

Quick Start Guide to
FFmpeg

Learn to Use the Open Source
Multimedia-Processing

Tool like a Pro

V. Subhash

Quick Start Guide to FFmpeg: Learn to Use the Open Source

Multimedia-Processing Tool like a Pro

ISBN-13 (pbk): 978-1-4842-8700-2		 ISBN-13 (electronic): 978-1-4842-8701-9
https://doi.org/10.1007/978-1-4842-8701-9

Copyright © 2023 by V. Subhash

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York
Plaza, Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

V. Subhash
Chennai, Tamil Nadu, India

https://doi.org/10.1007/978-1-4842-8701-9

Dedicated to the creators and supporters of free
and open source software

v

Table of Contents

About the Author��xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Introduction��xix

Chapter 1: �Installing FFmpeg��1

FFmpeg for Microsoft Windows Users���1

FFmpeg for Linux Users���6

FFmpeg for Apple Mac Users���9

Summary���9

Chapter 2: �Starting with FFmpeg���11

ffprobe���12

ffplay��13

ffmpeg��14

Other FFmpeg End-User Programs��14

Summary���15

Chapter 3: �Formats and Codecs��17

Containers��17

Codecs, Encoders, and Decoders���18

Demuxers and Muxers���19

Summary���21

https://doi.org/10.1007/978-1-4842-8701-9_1
https://doi.org/10.1007/978-1-4842-8701-9_1#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_1#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_1#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_1#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_2
https://doi.org/10.1007/978-1-4842-8701-9_2#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_2#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_2#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_2#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_2#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_3
https://doi.org/10.1007/978-1-4842-8701-9_3#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_3#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_3#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_3#Sec4

vi

Chapter 4: �Media Containers and FFmpeg Numbering������������������������23

Containers��23

Container Internals���24

Input and Output Files��27

Maps��31

Metadata��35

Metadata Maps��39

Channel Maps��41

Do Not Use the -map_channel Option��44

Summary���45

Chapter 5: �Format Conversion���47

No-Brainer Conversions���47

Conversion Options��48

Obsolete/Incorrect Options��49

Codec Option��49

Sample Conversion with Custom Settings���50

Multi-pass Conversion���51

Conversion for Maximum Compression and Quality��52

Audio Conversion���55

Audio Extraction���55

Extract Stills from a Video (Video-to-Image Conversion)�������������������������������������57

Image-Conversion Settings��59

Create Video from Images (Image-to-Video Conversion)�������������������������������������59

Create a Slideshow from Several Images��60

Create a GIF from a Video��62

APNG���63

Table of Contents

https://doi.org/10.1007/978-1-4842-8701-9_4
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec8
https://doi.org/10.1007/978-1-4842-8701-9_4#Sec9
https://doi.org/10.1007/978-1-4842-8701-9_5
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec8
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec9
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec10
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec11
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec12
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec13
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec14
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec100

vii

Create a Video Using an Image and an MP3��64

Convert Online Videos to Audio��66

Convert Text to Audio���68

Conversion Settings for Specific Storage Medium��69

Summary���69

Chapter 6: �Editing Videos��71

Resize a Video��71

Editing Options���75

Cut a Portion of a Video��76

Cut Without Re-encoding���78

Append Videos (Concatenate)��80

Don’t Knock -codec copy���81

Summary���82

Chapter 7: �Using FFmpeg Filters���83

Filter Construction��83

Filter Errors��85

Filter-Based Timeline Editing���85

Expressions in FFmpeg Filter Definitions���86

Inset Video (Picture-in-Picture Overlay)���88

Split Video (Side-by-Side Overlay)���90

Append Videos Using a Filter���94

Delete a Portion of a Video in the Middle���94

Rotate a Video��95

Flip a Video���98

Brighten a Video (Adjust Contrast)���100

Generate a Test Video���102

Table of Contents

https://doi.org/10.1007/978-1-4842-8701-9_5#Sec15
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec16
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec17
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec18
https://doi.org/10.1007/978-1-4842-8701-9_5#Sec19
https://doi.org/10.1007/978-1-4842-8701-9_6
https://doi.org/10.1007/978-1-4842-8701-9_6#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_6#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_6#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_6#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_6#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_6#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_6#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_7
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec8
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec9
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec10
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec11
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec12

viii

Remove Logo���103

Fade into Another Video (And in Audio Too)��105

Crop a Video���107

Blur or Sharpen a Video���109

Blur a Portion of a Video��110

Draw Text���112

Draw a Box���113

Speed Up a Video���115

Slow Down a Video��116

Summary���117

Chapter 8: �All About Audio��119

Convert from One Audio Format to Another���119

Extract Audio from a Video���119

Convert a MIDI File to MP3 or Ogg���120

Change Volume��120

Change Volume in a Video File���123

Dynamic Range Compression/Normalization���125

Channels��126

Swap Left and Right Channels���128

Turn Off a Channel���128

Move Channel to a Separate Audio Track���129

Fix Out-of-Phase Audio Channels��130

Change Stereo to Mono��131

Convert Mono to Stereo���133

Make Audio Comfortable for Headphone Listening��133

Downmix 5.1 Audio to Stereo���134

Table of Contents

https://doi.org/10.1007/978-1-4842-8701-9_7#Sec13
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec14
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec15
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec16
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec17
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec18
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec19
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec20
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec21
https://doi.org/10.1007/978-1-4842-8701-9_7#Sec22
https://doi.org/10.1007/978-1-4842-8701-9_8
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec8
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec9
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec10
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec11
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec12
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec13
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec14
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec15

ix

Downmix Two Stereo Inputs to One Stereo Output��134

Render a Visual Waveform of the Audio���136

Detect Silence��138

Silence the Video���138

Convert Text to Speech��138

Apply a Low-Pass Filter���139

Summary���140

Chapter 9: �All About Subtitles���141

Add Subtitles to a Video as an Extra Stream��142

Permanently Burn Subtitles to a Video��143

Add a Custom Font for Displaying Subtitles of a Video��������������������������������������145

About the Substation Alpha (SSA/ASS) Subtitle Format�������������������������������������146

Add Subtitle Files in Different Languages��150

Extract Subtitles from a Video��151

Extract Subtitles from a DVD��152

Summary���153

Chapter 10: �All About Metadata��155

Add Album Art to MP3��155

Set MP3 Tags���157

Export Metadata���158

Import Metadata��159

Extract Album Art���160

Remove All Metadata���162

Set Language Metadata for Audio Streams���163

Summary���164

Table of Contents

https://doi.org/10.1007/978-1-4842-8701-9_8#Sec16
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec17
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec18
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec19
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec20
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec21
https://doi.org/10.1007/978-1-4842-8701-9_8#Sec22
https://doi.org/10.1007/978-1-4842-8701-9_9
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_9#Sec8
https://doi.org/10.1007/978-1-4842-8701-9_10
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_10#Sec8

x

Chapter 11: �FFmpeg Tips and Tricks���165

Customize the Terminal��165

File Manager Automation���167

Hide the Banner���170

Add an espeak Intro to Your MP3 Files��170

Best MP3 (MPEG 2 Audio Layer 3) Conversion Settings�������������������������������������173

Colors in Hexadecimal���174

Colors in Literal��175

Streams Information from ffprobe���177

Extract Non-pixelated Images from a Video���185

Create a Thumbnail Gallery for a Video��188

Record from Microphone���192

Record from Webcam���194

Screen Capture��195

Render an Animated GIF on a Video���197

Show a Timer on the Video��200

Create a Silent Ringtone��201

Create a Countdown Beep Audio��202

Generate Noise of a Certain “Color”���203

Create a Bleep Audio��204

Add an Echo to Part of a Video���204

Reverse a Video���205

Fade into Another Video Using a Transition Effect��206

Create Waveform Video of Audio��208

Create a Waveform Image of Audio��210

Forensic Examination of Audio (Not Really)���210

Replace a Green-Screen Background with Another Video���������������������������������212

Table of Contents

https://doi.org/10.1007/978-1-4842-8701-9_11
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec5
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec6
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec7
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec8
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec9
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec10
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec11
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec12
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec13
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec14
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec15
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec16
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec17
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec18
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec19
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec20
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec21
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec22
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec23
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec24
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec25
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec26

xi

Turn All Colors Gray Except One���213

How to Pan Across a Video���213

Using FFmpeg with Timeline-Based Video-Editing Software�����������������������������214

Make ffmpeg -version More Meaningful��214

Hardware Acceleration���216

Finis���218

What Next…��220

Chapter 12: �Annexures��223

Annexure 1: Sample List of Codecs��223

Annexure 2: Sample List of Decoders��234

Annexure 3: Sample List of Encoders��244

Annexure 4: Sample List of Filters���249

Annexure 5: Sample List of Formats��261

�Index��271

Table of Contents

https://doi.org/10.1007/978-1-4842-8701-9_11#Sec27
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec28
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec29
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec30
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec31
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec32
https://doi.org/10.1007/978-1-4842-8701-9_11#Sec33
https://doi.org/10.1007/978-1-4842-8701-9_12
https://doi.org/10.1007/978-1-4842-8701-9_12#Sec1
https://doi.org/10.1007/978-1-4842-8701-9_12#Sec2
https://doi.org/10.1007/978-1-4842-8701-9_12#Sec3
https://doi.org/10.1007/978-1-4842-8701-9_12#Sec4
https://doi.org/10.1007/978-1-4842-8701-9_12#Sec5

xiii

About the Author

V. Subhash is an invisible Indian writer,

programmer, and illustrator. In 2020, he

wrote one of the biggest jokebooks of all

time and then ended up with over two dozen

mostly nonfiction books including Linux

Command-Line Tips & Tricks, CommonMark

Ready Reference, PC Hardware Explained,

Cool Electronic Projects, and How To Install

Solar. He wrote, illustrated, designed, and

produced all of his books using only open source software. Subhash has

programmed in more than a dozen languages (as varied as assembly

and Java); published software for desktop (NetCheck), mobile (Subhash

Browser & RSS Reader), and the Web (TweetsToRSS); and designed several

websites. As of 2022, he is working on a portable JavaScript-free CMS using

plain-jane PHP and SQLite. Subhash also occasionally writes for the Open

Source For You magazine and CodeProject.com.  

xv

About the Technical Reviewer

Gyan Doshi has been with the FFmpeg project as a developer and

maintainer since 2018. During this time, he has focused on FFmpeg

filters, formats, and command-line tools. From his experience in video

postproduction stages such as editing and motion graphics, Gyan has

learned how FFmpeg can be used in multimedia workflows as a valuable

addition or as a substitute for expensive tools. Aside from being engaged as

a multimedia/FFmpeg consultant, Gyan also troubleshoots FFmpeg issues

on online forums such as Stack Exchange and Reddit.

Gyan builds the official Windows binary packages of FFmpeg (ffmpeg,

ffprobe, and ffplay) and other tools (ffescape, ffeval, graph2dot, etc.)

and offers them for download from his website at www.gyan.dev.

https://www.gyan.dev/

xvii

Acknowledgments

The author would like to thank:

•	 The publisher Apress who insisted on not using any

third-party video in the screenshots, as the author did

in the original self-published book (FFmpeg Quick

Hacks). Most screenshots in this Apress book were

taken from the author’s own videos. The rest used

videos and images that were in the public domain

(Archive.org, Pixabay.com, and Unsplash.com). This

led to a rewrite of most of the content, and in the

process, several mistakes were eliminated.

•	 The technical reviewer Gyan Doshi for pointing

out several other mistakes and making valuable

suggestions.

•	 Creators and supporters of free and open source

projects.

•	 The author's family, friends, enemies and governments

without whose help and encouragement this book

would have been completed much ahead of its

deadline.

xix

Introduction

FFmpeg is a free and open source program for editing audio and video files

from the command line. You may have already known FFmpeg as a nifty

program that can do simple conversions such as:

ffmpeg -i some-video.mov same-video.mp4

ffmpeg -i song-video.mp4 song-audio.mp3

FFmpeg is much more capable than this, but it is this intuitive interface

and support for a wide variety of formats that has won it millions of users.

The FFmpeg project was originally started by a French programmer

named Fabrice Bellard in the year 2000. It is now being developed by a

large team of open source software developers spread around the world.

This book can serve as an easy FFmpeg tutorial, hack collection, and a

ready reference. However, it is not possible for one book to cover everything

that FFmpeg can do. FFmpeg has a very huge online documentation with

which you may have to craft your commands. While this book may seem

more than enough for most users, the documentation will open up vastly

more possibilities. DO NOT avoid going through the documentation.

Before you go further into the book, you should be aware that the

FFmpeg project creates two types of software:

	 1.	 libav libraries: These are FFmpeg programming

software or “libraries” that are used by programmers

to create audio/video processing software such as

media players, browser plug-ins, and audio/video

editors. The libav libraries have been used to build

some parts of popular software such as VLC, xine,

Blender, and Kodi.

xx

	 2.	 ffmpeg command-line program: This is the

FFmpeg end-user software that most people can

use. The ffmpeg command-line program internally

uses the libav libraries.

In this book, we will ignore the libav libraries and instead focus on the

ffmpeg command-line program.

�Extra Resources for This Book
•	 All code snippets used in this book are available in

a plain-text file, complete with chapter and section

titles and comments. It is actually a MarkDown/

CommonMark file. You can easily convert it to

an HTML, ODT, DOCX, or PDF file. Conversion

instructions are in the text file.

•	 Videos of several code examples used in the book are

available in an online video playlist.

Introduction

xxi

Links to these resources can be found at

•	 www.apress.com/9781484287002 (domain + ISBN)

•	 www.vsubhash.in/ffmpeg-book.html

Introduction

https://www.apress.com/9781484287002
http://www.vsubhash.in/ffmpeg-book.html

1

CHAPTER 1

Installing FFmpeg
In the Introduction, I mentioned that FFmpeg was an “end-user program.”

It is actually three command-line end-user programs, or executables:

	 1.	 ffprobe

	 2.	 ffplay

	 3.	 ffmpeg

The executables for these programs are available for Linux, Mac,

Windows, and other operating systems (OSs). When you go to the FFmpeg

website (www.ffmpeg.org), you will have two download options:

•	 Either download pre-built FFmpeg executables to

your computer

•	 Or download FFmpeg source code to your computer

and build your own customized FFmpeg executables

If you are unfamiliar with building executables from source code (as

are most people), you should choose the first option.

�FFmpeg for Microsoft Windows Users
The download options on the FFmpeg site for pre-built FFmpeg executables

change frequently, so this book will not be specific with instructions. Just

go to this page and navigate to one of the download sites.

https://ffmpeg.org/download.html

© V. Subhash 2023
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_1

https://ffmpeg.org/
https://ffmpeg.org/download.html
https://doi.org/10.1007/978-1-4842-8701-9_1#DOI

2

On the selected download site, you may be presented with a dizzying

array of downloads. Spend some time reading the information given there,

and pick the most appropriate download for you.

Sometimes, there may be an essentials build and a full build. The

essentials build may be enough for most people. If you want to use certain

unusual features such as frei0r filters, you should choose the latter. As you

never know what you might need in the future, I suggest that you choose

the full build.

Figure 1-1.  This download page lists several download options
for FFmpeg executables. Strangely, for FFmpeg, the latest master
download is supposed to be more stable than the numbered
release version

Chapter 1 Installing FFmpeg

3

Figure 1-2.  There may be more than one “build” option for the
downloads

Figure 1-3.  The downloaded archive file contains three EXE files.
Copy them to a folder specified in your PATH environment variable

In the downloaded archives (zip or 7z files), you will find the

executables: ffprobe.exe, ffmpeg.exe, and ffplay.exe.

Copy the EXE files to some folder that is already included in your

operating system’s PATH environment variable. If you copy them to a new

folder, then add the folder’s full location to the PATH variable.

If you do not do the above, you will need to type the full path of the

executable in your commands in the Command Prompt window.

Chapter 1 Installing FFmpeg

4

Before modifying the PATH environment variable, take a backup of its

value. Open the Command Prompt window and type this command.

echo %PATH% > PATH-BAK.TXT

Let us assume that you have extracted the EXE files to the folder C:\

MyInstalls\ffmpeg\bin. Launch the Command Prompt window with

Administrator privileges. Then, permanently suffix this folder’s location to

the PATH environment variable with this command.

SETX /M PATH "%PATH%;C:\MyInstalls\ffmpeg\bin"

Then, you should check whether the FFmpeg installation is accessible

from the command-line without the full path. (Do this in a Command
Prompt window with normal-user privileges.)

ffmpeg -version

If you do not modify the environment variable, then you will have to

type the full path whenever you want to use the program.

C:\MyInstalls\ffmpeg\bin\ffmpeg -version

FFmpeg is case-sensitive so do not type FFMPEG -VERSION and hope to

get a correct response. FFmpeg may have become platform-independent,

but in its heart, it still beats like a Linux program. This means that FFmpeg

will not support certain functionalities expected of native Windows/DOS

programs. For example, you cannot type command switches (arguments)

in uppercase (even if the command name can be typed in uppercase).

@ Causes error

FFMPEG -VERSION

@ Causes no error

FFMPEG -version

ffmpeg -version

Chapter 1 Installing FFmpeg

5

Almost all command-line examples in this book assume a Linux

environment. One-line commands will not require any change in

Windows.

The Windows/DOS counterpart for the Linux null device (/dev/

null) is NUL. This means that you should replace all instances of 2> /

dev/null in this book with 2> NUL. This construct is used to prevent the

commands from displaying text messages on the screen. ffmpeg outputs

all its messages to standard error, which happens to be the screen. In case

it outputs something to standard output, which also happens to be screen,

and has to be blocked, the Linux remedy is to use > /dev/null. To do the

same on your Windows computer, you will have to use > NUL instead.

In multiline commands, you will find a “\” (backslash) at the end of

each line (except the last one), as is the practice in Linux.

For 'nix users

ffmpeg -f lavfi \

 -i "testsrc=size=320x260[out0];

 anoisesrc=amplitude=0.06:color=white[out1]" \

 -t 0:0:30 -pix_fmt yuv420p \

 test.mp4

As a Windows user, you should use a caret ( ̂  ) instead of the

backslash ( \ ).

@ For Windows users

ffmpeg -f lavfi ^

 -i "testsrc=size=320x260[out0]; ^

 anoisesrc=amplitude=0.06:color=white[out1]" ^

 -t 0:0:30 -pix_fmt yuv420p ^

 test.mp4

You should avoid writing anything after the backslash or the caret.

Invisible trailing space(s) can also make a command to fail. (This happens

often with copy-pasted commands.)

Chapter 1 Installing FFmpeg

6

In a Linux bash terminal, the backslash is not required after a double-

quotation mark has been opened, and you can continue on like that for

more lines until the quotation is closed. In a Windows cmd terminal, all

wrapping lines will have to end with a caret.

�FFmpeg for Linux Users
If your Linux distribution has not installed FFmpeg by default, then use its

default software manager or package manager to do so. Beware that the

FFmpeg installed from software repositories used by Linux distributions

are usually out of date.

The download sites linked by FFmpeg.org provide the latest builds

with maximum support for external libraries. However, some Linux users

like to build their executables from source. If you have a fast machine or

a few hours to spare, start with the instructions on the FFmpeg Wiki site.

Check their source code compilation steps specific to the Linux distribution

that you use.

https://trac.ffmpeg.org/wiki/CompilationGuide

You can customize your FFmpeg build by enabling/disabling several

build options. Instead of just blindly following the wiki, spend some time

studying the configure script or its help output.

configure --help

Chapter 1 Installing FFmpeg

https://trac.ffmpeg.org/wiki/CompilationGuide

7

Figure 1-4.  The configure script, by default, will try to autodetect
external libraries. You may have to manually enable those that are
not autodetected

In your Linux package manager app, try to search and install (dev-

suffixed) developmental packages with similar names as the external

libraries. You may not be able to install developmental packages for all

of the libraries. But, for whatever libraries that you can install or have

them already installed, add relevant -enable options to the configure

compilation step. Here are a few:

...

--enable-chromaprint --enable-frei0r \

--enable-libbluray --enable-libbs2b --enable-libcdio \

--enable-libflite --enable-libfontconfig \

Chapter 1 Installing FFmpeg

8

--enable-libfreetype --enable-libfribidi \

--enable-libmp3lame --enable-libsmbclient \

--enable-libv4l2 --enable-libvidstab \

...

Run the FFmpeg build statement with these changes, and eventually

all three binary executable files will be created in your $HOME/bin

directory. Then, secure the copy of the documentation from the ffmpeg_

build directory so that you can read it whenever it is required.

☞  When I built FFmpeg version 5.1, I encountered some errors
with the official wiki guide. The guide uses one long stringified
command to install the FFmpeg binary executable files. This
command is a combination of several commands that downloads
the source and then configures, compiles, builds, and installs the
executable files. If the configuration and compilation commands
encounter any errors and you fix it, the command will restart the
whole drama beginning with downloading the source. You do not
have to endure that. Just continue with the configure step.

If you have an old OS where the latest FFmpeg executable does not

run or cannot be compiled, go to https://johnvansickle.com/ffmpeg/

and download pre-built statically linked executables (not including

ffplay). On my old Ubuntu 10 Fiendish Frankenstein installation, I could

not run the latest FFmpeg pre-built executable nor build the source, but

these statically linked executables worked. (Even the C library is statically

linked.) That is how I was able to finish the 2020 version of this book in

the old OS.

Chapter 1 Installing FFmpeg

https://johnvansickle.com/ffmpeg/

9

�FFmpeg for Apple Mac Users
With Apple moving from Intel x86 to ARM architecture, any specific

instructions will be outdated when you read it. It is best that you consult

the FFmpeg Wiki for the specific kind of Apple hardware that you

are using.

https://trac.ffmpeg.org/wiki/CompilationGuide/macOS

�Summary
Although originally designed as a Linux program, FFmpeg is also available

for Windows and Mac operating systems. In this chapter, you learned how

to obtain pre-built FFmpeg executables specific to your OS from the official

FFmpeg site. You also learned how to build your own customized FFmpeg

executables from source.

In the next chapter, you will learn how to start using the executables.

Chapter 1 Installing FFmpeg

https://trac.ffmpeg.org/wiki/CompilationGuide/macOS

11

CHAPTER 2

Starting with FFmpeg
The FFmpeg project provides several end-user programs. This book will

focus on three command-line programs – ffprobe, ffplay, and ffmpeg.

You will be using ffmpeg most of the time, but ffprobe and ffplay can

help you as well. In this chapter, you will gain an introduction to all three.

All three have an annoying “feature” – they display a build-information

banner that is as big as the state of Texas. If you create the following aliases

in your $HOME/.bashrc file, then you do not have to suffer the annoyance.

alias ffmpeg='ffmpeg -hide_banner '

alias ffplay='ffplay -hide_banner -autoexit '

alias ffprobe='ffprobe -hide_banner '

☞  The -autoexit option for the ffplay command ensures
that it makes a clean exit after playing a file instead of sticking
around like it has crashed.

Some command examples in this book will have the suffixes 2>

/dev/null or > /dev/null. Such recourses were necessary to prevent

information clutter.

© V. Subhash 2023
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_2

https://doi.org/10.1007/978-1-4842-8701-9_2#DOI

12

�ffprobe
If you want to find out useful information about an audio or video file, you

need to use ffmpeg with the -i option. With ffprobe, you do not need

the option.

ffmpeg -i tada.wav

ffprobe tada.wav

ffprobe can reveal much more information than this if you use

the -show_streams option. You can filter the output of this command for

use in your shell scripts. In a later chapter, you will find a sample output of

this command.

ffprobe -show_streams somefile.mp4

Figure 2-1.  ffprobe  can be used to display information about what
is contained in a multimedia file

Chapter 2 Starting with FFmpeg

https://doi.org/10.1007/978-1-4842-8701-9_11#Sec8

13

�ffplay
If you want to play a video file directly from the command line, just type

ffplay and the file name. ffplay is a tiny media player. It does not have

a context menu system or other interface. It responds to some keys and

mouse clicks but does nothing more.

ffplay solar.mp4

To play an audio file without the (windowed) interface, say, as an audio

notification in a shell script, you can use ffplay like this:

ffplay -autoexit -nodisp ding.wav

Figure 2-2.  ffplay  can be used to play audio and video files

Chapter 2 Starting with FFmpeg

14

�ffmpeg
The executables ffprobe, ffplay, and ffmpeg have several common

command-line options (arguments, switches, or parameters). You can list

most of them with the -h option.

ffmpeg -h

ffmpeg -h long

ffmpeg -h full > ffmpeg-help-full.txt

If you want to review some of the features supported by your

installation of FFmpeg, try these:

ffmpeg -formats

ffmpeg -encoders

ffmpeg -decoders

ffmpeg -codecs

ffmpeg -filters

The output of these commands will give you a good overview of

what FFmpeg can do. Sample output of these commands is available as

annexures in this book.

You can dig out more specific help information with commands such

as these:

ffmpeg -h demuxer=mp3

ffmpeg -h encoder=libmp3lame

ffmpeg -h filter=drawtext

�Other FFmpeg End-User Programs
The FFmpeg project provides a few other command-line tools in addition

to the three introduced in this chapter. Their purpose and usage are

beyond the scope of this book. If you wish to do your own R&D, then you

can find their files at www.gyan.dev/ffmpeg/builds/#tools.

Chapter 2 Starting with FFmpeg

http://www.gyan.dev/ffmpeg/builds/#tools

15

�Summary
In this chapter, you gained an introduction to the three FFmpeg

executables. Before venturing into what FFmpeg can do for you, you need

to learn a few things about multimedia formats and codecs. The next

chapter will help you with that.

Chapter 2 Starting with FFmpeg

17

CHAPTER 3

Formats and Codecs
An MP3 audio file can be identified by its “.mp3” file extension. Similarly,

an MP4 video file can be identified by the “.mp4” extension. The file

extensions of multimedia files do not provide any kind of surety about

the format. Even the format name is merely a notion. If you need to

process audio and video content, you need to go beyond file extensions.

You need to be familiar with multimedia concepts such as containers,

codecs, encoders, and decoders. In this chapter, you will gain some basic

information about all that and more.

�Containers
Multimedia files such as MP4s or MP3s are just containers – containers

for some audio and/or video content. An MP4 file is a container for some

video content written using the H.264 codec and some audio content

written using the AAC codec. It need not be like that for all MP4 files. Some

MP4 files may have their video content written using the Xvid codec and

the audio content written using the MP3 codec. Similarly, AVI, MOV WMV,

and 3GP are popular containers for audio/video content. Codecs can differ

from file to file even if their extensions are the same. A multimedia file may

have the wrong extension because of some human error. You can expect all

sorts of combinations in the wild.

When the codecs are not what is usually expected in a container, you

may encounter annoying format errors in playback devices. Sometimes,

you may be able to fix the error by simply renaming the file with the correct

© V. Subhash 2023
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_3

https://doi.org/10.1007/978-1-4842-8701-9_3#DOI

18

extension. At other times, you will have to re-encode the file using codecs

supported by the device. So, what does it mean when a device says it only

supports certain “codecs”?

�Codecs, Encoders, and Decoders
When audio and video recordings transitioned from analog to digital,

equipment manufacturers developed algorithms to store audio waveforms

and video frames in a scheme retrievable by computer software. Initially,

these storage schemes were proprietary, and their documentation was not

publicly available. With the rise in the popularity of digital media devices,

interoperability and open standards became necessary.

When multimedia (audio or video) content is written or stored in a

computer file, it is written in a specific retrievable format developed by the

manufacturer of the multimedia equipment. The algorithm used to read

or write multimedia content in a specific format became known as a codec

(coder-decoder). The software used for writing the content using the codec

became known as an encoder. The software used to read the written

content became known as a decoder. A camera uses an encoder chip to

store captured video. A TV uses a decoder chip to play the video from a

USB drive. On a personal computer, the logic of encoder and decoder

chips is installed as a software codec.

Raw audio or video requires a lot of space when stored on a computer

file. The multimedia industry, led by camera manufacturers and computer

companies, has developed several compression techniques to squeeze

multimedia content on to as few bytes of storage as possible. The efficiency

of the compression techniques varies. When the compression discards

some content (assuming that the human ear or the eye would not miss it)

for a dramatic decrease in the size of the file, the technique would be known

as lossy compression. When no content was discarded, the technique was

known as lossless compression. Lossless compression techniques are not

used everywhere because of the high file-space requirement.

Chapter 3 Formats and Codecs

19

To suit real-world requirements, most codecs provide options to their

algorithm so that a balance between file size reduction and detail loss

can be specified on a preset or ad hoc basis. You will do the same when

you use FFmpeg. For example, in the following command, to convert an

uncompressed audio from a microphone recording to a lossy compressed

audio format, several settings such as bitrate, number of channels, and

sampling frequency are specified.

ffmpeg -i uncompressed-stereo.wav \

 -c:a libmp3lame -b:a 128k -ac 2 -ar 44100 \

 compressed.mp3

☞  You will learn more about these settings in later chapters, but
for now just be aware that they are often required.

�Demuxers and Muxers
I have been using FFmpeg for years without knowing what demuxers

and muxers were. Even now, I cannot care less. Well… maybe a little.

A demuxer is a software component that can read a multimedia input

file so that a decoder can work on it. Similarly, a muxer writes data to a

multimedia output file after it has been processed by an encoder. Between

a decoder and encoder, some processing work may be done, or it may even

pass directly to the other end. Here is all that you need to know:

•	 To write to a particular container format, the format’s

muxer is required.

•	 To read from a particular container format, a demuxer

is required.

Chapter 3 Formats and Codecs

20

Figure 3-1.  This schematic shows how different components in
FFmpeg work together to give the output you want

For example, to read and write to the MP4 format, an MP4 demuxer

and an MP4 muxer are required. FFmpeg automatically takes care of

muxers and demuxers so that you do not have to bother with them.

However, there may come situations when you do have to explicitly

address them.

Figure 3-2.  This demuxer help output provides a clue as to how to
create endlessly looping GIF animations

Chapter 3 Formats and Codecs

https://doi.org/10.1007/978-1-4842-8701-9_11#Sec14

21

�Summary
In this chapter, you learned some theoretical concepts about multimedia

formats, containers, and codecs. In the next chapter, we will delve deeper

into the container and learn how to refer to its constituents from the

command line using index numbers.

Chapter 3 Formats and Codecs

23

CHAPTER 4

Media Containers
and FFmpeg
Numbering
In the previous chapter, you learned that a multimedia file is actually a

container. On the inside, it encloses multimedia streams and metadata. In

this chapter, you will learn what streams and metadata are and how you

can access them from the command line. The sections in this chapter are

arranged for easy access and completeness. It may not be possible for you

to understand all of it on your first read. Return to this chapter a few times

to get a full understanding.

�Containers
A container can have several streams. A stream could be audio, video,

subtitles, or a file attachment.

In an MP4 video file or container, you will usually find a video stream

and an audio stream. In an MP3 file, you will find an audio stream and

maybe some IDv3 tags (such as title, album, and artist) as metadata.

If you have one of those rare multi-angle DVDs, then each camera

angle will be represented by a separate video stream. Multi-language

videos will have an audio stream for each language. DVD subtitles for

© V. Subhash 2023
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_4

https://doi.org/10.1007/978-1-4842-8701-9_4#DOI

24

multiple languages are represented as individual subtitle streams. MKV

files may have custom font files for displaying the subtitles. These font files

will be represented as file-attachment streams.

In an audio stream, there can be several channels. A mono audio

stream has only one channel. A stereo stream has two channels - left and

right. A DVD movie’s 7.1 surround sound stream has eight channels - front

left, front right, center left, center right, rear left, rear right, and one LFE

(low frequency effects).

FFmpeg identifies these streams, channels, and metadata using index
numbers so that you can refer to them from the command line.

�Container Internals
Logically, the internals of a multimedia file look like this. A container

needs to have at least one stream. Everything else is optional. It is all

right for a video file to not have album art, subtitles, custom fonts, or tags

(global metadata), but one video stream and one audio stream are usually

expected.

Figure 4-1.  Internals of a multimedia file container

Chapter 4 Media Containers and FFmpeg Numbering

25

From this logical representation, you will note that a multimedia file

container may have some global metadata and that each stream in the

container can have stream-specific metadata too.

You can use ffprobe to display these details for any multimedia file.

In this ffprobe output, the global metadata for the MP3 file shows ID3

tags such as title, album, and artist. It also includes a “comment” metadata

that I added after I bought the music. The metadata for the audio stream

shows that it was encoded using the LAME encoder by the music vendor.

The album art is shown as a video stream but it has only one frame. More

importantly, you should note that FFmpeg refers to the input files and

streams using index numbers starting from 0 (zero), instead of 1 (one).

Here is another example; this one is for a video file.

Figure 4-2.  This is a sample  ffprobe  output for an audio file

Chapter 4 Media Containers and FFmpeg Numbering

26

Figure 4-3.  This is a sample  ffprobe  output for a video file

What does this output say?

•	 The MKV file is identified as the first input file (#0).

•	 It has global metadata for creation time but none for

title, copyright, comments, etc.

•	 The first stream (#0:0) is a video stream and requires

a H.264 decoder.

•	 The second stream (#0:1) is an audio stream and

requires an MP3 decoder. The audio is in stereo, that is,

it has two channels.

•	 The third stream (#0:2) is a subtitle stream

and requires a decoder for the Substation Alpha

(SSA) format.

•	 The fourth stream (#0:3) is a custom font for

displaying the subtitles. It is stored as a file-
attachment stream.

Chapter 4 Media Containers and FFmpeg Numbering

27

•	 The fourth stream also has some stream-specific
metadata identifying the font file’s name and

mimetype. This is important because the SSA subtitles

may refer to the font by this name.

☞  Mimetype is a more rigorous file-type definition (than file
extensions) and is usually used by websites to identify downloads to
web browsers.

�Input and Output Files
An ffmpeg command can have multiple input and output files. The

following command has two input files and one output file. (For now,

ignore the line with the filter. Filters are explained in Chapter 7.)

ffmpeg -i solar.mp4 -i overlay.png \

 -filter_complex "overlay=370:260:" \

 watermarked-solar.mp4

☞  When specifying multiple input files, place options specific to
one input file on the left side of -i option. Whatever specified after
the file name applies to the next input file (-i) or (in its absence) the
next output file.

Chapter 4 Media Containers and FFmpeg Numbering

https://doi.org/10.1007/978-1-4842-8701-9_7

28

☞  ffmpeg can also read from streams and write to them. The
streams can be piped from/to another command and also transported
over a network protocol. For more information, read the official
documentation on protocols.

A video of my solar inverter and the cover image of one of my books

are the input files. The command renders the image at 370 pixels from the

left edge and 260 pixels from the top edge of the video.

The two input files were specified using the -i option. An MP4 video

file is input file #0 and a PNG image file is input file #1. The output file, as
is always, has been specified last.

Figure 4-4.  The output video is the input video with the overlaid
input image

Chapter 4 Media Containers and FFmpeg Numbering

29

Figure 4-5.  The output of the command shows the index numbers
used for the input files and streams

The output of the command shows that the first stream in the first

input file is a video stream and is numbered #0:0. The second stream in

that file is an audio stream and is numbered #0:1. The first stream in the

second input file (the PNG image file) is considered as a video stream even

though it has only one (image) frame and is identified as #1:0.

Chapter 4 Media Containers and FFmpeg Numbering

30

You can refer to streams by their type. In the previous command, the

streams were as follows:

•	 0:v:0 (first file’s first video stream) or 0:0 (first file’s

first stream)

•	 0:a:0 (first file’s first audio stream) or 0:1 (first file’s

second stream)

•	 1:v:0 (second file’s first video stream) or 1:0 (second

file’s first stream)

For this to become clear, spend some time studying the screenshot in

Figure 4-5.

Suppose that a multi-language DVD video file had one video stream

and two audio language streams. The streams can be referred as follows:

•	 0:v:0 (first video stream) or 0:0 (first stream)

•	 0:a:0 (first audio stream) or 0:1 (second stream)

•	 0:a:1 (second audio stream) or 0:2 (third stream)

☞ I n the output of ffmpeg commands, you will encounter index
numbers ignoring the stream type. To make your FFmpeg commands
somewhat fail-safe, I recommend that you refer to streams by their
type instead.

As you may have guessed, the stream-type identifier for video is v and

a for audio. There are others as given in Table 4-1.

Chapter 4 Media Containers and FFmpeg Numbering

31

Table 4-1.  Stream-type identifiers

Stream type Identifier

Audio a

Video v

Video (not images) V

Subtitles s

File attachments t

Data d

After displaying the information about the input files and streams,

ffmpeg will list how the input streams will be processed and mapped to

intermediate and final streams. Then, it will list the final output files and

their streams. In a bash terminal, you can press the key combination Ctrl+S

if you wish to pause and study this information. Otherwise, all of this

information will quickly flash past your terminal as ffmpeg will then post a

huge log of informational, warning, and error messages as it performs the

actual processing of the input data.

�Maps
With multiple input files, FFmpeg will use an internal logic to choose

which input streams will end up in the output file. To override that, you

can use the -map option. Maps enable you to specify your own selection

and order of streams for the output file. You can specify stream mapping in

several ways:

-map InputFileIndex

all streams in file with specified index

For example, -map 1 means

all streams in second (1) input file.

Chapter 4 Media Containers and FFmpeg Numbering

32

-map InputFileIndex:StreamIndex

the stream with specified index in file with specified index

For example, -map 0:2 means

third (2) stream in first (0) input file.

-map InputFileIndex:StreamTypeIdentifier

all streams of specified type in file with specified index

For example, -map 1:s means

all subtitle (s) streams in second (1) input file.

-map InputFileIndex:StreamTypeIdentifier:StreamIndex

among streams of specified type in file with specified index, the

stream with specified index

For example, -map 2:s:1 means

second (1) subtitle (s) stream in third (2) input file.

Information overload? Let me explain with an example. When I created

this stop-motion video a few years ago, I used a gramophone recording as

the background music. Typical of old record music, it had a lot of sound

artifacts. At that time, I did not know much about FFmpeg. So, I used

FFmpeg to extract the audio as an MP3 file but used the free Audacity

program to apply a low-pass filter. Then, I used FFmpeg again to swap the

original audio with the MP3 fixed by Audacity.

Chapter 4 Media Containers and FFmpeg Numbering

33

Figure 4-6.  The audio of this video had gramophone sound artifacts

Extract the audio

ffmpeg -i Stopmotion-hot-wheels.mp4 \

 -map 0:1 \

 Stopmotion-hot-wheels.mp3

Apply low-pass filter to Stopmotion-hot-wheels.mp3

using Audacity and export to Stopmotion-hot-wheels-fixed.mp3

Swap the existing audio track with the mp3 fixed by Audacity

ffmpeg -i Stopmotion-hot-wheels.mp4 \

 -i Stopmotion-hot-wheels-fixed.mp3 \

 -map 0:0 -map 1:0 \

 -codec copy \

 Stopmotion-hot-wheels-fixed.mp4

☞  -codec copy or -c copy copies the streams as they are,
instead of unnecessarily re-encoding or converting them again. It
saves a lot of time.

Chapter 4 Media Containers and FFmpeg Numbering

34

In the first command, I included a map for the second stream (0:1) in

the MP4 file and saved it as an MP3 file. (I assumed that the second stream

was an audio stream. It need not be.) I then corrected errors in the MP3 file

using Audacity. In the second command, the first input file (the MP4 file)

had two streams – (0:0) and (0:1) – same as in the first command. (More

assumptions.) The second input file (the “fixed” MP3) had one stream

(1:0). In the second command, I used the first file’s first stream (0:0) and

the second file’s first and only stream (1:0). Alternatively, I could have

typed the command by mapping to the first file’s first video stream (0:v:0)

and the second file’s first audio stream (1:a:0).

ffmpeg -i Stopmotion-hot-wheels.mp4 \

 -i Stopmotion-hot-wheels-fixed.mp3 \

 -map 0:v:0 -map 1:a:0 \

 -codec copy \

 Stopmotion-hot-wheels-fixed.mp4

☞ T his alternative fail-early approach is safer, as it can protect
you from typing mistakes.

The audio stream in the original MP4 (0:1) or (0:a:0) gets discarded

because it was not included in any of the maps. If I wanted to retain the

original audio stream, I can add another map for it as a second audio

stream. The fixed audio track will be played by default by media players.

I can manually select the second audio track with the remote or a menu

option to hear the unfixed original audio.

ffmpeg -i Stopmotion-hot-wheels.mp4 \

 -i Stopmotion-hot-wheels-fixed.mp3 \

 -map 0:v:0 -map 1:a:0 -map 0:a:0 \

 -codec copy \

 Stopmotion-hot-wheels-fixed-n-restored.mp4

Chapter 4 Media Containers and FFmpeg Numbering

35

You can use maps when generating multiple output files with one

command.

ffmpeg -i solar.mp4 \

 -map 0:1 -c:a libmp3lame -b:a 128k solar-high.mp3 \

 -map 0:1 -c:a libmp3lame -b:a 64k solar-low.mp3

The -map options provide a new set of streams available for options

specified after them. Options such as -codec or -ac will only affect streams

specified by the -map options before them, not the streams available in the

input files.

�Metadata
Metadata means data about data. When using FFmpeg, metadata is read

by the demuxer and/or written by the muxer. The data is usually specified

as key-value pairs. For a media file, the metadata can be global (for

the entire file) or specific to a stream in the file. Each container format

specifies a limited set of metadata keys. The MP3 format, for example,

supports metadata keys such as title, artist, album, and copyright. You can

specify metadata for individual streams as follows:

-metadata:s:StreamIndex or

-metadata:s:StreamTypeIdentifier:StreamIndex

This command sets metadata at the global/file/container level.

ffmpeg -i solar.mp4 -codec copy \

 -metadata title="Me Solar Inverter" \

 solarm.mp4

Chapter 4 Media Containers and FFmpeg Numbering

36

Figure 4-7.  The background video has no metadata, and the
video player just displays the file name on the window title. In the
foreground video, title metadata is available, and the video player
displays that text instead of just the file name

The ffprobe output in Figure 4-8 shows potentially incriminating

information about a moonshiner MP3.

Chapter 4 Media Containers and FFmpeg Numbering

37

Figure 4-9.  This updated ffprobe output shows that the pirate has
smoothly changed the metadata. Maybe he was doing researchez
academique! Non? Nhyet?

Figure 4-8.  This‌​  ffprobe  output shows that this inveterate pirate
had downloaded a music video from Youtube and ripped the audio!

ffmpeg -y -i raisa.mp3 \

 -map 0 -c copy \

 -metadata:s:v:0 title='raisa.png' \

 raisa2.mp3 # Smooth!

This command makes no changes to the MP3 except for the value of

the incriminating title metadata of the album art.

Chapter 4 Media Containers and FFmpeg Numbering

38

Remember my stopmotion video with multitrack audio? I can use the

-metadata option to give its audio streams an informative language name.

ffmpeg -i Stopmotion-hot-wheels.mp4 \

 -i Stopmotion-hot-wheels-fixed.mp3 \

 -map 0:v:0 -map 1:a:0 -map 0:a:0 \

 -codec copy \

 -metadata:s:a:0 language="eng" \
 -metadata:s:a:1 language="fre" \
 Stopmotion-hot-wheels-fixed-n-restored.mp4

Figure 4-10.  If you do not specify a language name for an audio
track, media players may make wrong assumptions

Chapter 4 Media Containers and FFmpeg Numbering

39

Remember that to set the language names for subtitle streams,

the -metadata option should refer to subtitle streams, not audio streams.

-metadata:s:s:0 language="eng" \

-metadata:s:s:1 language="fre" \

The StreamIndex refers to the index of the stream IN THE OUTPUT

FILE. The s after -metadata: identifies itself as metadata for a stream. Do

not mistake it for subtitles. Also, remember that metadata is all about the

output file. Do not use any numbering from the input file(s).

☞ A part from streams (-metadata:s), metadata can be
specified for DVD chapters (-metadata:c) and DVD programs
(-metadata:p). They are not covered by this book.

☞  You can learn more about metadata in Chapter 10.

�Metadata Maps
Have you noticed that when you convert MP3 files, the album art or the

meta tags get lost? This is because of improper or no metadata mapping.

Metadata can get lost when you convert files or create new files from

multiple input files. The -map_metadata option helps you correctly route

metadata from input files to output files. Its value is specified in a rather

twisted manner. The left is the destination and the right is the source.

-map_metadata InputFileIndex:MetadataSpecifier or

-map_metadata:g InputFileIndex:MetadataSpecifier or

-map_metadata:MetadataSpecifier InputFileIndex:⏎

MetadataSpecifier

Chapter 4 Media Containers and FFmpeg Numbering

https://doi.org/10.1007/978-1-4842-8701-9_10

40

Where

MetadataSpecifier is either g or s:StreamType (all streams) or

s:StreamType:StreamIndex (some stream)

Yeah, it made my head spin too! Take your time. Nobody does

metadata mapping on their first excursion into FFmpeg. Take the

slow lane.

The following example copies global metadata from the second input

file (-map 1) as the global metadata for the output file. This ensures that

the MP3 tags are copied as the video’s metadata.

ffmpeg -y -i raisa.png -i raisa.mp3 \

 -c:a copy -c:v mjpeg \

 -map 0 -map 1 \

 -map_metadata 1 \

 raisa.mp4

The next example copies global metadata from the second input file

both globally (:g) and to the audio stream (:s:a). The global metadata

from the second input file can be specified either as 1:g or simply as 1.

Global output metadata can be typed as -map_metadata:g (as below) or

simply as -map_metadata (as above).

ffmpeg -y -i raisa.png -i raisa.mp3 \

 -c:a copy -c:v mjpeg \

 -map 0 -map 1 \

 -map_metadata:g 1:g -map_metadata:s:a 1 \

 raisa.mkv #Does not work with MP4

What is the advantage of this command? If someone decides to extract

just the audio stream from the MKV, the metadata does not get omitted.

The stream and the MKV (global) both have a copy of the metadata from

the MP3 file. The original metadata will survive even in the extracted

audio stream.

Chapter 4 Media Containers and FFmpeg Numbering

41

Figure 4-11.  The global metadata has been duplicated to the audio
stream metadata as well

☞ T he -metadata option overrides -map_metadata mapping.

�Channel Maps
Audio streams can have one or more channels. Monaural audio has only

one channel. Stereo music has two channels - left and right. DVD movies

can have two or six or eight channels for playback on both stereo and

surround speaker systems.

To pin down the channels exactly as you want in the output file, you

need to use the -map_channel option. It can be specified as follows:

-map_channel

InputFileIndex.StreamIndex.ChannelIndex

Chapter 4 Media Containers and FFmpeg Numbering

42

or as

-map_channel -1

if you want the channel muted.

The -map_channel options specify the input audio channels and the

order in which they are placed in the output file.

Imagine that the audio channels in an MP4 file are mixed up. When

you wear headphones, in either ear, the voices are heard for people on the

opposite side in the video. You can fix it by the following:

ffmpeg -i wrong-channels.mp4 \

 -c:v copy \

 -map_channel 0.1.1 -map_channel 0.1.0 \

 fine-channels.mp4

In a stereo audio stream, the channel order is 0.1.0 (left) followed by

0.1.1 (right). When you use a channel map of 0.1.1 followed by 0.1.0,

the channels get switched.

For the next example, imagine that you are using headphones in a

work environment. You want to have one ear for music and one ear for

surroundings. You could mute one of the channels.

ffmpeg -i moosic.mp3 \

 -map_channel 0.0.0 -map_channel -1 \

 moosic4lefty.mp3

☞ N o, you should not make it mono. Mono audio will be heard on
both sides.

In some videos, the left and right audio channels are independent

tracks. What these content creators do is place the original audio on one

channel and the most annoying royalty-free music on the other. Instead

Chapter 4 Media Containers and FFmpeg Numbering

43

of deleting the offending channel, you could move each channel to a

separate audio stream while preserving the original stereo stream in a

third stream.

ffmpeg -y -i zombie.mp4 \

 -map 0:0 -map 0:1 -map 0:1 -map 0:1 \

 -map_channel 0.1.0:0.1 -map_channel 0.1.1:0.2 \

 -c:v copy \

 zombie-tracks.mp4

The first stream in the output file will be the original video (0.0). The

left channel (0.1.0) will be the second stream (0.1). The right channel

(0.1.1) will be the third stream (0.2). The original stereo audio will

become the fourth stream. (Yes, the second and third streams will be

mono audio.)

What about the numbers after the colon? That is explained by the full

definition for channel maps:

-map_channel InputFileIndex.InputFileStreamIndex.⏎

ChannelIndex:OutputFileIndex.OutputFileStreamIndex

How do you like them apples? The second part beginning with the

colon is optional. It is for placing the mapped input audio channel on a

specified output stream.

☞  Channel mapping numbers use dots, not colons. The colon is
used only when you begin to specify the output stream.

☞  Channel mapping cannot be used to mix channels from
multiple input files.

Chapter 4 Media Containers and FFmpeg Numbering

44

☞  When you make changes to the channels, the audio will be
converted again and this takes time. It will not be done quickly like
with -c:a copy.

�Do Not Use the -map_channel Option
The -map_channel option, with its difficulties, is on its way out. The

FFmpeg version 5.1 (released in July 2022) shows this warning.

The -map_channel option is deprecated and will be removed.

It can be replaced by the 'pan' filter, or in some cases by

combinations of 'channelsplit', 'channelmap', 'amerge' filters.

With newer ffmpeg versions, the previous commands can be rewritten

using filters, which you will learn in a later chapter.

Switch right and left channels of stereo audio

ffmpeg -i wrong-channels.mp4 \

 -c:v copy \

 -filter_complex "channelmap=map=FR-FL|FL-FR" \

 fine-channels.mp4

Silence right channel

ffmpeg -i moosic.mp3 \

 -c:v copy \

 -filter_complex "pan=stereo|FL=FL|FR=0" \

 moosic4lefty.mp3

Split channels to separate audio streams

and also preserve existing audio stream

Chapter 4 Media Containers and FFmpeg Numbering

45

ffmpeg -y -ss 0:0:20 -t 0:0:20 -i zombie.mp4 \

 -c:v copy \

 -filter_complex "channelsplit[L][R]" \

 -map 0:v:0 -map '[L]' -map '[R]' -map 0:a:0 \

 -codec:a:0 aac -ac:a:0 1 \

 -codec:a:1 aac -ac:a:1 1 \

 -codec:a:2 copy \

 zombie-tracks.mp4

☞ T he -codec and -ac options are limited to streams specified
by the -map options specified before them.

�Summary
In this chapter, you learned about how to access streams and metadata.

You also learned how to pick and choose what streams and metadata you

would like to have in the output file(s).

As mentioned in the beginning of this chapter, it is not necessary

that you grasp every detail in this chapter on the first go. As you read

forthcoming chapters, certain things mentioned in this chapter will

become clearer. If not, you can always return to this chapter.

Chapter 4 Media Containers and FFmpeg Numbering

47

CHAPTER 5

Format Conversion
The main reason that so many people use ffmpeg is its amazing ability to

convert files from one format to another. ffmpeg supports so many formats

that I doubt there is any competition even from paid software. In this

chapter, you will learn how to perform these conversions and customize

them to extract the best quality from the source files.

�No-Brainer Conversions
The default output format in many Linux multimedia programs is OGV

and OGG files. Sadly, very few consumer electronic devices support these

two formats. I use gtk-recordMyDesktop to screen capture my computer

demos, and it creates OGV video files. Before I can play the files on my TV,

I need to convert them to MP4 format.

ffmpeg -i video1.ogv video1.mp4

An Ogg ringtone will play fine on an Android phone but not on a

feature phone, which usually only supports MP3 and MIDI ringtones.

Converting Ogg to MP3 is easy with FFmpeg.

ffmpeg -i alarm.ogg alarm.mp3

FFmpeg can guess the output format based on the file extension

you have used for the output file. It will automatically apply some good

preset conversion settings (defaults). You can specify custom conversion

settings too.

© V. Subhash 2023
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_5

https://doi.org/10.1007/978-1-4842-8701-9_5#DOI

48

�Conversion Options
Table 5-1 lists a few FFmpeg options that are useful when converting files.

You will learn how to use them in the rest of this chapter.

Table 5-1.  Some FFmpeg conversion options

Option For

-y Prevent prompting before overwriting any existing output file

-b:a Set audio bitrate

-c:a Specify audio encoder or decoder

-ar Set audio sampling rate

-ac Set number of audio channels

-b:v Set video bitrate

-c:v Specify video encoder or decoder

-r Set video frame rate

-pass Specify number of the encoding pass

-passlogfile Specify prefix for multi-pass encoding log files

-f Force specified format

(or oss, alsa, rawvideo, concat, image2, null…)

-shortest Stop all processing when any one output stream is completely

processed

-vn Do not process video

-an Do not process audio

-sn Do not process subtitles

Chapter 5 Format Conversion

49

�Obsolete/Incorrect Options
FFmpeg is fault-tolerant to an extent but do not be sloppy in typing the

options. You should avoid using -r:a instead of -ar (audio sampling rate).

Instead of conventions such as -acodec and -vcodec, you should be using

 -c:a or -c:v instead. Support for such old practices may be removed

in future.

�Codec Option
The -codec option is used to specify an encoder (when used before an

output file). When used before an input file, it refers to the decoder.

(ffmpeg may have more than one decoder and encoder for a particular

codec.) Choose the correct name from the output of the command

ffmpeg -encoders or ffmpeg -decoders, and not from that of

ffmpeg -codecs.

The -codec option can also be specified for all streams for a particular

type, such as -codec:a for all audio streams or -codec:s for all subtitle

streams or for a particular stream using its index. For each stream, only the

last applicable -codec option will be considered. If you use the value copy

for the encoder, ffmpeg will copy applicable streams as is without using an

encoder.

How do you know which codec (encoder name) you need to use for a

particular format? For an MP3 file, you could try the following:

ffmpeg -encoders | grep mp3

It may not be so straightforward with other formats. Browse through

the full output of the command ffmpeg -encoders to become familiar with

codec names. Sample output of this command is available in Annexure 3.

Then, you will learn that H.264 and MPEG-4 codecs have something to do

with MP4 files. You could also use ffprobe on existing file samples and

find prospective codec names.

Chapter 5 Format Conversion

50

Figure 5-1.  ffmpeg  lists a lots of encoders, several pages full. You
may miss some important ones if you make assumptions and filter the
output. Use the command ffmpeg -encoders | more to conveniently
browse the full output

�Sample Conversion with Custom Settings
If I wanted to convert a HD video downloaded from the Internet for playing

on my old portable media player, I would use these settings.

ffmpeg -i net-video.mp4 \

 -s 320x240 \

 -c:v mpeg4 -b:v 200K -r 24 \

Chapter 5 Format Conversion

51

 -c:a libmp3lame -b:a 96K -ac 2 \

 portable-video.mp4

The output video stream uses MPEG4 codec with qvga (320x240)

dimensions, 200K bitrate, and a 24 frames-per-second rate. The output

audio stream uses MP3 codec (Lame encoder) with two-channel audio

(stereo) and 96K bitrate.

☞  You will know what values to use for each setting only if you make
it a habit to use ffprobe on new types of files that you encounter.

☞ T he bitrate is how densely the audio or video content is stored
in the container. The greater the compression, the lesser is the bitrate
and file size, and so is the quality. You need to find a balance between
quality loss and file size reduction.

�Multi-pass Conversion
In multi-pass encoding, ffmpeg processes the video stream multiple times

to ensure the output video is close to the specified bitrate. ffmpeg creates

a log file for each pass. In the initial passes, the audio is not processed

and video output is not saved (dumped on null device). In the final pass,

however, you will have to specify the audio conversion settings and the

output file. In the next example, the conversion from the previous section

is performed using two passes.

This is the first pass.

ffmpeg -y -i net-video.mp4 \

 -s 320x240 -c:v mpeg4 -b:v 194k -r 24 \

Chapter 5 Format Conversion

52

 �-f mp4 -pass 1 -passlogfile /tmp/ffmpeg-log-

net-video \

 -an /dev/null

☞  Windows users should use NUL instead of /dev/null.

And, this is the last pass.

ffmpeg -y -i net-video.mp4 \

 -s 320x240 -c:v mpeg4 -b:v 194k -r 24 \

 -pass 2 -passlogfile /tmp/ffmpeg-log-net-video \

 -c:a libmp3lame -ac 2 -b:a 96K \

 portable-video.mp4

Multiple passes of the first kind may be required for achieving a

particular bitrate. Use the same video conversion settings for all passes.

☞  When the streams meet the specified bitrates, you will also know
exactly how big the file will be. Just multiply the bitrate with the duration
of the video. The reverse is also true. You can target a particular file size
(allowing for some deviation) by specifying a proportional bitrate for both
the audio and video. Conversion with constant bitrate was popular when
DVD videos were encoded (ripped off) to fit on a CD.

�Conversion for Maximum Compression
and Quality
Multimedia codecs provide a trade-off between speed, quality, and

compression. Now that we have almost unlimited online and offline

space, constant quality rather than constant bitrate is preferred. With

Chapter 5 Format Conversion

53

the H.264 codec, you can achieve the required quality and compression

in one pass using the -crf (CRF or Constant Rate Factor) option and by

specifying a processing “preset.” The -crf option affects quality.

ffmpeg -i solar.mp4 \

 -c:v libx264 -crf 21 -preset fast \

 -c:a copy \

 solar-CONVERTED.mp4

Figure 5-2.  This extract from the output of an old script shows preset
and tuning variables supported by the H.264 encoder

Chapter 5 Format Conversion

54

Figure 5-3.  The ffmpeg output stream details will tell you which pixel
format has been used

The CRF range is from 0 (lossless) to 63 (worst) for 10-bit pixel formats

(such as yuv420p10le) and 0 to 51 for 8-bit pixel formats (such as yuv420p).

You can determine the pixel format from the ffmpeg output of a similar

file conversion. The median can be 21 for 8-bit encoder and 31 for 10-bit

encoder.

What the heck is a pixel format? All that you need to know about

pixel format (at this stage) is that it is a data-encoding scheme used

to specify the colors of each pixel (dots) in a video frame. FFmpeg

supports these pixel formats: monob, rgb555be, rgb555le, rgb565be,

rgb565le, rgb24, bgr24, 0rgb, bgr0, 0bgr, rgb0, bgr48be,

uyvy422, yuva444p, yuva444p16le, yuv444p, yuv422p16, yuv422p10,

yuv444p10, yuv420p, nv12, yuyv422, and gray.

In addition to the processing preset, you can also specify a -tune

option depending on the kind of video that you have selected. The

values psnr and ssim are used to generate video quality metrics and are

not normally used in production. zerolatency output can be used for

streaming. fastdecode can be used for devices that do not have a lot of

processing power. grain is to prevent the encoder from being confused by

grainy videos.

Chapter 5 Format Conversion

55

�Audio Conversion
This command uses the Lame MP3 encoder to convert an Ogg audio file to

a 128K-bitrate two-channel (stereo) MP3 file.

ffmpeg -i alarm.ogg \

 -c:a libmp3lame \

 -ac 2 \

 -b:a 128K \

 alarm.mp3

☞ T here is a better method for converting to MP3 files. You will
find it in Chapter 11.

�Audio Extraction
Some video files have great sound. Music videos are good examples. How

do you extract their audio? Well, drop the video stream and copy the audio

stream to an audio file.

Matroska audio

ffmpeg -i music-video.mp4 -c:a copy music-video.mka

MPEG4 audio - FFmpeg flounders

ffmpeg -i music-video.mp4 -vn -c:a copy music-video.m4a

☞  Without -vn, the video stream will get copied to the m4a file!
Hurray for redundant options! Le paranoid survive!

Chapter 5 Format Conversion

https://doi.org/10.1007/978-1-4842-8701-9_11

56

Matroska audio or “.mka” files support several audio codecs. The

“.m4a” files support AAC (MPEG4 audio) codec.

If you already know that the audio stream in the MP4 file has been

encoded with MP3 codec (as they do sometimes), you can -codec:a

copy the audio stream to a “.mp3” file. Most of the time, however, you will

have to encode it to MP3. Files with extension “.mka” and “.m4a” are not

supported by many playback devices. The following command converts

the audio stream of the video file using the Lame encoder to create a two-

channel (stereo) MP3 file encoded at 128K bitrate.

ffmpeg -i music-video.mp4 \

 -c:a libmp3lame -b:a 128K -ac 2 \

 music-video.mp3

You can simultaneously output audio in different bitrates using

multiple -map options.

ffmpeg -i music-video.mp4 \

 -vn \

 -map 0:a -c:a libmp3lame -b:a 128K music-high.mp3 \

 -map 0:a -c:a libmp3lame -b:a 64K music-low.mp3

☞ A s one understands, this is strictly for limited doomsday
archival purposes…. Several films and music records have been lost
to studio fires. Anything can happen. Cite the 2020 pandemic.

Chapter 5 Format Conversion

57

�Extract Stills from a Video
(Video-to-Image Conversion)

Figure 5-4.  A video and the still-image frames extracted from it

Chapter 5 Format Conversion

58

To extract video frames as image files, you need to use the -f image2

option. The numbering of the output images is specified in the name of

the output file. The format mask of the output file is similar to that of the

printf function in the C programming language. In the mask used in

the next command, % is for character output, 0 is for padding with zeros

instead of spaces, 3 is for the total number of digits, and d is for integer

numbers.

Extract images at the rate of 1 frame per second from

the video

ffmpeg -y -i Stopmotion-hot-wheels.mp4 \

 -r 1 \

 -f image2 \

 frames%03d.jpg 2> /dev/null

☞ M ost videos are encoded with a frame rate of 24, 25, 30, or
even 60 frames per second. Be careful with your extraction rate and
length of the video, or you will quickly run out of space.

Use the -r option to restrict the number of images generated for each

second of the source video. You can omit the -r option to extract all frames

(and let it be determined by the frame rate of the source video) but

•	 Use small video clips as the source

•	 Use -t and -ss options (described in Chapter 6) to

restrict the extracted duration of the source video

Chapter 5 Format Conversion

https://doi.org/10.1007/978-1-4842-8701-9_6

59

�Image-Conversion Settings
Table 5-2 lists some FFmpeg conversion options that are useful when

working with image files. Although this book will describe how to use

them, more comprehensive information will be found in the official

FFmpeg documentation.

Table 5-2.  ffmpeg image-conversion options and examples

Option Purpose

-f image2 Force conversion to and from images

-f image2pipe Force image conversion for output piped over to another

command

-loop 1 Repeat the processing of the input image indefinitely

-pix_fmt yuv420p Use yuv420p pixel format when converting to image formats

�Create Video from Images
(Image-to-Video Conversion)
FFmpeg can also do the reverse by creating a video from several images

(when they are numbered serially). The duration of the video depends on

the number of images available and frame rate you have specified.

If the -r option in the video-to-image conversion was higher (in the

previous command), say between 12 and 30, a lot more images would have

been extracted, and this video would have been smoother.

ffmpeg -r 1 -i frames%03d.jpg \

 -s qvga -pix_fmt yuv420p \

 Stopmotion-hot-wheels-reconstituted.mp4 2> /dev/null

ffplay -autoexit \

 Stopmotion-hot-wheels-reconstituted.mp4 2> /dev/null

Chapter 5 Format Conversion

60

☞ A ll input images should be of the same format and
dimensions.

☞ T he -pix_fmt yuv420p option is necessary to ensure such
unusual video files play all right in most media player devices.

�Create a Slideshow from Several Images
In the previous section, the output video ran out quickly because there

were not many input images. If you want each input image to appear for

longer than a second, then you need to specify a -framerate option for

them as well. An input frame rate of 1/3 ensures that a frame plays for 3

seconds.

ffmpeg -y -framerate 1/3 -i image%02d.jpg \

 -filter:v \

 "scale=eval=frame:w=640:h=480:

 force_original_aspect_ratio=decrease,

 pad=640:480:(ow-iw)/2:(oh-ih)/2:yellow" \

 -pix_fmt yuv420p -r 24 \

 slide.mp4

☞  You will learn more about filters in Chapter 7.

The preceding command also takes care of images with irregular

dimensions and ensures that they are resized appropriately.

Chapter 5 Format Conversion

https://doi.org/10.1007/978-1-4842-8701-9_7

61

Figure 5-5.  This video was created from several
disproportionate images

When you have input images in no particular naming sequence, then

you can pipe them like this:

cat *.png | \

 ffmpeg -y -f image2pipe \

 -framerate 1/3 -i - \

 -filter:v \

Chapter 5 Format Conversion

62

 "scale=eval=frame:w=640:h=360:

 force_original_aspect_ratio=decrease,

 pad=640:360:(ow-iw)/2:(oh-ih)/2:black" \

 -c:v libx264 -r 24 -s nhd -pix_fmt yuv420p \

 slide2.mp4

�Create a GIF from a Video
The ancient GIF format supports only 256 colors. You need to use

palettegen and paletteuse filters to downsample the source video to this

limited number of colors.

ffmpeg -y -i bw.m4v \

 -filter_complex \

 "fps=7,scale=w=320:h=-1:flags=lanczos,split[v1][v2];

 [v1]palettegen=stats_mode=diff[p];

 [v2][p]paletteuse=dither=bayer:bayer_scale=4" \

 bw-4.gif

You need to experiment a lot with the filters to understand what will

work and what will not. A set of values that do well to optimize the file size

for one source video may do poorly for another video. GIF optimization is

extremely unpredictable. Learn more from this article:

https://engineering.giphy.com/how-to-make-

gifs-with-ffmpeg/

In an experiment with the production of a GIF file from a video, I

found that

•	 With a bayer_scale of 0 (with the dither=bayer

mode), the animation is smooth but suffers from the

appearance of a dotted texture. The file size is on the

higher side.

Chapter 5 Format Conversion

https://engineering.giphy.com/how-to-make-gifs-with-ffmpeg/
https://engineering.giphy.com/how-to-make-gifs-with-ffmpeg/

63

•	 When moving to the highest value of 5 (default is 2), the

frames are clearer but start to suffer from intermittent

banding. The file size is smaller.

The results may be quite different for another video file.

If you are stuck with an older version of FFmpeg that does not have

the palettegen and paletteuse filters, you can make FFmpeg output

the frames to ImageMagick (convert or magick). (The hyphens in the

following command refer to standard output and input.)

ffmpeg -y -i bw.m4v \

 -filter:v "fps=10,scale=w=320:h=-1:flags=lanczos" \

 -c:v ppm \

 -f image2pipe - | \

 convert -delay 10 - \

 -loop 0 \

 -layers optimize \

 bw.gif

APNG
A better alternative to GIF animations is APNG. This format has limited

support from image-viewing and image-editing applications but has

near-universal support from desktop and mobile web browsers. Like PNG

and unlike GIF, APNG supports millions of colours. This means that its

colours will not have to be downsampled and will be very close to those

in the source content. APNG animation files are typically bigger than

animated GIFs.

If you are converting GIF animations to APNGs, then ImageMagick is

the tool you should use, not ffmpeg.

magick animated.gif animated.apng

Chapter 5 Format Conversion

64

The image frames in a GIF will already be downsampled to 256

colours. To create a richer animated PNG, try to use the source frames in

PNG format.

magick -delay 200 -loop 0 \

 chapter-image-*.png \

 -units PixelsPerInch -density 72 -resize '>x300' \

 animation-unlikely-stories.apng

If you are converting a video to APNG, then you can use ffmpeg.

ffmpeg -i bw.m4v \

 -vf "scale=w=250:h=-2, hqdn3d, fps=6" \

 -dpi 72 -plays 0 \

 bw.apng

In this command, -dpi is an APNG encoder option and -plays is an

APNG muxer option. The high-quality denoise 3d filter reduces blemishes

introduced by the scaling filter. Learn more about these options from the

official documentation or by typing:

ffmpeg -help muxer=apng

ffmpeg -help encoder=png

ffmpeg -help filter=hqdn3d

�Create a Video Using an Image and an MP3
How do you play an MP3 in a media player that will only play MP4 files?

Find a thumbnail or album art for the MP3 and churn it out as a video.

The following command uses an image as a video stream encoded with

MJPEG codec.

Chapter 5 Format Conversion

65

ffmpeg -i Blobfish_face.jpg -i blobfish.mp3 \

 -c:v mjpeg -c:a copy \

 -map 0:v:0 -map 1:a:0 \

 -disposition:v:0 attached_pic \

 "Weird Fins - 17 - The Blobfish.mp4"

This command generates only one image frame in the MP4. The image

frame is not encoded as a regular video stream for the entire duration of

the audio.

Figure 5-6.  This video does not really have any video, just one frame
from an image

However, not all media players will accept this trickery. On my

computer, Totem media player does not show the image at all and plays it

like a regular audio file. VLC displays the image because it uses FFmpeg

internally. If your player shirks its duty, you will have to encode the image

for the full duration of the audio.

Chapter 5 Format Conversion

66

ffmpeg -y -i blobfish.mp3 \

 -loop 1 -framerate 12 -i Blobfish_face.jpg \

 -shortest -s qvga -c:a copy \

 -c:v libx264 -pix_fmt yuv420p \

 "Weird Fins - 17 - The Blobfish (no tricks).mp4"

The album art image loops forever so the

podcast audio creates the shortest output stream

☞ T his MP3 was part of 18 MP3 files of the “Weird Fins”
podcast published by the US NOAA. It got lost and buried when they
redesigned their site. Some years ago, I recovered these files, tagged
them and uploaded them to Archive.org.

�Convert Online Videos to Audio
YouTube-DL is an open source command-line program that can download

online videos for offline use. It supports several online video sites. Many

journalists use it to grab still images for their articles about Internet

videos. However, the entertainment industry has decided to challenge the

legal status of this utility. The Electronic Frontier Foundation (EFF) and

surprisingly GitHub (owned by Microsoft) have come up with a defense

initiative for its survival.

https://youtube-dl.org

Chapter 5 Format Conversion

https://youtube-dl.org/

67

Figure 5-7.  This is a description of  youtube-dl published by a
search engine

Assuming that your ~/bin directory is in the $PATH environment

variable, you can install youtube-dl locally using the following:

wget https://yt-dl.org/downloads/latest/youtube-dl \

 -O ~/bin/youtube-dl

chmod +x ~/bin/youtube-dl

youtube-dl --version

☞  YouTube-DL will run from anywhere. You do not have to install
the file to a privileged location like the site says.

☞ I f youtube-dl does not run, maybe Python 3 is not in the
PATH. Start it with /usr/bin/python3 youtube-dl

Chapter 5 Format Conversion

68

You can make youtube-dl use ffmpeg to convert the downloaded files.

Many audio podcasts are posted to online video sites. To only listen to

them in the Audacious media player, I use a command like this:

youtube-dl -f 140 -x \

 --audio-format mp3 \

 --exec 'audacious {} & ' \

 https://www.youtube.com/watch?v=yypDkqAErx0

youtube-dl will not only download and convert the audio (from

AAC) to MP3 (using ffmpeg), but it will also launch a command when the

conversion process is complete. That command can be for your media

player. youtube-dl will replace {} in the command string with the name of

the output (MP3) file.

�Convert Text to Audio
If your ffmpeg executable has been built-in with support for the libflite

text-to-speech synthesizer library, then you can convert text content to

spoken words.

ffmpeg -f lavfi \

 -i "flite=textfile=speech.txt:voice=slt" \

 speech.mp3

This speech filter supports several voices. On my computer, it lists awb,

kal, kal16, rms, and slt as available voices. Unfortunately, the female

voice sounds a bit dopey.

ffprobe -f lavfi "flite=list_voices=1"

I like the male-only espeak utility better. The defaults are good, and

you can change several settings.

Chapter 5 Format Conversion

69

�Conversion Settings for Specific
Storage Medium
If you use the -target option, certain conversion settings appropriate for

the specified storage option will be applied. The values for this option can

be vcd, svcd, dvd, dv, and dv50. They can be prefixed with ntsc, pal, or

film for more specific targets. For the actual settings used by these targets,

refer the official FFmpeg documentation.

ffmpeg -i movie.avi -target ntsc-dvd movie.mpg

☞ V CD (MPEG-1), DVD (MPEG-2), and DV (digital tape) are very
old targets and consume more space than MPEG-4.

☞ I f you want to extract still images from movies, optical media
is usually the best source.

�Summary
In this chapter, you learned how to convert multimedia content in the form

of audio, video, image, and text. You also learned to customize conversion

settings to suit different formats, coder/decoders, and mediums. In the

next chapter, you will learn how to edit videos using ffmpeg.

Chapter 5 Format Conversion

71

CHAPTER 6

Editing Videos
I used to save DVDs as ISO files (whole-DVD backups) so that I could play

them on my media player box. Each ISO took up several gigabytes (GBs)

on my hard disk that I eventually ran out of space. Now, I use FFmpeg and

store DVDs as MP4s of around just one GB.

While FFmpeg makes it very easy to convert multimedia files, as you

learned in the previous chapter, storing them in their entity is not always

feasible or required. Sometimes, you need just a few clips, not the whole

shebang. You may want to combine parts of one video with parts of other

videos. You can also downsize the videos to conserve space. In ffmpeg

terms, you want to cut, concatenate, and resize videos. In this chapter, you

will learn to do just that.

�Resize a Video
You can resize a video using the -s option. The dimension of a video

is usually specified as WidthxHeight. That is an “x” as in “x-mas” in the

middle. When editing or converting videos, you will have to specify the

video dimension using this syntax. The next command resizes a VGA-size

(640x480) video to a VCD-size (352x288) video.

ffmpeg -i dialup.mp4 \

 -s 352x288 \

 dialup.mpg

© V. Subhash 2023
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_6

https://doi.org/10.1007/978-1-4842-8701-9_6#DOI

72

FFmpeg supports certain easy-to-remember literals that you can use in

place of the actual numbers for the -s option. They are listed in Table 6-1.

Table 6-1.  FFmpeg option and values for setting the dimensions

of a video

Option For

-s Video dimensions (literal or actual)

Literal Dimensions Literal Dimensions Literal Dimensions

ntsc 720x480 uxga 1600x1200 hd1080 1920x1080

pal 720x576 qxga 2048x1536 2k 2048x1080

qntsc 352x240 sxga 1280x1024 2kflat 1998x1080

qpal 352x288 qsxga 2560x2048 2kscope 2048x858

sntsc 640x480 hsxga 5120x4096 4k 4096x2160

spal 768x576 wvga 852x480 4kflat 3996x2160

film 352x240 wxga 1366x768 4kscope 4096x1716

ntsc-film 352x240 wsxga 1600x1024 nhd 640x360

sqcif 128x96 wuxga 1920x1200 hqvga 240x160

qcif 176x144 woxga 2560x1600 wqvga 400x240

cif 352x288 wqsxga 3200x2048 fwqvga 432x240

4cif 704x576 wquxga 3840x2400 hvga 480x320

16cif 1408x1152 whsxga 6400x4096 qhd 960x540

qqvga 160x120 whuxga 7680x4800 2kdci 2048x1080

qvga 320x240 cga 320x200 4kdci 4096x2160

vga 640x480 ega 640x350 uhd2160 3840x2160

svga 800x600 hd480 852x480 uhd4320 7680x4320

xga 1024x768 hd720 1280x720

Chapter 6 Editing Videos

73

A video’s horizontal dimension divided by the vertical dimension is

sometimes referred to as the aspect ratio. This is further influenced by the

dimensions of individual pixels that make up the video. (Remember that a

video frame is a matrix of dots or pixels in lines and columns.) This pixel-

level aspect ratio is known as the sample aspect ratio (SAR).

When a video is resized, ffmpeg (or whichever video authoring

software that is used) would have automatically adjusted the pixel

dimensions (or the SAR) from square to rectangular so that the video will

be played with the proper aspect ratio.

If you want a video to be played at a particular aspect ratio, you need

to set the display aspect ratio (DAR). This value is calculated from the

width-and-height ratio multiplied by the SAR. If for some reason, the SAR

value is not present in the video, it is assumed to be 1. If this makes the

video distorted, set the desired DAR using the setdar filter and let ffmpeg

figure out the internal SAR.

ffmpeg -i "distorted.mpg" \

 -vf setdar=dar=4/3 \

 restored.mpg

☞  You will learn more about filters in Chapter 7.

Chapter 6 Editing Videos

https://doi.org/10.1007/978-1-4842-8701-9_7

74

Figure 6-1.  The distortion in the background video was fixed using a
filter that changed the DAR (display aspect ratio)

These ratios may seem similar but there are subtle differences, as

presented in Table 6-2.

Chapter 6 Editing Videos

75

Table 6-2.  Terms related to video dimensions

Term Description

Aspect ratio = video width ÷ video height

Standard definition ratio is 4:3. For widescreen, it is 16:9

Sample aspect ratio (SAR)
a.k.a

pixel aspect ratio

= pixel width ÷ pixel height

For square pixels, it is 1. For rectangular pixels, it will
be a fraction

Display aspect ratio (DAR) = (video width ÷ video height) × sample aspect ratio

or

= video aspect ratio × sample aspect ratio

�Editing Options
Some often used video- and audio-editing options are listed in Table 6-3.

Table 6-3.  More ffmpeg options for editing

Option For

-t Duration (in hh:mm:ss[.xxx] format or in seconds) of the output file

-ss Timestamp of playback location (in hh:mm:ss[.xxx] format or in

seconds) from which processing needs to be performed

-c:v, -c:a, -c:s Use specified encoder (not codec) for specific type of stream

If you use the value copy as in -c copy, ffmpeg will not use an

encoder and just copy the stream(s)

Chapter 6 Editing Videos

76

�Cut a Portion of a Video
If the video segment that you want to remove is the beginning, then use

the -ss option to specify the timestamp from which the content needs to

be copied.

ffmpeg -ss 00:01:00 -i sponsored-video.mp4 \

 the-video.mp4

☞  Use the -ss option before the -i option so that ffmpeg can
quickly jump to the location of the specified timestamp. If you place
it after the input file and before the output file, there will be a delay
as ffmpeg decodes all the data from the beginning to the timestamp
and then discards it (as it is not wanted)!

The timestamp values can be specified in the format hh:mm:ss.ms.

Parts that are zero in the beginning can be omitted, as shown in Table 6-4.

Table 6-4.  Examples of time or duration values

Usage Implication

20 20 seconds

1:20 One minute and 20 seconds

02:01:20 Two hours, 1 minute, and 20 seconds

02:01:20.220 Two hours, 1 minute, 20 seconds, and 220 milliseconds

20.020 20 seconds and 20 milliseconds

☞  Before the milliseconds value, there needs to be a dot, not
a colon.

Chapter 6 Editing Videos

77

If the video segment that you want to remove is the ending, then use -t

option to specify the duration of the content that needs to be copied from

the beginning.

ffmpeg -i long-tail.mp4 \

 -t 00:01:00 \

 no-monkey.mp4

If you want to cut from the middle, then you need to use both options.

ffmpeg -ss 00:01:00 -i side-burns.mp4 \

 -t 00:1:10 \

 clean-shaved.mp4

In this case, ffmpeg starts cutting -t duration of content from the

timestamp specified by the -ss option, not from the beginning.

All of these commands will re-encode the video. Because the (raw)

source video (from which the input video was created) is not being used,

the output video will have lesser quality and have freshly introduced

blemishes and artifacts.

You may encounter another problem here. When you do not specify

conversion settings, then FFmpeg will use its own default encoder settings.

If your uncut video had better quality than encoder defaults, then you

may end up with lesser quality. If the input file had lower quality, then the

encoder defaults may result in increased file size.

To avoid such problems, run ffprobe on the input file and use similar

conversion settings with ffmpeg.

Chapter 6 Editing Videos

78

Figure 6-2.  The  ffprobe  output shows settings that you can use for
the next  ffmpeg task

�Cut Without Re-encoding
Apart from losing quality, re-encoding takes time. Cutting without re-

encoding does not have these disadvantages. Use the option -codec copy

to ensure there is no re-encoding and the original quality is retained.

ffmpeg -ss 00:01:00 -i dog-eared.mp4 \

 -t 00:1:10 \

 -codec copy \

 clean-cut.mp4

There are disadvantages with this option too. The entirety of the audio and

video information may not be present at the timestamps you have specified

for FFmpeg to make a clean cut. A few seconds of the video may have to be

sacrificed or go out of sync. Out-of-sync audio by one or two seconds is not

really a problem in videos where the speaker remains in the background.

Chapter 6 Editing Videos

79

Use -codec copy only when the container of the output file supports

the existing codec of the input stream you are trying to copy. You cannot

copy streams from an OGV file to a MP4 file, but you can do that with an

MKV output file. First, check whether input codecs are among the default

codecs listed by the muxer of the output container.

ffmpeg -help muxer=matroska | head -5 ; \

ffmpeg -help muxer=ogv | head -5; \

ffmpeg -help muxer=avi | head -5 ; \

ffmpeg -help muxer=mp4 | head -5

These commands list the default extensions and codecs used by some

popular containers.

Muxer matroska [Matroska]:

 Common extensions: mkv.

 Mime type: video/x-matroska.

 Default video codec: h264.

 Default audio codec: vorbis.

Muxer ogv [Ogg Video]:

 Common extensions: ogv.

 Mime type: video/ogg.

 Default video codec: theora.

 Default audio codec: vorbis.

Muxer avi [AVI (Audio Video Interleaved)]:

 Common extensions: avi.

 Mime type: video/x-msvideo.

 Default video codec: mpeg4.

 Default audio codec: mp3.

Muxer mp4 [MP4 (MPEG-4 Part 14)]:

 Common extensions: mp4.

 Mime type: video/mp4.

 Default video codec: h264.

 Default audio codec: aac.

Chapter 6 Editing Videos

80

�Append Videos (Concatenate)
If you need to put together several videos to create one big video

containing all of them, then you can use the concat demuxer. To use it, you

need to first create a text file containing file names or full pathnames of the

input videos. The file details should be formatted like this:

•	 One line should be used for each input file.

•	 The relative or absolute pathname of a file should

be wrapped in quotation marks and preceded by the

word “file.”

file '/tmp/video.mp4'

file '/home/yourname/Desktop/video1.mp4'

file '/media/USB1/DCIM/DS00002.mp4'

Ideally, the file locations should be relative to the current directory and

have simple file names. Because these files do not satisfy that condition,

I have used the option -safe 0 in this ffmpeg command. The next

command will re-encode the preceding input files using the specified MP4

settings.

ffmpeg -f concat \

 -safe 0 \

 -i list.txt \

 -c:v libx264 -r 24 -b:v 266k -s qvga \

 -c:a libmp3lame -r:a 44000 -b:a 64k -ac 2 \

 mixology.mp4

☞ T he default for the -safe option is 1. In production
environments, it prevents rogue users from using files that would
otherwise crash FFmpeg-based software systems.

Chapter 6 Editing Videos

81

☞  Use the -f concat option setting before the -i option.

I advise against the use -f concat demuxer. The output files have a

tendency to confuse and crash media players. If input videos are not of

the same type, the concatenation will fail or the output file will not be

playable. The same thing can happen if some of the input files are -codec

copy veterans. You are lucky if conversion starts at all. If you are forced to

use the concat demuxer, then read about it in the official documentation.

The text file supports other directives (not just file) to make it more

informative to the demuxer.

For more resilient concatenations, use the concat filter as described in

Chapter 7.

ffmpeg -i engine.mp4 -i coach.mp4 \

 -filter_complex \

 "[0:v:0][0:a:0][1:v:0][1:a:0]concat=n=2:v=1:a=1[v][a]" \

 -map '[v]' -map '[a]' \

 -c:v libx264 -r 24 -b:v 266k -s qvga \

 -c:a libmp3lame -b:a 64k -ac 2 \

 -f mp4 \

 train.mp4

Whether you use -codec copy or the concat filter, all the input files

should be of the same type (same dimensions, codecs, frame rates, etc.).

�Don’t Knock -codec copy
After spending considerable time with FFmpeg, you will realize that a lot

of multimedia software generate audio/video files that seem to play fine

but have a lot of internal encoding errors. Strangely enough, FFmpeg’s

notorious -codec copy option fixes a good many of these container errors.

ffmpeg -i smugly.mp4 -codec copy smooth.mp4

Chapter 6 Editing Videos

https://doi.org/10.1007/978-1-4842-8701-9_7

82

�Summary
FFmpeg provides some very neat options to edit multimedia files from

the command line. With some files, you may be able to -codec copy the

streams. With others, you will have to re-encode them. Both methods have

advantages and disadvantages.

In the next chapter, you will finally learn about the ffmpeg filters that I

have been all along teasing you with.

Chapter 6 Editing Videos

83

CHAPTER 7

Using FFmpeg Filters
In the previous chapters, you would have encountered several filters. A

great deal of FFmpeg functionality is hidden in them. Most users avoid

filters or use them sparingly because the online examples of filters tend

to be cryptic. There is a method to the madness. You can crack it. In this

chapter, you will learn what filters are and how to use them.

�Filter Construction
In an ffmpeg command, a filter is used to perform advanced processing

on the multimedia and metadata data decoded from the input file(s).

A simple filter consumes an input stream, processes it, and generates an

output stream. The input and output will be of the same type. An audio
filter (used with the option -filter:a or -af) consumes an audio stream

and outputs an audio stream. A video filter (specified by a filter:v or -vf

option) consumes a video stream and outputs a video stream.

You can daisy-chain multiple simple filters to create a filter chain. In

such a filter chain, the output of one filter is consumed by a subsequent filter.

Thus, as a whole, the filter chain will also have one input and one output.

When such a linear filter chain is not possible, you need to use a

complex filtergraph (with the option -filter_complex). A complex

filtergraph can contain several filters or filter chains. The constituent filters

can have zero to several inputs. They can consume streams of different

types and output streams of different types. The number of inputs need not

match the number of outputs. It is not necessary for a filter to consume the

output of the previous filter.

© V. Subhash 2023
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_7

https://doi.org/10.1007/978-1-4842-8701-9_7#DOI

84

Some filters known as source filters do not have inputs. There are also

sink filters that do not generate any outputs.

In an ffmpeg command, you specify a filter in this fashion:

[input label1][input label2]...[input_labelN]filter=

key1=value1:key2=value2...keyN=valueN[output label1]

[output label2]...[output labelN];

You need to follow these rules when using filters:

•	 When a filter is expected to create an output stream,

label it with a name in square brackets ([]).

•	 Use these labeled output streams as inputs for

other filters or use them in -map options. ffmpeg

automatically names the unlabeled input of the first

filter as [in] and the unlabeled output of the last filter

as [out].

•	 Between two filters that are part of a linear filter chain

(when you daisy-chain them), use a comma (,) as a

delimiter. This implies that the output of the first filter

is to be consumed as input by the second filter.

•	 Between two filters that are part of a nonlinear complex

filtergraph, use a semicolon (;) as a delimiter. Specify

the inputs and outputs using stream identifiers or

labels for each filter. If you do not specify input streams,

ffmpeg will select streams using an internal logic.

(Read the official FFmpeg documentation about it.) If

the selected input stream cannot be used by the filter,

ffmpeg will encounter an error. Similarly, when you

do not label the output streams, ffmpeg will attempt

to dump them in the next output file. If the container

of the next output file does not support those output

streams, ffmpeg will encounter an error.

Chapter 7 Using FFmpeg Filters

85

•	 Specify filter-specific options as key-value pairs. You

need to use a colon (:) as a delimiter between them.

You can omit the option names (keys) and only

use values if you specify them in the same order as

specified in the official FFmpeg documentation or help

output. This cryptic style is error-prone, difficult to

understand, and therefore not recommended.

☞ T here are lots of filters and you need to pore over pages of
documentation to find the one that will work for you.

�Filter Errors
Sometimes, you will encounter a “No such filter” error. This is probably

because (out of habit) you placed a semicolon after the last filter. Some

filters have an exact number of inputs or outputs. If you fail to identify one

of them, ffmpeg will throw an error. Other common filter errors are caused

when a labeled input or output is not consumed. If you use an output label

more than once, you will get an ‘Invalid stream specifier’ error. An output

stream can only be labelled once and used once. If you want to use a filter

output stream as input for more than one filter, use the split or asplit

filters to duplicate the stream.

�Filter-Based Timeline Editing
Many filters support a generic enable option. It can be used to specify the

start and end timestamps when the filter should be applied. For example,

the option enable='between(t, 6, 12)' would ensure that the filter is

applied on the video between 6th and 12th seconds of the audio or video.

Chapter 7 Using FFmpeg Filters

86

☞ I n the output for ffmpeg -filters command, the filters
with the flag “T” support timeline editing.

�Expressions in FFmpeg Filter Definitions
In the values of some filter options, you can specify algebraic expressions

that combine explicit numbers, functions, and some constants. (The

last two are listed in Table 7-1.) The section Expression Evaluation in

the documentation describes several functions that can be used in the

expressions. FFmpeg defines three constants that can be used in any filter.

Chapter 7 Using FFmpeg Filters

87

Table 7-1.  Functions and constants used in ffmpeg filter expressions

Functions

abs(x) floor(expr) log(x) sin(x)

acos(x) gauss(x) lt(x, y) sinh(x)

asin(x) gcd(x, y) lte(x, y) sqrt(expr)

atan(x) gt(x, y) max(x, y) squish(x)

atan2(x, y) gte(x, y) min(x, y) st(var, expr)

between(x, min, max) hypot(x, y) mod(x, y) tan(x)

bitand(x, y) if(x, y) not(expr) tanh(x)

bitor(x, y) if(x, y, z) pow(x, y) taylor(expr, x)

ceil(expr) ifnot(x, y) print(t) taylor(expr, x, id)

clip(x, min, max) ifnot(x, y, z) print(t, l) time(0)

cos(x) isinf(x) random(x) trunc(expr)

cosh(x) isnan(x) root(expr, max) while(cond, expr)

eq(x, y) ld(var) round(expr)

exp(x) lerp(x, y, z) sgn(x)

Constants

PI

(22/7)

E

(Euler’s number or

exp(1) ~ 2.718)

PHI

(golden ratio or

(1+sqrt(5))/2 ~ 1.618)

QP2LAMBDA

118

Several filters define their own constants. These are actually real-

time variables whose values can change depending on the input files, the

processing options, or even time. You need to look at the documentation

for each filter to see what these filter constants represent.

Chapter 7 Using FFmpeg Filters

88

☞  You should try to become proficient in the use of filter
expressions. They are force multipliers.

☞  When you specify a filter within double quotes (" "), the
commas separating the parameters of a function will have to
be escaped as \, to prevent ffmpeg from interpreting them as
delimiters used to separate two filters.

�Inset Video (Picture-in-Picture Overlay)
Sometimes, people in news media need to use a sign-language inset video.

The following ffmpeg command scales down a video containing the sign-

language track and positions it over the right corner of a news report.

ffmpeg -y -i Delphine.mp4 -i accessibility.mp4 \

 -filter_complex \

 "[1:v]scale=w=150:h=150[inset];

 [0:v][inset]overlay=x=W-w-20:y=20[v]" \

 -map '[v]' -map 0:a:0 \

 Delphine-with-accessibility.mp4

This command may also be written without the names and only the

values of the filter options.

ffmpeg -y -i Delphine.mp4 -i accessibility.mp4 \

 -filter_complex \

 "[1:v]scale=150:150[inset];

 [0:v][inset]overlay=W-w-20:20[v]" \

 -map '[v]' -map 0:a:0 \

 Delphine-with-accessibility.mp4

Chapter 7 Using FFmpeg Filters

89

☞ I f you encounter such commands, they will seem very cryptic.
You will have to look up the filter in the official documentation or the
help output (ffmpeg -help filter=scale) and ascertain the
order of the used filter options.

The scale filter specifies actual width and height values (150:150)

to which the inset video needs to be resized. The overlay filter specifies

x- and y-coordinates of the top-left corner of the inset video on the news

report video. The x-coordinate uses a filter expression (W-w-20) with filter

constants W (width of the background video) and w (width of the inset

video) to correctly inset the video 20 pixels away from the right edge of the

background video. The y-coordinate is specified with the actual value, that

is, 20 pixels from the top edge.

Figure 7-1.  The  overlay  filter has been used to place the sign-
language video track in the top-right corner of a news report video

Chapter 7 Using FFmpeg Filters

90

The input for the scale filter is the inset video ([1:v] or the video stream

of the second input file). Its output is labeled [inset]. The inputs for the

overlay filter are the news report ([0:v] or the video stream of the first file)

and the output of the scale filter labeled previously as [inset]. The overlay

filter has one output and it is labeled [v]. This overlaid video and the original

audio of the news report (0:a:0) are then mapped into the output file.

To construct a filter expression with useful filter constants, you need to

refer to the documentation of the filter. If these expressions try to hurt your

brain (they will initially), you can specify explicit values. The preceding

command can be rewritten as follows:

ffmpeg -y -i Delphine.mp4 -i accessibility.mp4 \

 -filter_complex \

 "[1:v]scale=150:150[inset];

 [0:v][inset]overlay=370:20[v]" \

 -map '[v]' -map 0:a:0 \

 Delphine-with-accessibility.mp4

�Split Video (Side-by-Side Overlay)
When you place two videos side-by-side, their heights should be the same.

If you place them one above the other, their widths should be the same.

Else, there will be some empty space in the final video.

The sign-language video in the previous section is a 332×332-pixel

video. It is smaller than the news report video. If we want them placed

side-by-side, the news report video’s height needs to be reduced to the

height of the sign-language video.

This scale filter in this ffmpeg command does that. To maintain the

same aspect ratio (width ÷ height) of the scaled video, the new width is

specified using the filter expression 332*iw/ih. (The value -2 would have

Chapter 7 Using FFmpeg Filters

91

worked as well. As to how it would, Refer The Fine Manual. ☺) This

multiplies the aspect ratio with the new height. (iw and ih represent filter

constants for the width and height of the input video.)

ffmpeg -y -i Delphine.mp4 -i accessibility.mp4 \

 -filter_complex "[0:v]scale=332*iw/ih:332[sv];

 [sv]pad=(iw+332):332:0:0[frame];

 [frame][1:v]overlay=W-w:0[v]" \

 -map '[v]' -map 0:a:0 \

 Delphine-et-accessibility.mp4

☞  Because the second video is a sign-language video, I
discarded its audio. If it were needed, I would have mixed the
two audio streams or assigned them to the left and right speaker
channels, as described in Chapter 8.

Figure 7-2.  The scale filter was used to reduce the height of the first
video. The  pad  filter has been used to expand the frame of the scaled
video. The overlay filter has been used to place the second video in
the empty area of the expanded frame

Chapter 7 Using FFmpeg Filters

https://doi.org/10.1007/978-1-4842-8701-9_8

92

After the scale filter, the frame size of the scaled video is expanded

sideways so that the second video can be placed in the new empty area.

The pad filter uses the expression iw+332 to arrive at the new expanded

size of the frame. It then places the scaled video at the top-left corner (0:0)

of the new frame. That is, the scaled video will be on the left side of the

expanded frame.

In the empty area on the right side of the expanded frame ([frame]),

we place the second input file ([1:v]) using the overlay filter.

Without using filter expression, the last ffmpeg command can be

rewritten with actual values as follows:

ffmpeg -y -i Delphine.mp4 -i accessibility.mp4 \

 -filter_complex "[0:v]scale=498:332[sv];

 [sv]pad=830:332:0:0[frame];

 [frame][1:v]overlay=498:0[v]" \

 -map '[v]' -map 0:a:0 \

 Delphine-et-accessibility.mp4

☞  When you want to use the same command on another set of
files with different dimensions, you will have to recalculate and
re-specify the values. Filter expressions can eliminate a lot of this
hassle so use them when you can.

If you do not want the news video to be downscaled, then you could

put some white space… (in this case) yellow space around the second

video. In the next command, filter expressions and actual values have

been used to correctly position the second video in the middle of the

expanded frame.

Chapter 7 Using FFmpeg Filters

93

ffmpeg -y -i Delphine.mp4 -i accessibility.mp4 \

 -filter_complex

 "[0:v:0]pad=w=(iw+360):h=ih:x=0:y=0:color=yellow[frame];

 [frame][1:v:0]overlay=x=W-360+(360-w)/2:y=(H-h)/2[v]" \

 -map '[v]' -map 0:a:0 \

 -t 0:0:12 -pix_fmt yuv420p \

 Delphine-et-accessibility-et-margin.mp4

☞ I t is much more easier and faster to use the filters hstack
and vstack. However, these filters require the input videos to have
the same pixel format (data encoding scheme of pixel color) and the
same dimensions (height for hstack and width for vstack.)

Figure 7-3.  The  pad  filter was used to expand the width of original
frame by 360 pixels while maintaining the same height. The expanded
area was given a yellow background that was 360×360 pixels. Using
filter expressions with the overlay filter, the 332×332-pixel second
video was placed right in the middle of the yellow background

Chapter 7 Using FFmpeg Filters

94

�Append Videos Using a Filter
In Chapter 6, you learned to concatenate several videos using the concat

demuxer. The concat filter provides more control if you have only a few

input files.

ffmpeg -i engine.mp4 -i coach.mp4 \

 -filter_complex \

 '[0:v:0][0:a:0][1:v:0][1:a:0]concat=n=2:v=1:a=1[vo][ao]' \

 -map '[vo]' -map '[ao]' \

 -c:v libx264 -r 24 -b:v 266k -s qvga \

 -f mp4 train.mp4

☞ T his will re-encode the input files, as will any other filter.

Specify the video and audio streams of the input clips or segments

in the order that they need to be appended by the filter. [0:v:0][0:a:0]

refers to the video and audio streams of the first input clip. [1:v:0]

[1:a:0] refers to the video and audio streams of the second clip. The

filter option n refers to the number of input clips. v refers to the number of

output video streams, and a refers to the number of output audio streams.

The concatenated video and audio streams are the filter outputs labeled as

[vo] and [ao]. These labeled outputs are then mapped to the output file.

�Delete a Portion of a Video in the Middle
Sometimes, you need to delete part of a video. For that, you can use the trim,

atrim, and concat filters. In this command, the second scene (between

seconds 16 and 36) is deleted by eliminating it using trim and atrim filters.

Chapter 7 Using FFmpeg Filters

95

ffmpeg -y -i barbara.mp4 \

 -filter_complex \

 "[0:v:0]trim=start=0:end=16, setpts=PTS-STARTPTS[lv];

 [0:v:0]trim=start=36:end=44, setpts=PTS-STARTPTS[rv];

 [0:a:0]atrim=start=0:end=16, asetpts=PTS-STARTPTS[la];

 [0:a:0]atrim=start=36:end=44, asetpts=PTS-STARTPTS[ra];

 [lv][rv]concat=n=2:v=1:a=0[v];

 [la][ra]concat=n=2:v=0:a=1[a]" \

 -map '[v]' -map '[a]' barb-cut.mp4

☞ I have used seconds instead of timestamps because the
“hh:mm:ss” format requires a lot of nonintuitive escaping.

The concat filter is prone to timestamp errors. The setpts and

asetpts filters may be able to fix them. A filter setting with asetpts=N/

SAMPLE_RATE/TB will generate new timestamps by counting actual samples

in the processed audio segments, but it can be used only with constant

frame rate videos. A better value is to use PTS-STARTPTS (similar to the

video filter), as it will also remove empty regions in the audio.

�Rotate a Video
Some videos that people take from a mobile phone are rotated by 90

or 180 degrees from normal. You can manually fix them by specifying a

transpose filter.

Rotate to right

ffmpeg -i slt.mp4 \

 -filter:v "transpose=1" \

 slt-rotated-1.mp4

Chapter 7 Using FFmpeg Filters

96

Rotate to left

ffmpeg -i slt.mp4 \

 -filter:v "transpose=2" \

 slt-rotated-2.mp4

Rotate to left and flip vertically

ffmpeg -i slt.mp4 \

 -filter:v "transpose=0" \

 slt-rotated-0.mp4

Rotate to right and flip vertically

ffmpeg -i slt.mp4 \

 -filter:v "transpose=3" \

 slt-rotated-3.mp4

For the transpose filter option dir, a value of 1 or 2 turns the video 90

degrees right or left. Values 0 and 3 turn the video left or right and also

vertically flip them. Mobile phone users should stick with the first two values.

Figure 7-4.  These still images show  dir  values that can be used with
the  transpose  filter

Chapter 7 Using FFmpeg Filters

97

The transpose filter option passthrough can have values none,

portrait, and landscape. The value none is default. One of the last

two values will be particularly useful in automated scripts to prevent

unnecessary rotation, that is, when the video is already in the orientation

specified by the passthrough filter option. It will also prevent ffmpeg from

autorotating a video and then applying your transpose setting (causing

further rotation).

You can rotate videos by more discrete levels than multiples of 90

degrees. The rotate filter accepts values in radians rather than degrees.

The following ffmpeg command rotates a video by 16 degrees.

ffmpeg -y -i malampuzha-lake.mp4 \

 -filter_complex \

 "rotate=angle=16*PI/180:fillcolor=brown" \

 malampuzha-lake-tilt-16-chopped.mp4

Rotates video but corners get cut off

☞ I f the video becomes distorted, correct it using setdar filter.

☞ T o convert degrees to radians, it has to be multiplied with π/180.

To prevent the corners from getting chopped off, the frame dimensions

need to be increased. You can use the rotw and roth functions for

determining these new dimensions. The two functions use these formulas

internally.

rotw(θ) = Height×Sine(θ) + Width×Cosine(θ)

roth(θ) = Width×Sine(θ) + Height×Cosine(θ)

Chapter 7 Using FFmpeg Filters

98

Rotate video and enlarge the frame to prevent

corners from getting cut off

ffmpeg -y -i malampuzha-lake.mp4 \

 -filter_complex \

 "rotate=angle=16*PI/180:

 ow=trunc(rotw(16*PI/180)/2)*2:

 oh=trunc(roth(16*PI/180)/2)*2:

 fillcolor=brown" \

 malampuzha-lake-tilt-16.mp4

As FFmpeg requires that the new width and height be even numbers,

that is, divisible by 2, the calculated dimensions are first divided by 2,

truncated off, and then multiplied by 2.

�Flip a Video
Some videos are flipped for some reason. Use vflip or hflip to set

them right.

Figure 7-5.  The first video has the original dimensions, but the
rotated content has chopped-off corners. The second video has bigger
dimensions to accommodate the extruding corners

Chapter 7 Using FFmpeg Filters

99

Figure 7-6.  These still images show which filter to us for what effect

ffmpeg -i exhibit.mp4 \

 -filter:v "vflip" \

 exhibit-upside-down.mp4

ffmpeg -i exhibit.mp4 \

 -filter:v "hflip" \

 exhibit-half-crazy.mp4

ffmpeg -i exhibit.mp4 \

 -filter:v "hflip,vflip" \

 exhibit-totally-flipped.mp4

Chapter 7 Using FFmpeg Filters

100

�Brighten a Video (Adjust Contrast)
It is inevitable that some of your videos are dark, even when they

were captured in broad daylight. You can use the eq filter to adjust the

brightness. However, adjusting the brightness requires a subsequent

adjustment of the contrast. The ranges for the options of this filter are

listed in Table 7-2.

Figure 7-7.  After cumulative applications of brightness, saturation,
and contrast filters, more detail of the green barbet is visible. Forget
the background

Chapter 7 Using FFmpeg Filters

101

First, I decided to do a side-by-side comparison.

ffmpeg -y -i barbet.mp4 \

 -filter_complex \

 "[0:v]pad=(iw*2):ih:0:0[frame];

 [0:v]eq=brightness=0.2[bright];

 [bright]eq=saturation=3[color];

 [color]eq=contrast=2[dark];

 [frame][dark]overlay=W/2:0[out]" \

 -map '[out]' -map 0:a \

 barbet-test.mp4

Table 7-2.  Options for filter eq

Filter option Lowest Highest Default

Brightness -1 1.0 0

Contrast -1000 1000 1

Saturation 0 3 1

Gamma 0.1 10 1

After some trial-and-error attempts, I applied the filters to the

original video.

ffmpeg -y -i barbet.mp4 \

 -filter_complex \

 "[0:v]eq=brightness=0.2[bright];

 [bright]eq=saturation=3[color];

 [color]eq=contrast=2[dark]" \

 -map '[dark]' -map 0:a \

 barbet-bright.mp4

Chapter 7 Using FFmpeg Filters

102

�Generate a Test Video
In the good old days, when there was just one TV channel in India, the

transmission began in the evening with a 30-minute video test – something

like this!

Figure 7-8.  The  testsrc  filter is a source filter that generates a test
video stream

The test video has a color pattern, a scrolling gradient, and a changing

timestamp. The audio is a low white noise. I do not know who needs this

video, but if it floats your boat, then here is the command to create it.

ffmpeg -f lavfi \

 -i "testsrc=size=320x260[out0];

 anoisesrc=amplitude=0.06:color=white[out1]" \

 -t 0:0:30 -pix_fmt yuv420p \

 test.mp4

Chapter 7 Using FFmpeg Filters

103

☞ T his command uses a set of filters as a pseudo file source
(-f lavfi). It requires that the filter outputs be labeled out0,
out1, out2,….

☞  Filters whose name end in “src” are source filters. They do
not require an input stream.

�Remove Logo
In 2019, a newspaper in New York published an opinion alleging bias

against women in government experiments. NASA’s Apollo Space Program

was then celebrating its 50th anniversary.

ffmpeg -i apollo-program.mp4 \

 -filter:v "delogo=x=520:y=10:w=100:h=50" \

 apollo-program-you-are-dead.mp4

Chapter 7 Using FFmpeg Filters

104

Figure 7-9.  With the  delogo  filter, it is very easy to remove an
unwanted logo from a video

☞ A fter applying the filter, the logo has disappeared from the top-
right corner.

☞ T his video is only a simulation.

Chapter 7 Using FFmpeg Filters

105

�Fade into Another Video (And in Audio Too)
In order to prove aliens do not exist and have fun while doing that, I

took videos from two authoritative US government agencies – NASA

and IRS. The videos are in public domain, as the agencies are taxpayer-

funded. The NASA video clearly states that there are no aliens, but I am

not interested in their explanation. The IRS video is a tax advisory for

noncitizens, also known as aliens. That is the fun part. In the output video,

the first video plays fine until six seconds after which it fades out in three

seconds. As the first video fades away, the second video starts fading in for

three seconds. After that, it plays for six seconds.

Figure 7-10.  These screenshots show the crossfade sequence involving
the two input videos

Chapter 7 Using FFmpeg Filters

106

Mixing these two videos can be done with one command, but for

clarity, I have split it into four commands. (You should combine the filters

to avoid multiple re-encoding.) The crossfade effect is performed by the

fade filter for video and the afade filter for audio. The trim and atrim

filters are used to divide the video and audio tracks into two parts – one

where the stream plays normally and another where the fade filters take

effect. I used overlay and amix filters to mix the second parts. After

that, the concat filter was used to put three segments together – normal

playback from the first file, crossfade effect from both files, and then

normal playback from the second file.

Make the second video same size as the first

ffmpeg -y -i irs-tax-advice-for-alien-mates.mp4 \

 -filter:v "�pad=w=640:h=ih:x=(ow-iw)/2:y=0:color=yellow,

fps=24" \

 -t 0:0:20 -pix_fmt yuv420p \

 irs-tax-advice-for-alien-mates2.mp4

Create the fade-in-fade-out video

ffmpeg -y -i Do-Aliens-Exist-We-Asked-a-NASA-Scientist.mp4 \

 -i irs-tax-advice-for-alien-mates2.mp4 \

 -filter_complex \

 �"[0:v:0]trim=start=0:end=6, setpts=PTS-STARTPTS, fps=24[v1];

 [1:v:0]trim=start=3:end=9, setpts=PTS-STARTPTS, fps=24[v2];

 [0:v:0]trim=start=6:end=9, setpts=PTS-STARTPTS, fps=24[v3];

 [1:v:0]trim=start=0:end=3, setpts=PTS-STARTPTS, fps=24[v4];

 [v�3]fade=t=out:d=3:alpha=1, setpts=PTS-STARTPTS,

fps=24[nasafade];

 [v�4]fade=t=in:d=3:alpha=1, setpts=PTS-STARTPTS,

fps=24[irsfade];

 [n�asafade][irsfade]overlay, setpts=PTS-STARTPTS,

fps=24[fading];

Chapter 7 Using FFmpeg Filters

107

 [v1][fading][v2]concat=n=3:v=1:a=0[v]" \

 -map '[v]' -pix_fmt yuv420p \

 aliens-r-us-v.mp4

Create the fade-in-fade-out audio

ffmpeg -y -i Do-Aliens-Exist-We-Asked-a-NASA-Scientist.mp4 \

 -i irs-tax-advice-for-alien-mates2.mp4 \

 -vn \

 -filter_complex \

 "[0:a:0]atrim=start=0:end=9, asetpts=PTS-STARTPTS[a1];

 �[1:a:0]atrim=start=0:end=9, asetpts=PTS-STARTPTS[a2];

 [a1][a2]acrossfade=duration=3" \

 aliens-r-us-a.m4a

Mix the video and audio

ffmpeg -i aliens-r-us-v.mp4 -i aliens-r-us-a.m4a \

 -codec copy \

 aliens-r-us.mp4

�Crop a Video
For some screenshots in the beginning of this chapter, I needed a public-

domain video of a sign-language translator. I found one but it was too big.

I grabbed a still image from the video using a media player and edited it

in GIMP.

Chapter 7 Using FFmpeg Filters

108

Figure 7-11.  First, take a screengrab from the video. Then, use
an image-editing program to identify the location (150,12) and
dimensions (332,332) of the region you want to cut out

I then selected the region that I wanted cut into. I noted down the

coordinates and dimensions of the region from GIMP’s Tool Options panel.

I used the details from GIMP in the options for a crop filter that I used on

the video.

ffmpeg -i how-to-vote.mp4 \

 -filter:v "crop=332:332:150:12" \

 accessibility.mp4

Chapter 7 Using FFmpeg Filters

109

Figure 7-12.  The  crop  filter cut into a portion of a video

�Blur or Sharpen a Video
When this video was shot, there was a lot of camera refocusing and the

action was blurry. The smartblur filter almost fixes this when it is set to

sharpen the video.

Figure 7-13.  With the  smartblur  filter, you can blur or
sharpen a video

Chapter 7 Using FFmpeg Filters

110

ffmpeg -i LED-Flip-Flop-Circuit.mp4 \

 -filter:v

 "smartblur=luma_radius=5:luma_strength=1.0:

 luma_threshold=30" \

 LED-Flip-Flop-Circuit-blurred.mp4

ffmpeg -i LED-Flip-Flop-Circuit.mp4 \

 -filter:v

 "smartblur=luma_radius=5.0:luma_strength=-1.0:

 luma_threshold=30" \

 LED-Flip-Flop-Circuit-sharpen.mp4

The smartblur filter can blur or sharpen videos without affecting the

outlines. It works on the brightness of the pixels. The luma_radius (0.1 to 5)

represents the variance of the Gaussian blur filter. luma_strength (-1 to 1)

varies between sharpness to blurring. luma_threshold (-30 to 30) varies the

focus of the filter from the edges to interior flatter areas.

�Blur a Portion of a Video
Sometimes, you need to protect the identity of some people (e.g.,

bystanders) who are not really the focus of a video. Use the boxblur

filter. This command tries to blur two regions in a video where human

faces appear.

ffmpeg -y -i stilt.mp4 \

 -filter_complex \

 "[0:v]crop=260:80:400:550[c1];

 [0:v]crop=100:60:1:550[c2];

 [c1]boxblur=6:6[b1];

 [c2]boxblur=6:6[b2];

 [0:v][b1]overlay=400:550[v1];

Chapter 7 Using FFmpeg Filters

111

 [v1][b2]overlay=1:550[v]" \

 -map '[v]' -map 0:a -c:a copy \

 stilt-masked.mp4

Unlike smartblur, it does not respect object outlines. And, contrary

to its name, boxblur does not blur inside the box or a part of the video. It

affects the whole frame of the input video stream.

☞ T o avoid any doubt or confusion, I would like to state that I have
masked faces of private individuals (even in public-domain content) in
several screenshots using an image-editing program. In this screenshot,
however, the effect was achieved using the ffmpeg filter boxblur.

Figure 7-14.  With the  boxblur  filter, you can blur content without
discrimination of any outlines

Chapter 7 Using FFmpeg Filters

112

�Draw Text
To draw text on video, you need to use the drawtext filter and also specify

the location of the font file. When you are drawing several pieces of text, it

is better to daisy-chain your texts (using commas, not semicolons).

ffmpeg -y -i color-test.mp4 \

 -filter_complex \

 "[0:v:0]drawtext=x=(w-tw)/2:y=10:fontcolor=white: \

 shadowx=1:shadowy=1:text='Detonation Sequence': \

 fontsize=25: fontfile=AllertaStencil.ttf, \

 drawtext=x=(w-tw)/2:y=60:fontcolor=white: \

 shadowx=1:shadowy=1: \

 text='This TV will self-destruct in t seconds.': \

 fontsize=15:fontfile=Exo-Black.ttf[v]" \

 -map '[v]' -map 0:a:0 -pix_fmt yuv420p \

 idiot-box-1.mp4

Chapter 7 Using FFmpeg Filters

113

Figure 7-15.  With the  drawtext  filter, you can draw text formatted
with fonts, styles, shadows, transparencies, etc. on video

�Draw a Box
You can use the drawbox filter to render all kinds of boxes, filled or bound,

with all sorts of colors and transparencies.

ffmpeg -y -i color-test.mp4 \

 -filter_complex \

 �"[0:v:0]drawbox=x=20:y=3:w=280:h=36:color=tomato@0.4:

t=fill, \

 drawbox=x=11:y=49:w=294:h=40:color=lime:t=1, \

 drawtext=x=(w-tw)/2:y=10:fontcolor=white: \

 shadowx=1:shadowy=1:text='Detonation Sequence': \

Chapter 7 Using FFmpeg Filters

114

 fontsize=25: fontfile=AllertaStencil.ttf, \

 drawtext=x=(w-tw)/2:y=60:fontcolor=white: \

 shadowx=1:shadowy=1: \

 text='This TV will self-destruct in t seconds.': \

 fontsize=15:fontfile=Exo-Black.ttf[v]" \

 -map '[v]' -map 0:a:0 -pix_fmt yuv420p \

 idiot-box-2.mp4

The part of the color value after the @ symbol refers to the transparency

level. It ranges from 0 (fully transparent) to 1 (opaque). If you specify the

value fill for the filter option t or thickness, then the box will be filled

with that color. Otherwise, it applies to the border.

Figure 7-16.  With the drawbox filter, two rectangles around the text.
(See original video in previous section.) The first rectangle is filled
with red. The second rectangle is bordered green

Chapter 7 Using FFmpeg Filters

115

�Speed Up a Video
When you increase the playback speed of a video, its duration decreases.

When you slow down a video, its duration increases. There is no one filter

that changes the speed of both the audio and the video. You need to use

two different filters – one for video and one for audio. The two filters do not

work in the same way. The two need to be calibrated correctly so that the

same effect is achieved on both the audio and the video.

For the video, you need to set the setpts video filter to a fraction of the

PTS filter constant. If you want to double the speed of the video, divide PTS

by 2. If you want the video to be four times fast, then divide PTS by 4. For

the audio, you need to use the atempo filter. The range of this filter is from

half the speed to 100 times. The following command fast-forwards a video

by four times (4x).

ffmpeg -y -i barb.mp4 \

 -filter_complex \

 "[0:v]setpts=PTS/4[v];

 [0:a]atempo=4[a]" \

 -map '[v]' -map '[a]' \

 barb-speed.mp4

☞ I n older versions of FFmpeg, the maximum limit of the atempo
filter was just 2. To go beyond that limit, multiple filters had to be
daisy-chained: atempo=2, atempo=2

Chapter 7 Using FFmpeg Filters

116

�Slow Down a Video
In the Tom & Jerry film Baby Puss, one of the alley cats tries to dance with

a seemingly innocuous doll. In the middle of it, I thought, the doll had

become possessed and slammed the cat down on the floor! I slowed the

video down with Ffmpeg, and my suspicions were confirmed.

To slow down a video, you need to use the same filters as in the

previous section, but the multipliers will have to be different.

This command slows down the video and the audio to one-fourth.

ffmpeg -y -i tom.mp4 \

 -filter_complex \

 "[0:v]setpts=PTS*4[v];

 [0:a]atempo=0.5, atempo=0.5[a]" \

 -map '[v]' -map '[a]' \

 possessed-doll.mp4

☞ N ote the different multiples used for video and audio to
achieve the same effect. The audio filter has been used twice
because of the limitation in its range.

☞ R ead previous section for more information on these two filters.

Laurie Lennon, from the Lennon Sisters family, has published a tribute

video for the Merrie Melodies number “Oh, Wolfie!”. When I saw it for the

first time some years ago, I felt the tempo was too high. I slowed the audio

down in Audacity. (I have all songs featuring Lou as MP3 files, complete

with Wolfie’s and Droopy’s crazy antics.) For my 2020 book, I tried to do

Chapter 7 Using FFmpeg Filters

117

the same using FFmpeg and apply the change to the video as well. My

calculation became easier when I used seconds. The original video was

114 seconds, and my slowed-down audio was 128 seconds.

128/114 and 114/128

ffmpeg -y -i Laurie-Lennon-Original.mp4 \

 -filter_complex \

 "[0:v]setpts=PTS*(128/114)[v];

 [0:a]atempo=(114/128)[a]" \

 -map '[v]' -map '[a]' \

 Laurie-Lennon-Slow.mp4

The links to these videos and those used in other examples in this book

are available online:

www.vsubhash.in/ffmpeg-book.html

�Summary
The examples in this chapter would have amply demonstrated that a lot

of useful and powerful multimedia-processing abilities are hidden in

the filters functionality. You need to read the relevant documentation to

make full use of a filter. Filter expressions using built-in real-time variables

(filter constants) and functions provide a lot of versatility and extensibility

to command-line users that would have otherwise been limited to

programmers who use the libav libraries.

In this book, the teaching portion about FFmpeg functionality ends

here. The subsequent chapters are topic-specific for those who want quick

answers to a particular type of problem and do not want to read through

dense explanatory text before finding the answer. You will find some

information repeated or not mentioned at all.

Chapter 7 Using FFmpeg Filters

http://www.vsubhash.in/ffmpeg-book.html

119

CHAPTER 8

All About Audio
In this chapter, you will learn to perform several tasks related to audio

content. While it is convenient to have a separate chapter just for audio,

you will find some information repeated from other chapters. If there is no

explanation, then it must be self-explanatory.

Most audio-related tasks can be performed using audio filters. If any

of the filters used in this chapter seem too complicated, find out what the

official FFmpeg documentation has to say on them. If you are unfamiliar

with using filters, read Chapter 7.

�Convert from One Audio Format to Another
ffmpeg -i alarm.ogg \

 -c:a libmp3lame \

 -ac 2 \

 -b:a 128K \

 alarm.mp3 # Ogg to MP3

�Extract Audio from a Video
ffmpeg -i music-video.mp4 \

 -c:a libmp3lame \

 -ac 2 \

 -b:a 128K \

 music-video.mp3 # Audio saved as MP3

© V. Subhash 2023
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_8

https://doi.org/10.1007/978-1-4842-8701-9_7
https://doi.org/10.1007/978-1-4842-8701-9_8#DOI

120

�Convert a MIDI File to MP3 or Ogg
You may have noted that there are no codecs for MIDI. That is because

MIDI files are quite different from ordinary sound files. Ordinary sound

files contain the wave form encoded in a predefined format. In contrast,

MIDI files are merely a collection of references to a common sound bank.

Timidity is the Linux way of playing MIDI files. You can use Timidity

to playback MIDI files in WAVE format and write it to its standard output.

Simultaneously, FFmpeg can be made to consume the wave output as its

input file (from its standard input over a pipe) and convert it as a regular

sound file.

timidity yamaha.midi -Ow -o - | ffmpeg -i - -b:a 128k

yamaha.ogg

The -Ow makes Timidity to output the playback in WAVE format. Its -o

option is used to specify the output file. Instead of an output file, we use -

to make it write to the standard output. The Timidity output is then piped

over to an FFmpeg command, where it is captured from the standard input

with yet another - (hyphen).

�Change Volume
FFmpeg can increase the loudness of an audio file using its volume filter.

The filter accepts a multiple either as a number (scalar) or in decibels

(logarithmic).

ffmpeg -i sarah.mp3 -af 'volume=3' sarah-more.mp3

I had an audio file that continued to have low volume, even after

trebling the levels. I opened it in Audacity and found the reason.

Chapter 8 All About Audio

121

Figure 8-1.  Audacity confirms that irrationally increasing the
volume is not making much of a difference

Chapter 8 All About Audio

122

Increasing sound like this is based on guesswork. It might work. It

may also damage your hearing and/or your speaker system. The correct

approach is to normalize the sound after observing the decibel levels in

the current waveform.

ffmpeg -i sarah.mp3 -af "volumedetect" -f null -

☞ T he volumedetect filter outputs text data to the standard
output. It does not create an audio stream.

The volumedetect filter shows that we can safely increase the volume

to 16db. If we raised the volume to 17dB or higher, normalization would

cut into the waveform, and the peaks would get attenuated or chopped off.

At 17dB, six sound samples (the loudest) in the waveform would be lost.

ffmpeg -i sarah.mp3 \

 -af 'volume=16dB' -f ogg \

 sarah-normalized.ogg

Figure 8-2.  Run the volumedetect filter before increasing the
volume. It helps you in determining the highest number of decibels to
which the volume can be increased without cutting into the waveform

Chapter 8 All About Audio

123

Figure 8-3.  Audacity confirms that the volume has been increased
without cutting into the waveform

This is fine. Now, how do you decrease the volume? Well, choose a fraction

between 0 and 1 for the volume filter. For example, to decrease the volume by

two-thirds, you should set the multiple at 0.33. (You know ⅓ = 0.33?)

ffmpeg -i sarah-normalized.ogg -af 'volume=0.33' sarah-less.mp3

�Change Volume in a Video File
Say, to irrationally increase the volume by three times,

Chapter 8 All About Audio

124

ffmpeg -i sarah.mp4 \

 -c:v copy \

 -af 'volume=3' \

 -c:a libmp3lame -b:a 128k \

 sarah-more.mp4

To safely and intelligently increase the volume in a video file,

ffmpeg -i sarah.mp4 \

 -af 'volumedetect' \

 -vn \

 -f null \

 /dev/null

Displays that the loudest samples are at 17dB

Increase the volume to 16dB (to safely normalize the audio)

ffmpeg -i sarah.mp4 \

 -c:v copy \

 -af 'volume=16dB' \

 -c:a libmp3lame -b:a 128k \

 sarah-normalized.mp4

To decrease volume by two-thirds in a video file, you need to use

fractions:

Reduces volume by two-thirds (or to one-thirds)

ffmpeg -i sarah-normalized.mp4 \

 -c:v copy \

 -af 'volume=0.33' \

 -c:a libmp3lame -b:a 128k \

 sarah-less.mp4

Chapter 8 All About Audio

125

�Dynamic Range Compression/Normalization
Sometimes, normalization does not make any difference. The volume

seems to be unchanged. Examining the audio in Audacity can show you

the problem. There are volume spikes in some locations while much of

the file is at low volume. (These spikes usually occur when the mic is

shaken or bumped while it is recording.) Normalization cannot proceed

as long as the spikes remain. The solution is to identify the low-volume

regions and expand the waveform. This more selective normalization

is known as Dynamic Range Normalization. Alternatively, you could

bring down the high-volume regions to the level of the rest of the audio.

This selective compression of the waveform is known as Dynamic Range

Compression (DRC).

Both techniques make irreversible changes to the waveform, so do not

use them indiscriminately. DRC is the bane of popular music today and

makes it very boring.

In Carl Orff’s composition of O Fortuna or Ryuichi Sakamoto’s score

for the end credits of the movie Femme Fatale, the music starts on a

low note, building slowly in a steady crescendo and abruptly drops off

a high cliff. Applying DRC on such an audio would ruin the composer’s

intent. However, a recording of a teleconferencing session where multiple

participants are heard speaking at different volumes would be an ideal

candidate for DRC.

The dynaudnorm filter can perform both functions, but the default is

normalization. When the guasssize option is set at the lower end of 3, it

behaves like a typical compressor. At the other end of 300, it becomes a

traditional normalizer.

ffmpeg -y -i train-trip-low.mp3 \

 -filter:a dynaudnorm=gausssize=3 \

 train-trip-low-dynaudnormalized.mp3

Chapter 8 All About Audio

126

Figure 8-4.  A few unexplained spikes in volume can prevent
normalization from happening on the rest of the waveform. Dynamic
Range Compression and Dynamic Range Normalization are not
affected by these spikes and change the entire waveform

�Channels
An audio stream can have one or more channels. A channel is an

independent sequence of audio. All channels in an audio stream are of the

same length, and they are played back simultaneously. The idea of having

a separate channel is to have a different choice of musical instruments or

sounds to play in different speakers. Audio content creators may move

back and forth sounds between different channels at different volume

levels. This can be useful in creating a 2D or 3D effect to the sound.

Typically, each channel in an audio stream is assigned to a particular

speaker. This composition of channels in a multichannel stream is known

as its channel layout. When the number of speakers is less than the

number of channels, then that particular channel may not be heard, or

the device may downmix the channels so that the excess channels will be

heard on the existing speakers.

Monaural audio has only one channel. Stereo music has two channels –

left and right. Movies can have two, six, seven, eight, or more channels.

When working with channels, you will need to use filters such as amerge,

channelmap, channelsplit, and pan. These filters make use of certain IDs

for channels and channel layouts. Table 8-1 and Table 8-2 list these IDs.

Chapter 8 All About Audio

127

Table 8-2.  Channel layouts

ID Layout composition

Mono FC

Stereo FL+FR

2.1 FL+FR+LFE

3.0 FL+FR+FC

3.0(back) FL+FR+BC

4.0 FL+FR+FC+BC

Quad FL+FR+BL+BR

Quad(side) FL+FR+SL+SR

3.1 FL+FR+FC+LFE

5.0 FL+FR+FC+BL+BR

5.0(side) FL+FR+FC+SL+SR

4.1 FL+FR+FC+LFE+BC

5.1 FL+FR+FC+LFE+BL+BR

5.1(side) FL+FR+FC+LFE+SL+SR

6.0 FL+FR+FC+BC+SL+SR

6.0(front) FL+FR+FLC+FRC+SL+SR

Hexagonal FL+FR+FC+BL+BR+BC

6.1 FL+FR+FC+LFE+BC+SL+SR

6.1 FL+FR+FC+LFE+BL+BR+BC

6.1(front) FL+FR+LFE+FLC+FRC+SL+SR

7.0 FL+FR+FC+BL+BR+SL+SR

7.0(front) FL+FR+FC+FLC+FRC+SL+SR

7.1 FL+FR+FC+LFE+BL+BR+SL+SR

7.1(wide) FL+FR+FC+LFE+BL+BR+FLC+FRC

7.1(wide-side) FL+FR+FC+LFE+FLC+FRC+SL+SR

Octagonal FL+FR+FC+BL+BR+BC+SL+SR

Hexadecagonal FL+FR+FC+BL+BR+BC+SL+SR+WL+
WR+TBL+TBR+TBC+TFC+TFL+TFR

Downmix DL+DR
22.2 FL+FR+FC+LFE+BL+BR+FLC+FRC+BC+

SL+SR+TC+TFL+TFC+TFR+TBL+TBC+TBR+
LFE2+TSL+TSR+BFC+BFL+BFR

Table 8-1.  Channels

ID Channel

FL Front left

FR Front right

FC Front center

LFE Low frequency

BL Back left

BR Back right

FLC Front left-of-center

FRC Front right-of-center

BC Back center

SL Side left

SR Side right

TC Top center

TFL Top front left

TFC Top front center

TFR Top front right

TBL Top back left

TBC Top back center

TBR Top back right

DL Downmix left

DR Downmix right

WL Wide left

WR Wide right

SDL Surround direct left

SDR Surround direct right

LFE2 Low frequency 2

Chapter 8 All About Audio

128

�Swap Left and Right Channels
In some videos, sounds from the left side of the video are heard on the

right channel and those from the right side are on the left channel. In such

a case, you can do a switcheroo.

Switch right and left channels of stereo audio

ffmpeg -i wrong-channels.mp4 \

 -c:v copy \

 -filter_complex "channelmap=map=FR-FL|FL-FR" \

 fine-channels.mp4

You can specify the channel settings using the map filter option in

this format:

input_channel_id-output_channel_id|input_channel⏎

_id-output_channel_id|...

This filter also has a channel_layout option.

�Turn Off a Channel
In some video files, the narration or commentary is on one channel, and

the ambient noise or background music is on the other. If what you want is

on the left, you can turn the right channel off by setting its gain to zero (0).

Silence right channel

ffmpeg -i moosic.mp3 \

 -c:v copy \

 -filter_complex "pan=stereo|FL=FL|FR=0" \

 moosic4lefty.mp3

Chapter 8 All About Audio

129

☞  Changing the audio to mono (single-channel audio) is not an
option because mono audio is played on both front and left speakers.

You can specify the channel settings in this format:

l|output_channel_id=gain*input_channel_id|output⏎

_channel_id=gain*input_channel_id...

The filter option l is used to specify the channel layout. After that, you

have to specify how much of what channel (in the input stream) you need

for each channel in the output audio stream. For specifying that proportion

or the gain, you can specify a multiple or a fraction. If you omit the gain, it

implies that you want that channel as is or that the gain is equal to 1 (one).

If you use 0 (zero), it means that you want that channel totally attenuated.

�Move Channel to a Separate Audio Track
In some videos, the left and right audio channels are independent tracks.

What these content creators do is place the original audio on one channel

and the most annoying royalty-free music on the other. Instead of deleting

the offending channel, you could move each channel to a separate audio

stream while preserving the original stereo stream in a third stream.

The channesplit filter has a channel_layout filter option which by

default assumes the input audio stream is stereo. Because of that, this

command splits the left and right channels of the audio stream in the video

to two mono streams, which I have labeled as L and R.

Split channels to separate audio streams

and also preserve existing audio stream

ffmpeg -y -ss 0:0:20 -t 0:0:20 -i zombie.mp4 \

 -c:v copy \

 -filter_complex "channelsplit[L][R]" \

Chapter 8 All About Audio

130

 -map 0:v:0 -map '[L]' -map '[R]' -map 0:a:0 \

 -c:a:0 aac -ac:a:0 1 \

 -c:a:1 aac -ac:a:1 1 \

 -c:a:2 copy \

 zombie-tracks.mp4

Because the first two of the mapped output audio streams need to be

freshly encoded as mono streams and the last mapped audio stream just

needs to be copied without re-encoding, encoder (-c) and channel count

(-ac) need to be specified on a per-stream basis.

☞ T he -c and -ac options are limited to the streams specified by
the -map options specified before them.

�Fix Out-of-Phase Audio Channels

Figure 8-5.  This zoomed-in waveform shows out-of-phase left and
right channels

Chapter 8 All About Audio

131

Rarely, when you downmix to mono sound, out-of-phase audio in the

channels may cancel each other out. The audio will sound muted. You

can fix it by saving either the left or the right channel in the input file as

the only (mono) channel in the output file. (Monaural audio is played the

same on both sides.)

�Change Stereo to Mono
Stereo audio has two channels – left and right. Most of the time, both

channels have the same audio. However, in many cases, the left channel

will have some sounds that are not available in the right channel. The

loudness of certain sounds may also differ. This difference will be lost

when you convert to mono. Remember this before converting to mono.

Mono audio cannot be converted back to stereo. It can only be made to

look like stereo. You can convert stereo to mono either by downmixing

both left and right channels to a mono channel or dropping one of the

channels.

Chapter 8 All About Audio

132

Figure 8-6.  To convert from stereo to mono, you can downmix
left and right channels to a single mono channel or drop one of the
channels. In either case, if the two channels are different, there will be
some irreversible loss of the waveform

Chapter 8 All About Audio

133

Downmix to mono

ffmpeg -i uncompressed-stereo.wav \

 -ac 1 \

 mono.mp3

Drop left channel

ffmpeg -i uncompressed-stereo.wav \

 -filter channelmap=FR-FC:mono \

 right.mp3

�Convert Mono to Stereo
Mono audio has only one channel. On a stereo audio output device, the

same channel will anyway be played on the left and right speakers. Hence,

it does not make any difference to convert mono to stereo. If at all this

needs to be done, then the audio can be split with a second channel.

ffmpeg -i mono.mp3 \

 -ac 2 \

 stereo-kind-of.mp3

�Make Audio Comfortable for
Headphone Listening
When wearing headphones, the sounds feel like they are arising inside

your head and between your ears. The earwax filter makes the sound feel

like it is outside and in front of your head.

ffmpeg -i in-head.flac -filter "earwax" out-head.mp3

ffmpeg -i tl.mp4 -filter:a "earwax" -c:v copy tl-head.mp4

Chapter 8 All About Audio

134

�Downmix 5.1 Audio to Stereo
Using the -ac (audio channels) option with the necessary number of

channels is enough for most downmixing operations.

ffmpeg -i AAC-LC-Channel-ID.mp4 \

 -ac 2 \

 stereo.mp3

�Downmix Two Stereo Inputs to One
Stereo Output
When you place two videos side-by-side each other, you need to do

something about their two audio streams.

ffmpeg -y -i beto.mp4 -i fallon.mp4 \

 -filter_complex \

 "[0:v]pad=1280:360:0:0 [frame];

 [frame][1:v]overlay=640:0 [overlaid];

 [0:a]channelsplit=channel_layout=mono[beto];

 [1:a]channelsplit=channel_layout=mono[fallon];

 [beto][fallon]join=inputs=2:channel_layout=stereo[audio]" \

 -map '[overlaid]' -map '[audio]' \

 fallon-aces-beto.mp4

ffmpeg -y -i beto.mp4 -i fallon.mp4 \

 -filter_complex \

 "[0:v]pad=1280:360:0:0 [frame];

 [frame][1:v]overlay=640:0 [overlaid];

 [0:a][1:a]amerge=inputs=2[audio]" \

 -map '[overlaid]' -map '[audio]' \

 -ac 2 \

 fallon-aces-beto2.mp4

Chapter 8 All About Audio

135

The first command uses channelsplit filter to convert stereo audio

from the two input files to mono streams. It then uses the join filter to use

the two mono streams to create a stereo stream where the mono audio

from the first file is the left channel and the mono audio from the second

file becomes the right channel.

The second command uses amerge filter to create a four-channel

audio stream from the two input stereo (two-channel) streams. The -ac 2

conversion setting downmixes the four-channel audio to a two-channel

stereo output.

In the first command, the input audio streams are assumed to be of

equal length. If they are not of equal length, then the apad filter needs to be

used to add silence to last till the end of the video stream.

For the Laurie Lennon video mentioned in an earlier chapter, I had

also created a video with both the original version and the slowed-down

version side-by-side for comparison. The slowed-down video was of greater

duration. Without adding the extra silence, FFmpeg would continue adding

duplicate data at the end of the shorter stream. The process would never

complete, and my computer would have run out of space.

// Slow MP4 was 128 seconds. The original was 114 seconds.

ffmpeg -i Laurie-Lennon-Slow.mp4 \

 -i Laurie-Lennon-Original.mp4 \

 -loop 1 -i bg.png \

 -filter_complex \

 "[0:v:0]scale=320:180[v1];

 [1:v:0]scale=320:180[v2];

 [2:v:0][v1]overlay=320:90[v3];

 [v3][v2]overlay=0:90[v];

 [0:a:0]channelsplit=channel_layout=mono[right];

 [1:a:0]channelsplit=channel_layout=mono,apad[left];

 [left][right]join=inputs=2:channel_layout=stereo[a]" \

Chapter 8 All About Audio

https://doi.org/10.1007/978-1-4842-8701-9_7#Par89

136

 -map '[v]' -map '[a]' \

 -t 0:2:08 \

 -y laurie-lennon-comparison.mp4

�Render a Visual Waveform of the Audio
The showwaves filter renders a visual waveform of the input audio.

ffmpeg -y -i dialup-modem.mp4 \

 -filter_complex \

 "[0:a]showwaves=s=160x90:mode=line[waves];

 [0:v]drawbox=x=(iw-20-w):y=(ih-20-h):w=160:h=90:

 color=yellow@0.6:t=fill[bg];

 [bg][waves]overlay=x=(W-20-w):y=(H-20-h)[over]" \

 -map '[over]' -map 0:1 \

 dialup-modem-handshake.mp4

Figure 8-7.  This command draws a waveform of the dialup modem
handshake tones on the video. To make the waveform easily visible,
the command has drawn a translucent yellow box behind it

Chapter 8 All About Audio

137

In 2021, I wrote a book on electronics. In that, I described how to create

the most annoying-sounding alarm noise using a blinking LED. I wanted

to publish an online video of the alarm but felt queasy about posting a

video of the ceiling where the alarm was installed. FFmpeg to the rescue!

I used the showfreqs filter to generate the “power spectrum” of the audio

recording.

ffmpeg -i The-most-annoying-DIY-electronic-alarm.mp3 \

 -filter_complex \

 "showfreqs=s=640x320:mode=bar[v]" \

 -map '[v]' -map 0:a:0 \

 -c:v mpeg4 -b:v 466k -r 24 \

 The-most-annoying-DIY-electronic-alarm.mp4

Figure 8-8.  The showfreqs filter shows how energy in an audio
signal is spread across the range of frequencies that are audible to the
human ear

Chapter 8 All About Audio

138

There are a few other filters similar to this one. Check the

documentation. These filters are very interesting.

�Detect Silence
I have a shell script for censoring movies. (It uses FFmpeg, of course.) I

use it to protect kids from foul dialog and unsuitable scenes. It asks for

timestamps where the audio needs to be silenced and the video needs to

be blacked out. After it does the job, I need to double-check these locations

before the grand première on the TV. I use this command:

ffmpeg -i edited-movie.mp4 \

 -filter:a "silencedetect" \

 -vn -f null -

This command outputs timestamps wherever silence is detected. This

helps me to directly skip to the censored locations using my media player

on my computer.

�Silence the Video
Heck, you do not want sound at all! Just remove the audio stream.

ffmpeg -i music-video.mp4 \

 -an \

 -c:v copy \

 sound-of-silence.mp4

�Convert Text to Speech
If your ffmpeg executable has been built-in with support for the libflite

text-to-speech synthesizer library, then you can convert text content to

spoken words.

Chapter 8 All About Audio

139

ffmpeg -f lavfi \

 -i "flite=textfile=speech.txt:voice=slt" \

 speech.mp3

This library has an option for a female voice, but I like the male-only

espeak better. You can find other options for the flite filter option voice

by typing the following:

ffprobe -f lavfi "flite=list_voices=1"

On my computer, this command lists awb, kal, kal16, rms, and slt as

voices that are supported.

�Apply a Low-Pass Filter
In an earlier chapter, I mentioned that I used Audacity to apply a low-pass

filter. A low-pass filter makes all frequencies above a certain level to steeply

drop to a zero while not disturbing all frequencies below that level. There is

also a high-pass filter which does the opposite and attenuates frequencies

below a certain level.

The audio recording in my example had a lot of noise typical of old

gramophone recordings. When the low-pass filter was applied, the noise

disappeared. At that time, I did not know much about FFmpeg filters. If I

did, I could have fixed the audio in just one step.

ffmpeg -i Stopmotion-hot-wheels.mp4 \

 -filter:a "lowpass=frequency=1000" \

 -codec:v copy \

 Stopmotion-hot-wheels-audio-passed-low.mp4

Chapter 8 All About Audio

140

The default option in Audacity was 1000 Hz for the frequency and 6 dB

per octave for the roll-off. The roll-off specifies how steeply the frequencies

are attenuated. The lowpass filter can apply a 3 dB roll-off if you set its

poles option to 1. The default 2 applies a 6 dB roll-off, and I did not have to

explicitly specify it in the above command.

�Summary
In this chapter, you learned how to perform several tasks with audio

content. You may find it helpful to initially use Audacity to understand

audio problems. As you get more familiar with what ails audio content,

you can rely on FFmpeg entirely. FFmpeg has a ton of audio filters, and

this chapter used just a few of them. Check the FFmpeg documentation on

audio filters, and you will find more exciting things you can do with audio.

Chapter 8 All About Audio

141

CHAPTER 9

All About Subtitles
In this chapter, you will learn to perform several tasks related to subtitles.

Subtitles are dialogs that are displayed as text on a video. The subtitles may

be burned into the video or be available as a separate content stream in

the multimedia file. In case of the former, the subtitles cannot be turned

off as they have become part of the video. In case of the latter, the subtitles

can be turned on or off using a remote button or by selecting an onscreen

menu option.

Videos on streaming media, optical media, and broadcast TV can have

subtitles in multiple languages. Some websites maintain a crowd-sourced

library of subtitles (in multiple languages) of a wide variety of movies,

popular and obscure. Several video-hosting sites also display subtitles.

They do not let you download subtitles separate from the video. However,

there are some other websites that will fetch the subtitles if you give them

the address where the original video is hosted.

Subtitles are available in many formats. Subrip (.srt) files are the

most popular. Advanced Substation Alpha (.ass or .ssa) is very versatile.

WebVTT (Web Video Text Tracks Format) is used by browsers for online

videos. TTML is used by the broadcast industry and online applications.

DVDs use .dvdsub files.

I prefer SSA because I can specify a custom display font with it. For use

with FFmpeg, subtitles should be a stream in a media file or an external text

file. Subtitles that are already burned into a video (not as a separate stream)

cannot be processed by FFmpeg (or rather not covered by this book).

However, FFmpeg can be used to burn subtitles permanently on a video.

© V. Subhash 2023
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_9

https://doi.org/10.1007/978-1-4842-8701-9_9#DOI

142

�Add Subtitles to a Video as an Extra Stream
To add a subtitle file to a video, you need to use a subtitle format that is

compatible with the video file’s container. Or, you should use a suitable

encoder that will convert your subtitle file in a format that is supported

by the container. The subtitle format for MP4, MOV, and 3GPP containers

is known as “MPEG4 Timed Text.” You will have to encode your SRT or

SSA subtitle files with the encoder mov_text for these containers. For the

versatile Matroska (MKV) format, you can straightaway use SRT and SSA

subtitle files.

Suppose that you have a DVD without subtitles in your favorite

language and the DVD seller released a new updated collector’s edition

DVD that has subtitles in that language. If you were able to download the

new subtitles as an SRT file from somewhere, then you can add it to your

DVD backup file as an extra stream. If you are saving the DVD as an MKV

file, convert the SRT file beforehand to the Substation Alpha (SSA) format

to take advantage of the ability of the latter to use a custom font.

ffmpeg -i dvd-movie.srt dvd-movie.ass

Edit the SSA file in some subtitle editor

and add your custom styles and fonts

ffmpeg -i dvd-movie.ogv -i dvd-movie.ass \

 -map 0:v -map 0:a -map 1:s \

 -c:s mov_text \

 -metadata:s:s:0 language=eng \

 dvd-movie-subtitled.mp4 \

 \

 -map 0:v -map 0:a -map 1:s \

 -codec copy \

 -metadata:s:s:0 language=eng \

 dvd-movie-subtitled.mkv

Chapter 9 All About Subtitles

143

☞  When you add subtitles as an additional stream like this,
the viewer can turn them on/off with the device remote or a screen
menu option.

Did you notice something else with the above command? I subtitled

the movie in two formats (MP4 and MKV) using one command. With the

MP4, I had to encode the OGV streams because its codecs are not native

to the MP4 container. With the MKV, I could use -codec copy. The MKV

container supports a wide variety of codecs including those supported by

OGV and MP4. If you are backing up DVDs for long-term storage, choose

MKV. It is the best.

�Permanently Burn Subtitles to a Video
When I was about to publish my first book, I wanted to upload a book-

read video in which I read a few pages. I recorded the OGV video using

the webcam program Cheese, but there were some issues with audio

recording. So, I transcribed my narration using another program called

Gnome Subtitles and saved the subtitles as a Substation Alpha (.ass) file. I

did not want to upload the subtitles to the video-hosting sites because they

use very tiny fonts. I wanted the subtitles to look bigger and with my own

selection of the font. I then decided to use FFmpeg to permanently burn

the subtitles on the video. I specified the font and subtitles location on the

video in the subtitle file, NOT in the ffmpeg command. The SSA format let

me do that. Using a filter, I drew a black box behind the subtitles so that

they could be easily read against any background.

Chapter 9 All About Subtitles

144

Figure 9-1.  Subtitles burned into a video cannot be turned off with
the remote or a menu option

ffmpeg -i 2020-Jokebook1.ogv \

 -filter_complex \

 "drawbox=w=250:h=100:x=360:y=90:color=black@0.7:t=fill,

 subtitles=2020-Jokebook1.ass" \

 -c:v libx264 -r 24 \

 2020-Jokebook1.mp4

Chapter 9 All About Subtitles

145

☞ T he subtitles filter has a force_style option to specify
an SSA style for use with a subtitle format (such as SRT) that does
not support styles.

☞ T he black box was unnecessary. SSA has built-in support for
dynamic background boxes, as you will learn later.

�Add a Custom Font for Displaying Subtitles
of a Video
If I wanted the subtitles in my book-read video to be optional, I could have

created an MKV like this:

ffmpeg -i 2020-Jokebook1.ogv -i 2020-Jokebook1.ass \

 -codec copy \

 -metadata:s:s:0 language=eng \

 -attach Headline.ttf \

 -metadata:s:t:0 mimetype=application/x-truetype-font \

 2020-Jokebook1.mkv

☞  Font embedding increases subtitles portability and
toggleability, but support is not universal.

☞  You should place the font file in the current directory or specify
its full path.

Chapter 9 All About Subtitles

146

This command adds the subtitles as an additional stream in the video.

It also specifies a custom subtitle display font and embeds that font. On

my PC, Totem and VLC display the subtitles with that font. However, my

WDTV HD media player box, which I used for many years, always played

the subtitles with its own built-in font.

Figure 9-2.  When subtitles are added as a stream, the viewer can
turn them on/off using the remote or with a menu option

�About the Substation Alpha (SSA/ASS)
Subtitle Format
Although SRT is the popular subtitle format, I prefer the Substation Alpha

(.ass or .ssa) because it supports fonts and several other cool features. You

can convert SRT to SSA using ffmpeg.

ffmpeg -i dvd-movie.srt dvd-movie.ass

Chapter 9 All About Subtitles

147

However, I prefer not to do that. I download the SRT file, let it open in

a GUI program called Gnome Subtitles, and save it as a SSA file. After this,

I run a BASH script on the .ass file to change its style statement. The style

statement generated by ffmpeg and Gnome Subtitles refers to Windows

fonts. These fonts are not available in Linux and the resultant subtitles do

not look cool. My script uses a better style statement with a font I already

have installed in Linux.

ffmpeg version:

Style: Default,Arial,16,&Hffffff,&Hffffff,&H0,&H0,⏎
0,0,0,0,100,100,0,0,1,1,0,2,10,10,10,0

Gnome Subtitles version:

Style: Default,Tahoma,24,&H00FFFFFF,&H00FFFFFF,⏎
&H00FFFFFF,&H00C0C0C0,-1,0,0,0,100,100,0,0.00,⏎
1,2,3,2,20,20,20,1

My version:

Style: Default,Headline,20,&H00FFFFFF,&H006666EE,⏎
&H00000000,&HAA00EEEE,-1,-1,0,0,100,100,0,0.00,⏎
1,4,0,2,20,20,20,1

When I used this style in the book-read video, the subtitles…

ffmpeg �-y -i 2020-Jokebook1.ogv \

-i 2020-Jokebook1-shadows.ass \

 -map 0:v -map 0:a -map 1:s \

 -c:v copy -c:a copy -c:s ass \

 -metadata:s:s:0 language=eng \

 -attach Headline.ttf \

 -metadata:s:3 mimetype=application/x-truetype-font \

 2020-Jokebook1-shadows.mkv

... look like this:

Chapter 9 All About Subtitles

148

Figure 9-3.  In this video, the subtitles have a text outline. (This
eliminated the need to render a black box behind the subtitles using
an FFmpeg filter. SSA subtitles support multiple such styles in the
same file.) The subtitle shadow has been zeroed

The specification of the wonderfully useful but screwed-up

SSA format is available on the matroska.org website

(Technical Info » Subtitles » SSA). However, I will risk a description

here for the style statement.

Style: Name, Fontname, Fontsize, PrimaryColour,

SecondaryColour, OutlineColour, BackColour, Bold,

Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing,

Angle, BorderStyle, Outline, Shadow, Alignment,

MarginL, MarginR, MarginV, Encoding

Chapter 9 All About Subtitles

149

Name refers to a subtitle display style. You can define and use many

different styles, not just the Default. The colors are in hexadecimal

AABBGGRR format. (Ese, are they loco? No. It is allegedly to help with

video-to-text conversion.) PrimaryColour is the color of the subtitle text.

OutlineColour is for the outline of the text. BackColour is the color of the

shadow behind the text. SecondaryColour and OutlineColour will be

automatically used when timestamps collide. Bold, italic, et al. are -1

for true and 0 for false. (Yeah, I know. The bash shell does the same.)

ScaleX and ScaleY specify magnification (1-100). Spacing is additional

pixel space between letters. Angle is about rotation (0-360) and controlled

by Alignment. BorderStyle uses 1 (outlined and drop-shadowed text), 3

(outline box and shadow box), and 4 (outlined text and drop-shadow box).

Outline represents the border width (1-4) of the outline or the padding

around the text in the outline box. Shadow represents the offset (1-4) of

the shadow from the text or the space around the text in the shadow box.

Alignment takes 1 (left), 2 (center), and 3 (right). If you add 4 to them, the

subtitle appears at the top of the screen. If you add 8, it goes to the middle.

Then, we have margin from the left, right, and bottom edges of the screen.

Encoding is 0 for ANSI Latin and 1 for Unicode (I think).

To really go bonkers with subtitles, I say we render subtitles with a

miasma of colors, location, and tilt.

Style: Default,Headline,22,&H6600FFFF,&H006666EE,⏎

&H660000FF,&H220066EE,-1,-1,0,0,100,100,0,25.00,⏎

3,4,4,2,20,20,120,1

Chapter 9 All About Subtitles

150

Figure 9-4.  This is truly subtitles gone wild. SSA subtitle format
offers the most control and options. There is a yellow shadow to the
red outline. Because the colors are translucent, their intersection
appears orange

�Add Subtitle Files in Different Languages
When adding multiple subtitles, it is obligatory on your part to specify

metadata identifying the language of each output subtitle stream.

Let us pretend that I am trying to corner the French jokebook market

and have a French transcript ready as well:

Multi-language subtitled MP4

ffmpeg -i 2020-Jokebook1.ogv \

 -i 2020-Jokebook1-en.ass -i 2020-Jokebook1-fr.ass \

 -map 0:v -map 0:a -map 1:s -map 2:s \

 -c:s mov_text \

 -metadata:s:s:0 language=eng \

 -metadata:s:s:1 language=fre \

 2020-Jokebook1-subtitled-en-fr.mp4

Chapter 9 All About Subtitles

151

Multi-language subtitled MKV

ffmpeg -i 2020-Jokebook1.ogv \

 -i 2020-Jokebook1-en.ass -i 2020-Jokebook1-fr.ass \

 -map 0:v -map 0:a -map 1:s -map 2:s \

 -c:v copy -c:a copy -c:s copy \

 -metadata:s:s:0 language=eng \

 -metadata:s:s:1 language=fre \

 2020-Jokebook1-subtitled-en-fr.mkv

☞ T he codes that you can use for setting the language are
further described in Chapter 10.

�Extract Subtitles from a Video
Use ffprobe to check if a video file has a subtitle stream.

ffprobe 2020-Jokebook1-subtitled-en-fr.mkv

Figure 9-5.  Do not forget to specify metadata for the subtitles

Chapter 9 All About Subtitles

https://doi.org/10.1007/978-1-4842-8701-9_10

152

Figure 9-6.  Use  ffprobe output to identify the subtitle formats and
any metadata they might have. und stands for “undetermined”

If the file has only one subtitle stream, you can extract it using FFmpeg

just by specifying the correct extension.

ffmpeg -i dvd-movie-subtitled.mp4 \

 dvd-movie-subtitle-default.ass

If the video has multiple subtitle streams, you need to specify mapping. The

next command saves the second subtitle stream in the input file as an SSA file.

ffmpeg -i 2020-Jokebook1-subtitled-en-fr.mkv \

 -map 0:s:1 \

 2020-Jokebook1-subtitle-fr.ass

�Extract Subtitles from a DVD
The files in a DVD are usually encrypted or obfuscated to prevent

bootlegging. There are several free DVD-ripping applications that will

decrypt the VOB files and quickly extract subtitle files. Forcing ffprobe to

find subtitle streams on big VOB files is not worth the trouble.

Chapter 9 All About Subtitles

153

�Summary
Subtitles are available in several formats including SRT, Substation Alpha,

and MPEG4 Timed Text. The Substation Alpha is the most versatile

subtitle format, and MKV seems to be the best container for it. The style

specification for the Substation Alpha format may seem intimidating at

first but will be accommodative in customizing subtitles for a variety of

use cases.

Chapter 9 All About Subtitles

155

CHAPTER 10

All About Metadata
In this chapter, you will learn to perform several tasks related to metadata.

Metadata means to data about data. Multimedia metadata refers to

information such as title, artist, album, subject, genre, year, copyright,

producer, software creator, comments, lyrics, and even album art images

that are used to describe the video and/or audio content.

An audio or video file can have global metadata (i.e., at the file level)

and stream-specific metadata too. You can use ffprobe and ffmpeg -i

commands to display metadata that a file already has. You use the -metadata

option to add new metadata.

�Add Album Art to MP3
You can add several pieces of album art to an MP3 file. However, each

image will need to have a unique title and comment metadata. There can

be one for front cover, another for the back, and yet another for the inlay

art. FFmpeg will treat all album art images as video streams, as if they were

single-frame videos.

ffmpeg -y \

 -i Uthralikavu-Pooram.mp3 \

 -i Uthralikavu-Pooram-festival-fireworks.png \

 -i Uthralikavu-Pooram-festival-crowds.png \

© V. Subhash 2023
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9_10

https://doi.org/10.1007/978-1-4842-8701-9_10#DOI

156

 -map 0 -map 1 -map 2 \

 -metadata:s:1 title="pooram-fireworks.png" \

 -metadata:s:1 comment="Cover (front)" \

 -metadata:s:2 title="pooram-crowds.png" \

 -metadata:s:2 comment="Cover (back)" \

 -codec copy \

 -f mp3 \

 Uthralikavu-Pooram-festival-fireworks.mp3

☞  Album art are added as single-frame video streams, not
metadata. The metadata you add for album art will apply to the video
streams of those images.

There are several options for the comment key, as defined in the ID3 tag

specification.

https://id3.org/id3v2.3.0

There is no uniform implementation among media players. When

there are more than one album art images, ffplay chooses the first cover

image that is mapped. Some other players follow a different pecking order.

Chapter 10 All About Metadata

https://id3.org/id3v2.3.0

157

Figure 10-1.  The album art displayed by different media players for
the same MP3 file can be different

�Set MP3 Tags
How do I add metadata to an MP3 file?

ffmpeg -y -i Uthralikavu-Pooram-festival-fireworks.mp3 \

 -map 0 \

 -metadata title="Uthralikavu Pooram Festival" \

 -metadata artist="V. Subhash" \

 -metadata \

 subject="Fireworks and crowds" \

 -metadata album="Pooram festival fireworks" \

 -metadata date="2013-12-26" \

 -metadata genre="Event" \

Chapter 10 All About Metadata

158

 -metadata comment="Best outdoor event I ever attended" \

 -metadata \

 copyright="© 2013 V. Subhash. All rights reserved" \

 -id3v2_version 3 \

 -codec copy \

 Kerala-Uthralikavu-Pooram-festival-fireworks.mp3

☞  MP3 tags metadata get added at the global level. They are not
stream-specific.

Figure 10-2.  Media player support for MP3 tags may be buggy or
not 100%. Do not break your head just because some tags do not get
displayed by a media player

�Export Metadata
You can export metadata to a text file using the -f ffmetadata option.

Chapter 10 All About Metadata

159

ffmpeg -i Kerala-Uthralikavu-Pooram-festival-fireworks.mp3 \

 -f ffmetadata \

 mp3-meta.txt

Figure 10-3.  ffmpeg exported this text file containing name-value
pairs representing the metadata of an MP3 file

�Import Metadata
Let us imagine that I modified the metadata in the text file (from the

previous section) using a text editor. Now, I want the updated metadata to

be imported back into the audio file. How can I do it?

ffmpeg -y \

 -i Kerala-Uthralikavu-Pooram-festival-fireworks.mp3 \

 -i mp3-meta-modified.txt \

 -codec copy \

 -map_metadata 1 \

 Kerala-Uthralikavu-Pooram.mp3

Chapter 10 All About Metadata

160

Here, -map_metadata 1 refers to the second input file, that is, the

modified metadata file. (-map_metadata 0 would have simply copied

the metadata from the first input file, that is, the MP3 file. We did not

want that.)

�Extract Album Art
You downloaded an MP3 and you like the album art? If the audio file has

only one album art, you can extract the image easily.

ffmpeg -i Blobfish.mp3 blobfish-album-art.png

If there are more than one album art, you need to check the ffprobe

output and then extract the album art using a map.

Figure 10-4.  An MP3 audio file and the album art extracted from it

Chapter 10 All About Metadata

161

Figure 10-5.  This‌​  ffprobe  output shows the index of the streams
containing the album art images

The crowds image is identified as a video stream with index 0:2 (third

among all streams). To extract it, I should use the map 0:2. To be safer, I

refer to it as 0:v:1 (second video stream).

ffmpeg -i Kerala-Uthralikavu-Pooram-festival-fireworks.mp3 \

 -map 0:v:1 \

 crowds.png

Chapter 10 All About Metadata

162

�Remove All Metadata
When working on an earlier chapter, I found that the Mate Screenshot app

was unable to work with the video of the sign-language translator. The app

names its screenshot after the title of the subject window. I noted that this

video had a URL displayed in the title of the video player window. The URL

came from the title metadata of the video. Because the Linux file system

does not allow a file name to include a URL (because of the backslash

and other illegal characters), the screenshot app may have been unable

to save the image to file. When I removed the metadata, I realized that my

hunch was right and I was able to take the screenshots from the metadata-

free video.

To remove the metadata, I pretended to import metadata from a

nonexistent input file (with index -1).

ffmpeg -i "Sign_Language_-_How_To_Vote.mp4" \

 -codec copy \

 -map_metadata -1 \

 how-to-vote.mp4

I have had portable media players that do not play MP3 files if they

have album art. Album art cannot be removed as metadata because they

are encoded as video streams. So, I use -codec copy and specify a -map for

the audio stream. By omitting video streams, the output file will not have

any album art.

ffmpeg -i Kerala-Uthralikavu-Pooram.mp3 \

 -map 0:a \

 -codec copy \

 pooram.mp3

You can also use -vn instead of the -map option

Chapter 10 All About Metadata

163

�Set Language Metadata for Audio Streams
Let us imagine that I created audio instructions in English, Malayalam,

and Tamil for this DIY electronics video. While media players could

switch between the language tracks, they would have assigned generic or

confusing names to them.

The following command sets the language names using ISO codes and

makes the menus a lot more informative.

ffmpeg -i how-to-create-a-speaker-instructions.mp4 \

 -map 0 \

 -metadata:s:a:0 language=eng \

 -metadata:s:a:1 language=mal \

 -metadata:s:a:2 language=tam \

 -codec copy \

 how-to-create-a-speaker-instructions-multilang.mp4

Figure 10-6.  This video has audio tracks in three languages. The
metadata for the audio streams helps identify the languages

Chapter 10 All About Metadata

164

map 0 includes all streams in the first input file (#0), that is, including

the video stream and the three audio streams. (If not used, there will

be just one video stream and one audio stream in the output file.)

-metadata:s: is used to set metadata for a stream, not a subtitle.

☞  Apart from s identifier for streams, FFmpeg uses identifiers p
and c for DVD programs and chapters of the VOB file container. These
are not covered by this book.

-metadata:s:a is used to set metadata for an audio stream specified

by its index. language is the metadata key, and what follows after the = sign

is the value in the metadata key-value pair. -codec copy  ensures that the

streams are not re-encoded – only the metadata is added.

The three-letter language codes (such as eng, mal, and tam) are

specified in the ISO 639-2 standard. Although the standard allows codes

for exceptional situations (mis for “uncoded languages,” mul for “multiple

languages,” qaa-qtz for “reserved for local use,” und for “undetermined,”

and zxx for “no linguistic content” or “not applicable”), many software and

hardware remain ignorant of them.

www.loc.gov/standards/iso639-2/php/code_list.php

�Summary
In this chapter, you learned to use ffmpeg to easily add, examine, edit,

export, import, and remove metadata. Metadata can be specified at the

container level (global) and for individual streams. This information can

greatly enrich the experience with media players. In their absence, media

players will try to make guesses and/or frustrate you with generic or wrong

interface choices. Media formats and software/hardware applications may

be picky and choosy about the kind of metadata they support.

With the end of this chapter, all that remains is a set of tips and tricks

that could not be accommodated anywhere else.

Chapter 10 All About Metadata

http://www.loc.gov/standards/iso639-2/php/code_list.php

271

Index

A
Apple Mac

download, installation, 6
Audacity, 32, 34, 116, 120, 121, 123,

125, 139, 140
Audio

album art, 39, 64, 155–157,
160, 162

beep, 202, 203
bitrate, 19, 48, 51, 55
bleep, 204
capture, 193, 194, 196
channels

channel maps, 44
downmix, 126
filters, 44
merge, 44
mix, 42, 43
move, 42, 126, 129, 130
mute, 41, 42
out-of-phase, 130, 131
split, 44, 126, 129
swap, 128

codec, 17–19, 56
compression, 19, 173, 231, 242
concatenate, 94, 171, 261
conversion

5.1 to stereo, 134

from MIDI, 120
mono to stereo, 133
stereo to mono, 131, 132
from text, 138
two stereo to one

stereo, 134–136
from video, 119
visual waveforms, 136–138

copy, 42, 55, 56
cut, 78, 79
decoder, 18, 19, 48, 231
downmix (see Channels,

downmix)
echo, 250
encoder, 18, 19, 48, 55
espeak (see libflite)
extraction, 55, 56
fading, 105
hardware, 164
libflite (see espeak)
metadata, 23, 25, 38, 39, 155,

158, 164, 260
microphone, 19, 192–194
MIDI, 47
mono, 24, 42, 43, 129, 131,

133, 135
multi-channel, 126, 250
noise, 102, 139, 252

© V. Subhash 2023
V. Subhash, Quick Start Guide to FFmpeg, https://doi.org/10.1007/978-1-4842-8701-9

https://doi.org/10.1007/978-1-4842-8701-9#DOI

272

normalization, 125, 126
podcasts, 66, 68
recording (see Microphone)
reverse, 251
sampling rate, 48, 49
silence, 138, 250
silence detection, 138, 252
sine wave, 202, 252
slow down, 251
speed up, 115
stereo, 24, 26, 42, 51, 55, 126,

129, 133
stream metadata, 41
streams, 49, 94, 130, 135, 163,

164, 210, 250, 251
text-to-speech, 68
tracks, 34, 106, 129, 130, 163
volume, 125, 126, 252, 261
waveform (see Filters, showfreqs;

Filters, showvolume; Filters,
showwaves)

B
bash, 168

aliases, 11, 170
multi-line commands, 5
terminal prompt, 166
See also FFmpeg, automation

Bitrate, 19, 48, 51, 52, 56, 173, 185,
195, 230, 242, 248

Blurring
boxblur, 110, 111, 253

grainy videos, 54
smartblur, 109, 110, 258
video noise, 203

Building executables, see
Source code

C
Caja, see FFmpeg, automation
Channels, see Audio, channels
Clip

without re-encoding, 78
See also Filters, concat;

Muxers, concat
cmd (Command Prompt in MS

Windows)
/dev/null (see NUL)
execute/run FFmpeg

commands, 30, 194
install FFmpeg, 1–9
multi-line commands, 5
NUL, 52
PATH environment variable,

3, 4, 67
upper-case typing, 4

Codecs
codec-copy, 81
See also Encoders; Formats;

Maps; Muxers
Color

brightness, contrast, saturation,
100, 254

in hexadecimal, 149, 174, 175
literals, 175

Audio (cont.)

INDEX

273

replace a colour, 212
replace green screen, 212
RGB values, 227, 253, 260
test pattern, 260

Command line, see bash; cmd
Container, 17, 19, 21, 51, 79, 84,

142, 143, 164, 261
Conversion, 12, 49, 52, 54

audio
CBR, 173
from text, 68
VBR, 173
from video, 66–68

constant bitrate, 52, 173
constant rate factor (CRF), 53
DVD, 152
images

image2, 59
image2pipe, 59
from video, 59, 60
to video, 64–66

multi-pass, 51, 52
settings, 47, 51, 52, 59, 69, 77,

135, 173
subtitles, 141–153
VCD, 69
video

from audio, 68
from images, 59, 60

See also Encoders; FFmpeg,
options; FFmpeg,-target;
Input files; Maps; Metadata;
Output files; Pixel formats

Cut videos, see Clip

D
Desktop, see FFmpeg, automation
/dev/null, 5, 11, 52, 59, 170, 172,

181, 184
Download

online videos, 66
pre-built executables, 8
source code, 1, 215
subtitles, 141

Duration, see FFmpeg,-ss;
FFmpeg,-t; Filters, apad;
Filters, atrim; Filters, pad;
Filters, trim; Time values

DVD
backups, 71, 142
conversion, 52
subtitles, 23, 142, 152, 249

E
Encoders, 17–19, 25, 48–51, 53–56,

64, 75, 77, 130, 142, 173,
216–218, 244–247

espeak, 139, 170–172
Executables, see Installation

F
FFmpeg

banner hiding, 170
codecs, 15
command-line program, 214
decoders, 14, 49, 69
demuxers, 14, 19, 20, 35

INDEX

274

download executables, 1, 2
encoders, 14, 19, 49, 50, 77
executables, 1, 2, 8, 9, 14, 15, 68,

138, 214
installing in Windows, 1–2

filters
aecho, 204
aevalsrc, 203
afade, 106
amerge, 44, 135
amix, 106
anoisesrc, 102
anullsrc, 201, 202
apad, 135
areverse, 205
asetpts, 95
atempo, 115
atrim, 94, 106, 205
boxblur, 111
channelmap, 44, 126
channelsplit, 44, 126, 135
colorkey, 212
concat, 81, 94, 95, 106, 205
crop, 108, 109, 214
drawbox, 113, 114
drawtext, 14, 112, 113,

200, 201
eq, 100, 101
errors, 85
escaping, 95
expressions, 86, 87, 89, 90,

92, 93, 117
fade, 106

fps, 62, 63, 106
framerate, 60, 61, 65
hflip, 98, 99
hstack, 93
join, 135
online video examples,

141, 220
options, 83, 86, 139
overlay, 89–93, 106, 198
pad, 91–93
palettegen, 62, 63
paletteuse, 62, 63
pan, 44, 126
reverse, 206
rotate, 97
scale, 89–92
select, 34
setdar, 73, 97
setpts, 95, 115
setsar, 258
settb, 208
showfreqs, 137
showvolume, 210
showwaves, 208, 209
sine, 202, 208
sink filters, 84
smartblur, 109
source filters, 84, 102
testsrc, 102
timeline-based editing, 214
transpose, 95–97
trim, 94, 106
vflip, 98
volume, 120, 123

FFmpeg (cont.)

INDEX

275

volumedetect, 122
vstack, 93
xfade, 206, 207

formats (see Conversion)
installation, 4, 14
lavfi, 5, 68, 102, 138,

172, 201–203
libav libraries, 117
muxers, 19, 20
numbering

channel maps, 41–44
input files, 25, 27, 29, 31, 49,

77, 80, 83
maps, 31–35
metadata, 35–39
metadata maps, 39–41
output files, 27–31

options
-ac, 35, 45, 130, 134
-an, 48, 52, 138
-ar, 48, 49
-b, 19
-b:a, 35, 48
-b:v, 48
-c, 75, 130
-c:a, 48, 49, 75
-codec, 35, 49, 78, 81
-c:s, 75
-c:v, 48, 49, 75
-f, 48, 58, 59, 158
-filter:a, 83
-filter_complex, 83
-filter:v, 60, 61, 63, 95, 99,

103, 106, 108, 109, 200, 213

-framerate, 60
-h, 14
-hide_banner, 170
-i, 12, 27, 28, 76, 81, 196
-id3v2_version, 158, 172
-loop, 59
-map, 31, 35, 45, 56, 84
-map_metadata, 39, 40
-metadata, 38, 39, 41, 155
obsolete/incorrect

options, 49
-pass, 48
-passlogfile, 48
-pix_fmt, 59, 60
-preset, 53
-print_format, 184
-r, 48, 58, 59
-s, 71, 72, 196
-select_streams, 181, 182,

184, 190
-shortest, 48, 198
-show_entries, 184
-show_streams, 12, 178
-ss, 58, 75–77
-t, 58, 75, 77
-target, 69
-tune, 54
-version, 214, 215
-vn, 48
-y, 48

website, official, 8, 9, 59, 69, 81,
84, 85, 89, 119

website, wiki, 6, 8, 194, 221
See also Formats

INDEX

276

ffplay
-autoexit, 11
lavfi, 203

ffprobe
-sections, 182
-show_streams, 12, 178, 181

Filters, see FFmpeg, filters
Formats

audio
flac, 133, 231, 242
MP3, 17, 56
wav, 12, 13, 19, 133, 202, 203

codecs
lossless, 18, 223
lossy, 18, 19, 173
See also HEVC; MPEG4

compression, 51–54
containers, 17, 19, 21, 35
conversion, 47–69
decoders, 17–19
demuxers, 19, 20, 35
encoders, 17–19
image

GIF, 62, 63, 197–199
JPEG, 197
PNG, 28, 29, 197

muxers, 19, 20
video

MKV, 24, 26, 40, 79, 142, 143,
145, 153

MOV, 17, 142
MP3, 23, 35–37, 40, 64–66
MP4, 17, 20, 23, 28, 34, 42, 47,

49, 56, 64, 65, 79, 80, 142, 143

VOB (see DVD)
See also FFmpeg, options,-f;

Pixel formats
Frame rate, 58–60, 81, 195, 200,

208, 214

G
GIF

conversion from video, 62, 63
conversion to video, 69

Green screen, 212

H
H264, see Formats
Hardware

microphone, 19, 192–194
screen capture, 195, 196
webcam, 143, 192, 194, 195

Hardware acceleration
compilation, 7, 8
encoders and decoders,

17, 216–218
filters, 218
See also Formats

Help
display, 6, 20, 85, 89, 197
extra resources, 221
forums, 221
official documentation, 89

HEVC, 217
Hexadecimal, see Colors,

hexadecimal

INDEX

277

I, J, K
I frames, 185–188, 191, 192
Image

conversion
slideshow, 60, 61
video-to-image, 57, 58

gallery, 191
GIF, 197
render GIF animation over

video, 197–199
render static image over

video, 197
thumbnails, 191
See also Blurring; Formats; I

frames; P frames
Input files

numbering, 39
See also FFmpeg, options,-i;

FFmpeg, options,-map
Installation

Apple Mac, 9
Linux, 147
Windows, 1–6
See also Hardware acceleration;

Source code

L
LAME MP3

conversion, 55
ID3v2, 158, 172
tag, 40, 157, 158, 172

libflite, 68, 138, 172

Linux
desktop (see FFmpeg,

automation)
download, compiling source

code, installation (see
Source code)

See also bash
Logo, see Filters, delogo

M
Maps, see FFmpeg, filters,

-channelmap; FFmpeg,
options,-map; FFmpeg,
options,-metadata_map

Mate, see FFmpeg, automation
Matroska, see MKV
Metadata, 20, 164

adding, 34, 155–157
album art, 35, 37, 160, 161
for audio stream

language, 38, 163, 164
export, 158
global, 155
import, 159, 160
ISO codes, 163
map, 160, 161
MP3 tags, 170–172
metadata

maps, 39–41
numbering, 170
remove, 162
stream-specific, 25, 26, 155

INDEX

278

for subtitle stream language, 39
See also FFmpeg, schematic;

Containers
Microphone, 19, 192–194
MIDI, see Audio, MIDI
MKV

container, 23, 24, 143, 153
conversion, 142
subtitles, 23, 143, 153

MP3, see LAME MP3
MP4, see MPEG4
MPEG4

codecs, 52
constant bitrate, 52
constant quality, 52
constant rate factor, 53
encoders, 53, 54, 56
presets, 53
subtitle format, 153
tuning, 53

Muxers
concat, 81
GIF, 20
See also Filters, concat; Help

N
Nautilus, see FFmpeg, automation
Noise

in audio, 102, 139, 250, 251
high-pass filter, 139
in video, 203

NUL, 5, 52, 170

O
OGG, 47
Output file, 19, 27–31, 35, 39–41, 43,

45, 47–49, 51, 58, 75, 76, 79,
81, 84, 90, 94, 120, 131,
162, 164

P, Q, R
PATH, see FFmpeg, executables,

installing in Windows
P frames, 185
Pixelation, see Blurring
Pixel formats, 54, 59, 93, 255, 257
PNG, 28, 29, 197, 226, 237, 246

S
Sine wave, 202, 208, 209, 252
Source code

compilation guide, wiki
for Apple Mac users, 9
for Linux users, 6–8

download, configure script,
compilation, building
executable, 1, 16, 215

extra resources, 221
version, 4
See also Hardware acceleration

Streams
addressing (index), 141
numbering (index), 174
types (identifiers), 30

Metadata (cont.)

INDEX

279

See also ffprobe; Filters;
FFmpeg, options,-i;
FFmpeg, options-map;
Metadata

Subtitles
add stream, 146, 150, 151
.ass, 141, 143, 147, 244, 253
burn into video stream,

23, 143–145
convert, 142
DVD, 23, 142, 152
extract, 152
fonts, 145, 146
metadata for language, 150
mov_text, 142
.srt, 141, 233, 244, 249
.ssa, 141, 244
substation alpha

styles, 146–150

T, U
Terminal, see bash; cmd
Time values, 76
Timidity, see Audio, MIDI

V, W, X, Y, Z
Video

add subtitles, 142, 143
add timer, 200, 201
adjust brightness/contrast,

100, 101
append (concatenate), 80, 81, 94

aspect ratio, 73
from audio (waveforms),

208, 209
blur, 109–111
change colors to grayscale, 253
create thumbnail

gallery, 188–192
crop video, 107, 108
cut without re-encoding, 78, 79
delete a portion, 94, 95
display aspect ratio (DAR) (see

FFmpeg, filters, setdar)
distortion, 74
draw boxes, 113, 114
edit, 75
extract images, 160, 185
extract still frames (images),

57, 58, 69
extract subtitles, 151, 152
fade into another, 105–107
flip, 98, 99
green-screen elimination, 212
I frames, 185
from images, 210
inset (picture-in-picture), 88–90
noise, 128
overlay, 197, 253, 257
pixel aspect ratio (PAR), 75
record, 18
remove logo, 103, 104
render audio

waveform, 136–138
resize, 71–75
reverse, 205, 206

INDEX

280

rotate, 95–98
sample aspect ratio (SAR), 73
sharpen, 109, 110
side-by-side split, 90, 134

slow down, 116, 117
speed up, 115
test, 102
from text, 112, 113
from webcam, 143

Video (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Installing FFmpeg
	FFmpeg for Microsoft Windows Users
	FFmpeg for Linux Users
	FFmpeg for Apple Mac Users
	Summary

	Chapter 2: Starting with FFmpeg
	ffprobe
	ffplay
	ffmpeg
	Other FFmpeg End-User Programs
	Summary

	Chapter 3: Formats and Codecs
	Containers
	Codecs, Encoders, and Decoders
	Demuxers and Muxers
	Summary

	Chapter 4: Media Containers and FFmpeg Numbering
	Containers
	Container Internals
	Input and Output Files
	Maps
	Metadata
	Metadata Maps
	Channel Maps
	Do Not Use the -map_channel Option

	Summary

	Chapter 5: Format Conversion
	No-Brainer Conversions
	Conversion Options
	Obsolete/Incorrect Options
	Codec Option
	Sample Conversion with Custom Settings
	Multi-pass Conversion
	Conversion for Maximum Compression and Quality
	Audio Conversion
	Audio Extraction
	Extract Stills from a Video (Video-to-Image Conversion)
	Image-Conversion Settings
	Create Video from Images (Image-to-Video Conversion)
	Create a Slideshow from Several Images
	Create a GIF from a Video
	APNG

	Create a Video Using an Image and an MP3
	Convert Online Videos to Audio
	Convert Text to Audio
	Conversion Settings for Specific Storage Medium
	Summary

	Chapter 6: Editing Videos
	Resize a Video
	Editing Options
	Cut a Portion of a Video
	Cut Without Re-encoding
	Append Videos (Concatenate)
	Don’t Knock -codec copy
	Summary

	Chapter 7: Using FFmpeg Filters
	Filter Construction
	Filter Errors
	Filter-Based Timeline Editing
	Expressions in FFmpeg Filter Definitions
	Inset Video (Picture-in-Picture Overlay)
	Split Video (Side-by-Side Overlay)
	Append Videos Using a Filter
	Delete a Portion of a Video in the Middle
	Rotate a Video
	Flip a Video
	Brighten a Video (Adjust Contrast)
	Generate a Test Video
	Remove Logo
	Fade into Another Video (And in Audio Too)
	Crop a Video
	Blur or Sharpen a Video
	Blur a Portion of a Video
	Draw Text
	Draw a Box
	Speed Up a Video
	Slow Down a Video
	Summary

	Chapter 8: All About Audio
	Convert from One Audio Format to Another
	Extract Audio from a Video
	Convert a MIDI File to MP3 or Ogg
	Change Volume
	Change Volume in a Video File
	Dynamic Range Compression/Normalization
	Channels
	Swap Left and Right Channels
	Turn Off a Channel
	Move Channel to a Separate Audio Track
	Fix Out-of-Phase Audio Channels
	Change Stereo to Mono
	Convert Mono to Stereo
	Make Audio Comfortable for Headphone Listening
	Downmix 5.1 Audio to Stereo
	Downmix Two Stereo Inputs to One Stereo Output
	Render a Visual Waveform of the Audio
	Detect Silence
	Silence the Video
	Convert Text to Speech
	Apply a Low-Pass Filter
	Summary

	Chapter 9: All About Subtitles
	Add Subtitles to a Video as an Extra Stream
	Permanently Burn Subtitles to a Video
	Add a Custom Font for Displaying Subtitles of a Video
	About the Substation Alpha (SSA/ASS) Subtitle Format
	Add Subtitle Files in Different Languages
	Extract Subtitles from a Video
	Extract Subtitles from a DVD
	Summary

	Chapter 10: All About Metadata
	Add Album Art to MP3
	Set MP3 Tags
	Export Metadata
	Import Metadata
	Extract Album Art
	Remove All Metadata
	Set Language Metadata for Audio Streams
	Summary

	Index

