THE EXPERT™S VOICE® IN OPEN SOURCE

The Definitive Guide to

ImageMagick

Lavarn hor fo tise the open sonrce TmageMagiok
ProgTain o tranEfern innToes,

M|LhaPl bhll

Lo |l|

v vtk

APIEsS

The Definitive Guide
to ImageMagick

Michael Still

Apress’

The Definitive Guide to ImageMagick
Copyright © 2006 by Michael Still

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (Hardback): 1-59059-590-4
Library of Congress Cataloging-in-Publication data is available upon request.
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Matt Wade

Technical Reviewer: Doug Jackson

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Manager: Kylie Johnston

Copy Edit Manager: Nicole LeClerc

Copy Editor: Kim Wimpsett

Assistant Production Director: Kari Brooks-Copony

Production Editor: Linda Marousek

Compositor and Artist: Kinetic Publishing Services, LLC

Proofreader: Kim Burton

Indexer: Carol Burbo

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section
and also at http://www.stillhq.com.

For my ever-patient and loving family—Catherine, Andrew, and Matthew—who put up
with me being distracted by random projects, including this one. Thanks to my friends who
encouraged me along the way and all those people who asked great questions that I didn’t
find enough time to answer. [hope your answers are somewhere in here.

Oh, and thanks, Dad, for coming over to provide moral support. What would I have done
without you to mind the cat and help me drink all the port? Thanks to Mum as well for all
the support during my childhood; it positioned me well to undertake a project like this.

Contents at a Glance

FOrEWOrd Xiii
Aboutthe AUthOr.o XV
About the Technical ReVieWer. o xvii
ACKNOWIBAgMENTS Xix
INtrOdUCHION. XXi
CHAPTER 1 Installing and Configuring ImageMagick......................... 1
CHAPTER 2 Performing Basic Image Manipulation.......................... 31
CHAPTER 3 Introducing Compression and Other Metadata 51
CHAPTER 4 Using Other ImageMagickTools................................ 79
CHAPTER 5 Performing Artistic Transformations 119
CHAPTER 6 Performing Other Image Transformations...................... 147
CHAPTER 7 Using the Drawing Commands 185
CHAPTER 8 PerlMagick: ImageMagick Programming with Perl 263
CHAPTER 9 Implementing Your Own Delegate withC 291
CHAPTER 10 RMagick: ImageMagick Programming with Ruby............... 301
CHAPTER 11 MagickWand: ImageMagick Programming with PHP 311
CHAPTER 12 Whereto GofromHere.. 319

Contents

FOrEWOrd Xiii
Aboutthe AUthOr.o XV
About the Technical ReVieWer. xvii
ACKNOWIBAgMENTS Xix
INtrOdUCHION. XXi
CHAPTER 1 Installing and Configuring ImageMagick................... 1
Installing Precompiled Versions ..., 1

Debian and Ubuntu Linux.................coooii i, 1

RedHatLinux.......... 2

Older ImageMagick Versions...................cocoiviiinn... 2

Microsoft Windowsco i 2

Installing from Source. ... 9

Introducing Dependencies..................coc it 9

Compiling on Unix Operating Systems. 10

Installing Using FreeBSD Ports 14

Compiling ImageMagick on Microsoft Windows. 15

Exploring the Architecture of ImageMagick 22

Using ConfigurationFiles, 23

Using Environment Variables................................. 25

Limiting Resource Usage on the Command Line................ 25

Determining What Is Configured 25

Using ImageMagick. ... 27

Online Help ... 27

Debug Qutput. ... 28

Verbose Qutput. ... i 28

What Version of ImageMagick Is Installed?..................... 29

CoNCIUSION 29

CHAPTER 2 Performing Basic Image Manipulation 31
Introducing Imaging Theory. ... 31

Vector Images.coo i 32

Rasterimagesc.ooi i 33

vii

viii

CONTENTS

CHAPTER 3

Invoking convert 35
Changing the Sizeofanimage.................. ...t 35
Making anIimageSmaller 35
Making an Image Smaller Without Specifying Dimensions 43
Understanding Geometries................. ..o, 46
Making animage Largerl 47
Processing Many ImagesatOnce............................. 49
CONCIUSION ... 49
Introducing Compression and Other Metadata 51
Compressing Images ..ot 51
Lossy Compression vs. Lossless Compression. 51
Which Format Is RightforYou? 57
Introducing Common File Formats 58
Introducing LZW Compression..................coooviviiint. 59
Comparing File Sizes. ... 59
Manipulating Compression Options with ImageMagick 61
Introducing Image Metadata...................................... 66
Altering How PixelsAre Stored 71
Introducing Gamma Correction............................... 73
Setting Color Intent and Profiles 74
Handling Images That Don’t Specify Dimensions. 74
Setting Image Resolution.....................l 74
Transparency with GIF., 75
Storing Multiple Image Formats 75
Adding, Removing, and Swapping Images 76
Creating Multiple Image Files 76
Decrypting Encrypted PDFsl 76
Manipulating Animated Images ..., 77
Changing the Frame Rate.................................... 77
Morphing Two Images.o ... 77
Creating Looping GIF Animations 77
Using GIF Disposal. ... 78
Harnessing Disposal Methods................................ 78

CONCIUSION . ..t e 78

CHAPTER 4

CHAPTER 5

CONTENTS
Using Other ImageMagick Tools 79
Using the Command-LineToolsccoviiiiiii... 79
COMPAIE ...ttt e e e e e 79
COMPOSITE 83
COMJUIE. . ettt e e e 95
CONVBI. . 95
identify. ... 95
IMPOM .. 98
OGNy, . 100
MONTAQE ... e 100
Using the Graphical Tools. ... 112
animate 112
display o 114
Conclusion 116
Performing Artistic Transformations 119
DIUr. 119
charcoal 120
COlONIZE .. 121
implode 124
MOISE .ttt 125
PaINt. .. 128
radial-blur. 129
7 11T 130
SBOMBNt ... 132
sepia-tone. 133
shade. 134
SharPeN 135
SOlarizZe 136
07 137
SWIEl. o 138
threshold. 139
UNSNAID . . o 140
WAV ..ttt 144
virtual-pixel. 145

CONCIUSION . ..ot e 146

ix

X CONTENTS

CHAPTER 6

CHAPTER 7

Performing Other Image Transformations.............. .. 147
Performing Transformationson Onelmage 147
Adding Borderstoanlimage 147
Rotatinganimage...................ccoiiiiiints. 149
Manipulating Contrast. i, 152
Ditheringanimage i, 155
Equalizinganimageo 157
Flippinganimage i, 159
Tintinganimage i 160
Negatinganimageccoiiiiiiiiiiin.s. 161
Normalizing, Enhancing, and Modulating an Image. 165
Shearinganlimage i 172
Rollinganimage ..., 175
Turning Multiple Images intoOnelmage........................... 176
Appending Images.co i 176
AveragingImagesoco i 181
Flatteninglmages i 183
ConCluSIONo 183
Using the Drawing Commands............................ 185
Specifying Colors. ... 185
Using Named Colorsccvrii et 185
Using HTML-Style Color Stringscoooouit. 186
USingRGB TUpIES. 194
SpecifyingaPage Size..............coo 195
Specifying a Background Color.........................oiials. 195
Specifying the Fill Color and Stroke Color.......................... 196
Setting Gravity 198
Annotating an Image with Text, 199
Drawing Simple Shapes.ooo i 210
Drawinga Single Point, 211
Drawing a StraightLine 211
DrawingaRectangle................. ..o, 212
Drawing a Rectangle with Rounded Corners 213
DrawingaCircle. i 214
Drawing anArc. ... 215
Drawing an Ellipse. o i 216
DrawingaPolyline............... i 216

DrawingaPolygon................c i 217

CHAPTER 8

CHAPTER 9

CONTENTS
DrawingaBezier.................co i 217
Drawing Text. ... o 218
Performing Color Operations That Take a Point and a Method. . .. 218
Transforming Your Drawingsoooviiiiin.s. 220

Compositing Images with the draw Command 230
Using the Over Operator................... oot 232
UsingtheInOperatoro i, 233
Usingthe QutOperator................t 233
Using the Atop Operator 234
Usingthe Xor Operator ..., 235
Usingthe PlusOperatorc.oiiii it 236
Using the Minus Operator.coooiiit. 237
Using the Difference Operator............................... 238
Using the Multiply Operator................................. 242
Using the Bumpmap Operator............................... 243
Performing Other Tasks with These Composition Operators 244

AntialiasingYourImages ... 245

Framinganimage................ . i 247

Writing Each StepoftheWay 252

Applying Affine Matrices.o 255

ConCIUSION 262

PerIMagick: ImageMagick Programming with Perl... ... 263

Presentingthe Problem i 263
Introducing the Format for This Chapter 264
Introducing the Code Structure 264

Using PhotoMagick.pm. ... 264

Introducing photomagickl 266

Introducing pmpublish 281

UsingtheTemplates................o i, 288
Using the IndexTemplate................................... 288
Usingthe Image Template 289
Using the Thumbnail Template 290

CoNnClUSION 290

Implementing Your Own Delegate withC 291

How Delegates Are Configured ...t 291

Writing a Simple Delegate inC............................oiit. 293

CONCIUSION . ..t e 299

Xi

Xii

CONTENTS

CHAPTER 10

CHAPTER 11

CHAPTER 12

RMagick: ImageMagick Programming with Ruby 301
Presentingthe Codecoo i, 301
Seeing the Helper Application inAction. 306
ConCIUSION 310

MagickWand: ImageMagick Programming with PHP. ... 311

Presentingthe Problem, 311
Presenting the Implementation................................... 311

Creating a Background Image............................... 313

Creatingthe Barimages.................ooviiiiiiiininn.. 313
Presentingthe Code ... 314
CONCIUSION 317
Where to Go fromHere 319
Where Do You Find Help Online?. 319
What If You Find a Bug in ImageMagick? 320
CoNCIUSION 320

Foreword

1 swear by my life and my love of it that I will never live for the sake of another man, nor
ask another man to live for mine.

—TJohn Galt in Atlas Shrugged, by Ayn Rand

Like many software projects, ImageMagick lacks good documentation. I designed it to be as
intuitive as possible so most users without the benefit of this book could surmise that the fol-
lowing command converts an image in the JPEG format to one in the PNG format:

convert image.jpg image.png

However, few would realize that the next command turns a flat, two-dimensional label
into one that looks three-dimensional with rich textures and simulated depth:

convert -background black -fill white -pointsize 72 label:Magick +matte w»

\(+clone -shade 110x90 -normalize -negate +clone -compose Plus -composite \) w
\(-clone 0 -shade 110x50 -normalize -channel BG -fx O +channel -matte \) =
-delete 0 +swap -compose Multiply -composite button.gif

ImageMagick has been in development for nearly 20 years, and for 20 years users of the proj-
ect have rightly complained about its lack of documentation. I have never had the opportunity to
write a book, because I am perpetually consumed with answering ImageMagick questions, fixing
bugs, and adding enhancements. So when Matt Wade from Apress approached me about writing
a book on ImageMagick, I did the proverbial happy dance.

Apress did well finding Michael Still to present ImageMagick to you. I know of Michael
because of some articles he wrote on ImageMagick for IBM DeveloperWorks. I often refer
ImageMagick users to those articles when they want a gentle introduction to using
ImageMagick from the command line.

ImageMagick started with a request by my DuPont supervisor, Dr. David Pensak, to dis-
play computer-generated images on a monitor capable of showing only 256 unique colors
simultaneously. In 1987, monitors that could display 24-bit true-color images were rare and
quite expensive. There were a plethora of chemists and biologists at DuPont but few computer
scientists to confer with. Instead, I turned to Usenet for help and posted a request for an algo-
rithm to reduce 24-bit images to 256 colors. Paul Raveling of the USC Information Sciences
Institute responded with not only a solution, but one that was already in source code and
available from his FTP site. Over the course of the next few years, I had frequent opportunities
to get help with other vexing computer science problems I encountered in the course of doing
my job at DuPont. Eventually, I felt compelled to give thanks for the help I received from the
knowledgeable folks on Usenet. I decided to freely release the image-processing tools
I developed to the world so that others could benefit from my efforts.

In 1990 few freely available image-processing tools existed, so I expected an enthusiastic
reception. Before a release was possible, Dr. Pensak had to convince upper management at

xiii

Xiv

FOREWORD

DuPont to give away what they might have perceived as valuable intellectual property. I suspect
they agreed simply because ImageMagick was not chemically or biologically based, so they did
not understand its value to the company. Either way, ImageMagick would not be available today
without DuPont’s permission to distribute it. ImageMagick was posted to Usenet’s comp.archives
group on August 1, 1990.

After ImageMagick’s release, I got the occasional request for an enhancement, a report of
a bug, or a contribution to the source base. In the mid-1990s, I released the culmination of these
efforts, ImageMagick 4.2.9. At the time, I thought ImageMagick was complete. Thousands of
folks worldwide were using it, and it was even showing up as part of a new operating system
being distributed freely called Linux.

The next generation of ImageMagick, version 5, started when Bob Friesenhahn contacted
me and began suggesting ways to improve it. Bob had seemingly boundless energy, questions,
and ideas. He suggested I revamp ImageMagick 4.2.9, so in addition to the command-line tools,
it should have a usable application programming interface (API) so users could leverage the
image-processing algorithms from other languages or scripts. Bob also wrote a C++ wrapper
for ImageMagick called Magick++ and began contributing enhancements such as the module
loader facility, automatic file identification, and test suites. In the meantime, the project picked
up a few other notable contributors: Glenn Randers-Pehrson, William Radcliffe, and Leonard
Rosenthol. By now, ImageMagick was being utilized by tens of thousands of users, who reacted
gruffly when a new release broke an existing API call or script. The other members of the group
wanted to freeze the API and command line, but I was not quite ready, since ImageMagick was
not quite what I had envisioned it could be. Bob and others created a fork of ImageMagick called
GraphicsMagick. I alone continued to develop ImageMagick.

I did not work alone for long. Anthony Thyssen contacted me about deficiencies in the
ImageMagick command-line programs. He pointed out that the command line was confusing
when dealing with more than one image. He suggested an orderly, well-defined method for
dealing with the command line, and this became ImageMagick 6 (the current release). His efforts
are detailed at his Web pages, Examples of ImageMagick Usage, at http://www.cit.gu.edu.au/
~anthony/graphics/imagické/. In addition to this book, I highly recommend you peruse his
site. He has illustrated the power of ImageMagick in ways even I did not know were possible.

It has been nearly 20 years since ImageMagick was first conceived, and it looks likely that
it will be here for another 20 and beyond. The command line and the API are stable, but there
is still work to do. We're currently working on improving the Scalable Vector Graphics (SVG)
support and adding better support for video formats. And, of course, I always have questions
from the community to keep me busy. In fact, I better get back to work—while I was writing
this foreword I received several e-mails with ImageMagick questions. I am grateful that in the
future, I'll be able to answer most ImageMagick questions simply by pointing people to this
book.

Cristy
Principal ImageMagick Architect
November 2005

About the Author

MICHAEL STILL has been working on imaging applications for eight years and has been pro-
gramming for many more. His interest in imaging applications started with his employment at
IPAustralia, the Australian patent, trademark, and designs office, where he was tasked with
modifying an open source PDF-generation library to support TIFF images. This developed into
along-term series of projects using custom imaging code and ImageMagick to implement a line
of business systems.

During this time, Michael was responsible for imaging databases, including a database of
nine million TIFF files for the Australian Patent Office and a database of all images associated
with trademarks in Australia. He also wrote his Panda PDF-generation library, as well as a vari-
ety of other open source imaging tools, in this time. You can find his open source code at
http://www.stillhq.com.

Michael has written a number of articles on ImageMagick for IBM DeveloperWorks
(http://www.ibm.com/developer/). He has also presented at a variety of conferences and was
previously the maintainer of the comp.text.pdf frequently asked questions (FAQ) document.

Michael has recently accepted a job with Google as a systems administrator. His experience
involves developing large-scale systems, performing systems administration of vertical systems
(many of which he developed), and solving other interesting-sounding engineering problems.
His previous employer was TOWER Software, developers of a leading Electronic Document and
Records Management (EDRM) product, where he worked on imaging problems, as well as
a variety of server functionality, including several Web-based products.

Xv

About the Technical Reviewer

DOUG JACKSON has worked in the IT industry since 1985 in fields ranging from hardware
design, communications, programming, systems administration, and IT security to project
management and consulting. During this time, he has become fluent in a number of program-
ming languages, including C/C++, Java, Assembler, and Forth, on both Microsoft and Unix
systems. Doug first encountered ImageMagick in 1997 while writing large-scale image-processing
and image-viewing software for the Australian Patent Office.

When Doug isn't being an information security consultant, he enjoys teaching the fine art
of sailing to Cub Scouts, playing guitar, and solving hardware puzzles with PIC microprocessors.
He is married to Megan, arguably the most wonderful and patient lady on the planet, and has
two terrific daughters (Cate and Sian).

Xvii

Acknowledgments

It always seemed corny to me that authors thank the usual suspects for helping with the pro-
duction of their book. They normally thank the publisher’s editorial team, their families, and
perhaps their workmates. My problem is that I now discover these sentiments are genuinely
true.

If it weren’t for Matt Wade initially contacting me and pitching the project, I wouldn't have
ever started. If it weren't for the able assistance of Tina Nielsen and my project manager, Kylie
Johnston, the project would have faltered along the way. If it weren't for the able review of the
manuscript by Doug Jackson and Matt Wade, then this book’s content would have suffered.
There is also, of course, the layout team, which has produced such a wonderful-looking finished
project, especially Linda Marousek, who was my contact point with that team.

Then there’s my family, who have gone out of their way to make my life easier while writing
the book. Be it leaving Daddy alone for a bit to hack on some sample code or just understand-
ing when I was dazed and confused after a day of writing—thanks, Catherine, Andrew, and
Matthew.

My workmates were instrumental, too; without the encouragement of Gordon Taylor,
Anthony Drabsch, Simon Dugard, Chris Crispin, Grant Allen, and Lindsay Beaton, I probably
wouldn't have let Matt talk me into writing the book.

Andrew Pollock deserves a special mention for providing the hosting for my site and the
blog for this book. Many thanks for your patient support and advice.

I want to save two final special acknowledgments to last—Kim Wimpsett was my copy
editor, and I never imagined that having my own personal English grammar coach would be
such fun. American English isn’'t my first language (I'm an Australian, and we do English the
British way, which is of course better), and I didn’t appreciate all the subtle differences until
Kim helped me out. The book flows better and makes more sense because of Kim'’s input.

Finally, this book would have nothing to talk about if it weren't for Cristy and all the other
contributors to ImageMagick over the years. ImageMagick is an incredibly deep product, which
makes it wonderful to write about. The efforts to which the team has gone to make a product
that works cannot be underestimated. Cristy recommended Anthony Thyssen, Bob Friesenhahn,
Glenn Randers-Pehrson, and William Radcliffe as being instrumental in the development of
ImageMagick and thus deserving of my thanks. Thanks, guys.

I'm sure I've forgotten to thank some people here, and I apologize to them for that.
Thanks, folks.

Xix

Introduction

The ideal reader of this book is someone with immediate imaging needs who is prepared to
either use command-line tools or use the ImageMagick programmer’s interface to write code.
Many of the concepts demonstrated are also available in the ImageMagick graphical tools, but
almost all the examples in this book focus on the command-line tools.

This book provides hundreds of working examples of how to use ImageMagick for everyday
problems, as well as the theory necessary to understand what'’s happening in those examples.
I recommend you install ImageMagick before reading this book so you can work along with
the examples provided. (Chapter 1 covers how to install ImageMagick for the first time.)

How This Book Is Structured

This book starts by describing how to install ImageMagick on your system and then covers
how to configure it. After that, I launch into covering the ImageMagick command-line tools.
Complete coverage isn't possible, however, because ImageMagick is so rich. After I've covered
the command-line tools, I show working examples of four applications developed with some
of the ImageMagick APIs.

The chapter breakdown is as follows:

Chapter 1, “Installing and Configuring ImageMagick™ Chapter 1 discusses how to install
and configure ImageMagick on Microsoft Windows and Unix machines, including how to
install binary versions, what those packages are likely to be called in your Linux distribu-
tion, and how to compile ImageMagick from source on both Unix and Microsoft Windows
operating systems.

Chapter 2, “Performing Basic Image Manipulation”: Chapter 2 covers simple image
manipulations such as resizing, sample, cropping, scaling, thumbnailing, and so forth.
This chapter contains information about all the ImageMagick transformations used to
create smaller or larger versions of an image. To discuss these topics, the chapter also
introduces the differences between raster and vector image formats and how raster for-
mats are encoded.

Chapter 3, “Introducing Compression and Other Metadata™ In Chapter 3, I discuss compres-
sion options for image files, show how to use ImageMagick to change the compression used
for a file, and provide recommendations about which file format to use in various scenarios.
I'll also discuss file formats that can contain more than one image per file, show how to

handle animations, and discuss the metadata you can associate with image files.

XXi

XXxii

INTRODUCTION

Chapter 4, “Using Other ImageMagick Tools”: Chapter 4 covers the various other
ImageMagick tools that aren’t covered extensively in the rest of the book. Five chapters in
the book cover the convert command; this chapter covers the others: compare, composite
(previously known as combine), conjure, identify, import, mogrify, montage, animate, and
display. The rationale behind the focus on the convert command is that most of the
functionality offered by these commands in this chapter can also be accessed via convert.

Chapter 5, “Performing Artistic Transformations”: Chapter 5 is my chance to show off the
more artistic transformations that ImageMagick can apply; these include blurring images,
adding charcoal effects, imploding images, adding noise to images, making an image look
like it was painted by hand, adding beveled edges, creating shadows, spreading pixels ran-
domly, and so forth.

Chapter 6, “Performing Other Image Transformations™ Finally for the command-line
image transformations, there is Chapter 6. This chapter mops up all the command-line
operations that haven’t been demonstrated in earlier chapters, apart from those used to
draw or annotate images (which are covered in the next chapter). These operations are
the more routine of those offered by ImageMagick, such as adding borders, rotating
images, manipulating contrast in the image, dithering an image, and so on.

Chapter 7, “Using the Drawing Commands”: Chapter 7 is the last chapter that documents

the convert command. In this chapter, I discuss how to create and annotate images using
the drawing commands that ImageMagick implements. Also, I discuss how to specify col-
ors and then walk you through each of the drawing and annotation commands available.

Chapter 8, “PerlMagick: ImageMagick Programming with Perl”: Chapter 8 is the first of the
programming chapters, and it covers a Web photo management system written in Perl
using the PerlMagick ImageMagick interface.

Chapter 9, “Implementing Your Own Delegate with C”: ImageMagick implements support
for new image formats with delegates. This chapter demonstrates how to write a simple
delegate to support your own image format using the C programming language.

Chapter 10, “RMagick: ImageMagick Programming with Ruby”: Chapter 10 demonstrates
a simple command-line interface to build batch conversion jobs written in Ruby. The code
allows you to interactively apply ImageMagick operations to an image and then apply all
the operations you used on that image to all the images in a specified directory with

a specified filename filter.

Chapter 11, “MagickWand: ImageMagick Programming with PHP”: Chapter 11 demonstrates
a PHP implementation of an on-the-fly graph-generation page using ImageMagick. The
graphs use image composition to provide nice-looking output.

Chapter 12, “Where to Go from Here”: The final chapter of the book covers those final little
issues that are always handy to know, such as where to find information about topics not
covered in this book, how to join the ImageMagick community, and how to report bugs.

INTRODUCTION

Prerequisites

This book discusses ImageMagick 6.2.3. The concepts discussed are applicable to future and
previous releases, however. Further, the book’s content is relevant regardless of the platform
on which ImageMagick is installed.

You can download ImageMagick from its Web site at http://www.imagemagick.org.

Contacting the Author

You can e-mail Michael Still at imagemagick@stillhq.com, and you can find his Web
site at http://www.stillhq.com. You can find the ImageMagick blog for the book at
http://www.stillhq.com/imagemagick/, and you can find the Apress page for the book at
http://www.apress.com/book/bookDisplay.html?bID=10052.

For all the examples in this book, the figures are available online at http://www.apress.com
in the Source Code section and at http://www.stillhqg.com/imagemagick/book/. The online
figures are full-color images, so you can download them if you need to further understand an
example.

xxiii

CHAPTER 1

Installing and Configuring
ImageMagick

This chapter will give you detailed instructions on how to obtain, install, and configure
ImageMagick. It also will discuss the architectural design of ImageMagick and explain how
you can use that architecture to expand and customize ImageMagick. Finally, it will discuss
how to get online help and debug problems you might have with ImageMagick.

If you already have ImageMagick installed on your machine, then you can skip the
“Installing Precompiled Versions” and “Installing from Source” sections of this chapter.

Installing Precompiled Versions

By far the quickest and easiest way to install ImageMagick is to install the precompiled binary
version, which is probably packaged by either your operating system provider or the ImageMagick
team. Too many Linux distributions exist to cover all of them here, so I have limited this discus-
sion to the two main packaging formats—apt and RPM.

If your chosen operating system isn’t covered in this chapter, then fear not—you have two
options for installing ImageMagick. First, it's quite possible that your operating system provider
has packaged ImageMagick, so you should check in the normal place for your operating system.
Second, failing that, you can refer to the “Installing from Source” section of this chapter to install
ImageMagick from source. To do this, you'll need a compiler installed on your machine, though.

Debian and Ubuntu Linux

On both Debian and Ubuntu Linux, the name of the package to install is imagemagick. I person-
ally run Debian Unstable on my laptop, and this installed, until recently, the same version of
ImageMagick that Ubuntu 5.04 (Hoary Hedgehog) installs, which is 6.0.6. This is quite old
compared with the latest version of ImageMagick at the time of writing of this book, which is
6.2.3.

Debian Unstable has now upgraded to the latest upline ImageMagick, so you should see
that new version flow through to the next release of Ubuntu as well.

CHAPTER 1 ©" INSTALLING AND CONFIGURING IMAGEMAGICK

Red Hat Linux

Fedora Core 3 has packaged ImageMagick as well. The name of the package to install is
ImageMagick, and when I did a default install, it was already installed on the system, which
was nice. The version of ImageMagick currently packaged with Fedora Core 3 is 6.0.7, which is
a little out of date.

Older ImageMagick Versions

As discussed in the previous sections, several of the more common Linux distributions currently
install older versions of ImageMagick by default. You can cope with this problem in a couple of
ways. The first option is that you could of course just download the source for ImageMagick
and compile and install it yourself. You'll find instructions on how to do that later in the “Installing
from Source” section if you're interested. Another option is to find someone else who has com-
piled the latest version and has already packaged it for your chosen distribution. Instructing
you on how to do this, however, is outside the scope of this book. Finally, you should find that
most of the features discussed in this book also work with the older versions of ImageMagick
that are still shipping.

Microsoft Windows

Installing ImageMagick on Microsoft Windows machines is fairly trivial. The first step is to down-
load the installer from http://www.imagemagick.org. You'll find a link to the download page on
the left side of the home page. Download the installer, and run it. Figure 1-1 shows the first screen
you'll see.

‘_?g Setup - ImageMagick 6.2.3 Q16 B

Welcome to the ImageMggick 6.2.3
Q16 Setup Wizard

This will install ImageMagick 6.2.3-1 Q16 (06/10/05) on your
computer.

Itis recommended that you close all other applications before
continuing.

Click Next to continue, or Cancel to exit Setup.

I MNext = l [Cancel

Figure 1-1. Viewing the welcome screen for the installer

CHAPTER 1 © INSTALLING AND CONFIGURING IMAGEMAGICK

The installer recommends that you close all other applications that are running on the
machine before proceeding, which is a fairly common requirement. I recommend you do indeed
do this, which will minimize the risk of ending up in an inconsistent state with the dynamic
link libraries (DLLs) on your system. Click Next. You're now presented with a screen that asks
you to agree with the license agreement for ImageMagick, which is something you'll need to
do for any of the versions discussed in this chapter. Figure 1-2 shows a sample of what this
screen looks like.

‘_?gl Setup - ImageMagick 6.2.3 Q16

License Agreement
Please read the following important information before continuing.

Please read the following License Agreement. You must accept the terms of this agreement
before continuing with the installation.

The authoratitive ImageMagick license can be found at ~
http-/ivww.imagemaaick.org/script/license.php and ImageMagick notices at
http/fwww.imagemagick org/script/notice php.

Before we get to the text of the license lets just review what the license says in
simple terms:

It allows you to:

* freely download and use ImageMagick software, in whole or in part, for =

(@) | accept the agreement

(O) I do not accept the agreement

| <Back | New> || Cancel

Figure 1-2. Reading the ImageMagick license agreement

If you do agree with the license agreement, then select Accept the Agreement, and then
click Next. If you don'’t accept the agreement, then ImageMagick will not be installed. Next,
you'll see a screen explaining some of the administrative requirements of the installation. If
you've previously installed a version of ImageMagick and are attempting to upgrade instead
of having two versions side by side on the machine, then you’ll need to uninstall that version
before proceeding with the installer, as shown in Figure 1-3. Additionally, if you want to install
ImageMagick so that any user on the machine can use it, then you’ll need to run the installer
from the Administrator account. Remember, however, that older versions of Microsoft Windows
don’t necessarily have the concept of an Administrator account, which means that all users
of the machine will get ImageMagick by default.

CHAPTER 1 ©' INSTALLING AND CONFIGURING IMAGEMAGICK

?@Setup - ImageMagick 6.2.3 Q16

Information
Please read the following important information before continuing.

When you are ready to continue with Setup, click Next.

Welcome to ImageMagick! -
Before You Start

Please note that the user who installs this package may require "Administrator”
privileges in order to properly install ImageMagick.

While multiple versions of ImageMagick may be installed at one time, if your
intention is to replace a prior installation of ImageMagick with a newer version,
then it may be wise to uninstall the existing ImageMagick (see uninstall
procedure) prior to installing the newer version.

While it is not a requirement, it is strongly recommended that the Ghostscript
<http://www.cs.wisc.edu/~ghost/> package be installed. ImageMaaick uses

[<Back | Nex> | [cancel

Figure 1-3. Getting some reminders about the install process

After clicking Next, you'll be asked where to install ImageMagick on your disk, as shown
in Figure 1-4. I like selecting the default here so that all my applications are together in the
Program Files directory, but if you're low on disk space on one partition, then you can install
ImageMagick to another partition.

f%Setup - ImageMagick 6.2.3 Q16

S X

Select Destination Location
Where should ImageMagick 6.2.3 Q16 be installed?

‘;J Setup will install ImageMagick 6.2.3 Q16 into the following folder.

To continue, click Next. If you would like to select a differentfolder, click Browse.

C:\Program Files\ImageMagick-6.2.3-016

Atleast52.3 MB of free disk space is required

<Back || Next> | [cancel |

mageMagick

CHAPTER 1 © INSTALLING AND CONFIGURING IMAGEMAGICK 5

After clicking Next, you'll be asked for the name of the folder in the Start » Programs
menu for Windows. The default name is pretty sensible, but you can change it if you want, as
shown in Figure 1-5.

‘_?gl Setup - ImageMagick 6.2.3 Q16

Select Start Menu Folder
Where should Setup place the program's shortcuts?

Setup will create the program's shortcuts in the following Start Menu folder.

To continue, click Next. If you would like to select a different folder, click Browse.

ImageMagick 6.2.3 Q16

| <Back | New> || Cancel

Figure 1-5. Selecting a name for the entry in the Programs menu

After you click Next, the subsequent screen asks questions about the rest of the install
process. Note that if you want to use ImageMagick from the command line, as discussed in
most of this book, then you're best off updating the executable search path so that the Windows
command shell can find the ImageMagick executables. I've also chosen to use ImageMagick
as my viewer, so I associated the file extensions, which isn’t the default, as shown in Figure 1-6.

6

CHAPTER 1 ©" INSTALLING AND CONFIGURING IMAGEMAGICK

‘_?S_E;L Setup - ImageMagick 6.2.3 Q16 Q

Select Additional Tasks
Which additional tasks should be performed?

Selectthe additional tasks youwould like Setup to perform while installing ImageMagick 6.2.3
Q16. then click Next.

Create a desktop icon
Update executable search path
Associate supported file extensions with ImageMagick

[] Install ImageMagickObject OLE Control for VBscript, Visual Basic, and WSH

[<Back | New> | [cancel

Figure 1-6. Selecting installation options

ImageMagick’s installer now has enough information to proceed. After you click Next, the

installer will show you the final configuration screen, which confirms the installation settings,
as shown in Figure 1-7.

‘_?S_E;L Setup - ImageMagick 6.2.3 Q16 % g E

Setup is now ready to beqgin installing ImageMagick 6.2.3 Q16 on your computer.

Ready to Install

Click Install to continue with the installation, or click Back if you wantto review or change any
settings.

Destination location:
C:\Program Files\ImageMagick-6.2.3-Q16

Start Menu folder:
ImageMagick 6.2.3 Q16

Additional tasks:
Create a deskiop icon
Update executable search path
Associate supported file extensions with ImageMagick

[<Back || msan | [cancel

Figure 1-7. Confirming installation settings

CHAPTER 1 © INSTALLING AND CONFIGURING IMAGEMAGICK 7

Click Install to start the installation. You'll see a progress bar, as shown in Figure 1-8, even
though the install doesn’t take long (at least on my machine).

9@ Setup - ImageMagick 6.2.3 Q16 Ly

Installing
Please waitwhile Setup installs ImageMagick 6.2.3 Q16 on your computer.

Extracting files...
C:\Program Files\ImageMagick-6.2.3-Q16\convertexe

Cancel

Figure 1-8. Watching the installation progress

The installer now provides some advice about how to make sure your installation worked,
as shown in Figure 1-9. I recommend you follow these instructions, because if the installation
has failed, then you’ll be confused when you try to work along with the examples in the book
and they don’'t work.

CHAPTER 1 ©" INSTALLING AND CONFIGURING IMAGEMAGICK

‘_?%L Setup - ImageMagick 6.2.3 Q16

Information %
Please read the following important information before continuing.

When you are ready to continue with Setup, click Next.

Y ou have now installed ImageMagick. To test the installation select Command | ©
Prompt from the Windows Start menu. Within the window type:

convert logo: logo.miff
imdisplay logo.miff

and the ImageMagick logo should be displayed in a window.

If you selected to create a desktop icon, an icon labeled ImageMagick Display
will appear on your desktop. Double clicking brings up ImageMagick's image
display program.

|, JEpg | Sy | [y gap | Sy NS gy S ug yy Sy syapap,

Figure 1-9. Reviewing information about how to test the ImageMagick installation

The final screen in the installer offers to take you to the ImageMagick documentation, as
shown in Figure 1-10. Uncheck the box if you don’'t want the documentation to open in your
default browser.

?@ Setup - ImageMagick 6.2.3 Q16 [k E]

Completing the ImageMagick 6.2.3
Q16 Setup Wizard

Setup has finished installing ImageMagick 6.2.3 Q16 on your
computer. The application may be launched by selecting the
installed icons.

Click Finish to exit Setup.

View index html

[<Back || Finish

Figure 1-10. Do you want to see some documentation?

CHAPTER 1 © INSTALLING AND CONFIGURING IMAGEMAGICK

You've now installed ImageMagick for Microsoft Windows and tested the installation, so
you're set to go.

Installing from Source

If a packaged version of ImageMagick for your operating system doesn't exist, or if you want
more control over configuring and installing ImageMagick, then you might consider installing
the software from source. The following sections of the chapter outline how to do this, but it’s
important to remember that I will assume that you already have a compiler installed and working
on your machine. Depending on the operating system, this might mean you need to purchase
compiler software from your vendor or install an open source alternative.

Introducing Dependencies

You'll need to install a number of dependencies in addition to ImageMagick in order to have

a fully functional ImageMagick installation. It’s important that these dependencies are installed
before you start configuring and compiling ImageMagick, because the configure script for
ImageMagick will disable functionality that isn’t available because of missing dependencies at
compile time.

In other words, if 1ibpng (which is needed for supporting the PNG image format) were
missing at the time that you ran the configure script, then this functionality would be missing
from your ImageMagick installation. This is true even if you installed 1ibpng after compiling
ImageMagick. In that case, you'd need to reconfigure and recompile ImageMagick for the new
functionality to become available.

Several classes of dependencies exist, each of which is discussed in turn in the following
sections.

Introducing Delegates

For some of its work, ImageMagick uses command-line tools called delegates to encode and
decode the image file in a format that ImageMagick can use. That intermediate format can
then be further processed before being saved into the format that you want. This means the
ImageMagick team can implement significantly fewer file format conversion routines without
losing any functionality. You can see an example of the delegate detection process in the section
“Compiling on Unix Operating Systems.” You can also add your own delegates to the mix by
using the delegate configuration file, which is discussed in the “Using Configuration Files”
section. Chapter 9 also contains an example of a custom delegate.

For now, I'll stick to listing the delegates that ImageMagick supports so that you know
what you might want to install before you compile ImageMagick from source (see Table 1-1).

Table 1-1. Delegates Used by ImageMagick

Delegate Name Used For URL to Download the Delegate From

bzlib Bzip compression http://sources.redhat.com/bzip2/
in MIFF files

DPS Display PostScript, which is

used only for Postscript files if
Ghostscript is unavailable

(Continued)

10

CHAPTER 1 ©" INSTALLING AND CONFIGURING IMAGEMAGICK

Table 1-1. (Continued)

Delegate Name Used For URL to Download the Delegate From

FlashPIX FlashPIX format ftp://ftp.imagemagick.org/pub/
ImageMagick/delegates/
libfpx-1.2.0.9.tar.gz

FreeType TrueType fonts http://www.freetype.org
GhostPCL PCL page description language http://www.artifex.com/downloads/
Ghostscript PostScript and PDF http://www.cs.wisc.edu/~ghost/
document formats
Graphviz Graphviz visualization http://www.graphviz.org
JBIG JBIG lossless, black-and-white http://www.cl.cam.ac.uk/
compression format ~xml25/jbigkit/
JPEG JPEG files ftp://ftp.uu.net/graphics/jpeg/
jpegsrc.vébb.tar.gz
JPEG 2000 JPEG 2000 files (the next version http://www.ece.uvic.ca/~mdadams/
of the JPEG compression standard) jasper/
LCMS ICC CMS color management http://www.littlecms.com/
PNG Support for the PNG image format http://www.1libpng.org/pub/png/
pngcode.html
TIFF Support for the TIFF image format http://www.libtiff.org
WMF Support for Windows metafiles http://sourceforge.net/projects/
wvware/
zlib Support for deflate compression http://www.gzip.org/z1ib/

Each of these delegates is open source and can be separately downloaded and installed
before ImageMagick is configured if you need the facilities it implements. Details for how to
install each of these dependencies is outside the scope of this chapter, but each of these dele-
gates comes with excellent documentation about how to perform the installation steps needed.

Compiling on Unix Operating Systems

The following instructions apply to Linux, the various BSDs (including FreeBSD, OpenBSD,
and NetBSD), Solaris, Mac OS X, AIX, and many other Unix variants. ImageMagick is identical
to most other open source projects in its installation methodology. For those of you who haven’t
done this before, don’t worry, because I'll walk you through the process.

The first step is to download the source code from the ImageMagick Web site at http://
www . imagemagick.org. On the current site, the download link is on the left side of the screen
and leads you to a page where you can download the source code.

Once you have the source code, you'll need to uncompress it. As I mentioned earlier, the
current version of ImageMagick at the time of writing this book is 6.2.3, so that’s what I'll use
in these examples. Anyway, here’s how to decompress the source code:

tar -xvzf ImageMagick.tar.gz

You should see output like this:

CHAPTER 1 " INSTALLING AND CONFIGURING IMAGEMAGICK

.3/

.3/Install-mac.txt
.3/depcomp
.3/ImageMagick.spec.in
.3/PerlMagick/
.3/PerlMagick/Makefile.PL
.3/Per1lMagick/Makefile.nt
.3/PerlMagick/.gdbinit
.3/PerlMagick/Makefile.PL.in
.3/PerlMagick/Makefile.am
.3/Per1lMagick/demo/
ImageMagick-6.2.3/PerIMagick/demo/Turtle.pm
ImageMagick-6.2.3/PerlMagick/demo/1sys.pl

ImageMagick-6.2
2
2
2
2
2
2
2
2
2
2
2
2

ImageMagick-6.2.3/PerlMagick/demo/demo.pl
2
2
2
2
2
2
2
2
2
2
2
2

ImageMagick-6.
ImageMagick-6.
ImageMagick-6.
ImageMagick-6.
ImageMagick-6.
ImageMagick-6.
ImageMagick-6.
ImageMagick-6.
ImageMagick-6.
ImageMagick-6.

ImageMagick-6.2.3/PerlMagick/demo/tree.pl
ImageMagick-6.2.3/PerlMagick/demo/shapes.pl
ImageMagick-6.2.3/PerIMagick/demo/yellow_flower.gif
ImageMagick-6.2.3/PerIMagick/demo/Generic.ttf
ImageMagick-6.2.3/PerlMagick/demo/composite.pl
ImageMagick-6.2.3/PerlMagick/demo/red flower.gif
ImageMagick-6.2.3/PerlMagick/demo/steganography.pl
ImageMagick-6.2.3/PerIMagick/demo/smile.gif
ImageMagick-6.2.3/PerlMagick/demo/shadow_text.pl
ImageMagick-6.2.3/PerIMagick/demo/annotate.pl
ImageMagick-6.2.3/PerlMagick/demo/src.png
ImageMagick-6.2.3/PerIMagick/demo/Makefile

The output shown here from that command is an example of what you'll see. I've truncated
the listing here because it would fill several pages and not be particularly interesting to read.

Note You can find out more about the tar command, and the arguments it takes, by reading the tar man
page. If manual pages have been installed on your system, you can access the man page by typing man tar.
If manual pages aren’t installed, then you’ll find many examples of them online.

Now that you've extracted the source code, change directories into the new source code
directory that tar extracted for you, and configure the code, like so:

cd ImageMagick-6.2.3
./configure

The name of the directory will change if you've extracted a different version of ImageMagick.
The output from the tar command will tell you the directory name, however. You'll see output
like this:

11

12

CHAPTER 1 ©' INSTALLING AND CONFIGURING IMAGEMAGICK

configuring ImageMagick 6.2.3

checking build system type... i686-pc-linux-gnu

checking host system type... 1686-pc-linux-gnu

checking target system type... i686-pc-linux-gnu

checking whether build environment is sane... yes

checking for a BSD-compatible install... /usr/bin/install -c
checking for gawk... gawk

checking whether make sets $(MAKE)... yes

checking for gcc... gcc

checking for C compiler default output file name... a.out
checking whether the C compiler works... yes

checking whether we are cross compiling... no

checking for suffix of executables...

checking for suffix of object files... o

checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes

checking for gcc option to accept ANSI C... none needed
checking for style of include used by make... GNU

checking dependency style of gcc... gcc3

checking how to run the C preprocessor... gcc -E

checking for a sed that does not truncate output... /bin/sed
checking for egrep... grep -E

checking for 1d used by gcc... /usr/bin/1ld

checking if the linker (/usr/bin/1ld) is CNU 1d... yes
checking whether gcc and cc understand -c and -o together... yes
checking for a BSD-compatible install... /usr/bin/install -c
checking whether make sets $(MAKE)... (cached) yes

checking maximum warning verbosity option... -Wall for C
checking whether 1n -s works... yes

checking for gcc... (cached) gcc

checking whether we are using the GNU C compiler... (cached) yes
checking whether gcc accepts -g... (cached) yes

checking for gcc option to accept ANSI C... (cached) none needed
checking dependency style of gcc... (cached) gcc3

checking if malloc debugging is wanted... no

Again, I've truncated the output so as to not fill the entire book with command output. I'll
show the last few lines from the output, though, because they’re important:

ImageMagick is configured as follows. Please verify that this configuration
matches your expectations.

Host system type : i686-pc-linux-gnu

CHAPTER 1

Shared libraries
Static libraries
Module support
GNU 1d

Quantum depth

--enable-shared=yes
--enable-static=yes
--with-modules=no
--with-gnu-1ld=yes
--with-quantum-depth=16

Delegate Configuration:

BZLIB --with-bzlib=yes
DPS --with-dps=yes
FlashPIX --with-fpx=no
FreeType 2.0 --with-ttf=yes
GhostPCL None

Ghostscript None

Ghostscript fonts --with-gs-font-dir=default
Ghostscript 1ib --with-gslib=no

Graphviz --with-dot=yes

JBIG --with-jbig=yes

JPEG v1 --with-jpeg=yes
JPEG-2000 --with-jp2=yes

LCMS --with-lcms=yes

Magick++ --with-magick-plus-plus=yes
PERL --with-perl=yes

PNG --with-png=yes

TIFF --with-tiff=yes

Windows fonts --with-windows-font-dir=
WMF --with-wmf=yes

X11 --with-x=

XML --with-xml=yes

ZLIB --with-zlib=yes

X11 Configuration:

X_CFLAGS = -I/usr/X11R6/include
X PRE_LIBS = -1SM -1ICE
X_LIBS = -L/usr/X11R6/1ib

X_EXTRA_LIBS =

Options used to compile and link:

PREFIX = /usr/local
EXEC-PREFIX = /usr/local

VERSION =6.2.3

CC = gcc

CFLAGS = -g -02 -Wall -pthread
CPPFLAGS = -I/usr/local/include
PCFLAGS =

DEFS = -DHAVE_CONFIG H

INSTALLING AND CONFIGURING IMAGEMAGICK

no
no

no

yes

pcl6 (unknown)
gs (8.01)
/usr/share/ghostscript/fonts/
no

no

no

yes

no

no

yes
/usr/bin/perl
yes

yes

none

no

yes

yes

yes

13

14

CHAPTER 1 ©" INSTALLING AND CONFIGURING IMAGEMAGICK

LIBS = -1Magick -1tiff -1lfreetype -1ljpeg -lpng -1Xext -1Xt -1SM =
-1ICE -1X11 -1xml2 -1z -lpthread -1m -lpthread

XX = g++

CXXFLAGS = -pthread

This dump shows all the features that ImageMagick has found available on your system
and is going to enable during the compile. It also shows you features that might be interesting
to you depending on your technical bent, such as the compiler it has decided to use, and so
forth. Checking this list is important, because it tells you what features will not be available
because of missing dependencies.

The center column of the table contains command-line options you can use to force an
option that’s otherwise enabled or disabled to be set to a given state. For example, let’s say you
already know that the JBIG library is installed on this machine and you don't want TIFF support
for some reason (such as wanting to produce a smaller executable for an embedded application).
To achieve this, just run the configure script like this:

./configure --with-jbig --without-tiff

If the configure script can't find JBIG support, then it still won’t be enabled, whereas TIFF
support will be disabled by this command. The next step is simply to compile ImageMagick,
like so:

make
Now you just need to install the compiled code, which you can do with this command:
make install

This final command is the only one that requires you to have administrative permissions
on your computer because it installs to privileged areas of the system.

Installing Using FreeBSD Ports

Installing on the FreeBSD platform is simple if done through the ports tree. It’s highly recom-
mended that you use the ports tree unless you have some need for a custom compilation of
ImageMagick. When using the ports tree, all the dependencies are taken care of for you.

First, you should make sure you have a working, up-to-date ports tree. The ImageMagick
portis located in the /usr/ports/graphics/ImageMagick directory. The standard configuration
is most likely fine for you, unless you happen to know that you need to modify the configure-line
arguments. If you do need to pass in configure arguments, you can browse through the Make-
file to see which arguments exist. To install ImageMagick, simply go to the directory, and run
the proper installation command, like so:

cd /usr/ports/graphics/ImageMagick
make install distclean

When new versions of ImageMagick are released, you'll want to upgrade your installation.
In FreeBSD, you can do this in a variety of ways, but it’s recommended to install the portupgrade
package to handle all your upgrade needs:

CHAPTER 1 © INSTALLING AND CONFIGURING IMAGEMAGICK

cd /usr/ports/sysutil/portupgrade
make install distclean

Once you have the portupgrade package installed, you can check for any out-of-date
packages with the following command:

/usr/local/sbin/portversion | grep '<'

Any out-of-date packages will be displayed as follows:

courier-imap
gettext

glib
ImageMagick

AN AN AN

To update a package, use the portupgrade command as such:

/usr/local/sbin/portupgrade ImageMagick

Compiling ImageMagick on Microsoft Windows

It’s possible that you’ll want to install ImageMagick from source code on a Microsoft Windows
system. This section gives step-by-step instructions on how to make that happen. I've
used Microsoft Visual Studio 2003 for this section, because it’s the currently released version
of Microsoft’s C compiler. By the time you hold this book in your hands, it’s probable that
Microsoft Visual Studio 2005, and the associated Visual Studio Express versions, will have been
released. The compilation instructions for those compilers should be identical to the steps
presented here.

Note The Visual Studio Express products are free versions of the full Microsoft Visual Studio product. The
difference is that they are low cost, they support only one language each (and are therefore smaller down-
loads), and they aren’t meant to be used to develop commercial software. They should be fine for compiling
open source applications such as ImageMagick, though. You can find out more information about them at
http://lab.msdn.microsoft.com/express/.

The first step is to download the source code from http://www. imagemagick.org. You'll
find a link to the download page on the left side of the page. Once you've uncompressed the
source code you downloaded, you next need to configure the project files for ImageMagick.
The ImageMagick source download provides a wizard that helps with this process; however,
before you can run the wizard, you need to compile it.

The source download for the latest version of ImageMagick was intended to be compiled with
Microsoft Visual Studio 2002 (also known as Visual Studio 7). This isn’t a big problem, because
Visual Studio will upgrade the project files for you, but it does mean you’ll be prompted to
make sure this is what you want to do. The prompt looks like Figure 1-11.

15

16

CHAPTER 1

INSTALLING AND CONFIGURING IMAGEMAGICK

Visual C++ Project
I

X

3

Convert and open this project?

Mo Yes To Al |

The project 'configure.dsp' must be converted to the current Visual C++
projectfarmat. After it has been converted, yau will not be able to editthis
projectin previous versions of Visual Studio.

Mo TaAll

Figure 1-11. Visual Studio 2003 will prompt for permission to upgrade the project file.

Click Yes at this prompt. Now select the release build target, and compile the code by
selecting Build » Build Solution. After a successful compilation, you should see the output in
the Output pane at the bottom of the screen. Figure 1-12 shows of a version of that dockable pane.

Output]
|Build j

stdafx.cpp [Al

WINVER not defined. Defaulting to 0x0501 (Windows XP and Windows .HNET Server)

Compiling...

welcome_page.cpp

WINVER not defined. Defaulting to 0xX0501 (Windows XP and Windows .NET Server)

WaitDlg.cpp

WINVER not defined. Defaulting to 0x0501 (Windows XP and Windows .NET Server)

target_page.cpp

WINVER not defined. Defaulting to 0x0501 (Windows XP and Windows .HET Server)

SYSTEem page.cpp

WINVER not defined. Defaulting to 0xX0501 (Windows XP and Windows .NET Server)

finished page.cpp

WINVER not defined. Defaulting to 0x0501 (Windows XP and Windows .HNET Server)

configure wizard.cpp

WINVER not defined. Defaulting to 0x0501 (Windows XP and Windows .HET Server)

configure.cpp

WINVER not defingd. Defaulting to O0x0501 (Windows XP and Windows .NET Server) =

Generating Code... 1

Compiling resources...

Linking...

LINK : warning LNK4089: all references to 'ADVAPI3Z.dll' discarded by /OPT:REF

LINE : warning LNK4089: all references to 'OLEAUT3Z2.dl1' discarded by /OPFT:REF

Build log was saved at "file://c:‘\Documents and Settings‘Administrator‘\Desktop\ImageMag

configure - 0 error(s), 2 warning(s)

Done
Build: 1 succeeded, 0 failed, 0 skipped
[

[(l 1l | [»]

Figure 1-12. Output from a successful compilation of the configuration wizard

If your compilation has a build failure listed, then you'll need to investigate what caused

. Once you've compiled

CHAPTER 1 © INSTALLING AND CONFIGURING IMAGEMAGICK 17

the wizard, you can run it. You can either do this from Windows Explorer or just run the appli-
cation within Visual Studio by selecting the Debug » Start Without Debugging menu command.
Figure 1-13 shows the first screen of the wizard.

Welcome to the VisualMagir.% configuration tool. ﬁ

Welcome!

This is the VisualMagick configuration wizard. [twill help you set up your build environment and
customize the build process for your needs. It's purpose is to create Visual Studio 6.0 project (DSP) and
workspace (D3W) files. or Visual Studio 7.0 solution (SLN) and projectfiles (VCPRG.J).

When the build environment has been created you can build the system in the Visual Studio IDE.

MNOTE: Please be advised that support for Visual Studio 6.0 will not be actively supported very soon.
V57 has been outfor a year now and all currentwork takes place in this environment.

Next > | Cancel | Help

Figure 1-13. The first screen of the source configuration wizard

This first screen greets you with the configuration wizard and lets you know that the
purpose of the configuration wizard is to create project files for the various components of
ImageMagick to allow for compilation to occur. Click Next, and you're presented with the
Target Setup dialog box, as shown in Figure 1-14.

18

CHAPTER 1 ©" INSTALLING AND CONFIGURING IMAGEMAGICK

Target Setup [%

Build type setup
Dynamic (DLL) Builds

® Dynamic Multithreaded DLL runtimes |v Use X11 stubs to prevent use of X Window
Static Builds

(" Static Single-threaded runtimes

" Static Multi-threaded runtimes

" Static Multi-threaded DLL runtimes

Build options

[Decorate exe files with build options
[v Include all demo, test, appl, and contrib directories
[Generate all utility projects with full paths rather then relative paths.

[v Generate Visual Studio 7 format

Edit "magick-config.h" |

Next = Cancel | Help

Figure 1-14. Configuring the ImageMagick project files

A lot is happening in this window, so let’s work through each topic one at a time:

Dynamic versus static binaries: A lot of the dialog box is dedicated to selecting whether you
want a dynamic or static binary. Dynamic binaries use DLLs to hold all the contributed
libraries in a modular manner. This means that other applications can also use those libraries,
and you don'’t need to store multiple copies of the library on disk. In return, you'll occasion-
ally get naming and version conflicts. Static binaries are just one big executable, and all the
library code is moved into that one . exe file. This means the application is easier to move
to other machines and isn’t going to stop working if someone else upgrades a DLL, but you
might end up in a situation where more disk space is used in return.

Single versus multithreaded runtimes: How many people are going to be using ImageMagick
at once? If you're ever going to want to have more than one operation occurring within
ImageMagick at once, then select multithreaded runtimes.

Using X11 stubs to prevent the use of X Window: X Windows is the windowing system used
on Unix machines. If you compile with the X11 stubs, then ImageMagick won't attempt to
integrate with the X server that you're probably not running on your Microsoft Windows
machine. Several ImageMagick commands don’t work without an X server, though, as
discussed in Chapter 4.

CHAPTER 1 © INSTALLING AND CONFIGURING IMAGEMAGICK

Decorating .exe files with build options: If you've defined a different set of build options,
you can pass these onto the executable files. Given you're not doing that, leave this option
unchecked.

Including all demonstration, contributed, and test executables directories: You can compile
the demonstration, contributed, and test executables as well. (Leave this option checked
for now.)

Generating all utility projects with full paths rather than relative paths: You can configure
whether the utility projects care about the exact path they’re located at or just the path
relative to the top-level project.

Generating Visual Studio 7 format project files: Check the Generate Visual Studio 7 Format
box, because it will make upgrading the project files to Visual Studio 2003 easier later.

Editing the magick-config.h header file: Finally, a button allows you to edit the magick-config.h
header file if you'd like. This isn't needed for a simple compile, and you should refer to the
compilation instructions that ship with ImageMagick if necessary.

After clicking Next, you'll see the System Setup dialog box, as shown in Figure 1-15.

System Setup
s

Please specify the location in your file system were you would like to place intermediate files that
are generated during the build process. This include such things as object code, etc.

Intermediate files directory setup

Intermediate files Release directory:

|..\Re|ease\] Browse

Intermediate files Debug directory:

|..\Debug\ Browse

OQutputfiles directory setup:

Please specify were the executables, libraries, and DLL's should be placed:

Exe and DLL directary:

| hink, Browse

Library directory:

|-ib\ Brawse

<Back Next > | Cancel Help

Figure 1-15. Configuring the ImageMagick output directories

19

CHAPTER 1 ©" INSTALLING AND CONFIGURING IMAGEMAGICK

If you need to, you can change where the compiled files are placed via this dialog box.
The defaults are reasonable, however, so I didn't change them for my compile. You get one
final window from the wizard, as shown in Figure 1-16.

VisualMagick configuration ﬁn"lshed. .§

Congratulations!

You have finished the VisualMagick configuration. Now press finish to finally produce the Visual Studio
compatible files.

You will find differentfiles in the VisualMagick folder based on the build options you selected. The
dynamic (DLL) build is named VisualDynamicMT while the static build configurations are named
VisualStaticXX, were the XX indicates the type ofthreading allowed: (ST: single-threaded, MT;
multi-threaded, and MTD: multi-threaded DLL).

NOTE: MT is the most common and the recommended static build option

Locate the item in the workspace or solution called "All". Setthis as the active project. setthe
configuration to either Debug or Release and then just build this

Good luck!

<Back | Finish | Cancel Help

Figure 1-16. The final screen of the configuration wizard

The wizard has created a solution file (the file with the .s1n extension) for the options you
have selected, which will be at the top level of the source directory. My source directory looks
like Figure 1-17.

CHAPTER 1 © INSTALLING AND CONFIGURING IMAGEMAGICK 21

ﬂ_)‘ C:\Documents and Settlngs\Admlnlstrato B@E
File Edit View Favorites Tools Help
@ Back - (g lﬂ? P) Search |{ Folders v
Address |E| C:\Documents and Settings\Administrator\Desktop[v] GO
Name see| Type |4
Chlems File Folder
Db File Folder
Clibxml File Folder
[Chmagick File Folder
[Magick++ File Folder
[MagickArgs File Folder
3 modules File Folder
= plugins File Folder
Capng File Folder
=25DL File Folder
tests File Folder
Dt File Folder
Citf File Folder
2 utilities File Folder
[wand File Folder
Chwin2k File Folder | =
Cwmf File Folder
Cxiib File Folder
Czib File Folder
E) FAQutxt 7 KB Text Docum
[£] README.txt 1 KB Text Docurr
68 VisualDynamicMT.sin 107 KB Microsoft Vis -
4 l 1l | [> l

Figure 1-17. The generated solution file

Open the solution file, and you’ll once again be prompted to upgrade the projects to the
Visual Studio 2003 format, as shown in Figure 1-18.

X

Microsoft Development Environment

2) Solution 'C:\Documents and Settings\Administrator\Desktop\ImageMagick-6.2.3\WisualMagick\VisualDynamicMT.sin' and its
\:/ projects must be converted to the formats used by this version of Visual Studio .NET.

1f you choos&to convert this solution, all of its projects wil be converted as well. Once a solution or any of its projects has been
converted, it can no longer be edited, buit, or run in previous versions of Visual Studio. If the solution is under source code
control, it wil be checked out automatically. If you choose not to convert this solution, it will be closed.

Convert this solution and al of its projects?

Yes | No | Help |

Figure 1-18. Upgrading the project files to the Visual Studio 2003 format

22

CHAPTER 1 ©" INSTALLING AND CONFIGURING IMAGEMAGICK

Click Yes here. Now find the project named “All” in the Solution Explorer, which is on the
right side of the screen by default. Right-click that project, and select Set As Startup Project
from the menu. Now select Build » Build Solution, and the compile will start.

The compile will take a little while, depending on the speed of your machine. On my
1.7-gigahertz Intel Centrino laptop, the compile took about six minutes. At the end of my com-
pile, I get the Output pane shown in Figure 1-19.

Output i,
Build ﬂ
WINVER not defined. Defaulting to 0x0501 (Windows XP and Windows .NET Server) A.

Magick 1ib DLL import interface

Magick module DLL export interface

Magick++ 1lib DLL import

IMDisplay.cpp

WINVER not defined. Defaulting to 0x0501 (Windows XP and Windows .NET Server)

Magick 1lib DLL import interface

Magick module DLL export interface

Magick++ lib DLL import

ChildFrm.cpp

WINVER not defined. Defaulting to O0x0501 (Windows XP and Windows .NET Server)
Magick 1lib DLL import interface
Magick module DLL export interface
Magick++ 1lib DLL import

Generating Code...

Compiling resources...

Linking...

Build log was saved at "file://c:‘\Documents and Settings‘\Administrator\Desktop'\ImageMaq,
UTIL IMDisplay - O error(s), 0 warning(s)

—————— Build started: Project: All, Configuration: Release Win32 ---———-

411 - up-to-date.

Done

Build: 157 succeeded, 0 failed, 0 skipped

Figure 1-19. The Output pane after compilation

If no failures are listed in the Output pane, then you’ll have a compiled version of
ImageMagick in the output directory you specified in the configuration wizard.

Exploring the Architecture of ImageMagick

ImageMagick consists of a series of components. These components fall into two overall cate-
gories—modules and delegates. Modules are ImageMagick’s code for handling a given image
format. When a dependency isn’t available at compile time, then that module will be disabled.
Delegates are an extremely similar concept, but delegates are also extensible. You'll notice that
I've already discussed delegates when showing how to compile from source. The “Introducing
Delegates” section covered the delegates that ship by default with ImageMagick. Refer to the

CHAPTER 1 © INSTALLING AND CONFIGURING IMAGEMAGICK

next section, “Using Configuration Files,” for more information on adding delegates to
ImageMagick, and to Chapter 9, which discusses how to write a simple delegate of your own in C.

You can configure ImageMagick in two more ways. The method I've already discussed is
of course using the various compilation options that are available when you build from source.
The two additional ways of configuring ImageMagick are using configuration files and using
environment variables, each of which is covered in its own section.

Using Configuration Files

ImageMagick is really quite configurable. I won't spend a lot of time on the contents of the
configuration files, because ImageMagick includes excellent documentation on the inner
workings of the configuration files. However, Table 1-2 points you in the right direction and
gives you some idea of the features you can configure with ImageMagick.

Table 1-2. ImageMagick Configuration Files

Configuration File Configures

coder.xml The association between image formats and the encoder/decoder
module for that format.

colors.xml Lets you specify the name of a color and define its red, green, blue, and
alpha values. For example, perhaps you want a color named “bernard.”
Here is the place to define what that color actually is. Chapter 7
discusses colors in more depth.

configure.xml Build parameters.

delegates.xml Here you can specify your own custom delegates for image formats that
ImageMagick didn’t originally know about.

english.xml Associates message tags with a given English string.

locale.xml The same as english.xml but for other locales.

log.xml Configures logging.

magic.xml Many file formats are identified by a “magic number” at the start of the

file. This configuration file lets you map a new magic number to a given
image format.

type.xml Configures fonts.
type-ghostscript.xml Configures Ghostscript fonts.

type-windows . xml Configures Microsoft Windows fonts.

Where these configuration files are located changes depending on how ImageMagick was
installed and depending on your operating system. Check the following three sections to see
where the configuration files are located on your system. Finally, if ImageMagick can't find the
configuration files at all, then it will use the built-in default values.

Location of Configuration Files for Source Installations

The configuration files are located in a directory on disk. Some of these locations refer to the instal-
lation prefix as $PREFIX, which is where ImageMagick was installed. It’s usually /. . /usr/local/ on
a Unix machine when installing from source. ImageMagick checks the following locations, in
this order, looking for these configuration files:

23

24 CHAPTER 1 ©" INSTALLING AND CONFIGURING IMAGEMAGICK

1. The location defined by the MAGICK_CONFIGURE_PATH environment variable (see the
“Using Environment Variables” section)

2. $PREFIX/1ib/ImageMagick-6.2.3/config

3. $PREFIX/share/ImageMagick-6.2.3/config

4. $PREFIX/share/ImageMagick-6.2.3

5. Afolder named .magick in the current user’s home directory

6. Afolder in the client path with the name 1ib/ImageMagick-6.2.3

7. The current directory

Location of Configuration Files for Binary Installations

If the ImageMagick installation was done from a binary package, then the following search
order is used, where the environment variable MAGICK_HOME should have been set to the loca-
tion of the ImageMagick installation:

1. The location defined by the MAGICK_CONFIGURE_PATH environment variable (see the
“Using Environment Variables” section)

2. $MAGICK HOME/lib/ImageMagick-6.2.3/config

$MAGICK _HOME /share/ImageMagick-6.2.3/config

$MAGICK HOME /share/ImageMagick-6.2.3

5. Afolder named .magick in the current user’s home directory

6. Afolder in the client path with the name 1ib/ImageMagick-6.2.3

7. The current directory

Location of Configuration Files on Microsoft Windows

The configuration locations are a little different on Microsoft Windows. If you're running on
Microsoft Windows, then the configuration files will be in one of these locations, which are
searched in the following order:

1. The location defined by the MAGICK_CONFIGURE_PATH environment variable (see the
“Using Environment Variables” section)

2. The location defined by the MAGICK_HOME environment variable
3. Afolder named .magick in the current user’s home directory
4. Afolder in the client path with the name 1ib/ImageMagick-6.2.3

5. The current directory

CHAPTER 1 " INSTALLING AND CONFIGURING IMAGEMAGICK 25

Using Environment Variables

ImageMagick also supports a number of environment variables to control its behavior. These
environment variables are defined in the user’s shell and affect only the operation of ImageMag-
ick programs started from that shell. Many system administrators will configure these environment
variables in a user’s shell profile, however, which means that every interactive shell will be ini-
tialized with them.

Instead of including the full list of environment variables in this chapter, I recommend you
refer to the ImageMagick documentation if you want to configure the behavior of ImageMagick
further.

Limiting Resource Usage on the Command Line

It’s also possible to limit the resource usage such as disk and memory that ImageMagick con-
sumes while performing a given command. You can do this with the 1imit command-line option,
which can limit the following parameters:

Area
Disk
File
Map

Memory

Each of these limits is a number. In the case of disk and memory limits, you can use the
text MB to symbolize megabytes.

Determining What Is Configured

If you need to determine on a machine that you didn’t configure, or configured some time ago,
what modules, delegates, and so forth, are configured, then use the 1ist command. The list
command takes the following arguments:

Coder
Color
Delegate
Format
Magic
Module

Resource

Type

For example, to see which delegates are configured on my machine, I can type the following:

convert -list delegate

CHAPTER 1 ©" INSTALLING AND CONFIGURING IMAGEMAGICK

I get the following output for this command:

Path: /usr/lib/ImageMagick-6.2.3/config/delegates.xml

Delegate

cgm =>
cIw =>
dcr =>
dvi =>
emf =>
eps<=>pdf

eps<=>ps

fig =>
gplt =>

hpg =>

hpgl =>

htm =>
html =>
https =>
ilbm =>
man =>
miff<= win
mrw =>

nef =>

orf =>
pdf<=>eps

pdf<=>ps
pnm<=ilbm

pnm<=launch
pov =>

ralcgm" -d ps -oC < "%i" > "%o" 2>/dev/null

/usr/bin/dcraw” -3 -w -c "%i" > "%o

/usr/bin/dcraw” -3 -w -c "%i" > "%o

dvips" -q -o "%o" "%i

wmf2eps” -o "%o" "%i

gs" -q -dBATCH -dSAFER -dMaxBitmap=500000000 -dNOPAUSE '
-dAlignToPixels=0 -sDEVICE="pdfwrite" -sOutputFile="%o0" -f"%i
gs" -q -dBATCH -dSAFER -dMaxBitmap=500000000 -dNOPAUSE '
-dAlignToPixels=0 -sDEVICE="pswrite" -sOutputFile="%o0" -f"%i
figadev" -L ps "%i" "%o

echo" "set size 1.25,0.62

set terminal postscript portrait color solid; =

set output "%o0";

load "%i"" > "%u";"gnuplot™ "%u

hp2xx" -q -m eps -f “basename "%o"" "%i

mv -f “basename "%o"" "%o

if [-e hp2xx -0 -e /usr/bin/hp2xx]; then

hp2xx -q -m eps -f “basename "%o" ™ "%i

mv -f “basename "%o"" "%o

else

echo "You need to install hp2xx to use HPGL files with =
ImageMagick.

exit 1

fi

html2ps" -U -o "%o0" "%i

html2ps" -U -o "%o0" "%i

@WWWDecodeDelegateDefault@" -q -0 "%0" "https:%i

ilbmtoppm" "%i" > "%o

groff" -man -Tps "%i" > "%o

/usr/bin/display" -immutable "%i

/usr/bin/dcraw” -3 -w -c "%i" > "%o

/usr/bin/dcraw” -3 -w -c "%i" > "%o

/usr/bin/dcraw” -3 -w -c "%i" > "%o

gs" -q -dBATCH -dSAFER -dMaxBitmap=500000000 -dNOPAUSE '
-dAlignToPixels=0 -sDEVICE="epswrite" -sOutputFile="%o0" -f"%i
gs" -q -dBATCH -dSAFER -dMaxBitmap=500000000 -dNOPAUSE '
-dAlignToPixels=0 -sDEVICE="pswrite" -sOutputFile="%o0" -f"%i
ppmtoilbm" -24if "%i" > "%o

gimp" "%i

povray" "+i"%i"" +o0"%0" +fn%q +whw +h%h +a -q9 -kfi"%s" -kff"%n
convert" -concatenate "%o*.png" "%o

CHAPTER 1 © INSTALLING AND CONFIGURING IMAGEMAGICK

ps<=>eps gs" -q -dBATCH -dSAFER -dMaxBitmap=500000000 -dNOPAUSE w»
-dAlignToPixels=0 -sDEVICE="epswrite" -sOutputFile="%o0" -f"%i

ps<=>pdf gs" -q -dBATCH -dSAFER -dMaxBitmap=500000000 -dNOPAUSE w»
-dAlignToPixels=0 -sDEVICE="pdfwrite" -sOutputFile="%o0" -f"%i

ps<= print lpr "%i

rad => ra_ppm" -g 1.0 "%i" "%o

raf => /usr/bin/dcraw" -3 -w -c "%i" > "%o

rgbha<= rle modify" -flip -size %wx%h "rgba:%i
rawtorle" -w %w -h %h -n 4 -o "%o" "%i

scan => scanimage" -d "%i" > "%o

shtml => html2ps" -U -o "%o" "%i

txt<=>ps enscript" -o "%o" "%i

wmf => wmf2eps" -o "%o" "%i

x3f => /usr/bin/dcraw" -3 -w -c "%i" > "%o

Using ImageMagick
Now that you have ImageMagick installed and configured, you should know some final useful
points before getting going with the rest of the book. The following sections discuss accessing

online help, debugging output, creating verbose output, and determining which version of
ImageMagick is installed on a machine.

Online Help

The first way of finding out how to perform an action with ImageMagick is to check the online
help. This is especially useful if you're trying to do something you've done before but you can’t
quite remember the syntax for the command. On Unix systems, ImageMagick comes with
quite a large set of man pages, which can be accessed with the man command. A good place to
start is by looking at the following:

man imagemagick

Depending on the system, you might also have Hypertext Markup Language (HTML)
documentation installed at /usr/share/doc/ImageMagick. Start with the index.html file, and
navigate from there. For Microsoft Windows, the documentation is installed by default and
appears in the ImageMagick folder under Start » Program Files. This same documentation is
available online at http://www.imagemagick.org.

If you're just wondering what the arguments to a given command-line option are, or what
the name of a command-line option is, then you can also try the help command-line option,
like so:

convert -help

This lists all the command-line options supported by that ImageMagick utility and provides
a one-line description of each.

27

28

CHAPTER 1 ©" INSTALLING AND CONFIGURING IMAGEMAGICK

Debug Output

ImageMagick provides extensive debugging output if you add the debug command line to the
command you're executing. For example, to convert a PNG file to a JPEG file, you execute the
following command:

convert input.png output.jpg

You'll find out more about this command in Chapter 2 and Chapter 3. If you want to see
what ImageMagick is doing when it performs this conversion, then just add the debug command
to the command line:

convert -debug input.png output.jpg

You'll get a lot of output, which traces the execution of ImageMagick. This debugging out-
put shows the internal execution of ImageMagick and can be handy if you think you've found
a bug and need to make a bug report.

If you want to disable all debug output, then use the +debug command instead:

convert +debug input.png output.jpg

This can be useful when the global system configuration turns on debugging output but
you don't want it for a specific command. Finally, you can specify the format of the debugging
output by using the log command-line option. For more information on the options available
here, refer to the ImageMagick online help, as discussed previously.

Verbose Output

If you want to know what’s happening inside ImageMagick when your command is being
executed but you don’t want the extreme level of logging that you get with debug output, then
consider asking for verbose output instead. Again, if the original command were this:

convert input.png output.jpg
then the verbose version of this command would be this:

convert -verbose input.png output.jpg

CHAPTER 1 © INSTALLING AND CONFIGURING IMAGEMAGICK

This will give you the following output:

input.png PNG 666x487 666x487+0+0 DirectClass 27kb 0.020u 0:01
input.png PNG 666x487 666x487+0+0 DirectClass 27kb
TIFF Directory at offset 0x0
Image Width: 666 Image Length: 487
Resolution: 47.24, 47.24 pixels/cm
Bits/Sample: 8
Compression Scheme: AdobeDeflate
Photometric Interpretation: RGB color
FillOrder: msb-to-1sb
Document Name: "output.tif"
Orientation: row 0 top, col 0 lhs
Samples/Pixel: 3
Rows/Strip: 487
Planar Configuration: single image plane
Software: ImageMagick 6.2.3 06/09/05 Q16 http://www.imagemagick.org
Predictor: horizontal differencing 2 (0x2)
input.png=>output.tif PNG 666x487 666x487+0+0 DirectClass 21kb 0.200u 0:01

Here you can see that ImageMagick believes it has taken a PNG image that’s 666 pixels
wide and 487 pixels high and has converted it to a TIFF file. You even get a dump of the TIFF
directory (what a TIFF image calls the header for the image itself) that ImageMagick wrote
into output.tif.

What Version of ImageMagick Is Installed?

Finally, it can occasionally be useful to know which version of ImageMagick is running on
a given machine. You can find this out with the version command-line option. Here’s an
example from my laptop:

convert -version

This gives the following results:

Version: ImageMagick 6.2.3 06/09/05 Q16 http://www.imagemagick.org
Copyright: Copyright (C) 1999-2005 ImageMagick Studio LLC

So, you can see that on my laptop I have 6.2.3 Q16 installed.

Conclusion

This chapter hasn’'t been the most exciting chapter that you'll read in the book, but it’s an
important one, because it shows you how to get ImageMagick installed on your machines.
Now that you have ImageMagick installed, you can move onto the much more interesting
aspects of ImageMagick, such as Chapter 2, which talks about changing the size of images and

29

30

CHAPTER 1 ©" INSTALLING AND CONFIGURING IMAGEMAGICK

making thumbnails; Chapter 3, which talks about how to convert images between different
compression formats; and Chapter 5, which shows how to apply some fantastic visual effects
to your images.

If you need more details for the instructions in this chapter, then I recommend you refer
to Chapter 12, which covers more details about how to get help online, where the various
ImageMagick community resources are, and where to find the Web site for this book, which is
where I'll post any errata and changes to the build process as I learn about them.

CHAPTER 2

Performing Basic Image
Manipulation

This chapter will give you some basic examples of how to use ImageMagick. Since this is really
your first exposure to ImageMagick as a tool, it’s useful to take it a little slower here and learn
the basics well.

Probably the most useful tool to ship with the ImageMagick suite is the convert command;
it lets you convert images between various compression formats and implement some useful
and visually pleasing transformations. You can find a list of the file formats that ImageMagick
supports at http://www.imagemagick.org/script/formats.php. Chapter 3 covers how to convert
between image formats.

In this chapter, I'll cover the common operations that you're likely to want to use
ImageMagick for: resizing images, filtering images, cropping images, and trimming images.
This chapter will introduce the ImageMagick suite and how to use the various commands that
perform these operations.

Because I'm introducing the tools for the first time in this chapter, the chapter will go
through the steps more slowly than the rest of the book, so don’t be dismayed that the book
seems to spend a large amount of time on seemingly obvious things—the pace will improve
once these introductory features are out of the way.

So, you'll now see all the useful manipulations you can do with the ImageMagick suite.

Introducing Imaging Theory

Before you can transform images, you need to be aware of some imaging theory. I'll introduce
only the minimum to get you going here, and then I'll cover new pieces of theory throughout
the rest of the book when theyre needed. If you want to find out about a specific piece of the-
ory later, then just look it up in the index.

If you're comfortable with the concept of vector and raster images, the difference between
these two types of image format, and pixels, then feel free to skip to the “Changing the Size of
an Image” section of this chapter. If you're not familiar with these, then read on—you’ll learn
about them now.

The single theoretical factor that affects the quality of results you'll achieve in this chapter
the most is pixelation, which is when an image becomes blocky and jagged. At a basic level,
a computer has two ways of storing pictures: vector images and raster images. The different

31

32

CHAPTER 2 ©° PERFORMING BASIC IMAGE MANIPULATION

picture styles are really for quite different tasks, and ImageMagick is much more suited to
working with raster images than vector images. Vector images won'’t suffer from pixelation
problems, however.

I'll now describe the two image formats in turn.

Vector Images

Imagine that you take a piece of paper and start to free draw a picture. The picture comprises
straight lines that form simple shapes such triangles, squares, rectangles; curves including
circles, and so forth; letters that form words; and other such basic picture elements. Figure 2-1
shows an example of a simple vector image.

Figure 2-1. A sample vector image

Ignoring the relative lack of artistic merit in the picture, you can see that it consists of
a series of relatively simple graphical elements—straight lines, curves, and so forth. Each element
of the picture is stored individually in the vector file as a mathematical description. In fact,
the following is a snippet of the picture if it’s stored in a vector format called Scalable Vector
Graphics (SVG):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<IDOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" w»
"http://www.w3.0rg/TR/2001/PR-SVG-20010719/DTD/svg10.dtd">
<svg width="19cm" height="14cm" viewBox="4 3 19 14">

<ellipse style="fill: #ffffff" cx="8.46874" cy="7.5" rx="3.46874" ry="3.46874"/>

<ellipse style="fill: none; fill-opacity:0; stroke-width: 0.2; stroke: #000000" w»
cx="8.46874" cy="7.5" rx="3.46874" ry="3.46874"/>

<ellipse style="fill: none; fill-opacity:0; stroke-width: 0.02; stroke: #000000" w»
cx="8.46874" cy="7.5" rx="3.46874" ry="3.46874"/>

<line style="fill: none; fill-opacity:0; stroke-width: 0.2; stroke: #000000" ‘w»
x1="8" y1="6" x2="8" y2="7"/>

<line style="fill: none; fill-opacity:0; stroke-width: 0.2; stroke: #000000" ‘w»
x1="9" y1="6" x2="9" y2="7"/>

<path style="fill: none; fill-opacity:0; stroke-width: 0.2; stroke: #000000" ‘w»
d="M 7,8 A 1.625,1.625 0 0 0 10,8"/>

CHAPTER 2 ©° PERFORMING BASIC IMAGE MANIPULATION

<polygon style="fill: #ffffff" points="16,7.5 18.3333,7.03333 17.1667,5.16667 =
19.0333,6.33333 19.5,4 19.9667,6.33333 21.8333,5.16667 20.6667,7.03333 23,7.5 =
20.6667,7.96667 21.8333,9.83333 19.9667,8.66667 19.5,11 19.0333,8.66667 =
17.1667,9.83333 18.3333,7.96667 "/>

You can see here that each element is described in terms of the shape’s fill, the starting
coordinates, the ending coordinates, the stroke thickness, and the color.

Therefore, because the picture is described in terms of mathematical formulae, it can be
scaled to any set of size dimensions without losing any of the image quality. This is the technol-
ogy that operating system vendors introduced with fonts such as PostScript and TrueType—you
can resize the fonts to any size, and they will look good because the description can render at
any size.

Vector graphics are not the solution to all problems, however. A lot of information, such as
photographs and scanned images, cannot be represented well with vector graphics. For exam-
ple, how would you turn a picture of a tree from your camera into a set of lines and so forth?
You can try, but it would take a lot of time and processing effort and probably would not look
that good.

Raster Images

The other option for storing image information is raster images. Imagine that you drew the
smiley face from Figure 2-1 on graph paper and insisted that the lines consisted of just colored
squares on the grid paper. A square also needs to be colored or not colored—you have no option
to only half color a square (although anti-aliasing does offer some compromises here, as discussed
in Chapter 7). You'd end up with a picture more like Figure 2-2.

Figure 2-2. A rasterized version of the smiley face from the vector version in Figure 2-1

Again, you'll have to forgive me for my lack of talent at drawing pictures. You can see here
that the image is a lot blockier than in Figure 2-1. This is because the image has been expanded
so that you can see the individual squares on the grid paper. Those squares are called pixels.
(You'll learn more about this “blockiness” in images when they’re made larger in the “Making
an Image Larger” section.)

Now look at some pixels from a real photo; Figure 2-3 shows the photo of a tree that was
taken on a digital camera and therefore is a raster image.

33

34

CHAPTER 2 © PERFORMING BASIC IMAGE MANIPULATION

Figure 2-3. A photo of a tree

If you zoom in on some of the pixels in the image, then they become a lot clearer, as
shown in Figure 2-4.

Figure 2-4. Zooming in on some of the pixels from Figure 2-3

CHAPTER 2 ©° PERFORMING BASIC IMAGE MANIPULATION

The set of colored squares to the right of the photo is a close-up of the pixels in the small
box on the right side of the photo (near the top of the branches of the tree). You can see that
the pixels in the raster image provide only an approximation of what the camera was actually
pointed at, because a set number of samples makes up the image. The most important way
that this will impact you as a user of images is that raster images are generally larger files on
disk and a lot harder to resize.

I've covered enough theory for now, so the next section covers how you can start to perform
some useful tasks with ImageMagick. The rest of this chapter deals solely with raster images,
because resizing vector images is much easier than resizing the more common raster format.

Invoking convert

The only other key point you need to know before changing the size of an image is how to
invoke the convert command line that you'll use throughout the examples in this chapter. The
basic invocation of convert is to pass the name of the input file and then the name of the output
file. So, if you wanted to convert a JPEG image into a PNG image (these compression formats are
discussed in more detail in Chapter 3), you'd use the following command line:

convert input.jpg output.png

Unless there is an error, this command won't return any output to the command line but
will produce a new file named output.png, which has the same image as input. jpg but in PNG
format.

Changing the Size of an Image

Probably the most common transformation that you can perform on an image is to resize it.
Whether it’s taking the large images from your digital camera and making them a smaller size
for display on your Web site or it's making thumbnails of those same images for the index pages
of your photo gallery, resizing is something that happens to images all the time.

The convert command provides several ways to resize an image. Each of them does it in
a slightly different way, and each is used in a slightly different scenario, so I'll cover them one
at a time in the following sections. To work through the examples, I'll provide a simple usage
scenario for each instance to demonstrate when you'd use that technique.

Making an Image Smaller

Let’s say you just took the picture shown in Figure 2-5 with your digital camera, and now it’s
time to post it online. It’s a nice full-resolution image, because you want one day to be able to
do some pretty exciting things with the pictures you take, such as printing full-sized posters
and projecting them onto walls in your home or office.

35

36

CHAPTER 2 © PERFORMING BASIC IMAGE MANIPULATION

Figure 2-5. A sample photograph for resizing

I took this photo a while ago on a 2-megapixel camera, so posting it online wasn't a big
problem, although I did make it smaller so that it would fit on the smaller monitors that many
members of my family used at the time. With today’s 8-megapixel and higher cameras, how-
ever, each picture can be more than 20 megabytes if not compressed. Clearly, if you post this
image on a Web site, you would need to make it smaller so that the download time isn’t exces-
sive. Compression is the other factor that greatly affects the size of an image file. (Chapter 3
covers the details surrounding compression.)

Another factor to take into account is that halving the length of each of the sides of a raster
image will reduce the uncompressed size of the image by 75 percent. This is best described
diagrammatically, as shown in Figure 2-6.

Figure 2-6. The effect of reducing the length of the sides of a rectangle

CHAPTER 2 ©° PERFORMING BASIC IMAGE MANIPULATION

You can see here that if you reduce the length of each of the sizes by half, then the total
area of the rectangle ends up being a quarter of the previous value. This quite drastically reduces
the size of the image file. Table 2-1 shows some real-world data to back up that statement.

Table 2-1. Comparative Sizes for a Photo

Photo Resolution (WidthxHeight) File Size (JPEG Compressed)
2,560x1920 2.2 megabytes

1,280x960 784 kilobytes

640x480 280 kilobytes

320%x240 112 kilobytes

160x120 56 kilobytes

80x60 36 kilobytes

You can also see from Table 2-1 that the advantage of reducing the size of an image in
terms of side length compared with file size on disk decreases as the image gets smaller. For
example, reducing the side length from 160x120 pixels to 80x60 pixels reduces the size of the
file by less than 50 percent, whereas reducing the side length from 2560x1920 to 1280x960
reduces the size of the file by about 70 percent. Figure 2-7 shows a graph of that in action.

File Size Comparison

2,500,000

2,000,000

1,500,000

1,000,000

File Size (in Bytes)

500,000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Percentage of Original Size

Figure 2-7. The effect on file size of varying the length of the sides of an image

37

38

CHAPTER 2 ©° PERFORMING BASIC IMAGE MANIPULATION

Interestingly, you can also see that reducing the dimensions of the image by a small margin
results in a larger file size. This is probably because the JPEG compression algorithm doesn’t
handle the new file size as well as the original one because it is not a multiple of 8 pixels wide.

Anyway, now that you know why it’s desirable to resize images, let’s assume you want to
reduce the size of some pictures so that you can post them on your Web site. I'll use the picture
from Figure 2-5 for the following examples. ImageMagick’s convert command supports several
ways of performing this resizing operation. Not surprisingly, one of those commands is resize.

Resizing an Image

The first way of changing the size of an image that I'll discuss is the resize option to the convert

command. This option takes a specification for the new size and then operates on the images

that are also passed to convert. Most of the ImageMagick commands behave in this manner—

the command-line options are executed in order during the conversion from the input file to

the output file. This means you can have more than one conversion occur at any one time.
The resize option offers a few ways to specify the new size for the image:

Absolute size: You can specify the exact size of output image you want by using pixels. The
first number is the new width of the image, and the second number is the new height of
the image. The following example code resizes an image to be 42x148 pixels. You need to
be careful of this option, however, because it will change the aspect ratio of the image. The
aspect ratio is the ratio between the horizontal and vertical edges, and if it changes, you'll
often end up with an image that is noticeably distorted. To change the size but keep it in
proportion with the original, you must use numbers that are multiples of the original.

convert -resize 42x148 input.jpg output.jpg

Percentage change: You can specify the new size as a percentage of the old size. For exam-
ple, the following command line results in an image that is 12.5 percent of the previous
size of the image. This version of the dimensions will maintain the current aspect ratio.

convert -resize 12.5% input.jpg output.jpg

Maximum area: This method allows you to specify the maximum area (width multiplied

by height) that the image can consume. ImageMagick will pick side lengths for the image
that are in the same ratio as the original image and that are as large as possible while not
exceeding the specified maximum area.

convert -resize 1000@ input.jpg output.jpg

The original image here is a 1,280x960-pixel, compressed JPEG photograph. After the resize
command has run, the output image is a 36x27-pixel image. This makes an image with an
area of 972 pixels, which means it doesn’t exceed the specified maximum. Because the
aspect ratio of the sides was maintained, if you divide 1,280 by 36, or 960 by 27, you'll get
the same number, in this case 35.5555556.

Maximum image dimensions: You can specify the maximum size for an image, and the
image will be resized only if its dimensions exceed that specification. For example,
the following command line will resize only those images bigger than 640x480 pixels, in
which case you’ll get an image that is 640x480 pixels.

CHAPTER 2 ©° PERFORMING BASIC IMAGE MANIPULATION

Minimum image dimensions: Similarly, by changing the less-than sign to a greater-than
sign, you can specify that all images should have at least a certain minimum set of dimen-
sions. The following example ensures that the image has at least dimensions of 640x480
pixels. If the image is smaller than this, then it will be made bigger so that it has dimensions
of 640x480 pixels. For more discussion on the issues associated with making images larger,
see the “Making an Image Larger” section later in this chapter.

convert -resize 640x480> input.jpg output.jpg

Negation of minimum and maximum sizes: It is also possible to negate the logic applied
for the minimum and maximum size operators discussed in the two previous points by
placing an exclamation mark before the greater-than or lesser-than sign. This inverts the
logic applied for that operation.

Resampling an Image

Another way of resizing an image is called resampling. Resampling is interesting in that it
doesn’t change the size of the image; it changes the resolution of the image. So, for example, if
you have an image that is two inches wide and three inches high at 100 dots per inch, then it
will be 200x300. If you resample the image to 300 dots per inch, then you'll change the image
to be 600x900 pixels.

The observed size of the image won't change, though. You'd use this conversion so that
the image would print and display correctly on devices with varying resolutions. For example,
most monitors are 75 dots per inch, and most printers are at least 600 dots per inch. Here’s an
example of the resample command-line option at work:

convert -resample 300x300 input.tif output.tif

Only a few image formats store the current image resolution inside the image file itself—
TIFE PNG, and JPEG are the three most common. If the image format you're using doesn’t
store the image resolution, you can specify it with the density command-line option (discussed
in Chapter 3). You should also note this caveat from the ImageMagick documentation, however:

Note that Photoshop stores and obtains image resolution from a proprietary embedded
profile. If this profile exists in the image, then Photoshop will continue to treat the image
using its former resolution, ignoring the image resolution specified in the standard file
header.

Filtering an Image

When an image is resized, filtering (the process of determining which pixels make it into the
new image and what color they are) needs to occur to decide what the new image will look
like. Take the case of making an image smaller. In this case, more than one pixel affects the
value of one pixel in the output image. Figure 2-8 shows an example of an image before any
filtering has occurred.

39

40 CHAPTER 2 © PERFORMING BASIC IMAGE MANIPULATION

Figure 2-8. A simple input image

If you take this relatively simple image and make it a fair bit smaller, then each pixel in the
new image will be the average of a number of pixels in the original image. Figure 2-9 shows
a zoomed-in version of the process that will make this clearer.

Figure 2-9. A zoomed-in look at a simple image after it has been made smaller

You can see here that the edges of the circle are a lot rougher than they were in the original
image, because the averaging process hasn’t been very forgiving.

CHAPTER 2 ©° PERFORMING BASIC IMAGE MANIPULATION 4

ImageMagick offers several filfers, all of which will perform best in certain specific situations:
* Point

¢ Box

» Triangle
¢ Hermite
e Hanning
e Hamming
e Blackman
* Gaussian
¢ Quadratic
* Cubic

¢ Catrom

e Mitchell
¢ Lanczos
* Bessel

* Sinc

ImageMagick applies a reasonable default filter, normally Lanczos, if you don't specify
one. The differences between these various filters are quite technical and outside the scope of
this book. You can learn more about these filters at Anthony Thyssen’s excellent ImageMagick
tutorial at http://www.cit.gu.edu.au/~anthony/graphics/imagick6/resize/#filters. You
specify a filter with ImageMagick as follows:

convert -sample 400% -filter lanczos input.jpf output.jpg

This example creates an output file that has dimensions four times greater than those of
the input and uses the Lanczos filter to guess what the new pixel values should be.

Scaling an Image

If you have specified a filter and you don’t want it to apply, then you can use the scale command-
line option. It functions the same as the resize command but ignores the filter option if
specified. It also ignores any gravity specified. (You'll read more about gravity in Chapter 7.)
The scale option also uses a simpler, faster scaling algorithm, which might be useful if you're
processing a lot of images.

Here’s an example of how to use the scale command-line option:

convert -filter quadratic -scale 300% input.jpg output.jpg

42

CHAPTER 2 © PERFORMING BASIC IMAGE MANIPULATION

Sampling an Image

The sample command-line option is the same as the resize command-line option, but the
filter argument is again ignored. sample uses a more complex algorithm than scale and is
therefore slower but sometimes produces nicer results. If you want to change the size of the
image but either don’'t want to specify a filter or want to not use the filter that you've specified,
then use the sample command-line option.

Here’s an example of how to use the sample command-line option:

convert -filter quadratic -sample 640x480 input.jpg output.jpg

Creating Thumbnails

The thumbnail command-line option is the same as resize but ignores any image profiles that
are stored in the original image. This is because these image profiles are not of much interest
to thumbnail images. (Chapter 3 discusses image profiles further.) This is an example of using
the thumbnail command:

convert -thumbnail input.jpg output.jpg

Cropping an Image

Another way to reduce the size of an image is by cropping it. Cropping is where you take a sub-
section of an image and remove everything surrounding that portion of the image. For example,
let’s say you want to change the photo of a tree to include just the top of the tree, as shown in
Figure 2-10.

Figure 2-10. The top part of the tree

To achieve this with ImageMagick, you need to specify the intended width and height of
the new image and the top-left corner of that new image within the original image. For example,
the image in Figure 2-10 is 1,104x372 pixels. The top-left corner of this image is at 58 pixels in
and 100 pixels down. The ImageMagick command line is therefore as follows:

convert -crop 1104x372+58+100 input.jpg output.jpg

CHAPTER 2 ©° PERFORMING BASIC IMAGE MANIPULATION

You can also specify a bottom-right corner instead, in which case you use a minus sign
instead of a plus sign in the command line. You can also use gravity options with this command
(discussed more in Chapter 7).

Chopping an Image
A similar concept to cropping is chopping. Chopping is when you remove columns and rows
from the image. For example:

convert -chop 100x100+200+200 input.jpg output.jpg

Confusingly, the first two numbers here are the size of the portion of the image to remove,
and the second two numbers are the location of the column and row to remove. The previous
command line will give you the image shown in Figure 2-11.

Figure 2-11. The tree with a vertical and horizontal slice removed

Making an Image Smaller Without Specifying Dimensions

ImageMagick also allows you to make images smaller without specifying the dimensions for
the new image. You can do this in two ways: trimming the image and shaving the image.

43

44

CHAPTER 2 © PERFORMING BASIC IMAGE MANIPULATION

Trimming an Image

The trim command-line option is interestingly different from the operations you've seen
before this. It works by removing any edge pixels that are the same color as the corner pixels.
For example, if you have a picture with a solid color border such as in Figure 2-12, then trim
can remove that border for you. (To see how to create borders with ImageMagick, refer to
Chapter 7.)

Figure 2-12. Another tree with a border

If you run the following command:
convert -trim input.jpg output.jpg

then you end up with the image shown in Figure 2-13.

CHAPTER 2 ©° PERFORMING BASIC IMAGE MANIPULATION 45

Figure 2-13. The tree with most of the border removed

You'll note that not all of the excessive border was removed. This is because the border
color varies slightly as the border gets closer to the image because of the way the border com-
mand in ImageMagick works. To remove all of the border, you need to tell the trim command
to be a little more forgiving in the definition of the color to remove. You can do this with the
fuzz command-line option, as follows:

convert -fuzz 20% -trim input.jpg output.jpg

This gives you nearly the original image back again, as shown in Figure 2-14.

46

CHAPTER 2 © PERFORMING BASIC IMAGE MANIPULATION

Figure 2-14. The tree with almost all the border removed

Shaving an Image

If you want to perform an operation such as trim but you know exactly how much of the image
you want to remove, then you can use the shave command-line option instead. The shave
option takes exactly amount you want to remove from the horizontal edges and vertical edges,
which gives you a lot more control. For example, you know that the border in the previous
example is exactly 20 pixels on each side, so you use the following command line, which will
remove the border exactly:

convert -shave 20x20 input.jpg output.jpg

Understanding Geometries

Many of the previous commands take an argument that describes the size of the output image
or where to start an operation (such as cropping). This command string has a generic format.
The string can consist of the following components:

CHAPTER 2 ©° PERFORMING BASIC IMAGE MANIPULATION

* <width>x<height>: Generally this specifies the width and height of the output image,
although in some cases it is the width and height of the component to operate on (such
as with the chop command). You can modify this width and height with these options:

* >:The greater-than sign causes the width and height arguments to be used only if
the current width and height are greater than that specified.

¢ <:The less-than sign is the inverse. It causes the width and height arguments to be
used only if the current width and height are less than that specified.

¢ |:The exclamation mark inverts the logic applied by the greater-than and less-than
signs.

%: Instead of specifying an absolute width and height, you can also specify a percentage
of the current width and height.

* @: The at sign specifies the maximum area of the image. The current width and height
will be scaled to the maximum values available within that area while maintaining the
current aspect ratio.

* +x+y: This option specifies the insert from the top left at which the operation will start.
An example is the crop command previously described in this chapter.

* -x-y: This option specifies the same information as the previous +x+y option, except
from the bottom right.

* +x-y and -x+y: The same as the two previous options but from the other corners.

This command-line syntax is primarily used by the geometry command-line option,
which acts like the resize command. Other ImageMagick commands also use the syntax.

Making an Image Larger

What if you wanted to make an image larger instead of smaller? Although you can use all the
previous resizing options in the other direction to make the image larger, it is important to
remember with raster images that you don't get extra pixels for free. The pixels are created by
having ImageMagick guess what should have been in the image if it had originally been made
at that larger size, and by definition that guess is often not a good one.

For example, let’s take the image used in earlier examples that I used to demonstrate pixels
with, as shown in Figure 2-15.

47

48 CHAPTER 2 © PERFORMING BASIC IMAGE MANIPULATION

Figure 2-15. A simple input image

If you assume that this image is small and that you want to make it four times bigger, then
Figure 2-16 shows what happens.

Figure 2-16. The simple input image once it has been made larger

You can see that the image has become quite blocky because of the pixel-guessing
process.

CHAPTER 2 ©° PERFORMING BASIC IMAGE MANIPULATION

In general, making raster images larger is hard, and the output often won't look good at
the end. You're much better off keeping an original copy of the image at as high a resolution as
possible, because getting back that information is impossible once it has been thrown away by
resizing an image to a smaller size.

Processing Many Images at Once

You can easily apply all the commands presented in this chapter, and many of the other com-
mands presented in other chapters in this book, to image files using ImageMagick’s mogrify
command. The main difference between mogrify and convert is that mogrify natively works
on many images at a time. Because these images are all specified on the command line, mogrify
doesn’t know the name of the output file like the convert command does. The images are there-
fore overwritten with the transformed images.

For example, to transform an entire directory of JPEG images into thumbnails, use the
following command line:

mogrify -thumbnail 10% *.jpg

Remember that this command overwrites all the JPEG images in the directory, so you
probably want to back up the images before running this command. The only exception to
this overwrite behavior is if you tell mogrify to change the file format of the image as well. For
example, you could convert all these JPEG images to PNG thumbnails, which will leave the
original JPEG images untouched:

mogrify -format png -thumbnail 10% *.jpg

Conclusion

In this chapter, I discussed some the basic image manipulations that you can perform with
ImageMagick. All these transformations involve changing the size of images—be that making
them larger or smaller. I also talked about the differences between raster and vector images
and about some of the issues associated with resizing raster images.

In the next chapter, you'll look at how to change the file format used to store an image,
how to change the parameters used by the compression algorithm used for a given image, and
how to change other metadata associated with the image. In later chapters, I'll discuss other
interesting topics such as the artistic transformations that you can apply to images, how to create
images from scratch with ImageMagick drawing commands, and how to handle animations.

49

CHAPTER 3

Introducing Compression
and Other Metadata

In this chapter, I'll cover how to change the compression used to encode an image file, image
formats that can contain more than one image, animations (which are really a special case of
the multi-image formats), and other metadata that can be associated with images. Whilst the
chapter might sound dry, it will cover a lot of interesting, powerful techniques.

Compressing Images

One of the most common tasks performed with ImageMagick is to change the file format and
therefore the compression algorithm used to encode an image file. Imagine for a second that
someone has just e-mailed a TIFF file for you to post online, and you want to make the file
smaller and better supported by most browsers so you decide to convert it to a JPEG file. How
do you perform that conversion? You use ImageMagick’s convert command, of course. Here’s
an example:

convert input.png output.jpg

This will perform the conversion for you. How you decide what file format to use can be
a complex proposition, however, and this chapter will attempt to guide you through the various
options that are available.

Lossy Compression vs. Lossless Compression

Compression algorithms can be lossy or lossless. A lossless compression algorithm guarantees

that when the image is decompressed, all the data that you started with is still available. A lossy

compression algorithm, on the other hand, will give you an approximation of the original image

back when it's decompressed. In return, you have a smaller compressed file than you would with
a lossless compression algorithm.

The other factor to take into account is that the loss of lossy compression algorithms
accumulates. Let’s say you take an image and compress it. Then in a separate operation you
need to compress it again; for example, you rotate the image. Each time you recompress the
image, you come up with a new approximation of the input image, and the input image for
the second round of compression is the output image from the first round. This can result in
quite noticeable image artifacts occurring over time.

51

52

CHAPTER 3 ' INTRODUCING COMPRESSION AND OTHER METADATA

In general, lossy compression algorithms are good for high-resolution photographs and
movies, whilst lossless compression algorithms are good for low-resolution images and images
containing a lot of text or line art. I'll now show some examples to demonstrate this. Figure 3-1
shows a photo of Australia’s Uluru, which has been compressed with a JPEG quality of 50 percent.

Figure 3-1. A photo compressed with a JPEG quality of 50 percent

Note You'll find out more about JPEG quality and what it actually means a little later in this section. For
now, just bear in mind that a quality of 50 percent is a quite poor quality image; image quality has been
sacrificed for small image size.

Figure 3-2 shows an image of some text that I'll use to demonstrate the accumulating loss.

CHAPTER 3 © INTRODUCING COMPRESSION AND OTHER METADATA

This is some sample text that we will
recompress a few times to see what the
effect on the readability of the text is. |
hope the result will be apparent;
otherwise, | might look a little silly.

Figure 3-2. Some text before JPEG compression

Don't focus too much on the text in the image; I'll use it for another example in a second.
You can see from this example that the photo is actually of a usable quality (although not perfect).
If you compress this image with a JPEG quality of 50 percent, as shown in Figure 3-3, then you
can see that the text is already after only one compression starting to have a shadow around it
from relatively low-quality compression.

This is some sample text that we will
recompress a few times to see what the
effect onthe readability of the text is, |
hope the result will be apparent;
otherwise, | might look a little silly.

Figure 3-3. Some text compressed with a JPEG quality of 50 percent

If you were to compress this image more than once, then the quality loss would start to
accumulate. Figure 3-4 shows the image after it has been compressed ten times.

This is some sample text that we will
recompress a few times to see what the
effect onthe readability of the text is, |
hope the result will be apparent;
otherwise, | might look a little silly.

Figure 3-4. Some text after ten sets of JPEG compression loss
You can see the gray shadow around the text getting worse, and the text is therefore getting

harder to read. Now I'll present the pictures compressed with a lossless compression algorithm,
such as PNG. Figure 3-5 shows the Uluru photo, and Figure 3-6 shows the text.

53

54

CHAPTER 3 ' INTRODUCING COMPRESSION AND OTHER METADATA

Figure 3-5. A picture compressed with the lossless PNG compression

This is some sample text that we will
recompress a few times to see what the
effect on the readability of the text is. |
hope the result will be apparent;
otherwise, | might lock a little silly.

Figure 3-6. Some text compressed with the lossless PNG compression

So, given that the image quality is so much higher with a lossless compression algorithm
such as PNG, why would you use something lossy such as JPEG compression? The simple answer
is file size. The higher the JPEG lossiness, the smaller the file size you have to store on disk, and
this can be handy in many situations, such as when you want to e-mail a picture to someone
or serve many pictures from a Web site. Figure 3-7 compares the file sizes for a lossy compres-
sion algorithm against no compression and against PNG compression.

CHAPTER 3 © INTRODUCING COMPRESSION AND OTHER METADATA

40,000,000

35,000,000

30,000,000

25,000,000

None
— PNG
=== Jd[HHE

20,000,000

File Size (in Bytes)

15,000,000

10,000,000

5,000,000 Z

10 20 30 40 50 60 70 80 90 100
Quality

Figure 3-7. Comparative file size for various JPEG compression qualities

You can see in this graph that no compression is by far the largest option, and PNG offers
a middle ground. Depending on the JPEG quality used, you can see that the image size will vary
but is always smaller than both the uncompressed option and the PNG compression option.
The uncompressed option is a straight line because there is no concept of quality.

For reference, the picture used for this graph is the 4,256x2,848 photo shown in Figure 3-8.

55

56

CHAPTER 3 ' INTRODUCING COMPRESSION AND OTHER METADATA

Figure 3-8. The original picture used for Figure 3-7

Finally, it's important to remember that an image quality loss is associated with using lower
JPEG compression qualities. To give you a visual example of this, the image in Figure 3-9 starts
at the left with a JPEG quality of 1 percent and moves across the image using increasing quality
until the right side, which was compressed with 100 percent quality. The original concept for
this image came from the Wikipedia page on JPEG compression (http://en.wikipedia.org/
wiki/JPEG), which has an excellent discussion on the topic.

CHAPTER 3 © INTRODUCING COMPRESSION AND OTHER METADATA

Figure 3-9. A photo compressed with a variety of JPEG compression qualities. The highest quality
is on the right, and the lowest is on the left.

Which Format Is Right for You?

Which format is the right choice for your problem will depend on how you intend to use the
image. The following sections present a decision flowchart to help you decide what image
format is right for your given situation.

Archival Images

If faithful archival of the image is important, then use a lossless compression algorithm to
avoid having image data discarded as part of the compression process. Once this image data
has been discarded, it’s impossible to recover.

Black-and-White Images

Black-and-white images are much smaller than their full-color equivalents, and the size penalty
on disk of a losslessly compressed image is much smaller. It’s therefore often much more accept-
able to store these images using a lossless compression algorithm. Also, specialized compression
algorithms work best with black-and-white images, which you should consider using. The main
contenders here are CCITT Group 3 Fax and CCITT Group 4 Fax, which, as their names suggest,
were developed for transmitting fax images. The compression algorithms work well with black-
and-white image data but do not work for color images.

57

58

CHAPTER 3 " INTRODUCING COMPRESSION AND OTHER METADATA

Images Containing Large Amounts of Text

If the image in question contains text, or is mostly relevant because of the text stored within
it, then strongly consider using a lossless compression format. The blur associated with the
approximations developed by a lossy compression format will make the image much harder
to read later.

Images Containing Detailed Line Art

For similar reasons to the images containing text, if the clarity of line art is important to your
use of the images, then use a lossless compression format so that the line art doesn't become
blurred.

You Need a Small File

If you intend to e-mail the image or serve it many times from a Web site, then a small file might
be the best solution. In that case, you should use a lossy compression format. For example, at
Christmas 2003 my personal Web site got “Slashdotted” and served 39 gigabytes in a 24-hour
period. The page that was Slashdotted contained a number of PNG images, which take 4.2
megabytes in total. This meant that for every hit on that one page, I had to serve 4.2 megabytes
of pictures as well. If these images had been encoded with JPEG at a quality of 75 percent, then
they would have been only 484 kilobytes. This would have meant I could have reduced the data
served by about 38 gigabytes. You live, and you learn.

Photographic Images

Finally, photos have special compression needs because they’re often so large. Many of the
digital cameras on the market now, for instance, shoot at more than 5 megapixels, which
makes for very large uncompressed images. Lossy compression algorithms such as JPEG work
well with these images because they're such a high resolution that you don’t notice the image
quality loss associated with the lossy compression unless the images are blown up really large
or are manipulated too many times.

The other thing to bear in mind is that most digital cameras are already shooting in JPEG
by default, so your images probably start in this format if they’re photos. Some nicer cameras
will also shoot in an uncompressed format called RAW, which leaves your options open.

Introducing Common File Formats

So far I've discussed the two styles of compression system available for images—lossy com-
pression and lossless compression. Later in the chapter, I'll talk about some actual example
images and how much they’re compressed with these different styles, but before that I'll intro-
duce common examples of each compression style and explain what each style is commonly
used for. You can find more information on all the image formats that ImageMagick supports
athttp://www. imagemagick.org/script/formats.php if you need more information than is
presented here.

CHAPTER 3 © INTRODUCING COMPRESSION AND OTHER METADATA

By far the most common lossy compression algorithm in use today is a file format called
JPEG. JPEG stands for the Joint Photographic Experts Group, which formed in 1985. The output
of that working group was the compression algorithm now known as JPEG. JPEG itself is actually
a bit stream format, and the first file format to use JPEG was the JPEG File Interchange Format
(JFIF), which is now commonly known as JPEG and is what most digital cameras produce.
JPEG is also being used for image storage; for example, the container format TIFF optionally
stores JPEG bit streams as well. JPEG is well supported by many applications, including viewers,
editors, and Web browsers.

On the other hand, many lossless compression algorithms are available. The Portable
Network Graphics (PNG) file format and the Tagged Image File Format (TIFF) are common
examples, although TIFF can use the lossy JPEG compression as well. Less common examples
are the Graphics Interchange Format (GIF) and the Microsoft Windows bitmap (BMP) format.

PNG is a good choice for storing images in a lossless manner because it’s well supported
by a large selection of tools, including viewers and editors. Modern browsers (those with a ver-
sion number greater than 3) support PNG images as well.

The TIFF container format is interesting because it allows for the use of various compression
algorithms, which is unusual for an image format. This makes the format flexible and means
that many high-end editing applications use TIFE Because TIFF is such a large and flexible
image format, many image viewers and editors have trouble opening all possible TIFF files.
However, certain tools can convert your TIFF images into the supported subset for a given
application. Web browsers don’t support TIFF without using plug-ins, so it’s a bad choice for
online purposes.

Introducing LZW Compression

LZW compression is the compression scheme used in the GIF file format. Unisys, as the owner
of U.S. Patent 4,558,302, realized that the GIF file format uses LZW compression in 1994, at which

time GIF had been an accepted image format for many years. As a result, Unisys started requiring

a patent license of Web sites using GIF images. This resulted in a campaign to remove GIF support
from many open-source image-processing applications, including ImageMagick. Many Web sites

also stopped using GIF at this time.

Since this time, the LZW patent has expired, and it’s now possible to add support for LZW
and therefore GIF to ImageMagick at compile time. Many open source developers are still
hesitant to support LZW, however, so you need to enable support explicitly. If you installed
a binary version of ImageMagick as described in Chapter 1, you may have such support enabled.

If LZW support isn't enabled and you ask ImageMagick to perform an operation that would
result in an LZW compressed image being created, then a form of LZW that isn't covered by the
patent will be used. This form results in no compression occurring, which means you might
create GIF files that are bigger than you expect.

Comparing File Sizes

You can find an exhaustive list of the image formats supported by ImageMagick at http://
www. imagemagick.org/script/formats.php. I'll now show some examples of the more common
image compression formats and how the different compression schemes they implement can
affect file size. I'll cover color image formats first. Table 3-1 compares the sizes of the image
shown in Figure 3-10 when compressed with a variety of formats.

59

60

CHAPTER 3 " INTRODUCING COMPRESSION AND OTHER METADATA

Table 3-1. Comparative Sizes for an Image Compressed with Various Options

Compression Quality File Size (Bytes)
JPEG 10% 111,202
20% 147,575

30% 187,105

40% 225,945

50% 271,854

60% 329,787

70% 431,488

80% 631,369

90% 1,149,447

100% 3,883,520

BMP 23,887,926
BMP2 23,887,898
BMP3 23,887,926
GIF 4,806,309
PICT 3,692,672
PNG 10% 15,835,876
20% 15,673,758

30% 15,468,303

40% 15,884,182

50% 15,814,211

60% 15,783,707

70% 15,777,354

80% 15,774,804

90% 15,774,774

100% 15,774,774

RAW 2,686,535
TIFF with LZW 23,105,716
TIFF with Packbits 23,886,580
TIFF with zip 17,225,512
No compression 23,906,618

CHAPTER 3 © INTRODUCING COMPRESSION AND OTHER METADATA

Figure 3-10. The photo used for Table 3-1

Manipulating Compression Options with ImageMagick

After all this talk of which compression algorithm you should use for different tasks, I'll spend
some time discussing how to manipulate compression with ImageMagick. The most obvious
example of what you might want to do is convert between compression formats. For example,
you can convert a JPEG file to a PNG file as follows:

convert input.jpg output.png

This will work for any format that uses only one compression algorithm, such as PNG or
JPEG. It will work with formats that can use more than one compression algorithm, such as
TIFE by using the default compression algorithm.

Specifying a Compression
If you need to specify the compression algorithm for such a format, then use the compress
option:

convert -compress zip input.jpg output.tif

This example produces a TIFF image that has been compressed with zip compression
(also known as deflate compression). These are the possible compression options to use with
the compress command:

61

62 CHAPTER 3 ' INTRODUCING COMPRESSION AND OTHER METADATA

* None

e Bzip

* Fax (CCITT Group 3 fax compression)

* Group4 (CCITT Group 4 fax compression)
e JPEG

* JPEG2000

e Lossless (lossless JPEG)

° LZW

¢ RLE (run-length encoding)

* Zip (also known as deflate compression)

For a complete list the image formats supported by ImageMagick that can use the compress
option, see the ImageMagick Web site at http://www.imagemagick.org/script/formats.php.

Specifying a Quality

Several of the file formats supported by ImageMagick have tunable compression where the
quality of the compression can be changed. The interpretation of the quality argument does
vary with format, however. Earlier in the chapter I discussed JPEG quality, and at the time

I used the input image shown in Figure 3-11.

CHAPTER 3 © INTRODUCING COMPRESSION AND OTHER METADATA

As mentioned earlier, I then produced an image split into vertical columns of different
qualities, as inspired by an example on Wikipedia, as shown in Figure 3-12.

Figure 3-12. A photo compressed with a variety of JPEG compression qualities. The highest
quality is on the right, and the lowest is on the left.

Interestingly, if I repeat this experiment using PNG compression, I get the output shown
in Figure 3-13.

63

64

CHAPTER 3 ' INTRODUCING COMPRESSION AND OTHER METADATA

Figure 3-13. A photo compressed with a variety of PNG compression qualities. The highest quality
is on the right, and the lowest is on the left.

You can see here that there is no noticeable decrease in the quality of the image when it’s
decompressed. This is because the PNG compressor uses the quality argument as a way of deter-
mining how much computational effort to expend on finding the smallest possible compressed
version, as opposed to how much image data to throw away. Therefore, you'll always get the same
quality image when you decompress, but the time taken to compress the image will change.

You specify a quality with the quality command-line option. For example, to produce a JPEG
image that is pretty lossy but in return quite small, you can use the following command line:

convert -quality 10% input.jpg output.jpg

This will produce the lower-quality file for you.

Creating Interlaced Images

Interlacing allows images to be displayed progressively as they're downloaded. You might even
have noticed this behavior on Web pages, which is the most common place it’s used. This means
users on lower-bandwidth connections can get a sense of the image contents before the image
has been fully downloaded. ImageMagick sets the interlacing order for formats that support it
using the interlace command-line option.

Use the 1ine or plane values to create a progressive image, as follows:

convert -interlace line input.jpg output.jpg

CHAPTER 3 © INTRODUCING COMPRESSION AND OTHER METADATA

Passing Other Parameters to Coders and Decoders

ImageMagick calls the software that compresses images for it coders and the software that
decompresses an image a decoder. Normally the encoding and decoding will be implemented
by the same package, which is often a library that ImageMagick used during the compilation
process described in Chapter 1.

You might want to pass other information to the coder or decoder. ImageMagick lets you
do this with the define command-line argument. It takes a key and a value for the coder or
decoder to use. For example, the JPEG 2000 coder can take a compression factor that affects
the size and quality of the output image. You specify it like this:

convert input.jpg -define "jp2:rate=0.5" output.jp2

If you need to remove a definition that is defined, then you can use the +define
command-line argument with a plus sign at the start to remove the definition:

convert +define "jp2:rate" input.jpg output.jpg
To remove all definitions, use the following command line:

convert input.jpg +define "*" output.ps

Introducing the JPEG and MPEG Sampling Factor

Both JPEG and MPEG (which stands for Moving Picture Experts Group, the group that defined
the MPEG video format) images are stored in the YUV color space. With RGB images, the red,
green, and blue samples are generally stored in an interlaced manner (although this isn't
always the case). YUV color space has three separate sets of image information; the Y'stands
for luminance, and the U and V are chrominance information. As an example, I recently had
to convert some YUV image data from a Web camera into RGB. During that process I ended up
generating this test image to help me tell whether my conversion worked, as shown in

Figure 3-14.

Figure 3-14. An RGB image on the left and a YUV image on the right

65

66

CHAPTER 3 " INTRODUCING COMPRESSION AND OTHER METADATA

The image on the left is the RGB version, and the three images on the right form the YUV
components. You can see here that the Y information (the luminance) is simply a black-and-white
version on the image, whereas the U and V components are color information and therefore
alittle more complicated.

YUV images can have different sizes for the Y component and the U and V components.
You can see this in Figure 3-14, where the Y component is twice the size horizontally and verti-
cally of the U and V components. This is because the YUV example here is actually aYUV 4:2:2
image. This process of having smaller images for the U and V components is called chroma
subsampling.

ImageMagick allows you to specify what YUV chroma subsampling you'd like by using the
sampling-factor command-line option, which lets you specify a horizontal sampling factor
and a vertical sampling factor. For example, to convert a PNG into YUV 4:2:2, you'd use this
command line:

convert -sampling-factor 2x1 input.png output.jpg

For an excellent coverage of JPEG, refer to http://en.wikipedia.org/wiki/JPEG. For more
information about YUV, check out the Wikipedia page at http://en.wikipedia.org/wiki/YUV.

Introducing Image Metadata

Metadata is data about data. In the imaging world, this is generally information about the image,
which is stored in the image file as well. Examples of commonly used image metadata include
the time the picture was created, the name of the author, and so forth. Here’s an example of the
metadata stored by one of my digital cameras when I take a photo:

Image: input.jpg
Format: JPEG (Joint Photographic Experts Group JFIF format)
Geometry: 3456x2304
Class: DirectClass
Colorspace: RGB
Type: TrueColor
Depth: 8 bits
Endianess: Undefined
Channel depth:

Red: 8-bits
Green: 8-bits
Blue: 8-bits
Channel statistics:
Red:
Min: 0
Max: 255

Mean: 63.6148

Standard deviation: 46.6134
Green:

Min: 0

Max: 254

CHAPTER 3 © INTRODUCING COMPRESSION AND OTHER METADATA

Mean: 37.6559
Standard deviation: 35.9952
Blue:

Min: 0

Max: 255

Mean: 24.2289

Standard deviation: 35.2562
Colors: 70398
Rendering-intent: Undefined
Resolution: 72x72
Units: Undefined
Filesize: 2.5mb
Interlace: None
Background Color: grey100
Border Color: #DFDFDF
Matte Color: grey74
Dispose: Undefined
Iterations: 0
Compression: JPEG
Orientation: Undefined
JPEG-Quality: 98
JPEG-Colorspace: 2
JPEG-Sampling-factors: 2x1,1x1,1x1

signature: 64c4132c69f7fcc2398ff72216920e9317324f6672d489002b531538c50c946

Profile-exif: 15108 bytes
Make: Canon.
Model: Canon EOS 350D DIGITAL.
Orientation: 8
X Resolution: 72/1
Y Resolution: 72/1
Resolution Unit: 2
Date Time: 2005:06:23 09:22:51.
Y Cb Cr Positioning: 2
Exif Offset: 196
Exposure Time: 1/60
F Number: 56/10
Exposure Program: 2
ISO Speed Ratings: 400
Exif Version: 0221
Date Time Original: 2005:06:23 09:22:51.

Date Time Digitized: 2005:06:23 09:22:51.

Components Configuration:
Shutter Speed Value: 387114/65536
Aperture Value: 325770/65536
Exposure Bias Value: 0/2

Metering Mode: 5

Flash: 89

67

68 CHAPTER 3 " INTRODUCING COMPRESSION AND OTHER METADATA

Focal Length: 55/1

Flash Pix Version: 0100

Color Space: 1

Exif Image Width: 3456

Exif Image Length: 2304
Interoperability Offset: 9230
unknown: R98.

unknown: 0100

Focal PlaneX Resolution: 3456000/874
Focal PlaneY Resolution: 2304000/582
Focal Plane Resolution Unit: 2

unknown: 0
unknown: 0
unknown: 0
unknown: 0

Tainted: False
User Time: 1.580u
Elapsed Time: 0:02

You can see that a lot of information is stored within the JPEG file. I extracted this list of
information with the following ImageMagick command:

identify -verbose input.jpg

This is the first time I've mentioned the identify command in this book. You can find
more complete coverage of the identify command in Chapter 4. Here I've asked the identify
command to list all the metadata that it can about the input file.

Note Some of the metadata from the previous dump isn’t actually stored in the image file but is generated
by the identify command when needed. It is still, however, metadata.

Alot of the information stored here is really quite useful. For example, the orientation
information is used by my Web interface for cataloging pictures from my camera so that I don’t
need to manually decide which images should be rotated; you'll see more of this Web interface
in Chapter 8. The date and time information is useful for searching. The focal length and ISO
speed, and so forth, are useful for tracking my journey through learning how to use an SLR
camera. Fundamentally, having more information is always better than having less when it
comes to images. You can always ignore the information that isn't important.

Another advantage of metadata in image formats that support it is that the information is
always with the image. You'll have no need to move around extra files that contain this useful
information, because it's embedded in the image file. This is something you should be aware
of, though, because there might be privacy implications in handing out some of this informa-
tion, depending on your needs.

Most of this metadata survives image transformations with ImageMagick, as long as the
new image format also supports those metadata fields. For example, if I resize the image that

CHAPTER 3 © INTRODUCING COMPRESSION AND OTHER METADATA

I extracted this metadata from, then I still get the same metadata from the smaller image. The
only exceptions are the metadata that relates to the size of the image and some additional
metadata that ImageMagick inserts in the file to indicate that the image has been transformed.
To strip the metadata from an image to avoid these privacy concerns, add the strip
command-line argument to the convert command, like so:

convert -strip input.jpg output.jpg

The metadata for the output file is now as follows:

output.jpg JPEG 3456x2304 DirectClass 2.5mb 0.740u 0:01
Image: output.jpg
Format: JPEG (Joint Photographic Experts Group JFIF format)
Geometry: 3456x2304
Class: DirectClass
Type: TrueColor
Endianess: Undefined
Colorspace: RGB
Channel depth:
Red: 8-bits
Green: 8-bits
Blue: 8-bits
Channel statistics:
Red:
Min: 0 (0)
Max: 255 (1)
Mean: 63.6277 (0.24952)
Standard deviation: 46.6054 (0.182766)
Green:
Min: 0 (0)
Max: 254 (0.996078)
Mean: 37.6472 (0.147636)
Standard deviation: 35.9972 (0.141166)
Blue:
Min: 0 (0)
Max: 255 (1)
Mean: 24.2631 (0.0951495)
Standard deviation: 35.241 (0.1382)
Colors: 69340
Rendering-intent: Undefined
Resolution: 72x72
Units: PixelsPerInch
Filesize: 2.5mb
Interlace: None
Background Color: white
Border Color: #DFDFDF
Matte Color: grey74
Dispose: Undefined

69

70 CHAPTER 3 " INTRODUCING COMPRESSION AND OTHER METADATA

Iterations: 0

Compression: JPEG

Quality: 98

Orientation: Undefined

JPEG-Colorspace: 2

JPEG-Sampling-factors: 2x1,1x1,1x1

Signature: 9edbbbdfe4d51f09da2c9499ce1799dc5ala17bae53b316189130db1b755291e
Tainted: False

Version: ImageMagick 6.2.3 06/09/05 Q16 http://www.imagemagick.org

You can see that this offers a lot less information, which is the desired result.

What if you wanted to change some of the attributes of the metadata stored within the
file? A simple example is wanting to add or change a comment associated with the image file.
You do this with the comment command-line option to the convert command. For example,
add a comment to a JPEG file like so:

convert -comment "Mary had a little lamb" input.jpg output.jpg

Remember that you can also use the mogrify command to perform this operation in
place, like so:

mogrify -comment "Mary had a little lamb" input.jpg

Here the input image is changed without specifying an output filename—the input file is
overwritten. You can use a number of format characters to expand this to useful information
(see Table 3-2).

Table 3-2. Format Characters for the comment Command

Format String Expands To

%b File size

%C Comment

%d Directory

%e Filename extension

yas Filename

%h Height

%1 Input filename

%k Number of unique colors
%1 Label

m Magick

%n Number of scenes

%0 Output filename

%p Page number

%q Quantum depth

%Y Image class and color space

%S Scene number

CHAPTER 3 © INTRODUCING COMPRESSION AND OTHER METADATA

Format String Expands To

%t Top of filename

%u Unique temporary filename
i Width

%X x resolution

Ay y resolution

%@ Bounding box

%t Signature

\n New line

\1 Carriage return

Some of these format strings might seem a little odd. This is because other commands use
these format strings as well. I'll discuss some other uses for these format strings in a moment.
To embed a comment into the image metadata that contains the file size, for instance, use the
following command line:

mogrify -comment "The size of the file is %b bytes" input.jpg

The final use for these format strings is to place information about the image into the image
itself so that it’s visible in the viewer as part of the image. I'll discuss this more in Chapter 7.
You'll find more coverage of the mogrify command in Chapter 4.

Similarly, for image formats that support labels, you can label an image with a descriptive
string. The string takes the same format as the comment. Here’s an example:

convert -label "This is an image" input.jpg output.jpg

Additionally, if the first character of the comment or label is an at sign, then the remainder
of the argument is taken as the filename from which to get the comment or label.

Altering How Pixels Are Stored

Not all the attributes shown in the previous identify command are strictly metadata. For
example, the number of colors in the image and color space refers to the encoding of the
actual image data in the file and how to decode it for display, rather than optional data about
the image as metadata normally is. It’s possible to change the values of these attributes, how-
ever. For example, if you wanted to reduce the number of colors used by an image, then you'd
use the colors command-line option. People usually want to perform this sort of operation to
reduce the size of files or to ensure that the image displays correctly on hardware that supports
only a small number of concurrent colors. By reducing the number of colors that the image
can use, storing individual pixels takes less space because a smaller number of possible values
needs to be represented. To reduce the picture whose metadata I've shown previously from 24
bits per pixel (16,777,216 individual colors), which is the format the camera shoots in, to 256
colors, I use the following command:

convert -colors 256 input.tif output.tif

You can obtain many more details by examining the colors command-line option in

7

72

CHAPTER 3 " INTRODUCING COMPRESSION AND OTHER METADATA

Another example of an image attribute that isn't strictly metadata is the number of chan-
nels in the image. The TIFF terminology for channels is perhaps a little easier to understand,
so I'll use that as an explanation and then show you how that correlates to channels.

With TIFF images, you can specify two numbers that are important to the way the bitmap
information in the image file is stored. Before I discuss them, though, I should mention what
a sample is. You can imagine that images from cameras and scanners involve hardware that
looks at something in the real world and takes a number of readings to determine what color
the different pixels in the image should be to represent the real thing in the image. Those read-
ings are the samples.

The first attribute is the number of bits per sample, which specifies the range of possible
values for a given sample. For example, if you specify eight bits per sample, then the possible
range of values for the sample is 0 through to 255.

The second attribute is the number of samples per pixel. RGB images have three samples—
the red one, the blue one, and the green one. If the image has a transparency sample (an alpha
channel), then there are four. If the image uses a palette, then the number of samples is one,
as all the color information actually comes from an entry in a lookup table (the palette) into
which the sample points.

In ImageMagick parlance, these samples are called channels, which is the terminology I'll
use for the rest of this book.

You can also change the color space that an image uses to represent the pixels in the
image. A color space is the representation format for pixels. For example, the RGB color space
uses a red, green, and blue value to represent a pixel, whereas the YUV color space, which is
used in PAL television signals, uses luminance and chrominance information to achieve the
same end. This is from the ImageMagick documentation:

Color reduction, by default, takes place in the RGB color space. Empirical evidence sug-
gests that distances in color spaces such as YUV or YIQ correspond to perceptual color
differences more closely than do distances in RGB space. These color spaces may give
better results when color reducing an image.

You might therefore want to select a different color space when reducing the number of
colors in your image so as to produce a better-looking outcome. You can do this with the
following command-line option:

convert -colors numberofcolors -colorspace space input.jpg output.jpg

where space is one of the following: CMYK, GRAY, HSL, HWB, OHTA, Rec601Luma, Rec709Luma, RGB,
Transparent, XYZ, YCbCr, YIQ, YPbPr, or YUV. Selecting color spaces is a specialist field outside
the scope of this book, so you're best off looking into this field more before spending too much
effort on manipulating color spaces. A good place to start is the Color Space FAQ at http://
www.faqs.org/faqs/graphics/colorspace-fag/.

While you're manipulating the storage of the pixels within the image, you might want to
specify the maximum pixel depth. You can do this with the depth command-line option, although
it should be noted that the only possible values for the depth are 8 and 16:

convert -depth 8 input.jpg output.jpg

CHAPTER 3 © INTRODUCING COMPRESSION AND OTHER METADATA

Another attribute of the image that affects the storage of the image data is the endianness
of the image. Endianness refers to the order in which the bytes in a word are stored. The options
are little endian (LSB) and big endian (MSB), and you can set these with the endian command-line
option. To specify little endian, you use a command line like this:

convert -endian LSB input.jpg output.jpg

Use a plus sign instead of a minus sign at the start of the command-line option to use the
default endianness for that image format.

Finally, for the pixel storage options, you can force ImageMagick to use a particular
representation for the pixels in the image. The following options are available:

» Bilevel: A black-and-white image where pixels are either on or off.
* Grayscale: Pixels are able to have only one sample, which is why they’re not color.

* Palette: Colors are stored elsewhere in the file, and each pixel references an entry in
this table.

e PaletteMatte: A palette with an alpha (transparency) channel.
e TrueColor: A full RGB image.
* TrueColorMatte: A full RGB image with an alpha channel. Often known as RGBA.

* ColorSeparation: Colors are stored separately in the bitmap, so all the red values are
stored together, then all the green, and then all the blue, for example.

* ColorSeparationMatte: Same as ColorSeparation but with an alpha channel.

* Optimize: Whatever works best with the formats you're working with and the pixel
values actually used in the image.

Here'’s an example of forcing an image to use a palette:

convert -type Palette input.jpg output.jpg

Introducing Gamma Correction

Most monitors aren'’t calibrated to produce exactly the same colors as other monitors; such
calibration is reserved for generally more expensive hardware. This is why when you put two
monitors next to each other and display the same image, you'll often get different colors in
the images displayed. You can use gamma correction to calibrate images so that they display
properly. Gamma correction is of particular interest to the print industry, which uses it to ensure
that what the artist sees on the screen is what is produced on paper. With ImageMagick, you
can specify a gamma correction value with the gamma command-line option, like this:

convert -gamma 1.7 input.png output.jpg

If you need to specify a different gamma correction value for each color channel in the
image, then just separate them with a comma. This example specifies values for the red, green,
and blue channels in that order:

convert -gamma 1.7,2.3,0.7 input.png output.jpg

73

74

CHAPTER 3 " INTRODUCING COMPRESSION AND OTHER METADATA

Setting Color Intent and Profiles
The International Color Consortium (ICC) has defined a set of color intents for images that

ImageMagick supports:

* Perceptual: The full range of possible colors in the output device should be used. The
relative spacing of colors is maintained, so if a color falls outside the range of colors
possible on the device, then the space between all colors will be reduced.

* Saturation: This preserves the separation of colors.

» Relative:If a color falls outside the range of colors possible, the closest possible color is
used. Other colors remain unchanged.

* Absolute: This is the same as relative, but the white point of the image is preserved.

This is a fairly technical field, so if you need more information, check out the excellent expla-
nation on the Microsoft MSDN site at http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/icm/icm_0e43.asp. To have ImageMagick set the intent of the image, use the
following command line:

mogrify -intent absolute input.jpg

Images can also store a color profile, which is added to an image with the profile
command-line option. You can remove the profile information from the image with the
+profile command-line option:

mogrify +profile input.jpg

Handling Images That Don’t Specify Dimensions

ImageMagick supports several image formats that don't encode the dimensions of the image
into the image file. In fact, these documents store no metadata, just the image bitmap itself.
You can specify the size of the image on the command line, which ImageMagick needs in order
to convert the image to other formats. To do this, just use a command line like the following:

convert -size widthxheight input.raw output.jpg

where width is the horizontal dimension and height is the vertical. The image formats for
which you'll need to do this are RGB, Gray, and CMYK.

Setting Image Resolution

Another example of a piece of metadata that won't directly affect the display of the image in

most cases but that is part of the image encoding is the image resolution. Some devices, such
as printers, will use this for displaying the image. On-screen display will normally ignore it,
however. You can specify the resolution of the image with the density command-line option:

convert -density widthxheight

where width is the horizontal resolution and height is the vertical resolution. You can specify
the units for the resolution as well. The three options are as follows:

CHAPTER 3 © INTRODUCING COMPRESSION AND OTHER METADATA

e Undefined

e PixelsPerInch

e PixelsPerCentimeter

Here’s an example of setting the resolution of an image to 72 pixels per inch:

convert -density 72x72 -units PixelsPerInch

Transparency with GIF

GIF doesn't store an alpha channel in the same way as other image formats. Instead, the GIF
file nominates a color that is transparent and then treats any occurrences of that color as being
100 percent transparent. You can specify this transparent color for GIF files with ImageMagick
using the transparent command-line option. Here’s an example of setting blue to transparent
in a GIF file:

convert -transparent blue input.gif output.gif

This will result in any occurrences of the pure blue color being treated as 100 percent
transparent when the image is displayed.

Storing Multiple Image Formats

Some image formats support storing more than one image per file. The most common exam-
ples are TIFF files and Adobe’s Portable Document Format (PDF). ImageMagick can extract all
the images from one of these multiple image formats, as well as create these formats. For example,
this extracts all the pages from a PDF document into separate PNG files:

convert input.pdf output-%d.png

This will produce a series of files named output-0.png, output-1.png, and so forth. To
exert more control over the name of the output files, you can use standard printf schematics
to control the format of the number inserted. The most interesting option available is to pad
the number with leading zeros. To do this, use a format string like this:

%03d

The leading zero says to pad the number with leading zeros. The 3 says to create a three-digit
number. You'll end up with numbers of the following form:

000
001
002
003
004

This means that the output files will sort properly in Windows Explorer or in a command-line
directory listing command such as 1s or dir. If you don't specify %d, then ImageMagick will append
a unique number to the end of the output filename. For example, the following command:

75

76

CHAPTER 3 " INTRODUCING COMPRESSION AND OTHER METADATA

convert input.pdf output.png

will produce these output files:

output.png.o
output.png.1

This is a lot less useful, because many applications assume that the file extension portion
(the part after the last period) indicates the format of the file.

Adding, Removing, and Swapping Images

ImageMagick can add and remove images from these multiple image formats with ease. To
add another image into the file, use the insert command-line option:

convert -insert 4 newimage.gif input.gif output.gif

This command will insert a new frame from the file newimage.gif as the fourth image of
the animation stored in input.gif and save the new animation to output.gif. The images
after the fourth image are shifted down to make room. To delete frames from an animation,
use the delete command-line option with a list of the images to delete. For example, to delete
every second frame from a GIF animation with seven frames, youd use the following command
line:

convert -delete 2,4,6 input.gif output.gif

This will give the appearance that the animation is happening faster, as well as making
the file size smaller. You can also use this command-line option on other multiple image formats,
such as TIFF files.

You can even swap two images:

convert -swap 3,4 input.gif, output.gif

This will swap the third and fourth frames in the animation. Although I've used an anima-
tion as an example here, these command-line options will work just as well on nonanimated
formats such as PDF and TIFE

Creating Multiple Image Files

You can create a multi-image file from scratch by specifying a list of files to turn into the multi-
image file. It’s as simple as this:

convert imagel.jpg image2.jpg image3.jpg output.pdf

This will produce a PDF document that has each of these input images as a page in the
document.

Decrypting Encrypted PDFs

Adobe’s PDF format supports the encryption of the content of the document. This affects
ImageMagick’s ability to extract images from PDF documents that have this encryption

CHAPTER 3 © INTRODUCING COMPRESSION AND OTHER METADATA

enabled. To decrypt the document and extract the images, use the authenticate command-line
option, as shown here:

convert -authenticate password input.pdf outputi%d.png

This will use the password specified as needed to extract the images from the PDF file into
the PNG files specified.

Manipulating Animated Images

Some of the formats supported by ImageMagick that can contain multiple images are anima-
tions. Examples of this include GIF animations, MPEG movies, and Microsoft’s Audio Video
Interleave (AVI) video format. ImageMagick has a number of facilities to help with handling
these formats.

Changing the Frame Rate

You can change the frame rate at which an animation runs with the delay command-line option.
Essentially, this adds a delay between the display of each frame, although this is implemented
by adding extra identical frames to the animation. The argument to the delay command-line
option is the number of hundreds of a second to delay. For example, if you wanted to take
a series of JPEG files and produce an MPEG movie where each new image appears after a second,
then you'd use the delay command and pass a value of 100:

convert -delay 100 frames-*.jpg output.mpg

Because this is implemented with packing in extra frames, you should be aware that it can
have quite noticeable effects on the time it takes to generate the animation and the final file size.

Morphing Two Images

To morph two images together, use the morph command-line option. Morph takes as its argument
a list of the frames to morph together and writes out either an animation or a set of frames. For
example, the following command line will morph the two files one.png and two.png and write
three frames out with the names output-0.png, output-1.png, and output-2.png:

convert -morph 1,2 one.png two.png output-%d.png

Creating Looping GIF Animations

In some circumstances, you don’'t want an animation to end once it’s played; instead, you want
it to return to the beginning and start again. The most common example of this is animated GIF
files for Web sites, where the actual animation is often only a few frames long and the visual
effect is largely achieved through this looping. You can flag a GIF animation as looping with
ImageMagick by using the loop command-line option, where the argument is the number of
times to repeat. For an endlessly looping GIF animation, use the value 0 as the argument:

convert -loop O frames-*.gif output.gif

77

CHAPTER 3 " INTRODUCING COMPRESSION AND OTHER METADATA

Note that looping GIFs is a feature introduced in early versions of Netscape, and older
software might not handle it properly. To introduce a pause in the animation before starting
the animation again, use the pause command-line option. For example, to loop through an
animation three times, with a delay of five seconds between each display of the animation,
you use a command line like this:

convert -loop 3 -pause 5 frames-*.gif output.gif

Using GIF Disposal

The GIF image format allows you to specify what should be done with a frame once it has
been displayed. The options are as follows:

¢ Undefined: This replaces the old frame with the new one.

* None: Visible pixels from the previous frame continue to be displayed.

* Background: The previous frame is visible through transparent pixels in the new frame.
* Previous: This restores to a previously undisposed frame.

For a good tutorial on GIF disposal, see http://www.webreference.com/content/studio/
disposal.html. You can specify the GIF disposal method with the dispose command-line
option, as follows:

convert -dispose background input.gif output.gif

Harnessing Disposal Methods

Disposal methods have two interesting side effects. You can use the deconstruct command-line
option to use disposal to produce animations that are much smaller, as subsequent frames
store only differences from the previous frame. For example, this command line:

convert -deconstruct input.gif output.gif

turns the GIF animation in this example from being 13,717 bytes to 8,854 bytes. You can also
do the opposite—you can take an animation that uses disposal and force each frame to store
the entire animation state, instead of relying on the last frame for some of its display, like so:

convert -coalesce input.gif output.gif

This will produce a large animation again.

Conclusion

In this chapter, you looked at how to change the compression of an image, the attributes of
the compression of an image, or even the entire format of the image. You also learned how to
handle multiple image formats such as TIFF and PDEF including creating them, removing single
images from them, and swapping images within them. Finally, I talked about the ultimate in
multiple image formats—animations.

In the next chapter, I'll cover some of the other ImageMagick command-line tools before
presenting some of the more artistic transformations that ImageMagick can perform on an image.

CHAPTER 4

Using Other ImageMagick
Tools

Most of this book discusses the convert command, but several other interesting tools ship
with ImageMagick. I'll introduce these tools in this chapter and show how to use them as
relevant throughout this book; for example, Chapter 3 showed how to use the mogrify command
to update the metadata in image files. ImageMagick has two classes of tools: the command-line
tools and the tools with graphical user interfaces. I'll discuss these two types of tools in separate
sections of this chapter.

Using the Command-Line Tools

I'll discuss the command-line tools that ship with ImageMagick in alphabetical order in the
following sections so you can use this chapter as a reference guide.

compare

The compare command creates a graphical representation of the differences between two images,
and it gives you a mathematical measurement of the difference between the two images. In this
section, I'll show the effects of the command on a picture I took during a recent hot-air-balloon
ride. Figure 4-1 shows the input image.

79

80

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

Figure 4-1. The original image

Chapter 5 discusses the spread command-line argument, but for now I'll show the output
of the spread command and use it as example input for the compare command. Figure 4-2 shows
a spread operation with an argument of 1.

Figure 4-2. The original image, spread by a factor of 1

CHAPTER 4 " USING OTHER IMAGEMAGICK TOOLS

The compare command will show you the differences between these two images graphically.
If you run the following command:

compare original.jpg changed.jpg compared.jpg

then the final image in the command line will contain the differences between the first two
images on the command line. For this example, the output looks like Figure 4-3.

Figure 4-3. The differences between the original image and the image that was spread by a factor of 1

The effect of the spread command-line argument becomes more pronounced as the factor
increases. (Again, you can find a full explanation of the spread command-line option in Chapter 5.)
Briefly, spread takes a random pixel within the circle surrounding the current pixel and swaps
the two. The argument to the spread command is the radius of that circle. Figure 4-4 shows
a spread factor of 10, and Figure 4-5 shows the differences.

81

82

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

Figure 4-4. The original image, spread by a factor of 10

Figure 4-5. The differences between the original image and the image that was spread by a factor of 10

The compare command has some options as well. To compare only some channels, use
the channel command-line argument, which lets you select on which channels the compari-
son occurs. (You can also use the channel argument with the convert command if you want to
apply a conversion to only selected channels.) Additionally, you can compare just a portion of
an image using the extract command-line argument to compare. This command-line argument
takes a geometry argument, as discussed in Chapter 2.

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

Note Chapter 3 explains channels in more detail, but in summary a channel is one of the samples for
a given pixel; for example, an RGB image contains a red channel, a green channel, and a blue channel.

You can also select the metric used to measure the difference between pixels with the
metric command-line argument. Selecting a metric is a highly technical area that is out of
scope for this book, so I recommend you refer to the ImageMagick documentation at http://
www . imagemagick.org/script/compare.php for more information. If the images are large, then
the comparison can take quite some time, in which case you can use the monitor command-
line argument to show the progress of the command. For example, here’s a comparison with
amonitor command-line argument, followed by its output:

compare -monitor inputl.png input2.png compare.png

Mogrify image: 100%
Save image: 100%

This progress information updates as the command runs.

composite

The composite command allows you to overlay one image on another. In the past, the composite
command was the combine command, so if you can'’t find the composite command in your
ImageMagick installation, look for combine instead. Many of the convert command-line options
are also implemented by the composite command. In this section, I'll focus on the command-
line options that are unique to the composite command. Specifically, as an example of how to
use the composite command, I'll show how to annotate the photo in Figure 4-6 with some text.
Let’s say you want to put the image shown in Figure 4-7 on top of the one shown in Figure 4-6.

83

84

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

Figure 4-6. A picture of a golf ball on grass

Step 1 to a good golf game:
Hit the ball with the club.

Figure 4-7. Another picture to overlay on top of the photo in Figure 4-6

To composite these images, be sure to name the image that will be on top first, because
the second image is the one that dictates the size of the output image. This is the command
line to use:

composite ontop.png underneath.png output.png

This produces the output image in Figure 4-8.

CHAPTER 4 " USING OTHER IMAGEMAGICK TOOLS

Step 1 to a good golf game: %
Hit the ball with the club.

Figure 4-8. The output image after a composite operation

This isn't exactly what I intended the output image to look like, however, because I haven't
specified an alpha channel in the image to be placed on top. If you add an alpha channel, then
the new output image looks like Figure 4-9.

ation with a top image that has an alpha channel

85

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

You can see from this example that the composite command will respect the alpha chan-
nel if one is defined for the image on top. (Chapter 7 discusses alpha channels in more detail.)

You can harness the composite command and transparency to add some really nice effects.
For example, I get quite a few requests for details on how to create images with rounded corners,
which is a style that has been made popular by Apple’s Mac OS X. To do this, you need to make
arounded corner, with the transparency set up correctly so that the inside of the corner is
transparent. If you want premade corners, you can download mine from http://www.stillhg.com/
extracted/article-imagingtoolsmore/corners/.

I'll now show how to give the image in Figure 4-10 rounded corners.

Figure 4-10. A bird photo with square corners

To do this, you need to use four invocations of the composite command:

composite -gravity NorthEast rounded-ne.png bird.png bird-1.png

composite -gravity NorthWest rounded-nw.png bird-1.png bird-2.png
composite -gravity SouthEast rounded-se.png bird-2.png bird-3.png
composite -gravity SouthWest rounded-sw.png bird-3.png bird-4.png

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS 87

This gives you the finished image in Figure 4-11.

Figure 4-11. A bird photo with rounded corners

For more discussion on the gravity command-line option used in this example, refer to
Chapter 7. You can also ask the composite command to dissolve the images into each other,
which can produce animations with some nice effects. For instance, let’s say you have two
photos of flowers, as shown in Figure 4-12 and Figure 4-13.

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

Figure 4-12. The first flower

Figure 4-13. The second flower

Say you want to combine these two photos with different dissolve levels. Generally, the
command line you use looks like this:

composite -dissolve 42% inputl.jpg input2.jpg output.jpg

This will dissolve input1.jpg into input2.jpg by 42 percent. Figure 4-14 shows some
examples of various dissolve percentages.

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

-dissolve 30% -dissolve 40% -dissolve 50%

-dissolve 80%

-dissolve 90% -dissolve 100%

Figure 4-14. The two images combined with different dissolve levels

You can also combine images using the blend command-line option, which takes a percent-
age argument much like dissolve but produces slightly different results visually. The difference
between the two operations is that the dissolve command-line option adjusts the transparency
of the images before combining them, whilst the blend command uses a weighted average of
the images to produce its output.

89

90

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

The composite command can also produce watermarks on images. For example, I'll now
show how to place the watermark shown in Figure 4-15 on the picture of the flower from
Figure 4-12.

Draft

Figure 4-15. A watermark to apply to the image

To do this, use this command line:
composite -watermark 30% watermark.png input.jpg output.jpg

The main difference between watermarking and dissolving or blending is that the water-
mark image doesn’t need to be the same size as the input image. Figure 4-16 shows the output
image that this command line gives you.

Figure 4-16. The image with a watermark applied

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

The problem with this image is that the watermark image doesn’'t have an alpha channel
set; it has a white background instead, which is why it has that lighter rectangle in the image.
You can fix this by making the white in the image 100 percent transparent. After that, you get
the image shown in Figure 4-17.

Figure 4-17. The image with a transparent watermark applied

The watermark command-line option takes an argument that specifies the transparency of
the watermark. Figure 4-18 shows some of the transparency values and what the results look like.

91

92

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

-waterark 80% -watermark 90%

-watermark 70%

Figure 4-18. Various transparency options for the watermark command-line option

You can choose the placement of the watermark by using the gravity command-line option
like this:

composite -watermark 30% -gravity center watermark.png input.jpg output.jpg

This gives you the image shown in Figure 4-19.

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS 93

Figure 4-19. A centered watermark

Finally, for the composite command, I'll show you how to use the stegano command-line
option to hide images inside other images. You can use this to determine whether an image
you find on the Internet has been taken from your site (although you can also use it for passing
secret messages). To hide the image, first you need an image to hide other images in, and then you
need the hidden image. For this example, I'll show how to hide the image shown in Figure 4-20.

This image is
from stillhqg.com

Figure 4-20. An image to hide

I'll show how to hide this inside the image shown in Figure 4-21.

94

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

Figure 4-21. The image in which you'll hide the logo

To do this, use this command line:
composite -stegano 42 logo.png input.jpg output.png

The argument to the stegano command-line option is the inset inside the input image at
which to start hiding the logo. This number needs to be kept secret, or other people will be
able to extract the logo. This gives you the image shown in Figure 4-22.

CHAPTER 4 " USING OTHER IMAGEMAGICK TOOLS

To extract the image again, you use the display command like this:
display -size 204x61+42 stegano:output.png

You should note three points about this command line. First, you need to know the size of
the logo, which can be determined by using the identify command (which is discussed later
in this chapter in the “identify” section). Second, you need to know the offset of the image
within the other image. It is also important to note that this command will take quite a while
to execute. On my 1.7-gigahertz Centrino laptop, this command took 51 seconds to execute.
When ready, the display command will display the logo image. Finally, the image with the
logo hidden inside it is affected by having the logo placed in it, so you need to be willing to
accept some image quality loss.

How do you find stolen images using this technique? Well, it’s not a good active search
technique, because you'd need to perform this slow technique to every image on the Internet.
If, however, you stumble across images that you suspect are from your site, then you can use
this to prove the point. Unfortunately, the embedded logo might not survive transformations
on the stolen image such as resizing, cropping, and so forth.

conjure

ImageMagick implements a scripting language for automating processing called the Magick
Scripting Language (MSL). The conjure command takes these scripts in Extensible Markup
Language (XML) form and executes them. The scripting language used is out the scope of this
book, but Chapters 8 through 11 cover lots of other programming options. You can read more
about the conjure command at http://www.imagemagick.org/script/conjure.php.

convert

The convert command is the subject of the majority of this book, because it contains most of
the ImageMagick functionality. Therefore, I won’t document the command any further here,
instead referring you to the rest of the book for information. Specifically, see the following
chapters: 3, 5, 6, and 7.

identify

Chapter 3 discussed the identify command. This command outputs interesting information
about the image file (or files) that it’s passed. If you're interested in only simple information
about the image and want it to be returned efficiently, then you're best off using the ping
command-line option:

identify -ping input.jpg

input.jpg JPEG 816x612 DirectClass 103kb 0.040u 0:01

You can get more information about the image if you use other command-line options.
If you specify no command-line options at all, then you get similar output to the ping command-
line option, as shown here:

identify input.jpg

95

96

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

input.jpg JPEG 816x612 DirectClass 103kb 0.040u 0:01

Here you can see that the image is 816x612 pixels and is JPEG compressed. If you want
more information about the file, try adding the verbose command-line option:

identify -verbose input.jpg

input.jpg JPEG 816x612 DirectClass 103kb 0.030u 0:01
Image: input.jpg
Format: JPEG (Joint Photographic Experts Group JFIF format)
Geometry: 816x612
Class: DirectClass
Type: TrueColor
Endianess: Undefined
Colorspace: RGB
Channel depth:
Red: 8-bits
Green: 8-bits
Blue: 8-bits
Channel statistics:
Red:
Min: 95 (0.372549)
Max: 255 (1)
Mean: 226.582 (0.888556)
Standard deviation: 12.6188 (0.0494854)
Green:
Min: 0 (0)
Max: 255 (1)
Mean: 19.4916 (0.0764375)
Standard deviation: 45.3697 (0.177921)
Blue:
Min: 0 (0)
Max: 255 (1)
Mean: 42.3754 (0.166178)
Standard deviation: 40.5556 (0.159042)
Colors: 31265
Rendering-intent: Undefined
Resolution: 72x72
Units: PixelsPerInch
Filesize: 103kb
Interlace: None
Background Color: white
Border Color: #DFDFDF
Matte Color: grey74
Dispose: Undefined
Iterations: 0
Compression: JPEG

CHAPTER 4 " USING OTHER IMAGEMAGICK TOOLS 97

Quality: 80
Orientation: Undefined
JPEG-Colorspace: 2
JPEG-Sampling-factors: 2x1,1x1,1x1
Signature: 4a957426ccdc4t819¢591101020920bef1blec4739fd17084bab38c617ccf83a
Profile-exif: 6140 bytes
...dump of those 6,140 bytes omitted for clarity...
Image Description:
Make: SONY.
Model: CYBERSHOT U.
Orientation: 1
X Resolution: 72/1
Y Resolution: 72/1
Resolution Unit: 2
Date Time: 2005:05:13 07:27:09.
Y Cb Cr Positioning: 2
Exif Offset: 220
Exposure Time: 10/1600
F Number: 40/10
Exposure Program: 2
ISO Speed Ratings: 100
Exif Version: 0220
Date Time Original: 2005:05:13 07:27:09.
Date Time Digitized: 2005:05:13 07:27:09.
Components Configuration:
Compressed Bits Per Pixel: 2/1
Exposure Bias Value: 0/10
Max Aperture Value: 48/16
Metering Mode: 2
Light Source: 0
Flash: 0
Focal Length: 50/10
Maker Note:
Flash Pix Version: 0100
Color Space: 1
Exif Image Width: 1632
Exif Image Length: 1224
Interoperability Offset: 638
Interoperability Index: R98.
Interoperability Version: 0100
File Source: .
Scene Type: .
Custom Rendered: 0
Exposure Mode: 0
White Balance: 0
Scene Capture Type: 0
Tainted: False

98

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

You can see that this produces a lot of information about the image, including all the infor-
mation embedded in the JPEG file’s EXIF metadata tags (a metadata format specific to the
JPEG file format). In return for seeing all this information, the command can take quite some
time to complete. The identify command can also take a format argument, which gives you
a chance to output only the information you want. The format of the format argument is iden-
tical to the format used for the comment command-line argument, as discussed in Chapter 3.

You can use this information in some interesting ways; for an example, check out the
programming example in Chapter 8.

import
ImageMagick also ships with a screen-capture program called import. When you run the com-
mand, the cursor in X Windows becomes a set of crosshairs, and when you click a window, the

contents of that window are saved into the specified file. For example, the following command
line:

import capture.png

saves the image shown in Figure 4-23 when you click a window.

import (1) import(1)

HAHE
import - saves any visible window on an ¥ server and outputs it az an
image file, You can capture a single window, the entire screen. or any
rectangular portion of the screen,

SYNDPSIS
import [options] input-file

OVERYIEW
The import program iz a member of the ImageMagick{l) suite of tools,
Uze it to capture some or all of an ¥ server screen and zave the image
to a file,

For more information about thiz command, point your browser to
file:/#fusrslocal/share/doc/ Imagetagick—-6,2,3/ index htnl,

Run “import -help’ to get a summary of the import conmand options,

SEE-fi S0
:0

Figure 4-23. A captured window

To import the frame from the window as well, use the frame command-line option:
import -frame capture.png

You can import more than one image at a time by specifying more than output filename
on the command line:

import outputl.png output2.png

If you need some delay between the image captures, you can use the pause command-line
option, which takes the number of seconds to delay before each capture (including the first):

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS 99

This produces the two captures shown in Figure 4-24 and Figure 4-25, with a total capture
time of 20 seconds.

DEG

Figure 4-24. The first captured window from the multiple import

Game Edit Playground Speech Settings Help

TEES &

Figure 4-25. The second captured window from the multiple import

The import command needs an X Windows server, so unless you have one enabled on your
Microsoft Windows machine, then this command won’t work.

100

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

mogrify

Chapter 2 briefly introduced the mogrify command, which takes the same arguments as the
convert command; however, the difference is that the mogrify command takes only one image
file as an argument. Instead of saving the changed image into the second named file like the
convert command does, the mogrify command will change the original image. This makes the
mogrify command much more convenient for processing many images at once, because you
can specify all of them on the command line, like so:

mogrify -implode 4 *.7jpg

This example applies the implode effect (discussed in Chapter 5) to all the images in the
current directory whose filenames end with . jpg. To achieve the same effect with the convert
command, you need to implement a simple shell script:

for item in *.jpg

do
convert -implode 4 $item /tmp/$item
mv /tmp/$item $item

done

The convert command requires a lot more work and will be less reliable. What if you
wanted to change the image format of a bunch of images? The format command-line option
allows you to do this. For example, to turn a bunch of JPEG files into PNGs, you can use this
command line:

mogrify -format png *.jpg

This will convert all the files in the current directory ending with . jpg into PNG files by
changing the extension in the filename. This can also be handy if you want to keep the original
images but want a shorthand way to apply a transformation to all those images. If you use this
option, bear in mind that there can be issues associated with converting images to another
format, as discussed in Chapter 3.

montage

The montage command creates an image from a sequence of images. For example, to create an
image that contains thumbnails of the images it was passed, use the following command line:

montage *.jpg output.png

Figure 4-26 shows an example of the output.

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS 101

Figure 4-26. Output from the montage command

The montage command can take some arguments of its own as well. For example, to label
the images in the montage, use the label command-line argument. To label the images with
the filename, use the following command line:

montage -label %f *.jpg output.png

This displays the output shown in Figure 4-27.

102

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

001 jpg 002.jpg 003 jpg 004.jpg 005 jpg

006.jpg 007jpg 008 jpg 008 jpg 010.jpg

014.Jpg 015.jpg

016.jpg 01?.pg

Figure 4-27. Output from the montage command, with the label option

You can find more documentation on the substitution strings to use in the label string in

Chapter 3.

To put a frame around the images, you can add the frame command-line option. Here’s

a frame with a size of 5:
montage -label %f -frame 5 *.jpg output.png

This gives you the output shown in Figure 4-28.

CHAPTER 4

USING OTHER IMAGEMAGICK TOOLS

012,jpg

013jpg

014.jpg

016.jpg

017ipg

Figure 4-28. Output from the montage command, with the label option and a frame option of 5

In contrast to that, Figure 4-29 shows a frame with a size of 1.

103

104

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

006.jpg 007.jpg 008 .jpg 008 jpg 010.jpg

011 jpg 012 jpg 013.jpg 014.jpg 015.jpg

016.jpg 017.jpg

Figure 4-29. Output from the montage command, with the label option and a frame option of 1

Apart from frames, you can also create shadows around the images by using the shadow
command-line option. Here’s an example:

montage -label %f -shadow *.jpg output.png

ImageMagick creates the image shown in Figure 4-30.

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS 105

006.jpg 007.jpg 008.jpg 009 .jpg 010.jpg

011.jpg 012.jpg 013.jpg 014.jpg 015.pg

016.jpg 017.jpg

Figure 4-30. Output of the montage command, with a shadow

You can combine the shadow effect with a frame, like this:
montage -label %f -shadow -frame 5*.jpg output.png

You get the effect shown in Figure 4-31.

106

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

005.jpg

010.jpg

011 jpg 012.jpg 013.jpg 014.jpg 015.jpg
—

016ng 017ipg

Figure 4-31. Output of the montage command, with a shadow and a frame

Many of the color and stroke options discussed in Chapter 7 affect the way frames are drawn.
For example, you can use the border color, background color, fill color, and stroke color to
change features such as the background color of the image and the way the frame is painted.
Experiment with these options if you'd like to further customize the way frames in montages
look. The montage command can even create HTML image maps; however, since image maps
are a bit dated as a concept now, I won'’t cover them in this chapter.

You can also manipulate the space that each thumbnail consumes. For instance, to enforce
a 100x200 space for each thumbnail image, you can use this command line:

montage -label %f -frame 5 -geometry 100x200 *.jpg output.png

This produces the output shown in Figure 4-32.

CHAPTER 4

USING OTHER IMAGEMAGICK TOOLS

001.jpg

002 pg

003.jpg

004.jpg

005 jpg

008.jpg

007.jpg

008.jpg

008.jpg

010.jpg

011.jpg

012.jpg

013.jpg

014.pg

015.jpg

016.jpg

017.jpg

Figure 4-32. Output from the montage command, with the label option, a frame option of 1, and

a given frame size enforced

You can find more information about the geometry command-line option in Chapter 2. I'll
briefly show you how to add space around images, though. You do this with a geometry that
consists of a plus sign and the horizontal spacing and a plus sign and the vertical spacing. For
example, to put 10 pixels of horizontal spacing and 5 pixels of vertical spacing around an image,

use a command line like this:

montage -label %f -frame 5 -geometry +10+5 *.jpg output.png

107

108 CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

This gives you the image shown in Figure 4-33.

Figure 4-33. Output from the montage command, with the label option, a frame option of 1, and
spacing enforced

You can create gaps in the montage by using the special null filename:
montage 001.jpg null: 002.jpg output.png

This gives you a montage with a blank space in the middle, as shown in Figure 4-34.

CHAPTER 4 " USING OTHER IMAGEMAGICK TOOLS

Figure 4-34. A montage with a gap

Furthermore, you can label some images and not others by using the label command-
line option to specify a label and then use the +1abel command-line option to turn labels off:

montage -label "An image" 001.jpg +label null: -label "Another image" w»
002.jpg output.png

This gives you an image with a gap in the middle and no label for the gap, as shown in
Figure 4-35.

An image Another image

Figure 4-35. An example of not labeling all images

Finally, you can tell the montage command how many images to have per row in the output.
You do this with the tile command-line option, which lets you specify the maximum number
of thumbnails to appear in a row. For example, to enforce having three thumbnails in each row,
you can use the following command line (which also uses some of the examples described
previously):

montage -label %f -frame 5 -tile 3 *.jpg output.png

This produces the output shown in Figure 4-36.

109

110 CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

001 jpg

005.jpg

008 jpg 008.jpg

010.jpg 011.jpg 012.jpg

013.jpg 014.jpg 015.jpg

016 jpg 017.jpg

Figure 4-36. Output from the montage command, with the label option, a frame option of 1, and
a maximum of three thumbnails per row

CHAPTER 4 " USING OTHER IMAGEMAGICK TOOLS

If you want to specify the number of rows, then you can specify a grid like this:
montage -label %f -frame 5 -tile 5x5 *.jpg output.png

This produces the output shown in Figure 4-37.

005.jpg

007,pg 010,pg

013.jpg 014.jpg 015.jpg

016jpg 017.pg

Figure 4-37. Output from the montage, having specified a number of output rows

This example has a blank line at the bottom, because you told ImageMagick you wanted
five output rows, even though only four were needed. To tell ImageMagick to work out how
many images to put in each row and specify only the number of output rows, then just specify
that number with an x at the front:

montage -label %f -frame 5 -tile x5 *.jpg output.png

ImageMagick works out how many images should go in each of the five rows and creates

111

112 CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

003.jpg 004.jpg

006.jpg

010.jpg 011.jpg

013.jpg 014.jpg 015.jpg 016.jpg

017.pg

Figure 4-38. Output from montage, having specified a number of output rows but not the
number of images in each row

Using the Graphical Tools

Along with the command-line tools you've seen so far, ImageMagick ships with a variety of
graphical tools. These graphical tools require an X Windows server to work, which can make
them harder to use on Microsoft Windows machines. If you're running Windows, then I rec-
ommend looking into installing an X Windows server if these tools sound interesting.

animate

The animate command displays either an animated file, such as an animated GIF file, or
a sequence of image files as an animation in a window. If you're using Microsoft Windows,

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS 113

then you need to have an X Windows server installed for this command to work. Figure 4-39
shows an example of animate in action; it displays a set of images from Chapter 5 of this book.

Figure 4-39. The animate command running

The animate command also has a graphical menu that will appear if you click the image.
Figure 4-40 shows what the menu looks like.

Imo.gc
M agick
Animate

Speed

Direction

Help

Image Info

Qit

Figure 4-40. The animate command’s menu

Click any of these buttons to be prompted for what you'd like animate to do. Options
include controlling what animation you're viewing, setting the direction of the animation (for-
ward or backward), setting the speed of the animation, and getting information on the images
being viewed. You can also access help from within the application. Right-click the image to
make the menu disappear. The information about the images is the repackaged output of the
identify command, which looks like Figure 4-41 when displayed by animate.

114

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

Dizplay A
ganmai 2,2 l
H
vizual: TrueColor
depthy 24

colormap size: 206

colormap type: Shared
geometry: 432x288

type: Pixmap
non-rectangular shape: False
zhared memory: True

Font: -=-helvetica-medium-r-normnal--12-*-%-*-%-=-j=0B8559-1
Text fonti -*-fixed-medium-r-normal-*-12-*-%-*-=-x—jz0B859-1

Undo Edit Cache
levels: O
bytes: Omb
limit: lGmk

Inage: ImageMagick_ChapterS_Insertl, jeg
Format: JPEG (Joint Photographic Experts Growp JFIF format?
Geometry: 432x288
Clazs: DirectClass
Type: TrusColor
Endianess: Undefined
Colorspace: REGE
Channel depth:
Red: 8-hits
Greent B-bits
Blue: B-hits
Channel statistics:
Red:
Ming O (0}
Maxy 227 (0,890196) v

Dismiss i

Figure 4-41. The animate command displaying information about some images

display

The display command is the other graphical command implemented by ImageMagick, which
also requires an X Windows server. If you're using Microsoft Windows, then you'll need to install
such an XWindows server before this command will work. When invoked with an image filename,
display simply displays the image on the screen. You can also include the backdrop command-
line option to tell display to display the image centered on the screen, with the rest of the
screen being covered in a neutral backdrop. For example:

display -backdrop image.png
To specify the color of the backdrop, you can set the background color like this:
display -background green -backdrop image.png

You can find more information about how to specify colors in Chapter 7.

Furthermore, display can automatically watch files when they’re being displayed and
redisplay them if they change on disk. This can come in handy if you have an automated
process that produces an image and you want to keep and eye on it, such as when displaying
on your desktop what your Web camera is currently sending to the Internet. You implement
this with the update command-line option:

CHAPTER 4 " USING OTHER IMAGEMAGICK TOOLS

This will tell display to check whether the input. jpg file has changed on disk every five
seconds and redisplay it if it has. You can also change the title of the window that the display
command uses with the title command-line option:

display -title "This is a picture of a foo" input.jpg

This command-line option also works for the animate and montage commands. You can
include information about the image in this string as well as use the format strings discussed
in Chapter 3.

Finally, for the display command line, you can tell the command to display the image as
the background for a given X window. For this to happen, just specify the window ID to use:

display -window root image.png

This sets your desktop pattern to the image in image. png. You can also specify the individ-
ual ID of an X window. To get the ID of a window, use the xwininfo command. This command
will turn your mouse cursor into a set of crosshairs, and when you click a window, it will dump
useful information such as this:

xwininfo: Please select the window about which you
would like information by clicking the
mouse in that window.

xwininfo: Window id: 0x2600010 =
"mikal@challenger: /home/mikal/imagemagickbook/content”

Absolute upper-left X: 21
Absolute upper-left Y: 478
Relative upper-left X: 4

Relative upper-left Y: 21

Width: 772
Height: 511
Depth: 24

Visual Class: TrueColor

Border width: 0

Class: InputOutput

Colormap: 0x20 (installed)

Bit Gravity State: NorthWestGravity
Window Gravity State: NorthWestGravity
Backing Store State: NotUseful

Save Under State: no

Map State: IsViewable

Override Redirect State: no

Corners: +21+478 -607+478 -607-61 +21-61
-geometry 128x39+17-57

This is similar to how the import command works.
When you have an image being displayed that isn’t the background of an X window, if you
. Figure 4-42 shows this menu.

115

116

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

Transform -

Enhance

Effects

Fix

-

Image Edit (]

-

Miscellany

li

Help

Figure 4-42. The display menu

The File menu lets you access the functions you'd expect from such a menu, such as opening
new files, moving the next file in a list provided on the command line, moving to a previous file
listed on the command line, saving your changes, printing, and so forth.

The Edit menu supplies undo and redo facilities, as well as cut and paste. The View menu
lets you change the size at which the image is displayed, apply changes, and refresh the image.

The Transform, Enhance, F/X, Image Edit, and Miscellany menus let you perform many of
the transformations covered in this book. These menus provide you with an interactive method
of determining which transformations to perform in which order to get the result you desire.
You can also apply these preview transformations with the preview command-line option. See
the ImageMagick documentation at http://www.imagemagick.org/script/display.php.

The Help menu provides online help. Right-click the image for a list of shortcuts.

Conclusion

In this chapter, you looked at the various command-line and graphical tools that ImageMagick
provides. The convert command is the focus of most of this book, so refer to other chapters for
more information about it. Specifically, see Chapter 2, Chapter 3, Chapter 5, and Chapter 6.
ImageMagick can perform a lot of useful functions with the commands it provides, including
creating montages of images with a large variety of formatting options, displaying your images
for you, capturing windows from your X Windows session, and displaying images as the back-
ground in those windows on your X session. ImageMagick can perform many functions that
aren’t covered by the convert command, and this chapter has shown you a few of them. I could
show you other details about these commands, but it would take hundreds of pages to do so.
Irecommend you refer to the ImageMagick documentation at http://www.imagemagick.org if
ou've seen in this chapter.

CHAPTER 4 © USING OTHER IMAGEMAGICK TOOLS

The next chapter shows you some of the more artistic transformations that
ImageMagick can perform, and Chapter 6 shows you the remainder of the image transfor-
mations ImageMagick offers. Chapter 7 covers how to draw on existing images and create
new images with ImageMagick; then I'll move introduce four examples of programmer
interfaces to ImageMagick, so read on for more details.

117

CHAPTER 5

Performing Artistic
Transformations

The approach for this chapter is slightly different from the approach you've seen in previous
chapters. This chapter discusses some of the artistic transformations available with the convert
command. These transformations all take arguments that affect the amount of transformation
applied, so for each transformation I'll provide a number of examples with different arguments
to make this clearer. For these examples, I'll use the image shown in Figure 5-1 to make the
transformations more apparent.

A

(N

Figure 5-1. The input image for the examples in this chapter

Additionally, I'll briefly describe each transformation and what it’s doing to the image.
Irecommend you refer to the ImageMagick documentation at http://www.imagemagick.org
for more information if you need to know more than what is included here.

blur

The blur command-line option applies a Gaussian—-function-based blurring operation to the
image. This command-line option is also called gaussian. The argument is the radius of the
blur, with an optional standard deviation. To specify just a radius, use the following version of
the command:

convert -blur 12 input.jpg output.jpg
119

120

CHAPTER 5 " PERFORMING ARTISTIC TRANSFORMATIONS

To specify a standard deviation as well, use the following:
convert -blur 12x2 input.jpg output.jpg

This command specifies that a blur with radius of 12 and a standard deviation of 2 be used.
Figure 5-2 shows some examples of the blur command’s output with no standard deviation
specified.

-blur 3x6

h

-

-blur 6x3 -blur 6x6

Figure 5-2. Various blur sizes with no standard deviation

A more detailed discussion of the Gaussian function is outside the scope of this book but
will be covered in a good math textbook. Alternatively, http://en.wikipedia.org/wiki/
Gaussian_function provides a good introduction.

charcoal

The next transformation I'll show you is the charcoal command-line option. This option sim-
ulates a charcoal drawing by finding the color boundaries in the image and then reinforcing
those boundaries with thick, dark lines. Additionally, the transformation uses a grayscale effect
for the body of colors. The transformation takes one argument, which is the thickness of the
lines to draw. For example, to produce a simple image, use the following command:

CHAPTER 5 "' PERFORMING ARTISTIC TRANSFORMATIONS 121

Figure 5-3 shows a bunch of examples of the charcoal effect with different arguments.
This can be an appealing effect visually.

hi:
-charcoal 1

Figure 5-3. The charcoal effect with various arguments

colorize

The colorize command uses the fill color currently specified and adds a specified percentage
of that color to the image being processed. For example, this command line:

convert -colorize 10 input.jpg output.jpg

adds a 10 percent share of the current fill color (the default in this example, which is black) to
the image. Progressively adding more gives a nice fade-out effect, as demonstrated in Figure 5-4.

122

CHAPTER 5 "/ PERFORMING ARTISTIC TRANSFORMATIONS

-colorize 15 -colorize 35

-colorize 55 -colorize 75

Figure 5-4. Colorizing an image with different intensities, using the default black fill color

You can also specify a different fill color. You just use the fill command-line option,
which is discussed more in Chapter 7. The following command line specifies a blue fill color:

convert -fill blue -colorize 10 input.jpg output.jpg

You can find out more about how to specify colors in ImageMagick in Chapters 1 and 7.
Figure 5-5 shows this command line with a variety of colorize values.

CHAPTER 5 " PERFORMING ARTISTIC TRANSFORMATIONS

-colorize 15 -colorize 35

-colorize 55 -colorize 75

Figure 5-5. Colorizing an image using a blue fill color

You can also just colorize one image channel. Specify the colorize value for each channel
like this:

convert -colorize 10/20/30 input.jpg output.jpg

This example will colorize the red channel by 10 percent, the green channel by 20 percent,
and the blue channel by 30 percent. The comparison in Figure 5-6 applies varying colorize
levels to just the red channel of the image.

123

124 CHAPTER 5 "/ PERFORMING ARTISTIC TRANSFORMATIONS

-colorize 35/0/0

-colorize 55/0/0 . -colorize 75/0/0

Figure 5-6. Colorizing only the red channel with the default fill color of black

implode

The implode transformation makes it look like the center of the image has been sucked into
a black hole in the middle of the image. The implode command takes one argument, which is
the factor by which to apply the effect. The size of the effect on the image is that factor argu-
ment. For example, to implode an image by 10, use a command line like this:

convert -implode 10 input.jpg output.jpg

Figure 5-7 shows the implode effect with various factor sizes.

CHAPTER 5 "' PERFORMING ARTISTIC TRANSFORMATIONS

-implode 1

-implode 5 -implode 7

Figure 5-7. The implode effect with various factor sizes

noise

The noise transformation either removes or adds noise to an image, optionally using different
methods to determine what is noise in the image. The most common use for this transform is
to “smooth out” images if they have slight imperfections. This is one example of the noise
command:

convert -noise 3 input.jpg output.jpg

For example, Figure 5-8 shows the effect of the noise command with various numeric
arguments.

125

126

CHAPTER 5 "/ PERFORMING ARTISTIC TRANSFORMATIONS

-noise 3

-noise 5 -noise 7

Figure 5-8. The noise effect with various radii

The numeric argument is the radius over which to remove the noise per pixel. Noise is
defined as being an extreme maximum or minimum value within that radius, so the size of the
radius produces dramatically different effects on the image.

You can also use the noise transformation to add noise to an image. To show how this works,
I'll start with the image in Figure 5-9, which is a solid color.

Figure 5-9. A solid color

CHAPTER 5 "' PERFORMING ARTISTIC TRANSFORMATIONS

This is actually light blue, although the printing process doesn’t make that apparent.
These are the types of noise you can add to the image:

e Uniform

e Gaussian

e Multiplicative

e Impulse

e Laplacian

* Poisson

You add the noise with a command line like this, which adds Gaussian noise:
convert +noise Gaussian input.jpg output.jpg

Figure 5-10 shows the new image, with the various types of noise applied.

Uniform Gaussian Multiplicative

Poisson

Impulse

Figure 5-10. Various types of added noise

Figure 5-11 shows the photo I've used in earlier examples in this chapter with the various
types of noise added.

127

128

CHAPTER 5 "/ PERFORMING ARTISTIC TRANSFORMATIONS

Impulse Laplacian Poisson

Figure 5-11. Various types of added noise to the example photograph

paint
One of the most visually attractive transformations that ImageMagick offers is the paint effect.
The paint effect simulates an oil painting by replacing the color of a pixel with the most common

color in a circular area that is specified by the radius argument to the command. For example,
to simulate oil painting, you might pick a radius of 7 pixels and use the following command:

convert -paint 7 input.jpg output.jpg

Figure 5-12 shows a variety of radii applied with the paint command.

CHAPTER 5 "' PERFORMING ARTISTIC TRANSFORMATIONS 129

-paint 5 -paint 7

Figure 5-12. The paint command with various radii

radial-blur

The radial blur effect is implemented with the radial-blur command-line option to the convert
command. This effect rotates the image in a blurring manner around the center of the image
by the number of degrees specified on the command line. The blurring motion is more notice-
able at the outside of the image compared to the center. To blur an image by 45 degrees, use
the following command line:

convert -radial-blur 45 input.jpg output.jpg

Figure 5-13 shows the effect of using a few different angles.

130

CHAPTER 5 " PERFORMING ARTISTIC TRANSFORMATIONS

-radial-blur 15 -radial-blur 35

-radial-blur 55 -radial-blur 75

Figure 5-13. The radial-blur command with different angles of rotation applied

raise

The raise effect provides beveled edges for your image. You can specify the height and width
for this bevel, as well as a direction for the bevel. To specify a different vertical bevel size from
the horizontal one, you use this command line:

convert -raise 2x3 input.jpg output.jpg

This specifies a horizontal bevel of 2 pixels and a vertical bevel size of 3 pixels. Figure 5-14
shows some examples of various bevel sizes.

CHAPTER 5 "' PERFORMING ARTISTIC TRANSFORMATIONS

-raise 3x6

-raise 6x3 . -raise 6x6

Figure 5-14. Various bevel sizes

To make the bevel in the other direction, then use a plus sign instead of a minus sign for
the first character of the command-line option:

convert +raise 2x3 input.jpg output.jpg

This command gives you the images shown in Figure 5-15.

131

132

CHAPTER 5 "/ PERFORMING ARTISTIC TRANSFORMATIONS

+raise 3x3

+raise 6x3

Figure 5-15. Various bevel sizes, in the other direction

segment

The segment transformation uses histograms of each color component to determine which
colors are homogenous, and then it combines those colors. Two arguments are available for
this transformation—the clustering threshold and the smoothing threshold. The clustering
threshold controls how different colors need to be to avoid being clustered together, and the
smoothing threshold eliminates noise in the second derivative of the histogram. The default
value for the smoothing threshold is 1.5.

Accurately describing this transformation is a fairly technical field that is really outside
the scope of this book, so if you need to know more than this, please refer to the ImageMagick
documentation at http://www.imagemagick.org. The transformation does produce visually
appealing results, though.

To use the default smoothing threshold, just specify a clustering threshold like this:

convert -segment 2 input.jpg output.jpg
To specify both clustering and smoothing, then use a command line like this:
convert -segment 2x3 input.jpg output.jpg

where the clustering threshold is 2 and the smoothing threshold is 3. Figure 5-16 shows some
example results.

CHAPTER 5 "' PERFORMING ARTISTIC TRANSFORMATIONS

b 3
-segment 2.0x2.0

-segment 2.0x0.75

Figure 5-16. Example uses of the segment transformation

sepia-tone
The sepia tone effect applied via the sepia-tone command-line option simulates the old
sepia-toned photos you sometimes see. The effect has a threshold at which to start applying

the tone effect. The recommended starting point is 80 percent, as shown in the following com-
mand line:

convert -sepia-tone 80% input.jpg output.jpg

Figure 5-17 shows a variety of percentages being applied to the comparison image.

133

134 CHAPTER 5 "/ PERFORMING ARTISTIC TRANSFORMATIONS

Eo

sepia-tone 55% " -sepia-tone 75%

Figure 5-17. The sepia tone effect, with a variety of threshold percentages

shade

The shade effect simulates having a distant light source casting a shadow on the image. You
can create this effect by specifying an azimuth and elevation for the light source. The azimuth
is the angle of the light source, with north being 0 degrees, east being 90 degrees, and so on.
The elevation is the height of the light source. For example, to specify light from the east at

a height of 100, use this command line:

convert -shade 90x100 input.jpg output.jpg

Figure 5-18 shows some examples.

CHAPTER 5 "' PERFORMING ARTISTIC TRANSFORMATIONS 135

7 -
A /
/ \ (
/4 5 \I ’
s b) / \
| t :.' L l"._
{ | \\] 7
r 4
; B A /
-shade 150x10 -shade 150x50

Figure 5-18. Some examples of the shade transformation

sharpen

The sharpen command attempts to make the color boundaries in an image more defined
by using a Gaussian function. Like the blur command mentioned earlier, which also uses

a Gaussian function, this command takes both a radius and an optional standard deviation. To
just specify a radius, you use a command line like this:

convert -sharpen 3 input.jpg output.jpg
To specify a standard deviation, use a command line like this:
convert -sharpen 3x3 input.jpg output.jpg

Figure 5-19 shows a variety of options applied to the sample image.

136

CHAPTER 5 "/ PERFORMING ARTISTIC TRANSFORMATIONS

_

-sharen 3x3 -sharpen 3x6

-S| aren 6x3 -sharpen 6x6

Figure 5-19. The sharpen command with a variety of radii and standard deviations

solarize

Another transformation you can apply to images is the solarize effect. This has a similar effect
to exposing film negatives to light during development. It works by specifying a threshold as
a percentage of the total intensity possible for the image above which the pixel will be negated.
(In other words, a large value will become a small value, and a small value will become a large
value.) For example, to negate all the pixels that are greater than 90 percent, use the following
command:

convert -solarize 90 input.jpg output.jpg

Figure 5-20 shows the effect of various values for the solarize command on the example
image.

CHAPTER 5 " PERFORMING ARTISTIC TRANSFORMATIONS

-solarize 15
T

-solarize 55 -solarize 75

Figure 5-20. Solarizing an image with various thresholds

spread

Spread takes a random pixel and swaps it with the pixel that is currently being examined. This
produces some really visually pleasing images with a relatively simple transformation. The
transformation takes one argument—the radius of the circle around the pixel being examined
in order to select the pixel with which to swap. For example, to create a spread image where
the pixels are relatively close to their original locations, you might choose to use the following
command line:

convert -spread 3 input.jpg output.jpg

Figure 5-21 shows a variety of radii being applied to the sample image.

137

138

CHAPTER 5 "/ PERFORMING ARTISTIC TRANSFORMATIONS

-spread 1 -spread 3

-spread5 -spread 7

Figure 5-21. The spread transformation with a variety of radii

swirl

Another type of rotation effect that is quite similar to the radial blur effect is the swirl effect.
swirl also rotates the image around the center for a specified number of degrees but does so
without the blurring associated with the radial blur transformation. For example, to swirl an
image 45 degrees, you use this command line:

convert -swirl 45 input.jpg output.jpg

Figure 5-22 shows some examples of swirls with differing amounts of rotation.

CHAPTER 5 "' PERFORMING ARTISTIC TRANSFORMATIONS

-swirl 15 -swirl 35

-swirl 55 -swirl 75

Figure 5-22. swirl with different arguments

threshold

The threshold transformation limits the maximum value for a given channel or all channels.
For example, if you want to limit the maximum intensity of the red channel to 80 percent of its
possible value, you use a command line like this:

convert -threshold 80,100,100% input.jpg output.jpg
This will just affect the red channel. To limit all channels, use the following command line:
convert -threshold 80% input.jpg output.jpg

Figure 5-23 shows the result of limiting all channels using various threshold commands.

139

140

CHAPTER 5 ©° PERFORMING ARTISTIC TRANSFORMATIONS

e

-threshold 55% -threshold 75%

Figure 5-23. A variety of examples of limiting all channels using the threshold command

You can also specify absolute values—just omit the percentage sign. Remember also that
you can apply a threshold to a single channel only.

unsharp

Confusingly, the unsharp command-line option sharpens images. Many commercial scanners
use the unsharp transformation to sharpen an image just before saving it to disk. In fact, it’s
the recommended sharpening transformation for photographic images. The unsharp trans-
formation was originally used by photographers; they would use an out-of-focus version of
a photograph as well as the in-focus version when developing a print to give extra detail to the
final image.

The unsharp transformation is very flexible; you can specify the radius of a comparison
circle, the standard deviation desired, the amount of blur image to add to the image, and the
threshold needed to cause the blur image to be added (expressed as a fraction of the maximum
RGB value for the pixel). This is the format for these arguments:

convert -unsharp <radius>x<standard deviation>+<amount>+<threshold>

CHAPTER 5 "' PERFORMING ARTISTIC TRANSFORMATIONS

Therefore, to use the transformation with a radius of 3, a standard deviation of 1, an amount
of 1.0, and a threshold of 0.05, use this command line:

convert -unsharp 3x1+1.0+0.05

The default value for the standard deviation is 1. The default value for the amount is 1.0.
The default value for the threshold is 0.05 if these values aren'’t specified. It's recommended
that the radius be larger than the standard deviation. A radius of 0 will tell ImageMagick to
select an appropriate value.

The comparison images in Figure 5-24 use a variety of values for the radius and the stan-
dard deviation.

4

-unsharp 3x6

-unsharp 6x3 -unsarp 6x6

Figure 5-24. The unsharp command applied with a variety of radii and standard deviations

Next, the comparison images in Figure 5-25 use a varying amount of blurred image added
to the final image.

141

142 CHAPTER 5 "/ PERFORMING ARTISTIC TRANSFORMATIONS

4

-unsharp 3x1+7

-unsharp 3x1+5

Figure 5-25. The unsharp command with varying levels of blurred image added

Finally, the comparison images in Figure 5-26 use varying thresholds.

CHAPTER 5 "' PERFORMING ARTISTIC TRANSFORMATIONS 143

_unsharp 3x1+1+0.01

o

:

-unsharp 3x1+1+0.05 -unsharp 3x1+1+0.07

Figure 5-26. The unsharp command with varying levels of threshold

To work out what is best for your image, you should experiment until you get the effect
desired.

144

CHAPTER 5 ©° PERFORMING ARTISTIC TRANSFORMATIONS

wave

Finally, the wave transformation uses a sine wave to modify an image. A sine wave looks like
Figure 5-27.

Sine wave
.

-10 -5 0 5 10

Figure 5-27. A sine wave

If you're not familiar with the sine wave, you can find more information about it at
http://en.wikipedia.org/wiki/Sine and http://en.wikipedia.org/wiki/Sine wave. Mathe-
matically, the sine wave determines the size of angles within a triangle of defined edge sizes.
Two factors affect the shape of this wave—the amplitude, which is the height of the wave, and
the frequency, which is how wide an individual iteration of the wave is. These are the two factors
that affect the wave transformation that ImageMagick offers as well. For example, to specify
an amplitude of 2 and a frequency of 3, use the following command line:

convert -wave 2x3 input.jpg output.jpg

Figure 5-28 shows some examples with different amplitudes and frequencies.

CHAPTER 5 "' PERFORMING ARTISTIC TRANSFORMATIONS

-wave 10x10 ' -wave 10x50 -wave 10x90

I

-wave 50)&10 -wave 50x90

i

i
[

i

-wave 90x10 -wave 90x50 wave 90x90

Figure 5-28. The effect of applying the wave transformation with different amplitudes and
frequencies

virtual-pixel

Some of the transformations I've discussed in this chapter use the pixels around a given pixel

to determine what to do to that pixel. In these examples, when a pixel on the edge of the input
image is being examined, then ImageMagick needs to decide what to do with the missing val-
ues from that area around the pixel being examined. You can specify this behavior with the
virtual-pixel command-line option. The possible values are as follows:

145

146 CHAPTER 5 ©° PERFORMING ARTISTIC TRANSFORMATIONS

e Constant: The background color for the image will be used.
 Edge: The pixel on the edge of the image will be used (the default).
e Mirror: The image is mirrored around the edges.

e Tile: The image is tiled.

Transformations that use this value are the blur, sharpen, and wave transformations.

Conclusion

In this chapter, I covered some of the artistic transformations that ImageMagick lets you apply
to images. Read on for information on the remaining operations I haven't covered yet, including
other image transformations, drawing facilities, and various programming interfaces.

CHAPTER 6

Performing Other Image
Transformations

ImageMagick can do many other image transformations that are a bit more mundane than
those in the previous chapter but that are still useful. This chapter is devoted to those routine
but useful transformations. I'll demonstrate the transformations with a variety of input images,
and I'll discuss the available options along the way.

Performing Transformations on One Image

The following sections cover transformations you can perform on one image at a time.

Adding Borders to an Image

A commonly requested operation that ImageMagick can help you with is creating borders on
images. To make simple, single-colored borders, you just use the border command-line option.
This option takes two arguments—the horizontal width of the border and the vertical height
of the border. For this example, I'll show how to put a 5x10-pixel border around an image. This
will result in the image being 10 pixels wider and 20 pixels higher than it was before. The com-
mand line to do this is as follows:

convert -border 5x10 input.jpg output.jpg

The finished product looks like Figure 6-1.

147

148 CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

Figure 6-1. A photo of a koala from an Australian zoo with a gray border

You can specify the color of the border by using the bordercolor command-line option.
For example, if you want to make the border green, then you use the following command line:

convert -bordercolor green -border 5x10 input.jpg output.ijpg

This gives you the image shown in Figure 6-2.

Figure 6-2. A photo of a koala from an Australian zoo with a green border

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS

If you want the width and height of the border to be the same, then just use one number
in the command line. For example, the following:

convert -border 5 input.jpg output.jpg
is the same as this:

convert -border 5x5 input.jpg output.jpg

Rotating an Image

It’s really useful to be able to rotate images. When I empty my digital camera, for instance,

I have a script that rotates the images to the correct orientation based on the information that
my camera encodes into the JPEG file about the camera’s orientation at the time each photo
was taken. (You'll see that script in Chapter 8.) You can rotate images from the command line
with ease with ImageMagick, however, by using the rotate command-line option.

The rotate command-line option takes one argument, which is the number of degrees by
which to rotate the image. A positive number is the number of degrees to the right, and a neg-
ative number is the number of degrees to the left.

For example, Figure 6-3 shows a random picture from my photo collection.

Figure 6-3. The original picture of a flower

To rotate this picture 45 degrees to the left, use the following command line:
convert -rotate -45 input.jpg output.jpg

This gives you the image shown in Figure 6-4.

149

150 CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

Figure 6-4. The picture of a flower rotated 45 degrees to the left

Rotating the image 30 degrees to the right requires the following command line:
convert -rotate 30 input.jpg output.jpg

This gives you the image shown in Figure 6-5.

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS

Figure 6-5. The picture of a flower rotated 30 degrees to the right

You can also apply conditional schematics to the rotation by adding a greater-than or
less-than sign to the argument. For example, to rotate the image only if its width is greater
than its height, then add a greater-than sign:

convert -rotate -15> input.jpg output.jpg

To perform the inverse and rotate only if its height is greater than its width, use a less-than
sign:
convert -rotate 60< input.jpg output.jpg

Remember that depending on your operating system and the shell you use, greater-than
and less-than signs might be interpreted as shell commands. If they are, then you'll need to
escape them using whatever mechanism your shell uses.

Finally, when you rotate an image, you create triangles in the corners. You can fill these

triangles with the background command-line argument, which is discussed more fully in
Chapter 7. Here’s a simple example, though:

convert -background red -rotate 30 input.jpg output.jpg

151

152

CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

Figure 6-6. The picture of a flower rotated 30 degrees to the right with filled red corners

Manipulating Contrast

ImageMagick can manipulate the amount of contrast in an image, either by adding more
contrast to images or by reducing it. To add more contrast to an image, use the contrast
command-line option:

convert -contrast input.jpg output.jpg

If you need to add even more contrast, then specify the command-line option more than
once. For example:

convert -contrast -contrast input.jpg output.jpg

This adds even more contrast than the previous example. Figure 6-7 shows what happens
to this image when you add more contrast.

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS 153

Figure 6-7. The picture of a flower with contrast added

From top to bottom, Figure 6-8 shows the result of one contrast operation being used,
then two being used, and then three being used.

You can also reduce the contrast present in an image. To do this, use a plus sign as the first
character of the command-line option instead of a minus sign, like this:

convert +contrast input.jpg output.jpg

Again, specifying more than one occurrence of the +contrast command-line option will
result in the effect of the operation being more pronounced. Figure 6-9 shows the same image
as in Figure 6-8 but with decreasing levels of contrast.

154 CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

Figure 6-8. The picture of a flower, with increasing amounts of contrast added

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS 155

Figure 6-9. The picture of a flower, with decreasing levels of contrast

Dithering an Image

Dithering reduces the number of colors in an image. The most common example in everyday
use is turning color images into strict black-and-white images for use in newspapers. Dithering
works in a monochrome context by determining the brightness of a given color and then using
the right frequency of black dots per area to imply that brightness. To demonstrate dithering,
I'll use the picture of a flower shown in Figure 6-10.

156

CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

Figure 6-10. The original picture of a flower

To dither this image into monochrome, you use a command line like this:
convert -dither -monochrome input.jpg output.jpg

This gives you the output shown in Figure 6-11.

Figure 6-11. The picture of a flower, dithered into monochrome

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS 157

You don'’t have to dither to monochrome, though—you can also dither to different num-
bers of colors using the colors command-line option discussed in Chapter 2. For example,
this command limits the picture to using eight colors:

convert -dither -colors 8 input.jpg output.jpg

This command line gives you the picture shown in Figure 6-12.

Figure 6-12. The picture of a flower, dithered to use only eight colors

To use the dither command-line option, you must specify either the monochrome
command-line option or the colors command-line option.

Equalizing an Image

ImageMagick can also apply histogram equalization to an image. For this example, I'll show
how to equalize the image shown in Figure 6-13.

158

CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

Figure 6-13. The original image to equalize

You just use this command line:
convert -equalize input.jpg output.jpg

This gives you the result shown in Figure 6-14.

Figure 6-14. The equalized version of the image in Figure 6-13

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS 159

Flipping an Image
ImageMagick refers to turning an image upside down as a flip. For this example, I'll show how
to vertically flip the image shown in Figure 6-15.

Figure 6-15. The original picture of a seagull

You use this command line:
convert -flip input.jpg output.jpg

This gives you the image shown in Figure 6-16.

160 CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

To flip the image horizontally, use the flop operation:

convert -flop input.jpg output.jpg

Flop acts just like flip to give you the image shown in Figure 6-17.

Figure 6-17. The picture of a seagull, flipped horizontally

Tinting an Image

You can also apply tint colors to images with ImageMagick. The tint command-line option
will add the specified percentage of the current fill color to the image. Only the nonpure colors
in the image will be affected; in other words, pure colors such as red and green won't change.
I'll show the effects of tinting on the image shown in Figure 6-18.

Figure 6-18. Another original picture of a flower

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS 161

If you apply a few tinting options like you did in Chapter 5, you get the set of samples
shown in Figure 6-19.

-fill red -tint 15% -fill red -tint 35%

-fill red -tint 55% -fill red -tint 75%

Figure 6-19. The picture of a flower from Figure 6-18, with different tinting levels

If you don't specify a fill color, you get the default tint of black. To apply a 10 percent tint
to an image, you use a command line like this:

convert -fill red -tint 10% input.jpg output.jpg

Negating an Image
Negating a pixel is the process of inverting its value. ImageMagick can negate images with the
negate command-line option. This is similar to the solarize option presented in Chapter 5

except that no threshold is applied to the decision to negate a given pixel. For this example, I'll
show how to negate the picture shown in Figure 6-20.

162

CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

Figure 6-20. The original picture of some trees

If you negate this image with this command line:
convert -negate input.jpg output.jpg

then you get the image shown in Figure 6-21.

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS 163

Figure 6-21. The picture of some trees, negated

In contrast, the solarize command gives you the images shown in Figure 6-22 for varying
levels of threshold.

164 CHAPTER 6 ©° PERFORMING OTHER IMAGE TRANSFORMATIONS

-solarize 1 -solarize 31

-solarize 61 -solarize 91

Figure 6-22. The picture of some trees, with various solarization thresholds

I recommend you read about solarization in Chapter 5 if you want more information.

CHAPTER 6 ©° PERFORMING OTHER IMAGE TRANSFORMATIONS 165

Normalizing, Enhancing, and Modulating an Image

Normalization is the process of improving the contrast in an image so that it uses all the avail-
able color range. For example, Figure 6-23 shows a photo of Alcatraz taken through the San
Francisco fog.

Figure 6-23. Alcatraz through the fog

Using the following command line:
convert -normalize input.jpg output.jpg

will improve the contrast in this image significantly, as shown in Figure 6-24.

166 CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

Figure 6-24. Alcatraz through the fog, after normalization

Another way to correct contrast problems in an image is to enhance the photo using the
level command-line option. This option lets you specify the black point (the color that is con-
sidered black in the image) that you'd like in the output image. You can specify this as an
absolute value ranging from zero to the maximum RGB value possible in the image, but in this
example I'll specify this as a percentage, because this is a more generically useful technique.
To specify a black point of 20 percent of the maximum possible RGB value, use a command
like this:

convert -level 20% input.jpg output.jpg

In the spirit of the examples from Chapter 5, Figure 6-25 shows a montage of some exam-
ples of various values for the black point.

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS

-level 35%

-level 55% o ' -level 75%

Figure 6-25. Alcatraz with varying black points specified

You can also specify a desired white point for the image. You do this by adding another
value to the specification argument. The following command specifies a white point of 50
percent of the maximum RGB value for the image, again using percentages:

convert -level 20%,50% input.jpg output.jpg

Figure 6-26 shows another montage with some various values for the white point, all
using a black point of 20 percent.

167

168

CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

-level 20%,15% -level 20%,35%

-level 20%,55% -level 0 %,75%

Figure 6-26. Alcatraz with a black point of 20 percent and varying white points specified

A border has been added to these images for clarity. You can see from these examples that
a white point higher than the black point produces a much nicer result. Finally, you can also
specify a gamma correction value like this:

convert -level 20%,50%,1.0 input.jpg output.jpg

where the default is 1.0, which is what is specified in this example. Gamma correction is
a fairly technical field that is outside the scope of this book.

Another way of tweaking the way an image looks is to modify the brightness, color satura-
tion, and hue through modulation. You do this with ImageMagick with the modulate
command. The following command line manipulates the brightness of an image:

convert -modulate 80% input.jpg output.jpg

This changes the brightness to 80 percent of the current brightness of the image.
Figure 6-27 shows a montage of some brightness levels as examples.

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS 169

-modulate 15% -modulate 55%

Figure 6-27. Alcatraz with varying brightness

Let’s select a brightness of 100 percent based on the images in Figure 6-27 and then modify
the color saturation of the image. You do this by specifying a second part to the argument of
the modulate command-line option, like this:

convert -modulate 100%,80% input.jpg output.jpg

Figure 6-28 shows some various values for the color saturation.

170

CHAPTER 6 ©* PERFORMING OTHER IMAGE TRANSFORMATIONS

-modulate 100%,55%

-modulate 100%,95% -modulate 100%,145%

Figure 6-28. Alcatraz with varying color saturations

It’s not obvious in the grayscale printing in these examples, but the first three images in
Figure 6-28 are pretty much black-and-white images.
Finally, you can also adjust the hue with the modulate command, like this:

convert -modulate 100%,100%,80% input.jpg output.jpg

Figure 6-29 shows some examples of varying levels of hue.

CHAPTER 6 ©* PERFORMING OTHER IMAGE TRANSFORMATIONS 17

-odulate 100%,100%,95% -mdulate 100%,100%,145%

Figure 6-29. Alcatraz with varying levels of hue

To make this example more obvious, Figure 6-30 shows the same operations on the nor-
malized version of the photo.

172 CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

-modulate 100%,100%,95% - -modulate 00%,100%,145%

Figure 6-30. Alcatraz with varying levels of hue, using the normalized image

Shearing an Image

The shear effect puts the input image at an angle. You can tilt the image horizontally and
vertically in both directions (in other words, from left to right, from right to left, from top to
bottom, and from bottom to top). The tilt is specified as an angle; for example, in the horizontal
direction, a negative tilt is a tilt to the left, and a positive tilt is a tilt to the right. For example,
to tilt an image to the right 45 degrees, you use this command line:

convert -shear 45 input.jpg output.jpg

Figure 6-31 shows some examples of shearing horizontally. In these examples I have also
specified a vertical shear of zero.

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS 173

-shear —40x0 -shear —20x0

-shear 20x0 -shear 40x0

Figure 6-31. Horizontal shearing on an image

The empty triangles created by the shearing are filled with the color currently specified
as the background color. See Chapter 7 for details on how to set the background color. You can
also shear vertically by specifying a zero shear angle for the horizontal axis and then a vertical
shearing. A positive angle is toward the top of the image, and a negative angle is toward the
bottom. For example, to shear vertically toward the top 30 degrees, use this command line:

convert -shear 0x30 input.jpg output.jpg

Figure 6-32 shows some examples.

174 CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

-shear 0x-40 -shear 0x-20

-shear 0x20 -shear 0x40

Figure 6-32. Vertical shearing on an image

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS

You can, of course, shear in the horizontal and vertical directions at the same time. To
perform the shear operation, specify the horizontal and vertical angles as arguments to the
shear command-line option. For example, for a horizontal shear of 10 degrees and a vertical
shear of 20 degrees, use this command line:

convert -shear 10x20 input.jpg output.jpg

Rolling an Image

The roll effect provided by ImageMagick can roll an image horizontally or vertically. A vertical
roll involves taking a rectangle from the top of the image and moving it to the bottom of the
image; a horizontal roll moves some of the image from the left side to the right side. You do
this by specifying the horizontal roll and then the vertical roll. For example, to roll the image
100 pixels to the right and 200 pixels to the bottom, use this command line:

convert -roll +100+200 input.jpg output.jpg

This will turn the image shown in Figure 6-33 into the image shown in Figure 6-34.

Figure 6-33. The original picture of some rainforest vegetation

175

176

CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

Figure 6-34. The rolled picture of some rainforest vegetation

To roll horizontally only, don't specify a vertical roll. To roll just vertically, specify a zero
horizontal roll. To roll to the left or upward, use a negative number.

Turning Multiple Images into One Image

ImageMagick can also take groups of images and turn them into a single image. I'll cover
those commands in the following sections.

Appending Images

Let’s say you want to append some images together to form a strip. For example, say you have
the three images shown in Figure 6-35, Figure 6-36, and Figure 6-37.

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS 177

Figure 6-36. Another picture of a waterfall

178 CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

To append these three figures in a vertical column, you can use this ImageMagick
command line:

convert -append inputl.jpg input2.jpg input3.jpg output.jpg

This gives you the image shown in Figure 6-38.

Figure 6-38. Three pictures of waterfalls, appended vertically

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS

To make it more obvious what is happening because of the different size of the last image,
here is the same append command but with a border added:

convert -append input2.jpg input2.jpg input3.jpg -border 5 output.jpg

This gives you the image shown in Figure 6-39.

Figure 6-39. Three pictures of waterfalls, appended vertically, with a border

179

180

CHAPTER 6 " PERFORMING OTHER IMAGE TRANSFORMATIONS

You can see in Figure 6-39 that the border will follow the edges of the images used to build
the vertical column. The color used to fill in the vacant space to the right of the first two images
is the background color. This is much more obvious if you set the background color to some-
thing a little more obvious than the default of white:

convert -background red -append inputl.jpg input2.jpg input3.jpg output.jpg

This gives you the final vertical column shown in Figure 6-40.

Figure 6-40. Three pictures of waterfalls, appended vertically, with a background color of red

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS

You can also create a horizontal row of images with the append command. To do this, just
use a plus sign instead of a minus sign as the first character of the append command. For example,
you can create that same column in a horizontal style:

convert +append inputil.jpg input2.jpg input3.jpg output.jpg

This gives you the output shown in Figure 6-41.

Figure 6-41. Three pictures of waterfalls, appended horizontally

Averaging Images

ImageMagick can average pixel values and produce a new image that is this average. It does this
by examining each pixel in an image, averaging that pixel’s value with the corresponding pixels
in the other input images, and then using that average as the value of the corresponding pixel in
the output image. For this example, I'll show how to use the frames of an animation I used in
the animation examples in Chapter 3. Figure 6-42 shows the individual frames of the animation.

181

182 CHAPTER 6 ©° PERFORMING OTHER IMAGE TRANSFORMATIONS

Figure 6-42. Frames of an animation

Now, if you average these frames with this command:
convert -average *.png output.png

you get the new image shown in Figure 6-43.

Figure 6-43. The result of averaging the frames of an animation

CHAPTER 6 © PERFORMING OTHER IMAGE TRANSFORMATIONS

Flattening Images

Flattening refers to turning more than one image into one image by using the transparency
information in the images when they’re overlaid. For example, the frames in Figure 6-42
needed to be modified to make the white transparent before they can be flattened. Once the
transparency information is right, you can flatten the frames with this command line:

convert -flatten input*.jpg output.jpg

This gives you the image shown in Figure 6-44.

Figure 6-44. Frames of an animation, flattened

You'll note that the white portion of the image hasn’t been handled properly. This is
because none of the images specifies the color of the inside of the rectangle. If you remove the
transparency information from the first image, then you get the image shown in Figure 6-45.

Figure 6-45. Frames of an animation, flattened, with the first frame specifying a background
color for the image

Conclusion

In this chapter, I covered all the remaining image transformations available from ImageMagick.
If you combine all the preceding chapters with this one, you can see that ImageMagick can
certainly do a lot for you in the imaging field. Its versatility doesn't stop there, though—you
can use a number of programmatic interfaces to implement the ImageMagick functionality.
The next chapter covers how to annotate existing images and create new images using the
ImageMagick drawing facilities. Chapters 8 through 11 will focus on four popular program-
ming interfaces to ImageMagick.

183

CHAPTER 7

Using the Drawing Commands

You can use ImageMagick to create images from scratch and annotate existing images. This
chapter focuses on showing off that functionality.

Specifying Colors

Many of the drawing commands demonstrated in this chapter take an argument that is a color, so
in the following three sections, I'll discuss how to specify colors for these commands. ImageMagick
supports three major ways of specifying a color: named colors, HTML-style strings, and RGB
tuples.

Using Named Colors

As mentioned in Chapter 1, it’s possible for the administrator who set up ImageMagick to have
defined a set of named colors. These names act as shortcuts to the RGB value associated with
that name. The default names should still work if the administrator hasn’t removed them. You
can find out what named colors exist using the following command line:

convert -list color

This will list the colors that have been defined in the colors.xml file discussed in Chapter 1.
Here’s a sample of the list that is returned from my default installation of ImageMagick:

Path: /usr/lib/ImageMagick-6.2.3/config/colors.xml

Name Color Compliance
AliceBlue 1gb(61680,63736,65535) SVG X11 XPM
AntiqueWhite 1gb(64250,60395,55255) SVG X11 XPM
AntiqueWhitel 1gb(65535,61423,56283) X11
AntiqueWhite2 1gb(61166,57311,52428) X11
AntiqueWhite3 rgb(52685,49344,45232) X11
AntiqueWhites rgb(35723,33667,30840) X11

aqua 1gb(0,65535,65535) SVG
aquamarine 1gh(32639,65535,54484) SVG X11 XPM

185

186

CHAPTER 7 = USING THE DRAWING COMMANDS

aquamarinel 1gb(32639,65535,54484) X11
aquamarine2 1gb(30326,61166,50886) X11
aquamarine3 1gb(26214,52685,43690) X11
aquamarine4 1gb(17733,35723,29812) X11
azure 1gb(61680,65535,65535) SVG X11 XPM
azurel 1gb(61680,65535,65535) X11
azure2 1gb(57568,61166,61166) X11
azure3 1gb(49601,52685,52685) X11
azure4 18b(33667,35723,35723) X11
beige 1gb(62965,62965,56540) SVG X11 XPM

Of course, a lot more colors exist than those defined here. (My list has 678 entries.)

Using HTML-Style Color Strings

ImageMagick also takes color arguments in the form of HTML-style color strings. For example,
all the following are valid color strings:

#RGB (R,G,B are hex numbers, 4 bits each)
#RRGGBB (8 bits each)
#RRRGGGBBB (12 bits each)
#RRRRGGGGBBBB (16 bits each)
#RGBA (4 bits each)
#RRGGBBAA (8 bits each)
H#RRRGGGBBBAAA (12 bits each)

#RRRRGGGGBBBBAAAA (16 bits each)

To understand these values, you have to know that color is represented to ImageMagick in
the form of an RGB value, which consists of red, green, and blue values. You can represent any
color with an RGB value, and this is the color format used by many image formats, as well as
a lot of hardware such as computer monitors. Of course, other ways of representing colors exist,
such as CMYK and YUV, but given that ImageMagick uses RGB, I'll limit this discussion to the
RGB values.

If, for example, you take a photo at a flower show, then you'll see the red, green, and blue
values at work. Figure 7-1 shows a photo I took.

CHAPTER 7 ©' USING THE DRAWING COMMANDS 187

Now, if you strip out just the red, green, and blue values individually, then you get the pic-
tures shown in Figure 7-2, Figure 7-3, and Figure 7-4.

188 CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-2. Just the red values for the picture of some flowers

Figure 7-3. Just the green values for the picture of some flowers

190 CHAPTER 7 = USING THE DRAWING COMMANDS

Figure 7-4. Just the blue values for the picture of some flowers

If you group all the red values from the picture, then you can call that group the red channel,
ed channel from the original photo.

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Now that you've seen the color channels from a real-world photo, I'll show a slightly more
contrived example, which should make this clearer. The image shown in Figure 7-5 is a simple
test pattern, where the left vertical bar is a solid red, the middle vertical bar is a solid green,
and the right vertical bar is a solid blue. The top horizontal bar is filled with white, and the
bottom horizontal bar is filled with gray.

Figure 7-5. A simple test pattern

Figure 7-6, Figure 7-7, and Figure 7-8 show the color channels from this test pattern one
at a time.

Figure 7-6. The red channel from the test pattern

191

192

CHAPTER 7 = USING THE DRAWING COMMANDS

Figure 7-7. The green channel from the test pattern

Figure 7-8. The blue channel from the test pattern

Note | generated these images using ImageMagick. In Chapter 3, | introduced the gamma command-line
argument. This command line allows you to set gamma correction for an image, but if you apply a gamma
correction of 1.0 to the channel you want to keep and 0.0 to all the other channels, then you'll get only that
one channel in the output image. For example, to extract the red channel from an image, use a gamma cor-
rection of 1.0,0.0,0.0. In addition, these images were converted to grayscale, and then normalized so that
they weren't too dark for the printing process.

You can see that with the green vertical bar, for instance, the red and blue channels con-
tribute nothing. You can also see that white consists of as much red, green, and blue as possible,
and the gray bar consists of equal amounts of red, green, and blue. The darkness of the gray bar

CHAPTER 7 © USING THE DRAWING COMMANDS

Finally, it should be clear what these HTML-style color definitions are doing. Each chan-
nel is defined by a series of characters in the string, with a set of characters for each channel.
You can vary the number of characters used for a channel depending on your need for accu-
racy, but all channels must use the same number of characters within that string. The number
of characters used is also directly related to the depth of the image, which is manipulated with
the depth command-line argument. (I discussed this command line in Chapter 3.)

Note If you don’t specify enough characters to meet the depth needs of the image, then ImageMagick
adds extra characters by repetition. For example, if the red channel has only the value B specified and three
characters worth of value are needed, then the value BBB will be used.

The number for a given channel is expressed as hexadecimal, which uses the letters
shown in Table 7-1.

Table 7-1. Valid Hexadecimal Values

Hex Character Decimal Value
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A 10
B 11
C 12
D 13
E 14
F 15

So, what about the A characters mentioned in the earlier HTML color string examples?
Well, one other commonly used channel, which I haven’t discussed yet, is the alpha channel.
Alpha channels are represented in HTML strings with the character A.

An alpha channel defines the transparency of a given pixel. For example, a pixel that has
the alpha value as high as it can go for that image will be completely transparent. This is useful
when you want to overlay two images and have parts of the background image still be visible.
For example, say you want to lay the image shown in Figure 7-9 over the earlier example’s test

193

194

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-9. An orange donut shape

Then you'll get the results shown in Figure 7-10.

Figure 7-10. The donut superimposed on the test pattern

You can see that the test pattern shows through the hole in the donut pattern. This is
because the inside and outside of the donut are transparent, which means the image behind
is still visible. An alpha channel is effectively a color and is handled the same way as any of
the other colors; it’s just not visible to the eye and has side effects when images are overlaid.

Using RGB Tuples

The final method of specifying a color is useful if you know what the decimal values for the
various channels you want to set are. Two types of RGB tuples exist. To specify the RGB values,
then use this form:

rgb(value, value, value)

CHAPTER 7 ©' USING THE DRAWING COMMANDS

where value is replaced by the red, green, and blue values, respectively. Alternatively, if you
want to specify an alpha channel as well, then use this form:

rgba(value, value, value, value)

Specifying a Page Size

Before you can start creating images with ImageMagick, you need to know how to create an
image. That’s not to say you can’t use these drawing commands to alter existing images—you
can. However, if you want to create an image, then you need to be able to specify the size of
that new image. In ImageMagick, you do this with the size command-line option. This option
takes a simple geometry like many of the ImageMagick command-line options; for example,
to create an image that is 100 pixels wide and 200 pixels tall, you use a size command-line
option like this:

. -size 100x200 ...

This example isn’t a complete command-line, however; you use it with the convert com-
mand. The convert command also expects an input image, so you use a special notation to
specify an input image. This syntax allows you to tell ImageMagick what color the new image
should be. For example, to create a new image that is 100 pixels wide and 200 pixels tall and is
green, then you use a command line like this:

convert -size 100x200 xc:green output.jpg

The xc: syntax specifies that ImageMagick should create an image and use green as the
color of that image.

Specifying a Background Color

An obvious example of a command that takes the color argument defined previously is the back-
ground color for the image. If you've been reading this book sequentially, then you've already
seen the effect of setting the background color when I introduced the rotate command-line argu-
ment in Chapter 6. When you rotated the image, you automatically created four triangles in the
corners of the new image, which you filled with a color using the background color option.

The command line you used at the time was as follows:

convert -background red -rotate 30 input.jpg output.jpg

which gives you the image shown in Figure 7-11.

195

196

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-11. A picture of a flower rotated 30 degrees to the right and with the corners filled
with red

This is a good example of how to use the background command-line option. It specifies
what color to use when a new background is created, for example, through rotating, shearing,
and creating a new image.

Specifying the Fill Color and Stroke Color

You need to know about two other types of color when you're using ImageMagick’s drawing
commands. These are the fill color, which fills objects, and the stroke color, which draws the
outline of objects. For example, if you draw a rectangle, then the fill color will fill the inside of
the rectangle, and the stroke color will draw the outline of the rectangle.

Let’s draw that rectangle:

convert -size 200x100 xc:lightgray -stroke green w»
-draw "rectangle 10,10,190,90" output.jpg

CHAPTER 7 ©' USING THE DRAWING COMMANDS

This command line creates a light-gray image that is 200 pixels wide and 100 pixels high;
it then sets the stroke color to green and draws a rectangle inset 10 pixels from all the edges of
the image. This image is filled with the default fill color of black. The image is then saved to
output. jpg. Figure 7-12 shows the image that this command creates.

Figure 7-12. The rectangle you just drew

You can also fill that rectangle with, for instance, light gray. For this command, use a white
background for the image:

convert -size 200x100 xc:white -stroke green -fill lightgray =
-draw "rectangle 10,10,190,90" output.jpg

This gives you the image shown in Figure 7-13.

Figure 7-13. The rectangle you just drew, filled with light gray

You can also specify the width of the stroked line. In this example, the green line is harder
to see now that the rectangle is filled. If you make the line 5 pixels wide, then you get a much
more visible border around the fill color:

convert -size 200x100 xc:white -stroke green -strokewidth 5 w»
-fill lightgray -draw "rectangle 10,10,190,90" output.jpg

This command gives you the image shown in Figure 7-14.

197

198

CHAPTER 7 = USING THE DRAWING COMMANDS

Figure 7-14. The rectangle now with a 5-pixel-wide border, filled with light gray

So, you can specify the color of the line, which is the stroke color, and the color to fill the
objects you draw, which is the fill color.

Setting Gravity

ImageMagick lets you specify how some graphical operations occur using a concept called
gravity. For instance, in Chapter 4, you saw an example that used the composite command
and some corner images to create a curved corner effect on an image. The gravity command
told ImageMagick which corner of the large image to place the corner images in.

Gravity is expressed in terms of a compass, as shown in Figure 7-15.

S

Figure 7-15. The gravity compass

So, the top of the image is North, and the right of the image is East. You can also specify
corners with this compass, in that the top-right corner is NorthEast, for instance. To specify the
center of the image, use the Center keyword. You specify the gravity on the command line with
the gravity option; for example, to put a rounded corner on the top-right corner of an image,
use this command:

composite -gravity NorthEast rounded-ne.png input.png output.png

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Annotating an Image with Text

I'll now show how to draw by placing text on images. Remember that these images can either
be new ones you created in the “Specifying a Page Size” section or be existing images. For this
example, I'll use the photograph shown in Figure 7-16. Let’s say you want to post this photo
online.

Figure 7-16. A photo of a building at Port Arthur in Tasmania, Australia

You don’t want people to take the image from your site, however, so perhaps you decide
the best thing you can do is to put your site name on the top of the image so that people know
if it’s used elsewhere. You can make this annotation with this command line:

convert -annotate Ox0+10+10 stillhq.com input.jpg output.jpg

This will put the text stillhg.com on the image at the top-left corner and inset it 10 pixels
from each edge. Note that this inset is the bottom-left corner of the first character, so you expect
the text to look closer to the top of the image than it is to the left because of this. Figure 7-17
shows the result.

199

200 CHAPTER 7 ©' USING THE DRAWING COMMANDS

a8lihg com -~ ¥

Figure 7-17. The annotated photo

Let’s examine the inset a little more. If you inset by 10 pixels in each direction, you get the
result shown in Figure 7-18.

stillhg.com

Figure 7-18. The inset of the text

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Each of the gray lines in this example is 10 pixels long. Because of where the text is aligned,
you end up with the top of the text being a lot closer to the top of the image compared with how
close the left of the text is to the left of the image.

Now, this text isn’t very visible. This is because the color choice for the text is poor, and the
text really should be bigger. So, make the text bigger with the following command line:

convert -pointsize 24 -annotate Ox0+10+10 stillhqg.com input.jpg output.jpg

This gives you the result shown in Figure 7-19.

sSunnyg. oo ~ I

Figure 7-19. The annotated photo again, this time with bigger text

You can see that in this example the text falls off the edge of the image, so let’s shift the
bottom of the text down to 30 pixels:

convert -pointsize 24 -annotate 0x0+10+30 stillhqg.com input.jpg output.jpg

This gives you the result shown in Figure 7-20.

201

202

CHAPTER 7 ©' USING THE DRAWING COMMANDS

stillhg.com ’ A

Figure 7-20. The annotated photo again, this time with bigger text that's better aligned

This is much nicer. Now let’s change the color of the text to red, which you can do with the
stroke color (as discussed in the earlier “Specifying the Fill Color and Stroke Color” section):

convert -pointsize 24 -stroke red -annotate 0x0+10+30 stillhq.com
input.jpg output.jpg

This doesn'’t give you the result you probably expected, because the inside of the letters
isn’t the right color, as shown in Figure 7-21.

CHAPTER 7 ©' USING THE DRAWING COMMANDS 203

stillhg.com ¥ 2

Figure 7-21. The annotated photo again, with a stroke color specified

To make this look as you expect, you need to have the inside of the letters filled with the
red color as well. So, let’s specify a fill color, again in the manner I demonstrated in the earlier
“Specifying the Fill Color and Stroke Color” section:

convert -pointsize 24 -stroke red -fill red =
-annotate 0x0+10+30 stillhq.com input.jpg output.jpg

This produces the image shown in Figure 7-22.

204

CHAPTER 7 ©' USING THE DRAWING COMMANDS

stillhg.com i 7

Figure 7-22. The annotated photo again, with a stroke and fill color specified

This is a much nicer result in this instance. It’s useful to note that the letters’ fill color
and stroke color don't have to be the same, which can sometimes come in handy. For com-
pleteness, it’s worth noting that you can also specify the stroke width for text annotations. For
example, this sets the stroke width to 3 pixels:

convert -pointsize 24 -stroke red -strokewidth 3 -fill red w»
-annotate 0x0+10+30 stillhq.com input.jpg output.jpg

This gives you the rather indistinct version of the text shown in Figure 7-23.

CHAPTER 7 ©' USING THE DRAWING COMMANDS 205

Figure 7-23. The annotated photo again, with a stroke width of 3 pixels

You can also specify the font to use with the annotation. To do this, use the font command-
line argument, which takes the name of a font as its argument. For this example, I want to use
a TrueType font called Arbuckle that I downloaded from the Internet for free. The font is stored
in the Arbuckle.ttf file, which means I use this command line:

convert -pointsize 24 -font Arbuckle.ttf -stroke red -fill red w»
-annotate 0x0+10+30 stillhq.com input.jpg output.jpg

This gives you the new version of the annotation shown in Figure 7-24.

206

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-24. The annotated photo with a different font selected

WHERE DO YOU FIND FONTS?

Many Web sites make shareware and freeware fonts available for download, which is a good first place to
look for fonts to use with your images. | won’t recommend a specific site here, but you'll find many if you
search for free TrueType font on Google.

You can also use the fonts installed on your system. On Microsoft Windows you’ll find fonts in the Windows/
Fonts directory (for which the location will vary depending on your install). On Unix machines, you should check
the /usr/share directory, which is the most likely place for fonts to be installed.

ImageMagick doesn’t just support TrueType fonts, however—you can also use PostScript and
OPTIONT fonts.

It's worth noting that ImageMagick has a separate specification for fixed-width fonts, which
you specify in the same manner as the font command-line option; it’s called text-font. You
also specify another two numbers in the offset specification, which are rotation parameters.

CHAPTER 7 © USING THE DRAWING COMMANDS

For example, if you want to rotate in the horizontal plane, then you use the first number.
Here’s an annotation that has been rotated by 45 degrees:

convert -pointsize 24 -stroke red -fill red =
-annotate 45x0+10+30 stillhq.com input.jpg output.jpg

This gives the result shown in Figure 7-25.

Figure 7-25. The annotated photo with a rotated annotation

To rotate the annotation vertically, use the other number:

convert -pointsize 24 -stroke red -fill red =
-annotate 0x45+10+30 stillhq.com input.jpg output.jpg

This gives the result shown in Figure 7-26.

207

208

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-26. The annotated photo with a different rotated annotation

You can also use the gravity command-line argument to specify where on the image the
text should be placed. For example, to put this text in the bottom-right corner instead of the
top-left corner, then you use the gravity option like this:

convert -pointsize 48 -font Arbuckle.ttf -stroke red -fill red w»
-gravity SouthEast -annotate 0x0+10+60 stillhq.com w»

input.jpg output.jpg

The SouthEast argument to the gravity command-line option tells ImageMagick to put the
text at the bottom-right corner of the image. You can read more about the gravity command-
line option in the previous “Specifying Gravity” section. This modified command line gives you
the version of the annotation shown in Figure 7-27.

CHAPTER 7 ©' USING THE DRAWING COMMANDS 209

Figure 7-27. The annotated photo with the annotation in the bottom-right corner of the image

You can also specify a box to be placed under the annotation text, which can make it a lot
easier to read—in return for being more intrusive on the original image. You do this by adding
the box command-line option to the command, with the argument to the box option being the
color of the box. For example, the following command line adds a blue box behind the text you
put on the image:

convert -pointsize 24 -stroke red -fill red -box blue w»
-annotate 0x0+10+30 stillhq.com input.jpg output.jpg

This gives you the final image shown in Figure 7-28.

210

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-28. The annotated photo with a blue box behind the text

Finally, you can have the annotation text come from a file if you don’t want to specity the
text on the command line. To do this, instead of the annotation text in the command line, use
an at sign and then the name of the file containing the annotation text. For example:

convert -annotate 0x0+10+30 @textfile.txt input.jpg output.jpg

Drawing Simple Shapes

ImageMagick supplies the draw command-line option to draw simple shapes. ImageMagick
supports many shapes, so I'll break them down into some categories to make the explanations
alittle clearer. For each shape, I'll also include a simple example.

Once again, it's worth noting that all the commands demonstrated in the following sec-
tions will work on images such as photographs and diagrams, as well as these blank images
that I am using here for clarity. Additionally, it's worth knowing that ImageMagick’s documen-
tation refers to these shapes as primitives—this is because these shapes also include other
objects such as text.

CHAPTER 7 © USING THE DRAWING COMMANDS

Drawing a Single Point

The simplest shape is just a single pixel. For example, the following command line puts a red
pixel onto a 100x100-pixel image at the point 50 pixels in from the top-left edge:

convert -size 100x100 -fill red -draw "point 50,50" xc:white output.png

This gives you the result shown in Figure 7-29. We've added a border around this image to
make it a little clearer.

e

Figure 7-29. A single point

Interestingly, the point shape is drawn with the current fill color, not the current stroke
color, which is something to note when you're using that shape. Setting the stroke width also
has no effect on the image drawn.

Drawing a Straight Line

You can draw straight lines with the line shape. For example, the following command draws
aline between 10,10 and 90,90 on another blank 100x100-pixel image:

convert -size 100x100 -fill red -draw "line 10,10 90,90" xc:white output.png

This gives you the result shown in Figure 7-30.

Figure 7-30. A line

Again, you can see that the fill color draws the line, not the stroke color. Note that setting
the stroke width doesn't affect the image; however, the 1inewidth setting will change the width
of the line:

convert -size 100x100 -stroke black -fill red -linewidth 5 w»
-draw "line 10,10 90,90" xc:white output.png

211

212

CHAPTER 7 = USING THE DRAWING COMMANDS

Figure 7-31. A thicker line

Drawing a Rectangle

If you're reading this chapter sequentially, you already saw the rectangle command in the sec-
tion “Specifying the Fill Color and Stroke Color.” The rectangle shape takes two points, like the
line shape, but uses those to draw a rectangle using the points as the top-left corner and the
bottom-right corner. Here’s an example:

convert -size 100x100 -stroke red -fill white -draw "rectangle 10,10 90,90"w=
xc:white output.png

This gives you the result shown in Figure 7-32.

Figure 7-32. A rectangle

You can change the size of the line used by the rectangle by using the strokewidth
command-line option:

convert -size 100x100 -stroke red -strokewidth 5 w
-fill white -draw "rectangle 10,10 90,90" xc:white output.png

This gives you the result shown in Figure 7-33.

Figure 7-33. A rectangle with a thicker stroke

CHAPTER 7 ©' USING THE DRAWING COMMANDS

And finally, you can change the color with which the rectangle is filled:

convert -size 100x100 -stroke red -strokewidth 5 -fill lightgray w
-draw "rectangle 10,10 90,90" xc:white output.png

This gives you the result shown in Figure 7-34.

Figure 7-34. A rectangle with a thicker stroke and filled with blue

Drawing a Rectangle with Rounded Corners

ImageMagick can also round the corners of the rectangles that it draws. To do this, you change
the name of the shape you're drawing to roundRectangle and append an extra argument to the
shape description. This extra argument is the width of the circle and the height of the circle
that forms those corners. For example:

convert -size 100x100 -stroke red -strokewidth 5 -fill lightblue w»
-draw "roundRectangle 10,10 90,90 10,10" xc:white output.png

This gives you the result shown in Figure 7-35.

~
H

Figure 7-35. A rounded rectangle with a thicker stroke and filled with blue

This rounded rectangle has corners that are based on a circle that is 10x10 pixels. The fol-
lowing command tweaks that to 20x10:

convert -size 100x100 -stroke red -strokewidth 5 -fill lightblue w»
-draw "roundRectangle 10,10 90,90 20,10" xc:white output.png

This gives you the result shown in Figure 7-36.

213

214

CHAPTER 7 = USING THE DRAWING COMMANDS

Figure 7-36. A rounded rectangle with slightly different corners

Drawing a Circle

Now I'll cover the same transformations covered with the rectangle shape in the earlier “Draw-
ing a Rectangle” section, only this time with the circle shape. The same commands work with
both rectangles and circles. For example:

convert -size 100x100 -stroke red -fill lightblue -draw "circle 50,50 70,70" =
xc:white output.png

The arguments to the circle shape are slightly different from the rectangle shape. The first
argument is the center of the circle, and the second argument is how far the circle extends.
This gives you the result shown in Figure 7-37.

Figure 7-37. A circle

You can also increase the stroke width of a circle much like a rectangle:

convert -size 100x100 -stroke red -strokewidth 5-fill lightblue w»
-draw "circle 50,50 70,70" xc:white output.png

This gives you the result shown in Figure 7-38.

Figure 7-38. A circle with a large stroke width

CHAPTER 7 ©' USING THE DRAWING COMMANDS

And finally, you can of course fill the circle:

convert -size 100x100 -stroke red -strokewidth 5 -fill red w»
-draw "circle 50,50 70,70" xc:white output.png

This gives you the result shown in Figure 7-39.

Figure 7-39. A circle with a large stroke width, filled

Drawing an Arc

You can draw arcs with ImageMagick. You merely specify three pairs of numbers—the first two
pairs of numbers are control points that dictate the size of the ellipse in which the arc is drawn.
The third pair of numbers is the starting angle of the arc and the ending angle of the arc. This
is a simple command-line example:

convert -size 100x100 -stroke red -fill lightblue -draw "arc 10,10 90,90 45,270" =
xc:white output.png

This gives you the result shown in Figure 7-40.

Figure 7-40. An arc

The angles for the start and end of the arc need some explanation, so refer to Figure 7-41,
which will help clarify.

215

216

CHAPTER 7 = USING THE DRAWING COMMANDS

80— 0

&

90 45

Figure 7-41. An arc with the start and the end angles shown

You can see on this diagram that the arc starts at 45 degrees and ends at 270 degrees.

Drawing an Ellipse

You can use a similar effect with an ellipse:

convert -size 100x100 -stroke red -fill lightblue -draw "ellipse 50,50 20,40 45,270" w»
xc:white output.png

This gives you the result shown in Figure 7-42.

Figure 7-42. An ellipse

The arguments to this primitive are the center of the ellipse, the horizontal radius, and
the vertical radius. The start and end angles are handled the same as in the arc primitive.

Drawing a Polyline

The polyline primitive draws lines between defined points. For example, here’s a sample com-
mand line:

convert -size 100x100 -stroke red -fill lightgray =
-draw "polyline 10,10 20,40 90,90 10,90" xc:white output.png

This command line uses a different fill color to make the example more obvious. The com-
mand creates the image shown in Figure 7-43.

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-43. The result of a polyline primitive

You need a minimum of three points for this primitive.

Drawing a Polygon

The polygon primitive is the same as the polyline primitive, but the polygon finishes by return-
ing to the starting point of the polygon:

convert -size 100x100 -stroke red -fill lightgray =
-draw "polyline 10,10 20,40 90,90 10,90" xc:white output.png

This gives you the result shown in Figure 7-44.

Figure 7-44. The result of a polygon primitive

You need a minimum of three points for this primitive.

Drawing a Bezier

The Bezier primitive draws Bezier curves. Bezier curves are based on a series of control points.
The first and last points are the start and end points of the curve, and the intervening points
act like gravity points and “pull” the curve toward those points. Here’s an example of a Bezier
curve with four control points:

convert -size 100x100 -stroke red -fill lightgray =
-draw "bezier 10,10 30,100 70,0 90,90" xc:white output.png

This gives you the result shown in Figure 7-45.

217

218

CHAPTER 7 = USING THE DRAWING COMMANDS

Figure 7-45. The result of a Bezier primitive

Drawing Text

You saw how to annotate text earlier in this chapter in the “Annotating an Image with Text”
section. The annotate command-line option mentioned in that section is actually a shorthand
method of calling the draw command-line option’s text functionality, which is much the same
but offers tighter control.

To annotate an image using the draw command-line option, use the text primitive, which
takes a location and the string to write as arguments. For example, this command writes a word
on the blank image:

convert -size 100x100 -stroke red -draw "text 50,50 blah" xc:white output.png

This gives you the result shown in Figure 7-46.

blah

Figure 7-46. Some text created with the draw command-line option

So, how do you get this extra control I promised? Well, the gravity command-line option
applies to this form of text writing, much like it does for the annotate command-line option.
Additionally, all the shape transformations that I'll discuss in a moment apply to the text drawn
with this text primitive.

Performing Color Operations That Take a Point and a Method

The color primitive implemented by ImageMagick has a number of options that take a point
and a method and then perform interesting operations with that point. For this example, I'll
use the standard drawing shown in Figure 7-47.

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-47. A sample image to which to apply point operations

For all these operations, I'll use the point 50,50, which is in the center of the rectangle as
the point argument.

point

The point argument sets the color of that single pixel with the current fill color:

convert -size 100x100 -stroke red -fill white -draw "rectangle 10,10 90,90" =
-fill black -draw "color 50,50 point" xc:white output.png

This gives you the result shown in Figure 7-48.

d

Figure 7-48. The result of point coloring

replace

The replace argument looks at the value of the pixel specified and then replaces all occurrences
of that color in the image with the current fill color:

convert -size 100x100 -stroke red -fill white -draw "rectangle 10,10 90,90" =
-fill black -draw "color 50,50 replace" xc:white output.png

This gives you the result shown in Figure 7-49.

Figure 7-49. The result of replace coloring

219

220

CHAPTER 7 = USING THE DRAWING COMMANDS

floodfill

The floodfill argument fills the inside of the shape that contains the specified point with the
current fill color:

convert -size 100x100 -stroke red -fill white -draw "rectangle 10,10 90,90" =
-fill black -draw "color 50,50 floodfill" xc:white output.png

This gives you the result shown in Figure 7-50.

Figure 7-50. The result of floodyfill coloring

filltoborder

The filltoborder argument is similar to the floodfill option, but replaces the border as well:

convert -size 100x100 -stroke red -fill white -draw "rectangle 10,10 90,90" =
-fill black -draw "color 50,50 filltoborder" xc:white output.png

As this command sets the entire image to black, I haven't included an example of it's output.

reset

The reset argument colors all pixels anew:

convert -size 100x100 -stroke red -fill white -draw "rectangle 10,10 90,90" =
-fill black -draw "color 50,50 filltoborder" xc:white output.png

Similar to filltoborder, this command sets the entire image to black, so I haven't included
an example of it's output.

Transforming Your Drawings

The draw command-line option supports a number of transformations that you can apply to
the primitives you use. In this series of examples, I'll show how to use the draw command-line
option to put some primitives on top of an existing image and then use the transformation’s

CHAPTER 7 © USING THE DRAWING COMMANDS 221

primitives to rearrange the elements I'm drawing. I'll put them on top of the image shown in
Figure 7-51 to show that the draw transformations don't affect that image.

Figure 7-51. The original water image

This command line draws a simple stick-figure man and some text:

convert -fill blue -font mailrays.ttf -pointsize 96 =
-draw "circle 100,100 125,125 rectangle 65,150 135,300 =
text 200,300 Water" input.jpg output.jpg

222 CHAPTER 7 ©' USING THE DRAWING COMMANDS

This gives you the final image shown in Figure 7-52 to use for comparisons. (I'm sorry I'm
not more artistic!)

Figure 7-52. The water image, with a drawing over the top

Rotating the Drawing

The first transformation I'll apply is the rotate transformation primitive. The rotate
command-line option takes an argument that is the number of degrees to rotate clockwise,
much like the rotate command-line option discussed in Chapter 6. Here’s an example:

convert -fill blue -font mailrays.ttf -pointsize 96 w»
-draw "rotate -15 circle 100,100 125,125 rectangle 65,150 135,300 =
text 200,300 Water" input.jpg output.jpg

This rotates all the drawn elements but not the original picture, as shown in Figure 7-53.

CHAPTER 7 ©' USING THE DRAWING COMMANDS 223

Figure 7-563. The water image, with a drawing over the top that is rotated by -15 degrees

You can choose to rotate only some of the drawn elements by changing where you place
the rotate command:

convert -fill blue -font mailrays.ttf -pointsize 96 =
-draw "circle 100,100 125,125 rectangle 65,150 135,300 rotate -15 w=»
text 200,300 Water" input.jpg output.jpg

This will rotate only the text, as shown in Figure 7-54.

224

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-54. The water image, with just the text rotated

Translating a Drawing

You can also translate a drawing. Translation is the process of shifting a drawing by a given
amount, for example, 40 pixels to the left or 150 pixels down. The following command trans-
lates the drawing used in the previous example down 150 pixels:

convert -fill blue -font mailrays.ttf -pointsize 96 =
-draw "translate 0,150 circle 100,100 125,125 rectangle 65,150 135,300 =
text 200,300 Water" input.jpg output.jpg

This gives you the result shown in Figure 7-55.

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-55. The water image, with the drawing shifted down

Scaling a Drawing

Perhaps you're really happy with the drawing you've done but now realize that it’s the wrong
size and want to scale the whole drawing without changing all those coordinates. You just
provide a scale primitive with the horizontal scaling factor and vertical scaling factor. For
example, the following command makes the drawing one-and-a-half times its current width
but half its current height:

convert -fill blue -font mailrays.ttf -pointsize 96 =
-draw "scale 1.5,0.5 circle 100,100 125,125 rectangle 65,150 135,300 =
text 200,300 Water" input.jpg output.jpg

This gives you the result shown in Figure 7-56.

225

226

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-56. The water image, with the drawing scaled horizontally and vertically

Skewing a Drawing

Finally, for the transformations you can apply to your drawing, you can skew the drawing.
You can perform this skew either horizontally or vertically by using different commands. For
example, to skew horizontally, simply specify the number of degrees to skew with the skewx
primitive:

convert -fill blue -font mailrays.ttf -pointsize 96 =
-draw "skewx 30 circle 100,100 125,125 rectangle 65,150 135,300 =
text 200,300 Water" input.jpg output.jpg

This gives you the result shown in Figure 7-57.

CHAPTER 7 ©' USING THE DRAWING COMMANDS 227

Figure 7-57. The water image, with a horizontal skew

You can also skew vertically with the skewy primitive:

convert -fill blue -font mailrays.ttf -pointsize 96 w»
-draw "skewy 30 circle 100,100 125,125 rectangle 65,150 135,300 ‘=
text 200,300 Water" input.jpg output.jpg

This gives you the result shown in Figure 7-58.

228

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-58. The water image, with a vertical skew

Combining Transformation Primitives

Of course, you can combine transformations; for example, to rotate just the word water but
move the whole drawing down 150 pixels, use a command line like this:

convert -fill blue -font mailrays.ttf -pointsize 96 =
-draw "translate 0,150 circle 100,100 125,125 rectangle 65,150 135,300 =
rotate -15 text 200,300 Water" input.jpg output.jpg

This gives you the result shown in Figure 7-59.

CHAPTER 7 ©' USING THE DRAWING COMMANDS 229

Figure 7-59. Drawing on the water image and combining a translation and rotation

Using More Than One Draw Command

Nothing is stopping you from using more than one invocation of the draw command-line
option. In fact, this is sometimes required—for instance, if you want to change the color
you're filling shapes with, you’ll have to use more than one command. The following com-
mand keeps the stick-figure man blue but makes the text red:

convert -fill blue -font mailrays.ttf -pointsize 96 =
-draw "circle 100,100 125,125 rectangle 65,150 135,300" -fill red w»
-draw "text 200,300 Water" input.jpg output.jpg

This gives you the result shown in Figure 7-60.

230

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-60. The water image, using two draw commands

Compositing Images with the draw Command

As discussed in Chapter 4, you can use the composite command to combine images. You can
achieve a simple equivalent with the convert command’s draw command-line option. For
example, to place an image over another, you can use syntax like this:

convert -draw "image Over 100,100 418,222 fern.png" input.jpg output.jpg

For this example, input. jpg looks like the image shown in Figure 7-61.

CHAPTER 7 ©' USING THE DRAWING COMMANDS 231

Figure 7-61. A photo of a fern

And fern.png looks like the image shown in Figure 7-62.

A fern from the Daintree
rainforest, Queensland,
Australia.

Figure 7-62. A label to apply to the fern image

232

CHAPTER 7 ©' USING THE DRAWING COMMANDS

This will result in an output image that looks like Figure 7-63.

Figure 7-63. A labeled fern image

The first pair of numbers in the command line is the inset to start the image at, and the
second pair of numbers is the size of the image. If you use 0,0, then the real size of the image is
used; any other pair of numbers will result in the image being scaled to the specified size. You
don't just need to place images over one another, however. The following sections highlight
the available operators and show examples of their effects.

Using the Over Operator

This is the transformation used previously, so I won't include an example here. It’s listed here
for completeness.

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Using the In Operator

The In operator replaces the image data under the overlay image with the overlay image. None
of the image data from the original image in the covered area is used, even if the overlay image
specifies transparency:

convert -draw "image In 100,100 418,222 fern.png" input.jpg output.jpg

This gives you the result shown in Figure 7-64.

nsieinkiromithelDalintnee
rainfores@ueensland?

Nushriallial

Figure 7-64. A labeled fern image, using In

Using the Out Operator

The Out operator removes the section of the input image that would be covered by the overlay
image but doesn't actually put the overlay image into that space:

convert -draw "image Out 100,100 418,222 fern.png" input.jpg output.jpg

This gives you the result shown in Figure 7-65.

233

234

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-65. A labeled fern image, using Out

Using the Atop Operator

The Atop operator produces something visually the same as the Over operator, except in the
case where the overlay image falls outside the input image’s original boundary. For example,
here’s the Atop operator with the coordinates tweaked so that the image does fall outside the
edge of the input image:

convert -draw "image Atop 500,300 418,222 fern.png" input.jpg output.jpg

This gives you the result shown in Figure 7-66.

CHAPTER 7 © USING THE DRAWING COMMANDS

Figure 7-66. A labeled fern image, using Atop

In previous releases of ImageMagick, the Over operator would have extended the image to
include all of the overlay image. This is no longer the case, however.

Using the Xor Operator

The Xor operation will apply the exclusive “or” Boolean operator to the input image and the
overlay image and then place the result into the output image. The exclusive “or” operator is
often known as the logical difference, because it’s a simple bit difference operator. If the value
of two Bits from the input images is different, then the value of the exclusive or operationisa 1.
Otherwise, the value of the exclusive or is 0. This command line:

convert -draw "image Xor 100,100 418,222 fern.png" input.jpg output.jpg

gives you the results shown in Figure 7-67.

235

236

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-67. A labeled fern image, using Xor

Using the Plus Operator

The Plus operator adds the existing pixel value in the input image to the pixel value of the over-
lay image and then uses that new value in the output image. If the new pixel value is higher than
can be stored in the output image, it’s truncated to the maximum possible value for that image.
The matte channel value is set to opaque. For example:

convert -draw "image Plus 100,100 418,222 fern.png" input.jpg output.jpg

This gives you the result shown in Figure 7-68.

CHAPTER 7 ©' USING THE DRAWING COMMANDS 237

Figure 7-68. A labeled fern image, using Plus

Using the Minus Operator

Minus does the same as the Plus operator, except that the base image’s pixel value is subtracted
from the overlay image’s pixel value. If the new value is less than zero, then it's made zero. The
matte channel value is set to opaque. For example:

convert -draw "image Minus 100,100 418,222 fern.png" input.jpg output.jpg

This gives you the result shown in Figure 7-69.

238

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-69. A labeled fern image, using Minus

Figure 7-69 is too dark to show well in printed form, but if you look closely, you can see an
outline of the letters in the image.

Using the Difference Operator

Difference is similar to the Minus operator, except that an absolute value is applied to the
result of the subtraction, so the new pixel value doesn’t need to be forced to not be negative.
For example:

convert -draw "image Difference 100,100 418,222 fern.png" input.jpg output.jpg

This gives you the result shown in Figure 7-70.

CHAPTER 7 ©' USING THE DRAWING COMMANDS 239

Figure 7-70. A labeled fern image, using Difference

Again, the image doesn’t show up well after the printing process has done its thing; but
again, if you look closely, you can see the outline of the letters. The ImageMagick documenta-
tion suggests that the Difference operator is useful to see differences in similar images. You
can test this by reusing the images I demonstrated the compare command with in Chapter 4.

Figure 7-71 shows the starting image.

240

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-71. The original image

Figure 7-72 shows the image after it has been changed by the spread transformation
discussed in Chapter 5, with a spread factor of 1.

Figure 7-72. The image after a spread factor of 1

CHAPTER 7 ©' USING THE DRAWING COMMANDS 24

The compare command, which specializes in noting differences in images, produces the
image shown in Figure 7-73.

Figure 7-73. The output of the compare command run on the two previous images

And the Difference operator produces the image shown in Figure 7-74.

242

CHAPTER 7 = USING THE DRAWING COMMANDS

Figure 7-74. The output of the Difference operator on the two images

You can see that the claim from the ImageMagick documentation is correct, at least for this
set of input images. In fact, the Difference output is actually more useful in this case than the
output of the compare command.

Using the Multiply Operator

Multiply multiplies the pixel value from the input image with the pixel value from the overlay
image to determine the value of the pixel in the output image:

convert -draw "image Multiply 100,100 418,222 fern.png" input.jpg output.jpg

This gives you the result shown in Figure 7-75.

CHAPTER 7 ©' USING THE DRAWING COMMANDS 243

Figure 7-75. A labeled fern image, using Multiply

You can also use the Multiply operator to create drop shadows.

Using the Bumpmap Operator

The Bumpmap operator takes the input image and shades it with the overlay image:
convert -draw "image Bumpmap 100,100 418,222 fern.png" input.jpg output.jpg

This gives you the result shown in Figure 7-76.

244

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-76. A labeled fern image, using Bumpmap

Performing Other Tasks with These Composition Operators

You can also use these composition operators with the composite command:
composite -compose In fern.png input.jpg output.jpg

This gives you a similar result to the earlier In example, as shown in Figure 7-77.

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-77. Using the In composition operator with the composite command

The difference here is that the scaling of the overlay image and the inset of the overlay
image haven't been specified.

Antialiasing Your Images

When I introduced rasters in Chapter 2, I discussed pixels. When you draw a straight line, you
can imagine that the process involves turning on pixels along the path of the line to make the
line appear on the image. It turns out it's more complicated than that, though, because what if
a pixel should be half on? In a simple black-and-white image where you don’t have any options,
you simply ignore that pixel and move on, which results in a jagged image. The alternative that
is available in images with more possible color levels is that you can half turn on the pixel by
making only that pixel half as bright. This is called antialiasing.

I'll now show an example. Figure 7-78 shows some text drawn with ImageMagick.

245

246 CHAPTER 7 = USING THE DRAWING COMMANDS

Magi ch

Figure 7-78. The word magick

If you zoom in on this image, you can see these half-turned-on pixels, as shown in
Figure 7-79.

(| A

Figure 7-79. Zooming in on the word magick

The gray pixels around the edge of the letters are antialiasing at work. Now, Figure 7-80
shows that text without antialiasing.

Magi ch

Figure 7-80. The word magick, without antialiasing

You can see already that the text doesn’t look as good. Now let’s zoom in again, as shown
in Figure 7-81.

CHAPTER 7 ©' USING THE DRAWING COMMANDS

[| /

Figure 7-81. The word magick, without antialiasing, zoomed in

You can see that the version without antialiasing looks more jagged.

Sometimes you don’t want antialiasing, however. For example, on LCD monitors, antialiased
text often looks fuzzy and slightly out of focus. ImageMagick therefore lets you turn antialiasing
on and off. To use antialiasing, which is the default, just use the antialias command-line option.
Here’s how to create the earlier antialiased example:

convert -antialias -font captains.ttf -pointsize 140 -size 300x120 =
-fill black -annotate 0,0+10+100 "Magick" xc:white output.png

To disable antialiasing, use the +antialias command-line option, like this:

convert +antialias -font captains.ttf -pointsize 140 -size 300x120 =
-fill black -annotate 0,0+10+100 "Magick" xc:white output.png

Framing an Image

ImageMagick can place frames around images, which is something I briefly touched upon in
Chapter 2 when I showed how to remove frames with the trim command-line option. The way
you create one of these frames with ImageMagick is with the frame command-line option. At
its most basic, the command takes the thickness of the frame horizontally and vertically as its
arguments, like this:

convert -frame 10x10 input.jpg output.jpg

The first number is the amount to add to each side of the image, and the other number is
the amount to add to the top and the bottom of the image. This gives you the output shown in
Figure 7-82.

247

248 CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-82. A photo with a frame

Now, this gray frame isn't very visible here, so I've opted to create a dark green frame using
the mattecolor option:

convert -mattecolor darkgreen -frame 10x10 input.jpg output.jpg

This gives you a dark green frame; Figure 7-83 shows the result.

CHAPTER 7 © USING THE DRAWING COMMANDS 249

Figure 7-83. A photo with a dark green frame

You can specify two other arguments with the frame command-line option. These are the
outer bevel width and the inner bevel width. Here’s an example of setting the outer bevel
width to 5 and the inner bevel width to 0:

convert -mattecolor darkgreen -frame 10x10+5+0 input.jpg output.jpg

This gives you the result shown in Figure 7-84.

250 CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-84. A photo with a dark green frame and an outer bevel

You can also set the inner bevel:
convert -mattecolor darkgreen -frame 10x10+0+5 input.jpg output.jpg

This gives you the result shown in Figure 7-85.

CHAPTER 7 ©' USING THE DRAWING COMMANDS 251

Figure 7-85. A photo with a dark green frame and an inner bevel

Finally, you can set both and outer and an inner bevel:
convert -mattecolor darkgreen -frame 10x10+5+5 input.jpg output.jpg

This gives you the result shown in Figure 7-86.

252

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-86. A photo with a dark green frame and an outer and an inner bevel

Writing Each Step of the Way

ImageMagick lets you save the intermediate state of images. For example, if you reuse the
drawing example from earlier in this chapter but split the draw command into more than one
draw command, it looks like this:

convert -fill blue -font mailrays.ttf -pointsize 96 =
-draw "circle 100,100 125,125 rectangle 65,150 135,300" -fill red w=»
-draw "text 200,300 Water" -spread 2 input.jpg output.jpg

This gives you the result shown in Figure 7-87.

CHAPTER 7 ©' USING THE DRAWING COMMANDS 253

Figure 7-87. A sample image

You can see the various stages the image goes through by changing this command line to
use the write command-line option to save intermediate stages of the image. For example,
here’s a new command line that uses the write command-line option:

convert input.jpg -fill blue -font mailrays.ttf -pointsize 96 w»
-draw "circle 100,100 125,125 rectangle 65,150 135,300" -write stagel.jpg =
-fill red -draw "text 200,300 Water" -write stage2.jpg -spread 2 output.jpg

This gives you two intermediate images, which look like Figure 7-88 and Figure 7-89.

254

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-88. The first intermediate image

Figure 7-89. The second intermediate image

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Notice with this command line that I have moved the input image to much earlier in
the command line; this is because without this, ImageMagick will store a list of the opera-
tions to perform and then execute them when it sees the name of the input filename; as
aresult, the intermediate images would be the same as the output image because they no
longer are spread between the image-changing operations.

Applying Affine Matrices

You can apply matrices to your images to produce image effects such as translations and shear-
ing. To explain what is happening here, I'll briefly introduce some matrix manipulations on
images. This is the identity matrix:

o o =
o = O
- O O

This matrix, if applied to an image, will result in the same image coming out the other
end. To pass a matrix to ImageMagick, you use the affine command-line option and pass it
six values, which look like this:

sx rx 0
ry sy 0
x ty 1

The last column is constant, so it isn't passed to ImageMagick. The values are passed in this
order: sx, rx, 1y, sy, tx, ty. For example, to pass the identify matrix, you pass this:

convert -affine 1,0,0,1,0,0 -transform input.jpg output.jpg

The transform command-line option tells ImageMagick to apply the current affine matrix
to the image. Figure 7-90 shows the input image.

255

256

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-90. An image to which to apply affine matrix transformations

The result of applying the identity matrix is the same image you started with, so Iwon't
include the image twice.

You can see that the identity matrix doesn’t change the image. To translate images, you use
the last two values in the affine matrix specification. For example, to shift the image 50 pixels
horizontally and 100 pixels vertically, you use this matrix:

10 0
01 0
50 100 1

This results in the following command line:

convert -affine 1,0,0,1,50,100 -transform input.jpg output.jpg

CHAPTER 7 ©' USING THE DRAWING COMMANDS 257

This gives you the translated image that’s shown in Figure 7-91. (I've applied a frame to
the image to make the output a little clearer.)

Figure 7-91. After the application of a translation

Note that the size of the image hasn’'t changed except that the image has been shifted
down. You can scale images as well; for example, if you halve everything in the horizontal
plane and multiply everything in the vertical plane by 1.5, you require a matrix like this:

050 0
0 150
0 0 1

This gives you the following command line:
convert -affine 0.5,0,0,1.5,0,0 -transform input.jpg output.jpg

This produces the scaled image shown in Figure 7-92.

258 CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-92. After the application of scaling

This transformation does change the size of the image.
You can also apply a shear with a simple matrix. For example, to shear by half the size of
the image vertically, you use this matrix:

o o =
o = o
- o o

CHAPTER 7 ©' USING THE DRAWING COMMANDS 259

This gives you the following command line:
convert -affine 1,0.5,0,1,0,0 -transform input.jpg output.jpg

This produces the sheared image shown in Figure 7-93.

Figure 7-93. After the application of a vertical shearing

260

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Similarly, to shear horizontally by half the size of the image, you use a matrix like this:

o o =
ol
o = O
- O o

This gives you the following command line:
convert -affine 1,0,0.5,1,0,0 -transform input.jpg output.jpg

This produces the sheared image shown in Figure 7-94.

Figure 7-94. After the application of a horizontal shearing

You can also rotate the image by a given angle with a matrix like this:

cosine(angle) sine(angle) 0
—sine(angle) cosine(angle) 0
0 0 1

For example, to rotate an image by 15 degrees, use this matrix:

0.9659 0.2588 0
-0.2588 0.9659 0
0 0 1

CHAPTER 7 © USING THE DRAWING COMMANDS

This gives you this command line:
convert -affine 0.9659,0.2588,-0.2588,0.9659,0,0 -transform input.jpg output.jpg

This produces the rotated image shown in Figure 7-95.

Figure 7-95. After the application of a rotation

You can also combine operations in one of these matrices. For instance, you'll notice that
the rotated image doesn'’t all fall onto the canvas anymore. You can translate the image back
onto the canvas by moving it 250 pixels horizontally, which, when combined with the rotation,
produces a matrix like this:

0.9659 0.2588 0
-0.2588 0.9659 0
250 0 1
This gives you the following command line:
convert -affine 0.9659,0.2588,-0.2588,0.9659,250,0 -transform input.jpg output.jpg

igure 7-96.

261

262

CHAPTER 7 ©' USING THE DRAWING COMMANDS

Figure 7-96. After the application of a rotation and translation

Conclusion

This is the last chapter in this book that deals with the ImageMagick command line, and
you've come a long way throughout these seven chapters. In this chapter, I discussed the
various ImageMagick drawing commands, which let you modify existing images and create
new images. ImageMagick can perform a lot of cool operations on images from the com-
mand line, and I hope you've enjoyed the last seven chapters. They should form a useful
reference for your future use of the command-line tools.

The next four chapters focus on examples of programmer interfaces to ImageMagick, so
you'll need to know something about coding to get much utility from those chapters. If you're
a programmer, you'll get to see how to use different aspects of ImageMagick in Perl, C, Ruby,
and PHP. Finally, I'll finish off the book with a chapter on where to go from what’s covered in
this book.

CHAPTER 8

PeriMagick: ImageMagick
Programming with Perl

This chapter introduces how to use ImageMagick with the Perl programming language. It’s
not a Perl programming tutorial, however, so you'll need to look elsewhere if you're not famil-
iar with the Perl programming language. Later chapters in this book cover other programming
languages (although each of them deals with a different example); therefore, if your interest
lies with another language, then refer to those chapters.

I've called the code presented in this chapter photomagick.

Presenting the Problem

This chapter discusses an online photo management system that uses PerlMagick. When my
first child was born, I rushed out and bought a digital camera with the intention of taking as
many pictures as I could. I ended up being a little too successful, however, and soon had an
unmanageably large collection of pictures to manage and post online. This chapter will show
how to use an online photo management system to solve this sort of problem. This system
manages the photos from digital cameras (and presumably scanned pictures) from the initial
categorization to the publication of selected pictures on the Internet in various sizes with vari-
ous metadata. This publication engine can also plug into simple content management systems
(CMSs), such as the Blosxom blog engine that I use for http://www.stilllhq.com. The code I'll
present in this chapter is a basic system, and it’s entirely possible you’ll want to modify the code
to meet your needs, which is why the code is licensed under the GNU General Public License
(GPL) and is available online at http://www.stillhq.com/imagemagick/perl/photomagick/.

The foundation of a system such as this is the manner in which the metadata about the
pictures is stored. In this case, I've chosen to use flat text files, which are stored in the same
directory as the images, for a few reasons. This matches what I was already doing, it makes it
easy to back up the metadata with the images themselves, it’s much easier to set up initially
for new users, and the advantages of a database are minimized because I'm not talking about
massive amounts of metadata.

The code in this chapter generates static HTML files and versions of images on disk. This
is so that the Web server doesn’t have to cope with the extra load of generating the pages. Disk

263

264

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

space is cheap, and I've found recently that, as the popularity of my site increases, avoiding
dynamic generation (especially with images) is a good idea.

I'll now discuss the format for the metadata file. There is one file per directory of images
named META (in all capitals), which has the following format:

dsc_0443.jpg none mikal
dsc_0444.jpg none mikal
dsc_0445.jpg none right mikal
dsc_0446.jpg diary taffy cat
dsc_0447.]pg diary taffy cat
dsc_0448.jpg diary taffy cat
dsc_0449.jpg diary taffy cat

The format for the file is relatively simple, as you can see. The file contains four columns.
The first is the name of the image file, and the second is where the image is to be placed on
the Web server (none means the image isn’t public). The third is whether the image needs to be
rotated; you can see that one of the images here needs to be rotated to the right. The fourth
column is a series of keywords for the image, with an underscore between the keywords. These
keywords are packed into the image filename when it’s posted online, which helps services such
as Google’s image search find them during crawls. Each of these columns is delimited with tab
characters.

If an image is found that doesn’t have an entry, then the system attempts to use JPEG EXIF
tags to extract the value for rotation or just applies a reasonable default (no rotation, publica-
tion, or keywords).

For the moment, this code assumes that all the images you're publishing are JPEG images
(that is, have a filename that ends in . jpg). There’s no real reason for this limitation other than it
works for the images I'm currently using. Removing this limitation is left as an exercise for you.

Introducing the Format for This Chapter

In this chapter, I'll present the code for the system and then discuss what is happening where rel-
evant. I don't expect you to type this code manually, which is the reason for the annotated style of
inclusion here. If you want to run this code, then download it from http://www.stillhq.com/
imagemagick/perl/photomagick/. After discussing the code, I'll walk you through how to use it.

Introducing the Code Structure

The code for PhotoMagick.pmis a Perl module containing common routines shared between
the CGI script and the command-line publication tool. Also, a CGI script presents the user
interface for photomagick. This script is called photomagick. Finally, a command-line tool
takes the metadata entered in photomagick and creates the output HTML files. This command
is called pmpublish.

Using PhotoMagick.pm

The shared module is PhotoMagick.pm. The case for the filename is inconsistent from the rest
of the scripts so that the naming convention is the same as other Perl modules. Here’s the code
for the module:

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

package PhotoMagick;

use strict;
use Class::Struct;

There is one of these for each image or for each image in the META file
struct(metaitem => [

target = '§',

rotate => '$',

rotatedesc => '$',

keywords => '$',

s

This structure is used to pass around the parsed metadata from the file format described
previously. This is so I can build an array of these structures and keep the data together for ease
of handling

This function reads the META file and returns the parsed metadata as a
hash reference.
#
Pass in the path to the directory containing the META file.
sub readmeta{
my($path) = @_;
my ($META, $meta, $temp);

open META, "< $path/META" or return undef;
while(<META>){
(/A (INEPONE NN N EPONE ([E])$/)4
my $mi = new metaitem;
$mi->target($2);

1f(($3 eq "none") || ($3 eq "")){
$mi->rotate("no");

}

else{
$mi->rotate($3);

}

$mi->keywords($4);
$meta->{$1} = $mi;
}
else{
print STDERR "Poorly formatted META line: $ \n";
}

}
close META;

return $meta;

265

266

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

The previous function parses the META file (if one exists) and returns the array of structures
mentioned previously. It works by reading each line of the file and using a regular expression to
split the line up into the fields that are expected. These are then stored in a new structure, which
is added to the array that is eventually returned.

This function reads the META target file and returns the parsed metadata
as a hash reference. The format is simple -- the first line is the title,
and everything else is the description
#
Pass in the path to the META target file
sub readmetatarget{

my($path) = @_;

my ($META, $meta);

open META, "< $path" or return undef;
while(<META>){
if($meta->{"title'} eq ""){
$meta->{'title'} = $_;

}
else{

$meta->{ 'description'} = $meta->{'description'}.$;
}

}
close META;

return $meta;

Similarly, this function reads the metadata associated with a specific target for this direc-
tory of images. This information is returned in a simple hash:

1;

The trailing 1 in this file is an artifact of Perl modules and tells Perl that the module loaded
correctly.

Introducing photomagick

In this section, I'll show you the CGI script that is used to present the user interface for the system.
I don’t claim to be a user interface design expert, and this code is mainly about demonstrating the
functionality of PerlMagick, so don't pay too much attention to how the HTML looks.

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

#!/usr/bin/perl

use strict;

use CGCI;

use CGI::Carp qw(fatalsToBrowser);
use File::Find;

use Image::Magick;

use Image::EXIF;

use PhotoMagick;

The first task the script does is load the dependencies for the script. This includes the Perl
CGI module, a helper for returning error messages to the user inside the browser when die()
is called, a module for helping find files in the file system, the PerIMagick module (which is
called Image::Magick), and a helper for reading EXIF information from the JPEG images.

Why do you use a helper for the EXIF information? Well, ImageMagick is entirely capable
of reading this information from the file but is too slow to work with this application. In some
of my testing, was publishing sets of images that had 300 to 400 images each. ImageMagick
took so long reading the EXIF information that the browser would time out before the page
could be sent to the browser.

When I get to the EXIF reading in the code later in this section, I'll show you how to use
ImageMagick instead, in case you want to do that. Next in the code is the configuration
information:

FHEEHHHE
Configuration options

The directory the images are in
my($directory) = "/data/pictures”;

The HTML header for the top of the page
my ($header) = "<html><head><title>photomagick</title></head><body>";

This is the tick image used for the published column
my($tick) = "";

The HTML footer for the bottom of the page
my($footer) = "</body></html>";

This is a comma-separated list of the targets that users should be allowed
to set for an image. This must contain an entry named none
my(@targets) = split(/,/, "andrew,matthew,events,diary,none");

Both this script and pmpublish have configuration needs, which are included in this for-
mat at the start of the file. If you want to use photomagick, then you'll need to change these
configuration options to match your system. Table 8-1 describes the configuration options.

267

268

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

Table 8-1. Configuration Options for photomagick

Option Explanation

directory The directory that contains the directories of images.

header A simple HTML header to display at the top of the user interface. Use this to
customize the look of photomagick.

footer Similarly, some HTML to append to the HTML generated by photomagick.

targets A Per] array of the possible targets for images when published. Images can be in

one of several targets, including the special case none, which means no publication.

This is how the target concept works: All the output of the pmpublish command will be
placed into the output path specified in that script. Inside this output path, you'll find a
number of target directories. Inside these target directories can be another optional part
element, which is also discussed in a moment. Finally, a directory with the same name as
the input directory is created, and the images and HTML files are placed there. Figure 8-1
shows what happens.

Output directory; e.g.,
/home/httpd/html/
A target directory; e.g., A target directory; e.g., A target directory; e.g.,
andrew events matthew

v v v

Optional subdirectory; e.g.,
pictures

v v v

Subdirectory; e.g.,
20050712-siliconvalley

YRR
OoOoodtban
OoOoddonn

Figure 8-1. A sample of the directory layout

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

In this example, images published to the events target will end up in
/home/httpd/html/events/pictures/20050712-siliconvalley.

Let’s return to the photomagick CGI script. The following describes the flow for the CGI
script:

HHEHHT R R

This is the CGI context
my($result);

The logic for the CGI script is as follows:

A user enters with no arguments to the CGI script. They get a list of
the image directories, the number of images within the directory, and
information about whether the images have been published. They select a
directory.

If a directory is specified, then the user is asked to enter metadata
for each of the pictures. Some JavaScript helpers make this
more fun.

If a directory is specified and there is an action=commit, then the
metadata is committed and the images are moved to their destination,
with any conversion that might be needed.

If a directory is specified and there is an action=image, then the
full-sized image is returned. This needs the filename for the image to
be provided as well. This command also supports a rotate option as well.

If a directory is specified and there is an action=thumbnail, then a
small-sized image is returned. This needs the filename for the image to
be provided as well. This command also supports a rotate command.

e E E E E E E E E E E E E E EEEES

If no arguments are specified, then a list of directories is displayed. The user selects one of
these directories, and a page of thumbnails and metadata is displayed. The user enters details
and then submits the Web form. Next, the metadata is saved to the META file.

$result = new CGI();

Almost all pages have a header
if(($result->param('action') ne "image") 8&
($result->param('action') ne "thumbnail")){
print $result->header;
print "$header\n\n";

269

270 CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

ALl pages except the top need a return to the top link
if($result->param('dir') ne ""){

my($url) = $result->self url(-full);

$url =~ s/\?.*$//;

print "<a href=\"".$url.
"\">Return to the directory list

\n";

Almost all the pages have an HTML header; this eliminates repetitive code. The only requests
that don't have this HTML header are those that return images, where the header is handled in
the code for that actual request. This standard HTML header includes a link to return users to the
top-level page where they can select a different directory.

The code for each of the different pages that CGI uses is reversed here, with the logically
last used page first and the first page used last. This is to make the flow of the if statements
more logical.

if($result->param('action') eq "commit"){
We're committing the changes to the metadata file and rearranging
images
my($filename, $target);
my($dir) = $result->param('dir');
my($inputpath) = "$directory/$dir";
my ($META) ;

print "Processing images...\n";
open META, "> $inputpath/META" or
die "Couldn't open the META file for output";

Write out the meta file for the images
print "\n";
foreach $filename (split(/,/, $result->param('images'))){
print META "$filename\t".
$result->param("$filename-target")."\t".
$result->param("$filename-rotate")."\t".
$result->param("$filename-keywords")."\n";
print "$filename</td>\n";

}
close META;

foreach $target (@targets){
if($result->param("$target-title") ne ""){
open META, "> $inputpath/META-$target” or
die "Couldn't open the META-$target file for output"”;

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

print META $result->param("$target-title")."\n";
print META $result->param("$target-description”)."\n";
close META;

}

print "

\n";
print "You now need to run the pmpublish command to generate the HTML\n";
print "$footer";

The commit action takes the metadata entered earlier and writes it to the META file in the
directory with all the images. An additional file per target contains a simple description of the
images placed in that target. For example, if the images from a given run are put into the events
and diary targets, then the files META-events and META-diary will also exist. These extra files
create the CMS entries when pmpublish is run.

elsif(($result->param('action') eq "image") &&
($result->param('dir') ne "") 8&&
($result->param('filename') ne "")){
This will convert the output image to JPEG if needed
my($dir, $filename, $rc);

$dir = $result->param('dir');
$filename = $result->param('filename');

my ($image);
$image = new Image::Magick;
print "Content-Type: ".$image->MagickToMime('jpg')."\n\n";

$rc = $image->Read("$directory/$dir/$filename");
die "$rc" if $rc;

if($result->param('rotate') ne ""){
$rc = $image->Rotate($result->param('rotate'));
die "$rc" if $rc;

}

binmode STDOUT;
$rc = $image->Write('jpg:-");
die "$rc" if $rc;

The image action returns a copy of the image that is passed in the HTTP request. This is
invoked by clicking a thumbnail image in the metadata entry form. The image path is expressed
as the filename and a directory name. The image is read from disk using ImageMagick, and then

27

272

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

it’s returned via standard out so that the image is sent via the CGI interface correctly. This is the
first example in the code of ImageMagick being used, so it’'s worth paying attention to this action.
The PerlMagick module is initialized by this line:

$image = new Image::Magick;

This sets up the image variable for PerlMagick use. The script then asks ImageMagick
what the MIME type for the file type “jpg” is. The MIME type is needed because this action
constructs its own HTTP response header so that it can return the image on standard out later.

Then the image is read into a variable using the PerlMagick Read() method. The image
is written back out using the PerlMagick Write() method. The filename passed to Read() is
where to read the image from, and the filename passed to Write() is where to write the image.
The first part of the output filename is a format specifier, and the hyphen after the colon tells
ImageMagick to write the image to standard out. Additionally, the image is rotated if needed,
based on the rotate argument to the HTTP request. The Rotate() method takes the number of
degrees to rotate the image by, just like the rotate command-line option to convert.

The return code of any of these PerIMagick operations determines whether the method
failed. This is why the value is put into the variable rc and then checked with a die() state-
ment. This action returns the image full size, so this is all that it needs to do. The thumbnail
action, which I'll discuss next, also resizes the image.

elsif(($result->param('action') eq "thumbnail") 8&
($result->param('dir') ne "") &&
($result->param('filename') ne "")){

This assumes that the image being returned is a JPEG file
my($dir, $filename, $rc);

$dir = $result->param('dir');
$filename = $result->param('filename');

Produce a thumbnail of the image on the fly

my ($image);

$image = new Image::Magick;

print "Content-Type: ".$image->MagickToMime('jpg")."\n\n";

$rc = $image->Read("$directory/$dir/$filename");
die "$rc" if $rc;

$rc = $image->Thumbnail(geometry=>$result->param(‘'xsize'). 'x".
$result->param('ysize'));

die "$rc" if $rc;
if($result->param('rotate’) ne ""){
$rc = $image->Rotate($result->param('rotate'));
die "$rc" if $rc;

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

binmode STDOUT,;
$rc = $image->Write('jpg:-');
die "$rc" if $rc;

The thumbnail action is the same as the image action, except that the image is also resized
to the desired thumbnail size. This action inserts the thumbnails onto the main metadata entry
form by using a standard HTML IMG tag and including the CGI script as the location of the
image. The image can then be generated on the fly using PerlMagick. I use the ImageMagick
Thumbnail() operation to reduce the size of the image, because it discards the image metadata,
which isn't needed in a thumbnail.

The size of the thumbnail is configurable and was entered by the user on the same form
that they selected a directory to publish. Allowing the user to set the size of the thumbnail
makes publishing a large number of images on a large monitor easier, as you can make the
thumbnails bigger, which in turn makes deciding which ones to publish easier.

elsif($result->param('dir') ne ""){
The user has specified a directory
my($rowalt, $meta, $filename, $temp);
$rowalt = 1;

javascript();

print "<table width=\"100%\">\n";

print $result->start form(-name=>'metadata');

print $result->hidden('action', 'commit');

print $result->hidden('dir', $result-s>param('dir'));

$temp = "$directory/".$result->param('dir');

This is the metadata form, which has been referred to a few times so far. If a directory has
been specified and none of the previous actions was executed, then this action will occur. The
metadata form is a simple HTML form, which includes clickable thumbnails of all the images,
as well as some JavaScript helpers to make data entry easier.

$meta = combine($temp, PhotoMagick::readmeta($temp), getimages($temp));

photomagick gathers metadata from two places. First, the readmeta() method from the
PhotoMagick module is called, which reads the META file from the image directory. This file
should contain keywords and so forth for the images, although it’s entirely possible that
images are missing from the META file; in fact, if the directory has never been published
before, it will be empty.

Additionally, getimages() returns a list of all the images in the directory. Both of these lists
are passed into combine(), which returns one coherent list of images with all the metadata known
about them. I'll discuss combine () when its code comes up later in this section.

$temp = "";

foreach $filename(sort(keys(%$meta))){
$temp = "$temp$filename,”;

}
print $result->hidden('images', $temp);

273

274 CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

A hidden HTML form element lists all the images on the form. This is needed so that the
commit action knows which images need metadata saved to the META file.

foreach $filename(sort(keys(%$meta))){

print "<tr";
if($rowalt == 1){ print " bgcolor=\"CCCCCC\""; $rowalt = 0; }
else{ $rowalt = 1; }

nen

print ">";

Name anchor for linking, image and link to full-sized image

print "<td valign=\"top\">";

print "<div align=\"center\">";

print "self_url.
";action=image".
";filename=$filename";

if($meta->{$filename}->rotate eq "right"){
print ";rotate=90";

}

elsif($meta->{$filename}->rotate eq "left"){
print ";rotate=-90";

}

print "\">";

print "self url.
";action=thumbnail”.
";filename=$filename;";

if($meta->{$filename}->rotate eq "right"){
print ";rotate=90";

}

elsif($meta->{$filename}->rotate eq "left"){
print ";rotate=-90";

}

print "\">";

print "</div></td>\n";

The option to enter simple metadata for the image
print "<td valign=\"top\">Target:
";
print $result->radio_group(-name=>"$filename-target"”,
-values=>[@targets],
-default=>$meta->{$filename}
->target,
-linebreak=>"true');
print "";
$result->autoEscape(0);
print $result->button(-name=>"$filename-filldown",
-value=>'Fill this target down',
-onClick=>"flowdown('$filename-target"',
'radio');");

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL 275

$result->autoEscape(1);
print "</td>\n";

print "<td valign=\"top\">Rotation:
";
print $result->radio group(-name=>"$filename-rotate",
-values=>['left', 'no', 'right'],
-default=>$meta->{$filename}
->rotate,
-linebreak=>"true");
print "";
print "<i>".$meta->{$filename}->rotatedesc."</i>";
print "</td>";
print "<td valign=\"top\">";
$temp = $meta->{$filename}->keywords;
$temp =~ s/ / /g;
print "<div align=\"center\">";
print $result->textarea(-name=>"$filename-keywords",
-rows=>5, -cols=>"80",
-default=>$temp);
print "
";
$result->autoEscape(0);
print $result->button(-name=>"$filename-filldown",
-value=>"Fill this description down',
-onClick=>"flowdown('$filename-keywords",
"textarea');");
$result->autoEscape(1);

print "</td></tr>\n";

Each image gets a row in the table, with an alternating background to make the list more
readable. This row includes a thumbnail, radio buttons to select a target, radio buttons to select
arotation for the image, and a text edit area to define keywords for the image.

print "</table>\n";
print $result->hidden(-name=>"js-end");

Ask for a description of each target
my($target);
foreach $target (sort(@targets)){
print "

\n";
print "Enter a description of the images published in $target:
\n";
print "Title: ";
print $result->textfield(-name=>"$target-title",
-size=>"80");
print "
";

276 CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

print $result->textarea(-name=>"$target-description”,
-rows=>"8", -cols=>"100");
print "";

}

print "

<div align=\"center\">";

print $result->submit('submit', ' Commit changes ');
print "</div>";

print $result->end form;

print "$footer";

print "\n\n";

Additionally, each of the possible targets has a description field, which is populated with
a default if a description has previously been specified.

else{
Output a list of the directories
my($dir, $rowalt);
$rowalt = 1;

print $result->start_form(-name=>'dirselect');
print "Specify a thumbnail size, or use the default:\n";
print "";
print "<table>\n";
print "<tr><td>Horizontal size:</td><td>".
$result->textfield(-name=>"'xsize', -size=>5, -value=>'128")."</td></tr>";
print "<tr><td>Vertical size:</td><td>".
$result->textfield(-name=>'ysize', -size=>5, -value=>'96")."</td></tr>";
print "</table>\n";
print "<i>These sizes are for unrotated images, and will be flipped for =
rotated images\n";
print "

\n";

The final action is the one that is performed if no arguments are specified. This is intended
to be a list of the directories that the user can select to publish. First the script outputs a simple
form to let the user select the thumbnail size to use for the metadata page.

print "<table width=\"100%\">\n";

print "<tr><td>Directory</td>";

print "<td width=\"10%\">Number of images</td>";
print "<td width=\"10%\">Published</td></tr>\n";

foreach $dir (sort(getdirectories($directory))){
We want only the part of the directory after the path, as
using the rest on the URL would be an information leak
$dir =~ s/$directory\///;

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

print "<tr";
if($rowalt == 1){ print " bgcolor=\"CCCCCC\""; $rowalt = 0; }
else{ $rowalt = 1; }

print ">";

The edit button
print "<td>".$result->submit('dir', $dir);

Number of images
print "<td>".getimages("$directory/$dir")."</td>";

Published?

print "<td>";

if(ispublished("$directory/$dir")){ print "$tick"; }
else{ print " "; }

print "</td>";

print "</tr>\n";
}
print "</table>";
print $result->end form;
print "$footer";
print "\n\n";

A row is output, again with alternating background color, for each directory that is found
in the pictures directory that contains at least one image.

T

This function combines the read metadata with the actual list of images.
There are three possible cases. An image that actually exists is listed

in the META file, the image is listed in the meta file and doesn't exist, or
the image exists but doesn't have an entry in the META file. This function
handles all three of these cases and produces a hash of all the images

that need processing.

Pass in the output of the readmeta function and the getimages function,
in that order.

sub combine{

my($path, $meta, @images) = @ ;

my($image, $combinedmeta, $exifreader, $orient, $data);

e E EEEEEE

As the comment mentions, the purpose of this function is to ensure that all images end
up in the hash. You do this by combining what the META file gave you with a complete list of
images in the directory. If an image is found that isn't mentioned in the META file, then it will be
added to the hash with a reasonable default. This method also has the side effect of dropping
images that are listed in the META file but don’t exist on disk.

277

278 CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

foreach $image (@images){
if(exists($meta->{$image})){
$combinedmeta->{$image} = $meta->{$image};
}
else{
print STDERR "Reading EXIF information for $image\n";
$combinedmeta->{$image} = new metaitem;

Infer orientation from JPEG EXIF data. We have to unload
the EXIF reader so it works next time.
$exifreader = new Image::EXIF("$path/$image") or
die "No EXIF read";
$data = $exifreader->get all info() or
die "EXIF read failed";
undef($exifreader);

#print STDERR Dumper($data)."\n";

$orient = $data->{image}->{'Image Orientation'};
print STDERR "$orient\n";

The EXIF extraction uses the EXIF helper as discussed previously. If you want to do the
same thing with ImageMagick, then you just use the Get method on the image. For example,
to get the model information for the camera used, you use this code:

my($exif model) = $image->Get('%[EXIF:Model]");
This is, however, much slower. Let’s return to the script:

if($orient eq "Right-Hand, Top"){
$combinedmeta->{$image}->rotate("right");

}

elsif($orient eq "Left-Hand, Bottom"){
$combinedmeta->{$image}->rotate("left");

}
else{
Top-left
$combinedmeta->{$image}->rotate("no");
}

$combinedmeta->{$image}->target("none");

$combinedmeta->{$image}->rotatedesc($orient);

}

return $combinedmeta;

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

Call this function to get back a list of the images in a given directory.
This makes the assumption that there are no subdirectories. It would be
easy to support that, though.
#
Pass in the path to the directory that contains the images.
sub getimages{

my($path) = @_;

my (@images);

print STDERR "Finding images in $path\n";

find(sub{
Modify the next line to support file formats other than JPEG
if needed

if($File::Find::name =~ /\/(["\/1*\.jpg)$/1i){
push(@images, $1);
}
}, $path);

return @images;

As discussed in its opening comment, the previous function gets a list of images from
a directory. It’s important to note that this includes all images in subdirectories as well. The
follow option on the File::Find invocation allows Perl to follow symbolic links.

This function is similar to the above but returns a list of the
directories containing at least one image.
#
Pass in the path to the parent directory
sub getdirectories{
my($path) = @ ;
my(%directories);

find({
wanted=>sub{
Again, this needs to be tweaked if other image formats are
to be supported
if($File::Find::name =~ /\/(["\/]*\.jpg)$/1i){
This is a horrible, horrible hack
$directories{$File::Find::dir} = "yes";

}
1
follow=>1
1
$path);

return keys %directories;

279

280 CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

Similarly, this previous function returns a list of the directories containing images.

Determine whether a directory has been published on the Web
#
Returns true if the directory has been published
sub ispublished{
my($path) = @_;

return(-f "$path/META");

The previous function is a really simple one to determine whether images have been
published. It does this just by defining published as the existence of a META file in that direc-
tory. Next there is a JavaScript helper function:

Output the JavaScript for the description page
sub javascript{
print <<EOF;

<script language="JavaScript">
<!--
function flowdown (startid, type){

found = false;

descr = "NOTSET";

for (var i = 0; i < document.metadata.elements.length; i++) {
if(document.metadata.elements[i].name == "js-end") {
found = false;

}

if(document.metadata.elements[i].type == type) {
if(document.metadata.elements[i].name == startid) {
found = true;

}

if(found) {
if(descr == "NOTSET") {
if(type == "radio") {
if(document.metadata.elements[i].checked == true) {
descr = document.metadata.elements[i].value;
}
}
else {
descr = document.metadata.elements[i].value;
}
}

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

if(type == "radio") {
if(document.metadata.elements[i].value == descr) {
document.metadata.elements[i].checked = true;
}

}
else {

document.metadata.elements[i].value = descr;

/] -->
</script>
EOF

}

The last function in the CGI script is a simple one that outputs the JavaScript for the
metadata entry interface. This implements a simple flow-down of either the target or the
description of an image.

Introducing pmpublish

The pmpublish command takes the metadata saved into the META file by the CGI script and turns
that into a set of HTML pages and images ready for your Web site. The pmpublish command is
separate from the photomagick CGI script because publishing all the images can take a little
while, depending on the number and size of the images involved. Additionally, it makes it easier
to republish images later, such as if the templates you use for your site change.

#!/usr/bin/perl

This script takes a directory name on the command line and uses the META
files in that directory to publish nice HTML

use strict;

use File::Copy;

use File::Copy::Recursive;
use Image::Magick;

use Image::EXIF;

use PhotoMagick;

281

282

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

HHHE AR AR
Configuration options

The output configuration

my ($outdirectory) = "/data/stillhq.com/html";
my ($indexdirectory) = "/home/mikal/blog";
my($subdirectory) = "pictures”;

my($baseurl) = "http://www.stillhqg.com/";

These configuration options change where the output files are placed, where the index file
for the published images (the CMS entry) is put, any subdirectory as discussed for the images
inside the target directory, and the base URL for the Web site the images are being published
on—in other words, the name of the server on which the images are being published.

The name of the main index file
my ($indexfilename) = "000001.blog";
my($indexfileitems) = 20;

These configuration options affect the index file. The first is the name of the file, which in
my case needs to conform to the naming convention implemented by the blog engine I use for
http://www.stillhg.com. If you're just generating HTML, then this would be something like
index.html. The other option is the number of thumbnails to include in the index file before
appending the “more thumbnails” link that points to a page with all the thumbnails on it.

Configuration for template files

my($templatepath) = "/data/pictures/photomagick”;

my ($imageindextemplate) = "$templatepath/image.html";
my($indextemplate) = "$templatepath/index.blog";
my($thumbnailtemplate) = "$templatepath/thumbnails.html";

These configuration options are the name and location of the three template files—the
index template, the thumbnails template, and the image template. All these files are stored in
the template path directory in this example.

Configuration options for the image annotation
my ($logofont) = "$templatepath/schmotto.ttf";
my($logosize) = 60;

my($logocolor) = "white";

my($logotext) = "stillhq.com";

my($logogravity) = "SouthWest";

This final set of configuration options defines the font, size, color, text, and location of an
annotation to place on the images on the site to stop them being misused. In my case, [stamp
images on my site with the text stillhg.com.

T
Variables

my($meta, $filename, $image, $rc);
my($target, $targetpath, $targetindexpath, $targeturl);
my ($keywords, $temp, $template);

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

my (%imagecount, %imagethumbnails, %allimagethumbnails);
my ($INDEX) ;

We need to have the final directory name for the output path
my($dir) = $ARGV[O];
$dir =~ s/~ ¥\/([M\/])/$1/;

print "Processing $dir...\n";

Read in the META file
$meta = PhotoMagick::readmeta($ARGV[0]);

Load in the image template file
$template = readfile("$imageindextemplate");

Make STDOUT unbuffered

{
my $ofh = select STDOUT;
$1 =15
select $ofh;

}

Whilst not related to ImageMagick, it’s interesting to note that this is the Perl way of turn-
ing off buffering of standard output. This happens so that progress information is displayed to

the user without Perl waiting for an end of line to display the text.

Process the images
foreach $filename(sort(keys(%$meta))){
$target = $meta->{$filename}->target;

Work out where this images is going, and ensure that directory exists

$targetpath = "$outdirectory/$target/$subdirectory/$dir";

$targetindexpath = "$indexdirectory/$target/$subdirectory/$dir";

$targeturl = "$baseurl$target/$subdirectory/$dir";

If this is a new target for this directory name, then we need to create

the start of the index file in that directory
if($target ne "none"){
File::Copy::Recursive: :pathmk($targetpath);
File::Copy::Recursive: :pathmk($targetindexpath);

print "\t$filename: [target is $target] ";

Turn spaces in the keywords into underscores
$keywords = $meta->{$filename}->keywords;
$keywords =~ s/ /_/g;

chomp ($keywords);

283

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

Open the image

$image = new Image::Magick();

$rc = $image->Read("$ARGV[0]/$filename");
die "$rc" if $rc;

This is another example of ImageMagick reading in a file from disk. It’s followed by similar
rotation and resizing code to that which you have seen already.

If the image needs to be rotated, then now is the time to do it
if($meta->{$filename}->rotate eq "right"){
print "[rotating right] ";
$rc = $image->Rotate('90");
die "$rc" if $rc;
}
elsif($meta->{$filename}->rotate eq "left"){

print "[rotating left] ";
$rc = $image->Rotate('-90");
die "$rc" if $rc;

}

Resize the image: large sized is currently 1280x960
if($meta->{$filename}->rotate eq "no"){
$rc = $image->Sample(geometry=>'1280x960");

}
else{

$rc = $image->Sample(geometry=>'960x1280");
}

die "$rc" if $rc;

Place a logo on the bottom of the large image
$rc = $image->Annotate(font=>$logofont,
pointsize=>$logosize,
fill=>$logocolor,
text=>$logotext,
gravity=>$logogravity);
die "$rc" if $rc;

This code annotates the image with the annotation preferences specified in the
configuration.

Write out the large size
$rc = $image->Write("$targetpath$keywords-$filename");
die "$rc" if $rc;

n

print "large ";
Medium-sized
if($meta->{$filename}->rotate eq "no"){

$rc = $image->Sample(geometry=>'x480");

}

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

else{
$rc = $image->Sample(geometry=>"'x640");
}
die "$rc" if $rc;
$rc = $image->Write("$targetpath$keywords-medium-$filename");
die "$rc" if $rc;

n

C e .
print "medium ";

Small-sized. Vertically aligned images will come out smaller so
that they all line up on the thumbnails page

$rc = $image->Sample(geometry=>'x96");

die "$rc" if $rc;

$rc = $image->Write("$targetpath$keywords-small-$filename");

die "$rc" if $rc;

print "small ";

The thumbnail in the index file for this image

if($imagecount{$target} eq ""){
$imagecount{$target} = 1;

}

Only some appear on the CMS index page
if($imagecount{$target} < $indexfileitems + 1){
$imagethumbnails{$target} = $imagethumbnails{$target}.
"".
" \n\n";
}
elsif($imagecount{$target} == $indexfileitems + 1){
$imagethumbnails{$target} = $imagethumbnails{$target}.
"

".
"See more thumbnails";

}

ALl of them appear on the thumbnails page, though
$allimagethumbnails{$target} = $allimagethumbnails{$target}.

"".

" \n\n";
print "index ";

This code handles the thumbnails being in the right place. You do this by building up a
string of the HTML for the thumbnails for the index page and another string containing the
HTML for the thumbnails for the thumbnail page.

The index file for this image

my($url) = "/$target/$subdirectory/$dir"."image".
$imagecount{$target}." .html";

my ($parenturl) = "/$target/$subdirectory/$dir";

my($largeimage) = "/$target/$subdirectory/$dir/$keywords-$filename";

285

286 CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

my ($mediumimage) = "/$target/$subdirectory/$dir/$keywords-medium-$filename";
my($smallimage) = "/$target/$subdirectory/$dir/$keywords-small-$filename";
my ($thumbnailspage) = "/$target/$subdirectory/$dir"."thumbnails.html";

my($exifreader, $data);

$exifreader = new Image::EXIF("$ARGV[0]/$filename") or
die "No EXIF read";

$data = $exifreader->get all info() or
die "EXIF read failed";

undef($exifreader);

my($exif model) = $data->{camera}->{'Camera Model'};
my($exif datetime) = $data->{other}->{'Image Digitized'};
my ($exif exposuretime) = $data->{image}->{'Exposure Time'};
my($exif fnumber) = $data->{image}->{'F-Number'};

my ($exif isospeed) = $data->{image}->{'ISO Speed Rating'};
my ($exif shutterspeed) = $data->{image}->{'Shutter Speed'};
my ($exif exposurebias) = $data->{image}->{'Exposure Bias'};
my ($exif aperture) = $data->{image}->{'Lens Aperture'};

my ($exif meteringmode) = $data->{image}->{'Metering Mode'};
my($exif flash) = $data->{image}->{'Flash'};

my($exif focallength) = $data->{image}->{'Focal Length]'};

Remove those pesky underscores from the keywords again
$keywords =~ s/ / /g;

All of the previous code is devoted to setting up the substitution variables for the image
template. This includes getting the keywords into the right form and extracting metadata about
the image from the EXIF tags in the JPEG file.

Write out the image template
$temp = $template;
$temp =~ s/(\$\w+(?2:::)2\w*)/"defined $1 ? $1 : ''"/gee;

open INDEX, "> $targetpath"."image".
$imagecount{$target}." .html" or
die "Couldn't open image detail page”;
print INDEX $temp;
close INDEX;
print "html ";

The template is then written out to disk. See the “Using the Templates” section for more
information about the template language.

$imagecount{$target}++;
}
else{

print "\t$filename: [target is $target] ";
}

}

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

print "\n";

Now output the index pages based on their templates
foreach $target (keys(%imagethumbnails)){

}

if($target ne "none"){

my($title, $description, $thumbnails);

$targetpath = "$outdirectory/$target/$subdirectory/$dir";
$targetindexpath = "$indexdirectory/$target/$subdirectory/$dir";

$template = readfile("$indextemplate");

my($targetdesc) = PhotoMagick::readmetatarget("$ARGV[0]/META-$target");
$title = $targetdesc->{'title'};

$description = $targetdesc->{'description'};

$thumbnails = $imagethumbnails{$target};

$template =~ s/(\$\w+(?:::)2\w*)/"defined $1 ? $1 : ''"/gee;

open INDEX, "> $targetindexpath/$indexfilename” or
die "Could open index file";

print INDEX $template;

close INDEX;

print "CMS entry: $targetindexpath$indexfilename\n";

And the thumbnail page

$template = readfile("$thumbnailtemplate");

$thumbnails = $allimagethumbnails{$target};

my($url) = "/$target/$subdirectory/$dir"."thumbnails.html";
my ($parenturl) = "/$target/$subdirectory/$dir";

$template =~ s/(\$\w+(?:::)2\w*)/"defined $1 ? $1 : ''"/gee;

open INDEX, "> $targetpath/thumbnails.html" or
die "Could open index file";
print INDEX $template;
close INDEX;
print "Thumbnails: $targetpath”."thumbnails.html\n";

print "Processing finished\n\n";

Similarly, the previous code handles writing out the index and thumbnail templates for

the directory. The basic technique is the same as for the image template.

287

288

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

Read the named file into a string
#
Takes the filename
sub readfile{
my($filename) = @ ;
my ($INDEX, $retval);

$retval = "";
open INDEX, "< $filename" or die "Couldn't open $filename";
while(<INDEX>){

$retval = "$retval$ ";

}
close INDEX;

return $retval;

The previous function reads an entire file into a string. This reads in the templates so they
can be processed as a string earlier in the code.

Using the Templates

photomagick has three templates—the index template is the template used for the index to the
images; the thumbnail template is the template used to display all the thumbnails, because you
can limit the number that appear on the index page; and finally, the image template is used once
for each image and displays information from the EXIF tags stored in the JPEG file.

The template language is simple; each template variable is in the following form:

$description

where $ indicates a variable, in this case one named description. The following sections explain
each of the templates in turn.

Using the Index Template

The index template is the simplest, especially for the CMS engine I use; this is the entire
template:

$title
$description

$thumbnails

[btags: photo]
[icbm: home]

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

The CMS engine treats the first line as the page title and then everything else as the body
of the blog post, so this template just appends the thumbnails to the end of the blog post and
then handles blog search engine tagging. The valid variables for this template are as follows:

e title: The title of the page as entered on the metadata page
* description: The description of the page as entered on the metadata page

e thumbnails: The thumbnails to display on the index page

Using the Image Template

The image template is a little more complex, as it's HTML in my setup. (It’s possible that it is
another CMS page in your environment.) Remember that it’s possible for any of these tem-
plates to produce whatever format you want, as long as it’s a file on disk at the end. Because
of its complexity, I won’t include a sample here. The variables possible for the template are
as follows:

e url: The absolute URL for this image page, not including the domain name

* parenturl: The absolute URL for the directory containing this image file and the images
themselves, not including the domain name

* largeimage: The URL for the large image, not including the domain name

* mediumimage: The URL for the medium image, not including the domain name
* smallimage: The URL for the small image, not including the domain name

* thumbnailspage: The URL for the thumbnails page, not including the domain name
* exif_model: Information about camera model

e exif datetime: The time the image was digitized

* exif exposuretime: Exposure time

e exif fnumber: The f-stop number

* exif_isospeed: ISO equivalent speed

e exif_shutterspeed: Shutter speed

* exif_exposurebias: The exposure bias used

e exif aperture:The lens aperture

e exif meteringmode: The camera metering mode

e exif flash: Information about whether the flash was used

* exif focallength: The focal length

* keywords: The keywords entered in the metadata form

289

290

CHAPTER 8 ©° PERLMAGICK: IMAGEMAGICK PROGRAMMING WITH PERL

Using the Thumbnail Template

Finally, the thumbnail template is usually similar to the index template but includes a full
copy of the list of templates. The substitution variables are the same as the index template.

Conclusion

In this chapter, I presented a full demonstration of how to write a CGI and command-line
application using Perl and ImageMagick’s PerIMagick. In the next three chapters, I'll demon-
strate three more examples of applications using ImageMagick—one in C, one in Ruby, and
one in PHP. These demonstrations don'’t intend to show off all that is possible in these pro-
gramming interfaces, as was done in the command-line discussion, but instead intend to
present useful techniques and examples.

5904ch09FINALQ6.gxd 11/17/05 4:03 PM Page 291 $

CHAPTER 9

Implementing Your
Own Delegate with C

This chapter is a slightly shorter example than the Perl example discussed in Chapter 8,
although it still presents a useful tool to add to your ImageMagick arsenal. While writing the
earlier chapters, I decided it would be useful to be able to implement support for other com-
pression algorithms and file formats in ImageMagick, which is what this chapter demonstrates.
Luckily for this chapter, ImageMagick has an extensible infrastructure, called delegates, for sup-
porting image file formats. To implement a new file format, all you need to do is implement
anew delegate.

How Delegates Are Configured

As mentioned in Chapter 1, you can configure delegates via the delegates.xml file. This file
starts with this comment on its usage:

<l--
Delegate command file.
Commands which specify
decode="in_format" encode="out format"

specify the rules for converting from in_format to out format. These
rules may be used to translate directly between formats.

Commands which specify only
decode="in_format"
specify the rules for converting from in_format to some format which

ImageMagick will automatically recognize. These rules are used to
decode formats.

291

B

5904ch09FINALQ6.gxd 11/17/05 4:03 PM Page 292 $

292 CHAPTER 9 " IMPLEMENTING YOUR OWN DELEGATE WITH C

Commands which specify only
encode="out_format"
specify the rules for an "encoder" which may accept any input format.

For delegates other than gs-color, gs-cmyk, gs-mono, pcl-color, pcl-cmyk,
pcl-mono, and mpeg-encode, the substitution rules are as follows:

%1 input image filename

%0 output image filename

%u unique temporary filename

%z secondary unique temporary filename

Z# input image signature

%Zb image file size

%c input image comment

%g window group

%h image rows (height)

%k input image number colors
%m input image format

%p page number

%q input image depth

%s scene number

%w image columns (width)

%x input image x resolution
%y input image y resolution

You can see from this that implementing a simple delegate isn't actually all that hard. For
this example, I'll show how to write a delegate in a shell script that converts from a fictional
file format called foo to PNG. It does this simply by copying the file (because foo files are really
PNG files with a funny extension). Because of the simplistic nature of the delegate, the shell
script is really simple:

#!/bin/bash

This is a simple example of how to write a delegate in shell script
It assumes the first argument is the input file and the second
argument is the output file. It just renames the input to the output name.

cp $1 $2

Effectively, this is the smallest delegate possible. You also need to add the delegate to the
delegates.xml configuration file. My configuration file looks like this once I add the new line:

<delegatemap>
...other delegates are registered here...

B

5904ch09FINALQ6.gxd 11/17/05 4:03 PM Page 293 $

CHAPTER 9 " IMPLEMENTING YOUR OWN DELEGATE WITH C 293

<delegate decode="foo" encode="png" mode="bi" w»
command=""/home/mikal/imagemagickbook/delegate/simple.sh" "%i" "%o"' />
</delegatemap>

This configuration line says that to decode the foo format, use the command line specified,
which will produce a PNG file. The command line specified uses a complete path to the simple
shell script, passes the path to the input file as the first argument, and places a temporary path
for output as the second argument. You don't need to specify a full path for the delegate executable
if it's on the user’s path.

Now, you can convert from the foo format to other formats like this:

convert input.foo output.tif

which will now perform as you would expect. If you want to encode to the foo format, then
you merely need to reverse the values of the encode and decode parameters. Some additional
options are available in the delegate’s configuration file. The two most interesting are stealth
mode, which stops the delegate from being listed by the 1ist command-line argument to the
convert command, and the spawn option, which forces the delegate to run in a new process,
which means ImageMagick can continue executing once the delegate is started. This is useful
for delegates that want to launch user interfaces, such as viewers. For these two options, the
possible values are True and False.

Writing a Simple Delegate in C

Now it’s time for a more complicated example using C. For this example, you could write lots
of interesting delegates:

* You could have a database that stores images and want to use the images for other
things. If the image filename was defined to be the unique identifier for the image in
the database, and the images have a . db extension, then you could have a delegate that
extracts the images from the database. This would make using these images as seamless
to the user as if the images existed in the file system.

* You could write a delegate that extracts images from PDF files (not the whole page as an
image but individual graphical elements) and places them in a multiple image format
such as TIFE

* A delegate to decode images that have been MIME encoded would be useful.

* Both the OV519 Web camera and the JVC car radio head unit in my car use image formats
that aren’'t supported by ImageMagick. You could write delegates to support them.

For this chapter, I'll show how to write a simple delegate that renders black-and-white
images to ASCII art. (The delegate could support color images, but you would need to convert
them to grayscale before processing.) The rendering to ASCII art takes place with the aalib
package, which can be found at http://aa-project.sf.net.

Additionally, because of the way aalib is intended to work, only relatively small images
will work with this version of the delegate. You could improve this for future versions of the
delegate, but I won't fix it here because it would complicate the example.

B

5904ch09FINALQ6.gxd 11/17/05 4:03 PM Page 294 $

294 CHAPTER 9 " IMPLEMENTING YOUR OWN DELEGATE WITH C

Without further ado, the following is the code for the delegate. The first argument it takes
is the name of the input file, which must be a black-and-white TIFF image. The ASCII art is
written to standard output, which means you'll need to redirect that in the delegate configuration.

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

#include <aalib.h>
#include <tiffio.h>

int
main (int argc, char **argv)
{
int x, y, stripMax, stripCount, textwidth, xoffset, yoffset;
TIFF *image;
FILE *output;
uint16 photo, bps, spp, fillorder;
uint32 width, height;
tsize t stripSize;
unsigned long imageOffset, result, bufferSize, count;
char *text, *buffer, tempbyte;
aa_context *context;
aa_renderparams *params;

// Open the TIFF image
if ((image = TIFFOpen (argv[1], "r")) == NULL)
{
fprintf (stderr, "Could not open incoming image\n");
exit (42);
}

// Open the output file
output = fopen (argv[2], "w");
fprintf (stderr, "Writing to %s\n", argv[2]);
if (output == NULL)
{
fprintf (stderr, "Could not open output file\n");
exit (42);
}

// Check that it is of a type that we support
if ((TIFFGetField (image, TIFFTAG BITSPERSAMPLE, &bps) == 0) || (bps != 1))
{

5904ch09FINALQ6.gxd 11/17/05 4:03 PM Page 295 $

CHAPTER 9 " IMPLEMENTING YOUR OWN DELEGATE WITH C 295

fprintf (stderr,
"Either undefined or unsupported number of bits per sample\n");
exit (42);
}

if ((TIFFGetField (image, TIFFTAG_SAMPLESPERPIXEL, &spp) == 0)
[l (spp 1= 1))
{
fprintf (stderr,
"Either undefined or unsupported number of samples per pixel\n");
exit (42);
}

TIFFGetField (image, TIFFTAG IMAGEWIDTH, &width);
TIFFGetField (image, TIFFTAG IMAGELENGTH, &height);

// Initialize aalib, and ensure the image is blank
context = aa_init (8mem d, 8aa_defparams, NULL);
if (context == NULL)
{
fprintf (stderr, "Failed to initialize aalib\n");
exit (1);

}
params = aa_getrenderparams ();

memset (context->imagebuffer, o,
(size t) (aa_imgwidth (context) * aa_imgheight (context)));

// Check whether we can fit the image
if (context->imgwidth < width)
{
fprintf (stderr,
"Image too wide. It should be no more than %d pixels\n",
context->imgwidth);
exit (1);
}
if (context->imgheight < height)
{
fprintf (stderr,
"Image too high. It should be no more than %d pixels\n\n",
context->imgheight);
exit (1);

}

5904ch09FINALQ6.gxd 11/17/05 4:03 PM Page 296 $

296 CHAPTER 9 " IMPLEMENTING YOUR OWN DELEGATE WITH C

// Read in the possibly multiple strips
stripSize = TIFFStripSize (image);
stripMax = TIFFNumberOfStrips (image);
imageOffset = 0;

bufferSize = TIFFNumberOfStrips (image) * stripSize;
if ((buffer = (char *) malloc (bufferSize)) == NULL)
{
fprintf (stderr,
"Could not allocate enough memory for the uncompressed image\n");
exit (42);

}

for (stripCount

{
if ((result

0; stripCount < stripMax; stripCount++)

TIFFReadEncodedStrip (image, stripCount,

buffer +
imageOffset,
stripSize)) == -1)
{
fprintf (stderr, "Read error on input strip number %d\n",stripCount);
exit (42);
}

imageOffset += result;

}

// Deal with photometric interpretations
if (TIFFGetField (image, TIFFTAG_PHOTOMETRIC, 8&photo) == 0)

{

fprintf (stderr, "Image has an undefined photometric interpretation\n");
exit (42);

}

if (photo != PHOTOMETRIC MINISBLACK)

{
// Flip bits

fprintf (stderr, "Fixing the photometric interpretation\n");

for (count = 0; count < bufferSize; count++)
buffer[count] = ~buffer[count];

}

// Determine how to center the image
xoffset = (context->imgwidth - width) / 2;
yoffset = (context->imgheight - height) / 2;

B

5904ch09FINALQ6.gxd 11/17/05 4:03 PM Page 297 $

CHAPTER 9 " IMPLEMENTING YOUR OWN DELEGATE WITH C

// Copy the image across
if (width % 8 != 0)
width += (8 - width % 8);
for (y = 0; y < height; y++)
{
for (x = 0; x < width / 8; x++)
{
if (((unsigned char) buffer[y * (width / 8) + x]) & 0x01)
aa_putpixel (context, x * 8 + 7 + xoffset, y + yoffset, 255);
if (((unsigned char) buffer[y * (width / 8) + x]) & 0x02)
aa_putpixel (context, x * 8 + 6 + xoffset, y + yoffset, 255);
if (((unsigned char) buffer[y * (width / 8) + x]) & 0x04)
aa_putpixel (context, x * 8 + 5 + xoffset, y + yoffset, 255);
if (((unsigned char) buffer[y * (width / 8) + x]) & 0x08)
aa_putpixel (context, x * 8 + 4 + xoffset, y + yoffset, 255);

if (((unsigned char) buffer[y * (width / 8) + x]) & o0x10)
aa_putpixel (context, x * 8 + 3 + xoffset, y + yoffset, 255);
if (((unsigned char) buffer[y * (width / 8) + x]) & 0x20)
aa_putpixel (context, x * 8 + 2 + xoffset, y + yoffset, 255);
if (((unsigned char) buffer[y * (width / 8) + x]) & 0x40)
aa_putpixel (context, x * 8 + 1 + xoffset, y + yoffset, 255);
if (((unsigned char) buffer[y * (width / 8) + x]) & 0x80)
aa_putpixel (context, x * 8 + 0 + xoffset, y + yoffset, 255);

}

aa_flush (context);
aa_render (context, params, 0, O,
aa_imgwidth (context), aa_imgheight (context));

text = strdup (aa_text (context));
textwidth = aa_scrwidth (context);

for (x = 0; x < strlen (text); x++)
{
fprintf (output, "%c", text[x
if ((x + 1) % textwidth == 0)
fprintf (output, "\n");

D;

}
fprintf (output, "\n");

TIFFClose (image);
fclose (output);
aa_close (context);
return 0;

297

5904ch09FINALQ6.gxd 11/17/05 4:03 PM Page 298 $

298 CHAPTER 9 " IMPLEMENTING YOUR OWN DELEGATE WITH C

I won'’t describe the code in the commentary style I used in Chapter 8, because this code
is alot shorter. I'll briefly describe the flow of the program, though:

1. The program opens the TIFF image.
2. Tt opens the output file.
3. Itensures that the image is the right color depth.
4. Tt reads the size of the image.
5. aalibis initialized.
6. The maximum image size from aalib is compared to the size of the image.
7. The image is read into memory.
8. If the photometric interpretation (whether a zero is dark or light) is wrong, it’s corrected.
9. The image offset to ensure centering is determined.
10. The image is drawn into the aalib buffer.
11. aalib is then asked to render the output, and that output is printed to the output file.
12. Everything is cleaned up.

As you can see, the most complicated parts of the whole process are reading the TIFF
image in with 1ibtiff and then ensuring that the image matches the supported image style
for the delegate. Now you need to register the delegate with ImageMagick, like this:

<delegate decode="tiff" encode="aatext" mode="bi" w»
command=""/home/mikal/imagemagickbook/delegate/aahelper" "%i" "%o"' />

Now that it’s registered, you can convert images to ASCII art by using a command line
like this:

convert input.tif output.aatext

5904chO09FINALQ6.gxd 11/17/05 4:03 PM Page 299 $

CHAPTER 9 ™ IMPLEMENTING YOUR OWN DELEGATE WITH C 299

For example, I'll show how to convert the image shown in Figure 9-1 to ASCII art.

Figure 9-1. A sample input image

You'll get the output (in a text file) shown in Figure 9-2.

Figure 9-2. A screen dump of a sample output image

Conclusion

This chapter showed you a useful technique for implementing your own delegates. The next two
chapters cover how to use Ruby and PHP with ImageMagick, both in the form of Web interfaces.

5904ch09FINALQ6.gxd 11/17/05 4:03 PM Page 300 $

CHAPTER 10

RMagick: ImageMagick
Programming with Ruby

In this chapter, you'll examine a simple ImageMagick helper application written in Ruby using
the RMagick Ruby interface for ImageMagick. The basic concept behind the application is that
it's often easier to build a transformation of an image based on some simple visual steps and
then apply those same transformations to several images. For example, I recently needed to
take a large number of images, reduce their sizes, and then stamp them with a string before
publishing them to a CD. At first this seemed like a trivial problem, but getting the images
to look just right was much easier with the tool covered in this chapter. The script in this
chapter is called imwizard. It’s available for download from my site at http://www.stillhq.com/
imagemagick/ruby/imwizard/.

Presenting the Code

The format for this chapter is similar to Chapter 8’s coverage of PerlMagick. I'll present the
code in an annotated format, and then I'll walk you through an example usage to make it clear
how it works. Similar to Chapter 8, the code in this chapter is a simple sample implementation
and by no means a complete example of how to use RMagick. The RMagick documentation at
http://studio.imagemagick.org/RMagick/doc/index.html offers excellent help and is well worth
a close look.

I'll now present the code for imwizard. This isn’t a Ruby tutorial, but the following line tells
the shell on Unix systems to run the Ruby interpreter in order to run this script:

#! /usr/bin/ruby -w
The following loads the RMagick Ruby interface to ImageMagick:

Load the RMagick ImageMagick wrapper
require 'RMagick’
include Magick

The RMagick interface expects gravity to be expressed as an enumeration entry, but for this
example you'll take a string from the user later in this script. The following function converts
between the two by taking a string, running through the possible valid values, and returning the
corresponding enumeration entry:

301

302 CHAPTER 10 " RMAGICK: IMAGEMAGICK PROGRAMMING WITH RUBY

Convert a string to the right gravity enumeration entry
def togravity(str)
case str
when "Forget"
return Magick::ForgetGravity
when "NorthWest"
return Magick::NorthWestGravity
when "North"
return Magick::NorthGravity
when "NorthEast"
return Magick::NorthEastGravity
when "West"
return Magick::WestGravity
when "Center"
return Magick::CenterGravity
when "East"
return Magick::EastGravity
when "SouthWest"
return Magick::SouthWestGravity
when "South"
return Magick::SouthGravity
when "SouthEast"
return Magick::SouthEastGravity
else
print "Unknown gravity\n"
return Magick::Center
end
end

The next function is where most of the work for the script is performed. It takes the follow-
ing information: a command that the user entered, an image object (which is how RMagick
passes around the state of an image), and whether to display the image after the transformation.
This last parameter is because this function is used both when the user is interactively explor-
ing a set of image transformations and when those transformations are being applied in a batch
mode to a selection of images.

This function doesn’t implement all the tasks you can do with RMagick—it implements
only four commands to demonstrate what’s possible. (Implementing more is left as an exercise
for you.) Additionally, I avoid error checking in this code to make the ImageMagick operations
clearer. Real code would, of course, include error checking.

Execute a command, either from the user or from the stored
1list of commands
def execute(execmd, oldimg, displayafter)

cmdarray = execmd.split(" ")

img = oldimg.dup

CHAPTER 10 ©° RMAGICK: IMAGEMAGICK PROGRAMMING WITH RUBY

To implement new commands, put them here...
case cmdarray[0]
when "annotate"
text = Magick::Draw.new
text.font = cmdarray[1]
text.pointsize = cmdarray[2].to i
text.gravity = togravity(cmdarray[3])

text.annotate(img, 0, 0, 0, 0, cmdarray[4]) {
self.fill = cmdarray[5]
}

when "normalize"
img = img.normalize

when "resize"
The resize command destroys the aspect ratio of the image
so we do this instead
img = img.change geometry(cmdarray[1]){ |cols, rows, img|
print "\t\tActual size: ", cols, "x", rows, "\n"
img.resize!(cols, rows)

}

The resize command can't just use the RMagick resize function, because that would affect
the aspect ratio of the image (the ratio of the width of the image to the height of the image), so
instead you ask RMagick to propose new dimensions that fit inside the user’s passed geometry
specification and then use those dimensions, as shown in the previous code.

when "spread"
img = img.spread(cmdarray[1].to i)

else
print "Command unknown\n"
return img

end

if displayafter

then
img.display
end
return img
end

These are the commands implemented at the moment and the arguments they take:

annotate <fontname> <pointsize> <gravity> <text> <color>: Annotates the image with
some text. annotate schmotto.ttf 30 SouthWest stillhq.com white is an example

303

304 CHAPTER 10 " RMAGICK: IMAGEMAGICK PROGRAMMING WITH RUBY

¢ fontname: The filename for a font to use.
¢ pointsize: The size of the text.

e gravity: The gravity to use for the text. The valid entries are listed in the togravity
function shown previously.

¢ text: The text for the annotation.
e color: The color to use for the annotation.
normalize: Normalizes the image. This command takes no arguments.

resize <geometry>: Resizes the image. The geometry string used here is the same as those
used for the various ImageMagick command-line tools. resize 800x600 is an example.

spread <radius>: The same spread as the command-line option previously discussed in
Chapter 5. This is the radius of the circle in which the pixel will be swapped. spread 3 is
an example.

When the script starts, it asks for an image to use for the example when the commands are
being entered. This image is then loaded by RMagick and is immediately displayed to the user.

print "Welcome to imwizard. The basic flow works like this:\n"
print " - define an input filename\n\n"

print " - define an input pattern for the final application\n"
print " - try a command, the output is displayed\n"

print " - if you like that command, type \"commit\"\n"

print " - otherwise try another command\n\n"

print "When you're finished, type done\n"

print "Type help for help\n\n"

print "input filename >> "
input = gets.chomp

print "Loading image...\n
img = Imagelist.new(input)
img.display

print "Done\n\n"

n

imwizard builds an array of commands that have been committed. Once this array has
been prepared, you start reading commands from standard input.

cmds = Array.new
prevemd = ""
newimg = img

while true
print ">>
cmd = gets.chomp

case cmd

CHAPTER 10 ©° RMAGICK: IMAGEMAGICK PROGRAMMING WITH RUBY 305

The first command, help, is a simple online help system. It documents the commands
described previously.

when "help"
print "\n"
print "You can enter a command here, commit a command, or end.\n"
print "The commit a command, type the word commit on a line by itself.\n"
print "To end, type done on a line by itself\n\n"
print "Valid commands are:\n\n"
print "\tannotate <fontname> <pointsize> <gravity> <text> <color>\n"
print "\tnormalize\n"
print "\tresize <geometry>\n"
print "\tspread <radius>\n"
print "\n\n"

When the user is finished playing with commands and wants to implement the changes
for a set of images, they execute the done command. This results in them being prompted for
a path to the images to change and a regular expression describing those images. Those images
then have the commands previously committed executed against them, and the changed image
is saved over the original image.

when "done"
print "Now you need to tell me where to implement the changes.\n"
print "path >> "
path = gets.chomp
print "Now I need a regular expression which defines the images to change\n"
print "regexp >> "
re = gets.chomp

print "Processing...\n"
Dir.foreach(path) do |file|
regexp = Regexp.new(re)
match = regexp.match(file)
if match
then
print "Processing ", file, "\n"
img = ImageList.new(path + "/" + file)
cmds.each do |cmd|
img = execute(cmd, img, false)
end
img.write(path + "/" + file)
end
end
print "Bye\n"
exit

For each command executed, the user needs to commit that command if they’re happy
with it, as follows. If the command isn't committed, then it’s ignored and not added to the list
of commands to batch execute.

306

CHAPTER 10 ©° RMAGICK: IMAGEMAGICK PROGRAMMING WITH RUBY

when "commit"
if prevemd !=
then
cmds . push(prevemd)
img = newimg

prevemd = ""

print cmds.join("\n"), "\n"
else

print "There is nothing to commit...\n"
end

Otherwise, you can assume this is a command that changes the image and tries to execute it.

else
prevcmd = cmd
newimg = execute(cmd, img, true)
end
end

exit

Seeing the Helper Application in Action

In this section, I'll walk you through a complete example of the execution of the script, includ-
ing sample images. In the following output, bold text indicates text entered by the user:

./imwizaxd

Welcome to imwizard. The basic flow works like this:
- define an input filename

define an input pattern for the final application
- try a command, the output is displayed

- if you like that command, type "commit"

- otherwise try another command

When you're finished, type done
Type help for help

input filename >> input.jpg
Loading image...
Done

The input image will now be displayed to the user. The input image I'll use as an example
looks like Figure 10-1.

CHAPTER 10 ©° RMAGICK: IMAGEMAGICK PROGRAMMING WITH RUBY 307

.

X A
t ¥ .
8,

Figure 10-1. The input image for this example

Please note that this image has been scaled to fit on the page. You can resize images with
imwizard, like so:

>> resize 10x10
Actual size: 10x7

The user now sees a 10x7-pixel version of the image, as shown in Figure 10-2.

-
Figure 10-2. A tiny image

Let’s say the user regrets making the image this small, so they don’t commit the change.
Instead, they retry the command, as follows:

>> resize 800x800
Actual size: 800x533

This returns the bigger image shown in Figure 10-3.

308

CHAPTER 10 ©° RMAGICK: IMAGEMAGICK PROGRAMMING WITH RUBY

4.
o)

%

AP AR S Na's

Figure 10-3. A bigger image

The user then decides that this is the right image and commits the command, as shown here:

>> commit
resize 800x800

The line of text at the end of this command is a list of the commands that have been
committed.

The user then decides to annotate the image with a domain name so that people know
where the image originated:

>> annotate schmotto.ttf 30 SouthWest stillhq.com white
>> commit

resize 800x800

annotate schmotto.ttf 30 SouthWest stillhq.com white

The user will now see an annotated version of the image, as shown in Figure 10-4, and
then this command is committed as well, which results in two commands appearing in the list
of committed commands.

CHAPTER 10 ©° RMAGICK: IMAGEMAGICK PROGRAMMING WITH RUBY 309

" i NS

Figure 10-4. A bigger image with an annotation

When the user is finished entering commands, they type the done command, as shown here:
>> done

They’re then prompted for a path to the images to process, as well as a regular expression
that defines the images to process. I'll show how to process all the images in the photos/mikal
directory that have filenames ending in . jpg:

Now you need to tell me where to implement the changes.

path >> photos/mikal

Now I need a regular expression that defines the images to change
regexp >> *.*\.jpg$

The processing now begins:

310

CHAPTER 10

RMAGICK: IMAGEMAGICK PROGRAMMING WITH RUBY

Processing.

Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing

Processing

100_LCA.jpg
Actual
101_LCA.]jpg
Actual
102_LCA.jpg
Actual
103_LCA. jpg
Actual
104_LCA. jpg
Actual
105_LCA. jpg
Actual
106_LCA. jpg
Actual
107_LCA. jpg
Actual
108 LCA.jpg
Actual
109_LCA. jpg
Actual
110 _LCA.jpg
Actual
111 LCA.jpg

size:

size:

size:

size:

size:

size:

size:

size:

size:

size:

size:

800x600

800x600

600x800

800x499

800x600

800x600

800x600

800x600

600x800

453x800

800x600

And so on:

Bye

The code will say “Bye” when it has finished processing.

Conclusion

In this chapter, you saw an example of how to use ImageMagick with the RMagick Ruby inter-
face. I showed you how to write a helper application that assists the user in deciding which
transformations to apply to a group of images and then applies those transformations to the
selected set of images. The sample application in this chapter was by no means complete, but
it shows you the skeletal structure of what a more complete application would look like, with-
out a lot of code getting in the way. Note that the Ruby programming language provides an
expressive, powerful interface to ImageMagick, without bogging you down with having to
write a lot of code.

In the remaining two chapters of the book, you’ll examine one last programming interface—
this time for PHP—and then find out where to go from what'’s covered in this book.

CHAPTER 11

MagickWand: ImageMagick
Programming with PHP

In this chapter, I'll discuss the MagickWand interface to the PHP Web programming language.
Instead of showing off how to manipulate existing images, do something artistic, or perform
anything like that (all of which is possible with MagickWand), I'll show you how to create
dynamic graphics for a hypothetical Web application.

Presenting the Problem

Imagine that you're writing a Web application that automates the process of rental property
management—Ilandlords can register properties and then keep track of the administration of
their properties. Tenants can use the site to find properties to rent, apply for properties they
like, make rental payments, and so on. The problem is that the site isn't very visually appealing,
and it lacks visualization tools. I'll show you how to fix that by adding some dynamic graphs to
the site.

The sample I'll use in this chapter is a graph of rental property values for a specific region.
When a landlord is picking the price they would like to charge, the site will display a graph of
rental properties in a similar region matching the description of the property that the landlord
entered. The landlord can then make an informed decision about what to charge for their prop-
erty, based on the dominant market trends.

The Web site needs to generate these graphs, and the developer has decided to do that with
ImageMagick. It’s a PHP site, so therefore the logical choice is to use MagickWand.

Presenting the Implementation

I'll discuss a few aspects of implementing the graph before presenting the PHP code. The graph
is a separate element of the HTML page that the PHP application generates, just as it would be
for any other Web site. The Web page that shows the graph looks like Figure 11-1.

311

312 CHAPTER 11 " MAGICKWAND: IMAGEMAGICK PROGRAMMING WITH PHP

HOMEINATOR'!

_ You are registering a house
* Register
* Tenant

* Report
* Contact Apartment

3 bedroom
2 bathroom

Single car garage

Enter a description

Tenant

* Make payment

* Report a problem
* Reports

* Contact

Graph goes here!

Median price:
$250

Figure 11-1. A Web page containing the graph

You can see the graph in the middle of the page. Rhys Jones from http://www.rustybones.net
kindly created this HTML page (because Web site design is unfortunately not one of my talents!).
The graph is linked to this page with an IMG tag that looks something like this:

This link is important, because it means the graphing code is decoupled from the HTML
page shown in Figure 11-1; in fact, it's embedded in an entirely other PHP page. In fact, no
HTML appears in the graphing code, just the PHP to generate the graph.

CHAPTER 11 " MAGICKWAND: IMAGEMAGICK PROGRAMMING WITH PHP 313

Creating a Background Image

The technique to implement the graph involves laying the graph elements on top of a standard
background image. This image will contain the axes for the graph, the scale, a key, and some
descriptive text. Figure 11-2 shows the background image I'll use for this example.

" Graph Copyright (C) Homeinator.com

ISuhurh
IRegion

I Entire city

0%
ocs
ooTE
0sTE
00ES
0GEs
0DES
0GES
00F%
0SFE
o0gE
[\
LEE]
0598
ooLs
{114}
ooas
ogas

Figure 11-2. The background image for the graph

This makes it really easy to change much of the style of the graph without having to
change any code.

Creating the Bar Images

I'll also use three other images to make the graphs. These images are stacked to form the bars
in the bar graph. They have three styles, because the graph has three sets of values. Figure 11-3,
Figure 11-4, and Figure 11-5 show the zoomed-in forms of these images.

Figure 11-3. A red image to build bars from, zoomed in

Figure 11-4. A green image to build bars from, zoomed in

Figure 11-5. A blue image to build bars from, zoomed in

314 CHAPTER 11 I/ MAGICKWAND: IMAGEMAGICK PROGRAMMING WITH PHP

These images will look fairly similar because of the grayscale printing process used for

this book, but they're actually quite different in real life. These three images make the final
graphs, which look like Figure 11-6.

i Graph Copyright (C) Homeinator.com

ISubu rb
l Region

I Entire city

osgé [l
o09s [
osas[m
ooLsfm
osLéfm
LEH
osssfr

Figure 11-6. A sample output graph

Presenting the Code

This section presents the code that produces this graph. The following utility function loads
the bar images for you:

<?
HHEHHHE S
Utility functions
HHEHHHE A

This function reads in an image and returns it, including error handling.
function readimage($filename)

{
$barhandle = imagick readimage($filename);
if(imagick_iserror($barhandle))
{

$reason

imagick_failedreason($barhandle);
$description = imagick faileddescription($barhandle);

print "handle failed!
\nReason: $reason
\nws
Description: $description
\n";
exit ;

CHAPTER 11 " MAGICKWAND: IMAGEMAGICK PROGRAMMING WITH PHP

$img = imagick getimagefromlist($barhandle);
imagick destroyhandle($barhandle);
return $img;

}

Next you'll see the main code for the graph. The background image is loaded.

Read in the image for the background to the graph
$handle = imagick_readimage(getcwd() . "/graph.png");
if(imagick_iserror($handle))
{
$reason imagick_failedreason($handle);
$description = imagick faileddescription($handle);

print "handle failed!
\nReason: $reason
\nDescription: $description
\n";
exit ;

}

The colored bar images are loaded using that helper function from earlier:

Read in the images we use to draw the bars. There are three of them -- a red bar,
a blue bar, and a green bar

$redbar = readimage(getcwd() . "/redbar.png");

$greenbar = readimage(getcwd() . "/greenbar.png");

$bluebar = readimage(getcwd() . "/bluebar.png");

The following code is a stub. Normally you'd need to fetch the values from some form of
database, but because this book is about ImageMagick and not about working with databases
and PHP, I've omitted that code for clarity.

You have to set up three arrays: match contains how many houses match the description,
broken into price brackets; region contains a similar list but for the area the suburb is in; and
finally city is a similar list for the entire city.

Now fetch the data from the database (this is a simulated fetch only).
Let's assume that there are three sets of data we want to show --

houses which match this description, houses in this suburb, and

houses in this region...

...

$max = 18;

The following code actually creates the graph. It uses the ImageMagick composite func-
tionality to place copies of the bar strips onto the background image to create the graph. Each
array is handled separately here.

The graphing for the moment assumes that the maximum value to be graphed is small
enough that we should give each increase of one in the input value an extra five
rows in the graph
for($i = 0; $i < $max; $i++)
{

for($j = 05 $j < $city[$i] * 5; $j++)

315

316 CHAPTER 11 I/ MAGICKWAND: IMAGEMAGICK PROGRAMMING WITH PHP

{
imagick composite($handle, IMAGICK COMPOSITE OP_OVER,

$greenbar, 42 + 10 + ($i * 20), 259 - $j);

}
}
for($i = 0; $i < $max; $i++)
{
for($j = 0; $j < $region[$i] * 5; $j++)
{
imagick composite($handle, IMAGICK COMPOSITE OP_OVER,
$redbar, 42 + 5 + ($1 * 20), 259 - $3);
}
}
for($i = 0; $i < $max; $i++)
{
for($j = 0; $j < $match[$i] * 5; $j++)
{
imagick composite($handle, IMAGICK COMPOSITE OP_OVER,
$bluebar, 42 + ($i * 20), 259 - $j);
}
}

Finally, you can ask MagickWand to put the image into a variable, which you can then output
to the browser by printing it. The header line here is important, because otherwise the browser
will not know how to interpret the data returned. The arguments to the imagemagick composite
function consist of the following: the image handle, the composite operation as discussed in
Chapter 7, the image handle for the image to place onto the first image handle, and the xand y
coordinates for the top-left placement.

This dumps the image to a variable, so that we can output it to the

browser
if(1$dump = imagick image2blob($handle))
{
$reason = imagick failedreason($handle);

$description = imagick faileddescription($handle);

print "imagick_writeimage() failed
\nReason: $reason
\nws
Description: $description
\n";
exit ;

}

Output the finished graph to the browser
header("Content-Type: image/jpeg");
print $dump;

>

CHAPTER 11 " MAGICKWAND: IMAGEMAGICK PROGRAMMING WITH PHP

Conclusion

In this chapter, you learned that it’s relatively trivial to create good-looking, dynamic graphs
with ImageMagick in PHP. This chapter (and the previous three) covered four common
programming problems with ImageMagick in four common languages. The next chapter of
the book will show where to get more support for ImageMagick and cover how to become
an active member of the ImageMagick community.

317

CHAPTER 12

Where to Go from Here

I’Ve covered a lot of ground in this book, including how to install ImageMagick, how to use
almost all the functionality of the command-line utilities that ImageMagick ships with, and
how to program against four of ImageMagick’s APIs. No book can cover all the questions you
could ask, though—perhaps some are so unique they’re not of general interest, perhaps the
ImageMagick software has moved on since the printing of this book, or perhaps I just didn't
think of your specific question when I was writing the manuscript!

Where Do You Find Help Online?

Don't let your experience with ImageMagick stop here, though. If you find a flaw with this book, or
an omission, then please refer to my ImageMagick blog at http://www.stillhq.com/imagemagick/
or the Web site for the book at http://www.apress.com/book/bookDisplay.html?bID=10052. Failing
that, let me know by sending e-mail to imagemagick@stillhq.com.

For more generic answers and help with ImageMagick, you should investigate the wealth
of resources that are available for ImageMagick on the Internet. The first stop for information
about ImageMagick should be the ImageMagick Web site at http://www.imagemagick.org.
There you'll find links to ImageMagick tutorials, documentation, and information on the
ImageMagick mailing lists and forums. At the time of writing, you can find the mailing lists at
http://www.imagemagick.org/script/mailing-1list.php.

Several mailing lists exist for ImageMagick discussions:

* magick-users: This list is for discussion amongst the users of ImageMagick, although
members of the development team hang out here as well. The intention is that this list
is used for people to ask questions, which are answered by other members of the list.

* magick-developers: This is where the programmers who work on ImageMagick talk. If
you want to get involved in the development of ImageMagick, or just want a feel for
what’s going on and what’s coming up, this is the place to be.

* magick-bugs: This is where to report bugs.

* magick-announce: This is the low-traffic list that announces new releases.

319

320

CHAPTER 12 I/ WHERE TO GO FROM HERE

Searching the mailing list archives, which are linked from http://www.imagemagick.org/
script/mailing-1list.php, is a really useful technique for finding answers for your questions
without having to ask the questions on the list. It’s generally a good idea to search the archives
first, because list members get frustrated if the same questions are asked repeatedly.

Other sites are useful to users of ImageMagick as well. Internet searching will produce many
tutorials and examples that are relevant to various aspects of ImageMagick. Probably the most
complete online tutorial for ImageMagick is by Anthony Thyssen at http://www.cit.gu.edu.au/
~anthony/graphics/imagické6/. This excellent tutorial works through many ImageMagick fea-
tures, although it’s not yet complete.

What If You Find a Bug in ImageMagick?

In the unlikely event that you find a bug in ImageMagick, then you should follow certain
steps to help resolve the issue. The first is to make sure you're using the most recent version
of ImageMagick. This is especially true if you're using an older version of an operating system
or if you have used packages provided by your operating system vendor. Regardless, refer to
http://www.imagemagick.org to ensure you are running the latest version of the package.

Next, you should make sure the bug hasn’t already been reported. This helps the
ImageMagick developers, because it stops them from having to handle repeated requests
(perhaps while trying to work on a fix for your problem); additionally, the previous bug
report might have already documented a fix for the problem. ImageMagick doesn’t have
a bug tracker, although it’s worthwhile to check the ImageMagick developer mailing list
(as described earlier) to see whether your problem has already been discussed.

Many operating system vendors also have excellent bug-reporting facilities, and it’s pos-
sible that the bug is being tracked in their systems. For example, I use Debian Linux for a lot
of my work, and the Debian bug tracker is excellent. You can find all known Debian bugs for
ImageMagick at http://bugs.debian.org/cgi-bin/pkgreport.cgi?which=pkg8data=imagemagick&w»
archive=no8version=8dist=unstable. Other operating system vendors have similar facilities.

If you haven't been able to find a resolution to your problem, then the next step is to e-mail the
magick-bugs mailing list at magick-bugs@imagemagick.org. This message should include a brief but
complete description of the bug and any information needed to re-create the bug on a developer’s
machine. This will include facts such as the command line or code you were executing and links to
the input images you were using at the time.

Finally, at some stage, a fix for your problem will become available, and you'll be asked to
test the fix and confirm that it works for you. This is an important part of the process, because
it tells the developers they are on the right track.

Similarly, if you fix the bug yourself, then e-mail the magick-developers mailing list at
magick-developers@imagemagick.org and include details of the bug and the changes you made
to the code, as described by the diff program.

Conclusion

ImageMagick is an incredibly powerful package with a large number of options. I cover the
most important options in this book, providing a useful guide to the package. In this chapter,
Ifilled in a few blanks by discussing online resources for ImageMagick and by describing how
to join the ImageMagick community by subscribing to the ImageMagick mailing lists. Enjoy

Index

Numbers and Symbols
< (less than) sign, applying to the rotation of
an image, 151
> (greater than) sign, applying to the rotation
of an image, 151

A

aalib package, website address for
downloading, 293
Adobe PDFs. See PDFs
affine command-line option, for passing
a matrix to ImageMagick, 255
affine matrices, applying, 255-262
alpha channel
representation of in HTML strings, 193-194
specifying, 195
animate command
displaying information about some
images, 114
graphical menu, 113
using in ImageMagick, 112-114
animated images, manipulating, 77-78
annotations
adding a blue box behind, 209
with bigger text in photo, 201
example of for photo, 200
specifying a fill color for in photo, 203
specifying font for in photo, 205
+antialias command-line option, for
disabling antialiasing, 247
antialiasing images, 245-247
append command, using with a border
added, 179
archival images, effect of compression
process on, 57
arcs, drawing with ImageMagick, 215-216
artistic transformations, performing in
ImageMagick, 119-146
ASCII art, converting images to, 298-299
Atop operator, using, 234-235
authenticate command-line option, for
decrypting documents and
extracting the images, 77
author contact, e-mail address for, 319
averaging images, 181-182
azimuth, defined for shade effects, 134

backdrop command-line option, using with
the display command, 114
background color, specifying, 195-196
background command-line option
filling image triangles with, 151
for specifying the background color of an
image, 195-196
background image, creating for an HTML
Web page graph, 313
bar images
code for loading colored, 315
creating for an HTML Web page graph,
313-314
utility functions for loading, 314-315
beveled edges, providing for your images
with the raise effect, 130-132
Bezier primitive, for drawing Bezier curves,
217-218
binary installations, location of configuration
files for, 24
black point, specifying for an image, 166
black-and-white images, effect of
compression process on, 57
blend command-line option, for combining
images, 88
blending vs. watermarking, 90
blur command-line option, for applying
a Gaussian-function-based blurring
operation, 119-120
BMP file format, 59
border command-line option, for adding
borders to an image, 147
bordercolor command-line option, for
specifying the color of a border,
148
borders
adding to an image, 147-149
removing from a picture, 44-46
bugs, what to do if you find in ImageMagick,
320
Bumpmap operator, using to shade the input
image with the overlay image,
243-244
bzlib delegate, website address for
downloading, 9

321

322

INDEX

C
C programming language
flow of program for writing a simple
delegate in, 298
writing a simple delegate in, 293-299
CCITT Group 3 Fax algorithm, for
transmitting fax images, 57
CCITT Group 4 Fax algorithm, for
transmitting fax images, 57
Center keyword, for specifying the center of
an image, 198
CGI script
flow of, 269
used to present the user interface, 266-267
channel command-line argument, for
comparing only some channels, 82
channels
defined, 72
valid hexadecimal values for, 193
charcoal command-line function
effect with various arguments, 121
for simulating a charcoal drawing,
120-121
chroma subsampling, 66
circles, drawing, 214-215
clustering threshold, using for segment
transformation, 132-133
code example
for adding a blue box behind image
annotation text, 209
for adding a dark green frame to an image,
248
for adding a delegate to the delegates.xml
configuration file, 292-293
for adding a frame around montage
images, 102
for adding another image into a file, 76
for adding borders to an image, 147
for adding Gaussian noise to an image, 127
for adding more contrast to an image, 152
for adjusting the hue of an image, 170
for annotating an image with text, 199
for annotating images with a domain
name, 308
annotating the image with the annotation
preferences, 284-285
for appending images horizontally, 181
for appending three figures in a vertical
column, 178
for applying a rotation and translation to
arotated image, 261
for applying horizontal shearing, 260
for applying vertical shearing, 259
for averaging frames of an animation, 182
for changing text color to red in annotated
photo, 202

for changing the fill color of a rectangle,
213

for changing the frame rate at which an
animation runs, 77

for changing the size of a line used by
arectangle, 212

for changing the size of a rectangle with
rounded corners, 213

for checking for any out-of-date packages,
15

for checking version of ImageMagick
installed, 29

for choosing the placement of
watermarks, 92

for chopping images, 43

for colorizing just one image channel, 123

for combining the shadow effect with
a frame using the montage
command, 105

for combining transformation primitives,
228

for committing executed commands in
RMagick, 306

for committing resized images with
imwizard, 308

for compiling and installing ImageMagick
compiled code, 14

for compositing an image, 84

of configuration for template files, 282

of configuration options for changing
where output files are placed, 282

for configuring the ImageMagick code,
11-13

for configuring the ImageMagick code
without TIFF support, 14

for converting a JPEG file to a PNGffile, 35, 61

for converting a PNG file to a JPEG file, 28

for converting a PNG into YUV 4:2:2, 66

for converting a string to the right gravity
enumeration entry, 302

for converting from foo format to other
formats, 293

for converting images to ASCII art, 298

for correcting image contrast problems,
166

for creating antialiasing examples, 247

for creating a progressive image, 64

for creating looping GIF animations, 77

for creating the real property
management application graph,
315-316

for creating thumbnails of images passed
by montage command, 100

for cropping images, 42

for decompressing the ImageMagick
source code, 10

for decrypting documents and extracting
the images, 77

for defining an alpha channel, 195

for defining a radius using the sharpen
command, 135

for defining the font, size, color, text, and
location of an annotation, 282-283

delegates.xml file beginning comments,
291-292

for deleting frames from an animation, 76

for determining whether images have
been published, 280

for disabling all debug output, 28

for disabling antialiasing, 247

for displaying an image as background for
a given X window, 115

for dithering images into monochrome, 156

for dithering images to a different number
of colors, 157

for drawing an ellipse, 216

for drawing a polygon primitive, 217

for drawing a polyline primitive between
defined points, 216-217

for drawing arcs, 215

for drawing a rectangle, 196

for drawing a rectangle with rounded
corners, 213

for drawing a simple stick-figure man and
some text, 221

for drawing a single pixel, 211

for drawing Bezier curves, 217

for drawing circles, 214

for drawing rectangles, 212-213

for drawing straight lines, 211-212

for drawing text, 218

for dumping an image to a variable for
output to the browser, 316

for each possible target with a description
field in PhotoMagick, 276

for equalizing images, 158

for executing a command from the user or
from the stored list of commands,
302-303

for extracting all pages from a PDF
document into separate PNG files, 75

for filling a circle, 215

for filling a rectangle with a color, 197

for filling triangles, 151

for finding out what named colors exist, 185

for flattening images, 183

for forcing an image to use a palette, 73

for framing images, 247

for getting a row in a table to make it more
readable, 275-276

for getting back a list of images in a given
directory, 278-279

INDEX

for getting model information for the
camera used, 278

to have ImageMagick set the intent of an
image, 74

for having image annotation text come
from afile, 210

for a hidden HTML form element to list all
the images on a form, 274-275

for horizontally flipping an image, 160

for implementing the changes for a set of
images with the done command,
305

for imploding an image by 10, 124

imwizard builds an array of commands
that have been committed, 304

for increasing text size in annotated
photo, 201

for increasing the stroke width of a circle,
214

for installing ImageMagick using FreeBSD
ports, 14

for installing portupgrade package, 15

for introducing a pause in animation
before starting again, 78

of a JavaScript helper function in CGI
script, 280-281

for linking a graph to a Web page using the
IMG tag, 312

for loading colored bar images using
helper function, 315

for loading the RMagick Ruby interface to
ImageMagick, 301

for main code for graph and loading
background image, 315

for making a thumbnail image bigger in
PerlMagick, 273

for making sure that all images end up in
the hash, 278

for making the flow of the CGI script if
statements more logical,
270-271

for making the width and height of the
border the same, 149

for manipulating the space each
thumbnail consumes, 106

montage command for specifying the
number of rows, 111

for morphing two images together, 77

for name and location of template files,
282

for negating all pixels that are greater than
90 percent, 136

for negating images, 162

for normalizing an image, 165

for padding numbers with leading zeros,

323

INDEX

code example, continued

of Perl way of turning off buffering of
standard output, 283

for PhotoMagick.pm module, 265

for placing an image over another, 230

of point argument for setting the color of
a single pixel with a fill color, 219

for producing a large animation again, 78

for producing a list of directories the user
can select to publish, 276-277

for producing animations that are much
smaller, 78

for producing a rotated image using the
affine command-line option, 261

for producing a simple charcoal image,
120

for producing watermarks on images, 90

for prompting for a path to the images to
process in photos/mikal directory, 309

for reading the META file and returning
the parsed metadata, 265

for reading the META target file and
returning the parsed metadata, 266

for reading the named file into a string in
Perl, 288

for reducing picture from 24 bits per pixel
to 256 colors, 71

for reducing the amount of contrast in an
image, 153

for registering delegates with
ImageMagick, 298

for requesting verbose output, 28-29

for resizing images with imwizard,
307-308

for rolling an image, 175

for rotating an annotation 45 degrees, 207

for rotating an annotation vertically, 207

for rotating an image 30 degrees to the
right, 150

for rotating an image 45 degrees to the
left, 149

for rotating only some drawn elements
with the rotate command, 223

for saving metadata to the META file,
269-270

for scaling a drawing, 225

for scaling images, 257

for selecting a different color space, 72

for selecting image brightness and
modifying color saturation, 169

setting blue to transparent in a GIF file, 75

for setting image resolution to 72 pixels
per inch, 75

for setting the background color of
appended images, 180

for setting the inner bevel width for an
image, 250

for setting the outer and inner bevel width
for an image, 251

for setting the outer bevel width for an
image, 249

for setting up match, region, and city
arrays, 315

for setting up the substitution variables
for the image template, 285-286

for shearing an image horizontally, 172

for shearing an image vertically, 173

for shearing an image vertically and
horizontally, 175

for shifting bottom of text down to 30
pixels, 201

showing flow of the CGI script for
photomagic user interface, 269

showing photomagick configuration
options, 267

for showing progress information with
Per] waiting for end of line, 283-284

showing rotation and resizing code in Perl,
284

for skewing drawings horizontally, 226

for skewing drawings vertically, 227

for specifying a background color of an
image, 195-196

specifying a blue fill color for an image,
122

for specifying a different gamma
correction value for each color
channel, 73

for specifying a gamma correction value,
73, 168

for specifying alpha channel RGB values, 195

for specifying a radius with the blur
command-line option, 119

for specifying a standard deviation and
a radius with the blur command-line
option, 120

for specifying a standard deviation using
the sharpen command, 135

for specifying backdrop color, 114

for specifying fill color for an annotated
photo, 203

specifying how many images to have per
row, 111

for specifying little endian, 73

for specifying maximum pixel depth, 72

for specifying RGB values, 194

for specifying the black point for an
image, 166

for specifying the color of a border, 148

for specifying the font for annotations, 205

for specifying the GIF disposal method,
78

for specifying the resolution of an image,

for specifying the size of an image on the
command line, 74

for specifying the stroke width for text
annotations, 204

for specifying the white point for an
image, 167

for specifying the width of the stroke color
for arectangle, 197

splitting the draw command into more
than one draw command, 252

for swapping two images, 76

telling ImageMagick to work out number
of images in arow, 111

for telling the shell on Unix systems to run
the Ruby interpreter, 301

for tinting images, 161

for transforming an entire directory of
JPEG images into thumbnails, 49

for translating a drawing down 150 pixels,
224

for translating images using affine
command-line option, 256

using amplitudes and frequencies to
awave transformation, 145

using backdrop command-line option
with the display command, 114

using both clustering and smoothing
thresholds, 133

using colorize command for adding a 10
percent share of the current fill color,
121-122

using convert option to specify
a compression algorithm, 61

using follow option on File::Find
invocation, 279

using montage command with the
shadow command-line option, 104

using more than one invocation of the
draw command, 229

using null filename for creating gaps in
amontage, 108

using pmpublish command to publish
nice HTML, 281-282

using swirl command-line argument, 138

using the append command with a border
added, 179

using the Atop operator, 234

using the Bumpmap operator, 243

using the clustering threshold, 133

using the composition operators with the
composite command, 244

using the Difference operator, 238-242

using the filltoborder argument, 220

using the floodfill argument, 220

using the gravity option, 198

using the identify command, 95-98

using the In operator, 233

INDEX

using the Minus operator, 237

using the modulate command, 168

using the Multiply operator, 242

using the noise command, 125

using the Out operator, 233-234

using the paint command, 128

using the Plus operator, 236

using the radial-blue command-line
option, 129

using the replace argument, 219

using the reset argument for coloring all
pixels anew, 220

using the rotate command-line option,
222

using the sample command-line option,
42

using the scale command-line option, 41

using the sepia tone command-line
option, 133

using the spread command, 136

using the thumbnail action for resizing an
image in PerlMagick, 272-273

using the thumbnail command-line
option, 42

using the transform command to apply
the current affine matrix to an image,
255

using the unsharp command-line option,
140

using the write command-line option, 253

using the Xor operator, 235

using threshold command, 139

utility functions for loading bar images,
314-315

for vertically flipping an image, 159

for writing a simple delegate in a shell
script, 292

for writing a simple delegate in C, 294-297

for writing out the image template, 286

for writing out the index and thumbnail
templates for the directory, 286-287

for writing out the template to disk,
286-287

coders, passing other parameters to, 65
color intent and profiles, setting for images

that ImageMagick supports, 74

color primitive, for performing color

operations that take a point and
amethod, 218-221

color reduction, definition from

ImageMagick documentation, 72

color space, defined, 72

Color Space FAQ, website address for, 72
color strings, using HTML-style, 186-194
colorize command, for adding a 10 percent

share of the current fill color,
121-122

325

326

INDEX

colors, specifying, 185-195
colors command-line option
for dithering images to a different number
of colors, 157
for reducing the number of colors used by
an image, 71
combine command. See composite
command
command line, limiting resource usage on,
25
command-line tools
used by ImageMagick, 9-10
using ImageMagicks, 79-112
comment command-line option, format
characters for, 70-71
commit action, for writing metadate to the
META file, 271
compare command, using, 79-83
compiler software, needed for installing
ImageMagick from source, 9
composite command
asking to dissolve images into each other,
87-88
for overlaying one image on another,
83-95
using the In composition operator with,
244-245
composition operators, using with the
composite command, 244-245
compress option
list of compression options to use with, 62
for specifying a compression algorithm,
61-62
compression
introduction to, 51-78
lossy vs. lossless, 51-57
tunable for specifying image quality, 62-64
compression algorithm, specifying, 61-62
compression options, manipulating with
ImageMagick, 61-66
configuration files
location of for binary installations, 24
location of for source installations, 23-24
location of on Microsoft Windows, 24
using in ImageMagick, 23-24
configuration options, for photomagick,
267-268
configuring and installing, ImageMagick,
1-30
conjure command
function of, 95
website address for information about,
95
contrast command-line argument, for
manipulating contrast in images,
152-155

convert command, 95
invoking, 35
vs. the mogrify command, 100
shipped with the ImageMagick suite, 31
corners, website address for downloading
premade, 86

D

Debian and Ubuntu Linux, name of package
for installing, 1
Debian Unstable, 1
Decoders, passing other parameters to, 65
deconstruct command-line option, for
producing animations that are much
smaller, 78
decrypting, encrypted PDFs, 76-77
define command-line option, for passing
other parameters to coders and
decoders, 65
deflate compression, 61
delay command-line option, changing the
frame rate at which an animation
runs with, 77
delegates
how they are configured, 291-293
in ImageMagick, 22-23
implementing your own with C, 291-299
introduction to, 9-10
registering with ImageMagick, 298
writing a simple in C, 293-299
writing in C for rendering black-and-white
images to ASCII art, 293-299
delegates.xml file, configuring delegates
with, 291-293
delete command-line option, for deleting
frames from an animation, 76
density command-line option
options for setting resolution of images, 75
specifying the resolution of an image with,
74-75
for storing image resolution, 39
dependencies, introduction to, 9-10
depth command-line option, specifying
maximum pixel depth with, 72
dialog boxes
System Setup for configuring the
ImageMagick output directories, 19
Target Setup for configuring the
ImageMagick project files, 18-19
Difference operator, using, 238-242
display command
for displaying an image as background for
a given X window, 115
for displaying an image on the screen, 114
using to extract an image again, 95
display menu, functions of, 116

disposal methods, harnessing, 78
dispose command-line option, for specifying
the GIF disposal method, 78
dissolving vs. watermarking, 90
dither command-line option, specifying mono-
chrome or color options with, 157
dithering, images, 155-157
documentation, going to from the installer
final screen, 8
domain name, code for annotating images
with, 308
done command, implementing the changes
for a set of images with, 305
draw command, writing each step of the way
to save intermediate state of images,
252-255
draw command-line option
compositing images with, 230-245
provided by ImageMagick for drawing
simple shapes, 210
transforming your drawings with, 220-230
using more than one invocation of,
229-230
drawing commands, using in ImageMagick,
185-262
drawings
rotating images on, 222-224
scaling, 225-226
skewing, 226-227
transforming, 220-230
translating, 224-225
dynamic binaries vs. static binaries for
ImageMagick project files, 18

E

Elevation, defined for shade effects, 134

Ellipse, drawing, 216

endian command-line option, specifying
endianness with, 73

endianness, of an image, 73

environment variables, using in programs
started from user’s shell, 25

.exe files, decorating with build options, 19

EXIF information, helper needed for reading,
267

extract command-line argument, for
comparing just a portion of an

image, 82
F
fern image, example of a label being applied
to, 231-232

file formats
introducing common ImageMagick, 58-59
website address for list of those supported
by ImageMagick, 31

INDEX

file sizes, comparing, 59-61
fill color and stroke color
annotated photo with fill color specified,
204
specifying, 196-198
fill command-line option
examples showing a variety of colorize
values, 123
examples showing only red channel with
default black fill color, 124
specifying a different fill color with, 122
filltoborder argument, function of, 220
filtering, an image, 39-41
filters, offered by ImageMagick, 41
FlashPIX delegate, website address for
downloading, 10
flattening images, 183
flip command-line option, using to flip an
image, 159-160
floodfill argument, for filling the inside of
a shape with a fill color, 220
flop command-line option, for horizontally
flipping an image, 160
follow option, on File::Find invocation for
allowing Perl to follow symbolic
links, 279
font command-line option, for specifying
font for annotations, 206-207
fonts
specifying for annotations, 205
where to find, 206
frame command-line option
adding a frame around montage images
with, 102
for framing images, 247-252
using with the import command, 98
framing images, 247-252
FreeBSD ports, using to install ImageMagick,
14-15
FreeType delegate, website address for
downloading, 10
fuzz command-line option, for removing all
of the border of a picture, 45

G

gamma command-line option
results of applying to images, 192
specifying a gamma correction value with,
73
gamma correction, introduction to, 73
gamma correction value, specifying, 168
Gaussian command-line option, for applying
a Gaussian-function-based blurring
operation, 119-120
Gaussian noise, code for adding to an image,
127

327

328

INDEX

Geometries, understanding, 46-47
geometry command-line option
for adding space around images, 107
for resizing images, 46-47
getimages() method, for returning all the
images in the directory, 273
GhostPCL delegate, website address for
downloading, 10
Ghostscript delegate, website address for
downloading, 10
GIF animations, creating looping, 77-78
GIF disposal, using, 78
GIF file format, 59
transparency with, 75
GNU General Public License (GPL),
PhotoMagick code licensed under,
263
graph
code for producing, 314-316
creating a background image for, 313
creating the bar images for, 313-314
aWeb page containing, 312
Graphic Interchange Format (GIF), 59
graphical tools, using, 112-116
Graphviz delegate, website address for
downloading, 10
Gravity, setting, 198
gravity command-line option
using to specify where text should be
placed on an image, 208
using with the composite command,
86-87
gravity compass, example of, 198

H
Help, where to find online, 319-320
help command, as a simple online help
system, 305
helper application, seeing it in action in
imwizard, 306
hexadecimal values, valid for channels, 193
histogram equalization, applying to an
image, 157-158
HTML-style color strings
alpha channel representation in, 193-194
using, 186-194

identify command
finding the size of a logo with, 95
for information about image files it is
passed, 95-98
listing metadata about an input file with,
68
image action, for returning a copy of the
image that is passed in the HTTP
request, 271-272

image effects, applying affine matrices to
produce, 255-262
image files, creating multiple, 76
image formats, storing multiple, 75-76
image metadata, introduction to, 66-71
image template
using PhotoMagick’s, 289
variables possible for, 289
ImageMagick
accessing online help, 27
code for checking version installed, 29
compiling on Microsoft Windows, 15-22
confirming installation settings, 6
debugging output, 28
decompressing the source code for, 10
exploring the architecture of, 22-23
filters offered by, 41
finding help online, 319-320
first screen of the VisualMagick
configuration wizard, 17
installing and configuring, 1-30
installing from source, 9-27
installing on Microsoft Windows
machines, 2-9
installing precompiled versions, 1-9
loading the RMagick Ruby interface to,
301
mailing lists and forums, 319
manipulating compression options with,
61-66
manipulating contrast in an image,
152-155
older versions of Linux distributions, 2
online tutorial by Anthony Thyssen, 320
output from a successful compilation of
the configuration wizard, 16
performing artistic transformations in,
119-146
performing basic image manipulation,
31-49
pixel storage options, 73
reviewing information about how to test
installation of, 8
saving intermediate state of images in,
252-255
selecting directory in which to install, 4
selecting installation options, 5-6
setting up to use from the command line,
5-6
table of delegates used by, 9-10
using, 27-29
using configuration files, 23-24
using HTML-style color strings in,
186-194
using the drawing commands in, 185-262
using the graphical tools, 112-116
watching the installation process, 7

website address for downloading source
code, 10
website address for list of image formats
supported by, 59
what to do if you find a bug in, 320
ImageMagick configuration files, table of, 23
ImageMagick documentation. See
documentation
ImageMagick installer
license agreement screen, 3
selecting a name for the entry in the
Programs menu, 5
website address for downloading, 2
welcome screen, 2
ImageMagick project files, Target Setup
dialog box for configuring, 18-19
ImageMagick tools, using others, 79-116
images. See also raster images; vector images
adding borders to, 147-149
adding, removing, and swapping, 76
annotating with a domain name, 308
annotating with text, 199-210
antialiasing, 245-247
appending, 176-181
appending horizontally, 181
averaging, 181-182
changing the size of, 35-49
chopping, 43
combining using the blend command-line
option, 88
comparative file size for various JPEG
compression qualities, 55-56
compositing with the draw command,
230-245
compressing, 51-66
creating interlaced, 64
creating with rounded corners, 86-87
cropping, 4243
deciding which format is right for you,
57-58
dithering, 155-157
effect of compression process on archival,
57
effect of compression process on black-
and-white, 57
effect on file size of varying length of the
sides of, 37
equalizing, 157-158
example after a composite operation with
a top image with an alpha channel,
85
example of horizontal shearing, 173
example of output after a composite
operation, 85
examples of vertically shearing, 174
filtering, 39-41
flattening, 183

INDEX

flipping, 159-160

framing, 247-252

importance of small file size if e-mailing
or serving from a Web site, 58

importing more than one at a time, 98-99

labeling, 71

making larger, 47-49

making smaller, 35-43

making smaller without specifying
dimensions, 43-46

manipulating animated, 77-78

manipulating contrast in, 152-155

modifying brightness, color saturation,
and hue of, 168-172

morphing two together, 77

normalizing, enhancing, and modulating,
165-172

performing basic manipulation of, 31-49

performing other transformations, 147-183

performing transformations on one,
147-176

processing many at once, 49

raster, 33-35

reducing the number of color in by
dithering, 155-157

resampling for changing the resolution of,
39

resize options to the convert command for
resizing, 38-39

resizing with the geometry command-line
option, 46-47

rolling, 175-176

rotating, 149-152

saving intermediate state of in
ImageMagick, 252-255

scaling, 257-258

setting resolution for, 74-75

shaving, 46

shearing, 172-175

special compression needs for
photographic, 58

specifying a quality for, 62-64

storing multiple formats, 75-76

swapping two, 76

table of comparative sizes for those
compressed with various options, 60

tinting, 160-161

translating using affine command-line
option, 256

trimming, 44-46

turning multiple into one image, 176-183

using the scale command-line option to
scale, 41

vector, 32-33

imaging theory, introducing, 31-35
implode effect, using with the mogrify

command, 100

329

330

INDEX

implode transformation, using, 124-125
import command
using the frame command-line option
with, 98
X Windows server needed for it to work, 99
imwizard RMagick script
building of an array of commands that
have been committed by, 304
loading and displaying to the user, 304
resizing images with, 307-308
website address for downloading, 301
In operator, using, 233
index template, using PhotoMagick’s,
288-289
input image, for imwizard helper application
example, 307
insert command-line option, for adding
another image into a file, 76
installing and configuring, ImageMagick,
1-30
interlace command-line option, setting the
interlacing order for formats in
ImageMagick with, 64
interlaced images, creating, 64
International Color Consortium (ICC), color
intents for images defined by, 74

J

JBIG delegate, website address for
downloading, 10

JFIF (JPEG File Interchange Format) file
format, 59

Joint Photographic Experts Group (JPEG).
See JPEG file format

JPEG (Joint Photographic Experts Group),
website address for excellent
coverage of, 66

JPEG 2000,website address for downloading,
10

JPEG and MPEG sampling factor,
introducing, 65-66

JPEG delegate, website address for
downloading, 10

JPEG file format, as most common lossy
compression algorithm, 59

JPEG File Interchange Format (JFIF). See JFIF
file format; JPEG file format

L

label command-line option
for labeling images in a montage, 101
for specifying a label for an image, 109
+label command-line option, for turning
labels off, 109
Lanczos filter, use of by ImageMagick if no
filter is specified, 41

LCMS delegate, website address for
downloading, 10
level command-line option, correcting
contrast problems in an image with,
166
license agreement, reading for ImageMagick,
3
line art, best compression format for, 58
lines
changing the width of with the linewidth
setting, 211-212
drawing straight, 211-212
linewidth setting, changing the width of lines
with, 211-212
list command, using to determine what is
configured on a machine, 25-27
list command arguments, table of, 25
little endian (LSB), specifying, 73
logical difference. See Xor operator
loop command-line option, for creating
looping GIF animations, 77-78
lossless compression algorithm
formats available, 59
function of, 51-57
improved image quality from using, 53-54
using for images containing large
amounts of text, 58
lossy compression algorithm
accumulating loss of image resolution
with, 51-53
function of, 51-57
LZW compression, introduction to, 59

magick-config.h header file, editing for
ImageMagick project files, 19
MagickWand, ImageMagick programming
with PHP, 311-317
mailing lists and forums, for ImageMagick
help, discussions, and information,
319-320
metadata
example of some stored by a digital
camera when photo is taken, 66-68
introduction to that associated with
images, 66-75
metadata files, format for in PhotoMagick,
264
metric command-line argument, selecting
the metric used to measure
difference between pixels with, 83
Microsoft Windows
compiling ImageMagick on, 15-22
installing ImageMagick on machines with,
2-9
location of configuration files on, 24

Microsoft Windows bitmap (BMP) format, 59
Minus operator, using, 237-238
modulate command-line option, for
modifying image brightness, color
saturation, and hue, 168
modulation, modifying image brightness,
color saturation, and hue through,
168-172
modules, for handling a given image format
in ImageMagick, 22
mogrify command
adding a comment to a JPEG file with, 70
vs. the convert command, 100
embedding a comment into image
metadata with, 71
using the implode effect with, 100
monitor command-line argument, for
showing the progress of the compare
command, 83
montage command
combining a shadow effect with a frame, 105
for creating an image from a sequence of
images, 100-112
labeling images in the montage, 101-102
for manipulating the space each
thumbnail consumes, 106
output from with the label option, 102
output from with the label option and
frame option of 1, 104
output from with the label option and
frame option of 5, 103
output of specified number of output
rows, 112
output of with a shadow, 105
output of with a shadow and a frame, 106
output with label option, frame option of
1, and frame size enforced, 107
output with label option, frame option of
1, and spacing enforced, 108
output with label option, frame option of
1, and three thumbnails per row, 110
for specifying how many images to have
per row, 109
for specifying the number of rows, 111
for telling ImageMagick to work out
number of images in a row, 111
morphing, two images together, 77
MPEG sampling factor, introducing, 65-66
multi-image file, creating from scratch, 76
Multiply operator, using, 242-243
multithreaded runtimes vs. single runtimes
for ImageMagick project files, 18

N
negate command-line option, for negating
images, 161-164

INDEX

noise transformation
effect with various radii, 126
for removing or adding noise to an image,
125-128
types of noise you can add to an image,
127
normalization, for improving the contrast of
an image, 165-166
null filename, creating gaps in the montage
with, 108

0

online help
accessing, 27
where to find, 319-320
Out operator, using, 233-234
Output pane, example after compilation of
Build, 22
over operator, use of for placing an image
over another, 230, 232

P
page size, specifying with the size command-
line option, 195
paint command, for simulating an oil
painting for an image, 128-129
parameters, passing to coders and decoders,
65
pause command-line option
for introducing a pause in animation
before starting again, 78
using when importing images, 98-99
PDFs, decrypting encrypted, 76-77
Perl, ImageMagick programming with,
263-290
PerIMagick, ImageMagick programming with
Perl, 263-290
PerlMagick module, code for initializing, 272
photo management system, for managing
large collections of pictures and
posting online, 263-290
photographic images, special compression
needs for, 58
PhotoMagick
configuration options, 267-268
format for in the PerlMagick chapter,
264
format for the metadata files, 264
gathering of metadata by, 273
how the concept target works, 268
introduction to, 266-281
licensing of, 263
sample of directory layout, 268
table of configuration options, 268
PhotoMagick templates, using, 288-290
PhotoMagick.pm, using, 264-266

331

332

INDEX

PHP Web programming language,
ImageMagick programming with,
311-317

ping command-line option, for simple
information about an image, 95

pixel storage options, in ImageMagick, 73

pixelation, 31-32

pixels

altering how they are stored, 71-73
example of half-turned-on, 246-247
Plus operator, using, 236-237
pmpublish command
CMS entries created when it is run, 271
introduction to, 281-288
use of, 268

PNG delegate, website address for
downloading, 10

PNG file format, 59

point argument, for setting the color of
a single pixel with a fill color, 219

polygon primitive, drawing, 217

polyline primitive, drawing, 216-217

Portable Network Graphics (PNG) file format,
59

portupgrade package, for installing new
versions of ImageMagick, 14-15

preview command-line option, using with
the display command, 116

primitives. See also shapes
reference to in ImageMagick
documentation, 210

+profile command-line option, removing the
profile from an image with, 74

project files

Target Setup dialog box for configuring
ImageMagick’s, 18-19
upgrading to the Visual Studio format,

21-22
Q
quality argument, used by PNG compressor,
64

quality command-line option, specifying
a quality for an image with, 64

R
radial-blur command-line option, using,
129-130
raise effect, for providing beveled edges for
your images, 130-132
raster images
description of, 33-35
effect of reducing the length of the sides of
arectangle, 36-38
photo of a tree, 34
readmeta() method, for gathering metadata
in PhotoMagick, 273

rectangles
changing the fill color of, 213
drawing, 212-213
drawing with rounded corners, 213-214
Red Hat Linux, Fedora Core 3 ImageMagick
package for, 2
rental property management
presenting the implementation of
program that automates, 311-314
writing a Web application that automates,
311
replace argument, function of, 219
resample command-line option, example of,
39
reset argument, for coloring all pixels anew,
220
resize command, function in RMagick, 303
resize option (of convert command), using to
resize images, 38-39
resource usage, limiting on the command
line, 25
RGB color values, used by ImageMagick, 186
RGB tuples, using, 194-195
Rhys Jones, HTML Web page containing
a graph created by, 312
RMagick
commands implemented and arguments
they take, 303-304
documentation, 301
executing a command from the user or
from the stored list of commands,
302-303
ImageMagick programming with Ruby,
301-310
loading the Ruby interface to
ImageMagick, 301
rolling an image, 175-176
rotate command-line option
choosing to rotate only some drawn
elements with, 223
rotating images with, 149-152
using to rotate drawn images on pictures,
222-224
Ruby, ImageMagick programming with
RMagick, 301-310
Ruby interpreter, telling the shell on Unix
systems to run in order to run the
script, 301

S

sample command-line option, using, 42

samples, defined, 72

sampling-factor command-line option,
specifying YUV chroma subsampling
with, 66

Scalable Vector Graphics (SVG), code snippet
of a picture stored in, 32-33

scale command-line option, using to scale an
image, 41

segment transformation, using, 132-133

sepia tone command-line option, using,
133-134

sepia tone effect, with a variety of threshold
percentages, 134

shade effect, code showing use of, 134

shade transformation, examples of, 135

shadow command-line option, for creating
shadows around montage images,
104

shapes, drawing simple, 210-230

sharpen command

for making the image color boundaries
more defined, 135-136
with a variety of radii and standard

deviations, 136

shave command-line option, for shaving the
edges of an image, 46

shear, applying with a simple matrix,
258-260

shear command-line option, for shearing an
image vertically and horizontally, 175

shell script, writing a simple delegate in,
292

sine wave, example of, 144

single point, drawing, 211

single runtimes vs. multithreaded runtimes
for ImageMagick project files, 18

size command-line option, specifying a page
size with, 195

skewing, drawings, 226-227

skewx primitive, for skewing drawings,
226-227

.sln extension, for wizard created solution
file, 20

smoothing threshold, using for segment
transformation, 132-133

solarize command, applying to images,
136-137

solarize effect, applying to images, 136-137

solution file, example of generated, 21

source code, downloading from
ImageMagick Web site, 10

source installations, location of
configuration files for, 23-24

spawn option, for forcing the delegate to run
in a new process, 293

spread command, swapping a random pixel
for the pixel currently being
examined, 136-137

spread command-line argument, using as
example input for the compare
command, 80-82

static binaries vs. dynamic binaries for
ImageMagick project files, 18

INDEX

stealth mode, for delegates, 293

stegano command-line option, using to hide
images inside other images, 93-95

straight lines, drawing, 211-212

strip command-line argument, adding to the
convert command to strip metadata
from an image, 69-70

stroke color. See also fill color and stroke
color

annotated photo with color specified,

203

strokewidth command-line option

changing the size of a line used by

arectangle with, 212

SVG. See Scalable Vector Graphics (SVG)

swirl command-line argument, for swirling
an image 45 degrees, 138

swirl effect, with different arguments, 139

System Setup dialog box, for configuring the
ImageMagick output directories, 19

T
Tagged Image File Format (TIFF), 59
tar command, manual for, 11
Target Setup dialog box, for configuring the
ImageMagick project files, 17-19
test pattern, simple examples of showing
different color channels, 191-192
text, drawing with the draw command-line
option, 218
text annotations, specifying the stroke width
for, 204
threshold command
for limiting maximum value for channels,
139-140
a variety of examples of limiting all
channels with, 140
thumbnail action, code for resizing an image
in PerlMagick, 272-273
thumbnail command-line option, for
creating thumbnails, 42
thumbnail template, using, 290
Thyssen, Anthony
ImageMagick online tutorial by, 320
website address for ImageMagick filter
tutorial by, 41
TIFF delegate, website address for
downloading, 10
TIFF file format, 59
tint command-line option, for tinting
images, 160-161
title command-line option, using with the
display, animate, and montage
commands, 115
tools
using other ImageMagick, 79-116
using the graphical, 112-116

333

334

INDEX

transform command-line option, using to
apply the current affine matrix to an
image, 255

transformation primitives, combining,
228-229

transformations, performing artistic in
ImageMagick, 119-146

translation, defined, 224

transparency. See alpha channel

trim command-line option, for trimming an
image, 44-46

tunable compression, where quality of the
compression can be changed, 62-64

]

Ubuntu and Debian Linux, name of package
for installing, 1
Unix operating systems, compiling
ImageMagick on, 10-14
unsharp command-line option
applied with a variety of radii and
standard deviations, 141
using to sharpen images, 140-143
with varying levels of blurred image
added, 142
with varying levels of threshold, 143
update command-line option, using with the
display command, 114

)

vector images, description of, 32-33
verbose output, code for requesting, 28
virtual-pixel command-line option, possible
values used by blur, sharpen, and
wave transformations, 146
Visual Studio 2003, prompt for permission to
upgrade the project file, 16
Visual Studio Express products, website
address for information about, 15
VisualMagick configuration wizard
final screen of, 20
first screen of, 17

w

watermark command-line option, argument
that specifies the transparency of the
watermark, 91
watermarking vs. dissolving or blending, 90
watermarks
choosing the placement of using the
gravity command-line option, 92
producing on images using the composite
command, 89-90
wave transformation, use of a sine way to
modify an image, 144-145
Web page, example containing a graph, 312

website address

for Color Space FAQ, 72

for downloading delegates used by
ImageMagick, 9-10

for downloading ImageMagick source
code, 10, 15

for downloading imwizard RMagick script,
301

for downloading PhotoMagick, 263

for downloading premade corners, 86

for downloading RMagick documentation,
301

for downloading the ImageMagick
installer, 2

for excellent coverage of JPEG, 66

for ImageMagick filter tutorial by Anthony
Thyssen, 41

for ImageMagick online help, 319

for ImageMagick online tutorial by
Anthony Thyssen, 320

for information about image formats
supported by ImageMagick, 58

for information about the conjure
command, 95

for information about the Gaussian
function, 120

for information about the sine wave, 144

for information about Visual Studio
Express products, 15

for information about YUV, 66

for list of file formats ImageMagick
supports, 31

for list of image formats that can use the
compress option, 62

for reporting flaws in book, 319

for Rhys Jones creator of Web page
containing a graph, 312

for tutorial on GIF disposal, 78

for Wikipedia page on JPEG compression,
56

white point, option for specifying for an
image, 167

Wikipedia page, website address for
discussion on JPEG compression,
56

WMF delegate, website address for
downloading, 10

write command-line option, using to save
intermediate stages of an image, 253

X
XWindows, using X11 stubs to prevent use
of, 18
X11 stubs, preventing the use of X Windows
with, 18
Xor operator, using, 235-236

INDEX 335

Y V4
YUV, website address for information about, 66 zip compression, 61
YUV color space, image information in, zlib delegate, website address for

65-66 downloading, 10

C forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You'll find discussions that cover topics
of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our
forums, you can expect that some of the best minds in the business—especially Apress authors, who all write
with The Expert's Voice™ —will chime in to help you. Why not aim to become one of our most valuable partic-
ipants (MVPs) and win cool stuff? Here's a sampling of what you'll find:

DATABASES PROGRAMMING/BUSINESS

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

INTERNET TECHNOLOGIES AND NETWORKING WEB DEVELOPMENT/DESIGN

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

Ugly doesn’t cut it anymore, and CGl is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

JAVA SECURITY

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don't let
anyone else know the answers!

MAC OS X TECHNOLOGY IN ACTION

All about the Zen of 0S X.

0S X'is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

Cool things. Fun things.

It's after hours. It's time to play. Whether you're into LEGO®
MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

OPEN SOURCE (winoows __________|

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

HOW TO PARTICIPATE:

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

	The Definitive Guide to ImageMagick
	Table of Content
	Chapter 1 Installing and Configuring ImageMagick.
	Chapter 2 Performing Basic Image Manipulation
	Chapter 3 Introducing Compression and Other Metadata
	Chapter 4 Using Other ImageMagick Tools
	Chapter 5 Performing Artistic Transformations
	Chapter 6 Performing Other Image Transformations
	Chapter 7 Using the Drawing Commands
	Chapter 8 PerlMagick: ImageMagick Programming with Perl
	Chapter 9 Implementing Your Own Delegate with C
	Chapter 10 RMagick: ImageMagick Programming with Ruby.
	Chapter 11 MagickWand: ImageMagick Programming with PHP
	Chapter 12 Where to Go from Here.
	Index

