Linux
Core Dump Analysis

| _

—

Third Edition

Dmitry Vostokov
Software Diagnostics Services

Accelerated Linux Core Dump Analysis: Training Course Transcript with GDB and WinDbg Practice
Exercises, Third Edition

Published by OpenTask, Republic of Ireland

Copyright © 2023 by OpenTask
Copyright © 2023 by Software Diagnostics Services
Copyright © 2023 by Dmitry Vostokov

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, without the publisher's prior written permission.

Product and company names mentioned in this book may be trademarks of their owners.

OpenTask books and magazines are available through booksellers and distributors worldwide.
For further information or comments, send requests to press@opentask.com.

A CIP catalog record for this book is available from the British Library.
ISBN-13: 978-1-912636-59-4 (Paperback)

Revision 3.02 (January 2023)

Contents

ADOUL ThE AUTROT ...ttt ettt e bt e s b e s ae e st e st e e bt e bt e bt e sbeesaeeeateeateebeenbeesbeesanenane 7
Presentation SHAES @and TranSCriPT....c..eii et e e e e et te e e e st te e e e e baeeeeassbaeeeanstaeeeannsaeeeesnteeeeansseeesansens 9
(6o T B T8 o o I @o] =T o1 4 o] o FON S PPPPPRRN 31
(ST N 1Y 11T 0 0]] VT PSP 41
FAN 1Yo B TR T Y=Y o Y oY RPN 53
PraCliCe EXEITISES wooiiuiiiiiiiiiii ittt ettt et e s s ab et e s s e e e s s b e e e s s aba e e s s b et e s s aabe e e s s ba e e s nras 65
[e Y O (ST R C1 D=) TSR 70
EXEICISE 0 (ABA, GDB)uveeeiiieeiiee ettt e et e ettt e s te e e tee e s tee s aae e s s eeeabeeassteeaasaeassaeaansaeasseessseeanseeeansassnseeennsesanseeesnseesnses 72
Exercise 0 (A64, WinDbg Preview, WInDbg, DOCKET)c..uviuiiiie ettt et e e s 74
EXEICISE AL (X64, GDB) ...uveeeeieieiieeeiie ettt e etee e sttt e s te e e teeesateeebaeesseeeebaeaasteeaasaeensaeaansaeensseesaseeansseesnsasanseeeastasanseeesnseesnses 90
T Lol =N N Y] B - 3 TR 102
EXercise AL (AB4, WINDDE PrEVIEW)ueieeiiei ettt e e e e et e e e e st e e e e ate e e eettaeeeesbaeesennbaeesanntaeeeannteeeeensens 117
EXEICiSE A2D (XB4, GDB)eeiieieiiiieeeiiiee ettt e e ettt e e e ettt e e e ettt e e e esabae e e e abaeeesaasaeee e nsaeeeeasssaeeeanssaaeeansbaeesantaneeanreneeennsees 134
EXEICISE A2D (ABA, GDB) ...c.eveieiiieciee ettt ettt et e e s te e et e e st e e e beeesateesatae e baeesabeeebaeeanseeabaeeanbee e taeesaeeareeennraeans 138
EXercise A2D (AB4, WINDDE PIrEVIEW)......cccuuiiiiieiiie et e cieeeetteeeteeesteeestteesteeestaeesateeassseessseassaeasssesssesenssessnseeesssennns 141
EXEICISE A2C (X6, GDB) ..oeeuiiieiiieeiie ettt e ctee ettt e ete e e tee e s teeetee e steeeeabaeessseesssaeaasaeasnsaeansseessseeansaeasssessnsasessessnseeesssanns 145
T Lol =N W O Y] -) RS 148
EXercise A2C (AB4, WINDDE PrEVIEW)eiecuiiee ettt e ettt eete e e ettt e e e tte e e e etae e e e e ateeesestaeeeestaeesensbaeesasteseeansesesensens 151
T Lol =N W T T € 5]) PSSR 156
EXEICISE A2S (ABA, GDB) ..ottt sttt ettt st et b et s bt et e s bt she et e s bt e ab et e et et e sbe et e sheenee bt she et e abeearenes 159
EXEICISE A3 (X648, GDB) .oeeuvveeeiiiieieeeireeeeeetieeeeeeteeeeeetreeeeetaeeeesaaeeeeesbsesesasssesesesssesesassraeesassesesansreeesasteseeennteeeesnnsees 163
EXEICISE A3 (ABZ, GDB)..ococuvveeeieiieieeeitieee ettt e eeteeeeeeteeeeesaaeeeesaaeeeeesresesasssesesasssesesassreseeasssesesassreeesansteseeennteeeeeansees 166
EXercise A3 (AB4, WINDDE PrEVIEW)ueiieiiei ettt ettt e ettt e e et e e e s ate e e e e ateeesearaeeeestaeasensbaeesansteseeassaeeeensens 171
T Lol =N Y B (Y G D=) TR 176
T Lol =N Y VN] B -) TR 182
EXErcise A4 (AB4, WINDDEZ PIrEVIEW)vieiieieiiieciee ettt e etee et e e stteesteeestteesteesstteesabeeessseesssesssaeesasaessesenssesssesessseens 188
EXEICISE AD (XB4, GDB) .ocouvveeeiiiieieeeeiteeeeeetteeeeeeteeeeesteeeeeetbaeeeestaeseeesbaesesasssesesasssesesassraseeessesesasreeesanstesesenstreeeeensees 195
EXEICISE A (ABZA, GDB)...iecuvveiiierieieeeireeeeeetteeeeeeteeeeesteeeeeeaeeseeebaeseeesbsesesassaesesesbaesesasstesesasstesesasbesesassteseesnsteeeessnrens 198
EXercise A5 (AB4, WINDDE PrEVIEW)eeiieieee ettt ettt e et e e e ettt e e e et e e e e e tbeeeeeabaeeeesbeeaeensbaeasanstasaeantaeasennsens 201
EXEICISE AB (X624, GDB) ..oeeviieeieiiiee ettt e eecttte e e ettt e e e ettt e e e e bt e e e e aaaeeeeaasbesasaassssaeasssesaeasssaeesanssasasansbasasanstaseeansaaeeennsens 206
EXEICISE AB (ABZA, GDB)...cocuvveiiiiriiieeetrieeeeetteeeeeiteeeeesteeeeeeaaeseeeaaeseeesbaesesassaesesesbaesesassresesasstesesasberesassteseesnsbeeeesnnrens 221
EXErcise A6 (AB4, WINDDEZ PIrEVIEW)veeiieiiiieeiiie ettt eectee et e ette e e bt eeetteesbeeestteesabeeestseesaseessaeesaseessesensseessesessseens 237
EXEICISE A7 (X648, GDB) .oeecvveiiieiieie ettt ettt e e eetteeeeettaeseeettaeseeeabaesesesbaesesassaesesesbaesesassraseeessbesesessbesesansteseesnnbeeeesnntens 264

EXEICISE A8 (XB4, GDB) ..ceeviiieeeiiiee ettt e ettt e e ettt e e e ete e e e e e tae e e e teeeeeassbaeesasssesaeasssasaaasssasasassaeesansbaeesastasaeannsaaeeeansees 270

EXEICISE A8 (ABZ, GDB)...c.uvriieieiiiieeeitteeeecte e e e eett e e e e ettt e e e ettt e eeeaaeeeeaasbaeesasssesaaassseeaeasssaeasassaeesanssaeesastaseeanseeeesansees 285
EXercise A8 (AB4, WINDDE PIrEVIEW)uiiiiiiiciie et eeeeete e ste e e teeestte e s teesstaeesteeassseessseeanseeessseesnsesesseesnsesesssennns 303
EXEICISE AD (X684, GDB) ..uvveeiiiiiiieiiiteiieee et eeeetttee e e e e e eeeettbee e e e e eeeessabaaereeeeeeeasssbaaeeeseseeeasssbasaeaeessenssssreaseeeeessnasarenseaeesenn 327
EXEICISE AD (ABA, GDB) ..uvveeiiiiiiieeiiteiieee et eeeeteee e e e e e e ettt e e e e e eeeseabaaeeeeeeeeeaasatasereseeeeessssbasaeeaessenasssreasseeeesennssresreeeenen 342
EXercise A9 (AB4, WINDDE PrEVIEW)uii ittt ettt e et e e e ette e e e e tte e e e e aaee e e estaeesennbaeesanntaseeenntaeeeennsens 356
EXEICISE ALD (X624, GDB) ..eeicveieiuiieiiee ettt esieeesteestee e teeesteesteeesseeeassasassseeassaeasseesnsesasseessseeanseeessseesnsesesseesnseeesssenans 370
EXEICISE ALO (AB4, GDB) ...oocuteieciiieeiee et e et e st e e te e et e e s e e eteeessteesataeessseeassaeasseesnseeansseessseeanseeeanseesnsaeesteesnsaeennraeans 384
EXercise AL0 (ABA, WINDDE PrEVIEW)ceicciieieciiiie e ettt eite e e ettt e e e tte e e e evte e e e e atee e eenataeeeeabaeesensbaeesannteseeannteeeeennsens 391
EXEICISE ALL (X684, GDB) .oeeeeiiiiiieiiiteeieee et eeeetttee e e e e eeetbe e e e e e e esataaeeeeeeeeesasataaeeeseeeeesssbaaaraeessenssssreasseeesssansareareeeeeenn 400
EXEICISE ALL (ABA, GDB) uuveeeiiiiiieeitieieeee ettt ettt e e e e e e esebabereeeeeeeessabaaaeeseeeeasssbaaaseaesseaasssbeasaeeeessansarenreeeeeenn 410
Exercise ALl (AB4, WINDDZ PrEVIEW)ccccueieiiie ettt e cieeette ettt eeteeestte e s tee s sbteesteeesaseesaseesnsaeessseesnsesesseesnseeesssenns 421
EXEICISE AL2 (X624, GDB) ..ueecveieiuiieiiie ettt e eiteeesteestee e tteesteesteeesseeessbaseasseesssaeaasaeasasasansseeasseeansaeasnseesnsasenssessnsseesssennns 430
EXEICISE AL2 (AB4, GDB) ...ccuieieeiieeeiee ettt ciee ettt e et e et e e s te e e teeesteeesbaeessseeessaeaasaeasasaeasaeessseeansaeessseesnsesesseesnseeessseens 440
EXercise A12 (ABA, WINDDEZ PrEVIEW)ccecuiieieeciiie et ecte e e ettt e e e tte e e e s atae e e e e ate e e e e aaaeeeestaeesennbaeesanntaseeannteeeeensens 449
T Lol YN G A 0 T]) TSR 459
T Lol =N O (Y T € 0]) TSR 509
EXEICISE K3 (X624, GDB)....uiieiiiieiiieeiie ettt ettt ettt e et e e et e e s te e e teeestteesabeeeasseesasaeeasaeasateeasseessseeansaeeasseesnsesessessseeessseanns 524
EXEICISE KA (X624, GDB).....veeeieeeiiieeiee ettt ettt ettt e et e et e e s te e s tee e stteesabaeessseeessaeeasaeasasaeasseessseeansaeesnseesnsesessesssseesssennns 537
EXEICISE K5 (X624, GDB).....veeiiieeiiie ettt ettt e e e tte e s te e st e e tteeebaeesaseesasaeaasaeesasaeasseessseeansaeeasseesnsesesseessseessseans 562
SEIECTEA QL&A ... ettt ettt h e h et at e et e e bt e e bt e eh e e ea et eat e e bt e bt e bt e b e e ehe e ea et ea et et e e beeeheeeheeeateeabeeabe e beenbeenreas 571
PN oo B o U T ol I 6 Yo [P UURPR 579
AP0 581
Y4V o] o i R U U U PP U P PP PP PP PP PP PP PP PPPPPPPPN 582
LY o] o 11 LTS TP P PP SPPRRPR 583
Y o] o1 G TP PP SPUPRPR 585
AP e 587
A3 589
F Y o] o O O T O U U PP PP PP PP PP PP PP PPPPPPPPN 591
FAY o] o R U PP PP PP PP PP PP PP PUPPUPPPN 593
FAY o] oL R U PP PP PP PP PP PP PP PP PUPPPPPPN 595
PV o] o Y AR RSUPRRRRI 597
PP e 599
AP e 602
Y o] o J 0 TSP PR PRSP PPPR 604

1072 O S URO P RSURUPPTUPROUSRRPSRTI 608
K3 ettt e e et e aaaaaaaeaaaaaaaaaaaaaaaaaaens 609
[OO PP PR UPUPPTOPROPRRPRRPON 611
(GO PP PRSI PPTOPROPRRPPRRPION 613
Y] =T Yo I AN F LAY A I 2= =T o LSRR 615
NULL POINTEE (DATA) .uuveeiiieeeiieeiiieiitie ettt e setee e sttt e stee e taeesateesteeesseeesssasessseesssaeasssaasnsesasssesssesansesesssesssesenssessnsseesssenans 617
[aTele] g g 11 AT =Tl [I - 1 SRR 618
) - 1ol =Tl T PP P SO P PRSPPI 619
(N[O 1 oo 1]) =T ol (oo =) IR 620
Y oL T AT =4 W gL =T T USRS 621
Dynamic Memory Corruption (ProCeSS HEAP)....cccuieecuiieiiieeitieeiieeeiteeesteeeteeestteesteeestaeesaseeesseesaseessesessessseeessseanns 622
EXECULION RESIAUE (USEI SPACE) ..eiuviieiieeiiie ettt e ettt e ettt e sttt e et e et e e e beeestteesbaesbteesabaeessseesaseasnsaeesnsesansesensseesnseeesssenns 623
Coincidental Symbolic INFOrMationoii i e e e e e e ee e s s ba e e e e sabe e e e s nbeeeeennees 625
Ry = To 01T LoV A (WYY ol 1V, Fo o 1) I RPN 626
[DLAVTe Tl o VA= ¢ o W L €T Y, [o L) IR 627
(W Yor W= 0] i (=T @YY {1 LA (U T Y o - [) R 628
(@ el] 1 o o I PPPPPPRS 629
L2 L= (=) 4 SO PP 630
ACTIVE TRFAM. . ettt ettt ettt s e e sttt e s ab e e s bt e s bt e e s ube e s bbeesabeesabeeesabeesabeesaseeesabeeesbeenabeesabeeesareesases 632
(Y =T = W D E=T 0 T =TT RR 633
O gL u o I T=T =4 T o VR 634

About the Author

Dmitry Vostokov is an internationally recognized expert, speaker,
educator, scientist, inventor, and author. He is the founder of the
pattern-oriented software diagnostics, forensics, and prognostics
discipline (Systematic Software Diagnostics), and Software Diagnostics
Institute (DA+TA: DumpAnalysis.org + TraceAnalysis.org). Vostokov
has also authored more than 50 books on software diagnostics, anomaly
detection and analysis, software and memory forensics, root cause
analysis and problem solving, memory dump analysis, debugging,
software trace and log analysis, reverse engineering, and malware
analysis. He has over 25 years of experience in software architecture,
design, development, and maintenance in various industries, including leadership, technical, and
people management roles. Dmitry also founded Syndromatix, Anolog.io, BriteTrace, DiaThings,
Logtellect, OpenTask Iterative and Incremental Publishing (OpenTask.com), Software Diagnostics
Technology and Services (former Memory Dump Analysis Services) PatternDiagnostics.com, and
Software Prognostics. In his spare time, he presents various topics on Debugging. TV and explores
Software Narratology, its further development as Narratology of Things and Diagnostics of Things
(DoT), Software Pathology, and Quantum Software Diagnostics. His current interest areas are
theoretical software diagnostics and its mathematical and computer science foundations, application
of formal logic, artificial intelligence, machine learning and data mining to diagnostics and anomaly
detection, software diagnostics engineering and diagnostics-driven development, diagnostics workflow
and interaction. Recent interest areas also include cloud native computing, security, automation,
functional programming, and applications of category theory to software development and big data.

Presentation Slides and Transcript

10

Linux
Core Dump Analysis

I B y m

Third Edition

Dmitry Vostokov
Software Diagnostics Services

Hello, everyone, my name is Dmitry Vostokov, and I teach this training course.

11

WinDbg Commands

Prerequisites

We use these boxes to We use these boxes to
introduce GDB commands introduce WinDbg commands
used in practice exercises used in practice exercises

Basic Linux troubleshooting

Beneficial to know basics of assembly language
(depends on your platform):

© 2023 Software Diagnostics Services

The prerequisites are hard to define. Some of you have software development experience, and some do
not. However, one thing is certain that to get most of this training, you are expected to have basic
troubleshooting experience. Another thing I expect you to be familiar with is hexadecimal notation and
that you have seen or can read programming source code in some language. The ability to read assembly
language has some advantages but is not really necessary for this training. Windows memory dump
analysis experience may help ease the transition but is not absolutely necessary. If you have read either
Accelerated macOS Core Dump Analysis or Accelerated Windows Memory Dump Analysis book
or both, you may find a similar approach here. You may also find the additional Linux assembly language
books useful:

Foundations of Linux Debugging, Disassembling, and Reversing

reversing
Foundations of ARM64 Linux Debugging, Disassembling, and Reversing

ractical-foundations-armé64-linux-debu

reversing

https://www.patterndiagnostics.com/practical-foundations-linux-debugging-disassembling-reversing
https://www.patterndiagnostics.com/practical-foundations-linux-debugging-disassembling-reversing
https://www.patterndiagnostics.com/practical-foundations-arm64-linux-debugging-disassembling-reversing
https://www.patterndiagnostics.com/practical-foundations-arm64-linux-debugging-disassembling-reversing

Training Goals

Review fundamentals

Learn how to collect core dumps

Learn how to analyze core dumps

© 2023 Software Diagnostics Services

Our primary goal is to learn core dump analysis in an accelerated fashion. So first, we review absolutely
essential fundamentals necessary for core dump analysis. Also, this training is mostly about user
process core dump analysis with an accelerated transition to kernel core dump analysis, a topic fully
explored in the follow-up course and book Advanced Linux Core Dump Analysis with Data
Structures. An additional goal is to leverage Windows or macOS debugging and memory dump analysis
experience you may have.

13

Training Principles

Talk only about what | can show
Lots of pictures
Lots of examples

Original content

© 2023 Software Diagnostics Services

For me, there were many training formats to consider, and I decided that the best way is to concentrate
on hands-on exercises. Specifically, for this training, I developed more than 40 of them, and they utilize
the same pattern-oriented approach I used in Accelerated Windows Memory Dump Analysis and
Accelerated macOS Core Dump Analysis training.

14

Schedule Summary

DEVA

Analysis fundamentals (25 minutes)
Process core dump collection (5 minutes)
Basic x64 assembly language review (30 minutes)

Process GDB core dump analysis (1 hour)
Day 2

Process GDB core dump analysis (2 hours)
Day 3

Kernel core dump collection (5 minutes)
Kernel core dump analysis (1 hour 55 minutes)

Day 4

Basic ARM64 assembly language review (30 minutes)
Process GDB core dump analysis (1 hour 30 minutes)
[Optional] Process WinDbg core dump analysis

© 2023 Software Diagnostics Services

This slide shows a roughly planned schedule subject to changes as we go. Changes from the previous
edition are also highlighted. If we finish a particular topic earlier, we start the next one to make more
room for the ARM64 section.

15

Part 1: Fundamentals

© 2023 Software Diagnostics Services

Now, I show you some pictures. I use 64-bit examples. Most of the time, fundamentals do not change
when we move to 32-bit Linux, and the analysis process is mostly the same.

16

Memory/Kernel/User Space

Kernel Space

FFFF800000000000
00007FFFFFFFFFFF

User Space

0000000000010000
0002000000ROFFFF

NULL Pointers

0000000000000000

© 2023 Software Diagnostics Services

If you come from Windows or macOS background, you find fundamentals almost the same. For every
process, the Linux memory range is divided into kernel and user space parts and an inaccessible part
for catching null pointers. This non-accessible region is different from macOS, where itis 1 GB. I follow
the long tradition of using red for the kernel and blue for the user part. Please note that there is a
difference between space and mode. The mode is the execution privilege attribute; for example, code
running in kernel space has a higher execution privilege than code running in user space. However,
kernel code can access user space and access data there. We say that such code is running in kernel
mode. On the contrary, the application code from user space is running in user mode, and because of its
lower privilege, it cannot access kernel space. This division prevents accidental kernel modifications.
Otherwise, you could easily crash your system. [put addresses on the right. This uniform memory space
is called virtual process space because it is an abstraction that allows us to analyze core dumps without
thinking about how it is all organized in physical memory. When we look at process dumps, we are
concerned with virtual space only.

1 On my Debian system it is OXFFFF, as seen from /proc/sys/vm/mmap_min_addr value.
17

App/Process/Library

Kernel Space

FFFF800000000000
00007 FFFFFFFFFFF

User Space (PID 9200)

0000000000000000

© 2023 Software Diagnostics Services

When an app is loaded, all its referenced dynamic libraries are mapped to virtual memory space.
Different sections of the same file (like code and data) may be mapped into a different portion of
memory. In contrast, modules in Windows are organized sequentially in virtual memory space. A
process is then set up for running, and a process ID is assigned to it. If you run another such app, it has
a different virtual memory space.

18

Process Memory Dump

info sharedlibrary

Kernel Space Lists dynamic libraries

maintenance info sections
Lists memory regions

FFFF200060000000
00007FFFFFFFFFFF
.

WinDbg Commands

User Space (PID 9200)

laddress
Lists memory regions

*! De00L00000R0000

© 2023 Software Diagnostics Services

When we save a process core memory dump, a user space portion of the process space is saved without
any kernel space stuff. However, we never see such large core dumps unless we have memory leaks.
This is because process space has gaps unfilled with code and data. These unallocated parts are not
saved in a core dump. However, if some parts were paged out and reside in a page file, they are usually
brought back before saving a core dump.

19

Kernel Memory Dump

Kernel Space

.-
o“
.

-} FFFF800000000000
©0007FFFFFFFFFFF

User Space User Space
(PID 986200) (PID 9200)

App@

0200000000000

© 2023 Software Diagnostics Services

In case of a kernel panic, a kernel memory dump is saved if the appropriate mechanism is configured
(mostly by default for recent distributions, such as Ubuntu). Virtual memories of running processes are
not saved, however. For that, you need various physical memory acquisition methods and tools that are
outside the scope of this course.

20

Fiber Bindle Memory Dump

()]
(@]
(4]
o
w
| -
()]
w
-
©
)
=
=
(7]
wn
(4)]
(&)
(@]
-
o

Process Virtual User Space
Process Virtual User Space
Process Virtual User Space

Kernel Virtual Space

© 2023 Software Diagnostics Services

The lack of complete memory dumps may be circumvented by dumping individual processes and then
forcing a kernel memory dump to analyze together. We call the resulting dump type Fiber Bundle.

21

Lightweight Processes (Threads)

info threads
Lists threads
Kernel Space thread <n>
Switches between threads

thread apply all bt
Lists stack traces from all

threads
LWP 9480 LWP 9481

1d.so
-]
libpthread.so

WinDbg Commands

~EK
User Space (PID 9400) Lists stack traces from all
threads

~<N>S
Switches between threads

© 2023 Software Diagnostics Services

Now, we come to another important fundamental concept in Linux core dump analysis: a thread or
lightweight process (LWP). It is basically a unit of execution, and there can be many threads (LWPs) for
a given process (all of them share the same process space). Every thread just executes some code and
performs various tasks. Every thread has its ID (LWP ID). In this training, we also learn how to navigate
between process threads. Note that threads transition to kernel space via libc dynamic library similar
to ntdll on Windows and libsystem_kernel in macOS. Threads additional to the main thread (POSIX
Threads) originate from libc and libpthread dynamic libraries similar to libsystem_c in macOS.

22

Thread Stack Raw Data

x/<n>a <address>
Prints n addresses with
corresponding symbol

Kernel Space mappings if any

LWP 9400 LWP 9481
stack for LWP 9408 (TID)

1d.so
1ibpthread.so WinDbg Commands

dps <address> L<n>

Prints n addresses with
Stack for LWP 9401 (TID corresponding symbol

mappings if any

User Space (PID 9400)

© 2023 Software Diagnostics Services

Every thread needs a temporary memory region to store its execution history and temporary data. This
region is called a thread stack. Please note that the stack region is just any other memory region, and
you can use any GDB data dumping commands there. We also learn how to get the address range of a
thread stack region. Examining raw stack data can hint at the past process and kernel behavior: the so-
called Execution Residue pattern.

23

Thread Stack Trace

FunctionA()
User Stack for LWP 10707 {

;\.Jr‘\ctions(); (gdb) bt
y #0 ©x00007fe9676bf48d in FunctionD ()

FUnct1onB() #1 0x00007fe9676bf300 in FunctionC ()
{u #2 ©x00000000004005ca in FunctionB ()

Return address FunctionC+13@ . #3 0x00000000004005da in FunctionA ()
0x00007fe9676bf300 FunctionC();

} e

FunctionC()

Return address FunctionB+220 {
0x00000000004005ca g
FunctionD();

FunctionA

FunctionA+110 FunctionA+110

Resumes from address * Saves return address
I

Return address FunctionA+11@ FunctionB
©x00000000004005da

Resumes from address + Saves return address
FunctionB+220 FunctionB+220
I

FunctionC

Resumes from address * Saves return address
FunctionC+130 I FunctionC+130
I

FunctionD

© 2023 Software Diagnostics Services

Now we explain thread stack traces. Suppose we have source code where FunctionA calls FunctionB at
some point, FunctionB calls FunctionC, and so on. This sequence is called a thread of execution. If
FunctionA calls FunctionB, you expect the execution thread to return to the same place where it left, and
to resume from there. This goal is achieved by saving a return address in the thread stack region. So
every return address is saved and then restored during the course of thread execution. Although the
memory addresses grow from top to bottom in this picture, return addresses are saved from bottom to
top: the stack grows from higher to lower addresses. This picture might seem counter-intuitive to all
previous pictures, but this is how you see the output from GDB commands. What GDB does when you
instruct it to dump a backtrace from a given thread is to analyze the thread raw stack data and figure
out return addresses, map them to a symbolic form according to symbol files and show them from top
to bottom. Note that FunctionD is not present in the raw stack data on the left because it is a currently
executing function called from FunctionC. However, FunctionC called FunctionD, and the return address
of FunctionC was saved. In the box on the right, we see the result of the GDB bt command.

24

GDB vs. WinDbg vs. LLDB

WinDbg Commands

(gdb) bt 0:000> k

#0 0x00007fe9676bf48d in FunctionD () 00 99007fe9676bf30@ Module!FunctionD+offset
#1 0x00007fe9676bf306@ in FunctionC () 91 POPEPPBOB4PR5ca Module!FunctionC+130
#2 ©x00000000004805ca in FunctionB () 02 0PPEEPPBAR4EB5da AppA!FunctionB+220

#3 0x00000000004005da in FunctionA () 03 PPPOVPONRLB0eAse AppA!FunctionA+110

LLDB Commands

(11db) bt

frame #0: 0x000000020328982a Module FunctionD + offset
frame #1: 6x0000000203288a9c Module” FunctionC + 130
frame #2: 0x0000000104da3ea9 AppA’ FunctionB + 220
frame #3: 0x0000000104da3edb AppA’ FunctionA + 110

© 2023 Software Diagnostics Services

The difference from WinDbg (from Debugging Tools for Windows) here is that the return address is on
the same line for the function to return (except for FunctionD, where the address is the next instruction
to execute), whereas in WinDbg, it is for the function on the next line.

25

Thread Stack Trace (no symbols)

User Stack for LWP 1707

Symbol file App.sym

FunctionA 22000 - 23000
FunctionB 32000 - 33000

Return address FunctionC+138
8x00007fe9676bf300

Return address
‘9x00000000004005ca

(gdb) bt

#0 Ox00007fe9676bf48d in FunctionD ()
#1 Ox0eee7fe9676bf300 in FunctionC ()
#2 ©x000POPLBLB4BOSCca in ?? ()

#3 ©x00000PBLR4805da in ?? ()

Return address
‘8x60000800004805da

© 2023 Software Diagnostics Services

Here I'd like to show you why symbol files are important and what stack traces you get without them.
Symbol files just provide mappings between memory address ranges and associated symbol names like
the table of contents in a book. So in the absence of symbols, we are left with bare addresses that are
saved in a dump. For example, without App symbols, we have the output shown in the box on the right.

26

Exceptions (Access Violation)

Stack for LWP 3604 (TID)

libpthread.so (gdb) x <address>
@x<address>: Cannot access

Signal 11 (segmentation fault) memory at address @x<address>

stack for LWP 3685 (TID) _ WinDbg Commands

0:000> dp <address> L1
User‘ Space (PID 3694) <address> PPPRPPRPTPRRRRYPY?

NULL pointer exe

© 2023 Software Diagnostics Services

Now we talk about access violation exceptions. During the thread execution, it accesses various memory
addresses doing reads and writes. Sometimes memory is not present due to gaps in virtual address
space or different protection levels like read-only or no-execute memory regions. If a thread tries to
violate that, we get an exception that is also translated to a traditional UNIX signal. Certain regions are
forbidden to read and write, such as the first 64KB. If we have such an access violation there, then it is
called NULL pointer access. Note that any thread can have an exception (a victim thread in macOS). It
is also sometimes the case that code can catch these exceptions preventing a user from seeing error
messages. Such exceptions can contribute to corruption, and we call them hidden.

27

Exceptions (Runtime)

Stack for LWP 3714 (TID)

libpthread.so

libstdc++.s0

stack for LWP 3715 (TID)

User Space (PID 3714)

' throws exception

App

© 2023 Software Diagnostics Services

However, not all exceptions happen from invalid access. Many exceptions are generated by the code
itself when it checks for some condition, and it is not satisfied, for example, when the code checks a
buffer or an array to verify whether it is full before trying to add more data. If it finds it is already full,
the code throws an exception translated to SIGABRT. We would see that in one of our practice examples
when C++ code throws a C++ exception. Such exceptions are usually called runtime exceptions.

28

Pattern-Oriented Diagnostic Analysis

a common recurrent identifiable problem together with a set of
recommendations and possible solutions to apply in a specific context.

a set of indicators (symptoms, signs) describing a problem.

a common recurrent analysis technique and method
of diagnostic pattern identification in a specific context.

common names of diagnostic and diagnostic analysis
patterns. The same language for any operating system: Windows, macOS, Linux, ...

Problem Resolution

Information Collection Information Extraction Problem Identification Troubleshooting
(Scripts) =) (Checklists) = (Patterns) — Suggestions

Debugging Strategy

© 2023 Software Diagnostics Services

A few words about logs, checklists, and patterns. Core memory dump analysis is usually an analysis of
a text for the presence of diagnostic patterns. We run commands, they output text, and then we look at
that textual output, and when we find suspicious diagnostic indicators, we execute more commands.
Here pattern and command checklists can be very useful.

29

30

Core Dump Collection

31

32

Part 2: Core Dump Collection

© 2023 Software Diagnostics Services

Here I'd like to show you how to collect core dumps because this option is switched off on Linux by
default.

33

Enabling Collection (Processes)

Temporary for the current user

$ ulimit -c unlimited

Permanent for every user except root
Edit the file:
Add or uncomment the line:
soft core wunlimited
To limit root to 1GB, add or uncomment this line:

* hard core 1000000

© 2023 Software Diagnostics Services

On some systems, a process core dump is stored in the process's working directory. On other systems,
you need to verify what is a configured path. We see that in the following slides.

34

Generation Methods (Processes)

Kill (requires ulimit)

$ kill -s SIGQUIT PID
$ kill -s SIGABRT PID

gcore

$ gcore [-o0 filename] PID

procdump

© 2023 Software Diagnostics Services

Procdump
https://github.com/Sysinternals/ProcDump-for-Linux

35

https://github.com/Sysinternals/ProcDump-for-Linux

Finding Core Dumps (Processes)

Check the current core dump directory and naming
pattern

$ cat /proc/sys/kernel/core pattern

Search

$ sudo find / -name core.*

Further information

© 2023 Software Diagnostics Services

Core man page
https://man7.org/linux/man-pages/manb5/core.5.html

36

https://man7.org/linux/man-pages/man5/core.5.html
https://man7.org/linux/man-pages/man5/core.5.html

Enabling Collection (Kernel)

Uncompressed kernel image with symbols:

Debian: $ sudo apt install linux-image-$(uname -r)-dbg

Ubuntu: (Where to
get debug symbols for kernel X?)

Kdump (and kexec):

$ sudo apt install kdump-tools kexec-tools

© 2023 Software Diagnostics Services

Ubuntu
https://wiki.ubuntu.com/Kernel/Systemtap

37

https://wiki.ubuntu.com/Kernel/Systemtap

Generation Methods (Kernel)

Manual

$ sudo echo 1 > /proc/sys/kernel/sysrq
$ sudo echo ¢ > /proc/sysrqg-trigger

Kernel modules

© 2023 Software Diagnostics Services

38

Finding Core Dumps (Kernel)

Core dumps

/var/crash

vmlinux

/usr/1lib/debug

© 2023 Software Diagnostics Services

39

Enabling Analysis (Kernel)

Install crash tool (depends on distribution)

sudo apt install crash

Compile crash tool from source

b git clone
sudo apt install bison
cd crash
make

sudo make install

© 2023 Software Diagnostics Services

Crash tool
https://github.com/crash-utility /crash.git

40

https://github.com/crash-utility/crash.git
https://github.com/crash-utility/crash.git

x64 Disassembly

41

42

Part 3: x64 Disassembly

© 2023 Software Diagnostics Services

Now we come to a brief overview of relevant x64 disassembly. We only cover what we would see in the
exercises.

43

CPU Registers (x64)

RAX > EAX 5 AX o {AH, AL}
ALU: RAX, RDX

Counter: RCX

Merory copy: S (sc). DI (61

Stack: RSP, RBP WinDbg Commands

Next instruction: RIP

New: R8 — R15, Fx(D|W|B)

© 2023 Software Diagnostics Services

There are usual 32-bit CPU register names, such as EAX, that are extended to 64-bit names, such as
RAX. Most of them are traditionally specialized, such as ALU, counter, and memory copy registers.
Although, now they all can be used as general-purpose registers. There is, of course, a stack pointer,
RSP, and, additionally, a frame pointer, RBP, that is used to address local variables and saved
parameters. It can be used for backtrace reconstruction. In some compiler code generation
implementations, RBP is also used as a general-purpose register, with RSP taking the role of a frame
pointer. An instruction pointer RIP is saved in the stack memory region with every function call, then
restored on return from the called function. In addition, the x64 platform features another eight
general-purpose registers, from R8 to R15.

44

Instructions: registers (x64)

Opcode SRC,

Examples:

$0x10,
%rsp,
$0x10,
%ecx,
*%rdx

$0x30,

H OH H HF H HF OH H R

ox10 -

RSP -

R10 + 0x10 - R10
ECX * EDX -

PUSH RIP; &func - RIP
RSP-0x30 -

make a room for local variables

© 2023 Software Diagnostics Services

This slide shows a few examples of CPU instructions involving operations with registers, such as moving
a value and doing arithmetic. The direction of operands is opposite to the Intel x64 disassembly flavor
if you are accustomed to WinDbg on Windows. It is possible to use the Intel disassembly flavor in GDB,
but we opted for the default AT&T flavor in line with our book Foundations of Linux Debugging,

Disassembly, and Reversing.

45

Memory and Stack Addressing

Lower addresses

RSP-0x20 -»
RSP-0x18 -
RSP-0x10 -
RSP-0x8
RSP

RSP+0x8
RSP+0x10 -
RSP+0x18 -
RSP+0x20 -

RBP-0x260
RBP-0x18
RBP-0x10
RBP-0x8
RBP
RBP+0x8
RBP+0x10
RBP+0x18
RBP+0x20

¥

Stack grows
)

9-

Higher addresses

© 2023 Software Diagnostics Services

Before we look at operations with memory, let’s look at a graphical representation of memory
addressing. A thread stack is just any other memory region, so instead of RSP and RBP, any other
register can be used. Please note that stack grows towards lower addresses, so to access the previously
pushed values, you need to use positive offsets from RSP.

46

Instructions: memory load (x64)

Opcode Offset(SRC),
Opcode

Examples:

ox1e(%rsp), value at address RSP+@x10 -
-0x1e(%rbp), value at address RBP-0x10 -
(%rax), RDX + value at address RAX -
value at address RSP -
RSP + 8 -
0x20(%rbp), address RBP+0x20 -

© 2023 Software Diagnostics Services

Constants are encoded in instructions, but if we need arbitrary values, we must get them from memory.
Round brackets show memory access relative to an address stored in some register.

47

Instructions: memory store (x64)

Opcode SRC,
Opcode SRC|

Examples:

mov %rcx, RCX - value at address
addl $1, 1 + 32-bit value at address RAX -
32-bit value at address
push %rsi RSP - 8 »
RSI -» value at address
1 + value at address RCX -
value at address

© 2023 Software Diagnostics Services

Storing is similar to loading.

48

Instructions: flow (x64)

Opcode

Examples:

jmp
(goto

call RSP - 8 -
Ox10493fcl4: 0x10493fcl14 » value at address

=>

(goto

© 2023 Software Diagnostics Services

Goto (an unconditional jump) is implemented via the JMP instruction. Function calls are implemented
via CALL instruction. For conditional branches, please look at the official documentation provided in
the References slide. We don’t use these instructions in our exercises.

49

Function Call and Prolog (x64)

Lower addresses

void proc(int pl, long p2);
mov $@§1, %edi i & F RSP-6x20 -
mov $0x2, %rsi
call proc

addr:

RBP-0x20
RBP-0x18

¥

RSP-0x10 -
RSP-0x8

+

void proc2();
void proc(int p1, long p2) {

RSP
long local = @;
proc2(); RSP+0x8

#} RSP+0x10 -

proc:
push %rbp RSP+0x18 -
mov %rsp,
sub $0x8, RSP+0x20 -
mov $0,
call

adr2:

RBP
RBP+0x8
RBP+0x10
RBP+0x18
RBP+0x20

Stack grows

+

+

Higher addresses

© 2023 Software Diagnostics Services

When a function is called from the caller, a callee needs to do certain operations to make room for local
variables on the thread stack. There are different ways to do that, and the assembly language code on
the left is one of them. I use a different color in the diagram on the right to highlight the updated RSP
and RBP values before procZ2 is called. For simplicity of illustration, I only use 64-bit values.

50

Stack Trace Reconstruction (x64)

Lower addresses

func + 16

(gdb) bt
func + 16
foo + 200
bar + 80
main + 300

return address foo + 200

return address bar + 80

return address main + 300

Higher addresses

© 2023 Software Diagnostics Services

You may have noticed on the previous diagram that the new RBP points to the RBP of the caller, and
below the previous RBP is the return address of the caller. So, if you know the RBP value, you can
reconstruct the stack trace if the compiler follows the preceding function prolog convention.

51

52

ARM64 Disassembly

53

54

Part 4: ARM64 Disassembly

© 2023 Software Diagnostics Services

Now we come to a brief overview of relevant ARM64 disassembly. We only cover what we would see in
the exercises.

55

CPU Registers (ARM64)

X0 — X28,

Stack: SP, X29 (FP)

Next instruction: PC

Link register: X30 (LR)

Zero register: XZR, _

WinDbg Commands

64-bit floating point registers DO — D31

© 2023 Software Diagnostics Services

There are 31 general registers from X0 and X30, with some delegated to specific tasks such as
addressing stack frames (Frame Pointer, FP, X29) and return addresses, the so-called Link Register
(LR, X30). When you call a function, the return address of a caller is saved in LR, not on the stack as in
Intel/AMD x64. The return instruction in a callee will use the address in LR to assign it to PC and resume
execution. But if a callee calls other functions, the current LR needs to be manually saved somewhere,
usually on the stack. There’s Stack Pointer, SP, of course. To get zero values, there’s the so-called Zero
Register, XZR. All X registers are 64-bit, and 32-bit lower parts are addressed via the W prefix. The
References slide provides links to the ARM64 instruction set architecture. Next, we briefly look at some
aspects related to our exercises.

56

Instructions: registers (ARM64)

Opcode 5 SRC, SRC,

Examples:

, #16 i « 16 (0x10)
, Sp [/ « SP
, X2, #16 [/ « X2+16 (0x10)
a X2, X3 1/ « X2*X3
//
/i
// LR « PC+4; PC « &func
[/ « SP-48 (-0x30)

// make a room for local variables

© 2023 Software Diagnostics Services

This slide shows a few examples of CPU instructions that involve operations with registers, for example,
moving a value and doing arithmetic. The direction of operands is the same as in the Intel x64
disassembly flavor if you are accustomed to WinDbg on Windows. It is equivalent to an assignment.
BLR is a call of some function whose address is in the register. BL means Branch and Link.

57

Lower addresses

SP-0x20
SP-0x18
SP-0x10
SP-0x8
SP
SP+0x8
SP+0x190
SP+0x18
SP+0x20

Memory and Stack Addressing

X29-0x20
X29-0x18
X29-0x10
X29-0x8
X29
X29+0x8
X29+0x10
X29+0x18
X29+0x20

Higher addresses

© 2023 Software Diagnostics Services

Before we look at operations with memory, let's look at a graphical representation of memory
addressing. A thread stack is just any other memory region, so instead of SP and X29 (FP), any other
register can be used. Please note that the stack grows towards lower addresses, so to access the
previously pushed values, you need to use positive offsets from SP.

58

Instructions: memory load (ARMG64)

Opcode , [SRC, Offset]
Opcode , [SRC], Offset // Postincrement

Examples:

, [sp] // < value at address SP+9
, [x29, #-8] // < value at address X29-0x8
) , [sp, #32] // < value at address SP+32 (©x20)
// « value at address SP+40 (©0x28)
,» [sp], #16 // « value at address SP+@
// < value at address SP+8
// SP « SP+16 (0x10)

© 2023 Software Diagnostics Services

Constants are encoded in instructions, but if we need arbitrary values, we must get them from memory.
Square brackets are used to show memory access relative to an address stored in some register. There’s
also an option to adjust the value of the register after load, the so-called Postincrement, which can be
negative. As we see later, loading pairs of registers can be useful.

59

Instructions: memory store (ARM64)

Opcode SRC, SRC,,

Opcode SRC, SRC,, [DST, Offset]! // Preincrement

Examples:

X0, X0 -» value at address
X0, x0 - value at address
x29, x30, x29 -» value at address
x30 -» value at address
x29, x30, SP « SP-16 (-0x10)
-» set value at address SP
-» set value at address SP+8

© 2023 Software Diagnostics Services

Storing operand order goes in the other direction compared to other instructions. There’s a possibility
to Preincrement the destination register before storing values.

60

Instructions: flow (ARM64)

Opcode

Examples:

adrp , 0x420000 // < Ox420000

// PC «

// (goto)
br x17 // PC « the value of X17

0x10493fcl4: // PC == 0x10493fcl4

bl // LR « PC+4 (0x10493fc18)
// PC «
// (goto

© 2023 Software Diagnostics Services

Because the size of every instruction is 4 bytes (32 bits), it is only possible to encode a part of a large
4GB address range, either as a relative offset to the current PC or via ADRP instruction. Goto (an
unconditional branch) is implemented via the B instruction. Function calls are implemented via the BL
(Branch and Link) instruction. For conditional branches, please look at the official documentation
provided in the References slide. We don’t use these instructions in our exercises.

61

Function Call and Prolog (ARMG64)

// void proc(int pl, long p2);
mov we, #exl

mov x1, #Ox2

bl proc

// void proc2();

// void proc(int pl, long p2) {
// long local = @;

// proc2();

/1 }

proc:

stp x29, x30, [:=p,

mov , Sp

Stack grows

Lower addresses

SP-0x18
SP+0x10
SP-0x8
SP
SP+0x8
SP+0x19
SP+0x18

X29-0x18

X29-0x8
X29
X29+0x8
X29+0x10
X29+0x18

str zxr, [, #16]

bl proc2 SP+0x20 X29+0x20

Higher addresses

© 2023 Software Diagnostics Services

When a function is called from the caller, a callee needs to do certain operations to make room for local
variables on the thread stack and save LR if there are further calls in the function body. There are
different ways to do that, and the assembly language code on the left is one of them. I use a different
color in the diagram on the right to highlight the updated SP and X29 (FP) values before proc2 is called.
Please also note an example of zero register usage. For simplicity of illustration, [only use 64-bit values.

62

Stack Trace Reconstruction (ARM64)

Lower addresses

func + 16,
== preturn address foo + 200

(gdb) bt

func + 16
foo + 200 return address foo + 200

bar + 8@
main + 300

return address bar + 80

return address main + 300

Higher addresses

© 2023 Software Diagnostics Services

You may have noticed on the previous diagram that the new X29 (FP) points to the X29 of the caller,
and below the previous X29 is the return address of the caller. So, if you know either the return address
in LR or X29 you can reconstruct the stack trace if the compiler follows the preceding function prolog
convention.

63

64

Practice Exercises

65

66

Part 5: Practice Exercises

© 2023 Software Diagnostics Services

Now we come to practice. The goal is to show you important commands and how their output helps
recognize patterns of abnormal software behavior.

67

Links

Memory Dumps:

Included in Exercise O

Exercise Transcripts:

Included in this book

68

© 2023 Software Diagnostics Services

Exercise O

Goal: Install GDB and check if GDB loads a core dump correctly

Goal: Install WinDbg Preview or Debugging Tools for Windows, or
pull Docker image, and check that symbols are set up correctly

Patterns: Stack Trace; Incorrect Stack Trace

© 2023 Software Diagnostics Services

We have three similar exercise sets: x64 Linux core dumps/GDB, ARM64 Linux core dumps/GDB, and
ARM64 Linux core dumps/WinDbg.

69

Exercise 0 (x64, GDB)

Goal: Install GDB and check if GDB loads a core dump correctly.
Patterns: Stack Trace; Incorrect Stack Trace.

1. Download core dump files if you haven’t done that already and unpack the archives:

https://www.patterndiagnostics.com/Training/ALCDA/ALCDA-V2-Dumps.tar.gz

2. Download and install the latest version of GDB. For WSL2 Debian, we used the following commands:

$ sudo apt install build-essential
$ sudo apt install gdb

On our RHEL-type system, we installed the tools and GDB via:

$ sudo yum group install "Development Tools"

$ sudo yum install gdb

3. Verify that GDB is accessible and then exit it (@ command):

$ gdb

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word".

(gdb) q
$
4. Load core.App0 dump file and App0O executable from the x64/App0 directory:

$ cd ALCDA2/x64/App®
~/ALCDA2/x64/App0$ gdb -c core.App@® -se Appo

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

70

https://www.patterndiagnostics.com/Training/ALCDA/ALCDA-V2-Dumps.tar.gz

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from App@...(no debugging symbols found)...done.
[New LWP 4561]

Core was generated by ~./App@'.

Program terminated with signal SIGABRT, Aborted.

#0 0x00000000004075cb in raise ()

5. Verify that the stack trace (back trace) is shown correctly with symbols:

(gdb) bt

#0 ©x00000000004075cb in raise ()
#1 0©x0000000000401205 in abort ()
#2 ©x0000000000401b56 in bar ()
#3 ©x0000000000401b64 in foo ()
#4 ©x0000000000401b80 in main ()

6. We exit GDB.

(gdb) q

~/ALCDA2/x64/App0$

71

Exercise 0 (A64, GDB)

Goal: Install GDB and check if GDB loads a core dump correctly.
Patterns: Stack Trace; Incorrect Stack Trace.

1. Download core dump files if you haven’t done that already and unpack the archives:

https://www.patterndiagnostics.com/Training/ALCDA/ALCDA-V2-Dumps.zip
https://www.patterndiagnostics.com/Training/ALCDA/ALCDA-V3-Dumps.tar.gz

2. Download and install the latest version of GDB. For Ubuntu, we used the following commands:

$ sudo apt install build-essential
$ sudo apt install gdb

3. Verify that GDB is accessible and then exit it (Q command):

$ gdb

GNU gdb (Ubuntu 12.1-@ubuntul~22.04) 12.1

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word".
(gdb)

(gdb) q
$

4. Load core.31918 dump file and App0 executable from the A64/App0 directory:
$ cd ALCDA2/A64/App@
~/ALCDA2/A64/App0$ gdb -c core.31918 -se App®

GNU gdb (Ubuntu 12.1-@ubuntul~22.04) 12.1

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:
<https://www.gnu.org/software/gdb/bugs/>.

72

https://www.patterndiagnostics.com/Training/ALCDA/ALCDA-V2-Dumps.zip
https://www.patterndiagnostics.com/Training/ALCDA/ALCDA-V3-Dumps.tar.gz

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from App@...

(No debugging symbols found in App®)

warning: Can't open file /home/opc/ALCDA2/App@/App® during file-backed mapping note processing
[New LWP 31918]

Core was generated by " ./App@'.

Program terminated with signal SIGABRT, Aborted.

#0 0x0000000000415000 in raise ()

5. Verify that the stack trace (back trace) is shown correctly with symbols:

(gdb) bt

#0 0x0000000000415000 in raise ()
#1 0x0000000000402808 in abort ()
#2 0x0000000000401d24 in bar ()
#3 0x0000000000401d30 in foo ()
#4 0x0000000000401d4c in main ()

6. We exit GDB.

(gdb) q

~/ALCDA2/A64/App0$

73

Exercise 0 (A64, WinDbg Preview, WinDbg, Docker)

Goal: Install WinDbg Preview or Debugging Tools for Windows, or pull Docker image, and check that symbols are set
up correctly.

Patterns: Stack Trace; Incorrect Stack Trace.
1. Download memory dump files if you haven’t done that already and unpack the archives:

https://www.patterndiagnostics.com/Training/ALCDA/ALCDA-V2-Dumps.zip

2. Install WinDbg Preview from Microsoft Store. Run WinDbg Preview app.

Pl WinDbg 1.2205.18001.0 — 0 X

H... Vi... Br... Ti... M... Sc... So... M... Co... A
{'}" Step Out {'} Step Out Back) Restart J ” =1 o

Step Into Step Into Back B Stop Debuggin
Break Go ("} step ("} step Go . 99 Settings |Source| Assembly Local Feed
+ {}" Step Over *{} Step Over Back pack Detach Help~ H
Flow Control Reverse Flow Control End Preferences Help
s :
i
[
3
o
~
el
@
Q
@
(%]
<
m
=
0
<
o
Debuggee not connected
Watch v 2 X ||Breakpoints > % X

Name Id Location Line

| Add new watch expression |

K1 D]

Locals | Watch Threads Stack | Breakpoints

74

https://www.patterndiagnostics.com/Training/ALCDA/ALCDA-V2-Dumps.zip

Open \ALCDA2\A64\AppO\core.31918:

- n . . . -
WinDbg 1.2205.18001.0 O

©

Start debugging

Start debugging

“ Recent =| You haven't
Save workspace as?
debugged
Open source file /=] Launch executable anythi ng
SFENEE & Launch executable (advanced) receﬂtly.
Settings Supports Time Travel Debugging S_ta r_t 3
Attach to process . -
About i Supports Time Travel Debugging SESSIoN Wlth
: one of the
Bt = Open dump file .
Opens a crash dump file. (Ctrl + D) Optlons to
& Open trace file the left.

-h:; Connect to remote debugger

'. Connect to process server

u Attach to kernel

75

We get the dump file loaded:

F#l C:\ALCDA2\AB4\AppO\core.31918 - WinDbg 1.2205.18001.0 - O X

“ H... Vi... Br... Ti... M... Sc... So... M... Co... A
I I . {'}" Step Out {'} Step OutBack <) Restart \,—‘I y onol o
| . | ! 1oiol

{*} Step Into {*} Step Into Back . M Stop Debugging

Break Go o Settings |Source| Assembly Local Feed|»
« {} StepOver *¥{} Step OverBack g, & Detach Help~ H
Flow Control Reverse Flow Control End Preferences Help
md Lir VallUagallull Sulliimgly E
Response Time (ms) Location
Deferred sry*

Symbol search path is: srv*

Executable search path is:

Generic Unix Version @ UP Free ARM 64-bit (AArché4)
Machine Name:

System Uptime: not available

Process Uptime: not available

0 Aowsapy siaysibay Alquiessesiq

(7cae.7cae): Signal SIGABRT code SI_TKILL (Sent by tkill system call) originating

App0+0x15000:
0000000 PR4A15RRe P ??? L
Kl [*]
0:000> | |
Watch ¥ s X | |Breakpoints > s X
Name Id Location Line

| Add new watch expression |

d []

Locals | Watch Threads Stack | Breakpoints

76

5. Type .sympath+ <path> command to set symbol path:

Pl C\ALCDA2\AB4\AppO\core.31918 - WinDbg 1.2205.18001.0 - O X

H... Vi... Br... Ti... M... Sc... So... M... Co... A
I I {'}" Step Out {} Step Out Back) Restart d / onol o
J pe 10101

{*} Step Into {*} Step Into Back - M Stop Debugging

Break Go o Settings |Source| Assembly Local Feed
. {} StepOver *{}Step OverBack p,x 4 Detach Help~ H
Flow Control Reverse Flow Control End Preferences Help
Command X v
= = e w O ar y E
Response Time (ms) Location
Deferred %

Symbol search path is: srv*

Executable search path is:

Generic Unix Version @ UP Free ARM 64-bit (AArch64)
Machine Name:

System Uptime: not available

Process Uptime: not available

0 Aoway sieysibay Ajquassesiq

(7cae.7cae): Signal SIGABRT code SI_TKILL (Sent by tkill system call) originating

App©+0x15600:

0000PPRR 00415000 ?? ??? L

Kl []
0:000> .sympath+ C:\ALCDA2\A64\App@ |
Watch v ¢ X ||Breakpoints v & X

Name Id Location Line

| Add new watch expression |

qd []

Locals | Watch Threads Stack | Breakpoints

77

6. Type .reload command to reload symbols:

FHl C:\ALCDA2\AB4\AppO\core.31918 - WinDbg 1.2205.18001.0 - O X

“ H... Vi... Br... Ti... M... Sc... So... M... Co... A
I I {'} Step Out {'} Step Out Back) Restart \,—‘l y onol o
b 10101

{*} Step Into {*} Step Into Back . M Stop Debugging

Break Go o Settings [Source| Assembly Local Feed
« {} StepOver *¥{}Step OverBack pg,cx & Detach Help~ H
Flow Control Reverse Flow Control End Preferences Help

:

(7cae.7cae): Signal SIGABRT code SI TKILL (Sent by tkill system call) originating[:
App9+0x15000:

0000000 00415000 ?? ???

0:000> .sympath+ C:\ALCDA2\A64\App®

Symbol search path is: srv*;C:\ALCDA2\A64\App@

Expanded Symbol search path is: cache*;SRV*https://msdl.microsoft.com/download/sy

0 AMowsa sia3sibay Aquiassesiq

Response Time (ms) Location

Deferred srv*

OK C:\ALCDA2\A64\App@

4k WARNING: Unable to verify timestamp for App®©

Kl |]

e:eea>|.reload |

Watch v X X | |Breakpoints v 5 X
Name Id Location Line

| Add new watch expression |

l []

Locals | Watch Threads Stack | Breakpoints

78

7. Type k command to verify the correctness of the stack trace:

g C\ALCDA2\AB64\AppO\core.31918 - WinDbg 1.2205.18001.0 - O X

“ H... Vi... Br... Ti... M... Sc... So... M... Co... A
I I {'} step Out {'} Step Out Back) Restart \j y ol o
) . | e 10101

{*} Step Into {*} Step Into Back - M Stop Debugging

Break Go o Settings |Source| Assembly Local Feed
. {} SstepOver *{}Step OverBack g,k 4 Detach Help~ H
Flow Control Reverse Flow Control End Preferences Help
Command X v
DETETTED STV |Z|
OK C:\ALCDA2\A64\App@

*x% WARNING: Unable to verify timestamp for App®
0:000> .reload

*x% WARNING: Unable to verify timestamp for App®
e sk ok sk ok ok ke ke ok sk kok Symbol Loading Error Summar-y 2k sk ok ook oK ok ok ok ok ok ok k ok

Module name Error
App@ The system cannot find the file specified

0 fioway siaysibay Ajquisssesiq

You can troubleshoot most symbol related issues by turning on symbol loading diag
You should also verify that your symbol search path (.sympath) is correct.

Kl | []
0:000> k |
Watch v s X ||Breakpoints > X

Name Id Location Line

| Add new watch expression |

] Dl

Locals | Watch Threads Stack | Breakpoints

79

P C:\ALCDA2\A64\AppO\core.31918 - WinDbg 1.2205.18001.0 - O X

H... Vi... Br... Ti... M... Sc... So... M... Co... ~
II {'}" Step Out {'} Step Out Back Restart =L o
| </>

{*} Step Into {*} Step Into Back - M Stop Debugging

Break Go o Settings [Source| Assembly Local Feed
« {} Step Over {} Step Over Back pac A Detach Help~ H
Flow Control Reverse Flow Control End Preferences Help
=8l Command X =
g _AUPY e by:lLt'lll calrnioo FLrga Cre L1l DPELJ.IJ.CU
: [+]
o You can troubleshoot most symbol related issues by turning on symbol loading diag
= You should also verify that your symbol search path (.sympath) is correct.
& e:000> k
% # Child-SP RetAddr Call Site
A 90 00eeffff e33c7b90 0ROV V402808 App@!gsignal+0x3c
=z 0l @eeeffff e33c7b90 ©0ROOELL ©401d24 (T) App@!abort+0x128
3 92 00ROffff e33c7ced ©OLOOOLO ©0401d30 App@!bar+0x8
3 93 @eeeffff e33c7cfe 00OLRVOLL BR401d4c App@!foo+@xc
© 94 0eeeffff e33c7d00 0OOLOERO ©040205C App@!main+ex14
95 0eeeffff e33c7d20 00V BB401bbc App@! libc_start_main+0x304
06 00RLOffff e33c7e80 PPV PPOOLOBL App@!start+ex4dc
Kl |]
9:000> | |
Watch v £ X | Breakpoints v X
Name Id Location Line

| Add new watch expression |

KT]

Locals | Watch Threads Stack | Breakpoints
8. The output of command should be this:
0:000> k
Child-SP RetAddr Call Site
00 00POffff e33c7b90 ©0VVVVVO 00402808 App@!gsignal+Ox3c
01 0000ffff e33c7b90 00000000 ©0401d24 (T) Appo!abort+0x128
02 0000ffff e33c7ced 00000000 ©0401d30 App@!bar+0x8
03 000Offff e33c7cfO 000000 ©R401d4c App@ ! foo+0xc
04 000Offff e33c7d00 00000V ©040205C App@!main+0x14
05 000effff e33c7d20 0000000 VO401bbc App@! libc_start_main+0x304
06 000Offff e33c7e80 000OOOOO VOOV App@!start+0x4c

80

If it has this form below with large offsets, then your symbol files were not set up correctly - Incorrect Stack Trace
pattern:

0:000> k

Child-SP RetAddr Call Site

00 0000ffff e33c7b90 00000V 00401d24 App0+0x15000
01 000offff e33c7bad 0000 00401d30 App0+0x1d24

02 0000ffff e33c7cf0 0000VVOO ©O401d4c App0+0x1d30

03 0000ffff e33c7d00 000VVVOO ©O40205C App9+0x1dac

04 0000ffff e33c7d10 00000000 V0OV App0+0x205¢c

9. [Optional] Download and install the recommended version of Debugging Tools for Windows (See windbg.org
for quick links, WinDbg Quick Links \ Download Debugging Tools for Windows). For this part, we use WinDbg
10.0.22000.194 from Windows 11 SDK version 10.0.22000. When installing it, choose Debugging Tools for Windows.

10. Launch WinDbg from Windows Kits \ WinDbg (X64) or Windows Kits \ WinDbg (X86). For uniformity, we use
the X64 version of WinDbg throughout the exercises.

@ WinDbg:10.0.22000.194 AMD64 - O X

File Edit View Debug Window Help
M6 B Bl B O @ E OB B [8

Ln 0, Col 0 Sys 0:<None> Proc 000:0 Thrd 000:0 ASM OVR CAPS NUM

81

http://windbg.org/

11. Open \ALCDA2\A64\AppO\core.31918:

#
@ WinDbg:10.0.22000.194 AMD64 - O X
Eile Edit View Debug Window Help

r

Open Source File... Ctrl+0 S) [eel [o1
Close Current Window Ctrl+F4
Open Executable... Ctrl+E
Attach to a Process... F6
Connect to Remote Session... Ctrl+R

Connect to Remote Stub...

Kernel Debug... Ctrl+K
Symbol File Path ... Ctrl+S
Source File Path ... Ctrl+P
Image File Path ... Ctrl+
Open Workspace... Ctrl+W

Save Workspace

Save Workspace As...
Clear Workspace...

Delete Workspaces...
Open Workspace in File...

Save Workspace to File...

Map Network Drive...)

Sys 0:<None> Proc 000:0 Thrd 000:0 ASM OVR CAPS NUM

Disconnect Network Drive...

Recent Files >

Exit Alt+F4

82

12. We get the dump file loaded:

@ Dump C\ALCDA2\A64\AppO\core.31918 - WinDbg:10.0.22000.194 AMD64 - O X
File Edit View Debug Window Help

Command - Dump C\ALCDA2\A64\AppO\core.31918 - WinDbg:10.0.22000.194 AMDS... O X

Loading Dump File [C:\ALCDAZ\A64\AppO\core.31918]
64-bit machine not using 64-bit APT

Ea e e o b i o Path Validation Sumary E e e e i e e e i e o

Time (ms) Locatlion
Srv*

Symbol search path is: srv*

Executable search path is:

Generic Unix Version 0 UP Free ARM 64-bit (RArché64)

Machine Name:

System Uptime: not available

Process Uptime: not available

(7cae.7cae): Signal SIGABRT code SI_TKILL (Sent by tkill system call) originating from

**%% WARNING: Unable to verify timestamp for AppO
App0+0x15000:
00000000°00415000 272 227

Ln 0, Col 0 Sys O:Target Proc 000:7cae Thrd 000:7cae ASM OVR CAPS NUM

83

13. Type .sympath+ <path> command to set symbol path:

Com mand - Dump C\ALCDA2\A64\AppO\core.31918 - WinDbg:10.0.22000.194 AMD64 a X

Copyright (c¢) Microsoft Corporation. A11 rights reserved.

Loading Dump File [C:\ALCDA2\A64\AppO\core.31918]
64-bit machine not using €4-bit APT

o i e e e e Path Validation Sumary e e
Response Time (ms) Location
Deferred STV
Symbol search path is: srv*

Executable search path is:

Generic Unix Version 0 UP Free ARM 64-bit (AArché4)
Machine Name:

System Uptime: not available

Process Uptime: not available

(7cae.7cae): Signal SIGABRT code SI TKILL (Sent by tkill system call) originating from PID
*#%% WARNING: Unable to verify timestamp for App0O

App0+0x15000:

00000000°00415000 2?2 2272

0:000> | sympath+ C:\ALCDA2\A&4\App0

14. Type .reload command to reload symbols:

Command - Dump CAALCDA2\AB4\AppO\core.31918 - WinDbg:10.0.22000.194 AMD64 O X

Symbol search path is: srv*

Executable search path is:

Generic Unix Version 0 UP Free ARM 64-bit (AArchéd)
Machine Name:

System Uptime: not available

Process Uptime: not available

(7cae.7cae): Signal SIGABRT code SI TKILL (Sent by tkill system call) originating from PID
**% WARNING: Unable to verify timestamp for App0O

App0+0x15000:

00000000°00415000 2?7 222

0:000> .sympath+ C:\ALCDA2\A64\AppO

Symbol search path is: srv*;C:\ALCDAZ\A&4\AppO

Expanded Symbol search path is: cache*;SRV*https://msdl.microsoft.com/download/symbols;c:\a

FkAEAEFFFAFFHF Path validation summary #xF*F%F &k xkxH*

Response Time (ms) Location
Deferred sSTV*®
OK C:\ALCDA2\AGE4\AppO

*#%% WARNING: Unable to verify timestamp for App0

0:000> |.reload

84

15. Type k command to verify the correctness of the stack trace:

Com mand - Dump CA\ALCDA2\A64\AppO\core.31918 - WinDbg:10.0.22000.194 AMD64 ad X

0:000> .sympath+ C:\ALCDA2\AGA\AppO
Symbol search path is: srv*;C:\ALCDA2\A64\AppO
Expanded Symbol search path is: cache*;SRV*https://msdl.microsoft.com/download/symbols;c:\a

kkhkkkkkkkxkkk**x Pgth Validation summary E e e e

Response Time (ms) Location
Deferred SrvV*
OK C:\ALCDA2\A64\App0

*#%% WARNING: Unable to verify timestamp for App0O
0:000> .reload

Unable to load image /home/opc/ALCDA2/Rpp0/App0, Win32 error On2
**%* WARNING: Unable to verify timestamp for App0

FEkEE kI A EFTFREL Symbol Loading Error Summary FEhEFIEEIT T T ET XK FTF
Module name Error

App0 The system cannot find the file specified

You can troubleshoot most symbol related issues by turning on symbol loading diagnostics (!
You should also verify that your symbol search path (.sympath) is correct.

0:000> [k

Command - Dump C\ALCDA2\A64\AppO\core.31918 - WinDbg:10.0.22000.194 AMD64 O X
Deferred srv*

OK C:\ALCDA2\AG4\App0

**%% WARNING: Unable to verify timestamp for App0
0:000> .reload

Unable to load image /home/opc/ALCDAZ/App0/App0, Win32 error 0On2
*%% WARNING: Unable to verify timestamp for AppO

o i e i e e e i Symbol Loading Error Summary e e e e e
Module name Error
App0 The system cannot find the file specified

You can troubleshoot most symbol related issues by turning on symbol loading diagnostics
You should also verify that your symbol search path (.sympath) is correct.
0:000> k

Child-sP RetAddr Call Site
00 0000ffff e33cThb90 00000000°00402808 App0!gsignal+0x3c
01 0000ffff’e33c7b90 00000000°00401d24 (T) App0!abort+0x128
02 0000f££ff'e33cTce0 00000000°00401d30 App0!bar+0x8
03 0000Efff e33cTcf0O 00000000°00401d4c App0! foo+0xc
04 0000ffff e33c7d00 00000000°0040205¢ App0!main+0x14
05 0000ffff‘e33¢c7d20 00000000 00401bbc 2pp0! libc start main+0x304
06 0000ffff e33c7e80 00000000°00000000 App0!start+0x4c

——
0:000> |

85

16. [Optional] If you prefer using Docker image with WinDbg and symbol files included, follow these steps
below.

c:\ALCDA2>docker pull patterndiagnostics/windbg:10.0.22000.194-wsl
10.0.22000.194-wsl: Pulling from patterndiagnostics/windbg

8f616e6e9eec: Pull complete

b@3bbc71f925: Pull complete

4c7d8699f10d: Pull complete

2c76fbacfcb8: Pull complete

0692b7e8acd8: Pull complete

2ced617bc74f: Pull complete

Digest: sha256:ad644af7ff34dac06dd89f6063b047a82865d0027745bFc85210ea62eld2e365
Status: Downloaded newer image for patterndiagnostics/windbg:10.0.22000.194-wsl
docker.io/patterndiagnostics/windbg:10.0.22000.194-wsl

c:\ALCDA2>docker run -it -v C:\ALCDA2:C:\ALCDA2 patterndiagnostics/windbg:10.0.22000.194-wsl
Microsoft Windows [Version 10.0.20348.288]
(c) Microsoft Corporation. All rights reserved.

C:\WinDbg>windbg.bat C:\ALCDA2\A64\AppO\core.31918

Microsoft (R) Windows Debugger Version 10.0.22000.194 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\ALCDA2\A64\App@\core.31918]
64-bit machine not using 64-bit API

3k 3k 3k 3k 3k 3k 3k >k 3k >k sk k 3k path Validation Summary 3k 3k 3k >k 3k 3k ok >k ok >k ok sk ok k
Response Time (ms) Location
OK

Symbol search path is:

Executable search path is:

Generic Unix Version © UP Free ARM 64-bit (AArché4)
Machine Name:

System Uptime: not available

Process Uptime: not available

(7cae.7cae): Signal SIGABRT code SI_TKILL (Sent by tkill system call) originating from PID 7caeUnable to
load image /home/opc/ALCDA2/App@/App®, Win32 error 0n2

*** WARNING: Unable to verify timestamp for App®

App0+0x15000:

00000000 00415000 ?? ???

0:000> .sympath+ C:\ALCDA2\A64\App®
Symbol search path is: .;C:\ALCDA2\A64\App©
Expanded Symbol search path is: .;c:\alcda2\a64\app®

*kkkkkkxkxkxkk*k pPpath validation summary 3k 3k 3k >k 3k 3k 3k %k >k 3k %k %k %k

Response Time (ms) Location
oK 0
0K C:\ALCDA2\A64\App®

0:000> .reload

Unable to load image /home/opc/ALCDA2/App@/App@, Win32 error 0On2
*** WARNING: Unable to verify timestamp for App®

3k 3k 3k 5k >k 5k sk ok sk ok sk k sk Symbol Loading Error SUmmaPy 3k >k sk sk sk sk sk sk ok sk ok ok k
Module name Error
App© The system cannot find the file specified

You can troubleshoot most symbol related issues by turning on symbol loading diagnostics (!sym noisy) and

repeating the command that caused symbols to be loaded.
You should also verify that your symbol search path (.sympath) is correct.

86

0:000> k

Child-SP

0000ffff e33c7b90
0000ffff e33c7b90
0000ffff e33c7ced
0000ffff e33c7cfo
0000ffff e33c7do0
0000ffff e33c7d20
0000ffff e33c7e80

0:000> q
quit:

NatVis script unloaded from 'C:\Program Files\Windows Kits\1@\Debuggers\x64\Visualizers\gstl.natvis'

C:\WinDbg>exit

c:\ALCDA2>

RetAddr

00000000 00402808
00000000 00401d24
00000000 00401d30
00000000 00401d4c
00000000 ©040205C
00000000 V0401bbc
00000000 VOV

(T

Call Site
App@!gsignal+0x3c
App@!abort+0x128
App@!bar+0x8
App@ ! foo+0xc
App@!main+0x14

Appo! libc_start_main+0x304

App@!start+ox4c

87

Process Core Dumps

Exercises A1 — A12

© 2023 Software Diagnostics Services

All exercises were modeled on real-life examples using specially constructed applications. We learn
how to recognize and use almost 40 analysis patterns.

88

Exercise Al

Goal: Learn how to list stack traces, disassemble functions, check
their correctness, dump data, get environment

Patterns: Manual Dump (Process); Stack Trace; Stack Trace
Collection; Annotated Disassembly; Paratext; Not My Version;
Environment Hint

© 2023 Software Diagnostics Services

89

Exercise Al (x64, GDB)

Goal: Learn how to list stack traces, disassemble functions, check their correctness, dump data, get environment.

Patterns: Manual Dump (Process); Stack Trace; Stack Trace Collection; Annotated Disassembly; Paratext; Not My
Version; Environment Hint.

1. Load a core dump App1l.core.253 and App1 executable from the x64/App1 directory:

~/ALCDA2/x64/Appl$ gdb -c Appl.core.253 -se Appl

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from Appl...done.

[New LWP 253]

[New LWP 254]

[New LWP 255]

[New LWP 256]

[New LWP 257]

[New LWP 258]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1inux-gnu/libthread_db.so.1".
Core was generated by ~./Appl'.

#0 0Ox0000000000441a10 in nanosleep ()

[Current thread is 1 (Thread ©x21b3880 (LWP 253))]

2. Set logging to a file in case of lengthy output from some commands:

(gdb) set logging on Appl.log
Copying output to Appl.log.

3. List all threads:

(gdb) info threads
Id Target Id Frame

¥ Thread 0x21b3880 (LWP 253) 0x0000000000441a10 in nanosleep ()
2 Thread 0x7f0fcl6fb700 (LWP 254) Ox0000000000441al10 in nanosleep ()
3 Thread 0x7f0fcoefa700 (LWP 255) Ox0000000000441al10 in nanosleep ()
4 Thread 0x7f0fco6f9700 (LWP 256) Ox0000000000441a10 in nanosleep ()
5 Thread 0x7fofbfef8700 (LWP 257) Ox0000000000441al10 in nanosleep ()
6 Thread 0x7fofbf6f7700 (LWP 258) Ox0000000000441al10 in nanosleep ()

90

4. Get the current thread stack trace:

(gdb) bt

#0 0Ox0000000000441a10 in nanosleep ()

#1 0©x000000000044199a in sleep ()

#2 0x0000000000401d92 in main () at pthread_create.c:688

5. Get all thread stack traces:
(gdb) thread apply all bt

Thread 6 (Thread @x7fefbf6f7700 (LWP 258)):

#0 0x0000000000441a10 in nanosleep ()

#1 0Ox000000000044199a in sleep ()

#2 0©x0000000000401cb7 in bar_five ()

#3 0©x0000000000401cc8 in foo_five ()

#4 0©x0000000000401cel in thread_five ()

#5 0Ox00000000004030d3 in start_thread (arg=<optimized out>) at pthread_create.c:486
#6 0x000000000044426F in clone ()

Thread 5 (Thread @x7fofbfef8700 (LWP 257)):

#0 0x0000000000441a10 in nanosleep ()

#1 0Ox000000000044199a in sleep ()

#2 0Ox0000000000401c78 in bar_four () at pthread_create.c:688

#3 0©x0000000000401c89 in foo_ four () at pthread_create.c:688

#4 ©x0000000000401ca2 in thread_four () at pthread_create.c:688

#5 0Ox00000000004030d3 in start_thread (arg=<optimized out>) at pthread_create.c:486
#6 0x000000000044426f in clone ()

Thread 4 (Thread 0x7f0fc06f9700 (LWP 256)):

#0 0©x0000000000441a10 in nanosleep ()

#1 0Ox000000000044199a in sleep ()

#2 0x0000000000401c39 in bar_three () at pthread_create.c:688

#3 0Ox0000000000401cd4a in foo_three () at pthread_create.c:688

#4 ©x0000000000401c63 in thread_three () at pthread_create.c:688

#5 0©x00000000004030d3 in start_thread (arg=<optimized out>) at pthread_create.c:486
#6 0Ox000000000044426F in clone ()

Thread 3 (Thread 0x7fofc@efa700 (LWP 255)):

#0 0©0x0000000000441a10 in nanosleep ()

#1 Ox000000000044199a in sleep ()

#2 Ox0000000000401bfa in bar_two () at pthread_create.c:688

#3 Ox0000000000401cob in foo_two () at pthread_create.c:688

#4 ©x0000000000401c24 in thread two () at pthread_create.c:688

#5 0©x00000000004030d3 in start_thread (arg=<optimized out>) at pthread _create.c:486
#6 0Ox000000000044426F in clone ()

Thread 2 (Thread 0x7fofcl6fb700 (LWP 254)):

#0 0©0x0000000000441210 in nanosleep ()

#1 0x000000000044199a in sleep ()

#2 Ox0000000000401bbb in bar_one () at pthread_create.c:688

#3 0x0000000000401bcc in foo_one () at pthread_create.c:688

#4 ©x0000000000401be5 in thread one () at pthread_create.c:688

#5 0©x00000000004030d3 in start_thread (arg=<optimized out>) at pthread _create.c:486
#6 0x000000000044426f in clone ()

Thread 1 (Thread ©0x21b3880 (LWP 253)):

#0 0©x0000000000441a10 in nanosleep ()

#1 ©0x000000000044199a in sleep ()

#2 Ox0000000000401d92 in main () at pthread_create.c:688

91

6. Switch to thread #2 and get its stack trace:

(gdb) thread 2
[Switching to thread 2 (Thread 0x7f0fcl6fb700 (LWP 254))]
#0 0x0000000000441a10 in nanosleep ()

(gdb) bt

#0 0Ox0000000000441210 in nanosleep ()

#1 0x000000000044199a in sleep ()

#2 Ox0000000000401bbb in bar_one () at pthread_create.c:688

#3 0x0000000000401bcc in foo_one () at pthread_create.c:688

#4 0x0000000000401be5 in thread_one () at pthread_create.c:688

#5 0©x00000000004030d3 in start_thread (arg=<optimized out>) at pthread_create.c:486
#6 0©x000000000044426Ff in clone ()

(gdb) info threads

Id Target Id Frame

1 Thread 0x21b3880 (LWP 253) 0x0000000000441a10 in nanosleep ()
* 2 Thread 0x7f0fcl6fb700 (LWP 254) 0x0000000000441a10 in nanosleep ()

3 Thread 0x7f0fcOefa700 (LWP 255) Ox0000000000441al10 in nanosleep ()

4 Thread 0x7f0fco06f9700 (LWP 256) 0x0000000000441a10 in nanosleep ()

5 Thread 0x7fofbfef8700 (LWP 257) 0x0000000000441al10 in nanosleep ()

6 Thread 0x7fofbf6f7700 (LWP 258) 0x0000000000441al10 in nanosleep ()

7. Check that bar_one called the sleep function by comparing the return address on the call stack from the
disassembly output:

(gdb) disassemble bar_one
Dump of assembler code for function bar_one:

0x0000000000401bad <+0>: push %rbp
0Xx0000000000401bae <+1>: mov %rsp,%rbp
0x0000000000401bb1l <+4>: mov $oxFfffffff,%edi
0Xx0000000000401bb6 <+9>: callqg 0x441960 <sleep>
0x0000000000401bbb <+14>: nop

0x0000000000401bbc <+15>: pop %rbp
0x0000000000401bbd <+16>: retq

End of assembler dump.

We see that the address in the stack trace for the bar_one function is the address to return to after calling the sleep
function.

8. Compare with Intel disassembly flavor:

(gdb) set disassembly-flavor intel

(gdb) disassemble bar_two
Dump of assembler code for function bar_one:

0x0000000000401bad <+0>: push rbp
0x0000000000401bae <+1>: mov rbp,rsp
0x0000000000401bb1l <+4>: mov edi, Oxffffffff
0x0000000000401bb6 <+9>: call 0x441960 <sleep>
0x0000000000401bbb <+14>: nop

0x0000000000401bbc <+15>: pop rbp
0x0000000000401bbd <+16>: ret

End of assembler dump.

(gdb) set disassembly-flavor att

92

9. Get App1 data section from the output of pmap (Appl.pmap.253):

(gdb) ~z

[2]+ Stopped

~/ALCDA2/x64/Appl$ cat Appl.pmap.253

253: ./Appl

0000000000400000 4K r---- Appl
0000000000401000 588K r-x-- Appl
0000000000494000 156K r---- Appl
00000000004bc000 24K rw--- Appl
00000000004c2000 24K rw--- [anon]
00000000021b3000 140K rw--- [anon]
00007f0fbeef7000 4K ----- [anon]
00007f0fbeef8000 8192K rw--- [anon]
00007fofbf618000 4K ----- [anon]
00007f0fbf6+9000 8192K rw--- [anon]
00007f0fbfef9000 4K ----- [anon]
00007f0fbfefa0o@® 8192K rw--- [anon]
00007f0fco6fa000 4K ----- [anon]
00007f0fco6fbood 8192K rw--- [anon]
00007f0fcoefbooo 4K ----- [anon]
00007f0fcoefco0® 8192K rw--- [anon]
000071 fdf4545000 132K rw--- [stack]
00007ffdf45c6000 16K r---- [anon]
00007ffdf45ca000 4K r-x-- [anon]
total 42068K
~/ALCDA2/x64/Appl$ fg

gdb -c Appl.core.253 -se Appl

(gdb)

10.

gdb -c Appl.core.253 -se Appl

(gdb) maintenance info sections

Compare with the section information in the core dump:

.note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
.note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
.rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS

.init ALLOC LOAD READONLY CODE HAS_CONTENTS

.plt ALLOC LOAD READONLY CODE HAS_CONTENTS

.text ALLOC LOAD READONLY CODE HAS_CONTENTS
__libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
.fini ALLOC LOAD READONLY CODE HAS_CONTENTS

.rodata ALLOC LOAD READONLY DATA HAS_CONTENTS

.eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS
.gcc_except_table ALLOC LOAD READONLY DATA HAS_CONTENTS
.tdata ALLOC LOAD DATA HAS_CONTENTS

.tbss ALLOC

.preinit_array ALLOC LOAD DATA HAS_CONTENTS
.init_array ALLOC LOAD DATA HAS_CONTENTS

.fini_array ALLOC LOAD DATA HAS_CONTENTS

.data.rel.ro ALLOC LOAD DATA HAS_CONTENTS

.got ALLOC LOAD DATA HAS_CONTENTS

.got.plt ALLOC LOAD DATA HAS_CONTENTS

.data ALLOC LOAD DATA HAS_CONTENTS

__libc_subfreeres ALLOC LOAD DATA HAS_CONTENTS

_ libc_IO_vtables ALLOC LOAD DATA HAS_CONTENTS

_ libc_atexit ALLOC LOAD DATA HAS_CONTENTS

Exec file:

* /home/coredump/ALCDA2/x64/Appl/Appl', file type elf64-x86-64.
[0] 0x00400200->0x00400220 at 0©x00000200:
[1] 0x00400220->0x00400244 at 0©x00000220:
[2] 0x00400248->0x004004d0 at 0x00000248:
[3] 0x00401000->0x00401017 at ©x00001000:
[4] 0x00401018->0x004010f0 at 0x00001018:
[5] 0x004010f0->0x004933d0 at 0x000010f0:
[6] 0x004933d0->0x00493f77 at ©x000933d0:
[7] 0x00493f78->0x00493f81 at ©x00093f78:
[8] 0x00494000->0x004ae73c at ©x00094000:
[9] 0x0042e740->0x004bab50 at 0©x000ae740:
[10] 0x004bab50->0x004babfc at ©x000babs50:
[11] 0x004bcobo->0x004bcod8 at ©x000bbObO:
[12] 0x004bcod8->0x004bc120 at 0x000bbOdS8:
[13] 0x004bcod8->0x004bcOed at 0x000bbOdS8:
[14] 0x004bced->0x004bcofO at 0x00ObbOeO:
[15] 0x004bcof0o->0x004bc100 at 0x000bbOf0:
[16] 0x004bc100->0x004beef4 at 0x000bb100:
[17] 0x004beef8->0x004bf000 at O0x000Obdef8:
[18] 0x004bf000->0x004bf0f0 at ©0x000be000O:
[19] 0x004bf100->0x004c0c30 at 0x000bel00:
[20] 0x004c0Cc30->0x004c0c90 at ©x000bfc30:
[21] 0x004cOcad->0x004c1408 at 0©x000bfcao:
[22] 0x004c1408->0x004c1410 at 0x000cL408:
[23] 0x004c1420->0x004c7528 at 0x000c0410:

.bss ALLOC
93

[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]

0x004c7528->0x004c7558 at 0x000c0410: _ libc_freeres_ptrs ALLOC
0x00000000->0x00000038 at Ox000c0410: .comment READONLY HAS_CONTENTS
0Xx00000000->0x00000420 at 0x000cP450: .debug aranges READONLY HAS_CONTENTS
0x00000000->0x000372ad at ©x000c0870: .debug_info READONLY HAS_CONTENTS
0x00000000->0x000057e8 at Ox000f7bld: .debug_abbrev READONLY HAS_CONTENTS
0x00000000->0x0000aa2b at 0x000fd305: .debug line READONLY HAS_CONTENTS
0x00000000->0x00004d08 at 0x00107d30: .debug_str READONLY HAS_CONTENTS
0x00000000->0x0000d4b8 at ©x0010ca38: .debug loc READONLY HAS_CONTENTS
0x00000000->0x000024cO at Ox00119ef0: .debug ranges READONLY HAS_CONTENTS

Core file:
* /home/coredump/ALCDA2/x64/Appl/Appl.core.253', file type elf64-x86-64.

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
(8]
[9]
[1e]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

0x00000000->0x00002ec4 at 0x000003f8: note@ READONLY HAS_CONTENTS
0x00000000->0x000000d8 at 0x00000518: .reg/253 HAS_CONTENTS
0x00000000->0x000000d8 at 0x00000518: .reg HAS_CONTENTS

0X00000000->0x00000200 at 0x00060C: .reg2/253 HAS_CONTENTS
0x00000000->0x00000200 at ©x0000060c: .reg2 HAS_CONTENTS
0x00000000->0x00000340 at 0x00000820: .reg-xstate/253 HAS_CONTENTS
0Xx00000000->0x00000340 at 0x000VVO820: .reg-xstate HAS_CONTENTS

0x00000000- >0x00000080 at 0x00VVOb74: .note.linuxcore.siginfo/253 HAS_CONTENTS
0x00000000->0x00000080 at 0x00OOb74: .note.linuxcore.siginfo HAS_CONTENTS
0x00000000->0x000000d8 at 0x00000OCc78: .reg/254 HAS_CONTENTS

0x00000000->0x00000200 at 0x0000Od6C: .reg2/254 HAS_CONTENTS
0Xx00000000->0x00000340 at Ox00VVOF80: .reg-xstate/254 HAS_CONTENTS
0Xx00000000->0x00000080 at 0x000012d4: .note.linuxcore.siginfo/254 HAS_CONTENTS
0x00000000->0x000000d8 at 0x000013d8: .reg/255 HAS_CONTENTS
0x00000000->0x00000200 at 0x000014cc: .reg2/255 HAS_CONTENTS
0Xx00000000->0x00000340 at Ox00VV16€0: .reg-xstate/255 HAS_CONTENTS
0x00000000->0x00000080 at 0x00001a34: .note.linuxcore.siginfo/255 HAS_CONTENTS
0x00000000->0x000000d8 at 0x00001b38: .reg/256 HAS_CONTENTS
0x00000000->0x00000200 at 0x00001c2c: .reg2/256 HAS_CONTENTS
0x00000000->0x00000340 at 0x00001ed0: .reg-xstate/256 HAS_CONTENTS

--Type <RET> for more, q to quit, c

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]

0x00000000 - >0x00000080
0x00000000->0x000000d8
0x00000000 - >0x00000200
0x00000000 - >0x00000340
0x00000000 - >0x00000080
0x00000000->0x000000d8
0x00000000->0x00000200
0x00000000->0x00000340
0x00000000->0x00000080
0x00000000->0x00000140
0x00000000->0x0000007e
0x00000000 - >0x0000007e
0x00401000->0x00494000
0x004bc000->0x004c2000
0x004c2000->0x004c8000
0x021b3000->0x021d6000

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

to continue without paging--

0x00002194 :
0x00002298:
0x0000238c:
0x000025a0:
0x000028f4 :
0x000029f8:
0x00002aec:
0x00002d00:
0x00003054 :
0x000030e8:
0x0000323c:
0x0000323c:
0x000032bc:
0x000962bc:
0x0009c2bc:
0x000a22bc:

.note.linuxcore.siginfo/256 HAS_CONTENTS
.reg/257 HAS_CONTENTS

.reg2/257 HAS_CONTENTS

.reg-xstate/257 HAS_CONTENTS
.note.linuxcore.siginfo/257 HAS_CONTENTS
.reg/258 HAS_CONTENTS

.reg2/258 HAS_CONTENTS

.reg-xstate/258 HAS_CONTENTS
.note.linuxcore.siginfo/258 HAS_CONTENTS
.auxv HAS_CONTENTS
.note.linuxcore.file/258 HAS_CONTENTS
.note.linuxcore.file HAS_CONTENTS

loadl ALLOC LOAD READONLY CODE HAS_CONTENTS
load2 ALLOC LOAD HAS_CONTENTS

load3 ALLOC LOAD HAS_CONTENTS

load4 ALLOC LOAD HAS_CONTENTS

Ox7fofbeef7000->0x7f0fbeef8000
Ox7f0fbeef8000->0x7f0fbf618000
ox7fofbf6+8000->0x7f0fbf619000
Ox7fofbf619000->0x7f0fbfef9000
ox7fofbfef9000->0x7f0fbfefa0oo
ox7fefbfefa000->0x7f0fco6fa000
Ox7f0fc06fak00->0x7fofco6fbooo
Ox7f0fco6fbo00->0x7f0fcOefbood
Ox7f0fcOefboOO->0x7f0fcOefcO00
Ox7f0fcOefcO0O->0x7f0fcl6fcO00
Ox7ffdf4545000->0x7ffdf4566000
Ox7ffdf45ca000->0x7ffdf45cboo0

at
at
at
at
at
at
at
at
at
at
at
at

0x000c52bc:
0x000c62bc:
0x008c62bc:
0x008c72bc:
0x010c72bc:
0x010c82bc:
0x018c82bc:
0x018c92bc:
0x020c92bc:
0x020ca2bc:
0x028ca2bc:
0x028eb2bc:

%94

load5 ALLOC
load6 ALLOC
load7 ALLOC
load8 ALLOC
load9 ALLOC

LOAD READONLY HAS_CONTENTS
LOAD HAS_CONTENTS
LOAD READONLY HAS_CONTENTS
LOAD HAS_CONTENTS

loadie
loadl1l
load12
load13
load14
load15
loadlé

ALLOC
ALLOC
ALLOC
ALLOC
ALLOC
ALLOC
ALLOC

LOAD READONLY HAS_CONTENTS

LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD

HAS_CONTENTS

READONLY HAS_CONTENTS
HAS_CONTENTS

READONLY HAS_CONTENTS
HAS_CONTENTS

HAS_CONTENTS

READONLY CODE HAS_CONTENTS

11. Dump .data section with possible symbolic information:

(gdb) x/256a 6x004bf100

0x4bf100: (] (]

ox4bf110 <__nptl_nthreads>: ox6 ox0

Ox4bf120 <stack used>: ©Ox7fofbf6f79c@ ©Ox7f0fcl6fb9co

0x4bf130 <stack_cache>: 0x4bf130 <stack_cache> ©0x4bf130 <stack_cache>

0x4bf140 <__sched_fifo_max_prio>: oxffffffffffffffff ox0
0x4bf150 <__elision_aconf>: 0x300000003 0x300000000
ox4bf160 < dl tls static_size>: 0x1180 ©x494a88 <_nl_default_default_domain>
0x4bf170 <__exit_funcs>: 0x4c5a80 <initial> 0x493040 <__gcc_personality ve>
Ox4bf180 < IO list all>: Ox4bfla@ < _I0 2 1 stderr_> ox0
0x4bf190: (] (]

Ox4bf1a@ <_IO0_2_ 1 stderr_>: oxfbad2086 ox0

0x4bf1be <_I0 2 1 stderr_+16>: ©0x0 ox0

Ox4bf1co < _I0 2 1 stderr_+32>: ©Ox0 ox0

Ox4bf1de <_IO0 2 1 stderr_+48>: 0Ox0 ox0

Ox4bfled@ <_I0 2 1 stderr_+64>: 0Ox0 ox0

ox4bf1fo <_I0 2 1 stderr_+80>: 0Ox0 ox0

0x4bf200 <_IO_2_1 stderr_+96>: ©0x0 0x4bf3co <_I0_2_1_stdout_>
0x4bf210 <_I0_2 1 stderr_+112>: 0x8000000002 oxfffffffIfrfffff
Ox4bf220 <_I0 2 1 stderr_+128>: 0x0 Ox4c5ecO <_IO0 stdfile_ 2 lock>
Ox4bf230 <_I0 2 1 stderr_+144>: oxffffffffffffffff ox0
0x4bf240 <_I0 2 1 stderr_+160>: 0x4bf280 <_IO0 wide data_2> ox0
0x4bf250 <_I0_2_1 stderr_+176>: 0x© oxe

0x4bf260 <_IO_2_1_ stderr_+192>: 0x0 oxe

Ox4bf270 <_I0_2 1 stderr_+208>: 0x0 0x4c1060 <_IO0 _file_ jumps>
ox4bf280 <_IO wide_data_2>: ox0 ox0

0x4bf290 <_IO wide_data_2+16>: ©0x0 ox0

0x4bf2a0@ <_IO0 wide_data_2+32>: ©0x0 ox0

Ox4bf2bo <_IO wide_data_2+48>: ©x0 ox0

Ox4bf2cO <_IO0 wide_data_2+64>: ©Ox0 ox0

Ox4bf2d0 <_IO wide_data_2+80>: ©Ox0 ox0

0x4bf2e0 <_IO wide_data_2+96>: ©0x0 ox0

Ox4bf2fe <_I0 wide_data_2+112>: 0Ox0 ()

ox4bf300 <_IO wide_data_2+128>: 0x0 ox0

Ox4bf310 <_IO wide_data_2+144>: 0x0 ox0

0x4bf320 <_I0 wide_data_2+160>: 0x0 ()

0x4bf330 <_IO0 wide_data_2+176>: 0x0 ()

0x4bf340 <_I0 _wide_data_2+192>: 0x0 ()

Ox4bf350 <_IO wide_data_2+208>: 0x0 ox0

ox4bf360 <_IO wide_data_2+224>: 0x0 ox0

0x4bf370 <_I0_wide_data_2+240>: 0x0 ()

0x4bf380 <_IO wide_data_2+256>: 0x0 ()

0x4bf390 <_IO wide_data_2+272>: 0x0 ox0

Ox4bf3a0 <_IO wide_data_2+288>: 0x0 ox0

Ox4bf3b0 <_IO wide_data_2+304>: 0Ox4c0e20 <_I0 wfile_ jumps> ox0
0x4bf3c0 <_I0_2 1 stdout_>: oxfbad2084 (]

0x4bf3de <_I0_2 1 stdout_+16>: ©x0 ()

Ox4bf3e0 <_I0 2 1 stdout_+32>: ©Ox0 ox0

Ox4bf3fo < I0 2 1 stdout +48>: 0x0 ox0

Ox4bf400 < I0 2 1 stdout +64>: 0x0 0x0

Ox4bf410 <_I0_2_ 1 stdout_+80>: 0Ox0 ox0

0x4bf420 <_I0_2_1_stdout_+96>: 0x0 Ox4bf5e0 <_I0_2_1 stdin_>
Ox4bf430 < I0 2 1 stdout _+112>: Ox8000000001 OxXFFFfFFffffifffff
Ox4bf440 <_I0 2 1 stdout_+128>: 0x0 Ox4c5edd < IO stdfile_ 1 lock>
Ox4bf450 <_IO0 _2_1 stdout_+144>: oOxffffffffffffffff 0x0
0x4bf460 <_I0 2 1 stdout_+160>: ©x4bf4a@ <_IO0 wide_data_1> ox0
0x4bf470 <_I0_2_ 1 stdout_+176>: 0x0 ox0

Ox4bf480 <_I0 2 1 stdout_+192>: 0x0 ox0

95

--Type <RET> for more, q to quit, c to continue without paging--

0x4bf490
0x4bf4a0
Ox4bf4bo
0x4bf4co
0x4bf4do
0x4bf4e0
ox4bf4fo
0x4bf500
0x4bf510
0x4bf520
0x4bf530
0x4bf540
0x4bf550
0x4bf560
0x4bf570
0x4bf580
0x4bf590
0x4bf5a0
0x4bf5bo
0x4bf5c0
0x4bf5de
0x4bf5e0
0x4bf5f0
0x4bf600
0x4bf610
0x4bf620
0x4bf630
0x4bf640
0x4bf650
0x4bf660
0x4bf670
0x4bf680
0x4bf690
0x4bf6a0
0x4bf6b0
ox4bf6co
0x4bf6deo
0x4bf6e0
Ox4bfe6fo
0x4bft700
Ox4bf710
0x4bf720
0x4bf730
0x4bf740
0x4bf750
0x4bft760
0x4bf770
0x4bf780
0x4bft790
0x4bf7a0
0x4bf7bo
0x4bf7co
0x4bf7do
0x4bf7e0
Ox4bf7f0
0x4b1800

0x4bf810:

<_I0_2 1 stdout_+208>:
<_I0 wide_data_1>:
<_I0 wide_data_1+16>:
<_I0 wide_data_1+32>:
<_I0_wide_data_1+48>:
<_I0_wide_data_1+64>:
<_I0 wide_data_1+80>:
<_I0 wide_data_1+96>:
<_I0 _wide_data_1+112>:
<_I0 _wide_data_1+128>:
<_I0 _wide_data_1+144>:
<_I0 wide _data_1+160>:
<_I0 wide_data_1+176>:
<_I0 _wide_data_1+192>:
<_I0 _wide_data_1+208>:
<_I0 _wide_data_1+224>:
<_I0 wide_data_1+240>:
<_I0 wide_data_1+256>:
<_I0 _wide_data_1+272>:
<_I0 wide_data_1+288>:
<_I0 wide_data_1+304>:
<_I0_2_1_stdin_>:
<_I0_2_1 stdin_+16>:
<_I0_2 1 stdin_+32>:
<_I0_ 2 1 stdin_+48>:
<_I0_2_1 stdin_+64>:
<_I0_2_1 stdin_+80>:
<_I0_2 1 stdin_+96>:
<_I0 2 1 stdin_+112>:
<_I0 2 1 stdin_+128>:
<_I0_2 1 stdin_+144>:
<_I0_2_1_ stdin_+160>:
<_I0 2 1 stdin_+176>:
<_I0 2 1 stdin_+192>:
<_I0 2 1 stdin_+208>:
<_IO0_wide_data_0>:
<_I0 wide_data_0+16>:
<_I0 _wide_data_0+32>:
<_I0 _wide_data_0+48>:
<_I0 wide_data_0+64>:
<_I0 wide_data_0+80>:
<_I0 _wide_data_0+96>:
<_I0 _wide_data_0+112>:
<_I0 wide_data_0+128>:
<_I0 wide_data_0+144>:
<_I0 wide_data_0+160>:
<_I0 _wide_data_0+176>:
<_I0 _wide_data_0+192>:
<_I0 wide_data_0+208>:
<_I0_wide_data_0+224>:
<_I0_wide_data_0+240>:
<_I0 wide_data_0+256>:
<_I0 wide_data_0+272>:
<_I0_wide_data_0+288>:
<_I0_wide_data_0+304>:

<stdout>: 0x4bf3c@ <_IO0_2_1_ stdout_>

o0x0 0x0

>

ox0

lock>

ox0

>

ox0 0x4c1060 <_IO _file_jumps
ox0 0x0

ox0 0x0

ox0 o0x0

0x0 0x0

ox0 ox0

ox0 o0x0

ox0 0x0

ox0 ox0

0x0 ox0

ox0 0x0

ox0 o0x0

ox0 o0x0

ox0 ox0

ox0 ox0

ox0 ox0

ox0 o0x0

ox0 o0x0

0x0 ox0

ox0 ox0

Ox4c0e20 <_I0 wfile_jumps>
oxfbad2088 0x0

0x0 0x0

0x0 ox0

ox0 ox0

0x0 0x0

0x0 0x0

ox0 ox0

0x8000000000 (%)% S B T e e
ox0 Ox4c5eed <_IO0 _stdfile_0_
()76 B e ox0
Ox4bf6cO < IO wide_data_0>
ox0 ox0

ox0 0x0

ox0 0x4c1060 <_I0 _file_jumps
0x0 ox0

0x0 0x0

ox0 0x0

ox0 ox0

0x0 0x0

0x0 0x0

ox0 0x0

ox0 0x0

ox0 0x0

0x0 0x0

0x0 0x0

ox0 ox0

ox0 0x0

0x0 0x0

0x0 ox0

0x0 ox0

ox0 o0x0

ox0 0x0

0x0 ox0

0x4c0e20 <_IO wfile_jumps>

--Type <RET> for more, q to quit, c to continue without paging--
0x4bf820 <may_shrink_heap.11591>: OxX1ffffffff ox1

96

Ox4bfla@ <_IO_2_1_ stderr_>

Ox4bf5e@ <_I0_2 1_stdin_>

0x4bf830: 0x0 0x0
0x4bf840 <mp_>: Ox20000 0x20000

Ox4bf850 <mp_+16>: 0x20000 0x8

Ox4bf860 <mp_+32>: 0x0 0x1000000000000
0x4bf870 <mp_+48>: ox0 ox0

0x4bf880 <mp_+64>: ox0 0x21b41co
0x4bf890 <mp_+80>: 0x40 0x408

Ox4bf8a0 <mp_+96>: ox7 ox0

ox4bf8bo: oxe oxe

0x4bf8cO <__memalign_hook>: Ox41aad@ <memalign_hook_ini> 0x41b0ed <realloc_hook_ini>
0x4bf8d0 <__malloc_hook>: ox0 ox0
Ox4bf8e@ <main_arena>: ©Ox0 ox0

Ox4bf8f0 <main_arena+16>: ox0 ox0

The output is in the following format:
address: valuel value2

Because the size of each value is 8 bytes, the next address is +16 bytes or +10hex. The addresses can have associated
symbolic names:

address <name>: valuel value2

For example, from the output above:

0x4bf110 <__nptl_nthreads>: 0x6 ox0

Each value may also have an associated symbolic value:

address <name>: valuel <namel> value2

For example, from the output above:

0x4bf8c@ <__memalign_hook>: Ox4laad@ <memalign_hook_ini> 0x41boed <realloc_hook_ini>

12. Explore the contents of memory pointed to by __ nptl nthreads, nl_default _default domain, and
__memalign_hook addresses (/x is for hex, /d is for decimals, /u is for unsigned decimals, /g is for 64-bit values, /w is
for 32-bit values, /h is for 16-bit values, /b is for byte values, fa is for addresses, /c and /s are for chars and strings):

(gdb) x/d ox4bflie
0x4bf110 <_ nptl_nthreads>: 6

(gdb) x/u & nptl nthreads
ox4bf110 <_ _nptl _nthreads>: 6

(gdb) x/wx 0x4bf11e0
ox4bf110 <_ _nptl _nthreads>: 0x00000006

(gdb) x/gx ©x4bflle
0x4bf110 <_ nptl_nthreads>: 0Xx0000000000000006

(gdb) x/hx @x4bfl1e
ox4bf110 <__ nptl nthreads>: 0x0006

(gdb) x/bx ©x4bfl1e
0x4bf110 <_ nptl_nthreads>: 0x06

97

(gdb) x/2a 0x4bf160
0x4bf160 <_dl_tls static_size>: 0x1180 ©x494a88 <_nl_default_default_domain>

Note: Some symbols and addresses (for example, 0x494a88) belong to read-only sections of executable image. If
GDB refuses to read them you may need to run this command:

set trust-readonly-sections on

(gdb) x/a & nl_default_default_domain

0x494288 <_nl_default_default_domain>: ©x736567617373656d

(gdb) set trust-readonly-sections on

(gdb) x/a 0x494a88

0x494a88 <_nl_default_default_domain>: ©x736567617373656d

(gdb) x/s ©x494a88

0x494288 <_nl_default_default_domain>: "messages"”

(gdb) x/10a 0©x494a88

0x494a88 <_nl_default_default_domain>: ©x736567617373656d Ox6c00616c00756C00
0x494298: 0x786c00586C0069 0x72737521f00656372

0x4943aa8: Ox6c2165726168732f 0x656c61636f

0x494ab8 <aliasfile.10131>: 0x2e656c61636f6c2f 0x7361696¢61
0x494ac8: 0x0 0x0

(gdb) x/8c 0x494a88

0x494a88 <_nl _default_default_domain>: 109 'm' 101 'e' 115 's' 115 's' 97 'a' 103 'g' 101 ‘e’
115 's'

(gdb) x/10s ©x494a88

0x494a88 <_nl_default_default_domain>: "messages"

0x494391: "lu"

0x494394: "lo"

0x494a297: "1i

0x4943a9a: "1x"

0x49439d: "1x"

0x494220: "rce"

0x4943a3a4: "/usr/share/locale"

0x494ab6: "

0x494ab7: "

Note: We see that a hook function is installed for memalign but not malloc. Please find the following documentation
for hook functions here:

https://www.gnu.org/software/libc/manual/htm| node/Hooks-for-Malloc.html

13. Explore the contents of memory pointed to by environ variable address:

(gdb) x/a &environ

0x4c5f48 <environ>: Ox7ffdf45637f8

(gdb) x/10a Ox7ffdf45637f8

ox7ffdf45637f8:
ox7ffdf4563808:
ox7ffdf4563818:
Ox7ffdf4563828:
Ox7ffdf4563838:

ox7ffdf4565756
ox7ffdf456577d
ox7ffdf45657a9
Ox7ffdf45657d8
Ox7ffdf45657fe

Ox7ffdf4565766
Ox7ffdf4565794
Ox7ffdf45657c7
Ox7ffdf45657f3
Ox7ffdf4565812

98

https://www.gnu.org/software/libc/manual/html_node/Hooks-for-Malloc.html

(gdb) x/10s Ox7ffdf4565756

Ox7ffdf4565756: "SHELL=/bin/bash"
Ox7ffdf4565766: "HISTCONTROL=ignoreboth"
Ox7ffdf456577d: "WSL_DISTRO_NAME=Debian"
ox7ffdf4565794: "NAME=DESKTOP-IS6V2L0"
ox7ffdf45657a9: "PWD=/home/coredump/ALCDA/Appl”
ox7ffdf45657c7: "LOGNAME=coredump"
ox7ffdf45657d8: "MC_TMPDIR=/tmp/mc-coredump"
ox7ffdf45657f3: "MC_SID=192"

ox7ffdf45657fe: "HOME=/home/coredump”
Ox7ffdf4565812: "LANG=en_US.UTF-8"

14. Now we look at how to perform a memory search. It is not possible to search in the entire virtual memory,
only in the valid regions.

(gdb) find /g 0x004bcoR0, 0x004d2000, 6

Ox4bd5f8 < nl C_LC_NUMERIC+56>

0x4be880 <tunable list+928>

Ox4beadd <dyn_temp.10655+32>

0x4bf110 <_ nptl nthreads>

warning: Unable to access 16000 bytes of target memory at 0x4c6el8, halting search.
4 patterns found.

(gdb) x/gd ox4bfl1e
ox4bf110 <__ _nptl _nthreads>: 6

(gdb) x/s Ox7ffdf4565756
Ox7ffdf4565756: "SHELL=/bin/bash"

(gdb) find ox7ffdf4565756, +100, "bash"
ox7ffdf4565761
1 pattern found.

Note: "bash" is considered a null-terminated array of characters for the search. To search for a string sequence
without a null terminator, use a sequence of characters:

(gdb) find @x7ffdf4565756, +100, "bin"
Pattern not found.

(gdb) find ex7ffdf4565756, +100, 'b', 'i', 'n'
ox7ffdf456575d
1 pattern found.

15. Get the list of loaded modules:

(gdb) info sharedlibrary
No shared libraries loaded at this time.

Note: We don’t see any shared libraries because they were statically linked. We also created the version of a

dynamically linked App1.shared executable. If we load its core dump Appl.shared.core.275, we see the list of shared
libraries:

~/ALCDA2/x64/Appl$ gdb -c Appl.shared.core.275 -se Appl.shared

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

99

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from Appl.shared...(no debugging symbols found)...done.

[New LWP 275]

[New LWP 276]

[New LWP 277]

[New LWP 278]

[New LWP 279]

[New LWP 280]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-linux-gnu/libthread_db.so.1".

Core was generated by " ./Appl.shared’.

#0 0Ox00007flaed71e720 in _ GI__ nanosleep (requested_time=requested_time@entry=0x7ffc74957a90,
remaining=remaining@entry=0x7ffc74957a90) at ../sysdeps/unix/sysv/linux/nanosleep.c:28
28 . ./sysdeps/unix/sysv/linux/nanosleep.c: No such file or directory.

[Current thread is 1 (Thread ©x7flae4655740 (LWP 275))]

(gdb) info sharedlibrary

From To Syms Read Shared Object Library
0x00007f12e481f5b0 0©Ox00007f1aed82d641 Yes /1ib/x86_64-1inux-gnu/libpthread.so.0
0x00007flaed672a320 0Ox00007f1laed7c039b Yes /1ib/x86_64-1inux-gnu/libc.so.6
0x0000711ae4848090 0x00007f1laed865b20 Yes /1ib64/1d-1inux-x86-64.s0.2

16. Disassemble bar_one function and follow the indirect sleep function call:

(gdb) disassemble bar_one
Dump of assembler code for function bar_one:

0x0000557e17348145 <+0>: push %rbp

0x0000557e17348146 <+1>: mov %rsp,%rbp
0Xx0000557e17348149 <+4>: mov $oxffffffff,%edi
0x0000557e1734814e <+9>: callqg 0©x557e17348040 <sleep@plt>
0x0000557e17348153 <+14>: nop

0x0000557e17348154 <+15>: pop %rbp

0x0000557e17348155 <+16>: retq

End of assembler dump.

(gdb) disassemble ©x557e17348040
Dump of assembler code for function sleep@plt:

0x0000557e17348040 <+0>: jmpq & () # 0x557e1734b020 <sleep@got.plt>
<+6>: pushg $0x1
0x0000557e1734804b <+11>: jmpg ©x557e17348020

End of assembler dump.
17. Dump the annotated value as a memory address interpreting its contents as a symbol:

(gdb) p/x +
$1 = 0x557e1734b020

(gdb) x/a 0x557e1734b020
0x557e1734b020 <sleep@got.plt>: Ox7flaed471e5f0 <__sleep>

100

Note: Since GDB gets shared library images from your analysis system which do not correspond to shared libraries
from the crash system, most likely you get some random symbolic information (and also an invalid backtrace from
the bt command):

(gdb) x/a ©0x557e1734b026
0x557e1734b020 <sleep@got.plt>: Ox7flaed71e5f0 <__getpwnam_r+288>

Note: You need the original shared library images and debug symbol files from the problem system. To get the right
results for this exercise, you can recreate the Appl.shared core dump (see main.c for build instructions if necessary).

18. Appl.shared.pmap.275 also shows library memory regions:

(gdb) q

~/ALCDA2/x64/Appl$ cat Appl.shared.pmap.275

275: ./Appl.shared

0000557e17347000 4K r---- Appl.shared
0000557e17348000 4K r-x-- Appl.shared
0000557e17349000 4K r---- Appl.shared
0000557e17342000 4K r---- Appl.shared
0000557e1734b000 4K rw--- Appl.shared
0000557e179ca000 132K rw--- [anon]
00007f1aele50000 4K ----- [anon]
00007flaele51000 8192K rw--- [anon]
00007f1ae2651000 4K ----- [anon]
00007f12e2652000 8192K rw--- [anon]
00007f1ae2e52000 4K ----- [anon]
00007f1lae2e53000 8192K rw--- [anon]
00007f1ae3653000 4K ----- [anon]
00007f1ae3654000 8192K rw--- [anon]
00007f1ae3e54000 4K ----- [anon]
00007f1ae3e55000 8204K rw--- [anon]
00007f12e4658000 136K r---- 1libc-2.28.s0
00007f1ae467a000 1312K r-x-- libc-2.28.so
00007f1aed7c2000 304K r---- libc-2.28.so
00007f1ae480€000 4K ----- libc-2.28.s0
00007f1ae4801000 16K r---- libc-2.28.so
00007112e4813000 8K rw--- libc-2.28.so0
00007112e4815000 16K rw--- [anon]
0000711ae4819000 24K r---- libpthread-2.28.so
00007f1ae4811000 60K r-x-- libpthread-2.28.so
00007f1ae482e000 24K r---- libpthread-2.28.so
0000711ae4834000 4K r---- libpthread-2.28.so
00007f1ae4835000 4K rw--- libpthread-2.28.so
00007f12e4836000 24K rw--- [anon]
0000711ae4847000 4K r---- 1d-2.28.s0
00007112e4848000 120K r-x-- 1d-2.28.so
00007112e4866000 32K r---- 1d-2.28.so0
00007f1ae486€000 4K r---- 1d-2.28.so
00007f1ae4861000 4K rw--- 1d-2.28.so0
0000711ae4870000 4K rw--- [anon]

0000711 c74939000 132K rw--- [stack]

00007 fc749ac000 16K r---- [anon]

000071 fc749b0000 4K r-x-- [anon]

total 43400K

101

Exercise A1 (A64, GDB)

Goal: Learn how to list stack traces, disassemble functions, check their correctness, dump data, get environment.

Patterns: Manual Dump (Process); Stack Trace; Stack Trace Collection; Annotated Disassembly; Paratext; Not My
Version; Environment Hint.

1. Load a core dump Appl.core.21174 and App1 executable from the A64/App1l directory:

~/ALCDA2/A64/Appl$ gdb -c Appl.core.21174 -se Appl

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from Appl...

(No debugging symbols found in Appl)

warning: Can't open file /home/opc/ALCDA2/Appl/Appl during file-backed mapping note processing
[New LWP 21175]

[New LWP 21176]

[New LWP 21177]

[New LWP 21178]

[New LWP 21179]

[New LWP 21174]

Core was generated by ~./Appl'.

#0 Ox000000000040c9b4 in nanosleep ()

[Current thread is 1 (LWP 21175)]

2. Set logging to a file in case of lengthy output from some commands and set color highlighting off:
(gdb) set logging file Appl.log

(gdb) set logging enabled on

Copying output to Appl.log.

Copying debug output to Appl.log.

(gdb) set style enabled off

3. List all threads:

(gdb) info threads

Id Target Id Frame

5 odl LWP 21175 0x000000000040c9b4 in nanosleep ()
2 LWP 21176 0x000000000040c9b4 in nanosleep ()
3 LWP 21177 0x000000000040c9b4 in nanosleep ()
4 LWP 21178 0x000000000040c9b4 in nanosleep ()
5 LWP 21179 0x000000000040c9b4 in nanosleep ()

102

6 LWP 21174 0x000000000040c9b4 in nanosleep ()
4, Get the current thread stack trace:

(gdb) bt

#0 0x000000000040c9b4 in nanosleep ()

#1 0©x0000000000424cb4 in sleep ()

#2 O0x00000000004031f8 in bar_one ()

#3 0©x000000000040320c in foo_one ()

#4 0x0000000000403224 in thread_one ()
#5 0Ox0000000000404c34 in start_thread ()
#6 0©x000000429b60 in thread start ()

5. Get all thread stack traces:
(gdb) thread apply all bt

Thread 6 (LWP 21174):

#0 0x000000000040c9b4 in nanosleep ()
#1 0©x0000000000424cb4 in sleep ()

#2 0©x00000000004033e0 in main ()

Thread 5 (LWP 21179):

#0 0x000000000040c9b4 in nanosleep ()

#1 0©x0000000000424cb4 in sleep ()

#2 0©x0000000000403318 in bar_five ()

#3 0x000000000040332c in foo_five ()

#4 0Ox0000000000403344 in thread_five ()
#5 0©x0000000000404c34 in start_thread ()
#6 0©x0000000000429b60 in thread _start ()

Thread 4 (LWP 21178):

#0 0x000000000040c9b4 in nanosleep ()

#1 0©x0000000000424cb4 in sleep ()

#2 0x00000000004032d0 in bar four ()

#3 ©x00000000004032e4 in foo_four ()

#4 0Ox00000000004032fc in thread_four ()
#5 0Ox0000000000404c34 in start_thread ()
#6 0©x0000000000429b60 in thread start ()

Thread 3 (LWP 21177):

#0 Ox000000000040c9b4 in nanosleep ()

#1 Ox0000000000424cb4 in sleep ()

#2 0©x0000000000403288 in bar_three ()

#3 0©x000000000040329c in foo_three ()

#4 Ox00000000004032b4 in thread_three ()
#5 0Ox0000000000404c34 in start_thread ()
#6 0©x0000000000429b60 in thread start ()

Thread 2 (LWP 21176):

#0 0x000000000040c9b4 in nanosleep ()

#1 ©Ox0000000000424cb4 in sleep ()

#2 0©x0000000000403240 in bar_two ()

#3 ©x0000000000403254 in foo_two ()

#4 0Ox000000000040326c in thread_two ()
#5 0x0000000000404c34 in start_thread ()
#6 0©x000000OVV429b60 in thread_start ()

103

Thread 1 (LWP 21175):

#0 0x000000000040c9b4 in nanosleep ()

#1 0x0000000000424cb4 in sleep ()

#2 0x00000000004031f8 in bar_one ()

#3 0x000000000040320c in foo_one ()

#4 0©x0000000000403224 in thread_one ()
#5 0©x0000000000404c34 in start_thread ()
#6 0Ox0000000000429b60 in thread_start ()

6. Switch to thread #2 and get its stack trace:

(gdb) thread 2
[Switching to thread 2 (LWP 21176)]
#0 0x000000000040c9b4 in nanosleep ()

(gdb) bt

#0 0©Ox0000000040c9b4 in nanosleep ()

#1 0©x0000000000424cb4 in sleep ()

#2 0©Ox0000000000403240 in bar_two ()

#3 0©x0000000000403254 in foo_two ()

#4 ©x000000000040326c in thread_two ()
#5 0Ox0000000000404c34 in start_thread ()
#6 0Ox0000000000429b60 in thread_start ()

(gdb) info threads

Id Target Id Frame

1 LWP 21175 0x000000000040c9b4 in nanosleep
LWP 21176 0x000000000040c9b4 in nanosleep
LWP 21177 0x000000000040c9b4 in nanosleep
LWP 21178 0x000000000040c9b4 in nanosleep
LWP 21179 0x000000000040c9b4 in nanosleep
LWP 21174 0x000000000040c9b4 in nanosleep

auvihWwWN
N AN AN AANAAA
R N

7. Check that bar_two called the sleep function by comparing the return address on the call stack from the
disassembly output:

(gdb) disassemble bar_two

Dump of assembler code for function bar_two:
0x0000000000403230 <+0>: stp x29, x30, [sp, #-16]!
0x0000000000403234 <+4>: mov X29, sp
0x0000000000403238 <+8>: mov wo, #Oxffffffff // #-1
0x000000000040323¢C <+12>: bl 0x424ba4d <sleep>
0x0000000000403240 <+16>: ldp x29, x30, [sp], #16
0x0000000000403244 <+20>: ret

End of assembler dump.

We see that the address in the stack trace for the bar_two function is the address to return to after calling the sleep

function.

8. Get App1 data section from the output of pmap (Appl.pmap.21174):
(gdb) ~z

[1]+ Stopped gdb -c Appl.core.21174 -se Appl

~/ALCDA2/A64/Appl$ cat Appl.pmap.21174
21174: ./Appl

0000000000400000 768K r-x-- Appl
00000000004c0000 128K rw--- Appl
0000000001 120000 256K rw--- [anon]

104

0000fffccab40000 64K ----- [anon]
0000fffccab50000 8192K rw--- [anon]
0000fffccb350000 64K ----- [anon]
0000fffccb360000 8192K rw--- [anon]
0000 fffccbb60000 64K ----- [anon]
0000fffccbb70000 8192K rw--- [anon]
0000fffccc370000 64K ----- [anon]
0000fffccc380000 8192K rw--- [anon]
0000fffcccb80000 64K ----- [anon]
0000fffcccb90000@ 8192K rw--- [anon]
0000fffccd390000 64K r---- [anon]
0000fffccd320000 64K r-x-- [anon]
0000ffffd3090000 192K rw--- [stack]
total 42752K
~/ALCDA2/A64/Appl$ fg

gdb -c Appl.core.21174 -se Appl

(gdb)

9. Compare with the section information in the core dump:

(gdb) p/x ©x00000000004Cc0000+128*1024

$1 =

0x4€0000

(gdb) maintenance info sections
Exec file: "~ /home/ubuntu/ALCDA2/A64/Appl/Appl', file type elf64-littleaarch64.

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

0x00400190->0x004001b0O
0x004001b0->0x004001d4
0x004001d8->0x00400250
0x00400250->0x00400264
0x00400270->0x004002c0
0x004002c0->0x00487098
0x00487098->0x00488d68
0x00488d68->0x004891b8

HAS_CONTENTS

[8]

[9]

[1e]
[11]
[12]
[13]
[14]

0x004891b8->0x004891c8
0x004891d0->0x004al6ad
0x004al6ad->0x004albae
0x004al16bo->0x004alde8
0x004alde8->0x004ale50
0x004ale50->0x004ale58
0x004ale58->0x004ale68

HAS_CONTENTS

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
Core file:
[e]
[1]
[2]

0x004ale68->0x004b047c
0x004b047c - >0x004b0639
0x004cfb20->0x004cfb48
0x004cfb4a8->0x004cfbo8
0x004cfb48->0x004cfb50
0x004cfb50->0x004cfb60
0x004cfb60->0x004cfb68
0x004cfb68->0x004cff24
0x004cff28->0x004cffe8
0x004cffe8->0x004d0028
0x004d0030->0x004d1580
0x004d1580- >0x004d8050
0x004d8050- >0x004d8088
0Xx00000000 - >0x00000031
0Xx00000000 - >0x00001cbo

at
at
at
at
at
at
at
at

at
at
at
at
at
at
at

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

0x00000190:
0x000001b0:
0x000001d8:
0x00000250:
0x00000270:
0x000002c0:
0x00087098:
0x00088d68:

0x000891b8:
0x000891d0:
0x000albad:
0x000al6bo:
0x000aldes8:
0x000ale50:
0x000ale58:

Ox000aleb8:
0x000b047cC:
0x000btb20:
0x000bftb48:
0x000bTtb48:
0x000bfb50:
0x000bTb60:
0x000bTb68:
0x000bff28:
0x000bffe8:
0x000Cc0030:
0x000c1580:
0x000c1580:
0x000c1580:
0x000c15b4:

.note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
.note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
.rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS

.init ALLOC LOAD READONLY CODE HAS_CONTENTS

.plt ALLOC LOAD READONLY CODE HAS_CONTENTS

.text ALLOC LOAD READONLY CODE HAS_CONTENTS
__libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
__libc_thread_freeres_fn ALLOC LOAD READONLY CODE

.fini ALLOC LOAD READONLY CODE HAS_CONTENTS

.rodata ALLOC LOAD READONLY DATA HAS_CONTENTS
.stapsdt.base ALLOC LOAD READONLY DATA HAS_CONTENTS
__libc_TI0 _vtables ALLOC LOAD READONLY DATA HAS_CONTENTS
__libc_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS
__libc_atexit ALLOC LOAD READONLY DATA HAS_CONTENTS
__libc_thread_subfreeres ALLOC LOAD READONLY DATA

.eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS
.gcc_except_table ALLOC LOAD READONLY DATA HAS_CONTENTS
.tdata ALLOC LOAD DATA HAS_CONTENTS

.tbss ALLOC

.init_array ALLOC LOAD DATA HAS_CONTENTS
.fini_array ALLOC LOAD DATA HAS_CONTENTS

.jcr ALLOC LOAD DATA HAS_CONTENTS

.data.rel.ro ALLOC LOAD DATA HAS_CONTENTS

.got ALLOC LOAD DATA HAS_CONTENTS

.got.plt ALLOC LOAD DATA HAS_CONTENTS

.data ALLOC LOAD DATA HAS_CONTENTS

.bss ALLOC

_ libc_freeres_ptrs ALLOC

.comment READONLY HAS_CONTENTS

.note.stapsdt READONLY HAS_CONTENTS

* /home/ubuntu/ALCDA2/A64/Appl/Appl.core.21174"', file type elf64-littleaarch64.
0X00000000->0x00001c94 at 0x000V3cO: noted® READONLY HAS_CONTENTS

0x00000000->0x00000110 at Ox000004e0:
0x00000000->0x00000110 at Ox000004e0:

.reg/21175 HAS_CONTENTS
.reg HAS_CONTENTS

105

[3]
[4]
[5]
[6]
[7]
[8]
[9]
[1e]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

--Type <RET> for more, q to quit,

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

10.

0x00000000->0x00000210
0x00000000->0x00000210
0x00000000->0x00000080
0x00000000 - >0x00000080
0x00000000->0x00000110
0x00000000->0x00000210
0x00000000 - >0x00000080
0x00000000->0x00000110
0x00000000->0x00000210
0x00000000 - >0x00000080
0x00000000->0x00000110
0x00000000 - >0x00000210
0x00000000 - >0x00000080
0x00000000->0x00000110
0x00000000->0x00000210

0x00000000 - >0x00000080
0x00000000->0x00000110
0x00000000->0x00000210
0x00000000 - >0x00000080
0x00000000 - >0x00000160
0x00000000->0x00000076
0x00000000->0x00000076
0x00400000- >0x004c0000
0x004c0000->0x0040000
0x011a0000->0x01fe0000

oxfffccab40000->0xfffccab50000
Oxfffccab50000->0xfffccb350000
oxfffccb350000->0xfffccb360000
oxfffccb360000->0xfffccbb60000
oxfffccbb60000->0xfffccbb70000
oxfffccbb70000->0xfffccc370000
Oxfffccc370000->0xfffccc380000
Oxfffccc380000->0xfffccch80000
Oxfffcccb80000->0xfffcccb90000
Oxfffcccb90000->0xfffccd390000
Oxfffccd3a0eeo->exfffccd3bovoo
Oxffffd3090000->0xffffd30c0000

(gdb) x/600a 0x004d0030

0x4d0030:

0x4do040
0x4d0050
0x4d0060
0x4doo70
0x4do080
0x4d0090
0x4d00ao
0x4doobo
0x4d00co
ox4doode
0x4d00e0
ox4doofo
0x4do100
ox4de11e
0x4do120
0x4do130
0x4do140

0x0
<stack_cache+8>:
<stack_used>:

<__sched_fifo_max_prio>:

<__exit_funcs>:
<_I0_list_all>:
<_I0_2 1 stderr_+8>:

<_I0_2 1 stderr_+24>:

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

C
at
at
at
at
at
at
at
at
at
at

<_I0_2_1_stderr_+40>:
<_I0_2_1 stderr_+56>:
<_I0_2_1 stderr_+72>:
<_I0 2 1 stderr_+88>:
<_I0 2 1 stderr_+104>:
<_I0_2_1 stderr_+120>:
<_I0_2_ 1 stderr_+136>:
<_I0 2 1 stderr_+152>:
<_I0 2 1 stderr_+168>:
<_I0 2 1 stderr_+184>:

0x4d0150 <_IO 2 1 stderr_+200>:
0x4d0160 <_IO 2 1 stderr_+216>:

0x4doe170

0x4d0180 <_IO wide_data_2+24>:

<_I0 wide_data_2+8>:

0x0000060cCc: .reg2/21175 HAS_CONTENTS

0x0000060c: .reg2 HAS_CONTENTS

0x00000830: .note.linuxcore.siginfo/21175 HAS_CONTENTS
0x00000830: .note.linuxcore.siginfo HAS_CONTENTS
0x00000934: .reg/21176 HAS_CONTENTS

0x00000a60: .reg2/21176 HAS_CONTENTS

0x00000c84: .note.linuxcore.siginfo/21176 HAS_CONTENTS
0x00000d88: .reg/21177 HAS_CONTENTS

0x00000eb4: .reg2/21177 HAS_CONTENTS

0x000010d8: .note.linuxcore.siginfo/21177 HAS_CONTENTS
0x000011dc: .reg/21178 HAS_CONTENTS

0x00001308: .reg2/21178 HAS_CONTENTS

0x0000152c: .note.linuxcore.siginfo/21178 HAS_CONTENTS
0x00001630: .reg/21179 HAS_CONTENTS

0x0000175c: .reg2/21179 HAS_CONTENTS

to continue without paging--

0x00001980:
0x00001a84:

.note.linuxcore.siginfo/21179 HAS_CONTENTS
.reg/21174 HAS_CONTENTS

0x00001bbo:
0x00001dd4 :
0x00001e68:
0x00001fdc:
0x00001fdc:
0x00002054 :
0x000c2054:
0x000e2054 :
at
at
at
at
at
at
at
at
at
at
at
at

.reg2/21174 HAS_CONTENTS
.note.linuxcore.siginfo/21174 HAS_CONTENTS
.auxv HAS_CONTENTS

.note.linuxcore.file/21174 HAS_CONTENTS
.note.linuxcore.file HAS_CONTENTS

loadl ALLOC LOAD READONLY CODE HAS_CONTENTS
load2 ALLOC LOAD HAS_CONTENTS

load3 ALLOC LOAD HAS_CONTENTS

0x00122054: load4 ALLOC LOAD READONLY HAS_CONTENTS
0x00132054: load5 ALLOC LOAD HAS_CONTENTS
0x00932054: load6 ALLOC LOAD READONLY HAS_CONTENTS
0x00942054: load7 ALLOC LOAD HAS_CONTENTS
0x01142054: load8 ALLOC LOAD READONLY HAS_CONTENTS
0x01152054: load9 ALLOC LOAD HAS_CONTENTS
0x01952054: loadle ALLOC LOAD READONLY HAS_CONTENTS
0x01962054: loadll ALLOC LOAD HAS_CONTENTS
0x02162054: loadl2 ALLOC LOAD READONLY HAS_CONTENTS
0x02172054: loadl3 ALLOC LOAD HAS_CONTENTS
0x02972054: loadl4 ALLOC LOAD READONLY CODE HAS_CONTENTS
0x02982054: loadl5 ALLOC LOAD HAS_CONTENTS

Dump the first 600 addresses from the .data section with possible symbolic information:

0x4do038 <stack_cache>

0x4d0038 <stack_cache> ©0x6
oxfffccb34f140 oxfffccd38f140
oxffffffrrffffrff 0x890
0x4d5eb0@ <initial> 0x486b88 <__gcc_personality ve>
0x4dee88 <_I0_2_1_ stderr_> oxfbad2086
ox0 0x0
0x0 0x0
ox0 ox0
ox0 ox0
ox0 ox0
ox0 0x0
@x4d02be < IO 2 1 stdout > ox2
Oxffffffffffffffff ox0
0x4d6428 <_IO_stdfile_2_lock> Oxffffffffffffffff

ox0 0x4d0168 <_IO wide data_2>
ox0 0x0

ox0 0x0

0x0 ox0

0x421950 <_I0 file_jumps> ox0
ox0 0x0

ox0 0x0

106

0x4do190
0x4d01a0
0x4do1bo
0x4do1co
ox4do1do
0x4d01e0
ox4do1fe
0x4d0200
0x4do210
0x4d0220
0x4d0230
ox4d0240
0x4d0250
0x4d0260
0x4d0270
0x4d0280
0x4d0290
0x4d02a0
0x4d02bo
0x4d02co
ox4do2de
0x4d02e0
ox4de2fe
0x4d0300
ox4do310
0x4d0320
0x4do330
ox4d0340

--Type <RET> for more, q to quit, c to continue without paging--

0x4d0350
0x4d0360
ox4do370
0x4d0380
0x4d0390
0x4d03a0
0x4do3bo
0x4d03co
ox4do3de
0x4d03e0
ox4do3fo
ox4do400
ox4de41e
0x4do420
0x4do430
ox4do440
0x4do450
o0x4do460
0x4do470
0x4do480
0x4de490
0x4do4a0
0x4do4bo
0x4do4co
ox4do4de
ox4do4e0
ox4de4fe
0x4d0500
0x4do510
0x4d0520
0x4do530

<_I0_wide_data_2+40>:
<_I0_wide_data_2+56>:
<_I0 wide_data_2+72>:
<_I0 wide_data_2+88>:

<_I0 wide_data_2+104>:
<_I0 _wide_data_2+120>:
<_I0 _wide_data_2+136>:
<_I0 wide_data_2+152>:
<_I0 wide_data_2+168>:
<_I0 _wide_data_2+184>:
<_I0 _wide_data_2+200>:
<_I0 _wide_data_2+216>:
<_I0 wide_data_2+232>:
<_I0 wide_data_2+248>:
<_I0 _wide_data_2+264>:
<_I0 _wide_data_2+280>:
<_I0 _wide_data_2+296>:
<_I0 wide_data_2+312>:

<_I0 2 1 stdout_»>:

<_I0 2 1 stdout_+16>:
<_I0 2 1 stdout_+32>:
<_I0_ 2 1 stdout_+48>:
<_I0_ 2 1 stdout_+64>:
<_I0_2 1 stdout_+80>:
<_I0 2 1 stdout_+96>:

<_I0 2 1 stdout_+112>:
<_I0_2_1 stdout_+128>:

0x421800 <_I0 wfile_jumps>

ox0

ex4de4d8 <_I0_2 1 stdin_>
OxFFFFFFFFFFFFFFFT

0x0 0x0
0x0 0x0
0x0 ox0
ox0 0x0
ox0 o0x0
ox0 ox0
ox0 ox0
ox0 o0x0
ox0 ox0
ox0 ox0
0x0 ox0
ox0 ox0
ox0 o0x0
ox0 0x0
ox0 ox0
ox0 ox0
ox0 ox0
ox0

oxfbad2084
ox0 0x0
ox0 ox0
0x0 0x0
0x0 0x0
0x0 0x0
0x0

ox1

0x0

0x4d6438 <_IO_stdfile_1_lock>
<_I0_2_1 stdout_+144>: oxffffffffffffffff

0x0

<_I0_2_ 1 stdout_+160>: 0x4d0390 <_IO wide_data_1>

<_I0 2 1 stdout_+176>:
<_I0_2_1 stdout_+192>:
<_I0_2_1 stdout_+208>:

<_I0 _wide_data_1>:

<_I0 wide_data_1+16>:
<_I0 wide_data_1+32>:
<_I0 wide_data_1+48>:
<_I0 wide_data_1+64>:
<_I0 _wide_data_1+80>:
<_I0 _wide_data_1+96>:

<_I0 wide_data_1+112>:
<_I0 wide_data_1+128>:
<_I0 wide_data_1+144>:
<_I0 wide_data_1+160>:
<_I0 wide_data_1+176>:
<_I0 wide_data_1+192>:
<_I0 wide_data_1+208>:
<_I0 _wide_data_1+224>:
<_I0 _wide_data_1+240>:
<_I0 wide_data_1+256>:
<_I0_wide_data_1+272>:
<_I0_wide_data_1+288>:
<_I0 wide_data_1+304>:
<_I0 wide_data_1+320>:

<_I0_2_1 stdin_+8>:
<_I0_2_1 stdin_+24>:
<_I0_2_1 stdin_+40>:
<_I0 2 1 stdin_+56>:
<_I0 2 1 stdin_+72>:
<_I0_2_1 stdin_+88>:

o0x0

0x4a1950 <_IO0_file_jumps>

0x4al1800 <_I0 wfile jumps>

ox0 ox0
0x0 0x0
0x0

ox0 ox0
ox0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
ox0 ox0
ox0 ox0
0x0 0x0
0x0 0x0
ox0 0x0
ox0 0x0
ox0 ox0
0x0 0x0
0x0 0x0
ox0 0x0
ox0 0x0
0x0 0x0
0x0 ox0
0x0 ox0
ox0 o0x0
0x0 ox0
0x0 ox0
0x0 ox0
ox0 0x0
ox0 0x0
ox0 0x0

107

oxfbad2088

ox4do540
0x4do550
0x4d0560
0x4do570
0x4d0580
0x4d0590
0x4d05a0
0x4do5bo
0x4do5co
ox4do5do
0x4d05e0
ox4do5f0
0x4d0600
0x4do610
0x4d0620
0x4d0630
0x4do640
0x4d0650
0x4d0660

0x4do670
0x4d0680
0x4d0690
0x4d0620
0x4do6bo
0x4d0e6c0o
ox4do6do
ox4do6e0
ox4do6f0
0x4do700
ox4do710
0x4de720
ox4do730
ox4do740
0x4do750
0x4d0760
0x4de770
ox4do780
0x4do790
0x4d07a0
0x4do7bo
0x4do7co
ox4do7de
0x4d07e0
ox4do7fo
0x4d0800
ox4do810
0x4d0820
0x4do830
ox4do840
0x4do850
0x4d0860
0x4do870
0x4do880
0x4do890
0x4d08a0
0x4do8bo
0x4d0e8co
0x4do8de
0x4d08e0

stdin+104>:
stdin+120>:
stdin+136>:
stdin+152>:
stdin+168>:
stdin+184>:
1 stdin_+200>:
2 1 stdin_+216>:
O wide_data_0+8>:

<_IO_w1de_data_e+24>:
<_I0 _wide_data_0+40>:
<_I0_wide_data_0+56>:
<_I0 wide_data_0+72>:
<_I0 wide_data_0+88>:

<_I0 _wide_data_0+104>:
<_I0 _wide_data_0+120>:
<_I0 _wide_data_0+136>:
<_I0 wide_data_©+152>:
<_I0 wide _data_0+168>:
--Type <RET> for more, q to quit,
<_I0 wide_data_0+184>:
<_I0_wide_data_0+200>:
<_I0 _wide_data_0+216>:
<_I0_wide_data_0+232>:
<_I0 _wide_data_0+248>:
<_I0 _wide_data_0+264>:
<_I0_wide_data_0+280>:
<_IO_wide_data_0+296>:
<_I0 _wide_data_0+312>:

0x0
oxffffff
ox4d6448
ox0
ox0
ox0
ox0
0x4al1950
ox0
ox0
ox0
ox0
ox0
ox0
ox0
ox0
ox0
ox0
ox0
c toc
ox0
0x0
0x0
0x0
0x0
ox0
0x0
0x0
ox0

0x0
fffffffff oxo

<_I0 stdfile_© lock> exffffffffffffffff
0x4de5b8 < IO wide data_ o>
0x0
0x0
0x0

<_I0 file_jumps>
0x0
0x0
ox0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
ontinue without paging--
0x0
ox0
ox0
ox0
0x0
0x0
0x0
ox0
0x4al1800 <_IO0 _wfile_ jumps>

o0x0

<stderr>: 0x4doe88 <_I0 2 1 stderr_> 0x4d02bo < I0_2 1 stdout_ >
<stdin>: o0x4de4d8 <_I0 2 1 stdin_> 0x20000

<mp_+8>: 0x20000 0x20000

<mp_+24>: ox8 ox0

<mp_+40>: 0x1000000000000 0x0O

<mp_+56>: 0x0 ox0

<mp_+72>: ox1fao0f88 ox40

<mp_+88>: 0x408 ox7

<mp_+104>: ox0 ox0

<main_arena+8>: ox0 ox0

<main_arena+24>: ox0 ox0

<main_arena+40>: oxoe oxe

<main_arena+56>: oxe oxe

<main_arena+72>: ox0 ox0

<main_arena+88>: ox0 ox1fa28a0

<main_arena+104>: ox0 0x4d07e8 <main_arena+96>

<main_arena+120>: 0x4d07e8 <main_arena+96> 0x4de7f8 <main_arena+112>
<main_arena+136>: 0x4d0e7f8 <main_arena+112> 0x4d0e808 <main_arena+128>
<main_arena+152>: 0x4d0808 <main_arena+128> 0x4d0818 <main_arena+144>
<main_arena+168>: 0x4d0818 <main_arena+144> 0x4d0828 <main_arena+160>
<main_arena+184>: 0x4d0e828 <main_arena+160> 0x4d0e838 <main_arena+l76>
<main_arena+200>: 0x4d0838 <main_arena+l76> 0x4d0848 <main_arena+192>
<main_arena+216>: 0x4d0848 <main_arena+192> 0x4de858 <main_arena+208>
<main_arena+232>: 0x4d0858 <main_arena+208> 0x4d0868 <main_arena+224>
<main_arena+248>: 0x4d0868 <main_arena+224> 0x4d0878 <main_arena+240>
<main_arena+264>: 0x4d0878 <main_arena+240> 0x4d0888 <main_arena+256>
<main_arena+280>: 0x4d0888 <main_arena+256> 0x4d0898 <main_arena+272>
<main_arena+296>: 0x4d0898 <main_arena+272> 0x4d08a8 <main_arena+288>
<main_arena+312>: 0x4d08a8 <main_arena+288> 0x4d08b8 <main_arena+304>
<main_arena+328>: 0x4d08b8 <main_arena+304> 0x4d08c8 <main_arena+320>
<main_arena+344>: 0x4d08c8 <main_arena+320> 0x4de8d8 <main_arena+336>

108

ox4do8fe
0x4d0900
0x4de91e
0x4d0920
0x4de930
0x4d0940
0x4d0e950
0x4d0960
0x4de97e
0x4de980e

--Type <RET> for more, q to quit, c to continue without paging--

0x4d0990
0x4d09a0
0x4do9bo
0x4de9co
ox4do9de
0x4d09e0
0x4do9fo
0x4d0ao0
0x4deale
0x4d0a20
ox4d0a30
ox4d0a40
0x4d0a50
0x4d0a60
0x4d0a70
0x4d0a80
0x4d0a9e
0x4d0aal
0x4d0abe
0x4d0ace
0x4d0ade
0x4d0ae0
0x4deafe
0x4doboo
ox4doble
ox4dob220o
ox4dob30
ox4dob4o
0x4dob50
0x4dob6o
ox4dob70
0x4dobse
0x4dob9oo
0x4debao
ox4dobbo
0x4debco
ox4dobdo
0x4debeo
ox4dobfo
0x4d0coe
0x4declo
0x4doc20
ox4doc30
0x4dec4o
0x4dec50
0x4d0c60
0x4dec7e
0x4d0ec8e
0x4dec90

<main_arena+360>:
<main_arena+376>:
<main_arena+392>:
<main_arena+408>:
<main_arena+424>:
<main_arena+440>:
<main_arena+456>:
<main_arena+472>:
<main_arena+488>:
<main_arena+504>:

<main_arena+520>:
<main_arena+536>:
<main_arena+552>:
<main_arena+568>:
<main_arena+584>:
<main_arena+600>:
<main_arena+616>:
<main_arena+632>:
<main_arena+648>:
<main_arena+664>:
<main_arena+680>:
<main_arena+696>:
<main_arena+712>:
<main_arena+728>:
<main_arena+744>:
<main_arena+760>:
<main_arena+776>:
<main_arena+792>:
<main_arena+808>:
<main_arena+824>:
<main_arena+840>:
<main_arena+856>:
<main_arena+872>:
<main_arena+888>:
<main_arena+904>:
<main_arena+920>:
<main_arena+936>:
<main_arena+952>:
<main_arena+968>:
<main_arena+984>:

<main_arena+1000>:
<main_arena+1016>:
<main_arena+1032>:
<main_arena+1048>:
<main_arena+1064>:
<main_arena+1080>:
<main_arena+1096>:
<main_arena+1112>:
<main_arena+1128>:
<main_arena+1144>:
<main_arena+1160>:
<main_arena+1176>:
<main_arena+1192>:
<main_arena+1208>:
<main_arena+1224>:
<main_arena+1240>:
<main_arena+1256>:
<main_arena+1272>:
<main_arena+1288>:

0x4do8ds8
ox4de8e8
0x4do8f8
0x4d0908
0x4d0918
0x4d0928
0x4d0938
0x4d0948
0x4d0958
0x4d0968

0x4d0978
0x4d0988
0x4d0998
ox4de9a8
0x4do9bs8
0x4de9c8
0x4d09ds8
0x4d09e8
0x4do9f8
0x4d0aos8
0x4d0al8
0x4d0a28
0x4d0a38
ox4doas8
ox4deas8
0x4d0a68
0x4d0a78
ox4doa88
0x4deass8
ox4doaa8
0x4d0ab8
ox4doac8
ox4dead8
ox4doae8
0x4doafts8
0x4dobos
ox4dob18
0x4dob28
0x4dob38
0x4dob48
0x4dob58
0x4dob68
0x4dob78
0x4dob88
0x4dobo8
0x4deba8
0x4dobb8
ox4debc8
ox4dobd8
ox4debe8
0x4dobf8
0x4docos8
0x4docl1s8
0x4doc28
ox4dec38
0x4doc48
ox4dec58
ox4doc68
0x4doc78

<main_arena+336>
<main_arena+352>
<main_arena+368>
<main_arena+384>
<main_arena+400>
<main_arena+416>
<main_arena+432>
<main_arena+448>
<main_arena+464>
<main_arena+480>

<main_arena+496>
<main_arena+512>
<main_arena+528>
<main_arena+544>
<main_arena+560>
<main_arena+576>
<main_arena+592>
<main_arena+608>
<main_arena+624>
<main_arena+640>
<main_arena+656>
<main_arena+672>
<main_arena+688>
<main_arena+704>
<main_arena+720>
<main_arena+736>
<main_arena+752>
<main_arena+768>
<main_arena+784>
<main_arena+800>
<main_arena+816>
<main_arena+832>
<main_arena+848>
<main_arena+864>
<main_arena+880>
<main_arena+896>
<main_arena+912>
<main_arena+928>
<main_arena+944>
<main_arena+960>
<main_arena+976>
<main_arena+992>
<main_arena+1008>
<main_arena+1024>
<main_arena+1040>
<main_arena+1056>
<main_arena+1072>
<main_arena+1088>
<main_arena+1104>
<main_arena+1120>
<main_arena+1136>
<main_arena+1152>
<main_arena+1168>
<main_arena+1184>
<main_arena+1200>
<main_arena+1216>
<main_arena+1232>
<main_arena+1248>
<main_arena+1264>

109

ox4do8e8
0x4do8f8
0x4d0908
0x4d0918
0x4d0928
0x4d0938
0x4d0948
0x4d0958
0x4d0968
0x4d0978

0x4d0988
0x4d0998
0x4d09a8
0x4d09b8
0x4d09c8
0x4d09ds8
0x4d09%e8
0x4d09f8
0x4d0aos8
ox4doals
0x4d0a28
0x4d0a38
0x4d0a48
ox4deas8
0x4doa68
0x4d0a78
0x4d0a88
0x4doa9s8
ox4doaa8
ox4doab8
ox4doac8
ox4doad8
ox4doae8
ox4doafs8
0x4dobos
0x4dob18
0x4dob28
0x4dob38
0x4dob4s
0x4dob58
0x4dob68
0x4dob78
0x4dobss
0x4dobos
ox4deba8
0x4dobb8
ox4debc8
0x4dobds
0x4debe8
ox4dobf8
ox4doecoes8
ox4doc18
0x4doc28
ox4dec38
0x4doc48
ox4dec58
0x4doc68
ox4doc78
ox4doc88

<main_arena+352>
<main_arena+368>
<main_arena+384>
<main_arena+400>
<main_arena+416>
<main_arena+432>
<main_arena+448>
<main_arena+464>
<main_arena+480>
<main_arena+496>

<main_arena+512>
<main_arena+528>
<main_arena+544>
<main_arena+560>
<main_arena+576>
<main_arena+592>
<main_arena+608>
<main_arena+624>
<main_arena+640>
<main_arena+656>
<main_arena+672>
<main_arena+688>
<main_arena+704>
<main_arena+720>
<main_arena+736>
<main_arena+752>
<main_arena+768>
<main_arena+784>
<main_arena+800>
<main_arena+816>
<main_arena+832>
<main_arena+848>
<main_arena+864>
<main_arena+880>
<main_arena+896>
<main_arena+912>
<main_arena+928>
<main_arena+944>
<main_arena+960>
<main_arena+976>
<main_arena+992>
<main_arena+1008>
<main_arena+1024>
<main_arena+1040>
<main_arena+1056>
<main_arena+1072>
<main_arena+1088>
<main_arena+1104>
<main_arena+1120>
<main_arena+1136>
<main_arena+1152>
<main_arena+1168>
<main_arena+1184>
<main_arena+1200>
<main_arena+1216>
<main_arena+1232>
<main_arena+1248>
<main_arena+1264>
<main_arena+1280>

0x4d0cad <main_arena+1304>:
--Type <RET> for more, q to quit, c to continue without paging--
<main_arena+1320>:
<main_arena+1336>:
<main_arena+1352>:
<main_arena+1368>:
<main_arena+1384>:
<main_arena+1400>:
<main_arena+1416>:
<main_arena+1432>:
<main_arena+1448>:
<main_arena+1464>:
<main_arena+1480>:
<main_arena+1496>:
<main_arena+1512>:
<main_arena+1528>:
<main_arena+1544>:
<main_arena+1560>:
<main_arena+1576>:
<main_arena+1592>:
<main_arena+1608>:
<main_arena+1624>:
<main_arena+1640>:
<main_arena+1656>:
<main_arena+1672>:
<main_arena+1688>:
<main_arena+1704>:
<main_arena+1720>:
<main_arena+1736>:
<main_arena+1752>:
<main_arena+1768>:
<main_arena+1784>:
<main_arena+1800>:
<main_arena+1816>:
<main_arena+1832>:
<main_arena+1848>:
<main_arena+1864>:
<main_arena+1880>:
<main_arena+1896>:
<main_arena+1912>:
<main_arena+1928>:
<main_arena+1944>:
<main_arena+1960>:
<main_arena+1976>:
<main_arena+1992>:
<main_arena+2008>:
<main_arena+2024>:
<main_arena+2040>:
<main_arena+2056>:
<main_arena+2072>:
<main_arena+2088>:
<main_arena+2104>:
--Type <RET> for more, q to quit, c to continue without paging--
<main_arena+2120>:
<main_arena+2136>:
<main_arena+2152>:
<main_arena+2168>:
<main_arena+2184>:
0x421c08 <__default_morecore>

0x4decbo
0x4decce
0x4decdo
0x4d0ce0
0x4decfoe
0x4dedoo
ox4ded1e
0x4ded20
0x4ded30
0x4ded4o
0x4deds50
0x4ded6o
0x4ded70
0x4ded8o
0x4ded9oo
0x4dedao
0x4dodbo
0x4dedce
0x4deddo
0x4dedeo
ox4dodfoe
0x4d0e00
0x4deel0
0x4d0e20
ox4doe30
0x4doe40
0x4d0e50
0x4d0e60
0x4dee70
ox4doe80
ox4doe90
0x4d0ead
0x4d0ebo
0x4doeco
0x4doedo
0x4d0ee0
0x4deefo
0x4dofoo
ox4defie
ox4def20
0x4def30
ox4def40e
0x4def50
ox4def60
ox4def70
0x4dof80
0x4def90
ox4defae
ox4dofbo
0x4doefco

ox4defde
ox4dofeo
ox4deffe
0x4d1000
ox4dle1e
0x4d1020
0x4d1030

<__morecore>:

0x4doc88

0x4d0c98
ox4docas8
0x4docbs
ox4decc8
ox4decd8
ox4doce8
0x4docfs8
0x4dodes
0x4dod18
0x4dod28
0x4dod38
0x4dod48
0x4dod58
0x4dod68
0x4dod78
0x4dods8s
0x4dodos
ox4deda8
0x4dodbs8
ox4dedc8
ox4dodd8
ox4dede8
0x4dodfs8
ox4doe08
ox4doel8
ox4d0e28
ox4doe38
ox4doe48
ox4dee58
0x4doe68
ox4d0e78
ox4doe88
0x4d0e98
Ox4doea8
ox4doeb8
0x4doec8
ox4deed8
ox4doee8
ox4doef8
ox4dofo8
0x4dof18
0x4dof28
0x4dof38
ox4dof48
ox4dof58
0x4dof68
0x4dof78
ox4dof88
0x4dof9o8
0x4dofas8

ox4doefb8
ox4dofc8
0x0

0x0
ox3f078

<__libc_malloc_initialized>:

<main_arena+1280>

<main_arena+1296>
<main_arena+1312>
<main_arena+1328>
<main_arena+1344>
<main_arena+1360>
<main_arena+1376>
<main_arena+1392>
<main_arena+1408>
<main_arena+1424>
<main_arena+1440>
<main_arena+1456>
<main_arena+1472>
<main_arena+1488>
<main_arena+1504>
<main_arena+1520>
<main_arena+1536>
<main_arena+1552>
<main_arena+1568>
<main_arena+1584>
<main_arena+1600>
<main_arena+1616>
<main_arena+1632>
<main_arena+1648>
<main_arena+1664>
<main_arena+1680>
<main_arena+1696>
<main_arena+1712>
<main_arena+1728>
<main_arena+1744>
<main_arena+1760>
<main_arena+1776>
<main_arena+1792>
<main_arena+1808>
<main_arena+1824>
<main_arena+1840>
<main_arena+1856>
<main_arena+1872>
<main_arena+1888>
<main_arena+1904>
<main_arena+1920>
<main_arena+1936>
<main_arena+1952>
<main_arena+1968>
<main_arena+1984>
<main_arena+2000>
<main_arena+2016>
<main_arena+2032>
<main_arena+2048>
<main_arena+2064>
<main_arena+2080>

<main_arena+2096>
<main_arena+2112>

0x4d0788 <main_arena>

ox1
0x3f078

oxffffffffoo000001

110

ox1

0x4d0c98

ox4doca8
0x4docbhs8
ox4docc8
ox4decd8
ox4doce8
ox4docts
0x4dodos
ox4dod18
ox4ded28
ox4dod38
ox4dod48
0x4dod58
0x4dod68
ox4ded78
0x4dodss
0x4dedos
ox4dodas
ox4dodbs
ox4dedc8
ox4dodd8
ox4dode8
ox4dodf8
0x4doe08
ox4doel8
ox4d0e28
ox4do0e38
0x4doe48
ox4doe58
ox4doe68
ox4d0e78
0x4d0e88
ox4doe98
ox4doea8
ox4doeb8
ox4doec8
0x4doed8
ox4doee8
ox4doef8
ox4dofo8
ox4dof18
ox4dof28
ox4dof38
ox4dof48
0x4def58
ox4dof68
ox4dof78
ox4do+88
ox4dof9o8
ox4dofa8
ox4dofb8

0x4dofc8
0x0

0x41cco0

<main_arena+1296>

<main_arena+1312>
<main_arena+1328>
<main_arena+1344>
<main_arena+1360>
<main_arena+1376>
<main_arena+1392>
<main_arena+1408>
<main_arena+1424>
<main_arena+1440>
<main_arena+1456>
<main_arena+1472>
<main_arena+1488>
<main_arena+1504>
<main_arena+1520>
<main_arena+1536>
<main_arena+1552>
<main_arena+1568>
<main_arena+1584>
<main_arena+1600>
<main_arena+1616>
<main_arena+1632>
<main_arena+1648>
<main_arena+1664>
<main_arena+1680>
<main_arena+1696>
<main_arena+1712>
<main_arena+1728>
<main_arena+1744>
<main_arena+1760>
<main_arena+1776>
<main_arena+1792>
<main_arena+1808>
<main_arena+1824>
<main_arena+1840>
<main_arena+1856>
<main_arena+1872>
<main_arena+1888>
<main_arena+1904>
<main_arena+1920>
<main_arena+1936>
<main_arena+1952>
<main_arena+1968>
<main_arena+1984>
<main_arena+2000>
<main_arena+2016>
<main_arena+2032>
<main_arena+2048>
<main_arena+2064>
<main_arena+2080>
<main_arena+2096>

<main_arena+2112>

<memalign_hook_ini>

0x4d1040 <__realloc_hook>: 0x41d688 <realloc_hook_ini> ox0

0x4d1050 <LogFacility>: oxffffff{f{f00000008 ox 100000002
0x4d1060 <cached_result.10628>: Oxffffffff oxffffd3ebfedd
0x4d1070 <program_invocation_name>: oxffffd3ebfedb ©x10000
0x4d1080 <_dl stack_ flags>: ox6 ox0

0x4d1090 <_dl load_write_lock+8>: ox0 ox1

0x4d10a0 <_dl load_write_lock+24>: ox0 ox0

0x4d10bo < _dl load write_ lock+40>: ox0 oxe

0x4d10co <_dl load_lock+8>: ox0 ox1

0x4d10de <_dl load_lock+24>: ox0 ox0

0x4d10e0 <_dl load_lock+40>: ox0 Ox42c6a0 <_dl_make_stack_executable>
ox4d10fe <_dl _correct_cache_id>: 0x200000203 0x4045a8 <__ pthread_init_static_tls>
0x4d1100 <_dl_starting_up>: ox1 oxfffffffffffffffe
0x4d1110 <_dl_argv>: 0x4d1068 <program_invocation_short_name> ox0
0x4d1120 <builtin_modules>: ox48ad20 0x48ac30

0x4d1130 <builtin_modules+16>: Ox7fffffff00000001 Ox48ac40
0x4d1140 <builtin_modules+32>: ©Ox0 ox0

0x4d1150 <builtin_modules+48>: ©x0 0x48ac30

0x4d1160 <builtin_modules+64>: ©x48ad20 ox7ffff{fff00000001
0x4d1170 <builtin_modules+80>: ©x48ac50 ox0

0x4d1180 <builtin_modules+96>: ©x0 ox0

0x4d1190 <builtin_modules+112>: ©x48ad20 0x48ac60

0x4d11a@ <builtin_modules+128>: ox7fffffffo0000001 0x48ac70
0x4d11be <builtin_modules+144>: 0x0 oxe

0x4d11cO <builtin_modules+160>: 0x0 0x48ac60

0x4d11d0 <builtin_modules+176>: 0x48ad20 ox7fffffff00000001
0x4d11e@ <builtin_modules+192>: ©x48ac88 ox0

0x4d11fe <builtin_modules+208>: 0x0 oxe

0x4d1200 <builtin_modules+224>: 0x48ad20 0x48acad

0x4d1210 <builtin_modules+240>: ox7fffffff00000001 ox48acho
0x4d1220 <builtin_modules+256>: 0x0 ox0

0x4d1230 <builtin_modules+272>: 0x@ Ox48aca0

0x4d1240 <builtin_modules+288>: ©x48ad20 ox7fffffffo0000001
0x4d1250 <builtin_modules+304>: Ox48accl ox0

0x4d1260 <builtin_modules+320>: Ox0 ox0

0x4d1270 <builtin_modules+336>: ©x48acde@ 0x48ad20

0x4d1280 <builtin_modules+352>: ox7fffffffo0000001 Ox48ace0
0x4d1290 <builtin_modules+368>: ©x0O ox0

0x4d12a0 <builtin_modules+384>: 0x0 ox48ad20

0x4d12b0 <builtin_modules+400>: 0x48acdo ox7fffffffo0000001
0x4d12c@ <builtin_modules+416>: ©x48acfe (]

0x4d12de <builtin_modules+432>: 0x0 oxe

0x4d12e0 <builtin_modules+448>: 0x48adoo 0x48ad20

The output is in the following format:
address: valuel value2

Because the size of each value is 8 bytes, the next address is +16 bytes or +10hex. The addresses can have associated
symbolic names:

address <name>: valuel value2
Each value may also have an associated symbolic value:

address <name>: valuel <namel> value2

111

For example, from the output above:
0x4d1110 <_dl_argv>: 0x4d1068 <program_invocation_short_name> 0x0

11. Explore the contents of memory pointed to by __ nptl_nthreads, program_invocation_short_name, and
__realloc_hook addresses (/x is for hex, /d is for decimals, /u is for unsigned decimals, /g is for 64-bit values, /w is for
32-bit values, /h is for 16-bit values, /b is for byte values, /a is for addresses, /c and /s are for chars and strings):

(gdb) x/d & nptl nthreads
0x4deo48 <__ nptl _nthreads>: 6

(gdb) x/u 0x4doe48
0x4dee48 <_ nptl nthreads>: 6

(gdb) x/wx 0x4d0048
0x4dee48 <__ nptl _nthreads>: 0x00000006

(gdb) x/gx 0x4dee48
0x4d0048 <_ nptl_nthreads>: 0Xx0000000000000006

(gdb) x/hx 0x4d0048
0x4d0e48 <_ nptl_nthreads>: 0x0006

(gdb) x/bx 0x4d0048
0x4dee48 <__ nptl nthreads>: 0x06

(gdb) x/a ©x4d1068
0x4d1068 <program_invocation_short_name>: oxffffd3ebfedd

(gdb) x/a oxffffd3ebfedd
oxffffd3ebfedd:

(gdb) x/s @xffffd3ebfedd
oxffffd3ebfedd:

(gdb) x/8c exffffd3ebfedd
oxffffd3ebfedd: 88 'X' 68 'D' 71 'G'

(gdb) x/10s exffffd3ebfedd

oxffffd3ebfedd: "Appl"

oxffffd3ebfee2: "XDG_SESSION_ID=6850"
oxffffd3ebfef6: "HOSTNAME=instance-20211109-2004"
oxffffd3ebf716: "SELINUX_ROLE_REQUESTED="
oxffffd3ebf72e: "TERM=xterm-256color”
oxffffd3ebf742: "SHELL=/bin/bash"

oxffffd3ebf752: "HISTSIZE=1000"

Oxffffd3ebf760: "SSH_CLIENT=37.228.238.120 61099 22"
oxffffd3ebf783: "SELINUX_USE_CURRENT_RANGE="
oxffffd3ebf79e: "SSH_TTY=/dev/pts/1"

(gdb) x/a & realloc_hook
0x4d1040 <_ realloc_hook>: 0x41d688 <realloc_hook_ini>

(gdb) x/10i ©x41d688

0x41d688 <realloc_hook_ini>: stp x29, x30, [sp, #-112]!
0x41d68c <realloc_hook_ini+4>: mov x29, sp

0x41d690 <realloc_hook ini+8>: stp x25, x26, [sp, #64]
0x41d694 <realloc_hook_ini+12>: adrp x25, 0x4d0000
0x41d698 <realloc_hook _ini+16>: add x2, Xx25, #0x718

112

0x41d69c <realloc_hook_ini+20>: stp
0x41d6a0@ <realloc_hook_ini+24>: 1dr
0x41d6a4 <realloc_hook_ini+28>: ldr
0x41d6a8 <realloc_hook_ini+32>: ldr
ox41d6ac <realloc_hook_ini+36>: stp

x21, x22, [sp, #32]
w3, [x2, #2328]
x21, 0x41da4d8

X2, 0x41dado

x19, x20, [sp, #16]

Note: We see that a hook function is installed for realloc. Please find the following documentation for hook

functions here:

https://www.gnu.org/software/libc/manual/htm| node/Hooks-for-Malloc.html

12.

(gdb) x/a &environ

0x4d64c8 <environ>:

(gdb) x/10a oxffffd30b8888

oxffffd30b8888:
oxffffd30b8898:
oxffffd30b88a8:
oxffffd30b88bs:
oxffffd3eb88c8:

oxffffd3ebfee2
oxffffd3ebf716
oxffffd3ebf742
oxffffd30bf760
oxffffd3ebf79e

(gdb) x/10s oxffffd3ebf6e2
"XDG_SESSION_ID=6850"
"HOSTNAME=instance-20211109-2004"
"SELINUX_ROLE_REQUESTED="
"TERM=xterm-256color"
"SHELL=/bin/bash"

oxffffd3ebfee2:
oxffffd3ebf6f6:
oxffffd3ebf716:
oxffffd3ebf72e:
oxffffd3ebf742:
oxffffd3ebf752:
oxffffd3ebf760:
oxffffd3ebf783:
oxffffd3ebf79e:
oxffffd3ebf7bl:

13.

"HISTSIZE=1000"

oxffffd30b8888

oxffffd3obfef6
oxffffd3ebf72e
oxffffd3ebf752
Oxffffd30bf783
oxffffd3ebf7bl

Explore the contents of memory pointed to by environ variable address:

"SSH_CLIENT=37.228.238.120 61099 22"
"SELINUX_USE_CURRENT_RANGE="
"SSH_TTY=/dev/pts/1"

"USER=0pc"

only in the valid regions.

(gdb) find /g 0x004d0030, Ox005d0030, 6
0x4do048 <__ nptl nthreads>
0x4d1080 <_dl_stack_flags>
ox4d7e00 <_dl_phnum>

warning: Unable to access 16000 bytes of target memory at 0x4dfbe@8, halting search.
3 patterns found.

(gdb) x/gd 0x4dee4s8
0x4de048 <_ nptl nthreads>:

6

(gdb) find oxffffd3ebfee2, +1000, "bash"

oxffffd3ebf74d

1 pattern found.

(gdb) x/s oxffffd3ebf74d-11
"SHELL=/bin/bash"

oxffffd3ebf742:

Note: "bash" is considered a null-terminated array of characters for the search. To search for a string sequence

without a null terminator, use a sequence of characters:

Now we look at how to perform a memory search. It is not possible to search in the entire virtual memory,

113

https://www.gnu.org/software/libc/manual/html_node/Hooks-for-Malloc.html

(gdb) find oxffffd3ebfee2, +1000, "bin"
Pattern not found.

(gdb) find oxffffd3ebfee2, +1000, 'b', 'i', 'n'
oxffffd3ebf749
1 pattern found.

14. Get the list of loaded modules:

(gdb) info sharedlibrary
No shared libraries loaded at this time.

Note: We don’t see any shared libraries because they were statically linked. We also created the version of a
dynamically linked App1.shared executable. If we load its core dump Appl.shared.core.184724 from the App1S
directory, we see the list of shared libraries:

~/ALCDA2/A64/ApplS$ gdb -c Appl.shared.core.184724 -se Appl.shared

GNU gdb (Ubuntu 12.1-Qubuntul~22.04) 12.1

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from Appl.shared...

(No debugging symbols found in Appl.shared)

[New LWP 184724]

[New LWP 184725]

[New LWP 184726]

[New LWP 184727]

[New LWP 184728]

[New LWP 184729]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/aarch64-linux-gnu/libthread_db.so.1".

Core was generated by " ./Appl.shared’.

#0 0x0000ffff81451924 in _ GI__ clock_nanosleep (clock_id=<optimized out>, clock_id@entry=0,
flags=flags@entry=0, req=req@entry=0xffffc23e78a8, rem=rem@entry=0xffffc23e78a8)
at ../sysdeps/unix/sysv/linux/clock_nanosleep.c:78

78 ../sysdeps/unix/sysv/linux/clock_nanosleep.c: No such file or directory.

[Current thread is 1 (Thread Oxffff81585e80 (LWP 184724))]

(gdb) set style enabled off

(gdb) info sharedlibrary

From To Syms Read Shared Object Library
0x0000ffff813c7040 0x0OROffff814d3f20 Yes /1lib/aarch64-1inux-gnu/libc.so0.6
0x0000ffff81551c40 0Ox0000ffff81570064 Yes /1lib/1d-1linux-aarch64.so.1

114

15. Disassemble the bar_one function and follow the indirect sleep function call:

(gdb) disassemble bar_one
Dump of assembler code for function bar_one:

0x0000a22addbed894 <+0>: stp x29, x30, [sp, #-16]!
0x00002222dObedB898 <+4>: mov Xx29, sp

0x000Paaaaddbed89c <+8>: mov wo, #HOxffffffff // #-1
0Xx0000aaaadObedB8ad <+12>: bl Oxaaaad@bed710 <sleep@plt>
0x0000aaaadobedB8ad <+16>: 1dp x29, x30, [sp], #16

0x000PaaaadobedB8a8 <+20>: ret

End of assembler dump.

(gdb) disassemble ©xaaaad@be0710
Dump of assembler code for function sleep@plt:

0Xx0000aaaadObed710 <+0>: adrp x16, ©OxaaaadObf1000
0x0000aaaaddbed714 <+4>: ldr x17, [x16, #4000)]
0x0000aaaadObed718 <+8>: add x16, x16, #0xfao
0x000PaaaadObed71c <+12>: br x17

End of assembler dump.

(gdb) x/a ©xaaaadobf1000+4000
Oxaaaadobflfad <sleep@got.plt>: Oxffff81456970 <__ sleep>

Note: Since GDB gets shared library images from your analysis system which do not correspond to shared libraries
from the crash system, most likely you get some random symbolic information (and, also, an invalid backtrace from
the bt command). This is an example using App1.shared.core.22442 from the App1 directory:

(gdb) bt
#0 0x0000ffff0496dd64 in ?2? ()
Backtrace stopped: previous frame identical to this frame (corrupt stack?)

(gdb) info sharedlibrary

From To Syms Read Shared Object Library

No /1ib64/1libpthread.so.0

No /1ib64/1libc.so0.6
0x0000ffffo4ab5bf8 0x0000ffffo04ad40lc Yes /1ib/1d-1inux-aarch64.so0.1

(gdb) disassemble bar_one
Dump of assembler code for function bar_one:

0Xx0000000000400728 <+0>: stp x29, x30, [sp, #-16]!
0x000000000040072C <+4>: mov X29, sp

0x0000000000400730 <+8>: mov wo, #Hoxfffffff // #-1
0x0000000000400734 <+12>: bl 0x400580 <sleep@plt>
0x0000000000400738 <+16>: 1dp x29, x30, [sp], #16

0x000000000040073C <+20>: ret

End of assembler dump.

(gdb) disassemble ©x400580
Dump of assembler code for function sleep@plt:

0x0000000000400580 <+0>: adrp x16, 0x420000 <__ libc_start_main@got.plt>
0x0000000000400584 <+4>: ldr x17, [x16, #8]

0x0000000000400588 <+8>: add x16, x16, #0x8

0x000000000040058C <+12>: br x17

End of assembler dump.

(gdb) x/a 0x420000+8
0x420008 <sleep@got.plt>: oxffffo496d904

115

Note: You need the original shared library images and debug symbol files from the problem system. To get the right
results for this exercise, you can recreate the Appl.shared core dump (see main.c for build instructions if necessary).

16. Appl.shared.pmap.184724 also shows library memory regions:

(gdb) q

~/ALCDA2/A64/ApplS$ cat Appl.shared.pmap.184724
184724 ./Appl.shared

000PaaaadObe000O 4K r-x-- Appl.shared
0000aaaadobf1000 4K r---- Appl.shared
000Paaaadobf2000 4K rw--- Appl.shared
000Paaaafe503000 132K rw--- [anon]
0000ffff7eb50000 64K ----- [anon]
0000ffff7eb60000 8192K rw--- [anon]
0000ffff7f360000 64K ----- [anon]
0000ff 7370000 8192K rw--- [anon]
000offff7fb70000 64K ----- [anon]
0000ffff7fb80000 8192K rw--- [anon]
0000f 80380000 64K ----- [anon]
0000ffff80390000 8192K rw--- [anon]
0000 fff80b90000O 64K ----- [anon]
0000ffff80baooo0 8192K rw--- [anon]

0000ffff813a0000 1572K r-x-- libc.so.6

0000ff 81529000 60K ----- libc.so.6

0000ff 81538000 16K r---- libc.so.6
0000fff{8153c000 8K rw--- libc.so.6
0000ffff8153e000 48K rw--- [anon]

0000 fff{f81550000 172K r-x-- ld-linux-aarché64.so.1
000081585000 8K rw--- [anon]
000081587000 8K r---- [anon]
000081589000 4K r-x-- [anon]

0000f 81582000 8K r---- 1ld-linux-aarché4.so.1
0000ffff8158c000 8K rw--- 1ld-linux-aarché4.so.1
0000 ffffc23c8000 132K rw--- [stack]

total 43468K

116

Exercise A1 (A64, WinDbg Preview)

Goal: Learn how to list stack traces, disassemble functions, check their correctness, dump data, get environment.

Patterns: Manual Dump; Stack Trace; Stack Trace Collection; Annotated Disassembly; Paratext; Not My Version;
Environment Hint.

1. Launch WinDbg Preview.
2. Load a core dump Appl.core.21174 from the A64\App1 folder:

Microsoft (R) Windows Debugger Version 10.0.25111.1000 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\ALCDA2\A64\Appl\Appl.core.21174]
64-bit machine not using 64-bit API

3k 3k 3k >k 3k 3k 5k k 5k %k %k %k k path Validation SummaPy 3k 3k 3k 3k %k >k >k 3k 3k 5k Xk %k k 3k
Response Time (ms) Location
Deferred srv*
Symbol search path is: srv*

Executable search path is:

Generic Unix Version @ UP Free ARM 64-bit (AArch64)
Machine Name:

System Uptime: not available

Process Uptime: not available

*** WARNING: Unable to verify timestamp for Appl

Appl+0xc9b4:
00000000 ©040c9b4 d4000001 svc #0
3. Set logging to a file in case of lengthy output from some commands:

0:000> .logopen C:\ALCDA2\A64\Appl\Appl.log
Opened log file 'C:\ALCDA2\A64\Appl\Appl.log'

4. Specify the dump folder as the symbol path and reload symbols:

0:000> .sympath+ C:\ALCDA2\A64\Appl\

Symbol search path is: srv*;C:\ALCDA2\A64\Appl\

Expanded Symbol search path is:
cache*;SRV*https://msdl.microsoft.com/download/symbols;c:\alcda2\a64\appl\

kkokkkxkkkkkkk* path yalidation summary 3k sk >k 3k 3k 5k sk sk sk kR k ok k

Response Time (ms) Location
Deferred srv*
oK C:\ALCDA2\A64\App1\

*** WARNING: Unable to verify timestamp for Appl

117

0:000> .reload
*** WARNING: Unable to verify timestamp for Appl

Sk 3k 3k 3k 3k sk ok >k >k >k >k %k ok Symbol Loading Error Summapy 3k 3k 3k ok ok >k 3k sk ok ok ok >k >k >k
Module name Error
Appl The system cannot find the file specified

You can troubleshoot most symbol related issues by turning on symbol loading diagnostics (!sym
noisy) and repeating the command that caused symbols to be loaded.
You should also verify that your symbol search path (.sympath) is correct.

Note: We ignore warnings and errors as they are not relevant for now.

5. List all threads:

0:000> ~
Unable to get thread data for thread ©

@ Id: 52b6.52b7 Suspend: © Teb: 00000000 00O Unfrozen
Unable to get thread data for thread 1

1 1Id: 52b6.52b8 Suspend: © Teb: 00000000 ©00VVOVO Unfrozen
Unable to get thread data for thread 2

2 1Id: 52b6.52b9 Suspend: @ Teb: 00000000 0P Unfrozen
Unable to get thread data for thread 3

3 1Id: 52b6.52ba Suspend: © Teb: 00000000 00O Unfrozen
Unable to get thread data for thread 4

4 1Id: 52b6.52bb Suspend: © Teb: 00000000 ©0VVOO Unfrozen
Unable to get thread data for thread 5

5 1Id: 52b6.52b6 Suspend: © Teb: 00000000 00000000 Unfrozen

Note: WinDbg uses the same output format as for Windows memory dumps. Therefore, some data is either
reported as errors or shows 0 or NULL pointer values. However, we see process and threads IDs in the format
PID.TID:

0:000> .formats 52b6
Evaluate expression:
Hex: 00000000 ©PB52b6
Decimal: 21174
Octal: 0000000000000000051266
Binary: 00000000 00000000 00000000 0PV 000000 000V 01010010 10110110
Chars: R.
Time: Thu Jan 1 ©5:52:54 1970
Float: low 2.96711e-041 high @
Double: 1.04613e-319

0:000> ? 52b6
Evaluate expression: 21174 = 00000000 ©00052b6

6. Get the current thread stack trace:

0:000> k

Child-SP RetAddr Call Site

00 0000fffc cd38e5f0 00000000 ©0424cb4 Appl!_libc_nanosleep+0x24
01 0000fffc cd38e630 0000V 0040318 Appl!sleep+0x110

02 0000fffc cd38e820 00VVOVVO 0V40320C Appl!bar_one+0x10

03 0000fffc cd38e830 00000VVV0 00403224 Appl!foo_one+0xc

04 0000fffc cd38e840 00000000 00404c34 Appl!thread_one+0x10

05 0000fffc cd38e860 0VVVVVVO ©V429b60 Appl!start_thread+0xb4

118

86 000OFffc cd38e990 FFFFffff FFFFFfff
87 00OOFffc cd38e990 ©0OEEEEO” 0000

7.

Get all thread stack traces:

0:000> ~*k

Unable to get thread data for thread ©
@ 1Id: 52b6.52b7 Suspend: © Teb: 00000000 VOO Unfrozen

#
00
01
02
03
04
a5
06
o7

Child-SP

0000fffc cd38e5f0
0000fffc cd38e630
0000fffc cd38e820
0000fffc cd38e830
0000fffc cd38e840
0000fffc cd38e860
0000fffc cd38e990
0000fffc cd38e990

Unable to get thread
1 1Id: 52b6.52b8 Suspend: © Teb: 00000000 ©00VVOVO Unfrozen

#
00
o1
02
03
04
05
06
o7

Child-SP

0000fffc ccb7e5f0
0000fffc ccb7e630
000efffc ccb7e820
000efffc ccb7e830
0000fffc ccb7e840
0000fffc ccb7e860
000efffc ccb7e990
000efffc ccb7e990

Unable to get thread
2 1Id: 52b6.52b9 Suspend: @ Teb: 00000000 0P Unfrozen

#
00
o1
02
03
04
05
06
o7

Child-SP

000offfc cc36e5f0
0000fffc cc36e630
0000fffc cc36e820
0000fffc cc36e830
000offfc cc36e840
0000fffc cc36e860
0000fffc cc36e990
0000fffc cc36e990

Unable to get thread
3 1Id: 52b6.52ba Suspend: © Teb: 00000000 00O Unfrozen

#
00
o1
02
03
04
(3
06
o7

Child-SP

0000fffc cbb5e5f0
0000fffc cbb5e630
0000fffc cbb5e820
0000fffc cbb5e830
0000fffc cbb5e840
0000fffc cbb5e860
0000fffc cbb5e990
0000fffc cbb5e990

Unable to get thread
4 1Id: 52b6.52bb Suspend: © Teb: 00000000 00000000 Unfrozen

#

Child-SP

RetAddr

00000000° 00424cb4
00000000 0040318
00000000 0040320C
00000000 00403224
00000000 0040434
00000000 00429b60
ffffffff fFfrfff
00000000 000V

data for thread 1

RetAddr

00000000° 00424cb4
00000000 00403240
00000000 00403254
00000000 0040326C
00000000° 0040434
00000000 00429b60
ffffffff fHfrfff
00000000 0000V

data for thread 2

RetAddr

00000000° 00424cb4
00000000" 00403288
00000000° 0040329cC
00000000° 004032b4
00000000 0040434
00000000 00429b60
ffffffff fFfffff
00000000" 000V

data for thread 3

RetAddr

00000000° 00424cb4
00000000 004032d0
00000000 004032e4
00000000° 004032fC
00000000° 0040434
00000000° 00429b60
" fEFFHfff
00000000 000V

data for thread 4

RetAddr

00 000Offfc cb34e5f0 00000000 ©0424cb4
01 00Pefffc cb34e630 00000000 00403318

Appl!thread_start+0x30
oxffffffff ffHfffff

Call Site

Appl! 1libc_nanosleep+0x24
Appl!sleep+0x110
Appl!bar_one+0x10
Appl!foo_one+0xc
Appl!thread_one+0x10
Appl!start_thread+oxb4
Appl!thread_start+0x30
Oxffffffff fffffff

Call Site
Appl!_libc_nanosleep+0x24
Appl!sleep+0x110
Appl!bar_two+0x10
Appl!foo_two+0xc
Appl!thread_two+0x10
Appl!start_thread+0xb4
Appl!thread_start+0x30
oxfffffff ffffrfff

Call Site

Appl! _libc_nanosleep+0x24
Appl!sleep+0x110
Appl!bar_three+0x10
Appl!foo_three+0xc
Appl!thread_three+0x10
Appl!start_thread+0xb4
Appl!thread_start+0x30
Oxffffffff frHfffff

Call Site
Appl!_libc_nanosleep+0x24
Appl!sleep+0x110
Appl!bar_four+0x10
Appl!foo_four+exc
Appl!thread_four+0x1e
Appl!start_thread+oxb4
Appl!thread_start+0x30
oxffffffff fHffffff

Call Site
Appl! libc_nanosleep+0x24
Appl!sleep+0x110

119

02
03
04
05
06
o7

0000fffc cb34e820
0000fffc cb34e830
0000fffc cb34e840
0000fffc cb34e860
0000fffc cb34e990
0000fffc cb34e990

Unable to get thread
5 1Id: 52b6.52b6 Suspend: © Teb: 000000 ©OOOOO Unfrozen

#
00
01
02
03
04

8.

Child-SP

0000ffff d30b8490
0000ffff d3eb84do
0000ffff d30b86cO
0000ffff d30b8710
0000ffff d30b8870

00000000 0040332C
00000000 00403344
00000000 00404C34
060000000 60429060
FEFFFFFE FEFFFFFF
00000000 00000000

data for thread 5

RetAddr

00000000 00424cb4
00000000 004033e0
00000000 VV40ec4c
00000000 00403090
00000000 0000V

Appl!bar_five+0x10
Appl!foo_five+0xc
Appl!thread_five+0x10
Appl!start_thread+0xb4
Appl!thread_start+0x30
Oxfffffff fffrrfff

Call Site

Appl! 1libc_nanosleep+0x24
Appl!sleep+0x110
Appl!main+0x90

Appl! libc_start_main+0x304
Appl!start+0x4c

Switch to thread #1 (threads are numbered from 0) and get its stack trace:

0:000> ~1s
Appl!_libc_nanosleep+0x24:
00000000 0040c9b4 d4000001 svc

0:001> k

#
00
o1
02
03
04
05
06
o7

Child-SP

0000fffc ccb7e5f0
0000fffc ccb7e630
000efffc ccb7e820
000efffc ccb7e830
0000fffc ccb7e840
0000fffc ccb7e860
00oefffc ccb7e990
00oefffc ccb7e990

RetAddr

00000000 00424cb4
00000000 00403240
00000000 00403254
00000000 VY40326C
00000000 00404c34
00000000 00429b60
fFFfffff FFFfffff
00000000 VO

#0

Call Site
Appl!_libc_nanosleep+0x24
Appl!sleep+0x110
Appl!bar_two+0x10
Appl!foo_two+0xc
Appl!thread_two+0x10
Appl!start_thread+oxb4
Appl!thread_start+0x30
Oxfffffff fffrrfff

9. Check that bar_two called sleep function by comparing the return address on the call stack from the
disassembly output:

0:001> uf bar_two
Appl!bar_two:

00000000 0403230 adbf7bfd stp fp,1r, [sp,#-0x10]!

00000000 00403234 910003fd mov fp,sp

00000000 00403238 12800000 MoV wo, #-1

00000000 0040323c 94008653 bl Appl!sleep (00000000 00424bad)
00000000 00403240 ascl7bfd ldp fp,1r, [sp],#0x10

00000000 00403244 d65f03cO ret

Another way to do that is to disassemble backward the return address and check if the last instruction is BL:

0:001> ub ©00PO0V0O" 00403240
Appl!thread_one+0xc:

00000000 00403220 97fffff8 bl Appl!foo_one (00000000 00403200)
00000000° 00403224 d2800000 mov X0, #0

00000000 00403228 a8c27bfd 1dp fp,1r,[sp],#06x20

00000000 0040322c d65f03CO ret

Appl!bar_two:

00000000 00403230 a9bf7bfd stp fp,1r,[sp,#-0x10]!

00000000° 00403234 910003fd mov fp,sp

00000000 00403238 12800000 mov woe,#-1

00000000 0040323c 9400865a bl Appl!sleep (00000000 ©0424ba4)

120

10. Get App1 data section from the contents of pmap (Appl.pmap.21174):

21174: ./Appl
0000000000400000 768K r-x-- Appl
00000000004.c0000 128K rw--- Appl
0000000001120000 256K rw--- [anon]
0000fffccab40000 64K ----- [anon]
0000fffccab50000 8192K rw--- [anon]
0000fffccb350000 64K ----- [anon]
0000fffccb360000 8192K rw--- [anon]
0000 fffccbb60000 64K ----- [anon]
0000fffccbb70000 8192K rw--- [anon]
0000fffccc370000 64K ----- [anon]
0000fffccc380000 8192K rw--- [anon]
0000fffcccb80000 64K ----- [anon]
0000fffcccb90000 8192K rw--- [anon]
0000fffccd390000 64K r---- [anon]
0000fffccd3a0000 64K r-x-- [anon]
0000ffffd3090000 192K rw--- [stack]

total 42752K
11. Compare with the region information in the core dump:
0:001> laddress
Mapping file section regions...
Mapping module regions...

BaseAddress EndAddress+1 RegionSize Type State Protect Usage

s o oooooo00 o oodoo000 o-oose0000 T B
+ 0" 00400000 0" 004c0000 ©°000c0000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READ Image [Appl; "/home/opc/ALCDA2/Appl/Appl”]
+ 0° 004c0000 0" 00420000 ©° 00020000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Image [App1; "/home/opc/ALCDA2/App1/Appl"]
+ 0° 00420000 0" 01fa0000 0 01ac0000 <unknown>
+ 0" 01fa0000 0" 01fe0000 ©° 00040000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown> [.eeeeiienniennn.]
+ 0 01fe0000 fffc” cabseo00 fffc c8b60000 <unknown>
+ fffc” cab4eeeo fffc” cab50000 ©° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY <unknown>
+ fffc” cab50000 fffc cb350000 0" 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown>
+ fffc cb350000 fffc cb360000 ©° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY <unknown>
+ fffc cb360000 fffc cbb60oo0 0" 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown>
+ fffc cbb6000d fffc cbb70000 0° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY <unknown>
+ fffc” cbb70000 fffc cc370000 ©° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown>
+ fffc' cc370000 fffc' cc380000 0° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY <unknown>
+ fffc cc380000 fffc ccb8evoe ©° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown>
+ fffc ccbs8evoo fffc ccbooeee ©° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY <unknown>
+ fffc” ccboeveo fffc cd390000 ©° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown>
+ fffc cd390000 fffc cd3ae000 0" 00010000 <unknown>
+ fffc cd3a0000 fffc cd3boeee 07 00010000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READ Image [linux_vdso_so; "linux-vdso.so.1"]
+ fffc cd3boeee ffff d3090000 37 05ce0000 <unknown>
+ Ffff d3090000 ffff d30ce000 ©° 00030000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <UNKNOWN> [evevunennennnnnn 1
12. Dump the data region with possible symbolic information (we truncated the output):

0:001> dps © 004c0000 O 004e0000

...]

00000000 004dofe8 000000 VOOV

00000000 004dOffO 00000 VLV

00000000 004doff8 000000 004d0788 Appl!main_arena
00000000 00401000 00OV VOO

00000000 00401008 ©00VVVVO LLVVLO1

00000000 004d1010 00OV 0PO31078

00000000 004d1018 000V 0RO31O78

00000000 00401020 00000V 0V421cO8 Appl! default_morecore
00000000 004d1028 000V VL1

00000000 004d1030 ffffffff 00000001

00000000 004d1038 0000000 PR41ccOO Appl!memalign_hook_ini
00000000 004d1040 00000000 0041d688 Appl!realloc_hook_ini
00000000 004d1048 000V VLV

00000000 004d1050 ffffffff 00000008

00000000 004d1058 00VVVOf{ 00000002

00000000 004d1060 00VVPVVO" ffffffff

121

00000000 004d1068
00000000 004d1070
00000000 004d1078
00000000 004d1080
00000000 004d1088
00000000 004d1090
00000000 004d1098
00000000 004d10a0
00000000 004d10a8
00000000 V04d10bo
00000000 V04d10b8
00000000 V04d10co
00000000 004d10c8
00000000° V04d10do
00000000 V04d10d8
00000000 V04d10e0
00000000 004d10e8
00000000" 004d10f0
00000000 004d10f8
00000000 004d1100
00000000 004d1108
00000000 004d1110
00000000 004d1118
00000000 004d1120
00000000 004d1128
00000000 004d1130
00000000 004d1138
00000000 004d1140
00000000 004d1148
00000000 004d1150

[...]

0oeeffff d3ebfedd
0oeeffff d3ebfedb
00000000 00010000
00000000 006
00000000" 000000
00000000 00000000
00000000 00000001
00000000 00000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 00000001
00000000" 0000000
00000000 0000
00000000 000000
00000000 0042c6a0
00000002 0000203
00000000" 00404528
00000000 00000001
frfHfffff fffffffe
00000000 004d1068
00000000 00000000
00000000 0048ad20
00000000 0048ac30
7 fff{f 00000001
00000000 0048ac40
00000000 00000000
00000000 00000
00000000 000000

The output is in the following format:

address value

Appl!dl_make_stack_executable

Appl! pthread_init_static_tls

Appl!_progname

Appl!$d+0xe0
Appl!$d+0x38

Appl!$d

Some values may have associated symbols in the format module!name+offset:

address value

symbol

For example, from the output above:

00000000 004d1110 00000000 004d1068 Appl!_progname

To list all values with symbols, we can use the dpS command (it doesn’t show the value addresses):

0:001> dpS 0 004c0000 O ©04e0000

00000000 004d6e70
00000000 004d13c0O
00000000 004d13c0O
00000000 004d13e0
00000000 004d13c8
00000000 00403190
00000000 00403140
00000000° 004021 fC
00000000 0048a2d0
00000000 0048220
00000000 00482308
00000000 00482320
00000000 00482330

Appl!res

Appl!nl_global locale
Appl!nl_global_locale
Appl!nl_global_locale+0x20
Appl!nl_global locale+0x8

Appl!frame_dummy

Appl! do_global dtors_aux

Appl!fini

Appl!$d+0x20
Appl!$d+ox40
Appl!$d+0x58
Appl!$d+0x70
Appl!$d+0x80

122

00000000 00482348
00000000 00482358
00000000 00482368
00000000 00482380
00000000 00482398
00000000 0048a3c0O
00000000 0048a3d8
00000000 0048a3e8
00000000° 00482400
00000000 00482418
00000000 00482438
00000000 00482450
00000000 00482470
00000000 00482488
00000000 00482420
00000000 0048a4b8
00000000 0048a4d0
00000000 00409250
00000000 004231c0O
00000000 004231d0
00000000 004231 O
00000000 00424480
00000000 00424480
00000000 00400038
00000000 004040038
00000000 004d5eb0o
00000000 00486b88
00000000 004040088
00000000 004d02b0O
00000000 004d6428
00000000 004d0168
00000000 00421950
00000000 00421800
00000000 004d04d8
00000000 004d6438
00000000 004d0390
00000000 00421950
00000000 00421800
00000000 004d6448
00000000 004dO5b8
00000000 00421950
00000000 00421800
00000000 00440088
00000000 004d02b0O
00000000 004d04d8
00000000 004d07e8
00000000 004d07e8
00000000 004d07f8
00000000 004d07f8
00000000 004040808
00000000 004040808
00000000 00400818
00000000° 004d0818
00000000 004d0828
00000000 00400828
00000000 004d0838
00000000 004d0838
00000000 00440848
00000000 00440848
00000000 004d0858

Appl!$d+0x98

Appl!$d+0xa8

Appl!$d+0xb8

Appl! $d+oxde

Appl!$d+0xe8

Appl!$d+ox11e
Appl!$d+0x128
Appl!$d+0x138
Appl!$d+0x150
Appl!$d+0x168
Appl!$d+0x188
Appl!$d+0x1a0@
Appl!$d+0x1co
Appl!$d+0x1d8
Appl!$d+ox1fe
Appl!$d+0x208
Appl!$d+0x220

Appl! pthread_key create

Appl! _memmove_generic
Appl! _memcpy_generic
Appl! memset_generic
Appl!_strlen_generic
Appl!_strlen_generic
Appl!stack_cache
Appl!stack_cache
Appll!initial

Appl!_gcc_personality ve

Appl!I0_2_1_stderr_
Appl!IO_2 1 stdout_

Appl!IO_stdfile_2 1lock

Appl!IO_wide_data_2
Appl!IO_file_jumps
Appl!IO_wfile_jumps
Appl!IO_2 1 stdin_

Appl!IO_stdfile_1 lock

Appl!I0_wide_data_1
Appl!IO_file_jumps
Appl!I0_wfile_jumps

Appl!IO_stdfile @ _lock

Appl!IO_wide_data_o©
Appl!IO_file_jumps
Appl!I0_wfile_jumps
Appl!IO_2 1 stderr_
Appl!IO_2 1 stdout_
Appl!IO0_2 1 stdin_
Appl!main_arena+0x60
Appl!main_arena+0x60
Appl!main_arena+0x70
Appl!main_arena+0x70
Appl!main_arena+0x80
Appl!main_arena+0x80
Appl!main_arena+0x90
Appl!main_arena+0x90
Appl!main_arena+0xa0
Appl!main_arena+0xa0
Appl!main_arena+0xbo
Appl!main_arena+0xbo
Appl!main_arena+0xco
Appl!main_arena+0xco
Appl!main_arena+0xdo

123

00000000 004d0858
00000000 004d086S
00000000 004d086S
00000000 004d0878
00000000 00440878
00000000 004d0888
00000000 004d0888
00000000 004d0898
[...]

00000000 004dofcs
00000000 004d0788
00000000 0042108
00000000 0941 OO
00000000 0041d688
00000000 0942c6a0
00000000 00404528
00000000 004d1068
00000000 0R48ad20
00000000 0R48aC30
00000000 0R48ac40
00000000 0V48ac30
00000000 0948ad20
00000000 0948ac50
00000000 0948ad20
00000000 0R48aC60
00000000 0R48ac70
00000000 0948aC60
00000000 0948ad20
00000000 0P48ac88s
00000000 0948ad20
00000000 0R48acad
00000000 0948acho
00000000 0948acad
00000000 0948ad20
00000000 0R48acc
00000000 0948acdo
00000000 0948ad20
00000000 0948aced
00000000 0948ad20
00000000 0R48acdo
00000000 0948acfo
00000000 0948ad00
00000000 0948ad20
00000000 0948ad18
00000000 0948ad20
00000000 0948ad00
00000000 0948ad30
00000000 0048ad48
00000000 0948ad20
00000000 0948ad58
00000000 0948ad20
00000000 0948ad48
00000000 0948ad70
00000000 0P48b88S
00000000 0049918
00000000 0949988
00000000 0949aec
00000000 09499d58
00000000 0R499Ced
00000000 0949290

Appl!main_arena+0xdo
Appl!main_arena+0xe0
Appl!main_arena+0xe0
Appl!main_arena+0xfo
Appl!main_arena+0xfo
Appl!main_arena+0x100
Appl!main_arena+0x100
Appl!main_arena+0x110

Appl!main_arena+0x840
Appl!main_arena

Appl! default_morecore
Appl!memalign_hook_ini
Appl!realloc_hook_ini
Appl!dl_make_stack_executable
Appl! pthread_init_static_tls
Appl!_progname

Appl! $d+0xe0
Appl!$d+0x38

Appl!$d

Appl!$d+0x38
Appl!$d+0xe0
Appl!$d+0x10
Appl!$d+0xe0
Appl!$d+0x20
Appl!$d+0x30
Appl!$d+0x20
Appl!$d+0xe0
Appl!$d+ox48
Appl!$d+0xe0
Appl!$d+0x60
Appl!$d+0x70
Appl!$d+0x60
Appl!$d+0xe0
Appl!$d+0x80
Appl!$d+0x90
Appl!$d+0xe0
Appl!$d+0xa0
Appl!$d+0xe0
Appl!$d+0x90
Appl!$d+oxbe
Appl!$d+0xce
Appl!$d+0xe0
Appl!$d+oxd8
Appl!$d+0xe0
Appl!$d+0xce
Appl!$d+oxfo
Appl!$d+0x108
Appl!$d+0xe0
Appl!$d+0x118
Appl!$d+0xe0
Appl!$d+0x108
Appl!$d+0x130
Appl!nl_C_LC_CTYPE
Appl!nl_C_LC_NUMERIC
Appl!nl_C_LC_TIME
Appl!nl_C_LC_COLLATE
Appl!nl_C_LC_MONETARY
Appl!nl_C_LC_MESSAGES
Appl!nl_C_LC_PAPER

124

00000000 00492238
00000000 0049aaco
00000000 0049ab98
00000000 ©049ac10
00000000 ©049ad08
00000000 0048d1c0O
00000000 0048c2c0O
00000000 ©048c8cHO
00000000 00497450
00000000 00497450
00000000 00497450
00000000 00497450
00000000 00497450
00000000 00497450
00000000 00497450
00000000 00497450
00000000 00497450
00000000 00497450
00000000 00497450
00000000 00497450
00000000 00497450
00000000 004975d0
00000000 00498850
00000000 00498850
00000000 00465268
00000000 004651ec
00000000 0046517C
00000000 00465460
00000000 0049b540
00000000 0047e9e8
00000000 0047ea3c
00000000 0047e398
00000000 0047eb4c
00000000 00470160
00000000 00471324
00000000 00471330
00000000 00471470
00000000 00471528
00000000 004d1078
00000000 004ale68
00000000° 004cTb20
00000000 004d5618
00000000 00403144
00000000 004d1588
00000000 004d7d40
00000000 004d5a78
00000000 004d78e0
00000000 004d6570
00000000 00482618
00000000° 0040460

00000000 00400040
PPN

Appl!nl_C_LC_NAME
Appl!nl_C_LC_ADDRESS
Appl!nl_C_LC_TELEPHONE
Appl!nl_C_LC_MEASUREMENT
Appl!nl_C_LC_IDENTIFICATION
Appl!nl_C_LC_CTYPE_class+0x100
Appl!nl_C_LC_CTYPE_tolower+0x200
Appl!nl_C_LC_CTYPE_toupper+0x200
Appl!nl_C_name

Appl!nl_C_name

Appl!nl_C_name

Appl!nl_C_name

Appl!nl_C_name

Appl!nl_C_name

Appl!nl_C_name

Appl!nl_C_name

Appl!nl_C_name

Appl!nl C_name

Appl!nl_C_name

Appl!nl_C_name

Appl!nl_C_name
Appl!nl_C_locobj+0x158
Appl!$d+0x30

Appl!$d+0x30

Appl! 1libc_dlopen_mode

Appl! 1libc_dlsym
Appl!_libc_dlclose
Appl!dl_initial_error_catch_tsd
Appl!nl_default_default_domain
Appl! _dlopen

Appl! dlclose

Appl!_dlsym

Appl!_dlvsym

Appl! dlerror

Appl! dladdr

Appl! dladdrl

Appl!_dlinfo

Appl!_dlmopen

Appl!dl_pagesize

Appl! EH_FRAME_BEGIN___

App1l!

Appl!static_map

Appl! reclaim_stacks
Appl!object.6205

Appl! libc_multiple_threads
Appll!static_slotinfo
Appl!_fork_generation
Appl!fork_handler_pool+0x8
Appl!unsecure_envvars.10865+0x118
Appl!_wait_lookup_done
Appl+0x40

125

13. Explore the contents of memory pointed to by App1/memalign_hook ini and App1! progname addresses:

0:001> u 00000000 O41ccOO
Appl!memalign_hook_ini:

00000000 0041ccOO a9b97bfd stp fp,1r,[sp,#-0x70]!

00000000 0041cco4 910003fd mov fp,sp

00000000 0041ccO8 a9025bf5 stp x21,x22,[sp, #0x20]

00000000 P041ccOc 900005b6 adrp x22,Appl!+0x18 (0000000 ©B4d0000)
00000000 0041ccl0 58004815 1ldr x21,Appl!$d (00000000 0041d510)
00000000 0041ccl4 911c62c2 add X2,X%22,#0x718

00000000 0041ccl8 a90153f3 stp x19,x20, [sp, #0x10]

00000000 P41cclc a90363f7 stp X23,x24,[sp,#0x30]

0:001> dp Appl!_progname

00000000 004d1068
00000000 004d1078
00000000 004d1088
00000000 004d1098
00000000 V04d10a8
00000000 004d10b8
00000000 004d10c8
00000000 ©04d10d8

0000ffff d3ebfedd
00000000" 00010000
00000000 00000000
00000000 00000001
00000000 0000000
00000000 00000000
00000000 00000001
00000000 0000000

0:001> dc @eeoffff d3ebfedd

oooeffff d3ebfedd
00ooffff d3ebfeed
0000ffff d3ebfefd
0000 fff d3ebf7ed
0ooeffff d3ebf71d
eoeeffff d3ebf72d
0000ffff d3ebf73d
0000ffff d3ebf74d

31707041 47445800
3d44495f 30353836
6€693d45 6e617473
2d393031 34303032
4c4f525f 4552545
52455400 74783d4d
726f6c6f 45485300
68736162 53494800

0000ffff d3ebfedb
00000000" 0006
00000000 000000
00000000 000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000

5345535f 4e4f4953
5344800 4d414e54
322d6563 31313230
4c455300 58554e49
53455551 3d444554
2d6d7265 63363532
2f3d4c4c 2f6e6962
5a495354 30313d45

App1l.XDG_SESSION
_ID=6850.HOSTNAM
E=instance-20211
109-2004 .SELINUX
_ROLE_REQUESTED=
.TERM=xterm-256c¢
olor.SHELL=/bin/
bash.HISTSIZE=10

0:001> da eeeoffff d3ebfedd
00oeffff d3ebfedd "Appl"

0:001> db eeeeffff d3ebfedd

00oeffff d3ebfedd 41 70 70 31
000offff d3ebfeed 5f 49 44 3d
000effff d3ebfefd 45 3d 69 6e
0000ffff d3ebf7ed 31 30 39 2d
0000ffff d3ebf71ld 5f 52 4f 4c
000offff d3ebf72d 00 54 45 52
000effff d3ebf73d 6f 6¢c 6f 72
0000ffff d3ebf74d 62 61 73 68

00
36
73
32
45
4d
00
00

4f
41
31
55
44
36
6e
31

47-5f
30-00
6e-63
34-00
45-51
74-65
45-4c
53-54

58
38
74
30
5f
3d
53
48

44
35
61
30
52
78
48
49

53
48
65
53
55
72
4c
53

45
4f
2d
45
45
6d
3d
49

53
53
32
4c
53
2d
2f
5a

53
54
30
49
54
32
62
45

49
4e
32
4e
45
35
69
3d

4e
4d
31
58
3d
63
2f
30

Appl.XDG_SESSION
_ID=6850.HOSTNAM
E=instance-20211
109-2004 .SELINUX
_ROLE_REQUESTED=
.TERM=xterm-256c¢
olor.SHELL=/bin/
bash.HISTSIZE=10

Note: We see that a hook function is installed for memalign and realloc. Please find the following documentation for
hook functions here:

https://www.gnu.org/software/libc/manual/htm| node/Hooks-for-Malloc.html

14. Explore the contents of memory pointed to by environ variable:
0:001> dp environ
00000000 004d64c8
00000000 004d64d8
00000000 004d64e8
00000000° 004d648
00000000 004d6508

0000ffff d30b8888 000V 00OV
00000000 00V 00OV 00O
00000000 0000V BV 00O
00000000 0000V BV 00O
00000000 000V VOO 00O

126

https://www.gnu.org/software/libc/manual/html_node/Hooks-for-Malloc.html

00000000 004d6518
00000000 004d6528
00000000 004d6538

00000000 00O
00000000 0000000
00000000 00000

0:001> dp 000offff d30b8888

0000ffff d30b8888
0000ffff d30b8898
0000ffff d30b88a8
0000ffff d30b88b8
0000ffff d30b88c8
0000ffff d30b88d8
0000ffff d30b88e8
0000ffff d30b88f8

0000ffff d30bf6e2
000effff d3ebf716
0000ffff d3ebf742
000effff d3ebf760
000effff d3ebf79e
0oeeffff d3ebf7ba
0000ffff d3obfe8b
0000ffff d3ebfeff

0:001> da @000ffff d3@bfee2
"XDG_SESSION_ID=6850"

0000ffff d3obfee2

0:001> dpa @000ffff d30b8888

0000ffff d30b8888
0000ffff d30b8890
0000ffff d30b8898
0000ffff d30b88ad
0000ffff d30b88a8
000offff d30b88bo
0000ffff d30b88b8
0000ffff d30b88co
0000ffff d30b88c8
000offff d30b88do
0000ffff d30b88d8
0000ffff d30b88ed
0000ffff d30b88e8
000offff d30b88f0
0000ffff d30b88f8
0000ffff d30b8900

17.

000Offff d3obfb6e2
00effff d3ebfef6
0oeffff d3ebf716
00ooffff d3ebf72e
00ooffff d3ebf742
00ooffff d3ebf752
00effff d3ebf760
00eeffff d3obf783
00ooffff d3ebf79e
00ooffff d3ebf7bl
eoeffff d3ebf7ba
000effff d3obfe72
00effff d3obfe8b
0000ffff d3obfee5
00ooffff d3ebfeff
eoeffff d3ebfflo

0:000> s O 004cO000 O 00410000 6

00000000 004c002a
00000000 VB4co0O7e
00000000" V04col2d
00000000 004c018d
00000000 V04co20d
00000000 0040285
00000000 VB4co4fe
00000000 VB4cfe78
00000000 004d0048
00000000 004d1080
00000000 04d7e00

06
06
06
06
06
06
06
06
06
06
06

9a
9a
00
9e
9e
9e
04
00
00
00
00

05
05
00
05
05
05
00
00
00
00
00

9b
45
00
41
41
41
00
00
00
00
00

04
95
41
ed
ed
ed
80
00
00
00
00

9c
Qa
Qe
1d
1d
1d
o7
00
00
00
00

00000000 0000000
00000000 000000
00000000" 0000

0000ffff d3ebfef6
000Offff d3ebf72e
0000ffff d3ebf752
0000ffff d3ebf783
0000ffff d3ebf7bl
0000ffff d3ebfe72
0000ffff d3obfee5
0000ffff d3ebffle

"XDG_SESSION ID=6850"

"HOSTNAME=instance-20211109-2004"
"SELINUX_ROLE_REQUESTED="

"TERM=xterm-256color"

"SHELL=/bin/bash"

"HISTSIZE=1000"

"SSH_CLIENT=37.228.238.120 61099 22"
"SELINUX_USE_CURRENT_RANGE="

"SSH_TTY=/dev/pts/1"

"USER=0pc"
"LS_COLORS=rs=0:di=38;5;27:1n=38;5;51:mh=44;38;5;15:pi=4"
"MAIL=/var/spool/mail/opc"
"PATH=/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:"
"PWD=/home/opc/ALCDA2/Appl"

"LANG=en_US.UTF-8"

"SELINUX_LEVEL_REQUESTED="

Now we look at how to perform a memory search.

03
96
a0
41
41
42
88
00
00
00
00

02-49
09-46
01-9d
93-04
93-04
93-04
01-90
00-50
00-40
00-00
00-00

Qa
9b
14
94
94
94
ob
o1
f1
00
00

de
04
9e
03
03
03
00
3a
34
00
00

dd
9c
13
5b
5b
95
bo
cd
cb
00
00

dc
03
41
Qa
Qa
02
08
fc
fc
00
00

db
6C
od
de
de
96
04
ff
ff
00
00

da
Qa
1d
dd
dd
o1
00
00
00
00
00

Note: It is possible to search through non-accessible regions as well; they are ignored:

0:000> s-q O LFFffff 6

00000000 0048b208
00000000 0048be4d0
00000000 0048bf28
00000000 0048bfco
00000000 0049950
00000000 P49b728
00000000 VB4cfe78

00000000 0006
00000000 006
00000000 0PVVO6
00000000 0006
00000000 0006
00000000 0006
00000000 0PVVO6

00000000" 006 T
00000018 0000001
00000018 0000001
00000018 00000001
00000000 00498240
00000000 00000002
0000fffc cd3av150

127

00000000 00400048 ©0OVVVOO VVLVOLO6
00000000 00401080 ©0OVVLVOO VVVLOLO6
00000000 004d7e00 00OV VPVLVLLO6

[...]

0:000> s-a 00OOffff d30b88a8 L100000
0000ffff d3ebf749 62 69 6e 2f 62 61
0000ffff d3obfedb 62 69 6e 3a 2f 75
0000ffff d3obfead 62 69 6e 3a 2f 75
0000ffff d3@bfeb4d 62 69 6e 3a 2f 75
0000ffff d3@bfebe 62 69 6e 3a 2f 68
0000ffff d3@bfed3 62 69 6e 3a 2f 68
0000ffff d3obfeel 62 69 6e 00 50 57
000offff d3obffa5 62 69 6e 2f 6¢C 65

000offfc cb34f140
00000000 000000
00000000" 0000

"bin"

73 68-00
73 72-2f
73 72-2f
73 72-2f
6f 6d-65
6f 6d-65
44 3d-2f
73 73-70

48
62
6C
73
2f
2f
68
69

49
69
6f
62
6f
6f
6f
70

53
6e
63
69
70
70
6d
65

54
3a
61
6e
63
63
65
2e

53
2f
6cC
3a
2f
2f
2f
73

49
75
2f
2f
2e
62
6f
68

5a
73
73
68
6¢C
69
70
20

bin/bash.HISTSIZ
bin:/usr/bin:/us
bin:/usr/local/s
bin:/usr/sbin:/h
bin:/home/opc/.1
bin:/home/opc/bi
bin.PWD=/home/op
bin/lesspipe.sh

Note: It is also possible to show all possible string fragments if any:

0:000> s-sa @ Lfffffff

00000000 00400001 "ELF"

00000000 00400018 "Do@E"

00000000° ©0040019c "GNU"

00000000 004001bc "GNU"

00000000 004001d1 "48y"

[...]

00000000 004a12b0 "weak version "

00000000 004a12c® "' not found (required by "
00000000 0042120 "version "

00000000" 0042120
00000000 00421308
00000000 004231328
00000000 00421330
00000000" 00421348
00000000" 00421368
[...]

00000000 004d6588

"version lookup error"

"cannot allocate version referenc"
"e table"

" of Verneed record"

"RTLD_NEXT used in code not dynam"
"ically loaded”

"D2@"
00000000 004d7880 "@}M"

00000000 004d7dO8 "xZM"

00000000 004d7d38 "peM"

00000000 01fa0700 "pnM"

00000000 01fale80 "linux-vdso.so.1l"
00000000 01fal6ed "tls/atomics/"

15. Get the list of loaded modules:
0:001> 1m
start end module name

00000000 00400000 0VVVVLO V040000
c:\alcda2\a64\appl\Appl

Appl T (service symbols: ELF Export Symbols)

0:001> 1lmv

start end

00000000 00400000 00DV V40000

c:\alcda2\a64\appl\Appl
Loaded symbol image file: Appl
Image path: /home/opc/ALCDA2/Appl/Appl
Image name: Appl

module name
Appl T (service symbols: ELF Export Symbols)

Browse all global symbols functions data
Timestamp: unavailable (FFFFFFFE)
CheckSum: missing

128

ImageSize: 0OOEL00O
Details:
0000fffc cd3a0000 0000fffc cd3b0ved linux vdso so T (service symbols: ELF In Memory Symbols)
Loaded symbol image file: linux-vdso.so.1l
Image path: linux-vdso.so.1l
Image name: linux-vdso.so.l
Browse all global symbols functions data

Timestamp: unavailable (FFFFFFFE)
CheckSum: missing

ImageSize: 00010000

Details:

Note: We don’t see shared libraries except vdso (https://man7.org/linux/man-pages/man7/vdso.7.html) because

they were statically linked. We also created the version of a dynamically linked App1.shared executable. If we load
its core dump Appl.shared.core.22442 in the new instance of WinDbg Preview, we see the list of shared libraries:

Microsoft (R) Windows Debugger Version 10.0.25111.1000 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\ALCDA2\A64\Appl\Appl.shared.core.22442]
64-bit machine not using 64-bit API

3k 3k 3k 3k >k ok ok ok ok %k >k kok path Validation SUmmaPy 3k ok 3k 3k 3k >k >k >k sk ok >k k >k k
Response Time (ms) Location
Deferred srv*
Symbol search path is: srv*

Executable search path is:

Generic Unix Version © UP Free ARM 64-bit (AArch64)
Machine Name:

System Uptime: not available

Process Uptime: not available

*** WARNING: Unable to verify timestamp for libc-2.17.so
libc_2_17!nanosleep+0x24:

0000ffff 0496dd64 d4000001 svc #o

0:000> .sympath+ C:\ALCDA2\A64\Appl

*** WARNING: Unable to verify timestamp for libc-2.17.so

Symbol search path is: srv*;C:\ALCDA2\A64\Appl

Expanded Symbol search path is:
cache*;SRV*https://msdl.microsoft.com/download/symbols;c:\alcda2\a64\appl

fkokkkkkkkkkkk Path validation summary *¥¥ksokskskokkkokokk

Response Time (ms) Location
Deferred srv*
oK C:\ALCDA2\A64\App1

0:000> .reload
. ¥** WARNING: Unable to verify timestamp for libc-2.17.so

Sk ok 3k 3k 3k sk ok >k >k >k >k sk ok Symbol Loading Error Summapy 3k 3k 3k ok ok >k 3k sk ok ok ok >k >k k
Module name Error
libc-2.17 The system cannot find the file specified

You can troubleshoot most symbol related issues by turning on symbol loading diagnostics (!sym
noisy) and repeating the command that caused symbols to be loaded.
You should also verify that your symbol search path (.sympath) is correct.

129

https://man7.org/linux/man-pages/man7/vdso.7.html

0:000> 1m

start

end

00000000 00400000 ©VVVVVVO V430000
c:\alcda2\a64\appl\Appl.shared

0000ffff 048c0000 ©OOOffff 04250000
0000ffff 04250000 ©OOOffff 04290000
0000ffff 04ab0oo0 00ROffff ©4ac0000
0000ffff 04ac0000 0RROffff ©04b00000O

16.

module name
Appl (service symbols: ELF Export Symbols)
libc_2 17 T (service symbols: ELF In Memory Symbols)
libpthread_2 17 (deferred)

linux_vdso_so (deferred)

1d 2 17 (deferred)

Disassemble the bar_one function and follow the indirect sleep function call:

0:000> uf bar_one
Couldn't resolve error at 'bar_one’

It looks like we need to dump the stack trace to have symbols fully loaded:

0:000> k
*** WARNING: Unable to verify timestamp for Appl.shared
*** WARNING: Unable to verify timestamp for libpthread-2.17.so

#
00
o1
02
03
04
05
06
o7

Child-SP

0000ffff 048be750
0000ffff 048be790
0000ffff 048be990
0000ffff 048be9a0d
0000ffff 048be9bo
0000ffff 048be9do
0000ffff 048bebood
0000ffff 048bebood

0:000> uf bar_one
Appl!bar_one:

00000000 00400728 aSbf7bfd
00000000 0040072c 910003fd
00000000 00400730 12800000
00000000° 00400734 97ffff93
00000000 00400738 a8cl7bfd
00000000 0040073¢c d6503CO

RetAddr

0000ffff 0496da20
00000000 00400738
00000000 0040074C
00000000" 00400764
0000ffff 04a57d40
0000ffff 049a2doo
ffffffff fHfrfff
00000000 0000V

stp
mov
mov
bl

1dp
ret

0:000> u 00000000 00400580
Appl!$x+0x30:

00000000 00400580 90000110
00000000 00400584 9400611
00000000 00400588 91002210
00000000 0040058c d61f0220
00000000 00400590 90000110
00000000 00400594 f9400all
00000000 00400598 91004210
00000000 0040059c d61f0220

adrp
1dr
add
br
adrp
1ldr
add
br

Call Site

libc_2_17!nanosleep+0x24

libc_2 17!sleep+0x1ic

Appl!bar_one+0x10

Appl!foo_one+0xc

Appl!thread_one+0x10
libpthread_2_17!_pthread_get_minstack+0x1394
libc_2_17!clone+0x80

oxfffffff ffffrfff

fp,1r,[sp,#-0x10]!

fp,sp

wo,#-1

Appl!$x+0x30 (00000000 00400580)
fp,1r,[sp],#0x10

xip@,Appl!+0x18 (00EOOO00" 00420000)
xipl,[xipo, #8]

xip@,xipo, #8

xipl

xip@,Appl!+0x18 (00000000 00420000)
xipl,[xipo,#0x10]

xip@,xip0,#0x10

xip1l

Note: XIPO/XIP1 are mnemonics for X16/X17 registers used for inter-procedure-call.

0:000> dp 00000000 00420000 + 8

00000000 00420008
00000000 00420018
00000000 00420028
00000000 00420038
00000000 00420048
00000000 00420058

0000ffff 0496d904
00000000 00400550
00000000 00000000
00000000 00000000
00000000 00000
00000000 0000

0000ffff 04a57fdo
00000000 00400550
00000000 0000000
00000000 00000
00000000 00000
00000000 0000

130

00000000 00420068 ©00VVVOO VVVVOO VOOV VPV
00000000 00420078 ©0VVVVOO VVVVOVOO VOOV V0O

0:000> u 00LOffff 0496d904
libc_2_17!sleep:

0000ffff 0496d904 d1O6¢3ff sub sp,sp,#0x1B0O

0000ffff 0496d908 a9bb7bfd stp fp,1r,[sp,#-0x50]!

0000ffff 0496d90c 910003fd mov fp,sp

PPOOFFfff 8496d910 a90153f3 stp x19,x20, [sp, #0x10]

P00Offff 0496d914 a9025bf5 stp x21,%x22,[sp,#0x20]

0000ffff 0496d918 a90363f7 stp Xx23,x24, [sp,#0x30]

0000ffff 0496d91c f90023f9 str x25, [sp, #0x40]

0000ffff 0496d920 34000e40 cbz wo,libc_2 17!sleep+0xled (00OOffff 0496dae8)

0:000> 1n 00ROffff 0496d904
Browse module
Set bu breakpoint

(e00Offff 0496d904)
Exact matches:
libc_2_17!sleep = <no type information>

libc_2_17!sleep

0:000> dps 00000000 00420000 + 8

00000000 00420008 000Offff 0496d904 libc_2_17!sleep

00000000 00420010 0LLOffff ©4a57fdo libpthread_2_ 17!pthread_create
00000000 00420018 ©0VVVCO" R400550 Appl!$x

00000000 00420020 000V 400550 Appl!$x

00000000 00420028
00000000 00420030
00000000 00420038
00000000 00420040
00000000 00420048
00000000 00420050
00000000 00420058
00000000 00420060
00000000 00420068
00000000 00420070

00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 00000000

17. Appl.shared.pmap.22442 also shows library memory regions:

22442 ./Appl.shared

0000000000400000 64K r-x-- Appl.shared
0000000000410000 64K r---- Appl.shared
0000000000420000 64K rw--- Appl.shared
0000000036280000 192K rw--- [anon]
000002070000 64K ----- [anon]
0000ffff02080000 8192K rw--- [anon]
000002880000 64K ----- [anon]
0000ffff02890000 8192K rw--- [anon]
000003090000 64K ----- [anon]
0000ffff03020000 8192K rw--- [anon]
000003820000 64K ----- [anon]
0000ffffO38b00OO 8192K rw--- [anon]

0000 fff040b0000 64K ----- [anon]
0000ffff040c0000 8192K rw--- [anon]
0000ffff048c0000 1472K r-x-- libc-2.17.so
0000ffffo4a30000 64K r---- libc-2.17.so
000004240000 64K rw--- libc-2.17.so
0000ff 04250000 128K r-x-- libpthread-2.17.so
0000ffff04a70000 64K r---- libpthread-2.17.so

131

0000104280000 64K rw--- libpthread-2.17.so

0000ffff04220000 64K r---- [anon]
0000ffffo4aboooo 64K r-x-- [anon]
0000ffffo4ac0000 128K r-x-- 1d-2.17.so
0000ffffo4ae0000 64K r---- 1d-2.17.so
0000ffffo4af0000 64K rw--- 1d-2.17.so
0000ffffe2fcoo00 192K rw--- [stack]
total 44096K

Note: We can also see shared library mappings in the output of the laddress command:

0:000> !address

Mapping file section regions...
Mapping module regions...

BaseAddress EndAddress+1 RegionSize Type State Protect Usage
+ 0" 00000000 0" 00400000 0° 00400000 <unknown>
+ 0" 00400000 0" 00410000 0700010000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READ Image [App1;
"/home/opc/ALCDA2/App1/Appl.shared"]
+ 0" 00410000 0" 00420000 ©° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY Image [App1;
" /home/opc/ALCDA2/Appl/Appl.shared"]
+ 0° 00420000 0" 00430000 0700010000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Image [App1;
"/home/opc/ALCDA2/Appl/Appl.shared"]
+ 0° 00430000 0" 36280000 0" 36650000 <unknown>
+ 0" 36280000 0" 36abo00o0 0700030000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown> [........ @ocoooos 1
+ 0" 36ab0000 ffff 02070000 fffe cb5c0000 <unknown>
+ ffff 02070000 ffff 02080000 ©0° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY <unknown>
+ ffff 02080000 ffff 02880000 000800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown>
+ ffff 02880000 ffff 02890000 0° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY <unknown>
+ ffff 02890000 ffff 03090000 ©° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown>
+ ffff 03090000 ffff 03020000 ©° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY <unknown>
+ ffff 03020000 ffff 03820000 0° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown>
+ ffff 03820000 ffff 038boooo 0° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY <unknown>
+ ffff 038b0000 ffff 040bo000 ©° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown>
+ ffff 040b0000 ffff 040c0000 0700010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY <unknown>
+ ffff 040c0000 ffff 048c0000 0° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown> 1
+ ffff 048c0000 ffff 04230000 ©° 00170000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READ Image [libc_2_17; “"/usr/lib64/libc-
2.17.s0"]
+ ffff 04230000 ffff 04240000 0° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY Image [libc_2_17; "/usr/1lib64/libc-
2.17.s0"]
+ ffff 04240000 ffff 04250000 ©° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Image [libc_2_17; “"/usr/lib64/libc-
2.17.s0"]
+ ffff 04250000 ffff 04a70000 0° 00020000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READ Image [libpthread_2_17;
"/usr/1ib64/libpthread-2.17.s0"]
+ ffff 04270000 ffff 04280000 000010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY Image [libpthread_2_17;
"/usr/1ib64/1ibpthread-2.17.s0"]
+ ffff 04280000 ffff 04290000 0700010000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Image [libpthread_2_17;
"/usr/1ib64/1libpthread-2.17.s0"]
+ ffff 04290000 ffff 04aboooo 0° 00020000 <unknown>
+ ffff 04aboooo ffff 04aco000 0° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READ Image [1linux_vdso_so; "linux-
vdso.so.1"]
> ffff 04aco0000 ffff 04ae0000 ©° 00020000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READ Image [1d_2_17; "/usr/1ib64/1d-
2.17.s0"]
+ ffff 04ae0000 ffff 04afo000 ©0° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY Image [1d_2_17; "/usr/lib64/1d-
2.17.s0"]
> ffff 04afoe00 ffff 04booooe ©° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Image [1d_2_17; "/usr/1ib64/1d-
2.17.s0"]
+ ffff 04booooo ffff e2fcoo00 0" de4c0000 <unknown>
i ffff e2fco000 ffff e2ffoo00 ©° 00030000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown> [eeeenniennennnnns 1

18. We close logging before exiting WinDbg Preview:

0:000> .logclose
Closing open log file 'C:\ALCDA2\A64\Appl\Appl.log'

We recommend exiting WinDbg Preview app or WinDbg after each exercise to avoid glitches.

132

Exercise A2D

Goal: Learn how to identify exceptions, find problem threads and
CPU instructions

Patterns: NULL Pointer (Data); Active Thread (x64, GDB)

© 2023 Software Diagnostics Services

133

Exercise A2D (x64, GDB)

Goal: Learn how to identify exceptions, find problem threads and CPU instructions.
Patterns: NULL Pointer (Data); Active Thread.

1. Load core.App2D dump file and App2D executable from the x64/App2D directory:

~/ALCDA2/x64/App2D$ gdb -c core.App2D -se App2D

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying"” and "show warranty" for details.

This GDB was configured as "x86_64-1linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to
Reading symbols from App2D...done.

[New LWP 3577]

[New LWP 3575]

[New LWP 3576]

[New LWP 3579]

[New LWP 3578]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1inux-gnu/libthread_db.so.1".
Core was generated by " ./App2D'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0x0000000000401bbd in procA ()

[Current thread is 1 (Thread 0x7faf71659700 (LWP 3577))]

‘'word". ..

2. List all threads:

(gdb) info threads

Id Target Id Frame
Thread 0x7faf71659700 (LWP 3577) 0x0000000000401bbd in procA ()
Thread 90xb97880 (LWP 3575) 0x00000000004442a1 in clone ()
Thread 0x7faf71e5a700 (LWP 3576) Ox0000000000441a50 in nanosleep ()
Thread 0x7faf70657700 (LWP 3579) 0x00000000004442al in clone ()
Thread 0x7faf70e58700 (LWP 3578) 0x0000000000441a50 in nanosleep ()

*

uih WN B

3. The problem thread seems to be the current thread:
(gdb) thread 1

[Switching to thread 1 (Thread ©x7faf71659700 (LWP 3577))]
#0 ©x0000000000401bbd in procA ()

134

(gdb) bt

#0 0x0000000000401bbd in procA ()

#1 0x0000000000401c3b in bar_two ()

#2 0©x0000000000401c4c in foo_two ()

#3 0Ox0000000V401c65 in thread two ()

#4 0Ox0000000000403113 in start_thread (arg=<optimized out>) at pthread_create.c:486
#5 0©x00000000004442af in clone ()

4, Disassemble the problem instruction and check CPU register(s) details (NULL data pointer):

(gdb) x/i ©0x0000000000401bbd
=> 0x401bbd <procA+16>: movl $0x1, (%rax)

(gdb) info r $rax
rax ox0 ©

(gdb) x $rax
0x0: Cannot access memory at address Ox0

5. List all thread stack traces and identify other anomalies, such as non-waiting active threads:
(gdb) thread apply all bt

Thread 5 (Thread 0x7faf70e58700 (LWP 3578)):

#0 0Ox0000000000441a50 in nanosleep ()

#1 0x00000000004419da in sleep ()

#2 0Ox0000000000401c7a in bar_three () at pthread_create.c:688

#3 0Ox0000000000401c8b in foo_three () at pthread_create.c:688

#4 ©x0000000000401cad in thread_three () at pthread create.c:688

#5 0©Ox0000000000403113 in start_thread (arg=<optimized out>) at pthread_create.c:486
#6 0x00000000004442af in clone ()

Thread 4 (Thread 0x7faf70657700 (LWP 3579)):

#0 0x00000000004442a1 in clone ()

#1 0Ox0000000000403020 in ?? () at pthread_create.c:362
#2 0Ox00007faf70657700 in ?? ()

#3 0Ox0000000000000000 in ?? ()

Thread 3 (Thread @x7faf71e5a700 (LWP 3576)):

#0 0Ox0000000000441a50 in nanosleep ()

#1 0Ox00000000004419da in sleep ()

#2 0Ox0000000000401bfc in bar_one () at pthread_create.c:688

#3 ©x0000000000401cod in foo one () at pthread_create.c:688

#4 ©x0000000000401c26 in thread one () at pthread_create.c:688

#5 Ox0000000000403113 in start_thread (arg=<optimized out>) at pthread_create.c:486
#6 0x00000000004442af in clone ()

Thread 2 (Thread 0xb97880 (LWP 3575)):
#0 0x00000000004442al1 in clone ()
#1 Ox0000000000401f4f in create_thread (pd=pd@entry=0x7faf70657700,
attr=attr@entry=0x7fffc8débcfo, stopped_start=stopped_start@entry=0x7fffc8d6bcee,
stackaddr=stackaddr@entry=0x7faf70656e80,

thread_ran=thread_ran@entry=0x7fffc8débcef) at
. ./sysdeps/unix/sysv/linux/createthread.c:101
#2 0Ox0000000000403986 in _ pthread_create_2_1 (newthread=<optimized out>, attr=<optimized
out>, start_routine=<optimized out>, arg=<optimized out>) at pthread_create.c:826
#3 0Ox0000000000401dac in main () at pthread_create.c:688

Thread 1 (Thread 0x7faf71659700 (LWP 3577)):
#0 0Ox0000000000401bbd in procA () at pthread_create.c:688

135

#1 0©Ox0000VV401c3b in bar_two () at pthread_create.c:688

#2 0Ox000000VB401c4c in foo_two () at pthread_create.c:688

#3 0©x000000000V401c65 in thread two () at pthread_create.c:688

#4 0x0000000000403113 in start_thread (arg=<optimized out>) at pthread_create.c:486
#5 0©x00000000004442af in clone ()

6. Check the CPU instruction and the stack pointer of thread #4 for any signs of stack overflow (unaccessible

stack addresses below the current stack pointer):

(gdb) thread 4
[Switching to thread 4 (Thread 0x7faf70657700 (LWP 3579))]
#0 0©x00000000004442a1 in clone ()

(gdb) bt

#0 0Ox00000000004442al1 in clone ()

#1 0Ox0000000000403020 in ?? () at pthread_create.c:362
#2 0x00007faf70657700 in ?? ()

#3 ©x000000000000 in ?? ()

(gdb) x/i ©0x00000000004442a1
=> Ox4442al <clone+49>: test %rax,%rax

(gdb) x/gx $rsp
Ox7faf70656€70: 0x0000000000403020

(gdb) x/gx $rsp-8
0x7faf70656e68: 0x0000000000000000

(gdb) x/gx $rsp-0x1e
Ox7faf70656e60: 0x0000000000000000

7. Switch to thread #2 and verify that the main function was being engaged in thread creation (this may
correlate with the last thread #4 caught in being created):

(gdb) thread 2
[Switching to thread 2 (Thread 0xb97880 (LWP 3575))]
#0 0x00000000004442a1 in clone ()

(gdb) bt
#0 0©x00000000004442al1 in clone ()
#1 0©Ox0000000000401f4f in create_thread (pd=pd@entry=0x7faf70657700,
attr=attr@entry=0x7fffc8débcf0, stopped_start=stopped_start@entry=0x7fffc8débcee,
stackaddr=stackaddr@entry=0x7faf70656e80,

thread_ran=thread_ran@entry=0x7fffc8débcef) at
../sysdeps/unix/sysv/linux/createthread.c:101
#2 0Ox00000VV403986 in _ pthread_create_2_1 (newthread=<optimized out>, attr=<optimized
out>, start_routine=<optimized out>, arg=<optimized out>) at pthread_create.c:826
#3 Ox0000000000401dac in main () at pthread_create.c:688

(gdb) disassemble main
Dump of assembler code for function main:

0x0000000000401d29 <+0>: push %rbp

0x0000000000401d2a <+1>: mov %rsp,%rbp

0x0000000000401d2d <+4>: sub $0x40,%rsp

0x0000000000401d31 <+8>: mov %edi, -0x34(%rbp)

0x0000000000401d34 <+11>: mov %rsi, -0x40(%rbp)

0x0000000000401d38 <+15>: lea -0x8(%rbp),%rax

0x0000000000401d3c <+19>: mov $0x0, %ecx

0x0000000000401d41 <+24>: lea -0x138(%rip),%rdx # 0x401c10 <thread_one>

136

0x0000000000401d48 <+31>: mov $0x0,%esi

0x0000000000401d4d <+36>: mov %rax,%rdi

0x0000000000401d50 <+39>: callg ©0x403400 <_ pthread create_2 1>
0x0000000000401d55 <+44>: lea -0x10(%rbp) , %rax

0x0000000000401d59 <+48>: mov $0x0, %ecx

0x0000000000401d5e <+53>: lea -0x116(%rip) ,%rdx # 0x401c4f <thread_two>
0x0000000000401d65 <+60>: mov $0x0,%esi

0Xx0000000000401d6a <+65>: mov %rax,%rdi

0x0000000000401d6d <+68>: callg 0x403400 <_ pthread _create_2 1>
0x0000000000401d72 <+73>: lea -0x18(%rbp) ,%rax

0x0000000000401d76 <+77>: mov $0x0, %ecx

0x0000000000401d7b <+82>: lea -oxf4(%rip), %rdx # 0x401c8e <thread_three>
0x0000000000401d82 <+89>: mov $0x0,%esi

0Xx0000000000401d87 <+94>: mov %rax,%rdi

0x0000000000401d8a <+97>: callg 0x403400 <_ pthread_create_2_1>
0x0000000000401d8f <+102>: lea -0x20(%rbp) ,%rax

0x0000000000401d93 <+106>: mov $0x0, %ecx

0x0000000000401d98 <+111>: lea -0xd2(%rip), %rdx # Ox401ccd <thread four>

0x0000000000401d9f <+118>: mov $0x0,%esi
0x0000000000401dad <+123>: mov %»rax,%rdi
0x0000000000401da7 <+126>: callqg 0x403400 <_ pthread_create_2_1>

0x0000000000401dac <+131>: lea -0x28(%rbp) ,%rax
0x0000000000401db0 <+135>: mov $0x0,%ecx
0x0000000000401db5 <+140>: lea -0xbe (%rip),%rdx # 0x401doc <thread_five>

0x0000000000401dbc <+147>: mov $0x0,%esi
0x0000000000401dcl <+152>: mov %rax,%rdi
0x0000000000401dc4 <+155>: callg 0x403400 <_ pthread_create_2_1>
0x0000000000401dc9 <+160>: mov $0x3, %edi
0x0000000000401dce <+165>: callg ©0x4419a0 <sleep>
0x0000000000401dd3 <+170>: mov $0x0, %eax
0x0000000000401dd8 <+175>: leaveq
0x0000000000401dd9 <+176>: retq
End of assembler dump.

137

Exercise A2D (A64, GDB)

Goal: Learn how to identify exceptions, find problem threads and CPU instructions.
Patterns: NULL Pointer (Data).

1. Load core.14554 dump file and App2D executable from the A64/App2D directory:

~/ALCDA2/A64/App2D$ gdb -c core.14554 -se App2D

GNU gdb (Ubuntu 12.1-@ubuntul~22.04) 12.1

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to
Reading symbols from App2D...

(No debugging symbols found in App2D)

‘'word". ..

warning: Can't open file /home/opc/ALCDA2/App2D/App2D during file-backed mapping note
processing

[New LWP 14556]

[New LWP 14554]

[New LWP 14559]

[New LWP 14557]

[New LWP 14555]

[New LWP 14558]

Core was generated by " ./App2D'.

Program terminated with signal SIGSEGV, Segmentation fault.
#0 0x00000000004031f8 in procA ()

[Current thread is 1 (LWP 14556)]

2. Set logging to a file in case of lengthy output from some commands and set color highlighting off:
(gdb) set logging file App2D.log

(gdb) set logging enabled on

Copying output to App2D.log.

Copying debug output to App2D.log.

(gdb) set style enabled off

3. List all threads:

(gdb) info threads

Id Target Id Frame

* 1 LWP 14556 0Xx00000000004031f8 in procA ()
2 LWP 14554 0x000000000040c9f4 in nanosleep ()
3 LWP 14559 0x000000000040c9f4 in nanosleep ()

138

4 LWP 14557 0x000000000040c9f4 in nanosleep ()

5 LWP 14555 0x000000000040c9f4 in nanosleep ()
6 LWP 14558 0x000000000040c9f4 in nanosleep ()
4. The problem thread seems to be the current thread

(gdb) thread 1
[Switching to thread 1 (LWP 14556)]
#0 0x00000000004031f8 in procA ()

(gdb) bt

#0 ©x00000000004031f8 in procA ()

#1 0©x000000000040327c in bar_two ()

#2 0©x0000000000403290 in foo_two ()

#3 0Ox00000000004032a8 in thread_two ()
#4 0©x0000000000404c74 in start_thread ()
#5 0©x0000000000429ba@ in thread_start ()

5. Disassemble the problem instruction and check CPU register(s) details (NULL data pointer):

(gdb) x/i 0x0000000000403118
=> 0x4031f8 <procA+16>: str wl, [x0]

(gdb) info r xo
X0 ox0 0

(gdb) x $x0
Ox0: Cannot access memory at address Ox0

6. List all thread stack traces to see any other possible anomalies, such as non-waiting active threads:
(gdb) thread apply all bt

Thread 6 (LWP 14558):

#0 0Ox000000000040c9f4 in nanosleep ()

#1 0Ox0000000000424cf4 in sleep ()

#2 0©x0000000000403214 in proc ()

#3 0Ox0000000000403308 in bar_four ()

#4 ©x000000000040331c in foo_four ()

#5 0©x0000000000403334 in thread_four ()
#6 0©x0000000000404c74 in start_thread ()
#7 ©Ox0000000000429ba® in thread_start ()

Thread 5 (LWP 14555):

#0 0Ox000000000040c9f4 in nanosleep ()

#1 0Ox0000000000424cf4 in sleep ()

#2 0Ox0000000000403238 in bar_one ()

#3 0x000000000040324c in foo_one ()

#4 0Ox0000000000403264 in thread_one ()
#5 0©x0000000000404c74 in start_thread ()
#6 0©x0000000000429ba® in thread start ()

Thread 4 (LWP 14557):

#0 0Ox000000000040c9f4 in nanosleep ()

#1 0Ox0000000000424cf4 in sleep ()

#2 0©x00000000004032c4 in bar_three ()

#3 0Ox00000000004032d8 in foo_three ()

#4 0x00000000004032f0 in thread_three ()
#5 0©x0000000000404c74 in start_thread ()
#6 0©x0000000000429ba® in thread start ()

139

Thread 3 (LWP 14559):

#0
#1
#2
#3
#4
#5
#6

0x000000000040c9f4
0x0000000000424cf4
0x0000000000403350
0Xx0000000000403364
0Xx000000000040337C
0x0000000000404c74
0x0000000000429ba0d

Thread 2 (LWP 14554):

#0
#1
#2

0x000000000040c9f4
0x0000000000424cf4
0x0000000000403418

Thread 1 (LWP 14556):

#0
#1
#2
#3
#4
#5

0x000000000040318
0x000000000040327C
0x0000000000403290
0Xx00000000004032a8
0x0000000000404c74
0x0000000000429ba0o

in
in
in
in
in
in
in

in
in
in

in
in
in
in
in
in

nanosleep ()
sleep ()
bar_five ()
foo_five ()
thread_five ()
start_thread ()
thread_start ()

nanosleep ()
sleep ()
main ()

procA ()
bar_two ()
foo_two ()
thread_two ()
start_thread ()
thread_start ()

140

Exercise A2D (A64, WinDbg Preview)

Goal: Learn how to identify exceptions, find problem threads and CPU instructions.
Patterns: NULL Pointer (Data).

1. Launch WinDbg Preview.
2. Load core.14554 dump file from the A64\App2D folder:

Microsoft (R) Windows Debugger Version 10.0.25111.1000 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\ALCDA2\A64\App2D\core.14554]
64-bit machine not using 64-bit API

3k 3k 3k 3k >k sk ok >k ok %k k ko k path Validation SummaPy 3k 3k 3k 3k 3k >k >k 3k ok ok %k >k sk k
Response Time (ms) Location
Deferred srv*
Symbol search path is: srv*

Executable search path is:

Generic Unix Version © UP Free ARM 64-bit (AArch64)
Machine Name:

System Uptime: not available

Process Uptime: not available

(38da.38dc): Signal SIGSEGV (Segmentation fault) code SEGV_MAPERR (Address not mapped to
object) at Ox0*** WARNING: Unable to verify timestamp for App2D

App2D+0x31f8:
00000000 00403118 b900VOO1 str wl, [x9]
3. Set logging to a file in case of lengthy output from some commands:

0:000> .logopen C:\ALCDA2\A64\App2D\App2D.log
Opened log file 'C:\ALCDA2\A64\App2D\App2D.log'

4. Specify the dump folder as the symbol path and reload symbols:

0:000> .sympath+ C:\ALCDA2\A64\App2D\

Symbol search path is: srv*;C:\ALCDA2\A64\App2D\

Expanded Symbol search path is:
cache*;SRV*https://msdl.microsoft.com/download/symbols;c:\alcda2\a64\app2d\

kkokkkxkkkkkkk* path yalidation summary 3k 3k >k 3k 3k 5k sk sk sk k kR ok k

Response Time (ms) Location
Deferred srv*
oK C:\ALCDA2\A64\App2D\

*** WARNING: Unable to verify timestamp for App2D
0:000> .reload
*** WARNING: Unable to verify timestamp for App2D

Module name Error

141

App2D The system cannot find the file specified

You can troubleshoot most symbol related issues by turning on symbol loading diagnostics (!sym
noisy) and repeating the command that caused symbols to be loaded.

You should also verify that your symbol search path (.sympath) is correct.

Note: We ignore warnings and errors as they are not relevant for now.

5. The problem thread seems to be the current thread

0:000> k

Child-SP RetAddr Call Site

00 0000fffe leeee810 00000000 ©O40327cC App2D!procA+0x10

01 0000fffe leecee820 00000000 00403290 App2D!bar_two+0xc

02 0000fffe leecee830 00000000 00403228 App2D!foo_two+0xc

03 0000fffe leeee840 00000000 ©0404c74 App2D!thread_two+0x10
04 0000fffe leeee860 00000000 ©O429bad App2D!start_thread+0xb4
05 0000fffe leeee990 ffffffff ffffffff App2D!thread_start+0x30
06 000Offfe leecee990 00VVVLVVOO V0OV OxFFffffff fFFfffff

6. Check the problem instruction and CPU register(s) details (NULL data pointer):
0:000> r

X0=0000000000000000
x4=0000fffeleeee860
X8=0000000000000063
x12=0000fffeleecef080
Xx16=00000000004d0010
X20=0000000000000000
x24=0000fffeleeef770
X28=0000000000810000
pCc=00000000004031f8
App2D!procA+0x10:

00000000 00403118 b900EVO1 str

7. List all thread stack traces and check if there are other anomalies, such as non-waiting active threads:

0:000> ~*k

Unable to get thread

Xx1=0000000000000001
Xx5=3a23674131ee4278
X9=0000000000800000
Xx13=0000000000000000
Xx17=0000000000424000
X21=00000000004d0000
Xx25=00000000301b060
fp=0000fffeleeceeld20

psr=20001000 --C- ELO

data for thread ©

X2=0000fffeleeef080
X6=0000fffeleeefl50
x10=0000000000404bcO
X14=0000000000000000
X18=0000000000000110
X22=0000000000403298
X26=00000000004d7890
1r=000000000040327C

wl, [x9]

@ 1Id: 38da.38dc Suspend: © Teb: 00000000 00O Unfrozen

Child-SP

00 0000fffe leeee8l0
01 000offfe leeee820
02 0000fffe leeee830
03 0000fffe leeee840
04 0000fffe leeee860
05 000offfe leeee990
06 000Offfe leeee990

Unable to get thread

RetAddr

00000000 9040327C
00000000 00403290
00000000 004032a8
00000000 00404c74
00000000 00429ba0
frffffff FFEfffff
00000000 VO

data for thread 1

Call Site
App2D!procA+0x10
App2D!bar_two+0xc
App2D!foo_two+0xc
App2D!thread_two+0x10

x3=3a2398bf2f00aal8
X7=0000000000000000
x11=00000000003d0f00
Xx15=0000000000000000
x19=0000fffeleeef080
X23=0000000000000000
X27=0000000000010000
sp=0000fffeleecece810

App2D!start_thread+oxb4
App2D!thread_start+0x30

OXFFFFFFFf FFFFFFFF

1 1Id: 38da.38da Suspend: @ Teb: 00000000 00RO Unfrozen

Child-SP

00 000offff dbdf3eco
01 ee0offff dbdf3fo0
02 0eeeffff dbdfdofe
03 0eeffff dbdf414e0
04 00eeffff dbdf42a0

RetAddr

00000000 00424cf4
00000000 00403418
00000000" 0040ec8c
00000000 00403090
00000000 000V

Call Site

App2D!_1libc_nanosleep+9x24

App2D!sleep+0x110
App2D!main+0x90

App2D! _libc_start_main+0x304

App2D!start+0x4c

142

Unable to get thread data for thread 2
2 1Id: 38da.38df Suspend: © Teb: 00000000 ©000VOOO Unfrozen

#
00
o1
02
03
04
05
06
o7

Child-SP

0000fffe” 1débe5f0
0000fffe” 1d6be630
0000fffe 1d6be820
0000fffe 1d6be830
0000fffe 1d6be840
0000fffe 1d6be860
0000fffe” 1d6be990
0000fffe” 1d6be990

Unable to get thread
3 1Id: 38da.38dd Suspend: © Teb: 00000000 0000000 Unfrozen

#
00
o1
02
03
04
05
06
o7

Child-sP

0000fffe” 1leb6de5f0
0000fffe” 1e6de630
0000fffe 1le6de820
0000fffe 1le6de830
0000fffe 1e6de840
0000fffe 1e6de860
0000fffe le6de990
0000fffe le6de990

Unable to get thread
4 1Id: 38da.38db Suspend: © Teb: 00000000 00000000 Unfrozen

#
00
o1
02
03
04
05
06
o7

Child-SP

0000fffe 1f6fe5f0
0000fffe” 1f6fe630
0000fffe 1f6fe820
0000fffe 1f6fe830
0000fffe 1f6fe840
0000fffe 1f6fe860
0000fffe 1f6fe990
0000fffe 1f6fe990

Unable to get thread
5 1Id: 38da.38de Suspend: © Teb: 00000000 ©0OOVOO Unfrozen

#
00
o1
02
03
04
05
06
o7
08

Child-SP

0000fffe 1ldece5do
0000fffe 1dece610
0000fffe 1dece800
000offfe ldece820
000offfe ldece830
0000fffe ldece840
0000fffe 1dece860
0000fffe 1dece990
000offfe ldece990

RetAddr

00000000 00424cT4
00000000 00403350
00000000° 00403364
00000000° 0040337C
00000000 00404Cc74
00000000 00429ba0
fHFfffff fHfrfff
00000000 0000V

data for thread 3

RetAddr

00000000 00424cf4
00000000 004032c4
00000000 ©04032d8
00000000 00403210
00000000 00404c74
00000000 00429ba0
ffffffff fEFfFrfff
00000000 00000

data for thread 4

RetAddr

00000000 00424cf4
00000000 00403238
00000000 0040324C
00000000 00403264
00000000 00404Cc74
00000000° 00429ba0
fffffff fHfrfff
00000000 0000V

data for thread 5

RetAddr

00000000 00424cf4
00000000 00403214
00000000 00403308
00000000 0040331cC
00000000 00403334
00000000 00404c74
00000000° 00429ba0
ffffffff fFfFffff
00000000" 0000V

Note: There are no other active threads.

Call Site

App2D! _1libc_nanosleep+0x24
App2D!sleep+0x110
App2D!bar_five+0x10
App2D!foo_five+0xc
App2D!thread_five+0x10
App2D!start_thread+oxb4
App2D!thread_start+0x30
Oxffffffff frrfffff

Call Site
App2D!_1libc_nanosleep+0x24
App2D!sleep+0x110
App2D!bar_three+0x10
App2D!foo_three+0xc
App2D!thread_three+0x10
App2D!start_thread+0xb4
App2D!thread_start+0x30
oxffffffff frHfffff

Call Site

App2D! 1libc_nanosleep+0x24
App2D!sleep+0x110
App2D!bar_one+0x10
App2D!foo_one+0xc
App2D!thread_one+0x10
App2D!start_thread+oxb4
App2D!thread_start+0x30
Oxfffffff fffrrfff

Call Site
App2D!_1libc_nanosleep+9x24
App2D!sleep+0x110
App2D!procB+0x10
App2D!bar_four+exc
App2D!foo_four+exc
App2D!thread_four+0x10
App2D!start_thread+0xb4
App2D!thread_start+0x30
oxffffffff frrfffff

We close logging before exiting WinDbg Preview:

0:000> .logclose
Closing open log file 'C:\ALCDA2\A64\App2D\App2D.log’

143

Exercise A2C

Goal: Learn how to identify exceptions, find problem threads and
CPU instructions

Patterns: NULL Pointer (Code); Missing Frame (WinDbg)

© 2023 Software Diagnostics Services

144

Exercise A2C (x64, GDB)

Goal: Learn how to identify exceptions, find problem threads and CPU instructions.
Patterns: NULL Pointer (Code).

1. Load core.App2C dump file and App2C executable from the x64/App2C directory:

~/ALCDA2/x64/App2C$ gdb -c core.App2C -se App2C

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-1linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to
Reading symbols from App2C...done.

[New LWP 3651]

[New LWP 3647]

[New LWP 3648]

[New LWP 3650]

[New LWP 3649]

[New LWP 3652]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1inux-gnu/libthread_db.so.1".
Core was generated by " ./App2C'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0Ox0000000000000000 in ?? ()

[Current thread is 1 (Thread 0x7f7d259c4700 (LWP 3651))]

‘'word". ..

2. List all threads:

(gdb) info threads

Id Target Id Frame

* 1 Thread 0x7f7d259c¢4700 (LWP 3651) Ox0000000000000000 in ?? ()
2 Thread 0x1bd4880 (LWP 3647) 0x0000000000441a60 in nanosleep ()
3 Thread 0x7f7d271c7700 (LWP 3648) 0x0000000000441a60 in nanosleep ()
4 Thread 0x7f7d261c5700 (LWP 3650) 0x0000000000441a60 in nanosleep ()
5 Thread 0x7f7d269c6700 (LWP 3649) 0x0000000000441a60 in nanosleep ()
6 Thread 0x7f7d251c3700 (LWP 3652) ©x0000000000441a60 in nanosleep ()

3. The problem thread seems to be the current thread:

(gdb) bt

#0 Ox0000000000000000 in ?? ()

#1 0x0000000000401bf9 in proc ()

#2 0x0000000000401cc7 in bar_four ()

#3 0x0000000000401cd8 in foo_four ()

#4 0x0000000000401cfl in thread_four ()

145

#5 0©Ox0000000000403123 in start_thread (arg=<optimized out>) at pthread_create.c:486
#6 0x00000000004442bf in clone ()

Note: It looks like our GDB version prints the non-existent proc function instead of procB.

(gdb) disassemble proc
No symbol "proc" in current context.

4. Check the CPU instruction and a dereferenced pointer for any signs of a NULL pointer:

(gdb) disassemble procB
Dump of assembler code for function procB:

0x0000000000401bd4 <+0>: push %rbp
0x0000000000401bd5 <+1>: mov %rsp,%rbp
0x0000000000401bd8 <+4>: sub $0x10,%rsp
0x0000000000401bdc <+8>: mov $0x1,%edi
0x0000000000401bel <+13>: callg 0x4419b0 <sleep>
0x0000000000401be6 <+18>: movq $0x0, -0x8(%rbp)
0x0000000000401bee <+26>: mov -0x8(%rbp),%rdx
0X0000000000401bf2 <+30>: mov $0x0, %eax
0x0000000000401bf7 <+35>: callg *%rdx
0x0000000000401bf9 <+37>: nop

0x0000000000401bfa <+38>: leaveq
0x0000000000401bfb <+39>: retq

End of assembler dump.

(gdb) info r rdx
rdx ox0 o

5. List all thread stack traces to check for other anomalies, such as non-waiting active threads:

(gdb) thread apply all bt

Thread 6 (Thread 0x7f7d251c3700 (LWP 3652)):

#0 0Ox0000000000441a60 in nanosleep ()

#1 0Ox00000000004419ea in sleep ()

#2 Ox0000000000401d06 in bar_five () at pthread_create.c:688

#3 Ox0000000000401d17 in foo_five () at pthread_create.c:688

#4 Ox0000000000401d30 in thread_five () at pthread_create.c:688

#5 0©x0000000000403123 in start_thread (arg=<optimized out>) at pthread _create.c:486
#6 0©x00000000004442bf in clone ()

Thread 5 (Thread 0x7f7d269c6700 (LWP 3649)):

#0 0Ox0000000000441a60 in nanosleep ()

#1 0Ox00000000004419ea in sleep ()

#2 ©x0000000000401bbf in procA () at pthread_create.c:688

#3 0x0000000000401c49 in bar_two () at pthread_create.c:688

#4 Ox0000000000401c5a in foo_two () at pthread_create.c:688

#5 0©x0000000000401c73 in thread two () at pthread_create.c:688

#6 0©x0000000000403123 in start_thread (arg=<optimized out>) at pthread_create.c:486
#7 ©x00000000004442bf in clone ()

Thread 4 (Thread 0x7f7d261c5700 (LWP 3650)):

#0 0Ox0000000000441a60 in nanosleep ()

#1 0Ox00000000004419ea in sleep ()

#2 0©x0000000V401c88 in bar_three () at pthread_create.c:688

#3 0Ox000000B401c99 in foo_three () at pthread_create.c:688

#4 ©x0000000000401cb2 in thread_three () at pthread_create.c:688

#5 0©x0000000000403123 in start_thread (arg=<optimized out>) at pthread create.c:486
#6 0©x00000000004442bf in clone ()

146

Thread 3 (Thread 0x7f7d271c7700 (LWP 3648)):

#0 0Ox0000000000441a60 in nanosleep ()

#1 0Ox00000000004419ea in sleep ()

#2 0©x0000000VV401cPa in bar one () at pthread _create.c:688

#3 ©x0000000000401clb in foo _one () at pthread_create.c:688

#4 ©x0000000000401c34 in thread one () at pthread_create.c:688

#5 0Ox0000000000403123 in start_thread (arg=<optimized out>) at pthread_create.c:486
#6 0©x00000000004442bf in clone ()

Thread 2 (Thread 0x1bd4880 (LWP 3647)):

#0 Ox0000000000441a60 in nanosleep ()

#1 0Ox00000000004419ea in sleep ()

#2 0©x0000000000401del in main () at pthread create.c:688

Thread 1 (Thread 0x7f7d259c4700 (LWP 3651)):

#0 0©x0000000000000000 in ?? ()

#1 ©x0000000000401bf9 in proc () at pthread create.c:688

#2 0©x0000000000401cc7 in bar four () at pthread create.c:688

#3 0©x0000000000401cd8 in foo_ four () at pthread_create.c:688

#4 ©x0000000000401cfl in thread_four () at pthread_create.c:688

#5 0Ox0000000000403123 in start_thread (arg=<optimized out>) at pthread_create.c:486
#6 0x00000000004442bf in clone ()

147

Exercise A2C (A64, GDB)

Goal: Learn how to identify exceptions, find problem threads and CPU instructions.
Patterns: NULL Pointer (Code).

1. Load core.24559 dump file and App2C executable from the A64/App2C directory:

~/ALCDA2/A64/App2C$ gdb -c core.24559 -se App2C

GNU gdb (Ubuntu 12.1-@ubuntul~22.04) 12.1

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to
Reading symbols from App2C...

(No debugging symbols found in App2C)

‘'word". ..

warning: Can't open file /home/opc/ALCDA2/App2C/App2C during file-backed mapping note
processing

[New LWP 24563]

[New LWP 24559]

[New LWP 24560]

[New LWP 24561]

[New LWP 24564]

[New LWP 24562]

Core was generated by " ./App2C'.

Program terminated with signal SIGSEGV, Segmentation fault.
#0 Ox0000000000000000 in ?? ()

[Current thread is 1 (LWP 24563)]

2. Set logging to a file in case of lengthy output from some commands and set color highlighting off:
(gdb) set logging file App2C.log

(gdb) set logging enabled on

Copying output to App2C.log.

Copying debug output to App2C.log.

(gdb) set style enabled off

3. List all threads:

(gdb) info threads

Id Target Id Frame

* 1 LWP 24563 0x0000000000000000 in ?? ()
2 LWP 24559 0x000000000040c9f4 in nanosleep ()
3 LWP 24560 0x000000000040c9f4 in nanosleep ()

148

4 LWP 24561 0x000000000040c9f4 in nanosleep ()

5 LWP 24564 0x000000000040c9f4 in nanosleep ()
6 LWP 24562 0x000000000040c9f4 in nanosleep ()
4. The problem thread seems to be the current thread
(gdb) bt

#0 0Ox0000000000000000 in ?? ()

#1 0x000000000040322c in proc ()

#2 0©x0000000000403314 in bar_four ()

#3 0x0000000000403328 in foo_four ()

#4 0x0000000000403340 in thread_four ()
#5 0©x0000000000404c74 in start_thread ()
#6 0©x0000000000429ba@ in thread_start ()

Note: It looks like our GDB version prints the non-existent proc function instead of procB.

(gdb) disassemble proc
No symbol table is loaded. Use the "file" command.

5. Check the CPU instruction and a dereferenced pointer for any signs of a NULL pointer:

(gdb) disassemble procB
Dump of assembler code for function procB:

0x0000000000403210 <+0>: stp x29, x30, [sp, #-32]!
0x0000000000403214 <+4>: mov X29, sp

0Xx0000000000403218 <+8>: mov wo, #0x1 // #1
0x000000000040321Cc <+12>: bl Ox424bed <sleep>

0x0000000000403220 <+16>: str xzr, [x29, #24]

0X0000000000403224 <+20>: ldr X0, [x29, #24]

0X0000000000403228 <+24>: blr X0

0x000000000040322C <+28>: 1dp x29, x30, [sp], #32
0x0000000000403230 <+32>: ret

End of assembler dump.

(gdb) info r x©
X0 ox0 ©

6. List all thread stack traces to check for other anomalies, such as non-waiting active threads:
(gdb) thread apply all bt

Thread 6 (LWP 24562):

#0 0Ox000000000040c9f4 in nanosleep ()

#1 0Ox0000000000424cf4 in sleep ()

#2 Ox00000000004032d0 in bar_three ()

#3 0x00000000004032e4 in foo_three ()

#4 ©x00000000004032fc in thread_three ()
#5 Ox0000000000404c74 in start_thread ()
#6 0Ox000000OV429ba@ in thread_start ()

Thread 5 (LWP 24564):

#0 0Ox000000000040c9f4 in nanosleep ()

#1 0Ox0000000000424cf4 in sleep ()

#2 0©x0000000V40335c in bar_five ()

#3 0x0000000000403370 in foo_five ()

#4 ©x0000000000403388 in thread five ()
#5 0©x0000000000404c74 in start_thread ()
#6 0Ox0000VOV429bad in thread_start ()

149

Thread 4 (LWP 24561):

#0
#1
#2
#3
#4
#5
#6
#7

0x000000000040c9f4
0x0000000000424cf4
0x000000000040318
0x0000000000403288
0Xx000000000040329C
0x00000000004032b4
0x0000000000404c74
0x0000000000429bao

Thread 3 (LWP 24560):

#0
#1
#2
#3
#4
#5
#6

0x000000000040c9f4
0x0000000000424cf4
0Xx0000000000403244
0Xx0000000000403258
0Xx0000000000403270
0x0000000000404c74
0x0000000000429ba0

Thread 2 (LWP 24559):

#0
#1
#2

0x000000000040c9f4
0x0000000000424cf4
0x0000000000403424

Thread 1 (LWP 24563):

#0
#1
#2
#3
#4
#5
#6

0x0000000000000000
0x000000000040322C
0Xx0000000000403314
0Xx0000000000403328
0Xx0000000000403340
0x0000000000404c74
0x0000000000429ba0o

in
in
in
in
in
in
in
in

in
in
in
in
in
in
in

in
in
in

in
in
in
in
in
in
in

nanosleep ()
sleep ()

procA ()
bar_two ()
foo_two ()
thread_two ()
start_thread ()
thread_start ()

nanosleep ()
sleep ()
bar_one ()
foo_one ()
thread_one ()
start_thread ()
thread_start ()

nanosleep ()
sleep ()
main ()

*? ()

proc ()
bar_four ()
foo_four ()
thread_four ()
start_thread ()
thread_start ()

150

Exercise A2C (A64, WinDbg Preview)

Goal: Learn how to identify exceptions, find problem threads and CPU instructions.
Patterns: NULL Pointer (Code); Missing Frame.

1. Launch WinDbg Preview.
2. Load core.24559 dump file from the A64\App2C folder:

Microsoft (R) Windows Debugger Version 10.0.25111.1000 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\ALCDA2\A64\App2C\core.24559]
64-bit machine not using 64-bit API

3k 3k 3k 3k >k sk ok >k ok %k k ko k path Validation SummaPy 3k 3k 3k 3k 3k >k >k 3k ok ok %k >k sk k
Response Time (ms) Location
Deferred srv*
Symbol search path is: srv*

Executable search path is:

Generic Unix Version © UP Free ARM 64-bit (AArch64)
Machine Name:

System Uptime: not available

Process Uptime: not available

(5fef.5ff3): Signal SIGSEGV (Segmentation fault) code SEGV_MAPERR (Address not mapped to

object) at Ox0*** WARNING: Unable to verify timestamp for App2C
00000000 ©000POOO ?? ???

3. Set logging to a file in case of lengthy output from some commands:

0:000> .logopen C:\ALCDA2\A64\App2C\App2C.log

Opened log file 'C:\ALCDA2\A64\App2C\App2C.log'

4, Specify the dump folder as the symbol path and reload symbols:

0:000> .sympath+ C:\ALCDA2\A64\App2C\

Symbol search path is: srv*;C:\ALCDA2\A64\App2C\

Expanded Symbol search path is:
cache*;SRV*https://msdl.microsoft.com/download/symbols;c:\alcda2\a64\app2c\

kkokkkxkkkkkkk* path yalidation summary 3k sk >k 3k 3k 5k sk sk sk kR k ok k

Response Time (ms) Location
Deferred srv*
oK C:\ALCDA2\A64\App2C\

*** WARNING: Unable to verify timestamp for App2C

0:000> .reload

- WARNING: Unable to verify timestamp for App2C

3k 3k 3k >k 3k 3k >k 3k %k %k %k >k k Symbol Loading Error SummaPy 3k 3k 3k >k 3k 3k >k 3k >k 5k >k %k %k %

Module name Error
App2C The system cannot find the file specified

151

You can troubleshoot most symbol related issues by turning on symbol loading diagnostics (!sym

noisy) and repeating the command that caused symbols to be loaded.
You should also verify that your symbol search path (.sympath) is correct.

Note: We ignore warnings and errors as they are not relevant for now.

5. The problem thread seems to be the current thread:

0:000> k

Child-SP RetAddr Call Site

00 000Offfc 694ce800 ©000VVOO ©O40322C 0x0

01 0000fffc 694ce800 00000000 00403314 App2C!procB+0x1c

02 0000fffc 694ce820 00000000 00403328 App2C!bar_four+exc

03 0000fffc 694ce830 00000000 00403340 App2C!foo_four+exc

04 0000fffc 694ce840 00000000 ©O404c74 App2C!thread_four+0x10

05 0000fffc 694ce860 000OOVOO ©O429bad App2C!start_thread+oxb4
06 0000fffc 694ce990 ffffffff ffffffff App2C!thread_start+0x30
07 0000fffc 694ce990 0©0VVVVOL VOO oxffffffff fffffrff

6. Disassemble the return address backward:

0:000> ub 00000000 VO40322C
App2C!procA+0x24:

00000000 ©040320c d65f03CO ret
App2C!procB:

00000000 90403210 adbe7bfd stp fp,1r, [sp,#-0x20]!
00000000 00403214 910003fd mov fp,sp
00000000 00403218 52800020 MoV wo, #1

00000000 0040321c 94008672 bl App2Clsleep (00000000 ©0424be4d)

00000000 00403220 f9000fbf str xzr, [fp,#0x18]
00000000 00403224 f9400fa® ldr x0, [fp, #0x18]
00000000 00403228 d63f0000 blr X0

Note: xzr generates 0, which is loaded into x0. If you use WinDbg from Debugging Tools for Windows, you may have
a missing frame and a different return address:

0:000> k

Child-SP RetAddr Call Site

00 0000fffc 694ce800 00000000 0403314 ox0

01 0000fffc 694ce810 00000000 00403328 App2C!bar_four+0xc

02 0000fffc 694ce830 00000000 00403340 App2C!foo_four+exc

03 0000fffc 694ce840 00000000 ©0404c74 App2C!thread_four+ox10

04
05
06

0000fffc 694ce860
0000fffc 694ce990
0000fffc 694ce990

00000000 0042920
FEEFFFFF FRFFFFFF
00000000 00000000

App2C!start_thread+0xb4
App2C!thread_start+0x30
Oxfffffff frHffff

0:000> ub 00000000 00403314
App2C!thread_three+0x8:
00000000° 0040324 f9000fad str
00000000 00403218 97fffff8 bl
00000000° 004032fCc d2800000 mov

x0, [fp,#0x18]
App2C!foo_three (00000000 004032d8)
X0, #0

00000000 00403300 a8c27bfd 1dp fp,1r,[sp],#06x20
00000000 00403304 d65f03cO ret

App2C!bar_four:

00000000 00403308 a9bf7bfd stp fp,1r,[sp,#-0x10]!
00000000° 0040330Cc 910003fd mov fp,sp

00000000 00403310 97ffffco bl App2C!procB (00000000 00403210)

152

Note: Instead of a problem instruction, we see a procedure call. We disassemble procB, check the CPU instruction
and a dereferenced pointer for any signs of a NULL pointer:

0:000> uf procB
App2C!procB:

00000000 00403210 adbe7bfd stp fp,1r, [sp,#-0x20]!
00000000° 00403214 910003fd mov fp,sp
00000000 00403218 52800020 mov wo, #1

00000000 0040321c 94008672 bl App2C!sleep (00000000 ©0424be4)

00000000° 00403220 f9000fbf str xzr, [fp,#0x18]
00000000 00403224 f9400fa0 1ldr x0, [fp,#0x18]
00000000° 00403228 d63f0000 blr x0

00000000 0040322c a8c27bfd ldp fp,1r,[sp],#0x20
00000000 00403230 d65f03cO ret

0:000> r x0

X0=0000000000000000

Note: We see that O (the value of the xzr register) was stored in a stack location, then it was loaded into the x0

register. The fp register is an alias to the x29 register.

7.

List all thread stack traces to check for other anomalies, such as non-waiting active threads:

0:000> ~*k

Unable to get thread data for thread ©
@ Id: 5fef.5ff3 Suspend: © Teb: 00000000 00OV Unfrozen

#
00
o1
02
03
04
05
06

Child-SP

0000fffc 694ce800
0000fffc 694ce810
0000fffc 694ce830
0000fffc 694ce840
0000fffc 694ce860
0000fffc 694ce990
0000fffc 694ce990

Unable to get thread
1 1Id: 5fef.5fef Suspend: @ Teb: 00000000 00O Unfrozen

#
00

Child-SP
0000ffff c86b1620

RetAddr

00000000 00403314
00000000 00403328
00000000 00403340
00000000 00404c74
00000000 00429ba0
ffffffff FFrfffff
00000000 VO

data for thread 1

RetAddr
00000000 00424cT4

Call Site

ox0

App2C!bar_four+exc
App2C!foo_four+0xc
App2C!thread_four+0x10
App2C!start_thread+oxb4
App2C!thread_start+0x30
Oxffffffff fffrrfff

Call Site
App2C!_libc_nanosleep+0x24

01 0000ffff c86b1660 0PORVV0O" 0V403424 App2C!sleep+0x110
02 000Offff c86b1850 POPPOALO" PO40ecSC App2C!main+0x90
03 P0OOffff c86b18a0 00OOPOGO" PO403090 App2C!_libc_start_main+@x304
04 000OFffff c86b1a00 ©0OOOOOO0" VOGOV App2C!start+oxac

Unable to get thread
2 1Id: 5fef.5ff0@ Suspend: @ Teb: 00000000 0RO Unfrozen

#
00
o1

Child-SspP
0000fffc 6acfe5f0
0000fffc 6acfe630

data for thread 2

RetAddr
00000000 00424cT4
00000000 00403244

Call Site
App2C!_libc_nanosleep+0x24
App2C!sleep+0x110

02 00POfffc 6acfe820 0000V00O 00403258 App2C!bar_one+0x10

03 0PPefffc 6acfe830 0000000 00403270 App2C!foo_one+0xc

04 0000fffc 6acfe840 0000000 00404c74 App2C!thread_one+0x10
05 00POfffc 6acfe860 ©000OOOOO ©O429babd App2C!start_thread+0xb4

06
o7

0000fffc 6acfe990
00ROfffc 6acfe990

Unable to get thread

FEFFFFFE FRFFFFFF
00000000 00000000

data for thread 3

App2C!thread_start+0x30
Oxfffffff frHfffff

153

#
00
o1
02
03
04
05
06
o7
08

3 1Id: 5fef.5ffl Suspend: © Teb: 00000000 00RO Unfrozen

Child-SP

0000fffc” 6ad4ee5do
0000fffc 6a4ee610
000Offfc 6a4ee800
0000fffc 6a4ee820
000offfc 6a4ee830
0000fffc 6adee840
000Offfc 6a4ee860
000offfc 6a4ee990
0000fffc 6a4ee990

Unable to get thread
4 1Id: 5fef.5ff4 Suspend: © Teb: 00000000 0000000 Unfrozen

#
00
o1
02
03
04
05
06
o7

Child-sP

0000fffc” 68cbe5f0
0000fffc 68cbe630
0000fffc 68cbe820
0000fffc 68che830
0000fffc 68cbe840
0000fffc 68cbe860
0000fffc 68che990
0000fffc 68che990

Unable to get thread
5 1Id: 5fef.5ff2 Suspend: © Teb: 00000000 000V Unfrozen

#
00
o1
02
03
04
05
06
o7

9.

Child-SP

0000fffc 69cde5f0
0000fffc” 69cde630
0000fffc 69cde820
0000fffc 69cde830
0000fffc 69cde840
0000fffc 69cde860
0000fffc 69cde990
0000fffc 69cde990

RetAddr

00000000 00424cT4
00000000 0040318
00000000 00403288
00000000° 0040329cC
00000000 004032b4
00000000 00404Cc74
00000000 00429ba0
fffffff fHFfrfff
00000000 0000V

data for thread 4

RetAddr

00000000 00424cf4
00000000 0040335C
00000000 00403370
00000000 00403388
00000000 00404c74
00000000 00429ba0
ffffffff fEFfFrfff
00000000 V00RO

data for thread 5

RetAddr

00000000 P0424cf4
00000000 004032d0
00000000 004032e4
00000000° 004032fC
00000000 00404Cc74
00000000° 00429ba0
fffffff fHfrfff
00000000 0000V

Call Site
App2C!_libc_nanosleep+0x24
App2C!sleep+0x110
App2C!procA+0x10
App2C!bar_two+0xc
App2C!foo_two+0xc
App2C!thread_two+0x10
App2C!start_thread+oxb4
App2C!thread_start+0x30
Oxffffffff frrfffff

Call Site
App2C!_libc_nanosleep+0x24
App2C!sleep+0x110
App2C!bar_five+0x10
App2C!foo_five+0xc
App2C!thread_five+0x10
App2C!start_thread+0xb4
App2C!thread_start+0x30
Oxfffffff frHffff

Call Site

App2C! _libc_nanosleep+0x24
App2C!sleep+0x110
App2C!bar_three+0x10
App2C!foo_three+0xc
App2C!thread_three+0x10
App2C!start_thread+oxb4
App2C!thread_start+0x30
Oxffffffff fffrrfff

We close logging before exiting WinDbg Preview:

0:000> .logclose
Closing open log file 'C:\ALCDA2\A64\App2C\App2C.log’

154

Exercise A2S

Goal: Learn how to use external debugging information

© 2023 Software Diagnostics Services

155

Exercise A2S (x64, GDB)

Goal: Learn how to use external debugging information.
1. Load core.App2S dump file and App2S executable from the x64/App2S directory:

~/ALCDA2/x64/App2S$ gdb -c core.App2S -se App2S

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-1linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from App2S...(no debugging symbols found)...done.
[New LWP 3736]

[New LWP 3738]

[New LWP 3735]

[New LWP 3734]

[New LWP 3737]

[New LWP 3739]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1inux-gnu/libthread_db.so.1".
Core was generated by " ./App2S'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0x0000000000401bcb in procA ()

[Current thread is 1 (Thread 0x7f30da538700 (LWP 3736))]

2. We check the current stack trace:

(gdb) bt

#0 0©x0000000000401bcb in procA ()

#1 ©Ox0000000000401c49 in bar_two ()

#2 0Ox0000000000401c5a in foo_two ()

#3 0©x0000000000401c73 in thread_two ()
#4 ©x0000000000403123 in start_thread ()
#5 0Ox00000000004442bf in clone ()

Note: We see that the problem happened in procA, but we want to locate it in the source code. The executable
App2S was stripped from debugging symbols before its distribution to customers. Fortunately, the executable with
debugging information was saved in a separate App2S.debug file.

3. We load the App2S. debug file with debugging symbols:

(gdb) symbol-file App2S.debug
Reading symbols from App2S.debug...done.

156

4.

(gdb
#0

#1
#2
#3
#4
#5

(gdb
21

22
23
24
25
26
27
28
29
30

6.

Now we get the stack trace with file numbers:

) bt
0x0000000000401bcb
0Xx0000000000401c49
0Xx0000000000401c5a
0Xx0000000000401c73
0Xx0000000000403123
0x00000000004442bf

in
in
in
in
in
in

procA () at main.c:26

bar_two () at main.c:56

foo_two () at main.c:56

thread_two (arg=0x0) at main.c:56

start_thread (arg=<optimized out>) at pthread_create.c:486
clone ()

If we have the source file, we can list the exact location:

) list main.c:26

sleep(1);

int *p = NULL;

void procB()
{

Alternatively, we can load the executable with debugging symbols from the start:

~/ALCDA2/x64/App2S$ gdb -c core.App2S -se App2S.debug

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Type "show copying"” and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For

help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from App2S.debug...done.

warn
[New
[New
[New
[New
[New
[New

ing: core file may not match specified executable file.

LWP 3736]
LWP 3738]
LWP 3735]
LWP 3734]
LWP 3737]
LWP 3739]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1inux-gnu/libthread_db.so.1".
Core was generated by " ./App2S'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0x0000000000401bcb in procA () at main.c:26

26

157

[Current thread is 1 (Thread 0x7f30da538700 (LWP 3736))]

(gdb) bt

#0 0x0000000000401bcb in procA () at main.c:26

#1 0©x0000000000401c49 in bar_two () at main.c:56

#2 0©x0000PLLB401c5a in foo_two () at main.c:56

#3 0Ox000000VR401c73 in thread _two (arg=ex0@) at main.c:56

#4 0x0000000000403123 in start_thread (arg=<optimized out>) at pthread_create.c:486
#5 0x00000000004442bf in clone ()

Note: We also see the warning that the source code is more recent (we modified some comments after
compilation).

158

Exercise A2S (A64, GDB)

Goal: Learn how to use external debugging information.

1. Load core._home_ubuntu_ALCDA2 A64 App2S App2S5.1001.3d452460-e216-4918-b09f-
304672052efe.202652.172563749 dump file and App2S executable from the A64/App2S directory:

~/ALCDA2/A64/App2S$ gdb -c core._home_ubuntu_ALCDA2_A64_App2S_App2S.1001.3d452460-€216-4918-

bo9f-304672052efe.202652.172563749 -se App2S

GNU gdb (Ubuntu 12.1-@ubuntul~22.04) 12.1

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from App2S...

(No debugging symbols found in App2S)

[New LWP 202654]

[New LWP 202657]

[New LWP 202652]

[New LWP 202653]

[New LWP 202655]

[New LWP 202656]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/aarch64-linux-gnu/libthread_db.so.1".
Core was generated by ~./App2S'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0x00000000004006F0 in procA ()

[Current thread is 1 (Thread Oxffff8a23a480 (LWP 202654))]

2. Set logging to a file in case of lengthy output from some commands and set color highlighting off:
(gdb) set logging file App2S.log

(gdb) set logging enabled on
Copying output to App2S.log.
Copying debug output to App2S.log.

(gdb) set style enabled off
3. We check the current stack trace:

(gdb) bt

#0 0©x000000000040061T0 in procA ()

#1 ©x000000000040077c in bar_two ()

#2 ©x0000000000400790 in foo_two ()

#3 Ox00000000004007a8 in thread_two ()
#4 0x0000000VVV40ecasd in start_thread ()

159

#5 0©x000000000044365c in thread_start ()

Note: We see that the problem happened in procA, but we want to locate it in the source code. The executable
App2S was stripped from debugging symbols before its distribution to customers. Fortunately, the executable with
debugging information was saved in a separate App2S.debug file.

4. We load the App2S. debug file with debugging symbols:

(gdb) symbol-file App2S.debug
Reading symbols from App2S.debug...

5. Now we get the stack trace with file numbers:

(gdb) bt

#0 0©Ox0000000V40061f0 in procA () at main.c:26

#1 0©x00000PLV40077Cc in bar_two () at main.c:56

#2 0©x00000VB400790 in foo_two () at main.c:56

#3 0Ox00000000004007a8 in thread_two (arg=0x0) at main.c:56
#4 ©Ox000000000040ecad in start_thread ()

#5 0Ox000000000044365c in thread_start ()

6. If we have the source file, we can list the exact location:

(gdb) list main.c:26

21 {

22 sleep(1l);

23

24 int *p = NULL;
25

26 *p = 1;

27 }

28

29 void procB()

30

7. Alternatively, we can load the executable with debugging symbols from the start:

~/ALCDA2/A64/App2S$ gdb -c core._home_ubuntu_ALCDA2_A64_App2S_App2S.1001.3d452460-€216-4918-

bO9f-304672052efe.202652.172563749 -se App2S.debug

GNU gdb (Ubuntu 12.1-Qubuntul~22.04) 12.1

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from App2S.debug...

[New LWP 202654]

[New LWP 202657]

[New LWP 202652]

160

[New LWP 2082653]

[New LWP 2082655]

[New LWP 202656]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/aarch64-linux-gnu/libthread_db.so.1".
Core was generated by " ./App2S'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0x0000PPPOOO40061f0 in procA () at main.c:26

26 *p = 1;

[Current thread is 1 (Thread oxffff8a23a480 (LWP 202654))]

(gdb) set style enabled off

(gdb) bt

#0 0©Ox00000VB40061O in procA () at main.c:26

#1 0©Ox0000PL40R77Cc in bar_two () at main.c:56

#2 0©x00000VLB400790 in foo_two () at main.c:56

#3 Ox00000000004007a8 in thread_two (arg=0x0) at main.c:56
#4 0©Ox000000000040ecad in start_thread ()

#5 0©x000000000044365c in thread_start ()

161

Exercise A3

Goal: Learn how to identify spiking threads

Patterns: Active Thread; Spiking Thread

© 2023 Software Diagnostics Services

162

Exercise A3 (x64, GDB)

Goal: Learn how to identify spiking threads.
Patterns: Active Thread; Spiking Thread.

1. The application App3 was consuming 100% CPU (from top command output):

$ top

top - 13:19:10 up 23:14, © users, 1load average: 0.74, 0.25, 0.09

Tasks: 10 total, 1 running, 9 sleeping, 0 stopped, 0 zombie

%Cpu(s): 12.5 us, ©.0 sy, 0.0 ni, 87.5 id, ©.0 wa, 0.0 hi, 0.0 si, 0.0 st

MiB Mem : 7912.4 total, 5556.1 free, 270.2 used, 2086.1 buff/cache
MiB Swap: 2048.0 total, 2048.0 free, 0.0 used. 7386.6 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3975 coredump 20 © 42068 4 ©S 100.0 0.0 1:20.69 App3
1 root 20 © 1744 1080 1016 S ©.0 0.0 0:00.00 init
117 root 20 © 1764 84 S ©0.0 0.0 0:06.16 init
3121 coredump 20 © 42068 112 104 S 0.0 0.0 0:00.02 Appl
3343 root 20 © 1764 68 S ©.0 0.0 0:00.00 init
3344 root 20 © 1764 84 S ©0.0 0.0 0:03.54 init
3345 coredump 20 © 6992 3852 3248 S 0.0 0.0 0:00.02 bash
3349 coredump 20 © 26124 9476 6988 S 0.0 0.1 0:07.67 mc
3351 coredump 20 @ 7124 3872 3212 S 0.0 0.0 0:00.87 bash
3940 coredump 20 © 10968 3524 3040 R 0.0 0.0 0:00.00 top

Its core dump was saved using gcore:

~/ALCDA2/x64/App3$ gcore -o App3.core 3975
[New LWP 3976]

[New LWP 3977]

[New LWP 3978]

[New LWP 3979]

[New LWP 3980]

[Thread debugging using libthread_db enabled]
Using host libthread_db library "/1lib/x86_64-linux-gnu/libthread_db.so.1".
0x0000000000441280 in nanosleep ()

Saved corefile App3.core.3975

[Inferior 1 (process 3975) detached]

2. Load App3.core.3975 dump file and App3 executable from the x64/App3 directory:

~/ALCDA2/x64/App3$ gdb -c App3.core.3975 -se App3

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying"” and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

163

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from App3...done.

[New LWP 3975]

[New LWP 3976]

[New LWP 3977]

[New LWP 3978]

[New LWP 3979]

[New LWP 3980]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1lib/x86_64-1inux-gnu/libthread_db.so.1".
Core was generated by ~./App3'.

#0 0x0000000000441a80 in nanosleep ()

[Current thread is 1 (Thread @xbfc880 (LWP 3975))]

3. List all threads:

(gdb) info threads

Id Target Id Frame
* 1 Thread 0xbfc880 (LWP 3975) 0x0000000000441280 in nanosleep ()
2 Thread 0x7fc68cad9f700 (LWP 3976) Ox0000000000441a80 in nanosleep ()
3 Thread 0x7fc68c29e700 (LWP 3977) 0x0000000000441a80 in nanosleep ()
4 Thread 0x7fc68ba9d700 (LWP 3978) 0x0000000000441a80 in nanosleep ()
5 Thread 0x7fc68b29c700 (LWP 3979) 0x0000000000441a80 in nanosleep ()
6 Thread 0x7fc68aa9b700 (LWP 3980) 0x0000000000401e04 in _ sqrt_finite ()

4, Switch to the active thread #6:

(gdb) thread 6
[Switching to thread 6 (Thread 0x7fc68aa9b700 (LWP 3980))]
#0 0x0000000000401e04 in _ sqrt_finite ()

(gdb) bt

#0 0Ox0000000000401e04 in _ sqrt_finite ()

#1 0©x0000000000401bdc in proc ()

#2 0Ox0000000000401cfl in bar_five ()

#3 0x0000000000401d02 in foo_five ()

#4 0x0000000000401d1b in thread five ()

#5 0©x0000000000403143 in start_thread (arg=<optimized out>) at pthread_create.c:486
#6 0x00000000004442df in clone ()

5. Disassemble the current instruction and check if it is normal:

(gdb) x/i ©x0000000000401e04
0x401e04 <__ sqrt_finite+4>: retq

(gdb) disassemble _ sqrt_finite

Dump of assembler code for function __sqrt_finite:
0X0000000000401€00 <+0>: sqrtsd %xmm@, %xmmo
0x0000000000401e04 <+4>: retq

End of assembler dump.

164

6. Disassemble the return address for the proc function (this GDB version shows proc instead of procB from the
source code) to see an infinite loop:

(gdb) disassemble ©x0000000000401bdc
Dump of assembler code for function procB:

0x0000000000401bbd <+0>: push %rbp
0x0000000000401bbe <+1>: mov %rsp,%rbp
0x0000000000401bcl <+4>: sub $0x10, %rsp
0x0000000000401bc5 <+8>: movsd ©x9243b(%rip), %xmmo # 0x494008
0x0000000000401bcd <+16>: movsd %xmme@, -0x8(%rbp)
movsd -0x8(%rbp),%xmmo
0x0000000000401bd7 <+26>: callg 0x401de@ <sqrtf64>
0x0000000000401bdc <+31>: movq %xmm@, %rax
0x0000000000401bel <+36>: mov %rax, -ex8(%rbp)

0x0000000000401be5 <+40>:
End of assembler dump.

165

Exercise A3 (A64, GDB)

Goal: Learn how to identify spiking threads.
Patterns: Active Thread; Spiking Thread.

1. The application App3 was consuming 100% CPU (from top command output):

$ top

top - 19:59:39 up 31 days, 19:09, 1 user, load average: 1.00, 0.72, 0.34
Tasks: 184 total, 1 running, 128 sleeping, 0 stopped, @ zombie

%Cpu(s): 25.1 us, ©.0 sy, 0.0 ni, 74.8 id, ©.0 wa, 0.1 hi, 0.0 si, 0.0 st
KiB Mem : 23799872 total, 19518400 free, 816064 used, 3465408 buff/cache

KiB Swap: 8388544 total, 8388544 free, 0 used. 19342592 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
21335 opc 20 0 42752 64 S 99.7 0.0 6:08.44 App3
21348 opc 20 0 119360 8000 3776 R 0.3 0.0 0:00.37 top
1 root 20 © 165888 14976 7488 S 0.0 0.1 5:44.10 systemd
2 root 20 © (4] 0 S 0.0 0.0 0:02.24 kthreadd
3 root 0 -20 (%] (%] oI 0.0 0.0 0:00.00 rcu_gp
4 root 0 -20 0 0 01I 0.0 0.0 0:00.00 rcu_par_gp
6 root 0 -20 (%] %] 01 0.0 0.0 0:00.00 kworker/@:0H-kb
8 root 0 -20 (%] 0 oI 0.0 0.0 0:00.04 mm_percpu_wq
9 root 20 © 0 (%] S 0.0 0.0 0:27.66 ksoftirqd/e
10 root 20 0 (%] (%] I ©.0 0.0 9:59.60 rcu_sched
11 root rt o (%] (%] S ©0.0 0.0 0:31.70 migration/@
13 root 20 0 0 0 QS 0.0 0.0 0:00.00 cpuhp/0
14 root 20 © 0 0 S 0.0 0.0 0:00.00 cpuhp/1
15 root rt o 0 0 S 0.0 0.0 0:34.69 migration/1
16 root 20 0 0 0 QS 0.0 0.0 0:23.54 ksoftirqd/1
18 root 0 -20 (%] %] 01 0.0 0.0 0:31.65 kworker/1:0H-kb
19 root 0 -20 (%] (%] 01 0.0 0.0 0:00.00 kworker/1:1H
20 root 20 © (%] (%] S ©0.0 0.0 0:00.00 cpuhp/2
21 root rt o 0 0 S ©0.0 0.0 0:31.60 migration/2
22 root 20 0 0 0 QS 0.0 0.0 0:23.26 ksoftirqd/2
24 root 0 -20 (%] (%] 01 0.0 0.0 0:25.78 kworker/2:0H-kb
25 root 20 © (%] (%] S 0.0 0.0 0:00.00 cpuhp/3

Its core dump was saved using gcore:

~/ALCDA2/A64/App3$ gcore -o App3.core 21335
[New LWP 21340]

[New LWP 21339]

[New LWP 21338]

[New LWP 21337]

[New LWP 21336]

[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib64/libthread_db.so.1".
0x0000000000414364 in nanosleep ()

Saved corefile App3.core.21335

[Inferior 1 (process 21335) detached]

166

2. Load App3.core.21335 dump file and App3 executable from the A64/App3 directory:

~/ALCDA2/A64/App3$ gdb -c App3.core.21335 -se App3

GNU gdb (Ubuntu 12.1-@ubuntul~22.04) 12.1

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying"” and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from App3...

(No debugging symbols found in App3)

warning: Can't open file /home/opc/ALCDA2/App3/App3 during file-backed mapping note processing
[New LWP 21336]

[New LWP 21337]

[New LWP 21338]

[New LWP 21339]

[New LWP 21340]

[New LWP 21335]

Core was generated by " ./App3'.

#0 0x0000000000414364 in nanosleep ()

[Current thread is 1 (LWP 21336)]

3. Set logging to a file in case of lengthy output from some commands and set color highlighting off:
(gdb) set logging file App3.log

(gdb) set logging enabled on

Copying output to App3.log.

Copying debug output to App3.log.

(gdb) set style enabled off

4, List all threads:

(gdb) info threads

Id Target Id Frame
* 1 LWP 21336 0x0000000000414364 in nanosleep ()
2 LWP 21337 0x0000000000414364 in nanosleep ()
3 LWP 21338 0x0000000000414364 in nanosleep ()
4 LWP 21339 0x0000000000414364 in nanosleep ()
5 LWP 21340 0x0000000000408400 in __ sqrt_finite ()
6 LWP 21335 0x0000000000414364 in nanosleep ()
5. Switch to the active thread #5:

(gdb) thread 5
[Switching to thread 5 (LWP 21340)]
#0 0x0000000000408400 in _ sqrt_finite ()

167

(gdb) bt

#0
#1
#2
#3
#4
#5
#6

6.

(gdb) x/1i ©x0000000000408400
=> 0x408400 <__sqrt_finite+328>:

(gdb) disassemble _ sqrt_finite

0Xx0000000000408400
0x0000000000403214
0x0000000000403350
0x0000000000403364
0Xx000000000040337C
0x000000000040c5e4
0x0000000000431920

in __sqrt_finite ()
in proc ()

in bar_five ()
in foo_five ()
in thread_five ()

in start_thread ()
in thread_start ()

Disassemble the current instruction and check if it is normal:

fcmpe d1, do

Dump of assembler code for function __sqrt_finite:

0x00000000004082b8
0x00000000004082bc
0Xx00000000004082c0
0x00000000004082c4
0x00000000004082c8
0Xx00000000004082cC
0x00000000004082d0
0x00000000004082d4
0x00000000004082d8
0x00000000004082dc
0Xx00000000004082e0
0Xx00000000004082e4
0x00000000004082e8
0x00000000004082ec
0x000000000040820
0x0000000000408214
0x000000000040828
0x00000000004082fC
0x0000000000408300
0x0000000000408304
0Xx0000000000408308
0x000000000040830C
0x0000000000408310
0x0000000000408314
0x0000000000408318
0x000000000040831c
0x0000000000408320
0x0000000000408324
0Xx0000000000408328
0x000000000040832C
0Xx0000000000408330
0x0000000000408334
0x0000000000408338
0Xx000000000040833C
0x0000000000408340
0x0000000000408344
0x0000000000408348
0x000000000040834C
0x0000000000408350
0x0000000000408354
0x0000000000408358
0x000000000040835C
0x0000000000408360
0x0000000000408364

<+0>:

<+4>:

<+8>:

<+12>:
<+16>:
<+20>:
<+24>:
<+28>:
<+32>:
<+36>:
<+40>:
<+44>:
<+48>:
<+52>:
<+56>:
<+60>:
<+64>:
<+68>:
<+72>:
<+76>:
<+80>:
<+84>:
<+88>:
<+92>:
<+96>:

<+100>:
<+104>:
<+108>:
<+112>:
<+116>:
<+120>:
<+124>:
<+128>:
<+132>:
<+136>:
<+140>:
<+144>:
<+148>:
<+152>:
<+156>:
<+160>:
<+164>:
<+168>:
<+172>:

fmov
asr
and
orr
stp
sub
bfi
mov
cmp
mov
adrp
asr
add
mov
1ldr
fmov
b.hi
fmul
fmul
fmov
fsub
1ldr
1ldr
fmul
fadd
1dr
fmul
fadd
fmul
1ldr
and
fadd
fmul
1ldr
fmul
fadd
fsub
fsub
fmul
fadd
fsub
fmul
fmov
fmul

x1l, do

X0, x1, #32

w2, we, #ex1fffff

w3, w2, #0x3fe00000
x29, x30, [sp, #-16]!
w4, wo, #0x100, 1sl #12
x1, x3, #32, #32

w3, #OX7fdfffff

w4, w3

Xx29, sp

x4, 0x490000 <arena_thread_freeres+72>
w2, w2, #14

x4, x4, #Oxce0

x3, #0x0

d2, [x4, w2, sxtw #3]

d3, x1

0x40841c <__sqrt_finite+356>
do, d2, d3

do, do, d2

dl, #1.000000000000000000e+00
do, di, de

dl, 0x408498

d4, 0x4084a0

di, do, di

di, di, d4

d4, ox4084a8

di, di, de

di, di, d4

do, di, de

dl, ox4084bo

wo, we, #0x7fe00000

do, do, di

do, do, d2

dl, ox4084b8

d2, de, d3

d4, d2, di

d4, d4, di

d5, d2, d4

di, d4, d4

d4, d2, d4

di, d3, di

d4, d5, d4

d5, #5.000000000000000000e -01
do, de, d5

// #2145386495

/] #0

// b.pmore

168

0x0000000000408368 <+176>: fsub d4, di, d4
0x000000000040836C <+180>: fmul d4, do, d4
0x0000000000408370 <+184>: fadd di, d2, d4
0x0000000000408374 <+188>: fsub d2, d2, di
0x0000000000408378 <+192>: ldr do, 0x4084c0
--Type <RET> for more, q to quit, c to continue without paging--
0x000000000040837Cc <+196>: fadd d4, d2, d4
0x0000000000408380 <+200>: fmul do, d4, de
0x0000000000408384 <+204>: fadd do, do, di

0x0000000000408388 <+208>: mov wl, #0x20000000 // #536870912
0x000000000040838C <+212>: add wo, wl, wo, lsr #1

0x0000000000408390 <+216>: fcmp do, di

0Xx0000000000408394 <+220>: bfi X3, X0, #32, #32

0Xx0000000000408398 <+224>: b.eq 0x40845c < sqrt_finite+420> // b.none
0x000000000040839C <+228>: fmov do, #1.500000000000000000e+00
0x00000000004083a0 <+232>: ldr d2, 0x4084c8
0x00000000004083a4 <+236>: fmul d4, d4, deo
0x00000000004083a8 <+240>: fadd do, d4, di
0x00000000004083ac <+244>: fmul d4a, di, d2
0x00000000004083b0 <+248>: fmul d2, de, d2
0x00000000004083b4 <+252>: fsub dé, di, d4
0x00000000004083b8 <+256>: fsub d5, de, d2
0x00000000004083bc <+260>: fadd d4, d6, d4
0x00000000004083C0O <+264>: fadd d2, d5, d2
0x00000000004083c4 <+268>: fsub dé, do, d2
0x00000000004083Cc8 <+272>: fmul die, d4, d2
0x00000000004083cCc <+276>: fmul d5, di, do
0x00000000004083d0 <+280>: fsub d7, di, d4
0x00000000004083d4 <+284>: fsub die, die, d5
0x00000000004083d8 <+288>: fmul d4, d4, dé
0x00000000004083dc <+292>: fmul d2, d7, d2
0x00000000004083€0 <+296>: fadd d4, die, d4
0x00000000004083e4 <+300>: fadd d2, d4, d2
0x00000000004083e8 <+304>: fmul d7, d7, dé
0x00000000004083ec <+308>: fsub d3, d5, d3
0x00000000004083f0 <+312>: fadd d6, d2, d7
0x00000000004083f4 <+316>: fadd d3, d3, dé
0x00000000004083f8 <+320>: fcmpe d3, #0.0
0x00000000004083fCc <+324>: b.mi 0x408484 < sqrt_finite+460> // b.first
=> 0x0000000000408400 <+328>: fcmpe di, de
0x0000000000408404 <+332>: b.gt 0x40840c <__sqrt_finite+340>
0x0000000000408408 <+336>: fmov de, di
0x000000000040840C <+340>: fmov di, x3
0x0000000000408410 <+344>: fmul de, do, di

0Xx0000000000408414 <+348>: ldp x29, x30, [sp], #16

0x0000000000408418 <+352>: ret

0x000000000040841c <+356>: and w2, wo, #0x7ff00000

0Xx0000000000408420 <+360>: mov wl, #0Ox7ff00000 // #2146435072
0Xx0000000000408424 <+364>: cmp w2, wl

0X0000000000408428 <+368>: b.eq 0x40846¢c <__ sqrt_finite+436> // b.none
0x000000000040842c <+372>: fcmp do, #0.0
0X0000000000408430 <+376>: b.eq 0x408414 <__ sqrt_finite+348> // b.none
0x0000000000408434 <+380>: tbnz wo, #31, 0x408478 <__ sqrt_finite+448>
0x0000000000408438 <+384>: adrp X0, 0x491000 <inroot+800>
0x000000000040843Cc <+388>: ldr dl, [x0, #224]
0x0000000000408440 <+392>: fmul do, do, di

--Type <RET> for more, q to quit, c to continue without paging--

0Xx0000000000408444 <+396>: bl 0x4082b8 <__ sqrt_finite>
0x0000000000408448 <+400>: adrp X0, 0x491000 <inroot+800>
0x000000000040844C <+404>: 1dr dl, [x0, #232]

169

0x0000000000408450 <+408>: ldp x29, x30, [sp], #16

0x0000000000408454 <+412>: fmul do, di, deo

0x0000000000408458 <+416>: ret

0x000000000040845¢C <+420>: fmov d2, x3

0x0000000000408460 <+424>: fmul do, di, d2

0x0000000000408464 <+428>: ldp x29, x30, [sp], #16

0x0000000000408468 <+432>: ret

0x000000000040846C <+436>: fmul di, de, de

0x0000000000408470 <+440>: fadd do, di, de

0x0000000000408474 <+444>: b 0x408414 <_ sqrt_finite+348>

0x0000000000408478 <+448>: fsub do, do, deo

0x000000000040847Cc <+452>: fdiv do, do, deo

0x0000000000408480 <+456>: b 0x408414 <__ sqrt_finite+348>

0x0000000000408484 <+460>: fcmpe di1, deo

0x0000000000408488 <+464>: b.mi 0x40840c <__ sqrt_finite+340> // b.first

0x000000000040848C <+468>: fmov do, di

0x0000000000408490 <+472>: b 0x40840c <__ sqrt_finite+340>
End of assembler dump.

Note: The function is quite large compared to the x64 version, where there is a dedicated instruction.

7. Disassemble the return address for the proc function (this GDB version shows proc instead of procB from the
source code) to see an infinite loop:

(gdb) disassemble ©x0000000000403214
Dump of assembler code for function procB:

0x00000000004031fCc <+0>: stp x29, x30, [sp, #-32]!
0x0000000000403200 <+4>: mov X29, sp
0x0000000000403204 <+8>: ldr X0, 0x403220
0x0000000000403208 <+12>: str x0, [x29, #24]

ldr do, [x29, #24]
0x0000000000403210 <+20>: bl 0x403424 <sqrt>
0x0000000000403214 <+24>: str do, [x29, #24]

0x0000000000403218 <+28>:
End of assembler dump.

170

Exercise A3 (A64, WinDbg Preview)

Goal: Learn how to identify spiking threads.
Patterns: Active Thread; Spiking Thread.

1. The application App3 was consuming 100% CPU (from top command output):

$ top

top - 19:59:39 up 31 days, 19:09, 1 user, load average: 1.00, 0.72, 0.34
Tasks: 184 total, 1 running, 128 sleeping, 0 stopped, @ zombie

%Cpu(s): 25.1 us, ©.0 sy, 0.0 ni, 74.8 id, 0.0 wa, 0.1 hi, 0.0 si, 0.0 st
KiB Mem : 23799872 total, 19518400 free, 816064 used, 3465408 buff/cache

KiB Swap: 8388544 total, 8388544 free, 0 used. 19342592 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
21335 opc 20 0 42752 64 S 99.7 0.0 6:08.44 App3
21348 opc 20 0 119360 8000 3776 R 0.3 0.0 0:00.37 top
1 root 20 © 165888 14976 7488 S 0.0 0.1 5:44.10 systemd
2 root 20 © (4] 0 S 0.0 0.0 0:02.24 kthreadd
3 root 0 -20 (%] (%] oI 0.0 0.0 0:00.00 rcu_gp
4 root 0 -20 0 0 01I 0.0 0.0 0:00.00 rcu_par_gp
6 root 0 -20 (%] %] 01 0.0 0.0 0:00.00 kworker/@:0H-kb
8 root 0 -20 (%] 0 oI 0.0 0.0 0:00.04 mm_percpu_wq
9 root 20 © (4] 0 S 0.0 0.0 0:27.66 ksoftirqd/eo
10 root 20 0 (%] (%] I ©.0 0.0 9:59.60 rcu_sched
11 root rt o (%] (%] S ©0.0 0.0 0:31.70 migration/@
13 root 20 0 0 0 QS 0.0 0.0 0:00.00 cpuhp/0@
14 root 20 © 0 0 ©S 0.0 0.0 0:00.00 cpuhp/1
15 root rt o 0 0 S 0.0 0.0 0:34.69 migration/1
16 root 20 0 0 0 QS 0.0 0.0 0:23.54 ksoftirqd/1
18 root 0 -20 (%] %] 01 0.0 0.0 0:31.65 kworker/1:0H-kb
19 root 0 -20 (%] (%] 01 0.0 0.0 0:00.00 kworker/1:1H
20 root 20 © (%] (%] 0SS 0.0 0.0 0:00.00 cpuhp/2
21 root rt o 0 0 S ©0.0 0.0 0:31.60 migration/2
22 root 20 0 0 0 QS 0.0 0.0 0:23.26 ksoftirqd/2
24 root 0 -20 (%] (%] 01 0.0 0.0 0:25.78 kworker/2:0H-kb
25 root 20 © (%] (%] S 0.0 0.0 0:00.00 cpuhp/3

Its core dump was saved using gcore:

~/ALCDA2/A64/App3$ gcore -o App3.core 21335
[New LWP 21340]

[New LWP 21339]

[New LWP 21338]

[New LWP 21337]

[New LWP 21336]

[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib64/libthread_db.so.1".
0x0000000000414364 in nanosleep ()

Saved corefile App3.core.21335

[Inferior 1 (process 21335) detached]

2. Launch WinDbg Preview.

171

3. Load App3.core.21335 dump file from the A64\App3 folder:

Microsoft (R) Windows Debugger Version 10.0.25111.1000 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\ALCDA2\A64\App3\App3.core.21335]
64-bit machine not using 64-bit API

3k 3k 3k >k 3k 3k >k 3k >k %k %k >k k path validation summaPy 3k 3k 3k >k 3k >k 3k >k 5k k %k 3k k ok
Response Time (ms) Location
Deferred srv*
Symbol search path is: srv*

Executable search path is:

Generic Unix Version © UP Free ARM 64-bit (AArch64)
Machine Name:

System Uptime: not available

Process Uptime: not available

*** WARNING: Unable to verify timestamp for App3

App3+0x14364:
00000000 00414364 d4000001 svc #0
4. Set logging to a file in case of lengthy output from some commands:

0:000> .logopen C:\ALCDA2\A64\App3\App3.log
Opened log file 'C:\ALCDA2\A64\App3\App3.log

5. Specify the dump folder as the symbol path and reload symbols:

0:000> .sympath+ C:\ALCDA2\A64\App3\

Symbol search path is: srv*;C:\ALCDA2\A64\App3\

Expanded Symbol search path is:
cache*;SRV*https://msdl.microsoft.com/download/symbols;c:\alcda2\a64\app3\

fkokkkkkkkkkkk Path validation summary *¥¥¥sokskskokokkokokk

Response Time (ms) Location
Deferred srv*
oK C:\ALCDA2\A64\App3\

*¥** WARNING: Unable to verify timestamp for App3

0:000> .reload

*¥** WARNING: Unable to verify timestamp for App3

sk sk >k >k 3k 5k 3k 3k k >k k ok ok Symbol Loading Error Summary 3k 3k 3k 3k 3k sk sk >k >k 5k 3k sk k k

Module name Error

App3 The system cannot find the file specified

You can troubleshoot most symbol related issues by turning on symbol loading diagnostics (!sym

noisy) and repeating the command that caused symbols to be loaded.
You should also verify that your symbol search path (.sympath) is correct.

Note: We ignore warnings and errors as they are not relevant for now.

172

6.

List all thread stack traces to identify active threads:

0:000> ~*k

Unable to get thread data for thread ©
@ 1Id: 5357.5358 Suspend: © Teb: 00000000 00000 Unfrozen

#
00
01
02
03
04
a5
06
o7

Child-SP

0000fffc” 8dbde5f0
0000fffc 8dbde630
0000fffc” 8dbde820
0000fffc 8dbde830
0000fffc” 8dbde840
0000fffc 8dbde860
0000fffc 8dbde990
0000fffc 8dbde990

Unable to get thread
1 1Id: 5357.5359 Suspend: © Teb: 00000000 00000000 Unfrozen

#
00
o1
02
03
04
05
06
o7

Child-SP

0000fffc 8d3ce5f0
0000fffc 8d3ce630
0000fffc 8d3ce820
0000fffc 8d3ce830
0000fffc 8d3ce840
0000fffc 8d3ce860
0000fffc 8d3ce990
0000fffc 8d3ce990

Unable to get thread
2 1Id: 5357.535a Suspend: @ Teb: 00000000 0000 Unfrozen

#
00
o1
02
03
04
05
06
o7
08

Child-SP

0000fffc 8cbbe5e0
0000fffc 8cbbe620
0000fffc 8cbbe810
0000fffc 8cbbe820
0000fffc 8cbbe830
0000fffc 8cbbe840
0000fffc 8cbbe860
0000fffc 8cbbe990
0000fffc 8cbbe990

Unable to get thread
3 Id: 5357.535b Suspend: © Teb: 00000000 00000000 Unfrozen

#
00
o1
02
03
04
05
06
o7

Child-SP

0000fffc 8c3ae5f0
0000fffc 8c3ae630
0000fffc 8c3ae820
0000fffc 8c3ae830
0000fffc 8c3aed840
0000fffc 8c3ae860
0000fffc 8c3ae990
0000fffc 8c3ae990

Unable to get thread
4 1Id: 5357.535c Suspend: © Teb: 00000000 00000000 Unfrozen

#

Child-SP

RetAddr

00000000 0042ca74
00000000 00403238
00000000 0040324C
00000000 00403264
00000000 0040c5e4
00000000° 00431920
fffffff fHfrfff
00000000 000V

data for thread 1

RetAddr

00000000 0042ca74
00000000 00403280
00000000° 00403294
00000000 004032ac
00000000" 0040c5e4
00000000 00431920
" FFFFFFFf
00000000 0000V

data for thread 2

RetAddr

00000000 0042ca74
00000000 0040318
00000000 004032c4
00000000° 004032d8
00000000 0040320
00000000 0040c5e4
00000000° 00431920
ffffffff fFFfrfff
00000000" V00RO

data for thread 3

RetAddr

00000000 0042ca74
00000000 0040330C
00000000 00403320
00000000° 00403338
00000000" 0040c5e4
00000000 00431920
ffffffff ffrfff
00000000 000V

data for thread 4

RetAddr

00 0000fffc 8bb9e7f0 00000000 00403214
01 0000fffc 8bb9e800 000000V 00403350
02 00Pefffc 8bb9e820 000VVOO V403364
03 000efffc 8bb9eB830 000D VO40337C

Call Site

App3! _1libc_nanosleep+0x24
App3!sleep+0x110
App3!bar_one+0x10
App3!foo_one+0xc
App3!thread_one+0x10
App3!start_thread+oxb4
App3!thread_start+0x30
Oxffffffff fffffff

Call Site
App3!_libc_nanosleep+0x24
App3!sleep+0x110
App3!bar_two+0x10
App3!foo_two+0xc
App3!thread_two+0x10
App3!start_thread+oxb4
App3!thread_start+0x30
oxfffffff ffffrfff

Call Site
App3!_libc_nanosleep+0x24
App3!sleep+0x110
App3!procA+0x10
App3!bar_three+0xc
App3!foo_three+0xc
App3!thread_three+0x10
App3!start_thread+oxb4
App3!thread_start+0x30
Oxfffffff frHffff

Call Site
App3!_libc_nanosleep+0x24
App3!sleep+0x110
App3!bar_four+0x10
App3!foo_four+exc
App3!thread_four+0x10
App3!start_thread+0xb4
App3!thread_start+0x30
Oxffffffff fffffff

Call Site
App3!_sqrt_finite+0x148
App3!procB+0x18
App3!bar_five+0xc
App3!foo_five+0xc

173

04 000Offfc 8bb9e840 00000000 004OC5ed
85 0000fffc 8bb9e860 00000000 00431920
06 0000Fffc 80b9e990 FFFFFfff FFFFFfff
07 0000fffc 8bb9e990 0PPOGEEO" 0PPOEOEE

Unable to get thread data for thread 5

#
00
o1
02
03
04

7.

App3!thread_five+0x10
App3!start_thread+0xb4
App3!thread_start+0x30
Oxffffffff fffffff

5 1Id: 5357.5357 Suspend: © Teb: 00000000 00000000 Unfrozen

Child-SP

0000ffff d4ed8ddo
0000ffff d4ed8elod
0000ffff dded9000
0000ffff d4ed9050
0000ffff d4ed91bo

RetAddr

00000000 0042ca74
00000000 00403418
00000000° 004165FC
00000000 00403090
00000000 000V

Switch to the active thread #4:

0:000> ~4s
App3!_sqrt_finite+0x148:
00000000° 00408400 1602030 fcmpe

0:004> k

#
00
o1
02
03
04
05
06
o7

Note: We see that the current instruction is normal, related to floating-point operations.

8.

Child-SP

0000fffc 8bb9e7f0
0000fffc 8bb9e800
0000offfc 8bb9e820
0000fffc 8bb9e830
0000fffc 8bb9e840
0000fffc 8bb9e860
0000fffc 8bb9e990
0000fffc 8bb9e990

Disassemble the return address for the procB function to see an infinite loop:

RetAddr

00000000 00403214
00000000° 00403350
00000000° 00403364
00000000 0040337C
00000000" 0040c5e4
00000000 00431920
fFffffff fEFFFfff
00000000 000V

0:004> uf 00000000 00403214
App3!procB+0x10:

fd400fa0 1ldr
00000000 00403210 94000085 bl

App3!procB+0x18:
00000000 00403214 fdOOOfad str
00000000 00403218 17fffffd

10.

Call Site

App3!_libc_nanosleep+0x24

App3!sleep+0x110
App3!main+0x90

App3! libc_start_main+0x304

App3!start+ox4c

d1,de

Call Site
App3!_sqrt_finite+0x148
App3!procB+0x18
App3!bar_five+0xc
App3!foo_five+0xc
App3!thread_five+0x10
App3!start_thread+0xb4
App3!thread_start+0x30
Oxffffffff fffffff

do, [fp, #0x18]
App3!sqrt (00000000 00403424)

do, [fp, #0x18]

We close logging before exiting WinDbg Preview:

0:004> .logclose
Closing open log file 'C:\ALCDA2\A64\App3\App3.log"

174

Exercise A4

Goal: Learn how to identify heap regions and heap corruption

Patterns: Dynamic Memory Corruption (Process Heap); Regular
Data

© 2023 Software Diagnostics Services

175

Exercise A4 (x64, GDB)

Goal: Learn how to identify heap regions and heap corruption.
Patterns: Dynamic Memory Corruption (Process Heap); Regular Data.

1. Load core.App4 dump file and App4 executable from the x64/App4 directory:

~/ALCDA2/x64/App4$ gdb -c core.App4 -se App4d

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-1linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to
Reading symbols from App4...done.

[New LWP 4304]

[New LWP 4303]

[New LWP 4302]

[New LWP 4301]

[New LWP 4305]

[New LWP 4306]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1inux-gnu/libthread_db.so.1".
Core was generated by " ./App4'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0x0000000000412906 in malloc ()

[Current thread is 1 (Thread 0x7f8d66b3a700 (LWP 4304))]

‘word". ..

2. List threads:

(gdb) info threads
* 1 Thread 9x7f8d66b3a700 (LWP 4304) Ox000000000041a906 in malloc ()

2 Thread 0x7f8d6733b700 (LWP 4303) 0x0000000000441d00 in nanosleep ()
Thread 0x7f8d67b3c700 (LWP 4302) 0x0000000000441d00 in nanosleep ()
Thread 0x124f880 (LWP 4301) 0x0000000000441d00 in nanosleep ()
Thread 0x7f8d66339700 (LWP 4305) 0x0000000000441d00 in nanosleep ()
Thread 0x7f8d65b38700 (LWP 4306) 0x0000000000441d00 in nanosleep ()

Qv hw

176

3. The identified problem thread #1 is the current thread. List its stack trace:

(gdb) bt

#0 0Ox0000000000412906 in malloc ()

#1 Ox0000000000401e24 in proc ()

#2 0x0000000000401f2d in bar three ()

#3 0Ox0000000000401f3e in foo_three ()

#4 0©x0000000000401f57 in thread_three ()

#5 0©x00000000004033c3 in start_thread (arg=<optimized out>) at pthread_create.c:486
#6 0©x000000000044455f in clone ()

4. We see that the segmentation fault happened internally in the malloc function when proc was allocating
heap memory. Disassemble the proc function:

(gdb) disassemble proc
Dump of assembler code for function proc:

0x0000000000401bad <+0>: push %rbp
0x0000000000401bae <+1>: mov %rsp,%rbp
0x0000000000401bb1l <+4>: sub $0x40, %rsp
0x0000000000401bb5 <+8>: mov $0x1,%edi
0x0000000000401bba <+13>: callg ©x441c50 <sleep>
0xX0000000000401bbf <+18>: mov $0x100, %edi
0x0000000000401bc4 <+23>: callg ©x41a7c@ <malloc>
0x0000000000401bc9 <+28>: mov %rax, -0x8(%rbp)
0x0000000000401bcd <+32>: mov $0x100, %edi
0x0000000000401bd2 <+37>: callg ©x41a7c0 <malloc>
0x0000000000401bd7 <+42>: mov %rax, -0x1e(%rbp)
0xX0000000000401bdb <+46>: mov $0x100, %edi
0x0000000000401bed <+51>: callg ©x41a7c@ <malloc>
0x0000000000401be5 <+56>: mov %rax, -0x18(%rbp)
0xX0000000000401be9 <+60>: mov $0x100, %edi
0x0000000000401bee <+65>: callg ©x41a7c@ <malloc>
0x0000000000401bf3 <+70>: mov %rax, -0x20(%rbp)
0x0000000000401bf7 <+74>: mov $0x100, %edi
0x0000000000401bfc <+79>: callg ©x41a7c@ <malloc>
0x0000000000401cO1 <+84>: mov %rax, -0x28(%rbp)
0x0000000000401cO5 <+88>: mov $0x100, %edi
0x0000000000401cPa <+93>: callg ©x41a7c@ <malloc>
0x0000000000401cOf <+98>: mov %rax, -0x30(%rbp)

0x0000000000401c13 <+102>: mov $0x100, %edi
0x0000000000401c18 <+107>: callg ©x41a7c@ <malloc>
0x0000000000401cld <+112>: mov %rax, -0x38(%rbp)
0x0000000000401c21 <+116>: mov -0x30(%rbp),%rax
0x0000000000401c25 <+120>: mov %rax,%rdi
0x0000000000401c28 <+123>: callg ©x41ae00 <free>
0x0000000000401c2d <+128>: mov -0x20(%rbp) , %rax
0x0000000000401c31 <+132>: mov %rax,srdi
0x0000000000401c34 <+135>: callg ©x41ae00 <free>
0x0000000000401c39 <+140>: mov -0x10(%rbp),%rax
0x0000000000401c3d <+144>: mov %»rax,%rdi
0x0000000000401c40 <+147>: callg ©x41ae00 <free>
0x0000000000401c45 <+152>: mov -0x10(%rbp) , %rax
0x0000000000401c49 <+156>: movabs $0x7243206f6c6c6548, %rdx
0x0000000000401c53 <+166>: movabs $0x6548202132687361,%rcx
0x0000000000401c5d <+176>: mov %rdx, (%rax)
0x0000000000401c60 <+179>: mov %rcx,0x8(%rax)
0x0000000000401c64 <+183>: movabs $0x73617243206f6c6cC,%rsi
0x0000000000401c6e <+193>: movabs $0x6c6c654820213268,%rdi
0x0000000000401c78 <+203>: mov %rsi,ox10(%rax)
0x0000000000401Cc7C <+207>: mov %rdi,ox18(%rax)

177

0x0000000000401c80
0x0000000000401c8a
0x0000000000401c94
0x0000000000401c98
0x0000000000401c9c
0x0000000000401cab
0x0000000000401cbo
0x0000000000401cb4
0x0000000000401cb8
0x0000000000401cbf
0x0000000000401cc5
0x0000000000401cc9
--Type <RET> for more,
0x0000000000401cd3
0x0000000000401cdd
0x0000000000401ce0
0x0000000000401ce4
0x0000000000401cee
0x0000000000401cf8
0x0000000000401cfc
0x0000000000401d00
0x0000000000401d0a
0x0000000000401d14
0x0000000000401d18
0x0000000000401d1c
0x0000000000401d26
0x0000000000401d30
0x0000000000401d34
0x0000000000401d38
0x0000000000401d42
0x0000000000401d4c
0x0000000000401d50
0x0000000000401d54
0x0000000000401d5b
0x0000000000401d5F
0x0000000000401d69
0x0000000000401d73
0x0000000000401d76
0x0000000000401d7a
0x0000000000401d84
0x0000000000401d8e
0x0000000000401d92
0x0000000000401d96
0x0000000000401da0o
0x0000000000401daa
0x0000000000401dae
0x0000000000401db2
0x0000000000401dbc
0x0000000000401dc6
0x0000000000401dca
0x0000000000401dce
0x0000000000401dd8
0x0000000000401de2
0x0000000000401de6
0x0000000000401dea
0x0000000000401df4
0x0000000000401dfe
0x0000000000401€02
0x0000000000401€06
0x0000000000401e0cC

<+211>:
<+221>:
<+231>:
<+235>:
<+239>:
<+249>:
<+259>:
<+263>:
<+267>:
<+274>:
<+280>:
<+284>:

movabs
movabs
mov
mov
movabs
movabs
mov
mov
movl
movw
mov
movabs

g to quit, c to

<+294>:
<+304>:
<+307>:
<+311>:
<+321>:
<+331>:
<+335>:
<+339>:
<+349>:
<+359>:
<+363>:
<+367>:
<+377>:
<+387>:
<+391>:
<+395>:
<+405>:
<+415>:
<+419>:
<+423>:
<+430>:
<+434>:
<+4445> :
<+4545> :
<+457>:
<+461>:
<+471>:
<+481>:
<+485>:
<+489>:
<+499>:
<+509>:
<+513>:
<+517>:
<+527>:
<+537>:
<+541>:
<+545>:
<+555>:
<+565>:
<+569>:
<+573>:
<+583>:
<+593>:
<+597>:
<+601>:
<+607>:

movabs
mov
mov
movabs
movabs
mov
mov
movabs
movabs
mov
mov
movabs
movabs
mov
mov
movabs
movabs
mov
mov
mov1l
mov
movabs
movabs
mov
mov
movabs
movabs
mov
mov
movabs
movabs
mov
mov
movabs
movabs
mov
mov
movabs
movabs
mov
mov
movabs
movabs
mov
mov
movw
mov

$0x326873617243206f, %rdx
$0x206f6c6c65482021,%rcx
%rdx,0x20(%rax)
%rcx,0x28(%rax)
$0x2021326873617243,%rsi
$0x724320616c6C6548,%rdi
%rsi,ox30(%rax)
%rdi,ox38(%rax)
$0x32687361,0x40(%rax)
$0x21,0x44 (%rax)
-0x20(%rbp) , %rax
$0x7243206T6c6C6548, %rdx
continue without paging-
$0x6548202134687361,%rcx
%rdx, (%rax)
%rcx,0x8(%rax)
$0x73617243206F6c6C,%rsi
$0x6Cc6C654820213468,%rdi
%rsi,ox10(%rax)
%rdi,ox18(%rax)
$0x346873617243206f, %rdx
$0x20616Cc6C65482021,%rcx
%rdx,0x20 (%rax)
%rcx,0x28(%rax)
$0x2021346873617243,%rsi
$0x7243206f6c6c6548,%rdi
%rsi,@x30(%rax)
%rdi,0x38(%rax)
$0x6548202134687361, %rdx
$0x73617243206F6C6C, %rcx
%rdx,0x40(%rax)
%rcx,0x48(%rax)
$0x213468,0x50 (%rax)
-0x30(%rbp) ,%rax
$0x7243206f6c6C6548,%rsi
$0x6548202136687361, %rdi
%rsi, (%rax)
%rdi,ox8(%rax)
$0x73617243206F6C6C,%rdx
$0x6c6C654820213668, %rcx
%rdx,0x10 (%rax)
%rcx,0x18(%rax)
$0x366873617243206f,%rsi
$0x20616c6c65482021,%rdi
%rsi,ox20(%rax)
%rdi,0x28(%rax)
$0x2021366873617243, %rdx
$0x7243206F6Cc6C6548,%rcx
%rdx,0x30(%rax)
%rcx,0x38(%rax)
$0x6548202136687361,%rsi
$0x73617243206f6C6C,%rdi
%rsi,ox40(%rax)
%rdi,ox48(%rax)
$0x6Cc6c654820213668, %rdx
$0x366873617243206F, %rcx
%rdx,0x50 (%rax)
%rcx,0x58(%rax)
$0x21,0x60 (%rax)

$0x100, %edi

178

0x0000000000401e11
0x0000000000401e16
0x0000000000401ela
0x0000000000401elf
0x0000000000401e24
0x0000000000401e28
0x0000000000401e2d
0x0000000000401e32
0x0000000000401e36
0x0000000000401e3b
--Type <RET> for more,
0x0000000000401e40
0x0000000000401e44
0x0000000000401e47
0x0000000000401e4c
0x0000000000401e50
0x0000000000401e53
0x0000000000401e58
0x0000000000401e5cC
0x0000000000401e5f
0x0000000000401e64
0x0000000000401e68
0x0000000000401e6b
0x0000000000401e70
0x0000000000401e74
0x0000000000401e77
0x0000000000401e7cC
0x000000000040180
0x0000000000401e83
0x0000000000401e88
0x0000000000401e8C
0x0000000000401e8f
0x0000000000401e94
0x0000000000401e99
0x0000000000401e9e
0x0000000000401e9f
0x0000000000401eca0
End of assembler dump.

Note: We see that before the problem malloc call, there were three buffer writes to memory addresses pointed to
by values located at the following addresses: rbp-0x10, rbp-0x20, and rbp-0x30 (highlighted in red in disassembly).
However, before buffer writes, there were free function calls with values located at the same addresses: rbp-0x30,
rbp-0x20, and rbp-0x10 (highlighted in blue in disassembly). Therefore, we see “write after free” behavior.

5.

<+612>: callqg
<+617>: mov
<+621>: mov
<+626>: callq
<+631>: mov
<+635>: mov
<+640>: callq
<+645>: mov
<+649>: mov
<+654>: callq
g to quit, c to
<+659>: mov
<+663>: mov
<+666>: callq
<+671>: mov
<+675>: mov
<+678>: callq
<+683>: mov
<+687>: mov
<+690>: callq
<+695>: mov
<+699>: mov
<+702>: callq
<+707>: mov
<+711>: mov
<+714>: callq
<+719>: mov
<+723>: mov
<+726>: callq
<+731>: mov
<+735>: mov
<+738>: callq
<+743>: mov
<+748>: callq
<+753>: nop
<+754>: leaveq
<+755>: retq

0x41a7cO <malloc>
%rax, -0x1e(%rbp)
$0x100, %edi
0x41a7¢c0 <malloc>
%rax, -0x20(%rbp)
$0x100, %edi
0x41a7cO <malloc>
%rax, -0x30(%rbp)
$0x12c, %edi
0x441c50 <sleep>
continue without
-0x38(%rbp) ,%rax
%rax,%rdi
0x41ae00 <free>
-0x30(%rbp) ,%rax
%rax,%srdi
0x41ae00 <free>
-0x28(%rbp),%rax
%rax,%rdi
0x41ae00 <free>
-0x20(%rbp) ,%rax
%rax,%rdi
0x412e00 <free>
-0x18(%rbp),%rax
%»rax,srdi
0x41ae00 <free>
-0x10(%rbp),%rax
%rax,%rdi
0x41ae00 <free>
-0x8(%rbp),%rax
%rax,%rdi
0x412e00 <free>
$oxfffffff,%edi
0x441c50 <sleep>

paging--

We have the standard function prolog (highlighted in green in disassembly). Switch to stack frame #1 to

check the addresses, their values, and memory contents they point to:

(gdb) frame 1

#1 0©Ox0000000000401e24 in proc () at pthread_create.c:688

688

(gdb) x/gx $rbp-0x10

in pthread_create.c

0x7f8d66b39d60: 0x00007f8d60000C30

(gdb) x/s ©x00007f8d60000c30

0x718d60000c30:

(gdb) x/gx $rbp-0x20

"Hello Cr"

0x7f8d66b39d50: 0x00007f8d60000e50

179

(gdb) x/s 0x00007f8d60000e50
0x718d60000e50: "Hello Crash4! Hello Crash4! Hello Crash4! Hello Crash4! Hello Crash4! Hello
Crash4!™

6. We know the addresses passed to heap management functions, for example, 0x00007f8d60000xxx. Find the
heap region in the section list:

(gdb) maintenance info sections

Exec file:
*/home/coredump/ALCDA2/x64/App4/Appd', file type elf64-x86-64.
[0] 0x00400200->0x00400220 at 0x00000200: .note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
[1] 0x00400220->0x00400244 at 0x00000220: .note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
[2] 0x00400248->0x004004d0 at 0x00000248: .rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS
[3] 0x00401000->0x00401017 at 0x00001000: .init ALLOC LOAD READONLY CODE HAS_CONTENTS
[4] 0x00401018->0x004010f0 at 0x00001018: .plt ALLOC LOAD READONLY CODE HAS_CONTENTS
[5] 0x00401010->0x004936Cc0 at 0x000010f0: .text ALLOC LOAD READONLY CODE HAS_CONTENTS
[6] 0x004936C0->0x00494267 at 0x000936c0O: _ libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
[7] 0x00494268->0x00494271 at 0x00094268: .fini ALLOC LOAD READONLY CODE HAS_CONTENTS
[8] 0x00495000->0x004af73c at Ox00095000: .rodata ALLOC LOAD READONLY DATA HAS_CONTENTS
[9] 0x004af740->0x004bbb70 at 0x000af740: .eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS
[10] 0x004bbb70->0x004bbclc at ©x000bbb70: .gcc_except_table ALLOC LOAD READONLY DATA HAS_CONTENTS
[11] 0x004bdobo->0x004bd0d8 at 0x000bcObd: .tdata ALLOC LOAD DATA HAS_CONTENTS
[12] 0x004bdod8->0x004bd120 at 0x000bcOd8: .tbss ALLOC
[13] 0x004bdod8->0x004bdoed at 0x000bcOd8: .preinit_array ALLOC LOAD DATA HAS_CONTENTS
[14] 0x004bd0e0->0x004bdofO at Ox000bcOed: .init_array ALLOC LOAD DATA HAS_CONTENTS
[15] 0x004bdofo->0x004bd100 at Ox000bcOfO: .fini_array ALLOC LOAD DATA HAS_CONTENTS
[16] 0x004bd100->0x004bfef4 at 0x000bclO0: .data.rel.ro ALLOC LOAD DATA HAS_CONTENTS
[17] 0x004bfef8->0x004c0000 at 0Ox000beef8: .got ALLOC LOAD DATA HAS_CONTENTS
[18] 0x004c0000->0x004c00f0 at 0x000bfOLO: .got.plt ALLOC LOAD DATA HAS_CONTENTS
[19] 0x004c0100->0x004c1c30 at 0x000bf100: .data ALLOC LOAD DATA HAS_CONTENTS
[20] 0x004c1c30->0x004c1c90 at 0x000c0c30: _ libc_subfreeres ALLOC LOAD DATA HAS_CONTENTS
[21] 0x004clcad->0x004c2408 at Ox000cOcad: _ libc_IO vtables ALLOC LOAD DATA HAS_CONTENTS
[22] 0x004c2408->0x004c2410 at 0x000c1408: _ libc_atexit ALLOC LOAD DATA HAS_CONTENTS
[23] 0x004c2420->0x004c8528 at 0x000c1410: .bss ALLOC
[24] 0x004c8528->0x004c8558 at 0x000c1410: _ libc_freeres_ptrs ALLOC
[25] 0Xx00000000->0x00000038 at 0x000c1410: .comment READONLY HAS_CONTENTS
[26] 0Xx00000000->0x00000420 at 0x000c1450: .debug aranges READONLY HAS_CONTENTS
[27] 0x00000000->0x000372ad at ©x000c1870: .debug_info READONLY HAS_CONTENTS
[28] 0x00000000->0x000057e8 at 0x000f8bld: .debug_abbrev READONLY HAS_CONTENTS
[29] 0x00000000->0x0000aa2b at Ox000fe305: .debug line READONLY HAS_CONTENTS
[30] 0x00000000->0x00004d08 at 0x00108d30: .debug_str READONLY HAS_CONTENTS
[31] 0x00000000->0x0000d4b8 at 0x0010da38: .debug_loc READONLY HAS_CONTENTS
[32] 0x00000000->0x000024c0 at Ox001laef@: .debug ranges READONLY HAS_CONTENTS
Core file:
*/home/coredump/ALCDA2/x64/App4/core.Appd', file type elf64-x86-64.
[0] 0x00000000- >0x00002c60 at 0x0000V510: noted® READONLY HAS_CONTENTS
[1] 0x00000000- >0x000000d8 at 0x0000V594: .reg/4304 HAS_CONTENTS
[2] 0x00000000- >0x000000d8 at 0x00000594: .reg HAS_CONTENTS
[3] 0X00000000->0x00000080 at 0x00VO724: .note.linuxcore.siginfo/4304 HAS_CONTENTS
[4] 0X00000000->0x00000080 at 0x0VO724: .note.linuxcore.siginfo HAS_CONTENTS
[5] 0x00000000->0x00000140 at Ox000007b8: .auxv HAS_CONTENTS
[6] 0x00000000->0x00000100 at ©x000V90c: .note.linuxcore.file/4304 HAS_CONTENTS
[7] 0x00000000->0x00000100 at 0x0000R90c: .note.linuxcore.file HAS_CONTENTS
[8] 0x00000000- >0x00000200 at 0x00000a20: .reg2/4304 HAS_CONTENTS
[9] 0x00000000->0x00000200 at Ox00000a20: .reg2 HAS_CONTENTS
[10] 0x00000000->0x00000340 at Ox00VOCc34: .reg-xstate/4304 HAS_CONTENTS
[11] 0Xx00000000->0x00000340 at 0x00000c34: .reg-xstate HAS_CONTENTS
[12] 0x00000000->0x000000d8 at 0x00000ff8: .reg/4303 HAS_CONTENTS
[13] 0x00000000->0x00000200 at 0x000010ec: .reg2/4303 HAS_CONTENTS
[14] 0x00000000->0x00000340 at Ox00001300: .reg-xstate/4303 HAS_CONTENTS
[15] 0x00000000->0x000000d8 at 0x000016c4: .reg/4302 HAS_CONTENTS
[16] 0x00000000->0x00000200 at Ox000017b8: .reg2/4302 HAS_CONTENTS
[17] 0x00000000->0x00000340 at Ox00VV19cc: .reg-xstate/4302 HAS_CONTENTS
[18] 0x00000000->0x000000d8 at 0x00001d90: .reg/4301 HAS_CONTENTS
[19] 0x00000000->0x00000200 at Ox00001e84: .reg2/4301 HAS_CONTENTS

--Type <RET> for more, q to quit, c to continue without paging--
180

[20] 0x00000000- >0x00000340 at Ox00002098: .reg-xstate/4301 HAS_CONTENTS
[21] 0Xx00000000->0x000000d8 at 0x0000245c: .reg/4305 HAS_CONTENTS
[22] 0Xx00000000->0x00000200 at 0x00002550: .reg2/4305 HAS_CONTENTS
[23] 0Xx00000000->0x00000340 at Ox00002764: .reg-xstate/4305 HAS_CONTENTS
[24] 0Xx00000000->0x000000d8 at 0x00002b28: .reg/4306 HAS_CONTENTS
[25] 0Xx00000000->0x00000200 at 0x00002clc: .reg2/4306 HAS_CONTENTS
[26] 0x00000000->0x00000340 at Ox0P0002e30: .reg-xstate/4306 HAS_CONTENTS
[27] 0x00400000->0x00401000 at 0x00004000: loadl ALLOC LOAD READONLY HAS_CONTENTS
[28] 0x00401000->0x00401000 at 0x00005000: load2 ALLOC READONLY CODE
[29] 0x00495000->0x00495000 at 0x00005000: load3 ALLOC READONLY
[30] 0x004bd000->0x004c3000 at Ox00RO5000: load4 ALLOC LOAD HAS_CONTENTS
[31] 0x004c3000->0x004c9000 at 0x00OObOEV: load5 ALLOC LOAD HAS_CONTENTS
[32] 0x01241000->0x01272000 at 0x00011000: load6 ALLOC LOAD HAS_CONTENTS
[33] Ox718d60000000- >0x718d60021000 at 0x00034000: load7 ALLOC LOAD HAS_CONTENTS
[34] 0x718d60021000->0x718d060021000 at ©x00055000: load8 ALLOC READONLY
[35] 0x7+8d65338000->0x718d65338000 at ©x00055000: load9 ALLOC READONLY
[36] 0x7+8d65339000->0x718d65b39000 at ©x00055000: loadl® ALLOC LOAD HAS_CONTENTS
[37] 0x7f8d65b39000- >0x7F8d65b39000 at 0x00855000: loadll ALLOC READONLY
[38] 0x7f8d65b3a000 - >0x7F8d66332000 at Ox00855000: loadl2 ALLOC LOAD HAS_CONTENTS
[39] 0x7f8d6633a000->0x7F8d66332000 at 0x01055000: loadl3 ALLOC READONLY
[40] 0x7f8d6633b000->0x7F8d66b3b000 at 0x01055000: loadl4 ALLOC LOAD HAS_CONTENTS
[41] 0x718d66b3b000->0x7f8d66b3bOOO at ©x01855000: loadl5 ALLOC READONLY
[42] 0x718d66b3c000->0x7f8d6733c000 at ©x01855000: loadl6é ALLOC LOAD HAS_CONTENTS
[43] Ox718d6733¢c000->0x7f8d6733c000 at ©x02055000: loadl7 ALLOC READONLY
[44] 0x718d6733d000->0x718d67b3d000O at ©x02055000: loadl8 ALLOC LOAD HAS_CONTENTS
[45] Ox7ffc80658000->0x7ffc80679000 at 0x02855000: loadl9 ALLOC LOAD HAS_CONTENTS
[46] Ox7ffc806Ff000->0x7ffc80703000 at 0x02876000: load20 ALLOC LOAD READONLY HAS_CONTENTS
[47] Ox7ffc80703000->0x71ffc80704000 at 0x02872000: load2l ALLOC LOAD READONLY CODE HAS_CONTENTS
7. Check the faulting instruction and the problem memory address:
(gdb) bt
#0 0©x0000000000412906 in malloc ()
#1 0Ox0000000000401e24 in proc () at pthread_create.c:688
#2 0Ox0000000000401f2d in bar_three () at pthread_create.c:688
#3 0Ox0000000000401f3e in foo_three () at pthread_create.c:688
#4 0x0000000000401f57 in thread_three () at pthread_create.c:688
#5 ©x00000000004033c3 in start_thread (arg=<optimized out>) at pthread _create.c:486
#6 0©x000000000044455f in clone ()
(gdb) frame ©
#0 0©Ox0000000000412906 in malloc ()

(gdb) x/i $rip

=> 0x412906 <malloc+326>: mov (%rdx),%rsi

(gdb) x $rdx

0x7243206f6c6c6548: Cannot access memory at address 0x7243206f6c6c6548

(gdb) p (char[8])0x7243206f6c6c6548
$1 = "Hello Cr"

Note: We see that the “Hello Cr” fragment correlates with the “Hello Cr” buffer overwrite that we saw previously in
step #5.

181

Exercise A4 (A64, GDB)

Goal: Learn how to identify heap regions and heap corruption.
Patterns: Dynamic Memory Corruption (Process Heap); Regular Data.

1. Load core.8800 dump file and App4 executable from the A64/App4 directory:

~/ALCDA2/A64/App4$ gdb -c core.8800 -se App4d

GNU gdb (Ubuntu 12.1-@ubuntul~22.04) 12.1

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to
Reading symbols from App4...

(No debugging symbols found in App4)

‘'word". ..

warning: Can't open file /home/opc/ALCDA2/App4/App4 during file-backed mapping note processing
[New LWP 8803]

[New LWP 8801]

[New LWP 8800]

[New LWP 8802]

[New LWP 8804]

[New LWP 8805]

Core was generated by " ./App4'.

Program terminated with signal SIGSEGV, Segmentation fault.
#0 0©x000000000041cbec in malloc ()

[Current thread is 1 (LWP 8803)]

2. Set logging to a file in case of lengthy output from some commands and set color highlighting off:
(gdb) set logging file App4.log

(gdb) set logging enabled on

Copying output to App4.log.

Copying debug output to App4.log.

(gdb) set style enabled off

3. List threads:

(gdb) info threads

* 1 LWP 8803 0x000000000041cbec in malloc ()
2 LWP 8801 0x000000000040cb34 in nanosleep ()
3 LWP 8800 0x000000000040cb34 in nanosleep ()
4 LWP 8802 0x000000000040cb34 in nanosleep ()
5 LWP 8804 0x000000000040cb34 in nanosleep ()

182

6 LWP 8805 0x000000000040cb34 in nanosleep ()
4, The identified problem thread #1 is the current thread. List its stack trace:

(gdb) bt

#0 0x000000000041cbec in malloc ()

#1 0Ox0000000000403304 in proc ()

#2 0©x0000000000403400 in bar_three ()

#3 0x0000000000403414 in foo_three ()

#4 0x000000000040342c in thread_three ()
#5 0x0000000000404db4 in start_thread ()
#6 0x0000000000429ce@® in thread_start ()

5. We see that the segmentation fault happened internally in the malloc function when proc was allocating
heap memory. Disassemble the proc function:

(gdb) disassemble proc
Dump of assembler code for function proc:

0x00000000004031e8 <+0>: stp x29, x30, [sp, #-80]!
0x00000000004031ec <+4>: mov X29, sp

0x00000000004031f0 <+8>: mov wo, #0x1 // #1
0x00000000004031f4 <+12>: bl 0x424d24 <sleep>

0x00000000004031f8 <+16>: mov X0, #0x100 // #256
0x00000000004031fCc <+20>: bl Ox41cb60 <malloc>

0x0000000000403200 <+24>: str X0, [x29, #72]

0x0000000000403204 <+28>: mov X0, #0x100 // #256
0x0000000000403208 <+32>: bl 0x41cb60 <malloc>

0x000000000040320C <+36>: str X0, [x29, #64]

0x0000000000403210 <+40>: mov X0, #0x100 // #256
0Xx0000000000403214 <+44>: bl 0x41cb60 <malloc>

0x0000000000403218 <+48>: str X0, [x29, #56]

0x000000000040321C <+52>: mov X0, #0x100 // #256
0x0000000000403220 <+56>: bl 0x41cb60 <malloc>

0x0000000000403224 <+60>: str X0, [x29, #48]

0x0000000000403228 <+64>: mov X0, #0x100 // #256
0x000000000040322Cc <+68>: bl Ox41cb60 <malloc>

0x0000000000403230 <+72>: str X0, [x29, #40]

0x0000000000403234 <+76>: mov X0, #0x100 // #256
0x0000000000403238 <+80>: bl 0x41cb60 <malloc>

0x000000000040323C <+84>: str X0, [x29, #32]

0x0000000000403240 <+88>: mov X0, #0x100 // #256
0x0000000000403244 <+92>: bl 0x41cb60 <malloc>

0x0000000000403248 <+96>: str X0, [x29, #24]

0x000000000040324C <+100>: 1dr x0, [x29, #32]

0x0000000000403250 <+104>: bl 0x41d698 <free>

0x0000000000403254 <+108>: ldr x0, [x29, #48]

0x0000000000403258 <+112>: bl 0x41d698 <free>

0x000000000040325¢C <+116>: 1dr x0, [x29, #64]

0x0000000000403260 <+120>: bl 0x41d698 <free>

0x0000000000403264 <+124>: ldr x0, [x29, #64]

0x0000000000403268 <+128>: adrp x1, 0x489000 <arena_thread_freeres+280>
0x000000000040326C <+132>: add x1, x1, #0x360

0x0000000000403270 <+136>: 1dp x2, x3, [x1]

0x0000000000403274 <+140>: stp X2, X3, [x0]

0x0000000000403278 <+144>: 1dp X2, X3, [x1, #16]

0x000000000040327C <+148>: stp X2, X3, [x0, #16]

0X0000000000403280 <+152>: 1dp X2, x3, [x1, #32]

0X0000000000403284 <+156>: stp X2, x3, [x@, #32]

0x0000000000403288 <+160>: 1dp X2, X3, [x1, #48]

0x000000000040328C <+164>: stp X2, X3, [x0, #48]

183

0Xx0000000000403290 <+168>: ldr w2, [x1, #64]
0Xx0000000000403294 <+172>: str w2, [x0, #64]
0x0000000000403298 <+176>: ldrh wl, [x1, #68]
0x000000000040329¢C <+180>: strh wl, [x0, #68]

0x00000000004032a0 <+184>: 1dr x0, [x29, #48]
0Xx00000000004032a4 <+188>: adrp x1, Ox489000 <arena_thread_freeres+280>
0x00000000004032a8 <+192>: add x1, x1, #0x3a8
--Type <RET> for more, q to quit, c to continue without paging--
0x00000000004032ac <+196>: 1dp x2, X3, [x1]
0x00000000004032b0 <+200>: stp x2, x3, [x@]
0x00000000004032b4 <+204>: ldp x2, x3, [x1, #16]
0x00000000004032b8 <+208>: stp x2, x3, [x@, #16]
0x00000000004032bc <+212>: 1dp X2, X3, [x1, #32]
0x00000000004032¢cO <+216>: stp X2, X3, [x0, #32]
0x00000000004032c4 <+220>: ldp X2, x3, [x1, #48]
0x00000000004032c8 <+224>: stp X2, x3, [x@, #48]
0x00000000004032cC <+228>: ldp X2, x3, [x1, #64]
0x00000000004032d0 <+232>: stp x2, X3, [x0, #64]
0x00000000004032d4 <+236>: ldr wl, [x1, #80]
0x00000000004032d8 <+240>: str wl, [x0, #80]
0x00000000004032dc <+244>: ldr x0, [x29, #32]
0X00000000004032e0 <+248>: adrp x1, Ox489000 <arena_thread_freeres+280>
0x00000000004032e4 <+252>: add x1l, x1, #0x400
0x00000000004032e8 <+256>: mov X2, #0x62 // #98
0x00000000004032eCc <+260>: bl 0x400280
0x00000000004032f0 <+264>: mov x0, #0x100 // #256
0x00000000004032f4 <+268>: bl 0x41cb60 <malloc>
0x00000000004032f8 <+272>: str X0, [x29, #64]
0x00000000004032fC <+276>: mov X0, #0x100 // #256
0x0000000000403300 <+280>: bl 0x41cb60 <malloc>
0x0000000000403304 <+284>: str x0, [x29, #48]
0x0000000000403308 <+288>: mov X0, #0x100 // #256
0x000000000040330C <+292>: bl 0x41cb60 <malloc>
0x0000000000403310 <+296>: str x0, [x29, #32]
0x0000000000403314 <+300>: mov wo, #0x12c // #300
0x0000000000403318 <+304>: bl 0x424d24 <sleep>
0x000000000040331c <+308>: ldr X0, [x29, #24]
0x0000000000403320 <+312>: bl 0x41d698 <free>
0x0000000000403324 <+316>: ldr x0, [x29, #32]
0x0000000000403328 <+320>: bl 0x41d698 <free>
0x000000000040332C <+324>: ldr X0, [x29, #40]
0x0000000000403330 <+328>: bl 0x41d698 <free>
0x0000000000403334 <+332>: ldr x0, [x29, #48]
0x0000000000403338 <+336>: bl 0x41d698 <free>
0x000000000040333C <+340>: ldr x0, [x29, #56]
0x0000000000403340 <+344>: bl 0x41d698 <free>
0x0000000000403344 <+348>: ldr X0, [x29, #64]
0x0000000000403348 <+352>: bl 0x41d698 <free>
0x000000000040334Cc <+356>: ldr x0, [x29, #72]
0x0000000000403350 <+360>: bl 0x41d698 <free>
0x0000000000403354 <+364>: mov wo, #oxffffffff // #-1
0x0000000000403358 <+368>: bl 0x424d24 <sleep>
0x000000000040335C <+372>: 1dp x29, x30, [sp], #80

0x0000000000403360 <+376>: ret
End of assembler dump.

Note: We see that before the problem malloc call, there were three buffer writes to memory addresses pointed to
by values located at the following addresses: x29+64, x29+48, and x29+32 (highlighted in red in disassembly).

184

However, before buffer writes, there were free function calls with values located at the same addresses: x29+64,
x29+48, and x29+32 (highlighted in blue in disassembly). Therefore, we see “write after free” behavior.

6. We have the standard function prolog (highlighted in green in disassembly). Switch to stack frame #1 to
check the addresses, their values, and memory contents they point to:

(gdb) frame 1
#1 0x0000000000403304 in proc ()

(gdb) x/gx $x29+32
Oxfffco3e5e7f0: Ox0000fffbfc001070

(gdb) x/s 0xeeeofffbfco01070
Oxfffbfcev1070: "Hello Crash6! Hello Crash6! Hello Crash6! Hello Crash6! Hello Crashé6! Hello
Crash6! Hello Crashe6!"

(gdb) x/gx $x29+48
Oxfffco3e5e800: 0x0000fffbfco00e50

(gdb) x/s 0xeeeofffbfcoove50
Oxfffbfcoove50: "Hello Crash4! Hello Crash4! Hello Crash4! Hello Crash4! Hello Crash4! Hello
Crash4!™

7. We know the addresses passed to heap management functions, for example, 0x0000fffbfcO00xxx. Find the
heap region in the section list:

(gdb) maintenance info sections
Exec file: " /home/ubuntu/ALCDA2/A64/Appd/Appd', file type elf64-littleaarch64.

[0] 0x00400190->0x004001b0 at 0x00000190: .note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
[1] 0x004001b0->0x004001d4 at 0x000001bO: .note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
[2] 0x004001d8->0x00400250 at 0x000001d8: .rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS
[3] 0x00400250->0x00400264 at 0x00000250: .init ALLOC LOAD READONLY CODE HAS_CONTENTS
[4] 0x00400270->0x004002c0 at 0x00000270: .plt ALLOC LOAD READONLY CODE HAS_CONTENTS
[5] 0Xx004002c0->0x00487218 at 0x000002cO: .text ALLOC LOAD READONLY CODE HAS_CONTENTS
[6] 0x00487218->0x00488ee8 at 0x00087218: _ libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
[7] 0x00488ee8->0x00489338 at 0x00088ee8: _ libc_thread_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
[8] 0x00489338->0x00489348 at 0x00089338: .fini ALLOC LOAD READONLY CODE HAS_CONTENTS
[9] 0x00489350->0x004a193d at 0x00089350: .rodata ALLOC LOAD READONLY DATA HAS_CONTENTS
[10] 0x004a193d->0x004a193e at 0x000al93d: .stapsdt.base ALLOC LOAD READONLY DATA HAS_CONTENTS
[11] 0x00421940->0x004a2078 at 0x000al940: _ libc_IO_vtables ALLOC LOAD READONLY DATA HAS_CONTENTS
[12] 0x004232078->0x004a20e0 at 0x000a2078: _ libc_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS
[13] 0x0042320e0->0x004a20e8 at 0x000a20e0: _ libc_atexit ALLOC LOAD READONLY DATA HAS_CONTENTS
[14] 0x0042320e8->0x004a20f8 at 0x000a20e8: _ libc_thread_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS
[15] 0x004232018->0x004b0734 at 0x000a20f8: .eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS
[16] 0x004b0734->0x004b08f1 at Ox000bO734: .gcc_except_table ALLOC LOAD READONLY DATA HAS_CONTENTS
[17] 0x004cfb20->0x004cfb4a8 at 0x000bfb20: .tdata ALLOC LOAD DATA HAS_CONTENTS
[18] 0x004cfb48->0x004cfb98 at 0x00Obfb48: .tbss ALLOC
[19] 0x004cfba8->0x004cfb50 at 0x000bfb48: .init_array ALLOC LOAD DATA HAS_CONTENTS
[20] 0x004cfb50->0x004cfb60 at Ox000bfb50: .fini_array ALLOC LOAD DATA HAS_CONTENTS
[21] 0x004cfb60->0x004cfb68 at 0x00Obfb60: .jcr ALLOC LOAD DATA HAS_CONTENTS
[22] 0x004cfb68->0x004cff24 at 0x000bfb68: .data.rel.ro ALLOC LOAD DATA HAS_CONTENTS
[23] 0x004cff28->0x004cffe8 at Ox000Obff28: .got ALLOC LOAD DATA HAS_CONTENTS
[24] 0x004cffe8->0x004d0028 at 0x0OObffe8: .got.plt ALLOC LOAD DATA HAS_CONTENTS
[25] 0x004d0030->0x004d1580 at 0x000cPV30: .data ALLOC LOAD DATA HAS_CONTENTS
[26] 0x004d1580->0x004d8050 at 0x000c1580: .bss ALLOC
[27] 0x004d8050->0x004d8088 at 0x00Ac1580: _ libc_freeres_ptrs ALLOC
[28] 0X00000000->0x00000031 at 0x000c1580: .comment READONLY HAS_CONTENTS
[29] 0x00000000 - >0x00001cbd at 0x000c15b4: .note.stapsdt READONLY HAS_CONTENTS
Core file: " /home/ubuntu/ALCDA2/A64/App4/core.8800', file type elf64-littleaarché4.
[e] 0X00000000->0x00002838 at 0x00000468: noted@ READONLY HAS_CONTENTS
[1] 0x00000000 - >0x00000110 at 0x00VR4ec: .reg/8803 HAS_CONTENTS
[2] 0X00000000->0x00000110 at 0x000004ec: .reg HAS_CONTENTS
[3] 0x00000000 - >0x00000080 at 0x0RVV6b4: .note.linuxcore.siginfo/8803 HAS_CONTENTS
[4] 0x00000000->0x00000080 at 0x00BV6b4A: .note.linuxcore.siginfo HAS_CONTENTS
[5] 0XxX00000000->0x00000160 at 0x00000748: .auxv HAS_CONTENTS
[6] 0x00000000 - >0x00000076 at 0x0VO8bc: .note.linuxcore.file/8803 HAS_CONTENTS
[7] 0x00000000 - >0x00000076 at 0x00VO8bc: .note.linuxcore.file HAS_CONTENTS

185

(8]

(o]

[1e]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

0x00000000 - >0x00000210
0x00000000 - >0x00000210
0x00000000 - >0x00000008
0x00000000 - >0x00000008
0x00000000 - >0x00000108
0x00000000 - >0x00000108
0x00000000 - >0x00000108
0x00000000 - >0x00000108
0x00000000 - >0x00000110
0x00000000 - >0x00000210

at
at
at
at

--Type <RET> for more, q to quit, c

0x00000948: .reg2/8803 HAS_CONTENTS

0x00000948: .reg2 HAS_CONTENTS

0x00000b6C: .reg-aarch-tls/8803 HAS_CONTENTS
0x00000b6C: .reg-aarch-tls HAS_CONTENTS
0x00000b88: .reg-aarch-hw-break/8803 HAS_CONTENTS
0x00000b88: .reg-aarch-hw-break HAS_CONTENTS
0x00000ca4d: .reg-aarch-hw-watch/8803 HAS_CONTENTS
0x00000ca4d: .reg-aarch-hw-watch HAS_CONTENTS
0x00000e48: .reg/8801 HAS_CONTENTS

0x00000f74: .reg2/8801 HAS_CONTENTS

to continue without paging--

[18] 0Xx00000000- >0x000P0BA8 at Ox00001198: .reg-aarch-t1s/8801 HAS_CONTENTS
[19] 0x00000000 - >0x00000108 at 0x000V11b4: .reg-aarch-hw-break/8801 HAS_CONTENTS
[20] 0Xx00000000- >0x000P0108 at Ox0P0V12d0: .reg-aarch-hw-watch/8801 HAS_CONTENTS
[21] 0Xx00000000 - >0x00000110 at ©x00001474: .reg/8800 HAS_CONTENTS
[22] 0Xx00000000 - >0x00000210 at ©x000015a0: .reg2/8800 HAS_CONTENTS
[23] 0Xx00000000 - >0x000P0BA8 at OxPPO17c4: .reg-aarch-tls/8800 HAS_CONTENTS
[24] 0Xx00000000- >0x000P0108 at Ox0P0O17e@: .reg-aarch-hw-break/8800 HAS_CONTENTS
[25] 0Xx00000000- >0x000PV108 at OxBE0V18fc: .reg-aarch-hw-watch/8800 HAS_CONTENTS
[26] 0Xx00000000 - >0x00000110 at ©x00001aad: .reg/8802 HAS_CONTENTS
[27] 0Xx00000000 - >0x00000210 at ©x8001bcc: .reg2/8802 HAS_CONTENTS
[28] 0Xx00000000 - >0x000P0GA8 at OxPPO1dfO: .reg-aarch-tls/8802 HAS_CONTENTS
[29] 0x00000000->0x00000108 at 0x00P1ledc: .reg-aarch-hw-break/8802 HAS_CONTENTS
[30] 0Xx00000000- >0x000AV108 at OxPPO1f28: .reg-aarch-hw-watch/8802 HAS_CONTENTS
[31] 0x00000000 - >0x00000110 at ©x800020cc: .reg/8804 HAS_CONTENTS
[32] 0Xx00000000 - >0x00000210 at Ox800021f8: .reg2/8804 HAS_CONTENTS
[33] 0Xx00000000 - >0x000P0BA8 at Ox0PV241c: .reg-aarch-tls/8804 HAS_CONTENTS
[34] 0Xx00000000- >0x000P0108 at Ox0P002438: .reg-aarch-hw-break/8804 HAS_CONTENTS
[35] 0Xx00000000- >0x000P0108 at OxBE0B2554: .reg-aarch-hw-watch/8804 HAS_CONTENTS
[36] 0x00000000- >0x00000110 at Ox000026f8: .reg/8805 HAS_CONTENTS
[37] 0x00000000 - >0x00000210 at ©x00002824: .reg2/8805 HAS_CONTENTS
[38] 0x00000000 - >0x00000008 at 0x00002a48: .reg-aarch-tls/8805 HAS_CONTENTS
[39] 0x00000000- >0x00000108 at 0x000V2a64: .reg-aarch-hw-break/8805 HAS_CONTENTS
[40] 0x00000000- >0x00000108 at 0x00002b8O: .reg-aarch-hw-watch/8805 HAS_CONTENTS
[41] 0Xx00400000- >0x00410000 at 0x00010000: loadla ALLOC LOAD READONLY CODE HAS_CONTENTS
[42] 0Xx00410000- >0x004C0000 at Ox00020000: loadlb ALLOC READONLY CODE
[43] 0Xx004C0000->0x00420000 at 0x00020000: load2 ALLOC LOAD HAS_CONTENTS
[44] 0x31dbooea->0x31dfeeR0 at Ox00040000: load3 ALLOC LOAD HAS_CONTENTS
[45] oxfffbfcoo0000->0xfffbfco30000 at 0x00080000: load4 ALLOC LOAD HAS_CONTENTS
[46] oxfffbfce30000->0xfffc0P0BR0B0 at 8x00PbOREA: load5 ALLOC READONLY
[47] Oxfffc02630000->0xfffc02640000 at 0x00PbOEAO: loadé ALLOC LOAD READONLY HAS_CONTENTS
[48] Oxfffc02640000->0xfffc02e40000 at 0x000COBR0: load7 ALLOC LOAD HAS_CONTENTS
[49] Oxfffc02e40000->0xfffc02e50000 at 0x008cOPA0: load8 ALLOC LOAD READONLY HAS_CONTENTS
[50e] Oxfffc02e50000->0xfffc03650000 at 0x008d0GER: load9 ALLOC LOAD HAS_CONTENTS
[51] Oxfffc03650000->0xfffc03660000 at 0x010deAR0: load1l® ALLOC LOAD READONLY HAS_CONTENTS
[52] Oxfffc03660000->0xfffcO3e60000 at 0x010e0000: loadll ALLOC LOAD HAS_CONTENTS
[53] Oxfffc03e60000->0xfffc03e70000 at 0x018e0000: loadl2 ALLOC LOAD READONLY HAS_CONTENTS
[54] Oxfffco3e70000->0xfffc04670000 at 0x018f0PR0: loadl3 ALLOC LOAD HAS_CONTENTS
[55] Oxfffco4670000->0xfffc04680000 at 0x020f0P00: loadl4 ALLOC LOAD READONLY HAS_CONTENTS
[56] Oxfffco4680000->0xfffc04e80000 at 0x02100000: loadl5 ALLOC LOAD HAS_CONTENTS
[57] Oxfffco4e80000->0xfffc04e90000 at 0x02900000: loadlé ALLOC LOAD READONLY HAS_CONTENTS
[58] Oxfffco4e90000->0xfffc04ean0O0 at 0x02910000: loadl7 ALLOC LOAD READONLY CODE HAS_CONTENTS
[59] Oxffffd31de0ee->exffffd3200000 at 0x02920000: loadl8 ALLOC LOAD HAS_CONTENTS
8. Check the faulting instruction and the problem memory address:
(gdb) bt
#0 0©x000000041cbec in malloc ()
#1 ©x0000000000403304 in proc ()
#2 0©x0000000000403400 in bar_three ()
#3 0x0000000000403414 in foo_three ()
#4 0©x000000000040342c in thread_three ()
#5 0x0000000000404db4 in start_thread ()
#6 0©x0000000000429ced in thread start ()
(gdb) frame ©
#0 0x000000000041cbec in malloc ()
(gdb) x/i $pc
=> 0x41cbec <malloc+140>: ldr x1, [x4]

186

(gdb) x $x4
0x7243206f6c6c6548: Cannot access memory at address 0x7243206f6c6c6548

(gdb) p (char[8])6x7243206f6c6c6548
$1 = "Hello Cr"

Note: We see that the “Hello Cr” fragment correlates with the “Hello Cr” buffer overwrite that we saw previously in

step #6.

187

Exercise A4 (A64, WinDbg Preview)

Goal: Learn how to identify heap regions and heap corruption.
Patterns: Dynamic Memory Corruption (Process Heap); Regular Data.

1. Launch WinDbg Preview.
2. Load core.8800 dump file from the A64\App4 folder:

Microsoft (R) Windows Debugger Version 10.0.25111.1000 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\ALCDA2\A64\App4\core.8800]
64-bit machine not using 64-bit API

3k 3k 3k 3k >k sk ok >k ok %k k ko k path Validation SummaPy 3k 3k 3k 3k 3k >k >k 3k ok ok %k >k sk k
Response Time (ms) Location
Deferred srv*
Symbol search path is: srv*

Executable search path is:

Generic Unix Version © UP Free ARM 64-bit (AArch64)
Machine Name:

System Uptime: not available

Process Uptime: not available

(2260.2263): Signal SIGSEGV (Segmentation fault) code SEGV_MAPERR (Address not mapped to
object) at 0x43206f6c6c6548*** WARNING: Unable to verify timestamp for App4d
App4+0x1cbec:

00000000° ©0041cbec ?? ???

3. Set logging to a file in case of lengthy output from some commands:

0:000> .logopen C:\ALCDA2\A64\App4\App4.log

Opened log file 'C:\ALCDA2\A64\App4\App4.log'

4. Specify the dump folder as the symbol path and reload symbols:

0:000> .sympath+ C:\ALCDA2\A64\App4\

Symbol search path is: srv*;C:\ALCDA2\A64\App4\

Expanded Symbol search path is:
cache*;SRV*https://msdl.microsoft.com/download/symbols;c:\alcda2\a64\app4\

kkokkkxkkkkkkk* path yalidation summary 3k 3k >k 3k 3k ok 3k sk sk >k k ok ok k

Response Time (ms) Location
Deferred srv*
OK C:\ALCDA2\A64\App4\

*** WARNING: Unable to verify timestamp for App4
0:000> .reload
*** WARNING: Unable to verify timestamp for App4

Module name Error

188

App4 The system cannot find the file specified

You can troubleshoot most symbol related issues by turning on symbol loading diagnostics (!sym
noisy) and repeating the command that caused symbols to be loaded.
You should also verify that your symbol search path (.sympath) is correct.

Note: We ignore warnings and errors as they are not relevant for now.

5. List all threads and their first frame:
0:000> ~*k 1

Unable to get thread data for thread ©

@ Id: 2260.2263 Suspend: © Teb: 00000000 0VOOOO Unfrozen
Child-SP RetAddr Call Site
00 0000fffc ©3e5e790 00000000 00403304 App4!malloc+0x8c

Unable to get thread data for thread 1
1 1Id: 2260.2261 Suspend: © Teb: 00000000 ©00RVOVO Unfrozen
Child-SP RetAddr Call Site
00 0000fffc 04e7e5f0 00000000 ©0424e34 App4! libc_nanosleep+0x24

Unable to get thread data for thread 2
2 Id: 2260.2260 Suspend: © Teb: 00000000 ©00LVOVO Unfrozen
Child-SP RetAddr Call Site
00 0000ffff d31fe360 00000000 ©0424e34 App4! libc_nanosleep+0x24

Unable to get thread data for thread 3
3 1Id: 2260.2262 Suspend: © Teb: 00000000 00000000 Unfrozen
Child-SP RetAddr Call Site
00 0000fffc 0466e5f0 00000000 ©0424e34 App4! libc_nanosleep+0x24

Unable to get thread data for thread 4
4 1Id: 2260.2264 Suspend: © Teb: 00000000 00O Unfrozen
Child-SP RetAddr Call Site
00 0000fffc 0364e5f0 00000000 ©0424e34 App4! libc_nanosleep+0x24

Unable to get thread data for thread 5
5 Id: 2260.2265 Suspend: © Teb: 00000000 000000 Unfrozen

Child-SP RetAddr Call Site

00 000offfc 02e3e5f0 00000000 VB424e34 App4!_libc_nanosleep+0x24
6. List the current thread stack trace:

0:000> k

Child-SP RetAddr Call Site

00 00POfffc 03e5e790 00000000 00403304 App4!malloc+0x8c

01 0000fffc ©3e5e7d0 ©00VVOLO V0403400 App4!proc+0x1ic

02 0000fffc 03e5e820 00000000 00403414 App4!bar_three+0xc

03 0000fffc 03e5e830 00000000 ©O40342C App4!foo_three+0xc

04 0000fffc 03e5e840 00000000 ©0404db4 App4!thread_three+0x10
05 0000fffc 03e5e860 00000000 ©O429ce0 App4!start_thread+0xb4
06 0000fffc ©3e5e990 ffffffff ffffffff App4!thread_start+0x30
07 0000fffc 93e5e990 000VVOOO VOO oxffffffff ffFfffff

189

7. We see that the segmentation fault happened internally in the malloc function when proc was allocating
heap memory. Disassemble the proc function:

0:000> uf proc

App4!proc:

00000000 004031e8 a9bb7bfd stp fp,1r,[sp,#-0x50]!

00000000 004031ec 910003fd mov fp,sp

00000000 00403110 52800020 mov wo, #1

00000000 0040314 940086¢CC bl App4!sleep (00000000 00424d24)
00000000 00403118 d2802000 mov X0, #0x100

00000000 ©04031fc 94006659 bl App4!'malloc (00000000 0041cb60)
00000000 00403200 9002720 str X0, [fp,#0x48]

00000000 00403204 d2802000 mov X0, #0x100

00000000 00403208 94006656 bl App4!'malloc (00000000 0041cb60)
00000000 0040320c 9002330 str x0, [fp,#0x40]

00000000 00403210 d2802000 mov X0, #0x100

00000000 00403214 94006653 bl App4!malloc (00000000 0041cb60)
00000000 00403218 f9001fad str x0, [fp,#9x38]

00000000° 0040321c d2802000 mov X0, #0x100

00000000 00403220 94006650 bl App4!malloc (00000000 0041cb60)
00000000 00403224 f9001bad str x0, [fp,#9x30]

00000000 00403228 d2802000 mov X0, #0x100

00000000 ©040322c 9400664d bl App4!malloc (00000000 ©41cb60)
00000000 00403230 f90017a0 str x0, [fp,#0x28]

00000000° 00403234 d2802000 mov X0, #0x100

00000000 00403238 9400664a bl App4!malloc (00000000 ©41cb60)
00000000 ©040323c f90013a0 str x0, [fp,#0x20]

00000000° 00403240 d2802000 mov X0, #0x100

00000000° 00403244 94006647 bl App4!malloc (00000000 0041cb60)
00000000 00403248 f9000fad str x0, [fp,#0x18]

00000000° ©0040324c 19401320 1ldr x0, [fp,#0x20]

00000000 00403250 94006912 bl App4!_cfree (00000000 0041d698)
00000000° 00403254 f9401bad 1ldr x0, [fp,#0x30]

00000000 00403258 94006910 bl App4! _cfree (00000000 0041d698)
00000000° ©040325c 19402320 1ldr x0, [fp,#0x40]

00000000 00403260 9400690e bl App4!_cfree (00000000 0041d698)
00000000° 00403264 194023a0 1dr x0, [fp,#0x40]

00000000 00403268 dOOLRO421 adrp x1,App4!arena_thread_freeres+0x118 (00000000 00489000)
00000000 0040326Cc 910d8021 add x1,x1,#0x360

00000000 00403270 a9400c22 1dp Xx2,x3, [x1]

00000000" 00403274 a9000cO2 stp Xx2,x3,[x0]

00000000 00403278 a9410c22 1dp x2,x3, [x1,#06x10]

00000000 0040327c a9010c02 stp x2,x3,[x0,#0x10]

00000000 00403280 a9420c22 1dp x2,x3, [x1,#0x20]

00000000 00403284 a9020c02 stp Xx2,x3, [x0,#0x20]

00000000 00403288 a9430c22 1dp Xx2,x3, [x1,#0x30]

00000000 0040328Cc a9030cO2 stp x2,x3, [x0,#0x30]

00000000 00403290 b9404022 1dr w2, [x1,#0x40]

00000000° 00403294 b9004002 str w2, [x0,#0x40]

00000000 00403298 79408821 1ldrh wl, [x1,#0x44]

00000000 0040329c 79008801 strh wl, [x0,#0x44]

00000000° 00403220 f9401bad 1dr x0, [fp,#0x30]

00000000 00403224 dOVV421 adrp x1,App4!arena_thread freeres+0x118 (00000000 00489000)
00000000" 00403228 910ea021 add x1,x1,#0x3A8

00000000" ©04032ac a9400c22 1dp x2,x3, [x1]

00000000° 004032b0 a9000cO2 stp x2,x3,[x0]

00000000° 004032b4 a9410c22 1dp x2,x3, [x1,#0x10]

00000000° 004032b8 a9010cO2 stp x2,x3, [x0,#0x10]

00000000 ©04032bc a9420c22 1dp Xx2,X3, [x1,#0x20]

190

00000000 004032c0O a9020c02 stp x2,x3,[x0,#0x20]

00000000 004032c4 a9430c22 ldp Xx2,X3, [x1,#0x30]

00000000 004032c8 a9030cO2 stp Xx2,X3, [x0,#0x30]

00000000 004032cc a9440c22 ldp x2,X3, [x1,#0x40]

00000000 004032d0 a9040c02 stp x2,X3, [x0,#0x40]

00000000 004032d4 b9405021 ldr wl, [x1,#0x50]

00000000 004032d8 b90O5001 str wl, [x0,#0x50]

00000000 004032dc 19401320 ldr x0, [fp,#0x20]

00000000 004032e0 dOOOO421 adrp x1,App4!arena_thread_freeres+0x118 (00000000 ©0489000)
00000000 004032e4 91100021 add x1,x1,#0x400

00000000 004032e8 d2800c42 mov X2,#0x62

00000000 004032ec 97fff3e5 bl App4!+0x10 (00000000 00400280)
00000000 00403210 d2802000 mov X0, #0x100

00000000 00403214 9400661b bl App4!malloc (00000000 ©041cb60)
00000000 0040328 9002320 str X0, [fp,#0x40]

00000000 004032fc d2802000 mov X0, #0x100

00000000 00403300 94006618 bl App4!malloc (00000000 ©041cb60)
00000000° 00403304 f9001bad str x0, [fp,#0x30]

00000000 00403308 d2802000 mov X0, #0x100

00000000 0040330Cc 94006615 bl App4!malloc (00000000 ©041cb60)
00000000 00403310 9001320 str X0, [fp,#0x20]

00000000 00403314 52802580 mov wo, #0x12C

00000000 00403318 94008683 bl App4!sleep (00000000 ©0424d24)
00000000 ©040331c f9400fad 1ldr x0, [fp,#9x18]

00000000 00403320 940068de bl App4! cfree (00000000 0041d698)
00000000 00403324 9401320 1ldr X0, [fp, #0x20]

00000000 00403328 940068dc bl App4!_cfree (00000000 0041d698)
00000000 ©040332c f94017a0 1dr x0, [fp,#9x28]

00000000 00403330 940068da bl App4! cfree (00000000 0041d698)
00000000 00403334 f9401bao ldr X0, [fp,#0x30]

00000000 00403338 940068d8 bl App4! cfree (00000000 0041d698)
00000000 ©040333c f9401fad 1ldr x0, [fp,#9x38]

00000000 00403340 940068d6 bl App4!_cfree (00000000 0041d698)
00000000 00403344 9402330 ldr X0, [fp,#0x40]

00000000 00403348 940068d4 bl App4! cfree (00000000 0041d698)
00000000° ©040334c 94027230 1dr x0, [fp,#9x48]

00000000 00403350 940068d2 bl App4!_cfree (00000000 0041d698)
00000000 00403354 12800000 mov wo,#-1

00000000 00403358 94008673 bl App4!sleep (00000000 00424d24)
00000000 0040335c a8c57bfd ldp fp,1r,[sp],#0x50

00000000 00403360 d65103cO ret

Note: We see that before the problem malloc call, there were three buffer writes to memory addresses pointed to
by values located at the following addresses: fp+0x40, fp+0x30, and fp+0x20 (highlighted in red in disassembly).
However, before buffer writes, there were free function calls with values located at the same addresses: fp+0x20,
fp+0x30, and fp+0x40 (highlighted in blue in disassembly). Therefore, we see “write after free” behavior.

191

8. We have the standard function prolog (highlighted in green in disassembly). Switch to stack frame #1 to

check the addresses, their values, and memory contents they point to:

0:000> .frame /c /r 1
01 000offfc ©3e5e7do
X0=0000ff{fb00000000d
x4=7243206f6c6c6548
Xx8=6c6c654820213668
x12=6548202136687361
Xx16=00000000004d0008
X20=0000000000000000
Xx24=0000fffc03e5f770
X28=0000000000810000
pc=0000000000403304
App4!proc+0x1ic:
00000000 00403304 190

0:000> dp fp+0x30 L1
0000fffc 03e5e800 00

00000000 00403400
x1=00000000004d0000
x5=0000fffbfceo10d2
Xx9=366873617243206f

x13=73617243206f6C6¢C
x17=0000000000423350
X21=00000000004d0000
Xx25=0000000031db060
fp=0000fffco3e5e7d0
psr=80001000 N--- ELO

01bao str X0, [

00fffb" fco00e50

0:000> dp 0000fffb" fcoo0e50

App4!proc+0xl1ic
x2=0000fffbfc000948
x6=6548202136687361
x10=206f6c6c65482021
x14=0000000000000000
x18=0000000000000078
X22=000000000040341c
X26=00000000004d7890

1r=0000000000403304

fp,#0x30]

0000fffb” fcO00e50
0000fffb” fc000e60
0000fffb” fc000e70
0000fffb” fcoooe80
0000fffb” fcooLe90
0000fffb” fcO00ead
0000fffb” fcO00ebo
0000fffb” fcovveco

7243206f 6c6Cc6548
73617243 206f6C6C
34687361 7243206
20213468 73617243
65482021 34687361
00000000 00213468
00000000 000V
00000000 0000000

65482021 34687361
6Cc6c6548 20213468
206f6c6C” 65482021
7243206 6c6c6548
73617243 20616¢6C
00000000 0000000
00000000 000000
00000000 000000

x3=0000ff fbfc001070
X7=73617243206F6c6C
x11=0021366873617243
x15=0000000000000000
x19=0000fffc03e5f080
X23=0000000000000000
X27=0000000000010000
sp=0000fffc03e5e7d0

0:000> da 000Offfb™ fcoOLe50

0000fffb fco0ve50 "Hello Crash4! Hello Crash4! Hell"
0000fffb fcPO0e70 "o Crash4! Hello Crash4! Hello Cr"
0000fffb fco0ve90 "ash4! Hello Crash4!"

0:000> dpa fp+0x30 L1
0000fffc 03e5e800 00OOfffb fco00e50 "Hello Crash4! Hello Crash4! Hello Crash4! Hello Crash4!"

9. We know the addresses passed to heap management functions, for example, 0000fffb*fc000xxx. Find the

heap region in the section and module region list:
0:000> !address

Mapping file section regions...
Mapping module regions...

BaseAddress EndAddress+1 RegionSize Type State Protect Usage
+ 0" 00000000 0" 00400000 0" 00400000 <unknown>
> 0" 00400000 0° 00410000 ©° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READ Image [App4
" /home/opc/ALCDA2/App4/App4"]
+ 0" 00410000 0°004c0000 0" 000b0000 Image [App4
"/home/opc/ALCDA2/App4/Appa"]
+ 0" 004c0000 0" 004€0000 0° 00020000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Image [App4
"/home/opc/ALCDA2/App4/Apps"]
+ 0" 004€0000 0" 31dbooeo 0" 318d0000 <unknown>
+ 0" 31dbo00e 0" 31dfo000 0° 00040000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE QUAENS [[coocoocoooconooe 1
+ 0" 31dfo000 fffb" fcoe0000 fffb" ca210000 <unknown>
+ fffb" fco00000 fffb" fco30000 ©0° 00030000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE QUMTETE [[ocooooo000000000 1
+ fffb" fco30000 fffc 02630000 0" 06600000 <unknown>
+ fffc 02630000 fffc 02640000 0° 00010000 MEM_PRIVATE MEM_COMMIT <unknown>
+ fffc 02640000 fffc 02e40000 0° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown>
+ fffc 02e40000 fffc 02e50000 0700010000 MEM_PRIVATE MEM_COMMIT <unknown>
+ fffc 02e50000 fffc 03650000 ©° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown>
+ fffc 03650000 fffc 03660000 0° 00010000 MEM_PRIVATE MEM_COMMIT <unknown>
ar fffc 03660000 fffc 03e60000 0° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown>
+ fffc 03260000 fffc 03e70000 0700010000 MEM_PRIVATE MEM_COMMIT <unknown>
ar fffc 03e70000 fffc 04670000 0° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown>
ar fffc 04670000 fffc 04680000 0° 00010000 MEM_PRIVATE MEM_COMMIT <unknown>
+ fffc 04680000 fffc 04e80000 0° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown>

192

+ fffc 0480000
+ fffc 04e90000
vdso.so.1"]

+ fffc 04ea0000
+ ffff d31dooee

10.

0:000> .cxr

fffc' 04e90000
fffc 04ea0000

ffff" d31deoee
ffff" d3200000

3" ce330000

Resetting default scope

0:000> r
X0=0000ff{b00000000
x4=7243206f6c6c6548
X8=6Cc6c654820213668

x12=6548202136687361

Xx16=00000000004d0008

X20=000000000000000F

X24=0000fffc03e5f770

X28=0000000000810000
pCc=000000000041cbec

App4!malloc+0x8c:

00000000° 0041cbec 9400081 ldr

0:000> dp x4

72432061 6Cc6C6548 22222227 2222?22?22

x1=00000000004d0000
x5=0000fffbfcoo10d2
x9=366873617243206f
x13=73617243206f6C6C
Xx17=0000000000423350
Xx21=0000fffc03e5f770
Xx25=0000000031db060
fp=0000fffco3e5e790
psr=80001000 N--- ELO

0° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY
0700010000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READ

0° 00030000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE

Check the faulting instruction and the problem memory address:

x2=0000fffbfc000948
X6=6548202136687361
x10=20616c6c65482021
X14=0000000000000000
X18=0000000000000078
X22=000000000040341c
X26=00000000004d7890
1r=0000000000403304

x1, [x4]

22222202 2222002?

<unknown>
Image

[[oc®oc00000 Boooo
[linux_vdso_so;

<unknown>
QUAIENS [[o00co000000000000

x3=0000fffbfc001070
Xx7=73617243206f6c6¢C
x11=0021366873617243
x15=0000000000000000
x19=0000000000000100
X23=0000000000000000
X27=0000000000010000
sp=000efffco3e5e790

72432061 6c6c6558
72432061 6c6c6568
72432061 6c6c6578
72432061 6c6c6588
72432061 6c6c6598
72432061 6c6c65a8
72432061 6c6c65b8

0:000> .formats 7243206 6c6c6548
Evaluate expression:

Hex: 7243206 6c6c6548

Decimal: 8233460206695900488

Octal: 0711031006755433062510

Binary: 01110010 01000011 00100000 01101111 01101100 01101100 01100101 01001000
Chars: rC olleH

Time: Thu Oct 18 19:57:49.590 27691 (UTC + 0:00)

Float: low 1.14314e+027 high 3.86488e+030

Double: 2.55074e+242

Note: We see that the “rC olleH” (“Hello Cr” in little-endian interpretation) fragment correlates with the “Hello Cr”
buffer overwrite that we saw previously in step #8.

11. We close logging before exiting WinDbg Preview:

0:000> .logclose
Closing open log file 'C:\ALCDA2\A64\App4\App4d.log'

193

Exercise Ab

Goal: Learn how to identify stack corruption

Patterns: Local Buffer Overflow (User Space); Execution Residue
(User Space)

© 2023 Software Diagnostics Services

194

Exercise A5 (x64, GDB)

Goal: Learn how to identify stack corruption.
Patterns: Local Buffer Overflow (User Space); Execution Residue (User Space).

1. Load core.App5 dump file and App5 executable from the x64/App5 directory:

~/ALCDA2/x64/App5$ gdb -c core.App5 -se App5

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying"” and "show warranty" for details.

This GDB was configured as "x86_64-1linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to
Reading symbols from App5...done.

[New LWP 4604]

[New LWP 4603]

[New LWP 4605]

[New LWP 4606]

[New LWP 4607]

[New LWP 4608]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1inux-gnu/libthread_db.so.1".
Core was generated by " ./App5'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0Ox0000PPPO00007265 in ?? ()

[Current thread is 1 (Thread 0x7fb71bd94700 (LWP 4604))]

‘'word". ..

2. List threads and show stack trace of the problem thread:

(gdb) info threads

Id Target Id Frame

* 1 Thread 0x7fb71bd94700 (LWP 4604) 0x0000000000007265 in ?? ()
2 Thread 0x1a56880 (LWP 4603) 0x0000000000441b30 in nanosleep ()
3 Thread 0x7fb71b593700 (LWP 4605) 0x0000000000441b30 in nanosleep ()
4 Thread 0x7fb71ad92700 (LWP 4606) 0x0000000000441b30 in nanosleep ()
5 Thread 0x7fb71a591700 (LWP 4607) 0x0000000000441b30 in nanosleep ()
6 Thread 0x7fb719d90700 (LWP 4608) 0x0000000000441b30 in nanosleep ()

(gdb) bt
#0 ©x0000000000007265 in ?? ()
#1 0x0000000000000000 in ?? ()

195

3. We don’t see expected stack trace frames as in a normal thread stack trace:
(gdb) thread apply 3 bt

Thread 3 (Thread 0x7fb71b593700 (LWP 4605)):

#0 0x0000000000441b30 in nanosleep ()

#1 0Ox0000000000441aba in sleep ()

#2 0x0000000000401dla in bar_two ()

#3 0x0000000000401d2b in foo_two ()

#4 0x0000000000401d44 in thread_two ()

#5 Ox00000000004031f3 in start_thread (arg=<optimized out>) at pthread_create.c:486
#6 0©x000000000044438f in clone ()

4. We are still in thread #1. Dump raw stack data around the current stack pointer and find an ASCII buffer
around a return address:

(gdb) info registers rsp

sp 0x7fb71bd93d80 0x7fb71bd93d80

(gdb) x/100a $rsp-0x100

0x7fb71bd93c80: 0x0 Ox44l1laba <sleep+58>
Ox7fb71bd93c90: ©ox1 oxe

0x7fb71bd93cad: ©x0 0x35216b7a748f2c00

Ox7fb71bd93cbo: 0x0 (]

0x7fb71bd93cc@: 0x7fb71bd93d50 ©x401bc3 <procB+22>
0x7fb71bd93cdo: ©xo Ox7fb71bd93d66

0x7fb71bd93ced: ©x422077654e20794d 0x7542207265676769
0x7fb71bd93cf0O: ©x72656666 ox0

Ox7fb71bd93do0: 0xe (]

0x7fb71bd93d10: 0oxe (]

0x7fb71bd93d20: ©x0 0x0

0x7fb71bd93d30: ©x0 o0x0

0x7fb71bd93d40: ©x0 o0x0

Ox7fb71bd93d50: 0x7fb71bd93d70 ©x401cca <procA+40> ; rbp, retaddr
0x7fb71bd93d70: 0x7265 8 , retaddr
0x7fb71bd93d80: ©x0 ox0

Ox7fb71bd93d90: 0oxe (]

0x7fb71bd93da0: 0xe 0x0

ox7fb71bd93dbo: ©xe 0x0

0x7fb71bd93dcO: ©x0 0x7fb71bd90000

0x7fb71bd93ddo: 0x7fb71bd94700 ©Ox6caPe®818989a649
Ox7fb71bd93ded: Ox7ffcl1803c3le ©Ox7ffcl803c31f
Ox7fb71bd93df0: Ox7fb71bd94700 ©0x0

0x7fb71bd93e00: ©x93ced7331f209a649 Ox6caled0leabbab49
0x7fb71bd93el10: ©x0 0x0

0x7fb71bd93e20: ©x0 0x0

0x7fb71bd93e30: 0x0 ox0

0x7fb71bd93e40: ©x0 0x0

Ox7fb71bd93e50: 0x0 0x35216b7a74812c00
Ox7fb71bd93e60: 0Ox0 Ox7fb71bd94700
0x7fb71bd93e70: ©x7fb71bd94700 ©x44438f <clone+63>
0x7fb71bd93e80: ©x0 0x0

0x7fb71bd93e90: ©x0 0x0

Ox7fb71bd93ea0: 0x0 ox0

Ox7fb71bd93ebo: 0x0 ox0

0x7fb71bd93ecO: 0x0 0x0

0x7fb71bd93ed0: ©x0 0x0

0x7fb71bd93ee0: 0x0 0x0

0x7fb71bd93ef0: ©x0 0x0

196

0x7fb71bd93fe0:
ox7fb71bd93f10:
ox7fb71bd93f20:
ox7fb71bd93f30:
ox7fb71bd93f40:
0x7fb71bd93f50:
0x7fb71bd93f60:
ox7fb71bd93f70:
ox7fb71bd93f80:
0x7fb71bd93f90:

(gdb) x/s

0x0
0x0
0x0
0x0
0x0
0x0
0x0
ox0
0x0
ox0

o0x0
o0x0
0x0
0x0
0x0
ox0
0x0
0x0
0x0
o0x0

197

Exercise A5 (A64, GDB)

Goal: Learn how to identify stack corruption.
Patterns: Local Buffer Overflow (User Space); Execution Residue (User Space).

1. Load core.11157 dump file and App5 executable from the A64/App5 directory:

~/ALCDA2/A64/App5% gdb -c core.11157 -se App5

GNU gdb (Ubuntu 12.1-@ubuntul~22.04) 12.1

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to
Reading symbols from App5...

(No debugging symbols found in App5)

‘word". ..

warning: Can't open file /home/opc/ALCDA2/App5/App5 during file-backed mapping note processing
[New LWP 11158]

[New LWP 11160]

[New LWP 11162]

[New LWP 11157]

[New LWP 11159]

[New LWP 11161]

Core was generated by " ./App5'.

Program terminated with signal SIGSEGV, Segmentation fault.
#0 0Ox0000000000000000 in ?? ()

[Current thread is 1 (LWP 11158)]

2. Set logging to a file in case of lengthy output from some commands and set color highlighting off:
(gdb) set logging file App5.1log

(gdb) set logging enabled on

Copying output to App5.log.

Copying debug output to App5.log.

(gdb) set style enabled off

3. List threads and show stack trace of the problem thread:

(gdb) info threads

Id Target Id Frame

* 1 LWP 11158 0x0000000000000000 in ?? ()
2 LWP 11160 0x000000000040ca54 in nanosleep ()
3 LWP 11162 0x000000000040ca54 in nanosleep ()
4 LWP 11157 0x000000000040ca54 in nanosleep ()

198

5 LWP 11159
6 LWP 11161

(gdb) bt

0x000000000040ca54 in nanosleep ()
0x000000000040ca54 in nanosleep ()

#0 0x00000PP000000000 in ?? ()
Backtrace stopped: previous frame identical to this frame (corrupt stack?)

4. We don’t see expected stack trace frames as in a normal thread stack trace:

(gdb) thread apply 3 bt

Thread 3 (LWP 11162):

#0
#1
#2
#3
#4
#5
#6

0x000000000040ca54
0x0000000000424d74
0x00000000004033bc
0x00000000004033d0
0x00000000004033e8
0x0000000000404cd4
0x0000000000429c20

in
in
in
in
in
in
in

nanosleep ()
sleep ()
bar_five ()
foo_five ()
thread_five ()
start_thread ()
thread_start ()

5. We are still in thread #1. Dump raw stack data around the current stack pointer and find an ASCII buffer

around a return address:

(gdb) info registers sp

sp oxfffcbdfee830 oxfffcbdfee830

(gdb) x/100a $sp-0x100

oxfffcbdfee730: 0x0 0x0

oxfffcbdfee740: 0x0 oxe

oxfffcbdfee750: 0x0 oxe

oxfffcbdfee760: 0x0 0x0

oxfffcbdfee770: oxfffcbdfee800 ©x403288 <procA+44> ; X29,
oxfffcbdfee780: 0x0 oxfffcbdfee810

oxfffcbdfee790: 0x0 0x422077654e20794d

oxfffcbdfee7a0: ©x7542207265676769 OXx72656666
oxfffcbdfee7b0: ©x0 0x0

oxfffcbdfee7cO: 0x0 0x0

oxfffcbdfee7do: oxe oxe

oxfffcbdfee7e0: 0x0 oxe

oxfffcbdfee7f0: ox0 oxe

oxfffcbdfee800: oOxfffcbdfee820 ©x40329c <bar_one+12> ; X29,
oxfffcbdfee810:

oxfffcbdfee820: ox0 8 "
oxfffcbdfee830: 0x0 ox0

oxfffcbdfee840: 0x0 0x0

oxfffcbdfee850: 0x0 0x0

oxfffcbdfee860: 0x0 0x0

oxfffcbdfee870: Oxfffco000RRRO ©0x4d7890 <_ default_pthread_attr>
oxfffcbdfee880: 0x4d0000 ox0

oxfffcbdfee890: Oxfffcbdfef49c Oxfffcbdfefo8e

oxfffcbdfee8a0: 0x0 0x0

oxfffcbdfee8bd: Oxfffcbdfef@80 0©x4d7890 <_ default_pthread_attr>
oxfffcbdfee8cO: 0x4d0000 0x4032b8 <thread_one>
oxfffcbdfee8do: oxe0 oxfffcbdfef770

oxfffcbdfee8e0d: Ox3eab06f0 0x4d7890 <__ default_pthread_attr>
oxfffcbdfee8f0: 0x10000 ©x810000

oxfffcbdfee900: oxfffcbdfee860 ©xa8d4758adeefd27

oxfffcbdfee910: 0x0 0xa8db8a4105050e7

oxfffcbdfee920: ox0 oxe

oxfffcbdfee930: 0x0 0x0

199

1r

1r

1r

Oxfffcbdfee940:
Oxfffcbdfee950:
oxfffcbdfee960:
oxfffcbdfee970:
oxfffcbdfee980:
Oxfffcbdfee990:
oxfffcbdfee9a0:
oxfffcbdfeedbo:
oxfffcbdfee9co:
oxfffcbdfee9do:
Oxfffcbdfee9e0:
oxfffcbdfeeofo:
oxfffcbdfeeado:
oxfffcbdfeealo:
oxfffcbdfeea20:
oxfffcbdfeea3o:
oxfffcbdfeeado:

(gdb) x/s @xfffcbdfee820

Oxfffcbdfee820:

(gdb) x/s oxfffcbdfee810
oxfffcbdfee810: "My New Bigger Bu

0x0
0x0
o0x0
0x0
0x0
0x0
0x0
ox0
0x0
ox0
0x0
0x0
ox0
0x0
ox0
0x0
0x0

o0x0
o0x0
0x0
0x0
0x0
ox0
0x0
0x0
0x0
o0x0
ox0
o0x0
0x0
0x0
o0x0
o0x0
ox0

200

Exercise A5 (A64, WinDbg Preview)

Goal: Learn how to identify stack corruption.
Patterns: Local Buffer Overflow (User Space); Execution Residue (User Space).

1. Launch WinDbg Preview.

2. Load core.11157 dump file from the A64\App5 folder:

Microsoft (R) Windows Debugger Version 10.0.25111.1000 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\ALCDA2\A64\App5\core.11157]
64-bit machine not using 64-bit API

3k 3k 3k 3k >k sk ok >k ok %k k ko k path Validation SummaPy 3k 3k 3k 3k 3k >k >k 3k ok ok %k >k sk k
Response Time (ms) Location
Deferred srv*
Symbol search path is: srv*

Executable search path is:

Generic Unix Version © UP Free ARM 64-bit (AArch64)
Machine Name:

System Uptime: not available

Process Uptime: not available

(2b95.2b96): Signal SIGSEGV (Segmentation fault) code SEGV_MAPERR (Address not mapped to
object) at 0x000000000 0000V ?? ???

3. Set logging to a file in case of lengthy output from some commands:

0:000> .logopen C:\ALCDA2\A64\App5\App5.log

Opened log file 'C:\ALCDA2\A64\App5\App5.log

4, Specify the dump folder as the symbol path and reload symbols:

0:000> .sympath+ C:\ALCDA2\A64\App5\

Symbol search path is: srv*;C:\ALCDA2\A64\App5\

Expanded Symbol search path is:
cache*;SRV*https://msdl.microsoft.com/download/symbols;c:\alcda2\a64\app5\

kkokkkxkkkkkkk* path yalidation summary 3k sk >k 3k 3k 5k sk sk sk kR k ok k

Response Time (ms) Location
Deferred srv*
oK C:\ALCDA2\A64\App5\

0:000> .reload

201

5. List threads and show stack trace of the problem thread:
0:000> ~*k 1

Unable to get thread data for thread ©

@ 1Id: 2b95.2b96 Suspend: © Teb: 00000000 00OV Unfrozen
Child-SP RetAddr Call Site
00 0000fffc bdfee830 00000000 00000000 ox0

Unable to get thread data for thread 1
1 1Id: 2b95.2b98 Suspend: @ Teb: 00000000 00V Unfrozen
Unable to load image /home/opc/ALCDA2/App5/App5, Win32 error 0On2
*** WARNING: Unable to verify timestamp for App5
Child-SP RetAddr Call Site
00 000offfc bcfce5f0 00000000 ©0424d74 App5!_1ibc_nanosleep+0x24

Unable to get thread data for thread 2
2 1Id: 2b95.2b%a Suspend: © Teb: 00000000 ©0OLVOVO Unfrozen
Child-SP RetAddr Call Site
00 0000fffc bbfae5f0 00000000 ©0424d74 App5! _libc_nanosleep+0x24

Unable to get thread data for thread 3
3 1Id: 2b95.2b95 Suspend: © Teb: 00000000 VOO Unfrozen
Child-SP RetAddr Call Site
00 0000ffff ca3baedd 00000000 ©0424d74 App5! _libc_nanosleep+0x24

Unable to get thread data for thread 4
4 1Id: 2b95.2b97 Suspend: © Teb: 00000000 00000 Unfrozen
Child-SP RetAddr Call Site
00 0000fffc bd7de5f0 00000000 ©0424d74 App5! _libc_nanosleep+0x24

Unable to get thread data for thread 5
5 1Id: 2b95.2b99 Suspend: © Teb: 00000000 ©000VOVO Unfrozen

Child-SP RetAddr Call Site

00 0000fffc bc7be5f0 00000000 ©0424d74 App5! _libc_nanosleep+0x24
0:000> k

Child-SP RetAddr Call Site

00 0000fffc bdfee830 00000000 ©00VVLLO ox0

6. We don’t see expected stack trace frames as in a normal thread stack trace:
0:000> ~3k

Child-SP RetAddr Call Site

00 0000ffff ca3baedd 00000000 ©0424d74 App5!_libc_nanosleep+0x24
01 0000ffff ca3bae80 00000000 00403484 App5!sleep+0x110

02 0000ffff ca3bbo70 00000000 BB4Pecec App5!main+0x90

03 00eeffff ca3bbocod 00000000 00403090 App5! libc_start_main+0x304
04 0000ffff ca3bb220 00000000 ©OVVVV0O App5!start+0x4c

7. We are still in thread #0. Dump raw stack data around the current stack pointer and find an ASCII buffer

around a return address:

0:000> r sp
sp=0000fffcbdfee830

0:000> r 1r
1r=0000000000000000

202

0:000> dps sp-100
000offfc bdfee730
0000fffc bdfee738
0000fffc bdfee740
0000fffc bdfee748
0000fffc bdfee750
000offfc bdfee758
0000fffc bdfee760
0000fffc bdfee768
000offfc bdfee770
000offfc bdfee778
0000fffc bdfee780
0000fffc bdfee788
0000fffc bdfee790
000offfc bdfee798
0000fffc bdfee7a0
000offfc bdfee7a8
0000fffc bdfee7bo
0000fffc bdfee7b8
000offfc bdfee7co
000offfc bdfee7c8
0000fffc bdfee7do
0000fffc bdfee7d8
0000fffc bdfee7e0
000offfc bdfee7e8
0000fffc bdfee7f0
0000fffc bdfee7f8
0000fffc bdfee800
000offfc bdfee808

0000fffc bdfee820
0000fffc bdfee828
0000fffc bdfee830
0000fffc bdfee838
0000fffc bdfee840
0000fffc bdfee848
0000fffc bdfee850
0000fffc bdfee858
0000fffc bdfee860
0000fffc bdfee868
0000fffc bdfee870
000offfc bdfee878
000offfc bdfee880
0000fffc bdfee888
0000fffc bdfee890
0000fffc bdfee898
0000fffc bdfee8a0d
0000fffc bdfee8a8
0000fffc bdfee8bo
0000fffc bdfee8b8
0000fffc bdfee8co
0000fffc bdfee8c8
0000fffc bdfee8do
0000fffc bdfee8d8
0000fffc bdfee8ed
0000fffc bdfee8e8
0000fffc bdfee8f0
0000fffc bdfee8f8
0000fffc bdfee900

sp+100

00000000 000V
00000000 V0
00000000 0V
00000000 0V
00000000 000V
00000000 V00O
00000000 0V
00000000 0V
0000fffc bdfee800
00000000 00403288
00000000 00V
0000fffc bdfee810
00000000 000
42207765 4e20794d
75422072 65676769
000000L0B" 72656666
00000000 0V
00000000 0V
00000000 V0000
00000000 00000
00000000 00O
00000000 0O
00000000 0O
00000000 V000
00000000 V000
00000000 0O
0000fffc bdfee820
00000000 0040329C

00000000"

00000000 0000000
00000000 000000
00000000 V0V
00000000 000V
00000000 000V
00000000 000000
00000000 00V
00000000 00V
00000000 0000V
0000fffc 00000000
00000000 004d7890
00000000 004d0000
00000000 V000000
0000fffc bdfef49c
0000fffc bdfefo80
00000000 V000000
00000000 V000000
0000fffc bdfefo80
00000000 004d7890
00000000 004d0000
00000000 004032b8
00000000 V0V
0000fffc bdfef770
00000000 3260610
00000000 004d7890
00000000 00010000
00000000 00810000
0000fffc bdfee860

App5!procA+0x2c

App5!bar_one+0xc

B

B

fp
1r

fp

1r

App5! default_pthread_attr

App5!+0x18

App5!_default_pthread_attr

App5!+0x18
App5!thread_one

App5!_default_pthread_attr

203

000efffc bdfee908
00oefffc bdfee9l0
0000fffc bdfee918
0000fffc bdfee920
0000fffc bdfee928
0000fffc bdfee930

0:000> da

0a8d4758 adeef427
00000000" 00000
0a8db8a4” 105050e7
00000000 VOV
00000000 VPPV
00000000 0000V

Note: We are also able to reconstruct the past stack trace:

0000fffc bdfee778 00000000 00403288 App5!procA+0x2c
0000fffc bdfee808 ©00000000° 0040329c App5!bar_one+0xc

8. We close logging before exiting WinDbg Preview:

0:000> .logclose

Closing open log file 'C:\ALCDA2\A64\App5\App5.log"

204

Exercise A6

Goal: Learn how to identify stack overflow, stack boundaries,
reconstruct stack trace

Patterns: Stack Overflow (User Mode)

© 2023 Software Diagnostics Services

205

Exercise A6 (x64, GDB)

Goal: Learn how to identify stack overflow, stack boundaries, reconstruct stack trace.
Patterns: Stack Overflow (User Mode).

1. Load core.App6 dump file and App6 executable from the x64/App6 directory:

~/ALCDA2/x64/App6$ gdb -c core.App6 -se App6

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-1linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to
Reading symbols from App6...done.

[New LWP 4704]

[New LWP 4707]

[New LWP 4705]

[New LWP 4703]

[New LWP 4706]

[New LWP 4708]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1inux-gnu/libthread_db.so.1".
Core was generated by " ./App6'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0x0000000000401bb8 in procF ()

[Current thread is 1 (Thread 0x7f91e6de8700 (LWP 4704))]

‘'word". ..

2. Set logging to a file in case of lengthy output from some commands:

(gdb) set logging on App6.log
Copying output to App6.log.

3. List threads:

(gdb) info threads
Id Target Id Frame

* 1 Thread 0x7f91e6de8700 (LWP 4704) 0x0000000000401bb8 in procF ()
2 Thread 0x7f91e55e5700 (LWP 4707) 0x0000000000441ab® in nanosleep ()
3 Thread 0x7f91e65e7700 (LWP 4705) ©x0000000000441ab® in nanosleep ()
4 Thread 0xec2880 (LWP 4703) 0x0000000000441ab0® in nanosleep ()
5 Thread 0x7f91e5de6700 (LWP 4706) ©x0000000000441ab® in nanosleep ()
6 Thread 0x7f91e4de4700 (LWP 4708) 0x0000000000441ab® in nanosleep ()

206

4, If we try to print the problem stack trace, we get an endless number of frames, so we quit:

(gdb) bt

#0 0x0000000000401bb8 in procF
#1 0Ox0000RRRRR401cO5 in procF
#2 0x00000RRRR401cO5 in procF
#3 0x00000RRR401cO5 in procF
#4 0x0000000000401cO5 in procF
#5 0x0000000000401cO5 in procF
#6 0x0000RRRRRR401cO5 in procF
#7 ©Ox0000000000401cO5 in procF
#8 0x00000RRRR401cO5 in procF
#9 0x0000000000401cO5 in procF
#10 0x0000000000401cO5 in procF
#11 0x0000RRRRRR401cO5 in procF
#12 0x00000RRRRR401cO5 in procF
#13 0x0000000000401cO5 in procF
#14 0x0000000000401cO5 in procF
#15 0x0000000000401cO5 in procF
#16 0x0000000000401cO5 in procF
#17 ©x0000000000401c0O5 in procF
#18 0x0000000000401cO5 in procF
#19 0x0000000000401cO5 in procF
#20 0x0000000000401cO5 in procF
#21 Ox0000000000401cO5 in procF
#22 0x0000000000401cO5 in procF
#23 0x0000000000401cO5 in procF
#24 0x0000000000401cO5 in procF
#25 0x0000000000401cO5 in procF
#26 0x0000000000401cO5 in procF
#27 0x0000000000401cO5 in procF
#28 0x0000000000401cO5 in procF
#29 0x0000000000401cO5 in procF
#30 0x0000000000401cO5 in procF
#31 0x0000RRRR401cO5 in procF
#32 0x0000000000401cO5 in procF
#33 0x0000000000401cO5 in procF
#34 0x000000RR401cO5 in procF
#35 0x000000RRRR401cO5 in procF
#36 0x0000000V401cO5 in procF
#37 0x0000000000401cO5 in procF
#38 0x000000000R401cO5 in procF
#39 0x0000VRR401cO5 in procF
#40 0x0000VRRR401cO5 in procF
#41 0x00000000R401cO5 in procF
#42 0x0000000000401cO5 in procF
#43 0x0000000000401cO5 in procF
#44 0©x000000RR401cO5 in procF
#45 0x00000RRRR401cO5 in procF
#46 0x0000000000401cO5 in procF
#47 0x0000000000401cO5 in procF
#48 0x00000000R401cO5 in procF
#49 0x0000000000401cO5 in procF
#50 0x0000000000401cO5 in procF
#51 0x00000000R401cO5 in procF
#52 0x0000000000401cO5 in procF
#53 0x0000000000401cO5 in procF
#54 0x0000000000401cO5 in procF
#55 0x0000000000401cO5 in procF
#56 0x0000000000401cO5 in procF

AN N AN AN AN AN AN AN SN AN AN AN AN AN AN AN AN AN AN AN AN AN AN N AN AN AN AN AN AN AN AN AN AN AN AN
el e e e N S N N N N S S N N N N N N N N

207

--Type <RET> for more, q to quit, c to continue without paging--
#57 0x0000000000401c0O5 in procF ()

#58 0x0000000000401c0O5 in procF ()

#59 0x0000000000401c0O5 in procF ()

#60 0x0000VRRRRR401cO5 in procF

#61 0x0000000000401cO5 in procF

#62 0x0000000000401cO5 in procF

#63 0x0000000000401cO5 in procF

#64 0x00000RRRR401cO5 in procF

#65 0x0000000000401cO5 in procF

#66 0x0000000000401cO5 in procF

#67 0x0000000000401cO5 in procF

#68 0x00000RRRRR401cO5 in procF

#69 0x0000VRRRRR401cO5 in procF

#70 0x0000000000401c0O5 in procF

#71 0x0000000000401cO5 in procF

#72 0x0000000000401cO5 in procF

#73 0x000000000R401cO5 in procF

#74 0x0000000RRR401cO5 in procF

#75 0x0000000000401cO5 in procF

#76 0x0000000000401cO5 in procF

#77 0x0000000000401cO5 in procF

#78 0x0000000000401c0O5 in procF

#79 0x0000000000401cO5 in procF

#80 0x000000000R401cO5 in procF

#81 0x0000000000401cO5 in procF

#82 0x0000000000401cO5 in procF

#83 0x0000000000401cO5 in procF

#84 0x0000000000401cO5 in procF

#85 0x0000000000401cO5 in procF

#86 0x0000000000401cO5 in procF

#87 0x0000000000401cO5 in procF

#88 0x0000000000401cO5 in procF

#89 0x000000000R401cO5 in procF

#90 0x000000R401cO5 in procF

#91 0x000VRRRL401cO5 in procF

#92 0x0000RV401cO5 in procF

#93 0x0000VRRRR401cO5 in procF

#94 0x00000000R401cO5 in procF

#95 0x0000000000401cO5 in procF

#96 0x0000VRRR401cO5 in procF

#97 0©x00000RRR401cO5 in procF

#98 0x0000000R401cO5 in procF

#99 0x000000R401cO5 in procF

#100 0x000000VR401cO5 in procF
#101 0x000VRRR401cO5 in procF
#102 0x0000VVRRRR401cO5 in procF
#103 0x0000000PR401cO5 in procF
#104 0x000000000R401cO5 in procF
#105 0x000VPVRRR401cO5 in procF
#106 0x000000000R401cO5 in procF
#107 0x0000000000401cO5 in procF
#108 0x000000RPPR401cO5 in procF
#109 0x000000PRR401cO5 in procF
#110 0x0000000000401cO5 in procF
#111 0x000000000R401cO5 in procF
#112 0x0000000000401cO5 in procF
#113 0x00000000RR401cO5 in procF
--Type <RET> for more, q to quit, c to continue without paging--q
Quit

AN AN AN AN AN AN AN N AN AN AN AN AN AN N A

e N N R e e R R N N X X X B Ta U Wra Wra W Wrg B WV WV WV e WA Ba B - W g W W WV W W B & WV Ve WPe Wa BV Ve W & W WP W) e WL Ve g

P A B T S U e W W W e g e g

208

Note: It looks like a stack overflow.

5. Check if this is a stack overflow indeed. The stack region can be identified from App6.pmap.4703 from the
thread number. Since the problem thread has LWP 4704, it should be located just below the main stack region:

4703: . /App6
0000000000400000 4K r---- Appb6
0000000000401000 592K r-x-- App6
0000000000495000 156K r---- App6
00000000004bd000 24K rw--- App6
00000000004C3000 24K rw--- [anon]
0000000000ec2000 140K rw--- [anon]
00007191e45e4000 4K ----- [anon]
00007f91e45e5000 8192K rw--- [anon]
00007f91e4de5000 4K ----- [anon]
00007191e4de6000 8192K rw--- [anon]
00007f91e55e6000 4K ----- [anon]
00007f91e55e7000 8192K rw--- [anon]
00007f91e5de7000 4K ----- [anon]
00007f91e5de8000 8192K rw--- [anon]
0000791658000 aK ----- [anon]
00007191e65€9000 8192K rw--- [anon]
00007ffcec9a9000 16K r---- [anon]
00007ffcec9adooo 4K r-x-- [anon]
total 42072K
6. Check that manually based on the stack pointer value and section boundary addresses:

(gdb) x $rsp

0x7f91e65e8ef@: Cannot access memory at address ©x7f9le65e8ef0

(gdb) frame 1

#1 ©x0000000000401c0O5 in procF ()

(gdb) x $rsp

0x7f91e65e9110: 0x00000000

(gdb) frame 2

#2 0©x0000000000401c0O5 in procF ()

(gdb) x $rsp

0x7f91e65€9330: 0x00000000

(gdb) maintenance info sections

Exec file:

* /home/coredump/ALCDA2/x64/App6/App6"', file

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[1e]
[11]

0x00400200->0x00400220
0x00400220->0x00400244
0x00400248->0x004004d0
0x00401000->0x00401017
0x00401018->0x00401010
0x00401010->0x00493470
0x00493470->0x00494017
0x00494018->0x00494021
0x00495000->0x004af73c
0x004af740->0x004bbbo0

at
at
at
at
at
at
at
at
at
at

0x00000200:
0x00000220:
0x00000248:
0x00001000:
0x00001018:
0Xx00001010:
0x00093470:
0x00094018:
0x00095000:
0x000af740:
0x004bbb90->0x004bbc3c at 0x000bbb90:
0x004bdobo->0x004bdod8 at 0x000bcObO:

type elf64-x86-64.
.note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
.note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
.rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS
.init ALLOC LOAD READONLY CODE HAS_CONTENTS
.plt ALLOC LOAD READONLY CODE HAS_CONTENTS
.text ALLOC LOAD READONLY CODE HAS_CONTENTS
__libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
.fini ALLOC LOAD READONLY CODE HAS_CONTENTS
.rodata ALLOC LOAD READONLY DATA HAS_CONTENTS
.eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS
.gcc_except_table ALLOC LOAD READONLY DATA HAS_CONTENTS
.tdata ALLOC LOAD DATA HAS_CONTENTS

209

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]

0x004bdod8->0x004bd120 at Ox000bcOd8: .tbss ALLOC

0x004bdod8->0x004bd0ed at ©x000bcOd8: .preinit_array ALLOC LOAD DATA HAS_CONTENTS
0x004bd0e0->0x004bdofO at Ox000bcOed: .init_array ALLOC LOAD DATA HAS_CONTENTS
0x004bdofo->0x004bd100 at 0x000bcOfO: .fini_array ALLOC LOAD DATA HAS_CONTENTS
0x004bd100->0x004bfef4 at 0x000bcl00: .data.rel.ro ALLOC LOAD DATA HAS_CONTENTS
0x004bfef8->0x004c0000 at 0Ox000beef8: .got ALLOC LOAD DATA HAS_CONTENTS
0x004c0000->0x004c00f0 at Ox000bfOLO: .got.plt ALLOC LOAD DATA HAS_CONTENTS
0x004c0100->0x004c1c30 at Ox000bf100: .data ALLOC LOAD DATA HAS_CONTENTS
0x004c1c30->0x004c1c90 at 0x000c0c30: _ libc_subfreeres ALLOC LOAD DATA HAS_CONTENTS
0x004clcad->0x004c2408 at 0x000cOcad: _ libc_IO vtables ALLOC LOAD DATA HAS_CONTENTS
0x004c2408->0x004c2410 at 0x000c1408: _ libc_atexit ALLOC LOAD DATA HAS_CONTENTS
0x004c2420->0x004c8528 at 0x000c1410: .bss ALLOC

0x004c8528->0x004c8558 at 0x000c1410: _ libc_freeres_ptrs ALLOC

0x00000000- >0x00000038 at ©x000c1410: .comment READONLY HAS_CONTENTS
0Xx00000000->0x00000420 at 0x000c1450: .debug _aranges READONLY HAS_CONTENTS
0x00000000->0x000372ad at ©x000c1870: .debug_info READONLY HAS_CONTENTS
0x00000000->0x000057e8 at 0Ox000f8bld: .debug _abbrev READONLY HAS_CONTENTS
0x00000000->0x0000aa2b at 0x000fe305: .debug line READONLY HAS_CONTENTS
0x00000000->0x00004d08 at 0x00108d30: .debug_str READONLY HAS_CONTENTS
0x00000000->0x0000d4b8 at 0x0010da38: .debug_loc READONLY HAS_CONTENTS
0x00000000->0x000024cO at Ox001laef@: .debug ranges READONLY HAS_CONTENTS

Core file:
~/home/coredump/ALCDA2/x64/App6/core.App6', file type elf64-x86-64.

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

0x00000000- >0x00002c60 at 0x0000V4a0: noted READONLY HAS_CONTENTS

0x00000000- >0x000000d8 at 0x00000524: .reg/4704 HAS_CONTENTS

0x00000000- >0x000000d8 at 0x00000524: .reg HAS_CONTENTS

0Xx00000000->0x00000080 at Ox0PRRR6b4A: .note.linuxcore.siginfo/4704 HAS_CONTENTS
0Xx00000000->0x0000080 at 0x00PRR6bL4: .note.linuxcore.siginfo HAS_CONTENTS
0x00000000->0x00000140 at 0x00000748: .auxv HAS_CONTENTS

0x00000000->0x00000100 at ©0x0000B89c: .note.linuxcore.file/4704 HAS_CONTENTS
0x00000000->0x00000100 at 0x0000B89c: .note.linuxcore.file HAS_CONTENTS
0x00000000->0x00000200 at 0x000009bO: .reg2/4704 HAS_CONTENTS

0x00000000- >0x00000200 at 0x000VO9bO: .reg2 HAS_CONTENTS

0x00000000->0x00000340 at 0x00VOObc4: .reg-xstate/4704 HAS_CONTENTS
0Xx00000000->0x00000340 at Ox00PObc4: .reg-xstate HAS_CONTENTS
0x00000000->0x000000d8 at 0x0000OF88: .reg/4707 HAS_CONTENTS
0x00000000->0x00000200 at 0x0000107c: .reg2/4707 HAS_CONTENTS
0Xx00000000->0x00000340 at 0x00001290: .reg-xstate/4707 HAS_CONTENTS
0x00000000->0x000000d8 at 0x00001654: .reg/4705 HAS_CONTENTS
0x00000000->0x00000200 at 0x00001748: .reg2/4705 HAS_CONTENTS
0x00000000->0x00000340 at Ox00VV195c: .reg-xstate/4705 HAS_CONTENTS
0x00000000->0x000000d8 at 0x00001d20: .reg/4703 HAS_CONTENTS
0x00000000->0x00000200 at 0x00001eld: .reg2/4703 HAS_CONTENTS

--Type <RET> for more, q to quit, c

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]

0xX00000000 - >0x00000340
0x00000000 - >0x000000d8
0X00000000- >0x00000200
0XxX00000000- >0x00000340
0x00000000 - >0x000000d8
0X00000000- >0x00000200
0xX00000000 - >0x00000340
0x00400000->0x00401000
0x00401000->0x00401000
0x00495000- >0x00495000
0x004bd000 - >0x004Cc3000
0x004c3000->0x004c9000
0x00eCc2000->0x00ee5000

at
at
at
at
at
at
at
at
at
at
at
at
at

to continue without paging--

0x00002028:
0x000023ec:
0x000024€0:
0x000026 4 :
0x00002ab8:
0x00002bac:
0x00002dc0o:
0x00004000:
0x00005000:
0x00005000:
0x00005000:
0Xx0000b000 :
0x00011000:

.reg-xstate/4703 HAS_CONTENTS
.reg/4706 HAS_CONTENTS
.reg2/4706 HAS_CONTENTS
.reg-xstate/4706 HAS_CONTENTS
.reg/4708 HAS_CONTENTS
.reg2/4708 HAS_CONTENTS
.reg-xstate/4708 HAS_CONTENTS
loadl ALLOC LOAD READONLY HAS_CONTENTS
load2 ALLOC READONLY CODE
load3 ALLOC READONLY

load4 ALLOC LOAD HAS_CONTENTS
load5 ALLOC LOAD HAS_CONTENTS
load6 ALLOC LOAD HAS_CONTENTS

0x7191e45e4000->0x71f91e45e4000
0x7191e45e5000->0x71f91e4de5000
0x7f91e4de5000->0x7f91e4de5000
0x7191e4de6000->0x7f91e55e6000
0x7191e55e6000->0x71f91e55e6000
0x7191e55e7000->0x71f91e5de7000
0x7f91e5de7000->0x7f91e5de7000
0x7191e5de8000->0x7f91e65e8000
0x7f91e65e8000->0x7f91e65e8000
Ox7f91e65e9000->0x7f91e6de9000

at
at
at
at
at
at
at
at
at
at

0x00034000:
0x00034000:
0x00834000:
0x00834000:
0x01034000:
0x01034000:
0x01834000:
0x01834000:
0x02034000:
0x02034000:

210

load7 ALLOC READONLY
load8 ALLOC LOAD HAS_CONTENTS
load9 ALLOC READONLY

loadle
loadil1l
load12
load13
load14
loadi15
loadile6

ALLOC
ALLOC
ALLOC
ALLOC
ALLOC
ALLOC
ALLOC

LOAD HAS_CONTENTS
READONLY
LOAD HAS_CONTENTS
READONLY
LOAD HAS_CONTENTS
READONLY
LOAD HAS_CONTENTS

[43] Ox7ffcec95d000->0x7ffcec97e000 at 0x02834000: loadl7 ALLOC LOAD HAS_CONTENTS

[44] Ox7ffcec9a9000->0x7ffcec9adood at ©x02855000: loadl8 ALLOC LOAD READONLY HAS_CONTENTS
[45] Ox7ffcec9adooo->0x7ffcec9ae000 at ©x02859000: loadl9 ALLOC LOAD READONLY CODE HAS_CONTENTS
7. Dump the bottom of the raw stack to see execution residue, such as thread startup:

(gdb) x/1@24a 0x7f91e6de9000-0x2000

0x7f91e6de7000: OxO 0x0
0x7f91e6de7010: 0Ox0 0x0
0x7f91e6de7020: Ox0 o0x0
0x7f91e6de7030: Ox0 ox0
0x7f91e6de7040: 0OxO 0x0
0x7f91e6de7050: ©x0 0x0
0x7f91e6de7060: 0Ox0 0x0
0x7f91e6de7070: Ox0 ox0
0x7f91e6de7080: 0Ox0 ox0
0x7f91e6de7090: 0x0 0x0
Ox7f91e6de70a0: Ox7f91le6de72cO® ©x401cO5 <procF+88>
0x7f91e6de70b0: Ox0 OX600000000
0x7f91e6de70cO: Oxffffffff ox7
0x7f91e6de70d0: Oxffffffff ox0
0x7f91e6de70e0: 0Ox0 0x0
0x7f91le6de70f0: 0Ox0 0x0
0x7f91e6de7100: ©x0 0x0
0x7f91e6de7110: ©x0 0x0
0x7f91e6de7120: ©x0 0x0
0x7f91e6de7130: 0Ox0 0x0
0x7f91e6de7140: 0Ox0 0x0
0x7f91e6de7150: ©x0 0x0
0x7f91e6de7160: ©x0 0x0
0x7f91e6de7170: ©x0 0x0
0x7f91e6de7180: ©x0 0x0
0x7f91e6de7190: ©x0 0x0
Ox7f91e6de71a0: 0Ox0 0x0
0x7f91e6de71b0: ©x0 0x0
0x7f91e6de71cO: 0Ox0 0x0
0x7f91e6de71d0: ©x0 0x0
0x7f91eb6de71e0: 0Ox0 0x0
0x7f91eb6de71f0: 0Ox0 oxe
0x7f91e6de7200: 0x0 0x0
0x7f91e6de7210: 0x0 0x0
0x7f91e6de7220: 0Ox0 0x0
0x7f91e6de7230: 0Ox0 0x0
0x7f91e6de7240: 0Ox0 0x0
0x7f91e6de7250: ©x0 0x0
0x7f91e6de7260: 0Ox0 0x0
0x7f91e6de7270: 0©x0 0x0
0x7f91e6de7280: 0©x0 0x0
0x7f91e6de7290: 0x0 oxe
0x7f91leb6de72a0: 0Ox0 0x0
0x7f91e6de72b0: 0Ox0 o0x0
Ox7f91e6de72cO: Ox7f91leb6de74e® ©Ox401cO5 <procF+88>
0x7f91e6de72d0: 0Ox0 0Ox500000000
0x7f91e6de72e0: Oxffffffff 0x6
Ox7f91e6de72f0: Oxffffffff ox0
0x7f91e6de7300: 0Ox0 o0x0
0x7f91e6de7310: 0Ox0 0x0
0x7f91e6de7320: 0Ox0 0x0
0x7f91e6de7330: 0Ox0 0x0
0x7f91e6de7340: 0x0 0x0

211

0x7f91e6de7350: ©Ox0 0x0
0x7f91e6de7360: 0OxO 0x0
0x7f91e6de7370: Ox0 o0x0
0x7f91e6de7380: 0©x0 o0x0
--Type <RET> for more, q to quit, c to continue without paging--
0x7f91e6de7390: 0x0 0x0
0x7f91le6de73a0: 0Ox0 0x0
0x7f91e6de73b0: ©x0 ox0
0x7f91e6de73cO: 0©x0 0x0
0x7f91e6de73d0: ©x0 0x0
0x7f91e6de73e€0: 0OxO 0x0
0x7f91e6de73f0: 0Ox0 0x0
0x7f91e6de7400: 0Ox0 ox0
0x7f91e6de7410: 0Ox0 ox0
0x7f91e6de7420: 0Ox0 0x0
0x7f91e6de7430: 0Ox0 0x0
0x7f91e6de7440: 0Ox0 0x0
0x7f91e6de7450: ©x0 o0x0
0x7f91e6de7460: 0Ox0 ox0
0x7f91e6de7470: 0x0 0x0
0x7f91e6de7480: 0x0 ox0
0x7f91e6de7490: ©x0 0x0
0x7f91e6de74a0: 0Ox0 0x0
0x7f91e6de74b0: 0x0 0x0
0x7f91e6de74cO: 0Ox0 0x0
0x7f91e6de74d0: ©x0 0x0
Ox7f91e6de74e0: Ox7f91e6de7700 ©x401cO5 <procF+88>
0x7f91e6de74f0: 0x0 0x400000000
0x7f91e6de7500: Oxffffffff ox5
0x7f91e6de7510: Oxffffffff ox0
0x7f91e6de7520: ©x0 0x0
0x7f91e6de7530: 0x0 0x0
0x7f91e6de7540: 0©x0 0x0
0x7f91e6de7550: ©x0 0x0
0x7f91e6de7560: ©x0 0x0
0x7f91e6de7570: 0©x0 0x0
0x7f91e6de7580: ©x0 0x0
0x7f91e6de7590: ©x0 0x0
0x7f91leb6de75a0: ©x0 0x0
0x7f91e6de75b0: ©x0 0x0
0x7f91e6de75cO: 0Ox0 0x0
0x7f91e6de75d0: ©x0 0x0
0x7f91e6de75e€0: 0Ox0 0x0
0x7f91e6de75f0: 0Ox0 0x0
0x7f91e6de7600: 0Ox0 0x0
0x7f91e6de7610: 0©x0 0x0
0x7f91e6de7620: 0Ox0 0x0
0x7f91e6de7630: 0Ox0 0x0
0x7f91e6de7640: 0Ox0 0x0
0x7f91e6de7650: 0©x0 0x0
0x7f91e6de7660: 0Ox0 0x0
0x7f91e6de7670: 0Ox0 0x0
0x7f91e6de7680: 0Ox0 o0x0
0x7f91e6de7690: 0Ox0 o0x0
0x7f91e6de76a0: 0Ox0 ox0
0x7f91e6de76b0: Ox0 0x0
0x7f91e6de76cO: Ox0 0x0
0x7f91e6de76d0: ©x0 0x0
0x7f91eb6de76e0: 0Ox0 0x0
0x7f91leb6de76f0: 0Ox0 oxe

212

0x7f91e6de7700: Ox7f91e6de7920 ©x401cO5 <procF+88>

0x7f91e6de7710: 0Ox0 Ox300000000
--Type <RET> for more, q to quit, c to continue without paging--
0x7f91e6de7720: Oxffffffff ox4
0x7f91e6de7730: Oxffffffff ox0
0x7f91e6de7740: 0Ox0 0x0
0x7f91e6de7750: ©Ox0 0x0
0x7f91e6de7760: Ox0 ox0
0x7f91e6de7770: Ox0 ox0
0x7f91e6de7780: ©x0 0x0
0x7f91e6de7790: ©x0 0x0
0x7f91le6de77a0: 0Ox0 0x0
0x7f91e6de77b0: Ox0 ox0
0x7f91e6de77cO: ©x0 0x0
0x7f91e6de77d0: ©x0 0x0
0x7f91e6de77e€0: 0OxO 0x0
0x7f91e6de77f0: 0Ox0 0x0
0x7f91e6de7800: Ox0 o0x0
0x7f91e6de7810: 0x0 0x0
0x7f91e6de7820: 0Ox0 0x0
0x7f91e6de7830: 0Ox0 0x0
0x7f91e6de7840: 0©x0 0x0
0x7f91e6de7850: 0x0 0x0
0x7f91e6de7860: 0x0 0x0
0x7f91e6de7870: ©x0 0x0
0x7f91e6de7880: ©x0 0x0
0x7f91e6de7890: ©x0 0x0
0x7f91e6de78a0: 0Ox0 ox0
0x7f91e6de78b0O: ©x0 0x0
0x7f91e6de78cO: 0Ox0 0x0
0x7f91e6de78d0: ©x0 0x0
0x7f91e6de78e0: 0x0 0x0
0x7f91e6de78f0: ©x0 oxe
0x7f91e6de7900: 0Ox0 0x0
0x7f91e6de7910: 0©x0 0x0
Ox7f91e6de7920: Ox7f91le6de7b40 ©x401cO5 <procF+88>
0x7f91e6de7930: 0x0 0x200000000
0x7f91e6de7940: Oxffffffff ox3
0x7f91e6de7950: Oxffffffff ox0
0x7f91e6de7960: ©x0 0x0
0x7f91e6de7970: ©x0 0x0
0x7f91e6de7980: ©x0 0x0
0x7f91e6de7990: 0©x0 0x0
0x7f91e6de79a0: 0x0 0x0
0x7f91e6de79b0: ©x0 0x0
0x7f91e6de79cO: ©x0 0x0
0x7f91e6de79d0: ©x0 0x0
0x7f91e6de79e0: 0Ox0 0x0
0x7f91e6de79f0: 0Ox0 0x0
0x7f91e6de7a00: 0Ox0 0x0
0x7f91e6de7al10: 0Ox0 0x0
0x7f91e6de7a20: 0Ox0 0x0
0x7f91e6de7a30: 0x0 0x0
0x7f91e6de7a40: 0Ox0 o0x0
0x7f91e6de7a50: 0Ox0 0x0
0x7f91e6de7a60: 0Ox0 0x0
0x7f91e6de7a70: 0Ox0 0x0
0x7f91e6de7a80: 0©x0 0x0
0x7f91e6de7a90: 0©x0 0x0
0x7f91eb6de7aad: 0Ox0 0x0

213

--Type <RET> for more, q to quit, c to continue without paging--

0x7f91le6de7abo:
0x7f91e6de7aco:
0x7f91le6de7ado:
0x7f91e6de7ae0:
0x7f9l1le6de7afo:
0x7f91e6de7b00:
0x7f91e6de7blo:
0x7f91e6de7b20:
0x7f91e6de7b30:
0x7f91e6de7b40:
0x7f91e6de7b50:
0x7f91e6de7b60:
0x7f91e6de7b70:
0x7f91e6de7b80:
0x7f91e6de7b90:
0x7f91le6de7bald:
0x7f91e6de7bbo:
0x7f91e6de7bcO:
0x7f91e6de7bdo:
0x7f91e6de7be0:
ox7f91e6de7bf0:
Ox7f91e6de7c00:
ox7f91e6de7c10:
0x7f91le6de7c20:
0x7f91e6de7c30:
ox7f91e6de7c40:
ox7f91e6de7c50:
0x7f91e6de7c60:
0x7f91le6de7c70:
0x7f91e6de7c80:
ox7f91e6de7c90:
ox7f91e6de7ca0:
0x7f91e6de7cbo:
0x7f91le6de7ccO:
0x7f91e6de7cdo:
0x7f91e6de7ce0:
0x7f9lebde7cfO:
0x7f91e6de7d00:
0x7f91le6de7d10:
0x7f91e6de7d20:
0x7f91e6de7d30:
0x7f91le6de7d40:
0x7f91e6de7d50:
0x7f91e6de7d60:
0x7f91le6de7d70:
Ox7f91e6de7d80:
0x7f91e6de7d90:
0x7f91le6de7da0:
ox7f91e6de7dbo:
0x7f91e6de7dco:
0x7f91e6de7ddo:
0x7f91le6de7de0:
0x7f91le6de7dfO:
0x7f91e6de7e00:
0x7f91e6de7el0:
0x7f91e6de7e20:
0x7f91e6de7e30:

0x0 o0x0

0x0 0x0

0x0 0x0

0x0 0x0

0x0 ox0

0x0 0x0

ox0 0x0

0x0 0x0

ox0 o0x0

0x7f91e6de7d60 ©Ox401cO5 <procF+88>
0x0 0x100000000

oxffffffff ox2

oxffffffff ox0

ox0 o0x0

0x0 o0x0

0x0 ox0

ox0 0x0

ox0 0x0

0x0 o0x0

0x0 o0x0

0x0 0x0

0x0 0x0

0x0 0x0

0x0 0x0

ox0 o0x0

0x0 0x0

0x0 0x0

0x0 o0x0

0x0 0x0

0x0 o0x0

0x0 0x0

0x0 0x0

0x0 o0x0

ox0 0x0

0x0 0x0

0x0 0x0

0x0 0x0

0x0 ox0

0x0 ox0

0x0 0x0

0x0 0x0

ox0 ox0

ox0 o0x0

0x7f91e6de7d70 ©0x401cl1l6 <procE+14>
0x7f91e6de7d80 0x401c31 <bar_one+24>
0x7f91e6de7d90 0x401c42 <foo_one+l4>
0x7f91e6de7dbO® ©x401c5b <thread_one+22>
0x0 ox0

ox0 0x403173 <start_thread+243>
0x0 0x7f91e6de8700
0x7f91e6de8700 ©x83fb3fb8616de639
Ox7ffcec97d22e ©Ox7ffcec97d22f
0x7f91e6de8700 0x0O
0x7cd8f2049aede639 0x83fb3138035fe639
0x0 0x0

0x0 0x0

0x0 0x0

--Type <RET> for more, q to quit, c to continue without paging--

Ox7f91e6de7e40:

0x0 0x0

214

0x7f91le6de7e50: 0Ox0 0x40061al1f48adcboo
0x7f91leb6de7e60: 0OxO 0x7f91e6de8700
0x7f91eb6de7e70: 0x7f91e6de8700 0x44430f <clone+63>
0x7f91e6de7e80: ©x0 0x0
0x7f91e6de7e90: ©x0 0x0
0x7f91le6de7ead: 0OxO 0x0
0x7f91le6de7eb0: ©x0 0x0
0x7f91leb6de7ecO: ©x0 0x0
0x7f91leb6de7edod: 0x0 ox0
0x7f91leb6de7ee0: 0OxO 0x0
0x7f91leb6de7ef0: 0Ox0 0x0
0x7f91e6de7f00: 0Ox0 0x0
0x7f91eb6de7f10: Ox0 ox0
0x7f91e6de7120: 0Ox0 ox0
0x7f91e6de7f30: 0Ox0 0x0
0x7f91le6de7f40: 0Ox0 0x0
0x7f91e6de7f50: 0Ox0 0x0
0x7f91eb6de7f60: 0Ox0O o0x0
0x7f91eb6de7f70: Ox0 ox0
0x7f91e6de7f80: 0©x0 0x0
0x7f91e6de7f90: ©x0 0x0
Ox7f91e6de7fa0: 0x0 oxe
ox7f91e6de7fbo: 0x0 oxe
Ox7f91e6de7fcO: 0x0 oxe
0x7f91leb6de7fdo: ©x0 0x0
0x7f91leb6de7fe0: 0Ox0 0x0
0x7f9leb6de7ffO: 0x0 oxe
0x7f91e6de8000: 0x0 oxe
0x7f91e6de8010: ©x0 0x0
0x7f91e6de8020: 0Ox0 0x0
0x7f91e6de8030: 0x0 0x0
0x7f91e6de8040: 0x0 oxe
0x7f91e6de8050: 0x0 oxe
0x7f91e6de8060: 0OxO 0x0
0x7f91e6de8070: 0Ox0 0x0
0x7f91e6de8080: 0x0 ox0
0x7f91e6de8090: ©x0 0x0
0x7f91e6de80a0: 0x0 oxe
0x7f91e6de80bO: ©x0 0x0
0x7f91e6de80cO: 0Ox0 0x0
0x7f91e6de80d0: 0x0 oxe
0x7f91e6de80e0: 0x0 oxe
0x7f91e6de80f0: 0Ox0 0x0
0x7f91e6de8100: 0x0 0x0
0x7f91e6de8110: 0x0O ox0
0x7f91e6de8120: ©x0 0x0
0x7f91e6de8130: 0Ox0 0x0
0x7f91e6de8140: 0x0 0x0
0x7f91e6de8150: ©x0 0x0
0x7f91e6de8160: 0©x0 0x0
0x7f91e6de8170: 0Ox0 0x0
0x7f91e6de8180: 0Ox0 0x0
0x7f91e6de8190: 0Ox0 o0x0
0x7f91e6de81a0: 0Ox0 o0x0
0x7f91e6de81b0: 0Ox0 0x0
0x7f91e6de81cO: 0Ox0 0x0
--Type <RET> for more, q to quit, c to continue without paging--
0x7f91e6de81d0: ©x0 0x0
0x7f91e6de81e0: 0Ox0 0x0
0x7f91e6de81f0: 0Ox0 oxe

215

0x7f91e6de8200: 0OxO 0x0
0x7f91e6de8210: Ox0 0x0
0x7f91e6de8220: 0Ox0 o0x0
0x7f91e6de8230: 0Ox0 ox0
0x7f91e6de8240: 0Ox0 ox0
0x7f91e6de8250: 0Ox0 0x0
0x7f91e6de8260: 0Ox0 0x0
0x7f91e6de8270: 0Ox0 ox0
0x7f91e6de8280: 0Ox0 ox0
0x7f91e6de8290: 0Ox0 0x0
0x7f91e6de82a0: 0Ox0 0x0
0x7f91e6de82b0: ©x0 0x0
0x7f91e6de82cO: ©x0 0x0
0x7f91e6de82d0: 0Ox0 ox0
0x7f91e6de82e0: 0OxO 0x0
0x7f91e6de82f0: 0Ox0 0x0
0x7f91e6de8300: 0Ox0 0x0
0x7f91e6de8310: 0Ox0 o0x0
0x7f91e6de8320: Ox0 ox0
0x7f91e6de8330: 0Ox0 0x0
0x7f91e6de8340: 0Ox0 0x0
0x7f91e6de8350: 0x0 oxe
0x7f91e6de8360: 0x0 oxe
0x7f91e6de8370: 0x0 oxe
0x7f91e6de8380: 0Ox0 0x0
0x7f91e6de8390: ©x0 0x0
0x7f91e6de83a0: 0x0 oxe
0x7f91e6de83b0: 0x0 oxe
0x7f91e6de83cO: 0Ox0 0x0
0x7f91e6de83d0: ©x0 0x0
0x7f91e6de83e€0: 0Ox0 0x0
0x7f91e6de83f0: 0x0 oxe
0x7f91e6de8400: 0x0 oxe
0x7f91e6de8410: 0x0 0x0
0x7f91e6de8420: 0x0 0x0
0x7f91e6de8430: 0Ox0 0x0
0x7f91e6de8440: 0©x0 0x0
0x7f91e6de8450: 0x0 ox0
0x7f91e6de8460: 0x0 0x0
0x7f91e6de8470: 0x0 0x0
0x7f91e6de8480: 0©x0 0x0
0x7f91e6de8490: 0©x0 0x0
0x7f91e6de84a0: 0Ox0 0x0
0x7f91e6de84b0: ©x0 0x0
0x7f91e6de84cO: 0Ox0 0x0
0x7f91e6de84d0: ©x0 0x0
0x7f91e6de84e0: 0x0 ox0
0x7f91e6de84f0: 0Ox0 0x0
0x7f91e6de8500: ©x0 0x0
0x7f91e6de8510: ©x0 0x0
0x7f91e6de8520: 0Ox0 0x0
0x7f91e6de8530: 0Ox0 0x0
0x7f91e6de8540: 0Ox0 o0x0
0x7f91e6de8550: 0Ox0 o0x0
--Type <RET> for more, q to
0x7f91e6de8560: 0Ox0 0x0
0x7f91e6de8570: 0Ox0 0x0
0x7f91e6de8580: 0©x0 0x0
0x7f91e6de8590: ©x0 0x0
0x7f91e6de85a0: 0Ox0 oxe

quit, c¢ to continue without paging--

216

0x7f91e6de85b0: 0Ox0 0x0

0x7f91e6de85cO: 0Ox0 0x0
Ox7f91e6de85d0: 0Ox0 ox0
0x7f91e6de85e0: 0Ox0 ox0
0x7f91e6de85f0: ©x0 0x0
0x7f91e6de8600: 0OxO 0x0
0x7f91e6de8610: 0Ox0 0x0
0x7f91e6de8620: ©x0 0x0
0x7f91e6de8630: 0©x0 0x0
0x7f91e6de8640: 0Ox0 0x0
0x7f91e6de8650: 0Ox0 0x0
0x7f91e6de8660: 0OxO 0x0
0x7f91e6de8670: 0OxO ox0
0x7f91e6de8680: ©x0 0x0

0x7f91e6de8690: Ox7f91e6de8db8 ©x4claad® <_nl_global locale>

0x7f91e6de86a0: Ox4claad® <_nl global_ locale> Ox4claco <_nl global locale+32>
Ox7f91e6de86b0: Ox4claa8 <_nl_global_ locale+8> ©x0

Ox7f91e6de86cO: 0x49bdo® < nl C LC CTYPE tolower+512> ©x49c300 < _nl C LC_CTYPE_toupper+512>

0x7f91e6de86d0: 0x49ccP® < nl C_LC_CTYPE_class+256> ox0
0x7f91e6de86€0: 0Ox0 0x0
0x7f91e6de86f0: 0Ox0 0x0

0x7f91e6de8700: 0x7f91e6de8700 ©Oxec3b50
0x7f91e6de8710: Ox7f91e6de8700 0Ox1

0x7f91e6de8720: 0x0 0x40061a1f48adcboo
0x7f91e6de8730: Oxf31lcclfd9fdc30b6 ox0
0x7f91e6de8740: 0Ox0 0x0
0x7f91e6de8750: 0x0 0x0
0x7f91e6de8760: 0x0 0x0
0x7f91e6de8770: 0©x0 0x0
0x7f91e6de8780: ©x0 0x0
0x7f91e6de8790: ©x0 0x0
0x7f91e6de87a0: 0x0 0x0
0x7f91e6de87b0: 0x0 0x0
0x7f91e6de87cO: 0Ox0 0x0
0x7f91e6de87d0: ©x0 0x0
0x7f91e6de87e0: 0Ox0 0x0
0x7f91e6de87f0: 0Ox0 oxe
0x7f91e6de8800: 0x0 oxe
0x7f91e6de8810: 0©x0 0x0
0x7f91e6de8820: 0Ox0 0x0
0x7f91e6de8830: 0x0 oxe
0x7f91e6de8840: 0x0 0x0
0x7f91e6de8850: 0Ox0 0x0
0x7f91e6de8860: 0Ox0 0x0
0x7f91e6de8870: 0x0 0x0
0x7f91e6de8880: 0x0 oxe
0x7f91e6de8890: ©x0 0x0
0x7f91e6de88a0: 0Ox0 0x0
0x7f91e6de88b0: ©x0 0x0
0x7f91e6de88cO: 0x0 oxe
0x7f91e6de88d0: 0Ox0 0x0
0x7f91e6de88e0: 0OxO 0x0
--Type <RET> for more, q to quit, c to continue without paging--
0x7f91e6de88f0: 0Ox0 o0x0
0x7f91e6de8900: 0Ox0 0x0
0x7f91e6de8910: 0Ox0 0x0
0x7f91e6de8920: 0Ox0 0x0
0x7f91e6de8930: 0©x0 0x0
0x7f91e6de8940: 0x0 0x0
0x7f91e6de8950: ©x0 0x0

217

0x4c0120 <stack_used> ©Ox7f91e65e79cO
0x1260 ©x7f91e6de89e0
Ox7f91e6de89e@ Oxffffffffffffffe0

0x7f91eb6de7ddo 0x0

0x7f91e6de8al0 0x0O

0x7f91e6de8960: 0OxO 0x0
0x7f91e6de8970: ©Ox0 0x0
0x7f91e6de8980: 0Ox0 o0x0
0x7f91e6de8990: 0Ox0 ox0
0x7f91e6de89a0: ©x0 0x0
0x7f91e6de89b0: ©x0 0x0
0x7f91e6de89cO:

0x7f91e6de89d0O:

0x7f91e6de89e0:

0x7f91e6de89f0: ©x0 0x0
0x7f91e6de8a00:

0x7f91e6de8al0: ©x0 0x0
0x7f91e6de8a20: ©x0 0x0
0x7f91e6de8a30: ©x0 0x0
0x7f91e6de8ad0: 0Ox0 0x0
0x7f91e6de8ab0: 0Ox0 0x0
0x7f91e6de8ab0: 0OxO 0x0
0x7f91e6de8a70: ©x0 0x0
0x7f91e6de8a80: ©x0 0x0
0x7f91e6de8a90: ©x0 0x0
0x7f91le6de8aad: 0Ox0 0x0
0x7f91e6de8ab0: 0x0 oxe
0x7f91e6de8acO: 0x0 oxe
0x7f91e6de8ado: 0x0 oxe
0x7f91e6de8aecO: 0Ox0 0x0
0x7f91le6de8afO: 0Ox0 0x0
0x7f91e6de8b00: 0x0 oxe
0x7f91e6de8b10: 0x0 0x0
0x7f91e6de8b20: ©x0 0x0
0x7f91e6de8b30: 0Ox0 ox0
0x7f91e6de8b40: ©x0 0x0
0x7f91e6de8b50: 0x0 oxe
0x7f91e6de8b60: 0x0 oxe
0x7f91e6de8b70: ©x0 0x0
0x7f91e6de8b80: ©x0 0x0
0x7f91e6de8b90: ©x0 0x0
0x7f91e6de8bad: ©x0 oxe
0x7f91e6de8bbo: ©x0 oxe
0x7f91e6de8bcO: 0x0 ox0
0x7f91e6de8bdo: ©x0 0x0
0x7f91e6de8bed: 0x0 oxe
0x7f91e6de8bfO: ©x0 oxe
0x7f91e6de8c00: 0OxO 0x0
0x7f91e6de8clO:

0x7f91e6de8c20: 0Ox0 0x0
0x7f91e6de8c30: 0Ox0 oxe
0x7f91e6de8c40: 0Ox0 0x0
0x7f91e6de8c50: 0Ox0 0x0
0x7f91e6de8c60: 0OxO 0x0
0x7f91e6de8c70: 0Ox0 0x0
--Type <RET> for more, q to
0x7f91e6de8c80: 0Ox0 0x0
0x7f91e6de8c90: 0Ox0 o0x0
0x7f91e6de8cad: 0x0 0x0
0x7f91e6de8cbd: 0Ox0 0x0
0x7f91e6de8ccO: 0Ox0 0x0
0x7f91e6de8cdo: 0Ox0 0x0
0x7f91e6de8ced: 0Ox0 0x0
0x7f91e6de8cfO: 0x0 0x0
0x7f91e6de8d00: 0©x0 oxe

quit, c to continue without paging--

218

8. See that the reconstruction of the stack trace is possible because of the standard function prologue and

0x7f91e6de8d10: ©x0 0x0

0x7f91e6de8d20: Ox16eaf938be3c7 0Ox0

0x7f91e6de8d30: ©x0 0x0

0x7f91e6de8d40: 0x401c45 <thread_one> 0x0

0x7f91e6de8d50: ©x0 0x0

0x7f91e6de8d60: ©x0 0x0

0x7f91e6de8d70: ©x0 0x0

0x7f91e6de8d80: ©x0 0x0

0x7f91e6de8d90: 0x7f91e65e8000 0x801000

0x7f91le6de8dad: ©x1000 ©0x1000

0x7f91e6de8dbO: ©x0 0x0

0x7f91e6de8dcO: ©x0 0x0

0x7f91e6de8ddo: ©x0 0x0

0x7f91e6de8ded: ©x0 0x0

0x7f91e6de8dfO: ©x0 0x0

0x7f91e6de8e00: 0OxO 0x0

0x7f91e6de8el0: 0OxO 0x0

0x7f91e6de8e20: ©x0 0x0

0x7f91e6de8e30: ©x0 0x0

0x7f91e6de8e40: 0Ox0 0x0

0x7f91e6de8e50: 0Ox0 0x0

0x7f91e6de8e60: 0Ox0 oxe

0x7f91e6de8e70: 0x0 0x0

0x7f91e6de8e80: 0x0 oxe

0x7f91e6de8e90: 0Ox0 0x0

0x7f91e6de8ead: 0Ox0 0x0

0x7f91e6de8eb0: 0x0 oxe

Ox7f91e6de8ecO: 0x0 oxe

0x7f91e6de8edd: 0x0 0x0

0x7f91e6de8eed: 0OxO ox0

0x7f91le6de8efO: 0Ox0 0x0

0x7f91e6de8f00: 0x0 oxe

0x7f91e6de8f10: 0x0 oxe

0x7f91e6de8f20: 0Ox0 0x0

0x7f91e6de8f30: 0Ox0 0x0

0x7f91e6de8f40: 0x0 oxe

0x7f91e6de8f50: 0x0 oxe

0x7f91e6de8f60: 0x0 oxe

0x7f91e6de8f70: 0Ox0 0x0

0x7f91e6de8f80: 0©x0 0x0

0x7f91e6de8f90: 0x0 oxe

0x7f91e6de8fa0: 0x0 oxe

0x7f91e6de8fbO: ©x0 0x0

0x7f91e6de8fcO: 0Ox0 0x0

0x7f91e6de8fdO: ©x0 0x0

0x7f91e6de8fe0: 0x0 oxe

Ox7f91e6de8ff0: 0x0 oxe

epilogue:

[...]

0x7f91e6de70a0: Ox7f91le6de72cO® ©x401cO5 <procF+88>

0x7f91e6de72c@: 0x7f91le6de74e0 ©x401cO5 <procF+88>

0x7f91e6de74e0: 0x401c05 <procF+88>
: Ox7f91e6de7920 ©0x401cO5 <procF+88>

0x7f91e6de7920: Ox7f91le6de7b40® ©x401cO5 <procF+88>

0x7f91e6de7b40: 0x7f91e6de7d60 ©x401cO5 <procF+88>

0x7f91e6de7d60: Ox7f91e6de7d70 ©x401cl6 <procE+14>

0x7f91e6de7d70: Ox7f91e6de7d80 ©x401c31 <bar_one+24>

219

0x7f91e6de7d80: 0x7f91e6de7d90 0x401c42 <foo_one+1l4>
0x7f91e6de7d90: 0x7f91e6de7db@® 0x401c5b <thread_one+22>
0x7f91e6de7dbo: 0x0 0x403173 <start_thread+243>

(gdb) disass procF
Dump of assembler code for function procF:

0x0000000000401bad <+0>: push %rbp
0x0000000000401bae <+1>: mov %rsp,%rbp
0x0000000000401bb1l <+4>: sub $0x210,%rsp
0x0000000000401bb8 <+11>: mov %edi, -0x204 (%rbp)
0x0000000000401bbe <+17>: lea -0x200(%rbp) ,%rdx
0x0000000000401bc5 <+24>: mov $0x0, %eax
0x0000000000401bca <+29>: mov $0x40, %ecx
0x0000000000401bct <+34>: mov %rdx,%rdi
0x0000000000401bd2 <+37>: rep stos %rax,%es: (%rdi)
0x0000000000401bd5 <+40>: movl $Oxffffffff,-0x200(%rbp)
0x0000000000401bdf <+50>: mov -0x204(%rbp) ,%eax
0x0000000000401be5 <+56>: add $0x1, %eax
0x0000000000401be8 <+59>: mov %eax, -0x1f8(%rbp)
0x0000000000401bee <+65>: movl $oxffffffff, -ox1fe(%rbp)
0x0000000000401bf8 <+75>: mov -0x1f8(%rbp) ,%eax
0x0000000000401bfe <+81>: mov %eax, %edi
0x0000000000401c00 <+83>: callg ©ox401bad <procF>

=> 0x0000000000401c0O5 <+88>: nop
0x0000000000401c06 <+89>: leaveq
0x0000000000401cO7 <+90>: retq

End of assembler dump.

9. Use the back trace command variant to get to the bottom of the stack trace:
(gdb) bt -20

#15398 ©x0000000000401cO5 in procF () at pthread_create.c:688
#15399 0x0000000000401c05 in procF () at pthread create.c:688
#15400 0©x0000000000401cO5 in procF () at pthread_create.c:688
#15401 0x0000000000401cO5 in procF () at pthread_create.c:688
#15402 ©x0000000000401cO5 in procF () at pthread_create.c:688
#15403 0©x0000000000401c05 in procF () at pthread create.c:688
#15404 0©x0000000000401cO5 in procF () at pthread_create.c:688
#15405 0x0000000000401cO5 in procF () at pthread_create.c:688
#15406 0x0000000000401c05 in procF () at pthread_create.c:688
#15407 0x0000000000401c05 in procF () at pthread_create.c:688
#15408 0x0000000000401cO5 in procF () at pthread_create.c:688
#15409 0x0000000000401c05 in procF () at pthread_create.c:688
#15410 0x0000000000401c05 in procF () at pthread_create.c:688
#15411 0x0000000000401cO5 in procF () at pthread_create.c:688
#15412 0x0000000000401c16 in procE () at pthread_create.c:688

#15413 0x0000000000401c31 in bar_one () at pthread_create.c:688

#15414 0x0000000000401c42 in foo_one () at pthread_create.c:688

#15415 0x0000000000401c5b in thread_one () at pthread_create.c:688

#15416 0x0000000000403173 in start_thread (arg=<optimized out>) at pthread_create.c:486
#15417 0x000000000044430f in clone ()

220

Exercise A6 (A64, GDB)

Goal: Learn how to identify stack overflow, stack boundaries, reconstruct stack trace.
Patterns: Stack Overflow (User Mode).

1. Load core.19393 dump file and App6 executable from the A64/App6 directory:

~/ALCDA2/A64/App6$ gdb -c core.19393 -se Appé6

GNU gdb (Ubuntu 12.1-@ubuntul~22.04) 12.1

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to
Reading symbols from Appé6...

(No debugging symbols found in App6)

‘'word". ..

warning: Can't open file /home/opc/ALCDA2/App6/App6 during file-backed mapping note processing
[New LWP 19394]

[New LWP 19393]

[New LWP 19398]

[New LWP 19397]

[New LWP 19396]

[New LWP 19395]

Core was generated by " ./App6'.

Program terminated with signal SIGSEGV, Segmentation fault.
#0 0x00000000004031ec in procF ()

[Current thread is 1 (LWP 19394)]

2. Set logging to a file in case of lengthy output from some commands and set color highlighting off:
(gdb) set logging file App6.log

(gdb) set logging enabled on

Copying output to App6.log.

Copying debug output to App6.log.

(gdb) set style enabled off

3. List threads:

(gdb) info threads

Id Target Id Frame

* 1 LWP 19394 0x00000000004031ec in procF ()
2 LWP 19393 0x000000000040ca54 in nanosleep ()
3 LWP 19398 0x000000000040ca54 in nanosleep ()
4 LWP 19397 0x000000000040ca54 in nanosleep ()

221

5 LWP 19396 0x000000000040ca58 in nanosleep ()

6 LWP 19395 0x000000000040ca54 in nanosleep ()
4, If we try to print the problem stack trace, we get an endless number of frames, so we quit:
(gdb) bt

#0 0Ox00000000004031ec in procF
#1 0x0000000000403244 in procF
#2 0x0000000000403244 in procF
#3 0x0000000403244 in procF
#4 0x00000000403244 in procF
#5 0x0000000000403244 in procF
#6 0x0000000000403244 in procF
#7 0x0000000000403244 in procF
#8 0x0000000403244 in procF
#9 0x00000403244 in procF
#10 0x0000000000403244 in procF
#11 0x0000000000403244 in procF
#12 0x0000000000403244 in procF
#13 Ox0000000000403244 in procF
#14 0x0000000000403244 in procF
#15 0x0000000000403244 in procF
#16 0x0000000000403244 in procF
#17 Ox0000000000403244 in procF
#18 0x0000000000403244 in procF
#19 0x0000000000403244 in procF
#20 0x0000000000403244 in procF
#21 0x0000000000403244 in procF
#22 0x0000000000403244 in procF
#23 Ox0000000000403244 in procF
#24 0x0000000000403244 in procF
#25 0x0000000000403244 in procF
#26 0x0000000000403244 in procF
#27 0x0000000000403244 in procF
#28 0x0000000000403244 in procF
#29 0x0000000000403244 in procF
#30 0x0000000000403244 in procF
#31 Ox0000000000403244 in procF
#32 0x0000000000403244 in procF
#33 Ox0000000000403244 in procF
#34 0x0000000000403244 in procF
#35 0x0000000000403244 in procF
#36 0x0000000000403244 in procF
#37 0x0000000000403244 in procF
#38 0x0000000000403244 in procF
#39 0x0000000000403244 in procF
#40 0x0000000000403244 in procF
#41 0x0000000000403244 in procF
#42 0x0000000000403244 in procF
#43 0x0000000000403244 in procF
#44 0x0000000000403244 in procF
#45 0x0000000000403244 in procF
#46 0x0000000000403244 in procF
#47 0x0000000000403244 in procF
#48 0x0000000000403244 in procF
--Type <RET> for more, q to quit
#49 0x0000000000403244 in procF
#50 0x0000000000403244 in procF
#51 0x0000000000403244 in procF
#52 0x0000000000403244 in procF

Nl N SN N N N N N N N N N N

c to continue without paging--

AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN N AN AN AN AN AN AN N AN AN AN AN AN AN AN AN AN AN AN AN AN N AN AN AN AN AN AN AN AN AN AN AN A

~— N N

222

#53 0x0000000000403244 in procF
#54 0x0000000000403244 in procF
#55 0x0000000000403244 in procF
#56 0x0000000000403244 in procF
#57 0x0000000000403244 in procF
#58 0x0000000000403244 in procF
#59 0x0000000000403244 in procF
#60 0x0000000000403244 in procF
#61 Ox0000000000403244 in procF
#62 0x0000000000403244 in procF
#63 0x0000000000403244 in procF
#64 0x0000000000403244 in procF
#65 0x0000000000403244 in procF
#66 0x0000000000403244 in procF
#67 0x0000000000403244 in procF
#68 0x0000000000403244 in procF
#69 0x0000000000403244 in procF
#70 0x0000000000403244 in procF
#71 0x0000000000403244 in procF
#72 0x0000000000403244 in procF
#73 0x0000000000403244 in procF
#74 0x0000000000403244 in procF
#75 0x0000000000403244 in procF
#76 0©x0000000000403244 in procF
#77 0x0000000000403244 in procF
#78 0x0000000000403244 in procF
#79 0x0000000000403244 in procF
#80 0x0000000000403244 in procF
#81 0x0000000000403244 in procF
#82 0x0000000000403244 in procF
#83 0x0000000000403244 in procF
#84 0x0000000000403244 in procF
#85 0x0000000000403244 in procF
#86 0x0000000000403244 in procF
#87 0Ox0000000000403244 in procF
#88 0x0000000000403244 in procF
#89 0x0000000000403244 in procF
#90 0x0000000000403244 in procF
#91 0x0000000000403244 in procF
#92 0x0000000000403244 in procF
#93 0x0000000000403244 in procF
#94 0x0000000000403244 in procF
#95 0x0000000000403244 in procF
#96 0x0000000000403244 in procF
#97 0x0000000000403244 in procF
--Type <RET> for more, q to quit, c to continue without paging--
#98 0x0000000000403244 in procF ()

#99 0x0000000000403244 in procF ()

#100 0x000000VLOR403244 in procF
#101 0x0000000000403244 in procF
#102 0x0000000403244 in procF
#103 0x0000000R403244 in procF
#104 0x0000000000403244 in procF
#105 0x0000000000403244 in procF
#106 0x00000VLV403244 in procF
#107 0x0000000V403244 in procF
#108 0x00000VVLLLR403244 in procF
#109 0x0000000000403244 in procF
#110 0x000000000R403244 in procF
#111 0x000000V403244 in procF

AN N AN
Nl N S N N N S S N S N N N S N

AN AN AN AN AN AN AN AN AN AN A
N N N N N N N N N N N

223

#112 0x0000000000403244 in procF ()
#113 0x0000000000403244 in procF ()
#114 ©x0000000000403244 in procF ()
#115 0x0000000000403244 in procF ()
#116 0x0000000000403244 in procF ()
#117 ©x0000000000403244 in procF ()
#118 0Ox0000000000403244 in procF ()
#119 0x0000000000403244 in procF ()
#120 0x0000000000403244 in procF ()
#121 0x0000000000403244 in procF ()
#122 0x0000000000403244 in procF ()
#123 0x0000000000403244 in procF ()
#124 0x0000000000403244 in procF ()
#125 0x0000000000403244 in procF ()
#126 0x0000000000403244 in procF ()
#127 0©x0000000000403244 in procF ()
#128 0x0000000000403244 in procF ()
#129 0x0000000000403244 in procF ()
#130 0x0000000000403244 in procF ()
#131 0x0000000000403244 in procF ()
#132 0©x0000000000403244 in procF ()
#133 0x0000000000403244 in procF ()
#134 0x0000000000403244 in procF ()
#135 0x0000000000403244 in procF ()
#136 0x0000000000403244 in procF ()
#137 0©x0000000000403244 in procF ()
#138 0x0000000000403244 in procF ()
#139 0x0000000000403244 in procF ()
#140 0©x0000000000403244 in procF ()
#141 0x0000000000403244 in procF ()
#142 0x0000000000403244 in procF ()
#143 0x0000000000403244 in procF ()
#144 0x0000000000403244 in procF ()
#145 ©x0000000000403244 in procF ()
#146 0©x0000000000403244 in procF ()
--Type <RET> for more, q to quit, c to continue without paging--q
Quit

Note: It looks like a stack overflow.

5. Check if this is a stack overflow indeed. The stack region can be identified from App6.pmap.19393 from the
thread number. Since the problem thread has LWP 19394, it should be located just below the main stack region:

19393: ./App6
0000000000400000 768K r-x-- App6
00000000004 0000 128K rw--- App6

0000000030220000 256K rw--- [anon]
0000 fff685c0000 64K ----- [anon]
0000ffff685d0000 8192K rw--- [anon]
0000ffff68ddoooo 64K ----- [anon]
0000ffff68de000O® 8192K rw--- [anon]
000Of 6950000 64K ----- [anon]
0000ffff695f0000 8192K rw--- [anon]
0000ffff69df0000 64K ----- [anon]
0000f 6900000 8192K rw--- [anon]
0000ff 62600000 64K ----- [anon]
0000ffff62610000 8192K rw--- [anon]
0000ffff62e10000 64K r---- [anon]
0000ffff62e20000 64K r-x-- [anon]

224

total 42752K

6. Check that manually based on the stack pointer value and section boundary addresses:

(gdb) x $sp
oxffff6a610000: ©x00000000

(gdb) x $sp-10
oxffff6a60fff6: Ox00000000

(gdb) frame 1
#1 0©x0000000000403244 in procF ()

(gdb) x $sp
oxffff6a610210: 0x6a610430

(gdb) frame 2
#2 0x0000000000403244 in procF ()

(gdb) x $sp
oxffff6a610430: Ox6a610650

(gdb) maintenance info sections
Exec file: " /home/ubuntu/ALCDA2/A64/App6/App6', file type elf64-littleaarch64.

[0] 0x00400190->0x004001b0 at 0x00000190: .note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
[1] 0x004001b0->0x004001d4 at 0x000001bO: .note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
[2] 0x004001d8->0x00400250 at 0x000001d8: .rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS
[3] 0x00400250->0x00400264 at 0x00000250: .init ALLOC LOAD READONLY CODE HAS_CONTENTS
[4] 0x00400270->0x004002c0 at 0x00000270: .plt ALLOC LOAD READONLY CODE HAS_CONTENTS
[5] 0Xx004002c0->0x00487158 at 0x000002cO: .text ALLOC LOAD READONLY CODE HAS_CONTENTS
[6] 0x00487158->0x00488e28 at 0x00087158: _ libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
[7] 0x00488e28->0x00489278 at 0x00088e28: _ libc_thread_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
[8] 0x00489278->0x00489288 at 0x00089278: .fini ALLOC LOAD READONLY CODE HAS_CONTENTS
[9] 0x00489290->0x004a176d at 0x00089290: .rodata ALLOC LOAD READONLY DATA HAS_CONTENTS
[10] 0x004a176d->0x004al76e at 0x000al76d: .stapsdt.base ALLOC LOAD READONLY DATA HAS_CONTENTS
[11] 0x004a1770->0x004alea8 at 0x000al770: _ libc_IO_vtables ALLOC LOAD READONLY DATA HAS_CONTENTS
[12] 0x004alea8->0x004alf10 at Ox0@0Palea8: _ libc_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS
[13] 0x004a1110->0x004a1f18 at 0x000alfle: _ libc_atexit ALLOC LOAD READONLY DATA HAS_CONTENTS
[14] 0x004a1118->0x004a1f28 at 0x000alfl8: _ libc_thread_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS
[15] 0x004a1128->0x004b0594 at 0x000alf28: .eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS
[16] 0x004b0594 ->0x004b0751 at Ox00ObO594: .gcc_except_table ALLOC LOAD READONLY DATA HAS_CONTENTS
[17] 0x004cfb20->0x004cfb4a8 at 0x000bfb20: .tdata ALLOC LOAD DATA HAS_CONTENTS
[18] 0x004cfb48->0x004cfb98 at 0x00Obfb48: .tbss ALLOC
[19] 0x004cfba8->0x004cfb50 at 0x000bfb48: .init_array ALLOC LOAD DATA HAS_CONTENTS
[20] 0x004cfb50->0x004cfb60 at 0x000bfb50: .fini_array ALLOC LOAD DATA HAS_CONTENTS
[21] 0x004cfb60->0x004cfb68 at 0x00Obfb60: .jcr ALLOC LOAD DATA HAS_CONTENTS
[22] 0x004cfb68->0x004cff24 at 0x000bfb68: .data.rel.ro ALLOC LOAD DATA HAS_CONTENTS
[23] 0x004cff28->0x004cffe8 at 0x000Obff28: .got ALLOC LOAD DATA HAS_CONTENTS
[24] 0x004cffe8->0x004d0028 at 0x00Obffe8: .got.plt ALLOC LOAD DATA HAS_CONTENTS
[25] 0x004d0030->0x004d1580 at 0x000cPV30: .data ALLOC LOAD DATA HAS_CONTENTS
[26] 0x004d1580->0x004d8050 at 0x000c1580: .bss ALLOC
[27] 0x004d8050->0x004d8088 at 0x0VAc1580: _ libc_freeres_ptrs ALLOC
[28] 0XxX00000000->0x00000031 at 0x000c1580: .comment READONLY HAS_CONTENTS
[29] 0x00000000->0x00001cbd at 0x000c15b4: .note.stapsdt READONLY HAS_CONTENTS
Core file: " /home/ubuntu/ALCDA2/A64/App6/core.19393', file type elf64-littleaarch64.
[e] 0x00000000 - >0x00002838 at 0x000VO3f8: note® READONLY HAS_CONTENTS
[1] 0x00000000 - >0x00000110 at 0x00VR4A7c: .reg/19394 HAS_CONTENTS
[2] 0XxX00000000->0x00000110 at 0x0000047c: .reg HAS_CONTENTS
[3] 0x00000000 - >0x00000080 at 0x0PVV644: .note.linuxcore.siginfo/19394 HAS_CONTENTS
[4] 0x00000000->0x00000080 at 0x000V644: .note.linuxcore.siginfo HAS_CONTENTS
[5] 0x00000000->0x00000160 at 0x000V6d8: .auxv HAS_CONTENTS
[6] 0x00000000 - >0x00000076 at Ox00VR84c: .note.linuxcore.file/19394 HAS_CONTENTS
[7] 0x00000000 - >0x00000076 at 0x00VB84c: .note.linuxcore.file HAS_CONTENTS
[8] 0x00000000 - >0x00000210 at 0x000008d8: .reg2/19394 HAS_CONTENTS
[9] 0x00000000 - >0x00000210 at 0x000008d8: .reg2 HAS_CONTENTS
[10] 0x00000000 - >0x00000008 at 0x0PBRafc: .reg-aarch-tls/19394 HAS_CONTENTS
[11] 0x00000000 - >0x00000008 at 0x0LBRafc: .reg-aarch-tls HAS_CONTENTS
[12] 0x00000000 - >0x00000108 at 0x00VOb18: .reg-aarch-hw-break/19394 HAS_CONTENTS
[13] 0x00000000->0x00000108 at 0x000VOb18: .reg-aarch-hw-break HAS_CONTENTS

225

[14] 0x00000000->0x00000108 at 0x00000c34: .reg-aarch-hw-watch/19394 HAS_CONTENTS
[15] 0x00000000->0x00000108 at 0x0000OCc34: .reg-aarch-hw-watch HAS_CONTENTS
[16] 0x00000000->0x00000110 at 0x00000dd8: .reg/19393 HAS_CONTENTS

--Type <RET> for more, q to quit,

to continue without paging--

[17] 0x00000000->0x00000210 at 0x000OTO4: .reg2/19393 HAS_CONTENTS

[18] 0x00000000->0x00000008 at 0x00001128: .reg-aarch-tls/19393 HAS_CONTENTS

[19] 0x00000000->0x00000108 at 0x00001144: .reg-aarch-hw-break/19393 HAS_CONTENTS

[20] 0x00000000->0x00000108 at 0x00001260: .reg-aarch-hw-watch/19393 HAS_CONTENTS

[21] 0x00000000->0x00000110 at 0x00001404: .reg/19398 HAS_CONTENTS

[22] 0x00000000->0x00000210 at 0x00001530: .reg2/19398 HAS_CONTENTS

[23] 0x00000000->0x00000008 at 0x00001754: .reg-aarch-tls/19398 HAS_CONTENTS

[24] 0x00000000->0x00000108 at 0x00001770: .reg-aarch-hw-break/19398 HAS_CONTENTS

[25] 0x00000000->0x00000108 at 0x0000188c: .reg-aarch-hw-watch/19398 HAS_CONTENTS

[26] 0x00000000->0x00000110 at 0x00001a30: .reg/19397 HAS_CONTENTS

[27] 0x00000000->0x00000210 at 0x00001b5c: .reg2/19397 HAS_CONTENTS

[28] 0x00000000 - >0x00000008 at 0x00001d80: .reg-aarch-tls/19397 HAS_CONTENTS

[29] 0x00000000->0x00000108 at 0x00001d9c: .reg-aarch-hw-break/19397 HAS_CONTENTS

[30] 0x00000000->0x00000108 at 0x00001eb8: .reg-aarch-hw-watch/19397 HAS_CONTENTS

[31] 0Xx00000000->0x00000110 at 0x0000205c: .reg/19396 HAS_CONTENTS

[32] 0x00000000->0x00000210 at 0x00002188: .reg2/19396 HAS_CONTENTS

[33] 0x00000000 - >0x00000008 at 0x000023ac: .reg-aarch-tls/19396 HAS_CONTENTS

[34] 0Xx00000000->0x00000108 at 0x000023c8: .reg-aarch-hw-break/19396 HAS_CONTENTS

[35] 0x00000000->0x00000108 at 0x000024e4: .reg-aarch-hw-watch/19396 HAS_CONTENTS

[36] 0X00000000->0x00000110 at 0x00002688: .reg/19395 HAS_CONTENTS

[37] 0X00000000->0x00000210 at 0x000027b4: .reg2/19395 HAS_CONTENTS

[38] 0X00000000->0x00000008 at 0x000029d8: .reg-aarch-tls/19395 HAS_CONTENTS

[39] 0x00000000->0x00000108 at 0x000029f4: .reg-aarch-hw-break/19395 HAS_CONTENTS

[40] 0x00000000->0x00000108 at 0x00002b10: .reg-aarch-hw-watch/19395 HAS_CONTENTS

[41] 0x00400000->0x00410000 at 0x00010000: loadla ALLOC LOAD READONLY CODE HAS_CONTENTS
[42] 0x00410000->0x004Cc0000 at 0x00020000: loadlb ALLOC READONLY CODE

[43] 0x004c0000->0x00420000 at 0x00020000: load2 ALLOC LOAD HAS_CONTENTS

[44] 0x30a220000->0x30ae0000 at 0x00040000: load3 ALLOC LOAD HAS_CONTENTS

[45] Oxffff685c0000->0xffff685d0000 at 0x00080000: load4 ALLOC LOAD READONLY HAS_CONTENTS
[46] oxffff685d0000->0xffff68ddoo00 at 0x00090000: load5 ALLOC LOAD HAS_CONTENTS

[47] oxffff68ddo000->0xffff68de0000 at 0x00890000: load6 ALLOC LOAD READONLY HAS_CONTENTS
[48] Oxffff68de0000->0xffff695€0000 at 0x008a00LO: load7 ALLOC LOAD HAS_CONTENTS

[49] Oxffff695e0000->0xffff695f0000 at 0x010a0000: load8 ALLOC LOAD READONLY HAS_CONTENTS
[50e] Oxffff695f0000->0xffff69df0000 at 0x010b0GEO: load9 ALLOC LOAD HAS_CONTENTS

[51] Oxffff69df0000->0xffff69e00000 at 0x018b00LO: loadl® ALLOC LOAD READONLY HAS_CONTENTS
[52] Oxffff69e00000->0xffff6a600000 at 0x018c000O: loadll ALLOC LOAD HAS_CONTENTS

[53] Oxffff6a600000->0xffff6a610000 at 0x020c0000: loadl2 ALLOC LOAD READONLY HAS_CONTENTS
[54] Oxffff6a610000->0xffff62e10000 at 0x020d0000: loadl3 ALLOC LOAD HAS_CONTENTS

[55] oxffff6ael0000->0xffff6ae20000 at 0x028d0000: loadl4 ALLOC LOAD READONLY HAS_CONTENTS
[56] oxffff6ae20000->0xffff6ae30000 at 0x028e0000: loadl5 ALLOC LOAD READONLY CODE HAS_CONTENTS
[57] oxffffe3b20000->0xffffe3b50000 at 0x028f0000: loadl6é ALLOC LOAD HAS_CONTENTS

Note: The stack pointer points to the start of the stack region. The addresses below it should be inaccessible at

runtime. However, the committed pages were included in the crash dump, and we see zeroes since GDB can read

them.

7.

(gdb) x/1@24a oxffff6ae10000-0x2000

Oxffff6ae0e000: 0x0 0x0
Oxffff6ae0e010: 0x0 0x0
Oxffff6ae0e020: 0x0 oxe
Oxffff6ae0e030: 0x0 oxe
Oxffff6ae0e040: 0x0 0x0
Oxffff6ae0e050: 0x0 0x0
Oxffff6aec0e060: 0x0 oxe
Oxffff6ae0ed70: 0x0 oxe
Oxffff6aec0e080: 0x0 oxe
Oxffff6ae0e090: 0x0 0x0
Oxffff6ae0e0ad: 0x0 0x0
Oxffff6aec0edbod: 0x0 oxe
Oxffff6ae0edco: 0x0 oxe
Oxffff6ae0e0do: 0x0 0x0
Oxffff6ae0e0ed: 0x0 0x0

226

Dump the bottom of the raw stack to see execution residue, such as thread startup:

Oxffff6ae0e0f0: 0Ox0 0x0
Oxffff6ae0el00: 0Ox0 0x0
oxffff6ae0elld: 0©x0 0x0
Oxffff6ae0el20: 0x0 0x0
Oxffff6ae0el30: 0x0 0x0
Oxffff6ae0eldd: 0x0O ox0
Oxffff6ae0el50: 0Ox0 0x0
Oxffff6ae0el60: 0Ox0 0x0
Oxffff6ae0el70: 0©x0 0x0
Oxffff6ae0el80: 0Ox0 0x0
Oxffff6ae0el90: 0Ox0 0x0
Oxffff6aedelad: 0OxO 0x0
oxffff6ae0elbd: oxffff6aede3dd 0x403244 <procF+92>
Oxffff6ae0elcd: 0Ox0 0x300000000
Oxffff6ae@eldd: Oxffffffff ox4
Oxffff6aedeled: Oxffffffff ox0
Oxffff6aePelfO: 0Ox0 0x0
Oxffff6ae0e200: 0x0 0x0
Oxffff6ae0e210: 0©x0 0x0
Oxffff6ae0e220: 0Ox0 0x0
Oxffff6ae0e230: 0x0 0x0
oxffff6ae0e240: 0Ox0 0x0
oxffff6ae0e250: 0x0 oxe
oxffff6ae0e260: 0Ox0 oxe
Oxffff6ae0e270: 0x0 0x0
Oxffff6ae0e280: 0x0 0x0
oxffff6ae0e290: 0x0 0x0
oxffff6ae0e2a0: 0x0 oxe
Oxffff6ae0e2bod: 0x0 0x0
Oxffff6aePe2cO: 0Ox0 0x0
Oxffff6ae0e2dd: 0Ox0 0x0
oxffff6ae0e2e0: 0Ox0 oxe
oxffff6ae0e2f0: 0Ox0 oxe
Oxffff6ae0e300: 0x0 0x0

--Type <RET> for more, q to quit, c to continue without paging--
oxffff6ae0e310: 0x0 oxe
oxffff6ae0e320: 0x0 oxe
oxffff6ae0e330: 0x0 oxe
oxffff6ae0e340: 0x0 0x0
Oxffff6ae0e350: 0Ox0 0x0
oxffff6ae0e360: 0Ox0 oxe
oxffff6ae0e370: 0x0 oxe
oxffff6ae0e380: 0x0 0x0
oxffff6ae0e390: 0©x0 0x0
Oxffff6ae0e3a0d: 0Ox0 0x0
oxffff6ae0e3bo: ox0 oxe
oxffff6aee3cO: 0x0 oxe
oxffff6ae0e3dd: Oxffff6ae0e5f0 0x403244 <procF+92>
Oxffff6ae0e3ed: 0x0 0x200000000
Oxffffeae0e3fo: Oxffffffff ox3
Oxffff6ae0ed00: Oxffffffff 0x0
Oxffffb6ae0e410: 0Ox0 0x0
oxffff6ae0ed20: 0x0 0x0
oxffff6ae0ed430: 0x0 0x0
Oxffffb6ae0e440: 0x0 0x0
Oxffff6ae0ed50: 0Ox0 0x0
Oxffff6ae0ed60: 0x0 0x0
oxffff6ae0ed70: 0x0 0x0
Oxffff6ae0ed480: 0x0 0x0
Oxffff6ae0ed490: 0x0 0x0

227

Oxffff6ae0edad: 0Ox0 0x0

Oxffff6ae0edbo: 0x0 0x0

oxffff6ae0edco: 0x0 0x0

oxffff6ae0ed4do: 0x0 ox0

Oxffff6ae0eded: 0x0 0x0

Oxffff6ae0edfo: 0x0 0x0

Oxffff6ae0e500: 0x0 0x0

oxffff6ae0e510: 0x0 0x0

Oxffff6ae0e520: 0x0 0x0

Oxffff6ae0e530: 0x0 0x0

Oxffff6ae0e540: 0x0 0x0

Oxffff6ae0e550: 0Ox0 0x0

Oxffff6ae0e560: 0x0 ox0

oxffff6ae0e570: 0x0 0x0

Oxffff6ae0e580: 0x0 0x0

Oxffff6ae0e590: 0x0 0x0

Oxffff6ae0e5a0: 0Ox0 0x0

oxffff6ae0e5b0: 0x0 0x0

Oxffff6ae0e5c0: 0x0 0x0

Oxffff6ae0e5do: 0©x0 0x0

Oxffff6aede5e0: 0x0 0x0

oxffff6ae0e5f0: Oxffff6ae0e810 0©x403260 <procE+16>
oxffff6ae0e600: Oxffff6ae0e670 ©Ox100000000
Oxffff6ae0e610: Oxffffffff ox2

--Type <RET> for more, q to quit, c to continue without paging--
Oxffff6ae0e620: Oxffffffff ox0

oxffff6ae0e630: 0Ox0 oxe

oxffff6ae0e640: 0Ox0 oxe

Oxffff6ae0e650: 0Ox0 0x0

Oxffff6ae0e660: 0x0 0x0

Oxffff6ae0e670: 0x0 0x0

oxffff6ae0e680: 0Ox0 oxe

oxffff6ae0e690: 0x0 oxe

Oxffff6ae0e6ad: 0Ox0 0x0

oxffff6ae0e6bd: 0x0 0x0

oxffff6aee6cO: Ox0 oxe

oxffff6aee6do: Ox0 oxe

oxffff6aeceb6e0d: 0Ox0 oxe

oxffff6ae0e6f0: 0x0 0x0

Oxffff6ae0e700: 0x0 0x0

oxffff6ae0e710: 0x0 0x0

oxffff6ae0e720: 0x0 0x0

oxffff6ae0e730: 0x0 0x0

oxffff6ae0e740: 0x0 0x0

oxffff6ae0e750: 0©x0 0x0

oxffff6ae0e760: Ox0 oxe

oxffff6ae0e770: 0x0 0x0

Oxffff6ae0e780: 0x0 0x0

Oxffff6ae0e790: 0x0 0x0

oxffff6aee7a0: 0Ox0 oxe

Oxffff6aede7b0d: 0Ox0 0x0

Oxffff6aePe7cO: 0OxO 0x0

oxffff6ae0e7do: 0x0 0x0

oxffff6ae0e7e0: 0x0 0x0

oxffff6ae0e7f0: 0Ox0 oxe

Oxffff6ae0e800: 0x0 0x0

oxffff6ae0e810: Oxffff6ae0e820 0Ox40327c <bar_one+20>
oxffff6ae0e820: Oxffff6ae0e830 0x403290 <foo_one+l2>
oxffff6ae0e830: Oxffff6ae0e840 0x4032a8 <thread_one+l6>
oxffff6ae0e840: oxffff6ae0e860 0x404cd4 <start_thread+180>

228

Oxffff6ae0e850:

Oxffff6ae0fo80 0x0

oxffff6ae0e860: 0Ox0O 0x429c20 <thread_start+48>
oxffff6ae0e870: oOxffff6ae0f080 ©0x4d7890 < _ default pthread_attr>
Oxffff6ae0e880: 0x4d0000 0x0
Oxffff6ae0e890: Oxffff6aedf49c Oxffff6ae0f080
Oxffff6ae0e8a0: 0Ox0 0x0

Oxffff6ae0e8b0: Oxffff6aedf080 ©x4d7890 <_ default_pthread_attr>
oxffff6ae0e8cO: 0x4d0000 0x403298 <thread_one>
oxffff6ae0e8do: 0©x0 oxffff6ae0f770
Oxffff6ae0e8ed: 0x30a20610 0x4d7890 <__default_pthread_attr>
Oxffff6ae0e8f0: 0x10000 Ox810000

Oxffff6ae0e900: Oxffff6ae0e860 Ox5afbedf415cdf4fb
Oxffff6ae0e910: 0Ox0 Ox5afb120b7f6d503b
Oxffff6ae0e920: 0x0 0x0

--Type <RET> for more, q to quit, c to continue without paging--
Oxffff6ae0e930: 0Ox0 0x0

Oxffff6ae0e940: 0Ox0 0x0

Oxffff6ae0e950: 0x0 0x0

Oxffff6ae0e960: 0x0 0x0

Oxffff6ae0e970: 0Ox0 0x0

Oxffff6ae0e980: 0x0 0x0

oxffff6ae0e990: 0x0 0x0

oxffff6ae0e9a0: 0x0 oxe

oxffff6ae0e9b0: 0x0 0x0

Oxffff6ae0e9cO: 0Ox0 0x0

Oxffff6ae0e9dod: 0Ox0 ox0

oxffff6ae0e9e0: 0Ox0 oxe

oxffff6ae0e9f0: 0Ox0 oxe

Oxffff6ae0eald: 0Ox0 0x0

Oxffff6aePeald: 0Ox0 0x0

Oxffff6ae0ea20: 0x0 0x0

oxffff6aeeal30: 0x0 oxe

oxffff6ae0eadd: 0Ox0 oxe

Oxffff6aedeab0: 0Ox0 0x0

Oxffff6ae0eabd: 0OxO ox0

oxffff6aeea70: 0x0 oxe

oxffff6ae0eal80: 0x0 oxe

oxffff6ae0ea%90: 0x0 oxe

Oxffff6aeBeaad: 0Ox0 0x0

oxffff6aedeabd: 0x0 0x0

oxffff6aeleacd: 0x0 oxe

oxffff6aeeadd: 0x0 oxe

Oxffff6aeOeaecd: 0x0 0x0

oxffff6aedeafd: 0x0 0x0

oxffff6ae0ebod: 0x0 0x0

oxffff6aedeblo: ox0 oxe

oxffff6ae0eb20: 0x0 oxe

oxffff6aedeb30: 0x0 0x0

oxffff6aedebd40: 0x0 0x0

oxffff6ae0eb50: 0x0 oxe

Oxffff6aedeb60d: 0Ox0 0x0

Oxffff6aedeb70: 0x0 0x0

oxffff6ae0eb80: 0x0 ox0

oxffff6ae0eb90: 0x0 0x0

Oxffff6aedebad: 0x0O 0x0

Oxffff6aedebbd: 0x0 0x0

Oxffff6aedebcOd: 0Ox0 0x0

oxffff6aedebdd: 0x0 0x0

oxffff6aedebed: 0x0 0x0

oxffff6ae0ebfo: ox0 oxe

229

Oxffff6aePec0Od: 0Ox0 0x0
Oxffff6aePeclod: 0Ox0O ox0
oxffff6aedec20: 0x0 0x0
oxffff6aedec30: 0x0 0x0
--Type <RET> for more, q to
Oxffff6aedecd40: 0Ox0 0x0
Oxffff6aedec50: 0Ox0 0x0
Oxffff6aePec60: 0x0 0x0
oxffff6aePec70: 0x0 0x0
Oxffffb6aePec80: 0x0O 0x0
Oxffff6aePec90: 0Ox0 0x0
Oxffff6aePecad: 0Ox0 0x0
oxffff6aedecbd: ©x0 0x0
oxffff6aeBeccd: 0x0 0x0
OxffffeaePecdd: 0Ox0 0x0
Oxffff6aePeced: 0Ox0 0x0
OxffffeaePecfd: 0x0 0x0
oxffff6ae0edood: 0x0 0x0
oxffff6aededlo: ©x0 0x0
oxffff6ae0ed20: 0Ox0 0x0
oxffff6ae0ed30: 0x0 0x0
oxffff6ae0ed40: Ox0 oxe
oxffff6aeded50: 0Ox0 oxe
oxffff6aeed60: Ox0 oxe
oxffff6aePed70: 0x0 0x0
Oxffff6ae0ed80: 0x0 0x0
oxffff6ae0ed90: 0x0 oxe
oxffff6aeedad: 0x0 ox0
oxffff6aededbod: 0x0 0x0
Oxffff6aePedcOd: 0Ox0 0x0
Oxffff6aededdd: ©x0 0x0
oxffff6aeeded: Ox0 oxe
oxffff6aededfo: 0Ox0 oxe
Oxffff6ae0eec0: 0Ox0 0x0
Oxffff6aedeeld: 0Ox0 0x0
oxffff6ae0ee20: 0x0 oxe
Oxffff6ae0ee30: 0x0 ox0
Oxffff6aec0eed0: 0x0 oxe
Oxffff6ae0ee50: 0x0 0x0
Oxffff6ae0ee60: 0Ox0 0x0
oxffff6aedee70: 0x0 oxe
oxffff6aec0ee80: 0x0 oxe
Oxffff6ae0ee90: 0x0 0x0
Oxffff6aedeead: 0Ox0 0x0
oxffff6aedeebd: 0x0 0x0
oxffff6aedeecd: 0x0 oxe
oxffff6aedeedd: 0x0 oxe
Oxffff6aeOeeed: 0Ox0 0x0
oxffff6aedeefd: 0x0 0x0
oxffff6ae0efo0: 0x0 oxe
oxffff6aedeflo: 0x0 oxe
oxffff6ae0ef20: 0x0 oxe
oxffff6ae0ef30: 0x0 0x0
oxffff6ae0ef40: 0x0 0x0
--Type <RET> for more, q to
oxffff6ae0ef50: 0x0 oxe
oxffff6ae0ef60: 0x0 oxe
oxffff6ae0ef70: 0x0 0x0
oxffff6ae0ef80: 0x0 0x0
Oxffff6ae0ef90: 0x0 oxe

quit, c¢ to continue without paging--

quit, c¢ to continue without paging--

230

0x4d0050 <stack used> Oxffffe6a5ff14e0
0x4bc100004bc2 Oxffff6ae0f160
Oxffff6aedfl60 Oxffffffffffffffeo

Oxffff6ae0e8b0 0x0

Oxffff6aePefad: 0Ox0 0x0
Oxffff6aedefbod: 0x0 0x0
oxffffeaedefco: 0x0 0x0
oxffff6aedefdo: ©x0 0x0
Oxffff6aedefed: 0x0 0x0
Oxffffeaedeffo: 0x0 0x0
Oxffff6ae0f000: 0x0 0x0
Oxffff6aeofo10: 0x0 ox0
Oxffff6aeo0f020: 0x0 ox0
Oxffff6ae0f030: 0x0 0x0
Oxffff6ae0f040: 0x0 0x0
Oxffff6ae0f050: 0Ox0 0x0
Oxffff6aeofo60: 0Ox0 ox0
oxffff6aeo0fo70: ox0 ox0
Oxffff6ae0f080: Ox1 0x0
Oxffff6ae0f090: 0x0 0x0
Oxffff6ae0f0ad: 0x0 0x0
Oxffff6aedfobo: ox0 o0x0
oxffff6ae0foco: 0x0 0x0
oxffff6ae0fodo: 0x0 0x0
Oxffff6ae0foed: 0x0 ox0
oxffff6aeo0fofo: oxe0 oxe
oxffff6ae0f100: 0x0 oxe
oxffff6ae0f110: 0x0 oxe
Oxffff6ae0f120: 0x0 0x0
Oxffff6ae0f130: 0x0 0x0
oxffff6ae0f140:

oxffff6ae0f150:

Oxffff6ae0f160:

Oxffff6aedf170: 0x0 0x0
Oxffff6ae0f180:

oxffff6ae0f190: 0x0 oxe
oxffff6aedflad: 0x0 oxe
oxffff6aedf1bo: ©x0 0x0
Oxffff6aedflco: 0Ox0 0x0
oxffff6ae0fl1do: 0xo0 oxe
oxffff6aedfled: 0x0 oxe
oxffff6aeofl1fo: 0x0 oxe
oxffff6ae0f200: 0x0 0x0
oxffff6ae0f210: 0x0 0x0
oxffff6ae0f220: 0x0 oxe
oxffff6ae0f230: 0x0 oxe
oxffff6ae0f240: 0x0 0x0
oxffff6aedf250: 0x0 0x0
--Type <RET> for more, q to
oxffff6ae0f260: 0x0 oxe
oxffff6ae0f270: 0x0 oxe
oxffff6ae0f280: 0x0 0x0
oxffff6ae0f290: 0x0 0x0
oxffff6aedf2a0: 0x0 oxe
oxffff6ae0f2bo: 0x0 oxe
oxffff6aedf2co: 0x0 oxe
Oxffff6aedf2do: oxo o0x0
oxffff6aedf2e0d: 0x0 0x0
oxffffeae0f2fo: 0x0 oxe
oxffff6ae0f300: 0x0 oxe
oxffff6ae0f310: 0x0 oxe
oxffff6ae0f320: 0x0 0x0
oxffff6ae0f330: 0x0 0x0
Oxffff6ae0f340: 0x0 oxe

quit, c to continue without paging--

231

Oxffff6aedf350: 0Ox0 0x0
Oxffff6aedf360: 0x0 0x0
Oxffff6aedf370: 0x0 o0x0
Oxffff6aed0f380: 0x0 ox0
Oxffff6ae0f390: Oxffff6aedf190 ©0x0
Oxffff6ae0f3a0: 0x0 0x0
Oxffff6aedf3b0: 0x0 0x0
oxffff6aedf3co: 0x0 0x0
Oxffff6aedf3do: oxo ox0
Oxffff6aedf3e0d: 0x0 0x0
Oxffff6aedf3f0: 0x0 0x0
Oxffff6ae0f400: 0x0 0x0
Oxffff6aedf410: ox0 ox0
Oxffff6aedf420: ox0 ox0
Oxffff6ae0f430: 0x0 0x0
Oxffff6ae0f440: 0x0 0x0
Oxffff6ae0f450: 0x0 0x0
oxffff6ae0f460: 0x0 0x0
oxffff6ae0f470: 0x0 ox0
Oxffff6ae0f480: 0x0 0x0
Oxffff6ae0f490: 0x0 0x0
oxffff6ae0f4a0: 0Ox0 oxe
oxffff6aedf4bo: 0x0 0x403298 <thread_one>
oxffff6aedf4co: oOx0 oxe
oxffff6aedf4do: 0x0 0x0
Oxffff6aedf4e0d: 0x0 0x0
oxffff6ae0f4fo: 0x0 ox0
oxffff6ae0f500: 0Ox0 oxe
Oxffff6aedf510: Oxffff6a600000 ©x810000
Oxffff6ae0f520: 0x10000 0x10000
Oxffff6aedf530: 0x0 0x0
oxffff6ae0f540: 0Ox0 oxe
oxffff6aedf550: 0Ox0 oxe
Oxffff6aedf560: 0x0 0x0
--Type <RET> for more, q to quit, c to continue without paging--
oxffff6ae0f570: 0x0 oxe
oxffff6ae0f580: 0x0 oxe
oxffff6ae0f590: 0x0 oxe
oxffff6aedf5a0: 0x0 0x0
oxffff6aedf5b0: 0©x0 0x0
oxffff6aedf5c0: 0x0 oxe
oxffff6ae0f5do: 0x0 oxe
Oxffff6aedf5e0: 0x0 0x0
oxffff6aedf5f0: 0x0 0x0
oxffff6ae0f600: 0x0 0x0
oxffff6ae0f610: 0x0 oxe
oxffff6ae0f620: 0x0 oxe
oxffff6ae0f630: 0x0 0x0
oxffff6ae0f640: 0x0 0x0
oxffff6ae0f650: 0x0 oxe
oxffff6ae0f660: 0x0 oxe
oxffff6ae0f670: 0x0 oxe
Oxffff6aed0f680: Ox0 o0x0
Oxffff6aedf690: 0Ox0 o0x0
oxffff6ae0f6a0: 0x0 oxe
oxffff6ae0f6bo: 0x0 oxe
oxffff6aedf6co: 0x0 oxe
oxffff6ae0f6do: 0x0 0x0
oxffff6ae0f6e0d: 0x0 0x0
oxffffeaeof6fo: 0x0 oxe

232

Oxffff6aeo0f700: 0x0 0x0

Oxffff6aedf710: 0Ox0 0x0
oxffff6aedf720: 0x0 ox0
oxffff6ae0f730: 0x0 0x0
oxffff6ae0f740: 0x0 0x0
Oxffff6aedf750: 0Ox0 0x0
Oxffff6aedf760: 0x0 0x0
oxffff6ae0f770: ©x30aald80 ox0

oxffff6ae0f780: Oxffff6ae0f538 0©x4d13c@ <_nl global locale>
oxffff6ae0f790: 0x4d13cO <_nl global_locale> 0x4d13e0 <_nl global locale+32>
oxffff6aedf7a0: 0x4d13c8 <_nl_global_ locale+8> ©x0

oxffff6aedf7b0: 0x48d280 <_nl C_LC_CTYPE_class+256> 0x48c980 <_nl C_LC_CTYPE_toupper+512>
oxffff6aedf7cO: 0x48c380 < nl C_LC_CTYPE_tolower+512> ©x@
oxffff6aedf7do: ©x0 0x0
Oxffff6aedf7e0: 0x0 0x0
Oxffff6aedf7f0: 0x0 0x0
Oxffff6ae0f800: 0x0 0x0
Oxffff6aedf810: 0Ox0 o0x0
Oxffff6aeo0f820: 0x0 ox0
oxffff6ae0f830: 0x0 0x0
Oxffff6ae0f840: 0x0 0x0
oxffff6ae0f850: 0x0 oxe
oxffff6ae0f860: 0Ox0 oxe
oxffff6ae0f870: 0x0 oxe
--Type <RET> for more, q to quit, c to continue without paging--
Oxffff6ae0f880: 0x0 0x0
oxffff6ae0f890: 0x0 oxe
oxffff6ae0f8a0: 0x0 oxe
oxffff6ae0f8b0: 0©x0 0x0
Oxffff6ae0f8cO: 0Ox0 0x0
Oxffff6ae0f8do: ©x0 0x0
oxffff6ae0f8e0: 0Ox0 oxe
oxffff6ae0f8f0: 0Ox0 oxe
Oxffff6ae0f900: 0x0 0x0
Oxffff6ae0f910: 0Ox0 0x0
oxffff6ae0f920: 0x0 oxe
oxffff6ae0f930: 0x0 oxe
oxffff6ae0f940: 0x0 ox0
oxffff6ae0f950: 0Ox0 0x0
Oxffff6ae0f960: 0©x0 0x0
oxffff6ae0f970: 0x0 oxe
oxffff6ae0f980: 0x0 oxe
Oxffff6ae0f990: 0©x0 0x0
oxffff6aedf9a0: 0x0 0x0
oxffff6ae0fobo: 0x0 0x0
oxffff6ae0f9co: 0x0 oxe
oxffff6ae0f9do: 0xo ox0
oxffff6aedf9e0: 0Ox0 0x0
oxffff6ae0f9fo: 0x0 0x0
oxffff6ae0fa00: 0Ox0 oxe
oxffff6ae0falo: 0x0 oxe
oxffff6ae0fa20: 0x0 oxe
oxffff6aedfa30: 0x0 0x0
oxffff6aedfado: 0x0 0x0
oxffff6ae0fa50: 0x0 oxe
oxffff6ae0fa60: 0Ox0 oxe
oxffff6ae0fa70: 0x0 oxe
oxffff6ae0fa80: 0x0 0x0
oxffff6ae0fa%90: 0x0 0x0
oxffff6ae0faad: 0x0 oxe

233

Oxffff6aedfabod: 0x0 0x0
Oxffff6aedfacO: 0Ox0 0x0
oxffffeaedfado: 0x0 0x0
oxffff6aedfaed: 0x0 0x0
oxffffeae0fafo: 0x0 ox0
Oxffff6aedfboO: 0x0 0x0
Oxffff6aedfblo: 0Ox0 0x0
oxffff6aedfb20: ox0 ox0
oxffff6aedfb30: ox0 ox0
Oxffff6aedfb40: 0x0 0x0
Oxffff6aedfb50: 0©x0 0x0
Oxffff6aedfb60: 0x0 0x0
oxffff6aedfb70: ©x0 0x0
oxffff6aedfb80: 0x0 0x0
--Type <RET> for more, q to
Oxffff6aedfb90: 0©x0 0x0
Oxffff6aedfbad: 0x0 0x0
oxffff6aed0fbbo: ©x0 0x0
oxffff6aedfbco: 0x0 0x0
oxffff6aedfbdo: ©x0 0x0
Oxffff6aedfbed: 0x0 0x0
oxffff6aedfbfo: 0x0 oxe
oxffff6ae0fco0: 0x0 oxe
oxffff6aedfclo: oxe0 oxe
Oxffff6aedfc20: 0x0 0x0
Oxffff6aedfc30: 0x0 0x0
oxffff6aedfc40: ox0 oxe
oxffff6aedfc50: 0Ox0 oxe
Oxffff6aedfc60: 0x0 0x0
oxffff6aedfc70: 0x0 0x0
Oxffff6aedfc80: 0x0 0x0
oxffff6aedfc90: 0x0 oxe
oxffff6aedfcad: 0Ox0 oxe
oxffff6aedfcbo: 0x0 0x0
oxffff6aedfcco: 0x0 0x0
oxffffeaedfcdo: 0x0 oxe
oxffff6aedfced: 0x0 oxe
oxffffeaedfcfo: 0x0 oxe
oxffff6ae0fdoo: 0xo 0x0
oxffff6aedfdlo: 0xo ox0
oxffff6aedfd20: 0x0 oxe
oxffff6aedfd30: 0x0 oxe
oxffff6aedfd40: 0x0 0x0
oxffff6aedfd50: 0©x0 0x0
oxffff6aedfd6o: 0x0 0x0
oxffff6aedfd70: 0x0 oxe
oxffff6ae0fd80: 0x0 oxe
oxffff6aedfdoo: ©x0 0x0
oxffff6aedfdad: 0x0 ox0
oxffffeaeofdbo: 0x0 oxe
oxffffeaedfdco: 0x0 oxe
oxffffeaedfddo: 0xo oxe
oxffff6aedfded: 0x0 0x0
oxffffeaedfdfo: oxo o0x0
oxffff6ae0fe00: 0x0 oxe
oxffff6aedfeld: 0x0 oxe
oxffff6ae0fe20: 0x0 oxe
oxffff6aedfe30: 0x0 0x0
oxffff6aedfed0: 0x0 0x0
oxffff6aedfe50: 0x0 oxe

quit, c to continue without paging--

234

Oxffff6aedfe60: Ox0 0x0

oxffff6aedfe70: 0Ox0 ox0
oxffff6ae0fe80: 0Ox0 oxe
oxffff6ae0fe90: 0x0 0x0
--Type <RET> for more, q to quit, c to continue without paging--
oxffff6aedfead: 0Ox0 ox0
oxffff6aedfebd: 0x0 ox0
oxffff6aedfeco: 0x0 0x0
oxffff6aeofedo: 0x0 0x0
oxffff6aedfeed: 0Ox0 ox0
oxffff6aedfefd: 0Ox0 ox0
oxffff6ae0ffo0: 0Ox0 ox0
oxffff6aeoffl10: ox0 0x0
oxffff6aedff20: ox0 0x0
oxffff6aedff30: 0Ox0 ox0
oxffff6aedff40: 0Ox0 ox0
oxffff6aedff50: 0Ox0 ox0
oxffff6aedff60: 0Ox0 0x0
oxffff6aedff70: ox0 0x0
oxffff6aedff80: 0Ox0 oxe
oxffff6aedffo0: 0Ox0 oxe
oxffff6aeoffad: 0x0 ox0
oxffff6aeoffbo: 0x0 ox0
oxffff6aeoffco: oxo ox0
oxffff6aedffdo: oxe0 (2°C)
oxffff6aedffed: 0Ox0 (2°C)
oxffff6aeofffo: oxo (]
8. See that the reconstruction of the stack trace is possible because of the standard function prologue and
epilogue:
[...]
oxffff6ae@elbd: Oxffff6ae@e3dd ©0x403244 <procF+92>
oxffff6ae0e3do: oxffff6aede5f0 ©x403244 <procF+92>
oxffff6ae0e5f0: 0x403260 <procE+16>
: Oxffff6ae@e820 0x40327c <bar_one+20>
oxffff6ae0e820: oOxffff6ae0e830 ©0x403290 <foo_one+l2>
oxffff6ae0e830: Oxffff6ae0e840 ©0x4032a8 <thread_one+l6>
Oxffff6ae0e840: Oxffff6ae@e860 0x404cd4 <start_thread+180>

(gdb) disass procF
Dump of assembler code for function procF:

0x00000000004031e8 <+0>: sub sp, sp, #0x210

0x00000000004031ec <+4>: stp x29, x30, [sp, #-16]!
0X00000000004031f0 <+8>: mov X29, sp

0x00000000004031f4 <+12>: add x1, x29, #Oxlc

0x00000000004031f8 <+16>: str wo, [x1]

0x00000000004031fCc <+20>: add X0, x29, #0x20

0X0000000000403200 <+24>: mov X2, #0x200 // #512
0x0000000000403204 <+28>: mov wl, #0x0 // #0
0x0000000000403208 <+32>: bl 0x400290

0x000000000040320C <+36>: add X0, x29, #0x20

0x0000000000403210 <+40>: mov wl, #Oxffffffff // #-1
0x0000000000403214 <+44>: str wl, [x0]

0x0000000000403218 <+48>: add X0, x29, #Oxlc

0x000000000040321c <+52>: 1dr wo, [x0]

0Xx0000000000403220 <+56>: add wl, we, #Ox1l

0x0000000000403224 <+60>: add X0, x29, #0x20

0x0000000000403228 <+64>: str wl, [x0, #8]

0Xx000000000040322C <+68>: add X0, x29, #0x20

235

0Xx0000000000403230
0Xx0000000000403234
0x0000000000403238
0x000000000040323C
0x0000000000403240
0x0000000000403244
0x0000000000403248
0x000000000040324c

<+72>:
<+76>:
<+80>:
<+84>:
<+88>:
<+92>:
<+96>:
<+100>:

End of

9.

assembler dump.

(gdb) bt -20

#15395
#15396
#15397
#15398
#15399
#15400
#15401
#15402
#15403
#15404
#15405
#15406
#15407
#15408
#15409
#15410
#15411
#15412
#15413
#15414

0x0000000000403244
0x0000000000403244
0x0000000000403244
0x0000000000403244
0x0000000000403244
0x0000000000403244
0x0000000000403244
0x0000000000403244
0x0000000000403244
0x0000000000403244
0x0000000000403244
0x0000000000403244
0x0000000000403244
0x0000000000403244
0x0000000000403260
0x000000000040327C
0x0000000000403290
0x00000000004032a8
0x0000000000404cd4
0x0000000000429c20

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

mov
str
add
1dr
bl

1dp
add
ret

procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF ()

procF ()

procE ()

bar_one ()
foo_one ()

AN AN AN AN AN AN AN AN AN AN AN
N N N N N N N N N N N

wl, #Oxffffffff

wl, [x0, #16]

X0, Xx29, #O0x20

wo, [x0, #8]
0x4031e8 <procF>
x29, x30, [sp], #16
sp, sp, #0x210

Use the back trace command variant to get to the bottom of the stack trace:

thread_one ()
start_thread ()
thread_start ()

236

// #-1

Exercise A6 (A64, WinDbg Preview)

Goal: Learn how to identify stack overflow, stack boundaries, reconstruct stack trace.
Patterns: Stack Overflow (User Mode).

1. Launch WinDbg Preview.

2. Load core.19393 dump file from the A64\App6 folder:

Microsoft (R) Windows Debugger Version 10.0.25111.1000 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\ALCDA2\A64\App6\core.19393]
64-bit machine not using 64-bit API

3k 3k 3k 3k >k sk ok >k ok %k k ko k path ValidatiOn Summar‘y 3k 3k 3k 3k 3k >k >k 3k ok ok %k >k sk k
Response Time (ms) Location
Deferred srv*
Symbol search path is: srv*

Executable search path is:

Generic Unix Version © UP Free ARM 64-bit (AArch64)
Machine Name:

System Uptime: not available

Process Uptime: not available

(4bc1.4bc2): Signal SIGSEGV (Segmentation fault) code SEGV_ACCERR (Invalid permissions for
mapped object) at oxffff6a60fffo*** WARNING: Unable to verify timestamp for App6
App6+0x3lec:

00000000° ©004031ec a9bf7bfd stp fp,1r,[sp,#-0x10]!

3. Set logging to a file in case of lengthy output from some commands:

0:000> .logopen C:\ALCDA2\A64\App6\App6.log
Opened log file 'C:\ALCDA2\A64\App6\App6.log

4. Specify the dump folder as the symbol path and reload symbols:

0:000> .sympath+ C:\ALCDA2\A64\App6\

Symbol search path is: srv*;C:\ALCDA2\A64\App6\

Expanded Symbol search path is:
cache*;SRV*https://msdl.microsoft.com/download/symbols;c:\alcda2\a64\app6\

fkokkkkkkkkkkk Path validation summary *¥¥¥skskskokokkokokk

Response Time (ms) Location
Deferred srv*
oK C:\ALCDA2\A64\App6\

*** WARNING: Unable to verify timestamp for App6

237

0:000> .reload
*** WARNING: Unable to verify timestamp for App6

Sk 3k 3k 3k 3k sk ok >k >k >k >k %k ok Symbol Loading Error Summapy 3k 3k 3k ok ok >k 3k sk ok ok ok >k >k >k
Module name Error
App6 The system cannot find the file specified

You can troubleshoot most symbol related issues by turning on symbol loading diagnostics (!sym
noisy) and repeating the command that caused symbols to be loaded.
You should also verify that your symbol search path (.sympath) is correct.

Note: We ignore warnings and errors as they are not relevant for now.

5. List threads:
0:000> ~*k 1

Unable to get thread data for thread ©

© Id: 4bcl.4bc2 Suspend: © Teb: 00000000 0000000 Unfrozen
Child-SP RetAddr Call Site
00 00POffff 62610000 000VPO0O 00403244 App6 ! procF+0x4

Unable to get thread data for thread 1
1 1Id: 4bcl.4bcl Suspend: © Teb: 00000000 ©00RVOVO Unfrozen
Child-SP RetAddr Call Site
00 0000ffff e3b450f0 00000000 ©0424d74 App6! _libc_nanosleep+0x24

Unable to get thread data for thread 2
2 1Id: 4bcl.4bc6 Suspend: © Teb: 00000000 00000000 Unfrozen
Child-SP RetAddr Call Site
00 0000ffff 68dce5f0 00000000 ©0424d74 App6! libc_nanosleep+0x24

Unable to get thread data for thread 3
3 1Id: 4bcl.4bc5 Suspend: © Teb: 00000000 00000000 Unfrozen
Child-SP RetAddr Call Site
00 000offff 695de5f0 00000000 ©0424d74 App6! _libc_nanosleep+0x24

Unable to get thread data for thread 4
4 1Id: 4bcl.4bcd Suspend: © Teb: 00000000 0000000 Unfrozen
Child-SP RetAddr Call Site
00 0000ffff 69dee5f0 00000000 ©0424d74 App6! _libc_nanosleep+0x28

Unable to get thread data for thread 5
5 1Id: 4bcl.4bc3 Suspend: © Teb: 00000000 0000 Unfrozen

Child-SP RetAddr Call Site

00 0000ffff 6a5fe5f0 00000000 ©0424d74 App6! _libc_nanosleep+0x24
6. If we try to print the problem stack trace, we get 256 frames before stopping:
0:000> k

Child-SP RetAddr Call Site

00 000Offff 62610000 0000VV0O 00403244 App6 ! procF+0x4

01 Q0POffff 62610210 0000VVV0 00403244 App6 ! procF+0x5c

02 000Offff 62610430 00000000 00403244 App6 ! procF+0x5c

03 000Offff 62610650 0VV0VVVO 00403244 App6 ! procF+0x5c

04 0000ffff 62610870 00000000 00403244 App6 ! procF+0x5c¢

05 000Offff 62610290 00000000 00403244 App6 ! procF+0x5c¢

06 00POffff 6a610ch0 0000VV00 00403244 App6 ! procF+0x5c

238

07
08
09
Qa
ob
oc
ed
Qe
of
10
11
12
13
14
15
16
17
18
19
la
1b
1c
1d
le
1f
20
21
22
23
24
25
26
27
28
29
2a
2b
2C
2d
2e
2f
30
31
32
33
34
35
36
37
38
39
3a
3b
3c
3d
3e
3f
40
41
42

0000ffff 6a610edo
0000ffff 6a61l10f0
0000ffff 62611310
0000ffff 62611530
0000ffff 62611750
0000ffff 62611970
0000ffff 6a611b90
0000ffff 6a611dbo
0000ffff 6a611fdo
0000ffff 6a6121f0
0000ffff 6a612410
0000ffff 62612630
0000ffff 62612850
0000ffff 6a612a70
0000ffff 6a612c90
0000ffff 6a612ebo
0000ffff 6a6130do
0000ffff 6a6132f0
0000ffff 62613510
0000ffff 6a613730
0000ffff 62613950
0000ffff 6a613b70
0000ffff 6a613d90
0000ffff 6a613fbo
0000ffff 6a6141do
0000ffff 6a6143f0
0000ffff 62614610
0000ffff 62614830
0000ffff 6a614a50
0000ffff 6a614c70
0000ffff 6a614e90
0000ffff 6a6150b0
0000ffff 6a6152d0
0000ffff 6a6154f0
0000ffff 62615710
0000ffff 62615930
0000ffff 6a615b50
0000ffff 6a615d70
0000ffff 6a615f90
0000ffff 6a6161bo
0000ffff 6a6163d0
0000ffff 6a6165f0
0000ffff 62616810
0000ffff 6a616a30
0000ffff 6a616c50
0000ffff 6261670
0000ffff 62617090
0000ffff 6a6172bo
0000ffff 6a6174do
0000ffff 6261760
0000ffff 62617910
0000ffff 6a617b30
0000ffff 6a617d50
0000ffff 6a617f70
0000ffff 62618190
0000ffff 626183b0
0000ffff 6a6185d0
0000ffff 6a6187f0
0000ffff 6a618al10
0000ffff 62618c30

00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000° 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244

App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6!procF+0x5c
App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6!procF+0x5c
App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 | procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c

239

43
44
45
46
47
48
49
4a
4b
4c
4d
4e
4f
50
51
52
53
54
55
56
57
58
59
5a
5b
5c
5d
Se
5f
60
61
62
63
64
65
66
67
68
69
6a
6b
6C
6d
6e
6f
70
71
72
73
74
75
76
77
78
79
7a
7b
7cC
7d
7e

0000ffff 6a618e50
0000ffff 62619070
0000ffff 62619290
0000ffff 6a6194bo
0000ffff 6a6196d0
0000ffff 6a6198f0
0000ffff 6a619b10
0000ffff 6a619d30
0000ffff 6a619f50
0000ffff 6a61al70
0000ffff 6a61a390
0000ffff 6a6la5bo
0000ffff 6a6la7do
0000ffff 6a61a9f0
0000ffff 6ablaclo
0000ffff 6a6lae30
0000ffff 6a61bo50
0000ffff 6a61b270
0000ffff 6a61b490
0000ffff 6a61b6bo
0000ffff 6a61b8do
0000ffff 6a6lbafo
0000ffff 6a61bdlo
0000ffff 6a61bf30
0000ffff 6a61cl50
0000ffff 6a61c370
0000ffff 6a61c590
0000ffff 6a61c7bo
0000ffff 6a61c9do
0000ffff 6a6lcbfo
0000ffff 6ablceld
0000ffff 6a61d030
0000ffff 6a61d250
0000ffff 6a61d470
0000ffff 6a61d690
0000ffff 6a61d8bo
0000ffff 6a6ldado
0000ffff 6a61dcfo
0000ffff 6a61dflo
0000ffff 6a61el30
0000ffff 6a61e350
0000ffff 6a61e570
0000ffff 6a61e790
0000ffff 6a61e9b0
0000ffff 6ab6lebdo
0000ffff 6a6ledfo
0000ffff 62611010
0000ffff 6a61f230
0000ffff 6a61f450
0000ffff 62611670
0000ffff 62611890
0000ffff 6a61fabo
0000ffff 6a6l1fcdo
0000ffff 6ablfefo
0000ffff 62620110
0000ffff 62620330
000Offff 62620550
0000ffff 62620770
0000ffff 62620990
0000ffff 62620bbo

00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000° 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000° 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244

App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6!procF+0x5c
App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6!procF+0x5c
App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 | procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c

240

7f
80
81
82
83
84
85
86
87
88
89
8a
8b
8c
8d
8e
8f
90
91
92
93
94
95
96
97
98
99
9a
9b
9c
9d
9e
9f
a0
al
a2
a3
a4
a5
a6
a7
a8
a9
aa
ab
ac
ad
ae
af
bo
bl
b2
b3
b4
b5
b6
b7
b8
b9
ba

0000 fff 6a620ddo
0000ffff 62620110
0000ffff 62621210
0000ffff 62621430
0000ffff 62621650
0000ffff 62621870
0000ffff 62621290
0000ffff 6a621cbo
0000ffff 6a621edo
0000ffff 62622010
0000ffff 62622310
0000 fff 62622530
0000ffff 62622750
0000ffff 62622970
0000 fff 6a622b90
0000 fff 6a622dbo
0000 fff 6a622fdo
0000ffff 62623110
0000ffff 62623410
0000ffff 62623630
0000ffff 62623850
0000ffff 6a623a70
0000ffff 6a623c90
0000ffff 6a623ebod
0000 fff 6a6240d0
000Offff 62624210
0000ffff 62624510
0000ffff 62624730
000Offff 62624950
000Offff 6a624b70
0000ffff 6a624d90
0000ffff 6a6241bo
0000ffff 6a6251d0
0000ffff 62625310
0000ffff 62625610
0000ffff 62625830
0000ffff 6a625a50
0000ffff 6a625c70
0000ffff 6262590
0000ffff 6a6260b0
0000ffff 626262d0
0000ffff 62626410
0000ffff 62626710
0000ffff 62626930
0000ffff 6a626b50
0000ffff 62626d70
0000ffff 62626190
0000ffff 6a6271bo
0000ffff 6a6273d0
0000ffff 62627510
0000ffff 62627810
0000ffff 62627230
0000ffff 6a627c50
0000ffff 6a627e70
0000ffff 62628090
0000ffff 626282b0
0000ffff 626284d0
0000ffff 62628610
0000ffff 62628910
0000ffff 6a628b30

00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000° 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000° 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244

App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6!procF+0x5c
App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6!procF+0x5c
App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 | procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c

241

bb
bc
bd
be
bf
co
cl
c2
c3
c4
c5
c6
c7
c8
c9
ca
cb
cc
cd
ce
cf
de
di
d2
d3
da
d5
deé
d7
ds
do
da
db
dc
dd
de
df
eo
el
e2
e3
e4
e5
e6
e7
e8
e9
ea
eb
ec
ed
ee
ef
fo
f1
f2
f3
f4
5
6

0000ffff 6a628d50
0000ffff 62628170
0000ffff 62629190
0000ffff 6a6293b0o
0000ffff 6a6295d0
0000ffff 6a6297f0
0000ffff 6a629al10
0000ffff 6a629c30
0000ffff 6a629e50
0000ffff 6a62a070
0000ffff 6a62a290
0000ffff 6a62a4bo
0000ffff 6a62a6do
0000ffff 6a62a8f0
0000ffff 6a62ablo
0000ffff 6a62ad30
0000ffff 6a62af50
0000ffff 6a62b170
0000ffff 6a62b390
0000ffff 6a62b5bo
0000ffff 6a62b7do
0000ffff 6a62b9f0
0000ffff 6a62bclo
0000ffff 6a62be30
0000ffff 6a62c050
0000ffff 6a62c270
0000ffff 6262c490
0000ffff 6a62c6b0o
0000ffff 6a62c8do
0000ffff 6a62cafo
0000ffff 6a62cd10
0000ffff 6a62ct30
0000ffff 6262d150
0000ffff 6a62d370
0000ffff 6a62d590
0000ffff 6262d7bo
0000ffff 6a262d9do
0000ffff 6a62dbfo
0000ffff 6a62deld
0000ffff 6a62e030
0000ffff 6a62e250
0000ffff 6a62e470
0000ffff 6a62e690
0000ffff 6a62e8b0
0000ffff 6a62eado
0000ffff 6a62ecfo
0000ffff 6a62ef10
0000ffff 6a62f130
0000ffff 6a62f350
0000ffff 62621570
000Offff 6a62f790
0000ffff 6262f9b0
0000ffff 6a62fbdo
0000ffff 6a62fdfo
0000ffff 62630010
0000ffff 62630230
0000ffff 62630450
0000ffff 62630670
0000ffff 62630890
0000ffff 6a630abo

00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000° 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244

App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6!procF+0x5c
App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6!procF+0x5c
App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 | procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 | procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c

242

7

0000ffff 6a630cdo

00000000 00403244

App6!procF+0x5c

8 000Offff 6a630ef0 0000000 00403244 App6 ! procF+0x5c
9 000effff 62631110 000D 00403244 App6 ! procF+0x5c
fa 0000ffff 62631330 00000000 00403244 App6 ! procF+0x5c
fb 0000ffff 62631550 00000000 00403244 App6 ! procF+0x5c¢

fc
fd
fe
ff

0000 fff 62631770
0000ffff 62631990
0000ffff 6a631bbo
0000ffff 6a631ddo

00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244

App6!procF+0x5c
App6!procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c

Note: We don’t see that start frames, and it looks like a stack overflow.

7. Check if this is a stack overflow indeed. The stack region can be identified from App6.pmap.19393 from the
thread number. Since the problem thread has TID=PID+1 (Id: 4bc1.4bc2), it should be located just below the main
stack region:

19393: . /App6

0000000000400000 768K r-x-- App6
0000000000400 128K rw--- App6
0000000030220000 256K rw--- [anon]
0000ffff685c0000 64K ----- [anon]
0000ffff685d0000 8192K rw--- [anon]
000offff68ddoooo 64K ----- [anon]
0000ffff68de0000 8192K rw--- [anon]
0000f 6950000 64K ----- [anon]
0000ffff695f0000 8192K rw--- [anon]
000offff69df0000 64K ----- [anon]
0000ffff69€00000 8192K rw--- [anon]
0000ff 62600000 64K ----- [anon]
0000ffff62610000 8192K rw--- [anon]
0000ffff6ae10000 64K r---- [anon]
0000ffff6ae20000 64K r-x-- [anon]
total 42752K

8. Check that manually based on the stack pointer value and section boundary addresses:
0:000> r sp

sp=0000fff{f6a610000

0:000> dp sp - 10

0000ffff 6a60fffo
0000ffff 62610000
0000ffff 62610010
0000ffff 62610020
0000ffff 62610030
0000ffff 62610040
000Offff 62610050
0000ffff 62610060

Note: The stack pointer points to the start of the stack region. The addresses below it should be inaccessible at
runtime. However, the committed pages were included in the crash dump, and we see zeroes since WinDbg can

read it.

00000000 00000000
00000000 0000
00000000 00000
00000000 000000
00000000 00000
00000000 000000
00000000 000000
00000000 0000

00000000 00000000
00000000 ©00VV00
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 000000
00000000 00000

243

0:000> !address

Mapping file section regions...
Mapping module regions...

BaseAddress EndAddress+1 RegionSize Type State Protect Usage
+ 0° 00000000 0" 00400000 0° 00400000 <unknown>
+ 0° 00400000 0" 00410000 0° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READ Image [App6
" /home/opc/ALCDA2/App6/App6"]
+ 0’ 00410000 0 004c0000 0" 000bo000 Image [App6
" /home/opc/ALCDA2/App6/App6"]
+ 0" 004c0000 0" 00420000 0700020000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Image [App6
" /home/opc/ALCDA2/App6/App6"]
+ 0" 004e0000 0’ 30220000 0" 305c0000 <unknown>
+ 0" 30220000 0" 302e0000 0° 00040000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <UNKNOWN> [evnvennnnennnnns 1
+ 0" 302e0000 ffff 685c0000 ffff 37ae0000 <unknown>
+ FFff 685c0000 FfFf 68500000 0°00010000 MEM_PRIVATE MEM_COMMIT <UNKNOWN> [eevvenneennnnnen]
+ ffff 685d0000 ffff" 68ddoooo 0° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown> [....iieuiinninnn.]
+ ffff 68ddoooo ffff 68de0000 0° 00010000 MEM_PRIVATE MEM_COMMIT <unknown> [
+ ffff 68de0000 ffff 6950000 0° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown> [
+ ffff 6950000 ffff 6950000 0° 00010000 MEM_PRIVATE MEM_COMMIT <unknown> [
+ ffff 6950000 ffff 69dfoe00 0700800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown> [..
+ ffff 69df0000 ffff 6900000 0° 00010000 MEM_PRIVATE MEM_COMMIT <unknown> [..
+ ffff 69€00000 ffff 62600000 0700800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown> [..
+ ffff 62600000 ffff 62610000 0700010000 MEM_PRIVATE MEM_COMMIT <unknown> [
+ ffff 62610000 ffff 6ae10000 0° 00800000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown> [
+ ffff 6210000 ffff 62220000 0700010000 MEM_PRIVATE MEM_COMMIT PAGE_READONLY <unknown> [.S...... FH..z...]
+ ffff 6ae20000 ffff 6ae30000 0° 00010000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READ Image [1linux_vdso_so; "linux-
vdso.so.1"]
+ ffff 6ae30000 ffff e3b20000 0" 78cf0000 <unknown>
+ ffff e3b20000 ffff e3b50000 ©° 00030000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE <unknown> [....iiiiiiiiinn.. 1
9. Dump the bottom of the raw stack with symbols to see execution residue, such as thread startup:

0:000> dps ffff 62el0000-2000 ffff 6ael0000

0000ffff 6ac0e000
0000ffff 62e0e008
0000ffff 6ae0e0l0
0000ffff 6ae0e0l18
0000ffff 6ae0e020
0000ffff 62e0e028
0000ffff 62e0e030
0000ffff 62e0e038
0000ffff 6ae0e040
0000ffff 6ae0e048
0000ffff 6ae0ed50
0000ffff 6ae0ed58
0000ffff 6ae0e060
0000ffff 6ae0e068
0000ffff 6ae0e070
0000ffff 6ae0e0d78
0000ffff 62e0e080
0000ffff 6ae0e088
0000ffff 6ae0e090
0000ffff 6ae0e098
0000ffff 6ae0ead
0000ffff 6ae0eda8
0000ffff 6ae0edbo
0000ffff 6ae0edb8
0000ffff 6ae0edco
0000ffff 6ae0edc8
0000ffff 6ae0e0do
0000ffff 6ae0edds
0000ffff 62e0e0e0d
0000ffff 6ae0ede8
0000ffff 62e0e0df0O
0000ffff 6ae0edf8
0000ffff 6ae0el00
0000ffff 6ae0el08
0000ffff 6ae0ello
0000ffff 6ae0ell8

00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 0000000
00000000 00000
00000000 00000
00000000 000000
00000000 000000
00000000 000000
00000000 0000000
00000000 0000
00000000 000000
00000000 000000
00000000 000000
00000000 00000000
00000000 0000
00000000 0000
00000000 V00O
00000000 00000000
00000000 0000
00000000 00000
00000000 00000
00000000 00000000
00000000 0000000

244

0000ffff 6aebel20
0000ffff 6ae0el28
0000ffff 6aebel30
0000ffff 6ae0el38
0000ffff 6ae0eld0
0000ffff 6ae0eld8
0000ffff 6aebel50
0000ffff 6ae0el58
0000ffff 6ae0el60
0000ffff 6ae0el68
0000ffff 6ae0el70
0000ffff 6ae0el78
0000ffff 6ae0el80
0000ffff 6ae0el188
0000ffff 6ae0el90
0000ffff 6ae0el98
0000ffff 6aelelad
0000ffff 6aedela8
0000ffff 6aedelbo
0000ffff 6aedelb8
0000ffff 6aedelco
0000ffff 6aedelc8
0000ffff 6aedeldo
0000ffff 6aedeld8
0000ffff 6aeleled
0000ffff 6aelele8
0000ffff 6aedelfo
0000ffff 6aedelf8
0000ffff 6ae0e200
0000ffff 6ae0e208
0000ffff 6aebe210
0000ffff 6ae0e218
0000ffff 6ae0e220
0000ffff 6ae0e228
0000ffff 6ae0e230
0000ffff 6ae0e238
0000ffff 6ae0e240
0000ffff 6ae0e248
0000ffff 6ae0e250
0000ffff 6ae0e258
0000ffff 62e0e260
0000ffff 62e0e268
0000ffff 6ae0e270
0000ffff 6ae0e278
0000ffff 6ae0e280
0000ffff 6ae0e288
0000ffff 6ae0e290
0000ffff 6ae0e298
0000ffff 6ae0e2a0
0000ffff 6aeBe2a8
0000ffff 6aede2bo
0000ffff 6aede2b8
0000ffff 6aeBe2cO
0000ffff 6aede2c8
0000ffff 6aebe2do
0000ffff 6aede2d8
0000ffff 6aebe2ed
0000ffff 6aebe2e8
0000ffff 6aede2f0
0000ffff 6ae0e2f8

00000000 V0000000
00000000 00000V
00000000 VOV
00000000 VOV
00000000 VPPV
00000000 0000V
00000000 0000V
00000000 00V
00000000 VPPV
00000000 0000V
00000000 0000V
00000000 0000V
00000000 VPPV
00000000 VOO
00000000 0000V
00000000 0000V
00000000 0000V
00000000 VPPV
0000ffff 6ae0e3do
00000000 00403244
00000000 0000V
00000003 0000V
00000000 ffffffff
00000000" 00000004
00000000 ffffffff
00000000 0000V
00000000 0000V
00000000 000V
00000000 0000V
00000000 0000V
00000000 0000V
00000000" 000V
00000000 000V
00000000 000V
00000000 000V
00000000" 000000
00000000" 0000V
00000000" 000000
00000000 000V
00000000 000V
00000000" 00000
00000000" 000000
00000000" 000V
00000000 000V
00000000 00V
00000000" 000000
00000000" 000000
00000000 000V
00000000 000V
00000000" 000000
00000000" 00000V
00000000" 0000000
00000000 000V
00000000 000V
00000000" 00000000
00000000" 0000V
00000000" 0000000
00000000 00V
00000000 00V
00000000" 0000V

App6! procF+0x5c

245

0000ffff 6ae0e300
0000ffff 6ae0e308
0000ffff 6aebe310
0000ffff 6ae0e318
0000ffff 6aebe320
0000ffff 6aede328
0000ffff 6aebe330
0000ffff 6ae0e338
0000ffff 6ae0e340
0000ffff 6aede348
0000ffff 6aebe350
0000ffff 6aede358
0000ffff 6ae0e360
0000ffff 6ae0e368
0000ffff 6aebe370
0000ffff 6aede378
0000ffff 6ae0e380
0000ffff 6ae0e388
0000ffff 6ae0e390
0000ffff 6ae0e398
0000ffff 6ae0e3a0
0000ffff 6aede3a8
0000ffff 6aede3bo
0000ffff 6aede3b8
0000ffff 6aede3cO
0000ffff 6aede3c8
0000ffff 6ae@e3d0O
0000ffff 6aede3d8
0000ffff 6aebe3e0
0000ffff 6aede3e8
0000ffff 6aebe3f0
0000ffff 6aede3f8
0000ffff 6ae0e400
0000ffff 6ae0e408
0000ffff 6ae0e410
0000ffff 62e0e418
0000ffff 62e0e420
0000ffff 6ae0e428
0000ffff 6ae0e430
0000ffff 6ae0e438
0000ffff 6ae0es440
0000ffff 6a2e0e448
0000ffff 6ae0e450
0000ffff 6ae0e458
0000ffff 6ae0ed60
0000ffff 62e0e468
0000ffff 62e0e470
0000ffff 6ae0e478
0000ffff 6ae0e480
0000ffff 62e0e488
0000ffff 6ae0e490
0000ffff 6ae0e498
0000ffff 6ae0es4ad
0000ffff 6aebesda8
0000ffff 6aebedbo
0000ffff 6aeded4b8
0000ffff 6aebedco
0000ffff 6aebesc8
0000ffff 6aededdo
0000ffff 6ae0e4d8

00000000 V0000000
00000000 V0000000
00000000 V0V
00000000 VYO
00000000 V0V
00000000 00000000
00000000 V000000
00000000 V0V
00000000 V0PV
00000000 V0000000
00000000 V0000000
00000000 00000V
00000000 V0PV
00000000 V0PV
00000000 00000000
00000000 V000000
00000000 00000000
00000000 V0PV
00000000 V0PV
00000000 0000000
00000000 000000
00000000 000V
00000000 000V
00000000 000V
00000000 00000000
00000000 V000000
0000ffff 6ae0e5f0
00000000 00403244
00000000 000000
00000002 00V
00000000 ffffffff
00000000 00000003
00000000 ffffffff
00000000 0000000
00000000 V00V
00000000 000V
00000000 000V
00000000 0000V
00000000 00V
00000000 00V
00000000 0000V
00000000 000000
00000000 V000000
00000000 V00000
00000000 V000000
00000000 000000
00000000 000V
00000000 V00V
00000000 V000000
00000000 0000V
00000000 V0000000
00000000 V0000000
00000000 V0V
00000000 V0V
00000000 V00V
00000000 V0000000
00000000 V0000000
00000000 V0V
00000000 V0V
00000000 00000000

App6!procF+0x5c

246

0000ffff 6aeleded
0000ffff 6aebede8
0000ffff 6aebedfo
0000ffff 6ae0e4f8
0000ffff 62e0e500
0000ffff 6ae0e508
0000ffff 6aebe510
0000ffff 6ae0e518
0000ffff 6ae0e520
0000ffff 6aede528
0000ffff 6ae0e530
0000ffff 6aede538
0000ffff 6ae0e540
0000ffff 6ae0e548
0000ffff 6ae0e550
0000ffff 6aede558
0000ffff 6ae0e560
0000ffff 62e0e568
0000ffff 6ae0e570
0000ffff 6ae0e578
0000ffff 6ae0e580
0000ffff 6ae0e588
0000ffff 6ae0e590
0000ffff 6ae0e598
0000ffff 6ae0e5a0
0000ffff 6aede5a8
0000ffff 6aede5bo
0000ffff 6aede5b8
0000ffff 6aede5coO
0000ffff 6aede5c8
0000ffff 6aede5do
0000ffff 6aede5d8
0000ffff 6aede5e0
0000ffff 6aede5e8
0000ffff 6aede5f0
0000ffff 6ae0e5f8
0000ffff 6ae0e600
0000ffff 6ae0e608
0000ffff 6ae0e610
0000ffff 6ae0e618
0000ffff 62e0e620
0000ffff 62e0e628
0000ffff 6ae0e630
0000ffff 6ae0e638
0000ffff 6ae0e640
0000ffff 62e0e648
0000ffff 6ae0e650
0000ffff 6ae0e658
0000ffff 6ae0e660
0000ffff 6ae0e668
0000ffff 6ae0e670
0000ffff 6ae0e678
0000ffff 6ae0e680
0000ffff 6ae0e688
0000ffff 6ae0e690
0000ffff 6ae0e698
0000ffff 62e0eb6ad
0000ffff 6ae0eb6a8
0000ffff 6aede6bd
0000ffff 6ae0e6b8

00000000 V000000
00000000 000000
00000000 V0V
00000000 VYO
00000000 V0V
00000000 00000000
00000000 V000000
00000000 V0PV
00000000 V0PV
00000000 V0000000
00000000 V0000000
00000000 00000V
00000000 V0PV
00000000 V0PV
00000000 V00000
00000000 V000000
00000000 00000000
00000000 V0PV
00000000 V0PV
00000000 0000000
00000000 0000000
00000000 00000
00000000 000V
00000000 000V
00000000 00000000
00000000 V000000
00000000 0000
00000000 000V
00000000 000000
00000000 0000000
00000000 000000
00000000 000V
00000000 000V
00000000 0000000
00001 fff 6ae0e810
00000000 00403260
0000ffff 6ae0e670
00000001 0000V
00000000 ffffffff
00000000 00000002
00000000 ffffffff
00000000 000000
00000000 V000000
00000000 V00000
00000000 V000000
00000000 000000
00000000 000V
00000000 V000000
00000000 V000000
00000000 0000V
00000000 V0000000
00000000 V0000000
00000000 V0V
00000000 V0V
00000000 V0000000
00000000 V0000000
00000000 V0000000
00000000 V0V
00000000 V0V
00000000 00000000

App6! procE+0x10

247

0000ffff 6ae0ebcO
0000ffff 6aelebc8
0000ffff 6aede6do
0000ffff 6ae0e6d8
0000ffff 6ae0ebed
0000ffff 6aelebe8
0000ffff 6aebe6f0
0000ffff 6ae0eb6f8
0000ffff 62e0e700
0000ffff 6ae0e708
0000ffff 6aebe710
0000ffff 6ae0e718
0000ffff 6ae0e720
0000ffff 6ae0e728
0000ffff 6ae0e730
0000ffff 6ae0e738
0000ffff 6ae0e740
0000ffff 62e0e748
0000ffff 6ae0e750
0000ffff 6ae0e758
0000ffff 6ae0e760
0000ffff 6ae0e768
000Offff 6ae0e770
0000ffff 6ae0e778
0000ffff 6ae0e780
0000ffff 6ae0e788
0000ffff 6ae0e790
0000ffff 6ae0e798
0000ffff 6ae0e7a0
0000ffff 6aebe7a8
0000ffff 6aede7bo
0000ffff 6aede7b8
0000ffff 6aede7cO
0000ffff 6aede7c8
0000ffff 6aebe7do
0000ffff 6ae0e7d8
0000ffff 6ae0e7e0
0000ffff 6aebe7e8
0000ffff 6aebe7f0
0000ffff 6ae0e7f8
0000ffff 6ae0e800
0000ffff 6ae0e808
0000ffff 6ae0e810
0000ffff 6ae0e818
0000ffff 6ae0e820
0000ffff 6ae0e828
0000ffff 6ae0e830
0000ffff 6ae0e838
0000ffff 6ae0e840
0000ffff 62e0e848
0000ffff 6ae0e850
0000ffff 6ae0e858
0000ffff 6ae0e860
0000ffff 6ae0e868
0000ffff 6ae0e870
0000ffff 6ae0e878
0000ffff 6ae0e880
0000ffff 6ae0e888
0000ffff 6ae0e890
0000ffff 62e0e898

00000000 V000000
00000000 V0000000
00000000 V0V
00000000 VYO
00000000 V0V
00000000 00000000
00000000 V000000
00000000 V0PV
00000000 V0PV
00000000 V0000000
00000000 V0000000
00000000 00000V
00000000 V0PV
00000000 V0PV
00000000 V0000000
00000000 V000000
00000000 00000000
00000000 V0PV
00000000 V0PV
00000000 0000000
00000000 0000000
00000000 00000000
00000000 000V
00000000 000V
00000000 00000000
00000000 V000000
00000000 0000
00000000 000V
00000000 000000
00000000 0000000
00000000 000000
00000000 000V
00000000 000V
00000000 0000000
00000000 V0V
00000000 000V
00000000 000V
00000000 0000V
00000000 00V
00000000 00V
00000000 0000V
00000000 000V
0000ffff 6ae0e820
00000000 0040327C
00001 fff 6ae0e830
00000000 00403290
0000ffff 6ae0e840
00000000 00403228
0000ffff 6ae0e860
00000000 00404cd4
0000ffff 62e0f080
00000000 V0000000
00000000 0000V
00000000 00429c20
0000ffff 62e0f080
00000000 004d7890
00000000 004040000
00000000 V0V
0000ffff 6aedf49c
0000ffff 62e0f080

App6!bar_one+0x14

App6! foo_one+0xc

App6!thread_one+0x10

App6!start_thread+oxb4d

App6!thread_start+0x30

App6! _default_pthread_attr

App6!+0x18

248

0000ffff 62e0e8a0
0000ffff 62e0e8a8
0000ffff 6ae0e8bo
0000ffff 62e0e8b8
0000ffff 62e0e8cO
0000ffff 6ae0e8c8
0000ffff 6ae0e8do
0000ffff 62e0e8d8
0000ffff 6ae0e8e0
0000ffff 6ae0e8e8
0000ffff 6ae0e8f0
0000ffff 6ae0e8f8
0000ffff 6ae0e900
0000ffff 6ae0e908
0000ffff 6ae0e910
0000ffff 6ae0e918
0000ffff 6ae0e920
0000ffff 6ae0e928
0000ffff 6ae0e930
0000ffff 6ae0e938
0000ffff 6ae0e940
0000ffff 6ae0e948
0000ffff 6ae0e950
0000ffff 6ae0e958
0000ffff 6ae0e960
0000ffff 6ae0e968
0000ffff 6ae0e970
0000ffff 6ae0e978
0000ffff 6ae0e980
0000ffff 6ae0e988
0000ffff 6ae0e990
0000ffff 6ae0e998
0000ffff 6ae0e9a0
0000ffff 6ae0e9a8
0000ffff 6ae0e9bo
0000ffff 6ae0e9b8
0000ffff 6ae0e9co
0000ffff 6ae0e9c8
0000ffff 6ae0e9do
0000ffff 6ae0e9d8
0000ffff 6ae0e9ed
0000ffff 6aede9e8
0000ffff 6ae0e9fo
0000ffff 6ae0e9f8
0000ffff 6ae0ea0dd
0000ffff 6ae0ead8
0000ffff 6aedealod
0000ffff 6aedeall
0000ffff 6aeBea20
0000ffff 6aedea28
0000ffff 6aebea30
0000ffff 6aedea38
0000ffff 6ae0eado
0000ffff 6ae0ead8
0000ffff 6ae0eab0
0000ffff 6aedea58
0000ffff 62e0eabd
0000ffff 6ae0eab8
0000ffff 6aedea70
0000ffff 6aedea78

00000000 0000V
00000000 00000V
0000ffff 6aec0f080
00000000" 004d7890
00000000" 004d0000
00000000 00403298
00000000 0000V
0000ffff 6ae0f770
0000000 302260
00000000" 004d7890
00000000" 00010000
00000000" 00810000
0000ffff 62e0e860
5afbedf4” 15cdf4fb
00000000 0000V
5afb120b” 7f6d503b
00000000" 00000000
00000000 VPPV
00000000 VOV
00000000 000V
00000000 0000V
00000000 000V
00000000" 000V
00000000" 00000
00000000 0000V
00000000 0000V
00000000 000000
00000000 000V
00000000 0000V
00000000 000000
00000000 0000V
00000000" 000V
00000000 000V
00000000 000V
00000000 000V
00000000" 000000
00000000" V000
00000000" 000000
00000000 000V
00000000 000V
00000000" 0000V
00000000" 000000
00000000" 000V
00000000 V000000
00000000 00V
00000000" 000000
00000000" 000000
00000000 000V
00000000 000V
00000000" 000000
00000000° 00000000
00000000" 0000000
00000000 000V
00000000 00V
00000000" 00000000
00000000" 0000V
00000000" 00000000
00000000 00V
00000000 00V
00000000" 0000V

App6! default pthread_attr
App6!+0x18
App6!thread_one

App6! _default_pthread_attr

249

0000ffff 62e0ea80
0000ffff 6ae0ea88
0000ffff 6ae0ea’o
0000ffff 6ae0ea9d8
0000ffff 6aeBeaad
0000ffff 6aeleaa8
0000ffff 6aedeabd
0000ffff 6aedeab8
0000ffff 6aeBeacOd
0000ffff 6aeleac8
0000ffff 6aedeadod
0000ffff 6aelead8
0000ffff 6aeBeaecd
0000ffff 6aeBeae8
0000ffff 6aeleafod
0000ffff 6aedeaf8
0000ffff 6ae0ebod
0000ffff 6ae0ebo8
0000ffff 6aedeblo
0000ffff 6aedebl8
0000ffff 6aedeb20
0000ffff 6aedeb28
0000ffff 6aedeb30
0000ffff 6aedeb38
0000ffff 6aedebdo
0000ffff 6aedebd8
0000ffff 6aedeb50
0000ffff 6aedeb58
0000ffff 6aedeb6o
0000ffff 6aedeb68
0000ffff 6aedeb70
0000ffff 6aedeb78
0000ffff 6aedeb80
0000ffff 6ae0eb88
0000ffff 6aedeb90
0000ffff 6ae0eb98
0000ffff 6aedebad
0000ffff 6aedeba8
0000ffff 6aedebbo
0000ffff 6aedebb8
0000ffff 6aedebco
0000ffff 6aedebc8
0000ffff 6aedebdo
0000ffff 6aedebd8
0000ffff 6aedebed
0000ffff 6aedebe8
0000ffff 6aedebfo
0000ffff 6aedebf8
0000ffff 6aeBeco0
0000ffff 6aedeco8
0000ffff 6aeleclOd
0000ffff 6aelecl8
0000ffff 6aedec220
0000ffff 6aedec28
0000ffff 6aedec30
0000ffff 6aedec38
0000ffff 6aedec40
0000ffff 6aebec48
0000ffff 6aedec50
0000ffff 6aedec58

00000000 0000000
00000000 0000000
00000000 00000
00000000 0000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00000000
00000000 V00O
00000000 000000
00000000 0000000
00000000" 0000000
00000000 0000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 000000
00000000 00000
00000000 000000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 0000
00000000 0000000
00000000 0000000
00000000 00000
00000000 000000
00000000 0000000
00000000 00000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

250

0000ffff 6aelec60
0000ffff 6aelec68
0000ffff 6aelec70
0000ffff 6aedec78
0000ffff 6ae0ec80
0000ffff 6ae0ec88
0000ffff 6aedec90
0000ffff 6aedec98
0000ffff 6aeBecad
0000ffff 6aeleca8
0000ffff 6aedechbo
000offff 6aedech8
0000ffff 6aeBeccOd
0000ffff 6aelecc8
0000ffff 6aelecd0d
000offff 6aelecd8
0000ffff 6aeleced
0000ffff 6aelece8
0000ffff 6aelecfO
0000ffff 6aelect8
0000ffff 6aebedod
0000ffff 6ae0edo8
0000ffff 6aededlo
0000ffff 6aededl8
0000ffff 6aeded20
0000ffff 6aeded28
0000ffff 6aeded30
0000ffff 6aeded38
0000ffff 6aebed4o
0000ffff 6aeded48
0000ffff 6aeded50
0000ffff 6aeded58
0000ffff 6aeded60
0000ffff 6aeded68
0000ffff 6aeded70
0000ffff 6aeded78
0000ffff 6ae0ed80
0000ffff 6ae0ed88
0000ffff 6aeded99
0000ffff 6aeded98
0000ffff 6aededad
0000ffff 6aededa8
0000ffff 6aededbo
0000ffff 6aededb8
0000ffff 6aeledcO
0000ffff 6aededc8
0000ffff 6aededdo
0000ffff 6aededd8
0000ffff 6aeleded
0000ffff 6aedede8
0000ffff 6aeledfoO
0000ffff 6aeledf8
0000ffff 6ae0ee00
0000ffff 6ae0ee08
0000ffff 6aeleel0d
0000ffff 6aeleel8
0000ffff 6aelee20
0000ffff 6aelee28
0000ffff 6aelee30
0000ffff 6aedee38

00000000 0000000
00000000 0000000
00000000 00000
00000000" 000000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 0000
00000000 000000
00000000 00000000
00000000 0000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 000000
00000000 000000
00000000 0000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 00000
00000000 000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 00000
00000000 00000000

251

0000ffff 6aeleed0
0000ffff 6ae0eed8
0000ffff 6aeBee50
0000ffff 6aebee58
0000ffff 6ae0ee60
0000ffff 6aelee68
0000ffff 6aelee70
0000ffff 6aelee78
0000ffff 6aec0ee80
0000ffff 6aec0ee88
0000ffff 6ae0ee90
0000ffff 6ae0ee98
0000ffff 6aecBeead
0000ffff 6aeleea8
0000ffff 6aeleebd
0000ffff 6aeleeb8
0000ffff 6aeleecOd
0000ffff 6aeleec8
0000ffff 6aeBeedod
0000ffff 6aeleed8
0000ffff 6aecleeecd
0000ffff 6aecdeee8
0000ffff 6aecdeefod
0000ffff 6aedeef8
0000ffff 6aec0efo0
0000ffff 6aedef08
0000ffff 6aedeflo
0000ffff 6aedefl8
0000ffff 6aedef20
0000ffff 6aedef28
0000ffff 6aedef30
0000ffff 6aedef38
0000ffff 6aedef4o
0000ffff 6aedefl8
0000ffff 6aedef50
0000ffff 6aedef58
0000ffff 6aedef60
0000ffff 6aedef68
0000ffff 6aedef70
0000ffff 6aedef78
0000ffff 6ae0ef80
0000ffff 6ae0ef88
0000ffff 6aedef90
0000ffff 6aedef98
0000ffff 6aelefad
0000ffff 6aedefa8
0000ffff 6aedefbo
0000ffff 6aedefb8
0000ffff 6aelefcO
0000ffff 6aedefc8
0000ffff 6aelefdo
0000ffff 6aelefd8
0000ffff 6aelefed
0000ffff 6aelefe8
0000ffff 6aeleffo
0000ffff 6aedeff8
0000ffff 6aec0f000
0000ffff 6ae0f008
0000ffff 6ae0f010
0000ffff 62e0f018

00000000 0000000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000
00000000" 0000000
00000000 0000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 00000
00000000 000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

252

0000ffff 6ae0f020
0000ffff 6ae0f028
0000ffff 6ae0f030
0000ffff 6ae0f038
0000ffff 6ae0f040
0000ffff 6ae0f048
0000ffff 6ae0f050
0000ffff 6ae0f058
0000ffff 6ae0f060
0000ffff 6ae0f068
0000ffff 6ae0f070
0000ffff 6ae0f078
0000ffff 6ae0f080
0000ffff 6ae0f088
0000ffff 6ae0f090
0000ffff 6ae0f098
0000ffff 6ae0f0ad
0000ffff 62e0f0a8
0000ffff 6ae0fobo
0000ffff 6ae0fob8
0000ffff 6ae0f0co
0000ffff 62e0f0cS8
0000ffff 6ae0fodo
0000ffff 62e0f0ds8
0000ffff 6aec0f0ed
0000ffff 6ae0f0e8
0000ffff 6aecofofo
0000ffff 62e0f0f8
0000ffff 6aec0f100
0000ffff 6ae0f108
0000ffff 6ae0fl110
0000ffff 6ae0f118
0000ffff 6ae0f120
0000ffff 6ae0f128
0000ffff 6ae0f130
0000ffff 62e0f138
0000ffff 6ae0f140
0000ffff 62e01148
0000ffff 6ae0f150
0000ffff 6ae0f158
0000ffff 6ae0f160
0000ffff 62e0f168
0000ffff 6ae0f170
0000ffff 6ae0f178
0000ffff 6ae0f180
0000ffff 62e0f188
0000ffff 62e0f190
0000ffff 6ae0f198
0000ffff 6ae0flad
0000ffff 6ae0fla8
0000ffff 6aedflbo
0000ffff 6aedf1b8
0000ffff 6ae0flco
0000ffff 6ae0flc8
0000ffff 6aedfldo
0000ffff 6ae0f1d8
0000ffff 6aebfled
0000ffff 6aedfle8
0000ffff 6ae0flfo
0000ffff 62e0f1f8

00000000 0000000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000
00000000 00000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 00000001
00000000" 0000000
00000000 0000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000
00000000 000000
00000000 0000000
00000000 004d0050
000Offff 6a5ff140
00004bc1” 00004bc2
0000ffff 6ae0f160
0000ffff 6ae0f160
ffHfffff ffffffeo
00000000 00000
00000000 00000
000Offff 6ae0e8bO
00000000 0000000
00000000 0000
00000000 00000
00000000 000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 00000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

App6!stack_used

253

0000ffff 6ae0f200
0000ffff 6ae0f208
0000ffff 6ae0f210
0000ffff 6ae0f218
0000ffff 6ae0f220
0000ffff 6ae0f228
0000ffff 6ae0f230
0000ffff 6ae0f238
0000ffff 6ae0f240
0000ffff 6ae0f248
0000ffff 6ae0f250
0000ffff 6ae0f258
0000ffff 6ae0f260
0000ffff 6ae0f268
0000ffff 6ae0f270
0000ffff 6ae0f278
0000ffff 6ae0f280
0000ffff 6ae0f288
0000ffff 6ae0f290
0000ffff 6ae0f298
0000ffff 6aebf2a0
0000ffff 6ae0f2a8
0000ffff 6ae0f2bo
0000ffff 62e0f2b8
0000ffff 6ae0f2co
0000ffff 6aedf2c8
0000ffff 6ae0f2do
0000ffff 6ae0f2d8
0000ffff 6aebf2e0
0000ffff 6aedf2e8
0000ffff 6ae0f2f0
0000ffff 62e0f2f8
0000ffff 6ae0f300
0000ffff 6ae0f308
0000ffff 6ae0f310
0000ffff 62e0f318
0000ffff 6ae0f320
0000ffff 62e0f328
0000ffff 6ae0f330
0000ffff 6ae0f338
0000ffff 6ae0f340
0000ffff 62e0f348
0000ffff 6ae0f350
0000ffff 6ae0f358
0000ffff 6ae0f360
0000ffff 62e0f368
0000ffff 6ae0f370
0000ffff 6ae0f378
0000ffff 6ae0f380
0000ffff 62e0f388
0000ffff 6ae0f390
0000ffff 6ae0f398
0000ffff 6ae0f3a0
0000ffff 6aedf3a8
0000ffff 6aedf3bo
0000ffff 6aedf3b8
0000ffff 6ae0f3co
0000ffff 6ae0f3c8
0000ffff 6ae0f3do
0000ffff 62e0f3d8

00000000 000000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00O
00000000 00000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000000
00000000 0000
00000000 0000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000
00000000 000000
00000000 0000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 0000
00000000 00000000
00000000 00000
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 000V
00000000 000000
00000000 0000000
0000ffff 6ae0f190
00000000 00000000
00000000 0000
00000000 0000
00000000 000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

254

0000ffff 6ae0f3e0
0000ffff 6aedf3e8
0000ffff 6ae0f3f0
0000ffff 6ae0f3f8
0000ffff 6ae0f400
0000ffff 6ae0f408
0000ffff 6ae0f410
0000ffff 6ae0f418
0000ffff 6ae0f420
0000ffff 6ae0f428
0000ffff 6ae0f430
0000ffff 6ae0f438
0000ffff 6ae0f440
0000ffff 6ae0f448
0000ffff 6ae0f450
0000ffff 6ae0f458
0000ffff 6ae0f460
0000ffff 6ae0f468
0000ffff 6ae0f470
0000ffff 6ae0f478
0000ffff 6ae0f480
0000ffff 6201488
0000ffff 62e0f490
0000ffff 6201498
0000ffff 6ae0f4a0
0000ffff 6aedf4a8
0000ffff 62e0f4bo
0000ffff 62e0f4b8
0000ffff 6ae0f4co
0000ffff 6ae0f4c8
0000ffff 6ae0f4do
0000ffff 62e0f4ds8
0000ffff 6ae0f4e0
0000ffff 6aedf4e8
0000ffff 6ae0f4fo
0000ffff 62e0f4f8
0000ffff 6ae0f500
0000ffff 62e0f508
0000ffff 6ae0f510
0000ffff 6ae0f518
0000ffff 6ae0f520
0000ffff 62e0f528
0000ffff 6ae0f530
0000ffff 6ae0f538
0000ffff 6ae0f540
0000ffff 62e0f548
0000ffff 6ae0f550
0000ffff 6ae0f558
0000ffff 6ae0f560
0000ffff 62e0f568
0000ffff 6ae0f570
0000ffff 6ae0f578
0000ffff 6ae0f580
0000ffff 6ae0f588
0000ffff 6ae0f590
0000ffff 6ae0f598
0000ffff 6aedf5a0
0000ffff 6aedf5a8
0000ffff 6ae0f5bo
0000ffff 62e0f5b8

00000000 0000000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 000000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00403298
00000000 00000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000000
00000000 000000
00000000 000000
000 fff 62600000
00000000 00810000
00000000 00010000
00000000 00010000
00000000 00000
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 00000
00000000 000V
00000000 0000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000
00000000 000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

App6!thread_one

255

0000ffff 6ae0f5co
0000ffff 6aedf5c8
0000ffff 6ae0f5do
0000ffff 6ae0f5d8
0000ffff 6ae0f5e0
0000ffff 6aedf5e8
0000ffff 6ae0f5f0
0000ffff 6ae0f5f8
0000ffff 6ae0f600
0000ffff 6ae0f608
0000ffff 6ae0f610
0000ffff 6ae0f618
0000ffff 6ae0f620
0000ffff 6ae0f628
0000ffff 6ae0f630
0000ffff 6ae0f638
0000ffff 6ae0f640
0000ffff 6ae0f648
0000ffff 6ae0f650
0000ffff 6ae0f658
0000ffff 6ae0f660
0000ffff 6ae0f668
0000ffff 62e0f670
0000ffff 62e0f678
0000ffff 6ae0f680
0000ffff 6ae0f688
0000ffff 62e0f690
0000ffff 6201698
0000ffff 6ae0f6ad
0000ffff 6aedf6a8
0000ffff 6aedf6bo
0000ffff 62e0f6b8
0000ffff 6ae0df6cO
0000ffff 6aedf6c8
0000ffff 6ae0f6do
0000ffff 6ae0f6d8
0000ffff 6ae0f6e0
0000ffff 6ae0f6e8
0000ffff 6ae0f6f0
0000ffff 6aedf6f8
0000ffff 6ae0f700
0000ffff 62e0f708
0000ffff 6ae0f710
0000ffff 6ae0f718
0000ffff 6ae0f720
0000ffff 62e0f728
0000ffff 6ae0f730
0000ffff 6ae0f738
0000ffff 6ae0f740
0000ffff 62e0f748
0000ffff 6ae0f750
0000ffff 6ae0f758
0000ffff 6ae0f760
0000ffff 6ae0f768
0000ffff 6ae0f770
0000ffff 6ae0f778
0000ffff 6ae0f780

00000000 0000000
00000000 00O
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 00000
00000000 0000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 0000
00000000 V00O
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000000
00000000 ©00VV0O
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 00000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 30aald80
00000000 00000
0000ffff 6ae0f538

0000ffff 6ae0f788 0000000 004d13cO App6!nl global locale
0000ffff 6ae0f790 0000000 004d13cO App6!nl global locale
0000ffff 62e0f798 00000000 004d13e0 App6!nl_global locale+0x20

256

000Offff 6ae0f72a0 0©00VOOOO 004d13c8 App6!nl _global locale+0x8
0000ffff 62e0f7a8 0000000 ©VVOOO

0000ffff 6ae0f7b0 00000000 0048d280 App6!nl C_LC_CTYPE_class+0x100
0000ffff 6ae0f7b8 00000000 ©048c980 App6!nl C LC CTYPE_toupper+0x200
0000ffff 62e0f7cO0 00000000 ©048c380 App6!nl C_LC_CTYPE_tolower+0x200

0000ffff 6aedf7c8
0000ffff 6ae0f7do
0000ffff 6ae0f7d8
0000ffff 62e0f7e0
0000ffff 6aedf7e8
0000ffff 6aedf7f0
0000ffff 6aedf7f8
0000ffff 6ae0f800
0000ffff 6ae0f808
0000ffff 6ae0f810
0000ffff 6ae0f818
0000ffff 6ae0f820
0000ffff 6ae0f828
0000ffff 6ae0f830
0000ffff 6ae0f838
0000ffff 6ae0f840
0000ffff 62e01848
0000ffff 6a2e0f850
0000ffff 62e0f858
0000ffff 6ae0f860
0000ffff 6ae0f868
0000ffff 62e0f870
0000ffff 62e01878
0000ffff 620880
0000ffff 6201888
0000ffff 6201890
0000ffff 6201898
0000ffff 6ae0f8a0
0000ffff 6ae0f8a8
0000ffff 6ae0f8bo
0000ffff 62e0f8b8
0000ffff 6ae0f8co
0000ffff 6ae0f8c8
0000ffff 6ae0f8do
0000ffff 6ae0f8d8
0000ffff 6ae0f8e0
0000ffff 6ae0f8e8
0000ffff 6ae0f8f0
0000ffff 6ae0f8f8
0000ffff 6ae0f900
0000ffff 6201908
0000ffff 62e0f910
0000ffff 6ae0f918
0000ffff 6ae0f920
0000ffff 6201928
0000ffff 6ae0f930
0000ffff 6ae0f938
0000ffff 6ae0f940
0000ffff 6ae0f948
0000ffff 6ae0f950
0000ffff 6ae0f958
0000ffff 6ae0f960
0000ffff 6ae0f968
0000ffff 6ae0f970
0000ffff 62e0f978

00000000 00000000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 00000
00000000 0000000
00000000" 0000000
00000000 0000
00000000 000000
00000000 00000000
00000000 0000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 000000
00000000 00000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 00000
00000000 0000000
00000000 0000000
00000000 00000
00000000 000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

257

0000ffff 6ae0f980
0000ffff 6ae0f988
0000ffff 6ae0f990
0000ffff 6ae0f998
0000ffff 62e0f9a0
0000ffff 6aedf9a8
0000ffff 6ae0f9bo
0000ffff 6ae0f9b8
0000ffff 62e0f9cO
0000ffff 6ae0f9c8
0000ffff 6ae0f9do
0000ffff 6ae0f9d8
0000ffff 62e0f9e0
0000ffff 62e0f9e8
0000ffff 6ae0f9fo
0000ffff 6ae0f9f8
0000ffff 6ae0fado
0000ffff 62e0fa0d8
0000ffff 6ae0falod
0000ffff 6aebfals
0000ffff 6aebfa20
0000ffff 6ae0fa28
0000ffff 6ae0fa30
0000ffff 6aedfa38
0000ffff 6ae0fado
0000ffff 6ae0fads
0000ffff 6aedfas0
0000ffff 6aedfas58
0000ffff 6ae0fabo
0000ffff 6ae0fab8
0000ffff 6aebfa70
0000ffff 6ae0fa78
0000ffff 6ae0fa80
0000ffff 6ae0fa88
0000ffff 6ae0fa%0
0000ffff 62e0fa98
0000ffff 6ae0faad
0000ffff 6ae0faa8
0000ffff 6aedfabo
0000ffff 6aedfab8
0000ffff 6aedfaco
0000ffff 6aedfac8
000offff 6aedfado
0000ffff 6aedfad8
0000ffff 6ae0faecod
0000ffff 6aedfae8
0000ffff 6aedfafo
0000ffff 6aedfaf8
0000ffff 6ae0fboo
0000ffff 6ae0fbo8
0000ffff 6aedfblo
0000ffff 6aedfbl8
0000ffff 6ae0fb20
0000ffff 6ae0fb28
0000ffff 6aedfb30
0000ffff 6aedfb38
0000ffff 6aedfbdo
0000ffff 6ae0fb4s8
0000ffff 6ae0fb50
0000ffff 62e0fb58

00000000 0000000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 00000
00000000 0000000
00000000" 0000000
00000000 0000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 000000
00000000 000000
00000000 00000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 00000
00000000 000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 00000
00000000 00000000

258

0000ffff 6ae0fb60
0000ffff 6aedfb68
0000ffff 6ae0fb70
0000ffff 6ae0fb78
0000ffff 6ae0fb80
0000ffff 6ae0fb88
0000ffff 6ae0fb90
0000ffff 6ae0fbo8
0000ffff 6ae0fbad
0000ffff 6aedfba8
0000ffff 6aedfbbo
0000ffff 6aedfbb8
0000ffff 6aedfbco
0000ffff 6ae0fbc8
0000ffff 6aedfbdo
0000ffff 6aedfbds8
0000ffff 6aedfbed
0000ffff 6aedfbe8
0000ffff 6ae0fbfo
0000ffff 6aedfbfs
0000ffff 6ae0fcoo
0000ffff 6ae0fco8
0000ffff 6aedfclo
0000ffff 6aedfcl8
0000ffff 6aedfc20
0000ffff 6aedfc28
0000ffff 6aedfc30
0000ffff 6aedfc38
0000ffff 6aedfc4o
0000ffff 6aedfc48
0000ffff 6aedfc50
0000ffff 6aedfc58
0000ffff 6ae0dfc60
0000ffff 6aedfc68
0000ffff 6aedfc70
0000ffff 6ae0fc78
0000ffff 6ae0fc80
0000ffff 6ae0fc88
0000ffff 6ae0fco0
0000ffff 6ae0fc98
0000ffff 6aedfcao
0000ffff 6aedfca8
0000ffff 6aedfcho
0000ffff 6aedfcb8
0000ffff 6aedfcco
0000ffff 6aedfcc8
0000ffff 6aedfcdo
0000ffff 6aedfcd8
0000ffff 6aedfced
0000ffff 6aedfce8
0000ffff 6aedfcfo
0000ffff 6aedfcf8
0000ffff 6ae0fdoo
0000ffff 6ae0fdes
0000ffff 6aebfdlo
0000ffff 6ae0fdl8
0000ffff 6aebfd20
0000ffff 6ae0fd28
0000ffff 6ae0fd30
0000ffff 62e0fd38

00000000 0000000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000
00000000" 0000000
00000000 0000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 00000
00000000 000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

259

0000ffff 6ae0fd4o
0000ffff 6ae0fd48
0000ffff 6ae0fd50
0000ffff 6ae0fd58
0000ffff 6ae0fd60
0000ffff 6ae0fd68
0000ffff 6aedfd70
0000ffff 6ae0fd78
0000ffff 6ae0fd80
0000ffff 6ae0fd88
0000ffff 6ae0fdoo
0000ffff 6ae0fdo8
0000ffff 6ae0fdad
0000ffff 6ae0fda8
0000ffff 6aedfdbo
0000ffff 6aedfdb8
0000ffff 6ae0fdco
0000ffff 6ae0fdc8
0000ffff 6ae0fddo
0000ffff 6ae0fdds
0000ffff 6ae0dfded
0000ffff 6aedfde8
0000ffff 6aeo0fdfo
0000ffff 6aedfdf8
0000ffff 6aec0fec00
0000ffff 6ae0fed8
0000ffff 6aeodfelo
0000ffff 6aedfel8
0000ffff 6aebfe20
0000ffff 6aedfe28
0000ffff 6aebfe30
0000ffff 6aedfe38
0000ffff 6ae0dfesdo
0000ffff 6aedfed8
0000ffff 6aedfe50
0000ffff 6aedfe58
0000ffff 6ae0fe60
0000ffff 6ae0fe68
0000ffff 6aebfe70
0000ffff 6aedfe78
0000ffff 6ae0fe80
0000ffff 6ae0fe88
0000ffff 6ae0fe90
0000ffff 6ae0fe98
0000ffff 6aedfead
0000ffff 6aedfea8
0000ffff 6aedfebo
0000ffff 6aedfeb8
0000ffff 6aedfecod
0000ffff 6aedfec8
0000ffff 6aedfedod
0000ffff 6aedfed8
0000ffff 6ae0feecd
0000ffff 6aedfee8
0000ffff 6aebfefo
0000ffff 6aedfef8
0000ffff 6ae0ffo0
0000ffff 6ae0ffo8
0000ffff 6aeodfflo
0000ffff 6ae0ff18

00000000 0000000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000
00000000 00000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 0000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000
00000000 000000
00000000 0000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 000000
00000000 0000000
00000000 000000
00000000 00000
00000000 000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

260

0000ffff 6ae0ff20
0000ffff 6ae0ff28
0000ffff 6ae0ff30
0000ffff 6ae0ff38
0000ffff 6ae0ff40
0000ffff 6aedff48
0000ffff 6aedff50
0000ffff 6ae0ff58
0000ffff 6aec0ff60
0000ffff 6aedff68
0000ffff 6aedff70
0000ffff 6aedff78
0000ffff 6ae0ff80
0000ffff 6ae0ff88
0000ffff 6ae0ff9o0
0000ffff 6ae0ff98
0000ffff 6ae0ffad
0000ffff 6ae0dffa8
0000ffff 6ae0ffbo
0000ffff 6aedffb8
0000ffff 6aedffco
0000ffff 6aedffc8
0000ffff 6aedffdo
0000ffff 6aedffd8
0000ffff 6aedffe0d
0000ffff 6aedffe8
0000ffff 6aeofffo
0000ffff 6aedfff8
0000ffff 6210000

10.
epilogue:

[..-]

0000ffff 6aedelbo
0000ffff 6aedelb8
00001 fff 6aede3do
0000ffff 6aede3d8
0000ffff 6aeBe5f0
0000ffff 6aede5f8

0000ffff 6ae0e818
0000ffff 6ae0e820
0000ffff 62e0e828
0000ffff 6ae0e830
0000ffff 6ae0e838
0000ffff 6ae0e840
0000ffff 6ae0e848
0000ffff 6ae0e850
0000ffff 6ae0e858
0000ffff 6ae0e860
0000ffff 6ae0e868

0:000> uf procF
App6!procF:

00000000° 004031e8 d10843ff
00000000° 004031ec a9bf7bfd
00000000° 0040310 910003fd
00000000 0040314 910073al
00000000 00403118 b9000020

00000000 00000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 0000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000002 Veca5306

0000ffff 6ae@e3do
00000000° 00403244
0000ffff 6ae0e5f0
00000000 00403244

00000000 00403260
0000ffff 6ae0e820
00000000 0040327C
0000ffff 6ae0e830
00000000 00403290
0000ffff 6ae0e840
00000000 004032a8
0000ffff 6ae0e860
00000000 00404cd4
0000ffff 62c0f080
00000000 V0000000
00000000 V0V
00000000 90429c20

sub
stp
mov
add
str

See that the reconstruction of the stack trace is possible because of the standard function prologue and

App6 ! procF+0x5c

App6 ! procF+0x5c¢
App6!procE+0x10
App6!bar_one+0x14
App6!foo_one+0xc
App6!thread_one+0x10

App6!start_thread+0xb4

App6!thread_start+0x30

sp,sp,#0x210
fp,1r,[sp,#-0x10]!
fp,sp
x1,fp, #0x1C
wo, [x1]

261

00000000 004031fc 910083a0 add X0, fp,#0x20
00000000 00403200 d2804002 mov X2, #0x200
00000000 00403204 52800001 mov wl, #0
00000000 00403208 97fff422 bl App6!+0x20 (00000000 ©0400290)
00000000 ©040320c 910083a0 add x0, fp,#0x20
00000000 00403210 12800001 mov wl,#-1
00000000 00403214 b900VO1 str wl, [x0]
00000000 00403218 91007330 add x0, fp,#0x1C
00000000 ©040321c b9400000 1ldr we, [x0]
00000000 00403220 11000401 add wl,wo,#1
00000000 00403224 910083a0 add X0, fp,#0x20
00000000 00403228 b900O8O1 str wl, [x0,#8]
00000000 ©040322c 910083a0 add x0, fp,#0x20
00000000 00403230 12800001 mov wl,#-1
00000000 00403234 b9001001 str wl, [x0,#0x10]
00000000 00403238 910083a0 add X0, fp,#0x20
00000000 0040323c b9400800 1ldr wo, [x0, #8]

00000000 00403240 97ffffea bl
00000000° 00403244 a8c17bfd 1ldp

App6!procF (00000000 004031e8)
fp,1r,[sp],#0x10

00000000 00403248 910843ff add sp,sp,#0x210
00000000 0040324c d651f03CO ret
11. To see the bottom of the stack trace, we can increase the default number of frames:

0:000> .kframes Oxffff
Default stack trace depth is @n65535 frames

0:000> k
Child-SP RetAddr Call Site
00 00POffff 62610000 0DDOVVOO 00403244 App6 ! procF+0x4

01
02
03
04
05
06
o7
08
09
Qa

[...

0000ffff 62610210
0000ffff 62610430
000Offff 62610650
0000ffff 62610870
0000ffff 62610290
0000ffff 6a610cbo
0000ffff 6a610edo
0000ffff 62611010
0000ffff 62611310
0000ffff 62611530

]

00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244
00000000 00403244

App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c¢

3c2e
3c2f
3c30
3c31
3c32
3c33
3c34
3c35
3c36
3c37

0000ffff 6aedelbo
0000ffff 6aee3do
0000ffff 6ae@e5f0
0000ffff 6ae0e810
0000ffff 6ae0e820
0000ffff 6ae0e830
0000ffff 6ae0e840
0000ffff 6ae0e860
0000ffff 6ae0e990
0000ffff 6ae0e990

00000000 60403244
00000000 00403244
00000000 00403260
00000000 6040327C
00000000 60403290
00000000 00403228
00000000 00404Cd4
00000000 0042920
FEFFFFFE FRFFFFFF
00000000 60000000

App6 ! procF+0x5c¢
App6 ! procF+0x5c
App6 ! procF+0x5c
App6 ! procE+0x10
App6!bar_one+0x14
App6!foo_one+0xc

App6!thread_one+0x10
App6!start_thread+oxb4
App6!thread_start+0x30
OxFfffffff fHHfffff

We close logging before exiting WinDbg Preview:

0:000> .logclose
Closing open log file 'C:\ALCDA2\A64\App6\App6.log'

262

Exercise A7

Goal: Learn how to identify active threads

Patterns: Divide by Zero (User Mode, x64); Invalid Pointer
(General); Multiple Exceptions (User Mode); Near Exception

© 2023 Software Diagnostics Services

263

Exercise A7 (x64, GDB)

Goal: Learn how to identify active threads.
Patterns: Divide by Zero (User Mode); Invalid Pointer (General); Multiple Exceptions (User Mode); Near Exception.

1. Load core.App7 dump file and App7 executable from the x64/App7 directory:

~/ALCDA2/x64/App7$ gdb -c core.App7 -se App7

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying"” and "show warranty" for details.

This GDB was configured as "x86_64-1linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to
Reading symbols from App7...done.

[New LWP 71]

[New LWP 68]

[New LWP 69]

[New LWP 70]

[New LWP 73]

[New LWP 72]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1inux-gnu/libthread_db.so.1".
Core was generated by " ./App7'.

Program terminated with signal SIGFPE, Arithmetic exception.

#0 0x0000000000401c27 in procD ()

[Current thread is 1 (Thread 0x7f64c3075700 (LWP 71))]

‘word". ..

2. List and identify the possible problem threads:

(gdb) info threads

Id Target Id Frame
* 1 Thread 0x7f64c3075700 (LWP 71) 0x0000000000401c27 in procD ()
2 Thread 0x1d10880 (LWP 68) 0x0000000000441bf0 in nanosleep ()

3 Thread 0x7f64c4077700 (LWP 69) Ox0000000000007265 in ?? ()

4 Thread 0x7f64c3876700 (LWP 70) Ox0000000000441bf0@ in nanosleep ()
5 Thread 0x7f64c2073700 (LWP 73) Ox0000000000401bb8 in procF ()

6 Thread 0x7f64c2874700 (LWP 72) 0x0000000000441bf0 in nanosleep ()

264

3. We see there is an arithmetic exception in the current thread. Let’s list the stack trace for the current
problem thread #1 and identify the problem instruction:

(gdb) bt

#0 ©x0000000000401c27 in procD ()

#1 0x0000000000401c3f in procC ()

#2 0Ox0000000000401dfd in bar_three ()

#3 0x0000000000401ePe in foo_three ()

#4 0x0000000000401e27 in thread_three ()

#5 0©x0000000B4032b3 in start_thread (arg=<optimized out>) at pthread_create.c:486
#6 0©x000000000044444f in clone ()

(gdb) x/i $rip
=> 0x401c27 <procD+14>: idivl -0x8(%rbp)

(gdb) info r $rax
rax ox1 1

(gdb) x/w $rbp-0x8
0x7f64c3074d58: 0Ox00000000

4. We also see something abnormal on thread 3. Switch to it and check the currently executing instruction:

(gdb) thread 3
[Switching to thread 3 (Thread 0x7f64c4077700 (LWP 69))]
#0 ©x0000VVORVR7265 in ?? ()

(gdb) x/i $rip
=> Ox7265: Cannot access memory at address 0x7265

Note: We see that the current instruction pointer points to an invalid memory address. It can also be considered
NULL Pointer (Code) since the address belongs to an inaccessible part of memory to catch NULL pointers. We also
see that there can be exceptions on different threads simultaneously.

5. Thread #5 looks active, and we compare the stack pointer with the stack region boundaries since we suspect
stack overflow:

(gdb) thread 5
[Switching to thread 5 (Thread 0x7f64c2073700 (LWP 73))]
#0 0©x0000000B401bb8 in procF () at pthread_create.c:688

688 pthread_create.c: No such file or directory.

(gdb) bt

#0 0©x0000000B401bb8 in procF () at pthread_create.c:688
#1 0©x0000000000401c05 in procF () at pthread_create.c:688
#2 Ox0000000000401c0O5 in procF () at pthread_create.c:688
#3 0Ox0000000000401cO5 in procF () at pthread_create.c:688
#4 ©x0000000000401cO5 in procF () at pthread_create.c:688
#5 0©x0000000000401c05 in procF () at pthread_create.c:688
#6 Ox0000000000401c0O5 in procF () at pthread_create.c:688
#7 ©x0000000000401c0O5 in procF () at pthread_create.c:688
#8 0Ox0000000000401c0O5 in procF () at pthread_create.c:688
#9 0©x00000000V401cO5 in procF () at pthread_create.c:688
#10 Ox0000VVB401cO5 in procF () at pthread_create.c:688
#11 Ox0000000000401c0O5 in procF () at pthread_create.c:688
#12 0x00000RVV401cO5 in procF () at pthread_create.c:688
#13 Ox000000B401cO5 in procF () at pthread_create.c:688
#14 ©x0000000000401cO5 in procF () at pthread_create.c:688

265

#15
#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32
#33

(gd
=>

(gd
ox7

(gd

0Xx0000000000401c05
0Xx0000000000401c05
0x0000000000401c05
0x0000000000401c05
0x0000000000401c05
0Xx0000000000401c05
0Xx0000000000401c05
0x0000000000401c05
0x0000000000401c05
0Xx0000000000401c05
0Xx0000000000401c05
0Xx0000000000401c05
0x0000000000401c05
0x0000000000401c16
0x0000000000401e8f
0Xx0000000000401ea0
0x0000000000401eb9
0x00000000004032b3
0x000000000044444F

b) x/i $rip

0x401bb8 <procF+11>:

b) x/a $rbp-0x1004
£64c20569fc: 0Ox0

b) disassemble $rip

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procF
procE
bar_f
foo_f

0
0
0
0
0
0
0
0
0
ive
ive

at
at
at
at
at
at
at
at
at
at
at
at
at
at

0
0

thread_five

start_thread (arg=<optimized out>) at pthread_create.c:486

clone

mov

0

pthread_create.c:688
pthread_create.c:688
pthread_create.c:688
pthread_create.c:688
pthread_create.c:688
pthread_create.c:688
pthread_create.c:688
pthread_create.c:688
pthread_create.c:688
pthread_create.c:688
pthread_create.c:688
pthread_create.c:688
pthread_create.c:688
pthread_create.c:688

at pthread_create.c:688
at pthread_create.c:688
() at pthread_create.c:688

%edi, -0x1004 (%rbp)

Dump of assembler code for function procF:
<+0>:
<+1>:
<+4>:
<+11>:

End

(gd
rsp

0x0000000000401bad
0x0000000000401bae
0x0000000000401bb1
0x0000000000401bb8
0x0000000000401bbe
0x0000000000401bc5
0x0000000000401bca
0x0000000000401bcf
0x0000000000401bd2
0x0000000000401bd5
0x0000000000401bdf
0x0000000000401be5
0x0000000000401be8
0x0000000000401bee
0x0000000000401bf8
0x0000000000401bfe
0x0000000000401c00
0x0000000000401c05
0x0000000000401c06
0x0000000000401c07
of assembler dump.

b) info r $rsp

<+17

>

<+24>:

<+29

>

<+34>:

<+37

>:

<+40>:
<+50>:

<+56
<+59
<+65
<+75
<+81
<+83
<+88
<+89

>
>
>:
>
>
>
>:
>:

<+90>:

0x7f64c2056910

(gdb) maintenance info sections
Exec file:

[e]
[1]
[2]
[3]
[4]

* /home/coredump/ALCDA2/x64/App7/App7"', file type
0Xx00400200->0x00400220
0x00400220->0x00400244
0x00400248->0x004004d0
0x00401000- >0x00401017
0x00401018->0x00401010

at
at
at
at
at

pus
mov
sub
mov
lea
mov
mov
mov

h

%rbp

%rsp,%rbp

$0x1010, %rsp

%edi, -0x1004 (%rbp)
-0x1000 (%rbp) , %rdx
$0x0, %eax

$0x200, %ecx

%rdx, %rdi

rep stos %rax,%es: (%rdi)

movl $oxffffffff, -0x1000(%rbp)
mov -0x1004 (%rbp) , %eax
add $0x1, %eax
mov %eax, -0xff8(%rbp)
movl $exffffffff, -oxffo(%rbp)
mov -oxff8(%rbp),%eax
mov %»eax,%edi
callg ©ox40lbad <procF>
nop
leaveq
retq
Ox7f64c205690

0x00000200: .note
0x00000220: .note
0x00000248: .rela
0x00001000: .init
0x00001018:

elf64-x86-64.

266

.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
.plt ALLOC LOAD READONLY DATA HAS_CONTENTS

ALLOC LOAD READONLY CODE HAS_CONTENTS

.plt ALLOC LOAD READONLY CODE HAS_CONTENTS

[5]

[6]

[7]

[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]

0x00401010->0x004935b0

0x004935b0->0x00494157

0x00494158->0x00494161

0x00495000->0x004af73c

0x004af740->0x004bbc10

0x004bbc10->0x004bbcbc
0x004bdobo - >0x004bdod8
0x004bdod8->0x004bd120
0x004bdod8 - >0x004bdoe0
0x004bd0e0->0x004bdof0o
0x004bdof0->0x004bd100
0x004bd100->0x004bfef4
0x004bfef8->0x004c0000
0x004c0000->0x004c0010
0x004c0100->0x004c1c30
0x004c1c30->0x004c1c90
0x004clcad->0x004c2408
0x004c2408->0x004c2410
0x004c2420->0x004c8528
0x004c8528->0x004c8558
0Xx00000000- >0x00000038
0x00000000 - >0x00000420
0Xx00000000 - >0x000372ad
0x00000000- >0x000057e8
0x00000000- >0x0000aa2b
0x00000000- >0x00004d08
0x00000000- >0x0000d4b8
0x00000000- >0x000024c0

Core file:
*/home/coredump/ALCDA2/x64/App7/core.App7"', file type elf64-x86-64.

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[1e]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

0x00000000->0x00002c24
0x00000000- >0x000000d8
0x00000000- >0x000000d8
0x00000000 - >0x00000080
0x00000000 - >0x00000080
0x00000000 - >0x00000140
0x00000000 - >0x000000c4
0x00000000 - >0x000000c4
0x00000000 - >0x00000200
0x00000000->0x00000200
0x00000000->0x00000340
0x00000000->0x00000340
0x00000000 - >0x000000d8
0x00000000->0x00000200
0x00000000->0x00000340
0x00000000->0x000000d8
0x00000000 - >0x00000200
0x00000000 - >0x00000340
0x00000000->0x000000d8
0x00000000 - >0x00000200

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

--Type <RET> for more, q to quit, c

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]

0x00000000->0x00000340
0x00000000 - >0x000000d8
0x00000000->0x00000200
0x00000000->0x00000340
0x00000000 - >0x000000d8
0x00000000 - >0x00000200
0x00000000->0x00000340
0x00400000->0x00401000
0x00401000->0x00401000
0x00495000->0x00495000
0x004bd000 - >0x004c3000
0x004c3000->0x004c9000
0x01d10000->0x01d33000

at
at
at
at
at
at
at
at
at
at
at
at
at

0Xx00001010:
0x000935b0:
0x00094158:
0x00095000:
0x000af740:

0x000bbc10:
0x000bcobo:
0x000bc0odS8:
0x000bcodSs:
0Xx000bcPe0:
0x000bcofo:
0x000bc100:
0x000beef8:
0x000bT000:
0x000bT100:
0x000c0c30:
0x000c0can:
0x000c1408:
0x000c1410:
0x000c1410:
0x000c1410:
0x000c1450:
0x000c1870:
0x000f8b1d:
0x000fe305:
0x00108d30:
0x0010da38:
0x0011aefO:

0x000004a0:
0x00000524 :
0x00000524 :
0x000006b4 :
0x000006b4 :
0x00000748:
0x0000089cC :
0x0000089cC :
0x00000974 :
0x00000974 :

0x00000b88 :
0x00000b88 :
0x00000f4cC:
0x00001040:
0x00001254 :
0x00001618:
0x0000170cC:
0x00001920:
0x00001ces:
0x00001dd8:

.text ALLOC LOAD READONLY CODE HAS_CONTENTS
__libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
.fini ALLOC LOAD READONLY CODE HAS_CONTENTS
.rodata ALLOC LOAD READONLY DATA HAS_CONTENTS
.eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS
.gcc_except_table ALLOC LOAD READONLY DATA HAS_CONTENTS
.tdata ALLOC LOAD DATA HAS_CONTENTS

.tbss ALLOC

.preinit_array ALLOC LOAD DATA HAS_CONTENTS
.init_array ALLOC LOAD DATA HAS_CONTENTS
.fini_array ALLOC LOAD DATA HAS_CONTENTS
.data.rel.ro ALLOC LOAD DATA HAS_CONTENTS

.got ALLOC LOAD DATA HAS_CONTENTS

.got.plt ALLOC LOAD DATA HAS_CONTENTS

.data ALLOC LOAD DATA HAS_CONTENTS
__libc_subfreeres ALLOC LOAD DATA HAS_CONTENTS
__libc_IO vtables ALLOC LOAD DATA HAS_CONTENTS
__libc_atexit ALLOC LOAD DATA HAS_CONTENTS
.bss ALLOC

__libc_freeres_ptrs ALLOC

.comment READONLY HAS_CONTENTS

.debug_aranges READONLY HAS_CONTENTS
.debug_info READONLY HAS_CONTENTS
.debug_abbrev READONLY HAS_CONTENTS
.debug_line READONLY HAS_CONTENTS

.debug_str READONLY HAS_CONTENTS

.debug_loc READONLY HAS_CONTENTS

.debug_ranges READONLY HAS_CONTENTS

note® READONLY HAS_CONTENTS
.reg/71 HAS_CONTENTS
.reg HAS_CONTENTS
.note.linuxcore.siginfo/71 HAS_CONTENTS
.note.linuxcore.siginfo HAS_CONTENTS
.auxv HAS_CONTENTS
.note.linuxcore.file/71 HAS_CONTENTS
.note.linuxcore.file HAS_CONTENTS
.reg2/71 HAS_CONTENTS
.reg2 HAS_CONTENTS
.reg-xstate/71 HAS_CONTENTS
.reg-xstate HAS_CONTENTS
.reg/68 HAS_CONTENTS
.reg2/68 HAS_CONTENTS
.reg-xstate/68 HAS_CONTENTS
.reg/69 HAS_CONTENTS
.reg2/69 HAS_CONTENTS
.reg-xstate/69 HAS_CONTENTS
.reg/70 HAS_CONTENTS
.reg2/70 HAS_CONTENTS

to continue without paging--

ox0000lfec:
0x000023b0:
0x000024a4 :
0x000026b8 :
0x00002a7c:
0x00002b70:
0x00002d84 :
0x00004000:
0x00005000:
0Xx00005000 :
0x00005000:
0x0000b000 :
0x00011000:

.reg-xstate/70 HAS_CONTENTS
.reg/73 HAS_CONTENTS

.reg2/73 HAS_CONTENTS
.reg-xstate/73 HAS_CONTENTS
.reg/72 HAS_CONTENTS

.reg2/72 HAS_CONTENTS
.reg-xstate/72 HAS_CONTENTS
loadl ALLOC LOAD READONLY HAS_CONTENTS
load2 ALLOC READONLY CODE
load3 ALLOC READONLY

load4 ALLOC LOAD HAS_CONTENTS
load5 ALLOC LOAD HAS_CONTENTS
load6 ALLOC LOAD HAS_CONTENTS

Ox7f64c1873000->0x7f64c1873000 at Ox00034000: load7 ALLOC READONLY
Ox7164c1874000->0x7f64Cc2074000 at O0x00034000: load8 ALLOC LOAD HAS_CONTENTS
Ox7164c2074000->0x7164c2074000 at 0x00834000: load9 ALLOC READONLY

267

[36] 0x7164c2075000->0x7164c2875000 at 0x00834000: loadle ALLOC LOAD HAS_CONTENTS

[37] Ox7164c2875000->0x71f64c2875000 at 0x01034000: loadll ALLOC READONLY

[38] Ox7164c2876000->0x7f64c3076000 at 0x01034000: loadl2 ALLOC LOAD HAS_CONTENTS

[39] 0x7164c3076000->0x7f64c3076000 at 0x01834000: loadl3 ALLOC READONLY

[40] Ox7164c3077000->0x7f64c3877000 at 0x01834000: loadl4 ALLOC LOAD HAS_CONTENTS

[41] Ox7164c3877000->0x7f64c3877000 at 0x02034000: loadl5 ALLOC READONLY

[42] 0x7164c3878000->0x7164c4078000 at 0x02034000: loadl6é ALLOC LOAD HAS_CONTENTS

[43] ox7ffdfcddeeeo->ex7ffdfcdf1000 at 0x02834000: loadl7 ALLOC LOAD HAS_CONTENTS

[44] ox7ffdfcdf5000->0x7ffdfcdf9000 at 0x02855000: loadl8 ALLOC LOAD READONLY HAS_CONTENTS

[45] Ox7ffdfcdf9000->0x7ffdfcdfad00 at 0x02859000: loadl9 ALLOC LOAD READONLY CODE HAS_CONTENTS

Note: We see that the stack pointer value 0x7f64c20569f0 is inside the stack region address range 0x7f64¢1874000 -
0x7f64¢2074000.

268

Exercise A8

Goal: Learn how to identify runtime exceptions, past execution
residue and stack traces, identify handled exceptions

Patterns: C++ Exception; Execution Residue (User Space); Past
Stack Trace; Coincidental Symbolic Information; Handled Exception
(User Space)

© 2023 Software Diagnostics Services

269

Exercise A8 (x64, GDB)

Goal: Learn how to identify runtime exceptions, past execution residue and stack traces, identify handled
exceptions.

Patterns: C++ Exception; Execution Residue (User Space); Past Stack Trace; Coincidental Symbolic Information;
Handled Exception (User Space).

1. Load core.App8 dump file and App8 executable from the x64/App8 directory:

~/ALCDA2/x64/App8% gdb -c core.App8 -se App8

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying"” and "show warranty" for details.

This GDB was configured as "x86_64-1linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to
Reading symbols from App8...done.

[New LWP 162]

[New LWP 164]

[New LWP 165]

[New LWP 163]

[New LWP 161]

[New LWP 166]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1lib/x86_64-linux-gnu/libthread_db.so.1".
Core was generated by " ./App8'.

Program terminated with signal SIGABRT, Aborted.

#0 0©x0000000000424fdb in raise ()

[Current thread is 1 (Thread 0x7f4d60082700 (LWP 162))]

‘'word". ..

1. Set logging to a file in case of lengthy output from some commands:

(gdb) set logging on App8.log
Copying output to App8.log.

2. List all thread stack traces:
(gdb) thread apply all bt

Thread 6 (Thread 0x7f4d5e07e700 (LWP 166)):

#0 Ox000000000045aa70 in nanosleep ()

#1 Ox000000000045a9fa in sleep ()

#2 0x00000000004023b6 in procNE() ()

#3 0x0000000000402482 in bar_five() ()

#4 0x000000000040248e in foo five() ()

#5 0x00000000004024a2 in thread_five(void*) ()

270

#6 0©Ox0000000B41b483 in start_thread (arg=<optimized out>) at pthread_create.c:486
#7 0x000000000045d22f in clone ()

Thread 5 (Thread ©0x19ad880 (LWP 161)):

#0 0Ox0000OOVVVR45aa70 in nanosleep ()

#1 0©Ox00000000045a9fa in sleep ()

#2 0©x0000PROB402553 in main () at pthread_create.c:688

Thread 4 (Thread 0x7f4d5f881700 (LWP 163)):

#0
#1
#2
#3
#4
#5
#6
#7

0x000000000045aa70
0x000000000045a9 a
0x00000000004023b6
0x00000000004023f2
0x00000000004023fe
0x0000000000402412
0x000000000041b483
0x000000000045d22f

in
in
in
in
in
in
in
in

nanosleep ()

sleep ()

procNE() () at pthread_create.c:688

bar_two() () at pthread_create.c:688

foo_two() () at pthread_create.c:688

thread_two(void*) () at pthread_create.c:688

start_thread (arg=<optimized out>) at pthread_create.c:486
clone ()

Thread 3 (Thread 0x7f4d5e87f700 (LWP 165)):

#0
#1
#2
#3
#4
#5
#6
#7

0Xx000000000045aa70
0x000000000045a9 a
0x00000000004023b6
0x0000000000402452
0x000000000040245e
0Xx0000000000402472
0x000000000041b483
0x000000000045d22f

in
in
in
in
in
in
in
in

nanosleep ()

sleep ()

procNE() () at pthread_create.c:688

bar_four() () at pthread_create.c:688

foo_four() () at pthread_create.c:688

thread_four(void*) () at pthread_create.c:688

start_thread (arg=<optimized out>) at pthread_create.c:486
clone ()

Thread 2 (Thread @x7f4d5fe80700 (LWP 164)):

#0
#1
#2
#3
#4
#5
#6
#7

0Xx000000000045aa70
0x000000000045a9 a
0x000000000040236C
0x0000000000402422
0Xx000000000040242e
0x0000000000402442
0x000000000041b483
0x000000000045d22f

in
in
in
in
in
in
in
in

nanosleep ()

sleep ()

procH() () at pthread_create.c:688

bar_three() () at pthread_create.c:688

foo_three() () at pthread _create.c:688

thread_three(void*) () at pthread_create.c:688
start_thread (arg=<optimized out>) at pthread_create.c:486
clone ()

Thread 1 (Thread ©x7f4d60082700 (LWP 162)):

#0
#1
#2
#3
#4
#5
#6
#7
#8
#9

0x0000000000424fdb
0x00000000004017d3
0x0000000000401553
0x0000000000402b46
0x0000000000402b81
0x0000000000402ac4
0x00000000004022de
0x000000000040233b
0x00000000004023a0
0x00000000004023c2

--Type <RET> for more,
#10 0x00000000004023ce
#11 ©x00000000004023e2
#12 0©x000000000041b483
#13 0x000000000045d22f

in
in
in
in
in
in
in
in
in
in

raise ()
abort () at pthread_create.c:688
__gnu_cxx::__verbose_terminate_handler() [clone .cold.1] ()

__cxxabivi::__terminate(void (*)()) () at pthread_create.c:688
std::terminate() () at pthread_create.c:688

__cxa_throw () at pthread_create.c:688

procB() () at pthread_create.c:688

procA() () at pthread_create.c:688

procNH() () at pthread_create.c:688

bar_one() () at pthread_create.c:688

g to quit, c to continue without paging--

in
in
in
in

foo_one() () at pthread_create.c:688

thread_one(void*) () at pthread_create.c:688

start_thread (arg=<optimized out>) at pthread_create.c:486
clone ()

Note: We have C++ exception processing in thread #1.

271

3. Go to thread #4, identify the execution residue of work functions, check their correctness, and reconstruct
the past stack trace:

(gdb) thread 4
[Switching to thread 4 (Thread @x7f4d5f881700 (LWP 163))]
#0 0Ox000000045aa70 in nanosleep ()

(gdb) bt

#0 0Ox0000OVOVVVR45aa70 in nanosleep ()

#1 0©Ox00000000045a9fa in sleep ()

#2 0©x000000V4023b6 in procNE() () at pthread_create.c:688

#3 0Ox00000000004023f2 in bar_two() () at pthread_create.c:688

#4 0x00000000004023fe in foo_two() () at pthread_create.c:688

#5 0©x0000000000402412 in thread two(void*) () at pthread create.c:688

#6 0©Ox000000041b483 in start_thread (arg=<optimized out>) at pthread_create.c:486
#7 ©x000000000045d22f in clone ()

(gdb) x/512a $rsp-2000

Ox7f4d5f880530: 0x0 ox0
0x7f4d5f880540: 0Ox0 0x0
0x7f4d5f880550: 0Ox0 0x0
Ox7f4d5f880560: 0Ox0 ox0
Ox7f4d5f880570: 0Ox0 ox0
Ox7f4d5f880580: 0Ox0 ox0
0x7f4d5f880590: 0Ox0 0x0
0x7f4d5f8805a0: 0Ox0 0x0
Ox7f4d5f8805b0: 0x0 ox0
Ox7f4d5f8805c0: ©x0 oxe
0x7f4d5f8805d0: 0Ox0 0x0
0x7f4d5f8805e0: 0Ox0 0x0
0x7f4d5f8805f0: Ox0 0x0
Ox7f4d5f880600: 0Ox0 ox0
Ox7f4d5f880610: 0Ox0 ox0
0x7f4d5f880620: 0Ox0 0x0
0x7f4d5f880630: 0Ox0 0x0
Ox7f4d5f880640: 0x0 ox0
0x7f4d5f880650: ©x0 oxe
Ox7f4d5f880660: ©x0 oxe
0x7f4d5f880670: 0Ox0 0x0
0x7f4d5f880680: 0Ox0 0x0
Ox7f4d5f880690: 0x0 ox0
Ox7f4d5f8806a0: 0x0 ox0
0x7f4d5f8806b0: 0Ox0 0x0
0x7f4d5f8806c0: Ox0 0x0
0x7f4d5f8806d0: 0Ox0 0x0
0x7f4d5f8806e0: 0Ox0 oxe
Ox7f4d5f880610: Ox0 ox0
0x7f4d5f880700: 0Ox0 0x0
0x7f4d5f880710: 0Ox0 0x0
Ox7f4d5f880720: 0Ox0 ox0
0x7f4d5f880730: 0x0 o0x0
0x7f4d5f880740: 0x0 0x0
0x7f4d5f880750: 0Ox0 o0x0
0x7f4d5f880760: 0Ox0 o0x0
0x7f4d5f880770: 0Ox0 0x0
0x7f4d5f880780: 0Ox0 0x0
0x7f4d5f880790: 0Ox0 o0x0
0x7f4d5f8807a0: 0Ox0 0x0
0x7f4d5f8807b0: 0Ox0 0x0
Ox7f4d5f8807c0O: ©x0 0x0

272

0x7t4d5f8807d0:
0x7f4d5f8807e0:
ox7f4d5f8807f0:
0x7f4d51880800:
0x7f4d5f880810:
0x7t4d51880820:
0x7f4d51880830:
0x7f4d51880840:
0x7f4d5f880850:
0x7t4d51880860:
0x7f4d51880870:
0x7f4d51880880:
0x7f4d5f880890:
0x7f4d5f8808a0:
0x7f4d5f8808b0:

0x7f4d5f8808cO:
0x7f4d5f8808d0:
0x7f4d518808e0:
Ox7f4d5f880810:
0x7f4d51880900:
0x7f4d5f880910:
0x7f4d5880920:
0x7f4d5f880930:
0x7f4d51880940:
0x7f4d5f880950:
Ox7f4d5f880960:
Ox7f4d5f880970:
0x7f4d51880980:
0x7f4d5f880990:
0x7f4d5f8809a0:
Ox7f4d5f8809b0:
Ox7f4d5f8809c0:
0x7f4d5f8809d0:
0x7f4d518809€0:
Ox7f4d5f880910:
0x7f4d51880a00:
0x7f4d5f880al0:
0x7f4d5f880a20:
0x7f4d5f880a30:
0x7f4d51880a40:
0x7f4d5f880a50:
0x7f4d5f880a60:
0x7f4d5f880a70:
0x7f4d5f880a80:
0x7f4d5f880a90:
0x7f4d5f880aa0:
0x7f4d5f880abo:
0x7f4d5f880aco:
0x7f4d5f880ado:
0x7f4d5f880ae0:
0x7f4d5f880af0o:
0x7f4d5f880b00:
0x7f4d5f880b10:
0x7f4d5f880b20:
0x7f4d5f880b30:
0x7f4d5f880b40:
0x7f4d5f880b50:
0x7f4d5f880b60:
0x7f4d5f880b70:

0x0 o0x0
0x0 o0x0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 ox0
0x0 0x0
ox0 0x0
ox0 0x0
ox0 o0x0
0x0 ox0
0x0 o0x0
ox0 0x0
0x0 0x0

0x7f4d5f8808cO 0x4021dd <_Zé6work_8v+9>
--Type <RET> for more, q to quit, c to continue without

0x7f4d5f8808d0
0x7f4d5f8808e0
ox7f4d5f8808f0
0x7f4d51880900
0x7f4d5f880910
ox7f4d5f880920
ox7f4d5f880930
ox7f4d5f880d40
0x0 0x0
0x0 ox0
0x0 0x0
0x0 0x0
0x0 o0x0
0x0 0x0
0x0 o0x0
0x0 0x0
0x0 0x0
0x0 o0x0
ox0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 ox0
0x0 ox0
0x0 0x0
0x0 0x0
ox0 ox0
ox0 o0x0
ox0 ox0
0x0 0x0
0x0 0x0
o0x0 ox0
ox0 ox0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 ox0
0x0 o0x0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
o0x0 0x0

0x4021e9
0x4021f5
0x402201
0x40220d
0x402219
0x402225
0x402231
0x402244

<_Zéwork_7v+9>
<_Zé6work_6v+9>
<_zZé6work_5v+9>
<_Zeéwork_4v+9>
<_zZeéwork_3v+9>
<_Zework_2v+9>
<_Zework_1v+9>
<_ZA4workv+16>

273

paging--

0x7f4d5f880b80: ©x0 o0x0

0x7f4d5f880b90: ©x0 o0x0

0x7f4d5f880ba0d: ©x0 0x0

0x7f4d5f880bbo: ©x0 0x0

0x7f4d5f880bcO: ©x0 0x0

0x7f4d5f880bdo: ©x0 ox0

0x7f4d5f880bed: 0Ox0 0x0

0x7f4d5f880bf0: ©x0 0x0

Ox7f4d5f880c00: ©x0 0x0

0x7f4d5f880c10: ©x0 o0x0

0x7f4d5f880c20: 0x0 ox0

0x7f4d5f880c30: ©x0 o0x0

Ox7f4d5f880c40: ©x0 0x0

--Type <RET> for more, q to quit, c to continue without paging--
0x7f4d5f880c50: ©x0 o0x0

0x7f4d5f880c60: ©x0 o0x0

0x7f4d5f880c70: ©x0 ox0

0x7f4d5f880c80: ©x0 0x0

0x7f4d5f880c90: ©x0 0x0

0x7f4d5f880ca0d: ©x0 0x0

0x7f4d5f880cbo: ©x0 0x0

Ox7f4d5f880ccO: 0x0 oxe

ox7f4d5f880cdo: 0xe oxe

Ox7f4d5f880ce0d: 0x0 oxe

0x7f4d5f880cfO: 0x0 0x45aa61 <nanosleep+49>
0x7f4d5f880d00: ©x0 o0x0

ox7f4d5f880d10: 0x0 oxffffffffffffffbs
Ox7f4d5f880d20: 0x0 Ox45a9fa <sleep+58>
0x7f4d5f880d30: Oxfffffffa 0x3b87464c
0x7f4d5f880d40: ©x7f4d5f880d50 ©x3e6cal5e6c37eald
0x7f4d5f880d50: ©x7f4d5f880d60 0©xO

0x7f4d5f880d60: 0x7f4d5f880d70 0©x4023b6 <_Z6procNEv+19>
0x7f4d5f880d70: 0x7f4d5f880d80 ©x4023f2 <_Z7bar_twov+9>
ox7f4d5f880d80: 0x7f4d5f880d90 ©0x4023fe <_Z7foo_twov+9>
Ox7f4d5f880d90: Ox7f4d5f880db0 ©x402412 <_Zl@thread_twoPv+17>
ox7f4d5f880da0d: 0x0 ox0

ox7f4d5f880dbo: 0x0 0x41b483 <start_thread+243>
ox7f4d5f880dco: 0xe ox7f4d5f881700

0x7f4d5f880ddo: ©x7f4d5f881700 ©xcaa581bf94a099al
0x7f4d5f880ded: Ox7ffdddad3bfe ©Ox7ffdddad3bff
ox7f4d5f880df0: Ox7f4d5f881700 0Ox0

Ox7f4d5f880e00: 0x343f3eaf8f2099al Oxcaa5813cfcf299al
0x7f4d5f880el10: ©x0 ox0

0x7f4d5f880e20: ©x0 ox0

0x7f4d5f880e30: 0©x0 ox0

Ox7f4d51880e40: 0x0 oxe

ox7f4d5f880e50: 0x0 0x3eb6cal5e6c37ea00
0x7f4d5f880e60: 0©x0 0x7f4d5f881700

0x7f4d5f880e70: ©x7f4d5f881700 0x45d22f <clone+63>
0x7f4d51880e80: 0x0 oxe

0x7f4d5f880e90: 0Ox0 0x0

0x7f4d5f880ead: 0OxO 0x0

0x7fA4d5f880eb0: ©x0 o0x0

0x7fA4d5f880ecO: ©x0 o0x0

0x7f4d5f880ed0d: ©x0 0x0

0x7f4d5f880ee0: 0OxO 0x0

ox7f4d5f880ef0: 0x0 oxe

0x7fA4d5f8801f00: ©x0 0x0

0x7fA4d5f880f10: ©x0 0x0

Ox7f4d5f880f20: ©x0 0x0

274

0x7f4d5f880130: ©x0 o0x0
0x7f4d5f8801f40: ©x0 o0x0
0x7f4d5f880f50: ©x0 0x0
0x7f4d5f880f60: ©x0 0x0
0x7f4d5f8801f70: ©x0 0x0
0x7f4d5f880180: ©x0 ox0
0x7f4d5f8801f90: 0x0 ox0
0x7f4d5f880fa0: ©x0 0x0
0x7f4d5f880fbo: ©x0 0x0
0x7f4d5f880fcO: 0x0 0x0
0x7f4d5f880fdo: ©x0 ox0
--Type <RET> for more, q to
0x7f4d5f880fe0: ©x0 0x0
0x7f4d5f880ff0: ©x0 0x0
0x7f4d5f881000: ©x0 o0x0
0x7f4d5f881010: ©x0 o0x0
0x7f4d5f881020: ©x0 ox0
0x7f4d5f881030: ©x0 0x0
Ox7f4d5f881040: ©x0 0x0
0x7f4d5f881050: ©x0 o0x0
0x7f4d5f881060: ©x0 o0x0
ox7f4d5f881070: 0x0 oxe
Ox7f4d5f881080: 0x0 oxe
Ox7f4d5f881090: 0x0 oxe
0x7f4d5f8810a0: ©x0 0x0
0x7f4d5f8810b0: ©x0 o0x0
Ox7f4d5f8810c0O: 0x0 oxe
ox7f4d5f8810d0: 0xe oxe
0x7f4d5f8810e0: 0x0 o0x0
0x7f4d5f8810f0: ©x0 0x0
0x7f4d5f881100: ©x0 o0x0
ox7f4d5f881110: 0x0 oxe
Ox7f4d5f881120: 0x0 ox0
0x7f4d5f881130: ©x0 o0x0
0x7f4d5f881140: ©x0 0x0
0x7f4d5f881150: 0x0 oxe
ox7f4d5f881160: 0x0 oxe
0x7f4d5f881170: 0x0 0x0
0x7f4d5f881180: ©x0 ox0
0x7f4d5f881190: ©x0 ox0
0x7f4d5f8811a0: 0x0 oxe
ox7f4d5f8811bo: 0x0 oxe
0x7f4d5f8811cO: ©x0 ox0
0x7f4d5f8811d0: ©x0 ox0
0x7f4d5f8811e0: ©x0 ox0
ox7f4d5f8811f0: 0x0 oxe
Ox7f4d51881200: 0x0 oxe
0x7f4d5f881210: ©x0 ox0
0x7f4d5f881220: ©x0 ox0
ox7f4d5f881230: 0x0 oxe
0x7f4d5f881240: 0x0 0x0
0x7f4d5f881250: 0x0 0x0
0x7f4d5f881260: ©x0 o0x0
0x7f4d5f881270: ©x0 o0x0
0x7f4d5f881280: 0x0 0x0
0x7f4d5f881290: 0Ox0 0x0
0x7f4d5f8812a0: ©x0 0x0
0x7f4d5f8812b0: ©x0 0x0
0x7f4d5f8812c0O: ©x0 0x0
Ox7f4d5f8812d0: 0x0 0x0

quit, c to continue without paging--

275

Ox7f4d5f8812e0: 0x0 ox0
ox7f4d5f8812f0: 0x0 ox0
Ox7f4d5f881300: 0x0 ox0
0x7f4d5f881310: 0x0 (]
0x7f4d5f881320: 0x0 (]
0x7f4d5f881330: 0x0 ox0
Ox7f4d5f881340: 0x0 ox0
0x7f4d5f881350: 0x0 (]
0x7f4d5f881360: 0x0O ox0
--Type <RET> for more, q to
Ox7f4d5f881370: 0x0 ox0
Ox7f4d5f881380: 0x0 ox0
0x7f4d5f881390: 0x0 (]
0x7f4d5f8813a0: 0x0 (]
Ox7f4d5f8813bo: 0x0 ox0
Ox7f4d5f8813c0: 0x0 ox0
0x7f4d5f8813de: 0x0 ox0
0x7f4d5f8813e0: 0x0 (]
0x7f4d5f8813f0: 0x0 (]
Ox7f4d5f881400: 0x0 ox0
Ox7f4d5f881410: 0x0 ox0
Ox7f4d5f881420: 0x0 ox0
0x7f4d5f881430: 0x0 ox0
0x7f4d5f881440: 0x0 ox0
0x7f4d5f881450: 0x0 ox0
0x7f4d5f881460: 0x0 ox0
0x7f4d5f881470: 0x0 ox0
0x7f4d5f881480: 0x0 ox0
Ox7f4d5f881490: 0x0 ox0
0x7f4d5f8814a0: 0x0 ox0
Ox7f4d5f8814bo: 0x0 ox0
Ox7f4d5f8814c0: 0x0 ox0
0x7f4d5f8814d0: 0x0 ox0
Ox7f4d5f8814e0: 0x0 ox0
Ox7f4d5f8814f0: 0x0 ox0
0x7f4d5f881500: 0x0 ox0
0x7f4d5f881510: 0x0 ox0
0x7f4d5f881520: 0x0 ox0

(gdb) disassemble ©x402219

Dump of assembler code for
0x0000000000402210
0Xx0000000000402211
0x0000000000402214
0x0000000000402219
0x000000000040221a
0x000000000040221b

<+0>:
<+1>:
<+4>:
<+9>:
<+10>:
<+11>:

End of assembler dump.

Note: Since the saved %rbp register value points to the next line, we can easily reconstruct the fragment of the past

stack trace:

0x7f4d5f8808b0:
0x7f4d5f8808c0:
0x7f4d5f8808d0:

0x7f4d5f8808f0:
0x7f4d5f880900:
ox7f4d5f880910:
0x7f4d5f880920:

0x7f4d5f8808c0
0x714d518808d0

ox7f4d51880810
0x7f4d51880900
0x7f4d5f880910
0x7f4d5f880920
0x7f4d5f880930

quit, c to continue without paging--

function _Z6work_3v:

push %rbp

mov %rsp,%rbp

callqg 0x402204 <_Zé6work_4v>
nop

pop %rbp

retq

0x4021dd <_Z6work_8v+9>
0x4021e9 <_Z6work_7v+9>
0x4021f5 <_Z6work_6v+9>
0x402201 <_zZ6work_5v+9>
0x40220d <_Z6work_4v+9>
0x402219 <_Z6work_3v+9>
0x402225 <_7Z6work_2v+9>
0x402231 <_Z6work_1v+9>

276

0x7f4d5f880930:

Ox7f4d5880d40 0x402244 <_ZAworkv+16>

4. Go to thread #2, identify the handled exception processing code, and check its validity:

(gdb) thread 2

[Switching to thread 2
#0 0x000000000045aa70

(gdb) bt

#0 0Ox0000000000453a70 1in
#1 ©Ox000000000045a9fa in
#2 0Ox000000000040236C in
#3 0x0000000000402422 in
#4 0x000000000040242e in
#5 0©Ox0000000000402442 in
#6 ©x000000000041b483 in
#7 ©x000000000045d22f in

(Thread 0x7f4d5f080700 (LWP 164))]
in nanosleep ()

nanosleep ()

sleep ()

procH() () at pthread_create.c:688

bar_three() () at pthread_create.c:688

foo_three() () at pthread_create.c:688

thread_three(void*) () at pthread_create.c:688
start_thread (arg=<optimized out>) at pthread_create.c:486
clone ()

(gdb) x/512a $rsp-2000

ox7f4d5f07f520:
ox7f4d5f07f530:
ox7f4d5f07f540:
ox7f4d5f07f550:
0x7f4d5f07f560:
ox7f4d5fe7f570:
ox7f4d5f07f580:
ox7f4d5f07f590:
ox7f4d5f07f5a0:

0x418950 <fde_single_encoding_compare>
0x7f4d58002520 ©x4df460 <object.6779>
0x7f4d580044c0 0Oxe3

0x1130000038c 0x0

0x7f4d580044b0 0x4df460 <object.6779>
Ox1cb70 Ox6¢cb

0x7f4d580044a0 0©x4186el <frame_heapsort+145>
0x38b8 ©Ox3e6cal5e6c37ea00d

0x401b72 <read_encoded_value_with_base.cold.o>

0x418600 <frame_downheap+112>

0x418950

<fde_single_encoding_compare>

Ox7f4d5f07f5b0:
ox7f4d5f07f5c0:
0x7f4d5f07f5do:
0x7f4d5f07f5e0:
0x7f4d5f07f5f0:
Ox7f4d5f071600:
0x7f4d5f07f610:
0x7f4d5f07620:
0x7f4d5f07f630:
0x7f4d5f07f640:
0x7f4d5f071650:
0x7f4d5f071660:
0x7f4d5f07f670:
0x7f4d5f07f680:
0x7f4d5f071690:
0x7f4d5f07f6a0:
0x7f4d5f07f6b0:
0x7f4d5f07f6c0:
0x7f4d5f07f6do:
0x7f4d5f07f6e0:
ox7f4ds5fo7f6fo:
0x7f4d5f07f700:
0x7f4d5fe7f710:
0x7f4d5f07f720:
0x7f4d5f07f730:
0x7f4d5fo7f740:
0x7f4d5f07f750:
0x7f4d5f07f760:
ox7f4d5fe7f770:
0x7f4d5f07f780:

0x4df460 <object.6779> 0x49

0x7f4d58000bed@ 0x417d0d <_Unwind_RaiseException+61>
0x4d4dd8 0x4197e6 <search_object+854>

0x0 ox7f4d5f07f628

ox7f4d5f07f630 ©x7f4d0000001b

(] 0x714d0000000b

0x7f4d5f07fc88 ©x7f4d5f07fc90

0x0 0x40234a <_Z5procHv>
0x43 (]
ox7f4d5f07fd40 0x4df460 <object.6779>

ox7f4d5f07f760 ©x7f4d5f07fab8

0x41db80 <__ pthread_key_create> 0x4030b8 <__gxx_personality v0+184>
0x402357 <_Z5procHv+13> 0x7f4d58000b80

0x60140234a ox0

0x4d60co 0x7f4d5f07f601

Ox7f4d5f07fd50 ©x40233b <_Z5procAv+9>

(] 0x4c43d9

ox4c43d9 ox5fe7fale

(] ox1b

Ox7f4d5f07f760 ©x4165d0 <uw_frame_state_for+800>

0x0 0x9b0000000e0o

0x4c4339 ox7f4d5f07f718

ox7f4d5f07f760 ©x4d60cO

ox7f4d5f07f760 0x7f4d5f07fale

0x4 0x7f4d58000b80

Ox7f4d5f07f760 0x4

0x7f4d5f07fbe@ ©x4176fb <_Unwind_RaiseException_Phase2+75>

o0x0 0x0
0x0 0x0
0x0 0x0

277

ox7f4d5f071790:
ox7f4d5f07f7a0:
ox7f4d5f07f7bo:
0x7f4d5f07f7co:
ox7f4d5fe7f7do:
ox7f4d5f07f7e0:
ox7f4d5fe7f7f0:
ox7f4d5f07f800:
ox7f4d5f07f810:
ox7f4d5f071820:
ox7f4d5f071830:
ox7f4d5f071840:
0x7f4d5f07f850:
0x7f4d5f07f860:
ox7f4d5f071870:
ox7f4d5f071880:
ox7f4d5f071890:
0x7f4d5f07f8a0:

Oxffffffffffffffe8 ox1
0x0 o0x0

0x0 0x0
oxfffffffffffffffo ox1
0x0 0x0

0x0 ox0

0x0 0x0

ox0 0x0

0x0 0x0

ox0 o0x0

0x0 ox0

0x0 o0x0

ox0 0x0

(%7 S B 2 T e e e e ox1
ox0 o0x0

0x0 0x10

Ox6 ox0

ox1 0x40238c <_Z5procHv+66>

--Type <RET> for more, q to quit, c to continue without paging--

0x7f4d5f07f8b0o:
0x7f4d5f07f8cO:
Ox7f4d5f07f8do:
ox7f4d5f07f8e0:
ox7f4d5fo7f8f0:
0x7f4d5f07f900:
0x7f4d5f07f910:
0x7f4d5f071920:
ox7f4d5f07f930:
0x7f4d5f07f940:
0x7f4d5f07f950:
0x7f4d5f07f960:
0x7f4d5f07f970:
ox7f4d5f07f980:
0x7f4d5f07f990:
0x7f4d5f07f9a0:
ox7f4d5fe7f9bo:
0x7f4d5f0719cO:
ox7f4d5fe7f9do:
0x7f4d5f07f9e0:
0x7f4d5f07f9f0:
0x7f4d5f07fa00:
Ox7f4d5fe7falo:
0x7f4d5f07fa20:
0x7f4d5f07fa30:
0x7f4d5f07fa40:
0x7f4d5f07fab0:
0x7f4d5f07fa60:
0x7f4d5f07fa70:
0x7f4d5f07fa80:
0x7f4d5f07fa9%e0:
0x7f4d5f07faa0:
0x7f4d5f07fabo:
0x7f4d5f07faco:
0x7f4d5f07fado:
0x7f4d5f07fae0:
ox7f4d5fe7fafo:
0x7f4d5f07fboo:
0x7f4d5f07fbilo:
0x7f4d5f07fb20:
0x7f4d5f07fb30:

0x403000 <__gxx_personality ve> Oxfffffffffffffff8
ox1 0x10

0x11blb ©x0

0x7f4d58000b80 0Ox7f4d5f07fale

0x7f4d5f07fcco 0x7f4d5f07fbeo

0x7f4d58000b80 ©x7f4d5f07fd60

ox0 ox417faa <_Unwind_RaiseException+730>
Ox7f4d5f07fc88 ©Ox7f4d5f07fc90

ox0 ox7f4d5f07fc98

0x0 0x0

ox7f4d5f07fcco 0xo

0x0 0x0
0x0 ox0
ox7f4d5f07fca0
ox7f4d5fe7fcbo
ox7f4d5f07fcc8
0x7f4d5f07fcdo
0x0 0x0
ox0 0x417cd@ <_Unwind_RaiseException>
0x4000000000000000 0x0

0x0 0x0

0x0 0x0

Ox7f4d5f07fc88 ©Ox7f4d5f07fc90

0x0 ox7f4d5f07fd28

0x0 0x0

ox7f4d5f07fd50 ©x7f4d5f071908

Ox7f4d5f07fca8
0x7t4d5f07fcb8

ox0

0x402ab7 <__cxa_throw+55>

0x0 0x0
0x0 0x0
ox7f4d5fe7fd30
0x7f4d5fe7fcbo
Ox7f4d5f07+d58
ox7f4d5fo7+deo
0x4d60co
0x0

0x0
0x0
ox4
o0x0
0x0

0x0
0x0
0x0
0x0
0x0

OXFFFFFFFFFFFFFfe8

ox7f4d5f07+d38
0x7f4d5f07fcb8
o0x0

0x40235a <_Z5procHv+16>

o0x0

0x40234a <_Z5procHv>
0x4000000000000000

o0x0

ox1

ox7f4d5f07fb40:
ox7f4d5f07fb50:
ox7f4d5f07fb60:
ox7f4d5fe7fb70:
ox7f4d5f07fb80:
ox7f4d5f07fb9o:
0x7f4d5f07fba0d:
ox7f4d5f07fbbo:
0x7f4d5f07fbco:
ox7f4d5f07fbdo:
0x7f4d5f07fbe0:
ox7f4d5fe7fbfo:
0x7f4d5f07fco0:
ox7f4d5fe7fclo:
ox7f4d5f07fc20:
ox7f4d5f07fc30:

0x0 o0x0

0x0 o0x0
oxfffffffffffffffo ox1
0x0 0x0

0x0 0x0

ox0 ox0

0x0 0x0

ox0 0x0

0x0 0x0

ox0 o0x0

0x0 ox0

0x0 o0x0

(%7 S B 2 e e e e ox1
0x0 0x0

ox0 0x10

Ox6 o0x0

--Type <RET> for more, q to quit, c to continue without paging--

0x7f4d5f07fc40:
0x7f4d5f07fc50:
0x7f4d5f07fc60:
0x7f4d5f07fc70:
ox7f4d5f07fc80:
0x7f4d5f07fc90:
ox7f4d5f07fca0:
0x7f4d5f07fcbo:
0x7f4d5f07fcco:
ox7f4d5f07fcdo:
ox7f4d5f07fce0:
0x7f4d5fe7fcfo:
0x7f4d5f07fdoo:
0x7f4d5f07fd10o:
0x7f4d5fe7fd20:
ox7f4d5f07+d30:
0x7f4d5f07fd40:
0x7f4d5f07fd50:
ox7f4d5f07fd60:
Ox7f4d5fe7fd70:
ox7f4d5f07+d8o:
0x7f4d5f07fd90:
0x7f4d5f07fda0:
ox7f4d5f07fdbo:
0x7f4d5f07fdco:
0x7f4d5f07fddo:
0x7f4d5f07fde0:
0x7f4d5fe7fdfo:
0x7f4d5f07fe00:
0x7f4d5fe7felo:
0x7f4d5f07fe20:
0x7f4d5f07fe30:
0x7f4d5f07fe4d0:
0x7f4d5f07feb50:
0x7f4d5f07fe60:
0x7f4d5f07fe70:
0x7f4d5f07fe80:
0x7f4d5f07fe90:
0x7f4d5f07fea0:
0x7f4d5f07febo:
0x7f4d5f07feco:
0x7f4d5f07fedo:
0x7f4d5f07fee0:

ox1 0x40238c <_Z5procHv+66>

0x403000 <__ gxx_personality ve> exfffffffffffffffs
ox1 0x10

0x11blb ©x0

0x88 0x7f4d58000b80

ox1 0x0

ox7ffdddad3bfe Ox7ffdddad3bff
0x7f4d5f080700 0x0

ox7f4d5f07fd70 ©x402358 <_Z5procHv+14>
0x7f4d58000ba® 0©x7f4d5f07fd40
0x7f4d58000bbo ©x45aabl <nanosleep+49>
ox7f4d5fe7fdee oxd

0x4420737365636341 oxffffffffffffffb8
ox0 Ox45a9fa <sleep+58>

oxfffffffa 0x3b9715f4

ox7ffdddad3bfe ©x3e6cal5e6c37ead0
ox7f4d5f07fd50 ©x0

Ox7f4d5f07fd70 ©x40236¢C <_Z5procHv+34>
0x0 0x0

Ox7f4d5f07fd80 ©x402422 <_Z9bar_threev+9>
Ox7f4d5f07fd90@ ©x40242e <_Z9foo_threev+9>
ox7f4d5f07fdbO ©0x402442 < Z12thread_threePv+17>
ox0 (]

ox0 0x41b483 <start_thread+243>

(] ox7f4d5f080700

0x7f4d5f080700 ©Oxcaa581bf94a099al
ox7ffdddad3bfe 0Ox7ffdddad3bff
0x7f4d5f080700 0©x0

0x343f3fbo6f2099a1 O@xcaa5813cfcf299al
0x0 0x0

ox0 (]

ox0 0x0

0x0 0x0

0x0 Ox3e6cal5e6c37eabd

ox0 0x7f4d5f080700

0x7f4d5f080700 ©x45d22f <clone+63>

0x0 0x0

0x0 0x0

0x0 0x0

0x0 0x0

ox0 ox0

ox0 ox0

0x0 0x0

279

0x7f4d5f07fef0: 0Ox0 0x0
0x7f4d5f07ff00: 0x0 0x0
0x7f4d5fo7ff10: ox0 o0x0
0x7f4d5f07ff20: ox0 ox0
Ox7f4d5f07ff30: 0x0 0x0
0x7f4d5f07ff40: ox0 0x0
0x7f4d5f07ff50: 0Ox0 0x0
Ox7f4d5f07ff60: ©x0 0x0
Ox7f4d5f07ff70: ©x0 0x0
0x7f4d5f07ff80: 0Ox0 0x0
0x7f4d5f07ff90: 0Ox0 0x0
0x7f4d5f07ffa0: 0x0 0x0
Ox7f4d5f07ffbo: ©xo 0x0
Ox7f4d5fe7ffco: 0xo ox0
--Type <RET> for more, q to
0x7f4d5f07ffdo: oxo 0x0
0x7f4d5f07ffe0d: 0x0 0x0
Ox7f4d5fe7fffo: 0xo 0x0
0x7f4d5f080000: 0Ox0 ox0
0x7f4d5f080010: 0Ox0 0x0
0x7f4d5f080020: 0Ox0 0x0
ox7f4d5f080030: 0x0 oxe
ox7f4d5f080040: 0x0 oxe
ox7f4d5f080050: 0x0 oxe
0x7f4d5f080060: 0Ox0 0x0
0x7f4d5f080070: 0Ox0 0x0
Ox7f4d5f080080: 0x0 oxe
0x7f4d5f080090: 0x0 oxe
0x7f4d5f0800a0: 0Ox0 0x0
0x7f4d5f0800b0: Ox0 0x0
0x7f4d5f0800c0: Ox0 0x0
ox7f4d5f0800d0: 0xe oxe
Ox7f4d510800e0: 0x0 oxe
0x7f4d5f0800f0: Ox0 0x0
0x7f4d5f080100: 0Ox0 0x0
ox7f4d5f080110: 0x0 oxe
ox7f4d51080120: 0x0 oxe
ox7f4d5f080130: 0x0 oxe
0x7f4d5f080140: 0x0 0x0
0x7f4d5f080150: 0Ox0 0x0
ox7f4d51080160: 0x0 oxe
ox7f4d5f080170: 0x0 oxe
0x7f4d5f080180: 0Ox0 0x0
0x7f4d5f080190: 0Ox0 0x0
0x7f4d5f0801a0: 0Ox0 0x0
ox7f4d5f0801bo: 0x0 oxe
ox7f4d5f0801cO: 0x0 oxe
0x7f4d5f0801d0: 0x0 0x0
0x7f4d5f0801e0: 0Ox0 0x0
ox7f4d5f0801f0: 0xe oxe
0x7f4d5f080200: 0Ox0 0x0
0x7f4d5f080210: 0Ox0 0x0
0x7f4d5f080220: 0Ox0 o0x0
0x7f4d5f080230: 0Ox0 o0x0
0x7f4d5f080240: 0x0 0x0
0x7f4d5f080250: 0Ox0 0x0
0x7f4d5f080260: 0Ox0 0x0
0x7f4d5f080270: 0Ox0 0x0
0x7f4d5f080280: 0Ox0 0x0
Ox7f4d5f080290: ©x0 0x0

quit, c to continue without paging--

280

0x7t4d5f0802a0: 0x0 oxe

0x7f4d5f0802bo: 0x0 oxe
0x7f4d5f0802c0: 0x0 ox0
0x7f4d5f0802d0: 0x0 ox0
0x7f4d510802e0: 0x0 ox0
ox7f4d5f0802f0: 0x0 oxe
0x7f4d5f080300: 0x0 ox0
0x7f4d5f080310: 0x0 ox0
0x7f4d5f080320: 0x0 ox0
0x7f4d5f080330: 0x0 ox0e
0x7t4d5f080340: 0x0 ox0e
0x7t4d5f080350: 0Ox0 oxe

--Type <RET> for more, q to quit, c to continue without paging--
0x7f4d5f080360: 0x0 (]

0x7f4d5f080370: 0Ox0 0x0
0x7f4d5f080380: 0Ox0 0x0
0x7f4d5f080390: 0Ox0 0x0
0x7f4d5f0803a0: 0Ox0 o0x0
0x7f4d5f0803b0: Ox0 ox0
0x7f4d5f0803cO: Ox0 0x0
0x7f4d5f0803d0: 0Ox0 0x0
Ox7f4d5f0803e0: 0Ox0 ox0
Ox7f4d5f0803f0: 0x0 ox0
Ox7f4d5f080400: 0Ox0 ox0
0x7f4d5f080410: 0Ox0 0x0
0x7f4d5f080420: 0Ox0 0x0
Ox7f4d5f080430: 0x0 ox0
Ox7f4d5f080440: 0x0 ox0
0x7f4d5f080450: 0Ox0 0x0
0x7f4d5f080460: 0Ox0 0x0
0x7f4d5f080470: 0Ox0 0x0
Ox7f4d5f080480: 0x0 ox0
Ox7f4d5f080490: 0x0 ox0
0x7f4d5f0804a0: 0Ox0 0x0
0x7f4d5f0804b0: 0Ox0 0x0
Ox7f4d5f0804c0: 0©x0 oxe
Ox7f4d5f0804do: 0x0 ox0
0x7f4d5f0804e0: 0Ox0 oxe
0x7f4d5f0804f0: 0Ox0 0x0
0x7f4d5f080500: 0Ox0 0x0
Ox7f4d5f080510: 0Ox0 ox0

(gdb) disassemble ©x417faa
Dump of assembler code for function _Unwind_RaiseException:

0x0000000000417cdO <+0>: push %rbp
0x0000000000417cdl <+1>: mov %rsp,%rbp
0x0000000000417cd4 <+4>: push %ri5
0x0000000000417cd6 <+6>: push %ril4
0x0000000000417cd8 <+8>: lea -0x320(%rbp),%ria
0x0000000000417cdf <+15>: lea 0x10(%rbp),%rsi
0x0000000000417ce3 <+19>: push %rl3
0x0000000000417ce5 <+21>: mov %rdi,%rl3
0x0000000000417ce8 <+24>: mov %rld,%rdi
0x0000000000417ceb <+27>: push %rl2
0x0000000000417ced <+29>: lea -0x1cO(%rbp),%ri12
0x0000000000417cf4 <+36>: push %rbx
0x0000000000417cf5 <+37>: lea -0x2b0 (%rbp) , %rbx
0x0000000000417cfc <+44>: push %rdx
0x0000000000417cfd <+45>: push %rax
0xX0000000000417cfe <+46>: sub $0x368, %rsp

281

0x0000000000417d0O5 <+53>: mov Ox8(%rbp) , %rdx

0Xx0000000000417d0O9 <+57>: callg ©x4174a0 <uw_init_context_1>
0x0000000000417d0e <+62>: movdga -0x3a@(%rbp),%xmme
0x0000000000417d16 <+70>: movdga -0x390(%rbp),%xmml
0x0000000000417d1le <+78>: movdga -0x380(%rbp),%xmm2
0x0000000000417d26 <+86>: movdga -0x370(%rbp),%xmm3
0x0000000000417d2e <+94>: movdga -0x360(%rbp) ,%xmma

0x0000000000417d36 <+102>: movdga -0x350(%rbp),%xmm5
0x0000000000417d3e <+110>: movaps %xmme, -0x2be(%rbp)
0x0000000000417d45 <+117>: movdga -0x340(%rbp),%xmmé6
0x0000000000417d4d <+125>: movaps %xmml, -0x2a0(%rbp)
0x0000000000417d54 <+132>: movdga -0x330(%rbp),%xmm7
0x0000000000417d5¢C <+140>: movaps %xmm2, -0x290(%rbp)
0x0000000000417d63 <+147>: movdga -0x320(%rbp),%xmmo
0x0000000000417d6b <+155>: movdga -0x310(%rbp),%xmml
0x0000000000417d73 <+163>: movaps %xmm3, -0x280(%rbp)
0x0000000000417d7a <+170>: movdga -0x300(%rbp) ,%xmm2
0x0000000000417d82 <+178>: movdga -0x2f0(%rbp),%xmm3
0x0000000000417d8a <+186>: movaps %xmm4, -0x270(%rbp)
0x0000000000417d91 <+193>: movdga -0x2e@(%rbp),%xmma
0x0000000000417d99 <+201>: movaps %xmm5, -0x260(%rbp)
0x0000000000417dad® <+208>: movdqa -0x2d0(%rbp),%xmm5
0x0000000000417da8 <+216>: movaps %xmmé6, -0x250 (%rbp)
0x0000000000417daf <+223>: movdga -0x2cO(%rbp),%xmmé6
0x0000000000417db7 <+231>: movaps %xmm7, -0x240(%rbp)
0x0000000000417dbe <+238>: movaps %xmme, -0x230(%rbp)
0x0000000000417dc5 <+245>: movaps %xmml, -0x220(%rbp)
0x0000000000417dcc <+252>: movaps %xmm2, -0x210(%rbp)
0x0000000000417dd3 <+259>: movaps %xmm3, -0x200(%rbp)
0x0000000000417dda <+266>: movaps %xmm4, -0x1fe(%rbp)
0x0000000000417del <+273>: movaps %xmm5, -0x1e@(%rbp)
0x0000000000417de8 <+280>: movaps %xmm6, -0x1do(%rbp)
0x0000000000417def <+287>: jmp 0x417e30 <_Unwind_RaiseException+352>
0x0000000000417df1 <+289>: nopl ©@x0(%rax)
0x0000000000417df8 <+296>: test %»eax, %eax
0x0000000000417dfa <+298>: jne 0x417e60 <_Unwind_RaiseException+400>

0x0000000000417dfc <+300>: mov -0x70(%rbp) ,%rax
0x0000000000417€00 <+304>: test %rax,%rax
0x0000000000417€03 <+307>: je Ox417e25 < _Unwind_RaiseException+341>

0x0000000000417€05 <+309>: mov %rbx,%r8
--Type <RET> for more, q to quit, c to continue without paging--
0Xx0000000000417€08 <+312>: mov %rl3,%rcx
0x0000000000417€0b <+315>: mov 0x0(%r13),%rdx
0x0000000000417e0f <+319>: mov $0x1,%esi
0x0000000000417e14 <+324>: mov $0x1,%edi
0x0000000000417e19 <+329>: callg *%rax
0x0000000000417elb <+331>: cmp $0x6, %eax
0x0000000000417ele <+334>: je 0x417e70 <_Unwind_RaiseException+416>
0Xx0000000000417e20 <+336>: cmp $0x8, %eax
0x0000000000417e23 <+339>: jne 0x417e60 <_Unwind_RaiseException+400>
0x0000000000417e25 <+341>: mov %rl2,%rsi
0Xx0000000000417e28 <+344>: mov %rbx,%rdi
0x0000000000417e2b <+347>: callg ©x417620 <uw_update_context>
0x0000000000417e30 <+352>: mov %rl2,%rsi
0x0000000000417e33 <+355>: mov %rbx,%rdi
0x0000000000417e36 <+358>: callg ©x4162be <uw_frame_state_for>
0x0000000000417e3b <+363>: cmp $0x5, %eax
0x0000000000417e3e <+366>: jne 0x417df8 < _Unwind_RaiseException+296>
0x0000000000417e40 <+368>: mov -0x28(%rbp) , %rbx
0Xx0000000000417e44 <+372>: mov -0x20(%rbp),%ri2

282

0x0000000000417e48 <+376>: mov -0x18(%rbp),%ri3
0x0000000000417e4Cc <+380>: mov -0x10(%rbp),%ria
0x0000000000417e50 <+384>: mov -0x8(%rbp),%ris
0x0000000000417e54 <+388>: leaveq

0x0000000000417e55 <+389>: retq

0x0000000000417e56 <+390>: nopw %cs:0x0(%rax,%rax,1)
0X0000000000417e60 <+400>: mov $0x3, %eax
0Xx0000000000417e65 <+405>: jmp 0x417e40 <_Unwind_RaiseException+368>
0x0000000000417e67 <+407>: nopw Ox0(%rax,%rax,1)
0x0000000000417e70 <+416>: movdga -0x3a0(%rbp),%xmm7
0x0000000000417e78 <+424>: mov -ox1fe(%rbp),%rax
0x0000000000417e7f <+431>: movq $0x0,0x10(%r13)
0x0000000000417e87 <+439>: mov %r12,%rdx
0x0000000000417e8a <+442>: movdga -0x350(%rbp),%xmmo
0x0000000000417€92 <+450>: mov -0x220(%rbp),%rcx
0x0000000000417€99 <+457>: mov %rbx,%rsi
0x0000000000417€9C <+460>: mov %rl3,%rdi
0x0000000000417e9f <+463>: movaps %xmm7, -0x2b0(%rbp)
0x0000000000417e€ab <+470>: movdga -0x390(%rbp),%xmm7
0xX0000000000417ecae <+478>: shr $0x3f, %rax
0x0000000000417eb2 <+482>: movdga -0x340(%rbp),%xmml
0x0000000000417eba <+490>: movaps %xmm@, -0x260(%rbp)
0x0000000000417ecl <+497>: movdqa -0x330(%rbp),%xmm2
0x0000000000417ec9 <+505>: movdqga -0x320(%rbp),%xmm3
0x0000000000417ed1l <+513>: sub %»rax,%rcx
0x0000000000417ed4 <+516>: movaps %xmm7, -0x2a0(%rbp)
0x0000000000417edb <+523>: movdqa -0x380(%rbp),%xmm7
0x0000000000417ee3 <+531>: movdqa -0x310(%rbp),%xmm4
0x0000000000417eeb <+539>: movdga -0x300(%rbp),%xmm5
0x0000000000417ef3 <+547>: movdga -0x2f0(%rbp),%xmmé6
0x0000000000417efb <+555>: mov %rcx,0x18(%ri13)
0x0000000000417eff <+559>: movaps %xmm7, -0x290(%rbp)
0x0000000000417106 <+566>: movdqa -0x370(%rbp),%xmm7
0x0000000000417f0e <+574>: movdga -0x2de(%rbp) ,%xmme
0x0000000000417F16 <+582>: movaps %xmml, -0x250(%rbp)
0x0000000000417F1d <+589>: movaps %xmm7, -0x280(%rbp)
0x0000000000417124 <+596>: movdga -0x360(%rbp),%xmm7
0x0000000000417f2Cc <+604>: movaps %xmm2,-0x240(%rbp)

--Type <RET> for more, q to quit, c to continue without paging--
0x0000000000417F33 <+611>: movaps %xmm7, -0x270(%rbp)
0x0000000000417f3a <+618>: movdqa -0x2e0(%rbp),%xmm7
0x0000000000417F42 <+626>: movaps %xmm3, -0x230(%rbp)
0x0000000000417F49 <+633>: movaps %xmm4, -0x220(%rbp)
0x0000000000417F50 <+640>: movaps %xmm5, -0x210(%rbp)
0x0000000000417F57 <+647>: movaps %xmmé, -0x200(%rbp)
0x0000000000417f5e <+654>: movaps %xmm7, -0x1fe(%rbp)
0x0000000000417165 <+661>: movaps %xmm@, -0x1e0 (%rbp)
0x0000000000417f6C <+668>: movdga -0x2cO(%rbp),%xmml
0x0000000000417F74 <+676>: movaps %xmml, -0x1de(%rbp)
0x0000000000417f7b <+683>: callg ©x4176b@ <_Unwind_RaiseException_Phase2>
0x0000000000417180 <+688>: cmp $0x7, %eax
0x0000000000417183 <+691>: jne 0x417e40 <_Unwind_RaiseException+368>
0x0000000000417F89 <+697>: mov %rbx,%rsi
0x0000000000417F8C <+700>: mov %rld,%rdi
0x0000000000417F8f <+703>: callg ©x417890 <uw_install_context_1>
0x0000000000417F94 <+708>: mov -0x218(%rbp),%rs
0X000PPPRRPR417fOb <+715>: mov -0x220(%rbp),%rdi
0x0000000000417fa2 <+722>: mov %r8,%rsi
0x0000000000417fa5 <+725>: callg ©x417cc@ <_Unwind_DebugHook>
0x0000000000417faa <+730>: mov %rax,%rcx

283

0x0000000000417fad <+733>: mov %r8,0x8(%rbp,%rax,1)

0x0000000000417Fb2 <+738>: mov -0x38(%rbp) ,%rax
0x0000000000417Fb6 <+742>: lea 0x8(%rbp,%rcx,1),%rcx
0x0000000000417fbb <+747>: mov -0x30(%rbp),%rdx
0x0000000000417fbf <+751>: mov -0x28(%rbp) ,%rbx
0x0000000000417fc3 <+755>: mov -0x20(%rbp),%ri2
0x0000000000417fCc7 <+759>: mov -0x18(%rbp),%ri3
0x0000000000417fcb <+763>: mov -0x1e(%rbp),%ria
0x0000000000417fcf <+767>: mov -0x8(%rbp),%ris

0x0000000000417Fd3 <+771>: mov 0x0(%rbp) ,%rbp
0x0000000000417Fd7 <+775>: mov %rcx,%rsp
0x0000000000417fda <+778>: retq

End of assembler dump.

284

Exercise A8 (A64, GDB)

Goal: Learn how to identify runtime exceptions, past execution residue and stack traces, identify handled
exceptions.

Patterns: C++ Exception; Execution Residue (User Space); Past Stack Trace; Coincidental Symbolic Information;
Handled Exception (User Space).

1. Load core.25889 dump file and App8 executable from the A64/App8 directory:

~/ALCDA2/A64/App8% gdb -c core.25889 -se App8

GNU gdb (Ubuntu 12.1-Qubuntul~22.04) 12.1

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying"” and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to
Reading symbols from App8...

(No debugging symbols found in App8)

‘'word". ..

warning: Can't open file /home/opc/ALCDA2/App8/App8 during file-backed mapping note processing
[New LWP 25890]

[New LWP 25892]

[New LWP 25889]

[New LWP 25891]

[New LWP 25894]

[New LWP 25893]

Core was generated by " ./App8'.

Program terminated with signal SIGABRT, Aborted.
#0 0Ox000PPPRV420ctc in raise ()

[Current thread is 1 (LWP 25890)]

2. Set logging to a file in case of lengthy output from some commands:
(gdb) set logging file App8.log

(gdb) set logging enabled on

Copying output to App8.log.

Copying debug output to App8.log.

(gdb) set style enabled off

285

3. List all thread stack traces:
(gdb) thread apply all bt

Thread 6 (LWP 25893):

#0 0x0000000000420174 in nanosleep ()

#1 0©x0000000000438e34 in sleep ()

#2 0x0000000000403520 in procNE() ()

#3 0x0000000000403600 in bar_four() ()

#4 0x0000000000403614 in foo_four() ()

#5 0Ox000000000040362c in thread_four(void*) ()
#6 0x00000000004183f4 in start_thread ()

#7 0©x000000000043dd20 in thread_start ()

Thread 5 (LWP 25894):

#0 0x0000000000420174 in nanosleep ()

#1 0x0000000000438e34 in sleep ()

#2 0x0000000000403520 in procNE() ()

#3 0x0000000000403644 in bar five() ()

#4 0x0000000000403658 in foo_five() ()

#5 0Ox0000000000403670 in thread_five(void*) ()
#6 0©x00000000004183f4 in start_thread ()

#7 0©x000000000043dd20 in thread_start ()

Thread 4 (LWP 25891):

#0 0x0000000000420174 in nanosleep ()

#1 ©0x0000000000438e34 in sleep ()

#2 0x0000000000403520 in procNE() ()

#3 0x0000000000403578 in bar_two() ()

#4 0x000000000040358c in foo two() ()

#5 0©x00000000004035a4 in thread_two(void*) ()
#6 0©Ox00000000004183f4 in start_thread ()

#7 0©x000000000043dd20 in thread_start ()

Thread 3 (LWP 25889):

#0 0©x0000000000420174 in nanosleep ()
#1 ©0x0000000000438e34 in sleep ()

#2 0Ox000000000040370c in main ()

Thread 2 (LWP 25892):

#0 0©x0000000000420174 in nanosleep ()

#1 ©0x0000000000438e34 in sleep ()

#2 0x00000000004034cc in procH() ()

#3 0x00000000004035bc in bar_three() ()

#4 0x00000000004035d0 in foo_three() ()

#5 0©x00000000004035e8 in thread_three(void*) ()
#6 0©x00000000004183f4 in start_thread ()

#7 ©0x000000000043dd20 in thread_start ()

Thread 1 (LWP 25890):

#0 0x0000PPPO00420cfc in raise ()

#1 0x0000000000422d38 in abort ()

--Type <RET> for more, q to quit, c to continue without paging--
#2 0Ox00000000004086f0 in __ gnu_cxx::__verbose_terminate_handler() ()
#3 0x0000000000404cOc in __ cxxabivl:: _terminate(void (*)()) ()
#4 0x0000000000404c30 in std::terminate() ()

#5 0x0000000000404d88 in __cxa_throw ()

#6 ©0x0000000000403424 in procB() ()

#7 ©0x0000000000403490 in procA() ()

#8 0x0000000000403504 in procNH() ()

286

#9 ©x0000000000403534 in bar_one() ()

#10 ©x0000000000403548 in foo_one() ()

#11 Ox0000P0PP0V403560 in thread_one(void*) ()
#12 0x00000000004183f4 in start_thread ()

#13 0x000000000043dd20 in thread start ()

Note: We have C++ exception processing in thread #1.

4, Go to thread #4, identify the execution residue of work functions, check their correctness, and reconstruct
the past stack trace:

(gdb) thread 4
[Switching to thread 4 (LWP 25891)]
#0 0x0000000000420174 in nanosleep ()

(gdb) bt

#0 0x0000000000420174 in nanosleep ()

#1 0x0000000000438e34 in sleep ()

#2 0x0000000000403520 in procNE() ()

#3 0x0000000000403578 in bar_two() ()

#4 0x000000000040358c in foo two() ()

#5 0©x00000000004035a4 in thread_two(void*) ()
#6 0©Ox00000000004183f4 in start_thread ()

#7 ©0x000000000043dd20 in thread_start ()

(gdb) x/512a $sp-2000

oxfffe79bbde00: 0x0 0x0
oxfffe79bbdel0d: ©x0 0x0
oxfffe79bbde20: 0x0 0x0
oxfffe79bbde30: 0x0 0x0
oxfffe79bbded40: 0x0 0x0
oxfffe79bbde50: 0x0 0x0
oxfffe79bbde60: 0x0 0x0
oxfffe79bbde70: 0x0 0x0
oxfffe79bbde80: 0x0 0x0
oxfffe79bbde90: ©x0 0x0
oxfffe79bbdead: ©x0 0x0
oxfffe79bbdebo: ©x0 0x0
oxfffe79bbdeco: 0x0 0x0
oxfffe79bbdedo: ©x0 0x0
oxfffe79bbdeed: 0x0 0x0
oxfffe79bbdefo: ©x0 0x0
oxfffe79bbdfeo: ©xo oxe
oxfffe79bbdf10: ©x0 oxe
oxfffe79bbdf20: 0x0 oxe
oxfffe79bbdf30: ©x0 0x0
oxfffe79bbdf40: ©x0 0x0
oxfffe79bbdf50: ©x0 oxe
oxfffe79bbdf60: ©x0 oxe
Oxfffe79bbdf70: 0x0 o0x0
Oxfffe79bbdf80: 0x0 o0x0
Oxfffe79bbdf90: 0x0 o0x0
oxfffe79bbdfa0: 0xo oxe
oxfffe79bbdfbo: ©x0 oxe
Oxfffe79bbdfco: ox0 o0x0
oxfffe79bbdfdo: oxe ox0
oxfffe79bbdfe0d: 0x0 oxe
oxfffe79bbdffo: 0xo oxe
oxfffe79bbe000: 0x0 0x0

287

Oxfffe79bbe010: 0x0 0x0
Oxfffe79bbe020: 0x0 0x0
Oxfffe79bbe030: 0x0 ox0
Oxfffe79bbe040: 0x0 ox0
Oxfffe79bbed50: 0Ox0 ox0
Oxfffe79bbe060: 0x0 0x0
Oxfffe79bbe070: 0x0 0x0
Oxfffe79bbe080: 0Ox0 ox0
Oxfffe79bbe090: 0Ox0 ox0
Oxfffe79bbe0ad: 0x0 0x0
Oxfffe79bbeobo: 0x0 0x0
Oxfffe79bbe0cO: 0x0 0x0
Oxfffe79bbe0do: 0x0 ox0
Oxfffe79bbe0ed: 0x0 0x0
oxfffe79bbeof0: 0x0 0x0
Oxfffe79bbel00: 0x0 0x0
--Type <RET> for more, q to
Oxfffe79bbell0: 0Ox0 o0x0
Oxfffe79bbel20: 0Ox0 ox0
oxfffe79bbel30: 0x0 0x0
oxfffe79bbeld40: 0x0 0x0
oxfffe79bbel50: 0x0 0x0
oxfffe79bbel60: 0x0 0x0
oxfffe79bbel70: ©x0 0x0
oxfffe79bbel80: 0x0 0x0
oxfffe79bbel90: 0x0 0x0
oxfffe79bbelad: 0x0 0x0
oxfffe79bbelbo: ©x0 0x0
oxfffe79bbelcO: 0x0 0x0
oxfffe79bbeldod: ©x0 0x0
oxfffe79bbeled: 0x0 0x0
oxfffe79bbelfo: 0x0 oxe
oxfffe79bbe200: 0x0 0x0
oxfffe79bbe210: 0x0 0x0
oxfffe79bbe220: 0x0 0x0
oxfffe79bbe230: 0x0 0x0
oxfffe79bbe240: 0x0 0x0
oxfffe79bbe250: 0x0 0x0
oxfffe79bbe260: 0x0 0x0
oxfffe79bbe270: 0x0 0x0
oxfffe79bbe280: 0x0 0x0
oxfffe79bbe290: 0x0 0x0
oxfffe79bbe2ad: 0x0 0x0
oxfffe79bbe2bo: ©x0 0x0
oxfffe79bbe2cO: 0x0 0x0
oxfffe79bbe2do: 0x0 0x0
oxfffe79bbe2e0: 0x0 0x0
oxfffe79bbe2f0: 0x0 0x0
oxfffe79bbe300: 0x0 0x0
oxfffe79bbe310: 0x0 0x0
oxfffe79bbe320: 0x0 0x0
oxfffe79bbe330: 0x0 0x0
Oxfffe79bbe340: 0x0 o0x0
oxfffe79bbe350: Oxfffe79bbe360
oxfffe79bbe360: Oxfffe79bbe370
oxfffe79bbe370: Oxfffe79bbe380
oxfffe79bbe380: Oxfffe79bbe390
oxfffe79bbe390: Oxfffe79bbe3ad
oxfffe79bbe3ad: Oxfffe79bbe3bo
oxfffe79bbe3b0: oxfffe79bbe3co

0x403304
0x403318
0x40332c
0x403340
0x403354
0x403368
0x40337c

quit, c to continue without paging--

<_zZeéwork_7v+12>
<_Z6éwork_6v+12>
<_Z6éwork_5v+12>
<_Z6work_4v+12>
<_Z6éwork_3v+12>
<_Zeéwork_2v+12>
<_Z6work_1v+12>

288

Oxfffe79bbe3cO:

oxfffe79bbe3do0 ©0x403394 <_Z4workv+16>

oxfffe79bbe3do: Oxfffe79bbe7e@ 0x40347c <_Z6procNBv+12>
oxfffe79bbe3ed: 0x0 0x0

oxfffe79bbe3f0: 0x0 0x0

oxfffe79bbed00: 0x0 0x0

Oxfffe79bbed10: 0x0 0x0

--Type <RET> for more, q to quit, c to continue without paging--
oxfffe79bbed20: 0x0 0x0

oxfffe79bbed430: 0x0 0x0

Oxfffe79bbed40: 0x0 0x0

Oxfffe79bbed50: 0x0 0x0

Oxfffe79bbed60: 0x0 0x0

oxfffe79bbed70: 0x0 0x0

oxfffe79bbed80: 0©x0 0x0

Oxfffe79bbed90: 0x0 0x0

oxfffe79bbed4ad: oOxfffe79bbe610 ©Ox438e08 <sleep+228>
Oxfffe79bbedbd: Oxffffffff 0x10000

oxfffe79bbedco: 0x0 0x0

oxfffe79bbeddo: ©x0 0x0

oxfffe79bbeded: 0x0 0x0

oxfffe79bbedfo: 0x0 0x0

oxfffe79bbe500: 0x0 0x0

oxfffe79bbe510: 0x0 0x0

oxfffe79bbe520: 0x0 0x0

oxfffe79bbe530: 0x0 0x0

oxfffe79bbe540: 0x0 0x0

oxfffe79bbe550: 0x0 0x0

oxfffe79bbe560: 0Ox0 0x0

oxfffe79bbe570: Oxfffe79bbe610 ©x438e28 <sleep+260>
Oxfffe79bbe580: Oxffffffff 0x10000

oxfffe79bbe590: ©x0 0x0

oxfffe79bbe5a0: 0x0 0x0

oxfffe79bbe5b0: Oxfffe79bbe610 ©x420168 <nanosleep+24>
oxfffe79bbe5cO: 0x0 0x0

oxfffe79bbe5d0: 0x438e34 <sleep+272> oxfffe79bbe650
oxfffe79bbe5e0: Oxfffe79bbe650 ©Ox0

oxfffe79bbe5f0: 0x0 oxe

oxfffe79bbe600: 0x0 0x0

oxfffe79bbe610: Oxfffe79bbe800 ©x403520 <_Z6procNEv+20>
oxfffe79bbe620: Oxfffe79bbfe70 ©x0

oxfffe79bbe630: 0x4e0000 0x403594 <_Z10thread_twoPv>
oxfffe79bbe640: 0x0 0x0

oxfffe79bbe650: Oxfffffffa 0x3b985e11
oxfffe79bbe660: 0x0 0x0

oxfffe79bbe670: 0x0 0x0

oxfffe79bbe680: 0x0 0x0

oxfffe79bbe690: 0x0 0x0

oxfffe79bbe6ad: 0x0 0x0

oxfffe79bbe6bd: 0x0 0x0

oxfffe79bbe6cO: Ox0 0x0

Oxfffe79bbe6do: 0x0 0x0

Oxfffe79bbe6ed: 0x10000 0©x0

oxfffe79bbe6f0: 0x0 o0x0

oxfffe79bbe700: 0x0 o0x0

oxfffe79bbe710: 0x0 0x0

oxfffe79bbe720: 0x0 0x0

--Type <RET> for more, q to quit, c to continue without paging--
oxfffe79bbe730: 0x0 0x0

oxfffe79bbe740: 0x0 0x0

oxfffe79bbe750: 0x0 0x0

289

Oxfffe79bbe760: 0x0 0x0

Oxfffe79bbe770: 0x0 0x0

oxfffe79bbe780: ©x0 0x0

oxfffe79bbe790: ©x0 0x0

oxfffe79bbe7a0: 0x0 0x0

oxfffe79bbe7b0: ©x0 0x0

Oxfffe79bbe7cO: 0x0 0x0

oxfffe79bbe7do: ©x0 0x0

oxfffe79bbe7e0: 0x0 0x0

oxfffe79bbe7f0: 0Ox0 0x403518 <_Z6procNEv+12>
oxfffe79bbe800: Oxfffe79bbe810 ©x403578 <_Z7bar_twov+12>
oxfffe79bbe810: Oxfffe79bbe820 ©x40358c <_Z7foo_twov+12>
oxfffe79bbe820: Oxfffe79bbe830 ©x4035a4 < _Z1@thread twoPv+16>
oxfffe79bbe830: Oxfffe79bbe850 0x4183f4 <start_thread+180>
Oxfffe79bbe840: Oxfffe79bbfe70 ©0x0

oxfffe79bbe850: 0x0 0x43dd20 <thread_start+48>
oxfffe79bbe860: Oxfffe79bbf070 ©x41f9540 <_ default_pthread_attr>
oxfffe79bbe870: 0©x4e0000 ox0

oxfffe79bbe880: Oxfffe79bbf48c Oxfffe79bbfo70
oxfffe79bbe890: 0©x0 0x0

oxfffe79bbe8a0: Oxfffe79bbf070 ©x41f9540 <_ default_pthread_attr>
oxfffe79bbe8b0: 0x4e0000 0x403594 <_Z10thread_twoPv>
oxfffe79bbe8cO: 0x0 oxfffe79bbf760

oxfffe79bbe8d0: 0x32b70610 Ox4f9540 <__ default_pthread_attr>
Oxfffe79bbe8e0: 0x10000 ©x810000

Oxfffe79bbe8f0: Oxfffe79bbe850 0OxlbeBedebeeaf72fa
oxfffe79bbe900: 0x0 0x1beB®1b159755196a

oxfffe79bbe910: ©x0 0x0

oxfffe79bbe920: 0x0 0x0

oxfffe79bbe930: 0x0 0x0

oxfffe79bbe940: 0x0 0x0

oxfffe79bbe950: 0x0 0x0

oxfffe79bbe960: 0x0 0x0

oxfffe79bbe970: ©x0 0x0

oxfffe79bbe980: 0©x0 ox0

oxfffe79bbe990: 0x0 0x0

oxfffe79bbe9a0d: 0x0 0x0

oxfffe79bbe9bo: 0x0 0x0

oxfffe79bbe9cO: 0x0 0x0

oxfffe79bbe9do: ©x0 0x0

oxfffe79bbe9e0: 0x0 0x0

oxfffe79bbe9f0: 0x0 oxe

oxfffe79bbeadd: 0x0 0x0

oxfffe79bbeald: 0x0 0x0

oxfffe79bbea20: 0x0 0x0

oxfffe79bbea30: 0x0 0x0

--Type <RET> for more, q to quit, c to continue without paging--
oxfffe79bbeadd: 0x0 0x0

oxfffe79bbeab0: 0x0 0x0

oxfffe79bbeab0d: 0x0 0x0

Oxfffe79bbea70: 0x0 0x0

Oxfffe79bbea80: 0x0 ox0

oxfffe79bbead90: 0x0 0x0

oxfffe79bbeaad: 0x0 0x0

Oxfffe79bbeabd: 0x0 0x0

Oxfffe79bbeacOd: 0x0 0x0

Oxfffe79bbeadd: 0x0 0x0

oxfffe79bbeaecd: 0x0 0x0

oxfffe79bbeafd: 0x0 0x0

oxfffe79bbeboo: 0x0 0x0

290

Oxfffe79bbebl0: 0x0 0x0

Oxfffe79bbeb20: 0x0 0x0
Oxfffe79bbeb30: 0x0 o0x0
oxfffe79bbeb40: ©x0 0x0
oxfffe79bbeb50: ©x0 0x0
oxfffe79bbeb60: 0x0 0x0
oxfffe79bbeb70: ©x0 0x0
Oxfffe79bbeb80: 0x0 ox0
Oxfffe79bbeb90: 0x0 ox0
oxfffe79bbebad: 0x0 ox0
Oxfffe79bbebb0: 0x0 0x0
Oxfffe79bbebcO: 0x0 0x0
oxfffe79bbebdo: ©x0 0x0
oxfffe79bbebed: 0x0 0x0
oxfffe79bbebf0: 0x0 0x0
Oxfffe79bbecod: 0x0 0x0
oxfffe79bbeclO: 0x0 0x0
oxfffe79bbec20: 0x0 0x0
oxfffe79bbec30: 0xo ox0
oxfffe79bbec40: 0x0 0x0
oxfffe79bbec50: 0x0 0x0
oxfffe79bbec60: 0x0 0x0
oxfffe79bbec70: 0x0 0x0
oxfffe79bbec80: 0x0 0x0
oxfffe79bbec90: 0x0 0x0
oxfffe79bbecad: 0x0 0x0
oxfffe79bbecbod: ox0 0x0
oxfffe79bbecco: 0x0 0x0
oxfffe79bbecdod: ©x0 0x0
oxfffe79bbeced: 0x0 0x0
oxfffe79bbecfo: 0x0 0x0
oxfffe79bbedo0: 0x0 0x0
oxfffe79bbedl0: ©x0 0x0
oxfffe79bbed20: 0x0 0x0
oxfffe79bbed30: ©x0 0x0
oxfffe79bbed40: 0x0 0x0
--Type <RET> for more, q to quit, c to continue without paging--
oxfffe79bbed50: ©x0 0x0
oxfffe79bbed60: 0©x0 0x0
oxfffe79bbed70: ©x0 0x0
oxfffe79bbed80: 0x0 0x0
oxfffe79bbedo0: ©x0 0x0
oxfffe79bbedad: ©x0 0x0
oxfffe79bbedbo: ©x0 0x0
oxfffe79bbedcod: ©x0 0x0
oxfffe79bbeddo: ©xo 0x0
oxfffe79bbeded: 0x0 0x0
oxfffe79bbedfo: ©x0 0x0

(gdb) disassemble ©x403354
Dump of assembler code for function _Z6work_3v:

0x0000000000403348 <+0>: stp x29, x30, [sp, #-16]!
0x000000000040334Cc <+4>: mov x29, sp
0x0000000000403350 <+8>: bl 0x403334 <_Z6work_4v>
0x0000000000403354 <+12>: ldp x29, x30, [sp], #16
0x0000000000403358 <+16>: ret

End of assembler dump.

Note: Since the saved X29 register value points to the next line, we can easily reconstruct the fragment of the past
stack trace:

201

Oxfffe79bbe350:
oxfffe79bbe360:
oxfffe79bbe370:

. Oxfffe79bbe390
oxfffe79bbe390:
oxfffe79bbe3a0d:
Oxfffe79bbe3b0:
oxfffe79bbe3co:
oxfffe79bbe3do:

5. Go to thread #2, identify the handled exception processing code, and check its validity:

(gdb) thread 2

Oxfffe79bbe360
Oxfffe79bbe370

oxfffe79bbe3ad
oxfffe79bbe3bo
oxfffe79bbe3co
oxfffe79bbe3do
oxfffe79bbe7e0

0x403304 <_Z6work_7v+12>
0x403318 <_Z6work_6v+12>
0x40332c <_Z6work 5v+12>
0x403340 <_Z6work 4v+12>
0x403354 <_Zé6work_ 3v+12>
0x403368 <_Z6work_2v+12>
0x40337c <_Z6work_1v+12>
0x403394 <_ZAworkv+16>

0x40347c <_Z6procNBv+12>

[Switching to thread 2 (LWP 25892)]

#0 0x0000000000420174

(gdb) bt

#0 0x0000000000420174 in
#1 ©Ox0000000000438e34 in
#2 ©Ox00000000004034cc in
#3 0x00000000004035bc in
#4 0x00000000004035d0 in
#5 0x00000000004035e8 in
#6 ©Ox00000000004183f4 in
#7 ©x000000000043dd20 in

(gdb) x/1024a $sp-8000

oxfffe793ac680:
oxfffe793ac690:
oxfffe793ac6a0:
oxfffe793ac6bo:
oxfffe793ac6cO:
oxfffe793ac6do:
Oxfffe793ac6e0:
oxfffe793ac6f0o:
oxfffe793ac700:
oxfffe793ac710:
oxfffe793ac720:
oxfffe793ac730:
oxfffe793ac740:
oxfffe793ac750:
oxfffe793ac760:
oxfffe793ac770:
oxfffe793ac780:
oxfffe793ac790:
oxfffe793ac7a0:
oxfffe793ac7bo:
oxfffe793ac7co:
Oxfffe793ac7do:
Oxfffe793ac7e0:
oxfffe793ac7f0:
Oxfffe793ac800:
Oxfffe793ac810:
Oxfffe793ac820:
oxfffe793ac830:
oxfffe793ac840:
oxfffe793ac850:
oxfffe793ac860:

0x0 o0x0
0x0 o0x0
0x0 0x0
0x0 0x0
0x0 o0x0
o0x0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 ox0
ox0 ox0
0x0 0x0
0x0 0x0
o0x0 ox0
ox0 ox0
0x0 ox0
0x0 0x0
0x0 0x0
ox0 o0x0
ox0 ox0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 o0x0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 o0x0
0x0 0x0
0x0 0x0
o0x0 0x0

in nanosleep ()

nanosleep ()

sleep ()

procH() ()

bar_three() ()
foo_three() ()
thread_three(void*) ()
start_thread ()
thread_start ()

292

Oxfffe793ac870: 0Ox0 0x0
Oxfffe793ac880: 0Ox0 0x0
Oxfffe793ac890: 0Ox0 o0x0
Oxfffe793ac8a0: 0©x0 0x0
oxfffe793ac8bo: ©x0 0x0
Oxfffe793ac8cO: 0Ox0 ox0
Oxfffe793ac8d0: 0x0 0x0
Oxfffe793ac8e0: 0x0 0x0
oxfffe793ac8f0: 0©x0 0x0
Oxfffe793ac900: 0x0 0x0
Oxfffe793ac910: ©x0 0x0
Oxfffe793ac920: ©x0 0x0
oxfffe793ac930: ©x0 0x0
Oxfffe793ac940: 0x0 0x0
Oxfffe793ac950: 0©x0 0x0
Oxfffe793ac960: 0x0 0x0
Oxfffe793ac970: 0x0 0x0
Oxfffe793ac980: 0©x0 0x0
--Type <RET> for more, q to
Oxfffe793ac990: 0©x0 0x0
oxfffe793ac9a0d: 0x0 0x0
oxfffe793ac9bo: ©x0 0x0
Oxfffe793ac9cO: 0x0 0x0
oxfffe793ac9do: ©x0 0x0
Oxfffe793ac9e0: 0Ox0 0x0
oxfffe793ac9f0: 0x0 0x0
oxfffe793aca00: 0xe0 0x0
oxfffe793acalo: oxe 0x0
oxfffe793aca20: 0x0 0x0
oxfffe793aca30: 0x0 0x0
oxfffe793acad0: 0x0 ox0
oxfffe793aca50: 0xe0 0x0
oxfffe793acab0: 0x0 0x0
oxfffe793aca70: 0x0 0x0
oxfffe793aca80: 0©x0 0x0
oxfffe793aca90: 0x0 0x0
oxfffe793acaad: 0x0 0x0
oxfffe793acabo: 0x0 0x0
oxfffe793acacO: 0x0 0x0
oxfffe793acado: 0x0 ox0
oxfffe793acaed: 0x0 0x0
oxfffe793acafo: 0x0 oxe
oxfffe793acboo: 0x0 0x0
oxfffe793acblo: ©x0 0x0
oxfffe793acb20: 0x0 0x0
oxfffe793acb30: 0x0 0x0
oxfffe793acb40: 0x0 0x0
oxfffe793acb50: ©x0 0x0
oxfffe793acb60: 0x0 0x0
oxfffe793acb70: 0x0 0x0
Oxfffe793ach80: 0x0 0x0
Oxfffe793acbh9o: 0x0 0x0
oxfffe793acbad: ©x0 0x0
oxfffe793acbbod: ©x0 0x0
Oxfffe793acbco: ox0 0x0
Oxfffe793acbdo: ox0 0x0
Oxfffe793acbed: 0x0 0x0
oxfffe793acbfo: 0xo ox0
oxfffe793acco0: 0x0 0x0
oxfffe793acclo: 0x0 0x0

quit, c to continue without paging--

293

Oxfffe793acc20: 0x0 0x0

Oxfffe793acc30: 0x0 0x0

oxfffe793acc40: 0x0 0x0

oxfffe793acc50: 0©x0 0x0

oxfffe793acc60: 0x0 0x0

Oxfffe793acc70: 0x0 0x0

Oxfffe793acc80: 0x0 0x0

oxfffe793acc90: 0©x0 0x0

--Type <RET> for more, q to quit, c to continue without paging--
Oxfffe793accad: 0x0 0x0

oxfffe793accbo: 0x0 0x0

Oxfffe793acccO: 0x0 0x0

oxfffe793accdo: ©x0 0x0

oxfffe793acced: 0x0 0x0

oxfffe793accfo: 0x0 0x0

Oxfffe793acdood: 0x0 0x0

Oxfffe793acdlo: ©x0 0x0

oxfffe793acd20: ©x0 0x0

oxfffe793acd30: ©x0 0x0

oxfffe793acd40: 0x0 0x0

oxfffe793acd50: 0x0 0x0

oxfffe793acd60: 0x0 0x0

oxfffe793acd70: 0x0 ox0

oxfffe793acd80: Oxfffe793adlcO® ©0x4144a8 <uw_update_context+24>
oxfffe793acd90: Oxfffe793add3® Oxfffe793ad220

oxfffe793acdad: ©x0 oxfffe74000b80

oxfffe793acdbo: ox4 oxfffe793af760

oxfffe793acdcO: 0x32b706f0 Ox4f9540 <__ default_pthread_attr>
Oxfffe793acddo: 0x10000 Ox810000

oxfffe793acded: 0x4f3000 <_ZLl6emergency_ buffer+65008> ©Oxfffe793ad220
oxfffe793acdfO: 0x4f3000 <_ZLl6emergency_ buffer+65008> ©Oxfffe793ae7e0
oxfffe793ace00: Oxfffe793ad8b0 Oxfffe793ad8b8

oxfffe793aceld: Oxfffe793ad8c® Oxfffe793ad8c8

oxfffe793ace20: 0x0 0x0

oxfffe793ace30: 0x0 0x0

oxfffe793aced0: 0x0 0x0

oxfffe793ace50: 0x0 0x0

oxfffe793ace60: 0x0 0x0

oxfffe793ace70: 0x0 0x0

Oxfffe793ace80: 0x0 0x0

oxfffe793ace90: 0x0 oxfffe793ae7bo

oxfffe793acead: Oxfffe793ae7b8 0Oxfffe793ae7c0

oxfffe793acebd: Oxfffe793ad8e8 Oxfffe793ad8f0

oxfffe793acecd: Oxfffe793ad8f8 Oxfffe793ad90e

oxfffe793acedd: Oxfffe793ad9e8 ©Oxfffe793ad9le

oxfffe793aceed: Oxfffe793ad918 oxfffe793ae7a0

oxfffe793acef0d: Oxfffe793ae7a8 Oxfffe793acdf8

oxfffe793acfo0: 0x0 0x0

oxfffe793acflo: ©x0 0x0

oxfffe793acf20: 0x0 oxe

oxfffe793act30: oxe0 oxe

oxfffe793acf40: 0x0 oxe

oxfffe793acf50: 0©x0 0x0

oxfffe793acf60: 0x0 0x0

oxfffe793acf70: 0x0 oxe

oxfffe793act80: ox0 oxe

oxfffe793acf909: 0x0 oxe

oxfffe793acfad: 0x0 0x0

--Type <RET> for more, q to quit, c to continue without paging--
oxfffe793actbo: oxe oxe

294

oxfffe793acfcoO:
oxfffe793acfdo:
oxfffe793acfe0:
oxfffe793acffo:
oxfffe793adooo:
oxfffe793ado10:
Oxfffe793ad020:
oxfffe793ado30:
oxfffe793ado40:
Oxfffe793ad0os50:
Oxfffe793ado60:
oxfffe793ado70:
oxfffe793ad0o80:
oxfffe793ado9o:
Oxfffe793adoaod:
oxfffe793adobo:
Oxfffe793adoco:
oxfffe793adodo:
oxfffe793adoe0:
oxfffe793adofo:
oxfffe793ad100:
oxfffe793adl1o:
oxfffe793ad120:
oxfffe793ad130:
oxfffe793ad140:
oxfffe793ad150:

0x0 0x0

0x0 0x0

0x0 0x0

oxfffe793ad030 0©x416218 <search_object+516>
ox4b21b8 ox2d

0x0 0x0

oxfffe793ad030 ©0x4161a0 <search_object+396>

oxfffe793adodo ©x416b28 <_Unwind_Find_FDE+372>

Ox4el5a8 <object.6205> Oxfffe793ad220

0x4034bb <_Z5procHv+15> Oxfffe74000b80

0x4f3000 <_ZlLl6emergency_ buffer+65008> ©Oxfffe793ae058
0x4df000 <_ZTIh+8> 0x4f9540 <__default_pthread_attr>
0x10000 0x810000

oxfffe793adodo ©x416ae4 <_Unwind_Find_FDE+304>

Ox4el5a8 <object.6205> ©x1b

oxfffe793add30 ©x4034ac <_Z5procHv>

oxfffe793adedo ©x416ad@® <_Unwind_Find_FDE+284>
oxfffe793ad150 0x4136cc <uw_frame_state_for+1484>
oxfffe793adofoO ©x404754 <__ gxx_personality ve+240>
oxfffe793adled® ©x4145ac <_Unwind_RaiseException_Phase2+112>
oxfffe793add30 Oxfffe793ad220

ox4 oxfffe74000b80

ox4 oxfffe793af760

0x32b706f0 Ox4f9540 <__ default_pthread_attr>

0x10000 0x810000

oxfffe793adled ©x414570 <_Unwind_RaiseException_Phase2+52>

oxfffe793adl60: Oxfffe793add30 ©x4c57d8

oxfffe793adl70: oxe oxfffe74000b80

oxfffe793ad180: ©x4 0x0

oxfffe793ad190: 0x32b706f0 0x4f9540 <__ default_pthread_attr>
Oxfffe793adlad: ©x10000 ©x810000

oxfffe793adlbo: oxe 0x0

oxfffe793ad1cO: Oxfffe793adle® ©x4145cc <_Unwind_RaiseException_Phase2+144>
oxfffe793adldo: oxfffffffffffffffs Ox76a28b436af36100
Oxfffe793adled: Oxfffe793ad8a® 0x414bf4 <_Unwind_RaiseException+324>
oxfffe793adlfo: oxfffe793add30 oOxfffe793ae0f0

oxfffe793ad200: oxfffe74000b80 Oxfffe793ad970

oxfffe793ad210: ©x0 oxfffe793ae770

oxfffe793ad220: ©x0 0x0

oxfffe793ad230: ©x0 0x0

oxfffe793ad240: oxe0 0x0

oxfffe793ad250: 0x0 0x0

oxfffe793ad260: ©x0 0x0

oxfffe793ad270: ©x0 0x0

oxfffe793ad280: ©x0 0x0

oxfffe793ad290: 0oxe 0x0

oxfffe793ad2a0: 0x0 0x0

oxfffe793ad2bo: ©x0 0x0

--Type <RET> for more, q to quit, c to continue without paging--
oxfffe793ad2co: 0ox0 0x0

Oxfffe793ad2do: ©x0 0x0

Oxfffe793ad2e0: 0Ox0 0x0

oxfffe793ad2f0: ©x0 o0x0

oxfffe793ad300: 0x0 o0x0

Oxfffe793ad310: ©x0 0x0

Oxfffe793ad320: 0Ox0 0x0

Oxfffe793ad330: 0Ox0 0x0

oxfffe793ad340: 0x0 0x0

oxfffe793ad350: oxfffffffffffffffo ox1

oxfffe793ad360: 0x0 0x0

295

Oxfffe793ad370: ©x0 0x0
Oxfffe793ad380: 0©x0 0x0
Oxfffe793ad390: 0Ox0 o0x0
oxfffe793ad3a0d: ©x0 0x0
Oxfffe793ad3b0: 0Ox0 ox0
Oxfffe793ad3cO: 0x0 0x0
Oxfffe793ad3do: ©x0 0x0
oxfffe793ad3ed: 0x0 0x0
oxfffe793ad3f0: oxffffffffffffffeo ox1
oxfffe793ad400: Oxffffffffffffffes8 ox1
Oxfffe793ad410: ©x0 0x0
Oxfffe793ad420: 0x0 0x0
Oxfffe793ad430: Ox0 ox0
Oxfffe793ad440: 0x0 ox0
Oxfffe793ad450: 0x0 0x0
Oxfffe793ad460: 0x0 0x0
Oxfffe793ad470: 0x0 0x0
Oxfffe793ad480: 0Ox0 o0x0
Oxfffe793ad490: 0Ox0 ox0
oxfffe793ad4a0d: 0x0 0x0
oxfffe793ad4bo: 0x0 0x0
oxfffe793ad4co: 0x0 0x0
oxfffe793ad4do: 0xo ox0
oxfffe793ad4e0d: 0x0 0x0
oxfffe793ad4fo: 0x0 0x0
oxfffe793ad500: ©x0 0x0
oxfffe793ad510: ©x0 0x0
oxfffe793ad520: ©x0 0x0
oxfffe793ad530: ©x0 0x0
oxfffe793ad540: ©x0 0x0
oxfffe793ad550: ©x0 0x0
oxfffe793ad560: 0x0 0x0
oxfffe793ad570: ©x0 0x0
oxfffe793ad580: ©x0 0x0
oxfffe793ad590: ©x0 0x0
oxfffe793ad5a0: 0©x0 0x0
oxfffe793ad5bo: 0©x0 0x0
oxfffe793ad5c0: 0x0 0x0
--Type <RET> for more, q to quit, c to continue without paging--
oxfffe793ad5do: ©x0 0x0
oxfffe793ad5e0: 0x0 0x0
oxfffe793ad5f0: 0x0 oxe
oxfffe793ad600: 0x0 0x0
oxfffe793ad610: 0©x0 0x0
oxfffe793ad620: 0©x0 0x0
oxfffe793ad630: 0x0 0x0
oxfffe793ad640: 0x0 0x0
oxfffe793ad650: 0©x0 0x0
oxfffe793ad660: 0x0 0x0
oxfffe793ad670: 0©x0 0x0
Oxfffe793ad680: 0Ox0 0x0
Oxfffe793ad690: 0Ox0 0x0
oxfffe793ad6ad: 0©x0 0x0
Oxfffe793ad6b0: Ox0 o0x0
Oxfffe793ad6cO: 0Ox0 0x0
Oxfffe793ad6do: 0Ox0 0x0
Oxfffe793ad6ed: Ox0 0x0
oxfffe793ad6fo: 0x0 0x0
oxfffe793ad700: ©x0 0x0
oxfffe793ad710: ©x0 0x0

296

oxfffe793ad720:
oxfffe793ad730:
oxfffe793ad740:
oxfffe793ad750:
oxfffe793ad760:
oxfffe793ad770:
oxfffe793ad780:
oxfffe793ad790:
oxfffe793ad7a0:
oxfffe793ad7bo:
oxfffe793ad7cO:
oxfffe793ad7do:
oxfffe793ad7e0:
oxfffe793ad7f0o:
Oxfffe793ad800:
Oxfffe793ad810:
oxfffe793ad820:
oxfffe793ad830:
oxfffe793ad840:
oxfffe793ad850:
oxfffe793ad860:
oxfffe793ad870:
oxfffe793ad880:
oxfffe793ad890:
oxfffe793ad8a0:
oxfffe793ad8bo:
oxfffe793ad8co:
oxfffe793ad8do:

Oxfffe793ad8a@ ©x414c08 <_Unwind_RaiseException+344>

0x0 o0x0

0x0 o0x0

0x0 0x0

0x0 0x0

0x0 0x0

0x0 ox0

ox0 ox0

ox0 0x0

0x0 0x0

ox0 o0x0

0x0 ox0

0x0 o0x0

ox0 0x0

0x0 0x0

ox0 o0x0

0x0 o0x0

0x0 ox0

ox0 0x0

ox0 0x20
oxfffe793add30 ©Oxfffe793ae0f0
oxfffe74000b80 Oxfffe793ad970
0x0 Oxle

0x11blb Oxfffe793ae7f0

oxfffe793ae7f0 ©0x4034c0O <_Z5procHv+20>

oxfffe74000b80
0x0 ox1
oxfffe793af070

ox1

o0x0

--Type <RET> for more, q to quit, c to continue without paging--

Oxfffe793ad8e0:
oxfffe793ad8fo:
oxfffe793ad900:
oxfffe793ad910:
oxfffe793ad920:
oxfffe793ad930:
oxfffe793ad940:
oxfffe793ad950:
oxfffe793ad960:
oxfffe793ad970:
oxfffe793ad980:
oxfffe793ad990:
oxfffe793ad9a0:
oxfffe793adobo:
oxfffe793ad9co:
oxfffe793ad9do:
oxfffe793ad9%e0:
oxfffe793adofo:
oxfffe793adavo:
oxfffe793adalo:
oxfffe793ada20:
Oxfffe793ada30:
Oxfffe793ada40:
oxfffe793adab0:
oxfffe793ada6o:
Oxfffe793ada70:
Oxfffe793ada80:
Oxfffe793ada9e0:
oxfffe793adaad:
oxfffe793adabo:
oxfffe793adaco:

0x4e0000 0x4035d8 <_Z712
0x0 oxfffe793af760
0x32b706f0 0x419540 <_ de
0x10000 0x810000

0x0 o0x0

ox0 0x0

0x0 0x0

0x0 0x0

0x0 0x80

oxfffe793ad8b® Oxfffe793ad8b8
oxfffe793ad8c® ©Oxfffe793ad8c8
0x0 0x0

0x0 0x0

ox0 ox0

o0x0 ox0

ox0 ox0

0x0 0x0

0x0 0x0

0x0 oxfffe793ad8do
oxfffe793ad8d8 ©Oxfffe793ad8e0
oxfffe793ad8e8 Oxfffe793ad8fo
oxfffe793ad8f8 ©Oxfffe793ad90o
oxfffe793ad908 Oxfffe793ad91e
oxfffe793ad918 ©Oxfffe793ad8a0
oxfffe793ad8a8 0x0

0x0 0x0

0x0 0x0

0x0 0x0

0x0 0x0

0x0 0x0

o0x0 0x0

thread_threePv>

fault_pthread_attr>

297

Oxfffe793adadod: ©x0 0x0

Oxfffe793adaed: 0Ox0 0x0

oxfffe793adafo: ©x0 0x0

Oxfffe793adboo: 0x0 ox0

Oxfffe793adb1o: 0x0 ox0

oxfffe793adb20: ©x0 0x0

oxfffe793adb30: ©x0 0x0

Oxfffe793adb40: 0x0 ox0

oxfffe793adb50: ©x0 ox0

Oxfffe793adb60: ©x0 0x0

oxfffe793adb70: ©x0 0x0

Oxfffe793adb80: ©x0 0x0

Oxfffe793adb90: 0x0 ox0

oxfffe793adbad: ©x0 0x0

Oxfffe793adbb0: Oxfffe793ad920 0Oxfffe793ad928
Oxfffe793adbcO: Oxfffe793ad930 Oxfffe793ad938
Oxfffe793adbdod: Oxfffe793ad940 Oxfffe793ad948
oxfffe793adbed: Oxfffe793ad950 Oxfffe793ad9s58
--Type <RET> for more, q to quit, c to continue without paging--
oxfffe793adbfo: ©x0 0x0

oxfffe793adcoo: 0x0 0x0

oxfffe793adclo: ©x0 0x0

oxfffe793adc20: 0x0 0x0

oxfffe793adc30: oxe oxe

oxfffe793adc40: 0x0 0x0

oxfffe793adc50: 0©x0 0x0

oxfffe793adc60: Ox0 0x0

oxfffe793adc70: 0x0 0x0

oxfffe793adc80: oOxfffe793ae770 ©0x404d7c <__cxa_throw+144>
oxfffe793adc90: 0x0 0x0

oxfffe793adcad: 0x0 0x414ab0 <_Unwind_RaiseException>
oxfffe793adcbo: 0x4000000000000000 ox0
oxfffe793adccoO: oxe0 0x0

oxfffe793adcdo: ©x0 0x0

oxfffe793adced: 0x0 0x0

oxfffe793adcfo: 0x0 oxe

oxfffe793addoo: oxe 0x0

oxfffe793addl1o: ©x0 0x0

oxfffe793add20: ©x0 0x0

oxfffe793add30: Oxfffe793ad8b0 0Oxfffe793ad8b8
oxfffe793add40: Oxfffe793ad8c@ ©Oxfffe793ad8c8
oxfffe793add50: oxe 0x0

oxfffe793add6o: 0x0 0x0

oxfffe793add70: ©x0 0x0

oxfffe793add80: ©x0 0x0

oxfffe793addoo: ©xo 0x0

oxfffe793adda0d: 0xe 0x0

oxfffe793addbo: ©xo 0x0

oxfffe793addco: ©x0 oxfffe793ae7bo
oxfffe793adddo: oOxfffe793ae7b8 ©Oxfffe793ae7cO
oxfffe793added: oOxfffe793ad8e8 Oxfffe793ad8fo
oxfffe793addfo: oxfffe793ad8f8 Oxfffe793ad90e
Oxfffe793ade0d: Oxfffe793ad908 Oxfffe793ad9le
oxfffe793adeld: Oxfffe793ad918 Oxfffe793ae7e0
oxfffe793ade20: Oxfffe793ae7e8 Oxfffe793ad898
Oxfffe793ade30: 0x0 0x0

Oxfffe793aded0: 0x0 0x0

oxfffe793ade50: 0x0 0x0

oxfffe793ade60: 0x0 0x0

oxfffe793ade70: 0x0 0x0

298

Oxfffe793ade80: 0x0 0x0

Oxfffe793ade90: 0x0 0x0

oxfffe793adead: 0x0 0x0

oxfffe793adebo: ©x0 0x0

oxfffe793adecod: ©x0 0x0

Oxfffe793adedod: 0x0 0x0

Oxfffe793adeed: 0x0 0x0

oxfffe793adefo: 0x0 0x0

--Type <RET> for more, q to

oxfffe793adfe0: 0x0 0x0

oxfffe793adf10: ©x0 0x0

oxfffe793adf20: 0x0 0x0

oxfffe793adf30: 0©x0 ox0

Oxfffe793adf40: 0x0 ox0

oxfffe793adf50: ©x0 0x0

Oxfffe793adf60: 0x0 0x0

Oxfffe793adf70: Oxfffe793ad920 oxfffe793ad928
Oxfffe793adf80: Oxfffe793ad930 oOxfffe793ad938
oxfffe793adf90: Oxfffe793ad940 oOxfffe793ad948
oxfffe793adfad: Oxfffe793ad950 Oxfffe793ad958
oxfffe793adfbo: ©x0 0x0

oxfffe793adfco: 0x0 oxe

oxfffe793adfdo: ©xo oxe

oxfffe793adfed: 0x0 ox0

oxfffe793adffo: 0x0 0x0

Oxfffe793ae000: 0x0 0x0

oxfffe793ae010: 0x0 0x0

oxfffe793ae020: 0x0 oxe

Oxfffe793ae030: 0x0 0x0

Oxfffe793ae040: Oxfffe793ae7f0 ©x4034cO <_Z5procHv+20>
Oxfffe793ae050: 0x4c57d8 ox0
oxfffe793ae060: 0x0 0x4034ac <_Z5procHv>
Oxfffe793ae070: 0x4000000000000000 ox0
Oxfffe793ae080: 0x0 0x0

Oxfffe793ae090: 0x0 0x0

Oxfffe793ae0a0d: 0x0 0x0

Oxfffe793ae0bo: 0x0 0x0

Oxfffe793ae0cO: 0x0 0x0

Oxfffe793ae0do: 0x0 0x0

Oxfffe793ae0e0: 0x0 0x0

Oxfffe793ae0f0: 0x0 oxe

Oxfffe793ael100: 0x0 0x0

Oxfffe793ael1l10: 0©x0 0x0

Oxfffe793ae120: 0Ox0 0x0

Oxfffe793ae130: 0x0 0x0

Oxfffe793ael40: 0x0 0x0

Oxfffe793ael50: 0©x0 0x0

Oxfffe793ael60: 0x0 ox0

Oxfffe793ael70: 0x0 0x0

Oxfffe793ae180: 0x0 0x0

Oxfffe793ael190: 0Ox0 0x0

Oxfffe793aelad: 0Ox0 0x0

Oxfffe793aelbo: 0x0 0x0

Oxfffe793aelcO: 0©x0 0x0

Oxfffe793aeldod: 0Ox0 0x0

Oxfffe793aeled: 0Ox0 0x0

Oxfffe793aelfo: 0x0 oxe

Oxfffe793ae200: 0x0 0x0

--Type <RET> for more, q to

Oxfffe793ae210: 0x0 0x0

quit, c to continue without paging--

quit, c to continue without paging--

299

Oxfffe793ae220: Oxfffffffffffffffo ox1
Oxfffe793ae230: 0Ox0 0x0

Oxfffe793ae240: 0x0 0x0

Oxfffe793ae250: 0©x0 0x0

Oxfffe793ae260: 0x0 0x0

Oxfffe793ae270: 0x0 0x0

Oxfffe793ae280: 0x0 0x0

Oxfffe793ae290: 0©x0 0x0

Oxfffe793ae2a0: 0x0 0x0

Oxfffe793ae2b0: 0x0 0x0

Oxfffe793ae2cO: Oxffffffffffffffeod ox1
Oxfffe793ae2d0: Oxffffffffffffffe8 ox1
Oxfffe793ae2e0: 0x0 0x0

Oxfffe793ae2f0: 0x0 0x0

Oxfffe793ae300: 0x0 0x0

Oxfffe793ae310: 0x0 0x0

Oxfffe793ae320: 0Ox0 0x0

Oxfffe793ae330: 0x0 0x0

Oxfffe793ae340: 0x0 0x0

Oxfffe793ae350: 0x0 0x0

Oxfffe793ae360: 0x0 ox0

oxfffe793ae370: ox0 0x0

oxfffe793ae380: 0x0 0x0

oxfffe793ae390: 0x0 oxe

Oxfffe793ae3a0: 0x0 0x0

Oxfffe793ae3b0: 0x0 0x0

oxfffe793ae3cO: 0x0 0x0

oxfffe793ae3do: oxe 0x0

Oxfffe793ae3e0: 0x0 0x0

Oxfffe793ae3f0: 0x0 0x0

Oxfffe793ae400: 0x0 0x0

oxfffe793ae410: 0x0 0x0

Oxfffe793ae420: 0x0 0x0

Oxfffe793ae430: 0x0 0x0

Oxfffe793ae440: 0x0 0x0

oxfffe793ae450: 0x0 0x0

oxfffe793ae460: 0Ox0 0x0

Oxfffe793ae470: 0x0 0x0

Oxfffe793ae480: 0x0 0x0

Oxfffe793ae490: Oxfffe793ae600 ©Ox438e08 <sleep+228>
Oxfffe793aed4a0: Oxffffffff 0x10000
oxfffe793ae4bo: ox0 0x0

Oxfffe793ae4cO: 0x0 0x0

Oxfffe793ae4do: 0x0 0x0

Oxfffe793aed4e0: 0x0 0x0

Oxfffe793ae4f0: 0x0 oxe

oxfffe793ae500: 0x0 0x0

Oxfffe793ae510: 0©x0 0x0

--Type <RET> for more, q to quit, c to continue without paging--
oxfffe793ae520: 0x0 0x0

Oxfffe793ae530: 0Ox0 0x0

Oxfffe793ae540: 0x0 0x0

Oxfffe793ae550: 0x0 0x0

Oxfffe793ae560: Oxfffe793ae600 0x438e28 <sleep+260>
Oxfffe793ae570: Oxffffffff 0x10000
Oxfffe793ae580: 0x0 0x0

Oxfffe793ae590: 0Ox0 0x0

oxfffe793ae5a0: Oxfffe793ae600 ©Ox420168 <nanosleep+24>

Oxfffe793ae5b0:
Oxfffe793ae5cO:

o0x0 0x0

0x438e34 <sleep+272> Oxfffe7932e640

300

Oxfffe793ae5d0: Oxfffe793ae640

Oxfffe793ae5e0: 0Ox0
Oxfffe793ae5f0: Ox0

Oxfffe793ae600: Oxfffe793ae7f0
Oxfffe793ae610: Oxfffe793af070

0x0
o0x0

Oxfffe793ae620: 0Ox4e0000

Oxfffe793ae630: 0Ox0

0x0

Oxfffe793ae640: oxfffffffs

Oxfffe793ae650: 0Ox0
Oxfffe793ae660: 0Ox0
Oxfffe793ae670: 0Ox0

ox0
0x0
0x0

(gdb) disassemble 9x414bf4
Dump of assembler code for function Unwind RaiseException:

0x0000000000414ab0
0x0000000000414ab4
0x0000000000414ab8
0x0000000000414abc
0x0000000000414ac0
0x0000000000414ac4
0x0000000000414ac8
0x0000000000414acc
0x0000000000414ad0
0x0000000000414ad4
0x0000000000414ad8
0x0000000000414adc
0Xx00000000004143€0
0x0000000000414ae4
0x00000000004143e8
0x0000000000414aec
0x0000000000414af0
0x0000000000414aT4
0x0000000000414af8
0x0000000000414afcC
0x0000000000414b00
0x0000000000414b04
0x0000000000414b08
0x0000000000414b0C
0x0000000000414b10
0x0000000000414b14
0x0000000000414b18
0x0000000000414b1c
0x0000000000414b20
0x0000000000414b24
0x0000000000414b28
0x0000000000414b2C
0x0000000000414b30
0x0000000000414b34
0x0000000000414b38
0x0000000000414b3c
0x0000000000414b40
0x0000000000414b44
0X0000000000414b48
0x0000000000414b4c
0x0000000000414b50
0x0000000000414b54
0Xx0000000000414b58
0x0000000000414b5C
0x0000000000414b60
0x0000000000414b64

<+0>:

<+4>:

<+8>:

<+12>:
<+16>:
<+20>:
<+24>:
<+28>:
<+32>:
<+36>:
<+40>:
<+44>:
<+48>:
<+52>:
<+56>:
<+60>:
<+64>:
<+68>:
<+72>:
<+76>:
<+80>:
<+84>:
<+88>:
<+92>:
<+96>:

<+100>:
<+104>:
<+108>:
<+112>:
<+116>:
<+120>:
<+124>:
<+128>:
<+132>:
<+136>:
<+140>:
<+144>:
<+148>:
<+152>:
<+156>:
<+160>:
<+164>:
<+168>:
<+172>:
<+176>:
<+180>:

o0x0

0x4034cc <_Z5procHv+32>
0x0
0x4035d8 <_Z12thread_threePv>

0xb854a

sub sp, sp, #0xeld

stp x29, x30, [sp, #-192]!

mov X29, sp

stp x21, x22, [sp, #64]

add x22, x29, #oxde

stp x0, x1, [sp, #16]

stp X2, X3, [sp, #32]

add x1, x29, #0xedo

mov X2, X30

mov x21, x0

mov X0, Xx22

stp x19, x20, [sp, #48]

stp d8, d9, [sp, #128]

stp die, di1, [sp, #144]

stp di2, di3, [sp, #160]

stp di4, di5, [sp, #176]

stp x23, x24, [sp, #80]

stp x25, x26, [sp, #96]

stp x27, x28, [sp, #112]

add x19, x29, #0x490

bl 0x414268 <uw_init_context_1>

mov X0, x19

mov x1, x22

mov x2, #0x3cO // #9680
bl 0x400280

add x20, x29, #0x850

b 0x414b4c <_Unwind_RaiseException+156>
cbnz w2, 0x414bbc <_Unwind_RaiseException+268>
1dr x5, [x20, #1616]

cbz x5, 0x414b40 <_Unwind_RaiseException+144>
1dr x2, [x21]

blr x5

cmp wo, #0x6

b.eq 0x414bc4 <_Unwind_RaiseException+276> // b.none
cmp wo, #0x8

b.ne Ox414bbc <_Unwind_RaiseException+268> // b.any
mov X0, x19

mov x1, x20

bl 0x414490 <uw_update_context>

mov x1l, x20

mov X0, x19

bl 0x413100 <uw_frame_state_for>

mov w2, wo

cmp w2, #0x5

mov wo, #ex1l // #1
mov X3, x21

301

0x0000000000414b68 <+184>:
0x0000000000414b6C <+188>:

mov
mov

x4, x19
wl, wo

--Type <RET> for more, q to quit, c to continue without paging--

0x0000000000414b70
0x0000000000414b74
0x0000000000414b78
0x0000000000414b7C
0x0000000000414b80
0x0000000000414b84
0x0000000000414b88
0x0000000000414b8C
0x0000000000414b90
0x0000000000414b94
0x0000000000414b98
0x0000000000414b9cC
0x0000000000414ba o
0x0000000000414bad
0x0000000000414ba8
0x0000000000414bac
0x0000000000414bbo
0x0000000000414bb4
0x0000000000414bb8
0x0000000000414bbc
0x0000000000414bc0O
0x0000000000414bc4
0x0000000000414bc8
0x0000000000414bcc
0x0000000000414bd0
0x0000000000414bd4
0x0000000000414bd8
0x0000000000414bdc
0x0000000000414be0
0x0000000000414be4
0x0000000000414be8
0x0000000000414bec
0x0000000000414bf0
0x0000000000414bf4
0x0000000000414bF8
0x0000000000414bfc
0x0000000000414c00
0x0000000000414c04
0x0000000000414c08
0x0000000000414cOC
0x0000000000414c10
0x0000000000414c14
0x0000000000414c18
0x0000000000414clcC
0x0000000000414c20
0x0000000000414c24
0x0000000000414c28
0x0000000000414c2C
0x0000000000414c30
--Type <RET> for more,
0x0000000000414c34
0x0000000000414c38
0x0000000000414C3cC
0x0000000000414c40
0x0000000000414c44
End of assembler dump.

<+192>: b.ne
<+196>: mov
<+200>: mov
<+204>: 1dp
<+208>: 1dp
<+212>: 1dp
<+216>: 1dp
<+220>: 1dp
<+224>: 1dp
<+228>: 1dp
<+232>: 1dp
<+236>: 1dp
<+240>: 1dp
<+2445>: 1dp
<+248>: 1dp
<+252>: mov
<+256>: add
<+260>: add
<+264>: ret
<+268>: mov
<+272>: b
<+276>: 1ldr
<+280>: 1ldr
<+284>: mov
<+288>: sub
<+292>: str
<+296>: mov
<+300>: str
<+304>: mov
<+308>: bl
<+312>: mov
<+316>: mov
<+320>: bl
<+324>: cmp
<+328>: b.ne
<+332>: mov
<+336>: mov
<+340>: bl
<+344>: ldr
<+348>: mov
<+352>: 1ldr
<+356>: 1dr
<+360>: tbz
<+364>: mov
<+368>: mov
<+372>: paci
<+376>: mov
<+380>: 1ldr
<+384>: mov
g to quit, c
<+388>: str
<+392>: bl
<+396>: 1ldr
<+400>: str
<+404>: b

0x414blc <_Unwind_RaiseException+108> // b.any
wo, w2

x4, #Ox0 // #0
X2, X3, [sp, #32]

x19, x20, [sp, #48]

x21, x22, [sp, #64]

x23, x24, [sp, #80]

x25, x26, [sp, #96]

x27, x28, [sp, #112]

d8, d9, [sp, #128]

die, dil, [sp, #144]

d12, di3, [sp, #160]

di4, di5, [sp, #176]

x0, x1, [sp, #16]

x29, x30, [sp], #192

x16, sp

sp, sp, x4

sp, sp, #0xelo

wo, #0x3 // #3
0x414b78 <_Unwind_RaiseException+200>
x1, [x19, #784]
x0, [x19, #832]
X2, #0x3cO // #9680
x0, x1, x0, lsr #63
x0, [x21, #24]
x1l, x22
xzr, [x21, #16]
x0, x19
0x400280
X0, x21
x1, x19
0x41453c <_Unwind_RaiseException_Phase2>
wo, #Ox7
0x414b78 <_Unwind_RaiseException+200> // b.any
x1, x19
X0, x22
0x4146fc <uw_install_context_1>
x1, [x22, #832]
X4, X0
x20, [x19, #792]
X0, [x22, #784]
x1, #61, 0x414c2c <_Unwind_RaiseException+380>
x17, x20
x16, xO
al716
x20, x17
x0, [x19, #784]
x1, x20
to continue without paging--
x4, [x29, #200]
0x414aa8 <_Unwind_DebugHook>
x4, [x29, #200]
x20, [sp, #8]
0x414b7c <_Unwind_RaiseException+204>

302

Exercise A8 (A64, WinDbg Preview)

Goal: Learn how to identify runtime exceptions, past execution residue and stack traces, identify handled
exceptions.

Patterns: C++ Exception; Execution Residue (User Space); Coincidental Symbolic Information; Handled Exception

(User Space).
1. Launch WinDbg Preview.
2. Load core.25889 dump file from the A64\App8 folder:

Microsoft (R) Windows Debugger Version 10.0.25111.1000 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\ALCDA2\A64\App8\core.25889]
64-bit machine not using 64-bit API

3k 3k 3k 3k >k sk ok ok ok %k >k ko k Path ValidatiOn SummaPy 3k 3k 3k 3k 3k >k >k 3k ok ok %k >k sk k
Response Time (ms) Location
Deferred srv*
Symbol search path is: srv*

Executable search path is:

Generic Unix Version @ UP Free ARM 64-bit (AArché64)
Machine Name:

System Uptime: not available

Process Uptime: not available

(6521.6522): Signal SIGABRT code SI_TKILL (Sent by tkill system call) originating from PID
6521*** WARNING: Unable to verify timestamp for App8

App8+0x20cfc:

00000000 00420cfc ?? ???

3. Set logging to a file in case of lengthy output from some commands:

0:000> .logopen C:\ALCDA2\A64\App8\App8.log

Opened log file 'C:\ALCDA2\A64\App8\App8.log

4. Specify the dump folder as the symbol path and reload symbols:

0:000> .sympath+ C:\ALCDA2\A64\App8\

Symbol search path is: srv*;C:\ALCDA2\A64\App8\

Expanded Symbol search path is:
cache*;SRV*https://msdl.microsoft.com/download/symbols;c:\alcda2\a64\app8\

kkokkkkkkkkk*k* path yalidation summary >k 3k 5k >k >k 5k %k >k 5k %k >k 5k %k %k

Response Time (ms) Location
Deferred srv*
0K C:\ALCDA2\A64\App8\

*** WARNING: Unable to verify timestamp for App8

303

0:000> .reload

*** WARNING: Unable to verify timestamp for App8

Module name Error
App8 The system cannot find the file specified

You can troubleshoot most symbol related issues by turning on symbol loading diagnostics (!sym
noisy) and repeating the command that caused symbols to be loaded.
You should also verify that your symbol search path (.sympath) is correct.

Note: We ignore warnings and errors as they are not relevant for now.

5.

List all thread stack traces:

0:000> ~*k

Unable to get thread data for thread ©
@ Id: 6521.6522 Suspend: © Teb: 00000000 0000 Unfrozen

#
00

01 0000fffe 7a3ce5c0O 00000000 00408610 App8!abort+0x128

02 0000fffe 7a3ce710 00000000 ©O404cOC App8!__gnu_cxx::__verbose_terminate_handler+0x16c
03 0000fffe 7a3ce760 00000000 ©0404c30 (T) App8!__cxxabivl:: terminate+Oxc

04 0000fffe 7a3ce770 0000000 ©0404d88 (T) App8!std::terminate+0x14

05 0000fffe 7a3ce780 00000000 00403424 App8!_cxa_throw+0x98

06 0PLOfffe 7a3ce7bo 00000000 00403490 App8!procB+0x7c

07 0000fffe 7a3ce7f0 00000000 00403504 App8!procA+0xc

08

Child-SP
0000fffe 7a3ce5cO

0000fffe 7a3ce800

RetAddr
00000000 00422d38

00000000 00403534

Call Site
App8!raise+0x2c

App8!procNH+0x14

09 000offfe 7a3ce810 0000000 00403548 App8!bar_one+0xc

@a 00LOfffe 7a3ceB820 00000VL0O 00403560 App8!foo_one+0xc

Ob 00PLOfffe 7a3ce830 00000000 0041834 App8!thread_one+0x10
0c 00POfffe 7a3ce850 00000000 ©043dd20 App8!start_thread+0xb4

ed
Qe

0000fffe 7a3ce980
0000fffe 7a3ce980

Unable to get thread
1 1Id: 6521.6524 Suspend: © Teb: 00000000 00RO Unfrozen

FEEFFFFF FRFFFFFF
00000000 00000000

data for thread 1

App8!thread_start+0x30

OxFFFFFFFF FFFFFFFF

Child-SP RetAddr Call Site

00 00Pefffe 793ae5cO 00000000 VB438e34 App8!_libc_nanosleep+0x24
01 00Lefffe 7932600 000000 VO4034cC App8!sleep+0x110

02 00LOfffe 793ae7f0 00000000 ©O4035bc App8!procH+0x20

03 0000fffe 7932e810 00000000 ©04035d0 App8!bar_three+0xc

04

0000fffe” 793ae820

00000000 004035e8

App8!foo_three+0xc

05 000Offfe 7932830 000V0VVO" V418314 App8!thread_three+0x10
06 0000fffe 7932e850 00000000 ©043dd20 App8!start_thread+oxb4
07 0000fffe 7932e980 ffffffff ffffffff App8!thread_start+0x30
08 000Offfe 7932e980 00000000 VOOV oxffffffff ffffffff

Unable to get thread
2 1Id: 6521.6521 Suspend: @ Teb: 00000000 0O Unfrozen

#
00
o1
02
a3
04

Child-SP

0000ffff d79fcc20
0000ffff d79fcce0
0000ffff d79fce50
0000ffff d79fcead
0000ffff d79fdoeo

data for thread 2

RetAddr

00000000 00438e34
00000000 0040370C
00000000° 0042240C
00000000 00403188
00000000 000V

Call Site

App8! _libc_nanosleep+0x24

App8!sleep+0x110
App8!main+0x90

App8!_libc_start_main+0x304

App8!start+0x4c

304

Unable to get thread data for thread 3

#
00
o1
02
03
04
05
06
o7
08

3 1Id: 6521.6523 Suspend: © Teb: 00000000 00OV Unfrozen

Child-SP

0000fffe” 79bbe5do
0000fffe” 79bbe610
0000fffe” 79bbe800
0000fffe 79bbe810
0000fffe” 79bbe820
0000fffe” 79bbe830
0000fffe” 79bbe850
0000fffe” 79bbe980
0000fffe” 79bbe980

Unable to get thread

#
00
o1
02
03
04
05
06
o7
08

4 Id: 6521.6526 Suspend: © Teb: 00000000 00RO Unfrozen

Child-sP

0000fffe 73ffe5do
0000fffe 73ffe610
0000fffe 73ffe800
0000fffe 73ffe810
0000fffe 73ffe820
0000fffe 73ffe830
0000fffe 73ffe850
0000fffe 73ffe980
0000fffe 73ffe980

Unable to get thread

#
00
o1
02
03
04
05
06
o7
08

5 1Id: 6521.6525 Suspend: © Teb: 00000000 000V Unfrozen

Child-SP

0000fffe” 78b9e5d0
0000fffe 78b9e610
0000fffe” 78b9e800
0000fffe” 78b9e810
0000fffe” 78b9e820
0000fffe” 78b9e830
0000fffe” 78b9e850
0000fffe” 78b9e980
0000fffe” 78b9e980

RetAddr

00000000 00438e34
00000000 00403520
00000000 00403578
00000000 0040358C
00000000 00403524
00000000 0041834
00000000 0043dd20
fffffff fHHfffff
00000000 0000V

data for thread 4

RetAddr

00000000 00438e34
00000000 00403520
00000000 00403644
00000000 00403658
00000000 00403670
00000000 00418314
00000000 0043dd20
ffffffff fEFfFrfff
00000000 0000V

data for thread 5

RetAddr

00000000 00438e34
00000000" 00403520
00000000 00403600
00000000 00403614
00000000 0040362cC
00000000 0041834
00000000° 0043dd20
ffffffff fFFfFrfff
00000000" 000V

Call Site

App8! libc_nanosleep+0x24

App8!sleep+0x110
App8!procNE+0x14
App8!bar_two+0xc
App8!foo_two+0xc

App8!thread_two+0x10
App8!start_thread+oxb4
App8!thread_start+0x30
Oxfffffff fffrrfff

Call Site

App8! _1libc_nanosleep+0x24

App8!sleep+0x110
App8!procNE+0x14
App8!bar_five+0xc
App8!foo_five+0xc

App8!thread_five+0x10
App8!start_thread+oxb4
App8!thread_start+0x30
oxffffffff fHffffff

Call Site

App8!_libc_nanosleep+0x24

App8!sleep+0x110
App8!procNE+0x14
App8!bar_four+exc
App8!foo_four+0xc

App8!thread_four+0x10
App8!start_thread+oxb4
App8!thread_start+0x30
oxffffffff fFfffffff

Note: We have C++ exception processing in the current thread #0.

6.

Go to thread #3, identify the execution residue of work functions, check their correctness, and reconstruct

the past stack trace:

0:000> ~3s
App8! _libc_nanosleep+0x24:
00000000° 00420174 d4000001 svc

0:003> k

#
00
o1
02
Q03
04
05
06
o7
08

Child-SP

0000fffe” 79bbe5do
0000fffe” 79bbe610
0000fffe” 79bbe800
0000fffe” 79bbe810
0000fffe” 79bbe820
0000fffe” 79bbe830
0000fffe” 79bbe850
0000fffe” 79bbe980
0000fffe” 79bbe980

RetAddr

00000000 00438e34
00000000 00403520
00000000 00403578
00000000° 0040358C
00000000" 00403524
00000000 0041834
00000000° 0043dd20
ffffffff fFffffff
00000000" 000000

Call Site

App8! 1libc_nanosleep+0x24

App8!sleep+0x110
App8!procNE+0x14
App8!bar_two+0xc
App8!foo_two+0xc

App8!thread_two+0x10
App8!start_thread+oxb4
App8!thread_start+0x30
oxffffffff ffffffff

305

0:003> dps sp-300 sp

0000fffe” 79bbe2do
0000fffe” 79bbe2d8
0000fffe 79bbe2e0
0000fffe” 79bbe2e8
0000fffe” 79bbe2f0
0000fffe” 79bbe2f8
0000fffe” 79bbe300
0000fffe” 79bbe308
0000fffe” 79bbe310
0000fffe” 79bbe318
0000fffe” 79bbe320
0000fffe” 79bbe328
0000fffe” 79bbe330
0000fffe” 79bbe338
0000fffe” 79bbe340
0000fffe” 79bbe348
0000fffe” 79bbe350
0000fffe” 79bbe358
0000fffe” 79bbe360
0000fffe” 79bbe368
0000fffe 79bbe370
0000fffe 79bbe378
0000fffe” 79bbe380
0000fffe” 79bbe388
0000fffe 79bbe390
0000fffe 79bbe398
0000fffe” 79bbe3a0
00001 ffe” 79bbe3a8
00001 ffe” 79bbe3bo
0000fffe” 79bbe3b8
0000fffe” 79bbe3cO
00001 ffe” 79bbe3c8
0000fffe” 79bbe3do
0000fffe” 79bbe3d8
0000fffe” 79bbe3e0
0000fffe 79bbe3e8
0000fffe” 79bbe3f0
0000fffe” 79bbe3f8
0000fffe 79bbe400
0000fffe 79bbe408
0000fffe” 79bbe410
0000fffe” 79bbe418
0000fffe” 79bbe420
0000fffe 79bbe428
0000fffe 79bbe430
0000fffe” 79bbe438
0000fffe” 79bbe440
0000fffe 79bbe448
0000fffe” 79bbe450
0000fffe 79bbe458
0000fffe” 79bbe460
0000fffe” 79bbe468
0000fffe 79bbe470
0000fffe 79bbe478
0000fffe 79bbe480
0000fffe” 79bbe488
0000fffe” 79bbe490
0000fffe” 79bbe498

00000000 V0V
00000000 VYO
00000000 V0V
00000000 00000000
00000000 V000000
00000000 V0PV
00000000 V0PV
00000000 V0000000
00000000 V0000000
00000000 00000V
00000000 V0PV
00000000 V0PV
00000000 00000000
00000000 V000000
00000000 00000000
00000000 V0PV
0000fffe” 79bbe360
00000000 00403304
0000fffe” 79bbe370
00000000 00403318
0000fffe” 79bbe380
00000000 0040332C
0000fffe” 79bbe390
00000000 00403340
0000fffe” 79bbe3a0
00000000 00403354
0000fffe” 79bbe3bo
00000000 00403368
00001 ffe” 79bbe3cO
00000000 0040337C
0000fffe” 79bbe3do
00000000 00403394
0000fffe” 79bbe7e0
00000000 0040347C
00000000 000V
00000000 0000V
00000000 00V
00000000 00V
00000000 0000V
00000000 000000
00000000 V000000
00000000 V00000
00000000 V000000
00000000 000000
00000000 000V
00000000 V000000
00000000 V000000
00000000 000V
00000000 V0000000
00000000 V0000000
00000000 V0V
00000000 V0V
00000000 00000000
00000000 V0000000
00000000 00000000
00000000 V0V
00000000 V0V
00000000 00000000

App8!work_7+0xc
App8!work_6+0xc
App8!work_5+0xc
App8!work_4+0xc
App8!work_3+0xc
App8!work_2+0xc
App8!work_1+0xc
App8!work+0x10

App8!procNB+0xc

306

0000fffe” 79bbedad
0000fffe” 79bbeda8
0000fffe” 79bbe4bo
0000fffe” 79bbe4b8
0000fffe 79bbedco
0000fffe” 79bbe4c8
0000fffe” 79bbe4do
0000fffe” 79bbe4ds
0000fffe 79bbede0
0000fffe” 79bbede8
0000fffe” 79bbe4dfo
0000fffe” 79bbe4df8
0000fffe” 79bbe500
0000fffe” 79bbe508
0000fffe” 79bbe510
0000fffe” 79bbe518
0000fffe” 79bbe520
0000fffe” 79bbe528
0000fffe” 79bbe530
0000fffe” 79bbe538
0000fffe” 79bbe540
0000fffe” 79bbe548
0000fffe” 79bbe550
0000fffe” 79bbe558
0000fffe” 79bbe560
0000fffe” 79bbe568
0000fffe” 79bbe570
0000fffe” 79bbe578
0000fffe” 79bbe580
0000fffe” 79bbe588
0000fffe” 79bbe590
0000fffe” 79bbe598
0000fffe” 79bbe5a0
0000fffe” 79bbe5a8
0000fffe” 79bbe5bo
0000fffe” 79bbe5b8
0000fffe” 79bbe5cO
0000fffe” 79bbe5c8
0000fffe” 79bbe5do

0ooefffe 79bbe610
00000000 00438208
00000000 Ffffffff
00000000" 00010000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00O
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 0000
00000000 000000
00000000 V00O
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
000efffe 79bbe610
00000000 0043828
00000000 FFffffff
00000000 00010000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
0oefffe” 79bbe610
00000000 00420168
00000000 000000
00000000 000000
00000000 0043834

0:003> ub 00000000 00403354

App8!work_4:

00000000 00403334
00000000 00403338
00000000 V040333C
00000000 00403340
00000000 00403344
App8!work_3:

00000000 00403348
00000000 0040334c
00000000 00403350

a9bf7bfd
910003fd
97fffff9
a8cl17bfd
d65f03co

stp
mov
bl

ldp
ret

a9bf7bfd
910003fd
97FFFFFO

stp
mov
bl

App8!sleep+0xed

App8!sleep+0x104

App8!_libc_nanosleep+0x18

App8!sleep+0x110

fp,1r,[sp,#-0x10]!

fp,sp
App8!work_5 (00000000 00403320)
fp,1r,[sp],#0x10

fp,1r,[sp,#-0x10]!

fp,sp
App8!work_4 (00000000 00403334)

307

Note: Since the saved fp value points to the next line we can easily reconstract the fragment of the past stack trace:

0000fffe” 79bbe350
0000fffe” 79bbe358
0000fffe” 79bbe360
0000fffe” 79bbe368
0000fffe” 79bbe370
0000fffe” 79bbe378

0000fffe 79bbe388
0000fffe 79bbe390
0000fffe” 79bbe398
0000fffe” 79bbe3a0
0000fffe 79bbe3a8
0000fffe” 79bbe3bo
0000fffe 79bbe3b8
0000fffe” 79bbe3co
0000fffe” 79bbe3c8
0000fffe” 79bbe3do
0000fffe” 79bbe3d8

0000fffe” 79bbe360
00000000 00403304
0000fffe” 79bbe370
00000000 00403318

00000000 0040332C
0000fffe 79bbe390
00000000 00403340
0000fffe” 79bbe3a0
00000000 00403354
0000fffe” 79bbe3bo
00000000 00403368
0000fffe 79bbe3co
00000000 V040337C
0000fffe 79bbe3do
00000000 00403394
0000fffe” 79bbe7e0
00000000° 0040347C

App8!work_7+0xc
App8!work_6+0xc
App8!work_5+0xc
App8!work_4+0xc
App8!work_3+0xc
App8!work_2+0xc
App8!work_1+0xc
App8!work+0x10

App8!procNB+0xc

7. Go to thread #1, identify the handled exception processing code, and check its validity:

0:003> ~1s

App8!_libc_nanosleep+0x24:
00000000 00420174 d4000001 svc

0:001> k
Child-SP

RetAddr

#0

Call Site

00
o1
02
03
04
05
06
o7
08

000offfe 793ae5co
0000fffe” 793ae600
0000fffe 793ae7f0
0000fffe 793ae810
0000fffe” 7932820
0000fffe” 793ae830
0000fffe” 793ae850
0000fffe” 793ae980
0000fffe” 7932980

00000000 00438e34
00000000 004034CC
00000000 004035bC
00000000 0040350
00000000 004035e8
00000000 0041834
00000000 0043dd20
FEFFFFFE FEFFFFFF
60000000 60000000

App8!_libc_nanosleep+0x24
App8!sleep+0x110
App8!procH+0x20
App8!bar_three+0xc
App8!foo_three+0xc
App8!thread_three+0x10
App8!start_thread+oxb4
App8!thread_start+0x30
oxffffffff fFHfffff

0:001> dps sp-2000
0000fffe 793ac5co
0000fffe 793ac5c8
0000fffe” 793ac5do
0000fffe” 793ac5d8
0000fffe 793ac5e0
0000fffe 793ac5e8
0000fffe 793ac5f0
0000fffe 793ac5f8
0000fffe” 793ac600
0000fffe 793ac608
0000fffe 793ac610
0000fffe 793ac618
0000fffe” 793ac620
0000fffe 793ac628
0000fffe 793ac630
0000fffe 793ac638
0000fffe 793ac640
0000fffe 793ac648
0000fffe 793ac650
0000fffe 793ac658

sp
00000000 00000000
00000000 00000000
00000000 0P0R0R0D
00000000 0P0R0R0D
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0P0R0R0D
00000000 0P0R0R0D
00000000 00000000
00000000 00000000
00000000 0P0PVR0D
00000000 0ROV
00000000 00000
00000000 00000000
00000000 00000000
00000000 0ROV
00000000 0ROV
00000000 0ROV
00000000 00000000

308

0000fffe 793ac660
0000fffe 793ac668
0000fffe 793ac670
000offfe 793ac678
0000fffe 793ac680
0000fffe 793ac688
0000fffe 793ac690
0000fffe 793ac698
0000fffe 793ac6a0d
00oofffe 793ac6a8
0000fffe 793ac6bo
0000fffe 793ac6b8
000offfe 793ac6cO
000offfe 793ac6c8
0000fffe 793ac6do
0000fffe 793ac6d8
000offfe 793acbe0d
0000fffe 793ac6e8
0000fffe 793ac6f0
0000fffe 793ac6f8
0000fffe 793ac700
0000fffe 793ac708
0000fffe 793ac710
0000fffe 793ac718
0000fffe 793ac720
0000fffe 793ac728
0000fffe 793ac730
0000fffe 793ac738
0000fffe 793ac740
0000fffe” 793ac748
0000fffe 793ac750
0000fffe 793ac758
0000fffe 793ac760
0000fffe 793ac768
0000fffe 793ac770
0000fffe 793ac778
0000fffe 793ac780
0000fffe 793ac788
0000fffe 793ac790
0000fffe 793ac798
0000fffe 793ac7a0
0000fffe 793ac7a8
0000fffe 793ac7bo
0000fffe 793ac7b8
00oofffe 793ac7cO
0000fffe 793ac7c8
0000fffe 793ac7do
0000fffe” 793ac7d8
000offfe 793ac7e0
0000fffe 793ac7e8
0000fffe 793ac7f0
0000fffe 793ac7f8
0000fffe 793ac800
0000fffe 793ac808
0000fffe 793ac810
0000fffe 793ac818
0000fffe 793ac820
0000fffe 793ac828
0000fffe 793ac830
0000fffe 793ac838

00000000 V00O
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 0000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000000
00000000 0000
00000000 0000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 000000
00000000 0000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 000000
00000000 0000000
00000000 000000
00000000 00000
00000000 000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

309

0000fffe 793ac840
0000fffe 793ac848
0000fffe 793ac850
0000fffe 793ac858
0000fffe 793ac860
0000fffe 793ac868
0000fffe 793ac870
0000fffe 793ac878
0000fffe 793ac880
0000fffe” 793ac888
0000fffe 793ac890
0000fffe 793ac898
0000fffe 793ac8a0
0000fffe 793ac8a8
0000fffe 793ac8bo
0000fffe 793ac8b8
000offfe 793ac8cO
000offfe 793ac8c8
0000fffe 793ac8do
0000fffe” 793ac8d8
000offfe 793ac8e0
0000fffe 793ac8e8
0000fffe 793ac8f0
0000fffe 793ac8f8
0000fffe” 793ac900
0000fffe” 793ac908
0000fffe 793ac910
0000fffe 793ac918
0000fffe 793ac920
0000fffe” 793ac928
0000fffe 793ac930
0000fffe 793ac938
0000fffe” 793ac940
0000fffe 793ac948
0000fffe” 793ac950
0000fffe 793ac958
0000fffe” 793ac960
0000fffe 793ac968
0000fffe” 793ac970
0000fffe 793ac978
0000fffe” 793ac980
0000fffe” 793ac988
0000fffe” 793ac990
0000fffe” 793ac998
000offfe 793ac9a0
0000fffe 793ac9a8
0000fffe 793ac9bo
0000fffe” 793ac9b8
000offfe 793ac9co
0000fffe 793ac9c8
0000fffe 793ac9do
0000fffe 793ac9d8
000offfe 793ac9e0
000offfe 793ac9e8
0000fffe 793ac9fo
0000fffe 793ac9f8
000offfe 793acao0
000offfe 793aca08
000offfe 793acale
0000fffe 793acals

00000000 00000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 0000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 000000
00000000 000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

310

000offfe 793aca20
00oefffe 793aca28
0000fffe 793aca30
0000fffe 793aca38
0000fffe 793aca40
00oofffe 793acad8
00oofffe 793acab0
0000fffe 793acas8
0000fffe 793aca6o
00oofffe 793aca68
00oofffe 793aca70
00oofffe 793aca78
0000fffe 793aca8o
0000fffe 793aca88
000offfe 793aca9’o
00oofffe 793aca98
000offfe 793acaad
0000fffe 793acaa8
0000fffe 793acabe
00oofffe 793acab8
00oofffe 793acaco
0000fffe 793acac8
0000fffe” 793acado
0000fffe 793acad8
000offfe 793acaed
000offfe 793acae8
0000fffe 793acafo
0000fffe 793acaf8
0000fffe” 793achoo
0000fffe 793aches8
0000fffe 793achlo
0000fffe 793acb1l8
0000fffe 793ach20
0000fffe” 793ach28
0000fffe 793ach30
0000fffe 793acbh38
0000fffe 793acbh40
0000fffe 793acbh48
0000fffe” 793ach50
0000fffe 793ach58
0000fffe 793ach60
0000fffe 793ach68
0000fffe 793ach70
0000fffe 793ach78
0000fffe 793ach80
0000fffe” 793ach88
0000fffe” 793ach9o
0000fffe 793ach98
00oofffe 793acbad
0000fffe” 793acba8
0000fffe 793acbbo
0000fffe 793acbb8
000offfe 793acbco
00oofffe 793acbc8
0000fffe 793achbdo
0000fffe 793achd8
000efffe 793acbed
00oofffe 793acbe8
0000fffe 793acbfo
0000fffe 793acbf8

00000000 00O
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 0000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 V00O
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 000000
00000000 000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

311

000offfe 793acco0
00oefffe 793acco8
000offfe 793acclo
00Pofffe 793accl8
000offfe 793acc20
00oofffe 793acc28
00oofffe 793acc30
000offfe 793acc38
000offfe 793acc40
00oofffe 793acc48
00oofffe 793acc50
00oofffe 793acc58
000offfe 793acc60
000offfe 793acc68
00oofffe 793acc70
00oofffe 793acc78
00oofffe 793acc80
000offfe 793acc88
000offfe 793acc90
00oofffe 793acc98
00oofffe 793accad
0000fffe 793acca8
0000fffe 793accho
0000fffe 793acch8
00oofffe 793acccO
00oofffe 793accc8
0000fffe 793accdo
0000fffe 793accd8
00oofffe 793acced
00oofffe 793acce8
00oofffe 793accfo
0000fffe 793acct8
0000fffe” 793acdoo
0000fffe” 793acdes8
0000fffe 793acdl1o
0000fffe 793acdl18
0000fffe 793acd20
0000fffe” 793acd28
0000fffe 793acd30
0000fffe” 793acd38
0000fffe 793acd40
0000fffe 793acd48
0000fffe” 793acd50
0000fffe” 793acd58
0000fffe” 793acd60
0000fffe” 793acd68
0000fffe 793acd70
0000fffe” 793acd78
0000fffe” 793acd80
0000fffe” 793acd88
0000fffe 793acdo0
0000fffe 793acd98
000offfe 793acdad
000offfe 793acda8
0000fffe 793acdbo
0000fffe 793acdb8
000efffe 793acdcO
00oofffe 793acdc8
0000fffe 793acddo
0000fffe 793acdd8

00000000 0000000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000000
00000000" 0000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 00000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 00000
Poeefffe 793adlco
00000000 00414428
0000fffe 793add30
0000fffe 793ad220
00000000 0000
000efffe” 74000b80
00000000 00000004
000efffe 793af760
00000000" 32b70610
00000000 00419540
00000000 00010000
00000000 00810000

App8!uw_update_context+0x18

App8! default_pthread_attr

312

000offfe 793acded
00oefffe 793acde8
0000fffe” 793acdfo
0000fffe 793acdf8
0000fffe 793ace00
000offfe 793ace08
00oofffe 793acel0d
000offfe 793acel8
0000fffe 793ace20
00oofffe 793ace28
000offfe 793ace30
00oofffe 793ace38
0000fffe 793ace40
0000fffe 793ace48
000offfe 793ace50
00oofffe 793ace58
000offfe 793ace60
0000fffe 793ace68
000offfe 793ace70
00oofffe 793ace78
000offfe 793ace80
0000fffe 793ace88
0000fffe 793ace90
0000fffe 793ace98
000offfe 793acead
000offfe 793acea8
0000fffe 793acebo
0000fffe 793aceb8
00oofffe 793acecO
00oofffe 793acec8
00oofffe 793acedo
0000fffe 793aced8
0000fffe 793aceed
00oofffe 793acee8
00oofffe 793acefo
0000fffe 793acef8
0000fffe 793acfo0
0000fffe 793acfo8
0000fffe 793acflo
0000fffe 793acf18
0000fffe 793act20
0000fffe 793acf28
0000fffe 793acf30
0000fffe” 793acf38
0000fffe” 793acf40
0000fffe 793act48
0000fffe 793act50
0000fffe 793acf58
0000fffe 793acf60
0000fffe 793act68
0000fffe 793acf70
0000fffe 793acf78
0000fffe” 793acf80
0000fffe 793acf88
0000fffe 793acfo0
0000fffe 793acf98
0000fffe 793acfad
00oofffe 793acfa8
0000fffe 793acfbo
0000fffe 793actb8

00000000 00413000
0000fffe 793ad220
00000000 00413000
0000fffe 793ae7e0
0000fffe 793ad8bo
0000fffe 793ad8b8
0000fffe 793ad8cO
0000fffe 793ad8c8
00000000 V0PV
00000000 V0000000
00000000 V0000000
00000000 000000
00000000 V0PV
00000000 V0PV
00000000 00000000
00000000 V000000
00000000 00000000
00000000 V0PV
00000000 V0PV
00000000 0000000
00000000 0000000
00000000 000V
00000000" 000V
0000fffe” 793ae7bo
0000fffe 793ae7b8
0000fffe 793ae7co
0000fffe” 793ad8e8
0000fffe” 793ad8f0
0000fffe 793ad8f8
0000fffe 793ad900
0000fffe 793ad908
000efffe 793ad910
0000fffe” 793ad918
0000fffe 793ae7a0
0000fffe 793ae7a8
0000fffe 793acdf8
00000000" 0000V
00000000" 000000
00000000 V00V
00000000 00V
00000000" 0000V
00000000" 000000
00000000 V000000
00000000 V00000
00000000 V000000
00000000" 000000
00000000" 000000
00000000 V000000
00000000 V000000
00000000" 000000
00000000 V0000000
00000000 V000000
00000000 V0V
00000000 V0V
00000000 00000000
00000000 V0000000
00000000 V0000000
00000000 V0V
00000000 V0V
00000000 00000000

App8!ZL16emergency_buffer+oxfdfo

App8!ZL16emergency buffer+0xfdfo

313

00oofffe 793acfco
00oefffe 793acfc8
0000fffe 793actdo
000offfe 793acfd8
0000fffe 793acfed
00oofffe 793acfe8
0000fffe 793actfo
000offfe 793acff8
0000fffe 793ad000
0000fffe” 793ad008
0000fffe” 793ado10
0000fffe” 793ad018
0000fffe 793ad020
0000fffe 793ado28
0000fffe” 793ad030
0000fffe” 793ad038
0000fffe” 793ad040
0000fffe 793ado48
0000fffe 793ad050
0000fffe” 793ad058
0000fffe” 793ad060
0000fffe” 793ad068
0000fffe” 793ad070
0000fffe 793ad078
0000fffe” 793ad080
0000fffe” 793ad088
0000fffe” 793ad090
0000fffe” 793ad098
0000fffe” 793ad0a0
0000fffe” 793ad0as8
0000fffe” 793adobo
0000fffe” 793adob8
0000fffe” 793adoco
0000fffe” 793adoc8
0000fffe” 793adodo
0000fffe” 793adod8
0000fffe” 793adoed
0000fffe” 793adoe8
0000fffe” 793adofo
0000fffe” 793adof8
0000fffe” 793ad100
0000fffe” 793ad108
0000fffe” 793adl10
0000fffe” 793ad118
0000fffe” 793ad120
0000fffe” 793ad128
0000fffe 793ad130
0000fffe” 793ad138
0000fffe” 793ad140
0000fffe” 793ad148
0000fffe” 793ad150
0000fffe” 793ad158
0000fffe 793ad160
0000fffe 793ad168
0000fffe” 793adl70
0000fffe” 793ad178
0000fffe” 793ad180
0000fffe 793ad188
0000fffe” 793ad190
0000fffe” 793ad198

00000000 0000000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
Pooefffe 793ad030
00000000 00416218
00000000° 004b21b8
00000000 0000002d
00000000 000000
00000000 000000
000efffe 793ad030
00000000 00416120
Pooefffe” 793adodo
00000000 00416b28
00000000 004el5a8
000efffe 793ad220
00000000° 004034bb
000efffe” 74000b80
00000000 00413000
000Offfe” 7932€058
00000000° 004df000
00000000° 00419540
00000000 00010000
00000000 00810000
000efffe” 793adodo
00000000 00416ae4
00000000 004e15a8
00000000 00000 1b
Poefffe 793add30
00000000 004034ac
000efffe” 793adodo
00000000 00416ado
Poefffe 793ad150
00000000 004136CC
00eefffe” 793adofo
00000000 00404754
Pooefffe 793adle0
00000000° 004145ac
000efffe 793add30
000efffe 793ad220
00000000 004
0o0efffe” 74000b80
00000000 00000004
000efffe 793af760
00000000" 32b70610
00000000 00419540
00000000 00010000
00000000 00810000
0000fffe 793adle0
00000000 00414570
Po0efffe” 793add30
00000000 004c57d8
00000000 00000
0000fffe” 74000b80
00000000 00000004
00000000 0000
00000000 32b7060
00000000° 00419540

App8!search_object+0x204
App8! $d+0x25c¢

App8!search_object+0x18c

App8!Unwind_Find_FDE+0x174
App8!object.6205

App8!Z5procHv+0xf
App8!ZL16emergency_buffer+oxfdfo

App8!ZTIh+0x8
App8! _default_pthread_attr

App8!Unwind_Find_FDE+0x130
App8!object.6205
App8!Z5procHv
App8!Unwind_Find_FDE+0x11c
App8!uw_frame_state_for+0x5cc
App8! gxx_personality v0+0xfeo

App8!Unwind_RaiseException_Phase2+0x70

App8! _default_pthread_attr

App8!Unwind_RaiseException_Phase2+0x34

App8!$d+ox1

App8!_default_pthread_attr

314

0000fffe 793adla0
0000fffe 793ad1a8
0000fffe” 793ad1bo
0000fffe 793ad1b8
0000fffe 793adlco
0000fffe 793ad1c8
0000fffe 793adlde
0000fffe 793ad1d8
0000fffe 793adled
0000fffe 793adle8
0000fffe 793adlfo
0000fffe 793ad1f8
0000fffe” 793ad200
0000fffe” 793ad208
000offfe 793ad210
0000fffe 793ad218
0000fffe 793ad220
0000fffe 793ad228
0000fffe” 793ad230
0000fffe 793ad238
0000fffe 793ad240
0000fffe 793ad248
0000fffe 793ad250
0000fffe 793ad258
0000fffe 793ad260
0000fffe 793ad268
0000fffe 793ad270
0000fffe 793ad278
0000fffe 793ad280
0000fffe 793ad288
0000fffe 793ad290
0000fffe”793ad298
0000fffe 793ad2a0
0000fffe 793ad2a8
0000fffe” 793ad2bo
0000fffe”793ad2b8
0000fffe 793ad2co
0000fffe”793ad2c8
0000fffe” 793ad2do
0000fffe” 793ad2d8
0000fffe 793ad2e0
0000fffe”793ad2e8
0000fffe” 793ad2f0
0000fffe 793ad2f8
0000fffe” 793ad300
0000fffe”793ad308
0000fffe” 793ad310
0000fffe 793ad318
0000fffe 793ad320
0000fffe”793ad328
0ooefffe 793ad330
00O fffe 793ad338
0000fffe” 793ad340
0000fffe” 793ad348
00eofffe 793ad350
00oOfffe 793ad358
00O fffe 793ad360
0000fffe 793ad368
0000fffe 793ad370
0000fffe” 793ad378

00000000 00010000
00000000 00810000
00000000 00000
00000000" 000000
000Offfe 793adle0
00000000 004145cc
L S
76a28b43" 6af36100
000efffe 793ad8a0d
00000000° 00414bf4
Poefffe 793add30
0ooefffe 793ae0f0
000Offfe” 74000b80
000efffe 793ad970
00000000 0000
Pooefffe 793ae770
00000000 00000000
00000000 00000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 000000
00000000 0000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 00000
00000000 000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
fHHHffff frfffffo
00000000 00000001
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

App8!Unwind_RaiseException_Phase2+0x90

App8!Unwind_RaiseException+0x144

315

0000fffe” 793ad380
0000fffe 793ad388
0000fffe 793ad390
0000fffe 793ad398
0000fffe 793ad3a0
0000fffe 793ad3a8
0000fffe” 793ad3bo
0000fffe 793ad3b8
0000fffe 793ad3co
0000fffe” 793ad3c8
0000fffe” 793ad3do
0000fffe” 793ad3d8
0000fffe 793ad3ed
0000fffe 793ad3e8
0000fffe 793ad3f0
0000fffe” 793ad3f8
0000fffe” 793ad400
0000fffe 793ad408
0000fffe 793ad410
0000fffe” 793ad418
0000fffe” 793ad420
0000fffe 793ad428
0000offfe 793ad430
0000fffe 793ad438
0000fffe” 793ad440
0000fffe” 793ad448
0000fffe 793ad450
0000fffe 793ad458
0000fffe” 793ad460
0000fffe” 793ad468
0000fffe” 793ad470
0000fffe 793ad478
0000fffe 793ad480
0000fffe” 793ad488
0000fffe” 793ad490
0000fffe 793ad498
0000fffe 793ad4a0
0000fffe 793ad4as8
0000fffe” 793ad4bo
0000fffe” 793ad4b8
0000fffe 793ad4co
0000fffe 793ad4c8
0000fffe” 793ad4do
0000fffe” 793ad4d8
0000fffe” 793ad4e0
0000fffe 793ad4e8
0000fffe 793ad4fo
0000fffe” 793ad4f8
0000fffe” 793ad500
0000fffe 793ad508
0000fffe 793ad510
0000fffe 793ad518
0000fffe” 793ad520
0000fffe 793ad528
0000fffe” 793ad530
0000fffe 793ad538
0000fffe 793ad540
0000fffe” 793ad548
0000fffe” 793ad550
0000fffe 793ad558

00000000 0000000
00000000 0000000
00000000 00000
00000000" 0000000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00000000
00000000 000000
00000000 000000
00000000 0000000
00000000" 0000000
fHHfffff frffffeo
00000000 00000001
frrfffff ffffffe8
00000000 00000001
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 000000
00000000 00000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 00000
00000000 0000000
00000000 0000000
00000000 00000
00000000 000000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

316

0000fffe” 793ad560
0000fffe” 793ad568
0000fffe 793ad570
0000fffe 793ad578
0000fffe 793ad580
0000fffe” 793ad588
0000fffe” 793ad590
0000fffe 793ad598
0000fffe 793ad5a0
0000fffe” 793ad5a8
0000fffe” 793ad5bo
0000fffe” 793ad5b8
0000fffe 793ad5cO
000offfe 793ad5c8
0000fffe” 793ad5do
0000fffe” 793ad5d8
0000fffe” 793ad5e0
0000fffe 793ad5e8
0000fffe 793ad5f0
0000fffe” 793ad5f8
0000fffe” 793ad600
0000fffe” 793ad608
0000fffe 793ad610
0000fffe 793ad618
0000fffe” 793ad620
0000fffe 793ad628
0000fffe 793ad630
0000fffe 793ad638
0000fffe” 793ad640
0000fffe 793ad648
0000fffe 793ad650
0000fffe 793ad658
0000fffe” 793ad660
0000fffe 793ad668
0000fffe” 793ad670
0000fffe 793ad678
0000fffe” 793ad680
0000fffe” 793ad688
0000fffe” 793ad690
0000fffe” 793ad698
0000fffe” 793ad6a0
0000fffe” 793ad6a8
0000fffe” 793ad6bo
0000fffe” 793ad6b8
0000fffe” 793ad6co
0000fffe” 793ad6c8
0000fffe” 793ad6do
0000fffe” 793ad6d8
0000fffe” 793ad6ed
0000fffe” 793ad6e8
0000fffe 793ad6f0
0000fffe 793ad6f8
0000fffe” 793ad700
0000fffe” 793ad708
0000fffe 793ad710
0000fffe 793ad718
0000fffe 793ad720
0000fffe 793ad728
0000fffe 793ad730
0000fffe 793ad738

00000000 0000000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 0000
00000000 000000
00000000 00000000
00000000 0000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 000000
00000000 000000
00000000 0000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 0000
00000000 0000000
00000000 0000000
00000000 00000
00000000 000000
00000000 0000000
00000000 00000000
00000000 V0LV0O
00000000 0000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

317

0000fffe 793ad740
0000fffe 793ad748
0000fffe 793ad750
0000fffe 793ad758
0000fffe 793ad760
0000fffe 793ad768
0000fffe 793ad770
0000fffe 793ad778
0000fffe 793ad780
0000fffe 793ad788
0000fffe” 793ad790
0000fffe” 793ad798
0000fffe 793ad7a0
000offfe 793ad7a8
0000fffe” 793ad7bo
0000fffe” 793ad7b8
0000fffe 793ad7co
000offfe 793ad7c8
0000fffe 793ad7do
0000fffe” 793ad7d8
0000fffe 793ad7e0
0000fffe 793ad7e8
0000fffe 793ad7f0
0000fffe 793ad7f8
0000fffe” 793ad800
0000fffe” 793ad808
0000fffe 793ad810
0000fffe” 793ad818
0000fffe” 793ad820
0000fffe” 793ad828
0000fffe” 793ad830
0000fffe 793ad838
0000fffe” 793ad840
0000fffe” 793ad848
0000fffe” 793ad850
0000fffe” 793ad858
0000fffe” 793ad860
0000fffe” 793ad868
0000fffe” 793ad870
0000fffe” 793ad878
0000fffe 793ad880
0000fffe” 793ad888
0000fffe” 793ad890
0000fffe” 793ad898
0000fffe” 793ad8a0
0000fffe” 793ad8a8
0000fffe” 793ad8bo
0000fffe” 793ad8b8
0000fffe” 793ad8cO
0000fffe” 793ad8c8
0000fffe 793ad8do
0000fffe 793ad8d8
0000fffe” 793ad8ed
0000fffe 793ad8e8
0000fffe 793ad8f0
0000fffe 793ad8f8
0000fffe 793ad900
0000fffe” 793ad908
0000fffe 793ad910
0000fffe 793ad918

00000000 0000000
00000000 0000000
00000000 00000
00000000" 000000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 0000
00000000 000000
00000000 00000000
00000000 0000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000V
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 00000000
00000000 0000000
00000000 00000000
00000000 00000020
Pooefffe” 793ad8a0d
00000000 0041408
000Offfe” 793add30
0000fffe 793ae0f0
0o0efffe” 74000b80
Poefffe 793ad970
00000000 000000
00000000 0000001e
00000000 00011b1b
000efffe” 793ae7f0
000efffe” 793ae7f0
00000000 0040340
000Offfe” 74000b80
00000000 00000001
00000000 000000
00000000 00000001
0oeefffe 793af070
00000000 00000000
00000000 0040000
00000000" 004035d8
00000000 00000000
000efffe 793af760
00000000" 32b70610
00000000 00419540
00000000 00010000
00000000 00810000

App8!Unwind_RaiseException+0x158

App8!Z5procHv+0x14

App8!+0x18

App8!Z12thread_threePv

App8! default_pthread_attr

318

0000fffe” 793ad920
0000fffe” 793ad928
0000fffe 793ad930
0000fffe 793ad938
0000fffe 793ad940
0000fffe” 793ad948
0000fffe” 793ad950
0000fffe 793ad958
0000fffe 793ad960
0000fffe” 793ad968
0000fffe” 793ad970
0000fffe” 793ad978
0000fffe 793ad980
0000fffe 793ad988
0000fffe” 793ad990
0000fffe” 793ad998
0000fffe” 793ad9a0
0000fffe 793ad9a8
0000fffe 793ad9bo
0000fffe” 793ad9b8
0000fffe” 793ad9co
0000fffe” 793ad9c8
0000fffe” 793ad9do
0000fffe” 793ad9d8
0000fffe” 793ad9ed
0000fffe” 793ad9e8
0000fffe 793ad9fo
0000fffe” 793ad9of8
0000fffe” 793adado
0000fffe” 793adad8
0000fffe” 793adalo
0000fffe 793adal8
0000fffe 793ada20
0000fffe” 793ada28
0000fffe” 793ada30
0000fffe” 793ada38
0000fffe” 793ada40
0000fffe 793ada4s8
0000fffe” 793adab0
0000fffe” 793ada58
0000fffe” 793ada6o
0000fffe” 793adab8
0000fffe” 793ada70
0000fffe 793ada78
0000fffe” 793ada80
0000fffe” 793ada88
0000fffe” 793ada9e
0000fffe” 793ada98
000offfe 793adaad
0000fffe” 793adaa8
0000fffe 793adabo
0000fffe 793adab8
000offfe 793adace
000offfe 793adac8
0000fffe 793adado
0000fffe 793adad8
000offfe 793adaed
000offfe 793adae8
0000fffe 793adafo
0000fffe 793adaf8

00000000 0000000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 00000
00000000" 000000
00000000 00000080
Poefffe 793ad8bo
000efffe 793ad8b8
000Offfe 793ad8cO
000Offfe 793ad8c8
00000000 0000
00000000 00O
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
Pooefffe 793ad8do
0oefffe” 793ad8d8
000Offfe 793ad8e0
000Offfe 793ad8e8
Pooefffe 793ad8f0
000efffe” 793ad8f8
000efffe 793ad900
000efffe” 793ad908
000efffe 793ad910
0oeefffe 793ad918
Pooefffe 793ad8a0d
000Offfe 793ad8a8
00000000 00000000
00000000 000000
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 00000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

319

0000fffe” 793adboo
0000fffe 793adbo8
0000fffe” 793adblo
0000fffe 793adb18
0000fffe 793adb20
0000fffe 793adb28
0000fffe 793adb30
0000fffe 793adb38
0000fffe 793adb4o
0000fffe” 793adb48
0000fffe 793adb50
0000fffe 793adb58
0000fffe 793adb60
0000fffe 793adb68
0000fffe 793adb70
0000fffe” 793adb78
0000fffe 793adb80
0000fffe 793adb88
0000fffe 793adbo0
0000fffe” 793adb98
0000fffe” 793adbad
0000fffe” 793adba8
0000fffe” 793adbbo
0000fffe” 793adbb8
0000fffe 793adbco
0000fffe 793adbc8
0000fffe” 793adbdo
0000fffe” 793adbd8
0000fffe” 793adbed
0000fffe” 793adbe8
0000fffe” 793adbfo
0000fffe” 793adbf8
0000fffe 793adco0
0000fffe” 793adcO8
0000fffe” 793adclo
0000fffe 793adcl8
0000fffe” 793adc20
0000fffe” 793adc28
0000fffe” 793adc30
0000fffe” 793adc38
0000fffe 793adc40
0000fffe 793adc48
0000fffe” 793adc50
0000fffe” 793adc58
0000fffe” 793adc60
0000fffe” 793adc68
0000fffe 793adc70
0000fffe” 793adc78
0000fffe” 793adc80
0000fffe” 793adc88
0000fffe 793adc90
0000fffe 793adc98
000offfe 793adcad
000offfe 793adca8
0000fffe 793adcbo
0000fffe 793adcb8
000offfe 793adccO
00oofffe 793adcc8
0000fffe 793adcdo
0000fffe 793adcd8

00000000 0000000
00000000 0000000
00000000 0000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00O
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 0000
00000000 000000
00000000 V00O
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
000Offfe 793ad920
000Offfe 793ad928
Poefffe 793ad930
Poefffe 793ad938
000Offfe 793ad940
000Offfe 793ad948
Poefffe 793ad950
Poefffe” 793ad958
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 0000
00000000 000000
00000000 0000000
00000000 0000000
00000000 00000
P0oefffe 793ae770
00000000 00404d7c
00000000 00000000
00000000 00000000
00000000 0000
00000000 00414abo
40000000 00000000
00000000 00000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

App8!_cxa_throw+0x90

App8!Unwind_RaiseException

320

000offfe 793adced
00oefffe 793adce8
0000fffe” 793adcfo
0000fffe 793adcf8
0000fffe” 793addoo
0000fffe” 793addes
0000fffe” 793add10
0000fffe 793add18
0000fffe 793add20
0000fffe” 793add28
0000fffe” 793add30
0000fffe” 793add38
0000fffe” 793add40
0000fffe” 793add48
0000fffe” 793add50
0000fffe” 793add58
0000fffe” 793add60
0000fffe 793add68
0000fffe 793add70
0000fffe” 793add78
0000fffe” 793add80
0000fffe” 793add88
0000fffe” 793add9o
0000fffe” 793add98
0000fffe” 793addad
0000fffe” 793adda8
0000fffe” 793addbo
0000fffe” 793addb8
0000fffe” 793addco
0000fffe” 793addc8
0000fffe” 793adddo
0000fffe” 793addd8
0000fffe” 793added
0000fffe” 793adde8
0000fffe” 793addfo
0000fffe” 793addf8
0000fffe” 793ade0o
0000fffe” 793ade0d8
0000fffe” 793adeld
0000fffe” 793adel8
0000fffe” 793ade20
0000fffe” 793ade28
0000fffe” 793ade30
0000fffe” 793ade38
0000fffe” 793ade4do
0000fffe 793ade48
0000fffe” 793ade50
0000fffe” 793ade58
0000fffe” 793ade60
0000fffe” 793ade68
0000fffe 793ade70
0000fffe 793ade78
0000fffe 793ade80
0000fffe” 793ade88
0000fffe 793ade90
0000fffe 793ade98
0000fffe 793adead
000offfe 793adea8
0000fffe” 793adebo
0000fffe 793adeb8

00000000 V000000
00000000 V0000000
00000000 V0PV
00000000 VYO
00000000 V0V
00000000 00000000
00000000 V000000
00000000 V0PV
00000000 V0PV
00000000 V0000
0000fffe” 793ad8b0o
0000fffe 793ad8b8
0000fffe 793ad8cO
0000fffe 793ad8c8
00000000 00000000
00000000 V000000
00000000 00000000
00000000 V0PV
00000000 V0PV
00000000 0000000
00000000 0000000
00000000 000V
00000000" 000000
00000000" 0000V
00000000 00000000
00000000 V000000
00000000 000000
00000000 000V
00000000 000000
0000fffe 793ae7bo
0000fffe 793ae7b8
0000fffe” 793ae7cO
0000fffe” 793ad8e8
0000fffe 793ad8f0
0000fffe 793ad8f8
000efffe” 793ad900
0000fffe” 793ad908
000efffe” 793ad910
0000fffe 793ad918
0000fffe 793ae7e0
0000fffe 793ae7e8
0000fffe” 793ad898
00000000 V000000
00000000 0000000
00000000 V000000
00000000" 000000
00000000" 000000
00000000 V000000
00000000 V000000
00000000" 0000000
00000000 V0000000
00000000 V0000000
00000000 V0V
00000000 V0V
00000000 00000000
00000000 V0000000
00000000 V00V
00000000 V0V
00000000 V0V
00000000 00000000

321

000offfe 793adecO
00oefffe 793adec8
0000fffe 793adedo
0000fffe 793aded8
0000fffe” 793adeed
000offfe 793adee8
0000fffe” 793adefo
0000fffe 793adef8
0000fffe 793adfo0
0000fffe” 793adfe8
0000fffe” 793adf10
0000fffe” 793adf18
0000fffe 793adf20
0000fffe 793adf28
0000fffe” 793adf30
0000fffe” 793adf38
0000fffe” 793adf40
0000fffe 793adf48
0000fffe 793adf50
0000fffe” 793adf58
0000fffe” 793adf60
0000fffe 793adf68
0000fffe 793adf70
0000fffe 793adf78
0000fffe” 793adf80
0000fffe” 793adf88
0000fffe” 793adf90
0000fffe” 793adf98
0000fffe” 793adfad
0000fffe” 793adfa8
0000fffe” 793adfbo
0000fffe” 793adfb8
0000fffe” 793adfco
0000fffe” 793adfc8
0000fffe” 793adfdo
0000fffe” 793adfd8
0000fffe 793adfe0
0000fffe 793adfe8
0000fffe” 793adffo
0000fffe” 793adff8
0000fffe” 7932€000
0000fffe” 7932€008
0000fffe 793ae010
0000fffe” 793ae018
0000fffe 7932020
0000fffe 7932028
0000fffe” 7932e030
0000fffe” 793ae038
0000fffe” 793ae040
0000fffe” 7932e048
0000fffe 793ae050
0000fffe 793ae058
0000fffe 793ae060
0000fffe” 793ae068
0000fffe 793ae070
0000fffe 793ae078
0000fffe” 793ae080
0000fffe” 793ae088
0000fffe 793ae090
0000fffe 7932098

00000000 0000000
00000000 0000000
00000000 00000
00000000 0000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00O
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 0000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
000Offfe 793ad920
000Offfe 793ad928
Poefffe 793ad930
Poefffe 793ad938
000Offfe 793ad940
000Offfe 793ad948
Poefffe 793ad950
Poefffe 793ad958
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 00000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 00000
000efffe” 793ae7f0
00000000 0040340
00000000 004c57d8
00000000 00000000
00000000 0000
00000000 004034ac
40000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

App8!Z5procHv+0x14
App8!$d+ox1

App8!Z5procHv

322

000offfe 793ae0a0
000offfe 793ae0a8
0000fffe” 793ae0bo
0000fffe 793ae0b8
0000fffe 793ae0cO
000offfe 793ae0c8
0000fffe” 793ae0do
0000fffe 793ae0d8
0000fffe 793ae0e0
000offfe 793ae0e8
0000fffe 793ae0f0
0000fffe 793ae0f8
0000fffe 793ae100
0000fffe” 793ae108
0000fffe 793aell0
0000fffe 793ael118
0000fffe 793ael120
0000fffe 793ae128
0000fffe 793ae130
0000fffe” 793ae138
0000fffe 793ael40
0000fffe 793ae148
0000fffe 793ael50
0000fffe 793ael58
0000fffe 793ael60
0000fffe 793ael68
0000fffe 793ael70
0000fffe 793ael78
0000fffe 793ae180
0000fffe” 793ae188
0000fffe 793ae190
0000fffe 793ae198
0000fffe 793aelad
00oofffe 793aela8
0000fffe 793aelbo
0000fffe 793aelb8
0000fffe 793aelco
0000fffe 793aelc8
0000fffe” 793aeldo
0000fffe” 793aeld8
0000fffe 793aeled
0000fffe 793aele8
0000fffe 793aelfo
0000fffe” 793aelf8
0000fffe 7932200
0000fffe 7932208
0000fffe 793ae210
0000fffe” 793ae218
0000fffe 793ae220
0000fffe 793ae228
0000fffe 793ae230
0000fffe 793ae238
0000fffe 793ae240
0000fffe” 793ae248
0000fffe 793ae250
0000fffe 793ae258
0000fffe” 793ae260
0000fffe” 793ae268
0000fffe 793ae270
0000fffe 793ae278

00000000 0000000
00000000 00000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 00000
00000000" 0000000
00000000 00000000
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 000000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 00000
ffrfffff frfffffo
00000000 00000001
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

323

0000fffe 793ae280
0000fffe 793ae288
0000fffe 793ae290
0000fffe 793ae298
0000fffe 793ae2a0
000offfe 793ae2a8
0000fffe 793ae2bo
0000fffe 793ae2b8
0000fffe 793ae2cO
000offfe 793ae2c8
0000fffe 793ae2do
0000fffe” 793ae2d8
0000fffe 793ae2e0
0000fffe 793ae2e8
0000fffe 793ae2f0
0000fffe 793ae2f8
0000fffe 793ae300
0000fffe” 793ae308
0000fffe 793ae310
0000fffe” 793ae318
0000fffe 793ae320
0000fffe 793ae328
0000fffe 793ae330
0000fffe 793ae338
0000fffe 793ae340
0000fffe” 793ae348
0000fffe 793ae350
0000fffe 793ae358
0000fffe 793ae360
0000fffe 793ae368
0000fffe 793ae370
0000fffe 793ae378
0000fffe 793ae380
0000fffe 793ae388
0000fffe” 793ae390
0000fffe” 793ae398
0000fffe 793ae3a0
0000fffe” 793ae3a8
0000fffe” 793ae3bo
0000fffe” 793ae3b8
0000fffe 793ae3cO
0000fffe 793ae3c8
0000fffe” 793ae3do
0000fffe” 793ae3d8
000offfe 793ae3e0
0000fffe 793ae3e8
0000fffe 793ae3f0
0000fffe 793ae3f8
0000fffe” 793ae400
0000fffe” 793ae408
0000fffe 793ae410
0000fffe 793ae418
0000fffe 793ae420
0000fffe 793ae428
0000fffe 793ae430
0000fffe 793ae438
0000fffe” 793ae440
0000fffe” 793ae448
0000fffe 793ae450
0000fffe 793ae458

00000000 0000000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
00000000 00000000
00000000 00000
ffHfffff ffffffeo
00000000 00000001
frHfffff ffffffe8
00000000 00000001
00000000 0000000
00000000" 0000000
00000000 0000
00000000 000000
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000
00000000 000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 000000
00000000 0000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 000000
00000000 00000000
00000000 ©00VV0O
00000000 00000
00000000 000000
00000000 0000000
00000000 0000000
00000000 00000
00000000 000000
00000000 000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000
00000000 00000
00000000 00000000
00000000 0000
00000000 0000
00000000 00000000

324

0000fffe” 793ae460
0000fffe 793ae468
0000fffe 793ae470
0000fffe 793ae478
0000fffe 793ae480
0000fffe 793ae488
0000fffe” 793ae490
0000fffe 793ae498
0000fffe 793ae4a0
000offfe 793ae4a8
0000fffe” 793ae4bo
0000fffe” 793ae4b8
0000fffe 793ae4cO
0000fffe 793ae4c8
0000fffe” 793ae4do
0000fffe” 793ae4d8
000offfe 793ae4e0
0000fffe 793ae4e8
0000fffe 793ae4f0
0000fffe 793ae4f8
0000fffe” 793ae500
0000fffe 793ae508
0000fffe 793ae510
0000fffe 793ae518
0000fffe 793ae520
0000fffe 793ae528
0000fffe 793ae530
0000fffe 793ae538
0000fffe” 793ae540
0000fffe 793ae548

[...]

00000000 0000000
00000000 0000000
00000000 00000
00000000" 000000
00000000" 000000
00000000 00000000
0o0efffe 793ae600
00000000 00438208
00000000 Ffffffff
00000000 00010000
00000000 0000
00000000 000000
00000000 0000000
00000000" 0000000
00000000 0000
00000000 V00O
00000000 00000000
00000000 000000
00000000 00000
00000000 0000000
00000000 00000000
00000000 00000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000
00000000 000000

0:001> ub 00000000 ©004145cc
App8!Unwind_RaiseException_Phase2+0x70:
00000000° 004145ac 71001clf cmp

00000000 ©04145b0 54000120
(00000000 004145d4)

00000000° 004145b4 7100201
00000000 004145b8 540000c1
(00000000 004145d0)

00000000 ©04145bc 35000195
(00000000 004145ec)

00000000 004145c0 aal303e0
00000000 004145c4 aaldd3el
00000000 004145c8 97ffffb2

10.

0:001> .logclose

beq

cmp
bne

cbnz
mov

mov
bl

App8!sleep+0xed

wo,#7
App8!Unwind_RaiseException_Phase2+0x98

wo, #8
App8!Unwind_RaiseException_Phase2+0x94

w21,App8!Unwind_RaiseException_Phase2+0xbo
X0, x19

x1,x20
App8!uw_update_context (00000000 ©0414490)

We close logging before exiting WinDbg Preview:

Closing open log file 'C:\ALCDA2\A64\App8\App8.log'

325

Exercise A9

Goal: Learn how to identify heap leaks

Patterns: Memory Leak (Process Heap); Module Hint

© 2023 Software Diagnostics Services

326

Exercise A9 (x64, GDB)

Goal: Learn how to identify heap leaks.

Patterns: Memory Leak (Process Heap); Module Hint.

1

The application App9 was found to consume more and more memory. Several core memory dumps were

saved at different times with corresponding pmap logs. Load App9.core.2.230 dump file and App9 executable from
the x64/App9 directory:

~/ALCDA2/x64/App9% gdb -c App9.core.2.230 -se App9
GNU gdb (Debian 8.2.1-2+b3) 8.2.1
Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying"” and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:

For help, type "help".

Type "apropos word" to search for commands related to

Reading symbols from App9...done.

[New
[New
[New
[New
[New
[New

LWP
LWP
LWP
LWP
LWP
LWP

230]
231]
232]
233]
234]
235]

<http://www.gnu.org/software/gdb/documentation/>.

‘'word". ..

[Thread debugging using libthread_db enabled]
Using host libthread_db library "/1lib/x86_64-linux-gnu/libthread_db.so.1".

Core was generated by " ./App9'.

#0 0©0x0000000000441ad0 in nanosleep ()
[Current thread is 1 (Thread 0x1778880 (LWP 230))]

8.

Set logging to a file in case of lengthy output from some commands:

(gdb) set logging on App9.log
Copying output to App9.log.

2.

(gdb) maintenance info sections

Notice the size of the largest section and quit gdb:

Exec file:
*/home/coredump/ALCDA2/x64/App9/App9', file type elf64-x86-64.

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

0x00400200->0x00400220
0x00400220->0x00400244
0x00400248->0x004004d0
0x00401000->0x00401017
0x00401018->0x00401010
0x00401010->0x00493490
0x00493490->0x00494037
0x00494038->0x00494041
0x00495000->0x004af73c

at
at
at
at
at
at
at
at
at

0x00000200:
0x00000220:
0x00000248:
0x00001000:
0x00001018:
0x0000100:
0x00093490:
0x00094038:
0x00095000:

.note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
.note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
.rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS

.init ALLOC LOAD READONLY CODE HAS_CONTENTS

.plt ALLOC LOAD READONLY CODE HAS_CONTENTS

.text ALLOC LOAD READONLY CODE HAS_CONTENTS
__libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
.fini ALLOC LOAD READONLY CODE HAS_CONTENTS

.rodata ALLOC LOAD READONLY DATA HAS_CONTENTS

327

[9] 0x004af740->0x004bbbdo at 0x000af740: .eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS

[10] 0x004bbbdo->0x004bbc7c at 0x000bbbd0: .gcc_except_table ALLOC LOAD READONLY DATA HAS_CONTENTS
[11] 0x004bdobo->0x004bdod8 at ©x000bcObO: .tdata ALLOC LOAD DATA HAS_CONTENTS
[12] 0x004bdod8->0x004bd120 at ©x000bced8: .tbss ALLOC
[13] 0x004bdod8->0x004bd0ed at 0x000bcOd8: .preinit_array ALLOC LOAD DATA HAS_CONTENTS
[14] 0x004bd0e0->0x004bdofO at ©x000bcOed: .init_array ALLOC LOAD DATA HAS_CONTENTS
[15] 0x004bdofo->0x004bd100 at ©x000bcOfO: .fini_array ALLOC LOAD DATA HAS_CONTENTS
[16] 0x004bd100->0x004bfef4 at 0x000bc1l00: .data.rel.ro ALLOC LOAD DATA HAS_CONTENTS
[17] 0x004bfef8->0x004c0000 at 0Ox000beef8: .got ALLOC LOAD DATA HAS_CONTENTS
[18] 0x004c0000->0x004c00f0 at Ox000bfOLO: .got.plt ALLOC LOAD DATA HAS_CONTENTS
[19] 0x004c0100->0x004c1c30 at Ox000bf100: .data ALLOC LOAD DATA HAS_CONTENTS
[20] 0x004c1c30->0x004c1c90 at 0x000c0c30: _ libc_subfreeres ALLOC LOAD DATA HAS_CONTENTS
[21] 0x004clcaf->0x004c2408 at 0x000cOcad: _ libc_IO vtables ALLOC LOAD DATA HAS_CONTENTS
[22] 0x004c2408->0x004c2410 at 0x000c1408: _ libc_atexit ALLOC LOAD DATA HAS_CONTENTS
[23] 0x004c2420->0x004c8528 at 0x000c1410: .bss ALLOC
[24] 0x004c8528->0x004c8558 at 0x000c1410: _ libc_freeres_ptrs ALLOC
[25] 0x00000000- >0x00000038 at ©x000c1410: .comment READONLY HAS_CONTENTS
[26] 0x00000000->0x00000420 at 0x000c1450: .debug _aranges READONLY HAS_CONTENTS
[27] 0x00000000->0x000372ad at 0x000c1870: .debug_info READONLY HAS_CONTENTS
[28] 0x00000000->0x000057e8 at 0x000f8bld: .debug abbrev READONLY HAS_CONTENTS
[29] 0x00000000->0x0000aa2b at Ox0Ofe305: .debug line READONLY HAS_CONTENTS
[30] 0x00000000->0x00004d08 at 0x00108d30: .debug_str READONLY HAS_CONTENTS
[31] 0x00000000->0x0000d4b8 at 0x0010da38: .debug_loc READONLY HAS_CONTENTS
[32] 0Xx00000000->0x000024cO at Ox001laefd: .debug ranges READONLY HAS_CONTENTS
Core file:
" /home/coredump/ALCDA2/x64/App9/App9.core.2.230"', file type elf64-x86-64.
[0] 0Xx00000000->0x00002ecc at Ox000RR4a0: note® READONLY HAS_CONTENTS
[1] 0x00000000- >0x000000d8 at 0x000VB5cO: .reg/230 HAS_CONTENTS
[2] 0x00000000- >0x000000d8 at 0x000005cO: .reg HAS_CONTENTS
[3] 0x00000000->0x00000200 at 0x0000O6b4: .reg2/230 HAS_CONTENTS
[4] 0x00000000- >0x00000200 at 0x00VVO6b4A: .reg2 HAS_CONTENTS
[5] 0x00000000- >0x00000340 at 0x000008c8: .reg-xstate/230 HAS_CONTENTS
[6] 0x00000000->0x00000340 at 0x000PVO8c8: .reg-xstate HAS_CONTENTS
[7] 0x00000000- >0x00000080 at 0x00VPOclc: .note.linuxcore.siginfo/230 HAS_CONTENTS
[8] 0Xx00000000->0x00000080 at 0x00PROclc: .note.linuxcore.siginfo HAS_CONTENTS
[9] 0x00000000- >0x000000d8 at 0x00000d20: .reg/231 HAS_CONTENTS
[1e0] 0x00000000- >0x00000200 at 0x0000Leld: .reg2/231 HAS_CONTENTS
[11] 0x00000000- >0x00000340 at 0x00001028: .reg-xstate/231 HAS_CONTENTS
[12] 0x00000000->0x00000080 at Ox00VV137c: .note.linuxcore.siginfo/231 HAS_CONTENTS
[13] 0x00000000->0x000000d8 at 0x00001480: .reg/232 HAS_CONTENTS
[14] 0x00000000->0x00000200 at 0x00001574: .reg2/232 HAS_CONTENTS
[15] 0x00000000->0x00000340 at 0x00001788: .reg-xstate/232 HAS_CONTENTS
[16] 0x00000000->0x00000080 at Ox0VVladc: .note.linuxcore.siginfo/232 HAS_CONTENTS
[17] 0x00000000->0x000000d8 at 0x00001bed: .reg/233 HAS_CONTENTS
[18] 0x00000000->0x00000200 at 0x00001cd4: .reg2/233 HAS_CONTENTS
[19] 0x00000000->0x00000340 at Ox0000lee8: .reg-xstate/233 HAS_CONTENTS
--Type <RET> for more, q to quit, c to continue without paging--
[20] 0x00000000->0x00000080 at 0x000V223c: .note.linuxcore.siginfo/233 HAS_CONTENTS
[21] 0x00000000- >0x000000d8 at 0x00002340: .reg/234 HAS_CONTENTS
[22] 0x00000000- >0x00000200 at 0x00002434: .reg2/234 HAS_CONTENTS
[23] 0x00000000->0x00000340 at 0x00002648: .reg-xstate/234 HAS_CONTENTS
[24] 0x00000000->0x00000080 at Ox00VV299c: .note.linuxcore.siginfo/234 HAS_CONTENTS
[25] 0x00000000->0x000000d8 at Ox000022a0: .reg/235 HAS_CONTENTS
[26] 0x00000000->0x00000200 at 0x00002b94: .reg2/235 HAS_CONTENTS
[27] 0x00000000->0x00000340 at 0x00002da8: .reg-xstate/235 HAS_CONTENTS
[28] 0x00000000->0x00000080 at Ox00V30fc: .note.linuxcore.siginfo/235 HAS_CONTENTS
[29] 0X000000V00->0x00000140 at 0x00003190: .auxv HAS_CONTENTS
[30] 0Xx00000000->0x00000088 at 0x000032e4: .note.linuxcore.file/235 HAS_CONTENTS
[31] 0Xx00000000->0x00000088 at 0x000032e4: .note.linuxcore.file HAS_CONTENTS
[32] 0x00401000->0x00495000 at 0x0000336C: loadl ALLOC LOAD READONLY CODE HAS_CONTENTS
[33] 0x004bd000->0x004c3000 at 0x0009736Cc: load2 ALLOC LOAD HAS_CONTENTS
[34] 0x004c3000->0x004c9000 at 0x0009d36c: load3 ALLOC LOAD HAS_CONTENTS
[35] 0x01778000->0x0179b000 at Ox000a336c: load4 ALLOC LOAD HAS_CONTENTS
[36] 0x7108dc000000->0x7f08dc227000 at Ox00Oc636C: load5 ALLOC LOAD HAS_CONTENTS
[37] 0x7108dc227000->0x7f08c0000000 at ©x002ed36c: load6 ALLOC LOAD READONLY HAS_CONTENTS
[38] 0x7108e4000000- >0x7f08e8000000 at 0x040c636¢c: load7 ALLOC LOAD HAS_CONTENTS
[39] 0x7108eb528000->0x7f08eb529000 at ©x080c636Cc: load8 ALLOC LOAD READONLY HAS_CONTENTS

328

[40] 0x7108eb529000->0x7f08ebd29000 at 0x080c736¢c: load9 ALLOC LOAD HAS_CONTENTS

[41] 0x7108ebd29000->0x7f08ebd2ak00 at ©x088c736¢c: loadld® ALLOC LOAD READONLY HAS_CONTENTS
[42] 0x7108ebd22000->0x7f08ec52a000 at 0x088c836¢c: loadll ALLOC LOAD HAS_CONTENTS
[43] 0x7108ec52a000->0x7108ec52b00O at ©x090c836¢c: loadl2 ALLOC LOAD READONLY HAS_CONTENTS
[44] 0x7108ec52b000->0x7108ecd2b0OO at ©x090c936¢: loadl3 ALLOC LOAD HAS_CONTENTS
[45] 0x7f08ecd2b000->0x7f08ecd2c000 at ©x098c936¢c: loadld ALLOC LOAD READONLY HAS_CONTENTS
[46] 0x7108ecd2c000->0x7f08ed52c000 at 0x098ca36c: loadl5 ALLOC LOAD HAS_CONTENTS
[47] 0x7108ed52c000->0x7f08ed52d000 at Ox@adca36c: loadleé ALLOC LOAD READONLY HAS_CONTENTS
[48] 0x7108ed52d000->0x7f08edd2de00 at ©x@alcb36c: loadl7 ALLOC LOAD HAS_CONTENTS
[49] 0x7ffed4333f000->0x7ffe43360000 at Ox0a8cb36c: loadl8 ALLOC LOAD HAS_CONTENTS
[50] 0x7ffe43385000->0x7ffe43386000 at Ox0@a8ec36c: loadl9 ALLOC LOAD READONLY CODE HAS_CONTENTS
(gdb) q
3. Load App9.core.3.230 dump file and App9 executable from x64/App9 directory:

~/ALCDA2/x64/App9% gdb -c App9.core.3.230 -se App9

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying"” and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from App9...done.

[New LWP 230]

[New LWP 231]

[New LWP 232]

[New LWP 233]

[New LWP 234]

[New LWP 235]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1lib/x86_64-linux-gnu/libthread_db.so.1".
Core was generated by " ./App9'.

#0 0©0x0000000000441ad0 in nanosleep ()

[Current thread is 1 (Thread 0x1778880 (LWP 230))]

9. Set logging to a file in case of lengthy verbose output from some commands:

(gdb) set logging on App9.log
Copying output to App9.log.

329

4. Notice that another large section appeared after some time.

(gdb) maintenance info sections
Exec file:

*/home/coredump/ALCDA2/x64/App9/App9', file type elf64-x86-64.

[0] 0x00400200->0x00400220 at 0x00000200: .note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS

[1] 0x00400220->0x00400244 at 0x00000220: .note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
[2] 0x00400248->0x004004d0 at 0x00000248: .rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS

[3] 0x00401000->0x00401017 at 0x00001000: .init ALLOC LOAD READONLY CODE HAS_CONTENTS

[4] 0x00401018->0x004010f0 at 0x00001018: .plt ALLOC LOAD READONLY CODE HAS_CONTENTS

[5] 0x00401010->0x00493490 at 0x000010f0: .text ALLOC LOAD READONLY CODE HAS_CONTENTS

[6] 0x00493490->0x00494037 at 0x00093490: _ libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
[7] 0x00494038->0x00494041 at 0x00094038: .fini ALLOC LOAD READONLY CODE HAS_CONTENTS

[8] 0x00495000->0x004af73c at ©x00095000: .rodata ALLOC LOAD READONLY DATA HAS_CONTENTS

[9] 0x004af740->0x004bbbdo at 0x000af740: .eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS

[10] 0x004bbbdo->0x004bbc7c at 0x000bbbdo: .gcc_except_table ALLOC LOAD READONLY DATA HAS_CONTENTS
[11] 0x004bdobo->0x004bdod8 at ©x000bcobO: .tdata ALLOC LOAD DATA HAS_CONTENTS
[12] 0x004bdod8->0x004bd120 at 0x000bcOd8: .tbss ALLOC
[13] 0x004bdod8->0x004bdoed at Ox000bcOd8: .preinit_array ALLOC LOAD DATA HAS_CONTENTS
[14] 0x004bdoe0->0x004bdofO at ©x000ObcOed: .init_array ALLOC LOAD DATA HAS_CONTENTS
[15] 0x004bdofo->0x004bd100 at ©x000bcOfO: .fini_array ALLOC LOAD DATA HAS_CONTENTS
[16] 0x004bd100->0x004bfef4 at 0x000bcl00: .data.rel.ro ALLOC LOAD DATA HAS_CONTENTS
[17] 0x004bfef8->0x004c0000 at Ox000beef8: .got ALLOC LOAD DATA HAS_CONTENTS
[18] 0x004c0000->0x004c00f0 at 0x000bfE0O: .got.plt ALLOC LOAD DATA HAS_CONTENTS
[19] 0x004c0100->0x004c1c30 at Ox000bf100: .data ALLOC LOAD DATA HAS_CONTENTS
[20] 0x004c1c30->0x004c1c90 at 0x000cOc30: _ libc_subfreeres ALLOC LOAD DATA HAS_CONTENTS
[21] 0x004clcad->0x004c2408 at 0x000cOcad: _ libc_ IO vtables ALLOC LOAD DATA HAS_CONTENTS
[22] 0x004c2408->0x004c2410 at 0x000c1408: _ libc_atexit ALLOC LOAD DATA HAS_CONTENTS
[23] 0x004c2420->0x004c8528 at 0x000c1410: .bss ALLOC
[24] 0x004c8528->0x004c8558 at 0x000c1410: _ libc_freeres_ptrs ALLOC
[25] 0x00000000->0x00000038 at 0x000c1410: .comment READONLY HAS_CONTENTS
[26] 0x00000000->0x00000420 at 0x000c1450: .debug_aranges READONLY HAS_CONTENTS
[27] 0x00000000->0x000372ad at 0x000c1870: .debug_info READONLY HAS_CONTENTS
[28] 0Xx00000000->0x000057e8 at 0x000f8bld: .debug _abbrev READONLY HAS_CONTENTS
[29] 0Xx00000000->0x0000aa2b at 0x000fe305: .debug line READONLY HAS_CONTENTS
[30] 0x00000000- >0x00004d08 at 0x00108d30: .debug_str READONLY HAS_CONTENTS
[31] 0Xx00000000->0x0000d4b8 at 0x0010da38: .debug loc READONLY HAS_CONTENTS
[32] 0Xx00000000->0x000024cO at Ox001laefd: .debug ranges READONLY HAS_CONTENTS
Core file:

~/home/coredump/ALCDA2/x64/App9/App9.core.3.230"', file type elf64-x86-64.

[0] 0X00000000->0x00002ecc at Ox000RV4a0: note® READONLY HAS_CONTENTS

[1] 0x00000000- >0x000000d8 at ©0x000VB5cO: .reg/230 HAS_CONTENTS

[2] 0x00000000- >0x000000d8 at 0x000005cO: .reg HAS_CONTENTS

[3] 0x00000000- >0x00000200 at 0x000VO6b4A: .reg2/230 HAS_CONTENTS

[4] 0X00000000->0x00000200 at 0x000V6bA: .reg2 HAS_CONTENTS

[5] 0X00000000->0x00000340 at 0x000O8c8: .reg-xstate/230 HAS_CONTENTS

[6] 0Xx000000V0->0x00000340 at 0x00VVOBC8: .reg-xstate HAS_CONTENTS

[7] 0X00000000->0x00000080 at 0x0Oclc: .note.linuxcore.siginfo/230 HAS_CONTENTS
[8] 0X00000000->0x00000080 at 0x0VOclc: .note.linuxcore.siginfo HAS_CONTENTS

[9] 0X00000000->0x000000d8 at 0x00000d20: .reg/231 HAS_CONTENTS

[10] 0x00000000->0x00000200 at 0x00000eld: .reg2/231 HAS_CONTENTS

[11] 0x00000000->0x00000340 at 0x00001028: .reg-xstate/231 HAS_CONTENTS

[12] 0x00000000->0x00000080 at Ox0VV137c: .note.linuxcore.siginfo/231 HAS_CONTENTS
[13] 0x00000000->0x000000d8 at 0x00001480: .reg/232 HAS_CONTENTS

[14] 0x00000000->0x00000200 at 0x00001574: .reg2/232 HAS_CONTENTS

[15] 0x00000000->0x00000340 at 0Ox00001788: .reg-xstate/232 HAS_CONTENTS

[16] 0x00000000->0x00000080 at Ox0PVladc: .note.linuxcore.siginfo/232 HAS_CONTENTS
[17] 0x00000000->0x000000d8 at 0x00001bed: .reg/233 HAS_CONTENTS

[18] 0x00000000->0x00000200 at 0x00001cd4: .reg2/233 HAS_CONTENTS

[19] 0x00000000->0x00000340 at Ox00001lee8: .reg-xstate/233 HAS_CONTENTS

--Type <RET> for more, q to quit, c

to continue without paging--

[20] 0x00000000->0x00000080 at 0Ox0000223c: .note.linuxcore.siginfo/233 HAS_CONTENTS
[21] 0x00000000->0x000000d8 at 0x00002340: .reg/234 HAS_CONTENTS

[22] 0x00000000->0x00000200 at 0x00002434: .reg2/234 HAS_CONTENTS

[23] 0x00000000->0x00000340 at 0x00002648: .reg-xstate/234 HAS_CONTENTS

[24] 0x00000000->0x00000080 at ©x00VV299c: .note.linuxcore.siginfo/234 HAS_CONTENTS

330

[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[5e]

5.

0x00000000->0x000000d8
0x00000000->0x00000200
0x00000000->0x00000340
0x00000000 - >0x00000080
0x00000000->0x00000140
0x00000000->0x00000088
0x00000000 - >0x00000088
0x00401000->0x00495000
0x004bd000->0x004c3000
0x004c3000->0x004c9000
0x01778000->0x0179b000

at
at
at
at
at
at
at
at
at
at
at

0x000022a0:
0x00002b94 :
0x00002da8:
0x000030fcC:
0x00003190:
0x000032e4:
0x000032e4:
0x0000336¢C:
0x0009736¢C:
0x0009d36¢C:
0x000a336¢:

.reg/235 HAS_CONTENTS

.reg2/235 HAS_CONTENTS

.reg-xstate/235 HAS_CONTENTS
.note.linuxcore.siginfo/235 HAS_CONTENTS
.auxv HAS_CONTENTS
.note.linuxcore.file/235 HAS_CONTENTS
.note.linuxcore.file HAS_CONTENTS

loadl ALLOC LOAD READONLY CODE HAS_CONTENTS
load2 ALLOC LOAD HAS_CONTENTS

load3 ALLOC LOAD HAS_CONTENTS

load4 ALLOC LOAD HAS_CONTENTS

0x7108dc000000- >0x7108e0300000
0x7108e0300000->0x7108e4000000
0x7108e4000000 - >0x7108e8000000
0x7108eb528000->0x71f08eb529000
0x7108eb529000->0x71f08ebd29000
0x7108ebd29000->0x7f08ebd2a000
0x7108ebd2a000->0x7f08ec52a000
0x7108ec52a000->0x7f08ec52bo0o
0x7108ec52bo00->0x7f08ecd2booo
0x7f08ecd2bo00->0x7f08ecd2c000
0x7f08ecd2c000->0x7f08ed52c000
0x7108ed52c000->0x7f08ed52d000
0x7108ed52d000->0x7f08edd2d000
0x7ffe4333f000->0x7ffe43360000
Ox7ffe43385000->0x7ffe43386000

the section address range):

(gdb) x/1000a ©x7f08dCcO00000

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

0x000c636¢C:
0x043c636¢C:
0x080c636¢C:
0x0coc636¢C:
0x0c0oc736cC:
©x0c8c736¢C:
0x0c8c836¢:
0x0dec836¢:
0x0dec936¢:
0x0d8c936¢:
0x0d8ca36c:
Ox0eBca36c:
Ox0e0dcb36¢:
Ox0e8cb36¢:
Ox0e8ec36¢C:

load5 ALLOC LOAD HAS_CONTENTS

load6 ALLOC LOAD READONLY HAS_CONTENTS
load7 ALLOC LOAD HAS_CONTENTS

load8 ALLOC LOAD READONLY HAS_CONTENTS
load9 ALLOC LOAD HAS_CONTENTS

loadle ALLOC LOAD READONLY HAS_CONTENTS
loadll ALLOC LOAD HAS_CONTENTS

load12 ALLOC LOAD READONLY HAS_CONTENTS
load13 ALLOC LOAD HAS_CONTENTS

load14 ALLOC LOAD READONLY HAS_CONTENTS
load1l5 ALLOC LOAD HAS_CONTENTS

loadl6 ALLOC LOAD READONLY HAS_CONTENTS
load17 ALLOC LOAD HAS_CONTENTS

load18 ALLOC LOAD HAS_CONTENTS

load19 ALLOC LOAD READONLY CODE HAS_CONTENTS

Examine segment contents for any execution residue and hints (we choose some smaller address range from

Ox7108dc000000: Ox7108e4000020 ©OXx71f08e4000000
0x7f08dc000010: 0x4000000 0x4000000
0x7f08dc000020: 0x0 ox115
Ox7f08dc000030: Ox657461636f6Cc6CH1 0x797261f6d656d2064
0x7f08dc000040: Ox0 ox0

0x7108dc000O50: Ox40l1bad <procD> ox0
0x7f08dc000060: Ox0 oxe

0x7f08dc000070: 0x0 oxe

0x7108dc000080: 0Ox0 o0x0

Ox7108dc000090: 0x0 0x0

0x7f08dc0000a0: 0x0 oxe

0x7f08dco00obo: 0xe oxe

0x7f08dc0000Cco: 0x0 oxe

0x7f08dc0000do: ox0 0x0

0x7f08dc0000eO: 0Ox0 0x0

0x7f08dco00ofo: oxe oxe

0x7f08dc000100: 0x0 oxe

0x7f08dc000110: 0x0 oxe

0x7108dc000120: 0Ox0 0x0

0x7f08dc000130: 0Ox0 0x115
0x7f08dc0P0140: ©x657461636Ff6C6CH1 0x79726f6d656d2064
0x7f08dco00150: Ox0O ox0

0x7108dc000160: Ox401lbad <procD> ox0
0x7f08dc000170: 0Ox0 o0x0

0x7f08dc000180: 0Ox0 o0x0

0x7f08dc000190: 0x0 0x0

0x7f08dc0001a0: 0x0 0x0

0x7f08dco001bo: 0Ox0 o0x0

0x7f08dc0001cO: 0Ox0 0x0

0x7f08dc0001do: 0x0 0x0

0x7f08dc0001e0: 0x0 0x0

331

0x7f08dco001f0:
0x7+08dc000200:
0x7f08dc000210:
0x7f08dc000220:
0x7f08dc000230:
0x7+08dc000240:
0x7f08dc000250:
0x7108dc000260:
0x7108dc000270:
0x7+08dc000280:
0x7+08dc000290:
0x7f08dc0002a0:
0x7f08dc0002bo:
0x7f08dc0002cO:
0x7+08dc0002do:
0x7f08dc0002e0:
0x7+08dc000210:
0x7f08dc000300:
0x7f08dc000310:
0x7+08dc000320:
0x7+08dc000330:
0x7+08dc000340:
0x7f08dc000350:
0x7108dc000360:
0x7f08dco00370:
0x7f08dc000380:

0x0 o0x0

0x0 o0x0

o0x0 0x0

0x0 0x0

0x0 0x0

0x0 0x115
0x657461636f6Cc6C61 0x79726f6d656d2064
0x0 0x0

0x401bad <procD> ox0
ox0 o0x0

0x0 ox0

0x0 o0x0

ox0 0x0

0x0 0x0

ox0 o0x0

0x0 o0x0

0x0 ox0

ox0 0x0

ox0 0x0

0x0 o0x0

0x0 o0x0

0x0 0x0

0x0 0x115
0x657461636F6c6C61 0x79726f6d656d2064
o0x0 ox0

ox401bad <procD> ox0

--Type <RET> for more, q to quit, c to continue without paging--

0x7+08dc000390:
0x7f08dc0003a0:
0x7f08dc0003b0:
0x7f08dc0003cO:
0x7f08dc0003do:
0x7f08dc0003e0:
0x7f08dc0003f0:
0x7108dc000400:
0x7f08dco00410:
0x7f08dc000420:
0x7f08dc000430:
0x7108dc000440:
0x7108dc000450:
0x7f08dc000460:
0x7108dco00470:
0x7f08dc000480:
0x7f08dc000490:
0x7f08dc0004a0:
0x7+08dco004bo:
0x7f08dc0004co:
0x7f08dc0004do:
0x7f08dc0004e0:
0x7f08dco004f0:
0x7f08dc000500:
0x7f08dc000510:
0x7f08dc000520:
0x7f08dc000530:
0x7f08dc000540:
0x7f08dc000O550:
0x7f08dc000560:
0x7f08dc000570:
0x7f08dc000580:
0x7f08dc000590:

0x0 0x0
0x0 o0x0
0x0 0x0
0x0 o0x0
0x0 0x0
0x0 0x0
0x0 ox0
ox0 0x0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 ox0
0x0 ox0
0x0 0x115
0x657461636f6c6Cc61 0x79726f6d656d2064
o0x0 ox0
ox40l1bad <procD> ox0
ox0 ox0
0x0 0x0
0x0 0x0
o0x0 ox0
ox0 ox0
0x0 ox0
0x0 0x0
0x0 0x0
0x0 o0x0
0x0 o0x0
0x0 0x0
0x0 0x0
0x0 0x0
0x0 0x115
0x657461636f6C6C61 0x79726f6d656d2064
0x0 0x0

332

0x7f08dc0005a0: 0x401bad <procD> o0x0
0x7f08dcO0O5bO: ©Ox0 o0x0

0x7f08dc0005cO: 0Ox0 0x0

0x7f08dc0005do: ©x0 0x0

0x7f08dc0005e0: 0Ox0 0x0

0x7f08dc0005f0: 0x0 0x0

0x7f08dc000600: 0Ox0 0x0

0x7f08dc000610: ©x0 0x0

0x7f08dc000620: ©x0 0x0

0x7f08dc000630: 0Ox0 o0x0

0x7f08dc000640: 0Ox0 ox0

0x7f08dc000650: 0Ox0 o0x0

0x7f08dc000660: 0Ox0 0x0

0x7f08dc000670: ©x0 0x0

0x7f08dc000680: 0Ox0 0x115
0x7f08dcP00690: 0x657461636f6CHCH1 0x79726f6d656d2064
0x7108dc0006a0: 0Ox0O ox0

0x7f08dco006bo: 0x401bad <procD> ox0
0x7f08dc0006CcO: 0Ox0 0x0

0x7f08dc0006dO: ©x0 o0x0

0x7f08dco006e0: 0Ox0O oxe

0x7f08dco006f0: 0x0 ox0

0x7f08dco00700: 0x0 (]

0x7f08dco00710: 0x0 (]

--Type <RET> for more, q to quit, c to continue without paging--
0x7f08dc000720: ©Ox0 o0x0

0x7f08dco00730: 0x0 (]

0x7f08dco00740: 0x0 (]

0x7f08dc000750: ©Ox0 o0x0

0x7f08dc000760: 0OxO ox0

0x7f08dc000770: ©Ox0 o0x0

0x7f08dco00780: 0x0 (]

0x7f08dco00790: 0x0 0x115
0x7f08dcPPO7a0: 0x657461636f6C6HC6H1 0x79726f6d656d2064
0x7f08dco007b0O: 0Ox0 ox0

0x7f08dco007cO: Ox40l1lbad <procD> ox0
0x7f08dco007do: 0x0 (]

0x7f08dco007e0: 0x0 (]

0x7f08dco007f0: 0Ox0 ox0

0x7f08dc000800: 0x0 ox0

0x7f08dc000810: 0x0 (]

0x7f08dc000820: 0x0 (]

0x7f08dc000830: 0Ox0 ox0

0x7f08dc000840: 0Ox0 ox0

0x7f08dc000850: 0Ox0 ox0

0x7f08dc000860: 0x0 ox0

0x7f08dco00870: 0x0 (]

0x7f08dc000880: ©x0 ox0

0x7f08dc000890: ©x0 ox0

0x7f08dc0008a0: 0x0 ox115
0x7f08dco008b0: 0x657461636f6C6CH61 0x79726f6d656d2064
0x7f08dco008co: 0x0 ox0

0x7108dc0008d0: Ox40l1lbad <procD> ox0
0x7f08dc0008e0: 0Ox0 o0x0

0x7f08dco008f0: 0x0 0x0

0x7108dc000900: 0x0 0x0

0x7f08dc000910: 0x0 0x0

0x7f08dc000920: ©x0 0x0

0x7f08dc000930: 0Ox0 0x0

0x7f08dc000940: 0x0 0x0

333

0x7f08dc000950: 0x0 0x0

0x7f08dc000960: 0Ox0 0x0

0x7f08dc000970: 0Ox0 o0x0

0x7f08dc000980: Ox0 ox0

0x7f08dc000990: 0Ox0 ox0

0x7f08dc0009a0: ©Ox0 0x0

0x7f08dco009b0: 0Ox0 0x115
0x7108dco009cO: 0x657461636f6C6CH61 0x79726f6d656d2064
0x7108dc0009do: 0x0 ox0

0x7108dco009%e€0: Ox401bad <procD> ox0
0x7f08dc0009fo: 0x0 0x0

0x7f08dc000av0: 0Ox0 0x0

0x7f08dc000alo: 0Ox0 ox0

0x7f08dc000a20: 0Ox0 ox0

0x7f08dc000a30: 0Ox0 0x0

0x7f08dc000ad40: 0x0 0x0

0x7f08dc000as0: 0Ox0 0x0

Ox7f08dc000a60: Ox0 o0x0

0x7f08dc000a70: Ox0 ox0

0x7f08dc000a80: 0x0 0x0

0x7f08dc000a%0: ©x0 0x0

Ox7f08dc000aa0: 0x0 oxe

--Type <RET> for more, q to quit, c to continue without paging--
0x7f08dco00abo: 0xe oxe

0x7f08dc000acO: 0x0 0x115
Ox7f08dcoovadd: Ox657461636f6c6CH61 0x797261f6d656d2064
Ox7f08dco0PacO: 0Ox0O ox0

0x7f08dcooPafO: Ox40lbad <procD> ox0
0x7f08dcoooboo: 0x0 0x0

0x7f08dcoooblo: ox0 0x0

0x7f08dcoo0ob20: 0x0 0x0

0x7f08dcooob30: oxe oxe

0x7f08dco0ob40: 0x0 oxe

0x7f08dcooob50: 0x0 0x0

0x7f08dcooob6o: 0x0 0x0

0x7f08dcooob70: 0x0 oxe

0x7f08dco00b80: 0x0 oxe

0x7f08dco00bo0: 0xe oxe

0x7f08dco0Obad: ©x0 0x0

0x7f08dco0obbo: ©x0 0x0

0x7f08dcooobco: ox0 oxe

0x7f08dcooobdo: 0x0 ox115
Ox7f08dcooPbed: Ox657461636f6c6CH1 0x797261f6d656d2064
0x7f08dco0obfo: 0x0 ox0

0x7108dco00CcO0: Ox40l1lbad <procD> ox0
0x7f08dco00clo: oxe oxe

0x7f08dco00Cc20: ox0 oxe

0x7f08dco00c30: 0x0 0x0

0x7f08dco00c40: 0x0 ox0

0x7f08dco00Cc50: 0x0 oxe

0x7f08dco00c60: 0Ox0 0x0

0x7f08dco00c70: 0x0 0x0

0x7f08dc000c80: 0Ox0 o0x0

0x7f08dc000c90: 0x0 o0x0

0x7f08dco00cad: 0x0 oxe

0x7f08dcooocbo: oxe oxe

0x7f08dco00cco: oxe oxe

0x7f08dcooocdo: 0xo 0x0

0x7f08dco00ced: 0Ox0O 0x115
0x7f08dcoPOcfO: Ox657461636f6Cc6CH1 0x79726f6d656d2064

334

0x7f08dco00do0: 0x0 ox0

0x7f08dco00d10: 0x401bad <procD> o0x0
0x7f08dc000d20: ©x0 0x0

0x7f08dco00d30: ©x0 0x0

0x7f08dco00d40: 0x0 o0x0

0x7f08dc000d50: 0x0 ox0

0x7f08dc000d60: ©0x0 0x0

0x7f08dco00d70: ©x0 ox0

0x7f08dc000d80: ©x0 ox0

0x7f08dc000d90: 0x0 o0x0

0x7f08dc000dad: 0x0 0x0

0x7f08dco0odbo: ©x0 0x0

0x7f08dco00dco: 0xo ox0

0x7f08dcoooddo: ©xo o0x0

0x7f08dc000ded: 0Ox0 0x0

0x7f08dco0odfo: 0xo 0x115
0x7f08dc000e0O: 0x657461636f6C6HC6H1 0x79726f6d656d2064
0x7108dco00el0: 0Ox0O ox0

0x7f08dc000e20: 0x401bad <procD> ox0
0x7f08dc000e30: 0Ox0 0x0

--Type <RET> for more, q to quit, c to continue without paging--
0x7f08dco00e40: 0x0 oxe

0x7f08dco00e50: 0Ox0 oxe

Ox7f08dc000e60: 0Ox0 oxe

0x7f08dc000e70: 0OxO 0x0

0x7f08dc000e80: 0Ox0 0x0

0x7f08dc000e90: 0x0 oxe

0x7f08dco00ead: 0x0 oxe

0x7f08dc000ebo: 0x0 0x0

0x7f08dc000ecOd: 0OxO 0x0

0x7f08dc000edd: 0Ox0 0x0

Ox7f08dc000eecO: 0Ox0 oxe

0x7f08dcoovef0: 0x0 oxe

0x7f08dco00f00: 0x0 0x115
0x7f08dcPPOf10: 0x657461636f6CHCH1 0x79726f6d656d2064
Ox7f08dco00f20: 0Ox0 ox0

0x7f08dco00f30: Ox40lbad <procD> ox0
Ox7f08dco00f40: oxe oxe

0x7f08dco00f50: 0x0 ox0

0x7f08dco00f60: 0x0 ox0

0x7f08dco00f70: oxe oxe

0x7f08dco00f80: 0x0 oxe

0x7f08dco00f90: 0x0 ox0

0x7f08dco0ofa0d: 0x0 0x0

0x7f08dco0ofbo: ©x0 ox0

0x7f08dcooofco: oxe oxe

ox7f08dcooofdo: oxe oxe

0x7f08dco00ofed: 0Ox0 0x0

0x7f08dcoooffo: 0xo 0x0

0x7f08dc001000: 0x0 oxe

0x7f08dc001010: ©x0 0x115
0x7f08dc001020: ©x657461636f6C6CH1 0x79726f6d656d2064
0x7f08dc001030: 0Ox0 o0x0

0x7108dc001040: Ox40l1bad <procD> ox0
0x7f08dc001050: ©x0 0x0

0x7f08dc001060: 0©x0 0x0

0x7f08dc001070: ©x0 0x0

0x7f08dc001080: 0©x0 0x0

0x7f08dc001090: 0©x0 0x0

0x7f08dc0010a0: 0x0 ox0

335

0x7f08dc0010b0: ©x0 o0x0

0x7f08dc0010cO: Ox0 0x0

0x7f08dc0010do: ©x0 0x0

0x7f08dc0010e0: 0Ox0 0x0

0x7f08dco010f0: ©x0 0x0

0x7f08dc001100: ©x0 ox0

0x7f08dc001110: ©x0 0x0

0x7f08dc001120: ©x0 0x115
0x7f08dc001130: Ox657461636f6C6CH1 0x79726f6d656d2064
0x7f08dc001140: 0Ox0 ox0

0x7108dc001150: Ox40l1lbad <procD> ox0
0x7f08dc001160: ©Ox0 o0x0

0x7f08dc001170: ©x0 0x0

0x7f08dc001180: ©x0 0x0

0x7f08dc001190: ©x0 o0x0

0x7f08dcP011a0: ©x0 ox0

0x7f08dc0011boO: ©x0 ox0

0x7f08dc0011cO: ©x0 0x0

--Type <RET> for more, q to quit, c to continue without paging--
0x7f08dc0011do: ©x0 o0x0

0x7f08dc0011e0: 0Ox0 0x0

0x7f08dco011f0: 0x0 oxe

0x7f08dc001200: 0x0 oxe

0x7f08dc001210: 0x0 oxe

0x7f08dc001220: ©x0 0x0

0x7f08dc001230: ©x0 0x115
0x7f08dc001240: ©x657461636f6C6CH1 0x797261f6d656d2064
0x7f08dc001250: 0Ox0O ox0

0x7108dc001260: Ox40l1bad <procD> ox0
0x7f08dc001270: ©x0 0x0

0x7f08dc001280: ©x0 ox0

0x7f08dc001290: 0x0 oxe

0x7f08dc0012a0: 0x0 oxe

0x7f08dc0012bo: ©x0 o0x0

0x7f08dc0012cO: 0Ox0 0x0

0x7f08dc0012do: 0xe oxe

0x7f08dc0012e0: 0x0 oxe

0x7f08dc0012f0: 0x0 oxe

0x7f08dc001300: ©x0 ox0

0x7f08dc001310: ©x0 ox0

0x7f08dc001320: 0x0 oxe

0x7f08dc001330: 0x0 oxe

0x7f08dc001340: 0Ox0 0x115
0x7f08dcP01350: Ox657461636f6C6CH1 0x79726f6d656d2064
0x7f08dc001360: 0Ox0 ox0

0x7f08dc001370: Ox40l1lbad <procD> ox0
0x7f08dc001380: 0x0 oxe

0x7f08dc001390: ©x0 ox0

0x7f08dc0013a0: ©x0 0x0

0x7f08dco013bo: 0x0 oxe

0x7f08dc0013cO: 0x0 0x0

0x7f08dco013do: ©x0 0x0

0x7f08dc0013e0: 0Ox0 o0x0

0x7f08dc0013f0: 0Ox0 o0x0

0x7f08dc001400: 0©x0 0x0

0x7f08dc001410: 0x0 0x0

0x7f08dc001420: 0©x0 0x0

0x7f08dc001430: 0x0 0x0

0x7f08dc001440: 0©x0 0x0

0x7f08dc001450: ©x0 0x115

336

Ox7f08dc001460: 0x657461636f6C6CH61 0x79726f6d656d2064
0x7f08dc001470: 0Ox0 ox0

0x7f08dc001480: 0x401lbad <procD> ox0
0x7f08dc001490: 0©x0 0x0

0x7f08dc0014a0: ©x0 0x0

0x7f08dc0014bo: ©x0 ox0

0x7f08dc0014cO: 0Ox0 0x0

0x7f08dc0014do: ©x0 0x0

0x7f08dc0014e0: 0©x0 0x0

0x7f08dc0014f0: 0Ox0 o0x0

0x7f08dc001500: ©x0 ox0

0x7f08dc001510: ©x0 o0x0

0x7f08dc001520: ©x0 0x0

0x7f08dc001530: ©x0 0x0

0x7f08dc001540: ©Ox0 o0x0

0x7f08dc001550: ©x0 o0x0

--Type <RET> for more, q to quit, c to continue without paging--
0x7f08dc001560: ©x0 0x115
0x7f08dcP01570: Ox657461636f6Cc6CH1 0x79726f6d656d2064
0x7f08dc001580: 0Ox0 ox0

0x7108dc001590: Ox40l1bad <procD> ox0
0x7f08dc0015a0: 0x0 oxe

0x7f08dco015bo: 0x0 oxe

0x7f08dc0015c0: 0x0 oxe

0x7f08dc0015d0: ©x0 0x0

0x7f08dc0015e€0: 0Ox0 0x0

0x7f08dco015f0: 0x0 ox0

0x7f08dc001600: 0x0 oxe

0x7f08dc001610: ©x0 o0x0

0x7f08dc001620: ©Ox0 0x0

0x7f08dc001630: 0Ox0 o0x0

0x7f08dc001640: 0x0 oxe

0x7f08dc001650: 0x0 oxe

0x7f08dc001660: ©Ox0 o0x0

0x7f08dc001670: ©x0 0x115
0x7f08dc001680: ©x657461636f6C6CH1 0x79726f6d656d2064
0x7f08dc001690: 0Ox0O ox0

0x7f08dc0016a0: Ox40l1lbad <procD> ox0
0x7f08dco016b0O: ©x0 ox0

0x7f08dc0016cO: ©Ox0 0x0

0x7f08dc0016do: 0xe oxe

0x7f08dc0016e€0: 0x0 oxe

0x7f08dco016f0: ©x0 ox0

0x7f08dc001700: ©x0 ox0

0x7f08dc001710: ©x0 ox0

0x7f08dc001720: 0x0 oxe

0x7f08dc001730: 0x0 oxe

0x7f08dc001740: 0Ox0 ox0

0x7f08dc001750: ©x0 ox0

0x7f08dc001760: 0x0 oxe

0x7f08dc001770: 0©x0 0x0

0x7f08dc001780: 0Ox0 0x115
0x7f08dcP01790: Ox657461636f6C6CH1 0x79726f6d656d2064
0x7f08dcP017a0: 0Ox0 ox0

0x7f08dco017bo: 0x401bad <procD> ox0
0x7f08dc0017cO: 0x0 0x0

0x7f08dco017do: ©x0 0x0

0x7f08dc0017e€0: 0Ox0 0x0

0x7f08dco017f0: ©x0 0x0

0x7f08dc001800: 0©x0 0x0

337

0x7f08dc001810: 0Ox0 o0x0

0x7f08dc001820: ©Ox0 o0x0

0x7f08dc001830: ©x0 0x0

0x7f08dc001840: ©x0 0x0

0x7f08dc001850: ©x0 0x0

0x7f08dc001860: ©x0 ox0

0x7f08dc001870: 0Ox0 0x0

0x7f08dc001880: ©x0 0x0

0x7f08dc001890: ©x0 0x115
0x7f08dc0018a0: 0x657461636f6Cc6C61 0x79726f6d656d2064
0x7f08dco018b0: 0x0 ox0

0x7108dc0018cO: Ox401lbad <procD> ox0
0x7f08dc0018do: ©x0 0x0

0x7f08dc0018e0: 0©x0 0x0

--Type <RET> for more, q to quit, c to continue without paging--
0x7f08dc0018f0: ©x0 o0x0

0x7f08dc001900: ©x0 ox0

0x7f08dc001910: ©x0 0x0

0x7f08dc001920: ©x0 0x0

0x7f08dc001930: ©x0 o0x0

0x7f08dc001940: 0©x0 o0x0

0x7f08dc001950: 0x0 oxe

0x7f08dc001960: 0Ox0 ox0

0x7f08dc001970: 0x0 oxe

0x7f08dc001980: ©x0 0x0

0x7f08dc001990: ©x0 o0x0

0x7f08dc0019a0: 0x0 ox115
0x7f08dc0019b0: 0©x6574616361f6C6CH1 0x797261f6d656d2064
0x7f08dc0019cO: 0Ox0 ox0

0x7108dc0019d0: Ox40l1bad <procD> ox0
0x7f08dc0019e0: 0Ox0 0x0

0x7f08dco019f0: 0x0 oxe

0x7f08dc001a00: 0x0 oxe

0x7f08dc001alo: ©x0 0x0

0x7f08dc001a20: ©x0 0x0

0x7f08dc001a30: 0x0 oxe

0x7f08dc001a40: 0x0 oxe

0x7f08dc001a50: 0x0 oxe

0x7f08dc001a60: 0Ox0 0x0

0x7f08dc001a70: ©x0 0x0

0x7f08dc001a80: 0x0 oxe

0x7f08dc001a90: 0x0 oxe

0x7f08dc001aad: ©x0 0x0

0x7f08dc001abo: ©x0 0x115
0x7f08dcP0lacO: 0x657461636f6Cc6C6H1 0x79726f6d656d2064
0x7f08dco0lado: 0x0 ox0

0x7f08dco0laed: Ox40lbad <procD> ox0
0x7f08dco0lafo: ©x0 0x0

0x7f08dc001boO: ©x0 ox0

0x7f08dco01blo: oxe oxe

0x7f08dco01b20: ©x0 0x0

0x7f08dco01b30: ©x0 0x0

0x7f08dco01b40: ©x0 o0x0

0x7f08dc001b50: ©x0 0x0

0x7f08dco01b60: ©x0 0x0

0x7f08dco01b70: ©x0 0x0

0x7f08dco01b80: ©x0 0x0

0x7f08dcP01b90: ©x0 0x0

0x7f08dco01bad: ©x0 0x0

0x7f08dco01bbo: oxe oxe

338

0x7f08dcOO1bcO: Ox0 0x115
0x7f08dco01bdo: 0©x657461636f6c6C61 0x79726f6d656d2064
0x7f08dco01bed: 0Ox0 ox0

0x7f08dco01bfo: 0x401bad <procD> ox0
Ox7f08dc001co0: Ox0 ox0

0x7f08dc001clo: Ox0 0x0

0x7f08dc001c20: 0Ox0 0x0

0x7f08dc001c30: ©x0 ox0

0x7f08dc001c40: 0Ox0 ox0

0x7f08dco01c50: 0x0 0x0

0x7f08dc001c60: 0Ox0 0x0

0x7f08dc001c70: ©Ox0 0x0

--Type <RET> for more, q to quit, c to continue without paging--
0x7f08dc001c80: Ox0 ox0

0x7f08dc001c90: 0x0 0x0

0x7f08dc001cad: ©Ox0 0x0

0x7f08dco01cbo: ©x0 0x0

Ox7f08dco01cco: Ox0 o0x0

0x7f08dco01cdo: ox0 0x115
Ox7f08dc00lced: Ox657461636f6c6CH1 0x797261f6d656d2064
0x7f08dco01cfo: 0Ox0 ox0

0x7108dc001do0: Ox40lbad <procD> ox0
0x7f08dco01d10: oxe oxe

0x7f08dc001d20: 0x0 ox0

0x7f08dc001d30: 0x0 0x0

0x7f08dc001d40: 0x0 0x0

0x7f08dc001d50: 0xe oxe

0x7f08dc001d60: 0x0 oxe

0x7f08dc001d70: 0x0 0x0

0x7f08dc001d80: 0x0 0x0

0x7f08dc001d90: 0x0 0x0

0x7f08dco01da0d: 0xe oxe

0x7f08dco0l1dbo: oxe oxe

0x7f08dco01dcoO: 0x0 0x0

0x7f08dco01ddo: ©xe 0x0

0x7f08dco01ded: 0x0 ox115
0x7f08dco01dfO: 0x657461636f6C6CH1 0x79726f6d656d2064
0x7f08dc001e00: 0Ox0O ox0

0x7f08dco0leld: Ox40lbad <procD> ox0
0x7f08dc001e20: 0OxO ox0

0x7f08dco0le30: 0x0 oxe

0x7f08dco0led40: 0x0 oxe

0x7f08dc001e50: 0Ox0 0x0

0x7f08dc001e60: 0OxO 0x0

0x7f08dc001e70: 0Ox0 0x0

0x7f08dc001e80: 0x0 oxe

0x7f08dc001e90: 0x0 oxe

0x7f08dcP0lead: 0Ox0 0x0

0x7f08dco0lebod: ©x0 0x0

0x7f08dco0leco: 0x0 oxe

0x7f08dco0ledo: 0x0 oxe

Ox7f08dco0leecO: 0x0 oxe

0x7f08dco0lefo: 0Ox0 0x115
Ox7f08dc001f00: Ox657461636f6Cc6CH1 0x797261f6d656d2064
0x7f08dco01f10: 0Ox0 ox0

0x7f08dc001f20: 0x401bad <procD> ox0
0x7f08dco01f30: 0x0 0x0

(gdb) x/s @x7f08dc001f00

0x7f08dco01fo0: "allocated memory"

339

6. Compare pmap logs App9.pmap.1.230, App9.pmap.2.230, and App9.pmap.3.230 (the first one was saved
before the leak started, and the other two correspond to core dumps we looked at):

230: ./App9

0000000000400000 4K r---- App9
0000000000401000 592K r-x-- App9
0000000000495000 156K r---- App9
00000000004bd000O 24K rw--- App9
00000000004c3000 24K rw--- [anon]
0000000001778000 140K rw--- [anon]
00007108e4000000 1332K rw--- [anon]
00007108e414d000 64204K ----- [anon]
00007108eb528000 4K ----- [anon]
00007108eb529000 8192K rw--- [anon]
00007f08ebd29000 4K ----- [anon]
00007f08ebd22000 8192K rw--- [anon]
00007108ec522000 4K ----- [anon]
00007f08ec52b000 8192K rw--- [anon]
00007f08ecd2booo 4K ----- [anon]
00007f08ecd2c000 8192K rw--- [anon]
00007f08ed52c000 4K ----- [anon]
00007f08ed52d00@ 8192K rw--- [anon]
000071 fed43331000 132K rw--- [stack]
000071 fed43381000 16K r---- [anon]
00007ffe43385000 4K r-x-- [anon]
total 107608K

230: ./App9

0000000000400000 4K r---- App9
0000000000401000 592K r-x-- App9
0000000000495000 156K r---- App9
00000000004bd000 24K rw--- App9
00000000004c3000 24K rw--- [anon]
0000000001778000 140K rw--- [anon]
00007f08dc00RROO 2204K rw--- [anon]
00007108dc227000 63332K ----- [anon]
00007108e4000000 65536K rw--- [anon]
00007108eb528000 4K ----- [anon]
00007f08eb529000 8192K rw--- [anon]
00007108ebd29000 4K ----- [anon]
00007f08ebd22000 8192K rw--- [anon]
00007108ec522000 4K ----- [anon]
00007f08ec52b000O 8192K rw--- [anon]
00007f08ecd2booo 4K ----- [anon]
00007f08ecd2c000 8192K rw--- [anon]
00007f08ed52c000 4K ----- [anon]
00007f08ed52d000 8192K rw--- [anon]
00007ffe43331000 132K rw--- [stack]
00007 fe43381000 16K r---- [anon]
00007ffe43385000 4K r-x-- [anon]
total 173144K

230: ./App9

0000000000400000 4K r---- App9
0000000000401000 592K r-x-- App9
0000000000495000 156K r---- App9
00000000004bd000 24K rw--- App9
00000000004c3000 24K rw--- [anon]
0000000001778000 140K rw--- [anon]
00007108dc000000 68608K rw--- [anon]

340

00007108e€0300000
00007108e4000000
00007108eb528000
00007108eb529000
00007108ebd29000
00007108ebd2a000
00007108ec522000
00007f08ec52bo00
00007f08ecd2booo
00007108ecd2c000
00007108ed52c000
00007108ed52d000
00007ffe4333f000
00007ffe43381000
000071 fe43385000
total

62464K
65536K
4K
8192K
4K
8192K
4K
8192K
4K
8192K
4K
8192K
132K
16K

4K
238680K

el e e e e N e N N N N M W W W |

anon
anon
anon
anon
anon
anon
anon
anon
anon
anon
anon
anon
stack]
anon]
anon]

e e e e e e e et et e hed

341

Exercise A9 (A64, GDB)

Goal: Learn how to identify heap leaks.
Patterns: Memory Leak (Process Heap); Module Hint.

1. The application App9 was found to consume more and more memory. Several core memory dumps were
saved at different times with corresponding pmap logs. Load App9.core.2.12057 dump file and App9 executable
from the A64/App9 directory:

~/ALCDA2/A64/App9% gdb -c App9.core.2.12057 -se App9

GNU gdb (Ubuntu 12.1-@ubuntul~22.04) 12.1

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying"” and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to
Reading symbols from App9...

(No debugging symbols found in App9)

‘'word". ..

warning: Can't open file /home/opc/ALCDA2/App9/App9 during file-backed mapping note processing
[New LWP 12058]

[New LWP 12059]

[New LWP 12060]

[New LWP 12061]

[New LWP 12062]

[New LWP 12057]

Core was generated by ~./App9'.

#0 0©Ox000000000040ca84 in nanosleep ()

[Current thread is 1 (LWP 12058)]

2. Set logging to a file in case of lengthy output from some commands:
(gdb) set logging file App9.log

(gdb) set logging enabled on

Copying output to App9.log.

Copying debug output to App9.log.

(gdb) set style enabled off

3. Notice the size of the largest section and quit GDB:

(gdb) maintenance info sections
Exec file: " /home/ubuntu/ALCDA2/A64/App9/App9', file type elf64-littleaarch64.

[e] 0x00400190->0x004001b0 at 0x00000190: .note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS

[1] 0x004001b0->0x004001d4 at 0x000001bO: .note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
[2] 0x004001d8->0x00400250 at 0x000001d8: .rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS

[3] 0x00400250->0x00400264 at 0x00000250: .init ALLOC LOAD READONLY CODE HAS_CONTENTS

342

[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
Core file:
[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

--Type <RET> for more, q to quit,

[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]

(gdb) q

0x00400270->0x004002c0
0x004002c0->0x00487158
0x00487158 - >0x00488e28
0x00488e28->0x00489278
0x00489278 - >0x00489288
0x00489290->0x004a178d
0x004a178d->0x004a178e
0x00421790->0x004alec8
0x004alec8->0x004a1f30
0x004a1f30->0x004a1f38
0x004al1f38->0x004a1f48
0x004a1f48->0x004b05ec
0x004b05ec - >0x004b07a9
0x004cfb20->0x004cfbas8
0x004cfb48->0x004cfb8
0x004cfba8->0x004cfb50
0x004cfb50->0x004cfb60
0x004cfb60->0x004cTb68
0x004cfb68->0x004cff24
0x004cff28->0x004cffe8
0x004cffe8->0x004d0028
0x004d0030->0x004d1580
0x004d1580->0x004d8050
0x004d8050 - >0x004d8088
0x00000000 - >0x00000031
0x00000000 - >0x00001cbo

0x00000000 - >0x00001c94
0x00000000 - >0x00000110
0x00000000 - >0x00000110
0x00000000 - >0x00000210
0x00000000 - >0x00000210
0x00000000 - >0x00000080
0x00000000 - >0x00000080
0x00000000 - >0x00000110
0x00000000 - >0x00000210
0x00000000 - >0x00000080
0x00000000 - >0x00000110
0x00000000 - >0x00000210
0x00000000 - >0x00000080
0x00000000 - >0x00000110
0x00000000 - >0x00000210
0x00000000 - >0x00000080
0x00000000 - >0x00000110

0x00000000 - >0x00000210
0x00000000 - >0x00000080
0x00000000 - >0x00000110
0x00000000 - >0x00000210
0x00000000 - >0x00000080
0x00000000 - >0x00000160
0x00000000 - >0x00000076
0x00000000 - >0x00000076
0x00400000 - >0x004c0000
0x004c0000->0x004€0000
0x2f860000->0x218a0000

Oxfffce8000000->0xfffce8230000
Oxfffce8230000->0xfffcec000000
oxfffcfoo00000- >0xfffcf4000000
Oxfffcf7400000->0xfffcf7410000
Oxfffcf7410000->0xfffcf7c10000
Oxfffcf7c10000->0xfffcf7c20000
Oxfffcf7c20000->0xfffcf8420000
Oxfffcf8420000->0xfffcf8430000
Oxfffcf8430000->0xfffcf8c30000
Oxfffcf8c30000->0xfffcf8c40000
Oxfffcf8c40000->0xfffcf9440000
Oxfffcf9440000->0xfffcf9450000
Oxfffcf9450000->0xfffcf9c50000
Oxfffcf9c60000->0xfffcf9c70000
Oxffffc2f60000->0xffffc2f90000

at 0x00000270: .plt ALLOC LOAD READONLY CODE HAS_CONTENTS
at 0x000002c@: .text ALLOC LOAD READONLY CODE HAS_CONTENTS
at 0x00087158: _ libc_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
at 0x00088e28: _ libc_thread_freeres_fn ALLOC LOAD READONLY CODE HAS_CONTENTS
at 0x00089278: .fini ALLOC LOAD READONLY CODE HAS_CONTENTS
at 0x00089290: .rodata ALLOC LOAD READONLY DATA HAS_CONTENTS
at 0x000al178d: .stapsdt.base ALLOC LOAD READONLY DATA HAS_CONTENTS
at 0x000a1790: _ libc_IO_vtables ALLOC LOAD READONLY DATA HAS_CONTENTS
at ox00valec8: _ libc_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS
at 0x000alf30: _ libc_atexit ALLOC LOAD READONLY DATA HAS_CONTENTS
at 0x000alf38: _ libc_thread_subfreeres ALLOC LOAD READONLY DATA HAS_CONTENTS
at 0x000alf48: .eh_frame ALLOC LOAD READONLY DATA HAS_CONTENTS
at @x0eebe5ec: .gcc_except_table ALLOC LOAD READONLY DATA HAS_CONTENTS
at 0x000bfb20: .tdata ALLOC LOAD DATA HAS_CONTENTS
at 0x000bfb48: .tbss ALLOC
at 0x000bfb48: .init_array ALLOC LOAD DATA HAS_CONTENTS
at Ox000bfb50: .fini_array ALLOC LOAD DATA HAS_CONTENTS
at 0x000bfb60: .jcr ALLOC LOAD DATA HAS_CONTENTS
at 0x000bfb68: .data.rel.ro ALLOC LOAD DATA HAS_CONTENTS
at 0x000bff28: .got ALLOC LOAD DATA HAS_CONTENTS
at 0x000bffe8: .got.plt ALLOC LOAD DATA HAS_CONTENTS
at 0x000c0030: .data ALLOC LOAD DATA HAS_CONTENTS
at 0x000c1580: .bss ALLOC
at 0x000c1580: _ libc_freeres_ptrs ALLOC
at 0x000c1580: .comment READONLY HAS_CONTENTS
at 0x000c15b4: .note.stapsdt READONLY HAS_CONTENTS
* /home/ubuntu/ALCDA2/A64/App9/App9.core.2.12057"', file type elf64-littleaarché4.
at 0x00000468: noted® READONLY HAS_CONTENTS
at 0x00000588: .reg/12058 HAS_CONTENTS
at 0x00000588: .reg HAS_CONTENTS
at 0x000006b4: .reg2/12058 HAS_CONTENTS
at 0x000006b4: .reg2 HAS_CONTENTS
at 0x000008d8: .note.linuxcore.siginfo/12058 HAS_CONTENTS
at 0x000008d8: .note.linuxcore.siginfo HAS_CONTENTS
at 0x000009dc: .reg/12059 HAS_CONTENTS
at 0x00000b08: .reg2/12059 HAS_CONTENTS
at 0x00000d2c: .note.linuxcore.siginfo/12059 HAS_CONTENTS
at 0x00000e30: .reg/12060 HAS_CONTENTS
at 0x00000f5c: .reg2/12060 HAS_CONTENTS
at 0x00001180: .note.linuxcore.siginfo/12060 HAS_CONTENTS
at 0x00001284: .reg/12061 HAS_CONTENTS
at 0x000013b0: .reg2/12061 HAS_CONTENTS
at 0x000015d4: .note.linuxcore.siginfo/12061 HAS_CONTENTS
at 0x000016d8: .reg/12062 HAS_CONTENTS
c to continue without paging--
at 0x00001804: .reg2/12062 HAS_CONTENTS
at 0x00001a28: .note.linuxcore.siginfo/12062 HAS_CONTENTS
at 0x00001b2c: .reg/12057 HAS_CONTENTS
at 0x00001c58: .reg2/12057 HAS_CONTENTS
at 0x0000le7c: .note.linuxcore.siginfo/12057 HAS_CONTENTS
at 0x00001f10: .auxv HAS_CONTENTS
at 0x00002084: .note.linuxcore.file/12057 HAS_CONTENTS
at 0x00002084: .note.linuxcore.file HAS_CONTENTS
at 0x000020fc: loadl ALLOC LOAD READONLY CODE HAS_CONTENTS
at 0x000c20fc: load2 ALLOC LOAD HAS_CONTENTS
at 0x000e20fc: load3 ALLOC LOAD HAS_CONTENTS
at 0x001220fc: load4 ALLOC LOAD HAS_CONTENTS
at 0x003520fc: load5 ALLOC LOAD READONLY HAS_CONTENTS
at 0x041220fc: load6 ALLOC LOAD HAS_CONTENTS
at 0x081220fc: load7 ALLOC LOAD READONLY HAS_CONTENTS
at 0x081320fc: load8 ALLOC LOAD HAS_CONTENTS
at 0x089320fc: load9 ALLOC LOAD READONLY HAS_CONTENTS
at 0x089420fc: loadl® ALLOC LOAD HAS_CONTENTS
at 0x091420fc: loadll ALLOC LOAD READONLY HAS_CONTENTS
at 0x091520fc: loadl2 ALLOC LOAD HAS_CONTENTS
at 0x099520fc: loadl3 ALLOC LOAD READONLY HAS_CONTENTS
at 0x099620fc: loadl4 ALLOC LOAD HAS_CONTENTS
at 0x0al620fc: loadl5 ALLOC LOAD READONLY HAS_CONTENTS
at 0x0al720fc: loadl6 ALLOC LOAD HAS_CONTENTS
at 0x0a9720fc: loadl7 ALLOC LOAD READONLY CODE HAS_CONTENTS