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WebGL is a new web technology that brings hardware-accelerated 3D graphics to the
browser without requiring the user to install additional software. As WebGL is based on
OpenGL and brings in a new concept of 3D graphics programming to web development,
it may seem unfamiliar to even experienced web developers.

Packed with many examples, this book shows how WebGL can be easy to learn despite its
unfriendly appearance. Each chapter addresses one of the important aspects of 3D graphics
programming and presents different alternatives for its implementation. The topics are always
associated with exercises that will allow the reader to put the concepts to the test in an
immediate manner.

WebGL Beginner's Guide presents a clear road map to learning WebGL. Each chapter starts
with a summary of the learning goals for the chapter, followed by a detailed description

of each topic. The book offers example-rich, up-to-date introductions to a wide range of
essential WebGL topics, including drawing, color, texture, transformations, framebuffers,
light, surfaces, geometry, and more. Each chapter is packed with useful and practical
examples that demonstrate the implementation of these topics in a WebGL scene. With each
chapter, you will "level up" your 3D graphics programming skills. This book will become your
trustworthy companion filled with the information required to develop cool-looking 3D web
applications with WebGL and JavaScript.

Chapter 1, Getting Started with WebGL, introduces the HTMLS canvas element and describes
how to obtain a WebGL context for it. After that, it discusses the basic structure of a WebGL
application. The virtual car showroom application is presented as a demo of the capabilities
of WebGL. This application also showcases the different components of a WebGL application.

Chapter 2, Rendering Geometry, presents the WebGL API to define, process, and render
objects. Also, this chapter shows how to perform asynchronous geometry loading using
AJAX and JSON.
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Chapter 3, Lights!, introduces ESSL the shading language for WebGL. This chapter shows
how to implement a lighting strategy for the WebGL scene using ESSL shaders. The theory
behind shading and reflective lighting models is covered and it is put into practice through
several examples.

Chapter 4, Camera, illustrates the use of matrix algebra to create and operate cameras

in WebGL. The Perspective and Normal matrices that are used in a WebGL scene are also
described here. The chapter also shows how to pass these matrices to ESSL shaders so they
can be applied to every vertex. The chapter contains several examples that show how to set
up a camera in WebGL.

Chapter 5, Action, extends the use of matrices to perform geometrical transformations
(move, rotate, scale) on scene elements. In this chapter the concept of matrix stacks is
discussed. It is shown how to maintain isolated transformations for every object in the scene
using matrix stacks. Also, the chapter describes several animation techniques using matrix
stacks and JavaScript timers. Each technique is exemplified through a practical demo.

Chapter 6, Colors, Depth Testing, and Alpha Blending, goes in depth about the use of colors
in ESSL shaders. This chapter shows how to define and operate with more than one light
source in a WebGL scene. It also explains the concepts of Depth Testing and Alpha Blending,
and it shows how these features can be used to create translucent objects. The chapter
contains several practical exercises that put into practice these concepts.

Chapter 7, Textures, shows how to create, manage, and map textures in a WebGL scene.
The concepts of texture coordinates and texture mapping are presented here. This chapter
discusses different mapping techniques that are presented through practical examples. The
chapter also shows how to use multiple textures and cube maps.

Chapter 8, Picking, describes a simple implementation of picking which is the technical
term that describes the selection and interaction of the user with objects in the scene.
The method described in this chapter calculates mouse-click coordinates and determines
if the user is clicking on any of the objects being rendered in the canvas. The architecture
of the solution is presented with several callback hooks that can be used to implement
logic-specific application. A couple of examples of picking are given.

Chapter 9, Putting It All Together, ties in the concepts discussed throughout the book.

In this chapter the architecture of the demos is reviewed and the virtual car showroom
application outlined in Chapter 1, Getting Started with WebGL, is revisited and expanded.
Using the virtual car showroom as the case study, this chapter shows how to import Blender
models into WebGL scenes and how to create ESSL shaders that support the materials used
in Blender.

[2]
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Chapter 10, Advanced Techniques, shows a sample of some advanced techniques such as
post-processing effects, point sprites, normal mapping, and ray tracing. Each technique is
provided with a practical example. After reading this WebGL Beginner's Guide you will be
able to take on more advanced techniques on your own.

¢ You need a browser that implements WebGL. WebGL is supported by all major
browser vendors with the exception of Microsoft Internet Explorer. An updated
list of WebGL-enabled browsers can be found here:

http://www.khronos.org/webgl/wiki/Getting a WebGL__
Implementation

¢ Asource code editor that recognizes and highlights JavaScript syntax.

You may need a web server such as Apache or Lighttpd to load remote geometry
if you want to do so (as shown in Chapter 2, Rendering Geometry). This is optional.

This book is written for JavaScript developers who are interested in 3D web development.
A basic understanding of the DOM object model, the JQuery library, AJAX, and JSON is ideal
but not required. No prior WebGL knowledge is expected.

A basic understanding of linear algebra operations is assumed.

In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action - heading

1. Action1
2. Action?2
3. Action3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

[31]
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What just happened?

This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Open the file chl_Canvas.html using one of the
supported browsers."

A block of code is set as follows:

<!DOCTYPE htmls>
<html>
<head>
<title> WebGL Beginner's Guide - Setting up the canvas </title>
<style type="text/css">
canvas {border: 2px dotted blue;}
</style>
</head>
<body>
<canvas id="canvas-element-id" width="800" height="600">
Your browser does not support HTMLS
</canvas>
</body>
</html>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<!DOCTYPE html>
<html>
<head>
<title> WebGL Beginner's Guide - Setting up the canvas </title>
<style type="text/css">
canvas {border: 2px dotted blue;}
</style>
</head>
<body>

[4]
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<canvas id="canvas-element-id" width="800" height="600">
Your browser does not support HTMLS5

</canvas>

</body>

</html>

Any command-line input or output is written as follows:
--allow-file-access-from-files

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Now switch to camera
coordinates by clicking on the Camera button."

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www . packtpub. com or e-mail suggest@packtpub.com

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

[51]
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You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub. com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Downioading the color images of this hook

We also provide you a PDF file that has color images of the screenshots/diagrams used

in this book. The color images will help you better understand the changes in the output.
You can download this file from http://www.packtpub.com/sites/default/files/
downloads/1727 images.pdf

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you

find any errata, please report them by visiting http: //www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

[6]
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Getting Started with WehGL

In 2007, Vladimir Vukicevic, an American-Serbian software engineer, began
working on an OpenGL prototype for the then upcoming HTML <canvas>
element which he called Canvas 3D. In March, 2011, his work would lead
Kronos Group, the nonprofit organization behind OpenGL, to create WebGL:
a specification to grant Internet browsers access to Graphic Processing Units
(GPUs) on those computers where they were used.

WebGL was originally based on OpenGL ES 2.0 (ES standing for Embedded Systems),

the OpenGL specification version for devices such as Apple's iPhone and iPad. But as the
specification evolved, it became independent with the goal of providing portability across
various operating systems and devices. The idea of web-based, real-time rendering opened
a new universe of possibilities for web-based 3D environments such as videogames, scientific
visualization, and medical imaging. Additionally, due to the pervasiveness of web browsers,
these and other kinds of 3D applications could be taken to mobile devices such as smart
phones and tablets. Whether you want to create your first web-based videogame, a 3D

art project for a virtual gallery, visualize the data from your experiments, or any other 3D
application you could have in mind, the first step will be always to make sure that your
environment is ready.

In this chapter, you will:

Understand the structure of a WebGL application
Set up your drawing area (canvas)

Test your browser's WebGL capabilities
Understand that WebGL acts as a state machine

Modify WebGL variables that affect your scene

* 6 ¢ 6 o o

Load and examine a fully-functional scene



Getting Started with WebGL

WebGL is a web-based 3D Graphics API. As such there is no installation needed. At the time
this book was written, you will automatically have access to it as long as you have one of the
following Internet web browsers:

Firefox 4.0 or above
Google Chrome 11 or above

Safari (OSX 10.6 or above). WebGL is disabled by default but you can switch it
on by enabling the Developer menu and then checking the Enable WebGL option

¢ Opera 12 or above

To get an updated list of the Internet web browsers where WebGL is supported, please check
on the Khronos Group web page following this link:

http://www.khronos.org/webgl/wiki/Getting a WebGL Implementation
You also need to make sure that your computer has a graphics card.

If you want to quickly check if your current configuration supports WebGL, please visit
this link:

http://get.webgl.org/

What kind of rendering does WehGl offer?

WebGL is a 3D graphics library that enables modern Internet browsers to render 3D scenes
in a standard and efficient manner. According to Wikipedia, rendering is the process of
generating an image from a model by means of computer programs. As this is a process
executed in a computer, there are different ways to produce such images.

The first distinction we need to make is whether we are using any special graphics hardware
or not. We can talk of software-based rendering , for those cases where all the calculations
required to render 3D scenes are performed using the computer's main processor, its CPU;
on the other hand we use the term hardware-based rendering for those scenarios where
there is a Graphics Processing Unit (GPU) performing 3D graphics computations in real

time. From a technical point of view, hardware-based rendering is much more efficient than
software-based rendering because there is dedicated hardware taking care of the operations.
Contrastingly, a software-based rendering solution can be more pervasive due to the lack of
hardware dependencies.
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Chapter 1

A second distinction we can make is whether or not the rendering process is happening
locally or remotely. When the image that needs to be rendered is too complex, the render
most likely will occur remotely. This is the case for 3D animated movies where dedicated
servers with lots of hardware resources allow rendering intricate scenes. We called this
server-based rendering. The opposite of this is when rendering occurs locally. We called
this client-based rendering.

WebGL has a client-based rendering approach: the elements that make part of the 3D scene
are usually downloaded from a server. However, all the processing required to obtain an
image is performed locally using the client's graphics hardware.

In comparison with other technologies (such as Java 3D, Flash, and The Unity Web Player
Plugin), WebGL presents several advantages:

*

JavaScript programming: JavaScript is a language that is natural to both web
developers and Internet web browsers. Working with JavaScript allows you to access
all parts of the DOM and also lets you communicate between elements easily as
opposed to talking to an applet. Because WebGL is programmed in JavaScript, this
makes it easier to integrate WebGL applications with other JavaScript libraries such
as JQuery and with other HTMLS5 technologies.

Automatic memory management: Unlike its cousin OpenGL and other technologies
where there are specific operations to allocate and deallocate memory manually,
WebGL does not have this requisite. It follows the rules for variable scoping in
JavaScript and memory is automatically deallocated when it's no longer needed.
This simplifies programming tremendously, reducing the code that is needed and
making it clearer and easier to understand.

Pervasiveness: Thanks to current advances in technology, web browsers with
JavaScript capabilities are installed in smart phones and tablet devices. At the
moment of writing, the Mozilla Foundation is testing WebGL capabilities in
Motorola and Samsung phones. There is also an effort to implement WebGL
on the Android platform.

Performance: The performance of WebGL applications is comparable to equivalent
standalone applications (with some exceptions). This happens thanks to WebGL's
ability to access the local graphics hardware. Up until now, many 3D web rendering
technologies used software-based rendering.

Zero compilation: Given that WebGL is written in JavaScript, there is no need to
compile your code before executing it on the web browser. This empowers you to
make changes on-the-fly and see how those changes affect your 3D web application.
Nevertheless, when we analyze the topic of shader programs, we will understand
that we need some compilation. However, this occurs in your graphics hardware,
not in your browser.
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Structure of a WehGL application

As in any 3D graphics library, in WebGL, you need certain components to be present to
create a 3D scene. These fundamental elements will be covered in the first four chapters
of the book. Starting from Chapter 5, Action, we will cover elements that are not required
to have a working 3D scene such as colors and textures and then later on we will move to
more advanced topics.

The components we are referring to are as follows:

¢ Canvas: It is the placeholder where the scene will be rendered. It is a standard
HTMLS5 element and as such, it can be accessed using the Document Object Model
(DOM) through JavaScript.

¢ Objects: These are the 3D entities that make up part of the scene. These entities
are composed of triangles. In Chapter 2, Rendering Geometry, we will see how
WebGL handles geometry. We will use WebGL buffers to store polygonal data
and we will see how WebGL uses these buffers to render the objects in the scene.

¢ Lights: Nothing in a 3D world can be seen if there are no lights. This element of any
WebGL application will be explored in Chapter 3, Lights!. We will learn that WebGL
uses shaders to model lights in the scene. We will see how 3D objects reflect or
absorb light according to the laws of physics and we will also discuss different light
models that we can create in WebGL to visualize our objects.

¢ Camera: The canvas acts as the viewport to the 3D world. We see and explore
a 3D scene through it. In Chapter 4, Camera, we will understand the different
matrix operations that are required to produce a view perspective. We will also
understand how these operations can be modeled as a camera.

This chapter will cover the first element of our list—the canvas. We will see in the coming
sections how to create a canvas and how to set up a WebGL context.

Creating an HTMLS canvas

Let's create a web page and add an HTMLS5 canvas. A canvas is a rectangular element
in your web page where your 3D scene will be rendered.

[101



Chapter 1

Time for action - creating an HTMLY canvas

1. Using your favorite editor, create a web page with the following code in it:

<!DOCTYPE htmls>
<html>
<head>
<title> WebGL Beginner's Guide - Setting up the canvas </title>
<style type="text/css">
canvas {border: 2px dotted blue;}
</style>
</head>
<body>
<canvas id="canvas-element-id" width="800" height="600">
Your browser does not support HTMLS
</canvas>
</body>
</html>

Downloading the example code

purchased from your account at http: //www.packtpub. com. If you
purchased this book elsewhere, you can visithttp: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

é‘Q You can download the example code files for all Packt books you have

2. Savethefileaschl Canvas.html.
3. Open it with one of the supported browsers.

4. You should see something similar to the following screenshot:

WebGL Beginner's Guide - Setting up the canvas

% file:// /Volumes/C/Users /odin/Documents/Shared /WebGLBook/Code e | (2§~ Google Q |£| |[ﬂ'| | e v_\

nl
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What just happened?

We have just created a simple web page with a canvas in it. This canvas will contain our
3D application. Let's go very quickly to some relevant elements presented in this example.

This is the piece of code that determines the canvas style:

<style type="text/css">
canvas {border: 2px dotted blue;}
</style>

As you can imagine, this code is not fundamental to build a WebGL application. However,
a blue-dotted border is a good way to verify where the canvas is located, given that the
canvas will be initially empty.

Understanding canvas attributes

There are three attributes in our previous example:

Id: This is the canvas identifier in the Document Object Model (DOM).

Width and height: These two attributes determine the size of our canvas. When
these two attributes are missing, Firefox, Chrome, and WebKit will default to using
a 300x150 canvas.

What if the canvas is not supported?

If you see the message on your screen: Your browser does not support HTML5 (Which was
the message we put between <canvas> and </canvas>) then you need to make sure that
you are using one of the supported Internet browsers.

If you are using Firefox and you still see the HTML5 not supported message. You might
want to be sure that WebGL is enabled (it is by default). To do so, go to Firefox and type
about : config in the address bar, then look for the property webgl .disabled. If is set to
true, then go ahead and change it. When you restart Firefox and load chl Canvas.html,
you should be able to see the dotted border of the canvas, meaning everything is ok.

In the remote case where you still do not see the canvas, it could be due to the fact that
Firefox has blacklisted some graphic card drivers. In that case, there is not much you can
do other than use a different computer.
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Accessing a WehGL context

A WebGL context is a handle (more strictly a JavaScript object) through which we can access
all the WebGL functions and attributes. These constitute WebGL's Application Program
Interface (API).

We are going to create a JavaScript function that will check whether a WebGL context can be
obtained for the canvas or not. Unlike other JavaScript libraries that need to be downloaded
and included in your projects to work, WebGL is already in your browser. In other words, if

you are using one of the supported browsers, you don't need to install or include any library.

Time for action - accessing the WehGL context

We are going to modify the previous example to add a JavaScript function that is going to
check the WebGL availability in your browser (trying to get a handle). This function is going
to be called when the page is loaded. For this, we will use the standard DOM onLoad event.

1. Openthefile chl Canvas.html in your favorite text editor (a text editor that
highlight HTML/JavaScript syntax is ideal).

2. Add the following code right below the </style> tag:

<scripts

var gl = null;

function getGLContext () {

var canvas = document.getElementById ("canvas-element-id") ;

if (canvas == null) {
alert ("there is no canvas on this page");
return;
}
var names = ["webgl",
"experimental-webgl",
"webkit-3d4d",
"moz-webgl"] ;
for (var i = 0; 1 < names.length; ++1) {
try {
gl = canvas.getContext (names[i]) ;

catch(e) {}
if (gl) break;

}

if (gl == null){
alert ("WebGL is not available") ;
1

else{
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alert ("Hooray! You got a WebGL context");

}

</scripts>

3. We need to call this function on the onLoad event. Modify your body tag so it looks
like the following:

<body onLoad ="getGLContext () ">
4. Savethefileas chl GL Context.html.
5. Openthefile chl GL Context.html using one of the WebGL supported browsers.

6. If you can run WebGL you will see a dialog similar to the following:

Hooray! You got a WebGL context

What just happened?

Using a JavaScript variable (g1), we obtained a reference to a WebGL context. Let's go back
and check the code that allows accessing WebGL:

var names = ["webgl",
"experimental-webgl",
"webkit-3d",
"moz-webgl"] ;

0; i < names.length; ++i) {
= canvas.getContext (names[i]) ;

catch(e) {}
if (gl) break;

}

The canvas getContext method gives us access to WebGL. All we need to specify a context
name that currently can vary from vendor to vendor. Therefore we have grouped them

in the possible context names in the names array. It is imperative to check on the WebGL
specification (you will find it online) for any updates regarding the naming convention.

(1]
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getContext also provides access to the HTML5 2D graphics library when using 2d as the
context name. Unlike WebGL, this naming convention is standard. The HTML5 2D graphics
APl is completely independent from WebGL and is beyond the scope of this book.

WehGl is a state machine

A WebGL context can be understood as a state machine: once you modify any of its attributes,
that modification is permanent until you modify that attribute again. At any point you can
query the state of these attributes and so you can determine the current state of your WebGL
context. Let's analyze this behavior with an example.

Time for action - setting up WehGL context attributes

In this example, we are going to learn to modify the color that we use to clear the canvas:

1. Using your favorite text editor, open the file ch1 GL Attributes.html:

<html>
<head>

<title> WebGL Beginner's Guide - Setting WebGL context
attributes </title>

<style type="text/css">
canvas {border: 2px dotted blue;}
</style>

<scripts>

var gl = null;
var c_width = 0;
var c¢_height = 0;

window.onkeydown = checkKey;

function checkKey (ev) {
switch (ev.keyCode) {
case 49:{ // 1
gl.clearColor(0.3,0.7,0.2,1.0);

clear (gl) ;
break;

}

case 50:{ // 2
gl.clearColor(0.3,0.2,0.7,1.0);
clear (gl) ;
break;
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}

case 51:{ // 3
var color = gl.getParameter (gl.COLOR CLEAR VALUE) ;

// Don't get confused with the following line. It
// basically rounds up the numbers to one decimal

cipher
//just for visualization purposes
alert ('clearColor = (' +

Math.round (color[0]*10) /10 +
',' + Math.round (color[1]*10)/10+
',' + Math.round (color[2]*10)/10+"')");

window. focus () ;
break;
!
!
!

function getGLContext () {
var canvas = document.getElementById("canvas-element-id") ;

if (canvas == null) {
alert ("there is no canvas on this page");
return;

}

var names = ["webgl",

"experimental-webgl",
"webkit-3d",
"moz-webgl"] ;
var ctx = null;
for (var i = 0; 1 < names.length; ++1) {
try {
ctx = canvas.getContext (names[i]) ;
}

catch(e) {}
if (ctx) break;

}

if (ctx == null){
alert ("WebGL is not available") ;

}

else{
return ctx;
}
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function clear (ctx) {
ctx.clear (ctx.COLOR_BUFFER BIT) ;
ctx.viewport (0, 0, c_width, c height);

function initWebGL () {
gl = getGLContext () ;

}

</scripts>
</head>

<body onLoad="initWebGL () ">
<canvas id="canvas-element-id" width="800" height="600">
Your browser does not support the HTML5 canvas element.
</canvas>
</body>

</html>
2. You will see that this file is very similar to our previous example. However,

there are new code constructs that we will explain briefly. This file contains
four JavaScript functions:

Function Description

checkKey This is an auxiliary function. It captures the keyboard input and executes
code depending on the key entered.

getGLContext Similar to the one used in the Time for action — accessing the WebGL

context section. In this version, we are adding some lines of code to
obtain the canvas' width and height.

clear Clear the canvas to the current clear color, which is one attribute of
the WebGL context. As was mentioned previously, WebGL works as
a state machine, therefore it will maintain the selected color to clear
the canvas up to when this color is changed using the WebGL function
gl.clearColor (See the checkKey source code)

initWebGL This function replaces getGLContext as the function being called on
the document onLoad event. This function calls an improved version
of getGLContext that returns the context in the ctx variable. This
context is then assigned to the global variable g1.
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3. Openthefiletest gl attributes.html using one of the supported Internet
web browsers.

4. Press 1. You will see how the canvas changes its color to green. If you want to query
the exact color we used, press 3.

5. The canvas will maintain the green color until we decided to change the attribute
clear color by calling g1.clearColor. Let's change it by pressing 2. If you look at
the source code, this will change the canvas clear color to blue. If you want to know
the exact color, press 3.

What just happened?

In this example, we saw that we can change or set the color that WebGL uses to clear the
canvas by calling the clearColor function. Correspondingly, we used get Parameter
(gl.COLOR CLEAR VALUE) to obtain the current value for the canvas clear color.

Throughout the book we will see similar constructs where specific functions

establish attributes of the WebGL context and the get Parameter function retrieves

the current values for such attributes whenever the respective argument (in our example,
COLOR_CLEAR VALUE) is used.

Using the context to access the WehGL API

It is also essential to note here that all of the WebGL functions are accessed through the
WebGL context. In our examples, the context is being held by the g1 variable. Therefore,
any call to the WebGL Application Programming Interface (API) will be performed using
this variable.

So far we have seen how to set up a canvas and how to obtain a WebGL context; the next
step is to discuss objects, lights, and cameras. However, why should we wait to see what
WebGL can do? In this section, we will have a glance at what a WebGL scene look like.

Through the book, we will develop a virtual car showroom application using WebGL. At this
point, we will load one simple scene in the canvas. This scene will contain a car, some lights,
and a camera.
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Time for action - visualizing a finished scene

Once you finish reading the book you will be able to create scenes like the one we are going
to play with next. This scene shows one of the cars from the book's virtual car showroom.

1. Openthefile chl_car.html in one of the supported Internet web browsers.

2. You will see a WebGL scene with a car in it as shown in the following screenshot.
In Chapter 2, Rendering Geometry we will cover the topic of geometry rendering
and we will see how to load and render models as this car.

ane

WebGL Beginner's Guade - Chapter 1 - WebGL Car
() Flessivel 1ci din/D [Shared {WebGLBook /Code/1727_01 /chl Car.html e [2f- Google e E 0T « EARE
WebGL Beginner's Guide - Chapter 1 - WebGL Car Scene [ ]
P
Customize your Car
Car Colar: .
Car Sheninness:
Lights
Ambient
far-left: C
Far-right: C
near-left: ¢
mear-right: 0.0
Transiate Lights
Camera
Home  Abowe  Freat | Back  Left | Right
Zoom: Alt + Drag Floor Visible
d -

3. Use the sliders to interactively update the four light sources that have been defined
for this scene. Each light source has three elements: ambient, diffuse, and specular
elements. We will cover the topic about lights in Chapter 3, Lights!.

4. Click and drag on the canvas to rotate the car and visualize it from different
perspectives. You can zoom by pressing the Alt key while you drag the mouse on
the canvas. You can also use the arrow keys to rotate the camera around the car.
Make sure that the canvas is in focus by clicking on it before using the arrow keys.

In Chapter 4, Camera we will discuss how to create and operate with cameras
in WebGL.
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5. If you click on the Above, Front, Back, Left, or Right buttons you will see an
animation that stops when the camera reaches that position. For achieving
this effect we are using a JavaScript timer. We will discuss animation in
Chapter 5, Action.

6. Use the color selector widget as shown in the previous screenshot to change the
color of the car. The use of colors in the scene will be discussed in Chapter 6, Colors,
Depth Testing, and Alpha Blending. Chapters 7-10 will describe the use of textures
(Chapter 7, Textures), selection of objects in the scene (Chapter 8, Picking), how
to build the virtual car show room (Chapter 9, Putting It All Together) and WebGL
advanced techniques (Chapter 10, Advanced Techniques).

What just happened?

We have loaded a simple scene in an Internet web browser using WebGL.
This scene consists of:

A canvas through which we see the scene.

A series of polygonal meshes (objects) that constitute the car: roof, windows,
headlights, fenders, doors, wheels, spoiler, bumpers, and so on.

Light sources; otherwise everything would appear black.

A camera that determines where in the 3D world is our view point. The camera can
be made interactive and the view point can change, depending on the user input.
For this example, we were using the left and right arrow keys and the mouse to
move the camera around the car.

There are other elements that are not covered in this example such as textures, colors, and
special light effects (specularity). Do not panic! Each element will be explained later in the
book. The point here is to identify that the four basic elements we discussed previously are
present in the scene.
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sSummary

In this chapter, we have looked at the four basic elements that are always present in any
WebGL application: canvas, objects, lights, and camera.

We have learned how to add an HTML5 canvas to our web page and how to set its ID, width,
and height. After that, we have included the code to create a WebGL context. We have seen
that WebGL works as a state machine and as such, we can query any of its variables using
the getParameter function.

In the next chapter we will learn how to define, load, and render 3D objects into
a WebGL scene.
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WebGL renders objects following a "divide and conquer" approach. Complex
polygons are decomposed into triangles, lines, and point primitives. Then, each
geometric primitive is processed in parallel by the GPU through a series of
steps, known as the rendering pipeline, in order to create the final scene that is
displayed on the canvas.

The first step to use the rendering pipeline is to define geometric entities. In this
chapter, we will take a look at how geometric entities are defined in WebGL.

In this chapter, we will:

Understand how WebGL defines and processes geometric information
Discuss the relevant APl methods that relate to geometry manipulation

Examine why and how to use JavaScript Object Notation (JSON) to define,
store, and load complex geometries

¢ Continue our analysis of WebGL as a state machine and describe the attributes
relevant to geometry manipulation that can be set and retrieved from the
state machine

¢ Experiment with creating and loading different geometry models!

WebGL handles geometry in a standard way, independently of the complexity and number
of points that surfaces can have. There are two data types that are fundamental to represent
the geometry of any 3D object: vertices and indices.
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Vertices are the points that define the corners of 3D objects. Each vertex is represented by
three floating-point numbers that correspond to the x, y, and z coordinates of the vertex.
Unlike its cousin, OpenGL, WebGL does not provide APl methods to pass independent
vertices to the rendering pipeline, therefore we need to write all of our vertices in a
JavaScript array and then construct a WebGL vertex buffer with it.

Indices are numeric labels for the vertices in a given 3D scene. Indices allow us to tell WebGL
how to connect vertices in order to produce a surface. Just like with vertices, indices are
stored in a JavaScript array and then they are passed along to WebGL's rendering pipeline
using a WebGL index buffer.

There are two kind of WebGL buffers used to describe and process geometry:
% Buffers that contain vertex data are known as Vertex Buffer Objects (VBOs).

Similarly, buffers that contain index data are known as Index Buffer Objects
(1BOs).

Before getting any further, let's examine what WebGL's rendering pipeline looks like and
where WebGL buffers fit into this architecture.

Overview of WehGL's rendering pipeline

Here we will see a simplified version of WebGL's rendering pipeline. In subsequent chapters,
we will discuss the pipeline in more detail.

WebGL Rendering Pipeline Overview

Paoints to,
= Vertex Buffer Objects

input

coordinates
colors
nermals
scalars

User defined
properties

input

Varyings

input

Let's take a moment to describe every element separately.
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Vertex Buffer Objects (WB0S)

VBOs contain the data that WebGL requires to describe the geometry that is going to be
rendered. As mentioned in the introduction, vertex coordinates are usually stored and
processed in WebGL as VBOs. Additionally, there are several data elements such as vertex
normals, colors, and texture coordinates, among others, that can be modeled as VBOs.

The vertex shader is called on each vertex. This shader manipulates per-vertex data such

as vertex coordinates, normals, colors, and texture coordinates. This data is represented

by attributes inside the vertex shader. Each attribute points to a VBO from where it reads
vertex data.

Every set of three vertices defines a triangle and each element on the surface of that triangle
needs to be assigned a color. Otherwise our surfaces would be transparent.

Each surface element is called a fragment. Since we are dealing with surfaces that are going
to be displayed on your screen, these elements are more commonly known as pixels.

The main goal of the fragment shader is to calculate the color of individual pixels.
The following diagram explains this idea:

In the Vertex Shader: In the Fragment Shader:

. .C>-

Vertex Coloring Pixel Coloring

It is a two-dimensional buffer that contains the fragments that have been processed by
the fragment shader. Once all fragments have been processed, a 2D image is formed and
displayed on screen. The framebuffer is the final destination of the rendering pipeline.
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Attributes, uniforms, and varyings

Attributes, uniforms, and varyings are the three different types of variables that you will find
when programming with shaders.

Attributes are input variables used in the vertex shader. For example, vertex coordinates,
vertex colors, and so on. Due to the fact that the vertex shader is called on each vertex,
the attributes will be different every time the vertex shader is invoked.

Uniforms are input variables available for both the vertex shader and fragment shader.
Unlike attributes, uniforms are constant during a rendering cycle. For example, lights position.

Varyings are used for passing data from the vertex shader to the fragment shader.

Now let's create a simple geometric object.

Rendering geometry in WehGL

The following are the steps that we will follow in this section to render an object in WebGL:

1. First, we will define a geometry using JavaScript arrays.
2. Second, we will create the respective WebGL buffers.

3. Third, we will point a vertex shader attribute to the VBO that we created in the
previous step to store vertex coordinates.

4. Finally, we will use the IBO to perform the rendering.

Let's see what we need to do to create a trapezoid. We need two JavaScript arrays:
one for the vertices and one for the indices.
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Vertexand Indices

[

0 (0,0)

1 (10,10)

2 (20,0)

3 (30,10)
a a (40,0)

coordinates

Vertexarray=(0,0,10,10,20,0,30,10,40,0] [} VertexBuffer

Index array=[0,2,1,1,2,3,2,4 3]
L -IndexBuffer
| triangles

Trianglesin the index arrayare usually but not necessarily defined
counter-clockwise.

As you can see from the previous screenshot, we have placed the coordinates sequentially in
the vertex array and then we have indicated in the index array how these coordinates are used
to draw the trapezoid. So, the first triangle is formed with the vertices having indices 0, 1, and
2; the second with the vertices having indices 1, 2, and 3; and finally, the third, with vertices
having indices 2, 3, and 4. We will follow the same procedure for all possible geometries.

Creating WehGL huffers

Once we have created the JavaScript arrays that define the vertices and indices for our
geometry, the next step consists of creating the respective WebGL buffers. Let's see how
this works with a different example. In this case, we have a simple square on the x-y plane
(z coordinates are zero for all four vertices):

var vertices = [-50.0, 50.0, 0.0,
-50.0,-50.0, 0.0,

50.0,-50.0, 0.0,
50.0, 50.0, 0.0];/* our JavaScript vertex array */
var myBuffer = gl.createBuffer(); /*gl is our WebGL Context*/
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In the previous chapter, you may remember that WebGL operates as a state machine. Now,
when myBuf fer is made the currently bound WebGL buffer, this means that any subsequent
buffer operation will be executed on this buffer until it is unbound or another buffer is made
the current one with a bound call. We bind a buffer with the following instruction:

gl.bindBuffer (gl .ARRAY BUFFER, myBuffer);

The first parameter is the type of buffer that we are creating. We have two options
for this parameter:

¢ gl.ARRAY BUFFER: Vertex data

¢ gl.ELEMENT ARRAY BUFFER:Index data

In the previous example, we are creating the buffer for vertex coordinates; therefore,
we use ARRAY BUFFER. For indices, the type ELEMENT ARRAY BUFFER is used.

WebGL will always access the currently bound buffer looking for the
data. Therefore, we should be careful and make sure that we have

always bound a buffer before calling any other operation for geometry
A
processing. If there is no buffer bound, then you will obtain the error

INVALID OPERATION

Once we have bound a buffer, we need to pass along its contents. We do this with the
bufferbData function:

gl.bufferData (gl.ARRAY BUFFER, new Float32Array(vertices),
gl.STATIC_DRAW);

In this example, the vertices variable is a JavaScript array that contains the vertex
coordinates. WebGL does not accept JavaScript arrays directly as a parameter for the
bufferData method. Instead, WebGL uses typed arrays, so that the buffer data can
be processed in its native binary form with the objective of speeding up geometry
processing performance.

The specification for typed arrays can be found at: http: //www.khronos.
o org/registry/typedarray/specs/latest/

The typed arrays used by WebGL are Int8Array, Uint8Array, Int16Array,
Uintl6Array, Int32Array, UInt32Array, Float32Array, and Float64Array.
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Finally, it is a good practice to unbind the buffer. We can achieve that by calling the

following instruction:

Please observe that vertex coordinates can be float, but indices are always
integer. Therefore, we will use Float32Array for VBOs and UInt16Array
for IBOs throughout the examples of this book. These two types represent the
largest typed arrays that you can use in WebGL per rendering call. The other
types can be or cannot be present in your browser, as this specification is not
s yet final at the time of writing the book.

Since the indices support in WebGL is restricted to 16 bit integers, an index
array can only be 65,535 elements in length. If you have a geometry that
requires more indices, you will need to use several rendering calls. More about
rendering calls will be seen later on in the Rendering section of this chapter.

gl.bindBuffer (gl.ARRAY BUFFER, null) ;

We will repeat the same calls described here for every WebGL buffer (VBO or IBO)

that we will use.

Let's review what we have just learned with an example. We are going to code the
initBuffers function to create the VBO and IBO for a cone. (You will find this

function in the file named ch2 Cone.html):

var coneVBO = null;
var coneIBO = null;

//Vertex Buffer Object

!/

function initBuffers/()

var vertices = [];
var indices = [];

Index Buffer Object

{

//JavaScript Array that populates coneVBO

//JavaScript Array that populates conelBO;

//Vertices that describe the geometry of a cone

vertices =[1.5, 0,
-1.5, 1, O,
-1.5, 0.809017,
-1.5, 0.309017,
-1.5, -0.309017,
-1.5, -0.809017,
-1.5, -1, 0.0,
-1.5, -0.809017,
-1.5, -0.309017,
-1.5, 0.309017,

-1.5, 0.809017,

//Indices that describe

indices = [0, 1, 2,
o, 2, 3,
o, 3, 4,

O !

-0.

-0
-0

.587785,
.951057,
.951057,
.587785,

.587785,

951057,

.951057,

.587785] ;

the geometry of a cone
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0, 11;
coneVBO = gl.createBuffer();

gl.bindBuffer (gl.ARRAY BUFFER, coneVBO) ;

gl.bufferData (gl.ARRAY BUFFER, new Float32Array(vertices),
gl.STATIC DRAW) ;

gl.bindBuffer (gl.ARRAY BUFFER, null);

coneIBO = gl.createBuffer();

gl.bindBuffer (gl.ELEMENT ARRAY BUFFER, conelBO) ;

gl.bufferData (gl.ELEMENT ARRAY BUFFER, new Uintl6Array (indices),
gl.STATIC DRAW) ;

gl.bindBuffer (gl.ELEMENT ARRAY BUFFER, null);

}

If you want to see this scene in action, launch the file ch2 Cone.html in your
HTML5 browser.

To summarize, for every buffer, we want to:

Create a new buffer

Bind it to make it the current buffer

Pass the buffer data using one of the typed arrays
Unbind the buffer

* 6 o o

Operations to manipulate WehGL buffers

The operations to manipulate WebGL buffers are summarized in the following table:

Method Description
var aBuffer = Creates the aBuf fer buffer
createBuffer (void)
deleteBuffer (Object aBuffer) Deletes the aBuf fer buffer
bindBuffer (ulong target, Binds a buffer object. The accepted values for
Object buffer) target are:

¢ ARRAY BUFFER (for vertices)

¢ ELEMENT ARRAY BUFFER
(for indices)
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Method Description

bufferData (ulong target, The accepted values for target are:
Object data, ulong type)

& ARRAY BUFFER (for vertices)

¢ ELEMENT ARRAY BUFFER(for
indices)

The parameter type is a performance hint for
WebGL. The accepted values for type are:

& STATIC DRAW: Datain the buffer
will not be changed (specified once
and used many times)

DYNAMIC DRAW: Data will be
changed frequently (specified many
times and used many times)

¢ STREAM DRAW: Data will change on
every rendering cycle (specified once
and used once)

Once the VBOs have been created, we associate these buffers to vertex shader attributes.
Each vertex shader attribute will refer to one and only one buffer, depending on the
correspondence that is established, as shown in the following diagram:

Associating Attributes to VBOs

VBOs Attributes

------ == —h
------
------
------
------ oo, SR

Each attribute points te one WebGL buffer. Fram it, the attribute extracts a
value that is then passed to the Vertex Shader.
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We can achieve this by following these steps:

1. First, we bind a VBO.
2. Next, we point an attribute to the currently bound VBO.

3. Finally, we enable the attribute.

Let's take a look at the first step.

We already know how to do this:

gl.bindBuffer (gl .ARRAY BUFFER, myBuffer);

where myBuffer is the buffer we want to map.

Pointing an attribute to the currently hound VB0

In the next chapter, we will learn to define vertex shader attributes. For now, let's assume
that we have the avertexPosition attribute and that it will represent vertex coordinates
inside the vertex shader.

The WebGL function that allows pointing attributes to the currently bound VBOs is
vertexAttribPointer. The following is its signature:

gl.vertexAttribPointer (Index, Size, Type,Norm, Stride,Offset) ;
Let us describe each parameter individually:

Index: An attribute's index that we are going to map the currently bound buffer to.

Size: Indicates the number of values per vertex that are stored in the currently
bound buffer.

¢ Type: Specifies the data type of the values stored in the current buffer. It is one
of the following constants: FIXED, BYTE, UNSIGNED BYTE, FLOAT, SHORT, or
UNSIGNED SHORT.

¢ Norm: This parameter can be set to true or false. It handles numeric conversions
that lie out of the scope of this introductory guide. For all practical effects, we will
set this parameter to false.

& Stride: If stride is zero, then we are indicating that elements are stored sequentially
in the buffer.

¢ Offset: The position in the buffer from which we will start reading values for the
corresponding attribute. It is usually set to zero to indicate that we will start reading
values from the first element of the buffer.
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*  vertexAttribPointer defines a pointer for reading information

%\ from the currently bound buffer. Remember that an error will be

generated if there is no VBO currently bound.

Finally, we just need to activate the vertex shader attribute. Following our example,

we just need to add:

gl.enableVertexAttribArray (aVertexPosition);

The following diagram summarizes the mapping procedure:

Pointing an attribute to the currently bound VBO

1 - gl.bindBuffer(gl.ARRAY BUFFER, myBuffer);

:‘1.2‘5.5|4.?|3.1‘0‘2I5‘

Attribute: aVertexPosition

\ J\ J ! J
I I

aVertexPosition = (1.2,5.5,4.7)
aVartexPosition = (3.1,0,2)

aVertexPosition = (7,3,4.5)

Takes three elements every time

3 - gl.enableVertexArrayAttrib(aVertexPosition);

2 - gl.vertexAttribPointer (aVertexPosition, 3, gl.FI

OAT, false, 0, 0);

Once we have defined our VBOs and we have mapped them to the corresponding vertex

shader attributes, we are ready to render!

To do this, we use can use one of the two API functions: drawArrays or drawElements.

The drawArrays and drawElements functions

The functions drawArrays and drawElements are used for writing on the framebuffer.

drawArrays uses vertex data in the order in which it is defined in the buffer to create the
geometry. In contrast, drawElements uses indices to access the vertex data buffers and

create the geometry.
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Both drawArrays and drawElements will only use enabled arrays. These are the vertex
buffer objects that are mapped to active vertex shader attributes.

In our example, we only have one enabled array: the buffer that contains the vertex
coordinates. However, in a more general scenario, we can have several enabled arrays.
For instance, we can have arrays with information about vertex colors, vertex normals
texture coordinates, and any other per-vertex data required by the application. In this
case, each one of them would be mapped to an active vertex shader attribute.

. Using several VBOs
5\ . . )
Q In the next chapter, we will see how we use a vertex normal buffer in addition to

vertex coordinates to create a lighting model for our geometry. In that scenario,
we will have two active arrays: vertex coordinates and vertex normals.

Using drawArrays

We will call drawArrays when information about indices is not available. In most cases,
drawArrays is used when the geometry is so simple that defining indices is an overkill; for
instance, when we want to render a triangle or a rectangle. In that case, WebGL will create
the geometry in the order in which the vertex coordinates are defined in the VBO. So if you
have contiguous triangles (like in our trapezoid example), you will have to repeat these
coordinates in the VBO.

If you need to repeat a lot of vertices to create geometry, probably drawArrays is not the
best way to go. The more vertex data you duplicate, the more calls you will have on the
vertex shader. This could reduce the overall application performance since the same vertices
have to go through the pipeline several times. One for each time that they appear repeated
in the respective VBO.

[3a1
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Using drawArrays
Y

r 3

On the x-y plane (discarding z-coordinate)

i e

(0,0)
(10,20)
(20,0)
(30,20)
(40,0)

B w e = O

Vertex array = [0,0,10,20,20,0,10,20,20,0,30,20,20,0,30,20,40,0]
Triangle 1 Triangle 2 Triangle 3

drawArrays uses the vertex data in the order they are defined in the vertex array

The signature for drawArrays is:

gl.drawArrays (Mode, First, Count)
Where:

¢ Mode: Represents the type of primitive that we are going to render. Possible
values for mode are: g1.POINTS, gl.LINE STRIP,gl.LINE LOOP, gl.LINES,
gl.TRIANGLE STRIP,gl.TRIANGLE FAN, and gl.TRIANGLES (more about this
in the next section).

First: Specifies the starting element in the enabled arrays.

Count: The number of elements to be rendered.

From the WebGL specification:
s "When drawArrays is called, it uses count sequential elements from each
enabled array to construct a sequence of geometric primitives, beginning with
' the element first. Mode specifies what kinds of primitives are constructed and
how the array elements construct those primitives."
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Unlike the previous case where no IBO was defined, drawElements allows us to use the
IBO, to tell WebGL how to render the geometry. Remember that drawArrays uses VBOs.
This means that the vertex shader will process repeated vertices as many times as they
appear in the VBO. Contrastingly, drawElements uses indices. Therefore, vertices are
processed just once, and can be used as many times as they are defined in the IBO. This
feature reduces both the memory and processing required on the GPU.

Let's revisit the following diagram of this chapter:

Vertex and Indices

m Vertex Coordinates

0 (0,0)

1 (10,10)

2 (20,0)

3 (30,10)
2 4 (40,0

coordinates

Vertexarray= [0,0,10,10,20,0,30,10,40,0] ~ WEEE) VertexBuffer

Indexarray=[0,2,1,1,2,3,2/4,3]
i ‘IndexBuffer
| triangles

Trianglesin the index arrayare usually but not necessarily defined
counter-clockwise.

When we use drawElements, we need at least two buffers: a VBO and an IBO. The vertex
shader will get executed on each vertex in the VBO and then the rendering pipeline will
assemble the geometry into triangles using the IBO.

When using drawElements, you need to make sure that the corresponding
IBO is currently bound.
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The signature for drawElements is:

gl.drawElements (Mode, Count, Type, Offset)
Where:

¢ Mode: Represents the type of primitive that we are going to render. Possible values
for mode are POINTS, LINE STRIP, LINE LOOP, LINES, TRIANGLE STRIP,
TRIANGLE_ FAN, and TRIANGLES (more about this later on).

Count: Specifies the number of elements to be rendered.

Type: Specifies the type of the values in indices. Must be UNSIGNED BYTE
or UNSIGNED SHORT, as we are handling indices (integer numbers).

¢ Offset: Indicates which element in the buffer will be the starting point for rendering.
It is usually the first element (zero value).

WebGL inherits without any change this function from the OpenGL ES 2.0
specification. The following applies:

% "When drawElements is called, it uses count sequential elements from an
= enabled array, starting at offset to construct a sequence of geometric primitives.
Mode specifies what kinds of primitives are constructed and how the array elements
construct these primitives. If more than one array is enabled, each is used."

Putting everything together

| guess you have been waiting to see how everything works together. Let's start with some
code. Let's create a simple WebGL program to render a square.

Time for action - rendering a square

Follow the given steps:

1. Openthefile ch Square.html in your favorite HTML editor (ideally one that
supports syntax highlighting like Notepad++ or Crimson Editor).
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2. Let's examine the structure of this file with the help of the following diagram:

Web Page File WebGL application

G : JavaScript Code
Vertex Shader '

3 * getGLContext

1

initProgram

1

Geometry processing is initBuffers
accelerated since shaders "
execute in the GPU

renderLoop

1

drawScene

<body onload='runWebGLApp () '>

When the page is loaded executes runWebGLApp

3. The web page contains the following:

o Thescript <script id="shader-fs" type="x-shader/x-
fragment" > contains the fragment shader code.

o Thescript <script id="shader-vs" type="x-shader/x-vertex"s
contains the vertex shader code. We will not be paying attention to these
two scripts as these will be the main point of study in the next chapter. For
now, let's notice that we have a fragment shader and a vertex shader.

o The next script on our web page <script id="code-js" type="text/
javascript"> contains all the JavaScript WebGL code that we will need.
This script is divided into the following functions:
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o getGLContext: Similar to the function that we saw in the previous chapter,
this function allows us to get a WebGL context for the canvas present in the
web page (ch_Square.html).

o initProgram: This function obtains a reference for the vertex shader and
the fragment shader present in the web page (the first two scripts that we
discussed) and passes them along to the GPU to be compiled. More about
this in the next chapter.

o initBuffers: Let's take a close look at this function. It contains the API calls
to create buffers and to initialize them. In this example, we will be creating
a VBO to store coordinates for the square and an IBO to store the indices of
the square.

o renderLoop: This function creates the rendering loop. The application
invokes renderLoop periodically to update the scene (using the
requestAnimFrame function).

o drawScene: This function maps the VBO to the respective vertex buffer
attribute and enables it by calling enableVertexAttribArray. It then
binds the IBO and calls the drawElements function.

o Finally, we get to the <body> tag of our web page. Here we
invoke runWebGLApp the main function, ,which is executed by
the standard JavaScript onLoad event of the DOM document with
the following instruction:

<body onLoad='runWebGLApp () '>

Open the file ch2_Square.html in the HTML5 browser of your preference
(Firefox, Safari, Chrome, or Opera).

You will see four tabs showing the code of: WebGL JS (JavaScript), Vertex Shader,
Fragment Shader, and HTML. You will always need these four elements in your web
page to write a WebGL app.

If the WebGL JS tab is not active, select it.
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7. Scroll down to the initBuffers function. Please pay attention to the diagram that
appears as a comment before the function. This diagram describes how the vertices
and indices are organized. You should see something like the following screenshot:

WebGL Beginner's Guide - Chapter 2
Rendering a Square [Pususnwa]

WebGL uses buffers to store and process vertex and index data. The mechanism is the same whether we are rendering a simple object like a square or a racing car as we
will see later on

of the square

e £ n: eates a v buffer and binds the verd

quareVertexBuffer = gl.createBuffer():
gl.bindBuffer (g1.ARRAY BUFFER, square YBuffer) ;
gl.bufferData (g1.ARRAY BUFFER, new Fl Array(vertices), gl.STATIC DR
gl.bindBuffer (g1.ARRAY BUFFER, rmll):
« i, B

WebGL1S = Vertex Shader  Fragment Shader  HTML

8. Go back to the text editor. If you have closed ch Square . html, open it again.
9. Gotothe initBuffers function.

10. Modify the buffer array and index array so that the resulting figure is a pentagon
instead of a square. To do this, you need to add one vertex to the vertex array and
define one more triangle in the index array.

11. save the file with a different name and open it in the HTML5 browser of your
preference to test it.

What just happened?

You have learned about the different code elements that conform to a WebGL app. The
initBufferrs function has been examined and modified for rendering a different figure.

[401
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Go to the Fragment Shader and change the color of your pentagon.

1
‘Q The format is (red, green, blue, alpha). Alpha is always 1.0 (for now), and

the first three arguments are float numbers in the range 0.0 to 1.0.

Remember to save the file after making the changes in your text editor and then open it in
the HTML5 browser of your preference to see the changes.

Let's revisit the signature of the drawElements function:

gl.drawElements (Mode, Count, Type, Offset)

The first parameter determines the type of primitives that we are rendering. In the following
time for action section, we are going to see with examples the different rendering modes.

Time for action - rendering modes

Follow the given steps:

1. Openthefile ch RenderingModes.html in the HTMLS5 browser of your
preference. This example follows the same structure as discussed in the
previous section.

2. Select the WebGL JS button and scroll down to the initBuffer function.

3. You will see here that we are drawing a trapezoid. However, on screen you will see
two triangles! We will see how we did this later.

[al
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4. At the bottom of the page, there is a combobox that allows you to select the different
rendering modes that WebGL provides, as shown in the following screenshot:

WebGL Beginner's Guide - Chapter 2
Rendering a Square [ PUBLISHING ]

WebGL usas buffers lo store and process vertax and index data. The machanism is the same wheather we are randenng a simple objact ke a square or a racing car as we
will see later on,

@

Wel

I Plaase select one option: TRIANGLES -

5. When you select any option from this combobox, you are changing the value of the
renderingMode variable defined at the top of the WebGL JS code (scroll up if you
want to see where it is defined).

6. To see how each option modifies the rendering, scroll down to the
drawScene function.

7. You will see there that after binding the IBO trapezoidIndexBuffer with the
following instruction:

gl.bindBuffer (gl.ELEMENT ARRAY BUFFER, trapezoidIndexBuffer);

you have a switch statement where there is a code that executes, depending on the
value of the renderingMode variable:

case 'TRIANGLES': ({

}
case 'LINES': ({
}
case'POINTS': {
}

[42]
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8. For each mode, you define the contents of the JavaScript array indices. Then, you
pass this array to the currently-bound buffer (t rapezoidIndexBuffer) by using
the buf ferData function. Finally, you call the drawElements function.

9. Let's see what each mode does:

Mode Example Description

TRIANGLES When you use the TRIANGLES mode,
WebGL will use the first three indices
defined in your IBO for constructing the first
triangle, the next three for constructing the
second triangle, and so on. In this example,
we are drawing two triangles, which can

be verified by examining the following
indices JavaScript array that populates
the IBO:

indices = [0,1,2,2,3,4];

LINES The LINES mode will instruct WebGL
to take each consecutive pair of indices
defined in the IBO and draw lines taking the

coordinates of the corresponding vertices.

For instance indices =
[1,3,0,4,1,2,2,3]; willdraw four
lines: from vertex number 1 to vertex
number 3, from vertex number 0 to vertex
number 4, from vertex number 1 to vertex
number 2, and from vertex number 2 to
vertex number 3.

POINTS When we use the POINTS mode, WebGL

will not generate surfaces. Instead, it will
render the vertices that we had defined
using the index array.

In this example, we will only render vertices
number 1, number 2, and number 3 with
indices = [1,2,3];
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Mode

Example

Description

LINE LOOP

LINE STRIP

TRIANGLE
STRIP

TRIANGLE FAN

Bl |

LINE LOOP draws a closed loop
connecting the vertices defined in the
IBO to the next one. In our case, it will be
indices = [2,3,4,1,0];

It is similar to LINE_LOOP. The difference
here is that WebGL does not connect the
last vertex to the first one (not a closed
loop).

The indices JavaScript array will be
indices = [2,3,4,1,0];

TRIANGLE STRIP draws connected
triangles. Every vertex specified after the
first three (in our example, vertices number
0, number 1, and number 2) creates a new
triangle.

If we have indices = [0,1,2,3,4];,
then we will generate the triangles:

(0,1,2),(1,2,3), and (2,3,4).

TRIANGLE_ FAN creates triangles in

a similar way to TRIANGLE _STRIP.
However, the first vertex defined in the IBO
is taken as the origin of the fan (the only
shared vertex among consecutive triangles).

In our example, indices =
[0,1,2,3,4];

will create the triangles: (0,1,2) and (0,3,4).

Now let's make some changes:

10. Edit the web page (ch_RenderingModes.html) so that when you select the
option TRIANGLES, you render the trapezoid instead of two triangles.
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[ Q You need one extra triangle in the indices array. ]

11. save the file and test it in the HTML5 browser of your preference.

12. Edit the web page so that you draw the letter 'M' using the option LINES.

[ Q You need to define four lines in the indices array. ]

13. Just like before, save your changes and test them in your HTML5 browser.

14. Using the LINE_1.0OP mode, draw only the boundary of the trapezoid.

What just happened?

We have seen in action through a simple exercise the different rendering modes supported
by WebGL. The different rendering modes determine how to interpret vertex and index data
to render an object.

WehGL as a state machine: buffer manipulation

There is some information about the state of the rendering pipeline that we can
retrieve when we are dealing with buffers with the functions: getParameter,
getBufferParameter, and isBuffer.

Just like we did in the previous chapter, we will use getParameter (parameter) where
parameter can have the following values:
¢ ARRAY BUFFER BINDING: It retrieves a reference to the currently-bound VBO
¢ ELEMENT ARRAY BUFFER BINDING: It retrieves a reference to the
currently-bound IBO

Also, we can enquire about the size and the usage of the currently-bound VBO and IBO using
getBufferParameter (type, parameter) where type can have the following values:

¢ ARRAY BUFFER: To refer to the currently bound VBO
¢ ELEMENT ARRAY BUFFER: To refer to the currently bound IBO

451
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And parameter can be:

& BUFFER SIZE: Returns the size of the requested buffer

& BUFFER USAGE: Returns the usage of the requested buffer

Your VBO and/or IBO needs to be bound when you enquire about the
% state of the currently bound VBO and/or IBO with getParameter
’ and getBufferParameter.

Finally, isBuffer (object) will return true if the cbject is a WebGL buffer, false, when
the buffer is invalid, and an error if the object being evaluated is not a WebGL buffer. Unlike

getParameter and getBufferParameter, isBuf fer does not require any VBO or IBO to
be bound.

Time for action — enquiring on the state of buffers

Follow the given steps:

1. Openthefile ch2_StateMachine.html in the HTML5 browser of your preference.

2. Scroll down to the initBuf fers method. You will see something similar to the
following screenshot:

WebGL Beginner's Guide - Chapter 2 - State Machine

Getting information from WebGL with getParameter and getBufferParameter [m-.w«]

Thes example shows how 1o recover miormation about the current VBO and 18

cea), yl.STATIC DRAN)

gl.bindRuffer (gl.ELEMENT AREAY | y OOl 1
gl.bufferData {gl.ELEMENT ARRAY BUFFER, new t16h y{indices), gl.STATIC DRANW):

if (coneVercexs ameter (gl. A BOFFER_BINDING) ) {
vbo_name = =

}

1f (coneInde rameter (gl.ELEMENT_ARRAY_BUFFER_BINDING) ) {
ibo name = :

¥

vbo_size = gl.getBufferParsmeter (gl.ARRAY BUFFER, gl.BUFFER.
vbo_usage = gl.getBafferParamecer(gl.ARRAY BUFFER, gl.BUFFER US:

ibo_mize = gl.getBufferBarsmeter{gl.FLEMENT ARRAY RUFFER, gl.BUFFER_!
ibo_uaage = gl.gevBafferParamecer (gl.ELEMENT ARRAY BUFFER, gl.BOFFER |

Bufler Mame

ces a VBO® No

VBO:  conevetexBuer 132

VertexBuffer 8 VEO? Yes

1BO: conelndexBuffer
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3. Pay attention to how we use the methods discussed in this section to retrieve
and display information about the current state of the buffers.

4. Theinformation queried by the initBuf fer function is shown at the bottom
portion of the web page using updateInfo (if you look closely at runWebGLApPP
code you will see that updateInfo is called right after calling initBuffers).

5. At the bottom of the web page (scroll down the web page if necessary), you will see
the following result:

Buffer Name Size Usage

. s vertices a VBO?

WBO: coneVertexBuffer 132 35044 ! rtices a VBOT No
Is coneVertexBuffer a VBO? Yes

IBD: conelndexBuffer 60 35044

6. Now, open the same file (ch2_StateMachine.html) in a text editor.

7. Cutthe line:
gl.bindBuffer (gl.ARRAY BUFFER,null) ;

and paste it right before the line:

conelIndexBuffer = gl.createBuffer();

8. What happens when you launch the page in your browser again?

9. Why do you think this behavior occurs?

What just happened?

You have learned that the currently bound buffer is a state variable in WebGL. The buffer

is bound until you unbind it by calling bindBuf fer again with the corresponding type
(ARRRAY BUFFER Oor ELEMENT ARRAY BUFFER) as the first parameter and with null as the
second argument (that is, no buffer to bind). You have also learned that you can only query
the state of the currently bound buffer. Therefore, if you want to query a different buffer,
you need to bind it first.

Have a go hero - add one validation

Modify the file so that you can validate and show on screen whether the indices array
and the coneIndexBuffer are WebGL buffers or not.

[a11



Rendering Geometry

J You will have to modify the table in the HTML body of the file to allocate
Q space for the new validations.

You will have to modify the updateInfo function accordingly.

Advanced geometry loading techniques: JavaScript
Object Notation (JSON) and AJAX

So far, we have rendered very simple objects. Now let's study a way to load the geometry
(vertices and indices) from a file instead of declaring the vertices and the indices every time
we call initBuffers. To achieve this, we will make asynchronous calls to the web server
using AJAX. We will retrieve the file with our geometry from the web server and then we will
use the built-in JSON parser to convert the context of our files into JavaScript objects. In our
case, these objects will be the vertices and indices array.

Introduction to JSON - JavaScrint Object Notation

JSON stands for JavaScript Object Notation. It is a lightweight, text-based, open format
used for data interchange. JSON is commonly used as an alternative to XML.

The JSON format is language-agnostic. This means that there are parsers in many languages
to read and interpret JSON objects. Also, JSON is a subset of the object literal notation of
JavaScript. Therefore, we can define JavaScript objects using JSON.

Let's see how this work. Assume for example that we have the model object with two
arrays vertices and indices (does this ring any bells?). Say that these arrays contain
the information described in the cone example (ch2 Cone.html) as follows:

vertices =[1.5, 0, O,
-1.5, 1, O,
-1.5, 0.809017, 0.587785,
-1.5, 0.309017, 0.951057,
-1.5, -0.309017, 0.951057,
-1.5, -0.809017, 0.587785,
-1.5, -1, O,
-1.5, -0.809017, -0.587785,
-1.5, -0.309017, -0.951057,
-1.5, 0.309017, -0.951057,
-1.5, 0.809017, -0.587785] ;
indices = [0, 1, 2,

[481




Chapter 2

O O O O O O o o o

P OV 00 J 0 Ul B W

o -~
[

P OV 0 J o0 U1 & W N
o ~

7

Following the JSON notation, we would represent these two arrays as an object, as follows:

var model = {
"vertices" : [1.5,
-1.5, 1, O,
-1.5, 0.809017,
-1.5, 0.309017,
-1.5, -0.309017,
-1.5, -0.809017,
-1.5, -1, O,
-1.5, -0.809017,
-1.5, -0.309017,
-1.5, 0.309017,
-1.5, 0.809017,
"indices" : [0, 1,
o, 2, 3,
o, 3, 4,
0o, 4, 5,
0, 5, 6,
o, 6, 7,
o, 7, 8,
o, 8, 9,
o, 9, 10,
0, 10, 11};

0, 0,

.587785,
.951057,
.951057,
.587785,

o O O o

-0.587785,
-0.951057,
-0.951057,
-0.587785],
2,

From the previous example, we can infer the following syntax rules:

* 6 6 o o

The extent of a JSON object is defined by curly brackets {}

Attributes in a JSON object are separated by comma,

There is no comma after the last attribute

Each attribute of a JSON object has two parts: a key and a value

The name of an attribute is enclosed by quotation marks
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¢ Each attribute key is separated from its corresponding value with a colon :

¢ Attributes of the type Array are defined in the same way you would define them
in JavaScript

Most modern web browsers support native JSON encoding and decoding through the built-in
JavaScript object JSON. Let's examine the methods available inside this object:

Method Description
var myText = JSON. We use JSON . stringify for converting
stringify (myObject) JavaScript objects to JSON-formatted text.
var myObject = JSON. We use JSON . parse for converting text
parse (myText) into JavaScript objects.

Let's learn how to encode and decode with the JSON notation.

Time for action - JSON encoding and decoding

Let's create a simple model: a 3D line. Here we will be focusing on how we do JSON encoding
and decoding. Follow the given steps:

1. Goto your Internet browser and open the interactive JavaScript console. Use the
following table for assistance:

Web browser  Menu option Shortcut keys (PC / Mac)

Firefox Tools | Web Developer | Web Console Ctrl + Shift + K / Command + Alt + K
Safari Develop | Show Web Inspector Ctrl + Shift + C / Command + Alt + C
Chrome Tools | JavaScript Console Ctrl + Shift + J / Command + Alt + J

2. Create a JSON object by typing:

var model = {"vertices":[0,0,0,1,1,1], "indices":[0,1]};

3. Verify that the model is an object by writing:
typeof (model)

4. Now, let's print the mode1l attributes. Write this in the console (press Enter at the
end of each line):

model .vertices
model.indices
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5. Now, let's create a JSON text:

var text = JSON.stringify (model)
alert (text)

6. What happens when you type text .vertices?

As you can see, you get an error message saying that text .vertices is not
defined. This happens because text is not a JavaScript object but a string with
the peculiarity of being written according to JSON notation to describe an object.
Everything in it is text and therefore it does not have any fields.

7. Now let's convert the JSON text back to an object. Type the following:

var model2 = JSON.parse (text)
typeof (model2)
model2.vertices

What just happened?

We have learned to encode and decode JSON objects. The example that we have used is
relevant because this is the way we will define our geometry to be loaded from external files.
In the next section, we will see how to download geometric models specified with JSON from
a web server.

Asynchronous loading with AJAK

The following diagram summarizes the asynchronous loading of files by the web browser
using AJAX:

1. Request File
—_— 2. AJAX Request 3. Retrieve file

4. Asynch response \ E’
- \ Q\\

o
5. Handle Geometry I(__‘
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Let's analyze this more closely:

1.

Request file: First of all, we should indicate the filename that we want to load.
Remember that this file contains the geometry that we will be loading from the
web server instead of coding the JavaScript arrays (vertices and indices) directly
into the web page.

AJAX request: We need to write a function that will perform the AJAX request.
Let's call this function 1oadFile. The code can look like this:

function loadFile (name) {
var request = new XMLHttpRequest () ;
var resource = http:// + document.domain + name;
request.open ("GET", resource) ;

request.onreadystatechange = function() {
if (request.readyState == 4)
if (request.status == 200 || (request.status == 0 &&
document .domain.length == 0) {

handlelLoadedGeometry (name, JSON.parse (request . responseText) ) ;

}

else {
alert ('There was a problem loading the file :' + name);
alert ('HTML error code: ' + request.status);

}
}
}

request.send () ;

}

If the readyState is 4, it means that the file has finished downloading.

More about this function later. Let's say for now that this function will perform the
AJAX request.

Retrieve file: The web server will receive and treat our request as a regular
HTTP request. As a matter of fact, the server does not know that this request

is asynchronous (it is asynchronous for the web browser as it does not wait for
the answer). The server will look for our file and whether it finds it or not, it will
generate a response. This will take us to step 4.

Asynchronous response: Once a response is sent to the web browser, the callback
specified in the 1oadFile function is invoked. This callback corresponds to the
request method onreadystatechange. This method examines the answer. If

we obtain a status different from 200 (OK according to the HTTP specification), it
means that there was a problem. Hopefully the specific error code that we get on
the status variable (instead of 200) can give us a clue about the error. For instance,
code 404 means that the resource does not exist. In that case, you would need to
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check if there is a typo, or you are requesting a file from a directory different from
the directory where the page is located on the web server. Different error codes will
give you different alternatives to treat the respective problem. Now if we get a 200
status, we can invoke the handlelLoadedGeometry function.

. Thereis an exception where things can work, even if you do not
% have a web server. If you are running the example from your
‘=" computer, the ready state will be 4 but the request status will be

0. This is a valid configuration too.

5. Handling the loaded model: In order to keep our code looking pretty, we can
create a new function to process the file retrieved from the server. Let's call this
handleLoadedGeometry function. Please notice that in the previous segment
of code, we used the JSON parser in order to create a JavaScript object from the
file before passing it along to the handlelLoadedGeometry function. This object
corresponds to the second argument (model) as we can see here. The code for the
handleLoadedGeometry function looks like this:

function handleLoadedGeometry (name,model) {
alert (name + ' has been retrieved from the server');
modelVertexBuffer = gl.createBuffer() ;
gl.bindBuffer (gl .ARRAY BUFFER, modelVertexBuffer) ;
gl.bufferData (gl.ARRAY BUFFER, new Float32Array(model.vertices),
gl. STATIC_DRAW) ;
modelIndexBuffer = gl.createBuffer();
gl.bindBuffer (gl.ELEMENT ARRAY BUFFER, modelIndexBuffer) ;
gl.bufferData(gl. ELEMENT_ARRAY BUFFER,
new Uintlé6Array (model.indices), gl.STATIC DRAW) ;
gl.bindBuffer(gl. ELEMENT_ARRAY BUFFER, null) ;
gl.bindBuffer (gl.ARRAY BUFFER,null) ;

}

If you look closely, this function is very similar to one of our functions that we

saw previously: the initBuffers function. This makes sense because we cannot
initialize the buffers until we retrieve the geometry data from the server. Just like
initBuffers, we bind our VBO and IBO and pass them the information contained
in the JavaScript arrays of our model object.

If you do not have a web server, we recommend you install a lightweight web server such as
lighttpd (http://www.lighttpd.net/).



http://www.lighttpd.net/
http://www.lighttpd.net/
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Please note that if you are using Windows:
1. The installer can be found at http://en.wlmp-project.net/downloads.
php?cat=1ighty

2. Once installed, you should go to the subfolder bin and double-click on
Service-Install.exe toinstall lighttpd as a Windows service.

3. You should copy Chapter 2's exercises in the subfolder htdocs or change lighttpd's
configuration file to point to your working directory (which is the one you have used
to run the examples so far).

4. To be able to edit server.document -root in the file conf /1ighttpd-inc.
conf you need to run a console with administrative privileges.

Working around the weh server requirement

If you have Firefox and do not want to install a web server, you can change
strict origin policyto false in about:config.

If you are using Chrome and do not want to install a web server, make sure you run it from
the command line with the following modifier:

--allow-file-access-from-files

Let's use AJAX + JSON to load a cone from our web server.

Time for action - loading a cone with AJAK + JSON

Follow the given steps:

1. Make sure that your web server is running and access the file ch2 AJAXJSON.html
using your web server.

1
‘Q You know you are using the web server if the URL in the address

bar starts with localhost/..instead of file://. ..
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2.

3.
4.

The folder where you have the code for this chapter should look like this:

Index of /code/

Name Last Modified Size Type
Parent Directory/ Directory
caal 2011-Jun-13 0 Directory
ja/ 2011-Jun-14 Directory
models/ 2011-Jun-21 I Directory
| ch2 RjaxJSON.html | 2011-Jun-21 6.2K text/html
chZ_Cone.html 2011-Jun-21 5.7K text/html
ch2_Nissan.html 2011-Jun-21 5.9K text/html
ch2_ RenderingModes.html 2011-Jun-16 g.8K text/html
chZ_Sguare.html 2011-Jun-15 6.1K text/html
ch2_StateMachine.html 2011-Jun-17 E.ZK text/html
packt.gif 2011-Jun-13 Z2.8K image/gif
LightTPD/1.4.28 (Win32

Clickon ch2 AjaxJSON.html.

The example will load in your browser and you will see something similar to this:

madelsicane son has been retneved fom e server
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5. When you click on the JavaScript alert, you will see:

WebGL Beginner's Guide - Chapter 2

Asynchronous Loading with JSON and AJAX

Plaase review the functions loacMode! and handieLoaded™ode! to undenstand how wa can load comples geometnes from files instesd of soedifying them dinectly

hade

ion lnitfr {
fgShader = utila.gerShader (gl
vaShader = utils.getShader (gl, ‘shs

pEg = gl.cresteFrogrami):

6. Asthe page says, please review the functions 1oadModel and
handleLoadedModel to better understand the use of AJAX and JSON
in the application.

7. What does the modelLoaded variable do? (check the source code).

8. See what happens when you change the color in the file models/cone . §son and
reload the page.

9. Modify the coordinates of the cone in the file models/cone. json and reload the
page. Here you can verify that WebGL reads and renders the coordinates from the
file. If you modify them in the file, the geometry will be updated on the screen.

What just happened?

You learned about using AJAX and JSON to load geometries from a remote location (web
server) instead of specifying these geometries (using JavaScript arrays) inside the web page.

Have a go hero - loading a Nissan GTX

Follow the given steps:

1. Open thefile ch2 Nissan.html using your web server. Again, you should see
something like http://localhost./.../code

2. You should see something like this:



http://localhost./.../code
http://localhost./.../code
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WebGL Beginner's Guide - Chapter 2 [ ]

Rendering a Nissan GTX

3. The reason we selected the mode LINES instead of the model TRIANGLES
(explained previously in this chapter) is to visualize better the structure of this car.

4. Find the line where the rendering mode is being selected and make sure you
understand what the code does.

Next, go to the drawScene function.

6. Inthe drawElements instruction, change the mode from g1 .LINES to
gl.TRIANGLES.

Refresh the page in the web browser (Ctrl + F5 for full refresh).

8. What do you see? Can you hypothesize about the reasons for this? What is
your rationale?

When the geometry is complex, the lighting model allows us to visualize it better. Without
lights, all our volumes will look opaque and it would be difficult to distinguish their parts
(just as in the previous case) when changing from LINES to TRIANGLES.

In the next chapter, we will see how to create a lighting model for our scene. Our work there
will be focused on the shaders and how we communicate information back and forth between
the WebGL JavaScript APl and the attributes, uniforms, and varyings. Do you remember them?
We mentioned when we were talking about passing information to the GPU.

[571




Rendering Geometry

In this chapter, we have discussed how WebGL renders geometry. Remember that there
are two kinds of WebGL buffers that deal with geometry rendering: VBOs and IBOs.

WebGL's rendering pipeline describes how the WebGL buffers are used and passed in the
form of attributes to be processed by the vertex shader. The vertex shader parallelizes
vertex processing in the GPU. Vertices define the surface of the geometry that is going to
be rendered. Every element on this surface is known as a fragment. These fragments are
processed by the fragment shader. Fragment processing also occurs in parallel in the GPU.
When all the fragments have been processed, the framebuffer, a two-dimensional array,
contains the image that is then displayed on your screen.

WebGL works as a state machine. As such, properties referring to buffers are available and
their values will be dependent on the buffer currently bound.

We also saw that JSON and AJAX are two JavaScript technologies that integrate really well
with WebGL, enabling us to load really complex geometries without having to specify them
inside our webpage.

In the next chapter, we will learn more about the vertex and fragment shaders and we will
see how we can use them to implement light sources in our WebGL scene.




In WebGL, we make use of the vertex and fragment shaders to create a
lighting model for our scene. Shaders allow us to define a mathematical model
that governs how our scene is lit. We will study different algorithms and see
examples about their implementation.

A basic knowledge of linear algebra will be really useful to help you understand the contents
of this chapter. We will use glMatrix, a JavaScript library that handles most of the vector

and matrix operation, so you do not need to worry about the details. Nonetheless, it is
paramount to have a conceptual understanding of the linear algebra operations that we

will discuss.

In this chapter, we will:

Learn about light sources, normals, and materials

Learn the difference between shading and lighting

*

Use the Goraud and Phong shading methods, and the Lambertian and Phong
lighting models

Define and use uniforms, attributes, and varyings
Work with ESSL, the shading language for WebGL

Discuss relevant WebGL APl methods that relate to shaders

* & o o

Continue our analysis of WebGL as a state machine and describe the attributes
relevant to shaders that can be set and retrieved from the state machine
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In the real world, we see objects because they reflect light. Any object will reflect light
depending on the position and relative distance to the light source; the orientation of
its surface, which is represented by normal vectors and the material of the object which
determines how much light is reflected. In this chapter, we will learn how to combine

these three elements in WebGL to model different illumination schemes.

Scene Lighting

Light Source

@

L&

Vertex Normals

!

—

Materials

Light Seurce

@

Camera

Different materials reflect different
amounts of light.

Camera

Normals allows us to caleulate the
direction of light that is reflected.

If the reflected light lies outside of our
field of vision (camera) then we will not
see it

Lights

Light sources can be positional or directional. A light source is called positional when its
location will affect how the scene is lit. For instance, a lamp inside a room falls under this
category. Objects far from the lamp will receive very little light and they will appear obscure.
In contrast, directional lights refer to lights that produce the same result independent from
their position. For example, the light of the sun will iluminate all the objects in a terrestrial

scene, regardless of their distance from the sun.
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A positional light is modeled by a point in space, while a directional light is modeled with a
vector that indicates its direction. It is common to use a normalized vector for this purpose,
given that this simplifies mathematical operations.

Normals are vectors that are perpendicular to the surface that we want to illuminate. Normals
represent the orientation of the surface and therefore they are critical to model the interaction
between a light source and the object. Each vertex has an associated normal vector.

We make use of a cross product for calculating normals.

Cross Product:

By definition, the cross product of vectors A and B will be perpendicular
to both vectors A and B.

Let's break this down. If we have the triangle conformed by vertices po, p1, and p2,
then we can define the vector v1 as p2-p1 and the vector v2 as p0-p1. Then the normal
is obtained by calculating the cross product vi x v2. Graphically, this procedure looks
something like the following:

Calculating the normals
vl=pl-p0
pl
N =vlxv2
pQ
p2
v2=p2-p0d

Then we repeat the same calculation for each vertex on each triangle. But, what about the
vertices that are shared by more than one triangle? The answer is that each shared vertex
normal will receive a contribution from each of the triangles in which the vertex appears.
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For example, say that the vertex p1 is being shared by triangles #1 and #2, and we have
already calculated the normals for the vertices of triangle #1. Then, we need to update the
p1 normal by adding up the calculated normal for p1 on triangle #2. This is a vector sum.
Graphically, this looks similar to the following:

Updating normals for shared vertices

N
N =N1+N2

p4

Similar to lights, normals are usually normalized to facilitate mathematical operations.

The material of an object in WebGL can be modeled by several parameters, including its
color and its texture. Material colors are usually modeled as triplets in the RGB space
(Red, Green, Blue). Textures, on the other hand, correspond to images that are mapped
to the surface of the object. This process is usually called Texture Mapping. We will see
how to perform texture mapping in Chapter 7, Textures.

We mentioned in Chapter 2, Rendering Geometry, that WebGL buffers, attributes, and
uniforms are used as input variables to the shaders and that varyings are used to carry
information between the vertex shader and the fragment shader. Let's revisit the pipeline
and see where lights, normals, and materials fit in.
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WebGL Rendering Pipeline Revisited

Extracts data from

aNormalAttribute

VBO (vertex normals)

aVertexAttribute

Extracts data from

VBO (vertex coordinates)

input

i.e. per-vertex
color, normals

output

i.e. lights, materials

Normals are defined on a vertex-per-vertex basis; therefore normals are modeled in WebGL
as a VBO and they are mapped using an attribute, as shown in the preceding diagram. Please
notice that attributes are never passed to the fragment shader.

Lights and materials are passed as uniforms. Uniforms are available to both the vertex
shader and the fragment shader. This gives us a lot of flexibility to calculate our lighting
model because we can calculate how the light is reflected on a vertex-by-vertex basis
(vertex shader) or on a fragment-per-fragment basis (fragment shader).

Remember that the vertex shader and fragment shader together are referred
/S to as the program.

Parallelism and the difference hetween attributes and uniforms

There is an important distinction to make between attributes and uniforms. When a draw
call is invoked (using drawArrays or drawElements), the GPU will launch in parallel
several copies of the vertex shader. Each copy will receive a different set of attributes.
These attributes are drawn from the VBOs that are mapped to the respective attributes.
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On the other hand, all the copies of the vertex shaders will receive the same uniforms,
therefore the name, uniform. In other words, uniforms can be seen as constants per
draw call.

Parallel procesing in the Vertex Shader The number of threads depends on the local GPU capabilities

VBO (cordinates) [

Attribute: aVertexNormal

= 1.0/ 02|07 0.0 |1.0/00 05|20| 00

Once lights, normals, and materials are passed to the program, the next step is to determine
which shading and lighting models we will implement. Let's see what this is about.

The terms shading and lighting are commonly interchanged ambiguously. However, they
refer to two different concepts: on one hand, shading refers to the type of interpolation that
is performed to obtain the final color for every fragment in the scene. We will explain this

in @ moment. Let's say here as well that the type of shading defines where the final color

is calculated—in the vertex shader or in the fragment shader; on the other hand, once the
shading model is established, the lighting model determines how the normals, materials,
and lights are combined to produce the final color. The equations for lighting models use
the physical principles of light reflection. Therefore, lighting models are also referred to in
literature as reflection models.
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Shading/interpolation methods

In this section, we will analyze two basic types of interpolation method: Goraud and
Phong shading.

The Goraud interpolation method calculates the final color in the vertex shader. The vertex
normals are used in this calculation. Then the final color for the vertex is carried to the
fragment shader using a varying variable. Due to the automatic interpolation of varyings,
provided by the rendering pipeline, each fragment will have a color that is a result of
interpolating the colors of the enclosing triangle for each fragment.

a The interpolation of varyings is automatic in the pipeline. No programming
A is required.

The Phong method calculates the final color in the fragment shader. To do so, each vertex
normal is passed along from the vertex shader to the fragment shader using a varying.
Because of the interpolation mechanism of varyings included in the pipeline, each fragment
will have its own normal. Fragment normals are then used to perform the calculation of the
final color in the fragment shader.

The two interpolation models can be summarized by the following diagram:

Shading/Interpolation Methods
Goraud Phong
@ ®

N NI/

[:] Computes the final color for the Pases the vertex normal to the
vertex using the vertex normal. fragment shader in a varying variable
Passes the calculated color to the
fragment shader in a varying variable

Varying color Varying normal
. v
[: Assigns the color for the fragment Computes the final color for the fragment

using the interpolated varying color . Lo
& P ¥ing using the respective interpolated normal

The interpolation of varyings is a feature of the pipeline. No programming is required.
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Again, please note here that the shading method does not specify how the final color for
every fragment is calculated. It only specifies where (vertex or fragment shader) and also the
type of interpolation (vertex colors or vertex normals).

Light reflection models

As previously mentioned, the lighting model is independent from the shading/interpolation
model. The shading model only determines where the final color is calculated. Now it is time
to talk about how to perform such calculations.

Lambertian reflection model

Lambertian reflections are commonly used in computer graphics as a model for diffuse
reflections, which are the kind of reflections where an incident light ray is reflected in many
angles instead of only in one angle as it is the case for specular reflections.

This lighting model is based on the cosine emission law or Lambert's emission law. It is
named after Johann Heinrich Lambert, from his Photometria, published in 1760.

The Lambertian reflection is usually calculated as the dot product between the surface
normal (vertex or fragment normal, depending on the interpolation method used) and
the negative of the light-direction vector, which is the vector that starts on the surface and
ends on the light source position. Then, the number is multiplied by the material and light
source colors.

Lambertian Reflectance

Final Diffuse Color
Light-Direction Vector .
Reflected Light

Light Source ® - Normal F= C:;Cm(—[,' N)

L \
N
Light Diffuse Color Material Diffuse Color

o
-
F
Surface

Final diffuse color calculation for fragment F

; —L-N = |-L||N|cosa
TN
a

If Land M are normalized then:

F —L'N= cosa

F=CCprosa

A Lambertian surface reflects lightin many directions




Chapter 3

Phong refiection model

The Phong reflection model describes the way a surface reflects the light as the sum of three
types of reflection: ambient, diffuse, and specular. It was developed by Bui Tuong Phong who
published it in his 1973 Ph.D. dissertation.

Phong Reflection Model

Reflected color is the result of combining three types of light-object interactions:

Phong

Ambient Diffuse Specular Reflection

Amount of light The incident light is Mirror-like reflection. The
present everywhere in reflected in many direction of the incoming
the scene. directions. It can be light and the direction of the
Independent from any modelled by a reflected outgoing light make
light source Lambertian surface. the same angle with respect

to the surface normal.

The ambient term accounts for the scattered light present in the scene. This term is
independent from any light source and it is the same for all fragments.

The diffuse term corresponds to diffuse reflections. Usually a Lambertian model is used for
this component.

The specular term provides mirror-like reflections. Conceptually, the specular reflection
will be at its maximum when we are looking at the object on an angle that is equal to the
reflected light-direction vector.

This is modeled by the dot product of two vectors, namely, the eye vector and the
reflected light-direction vector. The eye vector has its origin in the fragment and its end

in the view position (camera). The reflected light-direction vector is obtained by reflecting
the light-direction vector upon the surface normal vector. When this dot product equals 1
(by working with normalized vectors) then our camera will capture the maximum
specular reflection.
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The dot product is then exponentiated by a number that represents the shininess of the
surface. After that, the result is multiplied by the light and material specular components.

Specular Reflection

Final Specular Color Material Shininess
Light-Direction Vector Reflected Light \

- Normal Eve Vector Fs = C; Cm (R © E)ﬂ

Light Source o \

v, p _:. :
N VR _—¢
Light Specular Color Material Specular Color
<

R-E = |R||E]|cos
L ] IRIE| cos
N E If R and E are normalized then:
T
R-E = cosf

F = C,Cycos™ B

The specular reflection reaches its maximum when R and E have the same direction.

The ambient, diffuse, and specular terms are added to find the final color of the fragment.

Now it is time for us to learn the language that will allow us to implement the shading and
lighting strategies inside the vertex and fragment shaders. This language is called ESSL.

ESSL—OpenGl ES Shading Language

OpenGL ES Shading Language (ESSL) is the language in which we write our shaders. Its syntax
and semantics are very similar to C/C++. However, it has types and built-in functions that
make it easier and more intuitive to manipulate vectors and matrices. In this section,

we will cover the basics of ESSL so we can start using it right away.

This section is a summary of the official GLSL ES specification. It is a subset of
GLSL (the shading language for OpenGL).

%;%‘ You can find the complete reference at http://www.khronos.org/
registry/gles/specs/2.0/GLSL_ES Specification 1.0.17.
pdf
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Storage qualifier
Variable declarations may have a storage qualifier specified in front of the type:
¢ attribute: Linkage between a vertex shader and a WebGL application for per-vertex
data. This storage qualifier is only legal inside the vertex shader.

¢ uniform: Value does not change across the object being processed, and uniforms
form the linkage between a shader and a WebGL application. Uniforms are legal
in both the vertex and fragment shaders. If a uniform is shared by the vertex and
fragment shader, the respective declarations need to match.

¢ varying: Linkage between a vertex shader and a fragment shader for interpolated
data. By definition, varyings are necessarily shared by the vertex shader and the
fragment shader. The declaration of varyings needs to match between the vertex
and fragment shaders.

¢ const: a compile-time constant, or a function parameter that is read-only. They can
be used anywhere in the code of an ESSL program.

Tynes

ESSL provides the following basic types:

& void: For functions that do not return a value or for an empty parameter list
¢ bool: Aconditional type, taking on values of true or false
¢ int:Asigned integer

float: A single floating-point scalar

vec2: A two component floating-point vector

vec3: A three component floating-point vector

vec4: A four component floating-point vector

bvec2: A two component boolean vector

bvec3: A three component boolean vector

bvec4: A four component boolean vector

ivec2: A two component integer vector

ivec3: A three component integer vector

ivec4: A four component integer vector

® 6 6 O 6 0 O 6 0 o o

mat2: A 2x2 floating-point matrix
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mat3: A 3x3 floating-point matrix
mat4: A 4x4 floating-point matrix

sampler2D: A handle for accessing a 2D texture

* 6 o o

samplerCube: A handle for accessing a cube mapped texture

So an input variable will have one of the three qualifiers followed by one type. For example,
we will declare our vFinalColor varying as follows:

varying vec4 vFinalColor;

This means that the vFinalColor variable is a varying vector with four components.

We can refer to each one of the components of an ESSL vector by its index.
For example:

vFinalColor [3] will refer to the fourth element of the vector (zero-based vectors).
However, we can also refer to each component by a letter, as it is shown in the
following table:

{x,v,2z,w} Useful when accessing vectors representing points or vectors
{r,g9,b,a} Useful when accessing vectors representing colors
{s,t.p,q} Useful when accessing vectors that represent texture coordinates

So, for example, if we want to set the alpha channel (fourth component) of our variable
vFinalColor to 1, we can write:

vFinalColor[3] = 1.0;
or

vFinalColor.a =

|
=
o

We could also do this:

vFinalColor.w = 1.0;

In all three cases, we are referring to the same fourth component. However, given that
vFinalColor represents a color, it makes more sense to use the {r, g, b, a} notation.
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Also, it is possible to use the vector component notation to refer to subsets inside a vector.
For example (taken from page 44 in the GLSL ES 1.0.17 specification):

vecd v4;

v4.rgba; // is a vec4d and the same as just using v4,

v4.rgb; // is a vec3,

v4.b; // is a float,

V4 .XY; // is a vec2,

v4.xgba; // is illegal - the component names do not come from

// the same set.

Operators and functions

ESSL also provides many useful operators and functions that simplify vector and matrix
operations. According to the specification: the arithmetic binary operators add (+), subtract
(-), multiply (*), and divide (/) operate on integer and floating-point typed expressions
(including vectors and matrices). The two operands must be the same type, or one can be
a scalar float and the other a float vector or matrix, or one can be a scalar integer and the
other an integer vector. Additionally, for multiply (*), one can be a vector and the other a
matrix with the same dimensional size of the vector. These result in the same fundamental
type (integer or float) as the expressions they operate on. If one operand is a scalar and
the other is a vector or a matrix, the scalar is applied component-wise to the vector or the
matrix, with the final result being of the same type as the vector or the matrix. Dividing by
zero does not cause an exception but does result in an unspecified value.

¢ -x: The negative of the x vector. It produces the same vector in the exact
opposite direction.

¢ x+y:Sum of the vectors x and y. They need to have the same number
of components.

¢ x-vy: Subtraction of the vectors x and y. They need to have the same number
of components.

¢ x*y:If x and y are both vectors, then this operator yields a component-wise
multiplication. Multiply applied to two matrices return a linear algebraic matrix
multiplication, not a component-wise multiplication (for it, you must use the
matrixCompMult function).

x/y: The division operator behaves similarly to the multiply operator.

dot (x,vy) : Returns the dot product (scalar) of two vectors. They need to have the
same dimensions.

& cross(vec3 x, vec3 y):Returnsthe cross product (vector) of two vectors. They
have to be vec3.
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¢ matrixCompMult (mat x, mat y):Component-wise multiplication of matrices.
They need to have the same dimensions (mat2, mat3, or mat4).

normalize (x): Returns a vector in the same direction but with a length of 1.

reflect (t, n):Reflects the vector t along the vector n.

There are many more functions including trigonometry and exponential functions. We will
refer to those as we need them in the development of the different lighting models.

Let's see now a quick example of the shaders ESSL code for a scene with the
following properties:

¢ Lambertian reflection model: We account for the diffuse interaction between one
light source and our scene. This means that we will use uniforms to define the light
properties, the material properties, and we will follow the Lambert's Emission Law
to calculate the final color for every vertex.

¢ Goraud shading: We will interpolate vertex colors to obtain fragment colors
and therefore we need one varying to pass the vertex color information
between shaders.

Let's dissect first what the attributes, uniforms, and varyings will be.

Vertex attributes

We start by defining two attributes in the vertex shader. Every vertex will have:

attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;

Right after the attribute keyword, we find the type of the variable. In this case, this

is vec3, as each vertex position is determined by three elements (x, y, z). Similarly, the
normals are also determined by three elements (x, vy, z). Please notice that a position is a
point in tridimensional space that tells us where the vertex is, while a normal is a vector that
gives us information about the orientation of the surface that passes along that vertex.

Remember that attributes are only available for use inside the vertex shader.

Uniforms are available to both the vertex shader and the fragment shader. While attributes
are different every time the vertex shader is invoked (remember, we process the vertices

in parallel, therefore each copy/thread of the vertex shader processes a different vertex).
Uniforms are constant throughout a rendering cycle. That is, during a drawArrays or
drawElements WebGL call.
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We can use uniforms to pass along information about lights (such as diffuse color and
direction), and materials (diffuse color).

For example:

uniform vec3 uLightDirection; //incoming light source direction
uniform vec4 uLightDiffuse; //light diffuse component

uniform vec4 uMaterialDiffuse; //material diffuse color

Again, here the keyword uniform tells us that these variables are uniforms and the ESSL
types vec3 and veca4 tell us that these variables have three or four components. In the case
of the colors, these components are the red, blue, green, and alpha channels (RGBA) and in
the case of the light direction, these components are the x, y, and z coordinates that define
the vector in which the light source is directed in the scene.

We need to carry the vertex color from the vertex shader to the fragment shader:

varying vec4 vFinalColor;

As previously mentioned in the section Storage Qualifier, the declaration of varyings need to
match between the vertex and fragment shaders.

Now let's plug the attributes, uniforms, and varyings into the code and see how the vertex
shader and fragment shader look like.

This is what a vertex shader looks like. On a first look, we identify the attributes, uniforms,
and varyings that we will use along with some matrices that we will discuss in a minute.
Also we see that the vertex shader has a main function that does not accept parameters and
returns void. Inside, we can see some ESSL functions such as normalize and dot and some
arithmetical operators.

attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
uniform mat4 uNMatrix;

uniform vec3 uLightDirection;

uniform vec4 uLightDiffuse;
uniform vec4 uMaterialDiffuse;
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varying vec4 vFinalColor;
void main(void) {

vec3 N = normalize (vec3 (uNMatrix * vec4 (aVertexNormal, 1.0)));
vec3 L = normalize (uLightDirection) ;

float lambertTerm = dot (N, -L) ;

vFinalColor = uMaterialDiffuse * uLightDiffuse * lambertTerm;
vFinalColor.a = 1.0;

gl Position = uPMatrix * uMVMatrix * vec4 (aVertexPosition, 1.0);

}
There are three uniforms that we have not discussed yet:

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

uniform mat4 uNMatrix;

We can see that these three uniforms are 4x4 matrices. These matrices are required in the
vertex shader to calculate the location for vertices and normals whenever we move the
camera. There are a couple of operations here that involve using these matrices:

vec3 N = vec3 (uNMatrix * vec4 (aVertexNormal, 1.0));
The previous line of code calculates the transformed normal.

And:

gl Position = uPMatrix * uMVMatrix * vec4 (aVertexPosition, 1.0);

This line calculates the transformed vertex position. g1 _Position is a special output
variable that stores the transformed vertex position.

We will come back to these operations in Chapter 4, Camera. For now, let's acknowledge
that these uniforms and operations deal with camera and world transformations (rotation,
scale, and translation).

Going back to the code of the main function, we can clearly see that the Lambertian
reflection model is being implemented. The dot product of the normalized normal and
light direction vector is obtained and then it is multiplied by the light and material diffuse
components. Finally, this result is passed into the vFinalColor varying to be used in
the fragment shader. Also, as we are calculating the color in the vertex shader and then
interpolating the vertex colors for the fragments of every triangle, we are using a Goraud
interpolation method.
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The fragment shader is very simple. The first three lines define the precision of the shader.
This is mandatory according to the ESSL specification. Similarly, to the vertex shader, we
define our inputs; in this case, just one varying variable and then we have the main function.

#ifdef GL_SL

precision highp float;
#endif

varying vec4 vFinalColor;

void main(void) {
gl FragColor = vFinalColor;

}

We just need to assign the vFinalColor varying to the output variable g1 _FragColor.

Remember that the value of the vFinalColor varying will be different from the one
calculated in the vertex shader as WebGL will interpolate it by taking the corresponding
calculated colors for the vertices surrounding the correspondent fragment (pixel).

Writing ESSL programs

Let's now take a step back and take a look at the big picture. ESSL allows us to implement a
lighting strategy provided that we define a shading method and a light reflection model. In
this section, we will take a sphere as the object that we want to illuminate and we will see
how the selection of a lighting strategy changes the scene.

Selecting your lighting strategy

Light Reflection Model

Lambertian Phong
T 3 Components defined by the light reflection
= 2 model:
- [=}
§ (U]
o la: Arl'nblent
% Id: Diffuse
© z Is: Specular
= 5]
L -

The Lambertian Reflection Model can be seen as a subset of Phong where the
additive ambient and specular components are set to zero.
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We will see two scenarios for Goraud interpolation: with Lambertian and with Phong
reflections; and only one case for Phong interpolation: under Phong shading the Lambertian
reflection model is no different from a Phong reflection model where the ambient and
specular components are set to zero.

Goraud shading with Lambertian reflections

The Lambertian reflection model only considers the interaction of diffuse material and
diffuse light properties. In short, we assign the final color as:

Final Vertex Color = Id
where the following value is seen:

Id = Light Diffuse Property * Material Diffuse Property * Lambert
coefficient

Under Goraud shading, the Lambert coefficient is obtained by calculating the dot product of
the vertex normal and the inverse of the light-direction vector. Both vectors are normalized
previous to finding the dot product.

Now let's take a look at the vertex shader and the fragment shader of the example
ch3 Sphere Goraud Lambert.html:

Vertex shader:

attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;
uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

uniform mat4 uNMatrix;

uniform vec3 uLightDirection;
uniform vec4 uLightDiffuse;
uniform vec4 uMaterialDiffuse;
varying vec4 vFinalColor;
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void main(void) {

vec3 N = normalize (vec3 (uNMatrix * vec4 (aVertexNormal, 1.0)));
vec3 L = normalize (uLightDirection) ;

float lambertTerm = dot (N, -L) ;

vec4 Id = uMaterialDiffuse * uLightDiffuse * lambertTerm;

vFinalColor = Id;
vFinalColor.a = 1.0;

gl Position = uPMatrix * uMVMatrix * vec4 (aVertexPosition, 1.0);

}

Fragment shader:

#ifdef GL _ES
precision highp float;
#endif

varying vec4 vFinalColor;

void main(void) {
gl FragColor = vFinalColor;

}

We can see that the final vertex color that we process in the vertex shader is carried into a
varying variable to the fragment (pixel) shader. However, please remember that the value
that arrives to the fragment shader is not the original value that we calculated in the vertex
shader. The fragment shader interpolates the vFinalColor variable to generate a final
color for the respective fragment. This interpolation takes into account the vertices that
enclose the current fragment as we saw in Chapter 2, Rendering Geometry.

Time for action - updating uniforms in real time

1. Open thefile ch3_Sphere Goraud Lambert.html in your favorite
HTML5 browser.

2. You will see that this example has some widgets at the bottom of the page. These
widgets were created using JQuery Ul. You can check the code for those in the HTML
<body> of the page.

o XY, Z: controls the direction of the light. By changing these sliders you will
modify the uniform uLightDirection.

o Sphere color: changes the uniform uMaterialDiffuse, which represents
the diffuse color of the sphere. Here we use a color selection widget so you
can try different colors. The updateObjectColor function receives the
updates from the widgets and updates the uMaterialDif fuse uniform.
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o Light diffuse term: changes the uniform uLightDiffuse, which
represents the diffuse color of the light source. There are no reasons as to
why the light color has to be white; however for the sake of simplicity, in
this case, we are using a slider instead of a color to restrict the light color
to the gray scale. We achieve this by assigning the slider value to the RGB
components of uLightDif fuse while we keep the alpha channel set to
1.0. We do this inside the updateLightDiffuseTerm function, which
receives the slider updates.

3. Try different settings for light source position (which will affect the light-direction
vector), the diffuse material, and light properties.

WebGL Beginner's Guide - Chapter 3 [
Goraud Shading + Lambertian Reflection Model o w-.]
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What just happened?

We have seen an example of a simple scene illuminated using Goraud interpolation and a
Lambertian reflection model. We have also seen the immediate effects of changing uniform
values for the Lambertian lighting model.

We have mentioned before that we use matrices to move the camera around the scene.
Well, we can also use matrices to move lights!

1. Check the file ch3 Sphere Moving.html using your favorite source code editor.
The vertex shader is very similar to the previous diffuse model example. However,
there is one extra line:

vec4 light = uMVMatrix * vec4 (uLightDirection, 0.0);
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Here we are transforming the uLightDirection vector to the light variable.
Notice that the uniform uLightDirection is a vector with three components
(vec3) and that uMVMatrix is a 4x4 matrix. In order to do the multiplication, we
need to transform this uniform to a four-component vector (vec4). We achieve this
with the construct:

vec4 (uLightDirection, 0.0);

The matrix uMvVMatrix contains the Model-view-transform. We will see how all this
works in the next chapter. However, for now, let's say that this matrix allows us to
update vertices positions and also, as we see in this example, lights positions.

Take another look at the vertex shader. In this example, we are rotating the sphere
and the light. Every time the drawScene function is invoked, we rotate the matrix
mvMatrix a little bit in the y axis:

mat4.rotate (mvMatrix, angle * Math.PI / 180, [0, 1, 0]);

If you examine the code more closely, you will notice that the matrix mvMatrix is
mapped to the uniform:

uMVMatrix:gl.uniformMatrix4fv (prg.uMvVMatrix, false, mvMatrix) ;

Now run the example in your HTML5 browser. You will see a sphere and a light
source rotating on the y-axis:

Look for the initLights function and change the light orientation so the light is
pointing in the negative z-axis direction:

gl.uniform3f (prg.uLightDirection, 0.0, 0.0, -1.0)

Save the file and run it again. What happened? Now change the light direction
uniform so it points to [-1.0, 0.0, 0.0]. Save the file and run it again on your browser.
What happened?
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7.

9.

Now set the light back to the 45 degree angle by changing the uniform
uLightDirection so it goes back to its initial value:

gl.uniform3f (prg.uLightDirection, 0.0, 0.0, -1.0)

Go to drawScene and change the line:
mat4.rotate (mvMatrix, angle * Math.PI / 180, [0, 1, 0]);

with:
mat4.rotate (mvMatrix, angle * Math.PI / 180, [1, 0, 0]);

Save the file and launch it again in your browser. What happens?

What can you conclude? As you see, the vector that is passed as the third argument to mat4.
rotate determines the axis of the rotation. The first component corresponds to the x-axis, the
second to the y-axis and the third to the z-axis.

Goraud shading with Phong reflections

In contrast with the Lambertian reflection model, the Phong reflection model considers three
properties: the ambient, diffuse, and specular. Following the same analogy that we used in
the previous section:

Final Vertex Color=Ia + Id + Is

where:
Ia = Light Ambient Property * Material Ambient Property
Id = Light Diffuse Property * Material Diffuse Property * Lambert
coefficient
Is = Light Specular Property * Material Specular Property * specular
coefficient

Please notice that:

L 4

As we are using Goraud interpolation, we still use vertex normals to calculate the
diffuse term. This will change when using Phong interpolation where we will be
using fragment normals.

Both light and material have three properties: the ambient, diffuse,
and specular colors.

We can see on these equations that Ia, Id, and Is receive contributions from their
respective light and material properties.
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Based on our knowledge of the Phong reflection model, let's see how to calculate the

specular coefficient in ESSL:
float specular = pow(max(dot (R, E), 0.0), £ );
where:
E is the view vector or camera vector.
R is the reflected light vector.
f is the specular exponential factor or shininess.

R is calculated as:

R = reflect (L, N)

where N is the vertex normal considered and L the light direction that we have been using to

calculate the Lambert coefficient.

Let's take a look at the ESSL implementation for the vertex and fragment shaders.

Vertex shader:

attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;
uniform mat4 uMVMatrix;

uniform mat4 uPMatrix;

uniform mat4 uNMatrix;

uniform float uShininess;
uniform vec3 uLightDirection;
uniform vec4 ulLightAmbient;
uniform vec4 uLightDiffuse;
uniform vec4 uLightSpecular;
uniform vec4 uMaterialAmbient;
uniform vec4 uMaterialDiffuse;
uniform vec4 uMaterialSpecular;
varying vec4 vFinalColor;

void main(void) {

vecd vertex = uMVMatrix * vec4 (aVertexPosition,

vec3 N = vec3 (uNMatrix * vec4d (aVertexNormal, 1.0));

vec3 L = normalize (uLightDirection) ;
float lambertTerm = clamp (dot(N,-L),0.0,1.0);
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vec4 Ia = uLightAmbient * uMaterialAmbient;
vec4 Id = vec4(0.0,0.0,0.0,1.0);
vec4 Is = vec4(0.0,0.0,0.0,1.0);

Id = uLightDiffuse* uMaterialDiffuse * lambertTerm;

vec3 eyeVec = -vec3(vertex.xyz) ;

vec3 E = normalize (eyeVec) ;

vec3 R = reflect (L, N);

float specular = pow(max(dot (R, E), 0.0), uShininess );
Is = uLightSpecular * uMaterialSpecular * specular;

vFinalColor = Ia + Id + Is;
vFinalColor.a = 1.0;

gl Position = uPMatrix * vertex;

}

We can obtain negative dot products for the Lambert term when the geometry of our
objects is concave or when the object is in the way between the light source and our point
of view, in either case the negative of the light-direction vector and the normals will form
an obtuse angle producing a negative dot product, as shown in the following figure:

Negative Lambert Coefficients ©  Light Soure

Lambert term > 0

Object to illuminate —.

Lambert term <0 N

Point of View

For that reason we are using the ESSL built-in clamp function to restrict the dot product
to the positive range. In the case of obtaining a negative dot product, the clamp function
will set the lambert term to zero and the respective diffuse contribution will be discarded,
generating the correct result.
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Given that we are still using Goraud interpolation, the fragment shader is exactly as before:

#ifdef GL_ES

precision highp float;
#endif

varying vec4 vFinalColor;

void main (void)

{

gl FragColor = vFinalColor;

}

In the following section, we will explore the scene and see what it looks like when we have
negative Lambert coefficients that have been clamped to the [0,1] range.

Time for action - Goraud shading

1. Open thefile ch3_Sphere Goraud Phong.html in your HTMLS browser. You will
see something similar to the following screenshot:

WebGL Beginner's Guide - Chapter 3 [ ]
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2. The interface looks a little bit more elaborate than the diffuse lighting example. Let's
stop here for a moment to explain these widgets:

o Light color (light diffuse term): As mentioned at the beginning of the
chapter, we can have a case where our light is not white. We have included
a color selector widget here for the light color so you can experiment with
different combinations.

o Light ambient term: The light ambient property. In this example, a gray
value:r=g=h.
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o Light specular term: The light specular property. A gray value: r=g=b.
o XY, Z: The coordinates that define the light orientation.

o Sphere color (material diffuse term): The material diffuse property. We
have included a color selector so you can try different combinations for the
r, g, b channels.

o Material ambient term: The material ambient property. We have included it
just for the sake of it. But as you might have noticed in the diffuse example,
this vector is not always used.

o Material specular term: The material specular property. A gray value.
o Shininess: The specular exponential factor for the Goraud model.

o Background color (g1 .clearColor): This widget simply allows us to
change the background color. We used this code in Chapter 1, Getting
started with WebGL. Now we have a nice color selector widget.

3. Let's prove that when the light source is behind the object, we only see the
ambient term.

4. Openthe web page (ch3 Sphere Goraud Phong.html)in a text editor.

5. Look for the updateLightAmbientTerm function and replace the line:
gl.uniformd4fv (prg.uLightAmbient, [la,la,la,1.0]);

with:
gl.uniform4fv (prg.uLightAmbient, [0.0,1a,0.0,1.0]1);

This will make the ambient property of the light a green color (r =0, g = la, b=0).

6. Save the file with a new name.

7. Open this new file in your HTML5 browser.

8. Move the light ambient term slider so it is larger than 0.4.
9. Move X close to 0.0

10. see what happens as you move Z towards 1.0. It should be clear then that the light
direction is coming behind the object and we are only getting the light ambient term
which, in this case, is a color in the green scale (r=0,g=0.3,b=0).
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11. Go back to the original web page (ch3_Sphere Goraud_Phong.html) in your
HTMLS5 browser.

12. The specular reflection in the Phong reflection model depends on the shininess, the
specular property of the material, and the specular property of the light. When the
specular property of the material is close to zero (vector [0,0,0,1]), the material loses
its specular property. Check this behavior with the widgets provided.

13. What happens when the specularity of the material is low and the shininess is high?
14. What happens when the specularity of the material is high and the shininess is low?

15. Using the widgets, try different combinations for the light and material properties.

What just happened?

¢ We have seen how the different parameters of the Phong lighting model interact
with each other.

¢ We have modified the light orientation, the properties of the light, and the material
to observe different behaviors of the Phong lighting model.

¢ Unlike the Lambertian reflection model, the Goraud lighting model has two extra
terms: the ambient and specular components. We have seen how these parameters
affect the scene.

Just like the Lambertian reflection model, the Phong reflection model obtains the vertex
color in the vertex shader. This color is interpolated in the fragment shader to obtain the
final pixel color. This is because, in both cases, we are using Goraud interpolation. Let's now
move the heavy processing to the fragment shader and study how we implement the Phong
interpolation method.
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Unlike the Goraud interpolation, where we calculated the final color for each vertex, the
Phong interpolation calculates the final color for every fragment. This means that the
calculation of the ambient, diffuse, and specular terms in the Phong model are performed
in the fragment shader instead of the vertex shader. As you can imagine, this is more
computationally intensive than performing a simple interpolation like in the two previous
scenarios where we were using Goraud interpolation. However, we obtain a scene that
seems more realistic.

What do we do in the vertex shader then? Well, in this case, we are going to create varyings
here that will allow us to do all of the calculations in the fragment shader later on. Think for
example of the normals.

Whereas before we had a normal per vertex, now, we need to generate a normal for

every pixel so we can calculate the Lambert coefficient for each fragment. We do so by
interpolating the normals that we pass to the vertex shader. Nevertheless, the code is very
simple. All we need to know is to create a varying that stores the normal for the vertex that
we are processing in the vertex shader and obtain the interpolated value in the fragment
shader (courtesy of ESSL). That's all! Conceptually, this looks like the following diagram:

Per-pixel coloring
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Now let's take a look at the vertex shader under Phong shading:

attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;
uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

uniform mat4 uNMatrix;

varying vec3 vNormal;

varying vec3 vEyeVec;

void main(void)
vec4 vertex = uMVMatrix * vec4 (aVertexPosition, 1.0);
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vNormal = vec3 (uNMatrix * vec4 (aVertexNormal, 1.0));
vEyeVec = -vec3 (vertex.xyz) ;
gl Position = uPMatrix * uMVMatrix * vec4 (aVertexPosition, 1.0);

}

In contrast with the Goraud interpolation, the vertex shader looks really simple. There is no
final color calculation and we are using two varyings to pass information to the fragment
shader. The fragment shader will now look like the following:

uniform float uShininess;
uniform vec3 uLightDirection;
uniform vec4 uLightAmbient;
uniform vec4 uLightDiffuse;
uniform vec4 uLightSpecular;
uniform vec4 uMaterialAmbient;
uniform vec4 uMaterialDiffuse;
uniform vec4 uMaterialSpecular;
varying vec3 vNormal;

varying vec3 vEyeVec;

void main (void)

vec3 L = normalize (uLightDirection) ;
vec3 N = normalize (vNormal) ;

float lambertTerm = dot (N, -L) ;

vec4 Ia = ulLightAmbient * uMaterialAmbient;
vec4 Id = vec4(0.0,0.0,0.0,1.0);

vec4 Is = vec4(0.0,0.0,0.0,1.0);

if (lambertTerm > 0.0)

{

Id = uLightDiffuse * uMaterialDiffuse * lambertTerm;
vec3 E = normalize (vEyeVec) ;

vec3 R = reflect (L, N);

float specular = pow( max(dot(R, E), 0.0), uShininess);

Is = uLightSpecular * uMaterialSpecular * specular;

}

vec4 finalColor = Ia + Id + Is;
finalColor.a = 1.0;

gl FragColor = finalColor;
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When we pass vectors as varyings, it is possible that they denormalized in the interpolation
step. Therefore, you may have noticed that both vNormal and vEyeVec are normalized
before they are used in the fragment shader.

As we mentioned before, under Phong lighting, the Lambertian reflection model can be seen
as a Phong reflection model where the ambient and specular components are set to zero.
Therefore, we will only cover the general case in the next section where we will see how the
sphere scene looks like when using Phong shading and Phong lighting combined.

Time for action - Phong shading with Phong lighting

1. Openthefile ch3 Sphere Phong.html in your HTMLS Internet browser. The page
will look similar to the following screenshot:
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2. The interface is very similar to the Goraud example's interface. Please notice how
the Phong shading combined with Phong lighting delivers a more realistic scene.

3. Click on the button Code. This will bring up the code viewer area. Check the vertex
shader and the fragment shader with the respective buttons that will appear under
the code viewer area. As in previous examples, the code has been commented
extensively so you can understand every step of the process.

4. Now click on the button Controls to go back to the original layout. Modify the
different parameters of the Phong lighting model to see the immediate result
on the scene to the right.
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What just happened?

We have seen the Phong shading and Phong lighting in action. We have explored the source
code for the vertex and fragment shaders. We have also modified the different parameters of
the model and we have observed the immediate effect of the changes on the scene.

It is time to go back to our JavaScript code. Now, how do we close the gap between our
JavaScript code and our ESSL code?

First, we need to take a look at how we create a program using our WebGL context. Please
remember that we refer to both the vertex shader and fragment shader as the program.

Second, we need to know how to initialize attributes and uniforms.

Let's take a look at the structure of the web apps that we have developed so far:

Architecture of the Application

Web Page runWebGLApp

getGLContext

i

initProgram

£

initBuffers
JavaScript Code l
initLights

]

drawScene is called by the rendering loop

<body onLoad="runWebGLApp()'>

Each application has a vertex shader and a fragment shader embedded in the web page.
Then we have a script section where we write all of our WebGL code. Finally, we have the
HTML code that defines the page components such as titles and the location of the widgets
and the canvas.
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In the JavaScript code, we are calling the runWwebGLApp function on the onLoad event of the
web page. This is the entry point for our application. The first thing that runWebGLApp does
is to obtain a WebGL context for the canvas, and then calls a series of functions that initialize
the program, the WebGL buffers, and the lights. Finally it gets into a render loop where

every time that the loop goes off, the drawScene callback is invoked. In this section, we will
take a closer look at the initProgramand initLights functions. initPrograms allows
creating and compiling a ESSL program while initLights allows initializing and passing
values to the uniforms defined in the programs. It is inside initLights where we will
define the light position, direction, and color components (ambient, diffuse, and specular)

as well as default values for material properties.

Let's take a step-by-step look at initProgram:

var prg; //global variable
function initProgram() {

First we use the utility function utils.getShader (WebGLContext, DOM_ID) to retrieve
the contents of the vertex shader and the fragment shader.

var fragmentShader= utils.getShader(gl, "shader-fs");
var vertexShader= utils.getShader(gl, "shader-vs");

Let's make a small parenthesis here and talk a bit about the get Shader function. The first
parameter of getShader is the WebGL context. The second parameter is the DOM ID of
the script that contains the source code of the shader that we want to add to the program.
Internally, get Shader reads the source code of the script and it stores it in a local variable
named str. Then it executes the following piece of code:

var shader;
if (script.type == "x-shader/x-fragment") ({
shader = gl.createShader (gl.FRAGMENT SHADER) ;
} else if (script.type == "x-shader/x-vertex") ({
shader = gl.createShader (gl.VERTEX SHADER) ;
} else {
return null;

gl.shaderSource (shader, str);
gl.compileShader (shader) ;
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Basically, the preceding code fragment will create a new shader using the WebGL
createShader function. Then it will add the source code to it using the shaderSource
function and finally it will try to compile the shader using the compileShader function.

The source code for the getShader function is in the file s /utils. js, which
accompanies this chapter.

Going back to initProgram, the program creation occurs in the following lines:

prg = gl.createProgram() ;

gl.attachShader (prg, vertexShader) ;

gl.attachShader (prg, fragmentShader) ;

gl.linkProgram(prg) ;

if (!gl.getProgramParameter (prg, gl.LINK STATUS)) {
alert ("Could not initialize shaders");

}

gl.useProgram(prg) ;

Here we have used several functions provided by the WebGL context. These are as follows:

WebGL Function Description

createProgram () Creates a new program (prg)

attachShader (Object program, Attaches a shader to the current program

Object shader)

linkProgram(Object program) Creates executable versions of the vertex and
fragment shaders that are passed to the GPU

getProgramParameter (Object This is part of the WebGL State Machine query

program, Object parameter) mechanism. It allows querying the program

parameters. We use this function here to verify
whether the program has been successfully
linked or not.

useProgram(Object program) It will install the program in the GPU if the
program contains valid code (that is, it has been
successfully linked).

Finally, we create a mapping between JavaScript variables and the program attributes and
uniforms. Instead of creating several JavaScript variables here (one per program attribute or
uniform), we are attaching properties to the prg object. This does not have anything to do
with WebGL. It is just a convenience step to keep all of our JavaScript variables as part of the
program object.

prg.aVertexPosition = gl.getAttribLocation (prg, "aVertexPosition");

prg.aVertexNormal gl.getAttribLocation (prg, "aVertexNormal") ;

911



Lights!

prg.uPMatrix =gl.getUniformLocation (prg, "uPMatrix") ;
prg.uMVMatrix = gl.getUniformLocation (prg, "uMVMatrix") ;
prg.uNMatrix = gl.getUniformLocation (prg, "uNMatrix") ;

prg.ulLightDirection = gl.getUniformLocation (prg, "uLightDirection");
prg.ulLightAmbient = gl.getUniformLocation (prg, "uLightAmbient") ;
prg.ulLightDiffuse = gl.getUniformLocation (prg, "uLightDiffuse");
prg.uMaterialDiffuse = gl.getUniformLocation (prg, "uMaterialDiffuse") ;

}

This is all for initProgram. Here we have used these WebGL API functions:

WebGL Function Description

Var reference = This function receives the current program

getAttribLocation (Object object and a string that contains the name of the

program, String name) attribute that needs to be retrieved. Then this
function returns a reference to the respective
attribute.

var reference= This function receives the current program object

getUniformLocation (Object and a string that contains the name of the uniform

program, String uniform) that needs to be retrieved. Then this function

returns a reference to the respective uniform.

Using this mapping, we can initialize the uniforms and attributes from our JavaScript code,
as we will see in the next section.

Initializing attributes and uniforms

Once we have compiled and installed the program, the next step is to initialize the attributes
and variables. We will initialize our uniforms using the initLights function.

function initLights ()
gl.uniform3fv (prg.uLightDirection, [0.0, 0.0, -1.01);
gl.uniform4fv (prg.uLightAmbient, [0.01,0.01,0.01,1.0]);
gl.uniform4fv (prg.uLightDiffuse, [0.5,0.5,0.5,1.0]);
gl.uniform4fv (prg.uMaterialDiffuse, [0.1,0.5,0.8,1.0]);
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You can see here that we are using the references obtained with getUniformLocation
(we did this in initProgram).

These are the functions that the WebGL API provides to set and get uniform values:

WebGL Function Description

uniform[1234] [£i] Specifies 1-4 float or int values of a uniform
variable

uniform[1234] [fi]v Specifies the value of a uniform variable as an

array of 1-4 float or int values.

getUniform(program, reference) Retrieves the contents of a uniform variable.
The reference parameter has been previously
obtained with getUniformLocation.

In Chapter 2, Rendering Geometry, we saw that there is a three-step process to initialize and
use attributes (review the Associating Attributes to VBOs section in Chapter 2, Rendering
Geometry). Let's remember that we:

1. BindaVBO.
2. Point an attribute to the currently bound VBO.
3. Enable the attribute.

The key piece here is step 2. We do this with the instruction:
gl.vertexAttribPointer (Index, Size, Type,Norm, Stride,Offset) ;

If you check the example ch3 Wall.html, you will see that we do this inside the
drawScene function:

gl.vertexAttribPointer (prg.aVertexPosition, 3, gl.FLOAT, false, 0, 0);
gl.vertexAttribPointer (prg.aVertexNormal,3,gl.FLOAT, false, 0,0);

Bridging the gap hetween WehGL and ESSL

Let's see in practice how we integrate our ESSL program to our WebGL code by working on a
simple example from scratch.
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We have a wall composed of the sections A, B, and C. Imagine that you are facing section
B (as shown in the following diagram) and that you have a flashlight on your hand (Frontal
View). Intuitively section A and section C will be darker than section B. This fact can be
modeled by starting at the color of the center of section B and darkening the color of the
surrounding pixels as we move away from the center.

1 Surface normal
Superior View

[ Light
M

Reflected Light

Frontal View

Let's summarize here the code that we need to write:

1. Write the ESSL program. Code the ESSL vertex and fragment shaders. We know
how to do this already. For the wall, we are going to select Goraud shading with
a Diffuse/Lambertian reflection model.

2. Write the initProgram function. We already saw how to do this. We need to make
sure that we map all the attributes and uniforms that we had defined in the ESSL
code. Including the normals:

prg.aVertexNormal= gl.getAttribLocation (prg, "aVertexNormal") ;

3. Write initBuffers. Here we need to create our geometry: we can represent
the wall with eight vertices that define six triangles such as the ones shown in
the previous diagram. In init buffers, we apply what we learned in Chapter 2,
Rendering Geometry to set up the appropriate WebGL buffers. This time, we need
to set up an additional buffer: the VBO that contain information about normals.

The code to set up the normals VBO looks like this:

var normals = utils.calculateNormals (vertices, indices);
var normalsBuffer = gl.createBuffer();
gl.bindBuffer (gl .ARRAY BUFFER, normalsBuffer) ;
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gl.bufferData (gl.ARRAY BUFFER, new Float32Array (normals),
gl.STATIC DRAW) ;

To calculate the normals, we use the following function:
% calculateNormals (vertices, indices)
You will find this function in the file js/utils.js

4. Write initLights. We also saw how to do that.

5. Thereis only a minor but important change to make inside the drawScene
function. We need to make sure that the normals VBO is bound before we use
drawElements. The code to do that looks like this:

gl.bindBuffer (gl.ARRAY BUFFER, normalsBuffer) ;
gl.vertexAttribPointer (prg.aVertexNormal,3,gl.FLOAT, false, 0,0);

In the following section, we will explore the functions that we just described for building and
illuminating the wall.

Time for action — working on the wall

1. Openthefile ch3_Wall.html in your HTMLS browse. You will see something
similar to the following screenshot:

WebGL Beginner's Guide - Chapter 3 [ ]
The Wall PUBLSNG

This example shows the saleulation of final colors based on the angle of incidence of the light and the neemals of the triangles that make cort of the wall, The interpolation obeaimed by the Fragment Shader is alss shown

2. Now, open the file again, this time in your favorite text editor (for example,
Notepad ++).
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3.

Go to the vertex shader (Hint: look for the tag <script id="shader-vs"
type="x-shader/x-vertex">). Make sure that you identify the attributes
uniforms and varyings that are declared there.

Now go to the fragment shader. Notice that there are no attributes here
(Remember: attributes are exclusive of the vertex shader).

Go to the runWebGLApp function. Verify that we are calling initProgramand
initLights there.

Go to initProgram. Make sure you understand how the program is built and how
we obtain references to attributes and uniforms.

Now go to initLights. Update the values of the uniforms, as shown here.

gl.uniform3fv (prg.uLightDirection, [0.0, 0.0, -1.01);
gl.uniformé4fv (prg.uLightAmbient, [0.1,0.1,0.1,1.0]);
gl.uniformé4fv (prg.uLightDiffuse, [0.6,0.6,0.6,1.0]);
gl.uniformd4fv (prg.uMaterialDiffuse, [0.6,0.15,0.15,1.0]);

Please notice that one of the updates consists of changing from uniform4f to
uniform4fv for the uniform uMaterialDiffuse.

Save the file.
Open it again (or reload it) in your HTMLS5 Internet browser. What happened?

Now let's do something a bit more interesting. We are going to create a key listener
so every time we hit a key, the light orientation changes.

Right after the initLights function, write the following code:

var azimuth = 0;
var elevation = 0;

document .onkeypress = processKey;
function processKey (ev) {

var lightDirection = gl.getUniform(prg,prg.ulightDirection) ;
var incrAzimuth = 10;
var incrElevation = 10;

switch (ev.keyCode) {

case 37:{ // left arrow
azimuth -= incrAzimuth;
break;

case 38:{ //up arrow
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elevation += incrElevation;
break;

case 39:{ // right arrow
azimuth += incrAzimuth;
break;

case 40:{ //down arrow
elevation -= incrElevation;
break;

)

azimuth %= 360;
elevation %=360;

var theta = elevation * Math.PI / 180;
var phi = azimuth * Math.PI / 180;

//Spherical to Cartesian coordinate transformation
lightDirection[0] = Math.cos(theta)* Math.sin(phi) ;
Math.sin(theta) ;

Math.cos (theta) * -Math.cos (phi) ;

lightDirection[1]

lightDirection[2]

gl.uniform3fv(prg.uLightDirection, lightDirection) ;

}

This function processes the arrow keys and changes the light direction accordingly.
There is a bit of trigonometry (Math.cos, Math.sin)Mat .sin) there but do not
worry. We are just converting the angles (azimuth and elevation) calculated by the
entered arrow keys into Cartesian coordinates.

Please notice that we are getting the current light direction using the function:

var lightDirection = gl.getUniform(prg,prg.ulLightDirection) ;

After processing the key strokes, we can save the updated light direction with:

gl.uniform3fv (prg.uLightDirection, lightDirection) ;
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13. save the work and reload the web page:

WebGL Beginner's Guide - Chapter 3 [ ]
The wall PG

This exarmple shows the calculstion of final coloes based on the angle of incidence of the light and the normals of the triangles that make part of the wall, The intenpolation cbeained by the Fragment Shader is also shawn

14. Use the arrow keys to change the light direction.

15. If you have any problem during the development of the exercise or you just want to
verify the final result, please check the file ch3 Wall Final.html that contains
the completed exercise.

What just happened?

In this exercise, we have created a keyboard listener that allows us to update the light
orientation so we can move it around the wall and see how it reacts to surface normals. We
have also seen how the vertex shader and fragment shader input variables are declared and
used. We understood how to build a program by reviewing the initProgram function. We
also learned about initializing uniforms on the initLights function. We also studied the
getUniform function to retrieve the current value of a uniform.
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Before we finish the chapter, let's revisit the topic of lights. So far we have assumed that
our light source is infinitely far away from the scene. This assumption allows us to model
the light rays as being parallel to each other. An example of this is sunlight. These lights are
called directional lights; now we are going to consider the case where the light source is
relatively close to the object that it is going to illuminate. Think, for example, of a lamp
desk illuminating the document you are reading. These lights are called positional lights.

VY A

YAy /S uniform vec3 uLightPosition

VAV ARV SR Y A

VA A A A A A
SS LSS S

Directional light Positional light

uniform vec3 uLightDirection varying vec3 vLightRay

As we experienced before, when working with directional lights, only one variable
is required. This is the light direction that we have represented in the uniform
uLightDirection.

Contrastingly, when working with positional lights, we need to know the location of the light.
We can represent it using a uniform that we will name uLightPosition. As when using
positional lights, the light rays are not parallel to each other, we will need to calculate each
light ray separately. We will do this by using a varying that we will name vLightRay.

In the following Time for action section, we will see how a positional light interacts
with a scene.
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Time for action - positional lights in action

1.

Open the file ch3_Positional Lighting.html in your HTMLS5 Internet browser.
The page will look similar to the following screenshot:

X: 4.5 Shininess: 200 Sphere Color:

i3 Distance: 40 Cone Calor: '

Z: 61 Animate

The interface of this exercise is very simple. You will notice that there are no sliders
to select the ambient and specular properties for the objects or the light source.
This has been done deliberately with the objective of focusing on the new element
of study—the light position. Unlike in previous exercises, the X, Y, and Z sliders do
not represent light direction here. Instead, they allow us to set the light source
position. Go ahead and play with them.

For clarity, a little sphere representing the position of the light source has been
added to the scene. However, this is not generally required.

What happens when the light source is located on the surface of the cone or on the
surface of the sphere?

What happens when the light source is inside the sphere?

Now, click on the button Animate. As you would expect, the lighting of the scene
changes according to the light source and the position of the camera.

[100]
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Let's take a look at the way we calculate the light rays. Click on the Code button.
Once the code viewer area is displayed, click on the Vertex Shader button.

The light ray calculation is performed in the following two lines of code:

vec4 light = uMVMatrix * vec4 (uLightPosition,1.0);
vLightRay = vertex.xyz-light.xyz;

The first line allows us to obtain a transformed light position by multiplying the
Model-view matrix by the uniform uLightPosition. If you check the code in

the vertex shader, we also use this matrix for calculating transformed vertices and
normals. We will discuss these matrix operations in the next chapter. For now,
believe me when | say that this is necessary to obtain transformed vertices, normals,
and light positions whenever we move the camera. If you do not believe me, then
go ahead and modify this line by removing the matrix from the equation so the line
looks like the following:

vec4 light = vec4 (uLightPosition,1.0);
Save the file with a different name and launch it in your HTML5 browser. What is the

effect of not transforming the light position? Click on the button Animate. What you
see is that the camera is moving, but the light source position is not being updated!

In the second line of code (step 7), we can see that the light ray is calculated as the
vector that goes from the transformed light position (light) to the vertex position.

Thanks to the interpolation of varyings that is provided by ESSL, we automatically
obtain all the light rays per pixel in the fragment shader.

varying vec3 vLightRay

.'::ll\ "
VAN interpolation

Vertex Shader Fragment Shader
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What just happened?

We have studied the difference between directional lights and positional lights. We have
also seen the importance of the Model-view matrix for the correct calculation of positional
lights when the camera is moving. Also, the procedure to obtain per-vertex light rays has
been shown.

Nissan GTS example

We have included in this chapter an example of the Nissan GTS exercise that we saw

in Chapter 2, Rendering Geometry. This time, we have used a Phong lighting model with
a positional light to illuminate the scene. The file where you will find this example is
ch3 Nissan.html.

X: 12 Shininess: 29 Car Color {material diffuse property):

¥i 11 Distance: 139 Background Color (gl.clearColor): '

Z: 120 Animate

Here you can experiment with different light positions. You can see the nice specular
reflections that you obtain thanks to the specularity property of the car and the shininess
of the light.
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In this chapter, we have seen how to use the vertex shader and the fragment shader to
define a lighting model for our 3D scene. We have learned in detail what light sources,
materials, and normals are, and how these elements interact to illuminate a WebGL scene.
We have also learned the difference between a shading method and a lighting model and
have studied the basic Goraud and Phong shading methods and the Lambertian and Phong
lighting models. We have also seen several examples of how to implement these shading and
lighting models in code using ESSL, and how to communicate between the WebGL code and
the ESSL code through attributes and uniforms.

In the following chapter, we will expand on the use of matrices in ESSL and we will see how
we use them to represent and move our viewpoint in a 3D scene.

[1031






In this chapter, we will learn more about the matrices that we have seen in
the source code. These matrices represent transformations that when applied
to our scene, allow us to move things around. We have used them so far to
set the camera to a distance that is good enough to see all the objects in

our scene and also for spinning our Nissan GTS model (Animate button in
ch3_Nissan.html). In general, we move the camera and the objects in the
scene using matrices.

The bad news is that you will not see a camera object in the WebGL API, only matrices.
The good news is that having matrices instead of a camera object gives WebGL a lot of
flexibility to represent complex animations (as we will see in Chapter 5, Action). In this
chapter, we will learn what these matrix transformations mean and how we can use them
to define and operate a virtual camera.

In this chapter, we will:

*

* 6 & o o

Understand the transformations that the scene undergoes from a 3D world
to a 2D screen

Learn about affine transformations

Map matrices to ESSL uniforms

Work with the Model-View matrix and the Perspective matrix
Appreciate the value of the Normal matrix

Create a camera and use it to move around a 3D scene



Camera

WehGL does not have cameras

This statement should be shocking! How is it that there are no cameras in a 3D computer
graphics technology? Well, let me rephrase this in a more amicable way. WebGL does not
have a camera object that you can manipulate. However, we can assume that what we see
rendered in the canvas is what our camera captures. In this chapter, we are going to solve
the problem of how to represent a camera in WebGL. The short answer is we need

4x4 matrices.

Every time that we move our camera around, we will need to update the objects according
to the new camera position. To do this, we need to systematically process each vertex
applying a transformation that produces the new viewing position. Similarly, we need to
make sure that the object normals and light directions are still consistent after the camera
has moved. In summary, we need to analyze two different types of transformations: vertex
(points) and normal (vectors).

Objects in a WebGL scene go through different transformations before we can see them on
our screen. Each transformation is encoded by a 4x4 matrix, as we will see later. How do we
multiply vertices that have three components (x,y,z) by a 4x4 matrix? The short answer is
that we need to augment the cardinality of our tuples by one dimension. Each vertex then
will have a fourth component called the homogenous coordinate. Let's see what they are
and why they are useful.

Homogeneous coordinates are a key component of any computer graphics program.
Thanks to them, it is possible to represent affine transformations (rotation, scaling,
shear, and translation) and projective transformations as 4x4 matrices.

In Homogeneous coordinates, vertices have four components: x, y, z, and w. The first three
components are the vertex coordinates in Euclidian Space. The fourth is the perspective
component. The 4-tuple (x,y,z,w) take us to a new space: The Projective Space.

Homogeneous coordinates make possible to solve a system of linear equations where each
equation represents a line that is parallel with all the others in the system. Let's remember
here that in Euclidian Space, a system like that does not have solutions, because there are
not intersections. However, in Projective Space, this system has a solution—the lines will
intersect at infinite. This fact is represented by the perspective component having a value of
zero. A good physical analogy of this idea is the image of train tracks: parallel lines that touch
in the vanishing point when you look at them.
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It is easy to convert from Homogeneous coordinates to non-homogeneous, old-fashioned,
Euclidean coordinates. All you need to do is divide the coordinate by w:

h(x, y,z,w) =v(x/w,y/w,z/w)

v(x, y,z) =h(x, ¥ z1)

Consequently, if we want to go from Euclidian to Projective space, we just add the fourth
component w and make it 1.

As a matter of fact, this is what we have been doing so far! Let's go back to one of the
shaders we discussed in the last chapter: the Phong vertex shader. The code looks like
the following:

attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
uniform mat4 uNMatrix;

varying vec3 vNormal;
varying vec3 vEyeVec;

void main(void)
//Transformed vertex position
vec4 vertex = uMVMatrix * vec4 (aVertexPosition, 1.0);

//Transformed normal position
vNormal = vec3 (uNMatrix * vec4 (aVertexNormal, 0.0));

//Vector Eye
vEyeVec = -vec3 (vertex.xyz) ;

//Final vertex position
gl Position = uPMatrix * uMVMatrix * vec4 (aVertexPosition, 1.0);

}

Please notice that for the avertexPosition attribute, which contains a vertex of our
geometry, we create a 4-tuple from the 3-tuple that we receive. We do this with the ESSL
construct vec4 (). ESSL knows that avertexPosition is a vec3 and therefore we only
need the fourth component to create a vec4.
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. To pass from Homogeneous coordinates to Euclidean coordinates, we divide by w
% To pass from Euclidean coordinates to Homogeneous coordinates, we add w =1

Homogeneous coordinates with w = 0 represent a point at infinity

There is one more thing you should know about Homogeneous coordinates—while vertices
have a Homogeneous coordinate w = 1, vectors have a Homogeneous coordinate w = 0.
This is the reason why, in the Phong vertex shader, the line that processes the normals
looks like this:

vNormal = vec3 (uNMatrix * vec4 (aVertexNormal, 0.0));

To code vertex transformations, we will be using Homogeneous coordinates unless indicated
otherwise. Now let's see the different transformations that our geometry undergoes to be
displayed on screen.

We start our analysis from the object coordinate system. It is in this space where vertex
coordinates are specified. Then if we want to translate or move objects around, we use

a matrix that encodes these transformations. This matrix is known as the model matrix.
Once we multiply the vertices of our object by the model matrix, we will obtain new vertex
coordinates. These new vertices will determine the position of the object in our 3D world.

Model Transform

A yo Ayw
| 1
1
1
Object origin I
oo
- World origin ) .
7 ‘,’
/ !
£ /
/ )
¥ 2
Zo Zw

ObiECt [=——— Model E— World
Coordinates Transform Coordinates

The object has not moved. The model transform assigns coordinates that
are shared by all objects: the world coordinates.
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While in object coordinates, each object is free to define where its origin is and then specify
where its vertices are with respect to this origin, in world coordinates, the origin is shared by
all the objects. World coordinates allow us to know where objects are located with respect
to each other. It is with the model transform that we determine where the objects are in the
3D world.

The next transformation, the view transform, shifts the origin of the coordinate system to the
view origin. The view origin is where our eye or camera is located with respect to the world
origin. In other words, the view transform switches world coordinates by view coordinates.
This transformation is encoded in the view matrix. We multiply this matrix by the vertex
coordinates obtained by the model transform. The result of this operation is a new set of
vertex coordinates whose origin is the view origin. It is in this coordinate system that our
camera is going to operate. We will go back to this later in the chapter.

View Transform

AYw
I
I

I
I
World origin | _‘ —
AN

I
’ w

!
[

Zw Xv

re—-——-—=

\

View origin ~ ~

2 2v

World ) View —— View
Coordinates Transform Coordinates

The view transform moves the origin of the world to the coordinates of the view.
This is where our camera is located.
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The next operation is called the projection transform. This operation determines how much
of the view space will be rendered and how it will be mapped onto the computer screen.
This region is known as the frustum and it is defined by six planes (near, far, top, bottom,
right, and left planes), as shown in the following diagram:

Projection Transform

Frustum

— Right plane

Far plane

Near plane
Left plane -
Xc

Bottom plane ~

- Zc
View pmm——  Projection  [NEN—N
Coordinates Transform

Clip
Coordinates

The frustum determines which objects or portion of objects will be clipped out
and discarded.

These six planes are encoded in the Perspective matrix. Any vertices lying outside of the
frustum after applying the transformation are clipped out and discarded from further
processing. Therefore, the frustum defines, and the projection matrix that encodes the
frustum produces, clipping coordinates.

The shape and extent of the frustum determines the type of projection from the 3D viewing
space to the 2D screen. If the far and near planes have the same dimensions, then the
frustum will determine an orthographic projection. Otherwise, it will be a perspective
projection, as shown in the following diagram:
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Frustum shape

Perspective

Orthographic

—__g—— Xc Xc

The extent and shape of the frustum determines how much of the 3D view space
Is mapped to the screen and the type of 3D to 2D projection that takes place.

Up to this point, we are still working with Homogeneous coordinates, so the clipping
coordinates have four components: x, y, z, and w. The clipping is done by comparing the x, y,
and z components against the Homogeneous coordinate w. If any of them is more than, +w,
or less than, —w, then that vertex lies outside the frustum and is discarded.

Once it is determined how much of the viewing space will be rendered, the frustum is
mapped into the near plane in order to produce a 2D image. The near plane is what is
going to be rendered on your computer screen.

Different operative systems and displaying devices can have mechanisms to represent 2D
information on screen. To provide robustness for all possible cases, WebGL (also in OpenGL
ES) provides an intermediate coordinate system that is independent from any specific
hardware. This space is known as the Normalized Device Coordinates (NDC).

Normalized device coordinates are obtained by dividing the clipping coordinates by the

w component. This is the reason why this step is known as perspective division. Also,

please remember that when you divide by the Homogeneous coordinate, we go from
projective space (4-components) to Euclidean space (3-components), so NDC only has
three components. In the NDC space, the x and y coordinates represent the location of your
vertices on a normalized 2D screen, while the z-coordinate encodes depth information,
which is the relative location of the objects with respect to the near and far planes. Though,
at this point, we are working on a 2D screen, we still keep the depth information. This will
allow WebGL to determine later how to display overlapping objects based on their distance
to the near plane. When using normalized device coordinates, the depth is encoded in the
z-component.
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The perspective division transforms the viewing frustum into a cube centered in the origin
with minimum coordinates [-1,-1,-1] and maximum coordinates [1,1,1]. Also, the direction
of the z-axis is inverted, as shown in the following figure:

Normalized Device Coordinates

Front face (2D)

Frustum

XY represent position while
Z encodes depth information

Normalized
Device
Coordinates

Clip Perspective

Coordinates Division

Finally, NDCs are mapped to viewport coordinates. This step maps these coordinates to the
available space in your screen. In WebGL, this space is provided by the HTML5 canvas, as
shown in the following figure:

Viewport Transform
Normalized Device Coordinates HTMLS canvas
T ywoe A width
i | A | height
X [ Ly
j oS minX, minY
e Viewport Viewport (Canvas)
Transform Coordinates

Unlike the previous cases, the viewport transform is not generated by a matrix
transformation. In this case, we use the WebGL viewport function. We will learn more
about this function later in the chapter. Now it is time to see what happens to normals.
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Whenever vertices are transformed, normal vectors should also be transformed, so they
point in the right direction. We could think of using the Model-View matrix that transforms
vertices to do this, but there is a problem: The Model-View matrix will not always keep the
perpendicularity of normals.

This problem occurs if there is a unidirectional (one axis) scaling transformation or a
shearing transformation in the Model-View matrix. In our example, we have a triangle
that has undergone a scaling transformation on the y-axis. As you can see, the normal
N'is not normal anymore after this kind of transformation. How do we solve this?

Calculating the Normal matrix

If you are not interested in finding out how we calculate the Normal matrix and just want the
answer, please feel free to jump to the end of this section. Otherwise, stick around to see
some linear algebra in action!

Let's start from the mathematical definition of perpendicularity. Two vectors are
perpendicular if their dot product is zero. In our example:

NS=0

Here, S is the surface vector and it can be calculated as the difference of two vertices,
as shown in the previous diagram at the beginning of this section.

Let M be the Model-View matrix. We can use M to transform S as follows:
S'=MS

This is because S is the difference of two vertices and we use M to transform vertices onto
the viewing space.
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We want to find a matrix K that allows us to transform normals in a similar way. For the
normal N, we want:

N'=KN

For the scene to be consistent after obtaining N' and S, these two need to keep the
perpendicularity that the original vectors N and S had. This is:

N'.S'=0
Substituting N'and S":
(KN).(MS) =0

A dot product can also be written as a vector multiplication by transposing the first vector,
so we have that this still holds:

(KN)'(MS) =0
The transpose of a product is the product of the transposes in the reverse order:
N'K'MS =0
Grouping the inner terms:
N(K'M)S =0

Now remember that N.S =0 so N'S = 0 (again, a dot product can be written as a vector
multiplication). This means that in the previous equation, (K"M) needs to be the identity
matrix /, so the original condition of N and S being perpendicular holds:

K'M =1

Applying a bit of algebra:

KMM- = M- = M- multiply by the inverse of M on both

sides
K'(1) = M because MM = |
(KT)" = (M2)" transposing on both sides

Double transpose of K is the original

— (M2)T
K=(M7) matrix K.

Conclusions:

¢ Kis the correct matrix transform that keeps the normal vectors being perpendicular
to the surface of the object. We call K the Normal matrix.
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¢ Kis obtained by transposing the inverse of the Model-View matrix
(M in this example).

¢ We need to use K to multiply the normal vectors so they keep being perpendicular
to surface when these are transformed.

WehGL implementation

Now let's take a look at how we can implement vertex and normal transformations in
WebGL. The following diagram shows the theory that we have learned so far and it
shows the relationships between the steps in the theory and the implementation

in WebGL.

Theory:

Viewport
(Canvas)
Coordinates

Object Model View | Projection Perspective B Viewport

Coordinates Transform Transform [ Transform Division Transform

WebGL:

Viewport
glviewport (Canvas)
il Coordinates

Object L Perspective

Coordinates | Matrix

MNormal Normal Transformed
Vectors Matrix Normal Vectors

In WebGL, the five transformations that we apply to object coordinates to obtain viewport
coordinates are grouped in three matrices and one WebGL method:

1. The Model-View matrix that groups the model and view transform in one single
matrix. When we multiply our vertices by this matrix, we end up in view coordinates.

2. The Normal matrix is obtained by inverting and transposing the Model-View matrix.
This matrix is applied to normal vectors for lighting purposes.

3. The Perspective matrix groups the projection transformation and the perspective
division, and as a result, we end up in normalized device coordinates (NDC).

Finally, we use the operation gl . viewport to map NDCs to viewport coordinates:
gl.viewport (minX, minY, width, height) ;

The viewport coordinates have their origin in the lower-left corner of the
HTMLS canvas.
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WebGL does not provide its own methods to perform operations on matrices. All WebGL
does is it provides a way to pass matrices to the shaders (as uniforms). So, we need to use a
JavaScript library that enables us to manipulate matrices in JavaScript. In this book, we have
used glMatrix to manipulate matrices. However, there are other libraries available online
that can do this for you.

. Weused glMatrix to manipulate matrices in this book. You can find more
& information about this library here: https://github.com/toji/gl-
s matrix. And the documentation (linked further down the page) can be
found at: http://toji.github.com/gl-matrix/doc

These are some of the operations that you can perform with glMatrix:

Operation Syntax Description

Creation var m = mat4.create() Creates the matrix m

Identity mat4.identity (m) Sets m as the identity matrix of rank 4

Copy mat4. Copies the matrix origin into the matrix target
set (origin, target)

Transpose ~ mat4.transpose (m) Transposes matrix m

Inverse mat4.inverse (m) Inverts m

Rotate mat4.rotate(m,r,a) Rotates the matrix m by r radians around the axis a

(this is a 3-element array [x,y,z]).

glMatrix also provides functions to perform other linear algebra operations. It also
operates on vectors and matrices of rank 3. To get the full list, visit https://github.com/
toji/gl-matrix

Mapping JavaScript matrices to ESSL uniforms

As the Model-View and Perspective matrices do not change during a single rendering step,
they are passed as uniforms to the shading program. For example, if we were applying

a translation to an object in our scene, we would have to paint the whole object in the
new coordinates given by the translation. Painting the whole object in the new position

is achieved in exactly one rendering step.

However, before the rendering step is invoked (by calling drawArrays or drawElements,
as we saw in Chapter 2, Rendering Geometry), we need to make sure that the shaders have
an updated version of our matrices. We have seen how to do that for other uniforms such
as light and color properties. The method map JavaScript matrices to uniforms is similar to
the following:
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First, we get a JavaScript reference to the uniform with:
var reference= getUniformLocation (Object program, String uniformName)

Then, we use the reference to pass the matrix to the shader with:

gl.uniformMatrix4fv (WebGLUniformLocation reference, bool transpose,
float[] matrix) ;

matrix isthe JavaScript matrix variable.
As it is the case for other uniforms, ESSL supports 2, 3, and 4-dimensional matrices:

uniformMatrix[234] fv(ref, transpose,matrix) : will load 2x2, 3x3, or 4x4 matrices
(corresponding to 2, 3, or 4 in the command name) of floating points into the uniform
referenced by ref. The type of ref is WebGLUniformLocation. For practical purposes, it is
an integer number. According to the specification, the transpose value must be set to false.
The matrix uniforms are always of floating point type (£). The matrices are passed as 4,

9, or 16 element vectors (v) and are always specified in a column-major order. The matrix
parameter can also be of type Float32Array. This is one of JavaScript's typed arrays. These
arrays are included in the language to provide access and manipulation of raw binary data,
therefore increasing efficiency.

Let's revisit the Phong vertex shader, which was introduced in the last chapter. Please pay
attention to the fact that matrices are defined as uniform mat4.

In this shader, we have defined three matrices:
¢ uMVMatrix:the Model-View matrix

¢ uPMatrix: the Perspective matrix

¢ uNMatrix:the Normal matrix

attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
uniform mat3 uNMatrix;

varying vec3 vNormal;
varying vecl3 vEyeVec;

void main(void) {

//Transformed vertex position
vecd4 vertex = uMVMatrix * vec4 (aVertexPosition, 1.0);
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//Transformed normal vector
vNormal = uNMatrix * aVertexNormal;

//Vector Eye
vEyeVec = -vec3 (vertex.xyz) ;

//Final vertex position
gl Position = uPMatrix * uMVMatrix * vec4 (aVertexPosition,
1.0);

}

In ESSL, the multiplication of matrices is straightforward, that is, you do not need to multiply
element by element, but as ESSL knows that you are working with matrices, it performs the
multiplication for you.

gl Position = uPMatrix * uMVMatrix * vec4 (aVertexPosition, 1.0);

The last line of this shader assigns a value to the predefined g1 _Position variable. This

will contain the clipping coordinates for the vertex that is currently being processed by the
shader. We should remember here that the shaders work in parallel: each vertex is processed
by an instance of the vertex shader.

To obtain the clipping coordinates for a given vertex, we need to multiply first by the Model-
View matrix and then by the Projection matrix. To achieve this, we need to multiply to the
left (because matrix multiplication is not commutative).

Also, notice that we have had to augment the avertexPosition attribute by including
the Homogeneous coordinate. This is because we have always defined our geometry in
Euclidean space. Luckily, ESSL lets us do this just by adding the missing component and
creating a vec4 on the fly. We need to do this because both the Model-View matrix and
the Perspective matrix are described in homogeneous coordinates (4 rows by 4 columns).

Now that we have seen how to map JavaScript matrices to ESSL uniforms in our shaders,
let's talk about how to operate with the three matrices: the Model-View matrix, the Normal
matrix, and the Perspective matrix.

The Model-View matrix

This matrix allows us to perform affine transformations in our scene. Affine is a
mathematical name to describe transformations that do not change the structure of the
object that undergoes such transformations. In our 3D world scene, such transformations
are rotation, scaling, reflection shearing, and translation. Luckily for us, we do not need to
understand how to represent such transformations with matrices. We just have to use one
of the many JavaScript matrix libraries that are available online (such as glMatrix).
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a You can find more information on how transformation matrices work in
A any linear algebra book. Look for affine transforms in computer graphics.

Understanding the structure of the Model-View matrix is of no value if you just want to apply
transformations to the scene or to objects in the scene. For that effect, you just use a library
such as glMatrix to do the transformations on your behalf. However, the structure of this
matrix could be invaluable information when you are trying to troubleshoot your

3D application.

Let's take a look.

By default, when you render a scene, you are looking at it from the origin of the world in the
negative direction of the z-axis. As shown in the following diagram, the z-axis is coming out
of the screen (which means that you are looking at the negative z-axis).

The model-view matrix
z-axis translation
Screen 3D world
+y . v ¥ v
Me Mg m
/[‘\ Mty 9 13
[ ; My My
[ +X
‘ ! My Mys
i > my Mg My, (Mg
ig ~ .
. . +2
I-dX15 [Zt’l"lllg out UF
the screen
HL"‘.IL]SEIIEOLIB
coordinate

From the center of the screen to the right, you will have the positive x-axis and from the
center of the screen up, you will have the positive y-axis. This is the initial configuration
and it is the reference for affine transformations.

In this configuration, the Model-View matrix is the identity matrix of rank four.

The first three rows of the Model-View matrix contain information about rotations
and translations that are affecting the world.
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The intersection of the first three rows with the first three columns defines the 3x3 Rotation
matrix. This matrix contains information about rotations around the standard axis. In the
initial configuration, this corresponds to:

[m,m,m] =[1,0,0] = x-axis
[m,m,m] = [0,1,0] = y-axis

[m,m, m ]1=1[0,0,1] = z-axis

Translation vector

The intersection of the first three rows with the last column defines a three-component
Translation vector. This vector indicates how much the origin, and for the same sake, the
world, have been translated. In the initial configuration, this corresponds to:

M3 0
Mya| = | 0] = origin (no translation)
Mz 0

The mysterious fourth row

The fourth row does not bear any special meaning.

¢ Elements m, m, m , are always zero.

¢ Element m (the homogeneous coordinate) will always be 1.

As we described at the beginning of this chapter, there are no cameras in WebGL. However,
all the information that we need to operate a camera (mainly rotations and translations) can
be extracted from the Model-View matrix itself!

The Gamera matrix

Let's say, for a moment, that we do have a camera in WebGL. A camera should be able to
rotate and translate to explore this 3D world. For example, think of a first person shooter
game where you have to walk through levels killing zombies. As we saw in the previous
section, a 4x4 matrix can encode rotations and translations. Therefore, our hypothetical
camera could also be represented by one such matrix.

Assume that our camera is located at the origin of the world and that it is oriented in a way
that it is looking towards the negative z-axis direction. This is a good starting point—we
already know what transformation represents such a configuration in WebGL (identity matrix
of rank 4).
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For the sake of analysis, let's break the problem down into two sub-problems: camera
translation and camera rotation. We will have a practical demo on each one.

Camera translation

Let's move the camera to [0,0, 4] in world coordinates. This means 4 units from the origin on
the positive z-axis.

Remember that we do not know at this point of a matrix to move the camera, we only know
how to move the world (with the Model-View matrix). If we applied:

mat4.translate (mvMatrix, [0,0,4]);

In such a case, the world would be translated 4 units on the positive z-axis and as the camera
position has not been changed (as we do not know a matrix to do this), it would be located
at [0,0,-4], which is exactly the opposite of what we wanted in the first place!

Now, say that we applied the translation in the opposite direction:
mat4.translate (mvMatrix, [0,0,-4]);

In such a case, the world would be moved 4 units on the negative z-axis and then the camera
would be located at [0,0,4] in the new world coordinate system.

We can see here that translating the camera is equivalent to translating the world in the
opposite direction.

Initial configuration | Translate camera [0,0,4] OR Translate world [0,0,-4]

camera centered at the origin looking at -z-axis J

In the following section, we are going to explore translations both in world space and in
camera space.
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Time for action - exploring transiations: world space versus

1. Opench4 ModelView Translation.html inyour HTML5 browser:

WebGL Beginner's Guide - Chapter 4

Model-View Matrix: Translation [run.-:-nnu]

View Code Controls

World coordinates

o~ X0 Worid Camerz 0 0.0 0.0
The madel-view matrix transforms the world, Here we are just considering the translation
component to see haw the world maves, i 2 : Gl 25
For example, increase X to 10: you vill se how the wo ransiated 10 units to the right (which Z: 50 g k
is the same as requestUpdate the camera 10 units to the left!) 10 -50.0

Camera coordinates 10

Whaen you click on Camera the inverse of the model-view marix is applied, Then if you increase X
10 10 you will see how the camera is translated 10 units to the right {which is equivalent to move
the world 10 units to the leftt)

2. We are looking from a distance at the positive z-axis at a cone located at the origin
of the world. There are three sliders that will allow you to translate either the world
or the camera on the x, y, and z axis, respectively. The world space is activated
by default.

3. Canyou tell by looking at the World-View matrix on the screen where the origin of
the world is? Is it [0,0,0]? (Hint: check where we define translations in the Model-
View matrix).

4. We can think of the canvas as the image that our camera sees. If the world center is
at [0,-2,-50], where is the camera?

5. If we want to see the cone closer, we would have to move the center of the world
towards the camera. We know that the camera is far on the positive z-axis of the
world, so the translation will occur on the z-axis. Given that you are on world
coordinates, do we need to increase or decrease the z-axis slider? Go ahead
and try your answer.
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6. Now switch to camera coordinates by clicking on the Camera button. What is the
translation component of this matrix? What do you need to do if you want to move
the camera closer to the cone? What does the final translation look like? What can
you conclude?

7. Go ahead and try to move the camera on the x-axis and the y-axis. Check what the
correspondent transformations would be on the Model-View matrix.

What just happened?

We saw that the camera translation is the inverse of the Model-View matrix translation.
We also learned where to find translation information in a transformation matrix.

Similarly, if we want to rotate the camera, say, 45 degrees to the right, this would be
equivalent to rotating the world 45 degrees to the left. Using glMatrix to achieve this,
we write the following:

mat4.rotate (mvMatrix, 45 * Math.PI/180, [0,1,0]);

|

Imtlal conflguratlon
= = _m—m‘m-—n—--
- =

| Rotate the world -45 degrees on the Y-axis

| Rotate the camera 45 degrees on the Y-axis

Let's see this behavior in action!

Similar to the previous section where we explored translations, in the following time for
action, we are going to play with rotations in both world and camera spaces.
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Time for action - exploring rotations: world space versus

camera space

1. Openchi4 ModelView Rotation.html inyour HTMLS browser:

WebGL Beginner's Guide - Chapter 4 [ ]

Model-View Matrix: Rotation

dagroes 00 00 0.0

depree

Mo
o e o

wo -0
deprees

world | Camera (XTI W Y

2. Just like in the previous example, we will see:
o A cone at the origin of the world
o The camerais located at [0,2,50] in world coordinates
o Three sliders that will allows us to rotate either the world or the camera

o Also, we have a matrix where we can see the result of different rotations

3. Let's see what happens to the axis after we apply a rotation. With the World
coordinates button selected, rotate the world 90 degrees around the x-axis.
What does the Model-View matrix look like?

4. Let's see where the axes end up after a 90 degree rotation around the x-axis:

o By looking at the first column, we can see that the x-axis has not changed.
It is still [1,0,0]. This makes sense as we are rotating around this axis.

o The second column of the matrix indicates where the y-axis is after
the rotation. In this case, we went from [0,1,0] , which is the original
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configuration, to [0,0,1], which is the axis that is coming out of the screen.
This is the z-axis in the initial configuration. This makes sense as now we are

looking from above, down to the cone.

o The third column of the matrix indicates the new location of the z-axis. It
changed from [0,0,1], which as we know is the z-axis in the standard spatial
configuration (without transforms), to [0,-1,0], which is the negative portion
of the y-axis in the original configuration. This makes sense as we rotated

around the x-axis.

td +x
-
-

L
+2

Initial configuration

Interpreting rotations using the Model-View matrix

A

+X

=
+
~

After 90° rotation on X axis

5. Aswe just saw, understanding the Rotation matrix (3x3 upper-left corner of the
Model-View matrix) is simple: the first three columns are always telling us where

7.
8.

the axis is.

Where are the axis in this transformation:

0.0

0.0

0.0

-2.0

-50.0

1.0

Check your answer by using the sliders to achieve the rotation that you believe

produce this matrix.

Now let's see how rotations work in Camera space. Click on the Camera button.

Start increasing the angle of rotation in the X axis by incrementing the slider

position. What do you notice?
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9. Go ahead and try different rotations in camera space using the sliders.

10. Are the rotations commutative? That is, do you get the same result if you rotate,
for example, 5 degrees on the X axis and 90 degrees on the Z axis, compared to the
case where you rotate 90 degrees on the Z axis and then you rotate 5 degrees on
the X axis?

11. Now, go back to World space. Please check that when you are in World space, you
need to reverse the rotations to obtain the same pose. So, if you were applying 5
degrees on the X axis and 90 degrees on the Z axis. Check that when you apply -5
degrees on the X axis and -90 degrees on the Z axis you obtain the same image as in
point 10.

What just happened?

We just saw that the Camera matrix rotation is the inverse of the Model-View matrix rotation.
We also learned how to identify the orientation of our world or camera upon analysis of the
rotation matrix (3x3 upper-left corner of the correspondent transformation matrix).

Have a go hero — combining rotations and translations

1. Thefile ch4 ModelView.html contains the combination of rotations and
translations. When you open it your HTML5 browser, you see something
like the following:

WebGL Beginner's Guide - Chapter 4 [ ]

Model-View Matrix

Position Rotation 0.0 0.0 0.0

X: 0.0 units X: 0.0 degrees
1.0 0.0 -2.0

¥: 2.0 units ¥: 0.0 degrees

Z: -50.0 units Z: 0.0 degrees 0.0 1.0 -50.0

World | Camera Update Light Position
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2. Try different configurations of rotations and translations in both World and
Camera spaces.

The Camera matrix is the inverse of the Model-View matrix

We can see through these two scenarios that a Camera matrix would require being the exact
Model-View matrix opposite. In linear algebra, we know this as the inverse of a matrix.

The inverse of a matrix is such that when multiplying it by the original matrix, we obtain the
identity matrix. In other words, if M is the Model-View matrix and C is the Camera matrix,
we have the following:

MC=1
MIMC = M
C=M"
We can create the Camera matrix using glMatrix by writing something like the following:

var cMatrix = mat4.create() ;
mat4.inverse (mvMatrix,cMatrix) ;

Thinking ahout matrix multiplications in WehGL

Please do not skip this section. If you want to, just put a sticker on this page so you
remember where to go when you need to debug Model-View transformations. | spent so
many nights trying to understand this (sigh) and | wish | had had a book like this to explain
this to me.

% Before moving forward, we need to know that in WebGL, the matrix operations
A are written in the reverse order in which they are applied to the vertices.

Here is the explanation. Assume, for a moment, that you are writing the code to rotate/
move the world, that is, you rotate your vertices around the origin and then you move away.
The final transformation would look like this:

RTv

Here, R is the 4x4 matrix encoding pure rotation, T is the 4x4 matrix encoding
pure translation, and v corresponds to the vertices present in your scene
(in homogeneous coordinates).
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Now, if you notice, the first transformation that we actually apply to the vertices is the
translation and then we apply the rotation! Vertices need to be multiplied first by the matrix
that is to the left. In this scenario, that matrix is T. Then, the result needs to be multiplied by R.

This fact is reflected in the order of the operations (here mvMatrix is the
Model-View matrix):

mat4.identity (mvMatrix)

mat4.translate (mvMatrix, position); mat4.rotateX (mvMatrix,rotation[0]
*Math.PI/180) ;

mat4.rotateY (mvMatrix, rotation[1l] *Math.PI/180) ;
mat4.rotateZ (mvMatrix, rotation[2] *Math.PI/180) ;

Now if we were working in camera coordinates and we wanted to apply the same
transformation as before, we need to apply a bit of linear algebra first:

M =RT The Model-View matrix M is the result of multiplying
rotation and translation together

C=mMm We know that the Camera matrix is the inverse of the
Model-View matrix

C =(RT)* By substitution

C=T'R! Inverse of a matrix product is the reverse product of the
inverses

Luckily for us, when we are working in camera coordinates in the chapter's examples,

we have the inverse translation and the inverse rotation already calculated in the global
variables position and rotation. Therefore, we would write something like this in the
code (here cMatrix is the Camera matrix):

mat4.identity(cMatrix) ;

mat4.rotateX (cMatrix,rotation[0] *Math.PI/180) ;
mat4.rotateY (cMatrix,rotation[1l] *Math.PI/180) ;
mat4.rotateZ (cMatrix,rotation[2] *Math.PI/180) ;
mat4.translate (cMatrix,position) ;

The following are the camera types that we will discuss in this chapter.

¢ Orbiting camera

¢ Tracking camera
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Up to this point, we have seen how we can generate rotations and translations of the world
in the world or camera coordinates. However, in both cases, we are always generating the
rotations around the center of the world. This could be ideal for many cases where we are
orbiting around a 3D object such as our Nissan GTX model. You put the object at the center
of the world, then you can examine the object at different angles (rotation) and then you
move away (translation) to see the result. Let's call this type of camera an orbiting camera.

Tracking camera

Now, going back to the example of the first person shooting game, we need to have a
camera that is able to look up when we want to see if there are enemies above us. Just

the same, we should be able to look around left and right (rotations) and then move in the
direction in which our camera is pointing (translation). This camera type can be designated
as a first-person camera. This same type is used when the game follows the main character.
Therefore, it is also known as a tracking camera.

To implement first-person cameras, we need to set up the rotations on the camera axis
instead of using the world origin.

When we multiply matrices, the order in which matrices are multiplied is relevant. Say, for
instance, that we have two 4x4 matrices. Let R be the first matrix and let's assume that this
matrix encodes pure rotation; let T be the second matrix and let's assume that T encodes
pure translation. Now:

RT #TR

In other words, the order of the operations affects the result. It is not the same to rotate
around the origin and then translate away from it (orbiting camera), as compared to
translating the origin and then rotating around it (tracking camera)!

So in order to set the location of the camera as the center for rotations, we just need to
invert the order in which the operations are called. This is equivalent to converting from
an orbiting camera to a tracking camera.

Translating the camera in the line of sight

When we have an orbiting camera, the camera will be always looking towards the center

of the world. Therefore, we will always use the z-axis to move to and from the object that
we are examining. However, when we have a tracking camera, as the rotation occurs at the
camera location, we can end up looking to any position in the world (which is ideal if you
want to move around it and explore it). Then, we need to know the direction in which the
camera is pointing to in world coordinates (camera axis). We will see how to obtain this next.
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Just like its counterpart, the Model-View matrix, the Camera matrix encodes information
about the camera axes orientation. As we can see in the figure, the upper-left 3x3 matrix
corresponds to the camera axes:

¢ The first column corresponds to the x-axis of the camera. We will call it the
Right vector.

The second column is the y-axis of the camera. This will be the Up vector.

The third column determines the vector in which the camera can move back
and forth. This is the z-axis of the camera and we will call it the Camera axis.

Due to the fact that the Camera matrix is the inverse of the Model-View matrix, the
upper-left 3x3 rotation matrix contained in the Camera matrix gives us the orientation
of the camera axes in world space. This is a plus, because it means that we can tell the
orientation of our camera in world space, just by looking at the columns of this 3x3
rotation matrix (And we know now what each column means).

Camera Matrix CameraModel
"JI\ Up Vector
A I Camera Axis
s : -7
00! 00 +y Right Vector
A

Camera position

”

I
I
I
I
I
I
I
+X K
World origin

In the following section, we will play with orbiting and tracking cameras and we will see how
we can change the camera position using mouse gestures, page widgets (sliders), and also
we will have a graphical representation of the resulting Model-View matrix. In this exercise,
we will integrate both rotations and translations and we will see how they behave under the
two basic types of cameras that we are studying.
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Time for action — exploring the Nissan GTX

1. Openthefile ch4 CameraTypes.html in your HTML5 browser. You will see
something like the following:

WebGL Beginner's Guide - Chapter 4 [ ]

Camera Types

Dally Pasition Ratation Matrix

0o 00

X 0.0 umts
Elevateon: 0 degrest
0 wnits Y. 20 unts

Ammuth; D degress TR
Z: 50,0 units N

racking | Cirbiting Ga Heme incinte Light Position

2. Go around the world using the sliders in Tracking mode. Cool eh?
3. Now, change the camera type to Orbiting mode and do the same.

4. Now, please check that besides the slider controls, both in Tracking and Orbiting
mode, you can use your mouse and keyboard to move around the world.

5. Inthis exercise, we have implemented a camera using two new classes:
o Camera: to manipulate the camera.

o Cameralnteractor:to connect the camera to the canvas. It will receive
mouse and keyboard events and it will pass them along to the camera.

If you are curious, you can see the source code of these two classes in /js/webgl.
We have applied the concepts explained in this chapter to build these two classes.

6. Sofar, we have seen a cone in the center of the world. Let's change that for
something more interesting to explore.

7. Openthe file ch4 CameraTypes.html in your source code editor.
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8.

10.
11.

12.

13.

Go to the 1oad function. Let's add the car to the scene. Rewrite the contents of this
function so it looks like the following:

function load () {
Floor.build(2000,100) ;
Axis.build (2000) ;
Scene.addObject (Floor) ;
Scene.addObject (Axis) ;
Scene.loadObjectByParts ('models/nissan gts/pr', 'Nissan',178) ;

}

You will see that we have increased the size of the axis and the floor so we can see
them. We do need to do this because the car is an object much larger than the
original cone.

There are some steps that we need to take in order to be able to see the car
correctly. First we need to make sure that we have a large enough view volume.
Go to the initTransforms function and update this line:

mat4.perspective (30, c¢_width / ¢ _height, 0.1, 1000.0, pMatrix);

With this:
mat4.perspective (30, c¢_width / c¢_height, 10, 5000.0, pMatrix);

Do the same in the updateTransforms function.

Now, let's change the type of our camera so when we load the page, we have
an orbiting camera by default. In the configure function, change this line:

camera = new Camera (CAMERA TRACKING TYPE) ;

With:

camera = new Camera (CAMERA ORBIT_TYPE) ;

Another thing we need to take into account is the location of the camera. For a large
object like this car, we need to be far away from the center of the world. For that
purpose, go to the configure function and change:

camera.goHome ( [0,2,50]) ;

Add:
camera.goHome ( [0,200,2000]) ;

Let's modify the lighting of our scene so it fits better in the model we are displaying.
In the function configure function, right after this line:

interactor = new Cameralnteractor (camera, canvas) ;
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Write:
gl.uniformd4fv (prg.uLightAmbient, [0.1,0.1,0.1,1.01);
gl.uniform3fv (prg.uLightPosition, [0, 0, 2120]);

gl.uniformd4fv (prg.uLightDiffuse, [0.7,0.7,0.7,1.01);

14. save the file with a different name and then load this new file in your HTML5
Internet browser. You should see something like the following screenshot:

Dolly Pasition Rotation Matrix

L1 04 7202
Xy 0.0 units 1
Elevation: -2 degress 1.0 1 5274
0 units ¥r  200.0 wnits

Azmuth: o degrees TET
Z: 20000 wnits - ¢ 02 09 16009

1.0

Tracking | Orbiting Ga Home || Update Light Position

15. Using the mouse, keyboard, or/and the sliders, explore the new scene.
Hint: use orbiting mode to explore the car from different angles.

16. See how the Camera matrix is updated when you move around the scene.

17. You can see what the final exercise looks like by opening the file
ch4 NissanGTR.html.

What just happened?

We added mouse and keyboard interaction to our scene. We also experimented with the two
basic camera types—tracking and orbiting cameras. We modified the settings of our scene to
visualize a complex model.
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Have a go hero — updating light positions

Remember that when we move the camera, we are applying the inverse transformation to
the world. If we do not update the light position, then the light source will be located at the
same static point, regardless of the final transformation applied to the world.

This is very convenient when we are moving around or exploring an object in the scene.
We will always be able to see if the light is located on the same axis of the camera. This is
the case for the exercises in this chapter. Nevertheless, we can simulate the case when the
camera movement is independent from the light source. To do so, we need to calculate the
new light position whenever we move the camera. We do this in two steps:

First, we calculate the light direction. We can do this by simply calculating the difference
vector between our target and our origin. Say that the light source is located at [0,2,50].

If we want to direct our light source towards the origin, we calculate the vector [0,0,0] -
[0,2,50] (target - origin). This vector has the correct orientation of the light when we target
the origin. We repeat the same procedure if we have a different target that needs to be lit.
In that case, we just use the coordinates of the target and from them we subtract the
location of the light.

As we are directing our light source towards the origin, we can find the direction of the light
just by inverting the light position. If you notice, we do this in ESSL in the vertex shader:

vec3d L = normalize (-uLightPosition) ;

Now as L is a vector, if we want to update the direction of the light, then we need to use
the Normal matrix, discussed earlier in this chapter, in order to update this vector under
any world transformation. This step is optional in the vertex shader:

if (uUpdateLight) {
L = vec3 (uNMatrix*vec4 (L,0.0)) ;

}

In the previous fragment of code, L is augmented to 4-components, so we can use the direct
multiplication provided by ESSL. (Remember that uNMatrix is a 4x4 matrix and as such, the
vectors that are transformed by it need to be 4-dimensional). Also, please bear in mind that,
as explained in the beginning of the chapter, vectors have their homogeneous coordinate
always set to zero, while vertices have their homogeneous coordinate set to one.

After the multiplication, we reduce the result to 3-components before assigning the result
back to L.

You can test the effects of updating the light position by using the button Update Light
Position, provided in the files ch4 NissanGTR.html and ch4 CameraTypes.html.
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We connect a global variable that keeps track of the state of this button with the uniform
uUpdateLight.

1. Editch4 NissanGTR.html and set the light position to a different location.
To do this, edit the configure function. Go to:

gl.uniform3fv (prg.uLightPosition, [0, 0, 2120]);

Try different light positions:
a [2120,0,0]
o [0,2120,0]
a [100,100,100]

2. For each option, save the file and try it with and without updating the light position
(use the button Update Light Position).

View Code Controls

Dolly Position Rotation Matrix

0.3 -0.5 -976.0

X: 0.0 units "
) Elevation: -33.5 degrees 0.8 06 12707

0 units ¥Y: 200.0 units 3

So e (e Azimuth: -141.2 degrees 0.4 0.6 -1213.6

10

Tracking | Orbiting Go Home Update Light Position

3. For a better visualization, use an Orbiting camera.

The Perspective matrix

At the beginning of the chapter, we said that the Perspective matrix combines the
projection transformation and the perspective division. These two steps combined
take a 3D scene and converts it into a cube that is then mapped to the 2D canvas
by the viewport transformation.
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In practice, the Perspective matrix determines the geometry of the image that is captured by
the camera. In a real world camera, the lens of the camera would determine how distorted
the final images are. In a WebGL world, we use the Perspective matrix to simulate that. Also,
unlike in the real world where our images are always affected by perspective, in WebGL, we
can pick a different representation: the orthographic projection.

The Perspective matrix determines the Field of View (FOV) of the camera, that is, how
much of the 3D space will be captured by the camera. The field of view is a measure given
in degrees and the term is used interchangeably with the term angle of view.

Field of View

A perspective projection assigns more space to details that are closer to the camera than the
details that are farther from it. In other words, the geometry that is close to the camera will
appear bigger than the geometry that is farther from it. This is the way our eyes see the real
world. Perspective projection allows us to assess the distance because it gives our brain a
depth cue.

In contrast, an orthogonal projection uses parallel lines; this means that will look the same
size regardless of their distance to the camera. Therefore, the depth cue is lost when using
orthogonal projection.

Using glMatrix, we can set up the perspective or the orthogonal projection by calling
mat4.persective or mat4.ortho respectively. The signatures for these methods are:
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Function Description (Taken from the documentation of
the library)
mat4.perspective (fovy, aspect, Generates a perspective projection matrix with
near, far, dest) the given bounds
Parameters:

fovy - vertical field of view

aspect - aspect ratio—typically viewport width/
height

near, far - near and far bounds of the frustum
dest - Optional, mat4 frustum matrix will be
written into

Returns:
dest if specified, a new mat4 otherwise

Generates an orthogonal projection matrix with
mat4.ortho(left, right, bottom, the given bounds:
top, near, far, dest)

Parameters:

left, right - left and right bounds of the
frustum

bottom, top - bottom and top bounds of the
frustum

near, far - near and far bounds of the frustum
dest - Optional, mat4 frustum matrix will be
written into

Returns:

dest if specified, a new mat4 otherwise.

In the following time for action section, we will see how the field of view and the perspective
projection affects the image that our camera captures. We will experiment perspective and
orthographic projections for both orbiting and tracking cameras.

Time for action - orthographic and perspective projections

1. Openthefile ch4 ProjectiveModes.html in your HTML5 Internet browser.

2. This exercise is very similar to the previous one. However, there are two new
buttons: Perspective and Orthogonal. As you can see, Perspective is activated
by default.
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3. Change the camera type to Orbiting.
4.

5.

Change the projective mode to Orthographic.

Explore the scene. Notice the lack of depth cues that is characteristic of
orthogonal projections:

Pasition Rotation Matrix

01 07 11204

e L Blevation:  -5.0 degrees 10 a3 32
-840 units ¥i 3371 unis
Anewth:  45.0 degrees P
I: 1700.4 units o 11 D 17004
1.0
Parapective | Orthagraphis Tracking | Orhiting GoHome | Updatn Light Position

6. Now switch to Perspective mode:

View | Code = Controls

Dolly

Position Rotation Matrix
0.7 -01 07 11204
X: 1120.4 units =
o Elevation:  -5.0 degrees _ 1.0 01 3271
-540 units Y: 327.1 units
Azimuth:  45.0 degrees e
Z: 17004 units ) 0.1 0.7 1700.4
0.0 10

Perspective | Orthegraphic

| Tracking | Orbiting Go Home | Update Light Position
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10.

11.

Explore the source code. Go to the updateTransforms function:

function updateTransforms () {
if (projectionMode == PROJ_PERSPECTIVE){
mat4.perspective (30, ¢ _width / c_height, 10, 5000,
pMatrix) ;

}

else(
mat4.ortho(-c_width, c_width, -c_height, c¢_height, -5000,
5000, pMatrix) ;

}

Please take a look at the parameters that we are using to set up the projective view.

Let's modify the field of view. Create a global variable right before the
updateTransforms function

var fovy = 30;

Let's use this variable instead of the hardcoded value:

Replace:
mat4.perspective (30, c_width / ¢ _height, 10, 5000, pMatrix);

With:
mat4.perspective (fovy, c_width / c¢_height, 10, 5000, pMatrix);

Now let's update the camera interactor to update this variable. Open the file /js/
webgl/Cameralnteractor.js in your source code editor.

Append these lines to Cameralnteractor.prototype.onKeyDown inside i f
(Ithis.ctrl) {:
else if (this.key == 87) { //w

if (fovy<120) fovy+=5;

console.info ('FovY:'+fovy) ;

}

else if (this.key == 78) { //n
if (fovy>15) fovy-=5;
console.info ('FovY:'+fovy) ;

}

Please make sure that you are inside the if section.
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,  Ifthese instructions are already there, do not write them again. Just
make sure you understand that the goal here is to update the global

fovy variable that refers to the field of view in perspective mode.

12.5ave the changes made to CameraInteractor.ijs.

13. save the changes made to ch4_ProjectiveModes.html. Use a different name.
You can see the final result in the file ch4 ProjectiveModesFOVY.html.

14. Open the renamed file in your HTMLS Internet browser. Try different fields of view
by pressing w or n repeatedly. Can you replicate these scenes:

Field of View

15. Notice that as you increase the field of view, your camera will capture more of the
3D space. Think of this as the lens of a real-world camera. With a wide-angle lens,
you capture more space with the trade-off of deforming the objects as they move
towards the boundaries of your viewing box.

What just happened?

We experimented with different configurations for the Perspective matrix and we saw how
these configurations produce different results in the scene.

Have a go hero - integrating the Model-view and the projective transform

Remember that once we have applied the Model-View transformation to the vertices, the
next step is to transform the view coordinates to NDC coordinates:
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Theory:
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We do this by a simple multiplication using ESSL in the vertex shader:

gl Position = uPMatrix * uMVMatrix * vec4 (aVertexPosition,1.0);

The predefined variable, g1 Position, stores the NDC coordinates for each vertex
of every object defined in the scene.

In the previous multiplication, we augment the shader attribute, avertexbPosition,
to a 4-component vertex because our matrices are 4x4. Unlike normals, vertices have a
homogeneous coordinate equal to one (w=1).

After this step, WebGL will convert the computed clipping coordinates to normalized device
coordinates and from there to canvas coordinates using the WebGL viewport function. We

are going to see what happens when we change this mapping.

1. Openthe file ch4 NisanGTS.html in your source code editor.

2. Go to the draw function. This is the rendering function that is invoked every time
we interact with the scene (by using the mouse, the keyboard, or the widgets on
the page).

3. Change this line:
gl.viewport (0, 0, c_width, c_height);

Make it:

gl.viewport (0, 0, c_width/2, c_height/2);
gl.viewport (c_width/2,c_height/2, ¢ _width, c_height) ;
gl.viewport (50, 50, c_width-100, c_height-100);
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4. For each option, save the file and open it on your HTMLS browser.

5. What do you see? Please notice that you can interact with the scene just like before.

Structure of the WehGL examples

We have improved the structure of the code examples in this chapter. As the complexity of
our WebGL applications increases, it is wise to have a good, maintainable, and clear design.
We have left this section at the end of the chapter so you can use it as a reference when
working on the exercises.

“hody onboad="runWebGLApp () ">

WabGLAPP
Vertex Fragment
Shader Shader

configure configureGLHook

WebGLApp.js

Globals.js

Program.js

Scene.js

JavaScript Code

Utils.js

var app = new WebGLApp ("canvas-element-id")
app.configureGLHook = configure;
app. loadScensHook = load;
app.drawScensHook = draw;
app.runi):

Just like in previous exercises, our entry point is the runWebGLApp function which
is called when the page is loaded. There we create an instance of WebGLApp, as shown
in the previous diagram.

This class encapsulates some of the utility functions that were present in our examples in
previous chapters. It also declares a clear and simple life cycle for a WebGL application.
WebGLApp has three function hooks that we can map to functions in our web page. These
hooks determine what functions will be called for each stage in the life cycle of the app. In
the examples of this chapter, we have created the following mappings:
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*

configureGLHook: which points to the configure function in the web page

L 4

loadSceneHook: which is mapped to the 1oad function in the webpage

¢ drawSceneHook: which corresponds to the draw function in the webpage

A function hook can be described as a pointer to a function. In JavaScript,
you can write:

. function foo() {alert ("function foo invoked");}
% var hook = foo;
A hook () ;
This fragment of code will execute £oo when hook () is executed. This

allows a pluggable behavior that is more difficult to express in fully typed
languages.

WebGLApp Will use the function hooks to call configure, 1oad, and draw in our page in
that order.

After setting these hooks, the run method is invoked.

The source code for WebGLApp and other supporting objects can be
e foundin /js/webgl

We have created the following objects, each one in its own file:

Globals.js: Contains the global variables used in the example.

Program.js: Creates the program using the shader definitions. Provides
the mapping between JavaScript variables (prg. *) and program attributes
and uniforms.

¢ Scene.js: Maintains a list of objects to be rendered. Contains the AJAX/JSON
functionality to retrieve remote objects. It also allows adding local objects to
the scene.

¢ Floor.js: Defines a grid on the X-Z plane. This object is added to the Scene to
have a reference of where the floor is.

¢ Axis.js:Represents the axis in world space. When added to the scene, we will
have a reference of where the origin is.
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¢ WebGLApp.js: Represents a WebGL application. It has three function hooks that
define the configuration stage, the scene loading stage, and the rendering stage.
These hooks can be connected to functions in our web page.

& Utils.js: Utility functions such as obtaining a g1 context.

_ You can refer to Globals. js to find the global variables used in this
& example (the definition of the JavaScript matrices is there) and Program.
A j s to find the prg. * JavaScript variables that map to attributes and
uniforms in the shaders.

Life-cycle functions

The following are the functions that define the life-cycle of a WebGLApp application:

The configure function sets some parameters of our gl context, such as the color
for clearing the canvas, and then it calls the initTransforms function.

Load

The 1oad function sets up the objects Floor and Axis. These two locally-created objects
are added to the Scene by calling the addobject method. After that, a remote object
(AJAX call) is loaded using the Scene . loadObject method.

The draw function calls updateTransforms to calculate the matrices for the new position
(that is, when we move), then iterates over the objects in the Scene to render them. Inside
this loop, it calls setMatrixUniforms for every object to be rendered.

The following are the functions that initialize, update, and pass matrices to the shaders:

initTransforms

As you can see, the Model-View matrix, the Camera matrix, the Perspective matrix, and the
Normal matrix are set up here:

function initTransforms () {

mat4.identity (mvMatrix) ;
mat4.translate (mvMatrix, home) ;
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displayMatrix (mvMatrix) ;

mat4.identity(cMatrix) ;
mat4.inverse (mvMatrix, cMatrix) ;

mat4.identity (pMatrix) ;
mat4.perspective (30, c¢_width / c¢_height, 0.1, 1000.0, pMatrix);

mat4.identity (nMatrix) ;
mat4.set (mvMatrix, nMatrix) ;
mat4.inverse (nMatrix) ;
mat4.transpose (nMatrix) ;

coords = COORDS WORLD;

updateTransforms

In updateTransforms, we use the contents of the global variables position and
rotation to update the matrices. This is, of course, if the requestUpdate variable

is set to true. We set requestUpdate to true from the GUI controls. The code for these
is located at the bottom of the webpage (for instance, check the file ch4 Modelview
Rotation.html).

function updateTransforms () {

mat4.perspective (30, c¢_width / c¢_height, 0.1, 1000.0, pMatrix);
if (coords == COORDS_ WORLD) {
mat4.identity (mvMatrix) ;
mat4.translate (mvMatrix, position);
mat4.rotateX (mvMatrix, rotation[0] *Math.PI/180) ;
mat4.rotateY (mvMatrix, rotation[1l] *Math.PI/180) ;
mat4.rotateZ (mvMatrix, rotation[2] *Math.PI/180) ;

else{
mat4.identity (cMatrix) ;
mat4.rotateX (cMatrix, rotation[0] *Math.PI/180) ;
mat4.rotateY (cMatrix, rotation[1l] *Math.PI/180) ;
mat4.rotateZ (cMatrix, rotation[2] *Math.PI/180) ;
mat4.translate(cMatrix,position) ;
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setMatrixUniforms

This function performs the mapping:

function setMatrixUniforms () {

if (coords == COORDS_WORLD) {

mat4.inverse (mvMatrix, cMatrix) ;

displayMatrix (mvMatrix) ;

gl.uniformMatrix4fv (prg.uMVMatrix, false, mvMatrix) ;
}
else(

mat4.inverse (cMatrix, mvMatrix) ;

displayMatrix (cMatrix) ;

gl.uniformMatrix4fv (prg.uPMatrix, false, pMatrix);
gl.uniformMatrix4fv (prg.uMVMatrix, false, mvMatrix) ;
mat4.transpose (cMatrix, nMatrix) ;
gl.uniformMatrix4fv (prg.uNMatrix, false, nMatrix);

Let's summarize what we have learned in this chapter:

There is no camera object in WebGL. However, we can build one using the
Model-View matrix.

3D objects undergo several transformations to be displayed on a 2D screen.
These transformations are represented as 4x4 matrices.

Scene transformations are affine. Affine transformations are constituted by a linear
transformation followed by a translation. WebGL groups affine transforms in three
matrices: the Model-View matrix, the Perspective matrix, and the Normal matrix
and one WebGL operation: gl .viewport ().
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Affine transforms are applied in projective space so they can be represented by 4x4 matrices.
To work in projective space, vertices need to be augmented to contain an extra term, namely,
w, which is called the perspective coordinate. The 4-tuple (x,y,z,w) is called homogeneous
coordinates. Homogeneous coordinates allows representation of lines that intersect on
infinity by making the perspective coordinate w = 0. Vectors always have a homogeneous
coordinate w = 0; While points have a homogenous coordinate, namely, w = 1 (unless they
are at infinity, in which case w=0).

By default, a WebGL scene is viewed from the world origin in the negative direction of the
z-axis. This can be altered by changing the Model-View matrix.

The Camera matrix is the inverse of the Model-View matrix. Camera and World operations
are opposite. There are two basic types of camera—orbiting and tracking camera.

Normals receive special treatment whenever the object suffers an affine transform. Normals
are transformed by the Normal matrix, which can be obtained from the Model-View matrix.

The Perspective matrix allows the determining of two basic projective modes, namely,
orthographic projection and perspective projection.
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So far, we have seen static scenes where all interactions are done by moving the
camera. The camera transformation is applied to all objects in the 3D scene,
therefore we call it a global transform. However, objects in 3D scenes can have
actions on their own. For instance, in a racing car game, each car has its own
speed and trajectory. In a first-person shooting game your enemies can hide
behind barricades then come and fight you or run away. In general, each one

of these actions is modeled as a matrix transformation that is attached to the
corresponding actor in the scene. These are called local transforms. In this
chapter we will study different techniques to make use of local transforms.

In this chapter, we will discuss the following topics:

Global versus local transformations
Matrix stacks and using them to perform animation
Using JavaScript timers to do time-based animation

Parametric curves

* 6 6 o o

Interpolation

In the previous chapter, we saw that when we apply the same transformation to all the
objects in our scene we move the world. This global transformation allowed us to create two
different kinds of cameras. Once we have applied the camera transform to all the objects in
the scene, each one of them could update its position; representing, for instance, targets
that are moving in a first-person shooting game, or the position of other competitors

in a car racing game.



Action

This can be achieved by modifying the current Model-View transform for each object. However,
if we modified the Model-View matrix, how could we make sure that these modifications do
not affect other objects? After all, we only have one Model-View matrix, right?

The solution to this dilemma is to use matrix stacks.

A matrix stack provides a way to apply local transforms to individual objects in our scene
while at the same time we keep the global transform (camera transform) coherent for all
of them. Let's see how it works.

Each rendering cycle (each call to our draw function) requires calculating the scene matrices
to react to camera movements. We are going to update the Model-View matrix for each
object in our scene before passing the matrices to the shading program (as attributes).

We do this in three steps as follows:

¢ Step 1: Once the global Model-View matrix (camera transform) has been calculated,
we proceed to save it in a stack. This step will allow us to recover the original matrix
once we had applied to any local transforms.

¢ Step 2: Calculate an updated Model-View matrix for each object in the scene.
This update consists of multiplying the original Model-View matrix by a matrix
that represents the rotation, translation, and/or scaling of each object in the scene.
The updated Model-View matrix is passed to the program and the respective object
then appears in the location indicated by its local transform.

¢ Step 3: We recover the original matrix from the stack and then we repeat steps 1
to 3 for the next object that needs to be rendered.

The following diagram shows this three-step procedure for one object:

Matrix Stack Operations
Current Matrix

1. Save current State

originalM-v I
Push model-view transform Transform

Stack

2. Update Model-View matrix for current object

Modify model-view matrix
Modifled M-V
Set Matrix Uniforms EEAnSLOTN
Original M-V
transfom

3. Retrieve original state

|
Trans form
Pop model-view transform

Stack
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To animate a scene is nothing else than applying the appropriate local transformations to
objects in it. For instance, if we have a cone and a sphere and we want to move them, each
one of them will have a corresponding local transformation that will describe its location,
orientation, and scale. In the previous section, we saw that matrix stacks allow recovering
the original Model-View transform so we can apply the correct local transform for the next
object to be rendered.

Knowing how to move objects with local transforms and matrix stacks, the question that
needs to be addressed is: When?

If we calculated the position that we want to give to the cone and the sphere of our example
every time we called the draw function, this would imply that the animation rate would be
dependent on how fast our rendering cycle goes. A slower rendering cycle would produce
choppy animations and a too fast rendering cycle would create the illusion of objects
jumping from one side to the other without smooth transitions.

Therefore, it is important to make the animation independent from the rendering cycle.
There are a couple of JavaScript elements that we can use to achieve this goal: The
requestAnimFrame function and JavaScript timers.

The window.requestAnimFrame () function is currently being implemented in HTML5-
WebGL enabled Internet browsers. This function is designed such that it calls the rendering
function (whatever function we indicate) in a safe way only when the browser/tab window is
in focus. Otherwise, there is no call. This saves precious CPU, GPU, and memory resources.

Using the requestAnimFrame function, we can obtain a rendering cycle that goes as fast
as the hardware allows and at the same time, it is automatically suspended whenever the

window is out of focus. If we used requestAnimFrame to implement our rendering cycle,
we could use then a JavaScript timer that fires up periodically calculating the elapsed time

and updating the animation time accordingly. However, the function is a feature that is still
in development.

To check on the status of the requestAnimFrame function, please refer to

the following URL:
i

https://developer.mozilla.org/en/DOM/window.requestAn
imationFrame#AutoCompatibilityTable.
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We can use two JavaScript timers to isolate the rendering rate from the animation rate.

In our previous code examples, the rendering rate is controlled by the class WebGLApPp.
This class invokes the draw function, defined in our page, periodically using a JavaScript timer.

Unlike the requestAnimFrame function, JavaScript timers keep running in the background
even when the page is not in focus. This is not optimal performance for your computer given
that you are allocating resources to a scene that you are not even looking. To mimic some

of the requestAnimFrame intelligent behavior provided for this purpose, we can use the
onblur and onfocus events of the JavaScript window object.

Let's see what we can do:

Action (What) Goal (Why) Method (How)
Pause the rendering To stop the rendering until the Clear the timer calling
window is in focus clearInterval in the window.

onblur function

Slow the rendering To reduce resource We can clear current timer calling
consumption but make sure clearInterval in the window.
that the 3D scene keeps onblur function and create a new
evolving even if we are not timer with a more relaxed interval
looking at it (higher value)

Resume the rendering To activate the 3D scene at We start a new timer with the
full speed when the browser original render rate in the window.
window recovers its focus onfocus function

By reducing the JavaScript timer rate or clearing the timer, we can handle hardware
resources more efficiently.

_ The source code for WebGLApp is located in the file /js/webgl/
% WebGLApp . js that accompanies this chapter. In WebGLApp you can see how
=" the onblur and onfocus events have been used to control the rendering
timer as described previously.

Timing strategies

In this section, we will create the second JavaScript timer that will allow controlling the
animation. As previously mentioned, a second JavaScript timer will provide independency
between how fast your computer can render frames and how fast we want the animation
to go. We have called this property the animation rate.
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However, before moving forward you should know that there is a caveat when working with
timers: JavaScript is not a multi-threaded language.

This means that if there are several asynchronous events occurring at the same time
(blocking events) the browser will queue them for their posterior execution. Each browser
has a different mechanism to deal with blocking event queues.

There are two blocking event-handling alternatives for the purpose of developing an
animation timer.

The first alternative is to calculate the elapsed time inside the timer callback.
The pseudo-code looks like the following :

var initialTime = undefined;
var elapsedTime = undefined;
var animationRate = 30; //30 ms
function animate (deltaT) {
//calculate object positions based on deltaT

}

function onFrame () {
elapsedTime = (new Date) .getTime() - initialTime;
if (elapsedTime < animationRate) return; //come back later
animate (elapsedTime) ;
initialTime = (new Date) .getTime () ;
}
function startAnimation(){
setInterval (onFrame, animationRate/1000) ;

}

Doing so, we can guarantee that the animation time is independent from how often the
timer callback is actually executed. If there are big delays (due to other blocking events) this
method can result in dropped frames. This means the object's positions in our scene will be
immediately moved to the current position that they should be in according to the elapsed
time (between consecutive animation timer callbacks) and then the intermediate positions
are to be ignored. The motion on screen may jump but often a dropped animation frame is
an acceptable loss in a real-time application, for instance, when we move one object from
point A to point B over a given period of time. However, if we were using this strategy when
shooting a target in a 3D shooting game, we could quickly run into problems. Imagine that
you shoot a target and then there is a delay, next thing you know the target is no longer
there! Notice that in this case where we need to calculate a collision, we cannot afford to
miss frames, because the collision could occur in any of the frames that we would drop
otherwise without analyzing. The following strategy solves that problem.
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Simulation strategy

There are several applications such as the shooting game example where we need all the
intermediate frames to assure the integrity of the outcome. For example, when working
with collision detection, physics simulations, or artificial intelligence for games. In this case,
we need to update the object's positions at a constant rate. We do so by directly calculating
the next position for the objects inside the timer callback.

var animationRate = 30; //30 ms
var deltaPosition = 0.1
function animate (deltaP) {

//calculate object positions based on deltaP

}

function onFrame () {
animate (deltaPosition) ;

function startAnimation () {
setInterval (onFrame, animationRate/1000) ;

}

This may lead to frozen frames when there is a long list of blocking events because the
object's positions would not be timely updated.

Generally speaking, browsers are really efficient at handling blocking events and in most
cases the performance would be similar regardless of the chosen strategy. Then, deciding to

calculate the elapsed time or the next position in timer callbacks will then depend on your
particular application.

Nonetheless, there are some cases where it is desirable to combine both animation and
simulation strategies. We can create a timer callback that calculates the elapsed time and

updates the animation as many times as required per frame. The pseudocode looks like
the following:

var initialTime = undefined;
var elapsedTime = undefined;
var animationRate = 30; //30 ms
var deltaPosition = 0.1;
function animate (delta) {

//calculate object positions based on delta

function onFrame () {

elapsedTime = (new Date) .getTime() - initialTime;
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if

var steps
while (steps > 0) {

animate (deltaPosition) ;
1;

steps -

}

initialTime =

function startAnimation () {

initialTime

(elapsedTime < animationRate)

return; //come back later!

Math.floor (elapsedTime / animationRate) ;

(new Date) .getTime () ;

(new Date) .getTime () ;

setInterval (onFrame, animationRate/1000) ;

}

You can see from the preceding code snippet that the animation will always update at a fixed
rate, no matter how much time elapses between frames. If the app is running at 60 Hz, the

animation will update once every other frame,

if the app runs at 30 Hz the animation will

update once per frame, and if the app runs at 15 Hz the animation will update twice per
frame. The key is that by always moving the animation forward a fixed amount it is far

more stable and deterministic.

The following diagram shows the responsibilities of each function in the call stack for the

combined approach:

startAnimation

Call stack example for the combined timing approach: animation + simulation

onFrame '

animate H

. = Creates the timer
. * Setsthe animation rate
* The timer callback is the onFrame function

+ Calculates elapsed time since last call

+ |f the elapsed time is less than the animation rate then returns
without further processing. Otherwise, it calculates the number of

. frames that the animation needs to be moved forward

. * Updates the animation by calling the animate function

Updates the object positions by a fixed increment. In this example.
The sphere is updated by 0.1 units every time that animateis
' called.
| * Itcalls drawto update the objects on screen. This is optional since
i the rendering loop calls draw pericdically anyways.

* Creates a local transformation using the new position calculated in
animate and it applies it to the correspondent object (sphere). The
code looks like this:

i if (obj

‘asphere'} {

ms . push () ;
var aphereTranaform = tranaforma.mvMatrix;
matd.translate (sphereTransform, [0,0,poal) ;
transformsa MatrixUniforma();
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This approach can cause issues if for whatever reason an animation step actually takes longer
to compute than the fixed step, but if that is occurring, you really ought to simplify your
animation code or put out a recommended minimum system spec for your application.

Though it is beyond the scope of this book, you may want to know that if performance is
really critical to you and you need to ensure that a particular update loop always fires at a
consistent rate then you could use Web Workers.

Web Workers is an API that allows web applications to spawn background processes
running scripts in parallel to their main page. This allows for thread-like operation
with message-passing as the coordination mechanism.

You can find the Web Workers specification at the following URL: http://dev.w3.org/
html5/workers/

Architectural updates

Let's review the structure of the examples developed in the book. Each web page includes
several scripts. One of them is WebGLApp . js. This script contains the WebGLApp object.

WebGLApD review

The WebGLApp object defines three function hooks that control the life cycle of the
application. As shown in the diagram, we create a WebGLApp instance inside the
runWebGLApp function. Then, we connect the WebGLApp hooks to the configure, 1load,
and draw functions that we coded. Also, please notice that the runWebGLApp function is
the entry point for the application and it is automatically invoked using the onload event
of the web page.
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Application Architecture

WebGLApp.js

Vertex e
Shader 5

configure configquraGLHook
A

loadScenaHook
JavaScript Code

scripts

F
drawScenaHook
Utils.js

SceneTransforms.js

<body onLoad=" runWebGLApp () * >

var app = new WebGLApp ("canvas-element-1d")
app.configureGLiook = configure;

app.loadSceneHook = load:
app.drawSceneHook = draw;
app.runi);
startAnimation() ;

The diagram also shows a new script: SceneTransforms. js. This file contains

the SceneTransforms objects that encapsulate the matrix-handling operations
including matrix stacks operations push and pop. The SceneTransforms object
replaces the functionality provided in Chapter 4, Camera, by the initTransforms,
updateTransforms, and setMatrixUniforms functions.

You can find the source code for SceneTransforms in js/webgl/SceneTransforms.js.

After setting the connections between the WebGLApp hooks and our configure, load and
draw functions, WebGLApp . run () is invoked. This call creates a JavaScript timer that is
triggered every 500 ms. The callback for this timer is the draw function. Up to now a refresh
rate of 500 ms was more than acceptable because we did not have any animations. However,
this is a parameter that you could tweak later on to optimize your rendering speed. To do so
please change the value of the constant WEBGLAPP RENDER_RATE. This constant is defined
in the source code for WebGLApp.

You can find the source code for WebGLApp in js/webgl /WebGLApPp. js.
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Creating an animation timer

As shown in the previous architecture diagram, we have added a call to the new
startAnimation function inside the runWwebGLApp function. This causes the
animation to start when the page loads.

In the following Time for action section, we will take a look at a simple scene where we have
animated a cone and a sphere. In this example, we are using matrix stacks to implement
local transformations and JavaScript timers to implement the animation sequence.

Time for action - simpie animation

1. Openchs SimpleAnimation.html using your WebGL-enabled Internet browser
of choice.

2. Move the camera around and see how the objects (sphere and cone) move
independently of each other (local transformations) and from the camera position
(global transformation).

3. Move the camera around pressing the left mouse button and holding it while you
drag the mouse.

4. You can also dolly the camera by clicking the left mouse button while pressing the
Alt key and then dragging the mouse.

5. Now change the camera type to Tracking. If for any reason you lose your bearings,
click on go home.

6. Let's examine the source code to see how we have implemented this example.
Open ch5_SimpleAnimation.html using the source code editor of your choice.

7. Take alook at the functions startAnimation, onFrame, and animate.
Which timing strategy are we using here?

8. The global variables pos_sphere and pos_cone contain the position of the
sphere and the cone respectively. Scroll up to the draw function. Inside the
main for loop where each object of the scene is rendered, a different local
transformation is calculated depending on the current object being rendered.
The code looks like the following:
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10.

transforms.calculateModelView () ;
transforms.push() ;
if (object.alias == 'sphere')
var sphereTransform = transforms.mvMatrix;
mat4.translate (sphereTransform, [0,0,pos_ sphere]) ;
}
else if (object.alias == 'cone') {
var coneTransform = transforms.mvMatrix;
mat4.translate (coneTransform, [pos cone,0,0]);
}
transforms.setMatrixUniforms () ;
transforms.pop () ;

Using the transforms object (which is an instance of SceneTransforms) we obtain
the global Model-View matrix by calling transforms.calculateModelView ().
Then, we push it into a matrix stack by calling the push method. Now we can apply
any transform that we want, knowing that we can retrieve the global transform so it

is available for the next object on the list. We actually do so at the end of the code
snippet by calling the pop method. Between the push and pop calls, we determine
which object is currently being rendered and depending on that, we use the global
pos_sphere or pos_cone to apply a translation to the current Model-View matrix.
By doing so, we create a local transform.

Take a second look at the previous code. As you saw at the beginning of this
exercise, the cone is moving in the x axis while the sphere is moving in the z axis.
What do you need to change to animate the cone in the y axis? Test your hypothesis
by modifying this code, saving the web page, and opening it again on your HTML5
web browser.

Let's go now back to the animate function. What do we need to modify here to
make the objects to move faster? Hint: take a look at the global variables that this
function uses.

What just happened?

In this exercise, we saw a simple animation of two objects. We examined the source code
to understand the call stack of functions that make the animation possible. At the end of

this call stack, there is a draw function that takes the information of the calculated object
positions and applies the respective local transforms.
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Have a go hero - simulating dropped and frozen frames

1. Openthe ch5 DroppingFrames.html file using your HTML5 web browser.
Here you will see the same scene that we analyzed in the previous Time for
action section. You can see here that the animation is not smooth because
we are simulating dropping frames.

2. Take alook at the source code in an editor of your choice. Scroll to the animate
function. You can see that we have included a new variable: simulationRate. In
the onFrame function, this new variable calculates how many simulation steps need
to be performed when the time elapsed is around 300 ms (animationRate). Given
that the simulationRate is 30 ms this will produce a total of 10 simulation steps.
These steps can be more if there are unexpected delays and the elapsed time is
considerably higher. This is the behavior that we expect.

3. In this section we want you to experiment with different values for the
animationRate and simulationRate variables to answer the following questions:

o How do we get rid of the dropping frames issue?

o How can we simulate frozen frames?

[ Q Hint: the calculated steps should always be zero. ]

o What is the relationship between the animationRate and the
simulationRate variables when simulating frozen frames?

There are many situations where we don't know the exact position that an object will have
at a given time but we know an equation that describe its movement. These equations are
known as parametric curves and are called like that because the position depends on one
parameter: the time.

There are many examples of parametric curves. We can think for instance of a projectile
that we shoot on a game, a car that is going downbhill or a bouncing ball. In each case, there
are equations that describe the motion of these objects under ideal conditions. The next
diagram shows the parametric equation that describes free fall motion.
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Parametric Curves: Free Fall
The position of the object does not need to be known because it can be obtained depending
on one parameter: the time.
variable
Hﬂ t=0
t=1
1 2
h=Hy+ Vot — - gt
2
t=2
constant
g=98m/s?
t=3 V,= initial velocity
Hy = initial position
t=time
h =position

We are going to use parametric curves for animating objects in a WebGL scene.
In this example, we will model a set of bouncing balls.

% The complete source code for this exercise can be found in
L /code/ch5 BouncingBalls.html.

We will create a global variable that will store the time (simulation time).
var sceneTime = 0;
We also create the global variables that regulate the animation:

var animationRate = 15; /* 15 ms */
var elapsedTime = undefined;
var initialTime = undefined;
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The 1load function is updated to load a bunch of balls using the same geometry
(same JSON file) but adding it several times to the scene object. The code looks
like this:

function load () {

Floor.build(80,2) ;
Axis.build(82) ;
Scene.addObject (Floor) ;

for (var i=0;i<NUM BALLS;i++) {
var pos = generatePosition() ;
ball.push (new BouncingBall (pos[0],pos[1],pos[2]));
Scene.loadObject ('models/geometry/ball.json', 'ball'+i) ;

}

Notice that here we also populate an array named ball []. We do this so that we can
store the ball positions every time the global time changes. We will talk in depth about the
bouncing ball simulation in the next Time for action section. For the moment, it is worth
mentioning that it is on the 1oad function that we load the geometry and initialize the ball
array with the initial ball positions.

The startAnimation and onFrame functions look exactly as in the previous examples:

function onFrame () {
elapsedTime = (new Date) .getTime() - initialTime;
if (elapsedTime < animationRate) { return;} //come back later
var steps = Math.floor (elapsedTime / animationRate) ;
while (steps > 0){

animate () ;
steps -= 1;
initialTime = (new Date) .getTime () ;

}

function startAnimation(){
initialTime = (new Date) .getTime () ;
setInterval (onFrame, animationRate/1000); // animation rate

}
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The animate function passes the sceneTime variable to the update method of every ball
in the ball array. Then, sceneTime is updated by a fixed amount. The code looks like this:

function animate () {

)
for (var i = 0; i<ball.length; i++){

ball[i] .update (sceneTime) ;
!
sceneTime += 33/1000; //simulation time
draw () ;

}

Again, parametric curves are really helpful because we do not need to know beforehand
the location of every object that we want to move. We just apply a parametric equation
that gives us the location based on the current time. This occurs for every ball inside its
update method.

Drawing each ball in its current position

In the draw function, we use matrix stack to save the state of the Model-View matrix
before applying a local transformation for each one of the balls. The code looks like this:

transforms.calculateModelView() ;
transforms.push() ;
if (object.alias.substring(0,4) == 'ball'){
var index = parselnt (object.alias.substring(4,8)) ;
var ballTransform = transforms.mvMatrix;
mat4.translate (ballTransform,ball [index] .position) ;
object.diffuse = ball[index] .color;
}
transforms.setMatrixUniforms () ;

transforms.pop () ;

The trick here is to use the number that makes part of the ball alias to look up the respective
ball position in the ball array. For example, if the ball being rendered has the alias bal132
then this code will look for the current position of the ball whose index is 32 inthe ball
array. This one-to-one correspondence between the ball alias and its location in the ball
array was established in the 1oad function.

In the following Time for action section, we will see the bouncing balls animation working.
We will also discuss some of the code details.
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Time for action - houncing hall

1. Openchs BouncingBalls.html in your HTML5-enabled Internet browser.

2. The orbiting camera is activated by default. Move the camera and you will see how
all the objects adjust to the global transform (camera) and yet they keep bouncing
according to its local transform (bouncing ball).

WebGL Beginner's Guide - Chapter 5

Parametric Curves: Bouncing Balls [»uausume]

View | Code Controls

Tracking | Orbiting Go Home Fixed Light Source

3. Let's explain here a little bit more in detail how we keep track of each ball.

o First of all let's define some global variables and constants:

var ball = []; //Each element of this array is a ball
var BALL GRAVITY = 9.8; //Earth acceleration 9.8 m/s2

var NUM_BALLS = 50; //Number of balls in this
simulation

o Next, we need to initialize the ball array. We use a for loop in the 1oad
function to achieve it:
for (var i=0;i<NUM BALLS;i++) {
ball.push(new BouncingBall()) ;

Scene.loadObject ('models/geometry/ball.
json', 'ball'+i);

}
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o The BouncingBall function initializes the simulation variables for
each ball in the ball array. One of this attributes is the position,
which we select randomly. You can see how we do this by using
the generatePosition function.

o After adding a new ball to the ball array, we add a new ball object
(geometry) to the Scene object. Please notice that the alias that we create
includes the current index of the ball object in the ball array. For example,
if we are adding the 32nd ball to the array, the alias that the corresponding
geometry will have in the Scene will be ball32.

o The only other object that we add to the scene here is the Floor object.
We have used this object in previous exercises. You can find the code for
the Floor objectin /js/webgl/Floor.js.

Now let's talk about the draw function. Here, we go through the elements of the
Scene and retrieve each object's alias. If the alias starts with the word ball then
we know that the reminder of the alias corresponds to its index in the ball array.
We could have probably used an associative array here to make it look nicer but
it does not really change the goal. The main point here is to make sure that we
can associate the simulation variables for each ball with the corresponding object
(geometry) in the Scene.

It is important to notice here that for each object (ball geometry) in the scene,
we extract the current position and the color from the respective BouncingBall
object in the ball array.

Also, we alter the current Model-View matrix for each ball using a matrix stack to
handle local transformations, as previously described in this chapter. In our case, we
want the animation for each ball to be independent from the camera transform and
from each other.

Up to this point, we have described how the bouncing balls are created (1oad) and
how they are rendered (draw). None of these functions modify the current position
of the balls. We do that using BouncingBall.update (). The code there uses the
animation time (global variable named sceneTime) to calculate the position for the
bouncing ball. As each BouncingBall has its own simulation parameters, we can
calculate the position for each given position when a sceneTime is given. In short,
the ball position is a function of time and as such, it falls into the category of motion
described by parametric curves.

The BouncingBall.update () method is called inside the animate function. As
we saw before, this function is invoked by the animation timer each time the timer
is up. You can see inside this function how the simulation variables are updated in
order to reflect the current state of that ball in the simulation.
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What just happened?

We have seen how to handle several object local transformations using the matrix stack
strategy while we keep global transformation consistent through each rendering frame.

In the bouncing ball example, we have used an animation timer for the animation that is
independent from the rendering timer.

The bouncing ball update method shows how parametric curves work.

Optimization strategies

If you play a little and increase the value of the global constant NUM_BALLS from 50 to 500,

you will start noticing degradation in the frame rate at which the simulation runs as shown in
the following screenshot:

WebGL Beginner's Guide - Chapter 5

Parametric Curves: Bouncing Balls [»Qw,«;«m]

| S T A v Console v | HTML CSS Script DOM Net v (X~ X1

@ Clear Persist Profile All Errors Warnings Info Debug Info
Profile (10980.221ms, 5371996 calls)

Function  Calls | Percent v OwnTime  Time Avg Min Max File

draw 684 60.42% 6633.973ms  10852.389ms | 15.866ms |15.207ms 20.545ms ch5_Bo...Is.html (line 254)

anonymous 685368 7.88% 865.097ms 865.097ms 0.001ms oms 0.02ms R
gIMatr..min.js (line 13)

anonymous 342684 7.64% 838.441ms 2010.764ms 0.006ms Oms 0.365ms

SceneT..orms.js (line 52)

Depending on your computer, the average time for the draw function can be higher than
the frequency at which the animation timer callback is invoked. This will result in dropped
frames. We need to make the draw function faster. Let's see a couple of strategies to do this.
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We can use geometry caching as a way to optimize the animation of a scene full of similar
objects. This is the case of the bouncing balls example. Each bouncing ball has a different

position and color. These features are unique and independent for each ball. However, all
balls share the same geometry.

In the 1oad function, for ch5_BouncingBalls.html we created 50 vertex buffer objects
(VBOs) one for each ball. Additionally, the same geometry is loaded 50 times, and on every
rendering loop (draw function) a different VBO is bound every time, despite of the fact that
the geometry is the same for all the balls!

In ch5_BouncingBalls Optimized.html we modified the functions 1oad
and draw to handle geometry caching. In the first place, the geometry is loaded just once
(1oad function):

Scene.loadObject ('models/geometry/ball.json', 'ball');

Secondly, when the object with alias 'ball' is the current object in the rendering loop
(draw function), the delegate drawBal1ls function is invoked. This function sets some of
the uniforms that are common to all bouncing balls (so we do not waste time passing them
every time to the program for every ball). After that, the drawBal1 function is invoked. This
function will set up those elements that are unique for each ball. In our case, we set up the
program uniform that corresponds to the ball color, and the Model-View matrix, which is
unique for each ball too because of the local transformation (ball position).

Optimizing batch performance

Example: The same light position uniform can be passed multiple times to the GPU in drawBall
(once for each ball), or just one time if it is passed in the draw function.

Call stack

Sends uniforms that are global
to the scene.
For example: light position

Sends uniforms that are common
to the balls:
geometry, normals, ...

drawBall

Sends uniforms that are specific to each

ball: ——

Position and Color
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Performing transiations in the vertex shader

If you take a look at the code in ch5 BouncingBalls Optimized.html, you may notice
that we have taken an extra step and that the Model-View matrix is cached!

The basic idea behind it is to transfer once the original matrix to the GPU (global) and then
perform the translation for each ball (local) directly into the vertex shader. This change
improves performance considerably because of the parallel nature of the vertex shader.

This is what we do, step-by-step:

1.

Create a new uniform that tells the vertex shader if it should perform a translation
or not (uTranslate).

Create a new uniform that contains the ball position for each ball (uTranslation).

Map these two new uniforms to JavaScript variables (we do this in the
configure function).

prg.uTranslation = gl.getUniformLocation (prg, "uTranslation");
gl.uniform3fv (prg.uTranslation, [0,0,0]);

prg.uTranslate = gl.getUniformLocation(prg, "uTranslate");
gl.uniformli (prg.uTranslate, false);

Perform the translation inside the vertex shader. This part is probably the trickiest as
it implies a little bit of ESSL programming.
//translate vertex if there is a translation uniform
vec3 vecPosition = aVertexPosition;
if (uTranslate) {
vecPosition += uTranslation;
//Transformed vertex position
vec4 vertex = uMVMatrix * vec4 (vecPosition, 1.0);

In this code fragment we are defining vecPosition, a variable of vec3 type.
This vector is initialized to the vertex position. If the uTranslate uniform is active
(meaning we are trying to render a bouncing ball) then we update vecPosition
with the translation. This is implemented using vector addition.

After this we need to make sure that the transformed vertex carries the translation
in case of having one. So the next line looks like the following code:

//Transformed vertex position
vecd vertex = MV * vec4 (vecPosition, 1.0);
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5. IndrawBall we pass the current ball position as the content for the uniform
uTranslation:

gl.uniform3fv (prg.uTranslation, ball.position) ;

6. IndrawBalls we set the uniform uTranslate to true:

gl.uniformli (prg.uTranslate, true);

7. Indraw we pass the Model-View matrix once for all balls by using the following line
of code:

transforms.setMatrixUniforms () ;

After making these changes we can increase the global variable NUM_BALLS from 50 to 300
and see how the application keeps performing reasonably well regardless of the increased
scene complexity. The improvement in execution times is shown in the following screenshot:
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Parametric Curves: Optimized Bouncing Balls

2,590 £ 5 v [ Console~ | HTML (€SS Script DOM  Net P e@a

@ = Clear Persist Profile All Errors Warnings Info Debug Info
¥ Profile (1468.813ms, 332360 calls)
Function  Calls M OwnTime  Time Avg  Min  Max File

drawBall 180000 86.19% 1265.989ms 1265.989ms 0.007ms  Oms 0.404ms ch5_Bo..ed.html (line 267)

drawBalls 360 6.76% 99.332ms 1365.321ms  3.793ms  3.50lms 4.47ms ¢h5_Bo...ed.html (line 275)

animate 286 2.51% 36.921ms 1170.11ms  4.091ms 3.815ms  5.229ms ch5_Bo...ed.html (line 384)
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draw 360 1.29% 18.892ms 1399.453mg 3.887ms |3.578ms  4.864ms ch5_Bo.ed.html (line 309)
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The optimized source code is available at: /code/ch5
A BouncingBalls Optimized.html

Interpolation greatly simplifies 3D object's animation. Unlike parametric curves, it is not
necessary to define the position of the object as a function of time. When interpolation is
used, we only need to define control points or knots. The set of control points describes
the path that the object that we want to animate will follow. There are many interpolation
methods in the literature; however, it is always a good idea to start from the basics.

Linear interpolation

This method requires that we define the starting and ending points for the location of
our object and also the number of interpolating steps. The object will move on the line
determined by the starting and ending points.

Linear Interpolation

L

4 Ending
- point

Starting
point

Polynomial interpolation
This method allows us to determine as many control points as we want. The object will move

from the starting point to the ending point and it will go through each one of the control
points in between.
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Polynomial Interpolation
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When using polynomials, an increasing number of control points can produce undesired
oscillations on the object's path described by this technique. This is known as the Runge's
phenomenon. In the following figure, you can see the result of moving one of the control

points of a polynomial described with 11 control points.

Runge's phenomenon
Moving one point creates undesired oscilations or high degree polynomials.
The object still goes through all the control points but unwanted ripples are created.
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This method is similar to polynomial interpolation with the difference that the control points
are outside from the object's path. In other words, the object does not go through the
control points as it moves. This method is common in computer graphics in general because
the knots allow a much smoother path generation than the polynomial equivalent at the
same time that fewer knots are required. B-Splines also respond better to the

Runge's phenomenon.

B-spline Interpolation

/‘E' control point 2
control point 1
| - ~ o control point 4
- -

\ ~ -
\ StarTing N - " =~ N Ending
point - \I point

/E control point 3 /E

Phantom

knot 1 Phantom

knot 2

In the following Time for action section we are going to see in practice the three
different interpolation techniques that have been introduced: linear, polynomial
and b-splines interpolation.
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Time for action - interpolation

1.
2.
3.
4.

5.

Open ch5_Interpolation.html using your HTMLS5 Internet browser.
Select Linear interpolation if it is not already selected.
Move the start and end points using the slider provided.

Change the number of interpolation steps. What happens to the animation when
you decrease the number of steps?

The code for the linear interpolation has been implemented in the
doLinearInterpolation function.

WebGL Beginner's Guide - Chapter 5 [ > ]

Interpolation and Sprites

view Code  Controls

Linear | Polynamisl  B-Spline Tracking | Orbeting GoHome  Fined Light Source

Start Paint End Paine

2 20

Interpolation Steps 1000

6.

Now select Polynomial interpolation. In this example we have implemented
Lagrange's interpolation method. You can see the source code in the
doLagrangeInterpolation function.
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7. After selecting the polynomial interpolation, you will see that three new control
points (flags) appear on screen. Using the sliders provided on the webpage, you
can change the location of these control points. You can also change the number
of interpolation steps.

WebGL Beginner's Guide - Chapter 5

Interpolation [ fRrs ]

Lineer | Polnomisl  B-Spline Tracking | Orbiting GoHome | Fived Light Source

Start Pord Cantral Pord 1 Control Pont 2 Cantrol Pont 3 Ersl Pount
x: 21 X -3 A 21 ®: 50 X 24
= a 2: 10 Z: 53 Z: -3 22

Interpolation Steps 1355

8. You also may have noticed that whenever the ball approaches one of the flags
(with the exception of the start and end points) the flag changes color. To do that,
we have written the ancillary close function. We use this function inside the
draw routine to determine the color of the flags. If the current position of the ball,
determined by position[sceneTime] is close to one of the flag positions, the

respective flag changes color. When the ball is far from the flag, the flag changes
back to its original color.

9. Modify the source code so each flag remains activated, this is, with a new color after
the ball passes by until the animation loops back to the beginning. This happens
when sceneTime is equal to ISTEPS (see the animate function).

10. Now select the B-Spline interpolation. Notice how the ball does not reach any of the
intermediate flags in the initial configuration. Is there any configuration that you can
try so the ball passes through at least two of the flags?
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What just happened?

We have learned how to use interpolation to describe the movement of an object in our
3D world. Also, we have created very simple scripts to detect object proximity and alter
our scene accordingly (changing flag colors in this example). Reaction to proximity is a key
element in game design!

sSummary

In this chapter, we have covered the basic concepts behind object animation in WebGL.
Specifically we have learned about the difference between local and global transformations.
We have seen how matrix stacks allows us saving and retrieving the Model-View matrix and
how a stack allows us to implement local transformation.

We learned to use JavaScript timers for animation. The fact that an animation timer is not
tied up to the rendering cycle gives a lot of flexibility. Think a moment about it: the time in
the scene should be independent of how fast you can render it on your computer. We also
distinguished between animation and simulation strategies and learned what problems
they solve.

We discussed a couple of methods to optimize animations through a practical example
and we have seen what we need to do to implement these optimizations in the code.

Finally, interpolation methods and sprites were introduced and the Runge's phenomenon
was explained.

In the next chapter, we will play with colors in a WebGL scene. We will study the interaction
between the objects and light colors and we will see how to create translucent objects.
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Golors, Depth Testing, and Alpha
Blending

In this chapter, we will go a little bit deeper in the use of colors in WebGL. We
will start by examining how colors are structured and handled in both WebGL
and ESSL. Then we will discuss the use of colors in objects, lights and in the
scene. After this we will see how WebGL knows how perform object occlusion
when one object is in front of another. This is possible thanks to depth testing.
In contrast, alpha blending will allows us to combine the colors of objects when
one is occluding the other. We will use alpha blending to create translucent
objects.

This chapter talks about:

* 6 ¢ 6 o o

Using colors in objects

Assigning colors to light sources

Working with several light sources in the ESSL program
The depth test and the z-buffer

Blending functions and equations

Creating transparent objects with face culling



Colors, Depth Testing, and Alpha Blending

Using colors in WehGL

WebGL includes a fourth attribute to the RGB model. This attribute is called the alpha
channel. The extended model then is known as the RGBA model, where A stands for alpha.
The alpha channel contains values in the range from 0.0 to 1.0, just like the other three
channels (red, green, and blue). The following diagram shows the RGBA color space. On the
horizontal axis you can see the different colors that can be obtained by combining the R, G,
and B channels. The vertical axis corresponds to the alpha channel.

RGBA color space
Color (R,G,B)

" ‘ Alpha value =1.0

Alpha value = 0.0

The alpha channel carries extra information about the color. This information affects the way
the color is rendered on the screen. For instance, in most cases, the alpha value will refer to
the amount of opacity that the color contains. A completely opaque color will have an alpha
value of 1.0, whereas a completely transparent color will have an alpha value of 0.0. This is
the general case, but as we will see later on, there are some considerations that we need to
take into account to obtain translucent colors.

We use colors everywhere in our WebGL 3D scenes:

¢ Objects: 3D objects can be colored selecting one color for every pixel (fragment) of
the object, or by selecting the color that the object will have. This would usually be
the material diffuse property.

¢ Lights: Though we have been using white lights so far in the book, there is no reason
why we can't have lights whose ambient or diffuse properties contain colors other
than white.
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¢ Scene: The background of our scene has a color that we can change by calling
gl.clearColor. Also, as we will see later, there are special operations on objects'
colors in the scene when we have translucent objects.

The final color of pixel is assigned in the fragment shader by setting the ESSL special variable
gl FragColor. If all the fragments in the object have the same color we can say that the
object has a constant color. Otherwise, the object has a per-vertex color.

Constant coloring

To obtain a constant color we store the desired color in a uniform that is passed to the
fragment shader. This uniform is usually called the object's diffuse material property.
We can also combine object normals and light source information to obtain a Lambert
coefficient. We can use the Lambert coefficient to proportionally change the reflecting
color depending on the angle on which the light hits the object.

As shown in the following diagram, we lose depth perception when we do not use
information about the normals to obtain a Lambert coefficient. Please notice that
we are using a diffusive lighting model.

Usually constant coloring is indicated for objects that are going to become assets in
a 3D game.

Coloring objects using gl_FragColor
Fragment Shader

gl FragColor = uMaterialDiffuse

Vertex Shader
varying vecd wColor;

Ta = uAmbientLight * uAmbientMaterial

Id = uDiffuseLight * uDiffuseMaterial *
lambertTerm;
vColor = Ia + Id;

Fragment Shader

gl FragColor vColor
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In medical and engineering visualization applications, it is common to find color maps that
are associated to the vertices of the models that we are rendering. These maps assign each
vertex a color depending on its scalar value. An example of this idea is the temperature
charts where we can see cold temperatures as blue and hot temperatures as red overlaid
on a map.

To implement per-vertex coloring, we need to define an attribute that stores the color for the
vertex in the vertex shader:

attribute vec4 aVertexColor;

The next step is to assign the avertexColor attribute to a varying so it can be carried into
the fragment shader. Remember that varyings are automatically interpolated. Therefore, each
fragment will have a color that is the weighted contribution of the vertices surrounding it.

If we want our color map to be sensitive to lighting conditions we can multiply each vertex
color by the diffuse component of the light. The result is then assigned to the varying that
will transfer the result to the fragment shader as mentioned before. The following diagram
shows two different possibilities for this case. On the left the vertex color is multiplied by
the diffuse term of the light source without any weighting due to the light source relative
position; on the right, the Lambert coefficient generates the expected shadows giving
information about the relative location of the light source.

Using gl_FragColor: per-vertex colors

| warying vecd wvColor; varying vecd wColer;

E Ia uAmbientLight * Ia uAmbientLight * vAmbientMaterial
L uAmbientMaterial Id = uDiffuseLight * aVertexColor #
& Id = uDiffuselLight * aVertexColox; lambertTerm;
=

wColor = Ia + Id: vColor = Ia + Id:

gl_FragColor = wColor gl_FragColor = vColer

Fragment Shader
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. Here we are using a Vertex Buf fer object that is mapped to the
a Vertex Shader attribute aVertexColor. We learned how to map
= VBOs in the section Associating Attributes to VBOs discussed in Chapter

2, Rendering Geometry.

We could also assign a random color to each pixel of the object we are rendering. However,
ESSL does not have a pre-built random function. Although there are algorithms that can be
used to generate pseudo-random numbers, the purpose and the usefulness of this technique
go beyond the scope of this book.

Time for action - coloring the cube

1. Open the file ch6_Cube.html using your HTMLS Internet browser. You will see a
page like the one shown in the following screenshot:

WebGL Beginner's Guide - Chapter 6 [ ]

Using Colors in Objects

View Code Controls

Use Lambert Term Constant | Per Vertex Simple Cube | Complex Cube

Alpha Value: 1.0

In this exercise, we are going to compare constant versus per-vertex coloring.
Let's talk about the page's widgets:

o Use Lambert Coefficient: When selected it will include the Lambert
coefficient in the calculation of the final color.
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o Constant/Per-Vertex: The two options to color objects explained before.

o Simple Cube: Corresponds to a JSON object where the vertices are defined
once.

o Complex Cube: Loads a JSON object where the vertices are repeated with
the goal of obtaining multiple normals and multiple colors per vertex. We
will explain how this works later.

o Alpha Value: This slider is mapped to the float uniform uAlpha in the
vertex shader. uAlpha sets the alpha value for the vertex color.

Disable the use of the Lambert coefficient by clicking on Use Lambert Coefficient.
Rotate the cube clicking on it with the mouse and dragging it around. As you see,
there is loss of depth perception when the Lambert coefficient is not included in
the final color calculation. The Use Lambert Coefficient button is mapped to the
Boolean uniform uUseLambert. The code that calculates the Lambert coefficient
can be found in the vertex shader included in the page:

float lambertTerm = 1.0;

if (uUseLambert) {
//Transformed normal position
vec3 normal = vec3 (uNMatrix * vec4 (aVertexNormal, 1.0));

//light direction: pointing at the origin
vec3 lightDirection = normalize (-uLightPosition) ;

//weighting factor
lambertTerm = max (dot (normal, -lightDirection),0.20) ;

}

If the uniform uUseLambert is false, then 1lambertTerm keeps being 1.0 and then
it will not affect the final diffuse term which is calculated later on:

Id = uLightDiffuse * uMaterialDiffuse * lambertTerm;

Otherwise, Id will have the Lambert coefficient factored in.

Having Use Lambert Coefficient disabled, click on the button Per Vertex. Rotate the
cube to see how ESSL interpolates the vertex colors. The vertex shader key code
fragment that allows us to switch from a constant diffuse color to per- vertex colors
uses the Boolean uniform uUseVertexColors and the avertexColor attribute.
This fragment is shown here:
if (uUseVertexColor) {

Id = uLightDiffuse * aVertexColor * lambertTerm;

}
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else {
Id = uLightDiffuse * uMaterialDiffuse * lambertTerm;

}

Take a look at the file /models/simpleCube. js. There, the eight vertices of the
cube are defined in the vertices array and there is an element in the scalars
array for every vertex. As you may expect, each one of these elements correspond
to the respective vertex color, as shown in the following diagram:

Per-vertex coloring: color interpolation

Simple cube: vertices are defined once.

Result: each vertex has one color and
colors are interpolated in all directions
on the surface of the cube.

0 7

N
[NNNN
I

1 &

4. Make sure that the Use Lambert Coefficient button is not active and then click
on the button Complex Cube. By repeating vertices in the vertex array in the
corresponding JSON file /models/complexCube. js, we can achieve independent
face coloring. The following diagram explains how the vertices are organized in
complexCube. js. Also note that as the definition of colors occurs by vertex
(as we are using the shader attribute), we need to repeat each color four times,
because each face has four vertices. This idea is depicted in the following diagram:

Per-vertex coloring: color interpolation

Complex cube: each vertex is repeated three
times in the vertex buffer object.

Result: each vertex has three colors and each
face has its own color.
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5.

Activate the Use Lambert Coefficient button and see how the Lambert coefficient
affects the color of the object. Try different button configurations and see
what happens.

Finally, let's quickly explore the effect of changing the alpha channel to a value less
than 1. 0. For that, click-and-drag the slider to the left that appears at the bottom
of the page. What do you see? Please notice that the object does not become
transparent but instead it starts losing its color. To obtain transparency, we need to
activate blending. We will discuss blending in depth later in this chapter. For now,
uncomment these lines in the configure function, in the source code:

//gl.disable (gl .DEPTH TEST) ;
//9l.enable (gl .BLEND) ;
//9l.blendFunc (gl.SRC_ALPHA, gl.ONE MINUS SRC ALPHA) ;

Save the page and reload it in your Internet browser. If you select Per Vertex,
Complex Cube and reduce the alpha value to 0. 25 you will see something like
the following screenshot:

What just happened?

We have studied two different ways for coloring objects: constant coloring and per-vertex
coloring. In both cases, the final color for each fragment is assigned by using the fragment
shader g1 _FragColor variable.

We also saw how, by activating the calculation of the Lambert coefficient, we can obtain
sensory depth information.

By repeating vertices in our object, we can obtain different coloring effects. For instance,
we can color an object by faces instead of doing it by vertices.
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Colors are light properties. In Chapter 3, Lights, we saw that the number of light properties
depend on the lighting reflection model selected for the scene. For instance, using a
Lambertian reflection model we would only need to model one shader uniform: the light
diffuse property/color. In contrast, if the Phong reflection model were selected, each light
source would need to have three properties: the ambient, diffuse, and specular colors.

The light position is usually also modeled as a uniform when the shader
needs to know where the light source is. Therefore, a Phong model with a
- positional light would have four uniforms: ambient, diffuse, specular, and
% position.
o
For the case of directional lights, the fourth uniform is the light direction.

Refer to the More on Lights: positional lights section discussed in Chapter
L 3, Lights!.

We have also seen that each light property is represented by a four-element array in
JavaScript and that these arrays are mapped to the vec4 uniforms in the shaders as
shown in the following diagram:

Passing Lights to the Program

One Light Position Sl form Rt wid gheRon Elon. |

draw

JavaScript The Program - GLSL

The two functions we use to pass lights to the shaders are:

¢ getUniformLocation—Ilocates the uniform in the program and returns
an index we can use to set the value

¢ uniform4fv—since the light components are RGBA, we need to pass
a four-element float vector
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Using multiple lights and the scalability problem

As you could imagine, the number of uniforms grow rapidly when we want to use more than
one light source in our scene—for each one of them, we need to define and map as many
uniforms as we need depending on the lighting model of choice. This approach makes the
programming effort simple enough—we have exactly one uniform for each light property
we want to have, for each light. However, let's think about this for a moment. If we have
four properties per light (ambient, diffuse, specular, and location) this means that we have
to define four uniforms per each light. If we want to have three lights, we will have to write,
use, and map 12 uniforms!

The OpenGL Shading Language ES specification delineates the number of uniforms that we
are allowed to use. (Section 4.3.4 - Uniforms):

There is an implementation dependent limit on the amount of storage for uniforms
that can be used for each type of shader and if this is exceeded it will cause a
compile-time or link-time error.

In order to know what the limit is for your WebGL implementation, you can query WebGL
using the g1 .getParameter function with these constants:

gl .MAX VERTEX UNIFORM VECTORS
gl .MAX FRAGMENT UNIFORM VECTORS

The implementation limit is given by your browser and it depends greatly on your
graphics hardware. For instance, my MacBook Pro running Firefox tells me that
| can use 1024 uniforms.

Now, the fact that we have enough variable space does not necessarily mean that the
problem is solved. We still have to write and map each one of the uniforms and as we will
see later in exercise ch6_Wall Initial.html, the shaders become alot more verbose
doing this.

Simplifying the problem

In order to simplify the problem (and code less), we could assume, for instance, that the
ambient component is the same for all the lights. This allows reducing the number of
uniforms—one uniform less for each light. However, this is not a pretty or an extensible
solution for more general cases where we cannot assume that the ambient light is a constant.

Let's see how the shaders in a scene with multiple lights look like. First, let's address some
pending updates to our architecture.

1861



Chapter 6

As we move from chapter to chapter and study different WebGL concepts, we should also
update our architecture to reflect what we have learned. In this occasion as we are handling
a lot of uniforms, we will add support for multiple lights and will improve the way we pass
uniforms to the program.

The following diagram shows the changes and additions that we have implemented in
the architecture of our exercises. We have updated Program. js to simplify how we
handle uniforms and we have included a new file: Ligths. js. Also, we have modified
the configure function to use the changes implemented in the Program object.

We will discuss these improvements next.

Application Architecture: Working with Lights

WebGLApp.js

Shader

configure configureGLHook

loadSceneHook
JavaScript Code

scripts

drawSceneHook

SceneTransforms.js

 var redLight = new Light ('red');

:redLiqht.EetDiffuse([l.U,O.D,O.G,T.Ull:

var greenLight = new Light ('green');
| greenlight.setDiffuse([0.0,1.0,0.0,1.0]});

. var blueLight = new Light('blue'):
| blueLight.setDiffuse([0.0,0.0,1,0,1.01);

:Lights.add(redLight);
! Lights.add (greenLight) ;
| Lights.add (blueLight};
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We have created a new JavaScript module Lights. js that has two objects:

¢ Light—aggregates lights properties (position, diffuse, specular, and so on) in one
single entity.

¢ Lights—contain the lights in our scene. It allows us to retrieve each light by index
and by name.

Lights also contains the getArray method to flatten the arrays of properties by type:

getArray: function(type){ //type = 'diffuse' or 'position' or
var a = [];
for(var i = 0, max = this.list.length; i < max; i+:1){
a = a.concat (this.list[i] [typel); //list: the list of lights
}

return a;

}

This will be useful when we use uniform arrays later on.

Improving how we pass uniforms to the program

We have also improved the way we pass uniforms to the program. In WebGLApp . js we have
removed the call to Program. load().

function WebGLApp (canvas) {
this.loadSceneHook = undefined;
this.configureGLHook = undefined;
gl = Utils.getGLContext (canvas) ;
Program.load() ;

}

And we have deferred this call to the configure function in the web page. Remember that
WebGLApp Will call three functions in the web page: configure, 1oad, and draw. These
three functions define the life cycle of our application.

The configure function is the appropriate place to load the program. We are also going to
create a dynamic mapping between JavaScript variables and uniforms. With this in mind, we
have updated the Program. load method to receive two arrays:

¢ attributeList—an array containing the names of the attributes that we will map
between JavaScript and ESSL

¢ uniformList—an array containing the names of the uniforms that we will map
between JavaScript and ESSL
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The implementation of the function now looks as follows:

load : function(attributelList, uniformList) {

var fragmentShader = Program.getShader(gl, "shader-fs");
var vertexShader = Program.getShader (gl, "shader-vs");

prg = gl.createProgram() ;
gl.attachShader (prg, vertexShader) ;
gl.attachShader (prg, fragmentShader) ;
gl.linkProgram(prg) ;

if (!gl.getProgramParameter (prg, gl.LINK STATUS)) {
alert ("Could not initialise shaders");

}

gl.useProgram(prg) ;

this.setAttributelocations (attributelist) ;

this.setUniformLocations (uniformList) ;

}

The last two lines correspond to the two new functions setAttributelLocations and
setUniformLocations:

setAttributelocations: function (attrList) {

for(var i=0, max = attrList.length; i <max; i+=1)

this[attrList[i]] = gl.getAttribLocation(prg, attrList[i]) ;
}

setUniformLocations: function (uniformList) {

for(var i=0, max = uniformList.length; i < max; i +=1){
this[uniformList[i]] = gl.getUniformLocation (prg,

uniformList [i]) ;

}

As you can see, these functions read the attribute and uniform lists, respectively, and after

obtaining the location for each element of the list, attach the location as a property of the
object Program.
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This way, if we include the uniform name uLightPosition in the list uniformList that
we pass to Program. load, then we will have a property Program.uLightPosition that
will contain the location of the respective uniform! Neat, isn't it?

Once we load the program in the configure function, we can also initialize the values of
the uniforms that we want right there by writing something as follows:

gl.uniform3fv (Program.uLightPosition, value) ;

Time for action - adding a blue light to a scene

Now we are ready to take a look at the first example of this chapter. We will work on a scene
with per-fragment lighting that has three light sources.

Each light has a position and a diffuse color property. This means we have two uniforms
per light.

1. Also for simplicity, we have assumed here that the ambient color is the same for
the three light sources. For the sake of simplicity, we have removed the specular
property. Open the file ch6 Wall Initial.html usingyour HTMLS web browser.

2. You will see a scene such as the one displayed in the following screenshot where
there are two lights (red and green) illuminating a black wall:

WebGL Beginner's Guide - Chapter 6 [ ]
Using Colors in Lights [y

3. Openthefilech6 Wall Initial.html usingyour preferred text editor. We will
update the vertex shader, the fragment shader, the JavaScript code, and the HTML
code to add the blue light.
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Updating the vertex shader: Go to the vertex shader. You can see these
two uniforms:

uniform vec3 uPositionRedLight;
uniform vec3 uPositionGreenLight;

Let's add the third uniform here:

uniform vec3 uPositionBlueLight;

We also need to define a varying to carry the interpolated light ray direction
to the fragment shader. Remember here that we are using per-fragment lighting.
Check where the varyings are defined:

varying vec3 vRedRay;
varying vec3 vGreenRay;

And add the third varying there:

varying vec3 vBlueRay;

Now let's take a look at the body of the vertex shader. We need to update each
one of the light locations according to our position in the scene. We achieve this
by writing:

vec4 bluePosition = uMVMatrix * vec4 (uPositionBlueLight, 1.0);

As you can see there, the positions for the other two lights are being calculated too.

Now let's calculate the light ray for the updated position from our blue light to the
current vertex. We do that by writing the following code:

vBlueRay = vertex.xyz-bluePosition.xyz;

That is all we need to modify in the vertex shader.

Updating the fragment shader: So far, we have included a new light position and we
have calculated the light rays in the vertex shader. These rays will be interpolated by
the fragment shader.

Now let's work out how the colors on the wall will change by including our
new blue source of light. Scroll down to the fragment shader and let's add

a new uniform—the blue diffuse property. Look for these uniforms declared
right before the main function:

uniform vec4 uDiffuseRedLight;

uniform vec4 uDiffuseGreenLight;

Then insert the following line of code:

uniform vec4 uDiffuseBlueLight;
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To calculate the contribution of the blue light to the final color we need to obtain
the light ray we defined previously in the vertex shader. So this varying is available in
the fragment shader, you need to also declare it before the main function. Look for:

varying vec3 vRedRay;
varying vec3 vGreenRay;

Then insert the following code right below:

varing vec3 vBlueRay;

9. Itisassumed that the ambient component is the same for all the lights. This is
reflected in the code by having only one uLightAmbient variable. The ambient
term Ia is obtained as the product of uLightAmbient and the wall's material
ambient property:

//Ambient Term
vec4 Ia = uLightAmbient * uMaterialAmbient;

If uLightAmbient issetto (1,1,1,1) and uMaterialAmbient is setto (
0.1,0.1,0.1,1.0) then the resulting ambient term Ia will be really small.
This means that the contribution of the ambient light will be low in this scene.

In contrast, the diffuse component will be different for every light.
Let's add the effect of the blue diffuse term. In the fragment shader main function,
look for the following code:

//Diffuse Term
vec4 Idl vec4(0.0,0.0,0.0,1.0);
vec4 Id2 vec4(0.0,0.0,0.0,1.0);

Then add the following line immediately below:
vec Id3 = vec4(0.0,0.0,0.0,1.0);

Then scroll down to:

//Lambert's cosine law
float lambertTermOne = dot (N, -normalize (vRedRay)) ;
float lambertTermTwo = dot (N, -normalize (vGreenRay)) ;

And add the following line of code right below:

float lambertTermThree = dot (N, -normalize (vBlueRay)) ;

Now scroll to:

if (lambertTermTwo > uCutOff){
Id2 = uDiffuseGreenLight * uMaterialDiffuse * lambertTermTwo;
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10.

11.

12.

And insert the following code after it:

if (lambertTermThree > uCutOff) {
Id3 = uDiffuseBlueLight * uMaterialDiffuse * lambertTermTwo;

}

Finally update finalColor soitincludes 1d3:
vec4 finalColor = Ia + Idl + Id2 +Id3;

That's all we need to do in the fragment shader. Let's move on to our
JavaScript code.

Updating the configure function: Up to this point, we have written the code that

is needed to handle one more light inside our shaders. Let's see how we create the
blue light from the JavaScript side and how we map it to the shaders. Scroll down to
the configure function and look for the following code:

var green = new Light('green');

green.setPosition([2.5,3,3]);

green.setDiffuse([0.0,1.0,0.0,1.0]);

Then insert the following code:

var blue = new Light('blue');
blue.setPosition([-2.5,3,3]);
blue.setDiffuse([0.0,0.0,1.0,1.0]);

Next, Scroll down to:

Lights.add (red) ;
Lights.add(green) ;

Then add the blue light:
Lights.add (blue);

Scroll down to the point where the attribute list is defined. As mentioned earlier
in this chapter, this new mechanism makes it easier to obtain locations for the
uniforms. Add the two new uniforms that we are using for the blue light. The list
should look like the following code:

uniformList = [ "uPMatrix",
"uMVMatrix",
"uNMatrix",
"uMaterialDiffuse",
"uMaterialAmbient",
"yLightAmbient",
"uDiffuseRedLight",
"uDiffuseGreenLight",
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"uDiffuseBlueLight",
"yPositionRedLight",
"yPositionGreenLight",

"uPositionBlueLight",
"uWireframe",
"uLightSource",
"uCutOff"

1

13. Let's pass the position and diffuse values of our newly defined light to the program.
After the line that loads the program (what line is that?), insert the following code:

gl.uniform3fv(Program.uPositionBlueLight, blue.position);

gl.uniform4fv (Program.uDiffuseBlueLight, blue.diffuse);

That's all we need to do in the configure function.

Coding lights code using one uniform per light property makes the code
really verbose. Please bear with me; we will see later on in the exercise

ch6é Wall LightArrays.html that the coding efforts are reduced by
’ using uniform arrays. If you are really eager, you can go now and check the

code in that exercise, and see how uniform arrays are used.

14. updating the load function: Now let's update the 1oad function. We need a new
sphere to represent the blue light, the same way we have two spheres in the scene:
one for the red light and the other for the green light. Append the following line:

Scene.loadObject ('models/geometry/smallsph.json', 'light3"');

15. updating the draw function: As we saw in the 1oad function, we are loading
the same geometry (sphere) three times. In order to differentiate the sphere that
represents the light source we are using local transforms for the sphere (initially
centered at the origin).

Then add the following code:

if (object.alias == 'light2'){

mat4.translate (transforms.mvMatrix,gl.getUniform(prg,
Program.uPositionGreenLight) ) ;

object.diffuse = gl.getUniform(prg, Program.uDiffuseGreenLight) ;
gl.uniformli (Program.ulLightSource, true) ;

}
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Next, add the following code:
if (object.alias == 'light3'){
mat4.translate (transforms.mvMatrix,gl.getUniform(prg,
Program.uPositionBlueLight) ) ;
object.diffuse = gl.getUniform(prg, Program.uDiffuseBlueLight) ;
gl.uniformli (Program.uLightSource, true) ;

}

16. That s it. Now, save the page with a different name and try it on your

HTMLS5 browser.

WebGL Beginner's Guide - Chapter 6 [ v ]

Using GLSL Array Uniforms to handle Multiple Lights

17. 1f you do not obtain the expected result, please go back and check the steps. You will

find the completed exercise in the file ch6 Wall Final.html.

What just happened?

We have modified our sample scene by adding one more light: a blue light. We have updated
the following:

* 6 o o

*

The vertex shader

The fragment shader
The configure function
The load function

The draw function

Handling light properties one uniform at a time is not very efficient as you can see.
We will study a more effective way to handle lights in a WebGL scene later in this chapter.
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Have a go hero - adding interactivity with JQuery Ul

We are going to add some HTML and JQuery Ul code to interactively change the position of
the blue light that we just added.

We will use three JQuery Ul Sliders, one for each one of the blue light coordinates.

http://jqueryui.com

[ You can find more information about JQuery Ul widgets here: ]

1. Create three sliders: one for the x coordinate, one for the y coordinate, and a third
one for the z coordinate for the blue light. The function that you need to call on the
change and s1lide events for these sliders is updateLightPosition (3).

2. For this to work, you need to update the updateLightPosition function and add
the following case:

case 3: gl.uniform3fv (Program.uPositionBluelLight, [x,y,z]); break;

3. The final GUI should include the new blue light sliders which should look as shown
in the following diagram:

Blue Light: ' X -2.5 Y: 3.0 Z: 3.0

4. Use the sliders present in the page to guide your work.

Using uniform arrays to handie multiple lights

As stated before, handling light properties with individual uniforms make the code verbose
and also difficult to maintain. Hopefully, ESSL provides several mechanisms that we can use
to solve the problem of handling multiple lights. One of them is uniform arrays.

This technique allows us to handle multiple lights by introducing light arrays in the shaders.
This way we calculate light contributions by iterating through the light arrays in the shaders.
We still need to define each light in JavaScript but the mapping to ESSL becomes simpler as
we are not defining one uniform per light property. Let's see how this technique works.
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Passing Lights to the Program

y uniform vec3
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JavaScript The Program - GLSL

We just need to do two simple changes in our code.

Uniform array declaration

First, we need to declare the light uniforms as arrays inside of our ESSL shaders. For instance,
for the light position in a scene with three lights we would write something like:

uniform vec3 uPositionLight [3];

It is important to realize here that ESSL does not support dynamic initialization of uniform
arrays. If you wrote something like:

uniform int uNumLights;
uniform vec3 uPositionLight [uNumLights]; //will not work

the shader will not compile and you will obtain an error as follows:

ERROR: 0:12: ":constant expression required
ERROR: 0:12: ":array size must be a constant integer expression"

However, this construct is valid:

const int uNumLights = 3;
uniform vec3 uPositionLight [uNumLights]; //will work
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We declare one uniform array per light property, regardless of how many lights we are going
to have. So, if we want to pass information about diffuse and specular components of five
lights, for example, we need to declare two uniform arrays as follows:

uniform vec4 uDiffuselLight [5];
uniform vec4 uSpecularLight [5];

Next, we will need to map the JavaScript variables where we have the light property
information to the program. For example, if we wanted to map these three light positions:

var LightPosl = [0.0, 7.0, 3.0];
var LightPosition2 = [2.5, 3.0, 3.0];
var LightPosition3 = [-2.5, 3.0, 3.0];

Then, we need to retrieve the uniform array location (just like in any other case):

var location = gl.getUniformLocation (prg, "uPositionLight") ;

Here is the difference, we map these positions as a concatenated flat array:

gl.uniform3fv(location, [0.0,7.0,3.0,2.5,3.0,3.0,-2.5,3.0,3.0]);
There are two things you should notice here:

¢ The name of the uniform is passed to getUniformLocation the same way it was
passed before. That is, the fact that uPositionLight is now an array does not
change a thing when you locate the uniform with getUniformLocation.

¢ The JavaScript array that we are passing to the uniform is a flat array. If you write
something as follows the mapping will not work:

gl.uniform3fv(location, [[0.0,7.0,3.0],[2.5,3.0,3.0],I[-
2.5,3.0,3.011);

So, if you have one variable per light you should make sure to concatenate them
appropriately before passing them to the shader.

Time for action - adding a white light to a scene

1. Openthefile ch6 Wall LightArrays.html in your HTMLS browser. This scene
looks exactly as ch6_Wall Final.html, however the code required to write this
scene is much less as we are using uniform arrays. Let's see how the use of uniform
arrays change our code.
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2.

Let's update the vertex shader first. Open the file ch6 Wall LightArrays.html
using your favorite source code editor. Let's take a look at the vertex shader. Note
the use of the constant integer expression const int NUM_LIGHTS = 3; to
declare the number of lights that the shader will handle.

Also, you can see there that a uniform array is being used to operate on
light positions.

Note that we are using a varying array to pass the light rays (for each light) to the
fragment shader.

//Calculate light ray per each light

for(int i=0; i < NUM _LIGHTS; i++)
vec 4 lightPosition = uMVMatrix * vec4 (uLightPosition([i], 1.0);
vLightRay[i] = vertex.xyz - lightPosition[i] .xyz;

}

This fragment of code calculates one varying light ray per light. If you remember, the
same code in the file ch6_Wall Final.html looks like the following code:

//Transformed light position

vec4 redPosition = uMVMatrix * vec4 (uPositionRedLight,1.0);
vec4 greenPosition = uMVMatrix * vec4 (uPositionGreenLight,1.0) ;
vec4 bluePosition = uMVMatrix * vec4 (uPositionBlueLight, 1.0);

//Light position
vRedRay = vertex.xyz-redPosition.xyz;
vGreenRay = vertex.xyz-greenPosition.xyz;

vBlueRay = vertex.xyz-bluePosition.xyz;

At this point the advantage of using uniform arrays (and array varyings) to write
shading programs should start being evident.

Similarly, the fragment shader also uses uniform arrays. In this case, the fragment
shader iterates through the light diffuse properties to calculate the contribution of
each one to the final color on the wall:

for(int i = 0; i < NUM LIGHTS; i++){ //For each light

L = normalize (vLightRay[il]) ; //Calculate reflexion
lambertTerm = dot (N, -L);

if (lambertTerm > uCutOff) {
finalColor += uLightDiffuse[i] * uMaterialDiffuse
*lambertTerm;
//Add diffuse component, one per light
}

}
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5.

6.

For the sake of brevity we will not see the corresponding verbose code from
the ch6é_Wall Final.html exercise.

In the configure function, the size of the JavaScript array that contains the
uniform names has decreased considerably because now we have just one
element per property regardless of the number of lights:

var uniformList = [
"uPMatrix",
"uMVMatrix",
"uNMatrix",
"uMaterialDiffuse",
"uMaterialAmbient",
"uLightAmbient",
"uLightDiffuse",
"yPositionLight",
"uWireframe",
"uLightSource",
"uCutOf£f"
1:

Also, the mapping between JavaScript Light objects and uniform arrays is simpler
because of the getArray method of the Lights class. As we described in the
section Architectural Updates, the getArray method concatenates in one flat
array the property that we want for all the lights.

The 1load and draw functions look exactly the same. If we wanted to add a new
light, we will still need to load a new sphere in the 1oad function (to represent
the light source in our scene) and we still need to translate this sphere to the
appropriate location in the draw function.

Let's see how much effort we need to add a new light. Go to the configure
function and create a new light object like this:

var whiteLight = new Light ('white');
whiteLight.setPosition([0,10,2]) ;
whiteLight.setDiffuse([1.0,1.0,1.0,1.0]);
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10. Add whiteLight to the Lights object as follows:
Lights.add (whiteLight) ;

11. Now move to the 1oad function and append this line:
Scene.loadObject ('models/geometry/smallsph.json', 'light4') ;

12. And just like in the previous Time For Action section, add this to the draw function:

if (object.alias == 'light4') {
mat4.translate (transforms.mvMatrix,Lights.get ('white') .
position) ;

object.diffuse = Lights.get('white') .diffuse;
gl.uniformli (Program.uLightSource, true) ;

}

13. save the webpage with a different name and open it using your HTML5 browser.
We have also included the completed exercise in ch6 Wall LightArrays
White.html. The following diagram shows the final result:

WebGL Beginner's Guide - Chapter 6 [ ]
Using GLSL Array Uniforms to handle Multiple Lights P

View  Code  Controls

That is all you need to do! Evidently, if you want to control the white light properties through
JQuery Ul you would need to write the corresponding code, the same way we did it for the
previous hero section. And talking about heroes.
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Time for action - directional point lights

In Chapter 3, Lights!, we compared point and directional lights:

uniform vec3 uLightPesitien
Directional light Positional light
uniform vec3 uLightDirection varying vec3 vLightRay

In this section, we will combine directional and positional lights. We are going to
create a third type of light: a directional point light. This light has both position and
direction properties. We are ready to do this as our shaders can easily handle lights
with multiple properties.

The trick to create these lights consist into subtract the light direction vector from the
normal for each vertex. The resulting vector will originate a different Lambert coefficient
that will reflect into the cone generated by the light source.

Directional Point Lights
The trick is to subtract the light direction from the normals

Superiorview Frontal view

Implicit light direction

- —==>

Explicit light direction

s Light Ray

Light Direction
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Open ch6 _Wall Directional.html in your HTMLS Internet web browser.
As you can see there, the three light sources have now a direction.
Let's take a look at the code.

Open ché _Wall Directional.html inyour source code editor.

To create a light cone we need to obtain a Lambert coefficient per fragment. Just
like in previous exercises, we obtain these coefficients in the fragment shader by
calculating the dot product between the inverted light ray and the normal that has
been interpolated. So far, we have been using one varying to do this: vNormal.

Only one varying has sufficed so far, as we have not had to update the normals, no
matter how many lights we have in the scene. However to create directional point
lights we do have to update the normals: the direction of each light will create a
different normal. Therefore, we replace vNormal with a varying array:

varying vec3 vNormal [numLights] ;

WebGL Beginner's Guide - Chapter 6 .
Hero - Using Colors in Directional Lights [-mn-.m]

View Code  Costrob

The line that subtracts the light direction from the normal occurs inside the for
loop. This is because we do this for every light in the scene, as every light has its
own light direction:

//Calculate normals and light rays

for(int i = 0; i < numLights; i++){

vec4 positionLight = uMVMatrix * wvec4 (uLightPosition[i],1.0);
vec3 directionLight = vec3 (uNMatrix * vec4 (uLightDirection[il],
1.0));

vNormal[i] = normal - directionLight;

vLightRay[i] = vertex.xyz-positionLight.xyz;

}
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Also, here the light direction is transformed by the Normal matrix while the light
position is transformed by the Model-View matrix.

In the fragment shader, we calculate the Lambert coefficients: one per light
and per fragment. The key difference is this line in the fragment shader:

N = normalize (vNormal [i]) ;

Here we obtain the interpolated updated normal per light.

Let's create a cut-off by restricting the allowed Lambert coefficients. There are

at least two different ways to obtain a light cone in the fragment shader. The first
one consists of restricting the Lambert coefficient to be higher than the uniform
uCutOff (cut-off value). Let's us take a look at the fragment shader:

if (lambertTerm > uCutOff) {
finalColor += uLightDiffuse[i] * uMaterialDiffuse

}

Remember that the Lambert coefficient is the cosine of the angle between the
reflected light and the surface normal. If the light ray is perpendicular to the surface
we obtain the highest Lambert coefficient, and as we move away from the center,
the Lambert coefficients changes following the cosine function until the light rays
are completely parallel to the surface creating a cosine of 90 degrees between the
normal and the light ray. This produces a Lambert coefficient of zero.

Light Cut-Off based on the Lambert Term (It)
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_————>

It > cut-off

Open ché _Wall Directional.html in your HTML5 browser if you have not
done so yet. Use the cut-off slider on the page and notice how this affects the light
cone making it wider or narrower. After playing with the slider, you can notice that
these lights do not look very realistic. The reason is that the final color is the same
no matter what Lambert coefficient you obtained: as long as the Lambert coefficient
is higher than the set cut-off value, you will obtain the full diffuse contribution from
the three light sources.
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10.

11.

To change it, open the web page using your source code editor, go to the fragment
shader and multiply the Lambert coefficient in the line that calculates the final color:

finalColor += uLightDiffuse[i] * uMaterialDiffuse * lambertTerm;

Save the web page with a different name (so you can keep the original) and then go
ahead and load it on your web browser. You will notice that the light colors appear
attenuated as you depart from the center of each light reflection on the wall. This
looks better but there is an even better way to create light cut-offs.

Now let's create a cut-off by using an exponential attenuation factor. In the
fragment shader replace the following code:

if (lambertTerm > uCutOff) {
finalColor += uLightDiffuse[i] * uMaterialDiffuse;

}
With:

finalColor += uLightDiffuse[i] * uMaterialDiffuse *
pow (lambertTerm, 10.0 * uCutOff) ;

Yes, we have gotten rid of the if section and we have only left its contents.
This time the attenuation factor is pow (lambertTerm, 10*uCutOff).

This modification works because this factor attenuates the final color exponentially.
If the Lambert coefficient is close to zero, the final color will be heavily attenuated.

Light Cut-Off based on Attenuating Factor

Color Attenuation Factor
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12. save the web page with a different name and load it in your browser.
The improvement is dramatic!

Directional Point Lights with Cut-Off

Cut-off with full diffuse contribution

Final color multiplied by Lambert Coefficient

Final color multiplied by exponential attenuation
factor

We have included the completed exercises here:

¢ Chée Wall Directional Proportional.html

¢ Ch6_Wall Directional_ Exponential.html

What just happened?

We have learned how to implement directional point lights. We have also discussed
attenuation factors that improve lighting effects.

Use of color in the scene

It is time to discuss transparency and alpha blending. We mentioned before that the alpha
channel can carry information about the opacity of the color with which the object is being
painted. However, as we saw in the cube example, it is not possible to obtain a translucent
object unless alpha blending is activated. Things get a bit more complicated when we have
several objects in the scene. We will see here what to do in order to have a consistent scene
when we have translucent and opaque objects.
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Transparency

The first approach to obtain transparent objects is to use polygon stippling. This technique
consists of discarding some fragments so you can see through the object. Think of it as
punching little holes throughout the surface of your object.

OpenGL supports polygon stippling through the glPolygonStipple function. This function
is not available in WebGL. You could try to replicate this functionality by dropping some
fragments in the fragment shader using the ESSL discard command.

More commonly, we can use the alpha channel information to obtain translucent objects.
However, as we saw in the cube example, modifying the alpha values does not produce
transparency automatically.

Creating transparencies corresponds to alter the fragments that we have already written to
the frame buffer. Think for instance of a scene where there is one translucent object in front
of an opaque object (from our camera view). For the scene to be rendered correctly we need
to be able to see the opaque object through the translucent object. Therefore, the fragments
that overlap between the far and the near objects need to be combined somehow to create
the transparency effect.

Similarly, when there is only one translucent object in the scene, the same idea applies.
The only difference is that, in this case, the far fragments correspond to the back face of
the object and the near fragments correspond to the front face of the object. In this case,
to produce the transparency effect, the far and near fragments need to be combined.

To implement transparencies, we need to learn about two important WebGL concepts:
depth testing and alpha blending.

Depth testing and alpha blending are two optional stages for the fragments once they have
been processed by the fragment shader. If the depth test is not activated, all the fragments
are automatically available for alpha blending. If the depth test is enabled, those fragments
that fail the test will be automatically discarded by the pipeline and will no longer be
available for any other operation. This means that discarded fragments will not be
rendered. This behavior is similar to using the ESSL discard command.
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The following diagram shows the order in which depth testing and alpha blending
are performed:

WebGL Rendering Pipeline: Depth Testing and Alpha Blending

Points to
Vertex Buffer Objects
input

input cutput

input Input
ines if the fi is i or ]
rejected for further processing based on its Depth Testlng
depth value.
Depth Testing is disabled by default.
‘With alpha blending the fragments already | Alpha Blending

written inte the frame buffer are
considered to determine the final color of
that fragment on the screen.

Alpha Testing Is disabled by default.

P
S

Now let's see what depth testing is about and why it is relevant for alpha blending.

Each fragment that has been processed by the fragment shader carries an associated

depth value. Though fragments are two-dimensional as they are going to be displayed on
the screen, the depth value keeps the information of how distant the fragment is from the
camera (screen). Depth values are stored in a special WebGL buffer named depth buffer or
z-buffer. The z comes from the fact that x and y values correspond to the screen coordinates
of the fragment while the z value measures distance perpendicular to the screen.

After the fragment has been calculated by the fragment shader, it is eligible for depth testing.
This only occurs if the depth test is enabled. Assuming that g1 is the JavaScript variable that
contains our WebGL context, we can enable depth testing by writing:

gl.enable (gl .DEPTH TEST)

The depth test takes into consideration the depth value of a fragment and it compares it to
the depth value for the same fragment coordinates already stored in the depth buffer. The
depth test determines whether or not that fragment is accepted for further processing in the
rendering pipeline.

Only the fragments that pass the depth test will be processed. Otherwise, any fragment that
does not pass the depth test will be discarded.
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In normal circumstances when the depth test is enabled, only those fragments with a lower
depth value than the corresponding fragments present in the depth buffer will be accepted.

Depth testing is a commutative operation with respect to the rendering order. This means
that no matter which object gets rendered first, as long as depth testing is enabled, we will
always have a consistent scene.

Let's see this with an example. In the following diagram, there is a cone and a sphere.
The depth test is disabled using the following code:

gl.disable (gl .DEPTH TEST)

The sphere is rendered first. As it is expected, the cone fragments that overlap the cone
are not discarded when the cone is rendered. This occurs because there is no depth test
between the overlapping fragments.

Now let's enable the depth test and render the same scene. The sphere is rendered first.
Since all the cone fragments that overlap the sphere have a higher depth value (they are
farer from the camera) these fragments fail the depth test and are discarded creating a
consistent scene.

Depth Testing in action

gl.disable(gl.DEPTH_TEST)

Wrong: the triangle is behind the circle

gl.enable(gl.DEPTH_TEST)

Depth testing produces a consistent object occlusion when there are overlapping objects in the
scene. In this scene, the sphere has been rendered first.
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Depth function

In some applications, we could be interested in changing the default function of
the depth-testing mechanism which discards fragments with a higher depth value
than those fragments in the depth buffer. For that purpose WebGL provides the
gl.depthFunc (function) function.

This function has only one parameter, the function to use:

Parameter Description

gl .NEVER The depth test always fails

gl.LESS Only fragments with a depth lower than current fragments on the depth buffer
will pass the test

gL.LEQUAL Fragments with a depth less than or equal to corresponding current fragments
in the depth buffer will pass the test

gl .EQUAL Only fragments with the same depth as current fragments on the depth buffer
will pass the test

gl .NOTEQUAL Only fragments that do not have the same depth value as fragments on the
depth buffer will pass the test

gl.GEQUAL Fragments with greater or equal depth value will pass the test

gl .GREATER Only fragments with a greater depth value will pass the test

gl.ALWAYS The depth test always passes

[

The depth test is disabled by default in WebGL. When enabled, if no
depth function is set, the g1 . LESS function is selected by default.

A fragment is eligible for alpha blending if it has passed the depth test. However, when depth
testing is disabled, all fragments are eligible for alpha blending.

Alpha blending is enabled using the following line of code:

gl.enable (gl .BLEND) ;
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For each eligible fragment the alpha blending operation reads the color present in the
frame buffer for those fragment coordinates and creates a new color that is the result
of a linear interpolation between the color previously calculated in the fragment shader
(g1 _FragColor) and the color already present in the frame buffer.

[ Alpha blending is disabled by default in WebGL. ]

With blending enabled, the next step is to define a blending function. This function will
determine how the fragment colors coming from the object we are rendering (source)
will be combined with the fragment colors already present in the frame buffer (destination).

We combine source and destination as follows:

Color Output = S * sW + D * dW
Here,

¢ S:source color

¢ D: destination color

& sW:source scaling factor

¢ dw: destination scaling factor

¢ S.rgb:rgb components of the source color

¢ S.a:alpha component of the source color

¢ D.rgb: rgb components of the destination color
.

D.a: alpha component of the destination color
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It is very important to notice here that the rendering order will determine what the source
and the destination fragments are in the previous equations. Following the example from the
previous section, if the sphere is rendered first, then it will become the destination of the
blending operation because the sphere fragments will be already stored in the frame buffer
when the cone is rendered. In other words, alpha blending is a non-commutative operation
with respect to the rendering order.

Rendering order is relevant for blending operations

Output Color = Source * sW + Destipnation * dW

Back to Front order Front to Back order

The cone is rendered first. The sphere is rendered first.

The overlapping sphere fragments pass The overlapping cone fragments do not pass
the depth test and are available for the depth test. Blending is not possible.
blending.

It is also possible to determine how the RGB channels are going to be combined independently
from the alpha channels. For that, we use the g1 .blendFuncSeparate function.

We define two independent functions this way:

Color output = S.rgb * sW.rgb + D.rgb * dW.rgb
Alpha output = S.a * sW.a + D.a * dW.a

Here,
¢ sW.rgb: source scaling factor (only rgb)
& dw.rgb: destination scaling factor (only rgb)
& sW.a: source scaling factor for the source alpha value
¢ dw.a:destination scaling factor for the destination alpha value

Then we could have something as follows:

Color output = S.rgb * S.a + D.rbg * (1 - S.a)
Alpha output = S.a * 1 + D.a * 0
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This would be translated into code as:

gl.blendFuncSeparate (gl.SRC_ALPHA, gl.ONE MINUS SRC ALPHA, gl.ONE,
gl.ZERO)

This particular configuration is equivalent to our previous case where we did not separate
the functions. The parameters for the g1 .blendFuncSeparate function are the same as
that can be passed to g1 .blendFunc. As stated before, you will find the complete list later
in this section.

We could have the case where we do not want to interpolate the source and destination
fragment colors by scaling them and adding them as shown before. It could be the

case where we want to subtract one from the other. In that case, WebGL provides

the g1.blendEquation function. This function receives one parameter that
determines the operation on the scaled source and destination fragment colors.

gl.blendEquation (gl.FUNC_ADD) will correspond to:
Color output = S * sW + D *dw

While g1 .blendEquation (gl.FUNC SUBTRACT) corresponds to:
Color output = S * sW - D *dW

There is a third option: g1 .blendEquation (gl.FUNC_REVERSE SUBTRACT)
that corresponds to:

Color output = D* dw - S*sW

As it is expected, it is also possible to define the blending equation separately for the RGB
channels and for the alpha channel. For that, we use the gl .blendEquationSeparate
function.

WebGL provides the scaling factors g1 . CONSTANT COLOR and gl .ONE_MINUS
CONSTANT COLOR. These scaling factors can be used with g1 .blendFunc and with
gl .blendFuncSeparate. However, we need to establish beforehand what the blend
color is going to be. We do so by invoking g1 .blendColor.
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WebGL alpha hiending API

The following table summarizes the WebGL functions that are relevant to performing alpha
blending operations:

WebGL Function Description

gl.enable|disable (gl.BLEND) Enable/disable blending

gl.blendFunc (sW, dw) Specify pixel arithmetic. Accepted values for sW
and dw are:
ZERO

ONE
SRC_COLOR

DST COLOR

SRC_ALPHA

DST ALPHA

CONSTANT COLOR

CONSTANT ALPHA
ONE_MINUS SRC ALPHA
ONE_MINUS DST ALPHA
ONE_MINUS SRC_COLOR
ONE_MINUS DST COLOR
ONE_MINUS CONSTANT COLOR
ONE_MINUS CONSTANT ALPHA

In addition, sW can also be SRC_ALPHA _

SATURATE
gl.blendFuncSeparate (sW_rgb, dW_  Specify pixel arithmetic for RGB and alpha
rgb, sW_a, dw_a) components separately
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WebGL Function

Description

gl.blendEquation (mode)

gl.blendEquationSeparate (modeRGB
, modeAlpha)

gl.blendColor
blue, alpha)

gl.getParameter (pname)

( red, green,

Specify the equation used for both the RGB
blend equation and the alpha blend equation.
Accepted values for mode are:

gl.FUNC_ADD
gl.FUNC_SUBTRACT

gl.FUNC_REVERSE SUBTRACT

Set the RGB blend equation and the alpha blend
equation separately

Set the blend color

Just like with other WebGL variables, it is
possible to query blending parameters using
gl.getParameter.

Relevant parameters are:
gl.BLEND

gl.BLEND COLOR
gl.BLEND DST RGB
gl.BLEND SRC_RGB

gl .BLEND DST ALPHA
gl.BLEND SRC ALPHA

gl .BLEND EQUATION RGB

gl .BLEND_ EQUATION ALPHA

Depending on the parameter selection for sw and dw we can create different blending modes.
In this section we are going to see how to create additive, subtractive, multiplicative, and
interpolative blending modes. All blending modes depart from the already known formula:

Color output = S *

(sW) + D * dw
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Additive blending simply adds the colors of the source and destination fragments, creating
a lighter image. We obtain additive blending by writing:

gl.blendFunc (gl.ONE, gl.ONE) ;

This assigns the weights for source and destination fragments sw and dw to 1. The color
output will be:

Color output S * 1 +D*1

Color output = S + D

Since each color channelisin the [0, 1] range, this blending will clamp all values over 1.
When all channels are 1 this results in a white color.

Similarly, we can obtain subtractive blending by writing:

gl.blendEquation (gl.FUNC_SUBTRACT) ;
gl.blendFunc (gl.ONE, gl.ONE) ;

This will change the blending equation to:

Color output = S * (1) - D * (1)
Color output = S - D

Any negative values will be simply shown as zero. When all channels are negative this results
in black color.

Multiplicative blending
We obtain multiplicative blending by writing:

gl.blendFunc (gl.DST_COLOR, gl.ZERO) ;
This will be reflected in the blending equation as:

Color output = S * (D) + D * (0)
Color output = S * D

The result will be always a darker blending.

If weset swto S.aand dWwto 1-S.a then:

Color output = S * S.a + D *(1-S.a)
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This will create a linear interpolation between the source and destination color using the
source alpha color S. a as the scaling factor. In code, this is translated as:

gl.blendFunc (gl.SRC_ALPHA, gl.ONE MINUS SRC ALPHA) ;

Interpolative blending allows us to create a transparency effect as long as the destination
fragments have passed the depth test. This implies that the objects need to be rendered
from back to front.

In the next section you will play with different blending modes on a simple scene constituted
by a cone and a sphere.

Time for action - blending workhench

1. Openthefile ch6 Blending.html in your HTMLS Internet browser. You will see an
interface like the one shown in the following screenshot:

WebGL Beginner's Guide - Chapter 6 [ ]
Blending Workbench PUBLISHING

Blending || Depth Testing | Back Face Culing | LambertTerm || Floor | Reset
Sphere Alpha: 1.0 Sphere Color : -

Cone Alpha: 1.0 Cane Coler :

Blend Function Source Destination

gl.FUNC_ADD ¢ | [ glSRC_ALPHA ¢ | | gl.ONE_MINUS_SRC_ALPHA
Constant Blending Color (when applicable):

Censtant
Alpha
(when
applicable):

1.0

Render Order: | Cone First | Sphere First

View Code Controls

2. This interface has most of the parameters that allow you to configure alpha
blending. The settings by default are source: g1.SRC_ALPHA and destination:
gl.ONE_MINUS SRC_ALPHA. These are the parameters for interpolative
blending. Which slider do you need to use in order to change the scaling factor
for interpolative blending? Why?

3. Change the sphere alpha slider to 0. 5. You will see some shadow-like artifacts on
the surface of the sphere. This occurs because the sphere back face is now visible.
To get rid of the back face click on Back Face Culling.
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4, Click on the Reset button.

5. Disable the Lambert Term and Floor buttons.

o

Enable the Back Face Culling button.

N

Let's implement multiplicative blending. What values do source and destination
need to have?

8. Click-and-drag on the canvas. Check that the multiplicative blending create dark
regions where the objects overlap.

9. Change the blending function to g1.FUNC_SUBTRACT using the provided
drop-down menu.

10. change Source to g1 .0NE and Destination to g1 . ONE.

11. what blending mode is this? Click-and-drag on the canvas to check the appearance
of the overlapped regions.

12. Go ahead and try different parameter configurations. Remember you can also
change the blending function. If you decide to use a constant color or constant
alpha, please use the color widget and the respective slider to modify the values
of these parameters.

What just happened?

You have seen how the additive, multiplicative, subtractive, and interpolative blending
modes work through a simple exercise.

You have seen that the combination g1.SRC_ALPHA and g1 .ONE_MINUS SRC ALPHA
produces transparency.

Creating transparent ohjects

We have seen that in order to create transparencies we need to:

1. Enable alpha blending and select the interpolative blending function.

2. Render the objects back-to-front.

How do we create transparent objects when there is nothing to blend them against? In other
words, if there is only one object, how do we make it transparent?

One alternative to do this is to use face culling.
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Face culling allows rendering the back face or the front face of an object only. You saw this in
the previous Time For Action section when we only rendered the front face by enabling the
Back Face Culling button.

Let's use the color cube that we used earlier in the chapter. We are going to make it
transparent. For that effect, we will:

1. Enable alpha blending and use the interpolative blending mode.
2. Enable face culling.

3. Render the back face (by culling the front face).

4. Render the front face (by culling the back face).

Similar to other options in the pipeline, culling is disabled by default. We enable it by calling:
gl.enable(gl.FACE CULLING) ;

To render only the back face of an object we call g1 .cullFace (gl.FRONT) before we call
drawArrays Of drawElements.

Similarly, to render only the front face, we use gl .cullFace (gl.BACK) before the
draw call.

The following diagram summarizes the steps to create a transparent object with alpha
blending and face culling.

Alpha Blending in action

3 SRC_ALPHA) ;7

+ =
Back face: these Front face: these newer Blending Result: using
fragments are already fragments are going to an alpha value of 0.35
presentin the frame be blended with the
buffer fragments already

present in the frame
buffer

In the following section we see the transparent cube in action and we will take a look at the
code that makes it possible.
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Time for action - culling

1. Opentheché Culling.html file using your HTMLS Internet browser.

2. You will see that the interface is similar to the blending workbench exercise.
However, on the top row you will see these three options:

o Alpha Blending: enables or disables alpha blending
o Render Front Face: if active, renders the front face

o Render Back Face: if active, renders the back face

Remember that for blending to work objects need to be rendered back-to-front.
Therefore, the back face of the cube is rendered first.

This is reflected in the draw function:

if (showBackFace) {
gl.cullFace(gl.FRONT); //renders the back face
gl.drawElements (gl.TRIANGLES, object.indices.length,
gl .UNSIGNED_ SHORT, 0) ;
}
if (showFrontFace) {
gl.cullFace(gl.BACK); //renders the front face
gl.drawElements (gl.TRIANGLES, object.indices.length,
gl .UNSIGNED_ SHORT, 0) ;

}

Going back to the web page, notice how the interpolative blending
function produces the expected transparency effect. Move the alpha value
slider that appears below the button options to adjust the scaling factor for
interpolative blending.

3. Review to the interpolative blending function. In this case, the destination is the
back face (rendered first) and the source is the front face. If the alpha source = 1
what would you obtain according to the function? Go ahead and test the result by
moving the alpha slider to zero.
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4. Let's visualize the back face only. For that, disable the Render Front Face button by
clicking on it. Increase the alpha value using the alpha value slider that appears right
below the button options. Your screen should look like this:

WebGL Beginner's Guide - Chapter 6 [ ]
Creating Transparent Objects with Alpha Blending and Face Culling PUBLISHING

Alpha Blending Render Front Face Render Back Face

Alpha

Value: 29

Blend Function Source Destinatien

| gl.FUNC_ADD #| | gl.SRC_ALPHA + | | gl.ONE_MINUS_SRC_ALPHA s

Constant Blending Color (when applicable):

Constant
Alpha
(when
applicable):

1.0

View Code Controls

5. Click-and-drag the cube on the canvas. Notice how the back face is calculated every
time you move the camera around.

6. Click on the Render Front Face again to activate it. Change the blending function so
you can obtain subtractive blending.

7. Try different blending configurations using the controls provided in this exercise.

What just happened?

We have seen how to create transparent objects using alpha blending interpolative mode
and face culling.

Now let's see how to implement transparencies when there are two objects on the screen.
In this case we have a wall that we want to make transparent. Behind it there is a cone.
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Time for action - creating a transparent wall

1. Openché Transparency Initial.html inyour HTML5 web browser.
We have two completely opaque objects: a cone behind a wall. Click-and-drag
on the canvas to move the camera behind the wall and see the cone as shown
in the following screenshot:

WebGL Beginner's Guide - Chapter 6 : ;
Seeing through walls! [M.‘;.r.]

View Code  Controls

Wal Algha: 1.0 Rendar Oedur; | Cone First | Wall First

Cone Alpha: 1.0 Eamera Typei  Tracking  Ovbiting Ba Mame

2. Change the wall alpha value by using the provided slider.

3. Asvyou can see, modifying the alpha value does not produce any transparency. The
reason for this is that the alpha blending is not being enabled. Let's edit the source
code and include alpha blending. Open the file ch6 Transparency Initial.
html using your preferred source code editor. Scroll to the configure function
and below these lines:
gl.enable (gl.DEPTH_TEST) ;
gl.depthFunc (gl.LEQUAL) ;

Add:

gl.enable (gl.BLEND) ;
gl.blendFunc (gl.SRC_ALPHA,gl.ONE MINUS SRC ALPHA) ;

4. Save your changes as ch6_Transparency Final.html and load this page on
your web browser.

5. Asexpected, the wall changes its transparency as you modify its alpha value using
the respective slider.
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A note on rendering order: Remember that in order for transparency to be effective
the objects need to be rendered back to front. Let's take a look at the source code.
Open ché6_Transparency Final.html in your source code editor.

The cone is the farthest object in the scene. Hence, it is loaded first. You can check
that by looking at the 1oad function:
Scene.loadObject ('models/geometry/cone.json', 'cone') ;

Scene.loadObject ('models/geometry/wall.json', 'wall', {diffu
se:[0.5,0.5,0.2,1.0], ambient:[0.2,0.2,0.2,1.0]1});

Therefore it occupies a lower index in the Scene.objects list. In the draw
function, the objects are rendered in the order in which they appear in the Scene.
objects list like this:
for (var i = 0, max=Scene.objects.length; i < max; i++)

var object = Scene.objects[i];

What happens if we rotate the scene so the cone is closer to the camera and the
wall is farer away? Open ché_ Transparency Final.html and rotate the scene
such that the cone appears in front of the wall. Now decrease the alpha value of the
cone while the alpha value of the wall remains at 1.0.

As you can see, the blending is inconsistent. This does not have to do with alpha
blending because in ché_Transparency Final.html the blending is enabled
(you just enabled it on step 3). It has to do with the rendering order. Click on the
Wall First button. The scene should appear consistent now.

The Cone First and Wall First buttons use a couple of new functions that we have
included in the Scene object to change the rendering order. These functions are
renderSooner and renderFirst.

In total, we have added these functions to the Scene object to deal with
rendering order:

o renderSooner (objectName) —moves the object with name
objectName one position before in the Scene.objects list.

o renderLater (objectName) —moves the object with name objectName
one position after in the Scene.objects list.

o renderFirst (objectName) —moves the object with name objectName
to the first position of the list (index 0).

o renderLast (objectName) —moves the object with name ocbjectName
to the last position of the list.
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o renderOrder () —lists the objects in the Scene.objects list in the order
in which they are rendered. This is the same order in which they are stored
in the list. For any two given objects, the object with the lower index will be
rendered first.

You can use these functions from the JavaScript console in your browser and see
what effect these have on the scene.

What just happened?

We have taken a simple scene where we have implemented alpha blending.

After that we have analyzed the importance of the rendering order in creating consistent
transparencies. Finally, we have presented the new methods of the Scene object that
control the rendering order.

In this chapter, we have seen how to use colors on objects, lights, and on the scene
in general. Specifically, we have learned that an object can be colored per vertex,
per fragment, or it can have a constant color.

The color of light sources in the scene depends on implemented lighting model. Not all
lights need to be always white. We have also seen how uniform arrays simplify working with
multiple lights in ESSL and in JavaScript WebGL. Also we have created point directional lights.

The alpha value does not necessarily make an object translucent. Interpolative blending is
necessary to create translucent objects. Also, the objects need to be rendered back-to-front.

Additionally, face culling can help to produce better results when there are multiple
translucent objects present in the scene.

In Chapter 7, Textures, we will study how to paint images over our objects. For that we will
use WebGL textures.
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So far, we've added details to our scene with geometry, vertex colors, and
lighting, but often that won't be enough to achieve the look that we want.
Wouldn't it be great if we could "paint" additional details onto our scene
without needing additional geometry? We can, through a technique called
texture mapping. In this chapter, we'll examine how we can use textures to
make our scene more detailed.

In this chapter, we'll learn the following:

How to create a texture
How to use a texture when rendering
Filter and wrapping modes and how they affect the texture's use

Multi-texturing

* 6 & o o

Cube mapping

Let's get started!



Textures

Texture mapping is, at its most basic, a method for adding detail to the geometry being
rendered by displaying an image on the surface. Consider the following image:

Using only the techniques that we've learned so far, this relatively simple scene would be
very difficult to build and unnecessarily complex. The WebGL logo would have to be carefully
constructed out of many little triangles with appropriate colors. Certainly such an approach
is possible, but the additional geometry needed would make it quickly impractical for use in
even a marginally complex scene.

Luckily for us, texture mapping makes the above scene incredibly simple. All that's required
is an image of the WebGL logo in an appropriate file format, an additional vertex attribute on
the mesh, and a few additions to our shader code.

First off, for various reasons your browser will naturally load textures "upside down" from
how textures are traditionally used in desktop OpenGL. As a result, many WebGL applications
specify that the textures should be loaded with the Y coordinate flipped. This is done with a
single call from somewhere near the beginning of the code.

gl.pixelStorei (gl .UNPACK FLIP Y WEBGL, true);

Whether or not you use this mode is up to you, but we will be using it throughout
this chapter.

The process of creating a texture is very similar to that of creating a vertex or an index buffer.
We start by creating the texture object as follows:

var texture = gl.createTexture() ;
Textures, like buffers, must be bound before we can manipulate it in any way.

gl.bindTexture (gl.TEXTURE 2D, texture);
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The first parameter indicates the type of texture we're binding, or the texture target.
For now, we'll focus on 2D textures, indicated with g1 . TEXTURE 2D in the previous
code snippet. More targets will be introduced in the Cube maps section.

Once we have bound the texture, we can provide it with image data. The simplest way
to do that is to pass a DOM image into the texImage2D function as shown in the following
code snippet:

var image = document.getElementById ("textureImage") ;

gl.texImage2D (gl .TEXTURE 2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED BYTE,
image) ;

You can see in this example that we have selected an image element from our page with the
ID of "textureImage" to act as the source for our texture. This is known as Uploading the
texture, since the image will be stored for fast access during rendering, often in the GPU's
video memory. The source can be in any image format that can be displayed on a web page,
such as JPEG, PNG, GIF, or BMP files.

The image source for the texture is passed in as the last parameter of the texImage2D
call. When texImage2D is called with an image in this way, WebGL will automatically
determine the dimensions of the texture from the image you provide. The rest of the
parameters instruct WebGL about the type of information the image contains and how to
store it. Most of the time, the only value you will need to worry about changing is the third
and fourth parameter, which can also be g1 . RGB to indicate that your texture has no alpha
(transparency) channel.

In addition to the image, we also need to instruct WebGL how to filter the texture when
rendering. We'll get into what filtering means and what the different filtering modes do
in a bit. In the meantime let's use the simplest one to get us started:

gl.texParameteri (gl.TEXTURE 2D, gl.TEXTURE MAG FILTER, gl.NEAREST) ;
gl.texParameteri (gl.TEXTURE 2D, gl.TEXTURE MIN FILTER, gl.NEAREST) ;

Finally, just as with buffers, it's a good practice to unbind a texture when you are finished
using it, which is accomplished by binding nul1l as the active texture:

gl.bindTexture (gl.TEXTURE 2D, null);

Of course, in many cases you won't want to have all of the textures for your scene embedded
on your web page, so it's often more convenient to create the image element on the fly and
have it dynamically load the image needed. Putting all of this together gives us a simple
function that will load any image URL that we provide as a texture.

var texture = gl.createTexture() ;
var image = new Image() ;
image.onload = function(){
gl.bindTexture (gl.TEXTURE 2D, texture);
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gl.texImage2D(gl.TEXTURE 2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED
BYTE, image) ;
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER,

gl .NEAREST) ;
gl.texParameteri (gl.TEXTURE 2D, gl.TEXTURE MIN FILTER,
gl .NEAREST) ;
gl.bindTexture (gl.TEXTURE 2D, null);
}
image.src = "textureFile.png";

There is a slight 'gotcha’ when loading images in this way. The image loading
is asynchronous, which means that your program won't stop and wait for the

image to finish loading before continuing execution. So what happens if you
’ try to use a texture before it's been populated with image data? Your scene

will still render, but any texture values you sample will be black.

In summary, creating textures follows the same pattern as using buffers. For every texture
we create, we want to do the following:

Create a new texture

Bind it to make it the current texture

Pass the texture contents, typically from an image

Set the filter mode or other texture parameters

* & 6 o o

Unbind the texture

If we reach a point where we no longer need a texture, we can remove it and free up the
associated memory using deleteTexture:

gl.deleteTexture (texture) ;

After this the texture is no longer valid. Attempts to use it will react as though nul1l has
been passed.

Using texture coordinates

So now that we have our texture ready to go, we need to apply it to our mesh somehow.
The most basic question that arises then is what part of the texture to show on which part
of the mesh. We do this through another vertex attribute named texture coordinates.
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Texture coordinates are two-element float vectors that describe a location on the texture that
coincides with that vertex. You might think that it would be most natural to have this vector
be an actual pixel location on the image, but instead, WebGL forces all the texture coordinates
into a 0 to 1 range, where [0, 0] represents the top left-hand side corner of the texture and

[1, 1] represents the bottom right-hand side corner, as is shown in the following image:

x:0y:0 Ly 0

ebGL

®:0,y:1 Lyl

This means that to map a vertex to the center of any texture, you would give it a texture
coordinate of [0.5, 0.5]. This coordinate system holds true even for rectangular textures.

At first this may seem strange. After all, it's easier to determine what the pixel coordinates
of a particular point are than what percentage of an image's height and width that point is
at, but there is a benefit to the coordinate system that WebGL uses.

Let's say you create a WebGL application with some very high resolution textures. At some
point after releasing your application, you get feedback from users saying that the textures
are taking too long to load, or that the large textures are causing their device to render
slowly. As a result, you decide to offer a lower resolution texture option for these users.

If your texture coordinates were defined in terms of pixels, you would now have to
modify every mesh used by your application to ensure that the texture coordinates match
up to the new, smaller textures correctly. However, when using WebGL's 0 to 1 coordinate
range, the smaller textures can use the exact same coordinates as the larger ones and still
display correctly!

Figuring out what the texture coordinates for your mesh should be, especially if the mesh is
complex, can be one of the trickier parts of creating 3D resources, but fortunately most 3D

modeling tools come with excellent utilities for laying out texture coordinates. This process

is called Unwrapping.
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Just like the vertex position components are commonly represented with
the characters X, Y, and Z, texture coordinates also have a common symbolic
representation. Unfortunately, it's not consistent across all 3D software
’ applications. OpenGL (and therefore WebGL) refers to the coordinates as S and
%‘ T for the X and Y components respectively. However, DirectX and many popular
modeling packages refer to them as U and V. As a result, you'll often see people
referring to texture coordinates as "UVs" and Unwrapping as "UV Mapping".

We will use ST for the remainder of the book to be consistent with WebGL's usage.

Texture coordinates are exposed to the shader code in the same way that we have any other
vertex attribute; no surprises here. We'll want to include a two-element vector attribute in
our vertex shader that will map to our texture coordinates:

attribute vec2 aVertexTextureCoords;

Additionally, we will also want to add a new uniform to the fragment shader that uses a type
we haven't seen before: sampler2D. The sampler2D uniform is what allows us to access
the texture data in the shader.

uniform sampler2D uSampler;

In the past, when we've used uniforms, we have always set them to the value that we want
them to be in the shader, such as a light color. Samplers work a little differently, however.
The following shows how to associate a texture with a specific sampler uniform:

gl.activeTexture (gl.TEXTUREO) ;
gl.bindTexture (gl.TEXTURE 2D, texture);
gl.uniformli (Program.uSampler, O0);

So what's going on here? First off, we are changing the active texture index with
gl.activeTexture. WebGL supports using multiple textures at once (which we'll talk
about later on in this chapter), so it's a good practice to specify which texture index we're
working with, even though it won't change for the duration of this program. Next, we bind
the texture we wish to use, which associates it with the currently active texture TEXTUREO.
Finally, we tell the sampler uniform which texture it should be associated with, not with the
texture itself, but with the texture unit provided via g1 .uniformli. Here we give it 0 to
indicate that the sampler should use TEXTUREO.

That's quite a bit of setup, but now we are finally ready to use our texture in the fragment
shader! The simplest way to use a texture is to return its value as the fragment color as
shown here:

gl FragColor = texture2D(uSampler, vTextureCoord) ;
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texture2D takes in the sampler uniform we wish to query and the coordinates to lookup,
and returns the color of the texture image at those coordinates as a vec4. Even if the image
has no alpha channel, a vec4 will still be returned with the alpha component always set to 1.

Time for action - texturing the cube

Open the file ch7_Textured Cube.html in your favorite HTML editor. This contains the
simple lit cube example from the previous chapter. If you open it in an HTML5 browser, you
should see a scene that looks like the following screenshot:

WebGL Beginner's Guide - Chapter 7 [ ]

Textured Cube

View  Code  Contrals

Use Lambert Teem Constant | Per Vertex

Aloha Value: 1.0

In this example we will add a texture map to this cube as shown here:

1. First, let's load the texture image. At the top of the script block, add a new variable
to hold the texture:

var texture = null;

2. Then, at the bottom of the configure function, add the following code, which
creates the texture object, loads an image, and sets the image as the texture data.
In this case, we'll use a PNG image with the WebGL logo on it as our texture.

//Init texture
texture = gl.createTexture() ;

var image = new Image () ;
image.onload = function () {
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gl.bindTexture (gl.TEXTURE 2D, texture);

gl.texImage2D (gl.TEXTURE 2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED
BYTE, image) ;

gl.texParameteri (gl.TEXTURE 2D, gl.TEXTURE MAG FILTER,
gl .NEAREST) ;

gl.texParameteri (gl.TEXTURE 2D, gl.TEXTURE MIN FILTER,
gl .NEAREST) ;

gl.bindTexture (gl.TEXTURE 2D, null);

}

image.src = 'textures/webgl.png';

Next, in the draw function after the vertexColors binding block, add the
following code to expose the texture coordinate attribute to the shader:
if (object.texture coords) {
gl.enableVertexAttribArray (Program.aVertexTextureCoords) ;
gl.bindBuffer (gl.ARRAY BUFFER, object.tbo) ;

gl.vertexAttribPointer (Program.aVertexTextureCoords, 2,
gl.FLOAT, false, 0, 0);

}

Within that same if block, add the following code to bind the texture to the shader
sampler uniform:

gl.activeTexture (gl.TEXTUREO) ;
gl.bindTexture (gl.TEXTURE 2D, texture);
gl.uniformli (Program.uSampler, O0);

Now we need to add the texture-specific code to the shader. In the vertex shader,
add the following attribute and varying to the variable declarations:

attribute vec2 aVertexTextureCoords;
varying vec2 vTextureCoords;

And at the end of the vertex shader's main function, make sure to copy the texture
coordinate attribute into the varying so that the fragment shader can access it:

vTextureCoord = aVertexTextureCoords;

The fragment shader also needs two new variable declarations: The sampler
uniform and the varying from the vertex shader.

uniform sampler2D uSampler;
varying vec2 vTextureCoord;
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10.

We must also remember to add avertexTextureCoords to the attributelList
and uSampler to the uniformList in the configure function so that the new
variables can be accessed from our JavaScript binding code.

To access the texture color, we call texture2D with the sampler and the texture
coordinates. As we want the textured surface to retain the lighting that was
calculated, we'll multiply the lighting color and the texture color together, giving
us the following line to calculate the fragment color:

gl FragColor = vColor * texture2D(uSampler, vTextureCoord) ;

If everything has gone according to the plan, opening the file now in an HTML5
browser should yield a scene like this one:

WebGL Beginner's Guide - Chapter 7
Textured Cube [PUBL\GH\NG:I

View Code Controls

Use Lambert Term Constant | Per Vertex

Alpha Value: 1.0

% If you're having trouble with a particular step and would like a reference, the
e completed code is available in ch7 Textured Cube Finished.html.

What just happened?

We've just loaded a texture from a file, uploaded it to the GPU, rendered it on the cube
geometry, and blended with the lighting information that was already being calculated.

The remaining examples in this chapter will omit calculation of lighting for simplicity
and clarity, but all of the examples could have lighting applied to them if desired.
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Go grab one of your own images and see if you can get it to display as the texture instead.
What happens if you provide a rectangular image rather than a square one?

Texture filter modes

So far, we've seen how textures can be used to sample image data in a fragment shader,
but we've only used them in a limited context. Some interesting issues arise when you
start to look at texture use in more robust situations.

For example, if you were to zoom in on the cube from the previous demo, you would see
that the texture begins to alias pretty severely.

As we zoom in, you can see jagged edges develop around the WebGL logo. Similar problems
become apparent when the texture is very small on the screen. Isolated to a single object,
such artifacts are easy to overlook, but they can become very distracting in complex scenes.

So why do we see these artifacts in the first place?
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Recall from the previous chapter how vertex colors are interpolated, so that the fragment
shader is provided a smooth gradient of color. Texture coordinates are interpolated in
exactly the same way, with the resulting coordinates being provided to the fragment shader
and used to sample color values from the texture. In a perfect situation, the texture would
display at a 1:1 ratio on screen, meaning each pixel of the texture (known as texels) would
take up exactly one pixel on screen. In this scenario, there would be no artifacts.

he | @

—~ 1|

ol ® |

ot

et

| ‘ @ A

e | '_’,/—”

Texture | I', s
- Screen

The reality of 3D applications, however, is that the textures are almost never displayed
at their native resolution. We refer to these scenarios as magnification and minification,

depending on whether the texture has a lower or higher resolution than the screen space
it occupies.

Magnification Minification
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When a texture is magnified or minified, there can be some ambiguity about what color the
texture sampler should return. For example, consider the following diagram of sample points
against a slightly magnified texture:

It's pretty obvious what color you would want the top left-hand side or middle sample points
to return, but what about those that sit between texels? What color should they return? The
answer is determined by your filter mode. Texture filtering gives us a way to control how
textures are sampled and achieve the look that we want.

Setting a texture's filter mode is very straightforward, and we've already seen an example
of how it works when talking about creating textures.

gl.texParameteri (gl.TEXTURE 2D, gl.TEXTURE MAG FILTER, gl.NEAREST) ;
gl.texParameteri (gl.TEXTURE 2D, gl.TEXTURE MIN FILTER, gl.NEAREST) ;

As with most WebGL calls, texParameteri operates on the currently bound texture, and
must be set for every texture you create. This also means that different textures can have
different filters, which can be useful when trying to achieve specific effects.

In this example we are setting both the magnification filter (TEXTURE_MAG FILTER) and
the minification filter (TEXTURE MIN FILTER)to NEAREST. There are several modes that
can be passed for the third parameter, and the best way to understand the visual impact that
they have on a scene is to see the various filter modes in action.

Let's look at a demonstration of the filters in your browser while we discuss
different parameters.
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Time for action - trying different filter modes

1. Openthefile ch7 Texture Filters.html using your HTMLS Internet browser:

WebGL Beginner's Guide - Chapter 7
Sampling Textures [Pususuwa]

View Code Controls

Distance: 4

Mag Filter: MEAREST LINEAR

Min Filter: NEAREST LINEAR NEAREST_MIPMAP_NEAREST LINEAR_MIPMAP_MEAREST MEAREST _MIPMAP_LINEAR LINEAR_MIPMAP_LINEAR

2. The controls along the bottom include a slider to adjust the distance of the box from
the viewer, and the buttons modify the magnification and minification filters.

3. Experiment with different modes to observe the effect they have on the texture.
Magnification filters take effect when the cube is closer, minification filters when it is
further away. Be sure to rotate the cube as well and observe what the texture looks
like when viewed at an angle with each mode.
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What just happened?

Let's look at each of the filter modes in depth, and discuss how they work.

NEAREST

Textures using the NEAREST filter always return the color of the texel whose center is
nearest to the sample point. Using this mode textures will look blocky and pixilated when
viewed up close, which can be useful for creating "retro" graphics. NEAREST can be used
for both MIN and MAG filters.

gl.NEAREST

The LINEAR filter returns the weighted average of the four pixels whose centers are nearest
to the sample point. This provides a smooth blending of texel colors when looking at textures
close up, and generally is a much more desirable effect. This does mean that the graphics
hardware has to read four times as many pixels per fragment, so naturally it's slower than
NEAREST, but modern graphics hardware is so fast that this is almost never an issue. LINEAR
can be used for both MIN and MAG filters. This filtering mode is also known as bilinear filtering.

gl.LINEAR
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Looking back at the close-up example image we showed earlier in the chapter,
had we used LINEAR filtering it would have looked like this:

Before we can discuss the remaining filter modes that are only applicable to
TEXTURE MIN FILTER, we need to introduce a new concept: mipmapping.

A problem arises when sampling minified textures; even when using LINEAR filtering
where the sample points can be so far apart that we can completely miss some details
of the texture. As the view shifts, the texture fragments that we miss changes and the
result is a shimmering effect. You can see this in action by setting the MIN filter in the
demo to NEAREST or LINEAR, zooming out, and rotating the cube.

Scaled up 400%
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To avoid this, graphics cards can utilize a mipmap chain.

Mipmaps are scaled-down copies of a texture, with each copy being exactly half the size of
the previous one. If you were to show a texture and all of it's mipmaps in a row, it would look
like this:

ebGL
@GL@GL

-

The advantage is that when rendering, the graphics hardware can choose the copy of the
texture that most closely matches the size of the texture on screen and sample from it
instead, which reduces the number of skipped texels and the jittery artifacts that accompany
it. However, mipmapping is only used if you use the appropriate texture filters. The following
TEXTURE_MIN FILTER modes will utilize mipmaps in some fashion or the other.

NEAREST_MIPMAP_NEAREST

This filter will select the mipmap that most closely matches the size of the texture on screen
and sample from it using the NEAREST algorithm.

LINEAR_MIPMAP_NEAREST

This filter selects the mipmap that most closely matches the size of the texture on screen
and sample from it using the LINEAR algorithm.

NEAREST_MIPMAP_LINEAR

This filter selects two mipmaps that most closely matches the size of the texture on screen
and samples from both of them using the NEAREST algorithm. The color returned is a
weighted average of those two samples.
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LINEAR_MIPMAP_LINEAR

This filter selects two mipmaps that most closely matches the size of the texture on screen
and samples from both of them using the LINEAR algorithm. The color returned is a
weighted average of those two samples. This mode is also known as trilinear filtering.

NEAREST LINEAR_MIPMAP_LINEAR

Of the *_MIPMAP_* filter modes, NEAREST MIPMAP NEAREST is the fastest and of

lowest quality while LINEAR MIPMAP LINEAR will provide the best quality at the lowest
performance, with the other two modes sitting somewhere in between on the quality/speed
scale. In most cases, however, the performance tradeoff will be minor enough so that you
should always favor LINEAR MIPMAP LINEAR.

WebGL doesn't automatically create mipmaps for every texture; so if we want to use one
of the *_MIPMAP_* filter modes, we have to create the mipmaps for the texture first.
Fortunately, all this takes is a single function call:

gl.generateMipmap (gl.TEXTURE 2D) ;

generateMipmap must be called after the texture has been populated with texImage2D
and will automatically create a full mipmap chain for the image.

Alternately, if you want to provide the mipmaps manually you can always specify that you
are providing a mipmap level rather than the source texture when calling teximage2D by
passing a number other than 0 as the second parameter.

gl.texImage2D (gl .TEXTURE 2D, 1, gl.RGBA, gl.RGBA, gl.UNSIGNED BYTE,
mipmapImage) ;
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Here we're manually creating the first mipmap level, which is half the height and width
of the normal texture. The second level would be quarter the dimensions of the normal
texture, and so on.

This can be useful in some advanced effects, or when using compressed textures which
cannot be used with generateMipmap.

In order to use mipmaps with a texture it needs to satisfy some dimension restrictions.
Namely, the texture width and height must both be Powers Of Two (POT). That is, the width
and height can be pow (2, n) pixels, where n is any integer. Examples are 16px, 32px, 64px,
128px, 256px, 512px, 1024px, and so on. Also, note that the width and height do not have
to be the same as long as both are powers of two. For example, a 512x128 texture can still
be mipmapped.

Why the restriction to power of two textures? Recall that the mipmap chain is made of
textures whose sizes are half of the previous level. When the dimensions are powers of
two this will always produce integer numbers, which means that the number of pixels
never needs to be rounded off and hence produces clean and fast scaling algorithms.

Non Power Of Two (NPOT) textures can still be used with WebGL, but are restricted to only
using NEAREST and LINEAR filters.

For all the texture code samples after this point, we'll be using a simple
texture class that cleanly wraps up the texture's download, creation, and

setup. Any textures created with the class will automatically have mipmaps
’ generated for them and be set to use LINEAR for the magnification filter

and LINEAR MIPMAP LINEAR for the minification filter.

Texture wrapping

In the previous section, we used texParameteri to set the filter mode for textures, but
as you might expect from the generic function name, that's not all that it can do. Another
texture behavior that we can manipulate is the texture wrapping mode.

Texture wrapping describes the behavior of the sampler when the texture coordinates fall
outside the range of 0-1.

The wrapping mode can be set independently for both the S and T coordinates, so changing
the wrapping mode typically takes two calls:

gl.texParameteri (gl.TEXTURE 2D, gl.TEXTURE WRAP S, gl.CLAMP TO EDGE) ;
gl.texParameteri (gl.TEXTURE 2D, gl.TEXTURE WRAP T, gl.CLAMP TO EDGE) ;
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Here we're setting both the S and T wrapping modes for the currently bound texture to
CLAMP_ TO EDGE, the effects of which we will see in a moment.

As with texture filters, it's easiest to demonstrate the effects of the different wrapping
modes via an example and then discuss the results. Let's open up your browser again for
another demonstration.

Time for action - trying different wrap modes

1. Openthefile ch7 Texture Wrapping.html using your HTMLS Internet browser.

WebGL Beginner's Guide - Chapter 7
Texture Wrapping [ Pu;ausuwe]

View Code Controls

Wrap S: CLAMP_TO_EDGE REPEAT MIRRORED_REPEAT

Wrap T: = CLAMP_TO_EDGE | REPEAT | MIRRORED_REPEAT

2. The cube shown has texture coordinates that range from -1 to 2, which forces the
texture wrapping mode to be used for everything but the center tile of the texture.

3. Experiment with the controls along the bottom to see the effect that the different
wrap modes have on the texture.

What just happened?

Let's look at each of the wrap modes and discuss how they work.
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CLAMP_TO_EDGE

@eboL

This wrap mode rounds any texture coordinates greater than 1 down to 1 and lower than 0
up to 0, "clamping" the values to the 0-1 range. Visually, this has the effect of repeating the
border pixels of the texture indefinitely once the coordinates go out of the 0-1 range. Note
that this is the only wrapping mode that is compatible with NPOT textures.

REPEAT

@ebeL @ebaL @ebalL
@ebcL @ebeL @ebaL

@ebeL @ebcL @ebaL

This is the default wrap mode, and the one that you'll probably use most often.
In mathematical terms this wrap mode simply ignores the integer part of the texture
coordinate. This creates the visual effect of the texture repeating as you go outside the

0-1 range. This can be a useful effect for displaying surfaces that have a natural repeating
pattern to them, such as a tile floor or brick wall.
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MIRRORED_REPEAT

The algorithm for this mode is a little more complicated. If the coordinate's integer portion
is even, the texture coordinates will be the same as with REPEAT. If the integer portion of the
coordinate is odd, however, the resulting coordinate is 1 minus the fractional portion of the
coordinate. This results in a texture that "flip-flops" as it repeats, with every other repetition
being a mirror image.

As was mentioned earlier, these modes can be mixed and matched if needed. For example,
consider the following code snippet:

gl.texParameteri (gl.TEXTURE 2D, gl.TEXTURE WRAP S, gl.REPEAT) ;
gl.texParameteri (gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE) ;

It would produce the following effect on the texture from the sample:

@evcL @eboL @ebGL
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_ Wondering why the shader uniforms are called "samplers" instead of
& "textures"? A texture is just the image data stored on the GPU, while
=" a sampler contains all the information about how to look up texture

information, including filter and wrap modes.

Up to this point, we've been doing all of our rendering using a single texture at a time.

As you've seen this can be a useful tool. But there are times where we may want to have
multiple textures that contribute to a fragment to create more complex effects. For these
cases, we can use the WebGL's ability to access multiple textures in a single draw call,
otherwise known as multitexturing.

We've already brushed up against multitexturing earlier in a chapter, so let's go back and
look at it again. When talking about exposing a texture to a shader as a sampler uniform we
used the following code:

gl.activeTexture (gl.TEXTUREO) ;
gl.bindTexture (gl.TEXTURE 2D, texture);

The first line, gl .activeTexture, is the key to utilizing multitexturing. We use it to tell

the WebGL state machine which texture we are going to be manipulating with, in subsequent
texture functions. In this case, we passed gl . TEXTUREO, which means that any following
texture calls (such as g1 .bindTexture) will alter the state of the first texture unit.

If we wanted to attach a different texture to the second texture unit, we would use

gl .TEXTUREL instead.

Different devices will support different numbers of texture units, but WebGL specifies that
compatible hardware must always support at least two texture units. We can find out how
many texture units the current device supports with the following function call:

gl.getParameter (gl.MAX COMBINED TEXTURE IMAGE UNITS) ;

WebGL provides explicit enumerations for g1 . TEXTUREO thorough gl . TEXTURE31, which
is likely more than your hardware is capable of using. Sometimes it is convenient to specify
the texture unit programmatically, or you may find a need to refer a texture unit above 31.
To that end, you can always substitute g1 . TEXTUREO + i for gl.TEXTUREi. For example:

gl .TEXTUREO + 2 === gl.TEXTURE2;
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Accessing multiple textures in a shader is as simple as declaring multiple samplers.

uniform sampler2D uSampler;

uniform sampler2D uOtherSampler;

When setting up your draw call, you tell the shader which texture is associated with which
sampler by providing the texture unit to g1 .uniformili. The code to bind two textures to
the samplers above would look something like this:

//

gl.
.bindTexture (gl .TEXTURE 2D, texture);
.uniformli (Program.uSampler, O0);

gl
gl

//

gl.
.bindTexture (gl.TEXTURE 2D, otherTexture) ;
.uniformli (Program. uOtherSampler, 1);

gl
gl

Bind the first texture
activeTexture (gl.TEXTUREO) ;

Bind the second texture
activeTexture (gl.TEXTUREL) ;

So now we have two textures available to our fragment shader. The question is what do we
want to do with them?

As an example we're going to implement a simple multitexture effect that layers another
texture on top of a simple textured cube to simulate static lighting.

Time for action - using multitexturing

1.
2.

Open the file ch7_Multitexture.html with your choice of HTML editor.

At the top of the script block, add another texture variable:

var texture2 = null;

At the bottom of the configure function, add the code to load the second texture.
As mentioned earlier, we're using a class to make this process easier, so the new
code is as follows:

texture2 = new Texture() ;
texture2.setImage ('textures/light.png') ;
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4. The texture we're using is a white radial gradient that simulates a spot light:

5. Inthe draw function, directly below the code that binds the first texture,
add the following to expose the new texture to the shader:
gl.activeTexture (gl.TEXTUREL) ;
gl.bindTexture (gl.TEXTURE 2D, texture2.tex);
gl.uniformli (Program.uSamplerl, 1);

6. Next, we need to add the new sampler uniform to the fragment shader:

uniform sampler2D uSamplerl;

7. Don't forget to add the corresponding string to the uniformList in the
configure function.

8. Finally, we add the code to sample the new texture value and blend it with the
first texture. In this case, since we want the second texture to simulate a light, we
multiply the two values together as we did with the per-vertex lighting in the first
texture example.

gl FragColor = texture2D (uSampler, vTextureCoord) *
texture2D (uSamplerl, vTextureCoord) ;

9. Note that we're re-using the same texture coordinate for both textures. It's
convenient to do so in this case, but if needed, a second texture coordinate attribute
could have been used, or we could even calculate a new texture coordinate from the
vertex position or other criteria.
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10. Assuming that everything works as intended, you should see a scene that looks like
this when you open the file in your browser:

WebGL Beginner's Guide - Chapter 7
Multitexture [P;EL\SH\NG]

View Code Contrals

11. You can see the completed example in ch7 Multitexture Finished.html.

What just happened?

We've added a second texture to the draw call and blended it with the first to create a new
effect, in this case simulating a simple static spotlight.

It's important to realize that the colors sampled from a texture are treated just like any
other color in the shader, that is as a generic 4-dimensional vector. As a result, we can
combine textures together just like we would combine vertex and light colors, or any
other color manipulation.
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Have a go hero — moving heyond multiply

Multiplication is one of the most common ways to blend colors in a shader, but there's
really no limit to how you can combine color values. Try experimenting with some different
algorithms in the fragment shader and see what effect it has on the output. What happens
when you add values instead of multiply? What if you use the red channel from one texture
and the blue and green from the other? Or try out the following algorithm and see what the
result is:

gl FragColor = vec4 (texture2D(uSampler2, vTextureCoord) .rgb -
texture2D (uSampler, vTextureCoord).rgb, 1.0);

Earlier in this chapter, we mentioned that aside from 2D textures the functions we've
been discussing can also be used for cube maps. But what are cube maps and how
do we use them?

A cube map is, very much like it sounds, a cube of textures. Six individual textures are
created, each assigned to a different face of the cube. The graphics hardware can sample
them as a single entity, using a 3D texture coordinate.

The faces of the cube are identified by the axis they face and whether they are on the
positive or negative side of that axis.

Negative Z (back)

" Positive Y

Negative Positive X

Negative Y

Up until this point, any time we have manipulated a texture, we have specified a texture
target of TEXTURE 2D. Cube mapping introduces a few new texture targets that indicate
that we are working with cube maps, and which face of the cube map we're manipulating:

¢ TEXTURE CUBE_MAP

¢ TEXTURE CUBE MAP POSITIVE X

¢ TEXTURE CUBE MAP NEGATIVE X
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* & o o

TEXTURE_CUBE_MAP POSITIVE Y
TEXTURE_CUBE_MAP NEGATIVE Y
TEXTURE_CUBE_MAP POSITIVE Z
TEXTURE_CUBE_MAP NEGATIVE Z

These targets are collectively known as the g1 . TEXTURE CUBE_MAP_* targets. Which one
you use depends on the function you are calling.

Cube maps are created like a normal texture, but binding and property manipulation happen
with the TEXTURE CUBE_MAP target, as shown here:

var cubeTexture = gl.createTexture() ;

gl

gl.
.LINEAR) ;

gl

gl.
.LINEAR) ;

gl

.bindTexture (gl .TEXTURE CUBE_MAP, cubeTexture) ;

texParameteri (gl.TEXTURE CUBE MAP, gl.TEXTURE MAG FILTER,

texParameteri (gl.TEXTURE CUBE MAP, gl.TEXTURE MIN FILTER,

When uploading the image data for the texture, however, you specify the side that you are
manipulating as shown here:

gl.
.UNSIGNED BYTE, positiveXImage) ;

gl

gl.
.UNSIGNED BYTE, negativeXImage) ;

gl

gl.
.UNSIGNED BYTE, positiveYImage) ;

gl
//

texImage2D (gl.TEXTURE CUBE MAP POSITIVE X, 0, gl.RGBA, gl.RGBA,
texImage2D (gl.TEXTURE CUBE MAP NEGATIVE X, 0, gl.RGBA, gl.RGBA,
texImage2D (gl.TEXTURE CUBE MAP POSITIVE Y, 0, gl.RGBA, gl.RGBA,

Etc.

Exposing the cube map texture to the shader is done in the same way as a normal texture,
just with the cube map target:

gl
gl
gl

.activeTexture (gl.TEXTUREO) ;
.bindTexture (gl .TEXTURE CUBE_MAP, cubeTexture) ;
.uniformli (Program.uCubeSampler, O0);

However, the uniform type within the shader is specific to cube maps:

uniform samplerCube uCubeSampler;

When sampling from the cube map, you also use a cube map-specific function:

gl_

FragColor = textureCube (uCubeSampler, vCubeTextureCoord) ;

[2511



Textures

The 3D coordinates that you provide is normalized by the graphics hardware into a unit
vector, which specifies a direction from the center of the "cube". A ray is traced along that
vector and where it intersects the cube face is where the texture is sampled.

sampleCube(vec3(0.3, 0.1, -1.0));

Time for action - trying out cube maps

1. Open thefile ch7 Cubemap.html using your HTMLS internet browser. Once again,
this contains a simple textured cube example on top of which we'll build the cube
map example. We want to use the cube map to create a reflective-looking surface.

2. Creating the cube map is a bit more complicated than the textures we've loaded in
the past, so this time we'll use a function to simplify the asynchronous loading of
individual cube faces. It's called 1oadCubemapFace and has already been added to
the configure function. Below that function, add the following code which creates
and loads the cube map faces:

cubeTexture = gl.createTexture() ;

gl.bindTexture (gl.TEXTURE CUBE MAP, cubeTexture);

gl.texParameteri (gl.TEXTURE CUBE MAP, gl.TEXTURE MAG FILTER,
gl .LINEAR) ;

gl.texParameteri (gl.TEXTURE CUBE MAP, gl.TEXTURE MIN FILTER,
gl .LINEAR) ;

loadCubemapFace (gl, gl.TEXTURE CUBE MAP POSITIVE X, cubeTexture,
'textures/cubemap/positive x.png') ;
loadCubemapFace (gl, gl.TEXTURE CUBE MAP NEGATIVE X, cubeTexture,
'textures/cubemap/negative x.png') ;
loadCubemapFace (gl, gl.TEXTURE CUBE MAP POSITIVE Y, cubeTexture,
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'textures/cubemap/positive y.png') ;
loadCubemapFace (gl, gl.TEXTURE CUBE MAP NEGATIVE Y, cubeTexture,
'textures/cubemap/negative y.png') ;
loadCubemapFace (gl, gl.TEXTURE CUBE MAP POSITIVE Z, cubeTexture,
'textures/cubemap/positive z.png') ;
loadCubemapFace (gl, gl.TEXTURE CUBE MAP NEGATIVE Z, cubeTexture,
'textures/cubemap/negative z.png') ;

In the draw function, add the code to bind the cube map to the
appropriate sampler:

gl.activeTexture (gl.TEXTUREL) ;

gl.bindTexture (gl.TEXTURE CUBE MAP, cubeTexture);
gl.uniformli (Program.uCubeSampler, 1);

Turning to the shader now, first off we want to add a new varying to the vertex
and fragment shader:

varying vec3 vVertexNormal;

We'll be using the vertex normals instead of a dedicated texture coordinate to do
the cube map sampling, which will give us the mirror effect that we're looking for.
Unfortunately, the actual normals of each face on the cube point straight out. If we
were to use them, we would only get a single color per face from the cube map. In
this case, we can "cheat" and use the vertex position as the normal instead. (For
most models, using the normals would be appropriate).

vVertexNormal = (uNMatrix * vec4 (-aVertexPosition, 1.0)) .xyz;

In the fragment shader, we need to add the new sampler uniform:

uniform samplerCube uCubeSampler;

And then in the fragment shader's main function, add the code to actually sample
the cubemap and blend it with the base texture:

gl FragColor = texture2D (uSampler, vTextureCoord) *
textureCube (uCubeSampler, vVertexNormal) ;
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8. We should now be able to reload the file in a browser and see the scene shown
in the next screenshot:

WebGL Beginner's Guide - Chapter 7
Cubemap [plm;.m]

View Code Controls

9. The completed example is available in ch7 Cubemap Finished.html.

What just happened?

As you rotate the cube, you should notice that the scene portrayed in the cube map does
not rotate along with it, which creates a "mirror" effect in the cube faces. This is due to
multiplication of the normals by the normal matrix when assigning the vvertexNormal
varying, which puts the normals in world space.

Using cube maps for reflective surfaces like this is a very common technique, but not the
only use for cube maps. Other common uses are for skyboxes or advanced lighting models.

Have a go hero - shiny logo

In this example, we've created a completely reflective "mirrored" cube, but what if the only
part of the cube we wanted to be reflective was the logo? How could we constrain the cube
map to only display within the red portion of the texture?
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In this chapter we learned how to use textures to add a new level of detail to our scenes.
We covered how to create and manage texture objects, and use HTML images as textures.
We examined the various filter modes and how they affect the texture appearance and
usage, as well as the available texture wrapping modes and how they alter the way texture
coordinates are interpreted. We learned how to use multiple textures in a single draw call,
and how to combine them in a shader. Finally, we learned how to create and render cube
maps, and saw how they can be used to simulate reflective surfaces.

Coming up in the next chapter, we'll look at selecting and interacting with objects in the
WebGL scene with your mouse, otherwise known as picking.
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Picking refers to the ability of selecting objects in a 3D scene by pointing at
them. The most common device used for picking is the mouse. However, picking
can also be performed using other human computer interfaces such as tactile
screens and haptic devices. In this chapter we will see how picking can be
implemented in WebGL.

This chapter talks about:

Selecting objects in a WebGL scene using the mouse
Creating and using offscreen framebuffers
What renderbuffers are and how they are used by framebuffers

Reading pixels from framebuffers

* 6 6 o o

Using color labels to perform object selection based on color

Virtually any 3D computer graphics application needs to provide mechanisms for the user to
interact with the scene being displayed on the screen. For instance, you are writing a game
you want to point at your target and perform an action upon it. Similarly, if you are writing a

CAD system, you want to be able to select an object in your scene to modify its properties.
In this chapter, we will see the basis of implementing these kinds of interactions in WebGL.



Picking

We could select objects by casting a ray (vector) from the camera position (also known as
eye position) into the scene and calculate what objects lie along the ray path. This is known
as ray casting and it involves detecting intersections between the ray and object surfaces in
the scene. However, because of its complexity it is beyond the scope of this beginner's guide.
Instead, we will use picking based on object colors. This method is easier to implement and it
is a good starting point to help you understand how picking works.

The basic idea is to assign a different color to every object in the scene and render the scene
to an offscreen framebuffer. Then, when the user clicks on the scene, we go to the offscreen
framebuffer and read the color for the correspondent click coordinates. As we assigned
beforehand the object colors in the offscreen buffer, we can identify the object that has
been selected and perform an action upon it. The following figure depicts this idea:

Picking Algorithm

Original Scene

1. Set up off-screen Framebuffer

2. Assign one color per object in the Scene

Offscreen Rendering

3. Render to off-screen Framebuffer

4. Click on the canvas

5. Read pixels from off-screen Framebufer

6. Look up for hits

7. Process hits

Let's break it down into the steps that we need to take.
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As shown in Chapter 2, Rendering Geometry, the framebuffer is the final rendering
destination in WebGL. When you visualize a scene on your screen, you are looking
at the framebuffer contents. Assuming that gl is our WebGL context, every call to
gl.drawArrays, gl.drawElements, and gl.clear will change the contents
of the framebuffer.

Instead of rendering to the default framebuffer, we can also render our scene offscreen. This
will be the first step for implementing picking. To do so, we need to set up a new framebuffer
and tell WebGL that we want to use it instead of the default one. Let's see how to do that.

To set up a framebuffer, we need to be able to create storage for at least two things:
colors and depth information. We need to be able to store the color for every fragment
that is rendered in the framebuffer so we can create an image; in contrast, we need depth
information to make sure that we have a scene where overlapping objects look consistent.
If we did not have depth information, then we would not be able to tell, in the case of two
overlapping objects, which object is in front and which one is at the back.

To store colors we will use a WebGL texture, and to store depth information we will
use a renderbuffer.

The code to create a texture is pretty straightforward after reading Chapter 7, Textures.
If you have not read it, you can go back there and review that chapter.

var canvas = document.getElementById('canvas-element-id') ;
var width = canvas.width;

var height = canvas.height;

var texture = gl.createTexture() ;

gl.bindTexture (gl.TEXTURE 2D, texture);

gl.texImage2D (gl.TEXTURE 2D, 0, gl.RGBA, width, height, 0, gl.RGBA,
gl .UNSIGNED BYTE, null) ;

The only difference here is that we do not have an image to bind to the texture so when
we call g1.texImage2D, the last argument is null. This is ok, as we are just allocating the
space to store colors for the offscreen framebuffer.

Also, please notice that the width and height of the texture are set to the canvas size.
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Renderbuffers are used to provide storage for the individual buffers used in a framebuffer.
The depth buffer (z-buffer) is an example of a renderbuffer.lt is always attached to the screen
framebuffer which is the default rendering destination in WebGL.

The code to create a renderbuffer looks like the following code:

var renderbuffer = gl.createRenderbuffer() ;
gl.bindRenderbuffer (gl .RENDERBUFFER, renderbuffer);
gl.renderbufferStorage (gl .RENDERBUFFER, gl.DEPTH COMPONENT16, width,
height) ;

The first line of code creates the renderbuffer. Similar to other WebGL buffers, the
renderbuffer needs to be bound before we can operate on it. The third line of code
determines the storage size of the renderbuffer.

Please notice that the size of the storage is the same as with the texture. This way we make
sure that for every fragment (pixel) in the framebuffer, we can have a color (stored in the
texture) and a depth value (stored in the renderbuffer).

We need to create a framebuffer and attach the texture and the renderbuffer that
we created in the two previous steps to it. Let's see how this works in code.

First, we create a new framebuffer using a line of code like this:

var framebuffer = gl.createFramebuffer() ;

Similar to the VBO manipulation, we will tell WebGL that we are going to operate
on this framebuffer by making it the currently bound framebuffer. We do so with
the following instruction:

gl.bindFramebuffer (gl.FRAMEBUFFER, framebuffer);
With the framebuffer bound, the texture is attached by calling the following method:

gl.framebufferTexture2D (gl.FRAMEBUFFER, gl.COLOR_ATTACHMENTO,
gl .TEXTURE 2D, texture, 0);

Then, the renderbuffer is attached to the bound framebuffer using:

gl.framebufferRenderbuffer (gl.FRAMEBUFFER, gl.DEPTH ATTACHMENT,
gl .RENDERBUFFER, renderbuffer);
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Finally, we do a bit of cleaning up as usual:

gl.bindTexture (gl.TEXTURE 2D, null);
gl.bindRenderbuffer (gl .RENDERBUFFER, null) ;
gl.bindFramebuffer (gl.FRAMEBUFFER, null) ;

When the previously created framebuffer is unbound, the WebGL state machine goes back
to rendering into the screen framebuffer.

Assigning one color per ohject in the scene

We will pick an object based on its color. If the object has shiny reflections or shadows,
then the color throughout it will not be uniform. Therefore, to pick an object based on its
color we need to make sure that the color is constant per object and that each object has
a different color.

We achieve constant coloring by telling the fragment shader to use only the material diffuse
property to set the ESSL g1 _FragColor variable. Here we are assuming that each object
has a unique diffuse property.

When there are objects sharing the same diffuse color, then we need to create a new ESSL
uniform to store the picking color and make it unique for every object that is rendered into
the offscreen framebuffer. This way, the objects will look the same when they are rendered
on screen but every time we render them into the offscreen framebuffer, their colors will be
unique. This is something that we will do later on in this chapter.

For now, let's assume that the objects in our scene have unique diffuse colors as shown in
the following diagram:

Off-screen framebuffer: object labelling with colors

A unigue color is used to identify every ocbject.

Let's see how to render the scene offscreen using the framebuffer that we just set up.
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In order to perform object selection using the offscreen framebuffer, this one has to be
synchronized with the onscreen default framebuffer every time that this last one receives an
update. If the onscreen framebuffer and the offscreen framebuffer were not synchronized,
then we could be missing addition or deletion of objects, or updates in the camera position
between buffers. As a result of it there would not be a correspondence.

A lack of correspondence will hinder us from reading the picking colors from the offscreen
framebuffer and use them to identify the objects in the scene. We can also refer to picking
colors as object labels.

To implement this synchronicity, we will create the render function. This function calls
the draw function twice. First when the offscreen buffer is bound and second time when
onscreen default framebuffer is bound. The code looks like this:

function render () {
//off-screen rendering
gl.bindFramebuffer (gl.FRAMEBUFFER, framebuffer);
gl.uniformli (Program.uOffscreen, true);
draw () ;

//on-screen rendering

gl.bindFramebuffer (gl.FRAMEBUFFER, null) ;
gl.uniformli (Program.uOffscreen, false);
draw () ;

}

We tell the ESSL program to use only diffuse colors when rendering into the offscreen
framebuffer using the uOf fscreen uniform. The fragment shader looks like the
following code:

void main(void)
if (uOffscreen) {
gl FragColor = uMaterialDiffuse;

return;
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The following diagram shows the behavior of the render function:

Rendering Cycle (render function)

Off-screen framebuffer

Constant colors are used.

Lights are disabled.

The material diffuse property can be used

as long as it is unique for every object in the
scene, Otherwise, a unique color/label needs to
be assigned to each object.

On-screen framebuffer (default)

Light and material properties are enabled
(specular, diffuse, specular)

Textures are enabled.

Consequently, every time that there is a scene update the render function should be called
instead of calling the draw function.

We change this in the runWebGLApp function:

var app = null;

function runWebGLApp () {

}

app = new WebGLApp ("canvas-element-id") ;
app.configureGLHook = configure;

app . loadSceneHook = load;
app .drawSceneHook
app.run() ;

render;

In this way, the scene will be periodically updated using the render function instead of the
original draw function.

We also need to update the function hook that the camera uses to render the scene

whenever we interact with it. Originally, this hook is set to the draw function. If we do
not change it, it points to the render function. We will have to wait until WebGLApp .

drawSceneHook is invoked again to synchronize the offscreen and the onscreen
framebuffers (every 500 ms by default as you can check in WebGLApp . js). During

this time, picking will not work.
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We change the camera render hook in the configure function:

function configure({

camera = new Camera (CAMERA ORBITING TYPE) ;
camera.goHome ( [0,0,40]) ;

camera.setFocus ([0.0,0.0,0.0]1) ;
camera.setElevation(-40) ;
camera.setAzimuth (-30) ;
camera.hookRenderer = render;

The next step is to capture the mouse coordinates when the user clicks on an object in
the scene and reads the color value for these coordinates from the offscreen framebuffer.

For that, we use the standard onmouseup event from the canvas element in our webpage:

var canvas = document.getElementById('my-canvas-id') ;

canvas.onmouseup = function (ev) {
//capture coordinates from the ev event

}

There is an extra bit of work to do here given that the ev event does not return the mouse
coordinates with respect to the canvas but with respect to the upper-left corner of the
browser window (ev.clientX and ev.clientY). Then, we need to bubble up through the
DOM getting the location of the elements that are in the DOM hierarchy to know the total
offset that we have.

We do this with a code fragment like this inside the canvas . onmouseup function:

var x, y, top = 0, left = 0, obj = canvas;

while (obj&& && obj.tagName !== 'BODY')
top += obj.offsetTop;
left += obj.offsetlLeft;
obj = obj.offsetParent;
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The following diagram shows how we are going to use the offset calculation to obtain the
clicked canvas coordinates:

Calculating clicking coordinates in canvas space (example)
|
|
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x = ev.clientX - (a + b + c)
y = canvasHeight - (ev.clientY - (d + e + f))

Also, we take into account any page offset if present. The page offset is the result of scrolling
and affects the calculation of the coordinates. We want to obtain the same coordinates for
the canvas every time regardless of any possible scrolling. For that we add the following two
lines of code just before calculating the clicked canvas coordinates:

left += window.pageXOffset;
top -= window.pageYOffset;

Finally, we calculate the canvas coordinates:

x = ev.clientX - left;
Y

c_height - (ev.clientY - top);

Remember that unlike the browser window, the canvas coordinates (and also the
framebuffer coordinates for this purpose) start in the lower-left corner as explained
in the previous diagram.
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c_height is a global variable that we are maintaining in the file
codeview. js, it refers to the canvas height and it is updated along with
c_width whenever we resize the browser's window. If you are developing
> your own application, codeview. js might not be available or applicable
%@i‘ and then you might want to replace ¢_height in this snippet of code
’ by something like c1lientHeight which is a standard canvas property.
Also, notice that resizing the browser window will not resize your canvas.
The exercises in this book do, because we have implemented this inside
codeview.js.

We can go now to the offscreen buffer and read the color from the coordinates that we
clicked on the canvas.

Clicking on the canvas selects the same coordinates in the off-screen framebuffer

(0, 0)
Canvas X (0,0 Off-screen framebuffer X

Canvas and framebuffer coordinates have their origin on the lower-left corner

WebGL allows us to read back from a framebuffer using the readPixels function. As usual,
having g1 as the WebGL context variable:
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Function Description

gl.readPixels (x, y, width, x and y: Starting coordinates.

height, format, type, pixels)
width, height: The extent of pixels to read

from the framebuffer. In our example we are just
reading one pixel (where the user clicks) so this
willbe 1, 1.

format: At the time of writing this book the only
supported format is g1 . RGBA.

type: At the time of writing this book the only
supported type is g1 . UNSIGNED BYTE.

pixels: Itis atyped array that will contain
the results of querying the framebuffer. It
needs to have sufficient space to store the
results depending on the extent of the query
(x,y,width, height).

According to the WebGL specification at the
time of writing this book it needs to be of type
Uint8Array.

Remember that WebGL works as a state machine and many operations only make sense if
this machine is in a valid state. In this case, we need to make sure that the framebuffer from
which we want to read, the offscreen framebuffer, is the current one. To do that, we bind it
using bindFramebuf fer. Putting everything together, the code looks like this:

//read one pixel
var readout = new Uint8Array(l * 1 * 4);

gl.bindFramebuffer (gl.FRAMEBUFFER, framebuffer);
gl.readPixels (coords.x,coords.y,1,1,91.RGBA,gl.UNSIGNED BYTE, readout) ;
gl.bindFramebuffer (gl.FRAMEBUFFER, null) ;

_ Here the size of the readout array is 1*1*4. This means it has one pixel of
% width times one pixel height times four channels, as the format is RGBA. You
S do not need to specify the size this way; we just did it so that it was clear why
the size is 4 when we are just retrieving one pixel.
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We are going to check now whether or not the color that was obtained from the off-screen
framebuffer corresponds to any of the objects in the scene. Remember here that we are
using colors as object labels. If the color matches one of the objects then we call it a hit.

If it does not we call it a miss.

When looking for hits, we compare each object's diffuse color with the label obtained from
the offscreen framebuffer. There is a consideration to make here: each color channel of the
label isin the [0,255] range while the object diffuse colors are in the [0, 1] range. So, we
need to consider this before we can actually check for any possible hits. We do this in the
compare function:

function compare (readout, color){

return (Math.abs (Math.round(color[0]*255) - readout[0]) <= 1 &&
Math.abs (Math.round (color[1] *255) - readout[1l]) <= 1 &&
Math.abs (Math.round (color[2] *255) - readout[2]) <= 1);

}

Here we are scaling the diffuse property to the [0, 255] range and then we are comparing
each channel individually. Note that we do not need to compare the alpha channel. If we
had the two objects with the same color but different alpha channel, we would use the
alpha channel in the comparison as well but in our example we do not have that scenario,
therefore the comparison of the alpha channel is not relevant.

Also, note that the comparison is not precise because of the fact that we are dealing with
decimal values in the [0, 1] range. Therefore, we assume that after rescaling colors in this
range and subtracting the readout (object label) if the difference is less than one for all the
channels then we have a hit. The less then or equal to one comparison is a fudge factor.

Now, we just need to go through the object list in the Scene object and check if we have a
miss or a hit. We are going to use two auxiliary variables here: found, which will be true in
case of having a hit and pickedObject to retrieve the object that was hit.

var pickedObject = null, ob = null;
for(var i = 0, max = Scene.objects.length; i < max; i+=l){
ob = Scene.objects[i];
if (compare (readout, ob.diffuse)){
pickedObject = ob;
break;

}

The previous snippet of code will tell us if we have had a hit or a miss, and also what object
we hit.
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Processing a hit is a very wide concept. It basically depends on the type of application that
you are building. For instance if your application is a CAD system, you might want to retrieve
on screen the properties of the object that you picked to edit them. You might also want to
move the object or change its dimensions. In contrast, if you are developing a game, you
could have selected the next target that your main character has to fight. We will leave this
part of the code for you to decide. Nevertheless, we have included a simple example in the
next Time for action section where you can drag-and-drop objects, which is one of the most
common interactions you could have with your scene.

The picking method described in this chapter has been implemented in our architecture:

Application Architecture: Picking

WebGLApp.js

Globals.js i
{ configure confiquraGLHook
ne.|

loadScensHook

JavaScript Code

scripts

run ()

function render () {

Camera.js

= . //off-screen rendering
gl.bindFramebuffer (gl.FRAMEBUFFER, picker.framebuffer);

: gl.uniformli (Program.uCffscreen, true);
Picker.js draw(};

//on-screen rendering

gl.bindFramebuffer (gl.FRAMEBUFFER, null);
gl.uniformli (Program.u0ffscreen, false);
draw();

}
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We have replaced the draw function with the render function. This function is the same
that we previously described in the section Rendering to an offscreen framebuffer.

There is a new class: Picker. The source code for this class can be obtained from /js/
webgl/Picker. js. This class encapsulates the offscreen framebuffer and encapsulates
the code necessary to create it, configure it, and read from it.

We also updated the class CameraInteractor to notify the picker whenever the user clicks
on the canvas. The following diagram explains how the picking algorithm is implemented
using the Render function and the classes Picker and CameraInteractor:

Implementation of the Picking Algorithm Step implemented fn:

1. Set Up off-screen framebuffer { Picker.configure J

Step left to the programmer ]
3. Render to off-screen framebuffer [L Render ]
Cameralnteractor.onmousedown ‘

5. Read pixels from off-screen framebufer

Picker.find

6. Look up for hits

v

+ 1

7. Process hits Picker.stop

& The source code for Picker and CameraInteractor can be found
e in the code accompanying this chapter under /js/webgl.

Now let's see picking in action!
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Time for action — picking

1. Openthefile ch8 Picking.html using your HTMLS5 Internet browser. You will see
a screen similar to this:

WebGL Beginner's Guide - Chapter 8 s
Please select an object and drag it. (Alt key drags on the camera axis) [.-u;-‘m]

Here you have a set of objects, each one of which has a unique diffuse color
property. As in the previous exercises you can rotate the camera around the scene.
Please notice that the cube has a texture and that the flat disk is translucent. As you
may expect, the code in the draw function handles textures coordinates and also
transparencies, so it looks a bit more complex than before (you can check it out in
the source code). This is a more realistic draw function. In a real application, you will
have to handle these variables.

2. Click on the sphere and drag it around the scene. Notice that the object becomes
translucent. Also, note that the displacement occurs along the axis of the camera.
To make this evident, please go to your web browser's console and type:

camera.setElevation (0) ;

You will see that the camera updates its position to an elevation of zero degrees
as shown in the following screenshot:

WebGL Beginner's Guide - Chapter 8
Please select an object and drag it. (Alt key drags on the camera axis) [VMM»G ]
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_ To access the console using:
% Firefox go to Tools | Web Developer | Web Console
s Safari go to Develop | Show Web Inspector

Chrome go to Tools | Javascript Console

3. Now when you click-and-drag objects in the scene from this perspective, you will
see that they change their position according to the camera axis. In this case the
up axis of the camera is aligned with the scene's y axis. If you move an object up
and down, you will see that they change their position in the y coordinate. If you
change the camera position (by clicking on the background and dragging the mouse
around) and then you pick and move a different object, you will see that this moves
according to the new camera axis.

Try different camera angles and see what happens.

4. Now let's see what the offscreen framebuffer looks like. Click on the Show Picking
Image button. Here we are instructing the fragment shader to use each of the object
diffuse properties to color the fragments. You can also rotate the scene and pick
objects in this mode. If you want to go back to the original shading method, click
again on Show Picking Image to deactivate it.

5. Toreset the scene, click on Reset Scene.

What just happened?

We have seen an example of picking in action. The source code uses the Picker object
that we previously described in the architectural update section. Let's examine it a bit closer.

The following diagram tells us what happens in the Picker object when the user clicks
the mouse on the canvas, drags it, and releases it:
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i

Picker seaches for hit

in picking
list?

User interaction with Picker and Picker Callbacks

[User clicks on Canvas [———> drags mouse [——>| releases mouse button ]

hitPropertyCallback

[ Picker finds hit )

Start Picking Mode

moveCallback

Is shift

pressed

Stays in picking
mode

End Picking Mode
processHitsCallback

Remove hit from picking list

removeHitCallback O] User
[] Picker
Add hit to picking list [ callback

addHitCallback

As you can see, every picker state has a callback function associated to it:

State

Callback

Picker searches for hit

User drags mouse in picking
mode

Remove hit from picking list

Add hit to picking list

End Picking Mode

hitPropertyCallback (object): This callback informs the
picker which object property we will use to make the comparison
with the color retrieved from the offscreen framebuffer.

moveCallback (hits, interactor, dx, dy):Whenthe
picking mode is activated (by having picked at least one object), this
callback allows us to move the objects in the picking list (hits).
This list is maintained internally by the Picker class.

addHitCallback (object) : If we click on an object and this
object is not in the picking list, the picker notifies the application by
triggering this callback.

removeHitCallback (object): If we click on an object and
this object is already in the picking list, the picker will remove it
from the list and then it will inform the application by triggering
this callback.

processHitsCallback (hits):if the user releases the
mouse button and the Shift key is not pressed when this happens,
then the picking mode finishes and the application is notified by
triggering this callback. If the Shift key is pressed then the picking
mode continues and the picker waits for a new click to continue
looking for hits.

[213]



Picking

Implementing unique ohject lahels

We previously mentioned that picking based on the diffuse property could be difficult if
two or more objects in the scene share the same diffuse color. If that were the case and you
selected one of them, how would you know which one is picked based on its color? In the
next Time for Action section, we will implement unique object labels. The objects will be
rendered in the offscreen framebuffer using these color labels instead of the diffuse colors.
The scene will still be rendered on screen using the non-unique diffuse colors.

Time for action — unique object labels

This section is divided in two parts. In the first part you will develop the code to generate a
random scene with cones and cylinders. Each object will be assigned a unique object label
that will be used for coloring the object in the offscreen renderbuffer. In the second part,
we will configure the picker to work with unique labels. Let's get started!

1. Creating a random scene: Open the ch8 Picking Scene Initial.html filein
your HTML5 browser. As you can see this is a scene that is only showing the floor
object. We are going to create a scene that contains multiple objects that can be
either balls or cylinders.

2. Openchs Picking Scene Initial.html in a source code editor.

We will write code so each object in the scene can have:
o A position assigned randomly
o Aunique object label color
o A non-unique diffuse color

o Ascale factor that will determine the size of the object

3. We have provided empty functions that you will implement in this section.

4. Let's start by writing the positionGenerator function. Scroll down to it
and add the following code:

function positionGenerator () {
var x = Math.floor (Math.random() *60
var z = Math.floor (Math.random() *60
var flagX = Math.floor (Math.random (
var flagZ = Math.floor (Math.random /(

1
1

*

)
)

*

)
)
) *10) ;
) *10) ;
if (flagX >= 5) {x=-x%;}

if (flagZ >= 5) {z=-z;}

return [x,0,z];
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Here we are using the Math . random function to generate the x and z coordinates
for an object in the scene. Since Math . random always returns a positive number,
we use the f1lagX and £1agZz variables to randomly distribute the objects on

the x-z plane (floor). Also, as we want all the objects to be on the x-z plane, the y
component is set to zero in the return statement.

Now let's write a unique object label generator function. Scroll to the empty
objectLabelGenerator function and add this code

var colorset = {};

function objectLabelGenerator(){
var color = [Math.random(), Math.random(),Math.random(),1.0];
var key = color[0] + ':' + color[l] + ':' + color[2];

if (key in colorset) {

return uniqueColorGenerator () ;
else {

colorset [key] = true;

return color;

}

Here we are creating a random color using the Math . random function. If the

key variable is already a property of the colorset object then we call the
objectLabelGenerator function recursively; otherwise, we make key a property
of colorset and then return the respective color. Notice how nicely the idea of
handling JavaScript objects as sets allows here to resolve possible key collisions.

Now write the diffuseColorGenerator function. We will use this function
to assign diffuse properties to the objects.
function diffuseColorGenerator (index) {

var ¢ = (index % 30 / 60) + 0.2;

return [c,c,c,1];

}

This function represents the case where we want to generate colors that are not
unique. The index parameter represents the index of the object in the Scene.
objects list to which we are assigning the diffuse color. In this function we are
creating a gray-level color as the r, g, and b components in the return statement
all have the same c value.
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The diffuseColorGenerator function will create collisions every 30 indices. The
remainder of the division of the index by 30 will create a loop in the sequence:

0 % 30 =0

1 %30-=1
29 % 30 = 29
30 % 30 =0
31 % 30 =

As this result is being divided by 60, the result will be a number inthe [0, 0.5]
range. Then we add 0. 2 to make sure that the minimum value that c hasis 0. 2.
This way the objects will not look too dark during the onscreen rendering

(they would be black if the calculated diffuse color were zero).

The last auxiliary function that we will write is the scaleGenerator function:

function scaleGenerator () {
var £ = Math.random()+0.3;
return [£, £, f];

}

This function will allow us to have objects of different sizes. 0.3 is added to control
the minimum scaling factor that any object will have in the scene.

Now let's load 100 objects to our scene. By the end of this section you will be able
to test picking on any of them!

Go to the 1oad function and edit it so it looks like this:

function load() {
Floor.build(80,5) ;
Floor.pcolor = [0.0,0.0,0.0,1.0];
Scene.addObject (Floor) ;

var positionValue,
scaleFactor,
objectLabel,
objectType,
diffuseColor;

for (var i = 0; i < 100; i++){
positionValue = positionGenerator() ;
objectLabel = objectLabelGenerator() ;
scaleFactor = scaleGenerator() ;
diffuseColor = diffuseColorGenerator (i) ;
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json',

json',

}

objectType = Math.floor (Math.random() *2) ;

switch (objectType) {

case 1: Scene.loadObject ('models/geometry/sphere.

'ball '+i,
{
position:positionValue,
scale:scaleFactor,
diffuse:diffuseColor,
pcolor:objectLabel
P

break;

case 0: Scene.loadObject ('models/geometry/cylinder.

'cylinder '+i,
position:positionvValue,
scale:scaleFactor,
diffuse:diffuseColor,

pcolor:objectLabel

I3

break;

Note here that the picking color is represented by the pcolor attribute. This
attribute is passed in a list of attributes to the 1oadoObject function from the

Scene object. Once the object is loaded (using the JSON/Ajax mechanism discussed
in Chapter 2, Rendering Geometry), 1oadObject uses this list of attributes and adds

them as object properties.

Using unique labels in the fragment shader: The shaders in this exercise have

already been set up for you. The pcolor property that corresponds to the unique

object label is mapped to the uPickingColor uniform and the uOffscreen
uniform determines if it is used or not in the fragment shader:

uniform vec4 uPickingColor;

//other uniforms and varyings

main (void) {

if (uOffscreen) {
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gl FragColor = uPickingColor;
return;

}

else {
//on-screen rendering

}

10. As mentioned before, we keep the offscreen and onscreen buffer in sync using the
render function which looks like this:

function render () {
//off-screen rendering
gl.bindFramebuffer (gl.FRAMEBUFFER, picker.framebuffer) ;
gl.uniformli (Program.uOffscreen, true);
draw () ;
//on-screen rendering
gl.uniformli (Program.uOffscreen, showPickingImage) ;
gl.bindFramebuffer (gl.FRAMEBUFFER, null) ;
draw () ;

11.Saveyourworkasch8_Picking_Scene_NoPicker.htmL

12. Open chs Picking Scene Final NoPicker.html inyour HTMLS Internet
browser. As you can see the scene is generated as expected.

13. click on Show Picking Image. What happens?

14. The scene is being rendered in the offscreen framebuffer and in the default
(onscreen) framebuffer. However, we have not configured the Picker object
callbacks yet.

15. Configuring the picker to work with unique object labels: Open ch8 Picking
Scene Final NoPicker.html inyour source code editor.

16. scroll down to the configure function. As you can see, the picker is already set up
for you:

picker = new Picker (canvas) ;
picker.hitPropertyCallback = hitProperty;
picker.addHitCallback = addHit;
picker.removeHitCallback = removeHit;
picker.processHitsCallback = processHits;
picker.moveCallback = movePickedObjects;
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17.

18.

19.

This code fragment maps functions in the web page to picker callback hooks. These
callbacks are invoked according to the picking state. If you need to review how this
works, please go back to the Picker Architecture section.

In this part of the section, we are going to implement these callbacks. Again, we
have provided empty functions that you will need to code.

Let's create the hitProperty function. Scroll down to the empty hitProperty
function and add this code:

function hitProperty (ob) {
return ob.pcolor;

}

Here we are telling the picker to use the pcolor property to make the comparison
with the color that will be read from the offscreen framebuffer. If these colors match
then we have a hit.

Now we are going to write the addHit and removeHit functions. We want to
create the effect where the diffuse color is changed to the picking color during
picking. For that we need an extra property to save temporarily the original diffuse
color so we can restore it later :

function addHit (ob) {

ob.previous = ob.diffuse.slice(0);
ob.diffuse = ob.pcolor;
render () ;

}

The addHit function stores the current diffuse color in an auxiliary property named
previous. Then it changes the diffuse color to pcolor, the object picking label.
function removeHit (ob) {

ob.diffuse = ob.previous.slice(0);
render () ;

}

The removeHit function restores the diffuse color. In both functions we are calling
render which we will implement later.

Now let's write the code for processHits:

function processHits(hits){
var ob;
for(var i = 0; i< hits.length; i+=1){
ob = hits[i];
ob.diffuse = ob.previous;

}

render () ;
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Remember that processHits is called upon exiting picking mode. This function
will receive one parameter: the hits that the picker detected. Each element of
the hits list is an object in the scene. In this case, we want to give back the hits
their diffuse color. For that we use the previous property that we set in the
addHit function.

20. The last picker callback that we need to implement is the
movePickedObjects function:

function movePickedObjects (hits, interactor,dx,dy) {
if (hits == 0) return;
var camera = interactor.camera;
var depth = interactor.alt;
var factor = Math.max (Math.max (
camera.position[0],
camera.position([1]),
camera.position[2])/1000;
var scaleX, scaleY;
for (var i = 0, max = hits.length; i < max; i+=1)
scaleX = vec3.create();
scaleY = vec3.create();
if (depth) {
//moving along the camera normal vector
vecl3.scale(camera.normal, dy * factor, scaley);
}
elsef
//moving along the plane defined by the up and right
//camera vectors
vecl3.scale(camera.up, -dy * factor, scaleY);
vecl3.scale(camera.right, dx * factor, scaleX);
}
vec3.add (hits[i] .position, scaleY);
vec3.add (hits[i] .position, scaleX);

}

render () ;

}

This function allows us to move the objects in the hits list interactively.
The parameters that this callback function receives are:

o hits: The list of objects that have been picked

o interactor: The camera interactor object that is set up in the
configure function
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o dx: Displacement in the horizontal direction obtained from the mouse
when it is dragged on the canvas

o dy: Displacement in the vertical direction obtained from the mouse
when it is dragged on the canvas.

Let's analyze the code. First, if there are no hits the function returns immediately.

if (hits == 0) return;

Otherwise, we obtain a reference to the camera and we determine if the user
is pressing the Alt key.

var camera = interactor.camera;
var depth = interactor.alt;

We calculate a weighing factor that we will use later (fudge factor):
factor = Math.max (Math.max (
camera.position[0],
camera.position[1l]),
camera.position([2])/1000;

Next we create a loop to go through the hits list so we can update each
object position:
Var scaleX, scaleY;
for (var i = 0, max = hits.length; i < max; i+:1){
scaleX = vec3.create() ;
scaleY = vec3.create() ;

The scaleX and scaleY variables are initialized for every hit.

As we have seen in previous exercises, the Alt key is being used to perform dollying
(move the camera along its normal). In this case we want to move the objects that
are in the picking list along the camera normal direction when the user is pressing

the Alt key to provide a consistent user experience.

To move the hits along the camera normal we use the dy (up-down) displacement
as follows:

if (depth) {
vecl3.scale(camera.normal, dy * factor, scaley);

}

This creates a scaled version of camera.normal and stores it into the scaley
variable. Notice that vec3.scale is an operation available in the glMatrix library.
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If the user is not pressing the Alt key then we use dx (left-right) and dy (up-down) to
move the hits in the camera plane. Here we use the camera up and right vectors
like this to calculate the scaleX and scaleY parameters:

else {
vec3.scale(camera.right, dx * factor, scaleX);
vec3.scale (camera.up, -dy * factor, scaleY);

}

Finally we update the position of the hit:

vec3.add (hits[i] .position, scaleY);
vec3.add (hits[i] .position, scaleX);

}

After calculating the new position for all hits we call render:

render () ;

}

21. Testing the scene: Save the page as ch8_Picking Scene Final.html and open
it using your HTML5 web browser.

22. You will see a scene as shown in the following screenshot:

WebGL Beginner's Guide - Chapter 8 [ —_ ]
Basic Picking bty

View | Code Controls

Show Picking Image  Reset Scene

23. Click on Reset Scene several times and verify that you get a new scene every time.

24. In this scene, all the objects have very similar colors. However, each one has
a unique picking color. To verify that click on the Show Picking Image button.
You will see on screen what it is being rendered in the offscreen buffer:
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WebGL Beginner's Guide - Chapter 8 [ " ]

Please select an object and drag it. (Alt key drags on the camera axis)

25. Now let's validate the changes that we made to the picker callbacks. Let's start by
picking one object. As you see, the object diffuse color becomes its picking color
(this was the change you implemented in the addsit function):

WebGL Beginner's Guide - Chapter 8 [ ) ;]
1 object has been selected A

View Code  Control

26. When the mouse is released, the object goes back to the original color! This is the
change that was implemented in the processHits function.

27. While the mouse button is held down over an object, you can drag it around.
While this is done, the movePickedObjects is being invoked.
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28. If the Shift key is pressed while objects are being selected, you will be telling the
picker not to exit picking mode. This way you can select and move more than one
object at once:

WebGL Beginner's Guide - Chapter 8 [ ]
Mllb;‘ﬂ

16 objects have been selected

View  Code  Conbrels

Show Picking Image | | Reset Soeme

29. You will exit picking mode if you select an object and the Shift key is no longer
pressed or if your next click does not produce any hits (in other words: clicking
anywhere else).

_ If you have any problems with the exercise or you missed one
% of the steps, we have included the complete exercise in the files
/s ch8 Picking Scene NoPicker.html and ch8 Picking

Scene Final.html.

What just happened?

We have done the following:

¢ Created the property picking color. This property is unique for every object
in the scene and allows us to implement picking based on it.

¢ Modified the fragment shader to use the picking color property by including
a new uniform: uPickingColor and mapping this uniform to the pcolor
object property.

¢ Learned about the different picking states. We have also learned how to modify
the Picker callbacks to perform specific application logic such as removing picked
objects from the scene.

12841




Chapter 8

Rewrite the processHits function to remove the balls in the hit list from the scene.
If the user has removed all the balls from the scene then display a message telling the
elapsed time accomplishing this task.

Hint 1: Use Scene.removeObject (ob.alias) in the processHits functionif alias
starts with ball .

Hint 2: Once the hits are removed from the scene, go again through the Scene.objects list
and make sure that there are no objects whose alias starts with ball .

Hint 3: Use a JavaScript timer to measure and display the elapsed time until task completion.

In this chapter, we have learned how to implement color-based picking in WebGL. Picking
based on a diffuse color is a bad idea because there could be scenarios where several objects
have the same diffuse color. It is better to assign a new color property that is unique for
every object to perform picking. We called this property picking color/object label.

Through the discussion of the picking implementation, we learned that WebGL provides
mechanisms to create offscreen framebuffers and that what we see on screen when we
render a scene corresponds to the default framebuffer contents.

We also studied the difference between a framebuffer and a renderbuffer. We saw that a
renderbuffer is a special buffer that is attached to a framebuffer. Renderbuffers are used
to store information that does not have a texture representation such as depth values.

In contrast, textures can be used to store colors.

We saw too that a framebuffer needs at least one texture to store colors and a renderbuffer
to store depth information.

We discussed how to convert from clicking coordinates in the page to canvas coordinates.
We said also that the framebuffer coordinates and the canvas coordinates originate in the
lower-left corner with a (0,0) origin.

The architecture of the picker implementation was discussed. We saw that picking can have
different states and that each state can be associated to a callback function. Picker callbacks
allow coding-specific logic application that will determine what we see in our scene when
picking is in progress.

In the next chapter, we will develop a car showroom application. We will see how to import
car models from Blender into a WebGL application.
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Putting It All Together

In this chapter, we will apply the concepts and use the infrastructure code that
we have previously developed to build a Virtual Car Showroom. During the
development of this demo application, we will use models, lights, cameras,
animation, colors, and textures. We will also see how we can integrate these
elements with a simple yet powerful graphical user interface.

This chapter talks about:

The architecture that we have developed throughout the book
Creating a virtual car showroom application using our architecture
Importing car models from Blender into a WebGL scene

Setting up several light sources

Creating robust shaders to handle multiple materials

The OBJ and MTL file formats

® 6 6 6 6 o o

Programming the camera to fly through the scene

Creating a WehGL application

At this point, we have covered the basic topics that you need to be familiar with in order to
create a WebGL application. These topics have been implemented in the infrastructure code
that we have iteratively built up throughout the book. Let's see what we have learned so far.

In Chapter 3, Lights!, we introduced WebGL and learned how to enable it in our browser.
We also learned that WebGL behaves as a state machine and that we can query the different
variables that determine the current state using g1 . getParameter.
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After that, we studied in Chapter 2, Rendering Geometry, that the objects of a WebGL scene
are defined by vertices. We said that usually we use indices to label those vertices so we can
quickly tell WebGL how to 'connect the dots' to render the object. We studied the functions
that manipulate buffers and the two main functions to render geometry drawArrays
(noindices) and drawElements (with indices). We also learned about the JSON format to
represent geometry and how we can download models from a web server using AJAX.

In Chapter 3, Lights!, we studied about lights. We learned about normal vectors and the
physics of light reflection. We saw how to implement different lighting models using shaders
in ESSL.

We learned in Chapter 4, Camera, that WebGL does not have cameras and that we need to
define our own cameras. We studied the Camera matrix and we showed that the Camera
matrix is the inverse of the Model-View matrix. In other words, rotation, translation, and
scaling in the world space produce the inverse operations in camera space.

The basics of animation were covered in Chapter 5, Action. We discussed the matrix stack
with its push and pop operations to represent local object transformations. We also analyzed
how to set up an animation cycle that is independent from the rendering cycle. We also
studied different types of interpolation and saw examples of how interpolation is used to
create animations.

In Chapter 6, Colors, Depth Testing, and Alpha Blending, we discussed a bit deeper about
color representation and how we can use colors in objects, in lights, and in the scene.
We also studied blending and the use of transparencies.

Chapter 7, Textures, covered textures and we saw an implementation for picking in Chapter
8, Picking.

In this chapter, we will use our knowledge to create a simple application. Fortunately,
we are going to use all the infrastructure code that we have developed so far. Let's review it.

Architectural review

The following diagram presents the architecture that has been built throughout the book:
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Globals. js: Defines the global variables g1 (WebGL context), prg (ESSL program),
and the canvas width (c_width) and height (c_height).

WebGLApp.js
Cra

Program.js
SCene.js
s.js

Picker.js

scripts

Vertex Fragment
Shader Shader

JavaScript
Code

—

~ configure

load

render

configureGLHook

drawSceneHook

Utils.js: Contains auxiliary functions such as getGLContext which tries to create
a WebGL context for a given HTML5 canvas.

WebGLApp . js: It provides three function hooks, namely: configureGLHoOK,

loadSceneHook, and drawSceneHook that define the life cycle of a WebGL application.

As the previous diagram shows these hooks are mapped to JavaScript functions in our

configure: Here we create cameras, lights, and instantiate the Program.object.

load: Here we request objects from the web server by calling Scene.loadObject.
We can also add locally generated geometry (such as the Floor) by calling Scene.

web page:
.
.
addObject.
.

render (or draw): This is the function that is called every time when the rendering
timer goes off. Here we will retrieve the objects from the Scene, one by one, and we
will render them paying attention to their location (applying local transforms using

the matrix stack), and their properties (passing the respective uniforms to

the Program).
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Program.js: Is composed of the functions that handle programs, shaders, and the mapping
between JavaScript variables and ESSL uniforms.

Scene. js: Contains a list of objects to be rendered by WebGL.

SceneTransform. js: Contains the matrices discussed in the book: The Model-View
matrix, the Camera matrix, the Perspective matrix, and the Normal matrix. It implements
the matrix stack with the operations push and pop.

Floor.js: Auxiliary object that when rendered appears like a rectangular mesh providing
the floor reference for the scene.

Axis.js: Auxiliary object that represents the center of the scene.
Lights. js: Simplifies the creation and managing of lights in the scene.

Camera.js: Contains a camera representation. We have developed two types of camera:
orbiting and tracking.

Cameralnteractor.js: Listens for mouse and keyboard events on the HTML5 canvas that
it is being used. It interprets these events and then transforms them into camera actions.

Picker.js: Provides color-based object picking.

Let's see how we can put everything together to create a Virtual Car Showroom.

Using our WebGL skills and the infrastructure code that we have developed, we will
create an application that allows visualizing different 3D car models. The final result will
look like this:

WebGL Beginner's Guide - Chapter 9 - Virtual Car Showroom [ ]

Customize your Car

oo o4 [%]

0.0 0.4

Zoom: Ait » Deag W Moor Visitie
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First of all, we need to define what the graphical user interface (GUI) is going to look like.
Then, we will be adding WebGL support by creating a canvas element and obtaining the
correspondent WebGL context. Simultaneously, we need to define and implement the
Vertex Shader and Fragment Shader using ESSL. After that, we need to implement the three
functions that constitute the lifecycle of our application: configure, 1load, and render.

First, let's consider some particularities of our virtual showroom application.

Complexity of the models

A real-world application is different from a proof of concept demo in that the models that
we will be loading are much more detailed than simple spheres, cones, and other geometric
figures. Usually, models have lots of vertices conforming very complicated configurations
that give the level of detail and realism that people would expect. Also, in many cases, these
models are accompanied by one or more textures. Creating the geometry and the texture
mapping by hand in JSON files is nothing less than a daunting task.

Hopefully, we can use 3D design software to create our own models and then import them
into a WebGL scene. For the Virtual Car Showroom we will use models created with Blender.

Blender is an open-source 3D computer graphics software that allows you to create
animations, games, and other interactive applications. Blender provides numerous features
to create complex models. In this chapter, we will import car models created with Blender
into a WebGL scene. To do so, we will export them to an intermediary file format called OBJ
and then we will parse OBIJ files into JSON files.

Because we will be using complex models, such as cars, we will see that there is a need to
develop shaders that can render the different materials that our models are made of. This
is not a big deal for us since the shaders that we previously developed can handle diffuse,
specular, and ambient components for materials. In Blender, we will select the option to
export materials when generating the OBJ files. When we do so, Blender will generate a
second file known as the Material Template Library (MTL). Also, our shaders will use
Phong shading, Phong lighting, and will support multiple lights.
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Network delays and bandwidth consumption

Due to the nature of WebGL, we will need to download the geometry and the textures from
a web server. Depending on the quality of the network connection and the amount of data
that needs to be transferred this can take a while. There are several strategies that you
could investigate, such as geometry compression. Another alternative is background data
downloading (using AJAX for example) while the application is idle or the user is busy and
not waiting for something to download.

With these considerations in mind let's get started.

We will define a very simple layout for our application. The title will go on top, and then we
have two div tags. The div on the left will contain the instructions and the tools we can use
on the scene. The canvas will be placed inside the div on the right, shown as follows:

Show Room

Instructions
canvas goes here

The code to achieve this layout looks like this (css/cars.css):

#header

{
height: 50px;
background-color: #ccc;
margin-bottom: 10px;

#nav

{

float: left;

width: 28%;

height: 80%;
background-color: #ccc;
margin-bottom: 1px;

#content

{

float: right;
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margin-left: 1%;

width: 70%;

height: 80%;
background-color: #ccc;
margin-bottom: 1lpx;

}
And we can use it like this (taken from ch9 GUI.html):

<body>
<div id="header">
<hl>Show Room</hl>
</div>

<div id="nav">
<b>Instructions</b>

</div>

<div id="content">
<h2>canvas goes here</h2>
</divs>

</body>

Please make sure that you include cars.css in your page. As you can see in ch9 GUI.
html, cars.css has been included in the header section:

<link href='css/cars.css' type='text/css' rel='stylesheet' />
Now let's add the canvas. Replace:

<h2>canvas goes here</h2>
With:

<canvas id='the-canvas'></canvas>

inside the content div.

Adding WehGL support

Now, please check the source code for ch9 Scaffolding.html. We have taken ch9 GUTI.
html which defines the basic layout and we have added the following:

¢ References to the elements defined in our architecture: Globals.js, Utils.js,
Program.js, and so on.

¢ Areference to glMatrix.js, the matrix manipulation library that we use in
our architecture.
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References to JQuery and JQuery Ul.
References to the JQuery Ul customized theme that we used in the book.

We have created the scaffolding for the three main functions that we will
need to develop in our application: configure, load and render.

¢ Using JQuery we have included a function that allows resizing the canvas
to its container:

function resizeCanvas () {
c_width = $('#content') .width() ;
c_height = $('#content') .height();
$('#the-canvas') .attr ('width',c_width) ;
$('#the-canvas') .attr('height',c_height) ;

}

We bind this function to the resize event of the window here:

$ (window) .resize (function () {resizeCanvas();});

This function is very useful because it allows us adapt the size of the canvas
automatically to the available window space. Also, we do not need to hardcode
the size of the canvas.

¢ Asinall previous exercises, we need to define the entry point for the application.
We do this here:

var app;
function runShowRoom () {
app = new WebGLApp ("the-canvas") ;
app.configureGLHook = configure;

app . loadSceneHook = load;
app .drawSceneHook = render;
app.run() ;

}

And we bind it to the onLoad event:

<body onLoad='runShowRoom /() '>
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Now if you run ch9_Scaffolding.html in your HTML5-enabled web browser, you will see
that the canvas resizes according to the current size of content, its parent container, shown
as follows:

ann THASE Bugrrers Lasc - [hagtsr U - Cor Shiow B

Automatic canvas resizing using JQuery ey TR
Show Room
B 00 WebGlL Bagnness Guide - Chapter 9 - Car Show Room
I] ‘WedlL Beganer's Cule - Chas I - i
i 4 ke 1 Users ot ¢ N - cocar QN (-] ()
Show Room
o
FXal:] Wk, Begrer'y Coxde - Cragrier § - Car Shom Room
IS —
P ot et WS S Cote 1 177_3)41_Scaftniciog s = B Giimiin:] (e
Show Room

< —

The shaders in this chapter will implement Phong shading and the Phong reflection model.
Remember that Phong shading interpolates vertex normals and creates a normal for every

fragment. After that, the Phong reflection model describes the light that an object reflects

as the addition of the ambient, diffuse, and specular interaction of the object with the light
sources present in the scene.
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To keep consistency with the Material Template Library (MTL) format, we will use the
following convention for the uniforms that refer to material properties:

Material Description

Uniform

uKa Ambient property

ukKd Diffuse property

uKs Specular property

uNi Optical density. We will not use this feature but you will see it on the MTL file.

uNs Specular exponent. A high exponent results in a tight, concentrated highlight. Ns
values normally range from 0 to 1000.

d Transparency (alpha channel)

illum Determines the illumination model for the object being rendered. Unlike previous

chapters where we had one model for all the objects, here we let the object to
decide how it is going to reflect the light.

According to the MTL file format specification illum can be:
0: Diffuse on and Ambient off (purely diffuse)

1: Diffuse on and Ambient on

2: Highlight on (Phong illumination model)

There are other values that are defined in the MTL specification that we mention
here for completeness but that our shaders will not implement. These values are:

3: Reflection on and Ray trace on

4: Transparency: Glass on, Reflection: Ray trace on

5: Reflection: Fresnel on and Ray trace on

6: Transparency: Refraction on, Reflection: Fresnel off and Ray trace on
7: Transparency: Refraction on, Reflection: Fresnel on and Ray trace on
8: Reflection on and Ray trace off

9: Transparency: Glass on, Reflection: Ray trace off

10: Casts shadows onto invisible surfaces

The shaders that we will use support multiple lights using uniform arrays as we saw in
Chapter 6, Colors, Depth Testing, and Alpha Blending. The number of lights is defined
by a constant in both the Vertex and the Fragment shaders:

const int NUM LIGHTS = 4;
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We will use the following uniform arrays to work with lights:

Light Description
Uniform Array

uLa [NUM_LIGHTS] Ambient property
uLd [NUM_LIGHTS] Diffuse property
uLs [NUM_LIGHTS] Specular property

a Please refer to ch9_Car Showroom.html to explore the source code
A for the shaders in this chapter.

Next, we are going to work on the three main functions that constitute the lifecycle
of our WebGL application. These are the configure, 1oad, and render functions.

Setting up the scene

We set up the scene by writing the code for the configure function. Let's analyze it line
by line:

var camera = null, transforms = null;
function configure () {

At this stage, we want to set some of the WebGL properties such as the clear color and
the depth test. After that, we need to create a camera and set its original position and
orientation. Also we need to create a camera interactor so that we can update the camera
position when we click and drag on the HTML5 canvas in our web page. Finally, we want
to define the JavaScript variables that will be mapped to the shaders. We can also initialize
some of them at this point.

To accomplish the aforementioned tasks we will use Camera.js, CameraInteractor.js,
and Program. js and SceneTransforms . js from our architecture.

Configuring some WehGL properties

Here we set the background color and the depth test properties as follows:

gl.clearColor(0.3,0.3,0.3, 1.0);
gl.clearDepth(1.0) ;

gl.enable (gl .DEPTH_TEST) ;
gl.depthFunc (gl .LEQUAL) ;

2971




Putting It All Together

The camera variable needs to be global so we can access it later on from the GUI functions
that we will write. For instance, we want to be able to click on a button (different function
in the code) and use the camera variable to update the camera position:

camera = new Camera (CAMERA ORBITING TYPE) ;
camera.goHome ([0,0,7]) ;

camera.setFocus ([0.0,0.0,0.0]) ;
camera.setAzimuth (25) ;
camera.setElevation(-30) ;

The azimuth and elevation of the camera are relative to the negative z-axis, which will be
the default pose if you do not specify any other. An azimuth of 25 degrees and elevation
of -30 degrees will give you a nice initial angle to see the cars. However, you can set any
combination that you prefer as the default pose in here.

Here we make sure that the camera's rendering callback is our rendering function:

camera.hookRenderer = render;

Creating the Camera Interactor

We create a CameraInteractor that will bind the mouse gestures to camera actions.
The first argument here is the camera we are controlling and the second element is a DOM
reference to the canvas in our webpage:

var interactor = new Cameralnteractor (camera, document.
getElementById('the-canvas') ;

The SceneTransforms ohject

Once we have instantiated the camera, we create a new SceneTransforms object passing
the camera to the SceneTransforms constructor as follows:

transforms = new SceneTransforms (camera) ;
transforms.init () ;

The transforms variable is also declared globally so we can use it later in the rendering
function to retrieve the current matrix transformations and pass them to the shaders.
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We will create four lights using the Light object from our infrastructure code. The scene will

look like in the following image:

Setting up the lights

Far-left Far-right

var lightl = new Light('far-left');
lightl.setPosition([-25,25,-25]);
lightl.setDiffuse([1.4,08.4,8.4]);
lightl.setAmbient([©.0,8.0,08.90]);
lightl.setSpecular([©.8,8.8,2.8]);

Near-left Near-right

For each light we will create a Light object:

var lightl = new Light ('far-left');
lightl.setPosition([-25,25,-25]) ;
lightl.setDiffuse([1.4,0.4,0.4]);
lightl.setAmbient ([0.0,0.0,0.01);
lightl.setSpecular([0.8,0.8,0.8]);

var light2 = new Light ('far-right');
light2.setPosition([25,25,-25]) ;
light2.setDiffuse([0.4,1.4,0.4]);
light2.setAmbient ([0.0,0.0,0.01);
light2.setSpecular([0.8,0.8,0.8]);

var light3 = new Light ('near-left');
light3.setPosition([-25,25,25]);
light3.setDiffuse([0.5,0.5,1.5]);
light3.setAmbient ([0.0,0.0,0.0]);
light3.setSpecular([0.8,0.38,0.38]);

var light4 = new Light ('near-right');
light4.setPosition([25,25,25]);
light4.setDiffuse([0.2,0.2,0.2]);
light4.setAmbient ([0.0,0.0,0.0]);
light4.setSpecular([0.38,0.38,0.38]);
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Then, we add them to the Lights list (also defined in Lights.js):

7

Lights.add(lightl
Lights.add(light2
Lights.add(light3
Lights.add(light4

7

7

7

( )
( )
( )
( )

The last thing to do inside configure function is to map the JavaScript variables that
we will use in our code to the attributes and uniforms that we will use in the shaders.

Using the Program object from our infrastructure code, we will set up the JavaScript
variables that we will use to map attributes and uniforms to the shaders. The code looks

like this:

var attributeList =

var uniformList = [

Program. load (attributelList,

["aVertexPosition",
"aVertexNormal",
"aVertexColor"] ;

"uPMatrix",
"uMVMatrix",
"uNMatrix",
"yLightPosition",
"uWireframe",
"uLa",

"yLd",

"uLs",

"uKa",

"yKd",

"uKs",

"uNs",

lldll s

"illum"];

uniformList) ;

When creating your own shaders, make sure that the shader attributes

and uniforms are properly mapped to JavaScript variables. Remember that

this mapping step allows us referring to attributes and uniforms through

their location. In this way, we can pass attribute and uniform values to the
shaders. Please check the methods setAttributeLocations and
setUniformLocations, which are called by 1oad in the Program object
(Program. js) to see how we do the mapping in the infrastructure code.
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Uniform initialization

After the mapping, we can initialize shader uniforms such as lights:

gl.uniform3fv (Program.uLightPosition, Lights.getArray('position')) ;

gl.uniform3fv (Program.ulLa, Lights.getArray('ambient')) ;

gl.uniform3fv

(
(
(Program.ulLd, Lights.getArray('diffuse'))
(

gl.uniform3fv (Program.uLs, Lights.getArray('specular')) ;

The default material properties are as follows:

gl.uniform3fv (Program.uKa |,

0,1.0,
gl.uniform3fv (Program.uKd , 0,1.
0
)

’

PR
o O O

1.
1.
1.

PR
o O O

’ ’

7

[
[
gl.uniform3fv (Program.ukKs , [
gl.uniformlf (Program.uNs , 1.0

}

With that, we have finished setting up the scene.

Loading the cars

Next, we need to implement the 1oad function. Here is where we usually use AJAX to
download the objects that will appear on the scene.

When we have the JSON files corresponding to the cars the procedure is really simple, we
just use the Scene object to load these files. However, most commonly than not, you will
not have ready-to-use JSON files. As mentioned at the beginning of this chapter, there are
specialized design tools such as Blender that allow creating these models.

Nonetheless, we are assuming that you are not an expert 3D modeler (neither we are).
So we will use pre-built models. We will use cars from blendswap . org, these models
are publically available, free of charge, and free to distribute.

Before we can use the models, we need to export them to an intermediate file format
from where we can extract the geometry and the material properties so we can create
our corresponding JSON files. The file format that we are going to use is Wavefront OBJ.
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Exporting the Blender models

Here we are using the current Blender version (2.6). Once you have loaded the car that you
want to render in WebGL you need to export it as an OBJ file. To do so go to File | Export |
Wavefront (.obj) as shown in the following screenshot:

8 00 || Audi_R8_Cycles_v8.blend
) ©
user pe il
B «

Crnd ,
Ctrl U

el

EEB| pata v

Mix Shader

- 0.510 »
Glossy BSDF

Beckmann

Diffuse BSDF

(0} Earth

In the Export OBJ panel, make sure that the following options are active:

¢ Apply Modifiers: This will write the vertices in the scene that are the result of
a mathematical operation instead of direct modeling. For instance, reflections,
smoothing, and so on. If you do not check this option, the model may appear
incomplete in the WebGL scene.

¢ Write Materials: Blender will create the correspondent Material Template Library
(MTL file). More about this in the following section.

¢ Triangulate Faces: Blender will write the indices as triangles. ldeal for
WebGL rendering.

¢ Objects as OBJ Objects: This configuration will identify every object in the Blender
scene as an object in the OBI file.

[3021]
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¢ Material Groups: If an object in the Blender scene has several materials, for instance
a car tire can have aluminum and rubber, then the object will be subdivided into
groups, one per material in the OBJ file. Once you have checked these export
parameters, select the directory and the name for your OBIJ file and then click
on Export.

There are several types of definitions in an OBJ file. Let's see them with a line-by-line
example. We are going to dissect the file square . obj that we have exported from the
Blender file square.blend. This file represents a square divided into two parts, one
painted in red and the other painted in blue, as shown in the following image:

Understanding the Wavefront OBJ format

# Blender v2.62 (sub @) OBJ
Source code File: 'square.blend’

square.obj # waw.blender.org
mtllib square.mtl

o square_mesh
v 1.8 ©.8 -2.8
code describes v 1.8 6.6 8.0
oo Vb olo 20
v -1.8 @.e -2.0
v 8.6 @.0 -2.0
v 8.8 @.e -2.0

1

vn 8.9 0 8.0

usemtl blue

s off

fe//14//13//1
material f 6//1 3//15//1

g square_mesh_red

usemtl red

f 1//1 6//1 5//1

I:l material template library f1/715/1 21

When we export Blender models to the OBJ format, the resulting file would normally start
with a comment:

# Blender v2.62 (sub 0) OBJ File: 'squares.blend'
# www.blender.org

As we can see here, comments are denoted with a hash (#) symbol at the beginning
of the line.
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Next, we will usually find a line referring to the Material Template Library that this OBJ file is
using. Such line will start with the keyword mt 11ib followed by the name of the materials
library file:

mtllib square.mtl

There are several ways in which geometries can be grouped into entities in an OBI file.
We can find lines starting with the prefix o followed by the object name; or by the prefix g,
followed again by the group name:

o squares_mesh

After an object declaration, the following lines will refer to vertices (v) and optionally to
vertex normals (vn) and texture coordinates (vt). It is important to mention that vertices
are shared by all the groups in an object in the OBJ format. That is, you will not find lines
referring to vertices when defining a group because it is assumed that all vertex data was
defined first when the object was defined:

-2.
0.
0.

-2.
0.

-2.
0.

4 <4 <44 <
O Rr F 4o

0.
vn 0.

O O O O O o o

.0

.0
0

.0
0
0
0

P O O O O O O
O O O O O O o

In our case, we have instructed Blender to export group materials. This means that each
part of the object that has different set of material properties will appear in the OB/ file as
a group. In this example, we are defining an object with two groups (squares mesh blue
and squares_mesh_red) and two corresponding materials (blue and red):

g squares_mesh blue

If materials are being used, the line after the group declaration will be the material that is
being used for that group. Here only the name of the material is required. It is assumed that
the material properties for this material are defined in the Material Template Library file that
was declared at the beginning of the OBI file:

usemtl blue

The lines that start with the prefix s refer to smooth shading across polygons. We mention it
here in case you see it on your files but we will not be using this definition when parsing the
OBl files into JSON files:

s off
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The lines that start with £ refer to faces. There are different ways to represent faces.
Let's see them:

¢ Vertex:
f i1 i2 i3...

In this configuration, every face element corresponds to a vertex index. Depending
on the number of indices per face, you could have triangular, rectangular, or
polygonal faces. However, we have instructed Blender to use triangular faces to
create the OBIJ file. Otherwise, we would need to decompose the polygons into
triangles before we could call drawElements.

¢ Vertex / Texture Coordinate:

f i1/t1 i2/t2 i3/t3...

In this combination, every vertex index appears followed by a slash sign and a
texture coordinate index. You will normally find this combination when texture
coordinates are defined at the object level with vt.

¢ Vertex / Texture Coordinate / Normal:
f i1/tl/nl i2/t2/n2 i3/t3/n3...

Here a normal index has been added as the third element of the configuration. If
both texture coordinates and vertex normals are defined at the object level, you
most likely see this configuration at the group level.

¢ Vertex // Normal:

There could also be a case where normals are defined but not texture coordinates.
In this case, the second part of the face configuration is missing:

f i1//nl1 i2//n2 i3//n3...

This is the case for square . obj, which looks like this:

£ e6//1 4//1 3//1
£ 6//1 3//15//1

Please notice that faces are defined using indices. In our example, we have

defined a square divided in two parts. Here we can see that all vertices

share the same normal identified with index 1.
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The remaining lines in this file represent the red group:

g squares _mesh red
usemtl red

£f1//1 6//1 5//1
£f1//1 5//1 2//1

As mentioned before, groups belonging to the same object share indices.

After exporting our cars to the OBJ format, the next step is parse the OBJ files to create
WebGL JSON files that we can load into our scene. We have included the parser that we
developed for this step into the code files accompanying this chapter. This parser has the
following features:

¢ Itis written in python and can be called on the command line like this:
obj parser.py argl arg2

Where arg1 is the name of the obj file to parse and arg2 is the name of the
Material Template Library. The file extension is needed in both cases. For example:

obj parser.py square.obj square.mtl

It creates one JSON file per OBJ group.

It searches into the Material Template Library (if defined) for the material properties
for each group and adds them to the correspondent JSON file.

¢ It will calculate the appropriate indices for each group. Remember that OBJ groups
share indices. Since we are creating one independent WebGL object per group, each
object needs to have indices starting in zero. The parser takes care of this for you.

If you do not have python installed in your system you can get it
e from: http://www.python.org/

The following diagram summarizes the procedure to create JSON files from
Blender scenes:
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Using Blender models in a WebGL scene

Load into WebGL
Scene

Read Parse

Car.blend Car.obj " Car.mtl Car.json

Read the originalmodel  Use the export option to Use the phython parser Load the JSON file using the
in blender generate the OBJ and MTL files to create the .JSON file Scene.loadObject method

This process retrieves:

* vertices

* indices

= texture coordinates and

* material properties

so they can be used in the WebGL scene

Now we have cars stored as JSON files, ready to be used in our WebGL scene. Now we have
to let the user tell us which car he wants to visualize. We could, however, load by default one
of the cars so our GUI looks more attractive. To do so, we will write the following code inside
the 1load function (finally!):

function load() {

loadBMW () ;

// The bmw model has 24 parts. We retrieve them all in a loop
function loadBMW () {
for(var i = 1; i <= 24; i+=1){

Scene.loadObject ('models/cars/bmw/part'+i+'.json') ;

}

We will add other cases later on.
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Let's take a step back to take a look at the big picture. We mentioned before that in our
architecture we have defined three main functions that define the lifecycle of our WebGL
application. These functions are: configure, load, and render.

Up to this point, we have set up the scene writing the code for the configure function.
After that, we have created our JSON cars and loaded them by writing the code for the 1oad
function. Now, we will implement the code for the third function: the render function.

The code is pretty standard and almost identical to the draw/render functions that we
have written in previous chapters. As we can see in the following diagram, we set and clear
the area that we are going to draw on, then we check on the camera perspective and then
we process every object in Scene.objects.

The only consideration that we need to have here is to make sure that we are mapping
correctly the material properties defined in our JSON objects to the appropriate shader
uniforms. The code that takes care of this in the render function looks like this:

gl.uniform3fv (Program.uKa, object.Ka);
gl.uniform3fv (Program.uKd, object.Kd);
gl.uniform3fv (Program.uKs, object.Ks);
gl.uniformlf (Program.uNi, object.Ni) ;
gl.uniformlf (Program.uNs, object.Ns) ;
gl.uniformlf (Program.d, object.d);
gl.uniformli (Program.illum, object.illum) ;

If you want, please take a look at the list of uniforms that was defined in the section
Implementing the shaders. We need to make sure that all the shader uniforms are paired
with object attributes.

The following diagram shows the process inside the render function:
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Rendering call stack

2 Whenever the timer
goes off..

Update viewport size

r 2
Calculate local transformations

(Matrix Stack)

Clear canvas
Pass Uniforms
Update camera perspective

Pass Attributes

For each object in the scene B4

Execute draw call

Each car part is a different JSON file. The render function goes through all the parts stored
as JSON objects inside the Scene object. For each part, the material properties are passed
as uniforms to the shaders and the geometry is passed as attributes (reading data from

the respective VBOs). Finally, the draw call (drawElements) is executed. The result looks
something like this:

The file ch9 Car Showroom.html contains all the code described up to now.
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Time for action - customizing the application

1.
2.

Open the file ch9 Car Showroom.html using your favorite code editor.

We will assign a different home for the camera when we load the Ford Mustang.

To do so, please check the cameraHome, cameraAzimuth, and cameraElevation
global variables. We set up the camera home position by using this variable inside
the configure function like this:

camera.goHome (cameraHome) ;

camera.setAzimuth (cameraAzimuth) ;
camera.setElevation (cameraElevation) ;

Let's use this code to configure the default pose for the camera when we load
the Ford Mustang. Go to the 1oadMustang function and append these lines:

cameraHome = [0,0,10];
cameraAzimuth = -25;
cameraElevation = -15;

camera.goHome (cameraHome) ;
camera.setAzimuth (cameraAzimuth) ;
camera.setElevation (cameraElevation) ;

Now save your work and load the page in your web browser. Check that the camera
appears in the indicated position when you load the Ford Mustang.

We can also set up the lighting scheme on a car-per-car basis. For instance, while

low-diffusive, high-specular lights work well for the BMW 18, these configurations
are not as good for the Audi R8. Let's take for example 1ight1 in the configure
function. First we set the light attributes like this:

[-25,25,-25])
0.4,0.4,0.41)
0.0,0.0,0.01)
[0.8,0.8,0.8]

I

lightl.setPosition
lightl.setDiffuse(
lightl.setAmbient (
lightl.setSpecular

(
[ ;
[ ;

( )i
Then, we add 1ight1 to the Lights object:
Lights.add(lightl) ;

Finally, we map the light arrays contained in the Lights object to the respective
uniform arrays in our shaders:

gl.uniform3fv (Program.uLightPosition, Lights.
getArray ('position'));

gl.uniform3fv (Program.ula |, Lights.getArray('ambient')) ;
gl.uniform3fv (Program.ulLd, Lights.getArray('diffuse'));
gl.uniform3fv (Program.ulLs, Lights.getArray ('specular')) ;
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Notice though that we need to add 1ight1 to Lights only once. Now check
the code for the one in the updateLightProperty function at the bottom
of the page:
function updateLightProperty (index, property) {
var v = $('#slider-1'+property+''+index) .slider('value') ;
S('#slider-1'+property+''+index+'-value') .html (v) ;
var light;
switch (index) {

case 1: light = lightl; break;
case 2: light = 1light2; break;
case 3: light = 1light3; break;
case 4: light = light4; break;

switch (property) {
case 'a':light.setAmbient ([v,v,v]);
gl.uniform3fv (Program.ula, Lights.getArray('ambient')) ;
break;
case 'd':light.setDiffuse([v,v,Vv]);
gl.uniform3fv (Program.ulLd, Lights.getArray('diffuse'));
break;
case 's':light.setSpecular([v,v,Vv]);
gl.uniform3fv (Program.uLs, Lights.getArray('specular')) ;
break;

render () ;

}

Here we are detecting what slider changed and we are updating the correspondent
light. Notice that we refer to 1ight1, 1ight2, 1ight3, or 1ight4 directly as these
are global variables. We update the light that corresponds to the slider that changed
and then we map the Lights object arrays to the correspondent uniform arrays.
Notice that here we are not adding 1ight1 or any other light again to the Lights
object. The reason we do not need to do this is that the Lights object keeps a
reference to 1ight1 and the other lights. This saves us from having to clear the
Lights object and mapping all the lights again every time we want to update one
of them.
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Using the same mechanism described in updateLightProperty, update the
loadaudi function to set the diffuse terms of all four lightsto [0.7,0.7,0.7]
and the specular termsto [0.4,0.4,0.4].

Configuring lighting for each car

Diffuse: 0.4
Specular: 0.8

Diffuse: 0.7
Specular: 0.4

5. save your work and reload the page on your web browser. Try different lighting
schemes for different cars.

What just happened?

We have built a demo that uses many of the elements that we have discussed in the

book. For that purpose, we have used the infrastructure code writing three main functions:
configure, load, and render. These functions define the lifecycle of our application.

On each of these functions, we have used the objects defined by the architecture of the
examples in the book. For example, we have used a camera object, several light objects,
the program, and the scene object among others.
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We want to animate the camera to produce a fly-through effect. You will need to consider
three variables to be interpolated: the camera position, elevation, and azimuth. Start by
defining the key frames, these are the intermediate poses that you want the camera to have.
One could start for instance by looking at the car in the front view and then flying by one of
the sides. You could also try a fly-through starting from a 45 degree angle in the back view.

In both cases, you want to make sure that the camera follows the car. To achieve that effect,
you need to make sure to update the azimuth and elevation on each key frame so the car
keeps in focus.

Hint: Take a look at the code for the animCamera function and the functions that we have
defined for the c1ick events on the Camera buttons:

Camera

Home Above Front Back Left Right

Zoom: Alt + Drag Floor Visible

In this chapter, we have reviewed the concepts and the code developed throughout the
book. We have also built a simple application that shows how all the elements fit together.

We have learned that designing complex models requires specialized tools such as Blender.
We also saw that most of the current 3D graphics formats require the definition of vertices,
indices, normals, and texture coordinates. We studied how to obtain these elements from
a Blender model and parse them into JSON files that we can load into a WebGL scene.

In the next and final chapter, we will give you a sneak peak of some of the advanced
techniques that are used regularly in 3D computer graphic systems including games,
simulations, and other 3D applications in general. We will see how to implement these
techniques in WebGL.
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Advanced Techniques

At this point, you have all the information you need to create rich 3D
applications with WebGL. However, we've only just scratched the surface of
what's possible with the API! Creative use of shaders, textures, and vertex
attributes can yield fantastic results. The possibilities are, literally, limitless!
In this final chapter, we'll provide a few glimpses into some advanced WebGL
techniques, and hopefully leave you eager to explore more on your own.

In this chapter, we'll learn the following topics:

Post-process effects
Point sprites

Normal mapping

* 6 o o

Ray tracing in fragment shaders

Post-processing

Post-processing effects are the effects that are created by re-rendering the image of
the scene with a shader that alters the final image somehow. Think of it as if you took
a screenshot of your scene, opened it up in your favorite image editor, and applied
some filters. The difference is that we can do it in real time!
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Examples of some simple post-processing effects are:

Grayscale
Sepia tone
Inverted color
Film grain

*
*
*
*
¢ Blur
*

Wavy/dizzy effect

The basic technique for creating these effects is relatively simple: A framebuffer is created
that is of the same dimensions as the canvas. At the beginning of the draw cycle, the
framebuffer is set as the render target, and the entire scene is rendered normally to it.
Next, a full-screen quad is rendered to the default framebuffer using the texture that makes
up the framebuffer's color attachment. The shader used during the rendering of the quad

is what contains the post-process effect. It can transform the color values of the rendered
scene as they get written to the quad to produce the desired visuals.

Let's look at the individual steps of this process more closely.

The code that we use to create the framebuffer is largely same as the code used in
Chapter 8, Picking, for the picking system. However, there is a key difference worth noting:

var width = canvas.width;
var height = canvas.height;

//1. Init Color Texture

var texture = gl.createTexture() ;

gl.bindTexture (gl.TEXTURE 2D, texture);

gl.texParameteri (gl.TEXTURE 2D, gl.TEXTURE MAG FILTER, gl.NEAREST) ;
gl.texParameteri (gl.TEXTURE 2D, gl.TEXTURE MIN FILTER, gl.NEAREST) ;
gl.texParameteri (gl.TEXTURE 2D, gl.TEXTURE WRAP S, gl.CLAMP TO EDGE) ;
gl.texParameteri (gl.TEXTURE 2D, gl.TEXTURE WRAP T, gl.CLAMP TO EDGE) ;

gl.texImage2D (gl.TEXTURE 2D, 0, gl.RGBA, width, height, 0, gl.RGBA,
gl .UNSIGNED BYTE, null) ;

//2. Init Render Buffer
var renderbuffer = gl.createRenderbuffer() ;
gl.bindRenderbuffer (gl .RENDERBUFFER, renderbuffer);

gl.renderbufferStorage (gl.RENDERBUFFER, gl.DEPTH COMPONENT16, width,
height) ;
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//3. Init Frame Buffer

var framebuffer = gl.createFramebuffer() ;

gl.bindFramebuffer (gl.FRAMEBUFFER, framebuffer);
gl.framebufferTexture2D (gl.FRAMEBUFFER, gl.COLOR ATTACHMENTO,
gl.TEXTURE 2D, texture, 0);

gl.framebufferRenderbuffer (gl.FRAMEBUFFER, gl.DEPTH ATTACHMENT,
gl .RENDERBUFFER, renderbuffer);

The change is that we are now using the canvas width and height to determine our buffer
size instead of the arbitrary values that we used for the picker. This is because the content
of the picker buffer was not meant to be rendered to the screen, and as such didn't need to
worry too much about resolution. For the post-process buffer, however, we'll get the best
results if the output matches the dimensions of the canvas exactly.

The canvas size won't always be a power of two, and as such we can't use the mipmapped
texture filtering modes on it. However, in this case that won't matter. Since the texture
will be exactly the same size as the canvas, and we'll be rendering it as a full-screen quad
we have one of the rare situations where most of the time the texture will be displayed at
exactly a 1:1 ratio on the screen, which means no filters need to be applied. This means
that we could use the NEAREST filtering with no visual artifacts, though in the case of
post-process effects that warp the texture coordinates (such as the wavy effect described
later) we will still benefit from using LINEAR filtering. We also need to use a wrap mode
of CLAMP TO_EDGE, but again this won't pose many issues for our intended use.

Otherwise, the code is identical to the picker framebuffer creation.

While we could load the quad from a file, in this case the geometry is simple enough that
we can put it directly into our code. All that's needed in this case is the vertex positions and
texture coordinates:

//1. Define the geometry for the fullscreen quad

var vertices = [
-1.0,-1.0,
1.0,-1.0,
-1.0, 1.0,
-1.0, 1.0,
1.0,-1.0,
1.0, 1.0

var textureCoords = [
0.0, 0.0,
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0, 0.0,
0, 1.0,
.0, 1.0,
0, 0.0,
1.0, 1.0

1;

//2. Init the buffers

this.vertexBuffer = gl.createBuffer();

gl.bindBuffer (gl .ARRAY BUFFER, this.vertexBuffer);

gl.bufferData (gl.ARRAY BUFFER, new Float32Array(vertices), gl.STATIC_
DRAW) ;

this.textureBuffer = gl.createBuffer();

gl.bindBuffer (gl.ARRAY BUFFER, this.textureBuffer);
gl.bufferData (gl.ARRAY BUFFER, new Float32Array (textureCoords),
gl.STATIC DRAW) ;

//3. Clean up
gl.bindBuffer (gl.ARRAY BUFFER, null);

The vertex shader for the post-process draw is the simplest one you are likely to see
in a WebGL application:

attribute vec2 aVertexPosition;
attribute vec2 aVertexTextureCoords;

varying vec2 vTextureCoord;

void main(void)
vTextureCoord = aVertexTextureCoords;
gl Position = vec4 (aVertexPosition, 0.0, 1.0);

}

Something to note here is that unlike every other vertex shader that we've worked with so
far, this one doesn't make use of any matrices. That's because the vertices that we declared
in the previous step are pre-transformed.
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Recall from Chapter 4, Camera, that typically we retrieve normalized device coordinates
by multiplying the vertex position by the Perspective matrix, which maps the positions to

a [-1,1] range on each axis, representing the full extents of the viewport. In this case our
vertex positions are already mapped to that [-1,1] range, and as such no transformation
is needed. They will map perfectly to the viewport bounds when we render.

The fragment shader is where most of the interesting work happens, and will be different
based on the post-process effect that is desired. Let's look at a simple grayscale shader as
an example:

uniform sampler2D uSampler;
varying vec2 vTextureCoord;

void main (void)

{

vec4 frameColor

texture2D (uSampler, vTextureCoord) ;

float luminance = frameColor.r * 0.3 + frameColor.g * 0.59 +
frameColor.b * 0.11;

gl FragColor = vec4 (luminance, luminance, luminance,
frameColor.a) ;

}

Here we are sampling the original color rendered by our scene (available through
uSampler), taking a weighted average of the red, green, and blue channels, and outputting
the averaged result to all color channels. The output is a simple grayscale version of the
original scene.
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We've added a new class, PostProcess, to our architecture to assist in applying
post-process effects. The code can be found in js/webgl /PostProcess.js.

This class will create the appropriate framebuffer and quad geometry for us, compile
the post-process shader, and perform the appropriate render setup needed to draw
the scene out to the quad.

Application Architecture: Post
Processing

Vertex Fragment
Shader Shader
WebGLApp s

scripts

JavaScript Code

SceneTransfon
function render() {
post.validateSize();

gl.bindrFramebuffer (gl.FRAMEBUFFER, post.framebuffer);
gl.bindFramebuffer (gl.FRAMEBUFFER, null);

post.bind();
// Bdditional PostProcess setup here if needed
post.draw():

Let's see it in action!

Time for action - testing some post-process effects

1. Open thefile ch10_PostProcess.html in an HTML5 browser.
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WebGL Beginner's Guide - Chapter 10 _—
Post Process Effects ['.;“':mln']

View Code  Controls

Fitar: | Sormal | Graysesla  Inwart  Wavy  Biur  Fim-Grain

The buttons at the bottom allow you to switch between several sample effects.
Try each of them to get a feel for the effect they have on the scene. We've already

looked at grayscale, so let's examine the rest of filters individually.

The invert effect is similar to grayscale, in that it only modifies the color output;

this time inverting each color channel.

uniform sampler2D uSampler;
varying vec2 vTextureCoord;

void main(void)
{
vec4 frameColor = texture2D(uSampler, vTextureCoord) ;

gl FragColor = vec4(1l.0-frameColor.r, 1.0-frameColor.g,
1.0-frameColor.b, frameColor.a);

}
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3.

The wavy effect manipulates the texture coordinates to make the scene swirl
and sway. In this effect, we also provide the current time to allow the distortion
to change as time progresses.

uniform sampler2D uSampler;
uniform float uTime;
varying vec2 vTextureCoord;

const float speed = 15.0;
const float magnitude = 0.015;

void main (void)
{

vec2 wavyCoord;

wavyCoord.s = vTextureCoord.s + (sin(uTime+vTextureCoord.t*spe
ed) * magnitude) ;

wavyCoord.t = vTextureCoord.t + (cos(uTime+vTextureCoord.s*spe
ed) * magnitude) ;

vec4 frameColor = texture2D(uSampler, wavyCoord) ;

gl FragColor = frameColor;

The blur effect samples several pixels to either side of the current one and uses a
weighted blend to produce a fragment output that is the average of it's neighbors.
This gives a blurry feel to the scene.

A new uniform used here is uInverseTextureSize, which is 1 over the

width and height of the viewport, respectively. We can use this to accurately
target individual pixels within the texture. For example, vTextureCoord.x +
2*uInverseTextureSize.x will be exactly two pixels to the left of the original
texture coordinate.
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uniform sampler2D uSampler;
uniform vec2 ulInverseTextureSize;
varying vec2 vTextureCoord;

vecd offsetLookup (float xOff, float yOff)

return texture2D (uSampler, vec2 (vTextureCoord.x
+ xOff*ulnverseTextureSize.x, vTextureCoord.y +
yOff*uInverseTextureSize.y)) ;

}

void main (void)
{
vec4 frameColor = offsetLookup(-4.0, 0.0) * 0.05;
frameColor += offsetLookup(-3.0, 0.0) * 0.09;
2.0, 0.0) * 0.12;
1.0, 0.0) * 0.15;

frameColor += offsetLookup (-
frameColor += offsetLookup (-

(

(
frameColor += offsetLookup(0.0, 0.0) * 0.16;
frameColor += offsetLookup(l.0, 0.0) * 0.15;
frameColor += offsetLookup(2.0, 0.0) * 0.12;
frameColor += offsetLookup(3.0, 0.0) * 0.09;
frameColor += offsetLookup(4.0, 0.0) * 0.05;

gl FragColor = frameColor;
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5.

Our final example is a film grain effect. This uses a noisy texture to create a grainy
look to the scene, which simulates the use of an old camera. This example is
significant because it shows the use of a second texture besides the framebuffer
when rendering.

uniform sampler2D uSampler;
uniform sampler2D uNoiseSampler;
uniform vec2 ulInverseTextureSize;
uniform float uTime;

varying vec2 vTextureCoord;

const float grainIntensity = 0.1;
const float scrollSpeed = 4000.0;

void main (void)

{

vec4 frameColor = texture2D(uSampler, vTextureCoord) ;

vec4 grain = texture2D(uNoiseSampler, vTextureCoord * 2.0 +
uTime * scrollSpeed * ulnverseTextureSize) ;
gl FragColor = frameColor - (grain * grainIntensity);

What just happened?

All of these effects are achieved by manipulating the rendered image before it is output to
the screen. Since the amount of geometry processed for these effects is quite small, they can
often be performed very quickly regardless of the complexity of the scene itself. Performance
may still be affected by the size of the canvas or the complexity of the post-process shader.
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What would it take to create a post-process effect that stretches the image near the center
of the viewport and squashes it towards the edges?

Point sprites

Common techniques in many 3D applications and games are particle effects. A particle effect
is a generic term for any special effect created by rendering groups of particles (displayed as
points, textured quads, or repeated geometry), typically with some simple form of physics
simulation acting on the individual particles. They can be used for simulating smoke, fire,
bullets, explosions, water, sparks, and many other effects that are difficult to represent

as a single geometric model.

One very efficient way of rendering the particles is to use point sprites. Typically, if you
render vertices with the POINTS primitive type each vertex will be rendered as a single
pixel on the screen. A point sprite is an extension of the POINTS primitive rendering
where each point is provided a size and textured in the shader.

A point sprite is created by setting the g1 _PointSize value in the vertex shader. It can be
set to either a constant value or a value calculated from shader inputs. If it is set to a number
greater than one, the point is rendered as a quad which always faces the screen (also known
as a billboard). The quad is centered on the original point, and has a width and height equal
tothe g1_PointSize in pixels.

X - gl_pointSize/2, X + gl_pointSize/2,
Y - gl_pointSize/2 Y - gl_pointSize/2

o o

Original Point
o

o <
X - gl_pointSize/2, X + gl_pointSize/2,
Y + gl_pointSize/2 Y + gl_pointSize/2

Position
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When the point sprite is rendered, it also generates texture coordinates for the quad
automatically, covering a simple 0-1 range from upper left to lower right.

0,0
L

OFiginaI Point

(]

)

Y

Texture Coordinates

1,1

The texture coordinates are accessible in the fragment shader as the built-in vec2
gl PointCoord. Combining these properties gives us a simple point sprite shader

that looks like this:

//Vertex Shader

attribute vec4 aVertexPosition;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

void main(void)

gl Position = uPMatrix * uMVMatrix * vec4 (aVertexPosition,

gl PointSize = 16.0;

//Fragment Shader
precision highp float;

uniform sampler2D uSampler;

void main(void)

gl FragColor = texture2D (uSampler,

gl PointCoord) ;

1.0);
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This could be used to render any vertex buffer with the following call:

gl.drawArrays (gl.POINTS, 0, vertexCount) ;

As you can see, this would render each point in the vertex buffer as a 16 x 16 texture.

Time for action - using point sprites to create a fountain of

1. Openthefilechi0 PointSprites.html in an HTMLS browser.

WebGL Beginner's Guide - Chapter 10
Point Sprites [Puausmme]

View Code Controls

Size: 14
Lifespan: 3.0

2. This sample creates a simple fountain of sparks effect with point sprites. You can
adjust the size and lifetime of the particles using the sliders at the bottom. Play with
them to see the effect it has on the particles.

3. The particle simulation is performed by maintaining a list of particles that comprises
of a position, velocity, and lifespan. This list is iterated over every frame and
updated, moving the particle position according to the velocity and applying gravity
while reducing the remaining lifespan. Once a particle's lifespan has reached zero, it
gets reset to the origin with a new randomized velocity and a replenished lifespan.
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4.

5.

6.

7.

With every iteration of the particle simulation, the particle positions and lifespans
are copied to an array which is then used to update a vertex buffer. That vertex
buffer is what is rendered to produce the onscreen sprites.

Let's play with some of the other values that control the simulation and see how
they affect the scene. Open up ch10 PointSprites.html in an editor.

First, locate the call to configureParticles at the bottom of the configure
function. The number passed into it, initially set to 1024, determines how many
particles are created. Try manipulating it to lower or higher values to see the effect it
has on the particle system. Be careful, as extremely high values (for example, in the
millions) could cause performance issues for your page!

Next, find the resetParticle function. This function is called any time a particle
is created or reset. There are several values here that can have a significant effect
on how the scene renders.

function resetParticle(p)

p.pos = [0.0, 0.0, 0.0];

p.vel = [
(Math.random() * 20.0) - 10.0,
(Math.random() * 20.0),
(Math.random() * 20.0) - 10.0,

1;

p.lifespan = Math.random() * particleLifespan;
p.remaininglLife = p.lifespan;

The p.pos is the x, y, z starting coordinates for the particle. Initially all points start
at the world origin (0, 0, 0), but this could be set to anything. Often it is desirable
to have the particles originate from the location of another object in the scene, to
make it appear as if that object is producing the particles. You can also randomize
the position to make the particles appear within a given area.

p.vel is the initial velocity of the particle. You can see here that it's randomized

so that particles spread out as they move away from the origin. Particles that move
in random directions tend to look more like explosions or sprays, while those that
move in the same direction give the appearance of a steady stream. In this case,
the y value is designed to always be positive, while the x and z values may be either
positive or negative. Experiment with what happens when you increase or decrease
any of the values in the velocity, or if you remove the random element from one of
the components.
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10. Finally, p.1ifespan determines how long a particle is displayed before being reset.
This uses the value from the slider on the page, but it's also randomized to provide
visual variety. If you remove the random element from the particle lifespan all the
particles will expire and reset at the same time, resulting in fireworks-like bursts
of particles.

11. Next, find the updateParticles function. This function is called once per frame
to update the position and velocity of all particles and push the new values to the
vertex buffer. The interesting part here, in terms of manipulating the simulation
behavior, is the application of gravity to the particle velocity mid way through
the function:

// Apply gravity to the velocity

p.vel[l] -= 9.8 * elapsed;

if (p.pos[1] < 0) {
p.vel[l] *= -0.75; // Allow particles to bounce off the floor
p.pos[1l] = 0;

}

The 9. 8 here is the acceleration applied to the y component over time. In other
words, gravity. We can remove this calculation entirely to create an environment
where the particles float indefinitely along their original trajectories. We can
increase the value to make the particles fall very quickly (giving them a heavy
appearance), or we could change the component that the deceleration is applied to
change the direction of gravity. For example, subtracting from vel [0] makes the
particles fall sideways.

12. This is also where we apply simple collision response for the floor. Any particles
with a y position less than 0 (below the floor) have their velocities reversed and
reduced. This gives us a realistic bouncing motion. We can make the particles less
bouncy by reducing the multiplier (that is, 0.25 instead of 0. 75) or even eliminate
bouncing altogether by simply setting the y velocity to 0 at that point. Additionally,
we can remove the floor by taking away the check fory < 0, which would allow the
particles to fall indefinitely.

13. It's also worth seeing the different effects that can be achieved with different
textures. Try changing path for the spriteTexture in the configure function
to see what it looks like when you use different images.

What just happened?

We've seen how point sprites can be used to efficiently render particle effects, and seen
some of the ways we can manipulate the particle simulation to achieve different effects.
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The particle system in place here could be used to simulate bubbles or smoke floating
upward just as easily as bouncing sparks. How would you need to change the simulation
to make the particles float rather than fall?

One technique that is very popular among real-time 3D applications today is normal
mapping. Normal mapping creates the illusion of highly detailed geometry on a low-poly
model by storing surface normals in a texture map, which is then used to calculate the
lighting of the mesh. This method is especially popular in modern games, where it allows
developers to strike a balance between high performance and detailed scenes.

Typically, lighting is calculated using nothing but the surface normal of the triangle being
rendered, meaning that the entire polygon will be lit as a continuous, smooth surface.

Mesh Geometry ' Light .~

With normal mapping, the surface normals are replaced by normals encoded within a
texture, which can give the appearance of a rough or bumpy surface. Note that the actual
geometry is not changed when using a normal map, only how it is lit. If you look at a normal
mapped polygon from the side, it will still appear perfectly flat.

Simulated ‘ Light

Normals \ . . . 4

Actual Mesh Geometry
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The texture used to store the normals is called a normal map, and is typically paired with a
specific diffuse texture that complements the surface the normal map is trying to simulate.
For example, here is a diffuse texture of some flagstones and the corresponding normal map:

You can see that the normal map contains a similar pattern to the diffuse texture. The two
textures work in tandem to give the appearance that the stones are raised and rough, while
the grout between them is sunk in.

The normal map contains very specifically formatted color information that can be
interpreted by the shader at runtime as a fragment normal. A fragment normal is essentially
the same as the vertex normals that we are already familiar with: a three-component vector
that points away from the surface. The normal texture encodes the three components of the
normal vector into the three channels of the texture's texel color. Red represents the X axis,
green the Y axis, and blue the Z axis.

The normal encoded in the map is typically stored in tangent space as opposed to world or
object space. Tangent space is the coordinate system that the texture coordinates for a face
are defined in. Normal maps are almost always predominantly blue, since the normals they
represent generally point away from the surface and thus have larger Z components.
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Time for action — normal mapping in action

1. Open thefile ch10 NormalMap.html in an HTML5 browser.

WebGL Beginner's Guide - Chapter 10
Normal Mapping [pbuiéw;{e]

View Code Controls

2. Rotate the cube to see the effect that the normal map has on how the cube is lit.
Also observe how the profile of the cube has not changed. Let's examine how this
effect is achieved.

3. First, we need to add a new attribute to our vertex buffers. There are actually three
vectors that are needed to calculate the tangent space coordinates that the lighting
is calculated in: the normal, the tangent, and bitangent.

Tangent
, Bitangent
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We already know what the normal represents, so let's look at the other two vectors.
The tangent essentially represents the up (positive Y) vector for the texture relative
to the polygon surface. Likewise, the bitangent represents the left (positive X) vector
for the texture relative to the polygon surface.

We only need to provide two of the three vectors as vertex attributes, traditionally
the normal and tangent. The third vector can be calculated as the cross-product of
the other two in the vertex shader code.

Many times 3D modeling packages will generate tangents for you, but if they
aren't provided, they can be calculated from the vertex positions and texture
coordinates, similar to how we can calculate the vertex normals. We won't cover
the algorithm here, but it has been implemented in §s/webgl/Utils.js as
calculateTangents and used in Scene.addObject

var tangentBufferObject = gl.createBuffer();
gl.bindBuffer (gl .ARRAY BUFFER, tangentBufferObject) ;
gl.bufferData (gl.ARRAY BUFFER, new Float32Array(Utils.
calculateTangents(objegt.vertices, object.texture coords, object.
indices)), gl.STATIC DRAW) ;

In the vertex shader, seen at the top of ch10 NormalMap.html, the tangent needs
to be transformed by the Normal matrix just like the normal does to ensure that

it's appropriately oriented relative to the world-space mesh. The two transformed
vectors can be used to calculate the third as mentioned earlier.

vec3 normal = vec3 (uUNMatrix * vec4 (aVertexNormal, 1.0));
vec3 tangent = vec3 (uNMatrix * vec4 (aVertexTangent, 1.0));
vec3 bitangent = cross(normal, tangent);

The three vectors can then be used to create a matrix that transforms vectors into
tangent space.

mat3 tbnMatrix = mat3(
tangent.x, bitangent.x, normal.x,
tangent.y, bitangent.y, normal.y,
tangent.z, bitangent.z, normal.z

)i

Instead of applying lighting in the vertex shader, as we did previously, the bulk of the
lighting calculations need to happen in the fragment shader here so that they can
incorporate the normals from the texture. We do transform the light direction into
tangent space in the vertex shader, however, and pass it to the fragment shader

as a varying.

//light direction, from light position to vertex

vecl3 lightDirection = uLightPosition - vertex.xyz;
vTangentLightDir = lightDirection * tbnMatrix;
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7. Inthe fragment shader, first we extract the tangent space normal from the
normal map texture. Since textures texels don't store negative values, the normal
components must be encoded to map from the [-1, 1] range into the [0, 1]
range. Therefore, they must be unpacked back into the correct range before use
in the shader. Fortunately, the algorithm to do so is simple to express in ESSL:

vec3 normal = normalize (2.0 * (texture2D (uNormalSampler,
vTextureCoord) .rgb - 0.5));

8. At this point, lighting is calculated almost identically to the vertex-lit model,
using the texture normal and tangent space light direction.
// Normalize the light direction and determine how much light is
hitting this point
vec3 lightDirection = normalize (vTangentLightDir) ;
float lambertTerm = max (dot (normal,lightDirection),0.20);

// Combine lighting and material colors

vec4 Ia = ulLightAmbient * uMaterialAmbient;

vec4 Id = uLightDiffuse * uMaterialDiffuse * texture2D (uSampler,
vTextureCoord) * lambertTerm;

gl _FragColor = Ia + Id;

The code sample also includes calculation of a specular term, to help accentuate
the normal mapping effect.

What just happened?

We've seen how to use normal information encoded into a texture to add a new level of
complexity to our lit models without additional geometry.

Ray tracing in fragment shaders

A common (if somewhat impractical) technique used to show how powerful shaders can be
is using them to ray trace a scene. Thus far, all of our rendering has been done with polygon
rasterization, which is the technical term for the triangle-based rendering that WebGL
operates with). Ray tracing is an alternate rendering technique that traces the path of light
through a scene as it interacts with mathematically defined geometry.
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Ray tracing has several advantages compared to polygonal rendering, the primary of which is
that it can create more realistic scenes due to a more accurate lighting model that can easily
account for things like reflection and reflected lighting. Ray tracing also tends to be far slower
than polygonal rendering, which is why it's not used much for real-time applications.

Ray tracing a scene is done by creating a series of rays (represented by an origin and
direction) that start at the camera's location and pass through each pixel in the viewport.
These rays are then tested against every object in the scene to determine if there are any
intersections, and if so the closest intersection to the ray origin is returned. That is then
used to determine the color that pixel should be.

Camera e

kY J .
\ \ \ \ \
\ \ \
\ >/ \ / )/ b
\ \ : \

There are a lot of algorithms that can be used to determine the color of the intersection
point, ranging from simple diffuse lighting to multiple bounces of rays off other objects to
simulate reflection, but we'll be keeping it simple in our case. The key thing to remember
is that everything about our scene will be entirely a product of the shader code.
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Time for action - examining the ray traced scene

1. Openthefile ch10 Raytracing.html in an HTML5 browser. You should
see a scene with a simple lit, bobbing sphere like the one shown in the
following screenshot:

WebGL Beginner's Guide - Chapter 10
Rayt raci ng [ PUBLISHING ]

View Code Controls

2. First, in order to give us a way of triggering the shader, we need to draw a full screen
quad. Luckily for us, we already have a class that helps us do exactly that from the
post-processing example earlier in this chapter! Since we don't have a scene to
process, we're able to cut a large part of the rendering code out, and the entirety
of our JavaScript drawing code becomes:

function render () {
gl.viewport (0, 0, c_width, c_height);
gl.clear (gl.COLOR BUFFER BIT | gl.DEPTH BUFFER BIT) ;

//Checks to see if the framebuffer needs to be resized to
match the canvas

post.validateSize () ;

post.bind () ;

//Render the fullscreen quad
post.draw () ;
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3.
4.

That's it. The remainder of our scene will be built in the fragment shader.

At the core of our shader, there are two functions: One which determines if a ray is
intersecting a sphere and one that determines the normal of a point on the sphere.
We're using spheres because they're typically the easiest type of geometry to
raycast, and they also happen to be a type of geometry that is difficult to represent
accurately with polygons.
// ro is the ray origin, rd is the ray direction, and s is the
sphere
float spherelnter( vec3 ro, vec3 rd, vecd s )

// Transform the ray into object space

vec3 Ooro = ro - S.XYZ;

float a = dot(rd, rd);

float b = 2.0 * dot (oro, rd);

float ¢ = dot(oro, oro) - s.w * s.w; // w is the sphere radius
float d = b * b - 4.0 * a * c;

if(d < 0.0) { return d; }// No intersection

return (-b - sqgrt(d)) / 2.0; // Intersection occurred
}
vec3 sphereNorm( vec3 pt, vecd s ) {

return ( pt - s.xyz )/ s.w;

Next, we will use those two functions to determine where the ray is intersecting
with a sphere (if at all) and what the normal and color of the sphere is at that point.
In this case, the sphere information is hardcoded into a couple of global variables
to make things easier, but they could just as easily be provided as uniforms

from JavaScript.

vec4 spherel = vec4(0.0, 1.0, 0.0, 1.0);
vec3 spherelColor = vec3 (0.9, 0.8, 0.6);
float maxDist = 1024.0;

float intersect( vec3 ro, vec3d rd, out vec3 norm, out vec3 color )

{

float dist = maxDist;
float interDist = spherelInter( ro, rd, spherel );

if ( interDist > 0.0 && interDist < dist )
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dist = interDist;

vec3 pt = ro + dist * rd; // Point of intersection
norm = sphereNorm(pt, spherel); // Get normal for that
point

color = spherelColor; // Get color for the sphere

return dist;

Now that we can determine the normal and color of a point with a ray, we need to
generate the rays to test with. We do this by determining the pixel that the current
fragment represents and creating a ray that points from the desired camera position
through that pixel. To aid in this, we will utilize the uInverseTextureSize
uniform that the PostProcess class provides to the shader.

vec2 uv = gl FragCoord.xy * ulnverseTextureSize;
float aspectRatio = ulnverseTextureSize.y/ulnverseTextureSize.x;

// Cast a ray out from the eye position into the scene

vec3 ro = vec3 (0.0, 1.0, 4.0); // Eye position is slightly up and
back from the scene origin

// Ray we cast is tilted slightly downward to give a better view
of the scene

vec3 rd = normalize(vec3( -0.5 + uv * vec2(aspectRatio, 1.0),
-1.0));

Finally, using the ray that we just generated, we call the intersect function to
get the information about the sphere intersection and then apply the same diffuse
lighting calculations that we've been using all throughout the book! We're using
directional lighting here for simplicity, but it would be trivial to convert to a point
light or spotlight model if desired.

// Default color if we don't intersect with anything
vec3 rayColor = vec3 (0.2, 0.2, 0.2);

// Direction the lighting is coming from
vec3 lightDir = normalize(vec3 (0.5, 0.5, 0.5));

// Ambient light color
vec3 ambient = vec3(0.05, 0.1, 0.1);

// See if the ray intesects with any objects.
// Provides the normal of the nearest intersection point and color
vec3 objNorm, objColor;
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float t = intersect(ro, rd, objNorm, objColor);

if ( t < maxDist )

float diffuse = clamp (dot (objNorm, lightDir), 0.0, 1.0); //
diffuse factor

rayColor = objColor * diffuse + ambient;

gl FragColor = vec4(rayColor, 1.0);

8. Rendering with the preceding code will produce a static, lit sphere. That's great,
but we'd also like to add a bit of motion to the scene to give us a better sense of
how fast the scene renders and how the lighting interacts with the sphere. To add
a simple looping circular motion to the sphere we use the uTime uniform to modify
the X and Z coordinates at the beginning of the shader.

spherel.x = sin(uTime) ;
spherel.z = cos(uTime) ;

What just happened?

We've just seen how we can construct a scene, lighting and all, completely in a fragment
shader. It's a simple scene, certainly, but also one that would be nearly impossible to render
using polygon-based rendering. Perfect spheres can only be approximated with triangles.

For this example, we've kept things simple by having only a single sphere in the scene.
However, all of the pieces needed to render several spheres in the same scene are in
place! See if you can set up a scene with three of four spheres all with different coloring
and movement.

As a hint: The main shader function that needs editing is intersect.

summary

In this chapter, we tried out several advanced techniques and learned how we could use
them to create more visually complex and compelling scenes. We learned how to apply
post-process effects by rendering a framebuffer, created particle effects through the use
of point sprites, created the illusion of complex geometry through the use of normal maps,
and rendered a raycast scene using nothing but a fragment shader.

These effects are only a tiny preview of the vast variety of effects possible with WebGL.
Given the power and flexibility of shaders, the possibilities are endless!
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architectural updates, WebGLApp
about 156
animation timer, creating 158
rendering rate, configuring 157
support, for matrix stacks 157
WebGLApp review 156
architecture
reviewing 288-290
ARRAY_BUFFER_BINDING value 45
ARRAY_BUFFER value 45
aspect 137
asynchronous loading, with AJAX
about 51-53
cone, loading with AJAX + JSON 54-56
Nissan GTX, loading 56, 57
web server requirement 54
web server, setting up 53
asynchronous response 52
attachShader(Object program, Object shader),
WebGL function 91
attributelist array 188
attributes
about 26
and uniforms, differences 63
associating, to VBOs 31, 32
aVertexColor attribute 180
aVertexPosition attribute 107
Axis.js 143, 290



B

Back Face Culling button 219
background color 84
bilinear filtering 238
billboard 325
bindBuffer(ulong target, Object buffer) method
30
blend color, alpha blending 213
blend equation, alpha blending 213
Blender 291
Blender models
exporting 302
blending function
about 211, 212
separate 212
blending function, alpha blending 211, 212
bool 69
bottom 137
BouncingBall function 165
BouncingBall.update() method 165
b-splines interpolation 172-174
bufferData function 43
bufferData method 28
bufferData(ulong target, Object data, ulong
type) method 31
BUFFER_SIZE parameter 46
buffers, WebGL
bindBuffer(ulong target, Object buffer) method
30
bufferData(ulong target, Object data, ulong
type) method 31
creating 27-30
deleteBuffer(Object aBuffer) method 30
getBufferParameter(type, parameter)
parameter 45
getParameter(parameter) parameter 45
manipulating 30, 45
states 46, 47
validation, adding 47
var aBuffer = createBuffer(void) method 30
BUFFER_USAGE parameter 46
bvec2 69
bvec3 69
bvecd 69

C

camera
about 10
camera axis 130
light positions, updating 134, 135
Nissan GTX, exploring 131-133
right vector 130
rotating, around location 129
tracking 129
tracking camera 129
translating, in line of sight 129
types 128
up vector 130
camera axis 130
Cameralnteractor class 131, 270
Cameralnteractor.js 290
camera interactor, WebGL properties
creating 298
Camera.js 290
camera matrix
about 120
camera rotation 123
camera transform 127
camera translation 121-123
matrix multiplications, in WebGL 127, 128
rotations, combining 126, 127
rotations, exploring 124-126
translations, combining 126, 127
camera position 298
camera rotation
about 123
and camera translations, combining 126, 127
exploring 124-126
camera space
versus world space 122-126
camera transform 127
camera translation
about 121
and camera rotation, combining 126, 127
exploring 122, 123
camera, types
about 128
orbiting camera 129
camera variable 298
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camera, WebGL properties
setting up 298
canvas
about 10
clicking on 264, 265
canvas element 264
canvas.onmouseup function 264
checkKey function 17
c_height 266
CLAMP_TO_EDGE 317
CLAMP_TO_EDGE wrap mode 244
clear function 17
client-based rendering 9
clientHeight 266
cMatrix. See camera matrix
colors
constant coloring 179
per-fragment coloring 181
pre-vertex coloring 180, 181
storing, by creating texture 259
using, in lights 185
using, in objects 179
using, in scene 206
using, in WebGL 178
colors, using in lights
about 185
getUniformLocation function 185
uniform4fv function 185
compileShader function 91
Cone First button 223
configure function
about 144, 184, 200, 248, 264, 278, 308
updating 193, 194
configureGLHook 143
configure, JavaScript functions 289
configureParticles 328
constant coloring
about 179

and per-fragment coloring, comparing 181-184

context

used, for accessing WebGL API 18
context attributes, WebGL

setting up 15-18
copy operation 116
cosine emission law 66
createProgram(), WebGL function 91

createShader function 91
creation operation 116
cross product
used, for calculating normals 61
cube
texturing 231-233
cube maps
about 250, 251
cube map-specific function 251
using 252-254

D

deleteBuffer(Object aBuffer) method 30
depth buffer 208
depth function
about 210
gl. ALWAYS parameter 210
gl.EQUAL parameter 210
gl.GEQUAL parameter 210
gl.GREATER parameter 210
gL.LEQUAL parameter 210
gl.LESS parameter 210
gl.NEVER parameter 210
gl.NOTEQUAL parameter 210
depth information
storing, by creating Renderbuffer 260
depth testing 208, 209
dest 137
diffuse 67
diffuseColorGenerator function 275, 276
diffuse material property 179
directional lights 99
directional point light 202-204
discard command 207
div tags 292
d, materials uniforms 296
doLagrangelnterpolation function 173
dolinearlinterpolation function 173
drawArrays function
about 33, 34, 288
using 34, 35
drawElements function
about 33, 43,288
using 36, 37
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draw function
about 144, 151, 200, 220, 248, 263, 270
updating 194, 195

drawScene function 39

drawSceneHook 143

dropped frames 153

dx function 281

dy function 281

DYNAMIC_DRAW 31

E

E 81
ELEMENT_ARRAY_BUFFER_BINDING value 45
ELEMENT_ARRAY_BUFFER value 45
end picking mode 273
ESSL
about 68
and WebGL, gap bridging 93-95
fragment shader 75
functions 71, 72
operators 71,72
programs, writing 75, 76
storage qualifier 69
uniforms 72,73
varyings 73
vector, components 70
vertex attributes 72
vertex shader 73,74
ESSL programs, writing
Lambertian reflection model, Goraud shading
with 76, 77
Phong reflection model, Goraud shading with
80-83
Phong shading 86-88
Euclidian Space 106
exponential attenuation factor 205
Export OBJ panel
Apply Modifiers 302
Material Groups 303
Objects as OBJ Objects 302
Triangulate Faces 302
Write Materials 302
eye position 258

F
f

81

far 137

Fi

eld of View. See FOV

filter modes, texture

about 234, 235
LINEAR filter 238, 239
maghnification 235
minification 235
NEAREST filter 238
setting 236

texels 235

using 237

first-person camera 129
flagX variable 275
flagZ variable 275

float 69

FI

oor.js 143, 290

fountain sparks

creating, point sprites used 327-329

FOV 136
fovy 137
fragment shader

about 25

ray tracing 334, 335

unique labels, using 277, 278
updating 191-193

fragment shader, ESSL 75
framebuffer

about 25, 316
creating, for offscreen rendering 260, 261

framebuffer, post processing effect

creating 316, 317

frozen frames 154
frustum 110
functions, ESSL 71, 72

G

generateMipmap 241
generatePosition function 165
geometry

rendering, in WebGL 26

geometry, post processing effect

creating 317, 318
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getBufferParameter(type, parameter) parameter

45
getGLContext function 17, 39
getParameter function 287
getParameter(parameter) parameter 45
getProgramParameter(Object program, Object
parameter), WebGL function 91
getShader function 90, 91
getUniformLocation function 185
getUniform(program, reference), WebGL
function 93
gl.ALWAYS parameter 210
gl.ARRAY_BUFFER option 28
gl.bindTexture 246
gl.blendColor ( red, green, blue, alpha) function
215
gl.blendEquation function 213
gl.blendEquation(mode) function 215
gl.blendEquationSeparate(modeRGB,
modeAlpha) function 215
gl.blendFuncSeparate(sW_rgb, dW_rgb, sW_a,
dW_a) function 214
gl.blendFunc (sW, dW) function 214
gl.ELEMENT_ARRAY_BUFFER option 28
gl.enable|disable (gl.BLEND) function 214
gl.EQUAL parameter 210
gl_FragColor variable 261
gl.GEQUAL parameter 210
gl.getParameter function 186
gl.getParameter(pname) function 215
gl.GREATER parameter 210
gL.LEQUAL parameter 210
gl.LESS parameter 210
glMatrix operations
copy operation 116
creation operation 116
identity operation 116
inverse operation 116
rotate operation 116
transpose operation 116
gl.NEVER parameter 210
gl.NOTEQUAL parameter 210
Globals.js 143, 289
gl_PointSize value 325
glPolygonStipple function 207

pixels) function 267

ESSL

bool 69

bvec2 69

bvec3 69

bvecd 69

float 69

int 69

ivec2 69

ivec3 69

ivec4 69

mat2 69

mat3 70

mat4 70

matrices in 117, 118

sampler2D 70

samplerCube 70

vec2 69

vec3 69

vec4d 69

void 69
ESSL uniforms

JavaScript, mapping 116, 117
gl.TEXTURE_CUBE_MAP_* targets 251
Goraud interpolation method 65
Goraud shading

about 83-85

with Lambertian reflection model 76, 77

with Phong reflection model 80-83
GUI

about 292, 293

WebGL support, adding 293, 295

H

hardware-based rendering 8
height attribute 12
hitPropertyCallback(object) callback 273
hitProperty function 279
hits

looking for 268

processing 269
hits function 280
homogeneous coordinates 106-108
hook() 143

gl.readPixels(x, y, width, height, format, type,
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HTML5 canvas
attributes 12
creating, steps for 10
CSS style, defining 12
height attribute 12
id attribute 12
not supported 12
width attribute 12

IBOs 24
id attribute 12
identity operation 116
illum, materials uniforms 296
Index Buffer Objects. See 1BOs
index parameter 32, 275
indices 24
initBuffers function 39, 40
initLights function 90
initProgram function 39, 90, 94
initTransforms function 144, 157
initWebGL function 17
int 69
interactivity
adding, with JQuery Ul 196
interactor function 280
interpolation
about 170
B-Splines 172
linear interpolation 170
polynomial interpolation 170, 171
interpolation methods
about 65
Goraud interpolation method 65
Phong interpolation method 65, 66
interpolative blending, alpha blending mode
216
intersect function 338
INVALID_OPERATION 28
inverse of matrix 127
inverse operation 116
ivec2 69
ivec3 69
ivecd 69

J

JavaScript

mapping, to ESSL uniforms 116, 117
JavaScript array

used, for defining geometry 26, 27
JavaScript elements

JavaScript timers 152

requestAnimFrame function 151
JavaScript matrices 116
JavaScript Object Notation. See JSON
JavaScript timers

about 152

used, for implementing animation sequence

158

JQuery Ul

interactivity, adding with 196
JQuery Ul widgets

URL 196
JSON

about 48

decoding 50, 51

encoding 50, 51

JSON-based 3D models, defining 48-50

K

Khronos Group web page
URL 8
KTM 114

L

Lambert coefficient 76
Lambertian reflection model
Goraud shading with 76, 77
light, moving 78, 80
uniforms, updating 77, 78
Lambertian reflection model, light reflection
models 66
Lambert’s emission law 66
left 137
life-cycle functions, WebGL
about 144
configure function 144
draw function 144
load function 144
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light ambient term 83
light color (light diffuse term) 83
light diffuse term 78
lighting 64
light positions
about 185
updating 134, 135
light reflection models
about 66
Lambertian reflection model 66
Phong reflection model 67
lights
about 10, 60, 63, 178, 188
colors, using 185
multiple lights, using 186
objects, support adding for 187, 188
properties 186
Lights.js 290
light specular term 84
lights, WebGL properties
creating 299
light uniform arrays
uLa[NUM_LIGHTS] 297
uLd[NUM_LIGHTS] 297
uLs[NUM_LIGHTS] 297
LINEAR filter 238, 239
linear interpolation 170
LINEAR_MIPMAP_LINEAR filter 241
LINEAR_MIPMAP_NEAREST filter 240
LINE_LOOP mode 44
LINES mode 43
LINE_STRIP mode 44
linkProgram(Object program), WebGL function
91
loadCubemapFace 252
load function 144, 162, 194, 200, 301, 308
load, JavaScript functions 289
loadObject function 277
loadSceneHook 143
local transformations, with matrix stacks
about 158
dropped and frozen frames, simulating 160
simple animation 158, 159
local transforms 149

M

maghnification 235
mat2 69
mat3 70
mat4 70
mat4.ortho(left, right, bottom, top, near, far,
dest) function 137
matd.perspective(fovy, aspect, near, far, dest)
function 137
material ambient term 84
Material Groups, Export OBJ panel 303
materials 62, 63
material specular term 84
materials uniforms
d 296
illum 296
ukKa 296
uKd 296
uKs 296
uNi 296
uNs 296
Material Template Library (MTL) 291
Math.random function 275
Matirx Stack Operations
diagrammatic representation 150
matrices
in ESSL 117, 118
uMVMatrix 117
uNMatrix 117
uPMatrix 117
matrix handling functions, WebGL
initTransforms 144
setMatrixUniforms 146
updateTransforms 145
matrix multiplications
in WebGL 127,128
matrix stacks
about 150
connecting 158
support, adding for 157
used, for implementing local transformations
158
minification 235
mipmap chain 240
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mipmapping
about 239
generating 241, 242
LINEAR_MIPMAP_LINEAR filter 241
LINEAR_MIPMAP_NEAREST filter 240
mipmap chain 240
NEAREST_MIPMAP_LINEAR filter 240
NEAREST_MIPMAP_NEAREST filter 240
MIRRORED_REPEAT wrap mode 245, 246
miss 268
model matrix 108
Model-View matrix
about 115-119
fourth row 120
identity matrix 119
rotation matrix 120
translation vector 120
updating 150
Model-View transform

and projective transform, integrating 140-142

updating 150
modes

LINE_LOOP mode 44

LINES mode 43

LINE_STRIP mode 44

POINTS mode 43

rendering 41, 42

TRIANGLE_FAN mode 44

TRIANGLES mode 43

TRIANGLE_STRIP mode 44
moveCallback(hits,interactor, dx, dy) callback

273

movePickedObjects function 280
multiple lights

handling, uniform arrays used 196, 197
multiplicative blending, alpha blending mode

216

multitexturing

about 246

accessing 247

using 247-249
mvMatrix 128

N

NDC 111
near 137

NEAREST filter 238
NEAREST_MIPMAP_LINEAR filter 240
NEAREST_MIPMAP_NEAREST filter 240
Nissan GTX

example 102

exploring 131-133
Nissan GTX, asynchronous response

loading 56, 57
non-homogeneous coordinates 107
Non Power Of Two (NPOT) texture 242
Normalized Device Coordinates. See NDC
normal mapping

about 330, 331

using 332-334
normal matrix

about 114, 115

calculating 113,114
normals

about 61-63

calculating 61

calculating, cross product used 61

updating, for shared vertices 62
normal transformations

about 113

normal matrix, calculating 113, 114
normal vectors 113
norm parameter 32

(o)

objectLabelGenerator function 275
objects

about 10

colors, using 179
Objects as OBJ Objects, Export OBJ panel 302
OBl files

parsing 306
OBJ format

about 303, 304

Vertex 305

Vertex // Normal 305

Vertex / Texture Coordinate 305

Vertex / Texture Coordinate / Normal 305
offscreen framebuffer

framebuffer, creating to offscreen rendering

260, 261
pixels, reading from 266, 267
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Renderbuffer, creating to store depth informa-
tion 260
rendering to 262-264
setting up 259
texture, creating to store colors 259
offscreen rendering
framebuffer, creating 260, 261
offset parameter 32
onblur event 152
one color per object
assigning, in scene 261
onfocus event 152
onFrame function 162
onlLoad event 90, 156
onmouseup event 264
OpenGL ES Shading Language. See ESSL
OpenGL Shading Language ES specification
uniforms 186
operators, ESSL 71, 72
optimization strategies
about 166
batch performance, optimizing 167
translations, performing in vertex shader 168,
169
orbiting camera 129
orthogonal projection 137, 139, 140
about 136

P

parametric curves
about 160
animation, running 163
animation timer, setting up 162
ball, bouncing 164, 165
ball, drawing in current position 163
initialization steps 161
particle effect 325
pcolor property 277, 279
per-fragment coloring
about 181
and constant coloring, comparing 181-184
cube, coloring 181-184
perspective division 111, 112
perspective matrix
about 110, 115, 135, 136
Field of view (FOV) 136

orthogonal projection 137-140
perspective projection 136-140
projective transform and Model-View
transform, integrating 140-142
perspective projection 136, 137-140
per-vertex coloring 180, 181
Phong lighting
Phong shading with 88
Phong reflection model
about 295
Goraud shading with 80-83
Phong reflection model, light reflection models
67
Phong shading
about 86, 88, 295
with Phong lighting 88
pickedObject 268
picker architecture
about 272
add hit to picking list 273
end picking mode 273
picker searches for hit 273
remove hit from picking list 273
user drags mouse in picking mode 273
picker configuration
for unique object labels 278- 282
Picker.js 290
Picker object 272
picker searches for hit 273
picking
about 257, 258
application architecture 269-272
Picking Image button 272
pixels 25
about 25
reading, from offscreen framebuffer 266, 267
POINTS mode 43
POINTS primitive type 325
point sprites
about 325
POINTS primitive type 325
using, to create sparks fountain 327-329
polygon rasterization 334
polygon stippling 207
polynomial interpolation 170, 171
pos_cone variable 158
positional lights
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about 61, 99
in action 100, 101
positionGenerator function 274
pos_sphere variable 158
PostProcess class 338
post processing effect
about 315
architectural updates 320
example 316
framebuffer, creating 316, 317
geometry, creating 317, 318
shader, setting up 318, 319
testing 320-324
previous property 280
processHitsCallback(hits) callback 273
processHits function 283, 285
program attributes, WebGL properties
mapping 300
Program.js 143, 290
projection transform 110
projective Space 106
projective transform

and Model-View transform, integrating 140,

141, 142
projective transformations 106

R

R 81
ray casting 258
ray tracing
in fragment shaders 334, 335
scene, examining 336-339
removeHitCallback(object) callback 273
remove hit from picking list 273
removeHit function 279
Renderbuffer
creating, to store depth information 260
renderFirst(objectName) 223
render function 262, 263, 270, 278, 308
rendering
about 8, 308
application, customizing 310-312
client-based rendering 9
hardware-based rendering 8
server-based rendering 9
software-based rendering 8

rendering order 223
rendering pipeline
about 24
attributes 26
fragment shader 25
framebuffer 25
uniforms 26
updating 207, 208
varyings 26
Vertex Buffer Objects (VBOs) 25
vertex shader 25
rendering rate
configuring 157
render, JavaScript functions 289
renderLast(objectName) 223
renderLater(objectName) 223
renderLoop function 39
renderOrder() 224
renderSooner(objectName) 223
REPEAT wrap mode 244
requestAnimFrame function 151, 152
resetParticle function 328
RGBA model 178
right 137
right vector 130
rotate operation 116
rotation matrix 120
Runge’s phenomenon 171
runWebGLApp function 90, 156, 158, 263

S

sampler2D 70
sampler2D uniform 230
samplerCube 70
samplers 230
scalars array 183
scaleX variable 281
scaleY variable 281
scene
about 179
blue light, adding 190
color, using 206
one color per object, assigning 261
setting up 297
scene.js 143, 290
scene object 301, 309
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sceneTime variable 163
SceneTransform.js 290
SceneTransforms object 157
SceneTransforms object, WebGL properties 298
server-based rendering 9
setMatrixUniforms function 146, 157
shader

about 295

textures, using 230
shader, post processing effect

setting up 318, 319
shaderSource function 91
shading 64
sharing method. See interpolation methods
shininess 84
size parameter 32
software-based rendering 8
specular 67
sphere color (material diffuse term) 77, 84
square

color, changing 41

drawScene function 39

getGLContext function 39

initBuffers function 39, 40

initProgram function 39

rendering 37, 38

renderLoop function 39
square.blend 303
startAnimation function 158, 162
STATIC_DRAW 31
storage qualifier, ESSL

attribute 69

const 69

uniform 69

varying 69
STREAM_DRAW 31
stride parameter 32
subtractive blending, alpha blending mode 216
system requisites, WebGL 8

T

tangent space 331
texels 235
teximage2D call 227
texParameteri 236, 242
texture

coordinates, using 228, 229

creating 226, 227

creating, to store colors 259

filter modes 234, 235

mapping 226

mipmapping 239

texlmage2D call 227

uploading 227, 228

using, in shader 230
texture2D 231
texture coordinates

using 228, 229
TEXTURE_CUBE_MAP target 251
texture mapping 226
TEXTURE_MIN_FILTER mode 239, 240
texture, using in shader

about 230

cube, texturing 231-233
texture wrapping

about 242

CLAMP_TO_EDGE mode 244

MIRRORED_REPEAT mode 245, 246

modes 243

REPEAT mode 244
timing strategies

about 152

animation and simulation, combined approach

154-156

animation strategy 153

simulation strategy 154
top 137
tracking camera

about 129

camera model 130

camera, rotating around location 129

camera, translating in line of sight 129

light positions, updating 134, 135

Nissan GTX, exploring 131-133
transforms.calculateModelView() 159
translation vector 120
transparent objects

creating 218, 219

face culling 218

face culling used 220, 221
transparent wall

creating 222
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transpose operation 116
TRIANGLE_FAN mode 44

TRIANGLES mode 43

TRIANGLE_STRIP mode 44

Triangulate Faces, Export OBJ panel 302
trilinear filtering 241

type parameter 32

U

uKa, materials uniforms 296
uKd, materials uniforms 296
uKs, materials uniforms 296
uLa[NUM_LIGHTS], light uniform arrays 297
uLd[NUM_LIGHTS], light uniform arrays 297
uLs[NUM_LIGHTS], light uniform arrays 297
uMVMatrix 117
uniform4fv function 185
uniform[1234][fi]v, WebGL function 93
uniform[1234][fi], WebGL function 93
uniform arrays

declaration 197, 198

JavaScript array mapping 198

light uniform arrays 297

using, to handle multiple lights 196, 197

white light, adding to scene 198-201
uniformList array 188
uniforms

about 26, 186

and attributes, differences 63

passing, to programs 188, 189
uniforms, ESSL 72
uniforms, WebGL properties

initialization 301

mapping 300
uNi, materials uniforms 296
unique object labels

implementing 274

picker, configuring for 278-282

random scene, creating 274- 277

scene, testing 282-284

using, in fragment shader 277, 278
uNMatrix 117
uNs, materials uniforms 296
unwrapping 229

uOffscreen uniform 262

updatelLightPosition function 196

update method 163

updateParticles function 329

updateTransforms 145

updateTransforms function 139, 145, 157

uPMatrix 117

up vector 130

Use Lambert Coefficient button 184

useProgram(Object program), WebGL function
91

user drags mouse in picking mode 273

Utils.js 144, 289

UV Mapping 230

UVs 230

Vv

var aBuffer = createBuffer(void) method 30
variable declaration
storage qualifier 69
Var reference = getAttribLocation(Object
program,String name), WebGL function
92
var reference= getUniformLocation(Object
program,String uniform), WebGL function
92
varyings 26
varyings, ESSL 73
VBOs
about 24, 25, 181
attribute, enabling 33
attribute, pointing 32
attributes, associating 31, 32
drawArrays function 33, 34
drawElements function 33, 34
index parameter 32
norm parameter 32
offset parameter 32
rendering 33
size parameter 32
stride parameter 32
type parameter 32
vec2 69
vec3 69
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vecd 69
vector components, ESSL 70, 71
vector sum 62
vertexAttribPointer 33
vertex attributes, ESSL 72
Vertex Buffer Objects. See VBOs
Vertex // Normal, OBJ format 305
Vertex, OBJ format 305
Vertex Shader
about 25
updating 191
Vertex Shader attribute 181
vertex shader, ESSL 73, 74
Vertex / Texture Coordinate / Normal, OB)J
format 305
Vertex / Texture Coordinate, OBJ format 305
vertex transformations
about 106, 109
homogeneous coordinates 106-108
model transform 108, 109
perspective division 111, 112
projection transform 110, 111
viewport transform 112
vertices 24
vertices array 183
vFinalColor[3] 70
vFinalColor variable 70
view matrix 109
viewport coordinates 112
viewport function 112, 141
viewport transform 112
Virtual Car Showroom application
about 18
application, customizing 310-312
bandwidth consumption 292
cars, loading in WebGl scene 307
creating 290, 291
finished scene, visualizing 19, 20
models, complexity 291
network delays 292
shader quality 291
void 69

W

wall
working on 95-98
Wall First button 223

Wavefront OBJ 301

WebGL
about 7
advantages 9
and ESSL, gap bridging 93-95
application, architecture 89, 90
attributes, initializing 92
buffers, creating 27-30
client-based rendering 9
colors, using 178
context attributes, setting up 15-18

geometry defining, JavaScript arrays used 26,

27
geometry, rendering 26
hardware-based rendering 8
matrix multiplications 127, 128
program, creating 90-92
rendering 8
server-based rendering 9
software-based rendering 8
system requisites 8
uniforms, initializing 92
WebGL 3D scenes
lights 178
objects 178
scene 179
WebGL alpha blending API
about 214

gl.blendColor ( red, green, blue, alpha) function

215
gl.blendEquation(mode) function 215
gl.blendEquationSeparate(modeRGB,
modeAlpha) function 215

gl.blendFuncSeparate(sW_rgb, dW_rgb, sW_a,

dW_a) function 214
gl.blendFunc (sW, dW) function 214
gl.enable|disable (gl.BLEND) function 214
gl.getParameter(pname) function 215
WebGL API
accessing, context used 18
WebGLApp class 152
WebGLApp.js 144, 289
WebGL application
creating 287, 288
structure 10
Virtual Car Showroom application 290, 291
WebGL application, structure

[353]




about 10
camera 10
canvas 10
lights 10
objects 10
WebGLApp object 156
WEBGLAPP_RENDER_RATE 157
WebGLApp.run() 157
WebGL context
about 13
accessing, steps for 13, 14
WebGL examples, structure
about 142
life-cycle functions 144
matrix handling functions 144
objects supported 143
WebGL function
attachShader(Object program, Object shader)
91
createProgram() 91
getProgramParameter(Object program, Object
parameter) 91
getUniform(program, reference) 93
linkProgram(Object program) 91
uniform[1234][fi] 93
uniform[1234][fi]lv 93
useProgram(Object program) 91
Var reference = getAttribLocation(Object
program,String name) 92
var reference= getUniformLocation(Object
program,String uniform) 92
WebGL, implementation
about 115
JavaScript matrices 116

JavaScript matrices, mapping to ESSL uniforms
116, 117
matrices, in ESSL 117, 118
Model-View matrix 115
Normal matrix 115
Perspective matrix 115
WebGL index buffer 24
WebGL properties
camera interactor, creating 298
camera, setting up 298
configuring 297
lights, creating 299
program attributes, mapping 300
SceneTransforms object 298
uniform initialization 301
uniforms, mapping 300
WebGL vertex buffer 24
web server, asynchronous response
setting up 53
web server requirement, asynchronous response
54
Web Workers
about 156
URL 156
width attribute 12
window.requestAnimFrame() function 151
world space
versus camera space 122-126
Write Materials, Export OBJ panel 302

4

z-buffer. See depth buffer
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