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Foreword

When | first looked at this book, | felt envious. After all, what led me to the discovery
of generic programming was the desire to build a library like BGL. In 1984 | joined the
faculty of Polytechnic University in Brooklyn with some vague ideas about building libraries
of software components. Well, to tell you the truth that was my secondary interest—my real
interest at that time was to construct formal underpinnings of natural language, something
like Aristotle’s Organon, but more complete and formal. | was probably the only assistant
professor in any EE or CS department who meant to obtain tenure through careful study of
Aristotle’s Categories. Interestingly enough, the design of STL—in particular the underlying
ontology of objects—is based on my realization that the whole-part relation is a fundamental
relation that describes the real world and that it is not at all similar to the element-set relation
familiar to us from set theory. Real objects do not share parts: my leg is nobody else’s
leg. STL containers are like that: two containers do not share parts. There are operations
like std::list::splice that move parts from one container to another; they are similar to organ
transplant: my kidney is mine till it is spliced into somebody else.

In any case, | was firmly convinced that software components should be functional in
nature and based on John Backus’s FP system. The only novel intuition was that functions
should be associated with some axioms: for example, the “Russian peasant algorithm” that
allows one to compute theth power inO(log n) steps is defined for any object that has an
associative binary operation defined on it. In other words, | believed that algorithms should be
associated with what we now call concepts (§28 of this book), but what | called structure
types and what type-theorists calllti-sorted algebras

It was my great luck that Polytechnic had a remarkable person on its faculty, Aaron Ker-
shenbaum, who combined deep knowledge of graph algorithms with an unusual desire to
implement them. Aaron saw potential in my attempts to decompose programs into simple
primitives, and spent a lot of time teaching me graph algorithms and working with me on
implementing them. He also showed me that there were some fundamental things that cannot
be done functionally without prohibitive change in the complexity. While it was often possi-
ble for me to implement linear time algorithms functionally without changing the asymptotic
complexity, it was impossible in practice to implement logarithmic time algorithms without
making them linear. In particular, Aaron explained to me why priority queues were so im-
portant for many graph algorithms (and he was well qualified to do so: Knuth in his Stanford

Xiii



Xiv FOREWORD

GraphBase book?]] attributes the discovery of how to apply binary heaps to Prim’s and
Dijkstra’s algorithms to Aaron).

It was a moment of great joy when we were able to produce Prim’s and Dijkstra’s algo-
rithms as two instances of the same generic—we called it “high-order” then—algorithm. It
is quite remarkable how close BGL code is to what we had (see, for example, a footnote to
§13.4.2. The following code in Scheme shows how the two algorithms were implemented in
terms of the same higher-order algorithm. The only difference is in how distance values are
combined: using addition for Dijkstra’s and by selecting the second operand for Prim’s.

( define dijkstra
( make—scan-based-algorithm—with—mark
make-heap-with—membership-and—values + < ))

( define prim
( make—scan-based-algorithm—with—mark
make-heap-with—membership-and—values (lambda (x y) y) <))

It took me a long time—almost 10 years—to find a language in which this style of pro-
gramming could beffectivelyrealized. | finally found C++, which enabled me to produce
something that people could use. Moreover, C++ greatly influenced my design by providing
a crisp C-based machine model. The features of C++ that enabled STL are templates and
overloading.

| often hear people attacking C++ overloading, and, as is true with most good mecha-
nisms, overloading can be misused. But it is an essential mechanism for the development
of useful abstractions. If we look at mathematics, it has been greatly driven by overloading.
Extensions of a notion of numbers from natural numbers to integers, to rational numbers, to
Gaussian integers, to p-adic numbers, etc, are examples of overloading. One can easily guess
things without knowing exact definitions. If | see an expression that uses both addition and
multiplication, | assume distributivity. If | see less-than and addition, | assume that ib
thena + ¢ < b + ¢ (I seldom add uncountable cardinals). Overloading allows us to carry
knowledge from one type to another.

It is important to understand that one can write generic algorithms just with overloading,
without templates: it does, however, require a lot of typing. That is, for every class that satis-
fies, say, random access iterator requirements, one has to define all the relevant algorithms by
hand. Itis tedious, but can be done (only signatures would need to be defined: the bodies will
be the same). It should be noted that generics in Ada require hand-instantiation and, therefore,
are not that helpful, since every algorithm needs to be instantiated by hand. Templates in C++
solve this problem by allowing one to define things once.

There are still things that are needed for generic programming that are not yet repre-
sentable in C++. Generic algorithms are algorithms that work on objects with similar inter-
faces. Not identical interfaces as in object-oriented programming, but similar. It is not just the
handling of binary methods (s€2.1.3 that causes the problem, it is the fact that interfaces
are described in terms of a single type (single-sorted algebra). If we look carefully at things
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like iterators we observe that they are describable only in terms of multiple types: iterator
type itself, value type and distance type. In other words, we need three types to define the
interfaces on one type. And there is no machinery in C++ to do that. The result of this is that
we cannot define what iterators are and, therefore, cannot really compile generic algorithms.
For example, if we define the reduce algorithm as:

template <class Inputlterator, class BinaryOperationWithldentity
typename iteratortraits<Inputlterator>::value_type
reducd Inputlterator first, Inputlterator last, BinaryOperationWithldentity op
{
typedef typename iteratatraits<Inputlterator>::value_type T,
if (first == last) return identity_elemen( op);
T result = *first;
while (++ first 1= last) result = op( result, * first);
return resulg

}

but instead of:++first != last we write: ++first<last, no compiler can detect the bug at
the point of definition. While the standard clearly states tpatator< does not need to be
defined for Input Iterators, there is no way for the compiler to know it. Iterator requirements
are just words. We are trying to program with concepts (multi-sorted algebras) in a language
which has no support for them.

How hard would it be to extend C++ to really enable this style of programming? First, we
need to introduce concepts as a new interface facility. For example, we can define:

concept SemiRegular : AssignahleDefaultConstructible {};
concept Regular : SemiRegular EqualityComparable{};
concept Inputlterator : Regulay Incrementable {
SemiRegular valuetype

Integral distancetype

const valuetype operatof();

I

value_typd Inputlterator)
reducd Inputlterator first, Inputlterator last, BinaryOperationWithldentity op
(value_typd Inputlterator) == argumenttypg BinaryOperationWithldentity)
{
if (first == last) return identity_elemen( op);
value_typd Inputlterator) result = *first;
while (++ first = lasf) result = op(result, * first);
return result,

}

Generic functions are functions that take concepts as arguments and in addition to an
argument list have a list of type constraints. Now full type checking can be done at the point
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of definition without looking at the points of call, and full type-checking can be done at the
points of call without looking at the body of the algorithm.
Sometimes we need multiple instances of the same concept. For example,

Outputlterator mergé Inputlterator[ 1] firstl, Inputlterator[ 1] lastl,
Inputlterator[ 2] first2, Inputlterator[ 2] last2,
Outputlterator resul)

('bool operatok( value typd Inputlterator[ 1]), value typd Inputlterator|[ 2])),

value_typd Inputlterator[ 1]) == value_typq Inputlterator[ 2]),

output typg Outputlterator) == value_typg Inputlterator[ 2]));

Note that this merge is not as powerful as the STL merge. It cannot merge aflisttof
and a vector ofloubles into a deque ahts. STL algorithms will often do unexpected and, in
my opinion, undesirable type conversions. If someone needs to merge doubles and floats into
ints he or she should use an explicit function object for asymmetric comparison and a special
output iterator for conversion.

C++ provides two different abstraction mechanisms: object-orientedness and templates.
Object-orientedness allows for exact interface definition and for run-time dispatch. But it
cannot handle binary methods or multi-method dispatching, and its run-time binding is often
inefficient. Templates handle richer interfaces and are resolved at compile-time. They can,
however, cause a software engineering nightmare because of the lack of separation between
interfaces and implementation. For example, | recently tried compiling a 10-line STL-based
program using one of the most popular C++ compilers and ran away in shock after getting
several pages of incomprehensible error messages. And often one needs run-time dispatch,
which cannot be handled by templates. | do believe that introduction of concepts will unify
both approaches and resolve both sets of limitations. And after all, it is possible to represent
concepts as virtual tables which are extended by pointers to type descriptors: the virtual table
for input iterator contains not just pointersdperator* andoperator++ but also pointers to the
actual type of the iterator, its value type and its distance type. And then one could introduce
pointers to concepts and references to concepts!

Generic programming is a relatively young subdiscipline of computer science. | am happy
to see that the small effort—started twenty years ago by Dave Musser, Deepak Kapur, Aaron
Kershenbaum and me—led to a new generation of libraries such as BGL and MTL. And |
have to congratulate Indiana University on acquiring one of the best generic programming
teams in the world. | am sure they will do other amazing things!

Alexander Stepanov
Palo Alto, California
September, 2061

I would like to thank John Wilkinson, Mark Manasse, Marc Najork and Jeremy Siek for many valuable
suggestions.



Preface

The graph abstraction is a powerful problem-solving tool used to describe relationships be-
tween discrete objects. Many practical problems can be modeled in their essential form by
graphs. Such problems appear in many domains: Internet packet routing, telephone network
design, software build systems, Web search engines, molecular biology, automated road-trip
planning, scientific computing, and so on. The power of the graph abstraction arises from
the fact that the solution to a graph-theoretic problem can be used to solve problems in a
wide variety of domains. For example, the problem of solving a maze and the problem of
finding groups of Web pages that are mutually reachable can both be solved using depth-
first search, an important concept from graph theory. By concentrating on the essence of
these problems—the graph model describing discrete objects and the relationships between
them—graph theoreticians have created solutions to not just a handful of particular problems,
but to entire families of problems.

Now a question arises. If graph theory is generally and broadly applicable to arbitrary
problem domains, should not the software that implements graph algorithms be just as broadly
applicable? Graph theory would seem to be an ideal area for software reuse. However, up until
now the potential for reuse has been far from realized. Graph problems do not typically occur
in a pure graph-theoretic form, but rather, are embedded in larger domain-specific problems.
As a result, the data to be modeled as a graph are often not explicitly represented as a graph
but are instead encoded in some application-specific data structure. Even in the case where
the application data are explicitly represented as a graph, the particular graph representation
chosen by the programmer might not match the representation expected by a library that the
programmer wants to use. Moreover, different applications may place different time and
space requirements on the graph data structure.

This implies a serious problem for the graph library writer who wants to provide reusable
software, for it is impossible to anticipate every possible data structure that might be needed
and to write a different version of the graph algorithm specifically for each one. The current
state of affairs is that graph algorithms are written in terms of whatever data structure is
most convenient for the algorithm and users must convert their data structures to that format
in order to use the algorithm. This is an inefficient undertaking, consuming programmer
time and computational resources. Often, the cost is perceived not to be worthwhile, and the
programmer instead chooses to rewrite the algorithm in terms of his or her own data structure.

XVii
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This approach is also time consuming and error prone, and will tend to lead to sub-optimal
solutions since the application programmer may not be a graph algorithms expert.

Generic Programming

The Standard Template Library (STL)(] was introduced in 1994 and was adopted shortly
thereafter into the C++ Standard. The STL was a library of interchangeable components for
solving many fundamental problems on sequences of elements. What set the STL apart from
libraries that came before it was that each STL algorithm could work with a wide variety
of sequential data structures: linked-lists, arrays, sets, and so on. The iterator abstraction
provided an interface between containers and algorithms and the C++ template mechanism
provided the needed flexibility to allow implementation without loss of efficiency. Each al-
gorithm in the STL is a function template parameterized by the types of iterators upon which
it operates. Any iterator that satisfies a minimal set of requirements can be used regardless
of the data structure traversed by the iterator. The systematic approach used in the STL to
construct abstractions and interchangeable components is gafiedic programming

Generic programming lends itself well to solving the reusability problem for graph li-
braries. With generic programming, graph algorithms can be made much more flexible, al-
lowing them to be easily used in a wide variety applications. Each graph algorithm is written
not in terms of a specific data structure, but instead to a graph abstraction that can be eas-
ily implemented by many different data structures. Writing generic graph algorithms has
the additional advantage of being more natural; the abstraction inherent in the pseudo-code
description of an algorithm is retained in the generic function.

The Boost Graph Library (BGL) is the first C++ graph library to apply the notions of
generic programming to the construction of graph algorithms.

Some BGL History

The Boost Graph Library began its life as the Generic Graph Component Library (GGCL),
a software project at thieab for Scientific Computing (LSC)he LSC, under the direction
of Professor Andrew Lumsdaine, was an interdisciplinary laboratory dedicated to research in
algorithms, software, tools, and run-time systems for high-performance computational sci-
ence and engineerifg Special emphasis was put on developing industrial-strength, high-
performance software using modern programming languages and techniques—most notably,
generic programming.

Soon after the Standard Template Library was released, work began at the LSC to apply
generic programming to scientific computing. The Matrix Template Library (MTL) was one

2The LSC has since evolved into the Open Systems Laboratory (8ti:}/www.osl.iu.edu Although the
name and location have changed, the research agenda remains the same.
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of the first projects. Many of the lessons learned during construction of the MTL were applied
to the design and implementation of the GGCL.

An important class of linear algebra computations in scientific computing is that of sparse
matrix computations, an area where graph algorithms play an important role. As the LSC
was developing the sparse matrix capabilities of the MTL, the need for high-performance
reusable (and generic) graph algorithms became apparent. However, none of the graph li-
braries available at the time (LEDA, GTL, Stanford GraphBase) were written using the
generic programming style of the MTL and the STL, and hence did not fulfill the flexibil-
ity and high-performance requirements of the LSC. Other researchers were also expressing
interest in a generic C++ graph library. During a meeting with Bjarne Stroustrup we were
introduced to several individuals at AT&T who needed such a library. Other early work in
the area of generic graph algorithms included some codes written by Alexander Stepanov, as
well as Dietmar Kihl's master’s thesis.

With this in mind, and motivated by homework assignments in his algorithms class,
Jeremy Siek began prototyping an interface and some graph classes in the spring of 1998.
Lie-Quan Lee then developed the first version of the GGCL, which became his master’s the-
Sis project.

During the following year, the authors began collaborating with Alexander Stepanov and
Matthew Austern. During this time, Stepanov’s disjoint-sets-based connected components
implementation was added to the GGCL, and work began on providing concept documenta-
tion for the GGCL, similar to Austern’s STL documentation.

During this year the authors also became aware of Boost and were excited to find an
organization interested in creating high-quality, open source C++ libraries. Boost included
several people interested in generic graph algorithms, most notably Dietidr KSome
discussions about generic interfaces for graph structures resulted in a revision of the GGCL
which closely resembles the current Boost Graph Library interface.

On September 4, 2000, the GGCL passed the Boost formal review (managed by David
Abrahams) and became the Boost Graph Library. The first release of the BGL was September
27, 2000. The BGL is not a “frozen” library. It continues to grow as new algorithms are con-
tributed, and it continues to evolve to meet user’s needs. We encourage readers to participate
in the Boost group and help with extensions to the BGL.

What Is Boost?

Boost is an online community that encourages development and peer-review of free C++
libraries. The emphasis is on portable and high-quality libraries that work well with (and are
in the same spirit as) the C++ Standard Library. Members of the community submit proposals
(library designs and implementations) for review. The Boost community (led by a review
manager) then reviews the library, provides feedback to the contributors, and finally renders
a decision as to whether the library should be included in the Boost library collection. The
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libraries are available at the Boost Web siti://www.boost.orgIn addition, the Boost mailing
list provides an important forum for discussing library plans and for organizing collaboration.

Obtaining and Installing the BGL Software

The Boost Graph Library is available as part of the Boost library collection, which can
be obtained in several different ways. The CD accompanying this book contains version
1.25.1 of the Boost library collection. In addition, releases of the Boost library collec-
tion can be obtained with your Web browsemép://www.boost.org/boosll.zip for the Win-

dows zip archive of the latest release artth://www.boost.org/boosill.tar.gz for the Unix
archive of the latest release. The Boost libraries can also be downloaded via FTP at
ftp://boost.sourceforge.net/pub/boost/release/

The zip archive of the Boost library collection can be unzipped by udiinZip or other
similar tools. The Unix “tar ball” can be expanded using the following command:

gunzip —cd boostall. tar. gz | tar xvf —

Extracting the archive creates a directory whose name consists of thésestdnd a ver-
sion number. For example, extracting the Boost release 1.25.1 creates a disectoty25 1.
Under this top directory, are two principal subdirectoriesostandlibs. The subdirectory
boostcontains the header files for all the libraries in the collection. The subdiretisry
contains a separate subdirectory for each library in the collection. These subdirectories con-
tain library-specific source and documentation files. You can point your Web browser to
boost1_25 1/index.htmand navigate the whole Boost library collection.

All of the BGL header files are in the directosgost/graph/ However, other Boost header
files are needed since BGL uses other Boost components. The HTML documentation is in
libs/graph/doc/and the source code for the examples ikbisigraph/example/ Regression tests
for BGL are inlibs/graph/test/ The source files iifibs/graph/src/implement the Graphviz file
parsers and printers.

Except as described next, there are no compilation and build steps necessary to use BGL.
All that is required is that the Boost header file directory be added to your compiler’s in-
clude path. For example, using Windows 2000, if you have unzipped release 1.25.1 from
boostall.zip into the top level directory of your C drive, for Borland, GCC, and Metrowerks
compilers add-Ic:/boost 1.251’ to the compiler command line, and for the Microsoft Vi-
sual C++ compiler add! "c:/boost_1.251". For IDEs, addc:/boost1.25.1" (or whatever
you have renamed it to) to the include search paths using the appropriate dialog. Before
using the BGL interface to LEDA or Stanford GraphBase, LEDA or GraphBase must be
installed according to their installation instructions. To use rdal graphviz) functions
(for reading AT&T Graphviz files), you must build and link to an additional library under
boost1 25 1/libs/graph/src

The Boost Graph Library is written in ANSI Standard C++ and compiles with most C++
compilers. For an up-to-date summary of the compatibility with a particular compiler, see the
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“Compiler Status” page at the Boost Web shittp://www.boost.org/status/compilestatus.html

How to Use This Book

This book is both a user guide and reference manual for the BGL. It is intended to allow the
reader to begin quickly using the BGL for real-life graph problems. This book should also be
interesting for programmers who wish to learn more about generic programming. Although
there are many books about how to use generic libraries (which in almost all cases means how
to use the STL or Standard Library), there is very little available about how actually to build
generic software. Yet, generic programming is a vitally important new paradigm for software
development. We hope that, by way of example, this book will show the reader how to do
(and not simply use) generic programming and to apply and extend the generic programming
paradigm beyond the basic container types and algorithms of the STL.

The third partner to the user guide and reference manual is the BGL code itself. The BGL
code is not simply academic and instructional. It is intended to be used.

For students learning about graph algorithms and data structures, BGL provides a compre-
hensive graph algorithm framework. The student can concentrate on learning the important
theory behind graph algorithms without becoming bogged down and distracted in too many
implementation details.

For practicing programmers, BGL provides high-quality implementations of graph data
structures and algorithms. Programmers will realize significant time saving from this relia-
bility. Time that would have otherwise been spent developing (and debugging) complicated
graph data structures and algorithms can now be spent in more productive pursuits. Moreover,
the flexible interface to the BGL will allow programmers to apply graph algorithms in settings
where a graph may only exist implicitly.

For the graph theoretician, this book makes a persuasive case for the use of generic pro-
gramming for implementing graph-theoretic algorithms. Algorithms written using the BGL
interface will have broad applicability and will be able to be reused in numerous settings.

We assume that the reader has a good grasp of C++. Since there are many sources where
the reader can learn about C++, we do not try to teach it here (see the references at the end
of the book—The C++ Programming Language&pecial ed., by Bjarne Stroustrufp’] and
C++ Primer, 3rd ed., by Josee Lajoie and Stanley B. Lippma#f fare our recommenda-
tions). We also assume some familiarity with the STL (S&& Tutorial and Reference Guide
by David R. Musser, Gillmer J. Derge, and Atul Saia{] and Generic Programming and
the STLby Matthew Austernd]). We do, however, present some of the more advanced C++
features used to implement generic libraries in general and the BGL in particular.

Some necessary graph theory concepts are introduced here, but not in great detail. For
a detailed discussion of elementary graph theoryls@eduction to Algorithmsoy T. H.
Cormen, C. E. Leiserson, and R. L. Rivest][
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Literate Programming

The program examples in this book are presented using the literate programming style devel-
oped by Donald Knuth. The literate programming style consists of writing source code and
documentation together in the same file. A tool then automatically converts the file into both
a pure source code file and into a documentation file with pretty-printed source code. The
literate programming style makes it easier to ensure that the code examples in the book really
compile and run and that they stay consistent with the text.

The source code for each example is broken up [iaids. Parts can include references
to other parts. For example, the following part labeled “Merge sort function definition” refers
to the parts labeled “Divide the range in half and sort each half” and “Merge the two halves”.
An example often starts with a part that provides an outline for the entire computation, which
is then followed by other parts that fill in the details. For example, the following function
template is a generic implementation of the merge sort algorithijn There are two steps in
the algorithm, sorting each half of the range and then merging the two halves.

( Merge sort function definitiomxiia) =

template <typename RandomAccesslterafortypename Compare
void mergesort( RandomAccessilterator first RandomAccesslterator last Compare cmp

{

if (first +1 < last) {
(Divide the range in half and sort each haltxiib)
(Merge the two halvesxiic)

}
}

Typically, the size of each part is limited to a few lines of code that carry out a specific task.
The names for the parts are chosen to convey the essence of the task.

( Divide the range in half and sort each haiib ) =

RandomAccesslterator mid= first + ( last — first)/ 2;
mergesort( first, mid, cmp);
mergesort( mid, last cmp);

The std::inplacemergd) function does the main work of this algorithm, creating a single
sorted range out of two sorted subranges.

( Merge the two halvesxiic ) =
std::inplace mergd first, mid, last, cmp);
Parts are labeled with a descriptive name, along with the page number on which the part

is defined. If more than one part is defined on a page, the definitions are distinguished by a
letter.
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Sometimes a file name is used for the label of a part. This means that the part is written
out to a file. Many of the examples in the book are written out to files, and can be found in
thelibs/graph/exampledirectory of the Boost distribution. The following example shows the
mergesort) function being output to a header file.

( “merge-sort.hpp”xxiii ) =

#ifndef MERGE_SORTHPP
#define MERGESORTHPP

(Merge sort function definitionxxii a)

#endif // MERGE_SORT_HPP

The Electronic Reference

An electronic version of the book is included on the accompanying CD, in theyfH®ok. pdf

The electronic version is searchable and is fully hyperlinked, making it a useful companion
for the printed version. The hyperlinks include all internal references such as the literate
programming “part” references as well as links to external Web pages.
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Chapter 1

Introduction

In this chapter, we provide a broad overview of some of the interfaces and components avail-
able in the BGL. We begin with a quick review of graph terminology using a network of
Internet routers as an example of a system that can be modeled as a graph. The generic inter-
faces that are defined by the BGL are introduceglir?2 and we discuss the concrete graph
classes that implement these interface§lr8. Finally, §1.4 gives a preview of the BGL
generic graph algorithms.

1.1 Some Graph Terminology

A graph model for a network of Internet routers is shown in Figude The circles (repre-
senting routers) are labeled A through F, and the connections between them are labeled with
the average transmission delay.

In the terminology of graph theory, each router in the example network is represented by
avertexand each connection is represented bydgé. A graphG consists of avertex set
V and anedge setF. Thus, we writeG = (V, E). The size of the vertex set (the number
of vertices in the graph) is expressed|&$ and the size of the edge set|d§. An edge is
written as an ordered pair consisting of the vertices connected by the edge. The ordered pair
(u,v) indicates the edge that connects vernien vertexov.

The router network of Figurg.1 can be expressed using set notation as follows:

V = {a,b,c,d e}

E = {(a,b),(a,d),(b,d),(c,a),(c,e),(d,c),(d,e)}
G = (V.E)

A graph can be directed or undirected, meaning the edge set in the graph consists respec-
tively of directed or undirected edges. An edge dafi@cted graphis an ordered paitu, v)

1Another popular name for verteximde and another name for edgeas.

3
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Figure 1.1 A network of Internet routers. The connections are labeled with the transmission
delay (in milliseconds).

with » as thesourcevertex andv as thetarget vertex. The directed edge:, v) is distinct
from the edgév, «). In anundirected graplan edge always connects the two vertices in both
directions, so the vertex ordering in an edge does not matter) and (v, u) are the same
edge. An edge connecting a vertex to itself suctvas) is called aself-loopand is typically
not allowed in an undirected graph. Two or more edges that connect the same two vertices,
such agu, v) and(u, v), are callegarallel edgesA graph that allows parallel edges is called
amultigraph

If a graph contains an edde, v), then vertexv is said to beadjacentto vertexu. For
a directed graph, edde:, v) is anout-edgeof vertexu and anin-edgeof vertexv. For an
undirected graph, edde, v) is said to bencident onthe vertices; andv. The adjacency set
for each vertex in the directed graph of Figuré follows.

Adjacentla] = {b,d}
Adjacentb] = {d}
Adjacentlc] = {a,e}
Adjacentld] = {c,e}
Adjacentle] = {}

The following are the out-edges for each vertex:

OutEdges[a] = {(a,b),(a,d)}
OutEdgesb] = {(b,d)}
OutEdges[c] = {(c,a),(c,e)}
OutEdges[d] = {(d,c),(d,e)}
OutEdgesle] = {}
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Similarly, the following are the in-edges for each vertex:

InFEdgesja] = {(c,a)}
InEdgesb] = {(a,b)}
InEdges[c] = {(d,c)}
InEdges[d] = {(a,d),(b,d)}
InEdgesle] = {(c,e),(d,e)}

1.2 Graph Concepts

One of the primary responsibilities of a generic library is to define the interfaces that allow
algorithms to be written independently of any particular data structure. Note tlaeface
we do not merely mean a set of function prototypes. Instead, we mean a set of syntactic
requirements—things like function names and numbers of arguments—as well as semantic
requirements (executing the function must have certain effects) and time and space complexity
guarantees.

Using the terminology from the bodReneric Programming and the STE], we use the
word conceptto refer to this richer notion of an interface. The STL defines a collection of
iterator concepts that provide a generic mechanism for traversing and accessing sequences
of objects. Similarly, the BGL defines a collection of concepts that specify how graphs can
be inspected and manipulated. In this section we give an overview of these concepts. The
examples in this section do not refer to specific graph types; they are written as function
templates with the graph as a template parameter. A generic function written using the BGL
interface can be applied to any of the BGL graph types—or even to new user-defined graph
types. In§1.3we will discuss the concrete graph classes that are provided in the BGL.

1.2.1 \Vertex and Edge Descriptors

Inthe BGL, vertices and edges are manipulated through opaque handlesveaixdiescrip-
torsandedge descriptorsDifferent graph types may use different types for their descriptors.
For example, some graph types may use integers, whereas other graphs may use pointers.
The descriptor types for a graph type are always accessible througlatingraits class. The
motivation and use of traits classes are describg@.ithand thegraph_traits class in particular
is discussed i§14.2.1

Vertex descriptors have very basic functionality. By themselves they can only be default
constructed, copied, and compared for equality. Edge descriptors are similar, although they
also provide access to the associated source and target vertex. The following function tem-
plate€ shows an implementation a generic function that determines if an edge is a self-loop.

2For aesthetic reasons, we prefgnenameto the equivalentlassfor declaring template parameters.
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template <typename Grapb-
bool is self_loop( typename graphtraits<Graph>::edge descriptor € const Grapl& g)
{

typename graphraits<Graph>::vertex_descriptor y v;

u = sourcg e, Q);

v = targef e, Q);

return u == v;

}

1.2.2 Property Maps

Graphs become useful as models for particular problem domains by associating objects and
guantities to vertices and edges. For example, in Figuteach vertex has a name consist-
ing of a single character, and each edge has a transmission delay. In the BGL we refer to
attached objects or attached quantitiepraperties There are a wide variety of implementa-
tion techniques that can be used to associate a property with a vertex or edge. These include
properties as data members of a struct, separate arrays indexed by vertex or edge number,
hash tables, and so on. However, to write generic graph algorithms we need a uniform syntax
for accessing properties, regardless of how they are stored. This uniform syntax is defined by
the property map concepts.

A property map is an object that provides a mapping from a set of key objects to a set
of value objects. The property map concepts specify only three functgmgmap, key)
returns the value object for they, put(p_.map, key, valuepssigns the@alueto the value object
associated with thkey, andp_map[key]returns a reference to the value object. The following
example is a generic function that prints the name of a vertex given a name property map.

template <typename VertexDescriptor typename VertexNameMap
void print_vertex nam¢g VertexDescriptor y VertexNameMap namemap)

{

std::cout << gei namemap, V);

}
Similarly, the transmission delay of an edge can be printed using the following function:

template <typename Graph typename TransDelayMap typename VertexNameMap
void print_trans_delay typename graphtraits<Graph>::edge descriptor e
const Grapl& g, TransDelayMap delaymap, VertexNameMap namemap)
{
std::cout << "trans-delay{ << gef nhamemap sourcde, @) << ",
<< gef namemap targefe Q) << ") =" << gefdelaymap e);

}

Theprint_vertexnamg) andprint_trans_delay) functions will be used in the next section.
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Property maps are discussed in detail in Chaftgrincluding techniques for creating
user-defined property maps. How to add properties into a graph and obtain the corresponding
property map is described §3.6.

1.2.3 Graph Traversal

The graph abstraction consists of several different kinds of collections: the vertices and edges
for the graph and the out-edges, in-edges, and adjacent vertices for each vertex. Similar to
the STL, the BGL uses iterators to provide access to each of these collections. There are five
kinds of graph iterators, one for each kind of collection:

1. A vertex iteratoris used to traverse all the vertices of a graph. The value type of a
vertex iterator is a vertex descriptor.

2. An edge iteratoris used to traverse all the edges of a graph. The value type of this
iterator is an edge descriptor.

3. An out-edge iteratois used to access all of the out-edges for a given vertédis value
type is an edge descriptor. Each edge descriptor in this iterator range will:fees/the
source vertex and a vertex adjacentitas the target vertex (regardless of whether the
graph is directed or undirected).

4. Anin-edge iteratolis used to access the in-edges of a vettelts value type is an edge
descriptor. Each edge descriptor in this iterator range will hage the target vertex
and a vertex that is adjacent to as the source.

5. Anadjacency iteratois used to provide access to the vertices adjacent to a given vertex.
The value type of this iterator is a vertex descriptor.

Like descriptors, each graph type has its own iterator types that are accessible through
the graph_traits class. For each of the above iterators, the BGL interface defines a function
that returns atd::pair of iterator objects: the first iterator points to the first object in the se-
guence and the second iterator points past the end of the sequence. For example, the following
function prints the names of all of the vertices in a graph:

template <typename Graph typename VertexNameMap
void print.vertex nameg const Grapl& g, VertexNameMap namemap)
{
std::cout << "vertices(g) ={ ";
typedef typename graplraits<Graph>::vertex.iterator iter_t;
for (std:pair<iter_t, itert> p = verticegg); p.first I= p. second ++ p. first) {
print_vertexnamg* p. first, namemap); std::icout << ' ’;

}

std::cout << " }" << std::endt
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Applying this function to a graph object that models the router network of Figjureould
produce the following output:

verticegg) = {abcde}

The code below prints the transmission delay values that are attached to each of the edges
in the graph. In this function we use thie() function (fromboost/tuple/tuple.hppto allow
direct assignment from std::pair into two scalar variables—in this cagiest andlast

template <typename Graph typename TransDelayMap typename VertexNameMap
void print_trans_delayg const Grapl& g, TransDelayMap transdelay map,
VertexNameMap nameamap)
{
typename graphraits<Graph>::edge.iterator first, last
for (tie(first, last) = edge$q); first = last ++ first) {
print_trans_delay* first, g, trans_delaymap namemap);
std::cout << std::endkt

}
}

The output of this function for the graph of Figutel would be

trans—delay(a, b) = 1.2
trans—delay a, d) = 4.5
trans—delay( b, d) = 1.8
trans—delay( c, a) = 2.6
trans—delay( c, ) = 5.2
trans—delay( d, c) = 0.4
trans—delay( d, e) = 3.3

In addition to thevertice§) andedge$) functions, there areutedge$) , in_edge$) , and
adjacentvertice) functions. These functions take a vertex descriptor and graph object as
arguments and return a pair of iterators.

Most algorithms do not need to use all five types of traversal, and some graph types cannot
provide efficient versions of all iterator types. Care should be taken not to use concrete graph
types with algorithms that require operations not supported by that type. If you attempt to use
a graph type that does not provide a required operation, then a compile error will occur. The
compile error may even include some information to help you figure out which operation was
missing. Seé2.5for more details.

The available operations for a particular graph type is given in the documentation for
that type. The “Model Of” section summarizes the provided operations by listing the con-
cepts satisfied by the graph type. The operations required by each algorithm are given in the
documentation for the algorithm by listing the concepts required of each parameter.
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1.2.4 Graph Construction and Modification

The BGL also defines interfaces for adding and removing vertices and edges from a graph.
In this section, we give a brief example of one way to create a graph that models the router
network of Figurel.l First we will useadd.vertex) to add the five nodes representing routers

to the graph, then we will ussid edgd) to add edges representing connections between the
routers.

template <typename Graph typename VertexNameMap typename TransDelayMap
void build_router_networl{ Graph& g, VertexNameMap nameamap,

TransDelayMap delaymap)
{

(Add routers to the networl@a)

(Add connections to the networ8b)

}

TheaddverteX) function returns a vertex descriptor for the new vertex. We use this vertex
descriptor to assign a vertex name to the vertex in a name property map:

( Add routers to the networ8a ) =

typename graphraits<Graph>::vertex.descriptor a b, ¢, d, €
a = add.verte g); namemad a] =
b = add.vertex g); namemagd b]
¢ = add.vertex g); nhamemaf ]
d = add.verteX g); namemaq d]
e = add.vertex g); nhamemaf €]

‘a
b
o
'd
e

The addedgd) function returns astd::pair, where the first member of the pair is an edge
descriptor for the new edge and the second is a Boolean flag that indicates whether an edge
was added (some graph types will not insert an edge if an edge with the same source and
target is already in the graph).

( Add connections to the netwofb ) =

typename graphraits<Graph>::edge descriptor ed
bool inserted

tie(ed inserted = addedgda, b, Qg);
delaymad ed = 1.2;
tie(ed inserted = addedgda, d, Q);
delaymad ed = 4.5;
tie(ed inserted = addedgdb, d, Q);
delaymad ed = 1.8;
tie(ed inserted = addedgdc, a 0);
delaymad ed = 2.6;
tie(ed inserted = addedgdc, e Q);
delaymad ed = 5.2;
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tie(ed inserted = addedgdd, c, Q);
delaymad ed = 0.4;
tie(ed inserted = addedgdd, e Q);
delaymad ed = 3.3;

In some cases it is more efficient to add or remove multiple vertices or edges simulta-
neously instead of one at a time. The BGL interface includes functions for accomplishing
this.

1.2.5 Algorithm Visitors

Many of the algorithms of the STL have a function object parameter that provides a mecha-
nism for customizing the behavior of the algorithm to a particular application. For example,
thestd::sorf) function contains a comparison parameignpare

template <typename RandomAccesslteraortypename BinaryPredicate
void sor{ RandomAccesslterator first RandomAccesslterator last
BinaryPredicate compare

Thecompareparameter is a function object (sometimes called a functor). Its use is illustrated
by the following example.

Consider the case of a program for maintaining an address book. Sorting an array of
addresses by the last name of the contact can be accomplished by stlliswgri() with an
appropriate function object. An example of such a function object is the following:

struct comparelastname {
bool operatof)( const addressnfo& x, const addressnfo& y) const{
return x. lastname < y. last name

}
}

Sorting the array of addresses is accomplished with a caldtesory() , passing in the cus-
tomized comparison function.

std::vectokaddressinfo> addresses

...

comparelast name comparg

std::sorf addressesbegin(), addressesend(), comparg;

The BGL provides a mechanism similar to function objects for customizing the behav-
ior of graph algorithms. These objects are caldgorithm visitors The BGL visitor is a
multifunction object. Instead of just the singlperato) of a function object, a BGL visitor
defines multiple functions that are invoked at certain defgneght pointsvithin an algorithm
(the event points differ with each algorithm).

Despite the name, BGL visitors are somewhat different than the visitor pattern described
in the “Gang of Four” (GoF) Patterns Book4]. A GoF visitor provides a mechanism for
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performing new operations on an object structure without modifying the classes. Like the GoF
visitor, the purpose of the BGL visitor is to provide a mechanism for extension. However the
difference is that a BGL visitor extends algorithms, not object structures.
In the following example we print out the Internet routers from Figufen breadth-first
order by extending thereadthfirst_searci{) function with a visitor. The visitor prints the
vertex name on thdiscover vertexevent (se¢4.1.1for a description of breadth-first search).
The visitor class is defined according to the interface described BR&¥isitor concept.

template <typename VertexNameMap
class bfsname printer

. public default_bfs_visitor { // inherit default (empty) event point actions
public:

bfs_name_printer( VertexNameMap nmap : m_namemap(n_map { }

template <typename Vertex typename Graph

void discoververtex Vertex u, const Grapl& ) const {

std::cout << gef m_namemap, u) << '';

}

private:
VertexNameMap mnamemap

J>

We then create a visitor object of typés_nameprinter and pass it tdreadthfirst_searck) .
Theuvisitor() function used here is part of the named-parameter technique that is described in
§2.7.

bfs_name printer<VertexNameMap- vis( name map);
std::cout << " BFS vertex discover order!;
breadth first_search{( g, a, visitor( vis));

std::cout << std::endt

The output is as follows:

BFS vertex discover order: a b d c e

The edges of the breadth-first search tree are depicted by the black lines in E@yure

1.3 Graph Classes and Adaptors

The graph types provided by the BGL fall into two categories. The first is the graph classes
that are used to store a graph in memory. The second is graph adaptors that create a modified
view of a graph or that create a BGL graph interface based on some other type.

1.3.1 Graph Classes

The BGL contains two primary graph classasjacencylist andadjacencymatrix.
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Figure 1.2 The path taken during a breadth-first search.

The main BGL component for representing graphs isdtijecencylist. This class gen-
eralizes the traditional adjacency-list representation for a graph. The graph is represented
by a collection of vertices where, with each vertex, there is stored a collection of out-edges.
The actual implementation of the collection of vertices and edges can vary to meet particular
needs. Thedjacencylist class has several template parametedgeList VertexList, Directed
VertexPropertiesEdgePropertiesandGraphProperties

e EdgelListand VertexList specify the classes used to store the vertex list and edge lists
for the graph. These parameters allow tradeoffs between traversal speed and inser-
tion/removal speed and tradeoffs in memory consumption. In additiorgdbeList
parameter determines whether parallel edges may be inserted into the graph.

e Directedspecifies whether the graph is directed, undirected, or bidirectional. By con-
vention, a directed graph provides access to out-edges only, whereas a bidirectional
graph provides access to in-edges as well as out-edges.

e \ertexPropertiesEdgePropertiesandGraphPropertiesspecify the property types that are
attached to the vertices, edges, and to the graph itself.

Complete documentation for thajacencylist class can be found iil4.1.1

The BGL class for representing dense graphs (graphs wti#rez |V|?) is the adja-
cencymatrix. In anadjacencymatrix, access to an arbitrary edge, v) is efficient (constant
time). Theadjacencymatrix can represent both directed and undirected graphs and provides
a mechanism for attaching properties to the vertices and edges. Complete documentation for
the adjacencymatrix class can be found i§il4.1.2

Note that although all of the examples in this book use relatively small graphs (to allow
drawings of the graphs to fit on a single page), the BGL graph classes are robust and space
efficient. They have been used to represent graphs with millions of vertices.
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1.3.2 Graph Adaptors

The BGL also includes a large number of graph adaptors. This first group of classes adapts
any BGL graph to provide new behavior.

e reversegraph is an adaptor that reverses the edge directions of a directed graph on the
fly, so that in-edges behave like out-edges, and vice versa.

o filtered graphis an adaptor that creates a view of a graph where two predicate function
objects control whether vertices and edges from the original graph appear in the adapted
graph, or whether they are hidden.

BGL also provides support for objects and data structures that are not BGL graph classes.
This support is provided via adaptor classes and overloaded functions. The following de-
scribes these interfaces.

e edgelist is an adaptor that creates a BGL graph out of an iterator range of edges.

e Stanford GraphBase is supported by overloaded functions in the headbodié-
graph/stanfordgraph.hpp As a result of these overloaded functions, the GraphBase
type Graph* satisfies the BGL graph interface.

e LEDA is a popular object-oriented package that includes graph data structures and
algorithms. Overloaded functions in the header fitb@st/graph/ledagraph.hpp allow
the LEDA graph type&sRAPH<vtype, etype to satisfy the BGL graph interface.

e The STL composite typetd::vectok std::list<int> > is supported as a graph by over-
loaded functions in the header fheost/graph/vectaas graph.hpp

The BGL interface is described completely in the concept reference in Ci&pteach graph
class implements some (or all) of these concepts. alljecencylist class can be considered

a canonical implementation (or model) of a BGL graph, as it illustrates all of the basic ideas
and interfaces of the BGL graphs.

1.4 Generic Graph Algorithms

The BGL graph algorithms are generic algorithms. As such, they are highly flexible in terms
of the types of graph data structures to which they can be applied and in terms of how the
algorithms can be customized to solve a wide range of problems. First, we look at using
the topologicalsort)) function with two different graph types, and then we demonstrate the
power of the generidepthfirst searcl) function by showing how it can be used to implement
topologicalsort() .
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1.4.1 The Topological Sort Generic Algorithm

A topological ordering of a directed graph is an ordering of its vertices such that if there
is an edg€(u,v) in the graph, then vertex appears before vertexin the ordering. The
BGL topologicalsort) function template takes two arguments: the graph to be ordered and
an output iterator. The algorithm writes vertices to the output iterator in reverse topological
order.

One use for topological orderings is for scheduling tasks. Figjidshows a graph where
the vertices are errands that need to be accomplished and where the edges indicate dependen-
cies between errands (e.g., getting cash at the ATM has to be done before buying groceries).
In the next two sections we show how to apply the BGL topological sort algorithm to this
problem. In each section a different type of graph representation will be used to demonstrate
the generic nature of the BGL function.

2: getcashat ATM

1: buy groceries (and snacks)

0: pick up kids from school

3: drop off kids at soccer practice

5: pick up kids from soccer 4: cook dinner

6: eat dinner

Figure 1.3 A graph representing scheduling dependencies between tasks. For now, an arbi-
trary vertex number is assigned to each task.

Using Topological Sort with a Vector of Lists

First we apply the topological sort to a graph built usiig::vectox std::list<int>>. The
following is the outline of the program.
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( “topo-sortl.cpp”l5a) =
#include <deque> // to store the vertex ordering
#include <vector>
#include <list>
#include <iostream>
#include <boost graph/ vectoras graph. hpp>
#include <boost graph/ topologicalsort hpp>
int main()
{
using namespace bogst
(Create labels for each of the taskih)
(Create the grapHL5c)
(Perform the topological sort and output the resulis)
return EXIT_SUCCESS

}

The vertices of the graph are represented using the integers from zero to six; storing the vertex
labels in an array is therefore a convenient choice.

( Create labels for each of the tasksh ) =

const chat taskg] = {
" pick up kids from schod!,
"buy groceries (and snacks)
"get cash at ATM,
"drop off kids at soccer practice
" cook dinnef',
" pick up kids from soccetr,
"eat dinnef' };
const int ntasks = sizeof taskg / sizeof char*);

The graph is realized as a vector of lists. Each vertex in the graph is associated with an
index location in the vector. The size of the vector is thus the number of vertices in the
graph. The list at that index location is used to represent the edges from that vertex to other
vertices in the graph. Each ed@e, v) is added to the graph by pushing the integerfor

onto theuth list. Figurel.4 shows the resulting data structure. Due to the functions defined
in boost/graph/vectaas graph.hpp the vector of lists satisfies the requirements of the BGL
VertexListGraph concept, and therefore can be used inttipelogicalsort)) function.

( Create the graph5c ) =

std::vectok std::list<int> > g( n_tasks;
gl 0]. push.back 3);
ol 1]. push.baclk 3);
o 1]. push.back 4);
o 2]. push.back 1);
gl 3]. push.back 5);
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gl 4]. push.back 6);
ol 5]. push.back 6);

elelelolelo
ééééfé
O,

Figure 1.4 A vector of lists representation of the task dependency graph.

Before we calltopologicalsort) we need to create a place to store the results. The BGL
algorithm for topological sort writes its output in reverse topological order (because it is more
efficient to implement it that way). Recovering the topological order requires reversing the
ordering computed by the algorithm. The following example usésdequeas its output
data structure because it supports constant time insertion at the front, which will reverse the
ordering. In addition, callingppologicalsort() requires one of two things: (1) supply a color
property map so that the algorithm can mark vertices to keep track of its progress through the
graph or (2) supply a mapping from vertices to integers so that the algorithm can create its
own color map with an array.

Since in this example the vertices are already integers, we jusideasis/ property map
in as the vertex index map. Thertexindexmap() function is used to specify a named
parameter (se€2.7).

( Perform the topological sort and output the restiis =
std::dequecint> topo_order,

topologicalsort( g, std::front_inserter( topa_order),
vertexindex_map( identity_property map)));

intn = 1;
for ( std::dequecint>::iterator i = topo.order. begin();
i 1= topaorder. end); ++ i, ++n)
std::cout << taskg* i] << std::endt
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The output shows an order in which the tasks could be carried out.

get cash at ATM

buy groceries( and snack}
cook dinner

pick up kids from school

drop off kids at soccer practice
pick up kids from soccer

eat dinner

Using Topological Sort with theadjacencylist Class

To demonstrate the flexibility of the generic algorithopologicalsort) we now change to
using an altogether different graph type: the B&djacencylist class template. Since the
topologicalsort)) function is a function template, graph structures of arbitrary type can be
used. All that is required is that the type satisfies the concepts required by the algorithm.

The first two template parameters of thifacencylist class determine the particular inter-
nal structure that will be used. The first argumisis specifies thastd::list is used for each
out-edge list. The second argumeatSspecifies thastd::vectoris used as the backbone of
the adjacency list. This version of tladjacencylist class is similar in character to the vector
of lists used in the previous section.

( Create an adjacency list objeccta) =
adjacencylist<listS, vecS directedS- g( n_tasks;

The functionadd edgg) provides the interface for inserting edges intoagjacencylist
(and all other graphs that support thégeMutableGraph concept). The vertex descriptor type
for adjacencylist is an integer wheatd::vectoris used for the backbone, which is why we can
use integers below to specify vertices. It is not always true for a given graph type that one can
use integers to specify vertices.

( Add edges to the adjacency listb ) =

add edgg 0, 3, Q);
addedgd 1, 3, 9);

add edg€ 1, 4, 0q);
add edg€ 2, 1, q);
add edg€ 3, 5, Q);
add edg€ 4, 6, Q);
add.edg€ 5, 6, Q);

The rest of the program is similar to the previous example, except thatljfgencylist.hpp
header file is included instead @éctoras graph.hpp The following is the code for the pro-
gram, with two of the parts reused from the previous section.
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( “topo-sort2.cpp”18) =
#include <vector-
#include <deque>
#include <boost graph/ topological sort hpp>
#include <boost graph/ adjacencylist. hpp>
int main()
{
using namespace bogst
(Create labels for each of the taskisb)
(Create an adjacency list objedfra)
(Add edges to the adjacency lis7h)
(Perform the topological sort and output the results)
return EXIT_SUCCESS

1.4.2 The Depth-First Search Generic Algorithm

The BGL implementation aopologicalsort() is only a few lines long because it can be im-
plemented using theepthfirst_searcl{) function (and, in fact, the topological sort algorithm
is typically presented this way in text books). The implementation consisdspofifirst_-
searcl{) used with a visitor that records the order in which vertices pass through the “finish
vertex” event of the depth-first search. The explanation for why this computes a topological
ordering is given irg3.3

The following code creates an algorithm visitor class that records vertices as they pass
through the finish event point of a depth-first search. For added genericity, the vertex ordering
is recorded in an output iterator, allowing the user to choose from a variety of output methods.

template <typename Outputlteratos
class topasort.visitor : public defaultdfs_visitor { // inherit empty actions
public:

topa_sort.visitor( Outputlterator iter) : m_iter(iter) { }

template <typename Vertex typename Grapb

void finish.verte Vertex u, const Grapl&) { *m.iter++ = u; }
private:

Outputlterator miiter;

¥

Thus, topologicalsort) is implemented by invokingdepthfirst_searc) using the
topa.sortvisitor as a parameter.

template <typename Graph typename Outputlteratos

void topologicalsorf Graph& g, Outputlterator resultiter) {
topo_sortvisitor<Outputlterator> vis( result.iter);
depthfirst_search{ g, visitor( vis));

}
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Generic Programming in C++

2.1 Introduction

Generic programming (GP) is a methodology for program design and implementation that
separates data structures and algorithms through the use of abstract requirement specifica-
tions. In C++, generic programming is characterized by the use of parametric polymorphism
through the use of templates, with an emphasis on efficiency.

Generic programming is the methodology that we used in the construction of the Boost
Graph Library. To understand the organization and structure of the BGL, the reader needs a
good understanding of generic programming. Because generic programming is a relatively
new methodology (at least in the C++ community), we give an introduction to generic pro-
gramming in this chapter. We also discuss the main techniques for generic programming in
C++, which rely heavily on templates. These techniques are not just a collection of tricks;
taken together, they form what one might consider a new sublanguage within C++.

The abstract requirement specifications in generic programming are similar to the older
notion of abstract data types (ADTs). To review, an abstract data type is a type specification.
It consists of a description of the applicable operations and gives the semantics of those oper-
ations, which often include preconditions, postconditions, and axioms (or invariagtsp
classic example of an abstract data type ssakwith methods to implement push and pop.
There are numerous ways to implement a stack such as using a resizable array or a linked list,
but as long as the implementation meets the ADT specification, the implementation details
can be ignored by the user of a stack.

In generic programming, we take the notion of an ADT a step further. Instead of writing
down the specification for a single type, we describe a family of types that all have a com-
mon interface and semantic behavior. The set of requirements that describe the interface and
semantic behavior is referred to as@cept Algorithms constructed in the generic style are
then applicable t@ny type that satisfies the requirements of the algorithm. This ability to
use many different types with the same variable (or parameter of a function) is referred to as
polymorphism

19
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2.1.1 Polymorphism in Object-Oriented Programming

In object-oriented programming (OOP), polymorphism is realized with virtual functions and
inheritance, which is calledubtype polymorphisnThe interface requirements of a concept
can be written as virtual functions in an abstract base class. The preconditions and invariants
become assertions when possible. Concrete classes inherit from the abstract base class and
provide the implementation of these functions. The concrete classes are saisuiotyjges
(or derived classes) of the base class. Generic functions are written in terms of the abstract
base class and the function calls are dispatched at run-time based on the concrete type of the
object (via virtual function tables in C++). Angubtypeof the abstract base class can be
interchanged and used in the generic function.

A classic example of a concept from mathematics ifdditive Abelian Groupwhich
is a set of elements with an addition operator that obeys the associative law, has an inverse,
and has an identity element (zerdp]. We can represent this concept in C++ by defining an
abstract base class as follows:

/Il The AdditiveAbelianGroup concept as an abstract base class:

class AdditiveAbelianGroup{

public:
virtual void add AdditiveAbelianGroup y) =
virtual AdditiveAbelianGroup invers€) = O;
virtual AdditiveAbelianGroup zerq) = O;

I

Using this abstract base class we can write a reusable function secim@s

0;

AdditiveAbelianGroupp sum( array<AdditiveAbelianGroup > V)
{
AdditiveAbelianGroup total = v[ 0] —zerq);
for (inti =0; i < v.sizd); ++ i)
total—add( V[ i]);
return total;

}

Thesum() function will work on any array as long as the element type derives &additive-
AbelianGroup Examples of such types would be real numbers and vectors.

class Real : public AdditiveAbelianGrougd
Im...

h

class Vector : public AdditiveAbelianGrougd
Im...

J*
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2.1.2 Polymorphism in Generic Programming

In generic programming, polymorphism is realized through class or function templates. Tem-
plates providgparametric polymorphism Below issum() written as a function template.

The AdditiveAbelianGroupbase class is no longer needed, although by convention (and for
documentation purposes) we use the nawditiveAbelianGroupfor the template parameter.

template <typename AdditiveAbelianGroup
AdditiveAbelianGroup surfarray<AdditiveAbelianGroup> V)
{
AdditiveAbelianGroup total= V[ 0]. zerd);
for (inti = 0; i < v.sizd); ++ i)
total. add( V[ i]);
return total;

}

In C++ a concept is a set of requirements that a template argument must meet so that the
class template or function template can compile and execute properly.

Even though concepts exist only implicitly in generic programming, they are vitally im-
portant and must be carefully documented. Currently, such documentation is typically ac-
complished in the comments of the code or in books sudBeaseric Programming and the
STL[3]. Consider again the example of AdditiveAbelianGroup, but this time as a concept.

/I concept AdditiveAbelianGroup
/[ valid expressions:

1 x.add(y)

1 y = x.inverse()

I y = x.zero()

/[ semantics:

I

Concrete types that satisfy the requirement&\déitiveAbelianGroup do not need to
inherit from a base class. The types of the template argument are substituted into the function
template during instantiation (at compile time). The tenodelis used to describe the rela-
tionship between concrete types and the concepts they satisfy. For ex&esdland Vector
model theAdditiveAbelianGroup concept.

struct Real { // no inheritance
Im...

h

struct Vector { // no inheritance
Im...

}
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2.1.3 Comparison of GP and OOP

So far, we have loosely described generic programming as “programming with templates”
and object-oriented programming as “programming with inheritance.” This is somewhat mis-
leading because the core semantics of these two methodologies are only indirectly related
to templates and inheritance. More formally, generic programming is baspdrametric
polymorphism while object-oriented programming is based saubtype polymorphismin
C++ these ideas are implemented with templates and inheritance, but other languages provide
different mechanisms. For example, the signatures extension in GNU 4 ptdvides an
alternate form of subtype polymorphism. Multimethods (in languages such as CIIQS [
provide semantics closer to that of parametric polymorphism but with run-time dispatching
(compared to the compile-time dispatching of templates).

Nevertheless, since Standard C++ is our language choice, it is useful to compare GP and
OOP by comparing inheritance (and virtual functions) with templates in the context of C++.

Virtual Functions Are Slower than Function Templates

A virtual function call is slower than a call to a function template (which is the same speed
as a call to a normal function). A virtual function call includes an extra pointer dereference
to find the appropriate method in the virtual function table. By itself, this overhead may
not be significant. Significant slowdowns can result indirectly in compiled code, however,
because the indirection may prevent an optimizing compiler from inlining the function and
from applying subsequent optimizations to the surrounding code after inlining.

Of course the overall impact of the overhead is entirely dependent on the amount of work
done in the function—that is, how much the overhead will be amortized. For components at
the level of the STL iterators and containers, or at the level of graph iterators, function call
overhead is significant. Efficiency at this level is affected greatly by whether functions like
operator+%) are inlined. For this reason, templates are the only choice for implementing
efficient, low-level, reusable components such as those you find in the STL or the BGL.

Run-time Dispatch versus Compile-time Dispatch

The run-time dispatch of virtual functions and inheritance is certainly one of the best features
of object-oriented programming. For certain kinds of components, run-time dispatching is an
absolute requirement; decisions need to be made based on information that is only available
at run time. When this is the case, virtual functions and inheritance are needed.

Templates do not offer run-time dispatching, but they do offer significant flexibility at
compile time. In fact, if the dispatching can be performaed at compile time, templates offer
more flexibility than inheritance because they do not require the template arguments types to
inherit from some base class (more about this later).
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Code Size: Virtual Functions Are Small, Templates Are Big

A common concern in template-based programsoide bloat which typically results from

naive use of templates. Carefully designed template components need not result in signifi-
cantly larger code size than their inheritance-based counterparts. The main technique in con-
trolling the code size is to separate out the functionality that depends on the template types
and the functionality that is independent of the template types. An example of how to do this
can be seen in the SGI STL implementatiorsiaf:list.

The Binary Method Problem

There is a serious problem that shows up when using subtyping (inheritance and virtual func-
tions) to express operations that work on two or more objects. This problem is known as
the binary method problent]. The classic example for this problem, which we illustrate
next, is a point class interface (a coordinate in a plane) that hagualf) member function.
This problem is particularly important for the BGL, since most of the types it defines (vertex
and edge desriptors and iterators) requireopgrator=x) much like a point classqual)
function.

The following abstract base class describes the interface for a point class.

class Point{
public:
virtual bool equal const Point p) const= 0;

I

Using this interface, a library writer could write a “generic” function that takes any class
derived fromPoint and print out whether the two objects are equal.

void print.equal const Point a, const Point b) {
std::cout << std::boolalpha << a—>equal b) << std::endt

}

Now consider an implementation of a particular point class, sagtfwPoint class. Suppose

that in our application the only point class we will be using is @odorPoint class. It is only
necessary to define equality between two color point objects, and not between a color point
and any other kind of point.

class ColorPoint : public Point{
public:
ColorPoint( float x, float y, std:string 9 : x(x), y(y), color(c) { }
virtual bool equal const ColorPoint p) const
{ return color == p—>color && x == p—>x && y == p—>y; }
protected:
float x, v;
std::string color,

¥
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However, when we try to use this class, we find out thatblerPoint::equal) function did
not override thePoint::equal() function. When trying to instantiate @olorPoint object we
get the following error.

error: object of abstract class typé ColorPoint' is not allowed:
pure virtual function " Point::equal' has no overrider

It turns out that by the contravariance subtyping rule, the parameter type in the derived classes
member function must be either the same type or a base class of the type as the parameter
in the base class. In the case of ttdorPoint class, the parameter égual) must bePoint,

not ColorPoint. However, making this change causes another problem. Insidenttz)

function, thePoint argument must be downcast to be able to check to determine if the data
members are equal. The insertion of this downcast means that it is no longer known at compile
time whether a program using tid®lorPoint class is type safe. An object of a different point
class could be passed to thgual) function in error, causing an exception at run time. The
following ColorPoint2 class changes the parameter of thgal) to Point and inserts the
downcast.

class ColorPoint2 : public Point{
public:
ColorPointZ float x, float y, std:string 9 : x(x), ¥(y), color(s) { }
virtual bool equal const Point p) const {
const ColorPoint2 cp = dynamiccastkconst ColorPoint2 >( p);
return color == cp—>color && X == cp—>X && Yy == cp—>V;,
}
protected:
float x, v;
std::string color,

¥

Now suppose that we were using function templates instead of virtual functions to express
polymorphism. Then thprint_equal) function could be written like this:

template <typename PointType
void print_.equalZ const PointTyp& a, const PointTypg& b) {
std::cout << std::boolalpha << a—>equal b) << std::endf

}

To use this function, the color point class does not need to inheritfmng and the subtyping
issues are irrelevant. When thpeént_equalq) function is called with two objects of type
ColorPoint, the PointTypeparameter is substituted f@olorPoint and the call taequal simply
resolves taColorPoint::equal) . Full compile-time type safety is therefore retained.

ColorPoint* a = new ColorPoin{ 0.0, 0.0, "blue");
ColorPoint* b = new ColorPoin{ 0.0, 0.0, "greer');
print_equald a, b);
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Since the BGL is implemented in terms of function templates, we did not have to be concerned
with the binary method problem. If instead the BGL had been implemented with virtual
functions, the binary method problem would have been a constant source of trouble.

2.2 Generic Programming and the STL

The problem domain underlying the STL is that of basic algorithms for computer science
(e.g., array and list structures, searching and sorting algorithms—the kind of things you dealt
with in your data structure and algorithms classes). Now, there have been any number of
“foundational” library collections that have attempted to provide some kind of comprehensive
set of data structures and algorithms. What diffrerentiates the STL from the rest of these
efforts is generic programming (process and practice).

As described by Musser and Stepanod][ the GP process as it is applied to a particular
problem domain consists of the following basic steps:

1. Identify useful and efficient algorithms

2. Find their generic representation (i.e., parameterize each algorithm such that it makes
the fewest possible requirements of the data on which it operates)

3. Derive a set of (minimal) requirements that allow these algorithms to run and to run
efficiently

4. Construct a framework based on classifications of requirements

This process is reflected in the structure and organization of the STL components.

In terms of programmingractice the minimization process and framework design imply
a structure where algorithms are expressed independently of any particular data types upon
which they might operate. Rather, algorithms are written to generic specifications that are
deduced from the algorithms’ needs.

For instance, algorithms typically need the abstract functionality of being abiaverse
through a data structure and &ocessits elements. If data structures provide a standard
interface for traversal and access, generic algorithms can be freely mixed and matched with
data structures (callezbntainersin the terminology of the STL).

The main facilitator in the separation of algorithms and containers in the STL itethe
ator (sometimes called generalized pointér Iterators provide a mechanism for traversing
containers and accessing their elements. The interface between an algorithm and a container
is in terms of iterator requirements that must be met by the type of iterators exported by the
container. Generic algorithms are most flexible when they are written in terms of iterators and
do not rely on a particular container.

Iterators are classified into broad categories, some of whichhpnéterator, ForwardlIt-
erator, andRandomAccesslterator. Figure2.1 depicts the relationship between containers,
algorithms, and iterators.


http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.sgi.com/tech/stl/RandomAccessIterator.html
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Iterators

Figure 2.1 Separation of containers and algorithms using iterators.

The STL defines a set of requirements for each class of iterators. The requirements are
in the form of which operations (valid expressions) are defined for each iterator, and what
the meaning of the operation is. As an example of how these requirements are defined, a
sample from the requirements for the STL random-access iterator (which includes those of
the forward iterator) is listed in Tab2.1 In the table, typex is the iterator typeT is the
pointed-to type, and is the type of a member af. The objects, b, andr are iteratorsmis
a member off, andn is an integer.

| expression| return type | note |
a== bool *a==*
al=b bool l(a==h)
a<b bool b-a>0
*a T& dereferenca
a—>m U& (*a).m
++r X& ==S— ++r==++s
——r X& r==s— ——==-—-5
r+=n X& same as n of+r
a+n X {tmp =a; return tmp +=n;}
b-a Distance (a < b) ? distance(a, b)
: —distance(b, a)
a[n] convertible toT | *(a+n)

Table 2.1: A sample of the STL random-access iterator requirements.

Accumulate Example

For a concrete example of generic programming we will look at the algoatitumulate) |
which successively applies a binary operator to an initial value and each element in a con-
tainer. A typical use oaccumulaté) would be to sum the elements of a container using the
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addition operator. The following code shows how one could implemerddtenulaté) al-

gorithm in C++. Thdirst andlastarguments are iterators that mark the beginning and passed-
the-end of the sequence. All of the arguments to the function are parameterized on type so that
the algorithm can be used with any container that models$nihelterator concept. Iterator
traversal uses the same notation as pointers; specificplyator+%) increments to the next
position. Several other ways to move iterators (especially random access iterators) are listed
in Table2.1. To access the container element under the iterator, one uses the dereference
operatorperator¥) , or the subscript operatasperator[]() , to access at an offset from the
iterator.

template <typename Inputlteratoy typename T typename BinaryOperator
T accumulate Inputlterator first, Inputlterator last, T init, BinaryOperator binaryop)

{
for (; first I= last ++ first)
init = binary_op(init, * first);
return init;
¥

To demonstrate the flexibility that the iterator interface provides, we useacthenulate)
function template with a vector and with a linked list (both from the STL).

/I using accumulate with a vector

std::vectokdouble> x( 10, 1.0);

double sumil

suml = std::accumulaté x. begin), x. end), 0.0, std::plus<double>());

/I using accumulate with a linked list

std::list<double> ;

double sum2

/I copy vector's values into the list

std::copy x. begin(), x. end)), std::backinserter(y));

sum2 = std::accumulaté y. begin(), y.end), 0.0, std::plus<double>());
asser suml == sum3?; // they should be equal

2.3 Concepts and Models

The previous section showed an example ofRhadomAccesslterator requirements. It also
showed hownputlterator was used as a requirement for tmeumulaté) function and how
bothstd::list::iterator andstd::vector::iteratorcould be used with this function. In this section,
we define the terms that describe the relationships between sets of requirements, functions,
and types.

In the context of generic programming, the tezancepis used to describe the collection
of requirements that a template argument must meet for the function template or class tem-


http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/RandomAccessIterator.html
http://www.sgi.com/tech/stl/InputIterator.html

28 CHAPTER 2. GENERIC PROGRAMMING IN C++

plate to compile and operate properly. In the text,ghas-serif font is used to distinguish
concept names.

Examples of concept definitions can be found in the C++ Standard, many of which deal
with the requirements for iterators. In addition, Matthew Austern’s b@ekeric Program-
ming and the STI3] and the SGI STL Web site provide comprehensive documentation on
the concepts used in the STL. These concepts are used heavily in the definition of the BGL
concepts. The SGI STL Web site is at the following URL.:

http://www.sgi.com/tech/stl/

2.3.1 Sets of Requirements

The requirements for a concept consist of a set of valid expressions, associated types, invari-
ants, and complexity guarantees. A type that meets the set of requirements isreaidielo

the concept. A concept can extend the requirements of another concept, which isesalled
finement

Valid Expressions are C++ expressions that must compile successfully for the types in-
volved in the expression to be considered models of the concept.

Associated Typesare auxiliary types that have some relation to the typmodeling the
concept. The requirements in a concept typically make statements about associated
types. For example, iterator requirements typically include an associated type called
the value type and the requirement that objects returned by the iterator's dereference
operator must be of thealuetype In C++ it is common to use a traits class to map
from the typeT to the associated types of the concept.

Invariants are run-time characteristics of types that must always be true. The invariants often
take the form of preconditions and postconditions. When a precondition is not fulfilled,
the behavior of the operation is, in general, undefined and can lead to a segmentation
fault. This is the case for the Boost Graph Library. Some libraries provide debugging
versions that use assertions or throw exceptions when a precondition is violated. A
future version of the Boost Graph Library may do this.

Complexity Guarantees are maximum limits on how long the execution of one of the valid
expressions will take, or how much of the various resources its computation will use.

2.3.2 Example: Inputlterator

In this section, we take a closer look laputlterator as an example of a concept. First,
the Inputliterator concept is a refinement dtiviallterator which, in turn, is a refinement of
Assignable andEqualityComparable. Thus, thelnputlterator meets all the requirements of a
Triviallterator (which meets all of the requirements Afsignable and EqualityComparable).


http://www.sgi.com/tech/stl
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The result is that a type that modeétputiterator will have a dereference operator, it can be
copied and assigned, and it can be compared with other iterator objects-asing!=.

The Inputlterator concept adds the requirement for pre-increment and post-increment op-
erators. These requirements are denoted by the followatig expressionsObjectsi andj
are instances of a typethat modelgnputlterator.

i =] /I assignment (from Assignable)

T i(j); / copy (from Assignable)

i == ] [/l equality test (from EqualityComparable)

i = j /I inequality test (from EqualityComparable)

*j /I dereference (from Triviallterator)
++i /I pre-increment operator
i++ /I post-increment operator

Thestd::iterator traits class provides access to thesociated typesf an iterator type. The
type of an object that is pointed to by an iterator type (cal)itan be determined via the
value_typeof the traits class. The other associated typesedeeence pointer, differencetype
anditerator_category Associated types and traits classes are discussed in more dé@i.in
In the following function template we show the use of tleeator_traits class to obtain the
value_typeof the iterator and dereference the iterator.

template <typename lterator void dereferenceexampld Iterator i)

{

typename iteratortraits<lIterator>::value_type t
t=*i;

}

As for complexity guarantees, all of theputlterator operations are required to be con-
stant time. Some types thatodel Inputlterator are std::list<int>>::iterator, double*, and
std::istreamiterator<char>.

The purpose of defining concepts becomes clear when considering the implementation of
generic algorithms. The implementation of titd::for each() function follows. Inside the
function precisely four operations are applied to the iterator obfastor last comparison
using operator!=() , increment withoperator+) , dereference witloperator®) , and copy
construction. For this function to compile and operate properly the iterator arguments must
support at least these four operations. The contgpititerator includes these operations
(and not many more), so it is a reasonable choice for succinctly describing the requirements
of for_each() .

template <typename Inputlteratoy typename Function
Function for_each( Inputlterator first, Inputlterator last, Function f)

for (; first 1= last ++ first)
f(* first);
return f;

}
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2.4 Associated Types and Traits Classes

One of the most important techniques used in generic programming is the traits class, which
was introduced by Nathan Myersd]. The traits class techniqgue may seem somewhat un-
natural when first encountered (due to the syntax) but the essence of the idea is simple. Itis
essential to learn how to use traits classes, for they are used regularly in generic libraries such
as the STL and the BGL.

2.4.1 Associated Types Needed in Function Template

A traits class is basically a way of determining information about a type that you would
otherwise know nothing about. For example, consider a gegei) function:

template <typename Array
X sum( const Array& v, int n)
{
X total = 0;
for (inti =0; i <n; ++1)
total += V[ i];
return total;

}

From the point of view of this function template, not much is known about the template
typeArray. For instance, the type of the elements that are inside the array is not given. How-
ever, this information is necessary in order to declare the local varatale which should
be the same type as the elementawhy. TheX that is there now is just a placeholder that
needs to be replaced by something else to produce a ceure@t function.

2.4.2 Typedefs Nested in Classes

One way to access information out of a type is to use the scope operti@ccessypedes
that are nested inside the class. For example, an array class might looks like the following:

class myarray {

public:
typedef double valugype // the type for elements in the array
doublek operatof]( int i) { m.datdi]; };

private:

doubles m_datg

I8

The type of the elements in the array can be accessedyiaray::value_type The generic
sum() function can be realized using this technique as follows (note that thiaceholders
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have been replaced withpename Array::valuetype'):

template <typename Array-
typename Array::.valuetype sunfconst Array& v, int n)

{
typename Array::valuetype total = O;
for (inti =0; i <n; ++1)
total += V[ i];
return total;
¥

In thesum() function above, the technique of using a nested typedef works as long as
Array is a class type that has such a nested typedef. However, there are important cases for
which having a nested typedef is neither practical nor possible. For instance, one might want
to use the generisum) function with a class from a third party that did not provide the
required typedef. Or, one might want to use $aen) function with a built-in type such as
double *.

int n = 100;
doubler x = new doublé n];
sum( X, n);

In both of these cases, it is quite likely that the functional requirements of our desired use
are met; that is, theperator[j() works withdouble*and with our imaginary third-party array.
The limitation to reuse is in how to communicate the type information from the classes we
want to use to theum() function.

2.4.3 Definition of a Traits Class

The solution to this is #&raits class which is a class template whose sole purpose is to pro-
vide a mapping from a type to other types, functions, or constants. The language mechanism
that allows a class template to create a mappirtgngplate specializationThe mapping is
accomplished by creating different versions of the traits class to handle specific type param-
eters. We will show how this works by creating amay_traits class that can be used in the
sum() function.

The array_traits class will be templated on thiray type and will allow us to determine
the value type (the type of the element) of the array. The default (fully templated) case will
assume that the array is a class with a nested typedef sushasay:

template <typename Array-
struct array_traits {
typedef typename Array::valugype valuetype

I8

When the type on the left hand side of thescope operator somehow depends on a template argument then
use theypenamekeyword in front of the type.
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We can then create a specialization of tireay traits template to handle when thiray
template argument is a built-in type lildeuble*,

template <> struct array_traits<double* > {
typedef double valugype

¥
Third-party classes, saghns.int_array, can be similarly accommodated:

template <> struct array_traits<johns_int_array> {
typedef int valuetype

b

Thesum() function, written witharray_traits class, is shown below. To access the type for the
total variable we extract thealue typefrom array_traits.

template <typename Array
typename arraytraits<Array>::value_type sunfconst Array& v, int n)

{
typename arraytraits<Array>::value_type total = O;
for (inti =0; i < n; ++1i)
total += V[ i];
return total;
}

2.4.4 Partial Specialization

Writing a traits class for every pointer type is not practical or desirable. The following shows
how to use partial specialization to provide array traits for all pointer types. The C++ compiler
will attempt a pattern match between the template argument provided at the instantiation of
the traits class and all the specializations defined, picking the specialization that is the best
match. The partial specialization far will match whenever the type is a pointer. The
previous complete specializations tiwuble* would still match first for that particular pointer

type.

template <typename T
struct array_traits<T* > {
typedef T valuetype

I8

Partial specialization can also be used to create a versiamayftraits for a third-party class
template.

template <typename T
struct array_traits< johns_array<T> > {
typedef T valuetype

¥
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The most well-known use of a traits class is ifeeator traits class used in the STL. The
BGL also uses traits classes suchgesph_traits and thepropertytraits classes. Typically, a
traits class is used with a particular concept or family of concepts. it€tetor traits class
is used with the family of iterator concepts. Tépaph_traits class is used with the family of
BGL graph concepts.

2.4.5 Tag Dispatching

A technique that often goes hand in hand with traits clasdeg idispatchingwhich is a way

of using function overloading to dispatch based on properties of a type. A good example of
this is the implementation of thetd::advanc€¢) function in the STL, which, in the default
case, increments an iterator n times. Depending on the kind of iterator, there are different
optimizations that can be applied in the implementation. If the iterator is random access, then
theadvancg) function can simply be implemented with= n and is very efficient; that is, it

is in constant time. If the iterator is bidirectional, then it may be the case that n is negative, so
we can decrement the iterator n times. The relation between external polymorphism and traits
classes is that the property to be exploited for dispatch (in this casgetiter_category is
accessed through a traits class.

In the following example, thadvancg) function uses thaerator_traits class to determine
theiterator_category It then makes a call to the overloadadl/ancedispatci{) function. The
appropriateadvancedispatcl) is selected by the compiler based on whatever typétdise
tor_categoryresolves to (one of the tag classes in the following codeladis simply a class
whose only purpose is to convey some property for use in tag dispatching. By convention, the
name of a tag class ends tag. We do not define a function overload for tteeward._iterator-

_tag because that case is handled by the function overloadewbiariterator_tag.

struct input.iterator_tag {};

struct outputiterator_tag {};

struct forward.iterator_tag : public inputiterator_tag {};

struct bidirectionaliterator_tag : public forward.iterator_tag {};
struct randomaccessiterator_tag : public bidirectionaliterator_tag {};

template <typename Inputlterator typename Distance
void advancedispatci Inputlterator& i, Distance n input_iterator_tag)
{ while (n—=) ++i; }

template <typename Bidirectionallterator typename Distance
void advancedispatch Bidirectionallterator& i, Distance n bidirectionaliterator_tag)

if (n>=0)

while (n—=) ++i;
else

while (n++) ——i;
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template <typename RandomAccesslteratortypename Distance
void advancedispatci{ RandomAccesslteraté i, Distance n random.accessiterator_tag)

{

i +=n,
1

template <typename Inputlterator typename Distance
void advancéInputlterator& i, Distance n

{
typedef typename iteratatraits<Inputlterator>::iterator_category Cat
advancedispatci{ i, n, Cat));

}

The BGL graph traits class includes three categoriedirectedcategory edgeparallel-
_category andtraversalcategory The tags for these categories can be used for dispatching
similarly toiterator_category

2.5 Concept Checking

An important aspect of using a generic library is using appropriate classes as template argu-
ments to algorithms (using classes that model the concepts specified by the requirements of
the algorithm). If an improper class is used, the compiler will emit error messages, but deci-
phering these messages can present a significant hurdle to the user of a template|ibidry [
The compiler may produce literally pages of difficult-to-decipher error messages for even a
small error.

The following is an example of a typical mistake, whereghiesor) function is applied
to an array of objects. In this casgerator<() is not implemented for the object tyfieo,
which means thatoo violates the requirements faessThanComparable (as given in the
documentation fostd::sort) ).

#include <algorithm>
class foo{ };
int main(int, char[])

{

foo array_of_foo[ 10];
std::sorf( array_of_foo, array_of_foo + 10);
return O;

}

The resulting error message is difficult to understand and all but the most experienced
of C++ programmers would be hard pressed to deduce the actual programming error from
the error message. The error message does not mention the concept that was violated
(LessThanComparable) and it exposes many of the internal functions usedtitisort) .

In addition, the error message fails to indicate the line at which the error occurs—in this case,
the call tostd::sor{) . The error looks like this:
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stl_heap h: In function void __adjustheap<foo*, int, foo>( foo*, int, int, foo) :

stl_heap h:214: instantiated from __make heap<foo*, foo, ptrdiff _t>( foo*,
foo*, foo*, ptrdiff_t*)

stl_heap h:225: instantiated from makeheap<foo* >( foo*, foo*)

stl_algo. h:1562: instantiated from __partial_sort<foo*, foo>( foo*, foo*,
foo*, foo*)

stl_algo. h:1574: instantiated from partialsort<foo* >( foo*, foo*, foo*)

stl_algo. h:1279: instantiated from__introsort_loop<foo*, foo, int>( foo*,
foo*, foo*, int)

stl_algo. h:1320: instantiated from here

stl_heap h:115: no match for foo & < foo &

2.5.1 Concept-Checking Classes

To overcome this problem we have developed a C++ idiom for up-front enforcement of con-
cept compliance, which we cationcept checking39. The supporting code for this id-

iom is available as the Boost Concept Checking Library (BCCI.) For each concept, the
BCCL provides a concept-checking class, such as the following concept-checking class for
LessThanComparable. The required valid expressions for the concept are exercised in the
constraint§) member function.

template <typename T
struct LessThanComparableConcegt
void constraintg) {
(bool)( a < b);

T a, b;
h

The concept-checking class is instantiated with the user’s template arguments at the beginning
of the generic algorithm using the BCGlinction_requirey) .

#include <boost conceptcheck hpp>

template <typename lIterator

void safesort( Iterator first, Iterator lasf)

{
typedef typename std:.iterataraits<Iterator>::value_type T,
function_requires< LessThanComparableConcepT > >();
/I other requirements ...
std::sorf( first, last);

}

Now whensafesort() is misused the error message (listed below) is much more comprehen-
sible: the message is shorter, the point of error is indicated, the violated concept is listed, and
the internal functions of the algorithm are not exposed.


http://www.sgi.com/tech/stl/LessThanComparable.html

36 CHAPTER 2. GENERIC PROGRAMMING IN C++

boost conceptcheck hpp: In method
void boost::LessThanComparableConcegbo>::constrainty) :

boost conceptcheck hpp:31: instantiated from

boost::function_requires<boost::LessThanComparableConcegbo> >()
sort eg cpp:11: instantiated from safesort<foo* >(foo*, foo*)
sort.eg cpp:21: instantiated from here

boost conceptcheck hpp:260: no match for foo& < foo &

The Boost Graph Library uses concept checks to provide better error messages to users.
For each graph concept there is a corresponding concept-checking class defindabirstthe
graph/graphconcepts.hpfheader file. At the beginning of each BGL algorithm there are con-
cept checks for each of the parameters. Error messages originatingriphnconcepts.hpp
are a likely indication that one of the argument types given to an algorithm does not meet the
algorithm’s requirements for a concept.

2.5.2 Concept Archetypes

The complementary problem to concept checking is verifying whether the documented re-
guirements for a generic algorithm actually cover the algorithm’s implementation, a problem
we refer to azoncept coveringTypically, library implementors check for covering by man-

ual inspection, which of course is error prone. We have also developed a C++ idiom that
exploits the C++ compiler’s type checkeiq] to automate this task. The code for concept
covering is also available as part of the Boost Concept Checking Library.

The BCCL provides amrchetype clas$or each concept used in the Standard Library.
An archetype class provides a minimal implementation of a concept. To check whether a
concept covers an algorithm, the archetype class for the concept is instantiated and passed to
the algorithm.

The following example program attempts to verify that the requiremenssda$ort)
are covered by an iterator that modBlsndomAccesslterator having a value type modeling
LessThanComparable.

#include <algorithm>

#include <boost conceptarchetype hpp>

int main()

{
using namespace bogst
typedef lesgshan_comparablearchetype<> T;
random.accessiterator_archetype<T > ri;
std::sort( ri, ri);

}

In fact, this program will not successfully compile because those concepts do not cover the
requirements thadtd::sor{) makes of its template parameters. The resulting error message
indicates that the algorithm also requires that the value typgeobgConstructible.
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null _archetypé const nullarchetype<int> &) is private

Not only is the copy constructor needed, but the assignment operator is needed as well.
These requirements are summarized inAksignable concept. The following code shows
the implementation of the archetype class Aasignable. The Basetemplate parameter is
provided so that archetypes can be combined. For chedkihgorf{) , we would need to
combine the archetype classes Aasignable andLessThanComparable.

template <typename Base= null _archetype<> >

class assignablarchetype : public Base{
typedef assignablarchetype self

public:

assignablearchetypé const sel®) { }

self& operato=( const sel&) { return *this; }

I3

The Boost Graph Library includes an archetype class for every graph conceptin the header
file boost/graph/grapbarchetypes.hpp Test programs to verify the specification of each BGL
algorithm using the graph archetypes are located itilthégraph/testdirectory.

2.6 The Boost Namespace

Like all other Boost libraries, every component of the BGL is defined irbthasthamespace
to avoid name clashes with other libraries or application programs. In this section we describe
how to access BGL classes and functions indbestnamespace.

2.6.1 Classes

There are several ways to access BGL classes. The following code shows three ways to access
theadjacencylist class that is in theoostnamespace.

{ Il Apply namespace prefix to access BGL classes
boost::adjacencylist<> g;

¥

{ I/ Bring BGL class into current scope with using statement
using boost::adjacencyist;
adjacencylist<> g;

}

{ /I Bring all Boost components into current scope
using namespace bogst
adjacencylist<> g;

}

For brevity and clarity of presentation, the example code in this book omitsoidss::
prefix (that is, the code is presented agsihg namespace boosailready appears in an enclos-
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ing scope). For code using Boost libraries, we recommend using the ekplisit: prefix in

header files, and either the namespace prefix or spesifiig statements in source files. We
caution against the blankesing namespace boosstatement because this eliminates the pro-
tection against name clashes that is introduced bydbstnamespace. It is useful, however,

to write using statements in function scope because the danger of introducing name clashes
in such a limited scope is much reduced.

2.6.2 Koenig Lookup
Graph Operations

The BGL interface consists of overloaded functions defined for each graph type. For example,
thenum_verticeg) function has a single argument, the graph object, and returns the number of
vertices. This function is overloaded for each BGL graph class. Interestingly (and fortunately,
as we will see), overloaded functions may be called without qualifying the function name
with the namespace. Using a process callednig lookupthe C++ compiler examines the
argument type and looks for overloaded functionthe namespace of the argument type

The following example illustrates Koenig lookup. Consider the case of someone using
graph classes that are supplied by two different graph libraries. Each library has its own
namespace, inside of which is defined a graph class anchaerticeg) function.

namespace ligack {

class graph{ /* ... */ };

int num_verticeg const grap&) { /* ... * }
}
namespace ligjill {

class graph{ /* ... */ };

int num_verticeg const grapi&) { /* ... */ }

}

Suppose the user wants to apply some generic graph algorithrhpssty:pail) , to both of
these graph types.

int main()

{
lib_jack::graph g1;
boost::pail gl);
lib_jill::graph g2;
boost::pail g2);

}

Inside of theboost::pail) there is a call tonum_vertice§) . The desired behavior in this
situation is that if a graph frorib_jack is used, thefib_jack::num_verticeg) gets called, but if

2Koenig lookup is named after its inventor, Andrew Koenig. It is sometimes called “argument dependent
lookup.”
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the graph fromib_jill () is used, thefib jill::num _vertice§) gets calledKoenig lookugs the

C++ language feature that provides this behavior. Provided the function call is not qualified
with a namespace, the C++ compiler will search the namespace of the arguments to find the
correct function to call.

namespace boos{
template <typename Graph
void pail( Graph& g)
{
typename graphraits<Graph>::vertices sizetype
N = num_verticeg g); // Koenig lookup will resolve
...

}

} /I namespace boost

Graph Algorithms

The BGL graph algorithms differ from the graph operations in that they are function tem-
plates, not overloaded functions. Therefore, Koenig lookup do¢sipply to BGL graph
algorithms. As a result, BGL graph algorithms must be accessed usibgdbie namespace
prefix, or by using one of the other methods describetli.1 For example, to call the
breadthfirst_searcl) algorithm, theboost:: prefix is required, as shown:

boost::breadthfirst_searcl{ g, start, visitor( vis));

2.7 Named Function Parameters

Many BGL algorithms have long parameter lists to provide the maximum amount of flexi-
bility. However, in many situations this flexibility is not needed, and one would like to use
defaults for many of the parameters. For example, consider the following function template
having three parameters.

template <typename X typename Y typename 2
void f(X x, Yy Z 2;

The user should be able to pass in zero or more arguments and the unspecified parameters
would use the defaults. The user might want to pass an argument for pargrbaterotx

or z. Some languages provide direct support for this with a feature cadleted parameters

(also sometimes callekkyword parametejs Using named parameters, a label is used with
each argument to indicate to which parameter it is bound, replacing the normal convention
of binding arguments to parameters according to their order in the parameter list. If C++
supported named parameters, then one would be able to call fu¢ticim the following

way.
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int a;

int b;

f(z=b, x=a); // bind 'b’ to parameter 'z’, 'a’ to parameter X’
/I and 'y’ gets its default argument

Of course, C++ does not support named parameters, but this feature can be approximated
using a little trickery. The BGL includes a class nanbgtnamedparamsthat mimics named
parameters by allowing lists of parameters to be built (fhe following code shows an ex-
ample of callingbellmanford_shortestpathg) using the named parameter technique. Each

of the arguments is passed to a function whose name indicates to which parameter the argu-
ment should be bound. Note that named parameters are delimiteddsod not a comma.
bgl_namedparams class is not explicitly referred to; it is created implicitly by the call to
weightmap() , and then the argument list is extended by the calisancemap)) andpre-
decessamap() .

bool r = boost::bellmanford_shortestpathq g, int( N),
boost::weightmap( weighy).
distancemap(& distancg 0]).
predecessamap& parenf 0]));

The order in which the arguments are provided is not important as long as each argument
is matched with the correct parameter function. The following is a calletmanford_-
shortestpathg) that is equivalent to the one just shown.

bool r = boost::bellmanford_shortestpathq g, int( N),
boost::predecessomap& parenf 0]).
distancemap(& distancg 0]).
weight map( weigh?);

3This is a generalization of idiom described in D&EI].



Chapter 3

A BGL Tutorial

As discussed in the previous chaptesnceptplay a central role in generic programming.
Concepts are the interface definitions that allow many different components to be used with
the same algorithm. The Boost Graph Library defines a large collection of concepts that cover
various aspects of working with a graph, such as traversing a graph or modifying its structure.
In this chapter we will introduce these concepts and also provide some motivation for the
choice of concepts in the BGL.

From the description of the generic programming process (see J#igeoncepts are
derived from the algorithms that are used to solve problems in particular domains. In this
chapter we examine the problem of tracking file dependencies in a build system. For each
subproblem, we examine generalizations that can be made to the solutions, with the goal of
increasing the reusability (the genericity) of the solution. The result, at the end of the chapter,
is a generic graph algorithm and its application to the file-dependency problem.

Along the way we will also cover some of the more mundane but necessary topics, such
as how to create a graph object and fill in the vertices and edges.

3.1 File Dependencies

A common use of the graph abstraction is to represent dependencies. One common type of
dependency that we programmers deal with on a routine basis is that of compilation depen-
dencies between files in programs that we write. Information about these dependencies is
used by programs such as make, or by IDEs such as Visual C++, to determine which files
must be recompiled to generate a new version of a program (or, in general, of some target)
after a change has been made to a source file.

Figure3.1shows a graph that has a vertex for each source file, object file, and library that
is used in thekillerapp program. An edge in the graph shows that a target depends on another
target in some way (such as a dependency due to inclusion of a header file in a source file, or
due to an object file being compiled from a source file).

41
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libfoobar.a

@zag.a
killerapp

Figure 3.1 A graph representing file dependencies.

Answers to many of the questions that arise in creating a build system such as make can
be formulated in terms of the dependency graph. We might ask these questions:

o If all of the targets need to be made, in what order should that be accomplished?

e Are there any cycles in the dependencies? A dependency cycle is an error, and an
appropriate message should be emitted.

e How many steps are required to make all of the targets? How many steps are required
to make all of the targets if independent targets are made simultaneously in parallel
(using a network of workstations or a multiprocessor, for example)?

In the following sections these questions are posed in graph terms, and graph algorithms
are developed to provide solutions. The graph in Figutds used in all of the examples.

3.2 Graph Setup

Before addressing these questions directly, we must first find a way to represent the file-
dependency graph of Figu&1l in memory. That is, we need to construct a BGL graph
object.
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Deciding Which Graph Class To Use

There are several BGL graph classes from which to choose. Since BGL algorithms are
generic, they can also be used with any conforming user-defined graph class, but in this chap-
ter we will restrict our discussion to BGL graph classes. The principle BGL graph classes are
the adjacencylist andadjacencymatrix classes. Thedjacencylist class is a good choice for

most situations, particularly for representing sparse graphs. The file-dependencies graph has
only a few edges per vertex, so it is sparse. atjacencymatrix class is a good choice for
representing dense graphs, but a very bad choice for sparse graphs.

Theadjacencylist class is used exclusively in this chapter. However, most of what is pre-
sented here will also apply directly to thdjacencymatrix class because its interface is almost
identical to that of theadjacencylist class. Here we use the same varianadjhcencylist as
was used irg1.4.1

typedef adjacencyist<
listS, /I Store out-edges of each vertex in a std::list
vecs /I Store vertex set in a std::vector
directedS // The file dependency graph is directed
> file_dep.graph;

Constructing a Graph Using Edge Iterators

In §1.2.4we showed how thaddverteX) andaddedgd) functions can be used to create a
graph. Those functions add vertices and edges one at a time, but in many cases one would like
to add them all at once. To meet this needdbjacencylist graph class has a constructor that
takes two iterators that define a range of edges. The edge iterators canyaidtyrator that
dereference to std::pair of integers(i, j) that represent an edge in the graph. The two integers

i andj represent vertices whefe< i < |V| and0 < j < |V|. Then andm parameters

say how many vertices and edges will be in the graph. These parameters are optional, but
providing them improves the speed of graph construction. The graph properties parameter
p is attached to the graph object. The function prototype for the constructor that uses edge
iterators is as follows:

template <typename Edgelteratos

adjacencylist( Edgelterator first Edgelterator last
verticessizetype n= 0, edgessizetype m= 0,
const GraphPropertie®& p = GraphPropertie§))

The following code demonstrates the use of the edge iterator constructor to create a graph.
Thestd::istreamiterator is used to make an input iterator that reads the edges in from the file.
The file contains the number of vertices in the graph, followed by pairs of numbers that specify
the edges. The second default-constructed input iterator is a placeholder for the end of the
input. Thestd::istreamiterator is passed directly into the constructor for the graph.
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std::ifstream fileiin( " makefile-dependencies.dat

typedef graphtraits<file_dep.graph>::vertices sizetype sizetype

sizetype nvertices

file_in >> n_vertices // read in number of vertices
std::istream.iterator<std::pair<sizetype sizetype> > input_begin( file_in), input_end
file_depgraph ¢ input_begin input_end n_vertices;

Since the value type of thetd::istreamiterator is std::pair, an input operator needs to be de-
fined forstd::pair.

namespace std
template <typename ™
std::istrean®& operator>>( std::istrean®& in, std::pair<T, T>& p) {
in >> p. first >> p. second
return in;

}
}

3.3 Compilation Order

The first question that we address is that of specifying an order in which to build all of the
targets. The primary consideration here is ensuring that before building a given target, all the
targets that it depends on are already built. This is, in fact, the same problengd.ii
scheduling a set of errands.

3.3.1 Topological Sort via DFS

As mentioned irg1.4.2 a topological ordering can be computed using a depth-first search
(DFS). To review, a DFS visits all of the vertices in a graph by starting at any vertex and then
choosing an edge to follow. At the next vertex another edge is chosen to follow. This pro-
cess continues until a dead end (a vertex with no out-edges that lead to a vertex not already
discovered) is reached. The algorithm then backtracks to the last discovered vertex that is
adjacent to a vertex that is not yet discovered. Once all vertices reachable from the starting
vertex are explored, one of the remaining unexplored vertices is chosen and the search contin-
ues from there. The edges traversed during each of these separate searchafefuifiest
tree and all the searches formdepth-first forestA depth-first forest for a given graph is not
unique; there are typically several valid DFS forests for a graph because the order in which
the adjacent vertices are visited is not specified. Each unique ordering creates a different DFS
tree.

Two useful metrics in a DFS are tligscover timeandfinish timeof a vertex. Imagine
that there is an integer counter that starts at zero. Every time a vertex is first visited, the value
of the counter is recorded as the discover time for that vertex and the value of the counter
is incremented. Likewise, once all of the vertices reachable from a given vertex have been
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visited, then that vertex is finished. The current value of the counter is recorded as the finish
time for that vertex and the counter is incremented. The discover time of a parent in a DFS
tree is always earlier than the discover time of a child. Similarly, the finish time of a parent
is always later than the finish time of a child. Fig@.€ shows a depth-first search of the file
dependency graph, with the tree edges marked with black lines and with the vertices labeled
with their discover and finish times (written as discover/finish).

/ N\

Z|g cpp 27/28 zag.cpp 29/30 - dax.h 1/14 bar.cpp 23/24 foo.cpp 25/26
2|g o 18/19 foo.0 10/11

libfoobar.a 3/8

libzigzag.a 4/7

killerapp 5/6

Figure 3.2 A depth-first search of the file dependency graph. The DFS tree is marked by the
black lines, and each vertex is labeled with its discover and finish time.

The relationship between topological ordering and DFS can be explained by considering
three different cases at the point in the DFS when an ¢dge) is examined. For each case,
the finish time ofv is always earlier than the finish time of Thus, the finish time is simply
the topological ordering (in reverse).

1. Vertexwv is not yet discovered. This means thatill become a descendantafand will
therefore end up with a finish time earlier thatecause DFS finishes all descendants
of u before finishingu.

2. Vertexv was discovered in an earlier DFS tree. Therefore, the finish tinveadst be
earlier than that of..

3. Vertexv was discovered earlier in the current DFS-tree. If this case occurs, the graph
contains a cycle and a topological ordering of the graph is not possibtclgis a
path of edges such that the first vertex and last vertex of the path are the same vertex.
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The main part of the depth first search is a recursive algorithm that calls itself on each
adjacent vertex. We will create a function namegb_sort dfs() that will implement a depth-
first search modified to compute a topological ordering. This first version of the function will
be a straightforward, nongeneric function. In the following sections we will make modifica-
tions that will finally result in a generic algorithm.

The parameters ttwposortdfs() include the graph, the starting vertex, a pointer to an
array to record the topological order, and an array for recording which vertices have been
visited. Thetopa.order pointer starts at the end of the array and then decrements to obtain the
topological ordering from the reverse topological ordering. Notettipatorder is passed by
reference so that the decrement made to it in each recursive call modifies the original object
(if topaorder were instead passed by value, the decrement would happen instead to a copy of
the original object).

void

toposort. dfs( const filedepgraph& g, vertext u, vertext*& topo.order, int* mark)

mark[ u] = 1; // 1 means visited, 0 means not yet visited
(For each adjacent vertex, make recursive cdlr)
* ——topo.order = u;

}
Thevertext type andedget types are the vertex and edge descriptors fofiléaglep graph.

typedef graphtraits<file_dep.graph>::vertex descriptor vertext;
typedef graphtraits<file_dep.graph>::edge descriptor edgs;

3.3.2 Marking Vertices using External Properties

Each vertex should be visited only once during the search. To record whether a vertex has
been visited, we can mark it by creating an array that stores the mark for each vertex. In
general, we use the teraxternal property storagto refer to the technique of storing vertex

or edge properties (marks are one such property) in a data structure like an array or hash table
that is separate from the graph object (i.e., th&xiernalto the graph). Property values are
looked up based on some key that can be easily obtained from a vertex or edge descriptor. In
this example, we use a versionafjacencylist where the the vertex descriptors are integers
from zero tonum_vertices(g) - 1 As a result, the vertex descriptors themselves can be used as
indexes into the mark array.

3.3.3 Accessing Adjacent Vertices

In the toposortdfs() function we need to access all the vertices adjacent to the vertex u.
The BGL concepAdjacencyGraph defines the interface for accessing adjacent vertices. The
function adjacentvertice§) takes a vertex and graph object as arguments and returns a pair
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of iterators whose value type is a vertex descriptor. The first iterator points to the first ad-
jacent vertex, and the second iterator points past the end of the last adjacent vertex. The
adjacent vertices are not necessarily ordered in any way. The type of the iteratoradgthe
cencyiterator type obtained from thgraph_traits class. The reference section taljacencylist
(§14.1.0 reveals that the graph type we are usidjacencylist, models theddjacencyGraph
concept. We may therefore correctly use the functidjacentverticeg) with our file depen-

dency graph. The code for traversing the adjacent verticepisort dfs() follows.

( For each adjacent vertex, make recursive 4all =
graph_traits<file_dep graph>::adjacencyiterator vi, vi_end
for (tie(vi, viend) = adjacentverticegu, Q); vi != vi_end ++ vi)
if (mark* vi] == 0)
topasort.dfs( g, * vi, topo.order, mark);

3.3.4 Traversing All the Vertices

One way to ensure that an ordering is obtained for every vertex in the graph (and not just those
vertices reachable from a particular starting vertex) is to surround the aafddsort dfs()

with a loop through every vertex in the graph. The interface for traversing all the vertices in a
graph is defined in theertexListGraph concept. Theverticeg) function takes a graph object

and returns a pair of vertex iterators. The loop through all the vertices and the creation of the
mark array is encapsulated in a function caligeb sort() .

void topasort( const filedepgraph& g, vertext* topo.order)

{

std::vectokint> mark( num_verticeg g), 0);
graph_traits<file_dep graph>::vertex iterator vi, vi_end
for (tie(vi, viend) = verticegQ); vi != vi_end ++ vi)
if (mark[* vi] == 0)
topasort.dfs( g, * vi, topoorder, & mark| 0]);

}

To make the output fronopo.sort) more user friendly, we will need to convert the vertex
integers to their associated target names. We have the list of target names stored in a file (in
the order that matches the vertex number) so we read in this file and store the names in an
array, which we will then use when printing the names of the vertices.

std::vectok std::string> name num_verticeg g));

std::ifstream namein( " makefile-target-names.da);

graph_traits<file_dep graph>::vertex iterator vi, vi_end

for (tie(vi, viend) = verticegg); vi != viend ++ vi)
namein >> namg* vil;

Now we create the order array to store the results and then apply the topological sort function.
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std::vectokvertext> order( num_verticeg g));

topasort( g, & ordef 0] + num_verticeg g));

for (int i = 0; i < num_verticeg g); ++ i)
std::cout << namqg ordef i]] << std::endt

The output is

Zag cpp
zig. cpp
foo. cpp
bar. cpp
zow h

boz h

zig. o

yow. h
dax h

zag o

foo. o

bar. o
libfoobar. a
libzigzag a
killerapp

3.4 Cyclic Dependencies

One important assumption in the last section is that the file dependency graph does not have
any cycles. As stated i$8.3.1 a graph with cycles does not have a topological ordering. A
well-formed makefile will have no cycles, but errors do occur, and our build system should
be able to catch and report such errors.

Depth-first search can also be used for the problem of detecting cycles. If DFS is applied
to a graph that has a cycle, then one of the branches of a DFS tree will loop back on itself.
Thatis, there will be an edge from a vertex to one of its ancestors in the tree. This kind of edge
is called aback edge This occurrence can be detected if we change how we mark vertices.
Instead of marking each vertex as visited or not visited, we use a three-way coloring scheme:
white means undiscovered, gray means discovered but still searching descendants, and black
means the vertex and all of its descendants have been discovered. Three-way coloring is
useful for several graph algorithms, so the headerbfilest/graph/properties.hpplefines the
following enumerated type.

enum defaultcolor_type { white_color, gray_color, black color };

A cycle in the graph is then identified by an adjacent vertex that is gray, meaning that an edge
is looping back to an ancestor. The following code is a version of DFS instrumented to detect
cycles.
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bool hascycle dfs( const filedepgraph& g, vertext u, defaultcolor_types color)
{

color[ u] = gray_color;
graph_traits<file_dep graph>::adjacencyiterator vi, vi_end
for (tie(vi, vi_end) = adjacentverticegu, g); vi != vi_end ++ vi)
if (color* vi] == white_color)
if (hascycledfs(g, * vi, color))
return true; // cycle detected, return immediately
else if (color* vi] == gray_color) // *vi is an ancestor!
return true;
colorf u] = black color;
return false

}

As with the topological sort, in theascyclg) function the recursive DFS function call is
placed inside of a loop through all of the vertices so that we catch all of the DFS trees in the
graph.

bool hascyclg const file dep.graph& g)
{

std::vectokdefault_color_type> color( num_verticeg g), white_color);
graph_traits<file_dep graph>::vertex_iterator vi, vi_end
for (tie(vi, viend) = verticegQ); vi != vi_end ++ vi)
if (color* vi] == white_color)
if (hascycledfs(g, * vi, & color 0]))
return true;
return false

}

3.5 Toward a Generic DFS: Visitors

At this point we have completed two functionspasort) andhascyclg) , each of which

is implemented using depth-first search, although in slightly different ways. However, the
fundamental similarities between the two functions provide an excellent opportunity for code
reuse. It would be much better if we had a single generic algorithm for depth-first search that
expresses the commonality betweepo.sort) andhascyclg) and then used parameters to
customize the DFS for each of the different problems.

The design of the STL gives us a hint for how to create a suitably parameterized DFS al-
gorithm. Many of the STL algorithms can be customized by providing a user-defined function
object. In the same way, we would like to parameterize DFS in such a wayopuetort()
andhascyclq) can be realized by passing in a function object.

Unfortunately, the situation here is a little more complicated than in typical STL algo-
rithms. In particular, there are several different locations in the DFS algorithm where cus-
tomized actions must occur. For instance, th_sort) function records the ordering at the
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bottom of the recursive function, whereas lag cyclg) function needs to insert an operation
inside the loop that examines the adjacent vertices.

The solution to this problem is to use a function object with more than one callback
member function. Instead of a singlperato() function, we use a class with several mem-
ber functions that are called at different locations (we refer to these placegaspoints
This kind of function object is called aalgorithm visitor The DFS visitor will have five
member functionsdiscoververtex) , tree.edg€) , backedgd) , forward_or_crossedgd) , and
finish_vertex) . Also, instead of iterating over the adjacent vertices, we iterator over out-edges
to allows passing edge descriptors to the visitor functions and thereby provide more informa-
tion to the user-defined visitor. This code for a DFS function has a template parameter for a
visitor:

template <typename Visitor

void dfsv]( const filedepgraph& g, vertext u, defaultcolor_typef color, Visitor vis)

{ color[ u] = gray_color;

vis. discoververteX u, g);
graph_traits<file_dep.graph>::out_edgeiterator ei, ei_end;
for (tie(ei, ei,end = outedge$u, g); ei!= eiend ++ei) {
if (color target(* ei, g)] == white_color) {
vis. tree_edg€* ei, Q);
dfs.vi( g, targei* ei, g), color, vis);

} else if (color target(* ei, g)] == gray_color)
vis. back edg€* ei, Q);
else

vis. forward_or_crossedgg* ei, Q);

}

color{ u] = black_color;
vis. finish_vertex u, g);

}

template <typename Visitor
void genericdfs_vi( const filedepgraph& g, Visitor vis)

{

std::vectokdefault color_type> color( num_verticeg g), white_color);
graph_traits<file_dep graph>::vertex_iterator vi, vi_end
for (tie(vi, vi_end = verticegg); vi = viend ++vi) {
if (color* vi] == white_color)
dfsvl(g, * vi, &color 0], vis);
}

}

The five member functions of the visitor provide the flexibility we need, but a user that
only wants to add one action should not have to write four empty member functions. This is
easily solved by creating a default visitor from which user-defined visitors can be derived.
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struct defaultdfs_visitor {
template <typename V typename G
void discoververte V, const G&) { }

template <typename E typename G
void treeedgd E, const &) { }

template <typename E typename G
void backedgé E, const &) { }

template <typename E typename G
void forward or_crossedgé E, const G&) { }

template <typename V typename G-
void finish.verteX V, const &) { }

J>

To demonstrate that this generic DFS can solve our problems, we reimplement the
topasort) andhascyclg) functions. First we need to create a visitor that records the topo-
logical ordering on the “finish vertex” event point. The code for this visitor follows.

struct topavisitor : public defaultdfs_visitor {
topo_visitor( vertext*& order) : topo_order( order) { }
void finish.vertex vertext u, const filedepgraph&) {
* ——topo.order = u;

}

vertext*& topa.order;
b

Only two lines of code are required in the bodytopasort) when implemented using
generic DFS. One line creates the visitor object and one line calls the generic DFS.

void topasort( const filedepgraph& g, vertext* topo.order)

{

topo.visitor viq topo_order);
genericdfs.vl( g, vis);

}

To reimplement théas cyclg) function, we use a visitor that records that the graph has
a cycle whenever the back edge event point occurs.

struct cycledetector : public defaultdfs_visitor {
cycle detectof bool& cycle : has.cyclg cycle { }
void backedgd edget, const filedepgraph&) {
has cycle = true;

}

bool& has cycle

¥
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The newhascyclg) function creates a cycle detector object and passes it to the generic DFS.

bool hascyclg const file dep.graph& g)

bool hascycle = false
cycle detector vi§ has cycle);
genericdfs vl( g, vis);
return has.cycle

}

3.6 Graph Setup: Internal Properties

Before addressing the next question about file dependencies, we are going to take some time
out to switch to a different graph type. In the previous sections we used arrays to store
information such as vertex names. When vertex or edge properties have the same lifetime as
the graph object, it can be more convenient to have the properties somehow embedded in the
graph itself (we call thesiaternal propertie$. If you were writing your own graph class you
might add data members for these properties to a vertex or edge struct.

The adjacencylist class has template parameters that allow arbitrary properties to be at-
tached to the vertices and edge: tetexPropertiesand EdgePropertiegparameters. These
template parameters expect the argument types to bedperty<Tag, T> class, wherdag
is a type that specifies the property andives the type of the property object. There are a
number of predefined property tags (§8&.2.3 such avertexnamet andedgeweightt. For
example, if you want to attachsad::string to each vertex to represent its name, then use the
following property type:

property<vertex namet, std::string>

If the predefined property tags do not meet your needs, you can create a new one. One way to
do this is to define an enumerated type nawetkx xxx_t or edgexxx_t that contains an enum

value with the same name minus the&nd give the enum value a unique number. Then use
BOOSTINSTALL _PROPERTYto create the required specializations of thepertykind and
property num traits classes. In the next section we will be assigning a compile-time cost to
each vertex so that we can determine how long the total compile will take.

namespace boosf
enum vertexcompilecostt { vertexcompilecost= 111 }; // a unique #
BOOST.INSTALL _PROPERTY vertex compilecos);

}

The propertyclass has an optional third parameter that can be used to nest mpiftiptety
classes thereby attaching multiple properties to each vertex or edge. Here we create a new
typedef for the graph, this time adding two vertex properties and an edge property.

!Defining new property tags would be much simpler if more C++ compilers were standards conformant.
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typedef adjacencyist<

listS, /I Store out-edges of each vertex in a std::list
listS, /I Store vertex set in a std:list
directedS // The file dependency graph is directed

Il vertex properties
property<vertex namedt, std::string,

property<vertex compile costt, float,

property<vertex distancet, float,

property<vertex color_t, default color_type> > > >,

/I an edge property
property<edgeweightt, float>
> file_dep.graph2

We have also changed the second template argumeanigdcencylist from vecSto listS.
This has some important implications. If we were to remove a vertex from the graph it would
happen in constant time (witlecSthe vertex removal time is linear in the number of vertices
and edges). On the down side, the vertex descriptor type is no longer an integer, so storing
properties in arrays and using the vertex as an offset will no longer work. However, the
separate storage is no longer needed because we now have the vertex properties stored in the

graph.

In §1.2.2we introduced the notion of a property map. To review, a property map is an
object that can be used to map from a key (such as a vertex) to a value (such as a vertex
name). When properties have been specified foadjiacencylist (as we have just done),
property maps for these properties can be obtained usingrtpertyGraph interface. The
following code shows an example of obtaining two property maps: one for vertex names and
another for compile time cost. Theoperty maptraits class provides the type of the property

map.

typedef propertymap<file_dep graph2,

typedef propertymap<file_dep.graph2,
compile costmap t;

typedef propertymap<file_dep graph2,

typedef propertymap<file_dep.graph2,

vertex namet>::type namemap.t;
vertex compile costt>::type

vertex distancet>::type distancemap.t;
vertex color_t>::itype colormapt;

Theget) function returns a property map object.

namemapt namemap = gef vertexname g);

compile.costmap.t compile.costmap = gef vertexcompilecost g);
distancemap.t distancemap = gef vertex distance g);

color_map_t color_map = gef vertexcolor, g);

There will be another file containing the estimated compile time for each makefile target. We
read this file using atd:ifstreamand write the properties into the graph using the property
maps,namemap and compilecostmap. These property maps are modelsLoflueProper-
tyMap so they have awoperatorf]) that maps from vertex descriptors to a reference to the

appriopriate vertex property object.
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std::ifstream namein( " makefile-target-names.d&);
std::ifstream compilecostin( " target-compile-costs.da);
graph.traits<file_dep.graph2>::vertex_iterator vi, vi_end
for (tie(vi, vi_end) = verticegg); vi!= viend ++ vi) {
namein >> namemag* vi];
compilecostin >> compile.costmag* vi];

}

In the following sections we will modify the topological sort and DFS functions to use the
property map interface to access vertex properties instead of hard-coding access with a pointer
to an array.

3.7 Compilation Time

The next questions we need to answer are, “How long will a compile take?” and “How
long will a compile take on a parallel computer?” The first question is easy to answer. We
simply sum the compile time for all the vertices in the graph. Just for fun, we will do this
computation using thetd::accumulatefunction. To use this function we need iterators that,
when dereferenced, yield the compile cost for the vertex. The vertex iterators of the graph do
not provide this capability. When dereferenced, they yield vertex descriptors. Instead, we use
thegraph_propertyiter_rangeclass (se€16.8 to generate the appropriate iterators.

graph_property iter_range<file_depgraph2 vertex compile costt>::iterator ci, ci_end
tie(ci, ci_end) = getpropertyiter_range( g, vertexcompilecos);
std::cout << "total (sequential) compile time!

<< std::accumulaté ci, ci_end 0.0) << std:endt

The output of the code sequence is
total ( sequentia) compile time: 21.3

Now suppose we have a parallel super computer with hundreds of processors. If there are
build targets that do not depend on each other, then they can be compiled at the same time
on different processors. How long will the compile take now? To answer this, we need to
determine the critical path through the file dependency graph. Or, to put it another way, we
need to find the longest path through the graph.

The black lines in Figur&.3 show the file dependency tbfoobar.a. Suppose that we
have already determined whear.o andfoo.o will finish compiling. Then the compile time
for libfoobar.awill be the larger of the times fdsar.o andfoo.o plus the cost for linking them
together to form the library file.

Now that we know how to compute the “distance” for each vertex, in what order should
we go through the vertices? Certainly if there is an edge) in the graph, then we better
compute the distance farbeforev because computing the distance tequires the distance
to u. This should sound familiar. We need to consider the vertices in topological order.
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libfoobar.a

libzigzag.a
killerapp

Figure 3.3 Compile time contributions ttibfoobar.a.

3.8 A Generic Topological Sort and DFS

Due to the change in graph type (frdite_depgraph to file_depgraph2) we can no longer use
thetoposort) function that we developed i§8.4. Not only does the graph type not match,
but also thesolor array used inside afenericdfs.vl() relies on the fact that vertex descriptors
are integers (which is not true féite_depgraph2). These problems give us an opportunity to
create an even more generic version of topological sort and the underlying DFS. We will
parameterize th®posort) function in the following way.

e The specific typdile_depgraph will be replaced by the template parame@taph.
Merely changing to a template parameter does not help us unless there is a standard
interface shared by all the graph types that we wish to use with the algorithm. This is
where the BGL graph traversal concepts come in.téjmisort() we will need a graph
type that models theertexListGraph andincidenceGraph concepts.

e Using avertext* for the ordering output is overly restrictive. A more generalized way
to output a sequence of elements is to use an output iterator, just as the algorithms in
the C++ Standard Library do. This gives the user much more options in terms of where
to store the results.

e We need to add a parameter for the color map. To make this as general as possible, we
only want to require what isssential In this case, theopasort) function needs to be
able to map from a vertex descriptor to a marker object for that vertex. The Boost Prop-
erty Map Library (see Chaptdi5) defines a minimalistic interface for performing this
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mapping. Here we will use thievaluePropertyMap interface. The internajolor_map
that we obtained from the graph §8.6 implements the.valuePropertyMap interface,
as does the color array we used$3.4 A pointer to an array of color markers can be
used as a property map because there are function overloadssitioropertymap.hpp
that adapt pointers to satisfy thealuePropertyMap interface.

The following is the implementation of our generigpasort) . The topavisitor and
genericdfs.v2() will be discussed next.

template <typename Graph typename Outputlteratar typename ColorMap-
void topasort const Grapl& g, Outputlterator topaorder, ColorMap color)

{

topa.visitor<Outputlterator> vis( topo_order);
genericdfs.v2( g, vis, color);

}

Thetopavvisitor class is now a class template to accommodate the output iterator. Instead of
decrementing, we now increment the output iterator (decrementing an output iterator is not
allowed). To get the same reversal behavior as in the first versimpasort)) , the user can

pass in a reverse iterator or something like a front insert iterator for a list.

template <typename Outputlteratas

struct topavisitor : public defaultdfs_visitor {

topo_visitor( Outputlterator& order) : topo_order( order) { }

template <typename Grapb

void finish_vertex typename graphtraits<Graph>::vertex descriptor y const Grapl&)
{ *topo.order++ = u; }

Outputlterator& topo order;

¥

The generic DFS will change in a similar fashion, with the graph type and color map be-
coming parameterized. In addition, we do agiriori know the color type, so we must get the
color type by asking th€olorMap for its value type (though thgropertytraits class). Instead
of using constants such aite_color, we use the color functions defineddolor traits.

template <typename Graph typename Visitoy typename ColorMap-

void genericdfs v2( const Grapl& g, Visitor vis, ColorMap colop

{
typedef colortraits<typename propertyraits<ColorMap>::value_type> ColorT;
typename graphtraits<Graph>::vertex iterator vi, vi_end

for (tie(vi, vi_end) = verticegg); Vi != vi_end ++ vi)
color* vi] = ColorT::white();
for (tie(vi, vi_end) = verticegg); Vi != vi_end ++ vi)

if (color* vi] == ColorT::white())
dfsv2(g, * vi, color, vis);



3.9. PARALLEL COMPILATION TIME 57

The logic from thedfs v1 will not need to change; however, there are a few small changes
required due to making the graph type parameterized. Instead of hard-cediag as the
vertex descriptor type, we extract the appropriate vertex descriptor from the graph type using
graph.traits. The fully generic DFS function follows. This function is essentially the same as
the BGL depthfirst_visit() .

template <typename Graph typename ColorMap typename Visitor
void dfsv2( const Grapl& g,
typename graphraits<Graph>::vertex_descriptor y
ColorMap color, Visitor vis)
{
typedef typename properyaits<ColorMap>::value_type colotctype
typedef colortraits<color_type> ColorT;
colorff u] = ColorT::gray();
vis. discoververteX u, Q);
typename graphraits<Graph>::out_edgeiterator ei, ei_end
for (tie(ei, eiend = outedge$u, Q); ei!= eiend ++ ei)
if (color| target* ei, g)] == ColorT::white()) {
vis. tree_edg€* ei, Q);
dfsv2(g, targe(* ei, g), color, Vvis);

} else if (color targei(* ei, g)] == ColorT::gray())
vis. back edgé* ei, g);
else

vis. forward_or_crossedgg* ei, Q);
colorf u] = ColorT::black();
vis. finish_verte u, g);

}

The real BGLdepthfirst_searc) andtopologicalsort() functions are quite similar to the
generic functions that we developed in this section. We give a detailed example of using the
BGL depthfirst_searci) function in§4.2 and the documentation faepthfirst_searci) is
in §13.2.3 The documentation fabpologicalsort() isin§13.2.5

3.9 Parallel Compilation Time

Now that we have a generic topological sort and DFS, we are ready to solve the problem
of finding how long the compilation will take on a parallel computer. First, we perform a
topological sort, storing the results in thwpo order vector. We pass the reverse iterator of
the vector intaopo.sort() so that we end up with the topological order (and not the reverse
topological order).

std::vectokvertext> topo.order( num_verticeg g));
topo_sort( g, topa.order. rbegin(), color_mapy);
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Before calculating the compile times we need to set up the distance map (which we are
using to store the compile time totals). For vertices that have no incoming edges (we call these
source vertices), we initialize their distance to zero because compilation of these makefile
targets can start right away. All other vertices are given a distance of infinity. We find the
source vertices by marking all vertices that have incoming edges.

graph_traits<file_dep graph2>::vertex_iterator i, i_end
graph_traits<file_dep graph2>::adjacencyiterator vi, vi_end

/I find source vertices with zero in-degree by marking all vertices with incoming edges

for (tie(i, i_end) = verticegg); i != i_end ++1i)
color_mag* i] = white_color;
for (tie(i, i_end = verticegg); i != i_end ++1i)
for (tie(vi, vi_end) = adjacentverticeg* i, @); vi = viend ++ vi)
color_mag* vi] = black color,

/I initialize distances to zero, or for source vertices, to the compile cost

for (tie(i, i_end) = verticegg); i != i_end ++1i)
if (color_mag* i] == white_color)
distancemag* i] = compilecostmag* i;
else

distancemag* i] = O;

Now we are ready to compute the distances. We go through all of the vertices stored
in topaorder, and for each one we update the distance (total compile time) for each adjacent
vertex. What we are doing here is somewhat different than what was described earlier. Before,
we talked about each vertex looking “up” the graph to compute its distance. Here, we have
reformulated the computation so that instead we are pushing distances “down” the graph. The
reason for this change is that looking “up” the graph would require access to in-edges, which
our graph type does not provide.

std::vectok vertext>::iterator ui;

for (ui = topo.order. begin); ui != topoorder. end); ++ ui) {
vertext u = *ui;
for (tie(vi, vi_end) = adjacentverticegu, g); Vi != vi_end ++ vi)

if (distancemagd* vi] < distancemag u] + compile.costmag* vi])
distancemag* vi] = distancemag u] + compilecostmag* vi];

}

The maximum distance value from among all the vertices will tell us the total parallel compile
time. Again we will usegraph propertyiter_range to create property iterators over vertex
distances. Thetd::maxelemenf) function will do the work of locating the maximum.

graph_property iter_range<file_dep.graph2 vertexdistancet>::iterator ci, ci_end
tie(ci, ci_end) = getpropertyiter_range( g, vertexdistance;
std::cout << "total (parallel) compile time:"

<< *std::maxelemenf ci, ci_end << std:endt
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The output is
total ( parallel) compile time: 11.9

Figure 3.4 shows two numbers for each makefile target: the compile cost for the target and
the time at which the target will finish compiling during a parallel compile.

zag.0[8.7,8.7]

bar.0[1.5, 1.5] foo.0[2.8,2.8]

libfoobar.a[1.5, 4.3]

killerapp [2.1, 11.9]

Figure 3.4 For each vertex there are two numbers: compile cost and accumulated compile
time. The critical path consists of black lines.

3.10 Summary

In this chapter we have applied BGL to answer several questions that would come up in
constructing a software build system: In what order should targets be built? Are there any
cyclic dependencies? How long will compilation take? In answering these questions we
looked at topological ordering of a directed graph and how this can be computed via a depth-
first search.

To implement the solutions we used the B@dljacencylist to represent the file depen-
dency graph. We wrote straightforward implementations of topological sort and cycle de-
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tection. We then identified common pieces of code and factored them out into a generic
implementation of depth-first search. We used algorithm visitors to parameterize the DFS
and then wrote specific visitors to implement the topological sort and the cycle detection.

We then looked at using a different variation of #itgacencylist class that allowed prop-
erties such as vertex name and compile cost to be attached to the vertices of the graph. We
then further generalized the generic DFS by parameterizing the graph type and the property
access method. The chapter finished with an application of the generic topological sort and
DFS to compute the time it would take to compile all the targets on a parallel computer.



Chapter 4

Basic Graph Algorithms

4.1 Breadth-First Search

Breadth-first search (BFS) is a fundamental technique for discovering information about a
graph that can be applied to many different problems. The BGL provides a generic imple-
mentation of BFS in théreadthfirst_searcl{) algorithm. This function template is param-
eterized so that it can be used in many situations. In this section, we describe breadth-first
search and show how to use BFS to calcuBdeon Numbers

4.1.1 Definitions

Breadth-first search is a traversal through a graph that discovers all of the vertices reachable
from a given source vertex. The order in which the vertices are discovered is determined
by the distance from the source vertex to each vertex, with closer vertices being discovered
before more distant vertices.

One way to think of breadth-first search is that it expands like the wave that emanates from
a stone dropped into a pool of water. Vertices in the same “wave” are at the same distance
from the source vertex. Figurelillustrates the application of BFS to a simple graph. The
BFS discovery order for the vertices in Figurd.is {d}{ f,g}{c, h,b,e}{a} (the vertices are
grouped according to their distance from the source veftex

When a vertex is discovered, the edde:, v) that led to its discovery is calledteee
edge All of the tree edges together fornbeeadth-first treawith the source vertex as the root
of the tree. Given a tree edde, v), vertexu is called thepredecessoor parentof v. The
tree edges in Figuré.1are indicated by the black lines, and non-tree edges are the gray lines.

The vertices in Figurd.1 are labeled with theishortest-path distancEom the source
vertexd. The shortest-path distanéés, v) from some vertex to vertexw is the the minimum
number of edges in any path connectingp v. A shortest pathis a path whose length is
equal tod(s,v) (there can be more than one shortest path between two vertices). The main

61
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Figure 4.1Breadth-first search spreading through a graph. The BFS tree consists of the black
lines.

characteristic of breadth-first search is that vertices with smaller shortest-path distances are
discovered before vertices with larget distances.

Chaptels presents shortest-path computations where the path length is determined by the
sum of weights assigned to edges in the path, not simply by the the number of edges in the
path.

4.1.2 Six Degrees of Kevin Bacon

An amusing application of breadth-first search comes up in the popular game “Six Degrees
of Kevin Bacon.” The idea of the game is to connect an adtwKevin Bacon through a trail
of actors who appeared together in movies, and do so in less than six steps. For example,
Theodore Hesburgh (President Emeritus of the University of Notre Dame) was in the movie
Rudywith the actor Gerry Becker, who was in the mo@keperaith Kevin Bacon. Why
Kevin Bacon? For some reason, the three students who invented the game, Mike Ginelli,
Craig Fass, and Brian Turtle, decided that Kevin Bacon was the center of the entertainment
world. Mathematicians play a similar game; they keep track of tBeltés numbemwhich is
the number of co-authored publications that separate them from the famous Rasul Erd

The “Six Degrees of Kevin Bacon” game is really a graph problem. The graph represent-
ing the problem can be modeled by assigning a vertex for each actor and creating an edge
between two vertices if the corresponding actors have appeared together in a movie. Since
the relationship between actors appearing together in a movie is symmetric, edges between
actors can be undirected, resulting in an undirected graph.

1We use the termactor generically to mean both actors and actresses.
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The problem of finding a trail of actors to Kevin Bacon becomes a traditional graph
problem—that of finding gath between two vertices. Since we wish to find a path that
is shorter than six steps, ideally we would like to find #ertest patibetween the vertices.
As mentioned in the previous section, breadth-first search can be used to find shortest paths.
Similar to the Erdds number, we will use the terBacon numbeto mean the shortest path
length from a given actor to Kevin Bacon. In the following example we will show how to use
the BGLbreadthfirst_searci{) function to calculate Bacon numbers for a collection of actors.

Input File and Graph Setup

For this example, we will use a small subset of the movies and actors from the Internet Movie
Data Basé. The fileexample/kevinbacon.datcontains a list of actor pairs who appeared in the
same movie. As shown in the following excerpt, each line of the file contains an actor's name,
a movie, and another actor that appeared in the movie. A semicolon is used as a separator.

Patrick Stewart Prince of Egypt The (1998); Steve Martin

Ouir first task will be to read in the file and create a graph from it. We usé:dfstreamto
input the file.

std::ifstream datafil¢ " ./kevin-bacon.ddt);

if (! datafile {
std::cerr << "No ./kevin-bacon.dat file << std::endt
return EXIT _FAILURE;

}

An adjacencylist is used to represent the graph, amdiirectedSis used to indicate that it is
undirected. As ir§3.6, to attach the actors’ names to the vertices and the movie names to the
edges, theropertyclass is used to specify the addition of these vertex and edge properties.

typedef adjacencyist<vecS vecS undirectedS property<vertexnamedt, std::string>,
property<edgenamedt, std::string> > Graph;
Graph g

To access the properties, property map objects will need to be obtained from the graph. The
following code establishes these maps, which will be used later with vertex and edge descrip-
tors to access the associated vertex or edge name.

typedef propertymap<Graph, vertexnamet>:type actornamemap.t;
actor.namemap.t actor.name = gef vertexname g);

typedef propertymap<Graph, edgenamet>:type movienamemap.t;
movie name.map.t connectingmovie = gef edgename Q);

The file is read one line at a time and parsed into a list of tokens separated by semicolons.
TheBoost Tokenizer Librarys used to create a “virtual” container of tokens.

2Thelnternet Movie DataBasis used by the CS department at the University of Virginia to supply the graph
for their Oracle of Bacon.


http://www.boost.org/libs/tokenizer/index.htm
http://www.imdb.com
http://www.cs.virginia.edu/oracle/
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for (std::string line; std::getling datafilg line); ) {
char_delimiters separatok.char> seq false ™ , ";");
tokenizek:> line_toky line, sep;
tokenizek:>::iterator i = line_toks. begin();
(Get first actor name and add vertex to grajg)
(Store the movie name to a variab&ba)
(Get second actor and add to grapith)
(Add edge connecting the two actors to the gra@bc)

}

Each line of the input corresponds to an edge in the graph that is incident to the two vertices
specified by the names of two actors. The name of the movie is attached to the edge as a
property. One issue in creating the graph from this file format is that it is a stream of edges.
While it is therefore a straightforward matter to insert edges into the graph based on the input
stream, it is slightly less straightforward to insert vertices. The vertices appear only in the
context of the edges that connect them, and a given vertex can appear multiple times in the
input stream. To ensure that each vertex is only added once to the graph, a map from actor
names to their vertices is used. As vertices are added to the graph, subsequent appearances of
the same vertex (as part of a different edge) can be linked with the correct vertex already in
the graph. This mapping is readily accomplished ustdgmap

typedef graphtraits<Graph>::vertex descriptor Vertex
typedef std::mag:std::string, Vertex> NameVertexMap
NameVertexMap actors

The first token of each line will be an actor’s name. If the actor is not already in the actor
map, a vertex is added to the graph, the name property of the vertex is set to the name of the
actor, and the vertex descriptor is recorded in the map. If the actor is already in the map, the
std::map::iinser() function returns an iterator pointing to the location of the corresponding
vertex in the graph.

( Get first actor name and add vertex to gré&gh =

std::string actorsname = *i++;
NameVertexMap::iterator pos
bool inserted
Vertex u, v;
tie( pos inserted = actors insert( std::makepair( actorsname \Vertex)));
if (inserted {
u = add.vertex g);
actornamg u] = actorsname
pos—>second= u;
} else
u = pos—>second

The second token is the name of the movie, which is attached to the edge connecting the two
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actors. However, the edge cannot be created until there is a vertex descriptor for both actors.
Therefore, the movie name is stored for later use.

( Store the movie name to a varialfiéa ) =
std::string moviename = * j++;

The third token is the second actor, and the same technique as above is used to insert the
correspoding vertex into the graph.

( Get second actor and add to grefin ) =
tie( pos inserted = actors insert( std::makepair(* i, Vertex)));
if (inserted {
v = add.verteX g);
actornamg v] = * i;
pos—>second=v;
} else
vV = pos—>second

The final step is to add an edge connecting the two actors and to record the name of the
connecting movie. SinceetSis used for the&EdgelListtype of theadjacencylist, parallel edges
in the input will not be inserted into the graph.

( Add edge connecting the two actors to the gréph) =
graph_traits<Graph>::edge descriptor e
tie(e, inserted = addedgdu, v, Q);
if (inserted
connectingmovig €] = movie name

Computing Bacon Numbers with Breadth-First Search

With our approach of computing Bacon numbers using BFS, we compute Bacon numbers for
all actors in the graph and therefore require storage locations for those numbers. Since we are
using anadjacencylist with VertexList=vecSthe vertex descriptors are integers and will be in

the rangd0, |V|). Therefore, the Bacon numbers can be storedsid:avector with the vertex
descriptor used as an index.

std::vectokint> baconnumber hum_verticeg g));

Now thebreadthfirst_searcl{) takes three arguments, the graph, the source vertex, and the
named parameters. The source vertex should be the vertex corresponding to Kevin Bacon,
which can be obtained from theetors name-to-vertex map. The Bacon number for Kevin
Bacon himself is, of course, zero.

Vertex src = actorq " Kevin Bacon' ];
baconnumbef src] = O0;
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To calculate the Bacon numbers, the distances along the shortest paths are recorded.
Specifically, when the BFS algorithm finds a tree edgev), the distance forv can
be computed withd[v] < d[u] + 1. To insert this action into the BFS, a visitor
classbaconnumberrecorder is defined that models thBFSVisitor concept and includes
the distance computation in theee edgd) event-point member function. The claks-
con.number.recorderis derived fromdefault bfs visitor to provide the default (empty) imple-
mentation of the remaining event-point member functions. The gebedlicePropertyMap
interface is used to access the distance of a vertex to make the visitor more reusable.

template <typename DistanceMap
class baconnumber_recorder : public defaultbfs visitor {
public:

baconnumber_recorde( DistanceMap dist : d(dist) { }

template <typename Edge typename Grapb
void treeedgd Edge e const Grapl& g) const {
typename graphraits<Graph>::vertex descriptor
u = sourcde @), Vv =target(e Q)
dvl = du] + 1;
}
private:
DistanceMap d

I8

/I Convenience function

template <typename DistanceMap
bacon number_recorder DistanceMap>
record_baconnumber( DistanceMap d

{

return baconnumber_recordex DistanceMap>( d);

}

We are now ready to cabreadthfirst_searc) . The visitor argument is a named pa-
rameter, so the argument must be passed usingigher() function. Here a pointer to the
beginning of thébaconnumberarray is used as the distance map.

breadth first_search{ g, src, visitor( record baconnumber(& baconnumbei 0])));

The Bacon number for each actor is output by looping through all the vertices in the graph
and looking up the corresponding Bacon number.

graph_traits<Graph>::vertex_iterator i, end
for (tie(i, end) = verticegqg); i!= end ++i) {
std::cout << actornamg* i] << " has a Bacon number of'
<< baconnumber* i] << std::endkt
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Here are some excerpts from the output of the program.

William Shatner has a Bacon number of2
Denise Richards has a Bacon number of
Kevin Bacon has a Bacon number oD
Patrick Stewart has a Bacon number of
Steve Martin has a Bacon number ofl

4.2 Depth-First Search

Depth-first search is a fundamental building block for many graph algorithms. The strongly
connected component algorithi§ilB.5.2 and topological sort algorithn§{3.2.5 both rely

on depth-first search. Depth-first search is also useful on its own—for instance, it can be used
to compute reachability and to detect cycles in a graph{3eg.

This last capability makes DFS useful as part of an optimizing compiler that may need
to identify loops in the control-flow graph of a program. This section describes how to use
the depthfirst_searci) anddepthfirst_visit() functions by walking through an example of
detecting and determining the extent of loops in the control-flow graph.

4.2.1 Definitions

A depth-first search visits all the vertices in a graph exactly once. When choosing which
edge to explore next, DFS always chooses to go “deeper” into the graph (hence the name
"depth-first”). That is, DFS will pick the next adjacent undiscovered vertex until reaching

a vertex that has no undiscovered adjacent vertices. The algorithm will then backtrack to
the previous vertex and continue along any as-yet unexplored edges from that vertex. After
DFS has visited all the reachable vertices from a particular source vertex, it chooses one of
the remaining undiscovered vertices and continues the search. This process creates a set of
depth-first treeshat together form thdepth-first forestFigure4.2 shows DFS applied to an
undirected graph, with the edges labeled in the order they were explored.

Similar to BFS, the DFS algorithm marks vertices with colors to keep track of the progress
of the search through the graph. Initially all vertices are white. When a vertex is discovered,
it is made gray; after all descendants of the vertex have been discovered, it is made black.

A depth-first search assigns the edges of the graph into three categories: tree edges, back
edges, and forward or cross edges.trée edgeis an edge in the depth-first search forest
constructed (implicitly or explicitly) by running DFS traversal over a graph. More specifically,
an edgdu, v) is a tree edge it was first discovered while exploring ed@e v). During the
DFS, tree edges can be identified because vertéxhe examined edge will be colored white.
Vertex v is called thepredecessoor parentof vertexw in the search tree if edge:, v) is a
tree edge. Aback edgeconnects a vertex to one of its ancestors in a search tree. This kind
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of edge is identified when the target vertexf the examined edge is gray. Self loops are
considered to be back edgesf@kward edges a non-tree edgg, v) that connects a vertex

u to a descendantin a search tree. Aross edges an edge that does not fall into the other

three categories. If the target vertewf an examined edge is colored black, then it is either a
forward or cross edge (though we do not know which it is).

There are typically many valid depth-first forests for a given graph, and therefore many
different (and equally valid) ways to categorize the edges. One way to implement DFS is
to use first-in, last-out stack. DFS pushes its adjacenct vertices into a stack on processing a
vertex and pops one vertex up for next vertex to process. Another way to implement DFS is
to use recursive functions. The two approaches are conceptually equivalent.

One interesting property of depth-first search is that the discover and finish times for
each vertex form a parenthetical structure. If we output an open parenthesis when a vertex
is discovered and a close parenthesis when a vertex is finished, then the result is a properly
nested set of parentheses. Here we show the parenthetical structure for DFS applied to the
graph of Figure4.2 DFS is used as the kernel for several other graph algorithms, including
topological sort and two of the connected component algorithms. It can also be used to detect
cycles (se¢3.4).

(a(c(f(g(d(b(eg b d g(hh f)ca(i(jji

Figure 4.2 Depth-first search spreading through a graph. The DFS tree consists of the solid
lines. The edges are labeled in the order that they were added to the DFS tree.
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4.2.2 Finding Loops in Program-Control-Flow Graphs

Our task for this section is to use DFS to find all the loops in a control-flow graph of a
program. Figuret.3 shows an example of a flow graph. Each box represehtsi block
which is a maximal sequence of instructions with a single entry and exit point. If there is
an edge between two blocks, such(a), Bg), then B, is apredecessoof Bs and B is a
successoto B;. A loopis defined as a set of blocks where all blocks are reachable from one
another along some path in the flow gragh][

/N
pan i
ANz
-

Exit

Figure 4.3 A control-flow graph for a program. Each box represents a basic block of instruc-
tions. The edgéBy, B;) is a back edge.

Finding the loops in the flow graph consists of two steps. The first is to find all the back
edges in the graph. Each back edgev) identifies a loop, since is the ancestor of in the
DFS tree and addin@:, v) completes the loop. The vertexs called thdoop head DFS is
used to identify the back edges of the flow graph. In FiguBz (B, B;) is an example of a
back edge. The second step is to determine which vertices belong to each loop.

These two steps are combined in the function temglateloopy) . This function has
three parameters: thentry vertex, the graply, and a container to store the vertices for each
loop. TheGraph type is required be a model 8idirectionalGraph so that both the in-edges
and out-edges of the graph can be accessed in code @dréLoopstype is a container whose
elements are sets of vertices. The back edges from the first step are storetdokibeéges
vector and theolor_mapis used during the DFS to mark the algorithms progress.
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( Find loops function templaté0a ) =

template <typename Graph typename Loops

void find_loopg
typename graphraits<Graph>::vertex_descriptor entry
const Grapl& g,
Loops& loopg /I A container of sets of vertices

{
function_requires< BidirectionalGraphConceptGraph> >();
typedef typename graplraits<Graph>::edge descriptor Edge
typedef typename graplraits<Graph>::vertex descriptor Vertex
std::vectoxk Edge> back edges
std::vectokdefault_color_type> color_map( num_verticeg g));
(Find all back edges in the grapfTla)
(Find all the vertices in each loofy1b)

}

For the first step @FSVisitor, backedgerecorder, is created that will record the back

edges during a depth-first search. To make this class more reusable, the storage mechanism for

back edges is not given, but rather parameterized @ugutiterator. Theback edgerecorder
inherits fromdefault.dfs_visitor to use default (empty) versions of event-point functions not
provided byback edgerecorder Only thebackedgd) member function needs to be imple-
mented. The following is the code for thackedgerecorder class template and its object
generator function.

( Back-edge recorder cla3éb ) =

template <typename Outputlteratas
class backedgerecorder : public defaultdfs visitor {
public:
back edgerecorde Outputiterator ouf) : m_out( out) { }
template <typename Edge typename Graph
void backedgd Edge e const Grapt&) { *m_out++ = e }
private:
Outputlterator m.out;
b
/I object generator function
template <typename Outputlteratas
back edgerecordex Outputlterator>
make back edgerecorde Outputlterator ou {
return back edgerecorder Outputlterator>( out);

}

We are now ready to call the DFS function. We chodsethfirst_visit() instead of
depthfirst_searc{) because all the vertices in the flow graph are reachable from the entry
vertex. Theentry vertex is therefore passed in as the starting point of the DFS. The third
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argument is the visitor, which will be the back edge recorder. The argumermikaback -
edgerecordef) needs to be an output iterator, thte::backinsertiterator adaptor is used to
store into théback edgesvector. The last parameter dépthfirst_visit() is the color property

map that DFS will use to keep track of its progress through the graph. The color property
map is created from an iterator to tb@or_mapvector (seg15.2.2.

( Find all back edges in the graptia) =

depthfirst_visit( g, entry,
make back edgerecordel( std::back inserte back edge}),
make iterator_property. map( color_map. begin(), gef vertexindex, Q)));

For the second step of our loop detection process, we determine which vertices belong
to each loop. To accomplish this, for each of the back edges discovered in stegpione,
pute loop_exten{) is called to find all the vertices in the loop.

( Find all the vertices in each loofilb ) =

for (std::vectokEdge>::sizetype i = 0; i < backedgessizd); ++ i) {
loops push.back typename Loops::valuaypg));
computeloop_exten{ back edgefi], g, loops back));

}

For a vertex to belong to a loop indicated by a back edggh), v must be reachable from

andt must be reachable from Therefore, theomputeloop_exten{) function will consist of

three steps: compute all the vertices reachable from the head, compute all the vertices from
which you can reach the tail, and intersect these two sets of vertices.

( Compute loop extentlc ) =

template <typename Graph typename Set
void computeloop_exten{ typename graphtraits<Graph>::edge descriptor backedge
const Grapl& g, Set® loop_se)
{
function_requires< BidirectionalGraphConceptGraph> >();
typedef typename graplraits<Graph>::vertex descriptor Vertex
typedef colortraits<default color_type> Color;

Vertex loophead loop.tail;
loop_tail = sourcd back edge g);
loop_head = targef back edge g);

(Compute loop extent: reachable from hed@)
(Compute loop extent: reachable to taiBa)
(Compute loop extent: intersect the reachable sé8b)

}
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To compute which vertices are reachable from the head of the loop, wiepiseirst_visit()

again. In this case, a new visitor does not need to be defined, since we only need to know
which vertices were discovered, and this can be determined by examining the color property
map after running DFS. Vertices that are colored gray or black (but not white) were discovered

during DFS. The color properties are stored in a vegachablefrom_head Figure4.4shows

all the vertices reachable from blogk .

( Compute loop extent: reachable from hé&) =

std::vectok default_color_type>
reachablefrom_head num_vertice¢ g), Color::white());
depthfirst_visit( g, loop_head default.dfs visitor(),
make iterator_property.map( reachablefrom_head begin(),
get vertexindex, Q)));

Entry

Bl/ \BS
SN
NUPZ

7

B6

8

Exit

Figure 4.4 Vertices reachable from block; .

For the second step, we need to compute all the vertices from which Blptkreach-
able. This can be done by performing an “upstream” depth-first search. That is, instead
of exploring along the out-edges of each vertex, we explore along the in-edges. The BGL
depthfirst_visit() function uses theutedge$) function to access the next vertices to ex-
plore, however it can still be applied to this situation by usingréversegraph adaptor. This
adaptor takes 8idirectionalGraph and provides a view of the graph where the meanings of
out-edges and in-edges are swapped. The following code shows how this is done 4FBgure
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shows all the vertices from which blod®; is reachable.

( Compute loop extent: reachable to t&#th ) =

std::vectokdefault_color_type> reachableto_tail( num_verticeg g));
reversegraph<Graph> reverseg( 9);
depth first_visit( reverseg, loop_tail, default dfs visitor(),
make.iterator_property map( reachableto_tail. begin(),
gef( vertexindex, Q)));

Entry

N
/\/
NP

B7 B8

/

Exit

Figure 4.5 Vertices from which blockB; can be reached.

The last step in computing all the vertices in a loop is intersecting the two reachable sets.

We output a vertex to thiwop_setif it was reachable from the heaahd if the tail can be
reached from it.

( Compute loop extent: intersect the reachable B&tg =

typename graphraits<Graph>::vertex iterator vi, vi_end
for (tie(vi, vi_end) = verticegg); Vi != vi_end ++ vi)
if (reachablefrom_head* vi] !I= Color::white()
&& reachableto_tail[* vi] = Color::white())
loop_set insert(* vi);
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Chapter 5

Shortest-Path Problems

In this chapter we will solve some Internet packet-routing problems using shortest-paths al-
gorithms included in BGL. The first section explains the shortest-paths problem in general
and reviews some definitions. The second section gives a brief introduction to packet routing.
The third and four sections describe two commonly used packet-routing protocols and present
their implementations using BGL.

5.1 Definitions

A pathis a sequence of verticésg, v1,...,v;) in a graphG = (V, E) such that each of
the edgesv;,v;+1) is in the edge sel’ (each vertex is connected to the next vertex in the
sequence). In the shortest-path problem, each édge) is given a weightw(u,v). The
weight of a path(or path length), is the sum of the weights for each edge in the path:

el
=

w(p) = ‘ w(vi, Vig1)

Il
o

Theshortest-path weightom vertexu to v is the minimum of all possible path weights:

5(u,v) min{w(p) : u ~ v} if there is a path fromu to v
u,v) = i
00 otherwise.

A shortest paths any path whose path weight is equal to the shortest-path weight. FEdgure
shows an example of a shortest path.

Thesingle-pair shortest-path probleis to find a shortest path that connects a given pair
of vertices. Thesingle-source shortest-path problésito find a shortest path from a source
vertex to every other vertex in the graph. The set of shortest paths emanating from the source
vertex is called ahortest-path treeTheall-pairs shortest-path problens to find a shortest
path from every vertex to every other vertex in the graph.

75
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13 @ 4.2
(Des o1 (2
oE¥oC

Figure 5.1 The shortest path from vertexto e is denoted by the black lines.

It turns out that there are no algorithms for solving the single-pair problem that are asymp-
totically faster than algorithms that solve the single-source problem. The BGL includes
two classical methods for solving the single-source problem: Dijkstra’s algorithm and the
Bellman—Ford algorithm. The BGL also includes Johnson’s algorithm for all-pairs shortest
paths.

Shortest-path algorithms have a wide variety of uses and are applied in many areas. One
important application of current interest is Internet packet routing. The protocols that control
how packets of information are transmitted through the Internet use shortest-path algorithms
to reduce the amount of time it takes for a packet to reach its destination.

5.2 Internet Routing

When a computer sends a message to another using the Internet Protocol (IP), the message
contents are put intoacket Each packet, in addition to its message data (payload), includes
meta-data such as source and destination addresses, length of the data, sequence number,
and so on. If the message is large, the data are split into smaller parts, each of which is
packetized. The individual parts are given sequence numbers so that the original message can
be reassembled by the receiver.

If the destination address for the packet is outside of the local network, the packet will
be sent from the originating machine to an intenmetter. The router directs packets that it
receives to other routers based onrgsting table which is constructed based omrauting
protocol After traveling from one router to the next (each step is calléd@, the packets
arrive at their destination. If the network is congested, some packets may be depped
route Higher-level reliable protocols such as the Transmission Control Protocol (TCP) use
handshaking between sender and receiver so that dropped packets are retransmitted. The
Unix program traceroute (or the Windows(TM) program tracert) can be used to show the
route taken from your computer to other sites around the Internet.

The ultimate goal of a routing process is to deliver packets to their destinations as quickly
as possible. There are a number of factors that determine how long a packet takes to arrive
(e.g., the number of hops along the path, transmission delay within a router, transmission
delay between routers, network bandwidth). The routing protocol must choose the best paths
between routers; this information is stored in a routing table.
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The routing problem can be modeled as a graph by associating a vertex with each router
and an edge for each direct connection between two routers. Information such as delay and
bandwidth are attached to each edge. Figu&shows a graph model for a simple router
network. The routing problem is now transformed into a shortest-paths graph problem.

Figure 5.2 A set of Internet routers connected to one another, with the connections labeled
with the mean transmission delay.

5.3 Bellman—Ford and Distance Vector Routing

Some of the first Internet routing protocols, such as the Routing Information Protocol
(RIP) [19], used a distance-vector protocol. The basic idea behind RIP is for each router
to maintain an estimate of distance to all other routers and to periodically compare notes with
its neighbors. If a router learns of a shorter path to some destination from one of its neighbors,
it will update its distance record to that destination and change its routing table to send packets
to that destination via that neighbor. After enough time, the estimated distances maintained
in this distributed fashion by multiple routers are guaranteed to converge to the true distance,
therefore giving the routers accurate information about the best path.

The RIP is a distributed form of the Bellman—Ford shortest paths algorithi®]. The
principle step in the Bellman—Ford algorithm, calledige relaxationcorresponds to the no-
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tion of “comparing notes with your neighbor.” The relaxation operation applied to @dge
performs the following update:

d[v] = min(w(u, v) + dlu], d[v])

The Bellman—Ford algorithm loops through all of the edges in a graph, applying the relaxation
operation to each. The algorithm repeats this |0@p times, after which it is guaranteed
that the distances to each vertex have been reduced to the minimum possible (unless there
is a negative cycle in the graph). If there is a negative cycle, then there will be edges in
the graph that were not properly minimized. That is, there will be edges) such that
w(u,v) + dlu] < d[v] wherew is weight andd is distance. To verify that all edges are
minimized, the algorithm loops over all of the edges in the graph a final time, returning true
if they are minimized, and returning false otherwise.

The BGL bellmanford_shortestpathg) function implements the Bellman—Ford algo-
rithm. The following sections show how to use this function to solve the routing problem
depicted in Figuré.2 The following is the outline for the program.

( “bellman-ford-internet.cpp”78) =

#include <iostream>

#include <boost array. hpp>

#include <boost graph/ edgelist. hpp>

#include <boost graph/ bellman ford_shortestpaths hpp>

int main()

{
using namespace bogst
(Setup router network7 9a)
(Assign edge weightgob)
(Create vertex property storad¥b)
(Call the Bellman—Ford algorithm80c)
(Output distances and paren®l)
return EXIT _SUCCESS

}

The first argument tdellmanford_shortestpathy) is the graph object. The type of the
graph object must model thi&geListGraph concept. Many of the BGL graph classes model
EdgeListGraph and can therefore be used with this algorithm. One such class ésltjadéist
class template used here. Tédgelist class template is an adaptor that allows an iterator
range to be viewed as a graph. The value type of the iterator musttbepair pair of vertex
descriptors. The vertex descriptors can be of just about any type, although here integers are
used to allow indexing into arrays.

For this example, the edges are stored ipast::array, where each edge issad::pair.

Each vertex is given an ID number that is specified usingram The template parameters
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for edgelist are the iterator type, the iterator’s value type, and the iterator’s differencé type.

( Setup router network9 ) =
// 1D numbers for the routers (vertices).
enum{ A, B, C, D, E, F, G, H, n_vertices};
const int nedges= 11,
typedef std::paikint, int> Edge

/I The list of connections between routers stored in an array.
array<Edge n_edges- edges= { { Edggq A, B), Edggq A, C),
Edgq B, D), Edgg B, E), Edgd C, E), Edgq C, F), Edgdq D, H),
Edgg D, E), Edgg E, H), Edgg F, G), Edgg G, H) } };

/I Specify the graph type and declare a graph object
typedef edgdist<array<Edge n_edges-:iterator> Graph;
Graph ¢ edgesbegin(), edgesend);

To communicate the edge weight (transmission delays) to the algorithm, an edge weight
property map that models thReadablePropertyMap concept must be provided. The default
for theweightmap) parameter is the internal edge weight property map of the graph, which
is accessed via the cajet(edgeweight, g) Since theedgelist class does not support user-
defined internal property maps, edge weights must be stored externally and a property map
argument must be explicitly passed to the function. &thgelist class does provide an edge-
to-index property map, so the edge indices can be used as offsets into an array where the edge
properties. In this case the transmission delays are stored. The code below creates the array
of transmission delay values.

( Assign edge weightgd ) =

/I The transmission delay values for each edge.
array<float, n_edges- delay =
{{5.0 10, 1.3, 3.0, 10.0, 2.0, 6.3, 04, 1.3, 1.2, 05} };

Thedelayarray provides storage for the edge weights, but it does not provide the property
map interface required by the algorithm for mapping from edge descriptors to the weight
properties. The necessary property map interface is provided lixgridter_propertymapclass
adaptor from the Boost Property Map Library. This class turns an iterator (such as the iterator
for the array of delay values) into analuePropertyMap. The helper functiomake.iterator._-
propertymap() is a convenient mechanism for creating the adaptor. The first argument is the
iterator, the second argument is a mapping from edges to edge indices, and the third argument
is an object of the iterator’s value type, which is only needed for type deduction purposes. The
following is an example of calling the@akeiterator_propertymap() function (the return value

'For compilers with a working version aftd::iterator traits, the value type and difference type template
parameters foedgelist are not necessary because correct default parameters are provided.
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of the function is the created adaptor object, which is passed directly to the Bellman—Ford
function). Thege) function retrieves the edge index map from the graph object and is part
of the PropertyGraph interface.

( Create property map for delaga ) =
make iterator_property map( delay begin(), gef edgeindex, g), delay 0])

Several properties are attached to vertices in the graph. As in Fagjrine vertices are
labeled with letters (their names). Distance labels are required to record the lengths of the
shortest paths. Finally, a predecessor mapntis used to record the shortest-paths tree. For
each vertex in the graph, the predecessor map records the parent of that vertex with respect to
the shortest-paths tree. That is, each of the e¢lgeent[u],u) is an edge in the shortest-paths
tree.

Theedgelist class does not provide a way to attach properties to vertices (the vertices are
only integers). The properties are stored in separate arrays indexed by vertex number. The
distances are initialized to infinity and the parent of each vertex is initially set to itself.

( Create vertex property storagéb ) =
/I Declare some storage for some “external” vertex properties.

char namd] = "ABCDEFGH";

array<int, n_vertices> parent

for (inti = 0; i < n_vertices ++ i)
parenf{i] = i;

array<float, n_vertices> distance

distance assign( std::numeric_limits<float>::max());
/I Specify A as the source vertex

distancg A] = O0;

Since the vertex descriptors of tledgelist graph are integers, pointers to the property
arrays qualify as property maps because the Boost Property Map Library includes specializa-
tions for built-in pointer types (s€d5.2.]).

The following shows the call tbellman ford_shortestpathg) . The shortest-path distances
are recorded in the distance vector and the parent of each vertex (with respect to the shortest-
paths tree) is recorded in the parent vector.

( Call the Bellman—Ford algorithi@0c ) =

bool r = bellmanford_shortestpathg g, int( n_vertices,
weight map( (Create property map for delay&0a) ).
distancemap(& distancg 0]).
predecessamap& parenf 0]));

The program concludes by printing out the predecessors and distances for each router in
the network, or by notifying the user that there was a negative cycle in the network.
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( Output distances and pare@s) =
it (r)

for (inti = 0; i < n_vertices ++ i)
std::cout << namg i] << ": " << distancg i]
<< "" << namqg paren{i]] << std:endt
else

std::cout << " negative cyclé << std::endt

Applied to the example input, the program output is as follows:

A: 0O
B: 5
C. 1
: 6.3
1 6.7
3
1 4.2
4.7

OGTMOOwW>>>

IOTMMmMOU

Thus, by working backward through the predecessors, we can see that the shortest path from
router A to routerH is (A,C, F, G, H).

5.4 Dijkstra and Link-State Routing

By the early 1980’s there began to be concerns about the scalability of distance-vector routing.
Two particular aspects caused problems:

¢ In environments where the topology of the network changes frequently, distance-vector
routing would converge too slowly to maintain accurate distance information.

e Update messages contain distances to all nodes, so the message size grows with the
size of the entire network.

As a result of these problemiink-state routingwas developeds, 37]. With link-state
routing each router stores a graph representing the topology of the entire network and com-
putes its routing table based on the graph using Dijkstra’s single-source shortest-paths algo-
rithm. To keep the graph up to date, routers share information about which links are “up” and
which are “down” (the link state). When connectivity changes are detected, the information
is “flooded” throughout the network in what is calledirsk-state advertisement

Since only local information (neighbor connectivity) has to be shared, link-state routing
does not have the message-size problems of distance vector routing. Also, since each router
computes its own shortest paths, it takes much less time to react to changes in the network
and recalculate accurate routing tables. One disadvantage of link-state routing is that it places
more of a burden on each router in terms of computation and memory use. Even so, it has
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proved to be an effective protocol, and is now formalized in the Open Shortest Path First pro-
tocol (OSPF) B3], which is currently one of the preferred interior gateway routing protocols.

Dijkstra’s algorithm finds all the shortest paths from the source vertex to every other
vertex by iteratively growing the set of verticésto which it knows the shortest path. At
each step of the algorithm, the vertexlin— S with the smallest distance label is addedbto
Then the out-edges of the vertex are relaxed using the same technique from the Bellman—Ford
algorithm,d[v] = min(w(u, v) + d[u], d[v]). The algorithm then loops back, processing the
next vertex inl” — S with the lowest distance label. The algorithm finishes wHearontains
all vertices reachable from the source vertex.

In the rest of this section we will show how to use the B@jstra_shortestpathg) func-
tion to solve the single-source shortest-paths problem for a network of routers and how this
information is used to compute a routing table. Figbréshows the example network de-
scribed in RFC 1583. In the figure, RT stands for router, N stands for network (which is a
group of addresses treated as a single destination entity), and H stands for host.

To demonstrate Dijkstra’s algorithm, we will compute the shortest-path tree for router six.
The main steps of our program are as follows:

( “ospf-example.cpp82) =
#include <fstream> // for file 1/0
#include <boost graph/ graphviz hpp> // for read/write graphviz()
#include <boost grapl/ dijkstra_shortestpaths hpp>
#include <boost lexical_cast hpp>
int main()
{
using namespace bogst
(Read directed graph in from Graphviz dot filg4a)
(Copy the directed graph, converting string labels to integer weigtdb)
(Find router six 84c)
(Setup parent property map to record the shortest-paths 86a)
(Run the Dijkstra algorithm85b)
(Set the color of the edges in the shortest-paths tree to bias®)
(Write the new graph to a Graphviz dot filgsd)
(Write the routing table for router six87a)
return EXIT _SUCCESS

}

The first step is to create the graph. The graph from FigL8&s represented as a Graphviz
dot file. Since the graph is directed, we use @raphvizDigraphtype. For an undirected
graph we would use théraphvizGraphtype. The Graphviz package provides tools that
automatically layout and draw graphs. It is availablevatv.graphviz.org Most of the graph
drawing in this book were created using Graphviz. The Graphviz tools use a special file
format for graphs, called dot files. BGL includes a parser for reading this file format into
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Figure 5.3 A directed graph representing a group of Internet routers using the same routing
protocol. The edges are weighted with the cost of transmission.
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a BGL graph. The parser can be accessed throughetliggraphviz) function defined in
boost/graph/graphviz.hpp

( Read directed graph in from Graphviz dot fida ) =

GraphvizDigraph gdoft,
read graphviz " figs/ospf-graph.ddt, g_dot);

The GraphvizDigraphtype stores the properties of vertices and edges as strings. Although
strings may be convenient for file I/O and display purposes, edge weights must be represented
as integers so that they can be easily manipulated inside of Dijkstra’s algorithm. Therefore,
g.dotis copied to a new graph. Each edge in @raphvizDigraphtype has a set of attributes
stored in astd::map<std::string, std::string>. The edge weights from Figute3are stored in
the “label” attribute of each edge. The label is converted tmamsingboost::lexicalcastand
then the edge is inserted into the new graph. Sincéstheh type andGraphvizDigraphare
both based omdjacencylist with VertexList=vec$the vertex descriptor types for both graph
are integers. The result eburce(*ei, gdot) can thus be used directly in the callddd edg«)

on graphg.

( Copy the directed graph, converting string labels to integer welits =

typedef adjacencyist<vecS vecS directedS no_property,
property<edgeweightt, int> > Graph;

typedef graphtraits<Graph>::vertex descriptor vertexdescriptor

Graph ¢ num_verticeg g_dot));

property map<GraphvizDigraph edgeattribute_t>::type
edgeattr_map = gef( edgeattribute, g_dot);

graph_traits<GraphvizDigraph>::edge. iterator ei, ei_end

for (tie(ei, ei_end = edge¢g. dot); ei!= eiend ++ ei) {
int weight = lexical_caskint>( edgeattr_mag* ei][ "label'] );
property<edgeweightt, int> edgeproperty weighd;
add edg€ sourcg* ei, g_dot), targei* ei, g.dof), edgeproperty Q);

¥

To use router six as the source of the shortest-paths search, the vertex descriptor for router six
must be located. The program searches for the vertex with an attribute label of “RT6".

( Find router six84c ) =

vertex descriptor routersix;
property map<GraphvizDigraph vertex attribute_t>::type
vertex attr_map = gef( vertex attribute, g_dot);
graph_traits<GraphvizDigraph>::vertex_iterator vi, vi_end
for (tie(vi, vi_end) = verticeg g_dot); vi != vi_end ++ vi)
if ("RT6" == vertexattr_mag* vi][ "label']) {
router_six = *vi; break

}
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Together, the shortest paths from router six to all other routers form a shortest paths tree. An
efficient way to represent such a tree is to record the parent of each node in the tree. Here we
will simply use astd::vectorto record the parents.

( Setup parent property map to record the shortest-path8%eee=
std::vectokvertex descriptor> paren{ num_verticeg g));
/I All vertices start out as there own parent
typedef graphtraits<Graph>::verticessizetype sizetype
for (sizetype p= 0; p < num_verticeg g); ++ p)
paren{ p] = p;

We are now ready to invoke Dijkstra’s algorithm. We pass in the parent array as the argument
to thepredecessamap() named parameter.

( Run the Dijkstra algorithn@5b ) =
dijkstra_shortestpathq g, router_six, predecessamap& parenf 0]));

To create a graphical display of the shortest-paths tree, a dot file is created with the tree edges
marked with black lines.

( Set the color of the edges in the shortest-paths tree to Black=
graph_traits<GraphvizDigraph>::edge descriptor e
for (sizetype i= 0; i < num_verticeg g); ++ i)
if (paren{i] !'= i) {
e = edg€ paren{ i], i, g.dof). first;
edgeattr_magd €][ "color'] = "black';

}

Next the graph is written to a dot file. Figubse4 shows the computed shortest paths tree for
router six.

( Write the new graph to a Graphviz dot fBéd ) =

graph_property<GraphvizDigraph graph_edgeattribute_t>::type&
graph_edgeattr_map = getproperty g_dot, graph_edgeattribute);

graph_edgeattr_mag " color" |= " grey';

write_graphviZ " figs/ospf-sptree.dtt g_dot);

The last step is to compute the routing table for router six. The routing table has three
columns: the destination, the next hop that should be taken to get to the destination, and the
total cost to reach the destination. To populate the routing table, entries are created for each
destination in the network. The information for each entry can be created by following the
shortest path backward from the destination to router six using the parent map. A node that
is its own parent is skipped because the node is either router six or the node is not reachable
from router six.
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Figure 5.4 The shortest paths tree for router six.
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( Write the routing table for router si&7a) =

std::ofstream rtabl¢ " routing-table.dat );
rtable << "Dest Next Hop  Total Cost << std::endk
for (tie(vi, vi_end) = verticeg g_dot); vi != vi_end ++ vi)
if (parenf* vi] !I=* vi) {
rtable << vertexattr_mag* vi][ "label'] << " " ;
(Follow path backward to router six using paren&7b)
¥

While following the path from each destination to router six, the edge weights are accumu-
lated into the totapath.cost We also record the child of the current vertex because at loop
termination this is the vertex to use as the next hop.

( Follow path backward to router six using pare®t ) =

vertex descriptor v= *vi, child;

int path_cost = 0;

property map<Graph, edgeweightt>::type
weight map = gel edgeweight Q);

do {
path_cost += gef weightmap, edgd paren{ V], v, g@). first);
child = v;

v = paren{ v];
} while (v I= paren{ V]);
rtable << vertexattr_mag child][ "label'] << " "
rtable << path_cost << std::endf

The resulting routing table is as follows.

Dest Next Hop Total Cost
RT1 RT3 7
RT2 RT3 7
RT3 RT3 6
RT4 RT3 7
RT5 RT5 6
RT7 RT10 8
RT8 RT10 8
RT9 RT10 11
RT10 RT10 7
RT11 RT10 10
RT12 RT10 11
N1 RT3 10
N2 RT3 10
N3 RT3 7
N4 RT3 8
N6 RT10 8
N7 RT10 12
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N8
N9
N10
N12
N13
N14
N15
H1

RT10
RT10
RT10
RT10
RT5

RT5

RT10
RT10

10
11
13
10
14
14
17
21
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Chapter 6

Minimum-Spanning-Tree Problem

The Boost Graph Library implements two classical algorithms for solving the minimum-
spanning-tree problem: Kruskal’sJ] and Prim’s 38]. The minimum-spanning-tree problem
shows up in many application domains such as telephone network planning, electronic circuit
layout, and data storage compression. In this chapter we apply the BGL algorithms to the
telephone network planning problem.

6.1 Definitions

The minimum-spanning-tree probleim defined as follows. Given an undirected graph=

(V, E), find an acyclic subset of the edgEsC E that connects all of the vertices in the graph
and whose total weight is minimized. The total weight is the sum of the weight of the edges
inT":

w(T) = Z w(u,v).

(u,v)eT

An acyclic subset of edges that connects all the vertices in the graph is caff@diaing tree
A treeT with minimum total weight is aninimum spanning tree

6.2 Telephone Network Planning

Suppose that you are responsible for setting up the telephone lines for a remote region. The
region consists of several towns and a network of roads. Setting up a telephone line requires
access for the trucks, and hence, a road alongside the route for the line. Your budget is quite
small, so building new roads is out of the question and the telephone lines will have to go
in along existing roads. Also, you would like to minimize the total length of wire required

to connect all the towns in the region. Since the region is sparsely populated, considerations
such as bandwidth are not important. Figar&shows the network of roads connecting the
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towns abstracted into a weighted graph. Our goal will be to find an optimal layout for the
telephone lines. First we will solve the problem using Kruskal’s algorithm, and then we will
solve it with Prim’s algorithm.

Parry Sound

Magnetawan

Horseshoe Lake

Glen Orchard

Bracebridge

Figure 6.1A remote region of towns connected by roads. The lengths of the roads are labeled
in miles.
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6.3 Kruskal’s Algorithm

Kruskal’s algorithm starts with each vertex in a tree by itself and with no edges in tfig set
which will become the minimum spanning tree. The algorithm then examines each edge in
the graph in order of increasing edge weight. If an edge connects two vertices in different
trees, the algorithm merges the two trees into a single tree and adds the édgétme
all of the edges have been examined, the fregill span the graph (assuming the graph is
connected) and the tree will be a minimum spanning tree.

Following is the outline of a program that applies thraskal_minimum_spanning treg()
function to compute the best layout for the telephone lines.

( “kruskal-telephone.cpp™dla) =
#include <iostream>
#include <fstreant
#include <boost lexical_cast hpp>
#include <boost graph/ graphviz hpp>
#include <boost graph/ kruskal_min_spanningtree hpp>

int main()

{

using namespace bogst

(Read undirected graph in from Graphviz dot filglb)

(Copy the undirected graph, converting string labels to integer weigbits)
(Call Kruskal’s algorithm and store MST in a vecto®2a)

(Compute the weight of the spanning treé2b)

(Mark tree edges with black lines and output to a dot fic)

return EXIT _SUCCESS

}

The graph for Figuré.1is stored in a Graphviz dot file so it is read into memory using the
read graphvi) function fromboost/graph/graphviz.hppTheGraphvizGraphtype is used since
this example uses an undirected graph.

( Read undirected graph in from Graphviz dot filth ) =
GraphvizGraph gdot,
read graphviZ " figs/telephone-network.dbt g_dof);

As in §5.4, the edge labels need to be converted from strings to integers. This is acom-
plished by copying th&raphvizGraphto a new graph and by usinexical_castto perform the
string to integer conversion.

( Copy the undirected graph, converting string labels to integer wegglats =

typedef adjacencyist<vecS vecS undirectedS no_property,
property<edgeweightt, int> > Graph;
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Graph g num_verticeg g_dof));
property map<GraphvizGraph edgeattribute_t>::type
edgeattr_map = gef( edgeattribute, g_dof);
graph_traits<GraphvizGraph>::edge.iterator ei, ei_end
for (tie(ei, ei_end = edge¢g. dot); ei!= eiend ++ ei) {
int weight = lexical_caskint>( edgeattr_magd* ei][ "label'] );
property<edgeweightt, int> edgeproperty weighd;
add edgé€ source* ei, g._dof), targef(* ei, g.dof), edgeproperty Q);
}

The call to Kruskal's algorithm requires that the graph type used be bathtexListGraph

and aEdgeListGraph. The “Model Of” section in the documentation fadjacencyist shows

that the selecte&raph type should work fine. To store the output of the algorithm (the
edges of the minimum spanning tree), we ustdavector mstand applystd::backinserter)

to create an output iterator from it. There are a number of named parameters for Kruskal's
algorithm; for this example, defaults are used for all of them. The weight map and vertex
index map are, by default, obtained from the graph (they are internal propestigejveight t

is declared as a property for tleaphtype and the vertex index map is automatically there for

an adjacencylist with VertexList=vecS The rank and predecessor maps (which are only used
internal to Kruskal's algorithm) are by default created inside the algorithm.

( Call Kruskal's algorithm and store MST in a vecti?a ) =

std::vectok graph_traits<Graph>::edge descriptor- mst
kruskal_minimum_spanningtree( g, std::backinserter msp);

When the call to the algorithm returns, the minimum spanning tree is now stonest ifthe
total weight of the tree is computed by summing the weights of the edgestinThe total
edge weight computed for this minimum spanning tree is 145 miles.

( Compute the weight of the spanning ti@# ) =
property map<Graph, edgeweightt>::type weight= gef edgeweight g);
int total_weight = 0;
for (int e = 0; e < mst sizd); ++ ¢€)
total_weight += get( weight ms{ €]);
std::cout << "total weight: " << total_weight << std::endt

The tree edges are then colored black and the graph is saved to a dot file.

( Mark tree edges with black lines and output to a dotdite ) =

typedef graphtraits<Graph>::vertex descriptor Vertex

for (inti = 0; i < mst sizd); ++ i) {
Vertex u = sourcd ms{i], @), v = targe{ms{i], Q);
edgeattr_may edg€ u, v, g.dof). first]] "color'] = "black';

}
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std::ofstream ouf " figs/telephone-mst-kruskal.do};

graph_property<GraphvizGraph graph_edgeattribute_t>::type&
graph_edgeattr_map = getproperty g_dot, graph_edgeattribute);

graph_edgeattr_magd " color' |= " gray';

graph_edgeattr_magd " style' |= " bold" ;

write_graphviz out, g_dot);

The resulting minimum spanning tree is shown in Figbuz

Parry Sound

Dunchurch

Horseshoe Lake

Sprucedale

Glen Orchard

30

Figure 6.2 The minimum spanning tree, which is the optimal layout for the telephone lines,
is indicated by the black lines.
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6.4 Prim’'s Algorithm

Prim’s algorithm grows the minimum spanning tree one vertex at a time (instead of one edge
at a time, as in Kruskal's algorithm). The basic idea of Prim’s algorithm is to add vertices to
the minimum spanning tree based on which of the remaining vertices shares an edge having
minimum weight with any of the vertices already in the tree. Prim’s algorithm is similar
to Dijkstra’s algorithm. (In fact, the BGL implementation of Prim’s algorithm is simply a
call to Dijkstra’s algorithm, with a special choice for the distance comparison and combine
functions.)

In this section, the BGlprim_minimum_spanningtreg() algorithm is applied to the same
telephone network planning problem from Fig@d. The main outline of the program is
similar to the use of Kruskal's algorithm in the previous section, although there are some
differences in how Prim’s algorithm outputs the spanning tree edges.

( “prim-telephone.cpp’94) =

#include <iostream>

#include <fstreant

#include <vector>

#include <boost lexical_cast hpp>

#include <boost graph/ graphviz hpp>

#include <boost graph/ prim_minimum_spanning tree hpp>

int main()

{
using namespace bogst
(Read undirected graph in from Graphviz dot filglb)
(Copy the undirected graph, converting string labels to integer weigbits)
(Call Prim’s algorithm and record MST in predecessof5a)
(Calculate the weight of the spanning tree5h)
(Mark the tree edges and output to a dot fig&c)
return EXIT _SUCCESS

}

The first two steps, reading from the dot file and copying the graph, are the same as in
the previous section. In the call to Prim’s algorithm, the first parameter is the graph and the
second parameter is a predecessor map. The predecessor map records the minimum spanning
tree. For each vertexin the graphparent[v] is the parent of with respect to the minimum
spanning tree. Inside the algorithmarent[v] may be assigned to multiple times, but the
last assignment is guaranteed to set the correct parent. A number of named parameters for
prim_minimum_spanningtreg) can be used to fine-tune various aspects of the function, but
default values for all named parameters are used here. The edge weight and vertex index maps
internal to theGraph type are used, and the color and distance utility maps are constructed
inside of the algorithm. The root vertex defaultsertices(g).first which is acceptable here
because the choice of the root for the minimum spanning tree is arbitrary.
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( Call Prim’s algorithm and record MST in predecess@fis) =

typedef graphtraits<Graph>::vertex descriptor Vertex
std::vectok Vertex> paren{ num_verticeg g));
prim_minimum_spanningtree( g, & paren{ 0]);

With the minimum spanning tree recorded in theeent array, the total weight is calcu-
lated by looping through all the vertices in the graph and summing the weight of each edge
(parent[v], v) If parent[v] == vwe know that eithev is the root of the tree or it was not in the
same connected component as the rest of the vertices, so in eithépaasgv], v)is not a
spanning tree edge and should be skipped. Again, the calculation for the graph of@=ligure
results in a total edge weight of 145 miles.

( Calculate the weight of the spanning ti@h ) =
property map<Graph, edgeweightt>::type weight= gef edgeweight g);
int total_weight = 0;
for (int v = 0; v < num_verticeg g); ++ V)
if (parenf{v] = V)
total_weight += gef( weight edgd paren{Vv], v, g). first);
std::cout << "total weight: " << total_weight << std::endt

For display purposes, the edges of the minimum spanning tree are marked with black lines and
then written to a dot file. The resulting minimum spanning tree is shown in FiyGréNote

that the tree here is slightly different than the one produced by Kruskal’s algorithm. Instead
of having an edge between Magnetawan and Kearny, there is an edge between Magnetawan
and Sprucedale. This highlights the fact that minimum spanning trees are not unique; there
can be more than one minimum spanning tree for a particular graph.

( Mark the tree edges and output to a dot e ) =

for (int u = 0; u < num_verticeg g); ++ u)

if (parenfu] != u)

edgeattr_magd edg€ paren{ u], u, g.dof). first]] "color'] = "black’;

std::ofstream ouf " figs/telephone-mst-prim.dbd;
graph_property<GraphvizGraph graph_edgeattribute_t>::type&

graph_edgeattr_map = getproperty g_dot, graph edgeattribute);
graph_edgeattr_mag " color' |= " gray';
write_graphviz out, g_dot);
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Parry Sound

Horseshoe Lake

Sprucedale

Glen Orchard

30
Bracebridge

Figure 6.3 The minimum spanning tree, which is the optimal layout for the telephone lines,
is indicated by the black lines.
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Connected Components

One basic question about a network is which vertices are reachable from one another. For
example, a well designed Web site should have enough links between Web pages so that all
pages can be reached from the home page. In addition, it is often nice to have links going
back to the home page, or at least to the previous page in a sequence. In a directed graph,
groups of vertices that are mutually reachable are caliedigly connected componenis an
undirected graph, groups of vertices that are reachable from one another arecaiiedted
components

A study of 200 million Web pages has shown that 56 million of the Web pages on the
Internet form one large strongly connected componéhntihe study also showed that when
viewed as an undirected graph, there are 150 million pages in one large connected component
and about 50 million pages that are disconnected from the large component (they reside in
much smaller connected components of their own).

The BGL provides two functions for computing all the connected components of a graph,
one for when the graph is unchanging (or if the connected components only need to be com-
puted once) and one for when the graph is growing. The BGL also implements Tarjan’s
algorithm for computing the strongly connected components of a graph in linear time.

In the following sections, we start with some definitions and then apply the BGL con-
nected components functions to World Wide Web networks.

7.1 Definitions

A pathis a sequence of vertices where there is an edge connecting each vertex to the next
vertex in the path. If there exists a path from verteko w, then we say that vertex is
reachablefrom vertexu. A connected componeig a group of vertices in an undirected
graph that are reachable from one anothersti®ngly connected componeista group of
vertices in a directed graph that are mutually reachable from one another. The reachable
relation for undirected graphs and the mutually reachable relation for directed graphs are
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equivalence relationsthey are reflexive, symmetric, and transitive. The objects for which

an equivalence relationship is true form aqguivalence classA connected component is
therefore an equivalence class with respect to the reachable relation, and likewise a strongly
connected component is an equivalence class under the mutually reachable relation. As a
result, these two reachable relations partition the vertices of a graph into disjoint subsets.

7.2 Connected Components and Internet Connectivity

Computing the connected components of an undirected graph is a straightforward application
of depth-first search. The idea is to run DFS on the graph and mark all vertices in the same
DFS tree as belonging to the same connected component. The BGL implementatoon of
nectedcomponentf) calls depthfirst_.searc) with a special visitor object that labels each
discovered vertex with the current component and increments the current component at the
“start vertex” event point.

The steps to computing the connected components of the network shown in Figure
are as follows: (1) read the network into memory, (2) represent it with a BGL graph, and
(3) call theconnectedcomponent§) function. Each vertex in the graph is assigned an integer
denoting the component to which the vertex belongs. The following gives an outline of the
program.

( “cc-internet.cpp”98a) =

#include <fstrean

#include <vector>

#include <string>

#include <boost graph/ connectedcomponentshpp>
#include <boost graph/ graphviz hpp>

int main()

{

using namespace bogst

(Read graph into memorg8b)

(Create storage for component assignmei30a)

(Call connected components functiob00b)

(Color vertices by component and write to a dot filéQc)

}

The graph of Figuré.lis read in from the filec-internet.dot which is in Graphviz dot
format. TheGraphvizGraphtype was chosen (and nGtaphvizDigraph because the graph to
be represented is undirected.

( Read graph into memo§8b ) =

GraphvizGraph g
read graphviZ " figs/cc-internet.dot, g);
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boston1-brl.bbnplanet.net

teledk.bbnplanet.net lilac-dmc.Berkeley. EDU

[ cambridgel-nbr2.bbnplanet.net

helios.ee.lbl.gov

rip.Berkeley. EDU

nycmny1-crl.bbnplanet.net

ccn-nerif35.Berkeley. EDU

ccngw-ner-cc.Berkeley. EDU

chicagol-nbr1.bbnplanet.net

‘ugoebdkne
corel-ord1-oc48.ord2.above.net ‘ vabil-gige-1-1.google.com

Figure 7.1 A collection of Internet routers with edges denoting direct connections.

above-bbn-45Mbps.ord.above.net

engr-fe21.gw.nd.edu

/
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ihtfp.mit.edu

shub-e27.gw.nd.edu

radole.lcs.mit.edu
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A vector of sizenum_vertices(g)is used to store the component integer assigned to each vertex
in the graph.

( Create storage for component assignméots ) =
std::vectokint> component num_verticeg g));

The first argument in the call toonnectedcomponent§) is the graph type, which must be a
model ofVertexListGraph andIncidenceGraph. The GraphvizGraphtype is suitable since it
models these concepts. The second argument is a property map from vertices to component
numbers. The property map is constructed usingtenator_propertymap adaptor, wrapping

an iterator to the begining of thwmponentvector. Theconnectedcomponent§) returns the

total number of components found, and records the component assignment for each vertex
in the componentvector. Theconnectedcomponent§) algorithm also has a color map named
parameter that is used for the depth-first search. Here the default is used; the algorithm creates
the color map internally and uses the vertex index map of the graph to index into the array.

( Call connected components functid@tb ) =

int num_comp = connectedcomponentég,
make iterator_property. map( component begin(), gef vertexindex, Q)));

To visualize the results of the computation, colors are assigned to each vertex based on com-
ponent number. The graph is then written to a Graphviz dot file. Figirehows the results.

( Color vertices by component and write to a dot fil@c ) =

property map<GraphvizGraph vertex attribute_t>::type
vertex attr_map = gef vertex attribute, g);
std::string colof] = { "white", "gray', "black', "lightgray" };
graph_traits<GraphvizGraph>::vertex_iterator vi, vi_end
for (tie(vi, vi_end) = verticegg); vi!= viend ++ vi) {
vertexattr_mag* vi][ "color'] = color[ componenf* vi];
vertexattr_mag* vi][ "style'] = "filled";
if (vertexattr_mag* vi][ "color'] == "black")
vertex attr_map* vi][ "fontcolor'] = " white";
}

write_graphvig " figs/cc-internet-out.dot, g);



7.2. CONNECTED COMPONENTS AND INTERNET CONNECTIVITY 101

boston1-brl.bbnplanet.net

teledk.bbnplanet.net lilac-dmc.Berkeley. EDU

helios.ee.lbl.gov cambridgel-nbr2.bbnplanet.net

nycmny1-crl.bbnplanet.net rip.Berkeley. EDU

ccn-nerif35.Berkeley. EDU ccngw-ner-cc.Berkeley. EDU

chicagol-nbrl.bbnplanet.net above-bbn-45Mbps.ord.above.net

engr-fe21.gw.nd.edu

/

albnxglLip.tele.dk

ihtfp.mit.edu gw-dkuug.oeb.tdk.ne

corel-ord1-0c48.ord2.above.net

shub-e27.gw.nd.edu vahil-gige-1-1.google.com

radole.lcs.mit.edu

Figure 7.2 The connected components.
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7.3 Strongly Connected Components and Web Page Links

Figure7.3shows a set of web pages connected by URL links which are represented abstractly
as a directed graph. Our goal for this section will be to compute the strongly connected
components of this graph.

anubis.dkuug.dk

www.boston.com

Figure 7.3 A graph representing URL links between Web sites.

The outline of the program follows. First, the graph from the Graphviz dot file is read into
memory. The storage is then created for the component assignments that will be computed by
the algorithm. Thestrong.component§) algorithm is called and the results are used to color
the vertices of the graph by their strongly connected component.

(“scc.cpp”102) =

#include <fstreant

#include <map>

#include <string>

#include <boost graph/ strong.componentshpp>
#include <boost graph/ graphviz hpp>
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int main()
{
using namespace bogst
(Read directed graph into memor303a)
(Allocate storage for component assignmeri83b)
(Call strong components functiod03c)
(Color vertices by component number and write to a dot flie4)
return EXIT _SUCCESS

}

The graph is read from thecc.dotfile using theGraphvizDigraphtype (because the graph is
directed).

( Read directed graph into memat93a) =
GraphvizDigraph g
read graphviq " figs/scc.ddt, g);

In the call tostrong.component§) , the associativepropertymap adaptor is used to supply the
property map interface required by the function. This adaptor creates a property map out of
an AssociativeContainer such asstd::map The choice obtd::mapto implement the property

map is rather inefficient in this case but demonstrates the flexibility of the property map inter-
face. The vertex descriptor f@raphvizDigraphis an integer, so it has the required less-than
operator required oftd::map

( Allocate storage for component assignmetsh ) =

typedef graphtraits<GraphvizDigraph>::vertex descriptor vertext;
std::map<vertext, int> component

The results of calling thetrong component§) algorithm are placed in theomponentar-
ray, assigning each vertex a component number. The component numbers are from zero to
num_comp - 1 The graph passed to tegong.component§) function must be a model of the
VertexListGraph andIncidenceGraph concepts—and indeed, ti&aphvizDigraphmeets this
criteria. The second argument, the component map, muskRbad\ritePropertyMap. There
are several more named parameters that can be specified, but they are all for utility property
maps that are only used internally. By default, the algorithm creates arrays for these property
maps and uses the vertex index property of the graph as an offset into them.

( Call strong components functid®3 ) =
int num_comp = strong componentég, make assocproperty map( componeny);

The program finishes by coloring the vertices according to the component to which they
belong. The output is written to a dot file, which produces the graph in Figdre
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( Color vertices by component number and write to a dotlfdé ) =

property map<GraphvizDigraph vertexattribute_t>::type
vertex attr_map = gef vertex attribute, g);
std::string colof] = { "white", "gray', "black', "lightgray" };
graph_traits<GraphvizDigraph>::vertex_ iterator vi, vi_end
for (tie(vi, vi_end = verticegg); vi!l= viend ++vi) {
vertexattr_mag* vi][ "color'] = color[ componenf* vill;
vertex attr mag* vi][ "stylé'] = "filled";
if (vertexattr_mag* vi]J[ "color'] == "black")
vertex attr_magd* vi][ " fontcolor'] = " white";
}

write_graphviz " figs/scc-out.ddt, g);

www.boost.org
anubis.dkuug.dk sourceforge.net \
www.lsc.nd.edu www.hp.oom www.yahoogroups.com

\

weather.yahoo.com

/

nytimes.com

|

www.boston.com

Figure 7.4 The strongly connected components.
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Maximum Flow

The maximum-flow problem is the problem of determining how much of some quantity (say,
water) can move through a network.

There is a long history of algorithms for solving the maximum-flow problem, with the
first algorithm due to Ford and Fulkersor’]. The best general-purpose algorithm known to
date is the push-relabel algorithm of Goldbe¥g 16, 17] which is based on the notion of a
preflowintroduced by Karzanov[J].

The BGL contains two algorithms for computing maximum flows. The Edmunds—Karp
algorithm (a refinement of the original Ford—Fulkerson) and the push-relabel algorithm.

8.1 Definitions

A flow networkis a directed grapliz = (V, E) with a sourcevertexs and asink vertext.
Each edge has a positive real-valwagbacityand there is 8ow functionf defined over every
vertex pair. The flow function must satisfy three contraints:

f(u,v) <c(u,v) V(u,v) eV xV (Capacity constraint)
flu,v) = —=f(v,u) V(u,v) €V xV (Skew symmetry)
Z flu,v) =0 YueV —{s,t} (Flow conservation)
veV

Theflow of the network is the net flow entering the sink verteXheresidual capacityof an
edge isr(u,v) = c(u,v) — f(u,v). The edges withr(u,v) > 0 are residual edges; that
induce the residual graphi; = (V, E¢). An edge withr(u,v) = 0 is saturated

f1=> flut)

ueVv

105



106 CHAPTER 8. MAXIMUM FLOW

The maximum-flow problem is to determine the maximum possible valu¢ffoand the
corresponding flow values for every vertex pair in the graph.

An important property of a flow network is that the maximum flow is related to the capac-
ity of the narrowest part of the network. According to the Max-Flow Min-Cut Theoret) [
the maximum value of the flow from a source verteto a sink vertex in a flow network
equals the minimum capacity among &, 7') cuts. An(S,T) cutis a separation of the
graph’s vertices into two set$ andT’, wheres € S andt € T. Any edge with its source
vertex inS and its target vertex ifi’ is aforward edgeof the cut, and any edge with its source
in T and target inS is abackward edgef the cut. Thecapacity of a cuis the sum of the
capacities of the forward edges (backward edges are ignored). So if we look at the capacity
for all the cuts that separateand¢, and select the cut with the minimum capacity, then its
capacity will equal the maximum flow of the network.

8.2 Edge Connectivity

Whether an engineer is designing a telephone network, an LAN for a large company, or the
router connections for the Internet backbone, an important consideration is how resilient the
network is to damage. For example, if a cable gets cut during a storm, are there other cables
through which the information can flow? In graph terminology, this is captured bgdbe
connectivityof a graph, which is the minimum number of edges that can be cut to produce a
graph with two disconnected components (assuming the graph started as a single connected
component). We use(G) to represent the edge connectivity of a graph. The set of edges in
the cut is called theninimum disconnecting sethe vertices of the graph are separated into
two componentsS* and S*, so we use the notatidis*, S*| for representing the minimum

cut. It turns out that calculating the edge connectivity of a graph can be reduced to a series of
maximum-flow problems. In this section we will take a look at the algorithm for computing
the edge connectivity of an undirected graph][

Let a(u, v) represent the minimum number of edges that can be cut to disconnect the two
verticesu andv from each other. If the two vertices are treated as source and sink, and the
capacity of every edge is set to one, then the minimum capacity cut (calculated by a maximum
flow algorithm) is the same as the cut with the minimum number of edges. Therefore, by
solving for the maximum flow we will also determine the minimum number of edges that
could be cut to disconnect the two vertices. Now, to find the edge connectivity of the whole
graph, a maximum-flow algorithm can be run on every pair of vertices. The minimum of all
these pair-wise min-cuts will be the min-cut for the graph.

Executing maximum flow for every pair of vertices is expensive, so it would be better to
reduce the number of pairs that need to be examined. This can be achieved by exploiting a
special property of the minimum disconnecting k&t, S*]. Let p be a vertex of minimum
degree and be the minimum degree. H#(G) = §, thenS* isjustp. If a(G) < § — 1, theniit
turns out that for any subset 6f, call it S, the set of all nonneighbor vertices to the vertices
in S has to be nonempty. This means that the minimum cut can be found by starting with
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S = p, picking a vertext from the set of nonneighbors &f, calculatinga(p, k), and then
addingk to S. This process is repeated until the set of nonneighbofsisfempty.

We implement the edge connectivity algorithm as a function template that uses the BGL
VertexListGraph interface. The function returns the edge connectivity of the graph, and the
edges in the disconnected set are written to the output iterator. The outline of the edge con-
nectivity function follows.

( Edge connectivity algorithriO7a) =

template <typename VertexListGraph typename Outputlteratas
typename graphraits<VertexListGraph>::degreesizetype
edgeconnectivity VertexListGrapt& g, Outputlterator disconnectingse)
{

(Type definitions107b)

(Variable declarationsl07c)

(Create a network-flow graph out of the undirected grajio8a)

(Find minimum-degree vertex and compute neighbors®find nonneighbors ofS 10%)

(Main loop 1108)

(Compute forward edges of the c(i§*, S*] 11(b)

return c;

}

The first section of the implementation creates some type definitions to provide shorter
names for accessing types from the graph traits. A network-flow graph (a directed graph) is
created based on the undirected input grg 8o theadjacencylist graph class is used.

( Type definitionsl07b ) =
typedef typename graplraits<VertexListGraph>::vertex descriptor vertexdescriptor
typedef typename grapkraits<\ertexListGraph>::degreesizetype degreesizetype
typedef colortraits<default color_type> Color;
typedef typename adjacendigt_traits<vecS vecS directedS-::edgedescriptor
edgedescriptor
typedef adjacencyist<vecS vecS directedS no_property,
property<edgecapacityt, degreesizetype
property<edgeresidual capacityt, degreesizetype
property<edgereverset, edgedescriptor- > > > FlowGraph;

We usestd::setfor the setsS and neighbors of because uniqueness during insertion must
be ensured. The sefs' and nonneighbors of are represented witktd::vectorbecause we
know ahead of time that the inserted elements will be unique.

( Variable declaration$07c ) =

vertexdescriptor y v, p, k;
edgedescriptor el e2
bool inserted
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typename graphtraits<VertexListGraph>::vertex_ iterator vi, vi_end
degreesizetype delta alphastar, alpha_S.k;

std::sekvertex descriptor> S, neighbor_S;

std::vectokvertex descriptor- S_star, nonneighborS;
std::vectokdefault.color_type> color( num_verticeg g));
std::vectokedgedescriptor> pred num_verticeg g));

The network flow graph is constructed based on the input graph. Each edge in the flow
graph has three properties—capacity, residual capacity, and reverse edge—which are accessed
through the property map objectap, res cap, andrev_edge respectively.

( Create a network-flow graph out of the undirected grap8a ) =

FlowGraph flow g( num_verticeg g));

typename propertynap<FlowGraph, edgecapacityt>::type
cap = gef edgecapacity flow_g);

typename propertynap<FlowGraph, edgeresidual capacityt>::type
res.cap = gel edgeresidualcapacity flow_g);

typename propertymap<FlowGraph, edgereverset>::type
rev_edge= gef edgereverse flow_g);

typename graphraits<VertexListGraph>::edge.iterator ei, ei_end
for (tie(ei, ei_end = edge$g); ei!= eiend ++ei) {

u = sourcg* ei, @), Vv = targe(* ei, Q);

tie(el, inserted = addedgdu, v, flow_g);

cagel = 1;
tie(e2 inserted = addedgdv, u, flow_g);
caged = 1;

rev.edgg el] = e2
rev.edgg e = el
}

In the main algorithm, several pieces of functionality are divided into separate functions.
The first is finding the minimum-degree vertex, which is implemented by looping through all
of the vertices in the graph and comparing their degree.

( Find minimum-degree vertex functidg ) =

template <typename Graph
std::pair<typename graphtraits<Graph>::vertex descriptor
typename graphtraits<Graph>::degreesizetype>
min_degreeverteX Graph& g)
{
typename graphtraits<Graph>::vertex descriptor p
typedef typename graplraits<Graph>::degreesizetype sizetype
sizetype delta= std::numericlimits<sizetype>::max();
typename graphtraits<Graph>::vertex iterator i, iend.
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for (tie(i, iend) = verticegqg); i != iend; ++1i)
if (degre€* i, g) < delta) {
delta = degre€* i, 0);
p="i
}

return std::makepair(p, delta);

}

We also need the ability to insert every neighbor of a vertex (and a set of vertices) into a
set, which can be done by examining titgacentverticeg) . We assume the output iterator is
similar to astd::insert.iterator for a std::set

( Output neighbors helper functiod®% ) =

template <typename Graph typename Outputlteratas
void neighborg const Grapl& g, typename graphraits<Graph>::vertex descriptor y
Outputlterator resul)

{
typename graphraits<Graph>::adjacencyiterator ai, aend
for (tie(ai, aend = adjacentverticegu, g@); ai '= aend ++ ai)
*resultr++ = * ai;
}

template <typename Graph typename Vertexlteratqr typename Outputlteratar

void neighborg const Grapt& g, Vertexlterator first \ertexlterator last
Outputlterator resul)

{

for (; first != last ++ first)
neighborg g, * first, resulf);
}

The intitial step of the algorithm is to find the minimum-degree veptesetS = p, and
then calculate neighbors 6fand nonneighbors f. We usestd::setdifferencg) to compute
V — S (whereV is the vertex set of the graph).

( Find minimum-degree vertex and compute neighborS ahd nonneighbors &f 10% ) =

tie(p, deltdd = min_degreevertex g);
S_star. push_bacl p);
alpha_star = deltg
S. insert( p);
neighbor_S. insert( p);
neighborg g, S. begin)), S. end), std:inserte neighborS, neighbor.S. begin)));
std::setdifference verticeg g). first, verticeg g). second
neighbor S. begin(), neighbor.S. end), std::backinserterl nonneighbor.S));

The iterative portion of the algorithm is finished when nonneighbofslaécomes empty.
In each step of the loop, the maximum flow betwpemd a nonneighbdr is calculated using
the Edmunds—Karp algorithm (s€d.3.7.]. The vertices labeled (colored nonwhite) during
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the max-flow algorithm correspond to all the vertices on one side of the minimum cut. Thus,
if the size of the cut is the smallest so far, the labeled vertices are recordédhrs inserted
into S, and neighbors af and nonneighbors df are recomputed.

(Main loop110a) =
while (! nonneighborS. empty)) {
k = nonneighborS. front();
alpha_S k = edmundskarp_max flow
(flow_g, p, k, capacitymap( cap. residual capacitymap( res cap).
reverseedgemap( rev_edgg. color_-map(& color[ 0]). predecessamap(& pred 0]));
if (alphaSk < alphastar) {
alpha_star = alpha_Sk;
S_star. clean);
for (tie(vi, vi_end) = verticeg flow_g); vi != vi_end ++ vi)
if (color* vi] = Color::white())
S_star. push.back(* vi);
}
S. insert( k);
neighbor.S. insert( k);
neighborg g, k, std:inserte( neighbor.S, neighbor.S. begin)));
nonneighbor.S. clear);
std::setdifferencq verticeg g). first, verticeg g). second
neighbor S. begin)), neighbor.S. end), std::backinserter nhonneighbor.S));
}

The last step is to find the edges in the cut, which are edges that have one vértenith
the other vertex ir6*. These edges are written to the output iterator nadiednnectingset
and the number of edges in the cut is returned.

( Compute forward edges of the dt*, S*] 110b ) =

std::vectokbool> in_S_star{ num_verticeg g), false);
typename std::vectetvertex descriptor-::iterator Si;
for (si = S_star. begin(); si != S.star. end); ++ si)
in_S_starf* si] = true;
degreesizetype c= 0;
for (si = S_star. begin(); si!= S.star. end); ++ si) {
typename graphtraits<VertexListGraph>::out_edgeiterator ei, ei_end
for (tie(ei, ei_end = out edge$* si, g); ei!= eiend ++ ei)
if (! in_S_staf target* ei, g)]) {
* disconnectingsetr+ = * eij;
++c;
¥
¥

Figure8.1 shows the example graph to which the edge connectivity algorithm is applied.
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Figure 8.1 Example graph for edge connectivity.

( “edge-connectivity.cpp111) =
#include <algorithm>
#include <utility >
#include <boost graph/ edmundskarp_max flow. hpp>
#include <boost graph/ push.relabel.max flow. hpp>
#include <boost graph/ adjacencylist. hpp>
#include <boost graph/ graphviz hpp>

namespace boosf
(Find minimum-degree vertex functiori0&o)
(Output neighbors helper function409%)
(Edge connectivity algorithmiO7a)

}

int main()
{
using namespace bogst
GraphvizGraph g
read graphviZ " figs/edge-connectivity.ddt g);

typedef graphtraits<GraphvizGraph>::edge descriptor edgedescriptor

typedef graphtraits<GraphvizGraph-::degreesizetype degressizetype
std::vectokedgedescriptor> disconnectingset

degreesizetype c= edgeconnectivityf g, std::backinserter disconnectingse));

std::cout << " The edge connectivity is << ¢ << "." << std::endt

property map<GraphvizGraph vertex attribute_t>::type
attr_map = gef vertex attribute, g);
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std::cout << " The disconnecting set i§";
for ( std::vectokedgedescriptor>::iterator i = disconnectingset begin();
i 1= disconnectingset end); ++ i)
std::cout << " (" << attrmad source* i, Q)] "label'] << " )"
<< attr_mad targei(* i, g)][ "label'l] << ") ";
std::cout << " }." << std:endt
return EXIT _SUCCESS

}

The output from the example program is the following:

The edge connectivity i.
The disconnecting set i(D, E) ( D, H) }.



Chapter 9

Implicit Graphs: A Knight's Tour

The knight’s-tour problem is as follows: Find a path for a knight to touch all of the squares
of ann x n chessboard exactly once. The knight's tour is an example leamiltonian
path—that is, a simple closed path that passes through each vertex of the graph exactly once
(where each square of the chessboard is treated as a vertex in the graph). The edges of the
graph are determined by the pattern in which a knight can jump (for example, up two and over
one). In this section, we will use a generic backtracking search algorithm to find the knight’s
tour. The backtracking algorithm is a brute-force algorithm and quite slow, so we also show
an improvement to the algorithm using Warnsdorff's heuristid.[ The Hamiltonian path
problem is NP-completelf] (for large problem sizes it cannot be solved in a reasonable
amount of time). An example of a knight's tour on a regulax 8 chessboard is shown in
Figure9.l

[EEN

N o oA WON

Figure 9.1 An example of a knight'’s tour.
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One unique aspect of this example is that it does not use an explicit data structure (such
as theadjacencylist class) to represent the graph. Ratherimaplicit graph structurénights-
_tour_graphis deduced from the allowable moves of a knight on a chessboard.

9.1 Khnight's Jumps as a Graph

Theknights_tour_graph will be a model ofAdjacencyGraph, so we need to implementaalja-
centverticeg) function that returns a pair of adjacency iterators. The adjacency iterator treats
each of the squares that are legal moves from the current position as adjacent vertices.

The pattern of the knight's jumps are stored in an array, as follows.

typedef std::paixint, int> Position;

Position knightjumpg 8] = { Position( 2, —1), Position(1, —2),
Position( —1, —2), Position( —2, —1), Position —2, 1),
Position( —1, 2), Position(1, 2), Position(2, 1) };

The knight_adjacencyiterator contains several data members: the current position on the
chessboareh_pos the current place in thienight_jumpsarraym.i, and a pointer to the graph
m_g. Incrementing the adjacency iterator (usimgerator+«) ) incrementsn.i. The new po-
sition may be invalid (off the board), sa.i may need to be incremented further, which is
handled in thevalid_position) member function. The first jump may also be invalid, so the
valid_position() function is also called in the constructor of the adjacency iterator. A pointer
to the chessboard is needed so that its size can be accessed (chessboards of arbitrary size
may be used). When the adjacency iterator is dereferenpecatory() ) the current position
offset by the current jump vector is returned. The following code shows the implementation
of theknight_adjacencyiterator. Theboost::forwarditerator_helperis used to automatically im-
plementoperator++(int)in terms ofoperator+«) andoperator!'=) in terms ofoperator=<) .

struct knight.adjacencyiterator
. public boost::forward.iterator_helper<
knight_adjacencyiterator, Position, std::ptrdiff_t, Positior¥, Positiorn>

knight_adjacencyiterator() { }
knight_adjacencyiterator( int ii, Position p const knightstour_graph& g)
: m_pogp), mMg(&g), m.i(ii) { valid_position); }

Position operatof() const { return m_pos + knight_jumpq m_i]; }

void operator+() { ++m.i; valid_position); }

bool operator=( const knightadjacencyiterator& x) const{ return m.i == x. m.i; }
protected:

void valid position();

Position m.pos

const knightstour_graph* m_g;

int m_i;

h
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In the valid_position)) member function, the jump counter is incremented until a position is
found that is on the board, or until the end of the jump array is reached.

void knight adjacencyiterator::valid_position)) {
Position newpos = m_pos + knight_jumpq m_i];
while (m.i < 8 && (new.pos first < 0 || new_pos second< 0
|| new_pos first >= m_g—>m_board size
|| new.pos second >= m_g—>m_boardsizg) {
++m.i;
new pos = m_pos + knight_jumpq m._i];
}
}

Theadjacentverticeg) function is implemented by creating a pair of adjacency iterators
using0 for the beginning iterator’s jump position addor the past-the-end iterator’s jump
position.

std::pair<knights_tour_graph::adjacencyiterator, knights_tour_graph::adjacencyiterator>
adjacentverticeg knights_tour_graph::vertex descriptor v const knightstour_graph& g) {
typedef knightstour_graph::adjacencyiterator lIter;
return std::makepair( Iter(0, v, @), lter(8, v, 0));

}

The knights_tour_graph class only contains the size of the chessboard (stored as a data
member) and the typedefs required ofAdjacencyGraph. Thenum_verticeg) function re-
turns the number of squares in the chessboard.

struct knightstour_graph
{
typedef Position vertexiescriptor
typedef std::paikvertex descriptor vertex descriptor- edgedescriptor
typedef knightadjacencyiterator adjacencyiterator;
typedef void outedgeiterator;
typedef void inedgeiterator;
typedef void edgéterator;
typedef void vertexterator;
typedef int degressizetype
typedef int verticessizetype
typedef int edgesizetype
typedef directedag directedcategory
typedef disallowparallel_edgetag edgeparallel_category
typedef adjacencygraph_tag traversalcategory
knights_tour_graph(int n) : m_boardsiz¢ n) { }
int m_board size
I3
int num_verticeg const knightstour_graph& g)
{ return g. m_board size* g. m_board size }
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Now that the knight's moves are mapped to the Boost graph interface, we can look at
some graph algorithms that can be used to solve the knight's tour problem.

9.2 Backtracking Graph Search

The idea of a backtracking graph search is similar to a depth-first search in that a path is
explored until a dead end is reached. The backtracking graph search is different in that after a
dead end is reached, the algorithm backs up, unmarking the dead end path, before continuing
along a different path. In the following code, the backtracking search is implemented using a
stack (instead of the recursive method), and discovery time for each vertex is recorded using
a property map. The stack contains timestamp-vertex pairs so that the proper timestamp is
available after backtracking from a dead end. The search is completed once all of the vertices
have been visited, or when all possible paths have been exhausted.

Although the graph defined in the previous section was implicit (and represents the
knight's move on a chessboard in particular), it nevertheless models a@&dh. The
backtracking algorithm is therefore implemented faraph, rather than only for &nights-
_tour_graph. The resulting algorithm is reusable for any graph data structure that models
Graph.

template <typename Graph typename TimePropertyMap
bool backtrackingsearch Graph& g,

typename graphraits<Graph>::vertex_descriptor sr¢ TimePropertyMap timemap)
{

(Create the stack and initialize time stanid6)

S. push( std::makepair( time_stamp src));

while (I S. empty)) {
(Get vertex from top of stack, record time, and check for finish7a)
(Push all of the adjacent vertices onto the statk7b)
(If at dead end, rollbackl17c)

} /I while (IS.empty())

return false

}

A std::stackis used to record the vertices that need to be explored. The timestamp of when
the vertex was pushed on to the stack is also recorded.

( Create the stack and initialize time stafdif6) =
typedef typename graplraits<Graph>::vertex descriptor Vertex
typedef std::paikint, Vertex> P;
std::stack<P> S;
int time_stamp= 0;

The next step is to record the timestamp for the vertex at the top of the stack and check to see
if all the vertices in the graph have been recorded and thus the algorithm is finished.
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( Get vertex from top of stack, record time, and check for fidisfa ) =

Vertex x

tie(time_stamp x) = S. top();

put( time_map, X, time_stamp;

/I all vertices have been visited, success!

if (time_stamp == num_verticegg) — 1)
return true;

Now all the adjacent vertices are scanned, and if an adjacent vertex has not yet been visited it
is added to the stack. No available adjacent vertices indicates a dead end.

( Push all of the adjacent vertices onto the statk ) =

bool deadend= true;
typename graphraits<Graph>::adjacencyiterator i, end
for (tie(i, end = adjacentvertice§x, g); i != end ++i)
if (gef(time.map * i) == —-1) {
S. push( std::make pair( time_stamp + 1, * i));
deadend= false

}

If the algorithm reaches a dead end, vertices are popped from the stack until a vertex is found
that has not yet been explored. As we roll back, the timestamps for each vertex are reset,
because it is possible that those vertices can be reached along a better path.

(If at dead end, rollbackl7c) =

if (deadend {
put(time_.map X, —1);

S. pop();

tie(time_stamp x) = S. top();

while (gef(time_map, x) != —1) { // unwind stack to last unexplored vertex
put(time_map, x, —1);
S. pop);
tie(time_stamp x) = S. top();

}

}

9.3 Warnsdorff’'s Heuristic

Warnsdorff’s heuristic for choosing the next place to jump is to look ahead at each of the
possible jumps, and see how many jumps are possible from that square. We will call this
thenumber of successor§he square with the fewest number of successors is chosen as the
next move. The reason this heuristic helps is that it visits the most constrained vertices first,
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thereby avoiding some potential dead ends. The following function calculates the number of
successors of a vertex.

template <typename Vertex typename Graph typename TimePropertyMap
int number_of_successorsVertex x Graph& g, TimePropertyMap timemap {

int sx = 0;
typename graphraits<Graph>::adjacencyiterator i, end
for (tie(i, end) = adjacentverticegx, g); i != end ++ i)
if (geftime_.map, * i) == —1)
++S._X;
return sx;

}

To implement this algorithm, we start with the backtracking algorithm, but instead of
pushing the adjacent vertices onto the stack, we first order the vertices according to the num-
ber of successors. The ordering is accomplished by putting the adjacent vertices in a priority
gueue. Once all of the adjacent vertices are in the queue, they are popped off the queue and
pushed onto the stack. An empty priority queue denotes a dead end.

template <typename Graph typename TimePropertyMap

bool warnsdorff{l Graph& g, typename graphtraits<Graph>::vertex descriptor sr¢
TimePropertyMap timemap)

{

(Create the stack and initialize time stanid6)

S. push( std::makepair( time_stamp src));

while (I S. empty)) {
(Get vertex from top of stack, record time, and check for finish7a)
/I Put adjacent vertices into a local priority queue
std::priority_queue<P, std::vectokP>, comparefirst> Q;
typename graphraits<Graph>::adjacencyiterator i, end

int num_sucg
for (tie(i, end = adjacentverticegx, g); i != end ++i)
if (geftimemap * i) == —-1) {

num_succ = number.of_successor® i, g, time_-map);
Q. push( std::make pair( num_sucg * i));

}
bool deadend= Q. empty);
/I move vertices from local priority queue to the stack
for (! Q empt); Q pop) {

tie( num_sucg Xx) = Q. top();

S. push( std::makepair( time_stamp + 1, Xx));

(If at dead end, rollbackl17c)
} /I while (IS.empty())
return false

}
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Interfacing with Other Graph
Libraries

Although the main goal of BGL is to aid the development of new applications and graph
algorithms, there are quite a few existing codes that can benefit from using BGL algorithms.
One way to use the BGL algorithms with existing graph data structures is to copy data from
the older graph format into a BGL graph, which is then used with the BGL algorithms. The
problem with this approach is that it can be inconvenient and expensive to perform this copy.
Another approach is to use the existing data structure directly by wrapping it with a BGL
interface.

The Adaptor patternl/] is one mechanism for providing a new interface to an existing
class. This approach typically requires that the adapted object be contained inside a new class
that provides the desired interface. Containment is not required when wrapping a graph for
BGL because the BGL graph interface consists solely of free (global nonmember) functions.
With this kind of interface, instead of creating a new graph class, adapting an interface re-
quires only overloading of the free functions that make up the interfac§10r8 we will
show in detail how this works.

The BGL includes overloads for the LEDA’J] GRAPH type, the Stanford Graph-
Base P7] Graph* type, and also for the STktd::vector LEDA is a popular object-oriented
library for combinatorial computing, including graph data structures and algorithms. The
Stanford GraphBase, by Donald Knuth, is a collection of graph data sets, graph generators,
and programs that run graph algorithms on these graphs.

In the following sections, we will show examples of using LEDA and SGB graph data
structures with BGL algorithms. We will then look at the implementation of the BGL adapting
functions for the LEDA graph, providing example for how to implement adaptors to other
graph libraries.

In §1.4.1we demonstrated the flexibility of the BGL algorithms by applytogolog-
ical_sort) to both a graph represented by a vector of listsl;:vectok std::list<int>>,
and also a graph represented bytmost::adjacencylist. We will continue that example—
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scheduling a set of interdependent tasks—in the following two sections, first using the LEDA
GRAPH type and then using an Stanford GraphBase (SGphtype.

10.1 Using BGL Topological Sort with a LEDA Graph

The header fildoost/graph/ledagraph.hppcontains function overloads that adapt the LEDA
parameterize@RAPHtype to the BGL interface. The BGL interface for the LEARAPH s
documented ig14.3.5 The LEDA-BGL interface was tested with LEDA version 4.1, one of
the last freely available versions of LEDA. In addition to including ldua graph.hppheader
file you must have LEDA installed, set the include and library paths of your compiler, and
link in the LEDA libraries. See the LEDA documentation for details.

The following is the outline for the task-scheduling program, this time using a LEDA
GRAPH to represent the task dependencies.

( “topo-sort-with-leda.cpp”120a ) =
#include <vector>
#include <string>
#include <iostream>
#include <boost graph/ topological sort hpp>
#include <boost graph/ leda_graph. hpp>
/I Undefine macros from LEDA that conflict with the C++ Standard Library.
#undef string
#undef vector

int main()

{

using namespace bogst

(Create a LEDA graph with vertices labeled by tasR0b)
(Add edges to the LEDA graph?21a)

(Perform the topological sort on the LEDA graph21b)
return EXIT _SUCCESS

}

The LEDA GRAPH class allows the user to attach objects to the vertices and edges of the
graph, so here we will attach the task names (in the forstdoktring) to the vertices. We use
the usual BGLladd.vertex) function to add vertices tledag, and pass in the task names as
the property object to be attached to the vertex. We store the vertex descriptors returned from
add.verteX) in a vector so that we have fast access to any vertex when adding the edges.

( Create a LEDA graph with vertices labeled by tdskb ) =

typedef GRAPH:std::string, char> graph.t;
graph_t ledag;
typedef graphtraits<graph_t>::vertex descriptor vertext;
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std::vectokvertext> vert( 7);
verf 0] = add.vertex std::string( " pick up kids from schod!), ledag);

verf 1] = add.vertex std::string( " buy groceries (and snack%), ledag);
verf 2] = add.vertex std::string( " get cash at ATM), ledag);

verf 3] = add.verteX std::string( " drop off kids at soccer practice), leda.g);
verf 4] = add.verteX std::string( " cook dinnef'), leda.g);

verf 5] = add.vertex std::string( " pick up kids from soccer), leda.g);
verf 6] = add.vertex std::string( " eat dinnef'), ledag);

The next step is adding edges to the graph. Again, we use the usual BGL function, in this
caseadd.edgd) .

( Add edges to the LEDA grapt2la) =
add edg€ verf 0], verf 3], ledag);
add edg€ ver 1], verf 3], ledag);
add edg€ ver 1], verf 4], ledag);
add edg€ ver 2], verf 1], ledag);
add edg€ ver 3], verf 5], ledag);
add.edg€ verf 4], verf 6], ledag);
add edg€ ver 5], verf 6], leda.g);

Now that we have the graph constructed, we can make the cadbtdogicalsort() .
Again, because of the LEDA-BGL interface, the LEDZRAPH can be used as-is with
the BGL function. We simple pass thedag object into the algorithm. Théeopologi-
cal_sor() requires a color property map to mark the vertices, so we use the lleB&array
to map from vertices to colors. Theakeledanodepropertymap() function is also de-
fined in boost/graph/ledagraph.hpp which creates an adaptor that satisfies lthaueProp-
ertyMap concept in terms of aode array. The reverse topological ordering is written into the
topa.order vector, which we then reverse. The ordering is then output.opbetor[}() of the
LEDA GRAPH s used to access the task label for each vertex.

( Perform the topological sort on the LEDA grapRilb ) =

std::vectokvertext> topa_order,
node array<default color_type> color_array( leda g);

topologicalsort( leda g, std::backinserter( topo.order),
color_map( make leda_node property map( color_array)));

std::revers¢ topa_order. begin), topo.order. end));
intn =1;
for ( std::vectokvertext>::iterator i = topo.order. begin();
i = topoorder. end); ++ i, ++n)
std:i:icout << n << " " << ledag[* i] << std:endt
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10.2 Using BGL Topological Sort with a SGB Graph

The SGB defines &raph struct that implements an adjacency-list style data-structure. The
overloaded functions ihoost/graph/stanfordgraph.hppadapt the SGEraph struct to the BGL
interface. In addition to including thetanford graph.hppheader file, you must have the Stan-
ford GraphBase installed and you must apply the PROTOTYPES change file that is included
in the SGB distribution. The reason for this is that the original SGB header files did not de-
fine ANSI standard prototypes for the functions, which is required by a C++ compiler. When
compiling a program using the SGB-BGL interface, you will need to set up the include and
library paths to find the SGB, and you will need to link in the SGB library. The SGB-BGL
interface is documented {14.3.4

The following code shows the outline for a program that computes a topological ordering
for a set of interdependent tasks.

( “topo-sort-with-sgh.cpp”122a) =
#include <vector>
#include <string>
#include <iostream>
#include <boost graph/ topological sort hpp>
#include <boost graph/ stanford graph. hpp>

int main()

{

using namespace bogst

(Create an SGB grapi22)

(Create labels for the task$22c)

(Add edges to the SGB grapt?3a)

(Perform the topological sort on the SGB grapt?3b)

gb_recycld€ sghg);
return EXIT _SUCCESS

¥
We create a SGB graph with a call to the SGB functibmew.graph() .

( Create an SGB grapt?2b ) =
const int nvertices= 7,
Graph* sghg = gb_new_graph( n_verticeg;

Next we write down the labels for the tasks (the vertices) in the graph. It is easy to
go from an SGB vertex descriptor to an integer usingdiievertexid_map defined instan-
ford_graph.hpp so storing the labels in an array is convenient.

( Create labels for the task2x ) =
const char taskg§] = <
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" pick up kids from schod!,
"buy groceries (and snacks)
"get cash at ATM,
"drop off kids at soccer practice
" cook dinner',
" pick up kids from soccer,
"eat dinnef' };
const int ntasks = sizeof taskg / sizeof char*);

The SGB graph stores the vertices of the graph in an array, so we can access any vertex
by an offset into the array. Thgb_new edgefunction takes twd/ertex* arguments and an edge
weight (which we do not need).

( Add edges to the SGB grafl23a) =

gb_new arc( sgh. g—>vertices + sghg—>vertices+ 3, 0);
gh_new arc( sgh.g—>vertices + sghg—>vertices+ 3, 0);
gb_new_arc( sgh g—>vertices + sghg—>vertices+ 4, 0);
gb_new_arc( sgh g—>vertices + sghg—>vertices+ 1, 0);
gb_new_arc( sgh.g—>vertices+ 3, sghg—>vertices+ 5, 0);
gb_new_arc( sgh.g—>vertices + 4 sgh.g—>vertices+ 6, 0);
gb_new_ arc( sgh.g—>vertices+ 5, sghg—>vertices+ 6, 0);

WNP PO

Next we perform the topological sort. We pass the SGB graph as is into the algorithm.
This time instead of creating a color map we will let the algorithm create one for itself. How-
ever, to do this théopologicalsort) function will need a mapping from vertices to integers.
The SGB-BGL interface provides this property map. The vertex to index property map is
obtained by the caljet(vertexindex, sghg.

( Perform the topological sort on the SGB grai#tth ) =

typedef graphtraits<Graph* >::vertex descriptor vertext;
std::vectokvertext> topao_order,
topologicalsort( sghg, std::backinserter( topo_order),

vertex index map( gef vertexindex, sghg)));
int n = 1,
for ( std::vectokvertext>::reverseiterator i = topo.order. rbegin();

i 1= topo.order. rend(); ++ i, ++ n)
stdicout << n << ": " << taskg gef vertexindex, sghg)[* i]] << std:end}

10.3 Implementing Graph Adaptors

Implementing new adaptors for other graph libraries and data structures is not difficult. As
an example of how to create new adaptors, this section provides a detailed explanation of the
implementation of the BGL interface for the LEDBRAPH.
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The first issue in creating the adaptor is which BGL concepts should be implemented.
The following concepts are straightforward to implement on top of LER#texListGraph,
BidirectionalGraph, VertexMutableGraph, andEdgeMutableGraph.

All types associated with a BGL graph class are accessed thoughaibtetraits class.

This traits class can be partially specialized for the LEGRAPH class in the following way.

1 The node and edgetypes are the LEDA equivalent of vertex and edge descriptors. The
LEDA GRAPHi s for directed graphs, so we choafieectedtag for the directedcategory The
LEDA GRAPH does not automatically prevent the insertion of parallel edges, so we choose
allow_parallel_edgetag for the edgeparallel_category The return type for the LEDA function
number.of_nodeg) is int, SO we choose that type for tlverticessizetype of the graph. The

tag type used for theaversal categorymust reflect which traversal concepts the graph type
models. Therefore we create a tag class that inherits fidimectional graph_tag, adjacency-
_graph_tag, andvertexlist_graph_tag. The iterator types will be described later in this section.

( Graph traits for LEDA grapi24) =

namespace boos{
struct ledagraph traversal category :
public virtual bidirectional graph_tag,
public virtual adjacencygraph._tag,
public virtual vertexlist_graph tag { };

template <typename V typename B
struct graphtraits<x GRAPH<V, E> > {
typedef node vertexiescriptor
typedef edge edgdescriptor
typedef directedag directedcategory
typedef allowparallel_edgetag edgeparallel_category
typedef int verticessizetype
typedef ledagraph_traversalcategory traversakategory
(Out-edge iterator typd 25c)
/I more iterator typedefs ...
h

} I/ namespace boost

First we will write thesourc€) andtargef) functions of thelncidenceGraph concept,
which is part of theBidirectionalGraph concept. We use the LEDSRAPH type for the
graph parameter, and ugeph.traits to specify the edge parameter and the vertex return type.
Although the LEDA typesiode and edgecould be used, it is better practice to always use
graph_traits. If there is a need to change the associated vertex or edge type, it will only need

1Some nonconformant compilers such as Visual C++ 6.0 do not support partial specialization. To access
associated types in this situation, the traits class must be fully specialized for particular vertex and edge types.
Alternatively a wrapper class containing the LEDA graph and required nested typedefs can be used.
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to be done in one place, inside the specializatiograph traits, rather than throughout your
code. LEDA providesourcg) andtargef) functions, so we merely call them.

( Source and target for LEDA grad?5a) =
template <typename V typename B
typename graphraits< GRAPH<V, E> >::vertex descriptor
sourcd typename graphtraits< GRAPH<V, E> >:edgedescriptor ¢
const GRAPH<V, E>& Q)
{

}

/I same for target ...

return source e);

The next function fromncidenceGraph that we need to implement &t edge$) . This
function returns a pair of out-edge iterators. Since LEDA does not use STL-style iterators they
need to be implemented. Implementing iterators that are compliant with the C++ standard
can be a difficult and tedious process. Fortunately, there is a convenient Boost utility for
implementing iterators, calleiterator_adaptor. The iterator_adaptor class allows the user to
create standard-conforming interators simply by providing policy classes. The following code
is the policy class for our out-edge iterator. In LEDA, the edge object itself is used like
an iterator. It has functionSuccAdj_Edgg) andPred Adj_Edgg) to move to the next and
previous (successor and predecessor) edge.

( Out-edge iterator policies2% ) =
struct ledaout_edgeiterator_policies

{

template <typename lter

static void incremerttlter& i) { i. bas€) = SuccAdj_Edggi. basd€), 0); }
template <typename lter

static void decremeftiter& i) { i. bas€) = Pred Adj_Edgq i. bas€), 0); }
template <typename lter

static typename lIter::reference derefereroeonst Ite& i) { return i. bas€); }
template <typename lter

static bool equalconst Ite& x, const Ite& y) { return x. bas€) == vy. bas€); }

1

The iterator_adaptoris now used to fill in theout edgeiterator type. The first two template
parameters foiterator_adaptorare the adapted type and the policy class. The following pa-
rameters specify the associated types of the iterator such as the value type and reference type.

( Out-edge iterator typ#25c ) =

typedef iteratoradaptoedge leda out edgeiterator_policies
edge const edg&, const edgg std::forward. iterator_tag, std::ptrdiff_t
> out_edgeiterator;
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With the out_edgeiterator defined ingraph _traits, we are ready to define theit edge$) func-

tion. In the following definition, the return type should be a pair of out-edge iterators, so
we usestd::pair and thengraph_traits to access the out-edge iterator types. In the body of
the function we construct the out-edge iterators by passing in the first adjacent edge for the
begin iterator, and 0 for the end iterator (which is used in LEDA as the end sentinel). The 0
argument tdrirst_Adj_Edgetells LEDA we want out-edges (and not in-edges).

( Out-edges function for LEDA26a) =

template <typename V typename E-

std::pair<typename graphtraits< GRAPH<V, E> >:out_edgeiterator,
typename graphtraits< GRAPH<V, E> >:out_edgeiterator>

out_edge$ typename graphraits< GRAPH<V, E> >:vertex descriptor y
const GRAPHV, E>& Q)

{

typedef typename graplraits< GRAPH<V, E> >::out_edgeiterator lter;
return std::makepair( Iter( First_Adj_Edgeg(u, 0)), Iter(0) );
}

The rest of the iterator types and interface functions are constructed using the same tech-
nigues. The complete code for the LEDA wrapper interface soisst/graph/ledagraph.hpp
In the following code we use the BGL concept checks to make sure that we have correctly
implemented the BGL interface. These checks do not test the run-time behavior of the imple-
mentation; that is tested tast/graph.cpp

( “leda-concept-check.cpp126b ) =

#include <boost graph/ graph_concepts hpp>
#include <boost graph/ leda graph. hpp>

int main()

{
typedef GRAPHint, int> Graph;
function_requires< VertexListGraphConceptGraph> >();
function_requires< BidirectionalGraphConcept.Graph> >();
function_requires< VertexMutableGraphConceptGraph> >();
function_requires< EdgeMutableGraphConceptGraph> >();
return EXIT_SUCCESS
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Performance Guidelines

In this chapter, we discuss the performance impact of various choices of the BGL graph
family adjacencylist. The purpose is to give BGL users some basic guidelines for which
graph types might be most efficient in different situations. We present a set of experiments
that shows the performance of different basic operations on several variations of the BGL
adjacencylist. Sparse and dense graphs are investigated, as well as the use of two different
compilers (Microsoft Visual C++ and GNU C++).

As a primary BGL graph componenigjacencylist allows users to control the actual data
structures used for internal graph data structures. lIts first two template pararBetetsst
andVertexList, are used to select actual containers to represent the sequence of out-edges and
the sequence of vertices, respectively. Users canetsglistS, or setSfor EdgeListto choose
eitherstd::vector std::list, or std::set Users can specifyecSor listS to choosestd::vectoror
std::list, respectively, for the backbone.

11.1 Graph Class Comparisons

The experiments compare the performance of several variations afpheencylist. The
experiments cover most of the basic graph operations: inserting and removing vertices and
edges and traversing the graph along the vertices, edges, and the out-edges of each vertex.
The experiments were performed with sparse and dense graphs with small size (100 vertices),
medium size (1,000 vertices), and large size (10,000 vertices). For a sparse graph, the number
of edges is ten times the number of vertices. For a dense graph, the total number of edge is
the square of the number of vertices.

The timing runs were performed on a Dell dual 733MHz CPU machine, with 512 MB
memory. The experiments were duplicated for two compilers: Microsoft Visual V++ 6.0 and
GNU C++ 2.95.3 under cygwin. The optimization flags were set for maximal speed for Visual
C++. The-O3 and-funroll-loops optimization flags were used with GNU C++. Note that the
adjacencylist implementation uses components from the STL, which are typically provided
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by the compiler.

The timer used was the portable POSdkck() function, which is rather low resolu-
tion. Several of the tests would normally complete in less time than the minimum resolution.
Therefore, the experiments were executed in a loop until the elapsed time exceeded at least
100 times the minimum resolution. Each of these looped experiments was repeated three
times and the minimum time of the three was reported. We noticed a standard deviation of
approximately 10% in the timings.

The following gives the full graph type used for the experiments, along with the abbrevi-
ated graph names used in the results charts.

e VeC

adjacencylist<vecS vecS directedS property<vertexdistancet, int>,
property<edgeweightt, int> >

o list

adjacencylist<listS, vecS directedS property<vertexdistancet, int>,
property<edgeweightt, int> >

e sSet

adjacencylist<setS vecS directedS property<vertexdistancet, int>,
property<edgeweightt, int> >

o |listlist

adjacencylist<listS, listS, directedS property<vertex distancet, int>,
property<edgeweightt, int> >

11.1.1 The Results and Discussion

Adding Edges and Vertices For the first experiment, we make alternate calls to
addverteX) andaddedgd) until the graph ha$FE| edges andV/| vertices. The results of
this experiment are shown in Figuté.1 The winner here is one of treljacencylist classes
with VertexList=listSselector.

Adding Edges For this experiment, we add’| edges to a graph that already &3 ver-
tices. The results are shown in Figuté.2 The clear winner using Visual C++ mlja-
cencylist with VertexList=vecSselector, regardless of graph size and sparsity. Using GNU
C++, adjacencylist class withEdgeList=listSwins when graphs are sparse.
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Figure 11.1The timing results of the experiment adding edges and vertices.
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Figure 11.2The timing results of the experiment adding edges.
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Removing Edges This experiment adds and removég edges to graph withl/| vertices.
The results are shown in Figufiel.3 The result here was not clear for graphs with small
number of vertices. However, it is clear ttaljacencylist with VertexList=setSselector is the
winner for large graphs.
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Figure 11.3The timing results of the experiment removing edges.

Removing Vertices This experiment addd/| vertices andE| edges to a graph, and then
removes all the vertices. The results are shown in Figiré The clear winner here Isstlist,
which was designed with this operation in mind. Other variationadidcencylist perform
horribly on this operation because its implementation is not of constant time complexity.

Clearing Vertices This experiment add8/| vertices and E/| edges to a graph, and then
clears and removes all the vertices. Thear.vertex) operation traverses the graph, removing
any edges the refer the vertex. The results are shown in Figufe As the graph size gets
larger and larger, it is getting clearer tlafjacencylist with VertexList=vecds the winner.

Vertex Set Traversal This experiment traverses through all the vertices in the graph, read-
ing an internal property value from each vertex. The results are shown in HigjugeThere

was no clear winner here in the first three graph types. Vertex traversal was fast for those
graph classes because they have the s@rtexList=vecS Vertex traversal was slower for
large graphs folistlist because it usegertexList=listS
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Figure 11.4The timing results of the experiment removing vertices.
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Figure 11.5The timing results of the experiment clearing vertices.
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Figure 11.6The timing results of the experiment traversing the vertex set.

Edge Set Traversal This experiment traverses through all the edges in the graph, reading
an internal property value from each edge. The results are shown in RigjuteThe clear
winner here isadjacencylist with EdgeList=vecS

Out-Edge Traversal This experiment traverses through the out-edges of every vertex in the
graph, reading an internal property from each vertex and from each out-edge. The results are
shown in Figurel1.8 The clear winner here idjacencylist with EdgeList=vecS

11.2 Conclusion

Different combinations of choices have different tradeoffs between traversal speed and inser-
tion/removal speed. The following summarizes the results of our experiments.

UsingvecSfor EdgeListgenerally provides efficient out-edge traversal.

UsingvecSfor VertexListgenerally provides efficent vertex set traversal.

Efficient removal of edges is supporteddstSfor EdgelList In particularstd::setshould
be used for the sequence of out-edges.

For efficient addition of edgesecSor listS for EdgeListshould be used.

If removing vertices is a common operatidintS for VertexListshould be used because
std::list as a backbone enables constant-time vertex removal.
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Figure 11.7The timing results of the experiment traversing the edge set.
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e For clearing verticesyecSfor VertexListis a good choice (the functiotiear vertex)
can be used to remove all incident edges).
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Chapter 12

BGL Concepts

This chapter describes the fundamental interfaces (the fundamental concepts) for graphs in
the BGL. These concepts are organized into three categories: those providing mechanisms
for traversing a graph, those providing mechanisms for modifying a graph, and visitors for
accessing properties attached to vertices and edges.

Notation

The notation used in the requirements for all of the graph concepts is collected here.

G

g

e
eiter
u,v
ep

vp
PropertyTag
ptag
X

X
PMap
pmap

is a graph type.

is an object of types.

is an object of typ@raph_traits<G>::edge descriptor
is an object of typgraph traits<G>::out_edgeiterator
are objects of typgraph _traits<G>::vertex descriptor
is an object of typedgeproperty<G>::type

is an object of typ@ertex property< G>::type

A type used to specify a vertex or edge property.
An object of typePropertyTag

is either the vertex or edge descriptor type®or

is a vertex or edge descriptor.

is a type that models one of the property map concepts.
is an object of typ@Map.

12.1 Graph Traversal Concepts

The core of the Boost Graph Library is the interfaces, as represented by concepts, that define
how a graph can be examined and manipulated in a data structure neutral fashion. In fact, as
shown in Chaptey the BGL graph interface need not even be implemented using an explicit
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data structure. For some problems it is more natural or more efficient to define a graph
implicitly based on certain functions.

The BGL graph interface does not appear as a single concept. Instead, it is factored into
smaller, distinct pieces. The purpose of a concept is to encapsulate the interface requirements
for algorithms. To maximize the reusability of an algorithm, it is important not to include
operations in its interface that are not actually required for correct operation of the algorithm.
By factoring the graph interface into smaller distinct concepts, we provide the graph algorithm
writer with a good selection from which to choose the minimal concept that provides the
functionality needed by the algorithm.

Figure 12.1 shows the refinement relations between the graph traversal concepts. Ta-
ble 12.1gives a summary of the valid expressions and associated types for the graph traversal
concepts.

Graph

IncidenceGraph AdjacencyGraph EdgeListGraph AdjacencyMatrix VertexListGraph

Bidirectional Graph

Figure 12.1The graph concepts and refinement relationships.

12.1.1 Undirected Graphs

The interface that the BGL provides for accessing and manipulating undirected graphs is the
same as the interface for directed graphs. The interface is the same because of a certain
equivalence between undirected and directed graphs. That is, any undirected graph can be
represented as a directed graph where each undirectedwedges replaced by two directed
edges:(u,v) and(v,u). Such a directed graph is call td@ected versiorof the undirected

graph. Figurel2.2shows an undirected graph and the directed version of it. Note that for
every edge in the undirected graph, the directed graph has two edges. Thus, the BGL uses the
out edge$) function (orin_edge$) ) to access the incident edges in an undirected graph. Sim-
ilarly, the BGL usesourcd) andtargef) to access vertices. This may seem counterintuitive

at first. However, by recognizing the equivalence between undirected and directed graphs, the
BGL allows many algorithms to be applied to both directed and undirected graphs.
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| Expression Return Type or Description |
Graph
graph traits< G>::vertex descriptor The type of object used to identify vertices
graph traits<G>::directed category Directed or undirected edges?
graph_traits<G>::traversal category What kind of iterator traversal is supported[?

graph_traits<G>::edgeparallel_category Allow insertion of parallel edges?
IncidenceGraph refinesGraph

graph_traits<G>::edgedescriptor The type of object used to identify edges.

graph traits<G>::out_edgeiterator Iterate through the out-edges.

graph_traits<G>::degreesizetype The integer type for vertex degee.

outedges(v, g) std::paiout_edgeiterator, out edgeiterator>

source(e, g) vertexiescriptor

target(e, g) vertexdescriptor

out.degree(v, g) degresizetype

BidirectionalGraph refinesincidenceGraph

graph_traits<G>::in _edgeiterator Iterate through the in-edges.

in_edges(v, g) std::paicin_edgeiterator, in_edgeiterator>

in_degree(v, g) degresizetype

degree(e, g) degresizetype

AdjacencyGraph refinesGraph

graph_traits<G>::adjacencyiterator Iterate through adjacent vertices.

adjacentvertices(v, g) std::paicadjacencyiterator, -
adjacencyiterator>

VertexListGraph refinesGraph

graph.traits<G>::vertex_iterator Iterate through the graph’s vertex set.

graph_traits<G>::vertices sizetype The unsigned integer type for representing
the number of vertices.

num_vertices(g) verticesizetype

vertices(Q) std::paik vertexiterator, vertexiterator>

EdgeListGraph refinesGraph

graph_traits<G>::edgedescriptor The type of object used to identify edges.

graph_traits<G>::edgeiterator Iterate through the graph’s edge set.

graph traits<G>::edgessizetype The unsigned integer type for representing
the number of edges.

num_edges(g) edgesizetype

edges(g) std::pakedgeiterator, edgeiterator>

source(e, g) vertexiescriptor

target(e, g) vertexdescriptor

AdjacencyMatrix refinesGraph

edge(u, v, 9) std::pak.edgedescriptor, bool

Table 12.1: Summary of the graph traversal concepts.
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Figure 12.2An undirected graph and its directed equivalent.

The following example demonstrates using theedge$) , sourcd) , andtargef) with
an undirected graph. Even though edge directionality typically does not matter for undirected
graphs, when applying theit edge§) function with a vertex:, the source vertex for the edge
descriptors will always be and the target vertex will be a vertex adjacenttd@he converse
is true for thein_edge$) function.

template <typename UndirectedGraph void undirectedgraph.demoX) {
const int V = 3;
UndirectedGraph undigrapfiV);
typename graphraits<UndirectedGraph>::vertex_descriptor zerp one two;
typename graphraits<UndirectedGraph-::out_edgeiterator out, out-end
typename graphraits<UndirectedGraph>::in _edgeiterator in, in_end

zero = verteX 0, undigraph);
one = verteX 1, undigraph);
two = verteX 2, undigraph);
add_edg€ zerq one undigraph);
add edgd zerq two, undigraph);
add edgd€ one, two, undigraph);

std::cout << " out edges(0):";

for (tie(out, outend) = outedge¢zerqg undigraph); out != outend ++ out)
std::cout << *out;

std::cout << std::endl << "in"edges(0):";

for (tie(in, in_end = in_edge¢zerg undigraph); in != in_end ++in)
std::cout << *in;

std::cout << std::endt

}
The output is

out.edge$0): (0,1) (0, 2)
in_edge$0): (1,0) ( 2,0)
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Even though the interface is the same for undirected graphs, there are some behavioral
differences because edge equality is defined differently. In a directed graph(wedges
never equal to edgé, u), but in an undirected graph they may be equal. In an undirected
graph that does not allow parallel edges (it is not a multigra@h)y) is the same edge as
(v,u). However, in a multigraph the two edges may be different (because two édges
may also be different).

In the following examples the edge equality test forv) = (v, u) will return false for
the directed graph and true for the undirected graph. The difference also affects the meaning
of add.edgd) . In the directed graph example both edgesv) and(v, u) are added whereas
is the undirected graph example only one efige) is added. Ifv, v) had also been added to
the undirected graph, we would have been adding a parallel edge beiveeeiy (provided
the graph type allows parallel edges). The difference in edge equality also affects the attached
edge properties. In the directed graph, the edges) and (v, ) can have distinct weight
values, whereas in the undirected graph the weightof) is the same as the weight @f, )
because they are the same edge.

First is the example code for the directed graph:

template <typename DirectedGraph void directedgraph.demd) {
const int V = 2;
DirectedGraph digraplj V);
typename graphraits<DirectedGraph>::vertex descriptor y v,
typedef typename DirectedGraph::edgeoperty type Weight
typename propertymap<DirectedGraph edgeweightt>::type

weight = gef edgeweight digraph);

typename graphtraits<DirectedGraph>::edge descriptor el e2
bool found

u = verteX 0, digraph);
v = verteX 1, digraph);
add edg€ u, v, Weighi( 1.2), digraph);
add.edgé v, u, Weight 2.4), digraph);
tie(el, found) = edgéu, v, digraph);
tie(e2 found) = edgdv, u, digraph);
std::cout << "in a directed graph is";
std::cout << " (u,v) == (v,u) ?"
<< std::boolalpha << (el == e2 << std:endkt
std::cout << "weight[(u,v)] =" << gefweight el) << std:endt
std::cout << "weight[(v,u)] =" << gef{ weight e2 << std:endt

}
The output is

in a directed graph is(u,Vv) == ( v, u) ? false
weigh{( u,v)] = 1.2
weighf{( v, u)] = 2.4
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Next is the example code for the undirected graph:

template <typename UndirectedGraphk void undirectedgraph demoZ)
{
const int V = 2;
UndirectedGraph undigrapfiV);
typename graphtraits<UndirectedGraph-::vertex descriptor y v;
typedef typename UndirectedGraph::edgeoperty type Weight
typename propertynap<UndirectedGraph edgeweightt>::type
weight = gef edgeweight undigraph);
typename graphraits<UndirectedGraph-::edge.descriptor el e2
bool found

u = verteX 0, undigraph);
v = verteX 1, undigraph);
add edg€ u, v, Weight 3.1), undigraph);
tie(el, found) = edgdu, v, undigraph);
tie(e2 found) = edg€v, u, undigraph);
std::cout << "in an undirected graph is";
std::cout << " (u,v) == (v,u) ?"
<< std::boolalpha << (el == e2 << std:endkt
std::cout << "weight[(u,v)] =" << gef weight el) << std:endkt
std::cout << "weight[(v,u)] =" << gef( weight e2 << std:endt

}
The output is

in an undirected graph is(u, Vv) == ( v, u) ? true
weigh{( u,v)] = 3.1
weigh{( v,u)] = 3.1

12.1.2 Graph

TheGraph concept defines the associated types that are common to all of the graph concepts.
These associated types are auxiliary types that play a part in many graph operations. Simi-
lar to the iterators of the STL, the associated types are accessed with a traits class—in this
case, th@raph.traits class. The use of the traits class mechanism is one of the reasons BGL
algorithms are so flexible. For example, there is great variety in how graph data structures
identify vertices. An adjacency-list style implementation might use integers to represent ver-
tices, using the integer to offset to the appropriate out-edge list. An object-oriented graph
implementation might use pointers to heap allocated vertex objects. Witgrdhk traits

class, these differences are hidden byweex descriptorassociated type. Whatever the un-
derlying type may be (integer, pointer, etc.), the graph algorithm cagrapk traits to obtain

the type and create objects.
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TheGraph concept itself does not include any functions (valid expressions). The require-
ments for various graph operations have been factored into a family of concejatsnce-
Graph, VertexListGraph, and so on.

One should note that a model Gfaph is not required to be a model @fsignable or
CopyConstructible, so algorithms with &raph interface should pass graph objects by refer-
ence or explicitly add théssignable andCopyConstructible requirements.

Associated Types

graph_traits<G>::vertex_descriptor
A vertex descriptor corresponds to a unique vertex in an abstract graph instance. A vertex
descriptor must b®efaultConstructible, Assignable, andEqualityComparable.

graph_traits<G>::directed category
The tags for this category adirectedtag andundirectedtag.

graph_traits<G>::edge parallel_category
This describes whether the graph class allows the insertion of parallel edges (edges with
the same source and target). The two tagsboe_parallel_edgetag anddisallow parallel-
_edgetag.

graph_traits<G>::traversal category

This describes what kinds of iterator traversal the graph supports. The following traversal
tag classes are defined:

struct incidencegraph tag { };

struct adjacencygraph tag { };

struct bidirectionalgraph_tag : public virtual incidencegraphtag { };
struct vertexlist_graph_tag { };

struct edgelist_graph_tag { };

struct adjacencymatrix_tag { };

12.1.3 IncidenceGraph

The IncidenceGraph concept provides an interface for efficient access to the out-edges of
each vertex in the graph. The out-edges are accessed via out-edge iteratarst edyes(v,

g) function, given some vertex descriptoand graply, returns a pair of out-edge iterators.

The first iterator points to the first out-edge of vertexand the second iterator points past

the end of the sequence of out-edges. Dereferencing an out-edge iterator returns an edge
descriptor. Incrementing an out-edge iterator moves to the next out-edge of the vertex. The
order in which the out-edges appear in the iteration is not specified (although particular graph
implementations may have a specified ordering).


http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/CopyConstructible.html
http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/CopyConstructible.html
http://www.sgi.com/tech/stl/DefaultConstructible.html
http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/EqualityComparable.html
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graph_traits<G>::edge descriptor
An edge descriptor corresponds to a unique edge in the graph. An edge descriptor must
be DefaultConstructible, Assignable, andEqualityComparable.

graph_traits<G>::out_edgeiterator
An out-edge iterator for a vertex provides access to the out-edgesvofAs such, the
value type of an out-edge iterator is the edge descriptor type of its graph. An out-edge
iterator must meet the requirementsa\fltiPassinputlterator.

graph_traits<G>::degreesizetype
This is the unsigned integral type used to represent the number out-edges or incident
edges of a vertex.

Valid Expressions

source(e, Q)
Return Type:
Semantics:

Preconditions:

target(e, g)
Return Type:
Semantics:

Preconditions:

out edges(v, g)
Return Type:
Semantics:

Preconditions:

out degree(v, g)
Return Type:
Semantics:

Preconditions:

vertexdescriptor
Returns the vertex descriptordaf the edgdu, v) represented bg.
elis a valid edge descriptor of gragh

vertex descriptor
Returns the vertex descriptordfaf the edggu, v) represented by.
eis a valid edge descriptor of grajgh

std::pair<out_edgeiterator, out edgeiterator>

Returns an iterator range providing access to the out-edges (for directed
graphs) or incident edges (for undirected graphs) of vert&he vertex
v will show up as the source vertex in each of the out-edges. The ver-
tices to whichw is adjacent will be the target vertices for the out-edges
(regardless of whether the graph is directed or undirected).
vis a valid vertex descriptor of grapgh

degreesizetype

Returns the number of out-edges (for directed graphs) or the number of
incident edges (for undirected graphs) of vertex
vis a valid vertex descriptor of gragh


http://www.sgi.com/tech/stl/DefaultConstructible.html
http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/EqualityComparable.html
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Complexity Guarantees

The sourcd) , targef) , and outedge$) functions must all be constant time. The
out degre€) function must be linear in the number of out edges for the vertex.

12.1.4 BidirectionalGraph

The BidirectionalGraph concept refinesncidenceGraph and adds the requirement for effi-

cient access to the in-edges of each vertex. This concept is separatehdidenceGraph

because providing efficient access to in-edges of a directed graph typically requires more stor-
age space, and many algorithms do not require access to in-edges. For undirected graphs this
is not an issue because no extra space is nheeded to provide access to in-edges.

Refinement of

IncidenceGraph

Associated Types

graph_traits<G>::in _edgeiterator
An in-edge iterator for a vertex provides access to the in-edgesofAs such, the value
type of an in-edge iterator is the edge descriptor type of its graph. An in-edge iterator
must meet the requirementsatiltiPassinputlterator.

Valid Expressions

in_edges(v, 9)
Return Type: std::pair<in_edgeiterator, in_edgeiterator>
Semantics: Returns an iterator range providing access to the in-edges (for directed
graphs) or incident edges (for undirected graphs) of vert&he vertex
v will show up as the target vertex in each of the in-edges. The vertices
adjacent tav will be the source vertices for the in-edges (regardless of
whether the graph is directed or undirected).
Preconditions: vis a valid vertex descriptor of gragh
in_degree(v, g)
Return Type: degreesizetype
Semantics: Returns the number of in-edges (for directed graphs) or the number of
incident edges (for undirected graphs) of vertex
Preconditions: vis a valid vertex descriptor of gragh
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degree(v, g)
Return Type: degreesizetype
Semantics: Returns the number of in-edges plus out-edges (for directed graphs) or
the number of incident edges (for undirected graphs) of vertex
Preconditions: vis a valid vertex descriptor of gragh

Complexity Guarantees

Thein_edge$) function is required to be constant time. Tihedegre€) function is required
to be linear in the number of in-edges.

12.1.5 AdjacencyGraph

The AdjacencyGraph concept defines the interface for accessing adjacent vertices. Adjacent
vertices can also be accessed as the target vertex of an out-edge; however, for some algorithms
the out-edges are not needed, and it is more convenient to directly access the adjacent vertices.

Refinement of

Graph

Associated Types

graph.traits<G>::adjacency iterator
An adjacency iterator for a vertex provides access to the vertices adjacent.toAs
such, the value type of an adjacency iterator is the vertex descriptor type of its graph. An
adjacency iterator must meet the requirementdufiPassinputlterator.

Valid Expressions

adjacentvertices(v, g)
Return Type: std::pair<adjacencyiterator, adjacencyiterator>
Semantics: Returns an iterator range providing access to the vertices adjacent to
vertexv. More specifically, this range is equivalent to taking the target
vertex for every out-edge of vertex
Preconditions: vis a valid vertex descriptor of gragh

Complexity Guarantees

Theadjacentvertice§) function must return in constant time.
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12.1.6 VertexListGraph

TheVertexListGraph concept defines the requirements for efficient traversal of all the vertices
in the graph.

Refinement of

Graph

Associated Types

graph_traits<G>::vertex_iterator
A vertex iterator (obtained vigertices(g) provides access to all of the vertices in a graph.
A vertex iterator type must meet the requirements/aftiPassinputiterator. The value
type of the vertex iterator must be the vertex descriptor of the graph.

graph_traits<G>::vertices size type
The unsigned integer type used to represent the number of vertices in the graph.

Valid Expressions

vertices(g)
Return Type: std::pair<vertexiterator, vertexiterator>
Semantics: Returns an iterator range providing access to all the vertices inggraph

num_vertices(g)
Return Type: verticessizetype
Semantics: Returns the number of vertices in the gtaph

Complexity Guarantees

Theverticeg) function must return in constant time. Them_verticeg) function must return
in time linear to the number of vertices.

12.1.7 EdgeListGraph

TheEdgeListGraph concept refines th@€raph concept and adds the requirement for efficient
access to all the edges in the graph.

Refinement of

Graph


http://www.sgi.com/tech/stl/MultiPassInputIterator.html
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Associated Types

graph_traits<G>::edge descriptor
An edge descriptor corresponds to a unique edge in the graph. An edge descriptor must
be DefaultConstructible, Assignable, andEqualityComparable.

graph_traits<G>::edge. iterator
An edge iterator (obtained viadges(g) provides access to all of the edges in a graph. An
edge iterator type must meet the requirements dhpatlterator. The value type of the
edge iterator must be the same as the edge descriptor of the graph.

graph_traits<G>::edgessizetype
This is the unsigned integer type used to represent the number of edges in the graph.

Valid Expressions

edges(g)
Return Type: std::pair<edgeiterator, edgeiterator>
Semantics: Returns an iterator range providing access to all the edges in the graph

g.
source(e, g)
Return Type:  vertexdescriptor
Semantics: Returns the vertex descriptord@f the edg€u, v) represented by.
Preconditions: eis a valid edge descriptor of gragh
target(e, g)
Return Type: vertexdescriptor
Semantics: Returns the vertex descriptordfaf the edgeu, v) represented by.
Preconditions: eis a valid edge descriptor of gragh

num_edges(g)
Return Type: edgessizetype
Semantics: Returns the number of edges in the ggaph

Complexity Guarantees

The edge$) , sourcd) , andtargef) functions must all return in constant time. The
num_edge$) function must be linear time in the number of edges in the graph.

12.1.8 AdjacencyMatrix

The AdjacencyMatrix concept refinesraph concept and adds the requirement for efficient
access to any edge in the graph given the source and target vertices.


http://www.sgi.com/tech/stl/DefaultConstructible.html
http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/EqualityComparable.html
http://www.sgi.com/tech/stl/InputIterator.html
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Refinement of

Graph

Valid Expresions

edge(u, v, g)
Return type: std::pair<edgedescriptor, boot-
Semantics: Returns a pair consisting of a flag saying whether there exists an edge

betweenu andv in graphg, and consisting of the edge descriptor if the
edge was found.
Preconditions: u, vare valid vertex descriptors of gragh

Complexity Guarantees

Theedgd) function must be constant time.
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| Expression Return Type or Description |
VertexMutableGraph refinesGraph
add.vertex(g) vertexdescriptor
removevertex(v, g) void
EdgeMutableGraph refinesGraph
clear.vertex(v, g) void
add edge(u, v, g) std::paiedgedescriptor, boob
removeedge(u, v, 9) void
removeedge(e, g) void
MutablelncidenceGraph refinesincidenceGraph andEdgeMutableGraph
removeedge(eiter, g) void
removeout edgeif(u, p, g) void
MutableBidirectionalGraph refinesMutablelncidenceGraph andBidirectionalGraph
removeedge(eiter, g) void
removeout_edgeif(u, p, g) void
MutableEdgeListGraph refinesEdgeMutableGraph andEdgeListGraph
removeedgeif(p, g) void
PropertyGraph refinesGraph
propertymap<G, PropertyTag-::type Type for mutable vertex property map.
propertymap<G, PropertyTag-::consttype Type for non-mutable property map.
get(ptag, ) Function to get a vertex property map object.
get(ptag, g, X) Get the property value for vertex or edge
put(ptag, g, X, V) Set the property value for vertex or edge
VertexMutablePropertyGraph refinesVertexMutableGraph andPropertyGraph
add.vertex(vp, 9) vertexdescriptor
EdgeMutablePropertyGraph refinesEdgeMutableGraph andPropertyGraph
add edge(u, v, ep, g) std::paitedgedescriptor, boak

Table 12.2: Summary of the graph modifying and property access concepts.

12.2 Graph Modification Concepts

This section describes the BGL interface for modifying a graph—that is, adding and remov-
ing vertices and edges and changing the value of properties attached to vertices and edges
in the graph. Like the graph-traversal concepts, the graph-modification concepts are factored
into many small concepts to provide algorithm writers with a good selection of concepts with
which to describe their requirements. Figd&3shows the refinement relations between the
graph-modification concepts, and Taldl2.2 summarizes the valid expressions and associ-
ated types for each of concepts. Some of the concepts from Flguialso play a role in
Figure12.3 but all of the refinement relationships from Figl2 1have been omitted.
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VertexMutableGraph — VertexM utablePropertyGraph

v

Graph —— PropertyGraph ———»= EdgeM utablePropertyGraph
IncidenceGraph Mutablel ncidenceGraph
MutableBidirectional Grapt
‘ /
EdgeM utableGraph Bidirectional Graph

Edgel istGraph ——— MutableEdgel istGraph

Figure 12.3The graph-mutating concepts and refinement relationships.
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12.2.1 VertexMutableGraph

A vertex mutable graph can be changed by adding or removing vertices. The memory man-
agement is the responsibility of the graph implementation. The graph user need only make
calls toaddverte) andremoveverteX) and the graph implementation does the rest.

Refinement of

Graph, DefaultConstructible

Valid Expressions

add.vertex(g)
Return Type: vertexdescriptor
Semantics: Add a new vertex to the graph. Theexdescriptorfor the new vertex

is returned.
removevertex(u, g)

Return Type: void

Semantics: Remove from the vertex set of the graph.

Preconditions: u is a valid vertex descriptor of graphand there are no edges inci-
dent to vertexu. The functionclear.vertex) can be used to remove all
incident edges.

Postconditions: num_vertices(g)is one lessy no longer appears in the vertex set of the
graph and it is no longer a valid vertex descriptor.

Complexity Guarantees

e \ertex insertion is guaranteed to be amortized constant time.

e \ertex removal is at mog?(|E| + |V]).

12.2.2 EdgeMutableGraph

A EdgeMutableGraph can be changed via the addition or removal of edges. Memory man-
agement is the responsibility of the graph implementation. The user of the graph need only
make calls taadd edgd) , removeedgd) , and so on, and the graph implementation does the
rest.

Refinement of

Graph
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Valid Expressions

add.edge(u, v, g)
Return Type:
Semantics:

Preconditions:
Postconditions:

removeedge(u, v, g)
Return Type:
Semantics:

Precondition:
Postcondition:

removeedge(e, g)
Return Type:
Semantics:
Precondition:
Postcondition:

clear_vertex(u, g)
Return Type:
Semantics:
Precondition:
Postconditions:

std::pair<edgedescriptor, boa

Attempt to insert the edge v) into the graph, returning the inserted
edge or a parallel edge and a flag that specifies whether an edge was
inserted. This operation must not invalidate vertex descriptors or vertex
iterators of the graph, though it may invalidate edge descriptors or edge
iterators. The order in which the new edge appears via the graph’s edge
iterators is not specified.
u andv are vertices in the graph.
(u,v) is in the edge set of the graph. The returned edge descriptor will
havew in the source position andin the target position. If the graph
allows parallel edges, then the returned flag is always true. If the graph
does not allow parallel edges andif, v) was already in the graph then
the returned flag is false. (i, v) was not in the graph then the returned
flag is true.

void
Remove the edge, v) from the graph. If the graph allows parallel
edges this removes all occuranceg@fv).
(u,v) is in the edge set of the graph.
(u,v) is no longer in the edge set of the graph.

void

Remove the edg&om the graph.
e is an edge in the graph.
e is no longer in the edge set for

void
Remove all edges to and from vettésom the graph.
u is a valid vertex descriptor @f.
u does not appear as a source or target of any edge in

Complexity Guarantees

e Edge insertion must be either amortized constant time or it caf (bhez @) if the
insertion also checks to prevent the addition of parallel edges.

V]

e Edge removal is guaranteed to O¢| E|).

e Clearing a vertex is at mo§(|E| + |V]).
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12.2.3 MutablelncidenceGraph

This concept provides the ability to remove edges from the out-edge list of a vertex.

Refinement of

IncidenceGraph andEdgeMutableGraph

Valid Expressions

removeedge(eiter, g)
Return type:  void
Semantics: Remove the edge pointed toehyr from the graph, whereiter is an
out-edge iterator for the graph.
Precondition: *eiter is an edge in the graph.
Postcondition: *eiter is no longer in the edge set fgor

removeout edgeif(u, p, g)

Return type:  void

Semantics: Remove all the out-edges of vertdar which the predicate returns
true. This expression is only required when the graph also madgls
denceGraph.

Preconditions: u is a valid vertex descriptors of gragh

Postcondition: preturns false for all out-edges ofand all the out-edges affor which
p was originally false are still in the graph.

Complexity Guarantees

e Theremoveedgd) function is required to be constant time.

e Theremoveoutedgeif () is linear time in the number of out-edges for the vertex.

12.2.4 MutableBidirectionalGraph

The MutableBidirectionalGraph concept defines the interface for removing edges from the
in-edge list of a vertex.

Refinement of

BidirectionalGraph andMutablelncidenceGraph
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Valid Expressions

removein_edgeif(v, p, g)
Return type:  void
Semantics: Remove all the in-edges of vestéar which p returns true.
Preconditions: vis a valid vertex descriptor of gragh
Postcondition: p returns false for all in-edges ofand all the in-edges af for whichp
was originally false are still in the graph.

Complexity Guarantees

e Theremovein_edgeif () function is linear time in the number of in-edges for the vertex.

12.2.5 MutableEdgeListGraph

The MutableEdgeListGraph concept provides the ability to remove edges from the edge list
of a graph.

Refinement of

EdgeMutableGraph

Valid Expressions

removeedgeif(p, g)
Return type:  void
Semantics: Remove all the edges from grgbr which p returns true.
Postcondition: p returns false for all edges in the graph and the graph still contains alll
edges for whiclp was originally false.

Complexity Guarantees

e Theremoveedgeif () function is required to be linear time in the number of edges in
the graph.

12.2.6 PropertyGraph

A PropertyGraph is a graph that has some property associated with each of the vertices or
edges in the graph. As a given graph may have several properties associated with each vertex
or edge, a tag is used to identity which property is being accessed. In the following require-
ments descriptiorPropertyTagwill be the type of the tag, anthg will be an object of type
PropertyTag The graph provides a function which returns a property map object.
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Refinement of

Graph

Associated Types

property map<G, PropertyTag>::type
The type of the property map for the property specifiedPbypertyTag This type must
be a mutable.valuePropertyMap with a key type the same as the graph'’s vertex or edge
descriptor type.

propertymap<G, PropertyTag-::consttype
The type of the const property map for the property specifieBropertyTag This type
must be an immutablievaluePropertyMap with a key type the same as the graph’s vertex
or edge descriptor type.

Valid Expressions

get(ptag, g)
Return type: property map<G, PropertyTag>::type
if gis mutable an@roperty map<G, PropertyTag-::const type
otherwise.
Semantics: Returns the property map for the property specified [BropertyTag
type. The objecptagis only used to carry the type.
get(ptag, g, X)
Return type: property traits<PMap>::value_type
Semantics: Returns the property value (specified byPteertyTagtype) associ-
ated with objeck (a vertex or edge). The objeptagis only used to
carry the type. This function is equivalent wet(get(ptag, g), X)

Complexity Guarantees

Theget) functions must be constant time.

12.2.7 VertexMutablePropertyGraph

A VertexMutablePropertyGraph is aVertexMutableGraph and aPropertyGraph with addition
functions for specifying property values when adding vertices to the graph.
Refinement of

VertexMutableGraph andPropertyGraph
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Associated Types
vertex property<G>::type
The type of the vertex property object attached to each vertex.
Valid Expressions

add.vertex(vp, 9)
Return type:  vertexdescriptor
Semantics: Add a new vertex to the graph and ocgpiynto the property object for
the new vertex. Theertexdescriptorfor the new vertex is returned.

Complexity Guarantees

e addverteX) is guaranteed to be amortized constant time.

12.2.8 EdgeMutablePropertyGraph

An EdgeMutablePropertyGraph is anEdgeMutableGraph and aPropertyGraph with addition
functions for specifying property values when adding edges to the graph.

Refinement of

EdgeMutableGraph andPropertyGraph

Associated Types

edgeproperty<G>::type
The type of the edge property object attached to each edge.

Valid Expressions

add edge(u, v, ep, g)
Return type: std::pair<edgedescriptor bool>
Semantics: Inserts the ed@e v) into the graph, and copies objegtinto the prop-
erty plugin for that edge.
Preconditions: u, vare valid vertex descriptors of gragh

Complexity Guarantees

e Edge insertion must be either amortized constant time or it caf (bhez %) if the

insertion also checks to prevent the addition of parallel edges.
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12.3 Visitor Concepts

The visitor concepts play a similar role in BGL as functors play in the STL. Functors provide
a mechanism for extending an algorithm—for customizing what is done at each step of the
algorithm. Visitors allow users to insert their own operations at various steps within a graph
algorithm. Unlike the STL algorithms, graph algorithms typically have multiple event points
where the user may want to insert a callback via a functor. Therefore, visitors do not have a
singleoperatof) method like a functor, but instead have several methods that correspond to
the various event points. Each algorithm has a different set of event points. In this section we
define visitor concepts for the main BGL algorithms.

Like function objects in the STL, visitors are passed by value in the BGL algorithms. This
means that some care must be taken when storing state in visitor objects.

Notation

The notation used through this section is collected here.

\Y is a type that is a model of the visitor concept.

vis is an object of typ&/.

G is a type that is a model of Graph.

g is an object of types.

e is an object of typgraph_traits<G>::edge descriptor
s,u are objects of typgraph_traits<G>::vertex descriptor

12.3.1 BFSVisitor

This concept defines the visitor interface foeadthfirst searci) . Users can define a class
with theBFSVisitor interface and pass an object of the cladsréadth first_search) , thereby
augmenting the actions taken during the graph search.

Refinement of

CopyConstructible

Valid Expressions

vis.initialize_vertex(u, g)
Return type:  void
Semantics: This is invoked on every vertex of the graph before the start of the graph
search.
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vis.discoververtex(u, g)
Return type:  void
Semantics: This function is invoked the first time the algorithm encounters vertex
u. All other vertices closer to the source vertex have been discovered,
and vertices further from the source have not yet been discovered.

vis.examineedge(e, g)
Return type:  void
Semantics: This is invoked on every out-edge of each vertex after it is discovered.

vis.treeedge(e, g)
Return type:  void
Semantics: If the edge being examined is a member of the search tree, then this
function is invoked. A call to this function is always preceded by a call
to theexamineedgd) function.

vis.nontree edge(e, g)
Return type:  void
Semantics: If the edge being examined is not a member of the search tree, then this
function is invoked. A call to this function is always preceded by a call
to theexamineedgd) function. For directed graphs, such an edge must
be either a back or cross edge. For undirected graphs, such an edge is a
cross edges.
vis.graytarget(e, g)
Return type:  void
Semantics: This function is called if the edge being examined is a cycle edge, and
if the target vertex is colored gray at the time of examination. A call to
this function is always preceded by a call to tlyeleedgd) function.
The color gray indicates that the vertex is currently in the queue.

vis.blacktarget(e, g)
Return type:  void
Semantics: This function is called if the edge being examined is a cycle edge, and if
the target vertex is colored black at the time of examination. The call to
this function is always preceded by a call to tlyeleedgd) function.
The color black indicates that the vertex has already been removed from
the queue.
vis.finish.vertex(u, g)
Return type:  void
Semantics: This invoked on a vertex after all of its out-edges have been added to
the search tree and all of the adjacent vertices have been discovered (but
before their out-edges have been examined).
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12.3.2 DFSVisitor

This concept defines the visitor interface ftapthfirst searcl) . Users can define a class
with the DFSVisitor interface and pass and object of the classefath first_search) , thereby
augmenting the actions taken during the graph search.

Refinement of

CopyConstructible

Valid Expressions

vis.initialize vertex(s, g)
Return type:  void
Semantics: This is invoked on every vertex before the start of the search.

vis.startvertex(s, g)
Return type:  void
Semantics: This is invoked on the source vertex once before the start of the search.

vis.discoververtex(u, g)
Return type:  void
Semantics: This is invoked when a vertex is encountered for the first time.

vis.examineedge(e, g)
Return type:  void
Semantics: This is invoked on every out-edge of each vertex after it is discovered.

vis.treeedge(e, 9)
Return type:  void
Semantics: This is invoked on each edge as it becomes a member of the edges that
form the search tree.

vis.backedge(e, g)

Return type:  void

Semantics: This is invoked on the back edges in the graph. For an undirected graph
there is some ambiguity between tree edges and back edges since the
edge(u,v) and (v, u) are the same edge, but both thees edge()and
back edge()functions will be invoked. One way to resolve this ambigu-
ity is to record the tree edges, and then disregard the back edges that
are already marked as tree edges. An easy way to record tree edges is
to record predecessors in thiee edge()function.

vis.forward or_crossedge(e, g)
Return type:  void
Semantics: This is invoked on forward or cross edges in the graph. In an undirected
graph this method is never called.
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vis.finish.vertex(u, g)
Return type:  void
Semantics: This is invoked on a vertex after all of its out-edges have been added
to the search tree and all of the adjacent vertices have been discovered
(but before their out-edges have been examined).

12.3.3 DijkstraVisitor

This concept defines the visitor interface €tijkstra_shortestpathg) and related algorithms.
The user can create a class that matches this interface, and then pass objects of the class into
dijkstra_shortestpathg) to augment the actions taken during the search.

Refinement of

CopyConstructible

Valid Expressions

vis.discoververtex(u, g)
Return type:  void
Semantics: This is invoked when a vertex is encountered for the first time.

vis.examineedge(e, g)
Return type:  void
Semantics: This is invoked on every out-edge of each vertex after it is discovered.

vis.edgerelaxed(e, g)
Return type:  void
Semantics: Letu, v) be the edge, d be the distance map, andthe weight map.
Upon examination, if/[u] + w(u,v) < d[v], then the edge is relaxed
(its distance is reduced), and this method is invoked.

vis.edgenot_relaxed(e, g)
Return type:  void
Semantics: Upon examination, if the edge is not relaxed (see above), then this
method is invoked.

vis.finish.vertex(u, g)
Return type:  void
Semantics: This is invoked on a vertex after all of its out-edges have been added
to the search tree and all of the adjacent vertices have been discovered
(but before their out-edges have been examined).
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12.3.4 BellmanFordVisitor

This concept defines the visitor interface faliman ford_shortestpathy) . Users can define

a visitor class with th@&ellmanFordVisitor interface and pass and object of the visitor class
to thevisitor() parameter obellmanford_shortestpathy) , thereby augmenting the actions
taken during the graph search.

Refinement of

CopyConstructible

Valid Expressions

vis.initialize_vertex(s, Q)
Return type:  void
Semantics: This is invoked on every vertex before the start of the search.

vis.examineedge(e, g)
Return type:  void
Semantics: This is invoked on every edge in the grnaph_vertices(gtimes.

vis.edgerelaxed(e, g)
Return type:  void
Semantics: Letu, v) be the edge, d be the distance map, andthe weight map. If
d[u] +w(u,v) < d[v], then the edge is relaxed (its distance is reduced),
and this method is invoked.

edgenot.relaxed(e, g)
Return type:  void
Semantics: Upon examination, if the edge is not relaxed (see above), then this
method is invoked.
vis.edgeminimized(e, g)
Return type:  void
Semantics: After theum_vertices(g)iterations through the edge set of the graph
is complete, one last iteration is made to test whether each edge was
minimized. If the edge is minimized then this function is invoked. An
edge(u, v) is minimized ifd[u] + w(u,v) > d[v].
edgenot_minimized(e, g)
Return type:  void
Semantics: If the edge is not minimized, this function is invoked. This happens
when there is a negative cycle in the graph.
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Chapter 13

BGL Algorithms

13.1 Overview

This chapter provides in-depth information about how to use all of the graph algorithms in
the Boost Graph Library.
The BGL generic algorithms are divided into the following categories:

1. Basic search algorithms
2. Shortest paths
3. Minimum spanning tree
4. Connected components
5. Maximum flow

6. Vertex ordering

All of the algorithms are implemented as function templates where the graph type is a
template parameter. This allows the function to be used with any graph type that models
the required concepts. The documentation for each algorithm will list the required graph
concepts, and the documentation for each graph class will list the concepts that the graph
models. By cross-referencing through the concepts one can determine which graph types can
be used with which algorithm.

In addition, the algorithms are sometimes parameterized with property maps, such as the
distance map for the shortest-path algorithms. The parameterized property maps give the user
control over how properties are stored and retrieved. The algorithms are also parameterized
on a visitor type, which allows the user to specify call-backs that will be invoked at certain
event points in the algorithm.

163
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Prototypes

The reference section for each algorithm starts with the function prototype. The template pa-
rameter names are suggestive of the purpose of the parameter, and sometimes of the concepts
required of the parameters. However, the precise requirements for each template parameter
are given in the parameters section.

The last parameter for many of the functionsbggd namedparams This is to support
the named parameter technique describegRi and also discussed here. dfall defaults
appears aftgparams then there are defaults for all of the named parameters and they can all
be omitted.

Description

In the description of the function we define the problem that the function solves, explain-
ing any graph terminology or ideas that are necessary to understand the problem. We then
describe the semantics of the function in terms of its effects on the parameters.

Where Defined

In this section we list the header file that must be included to use the function.

Parameters

Here we list all of the normal parameters (named parameters come in the next section) of the
function. The normal parameters aeguired(i.e., there are no defaults for these parameters).
Each parameter is categorized into one or more of the following categories:

IN parameters are read by the function; used to obtain information. The function does not
change or modify these parameters in any way.

OUT parameters are written to by the function. The results of the function are stored into
OUT parameters.

UTIL parameters are required by the algorithm to accomplish its task, however, the contents
of the objects used as UTIL parameters are typically not of interest to the user. UTIL
parameters are often read and written.

Named Parameters

As described irg2.7, the BGL uses a special technigque to make it more convenient to deal
with functions that have large numbers of parameters, and where many of the parameters
have defaults. This section lists all of the named parameters for the function, using the same
categorization as for the normal parameters. In addition, the default is listed for each named
parameter.
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Preconditions

In this section we describe any preconditions for the function. Often this includes require-
ments on the state of the property map parameters.

Complexity

The time complexity for each algorithm is given in “big-O” notation.
The space complexity is never more th@1V'|) unless otherwise specified.

Example

A simple example is shown to demonstrate how each algorithm is used.

13.2 Basic Algorithms
13.2.1 breadthfirst_search

template <typename Graph typename P typename T typename R
void breadthfirst_search{ Graph& g,

typename graphraits<Graph>::vertex descriptor

const bglnamedparams<P, T, R>& paramg

Thebreadthfirst_searci) function performs a breadth-first traversai] of a directed or
undirected graph. A breadth-first traversal visits vertices that are closer to the source before
visiting vertices that are farther away. In this context, distance”s defined as the number of
edges in the shortest path from the source vertex. bfémdthfirst_searci{) function can be
used to compute the shortest path from the source to all reachable vertices and the resulting
shortest-path distances. For more definitions related to BFS and a detailed examilel. see

BFS uses two data structures to implement the traversal: a color marker for each vertex
and a queue. White vertices are undiscovered, while gray vertices are discovered but are ad-
jacent to white vertices. Black vertices are discovered and are adjacent to only other black or
gray vertices. The algorithm proceeds by removing a verteErm the queue and examining
each out-edgéu, v). If an adjacent vertex is not already discovered, it is colored gray and
placed in the queue. After all of the out-edges are examined, veitesolored black and the
process is repeated. Pseudocode for the BFS algorithm is listed as follows. In the pseudocode
we show the algorithm computing predecesseorsliscover timed, and finish timet. By
default, thebreadthfirst_searci) function does not compute these properties; however, there
are predefined visitors that can be used to do this.

BFS@G, s)
for each vertex, € V[G] > initialize vertexu
color[u] +— WHITE
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d[u] « oo
mlu] — u
color[s] — GRAY
d[s] <0
ENQUEUEQ, s) > discover vertex
while (Q # 0)
u «— DEQUEUE(Q) > examine vertex
for eachv € Adj[u] > examine edgéu, v)
if (color[v] = WHITE) © (u,v) is atree edge
color[v] — GRAY

dv] < d[u] + 1
] — u
ENQUEUEQ, v) > discover vertex
else > (u,v) is a non-tree edge

if (color[v] = GRAY)
> (u,v) has a gray target
else

> (u,v) has a black target
color[u] « BLACK > finish vertexu
return {, )

Thebreadthfirst_searc) function can be extended with user-defined actions that will be
called at certain event points. The actions must be provided in the form of a visitor object—
that is, an object whose type meets the requirements &FS¥isitor. In the above pseu-
docode, the event points are labeled with triangles. By defaultprisesdth first_search)
function does not carry out any actions, not even recording distances or predecessors. How-
ever, these can be easily added by defining a visitor.

Where Defined

boost/graph/breadttirst_search.hpp

Parameters

IN: Graph& g
A directed or undirected graph. The graph type must be a modérafxListGraph
andincidenceGraph.

IN: vertexdescriptor s
The source vertex where the search is started.
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Named Parameters

IN: visitor(BFSVisitor vis)
A visitor object that is invoked inside the algorithm at the event points specified by
the BFSVisitor concept.
Default: default.bfs visitor

UTIL/OUT: color_-map(ColorMap color)
This is used by the algorithm to keep track of its progress through the graph. The
type ColorMap must be a model oReadWritePropertyMap, its key type must be
the graph’s vertex descriptor type, and the value type of the color map must model
ColorValue.
Default: an iterator_propertymap created from astd::vector of default.color_type of
sizenum_vertices(g)and using thé_.mapfor the index map.

IN: vertexindex map(VertexlndexMap imap)
This maps each vertex to an integer in the raftgélV’|). This parameter is only
necessary when the default color property map is used. The\ifexindexMap
must be a model oReadablePropertyMap. The value type of the map must be an
integer type. The vertex descriptor type of the graph needs to be usable as the key
type of the map.
Default: get(vertexindex, g)

UTIL: buffer(Buffer& Q)
The queue used to determine the order in which vertices will be discovered. If a FIFO
queue is used, then the traversal will be according to the usual BFS ordering. Other
types of queues can be used, but the traversal order will be different. For example
Dijkstra’s algorithm can be implemented using a priority queue. TheByiffer must
be a model oBuffer.
Default: boost::queue

Preconditions

The queue must be empty.

Complexity

The time complexity i$)(| E| + |V|). The worst-case space complexity(g|V|).

Example

This example demonstrates using the BGL breadth-first-search algorithm on the graph from
Figure13.1 The program records the order in which breadth-first search discovers the ver-
tices in the graph. The source code for this example éxample/bfs-example.cpp
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Figure 13.1A breadth-first search of a graph. The BFS tree edges are the solid black lines.

( BFS Time Visitorl68a) =

template <typename TimeMap
class bfstime_visitor : public defaultbfs_visitor {
typedef typename propertyaits<TimeMap>::value_type T,
public:
bfs_time_visitor( TimeMap tmap T& t) : m_timemag tmap, m-time(t) { }
template <typename Vertex typename Grapb
void discoververtex Vertex u, const Grapl& g) const {
put( m_timemap u, m_time++);
}
TimeMap m.timemap
T& m_time;

( “bfs-example.cpp”16& ) =

#include <boost graph/ adjacencylist. hpp>
#include <boost graph/ breadth first_search hpp>
#include <boost pending indirect.cmp. hpp>
#include <boost pending integer_range hpp>
using namespace bogst

(BFS Time Visitor 168a)

int main()
{
using namespace bogst
/I Select the graph type we wish to use
typedef adjacencyist<vecS vecS undirectedS- graph.t;
/I Set up the vertex IDs and names
enum{r, s t u v, w, X, ¥ N };
const chat name = " rstuvwxy' ;
/I Specify the edges in the graph
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typedef std::paikint, int> E;

E edgearray[] = { E(r,s), E(r,v), E(sw), E(w,r), E(w,t),
E(w, x), E(x,t), E(tu), E(xVY), E(uy }

/I Create the graph object

const int nedges= sizeof edgearray)/ sizeof E);

graph.t g( edgearray, edgearray + n_edges N);

/I Typedefs

typedef graphtraits<graph_t>::vertex descriptor Vertex
typedef graphtraits<graph t>::vertices sizetype Size
typedef std::vectorVertex>::iterator Piter;

typedef std::vectorSize>::iterator liter;

/I a vector to hold the discover time property for each vertex
std::vectok Size> dtimg num_verticeg g));

Size time= 0;
bfs_time_visitor<Size" > vig(& dtimg 0], time);
breadth first_search{ g, vertex's, @), Vvisitor( vis));

/I Use std::sort to order the vertices by their discover time
std::vectok graph_traits<graph_t>::vertices size type> discoverorder( N);
integer_range<int> range( 0, N);
std::copy range begin(), range end)), discoverorder. begin));
std::sorf( discoverorder. begin), discoverorder. end)),

indirect. cmpxliter, std::less<Size> >( dtime begin()));

std::cout << "order of discovery:";
for (inti =0; i < N; ++1)
std::cout << namq discoverordefi] ] <<
std::cout << std::endt
return EXIT _SUCCESS

¥
The output is

order of discovery: srwvitxuy

13.2.2 breadthfirst_visit

template <typename IncidenceGraph typename P typename T typename R
void breadthfirst_visit( IncidenceGrapl& g,

typename graphtraits<IncidenceGraph>::vertex descriptor s

const bglnamedparams<P, T, R>& params;
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This function is the same dseadthfirst_searci) except that the color markers are not
initialized in the algorithm. The user is responsible for making sure the color for every vertex
is white before calling the algorithm. With this difference, the graph type is only required
to be anincidenceGraph instead of avertexListGraph. Also, this difference allows for more
flexibility in the color property map. For example, one could use a map that only implements
a partial function on the vertices, which could be more space efficient when the search only
reaches a small portion of the graph.

Parameters

IN: IncidenceGraph& g
A directed or undirected graph. The graph’s type must be a mod&idénceGraph.

IN: vertexdescriptor s
The source vertex where the search is started.

Named Parameters

IN: visitor(BFSVisitor vis)
A visitor object that is invoked inside the algorithm at the event points specified by
the BFSVisitor concept.
Default: bfs_visitor<null _visitor>

IN/UTIL/OUT: color_map(ColorMap color)
This is used by the algorithm to keep track of its progress through the graph. The
color of every vertex should be initialized to white before the calbteadthfirst_-
visit() . The typeColorMap must be a model aReadWritePropertyMap and its key
type must be the graph’s vertex descriptor type and the value type of the color map
map must modetolorValue.
Default: get(vertexcolor, g)

UTIL: buffer(Buffer& Q)
The queue used to determine the order in which vertices will be discovered. If a FIFO
gueue is used, then the traversal will be according to the usual BFS ordering. Other
types of queues can be used, but the traversal order will be different. For example,
Dijkstra’s algorithm can be implemented using a priority queue. TheByiffer must
be a model oBuffer.
Default: boost::queue

13.2.3 depthfirst_search

template <typename Graph typename P typename T typename R-
void depthfirst_searci{ Graph& g, const bglnamedparams<P, T, R>& paramg
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The depthfirst_searci) function performs a depth-first traversal of the vertices in a di-
rected or undirected graph. When possible, a depth-first traversal chooses a vertex adjacent to
the current vertex to visit next. If all adjacent vertices have already been discovered, or there
are no adjacent vertices, then the algorithm backtracks to the last vertex that had undiscov-
ered neighbors. Once all reachable vertices have been visited, the algorithm selects from any
remaining undiscovered vertices and continues the traversal. The algorithm finishes when all
vertices have been visited. Depth-first search is useful for categorizing edges in a graph, and
for imposing an ordering on the vertice$4.2 describes the various properties of DFS and
walks through an example.

Similar to BFS, color markers are used to keep track of which vertices have been dis-
covered. White marks vertices that have yet to be discovered, gray marks a vertex that is
discovered but still has vertices adjacent to it that are undiscovered. A black vertex is a dis-
covered vertex that is not adjacent to any white vertices.

The depthfirst_ searc{) function invokes user-defined actions at certain event points
within the algorithm. This provides a mechanism for adapting the generic DFS algorithm
to the many situations in which it can be used. In the following pseudocode, the event points
for DFS are indicated by the triangles and labels on the right. The user-defined actions must
be provided in the form of a visitor object, that is, an object whose type meets the require-
ments for aDFSVisitor. In the pseudo-code we show the algorithm computing predecessors
«, discover timed and finish timet. By default, thedepthfirst_searci{) function does not
compute these properties; however the user can define visitors to do this.

DFS@G)
for each vertex, € V
color[u] «— WHITE > initialize vertexu
mu] = u
time «— 0
for each vertex, € V
if color[u] = WHITE
call DFS-VISIT(G, u) > start vertexu
return ¢r,d,f)

DFS-VISIT(G, u)
color[u] «— GRAY > discover vertex
d[u] < time < time + 1
for eachv € Adj[u]
if (color[v] = WHITE) > examine edgéu, v)
] =u
call DFS-VISIT(G,v) > (u,v) is atree edge
else if(color[v] = GRAY)
> (u,v) is a back edge
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else if(color[v] = BLACK)
e > (u,v) is a cross or forward edge
color|u] < BLACK > finish vertexu
flu] < time « time + 1

Where Defined

boost/graph/depttirst_search.hpp

Parameters

IN: Graph& g

A directed or undirected graph. The graph’s type must be a modektafxListGraph
andIncidenceGraph.

Named Parameters

IN: visitor(DFSVisitor vis)

A visitor object that is invoked inside the algorithm at the event-points specified by
the DFSVisitor concept.

UTIL/OUT: color_-map(ColorMap color)
This is used by the algorithm to keep track of its progress through the graph. The
type ColorMap must be a model oReadWritePropertyMap. The color property
map must modeReadWritePropertyMap, its key type must be the graph’s vertex
descriptor type, and the value type of the color map must moadletVvalue.
Default: an iterator_propertymap created from astd::vector of default.color_type of
sizenum_vertices(g)and using thé_mapfor the index map.

IN: vertexindex map(VertexindexMap imap)
This maps each vertex to an integer in the raftgéV’|). This parameter is only
necessary when the default color property map is used. TheVitexindexMap
must be a model oReadablePropertyMap. The value type of the map must be an

integer type. The vertex descriptor type of the graph needs to be usable as the key
type of the map.

Default: get(vertexindex, g)

Complexity

The time complexity i€)(| E| 4 |V'|) and the space complexity 3(|V]).
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Example

This example shows DFS applied to the graph in Fiduld€. The source code for this exam-
ple is inexample/dfs-example.cpp

(2 o O
(D
@\@

Figure 13.2A depth-first search of a graph. The DFS forest edges are the solid black lines.

( DFS Discover/Finish Time Visitot73a) =

template <typename TimeMap
class dfstime_visitor : public defaultdfs_visitor {
typedef typename propertyaits<TimeMap>::value_type T,
public:
dfs_time_visitor( TimeMap dmap TimeMap fmap T& t)
: m_dtimemag dmap, m_ftimemag fmap), m.time(t) { }
template <typename Vertex typename Graph
void discoververteX Vertex u, const Grapl& g) const {
put( m_dtimemap u, m_timet++);
}
template <typename Vertex typename Graph
void finish.vertex Vertex u, const Grapl& g) const {
put( m_ftimemap u, m_timet+);
}
TimeMap mdtimemap
TimeMap mftimemap
T& m_time;

( “dfs-example.cpp”l73 ) =
#include <boost graph/ adjacencylist. hpp>
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#include <boost graph/ depthfirst_search hpp>
#include <boost pending integer.range hpp>
#include <boost pendingd indirect.cmp. hpp>
using namespace bogst

(DFS Discover/Finish Time Visitorl73a)

int main()
{
/I Select the graph type we wish to use
typedef adjacencyist<vecS vecS directedS- graph.t;
typedef graphtraits<graph_t>::verticessizetype sizetype
/I Set up the vertex names
enum{u, v, w, X, vy, z N}
char namd] = { v, Vv, 'w, X, Y, 72}
/I Specify the edges in the graph
typedef std::paikint, int> E;
E edgearray[] = { E(u,Vv), E(u, x), E(x, v), E(y,X),
E(vy), E(wy), E(w, 2, E(z2 }
graph.t g( edgearray, edgearray + sizeof edgearray)/ sizeof E), N);

/I Typedefs

typedef boost::graptiraits<graph_t>::vertex_descriptor Vertex
typedef std::vectorVertex>::iterator Piter;

typedef std::vectorsizetype>:iterator liter;

/I discover time and finish time properties

std::vectok sizetype> dtimeg num_verticeg g));
std::vectoksizetype> ftime( num_verticeg g));

sizetype t= 0;

dfs_time_visitor<sizetype* > vis(& dtimg 0], & ftime[ 0], t);

depthfirst_searci g, visitor( vis));

/I use std::sort to order the vertices by their discover time
std::vectoksizetype> discoverordern( N);
integer_range<sizetype> r( 0, N);
std::copy r. begin), r.end), discoverorder. begin));
std::sorf( discoverorder. begin), discoverorder. end)),
indirect.cmpxliter, std::less<sizetype> >( dtime begin)));
std::cout << "order of discovery:";
for (inti =0; i < N; ++1)
std::cout << namg discoverorderfi] ] << " "

std::vectok sizetype> finish_ordern N);
std::copy( r. begin), r.end), finish_order. begin());
std::sor{( finish_order. begin(), finish_order. end(),
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indirect. cmp<liter, std::lesscsizetype> >( ftime. begin()));
std::cout << std::endl << "order of finish: ";
for (inti =0; i < N; ++1)

std::cout << namg finish_ordefi] ] << "";
std::cout << std::end}

return EXIT_SUCCESS
}

The output is

order of discovery: u vy x w z
order of finish: xy vuzw

13.2.4 depthfirst_visit

template <typename IncidenceGraph typename DFSVisitor typename ColorMap-
void depthfirst_visit( IncidenceGrapt& G,

typename graphtraits<IncidenceGraph>::vertex descriptor s

DFSVisitor vis, ColorMap coloi);

This function is the recursive part of the depth-first search. The main purpose of the
function is to implementlepthfirst_search) , though sometimes it is useful on its own. See
the documentation fatepth first_searci{) for more information.

Where Defined

boost/graph/depttirst_search.hpp

Parameters

IN: IncidenceGraph& g
A directed or undirected graph. The graph’s type must be a modaidénceGraph.

IN: vertexdescriptor s
The source vertex from which to start the search.

IN: DFSVisitor visitor
A visitor object that is invoked inside the algorithm at the event points specified by
the DFSVisitor concept.

UTIL: ColorMap color
This is used by the algorithm to keep track of its progress through the graph. The type
ColorMap must be a model dReadWritePropertyMap. The color property map must
model ReadWritePropertyMap, its key type must be the graph’s vertex descriptor
type, and the value type of the color map must mazigbrvalue.
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Complexity
The time complexity of this operation (| E|). The space complexity i9(|V]).

13.2.5 topologicalsort

template <typename Graph typename Outputlteratar
typename P typename T typename R-
void topologicalsort{ Graph& G, Outputlterator result
const bglnamedparams<P, T, R>& params= all defaults)

The topological sort algorithm creates a linear ordering of the vertices such that if edge
(u,v) appears in the graph, thencomes before in the ordering. The graph must be a
directed acyclic graph (DAG).

The reverse topological ordering is written to tlesult output iterator, so you will need
to somehow reverse this to obtain the topological ordering. There are several ways this
can be accomplished. One is to creatstda:vectorwith size |V| to store the output and
then use a reverse iterator from the vector for kit iterator. Another option is to use a
back insert.iterator with an empty vector, and then apply tée::reversé) algorithm. Yet an-
other alternative is to usefnt_insert.iterator with a container such asstd::list or std::deque

The implementation consists mainly of a call to depth-first searth [n §1.4.1there is
an example of using topological sort to schedule tasks, and in Chaypdeological sort is
used as an example of how to write a generic graph algorithm.

Where Defined
boost/graph/topologicakort.hpp

Parameters

IN: Graph& g
A directed or undirected graph. The graph type must be a modérafxListGraph
andincidenceGraph.

IN: Outputlterator result
The vertices are output to this iterator in reverse topological orderOUtpitlterator
type must accept vertex descriptors as output, and the iterator type must be a model
of Outputlterator.

Named Parameters

UTIL/OUT: color_-map(ColorMap color)
This is used by the algorithm to keep track of its progress through the graph. The
type ColorMap must be a model oReadWritePropertyMap. The color property


http://www.sgi.com/tech/stl/back_insert_iterator.html
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map must modeReadWritePropertyMap, its key type must be the graph’s vertex
descriptor type, and the value type of the color map must modletVvalue.

Default: an iterator_propertymap created from astd::vector of default color_type of
sizenum_vertices(g)and using thé_mapfor the index map.

IN: vertexindex map(VertexindexMap imap)
This maps each vertex to an integer in the raftgel’|). This parameter is only
necessary when the default color property map is used. TheWgmexindexMap
must be a model oReadablePropertyMap. The value type of the map must be an
integer type. The vertex descriptor type of the graph needs to be usable as the key
type of the map.
Default: get(vertexindex, g)

IN: visitor(DFSVisitor vis)
A visitor object that is invoked inside the algorithm at the event points specified by
the DFSVisitor concept.

Complexity

The time complexity i€)(|V| + | E|) and the space complexity 3(|V]).

Example

Seetl.4.1for an example of usingpplogicalsort() .

13.3 Shortest-Path Algorithms
13.3.1 dijkstra_shortestpaths

template <typename Graph typename P typename T typename R
void dijkstra_shortestpathg const Grapt& g,

typename graphtraits<Graph>::vertex descriptor s

const bglnamedparams<P, T, R>& paramg

Dijkstra’s algorithm [0, 11] solves the single-source shortest-paths problem on a
weighted, directed or undirected graph for the case where all edge weights are nonnegative.
Use the Bellman—Ford algorithm for the case when some edge weights are negative. Use
breadth-first search instead of Dijkstra’s algorithm when all edge weights are equal to one.
For the definition of the shortest-path problem, $&4.

There are two main options for obtaining output from tlijkstra_shortestpathg) func-
tion. If you provide a distance property map through distancemap() parameter, then the

shortest distance from the source vertex to every other vertex in the graph will be recorded in
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the distance map. Also, you can record the shortest-paths tree in a predecessor map: For each
vertexu € V, w[u] will be the predecessor afin the shortest-paths tree (unlegs| = «, in

which caseu is either the source or a vertex unreachable from the source). In addition to these
two options, users can provide their own custom-made visitor that can take actions during any
of the algorithm'’s event points.

Dijkstra’s algorithm finds all the shortest paths from the source vertex to every other
vertex by iteratively growing the set of vertic§4o which it knows the shortest path. At each
step of the algorithm, the next vertex addedtis determined by a priority queue. The queue
contains the vertices ilW — .S prioritized by their distance label, which is the length of the
shortest path seen so far for each veftd@he vertexu at the top of the priority queue is then
added toS, and each of its out-edges is relaxed. If the distance ptus the weight of the
out-edge(u, v) is less than the distance label fgrthen the estimated distance for verteis
reduced. The algorithm then loops back, processing the next vertex at the top of the priority
gueue. The algorithm finishes when the priority queue is empty.

The algorithm uses color markers (white, gray, and black) to keep track of which set each
vertex is in. Vertices colored black are #h Vertices colored white or gray are in — S.

White vertices have not yet been discovered and gray vertices are in the priority queue. By
default, the algorithm will allocate an array to store a color marker for each vertex in the
graph. You can provide your own storage and access for colors wittolfvemap) named
parameter.

The following is the pseudocode for Dijkstra’s single-source shortest-paths algorithm.
Thew denotes edge weight,the distance label, andthe predecessor of each vertex that is
used to encode the shortest-paths ti@ds a priority queue that supports the DECREASE-
KEY operation. The visitor event points for the algorithm are indicated by the triangles.

DIJKSTRA G, 5, w)
for each vertex, € V > initialize vertexu
d[u] < oo
mlu] — u
color[u] «— WHITE
color[s] — GRAY

d[s] <0
INSERT(@, s) > discover vertex
while (Q # 0)

u «— EXTRACT-MIN(Q) > examine vertex

S — Su{u}

for eachv € Adj[u] > examine edgéu, v)

if (w(u,v)+ du] < d[v])
d[v] — w(u,v) + d[u] > edge(u, v) relaxed

The algorithm used here saves a little space by not putting all S vertices in the priority queue at once,
but instead only those vertices¥n— S that are discovered and therefore have a distance less than infinity.
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] — u
if (color[v] = WHITE)
color[v] — GRAY
INSERT@, v) > discover vertex
else if(color[v] = GRAY)
DECREASE-KEY(Q, v, w(u, v) + d[u])

else
. > edge(u, v) not relaxed
color|u] + BLACK > finish vertexu
return ¢, )

Where Defined

boost/graph/dijkstrashortestpaths.hpp

Parameters

IN: const Graph& g

The graph object on which the algorithm will be applied. The tgpgph must be a
model ofVertexListGraph andincidenceGraph.

IN: vertexdescriptor s
The source vertex. All distance will be calculated from this vertex, and the shortest-
paths tree will be rooted at this vertex.

Named Parameters

IN: weight map(WeightMap wmap)
The weight or “length” of each edge in the graph. The typgsightMap must be a
model ofReadablePropertyMap. The edge descriptor type of the graph needs to be
usable as the key type for the weight map. The value type of the weight map must be
the same type as the value type of the distance map.
Default: get(edgeweight, g)

IN: vertexindex map(VertexlndexMap imap)
This maps each vertex to an integer in the rajogg/|). This is necessary for efficient
updates of the heap data structure when an edge is relaxed. TheetygpeéndexMap
must be a model oReadablePropertyMap. The value type of the map must be an
integer type. The vertex descriptor type of the graph needs to be usable as the key
type of the map.
Default: get(vertexindex, g)

OUT: predecessamap(PredecessorMap.map)
The predecessor map records the edges in the minimum spanning tree. Upon com-
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pletion of the algorithm, the edgé¢s|u],u) Vu € V are in the minimum spanning
tree. If7[u] = u, thenu is either the source vertex or a vertex that is not reachable
from the source. TheredecessorMagype must be &eadWritePropertyMap with

key and vertex types the same as the vertex descriptor type of the graph.

Default: dummypropertymap

UTIL/OUT: distancemap(DistanceMap dnap)
The shortest-path weight from the source veddr each vertex in the grapis
recorded in this property map. The shortest-path weight is the sum of the edge
weights along the shortest path. The typistanceMapmust be a model oRead-
WritePropertyMap. The vertex descriptor type of the graph needs to be usable as the
key type of the distance map. The value type of the distance map is the element type
of aMonoid formed with thecombinefunction object and theeroobject for the iden-
tity element. Also the distance value type must ha®tratWeakOrdering provided
by thecomparefunction object.
Default: aniterator_propertymap created from &td::vectorof the WeightMags value
type of sizenum_vertices(g)and using thé_.mapfor the index map.

IN: distancecombine(BinaryFunction combine)
A function object that is th#lonoid operation for the distance value type. This func-
tion object combines distances to form the distance of a path.
Default: closedplus<D> whereD is the value type of the distance mayosedplus
is defined inboost/graph/relax.hpp

IN: distancecompare(BinaryPredicaate compare)
A function object that defines &trictWeakOrdering on the distance values. The
function object is used to determine which of two paths is shorter.
Default: std::lesscD> whereD is the value type of the distance map.

IN: distanceinf(D inf)
Theinf object must be the greatest value of @gbject. That iscompare(d, inf) ==
true for anyd !=inf. The typeD is the value type of th®istanceMap
Default: std::numericlimits<D>::max()

IN: distancezero(D zero)
The zerovalue must be the identity element for thenoid formed by the distance
values and theombine function object. The typ® is the value type of th®is-
tanceMap
Default: D

UTIL/OUT: color.map(ColorMap cmap)
This is used during the execution of the algorithm to mark the vertices. The vertices
start out white and become gray when they are inserted in the queue. They then turn
black when they are removed from the queue. At the end of the algorithm, vertices
reachable from the source vertex will have been colored black. All other vertices will
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still be white. The typeColorMap must be a model oReadWritePropertyMap. A

vertex descriptor must be usable as the key type of the map, and the value type of the
map must be a model @folorValue.

Default: an iterator_propertymap created from astd::vector of default.color_type of
sizenum_vertices(g)and using thé_mapfor the index map.

OUT: visitor(Vis v)
Use this to specify actions that you would like to happen during certain event points
within the algorithm. The typ®is must be a model dbijkstraVisitor.
Default: default dijkstra_visitor

Complexity

The time complexity i€ ((|V|+|E|) log|V]), or justO(| E|log |V]) if all vertices are reach-
able from the source.

Example

The source code for this example isexample/dijkstra-example.cppThe graph used for this
example is shown in FigurE3.3 The edges in the shortest-paths tree use black lines.

typedef adjacencyist<listS, vecS directedS

no_property, property<edgeweightt, int> > graph.t;
typedef graphtraits<graph_t>::vertex descriptor vertexdescriptog
typedef std::paixint, int> Edge

const int numnodes= 5;

enum nodes{ A, B, C, D, E };

char namd] = "ABCDE";

Edge edgearray[] = { Edgq A, C), Edgg B, B), Edgg B, D), Edgg B, E),
Edgg C, B), Edgdq C, D), Edgg D, E), Edgd E, A), Edgd E, B) };

int weight4] = {1, 2, 1, 2, 7, 3, 1, 1, 1};

int num_arcs = sizeof edgearray)/ sizeof Edge);

graph.t g( edgearray, edgearray + num_arcs weights num_nodes;

std::vectokvertex descriptor> p( hum_verticeg g));

std::vectokint> d( num_verticeg g));

vertex descriptor s= vertexX A, Q);

dijkstra_shortestpathg g, s, predecessamap& p[ 0]). distancemap(& d[ 0]));

std::cout << "distances and parents: << std::end}
graph_traits<graph_t>::vertex_iterator vi, vend

for(tie(vi, vend = verticegg); vi != vend ++ vi) {

std::cout << "distancel << namd* vi] << ") =" << d* vi] << ", "

std::cout << "parent( << namd* vi] << ") =" << namqg p[* vi]] <<std::endt
}

std::cout << std::endt
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The output is

distances and parents:

distanc€ A) = 0, parenf{ A) = A
distancé B) = 6, paren{B) = E
distanc€ C) = 1, parenf{ C) = A
distancé€ D) = 4, paren{D) = C
distanc€ E) = 5, paren{E) = D

Figure 13.3The graph used for the Dijkstra’s algorithm example.

13.3.2 bellmanford_shortestpaths

template <typename EdgeListGraph typename Size
typename P typename T typename R-
bool bellmanford_shortestpathg EdgeListGrapt& g, Size N
const bglnamedparams<P, T, R>& paramg

The Bellman—Ford algorithn[ 13, 26, 10] solves the single-source shortest-paths prob-
lem for a graph with both positive and negative edge weights. For the definition of the
shortest-paths problem, sé&.1 If you only need to solve the shortest-paths problem for
positive edge weights, Dijkstra’s algorithm provides a more efficient alternative. If all the
edge weights are equal to one, breadth-first search provides an even more efficient alternative.

Before calling thébellman ford_shortestpathg) function, the user must assign the source
vertex a distance of zero (or the identity element ofNfe@oid formed by the distance values
and thecombinefunction object) and all other vertices a distance of infinity (which must be
the greatest distance value according to the ordering defined kyriprefunction object).
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Typically std::numericlimits<D>:max() is the right choice for infinity, wherB is the value

type of the distance map. The Bellman—Ford algorithm proceeds by looping through all of
the edges in the graph, applying the relaxation operation to each edge. In the following
pseudocode; is a vertex adjacent to, w maps edges to their weight, adds a distance map

that records the length of the shortest path to each vertex seen so far.

RELAX(u, v, w, d)
if (w(u,v) + dfu] < d[v])
d[v] — w(u,v) + d[u]

The algorithm repeats this lodp’| times, after which it is guaranteed that the distances to
each vertex have been reduced to the minimum possible unless there is a negative cycle in the
graph. If there is a negative cycle, then there will be edges in the graph that were not properly
minimized. That is, there will be edgés, v) such thatv(u, v) + d[u] < d[v]. The algorithm
loops over the edges in the graph one final time to check if all the edges were minimized,
returning true if they were and returning false otherwise.

There are two main options for obtaining output from Hefiman ford_shortestpathy)
function. If the user provides a distance property map throughititencemap() parameter,
then the shortest distance from the source vertex to every other vertex in the graph will be
recorded in the distance map (provided the function retmney The user can also record the
shortest-paths tree by providing a predecessor property map througtetleeessamap()
parameter. In addition to these two options, users can provide their own custom-made visitor
that can take actions during any of the algorithm’s event pointsEst&@anFordVisitor). If
you are only interested in some of the event points, derive your visitor @efault bellman-
_visitor to provide empty versions of the remaining event points.

Where defined

boost/graph/bellmarford_shortestpaths.hpp

Parameters
IN: EdgeListGraph& g
A directed or undirected graph whose type must be a modedigéListGraph.

IN: Size N
The number of vertices in the graph. The tygizemust be an integer type.

Named Parameters

IN: weight map(WeightMap w)
The weight (also know as “length” or “cost”) of each edge in the graph. The
WeightMap type must be a model dkeadablePropertyMap. The key type for this
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property map must be the edge descriptor of the graph. The value type for the weight
map the same as the distance map’s value type.
Default: get(edgeweight, g)

OUT: predecessamap(PredecessorMapmap) The predecessor map records the edges in the

minimum spanning tree. Upon completion of the algorithm, the edoles, «) for

all w € V are in the minimum spanning tree.dfu] = u thenw is either the source
vertex or a vertex that is not reachable from the source. PradecessorMayype
must be e&ReadWritePropertyMap which key and vertex types the same as the vertex
descriptor type of the graph.

Default: dummy.propertymap

UTIL/OUT: distancemap(DistanceMap dnap)

The shortest-path weight from the source veddr each vertex in the grapis
recorded in this property map. The shortest-path weight is the sum of the edge
weights along the shortest path. The typistanceMapmust be a model oRead-
WritePropertyMap. The key type of the distance map must be the vertex descriptor
type of the graph. The value type of the distance map is the element typéonioid
formed with thecombinefunction object and theeroobject for the identity element.
Also the distance value type must havstactWeakOrdering provided by thecom-
parefunction object.

Default: get(vertexdistance, g)

IN: visitor(BellmanFordVisitor v)

The visitor object, whose type must be a modeBefimanFordVisitor. Thedefault-
_bellman.visitor is a model ofBellmanFordVisitor that does nothing at all of the event
points.

Default: defaultbellman.visitor

IN: distancecombine(BinaryFunction combine)

This function object is th®onoid operation for the distance value type. This function
object combines distances to form the distance of a path.

Default: closedplus<D> whereD is the value type of the distance magosedplus

is defined inboost/graph/relax.hpp

IN: distancecompare(BinaryPredicate compare)

This function object defines an ordering on the distance values that corresponds with
the summary function. That is, the summary function always returns the argument
that is earlier in the ordering according to #wemparefunction.

Default: std::lesscD> whereD is the value type of the distance map.

Complexity

The time complexity i) (|V||E|).
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Example

The source code for this example iseérample/bellman-example.cpplhe graph used in the
example is shown in Figurg3.4

Figure 13.4The graph used for the example of the Bellman—Ford algorithm.

enum{ u, v, X, ¥, z N };

char namg¢] = {'u, v, X, Y, 2 }

typedef std::paikint, int> E;

const int nedges= 10;

typedef boost::array.E, n_edges- EdgeList

EdgeList edgearray = {{ E(u,y), E(u,x), E(u,Vv), E(v, u),
E(x.y), E(xV), E(v.V), E(y.d, E(zu), E(zx }}

int weighf n_edge$ = { -4, 8, 5 -2, 9, -3, 7, 2, 6, 7 };

typedef adjacencyist<vecS vecS directed$S
no_property, property<edgeweightt, int> > Graph;
Graph ¢ edgearray. begin)), edgearray. end), N);
graph_traits<Graph>::edge.iterator ei, ei_end
inti =0;
for (tie(ei, ei_end) = edge$g); ei!= ei_end ++ ei, ++1i)
gef edgeweight g)[* eil = weighf i];
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std::vectokint> distancé N, std::numericlimits<short>::max());
std::vectok std::sizet> pareni N);
for (i = 0; i < N; ++1i)
parenf{i] = i;
distancg 7] = O;
bool r = bellman_ford_shortestpathg g, int( N),
weight map( gef edgeweight )). distancemap(& distancg 0]).
predecessamap& parenf 0]));

if (r)
for (i =0; i < N; ++1i)
std::cout << namd i] << ": " << std:setw 3) << distancg i
<< "" << namg parenfi]] << std:endt
else

std::cout << " negative cycle << std::endf

The distance and predecessor for each vertex is

u. 2v
V. 4 x
X: 7z
y: =2u
Z: 0z

13.3.3 johnsonall_pairs shortestpaths

template <typename Graph typename DistanceMatrix
typename P typename T typename RB-
bool johnsonall _pairs_shortestpathy Graph& g, DistanceMatrix& D,
const bglnamedparams<P, T, R>& params= all defaulty

This algorithm finds the shortest distance between every pair of vertices in the graph. The
algorithm returns false if there is a negative weight cycle in the graph and true otherwise. The
distance between each pair of vertices is stored in the distance maffiis is one of the
more time intensive graph algorithms, having a time complexit9 @V’ || E| log |V|).

Where Defined

boost/graph/johnsorall _pairs_shortestpaths.hpp

Parameters

IN: const Graph& g
The graph object on which the algorithm will be applied. The t@paph must be a
model ofVertexListGraph, IncidenceGraph, andEdgeListGraph.
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OUT: DistanceMatrix& D
The shortest path length from vertexo v is stored inD[u][v] .

Named Parameters

IN: weight map(WeightMap wmap)
The weight or “length” of each edge in the graph. The typsghtMap must be a
model of ReadablePropertyMap. The edge descriptor type of the graph needs to
be usable as the key type for the weight map. The value type for the map must be
Addable with the value type of the distance map.
Default: get(edgeweight, g)

UTIL: weightmap2(WeightMap2 wmap?2)
An auxiliary weight map. The typ@/eightMap2must be a model aReadWriteProp-
ertyMap. The edge descriptor type of the graph needs to be usable as the key type for
the weight map. The value type for the map musAleable with the value type of
the distance map.
Default: get(edgeweight2, g)

IN: vertexindex map(VertexindexMap imap)
This maps each vertex to an integer in the rajdgg/|). This is necessary for efficient
updates of the heap data structure when an edge is relaxed. TheetygpéndexMap
must be a model oReadablePropertyMap. The value type of the map must be an
integer type. The vertex descriptor type of the graph needs to be usable as the key
type of the map.
Default: get(vertexindex, g)

UTIL/OUT: distancemap(DistanceMap dnap)
The shortest-path weight from the source veddr each vertex in the grapiis
recorded in this property map. The shortest-path weight is the sum of the edge
weights along the shortest path. The typistanceMapmust be a model oRead-
WritePropertyMap. The vertex descriptor type of the graph needs to be usable as
the key type of the distance map. The value type of the distance map must be
LessThanComparable.
Default: aniterator_property map created from a&td::vectorof the WeightMags value
type of sizenum_vertices(g)and using thé_mapfor the index map.

IN: distancezero(D zero)
The identity element for th®lonoid formed by the distance value type and the addi-
tion operator. The typP must be the value type of thaistanceMap
Default: D()

Complexity
The time complexity i) (|V||E|log |V]).
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Example

Johnson'’s algorithm for all-pairs shortest paths applied to the example graph from page 568 of
theIntroduction to Algorithmg¢10], also shown in Figuré3.5 The resulting distance matrix
D[u][v] gives the shortest path from vertexo v.

Figure 13.5The graph used for the Johnson’s algorithm example.

typedef adjacencyist<vecS vecS directedS no_property,
property<edgeweightt, int, property<edgeweight2t, int> > > Graph;
const int V = 6;
typedef std::paixint, int> Edge
Edge edgearray[] =
{ Edgq 0, 1), Edgg 0, 2), EdggO0, 3), EdggO0, 4), Edgg 0, 5),
Edgg 1, 2), Edgdq 1, 5), Edgdq 1, 3), Edgqg 2,4), Edgg 2, 5),
Edog 3, 2), Edgd 4, 3), Edgdq 4, 1), Edgg5,4) };
const int E = sizeof edgearray)/ sizeof{ Edge);
Graph ¢ edgearray, edgearray + E, V);

property map<Graph, edgeweightt>::type

w = gef edgeweight Q);
int weight4§] = {0, 0, 0, O, O, 3, -4, 8, 1, 7, 4, -5 2, 6 };
int* wp = weights
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graph_traits<Graph>::edgeiterator e e.end
for (boost::iti e, eend = edge§g); e!= eend ++ €
Wit € = * wpt;

std::vectokint> d(V, std::numericlimits<int>::max());
int D[ V][ VI;
johnson all_pairs_shortestpathg g, D, distancemap(& d[ 0]));

This is the resulting distance matrix:

0O 1 2 3 4 5
0,0 0 -1 50 -4
1/inf O 1 -3 2 -4
2|inff 3 0 -4 1 -1
3|inf 7 4 0 5 3
4|inf 2 -1 -5 0 -2
5/inff 8 5 1 6 0

13.4 Minimum-Spanning-Tree Algorithms
13.4.1 kruskal_.minimum_spanningtree

template <typename Graph typename Outputlteratgr
typename P typename T typename R-

void kruskalminimum_spanningtreg Graph& g, Outputlterator spanningtree edges
const bglnamedparams<P, T, R>& params= all defaulty

The kruskal_minimum_spanningtreg) function finds a minimum spanning tree (MST)
in an undirected graph with weighted edges. An MST is a set of edges that connects all
the vertices in the graph where the total weight of the edges in the tree is minimized. The
kruskal_minimum_spanningtreg() function outputs the edges of a MST to &manningtree -
edgesoutput iterator using Kruskal's algorithm? g, 10, 44, 16].

Kruskal's algorithm starts with each vertex in a tree by itself, and with no edges in the
minimum spanning tre§". The algorithm then examines each edge in the graph in order
of increasing edge weight. If an edge connects two vertices in different trees, the algorithm
merges the two trees into a single tree and adds the edge We use theunion by rank
andpath compressioheuristics to provide fast implementations of the disjoint set operations
(MAKE-SET, FIND-SET, and UNION-SET). The algorithm is as follows:

KRUSKAL-MST(G, w)
for each vertex, € V
MAKE-SET(S, w)
T—0
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for each(u,v) € E in order of nondecreasing weight
if FIND-SET(S, u) # FIND-SET(S, v)

UNION-SET(S, u, v)
T — TU{(u,v)}

return 7'

Where Defined

boost/graph/kruskalminimum_spanningtree.hpp

Parameters

IN: const Graph& g

An undirected graph. The graph type must be a modegkakxListGraph andEdge-
ListGraph.

IN: Outputlterator spanningtree edges

The edges of the minimum spanning tree are output tadhiputiterator.

Named Parameters

IN: weight map(WeightMap wmap)

UTIL:

UTIL:

The weight or “length” of each edge in the graph. TWeightMaptype must be a
model of ReadablePropertyMap and its value type must heessThanComparable.
The key type of this map needs to be the graph’s edge descriptor type.

Default: get(edgeweight, g)

rank_map(RankMap rmap)

The typeRankMapmust be a model dReadWritePropertyMap. The vertex descriptor

type of the graph needs to be usable as the key type of the rank map. The value type
of the rank map must be an integer type.

Default: an iterator_propertymap created from astd::vector of the integers of size
num_vertices(g)and using thé_mapfor the index map.

predecessamap(PredecessorMap.map)

The typePredecessorMapnust be a model dReadWritePropertyMap. The key type
value types of the predecessor map must be the vertex descriptor type of the graph.
Default: aniterator_propertymap created from atd::vectorof vertex descriptors of
sizenum_vertices(g)and using thé_mapfor the index map.

IN: vertexindex map(VertexindexMap imap)

This maps each vertex to an integer in the raiigd/|). This is only necessary if the
default is used for the rank or predecessor maps. TheugpexindexMapmust be a
model ofReadablePropertyMap. The value type of the map must be an integer type.
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The vertex descriptor type of the graph needs to be usable as the key type of the map.
Default: get(vertexindex, g)

Complexity
The time complexity i€) (| E|log | E|).

Example

The source code for this example isdrample/kruskal-example.cppFigure 13.6 shows the
graph used in this example.

OS0
O O

Figure 13.6The graph used for the Kruskal’s algorithm example.

typedef adjacencyist<vecS vecS undirected$S
no_property, property<edgeweightt, int> > Graph;
typedef graphtraits<Graph>::edge descriptor Edge
typedef graphtraits<Graph>::vertex descriptor Vertex
typedef std::paikint, int> E;

const int numnodes= 5;

E edgearray[] = { E(0,2), E(1,3), E(14), E(2,1), E(2,3),
E(3,4), E(4,0), E(4,1) };

int weight4] = {1, 1, 2, 7, 3, 1, 1, 1};

int num_edges= sizeof edgearray)/ sizeof E);

Graph ¢ edgearray, edgearray + num_edges weights num_nodeg;

property map<Graph, edgeweightt>::type weight= gef edgeweight g);

std::vectok Edge> spanningtree

kruskal_minimum_spanningtreg g, std::backinserter( spanningtree));
std::cout << " Print the edges in the MST: << std::endt

for (' std::vectoxkEdge>:.iterator ei = spanningtree begin);
ei I= spanningtree end); ++ ei) {
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std::cout << sourcd* ei, g) << " < " << targei(* ei, Q)
<< " with weight of " << weigh{* ei]
<< std::endt

}
The output is

Print the edges in the MST:
0 <——> 2 with weight of 1
3 <——> 4 with weight of 1
4 <——> 0 with weight of 1
1 <——> 3 with weight of 1

13.4.2 prim_minimum_spanningtree

template <typename Graph typename PredecessorMap
typename P typename T typename R-
void primLminimum_spanningtreg Graph& G, PredecessorMap Jjmap,
const bglnamedparams<P, T, R>& params= all defaults

The prim_minimum_spanningtreg) function finds a minimum spanning tree (MST) in an
undirected graph with weighted edges. An MST is a set of edges that connects all the vertices
in the graph where the total weight of the edges in the tree is minimized. The minimum span-
ning tree is recorded in the predecessor map: for each verteX’, w[v] will be the parent
of v in the computed minimum spanning tree. The implementation uses Prim’s algorithm to
compute the MST8, 10, 44, 14].

The way Prim’s algorithm grows the minimum spanning tree, one vertex at a time, is very
similar to the way Dijkstra’s algorithm builds the shortest paths 4ré¢.each step, Prim’s
algorithm chooses an edge to add to the minimum spanning tree. The edge is the shortest
edge that connects any of the vertices already in the tree to a vertex that is not in the tree. The
algorithm uses a priority queue to make this choice in an efficient manner. If veigeat
the top of the priority queue, then edgeu|, u) is the next shortest edge and will be added
to the tree. The pseudocode for the algorithm is as follows:

PRIM-MST(@G, r, w)
for each vertex, € V > initialize vertexu
d[u] « oo
mlu] — u
color[u] «— WHITE
color[r] — GRAY
dir] <0
2In fact, the BGL implementation of Prim’s algorithm is simply a call to Dijkstra’s algorithm with particular
arguments for thelistancecompard) anddistancecombindg) parameters.
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INSERT@, ) > discover vertex
while (Q # 0)

u «— EXTRACT-MIN(Q) > examine vertex

for eachv € Adj[u] > examining edgéu, v)

if (w(u,v) < dv])
d[v] — w(u,v) > edge(u, v) relaxed
mv] — u
if (color[v] = WHITE)
color[v] — GRAY
INSERT@, v) > discover vertex
else if(color[v] = GRAY)
DECREASE-KEY(, v)
else
> edge(u, v) is not relaxed
color|[u] « BLACK > finishu
return ()

Where Defined

boost/graph/primminimum_spanningtree.hpp

Parameters

IN: const Graph& g
The graph object on which the algorithm will be applied. The tgpaph must be a
model ofVertexListGraph andincidenceGraph.

OUT: PredecessorMap jmnap
The predecessor map records the edges in the minimum spanning tree. Upon com-
pletion of the algorithm, the edgés|u],u) Yu € V are in the minimum spanning
tree. Ifrju] = u, thenu is either the root of the tree or is a vertex that is not reachable
from the root. ThePredecessorMapype must be &eadWritePropertyMap with key
and vertex types the same as the vertex descriptor type of the graph.

Named Parameters

IN: root_vertex(vertexdescriptor r)
The vertex that will be the root of the minimum spanning tree. The choice of the root
vertex is arbitrary; it does not affect the ability of the algorithm to find a minimum
spanning tree.
Default: *vertices(g).first
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IN: weight map(WeightMap wmap)

The weight or “length” of each edge in the graph. The tyypsghtMap must be a
model of ReadablePropertyMap. The edge descriptor type of the graph needs to
be usable as the key type for the weight map. The value type for the map must be
Addable with the value type of the distance map.

Default: get(edgeweight, g)

IN: vertexindex map(VertexindexMap imap)

UTIL:

This maps each vertex to an integer in the rajdgg/|). This is necessary for efficient
updates of the heap data structure when an edge is relaxed. TheetygpéndexMap

must be a model oReadablePropertyMap. The value type of the map must be an
integer type. The vertex descriptor type of the graph needs to be usable as the key
type of the map.

Default: get(vertexindex, g)

distancemap(DistanceMap dnap)

The typeDistanceMapmust be a model oReadWritePropertyMap. The vertex de-
scriptor type of the graph needs to be usable as the key type of the distance map. The
value type of the distance map mustlessThanComparable.

Default: aniterator_property map created from atd::vectorof the WeightMags value

type of sizenum_vertices(g)and using thé_mapfor the index map.

UTIL/OUT: color.map(ColorMap cmap)

This is used during the execution of the algorithm to mark the vertices. The vertices
start out white and become gray when they are inserted in the queue. They then turn
black when they are removed from the queue. At the end of the algorithm, vertices
reachable from the source vertex will have been colored black. All other vertices will
still be white. The typeColorMap must be a model oReadWritePropertyMap. A

vertex descriptor must be usable as the key type of the map, and the value type of the
map must be a model dfolorValue.

Default: an iterator_propertymap created from astd::vectorof default color_type of
sizenum_vertices(g)and using thé_mapfor the index map.

Complexity

The time complexity i€) (| E|log |V]).

Example

The source code for this example iseixample/prim-example.cpp

typedef adjacencyist<vecS vecS undirected$S

property<vertex distancet, int>, property<edgeweightt, int> > Graph;
typedef std::paikint, int> E;
const int numnodes= 5;
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E edgef] = { E(0,2), E(1,1), E(1,3), E(1,4), E(21), E(273),
E(3,4), E(4,0) };

int weight4] = {1, 2, 1, 2, 7, 3, 1, 1};

Graph g num_nodes edges edges+ sizeof edge¥ sizeof E), weights;

std::vectok graph_traits<Graph>::vertex _descriptor- p( hum_verticeg g));

prim_minimum_spanning treg( g, & p[ 0]);

for (std:sizet i = 0; i != p. sizd); ++ i)
if (p[i]!'= i)
std::cout << "parent]' << i << "] =" << p[i] << std:endt
else

std::cout << "parent]’ << i << "] = no parent << std::endf

The output is

parenf0] = 0O
paren{ 1] = 3
parenf2] = 0
paren{ 3] = 4
parenf4] = 0

13.5 Static Connected Components
13.5.1 connectedcomponents

template <typename Graph typename ComponentMap
typename P typename T typename B

typename propertyraits<ComponentMap-::value_type

connectedcomponentéconst Grapl& g, ComponentMap ¢
const bglnamedparams<P, T, R>& params= all defaults

The connectedcomponent§) function compute the connected components of an undi-
rected graph using a DFS-based approachonected componeaf an undirected graph is
a set of vertices that are all reachable from each other. If the connected components need to
be maintained while a graph is growing the disjoint-set based approach of fuinctiemen-
tal_component§) is faster. For static graphs this DFS-based approach is faster[

The output of the algorithm is recorded in the component property enagich will
contain numbers giving the component number assigned to each vertex. The total number of
components is the return value of the function.

Where Defined

boost/graph/connectedomponents.hpp
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Parameters

IN: const Graph& g
An undirected graph. The graph type must be a mod&kokxListGraph andInci-
denceGraph.

OUT: ComponentMap ¢
The algorithm computes how many connected components are in the graph, and as-
signs each component an integer label. The algorithm then records which component
each vertex in the graph belongs to by recording the component number in the com-
ponent property map. TheomponentMaptype must be a model &ritableProper-
tyMap. The value type must be therticessizetypeof the graph. The key type must
be the graph’s vertex descriptor type.

Named Parameters

UTIL: color_map(ColorMap color)
This is used by the algorithm to keep track of its progress through the graph. The
type ColorMap must be a model dReadWritePropertyMap and its key type must be
the graph’s vertex descriptor type and the value type of the color map must model
ColorValue.
Default: an iterator_propertymap created from astd::vector of default color_type of
sizenum_vertices(g)and using thé_mapfor the index map.

IN: vertexindex map(VertexindexMap imap)
This maps each vertex to an integer in the rajigé’) whereN is the number of ver-
tices in the graph. This parameter is only necessary when the default color property
map is used. The typeertexindexMapmust be a model oReadablePropertyMap.
The value type of the map must be an integer type. The vertex descriptor type of the
graph needs to be usable as the key type of the map.
Default: get(vertexindex, g)

Complexity
The time complexity for the strongly connected components algorith®{|i€| + | E|). The
time complexity for the connected components algorithm is &8¢ | + |E|).

Example

Calculating the connected components of an undirected graph.

( “connected-components.cpal96) =

#include <iostream>
#include <vector>
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#include <boost graph/ connectedcomponentshpp>
#include <boost graph/ adjacencylist. hpp>

int main()

{
using namespace bogst
typedef adjacencyist <vecS vecS undirectedS- Graph;
typedef graphtraits<Graph>::vertex descriptor Vertex

const int N = 6;

Graph G(N);

add edgé€ 0, 1, G);
addedgé 1, 4, G);
add edg€ 4, 0, G);
addedgé 2, 5, G);

std::vectokint> c( hum_verticeg G));
int num = connectedcomponent§ G,
make iterator_property map( c. begin), gef vertexindex, G)));

std::cout << std::endt
std::vectokint>::iterator i;
std::cout << " Total number of components! << num << std::endt

for (i = c. begin(); i != c.end); ++ i)
std::cout << "Vertex " << i — c. begin)
<< " is in component" << *i << std::endf

std::cout << std::endt
return EXIT_SUCCESS

}
The output is

Total number of components3
Vertex 0 is in component0
Vertex 1 is in component0
Vertex 2 is in componentl
Vertex 3 is in component2
Vertex 4 is in component0
Vertex 5 is in componentl

13.5.2 strong components

template <class Graph class ComponentMap class B class T, class R>
typename propertyraits<ComponentMap-::value_type
strong.componenté Graph& g, ComponentMap comp

const bglnamedparams<P, T, R>& params= all defaulty
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The strong component§) function computes the strongly connected components (SCC)
of a directed graph using Tarjan’s algorithm, which is based on depth-first seafth |

The output of the algorithm is recorded in the component propertycoap which will
contain numbers giving the component ID assigned to each vertex. The ID numbers will be
from zero to one less than the number of components in the graph. The number of components
is the return value of the function.

Where Defined

boost/graph/strongcomponents.hpp

Definitions

A strongly connected componesfta directed grapli = (V, E) is a maximal set of vertices
U C V, such that for every pair of verticesandv in U, we have both a path fromto v and
path fromv to u. That is to say that andwv are reachable from each other.

The following is an informal description of Tarjan’s algorithm for computing strongly
connected components. It is basically a variation on depth-first search, with extra actions
being taken at the “discover vertex” and “finish vertex” event points. It may help to think of
the actions taken at the “discover vertex” event point as occuring “on the way down” a DFS
tree (from the root toward the leaves), and actions taken at the “finish vertex” event point as
occuring “on the way back up.”

Three things need to happen on the way down. For each verigsited, we record
the discover timel[u], push vertex: onto a auxiliary stack, and sebot[u] = u. The root
field will end up mapping each vertex to the topmost vertex in the same strongly connected
component. By settingoot[u] = u we are starting with each vertex in a component by itself.

Now to describe what happens on the way back up. Suppose we have just finished visiting
all of the vertices adjacent to some verteX\We then scan each of the adjacent vertices again,
checking the root of each for which one has the earliest discover time, which we will call root
a. We then compare with vertexu and consider the following cases:

1. If d[a] < d[u], then we know that: is really an ancestor of in the DFS tree and
therefore we have a cycle amdmust be in an SCC with. We then setoot[u] = a
and continue our way back up the DFS.

2. If a = u, then we know that: must be the topmost vertex of a subtree that defines an
SCC. All of the vertices in this subtree are farther down on the stack than versex
we pop the vertices off of the stack until we reachnd mark each one as being in the
same component.

3. If d[a] > d[u] then the adjacent vertices are in different strongly connected components.
We continue our way back up the DFS.
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Parameters

IN: const Graph& g

OUT:

A directed graph. The graph type must be a mod&kofexListGraph andincidence-
Graph.

ComponentMap comp

The algorithm computes how many connected components are in the graph, and as-
signs each component an integer label. The algorithm then records which component
each vertex in the graph belongs to by recording the component number in the com-
ponent property map. Th€omponentMaptype must be a model ofvritableProp-
ertyMap. The value type shouch be an integer type, preferably the same asrthe
ticessizetypeof the graph. The key type must be the graph’s vertex descriptor type.

Named Parameters

UTIL:

UTIL:

UTIL:

root. map(RootMap rmap)

This is used by the algorithm to record the candidate root vertex for each vertex.
By the end of the algorithm, there is a single root vertex for each component and
get(rmap, v)returns the root vertex for whichever component vektéxa member.

The RootMap must be aReadWritePropertyMap, where the key type and the value
type are the vertex descriptor type of the graph.

Default: aniterator_propertymap created from astd::vectorof vertex descriptors of
sizenum_vertices(g)and using thé_mapfor the index map.

discovertime(TimeMap tmap)

This is used by the algorithm to keep track of the DFS ordering of the vertices. The
TimeMap must be a model dReadWritePropertyMap and its value type must be an
integer type. The key type must be the vertex descriptor type of the graph.

Default: an iterator_propertymap created from astd::vector of integers with size
num_vertices(g)and using thé_.mapfor the index map.

color_map(ColorMap cmap)

This is used by the algorithm to keep track of its progress through the graph. The
type ColorMap must be a model dReadWritePropertyMap and its key type must be

the graph’s vertex descriptor type and the value type of the color map must model
ColorValue.

Default: an iterator_propertymap created from astd::vector of default.color_type of
sizenum_vertices(g)and using thé_mapfor the index map.

IN: vertexindex map(VertexindexMap imap)

This maps each vertex to an integer in the rafigeV) where N is the number of
vertices in the graph. This parameter is only necessary when a default is used for
one of the other named parameters. The typeexindexMapmust be a model of
ReadablePropertyMap. The value type of the map must be an integer type. The
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vertex descriptor type of the graph needs to be usable as the key type of the map.
Default: get(vertexindex, g)

Complexity

The time complexity for the strongly connected components algorith®{|i§’| + |E|).

See Also

connectedcomponent§) andincrementalcomponent§)

Example

Calculating the strongly connected components of a directed graph.

( “strong-components.cpp200) =

#include <vector>

#include <iostream>

#include <boost graph/ strong.componentshpp>
#include <boost graph/ adjacencylist. hpp>

int main()

{
using namespace bogst
typedef adjacencyist< vecS vecS directedS- Graph;
const int N = 6;

Graph G( N);

add edgé€ 0, 1, G);

addedgé 1, 1, G); addedgdl, 3, G); addedgdl, 4, G);
add edg€ 3, 4, G); addedg€ 3, 0, G);

add edg€ 4, 3, G);

addedgé 5, 2, G);

std::vectokint> c( N);
int num = strong.component§ G,
make iterator_property map( c. begin), gef( vertexindex, G)));

std::cout << " Total number of components!' << num << std::endkt
std::vectokint>::iterator i;
for (i = c. begin)); i!= c. end);, ++ i)
std::cout << "Vertex " << i — c. begin()
<< " is in component” << *i << std:endt
return EXIT _SUCCESS

¥
The output is
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Total number of components3
Vertex 0 is in component0
Vertex 1 is in component0
Vertex 2 is in componentl
Vertex 3 is in component0
Vertex 4 is in component0
Vertex 5 is in component2

13.6 Incremental Connected Components

This section describes a family of functions and classes that calculate the connected com-
ponents of an undirected graph. The algorithm used here is based on the disjoint-sets data
structure [0, 44], which is the best method for situations where the graph is growing (edges
are being added) and the connected components information needs to be updated repeatedly.
The disjoint-sets class is describedir6.6

The following five operations are the primary functions that you will use to calculate and
maintain the connected components. The objects used here are ggalitjoint-sets object
ds and vertices andv.

e initialize_incrementalcomponents(g,ds)
Basic initialization of the disjoint-sets structure. Each vertex in the ggapim its own
set.

e incrementalcomponents(g,ds)
The connected components are calculated based on the edges in thg grapthe
information is embedded ids.

e ds.findset(v)
Extracts the component information for verteftom the disjoint-sets object.

e ds.unionset(u,v)
Update the disjoint-sets object when edgev) is added to the graph.

Complexity

The time complexity for the whole process0%|V| + |E|a(|E|, |V])), where|E| is the total
number of edges in the graph (by the end of the process)land the number of verticesy

is the inverse of Ackermann’s function, which has explosive recursively exponential growth.
Therefore, its inverse function growery slowly. For all practical purposesy(m,n) < 4,
which means the time complexity is only slightly larger t@iV'| + |E|).
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Example

Maintain the connected components of a graph while adding edges using the disjoint-sets
data structure. The full source code for this example can be fousgaimnple/incremental-
components-eg.cpp

/I Create a graph

typedef adjacencyist <vecS vecS undirectedS> Graph;

typedef graphtraits<Graph>::vertex descriptor Vertex

const int N = 6;

Graph G(N);

add edg€ 0, 1, G);

add edg€ 1, 4, G);

/I create the disjoint-sets object, which requires rank and parent vertex properties
std::vectok Vertex> rank( num_verticeg G));

std::vectok Vertex> paren num_verticeg G));

typedef std::vectorgraph_traits<Graph>::vertices sizetype>::iterator Rank;
typedef std::vectorVertex>::iterator Parent,

disjoint_sets<xRank, Parent> dg rank. begin(), parent begin));

/I determine the connected components, storing the results in the disjoint-sets object
initialize_incrementalcomponenté G, ds);
incrementalcomponenté G, ds);

/l Add a couple more edges and update the disjoint-sets
graph_traits<Graph>::edge descriptor e

bool flag

tie( e flag) = addedgd€ 4, 0, G);

ds union_se( 4, 0);

tie( e flag) = addedgd 2, 5, G);

ds union_se{ 2, 5);

graph_traits<Graph>::vertex_iterator i, end
for (tie(i, end) = verticeg G); i != end ++1i)
std::cout << "representative] << *i << "] =" <<
ds find_se(* i) << std::endt;
std::cout << std::endt

typedef componenindex<unsigned int> Components
Components componertparent begin)), parent end));
for (Components::sizdype i = 0; i < componentssizg); ++ i) {

std::cout << "component" << i << " contains:";

for ( Components::valuetype::iterator j = componentgi]. begin);

j '= componentgi]. end); ++ j)
std::cout << *j << " " ;
std::cout << std::endt

}
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The output is

representative0] = 1
representativel] = 1
representative2] = 5
representative3] = 3
representative4] = 1
representative5] = 5

componentQ contains: 4 1 0
componentl contains: 3
component2 contains: 5 2

Where Defined

All of the functions in this section are definedbnost/graph/incrementatomponents.hpp

13.6.1 initialize_incrementalcomponents

template <typename VertexListGraph typename DisjointSets
void initialize_incremental componenté VertexListGrapl& G, DisjointSet& ds)

This prepares the disjoint-sets data structure for the incremental connected components
algorithm by making each vertex in the undirected graph a member of its own component.

Complexity

The time complexity i) (|V]).

13.6.2 incrementalcomponents

template <typename EdgeListGraph typename DisjointSets
void incrementalcomponenté EdgeListGrapt& g, DisjointSets ds)

This function calculates the connected components of an undirected graph, embedding
the results in the disjoint-sets data structure.

Complexity

The time complexity i€ (| E|).
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13.6.3 samecomponent

template <typename Vertex typename DisjointSets
bool samecomponent Vertex u Vertex v DisjointSet& ds)

This function determines whetherandv are in the same component.

Complexity
The time complexity i€ (a(|E|, |V])).

13.6.4 componentindex

componentindex<Index>

This class provide an STL container-like view for the components of the graph. Each
component is a container-like object, and tlenponentindex object provides access to the
component objects viaperator[] A componentindex object is initialized with the parents
property in the disjoint-sets calculated from therementalcomponent§) function.

Template Parameters

Index The unsigned integer type used to count components.

Where Defined

boost/graph/incrementatomponents.hpp

Associated Types

componentindex::value_type
The type for a component object. The component type has the following members.

componentindex::sizetype
The type used for representing the number of components.

Member Functions

template <typename ComponentsContainer
componentindex::componentindex( const ComponentsContainér c)
Constructs theomponentindex using the information from the components contaicer

which was the result of executirigcrementalcomponents
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template <typename Parentlteratas

componentindex::componentindex( Parentlterator first Parentlterator las)
Constructs a component index from the “parents” computed by iticeemen-
tal_component§ function.

value_type componenindex::operatof]( sizetype ) const
Returns theéth component in the graph.

sizetype componenindex::siz€) const
Returns the number of components in the graph.

Associated Types of a Component

Thevalue typeof thecomponentindexis a component that has the following associated types.

value_type::valuetype
The value type of a component object is a vertex ID.

value_type::iterator

value type::constiterator
This iterator can be used to traverse all of the vertices in the component. This iterator
dereferences to give a vertex ID.

Member functions of a Component

The value type of the componentindex is a component that has the following member func-
tions.

iterator begin) const
Returns an iterator pointing to the first vertex in the component.

iterator end) const
Returns an iterator pointing past the end of the last vertex in the component.

13.7 Maximum-Flow Algorithms

13.7.1 edmundskarp_max flow

template <typename Graph typename B typename T typename R
typename detail::edgeapacityvalue<Graph, P, T, R>:type
edmundskarp_max_flow( Graph& g,

typename graphraits<Graph>::vertex.descriptor sr¢

typename graphtraits<Graph>::vertex descriptor sink

const bglnamedparams<P, T, R>& params= all defaults
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The push-relabelflow() function calculates the maximum flow of a network (see Chap-
ter 8). The maximum flow is the return value of the function. The function also calculates
the flow valuesf (u,v) V(u,v) € E, which are returned in the form of the residual capacity
r(u,v) = c(u,v) — f(u,v).

Where Defined

boost/graph/edmundg&arp_max flow.hpp

Parameters

IN: Graph& g
A directed graph. The graph’s type must be a modeVetexListGraph and Inci-
denceGraph. For each edgéu, v) in the graph, the reverse ed@e «) must also be
in the graph.

IN: vertexdescriptor src
The source vertex for the flow network graph.

IN: vertexdescriptor sink
The sink vertex for the flow network graph.

Named Parameters

IN: capacitymap(CapacityEdgeMap cap)
The edge-capacity property map. The type must be a model of a cohstéun-
PropertyMap. The key type of the map must be the graph’s edge descriptor type.
Default: get(edgecapacity, g)

OUT: residual.capacitymap(ResidualCapacityEdgeMap res)
The edge-residual-capacity property map. The type must be a model of a mutable
LvaluePropertyMap. The key type of the map must be the graph’s edge descriptor
type.
Default: get(edgeresidualcapacity, g)

IN: reverseedgemap(ReverseEdgeMap rev)
An edge property map that maps every edgev) in the graph to the reverse edge
(v,u). The map must be a model of constaméluePropertyMap. The key type of
the map must be the graph’s edge descriptor type.
Default: get(edgereverse, g)

UTIL: predecessamap(PredecessorMap_map)
The predecessor map differs from the usual predecessor map in that the value type
is the edgedescriptortype instead ofertexdescriptor The key type for this prede-
cessor map is stillertexdescriptor Default: aniterator_property map created from a
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std::vectorof edgedescriptorof sizenum_vertices(g)and using thé_map for the index
map.

UTIL: color_map(ColorMap cmap)
This map is used for internal bookkeeping. The tgwdorMap must be a model of
ReadWritePropertyMap. A vertex descriptor must be usable as the key type of the
map, and the value type of the map must be a mod€bafrvalue.
Default: an iterator_propertymap created from astd::vector of default color type of
sizenum_vertices(g)and using thé_mapfor the index map.

IN: vertexindex map(VertexindexMap indexmap)
This map is only needed if the default color map or default predecessor map is used.
Each vertex of the graph is mapped to an integer in the rémge|). The map must
be a model of constantvaluePropertyMap. The key type of the map must be the
graph’s vertex descriptor type.
Default: get(vertexindex, g)

Example

This reads in an example maximum-flow problem (a graph with edge capacities) from a file
in the DIMACS file format [.].

( “edmunds-karp-eg.cpp207) =

#include <boost config. hpp>

#include <iostream>

#include <string>

#include <boost graph/ edmundskarp_max_flow. hpp>
#include <boost graph/ adjacencylist. hpp>

#include <boost graph/ read dimacs hpp>

#include <boost graph/ graph_utility. hpp>

int main()

{

using namespace bogst

typedef adjacencyist_traits<vecS vecS directedS> Traits;
typedef adjacencyist<listS, vecS directed$S
property<vertex namet, std::string>,
property<edgecapacityt, long,
property<edgeresidual.capacityt, long,
property<edgereverset, Traits::edgedescriptor- > >
> Graph;

Graph g
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property map<Graph, edgecapacityt>::type
capacity = gel( edgecapacity Q);

property map<Graph, edgereverset>::type
rev = gef edgereverse Q);

property map<Graph, edgeresidualcapacityt>::type
residual.capacity = gef edgeresidual.capacity Q);

Traits::vertex descriptor s t;
read.dimacsmax_flow( g, capacity rev, s, t);

long flow = edmundskarp_max flow(g, s, t);

std::cout << "¢ The total flow! << std::endt
std:;cout << "s" << flow << std::endl << std::endl

std::cout << "c flow values’ << std::endt
graph_traits<Graph>::vertex_ iterator u_iter, u_end
graph_traits<Graph>::out_edgeiterator ei, e_end
for (tie( u_iter, u_end = verticegg); u.iter = u_end ++ u_iter)
for (tie(ei, eend = outedge¢* u.iter, g); ei!= eend ++ ei
if (capacitf* ei] > 0)
stdiicout << "f " << *ulter << << targef* ei, g) <<
<< (capacity* ei] — residualcapacity* ei]) << std::endt

return EXIT_SUCCESS
}

The output is

¢ The total flow:
s 13

=

low values:

C Y
f063
fO16
f024
f151
f100
f135
f244
f230
f200
f375
f320
f310
f454
f460

AR WWWMNMNNRPPPOOO



13.7. MAXIMUM-FLOW ALGORITHMS 209

— —h —h —h —h —h
N ~No o oo
g o b~ ~NN D
O OO wOu O

13.7.2 pushrelabelmax flow

template <typename Graph typename P typename T typename R-
typename detail::edgeapacityvalue<Graph, P, T, R>:type
push_relabel.max flow( Graph& g,

typename graphraits<Graph>::vertex descriptor sr¢

typename graphtraits<Graph>::vertex descriptor sink

const bglnamedparams<P, T, R>& paramg

The pushrelabelflow() function calculates the maximum flow of a network (see Chap-
ter 8). The maximum flow is the return value of the function. The function also calculates
the flow valuesf(u, v) V(u,v) € E, which are returned in the form of the residual capacity
r(u,v) = ¢(u,v) — f(u,v). Figurel3.7shows a network with edges labeled with flow and
capacity values.

Figure 13.7 A flow network that has edges labeled with flow and capacity values.

There are several special requirements on the input graph and property map parameters
for this algorithm. First, the directed gragh= (V, E) that represents the network must be
augmented to include the reverse edge for every edde ifihat is, the input graph should
be Gi, = (V,{E ET}). The ReverseEdgeMagrgumentrev must map each edge in the
original graph to its reverse edge, thatisv) — (v, u) V(u,v) € E. TheCapacityEdgeMap
argumentcap must map each edge i to a positive number, and each edgeAf to 0.
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Another words, the capacity map should satisfy these constrajnats:) > 0 andc(v,u) = 0
for each(u,v) € E.

Where Defined

boost/graph/pustrelabelmax flow.hpp

Parameters

IN: Graph& g
A directed graph. The graph’s type must be a modeVatexListGraph and Inci-

denceGraph. For each edgéu, v) in the graph, the reverse ed@e «) must also be
in the graph.

IN: vertexdescriptor src
The source vertex for the flow network graph.

IN: vertexdescriptor sink
The sink vertex for the flow network graph.

Named Parameters

IN: capacitymap(CapacityEdgeMap cap)
The edge capacity property map. The type must be a model of a cohstéun-
PropertyMap. The key type of the map must be the graph’s edge descriptor type.
Default: get(edgecapacity, g)

OUT: residual.capacitymap(ResidualCapacityEdgeMap res)
The edge residual capacity property map. The type must be a model of a mutable
LvaluePropertyMap. The key type of the map must be the graph’s edge descriptor
type.
Default: get(edgeresidualcapacity, g)

IN: reverseedgemap(ReverseEdgeMap rev)
An edge property map that maps every edgev) in the graph to the reverse edge
(v,u). The map must be a model of constaméluePropertyMap. The key type of
the map must be the graph’s edge descriptor type.
Default: get(edgereverse, g)

IN: vertexindex map(VertexlndexMap indexmap)
This maps each vertex to an integer in the raftgev) where N is the number of
vertices in the graph. The map must be a model of constaihtePropertyMap. The
key type of the map must be the graph’s vertex descriptor type.
Default: get(vertexindex, g)
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Example

This reads in an example maximum-flow problem (a graph with edge capacities) from a file
in the DIMACS file format [.].

( “push-relabel-eg.cpp™211) =
#include <iostream>
#include <string>
#include <boost graph/ push.relabel. max flow. hpp>
#include <boost graph/ adjacencylist. hpp>
#include <boost graph/ read dimacs hpp>
int main()
{
using namespace bogst
typedef adjacencyist_traits<vecS vecS directedS- Traits;
typedef adjacencyist<vecS vecS directed$S
property<vertex namet, std::string>,
property<edgecapacityt, long,
property<edgeresidual capacityt, long,
property<edgereverset, Traits::edgedescriptor> > >
> Graph;
Graph g

property map<Graph, edgecapacityt>::type
capacity = gef( edgecapacity g);

property map<Graph, edgeresidual capacityt>::type
residual capacity = gef edgeresidual capacity g);

property map<Graph, edgereverset>::type
rev = gef edgereverse Q);

Traits::vertex descriptor $ t;

read_dimacsmax flow( g, capacity rev, s, t);

long flow = pushrelabelmax flow(g, s, t);

std::cout << "c The total flow! << std::endt

std::cout << "s " << flow << std::endl << std::endt

std::cout << "¢ flow values’ << std::endt
graph_traits<Graph>::vertex_iterator u_iter, u_end
graph_traits<Graph>::out_edgeiterator ei, e_end

for (tie( u_iter, u_end = verticegg); u.iter = u_end ++ u_iter)

for (tie(ei, e_end) = outedge¢* u_iter, Qg); ei!= eend ++ e
if (capacitf* ei] > 0)
stdiicout << "f " << *ulter << " " << targef* ei, g) << " "

<< (capacity* ei] — residualcapacity* ei]) << std::endt
return EXIT_SUCCESS
¥
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The output is

¢ The total flow:

s 13
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Chapter 14

BGL Classes

14.1 Graph Classes
14.1.1 adjacencylist

adjacencylist<EdgeList VertexList Directed
VertexProperties EdgeProperties GraphProperties-

Theadjacencylist class implements the BGL graph interface using several different vari-
ations on the traditional adjacency-list graph structure.

An adjacency-list reprepresentation of a graph stores an out-edge sequence for each
vertex. For sparse graphs this saves space compared to an adjacency matrix because only
O(|V| + |E|) memory is required, compared @(|V|?). In addition, the out-edges for each
vertex can be accessed efficiently. Figdrel shows an adjacency-list representation of a
directed graph.

Figure 14.1: Adjacency-list representation of a directed graph.

The template parameters of thdjacencylist class provide many configuration options so

213
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that you can pick a version of the class that best meets your needs/ff&eList template
parameter of thadjacencylist class controls what kind of container is used to represent the
sequence of vertices (the rectangle in Figldel). TheEdgeListtemplate parameter controls
what kind of container is used to represent the sequence of out-edges for each vertex (the
ovals in Figurel4.1). The choices foEdgeListandVertexListaffect the memory consumption

of the graph and determine the efficiency for various graph operations. The possible choices
and tradeoffs are discussedsitét.1.1

Figure 14.2: Adjacency-list representation of an undirected graph.

The Directed template parameter controls whether the graph is directed, undirected, or
directed with access to both the in-edges and out-edges (which we call bidirectional). The
bidirectional graph takes up twice the space (per edge) of a directed graph because each
edge will appear in both an out-edge and in-edge list. Figdr@shows an adjacency-list
representation of an undirected graph, and Fidur& shows a bidirectional representation
of a directed graph.

Figure 14.3: Bidirectional adjacency-list representation of a directed graph.

Mmoo w >
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Example

The graph in the following example is used to represent a family tree.

( “family-tree-eg.cpp”215) =
#include <iostream>
#include <vector>
#include <string>
#include <boost graph/ adjacencylist. hpp>
#include <boost tuple/ tuple. hpp>
enum family { Jeanie Debbie Rick, John, Amanda Margaret, Benjamin, N };
int main()
{
using namespace bogst
const chat nam¢g] = { "Jeani€', "Debbi¢', "Rick", "John", "Amandd,
" Margaret', " Benjamin' };

adjacencylist<>  g( N);
add_edg€ Jeanie Debbig g);
add edg€ Jeanie Rick, 0);
add_edg€ Jeanie John, q);
add edg€ Debbie Amanda g);
add edgé€ Rick, Margaret, Q);
add edg€ John, Benjamin, g);

graph_traits<adjacencylist<> >:vertex iterator i, end

graph_traits<adjacencylist<> >:adjacencyiterator ai, a.end

property map<adjacencylist<>, vertexindext>:type
index_map = gef( vertexindex, @);

for(tie(i, end) = verticegq); i != end ++i) {

std::cout << namq gef( index-map, * i)];
tie(ai, a_end) = adjacentverticeg* i, Q);
if (ai == a_end)

std::cout << " has no childrer’;
else

std::cout << " is the parent of";
for ; ai!= aend ++ai) {

std::cout << namd gef( index map, * ai)];

if (boost::nextai) '= a.end

std::cout << ", ";

}

std::cout << std::endt

}
return EXIT _SUCCESS

}
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The output is

Jeanie is the parent of Debbje Rick, John
Debbie is the parent of Amanda

Rick is the parent of Margaret

John is the parent of Benjamin

Amanda has no children

Margaret has no children

Benjamin has no children

Template Parameters

EdgeList The selector for the container used to represent the edge-list for each of the
vertices.
Default: vecS

VertexList The selector for the container used to represent the vertex set of the graph.
Default: vecS

Directed A selector to choose whether the graph is directed, undirected, or directed

with bidirectional edge access (access to both out-edges and in-edges). The
options aralirected$ undirectedS andbidirectionalS
Default: directedS
VertexProperties Specify internal vertex property storage.
Default: no_property
EdgeProperties Specify internal edge property storage.
Default: no_property
GraphProperties Specify property graph property storage.
Default: no_property

Model Of

DefaultConstructible, CopyConstructible, Assignable, VertexListGraph, EdgeListGraph, Inci-
denceGraph, AdjacencyGraph, VertexMutableGraph, andedgeMutableGraph.

Also, adjacencylist models BidirectionalGraph when Directed=bidirectionalS or Di-
rected=undirectedSand it modelsvertexMutablePropertyGraph and EdgeMutableProperty-
Graph when the appropriate internal properties have been added.

Where Defined

boost/graph/adjacencyist.hpp

Associated Types

graph_traits<adjacencylist>::vertex_descriptor


http://www.sgi.com/tech/stl/DefaultConstructible.html
http://www.sgi.com/tech/stl/CopyConstructible.html
http://www.sgi.com/tech/stl/Assignable.html
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The type for the vertex descriptors associated withatljacencylist.
(Required byGraph.)

graph_traits<adjacencylist>::edge descriptor
The type for the edge descriptors associated withatlgcencylist.
(Required byGraph.)

graph_traits<adjacencylist>::vertex_iterator
The type for the iterators returned fsrticeg) .
(Required byertexListGraph.)

graph_traits<adjacencylist>::edge iterator
The type for the iterators returned bglge$) .
(Required byEdgeListGraph.)

graph_traits<adjacencylist>::out_edgeiterator
The type for the iterators returned byt edge$) .
(Required byincidenceGraph.)

graph_traits<adjacencylist>::in _edgeiterator
This type is available for undirected and bidirectional adjacency lists, but not for directed.
Thein_edgeiterator is the iterator type returned by tireedge$) function.
(Required byBidirectionalGraph.)

graph_traits<adjacencylist>::adjacencyiterator
The type for the iterators returned bgljacentverticeg) .
(Required byAdjacencyGraph.)

graph_traits<adjacencylist>::directed_category
Provides information about whether the graph is directickdtedtag) or undirected
(undirectedtag).
(Required byGraph.)

graph_traits<adjacencylist>::edge parallel_category
This describes whether the graph class allows the insertion of parallel edges (edges with
the same source and target). The two tagsboe_parallel_edgetag anddisallow parallel-
_edgetag. ThesetSandhashsetSvariants disallow parallel edges while the others allow
parallel edges.
(Required byGraph.)

graph_traits<adjacencylist>::traversal_category
The traversal category reflects which kinds of iterators are supported by the graph class.
For adjacency list, this includes vertex, edge, out-edge, and adjacency iterators. The
in-edge iterator is also available for undirected and bidirectional but not for directed
adjacency lists.

graph_traits<adjacencylist>::vertices size type
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The type used for dealing with the number of vertices in the graph.
(Required byvertexListGraph.)

graph_traits<adjacencylist>::edgessize type
The type used for dealing with the number of edges in the graph.
(Required byEdgeListGraph.)

graph_traits<adjacencylist>::degreesizetype
The type used for dealing with the number of out-edges of a vertex.
(Required byincidenceGraph.)

property map<adjacencylist, PropertyTag-::type

property map<adjacencylist, PropertyTag-::const type
The map type for vertex or edge properties in the graph. The property is specified by
the PropertyTagtemplate argument, and must match one of the properties specified in the
VertexPropertiesor EdgePropertiedor the graph.
(Required byPropertyGraph.)

Member Functions

adjacencylist( const GraphPropertie& p = GraphPropertie§))
Default constructor. It creates an empty graph object with zero vertices and zero edges.

(Required byDefaultConstructible.)

adjacencylist( verticessizetype n const GraphPropertie®& p = GraphPropertie§))
Creates a graph object withvertices and zero edges.

template <typename Edgelteratos
adjacencylist( Edgelterator first Edgelterator last
verticessizetype n edgessizetype m= 0,
const GraphPropertie& p = GraphPropertie§))
Creates a graph object withvertices andn edges, with the edges specified in the edge

list given by the rangéfirst,last). If n or m is zero, then the number of vertices or
edges is deduced from the edge list. The value type dfdigelteratormust be astd::pair,

where the type in the pair is an integer type. The integers will correspond to vertices, and
they must all fall in the range g0, n).

template <typename Edgelteratgr typename EdgePropertieslterator
adjacencylist( Edgelterator first Edgelterator last EdgePropertieslterator epter,
verticessizetype n edgessizetype m= 0,
const GraphPropertie®& p = GraphPropertie§))
Creates a graph object withvertices andn edges, with the edges specified in the edge
list given by the rangéfirst,last). If n or m is zero, then the number of vertices or
edges is deduced from the edge list. The value type dftgelteratormust be atd::pair,
where the type in the pair is an integer type. The integers will correspond to vertices, and


http://www.sgi.com/tech/stl/DefaultConstructible.html
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they must all fall in the range df),n). Thevaluetype of the epiter should match the
EdgePropertiesemplate parameter.

Nonmember Functions

std::pair<vertex.iterator, vertexiterator> verticeg const adjacencylist& g)
Returns an iterator range providing access to the vertex set of graph

(Required byvertexListGraph.)

std::pair<edgeiterator, edgeiterator> edgegconst adjacencylist& Q)
Returns an iterator range providing access to the edge set of graph

(Required byEdgeListGraph.)
std::pair<adjacencyiterator, adjacencyiterator>

adjacentverticeg vertex descriptor v const adjacencylist& g)
Returns an iterator range providing access to the vertices adjacent towartgraphg.

(Required byAdjacencyGraph.)
std::pair<out_edgeiterator, out edgeiterator>

out_edgesg vertex descriptor v const adjacencyist& g)
Returns an iterator range providing access to the out-edges of veriexraphg. If the

graph is undirected, this iterator range provides access to all edge incident oruwvertex
(Required byincidenceGraph.)

std::pair<in_edgeiterator, in_edgeiterator>
in_edge¢ vertex descriptor v const adjacencylist& g)
Returns an iterator range providing access to the in-edges of weitegraphg. This

operation is no available directedSwas specified for th®irectedtemplate parameter. It
is available forundirectedSandbidirectionalS
(Required byBidirectionalGraph.)

vertex descriptor sourcéedgedescriptor € const adjacencyist& g)
Returns the source vertex of edge

(Required byincidenceGraph.)

vertex descriptor targetedgedescriptor ¢ const adjacencyist& g)
Returns the target vertex of edge

(Required byincidenceGraph.)

degreesizetype
out_degre€ vertex descriptor y const adjacencyist& g)
Returns the number of edges leaving veriex

(Required byincidenceGraph.)

degreesizetype indegre€ vertexdescriptor y const adjacencyist& g)
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Returns the number of edges entering veiteXhis operation is only available fifidirec-
tionalS was specified for theirectedtemplate parameter.
(Required byBidirectionalGraph.)

verticessizetype numverticeg const adjacencylist& g)
Returns the number of vertices in the graph

(Required byertexListGraph.)

edgessizetype numedges const adjacencyist& Q)
Returns the number of edges in the grapliRequired byEdgeListGraph.)

vertex descriptor vertekverticessizetype n const adjacencylist& g)
Returns the:th vertex in the graph’s vertex list.

std::pair<edgedescriptor bool>
edg€ vertex descriptor y vertexdescriptor v const adjacencyist& g)
Returns the edge connecting verieto vertexv in graphg.

(Required byAdjacencyMatrix.)

std::pair<out_edgeiterator, out edgeiterator>

edgerangeg( vertex descriptor y vertexdescriptor v const adjacencylist& g)
Returns a pair of out-edge iterators that give the range for all the parallel edges from
to v. This function only works when thedgeListfor the adjacencylist is a container that
sorts the out-edges according to target vertex, and allows for parallel edgesuffibetS
selector chooses such a container.

std::pair<edgedescriptor bool>

add_edgé€ vertex descriptor y vertexdescriptor v adjacencylist& g)
Adds edge(u,v) to the graph and returns the edge descriptor for the new edge. For
graphs that do not allow parallel edges, if the edge is already in the graph, then a duplicate
will not be added and thiool flag will be false. Also, ifu andv are descriptors for the
same vertex (creating a self loop) and the graph is undirected, then the edge will not be
added and the flag will be false. When the flag is false, the edge descriptor is invalid and
any use of it is undefined.
The placement of the new edge in the out-edge list is in general unspecified, though or-
dering of the out-edge list can be accomplished through the choiedgetL ist
If the VertexList selector isvecS and if either vertex descriptaror v (which are integers)
has a value greater than the current number of vertices in the graph, the graph is enlarged
so that the number of verticesdgi::max(u,v) + 1
If the EdgeListselector isvecS then this operation will invalidate arut edgeiterator for
vertexu. This also applies if th&dgeListis a user-defined container that invalidates its
iterators whemush(container, x)is invoked (se€14.1.]). If the graph is also bidirectional,
then anyin_edgeiterator for v is also invalidated. If instead the graph is undirected, then
any out_edgeiterator for v is also invalidated. If instead the graph is directed, thedh-
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edgd) also invalidates angdgeiterator.
(Required byedgeMutableGraph.)

std::pair<edgedescriptor bool>
add_edgé€ vertex descriptor y vertexdescriptor v const EdgeProperties p,
adjacencylist& g)
Adds edg€(u, v) to the graph and attachesas the value of the edge’s internal property
storage. Also see the previoadd edgd) member function for more details.
(Required byEdgeMutablePropertyGraph.)

void removeedg€ vertex descriptor y vertexdescriptor v adjacencylist& g)
Removes the edge:, v) from the graph.
This operation causes any outstanding edge descriptors or iterators that point to edge
(u,v) to become invalid. In addition, if thEdgeListselector isvecS then this operation
will invalidate any iterators that point into the edge-list for verteand also for vertex
v in the undirected and bidirectional case. Also, for directed graphs this invalidates any
edgeiterator.
(Required byedgeMutableGraph.)

void removeedgd edgedescriptor ¢ adjacencylist& Q)
Removes the edgefrom the graph. This differs from themoveedge(u, v, gfunction in

the case of a multigraph. Thismoveedge(e, gfunction removes a single edge, whereas
theremoveedge(u, v, gfunction removes all edgés;, v).

This operation invalidates any outstanding edge descriptors and iterators for the same
edge pointed to by descripter In addition, this operation will invalidate any iterators
that point into the edge-list for therget(e, g) Also, for directed graphs this invalidates

any edgeiterator for the graph.

(Required byEdgeMutableGraph.)

void removeedgéd out_edgeiterator iter, adjacencylist& g)
This has the same effect esmoveedge(*iter, g) The difference is that this function has

constant time complexity in the case of directed graphs, wheesas/eedge(e, ghas
time complexityO(|E|/|V]).
(Required byMutablelncidenceGraph.)

template <typename Predicate

void removeout edgeif ( vertex descriptor y Predicate predicate adjacencylist& g)
Removes all out-edges of vertexrom the graph that satisfy theedicate That is, if the
predicate returns true when applied to an edge descriptor, then the edge is removed.
The effect on descriptor and iterator stability is the same as that of invekimtyeedgd)
on each of the removed edges.
(Required byMutablelncidenceGraph.)
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template <typename Predicate

void removein_edgeif ( vertex descriptor v Predicate predicate adjacencylist& g)
Removes all in-edges of vertexfrom the graph that satisfy theedicate That is, if the
predicate returns true when applied to an edge descriptor, then the edge is removed.
The effect on descriptor and iterator stability is the same as that of invekimtyeedgd)
on each of the removed edges.
(Required byMutableBidirectionalGraph.)

template <typename Predicate
void removeedgeif ( Predicate predicate adjacencylist& g)
Removes all edges from the graph that satisfy ghelicate That is, if the predicate

returns true when applied to an edge descriptor, then the edge is removed. The effect on
descriptor and iterator stability is the same as that of invokéngoveedgd) on each of

the removed edges.

(Required byMutableEdgeListGraph.)

vertex descriptor addvertex adjacencylist& g)
Adds a vertex to the graph and returns the vertex descriptor for the new vertex.

(Required byertexMutableGraph.)

vertex descriptor addvertex const VertexPropertie® p, adjacencylist& g)
Adds a vertex to the graph and returns the vertex descriptor for the new vertex.

(Required byertexMutablePropertyGraph.)

void clearverteX vertex descriptor y adjacencylist& g)
Removes all edges to and from vertex The vertex still appears in the vertex set of

the graph. The effect on descriptor and iterator stability is the same as that of invoking
removeedgd) for all of the edges that haweas the source or target.
(Required byEdgeMutableGraph.)

void clearout_edges$ vertex descriptor y adjacencylist& g)
Removes all edges from vertex The vertex still appears in the vertex set of the graph.

The effect on descriptor and iterator stability is the same as that of invekimyeedgd)
for all of the edges that haveas the source.
This operation is not applicable to undirected graphs ¢lese vertex()instead).

void clearin_edge$ vertex descriptor y adjacencylist& g)
Removes all edges to and from vertex The vertex still appears in the vertex set of

the graph. The effect on descriptor and iterator stability is the same as that of invoking
removeedgd) for all of the edges that have as the source or target. This operation is
only applicable to bidirectional graphs.

void removeverteX vertex descriptor y adjacencylist& Q)
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Remove vertex; from the vertex set of the graph. It is assumed that there are no edges
to or from vertexu when it is removed. One way to make sure of this is to invoke
clear.verte) beforehand.

If the VertexListtemplate parameter of tteljacencylist wasvecS then all vertex descrip-

tors, edge descriptors, and iterators for the graph are invalidated by this operation. The
builtin vertexindext property for each vertex is renumbered so that after the operation
the vertex indices still form a contiguous ran@e|V|). If you are using external prop-

erty storage based on the built-in vertex index, then the external storage will need to be
adjusted. Another option is to not use the built-in vertex index, and instead use a prop-
erty to add your own vertex index property. If you need to make frequent use of the
removeverteX) function, thelistS selector is a much better choice for tWertexListtem-

plate parameter.

(Required byertexMutableGraph.)

template <typename PropertyTag

property map<adjacencylist, PropertyTag-::type

gef PropertyTag adjacencylist& g)
Returns a mutable property map object for the vertex property specifi€tobgrty Tag
ThePropertyTagmust match one of the properties specified in the gragdiexProperties
template argument.
(Required byPropertyGraph.)

template <typename PropertyTag

property map<adjacencylist, PropertyTag>::const.type

gef PropertyTag const adjacencyist& g)
Returns a constant property map object for the vertex property specifietbpyrtyTag
ThePropertyTagmust match one of the properties specified in the gragdiexProperties
template argument.
(Required byPropertyGraph.)

template <typename PropertyTag typename X%

typename propertyraits<
typename propertynap<adjacencylist, PropertyTag-::consttype

>:value_type

gef( PropertyTag const adjacencylist& g, X x)
This returns the property value faywhich is either a vertex or edge descriptor.
(Required byPropertyGraph.)

template <typename PropertyTag typename X typename Value

void puf( PropertyTag const adjacencyist& g, X X, const Valu& value)
This sets the property value forto value x is either a vertex or edge descriptor.
Value must be convertible totypename propertyraits<propertymap<adjacencylist,
PropertyTag>::type>::value_type
(Required byPropertyGraph.)
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template <typename GraphProperties typename GraphProperties

typename propertywalue<GraphProperties GraphProperties-::type&

getproperty adjacencylist& g, GraphPropertiey;
Returns the property specified ®raphPropertiesthat is attached to the graph object
The propertyvaluetraits class is defined imoost/pending/property.hpp

template <typename GraphProperties typename GraphProperties

const typename propertyalue<GraphProperties GraphProperties-::type&

get property( const adjacencyist& g, GraphPropertie$;
Returns the property specified ®raphPropertiesthat is attached to the graph object
The propertyvaluetraits class is defined imoost/pending/property.hpp

Choosing theEdgelistand VertexList

This section focuses on how to decide which version ofdtiiacencylist class to use in
different situations. Thedjacencylist is like a Swiss-army knife in that it can be configured in
many ways. The parameters that we will focus on in this sectioEdgeListandVertexList,
which control the underlying data structures that will be used to represent the graph. The
choice ofEdgeListandVertexListaffects the time complexity of many of the graph operations
and the space complexity of the graph object.

BGL uses containers from tHeTL such asstd::vector std::list, andstd::setto represent
the set of vertices and the adjacency structure (out-edges and in-edges) of the graph. Several
selector types are used to specify the choice of containé&dgeListandVertexList

e vecSselectsstd::vector

listS selectsstd::list.

slistSselectsstd::slist!

setSselectsstd::set

hash setSselectsstd::hash set?

Choosing theVertexListtype

The VertexList parameter determines what kind of container will be used to represent the
vertex set, or two-dimensional structure of the graph. The container must 1®egleince

or RandomAccessContainer. In generallistSis a good choice if you need to add and remove
vertices quickly. The price for this is extra space overhead compared to cheesihg

!Provided the implementation of STL that you use implemstds:slist
2provided that the implementation of STL that you use implemgttishash set The SGI STL is an exam-
ple of an implementation that does.


http://www.sgi.com/tech/stl
http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/List.html
http://www.sgi.com/tech/stl/set.html
http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/List.html
http://www.sgi.com/tech/stl/Slist.html
http://www.sgi.com/tech/stl/set.html
http://www.sgi.com/tech/stl/hash_set.html
http://www.sgi.com/tech/stl/Sequence.html
http://www.sgi.com/tech/stl/RandomAccessContainer.html
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Space Complexity Thestd::list has a higher per-vertex space overhead thasttheectog
storing two more pointers per vertex.

Time Complexity The choice ofvertexList affects the time complexity of the following
operations.

add.verteX)
This operation is amortized constant time for betitS and listS (implemented with

pushback) ). However, when th&ertexList type isvecS the time for this operation is
occasionally large because the vector will be reallocated and the whole graph will be
copied.

removevertex)
This operation is constant time fostS andO(|V| + |E|) for vecS The large time com-
plexity for vecSis because the vertex descriptors (which in this case are indices that
correspond to the vertices’ place in the vertex list) must be adjusted in the out-edges for
the whole graph.

vertex)
This operation is constant time feecSandO(|V|) for listS.

Choosing theEdgelListtype

TheEdgeListparameter determines what kind of container will be used to store the out-edges
(and possibly in-edges) for each vertex in the graph. The containers used for edge lists must
satisfy the requirements for eithBequence or AssociativeContainer.

One of the first things to consider when choosingEdgeListis whether you wantdja-
cencylist to enforce the absence of parallel edges in the graph (that is, enforce that the graph
does not become a multigraph). If you want this enforced, then usster hash setSse-
lectors. If you want to represent a multigraph, or know that you will not be inserting parallel
edges into the graph, then choose one of8bguence types:vecs listS, or slistS In addition,
you will want to take into account the differences in time and space complexity for the various
graph operations. We u$g| for the total number of vertices in the graph dd for the total
number of edges. Operations not discussed here are constant time.

Space Complexity The selection of th&dgeListaffects the amount of space overhead per
edge in the graph object. In the order of least space to most space, the selectersare
slistS listS, hash setS andsetS

Time Complexity In the following description of the time complexity for various opera-

tions, we use% inside of the “big-O” notation to express the length of an out-edge list.


http://www.sgi.com/tech/stl/Sequence.html
http://www.sgi.com/tech/stl/AssociativeContainer.html
http://www.sgi.com/tech/stl/Sequence.html
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Strictly speaking, this is not accurate beca%emerely gives the average number of edges
per vertex in a graph. The worst-case number of out-edges for a velrféx (gnless it is a

multigraph). For sparse grapﬂ% is typically much smaller thafi/| and can be considered
a constant.

add edg€)
When theEdgelListis a UniqueAssociativeContainer like std::set the absence of parallel

edges is enforced when an edge is added. The extra lookup involved has time complexity
O(log }EI) The EdgelList types that modeSequence do not perform this check, and
therefore,add edgd) is amortized constant time. This means that if you do not care
whether the graph has parallel edges, or know that the input to the graph does not
contain them, then it is better to use the sequence-tizdgsl ist Theadd edgd) for the
sequence-basedfidgelListis implemented withpushfront() or pushback) . However,

for std::list andstd::slist, this operation will typically be faster than wittd::vectorwhich
occasionally reallocates and copies all elements.

removeedgg)
For sequence-basédigeListtypes, this operation is implemented wittd::removeif () ,

which means the average time}%. For set-base&dgelListtypes this is implemented
with theeras€) member function, which has average tilmg %

edgd)

The time complexity for this operation (9(}%) when theEdgelListtype is aSequence

and it isO(log( }51 )) when theEdgelListtype is anAssociativeContainer.

clear_verteX)
For directed graphs with sequence-badedbeList types the time complexity is
O( ), while for associative-container-basedgeListtypes the operation is faster,

with time complexityO(|V'|log H”;I) For undirected graphs this operatlorﬂs‘w?)
O(¢ log(1£1)).

removevertex)
The time complexity for this operation 8(|V'| + |E|) regardless of thEdgeListtype.

out_edgeiterator::operator++()
This operation is constant time for all tiselgeListtypes. However, there is a significant
constant-factor time difference between the various types, which is important because
this operation is the workhorse of most graph algorithms. The speed of this operation in
order of fastest to slowestigcs slistS listS, setS hash setS


http://www.sgi.com/tech/stl/UniqueAssociativeContainer.html
http://www.sgi.com/tech/stl/Sequence.html
http://www.sgi.com/tech/stl/Sequence.html
http://www.sgi.com/tech/stl/AssociativeContainer.html
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in_edgeiterator::operator-+()
This operation is constant time and exhibits a similar speed ordering as the
out edgeiterator with respect to th&dgeListselection.

vertex iterator::operatort+()
This operation is constant time and fast (same speed as incrementing a pointer). The
selection ofOneD does not affect the speed of this operation.

edgeiterator::operator++()
This operation is constant time and exhibits a similar speed ordering as the
out_edgeiterator with respect to theedgelList selection. Traversing through the whole
edge seti®(|V| + |E|).

adjacencyiterator::operator++()
This operation is constant time and exhibits a similar speed ordering as the
out_edgeiterator with respect to th&dgeListselection.

Iterator and Descriptor Stability/Invalidation

Some care must be taken when changing the structure of a graph (via adding or removing
edges). Depending on the typeaafiacencylist and on the operation, some of the iterator or
descriptor objects that point into the graph may become invalid. For example, the following
code will result in undefined (bad) behavior:

I/l VertexList=vecS

typedef adjacencyist<listS, vecS> Graph;
Graph G(N);

/l Fill in the graph...

/I Attempt to remove all the vertices. Wrong!

graph_traits<Graph>::vertex_iterator vi, vi_end

for (tie(vi, vi_end) = verticeg G); vi != vi_end ++ vi)
removevertex* vi, G);

/I Another attempt to remove all the vertices. This is still wrong!
graph_traits<Graph>::vertex_iterator vi, vi_end next
tie(vi, vi_end) = verticeg G);

for (next = vi; vi != viend vi = nex) {
++next
removevertex* vi, G);

}

The reason this is a problem is that we are invokiagovevertex) , which when used
with an adjacencylist whereVertexList=vec$ invalidates all iterators and descriptors for the
graph (such asi andvi_end), thereby causing trouble in subsequent iterations of the loop.
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If we use a different kind ofidjacencylist, whereVertexList=list§ then the iterators are not
invalidated by callingemovevertexunless the iterator is pointing to the actual vertex that was
removed. The following code demonstrates this.

/I VertexList=listS

typedef adjacencyist<IistS, listS> Graph;
Graph G(N);

/I Fill in the graph...

/I Attempt to remove all the vertices. Wrong!

graph_traits<Graph>::vertex_iterator vi, vi_end

for (tie(vi, vi_end) = vertice G); Vi != vi_end ++ vi)
removevertex* vi, G);

/I Remove all the vertices. This is OK.
graph_traits<Graph>::vertex_iterator vi, vi_end next
tie(vi, vi_end = verticeg G);

for (next = vi; vi I= viend vi = next) {
++next,
removevertex* vi, G);

}

The safest and most efficient way to remove multiple edges fromdgieencylist is to use
theremoveedgeif () function.

The stability issue also affects vertex and edge descriptors. For example, suppose you
use vector of vertex descriptors to keep track of the parents (or predecessors) of vertices in
a shortest-paths tree (seeample/dijkstra-example.cpp You create the parent vector with a
call to dijkstra_shortestpathg) , and then remove a vertex from the graph. Subsequently you
try to use the parent vector, but since all vertex descriptors have become invalid, the result is
incorrect.

std::vectok Vertex> pareni num_verticeg G));

std::vectok Vertex> distancé num_verticeg G));

dijkstra_shortestpath G, s, distancemap(& distancg 0]).
predecessamap& parenf 0]));

/I The following is a bad idea! It invalidates vertex descriptors

/I in the parent vector.

removeverteX's, G);

/I The following will produce incorrect results

for(tie(vi, vend = verticeg G); vi !I= vend ++ vi)
std::cout << p[* vi] << " is the parent of" << *vi << std::end}

Note that in this discussion iterator and descriptor invalidation is concerned with the inval-
idation of iterators and descriptors that ace directly affectedby the operation. For example,
performingremoveedge(u, v, gwill always invalidate any edge descriptor far, v) or edge
iterator pointing tqu, v), regardless of the kind afjacencylist. In this discussion of iterator
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and descriptor invalidation, we are only concerned with the effeatrabveedge(u, v, gon
edge descriptors and iterators that point to other edges{noj).

In general, if you want your vertex and edge descriptors to be stable (never invalidated)
then usdistS or setSfor the VertexListand EdgeListtemplate parameters afljacencylist. If
you are not as concerned about descriptor and iterator stability, and are more concerned about
memory consumption and graph traversal speedyesgfor the VertexListand/orEdgeList
template parameters.

Directed and Undirected Adjacency Lists

Theadjacencylist class can be used to represent both directed and undirected graphs, depend-
ing on the argument passed to thieectedtemplate parameter. SelectidigectedSor bidirec-

tionalS choose a directed graph, wheremslirectedSselects the representation for an undi-
rected graph. Sel2.1.1for a description of the difference between directed and undirected
graphs in BGL. ThebidirectealSselector specifies that the graph will provide thedge$)

function as well as theut edge$) function. This imposes twice as much space overhead per
edge, which is whyn_edge$) is optional.

Internal Properties

Properties can be attached to the vertices or edges adjatencylist graph via the property
interface. The template paramet&kstexPropertiesand EdgePropertiesof the adjacencylist
class are meant to be filled by the property class, which is declared as follows.

template <typename PropertyTag typename T
typename NextProperty no_property>
struct property

The PropertyTagis a type that simply identifies or gives a unique name to the property.
There are several predefined tags ($E22.3, and it is easy to add more. For convenience,
BGL also provides predefined objects of the tag types (in this case, enum values) for use as
arguments to functions that expect property tag objects (suadijaxgncylist's gef) property
map functions.

The T parameter oproperty specifies the type of the property values. TNextProperty
parameter allowpropertytypes to be nested, so that an arbitrary number of properties can be
attached to the same graph.

The following code shows how a vertex and edge property type can be assembled and
used to create a graph type. We have attached a distance property with valuegloatyel
a name property with values of typ#l::string to the vertices of the graph. We have attached
a weight property with values of tygat to the edges of the graph.

typedef property.distancet, float,
property<namet, std:string> > VertexProperties
typedef propertyweightt, float> EdgeProperties
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typedef adjacencyist<mapS vecS undirected$
VertexProperties EdgeProperties Graph;
Graph g num_verticeg; // construct a graph object

The property values can then be read from and written to using property maps3$%ee
for a description of how to obtain property maps from a graph, and read all of CHajftar
how to use property maps.

Vertex Index Property

If the VertexList of the graph isvecS then the graph has a built-in vertex index property ac-
cessed via theertexindext property. The indices fall in the rang |V|) and are contiguous.

When a vertex is removed, the indices are adjusted so that they retain these properties. Some
care must be taken when using these indices to access external property storage, since the user
must remember to update the external storage to match the new vertex indices.

Custom Edge Properties

Creating your own property types and properties is easy; just define a tag class for your
new property. Here we define a tag class for capacity and flow properties, which we will be
attaching to the edges on the graph.

enum edgecapacityt { edgecapacity };

enum edgeflow_t { edgeflow };

namespace boosf
BOOSTINSTALL _PROPERTY edge flow);
BOOST.INSTALL _PROPERTY edge capacity);

}

Now you can use your new property tag in the definition of properties just as you would
one of the built-in tags.

typedef property.capacityt, int> Cap
typedef propertyflow_t, int, Cap> EdgeProperties
typedef adjacencyist<vecS vecS no_property EdgeProperties Graph;

Just as before, the property maps for these properties can be obtained from the graph via
theget) function.

property map<Graph, edgecapacityt>::type
capacity = gef{ edgecapacity G);

propertymap<Graph, edgeflow_t>::type
flow = gef edgeflow, G);

The fileedgeproperty.cppshows the complete source code for this example.
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Custom Vertex Properties

Attaching your own properties to vertices is just as easy as attaching properties to edges. Here
we want to attach people’s first names to the vertices in the graph.

enum vertexfirst_namet { vertexfirst_name };
namespace boosf
BOOST.INSTALL _PROPERTY vertex first_name);

}

Now we can use the new tag in theopertyclass, in the assembly of a graph type. The
following code shows creating the graph type, and then creating the graph object. We fill in
the edges and also assign names to the vertices. The edges will represent “who owes who.”

typedef property.vertexfirst_ namet, std::string> FirstNameProperty
typedef adjacencyist<vecS vecS directed$S
FirstNameProperty>- MyGraphType

typedef paikint, int> Pair;

Pair edgearray[ 11] = { Pair(0, 1), Pair(O0, 2), Pair(0, 3),
Pair( 0, 4), Pair(2,0), Pair(3,0),
Pair( 2, 4), Pair(3, 1), Pair(3,4),
Pair( 4, 0), Pair(4,1) };

MyGraphType G 5);
for (inti =0; i < 11; ++1i)
add edg€ G, edgearray[ i]. first, edgearray|i]. second;

property map<MyGraphType vertexfirst namet>::type
name = gef vertexfirst_name G);

put( name 0, "Jeremy);

put(name 1, "Rich");

put( name 2, "Andrew');

put( name 3, " Jeff");

namg 4] = "Kinis"; // you can use operator[] too

who_oweswho( edge¢ G). first, edge$G). second G);

The who.oweswho() function written for this example was implemented in a generic
style. The input is templated so we do not know the actual graph type. To find out the type
of the property map for our first name property, we need to useethex property map traits
class. Theonsttypeis used because the graph parameter is const. Once we have the property
map type, we can deduce the value type of the property usingrdpertytraits class. In this
example, we know that the property’s value type willdoe:string, but written in this generic
fashion thewvho.oweswho() function could work with other property value types.
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template <typename Edgelter typename Grapb
void whaoweswho( Edgelter first Edgelter last const Grapt& G)
{
Il Access the propety acessor type for this graph
typedef typename verteproperty map<Graph,
first_lnamet>::const.type NamePA
NamePA name= getvertexproperty map( G, first_namet());
typedef typename propertyaits<NamePA>::value_type NameType
NameType srcname targ_name

while (first 1= last) {
src_.name = gef nhame sourcd* first, G));
targ_name = gef( name target* first, G));
cout << src_name << " owes"

<< targ_-name << " some money << endl
++first;

¥

}

The output is

Jeremy owes Rich some money
Jeremy owes Andrew some money
Jeremy owes Jeff some money
Jeremy owes Kinis some money
Andrew owes Jeremy some money
Andrew owes Kinis some money
Jeff owes Jeremy some money
Jeff owes Rich some money

Jeff owes Kinis some money

Kinis owes Jeremy some money
Kinis owes Rich some money

The complete source code to this example is in therfikgior _property map.cpp

Customizing the Adjacency List Storage

Theadjacencylist class is implemented using two kinds of containers. One type of container
holds all the vertices in the graph, and another type holds the out-edge list (and potentially
in-edge list) for each vertex. BGL provides selector classes that allow the user to choose
between several of the containers from the STL. It is also possible to use your own container
types. When customizing theertexList, you need to define a container generator. When
customizing theedgeListyou will need to define a container generator and the parallel edge
traits. The filecontainer.gen.cpphas an example of how to use custom storage types.
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Container Generator

The adjacencylist class uses a traits class callehtainergento map theEdgelListand Ver-

texList selectors to the actual container types used for the graph storage. The default version
of the traits class follows, along with an example of how the class is specialized fistghe
selector.

namespace boos{
template <typename Selector typename ValueType
struct containergen { };
template <typename ValueType
struct containergen<listS, ValueType> {
typedef std::liskValueType> type
h
}

To use some other container of your choice, define a selector class and then specialize the
container.genfor your selector.

struct customcontainerS{ }; // your selector
namespace boos{

Il the specialization for your selector

template <typename ValueType

struct containergen<customcontainer§ ValueType> {
typedef custonctontainer<ValueType- type
h
}

There may also be situations when you want to use a container that has more template param-
eters than justalueType For instance, you may want to supply the allocator type. One way

to do this is to hard-code in the extra parameters within the specializatioommtfiner.gen
However, if you want more flexibility, then you can add a template parameter to the selec-
tor class. In the following code we show how to create a selector that lets you specify the
allocator to be used with thatd::list.

template <typename Allocator struct list with_allocatorS {};
namespace boosf

template <typename Allo¢ typename ValueType

struct containergenclist_with_allocatorS<Alloc>, ValueType-

{
typedef typename Alloc::template rebirtd/alueType>::other Allocator;
typedef std::liskValueType Allocator> type
I
}

/I now you can define a graph using std:list and a specific allocator
typedef adjacencyist< list_with_allocatorS< std::allocator<int> >,
vecS directedS> MyGraph;
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Parallel Edge Traits

In addition to specializing the&ontainergen class, one must also specialize tharal-
lel_edgetraits class to specify whether the container type allows parallel edges (angkis a
quence) or if the container does not allow parallel edges (and i8ssociativeContainer).

template <typename StorageSelector

struct paralleLedgetraits { };

template <> struct paralleLedgetraits<vecS> {
typedef allowparallel_edgetag type

I3

template <> struct paralleLedgetraits<setS> {
typedef disallowparallel_edgetag type

¥
/...
Push and Erase for the Edge-List Container

One must also tell thadjacencylist how edges can be efficiently added and removed from the
edge-list container. This is accomplished by overloadingtis&) anderas€) functions for
the custom container type. Thash) function must return an iterator pointing to the newly
inserted edge and a Boolean flag saying whether the edge was inserted. If you spkmified
_parallel_edgetag for the parallel_edgetraits thenpush() should always insert the edge and
returntrue. If you specifieddisallow parallel_edgetag for the parallel_edgetraits thenpush()
must return false and not insert the edge if the same edge is already in the container, and the
iterator returned should point to the already existing edge.

The following defaulpush() anderasd) functions are already supplied for all STL con-
tainer types. The family gfushdispatc{) anderasedispatci{) function overloads handles
the various ways that inserting and erasing can be done with standard containers.

template <typename Containgr typename T
std::pair<typename Container::iteratqr bool>
push( Container& ¢, const T& V)

{

return push.dispatci{ ¢, v, container.category c));

}

template <typename Container typename T
void eras¢ Container& ¢, const T& X)

{

erasedispatch{ ¢, x, containercategory c));

}

14.1.2 adjacencymatrix

adjacencymatrix<Directed VertexProperty EdgeProperty GraphProperty-
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Theadjacencymatrix class implements the BGL graph interface using the traditional adja-
cency matrix storage format. For a graph witfj vertices, V| x |V'| matrix is used, where
each elementi;; is a boolean flag that says whether there is an edge from vieidesertex;.
Figurel4.4shows the adjacency-matrix representation of a graph.

e ° ABCDEF
Alo o o0 0 o0

l B/lo o100 1

o, e c101ooo
D|/0 0 0O 1 0

E/[0 001 00

° F[1 0 00 00

Figure 14.4: Adjacency-matrix representation of a directed graph.

The advantage of this matrix format over the adjacency list is that edge insertion and
removal is constant time. There are several disadvantages. The first is that the amount of
memory used i€)(|V|?) instead ofO(|V| + |E|) (where|E| is the number of edges). The
second is that operations that traverse all the out-edges of each vertex (such as breadth-first
search) runirO(|V| x |V|) time instead oD (|V'| 4+ | E|) time for the adjacency list. In short,
it is better to use thadjacencymatrix for dense graphs (whef&| ~ |V'|?) and it is better to
use theadjacencylist for sparse graphs (whef#| is much smaller thati/ |?).

The adjacencymatrix class extends the traditional data structure by allowing objects to
be attached to vertices and edges via the the property template paramete§8.63a@ean
explanation of how to use internal properties.

In the case of an undirected graph, tgacencymatrix class does not use a fylf | x |V|
matrix but instead uses a lower triangle (the diagonal and below) since the matrix for an
undirected graph is symmetric. This reduces the storagé’tox |V'|)/2. Figurel4.5shows
an adjacency-matrix representation of an undirected graph.

Example
Creating the graph of Figurk4.4

enum{ A, B, C, D, E, F, N };
const chat name = " ABCDEF";

typedef boost::adjacencynatrix<boost::directedS- Graph;
Graph o N);

add edgé€ B, C, 0);

add edgé¢ B, F, 0);
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mTm oo w >

Figure 14.5: Adjacency-matrix representation of an undirected graph.

add edgé€ C, A, 0);
addedgé C, C, Q);
add edgé D, E, q);
add edg€ E, D, q);
addedgd F, A, 0);

std::cout << " vertex set:";
boost::print.vertice¢ g, name;
std::cout << std::endt

std::cout << "edge set’";
boost::print edge$g, name);
std::cout << std::endt

std::cout << "out-edges:" << std::endi
boost::print.graph( g, name;
std::cout << std::endt

The output is
vertex set: ABCDEF

edge set(B,C) (B,F) (C,A) (C,C)(D,E) (ED)(F,A

out—edges:
A——>
B-——CF
C-——>AC
D-—E
E-—>D
F-—A

Creating the graph of Figuret.5

enum{ A, B, C, D, E, F, N };
const chat name = " ABCDEF";
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typedef boost::adjacencynatrix<boost::undirectedS UGraph;

UGraph ug( N);

add edg€ B,
add edg€ B,
add._edg€ C,
add edgé€ D,
add edg€ F,

C
F,
A,
E,
A,

ug);
ug);
ug);
ug);
ug);

std::cout << " vertex set:";

boost::print.verticeg ug,
std::cout << std::endt

name;

std::cout << "edge set:";
boost::print edge$ ug,

std::cout << std::endt

std::cout << "incident edges:" << std::endt

boost::print. graph( ug,

std::cout << std::endt

The output is

name;

name;

vertex set: ABCDEF

edge set:(C,A) (C,B) (E,D) ( F,A) (F,B)

incident edges:

A<——>CF
B<——CF
C<——>AB
D<——>E
E<——>D
F<—>AB

Where Defined

boost/graph/adjacencynatrix.hpp

237
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Template Parameters

Directed A selector to choose whether the graph is directed or undirected. The op-

tions aredirectedSandundirectedS
Default: directedS

VertexProperty — specifies internal vertex property storage.
Default: no_property

EdgeProperty  specifies internal edge property storage.
Default: no_property

GraphProperty  specifies property storage for the graph object.
Default: no_property

Model Of

VertexListGraph, EdgeListGraph, IncidenceGraph, AdjacencyGraph, AdjacencyMatrix, Ver-
texMutablePropertyGraph, andEdgeMutablePropertyGraph

Type Requirements

Property value types must IefaultConstructible andCopyConstructible.

Associates Types

graph_traits<adjacencymatrix>::vertex descriptor
The type for the vertex descriptors associated withetljecencymatrix.
(Required byGraph.)

graph_traits<adjacencymatrix>::edge descriptor
The type for the edge descriptors associated withatlgcencymatrix.
(Required byGraph.)

graph_traits<adjacencymatrix>::vertex_ iterator
The type for the iterators returned fsrtices) .
(Required byvertexListGraph.)

graph_traits<adjacencymatrix>::edge iterator
The type for the iterators returned bgige$) .
(Required byEdgeListGraph.)

graph_traits<adjacencymatrix>::out_edgeiterator
The type for the iterators returned byt edge$) .
(Required byincidenceGraph.)

graph_traits<adjacencymatrix>::adjacencyiterator
The type for the iterators returned bgljacentverticeg) .
(Required byAdjacencyGraph.)
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graph_traits<adjacencymatrix>::directed category
Provides information about whether the graph is directiitkdtedtag) or undirected
(undirectedtag).
(Required byGraph.)

graph_traits<adjacencymatrix>::edge parallel_category
An adjacency matrix does not allow the insertion of parallel edges, so this type is always
disallow_parallel_edgetag.
(Required byGraph.)

graph_traits<adjacencymatrix>::vertices size type
The type used for dealing with the number of vertices in the graph.
(Required byvertexListGraph.)

graph_traits<adjacencymatrix>::edgessizetype
The type used for dealing with the number of edges in the graph.
(Required byEdgeListGraph.)

graph_traits<adjacencymatrix>::degreesizetype
The type used for dealing with the number of out-edges of a vertex.
(Required byincidenceGraph.)

property map<adjacencymatrix, PropertyTag>::type

property map<adjacencymatrix, PropertyTag>::consttype
The map type for vertex or edge properties in the graph. The property is specified by
the PropertyTagtemplate argument, and must match one of the properties specified in the
VertexPropertyor EdgePropertyfor the graph.
(Required byPropertyGraph.)

Member Functions

adjacencymatrix( verticessizetype n const GraphPropert§ p = GraphProperty))
Creates a graph object withvertices and zero edges.

template <typename Edgelteratos
adjacencymatrix( Edgelterator first Edgelterator last verticessizetype n
const GraphPropert§& p = GraphProperty))
Creates a graph object withvertices with the edges specified in the edge list given by
the rangd first,last). The value type of th&dgelteratormust be astd::pair, where the
type in the pair is an integer type. The integers will correspond to vertices, and they must
all fall in the range of0, n).

template <typename Edgelteratqr typename EdgePropertylterator
adjacencymatrix( Edgelterator first Edgelterator last EdgePropertylterator epter,
verticessizetype n const GraphPropert§ p = GraphProperty))
Creates a graph object withvertices, with the edges specified in the edge list given
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by the rang€[first,last) and with edge properties specified in the edge property list
specified byep.iter. The value type of th&dgelteratormust be astd::pair, where the type

in the pair is an integer type. The integers will correspond to vertices, and they must all
fall in the range of0, n). Thevalue typeof theep.iter should beEdgeProperty

Nonmember Functions

std::pair<vertexiterator, vertexiterator> verticeg const adjacencymatrix& g)
Returns an iterator range providing access to the vertex set of graph

(Required byvertexListGraph.)

std::pair<edgeiterator, edgeiterator> edgegconst adjacencymatrix& g)
Returns an iterator range providing access to the edge set of graph

(Required byEdgeListGraph.)
std::pair<adjacencyiterator, adjacencyiterator>

adjacentverticeg vertex descriptor v const adjacencymatrix& g)
Returns an iterator range providing access to the vertices adjacent towartgraphg.

(Required byAdjacencyGraph.)
std::pair<out_edgeiterator, out edgeiterator>

out_edges$ vertex descriptor y const adjacencymatrix& g)
Returns an iterator range providing access to the out-edges of veiriggraphg. If the

graph is undirected, this iterator range provides access to all edge incident onwertex
(Required byincidenceGraph.)

vertex descriptor sourcéedgedescriptor e const adjacencymatrix& g)
Returns the source vertex of edge

(Required byincidenceGraph.)

vertex descriptor targeftedgedescriptor € const adjacencymatrix& g)
Returns the target vertex of edge

(Required byincidenceGraph.)

degreesizetype outdegred vertex descriptor y const adjacencymatrix& g)
Returns the number of edges leaving veniex

(Required byincidenceGraph.)

verticessizetype numverticeg const adjacencymatrix& g)
Returns the number of vertices in the graph

(Required byertexListGraph.)
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edgessizetype numedge$ const adjacencymatrix& Q)
Returns the number of edges in the gragph
(Required byedgeListGraph.)

vertex descriptor vertekverticessizetype n const adjacencymatrix& g)
Returns theath vertex in the graph’s vertex list.

std::pair<edgedescriptor bool>

edg€ vertex descriptor y vertexdescriptor v const adjacencymatrix& g)
Returns the edge connecting verieto vertexv in graphg.
(Required byAdjacencyMatrix.)

std::pair<edgedescriptor bool>

add_edgé€ vertex descriptor y vertexdescriptor v adjacencymatrix& g)
Adds edge(u, v) to the graph and returns the edge descriptor for the new edge. If the
edge is already in the graph then a duplicate will not be added and the Boolean flag will
be false.
This operation does not invalidate any of the graph’s iterators or descriptors.
(Required byEdgeMutableGraph.)

std::pair<edgedescriptor bool>
add edg¢€ vertex descriptor y vertexdescriptor v const EdgeProper& p,
adjacencymatrix& g)
Adds edg€(u, v) to the graph and attachesas the value of the edge’s internal property
storage. See the previoaddedgd) member function for more details.

void removeedgd vertex descriptor y vertexdescriptor v adjacencymatrix& g)
Removes the edge:, v) from the graph.
(Required byEdgeMutableGraph.)

void removeedgd edgedescriptor ¢ adjacencymatrix& g)
Removes the edgefrom the graph. This is equivalent to callirgmoveedge(source(e, g),
target(e, 9), 9)
(Required byedgeMutableGraph.)

void clearvertex vertexdescriptor y adjacencymatrix& g)
Removes all edges to and from vertex The vertex still appears in the vertex set of

the graph. The affect on descriptor and iterator stability is the same as that of invoking
removeedgd) for all of the edges that haveas the source or target.
(Required byEdgeMutableGraph.)
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template <typename Property
property map<adjacencymatrix, Property>::type
gel( Property, adjacencymatrix& g)

template <typename Property

property map<adjacencymatrix, Property>::const.type

gef Property, const adjacencymatrix& g)
Returns the property map object for the vertex property specifieeldperty The Prop-
erty must match one of the properties specified in the grapérgexPropertytemplate
argument.
(Required byPropertyGraph.)

template <typename Property typename X
typename propertyraits<
typenamae propertynap<adjacencymatrix, Property>::consttype
>:value_type
gel( Property, const adjacencymatrix& g, X X)
This returns the property value faywhich is either a vertex or edge descriptor.

(Required byPropertyGraph.)

template <typename Property typename X typename Valug

void

put( Property, const adjacencymatrix& g, X X, const Valu& value)
This sets the property value farto value. x is either a vertex or edge descriptsalue
must be convertible to the value type of the property map specified [Brtipertytag.
(Required byPropertyGraph.)

template <typename GraphProperties typename GraphProperty

typename propertwalue<GraphProperties GraphProperty>::type&

get property( adjacencymatrix& g, GraphProperty;
Returns the property specified I®raphPropertythat is attached to the graph objert
Thepropertyvaluetraits class is defined imoost/pending/property.hpp

template <typename GraphProperties typename GraphProperty

const typename propertyalue<GraphProperties GraphProperty>::type&

get property const adjacencymatrix& g, GraphProperty;
Returns the property specified I®raphPropertythat is attached to the graph objert
Thepropertyvaluetraits class is defined imoost/pending/property.hpp

14.2 Auxiliary Classes
14.2.1 graph.traits

graph_traits<Graph>

The graph_traits class provides the mechanism for accessingadeociated typesf a
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graph type, as defined by the various BGL graph conceptg{sed. When you wish to use
one of the associated types of a graph, instantiatgriye traits template with the graph type
and access the appropriate typedef. For example, to obtaiuetie® descriptortype for some
graph, do the following:

template <typename Grapbk void my.graph_ algorithm( Graph& g)

/I Instantiate graphtraits with the graph type.
typedef boost::graphraits<Graph> Traits;

I/l Access the associated type.

typedef typename Traits::vertedescriptor Vertex
...

}

The unspecialized (default) version of theph_traits class template assumes that the
graph type provides nested typedefs for all of the associated types. This version is defined
here.

namespace boos{

template <typename Grapb- struct graphtraits {

typedef typename Graph::vertedescriptor vertexdescriptor
typedef typename Graph::edgdescriptor edgedescriptor
typedef typename Graph::adjacendterator adjacencyiterator;
...
}.

} /I namespace boost

Alternatively, graph_traits can be specialized on the graph type. For example, the following
code specializegraph_traits for the Stanford GraphBas@raph struct. The complete BGL
wrapper interface for SGB graph’s islieost/graph/stanforcgraph.hpp

namespace boos{
template <> struct graphtraits<Graph* > {
...
h
}

If the graph type is a class template, then gingph_traits class can be partially specialized.
This means there are still “free” template parameters. The following is the partial specializa-
tion of graph traits for the parameterized LEDSRAPH type. The complete BGL wrapper
interface for the LEDAGRAPH is in boost/graph/ledagraph.hpp

namespace boos{
template <typename vtype typename etype
struct graphtraits< GRAPH<vtype etype> > {
...
h
¥
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Any particular graph concept will not require that all of the associated types be defined.
When implementing a graph class that fullfils one or more graph concepts, for associated
types that are not required by the concepts, it is all right tovagkas the type (when using
nested typedefs inside the graph class), or to leave the typedef outgrfihetraits special-
ization for the graph class.

Category Tags
Thedirectedcategoryshould be a typedef for one of the following two types.

namespace boosf
struct directedtag { };
struct undirectedtag { };

}
The edgeparallel_categoryshould be a typedef for one of the following two types.

namespace boosf
struct allow_parallel_edgetag {};
struct disallowparallel_edgetag {};

}

The traversalcategoryshould be a typedef for one of the following classes, or a type that
inherits from one of these classes.

namespace boosf

struct incidencegraph_tag { };

struct adjacencygraph-tag { };

struct bidirectionalgraph_tag :
public virtual incidencegraph_tag { };

struct vertexlist_graph_tag :
public virtual incidencegraph tag,
public virtual adjacencygraph.tag { };

struct edgelist_graph_tag { };

struct vertexand edgelist_graph_tag :
public virtual edgelist_graph_tag,
public virtual vertexlist_graph.tag { };

struct adjacencymatrix_tag { };

}

Template Parameters

Graph The graph type, a model &fraph

Where Defined

boost/graph/graphtraits.hpp
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Members

graph_traits::vertex descriptor
The type for the vertex descriptors associated withGleph.

graph_traits::edge descriptor
The type for the edge descriptors associated witiGitagh.

graph_traits::vertex iterator
The type for the iterators returned fgrtices) .

graph_traits::edgeiterator
The type for the iterators returned bglge$) .

graph_traits::out_edgeiterator
The type for the iterators returned byt edge$) .

graph_traits::adjacencyiterator
The type for the iterators returned hgljacentverticeg) .

graph.traits::directed.category
Reports whether the graph is directed or undirected.

graph_traits::edge parallel_category
Reports whether the graph allows parallel edges to be inserted.

graph_traits::traversal category
Reports what kind of traversal patterns are provided by the graph.

graph_traits::vertices size type
The unsigned integer type used for dealing with the number of vertices in the graph.

graph_traits::edgessizetype
The unsigned integer type used for dealing with the number of edges in the graph.

graph_traits::degreesizetype
The unsigned integer type used for dealing with the number out edges for each vertex.

14.2.2 adjacencylist_traits

adjacencylist_traits<EdgeList VertexList Directed>

This class provides an alternate method for accessing some of the associated types of the
adjacencylist class. The main reason for this class is that sometimes one would like to create
graph properties whose values are vertex or edge descriptors. If you try deapheraits for
this you will run into a problem with mutually recursive types. To get around this problem,
the adjacencylist traits class is provided, which gives the user access to the vertex and edge
descriptor types without requiring the user to provide the property types for the graph.
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template <typename EdgeList typename VertexList typename Directed
struct adjacencylist_traits {

typedef... vertexdescriptor
typedef... edgedescriptor
typedef... directedcategory
typedef... edgeparallel_category

I

Where Defined

boost/graph/adjacencyist.hpp

Template Parameters

EdgeList The selector type for the edge container implementation.
Default: vecS

VertexList The selector type for the vertex container implementation.
Default: vecS

Directed The selector type whether the graph is directed or undirected.

Default; directedS

Model Of

DefaultConstructible andAssignable

Members
adjacencylist_traits::vertex descriptor
The type for the objects used to identify vertices in the graph.

adjacencylist_traits::edge descriptor
The type for the objects used to identify edges in the graph.

adjacencylist_traits::directed category
This says whether the graph is undirectesdfrectedtag) or directed directedtag).

adjacencylist_traits::edge parallel_category

This says whether the graph allows parallel edges to be insetted_parallel_edgetag)
or if it automatically removes parallel edgetis@llow parallel_edgetag).

See Also

adjacencylist
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14.2.3 adjacencymatrix_traits

adjacencymatrix_traits<Directed>

This class provides an alternate method for accessing some of the associated types of
the adjacencymatrix class. The main reason for this class is that sometimes one would like
to create graph properties whose values are vertex or edge descriptors. If you try to use
graph_traits for this, you will run into a problem with mutually recursive types. To get around
this problem, theadjacencymatrix_traits class is provided, which gives the user access to the
vertex and edge descriptor types without requiring the user to provide the property types for
the graph.

template <typename Directed
struct adjacencymatrix_traits {

typedef... vertexdescriptor

typedef... edgedescriptor

typedef... directedcategory

typedef... edgeparallel_category
b

Where Defined

boost/graph/adjacencynatrix.hpp

Template Parameters

Directed Specifies whether the graph is directed or undirected.
Default: directedS

Model Of

DefaultConstructible andAssignable

Members

adjacencymatrix_traits::vertex descriptor
The type for the objects used to identify vertices in the graph.

adjacencymatrix_traits::edge descriptor
The type for the objects used to identify edges in the graph.

adjacencymatrix_traits::directed category
This says whether the graph is undirecteddfrectedtag) or directed directedtag).
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adjacencymatrix_traits::edge parallel_category
An adjacency matrix does not allow the insertion of parallel edges, so this tylisais
low_parallel_edgetag.

See Also

adjacencymatrix

14.2.4 propertymap

property map<Graph, PropertyTag>

A traits class for accessing the type of an internal property map for a graph. A specializa-
tion of this traits class is required of types that modelRh&pertyGraph concept.

Example

The following example creates a graph with an internal property for vertex names, and then
accesses the vertex name property map type usingréipertymaptraits class. The property
map object is obtained from the graph usinggk®) function.

( “property-map-traits-eg.cpp248) =
#include <string>
#include <boost graph/ adjacencylist. hpp>
int main()
{
using namespace bogst
typedef adjacencyist<listS, listS, directed$S
property<vertexnamet, std::string> > graph.t;
graph.t g;
graph_traits<graph_t>::vertex_descriptor u= add.vertex g);
property map<graph.t, vertexnamet>:type
namemap = gef vertexnameg g);
namemag u] = " Jo€';
std::cout << namemad u] << std::endt
return EXIT_SUCCESS

}
The output is

Joe

Where Defined

boost/graph/properties.hpp
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Template Parameters

Graph The graph type, which must be a modeRobpertyGraph.
PropertyTag The tag class to specify which property.

Model Of

None.

Public Base Classes

None.

Associates Types

property map<Graph, PropertyTag>::type
The type for a mutable property map that accessing the internal property specified by the
PropertyTag

property map<Graph, PropertyTag-::const.type
The type for a constant property map that accessing the internal property specified by the
PropertyTag

Member Functions

None.

Nonmember Functions

None.

14.2.5 property

property<PropertyTag T, NextProperty-

This class can be used with thdjacencylist and theadjacencymatrix classes to specify
what kind of properties should be attached to the vertices and edges of the graph, and to the
graph object itself.
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Template Parameters

PropertyTag A type to identify (give a unique name to) the property. There are several
predefined tags, and it is easy to add more. For convenience, BGL also
provides predefined objects of the tag types (in this case enum values) for
use as arguments to functions that expect property tag objects (such as
adjacencylist’s gef) property map functions.

T This type specifies the type of the property values.

NextProperty  This parameter allowsropertytypes to be nested, so that an arbitrary num-
ber of properties can be attached to the same graph.

Default: no_property

Where Defined

boost/pending/property.hpp

Property Tags
The following property tags are definedbnost/graph/properties.hpp

namespace boosf
enum edgenamet { edgename };
enum edgeweightt { edgeweight };
enum edgeindext { edgeindex };
enum edgecapacityt { edgecapacity };
enum edgeresidualcapacityt { edgeresidualcapacity };
enum edgereverset { edgereverse };
enum vertexnamet { vertexname };
enum vertexdistancet { vertexdistance };
enum vertexindext { vertexindex };
enum vertexcolor_t { vertexcolor };
enum vertexdegreet { vertexdegree};
enum vertexout degreet { vertexout degree};
enum vertexin_degreet { vertexin_degree};
enum vertexdiscovertime_t { vertexdiscovertime };
enum vertexfinish_time_t { vertexfinish_time };
enum graphnamet { graph.name };

BOOST.INSTALL _PROPERTY vertex index);
BOOST.INSTALL _PROPERTY edge index);
...
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14.3 Graph Adaptors
14.3.1 edgelist

edgelist<Edgelterator ValueType DiffType>

Theedgelist class is an adaptor that turns a pair of edge iterators into a class that models
EdgelListGraph. Thevalue.type of the edge iterator must bestd::pair (or at least havdirst
andsecondmembers). Thérst_typeandsecondtypeof the pair must be the same and they will
be used for the graphigrtexdescriptor The ValueTypeandDiffType template parameters are
only needed if your compiler does not support partial specialization. Otherwise they default
to the correct types.

Example

See§5.3for an example of usingdgelist.

Template Parameters

Edgelterator a model ofinputiterator who's value typemust be a pair of vertex descrip-

tors.
ValueType is thevalue_typeof the Edgelterator.

Default: std::iterator_traits<Edgelterator>::value_type
DiffType is thedifferencetypeof the Edgelterator

Default: std::iterator_traits<Edgelterator>::difference_type

Model Of

EdgeListGraph

Where Defined

boost/graph/edgédist.hpp

Associated Types

graph_traits<edgelist>::vertex _descriptor
This is the type for vertex descriptors associated withetliglist. This will be the same
type as thdirst_typeof thestd::pair that is the value type of thedgelterator.

graph_traits<edgelist>::edge descriptor
The type for the edge descriptors associated witlethyelist.
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graph_traits<edgelist>::edge.iterator
The type for the iterators returned bylige$) . The iterator category of thedgeiterator
will be the same as that of thggelterator.

Member Functions

edgelist( Edgelterator first Edgelterator lasy
Creates a graph object withvertices and with the edges specified in the edge list given

by the rangéfirst, last).
Nonmember Functions

std::pair<edgeiterator, edgeiterator> edgeg const edgdist& Q)
Returns an iterator range providing access to the edge set of graph

vertex descriptor sourcéedgedescriptor e const edgdist& g)
Returns the source vertex of edge

vertex descriptor targeft edgedescriptor € const edgdist& g)
Returns the target vertex of edge

14.3.2 reversegraph

reversegraph<BidirectionalGraph>

Thereversegraph adaptor flips the in-edges and out-edges BidirectionalGraph, effec-
tively transposing the graph. The construction ofréa@rsegraphis constant time, providing
a highly efficient way to obtain a transposed-view of a graph.

Example

The example is fronexamples/reversgraph.cpp

typedef adjacencyist<vecS vecS bidirectionalS> Graph;

Graph @ 5);

add edg€ 0, 2, G);
add edgé€ 1, 1, G);
addedgé€ 1, 3, G);
add edg€ 1, 4, G);
add edg€ 2, 1, G);
add edg€ 2, 3, G);
add edg€ 2, 4, G);
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add edg€ 3, 1, G);
add edg€ 3, 4, G);
add edg€ 4, 0, G);
addedgé 4, 1, G);

std::cout << "original graph:" << std::endk
print_graph( G, ge{ vertexindex, G));

std::cout << std::endl << "reversed grapH: << std::endt
print_graph( makereversegraph( G), gef vertexindex, G));
The output is

original graph:

0 —> 2
1-——>134
2 —>1314
3—-—>114
4 ——> 01

reversed graph:

0-—> 14
1-—>1234
2 —>0
3—>12
4 ——> 123

Template Parameters

BidirGraph The graph type to be adapted.

Model Of

BidirectionalGraph and optionallyertexListGraph andPropertyGraph

Where Defined

boost/graph/reversgraph.hpp

Associated Types

graph_traits<reversegraph>::vertex descriptor

The type for the vertex descriptors associated withéfiersegraph.

graph_traits<reversegraph>::edge descriptor
The type for the edge descriptors associated withdhersegraph.

253
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graph_traits<reversegraph>::vertex iterator
The type for the iterators returned fsrtices) .

graph_traits<reversegraph>::edge iterator
The type for the iterators returned bgige$) .

graph_traits<reversegraph>::out_edgeiterator
The type for the iterators returned byt edge$) .

graph_traits<reversegraph>::adjacencyiterator
The type for the iterators returned bgljacentverticeg) .

graph_traits<reversegraph>::directed category
Provides information about whether the graph is directickdtedtag) or undirected
(undirectedtag).

graph_traits<reversegraph>::edge parallel_category
This describes whether the graph class allows the insertion of parallel edges (edges with
the same source and target). The two tags aev_parallel_edgetag and disallow -
parallel_edgetag. ThesetSandhashsetSvariants disallow parallel edges while the others
allow parallel edges.

graph_traits<reversegraph>::vertices size type
The type used for dealing with the number of vertices in the graph.

graph_traits<reversegraph>::edge sizetype
The type used for dealing with the number of edges in the graph.

graph_traits<reversegraph>::degreesizetype
The type used for dealing with the number of edges incident to a vertex in the graph.

property map<reversegraph, Property>::type

property map<reversegraph, Property>::consttype
The property map type for vertex or edge properties in the graph. The specific property
is specified by theProperty template argument, and must match one of the properties
specified in the/ertexPropertyor EdgePropertyfor the graph.

Member Functions

reversegraph( BidirectionalGraph& g)
Constructor. Creates a reversed (transposed) view of the graph

Nonmember Functions

template <class BidirectionalGraph-
reversegraph<BidirectionalGraph> make reversegraph( BidirectionalGraph& g)
Helper function for creating eeversegraph.
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std::pair<vertexiterator, vertexiterator> verticeg const reversegraph& g)
Returns an iterator range providing access to the vertex set of graph

std::pair<out_edgeiterator, out edgeiterator>
out_edge$ vertex descriptor vy const reversegraph& g)
Returns an iterator range providing access to the out-edges of varnigraphg. These

out-edges correspond to the in-edges of the adapted graph.

std::pair<in_edgeiterator, in_edgeiterator>

in_edge$ vertex descriptor v const reversggraph& g)
Returns an iterator range providing access to the in-edges of weitegraphg. These
in-edges correspond to the out-edges of the adapted graph.

std::pair<adjacencyiterator, adjacency_iterator>
adjacentverticeg vertex descriptor v const reversegraph& g)
Returns an iterator range providing access to the adjacent vertices of wertgsaphg.

vertex descriptor sourcéedgedescriptor € const reversegraph& g)
Returns the source vertex of edge

vertex descriptor targeft edgedescriptor e const reversggraph& g)
Returns the target vertex of edge

degreesizetype outdegred vertex descriptor y const reversegraph& g)
Returns the number of edges leaving verex

degreesizetype indegreé vertexdescriptor y const reversegraph& g)
Returns the number of edges entering vetrteXhis operation is only available fifidirec-

tionalS was specified for thBirectedtemplate parameter.

verticessizetype numverticeg const reversegraph& g)
Returns the number of vertices in the graph

vertex descriptor vertekverticessizetype n const reversegraph& g)
Returns the:th vertex in the graph’s vertex list.

std::pair<edgedescriptor bool>
edg€ vertex descriptor y vertexdescriptor y const reversggraph& g)
Returns the edge connecting verteto vertexv in graphg.
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template <class Property
property map<reversegraph, Property>::itype
gel( Property, reversegraph& g)

template <class Property
property map<reversegraph, Tag>:.consttype
gef Property, const reversegraph& g)
Returns the property map object for the vertex property specifieeldperty The Prop-

erty must match one of the properties specified in the grapérgexPropertytemplate
argument.

template <class Property class x>
typename propertyraits<property map<reversegraph, Property>::const type>::value_type
gel Property, const reversegraph& g, X X)

This returns the property value faywhich is either a vertex or an edge descriptor.

template <class Property class X class Value-

void

put( Property, const reversegraph& g, X X, const Value value
This sets the property value forto value x is either a vertex or edge descriptor.
Value must be convertible totypename propertyraits<propertymap<reversegraph,
Property>::type>::value_type

template <class GraphProperties class GraphProperty

typename propertyalue<GraphProperties GraphProperty>::type&

getproperty reversegraph& g, GraphProperty;
This returns the property specified ByaphPropertythat is attached to the graph object
g. Thepropertyvaluetraits class is defined imoost/pending/property.hpp

template <class GraphProperties class GraphProperty
const typename propertyalue<GraphProperties GraphProperty-::type&
get property( const reversegraph& g, GraphProperty;
This returns the property specified ByaphPropertythat is attached to the graph object

g. Thepropertyvaluetraits class is defined imoost/pending/property.hpp

14.3.3 filtered_graph

filtered_graph<Graph, EdgePredicate VertexPredicate-

Thefiltered_graph class template is an adaptor that creates a filtered view of a graph. The
edge and vertex predicate function objects determine which vertices and edges of the original
graph will show up in the filtered graph. Any vertex for which the vertex predicate returns
false and any edge for which the edge predicate returns false will appear to be removed from
the graph. Thdiltered_graph class does not create a copy of the original graph, but uses a
reference to the original graph. The lifetime of the original graph must extend past any use
of the filtered graph. The filtered graph does not change the structure of the original graph,
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though vertex and edge properties of the original graph can be changed through property maps
of the filtered graph.

Example

The following function object is an example of a predicate that filters out edges whose weight
is not positive.

template <typename EdgeWeightMap
struct positiveedgeweight {
positiveedgeweight) { }
positive edgeweight EdgeWeightMap weight : m_weigh{ weigh { }
template <typename Edge
bool operatof)( const Edgé& €) const {
return 0 < gei m_weight e);

EdgeWeightMap mweight
b

This example uses thitered graph with the abovepositiveedgeweight predicate to create a
filtered view of a small graph. The edges, C), (C, E), and(E, C) all have zero weight
and therefore do not appear in the filtered graph.

typedef adjacencyist<vecS vecS directed$S
no_property, property<edgeweightt, int> > Graph;
typedef propertymap<Graph, edgeweightt>::type EdgeWeightMap

enum{ A, B, C, D, E, N };
const chat name = "ABCDE";

Graph g N);

add edg€ A, B, 2, 0g);
add edgé A, C, 0, 0g);
addedgé C, D, 1, 0);
addedgé C, E, 0, g);
add edgé D, B, 3, Q);
addedgd E, C, 0, 0g);

positive edgeweight<EdgeWeightMap- filter( ge edgeweight g));
filtered_graph<Graph, positive edgeweight<EdgeWeightMap- >
fg(g, filter);

std::cout << "filtered edge set’;
print_edge¢fg, name);

std::cout << "filtered out-edges: << std::endt
print_graph( fg, name);

The output is
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filtered edge set( A, B) ( C, D) ( D, B)
filtered out—edges:

A——>B
B —>
C-—>D
D-—B
E—

Where Defined

boost/graph/filteredgraph.hpp

Template Parameters

Graph The graph type to be adapted.

EdgePredicate A function object that selects which edges from the original graph will
appear in the filtered graph. The function object must meuedicate.
The argument type for the function object must be the edge descriptor type
of the graph. Also, the predicate mustbefaultConstructible.

VertexPredicate A function object that selects which vertices from the original graph will
appear in the filtered graph. The function object must meuedicate.
The argument type for the function object must be the vertex descriptor
type of the graph. Also, the predicate mustagaultConstructible.
Default: keepall

Model Of

The concepts thdiitered_graph<Graph,EP,VP> models depends on tl&aph type. If Graph
models any one ofertexListGraph,EdgeListGraph, IncidenceGraph, BidirectionalGraph, Ad-
jacencyGraph, andPropertyGraph then so doefiltered_graph<Graph,EP,VP>.

Associated Types

graph_traits<filtered_graph>::vertex_descriptor
The type for the vertex descriptors associated witHfitteeed graph.
(Required byGraph.)

graph_traits<filtered_graph>::edge descriptor
The type for the edge descriptors associated witHiltkesd_graph.
(Required byGraph.)

graph_traits<filtered_graph>::vertex iterator
The type for the iterators returned bygrticeg) . The vertex iterator is the same type as


http://www.sgi.com/tech/stl/Predicate.html
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the vertex iterator of the adapted graph.
(Required byvertexListGraph.)

graph_traits<filtered_graph>::edge. iterator
The type for the iterators returned byge$) . This iterator model$ultiPassInputltera-
tor.
(Required byEdgeListGraph.)

graph_traits<filtered_graph>::out_edgeiterator
The type for the iterators returned byt edge$) . This iterator model$ultiPassInputlt-
erator.
(Required byincidenceGraph.)

graph.traits<filtered_graph>::in _edgeiterator
The type for the iterators returned yedge$) . This iterator model#ultiPassinputiter-
ator.
(Required byBidirectionalGraph.)

graph_traits<filtered_graph>::adjacency iterator
The type for the iterators returned hyjacentverticeg) . This iterator models the same
concept as the out-edge iterator.
(Required byAdjacencyGraph.)

graph_traits<filtered_graph>::directed category
Provides information about whether the graph is directickdtedtag) or undirected
(undirectedtag), which will be the same as the adapted graph.
(Required byGraph.)

graph_traits<filtered_graph>::edge parallel_category
This describes whether the graph class allows the insertion of parallel edges (edges with
the same source and target). This will be the same as the adapted graph type.
(Required byGraph.)

graph_traits<filtered_graph>::vertices size type
The type used for dealing with the number of vertices in the graph.
(Required byvertexListGraph.)

graph_traits<filtered_graph>::edgessizetype
The type used for dealing with the number of edges in the graph.
(Required byEdgeListGraph.)

graph_traits<filtered_graph>::degreesizetype
The type used for dealing with the number of out-edges of a vertex.
(Required byincidenceGraph.)
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property map<filtered_graph, PropertyTag-::type

property map<filtered_graph, PropertyTag-::const type
The map type for vertex or edge properties in the graph. The property map types for the
filtered graph are the same as those for the original graph.
(Required byPropertyGraph.)

Member Functions

filtered_graph( Graph& g, EdgePredicate ep
Construct a filtered-edge view of the gragphased on the predicate.

filtered_graph( Graph& g, EdgePredicate ep VertexPredicate vp
Construct a filtered view of the grapghbased on the edge predicaieand the vertex

predicatevp.

Nonmember Functions

The functionality supported bijitered graph depends on the underlyir@raph type. For ex-
ample, if theGraphtype does not suppairt_edge$) , then neither doe#itered graph. Here we
list all the possible functions théittered graph could support, given &raph type that mod-
els VertexListGraph, EdgelListGraph, IncidenceGraph, BidirectionalGraph, AdjacencyGraph,
PropertyGraph, andBidirectionalGraph.

std::pair<vertex.iterator, vertexiterator> verticeg const filteredgraph& g)
Returns an iterator range providing access to the vertex set of graph

(Required byvertexListGraph.)

std::pair<edgeiterator, edgeiterator> edgegconst filteredgraph& g)
Returns an iterator range providing access to the edge set of graph

(Required byEdgeListGraph.)
std::pair<adjacencyiterator, adjacencyiterator>

adjacentverticeg vertex descriptor v const filteredgraph& g)
Returns an iterator range providing access to the vertices adjacent towartgraphg.

(Required byAdjacencyGraph.)
std::pair<out_edgeiterator, out edgeiterator>

out_edgesg vertex descriptor v const filteredgraph& g)
Returns an iterator range providing access to the out-edges of veriexraphg. If the

graph is undirected, this iterator range provides access to all edge incident oruwvertex
(Required byincidenceGraph.)



14.3. GRAPH ADAPTORS 261

vertex descriptor sourcéedgedescriptor e const filteredgraph& g)
Returns the source vertex of edge

(Required byincidenceGraph.)

vertex descriptor targef edgedescriptor ¢ const filteredgraph& g)
Returns the target vertex of edge

(Required byincidenceGraph.)

degreesizetype outdegre€ vertexdescriptor y const filteredgraph& g)
Returns the number of edges leaving veniex

(Required byincidenceGraph.)

verticessizetype numverticeg const filteredgraph& g)
Returns the number of vertices in the underlying graph

(Required byvertexListGraph.)

edgessizetype numedges const filteredgraph& g)
Returns the number of edges in the grapliRequired byEdgeListGraph.)

template <typename Property
property map<filtered_graph, Property>::type
gef Property, filtered graph& g)

template <typename Property

property map<filtered_graph, Property>::const.type

gel Property, const filteredgraph& g)
Returns the property map object for the vertex property specifieeldperty The Prop-
erty must match one of the properties specified in the grapé’sexPropertytemplate
argument.
(Required byPropertyGraph.)

template <typename Property typename X

typename propertyraits<
typenamae propertynap<filtered_graph, Property>::consttype

>:value_type

gef Property, const filteredgraph& g, X x)
This returns the property value faywhich is either a vertex or an edge descriptor.
(Required byPropertyGraph.)

template <typename Property typename X typename Value
void
put( Property, const filteredgraph& g, X x, const Valu& value)
This sets the property value fetto value. x is either a vertex or an edge descriptalue

must be convertible to



262 CHAPTER 14. BGL CLASSES

property traits<
property map<filtered_graph, Property>::type
>::value_type

(Required byPropertyGraph.)

14.3.4 SGBGraph Pointer

Graph*

The BGL headeboost/graph/stanfordgraph.hppadapts a Stanford GraphBase (SGB)|[
Graph pointer into a BGL-compatible graph. Note that a graph adaptor class is not used;
SGB’s Graph* itself becomes a model of several BGL graph concepts (see the following
“Model Of” section) through the definition of several function overloads.

Make sure to apply the PROTOTYPES change file to your installation of SGB so that the
SGB headers conform to ANSI C (and hence will compile with a C++ compiler).

Thanks to Andreas Scherer for help with the implementation and documentation of this
SGBGraph* adaptor.

Example

Seeexample/milesspan.cpp example/girth.cpp andexample/rogeicomponents.cpp

Template Parameters

None.

Model Of

VertexListGraph, IncidenceGraph, AdjacencyGraph, andPropertyGraph. The set of property
tags that can be used with the SGB graph is described in “Vertex and Edge Properties” later
in this section.

Where Defined

boost/graph/stanforcgraph.hpp

Associated Types

graph_traits<Graph* >::vertex_descriptor
The type for the vertex descriptors associated with the &e&ddh*. We use the type
Vertex* as the vertex descriptor (whevertexis a typedef irgb_graph.h.
(Required byGraph.)
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graph_traits<Graph* >::edge descriptor
The type for the edge descriptors associated with the S§@Bh*. The type used is the
boost::sghedgetype. In addition to supporting all the required operations of a BGL edge
descriptor, théoost::sghedgeclass has this constructor:
sghedge::sgbedge(Arc* arc, Vertex* source)
(Required byincidenceGraph.)

graph_traits<Graph* >::vertex_iterator
The type for the iterators returned bgrticeg) . This iterator modelRandomAccesslt-
erator.
(Required byvertexListGraph.)

graph_traits<Graph* >::out_edgeiterator
The type for the iterators returned loyt edge$) . If EdgeList=vecSthen this iterator
modelsMultiPassInputliterator.
(Required byincidenceGraph.)

graph_traits<Graph* >::adjacencyiterator
The type for the iterators returned bygjacentverticeg) . This iterator models the same
concept as the out-edge iterator.
(Required byAdjacencyGraph.)

graph_traits<Graph* >::directed category
Provides information about whether the graph is directed or undirected. AnGs&aB*
is directed so this type iirectedtag.
(Required byGraph.)

graph_traits<Graph* >::edge parallel_category
This describes whether the graph class allows the insertion of parallel edges (edges with
the same source and target). The SGBph* does not prevent addition of parallel edges,
so this type isallow_parallel_edgetag.
(Required byGraph.)

graph_traits<Graph* >::traversal category
An SGB Graph* provides traversal of the vertex set, out edges, and adjacent vertices.
Therefore the traversal category tag is defined as follows:
struct sghtraversaltag :
public virtual vertexlist_graph_tag,
public virtual incidencegraph_tag,
public virtual adjacencygraph.tag { };
(Required byGraph.)

graph_traits<Graph* >::vertices size type
The type used for dealing with the number of vertices in the graph.
(Required byvertexListGraph.)


http://www.sgi.com/tech/stl/RandomAccessIterator.html
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graph_traits<Graph* >::edgessizetype
The type used for dealing with the number of edges in the graph.
(Required byEdgeListGraph.)

graph._traits<Graph* >::degreesizetype
The type used for dealing with the number of out-edges of a vertex.
(Required byincidenceGraph.)

property map<Graph*, PropertyTag>::type

property map<Graph*, PropertyTag>::.const.type
The map type for vertex or edge properties in the graph. The property is specified by the
PropertyTagtemplate argument, and must be one of the tags described in the “Vertex and
Edge Properties” section below.
(Required byPropertyGraph.)

Member Functions

None.

Nonmember Functions

std::pair<vertexiterator, vertexiterator> verticeg const Graph )
Returns an iterator range providing access to the vertex set of graph

(Required byvertexListGraph.)

std::pair<edgeiterator, edgeiterator> edgeg§const Graph Q)
Returns an iterator range providing access to the edge set of graph

(Required byEdgeListGraph.)
std::pair<adjacencyiterator, adjacencyiterator>

adjacentverticeg vertex descriptor v const Graph Q)
Returns an iterator range providing access to the vertices adjacent towartgraphg.

(Required byAdjacencyGraph.)

std::pair<out_edgeiterator, out edgeiterator>
out_edge$ vertex descriptor v const Graph )
Returns an iterator range providing access to the out-edges of veiriggraphg. If the

graph is undirected, this iterator range provides access to all edge incident onwertex
(Required byincidenceGraph.)

vertex descriptor sourcéedgedescriptor € const Graphf Q)
Returns the source vertex of edge

(Required byincidenceGraph.)
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vertex descriptor targef edgedescriptor ¢ const Graph @)
Returns the target vertex of edge

(Required byincidenceGraph.)

degreesizetype outdegred vertex descriptor y const Grapht @)
Returns the number of edges leaving verex

(Required byincidenceGraph.)

verticessizetype numverticeg const Graptf @)
Returns the number of vertices in the graph

(Required byertexListGraph.)

edgessizetype numedges$ const Graph @)
Returns the number of edges in the gragph

(Required byeEdgeListGraph.)

vertex descriptor vertekverticessizetype n const Graph )
Returns the:uth vertex in the graph’s vertex list.

template <typename PropertyTag
property map<Graph*, PropertyTag>::type
gef PropertyTag Graph* @)

template <typename PropertyTag

property map<Graph*, PropertyTag>::const.type

gel PropertyTag const Graph @)
Returns the property map object for the vertex property specifigttdpertyTag
(Required byPropertyGraph.)

template <typename PropertyTag typename X%

typename propertyraits<
typename propertynap<Graph*, PropertyTag-::const type

>::value_type

gef PropertyTag const Graph g, X X)
This returns the property value faywhich is either a vertex or an edge descriptor.
(Required byPropertyGraph.)

template <typename PropertyTag typename X typename Valug-

void

put( PropertyTag const Graph g, X X, const Valu& value)
This sets the property value fetto value. x is either a vertex or an edge descriptalue
must be convertible to the value type of the property corresponding rtipertyTag
(Required byPropertyGraph.)
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Vertex and Edge Properties

The SGBVertexandArc structures provide “utility” fields for storing extra information. We
provide BGL wrappers that provide access to these fields through property maps. In addition,
vertex index and edge length maps are provided. A property map object can be obtained from
a SGBGraph* using thegef) function described in the previous section and the property
map type can be obtained through titeperty maptraits class.

The following list of property tags can be used to specify which utility field you would
like a property map for.

/I vertex property tags

template <typename T u_property,
template <typename T v_property,
template <typename T w_property,
template <typename T Xx_property,
template <typename T y_property,
template <typename T z property,

/I edge property tags
template <typename T a_property,
template <typename T b_property,

The template paramet@&rfor these tags is limited to the types in th#l union declared
in the SGB headegb_graph.h, which arevertex*, Arc*, Graph*, char*, andlong. The property
maps for the utility fields are models b¥aluePropertyMap.

The property map for vertex indices can be obtained usingdhexindex t tag, and this
property map is &eadablePropertyMap. A property map for edge lengths can be obtained
using theedgelength_t tag, and this property map isL&aluePropertyMap whose value type
is long.

14.3.5 LEDAGRAPH<V,E>

GRAPH<V, E>

The LEDA GRAPH class template can be used directly as a BGL graph due to some
function overloads defined toost/graph/ledagraph.hpp

The implementation of the BGL interface for the LEBBRAPH class is discussed in
§10.3as an example of how to write BGL adaptors for non-BGL graph classes.

Example

( “leda-graph-eg.cpp”266) =

#include <boost graph/ leda_graph. hpp>
#include <iostream>
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#undef string // LEDA macro!
int main() {
using namespace bogst
typedef GRAPHstd::string, int> graph.t;
graph-t g;
g. new_nodg " Philoctete$ );
g. new.nodg " Heracles');
g. new.nodg " Alcmend');
g. new.nodd " Eurystheus );
g. new_nodg " Amphitryon" );
typedef propertymap<grapht, vertexall t>:type NodeMap
NodeMap nodenamemap = gefi vertexall, g);
graph_traits<graph_t>::vertex iterator vi, vi_end
for (tie(vi, vi_end) = verticegg); vi != vi_end ++ vi)
std::cout << nodenamemag* vi] << std:endk
return EXIT_SUCCESS

}
The output is

Philoctetes
Heracles
Alcmena
Eurystheus
Amphitryon

Template Parameters

\% The type of object attached to each vertex in the LEDA graph.
E The type of object attached to each edge in the LEDA graph.
Model Of

VertexListGraph, BidirectionalGraph, and AdjacencyGraph. Also, VertexMutableProperty-
Graph andEdgeMutablePropertyGraph for the property tagsertexall_t andedgeall t which
provide access to théandE objects in the LEDA graph. TheRAPHtype is also &roperty-
Graph for vertexindex t andedgeindext, which provide access to the ID numbers that LEDA
assigns to each node.

Where Defined

boost/graph/ledagraph.hpp
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Associated Types

graph_traits< GRAPH>::vertex descriptor
The type for the vertex descriptors associated withGR&PH. The type used is theode
type from LEDA.
(Required byGraph.)

graph_traits< GRAPH>::edge descriptor
The type for the edge descriptors associated withd@RaPH. The type used is thedge
type from LEDA.
(Required byGraph.)

graph_traits< GRAPH>::vertex_ iterator
The type for the iterators returned bgrtice) . (Required byertexListGraph.)

graph_traits< GRAPH>::out_edgeiterator
The type for the iterators returned byt edge$) .
(Required byincidenceGraph.)

graph_traits< GRAPH>::in _edgeiterator
Thein_edgeiterator is the iterator type returned by tieedge$) function.
(Required byBidirectionalGraph.)

graph_traits< GRAPH>::adjacencyiterator
The type for the iterators returned bgljacentverticeg) .
(Required byAdjacencyGraph.)

graph_traits< GRAPH>::directed category
The LEDA GRAPH type is for directed graphslitectedtag).
(Required byGraph.)

graph._traits< GRAPH>::edge parallel_category
The LEDA GRAPH type allows parallel edges to be insertatiojv_parallel_edgetag).
(Required byGraph.)

graph_traits< GRAPH>::traversal category
This graph type provides vertex iterators, out-edge and in-edge iterators, and adjacency
iterators. The traversal-category tag type is as follows.
struct ledagraph_traversalcategory :
public virtual bidirectional graph tag,
public virtual adjacencygraph_tag,
public virtual vertexlist_graph tag { };
(Required byGraph.)

graph_traits< GRAPH>::vertices size type
This type is for representing the number of vertices in the graph, which in this case is
(Required byertexListGraph.)
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graph_traits< GRAPH>::edgessizetype
This type is for representing the number of edges in the graph, which in this dase is
(Required byEdgeListGraph.)

graph_traits< GRAPH>::degreesizetype
The type used for representing the number of out-edges of a vertex. In this case the type
isint.
(Required byincidenceGraph.)

property map<GRAPH, PropertyTag>::type

property map<GRAPH, PropertyTag>::.const.type
The map type for vertex or edge properties in the graph. The specific property is specified
by the PropertyTagtemplate argument, and must be eitlhertexindext, edgeindext,
vertexall_t, or edgeall t. The two “all” tags are for accessing thieandE objects in the
LEDA graph. Thevertexindext andedgeindext tags provides access to the ID numbers
that LEDA assigns to each node and edge.
(Required byPropertyGraph.)

Member Functions

No additional member functions (especially since that would require modifying LEDA source
code).

Nonmember Functions

std::pair<vertexiterator, vertexiterator> verticeg const GRAPH Q)
Returns an iterator range providing access to the vertex set of graph
(Required byvertexListGraph.)

std::pair<adjacencyiterator, adjacencyiterator>

adjacentverticeg vertex descriptor v const GRAPH @)
Returns an iterator range providing access to the vertices adjacent towertgraphg.
(Required byAdjacencyGraph.)

std::pair<out_edgeiterator, outedgeiterator>

out_edges$ vertex descriptor y const GRAPH Q)
Returns an iterator range providing access to the out-edges of veriexraphg. If the
graph is undirected, this iterator range provides access to all edge incident orwvertex
(Required byincidenceGraph.)

std::pair<in_edgeiterator, in_edgeiterator>

in_edge$ vertex descriptor v const GRAPH )
Returns an iterator range providing access to the in-edges of veitegraphg. This
operation is no available directedSwas specified for th®irectedtemplate parameter. It
is available forundirectedSandbidirectionalS
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(Required byBidirectionalGraph.)

vertex descriptor sourcéedgedescriptor @ const GRAPH @)
Returns the source vertex of edge
(Required byincidenceGraph.)

vertex descriptor targefedgedescriptor ¢ const GRAPH: Q)
Returns the target vertex of edge

(Required byincidenceGraph.)

degreesizetype outdegre€ vertexdescriptor y const GRAPH )
Returns the number of edges leaving veniex

(Required byincidenceGraph.)

degreesizetype indegreé vertexdescriptor y const GRAPH g)
Returns the number of edges entering veiteXhis operation is only available fifidirec-

tionalS was specified for thBirectedtemplate parameter.
(Required byBidirectionalGraph.)

verticessizetype numverticeg const GRAPH Q)
Returns the number of vertices in the graph

(Required byertexListGraph.)

edgessizetype numedge$ const GRAPH: g)
Returns the number of edges in the gragph

(Required byedgeListGraph.)

std::pair<edgedescriptor bool>

add edgé€ vertex descriptor y vertexdescriptor v GRAPH& @)
Adds edggu, v) to the graph and returns the edge descriptor for the new edge. For this
graph type théool flag will always be false.
(Required byEdgeMutableGraph.)

std::pair<edgedescriptor bool>

add edgé€ vertex descriptor y vertexdescriptor v const & ep, GRAPH& @)
Adds edg€u, v) to the graph and attachepas the value of the edge’s internal property
storage.
(Required byEdgeMutablePropertyGraph.)

void removeedg€ vertex descriptor y vertexdescriptor v GRAPH& @)
Removes the edge:, v) from the graph.
(Required byedgeMutableGraph.)
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void removeedgd€ edgedescriptor ¢ GRAPH& @)
Removes the edgefrom the graph. This differs from themoveedge(u, v, gfunction in
the case of a multigraph. Thismoveedge(e, gfunction removes a single edge, whereas
theremoveedge(u, v, gfunction removes all edgés;, v).
(Required byEdgeMutableGraph.)

vertex descriptor addverteX GRAPH& g)
Adds a vertex to the graph and returns the vertex descriptor for the new vertex.

(Required byertexMutableGraph.)

vertex descriptor addvertex const VertexPropertie® p, GRAPH& @)
Adds a vertex to the graph and returns the vertex descriptor for the new vertex.

(Required byvertexMutablePropertyGraph.)

void clearverteX vertex descriptor y GRAPH& g)
Removes all edges to and from vertexThe vertex still appears in the vertex set of the
graph.
(Required byeEdgeMutableGraph.)

void removeverteX vertex descriptor y GRAPH& g)
Remove vertex; from the vertex set of the graph.

(Required byertexMutableGraph.)

template <typename PropertyTag
property map<GRAPH, PropertyTag-::type
gel( PropertyTag GRAPHS& Q)
Returns a mutable property map object for the vertex property specifiecbbgrtyTag

(Required byPropertyGraph.)

template <typename PropertyTag
property map<GRAPH, PropertyTag>:.const.type
gef PropertyTag const GRAPH Q)
Returns a constant property map object for the vertex property specifiepyrtyTag

(Required byPropertyGraph.)

template <typename PropertyTag typename X
typename propertyraits<
typenamae propertynap<GRAPH, PropertyTag->::consttype
>:2:value_type
gel PropertyTag const GRAPH g, X x)
This returns the property value faywhich is either a vertex or an edge descriptor.

(Required byPropertyGraph.)
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template <typename PropertyTag typename X typename Valug

void

put( PropertyTag const GRAPH g, X X, const Valu& value
This sets the property value farto value. x is either a vertex or an edge descriptor.
(Required byPropertyGraph.)

14.3.6 std::vectoxEdgeList>

std::vectok EdgeList>

The function overloads iboost/graph/vectons graph.hppmake it possible to treat types
such asstd::vectorstd::list<int>> like a graph.

Example

In this example we construct a graph using container classes from the Standard Library and
use the BGLprint_graph() function (which is written in terms of the BGL graph interface) to
output the graph.

( “vector-as-graph.cpp272) =
#include <vector>
#include <list>
#include <boost graph/ vectoras graph. hpp>
#include <boost graph/ graph_utility. hpp>

int main() {
enum{r, s t u v, w, X, ¥ N };
char namd] = " rstuvwxy';
typedef std::vector std::list<int> > Graph;
Graph g(N);

gl r]. pushback v);

ol s. pushbackr); g[s]. pushback(r); g[s]. pushback w);
ol t]. pushback x);

o[ u]. push.back t);

o w]. pushback(t); g[w]. pushback x);

ol X]. pushback y);

ol yl. pushback u);

boost::print.graph( g, name;

return O;

¥
The output is

r——myv
S—>>Trrw
t ——> X
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u——>t
vV ——>
w——>1X
X ——>y
y —>u

Where Defined

boost/graph/vectaas graph.hpp

Template Parameters

EdgeList A Container whosevalue.typeis convertible to thesizetype of std::vector
(so that it can be used as a vertex descriptor).

Model Of

VertexListGraph, IncidenceGraph, AdjacencyGraph,

Associates Types

graph_traits<std::vector>::vertex_descriptor
The type for the vertex descriptors associated with the graph.
(Required byGraph.)

graph_traits<std::vector-::edge descriptor
The type for the edge descriptors associated with the graph.
(Required byGraph.)

graph_traits<std::vector>::vertex_iterator
The type for the iterators returned fsrtices) .
(Required byvertexListGraph.)

graph_traits<std::vector-::out_edgeiterator
The type for the iterators returned byt edge$) .
(Required byincidenceGraph.)

graph_traits<std::vector-::adjacency iterator
The type for the iterators returned bgljacentverticeg) .
(Required byAdjacencyGraph.)

graph_traits<std::vector>::directed category
This graph type is for directed graphs, so the category typeestedtag.
(Required byGraph.)
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graph_traits<std::vector-::edge parallel_category
This graph type allows parallel edges, so the category typkoig_parallel_edgetag.
(Required byGraph.)

graph_traits<std::vector>::vertices size type
This type is for representing the number of vertices in the graph.
(Required byvertexListGraph.)

graph_traits<std::vector-::degreesizetype
This type is for representing the number of out-edges of a vertex.
(Required byincidenceGraph.)

Member Functions

No additional member functions.

Nonmember Functions

std::pair<vertex.iterator, vertexiterator>
verticeg const std::vectok Q)
Returns an iterator range providing access to the vertex set of graph

(Required byvertexListGraph.)

std::pair<adjacencyiterator, adjacencyiterator>
adjacentverticeg vertex descriptor v const std::vecto® g)
Returns an iterator range providing access to the vertices adjacent towartgraphg.

(Required byAdjacencyGraph.)

std::pair<out_edgeiterator, out edgeiterator>

out_edges$ vertex descriptor v const std::vectok Q)
Returns an iterator range providing access to the out-edges of veiriggraphg. If the
graph is undirected, this iterator range provides access to all edge incident onwertex
(Required byincidenceGraph.)

vertex descriptor
sourcq edgedescriptor ¢ const std::vectok Q)
Returns the source vertex of edge

(Required byincidenceGraph.)

vertex descriptor
targei edgedescriptor € const std::vecto Q)
Returns the target vertex of edge

(Required byincidenceGraph.)

degreesizetype
out_degre€ vertex descriptor y const std::vectok Q)
Returns the number of edges leaving verex
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(Required byincidenceGraph.)

verticessizetype numverticeg const std::vecto g)
Returns the number of vertices in the graph

(Required byertexListGraph.)
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Chapter 15

Property Map Library

Most graph algorithms require access to various properties associated with the vertices and
edges of a graph. For example, problem data such as the length or capacity of an edge may be
needed by the algorithms, as well as auxiliary data flags such as color, to indicate whether a
vertex has been visited. There are many possibilities for how these properties can be stored in
memory, ranging from members of vertex and edge objects, to arrays indexed by some index,
to properties that are computed when needed. To insulate generic algorithms from the details
of the underlying property representation, titeperty map abstraction is introduced.

Several categories of property accessors provide different access capabilities:

readable The associated property data can only be read. The data is returned by-value. Many
property maps defining the problem input (such as edge weight) can be defined as
readable property maps.

writeable The associated property can only be written to. The parent array used to record
the paths in a breadth-first search tree is an example of a property map that would be
defined writeable.

read/write The associated property can both be written and read. The distance property
use in Dijkstra’s shortest-paths algorithm would need to provide both read and write
capabilities.

Ivalue The associated property is actually represented in memory and it is possible to get a
reference to it. The property maps in the lvalue category also support the requirements
for read/write property maps.

There is a tag struct for each of the categories of property maps.

namespace boosf

In previous papers describing BGL, the property accessor concept was Bamector. In Dietmar Kihl's
Masters thesis4], property accessors are called data accessors.

277
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struct readablepropertymap.tag { };
struct writable propertymaptag { };
struct readwrite_property.map_tag :
public readableproperty map tag,
public writable propertymap.tag { };
struct Ivalue property maptag :
public read write_propertymap_tag { };
}

Similar to theiterator_traits class of the STL, there is @opertytraits class that can be used

to deduce the types associated with a property map type: the key and value types, and the
property map category. There is a specializatioproperty traits So that pointers can be used

as property map objects.

namespace boosf
template <typename PropertyMap
struct propertytraits {
typedef typename PropertyMap::kdype keytype
typedef typename PropertyMap::valugpe valuetype
typedef typename PropertyMap::reference reference
typedef typename PropertyMap::category category
I
/I specialization for using pointers as property maps
template <typename T
struct propertytraits<T* > {
typedef T valuetype
typedef & reference
typedef std::ptrdifft key type
typedef Ivaluepropertymaptag category
h
template <typename T
struct propertytraits<const T > {
typedef T valuetype
typedef const & reference
typedef std::ptrdifft key type
typedef Ivalueproperty maptag category
I
}

15.1 Property Map Concepts

The property map interface consists of a set of concepts that define a general-purpose mech-
anism for mapping key objects to corresponding value objects, thereby hiding the details of
how the mapping is implemented from algorithms that use property maps. The property map
requirements are purposefully vague on the type of the key and value objects to allow for
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the utmost flexibility. Since the property map operations are global functions, it is possible
to overload the map functions such that nearly arbitrary property map types and key types
can be used. The interface for property maps consists of three functie)s; put() , and
operator[]. The following concrete example shows how the three functions could be used to
access the addresses associated with various people.

template <typename AddressMap
void foo AddressMap addre$s

{
typedef typename boost::propertyaits<AddressMap-::value_type valuetype
typedef typename boost::propertyaits<AddressMap-::key_type keytype

value type oldaddress new.address
key_type fred = " Fred";

old_address= gef( address fred);

new address= " 384 Fitzpatrick Street
put( address fred, new.addres$,

key type joe= "Jo€';
value type joesaddress= addres§joe];
joesaddress= " 325 Cushing Avenug;

}

For each property map object there is a setalfd keysfor which the mapping to value
objects is defined. Invoking a property map function oriraalid key results in undefined
behavior. The property map concepts do not specify how this set of valid keys is created or
modified. A function that uses a property map must specify the expected set of valid keys in
its preconditions.

Notation

The notation used in the following sections is summarized here.
PMap is the type of a property map.
pmap is a property map object of tygeMap.
key is an object of typgroperty traits<PMap>::key_type
val is an object of typeroperty traits<PMap>::value_type

15.1.1 ReadablePropertyMap

A ReadablePropertyMap provides read-access to the value object associated with a given key
via a call to thege) function. Thege) function returns a copy of the value object.

Refinement of

CopyConstructible
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Associated Types
property traits< PMap>::value_type
The type of the property.

property traits<PMap>::reference
A type that is convertible to the value type.

property traits< PMap>::key_type
The type of the key object used to look up the property. The property map may be
templated on the key type, in which case this typedef carole

property traits< PMap>::category
The category of the property: a type convertiblegadableproperty map tag.

Valid Expressions

get(pmap, key)
Return Type: reference
Semantics: lookup the property of the object associatedksith

15.1.2 WritablePropertyMap

A WritablePropertyMap has the capability of setting the value object associated with the given
key object via theut() function.

Refinement of

CopyConstructible

Associated Types

property traits<PA>::value_type
The type of the property.

property traits<PA>::key_type
The type of the key object used to look up the property. The property map may be
templated on the key type, in which case this typedef carolie

property traits<PA>::category
The category of the property: a type convertiblevtitable_property map.tag.
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Valid Expressions

put(pmap, key, val)
Return Type: void
Semantics: assigval to the property associated wikby.

15.1.3 ReadWritePropertyMap

The ReadWritePropertyMap concept refines thReadablePropertyMap andWritableProper-
tyMap concepts. It also add s the requirement fivaperty traits<PA>::category be a type
convertible taread write_property map.tag.

15.1.4 LvaluePropertyMap

An LvaluePropertyMap provides access to a reference to a property object (instead of a copy
of the object as iget) ). An LvaluePropertyMap can bemutableorimmutable The mutable
LvaluePropertyMap returns a reference whereas the nonmutable returns a const reference.

Refinement of

ReadablePropertyMap for immutable andReadWritePropertyMap for mutable.

Associated Types

property traits<PMap>::reference
The reference type, which must be a reference or const reference to the value type of the

property map.
property traits<PMap>::category
The category of the property: a type convertiblévtdue_property map.tag.

Valid Expressions

e Access Property Value

pmaplkey]
Return Type: reference
Semantics: obtain a reference to the property identifiekely

15.2 Property Map Classes
15.2.1 propertytraits

property traits<PropertyMap>
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The property traits class provides the mechanism for accessingagsociated typesf a
property map. The unspecialized (default) version ofptleperty traits class assumes that the
property map provides typedefs for all of the associated types.

namespace boos{

template <typename PA-

struct propertytraits {

typedef typename PA:ketype keytype
typedef typename PA:.valug/pe valuetype
typedef typename PA::reference reference
typedef typename PA:.category categpry

I

} /I namespace boost

The categorytypedef should be a typedef for one of the following types, or a type that
inherits from one of the following types.

namespace boosf
struct readablepropertymaptag { };
struct writable propertymaptag { };
struct readwrite_propertymap.tag : readableproperty.map_tag,
writable_property map.tag { };
struct Ivalue property map.tag : readwrite_property map.tag { };
} /I namespace boost

Often it is handy to use a pointer as a property map object, whekeyhgpeis an integer
offset from the pointer. The following specialization mbpertytraits and overloads of the
map functions are provided to accommodate this.

namespace boos{
template <typename T struct propertytraits<T* > {
typedef std::ptrdifft key type
typedef T valuetype
typedef valuetype reference
typedef Ivalueproperty map.tag category

I

template <typename T
void pui{ T* pa, std:ptrdiff_t k, const T& val) { pa k] = val; }

template <typename T
const T& get( const T pa, std:ptrdiff_t k) { return pal K]; }

template <typename T
T& at(T* pa, std:ptrdiff.t k) { return pa k]; }
} // namespace boost
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Template Parameters

PropertyMap A property map type.

Defined in

boost/propertymap.hpp

Members

property traits::key_type
The type of the key object used to look up the property.

property traits::value_type
The type of the property.

property traits::reference

The reference to the value type.
property traits::category

The category tag of the property map.

15.2.2 iterator_propertymap

iterator_property map<lIterator, IndexMap, T, R>

This is an adaptor that wraps a type that mod&ealsdomAccesslterator to create armval-
uePropertyMap. This adaptor is often useful for creating a property map out of an array,
where the key is an integer offset into the array, and the array contains the value objects.
When the key type is an integer, then just igeatity_property mapfor the IndexMap template
parameter. Otherwise, you need to provide a property map that converts from the key type to
an integer. For example, a graph may have an internal propertefie@xindext that can be
obtained using thproperty maptraits class.

Example

The following example demonstrates creating a property map out of an array.

( “iterator-property-map-eg.cpp283) =
#include <iostream>
#include <boost property.map. hpp>

int main()

{

using namespace bogst
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double ] = { 0.2, 45, 3.2 };

iterator_property map<doublef, identity property map> pmag X);
std:cout << "x[1] = " << gef(pmap 1) << std:end}
put(pmap 0, 1.7);

std::cout << "x[0] = " << pmafd 0] << std:endt

return O;

}
The output is

Where Defined

boost/graph/propertymap.hpp

Template Parameters

lterator The iterator type being adapted. It must be a mod®afdomAccessiter-
ator.

IndexMap A property map that converts the key type to an integer offset. It must be a
model ofReadablePropertyMap.

T The value type of the iterator.
Default: typename std::iteratattraits< Iterator>::value_type

R The reference type of the iterator.

Default: typename std::iteratattraits< Iterator>::reference

Model Of

LvaluePropertyMap

Associates Types

All the types required byvaluePropertyMap.
Member Functions

iterator_property map( Ilterator iter = Iterator(),
IndexMap indexmap = IndexMap())
Constructor.

template <typename Key
reference operatdj( Key K const
Returnst(iter + get(indexmap, k))
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Nonmember Functions

template <typename lIteratoy typename IndexMap
iterator_property map<Iterator, IndexMap,

typename std::iteratattraits<Iterator>::value_type

typename std::iteratattraits<lterator>::reference>
make.iterator_property map( Iterator iter, IndexMap indexmap)

Create an iterator property map.

15.2.3 Property Tags

namespace boos{
enum vertexindext { vertexindex = 1};
enum edgeindext { edgeindex = 2};
enum edgenamet { edgename = 3 };
enum edgeweightt { edgeweight = 4 };
enum vertexnamet { vertexname= 5 };
enum graphnamet { graph.name = 6 };
enum vertexdistancet { vertexdistance= 7};
enum vertexcolor_t { vertexcolor = 8 };
enum vertexdegreet { vertexdegree= 9 };
enum vertexin_degreet { vertexin_degree= 10 };
enum vertexout degreet { vertexout degree= 11 };
enum vertexdiscovertime_t { vertexdiscovertime = 12 };
enum vertexfinish_time_t { vertexfinish_time = 13 };

}

namespace boos{
BOOST.INSTALL _PROPERTY vertex index);
BOOST.INSTALL _PROPERTY edge index);
BOOST.INSTALL _PROPERTY edge nane);

15.3 Creating Your Own Property Maps

The main purpose of the property map interface is to introduce flexibility into generic algo-
rithms. It allows properties to be stored in lots of different ways while presenting a common
interface to the algorithms. The following section contains an example of using property maps
to adapt to a third-party library the Stanford GraphBase (SGB) {$4€3.4. After that we

look at implementing a property map using thé::map
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15.3.1 Property Maps for Stanford GraphBase

The BGL adaptor for Stanford GraphBase includes property maps to access the various fields
of the VertexandArc structures used in the SGB. In this section we will describe one part of
the implementation of the SGB adaptor as an example of how to implement property maps.

The SGB uses the followingertex struct to store information about vertices in the graph.
Thearcspointer is a linked-list for the out-edges of the vertex. fhmefield and the “utility”
fields u throughz are properties of the vertexit{ is a union that allows various different
things to be stored in the vertex). This section will describe how to create a property map for
accessing theamefield.

typedef struct vertesxstruct {
struct arc.struct* arcs

char* name
util u, v, w, X, v, z
} Vertex

The main idea in the implementation of this property map is to define the property map
functionsoperator[]() , get) , andput() in terms of access to the struct data member. The
job is made easier by thmut_gethelper class which implementsut() andgef) in terms of
operator[] Therefore, onlyoperator[] needs to be implemented. In addition, the associated
types required of a property map must be defined.

Following is the implementation afghvertexnamemap. We use the clagsut get helper
(defined inboost/propertymap.hpp to simplify creating this property map. We implement
operator[) andput.gethelperimplementsput() andget) . The first type argument to the
put_get helper class template is the return type faggerator[], which in this case ishar*. The
second argument is the property map type itself. rfEfegencetype only needs to be an actual
reference if the property map is to be araluePropertyMap. In this case we are creating a
ReadablePropertyMapThe SGB adaptor uségrtex* for the vertex descriptorof the graph, so
that will be thekey.typeof the property map.

class sgbvertex name map
. public put gethelper<char*, sghvertexname map>
{
public:
typedef boost::readabl@roperty map.tag category
typedef chat value type
typedef chat reference
typedef VerteX key type
reference operatdr]( Vertex* v) const{ return v—name }
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15.3.2 A Property Map Implemented with std::map

In the previous example, the property map object did not need to contain any state, for the
value object could be obtained directly through the key. This is not always the case. Often
times the key is used to lookup the value object in some auxiliary datastructure. An obvious
candidate for such a datastructure is stie:map A property map that usestd::mapas its
implementation will need to store a pointer to this associative container. The following code
implements this property map. We have made the container type a template parameter so that
the property map can be used with other containers suchhashamap. The concept that
describes this kind of container is naméwiquePairAssociativeContainer.

template <typename UniquePairAssociativeContainer
class associativgproperty map
. public put_gethelper<
typename UniquePairAssociativeContainer::valugpe::secondtype,
associativeproperty map<UniquePairAssociativeContaines >
{
typedef UniquePairAssociativeContainer;C
public:
typedef typename C::kefype keytype
typedef typename C::valugype::secondtype valuetype
typedef valuetype& reference
typedef Ivalueproperty maptag category
associativepropertymap) : mc(0) { }
associativepropertymap( C& c) : m_c(&c) { }
reference operatd( const keytype& k) const{
return (* m_c)[ Kk];

private:
C* m.c;

I8
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Chapter 16

Auxiliary Concepts, Classes, and
Functions

16.1 Buffer

A buffer is something in which items can be put and removed. Bifeer concept has very
few requirements. It does not require any particular ordering of how the items are stored or in
what order they will appear when removed. however, there is typically some sort of ordering

policy.

Notation
B is a type that modelBuffer.
T is the value type oB.
t is an object of typq'.

Requirements

For a type to model the Buffer concept it must have the following members.

B::value_type
The type of object stored in the buffer. The value type musidsignable.

B::size type

An unsigned integer type for representing the number of objects in the buffer.
b.push(t)

Insertst into the buffer.b.siz€) will be incremented by one.

b.por()
Removes an object from the Buffer, the same object as would be returnbdopg)

289
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b.sizé) will be decremented by one.
Preconditionb.empty) is false.

b.top) Returns a reference (or const reference) to some object in the buffer.
Preconditionb.empty) is false.

b.siz€)
Returns the number of objects in the buffer.

Invariant:
b. siz) >=0

b.empty)
Return type isool, and the result value is equivalentdgize() == 0

Complexity Guarantees

e push)) , pop)) , andsiz€) must be at most linear time complexity in the size of the
buffer.

e top() andempty) must be amortized constant time.

Models

std::stack boost::mutablequeug boost::queue andboost::priority_.queue

16.2 ColorValue

This concept describes the requirements for the type used for color values. Many of the
BGL algorithms uses color property maps to mark the progress of the algorithm through the

graph. The color value type must BgualityComparable and also theolor traits class must
be specialized fof, such that the following functions are defindds the type that is a model
of ColorValue.

color_traits<T>::white()
Return Type: T
Semantics: Returns an object that represents the color white.

color_traits<T>::gray()
Return Type: T
Semantics: Returns an object that represents the color gray.

color_traits<T>::black()
Return Type: T
Semantics: Returns an object that represents the color black.
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16.3 MultiPassInputlterator

This concept is a refinement biputiterator, adding the requirements that the iterator can be
used to make multiple passes through a range, and thatif it2 anditl is dereferenceable
then*++itl == *++it2. The MultiPassInputlterator is similar to theForwarditerator. The
only difference is that &orwardIterator requires theeferencetype to bevalue type&, whereas
MultiPassInputlterator is like Inputlterator in that thereferencetype merely has to be con-
vertible tovalue type

16.4 Monoid

A Monoid is a concept that describes a simple kind of algebraic system. It consists of a
set of elements$, a binary operation, and an identity element. The C++ representation of a
monoid consists of a function object that implements the binary operation, a set of objects
that represent the elements$fand an object that represents the identity element.

Refinement of

The element type must be a modelkakignable andCopyConstructible. The function object
type must be a model @inaryFunction.

Valid Expressions

The typeX is the element type. The objedsb, andc are objects of typ«& that represent
elements of the seéf. The object is an object of typeX that satisfies the following proper-
ties for the identity element. The objemt is a function object that implements the monoid
operation.

op(a, b)

Return Type: X

Semantics: See below.
a ==

Return Type:  bool

Semantics: Returns truedfandb represent the same element%f
al=b

Return Type:  bool

Semantics: Returns truedfandb do not represent the same elemenfof

Invariants
e Closure

The result ofop(a, b)is also an element of.
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e Associativity
op(op(a, b), ¢) == op(a, op(b, c))

¢ Definition of Identity Element
op(a,i)==a

16.5 mutablequeue

mutable queue<indexedType Container, Compare ID>

This adaptor provides a special kind of priority queue (implemented on a heap) that has an
update operation. This allows the ordering of the items to change. After the ordering criteria
for item x changes, one must call tiieupdate(x) In order to efficiently findk in the queue,

a functor must be provided to mapo a unique ID, which thenutable queuewill then use
to map to the location of the item in the heap. The IDs generated must be between 0 and N,
where N is the value passed to the constructonathble queue

Template Parameters

IndexedType If ID is not supplied, then there must beiadex(t) function defined (where
tis an object of typendexedTypé¢ that returns some integer type.
Container A model of RandomAccessContainer. The value type of the container
must be the same type mglexedType
Default: std::vectoxIndexedType-

Compare A model ofBinaryPredicate that will takelndexedTypeas arguments.
Default: std::less<typename Container::valugype>
ID A model ofReadablePropertyMap that will takeIndexedTypeas a key type,

and who's value type is some integer type.
Default: identity_property map

Members

value type
The same type dadexedType

sizetype
The type used to represent the size of the queue.

mutable queud sizetype n const Compar& c, const ID& id = ID())
Constructor. Space is reserved fotems.

template <class Inputlterator>
mutable_queud Inputlterator first, Inputlterator last, const Comparé& c,
const ID& id = ID())


http://www.sgi.com/tech/stl/RandomAccessContainer.html
http://www.sgi.com/tech/stl/BinaryPredicate.html

16.6. DISJOINT SETS 293

Constructor. The default containetd::vectoris filled with the object from the range
[first,last).

bool empty) const
Returns whether the queue is empty.

void pop)
Removes the top item from the queue.

value_ type& top()
Returns a reference to the top item of the queue.

value type& front()
Another name fotop() .

void push( const valuetype x)
Inserts a copy of the objegtinto the queue.

void updaté const valuetypes x)
The “value” of an item has changed and the heap ordering should be updated. This

method assumes that there is an old iteimthe heap withindex(y) == index(x)and thatx
is the new value for the item.

16.6 Disjoint Sets

16.6.1 disjoint sets

disjoint_setsxRankMap, ParentMap FindCompress-

This class provides disjoint sets operations, sometimes called a union-find data structure.
A disjoint-sets data structure maintains a collectios: S1, S, ..., S, of disjoint sets. Each
set is identified by aepresentativahat is some member of of the set. Sets are represented
by rooted trees, which are encoded in BaéentMapproperty map. Two heuristicsinion by
rank andpath compressioare used to speed up the operations.
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Template Parameters

RankMap must be a model dReadWritePropertyMap with an integer value type and
a key type equal to the set’s element type.
ParentMap must be a model dkeadWritePropertyMap and the key and value type the

same as the set’s element type.
FindCompress should be one of the find function objects discussed later in this section.
Default: find_with_full _path.compression

Example

A typical usage pattern fafisjoint.setscan be seen in thieuskal_minimum_spanningtreg)
algorithm. In this example, we cdlhk() instead ofunion_se{) becauseas andv were ob-
tained fromfind_se() and therefore are already the representatives for their sets.

disjoint_setsxRankMap, ParentMap FindCompress- dset$ rank, p);

for (ui = verticeg G). first; ui != verticeg G). second ++ ui)
dsets makese(* ui);

while (! Q.empty) ) {
e = Q. front();
Q. pop);
u = dsets find_se{ sourcq €));
v = dsets find_se{ targef €));

if (ul=v){
*outt+ = €
dsets link(u, V);
}
}
Members

disjoint_set¢ RankMap r, ParentMap p
Constructor.

disjoint_setg const disjointset® x)
Copy constructor.

template <typename Element
void makese( Element X
Creates a singleton set containing Element
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template <typename Element
void link( Element x Element y)
Union the two setsepresentedy elemenk andy.

template <typename Element
void union se{ Element x Element y)
Union the two sets thatontainelementsx andy. This is equivalent tdink(find _set(x),-

find_set(y))

template <typename Element
Element findse{ Element X
Return the representative for the set containing element

template <typename Elementlterator
std::sizet count setg Elementlterator first Elementliterator las)
Returns the number of disjoint sets.

template <typename Elementlterator
void compresssetg Elementlterator first Elementlterator lasy
Flatten the parents tree so that the parent of every element is its representative.
Complexity

The time complexity i$)(ma(m,n)), wherea is the inverse Ackermann'’s functiom, is the
number of disjoint-set operationsigkese() , find_se() , andlink() ) andn is the number of
elements. The function grows very slowly, much more slowly than tlag function.

16.6.2 find_with_path halving

find_with_path_halving<ParentMap>

This functor finds the representative vertex for the same component as the eteamht
at the same time compresses the tree using path-halving.

Element operatof)( ParentMap p Element X

16.6.3 find_with_full _path.compression

find_with_full _path_compressior:ParentMap>

This functor finds the representative vertex for the same component as the eteamaht
at the same time compresses the tree using full path compression.

Element operatof)( ParentMap p Element X
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16.7 tie

template <typename T1 typename T2
tuple<T1, T2> tie(T1& a, T2& b);

This is a function from thé&oost Tuple Libraryby Jaakko drvi that makes it more con-
venient to work with functions that return pairs (or tuples in general). The effect diethe
function allows the assignment of the two values of the pair to two separate variables.

Where Defined

boost/tuple/tuple.hpp

Example

An example of using thae() function with theverticeg) function, which returns a pair of
type std::pair<vertexiterator, vertexiterator>. The pair of iterators is assigned to the iterator
variables andend

graph_traits<graph_t>::vertex iterator i, end
for(tie(i, end) = verticegq); i != end ++1i)
...

Here is another example that usie§) for handling operaitons withtd::set

#include <set>

#include <algorithm>

#include <iostream>

#include <boost tuple/ tuple. hpp>

int main()
{
typedef std::setint> SetT,
SetT:iterator i, end
bool inserted
int vals{5] = {5, 2, 4 9, 1}
SetT gvals vals + 5);
int newval§ 2] = {3, 9}
for (intk = 0; k < 2; ++k) {
/I Using tie() with a return value of paikiterator, boot>
boost::tig i, inserted = s. insert( new.valq K]);
if (! inserted std::cout << *i << " was already in the sét. << std::endt
else std::cout<< *i << " successfully inserted. << std::endt

}
return EXIT_SUCCESS

}
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The output is

3 successfully inserted
9 was already in the set

16.8 graph_propertyiter_range

graph_property iter_range<Graph, PropertyTag>

This class generates a begin/end pair of iterators that provide access to a vertex property
across all the vertices in the graph or and edge property across all the edges in the graph.

Example

This example loops through all of the vertices in the graph assigning strings into the name
property. It then loops through again printing the names to standard out.

( “graph-property-iter-eg.cpp297) =

#include <boost graph/ adjacencylist. hpp>
#include <boost graph/ property.iter_range hpp>

int main()
{
using namespace bogst
typedef adjacencyist<listS, vecS directed$S
property<vertexnamet, std::string> > graph.t;

graph-t g( 3);

const chat vertexnameg] = { "Kubrick", "Clark", "Hal" };
inti =0;
graph_property iter_range<graph.t, vertexnamet>:iterator v, v_end
for (tie(v, v_end = getpropertyiter_range( g, vertexname;
vI= veend ++v, ++1i)
*v = vertexnameg i];

tie(v, v_end = getpropertyiter_range( g, vertexname;

std::copy v, v_end std::ostreamiterator<std::string>( std::cout " " ));
std::cout << std::endt
return O;

}
The output is

Kubrick Clark Hal



298 CHAPTER 16. AUXILIARY CONCEPTS, CLASSES, AND FUNCTIONS

Where Defined

boost/graph/propertyter_range.hpp

Template Parameters

Graph The graph type must be a modelmbpertyGraph.
PropertyTag The tag specifies which vertex or edge property to be accessed.

Associated Types

graph_property iter_range::iterator
A mutable iterator whose value type is the property specified by the property tag.

graph_property iter_range::constiterator
A constant iterator whose value type is the property specified by the property tag.

graph_property iter_range::type
The typestd::pair<iterator, iterator>

graph_property iter_range::consttype
The typestd::pair<cosntiterator, constiterator>

Member Functions

None.

Nonmember Functions

template<typename Graph typename Tag
typename graphproperty iter_range<Graph, Tag>::type
get property iter_range( Graph& graph, const Tag tag)
Returns a pair of mutable iterators that provide access to the property specified by the

tag. The iterator range over all the vertices or all the edges of the graph.

template<typename Graph typename Tag
typename grapbproperty.iter_range<Graph, Tag>::consttype
getproperty.iter_range( const Grapl& graph, const Tag tag)
Returns a pair of constant iterators that provide access to the property specified by the

tag. The iterator range over all the vertices or all the edges of the graph.
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implementing, 123126
pattern, 119
add_edge function, 9, 17, 43, 84, 121,
152153, 226
EdgeMutablePropertyGraph concept and,
157
performance guidelines and, 128
undirected graphs and, 141
AdditiveAbelianGroup class, 20-21
add_vertex function, 9, 43, 120, 152, 157,
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backward edge, 106
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bacon_number array, 66
bacon_number_recorder, 66
Bacon numbers
basic description of, 61-67
graph setup and, 63—-65
input files and, 63—65
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classes, 20, 21
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35,36
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35, 36
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breadth_first_search algorithm, 11, 39. See
also breadth-first search (BFS)
Bacon numbers and, 65-67
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parameters, 166
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expressions, 28
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GNU, 127, 128
Koenig lookup and, 38-39
Monoid concept and, 291
named parameters and, 3940
object-oriented programming and, 22-25
Standard, 22, 28, 55, 125
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cap object, 108
cc-internet.dot, 98
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Class(es). See also Classes (listed by name)
abstract, 20
archetype, 36
auxiliary, 242-251, 289-298
basic description of, 13—14, 213-275
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selecting, 43—44
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adjacency_matrix class, 11-12, 43,
234-242
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archetype class, 36
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Classes, continued
edge_list class, 78-79
equivalence class, 98
filtered_graph class, 256262
GRAPH class, 120, 123-126
graph_property_iter_range class, 58,
297-298
graph_traits class, 5-7, 33-34, 47, 57,
125-126, 142148, 242-245
iterator_adaptor class, 125
iterator_property_map class, 79, 283-285
iterator_traits class, 29, 33, 278
johns_int_array class, 32
knights_tour_graph class, 114-117
make_iterator_property_map class, 79
parallel_edge_traits class, 234
Point class, 24
property class, 52-53, 63, 231
property_kind class, 52
property_map class, 53, 156, 248-249
property_num class, 52
property_traits class, 33, 56, 231, 278,
282
put_get_helper class, 286
sgb_vertex_id_map class, 122
sgb_vertex_name_map class, 286
std::iterator_traits class, 29
clear_vertex function, 134, 153, 226
clock function, 128
Code. See also Source code files
“bloat,” 23
size, 23
Color
array, 55
connected components and, 100, 102—-104
maps, 55-56, 69, 100, 167-181, 196,
199, 207
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three-way, 48
types, accessing, 56
ColorMap, 56, 175, 176-177, 181
color_map parameter, 56, 69, 167, 170, 172,
176, 178, 180-181, 196, 199, 207
ColorPoint class, 23-24
ColorPoint2 class, 24
color_traits class, 56, 290
ColorValue concept, 175, 177, 290
Comma, 40
compare function, 183
Compilation. See also Compilers
dispatch of virtual functions during, 22
order, 4448
time, 22, 54-55, 57-59
compile_cost_map, 53
Compilers. See also Compilation
Koenig lookup and, 38-39
partial specialization and, 32-33
Complexity, time
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basic description of, 165
bellman_ford_shortest_paths function
and, 185
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connected_components function and, 196
depth_first_search function and, 172
depth_first_visit function and, 176
dijkstra_shortest_paths function and, 181
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204
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function and, 188
kruskal_minimum_spanning_tree
function and, 191
prim_minimum_spanning tree function
and, 194
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strong_components function and, 200

topological_sort function and, 177
Complexity guarantees, 28, 145—148,

152-157

Component array, 103
component_index function, 204-206
Components, connected

basic description of, 97-104

static, 195-201

strongly, 97, 102-104

incremental, 201-205

Internet connectivity and, 98—101

Web page links and, 102-104
Component vector, 100
compute_loop_extent function, 71
Concept(s)

archetypes, 36-37

auxiliary, 289298

checking, 34-37

covering, 36-37

definitions, 27-28

generic programming, 27-29

graph modification, 150157

graph traversal, 137-150

notation for, 137

property map, 278-281

refinement of, 28, 138

use of the term, 19

visitor, 158-160
Connected components

basic description of, 97-104

static, 195-201

strongly, 97, 102-104

incremental, 201-205

Internet connectivity and, 98—101

Web page links and, 102-104
connected_components function, 98, 100,

195-197
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connected_components.hpp, 196
Constructors, 4344
container_gen.cpp, 232, 233
Containers
basic description of, 25
hash_map container, 187
CopyConstructible, 36, 143
Cross edge, 68
Cut, capacity of, 106
cycle_edge function, 159
Cycle(s). See also Cyclic dependencies
basic description of, 45
detector objects, 51
makefiles and, 48
visitors and, 51-52
Cyclic dependencies, 42, 48—49. See also
Cycles

D
Data structures, traversal through, 25
default_bfs_visitor, 66, 70
DefaultConstructible, 143
degree_size_type function, 144, 146
Delay array, 79
Dependencies
cyclic, 42, 4849
file, 41-42, 54-55
Depth-first forest, 44, 67
Depth-first search (DFS). See also
depth_first_search algorithm
basic description of, 67-74
connected components and, 98
cyclic dependencies and, 48—49
generic, 49-52
topological sorts and, 55-57
upstream, 72
depth_first_search algorithm, 13, 18,
57
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Depth-first search (DFS)
basic description of, 67-75, 170-175
connected components and, 98
topological sort and, 4446
named parameters, 172
parameters, 172
time complexity and, 172
topological sort and, 4446
visitor concepts and, 160-161
Depth-first tree, 44, 67
depth_first_visit function, 57, 67, 70, 72
basic description of, 175-176
parameters, 175
time complexity and, 176
Descriptors, 5-6, 144, 148, 227-229
DFS (depth-first search). See also
depth_first_search algorithm
basic description of, 67-74
connected components and, 98
cyclic dependencies and, 48—49
generic, 4952
topological sorts and, 55-57
upstream, 72
DFSVisitor interface, 160-161
dfs_vl, 57
difference_type, 29
DiffType parameter, 251
dijkstra.cpp, 227
Dijkstra’s shortest-path algorithm, 76, 161,
277
basic description of, 81-88, 179—181
named parameters, 179
parameters, 179
time complexity and, 181
DIMACS file format, 207, 211
directed_category function, 34, 124, 244
Directed parameter, 12, 214, 238, 246
directed_tag function, 124
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Directed version, 138
disconnecting_set iterator, 110
discover_time parameter, 44—45, 199
discover_vertex function, 50
distance_combine parameter, 184
distance_compare parameter, 184
distance_map parameter, 40, 183, 184, 187,
194
distance_zero parameter, 188
ds.find_set function, 201-205
ds.union_set function, 201-205

E
Edge(s)

adding, 128-129

backward, 106

connectivity, 106—-112

cross, 68

descriptors, 5-6, 144, 148

forward, 68, 106

iterators, 7, 43-44, 148, 251

parallel, 4

relaxation, 7778

removing, 130

residual capacity of, 105, 206

saturated, 105
edge_descriptor, 144, 148
edge function, 149, 226
edge_iterator, 148
Edgelterator parameter, 251
edge_length_t tag, 266
edge_list class, 78-79
EdgeListGraph interface, 78, 92, 147—-148
edge_list.hpp, 251
EdgeList parameter, 12
edge_list template, 78—79
EdgeList type, 65, 127, 132
EdgeMutableGraph concept, 124, 152, 154
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EdgeMutablePropertyGraph concept, 157

edge_parallel_category function, 34, 124,
244

EdgeProperties parameter, 12, 52

EdgeProperty parameter, 238

edges function, 8, 147

edges_size_type, 148149

edge type, 124

edge_weight_t tag, 52, 92

edge_xxx_t tag, 52

Edmunds-Karp algorithm, 105, 109

edmunds_karp_max_flow function,
206-209

empty function, 290

entry vertex, 70

enum, 78

equal function, 23-24

EqualityComparable, 28-29, 143

equivalence class, 98

Equivalence relations, 98

erase_dispatch function, 234

erase function, 234

Errors, concept checking and, 34-37

Erdos, Paul, 62

Erdos number, 62

Event points, 50

examine_edge function, 159

F
f function, 40
File dependencies
basic description of, 41-42
compilation time and, 54-55
file_dep_graph function, 55
file_dep_graph2 function, 55
filtered_graph adaptor, 13
filtered_graph class, 256262
find_loops function, 69
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find_with_full_path_compression function,
295
find_with_path_halving function, 295
Finish time, 4445
finish_vertex function, 50
First_Adj_Edge, 126
first argument, 27
first variable, 8
Flow functions, 105. See also
Maximum-flow algorithms
Flow networks, 105. See also
Maximum-flow algorithms
foo.o, 54
Ford, L. R., 105
Ford-Fulkerson algorithm, 105
for_each function, 29
Forward edge, 68, 106
Forwardlterator, 25-26
forward_iterator_tag function, 33
forward_or_cross_edge function, 50
Fulkerson, D. R., 105
Function(s). See also Functions (listed by
name)
auxiliary, 289298
objects, user-defined, 49
preconditions for, 165
prototypes, 43, 164
virtual, function templates and,
comparison of, 22
Functions (listed by name). See also
Functions(s)
add_edge function, 9, 17, 43, 84, 121,
128, 141, 152-153, 157, 226
add_vertex function, 9, 43, 120, 152, 157,
128,225
adjacency_graph_tag function, 124
adjacency_iterator function, 47, 146
adjacent_vertices function, 46-47, 146
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Functions, continued
advance_dispatch function, 33
advance function, 33
allow_parallel_edge_tag function, 124
back_edge function, 50, 67, 160
bfs_name_printer function, 11
bidirectional_graph_tag function, 124
clear_vertex function, 134, 153, 226
clock function, 128
compare function, 183
component_index function, 204-206
compute_loop_extent function, 71

connected_components function, 98, 100,

195-197
cycle_edge function, 159
degree_size_type function, 144, 146
depth_first_visit function, 57, 67, 70, 72,
175-176
directed_category function, 34, 124, 244
directed_tag function, 124
discover_vertex function, 50
ds.find_set function, 201-205
ds.union_set function, 201-205
edge function, 149, 226

edge_parallel_category function, 34, 124,

244
edges function, 8, 147
edmunds_karp_max_flow function,
206209
empty function, 290
equal function, 23-24
erase_dispatch function, 234
erase function, 234
examine_edge function, 159
f function, 40
file_dep_graph function, 55
file_dep_graph2 function, 55
find_loops function, 69
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find_with_full_path_compression
function, 295

find_with_path_halving function, 295

finish_vertex function, 50

for_each function, 29

forward_iterator_tag function, 33

forward_or_cross_edge function, 50

function_requires function, 35

gb_new_edge function, 123

generic_dfs_vl function, 55

get function, 6, 79-80, 156, 248, 266,
279, 286

has_cycle function, 49-52

identity_property_map function, 16

in_edges function, 8

incremental_components function, 195,
199

insert function, 64

johnson_all_pairs_shortest_paths
function, 186188

kruskal_minimum_spanning_tree
function, 91-93, 189-192

link function, 294

make_back_edge_recorder function, 71

max_element function, 58

num_edges function, 149

num_vertices function, 38-39, 46, 115,
147, 162

operator function, 50, 158

out_degree function, 144, 145

out_edges function, 8, 72, 125, 126, 138,
140, 143-145

prim_minimum_spanning_tree function,
94-96, 192-195

print_equal function, 24

print_equal2 function, 24

print_graph function, 272

print_trans_delay function, 6



INDEX

print_vertex_name function, 6

push_dispatch function, 234

push function, 234, 290

push_relabel_flow function, 206

push_relabel_max_flow function,
209-212

put function, 279, 280, 286

read_graphviz function, 84, 91

remove_edge function, 152—-153, 226,
228

remove_edge_if function, 227

remove_in_edge_if function, 155

remove_out_edge_if function, 154

remove_vertex function, 152, 225, 226

safe_sort function, 35

size function, 290

sort function, 10, 34

source function, 124, 125, 138, 140, 145,
147

std::accumulate function, 54

std::advance function, 33

std::back_inserter function, 92

std::for_each function, 29

strong_components function, 102—103,
198-201

Succ_Adj_Edge function, 125

sum function, 20, 21, 30, 31, 32

target function, 124, 125, 138, 140, 145,
149

tie function, 8, 296

top function, 290

topological_sort function, 13, 14-18,
44-46, 57,119, 120-123, 176-177

topo_sort_dfs function, 4647

topo_sort function, 47, 49, 51, 55-58

traversal_category function, 34, 124, 244

tree_edge function, 50, 160

union_set function, 294

311

valid_position function, 114-115

vertex function, 225

vertex_index_map function, 16, 187, 191,

194, 196, 199, 207

vertex_list_graph_tag function, 124

vertices function, 8, 47, 296

vertices_size_type function, 124

visitor function, 11, 66

who_owes_who function, 231
function_requires function, 35

G
“Gang of Four” (GoF) Patterns Book, 1011
gb_new_edge function, 123
g_dot, 84
Generalized pointers, 25. See also Iterators
generic_dfs_vl function, 55
Generic programming (GP)
boost namespace and, 37-39
concepts, 27-29, 34-37
in C++, 19-59
Koenig lookup and, 38-39
models, 27-29
named parameters and, 3940
object-oriented programming and,
comparison of, 22-25
the STL and, 25-27
get function, 6, 79-80, 156, 248, 266, 279,
286
GNU C++, 127, 128. See also C++
(high-level language)
Goldberg, A. V., 105
GP (generic programming). See Generic
programming (GP)
Graph(s)
adaptors, 13—-14, 119, 123-126
directed, 34
implicit, 113-118
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Graph(s), continued
internal properties for, 52-54, 229-230
libraries, interfacing with, 119-126
modification, 9—10, 150-157
search, backtracking, 116-116
setup, 42—44, 52-54, 63—65
terminology, 3—4
traversal, 7-8, 24, 124, 137-150, 244
undirected, 4, 138-142
graph_archetypes.hpp, 37
GRAPH class, 120, 123-126
Graph concept, 142-153
graph_concepts.hpp, 35
graph.cpp, 126
Graph parameter, 55
GraphProperties parameter, 12
graph_property_iter_range class, 58,297-298
GraphProperty parameter, 238
graph_traits class, 57, 33-34, 47, 57,
125-126, 142148
basic description of, 242-245
category tags, 244
template parameters, 244
graph_traits.hpp, 244-245
Graph type, 69, 84, 94, 119-120
GraphvizDigraph, 82, 84, 103
GraphvizGraph type, 82, 91, 98, 100
graphviz.hpp, 84, 91
Graphviz.org, 83
Guarantees, complexity, 28, 145-148,
152-157
Guidelines, performance
basic description of, 127-134
graph class comparisons and, 127-132

H
Hamlitonian path, 113-114
has_cycle function, 49-52
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hash_map container, 187

Heuristics
path compression, 190, 293
union by rank, 189-190, 293

Hop, use of the term, 76

.hpp files
adjacency_list.hpp, 17, 216, 246
adjacency_matrix.hpp, 237
connected_components.hpp, 196
edge_list.hpp, 251
graph_archetypes.hpp, 37
graph_concepts.hpp, 35
graph_traits.hpp, 244-245
graphviz.hpp, 84, 91
johnson_all_pairs_shortest_path.hpp, 186
kruskal_minimum_spanning_tree.hpp,

190
leda_graph.hpp, 120-121, 126, 243,
266

prim_minimum_spanning_tree.hpp, 193
properties.hpp, 48—49, 248, 250
property.hpp, 256
property_iter_range.hpp, 298
property_map.hpp, 56, 283
push_relabel_max_flow.hpp, 209
reverse_graph.hpp, 253
stanford_graph.hpp, 13, 122, 243
strong_components.hpp, 198
vector_as_graph.hpp, 15, 17, 272

I
identity_property_map function, 16
Implicit graphs
backtracking graph search and,
116-117
basic description of, 113—118
Warnsdorff’s heuristic and, 117-118
in_degree, 145
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In-edge(s)

basic description of, 4-5

Bidirectional Graph concept and, 145-146

iterators, 7—8

undirected graphs and, 138, 140
in_edges function, 8
IncidenceGraph concept, 143-145, 154
incremental_components.cpp, 202
incremental_components function, 195, 199
Inputlterator, 25-26, 28-29
insert function, 64
Interface, use of the term, 5
interior_property_map.cpp, 232
Internet. See also Routers; Routing

connectivity, connected components and,

98-101

Movie Database, 63
Internet Protocol (IP), 76
Invariants, 28
IP (Internet Protocol), 76
iterator_adaptor class, 125
iterator_category type, 29, 33
iterator_property_map adaptor, 100
iterator_property_map class, 79, 283-285
Iterators

adjacency_list and, 227-229

basic description of, 25

categories of, 25-27

constructing graphs using, 43—44
iterator_traits class, 29, 33, 278

J
johns_int_array class, 32
johnson_all_pairs_shortest_path.hpp, 186
johnson_all_pairs_shortest_paths function
basic description of, 186—187
named parameters, 187—188
parameters, 187
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K
Karzanov, A. V., 105
Keyword parameters, 39-40
Killerapp programs, 41
knights_adjacency_iterator, 115
knights_tour_graph class, 114-117
Knight’s tour problem, 113—-118
Knuth, Donald, 119
Koenig lookup, 38-39
Kruskal, J. B., 89, 90, 94, 95
kruskal.cpp, 191
kruskal_minimum_spanning_tree function
basic description of, 91-93, 189—-192
named parameters, 190-191
parameters, 190
time complexity and, 191
kruskal_minimum_spanning_tree.hpp, 190
Kruskal’s algorithm, 90-93, 95, 189—-192

L
last argument, 27
last variable, 8
LEDA graphs, 119-121, 123-126
basic description of, 13
graph adaptors and, 13
templates for, 266272
leda_g, 120
leda_graph.hpp, 120121, 126, 243, 266
LessThanComparable interface, 34, 36, 37
lexical_cast, 91
libfoobar.a, 54-55
lib_jack, 38
lib_jill, 39
link function, 294
Link-state advertisement, 81
Lists, vectors of, using topological sorts
with, 14-17
listS argument, 17, 53, 132, 233
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Loop(s)
basic description of, 69
finding, in program-control-flow graphs,
69-73
head, 69
self-, 4
termination, 87
loop_set, 73
LvaluePropertyMap interface, 53, 56, 66,
79

M
make_back_edge_recorder function, 71
Makefiles, 48, 59
make_iterator_property_map class, 79
make_leda_node_property_map, 121
max_element function, 58
Max-Flow Min-Cut Theorem, 106
Maximum-flow algorithms
basic description of, 105-112,
206-213
edge connectivity and, 106—112
miles_span.cpp, 262
Minimum diconnected set, 106
Minimum-spanning-tree problem
basic description of, 89-96, 189—-195
Kruskal’s algorithm and, 91-93
Prim’s algorithm and, 94-96
Model, use of the term, 21, 28
MultiPassInputlterator, 146
Musser, D. R., 25
MutableBidirectionalGraph concept,
154-155
MutableEdgeListGraph concept, 155
MutablelncidenceGraph concept, 154
my_array, 30-31
Myers, Nathan, 30
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N
Named parameters. See also Parameters
basic description of, 39-40, 164
bellman_ford_shortest_paths function,
184
breadth_first_search function, 167
breadth_first_visit function, 170
connected_components function,
196
depth_first_search function, 172
dijkstra_shortest_paths function,
179-181
edmunds_karp_max_flow function,
206207
johnson_all_pairs_shortest_paths
function, 187-188
kruskal_minimum_spanning_tree
function, 190-191
prim_minimum_spanning tree function,
194
push_relabel_max_flow function,
210211
strong_components function,
199-200
topological_sort function, 176177
name_map, 53
Namespaces
boost namespace, 37-39
Koenig lookup and, 38-39
Nesting classes, 52
NextProperty parameter, 229
node_array, 121
node type, 124
Notation, 137
num_edges function, 149
num_vertices function, 38-39, 46, 115, 147,
162
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(0)
OOP (object-oriented programming)
generic programming and, comparison
of, 22-25
Graph concept and, 142
polymorphism and, 19-21
operator function, 50, 158
OSPF (Open Shortest Path First) protocol,
82 out_degree function, 144, 145
Out-edge(s)
adaptors, 125
basic description of, 4-5
iterators, 7-8, 126, 144
traversal, 132
out_edge_adaptor, 125
out_edge_iterator, 126, 144
out_edges function, 8, 72, 125, 126
complexity guarantees and, 145
IncidenceGraph concept and, 143—144
undirected graphs and, 138, 140

P
Packets, basic description of, 76
Parallel compilation time, 57-59. See also
Compilation
parallel_edge_traits class, 234
Parameters. See also Named parameters;
Parameters (listed by name); Template
parameters
adjacency_list class, 216
adjacency_list_traits class, 246
adjacency_matrix class, 238
adjacency_matrix_traits class, 247
basic description of, 39-40, 164
bellman_ford_shortest_paths function,
183
breadth_first_search function, 166

315

breadth_first_visit function, 170
connected_components function, 196
depth_first_search function, 172
depth_first_visit function, 175
dijkstra_shortest_paths function, 179
disjoint_sets class, 294
edge_list class, 251
edmunds_karp_max_flow function,
206
filtered graph class, 258
graph_property_iter_range class, 298
graph_traits class, 244
iterator_property_map class, 284
johnson_all_pairs_shortest_paths
function, 187
kruskal_minimum_spanning_tree
function, 190
LEDA Graph class template, 267
mutable_queue adaptor, 292
prim_minimum_spanning tree function,
193
property class, 250
property_map class, 249
property_traits class, 283
push_relabel_max_flow function, 210
reverse_graph class, 253
strong_components function, 199
topological_sort function, 176

Parameters (listed by name). See also

Parameters

Base parameter, 37

capacity_map parameter, 206

color_map parameter, 56, 69, 167, 170,
172, 176, 178, 180181, 196, 199,
207

DiffType parameter, 251

Directed parameter, 12, 214, 238, 246
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Parameters, continued
discover_time parameter, 44-45, 199
distance_combine parameter, 184
distance_compare parameter, 184
distance_map parameter, 40, 183, 184,
187, 194
distance_zero parameter, 188
Edgelterator parameter, 251
EdgeList parameter, 12
EdgeProperties parameter, 12, 52
EdgeProperty parameter, 238
Graph parameter, 55
GraphProperties parameter, 12
GraphProperty parameter, 238
NextProperty parameter, 229
predecessor_map parameter, 85, 183,
184, 190, 207
residual_capacity_map parameter,
206
reverse_edge_map parameter, 207
root_vertex parameter, 194
topo_sort_visitor parameter, 18
ValueType parameter, 251
VertexProperties parameter, 12, 52
VertexProperty parameter, 238
visitor parameter, 162, 184
weight_map parameter, 79, 184, 187,
194
Parent(s)
array, 95
basic description of, 61, 67
maps, 85
minimum-spanning-tree problem and,
94-95
shortest-path problems and, 80
Parsers, 82—84
Partial specialization, providing array traits
for pointer types with, 32-33
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Path(s). See also Shortest-path problems
basic description of, 75, 97
Hamlitonian, 113-114
compression heuristics, 190, 293

path_cost, 87

Performance guidelines
basic description of, 127-134
graph class comparisons and,

127-132

Period (.), 40

Point class, 24

Pointer types, 29, 32-33

Polymorphism
basic description of, 19, 20, 21
parametric, 21, 22
subtype, 20, 22

pop function, 290

POSIX, 128

Pred_Adj_Edge function, 125

predecessor_map parameter, 85, 183, 184,

190, 207

Predecessors, basic description of, 61

Prim, R., 89

prim.cpp, 195

prim_minimum_spanning_tree function
basic description of, 94-96, 192—-195
named parameters, 194
parameters, 193
time complexity and, 194

prim_minimum_spanning_tree.hpp,
193

Prim’s algorithm, 89, 90, 94-96

print_equal function, 24

print_equal2 function, 24

print_graph function, 272

print_trans_delay function, 6

print_vertex_name function, 6

Program-control-flow graphs, 69-73
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Properties. See also Property maps;
Property tags

basic description of, 5

custom, 230

external storage of, 46

internal, 52-54, 229-230

marking vertices using, 46
properties.hpp, 48—49, 248, 250
property class, 5253, 63, 231
PropertyGraph interface, 53, 155-156
property.hpp, 256
property_iter_range.hpp, 298
property_kind class, 52
Property map(s), 53, 103

basic description of, 67

classes, 281-285

concepts, 278-281

creating your own, 283-287

implemented with std::map, 287

library, 277-288

objects, 63—64

for the Stanford GraphBase, 285, 286
property_map class, 53, 156, 248-249
property_map.hpp, 56, 283
property_num class, 52
Property tags, 52, 155-156, 250, 285
property_traits class, 33, 56, 231, 278, 282
Prototypes, 43, 122, 164, 262
PROTOTYPES change file, 122, 262
push_dispatch function, 234
push function, 234, 290
push-relabel algorithm, 105
push_relabel_flow function, 206
push_relabel_max_flow function,

209-212

push_relabel_max_flow.hpp, 209
put function, 279, 280, 286
put_get_helper class, 286
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R
RandomAccesslterator, 25-26, 27, 36
rank_map, 190
reachable_from_head vector, 72
read_graphviz function, 84, 91
ReadWritePropertyMap, 103 Real model,
21

reference type, 29
Refinement, of concepts, 28, 138
remove_edge function, 152—153, 226, 228
remove_edge_if function, 227
remove_in_edge_if function, 155
remove_out_edge_if function, 154
remove_vertex function, 152, 225, 226
res_cap object, 108
Residual capacity, of edges, 105, 206
residual_capacity_map parameter, 206
rev_edge object, 108
reverse_edge_map parameter, 207
reverse_graph adaptor, 13, 72
reverse_graph.cpp, 252-253
reverse_graph.hpp, 253
RIP (Routing Information Protocol), 76
roget_components.cpp, 262
root_map, 199
root_vertex parameter, 194
Routers. See also Routing

basic description of, 76

shortest-path problems and, 7677
Routing. See also Routers

distance vector, 77-81

link-state, 81-88

protocols, 76

tables, 76, 85-88
Routing Information Protocol (RIP), 76
Run-time

behavior, testing, 126

dispatch, of virtual functions, 22



318

S
safe_sort function, 35
Saturated edges, 105
Scherer, Andreas, 262
Self-loops, 4
Semicolon (), 73
setS argument, 65, 127, 132 SGB (Stanford
GraphBase), 119, 120, 122—-123,
262-266
sgb_vertex_id_map class, 122
sgb_vertex_name_map class, 286
SGI STL Web site, 28
Shortest path. See also Paths; Shortest-path
problems
distance, 61
tree, 75
use of the term, 61, 63
weight, 75
Shortest-path problems. See also Paths;
Shortest path
basic description of, 61, 63, 75-88,
177-189
definitions, 75-76
Internet routing and, 76—77
single-pair, 75
single-source, 75
sink vertices, 105
“Six Degrees of Kevin Bacon” game, 62—67
size function, 290
sort function, 10, 34
Source code files
bellman_ford.cpp, 185-186
container_gen.cpp, 232, 233
dijkstra.cpp, 227
graph.cpp, 126
incremental_components.cpp, 202
interior_property_map.cpp, 232
kruskal.cpp, 191
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miles_span.cpp, 262
prim.cpp, 195
reverse_graph.cpp, 252-253
roget_components.cpp, 262
source function, 124, 125
complexity guarantees and, 145
EdgeListGraph concept and, 147
undirected graphs and, 138, 140
Source vertex, 105
Spanning tree
basic description of, 89
minimum-, problems, 89-96, 189—-195
spanning_tree_edges iterator, 189
Specialization, partial, providing array traits
for pointer types with, 32-33
Stack, basic description of, 19
Stanford GraphBase (SGB), 119, 120,
122-123, 262-266
stanford_graph.hpp, 13, 122, 243
std::accumulate function, 54
std::advance function, 33
std::back_inserter function, 92
std::back_insert_iterator, 71
std::deque, 16
std::for_each function, 29
std::insert_iterator, 109
std::istream_iterator, 43
std::iterator_traits class, 29
std::list, 17, 23, 27, 127
std::map, 64, 84, 103
std::pair, 7-9, 43
AdjacencyGraph concept and, 146
AdjacencyMatrix concept and, 148—149
IncidenceGraph concept and, 144
interfacing with other graph libraries and,
126
shortest-path problems and, 78
std::set, 107, 109, 127, 132
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std::sort, 36, 37
std::vector, 17, 27, 65, 85,92, 107, 127
Stepanov, A. A., 25
STL (Standard Template Library)
generic programming and, 22-23, 25-27
graph class comparisons and, 127
Graph concept and, 142
graph traversal and, 7
iterator_traits class, 29, 33, 278
traits class and, 33
visitors and, 10-11, 49
Web site, 28
strong_components function
basic description of, 102—-103, 198-201
named parameters, 199-200
parameters, 199
time complexity and, 200
strong_components.hpp, 198
Succ_Adj_Edge function, 125
Successors, number of, 117-118
sum function, 20, 21, 30, 31, 32

T

Tags. See also Tags (listed by name)
basic description of, 155
dispatching, 33-34
property, 52, 155-156, 250, 285

Tags (listed by name). See also Tags
edge_length_t tag, 266
edge_weight_t tag, 52, 92
edge_xxx_t tag, 52
vertex_index_t tag, 223, 230, 266, 283
vertex_name_t tag, 52

target function, 124, 125
complexity guarantees and, 145
EdgeListGraph concept and, 149
undirected graphs and, 138, 140

TCP (Transmission Control Protocol), 76
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Telephone lines, computing the best layout
for, 90-96
Template(s). See also STL (Standard
Template Library); Template
parameters
concept checking and, 34-37
for LEDA graphs, 266272
polymorphism and, 21
size of, 23
specialization, 31
third-party, 32
traits class, 31-32
virtual functions and, comparison of, 22
visitors and, 50-51
Template parameters. See also Templates
adjacency_list_traits class, 246
adjacency_matrix class, 238
adjacency_matrix_traits class, 247
disjoint_sets class, 294
edge_list class, 251
filtered_graph class, 258
graph_property_iter_range class, 298
iterator_property_map class, 284
LEDA Graph class, 267
mutable_queue adaptor, 292
property class, 250
property_map class, 249
property_traits class, 283
reverse_graph class, 253
Testing
with graph class comparisons,
127-132
run-time behavior, 126
tie function, 8, 296
Time. See also Time complexity
compilation, 22, 54-55, 57-59
discover, of vertices, 44-45
finish, 44-45
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Time complexity
adjacency_list class and, 225-227
basic description of, 165
bellman_ford_shortest_paths function
and, 185
breadth_first_search function and, 167
connected_components function and, 196
depth_first_search function and, 172
depth_first_visit function and, 176
dijkstra_shortest_paths function and, 181
disjoint_sets class and, 295
incremental components and, 202, 203, 204
johnson_all_pairs_shortest_paths
function and, 188
kruskal_minimum_spanning_tree
function and, 191
prim_minimum_spanning tree function
and, 194
strong_components function and, 200
topological_sort function and, 177
Timestamps, 116-117
Timing runs, 127-128
Tokens, 63
top function, 290
Topological sort. See also topological_sort
function
adjacency_list class and, 17
basic description of, 13—18, 176177
via depth-first search, 18, 4446
generic, 55-57
used with a vector of lists, 14—17
topological_sort function, 13, 14-18, 57.
See also Topological sort
basic description of, 176177
depth_first search algorithm and, 18,
4446
interfacing with other graph libraries and,
119, 120-123
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named parameters, 176—177
parameters, 176
topo_order, 46, 57-58, 121
topo_sort_dfs function, 4647
topo_sort function, 47, 49, 51, 55-58
topo_sort_visitor parameter, 18
topo_visitor, 56
tracert, 76
Traits class
associated types and, 30-34
definition of, 31-32
Graph concept and, 142
internal properties and, 52
most well-known use of, 33
partial specialization and, 3233
requirements and, 28
Transmission Control Protocol (TCP), 76
Traversal, 7-8, 24, 124, 137-150, 244
traversal_category function, 34, 124, 244
tree_edge function, 50, 160
Tree edges, 61, 67
Triviallterator, 28-29
Typedefs, nested in classes, 30-31

U

Undirected graphs, 4, 138—-142
undirectedS argument, 63

Union by rank heuristics, 189-190, 293
union_set function, 294

User-defined objects, 49

A%

Valid expressions, 28, 29
valid_position function, 114-115
value_type, 28, 29, 31

ValueType parameter, 251

vecS argument, 17, 53, 127
vector_as_graph.hpp, 15, 17, 272
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Vector model, 21
vertex_descriptor, 142, 144, 148
vertex function, 225
VertexGraph interface, 107
vertex_index_map function, 16, 187, 191,
194, 196, 199, 207
vertex_index_t tag, 223, 230, 266, 283
VertexList, 12, 127, 132, 134, 224-225, 230
VertexListGraph concept, 92, 124, 143, 147
vertex_list_graph_tag function, 124
VertexMutableGraph concept, 152
VertexMutablePropertyGraph concept,
156-157

vertex_name_t tag, 52
VertexProperties parameter, 12, 52
vertex_property, 157
VertexProperty parameter, 238
VertextMutableGraph, 124
vertex.t, 57
vertex_xxx_t, 52
Vertices

accessing, 4647

adding, 128-129

adjacent, 4, 4647

basic description of, 3

clearing, 130, 134, 153

discover time of, 44-45

finish time of, 44-45

marking, using external properties, 46
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names of, storing, 52, 53
sets of, basic description of, 3
source, 4
target, 4
traversing, 4748, 130-132
vertices function, 8, 47, 296
vertices_size_type function, 124
Virtual functions
compile-time dispatch of, 22
run-time dispatch of, 22
size of, 22
Visitor(s), 1011, 50
basic description of, 49-52
concepts, 158—160
visitor function, 11, 66
visitor parameter, 162, 184
Visual C++ (Microsoft), 41, 127, 128

\%%
Warnsdorff’s heuristic, 113, 117-118
Web page(s)
connected components and, 97, 102—-104
links, connected components and,
102-104
well-designed, 97
weight_map parameter, 79, 184, 187, 194
WeightMap type, 190
white_color constant, 56
who_owes_who function, 231
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