Printed In
full color

Quick Start
Guide to FFmpeg

Learn to Use the Open Source
Multimedia-Processing Tool
like a Pro

\/. Subhash

APIESS”

Quick Start Guide to
FFmpeg

Learn to Use the Open Source
Multimedia-Processing
Tool like a Pro

V. Subhash

Apress’

Quick Start Guide to FFmpeg: Learn to Use the Open Source
Multimedia-Processing Tool like a Pro

V. Subhash
Chennai, Tamil Nadu, India

ISBN-13 (pbk): 978-1-4842-8700-2 ISBN-13 (electronic): 978-1-4842-8701-9
https://doi.org/10.1007/978-1-4842-8701-9

Copyright © 2023 by V. Subhash

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York
Plaza, Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8701-9

Dedicated to the creators and supporters of free
and open source software

Table of Contents

About the Authorcccomsssmmmmmssssssnmmssssssmmssssssnms s xiii
About the Technical REVIEWETcusssmesmsssssnssssssssnssssssssnsssssssassnsssssnns XV
Acknowledgments........cccuunsssmmmnmnmmmmmssssssssssnnnnsessssssssssssnnnssssssssnnnnnns Xvii
Introductionccciummsnmmnmmssssnsnmsssssnnnnnssssnnnssssssnnnnssssnnnnnssssnnnnnnnssnnnnnss Xix
Chapter 1: Installing FFMPegcocmmmmmmmmmmmnssssssssnmmmmsssssssssssssssssessssnns 1
FFmpeg for Microsoft WindOWS USEIScocueeverenernnesensesesesesesesesesessesesesesenns 1
FFMpeg for LINUX USEIS ..o s e e s s e ssssssnssssesssssenns 6
FFmpeg for APple MaC USEIS.......ccccveveererierienesessesese s sesse e ssssessessessssessessesses 9
£ 111 4= R 9
Chapter 2: Starting with FFMpeg......cccccuneemmmmnnsnmnmmmsssnnmnssssssssssssnns 11
FIPFODE <. —————————— 12
FIPIAY e ——————————— 13
L1011 0= o TSRS 14
Other FFmpeg End-USer Programsccovenmnnesnsessssssssssessssssssssssssssessssesenns 14
1] 4= O 15
Chapter 3: Formats and Codecs........ucsmmmmmmmmmmsmsssssnssnssssssssssssssnssssssnss 17
CONLAINEIS ...covierrerire s e 17
Codecs, Encoders, and DECOUEIS.......ccvrrrerererensersersessssessessessesssssssessessessssensesses 18
Demuxers ant MUXELSccccvrrinienenn s s ssessssessesness 19
SUMMANY....eieeereere s e e e r e e 21

https://doi.org/10.1007/978-1-4842-8701-9_1
https://doi.org/10.1007/978-1-4842-8701-9_1#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_1#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_1#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_1#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_2
https://doi.org/10.1007/978-1-4842-8701-9_2#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_2#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_2#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_2#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_2#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_3
https://doi.org/10.1007/978-1-4842-8701-9_3#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_3#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_3#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_3#Sec4

TABLE OF CONTENTS

Chapter 4: Media Containers and FFmpeg Numbering........cccevusssnnnnas 23
(0] g1 11T £ R 23
Container INTErNAIS..........covererererenerercrer e 24
Input and OULPUL FIlES.....cccevericircrer e 27
MADS ..o ——————————————— 31
Metadata...........ccvrnmi i ————————— 35
Metadata MapsS ... s 39
ChAanNEl MAPScovvueerreerir sttt 4

Do Not Use the -map_channel Optionccccoecvnvvrccnecrnce e 44
SUMIMANY....eieeirereeee e e e n e s re e e e e 45

Chapter 5: Format Conversion.........oceeeemmmmrsmssssssssssssssssssssssssssssssssnnes 47
NO-Brainer CONVEISIONSc.cuevverenmrrnserensesessessssssessssssssssssssssssssssssssssssssssssssenns 47
Conversion OPLIONSccvvvererinsniere s e sre e e ene e 48
Obsolete/INCOrrect OPLIONSccvcvvererrrerrerere s s se e enens 49
0010 LT 0 0] R 49
Sample Conversion with Custom Settings........cccovvvrnvvrecrccvnccrce e 50
Multi-pass CONVEISIONccccevvrrinienenis s ssesessessesnens 51
Conversion for Maximum Compression and QUalityc.ccovveererreneseserensenenns 52
AUIO CONVEISIONcviueerireerrese s se s sn e srs e s nsanis 55
Audio EXIraCHioN.........ccocvvinmiiiiinir s 55
Extract Stills from a Video (Video-to-Image Conversion)ccouovversereerenserseraens 57
Image-Conversion SEtiNgS........cccovvrrvvrenrie s 59
Create Video from Images (Image-to-Video Conversion)...........cccveerreresenserennen 59
Create a Slideshow from Several IMagescocvervrerreneresernsesesseseseseressesenns 60
Create a GIF from @ Vide0cccveeerirernesnnesersse e s 62

APNG......cceeeeese st sa et e gt 63

https://doi.org/10.1007/978-1-4842-8701-9_4
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec8
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec9
https://doi.org/10.1007/978-1-4842-8701-9_5
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec8
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec9
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec10
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec11
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec12
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec13
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec14
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec100

TABLE OF CONTENTS

Create aVideo Using an Image and an MP3...........cccvvvrvnierenennensenensesessensenes 64
Convert Onling Videos t0 AUTIOccceeeererrnenesereressseseseseses e sesessns 66
Convert TEXt 10 AUIOc..ccceeeeeereercrer e 68
Conversion Settings for Specific Storage Medium..........c.ccocvvvivnvnincincnennn, 69
SUMMANY....eitieernetrre e ee e e p e e 69
Chapter 6: Editing Vide0Scccsserssssnssssansssssnsssssnsssssnsssssnsssssnnssssnnssssns 71
RESIZE @ VIBO......cocrrrericiiri i s 71
Editing OPtioNS.....ccccvevererierereserserse s s s ssesss s ssessessssessessessssessessesaessssensessens 75
Cut @ Portion 0f @ VIdE0........cccccvererrreererirrsesese s sesnns 76
Cut Without Re-eNCOAINGcovreeeerereereeree s 78
Append Videos (CoNCatenate)ccoeeverernseressesmsesssssesesesesese s sessssessssessnnes 80
Don’t KNOCK ~COUEC COPY ...cvveveerererresresisesessesessesse e ses e ssssese e ssesssensesnens 81
1] 4= 82

Chapter 7: Using FFmpeg FIRersc.cccunmmmmnnnemnmmnsssesnmmnssssnsnssssnnnnn 83

Filter CONSIIUCLION.......cccceirerirseccrr s 83
1] g = 0] S 85
Filter-Based Timeling Editingcccvverrererenerecrrcreree e 85
Expressions in FFmpeg Filter Definitions..........ccccvvnnnininnnnnsne s 86
Inset Video (Picture-in-Picture OVerlay).........ccccuvevnvernenenssesnsesesesesesesessesens 88
Split Video (Side-by-Side OVErlay)cccvrererrrrierennsinserese s sessessessesessessesees 90
Append Videos Using @ FILEr ... 9
Delete a Portion of a Video in the Middle..........coooorenreirerreerreeree e 94
Rotate @ VIidEOceoeeeeeeeec e e 95
L 11O IR T [T T SOOI 98
Brighten a Video (Adjust Contrast)ccccvrnrernneneniesesnsesenesessse s 100
Generate a TeSt VIdRO........cv i 102

vii

https://doi.org/10.1007/978-1-4842-8701-9_5#Sec15
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec16
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec17
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec18
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec19
https://doi.org/10.1007/978-1-4842-8701-9_6
https://doi.org/10.1007/978-1-4842-8701-9_6#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_6#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_6#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_6#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_6#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_6#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_6#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_7
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec8
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec9
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec10
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec11
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec12

TABLE OF CONTENTS

REMOVE LOJO0 ...cvererieriererer et s sn s s n 103
Fade into Another Video (And in Audio T00)......cccuverrerinensnsesesnsessesessssessessens 105
Crop @VIdE0 ..ot 107
Blur or Sharpen @ Video0cccccvvrerennninienesnsssses s ssssessesse s 109
Blur a Portion of @ VidEO0.........ccecervcernesnniscrs e 110
Draw TeXE ..ot ——— 112
Draw @ BOX.....ovoeririirine s 113
Speed UP @VIdEOccuceeeerresiretr ettt e e e e 115
SIOW DOWN @ VIARO ... 116
SUMMANY....ceiieerereresese e se s sr s s e nenssnenns 117
Chapter 8: All About AUMIOccerrrrsssmmmmmssssnnnsmsssssnsnssssssnnssssssnnnnesssnnns 119
Convert from One Audio Format to Anotherccccvveenecnncnnesnese e 119
Extract Audio from @ Video..........cccvrriincnnnnnsssse s 119
Convert a MIDI File t0 MP3 0F 000covrerrererennerserersesessessessessssessessessssessessenes 120
ChanGe VOIUMEccerueerirecercccrte ettt st e e 120
Change Volume in aVideo Filecccooeoereireecercere s 123
Dynamic Range Compression/Normalization...........c.ccoveveennenesesesnsesesssensnnes 125
CRANNEIS ... 126
Swap Left and Right Channels...........cccccvvrerninininnnnsniere e sessesensens 128
Turn Off @ ChANNEI ... s 128
Move Channel to a Separate Audio TracK..........cceeeeererernvenenesernsernsesesesereens 129
Fix Out-of-Phase Audio Channelsccccorenrnenerencrnccnereses e 130
Change Stereo t0 MONO.........coveervrreneserese s ssenes 131
Convert MONO 10 STEIBOcccvecerreerrresere e 133
Make Audio Comfortable for Headphone Listening..........cccecvevvvvncerienensensennenn 133
Downmix 5.1 Audio 10 STEreO0.......cccorrrrircririrrr s 134

viii

https://doi.org/10.1007/978-1-4842-8701-9_7#Sec13
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec14
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec15
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec16
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec17
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec18
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec19
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec20
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec21
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec22
https://doi.org/10.1007/978-1-4842-8701-9_8
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec8
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec9
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec10
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec11
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec12
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec13
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec14
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec15

TABLE OF CONTENTS

Downmix Two Stereo Inputs to One Stereo Qutput........cccveeviervrrierierensensenenns 134
Render a Visual Waveform of the AUdioccoveeeereecrnccnneser e 136
DLy T Y 1] T ST 138
Silence the VIO ... s 138
Convert TeXt t0 SPEECH ... s 138
AppPlY @ LOW-PaSS Filterccccevieircere e enes 139
SUMMAIY . veiteitrerere e sere e s e s e e s ssesae e s e s aesaese e e saesaesae e s e saesaesseenaesaens 140
Chapter 9: All About Subtitlescccrrnnremmmmnssnnnmnsssnnensss———— 141
Add Subtitles to a Video as an Extra Stream...........cocooecevvnrnenencnennsssnesenenens 142
Permanently Burn Subtitles t0 @ Videoccccovoeeeresrncenrereee e 143
Add a Custom Font for Displaying Subtitles of aVideo..........ccccerrvrernsererinens 145
About the Substation Alpha (SSA/ASS) Subtitle Format.............ccocervvrniennienns 146
Add Subtitle Files in Different LANQUAQES.......ccovrerrerererrenseressesessessessesessessenses 150
Extract Subtitles from @ Video........c.cocovviernrnnisncsnnssses s 151
Extract Subtitles from @ DVD........ccccovreicnnrnneseseseres e 152
SUMIMANY....eeeerercreree e s e e e e nre e re e e e e 153
Chapter 10: All About Metadataccccussuemmmmmsssnnnnmssssssnnsssssnnsnssssnnns 155
Add Album Art £0 MP3.......ccceccccess s 155
SEEIMP3 TAGS ...uervreerrrrerrrie e e 157
Export Metadata..........cccocvvrvenininns e 158
Import Metadataccccvvrieniiinin 159
EXtract AIDUM AT ... s 160
Remove All Metadataooeeerernerenererecresesese e 162
Set Language Metadata for Audio Streamscccccvvrenrenernsesensesessesesensesenns 163
SUMMANY ...t r s r e np e 164

ix

https://doi.org/10.1007/978-1-4842-8701-9_8#Sec16
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec17
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec18
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec19
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec20
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec21
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec22
https://doi.org/10.1007/978-1-4842-8701-9_9
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec8
https://doi.org/10.1007/978-1-4842-8701-9_10
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec8

TABLE OF CONTENTS

Chapter 11: FFmpeg Tips and Tricksccccmmmmsssmnnmsssssnssesssssssssssssnns 165
Customize the Terminal..........cccovrerererernnesesese e sesnns 165
File Manager AUtomation ... 167
Hide the BAnNErcoocevrerereernesese s s ssenes 170
Add an espeak Intro to Your MP3 FileScccoovvvvvienennsniene s sessensennns 170
Best MP3 (MPEG 2 Audio Layer 3) Conversion Settings.......cccocvvvveriereerenseraenns 173
Colors in HexadeCimalcccevenernnnssmsesess e ssssseas 174
C0I0rS iN LItEral......ccveveeeecrererineccse e e se s ssnsssens 175
Streams Information from ffprobe ... 177
Extract Non-pixelated Images from a Video..........ccccvrvrerneernenesnscsnsesessesenennes 185
Create a Thumbnail Gallery for @ Video........c.cuceveemrenernsenenessnssesessesessesensenes 188
Record from MICrOPRONEccvcriererrrerre e 192
Record from Webhcam..........ccoiinnnnnr s 194
Lo (T) J O 10 (1 (O 195
Render an Animated GIF 0n @ Vide0.........ccccvvecrrenerencrnrereresesee e 197
Show a Timer on the VA0ccccvveerrcesreserese e 200
Create a Silent RINGLONEccccvvcernenrcse s 201
Create a Countdown Beep AUI0.........covcervererinsenieniere e sesessesessesessens 202
Generate Noise of @ Certain “Color”..........cccovmmnmnnrnnsnssssssese s 203
Create @ BIEep AUI0.......c.cceereeerincerire et 204
Add an Echo 10 Part of @ VIdeO0.........ceceereerererereerrcere e 204
REVEISE @ VIR0cecerererereserree s s s s ssnns 205
Fade into Another Video Using a Transition Effect...........c.ccocvrerninnerinsesenesennnne 206
Create Waveform Video of AUGI0.........ccccccrrerermnsnssssenssssss s 208
Create a Waveform Image of AUCI0.........ccvverrervrnreriernsenserse s sessere e sessesessees 210
Forensic Examination of Audio (Not Really)c.ccocvvvririninnsnccnenssensenaenns 210
Replace a Green-Screen Background with Another Video.........cccceevveverennen. 212

https://doi.org/10.1007/978-1-4842-8701-9_11
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec8
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec9
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec10
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec11
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec12
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec13
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec14
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec15
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec16
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec17
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec18
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec19
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec20
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec21
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec22
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec23
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec24
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec25
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec26

TABLE OF CONTENTS

Turn All Colors Gray EXCEPE ONE.......cvcvverererrenrereressssesesessesessessessesssssssessesnes 213
How t0 Pan ACroSS @ VitE0.........ccoueererererrecreeesesese s 213
Using FFmpeg with Timeline-Based Video-Editing Software..........cccccvcvvennene 214
Make ffmpeg -version More Meaningful...........ccoeeervrrnsennresesresesssesesesenenns 214
Hardware ACCEIEration..........cuueerererenresenesesssesssese e ssenes 216
FINIS ot 218
WRHAt NEXL. .. oo s 220
Chapter 12: ANNEXUIES ...cuuresssssessesssssnssessssssnsssssssnssssssssnnssssssnnnsssssnnns 223
Annexure 1: Sample List 0f COUECS.......cuorrinrnrrnerire e sesseens 223
Annexure 2: Sample List 0f DECOUErScccvvvrvririinnrnreners e 234
Annexure 3: Sample List 0f ENCOUErScccovvvvvniniennsnienene e 244
Annexure 4: Sample List of FIRErScccocvveirssenncsnese s sesesesesseens 249
Annexure 5: Sample List of FOrmats..........ccccvevvnvvinennsnienennsessesse e sessenennns 261
INA@X..ceiiissnnnnsssssnnnsmssssnnnssssssnnnnsssssnnnssssssnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnss 271

https://doi.org/10.1007/978-1-4842-8701-9_11#Sec27
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec28
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec29
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec30
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec31
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec32
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec33
https://doi.org/10.1007/978-1-4842-8701-9_12
https://doi.org/10.1007/978-1-4842-8701-9_12#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_12#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_12#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_12#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_12#Sec5

About the Author

V. Subhash is an invisible Indian writer,
programmer, and illustrator. In 2020, he
wrote one of the biggest jokebooks of all
time and then ended up with over two dozen
mostly nonfiction books including Linux
Command-Line Tips & Tricks, CommonMark
Ready Reference, PC Hardware Explained,

Cool Electronic Projects, and How To Install
Solar. He wrote, illustrated, designed, and
produced all of his books using only open source software. Subhash has
programmed in more than a dozen languages (as varied as assembly

and Java); published software for desktop (NetCheck), mobile (Subhash
Browser & RSS Reader), and the Web (TweetsToRSS); and designed several
websites. As of 2022, he is working on a portable JavaScript-free CMS using
plain-jane PHP and SQLite. Subhash also occasionally writes for the Open
Source For You magazine and CodeProject.com.

xiii

About the Technical Reviewer

Gyan Doshi has been with the FFmpeg project as a developer and
maintainer since 2018. During this time, he has focused on FFmpeg
filters, formats, and command-line tools. From his experience in video
postproduction stages such as editing and motion graphics, Gyan has
learned how FFmpeg can be used in multimedia workflows as a valuable
addition or as a substitute for expensive tools. Aside from being engaged as
a multimedia/FFmpeg consultant, Gyan also troubleshoots FFmpeg issues
on online forums such as Stack Exchange and Reddit.

Gyan builds the official Windows binary packages of FFmpeg (ffmpeg,
ffprobe, and ffplay) and other tools (ffescape, ffeval, graph2dot, etc.)
and offers them for download from his website at waw.gyan.dev.

https://www.gyan.dev/

Acknowledgments

The author would like to thank:

The publisher Apress who insisted on not using any
third-party video in the screenshots, as the author did
in the original self-published book (FFmpeg Quick
Hacks). Most screenshots in this Apress book were
taken from the author’s own videos. The rest used
videos and images that were in the public domain
(Archive.org, Pixabay.com, and Unsplash.com). This
led to a rewrite of most of the content, and in the
process, several mistakes were eliminated.

The technical reviewer Gyan Doshi for pointing
out several other mistakes and making valuable
suggestions.

Creators and supporters of free and open source
projects.

The author's family, friends, enemies and governments
without whose help and encouragement this book
would have been completed much ahead of its
deadline.

xvii

Introduction

FFmpeg is a free and open source program for editing audio and video files
from the command line. You may have already known FFmpeg as a nifty
program that can do simple conversions such as:

ffmpeg -i some-video.mov same-video.mp4
ffmpeg -i song-video.mp4 song-audio.mp3

FFmpeg is much more capable than this, but it is this intuitive interface
and support for a wide variety of formats that has won it millions of users.

The FFmpeg project was originally started by a French programmer
named Fabrice Bellard in the year 2000. It is now being developed by a
large team of open source software developers spread around the world.

This book can serve as an easy FFmpeg tutorial, hack collection, and a
ready reference. However, it is not possible for one book to cover everything
that FFmpeg can do. FFmpeg has a very huge online documentation with
which you may have to craft your commands. While this book may seem
more than enough for most users, the documentation will open up vastly
more possibilities. DO NOT avoid going through the documentation.

Before you go further into the book, you should be aware that the
FFmpeg project creates two types of software:

1. libav libraries: These are FFmpeg programming
software or “libraries” that are used by programmers
to create audio/video processing software such as
media players, browser plug-ins, and audio/video
editors. The 1ibav libraries have been used to build
some parts of popular software such as VLC, xine,
Blender, and Kodi.

Xix

INTRODUCTION

2.

ffmpeg command-line program: This is the
FFmpeg end-user software that most people can
use. The ffmpeg command-line program internally
uses the 1ibav libraries.

In this book, we will ignore the 1ibav libraries and instead focus on the

fftmpeg command-line program.

Extra Resources for This Book

Render audio waveforms The ‘Quick Start Guide To
over video — ‘Quick Start... FFmpeg' book

All code snippets used in this book are available in
a plain-text file, complete with chapter and section
titles and comments. It is actually a MarkDown/
CommonMark file. You can easily convert it to

an HTML, ODT, DOCX, or PDF file. Conversion
instructions are in the text file.

Videos of several code examples used in the book are
available in an online video playlist.

o Y -

INTRODUCTION

Links to these resources can be found at
e Www.apress.com/9781484287002 (domain + ISBN)

o www.vsubhash.in/ffmpeg-book.html

https://www.apress.com/9781484287002
http://www.vsubhash.in/ffmpeg-book.html

CHAPTER 1

Installing FFmpeg

In the Introduction, I mentioned that FFmpeg was an “end-user program.”
It is actually three command-line end-user programs, or executables:

1. ffprobe
2. ffplay
3. ffmpeg

The executables for these programs are available for Linux, Mac,
Windows, and other operating systems (OSs). When you go to the FFmpeg
website (www. ffmpeg.org), you will have two download options:

o Either download pre-built FFmpeg executables to
your computer

e Or download FFmpeg source code to your computer
and build your own customized FFmpeg executables

If you are unfamiliar with building executables from source code (as
are most people), you should choose the first option.

FFmpeg for Microsoft Windows Users

The download options on the FFmpeg site for pre-built FEFmpeg executables
change frequently, so this book will not be specific with instructions. Just
go to this page and navigate to one of the download sites.

https://ffmpeg.org/download.html

© V. Subhash 2023
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_1

https://ffmpeg.org/
https://ffmpeg.org/download.html
https://doi.org/10.1007/978-1-4842-8701-9_1#DOI

CHAPTER 1 INSTALLING FFMPEG

On the selected download site, you may be presented with a dizzying
array of downloads. Spend some time reading the information given there,
and pick the most appropriate download for you.

#) Releases - BtbN/FFmpeg-Builds - GitHub — Mozilla Firefox

File Edit View History Bookmarks Tools Help
+) Releases - BtbN/FFmpeg-Bi X © 9
& > C |O B hitpsy/github.com/BtbN/FFr €% | » =
| @ ffmpeg-master-latest-win64-gpl-shared.zip 42 MB
‘ © ffmpeg-mastgr-latest-win64-gpl.zip 108 MB
| ©@ ffmpeg-master-latest-win64-Igpl-shared.zip 35.3MB
| @ fimpeg-master-latest-win64-Igpl.zip 87.9 MB
| ©@ ffmpeg-n4.4-latest-linux64-gpl-4.4.tar.xz 72.7 MB
‘ @ ffmpeg-n4.4-latest-linux64-gpl-shared-4.4.tar.xz 28.5 MB
| © ffmpeg-n4d.4-latest-linux64-Igpl-4.4.tar.xz 61.1 MB
‘ @ ffmpeg-n4.4-latest-linux64-Igpl-shared-4.4.tar.xz 245 MB
‘ @ fimpeg-n4.4-latest-win64-gpl-4.4.zip 98.1 MB
https://agithub.com/BtbN/FFmpeg-Buil.../ffmpeg-master-latest-win64-gpl.zip |

Figure 1-1. This download page lists several download options
for FFmpeg executables. Strangely, for FFmpeg, the latest master
download is supposed to be more stable than the numbered
release version

Sometimes, there may be an essentials build and a full build. The
essentials build may be enough for most people. If you want to use certain
unusual features such as freiOr filters, you should choose the latter. As you
never know what you might need in the future, I suggest that you choose
the full build.

2

CHAPTER 1 INSTALLING FFMPEG

R L RN L LY PR Brabat faddo santhon boae Ai .o gala AFallaNbasatie

ffmpeg-git-essentials.7z ver .sha256
ffmpeg-git-full.7z ver .sha256

Figure 1-2. There may be more than one “build” option for the
downloads

In the downloaded archives (zip or 7z files), you will find the
executables: ffprobe.exe, ffmpeg.exe, and ffplay.exe.

&l ffmpeg-master-latest-win64-gpl.zip

Archive Edit View Help

u E Open vi @ Extract | @ % ‘

<§= :?/ @ @ Location: | [7) /ffmpeg-master-latest-win64-gpl/ |

Name v | Size ‘ Type [Date Modified
{: ffmpeg.exe 101.9 MB DOS/Windo... 26 February 202...
% Fhplay.exe 101.7 MB DOS/Windo... 26 February 202...
.;:\:‘, ffprobe.exe 101.8 MB DOS/Windo... 26 February 202...

3 objects (305.4 MB)

Figure 1-3. The downloaded archive file contains three EXE files.
Copy them to a folder specified in your PATH environment variable

Copy the EXE files to some folder that is already included in your
operating system’s PATH environment variable. If you copy them to a new
folder, then add the folder’s full location to the PATH variable.

If you do not do the above, you will need to type the full path of the
executable in your commands in the Command Prompt window.

CHAPTER 1 INSTALLING FFMPEG

Before modifying the PATH environment variable, take a backup of its
value. Open the Command Prompt window and type this command.

echo %PATH% > PATH-BAK.TXT

Let us assume that you have extracted the EXE files to the folder C: \
MyInstalls\ffmpeg\bin. Launch the Command Prompt window with
Administrator privileges. Then, permanently suffix this folder’s location to
the PATH environment variable with this command.

SETX /M PATH "%PATH%;C:\MyInstalls\ffmpeg\bin"

Then, you should check whether the FFmpeg installation is accessible
from the command-line without the full path. (Do this in a Command

Prompt window with normal-user privileges.)
ffmpeg -version

If you do not modify the environment variable, then you will have to
type the full path whenever you want to use the program.

C:\MyInstalls\ffmpeg\bin\ffmpeg -version

FFmpeg is case-sensitive so do not type FFMPEG -VERSION and hope to
get a correct response. FFmpeg may have become platform-independent,
but in its heart, it still beats like a Linux program. This means that FFmpeg
will not support certain functionalities expected of native Windows/DOS
programs. For example, you cannot type command switches (arguments)
in uppercase (even if the command name can be typed in uppercase).

@ Causes error
FFMPEG -VERSION

@ Causes no error
FFMPEG -version
ffmpeg -version

CHAPTER 1 INSTALLING FFMPEG

Almost all command-line examples in this book assume a Linux
environment. One-line commands will not require any change in
Windows.

The Windows/DOS counterpart for the Linux null device (/dev/
null) is NUL. This means that you should replace all instances of 2> /
dev/null in this book with 2> NUL. This construct is used to prevent the
commands from displaying text messages on the screen. ffmpeg outputs
all its messages to standard error, which happens to be the screen. In case
it outputs something to standard output, which also happens to be screen,
and has to be blocked, the Linux remedy is to use > /dev/null. To do the
same on your Windows computer, you will have to use > NUL instead.

In multiline commands, you will find a “\” (backslash) at the end of
each line (except the last one), as is the practice in Linux.

For 'nix users
ffmpeg -f lavfi \
-i "testsrc=size=320x260[out0];
anoisesrc=amplitude=0.06:color=white[out1]" \
-t 0:0:30 -pix_fmt yuv420p \
test.mp4

As a Windows user, you should use a caret () instead of the
backslash (\).

@ For Windows users
ffmpeg -f lavfi *
-i "testsrc=size=320x260[out0]; *
anoisesrc=amplitude=0.06:color=white[out1]" *
-t 0:0:30 -pix_fmt yuv420p *
test.mp4
You should avoid writing anything after the backslash or the caret.

Invisible trailing space(s) can also make a command to fail. (This happens
often with copy-pasted commands.)

CHAPTER 1 INSTALLING FFMPEG

In a Linux bash terminal, the backslash is not required after a double-
quotation mark has been opened, and you can continue on like that for
more lines until the quotation is closed. In a Windows cmd terminal, all
wrapping lines will have to end with a caret.

FFmpeg for Linux Users

If your Linux distribution has not installed FFmpeg by default, then use its
default software manager or package manager to do so. Beware that the
FFmpeg installed from software repositories used by Linux distributions
are usually out of date.

The download sites linked by FFmpeg.org provide the latest builds
with maximum support for external libraries. However, some Linux users
like to build their executables from source. If you have a fast machine or
a few hours to spare, start with the instructions on the FFmpeg Wiki site.
Check their source code compilation steps specific to the Linux distribution
that you use.

https://trac.ffmpeg.org/wiki/CompilationGuide

You can customize your FFmpeg build by enabling/disabling several
build options. Instead of just blindly following the wiki, spend some time
studying the configure script or its help output.

configure --help

https://trac.ffmpeg.org/wiki/CompilationGuide

CHAPTER 1 INSTALLING FFMPEG

"M configure (~/Builds/ffmpeg) - Pluma
File Edit View Search Tools Documents Help

o configure ¥ |

Note that onl the system libraries are auto-detected. All
libraries must be explicitly enabled.

Also note that the following help text describes the purpof
themselves, not all their features will necessarily be usa

--disable-alsa disable ALSA support [autodetect]
--disable-appkit disable Apple AppKit framework [a
--disable-avfoundation disable Apple AVFoundation framew
--enable-avisynth enable reading of AviSynth script
--disable-bzlib disable bzlib [autodetect]
--disable-coreimage disable Apple CoreImage framework
--enable-chromaprint enable audio fingerprinting with
--enable-freior enable freior video filtering [no
--enable-gcrypt enable gcrypt, needed for rtmp(t)
if openssl, librtmp or gmp is not
--enable-gmp enable gmp, needed for rtmp(t)e s

Figure 1-4. Theconfigure script, by default, will try to autodetect
external libraries. You may have to manually enable those that are
not autodetected

In your Linux package manager app, try to search and install (dev-
suffixed) developmental packages with similar names as the external
libraries. You may not be able to install developmental packages for all
of the libraries. But, for whatever libraries that you can install or have
them already installed, add relevant -enable options to the configure
compilation step. Here are a few:

--enable-chromaprint --enable-freior \
--enable-libbluray --enable-libbs2b --enable-libcdio \
--enable-libflite --enable-libfontconfig \

CHAPTER 1 INSTALLING FFMPEG

--enable-libfreetype --enable-libfribidi \
--enable-libmp3lame --enable-libsmbclient \
--enable-1ibv412 --enable-libvidstab \

Run the FFmpeg build statement with these changes, and eventually
all three binary executable files will be created in your $HOME/bin
directory. Then, secure the copy of the documentation from the ffmpeg
build directory so that you can read it whenever it is required.

05" When | built FFmpeg version 5.1, | encountered some errors
with the official wiki guide. The guide uses one long stringified
command to install the FFmpeg binary executable files. This
command is a combination of several commands that downloads
the source and then configures, compiles, builds, and installs the
executable files. If the configuration and compilation commands
encounter any errors and you fix it, the command will restart the
whole drama beginning with downloading the source. You do not
have to endure that. Just continue with the configure step.

If you have an old OS where the latest FFmpeg executable does not
run or cannot be compiled, go to https://johnvansickle.com/ffmpeg/
and download pre-built statically linked executables (not including
ffplay). On my old Ubuntu 10 Fiendish Frankenstein installation, I could
not run the latest FFmpeg pre-built executable nor build the source, but
these statically linked executables worked. (Even the C library is statically
linked.) That is how I was able to finish the 2020 version of this book in
the old OS.

https://johnvansickle.com/ffmpeg/

CHAPTER 1 INSTALLING FFMPEG

FFmpeg for Apple Mac Users

With Apple moving from Intel x86 to ARM architecture, any specific
instructions will be outdated when you read it. It is best that you consult
the FFmpeg Wiki for the specific kind of Apple hardware that you

are using.

https://trac.ffmpeg.org/wiki/CompilationGuide/mac0S

Summary

Although originally designed as a Linux program, FFmpeg is also available
for Windows and Mac operating systems. In this chapter, you learned how
to obtain pre-built FFmpeg executables specific to your OS from the official
FFmpeg site. You also learned how to build your own customized FFmpeg
executables from source.

In the next chapter, you will learn how to start using the executables.

https://trac.ffmpeg.org/wiki/CompilationGuide/macOS

CHAPTER 2

Starting with FFmpeg

The FFmpeg project provides several end-user programs. This book will
focus on three command-line programs - ffprobe, ffplay, and ffmpeg.
You will be using ffmpeg most of the time, but ffprobe and ffplay can
help you as well. In this chapter, you will gain an introduction to all three.
All three have an annoying “feature” - they display a build-information
banner that is as big as the state of Texas. If you create the following aliases
in your $HOME/ . bashrc file, then you do not have to suffer the annoyance.

alias ffmpeg="'ffmpeg -hide banner
alias ffplay='ffplay -hide banner -autoexit
alias ffprobe='ffprobe -hide banner '

I=5" The -autoexit option for the ffplay command ensures
that it makes a clean exit after playing a file instead of sticking
around like it has crashed.

Some command examples in this book will have the suffixes 2>
/dev/null or > /dev/null. Such recourses were necessary to prevent

information clutter.

© V. Subhash 2023 11
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_2

https://doi.org/10.1007/978-1-4842-8701-9_2#DOI

CHAPTER 2 STARTING WITH FFMPEG

ffprobe

If you want to find out useful information about an audio or video file, you
need to use ffmpeg with the -1 option. With ffprobe, you do not need
the option.

ffmpeg -i tada.wav
ffprobe tada.wav

[Le Terminator

~/Dasktop
$ ffprobe ding.wav
Input #0, wav, from 'ding.wav':
Metadata:
copyright : 1998 Microsoft Corporation
Duration: 00:00:00.92, bitrate: 706 kb/s
Stream #0:0: Audio: pcz_si6le ([1][o][0]l[e] / ox0001), 22050 Hz,
2 channels, s16, 705 kb/s

~/Desktop

<

Figure 2-1. ffprobe can be used to display information about what
is contained in a multimedia file

ffprobe can reveal much more information than this if you use
the -show_streams option. You can filter the output of this command for
use in your shell scripts. In a later chapter, you will find a sample output of
this command.

ffprobe -show _streams somefile.mp4

12

https://doi.org/10.1007/978-1-4842-8701-9_11#Sec8

CHAPTER 2 STARTING WITH FFMPEG

ffplay

If you want to play a video file directly from the command line, just type
ffplay and the file name. ffplay is a tiny media player. It does not have
a context menu system or other interface. It responds to some keys and
mouse clicks but does nothing more.

ffplay solar.mp4

~/Desktop
$ ffplay -x 160 -y 120 solar.mp4 2> /dev/null

Figure 2-2. ffplay can be used to play audio and video files

To play an audio file without the (windowed) interface, say, as an audio
notification in a shell script, you can use ffplay like this:

ffplay -autoexit -nodisp ding.wav

13

CHAPTER 2 STARTING WITH FFMPEG

ffmpeg

The executables ffprobe, ffplay, and ffmpeg have several common
command-line options (arguments, switches, or parameters). You can list
most of them with the -h option.

ffmpeg -h
ffmpeg -h long
ffmpeg -h full > ffmpeg-help-full.txt

If you want to review some of the features supported by your
installation of FFmpeg, try these:

ffmpeg -formats
ffmpeg -encoders
ffmpeg -decoders
ffmpeg -codecs
ffmpeg -filters

The output of these commands will give you a good overview of
what FFmpeg can do. Sample output of these commands is available as
annexures in this book.

You can dig out more specific help information with commands such
as these:

ffmpeg -h demuxer=mp3
ffmpeg -h encoder=1ibmp3lame
ffmpeg -h filter=drawtext

Other FFmpeg End-User Programs

The FFmpeg project provides a few other command-line tools in addition
to the three introduced in this chapter. Their purpose and usage are
beyond the scope of this book. If you wish to do your own R&D, then you
can find their files at www. gyan.dev/ffmpeg/builds/#tools.

14

http://www.gyan.dev/ffmpeg/builds/#tools

CHAPTER 2 STARTING WITH FFMPEG

Summary

In this chapter, you gained an introduction to the three FFmpeg
executables. Before venturing into what FFmpeg can do for you, you need
to learn a few things about multimedia formats and codecs. The next
chapter will help you with that.

15

CHAPTER 3

Formats and Codecs

An MP3 audio file can be identified by its “mp3” file extension. Similarly,
an MP4 video file can be identified by the “mp4” extension. The file
extensions of multimedia files do not provide any kind of surety about
the format. Even the format name is merely a notion. If you need to
process audio and video content, you need to go beyond file extensions.
You need to be familiar with multimedia concepts such as containers,
codecs, encoders, and decoders. In this chapter, you will gain some basic
information about all that and more.

Containers

Multimedia files such as MP4s or MP3s are just containers - containers
for some audio and/or video content. An MP4 file is a container for some
video content written using the H.264 codec and some audio content
written using the AAC codec. It need not be like that for all MP4 files. Some
MP4 files may have their video content written using the Xvid codec and
the audio content written using the MP3 codec. Similarly, AVI, MOV WMV,
and 3GP are popular containers for audio/video content. Codecs can differ
from file to file even if their extensions are the same. A multimedia file may
have the wrong extension because of some human error. You can expect all
sorts of combinations in the wild.

When the codecs are not what is usually expected in a container, you
may encounter annoying format errors in playback devices. Sometimes,
you may be able to fix the error by simply renaming the file with the correct

© V. Subhash 2023 17
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_3

https://doi.org/10.1007/978-1-4842-8701-9_3#DOI

CHAPTER 3 FORMATS AND CODECS

extension. At other times, you will have to re-encode the file using codecs
supported by the device. So, what does it mean when a device says it only
supports certain “codecs”?

Codecs, Encoders, and Decoders

When audio and video recordings transitioned from analog to digital,
equipment manufacturers developed algorithms to store audio waveforms
and video frames in a scheme retrievable by computer software. Initially,
these storage schemes were proprietary, and their documentation was not
publicly available. With the rise in the popularity of digital media devices,
interoperability and open standards became necessary.

When multimedia (audio or video) content is written or stored in a
computer file, it is written in a specific retrievable format developed by the
manufacturer of the multimedia equipment. The algorithm used to read
or write multimedia content in a specific format became known as a codec
(coder-decoder). The software used for writing the content using the codec
became known as an encoder. The software used to read the written
content became known as a decoder. A camera uses an encoder chip to
store captured video. A TV uses a decoder chip to play the video from a
USB drive. On a personal computer, the logic of encoder and decoder
chips is installed as a software codec.

Raw audio or video requires a lot of space when stored on a computer
file. The multimedia industry, led by camera manufacturers and computer
companies, has developed several compression techniques to squeeze
multimedia content on to as few bytes of storage as possible. The efficiency
of the compression techniques varies. When the compression discards
some content (assuming that the human ear or the eye would not miss it)
for a dramatic decrease in the size of the file, the technique would be known
as lossy compression. When no content was discarded, the technique was
known as lossless compression. Lossless compression techniques are not
used everywhere because of the high file-space requirement.

18

CHAPTER 3 FORMATS AND CODECS

To suit real-world requirements, most codecs provide options to their
algorithm so that a balance between file size reduction and detail loss
can be specified on a preset or ad hoc basis. You will do the same when
you use FFmpeg. For example, in the following command, to convert an
uncompressed audio from a microphone recording to a lossy compressed
audio format, several settings such as bitrate, number of channels, and
sampling frequency are specified.

ffmpeg -i uncompressed-stereo.wav \
-c:a libmp3lame -b:a 128k -ac 2 -ar 44100 \
compressed.mp3

05" You will learn more about these settings in later chapters, but
for now just be aware that they are often required.

Demuxers and Muxers

I have been using FFmpeg for years without knowing what demuxers

and muxers were. Even now, I cannot care less. Well... maybe a little.

A demugxer is a software component that can read a multimedia input

file so that a decoder can work on it. Similarly, a muxer writes data to a
multimedia output file after it has been processed by an encoder. Between
a decoder and encoder, some processing work may be done, or it may even
pass directly to the other end. Here is all that you need to know:

o To write to a particular container format, the format’s

muxer is required.

e Toread from a particular container format, a demuxer
is required.

19

CHAPTER 3 FORMATS AND CODECS

Input file Output file

i g

O
El-El=>E1->0E1

Demuxer Decoder Encoder Muxer

% o
i
Filters

Figure 3-1. This schematic shows how different components in
FFmpeg work together to give the output you want

For example, to read and write to the MP4 format, an MP4 demuxer
and an MP4 muxer are required. FFmpeg automatically takes care of
muxers and demusxers so that you do not have to bother with them.
However, there may come situations when you do have to explicitly
address them.

~/Desktop

ffmpeg -h demuxer=gif
Demuxer gif [CompuServe Graphics Interchange Format (GIF)]:
GIF demuxer AVOptions:

-min_delay <int> 2 1 minimum valid delay between
-max_gif_delay <int> o1 SRR maximum valid delay between
-default_delay <int> 7 | default delay between frame:
-ignore_loop <boolean> "] 1 M ignore loop setting (netscaj

Figure 3-2. This demuxer help output provides a clue as to how to
create endlessly looping GIF animations

20

https://doi.org/10.1007/978-1-4842-8701-9_11#Sec14

CHAPTER 3 FORMATS AND CODECS

Summary

In this chapter, you learned some theoretical concepts about multimedia
formats, containers, and codecs. In the next chapter, we will delve deeper
into the container and learn how to refer to its constituents from the

command line using index numbers.

21

CHAPTER 4

Media Containers
and FFmpeg
Numbering

In the previous chapter, you learned that a multimedia file is actually a
container. On the inside, it encloses multimedia streams and metadata. In
this chapter, you will learn what streams and metadata are and how you
can access them from the command line. The sections in this chapter are
arranged for easy access and completeness. It may not be possible for you
to understand all of it on your first read. Return to this chapter a few times
to get a full understanding.

Containers

A container can have several streams. A stream could be audio, video,
subtitles, or a file attachment.

In an MP4 video file or container, you will usually find a video stream
and an audio stream. In an MP3 file, you will find an audio stream and
maybe some IDv3 tags (such as title, album, and artist) as metadata.

If you have one of those rare multi-angle DVDs, then each camera
angle will be represented by a separate video stream. Multi-language
videos will have an audio stream for each language. DVD subtitles for

© V. Subhash 2023 23
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_4

https://doi.org/10.1007/978-1-4842-8701-9_4#DOI

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

multiple languages are represented as individual subtitle streams. MKV
files may have custom font files for displaying the subtitles. These font files
will be represented as file-attachment streams.

In an audio stream, there can be several channels. A mono audio
stream has only one channel. A stereo stream has two channels - left and
right. ADVD movie’s 7.1 surround sound stream has eight channels - front
left, front right, center left, center right, rear left, rear right, and one LFE
(low frequency effects).

FFmpeg identifies these streams, channels, and metadata using index
numbers so that you can refer to them from the command line.

Container Internals

Logically, the internals of a multimedia file look like this. A container
needs to have at least one stream. Everything else is optional. It is all

right for a video file to not have album art, subtitles, custom fonts, or tags
(global metadata), but one video stream and one audio stream are usually
expected.

Container

Video stream Audio stream

Video stream Audio stream
metadata metadata Global

metadata

Subtitle stream File attachment
metadata stream metadata

Figure 4-1. Internals of a multimedia file container

24

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

From this logical representation, you will note that a multimedia file
container may have some global metadata and that each stream in the
container can have stream-specific metadata too.

You can use ffprobe to display these details for any multimedia file.

~/Desktop/FasDrive
ffprobe "Flytel - Manic Monday (Album).mp3”
mp3, from 'Flytel - Manic Monday (Album).mp3’:
Metadata:
title : Manic Monday (Album)
album : Greatest Hits
artist : The Bangles
genre : Pop
date = 1990
comment : Purchased by V. Subhash from Flipkart - Flyte

Duration 20:03: 03.72, start: 0.025056, bitrate: 320 kb/s
[Stream #0:e] Audio: mp3, 44100 Hz, stereo, fltp, 320 kb/s

Metadata:

encoder : LAME3.98r
Video: mjpeg (Baseline), yuvj42ep(pc, btd7@bg/unknc
Metadata:

comment : Cover (front)

Figure 4-2. This is a sample ffprobe output for an audio file

In this ffprobe output, the global metadata for the MP3 file shows ID3
tags such as title, album, and artist. It also includes a “comment” metadata
that I added after I bought the music. The metadata for the audio stream
shows that it was encoded using the LAME encoder by the music vendor.
The album art is shown as a video stream but it has only one frame. More
importantly, you should note that FFmpeg refers to the input files and
streams using index numbers starting from 0 (zero), instead of 1 (one).

Here is another example; this one is for a video file.

25

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

~/Desktop
§ ffprobe lucas.mkv
Input #0, matroska,webm, from 'lucas.mkv’:
Metadata:
encoder : libebml v1.2.2 + libmatroska v1.9.@
creation_time 1 2020-02-19T720:30:08.000000Z
Duration: @9:09:20.13, start: 0.002002, bitrate: 507 kb/s
Stream 20:0: Video: h264 (High), yuv42@p(progressive), 320x180 [SAR
1:1 DAR 16:9], 24 fps, 24 tbr, 1k tbn, 48 tbc (default)
Stream #9:1: Audio: mp3, 4410Q Hz, stereo, fltp, 128 kb/s (default)
Stream #0:2: Subtitle: ass (default)
Stream #0:3: Attachment: ttf

Metadata:
filename : Florentia.ttf
mimetype : application/x-truetype-font

Figure 4-3. This is a sample ffprobe output for a video file

What does this output say?
o The MKYV file is identified as the first input file (#0).

o It has global metadata for creation time but none for
title, copyright, comments, etc.

o The first stream (#0:0) is a video stream and requires
a H.264 decoder.

o Thesecond stream (#0:1) is an audio stream and
requires an MP3 decoder. The audio is in stereo, that is,
it has two channels.

o The third stream (#0:2) is a subtitle stream
and requires a decoder for the Substation Alpha
(SSA) format.

o The fourth stream (#0:3) is a custom font for
displaying the subtitles. It is stored as a file-
attachment stream.

26

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

e The fourth stream also has some stream-specific
metadata identifying the font file’s name and
mimetype. This is important because the SSA subtitles

may refer to the font by this name.

5" Mimetype is a more rigorous file-type definition (than file
extensions) and is usually used by websites to identify downloads to

web browsers.

Input and Output Files

An ffmpeg command can have multiple input and output files. The
following command has two input files and one output file. (For now,
ignore the line with the filter. Filters are explained in Chapter 7.)

ffmpeg -i solar.mp4 -i overlay.png \
-filter complex "overlay=370:260:" \
watermarked-solax.mp4

I3 When specifying multiple input files, place options specific to
one input file on the left side of -1 option. Whatever specified after
the file name applies to the next input file (- i) or (in its absence) the
next output file.

27

https://doi.org/10.1007/978-1-4842-8701-9_7

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

5" ffmpeg can also read from streams and write to them. The
streams can be piped from/to another command and also transported
over a network protocol. For more information, read the official
documentation on protocols.

A video of my solar inverter and the cover image of one of my books
are the input files. The command renders the image at 370 pixels from the
left edge and 260 pixels from the top edge of the video.

(e

» watermarked-solar.mp4

)
f

Figure 4-4. The output video is the input video with the overlaid
input image

The two input files were specified using the -i option. An MP4 video
file is input file #0 and a PNG image file is input file #1. The output file, as
is always, has been specified last.

28

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

~/Desktop
$ ffmpeg -i solar.mp4 -i overlay.png \
> -filter_complex "overlay=370:260:" \
> watermarked-solar.mp4
Input %0, mov,mp4,m4a,3gp,3g2,mj2, from 'solar.mp4’:
Metadata:
coament : MOVeo127
Duration: ©9:91:36.93, start: 0.000000, bitrate: 390 kb/s
Stream #0:@(und): Video: h264 (High) (avcl / 9x31637661)
SAR 1:1 DAR 4:3], 351 kb/s, 24 fps, 24 tbr, 12288 tbn, 48 tb
Metadata:
handler_name : VideoHandler
Stream #@:1(und): Audio: aac (LC) (mp4a / ©x6134706D), 8
40 kb/s (default)
Metadata:
handler_name : SoundHandler
Input #1, png_pipe, from ‘overlay.png':
Duration: N/A, bitrate: N/A
Stream #1:9: Video: png, rgba(pc), 245x209 [SAR 11811:11
br, 25 tbn, 25 tbc
Stream mapping:
Stream #0:9 (h264) -> overlay:main (graph @)
Stream #1:9 (png) -> overlay:overlay (graph @)
overlay (graph @) -> Stream #0:0 (1ibx264)
Stream #0:1 -> #0:1 (aac (native) -> aac (native))
Press lal to stoo. [?1 for help

Figure 4-5. The output of the command shows the index numbers
used for the input files and streams

The output of the command shows that the first stream in the first
input file is a video stream and is numbered #0:0. The second stream in
that file is an audio stream and is numbered #0:1. The first stream in the
second input file (the PNG image file) is considered as a video stream even
though it has only one (image) frame and is identified as #1:0.

29

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

You can refer to streams by their type. In the previous command, the
streams were as follows:

e 0:v:0 (first file’s first video stream) or 0: 0 (first file’s
first stream)

e 0:a:0 (first file’s first audio stream) or 0: 1 (first file’s
second stream)

e 1:v:0(second file’s first video stream) or 1:0 (second
file’s first stream)

For this to become clear, spend some time studying the screenshot in
Figure 4-5.

Suppose that a multi-language DVD video file had one video stream
and two audio language streams. The streams can be referred as follows:

e 0:v:0 (first video stream) or 0:0 (first stream)
e 0:a:0 (first audio stream) or 0:1 (second stream)

e 0:a:1(second audio stream) or 0: 2 (third stream)

I=5" In the output of ffmpeg commands, you will encounter index
numbers ignoring the stream type. To make your FFmpeg commands
somewhat fail-safe, | recommend that you refer to streams by their
type instead.

As you may have guessed, the stream-type identifier for video is v and
a for audio. There are others as given in Table 4-1.

30

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

Table 4-1. Stream-type identifiers

Audio a

Stream type Identifier

Video (not images)

File attachments t

After displaying the information about the input files and streams,
ffmpeg will list how the input streams will be processed and mapped to
intermediate and final streams. Then, it will list the final output files and
their streams. In a bash terminal, you can press the key combination Ctrl+S
if you wish to pause and study this information. Otherwise, all of this
information will quickly flash past your terminal as ffmpeg will then post a
huge log of informational, warning, and error messages as it performs the
actual processing of the input data.

Maps

With multiple input files, FFmpeg will use an internal logic to choose
which input streams will end up in the output file. To override that, you
can use the -map option. Maps enable you to specify your own selection
and order of streams for the output file. You can specify stream mapping in

several ways:

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

Information overload? Let me explain with an example. When I created
this stop-motion video a few years ago, I used a gramophone recording as
the background music. Typical of old record music, it had a lot of sound
artifacts. At that time, I did not know much about FFmpeg. So, I used
FFmpeg to extract the audio as an MP3 file but used the free Audacity
program to apply a low-pass filter. Then, I used FFmpeg again to swap the
original audio with the MP3 fixed by Audacity.

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

pr—

‘> Stopmotion- hot-wheels.mp4 — =

X

Figure 4-6. The audio of this video had gramophone sound artifacts

Extract the audio

ffmpeg -i Stopmotion-hot-wheels.mp4 \
-map 0:1 \
Stopmotion-hot-wheels.mp3

Apply low-pass filter to Stopmotion-hot-wheels.mp3
using Audacity and export to Stopmotion-hot-wheels-fixed.mp3

Swap the existing audio track with the mp3 fixed by Audacity
ffmpeg -i Stopmotion-hot-wheels.mp4 \

-1 Stopmotion-hot-wheels-fixed.mp3 \

-map 0:0 -map 1:0 \

-codec copy \

Stopmotion-hot-wheels-fixed.mp4

I5" _codec copy or -c copy copies the streams as they are,
instead of unnecessarily re-encoding or converting them again. It
saves a lot of time.

33

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

In the first command, I included a map for the second stream (0:1) in
the MP4 file and saved it as an MP3 file. (I assumed that the second stream
was an audio stream. It need not be.) I then corrected errors in the MP3 file
using Audacity. In the second command, the first input file (the MP4 file)
had two streams - (0:0) and (0:1) - same as in the first command. (More
assumptions.) The second input file (the “fixed” MP3) had one stream
(1:0). In the second command, I used the first file’s first stream (0:0) and
the second file’s first and only stream (1:0). Alternatively, I could have
typed the command by mapping to the first file’s first video stream (0:v:0)
and the second file’s first audio stream (1:a:0).

ffmpeg -i Stopmotion-hot-wheels.mp4 \
-i Stopmotion-hot-wheels-fixed.mp3 \
-map 0:v:0 -map 1:a:0 \
-codec copy \
Stopmotion-hot-wheels-fixed.mp4

57 This alternative fail-early approach is safer, as it can protect
you from typing mistakes.

The audio stream in the original MP4 (0:1) or (0:a:0) gets discarded
because it was not included in any of the maps. If I wanted to retain the
original audio stream, I can add another map for it as a second audio
stream. The fixed audio track will be played by default by media players.

I can manually select the second audio track with the remote or a menu
option to hear the unfixed original audio.

ffmpeg -i Stopmotion-hot-wheels.mp4 \
-i Stopmotion-hot-wheels-fixed.mp3 \
-map 0:v:0 -map 1:a:0 -map 0:a:0 \
-codec copy \
Stopmotion-hot-wheels-fixed-n-restored.mp4

34

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

You can use maps when generating multiple output files with one
command.

ffmpeg -i solar.mp4 \
-map 0:1 -c:a libmp3lame -b:a 128k solar-high.mp3 \
-map 0:1 -c:a libmp3lame -b:a 64k solar-low.mp3

The -map options provide a new set of streams available for options
specified after them. Options such as -codec or -ac will only affect streams
specified by the -map options before them, not the streams available in the
input files.

Metadata

Metadata means data about data. When using FFmpeg, metadata is read
by the demuxer and/or written by the muxer. The data is usually specified
as key-value pairs. For a media file, the metadata can be global (for

the entire file) or specific to a stream in the file. Each container format
specifies a limited set of metadata keys. The MP3 format, for example,
supports metadata keys such as title, artist, album, and copyright. You can
specify metadata for individual streams as follows:

-metadata:s:StreamIndex or
-metadata:s:StreamTypeldentifier:StreamIndex

This command sets metadata at the global/file/container level.

ffmpeg -i solar.mp4 -codec copy \
-metadata title="Me Solar Inverter" \
solarm.mp4

35

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

P> solar.mp4

» Me Solar Inverter
i

Figure 4-7. The background video has no metadata, and the
video player just displays the file name on the window title. In the
foreground video, title metadata is available, and the video player
displays that text instead of just the file name

The ffprobe output in Figure 4-8 shows potentially incriminating
information about a moonshiner MP3.

36

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

~/Desktop
$ ffprobe raisa.mp3

Input #0, mp3, from 'raisa.mp3’:

Metadata:
major_brand : mp42
minor_version : @
compatible_brands: isommp42
title : Musiki - Mywu
encoder -
artist : Raisa Prikolnaya - Pauca [lpuxonsHas

Duration: ©0:82:50.71, start: ©.000000, bitrate: 136 kb/s
Stream #0:0: Audio: mp3, 44109 Hz, stereo, sl6ép, 128 kb/s
Stream #0:1: Video: png, rgb24, 640x36@, 9¢k tbr, 90k tbn, 92k tbc

Metadata:
title : Screenshot-HD-2015-YouTube-mp4-1.png
comment : Other

Figure 4-8. This ffprobe output shows that this inveterate pirate
had downloaded a music video from Youtube and ripped the audio!

ffmpeg -y -i raisa.mp3 \
-map 0 -c copy \
-metadata:s:v:0 title='raisa.png’' \
raisa2.mp3 # Smooth!

This command makes no changes to the MP3 except for the value of
the incriminating title metadata of the album art.

CLLIEAN AU T VAGED. PhAE, TEDZS, LSURIOU LSAR D/0UIII8e UARTTLTYY,
92k tbr, 92k tbn, 92k tbc
Metadata:
title : raisa.png

comment : Other

Figure 4-9. This updated ffprobe output shows that the pirate has
smoothly changed the metadata. Maybe he was doing researchez
academique! Non? Nhyet?

37

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

Remember my stopmotion video with multitrack audio? I can use the
-metadata option to give its audio streams an informative language name.

‘> Stopmotion-hot-wheels-f BE X

File Edit View Go RGN

Languages | @ Audio Track #1

%) Volume Up English

) Volume Down Down

a

> Stopmotion-hot-wheels-f AR X
ﬂ File Edit View Go BELILN Help

[IELGTERES i3 e English '

) Volume Up

Down

¥)) Volume Down

Figure 4-10. Ifyou do not specify a language name for an audio
track, media players may make wrong assumptions

ffmpeg -i Stopmotion-hot-wheels.mp4 \
-i Stopmotion-hot-wheels-fixed.mp3 \
-map 0:v:0 -map 1:a:0 -map 0:a:0 \
-codec copy \
-metadata:s:a:0 language="eng" \
-metadata:s:a:1 language="fre" \
Stopmotion-hot-wheels-fixed-n-restored.mp4

38

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

Remember that to set the language names for subtitle streams,
the -metadata option should refer to subtitle streams, not audio streams.

-metadata:sss:0 language="eng" \
-metadata:sss:1 language="fre" \

The StreamIndex refers to the index of the stream IN THE OUTPUT
FILE. The s after -metadata: identifies itself as metadata for a stream. Do
not mistake it for subtitles. Also, remember that metadata is all about the
output file. Do not use any numbering from the input file(s).

05" Apart from streams (-metadata: s), metadata can be
specified for DVD chapters (-metadata: c) and DVD programs
(-metadata:p). They are not covered by this book.

5" You can learn more about metadata in Chapter 10.

Metadata Maps

Have you noticed that when you convert MP3 files, the album art or the
meta tags get lost? This is because of improper or no metadata mapping.
Metadata can get lost when you convert files or create new files from
multiple input files. The -map_metadata option helps you correctly route
metadata from input files to output files. Its value is specified in a rather
twisted manner. The left is the destination and the right is the source.

-map_metadata InputFileIndex:MetadataSpecifier or
-map_metadata:g InputFileIndex:MetadataSpecifier or
-map_metadata:MetadataSpecifier InputFileIndex:<J
MetadataSpecifier

39

https://doi.org/10.1007/978-1-4842-8701-9_10

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

Where

MetadataSpecifier is either g or s:StreamType (all streams) or
s:StreamType:StreamIndex (some stream)

Yeah, it made my head spin too! Take your time. Nobody does
metadata mapping on their first excursion into FFmpeg. Take the
slow lane.

The following example copies global metadata from the second input
file (-map 1) as the global metadata for the output file. This ensures that
the MP3 tags are copied as the video’s metadata.

ffmpeg -y -i raisa.png -i raisa.mp3 \
-c:a copy -c:v mjpeg \
-map 0 -map 1\
-map_metadata 1 \
raisa.mp4

The next example copies global metadata from the second input file
both globally (:g) and to the audio stream (:s:a). The global metadata
from the second input file can be specified either as 1:g or simply as 1.
Global output metadata can be typed as -map_metadata:g (as below) or
simply as -map_metadata (as above).

ffmpeg -y -i raisa.png -i raisa.mp3 \
-c:a copy -c:v mjpeg \
-map 0 -map 1\
-map_metadata:g 1:g -map_metadata:s:a 1 \
raisa.mkv #Does not work with MP4

What is the advantage of this command? If someone decides to extract
just the audio stream from the MKV, the metadata does not get omitted.
The stream and the MKV (global) both have a copy of the metadata from
the MP3 file. The original metadata will survive even in the extracted
audio stream.

40

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

Input #@, matroska,webm, from 'raisa2.mkv’:

Metadata:
title : Musiki - Mysiku
MAJOR_BRAND : mpa2

MINOR_VERSION : @
COMPATIBLE_BRANDS: isommp42
ARTIST : Raisa Prikolnaya - Pauca [pukonbHas
Duration: 20:22:50.74, start: ©.2e22e2, bitrate: 131 kb/s
Stream #2:92: Video: mjpeg, yuvj444p, 64@x362 [SAR 1:1 DAR 16:9], 25
fps, 25 tbr, 1k tbn, 1k tbc (default)
Stream #@:1: Audio: mp3, 44102 Hz, stereo, s16p, 128 kb/s (default)

Metadata:
title : Musiki - Mysuku
MAJOR_BRAND : mp42

MINOR_VERSION 7
COMPATIBLE_BRANDS: isommp42
ARTIST : Raisa Prikolnaya - Pauca puUKONLHaA

Figure 4-11. The global metadata has been duplicated to the audio
stream metadata as well

I=5" The -metadata option overrides -map_metadata mapping.

Channel Maps

Audio streams can have one or more channels. Monaural audio has only
one channel. Stereo music has two channels - left and right. DVD movies
can have two or six or eight channels for playback on both stereo and
surround speaker systems.

To pin down the channels exactly as you want in the output file, you
need to use the -map_channel option. It can be specified as follows:

-map_channel
InputFileIndex.StreamIndex.ChannelIndex

41

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

or as

-map_channel -1
if you want the channel muted.

The -map_channel options specify the input audio channels and the
order in which they are placed in the output file.

Imagine that the audio channels in an MP4 file are mixed up. When
you wear headphones, in either ear, the voices are heard for people on the
opposite side in the video. You can fix it by the following:

ffmpeg -i wrong-channels.mp4 \
-c:v copy \
-map_channel 0.1.1 -map_channel 0.1.0 \
fine-channels.mp4

In a stereo audio stream, the channel order is 0. 1.0 (left) followed by
0.1.1 (right). When you use a channel map of 0.1.1 followed by 0.1.0,
the channels get switched.

For the next example, imagine that you are using headphones in a
work environment. You want to have one ear for music and one ear for
surroundings. You could mute one of the channels.

ffmpeg -i moosic.mp3 \
-map_channel 0.0.0 -map_channel -1 \
moosic4lefty.mp3

IS No, you should not make it mono. Mono audio will be heard on
both sides.

In some videos, the left and right audio channels are independent
tracks. What these content creators do is place the original audio on one
channel and the most annoying royalty-free music on the other. Instead

42

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

of deleting the offending channel, you could move each channel to a
separate audio stream while preserving the original stereo stream in a
third stream.

ffmpeg -y -i zombie.mp4 \
-map 0:0 -map 0:1 -map 0:1 -map 0:1 \
-map_channel 0.1.0:0.1 -map_channel 0.1.1:0.2 \
-c:v copy \
zombie-tracks.mp4

The first stream in the output file will be the original video (0.0). The
left channel (0.1.0) will be the second stream (0.1). The right channel
(0.1.12) will be the third stream (0.2). The original stereo audio will
become the fourth stream. (Yes, the second and third streams will be
mono audio.)

What about the numbers after the colon? That is explained by the full
definition for channel maps:

-map_channel InputFileIndex.InputFileStreamIndex.<J
ChannelIndex:OutputFileIndex.OutputFileStreamIndex

How do you like them apples? The second part beginning with the
colon is optional. It is for placing the mapped input audio channel on a
specified output stream.

05" Channel mapping numbers use dots, not colons. The colon is
used only when you begin to specify the output stream.

05" Channel mapping cannot be used to mix channels from
multiple input files.

43

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

I When you make changes to the channels, the audio will be
converted again and this takes time. It will not be done quickly like
with -c:a copy.

Do Not Use the -map_channel Option

The -map_channel option, with its difficulties, is on its way out. The
FFmpeg version 5.1 (released in July 2022) shows this warning.

The -map_channel option is deprecated and will be removed.
It can be replaced by the 'pan' filter, or in some cases by
combinations of 'channelsplit', 'channelmap', 'amerge' filters.

With newer ffmpeg versions, the previous commands can be rewritten
using filters, which you will learn in a later chapter.

Switch right and left channels of stereo audio
ffmpeg -i wrong-channels.mp4 \
-c:v copy \
-filter complex "channelmap=map=FR-FL|FL-FR" \
fine-channels.mp4

Silence right channel

ffmpeg -i moosic.mp3 \
-c:v copy \
-filter complex "pan=stereo|FL=FL|FR=0" \
moosic4lefty.mp3

Split channels to separate audio streams
and also preserve existing audio stream

44

CHAPTER 4 MEDIA CONTAINERS AND FFMPEG NUMBERING

ffmpeg -y -ss 0:0:20 -t 0:0:20 -i zombie.mp4 \
-c:v copy \
-filter complex "channelsplit[L][R]" \
-map 0:v:0 -map '[L]" -map '[R]" -map 0:a:0 \
-codec:a:0 aac -ac:a:0 1 \
-codec:a:1 aac -ac:a:1 1 \
-codec:a:2 copy \
zombie-tracks.mp4

" The -codec and -ac options are limited to streams specified
by the -map options specified before them.

Summary

In this chapter, you learned about how to access streams and metadata.
You also learned how to pick and choose what streams and metadata you
would like to have in the output file(s).

As mentioned in the beginning of this chapter, it is not necessary
that you grasp every detail in this chapter on the first go. As you read
forthcoming chapters, certain things mentioned in this chapter will
become clearer. If not, you can always return to this chapter.

45

CHAPTER 5

Format Conversion

The main reason that so many people use ffmpeg is its amazing ability to
convert files from one format to another. ffmpeg supports so many formats
that I doubt there is any competition even from paid software. In this
chapter, you will learn how to perform these conversions and customize
them to extract the best quality from the source files.

No-Brainer Conversions

The default output format in many Linux multimedia programs is OGV
and OGG files. Sadly, very few consumer electronic devices support these
two formats. I use gtk-recordMyDesktop to screen capture my computer
demos, and it creates OGV video files. Before I can play the files on my TV,
I need to convert them to MP4 format.

ffmpeg -i videol.ogv videol.mp4

An Ogg ringtone will play fine on an Android phone but not on a
feature phone, which usually only supports MP3 and MIDI ringtones.
Converting Ogg to MP3 is easy with FFmpeg.

ffmpeg -i alarm.ogg alarm.mp3

FFmpeg can guess the output format based on the file extension
you have used for the output file. It will automatically apply some good
preset conversion settings (defaults). You can specify custom conversion
settings too.

© V. Subhash 2023 47
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_5

https://doi.org/10.1007/978-1-4842-8701-9_5#DOI

CHAPTER5 FORMAT CONVERSION

Conversion Options

Table 5-1 lists a few FFmpeg options that are useful when converting files.
You will learn how to use them in the rest of this chapter.

Table 5-1. Some FFmpeg conversion options
Option For

-y Prevent prompting before overwriting any existing output file

-c:a Specify audio encoder or decoder

-ac Set number of audio channels

-C:V Specify video encoder or decoder

-pass Specify number of the encoding pass

-f Force specified format
(or oss, alsa, rawvideo, concat, image2, null...)

-vn Do not process video

-sn Do not process subtitles

S

8

CHAPTER5 FORMAT CONVERSION

Obsolete/Incorrect Options

FFmpeg is fault-tolerant to an extent but do not be sloppy in typing the
options. You should avoid using -r:a instead of -ar (audio sampling rate).
Instead of conventions such as -acodec and -vcodec, you should be using
-c:aor -c:v instead. Support for such old practices may be removed

in future.

Codec Option

The -codec option is used to specify an encoder (when used before an
output file). When used before an input file, it refers to the decoder.
(ffmpeg may have more than one decoder and encoder for a particular
codec.) Choose the correct name from the output of the command
ffmpeg -encoders or ffmpeg -decoders, and not from that of

ffmpeg -codecs.

The -codec option can also be specified for all streams for a particular
type, such as -codec:a for all audio streams or -codec:s for all subtitle
streams or for a particular stream using its index. For each stream, only the
last applicable -codec option will be considered. If you use the value copy
for the encoder, ffmpeg will copy applicable streams as is without using an
encoder.

How do you know which codec (encoder name) you need to use for a
particular format? For an MP3 file, you could try the following:

ffmpeg -encoders | grep mp3

It may not be so straightforward with other formats. Browse through
the full output of the command ffmpeg -encoders to become familiar with
codec names. Sample output of this command is available in Annexure 3.
Then, you will learn that H.264 and MPEG-4 codecs have something to do
with MP4 files. You could also use ffprobe on existing file samples and
find prospective codec names.

49

CHAPTER5 FORMAT CONVERSION

~/Desktop

$ ffmpeg -encoders | grep mp3

Wiz libmp3lame libmp3lame MP3 (MPEG audio layer 3) (code
Rt libshine libshine MP3 (MPEG audio layer 3) (codec
~/Desktop

$ ffmpeg -encoders | grep mp4

~/Desktop

$ ffmpeg -encoders | grep mpegd

V.S5... mpeg4 MPEG-4 part 2

) AT libxvid libxvidcore MPEG-4 part 2 (codec mpeg4)
S mpeg4_v412m2m V4L2 mem2mem MPEG4 encoder wrapper (codec
Ny msmpeg4v2 MPEG-4 part 2 Microsoft variant version :z
Nisgss msmpeg4 MPEG-4 part 2 Microsoft variant version :
~/Desktop

$ ffmpeg -encoders | grep h26

Wecrar o h261 H. 261

L' [h263 H.263 / H.263-1996

N i h263_v412m2m V4L2 mem2mem H.263 encoder wrapper (codec
V.S... h263p H.263+ / H.263-1998 / H.263 version 2

| SENERY 1ibx264 1ibx264 H.264 / AVC / MPEG-4 AVC / MPEG-4
| 1ibx264rgb 1ibx264 H.264 / AVC / MPEG-4 AVC / MPEG-4
N h264 nvenc NVIDIA NVENC H.264 encoder (codec h264)
A Lo . T T T R AT R F AL, T TSN S et L b AT

Figure 5-1. ffmpeg lists a lots of encoders, several pages full. You

may miss some important ones if you make assumptions and filter the
output. Use the command ffmpeg -encoders | more to conveniently
browse the full output

Sample Conversion with Custom Settings

If I wanted to convert a HD video downloaded from the Internet for playing
on my old portable media player, I would use these settings.

ffmpeg -i net-video.mp4 \
-S 320x240 \
-c:v mpegd -b:v 200K -1 24 \

50

CHAPTER5 FORMAT CONVERSION

-c:a libmp3lame -b:a 96K -ac 2 \
portable-video.mp4

The output video stream uses MPEG4 codec with qvga (320x240)
dimensions, 200K bitrate, and a 24 frames-per-second rate. The output
audio stream uses MP3 codec (Lame encoder) with two-channel audio
(stereo) and 96K bitrate.

05" You will know what values to use for each setting only if you make
it a habit to use ffprobe on new types of files that you encounter.

5" The bitrate is how densely the audio or video content is stored
in the container. The greater the compression, the lesser is the bitrate
and file size, and so is the quality. You need to find a balance between
quality loss and file size reduction.

Multi-pass Conversion

In multi-pass encoding, ffmpeg processes the video stream multiple times
to ensure the output video is close to the specified bitrate. ffmpeg creates
a log file for each pass. In the initial passes, the audio is not processed
and video output is not saved (dumped on null device). In the final pass,
however, you will have to specify the audio conversion settings and the
output file. In the next example, the conversion from the previous section
is performed using two passes.

This is the first pass.

ffmpeg -y -i net-video.mp4 \
-S 320x240 -c:v mpeg4 -b:v 194k -1 24 \

51

CHAPTER5 FORMAT CONVERSION

-f mp4 -pass 1 -passlogfile /tmp/ffmpeg-log-
net-video \
-an /dev/null

05" Windows users should use NUL instead of /dev/null.

And, this is the last pass.

ffmpeg -y -i net-video.mp4 \
-S 320x240 -c:v mpeg4 -b:v 194k -r 24 \
-pass 2 -passlogfile /tmp/ffmpeg-log-net-video \
-c:a libmp3lame -ac 2 -b:a 96K \
portable-video.mpa

Multiple passes of the first kind may be required for achieving a
particular bitrate. Use the same video conversion settings for all passes.

=" When the streams meet the specified bitrates, you will also know
exactly how big the file will be. Just multiply the bitrate with the duration
of the video. The reverse is also true. You can target a particular file size
(allowing for some deviation) by specifying a proportional bitrate for both
the audio and video. Conversion with constant bitrate was popular when
DVD videos were encoded (ripped off) to fit on a CD.

Conversion for Maximum Compression
and Quality

Multimedia codecs provide a trade-off between speed, quality, and
compression. Now that we have almost unlimited online and offline
space, constant quality rather than constant bitrate is preferred. With

52

CHAPTER5 FORMAT CONVERSION

the H.264 codec, you can achieve the required quality and compression
in one pass using the -cxrf (CRF or Constant Rate Factor) option and by
specifying a processing “preset.” The -crf option affects quality.

x264 Presets x264 Tune x264 Profiles

oy g g g g g g g g B "y S

ultrafast film baseline
superfast animation main
veryfast grain high
faster stillimage

fast psnr

medium ssim

slow fastdecode

slower zerolatency

veryslow

placebo

Figure 5-2. This extract from the output of an old script shows preset
and tuning variables supported by the H.264 encoder

ffmpeg -i solar.mp4 \
-c:v 1libx264 -crf 21 -preset fast \
-c:a copy \
solar-CONVERTED.mp4

53

CHAPTER5 FORMAT CONVERSION

[~] /bin/bash

OQutput #2,| mp4, to ’ Desktop/solar-CONVERTED.mp4 ' :
Metadata:
comment : solar
Stream #2:9: Video: h264|(1ibx264) (avcl / @x31637661),
yuv progressive), 320x240 [SAR 1:1 DAR 4:3], g=-1--1, 24
fps, 12288 tbn, 24 tbc (default)
Metadata:

rs PR ~m

Figure 5-3. The ffmpeg output stream details will tell you which pixel
format has been used

The CRF range is from 0 (lossless) to 63 (worst) for 10-bit pixel formats
(such as yuv420p10le) and 0 to 51 for 8-bit pixel formats (such as yuv420p).
You can determine the pixel format from the ffmpeg output of a similar
file conversion. The median can be 21 for 8-bit encoder and 31 for 10-bit
encoder.

What the heck is a pixel format? All that you need to know about
pixel format (at this stage) is that it is a data-encoding scheme used
to specify the colors of each pixel (dots) in a video frame. FFmpeg
supports these pixel formats: monob, rgb555be, rgb555le, rgb565be,
rgbs565le, rgbh24, bgr24, orgb, bgro, obgr, rgho, bgra8be,
uyvy422, yuvad44p, yuvadd4piléle, yuv444p, yuv422pl6, yuv422pilo,
yuv444p10, yuv420p, nvi2, yuyv422, and gray.

In addition to the processing preset, you can also specify a -tune
option depending on the kind of video that you have selected. The
values psnr and ssim are used to generate video quality metrics and are
not normally used in production. zerolatency output can be used for
streaming. fastdecode can be used for devices that do not have a lot of
processing power. grain is to prevent the encoder from being confused by
grainy videos.

54

CHAPTER5 FORMAT CONVERSION

Audio Conversion

This command uses the Lame MP3 encoder to convert an Ogg audio file to
a 128K-bitrate two-channel (stereo) MP3 file.

ffmpeg -i alarm.ogg \
-c:a libmp3lame \
-ac 2\
-b:a 128K \
alarm.mp3

05" There is a better method for converting to MP3 files. You will
find it in Chapter 11.

Audio Extraction

Some video files have great sound. Music videos are good examples. How
do you extract their audio? Well, drop the video stream and copy the audio
stream to an audio file.

Matroska audio

ffmpeg -i music-video.mp4 -c:a copy music-video.mka

MPEG4 audio - FFmpeg flounders

ffmpeg -i music-video.mp4 -wn -c:a copy music-video.m4a

057 Without -vn, the video stream will get copied to the m4a file!
Hurray for redundant options! Le paranoid survive!

55

https://doi.org/10.1007/978-1-4842-8701-9_11

CHAPTER5 FORMAT CONVERSION

Matroska audio or “mka” files support several audio codecs. The
“m4a” files support AAC (MPEG4 audio) codec.

If you already know that the audio stream in the MP4 file has been
encoded with MP3 codec (as they do sometimes), you can -codec:a
copy the audio stream to a “mp3” file. Most of the time, however, you will
have to encode it to MP3. Files with extension “mka” and “m4a” are not
supported by many playback devices. The following command converts
the audio stream of the video file using the Lame encoder to create a two-
channel (stereo) MP3 file encoded at 128K bitrate.

ffmpeg -i music-video.mp4 \
-c:a libmp3lame -b:a 128K -ac 2 \
music-video.mp3

You can simultaneously output audio in different bitrates using
multiple -map options.

ffmpeg -i music-video.mp4 \
-vn \
-map 0:a -c:a libmp3lame -b:a 128K music-high.mp3 \
-map 0:a -c:a libmp3lame -b:a 64K music-low.mp3

05" As one understands, this is strictly for limited doomsday
archival purposes.... Several films and music records have been lost
to studio fires. Anything can happen. Cite the 2020 pandemic.

56

CHAPTER5 FORMAT CONVERSION

Extract Stills from a Video
(Video-to-Image Conversion)

File Edit View Go Help

B € 2 QAaa

Figure 5-4. A video and the still-image frames extracted from it

57

CHAPTER 5 FORMAT CONVERSION

To extract video frames as image files, you need to use the -f image2
option. The numbering of the output images is specified in the name of
the output file. The format mask of the output file is similar to that of the
printf function in the C programming language. In the mask used in
the next command, % is for character output, 0 is for padding with zeros
instead of spaces, 3 is for the total number of digits, and d is for integer

numbers.

Extract images at the rate of 1 frame per second from
the video
ffmpeg -y -1 Stopmotion-hot-wheels.mp4 \

-r 1\

-f image2 \

frames%03d.jpg 2> /dev/null

I Most videos are encoded with a frame rate of 24, 25, 30, or
even 60 frames per second. Be careful with your extraction rate and
length of the video, or you will quickly run out of space.

Use the -1 option to restrict the number of images generated for each
second of the source video. You can omit the -1 option to extract all frames
(and let it be determined by the frame rate of the source video) but

e Use small video clips as the source

e Use -t and -ss options (described in Chapter 6) to
restrict the extracted duration of the source video

58

https://doi.org/10.1007/978-1-4842-8701-9_6

CHAPTER5 FORMAT CONVERSION

Image-Conversion Settings

Table 5-2 lists some FFmpeg conversion options that are useful when
working with image files. Although this book will describe how to use
them, more comprehensive information will be found in the official

FFmpeg documentation.

Table 5-2. ffmpeg image-conversion options and examples

Option Purpose

-f image2 Force conversion to and from images

-f image2pipe Force image conversion for output piped over to another
command

-loop 1 Repeat the processing of the input image indefinitely

-pix_fmt yuv420p Use yuv420p pixel format when converting to image formats

Create Video from Images
(Image-to-Video Conversion)

FFmpeg can also do the reverse by creating a video from several images
(when they are numbered serially). The duration of the video depends on
the number of images available and frame rate you have specified.

If the -1 option in the video-to-image conversion was higher (in the
previous command), say between 12 and 30, a lot more images would have
been extracted, and this video would have been smoother.

ffmpeg -r 1 -i frames%03d.jpg \
-s qvga -pix_fmt yuv420p \
Stopmotion-hot-wheels-reconstituted.mp4 2> /dev/null

ffplay -autoexit \
Stopmotion-hot-wheels-reconstituted.mp4 2> /dev/null

59

CHAPTER5 FORMAT CONVERSION

5" All input images should be of the same format and
dimensions.

I5" The -pix_fmt yuv420p option is necessary to ensure such
unusual video files play all right in most media player devices.

Create a Slideshow from Several Images

In the previous section, the output video ran out quickly because there
were not many input images. If you want each input image to appear for
longer than a second, then you need to specify a -framerate option for
them as well. An input frame rate of 1/3 ensures that a frame plays for 3

seconds.

ffmpeg -y -framerate 1/3 -i image%02d.jpg \
-filter:v \

"scale=eval=frame:w=640:h=480:
force_original_aspect_ratio=decrease,
pad=640:480: (ow-iw)/2:(oh-ih)/2:yellow" \

-pix_fmt yuv420p -r 24 \
slide.mp4

05" You will learn more about filters in Chapter 7.

The preceding command also takes care of images with irregular
dimensions and ensures that they are resized appropriately.

60

https://doi.org/10.1007/978-1-4842-8701-9_7

CHAPTER5 FORMAT CONVERSION

» slide.mp4
File Edit View Go Sound Help

‘» slide.mp4

File Edit View Go Sound Help

< B P 0:02/023(

i 0:10/0:23 = W)

Figure 5-5. This video was created from several
disproportionate images

When you have input images in no particular naming sequence, then

you can pipe them like this:

cat *.png | \
ffmpeg -y -f image2pipe \
-framerate 1/3 -i - \
-filter:v \

61

CHAPTER5 FORMAT CONVERSION

"scale=eval=frame:w=640:h=360:

force original aspect ratio=decrease,

pad=640:360: (ow-iw)/2:(oh-ih)/2:black" \
-c:v 1ibx264 -r 24 -s nhd -pix_fmt yuv420p \
slide2.mp4

Create a GIF from a Video

The ancient GIF format supports only 256 colors. You need to use
palettegen and paletteuse filters to downsample the source video to this
limited number of colors.

ffmpeg -y -i bw.m4v \
-filter complex \
"fps=7,scale=w=320:h=-1:flags=lanczos,split[vi][v2];
[vi]palettegen=stats mode=diff[p];
[v2][p]paletteuse=dither=bayer:bayer scale=4" \
bw-4.gif

You need to experiment a lot with the filters to understand what will
work and what will not. A set of values that do well to optimize the file size
for one source video may do poorly for another video. GIF optimization is
extremely unpredictable. Learn more from this article:

https://engineering.giphy.com/how-to-make-
gifs-with-ffmpeg/
In an experiment with the production of a GIF file from a video, I

found that

o With abayer scale of 0 (with the dither=bayer
mode), the animation is smooth but suffers from the
appearance of a dotted texture. The file size is on the
higher side.

62

https://engineering.giphy.com/how-to-make-gifs-with-ffmpeg/
https://engineering.giphy.com/how-to-make-gifs-with-ffmpeg/

CHAPTER5 FORMAT CONVERSION

e When moving to the highest value of 5 (default is 2), the
frames are clearer but start to suffer from intermittent
banding. The file size is smaller.

The results may be quite different for another video file.

If you are stuck with an older version of FFmpeg that does not have
the palettegen and paletteuse filters, you can make FFmpeg output
the frames to ImageMagick (convert or magick). (The hyphens in the
following command refer to standard output and input.)

ffmpeg -y -i bw.m4v \

-filter:v "fps=10,scale=w=320:h=-1:flags=lanczos" \

-c:v ppm \

-f image2pipe - | \

convert -delay 10 - \

-loop 0 \
-layers optimize \
bw.gif

APNG

A better alternative to GIF animations is APNG. This format has limited
support from image-viewing and image-editing applications but has
near-universal support from desktop and mobile web browsers. Like PNG
and unlike GIF, APNG supports millions of colours. This means that its
colours will not have to be downsampled and will be very close to those
in the source content. APNG animation files are typically bigger than
animated GIFs.

If you are converting GIF animations to APNGs, then ImageMagick is
the tool you should use, not ffmpeg

magick animated.gif animated.apng

63

CHAPTER5 FORMAT CONVERSION

The image frames in a GIF will already be downsampled to 256
colours. To create a richer animated PNG, try to use the source frames in
PNG format.

magick -delay 200 -loop 0 \
chapter-image-*.png \
-units PixelsPerInch -density 72 -resize '>x300' \
animation-unlikely-stories.apng

If you are converting a video to APNG, then you can use ffmpeg.

ffmpeg -i bw.m4v \
-vf "scale=w=250:h=-2, hqdn3d, fps=6" \
-dpi 72 -plays 0 \
bw.apng

In this command, -dp1i is an APNG encoder option and -plays is an
APNG muxer option. The high-quality denoise 3d filter reduces blemishes
introduced by the scaling filter. Learn more about these options from the
official documentation or by typing:

ffmpeg -help muxer=apng
ffmpeg -help encoder=png
ffmpeg -help filter=hqdn3d

Create a Video Using an Image and an MP3

How do you play an MP3 in a media player that will only play MP4 files?
Find a thumbnail or album art for the MP3 and churn it out as a video.
The following command uses an image as a video stream encoded with
MJPEG codec.

64

CHAPTER5 FORMAT CONVERSION

ffmpeg -i Blobfish face.jpg -i blobfish.mp3 \
-c:v mjpeg -c:a copy \
-map 0:v:0 -map 1:a:0 \
-disposition:v:0 attached pic \
"Weird Fins - 17 - The Blobfish.mp4"

This command generates only one image frame in the MP4. The image
frame is not encoded as a regular video stream for the entire duration of
the audio.

Figure 5-6. This video does not really have any video, just one frame
Jrom an image

However, not all media players will accept this trickery. On my
computer, Totem media player does not show the image at all and plays it
like a regular audio file. VLC displays the image because it uses FFmpeg
internally. If your player shirks its duty, you will have to encode the image
for the full duration of the audio.

65

CHAPTER5 FORMAT CONVERSION

ffmpeg -y -i blobfish.mp3 \
-loop 1 -framerate 12 -i Blobfish_face.jpg \
-shortest -s quga -c:a copy \
-c:v libx264 -pix_fmt yuv4q20p \
"Weird Fins - 17 - The Blobfish (no tricks).mp4"
The album art image loops forever so the
podcast audio creates the shortest output stream

5" This MP3 was part of 18 MP3 files of the “Weird Fins”
podcast published by the US NOAA. It got lost and buried when they
redesigned their site. Some years ago, | recovered these files, tagged
them and uploaded them to Archive.org.

Convert Online Videos to Audio

YouTube-DL is an open source command-line program that can download
online videos for offline use. It supports several online video sites. Many
journalists use it to grab still images for their articles about Internet

videos. However, the entertainment industry has decided to challenge the
legal status of this utility. The Electronic Frontier Foundation (EFF) and
surprisingly GitHub (owned by Microsoft) have come up with a defense

initiative for its survival.

https://youtube-dl.org

66

https://youtube-dl.org/

CHAPTER5 FORMAT CONVERSION

youtube-d|

© nhttpsiytdi-org.github.io/youtube-dl/index-htmi
youtube-dl is a command-line program to download videos :
from YouTube.com and a few more sites.It requires the |
Python interpreter (2.6, 2.7, or 3.2+), and it is not platform |
specific. We also provide a Windows executable that |
includes Python. youtube-dishould work in your Unix box, in |

Windows or in Mac OS X.
L A

Figure 5-7. This is a description of youtube-dl1 published by a
search engine

Assuming that your ~/bin directory is in the $PATH environment
variable, you can install youtube-dl locally using the following:

wget https://yt-dl.org/downloads/latest/youtube-dl \
-0 ~/bin/youtube-dl

chmod +x ~/bin/youtube-dl

youtube-dl --version

05" YouTube-DL will run from anywhere. You do not have to install
the file to a privileged location like the site says.

I=5" If youtube-d1 does not run, maybe Python 3 is not in the
PATH. Start it with /usx/bin/python3 youtube-dl

67

CHAPTER5 FORMAT CONVERSION

You can make youtube-dl use ffmpeg to convert the downloaded files.
Many audio podcasts are posted to online video sites. To only listen to
them in the Audacious media player, I use a command like this:

youtube-dl -f 140 -x \
--audio-format mp3 \
--exec 'audacious {} & " \
https://www.youtube.com/watch?v=yypDkqAErx0

youtube-dl will not only download and convert the audio (from
AAC) to MP3 (using ffmpeg), but it will also launch a command when the
conversion process is complete. That command can be for your media
player. youtube-d1 will replace {} in the command string with the name of
the output (MP3) file.

Convert Text to Audio

If your ffmpeg executable has been built-in with support for the 1ibflite
text-to-speech synthesizer library, then you can convert text content to
spoken words.

ffmpeg -f lavfi \
-i "flite=textfile=speech.txt:voice=s1t" \
speech.mp3

This speech filter supports several voices. On my computer, it lists awb,
kal, kal16, rms, and slt as available voices. Unfortunately, the female
voice sounds a bit dopey.

ffprobe -f lavfi "flite=list voices=1"

Ilike the male-only espeak utility better. The defaults are good, and
you can change several settings.

68

CHAPTER5 FORMAT CONVERSION

Conversion Settings for Specific
Storage Medium

If you use the -target option, certain conversion settings appropriate for
the specified storage option will be applied. The values for this option can
be vcd, svcd, dvd, dv, and dv50. They can be prefixed with ntsc, pal, or
film for more specific targets. For the actual settings used by these targets,
refer the official FFmpeg documentation.

ffmpeg -i movie.avi -target ntsc-dvd movie.mpg

5" \/CD (MPEG-1), DVD (MPEG-2), and DV (digital tape) are very
old targets and consume more space than MPEG-4.

I f you want to extract still images from movies, optical media
is usually the best source.

Summary

In this chapter, you learned how to convert multimedia content in the form
of audio, video, image, and text. You also learned to customize conversion
settings to suit different formats, coder/decoders, and mediums. In the
next chapter, you will learn how to edit videos using ffmpeg.

69

CHAPTER 6

Editing Videos

I used to save DVDs as ISO files (whole-DVD backups) so that I could play
them on my media player box. Each ISO took up several gigabytes (GBs)
on my hard disk that I eventually ran out of space. Now, [use FFmpeg and
store DVDs as MP4s of around just one GB.

While FFmpeg makes it very easy to convert multimedia files, as you
learned in the previous chapter, storing them in their entity is not always
feasible or required. Sometimes, you need just a few clips, not the whole
shebang. You may want to combine parts of one video with parts of other
videos. You can also downsize the videos to conserve space. In ffmpeg
terms, you want to cut, concatenate, and resize videos. In this chapter, you
will learn to do just that.

Resize a Video

You can resize a video using the -s option. The dimension of a video

is usually specified as WidthxHeight. That is an “x” as in “x-mas” in the
middle. When editing or converting videos, you will have to specify the
video dimension using this syntax. The next command resizes a VGA-size

(640x480) video to a VCD-size (352x288) video.

ffmpeg -i dialup.mp4 \
-s 352x288 \
dialup.mpg

© V. Subhash 2023 71
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_6

https://doi.org/10.1007/978-1-4842-8701-9_6#DOI

CHAPTER 6 EDITING VIDEOS

FFmpeg supports certain easy-to-remember literals that you can use in
place of the actual numbers for the -s option. They are listed in Table 6-1.

Table 6-1. FFmpeg option and values for setting the dimensions
of a video

Option For

-S Video dimensions (literal or actual)

CHAPTER 6 EDITING VIDEOS

Avideo’s horizontal dimension divided by the vertical dimension is
sometimes referred to as the aspect ratio. This is further influenced by the
dimensions of individual pixels that make up the video. (Remember that a
video frame is a matrix of dots or pixels in lines and columns.) This pixel-
level aspect ratio is known as the sample aspect ratio (SAR).

When a video is resized, ffmpeg (or whichever video authoring
software that is used) would have automatically adjusted the pixel
dimensions (or the SAR) from square to rectangular so that the video will
be played with the proper aspect ratio.

If you want a video to be played at a particular aspect ratio, you need
to set the display aspect ratio (DAR). This value is calculated from the
width-and-height ratio multiplied by the SAR. If for some reason, the SAR
value is not present in the video, it is assumed to be 1. If this makes the
video distorted, set the desired DAR using the setdar filter and let ffmpeg
figure out the internal SAR.

ffmpeg -i "distorted.mpg" \
-vf setdar=dar=4/3 \
restored.mpg

05" You will learn more about filters in Chapter 7.

73

https://doi.org/10.1007/978-1-4842-8701-9_7

CHAPTER 6 EDITING VIDEOS

» distorted.mpg
File Edit View Go Sound Help

—

W4 P P 0:00/0:06(©

iea B PP 0:00/0:06(-

Figure 6-1. The distortion in the background video was fixed using a
filter that changed the DAR (display aspect ratio)

These ratios may seem similar but there are subtle differences, as
presented in Table 6-2.

74

CHAPTER 6 EDITING VIDEOS

Table 6-2. Terms related to video dimensions

Term Description

Aspect ratio = video width + video height

Standard definition ratio is 4:3. For widescreen, it is 16:9

Display aspect ratio (DAR) = (video width + video height) x sample aspect ratio
or
= video aspect ratio x sample aspect ratio

Editing Options

Some often used video- and audio-editing options are listed in Table 6-3.

Table 6-3. More [fmpeg options for editing

Option For

-t Duration (in hh:mm:ss[.xxx] format or in seconds) of the output file

-C.v, -C:a, -¢:s Use specified encoder (not codec) for specific type of stream

If you use the value copy as in -c copy, ffmpeg will not use an
encoder and just copy the stream(s)

CHAPTER 6 EDITING VIDEOS

Cut a Portion of a Video

If the video segment that you want to remove is the beginning, then use
the -ss option to specify the timestamp from which the content needs to
be copied.

ffmpeg -ss 00:01:00 -i sponsored-video.mp4 \
the-video.mp4

I5" Use the -ss option before the -1 option so that ffmpeg can
quickly jump to the location of the specified timestamp. If you place
it after the input file and before the output file, there will be a delay
as ffmpeg decodes all the data from the beginning to the timestamp
and then discards it (as it is not wanted)!

The timestamp values can be specified in the format hh:mm:ss.ms.
Parts that are zero in the beginning can be omitted, as shown in Table 6-4.

Table 6-4. Examples of time or duration values

Implication

1:20 One minute and 20 seconds

02:01:20.220 Two hours, 1 minute, 20 seconds, and 220 milliseconds

5" Before the milliseconds value, there needs to be a dot, not
a colon.

CHAPTER 6 EDITING VIDEOS

If the video segment that you want to remove is the ending, then use -t
option to specify the duration of the content that needs to be copied from
the beginning.

ffmpeg -i long-tail.mp4 \
-t 00:01:00 \
no-monkey.mp4

If you want to cut from the middle, then you need to use both options.

ffmpeg -ss 00:01:00 -i side-burns.mp4 \
-t 00:1:10 \
clean-shaved.mp4

In this case, ffmpeg starts cutting -t duration of content from the
timestamp specified by the -ss option, not from the beginning.

All of these commands will re-encode the video. Because the (raw)
source video (from which the input video was created) is not being used,
the output video will have lesser quality and have freshly introduced
blemishes and artifacts.

You may encounter another problem here. When you do not specify
conversion settings, then FFmpeg will use its own default encoder settings.
If your uncut video had better quality than encoder defaults, then you
may end up with lesser quality. If the input file had lower quality, then the
encoder defaults may result in increased file size.

To avoid such problems, run ffprobe on the input file and use similar
conversion settings with ffmpeg.

77

CHAPTER 6 EDITING VIDEOS

~/Desktop
§ ffprobe lucas.zpd
Input #0, mov,mp4,mda,3gp,3g2,mj2, from 'lucas.mpd':
Duration: 00:00:20.02, starg:- 0.000000, bitrate: 575 kb/s
Stream #0:0(usd):, Video{h264)(Constraingd Basetiner(augl / 0x3163
661), yu-.-4zop[sm 1"TDAR 16:9) 29.97 t
r, 30k tbn, 59.9 bc
Metadata:
handler_name : VideoHandler
Strean #0:1(eng): Audio:(3ac)(=péa / 0x6134706D), 44100 Hz, stereo,
fltp#m
Metadata:
handler_name : SoundHandler

~/Desktop

$ ffmpeg -i lucas.mp4d \

-vcodec 1ibx264 -b:v 472k -r:v 30 \
-acodec libfaac -b:a 96k \

-t 0:0:10 \

lucas-cut.mp4

Y vVyVYyY

Figure 6-2. The ffprobe output shows settings that you can use for
the next ffmpeg task

Cut Without Re-encoding

Apart from losing quality, re-encoding takes time. Cutting without re-
encoding does not have these disadvantages. Use the option -codec copy
to ensure there is no re-encoding and the original quality is retained.

ffmpeg -ss 00:01:00 -i dog-eared.mp4 \
-t 00:1:10 \
-codec copy \
clean-cut.mp4

There are disadvantages with this option too. The entirety of the audio and
video information may not be present at the timestamps you have specified
for FFmpeg to make a clean cut. A few seconds of the video may have to be
sacrificed or go out of sync. Out-of-sync audio by one or two seconds is not
really a problem in videos where the speaker remains in the background.

78

CHAPTER 6 EDITING VIDEOS

Use -codec copy only when the container of the output file supports
the existing codec of the input stream you are trying to copy. You cannot
copy streams from an OGV file to a MP4 file, but you can do that with an
MKYV output file. First, check whether input codecs are among the default
codecs listed by the muxer of the output container.

ffmpeg -help muxer=matroska | head -5 ; \
ffmpeg -help muxer=ogv | head -5; \
ffmpeg -help muxer=avi | head -5 ; \
ffmpeg -help muxer=mp4 | head -5

These commands list the default extensions and codecs used by some
popular containers.

Muxer matroska [Matroska]:
Common extensions: mkv.
Mime type: video/x-matroska.
Default video codec: h264.
Default audio codec: vorbis.
Muxer ogv [Ogg Video]:
Common extensions: ogv.
Mime type: video/ogg.
Default video codec: theora.
Default audio codec: vorbis.
Muxer avi [AVI (Audio Video Interleaved)]:
Common extensions: avi.
Mime type: video/x-msvideo.
Default video codec: mpeg4.
Default audio codec: mp3.
Muxer mp4 [MP4 (MPEG-4 Part 14)]:
Common extensions: mp4.
Mime type: video/mp4.
Default video codec: h264.
Default audio codec: aac.

79

CHAPTER 6 EDITING VIDEOS

Append Videos (Concatenate)

If you need to put together several videos to create one big video
containing all of them, then you can use the concat demuxer. To use it, you
need to first create a text file containing file names or full pathnames of the
input videos. The file details should be formatted like this:

¢ One line should be used for each input file.

o The relative or absolute pathname of a file should
be wrapped in quotation marks and preceded by the
word “file””

file '/tmp/video.mp4'
file '/home/yourname/Desktop/videol.mp4’
file '/media/USB1/DCIM/DS00002.mp4'

Ideally, the file locations should be relative to the current directory and
have simple file names. Because these files do not satisfy that condition,
I have used the option -safe 0 in this ffmpeg command. The next
command will re-encode the preceding input files using the specified MP4
settings.

ffmpeg -f concat \
-safe 0 \
-i list.txt \
-c:v 1ibx264 -r 24 -b:v 266k -s qvga \
-c:a libmp3lame -r:a 44000 -b:a 64k -ac 2 \
mixology.mp4

U5 The default for the -safe option is 1. In production
environments, it prevents rogue users from using files that would
otherwise crash FFmpeg-based software systems.

80

CHAPTER 6 EDITING VIDEOS

5" Use the -f concat option setting before the -1 option.

I advise against the use -f concat demuxer. The output files have a
tendency to confuse and crash media players. If input videos are not of
the same type, the concatenation will fail or the output file will not be
playable. The same thing can happen if some of the input files are -codec
copy veterans. You are lucky if conversion starts at all. If you are forced to
use the concat demuxer, then read about it in the official documentation.
The text file supports other directives (not just file) to make it more
informative to the demuxer.

For more resilient concatenations, use the concat filter as described in
Chapter 7.

ffmpeg -i engine.mp4 -i coach.mp4 \
-filter complex \
"[0:v:0][0:a:0][1:v:0][1:a:0]concat=n=2:v=1:a=1[v][a]" \
-map ‘[v]" -map '[a]" \
-c:v 1ibx264 -r 24 -b:v 266k -s qvga \
-c:a libmp3lame -b:a 64k -ac 2 \
-f mp4 \
train.mp4

Whether you use -codec copy or the concat filter, all the input files
should be of the same type (same dimensions, codecs, frame rates, etc.).

Don’t Knock -codec copy

After spending considerable time with FFmpeg, you will realize that a lot
of multimedia software generate audio/video files that seem to play fine
but have a lot of internal encoding errors. Strangely enough, FFmpeg's
notorious -codec copy option fixes a good many of these container errors.

ffmpeg -i smugly.mp4 -codec copy smooth.mp4
81

https://doi.org/10.1007/978-1-4842-8701-9_7

CHAPTER 6 EDITING VIDEOS

Summary

FFmpeg provides some very neat options to edit multimedia files from
the command line. With some files, you may be able to -codec copy the
streams. With others, you will have to re-encode them. Both methods have
advantages and disadvantages.

In the next chapter, you will finally learn about the ffmpeg filters that I
have been all along teasing you with.

82

CHAPTER 7

Using FFmpeg Filters

In the previous chapters, you would have encountered several filters. A
great deal of FFmpeg functionality is hidden in them. Most users avoid
filters or use them sparingly because the online examples of filters tend
to be cryptic. There is a method to the madness. You can crack it. In this
chapter, you will learn what filters are and how to use them.

Filter Construction

In an ffmpeg command, a filter is used to perform advanced processing

on the multimedia and metadata data decoded from the input file(s).

A simple filter consumes an input stream, processes it, and generates an
output stream. The input and output will be of the same type. An audio
filter (used with the option -filter:a or -af) consumes an audio stream
and outputs an audio stream. A video filter (specified by a filter:v or -vf
option) consumes a video stream and outputs a video stream.

You can daisy-chain multiple simple filters to create a filter chain. In
such a filter chain, the output of one filter is consumed by a subsequent filter.
Thus, as a whole, the filter chain will also have one input and one output.

When such a linear filter chain is not possible, you need to use a
complex filtergraph (with the option -filter complex). A complex
filtergraph can contain several filters or filter chains. The constituent filters
can have zero to several inputs. They can consume streams of different
types and output streams of different types. The number of inputs need not
match the number of outputs. It is not necessary for a filter to consume the
output of the previous filter.

© V. Subhash 2023 83
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_7

https://doi.org/10.1007/978-1-4842-8701-9_7#DOI

CHAPTER 7 USING FFMPEG FILTERS

Some filters known as source filters do not have inputs. There are also
sink filters that do not generate any outputs.
In an ffmpeg command, you specify a filter in this fashion:

[input label1][input label2]...[input labelN]filter=
keyl=valuel:key2=value2...keyN=valueN[output label1]
[output label2]...[output labelN];

You need to follow these rules when using filters:

e When a filter is expected to create an output stream,
label it with a name in square brackets ([]).

o Use these labeled output streams as inputs for
other filters or use them in -map options. ffmpeg
automatically names the unlabeled input of the first
filter as [in] and the unlabeled output of the last filter
as [out].

e Between two filters that are part of a linear filter chain
(when you daisy-chain them), use a comma (,) as a
delimiter. This implies that the output of the first filter
is to be consumed as input by the second filter.

o Between two filters that are part of a nonlinear complex
filtergraph, use a semicolon (;) as a delimiter. Specify
the inputs and outputs using stream identifiers or
labels for each filter. If you do not specify input streams,
ffmpeg will select streams using an internal logic.
(Read the official FFmpeg documentation about it.) If
the selected input stream cannot be used by the filter,
ffmpeg will encounter an error. Similarly, when you
do not label the output streams, ffmpeg will attempt
to dump them in the next output file. If the container
of the next output file does not support those output
streams, ffmpeg will encounter an error.

84

CHAPTER 7 USING FFMPEG FILTERS

o Specify filter-specific options as key-value pairs. You
need to use a colon (:) as a delimiter between them.
You can omit the option names (keys) and only
use values if you specify them in the same order as
specified in the official FFmpeg documentation or help
output. This cryptic style is error-prone, difficult to
understand, and therefore not recommended.

I3 There are lots of filters and you need to pore over pages of
documentation to find the one that will work for you.

Filter Errors

Sometimes, you will encounter a “No such filter” error. This is probably
because (out of habit) you placed a semicolon after the last filter. Some
filters have an exact number of inputs or outputs. If you fail to identify one
of them, ffmpeg will throw an error. Other common filter errors are caused
when a labeled input or output is not consumed. If you use an output label
more than once, you will get an ‘Invalid stream specifier’ error. An output
stream can only be labelled once and used once. If you want to use a filter
output stream as input for more than one filter, use the split or asplit
filters to duplicate the stream.

Filter-Based Timeline Editing

Many filters support a generic enable option. It can be used to specify the
start and end timestamps when the filter should be applied. For example,
the option enable="between(t, 6, 12)' would ensure that the filter is

applied on the video between 6th and 12th seconds of the audio or video.

85

CHAPTER 7 USING FFMPEG FILTERS

I In the output for ffmpeg -filters command, the filters
with the flag “T” support timeline editing.

Expressions in FFmpeg Filter Definitions

In the values of some filter options, you can specify algebraic expressions
that combine explicit numbers, functions, and some constants. (The

last two are listed in Table 7-1.) The section Expression Evaluation in

the documentation describes several functions that can be used in the
expressions. FFmpeg defines three constants that can be used in any filter.

86

CHAPTER 7 USING FFMPEG FILTERS

Table 7-1. Functions and constants used in ffmpeg filter expressions

acos(x) gauss(x) [t(x, y) sinh(x)

atan(x) gt(x, y) max(x, y) squish(x)

between(x, min, max) hypot(x, y) mod(x, y) tan(x)

bitor(x, y) if(x, y, 2) pow(x, y) taylor(expr, x)

clip(x, min, max) ifnot(x, v, 2) print(t, I) time(0)

cosh(x) isnan(x) root(expr, max) while(cond, expr)

exp(x) lerp(x, y, 2) Sgn(x)
P E PHI QP2LAMBDA
(22/7) (Euler’s number or (golden ratio or 118

exp(1) ~2.718) (1+sqrt(9))/2 ~ 1.618)

Several filters define their own constants. These are actually real-
time variables whose values can change depending on the input files, the
processing options, or even time. You need to look at the documentation
for each filter to see what these filter constants represent.

8

BN}

CHAPTER 7 USING FFMPEG FILTERS

05" You should try to become proficient in the use of filter
expressions. They are force multipliers.

05" When you specify a filter within double quotes (" "), the
commas separating the parameters of a function will have to
be escaped as \, to prevent ffmpeg from interpreting them as
delimiters used to separate two filters.

Inset Video (Picture-in-Picture Overlay)

Sometimes, people in news media need to use a sign-language inset video.
The following ffmpeg command scales down a video containing the sign-
language track and positions it over the right corner of a news report.

ffmpeg -y -i Delphine.mp4 -i accessibility.mp4 \
-filter_complex \
"[1:v]scale=w=150:h=150[inset];
[0:v][inset]overlay=x=W-w-20:y=20[v]" \
-map ‘[v]"' -map 0:a:0 \
Delphine-with-accessibility.mp4

This command may also be written without the names and only the

values of the filter options.

ffmpeg -y -i Delphine.mp4 -i accessibility.mp4 \
-filter_complex \
"[1:v]scale=150:150[inset];
[0:v][inset]ovexrlay=W-w-20:20[v]" \
-map ‘[v]"' -map 0:a:0 \
Delphine-with-accessibility.mp4

88

CHAPTER 7 USING FFMPEG FILTERS

05" If you encounter such commands, they will seem very cryptic.
You will have to look up the filter in the official documentation or the
help output (ffmpeg -help filter=scale) and ascertain the
order of the used filter options.

» Delphine-with-accessibility.mp4

File Edit View Go Sound Help

Figure 7-1. The overlay filter has been used to place the sign-
language video track in the top-right corner of a news report video

The scale filter specifies actual width and height values (150:150)
to which the inset video needs to be resized. The overlay filter specifies
x- and y-coordinates of the top-left corner of the inset video on the news
report video. The x-coordinate uses a filter expression (W-w-20) with filter
constants W (width of the background video) and w (width of the inset
video) to correctly inset the video 20 pixels away from the right edge of the
background video. The y-coordinate is specified with the actual value, that
is, 20 pixels from the top edge.

89

CHAPTER 7 USING FFMPEG FILTERS

The input for the scale filter is the inset video ([1:Vv] or the video stream
of the second input file). Its output is labeled [inset]. The inputs for the
overlay filter are the news report ([0:v] or the video stream of the first file)
and the output of the scale filter labeled previously as [inset]. The overlay
filter has one output and it is labeled [v]. This overlaid video and the original
audio of the news report (0:a:0) are then mapped into the output file.

To construct a filter expression with useful filter constants, you need to
refer to the documentation of the filter. If these expressions try to hurt your
brain (they will initially), you can specify explicit values. The preceding
command can be rewritten as follows:

ffmpeg -y -i Delphine.mp4 -i accessibility.mp4 \
-filter_complex \
"[1:v]scale=150:150[inset];
[0:v][inset]overlay=370:20[v]" \
-map '[v]" -map 0:a:0 \
Delphine-with-accessibility.mp4

Split Video (Side-by-Side Overlay)

When you place two videos side-by-side, their heights should be the same.
If you place them one above the other, their widths should be the same.
Else, there will be some empty space in the final video.

The sign-language video in the previous section is a 332x332-pixel
video. It is smaller than the news report video. If we want them placed
side-by-side, the news report video’s height needs to be reduced to the
height of the sign-language video.

This scale filter in this ffmpeg command does that. To maintain the
same aspect ratio (width + height) of the scaled video, the new width is
specified using the filter expression 332*iw/ih. (The value -2 would have

90

CHAPTER 7 USING FFMPEG FILTERS

worked as well. As to how it would, Refer The Fine Manual. ©) This
multiplies the aspect ratio with the new height. (iw and ih represent filter
constants for the width and height of the input video.)

ffmpeg -y -i Delphine.mp4 -i accessibility.mp4 \
-filter complex "[0:v]scale=332*iw/ih:332[sv];
[sv]pad=(iw+332):332:0:0[frame];
[frame][1:v]overlay=W-w:0[v]" \
-map '[v]"' -map 0:a:0 \
Delphine-et-accessibility.mp4

‘» Delphine-et-accessibility.mp4

Figure 7-2. Thescale filter was used to reduce the height of the first
video. The pad filter has been used to expand the frame of the scaled
video. Theoverlay filter has been used to place the second video in
the empty area of the expanded frame

5" Because the second video is a sign-language video, |
discarded its audio. If it were needed, | would have mixed the
two audio streams or assigned them to the left and right speaker
channels, as described in Chapter 8.

91

https://doi.org/10.1007/978-1-4842-8701-9_8

CHAPTER 7 USING FFMPEG FILTERS

After the scale filter, the frame size of the scaled video is expanded
sideways so that the second video can be placed in the new empty area.
The pad filter uses the expression iw+332 to arrive at the new expanded
size of the frame. It then places the scaled video at the top-left corner (0:0)
of the new frame. That is, the scaled video will be on the left side of the
expanded frame.

In the empty area on the right side of the expanded frame ([frame]),
we place the second input file ([1:v]) using the overlay filter.

Without using filter expression, the last ffmpeg command can be
rewritten with actual values as follows:

ffmpeg -y -i Delphine.mp4 -i accessibility.mp4 \
-filter complex "[0:v]scale=498:332[sv];
[sv]pad=830:332:0:0[frame];
[frame][1:v]overlay=498:0[v]" \
-map '[v]"' -map 0:a:0 \
Delphine-et-accessibility.mp4

I5° When you want to use the same command on another set of
files with different dimensions, you will have to recalculate and
re-specify the values. Filter expressions can eliminate a lot of this
hassle so use them when you can.

If you do not want the news video to be downscaled, then you could
put some white space... (in this case) yellow space around the second
video. In the next command, filter expressions and actual values have
been used to correctly position the second video in the middle of the
expanded frame.

92

CHAPTER 7 USING FFMPEG FILTERS

ffmpeg -y -i Delphine.mp4 -i accessibility.mp4 \
-filter complex

"[0:v:0]pad=w=(iw+360) :h=ih:x=0:y=0:color=yellow[frame];
[frame][1:v:0]overlay=x=W-360+(360-w)/2:y=(H-h)/2[v]" \

-map '[v]" -map 0:a:0 \
-t 0:0:12 -pix_fmt yuv420p \
Delphine-et-accessibility-et-margin.mp4

=" It is much more easier and faster to use the filters hstack

and vstack. However, these filters require the input videos to have
the same pixel format (data encoding scheme of pixel color) and the

same dimensions (height for hstack and width for vstack.)

‘» Delphine-et-accessibility-et-margin.mp4

Figure 7-3. The pad filter was used to expand the width of original

Jframe by 360 pixels while maintaining the same height. The expanded

area was given a yellow background that was 360x360 pixels. Using
filter expressions with the overlay filter, the 332x332-pixel second

video was placed right in the middle of the yellow background

93

CHAPTER 7 USING FFMPEG FILTERS

Append Videos Using a Filter

In Chapter 6, you learned to concatenate several videos using the concat
demuxer. The concat filter provides more control if you have only a few
input files.

ffmpeg -i engine.mp4 -i coach.mp4 \
-filter_complex \
"[0:v:0][0:a:0][1:v:0][1:a:0]concat=n=2:v=1:a=1[vo][ao]" \
-map '[vo]" -map '[ao]" \
-c:v 1ibx264 -1 24 -b:v 266k -s qvga \
-f mp4 train.mp4

5" This will re-encode the input files, as will any other filter.

Specify the video and audio streams of the input clips or segments
in the order that they need to be appended by the filter. [0:v:0][0:a:0]
refers to the video and audio streams of the first input clip. [1:v:0]
[1:a3:0] refers to the video and audio streams of the second clip. The
filter option n refers to the number of input clips. v refers to the number of
output video streams, and a refers to the number of output audio streams.
The concatenated video and audio streams are the filter outputs labeled as
[vo] and [ao0]. These labeled outputs are then mapped to the output file.

Delete a Portion of a Video in the Middle

Sometimes, you need to delete part of a video. For that, you can use the trim,
atrim, and concat filters. In this command, the second scene (between
seconds 16 and 36) is deleted by eliminating it using trim and atrim filters.

94

CHAPTER 7 USING FFMPEG FILTERS

ffmpeg -y -i barbara.mp4 \
-filter_complex \

"[0:v:0]trim=start=0:end=16, setpts=PTS-STARTPTS[1v];
[0:v:0]trim=start=36:end=44, setpts=PTS-STARTPTS[rv];
[0:a:0]atrim=start=0:end=16, asetpts=PTS-STARTPTS[la];
[0:a:0]atrim=start=36:end=44, asetpts=PTS-STARTPTS[ra];
[lv][rv]concat=n=2:v=1:a=0[V];
[la][ra]econcat=n=2:v=0:a=1[a]" \

-map ‘[v]' -map '[a]' barb-cut.mp4

05" | have used seconds instead of timestamps because the
“hh:mm:ss” format requires a lot of nonintuitive escaping.

The concat filter is prone to timestamp errors. The setpts and
asetpts filters may be able to fix them. A filter setting with asetpts=N/
SAMPLE_RATE/TB will generate new timestamps by counting actual samples
in the processed audio segments, but it can be used only with constant
frame rate videos. A better value is to use PTS-STARTPTS (similar to the
video filter), as it will also remove empty regions in the audio.

Rotate a Video

Some videos that people take from a mobile phone are rotated by 90
or 180 degrees from normal. You can manually fix them by specifying a

transpose filter.

Rotate to right

ffmpeg -i slt.mp4 \
-filter:v "transpose=1" \
slt-rotated-1.mp4

95

CHAPTER 7 USING FFMPEG FILTERS

Rotate to left

ffmpeg -i slt.mp4 \
-filter:v "transpose=2" \
slt-rotated-2.mp4

Rotate to left and flip vertically
ffmpeg -i slt.mp4 \
-filter:v "transpose=0" \
slt-rotated-0.mp4

Rotate to right and flip vertically
ffmpeg -i slt.mp4 \
-filter:v "transpose=3" \
slt-rotated-3.mp4

For the transpose filter option dir, a value of 1 or 2 turns the video 90
degrees right or left. Values 0 and 3 turn the video left or right and also
vertically flip them. Mobile phone users should stick with the first two values.

Figure 7-4. These still images show dir values that can be used with
the transpose filter

96

CHAPTER 7 USING FFMPEG FILTERS

The transpose filter option passthrough can have values none,
portrait, and landscape. The value none is default. One of the last
two values will be particularly useful in automated scripts to prevent
unnecessary rotation, that is, when the video is already in the orientation
specified by the passthrough filter option. It will also prevent ffmpeg from
autorotating a video and then applying your transpose setting (causing
further rotation).

You can rotate videos by more discrete levels than multiples of 90
degrees. The rotate filter accepts values in radians rather than degrees.
The following ffmpeg command rotates a video by 16 degrees.

ffmpeg -y -i malampuzha-lake.mp4 \
-filter complex \
"rotate=angle=16*PI/180:fillcolor=brown" \
malampuzha-lake-tilt-16-chopped.mp4
Rotates video but corners get cut off

02" |f the video becomes distorted, correct it using setdar filter.

5" To convert degrees to radians, it has to be multiplied with z/180.

To prevent the corners from getting chopped off, the frame dimensions
need to be increased. You can use the rotw and roth functions for
determining these new dimensions. The two functions use these formulas

internally.

rotw(0) = HeightxSine(0) + WidthxCosine(0)
roth(0) = WidthxSine(8) + HeightxCosine(6)

97

CHAPTER 7 USING FFMPEG FILTERS

Rotate video and enlarge the frame to prevent
corners from getting cut off
ffmpeg -y -i malampuzha-lake.mp4 \
-filter_complex \
"rotate=angle=16*PI1/180:
ow=trunc(rotw(16*PI/180)/2)*2:
oh=trunc(roth(16*P1/180)/2)*2:
fillcolor=brown" \
malampuzha-lake-tilt-16.mp4

As FFmpeg requires that the new width and height be even numbers,
that is, divisible by 2, the calculated dimensions are first divided by 2,
truncated off, and then multiplied by 2.

» malampuzha-lake-tilt- f g > malampuzha-lake-tilt-16.mp4 [W=

Figure 7-5. The first video has the original dimensions, but the
rotated content has chopped-off corners. The second video has bigger
dimensions to accommodate the extruding corners

Flip a Video

Some videos are flipped for some reason. Use vflip or hflip to set
them right.

98

CHAPTER 7 USING FFMPEG FILTERS

Figure 7-6. These still images show which filter to us for what effect

ffmpeg

ffmpeg

ffmpeg

-1 exhibit.mp4 \
-filter:v "wflip" \
exhibit-upside-down.mp4

-i exhibit.mp4 \
-filter:v "hflip" \
exhibit-half-crazy.mp4

-1 exhibit.mp4 \
-filter:v "hflip,vflip" \
exhibit-totally-flipped.mp4

99

CHAPTER 7 USING FFMPEG FILTERS

Brighten a Video (Adjust Contrast)

It is inevitable that some of your videos are dark, even when they
were captured in broad daylight. You can use the eq filter to adjust the
brightness. However, adjusting the brightness requires a subsequent
adjustment of the contrast. The ranges for the options of this filter are
listed in Table 7-2.

‘> barbet-test.mp4

‘h{*’i&

AR R 3% X
Aﬂ‘.@"ﬂ»:sk.--r o

Figure 7-7. After cumulative applications of brightness, saturation,
and contrast filters, more detail of the green barbet is visible. Forget
the background

100

CHAPTER 7 USING FFMPEG FILTERS

First, I decided to do a side-by-side comparison.

ffmpeg -y -i barbet.mp4 \
-filter complex \
"[0:v]pad=(iw*2):ih:0:0[frame];

[0:v]eq=brightness=0.2[bright];
[bright]eq=saturation=3[color];
[color]eq=contrast=2[dark];
[frame][dark]overlay=W/2:0[out]" \

-map '[out]" -map O0:a \

barbet-test.mp4

Table 7-2. Options for filter eq

Filter option Lowest Highest Default

Contrast -1000 1000 1

Gamma 0.1 10 1

After some trial-and-error attempts, I applied the filters to the

original video.

ffmpeg -y -i barbet.mp4 \
-filter complex \
"[0:v]eq=brightness=0.2[bright];
[bright]eq=saturation=3[color];
[color]eq=contrast=2[dark]" \
-map ‘[dark]' -map 0:a \
barbet-bright.mp4

101

CHAPTER 7 USING FFMPEG FILTERS

Generate a Test Video

In the good old days, when there was just one TV channel in India, the
transmission began in the evening with a 30-minute video test - something
like this!

» test.mp4

4 B PM 0:20/030 =)) N =

Figure 7-8. The testszrc filter is a source filter that generates a test
video stream

The test video has a color pattern, a scrolling gradient, and a changing
timestamp. The audio is a low white noise. I do not know who needs this
video, but if it floats your boat, then here is the command to create it.

ffmpeg -f lavfi \
-i "testsrc=size=320x260[out0];
anoisesrc=amplitude=0.06:color=white[out1]" \
-t 0:0:30 -pix_fmt yuv420p \
test.mp4

102

CHAPTER 7 USING FFMPEG FILTERS

I This command uses a set of filters as a pseudo file source
(-f lavfi). It requires that the filter outputs be labeled outo,
outl, out2,....

5" Filters whose name end in “sxc” are source filters. They do
not require an input stream.

Remove Logo

In 2019, a newspaper in New York published an opinion alleging bias
against women in government experiments. NASA’'s Apollo Space Program
was then celebrating its 50th anniversary.

ffmpeg -i apollo-program.mp4 \
-filter:v "delogo=x=520:y=10:w=100:h=50" \
apollo-program-you-are-dead.mp4

103

CHAPTER 7 USING FFMPEG FILTERS

> apollo-program.mp4

File Edit View Go Sound Help
st

] ‘ON% HOON

‘» apollo-programryou-are-dead.mp4 W=

- File Edit View Go Sound Help

M4 P MM 0:01/0:20 ¢

Figure 7-9. With the delogo filter, it is very easy to remove an
unwanted logo from a video

057 After applying the filter, the logo has disappeared from the top-
right corner.

05" This video is only a simulation.

104

CHAPTER 7 USING FFMPEG FILTERS

Fade into Another Video (And in Audio Too)

In order to prove aliens do not exist and have fun while doing that, I

took videos from two authoritative US government agencies - NASA

and IRS. The videos are in public domain, as the agencies are taxpayer-
funded. The NASA video clearly states that there are no aliens, but I am
not interested in their explanation. The IRS video is a tax advisory for
noncitizens, also known as aliens. That is the fun part. In the output video,
the first video plays fine until six seconds after which it fades out in three
seconds. As the first video fades away, the second video starts fading in for
three seconds. After that, it plays for six seconds.

lie WL Vew Co Sound

DO ALIENS
EXISTT % .

W P oW 002 /00N

e B e 005205 4

e B 008208 ¢ " S =

Fle EOt View Co Sound

Fle §dt View Co Sousd

Fie Lol Vew Co Lousd

py YIRS fle Ok View Co Sound teip
- 4 da arierm QRS
Filing Statun of U %, Ditites
Al Married 12 @ Nonre Tlart e @ Il o T e besrteros WA
Filrg $1aten of U S Citieey
Aben Macried 10 & Mo
Fing Mtatun of U S Otigen or Residest
Alen Married 1o 8 Norresatest Ales

W MO0 /D% e

W W oaaT /o1 =

M P M OQRT/0NS =

e B MM 010015 - “w S =

Figure 7-10. These screenshots show the crossfade sequence involving
the two input videos

105

CHAPTER 7 USING FFMPEG FILTERS

Mixing these two videos can be done with one command, but for
clarity, I have split it into four commands. (You should combine the filters
to avoid multiple re-encoding.) The crossfade effect is performed by the
fade filter for video and the afade filter for audio. The trim and atrim
filters are used to divide the video and audio tracks into two parts - one
where the stream plays normally and another where the fade filters take
effect. l used overlay and amix filters to mix the second parts. After
that, the concat filter was used to put three segments together - normal
playback from the first file, crossfade effect from both files, and then
normal playback from the second file.

Make the second video same size as the first
ffmpeg -y -i irs-tax-advice-for-alien-mates.mp4 \
-filter:v "pad=w=640:h=ih:x=(ow-iw)/2:y=0:color=yellow,
fps=24" \
-t 0:0:20 -pix_fmt yuv420p \
irs-tax-advice-for-alien-mates2.mp4

Create the fade-in-fade-out video
ffmpeg -y -1 Do-Aliens-Exist-We-Asked-a-NASA-Scientist.mp4 \
-1 irs-tax-advice-for-alien-mates2.mp4 \
-filter_complex \
"[0:v:0]trim=start=0:end=6, setpts=PTS-STARTPTS, fps=24[vi];
[1:v:0]trim=start=3:end=9, setpts=PTS-STARTPTS, fps=24[v2];
[0:v:0]trim=start=6:end=9, setpts=PTS-STARTPTS, fps=24[v3];
[1:v:0]trim=start=0:end=3, setpts=PTS-STARTPTS, fps=24[v4];
[v3]fade=t=out:d=3:alpha=1, setpts=PTS-STARTPTS,
fps=24[nasafade];

[v4]fade=t=in:d=3:alpha=1, setpts=PTS-STARTPTS,
fps=24[irsfade];

[nasafade][irsfade]overlay, setpts=PTS-STARTPTS,
fps=24[fading];

106

CHAPTER 7 USING FFMPEG FILTERS

[vi][fading][v2]concat=n=3:v=1:a=0[v]" \
-map '[v]"' -pix_fmt yuv420p \
aliens-r-us-v.mp4

Create the fade-in-fade-out audio

ffmpeg -y -i Do-Aliens-Exist-We-Asked-a-NASA-Scientist.mp4 \
-1 irs-tax-advice-for-alien-mates2.mp4 \
-vn \
-filter complex \

"[0:a:0]atrim=start=0:end=9, asetpts=PTS-STARTPTS[a1];
[1:a:0]atrim=start=0:end=9, asetpts=PTS-STARTPTS[a2];
[a1][a2]acrossfade=duration=3" \

aliens-r-us-a.m4a

Mix the video and audio

ffmpeg -i aliens-r-us-v.mp4 -i aliens-r-us-a.m4a \
-codec copy \
aliens-r-us.mp4

Crop a Video

For some screenshots in the beginning of this chapter, I needed a public-
domain video of a sign-language translator. I found one but it was too big.
I grabbed a still image from the video using a media player and edited it
in GIMP.

107

CHAPTER 7 USING FFMPEG FILTERS

1 *[Screenshot-from-how-to-vote-mp] (imported)-1.0 (RGE color 8-bit gamma integer, ¢

File Edit Select View Image Layer Colors Tools F'Iters Windows Help
#Eoe 88 Jafe
BRI A
B/ 2|
® o |7

5 7 B8
33
©

COR W
| @ &
>0
N B &
> &

.

i
< £ Layers ¥4Tool Options || .fx
Rectangle Select

Position:

hso ﬁ 12
Size:

m = [
B Highlight |

=
| No guides v ®
+ iy ®) px | 50% __/jScreenshol:‘frorrrhowto...

Figure 7-11. First, take a screengrab from the video. Then, use
an image-editing program to identify the location (150,12) and
dimensions (332,332) of the region you want to cut out

I then selected the region that I wanted cut into. I noted down the
coordinates and dimensions of the region from GIMP’s Tool Options panel.
I used the details from GIMP in the options for a crop filter that I used on
the video.

ffmpeg -i how-to-vote.mp4 \
-filter:v "ecrop=332:332:150:12" \
accessibility.mp4

108

CHAPTER 7 USING FFMPEG FILTERS

» accessibility mod

Figure 7-12. The crop filter cut into a portion of a video

Blur or Sharpen a Video

When this video was shot, there was a lot of camera refocusing and the
action was blurry. The smartblur filter almost fixes this when it is set to
sharpen the video.

‘» LED-Flip-Flop-Circuit.mp4 W=

> LED-Flip-Flop-Circuit-blurred.mp4

o,

Figure 7-13. With the smartblur filter, you can blur or
sharpen a video

109

CHAPTER 7 USING FFMPEG FILTERS

ffmpeg -i LED-Flip-Flop-Circuit.mp4 \
-filter:v
“smartblur=luma_radius=5:luma_strength=1.0:
luma_threshold=30" \
LED-Flip-Flop-Circuit-blurred.mp4

ffmpeg -i LED-Flip-Flop-Circuit.mp4 \

-filter:v
"smartblur=luma_radius=5.0:luma_strength=-1.0:
luma_threshold=30" \

LED-Flip-Flop-Circuit-sharpen.mp4

The smartblur filter can blur or sharpen videos without affecting the
outlines. It works on the brightness of the pixels. The luma_radius (0.1 to 5)
represents the variance of the Gaussian blur filter. luma_strength (-1to 1)
varies between sharpness to blurring. luma_threshold (-30 to 30) varies the
focus of the filter from the edges to interior flatter areas.

Blur a Portion of a Video

Sometimes, you need to protect the identity of some people (e.g.,
bystanders) who are not really the focus of a video. Use the boxblur
filter. This command tries to blur two regions in a video where human

faces appear.

ffmpeg -y -i stilt.mp4 \
-filter_complex \
"[0:v]cxrop=260:80:400:550[c1];
[0:v]crop=100:60:1:550[c2];
[c1]boxblux=6:6[b1];
[c2]boxblux=6:6[b2];
[0:v][b1]overlay=400:550[v1];

110

CHAPTER 7 USING FFMPEG FILTERS

[vi][b2]overlay=1:550[v]" \
-map '[v]"' -map 0:a -c:a copy \
stilt-masked.mp4

Unlike smartblur, it does not respect object outlines. And, contrary
to its name, boxblur does not blur inside the box or a part of the video. It
affects the whole frame of the input video stream.

‘» stil-maskedmpd BB X

Figure 7-14. With the boxblur filter, you can blur content without
discrimination of any outlines

=" 7o avoid any doubt or confusion, | would like to state that | have
masked faces of private individuals (even in public-domain content) in
several screenshots using an image-editing program. In this screenshot,
however, the effect was achieved using the ffmpeg filter boxblur.

111

CHAPTER 7 USING FFMPEG FILTERS

Draw Text

To draw text on video, you need to use the drawtext filter and also specify
the location of the font file. When you are drawing several pieces of text, it
is better to daisy-chain your texts (using commas, not semicolons).

ffmpeg -y -i color-test.mp4 \
-filter_complex \
"[0:v:0]drawtext=x=(w-tw)/2:y=10:fontcolor=white: \
shadowx=1:shadowy=1:text="Detonation Sequence': \
fontsize=25: fontfile=AllertaStencil.ttf, \
drawtext=x=(w-tw)/2:y=60:fontcolor=white: \
shadowx=1:shadowy=1: \
text="This TV will self-destruct in t seconds.': \
fontsize=15:fontfile=Exo-Black.ttf[v]" \
-map '[v]" -map 0:a:0 -pix_fmt yuv420p \
idiot-box-1.mp4

112

CHAPTER 7 USING FFMPEG FILTERS

€ B P 0:220/0:30 == » o) [=

Figure 7-15. With the drawtext filter, you can draw text formatted
with fonts, styles, shadows, transparencies, etc. on video

Draw a Box

You can use the drawbox filter to render all kinds of boxes, filled or bound,
with all sorts of colors and transparencies.

ffmpeg -y -i color-test.mp4 \

-filter complex \
"[0:v:0]drawbox=x=20:y=3:w=280:h=36:color=tomato@0.4:
t=fill, \

drawbox=x=11:y=49:w=294:h=40:color=1ime:t=1, \
drawtext=x=(w-tw)/2:y=10:fontcolor=white: \
shadowx=1:shadowy=1:text="'Detonation Sequence': \

113

CHAPTER 7 USING FFMPEG FILTERS

fontsize=25: fontfile=AllertaStencil.ttf, \
drawtext=x=(w-tw)/2:y=60:fontcolor=white: \
shadowx=1:shadowy=1: \
text="This TV will self-destruct in t seconds.': \
fontsize=15:fontfile=Exo-Black.ttf[v]" \
-map '[v]' -map 0:a:0 -pix_fmt yuv420p \
idiot-box-2.mp4

The part of the color value after the @ symbol refers to the transparency
level. It ranges from 0 (fully transparent) to 1 (opaque). If you specify the
value fill for the filter option t or thickness, then the box will be filled
with that color. Otherwise, it applies to the border.

€ B PM 0:220/0:30 == » W) [=

Figure 7-16. With thedrawbox filter, two rectangles around the text.

(See original video in previous section.) The first rectangle is filled
with red. The second rectangle is bordered green

114

CHAPTER 7 USING FFMPEG FILTERS

Speed Up a Video

When you increase the playback speed of a video, its duration decreases.
When you slow down a video, its duration increases. There is no one filter
that changes the speed of both the audio and the video. You need to use
two different filters - one for video and one for audio. The two filters do not
work in the same way. The two need to be calibrated correctly so that the
same effect is achieved on both the audio and the video.

For the video, you need to set the setpts video filter to a fraction of the
PTS filter constant. If you want to double the speed of the video, divide PTS
by 2. If you want the video to be four times fast, then divide PTS by 4. For
the audio, you need to use the atempo filter. The range of this filter is from
half the speed to 100 times. The following command fast-forwards a video
by four times (4x).

ffmpeg -y -i barb.mp4 \
-filter_complex \
"[0:v]setpts=PTS/4[v];
[0:a]atempo=4[a]" \
-map ‘[v]" -map '[a]" \
barb-speed.mp4

I=5" In older versions of FFmpeg, the maximum limit of the atempo
filter was just 2. To go beyond that limit, multiple filters had to be
daisy-chained: atempo=2, atempo=2

115

CHAPTER 7 USING FFMPEG FILTERS

Slow Down a Video

In the Tom & Jerry film Baby Puss, one of the alley cats tries to dance with
a seemingly innocuous doll. In the middle of it, I thought, the doll had
become possessed and slammed the cat down on the floor! I slowed the
video down with Ffmpeg, and my suspicions were confirmed.

To slow down a video, you need to use the same filters as in the
previous section, but the multipliers will have to be different.

This command slows down the video and the audio to one-fourth.

ffmpeg -y -i tom.mp4 \
-filter complex \
"[0:v]setpts=PTS*4[v];
[0:a]atempo=0.5, atempo=0.5[a]" \
-map ‘[v]" -map '[a]" \
possessed-doll.mp4

05" Note the different multiples used for video and audio to
achieve the same effect. The audio filter has been used twice
because of the limitation in its range.

U5 Read previous section for more information on these two filters.

Laurie Lennon, from the Lennon Sisters family, has published a tribute
video for the Merrie Melodies number “Oh, Wolfie!” When I saw it for the
first time some years ago, I felt the tempo was too high. I slowed the audio
down in Audacity. (I have all songs featuring Lou as MP3 files, complete
with Wolfie’s and Droopy’s crazy antics.) For my 2020 book, I tried to do

116

CHAPTER 7 USING FFMPEG FILTERS

the same using FFmpeg and apply the change to the video as well. My
calculation became easier when I used seconds. The original video was
114 seconds, and my slowed-down audio was 128 seconds.

128/114 and 114/128
ffmpeg -y -i Laurie-Lennon-Original.mp4 \
-filter complex \
"[0:v]setpts=PTS*(128/114)[v];
[0:a]atempo=(114/128)[a]" \
-map '[v]" -map '[a]" \
Laurie-Lennon-Slow.mp4

The links to these videos and those used in other examples in this book

are available online:

www.vsubhash.in/ffmpeg-book.html

Summary

The examples in this chapter would have amply demonstrated that a lot
of useful and powerful multimedia-processing abilities are hidden in

the filters functionality. You need to read the relevant documentation to
make full use of a filter. Filter expressions using built-in real-time variables
(filter constants) and functions provide a lot of versatility and extensibility
to command-line users that would have otherwise been limited to
programmers who use the 1ibav libraries.

In this book, the teaching portion about FFmpeg functionality ends
here. The subsequent chapters are topic-specific for those who want quick
answers to a particular type of problem and do not want to read through
dense explanatory text before finding the answer. You will find some

information repeated or not mentioned at all.

117

http://www.vsubhash.in/ffmpeg-book.html

CHAPTER 8

All About Audio

In this chapter, you will learn to perform several tasks related to audio
content. While it is convenient to have a separate chapter just for audio,
you will find some information repeated from other chapters. If there is no
explanation, then it must be self-explanatory.

Most audio-related tasks can be performed using audio filters. If any
of the filters used in this chapter seem too complicated, find out what the
official FFmpeg documentation has to say on them. If you are unfamiliar
with using filters, read Chapter 7.

Convert from One Audio Format to Another

ffmpeg -i alarm.ogg \
-c:a libmp3lame \
-ac 2\
-b:a 128K \
alarm.mp3 # Ogg to MP3

Extract Audio from a Video

ffmpeg -i music-video.mp4 \
-c:a libmp3lame \
-ac 2\
-b:a 128K \
music-video.mp3 # Audio saved as MP3

© V. Subhash 2023 119
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_8

https://doi.org/10.1007/978-1-4842-8701-9_7
https://doi.org/10.1007/978-1-4842-8701-9_8#DOI

CHAPTER 8 ALL ABOUT AUDIO

Convert a MIDI File to MP3 or Ogg

You may have noted that there are no codecs for MIDI. That is because
MIDI files are quite different from ordinary sound files. Ordinary sound
files contain the wave form encoded in a predefined format. In contrast,
MIDI files are merely a collection of references to a common sound bank.

Timidity is the Linux way of playing MIDI files. You can use Timidity
to playback MIDI files in WAVE format and write it to its standard output.
Simultaneously, FFmpeg can be made to consume the wave output as its
input file (from its standard input over a pipe) and convert it as a regular
sound file.

timidity yamaha.midi -Ow -o - | ffmpeg -i - -b:a 128k
yamaha.ogg
The -Ow makes Timidity to output the playback in WAVE format. Its -0
option is used to specify the output file. Instead of an output file, we use -
to make it write to the standard output. The Timidity output is then piped

over to an FFmpeg command, where it is captured from the standard input
with yet another - (hyphen).

Change Volume

FFmpeg can increase the loudness of an audio file using its volume filter.
The filter accepts a multiple either as a number (scalar) or in decibels
(logarithmic).

ffmpeg -i sarah.mp3 -af 'volume=3' sarah-more.mp3

I had an audio file that continued to have low volume, even after
trebling the levels. I opened it in Audacity and found the reason.

120

CHAPTER 8 ALL ABOUT AUDIO

X|sarah 1 w|

1.0

Stereo, 44100Hz
32-bit float

0.5-

~ Mute l Solo

= +

(et

0.0-

-0.5-
'1-0

1.0

0.5-

X|sarah-more w

Stereo, 44100Hz
7| 32-bit float

~ Mute | Solo

[Py ..‘.l

Figure 8-1. Audacity confirms that irrationally increasing the

volume is not making much of a difference

121

CHAPTER 8 ALL ABOUT AUDIO

Increasing sound like this is based on guesswork. It might work. It
may also damage your hearing and/or your speaker system. The correct
approach is to normalize the sound after observing the decibel levels in

the current waveform.

ffmpeg -i sarah.mp3 -af "volumedetect" -f null -

~/Desktop

$ ffmpeg -i sarah.mp3 -af "volumedetect" -f null /dev/null
[Parsed_volumedetect_0 @ 0x226c100] mean_volume: -32.4 dB
[Parsed_volumedetect_0 @ 0x226c100] max_volume: -17.3 dB
[Parsed_volumedetect_0 Q@ 0x226c100] histogram_17db: 6
[Parsed_volumedetect_0 @ 0x226c100] histogram_18db: 15
[Parsed_volumedetect_0 @ 0x226c100] histogram_19db: 56
[Parsed_volumedetect_0 @ 0x226c100] histogram_20db: 452
[Parsed_volumedetect_0 @ 0x226c100] histogram_21db: 1676
Figure 8-2. Run the volumedetect filter before increasing the
volume. It helps you in determining the highest number of decibels to
which the volume can be increased without cutting into the waveform

" The volumedetect filter outputs text data to the standard
output. It does not create an audio stream.

The volumedetect filter shows that we can safely increase the volume
to 16db. If we raised the volume to 17dB or higher, normalization would
cut into the waveform, and the peaks would get attenuated or chopped off.
At 17dB, six sound samples (the loudest) in the waveform would be lost.

ffmpeg -i sarah.mp3 \
-af 'volume=16dB' -f ogg \
sarah-normalized.ogg

122

CHAPTER 8 ALL ABOUT AUDIO

xlsarah-norm v
Stereo, 44100Hz
16-bit PCM

Mute | Solo

Figure 8-3. Audacity confirms that the volume has been increased
without cutting into the waveform

This is fine. Now, how do you decrease the volume? Well, choose a fraction
between 0 and 1 for the volume filter. For example, to decrease the volume by
two-thirds, you should set the multiple at 0.33. (You know %5 = 0.33?)

ffmpeg -i sarah-normalized.ogg -af 'volume=0.33' sarah-less.mp3

Change Volume in a Video File

Say, to irrationally increase the volume by three times,

123

CHAPTER 8 ALL ABOUT AUDIO

ffmpeg -i sarah.mp4 \
-c:v copy \
-af 'volume=3' \
-c:a libmp3lame -b:a 128k \
sarah-more.mp4

To safely and intelligently increase the volume in a video file,

ffmpeg -i sarah.mp4 \
-af 'volumedetect' \
-vn \
-f null \
/dev/null
Displays that the loudest samples are at 17dB

Increase the volume to 16dB (to safely normalize the audio)
ffmpeg -i sarah.mp4 \

-c:v copy \

-af 'volume=16dB"' \

-c:a libmp3lame -b:a 128k \

sarah-normalized.mp4

To decrease volume by two-thirds in a video file, you need to use
fractions:

Reduces volume by two-thirds (or to one-thirds)
ffmpeg -i sarah-normalized.mp4 \
-c:v copy \
-af 'volume=0.33"' \
-c:a libmp3lame -b:a 128k \
sarah-less.mp4

124

CHAPTER 8 ALL ABOUT AUDIO

Dynamic Range Compression/Normalization

Sometimes, normalization does not make any difference. The volume
seems to be unchanged. Examining the audio in Audacity can show you
the problem. There are volume spikes in some locations while much of
the file is at low volume. (These spikes usually occur when the mic is
shaken or bumped while it is recording.) Normalization cannot proceed
as long as the spikes remain. The solution is to identify the low-volume
regions and expand the waveform. This more selective normalization

is known as Dynamic Range Normalization. Alternatively, you could
bring down the high-volume regions to the level of the rest of the audio.
This selective compression of the waveform is known as Dynamic Range
Compression (DRC).

Both techniques make irreversible changes to the waveform, so do not
use them indiscriminately. DRC is the bane of popular music today and
makes it very boring.

In Carl Orff’s composition of O Fortuna or Ryuichi Sakamoto’s score
for the end credits of the movie Femme Fatale, the music starts on a
low note, building slowly in a steady crescendo and abruptly drops off
a high cliff. Applying DRC on such an audio would ruin the composer’s
intent. However, a recording of a teleconferencing session where multiple
participants are heard speaking at different volumes would be an ideal
candidate for DRC.

The dynaudnozxm filter can perform both functions, but the default is
normalization. When the guasssize option is set at the lower end of 3, it
behaves like a typical compressor. At the other end of 300, it becomes a
traditional normalizer.

ffmpeg -y -i train-trip-low.mp3 \
-filter:a dynaudnorm=gausssize=3 \
train-trip-low-dynaudnormalized.mp3

125

CHAPTER 8 ALL ABOUT AUDIO

| train-tripdowe| 1.0
Mute Solo
- +
—o_
L R’ | 0.0
IR . VE——Y
Mono, BOO0Hz el
32-hit float 0.5

0.5

A& Select | -1.0

3| traintriplowe| 1.0
Mute Sole

— 0.5
A VA
i R | 0.0

i it L

Mona, B000Hz] i

32-bit float 0.5 L |

| select | [-1.0

Figure 8-4. A few unexplained spikes in volume can prevent
normalization from happening on the rest of the waveform. Dynamic
Range Compression and Dynamic Range Normalization are not
affected by these spikes and change the entire waveform

Channels

An audio stream can have one or more channels. A channel is an
independent sequence of audio. All channels in an audio stream are of the
same length, and they are played back simultaneously. The idea of having
a separate channel is to have a different choice of musical instruments or
sounds to play in different speakers. Audio content creators may move
back and forth sounds between different channels at different volume
levels. This can be useful in creating a 2D or 3D effect to the sound.
Typically, each channel in an audio stream is assigned to a particular
speaker. This composition of channels in a multichannel stream is known
as its channel layout. When the number of speakers is less than the
number of channels, then that particular channel may not be heard, or
the device may downmix the channels so that the excess channels will be
heard on the existing speakers.

Monaural audio has only one channel. Stereo music has two channels -
left and right. Movies can have two, six, seven, eight, or more channels.

When working with channels, you will need to use filters such as amerge,
channelmap, channelsplit, and pan. These filters make use of certain IDs
for channels and channel layouts. Table 8-1 and Table 8-2 list these IDs.

126

Table 8-1. Channels

CHAPTER 8 ALL ABOUT AUDIO

Table 8-2. Channel layouts

Layout composition

-

R Front right

LFE Low frequency
BR Back right

FRC Front right-of-center
SL Side left

—

© Top center

—

EG Top front center

—

BL Top back left

=]

BR Top back right

o

R Downmix right

=

R Wide right

w

DR Surround direct right

Stereo FL+FR

w
o

FL+FR+FC

=
o

FL+FR+FC+BC

Quad(side) FL+FR+SL+SR

o
o

FL+FR+FC+BL+BR

~
—

FL+FR+FC+LFE+BC

5.1(side) FL+FR+FC+LFE+SL+SR
6.0(front) FL+FR+FLC+FRC+SL+SR

FL+FR+FC+LFE+BC+SL+SR

[=2)
TS

[=2]

(front) FL+FR+LFE+FLC+FRC+SL+SR

7.0(front) FL+FR+FC+FLC+FRC+SL+SR

7.1(wide) FL+FR+FC+LFE+BL+BR+FLC+FRC

Octagonal FL+FR+FC+BL+BR+BC+SL+SR

Downmix DL+DR

12

BN}

CHAPTER 8 ALL ABOUT AUDIO

Swap Left and Right Channels

In some videos, sounds from the left side of the video are heard on the
right channel and those from the right side are on the left channel. In such
a case, you can do a switcheroo.

Switch right and left channels of stereo audio
ffmpeg -i wrong-channels.mp4 \
-c:v copy \
-filter complex "channelmap=map=FR-FL|FL-FR" \
fine-channels.mp4

You can specify the channel settings using the map filter option in
this format:

input_channel id-output channel id|input_channelJ
_id-output_channel id|...

This filter also has a channel layout option.

Turn Off a Channel

In some video files, the narration or commentary is on one channel, and
the ambient noise or background music is on the other. If what you want is
on the left, you can turn the right channel off by setting its gain to zero (0).

Silence right channel

ffmpeg -i moosic.mp3 \
-c:v copy \
-filter complex "pan=stereo|FL=FL|FR=0" \
moosic4lefty.mp3

128

CHAPTER 8 ALL ABOUT AUDIO

I Changing the audio to mono (single-channel audio) is not an
option because mono audio is played on both front and left speakers.

You can specify the channel settings in this format:

1|output_channel_id=gain*input_channel _id|output<]
_channel _id=gain*input_channel id...

The filter option 1 is used to specify the channel layout. After that, you
have to specify how much of what channel (in the input stream) you need
for each channel in the output audio stream. For specifying that proportion
or the gain, you can specify a multiple or a fraction. If you omit the gain, it
implies that you want that channel as is or that the gain is equal to 1 (one).
If you use 0 (zero), it means that you want that channel totally attenuated.

Move Channel to a Separate Audio Track

In some videos, the left and right audio channels are independent tracks.
What these content creators do is place the original audio on one channel
and the most annoying royalty-free music on the other. Instead of deleting
the offending channel, you could move each channel to a separate audio
stream while preserving the original stereo stream in a third stream.

The channesplit filter has a channel layout filter option which by
default assumes the input audio stream is stereo. Because of that, this
command splits the left and right channels of the audio stream in the video
to two mono streams, which I have labeled as L and R.

Split channels to separate audio streams
and also preserve existing audio stream
ffmpeg -y -ss 0:0:20 -t 0:0:20 -i zombie.mp4 \
-c:v copy \
-filter complex "channelsplit[L][R]" \

129

CHAPTER 8 ALL ABOUT AUDIO

-map 0:v:0 -map '[L]" -map '[R]" -map 0:a:0 \
-c:a:0 aac -ac:a:0 1\

-c:a:1 aac -ac:a:1 1\

-c:a:2 copy \

zombie-tracks.mp4

Because the first two of the mapped output audio streams need to be
freshly encoded as mono streams and the last mapped audio stream just
needs to be copied without re-encoding, encoder (-c) and channel count
(-ac) need to be specified on a per-stream basis.

" The -c and -ac options are limited to the streams specified by
the -map options specified before them.

Fix Out-of-Phase Audio Channels

e e e

&“‘;:;;;“‘"umnm*‘;::::;:;aﬂmzﬂunfff:::ﬁﬂbunh“~

Figure 8-5. This zoomed-in waveform shows out-of-phase left and
right channels

130

CHAPTER 8 ALL ABOUT AUDIO

Rarely, when you downmix to mono sound, out-of-phase audio in the
channels may cancel each other out. The audio will sound muted. You
can fix it by saving either the left or the right channel in the input file as
the only (mono) channel in the output file. (Monaural audio is played the
same on both sides.)

Change Stereo to Mono

Stereo audio has two channels - left and right. Most of the time, both
channels have the same audio. However, in many cases, the left channel
will have some sounds that are not available in the right channel. The
loudness of certain sounds may also differ. This difference will be lost
when you convert to mono. Remember this before converting to mono.
Mono audio cannot be converted back to stereo. It can only be made to
look like stereo. You can convert stereo to mono either by downmixing
both left and right channels to a mono channel or dropping one of the
channels.

131

CHAPTER 8 ALL ABOUT AUDIO

X|uncompress w| 1.0

Stereo, 44100Hz
32-bit float
Mute | Solo

0.5-

Mono, 44100Hz

32-bit float
Mute] Solo
- +
.I—'_'_'_ o.';'—.' —.I.
v @ R
ey .100
X |right | 1.0
Mono, 44100Hz
32-bit float 0.5-
Mute] Solo
= + | 0.0-
| B @. R |
l—@ﬁ -0.5-
A -1.0

Figure 8-6. To convert from stereo to mono, you can downmix

left and right channels to a single mono channel or drop one of the
channels. In either case, if the two channels are different, there will be
some irreversible loss of the waveform

132

CHAPTER 8 ALL ABOUT AUDIO

Downmix to mono

ffmpeg -i uncompressed-stereo.wav \
-ac 1\
mono.mp3

Drop left channel

ffmpeg -i uncompressed-stereo.wav \
-filter channelmap=FR-FC:mono \
right.mp3

Convert Mono to Stereo

Mono audio has only one channel. On a stereo audio output device, the
same channel will anyway be played on the left and right speakers. Hence,
it does not make any difference to convert mono to stereo. If at all this
needs to be done, then the audio can be split with a second channel.

ffmpeg -i mono.mp3 \
-ac 2 \
stereo-kind-of.mp3

Make Audio Comfortable for
Headphone Listening

When wearing headphones, the sounds feel like they are arising inside
your head and between your ears. The earwax filter makes the sound feel
like it is outside and in front of your head.

ffmpeg -i in-head.flac -filter "earwax" out-head.mp3

ffmpeg -i tl.mp4 -filter:a "earwax" -c:v copy tl-head.mp4

133

CHAPTER 8 ALL ABOUT AUDIO

Downmix 5.1 Audio to Stereo

Using the -ac (audio channels) option with the necessary number of

channels is enough for most downmixing operations.

ffmpeg -i AAC-LC-Channel-ID.mp4 \
-ac 2 \
stereo.mp3

Downmix Two Stereo Inputs to One
Stereo Output

When you place two videos side-by-side each other, you need to do
something about their two audio streams.

ffmpeg -y -i beto.mp4 -i fallon.mp4 \
-filter_complex \
"[0:v]pad=1280:360:0:0 [frame];
[frame][1:v]overlay=640:0 [overlaid];
[0:a]channelsplit=channel_layout=mono[beto];
[1:a]channelsplit=channel_layout=mono[fallon];
[beto][fallon]join=inputs=2:channel_layout=stereo[audio]" \
-map '[overlaid]' -map '[audio]’ \
fallon-aces-beto.mp4

ffmpeg -y -i beto.mp4 -i fallon.mp4 \
-filter_complex \
"[0:v]pad=1280:360:0:0 [frame];
[frame][1:v]overlay=640:0 [overlaid];
[0:a][1:a]amexge=inputs=2[audio]" \
-map '[overlaid]' -map '[audio]’ \
-ac 2 \
fallon-aces-beto2.mp4

134

CHAPTER 8 ALL ABOUT AUDIO

The first command uses channelsplit filter to convert stereo audio
from the two input files to mono streams. It then uses the join filter to use
the two mono streams to create a stereo stream where the mono audio
from the first file is the left channel and the mono audio from the second
file becomes the right channel.

The second command uses amerge filter to create a four-channel
audio stream from the two input stereo (two-channel) streams. The -ac 2
conversion setting downmixes the four-channel audio to a two-channel
stereo output.

In the first command, the input audio streams are assumed to be of
equal length. If they are not of equal length, then the apad filter needs to be
used to add silence to last till the end of the video stream.

For the Laurie Lennon video mentioned in an earlier chapter, I had
also created a video with both the original version and the slowed-down
version side-by-side for comparison. The slowed-down video was of greater
duration. Without adding the extra silence, FFmpeg would continue adding
duplicate data at the end of the shorter stream. The process would never
complete, and my computer would have run out of space.

// Slow MP4 was 128 seconds. The original was 114 seconds.
ffmpeg -i Laurie-Lennon-Slow.mp4 \

-1 Laurie-Lennon-Original.mp4 \

-loop 1 -i bg.png \

-filter complex \
"[0:v:0]scale=320:180[v1];
1:v:0]scale=320:180[v2];

2:v:0][vi]overlay=320:90[v3];
v3][v2]overlay=0:90[v];
0:a:0]channelsplit=channel layout=mono[right];
1:a:0]channelsplit=channel layout=mono,apad[left];
left][right]join=inputs=2:channel layout=stereo[a]" \

L T s T e T s B s B |

135

https://doi.org/10.1007/978-1-4842-8701-9_7#Par89

CHAPTER 8 ALL ABOUT AUDIO

-map ‘[v]" -map '[a]" \
-t 0:2:08 \
-y laurie-lennon-comparison.mp4

Render a Visual Waveform of the Audio

The showwaves filter renders a visual waveform of the input audio.

ffmpeg -y -i dialup-modem.mp4 \

-filter complex \
"[0:a]showwaves=s=160x90:mode=1ine[waves] ;
[0:v]drawbox=x=(iw-20-w):y=(ih-20-h):w=160:h=90:

color=yellow@0.6:t=fill[bg];

[bg][waves]overlay=x=(W-20-w):y=(H-20-h)[over]" \

-map '[over]' -map 0:1 \

dialup-modem-handshake.mp4

» dialup-modem-handshake.mp4

Figure 8-7. This command draws a waveform of the dialup modem
handshake tones on the video. To make the waveform easily visible,
the command has drawn a translucent yellow box behind it

136

CHAPTER 8 ALL ABOUT AUDIO

In 2021, I wrote a book on electronics. In that, I described how to create
the most annoying-sounding alarm noise using a blinking LED. I wanted
to publish an online video of the alarm but felt queasy about posting a
video of the ceiling where the alarm was installed. FFmpeg to the rescue!

I used the showfregs filter to generate the “power spectrum” of the audio
recording.

‘» The-most-annoying-DIY-electronic-alarm.mp4

File Edit View Go Sound Help

i il

a1 MM 0:17/1:01 s ———— o) O =

Figure 8-8. The showfreqs filter shows how energy in an audio
signal is spread across the range of frequencies that are audible to the
human ear

ffmpeg -i The-most-annoying-DIY-electronic-alarm.mp3 \
-filter complex \
"showfreqs=s=640x320:mode=bar[v]" \
-map '[v]' -map 0:a:0 \
-c:v mpeg4 -b:v 466k -r 24 \
The-most-annoying-DIY-electronic-alarm.mp4

137

CHAPTER 8 ALL ABOUT AUDIO

There are a few other filters similar to this one. Check the
documentation. These filters are very interesting.

Detect Silence

I have a shell script for censoring movies. (It uses FFmpeg, of course.)

use it to protect kids from foul dialog and unsuitable scenes. It asks for
timestamps where the audio needs to be silenced and the video needs to
be blacked out. After it does the job, I need to double-check these locations
before the grand premiere on the TV. I use this command:

ffmpeg -i edited-movie.mp4 \
-filter:a "silencedetect" \
-vn -f null -

This command outputs timestamps wherever silence is detected. This
helps me to directly skip to the censored locations using my media player
on my computer.

Silence the Video

Heck, you do not want sound at all! Just remove the audio stream.

ffmpeg -i music-video.mp4 \
-an \
-c:v copy \
sound-of-silence.mp4

Convert Text to Speech

If your ffmpeg executable has been built-in with support for the 1ibflite
text-to-speech synthesizer library, then you can convert text content to
spoken words.

138

CHAPTER 8 ALL ABOUT AUDIO

ffmpeg -f lavfi \
-i "flite=textfile=speech.txt:voice=slt" \
speech.mp3

This library has an option for a female voice, but I like the male-only
espeak better. You can find other options for the flite filter option voice
by typing the following:

ffprobe -f lavfi "flite=list voices=1"

On my computer, this command lists awb, kal, kal16, rms, and slt as
voices that are supported.

Apply a Low-Pass Filter

In an earlier chapter, I mentioned that I used Audacity to apply a low-pass
filter. A low-pass filter makes all frequencies above a certain level to steeply
drop to a zero while not disturbing all frequencies below that level. There is
also a high-pass filter which does the opposite and attenuates frequencies
below a certain level.

The audio recording in my example had a lot of noise typical of old
gramophone recordings. When the low-pass filter was applied, the noise
disappeared. At that time, I did not know much about FFmpeg filters. If I
did, I could have fixed the audio in just one step.

ffmpeg -i Stopmotion-hot-wheels.mp4 \
-filter:a "lowpass=frequency=1000" \
-codec:v copy \
Stopmotion-hot-wheels-audio-passed-1low.mp4

139

CHAPTER 8 ALL ABOUT AUDIO

The default option in Audacity was 1000 Hz for the frequency and 6 dB
per octave for the roll-off. The roll-off specifies how steeply the frequencies
are attenuated. The lowpass filter can apply a 3 dB roll-off if you set its
poles option to 1. The default 2 applies a 6 dB roll-off, and I did not have to
explicitly specify it in the above command.

Summary

In this chapter, you learned how to perform several tasks with audio
content. You may find it helpful to initially use Audacity to understand
audio problems. As you get more familiar with what ails audio content,
you can rely on FFmpeg entirely. FFmpeg has a ton of audio filters, and
this chapter used just a few of them. Check the FFmpeg documentation on
audio filters, and you will find more exciting things you can do with audio.

140

CHAPTER 9

All About Subtitles

In this chapter, you will learn to perform several tasks related to subtitles.
Subtitles are dialogs that are displayed as text on a video. The subtitles may
be burned into the video or be available as a separate content stream in
the multimedia file. In case of the former, the subtitles cannot be turned
off as they have become part of the video. In case of the latter, the subtitles
can be turned on or off using a remote button or by selecting an onscreen
menu option.

Videos on streaming media, optical media, and broadcast TV can have
subtitles in multiple languages. Some websites maintain a crowd-sourced
library of subtitles (in multiple languages) of a wide variety of movies,
popular and obscure. Several video-hosting sites also display subtitles.
They do not let you download subtitles separate from the video. However,
there are some other websites that will fetch the subtitles if you give them
the address where the original video is hosted.

Subtitles are available in many formats. Subrip (.srt) files are the
most popular. Advanced Substation Alpha (.ass or .ssa) is very versatile.
WebVTT (Web Video Text Tracks Format) is used by browsers for online
videos. TTML is used by the broadcast industry and online applications.
DVDs use .dvdsub files.

I prefer SSA because I can specify a custom display font with it. For use
with FFmpeg, subtitles should be a stream in a media file or an external text
file. Subtitles that are already burned into a video (not as a separate stream)
cannot be processed by FFmpeg (or rather not covered by this book).
However, FFmpeg can be used to burn subtitles permanently on a video.

© V. Subhash 2023 141
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_9

https://doi.org/10.1007/978-1-4842-8701-9_9#DOI

CHAPTER9 ALL ABOUT SUBTITLES

Add Subtitles to a Video as an Extra Stream

To add a subttitle file to a video, you need to use a subtitle format that is
compatible with the video file’s container. Or, you should use a suitable
encoder that will convert your subtitle file in a format that is supported
by the container. The subtitle format for MP4, MOV, and 3GPP containers
is known as “MPEG4 Timed Text.” You will have to encode your SRT or
SSA subtitle files with the encoder mov_text for these containers. For the
versatile Matroska (MKV) format, you can straightaway use SRT and SSA
subtitle files.

Suppose that you have a DVD without subtitles in your favorite
language and the DVD seller released a new updated collector’s edition
DVD that has subtitles in that language. If you were able to download the
new subtitles as an SRT file from somewhere, then you can add it to your
DVD backup file as an extra stream. If you are saving the DVD as an MKV
file, convert the SRT file beforehand to the Substation Alpha (SSA) format
to take advantage of the ability of the latter to use a custom font.

ffmpeg -i dvd-movie.srt dvd-movie.ass

Edit the SSA file in some subtitle editor
and add your custom styles and fonts

ffmpeg -i dvd-movie.ogv -i dvd-movie.ass \
-map 0:v -map O:a -map 1:s \
-c:s mov_text \
-metadata:s:s:0 language=eng \
dvd-movie-subtitled.mp4 \
\
-map 0:v -map O:a -map 1:s \
-codec copy \
-metadata:s:s:0 language=eng \
dvd-movie-subtitled.mkv

142

CHAPTER9 ALL ABOUT SUBTITLES

05" When you add subtitles as an additional stream like this,
the viewer can turn them on/off with the device remote or a screen
menu option.

Did you notice something else with the above command? I subtitled
the movie in two formats (MP4 and MKV) using one command. With the
MP4, I had to encode the OGV streams because its codecs are not native
to the MP4 container. With the MKV, I could use -codec copy. The MKV
container supports a wide variety of codecs including those supported by
OGV and MP4. If you are backing up DVDs for long-term storage, choose
MKV. It is the best.

Permanently Burn Subtitles to a Video

When I was about to publish my first book, I wanted to upload a book-
read video in which I read a few pages. I recorded the OGV video using
the webcam program Cheese, but there were some issues with audio
recording. So, I transcribed my narration using another program called
Gnome Subtitles and saved the subtitles as a Substation Alpha (.ass) file. I
did not want to upload the subtitles to the video-hosting sites because they
use very tiny fonts. I wanted the subtitles to look bigger and with my own
selection of the font. I then decided to use FFmpeg to permanently burn
the subtitles on the video. I specified the font and subtitles location on the
video in the subtitle file, NOT in the ffmpeg command. The SSA format let
me do that. Using a filter, I drew a black box behind the subtitles so that
they could be easily read against any background.

143

CHAPTER9 ALL ABOUT SUBTITLES

‘» 2020-Jokebook1.mp4
File Edit View Go Sound Help

‘and entire chapters devoted
to forelgn languagos."
There are three chapters

_& Sovervol funm

Y

M 2020-Jokebook1.as RIVE ~/Deskto

File Edit View Search Tools Documents Help

b \‘—IQ_"_ Save B

|a treasure house of clever world play and interesting

Dialogue: ©0,0:22:08.29,0:22:21.65,Default,, -

0000,0000,0000, ,"facts and riddles." By wordplay, I mean puns,
metaphors, euphemisms, similes, idioms...

Dialogue: ©,0:22:21.65,0:22:33.17,Default,,0000,0000,0000, ,"and
entire chapters devoted to foreign languages." There are three
chapters about foreign languages.|

Dialogue: 0,0:22:33.42,0:22:51.35,Default, 0000,0000,0000, After §

Figure 9-1. Subtitles burned into a video cannot be turned off with
the remote or a menu option

ffmpeg -i 2020-Jokebook1.ogv \
-filter complex \
"drawbox=w=250:h=100:x=360:y=90:color=black@0.7:t=Fill,
subtitles=2020-Jokebook1.ass" \
-c:v 1ibx264 -r 24 \
2020-Jokebook1 .mp4

144

CHAPTER9 ALL ABOUT SUBTITLES

I=5" The subtitles filter has a force_style option to specify
an SSA style for use with a subtitle format (such as SRT) that does
not support styles.

15" The black box was unnecessary. SSA has built-in support for
dynamic background boxes, as you will learn later.

Add a Custom Font for Displaying Subtitles
of a Video

If T wanted the subtitles in my book-read video to be optional, I could have
created an MKV like this:

ffmpeg -i 2020-Jokebookl.ogv -i 2020-Jokebooki.ass \
-codec copy \
-metadata:s:s:0 language=eng \
-attach Headline.ttf \
-metadata:s:t:0 mimetype=application/x-truetype-font \
2020-Jokebook1 . mkv

5" Font embedding increases subtitles portability and
toggleability, but support is not universal.

05" You should place the font file in the current directory or specify
its full path.

145

CHAPTER9 ALL ABOUT SUBTITLES

This command adds the subtitles as an additional stream in the video.
It also specifies a custom subtitle display font and embeds that font. On
my PC, Totem and VLC display the subtitles with that font. However, my
WDTYV HD media player box, which I used for many years, always played
the subtitles with its own built-in font.

» 2020-Jokebook1.mkv

—

I have finished writing
and Hlustrating this book |
And, for this video, I have
printed and bound it.

Figure 9-2. When subtitles are added as a stream, the viewer can
turn them on/off using the remote or with a menu option

About the Substation Alpha (SSA/ASS)
Subtitle Format

Although SRT is the popular subtitle format, I prefer the Substation Alpha
(.ass or .ssa) because it supports fonts and several other cool features. You
can convert SRT to SSA using ffmpeg.

ffmpeg -i dvd-movie.srt dvd-movie.ass

146

CHAPTER9 ALL ABOUT SUBTITLES

However, I prefer not to do that. I download the SRT file, let it open in
a GUI program called Gnome Subtitles, and save it as a SSA file. After this,
I run a BASH script on the .ass file to change its style statement. The style
statement generated by ffmpeg and Gnome Subtitles refers to Windows
fonts. These fonts are not available in Linux and the resultant subtitles do
not look cool. My script uses a better style statement with a font I already
have installed in Linux.

ffmpeg version:

Style: Default,Arial,16,&Hffffff,8Hffff{f,8&H0,&H0, J
0,0,0,0,100,100,0,0,1,1,0,2,10,10,10,0

Gnome Subtitles version:

Style: Default,Tahoma,24,&HOOFFFFFF,&HOOFFFFFF, J)
&HOOFFFFFF,&HooCococo,-1,0,0,0,100,100,0,0.00, <J
1,2,3,2,20,20,20,1

My version:

Style: Default,Headline,20,8HOOFFFFFF,8H006666EE, J
&H00000000, &HAAOOEEEE, -1,-1,0,0,100,100,0,0.00, J
1,4,0,2,20,20,20,1

When I used this style in the book-read video, the subtitles...

ffmpeg -y -i 2020-Jokebook1.ogv \
-i 2020-Jokebook1-shadows.ass \
-map O:v -map O:a -map 1:s \
-C:v copy -C:a copy -c:s ass \
-metadata:s:s:0 language=eng \
-attach Headline.ttf \
-metadata:s:3 mimetype=application/x-truetype-font \
2020-Jokebook1-shadows .mkv

... look like this:

147

CHAPTER9 ALL ABOUT SUBTITLES

L

I have finished writing and illustrating this book.
And, for this video,"I have printed and bound it.

Figure 9-3. In this video, the subtitles have a text outline. (This
eliminated the need to render a black box behind the subtitles using
an FFmpeg filter. SSA subtitles support multiple such styles in the
same file.) The subtitle shadow has been zeroed

The specification of the wonderfully useful but screwed-up
SSA format is available on the matroska.org website
(Technical Info » Subtitles » SSA). However, I will risk a description
here for the style statement.

Style: Name, Fontname, Fontsize, PrimaryColour,
SecondaryColour, OutlineColour, BackColour, Bold,
Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing,
Angle, BorderStyle, Outline, Shadow, Alignment,
MarginL, MarginR, MarginV, Encoding

148

CHAPTER9 ALL ABOUT SUBTITLES

Name refers to a subtitle display style. You can define and use many
different styles, not just the Default. The colors are in hexadecimal
AABBGGRR format. (Ese, are they loco? No. It is allegedly to help with
video-to-text conversion.) PrimaryColour is the color of the subtitle text.
OutlineColour is for the outline of the text. BackColour is the color of the
shadow behind the text. SecondaryColour and OutlineColour will be
automatically used when timestamps collide. Bold, italic, et al. are -1
for true and 0 for false. (Yeah, I know. The bash shell does the same.)
ScaleX and ScaleY specify magnification (1-100). Spacing is additional
pixel space between letters. Angle is about rotation (0-360) and controlled
by Alignment. BorderStyle uses 1 (outlined and drop-shadowed text), 3
(outline box and shadow box), and 4 (outlined text and drop-shadow box).
Outline represents the border width (1-4) of the outline or the padding
around the text in the outline box. Shadow represents the offset (1-4) of
the shadow from the text or the space around the text in the shadow box.
Alignment takes 1 (left), 2 (center), and 3 (right). If you add 4 to them, the
subtitle appears at the top of the screen. If you add 8, it goes to the middle.
Then, we have margin from the left, right, and bottom edges of the screen.
Encoding is 0 for ANSI Latin and 1 for Unicode (I think).

To really go bonkers with subtitles, I say we render subtitles with a
miasma of colors, location, and tilt.

Style: Default,Headline,22,8H6600FFFF,&H006666EE,<J
8H660000FF , &H220066EE,-1,-1,0,0,100,100,0,25.00,<J
3,4,4,2,20,20,120,1

149

CHAPTER9 ALL ABOUT SUBTITLES

‘» 2020-Jokebook1-miasma.mkv

Figure 9-4. This is truly subtitles gone wild. SSA subtitle format
offers the most control and options. There is a yellow shadow to the
red outline. Because the colors are translucent, their intersection
appears orange

Add Subtitle Files in Different Languages

When adding multiple subtitles, it is obligatory on your part to specify
metadata identifying the language of each output subtitle stream.

Let us pretend that I am trying to corner the French jokebook market
and have a French transcript ready as well:

Multi-language subtitled MP4

ffmpeg -i 2020-Jokebook1.ogv \
-1 2020-Jokebook1-en.ass -i 2020-Jokebooki-fr.ass \
-map O:v -map O:a -map 1:s -map 2:s \
-c:s mov_text \
-metadata:s:s:0 language=eng \
-metadata:s:s:1 language=fre \
2020-Jokebook1-subtitled-en-fr.mp4

150

CHAPTER9 ALL ABOUT SUBTITLES

Multi-language subtitled MKV

ffmpeg -i 2020-Jokebook1.ogv \
-1 2020-Jokebook1-en.ass -i 2020-Jokebook1-fr.ass \
-map O0:v -map O:a -map 1:s -map 2:s \
-c:v copy -c:a copy -c:s copy \
-metadata:s:s:0 language=eng \
-metadata:s:s:1 language=fre \
2020-Jokebook1-subtitled-en-fr.mkv

&, 2020-Jokebook1-subtitled.mkv - VLC media player BE X

Media Playback Audio Video BN Tools View Help
: Add Subtitle File...

Sub Track 4 Disable

* Track 1 - [English]

Track 2 - [French] |

00:16 ¢ 23:53

(> () i) (E[E]%) o il

Figure 9-5. Do not forget to specify metadata for the subtitles

05" The codes that you can use for setting the language are
further described in Chapter 10.

Extract Subtitles from a Video

Use ffprobe to check if a video file has a subtitle stream.

ffprobe 2020-Jokebook1-subtitled-en-fr.mkv

151

https://doi.org/10.1007/978-1-4842-8701-9_10

CHAPTER9 ALL ABOUT SUBTITLES

ffprobe 2020-Jokebookl-subtitled-en-fr.mkv
Input #9, matroska,webm, from '2020-Jokebookl-subtitled-en-fr.mkv':
Metadata:
Duration: ©9:23:53.26, start: ©0.000009, bitrate: 489 kb/s
Stream #0:9: Video: theora, yuv42@p, 640x360 [SAR 1:1 DAR 16:9], 2

Metadata:

DURATION 1 09:23:53.253000000
Stream #9:1: Audio: vorbis, 44109 Hz, stereo, fltp (default)
Metadata:

DURATION : 00:23:53.2590020000
Stream #9:2(eng): Subtitle: ass (default)
Metadata:

DURATION : 80:23:53.263000000
Stream #0:3(fre): Subtitle: ass (default)
Metadata:

DURATION : 09:23:53.263000000

Figure 9-6. Use ffprobe output to identify the subtitle formats and
any metadata they might have. und stands for “undetermined”

If the file has only one subtitle stream, you can extract it using FFmpeg

just by specifying the correct extension.

ffmpeg -i dvd-movie-subtitled.mp4 \
dvd-movie-subtitle-default.ass

If the video has multiple subtitle streams, you need to specify mapping. The
next command saves the second subtitle stream in the input file as an SSA file.

ffmpeg -i 2020-Jokebook1-subtitled-en-fr.mkv \
-map 0:s:1 \
2020-Jokebook1-subtitle-fr.ass

Extract Subtitles from a DVD

The files in a DVD are usually encrypted or obfuscated to prevent
bootlegging. There are several free DVD-ripping applications that will
decrypt the VOB files and quickly extract subtitle files. Forcing ffprobe to
find subtitle streams on big VOB files is not worth the trouble.

152

CHAPTER9 ALL ABOUT SUBTITLES

Summary

Subtitles are available in several formats including SRT, Substation Alpha,
and MPEG4 Timed Text. The Substation Alpha is the most versatile
subtitle format, and MKV seems to be the best container for it. The style
specification for the Substation Alpha format may seem intimidating at
first but will be accommodative in customizing subtitles for a variety of
use cases.

153

CHAPTER 10

All About Metadata

In this chapter, you will learn to perform several tasks related to metadata.
Metadata means to data about data. Multimedia metadata refers to
information such as title, artist, album, subject, genre, year, copyright,
producer, software creator, comments, lyrics, and even album art images
that are used to describe the video and/or audio content.

An audio or video file can have global metadata (i.e., at the file level)
and stream-specific metadata too. You can use ffprobe and ffmpeg -i
commands to display metadata that a file already has. You use the -metadata
option to add new metadata.

Add Album Art to MP3

You can add several pieces of album art to an MP3 file. However, each
image will need to have a unique title and comment metadata. There can
be one for front cover, another for the back, and yet another for the inlay
art. FFmpeg will treat all album art images as video streams, as if they were
single-frame videos.

ffmpeg -y \
-i Uthralikavu-Pooram.mp3 \
-i Uthralikavu-Pooram-festival-fireworks.png \
-i Uthralikavu-Pooram-festival-crowds.png \

© V. Subhash 2023 155
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_10

https://doi.org/10.1007/978-1-4842-8701-9_10#DOI

CHAPTER 10 ALL ABOUT METADATA

-map O -map 1 -map 2 \

-metadata:s:1 title="pooram-fireworks.png" \
-metadata:s:1 comment="Cover (front)" \
-metadata:s:2 title="pooram-crowds.png" \
-metadata:s:2 comment="Cover (back)" \
-codec copy \

-f mp3 \
Uthralikavu-Pooram-festival-fireworks.mp3

057 Album art are added as single-frame video streams, not
metadata. The metadata you add for album art will apply to the video
streams of those images.

There are several options for the comment key, as defined in the ID3 tag
specification.

https://id3.org/id3v2.3.0

There is no uniform implementation among media players. When
there are more than one album art images, ffplay chooses the first cover
image that is mapped. Some other players follow a different pecking order.

156

https://id3.org/id3v2.3.0

CHAPTER 10 ALL ABOUT METADATA

4 B> M 1:22/12:05 (

Figure 10-1. The album art displayed by different media players for
the same MP3 file can be different

Set MP3 Tags

How do I add metadata to an MP3 file?

ffmpeg -y -i Uthralikavu-Pooram-festival-fireworks.mp3 \
-map 0 \
-metadata title="Uthralikavu Pooram Festival" \
-metadata artist="V. Subhash" \
-metadata \
subject="Fireworks and crowds" \
-metadata album="Pooram festival fireworks" \
-metadata date="2013-12-26" \
-metadata genre="Event" \

157

CHAPTER 10 ALL ABOUT METADATA

-metadata comment="Best outdoor event I ever attended" \
-metadata \

copyright="0 2013 V. Subhash. All rights reserved" \
-id3v2_version 3 \
-codec copy \
Kerala-Uthralikavu-Pooram-festival-fireworks.mp3

5" MP3 tags metadata get added at the global level. They are not
stream-specific.

[m Winamp

Uthralikavu Pooram Festival
V. Subhash

Pooram festival fireworks
Event

2013

12:05

Figure 10-2. Media player support for MP3 tags may be buggy or
not 100%. Do not break your head just because some tags do not get
displayed by a media player

Export Metadata

You can export metadata to a text file using the -f ffmetadata option.

158

CHAPTER 10 ALL ABOUT METADATA

ffmpeg -i Kerala-Uthralikavu-Pooram-festival-fireworks.mp3 \
-f ffmetadata \
mp3-meta.txt

M mp3-meta.txt (RAM-DRIVE ~/Desktop/FasDrive) - Pluma

File Edit View Search Tools Documents Help

4 mp3-meta.txt

; FFMETADATA1
major brand=mp42

minor version=0

compatible brands=mp42mp41isomiso2

copyright=© 2013 V. Subhash. All rights reserved
title=Uthralikavu Pooram Festival

artist=V. Subhash

subject=Fireworks and crowds

album=Pooram festival fireworks
o — ===

Figure 10-3. ffmpeg exported this text file containing name-value
pairs representing the metadata of an MP3 file

Import Metadata

Let us imagine that I modified the metadata in the text file (from the
previous section) using a text editor. Now, I want the updated metadata to
be imported back into the audio file. How can I do it?

ffmpeg -y \
-i Kerala-Uthralikavu-Pooram-festival-fireworks.mp3 \
-i mp3-meta-modified.txt \
-codec copy \
-map_metadata 1 \
Kerala-Uthralikavu-Pooram.mp3

159

CHAPTER 10 ALL ABOUT METADATA

Here, -map_metadata 1 refers to the second input file, that is, the
modified metadata file. (-map_metadata 0 would have simply copied
the metadata from the first input file, that is, the MP3 file. We did not
want that.)

Extract Album Art

You downloaded an MP3 and you like the album art? If the audio file has
only one album art, you can extract the image easily.

ffmpeg -i Blobfish.mp3 blobfish-album-art.png

» 17.Weird Grandma-TheBlobfish 2 B

File Edit View Go Sound Help

7" Mirage-[1 of 1] blobfis — W=

File Edit View Go Help

Figure 10-4. An MP3 audio file and the album art extracted from it

If there are more than one album art, you need to check the ffprobe
output and then extract the album art using a map.

160

CHAPTER 10 ALL ABOUT METADATA

[-] Le Terminator

~/Desktop/FasDrive

Metadata:
copyright
title
artist
subject
album
comment
genre
date

Metadata:

Metadata:
title
comment

Metadata:
title
comment

ffprobe Kerala-Uthralikavu-Pooram-festival-fireworks.mp3
Input #0, mp3, from 'Kerala-Uthralikavu-Pooram-festival-firewor

: © 2013 V. Subhash. All rights reserved
: Uthralikavu Pooram Festival

: V. Subhash

: Fireworks and crowds

: Pooram festival fireworks

: Best outdoor event I ever attended

: Event

Duration: €@:12: 85 79, start: ©.025056, bitrate: 117 kb/s
Stream #0:0: Audio: mp3, 44100 Hz, stereo, fltp, 108 kb/s

Stream #0:1: Video: png, rgb24(pc), 640x480, 90k tbr, 99k t

Stream #0:2: Vldeo png, rgb24(pc), 640x480, 90k tbr, 90k t

: 2013-12-26

: pooram-fireworks.png
: Cover (front)

: pooram-crowds.png
: Cover (back)

Figure 10-5. This ffprobe output shows the index of the streams
containing the album art images

The crowds image is identified as a video stream with index 0: 2 (third

among all streams). To extract it, I should use the map 0:2. To be safer, I

refer toitas 0:v:1 (second video stream).

ffmpeg -i Kerala-Uthralikavu-Pooram-festival-fireworks.mp3 \

-map O:v:l \
crowds.png

161

CHAPTER 10 ALL ABOUT METADATA

Remove All Metadata

When working on an earlier chapter, I found that the Mate Screenshot app
was unable to work with the video of the sign-language translator. The app
names its screenshot after the title of the subject window. I noted that this
video had a URL displayed in the title of the video player window. The URL
came from the title metadata of the video. Because the Linux file system
does not allow a file name to include a URL (because of the backslash
and other illegal characters), the screenshot app may have been unable
to save the image to file. When I removed the metadata, I realized that my
hunch was right and I was able to take the screenshots from the metadata-
free video.

To remove the metadata, I pretended to import metadata from a
nonexistent input file (with index -1).

ffmpeg -i "Sign Language - How To Vote.mp4" \
-codec copy \
-map_metadata -1 \
how-to-vote.mp4

I have had portable media players that do not play MP3 files if they
have album art. Album art cannot be removed as metadata because they
are encoded as video streams. So, I use -codec copy and specify a -map for
the audio stream. By omitting video streams, the output file will not have
any album art.

ffmpeg -i Kerala-Uthralikavu-Pooram.mp3 \
-map O:a \
-codec copy \
pooram.mp3
You can also use -vn instead of the -map option

162

CHAPTER 10 ALL ABOUT METADATA

Set Language Metadata for Audio Streams

Let us imagine that I created audio instructions in English, Malayalam,
and Tamil for this DIY electronics video. While media players could
switch between the language tracks, they would have assigned generic or
confusing names to them.

» how-to-create-a-speaker-i

| ® English
Malayalam

Down

< 1 M 031/633(= W) 7

Figure 10-6. This video has audio tracks in three languages. The
metadata for the audio streams helps identify the languages

The following command sets the language names using ISO codes and
makes the menus a lot more informative.

ffmpeg -i how-to-create-a-speaker-instructions.mp4 \
-map 0 \
-metadata:s:a:0 language=eng \
-metadata:s:a:1 language=mal \
-metadata:s:a:2 language=tam \
-codec copy \
how-to-create-a-speaker-instructions-multilang.mp4

163

CHAPTER 10 ALL ABOUT METADATA

map 0 includes all streams in the first input file (#0), that is, including
the video stream and the three audio streams. (If not used, there will
be just one video stream and one audio stream in the output file.)
-metadata:s: is used to set metadata for a stream, not a subtitle.

05" Apart from s identifier for streams, FFmpeg uses identifiers p
and c for DVD programs and chapters of the VOB file container. These
are not covered by this book.

-metadata:s:ais used to set metadata for an audio stream specified
by its index. language is the metadata key, and what follows after the = sign
is the value in the metadata key-value pair. -codec copy ensures that the
streams are not re-encoded - only the metadata is added.

The three-letter language codes (such as eng, mal, and tam) are
specified in the ISO 639-2 standard. Although the standard allows codes
for exceptional situations (mis for “uncoded languages,” mul for “multiple
languages,” qaa-qtz for “reserved for local use,” und for “undetermined,”
and zxx for “no linguistic content” or “not applicable”), many software and
hardware remain ignorant of them.

www.loc.gov/standards/is0639-2/php/code_list.php

Summary

In this chapter, you learned to use ffmpeg to easily add, examine, edit,
export, import, and remove metadata. Metadata can be specified at the
container level (global) and for individual streams. This information can
greatly enrich the experience with media players. In their absence, media
players will try to make guesses and/or frustrate you with generic or wrong
interface choices. Media formats and software/hardware applications may
be picky and choosy about the kind of metadata they support.

With the end of this chapter, all that remains is a set of tips and tricks
that could not be accommodated anywhere else.

164

http://www.loc.gov/standards/iso639-2/php/code_list.php

Index

A

Apple Mac
download, installation, 6

Audacity, 32, 34, 116, 120, 121, 123,

125, 139, 140
Audio
album art, 39, 64, 155-157,
160, 162
beep, 202, 203
bitrate, 19, 48, 51, 55
bleep, 204
capture, 193, 194, 196
channels
channel maps, 44
downmix, 126
filters, 44
merge, 44
mix, 42, 43
move, 42, 126, 129, 130
mute, 41, 42
out-of-phase, 130, 131
split, 44, 126, 129
swap, 128
codec, 17-19, 56

compression, 19, 173, 231, 242

concatenate, 94, 171, 261
conversion
5.1 to stereo, 134

© V. Subhash 2023

from MIDI, 120
mono to stereo, 133
stereo to mono, 131, 132
from text, 138
two stereo to one

stereo, 134-136
from video, 119

visual waveforms, 136-138

copy, 42, 55, 56

cut, 78, 79

decoder, 18, 19, 48, 231

downmix (see Channels,
downmix)

echo, 250

encoder, 18, 19, 48, 55

espeak (see libflite)

extraction, 55, 56

fading, 105

hardware, 164

libflite (see espeak)

metadata, 23, 25, 38, 39, 155,
158, 164, 260

microphone, 19, 192-194

MIDI, 47

mono, 24, 42, 43, 129, 131,
133,135

multi-channel, 126, 250

noise, 102, 139, 252

V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9

271

https://doi.org/10.1007/978-1-4842-8701-9#DOI

INDEX

Audio (cont.)

normalization, 125, 126

podcasts, 66, 68

recording (see Microphone)

reverse, 251

sampling rate, 48, 49

silence, 138, 250

silence detection, 138, 252

sine wave, 202, 252

slow down, 251

speed up, 115

stereo, 24, 26, 42, 51, 55, 126,
129, 133

stream metadata, 41

streams, 49, 94, 130, 135, 163,
164, 210, 250, 251

text-to-speech, 68

tracks, 34, 106, 129, 130, 163

volume, 125, 126, 252, 261

waveform (see Filters, showfregs;
Filters, showvolume; Filters,
showwaves)

B

bash, 168

aliases, 11, 170

multi-line commands, 5

terminal prompt, 166

See also FFmpeg, automation
Bitrate, 19, 48, 51, 52, 56, 173, 185,

195, 230, 242, 248

Blurring

boxblur, 110, 111, 253

272

grainy videos, 54
smartblur, 109, 110, 258
video noise, 203
Building executables, see
Source code

C

Caja, see FFmpeg, automation
Channels, see Audio, channels
Clip
without re-encoding, 78
See also Filters, concat;
Muxers, concat
cmd (Command Prompt in MS
Windows)
/dev/null (see NUL)
execute/run FFmpeg
commands, 30, 194
install FFmpeg, 1-9
multi-line commands, 5
NUL, 52
PATH environment variable,
3,4,67
upper-case typing, 4
Codecs
codec-copy, 81
See also Encoders; Formats;

Maps; Muxers
Color
brightness, contrast, saturation,
100, 254

in hexadecimal, 149, 174, 175
literals, 175

replace a colour, 212
replace green screen, 212
RGB values, 227, 253, 260
test pattern, 260
Command line, see bash; cmd
Container, 17, 19, 21, 51, 79, 84,
142, 143, 164, 261
Conversion, 12, 49, 52, 54
audio
CBR, 173
from text, 68
VBR, 173
from video, 66-68
constant bitrate, 52, 173
constant rate factor (CRF), 53
DVD, 152
images
image2, 59
image2pipe, 59
from video, 59, 60
to video, 64-66
multi-pass, 51, 52
settings, 47, 51, 52, 59, 69, 77,
135,173
subtitles, 141-153
VCD, 69
video
from audio, 68
from images, 59, 60
See also Encoders; FFmpeg,
options; FFmpeg,-target;
Input files; Maps; Metadata;
Output files; Pixel formats
Cut videos, see Clip

INDEX

D

Desktop, see FFmpeg, automation
/dev/null, 5, 11, 52, 59, 170, 172,
181,184
Download
online videos, 66
pre-built executables, 8
source code, 1, 215
subtitles, 141
Duration, see FFmpeg,-ss;
FFmpeg,-t; Filters, apad;
Filters, atrim; Filters, pad;
Filters, trim; Time values
DVD
backups, 71, 142
conversion, 52
subtitles, 23, 142, 152, 249

E

Encoders, 17-19, 25, 48-51, 53-56,
64, 75,77,130, 142, 173,
216-218, 244-247

espeak, 139, 170-172

Executables, see Installation

F

FFmpeg
banner hiding, 170
codecs, 15
command-line program, 214
decoders, 14, 49, 69
demuxers, 14, 19, 20, 35

273

INDEX

FFmpeg (cont.)
download executables, 1, 2
encoders, 14, 19, 49, 50, 77

executables, 1, 2, 8, 9, 14, 15, 68,

138, 214
installing in Windows, 1-2

filters

274

aecho, 204

aevalsrc, 203

afade, 106

amerge, 44, 135

amix, 106

anoisesrc, 102

anullsrc, 201, 202

apad, 135

areverse, 205

asetpts, 95

atempo, 115

atrim, 94, 106, 205

boxblur, 111

channelmap, 44, 126

channelsplit, 44, 126, 135

colorkey, 212

concat, 81, 94, 95, 106, 205

crop, 108, 109, 214

drawbox, 113,114

drawtext, 14, 112, 113,
200, 201

eq, 100, 101

errors, 85

escaping, 95

expressions, 86, 87, 89, 90,
92,93, 117

fade, 106

fps, 62, 63, 106

framerate, 60, 61, 65

hflip, 98, 99

hstack, 93

join, 135

online video examples,
141, 220

options, 83, 86, 139

overlay, 89-93, 106, 198

pad, 91-93

palettegen, 62, 63

paletteuse, 62, 63

pan, 44, 126

reverse, 206

rotate, 97

scale, 89-92

select, 34

setdar, 73, 97

setpts, 95, 115

setsar, 258

settb, 208

showfregs, 137

showvolume, 210

showwaves, 208, 209

sine, 202, 208

sink filters, 84

smartblur, 109

source filters, 84, 102

testsrc, 102

timeline-based editing, 214

transpose, 95-97

trim, 94, 106

vilip, 98

volume, 120, 123

volumedetect, 122
vstack, 93
xfade, 206, 207
formats (see Conversion)
installation, 4, 14
lavfi, 5, 68, 102, 138,
172,201-203
libav libraries, 117
muxers, 19, 20
numbering
channel maps, 41-44
input files, 25, 27, 29, 31, 49,
77, 80, 83
maps, 31-35
metadata, 35-39
metadata maps, 39-41
output files, 27-31
options
-ac, 35, 45, 130, 134
-an, 48, 52, 138
-ar, 48, 49
-b, 19
-b:a, 35, 48
-b:v, 48
-c, 75,130
-c:a, 48,49, 75
-codec, 35, 49, 78, 81
-c:s, 75
-c:v, 48,49, 75
-f, 48, 58, 59, 158
-filter:a, 83
-filter_complex, 83
-filter:v, 60, 61, 63, 95, 99,

103, 106, 108, 109, 200, 213

INDEX

-framerate, 60

-h, 14

-hide_banner, 170

-i, 12, 27, 28, 76, 81, 196

-id3v2_version, 158, 172

-loop, 59

-map, 31, 35, 45, 56, 84

-map_metadata, 39, 40

-metadata, 38, 39, 41, 155

obsolete/incorrect
options, 49

-pass, 48

-passlogfile, 48

-pix_fmt, 59, 60

-preset, 53

-print_format, 184

-1, 48, 58, 59

-s, 71,72, 196

-select_streams, 181, 182,
184, 190

-shortest, 48, 198

-show_entries, 184

-show_streams, 12, 178

-ss, 58, 75-77

-t, 58, 75, 77

-target, 69

-tune, 54

-version, 214, 215

-vn, 48

-y, 48

website, official, 8, 9, 59, 69, 81,

84, 85, 89, 119

website, wiki, 6, 8, 194, 221
See also Formats

275

INDEX

ffplay
-autoexit, 11
lavfi, 203
ffprobe
-sections, 182
-show_streams, 12, 178, 181
Filters, see FFmpeg, filters
Formats
audio
flac, 133, 231, 242
MP3, 17, 56
way, 12, 13, 19, 133, 202, 203
codecs
lossless, 18, 223
lossy, 18, 19, 173
See also HEVC; MPEG4
compression, 51-54
containers, 17, 19, 21, 35
conversion, 47-69
decoders, 17-19
demuxers, 19, 20, 35
encoders, 17-19
image
GIF 62, 63, 197-199
JPEG, 197
PNG, 28, 29, 197
muxers, 19, 20
video
MKV, 24, 26, 40, 79, 142, 143,
145, 153
MOV, 17, 142
MP3, 23, 35-37, 40, 64-66
MP4, 17, 20, 23, 28, 34, 42,47,
49, 56, 64, 65, 79, 80, 142, 143

276

VOB (see DVD)
See also FFmpeg, options,-f;
Pixel formats
Frame rate, 58-60, 81, 195, 200,
208, 214

G

GIF
conversion from video, 62, 63
conversion to video, 69
Green screen, 212

H

H264, see Formats
Hardware
microphone, 19, 192-194
screen capture, 195, 196
webcam, 143, 192, 194, 195
Hardware acceleration
compilation, 7, 8
encoders and decoders,
17,216-218
filters, 218
See also Formats
Help
display, 6, 20, 85, 89, 197
extra resources, 221
forums, 221
official documentation, 89
HEVC, 217
Hexadecimal, see Colors,
hexadecimal

,J,K
I frames, 185-188, 191, 192
Image
conversion
slideshow, 60, 61
video-to-image, 57, 58
gallery, 191
GIFE 197
render GIF animation over
video, 197-199
render static image over
video, 197
thumbnails, 191
See also Blurring; Formats; I
frames; P frames
Input files
numbering, 39
See also FFmpeg, options,-i;
FFmpeg, options,-map
Installation
Apple Mac, 9
Linux, 147
Windows, 1-6
See also Hardware acceleration;
Source code

L

LAME MP3
conversion, 55
ID3v2, 158,172
tag, 40, 157,158,172
libflite, 68, 138, 172

INDEX

Linux
desktop (see FFmpeg,
automation)
download, compiling source
code, installation (see
Source code)
See also bash
Logo, see Filters, delogo

Maps, see FFmpeg, filters,
-channelmap; FFmpeg,
options,-map; FFmpeg,
options,-metadata_map

Mate, see FFmpeg, automation

Matroska, see MKV

Metadata, 20, 164

adding, 34, 155-157
album art, 35, 37, 160, 161
for audio stream
language, 38, 163, 164
export, 158
global, 155
import, 159, 160
ISO codes, 163
map, 160, 161
MP3 tags, 170-172
metadata
maps, 39-41
numbering, 170
remove, 162
stream-specific, 25, 26, 155

277

INDEX

Metadata (cont.)
for subtitle stream language, 39
See also FFmpeg, schematic;
Containers
Microphone, 19, 192-194
MID], see Audio, MIDI
MKV
container, 23, 24, 143, 153
conversion, 142
subtitles, 23, 143, 153
MP3, see LAME MP3
MP4, see MPEG4
MPEG4
codecs, 52
constant bitrate, 52
constant quality, 52
constant rate factor, 53
encoders, 53, 54, 56
presets, 53
subtitle format, 153
tuning, 53
Muxers
concat, 81
GIE 20
See also Filters, concat; Help

N

Nautilus, see FFmpeg, automation
Noise
in audio, 102, 139, 250, 251
high-pass filter, 139
in video, 203
NUL, 5, 52,170

278

O

OGG, 47

Output file, 19, 27-31, 35, 39-41, 43,
45,47-49, 51, 58, 75, 76, 79,
81, 84, 90, 94, 120, 131,
162, 164

P,Q,R

PATH, see FFmpeg, executables,
installing in Windows

P frames, 185

Pixelation, see Blurring

Pixel formats, 54, 59, 93, 255, 257

PNG, 28, 29, 197, 226, 237, 246

S

Sine wave, 202, 208, 209, 252
Source code
compilation guide, wiki
for Apple Mac users, 9
for Linux users, 6-8
download, configure script,
compilation, building
executable, 1, 16, 215
extra resources, 221
version, 4
See also Hardware acceleration
Streams
addressing (index), 141
numbering (index), 174
types (identifiers), 30

See also ffprobe; Filters;
FFmpeg, options,-i;
FFmpeg, options-map;
Metadata

Subtitles

add stream, 146, 150, 151

.ass, 141, 143, 147, 244, 253

burn into video stream,
23,143-145

convert, 142

DVD, 23, 142, 152

extract, 152

fonts, 145, 146

metadata for language, 150

mov_text, 142

.srt, 141, 233, 244, 249

.ssa, 141, 244

substation alpha

styles, 146-150

T, U
Terminal, see bash; cmd

Time values, 76
Timidity, see Audio, MIDI

VW, X, Y,Z
Video
add subtitles, 142, 143
add timer, 200, 201
adjust brightness/contrast,
100, 101

append (concatenate), 80, 81, 94

INDEX

aspectratio, 73
from audio (waveforms),
208, 209
blur, 109-111
change colors to grayscale, 253
create thumbnail
gallery, 188-192
crop video, 107, 108
cut without re-encoding, 78, 79
delete a portion, 94, 95
display aspect ratio (DAR) (see
FFmpeg, filters, setdar)
distortion, 74
draw boxes, 113, 114
edit, 75
extract images, 160, 185
extract still frames (images),
57, 58, 69
extract subtitles, 151, 152
fade into another, 105-107
flip, 98, 99
green-screen elimination, 212
I frames, 185
from images, 210
inset (picture-in-picture), 88-90
noise, 128
overlay, 197, 253, 257
pixel aspect ratio (PAR), 75
record, 18
remove logo, 103, 104
render audio
waveform, 136-138
resize, 71-75
reverse, 205, 206

279

INDEX

Video (cont.)
rotate, 95-98
sample aspect ratio (SAR), 73
sharpen, 109, 110
side-by-side split, 90, 134

280

slow down, 116, 117
speed up, 115

test, 102

from text, 112,113
from webcam, 143

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Installing FFmpeg
	FFmpeg for Microsoft Windows Users
	FFmpeg for Linux Users
	FFmpeg for Apple Mac Users
	Summary

	Chapter 2: Starting with FFmpeg
	ffprobe
	ffplay
	ffmpeg
	Other FFmpeg End-User Programs
	Summary

	Chapter 3: Formats and Codecs
	Containers
	Codecs, Encoders, and Decoders
	Demuxers and Muxers
	Summary

	Chapter 4: Media Containers and FFmpeg Numbering
	Containers
	Container Internals
	Input and Output Files
	Maps
	Metadata
	Metadata Maps
	Channel Maps
	Do Not Use the -map_channel Option

	Summary

	Chapter 5: Format Conversion
	No-Brainer Conversions
	Conversion Options
	Obsolete/Incorrect Options
	Codec Option
	Sample Conversion with Custom Settings
	Multi-pass Conversion
	Conversion for Maximum Compression and Quality
	Audio Conversion
	Audio Extraction
	Extract Stills from a Video (Video-to-Image Conversion)
	Image-Conversion Settings
	Create Video from Images (Image-to-Video Conversion)
	Create a Slideshow from Several Images
	Create a GIF from a Video
	APNG

	Create a Video Using an Image and an MP3
	Convert Online Videos to Audio
	Convert Text to Audio
	Conversion Settings for Specific Storage Medium
	Summary

	Chapter 6: Editing Videos
	Resize a Video
	Editing Options
	Cut a Portion of a Video
	Cut Without Re-encoding
	Append Videos (Concatenate)
	Don’t Knock -codec copy
	Summary

	Chapter 7: Using FFmpeg Filters
	Filter Construction
	Filter Errors
	Filter-Based Timeline Editing
	Expressions in FFmpeg Filter Definitions
	Inset Video (Picture-in-Picture Overlay)
	Split Video (Side-by-Side Overlay)
	Append Videos Using a Filter
	Delete a Portion of a Video in the Middle
	Rotate a Video
	Flip a Video
	Brighten a Video (Adjust Contrast)
	Generate a Test Video
	Remove Logo
	Fade into Another Video (And in Audio Too)
	Crop a Video
	Blur or Sharpen a Video
	Blur a Portion of a Video
	Draw Text
	Draw a Box
	Speed Up a Video
	Slow Down a Video
	Summary

	Chapter 8: All About Audio
	Convert from One Audio Format to Another
	Extract Audio from a Video
	Convert a MIDI File to MP3 or Ogg
	Change Volume
	Change Volume in a Video File
	Dynamic Range Compression/Normalization
	Channels
	Swap Left and Right Channels
	Turn Off a Channel
	Move Channel to a Separate Audio Track
	Fix Out-of-Phase Audio Channels
	Change Stereo to Mono
	Convert Mono to Stereo
	Make Audio Comfortable for Headphone Listening
	Downmix 5.1 Audio to Stereo
	Downmix Two Stereo Inputs to One Stereo Output
	Render a Visual Waveform of the Audio
	Detect Silence
	Silence the Video
	Convert Text to Speech
	Apply a Low-Pass Filter
	Summary

	Chapter 9: All About Subtitles
	Add Subtitles to a Video as an Extra Stream
	Permanently Burn Subtitles to a Video
	Add a Custom Font for Displaying Subtitles of a Video
	About the Substation Alpha (SSA/ASS) Subtitle Format
	Add Subtitle Files in Different Languages
	Extract Subtitles from a Video
	Extract Subtitles from a DVD
	Summary

	Chapter 10: All About Metadata
	Add Album Art to MP3
	Set MP3 Tags
	Export Metadata
	Import Metadata
	Extract Album Art
	Remove All Metadata
	Set Language Metadata for Audio Streams
	Summary

	Index

