137000
0x00007fff5d19d000
oxffffffffff600000
Local exec file:

0Xx00000000006C6000
0x00000000006d1000
0x00000000008db000O
0x00007f1beda71000
0x00007f1bee272000
0x00007f1beea73000
0x00007f1bef274000
0x00007f1lbefa75000
0x00007fff5d158000
0x00007fff5d19e000
oxffffffffff601000

is
is
is
is
is
is
is
is
is
is
is
is

file type elf64-x86-64.
loadl
load2
load3
load4
load5
load6
load7
load8
load9
loadie
loadi1
loadi2

*“/home/training/ALCDA/Appl2/Appl2', file type elf64-x86-64.

Entry point: 0x4003f8

.note.ABI-tag
.note.gnu.build-id
.rela.plt

.init

.plt

.text

__libc_freeres_fn
__libc_thread_freeres_fn
.fini

.rodata
__libc_subfreeres
__libc_atexit
__libc_thread_subfreeres
.eh_frame
.gcc_except_table
.tdata

.tbss

.init_array
.fini_array

.jer

.data.rel.ro

.got

.got.plt

.data

.bss

0Xx0000000000400158 - 0©x000000VRVV400178 is
0x0000000000400178 - Ox00000VVVRR40019C is
0x0000000000400130 - 0Ox00000VVVVR4002d8 is
0Xx00000000004002d8 - 0©x00VVVOVVVV4002e6 is
0x00000000004002f0 - 0Ox00000VVVPR4003cO is
0Xx00000000004003CcO - Ox000VOOPLRVV495014 is
0Xx0000000000495020 - 0x00VVOOPRVV495b9%e is
0x0000000000495bad - ©x000OOORVV495c0O1 is
0Xx0000000000495c04 - ©x000OORVV495cad is
---Type <return> to continue, or q <return> to quit---
0x0000000000495c20 - 0Ox000VVPVVRR4AbAd74 is
0Xx00000000004b4d78 - 0©x00000000VV4bAdd8 is
0x00000000004b4dd8 - 0©x0000000VER4bAded is
0x00000000004b4ded - 0x00000000VV4b4de8 is
0x00000000004b4de8 - 0©x0000OOOROVAc2c4c is
0Xx00000000004c2c4c - Ox000VOOPRRV4c2e7d is
0Xx00000000006C3000 - Ox0DVVOVPRVO6C3028 is
0x00000000006C3028 - Ox00VVVPVVPR6C3068 is
0x00000000006C3028 - Ox00VVVPVVPR6C3040 is
0Xx00000000006C3040 - Ox00VVVOPLPVO6C3050 is
0x00000000V6C3050 - Ox00VVVPVVPR6C3058 is
0x0000000VVV6C3060 - Bx00VVVPVVPR6C4a00 is
0Xx00000000006c4200 - Ox00VVOOPLRVV6C4ado is
0Xx00000000006c4ad0 - Ox00VVRRVV6CAb50 is
0Xx00000000006c4b60 - Ox000VV0VRVO6c5888 is
0Xx0000000PR6Cc5820 - Ox0VVVOVVLRVO6de908 is
0x00000000006de908 - Ox00VVOVVRVV6de938 is

166

__libc_freeres_ptrs

Pattern Links (Linux and GDB)

Annotated Disassembly

Deadlock
Environment Hint
Handled Exception
Heap Contention
Heap Leak
Manual Dump
Module Hint Module Variable
Not My Version

Self-Diagnosis

Stack Trace Collection Wait Chain

8 2015 Software Diagnostics Services

Here is the link to pattern descriptions and additional GDB examples:
http://www.dumpanalysis.org/blog/index.php/category/core-dump-analysis

Selected pattern descriptions are provided at the end of this book.

167

http://www.dumpanalysis.org/blog/index.php/category/core-dump-analysis/

Resources

GDB Pocket Reference
(some articles in volumes 1 and 7 cover GDB)

-
F - | |g N | F =~) IR

”‘[(=% | l'[‘| l‘[i | i |
memon Bl memoms By memon.s By LY memony Bl i
pume | cume il || T | bume pume i i cure il
ANALYSE ANALYSE 8 ANALYSE ! ANALYSE ! ANALYSE S ! ANALYSIS

© 2015 Software Diagnostics Services

Software Diagnostics Institute:
http://www.dumpanalysis.org/

Pattern-Driven Software Diagnostics:
http://www.patterndiagnostics.com/Introduction-Software-Diagnostics-materials

Pattern-Based Software Diagnostics:
http: //www.patterndiagnostics.com/pattern-based-diagnostics-materials

Debugging TV:
http://www.debugging.tv

Rosetta Stone for Debuggers:
http://www.dumpanalysis.org/rosetta-stone-debuggers

168

http://www.dumpanalysis.org/
http://www.patterndiagnostics.com/Introduction-Software-Diagnostics-materials
http://www.patterndiagnostics.com/pattern-based-diagnostics-materials
http://www.debugging.tv/
http://www.dumpanalysis.org/rosetta-stone-debuggers

Accelerated Mac OS X Core Dump Analysis:
http: //www.patterndiagnostics.com/accelerated-macosx-core-dump-analysis-book

Memory Dump Analysis Anthology:
http: //www.patterndiagnostics.com/ultimate-memory-analysis-reference

169

http://www.patterndiagnostics.com/accelerated-macosx-core-dump-analysis-book
http://www.patterndiagnostics.com/ultimate-memory-analysis-reference

170

App Source Code

171

172

AppO

1/

// main.c

// App® - Exercise © - Testing Linux GDB

//

// Copyright (c) 2015 Software Diagnostics Services. All rights reserved.

//
#include <stdlib.h>

void bar()

{
}

void foo()

abort();

bar();
}

int main(int argc, const char * argv[])

foo();
return 0;

173

App1

1/

// main.c

// Appl - Normal application with multiple threads

//

// Copyright (c) 2015 Software Diagnostics Services. All rights reserved.
//

#include <stdio.h>

#include <pthread.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>

#tdefine THREAD_DECLARE(num) void bar_##num()\

{\

sleep(-1);\
N
\
void foo_##num()\
{\

bar_##num() ;\
N
\
void * thread_##tnum (void *arg)\
{\

foo_#t#num();\
\

return 0;\
}

THREAD_DECLARE (one)
THREAD_DECLARE (two)
THREAD_DECLARE (three)
THREAD_DECLARE (four)
THREAD_DECLARE (five)

t#tdefine THREAD_CREATE(num) {pthread_t threadID_##tnum; pthread_create (&threadID_##tnum, NULL,
thread_##num, NULL);}

int main(int argc, const char * argv[])
{
THREAD_CREATE (one)
THREAD_CREATE (two)
THREAD_CREATE(three)
THREAD_CREATE (four)
THREAD_CREATE (five)

sleep(-1);
return 0;

174

App2D

//
// main.c
// App2D - Shows NULL data pointer exception

//

// Copyright (c) 2015 Software Diagnostics Services. All rights reserved.
//

#include <stdio.h>

#include <pthread.h>

#include <unistd.h>

#include <string.h>

#include <stdlib.h>

void procA()

int *p = NULL;

void procB()
sleep(1);

void (*pf)() = NULL;

pf();
}
#tdefine THREAD_DECLARE (num,func) void bar_##num()\
{\
func;\
I\
\
void foo_#t#tnum()\
{\
bar_##num();\
N\
\
void * thread_##tnum (void *arg)\
{\
foo_#t#tnum();\
\
return 0;\
}

THREAD_DECLARE (one,sleep(-1))
THREAD_DECLARE (two, procA())
THREAD_DECLARE (three,sleep(-1))
THREAD_DECLARE (four,procB())
THREAD_DECLARE (five,sleep(-1))

#tdefine THREAD_CREATE(num) {pthread_t threadID_##num; pthread_create (&threadID_##num, NULL,
thread_##num, NULL);}

175

int main(int argc, const char * argv[])

{

THREAD_CREATE (one)
THREAD_CREATE (two)
THREAD_CREATE (three)
THREAD_CREATE (four)
THREAD_CREATE (five)

sleep(3);
return 0;

176

App2C

// main.c
// App2C - Shows NULL code pointer exception

// Copyright (c) 2015 Software Diagnostics Services. All rights reserved.
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include <string.h>
#tinclude <stdlib.h>
void procA()
sleep(1);

int *p = NULL;

void procB()

void (*pf)() = NULL;

pf();
}
#tdefine THREAD_DECLARE(num,func) void bar_##num()\
{\
func;\
A\
\
void foo_#t#num()\
{\
bar_##num();\
N
\
void * thread_##tnum (void *arg)\
18\
foo_#t#num();\
\
return 0;\
}

THREAD_DECLARE(one,sleep(-1))
THREAD_DECLARE (two, procA())
THREAD_DECLARE (three,sleep(-1))
THREAD_DECLARE (four,procB())
THREAD_DECLARE(five,sleep(-1))

t#tdefine THREAD_CREATE(num) {pthread_t threadID_##tnum; pthread_create (&threadID_##tnum, NULL,
thread_##num, NULL);}

177

int main(int argc, const char * argv[])

{

THREAD_CREATE (one)
THREAD_CREATE (two)
THREAD_CREATE (three)
THREAD_CREATE (four)
THREAD_CREATE (five)

sleep(3);
return 0;

178

App3

1/

// main.c

// App3 - Spiking Thread pattern

//

// Copyright (c) 2015 Software Diagnostics Services. All rights reserved.

//

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

void procA()
while (1)
sleep(1l);
}
void procB()

double d = 1.0/3.0;

while (1)
{
d = sqrt(d);
}
}
#tdefine THREAD_DECLARE(num,func) void bar_##num()\
{\
func;\
A\
\
void foo_t#t#num()\
{\
bar_##num();\
A\
\
void * thread_##tnum (void *arg)\
{\
foo_#t#num();\
\
return 0;\
}

THREAD_DECLARE(one,sleep(-1))
THREAD_DECLARE (two,sleep(-1))
THREAD_DECLARE (three,procA())
THREAD_DECLARE(four,sleep(-1))
THREAD_DECLARE (five,procB())

#tdefine THREAD_CREATE(num) {pthread_t threadID_##num; pthread_create (&threadID_##num, NULL,
thread_##num, NULL);}

179

int main(int argc, const char * argv[])

{

THREAD_CREATE (one)
THREAD_CREATE (two)
THREAD_CREATE (three)
THREAD_CREATE (four)
THREAD_CREATE (five)

sleep(-1);
return 0;

180

App4

1/

// main.c

// App4 - Heap Corruption pattern

//

// Copyright (c) 2015 Software Diagnostics Services. All rights reserved.

1/

#include <stdio.h>

#include <pthread.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>

void proc()

char *pl = (char *) malloc (1024);
char *p2 = (char *) malloc (1024);
char *p3 = (char *) malloc (1024);
char *p4 = (char *) malloc (1024);
char *p5 = (char *) malloc (1024);
char *p6 = (char *) malloc (1024);
char *p7 = (char *) malloc (1024);

free(p6);
free(p4);
free(p2);

strcpy(p2, "Hello Crash!™);
strcpy(p4, "Hello Crash!");
strcpy(p6, "Hello Crash!");

(char *) malloc (512);
(char *) malloc (1024);
(char *) malloc (512);

p2
p4
p6

sleep(300);

free (p7);
free (p6);
free (p5);
free (p4);
free (p3);
free (p2);
free (pl);

sleep(-1);

181

#tdefine THREAD_DECLARE(num,func) void bar_##num()\
{\

func;\

A\

\

void foo_t#t#num()\

{\

bar_##num();\

N

\

void * thread_##tnum (void *arg)\
{\

foo_#t#num();\

\

return 0;\

}

THREAD_DECLARE (one,sleep(-1))
THREAD_DECLARE (two,sleep(-1))
THREAD_DECLARE (three,proc())

THREAD_DECLARE(four,sleep(-1))
THREAD_DECLARE(five,sleep(-1))

#tdefine THREAD_CREATE(num) {pthread_t threadID_##num; pthread_create (&threadID_##tnum, NULL,
thread_##num, NULL);}

int main(int argc, const char * argv[])
{

THREAD_CREATE (one)

THREAD_CREATE (two)

THREAD_CREATE (three)

THREAD_CREATE (four)

THREAD_CREATE (five)

sleep(-1);
return 0;

182

App5

1/

// main.c

// App5 - Local Buffer Overflow

//

// Copyright (c) 2015 Software Diagnostics Services. All rights reserved.

//

#include <stdio.h>

#include <pthread.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>

void procB(char *buffer)

{
char data[100] = "My New Bigger Buffer";
memcpy (buffer, data, sizeof(data));

}

void procA()

{
char data[10] = "My Buffer";
procB(data);

}

#tdefine THREAD_DECLARE (num,func) void bar_##num()\

{\

func;\

AN

\

void foo_##num()\

\

bar_##num();\

AN

\

void * thread_##tnum (void *arg)\

\

foo_#t#tnum();\

\

return 0;\

}

THREAD_DECLARE (one, procA())
THREAD_DECLARE (two, sleep(-1))
THREAD_DECLARE (three,sleep(-1))
THREAD_DECLARE(four,sleep(-1))
THREAD_DECLARE (five,sleep(-1))

#tdefine THREAD_CREATE(num) {pthread_t threadID_##num; pthread_create (&threadID_##num, NULL,
thread_##num, NULL);}

183

int main(int argc, const char * argv[])

{

THREAD_CREATE (one)
THREAD_CREATE (two)
THREAD_CREATE (three)
THREAD_CREATE (four)
THREAD_CREATE (five)

sleep(-1);
return 0;

184

App6

1/

// main.c

// App6 - Stack Overflow

//

// Copyright (c) 2015 Software Diagnostics Services. All rights reserved.

//

#include <stdio.h>

#include <pthread.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>

void procF(int i)

{
int buffer[128] = {-1, @, i+1, 0, -1};
procF(buffer[2]);
}
void procE()
procF(1);
}
#tdefine THREAD_DECLARE (num,func) void bar_##num()\
\
sleep(300);\
func;\
N
\
void foo_##num()\
{Q\
bar_#t#tnum();\
N
\
void * thread_##tnum (void *arg)\
\
foo_#num();\
\
return 0;\
}

THREAD_DECLARE (one, procE())
THREAD_DECLARE (two,sleep(-1))
THREAD _DECLARE(three,sleep(-1))
THREAD_DECLARE (four,sleep(-1))
THREAD _DECLARE(five,sleep(-1))

#tdefine THREAD_CREATE(num) {pthread_t threadID_##num; pthread_create (&threadID_##num, NULL,
thread_##num, NULL);}

185

int main(int argc, const char * argv[])

{

THREAD_CREATE (one)
THREAD_CREATE (two)
THREAD_CREATE (three)
THREAD_CREATE (four)
THREAD_CREATE (five)

sleep(-1);
return 0;

186

App7

1/

// main.c

// App7 - Divide by Zero and Active Threads

//

// Copyright (c) 2015 Software Diagnostics Services. All rights reserved.
//

#include <stdio.h>

#include <pthread.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>

void procF(int i)
{
int buffer[1024] = {-1, @, i+1, 0, -1};

procF(buffer[2]);
}

void procE()

procF(1);
}
int procD(int a, int b)
{
return a/b;
}
int procC()
{
return procD(1,0);
}
void procB(char *buffer)
{
char data[100] = "My New Bigger Buffer";
memcpy (buffer, data, sizeof(data));
}
void procA()
{
char data[1@0] = "My Buffer";
procB(data);
}

187

#tdefine THREAD_DECLARE(num,func) void bar_##num()\
Q\

sleep(300);\

func;\

N

\

void foo_##num()\

{\

bar_#t#tnum();\

N

\

void * thread_#t#tnum (void *arg)\
Q\

foo_##num();\

\

return 0;\

}

THREAD_DECLARE (one, procA())
THREAD_DECLARE (two,sleep(-1))
THREAD_DECLARE(three,procC())
THREAD_DECLARE (four,sleep(-1))
THREAD_DECLARE(five,procE())

t#tdefine THREAD_CREATE(num) {pthread_t threadID_##num; pthread_create (&threadID_##num, NULL,
thread_##num, NULL);}

int main(int argc, const char * argv[])
{
THREAD_CREATE (one)
THREAD_CREATE (two)
THREAD_CREATE (three)
THREAD_CREATE (four)
THREAD_CREATE (five)

sleep(-1);
return 0;

188

App8

1/

// main.cpp

// App8 - C++ Exception, Execution Residue, Handled Exception

//

// Copyright (c) 2015 Software Diagnostics Services. All rights reserved.
//

#include <string>

#tdefine def_call(name,x,y) void namett# ##x() { name#t# ##y(); }
t#tdefine def_final(name,x) void name## ##x() { }
#tdefine def_init(name,y,size) void name() { int arr[size]; name#_#i#y(); *arr=0; }

def_final(work,9)
def_call(work,8,9)
def_call(work,7,8)
def_call(work,6,7)
def_call(work,5,6)
def_call(work,4,5)
def_call(work,3,4)
def_call(work,2,3)
def_call(work,1,2)
def_init(work,1,256)

class Exception

{

int code;

std::string description;
public:

Exception(int _code, std::string _desc) : code(_code), description(_desc) {}
}s

void procB()

throw new Exception(5, "Access Denied");

}

void procNB()

work();
}
void procA()
{

procB();
}

void procNA()

procNB();

189

void procH()

{
try {
procA();
} catch (...) {
sleep(-1);
}
}
void procNH()
{
sleep(300);
procA();
}

void procNE()

try {
procNA();
}

catch (...)

{
}
sleep(-1);

}

#tdefine THREAD_DECLARE (num,func) void bar_##num()\
\

func;\

N

\

void foo_#t#num()\

{\

bar_##num();\

N

\

void * thread_##tnum (void *arg)\
\

foo_#t#tnum();\

\

return 0;\

}

THREAD_DECLARE (one, procNH())
THREAD_DECLARE (two, procNE())
THREAD_DECLARE (three,procH())
THREAD_DECLARE (four,procNE())
THREAD_DECLARE(five,procNE())

#tdefine THREAD_CREATE(num) {pthread_t threadID_##num; pthread_create (&threadID_##tnum, NULL,
thread_##num, NULL);}

int main(int argc, const char * argv[])
{

THREAD_CREATE (one)

THREAD_CREATE (two)

THREAD_CREATE (three)

THREAD_CREATE (four)

THREAD_CREATE (five)

sleep(-1);
return 0;

190

App9

// main.c
// App9 - Heap Leak pattern

// Copyright (c) 2015 Software Diagnostics Services. All rights reserved.

#include <stdio.h>

#include <pthread.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>

void procD()

{
}

typedef void (**PFUNC)();

void procC(int iter)

{
for (int i = 0; i < iter; ++i)
{
char *p = malloc(256);
strcpy(p, "allocated memory");
*(PFUNC) (p + 32) = &procD;
}
}
void procB()
{
procC(250000);
sleep(300);
procC(250000) ;
sleep(-1);
}

void procA()
procC(5000);

sleep(300);
procB();

191

#tdefine THREAD_DECLARE(num,func) void bar_##num()\
{\

func;\

A\

\

void foo_t#t#num()\

{\

bar_##num();\

N

\

void * thread_##tnum (void *arg)\
{\

foo_#t#num();\

\

return 0;\

}

THREAD_DECLARE (one,sleep(-1))
THREAD_DECLARE (two, procA())
THREAD_DECLARE(three,sleep(-1))
THREAD_DECLARE(four,sleep(-1))
THREAD_DECLARE(five,sleep(-1))

#tdefine THREAD_CREATE(num) {pthread_t threadID_##num; pthread_create (&threadID_##tnum, NULL,
thread_##num, NULL);}

int main(int argc, const char * argv[])
{

THREAD_CREATE (one)

THREAD_CREATE (two)

THREAD_CREATE (three)

THREAD_CREATE (four)

THREAD_CREATE (five)

sleep(-1);
return 0;

192

App10

//

// main.c

// Appl@ - Heap Corruption, Heap Contention, Critical Region, Wait Chains, Self-Diagnostics
patterns

//

// Copyright (c) 2015 Software Diagnostics Services. All rights reserved.

//

#include <stdio.h>

#include <pthread.h>

#include <unistd.h>

#include <string.h>

#include <stdlib.h>

t#tdefine ARR_SIZE 10000

char *pAllocBuf [ARR_SIZE] = {0};

void proc()

{
while (1)
{
int idx = rand()%ARR_SIZE;
int malloc_size = rand()%ARR_SIZE;
if (pAllocBuf[idx])
{
free(pAllocBuf[idx]);
pAllocBuf[idx] = ©;
}
pAllocBuf[idx] = malloc(malloc_size);
}
}
#tdefine THREAD_DECLARE(num,func) void bar_##num()\
\
func;\
N
\
void foo_##num()\
{\
bar_##num();\
A\
\
void * thread_##tnum (void *arg)\
{\
foo_##num();\
\
return 0;\
}

THREAD_DECLARE (one,proc())
THREAD_DECLARE (two, proc())
THREAD_DECLARE(three,proc())
THREAD_DECLARE (four, proc())
THREAD_DECLARE(five,proc())

#tdefine THREAD_CREATE(num) {pthread_t threadID_##num; pthread_create (&threadID_##num, NULL,
thread_##num, NULL);}

193

int main(int argc, const char * argv[])

{

THREAD_CREATE (one)
THREAD_CREATE (two)
THREAD_CREATE (three)
THREAD_CREATE (four)
THREAD_CREATE (five)

sleep(-1);
return 0;

194

App11 / App12

1/
// main.c
// Appll/Appl2 - Wait Chains, Deadlock, Handled Exception patterns

//
// Copyright (c) 2015 Software Diagnostics Services. All rights reserved.

1/

#include <stdio.h>

#include <pthread.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>

pthread_mutex_t mutexA, mutexB;
void procC()

throw 9;
}

void procA()

try

{
pthread_mutex_lock(&mutexA);
procC();
pthread_mutex_unlock(&mutexA);

}
catch(...)
{
¥
sleep(20);

pthread_mutex_lock(&mutexB);
pthread_mutex_unlock(&mutexB);

}

void procB()

{
pthread_mutex_lock(&mutexB);
pthread_mutex_lock(&mutexA);
sleep(30);
pthread_mutex_lock(&mutexA);
pthread_mutex_lock(&mutexB);

}

195

#tdefine THREAD_DECLARE(num,func) void bar_##num()\
{\

func;\

A\

\

void foo_t#t#num()\

{\

bar_##num();\

N

\

void * thread_##tnum (void *arg)\
{\

foo_#t#num();\

\

return 0;\

}

THREAD_DECLARE(one,sleep(-1))
THREAD_DECLARE (two, procA())
THREAD_DECLARE (three,sleep(-1))
THREAD_DECLARE (four,procB())
THREAD_DECLARE (five,sleep(-1))

#tdefine THREAD_CREATE(num) {pthread_t threadID_##num; pthread_create (&threadID_##tnum, NULL,
thread_##num, NULL);}

int main(int argc, const char * argv[])
{
pthread_mutex_init(&mutexA, NULL);
pthread_mutex_init(&mutexB, NULL);

THREAD_CREATE (one)
THREAD_CREATE (two)
sleep(10);
THREAD_CREATE(three)
THREAD_CREATE (four)
THREAD_CREATE (five)

sleep(-1);
return 0;

196

Selected Patterns

(edited articles from Software Diagnostics Institute, www.DumpAnalysis.org)

197

http://www.dumpanalysis.org/

198

NULL Pointer (data)

This is a Linux variant of NULL Pointer (data) pattern previously described for Mac OS X? and Windows? platforms:

(gdb) bt

#0 0x0000000000400500 in procA ()

#1 ©0x000000000040057a in bar_two ()

#2 0x000000000040058a in foo_two ()

#3 0x00000000004005a2 in thread_two ()

#4 0x0000000000401630 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#5 0x00000000004324e9 in clone ()

#6 0Ox0000000000000000 in ?? ()

(gdb) x/i ©x400500
=> Ox400500 <procA+16>: movl $0x1, (%rax)

(gdb) info r $rax
rax 0x0 0

(gdb) x $rax
0x0: Cannot access memory at address 0x0

2 http://www.dumpanalysis.org/blog/index.php/2012/03/25/crash-dump-analysis-patterns-part-6b-mac-os-x/
3 http://www.dumpanalysis.org/blog/index.php/2009/04/14/crash-dump-analysis-patterns-part-6b/
199

Incomplete Stack Trace

Users of WinDbg debugger accustomed to full thread stack traces will wonder whether a thread starts from main:

(gdb) bt

#0 0x000000000042fedl in nanosleep ()
#1 0Ox000000000042fdad® in sleep ()

#2 0x000000000040078a in main ()

Of course, not and by default, a stack trace is shown starting from main function. You can change this behavior by
using the following command:

(gdb) set backtrace past-main

Now we see an additional frame:

(gdb) bt

#0 0x000000000042fedl in nanosleep ()

#1 0x000000000042fda@ in sleep ()

#2 0x000000000040078a in main ()

#3 0Ox0000000000405283 in __ libc_start_main ()
#4 0Ox00000000004003e9 in _start ()

200

Stack Trace

This is a Linux variant of Stack Trace pattern previously described for Mac OS X* and Windows® platforms. Here we
show a stack trace when debug symbols are not available (stripped executable) and also how to apply debug
symbols from the executable where they were preserved:

(gdb) bt

#0 0x000000000043e4f1 in nanosleep ()
#1 Ox000000000043e3cO in sleep ()

#2 Ox0000000000400789 in main ()

(gdb) symbol-file ./App/App.debug
Reading symbols from /home/Apps/App/App.debug. . .done.

(gdb) bt

#0 0x000000000043e4f1 in nanosleep ()

#1 Ox000000000043e3cO in sleep ()

#2 0x0000000000400789 in main (argc=1, argv=0x7fff5d1572d8) at main.cpp:85

4 http://www.dumpanalysis.org/blog/index.php/2012/03/25/crash-dump-analysis-patterns-part-25-mac-os-x/
5 http://www.dumpanalysis.org/blog/index.php/2007/09/10/crash-dump-analysis-patterns-part-25/
201

NULL Pointer (code)

This is a Linux variant of NULL Pointer (code) pattern previously described for Mac OS X¢ and Windows’ platforms:

(gdb) bt

#0 ©0x0000000000000000 in ?? ()

#1 0x0000000000400531 in procB ()

#2 0x00000000004005f8 in bar_four ()

#3 0x0000000000400608 in foo_four ()

#4 0x0000000000400620 in thread_four ()

#5 0x0000000000401630 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#6 0x00000000004324e9 in clone ()

#7 0x0000000000000000 in ?? ()

(gdb) disassemble procB

Dump of assembler code for function procB:
0x0000000000400516 <+0>: push %rbp
0Xx0000000000400517 <+1>: mov %rsp,%rbp
0Xx000000000040051a <+4>: sub $0x10,%rsp
0x000000000040051e <+8>: movq $0x0, -0x8(%rbp)
0x0000000000400526 <+16>: mov -0x8(%rbp) ,%rdx
0x000000000040052a <+20>: mov $0x0, %eax
0x000000000040052f <+25>: callg *%rdx
0x0000000000400531 <+27>: leaveq
0x0000000000400532 <+28>: retq

End of assembler dump.

(gdb) info r rdx
rdx 0x0 0

6 http://www.dumpanalysis.org/blog/index.php/2012/05/03/crash-dump-analysis-patterns-part-6a-mac-os-x/
7 http://www.dumpanalysis.org/blog/index.php/2008/04/28/crash-dump-analysis-patterns-part-6a/
202

Spiking Thread
This is a variant of Spiking Thread pattern previously described for Mac OS X® and Windows® platforms:

(gdb) info threads

Id Target Id Frame

6 LWP 3712 0x00000000004329d1 in nanosleep ()
LWP 3717 0x00000000004007a3 in isnan ()

LWP 3716 0x00000000004329d1 in nanosleep ()
LWP 3715 0x00000000004329d1 in nanosleep ()
LWP 3714 0x00000000004329d1 in nanosleep ()

1 LWP 3713 0x00000000004329d1 in nanosleep ()

*N W h Uy

We notice a non-waiting thread and switch to it:

(gdb) thread 5
[Switching to thread 5 (LWP 3717)]
#0 0x00000000004007a3 in isnan ()

(gdb) bt

#0 0x00000000004007a3 in isnan ()

#1 0x0000000000400743 in sqrt ()

#2 0x0000000000400528 in procB ()

#3 0x0000000000400639 in bar_five ()

#4 0x0000000000400649 in foo_five ()

#5 O0x0000000000400661 in thread_five ()
#6 0x0000000000403e30 in start_thread ()
#7 0x0000000000435089 in clone ()

#8 0x0000000000000000 in ?? ()

If we disassemble the return address for procB function to come back from sqgrt call we see an infinite loop:

(gdb) disassemble 0x400528

Dump of assembler code for function procB:
0Xx0000000000400500 <+0>: push %rbp
0x0000000000400501 <+1>: mov %rsp,%rbp
0x0000000000400504 <+4>: sub $0x20,%rsp
0x0000000000400508 <+8>: movabs $0x3fd5555555555555, %rax
0x0000000000400512 <+18>: mov %rax, -0x8(%rbp)
0x0000000000400516 <+22>: mov -0x8(%rbp) ,%rax
0x000000000040051a <+26>: mov %rax, -0x18(%rbp)
0x000000000040051e <+30>: movsd -0x18(%rbp),%xmmo
0x0000000000400523 <+35>: callg ©0x400710 <sqrt>
0x0000000000400528 <+40>: movsd %xmm@, -0x18(%rbp)
0%x000000000040052d <+45>: mov -0x18(%rbp),%rax
0x0000000000400531 <+49>: mov %rax, -0x8(%rbp)
0x0000000000400535 <+53>: jmp 0x400516 <procB+22>
End of assembler dump.

8 http://www.dumpanalysis.org/blog/index.php/2012/05/09/crash-dump-analysis-patterns-part-14-mac-os-x/
° http://www.dumpanalysis.org/blog/index.php/2007/05/11/crash-dump-analysis-patterns-part-14/
203

Dynamic Memory Corruption (process heap)

This is a Linux variant of Dynamic Memory Corruption (process heap) pattern previously described for Mac OS X1©
and Windows?!!* platforms.

The corruption may be internal to heap structures with subsequent memory access violation:

(gdb) bt

#0 0x000000000041482e in _int_malloc ()
#1 0x0000000000416d88 in malloc ()

#2 0x00000000004005dc in proc ()

#3 0x00000000004006ee in bar_three ()

#4 0Ox00000000004006fe in foo_three ()

#5 0x0000000000400716 in thread_three ()
#6 0x0000000000401760 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#7 0x0000000000432609 in clone ()

#8 0x0000000000000000 in ?? ()

(gdb) x/i $rip
=> Ox41482e <_int_malloc+622>: mov %rbx,0x10(%r12)

(gdb) x $ri2+o0x1e
0x21687371: Cannot access memory at address 0x21687371

(gdb) p (char[4])0x21687371
$1 = "qsh!“

Or it may be detected with a diagnostic message (similar to double free):

(gdb) bt

#0 0x000000000043ef65 in raise ()

#1l 0x0000000000409fcO in abort ()

#2 0x000000000040bf5b in __ libc_message ()
#3 0x0000000000412042 in malloc_printerr ()
#4 ©0x0000000000416c27 in free ()

#5 0x0000000000400586 in proc ()

#6 0x000000000040067e in bar_four ()

#7 0x000000000040068e in foo_four ()

#8 0x0000000000400626 in thread_four ()

#9 0x00000000004016cO in start_thread (arg=<optimized out>)
at pthread _create.c:304

#10 0x0000000000432589 in clone ()

#11 0x0000000000000000 in ?? ()

10 http://www.dumpanalysis.org/blog/index.php/2012/05/27/crash-dump-analysis-patterns-part-2-mac-os-x/
1 http://www.dumpanalysis.org/blog/index.php/2006/10/31/crash-dump-analysis-patterns-part-2/
204

Execution Residue

This is a Linux variant of Execution Residue pattern previously described for Mac OS X*? and Windows?*? platforms.
This is symbolic information left in a stack region including ASCIl and UNICODE fragments or pointers to them, for

example, return addresses from past function calls:

(gdb) bt

#0 0x00000000004431f1 in nanosleep ()

#1 0Ox00000000004430c0 in sleep ()

#2 0Ox0000000000400771 in procNE() ()

#3 0Ox00000000004007aa in bar_two() ()

#4 0Ox00000000004007b5 in foo_two() ()

#5 0Ox00000000004007c8 in thread_two(void*) ()

#6 0Ox00000000004140f0 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#7 0Ox0000000000445879 in clone ()

#8 0x0000000000000000 in ?? ()

(gdb) x/512a $rsp-2000

Ox7f4cacc42360: 0x0 0x0

Ox7f4cacc42370: Ox0 0x0

Ox7f4cacc42380: 0x0 0x0

Ox7f4cacc42390: ox0 0x0

[...]

Ox7f4cacc42830: ox0 0x0

Ox7f4cacc42840: ox0 0x0

Ox7f4cacc42850: 0x0 0x0

Ox7f4caccd2860: Ox7fdcacc42870 0x4005af <_zZeéwork_ 8v+9>
Ox7f4cacc42870: Ox7f4cacc42880 0x4005ba <_Z6work_ 7v+9>
Ox7f4cacc42880: Ox7f4cacc42890 0x4005c5 <_Z6work 6v+9>
Ox7f4cacc42890: Ox7f4cacc428a0 0x4005d0 <_Zéwork_5v+9>
Ox7f4cacc428a0: Ox7fd4cacc428b0 0x4005db <_Z6work_4v+9>
Ox7f4cacc428b0: Ox7fd4cacc428cO 0x4005e6 <_Zé6work_3v+9>
Ox7f4cacc428cO: 0x7f4cacc428do 0x4005f1 <_Ze6work_2v+9>
Ox7f4cacc428dO: Ox7f4cacc428e0 0x4005fc <_Z6work_ 1v+9>
Ox7f4cacc428e0: Ox7f4cacc42cfo 0x40060e <_ZA4workv+16>
Ox7fd4cacc428f0: 0x0 0x0

Ox7f4cacc42900: 0x0 0x0

Ox7f4cacc42910: 0x0 0x0

[...]

Ox7f4caccd42af0: 0x0 0x0

Ox7f4cacc42boo: 0x0 0x0

Ox7f4cacc42blo: 0x0 0x0

Ox7f4cacc42b20: 0x0 0x4431e6 <nanosleep+38>
Ox7f4cacc42b30: 0x0 0x4430cO <sleep+224>
Ox7f4caccd42b40: 0x0 0x0

Ox7f4caccd42b50: 0x0 0x0

Ox7f4caccd42b60: 0x0 0x0

Ox7fd4caccd42b70: 0x0 0x0

[...]

Ox7f4caccd42cbo: 0x0 0x0

Ox7f4caccd42ccO: 0x0 0x0

Ox7f4cacc42cdo: ox0 0x0

Ox7fd4caccd2ced: oxfffffed2 ox3ad3affa

Ox7fd4caccd42cfo: Ox7f4cacc42do0 0x0

Ox7f4cacc42do0: 0x7f4caccd2d20 0x49c740 <default_attr>

2 http://www.dumpanalysis.org/blog/index.php/2012/06/05/crash-dump-analysis-patterns-part-60-mac-os-x/
13 http://www.dumpanalysis.org/blog/index.php/2008/04/29/crash-dump-analysis-patterns-part-60/
205

Ox7f4cacc42dio:
Ox7f4cacc42d20:
Ox7f4cacc42d30:
Ox7f4cacc42d40:
Ox7f4cacc42d50:
Ox7f4cacc42d60:
0x7f4cacc42d70:
Ox7f4cacc42d8e:
0x7f4cacc42d90:

[...]

Ox7f4cacc439c0 0x400771 <_Z6procNEv+19>
Ox7f4cacc42d30 0x4007aa <_Z7bar_twov+9>
Ox7f4cacc42d40 0x4007b5 <_Z7foo_twov+9>
Ox7f4cacc42d60 0x4007c8 <_Z10thread_twoPv+17>
0x0 0x0

0x0 0x4140f0 <start_thread+208>

0x0 0x7f4cacc43700

0x0 0x0

0x0 0x0

However, supposed return addresses need to be checked for Coincidental Symbolic Information pattern.

206

Coincidental Symbolic Information

This is a Linux variant of Coincidental Symbolic Information pattern previously described for Mac OS X** and
Windows?® platforms. The idea is the same: to disassemble the address to see if the preceding instruction is a call. If
it is indeed then most likely the symbolic address is a return address from past Execution Residue:

(gdb) x/i @x4005e6
0x4005e6 <_Z6work_3v+9>: pop %rbp

(gdb) disassemble ©x4005e6

Dump of assembler code for function _Z6éwork_ 3v:
0x00000000004005dd <+0>: push %rbp
0x00000000004005de <+1>: mov %rsp,%rbp
0x00000000004005e1 <+4>: callq ©x4005d2 <_zZéwork_4v>
0x00000000004005€6 <+9>: pop %rbp
0x00000000004005e7 <+10>: retq

End of assembler dump.

(gdb) x/4i 0x49c740-4

0x49c73c: add %al, (%rax)

0x49c73e: add %al, (%rax)

0x49c740 <default_attr>: add %al, (%rax)
0x49c742 <default_attr+2>: add %al, (%rax)

14 http://www.dumpanalysis.org/blog/index.php/2012/06/09/crash-dump-analysis-patterns-part-24-mac-os-x/
5 http://www.dumpanalysis.org/blog/index.php/2007/08/30/crash-dump-analysis-patterns-part-24/
207

Stack Overflow (user mode)

This is a Linux variant of Stack Overflow (user mode) pattern previously described for Mac OS X'¢ and Windows?’
platforms:

(gdb) bt

#0 0Ox00000000004004fb in procF
#1 0Ox000000000040054b in procF
#2 0x000000000040054b in procF
#3 0x000000000040054b in procF
#4 0Ox000000000040054b in procF
#5 0Ox000000000040054b in procF
#6 0Ox000000000040054b in procF
#7 0Ox000000000040054b in procF
#8 0x000000000040054b in procF
#9 0Ox000000000040054b in procF
#10 0x000000000040054b in procF
#11 Ox000000000040054b in procF
#12 Ox000000000040054b in procF

[...]

ANAN AN AN AN AN AN AN AN AN AN AN
N N N N N N N N N N N N N

(gdb) bt -10

#15409 0x000000000040054b in procF ()
#15410 0x000000000040054b in procF ()
#15411 Ox000000000040054b in procF ()
#15412 Ox000000000040055b in procE ()
#15413 Ox0000000000400575 in bar_one ()
#15414 0x0000000P0V400585 in foo_one ()
#15415 0x000000000040059d in thread_one ()
#15416 Ox0000000000401690 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#15417 0x0000000000432549 in clone ()
#15418 0x0000000000000000 in ?? ()

In case of a stack overflow, the stack pointer is decremented beyond the stack region boundary into a non-accessible
region, so any stack memory access triggers an access violation:

(gdb) x $rsp
0x7eff46109ecO: 0x0

(gdb) frame 1
#1 0x000000000040054b in procF ()

(gdb) x $rsp
Ox7eff4610a0e0: 0x0

(gdb) maintenance info sections

[...]
Core file:
[..-]

0x7eff46109000->0x7eff46102000 at 0x02034000: loadl3 ALLOC LOAD READONLY HAS_CONTENTS
0x7eff4610a000->0x7eff4690a000 at 0x02035000: loadl4 ALLOC LOAD HAS_CONTENTS

[...]

16 http://www.dumpanalysis.org/blog/index.php/2012/07/17/crash-dump-analysis-patterns-part-16b-mac-os-x/
7 http://www.dumpanalysis.org/blog/index.php/2008/06/10/crash-dump-analysis-patterns-part-16b/
208

Divide by Zero (user mode)

This is a Linux variant of Divide by Zero (user mode) pattern previously described for Mac OS X! and Windows?®
platforms:

GNU gdb (GDB)
[...]

Program terminated with signal 8, Arithmetic exception.
#0 0x000000000040056f in procD ()

(gdb) x/i $rip
=> Ox40056f <procD+18>: idivl -0x8(%rbp)

(gdb) info r $rax
rax ox1 1

(gdb) x/w $rbp-0x8
ox7f0f6806bd28: 9x00000000

18 http://www.dumpanalysis.org/blog/index.php/2012/07/18/crash-dump-analysis-patterns-part-78a-mac-os-x/
9 http://www.dumpanalysis.org/blog/index.php/2008/12/01/crash-dump-analysis-patterns-part-78a/
209

Local Buffer Overflow

This is a Linux variant of Local Buffer Overflow pattern previously described for Mac OS X?° and Windows?!
platforms. Most of the time simple mistakes in using memory and string manipulation functions are easily detected
by the runtime. The more sophisticated example which overwrites stack trace without being detected involves
overwriting indirectly via a pointer to a local buffer passed to the called function. In such cases, we might see
incorrect and truncated stack traces:

(gdb) bt
#0 0x0000000000000000 in ?? ()
#1 0x0000000000000000 in ?? ()

(gdb) x/100a $rsp

[...]

Ox7fc3dd9dece8: Ox0 0x0

0x7fc3dd9decf8: ox0 0x0

0x7fc3dd9dedo8: ox0 0x0

0x7fc3dd9ded18: ox0 0x0

0x7fc3dd9ded28: @x7fc3dd9ded48 ©x4005cc <procA+40>
Ox7fc3dd9ded38: 0x422077654e20794d 0x7542207265676769
Ox7fc3dd9ded48: 0x72656666 Ox0

Ox7fc3dd9ded58: 0x0 0x0

0x7fc3dd9ded68: 0x0 0x0

0x7fc3dd9ded78: 0x0 0x0

[...]

20 http://www.dumpanalysis.org/blog/index.php/2012/07/19/crash-dump-analysis-patterns-part-36-mac-os-x/
21 http://www.dumpanalysis.org/blog/index.php/2007/11/14/crash-dump-analysis-patterns-part-36/
210

C++ Exception

This is a Linux variant of C++ Exception pattern previously described for Mac OS X*2 and Windows?® platforms:

(gdb) bt

#0 0x00007f0aldoe5165 in *__GI_raise ()

at ../nptl/sysdeps/unix/sysv/linux/raise.c:64

#1 Ox00007f0aldoe83ed® in *_GI abort () at abort.c:92
#2 0x0000710aldb5789d in _ gnu_cxx::__verbose_terminate_handler() ()
from /usr/lib/x86_64-linux-gnu/libstdc++.s0.6

#3 0x00007f0aldb55996 in ?? () from /usr/lib/x86_64-linux-gnu/libstdc++.s50.6
#4 0x00007f0aldb559c3 in std::terminate() ()

from /usr/lib/x86_64-1linux-gnu/libstdc++.50.6

#5 Ox00007f0aldb55bee in _ cxa_throw ()

from /usr/lib/x86_64-linux-gnu/libstdc++.s0.6

#6 0x0000000000400dct in procB() ()

#7 0x0000000000400e26 in procA() ()

#8 0x0000000000400e88 in procNH() ()

#9 0x0000000000400ea8 in bar_one() ()

#10 0x0000000000400eb3 in foo_one() ()

#11 0x0000000000400ec6 in thread_one(void*) ()

#12 0x0000710a1d444b50 in start_thread ()

#13 0x00007f0ald18e95d in clone ()

at ../sysdeps/unix/sysv/linux/x86_64/clone.S:112

#14 Ox0000000000000000 in ?? ()

22 http://www.dumpanalysis.org/blog/index.php/2012/07/20/crash-dump-analysis-patterns-part-77-mac-os-x/
2 http://www.dumpanalysis.org/blog/index.php/2008/10/21/crash-dump-analysis-patterns-part-77/
211

Paratext

This is Linux variant of Paratext pattern for Mac OS X?*. Because of debugger tool limitations additional software logs
and the output of other tools may help in memory dump analysis. Typical examples of such pattern usage can be the
list of modules with version and path info, application crash specific information from instrumentation tools such as
Valgrind, memory region names with attribution and boundaries, and CPU usage information. For example, top and
pmap commands output:

“PID USER PR NI WVIRT RES SHR S XCPU SMEH TIHE+ COMHAND

14039: ./Appl.shared

0000000000400000 4K r-x-- /home/training/ALCDA/Appl/Appl.shared
0000000000600000 4K rw--- /home/training/ALCDA/Appl/Appl.shared
0000000000611000 132K rw--- [anon]

000071e8999a6000 4K ----- [anon]
000071fe8999a7000 8192K rw--- [anon]
00007fe89a1a7000 4K ----- [anon]
00007fe89a1a8000 8192K rw--- [anon]
00007fe8929a8000 4K ----- [anon]
000071e892929000 8192K rw--- [anon]
000071fe89b1a9000 4K ----- [anon]
00007fe89b1aalk@0® 8192K rw--- [anon]
00007fe89b92a000 4K ----- [anon]

00007fe89b9abo0® 8192K rw--- [anon]

00007fe89c1abo@0@ 1540K r-x-- /1lib/x86_64-linux-gnu/libc-2.13.s0
000071e89c32c000 2048K ----- /1lib/x86_64-1inux-gnu/libc-2.13.s0
000071e89c52c000 16K r---- /1lib/x86_64-1linux-gnu/libc-2.13.s0
000071e89c530000 4K rw--- /1lib/x86_64-1linux-gnu/libc-2.13.s0
000071e89c531000 20K rw--- [anon]

000071e89c536000 92K r-x-- /1ib/x86_64-1linux-gnu/libpthread-2.13.s0
000071e89c54d000 2044K ----- /1ib/x86_64-1linux-gnu/libpthread-2.13.so
000071e89c74c000 4K r---- /1ib/x86_64-1linux-gnu/libpthread-2.13.s0
000071e89c74d000 4K rw--- /1ib/x86_64-1linux-gnu/libpthread-2.13.s0
00007fe89c74e000 16K rw--- [anon]

00007fe89c752000 128K r-x-- /lib/x86_64-linux-gnu/ld-2.13.so0
000071e89c966000 12K rw--- [anon]

000071e89c961000 8K rw--- [anon]

00007fe89c971000 4K r---- /1ib/x86_64-1linux-gnu/ld-2.13.s0
000071e89c972000 4K rw--- /1lib/x86_64-1inux-gnu/1d-2.13.s0
000071e89c973000 4K rw--- [anon]

0000711d458c1000 132K rw--- [stack]

0000711d459e€9000 4K r-x-- [anon]

ffHfffffff600000 4K r-x-- [anon]

total 47208K

2 http://www.dumpanalysis.org/blog/index.php/2012/07/28/crash-dump-analysis-patterns-part-180-mac-os-x/
212

http://www.dumpanalysis.org/blog/files/TopCommandOutput-450.png

Active Thread

Here we publish a Linux variant of Active Thread pattern that was previously introduced for Mac OS X?* and
Windows?®. Basically, it is a thread that is not waiting, sleeping, or suspended (most threads are). However, from a
memory dump, it is not possible to find out whether it was Spiking Thread at the dump generation time (unless we
have a set of memory snapshots and in each one we have the same or similar backtrace) and we don’t have any
Paratext with CPU consumption stats for threads. For example, in one core dump we have this thread:

(gdb) info threads

Id Target Id Frame

6 Thread 0x7f560d467700 (LWP 3483) 0x00000000004324a9 in clone ()
Thread 0x7f560c465700 (LWP 3485) 0x000000000042fe31 in nanosleep ()
Thread 0x7f560bc64700 (LWP 3486) 0x000000000042fe31 in nanosleep ()
Thread 0x7f560b463700 (LWP 3487) 0x000000000042fe31 in nanosleep ()
Thread 0x18b9860 (LWP 3482) 0x000000000042fe31 in nanosleep ()
Thread 0x7f560cc66700 (LWP 3484) 0x000000000042fe31 in nanosleep ()

RN W,RAU

Thread #6 is not waiting so we inspect its back trace:

(gdb) thread 6
[Switching to thread 6 (Thread 0x7f560d467700 (LWP 3483))]
#0 0x0000000000432429 in clone ()

(gdb) bt

#0 0x00000000004324a9 in clone ()

#1 0x0000000000401560 in ?? () at pthread_create.c:217
#2 0x00007f560d467700 in ?? ()

#3 0x0000000000000000 in ?? ()

(gdb) x/i @x4324a9
=> 0x4324a9 : test %rax,%rax

Perhaps the core dump was saved at the thread creation time.

%5 http://www.dumpanalysis.org/blog/index.php/2012/11/17/crash-dump-analysis-patterns-part-187-mac-os-x/
2% http://www.dumpanalysis.org/blog/index.php/2015/10/31/crash-dump-analysis-patterns-part-232/
213

Lateral Damage

This is a Linux variant of Lateral Damage pattern previously described for Windows?” platform. It also covers memory
dumps where some usual commands may not work, and we have to find a workaround to simulate their output, for
example, by using other commands:

(gdb) info threads
Cannot find new threads: generic error

(gdb) thread apply all bt
Cannot find new threads: generic error

(gdb) thread 2
[Switching to thread 2 (LWP 12567)]
#0 0x000000000042ff51 in nanosleep ()

(gdb) thread 3
[Switching to thread 3 (LWP 12566)]
#0 0x000000000041482e in _int_malloc ()

27 http://www.dumpanalysis.org/blog/index.php/2006/11/03/crash-dump-analysis-patterns-part-4/
214

Critical Region

We first introduced Critical Region pattern in Accelerated Mac OS X Core Dump Analysis?® training but didn’t submit
the pattern itself to the catalog at that time.

A critical region is usually a region of code protected by synchronization objects such as critical sections and
mutexes. However, Critical Region analysis pattern is about identifying code regions "sandwiched" between
contending function calls (which may or may not involve synchronization objects and corresponding synchronization
calls such as identified in Contention?® patterns), and then identifying any possibly shared data referenced by such
code regions:

proc:

lock
foo Shared buffer
call foo proc

(heap, pool, ...)

unlock

call bar bar
proc

(gdb) thread apply all bt

Thread 6 (Thread 0x7f2665377700 (LWP 17000)):
#0 0x00000000004151al in _int_malloc ()

#1 0x0000000000416cf8 in malloc ()

#2 0x00000000004005a4 in proc ()

#3 0x0000000000400604 in bar_two ()

#4 0x0000000000400614 in foo_two ()

#5 0Ox000000000040062c in thread_two ()

#6 0Ox00000000004016c0 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#7 0Ox0000000000432589 in clone ()

#8 0Ox0000000000000000 in ?? ()

28 http://www.patterndiagnostics.com/accelerated-macosx-core-dump-analysis-book
2 http://www.dumpanalysis.org/blog/index.php/2010/09/21/contention-patterns/
215

Thread 5 (Thread 0x7f2664b76700 (LWP 17001)):

#0 111 unlock_wake_private ()

at /nptl/sysdeps/un1x/sysv/11nux/x86 64/lowlevellock.S:343
#1 0x000000000041886d in _L_unlock_9670 ()

#2 0x0000000000416d22 in malloc ()

#3 0©x00000000004005a4 in proc ()

#4 0x0000000000400641 in bar_three ()

#5 0x0000000000400651 in foo_three ()

#6 0x0000000000400669 in thread_three ()

#7 0x00000000004016cO in start_thread (arg=<optimized out>)
at pthread_create.c:304

#8 0x0000000000432589 in clone ()

#9 0x0000000000000000 in ?? ()

Thread 4 (Thread 0x7f2665b78700 (LWP 16999)):

#0 111 lock wait_private ()

at ../nptl/sysdeps/unix/sysv/1linux/x86_64/lowlevellock.S:97
#1 9x0000096000418836 in _L_lock_9558 ()

#2 0x0000000000416c1lc in free ()

#3 0x0000000000400586 in proc ()

#4 0x00000000004005c7 in bar_one ()

#5 0x00000000004005d7 in foo one ()

#6 0x00000000004005ef in thread_one ()

#7 0x00000000004016c0 in start_thread (arg=<optimized out>)
at pthread_create.c:304

#8 0x0000000000432589 in clone ()

#9 0x0000000000000000 in ?? ()

Thread 3 (Thread 0x1ab1860 (LWP 16998)):
#0 0x000000000042fedl in nanosleep ()
#1 0x000000000042fdad in sleep ()

#2 0Ox000000000040078a in main ()

Thread 2 (Thread 0x7f2663b74700 (LWP 17003)):

#0 111 lock wait_private ()

at ../nptl/sysdeps/unix/sysv/1inux/x86_64/lowlevellock.S:97
#1 0x0000000000418836 in L lock 9558 ()

#2 0Ox0000000000416clc in free ()

#3 0x0000000000400586 in proc ()

#4 0x00000PP00V4006bb in bar five ()

#5 0x00000000004006cb in foo_five ()

#6 0Ox00000000004006e3 in thread_five ()

#7 0x00000000004016cO in start_thread (arg=<optimized out>)
at pthread_create.c:304

#8 0x0000000000432589 in clone ()

#9 0x0000000000000000 in ?? ()

Thread 1 (Thread 0x7f2664375700 (LWP 17002)):
#0 0x000000000043ef65 in raise ()

#1 0x0000000000409fcO in abort ()

#2 0Ox000000000040bf5b in _ libc_message ()
#3 0x0000000000412042 in malloc_printerr ()
#4 0Ox0000000000416c27 in free ()

#5 0x0000000000400586 in proc ()

#6 0Ox000000000040067e in bar_four ()

#7 0Ox000000000040068e in foo_four ()

#8 0Ox00000000004006a6 in thread_four ()

#9 0Ox00000000004016c0 in start_thread (arg=<optimized out>)
at pthread_create.c:304

216

#10 0x0000000000432589 in clone ()
#11 0x0000000000000000 in ?? ()

From threads #4 and #5 we can identify one such a region with a shared buffer 0x6b8fc0 which may further point to
heap entries.

(gdb) disassemble proc

Dump of assembler code for function proc:
0x0000000000400410 <+0>: push %rbp
0x00000000004004F1 <+1>: mov %rsp,%rbp
0x00000000004004F4 <+4>: push %rbx
0Xx00000000004004F5 <+5>: sub $0x18,%rsp
0x0000000000400419 <+9>: callq ©x40ac70 <rand>
0Xx00000000004004fe <+14>: mov %»eax, %ecx
0X0000000000400500 <+16>: mov $0x68db8bad, %edx
0Xx0000000000400505 <+21>: mov %ecx, %eax
0x0000000000400507 <+23>: imul %edx
0x0000000000400509 <+25>: sar $0xc, %edx
0x000000000040050C <+28>: mov %ecx, seax
0x000000000040050e <+30>: sar $0x1f, %eax
0Xx0000000000400511 <+33>: mov %»edx, %ebx
0Xx0000000000400513 <+35>: sub %eax, %ebx
0Xx0000000000400515 <+37>: mov %»ebx, %eax
0x0000000000400517 <+39>: mov %eax, -0x14 (%rbp)
0x000000000040051a <+42>: mov -0x14(%rbp) ,%eax
0x000000000040051d <+45>: imul $0x2710, %eax, %eax
0x0000000000400523 <+51>: mov %ecx, sedx
0Xx0000000000400525 <+53>: sub %eax, sedx
0X0000000000400527 <+55>: mov %»edx, %eax
0x0000000000400529 <+57>: mov %eax, -0x14 (%rbp)
0x000000000040052Cc <+60>: callqg ©x40ac70 <rand>
0Xx0000000000400531 <+65>: mov %eax, %ecx
0x0000000000400533 <+67>: mov $0x68db8bad, %edx
0Xx0000000000400538 <+72>: mov %ecx, %eax
0x000000000040053a <+74>: imul %»edx
0x000000000040053¢Cc <+76>: sar $0xc, %edx
0x000000000040053f <+79>: mov %»ecx, seax
0x0000000000400541 <+81>: sar $0x1f, %eax
0Xx0000000000400544 <+84>: mov %»edx, %ebx
0x0000000000400546 <+86>: sub %»eax, %ebx
0x0000000000400548 <+88>: mov %ebx , %eax
0x000000000040054a <+90>: mov %eax, -0x18 (%rbp)
0x000000000040054d <+93>: mov -0x18(%rbp) ,%eax
0Xx0000000000400550 <+96>: imul $0x2710, %eax, %eax
0XxX0000000000400556 <+102>: mov %ecx, %edx
0x0000000000400558 <+104>: sub %eax, hedx
0Xx000000000040055a <+106>: mov %edx, %eax
0Xx000000000040055Cc <+108>: mov %eax, -0x18(%rbp)
0Xx000000000040055F <+111>: mov -0x14(%rbp) , %eax
0Xx0000000000400562 <+114>: cltq

0X0000000000400564 <+116>: mov 0x6b8fcO(,%rax,8),%rax
0Xx000000000040056Cc <+124>: test %»rax,%rax
0x000000000040056F <+127>: je 0x400597 <proc+167>
0x0000000000400571 <+129>: mov -0x14(%rbp) ,%eax
0x0000000000400574 <+132>: cltq

0x0000000000400576 <+134>: mov ox6b8fco(,%rax,8),%rax
0x000000000040057e <+142>: mov %rax,%srdi

217

0x0000000000400581 <+145>: callq ©x416bcoO <free>
0x0000000000400586 <+150>: mov -9x14(%rbp) , %eax
0x0000000000400589 <+153>: cltq

0x000000000040058b <+155>: movq $0x0,0x6b8fcO(,%rax,8)
0x0000000000400597 <+167>: mov -0x18(%rbp) ,%eax
0x000000000040059a <+170>: cltq

0x000000000040059C <+172>: mov %rax,%rdi
0x000000000040059f <+175>: callg ©x416c90 <malloc>
0x00000000004005a4 <+180>: mov %rax, %rdx
0x00000000004005a7 <+183>: mov -0x14(%rbp), %eax
0x00000000004005aa <+186>: cltq

0x00000000004005ac <+188>: mov %rdx,0x6b8fco(,%rax,8)
0x00000000004005b4 <+196>: jmpg 0x4004f9 <proc+9>

End of assembler dump.

218

	Presentation Slides and Transcript
	Introduction
	Prerequisites
	Training Goals
	Training Principles
	Schedule Summary
	Part 1: Fundamentals
	Memory/Kernel/User Space
	App/Process/Library
	Process Memory Dump
	Lightweight Processes (Threads)
	Thread Stack Raw Data
	Thread Stack Trace
	GDB vs. WinDbg
	Thread Stack Trace (no symbols)
	Exceptions (Access Violation)
	Exceptions (Runtime)
	Pattern-Oriented Diagnostic Analysis
	Core Dump Collection
	Part 2: Core Dump Collection
	Enabling Collection
	Generation Methods
	Practice Exercises
	Part 3: Practice Exercises
	Links
	Exercise 0
	Process Core Dumps
	Exercise A1
	Exercise A2D
	Exercise A2C
	Exercise A3
	Exercise A4
	Exercise A5
	Exercise A6
	Exercise A7
	Exercise A8
	Exercise A9
	Exercise A10
	Exercise A11
	Exercise A12
	Pattern Links (Linux and GDB)
	Resources
	App Source Code
	App0
	App1
	App2D
	App2C
	App3
	App4
	App5
	App6
	App7
	App8
	App9
	App10
	App11/App12
	Selected Patterns
	NULL Pointer (data)
	Incomplete Stack Trace
	Stack Trace
	NULL Pointer (code)
	Spiking Thread
	Dynamic Memory Corruption (process heap)
	Execution Residue
	Coincidental Symbolic Information
	Stack Overflow (user mode)
	Divide by Zero (user mode)
	Local Buffer Overflow
	C++ Exception
	Paratext
	Active Thread
	Lateral Damage
	Critical Region

		2016-02-28T02:56:05+0000
	Preflight Ticket Signature

