

PROCEDURAL
ELEMENTS

FOR COMPUTER
GRAPHICS

David F. Rogers

Professor of Aerospace Engineering

and

Director, Computer Aided Design

and Interactive Graphics

United States Naval Academy, Annapolis, Md.

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotd Hamburg
Johannesburg London Madrid Mexico Montreal New Delhi
Panama Paris Sao Paulo Singapore Sydney Tokyo Toronto

PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS
INTERNATIONAL STUDENT EDITION

Copyright © 1985

Exclusive rights by McGraw-Hill Book Co - Singapore

for manufacture and export. This book cannot

be re-exported from the country to which it is consigned by
McGraw-Hill.

2nd printing 1985

Copyright © 1985 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. Except as
permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a data base or
retrieval system, without the prior written permission of the
publisher.

This book was computer phototypeset in Times Roman, by
TYX Corporation.

The editors were Kiran Verma and David A. Damstra;
The production supervisor was Joe Campanella;

Project supervision was by the author.

The cover was designed by Fern Logan and the author.

Library of Congress Cataloging in Publication Data

Rogers, David F., date
Procedural elements for computer graphics.

Includes bibliographical references and index.
1. Computer graphics. I. Title.

T385.T63 1985 001.64°43 83-24403

ISBN 0-07-053534-5

When ordering this title use ISBN 0-07-Y66503-6

PRINTED IN SINGAPORE BY KEFFORD PRESS

PROCEDURAL ELEMENTS FOR
COMPUTER GRAPHICS

To my mother Gladys Marion (Zoller) Rogers (1906)
and my father Lewis Freeman Rogers (1906-1981)
who provided such a fine start in life.

CONTENTS

Preface xi

Chapter 1 Introduction to Computer Graphics

1
1-1 Overview of Computer Graphics 1
1-2 Types of Graphics Devices 3
1-3 Storage Tube Graphics Displays 3
1-4 Calligraphic Refresh Graphics Displays 5
1-5 Raster Refresh Graphics Displays 8

1-6 Cathode Ray Tube Basics 15
1-7 Color CRT Raster Scan Basics 16
1-8 Video Basics 17
1-9 Interactive Devices 20
1-10 Summary 28
1-11 References 28
Chapter 2 Raster Scan Graphics 29
2-1 Line Drawing Algorithms 29
2-2 Digital Differential Analyzer 30
2-3 Bresenham’s Algorithm 34
2-4 Integer Bresenham’s Algorithm 38
2-5 General Bresenham’s Algorithm 40
2-6 Circle Generation — Bresenham’s Algorithm 42
2-7 Scan Conversion — Generation of the Display 51
2-8 Real-Time Scan Conversion 52
29 Run-Length Encoding 56

2-10 Cell Encoding 60

vii

vili CONTENTS

2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29

Chapter 3
31
32
33
3-4

3-5
3-6
37

3-8
39
3-10
3-11
3-12
3-13

3-14
3-15
3-16

3-17
3-18
3-19

Chapter 4

41
42
43
4-4
4-5

Frame Buffers

Addressing the Raster

Line Display

Character Display

Solid Area Scan Conversion

Polygon Filling

Scan-Converting Polygons

A Simple Ordered Edge List Algorithm
A More Efficient Ordered Edge List Algorithm
The Edge Fill Algorithm

The Edge Flag Algorithm

Seed Fill Algorithms

A Simple Seed Fill Algorithm

A Scan Line Seed Fill Algorithm
Fundamentals of Antialiasing

Simple Area Antialiasing

The Convolution Integral and Antialiasing
Halftoning

References

Clipping

Two-Dimensional Clipping

Sutherland-Cohen Subdivision Line Clipping Algorithm
Midpoint Subdivision Algorithm

Generalized Two Dimensional Line Clipping for
Convex Bourdaries

Cyrus-Beck Algorithm

Interior and Exterior Clipping

Identifying Convex Polygons and Determining the
Inward Normal

Splitting Concave Polygons

Three-Dimensional Clipping

Three-Dimensional Midpoint Subdivision Algorithm
Three-Dimensional Cyrus-Beck Algorithm

Clipping in Homogeneous Coordinates

Determining the Inward Normal and Three-Dimensional
Convex Sets

Splitting Concave Volumes

Polygon Clipping

Reentrant Polygon Clipping — Sutherland-Hodgman
Algorithm

Concave Clipping Regions — Weiler-Atherton Algorithm
Character Clipping

References

Hidden Lines and Hidden Surfaces

Introduction

Floating Horizon Algorithm
Roberts Algorithm
Warnock Algorithm
Weiler-Atherton Algorithm

111

111
121
125

131
135
146

146
151
152
155
157
162

164
166
168

169
179
185
187

189

189
191
205

259

CONTENTS ix

4-6 A Subdivision Algorithm for Curved Surfaces 264
4-7 z-Buffer Algorithm 265
4-8 List Priarity Algorithms 272
4-9 Scan Line Algorithms 279
4-10 Scan Line z-Buffer Algorithm 280
4-11 A Spanning Scan Line Algorithm 284
4-12 Scan Line Algorithms for Curved Surfaces 292
4-13 A Visible Surface Ray Tracing Algorithm 296
4-14 Summary 305
4-15 References 306
Chapter 5 Rendering 309
5-1 Introduction 309
5-2 A Simple Illumination Model 311
5-3 Determining the Surface Normal 317
5-4 Determining the Reflection Vector 320
5-5 Gouraud Shading 323
5-6 Phong Shading 325
5-7 A Simple Illumination Model with Special Effects 330
5-8 A More Complete Illumination Model 332
5-9 Transparency 340
5-10 Shadows 345
5-11 Texture 354
5-12 A Global Illumination Model Using Ray Tracing 363
5-13 A More Complete Global Illumination Model Using Ray
Tracing 379
5-14 Recent Advances in Rendering 381
5-15 Color 383
5-16 References 408
Appendixes 411
Appendix A Pseudocode 411
Appendix B Projects 417

Index 423

PREFACE

Computer graphics is now a mature discipline. Both hardware and software
are available that facilitate the production of graphical images as diverse as line
drawings and realistic renderings of natural objects. A decade ago the hardware
and software to generate these graphical images cost hundreds of thousands of
dollars. Today, excellent facilities are available for expenditures in the tens
of thousands of dollars and lower performance, but in many cases adequate
facilities are available for tens of hundreds of dollars. The use of computer
graphics to enhance information transfer and understanding is endemic in al-
most all scientific and engineering disciplines. Today, no scientist or engineer
should be without a basic understanding of the underlying principles of com-
puter graphics. Computer graphics is also making deep inroads into the busi-
ness, medical, advertising, and entertainment industries. The presence in the
boardroom of presentation slides prepared using computer graphics facilities
as well as more commonplace business applications is considered the norm.
Three-dimensional reconstructions using data obtained from CAT scans is be-
coming commonplace in medical applications. Television as well as other ad-
vertising media are now making frequent use of computer graphics and com-
puter animation. The entertainment industry has embraced computer graphics
with appllcatlons as diverse as video games and full-length feature films. Even
art is not immune, as evidenced by some of the photos included in this book.
It is almost a decade now since the appearance of the companion volume
to this book, Mathematical Elements for Computer Graphics. During that time
significant strides in raster scan graphics have been made. The present volume
concentrates on these aspects of computer graphics. The book starts with an
introduction to computer graphics hardware with an emphasis on the concep-

xi

xii PREFACE

tual understanding of cathode ray tube displays and of interactive devices. The
following chapters look at raster scan graphics including line and circle drawing,
polygon filling, and antialiasing algorithms; two- and three-dimensional clip-
ping including clipping to arbitrary convex volumes; hidden-line and hidden-
surface algorithms including ray tracing; and finally, rendering, the “art” of
making realistic pictures, including local and global illumination models, tex-
ture, shadows, transparency, and color effects. The book continues the presen-
tation technique of its predecessor. Each thorough topic discussion is followed
by presentation of a detailed algorithm or a worked example, and where ap-
propriate both.

The material in the book can be used in its entirety for a semester-long
first formal course in computer graphics at either the senior undergraduate or
graduate level with an emphasis on raster scan graphics. If a first course in com-
puter graphics based on the material in the companion volume Mathematical
Elements for Computer Graphics is presented, then the material in this book
is ideal for a second course. This is the way it is used by the author. If
broader material coverage in a single-semester course is desired, then the two
volumes can be used together. Suggested topic coverage is: Chapter 1 of both
volumes, followed by Chapters 2 and 3 with selected topics from Chapter 4
of Mathematical Elements for Computer Graphics, then selected topics from
Chapter 2 (e.g., 2-1 to 2-5, 2-7, 2-15 to 2-19, 2-22, 2-23, 2-28), Chapter 3 (e.g.,
31, 3-2, 3-4 to 3-6, 3-9, 3-11, 3-15, 3-16), Chapter 4 (e.g., 4-1, part of 4-2 for
backplane culling, 4-3, 4-4, 4-7, 4-9, 4-11, 4-13), and Chapter 5 (e.g., 5-1 to 5-
3, 5-5, 5-6, 5-14) of the present volume. The book is also designed to be useful
to professional programmers, engineers, and scientists. Further, the detailed
algorithms and worked examples make it particularly suitable for self-study at
any level. Sufficient background is provided by college level mathematics and
a knowledge of a higher-level programming language. Some knowledge of data
structures is useful but not necessary.

There are two types of algorithms presented in the book. The first is a
detailed procedural description of the algorithm, presented in narrative style.
The second is more formal and uses an algorithmic ‘language’ for presenta-
tion. Because of the wide appeal of computer graphics, the choice of an algo-
rithmic presentation language was especially difficult. A number of colleagues
were questioned as to their preference. No consensus developed. Computer
science faculty generally preferred PASCAL but with a strong sprinkling of
C. Industrial colleagues generally preferred FORTRAN for compatibility with
existing software. The author personally prefers BASIC because of its ease of
use. Consequently, detailed algorithms are presented in pseudocode. The pseu-
docode used is based on extensive experience teaching computer graphics to
classes that do not enjoy knowledge of a common programming language. The
pseudocode is easily converted to any of the common computer languages. An
appendix discusses the pseudocode used. The pseudocode algorithms presented
in the book have all been either directly implemented from the pseudocode or
the pseudocode has been derived from an operating program in one or more of

PREFACE xiii

the common programming languages. Implementafions range from BASIC on
an Apple Ile to PL1 on an IBM 4300 with a number of variations in between.
A suit of demonstration programs in available from the author.

A word about the production of the book may be of interest. The book
was computer typeset using the TEX typesetting system at TYX Corporation
of Reston, Virginia. The manuscript was coded directly from handwritten
copy. Galleys and two sets of page proofs were produced on a laser printer for
editing and page makeup. Final reproduction copy ready for art insertion was
produced on a phototypesetter. The patience and assistance of Jim Gauthier
and Mark Hoffman at TYX while the limits of the system were explored and
solutions to all the myriad small problems found is gratefully acknowledged.
The outstanding job done by Louise Bohrer and Beth Lessels in coding the
handwritten manuscript is gratefully acknowledged. The usually fine McGraw-
Hill copyediting was supervised by David Damstra and Sylvia Warren.

No book is ever written without the assistance of many individuals. The
book is based on material prepared for use in a graduate level course given
at the Johns Hopkins University Applied Physics Laboratory Center beginning
in 1978. Thanks are due the many students in this and other courses from
whom I have learned so much. Thanks are due Turner Whitted who read the
original outline and made valuable suggestions. Thanks are expressed to my
colleagues Pete Atherton, Brian Barsky, Ed Catmull, Rob Cook, John Dill,
Steve Hansen, Bob Lewand, Gary Meyer, Alvy Ray Smith, Dave Warn, and
Kevin Weiler, all of whom read one or more chapters or sections, usually in
handwritten manuscript form, red pencil in hand. Their many suggestions and
comments served to make this a better book. Thanks are extended to my
colleagues Linda Rybak and Linda Adlum who read the entire manuscript and
checked the examples. Thanks are due three of my students: Bill Meier who
implemented the Roberts algorithm, Gary Boughan who originally suggested
the test for convexity discussed in Sec. 3-7, and Norman Schmidt who originally
suggested the polygon splitting technique discussed in Sec. 3-8. Thanks are due
Mark Meyerson who implemented the splitting algorithms and assured that the
technique was mathematically well founded. The work of Lee Billow and John
Metcalf who prepared all the line drawings is especially appreciated.

Special thanks are due Steve Satterfield who read and commented on all
800 handwritten manuscript pages. Need more be said!

Special thanks are also due my eldest son Stephen who implemented all
of the hidden surface algorithms in Chapter 4 as well as a number of other
algorithms throughout the book. Our many vigorous discussions served to
clarify a number of key points.

Finally, a very special note of appreciation is extended to my wife Nancy
and to my other two children, Karen and Ransom, who watched their husband
and father disappear into his office almost every weeknight and every weekend
for a year and a half with never a protest. That is support! Thanks.

David F. Rogers

CHAPTER

ONE
INTRODUCTION TO COMPUTER GRAPHICS

Computer graphics is now a maturing technology. The underlying elements of
manipulative transformations and curve and surface descriptions are well under-
stood and documented (see Refs. 1-1 to 1-3). Raster scan technology, clipping,
hidden lines and hidden surfaces, color, shading, texture, and transparency ef-
fects are also understood but still developing. It is these latter topics which are
of present interest.

1-1 OVERVIEW OF COMPUTER GRAPHICS

Computer graphics is a complex and diversified technology. To begin to under-
stand the technology it is necessary to subdivide it into manageable parts. This
can be accomplished by considering that the end product of computer graphics
is a picture. The picture may, of course, be used for a large variety of pur-
poses; e.g., it may be an engineering drawing, an exploded parts illustration for
a service manual, a business graph, an architectural rendering for a proposed
construction or design project, an advertising illustration, or a single frame
from an animated movie. The picture is the fundamental cohesive concept in
computer graphics. We must therefore consider how

Pictures are represented in computer graphics
Pictures are prepared for presentation
Previously prepared pictures are presented
Interaction with the picture is accomplished

Although many algorithms accept picture data as polygons or edges, each
polygon or edge can in turn be represented by vertex points. Points, then, are
the fundamental building blocks of picture representation. Of equal fundamen-
tal importance is the algorithm which explains how to organize the points. To

1

2 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

illustrate this consider a unit square in the first quadrant. The unit square can
be represented by its four corner points (see Fig. 1-1)

Pi(0, 0), Px(1,0), P3(1,1), P40, 1)
An associated algorithmic description might be
Connect Py P, P3 P4 P; in sequence
The unit square can also be described by four elges
E, = P\P;, E; = PPy, E;=PPy, E4= PP,
Here the algorithmic description is
Display E| E; E3 E4 in sequence

Finally, either the points or edges can be used to describe the unit square as a
single polygon, e.g.,

St = Py P, Py Py Py or P, P4 P; P, P,
or S1 = E\E,E3 Eq

The fundamental building blocks, i.e. points, can be represented as either
pairs or triplets of numbers depending on whether the data are two- or three-
dimensional. Thus, (xi, y1) or (xi, y1, z;) would represent a point in either
two- or three-dimensional space. Two points would represent a line or edge,
and a collection of three or more points a polygon. These points, edges, or
polygons are collected or stored in a data base. The data used to prepare
the picture for presentation is rarely the same as that used to present the
picture. The data used to present the picture is frequently called a display
file. The display file will represent some portion, view, or scene of the picture
represented by the total data base. The displayed picture is usually formed by
rotating, translating, scaling, and performing various projections on the data.
These basic orientation or viewing preparations are generally performed using a
4 X 4 transformation matrix operating on the data represented in homogeneous

\
P E
10 o= 3 Ps
E, S, E,
Py P,

0 E, 1.0 Figure 1-1 Picture data descriptions.

STORAGE TUBE GRAPHICS DISPLAYS 3

coordinates (see Ref. 1-1). Frequently these operations are implemented in
hardware. Hidden line or hidden surface removal, shading, transparency,
texture, or color effects may be added before final presentation. If the picture
represented by the entire data base is not to be presented, the appropriate
portion must be selected. This is a process called clipping. Clipping may be
two- or three-dimensional as appropriate. In some cases the clipping window or
volume may have holes in it or may be irregularly shaped. Clipping to standard
two- and three-dimensional regions is frequently implemented in hardware.

Almost all pictures involve the presentation of textual material. Characters
can be generated in either hardware or software. If generated in software,
they can be manipulated and treated like any other portion of the picture. If
generated in hardware, they are maintained as character codes until just prior
to display. Usually only limited manipulative capabilities are provided; e.g.,
only limited rotations and sizes are available. Clipping of hardware-generated
characters is generally not possible. Either the entire character is displayed or
none of it is displayed.

1-2 TYPES OF GRAPHICS DEVICES

The display medium for computer graphics-generated pictures has become
widely diversified. Typical examples are pen-and-ink plotters, dot matrix,
electrostatic or laser printer plotters, film, storage tube, calligraphic refresh,
and raster scan cathode ray tube (CRT) displays. Because the large majority of
computer graphics systems utilize some type of CRT display and because most
of the fundamental display concepts are embodied in CRT display technology,
we will limit our discussion to CRT displays. Other display technologies are
discussed in Refs. 1-1 to 1-3.

The three most common types of CRT display technologies are direct-view
storage tube (line drawing), calligraphic (line drawing) refresh, and raster scan
(point plotting) refresh displays. With recent advances, an individual display
may incorporate more than one technology. In discussing the various displays
we take a user’s, or conceptual, point of view; i.e., we are generally concerned
with functional capabilities and not with the details of the electronics.

1-3 STORAGE TUBE GRAPHICS DISPLAYS

The direct-view storage tube is conceptually the simplest of the CRT displays.
The storage tube display, also called a bistable storage tube, can be considered
a CRT with a long-persistence phosphor. A line or character will remain visible
(up to an hour) until erased. A typical display is shown in Fig. 1-2. To draw a
line on the display the intensity of the electron beam is increased sufficiently to
cause the phosphor to assume its permanent bright “storage” state. The display
is erased by flooding the entire tube with a specific voltage which causes the

4 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 1-2 Storage tube graphics display.

phosphor to assume its dark state. Erasure takes about 1/2 second. Because
the entire tube is flooded, all lines and characters are erased. Thus, individual
lines and characters cannot be erased, and the display of dynamic motion
or animation is not possible. An intermediate state (write-through mode) is
sometimes used to provide limited refresh capability (see below). Here, the
electron beam is intensified to a point that is just below the threshold that
will cause permanent storage but is still sufficient to brighten the phosphor.
Because the image in this mode does not store, it must be redrawn or repainted
continuously in order for it to be visible.

A storage tube display is flicker-free (see below) and capable of display-
ing an “unlimited” number of vectors. Resolution is typically 1024 x 1024
addressable points (10 bits) on an 8 X 8 inch square (11-inch-diagonal CRT)
or 4096 x 4096 (12 bits) on either a 14 X 14 inch square (19-inch-diagonal
CRT) or an 18 x 18 inch square (25-inch-diagonal CRT). Typically only
78 percent of the addressable area is viewable in the vertical direction.

A storage tube display is a line drawing or random scan display. This
means that a line (vector) can be drawn directly from any addressable point to
any other addressable point. Hard copy is relatively easy, fast, and inexpensive

CALLIGRAPHIC REFRESH GRAPHICS DISPLAYS §

to obtain. Conceptually, a storage tube display is somewhat easier to program
than a calligraphic or raster scan refresh display. Storage tube CRT displays can
be combined with microcomputers into stand-alone computer graphics systems
or incorporated into graphics terminals. When incorporated into terminals,
alphanumeric and graphic information are passed to the terminal by a host
computer over an interface. Although parallel interfaces are available, typically
a serial interface which passes information 1 bit at a time is used. Because of
the typically low interface speed and the erasure characteristics, the level of
interactivity with a storage tube display is lower than with either a refresh or
raster scan display.

1-4 CALLIGRAPHIC REFRESH GRAPHICS DISPLAYS

In contrast to the storage tube display, a calligraphic (line drawing or vector)
refresh CRT display uses a very short-persistence phosphor. These displays
are frequently called random scan displays (see below). Because of the short
persistence of the phosphor, the picture painted on the CRT must be repainted
or refreshed many times each second. The minimum refresh rate is at least 30
times each second, with a recommended rate of 40 to 50 times each second.
Refresh rates much lower than 30 times each second result in a flickering image.
The effect is similar to that observed when a movie film is run too slowly. The
resulting picture is difficult to use and disagreeable to look at.

The basic calligraphic refresh display requires two elements in addition
to the CRT. These are the display buffer and the display controller. The
display buffer is contiguous memory containing all the information required to
draw the picture on the CRT. The display controller’s function is to repeatedly
cycle through this information at the refresh rate. Two factors which limit the
complexity (number of vectors displayed) of the picture are the size of the
display buffer and the speed of the display controller. A further limitation is
the speed at which picture information can be processed, i.e. transformed and
clipped, and textual information generated.

Figure 1-3 shows two block diagrams of two high-performance calligraphic
refresh displays. In both cases it is assumed that picture transformations such
as rotation, translation, scaling, perspective, and clipping are implemented in
hardware in the picture processor. In the first case (Fig. 1-3a) the picture
processor is slower than the refresh rate for useful pictures (4000 to 5000 vec-
tors). Thus, the picture data sent by the host central processing unit (CPU) to
the graphics display is processed before being stored in the display buffer. Here
the display buffer contains only those precise instructions which are required
by the vector/character generator to draw the picture. Vectors are generally
held in screen coordinates. The display controller reads information from the
display buffer and sends it to the vector/character generator. When the display
controller reaches the end of the display buffer, it returns to the beginning and
cycles through the buffer again.

6 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Host Picture | _[Display

. Vector/
- Display Character
CPU Processor Buffer Controller Generator

Vector/
—™1Character
Generator

Host Display Picture Display

— —
CPU Buffer Processor Controller

b
Figure 1-3 Conceptual block diagrams of calligraphic refresh displays.

This first configuration also gives rise to the concepts of double buffering
and separate update and refresh rates. Since in this configuration the picture
processor is too slow to generate a complex new or updated picture within one
refresh cycle, the display buffer is divided into two parts. While an updated
picture is being processed and written into one half of the buffer, the display
controller is refreshing the CRT from the other half of the buffer. When
the updated picture is complete, the buffers are swapped and the process is
repeated. Thus, a new or updated picture may be generated every second,
third, fourth, etc., refresh cycle. Double buffering prevents part of the old
picture being displayed along with part of the new updated picture during one
or more refresh cycles.

In the second configuration (see Fig. 1-3b) the picture processor is faster
than the refresh rate for complex pictures. Here, the original picture data
base sent from the host CPU is held directly in the display buffer. Vectors
are generally held in user (world) coordinates as floating point numbers. The
display controller reads information from the display buffer, passes it through
the picture processor, and sends it to the vector generator in one refresh cycle.
This implies that picture transformations are performed “on the fly” within one
refresh cycle.

In either configuration, each vector, character, and picture drawing instruc-
tion exists in the display buffer. Hence, any individual element may be changed
independent of any other element. This feature, in combination with the short
persistence of the CRT phosphor, allows the display of dynamic motion. Figure
1-4 illustrates this concept. Figure 1-4 shows the picture displayed during four
successive refresh cycles. The visible solid line is the displayed line for the
current refresh cycle, and the invisible dotted line is for the previous refresh
cycle. Between refresh cycles the location of the end of the line, B, is changed.
The line will appear to rotate about the point A.

In many pictures only portions of the picture are dynamic. In fact, in many
applications the majority of the picture is static. This leads to the concept of
segmentation of the display buffer. Figure 1-5 illustrates this idea. Here, the
baseline, the cross-hatching, and the letter A used to show the support for the
line AB are static; i.e., they do not change from refresh cycle to refresh cycle.

CALLIGRAPHIC REFRESH GRAPHICS DISPLAYS 7

a b c d

Figure 1-4 Dynamic motion.

In contrast, the location of the end of the line AB and the letter B change
from refresh cycle to refresh cycle to show dynamic motion. These separate
portions of the picture data base are placed in separate segments of the display
buffer. Since the static segment of the display buffer does not change, it can be
ignored by the picture processor for the configuration shown in Fig. 1-3a. This
significantly reduces the work load on the picture processor when updating a
picture. In this case, only the picture in the dynamic segment need be updated.
Further, it reduces the amount of data that need be transmitted from the host
CPU to the picture processor during each picture update.

For the configuration shown in Fig. 1-3b a different type of segmentation
is possible. Recall that for this configuration the picture data base is stored
in the display buffer in world (user) coordinates and picture processing occurs
on the fly once each refresh cycle. For the picture in Fig. 1-5 two segments
are created in the display buffer, a static and a dynamic segment. However,
picture processing occurs on the fly. Dynamic update of the information in the

: AL LNy

Dynamic curve

B B

Figure 1-5 Display buffer segmentation. Figure 1-6 Intelligent display buffer seg-
. mentation.

8 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

dynamic segment can be accomplished using functions available in the picture
processor. Thus, picture update can occur locally within the graphics device,
and communication with the host CPU is unnecessary. For the particular case
shown in Fig. 1-5 the only picture processor function required for local dynamic
update is rotation about the point A.

Figure 1-6 illustrates a picture for which dynamic update requires com-
munication with the host CPU, i.e., intelligent update of the picture. Again
two segments are created, a static segment comprised of the baseline, cross-
hatching, and the letter A, and a dynamic segment comprised of the curve AB
and the letter B. Assume that the shape of the curve AB will change from
refresh cycle to refresh cycle depending upon physical factors. Thus, the shape
must be computed by an application program running in the host CPU. In order
to update the dynamic picture segment new data, e.g. curve shape, must be
sent to and stored in the display buffer.

Although the concept of picture segmentation has been introduced through
dynamic motion examples, it is not limited to dynamic motion or animation.
Any picture can be segmented. Picture segmentation is particularly useful for
interactive graphics programs. The concept is similar to modular program-
ming. The choice of modular picture segments, their size, and their complexity
depends on the particular application. Individual picture elements can be as
simple as single points or as complex as complete object descriptions. Reference
1-3 provides additional discussion.

To illustrate the importance of the communication speed, or bandwidth,
between the host CPU and the graphics device consider the requirements for
intelligently updating a curved line with 250 segments or points describing it.
Each point is described by three coordinates. If we assume that a floating point
representation with six significant figures (characters) is used, and that a single
8-bit byte is used to represent a character, then for a refresh rate of 30 frames
per second and an update every refresh cycle the required communication
bandwidth is

30[(no. points)(no. coor./point)(no. of sig. figs./point)(no. bits/char.)]
or 30(250)(3)(6)(8) = 1,080,000 bits/s

Thus, the required bandwidth can easily exceed 1 megabit per second. For
complicated three-dimensional sculptured surfaces, the required bandwidth can
easily exceed 10 times this, i.e., 10 megabits per second. In most cases this
dictates a parallel or direct memory access (DMA) interface between the host
CPU and the graphics device to support real-time intelligent dynamic graphics.
A typical calligraphic refresh display is shown in Fig. 1-7.

1-5 RASTER REFRESH GRAPHICS DISPLAYS

Both the storage tube CRT display and the random scan refresh display are
line drawing devices. That is, a straight line can be drawn directly from any
addressable point to any other addressable point. In contrast is the raster CRT

RASTER REFRESH GRAPHICS DISPLAYS 9

Figure 1-7 Calligraphic refresh display. (Courtesy of Evans & Sutherland Com-
puter Corp.)

graphics device. A raster CRT graphics device can be considered a matrix of
discrete cells each of which can be made bright. Thus, it is a point plotting
device. It is not possible except in special cases to directly draw a straight line
from one addressable point, or pixel, in the matrix to another addressable point
or pixel. The line can only be approximated by a series of dots (pixels) close
to the path of the line. Figure 1-8 illustrates the basic concept. Only in the
special cases of completely horizontal, vertical, or 45° lines will a straight line
of dots or pixels result. This is shown in Fig. 1-8. All other lines will appear

C
Picture element or pixel
~——Addressable point
Rasterized approximation
to line AB
A A
a b

Figure 1-8 Rasterization of a line.

10 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

as a series of stair steps. This is called aliasing or the “jaggies.” Antialiasing is
addressed in Chap. 2.

The most common method of implementing a raster CRT graphlcs device
utilizes a frame buffer. A frame buffer is a large, contiguous piece of computer
memory. As a minimum there is one memory bit for each location or pixel
(picture element) in the raster. This amount of memory is called a bit plane.
A 512 x 512 element square raster requires 2'® (2° = 512; 2! = 512 x 512)
or 262,144 memory bits in a single bit plane. The picture is built up.in the
frame buffer 1 bit at a time. Since a memory bit has only two states (binary
0 or 1), a single bit plane yields a black-and-white display. Since the bit plane
is a digital device, while the raster CRT is an analog device which requires
an electrical voltage, conversion from a digital representation to an analog
signal must take place when information is read from the frame buffer and
displayed on the raster CRT graphics device. This is accomplished by a digital-
to-analog converter (DAC). Each pixel in the frame buffer must be accessed
and converted before it is visible on the raster CRT. A schematic diagram of
a single-bit-plane black-and-white frame buffer raster CRT graphics device is
shown in Fig. 1-9.

Color or gray levels can be incorporated into a frame buffer raster graphics
device by using additional bit planes. Figure 1-10 schematically shows an N-
bit-plane gray level frame buffer. The intensity of each pixel on the CRT is
controlled by a corresponding pixel location in each of the N bit planes. The
binary value (0 or 1) from each of the N bit planes is loaded into corresponding
positions in a register. The resulting binary number is interpreted as an intensity
level between 0 and 2V — 1. This is converted into a voltage between 0 (dark)
and 2" — 1 (full intensity) by the DAC. A total of 2" intensity levels can be
achieved. Figure 1-10 illustrates a system with three bit planes for a total of
8 (2°) intensity levels. Each bit plane requires the full complement of memory
for a given raster resolution; e.g., a three-bit-plane frame buffer for a 512 x
512 raster requires 786,432 (3 X 512 x 512) memory bits.

Register DAC
g]
|| | —|

Frame Buffer

Figure 1-9 A single-bit-plane black-and-white frame buffer raster CRT graphics device.

RASTER REFRESH GRAPHICS DISPLAYS 11

P Register

~—N—

HH:H
i

2

= 2V DAC]
N=3 2N Levels

Frame buffer

Figure 1-10 An N-bit-plane black-and-white gray level frame buffer.

An increase in the number of available intensity levels can be achieved for
a modest increase in required memory by using a look-up table. This is shown
schematically in Fig. 1-11. Upon reading the bit planes in the frame buffer, the
resulting number is used as an entry index into the look-up table. The look-up
table must contain 2V entries. Each entry in the look-up table can contain W
bits. W may be greater than N. When this occurs, 2" intensities are available;
but only 2V different intensities are available at one time. To get additional
intensities the look-up table must be changed (reloaded).

Since there are three primary colors, a simple color frame buffer can be
implemented with three bit planes, one for each primary color. Each bit plane
drives an individual color gun for each of the three primary colors used in color
video. These three colors are combined at the CRT to yield eight colors. The

p Look-up tables 2% Intensity levels
<~ | —_—W— 2N At atime
0[1]0} 2

2N
N=3 Entries

Frame buffer

Figure 1-11 An N-bit-plane black-and-white gray level frame buffer with a W-bit-wide
look-up table.

12 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

eight obtainable colors and appropriate binary codes are shown in Table 1-1.
A simple color raster frame buffer is shown schematically in Fig. 1-12.

Additional bit planes can be used for each of the three color guns. Figure
1-13 shows a schematic of a multiple-bit-plane color frame buffer with 8 bit
planes per color, i.e., a 24-bit-plane frame buffer. Each group of bit planes
drives an 8-bit DAC. Each group can generate 256 (2%) shades or intensities
of red, green, or blue. These can be combined into 16,777,216 [(2%)® = 2%%)]
possible colors. This is a “full” color frame buffer.

The full color frame buffer can be further expanded by using the groups
of bit planes as indices to color look-up tables. This is shown schematically in
Fig. 1-14. For N bit planes per color with W-bit-wide color look-up tables (2*)"
colors from a palette of (2*)¥ possible colors can be shown at any one time. For
example, for a 24-bit-plane (N = 8) frame buffer with three 10-bit-wide (W =
10) color look-up tables, 16,777,216 (2%*) colors from a palette of 1,073,741,824
(2% colors, i.e., about 17 million colors from a palette of a little more than 1
billion, can be obtained.

Because of the large number of pixels in a raster scan graphics device,
achieving real-time performance and acceptable refresh or frame rates can be

Table 1-1 Simple 3-Bit Plane Frame Buffer Color Combinations

Red Green Blue

Black 0 0 0
Red 1 0 0
Green 0 1 0
Blue 0 0 1
Yellow 1 1 0
Cyan 0 1 1
Magenta 1 0 1
White 1 1 1
'\}/ 1]
' Registers Color guns
1

= 0 DA CH—{Blue |

:é 1 1' DAC; 1Gre eF,L

o 0 DACH——{ Red

Frame buffer

7
’
’
’
5
A
s
g
’
’
s
g
U

Figure 1-12 Simple color frame buffer.

RASTER REFRESH GRAPHICS DISPLAYS 13

/°° C Color guns

=—(0[1]ofo[1]ol ITi] 8 Bit DAC

Blue 75

{ilol t]o]1]1ToJO}——8 Bit DAC]
Green 172

=t+—0/o[o]o]1[o]1]o}—{8 Bit

Red 10

Frame buffer Color guns
Figure 1-13 A 24-bit-plane color frame buffer.

difficult. For example, if pixels are accessed individually with an average access
time of 200 nanoseconds (200 X 107° second), then it requires 0.0524 second
to access each of the pixels in a 512 x 512 frame buffer. This is equivalent
to a refresh rate of 19 frames (pictures) per second, well below the required
minimum refresh rate of 30 frames per second. A 1024 x 1024 frame buffer
contains slightly more than 1 million bits (1 megabit) and at 200 nanoseconds
average access time requires 0.21 second to access each of the pixels. This is
5 frames per second. A 4096 x 4096 frame buffer contains 16.78 million bits
per memory plane! At a 200-nanosecond access time per pixel it requires 0.3
second to access each of the pixels. To achieve a refresh rate of 30 frames
per second a 4096 X 4096 raster requires an average effective access rate of 2
nanoseconds per pixel.

Real-time performance with raster scan graphics devices is achieved by
accessing pixels in groups of 16, 32, or 64 or more simultaneously. In the case
of color frame buffers each pixel may contain up to 32 bits; i.e., all bit planes
for an individual pixel are accessed together. With an average access time of
1600 nanoseconds for each group of pixels, real-time performance for 512 X
512 and 1024 x 1024 frame buffers is possible.

Although real-time performance with acceptable refresh rates is more dif-
ficult to achieve with a raster CRT device than with a calligraphic or line draw-

14 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Color
— look-up

tables

,__10__'

T
T
T

Blue

10—

Green

[w Bit DAC—I‘-]
|

|EEEE!
17T

t—w¥10—-|

2N

Frame buffer
Entries

—_1_‘ —
|
o
Red
l:lw BitDACj LW Bit DACj

Red

Color guns

Figure 1-14 A 24-bit-plane color frame buffer with 10-bit-wide look-up tables.

CATHODE RAY TUBE BASICS 15

ing refresh display, solid figure representations in delicate shades of color are
easier. Solid “polygonal” figure representation with a raster is conceptually
simple. This is shown in Fig. 1-15. Here a representation of the solid figure
bounded by the lines L,, Ly, L3, Ly is achieved by setting all the pixels within
the bounding polygon to the appropriate code in the frame buffer. This is solid
area “scan conversion,” algorithms for which are discussed in Chap. 2.

Figure 1-15 Solid figures with a raster graphics device.

1-6 CATHODE RAY TUBE BASICS

A frame buffer as described above is not itself a display device. It is simply
used to assemble the picture. The most common display device used with a
frame buffer is a video (TV) monitor. An understanding of raster displays, and
to some extent line drawing refresh displays, requires a basic understanding of
CRTs and video display techniques.

The CRT used in video monitors is shown schematically in Fig. 1-16. A
cathode (negatively charged) is heated until electrons “boil” off in a diverging
cloud (electrons repel each other because they have the same charge). These
electrons are attracted to a highly charged positive anode. This is the phosphor
coating on the inside of the face of the large end of the CRT. If allowed to
continue uninterrupted, the electrons would simply flood ‘the entire face of the

Electron Horizontal
]focusing defl;:_cftjon
ens amplifier
/ ! De(\ec‘jd/ﬁm
- L L — _ D= jeciron ® _,?ggde .
R — ospho
[electron beam—/ coating)
7 T T
Ca/thode V'ertica.l
deflection
amplifier

Figure 1-16 Cathode ray tube.

16 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

CRT with a bright glow. However, the cloud of electrons is focused into a
narrow, precisely collimated beam with an electron lens. At this point the
focused electron beam produces a single bright spot at the center of the CRT.
The electron beam is deflected or positioned to the left or right of the center
and/or above or below the center by means of horizontal and vertical deflection
amplifiers.

It is at this point that line drawing displays, both storage and refresh, and
raster scan displays differ. In a line drawing display the electron beam may
be deflected directly from any arbitrary position to any other arbitrary position
on the face of the CRT (anode). Since the phosphor coating on the CRT face
is continuous, a perfectly straight line will result. In contrast, in a raster scan
display the beam is deflected in a set, rigidly controlled pattern. This pattern
comprises the video picture. The phosphor on the face of the raster CRT is not
continuous but rather composed of a myriad of small spots in a fixed pattern.

1-7 COLOR CRT RASTER SCAN BASICS

A color raster scan CRT is similar to the standard black-and-white CRT de-
scribed in the previous section. In the color raster scan CRT there are three
electron guns, one for each of the three primary colors, red, green, and blue.
The electron guns are frequently arranged in a triangular pattern corresponding
to a similar triangular pattern of red, green, and blue phosphor dots on the face
of the CRT (see Fig. 1-17). To ensure that the individual electron guns excite
the correct phosphor dots (e.g., the red gun excites only the red phosphor
dot), a perforated metal grid is placed between the electron guns and the
face of the CRT. This is the shadow mask of the standard shadow mask color
CRT. The perforations in the shadow mask are arranged in the same triangular
pattern as the phosphor dots. The distance between perforations is called the
pitch. The color guns are arranged so that the individual beams converge
and intersect at the shadow mask (see Fig. 1-18). Upon passing through
the hole in the shadow mask the red beam, for example, is prevented

NACAUVAUACYAUVAWYACYANY

DOOOARAROD O G
oJolo oJoJo
pJojololAXolololole

(RN (N (BN (RN (6N (BN (R (6N (B

Figure 1-17 Phosphor dot pattern for a shadow mask CRT.

VIDEO BASICS 17

or masked from intersecting either the green or blue phosphor dot. It can only
intersect the red phosphor dot. By varying the strength of the electron beam for
each individual primary color, different shades can be obtained. These primary
color shades can be combined into a large number of colors for each pixel. For
a high-resolution display there are usually two to three color triads for each
pixel.

Red. Green, Blue

Green beam Phosphor dots

Blue beam

Beam convergence

Figure 1-18 Color CRT electron gun and shadow mask arrangement.

1-8 VIDEO BASICS

The process of converting the rasterized picture stored in a frame buffer to
the rigid display pattern of video is called scan conversion. The scanning
pattern and the frequency of repetition are based on both visual perception
and electronic principles. The human visual perception system requires a finite
amount of time to examine the elements of a picture. However, this time
should be short enough that the persistence of vision will overcome flicker to
give the impression of a continuous presentation. A number of factors affect
flicker, including image brightness and the particular CRT screen phosphor
used. Experience indicates that a practical minimum picture presentation or
update rate is 25 frames per second provided the minimum refresh or repetition
rate is twice this, i.e., 50 frames per second. This is actually what is done
with movie film. With movie film 24 frames per second are presented, but the
presentation of each frame is interrupted so that it is presented twice for an
effective repetition rate of 48 frames per second. Thus, for film the update rate
is 24 and the refresh rate is 48. The same effect is achieved in video with a
technique called interlacing.

Video is a raster scan technique. The American standard video system
uses a total of 525 horizontal lines with a frame or viewing aspect ratio of 4:3;
i.e., the viewing area is three-quarters as high as it is wide. The repetition or

18 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

frame rate is 30 frames per second. However, each frame is divided into two
fields, each containing one half of the picture. The two fields are interlaced
or interwoven. The fields are presented alternatively every other 1/60 second.
One field contains all the odd-numbered lines (1, 3, 5, ...), and the other the
even-numbered lines (2, 4, 6, ...). The scanning pattern begins at the upper
left corner of the screen with the odd field. Each line in the field is scanned
or presented from the left to the right. As the electron beam moves across
the screen from left to right it also moves vertically downward but at a much
slower rate. Thus, the “horizontal” scan line is in fact slightly slanted. When
the beam reaches the right edge of the screen, it is made invisible and rapidly
returned to the left edge. This is the horizontal retrace which usually requires
approximately 17 percent of the time allowed for one scan line. The process
is then repeated with the next odd scan line. Since half of 525 is 262 1/2 lines,
the beam will be at the bottom center of the screen when the odd scan line
field is complete (see Figs. 1-19 and 1-20). The beam is then quickly returned
to the top center of the screen. This is the odd field vertical retrace. The time
required for the vertical retrace is equivalent to that for 21 lines. The even scan
line field is then presented. The even scan line field ends in the lower right hand
corner. The even field vertical retrace returns the beam to the upper left hand
corner, and the entire sequence is repeated. Thus, two fields are presented
for each frame, i.e., 60 fields per second. Since the eye perceives the field
repetition rate, this technique significantly reduces flicker.

Although the American standard video system calls for 525 lines, only 483
lines are actually visible because a time equivalent to 21 lines is required to
accomplish the vertical retrace for each field. During this time the electron

1

2
3
4
5
6
7

Figure 1-19 Schematic of a seven-line interlaced scan line pattern. The odd field begins
with line 1. The horizontal retrace is shown dashed. The odd field vertical retrace starts
at the bottom center. The even field vertical retrace starts at the bottom right.

i Many raster scan graphics devices use this time for processing other information.

VIDEO BASICS 19

beam is invisible or blanked. The time available for each scan line is easily
calculated for a frame repetition rate of 30 as

1 second 1 frame _ microseconds
30 frame 525 scan line) scan line

Since approximately 10 1/2 microseconds is required for horizontal retrace,
the visible portion of each scan line must be completed in 53 microseconds.
With a normal video aspect ratio of 4:3 there are 644 pixels on each scan line.
The time available to access and display a pixel is thus

mtcrosec'onds 1 sca.n line = 82 nanoseconds
scan line 644 pixels

Many frame buffer-based raster scan displays sample the picture at a resolu-
tion of 512 pixels per scan line. At this resolution approximately 103 nanosec-
onds is available to access and display a pixel. Equivalent results are obtained
for the 625-line 25-frame repetition rate used in most of Europe and Great
Britian.

The interlace technique described above is not required when presenting
a video picture. However, this noninterlaced picture will not be compatible
with a standard television set. When such a noninterlaced picture is presented,
the frame repetition rate must be increased to 60 frames per second to avoid
flicker. This, of course, reduces the available pixel access and display time by a
factor of 2. Higher line and pixel-per-line resolutions also decrease the available
pixel access and display time; e.g., a 1024 x 1024 resolution requires a pixel
access and display time a quarter of that required by a 512 X 512 resolution—
approximately 25 nanoseconds! Thus, a very fast frame buffer memory and an
equally fast DAC are required.

Frame

|0dd scan line field] [Even scan line field]
I'Visible odd! 'Odd scan line! 'Visible even! 'Even scan line'
scan lines vertical retrace scan lines vertical retrace

— —= Ep—— =<
o T <\\\ -.:.:-.' \\\)‘

\\\ \- ”
- \ P ded
[- e e —

241Y% lines 21 lines 41Y%lines 21 lines
| 262% lines | | 262% lines l
|

525 lines

Figure 1-20 A 525-line standard frame schematic.

20 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS
1-9 INTERACTIVE DEVICES

Once the picture has been presented, interaction with or modification of the
picture is required. To meet this requirement a number of interactive devices
have been developed. Among these devices are tablets, light pens, joysticks,
mice, control dials, function switches or buttons, and of course the common al-
phanumeric keyboard. Before discussing these physical devices it is appropriate
to discuss the functional capabilities of interactive graphics devices. The func-
tional capabilities are generally considered to be of four or five types (see
Refs. 1-3 to 1-6). The logical interaction devices are a locator, a valuator, a
pick, and a button. A fifth functional capability called keyboard is frequently
included because of the general availability of the alphanumeric keyboard. In
fact, a keyboard can conceptually and functionally be considered a collection
of buttons.

The locator function provides coordinate information in either two or three
dimensions. Generally the coordinate numbers returned are in the conceptual
or device space and may be either relative or absolute. The valuator function
provides a single value. Generally this value is a real number between zero and
some real maximum. The button function is used to select and activate events or
procedures which control the interactive flow. It generally provides only binary
(on or off) digital information. The pick function identifies or selects objects or
subpictures within the displayed picture. The logical keyboard processes textual
information. A typical keyboard is shown in Fig. 1-21.

The tablet is the most common locator device. A typical tablet is shown
in Fig. 1-22. Tablets may be used either in conjunction with a CRT graphics
display or stand alone. In the latter case they are frequently referred to as
digitizers. The tablet itself consists of a flat surface and a penlike stylus which

Flgure) 1-21 An alphanumeric keyboard. (Courtesy of Evans & Sutherland Computer
Corp.

INTERACTIVE DEVICES 21

is used to indicate a location on the tablet surface. Usually the proximity of
the stylus to the tablet surface can also be sensed. When used in conjunction
with a CRT display, feedback from the CRT face is provided by means of a
small tracking symbol which follows the movement of the stylus on the tablet
surface. When used as a stand-alone digitizer, feedback is provided by digital
readouts.

Tablets provide either two- or three-dimensional coordinate information.
A three-dimensional tablet is shown in Fig. 1-23. The values returned are in
tablet coordinates. Software converts the tablet coordinates to user coordinates.
Typical resolution and accuracy is 0.01 to 0.001 inch. When used in conjunction
with a CRT display, the resolution of the tablet should equal or exceed that of
the display.

A number of different principles have been used to implement tablets. The
original RAND tablet (see Ref. 1-7) uses an orthogonal matrix of individual
wires beneath the tablet surface. Each wire is individually coded such that the
stylus acting as a receiver picks up a unique digital code at each intersection.
Decoding yields the x, y coordinates of the stylus. The obvious limitations on
the resolution of such a matrix-encoded tablet are the density of the wires and
the receiver’s ability to resolve a unique code. The accuracy is limited by the
linearity of the individual wires as well as the parallelism of the wires in the two
orthogonal directions.

An interesting implementation for a tablet utilizes sound waves. The stylus
is used to create a spark which generates a sound wave. The sound wave
moves outward from the stylus on the surface of the tablet in a circular wave
front. Two sensitive ribbon microphones are mounted at right angles on the
sides of the tablet. By accurately measuring the time that it takes the sound

Figure 1-22 A typical tablet. (Courtesy of Adage, Inc.)

22 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

wave to travel from the stylus to the microphones, the coordinate distances
can be determined. This technique may be extended to three dimensions (see
Fig. 1-23).

The most popular tablet implementation is based on an electromagnetic
principle. In this tablet implementation electric pulses travel through a sheet of
magnetostrictive material used as the tablet surface. The stylus and appropriate
counters are used to determine the time it takes for alternate pulses parallel to
the x- and y-coordinate axes to travel from the edge of the tablet to the stylus.
These times are readily converted into x, y coordinates.

A locator device similar to a tablet is the touch panel. In a typical touch
panel light emitters are mounted in two adjacent edges with companion light
detectors mounted in the opposite adjacent edges. Anything, e.g. a finger,
interrupting the two orthogonal light beams yields an x, y coordinate pair.
Because of its poor resolution, the touch panel is most useful for gross pointing
operations. In this capacity it is frequently mounted in front of a CRT screen.

Locator devices such as the joystick, track ball, and mouse are frequently
implemented using sensitive variable resistors or potentiometers as part of a
voltage divider. Control dials which are valuators are similarly implemented.
The accuracy is dependent on the quality of the potentiometer, typically 0.1 to
10 percent of full throw. Although resolution of the potentiometer is basically
infinite, use in a digital system requires analog-to-digital (A/D) conversion.
Typically the resolution of the A/D converter ranges from 8 to 14 bits, i.e.,
from 1 part in 28 (256) to 1 part in 2'* (16384). Valuators are also implemented

Figure 1-23 A three-dimensional sonic tablet. (Courtesy of Science Accessories Corp.)

INTERACTIVE DEVICES 23

with digital shaft encoders which, of course, provide a direct digital output for
each incremental rotation of the shaft. Typical resolutions are 1 part in 28 (256)
to 1 part in 2'° (1024) for each incremental rotation of the shaft.

A typical valuator is the joystick. A joystick is shown in Fig. 1-24. A
movable joystick is generally implemented with two valuators, either poten-
tiometers or shaft encoders, mounted in the base. The valuators provide results
proportional to the movement of the shaft. A third dimension can readily be
incorporated into a joystick, e.g., by using a third valuator to sense rotation of
the shaft. A tracking symbol is normally used for feedback.

The track ball is similar to the joystick. It is most often seen in radar instal-
lations, e.g., in air traffic control. Here, a spherical ball is mounted in a base
with only a portion projecting above the surface. The ball is free to rotate in
any direction. Two valuators, either potentiometers or shaft encoders, mounted
in the base sense the rotation of the ball and provide results proportional to
its relative position. In addition to feedback from the normal tracking symbol,
users obtain tactile feedback from the rotation rate or angular momentum of
the ball.

The joystick and track ball both have a fixed location with a fixed origin.
The mouse (Ref. 1-8) on the other hand has only a relative origin. A typical
mouse consists of two rubber-rimmed wheels mounted at right angles in a
small, lightweight box. As the mouse is moved across a surface the wheels
drive the shafts of two valuators, either potentiometers or shaft encoders. The
cumulative movement of the shafts provides x, y coordinates. A typical mouse
is shown in Fig. 1-25. The mouse can be picked up, moved, and set back

Figure 1-24 Joystick. (Courtesy of Meas- Figure 1-25 Mouse. (Courtesy of Apple
urement Systems, Inc.) Computer, Inc.)

24 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

down in a different orientation. In this case the coordinate system in which data
is generated, i.e. the mouse, is changed, but not the data coordinate system
itself. Under these circumstances the tracking symbol used for feedback does
not move when the mouse is not in contact with the surface. The mouse suffers
from inaccuracies due to wheel slippage, especially during diagonal movements.
Recently mice that work on both optical and magnetic principles have become
available. Both eliminate the inaccuracies due to wheel slippage.

Perhaps the simplest of the valuators is the control dial. Control dials,
shown in Fig. 1-26, are essentially sensitive rotating potentiometers or accurate
digital shaft encoders. They generally are used in groups and are particularly
useful for activating rotation, translation, scaling, or zoom functions.

Buttons or function switches, shown in Fig. 1-27, are either toggle or push-
button switches. They may be either continuously closed, continuously open, or
momentary-contact switches. The most convenient type of function switch in-
corporates both capabilities. Software-controlled lights indicating which switch-
es or buttons are active are usually provided. Buttons and switches are fre-
quently incorporated into other devices. For example, the stylus of a tablet
usually has a switch in the tip activated by pushing down on the stylus. A
mouse also incorporates one or more buttons.

The light pen is the only true pick device. The pen, shown schematically in
Fig. 1-28, contains a sensitive photoelectric cell and associated circuitry. Since
the basic information provided by the light pen is timing, it depends on the
picture being repeatedly produced in a predictable manner. This precludes its
use with a storage tube CRT display. The use of a light pen is limited to refresh
displays, either line drawing or raster scan.

Figure 1-26 Control dials. (Courtesy of Evans & Sutherland Computer Corp.)

INTERACTIVE DEVICES 2§

Figure 1-27 Function switches. (Courtesy of Adage, Inc.)

When the light pen is activated and placed over an intensified area of the
CRT on a line drawing refresh display, a signal is sent to the display controller
This signal allows the particular instruction in the display buffer being executed
at that time to be determined. Tracing back through the display controller
allows determination of the particular line segment, object, or subpicture that

Field of view\

Holder A

Shutter
button
Fiber optic
bundle
Photomultiplier
. tube
To display
Pulse shaping circuitry — .qn¢roller Figure 1-28 Schematic of

a light pen.

26 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

was picked. A light pen can also be used as a locator on a line drawing refresh
device by using a tracking symbol.

Since in a raster scan display the picture is generated in a fixed sequence,
the light pen is used to determine the horizontal scan line (y coordinate) and
the position on the scan line (x coordinate). Again, by tracing back through the
controller, the particular line segment, object, or subpicture can be determined.
This is somewhat complicated by the interlace scheme. The above description
also indicates that, on a raster scan device, a light pen can be used as a locator
rather than as a pick device.

Although physical devices are available to implement all the logical interac-
tive devices, an individual graphics device may not have the appropriate physical
devices available. Thus, simulation of the logical interactive devices is required.
An example is shown in Fig. 1-29, where a light pen is being used to simulate
a logical button function by picking light buttons from a menu.

The tablet is one of the most versatile of the physical devices. It can be
used as a digitizer to provide x, y coordinate information. In addition, it can
readily be used to simulate all the logical interactive functions. This is shown in
Fig. 1-30. The tablet itself is a locator (a in Fig. 1-30). The button function can
be implemented by using a tracking symbol. The tracking symbol is positioned

Figure 1-29 A light pen used to simulate a logical button function via menu picking.
(Courtesy of Adage, Inc.)

INTERACTIVE DEVICES 27

at or near menu buttons using the tablet stylus. The tablet coordinates are
compared with the known x, y coordinates of the menu buttons. If a match
is obtained, then that button is activated (b in Fig. 1-30). A keyboard can be
implemented in a similar manner (c in Fig. 1-30).

A single valuator is usually implemented in combination with a button. The
particular function for evaluation is selected by a button, usually in a menu.
The valuator may then be simulated by a “number line” (d in Fig. 1-30).
Moving the tracking symbol along the line generates x and y coordinates one
of which is interpreted as a percentage of the valuator’s range.

The pick function can be implemented using a locator by defining the
relative x and y coordinates of a small “hit window.” The hit window is
then made the tracking symbol, and the stylus used to position it. The x, y
coordinates of each of the line segments, objects, or subpictures of interest
are then compared with those of the current location of the hit window. If a
match is obtained, then that entity is picked. Implemented in software this can
be slow for complex pictures. Implemented in hardware yields no noticeable
delay. Although a light pen cannot be used as a digitizer, it, like the tablet,
can also be used to simulate all the logical interactive functions.

CRT Screen
e

b
Rotate X
Rotate Y
Rotate Z
Trans X
Trans Y
Trans Z
Zoom
Scale

e QWO
' 00 &
am

O »n -
SN

4

Figure 1-30 A tablet used to simulate
all the logical interactive functions. (a)
Locator, (b) button, (c) keyboard, (d)
valuator, (e) pick.

28 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS
1-10 SUMMARY

This chapter has attempted to provide a basic conceptual overview of computer
graphics and computer graphics hardware. A more detailed and practical view
can only be obtained by comparing actnal hardware and software with these
concepts.

1-11 REFERENCES

1-1 Rogers, David F., and Adams, J. Alan, Mathematical Elements for Computer Graph-
ics, McGraw-Hill Book Company, New York, 1976.

1-2 Newman, William M., and Sproull, Robert F., Principles of Interactive Computer
Graphics 2d ed., McGraw-Hill Book Company, New York, 1979.

1-3 Foley, J. D., and Van Dam, A., Fundamentals of Interactive Com-
puter Graphics, Addison-Wesley Publishing Company, Reading, Mass., 1982.

1-4 Foley, J. D., and Wallace, V. L., “The Art of Natural Man-Machine Conversation,”
Proc. IEEE, Vol. 62, pp. 462471, 1974.

1-5 Wallace, V. L., “The Semantics of Graphic Input Devices,” Computer Graphics,
Vol. 10, pp. 61-65, 1976.

1-6 Ohlson, Mark, “System Design Considerations for Graphics Input Devices,” Com-
puter, pp. 9-18, Nov. 1978.

1-7 Bergeron, R. D., Bono, P. R., and Foley, J. D., “Graphics Programming Using the
Core System,” Computing Surveys, Vol. 10, pp. 389443, 1978.

1-8 Davis, M. R., and Ellis, T. O., “The RAND Tablet: A Man-Machine Graphical
Communication Device,” AFIPS Conf. Proc., Vol. 26, Part I, 1964 FICC, pp.
325-332, 1964.

CHAPTER

TWO
RASTER SCAN GRAPHICS

Raster scan graphics devices require special procedures to generate the display,
to draw straight lines or curves, and to fill polygons to give the impression of
solid areas. This chapter examines these procedures.

2-1 LINE DRAWING ALGORITHMS

Since a cathode ray tube (CRT) raster display can be considered a matrix of
discrete cells (pixels) each of which can be made bright, it is not possible
to directly draw a straight line from one point to another. The process of
determining which pixels will provide the best approximation to the desired
line is properly known as rasterization. Combined with the process of rendering
the picture in scan line order it is known as scan conversion. For horizontal,
vertical, and 45° lines the choice of raster elements is obvious. For any other
orientation the choice is more difficult. This is shown in Fig. 2-1.

Before discussing specific line drawing algorithms it is useful to consider the
general requirements for such algorithms, i.e., what are the desirable charac-
teristics for these lines. Certainly straight lines should appear as straight lines,
and they should start and end accurately. Further, displayed lines should

Figure 2-1 Rasterization of straight lines.

29

30 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

have constant brightness along their length independent of the line length and
orientation. Finally the lines should be drawn rapidly. As with most design
criteria not all can be completely satisfied. The very nature of a raster scan
display precludes the generation of a completely straight line except for special
cases.” Nor is it possible for a line to precisely begin and end at specified loca-
tions. However, with reasonable display resolution, acceptable approximations
are possible.

Only for horizontal, vertical, and 45° lines will the brightness be constant
along the length. For all other orientations the rasterization will yield uneven
brightness. This is shown in Fig. 2-1. Even for the special cases, the brightness
is orientation dependent; e.g., note that the effective spacing between pixels
for the 45° line is greater than for the vertical and horizontal lines. This
will make the vertical and horizontal lines appear brighter than the 45° line.
Providing equal brightness along lines of varying length and orientation requires
the calculation of a square root. This will slow down the calculation. The
compromise generally made is to calculate only an approximate line length,
reduce the calculations to a minimum preferably using integer arithmetic, and
implement the result in hardware or firmware.

Most line drawing algorithms use incremental methods to simplify the cal-
culations. An algorithmic example of an incremental method is

a simple incremental algorithm

position = start
step = increment
1 if position — end < accuracy then 4
if position > end then 2
if position < end then 3
2 position = position — step

gotol

3 position = positon + step
gotol

4 finish

The simple line rasterizing algorithm given in the next section illustrates the
application of incremental methods.

2-2 DIGITAL DIFFERENTIAL ANALYZER
One technique for obtaining a rasterized straight line is to solve the governing
differential equation. For a straight line

dy Ay _»-y
= constant T =
dx a ° Ax x—x;

DIGITAL DIFFERENTIAL ANALYZER 31

The solution is

yi+1 = yi + By
- 2-1
y:’+1=)’i+y——2 I Ax 1)
X2 — X)

where x), y1 and x2, y2 are the end points of the required straight line and y; is
the initial value for any given step along the line. In fact, Eq. (2-1) represents
a recursion relation for successive values of y along the required line. Used to
rasterize a line, it is called a digital differential analyzer (DDA). For a simple
DDA either Ax or Ay, whichever is larger, is chosen as one raster unit. A
simple algorithm which will work in all quadrants is

digital differential analyzer (DDA) routine for rasterizing a line

the line end points are (xi, y1) and (x2, y2) assumed not equal

Integer is the integer function. Note: Many Integer functions are floor
functions; i.e., Integer(—8.5) = —9 rather than —8. The algorithm as-
sumes this is the case.

Sign returns —1,0,1 as its argument is <0,=0,>0

approximate the line length
if abs(x2 — x;) = abs(y2 — y;) then
Length = abs(xz — xi)
else
Length = abs(y2 — y1)
end if
select the larger of Ax or Ay to be one raster unit
Ax = (x2 — x;)/Length
Ay = (y2 = yi)/Length
round the values rather than truncate
using the sign function makes the algorithm work in all quadrants
x = x; + 0.5+Sign(Ax)
y = y1 + 0.5+Sign(Ay)
begin main loop
i=1
while (i =< Length)
Plot(Integer(x), Integer(y))

X =X + Ax

y=y+ Ay

i=i+1
end while
finish

An example illustrates the algorithm.

32 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Example 2-1 Simple DDA First Quadrant

Consider the line from (0, 0) to (5, 5). Use the simple DDA to rasterize this
line. Evaluating the steps in the algorithm yields

initial calculation

=z

< x
&N
0w wn oo

%%Dbg
< >
non 5
ool 18
WK b — —
1
W

incrementing through the main loop yields

i Plot X y

0.5 0.5
1 (0, 0)

1.5 1.5
2 1,1)

25 25
3 2,2

35 3.5
4 3,3)

45 4.5
5 4.4

5.5 5.5

The results are shown plotted in Fig. 2-2. Note that the end points are
both apparently exact and that the selected pixels are equally spaced along the
line. The appearance of the line is quite acceptable. However, if i is initialized
to zero instead of to one as shown, the pixel at location (5, 5) is activated.
This can lead to undesirable results. If the address of a pixel is given by the
integer coordinates of the lower left corner, then activating the pixel location
(5, 5) will yield an apparently incorrect end point for the line (see Fig. 2-2).
In addition, if a series of successive line segments is drawn, then the pixel at
location (5, 5) will be activated twice; once at the end of a line segment and
again at the beginning of the successive line segment. This may be seen as
either a brighter pixel or perhaps a pixel of a different or odd color. The next
example illustrates results in the third quadrant.

N W s

DIGITAL DIFFERENTIAL ANALYZER 33

Figure 2-2 Results for a simple DDA in the first
01 2 3 4 5 quadrant.

Example 2-2 Simple DDA Third Quadrant

Consider the line from (0, 0) to (—8, —4) in the third quadrant. Evaluating the
algorithm yields

initial calculations

x1 =0
y1=0

X2 = —8
y2= -4
Length = 8
Ax = -1
Ay = -0.5
x=-05
y=-05

incrementing through the main loop
assuming a floor integer function yields

i Plot X y

-0.5 -0.5
1 (-1,-1)

-1.5 -1.0
2 (-2,-1)

-2.5 -15
3 (—3,-2)

-35 -2.0
4 (—4,-2)

—4.5 -25
5 (—5,-3)

=55 -3.0
6 (—6,—3)

—6.5 -35

34 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

7 (=7,-49
8 (=8,-49

=15 —-4.0
-85 —4.5

The results are shown in Fig. 2-3.

Although the results shown in Fig. 2-3 appear quite acceptable, considering
the lines from (0, 0) to (—8, 4) and (8, —4) will show that the rasterized line
lies to one side of the actual line and that an extra point occurs at one end of the
line; i.e., the algorithm is orientation dependent. Hence, the end point accuracy
deteriorates. Further, if a true integer function rather than the assumed floor
function is used, the results are again different. Thus, either a more complicated
algorithm which will run slower must be used, or line end point and position
accuracy must be compromised. In addition, the algorithm suffers from the
fact that it must be performed using floating point arithmetic. A more suitable
algorithm is given in the next section.

-84 -7 -6 -5 -4 -3 -2 -l 0
0
-1
-2
-3

o—w -4

Figure 2-3 Results for a simple DDA in the third quadrant.

2-3 BRESENHAM’S ALGORITHM

Although originally developed for digital plotters, Bresenham’s algorithm
(Ref. 2-1) is equally suited for use with CRT raster devices. The algorithm
seeks to select the optimum raster locations to represent a straight line. To
accomplish this the algorithm always increments by one unit in either x or y
depending on the slope of the line. The increment in the other variable, either
zero or one, is determined by examining the distance between the actual line
location and the nearest grid locations. This distance is called the error.

The algorithm is cleverly constructed so that only the sign of this error
term need be examined. This is illustrated in Fig. 2-4 for a line in the first
octant, i.e., for a line with a slope between zero and one. From Fig. 2-4 note

BRESENHAM’S ALGORITHM 35

y
on DIIH)) | < Ay
3= Axsl (error20)
Plot (1,1)
A
O_SX%<-'2 (error<0)
Plot (1,0)
O— x
0.0) (1,0)

Initialize error to -1
- ay
€rror =€rror+ AX

Figure 2-4 Basis of Bresenham’s algorithm.

that, if the slope of the required line through (0, 0) is greater than 1/2, then its
intercept with the line x = 1 will be closer to the line y = 1 than to the line
y = 0. Hence, the raster point at (1, 1) better represents the path of the line
than that at (1, 0). If the slope is less than 1/2, then the opposite is true. For
a slope of precisely 1/2 there is no clear choice. Here the algorithm chooses
(1, 1).

Not all lines pass precisely through a raster point. This is illustrated in
Fig. 2-5 where a line of slope 3/8 initially passes through the raster point at
(0, 0) and subsequently crosses three pixels. Also illustrated is the calculation
of the error in representing the line by discrete pixels. Since it is desirable to
check only the sign of the error term, it is initialized to —1/2. Thus, if the slope

: /3/[{5

0.5

0 /
—05 ¢
Figure 2-5 Error term in Bres-

-1 enham’s algorithm.

36 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

of the line is greater than or equal to 1/2, its value at the next raster point one
unit away (1, 0) can be determined by adding the slope of the line to the error
term, i.e.,

e=e+m
where m is the slope. In this case, with e initialized to —1/2,
e=—-12+38=-1/8

Since e is negative, the line will pass below the middle of the pixel. Hence, the
pixel at the same horizontal level better approximates the location of the line
so y is not incremented. Again, incrementing the error term by the slope yields

e=—18+3841/4

at the next raster point (2, 0). Here, e is positive which shows that the line
passes above the midpoint. The raster element at the next higher vertical loca-
tion (2, 1) better approximates the position of the line. Hence, y is incremented
by one unit. Before considering the next pixel, it is necessary to reinitialize the
error term. This is accomplished by subtracting one from it. Thus,

e=14—-1=-3/4

Notice that the intercept of the vertical line at x = 2 and the desired line is
—1/4 with respect to the line y = 1. Reinitializing to —1/2 relative to zero for
the error term yields, as above, —3/4. Continuing to the next raster unit yields

e=—3/4+3/8=-3/8

Since e is negative, the y value is not incremented. This discussion illustrates
that the error term is a measure of the y intercept of the desired line at each
raster element referenced to —1/2.

Bresenham’s algorithm for the first octant, i.e., for 0 =< Ay < Ax is given
below.

Bresenham’s line rasterization algorithm for the first octant

the line end points are (x1, y1) and (x2, y2) assumed not equal
Integer is the integer function
X, ¥, Ax, Ay are assumed integer; e is real

initialize variables

X = Xj
Y=wn
Ax = X — X
Ay = y2 — i

initialize e to compensate for a nonzero intercept

BRESENHAM'’S ALGORITHM 37

e = Ay/Ax — 12
begin the main loop

fori = 1to Ax
Plot(x, y)
while (e = 0)
y=y+1
e=e—1
end while
x=x+1
e = e + Ay/Ax
next i
finish

A flowchart is given in Fig. 2-6. An example is given below.

?

XX,

Yy,
AX<—X, - X,
Ay «—y,-Y,

€« ay/ax-0.5

<>

no

yes
e<0 l
no Xe—X+1

P €«—e +Ay AX
e—e—1 fe—i+l

1

;

Figure 2-6 Flowchart for Bresenham’s algorithm.

38 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Exemple 2-3 Bresenham’s Algorithm

Consider the line from (0, 0) to (5, 5). Rasterizing the line with the Bresenham .
algorithm yields

initial calculations
=0
=0
X

y
e=1-12=112

[~ >

5
5

incrementing through the main loop yields

i Plot e X y
172 0 0

1 0, 0)
—-12 0 1
172 1 1

2 1,1
—12 1 2
172 2 2

3 2,2
—1/2 2 3
12 3 3

4 G, 3)
-12 3 4
172 4 4

5 @“4,4)
—12 4 5
1/2 5 5

The results are shown in Fig. 2-7 and are as expected. Note that the raster
unit at (5, 5) is not activated. This raster unit may be activated by changing
the for-next loop to 0 to Ax. The first raster unit at (0, 0) may be eliminated
by moving the Plot statement to just before next i.

2-4 INTEGER BRESENHAM’S ALGORITHM

Bresenham’s algorithm as presented above requires the use of floating point
arithmetic and division to calculate the slope of the line and to evaluate the
error term. The speed of the algorithm can be increased by using integer
arithmetic and eliminating the division. Since only the sign of the error term is
important, the simple transformation

INTEGER BRESENHAM’S ALGORITHM 39

4 ‘_
3 ®
@
I f

‘ Figure 2-7 Results for Bresenham algorithm in

1 2 3 4 S the first octant.

e = 2eAx

of the error term in the previous algorithm yields an integer algorithm. This
allows the algorithm to be efficiently implemented in hardware or firmware.
The modified integer arithmetic algorithm for the first octant, i.e., for 0 = Ay
= Ax, is

Bresenham’s integer algorithm for the first octant

the line end points are (xi, y1) and (x2, y2) assumed not equal
all variables are assumed integer

X =Xi

y=mwn

Ax = x; — X1

Ay =y2 = yi

initialize € to compensate for a nonzero intercept
€ = 2*Ay — Ax

begin the main loop
fori = 1to Ax

Plot(x, y)
while (€ = 0)
y=y+1
€ =€ — 2*Ax
end while
Xx=x+1
€ = € + 2*xAy
next i
finish

The flowchart in Fig. 2-6 is applicable with appropriate changes in the calcula-
tion of the error term.

40 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

y
Increment Increment
ybyl y byl

Increment Increment
X by-1 X by 1
= X
Increment Increment
X by-1 x by 1
Increment Increment

y by-I y by-I

Figure 2-8 Conditions for general Bresenham’s algorithm.

2-5 GENERAL BRESENHAM'’S ALGORITHM

A full implementation of Bresenham’s algorithm requires modification for lines
lying in the other octants. These can easily be developed by considering the
quadrant in which the line lies and its slope. When the absolute magnitude of
the slope of the line is greater than 1, y is incremented by one and Bresenham’s
error criterion is used to determine when to increment x. Whether x or y is
incremented by +1 depends on the quadrant. This is illustrated in Fig. 2-8.
The general algorithm can be stated as

generalized integer Bresenham’s algorithm for all quadrants

the line end points are (x, y1) and (x2, y2) assumed not equal
all variables are assumed integer
the Sign function returns — 1,0, 1 as its argument is <0, =0, or >0
initialize variables
X = X
y=wn
Ax = abs(xz — xj)
Ay = abs(y2 — yi)
S = Sign(xz - X])
s2 = Sign(y2 — y1)
interchange Ax and Ay depending on the slope of the line
if Ay > Ax then
Temp = Ax
Ax = Ay
Ay = Temp

GENERAL BRESENHAM’S ALGORITHM 41

1

Interchange
else

Interchange
end if
initialize the error term to compensate for a nonzero intercept
€ = 2*Ay — Ax
main loop
fori = 1to Ax

Plot(x, y)

while (€ = 0)

if Interchange = 1 then

0

X =X+ 8
else
y=y+s
end if
€ =€ —2*Ax
end while
if Interchange = 1 then
y=y+s
else
X=X+ s
end if
€ = € + 2*Ay
next i
finish

Example 2-4 Generalized Bresenham’s algorithm

To illustrate the general Bresenham algorithm consider the line from
(0, 0) to (—8, —4). This line was previously considered in Example 2-2 using

a simple DDA algorithm

initial calculations

x =0
y=0
Ax = 8
Ay = 4
s) = —1
s2 = —1
Interchange = 0
e=0

incrementing through the main loop

42 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

i Plot e X y
0 0 0
1 0, 0)
—16 0 -1
-8 -1 -1
2 (-1,-1)
0 -2 -1
3 (-2,-1)
—-16 -2 -2
-8 -3 -2
4 (=3,-2)
0 -4 -2
5 (—4,-2)
—16 -4 -3
-8 -5 -3
6 (-5,-3)
0 -6 -3
7 (—6,—-3)
-16 -6 -4
-8 -7 -4
8 (_7’_4)
0 -8 -4

The results are shown in Fig. 2-9. Comparison with Fig. 2-3 shows that
the results are different.

-8 -7 —6 -5 —4 =3 -2 -] ‘

-1

00— -

=3

¥ -

Figure 2-9 Results for Bresenham’s general algorithm in the third quadrant.

2-6 CIRCLE GENERATION—BRESENHAM’S ALGORITHM

In addition to rasterizing straight lines it is necessary to rasterize other more
complicated functions. Considerable attention has been given to conic sections,
i.e., circles, ellipses, parabolas, hyperbolas (see Refs. 2-2 to 2-5). The circle

CIRCLE GENERATION—BRESENHAM’S ALGORITHM 43

y
[.
j—Reerct first octant about y=x
-t 01
L N 10
y=x

Reflect first quadrant about x=0

i [
\

R ~
’LReercl upper semicircle
about y=0 [I 0]
0-1

Figure 2-10 Generation of a complete circle from the first octant.

has of course received the greatest attention. (See also Refs. 2-6 to 2-9.) One
of the most efficient and easiest to derive of the circle algorithms is due to
Bresenham (Ref. 2-10). To begin, note that only one octant of the circle need
be generated. The other parts can be obtained by successive reflections. This
is illustrated in Fig. 2-10. If the first octant (0 to 45° ccw) is generated, the
second octant can be obtained by reflection through the line y = x to yield the
first quadrant. The results in the first quadrant are reflected through the line
x = 0 to obtain those in the second quadrant. The combined results in the
upper semicircle are reflected through the line y = 0 to complete the circle.
Figure 2-10 gives the appropriate two-dimensional reflection matrices.

To derive Bresenham’s circle generation algorithm consider the first quad-
rant of an origin-centered circle. Notice that, if the algorithm begins at x = 0,
y = R, then for clockwise generation of the circle y is a monotonically decreas-
ing function of x in the first quadrant (see Fig. 2-11). Similarly, if the algorithm

(0,R)

x Figure 2-11 First quadrant of a circle.

44 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

begins at y = 0, x = R, then for counterclockwise generation of the circle x is
a monotonically decreasing function of y. Here, clockwise generation starting
at x = 0, y = R is chosen. The center of the circle and the starting point are
both assumed to be located precisely at pixel elements.

For any given point on the circle, then, for clockwise generation of the circle
there are only three possible selections for the next pixel which best represents
the circle: horizontally to the right, diagonally downward to the right, and
vertically downward. These are labeled my, mp, my, respectively, in Fig. 2-12.
The algorithm chooses the pixel which minimizes the square of the distance
between one of these pixels and the true circle, i.e. the minimum of

my = |6 + 1) + 00)* — R}
mp = |0+ 12+ @i — 12— R}
my = |(x)? + i — 1> — R}

The calculations can be simplified by noting that there are only five possible
types of intersections of the circle and the raster grid in the vicinity of the point
(xi, yi). These are shown in Fig. 2-13.

The difference between the square of the distance from the center of the
circle to the diagonal pixel at (x; + 1, y; — 1) and the distance to a point on the
circle R? is

A=+ 12+ 1R

As with the Bresenham line rasterizing algorithm, it is desirable to use only
the sign of an error term, rather than the magnitude, to select the appropriate
pixel which best represents the actual circle.

If A; <0, then the diagonal point (x; + 1, y; — 1) is inside the actual circle,
i.e. case 1 or 2 in Fig. 2-13. It is clear that either the pixel at (x; + 1, y)), i.e.
my, or that at (x; + 1, y; — 1), i.e. mp, must be chosen. To decide which, first
consider case 1 by examining the difference between the squares of the distance

(xi-Yi) (xi*l,Yi)
H o
mp
my,
(xi,yi-1 (xi+Ly;-1)

. ‘ Figure 2-12 First quadrant pixel selec-

tions.

CIRCLE GENERATION—BRESENHAM'’S ALGORITHM 4§

—_‘(x,+l, yi+l)

N
(Xsli) my .(xi+|. Yi)

my \m\D

(xi-1, y.-l)\(x..y.-l\ (xi+l,y,-1)

@'> é) Figure 2-13 Intersection of a circle

and the raster grid.

from the actual circle to the pixel at my and the distance from the actual circle
to the pixel at mp, i.e.

0 =i+ 1)?+ ()’ — R = |0 + 17 + i — 17 — K|
If 6 <0, then the distance from the actual circle to the diagonal pixel (mp)

is greater than that to the horizontal pixel (my). Conversely, if d > 0, then the
distance to the horizontal pixel (my) is greater. Thus, if

d=<0 choose my at (x; + 1, y))
>0 choose mp at (x;+ 1, y; — 1)

The horizontal move has been selected when & = 0, i.e., when the distances
are equal.

The work involved in evaluating can be reduced by noting that for
case 1

i+ 1D?>+0)*-R*=0
i+ 12+@—-12-R*<0

because the diagonal pixel at (x; + 1, y; — 1) is always inside the circle and the
horizontal pixel at (x; + 1, y;) is always outside the circle. Thus, § may be
evaluated as

=@+ D+ R+ @+)+ 1) - R

Completing the square for the (y;)> term by adding and subtracting —2y; + 1
yields

O0=2xi+ 12+ @i— 1) -R*]+ 25— 1
Using the definition for A; gives
d=2A+y)—1

which is considerably simpler.

46 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

In considering case 2 of Fig. 2-13, note that, since y is a monotonically
decreasing function, the horizontal pixel at (x; + 1, y;) must be chosen. Exam-
ining the components of & shows that

@+ D+ -R<0
G+ D+@i—-1)-R <0

since both the horizontal pixel at (x; + 1,y) and the diagonal pixel at
(x; + 1, y; — 1) lie inside the actual circle for case 2. Hence, 6 < 0 and the
correct pixel at (x; + 1, y;) is selected using the same criteria as in case 1.

If A; > 0, then the diagonal point (x; + 1, y; — 1) is outside the actual
circle, i.e. case 3 or 4 in Fig. 2-13. Here, it is clear that either the pixel at
(xi+ 1, y; — 1), i.e. mp, or that at (x;, y; — 1), i.e. my, must be chosen. Again
the decision criteria can be obtained by first considering case 3 and examining
the difference between the squares of the distance from the actual circle to the
diagonal pixel at mp and the distance from the actual circle to the pixel at my,
i.e.

O =i+ D+ @i — 12— RY—|)*+ (i — 1)) - R}

If 6’ < 0, then the distance from the actual circle to the vertical pixel at
(xi, yi — 1) is greater and the diagonal move mp to the pixel at (x; + 1, y; — 1)
should be chosen. Conversely, if 8’ > 0, then the distance from the actual circle

to the diagonal pixel is greater and the vertical move to the pixel at (x;, yi— 1)
should be chosen, Thus, if

=0 choose mp at (x; + 1, y; — 1).
>0 choose my at (x;, yi — 1)

Here the diagonal move has been selected when 6’ = 0, i.e., when the distances
are equal.
Again examination of the components of ¢’ shows that

FE+ D +Oi- D -R =0
2+ i—-1)-R*<0

since the diagonal pixel at (x; + 1, y; — 1) is outside the actual circle while the
vertical pixel at (x;, y; — 1) is inside the actual circle for case 3. This allows ¢’
to be written as

8 =i+ 1D+ @i—12-R+ @)+ @i— 17 - R
Completing the square for the (x;)* term by adding and subtracting 2x; + 1 yields
0 =2+ 1)+ (-1 -R]-2x -1

Using the definition of A; then gives

CIRCLE GENERATION—BRESENHAM’S ALGORITHM 47

8 =24Ai—x)—1

Now, considering case 4, again note that, since y is a monotonically decreas-
ing function as x monotonically increases, the vertical pixel at (x;, y; — 1) must
be selected. Examining the components of &’ for case 4 shows that

i+ 1D+ @i—1)*-R*>0

@)+ i— 1) -R2>0
since both the vertical and diagonal pixels are outside the actual circle. Hence,
d' > 0 and the correct choice of my is selected using the same criteria developed
for case 3.

It remains only to examine case 5 of Fig. 2-13, which occurs when the
diagonal pixel at (x; + 1, y; — 1) lies on the actual circle, i.e., for A; = 0.
Examining the components of 6 shows that

i+ D>+ () —R*>0

G+ +i— 12 -R =0
Hence, 6 > 0 and the diagonal pixel at (x; + 1, y; — 1) is selected. Similarly the
components of ¢’ are

G+ 1)+ i— 1) -R=0

P+ 0i—1)?P-R* <0
and ¢’ < 0 which is the condition for selecting the correct diagonal move to
(xi + 1, yi — 1). Thus, the case of A; = 0 is satisfied by the same criteria as for

A; <0 or for A; > 0.
Summarizing the results above yields

A <0

d =0 choose the pixel at (x; + 1, y;) - my
d >0 choose the pixel at (x; + 1, y; — 1) - mp
Ai >0

>0 choose the pixel at (x; + 1, y; — 1) -> mp
>0 choose the pixel at (x;, yi — 1) - my
A =0 choose the pixel at (x; + 1, yi — 1) - mp

Simple recursion relationships which yield an incremental implementation
of the algorithm are easily developed. First, consider the horizontal movement
my to the pixel at (x;+1, y;). Call this next pixel location (i+1). The coordinates
of the new pixel and the value of A; are then

Xi+1 = X;i +1
Yi+1 = Yi
Aiv1 = (xis1 + D2+ i+ — 1) — R?

48 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

=1+ 22+ 1+ (i — 12 - R?
=@+ 12+ = 12— R+ 204 + 1
=A,~+Zx,-+1+l

Similarly the coordinates of the new pixel and the value of A; for the move mp
to(x+ 1,y —1)are

xiv1 = x; + 1

Yis1 = yi — 1
Aiv1 = Ai + 2x341 — 2yin1 + 2

Those for the move my to (x;, yi — 1) are
Xi+1 = X

yier =yi— 1
Aiv1 = Ai— 2yin1 + 1

A pseudo implementation of the Bresenham circle algorithm is given below.

Bresenham’s incremental circle algorithm for the first quadrant
all variables are assumed integer

initialize the variables

xi=0

yi=R

Ai=2(1-R)

Limit =0
1 Plot(x;, yi)

if yi =< Limit then 4

determine the case 1 or 2, 4 or 5, or 3

if A; < 0 then 2

if A; > 0 then 3

if A; = 0 then 20

determine whether case 1 or 2
2 5 =2A+2yi—1

if 8 = 0 then 10

if 8 > 0 then 20

determine whether case 4 or 5
3 d =2A—-2x;— 1

if ' < 0 then 20

if 8’ > 0 then 30

perform the moves

move my
10 Xi=x;+1

A=A +2x + 1

CIRCLE GENERATION—BRESENHAM’S ALGORITHM 49

gotol
move mp

20 xi=x;+1
yi=yi—1
Ai=Ai +2x—2yi +2
gotol
move my

30 yi=yi—1
Ai = A -2y + 1
gotol

4 finish

The limit variable is set to zero to terminate the algorithm at the horizontal
axis. This yields the circle in the first quadrant. If only a single octant is
desired, then setting Limit = Integer (R/\/2) will yield the second octant (see
Fig. 2-10). Reflection about y = x will then yield the first quadrant. A

flowchart is given in Fig. 2-14.

x—0

y—R

A—2(1-R
Limit:—O()

Plot (x, y)

yes
6+ 2A-2x-1
es
y—y-1 X+—X +] X—x+]
A—A-2y+1 y—y-1 A<—A+2x+1

A~—A+12x -2y+2

Figure 2-14 Flowchart for Bresenham’s incremental circle algorithm in the first
quadrant.

50 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Example 2-5 Bresenham’s Circle Algorithm

To illustrate the circle generation algorithm, consider the origin-centered circle
of radius 8. Only the first quadrant is generated.

initial calculations

x=0

y=38

A =21 -8 =-14
Limit = 0

incrementing through the main loop

1 Plot(0, 8)
yi > Limit continue
A <O go to 2
2 3=2-14)+28)-1=-13<0 goto10
10 x=0+1=1
Ai=-14+2+1=-11
gotol
1 Plot(1, 8)
yi > Limit continue
Ai<0 goto2
2 d=2-11)+28) - 1=-7<0 go to 10
10 x=1+1=2
Ai=-11+22)+1=-6
goto 1
1 Plot(2,8)

continue

The details of each successive pass through the algorithm are summarized in
the table below. The list of pixels selected by the algorithm is (0, 8), (1, 8),
(2.8),3,7),4,7),(5,6), (6, 5), (7, 4), (7, 3), 8, 2), (8, 1), (8, 0)

Plot A) &' x y
-14 0 8

, 8)
-11 -13 i 8

(1,8
-6 -7 2 8

@,8
-12 3 3 7

(CA))
-3 -11 4 7

@,7

SCAN CONVERSION—GENERATION OF THE DISPLAY 51

5,6
1 5 6 5

(6, 5)
9 —-11 7 4

7,4
4 3 7 3

,3
18 -7 8 2

8,2
17 19 8 1

@D
18 17 8 0

8,0

complete

The results are shown in Fig. 2-15 along with the actual circle. The algorithm
is easily generalized for other quadrants or for circular arcs.

Y Circle radius is 8
? Bright pixels

O—=NWH N0V

— X

0123456789

0000 OINANHE WO
O = N O\ 10000 00

Figure 2-15 Results for Bresenham’s incremental circle generation algorithm.

27 SCAN CONVERSION—GENERATION OF THE DISPLAY

In order to display the rasterized image using video technology it is necessary to
organize the picture into the precise pattern required by the video display (see
Sec. 1-8). This is the process called scan conversion. In contrast to the display
list for a random scan or line drawing display (see Sec. 1-4) which contains
only information about lines or characters, here the display list must contain
information about every pixel on the screen. Further, it is necessary that this
information be organized and presented at video rates in scan line order, that is,
from the top to the bottom and from left to right. Four ways of accomplishing
this are real-time scan conversion, run-length encoding, cell organization, and
frame buffer memory.

52 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS
2-8§ REAL-TIME SCAN CONVERSION

In real-time or on-the-fly scan conversion the picture is randomly represented
in terms of visual attributes and geometric properties. Typical visual attributes
are color, shade, and intensity, while x, y coordinates, slopes, and text are
typical geometric properties. These geometric properties are ordered in y. The
processor scans through this information and calculates the intensity of every
pixel on the screen during the presentation of each frame. With real-time scan
conversion large amounts of memory are unnecessary. Memory requirements
are usually limited to that necessary to hold the display list plus one scan line.
Further, since picture information is held in a randomly organized display list,
it is easy to add or delete information from the list. This greatly facilitates
dynamic presentations. However, the complexity of the display is limited by
the speed of the display processor. This usually means that the number of lines
or polygons in the picture, the number of intersections on a scan line, or the
number of gray scales or colors is limited.

The simplest implementation for real-time scan conversion processes the
entire display list to obtain the intersections (if any) of each line in the display
list with a particular scan line each time a scan line is displayed. At video
refresh rates only 63.5 microseconds is available to process the entire display
list each time a scan line is displayed. This short time precludes using this
technique for more than the simplest line drawing display. Since, in general,
not every line in a picture will intersect every scan line, the amount of work
required can be reduced by maintaining an active edge list. The active edge list
contains those lines in the picture which intersect the scan line.

The active edge list can be developed and maintained using a number of
techniques. The lines in the picture are first sorted by the largest value of y.
A particularly simple technique uses two floating pointers into this sorted list.
A begin pointer is used to indicate the beginning of the active edge list, and an
end pointer to indicate the end of the active edge list. A single line drawing
along with three typical scan lines is shown in Fig. 2-16a. Figure 2-16b shows a
typical sorted list of the lines in the figure. The begin pointer is initially set at
the beginning of the list, i.e. at BC. The end pointer is set at the last line in the
list that begins above the scan line under consideration, i.e. at BD. As the scan
moves down the picture the end pointer is moved down to include those new
lines which now start on or above the current scan line. At the same time the
begin pointer is moved down to eliminate lines which end above the current
scan line. This is illustrated in Fig. 2-16b for the scan lines labeled 2 and 3 in
Fig. 2-16a. Figures 2-16c and d illustrate a problem with this simple algorithm.
The sort order of the lines which begin at the same y value influences the size
of the active edge list. For example, in Fig. 2-16d the line BC never drops off
the active edge list. Thus, more information than necessary may be processed.

These and similar problems may be eliminated at the expense of additional
data structure. Further, the calculation of the intersection of each line in the

REAL-TIME SCAN CONVERSION 53

Scan line B
1 - —
C

D
a
Scan line | 2 3 1 2 3 1 2 3
BC-b BC BC BA-b BA-b BA BD--b BD-b BD-b

BA BA-—-b BA BC BC BC-b BA BA BA

BD-e BD BD--b BD-e¢ BD BD BC-e BC BC

CD CD-e CD CD CD-e CD CD CD-e CD

AD AD AD-e AD AD AD-e AD AD AD-e
b c d

Figure 2-16 A simple active edge list.

picture with individual scan lines may be simplified. First, a y-bucket sort
of all the lines in the picture is performed. A y-bucket sort] illustrated in
Fig. 2-17b, simply creates a storage location or bucket for each scan line. If,
for example, there are 512 scan lines, then 512 buckets are used. As the lines
in the display list are examined, information about each line is placed in the
bucket corresponding to the largest y value of the line. For simple black-and-
white line drawings only the x intercept on the bucket scan line, Ax the change
in the x intercept from scan line to scan line, and Ay the number of scan lines
crossed by the line need be recorded. For simple pictures most of the y buckets
will be empty.

The active edge list for the current scan line is formed by adding informa-
tion from the y bucket corresponding to that scan line. The x intercepts are
sorted into scan line order, and the active edge list scan-converted. After the
active edge list is scan-converted, Ay for each line on the active edge list is
decremented by one. If Ay < 0, the line is dropped from the active edge list.
Finally, the x intercepts for the new scan line are obtained by adding Ax to the
previous values for each line on the active edge list. The process is repeated
for all scan lines. The active edge list for scan lines 3, 5, and 7 for the simple
line drawing of Fig. 2-17a is given in Fig. 2-17c.

If a fixed y-bucket size is used, a fixed amount of storage is available for
intersections on each scan line. Thus, the maximum number of intersections on
any given scan line is predetermined. Hence, the complexity of the picture is
limited. One technique for avoiding this limit is to use a sequential indexed list

TA bucket sort is a form of radix sort with the radix equal to the number of buckets (scan
lines). See Knuth, Ref. 2-11.

54 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

1 Scan line y-bucket
B
2 - - 1 null
2 xBA,AxBa,Aypa,
; i /\]
/ c XBC, AXBC, AyBC
4 - - 3 null
5 / _ / 4 xcp,Axcp, Aycp
A / / . S null
6 - / - 6 XAD,AxAD,AyAD
7 - - 7 null
\/ 8 null
8 D
a b
Active Edge List y-bucket Indexed List
Scan line 3: xpA + AXBA, AXBA, 1 1 XBA
Aypa — 1,xBc + Axgc,
Axgc, Aysc — | 2 Axpa
Scan line 5: xga + 3AxBaA, AXBA, 2 1 3 AyBa
Aypa — 3,xcp + Axcp, 4 XBC
xco. Aycp ~ s -
Scan line 7: xcp + 3AXcp, AXcD, 5 Axsc
Aycp - 3,XAD + AxAD, 4 8 6 Aysc
AxaD,Ayap — 1 7 [
1
: s s [
9 Axcp
:
10 Aycp
===
12 XAD
EE ~ Completion or null. 8 EE 13 | Axap
End of scan line.
14 Ayap
s

Figure 2-17 A y-bucket sort, active edge list, and sequential indexed data structure.

REAL-TIME SCAN CONVERSION 55

for the data structure. In this case, each y bucket contains only a pointer to the
location in the data structure of the information for the first line originating on
that scan line. The sequential indexed list and the data structure for Fig. 2-17a
are shown in Fig. 2-17d. For the particular data structure shown, it is assumed
that data for a given scan line are accessed in groups of three until a null or
completion is indicated.

The technique for determining line intersections with individual scan lines
yields acceptable results for vertical and near vertical lines. However, for nearly
horizontal lines very few intersection points will be calculated. This will yield
an unacceptable line representation. A simple solution is to determine the
intersections on two successive scan lines and activate all the pixels between
the intersections. This is shown in Fig. 2-18. For horizontal line segments the
end points are used.

Since the entire picture is processed for each video frame, real-time scan
conversion lends itself to highly interactive graphics. When a y-bucket sort is
used, lines can be added to or deleted from the display list by simply adding or
deleting them from the appropriate y bucket and the associated data structure.
This is easiest for fixed-length y buckets as shown above in Fig. 2-17b. In
order to conveniently add and delete lines to the display, a linked list data
structure is used. This is shown in Fig. 2-19. Note that in the linked list shown
in Fig. 2-19b the end of each data group and the location of the next data
group on that scan line, e.g. item 4, as well as the completion of the link, are
required. If the line BD is now added to the figure, the linked list is modified
as shown in Fig. 2-19d. The information about the line BD is added at the
end of the data list. The display processor is directed to this location by the
modified link instruction at location 8. If the line BC is now deleted from the
figure, the linked list is modified as shown in Fig. 2-19f. Here, notice that the
link instruction at location 4 has been modified to jump around the locations
containing information about the line BC.

This simple example illustrates the basic concepts for modifying a linked
list for interactive graphics applications. However, it does not illustrate all the

Scalj line 7

- Inte|rsectfion

Integrsection

Figure 2-18 A simple scan conversion technique for nearly horizontal lines.

56 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

I Scan line y-bucket Linked list
2 2 - :
VAN
/ 2 AxBa
/ / 3 Aysa
3 - y 4 L 5
YA]
/ 5 XBC
8 - D __
7 Aysc
8 1
9 XCD
End of data group. 6 A
n | = n gives the location of 10 XCD
the next data group on
that scanline. 7 11 Aycp
] = Link completion or null. 12
| End of scan line. 8 EE
13 XAD
14 AxAD
15 | Ayap
b 16 {

Figure 2-19 A y-bucket sort and linked list for interactive graphics applications.

required features. For example, it should be obvious that as illustrated the
length of the list will continuously grow unless the “lost” locations (5 to 8 in
Fig. 2-19f) are reused or the list is compressed. For further discussion of linked
lists and data structures see, for example, Ref. 2-12.

Because of the difficulty of accomplishing the above algorithm in software
in the short time available for one video frame, successful software implemen-
tations have been used principally for aircraft flight, ship navigation, and similar
simulation systems.

2-9 RUN-LENGTH ENCODING

Run-length encoding seeks to take advantage of the fact that large areas of
the picture have the same intensity or color. In its simplest form run-length
encoding specifies only an intensity and the number of successive pixels on a

RUN-LENGTH ENCODING 57

Scan line _ 1 Scan line B
2 - B - 2 - B -
VAN A
4 _7 \ _N\C 4 _/ \ __C
A N /A
VA VA
TR/ A
RN/ RN
y-bucket © Linked list y-bucket ~ © Linked list
2 AXBA 2 AXBA
2 E 3 AyBa 2 ‘: 3 AyBa
4 5 4 17
e — e —
5 XBC 5 XBC
4 9 6 Axsc 4 9 6 Axpc
7 Aysc 7 Aysc
s s [sEEH s [
9 XCD 9 XcD
¢ 10 Axcp ¢ 10 Axcp
7 EE 11 Aycp 7 EE 11 Aycp
12 ll 12
s n[Tw s s [w
14 AxAD 14 AxaAD
15 Ayap 15 Ayap
) —)
17 XBD 17 XBD
18 AxBD 18 AxBD
19 Aysp 19 Aysp
4 20 } £ 20 |

Figure 2-19 (Continued.)

58 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

[Intensity [Run length]

— 0 [0]50)
10
— —{O o[[o]3)
20
— 30
0 10 20 30 n

— ¢
7

— [of7] 1]8]ots

20

10 20 30
b

Figure 2-20 Run-length-encoded pictures.

given scan line with that intensity. Figure 2-20a shows a simple black-and-white
line drawing on a 30 X 30 raster and the associated encoding for scan lines 1,
15, and 30. The encoded data is to be considered in groups of two. The first
number is the intensity, and the second is the number of successive pixels on
that scan line with that intensity

leensity I Run Lengﬂ

Thus, in Fig. 2-20a scan line 1 has 30 pixels of zero intensity, i.e., black or the
background intensity. The complete picture can be encoded with 208 numbers.
Pixel-by-pixel storage, i.e., one piece of information for each pixel (a bit map),
would require 900 intensity values for the 30 x 30 raster of Fig. 2-20a. The
data compression using run-length encoding in this case is 4.33:1.

RUN-LENGTH ENCODING 59

Solid figures are easily handled with run-length encoding. This is shown in
Fig. 2-20b along with the encoding for scan lines 1, 15 and 30. Of particular
interest is scan line 15. For Fig. 2-20b the entire picture can be encoded using
136 numbers for a data compression of 6.62:1. Pictures with solid figures encode
with fewer pieces of information than line or wire frame drawings because two
edges are covered with one pair of intensity-length values.

This simple run-length encoding scheme can easily be extended to include
color. For color, the intensity of each of the red, green, and blue color guns
is given followed by the number of successive pixels for that color on that scan
line, e.g.

[Red Intensity l Green Intensity| Blue Intensity | Run Length J

For a simple color display in which each individual color gun is either
completely off (0) or fully on (1), the encoding for scan line 15 of Fig. 2-20b
with a yellow triangle on a blue background is (see Table 1-1)

lolo |1l 7[1]l1]o]8]o]o]1]15]

Data compression for run-length-encoded pictures can approach 10:1. This
is significant not only because it saves memory but also because it saves storage
space for computer-generated animated sequences or film. It also saves trans-
mission time for wire photos and facsimile where run-length encoding is exten-
sively used. For example, consider the storage requirements for a 512 X 512
X 8 resolution picture for a 30-second animated film sequence at video rates
(30 frames per second). The storage requirement is

(512 x 512 x 8 X 30 x 30)/(8 bits/byte) = 236 megabytes

This will fit only on the largest disk units. However, even a modest run-length
encoding data compression of 4:1 will allow storage on a single small to medium-
sized disk.

Run-length encoding has disadvantages. Since the run lengths are stored
sequentially, adding or deleting lines or text from the picture is difficult and
time-consuming. There is overhead involved with both encoding and decoding
the picture. Finally the storage requirement can approach twice that for pixel-
by-pixel storage for short runs. This is illustrated in Fig. 2-21 where the picture
consists of alternate black and white vertical lines one pixel wide. Here the
run-length encoding is

lililol1]

repeated 15 times. Thus, a total of 1800 values must be stored for the run-
length-encoded picture in contrast to 900 for pixel-by-pixel storage. This is a
data compression of 1/2.

60 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

O YrEFICCONENINID

l

1

10 H
—{ :4— le[llllolﬂ

|

20 !

|

{ :

L .I..L.s. {Il.l

09 10 20 30

Figure 2-21 Run-length encoding limits for short runs.

Laws (Ref. 2-13) and Hartke, Sterling, and Shemer (Ref. 2-14) discuss
efficient implementation of run-length encoding schemes.

2-10 CELL ENCODING

Run-length encoding considers the picture linearly or one-dimensionally. Cell
encoding seeks to represent areas of the picture, i.e. cells, with a minimum
of information. The simplest alphanumeric CRT terminal uses cell encoding to
allow real-time operation. In such a terminal the screen area is divided into
cells or areas large enough to contain one character. For example, the screen
may be divided into areas containing 8 X 8 pixels. This yields 64 x 64 cells for
a 512 x 512 display or 60 x 80 cells for a 480 x 640 video compatible display
with a standard 4:3 aspect ratio. A cell of 8 x 8 pixels is usually used for a5 X
7 dot matrix character display. The extra pixels are used for spacing between
characters and for lower case characters with descenders. An example is shown
in Fig. 2-22. Since every other row of cells is left blank for readability, the

8 8
6 6
4 4
Base
) line
0 0
0 2 4 6 8 0 2 4 6 8

Figure 2-22 A cell-encoded character mask.

CELL ENCODING 61
IY I)’ I y I y ')’ ' y
—X —X —X —X —X —X

a Reflection b Translation ¢ Masking

Figure 2-23 Cell encoding.

latter configuration yields the 30 lines of 80 characters each typical of many
alphanumeric displays. Other cell sizes are also used. For example, a cell
containing 8 X 10 pixels, typically used for 7 x 9 dot matrix characters, yields
an alphanumeric display with 24 lines of 80 characters each. The pixel patterns
for each character are stored in read-only memory.

The cell encoding technique can be extended to include line drawings by
also storing line segment patterns in read-only memory. Combinations of these
segments in adjacent cells can then be used to construct complete lines. For
any n X n cell there are 2 possible pixel patterns. For any reasonable
value of n this is far too many patterns to store; e.g., if n = 8, then 2"
= 1.8 x 10'. However, not all patterns represent possible line segments.
For example, Bresenham’s algorithm discussed above shows that for lines with
slope between 0 and 1 there are at most 2" — 1 patterns which represent line
segments. Finally, Jordan and Barrett (Ref. 2-15) have shown that by using
translation, reflection, and masking techniques only 108 line segment patterns
are required for an 8 X 8 cell.

Figure 2-23 illustrates a line segment starting at the lower left hand corner
of an 8 x 8 cell. The line was rasterized using Bresenham’s algorithm. The
line has a positive slope. Reflection about the x axis (Fig. 2-23a) yields a line of
negative slope starting at the upper left hand corner. Translation vertically in
y yields a line starting above the base of the cell (Fig. 2-23b). Translating both
in x and y yields a line starting in the interior of the cell. Masking off a portion
of a line as shown in Fig. 2-23c provides for the short segments at the end of
a line. In order to allow intersecting lines within a cell, provision is made for
combining cell patterns using a logical or operator. Successive application of
this operation allows an infinite variety of intersection patterns. This is shown
in Fig. 2-24.

Interacting with a cell-encoded display is discussed by Barrett and Jordan
(Ref. 2-16). Interaction is most efficient when a linked list is used to maintain
the top-to-bottom, left-to-right ordering of the display file. However, the level
of interaction possible is not high.

OR - OR -

Figure 2-24 Logical or combinations of cell-encoded line segments.

62 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Cell encoding has been extended to color displays and to solid image rep-
resentations (Ref. 2-17). However, data compression rates are not as great as
for black-and-white (bilevel) displays.

2-11 FRAME BUFFERS

In introducing raster refresh graphic displays in Chap. 1 the tacit assump-
tion was made that the raster display was implemented as a frame buffer. It
was further assumed that the frame buffer consisted of random access semi-
conductor memory. Although this is the most common method of implement-
ing a frame buffer, rotating memory, either disk or drum, can also be used (see
Refs. 2-18 and 2-19).

Frame buffers have also been implemented using shift registers (see Ref.
2-20). A shift register can conceptually be considered as a first in, first out
(FIFO) stack. If the stack is full, then as new data bits are added to the top of
the stack the first data bits are pushed out the bottom. The data pushed out
of the stack can be interpreted as the intensity of a pixel on a scan line. Shift
register frame buffers can be implemented using one shift register per pixel on a
scan line with each shift register as long as the number of scan lines. In this case
each shift register contributes one pixel on a horizontal scan line. Alternately,
they can be implemented as a single large shift register of length equal to the
number of pixels on a scan line times the number of scan lines.

Figure 2-25 shows a simple six-line display with eight pixels per scan line. A
shift register frame buffer is also shown. The frame buffer is implemented with
eight shift registers each 6 bits long. The bit pattern for the display is shown in
the frame buffer. The pattern for the scan line labeled 3 in the display is shown
about to be pushed out of the bottom of the shift registers. The sequencing of

Shift registers

Data in
A e e
b 1
200) [[0 [[[[[6
iNpnisfigieigigian s
ofo] [9 [9 [o] [o] [o] [9] [o] ;
51o| 10| (o 1 of 0] [0 (O
afol o] o] 1 [[o] [o] [@ -3
Ad H M B R 2
=nciniofoinlolo :
‘1111111 1 2 34 56 78
Data out Display

Figure 2-25 Shift register frame buffer.

Host

Update _

FRAME BUFFERS 63

CPU

process

Frame
buffer

Refresh _
process

Display
controller

Video
monitor

Figure 2-26 Frame buffer graphics system.

the output of the shift registers must be carefully controlled to correspond to
the video scan rate.

Both rotating memory and shift register frame buffer implementations ex-
hibit low levels of interactivity. For rotating memory implementations this is
because of disk access time. For shift register implementations reduced inter-
activity occurs because changes can only be made as bits are being added to
the register.

Conceptually the configuration of a frame buffer graphics system is similar
to that for a line drawing refresh display as shown in Fig. 2-26. An application
program running in the host computer updates the frame buffer as needed.
The display controller cycles through the frame buffer in scan line order and
passes the required information to the video monitor to refresh the display. The
frame buffer can be implemented either as part of the host computer memory
or as a separate memory. These configurations are shown in Fig. 2-27 imple-

Video
monitor
Host | | Graphics | |Main _| Display
CPU CPU memory controller
4 1
Common L y \
bus a
Graphics E;?;:: Display Video
CPU memory controller monitor
1
Graphics system
bus ’
Host| |Main High-speed
CPU| |memory| |interface
Host system
bus b

Figure 2-27 Frame buffer architecture.

64 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

mented with a common bus structure. Although implementing the frame buf-
fer in the main memory (see Fig. 2-27a) makes it possible to manipulate the
buffer with the host processor, it is generally more efficient to add a special-
purpose graphics processor to the system. The graphics pfocessor handles the
detailed manipulation of the frame buffer upon receipt of commands from the
main processor. With a single memory and two processors on a common bus,
bus contention can occur. This reduces the overall system performance. Thus,
for high-performance systems the architecture shown in Fig. 2-27b is generally
preferred. Here, the frame buffer memory is separate from the main memory,
which eliminates bus contention. Further, the graphics subsystem can be op-
timized to meet the update requirements of the frame buffer and hence increase
system performance.

2-12 ADDRESSING THE RASTER

It is conceptually easiest to consider a pixel in a raster or frame buffer to
have two-dimensional coordinates x, y as shown in Fig. 2-28. Digital memory
is, however, arranged as a single linear list of addresses. Thus, it is neces-
sary to convert from the two-dimensional x, y representation to the linear list.
Assuming that the starting address in memory is not zero then the conversion
is given by

Address = (Xmax ~ Xmin)(y ~ Ymin) + (X = Xmin) + base address
The first term counts the number of rows. The second term adds the location

in the row, and the final term adds the starting address. The pixel is identified
by its lower left hand corner coordinates.

y
Ymax 5
4 o
F 1(3,2
3 ixel (3,2)
2
| —Pixel (4,2)
0
-1
-2
Y¥min -3 X
21 01 23456 Figure 2-28 Raster coordinate

Xmin Xmax system.

ADDRESSING THE RASTER 65

Example 2-6 Addressing the Raster

Consider the pixel at location (3, 2) in the small raster shown in Fig. 2-28.
Here, X = 6, Xmin = =2, Ymax = 5, and y;, = —3, with the first pixel in the
lower left hand corner stored in the first memory location; the base or starting
address is 1. Hence, the memory address is

Address = [6 — (-2)][2 = (=3)] + [3 = (=2)] + 1
=@)S)+5+]1
=40+6
= 46

This can be checked by counting the squares.

The scheme also works for x positive to the right and y positive downward
provided the pixel is addressed by the coordinates of its upper left hand corner.

For a given frame buffer x, ., Xmin, Ymin and the base address are normally
constant. The equation can thus be rewritten as

Address = K + Koy + x
where

K, = base address — K2¥min — Xmin

K2 = Xpax — Xmin

Hence, calculating the pixel address in frame buffer memory requires only
two adds and a multiply. When pixels are addressed successively, incremental
calculations can be used to further reduce the work involved in determining the
pixel address. In particular,

Address(x *+ 1,y) Ki + Ky + x*1
Address(x, y) = 1

Ki +Kxyx1) +x
Address(x, y) * K>
Ki+Kyx1l)+xx1l

Address(x, y) * K * 1

Address(x, y = 1)

Address(x = 1,y = 1)

Here, only a single add or subtract is needed for either horizontal or vertical
increments in the raster, and only two adds or subtracts for diagonal increments.
The multiply is eliminated.

66 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Example 2-7 Incrementally Addressing the Raster
Consider the pixel located at (4, 2) in the raster shown in Fig. 2-28. Here
K2 =6-(-2)=8
Ki =1-8)(-3)—-(-2)=27
and
Address = 27 + (8)(2) + 4 = 47

Recalling the result for the pixel at (3, 2) from the previous example and using
the incremental calculation yields

Address (x + 1, y) = Address (x, y) + 1

Address (4, 2) =46+ 1=47

2-13 LINE DISPLAY

Addressing the frame buffer in this way allows it to conceptually be treated
similar to a storage tube graphics display. The frame buffer is first cleared or
set to the background intensity or color. Instead of writing vectors directly
to the display screen, either the Bresenham or the DDA algorithm is used to
rasterize the line and the appropriate pixels are written to the frame buffer.
When the picture or frame is complete, the display controller reads the frame
buffer in scan line order and presents the result to the video monitor.
Selective erase of lines can be implemented by again using the rasterizing
algorithm to write the appropriate pixels to the frame buffer in the background
intensity or color. This eliminates the line. However, Fig. 2-29 illustrates a
problem with this technique. If the erased line crosses another line, then a
hole will be left in that line. Figure 2-29a shows two intersecting lines. If the

—_—N W A N9
—_ N W A O 9 o

1 2345678 1 23456 78
a b

Figure 2-29 Selective erase of lines in a frame buffer.

CHARACTER DISPLAY 67

Figure 2-30 Boxing or minimax tests.

horizontal line at y = § is erased by writing the background intensity or color
to the frame buffer, then a hole in the remaining line at pixel (5, 5) results.
It is not difficult to detect these holes and fill them. It is only necessary to
determine the intersection of the deleted line with all other lines in the picture.
For a complex picture this can be time-consuming.

Boxing or minimax tests can be used to reduce the work required. This
technique is shown in Fig. 2-30. Only lines which pass through the dotted box
formed from the minimum and maximum values of x and y for the line segment
ab can possibly intersect ab. The tests for each line segment are then

minimax or boxing test

if (Xlinemax < Xboxmin) or
(Xlinemin > Xboxmax) or
(Ylinemax < Yboxmin) or
(Ylinemin > Yboxmax)
then
no intersection
else
calculate intersection
finish

2-14 CHARACTER DISPLAY

Alphanumeric characters are written to the frame buffer using a mask. A
character mask is a small raster which contains the relative locations of the
pixels used to represent the character (see Fig. 2-22). Special symbols unique
to a particular application, e.g., resistors, capacitors, or mathematical symbols,
can also be represented with a character mask. The mask itself simply contains
binary values indicating whether or not a particular pixel in the mask is used to
represent the character or symbol shape. For simple black-and-white displays

68 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

a 1 normally indicates that a pixel is used in the representation, and a 0 that
it is not. For color displays additional bits are used to provide multiple color
shades directly or as indices to a color look-up table.

The character may be inserted into the frame buffer by indicating the
location in the frame buffer (x, yo) of the origin of the mask. Then each pixel
in the mask is displaced by the amount xo, yo. A simple algorithm to accomplish
this for a binary mask is

Mask insertion into the frame buffer

Xmin, Xmax, Ymin, Ymax are the limits of the mask
X0, Yo is the location in the frame buffer
for j = Ymin to Ymax — 1
for i = Xmin to Xmax — 1
if Mask(i, j) <> O then
write Mask(i, j) to the frame buffer at (xo + i, yo + j)

else
end if
next i
next j
finish

A character in the frame buffer can be erased by rewriting it to the frame
buffer using the background intensity or color.

The character mask can be modified as it is written to the frame buffer to
produce alternate character styles or orientations. Some simple modifications
are shown in Fig. 2-31. Figure 2-31a shows the original character mask. By
writing the mask to two successive frame buffer locations xo and xo + 1 a bold-
faced character is obtained. This is shown in Fig. 2-31b. The character can be
rotated as shown in Fig. 2-31c or skewed to give the appearance of italics as
shown in Fig. 2-31d.

6 —
||
4 -
2
0
oLl L1 1
1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7
Original Boldface Rotated Italic
a b c d

Figure 2-31 Transformed character masks.

POLYGON FILLING 69

2-15 SOLID AREA SCAN CONVERSION

So far the discussion has been concerned with the presentation of lines on a
raster scan device. However, one of the unique characteristics of a raster scan
device is the ability to present solid areas. The generation of solid areas from
simple edge or vertex descriptions is called solid area scan conversion, polygon
filling, or contour filling. Several techniques can be used to fill a contour. They
generally divide into two broad categories: scan conversion and seed fill.

Scan conversion techniques attempt to determine, in scan line order, wheth-
er or not a point is inside a polygon or contour. These algorithms generally
proceed from the “top” of the polygon or contour to the “bottom.” The scan
conversion techniques are equally applicable to line drawing displays. With
line drawing displays they are used for cross-hatching or shading of contours as
shown in Fig. 2-32.

Seed fill techniques assume that some point inside the closed contour is
known. The algorithms then proceed to search for points adjacent to the
seed point that are inside the contour. If the adjacent point is not inside the
contour, then a boundary of the contour has been found. If the adjacent point
is inside the contour, then it becomes a new seed point and the search continues
recursively. Seed fill algorithms are only applicable to raster devices.

Figure 2-32 Contour cross-hatching or shading.

2-16 POLYGON FILLING

Many closed contours are simple polygons. If the contour is composed of
curved lines, it can be approximated by a suitable polygon or polygons. The
simplest method of filling a polygon is to examine every pixel in the raster to see
if it is inside the polygon. Since most pixels will not be inside the polygon, this
technique is wasteful. The amount of work can be reduced by computing the
bounding box for the polygon. The bounding box is the smallest rectangle that
contains the polygon. Only those points inside the bounding box are examined.
This is shown in Fig. 2-33. Using a bounding box for the polygon shown in
Fig. 2-33a significantly reduces the number of pixels examined. However, for
the polygon shown in Fig. 2-33b, the reduction is considerably smaller.

70 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

——————d

L L___—= =
“Bounding box1
1111

Figure 2-33 Polygon bounding box.

2-17 SCAN-CONVERTING POLYGONS

A more efficient technique than the inside test can be developed by taking ad-
vantage of the fact that, except at boundary edges, adjacent pixels are likely to
have the same characteristics. This property is referred to as spatial coherence.
For a raster scan graphics device adjacent pixels on a scan line are likely to
have the same characteristics. This is scan line coherence.

The characteristics of pixels on a given scan line change only where a
polygon edge intersects the scan line. These intersections divide the scan line
into regions.

For the simple polygon shown in Fig. 2-34 the scan line labeled 2 intersects
the polygon at x = 1 and x = 8. These intersections divide the scan line into
three regions

x <1 outside the polygon
1 =x=8 inside the polygon
x>8 outside the polygon

Similarly the scan line labeled 4 is divided into five regions

\/ Scan line 4

2+ - Scan line 2

) — X Figure 2-34 Solid area scan con-
0 2 4 6 8 10 version.

SCAN-CONVERTING POLYGONS 71

x <1 outside the polygon
l=x=4 inside the polygon
4<x<6 outside the polygon
6=x=<38 inside the polygon
x>8 outside the polygon

The intersections for scan line 4 are not necessarily determined in left-
to-right order. For example, if the polygon is specified by the vertex list
P\P,P3P4sPs and the edge list by successive pairs of vertices, PP, P2Ps,
P3P4, P4Ps, PsP), then the intersections of the edges with scan line 4 will be
determined as 8, 6, 4, 1. They must then be sorted into ascending order in x,
i.e. 1,4,6, 8.

In determining the intensity, color, or shade of the pixels on a scan line
the sorted intersections are considered in pairs. For each interval formed by a
pair of intersections, the intensity or color is that of the polygon. For intervals
between pairs of intersections, the intensity or color is that of the background.
Of course, from the beginning of the scan line until the first intersection, and
from the last intersection to the end of the scan line the intensity or color is
that specified for the background. For the polygon in Fig. 2-34 the pixels from
Oto 1,4 to 6, and 8 to 10 on scan line 4 are set at the background color, while
those from 1 to 4 and 6 to 8 are set at the polygon intensity or color.

Determining exactly which pixels are to be activated requires some care.
Consider the simple rectangular polygon shown in Fig. 2-35. The coordinates
of the rectangle are (1, 1), (5, 1), (5, 4), (1, 4). The scan lines 1 to 4 have
intersections with the polygon edges at x = 1 and 5. Recalling that a pixel is
addressed by its lower left hand corner coordinates, then for each of the scan
lines, the pixels with x coordinates of 1, 2, 3, 4, and 5 would be activated. The
result is shown in Fig. 2-35a. Note that the area covered by the activated pixels
is 20 units, while the true area of the rectangle is 12 units.

Modification of the scan line coordinate system and the activation test cor-
rects this problem. This is shown in Fig. 2-35b. The scan lines are considered
to pass through the center of the row of pixels, i.e., at the half interval as shown
in Fig. 2-35b. The test for activation is modified to consider whether the center

/
3 5 [T T[] Scan tine
4 41 35
3 3 —1 25
2 2 —1 15
1 1
0 0 [1] .
01 23456 0123456
a b

Figure 2-35 Scan line coordinate systems.

72 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

of the pixel to the right of the intersection is within the interval. However, the
pixels are still addressed by the coordinates of the lower left hand corner. This
technique yields the correct result as shown in Fig. 2-35b.

Horizontal edges cannot intersect a scan line and are thus ignored. This
does not mean that horizontal edges are not formed. They are formed by the
bottom and top edges of the rows of pixels. This is also illustrated in Fig. 2-35.
Figure 2-35b illustrates that the modified scan line coordinate system yields the
correct top and bottom edge for the polygon.

An additional difficulty occurs when a scan line intersects the polygon
precisely at a vertex. Figure 2-36 illustrates this problem. Using the half scan
line convention, the scan line at y = 3.5 intersects the polygon at 2, 2 and 8.
This is an odd number of intersections. Hence, extracting the pixels in pairs
will yield an incorrect result; i.e., the pixels at (0, 3), and (1, 3) will be set at
the background color, the pixel at (2, 3) at the polygon color, those from (3, 3)
to (7, 3) at the background color, and those at (8, 3) and (9, 3) at the polygon
color. Observation suggests that at a scan line-polygon vertex intersection only
one intersection should be counted. For the scan line at y = 3.5, this would
give the correct result. However, examining the scan line at y = 1.5, which has
two intersections at (5, 5), shows that this technique is incorrect. For this scan
line extracting the pixels in pairs will yield the correct result; i.e., only the pixel
at (5, 1) is set to the polygon color. If only one intersection is counted at the
vertex, then the pixels from (0, 1) to (4, 1) are set at the background color and
those from (5, 1) to (9, 1) at the polygon color.

The correct result is obtained by counting two intersections when the scan
line-polygon vertex intersections occur at local maxima or minima of the polygon
and only one if not. Whether the vertex under consideration is a local polygon
maximum or minimum can be determined by examining the end points of the
two edges meeting at the vertex. If the y values of these edges are both greater
than the vertex being considered, then the vertex is a local minimum. If both
are less than the vertex being considered, then the vertex is a local maximum.
If one is greater and one less, then the vertex is neither a local minimum nor

3 P, Scan line
- - -—15
~
6 I~ P,
\
4 AV - = Pzl -4.5
- - F5T1--35
N ELZIEAN o
- - =15
0 Py Figure 2-36 Scan line intersection

0 2 4 6 8 10 singularities.

A SIMPLE ORDERED EDGE LIST ALGORITHM 73

a local maximum. In Fig. 2-36, P, is a local minimum, P3 a local maximum,
and P, and P, are neither local maxima nor minima. Hence, two scan line
intersections are counted at P, and P3 and only one at P, and P,.

2-18 A SIMPLE ORDERED EDGE LIST ALGORITHM

Using the techniques discussed above, efficient algorithms for scan-converting
solid area polygons can be developed. These are called ordered edge list
algorithms. They depend upon sorting the polygon edge-scan line intersections
into scan line order. The efficiency of the algorithms depend on the efficiency
of the sorting. A particularly simple algorithm is

A simple ordered edge list algorithm
To prepare the data:

Determine for each polygon edge the intersections with the half
interval scan lines. A Bresenham or DDA algorithm can be used
for this. Horizontal edges are ignored. Store each intersection
(x,y + 1/2) in a list.

Sort the list by scan line and increasing x on the scan line; i.e.,
(x1, y1) precedes (xz, y2) if y1 > y2 or y; = y2 and x;=x;.

To scan-convert the data:

Extract pairs of elements from the sorted list (x;, y1) and (x2, y2).
The structure of the list ensures that y = y; = y, and x; < xa.
Activate pixels on the scan line y for integer values of x such that
x1=<x+12=<x;.

Example 2-8 Simple Ordered Edge List

Consider the polygon shown in Fig. 2-34. The polygon vertices are P (1, 1),
P(8, 1), P3(8, 6), P4(5, 3), and Ps(1, 7). Intersections with the half interval scan
lines are

scan line 1.5: (8, 1.5), (1, 1.5)

scan line 2.5: (8, 2.9), (1, 2.5)

scan line 3.5: (8, 3.5), (5.5, 3.5), 4.5, 3.5), (1, 3.5)
scan line 4.5: (8, 4.5), (6.5, 4.5), (3.5, 4.5), (1, 4.5)
scan line 5.5: (8,5.5),(7.5,5.5), 2.5, 5.5), (1, 5.5)
scan line 6.5: (1.5, 6.5), (1, 6.5)

scan line 7.5: none

The complete list sorted in scan line order from the top to the bottom and then
from left to right is

74 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

(1, 6.5), (1.5, 6.5), (1, 5.5), (2.5, 5.5), (7.5, 5.5), (8, 5.5), (I, 4.5), (3.5, 4.5),
(6.5, 4.5), (8, 4.5), (1, 3.5), (4.5, 3.5), (5.5, 3.5), (8, 3.5), (1,2.5), (8, 2.5),
(1,1.5), (8, 1.5)

Extracting pairs of intersections from the list and applying the algorithm given
above yields the pixel activation list

(1, 6)

(1,5),(2,95),(7,595)
(1,4),(2,4,3,4,06,49,0,4
1,3),(2,3),3,3),4,3),5,3),(,3),(7,3)
1,2),2,2),3,2),4,2),(,2),(,2),(7,2)
1, 0,2 D,G3 D, 41,6, 1),6,1,07,1

The result is shown in Fig. 2-37. Notice that both vertical edges and the bottom
edge are given corrertly.

0 x Figure 2-37 Results of solid area scan
0 2 4 6 8 10 conversion of Fig. 2-34.

2-19 MORE EFFICIENT ORDERED EDGE LIST ALGORITHMS

The simple algorithm given in the previous section generates a large list which
must be completely sorted. Making the sort more efficient will improve the
algorithm. This can be accomplished by separating the vertical scan line sort
in y from the horizontal scan line sort in x using a y-bucket sort as previously
discussed in Sec. 2-8. In particular the algorithm is now

A more efficient ordered edge list algorithm
To prepare the data:

Determine for each polygon edge the intersections with the half
interval scan lines, i.e., at y + 1/2. A Bresenham or DDA algo-
rithm can be used for this. Ignore horizontal edges. Place the x
coordinate of the intersection in the bucket corresponding to y.

As each scan line is addressed, i.e. for each y bucket, sort the
list of x intersections into increasing order; i.e., x; precedes x; if
X1 = x;.

MORE EFFICIENT ORDERED EDGE LIST ALGORITHMS 75

To scan-convert the data: .

For each scan line extract pairs of intersections from the x-sorted
list. Activate pixels on the scan line y corresponding to that bucket
for integer values of x such that x; =x+ 1/2 < x.

The above algorithm first sorts into scan line order with the y-bucket sort
and then into order on the scan line. Thus, scan conversion begins prior
to completion of the full sorting process. Further, with this algorithm it is
somewhat easier to add or delete information from the display list. Here, it
is only necessary to add or delete information from the appropriate y buckets.
Hence, only the individual scan lines affected by the change need be resorted.
An example further illustrates the algorithm.

Example 2-9 A More Efficient Ordered Edge List

Reconsider the polygon shown in Fig. 2-34 and discussed in Example 2-8. First,
y buckets for scan lines O to 8 are established as shown in Fig. 2-38. The
intersections obtained by considering each edge in turn counterclockwise from
P) are also shown in the buckets in Fig. 2-38a unsorted in x. The intersections
were calculated using the half scan line technique. For illustrative purposes
they are also shown sorted in Fig. 2-38b. In practice a small scan line buffer
as shown in Fig. 2-38c may be used to contain the x-sorted intersection values.
This allows more efficient additions to or deletions from the intersection list.
They can simply be added to the end of each y-bucket list since the x sort does
not take place until an individual scan line is moved to the scan line buffer.
Hence, a completely sorted y-bucket list does not need to be maintained.

Extracting pairs of intersections from the x-sorted list and applying the
algorithm above yields the pixel activation list for each scan line. The result is
the same as in Example 2-8. It is shown in Fig. 2-37.

x intersections (unsorted) X intersections (sorted)
8

7

615] 1 1.5

5 75125 S5

4 6.513.5 3.516.5

3 8 [5.5145 S1551 8

2 8

1 8

0

Scan line buffer
1 [45[55] 8 L1~}
c

Figure 2-38 y buckets for the scan lines for the polygon of Fig. 2-34.

76 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Although this second algorithm simplifies the sorting task, it either limits
the number of intersections on a given scan line or requires the allocation
of large amounts of storage, much of which may not be used. By using a
linked list this problem can be overcome at the expense of additional data
structure. The precalculation of the intersection of each scan line with each
polygon edge is time-consuming. It also requires the storage of considerable
data. By introducing an active edge list as previously discussed for real-time
scan conversion (see Sec. 2-8), data storage is further reduced and scan line
intersections can be calculated incrementally. The resulting algorithm is

An ordered edge list algorithm using an active edge list
To prepare the data:

Determine for each polygon edge, using the half interval scan lines,
i.e. at y + 1/2, the highest scan lines intersected by the edge.

Place the polygon edge in the y bucket corresponding to this scan
line.

Store the initial x intersection value, the number of scan lines
crossed by the polygon edge, Ay, and the x increment Ax from scan
line to scan line in a linked list.

To scan-convert the data:

For each scan line examine the corresponding y bucket for any new
edges. Add any new edges to the active edge list.

Sort the x intercepts from the active edge list into increasing order;
i.e., x; precedes x; if x; < x;.

Extract pairs of intersections from the sorted x list. Activate pixels
on the scan line y for integer values of x such that x; = x+1/2 = x,.
For cach edge on the active edge list decrement Ay by 1. If Ay <
0, drop the edge from the active edge list. Calculate the new x
intercept xnew = Xoid + Ax.

Advance to the next scan line.

This algorithm assumes that all data has been previously converted to a polygo-
nal representation. Whitted (Ref. 2-21) gives a more general algorithm which
removes this restriction.

Example 2-10 Ordered Edge List with an Active Edge List

Again consider the simple polygon shown in Fig. 2-34. Examining the list of
polygon edges shows that scan line 5 is the highest intersected by edges P2P3
and P3Ps, and scan line 6 the highestintersected by edgesP4Ps and PsP,. The
structure of the linked list containing data for the nine y buckets corresponding
to the nine scan lines (0 to 8) of Fig. 2-34 is shown conceptually in Fig. 2-39a.

MORE EFFICIENT ORDERED EDGE LIST ALGORITHMS 77

Scan line Linked list of polygon edge data

y-bucket

s 5

7 E
Edge P,P3 Edge P3P4

6 L 1 x [ax[ay] —— x [ax[ay (HH

s xIax[ay] 4— x [ax[ay HH-
Edge P4Ps Edge PsP;

4

Link termination
or empty y-bucket.

nilfigui
i

Scan line Link Linked list
y-bucket Pointer List Link
address x Ax Ay Pointer
0
1 1 8 0 4 2
) 2 |75 -1] 2 HH
3 3 15[1 3 4
4 4 |1 5 H—
5 1
6 3
7
8
b

Figure 2-39 Conceptual linked list for the polygon of Fig. 2-34.

78 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Scan Active edge list x-sorted
line x Ax Ay intersections Pixel list

s EET
7 EEA

s o] * s > .6
25] 1 2
1 0 4
5 o1 [1 [25]75]8] = 1,929.79
751 1] 2
3511 1
103 (1,4), 2,4), 3,4,
4 o T3] ~ Lid3s[es][8] = o @4
65| 1] 1
451 1 0
1 o2 (1,3),2.,3), 3,3), 4,3),
3 o T~ Lifas]ss] 8] = 363,03
55110
1o 1 (1.2), 2,2), 3,2, (4,2),
2 5 > 1]8] > (5,2,(6,2.07,2)
1]oJo (L1, 2,1, 3, 1), @4,1),
U Tt > (1), 6.1, (1)
o HEEA

Figure 2-39 (Continued.)

THE EDGE FILL ALGORITHM 79

Notice that most of the buckets are empty. A practical implementation is shown
in Fig. 2-39b. Here, the y-bucket list is a one-dimensional array, one element
for each scan line. The array element corresponding to each scan line bucket
contains only a simple pointer into the data array used for the linked list which
is also shown in Fig. 2-39b.

The linked list is implemented as an n X 4 array. For each array index n
the four elements contain the x intersection for a polygon edge with the highest
scan line crossed by that edge, the x increment from scan line to scan line for
that polygon edge, the number of scan lines crossed by the polygon edge, and
the link pointer to the list address for data for the next polygon edge beginning
on that scan line. This is shown in Fig. 2-39b. Note that the y bucket for scan
line 5 contains the link pointer 1 corresponding to the first address in the linked
data list. The first three columns in the linked data list contain data about the
edge P2P3. The number in the fourth column is the link pointer to the next
data address.

The active edge is implemented as an n X 3 stack array. The contents of
the active edge list are shown for all nine scan lines in Fig. 2-39c. The scan
lines (y buckets) are examined sequentially from the top of the picture starting
with scan line 8. Since the y buckets for scan lines 8 and 7 are empty, the active
edge list is also empty. Scan line 6 adds two elements to the active edge list,
and scan line 5 two more. Atscan line 2, Ay for edges P3Ps and PsPs become
less than zero. Hence, they are dropped from the active edge list. Similarly,
edges P2P3 and PsP; are dropped at scan line 0. Finally, note that at scan line
0 the y bucket is empty, that the active edge list is empty, and there are no
further y buckets. Hence, the algorithm is complete.

For each scan line the x intersections of the active edges for that scan
line are extracted from the active edge list, sorted into increasing x order, and
placed in a span buffer implemented as a 1 X n array. From the span buffer
the intersections are extracted in pairs. The active pixel list is then determined
using the above algorithm. The combined pixel list for all the scan lines is the
same as in the previous examples. The result is again shown in Fig. 2-37.

2-20 THE EDGE FILL ALGORITHM

The ordered edge list algorithm is very powerful. Each pixel in the display is
visited only once. Hence, the input/output requirements are minimized. The
end points of each group or span of active pixels are calculated before output.
This allows the use of a shading algorithm along the span to obtain fully shaded
pictures. Since the algorithm is independent of the input/output details, it can
be made device independent. The algorithm’s main disadvantage is the expense
associated with maintaining and sorting the various lists. An alternate solid
area scan conversion technique eliminates most of these lists. This alternate
technique is the edge fill algorithm (Ref. 2-22).
The edge fill algorithm described below is very simple.

80 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Edge fill algorithm

For each scan line intersecting a polygon edge at (xi, y;) comple-
ment all pixels whose midpoints lie to the right of (x|, y1) i.e., for
(x, y1), x+ 172> x,.

The half scan line convention is used to calculate the scan line-edge inter-
sections. The algorithm is applied to each polygon edge individually. The order
in which the polygon edges are considered is unimportant. Figure 2-40 shows
the various stages in scan-converting the solid area-of the example polygon
of Fig. 2-34. Notice that the activated pixels are not the same as for the or-
dered edge list. In particular the edge fill algorithm does not activate pixels at
(5, 3), (6, 4), (7, 5); i.e., the edge P3P, is rasterized differently. The difference
is in the way pixels that are exactly half inside and half outside the polygon are
handled. The ordered edge list algorithm always activates these pixels. The
edge fill algorithm activates them only if the inside of the polygon lies to the
left of the center of the pixel.

The algorithm is most conveniently used with a frame buffer. This allows
the polygon edges to be considered in completely arbitrary order. As each
edge is considered, the appropriate pixels in the frame buffer corresponding
to an edge-scan line intersection are addressed. When all edges have been
considered, the frame buffer is read to the display device in scan line order.
Figure 2-40 illustrates the main disadvantages of the algorithm; i.e., for com-
plex pictures each individual pixel may be addressed many times. Hence, the
algorithm is limited by input/output considerations.

The number of pixels addressed by the edge fill algorithm can be reduced
by introducing a fence (Ref. 2-23). This is the fence fill algorithm. The basic

8 8 8
s
6 3 6 6
4 4 4
H
2 o 2
%246 510 % 2 46 8 10 °% 2 4 6 8 10
Edge BP Edge B P,
8 8
6 6
4 4
2 2
% 2 4 6 8 10 % 2 4 6 8 10
Edge B P Edge KR

Figure 2-40 Edge fill algorithm.

THE EDGE FLAG ALGORITHM 81

idea is illustrated in Fig. 2-41 again for the example polygon of Fig. 2-34. In
particular, the fence fill algorithm is

The fence fill algorithm
For each scan line intersecting a polygon edge:

If the intersection is to the left of the fence, complement all pixels
whose midpoint lies to the right of the intersection of the scan line
and the edge and to the left of the fence.

If the intersection is to the right of the fence, complement all pixels
whose midpoint lies to the left of or on the intersection of the scan
line and the edge and to the right of the fence.

The half scan line conversion is used. A convenient fence location is usually one
of the polygon vertices. Again, the algorithm is most conveniently used with a
frame buffer. The disadvantage of both the edge fill and fence fill algorithms
is the number of pixels addressed more than once. This can be eliminated by
a modification called the edge flag algorithm (Ref. 2-24). The edge fill, fence
fill, and edge flag algorithms are not limited to simple polygons.

8 [T . 3 8
6 CNcC "3 6 6
4 4 4
2 X 2 2
o2 P
0 2 4 6 8 10 % 2 46 810 % 2 4 6 8 10
Edge PP Edge BP,
8 8
6 6
4 4
2)
00 2 4 6 8 10 % 2 4 6 8 10
Edge P B Edge P P,

Figure 2-41 Fence fill algorithm.

2-21 THE EDGE FLAG ALGORITHM

The edge flag algorithm (Ref. 2-24) is a two-step process. The first step is to
outline the contour. This establishes pairs of span bounding pixels on each scan

82 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

line. The second step is to fill between these bounding pixels. The algorithm

may be more explicitly stated as follows:

The edge flag algorithm

Contour outline:

Using the half scan line convention for each edge intersecting the
polygon, set the leftmost pixel whose midpoint lies to the right of
the intersection; i.e., for x+ 1/2 > Xintersection, t0 the boundary value.

Fill:

For each scan line intersecting the polygon
Inside = FALSE

for x =

0 (left) to X = Xpqy (right)
if the pixel at x is set to the boundary value then negate
Inside

if Inside = TRUE then

else

next x

set the pixel at x to the polygon value

reset the pixel at x to the background value
end if

Example 2-11 Edge Flag Algorithm

Consider the application of the edge flag algorithm to the example polygon of
Fig. 2-34. First the contour is outlined. The result is shown in Fig. 2-42a. Pixels at

(1,1, (1,2),(1,3), (1,4, (1, 5), (1, 6), (2, 6), (3, 5), (4, 4), (5, 3), (6, 3), (7, 4),

(8, 5), (8, 4), (8, 3), (8, 2), (8, 1) are activated.

The polygon is then filled. To illustrate this the scan line at 3 is extracted
and shown in Fig. 2-42b. Pixels at x = 1, 5, 6, and 8 on this scan line have been

activated to outline the contour. Applying the fill algorithm yields

Initially

Inside = FALSE
Forx=0

Forx =1
Forx=2,3,4
Forx=35
Forx=6

The pixel is not set to the boundary value and Inside
= FALSE. Thus, no action is taken.

The pixel is set to the boundary value, Inside is negat-
ed to TRUE. Inside = TRUE so the pixel is set to
the polygon value.

The pixel is not set to the boundary value. Inside =
TRUE so the pixel is set to the polygon value.

The pixel is set to the boundary value, Inside is negat-
ed to FALSE. Inside = FALSE so the pixel is set to
the background value.

The pixel is set to the boundary value, Inside is negat-
ed to TRUE. Inside = TRUE so the pixel is set to
the polygon value.

SEED FILL ALGORITHMS 83

Forx =7 The pixel is not set to the boundary value. Inside =
True so the pixel is set to the polygon value.

Forx =38 The pixel is set to the boundary value, Inside is ne-
gated to FALSE. Inside = FALSE so the pixel is set
to the background.

The result is shown in Fig. 2-42c. The final result for the complete poly-
gon is the same as for the edge fill algorithm as shown in Fig. 2-40.

The edge flag algorithm visits each pixel only once. Hence, the input/out-
put requirements are considerably less than for the edge fill or fence fill algo-
rithms. When used with a frame buffer, none of these algorithms requires
building, maintaining, and sorting edge lists. Implemented in software, the
ordered edge list and the edge flag algorithms execute at about the same speed
(Ref. 2-21). However, the edge flag algorithm is suitable for hardware or
firmware implementation where it executes one to two orders of magnitude
faster than the ordered edge list algorithm (Ref. 2-24). For simple pictures
real-time animation is possible.

301 23456 738 910
b

3012345678910

C

O = N W S N g 00 <

0123456788910
a

Figure 2-42 Edge flag algorithm.

2-22 SEED FILL ALGORITHMS

The algorithms discussed above fill the polygon in scan line order. A different
approach is used in the seed fill algorithms. The seed fill algorithms assume that
at least one pixel interior to a polygon or region is known. The algorithm then
attempts to find and color or fill all other pixels interior to the region. Regions
may be either interior- or boundary-defined. If a region is interior-defined,
then all the pixels in the interior of the region have one color or value and all
the pixels exterior to the region have another as shown in Fig. 2-43. If a region
is boundary-defined, then all the pixels on the region boundary have a unique

84 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

8 8
6 6
4 4
2 2
0 0
0 2 4 6 8 10 0 2 4 6 8 10
Figure 2-43 Interior-defined region. Figure 2-44 Boundary-defined region.

value or color as shown in Fig. 2-44. None of the pixels interior to the region
can have this unique value. However, pixels exterior to the boundary may
also have the boundary value. Algorithms that fill interior-defined regions are
referred to as flood fill algorithms, and those that fill boundary-defined regions
as boundary fill algorithms. The discussion below concentrates on boundary fill
algorithms. However, the companion flood fill algorithms can be developed in
an analogous manner.

Interior- or boundary-defined regions may be either 4-connected or 8-
connected. If a region is 4-connected, then every pixel in the region may be
reached by a combination of moves in only four directions: left, right, up,
down. For an 8-connected region every pixel in the region may be reached by
a combination of moves in the two horizontal, two vertical, and four diagonal
directions. An 8-connected algorithm will fill a 4-connected region, but a 4-
connected algorithm will not fill an 8-connected region. Simple examples of 4-,
and 8-connected interior-defined regions are shown in Fig. 2-45. Although each
of the subregions of the 8-connected region shown in Fig. 2-45b is 4-connected,
passage from one subregion to the other requires an 8-connected algorithm.
However, if each of the subregions is a separate 4-connected region, each to
be filled with a separate color or value, then use of an 8-connected algorithm
causes both regions to be incorrectly filled with a single color or value.

Figure 2-46 shows the 8-connected region of Fig. 2-45 redefined as a bound-
ary-defined region. Figure 2-46 illustrates that where a region is 8-connected,

4-Connected 8-Connected Figure 2-45 Four- and 8-connected interior-de-
a b fined regions.

A SIMPLE SEED FILL ALGORITHM 85

Figure 2-46 Four- and 8-connected boundary-defined
regions.

i.e., where the two subregions touch at the corners, the boundary is 4-connected.
It also illustrates that, for 4-connected regions, the boundary is 8-connected.
The discussion below concentrates on 4-connected algorithms. The equivalent
8-connected algorithms can easily be obtained by attempting to fill in eight
rather than four directions.

2-23 A SIMPLE SEED FILL ALGORITHM

A simple seed fill algorithm for a boundary-defined region can be developed
using a stack. A stack is simply an array or other storage space into which values
may be sequentially placed or from which they may be sequentially removed.
As new values are added to or pushed onto the stack, all previously stored
values are pushed down one level. As values are removed or popped from
the stack, previously stored values float or pop up one level. Such a stack is
referred to as a first in, last out (FILO) or push-down stack. A simple seed fill
algorithm is then

Simple seed fill algorithm using a stack
Push the seed pixel onto the stack.
While the stack is not empty

Pop a pixel from the stack.
Set the pixel to the required value.

For each of the 4-connected pixels adjacent to the current pixel,
check if it is a boundary pixel or if it has already been set to the
required value. In either case ignore it. Otherwise, push it onto
the stack.

The algorithm can be modified for 8-connected regions by looking at the 8-
connected pixels rather than only the 4-connected pixels. A more formal state-
ment of the algorithm assuming the existence of a seed pixel and a boundary-
defined region is

86 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

simple seed fill algorithm for 4-connected boundary-defined regions

Seed(x,y) is the seed pixel
Push is a function for placing a pixel on the stack
Pop is a function for removing a pixel from the stack
Pixel(x,y) = Seed(x,y)
initialize stack
Push Pixel(x, y)
while (stack not empty)
’ get a pixel from the stack
Pop Pixel(x,y))
if Pixel(x,y) <> New value then
Pixel(x,y) = New value
else
examine the surrounding pixels to see if they should be placed
onto the stack
if (Pixel(x+1,y) <> New value and
Pixel(x+1, y) <> Boundary value) then
Push Pixel(x+1,y)
if (Pixel(x,y+1) <> New value and
Pixel(x, y + 1) <> Boundary value) then
Push Pixel(x,y+1)
if (Pixel(x—1,y) <> New value and
Pixel(x — 1, y) <> Boundary value) then
Push Pixel(x—1,y)
if (Pixel(x,y—1) <> New value and
Pixel(x, y—1) <> Boundary value) then
Push Pixel(x,y—1)
end if
end while

The algorithm examines the 4-connected pixels and pushes them onto the stack
counterclockwise beginning with the pixel to the right of the current pixel.

Seed
pixel

Interior
pixel

Boundary
pixel

[« RSN TR SR NV N - |

Figure 2-47 Seed fill using a
01 234567829 simple stack algorithm.

A SIMPLE SEED FILL ALGORITHM 87

Example 2-12 Simple Seed Fill Algorithm

As an example of the application of the algorithm consider the boundary-
defined polygonal region defined by the vertices (1, 1), (8, 1) (8, 4), (6, 6),
and (1, 6) as shown in Fig. 2-47. The seed pixel is at (4, 3). The algorithm
proceeds to fill the polygon pixel by pixel as shown by the line in Fig. 2-47 with
the arrows. The numbers in each pixel give the stack location of the pixel as the
algorithm proceeds. Notice that some pixels contain more than one number.
This indicates that the pixel has been pushed onto the stack more than once.
When the algorithm reaches pixel (5, 5) the stack is 23 levels deep and contains
the pixels (7, 4), (7, 3), (7, 2), (7, 1), (6, 2), (6, 3), (5, 6), (6, 4), (5. 5), (4, 4),
(3.4),(3,5),(2.4),(2,3),(2.2), (3.2, (5. 1), 3.2), (5. 2), (3. 3), (4. 9),
s, 3).

Since all the pixels surrounding that at (5, 5) contain either boundary values
or new values, none are pushed onto the stack. Hence, pixel (7, 4) is popped
off of the stack and the algorithm proceeds to fill the column (7, 4), (7, 3),
(7, 2), (7, 1). When pixel (7, 1) is reached, again the surrounding pixels either
already contain the new value or are boundary pixels. Since the polygon is
completely filled at this point, popping pixels from the stack until it is empty
causes no additional pixels to be filled. When the stack is empty, the algorithm
is complete.

The polygon in Example 2-12 is a simple open region. The algorithm
will also properly fill regions containing holes. This is illustrated in the next
example.

7

6 Seed

5 pixel

4 Interior

3 pixel

2 Boundary

1 pixel Figure 2-48 Seed fill of a re-

0 gion containing a hole using a
01234567829 simple stack algorithm.

Example 2-13 Simple Seed Fill Algorithm for Polygon with a Hole

As an example of the application of the algorithm to a polygonal boundary-
defined region containing a hole consider Fig. 2-48. Here, the polygon vertices
are the same as in the previous example, i.e., (1, 1), (8, 1), (8, 4), (6, 6), and
(1, 6). The interior hole is defined by (3, 2), (6, 2), (6, 4), (3, 4). The seed
pixel is at (4, 4). Because of the interior hole the algorithm fills the polygon
along a quite different path than in Example 2-12. This new path is shown
by the arrowed line in Fig. 2-48. Again, the numbers in each pixel give the
stack location as the algorithm proceeds. When the algorithm reaches pixel
(3, 1) all the 4-connected surrounding pixels either contain the new value or

88 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

are boundary pixels. Hence, no pixels are pushed onto the stack. At this point
the stack is 14 levels deep. It contains the pixels (7, 1), (7, 2), (7, 3), (6, 5),
(7, 4), (6,5), 3, 1), (1, 2), (1, 3), (1, 4), (2, 5), 3, 5), (4, 5), (5, 4).

After popping the pixel (7, 1) from the stack, the algorithm fills the column
@1, (7,2), (7, 3), (7, 4) without pushing any additional pixels onto the
stack. At pixel (7, 4) again all 4-connected surrounding pixels contain either
the new value or are boundary pixels. Returning to the stack, the algorithm
finds no new pixels until that at (6, 5). Filling the pixel at (6, 5) completes the
polygon fill. The algorithm completes processing of the stack without further
filling. When the stack is empty, the algorithm is complete.

2-24 A SCAN LINE SEED FILL ALGORITHM

Both of the above examples show that the stack can become quite large. Further,
they show that the stack frequently contains duplicate or unnecessary informa-
tion. An algorithm which minimizes stack size attempts to seed only one pixel
in any uninterrupted scan line span (Ref. 2-25). This is called a scan line seed
fill algorithm. An uninterrupted span is a group of contiguous pixels on a single
scan line. Here, a heuristic approach is used to develop the algorithm. A more
theoretical approach, based on graph theory, is also possible (Ref. 2-26).

The scan line seed fill algorithm is applicable to boundary-defined regions.
The 4-connected boundary-defined region may be either convex or concave
and may contain one or more holes. The region exterior to and adjacent
to the boundary-defined region may not contain pixels with a value or color
corresponding to the one used to fill the region or polygon. Conceptually, the
algorithm works in four steps.

Scan line seed fill algorithm
A seed pixel on a span is popped from a stack containing the seed pixel.

The span containing the seed pixel is filled to the right and left of the
seed pixel along a scan line until a boundary is found.

The algorithm remembers the extreme left and the extreme right pixels
in the span as Xleft and Xright.

In the range of Xleft = x = Xright the scan lines immediately above and
immediately below the current scan line are examined to see if they
completely contain either boundary pixels or previously filled pixels.
If these scan lines do not contain either boundary or previously filled
pixels, then in the range Xleft = x < Xright the extreme right pixel in
each span is marked as a seed pixel and pushed onto the stack.

The algorithm is initialized by pushing a single seed pixel onto the stack
and is complete when the stack is empty. The algorithm jumps holes and
indentations in the region boundary as shown in Fig. 2-49 and in the example

(]

t9

10

lﬁ

A SCAN LINE SEED FILL ALGORITHM 89

Boundary pixel

Original seed pixel

[] Filled pixel

Figure 2-49 Scan-line-oriented polygon seed fill algorithm.

90 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

below. A more complete statement of the algorithm is given in the pseudo
implementation below.

scan line seed fill algorithm

Seed(x, y) is the seed pixel
Pop is a function for removing a pixel from the stack
Push is a function for placing a pixel on the stack
initialize stack
Push Seed(x, y)
while (stack not empty)
get the seed pixel and set it to new value
Pop Pixel(x, y)
Pixel(x, y) = Fill value
fill the span to the right of the seed pixel
Savex = x
x=x+1
if Pixel(x, y) <> Boundary value then
Pixel(x, y) = Fill value

else
save the extreme right pixel
Xright = x — 1
x = Savex
end if
fill the span to the left of the seed pixel
x=x-—-1

if Pixel(x,y) <> Boundary value then
Pixel(x, y) = Fill value
else
save the extreme left pixel
Xleft = x + 1
x = Savex
end if
check that the scan line above is neither a polygon boundary nor has
been previously completely filled

Savey =y
x = Xleft
y=y+1

if (Pixel(x,y) = Boundary value or
Pixel(x,y) = Fill value) then
=x+1
else
if x < Xright then
seed the scan line above
if (Pixel(x, y) <> Boundary value and

A SCAN LINE SEED FILL ALGORITHM 91

x < Xright) then
x=x+1
else
push the extreme right pixel onto the stack
Push Pixel(x — 1,y)
continue checking in case the span is interrupted
x=x+1
while (x < Xright)
if (Pixel(x,y) = Boundary value or
Pixel(x, y) = Fill value) then

x=x+1
else
x=x+1
end if
end while
end if
else
= Savex
y = Savey
end if

end if

Check that the scan line below is not a polygon boundary nor has
been previously completely filled.

this algorithm is exactly the same as that for checking the scan
line above except that y = y — 1 is subsituted for y =y + 1
end while
finish

Here the function Pop gets the x, y coordinates of a pixel from the stack and
the function Push places them onto the stack.

Example 2-14 Scan Line Seed Fill

Consider the application of the above algorithm to the boundary-defined polygo-
nal region shown in Fig. 2-49. The algorithm is initialized by pushing the
polygon seed pixel, labeled Seed (5, 7) in Fig. 2-49a, onto the stack. This pixel
is initially popped from the stack as the span seed. The span containing the
seed is then filled to the right and to the left. The span limits are found to be
Xright = 9 and Xleft = 1. The scan line above is then examined. It is neither
a boundary nor has it been previously filled. The extreme right hand pixel in
the range 1 < x = 9 is (8, 8). This pixel, labeled 1 in Fig. 2-49a, is pushed onto
the stack. The scan line below i$ examined and determined to be neither a
boundary nor previously filled. Within the range Xleft < x < Xright there are
two subspans. The left subspan is seeded with the pixel (3,6), labeled 2 in
Fig. 2-49a, which is pushed onto the stack. The right subspan is seeded with

92 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

the pixel (9, 6), which is also pushed onto the stack. Notice that this pixel (9, 6)
is not the extreme right pixel in the span. However, it is the extreme right pixel
in the range Xleft = x < Xright, i.e., in the range 1 =x =9. One pass through
the algorithm is now complete.

The algorithm continues by popping the top pixel from the stack. Here,
it fills spans on the right side of the polygon on successively lower scan lines.
The results are shown in Figs. 2-49b to d. The seed for scan line 3 shown in
Fig. 2-49d is pixel (10, 3). Filling the span to the right and left yields Xleft =
1 and Xright = 10. Examining the scan line above yields the seed pixel (3, 4) in
the left subspan which is pushed onto the stack. The right subspan is already
filled. Examining the scan line below yields the seed pixel (3, 2) for the left
subspan and (10, 2) for the right subspan. These pixels are also pushed onto
the stack. The maximum stack depth occurs at this scan line.

From here, the algorithm continues to completion with only one additional
point of interest. After filling the 4-connected polygonal subregions seeded with
the pixels labeled S, 4 and 3 in Fig. 2-49¢, the pixel labeled 2 is popped from
the stack. Here, the algorithm finds that all pixels on the seed scan line, on the
scan line above, and on the scan line below have already been filled. Thus, no
additional pixels are pushed onto the stack. The algorithm then pops the pixel
labeled 1 as the seed pixel and fills the scan line. Again, no additional pixels
are pushed onto the stack. The stack is now empty, the polygon filled, and the
algorithm complete.

In comparison with the seed fill algorithm of Sec. 2-23 the maximum stack
depth in the above example is five. Other techniques for polygon or region
seed fill are discussed in Ref. 2-27.

2-25 FUNDAMENTALS OF ANTIALIASING

To provide effective antialiasing it is necessary to understand the causes of
aliasing itself. Fundamentally, the appearance of aliasing effects is due to the
fact that lines, polygon edges, color boundaries, etc., are continuous, whereas
a raster device is discrete. To present the line, polygon edge, etc., on the raster
display device it must be sampled at discrete locations. This can have surprising
results. For example, consider a signal such as an edge, as shown in Fig. 2-50a.
A second signal of lower frequency is given in Fig. 2-50c. If both signals are
sampled or rasterized at the same rate, as shown by the small crosses, then the
reconstructed signals are identical, as illustrated in Figs. 2-50b and d. Figure
2-50d is called an alias of the sample in Fig. 2-50b and hence of the signal in
Fig. 2-50a. The high-frequency signal (Fig. 2-50a) has been undersampled. In
order to prevent aliasing, a signal must be sampled at a rate at least twice the
highest frequency in the signal. Undersampling causes highly periodic images
to be rendered incorrectly. For example, a picket fence or venetian blind might
appear as a few broad stripes rather than many individual smaller stripes.

FUNDAMENTALS OF ANTIALIASING 93

UUIuuuy - — [

Figure 2-50 Sampling and aliasing.

The previous sections and the above discussion illustrate two of three gen-
eral manifestations of aliasing in computer-generated images: jagged edges and
incorrectly rendered fine detail or texture. The third occurs for very smali
objects. If an object is smaller than the size of a pixel or does not cover the
point within a pixel at which the pixel attributes are evaluated, it will not be
included in the resulting picture. Alternately, if the small object covers the
point at which the pixel attributes are calculated, it may overly influence those
attributes. The left hand pixel in Fig. 2-51 shows this. If the center of the pixel
is used to determine the attributes, then the entire pixel would exhibit those of
the small object. The right hand pixels in Fig. 2-51 illustrate objects that would
be ignored or lost. Notice that long, thin objects can also be ignored. These
effects are particularly noticeable in animation sequences. Figure 2-52 shows a
small triangle in three frames of an animation sequence. If pixel attributes are
determined at the pixel center, then in the first frame the object is not visible, in
the second it is, and in the third it is again invisible. In the animation sequence
the small object would flash on and off.

Fundamentally, there are two methods of antialiasing. The first is to
increase the sample rate. This is accomplished by increasing the resolution
of the raster. Finer detail is thus included. However, there is a limit to the
ability of CRT raster scan devices to display very fine rasters. Presently the
practical limit is about 2000 pixels per scan line. This limit suggests that the
raster be calculated at higher resolution and displayed at lower resolution using
some type of averaging to obtain the pixel attributes at the lower resolution
(see Ref. 2-28).

Two types of averaging are shown in Fig. 2-53. Figure 2-53a shows a
uniform average of the surrounding pixels for resolution reductions of 2 and 4.

Figure 2-51 Aliasing cffects on small Figure 2-52 Aliasing cffccts in animation.
objects.

94 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

® Center of display pixel O‘Center’of T2 Ta131211
+ Center of calculated pixel display pixel Talels 642
hl ot el e 1211 3[6|9[12[9[6 (3
s halhs Gl s 2[@2 4|8 [12l@2]s [
++ nd bl ol s 2 3l6 912963
Resolution el s R . 21416(8|6[4}2
reduction Resolution esolution 11213]4]3]2]!
by factor reduction reduction
of 2 by factor of 4 by factorof 2 Resolution reduction
a b by factor of 4

Figure 2-53 Pixel averaging. (a) Uniform, (b) weighted (numbers indicate relative
weights).

Each display pixel is divided into subpixels to form the higher resolution raster.
Pixel attributes are determined at the center of each subpixel and averaged
to obtain the attributes for the display pixel. Somewhat better results can be
obtained by considering more subpixels and weighting their influence when
calculating the display pixel attributes. Figure 2-53b shows weighted averages
suggested by Crow (Ref. 2-28) for resolution reductions of 2 and 4. For these
weighted averages, resolution reduction by a factor of 2 considers nine sub-
pixels, and reduction by a factor of 4 forty-nine subpixels.

Figure 2-54 shows a complex scene displayed at a resolution of 256 x 256
pixels. Figure 2-54a was calculated at a resolution of 512 x 512 and Fig. 2-54b
at 1024 x 1024. Uniform averaging was used to obtain the displayed resolution
of 256 X 256 pixels. Figures 2-55a and b show the same scene calculated at
resolutions of 512 x 512 and 1024 x 1024, respectively, and displayed at 256
X 256 using the weighted averages of Fig. 2-53b.

a b

Figure 2-54 High-resolution images displayed at 256 X 256 pixel resolution. (a) Re-
duced from 512 x 512, (b) reduced from 1024 x 1024 using uniform averaging. (Cour-
tesy of F. Crow.)

SIMPLE AREA ANTIALIASING 95

a ' b
Figure 2-55 High-resolution images displayed at 256 x 256 pixel resolution. (a) Reduced

from 512))(512, (b) reduced from 1024 x 1024 using weighted averaging. (Courtesy of
F. Crow.

The second method of antialiasing is to treat a pixel as a finite area rather
than as a point. A heuristic technique is given in the next section. The
mathematical foundation is given in Sec. 2-27. Treating a pixel as a finite area
is equivalent to prefiltering the image.

2-26 SIMPLE AREA ANTIALIASING

In the line rasterization and polygon fill algorithms discussed above the
intensity or color of a pixel was determined by the intensity or color of a
single point within the pixel area. These techniques assume that the pixel is
a mathematical point rather than a finite area. For example, recalling Fig. 2-4
and the Bresenham algorithm, the intensity of pixels was determined by the
location of the single point of intersection of the line and the pixel boundary.
In the polygon solid area scan conversion techniques discussed above, the
determination of whether or not a pixel was inside or outside the polygon was
based on the location of the center of the pixel. If inside, the entire pixel area
was activated. If outside, the entire pixel area was ignored. For simple biievel
displays, i.e., black or white, polygon color or background color, this technique
is necessary. The result is the characteristic stair step or jagged polygon edge
or line. Fundamentally the stair step effect is due to undersampling the line
or polygon edge to make it conform to the discrete pixels of the display as
discussed in the previous section.

For multiple intensities, i.e., gray scales or muitiple color shades the ap-
pearance of the edge or line can be improved by blurring. A simple heuristic
approach is to let the intensity of a pixel along a polygon edge be proportional

96 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Polygon outside Polygon outside Polygon outside
Polygon edgg Polygon edge Polygon edge
2 2 2
1] 1
0 0 0
01 23 435 01 2 3 435 012 3 435
a b c

Figure 2-56 Simple antialiased polygon edge. (a) No antialiasing, (b) intensity propor-
tional to area inside polygon, (c) modified Bresenham.

to the area of the pixel inside the polygon. Figure 2-56 illustrates this simple
form of antialiasing. A single polygon edge with slope 5/8 is shown. The inside
of the polygon is to the right. In Fig. 2-56a the polygon edge is rasterized
using a standard Bresenham algorithm with only two intensity levels. The edge
exhibits the characteristic jagged or stair step pattern. In Fig. 2-56b the area
of the pixel inside the polygon is used to select one of eight (0 to 7) intensity
levels. Notice that some pixels that are totally black in Fig. 2-56a are white in
Fig. 2-56b because less than one-eighth of the pixel area is inside the polygon.

A simple modification of Bresenham’s algorithm yields an approximation
to the pixel area inside the polygon (Ref. 2-29). This approximation can be
used to modulate the intensity. When a line of slope m (0 =< m < 1) crosses a
pixel, either one or two pixels may be involved, as shown in Fig. 2-57. If only
one pixel is crossed (Fig. 2-57a), then the area to the right and below the line is
yi + m/2. If two pixels must be considered (Fig. 2-57b), the area for the lower
pixel is 1 — (1 — y;)%/2m and for the upper (y; — | + m)?/2m. For a line in the first
octant with slope 0 = m = 1, the area of the upper pixel may be sufficiently
small that it will be ignored by the simple heuristic approach described above,
e.g., pixel (1, 1) in Fig. 2-56b. However, combining this area with that of the

L . .
/ yi+l viel ,/{Areaz=(ya-l+m)2/2m
s——Areazy; +m/2

—1vi /Yi

' A +Ay = yi+m/2

Xi Xi+l Area|=l-(l-yi)2/2m—/
a

X, b Xi+]

Figure 2-57 Bresenham’s algorithm with area antialiasing.

SIMPLE AREA ANTIALIASING 97

lower pixel more realistically represents the polygon edge. The combined area
for the two pixels is given by y; + m/2.

If the quantity w = 1 —m is added to the error term in Bresenham’s original
algorithm, i.e., introduce the transformation @ = ¢ + w, then 0 = @ < 1. Now
the error term € is a measure of the area of the pixel inside the polygon, i.e.,
of y; + m/2. With these modifications the initial value of the error term is
1/2. With this addition the algorithm given in Fig. 2-6 will always yield an
intensity of one-half the maximum for the first pixel. By relocating the plot or
output statement, a more realistic value is obtained for this first pixel. Further,
the intensity can be obtained directly rather than as a decimal fraction of the
maximum by multiplying the slope (m), the weighting factor (w), and the error
term ¢ by the maximum number of available intensity levels /. The modified
algorithm is then

modified Bresenham algorithm with antialiasing

the line is from (x1, y1) to (x2, y2)
I is the number of available intensity levels
all variables are assumed integer

initialize the variables
X =X
y=mw
Ax = x3 — X
Ay = y2-y
m = I*(Ay/Ax)
w=I-m
e =112
Plot(x,y, m/2)
while (x < Ax)
if € < w then
x=x+1

€e=¢€+m

+1
+ 1
-w

|
o< x

X
X_
€

end if
Plot(x, y, €)
end while
finish

The intensity for the first pixel assumes that the line starts at a pixel address.
A flowchart is given in Fig. 2-58. Figure 2-56c illustrates the results for a line
with slope m = 5/8 and eight intensity levels. The algorithm can be extended to
the other octants in a manner similar to that for the fundamental Bresenham
algorithm (see Sec. 2-5).

98 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

X <X,
y<Yy,
AX +—X,=X,
8y <= y,-y,
I «—Max. no.
intensity levels
m<«—[(ay/ax)
We—]-m
e+—1/2

!

rPlot (x,y. m/2)]

i—1
no
no ~ yes

X «—X+1 Xe—X+1|
i’<—:+| €«—¢E€+m
€ =¢-w

- |

ie—i+l

| Plot (x, y. €) I

)

Figure 2-58 Area antialiasing Bresenham’s algorithm.

2-27 THE CONVOLUTION INTEGRAL AND ANTIALIASING

Extension of the simple antialiasing methods discussed in the previous section
requires use of a mathematical technique called the convolution integral. For
antialiasing, the signal, i.e., the picture, is convolved with a convolution kernel.
The result is used to determine the pixel attributes. The convolution integral is
given by

c®) = /: anh(L—“ = x)y(x) dx

THE CONVOLUTION INTEGRAL AND ANTIALIASING 99

where

h(€ — x) is the convolution kernel or function
y(x) is the function being convolved
c(&) is the convolution of (¢ — x) and y(x)

It is extremely difficult to visualize the physical meaning of the convolution
integral from the mathematical definition. However, a simple graphical analysis
makes it clear (see Ref. 2-30).

Consider the convolution of the function y(x) = x, 0 =x =1 with a simple
box or square convolution kernel h(x) = 1,0 = x = 1. The graphical repre-
sentation of the convolution kernel is shown in Fig. 2-59a. The convolution
kernel is reflected about the ordinate to yield h(—x) as shown in Fig. 2-59b. The
reflected kernel is then translated to the right by an amount & to form h(§ — x),
see Fig. 2-59c. This reflected, translated function is then multipled together
with the function being convolved y(x) (see Fig. 2-59d) for various values of &
as shown in Fig. 2-59¢. The area under the combined curves (functions) is the
value of the convolution integral c(§) which is also shown in Fig. 2-59e. Notice
that for this case the convolution integral is nonzero only in the range 0<=x=2.
Thus, determining the convolution integral is equivalent to reflecting the con-

h(x) h(-x) h(¢-x) y(x)
1 1 1
0 TR 0 X 0 1 X
a b _.<‘:£ -— d
E:O E:% £=l £=% 222
hex) y(x) hl=x) y(x) h(l-x) y(x) , y(0) h(3-x), y(x) h(2-x)
1 2 1] 1 2
X X X X X
-1 0 1 0 10 10 1 0 1 2
c(§)
11
I\
\ 4 L 4 L 2 X
0 1 2

Figure 2-59 Convolution.

100 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

volution kernel, sliding it past the function, multiplying the two functions to-
gether, and determining the area under the combined curves.

Mathematically the convolution kernel is
h(x) =1 0=x=1
Reflecting yields
h(—x) =1 —1=x<0
Translating by & gives
hE-x)=1 E—1<x<E¢

Since both the convolution kernel and the function y(x) being convolved are
nonzero for finite ranges, the limits on the convolution integral are also finite.
How are those limits determined? Figure 2-59 clearly illustrates that the lower
limit is the maximum of the minimum values for which both functions are non-
zero and the upper limit is the minimum of the maximum values for which both
functions are nonzero. Thus,

» 3
() = /: h(§ — x)y(x) dx = /(; h¢E —x)y(x) dx 0=§=<1

1
=-/; hE—xyx) dx 1=E=2
-1

Substituting for h(& — x) and y(x) yields

& 2 3 2
c<§)=f(1)<x)dx=3] 5 o=g=1
0 0

1 1
=f (Hx) dx=x—2] =§(2-E) I1=§=<2
&-1 2 le-v 2

which are both parabolic functions as shown in Fig. 2-59e. If the slope of the
line is m rather than 1, then the results generalize to m£%/2 and (m&/2)(2 — £).

To see how this technique relates to antialiasing recall the heuristic intensity
modulation technique using the area of the pixel inside the polygon to determine
the pixel intensity. Examining the convolution function ¢(§) given above shows
that for m = 1 the value of the convolution function at the right hand edge of
the pixel, i.e., at x = § = 1, is the area of the pixel inside the polygon, i.e. m/2,
(see Fig. 2-50a with y; = 0). For m > 1 the value of the cohvolution integral
gives the summation of the areas inside the polygon for the two pixels crossed
(see Fig. 2-50b with y; = 0). The result is easily generalized for y;#0. Thus,
the two previous algorithms (the heuristic area modulation algorithm and the
modified Bresenham algorithm) are equivalent to the convolution of the edge
functions, i.e., the straight line y = mx + b, with a box function or convolution
kernel evaluated at the right hand edge of the pixel.

THE CONVOLUTION INTEGRAL AND ANTIALIASING 101

Figure 2-60 Prefiltered antialiased image
at a resolution of 256 X 256 pixels.
+ (Courtesy of F. Crow.)

The convolution operation is frequently called filtering, where the convolu-
tion kernel is the filter function. The simple area technique discussed above
prefilters the image. Prefiltering adjusts the pixel attributes of the computed
resolution before displaying the image. The technique of computing the image
at a resolution higher than the display resolution and averaging the attributes of
several pixels to obtain those at a lower display resolution may be considered
a postfiltering operation (see Figs. 2-54 and 2-55).

Although the simple box filter or convolution kernel yields acceptable re-
sults, triangular and Gaussian filters yield better results (see Ref. 2-30). Two-
dimensional filters are also used. Simple box, pyramidal, conical, and two-
dimensional Gaussian convolution kernels or filter functions have been inves-
tigated (see Refs. 2-30 to 2-34). Figure 2-60 shows the same scene as Figs. 2-54
and 2-55 computed at a resolution of 256 X 256 pixels, prefiltered with a simple
box filter and displayed at a resolution of 256 x 256.

Simple convolution filters are not always effective for small polygons of
area less than a pixel or for long, thin polygons. However, antialiasing can
be implemented using clipping (see Chap. 3 and Ref. 2-28). The edges of the
pixel area form the clipping window. Each individual polygon is clipped against
the edges of the window. The remaining polygonal area compared to the pixel
area is used to modulate the pixel intensity. If multiple small polygons are
present within a pixel, then the average, either uniform or weighted, of their
attributes is used to modulate the pixel attributes. An example is shown in
Fig. 2-61.

Unclipped Clipped Figure 2-61 Antialiasing using clipping.

102 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS
2-28 HALFTONING

Antialiasing is a technique using multiple intensity levels to obtain increased
visual resolution. Halftoning, on the other hand, is a technique for using
a minimum number of intensity levels, generally black and white, to obtain
increased visual resolution, i.e., gray scaling or multiple intensity levels. The
halftoning technique is quite old. It was originally used in the weaving of silk
pictures and other textiles. Modern halftone printing was invented by Stephen
Hargon in 1880. With this technique a wide range of photographic gray scales
is available using a strictly bilevel display medium: black ink on white paper.
Halftone printing is a screen or cellular process (see Ref. 2-35). The size of
the cell varies depending on the fineness of the screen and length of exposure.
Because of the low paper quality, screens with S0 to 90 dots per inch are used for
newspaper photographs. The higher quality paper used in books and magazines
allows the use of screens with 100 to 300 dots per inch. The success of the
halftone process depends on the human visual system being an integrator; i.e.,
it blends or smooths discrete information.

The visual resolution of computer-generated images can be increased using
a technique called patterning. In contrast to halftone printing, which uses vari-
able cell sizes, patterning generally uses fixed cell sizes. For a display of fixed
resolution, several pixels are combined to yield a pattern cell. Thus, patterning
trades spatial resolution for improved visual resolution. Fig. 2-62a illustrates
one possible group of patterns for a bilevel black-and-white display. Four pixels
are used for each cell. This arrangement yields five possible intensity or gray
levels (0 to 4). In general, for a bilevel display, the number of possible inten-
sities is one more than the number of pixels in a cell. Care must be taken in
selecting the patterns, otherwise unwanted small-scale structure is introduced.
For example, neither of the patterns shown in Figs. 2-62b or c should be used.
For a large constant-intensity area Fig. 2-62b will result in unwanted horizontal
lines and Fig. 2-62c in unwanted vertical lines appearing in the image. The

.' Al 4 Al K} 4 RTd R)
A 4 v 4 4
v V. 4 w. L
A4 ~ 4 A 4N 4
a

Figure 2-62 2 X 2 bilevel pattern cells.

HALFTONING 10>

Figure 2-63 3 X 3 bilevel pattern cells.

number of intensity levels available can be increased by increasing the cell size.
Patterns for a 3 x 3 pixel cell are shown in Fig. 2-63. These patterns yield ten
(0 to 9) intensity levels. Pattern cells need not be square. A 3 x 2 pixel cell
yielding seven (0 to 6) intensity levels is shown in Fig. 2-64.

If multiple dot sizes are available, additional intensity levels can be ob-
tained. Figure 2-65 shows patterns for a 2 x 2 pixel cell with two dot sizes.
This yields 9 intensity levels. A similar 3 x 3 pixel cell with two dot sizes would
yield 27 intensity levels. If more than 1 bit per pixel is available, additional
intensity levels are also possible. For a 2 x 2 pixel pattern cell 2 bits per
pixel will yield 13 intensity levels as shown in Fig. 2-66. More bits per pixel
or larger cell patterns will yield corresponding increases in available intensity
levels (Ref. 2-36).

Patterning results in the loss of spatial resolution. This is acceptable if the
image is of lower resolution than the display. Techniques for improving visual
resolution while maintaining spatial resolution have also been developed (see
Ref. 2-37). The simplest is to use a fixed threshold for each pixel. If the image
intensity exceeds some threshold value the pixel is white, otherwise it is black.

0 1 2
r o\ [
H_N n_N
HEN)

wooxr A

a4 [V a4
7 N\ r N Wy

(S)
a
r

[N TS [S | (S 1N I (')

Figure 2-64 3 X 2 bilevel pattern cells.

104 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

0 1 2

0 o
3 4 S
o0 o9 2
6 7 8
ON. K.

r N r N
L AD L AD PN, Figure 2-65 Multiple dot size 2 X 2 bilevel pattern cells.

if I(x,y) > T then White else Black

where I(x, y) is the intensity of the image at pixel (x, y), White corresponds to
the maximum display intensity, and Black corresponds to the minimum display
intensity. The threshold is usually set at approximately half the maximum
display intensity. Figure 2-67b shows results for the photograph of Fig. 2-67a
with T = 150. For each pixel location, the intensity of the original photograph
was quantized in the range O to 255, i.e. 8 bits. Figure 2-67b illustrates that
a simple thresholding technique results in the loss of considerable fine detail.
This is particularly noticeable in the hair and facial features. The fine detail is
lost because of the relative large errors in displayed intensity for each pixel.

A technique developed by Floyd and Steinberg (Ref. 2-38) distributes this
error to surrounding pixels. Further, the algorithm is cleverly constructed such
that the error is always distributed downward and to the right. Hence, if
the image is computed in scan line order, no backtracking is necessary. In
particular, the Floyd-Steinberg algorithm distributes the error three-eighths to
the right, three-eighths downward, one-fourth diagonally. This is shown in

1 2 3 4 5
1 1 1] 11
1 | 11
6 7 8 9
1{2 1[2 212 2(2
11 211 211 212
10 11 12 13
3 3 313
7 2 NE Figure 2-66 Two bits per pixel 2 X
2 pattern cells.

()

(®)

©

Figure 2-67 Bilevel display techniques.
(a) Original photograph, (b) simple thres-
holding, (c) ordered dither with 8 X 8
dither matrix. (Courtesy of J. F. Jarvis,
Bell Laboratories.)

106 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Fig. 2-68. With the threshold midway between the maximum and minimum
display intensities, T = (Black + White)/2, the algorithm is

Floyd Steinberg error distribution algorithm

Xmin, Xmax, Ymin, Ymax are the raster limits for each scan line-top
to bottom

T = (Black + White)/2
for y = Ymax to Ymin step — 1
for each pixel on a scan line-left to right
for x = Xmin to Xmax
determine pixel display value for threshold T and calculate
error
if I(x,y) < T then
Pixel(x,y) = Black
Error = I(x,y) — Black
else
Pixel(x,y) = White
Error = I(x,y) — White
end if
display pixel
Display Pixel(x, y)
distribute error to neighboring pixels
I(x+1,y) = I(x+1,y) + 3*Error/8
I(x,y —1) = I(x,y—1) + 3*Error/8
I(x+1,y-1) = I(x+1,y—1) + Error/4
next x
next y
finish

Distributing the error to neighboring pixels improves the detail in the image
because it preserves the information inherent in the image.

Another technique for bilevel displays which increases the visual resolution
without reducing the spatial resolution is dither. The technique attempts to
introduce a random error into the image. This error is added to the image

Present
pixel _l . 3
I(x,y) 8
!
3 1
8 4
Figure 2-68 Error distribution for Floyd-Steinberg algorithm.

HALFTONING 107

intensity of each pixel before comparison with the selected threshold value.
Adding a completely random error does not yield an optimum result. However,
an optimum additive error pattern which minimizes pattern texture effects does
exist (see Ref. 2-39). The error pattern is added to the image in a repeating
checkerboard pattern. This technique is called ordered dither. The smallest
ordered dither pattern or matrix is 2 X 2. An optimum 2 X 2 matrix, orignally

given by Limb (Ref. 2-40), is
[D2] = |02
31

Larger dither patterns, 4 x 4, 8 X 8, etc., are obtained using the recursion
relation (see Ref. 2-37)

[Dn] = 4Dn/2 4D,./2 + 2Un/2 n=4
4Dpn + 3Upn 4Dppp + Up2

where n is the matrix size and

[Ud=]11 ... 1
1

1

For example, the 4 X 4 dither matrix is

[DsJ=] 0 8 2 10
12 4 14 6
311 19
15 7 13 5

As these two examples show n? intensities can be reproduced from a dither
matrix D,. Further, the image does not lose spatial resolution as n is increased.
The ordered dither algorithm is

Ordered dither algorithm

Xmin, Xmax, Ymin, Ymax are the raster limits for each scan line-top
to bottom
Mod is a function that returns the modulo value of its arguments

for y = Ymax to Ymin step — 1
for each pixel on a scan line-left to right
for x = Xmin to Xmax
determine position in dither matrix
i=(xModn) +1
j=(yModn) + 1

108 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

determine pixel display value
if I(x,y) < D(i, j) then
Pixel(x,y) = Black

else
Pixel(x,y) = White
end if
display pixel
Display Pixel(x, y)
next x
next y
finish

Figure 2-67c shows the image in the original photograph of Fig. 2-67a processed
with an 8 x 8 ordered dither matrix. The 8 X 8 dither matrix effectively
introduces 64 intensity levels. Figure 2-67c shows that considerable fine detail
is restored. The Floyd-Steinberg algorithm and ordered dither can be applied
to color images (Ref. 2-41). Patterning techniques can also be used with color
(Ref. 2-42).

2-29 REFERENCES

2-1 Bresenham, J.E., “Algorithm for Computer Control of a Digital Plotter,” IBM
System Journal, Vol. 4, pp. 25-30, 1965.

2-2 Pitteway, M.L.V., “Algorithm for Drawing Ellipses or Hyperbolas with a Digital
Plotter,” Computer Journal, Vol. 10, pp. 282-289, 1967.

2-3 Jordon, B.W., Jr., Lennon, W.J., and Holm, B.D., “An Improved Algorithm for
the Generation of Nonparametric Curves,” IEEE Trans. Comput., Vol. C-22, pp.
1052-1060, 1973.

2-4 Belser, K., Comment on “An Improved Algorithm for the Generation of Nonpara-
metric Curves,” IEEE Trans. Comput., Vol. C-25, p. 103, 1976.

2-5 Ramot, J., “Nonparametric Curves,” IEEE Trans. Comput., Vol. C-25, pp. 103—-
104, 1976.

2-6 Horn, B.K.P., “Circle Generators for Display Devices,” Computer Graphics and
Image Processing, Vol. 5, pp. 280-288, 1976.

2-7 Badler, N.I., “Disk Generator for a Raster Display Device,” Computer Graphics
and Image Processing, Vol. 6., pp. 589-593, 1977.

2-8 Doros, M., “Algorithms for Generation of Discrete Circles, Rings, and Disks,”
Computer Graphics and Image Processing, Vol. 10, pp. 366-371, 1979.

2-9 Suenaga, Y., Kamae, T., and Kobayashi, T., “A High-speed Algorithm for the
Generation of Straight Lines and Circular Arcs,” IEEE Trans. Comput., Vol. C-
28, pp. 728-736, 1979.

2-10 Bresenham, J., “A Linear Algorithm for Incremental Digital Display of Circular
Arcs,” CACM, Vol. 20, pp. 100-106, 1977.

2-11 Standish, Thomas A., Data Structures Techniques, Addison-Wesley Publishing
Company, Reading, Mass., 1980.

2-12 Knuth, Donald, E., The Art of Computer Programming, Vol. 3, Sorting and
Searching, Addison-Wesley Publishing Company, Reading, Mass. 1973.

REFERENCES 109

2-13 Laws, B.A., “A Gray-Scale Graphic Processor Using Run-Length Encoding,” Proc.
IEEE Conf. Comput. Graphics, Pattern Recognition, Data Struct., pp. 7-10, May
1975.

2-14 Hartke, David H., Sterling, Warren M., and Shemer, Jack E., “Design of a Raster
Display Processor for Office Applications,” IEEE Trans. Comput., Vol. C-27, pp.
337-348, 1978.

2-15 Jordan, B.W., and Barrett, R.C.,“A Cell Organized Raster Display for Line Draw-
ings, CACM,” Vol. 17, pp. 70-77, 1974.

2-16 Barrett, R.C., and Jordan, B.W., “Scan Conversion Algorithms for a Cell Organ-
ized Raster Display,” CACM, Vol. 17, pp. 157-163, 1974.

2-17 Willett, Ken, “The 4027—Adding a Color Dimension to Graphics,” Tekscope, Vol.
10, pp. 3-6.

2-18 Negroponte, N., “Raster Scan Approaches to Computer Graphics,” Computers &
Graphics, Vol. 2, pp. 179-193, 1977.

2-19 Baecker, Ronald, “Digital Video Display Systems and Dynamic Graphics,” Com-
puter Graphics, Vol. 13, pp. 48-56, 1979 (Proc. SIGGRAPH 79).

2-20 McCracken, T.E., Sherman, B.W., and Dwyer, S.J., III, “An Economical Tonal
Display for Interactive Graphics and Image Analysis Data,” Computers & Graphics,
Vol. 1, pp. 79-94, 1975.

2-21 Whitted, Turner, “A Software Test-Bed for the Development of 3-D Raster Graph-
ics Systems,” Computer Graphics, Vol. 15, pp. 271-277, 1981 (Proc. SIGGRAPH
81).

2-22 Ackland, Bryan, and Weste, Neil, “Real Time Animation on a Frame Store Display
System,” Computer Graphics, Vol. 14, pp. 182-188, 1980 (Proc. SIGGRAPH 80).

2-23 Dunlavey, Michael R., “Efficient Polygon-Filling Algorithms for Raster Displays,”
Trans. on Graphics, Vol. 2, pp. 264-273, 1983.

2-24 Ackland, Bryan, and Weste, Neil, “The Edge Flag Algorithm—A Fill Method for
Raster Scan Displays,” IEEE Trans. Comput., Vol. C-30, pp. 4148, 1981.

2-25 Smith, Alvy Ray, “Tint Fill,” Computer Graphics, Vol. 13, pp. 276-283, 1979
(Proc. SIGGRAPH 19).

2-26 Shani, Uri, “Filling Regions in Binary Raster Images: A Graph-Theoretic Ap-
proach,” Computer Graphics, Vol. 14, pp. 321-327, 1980 (Proc. SIGGRAPH
80).

2-27 Pavlidis, Theo, “Algorithms for Graphics and Image Processing,” Computer Science
Press, Rockville, Md. 1982.

2-28 Crow, Franklin C., “A Comparism of Antialiasing Techinques,” IEEE CG & A,
Vol. 1, pp. 40-47, 1981.

2-29 Pitteway, M.L.V., and Watkinson, D.J., “Bresenham’s Algorithm with
Gray Scale,” CACM, Vol. 23, pp. 625-626, 1980.

2-30 Brigham, E. Oran, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs,
1974.

2-31 Crow, Franklin C., “The Aliasing Problem in Computer-Generated Shaded Ima-
ges,” CACM, Vol. 20, pp. 799-805, 1977.

2-32 Feibush, Eliot A., Levoy, Marc, and Cook, Robert L., “Synthetic Texturing Using
Digital Filters,” Computer Graphics, Vol. 14, pp. 294-301, 1980 (Proc. SIG-
GRAPH 80).

2-33 Warnock, John, “The Display of Characters Using Gray Level Sample Arrays,”
Computer Graphics, Vol. 14, pp. 302-307, 1980 (Proc. SIGGRAPH 80).

2-34 Gupta, Satish, and Sproull, Robert F., “Filtering Edges for Gray-Scale Displays,”
Computer Graphics, Vol. 15, pp. 1-6, 1981 (Proc. SIGGRAPH 81).

110 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

2-35 Halftone Methods for the Graphic Arts (Q3), 3d ed., Eastman Kodak, Rochester,
N.Y. 1982.

2-36 Pirsch, P. and Netravali, A.N., “Transmission of Gray Level Images by Multilevel
Dither Techniques,” Computers & Graphics, Vol. 7, pp. 31-44, 1983.

2-37 Jarvis, J.F., Judice, C.N., and Ninke, W.H., “A Survey of Techniques for the
Display of Continuous Tone Pictures on Bilevel Displays,” Computer Graphics and
Image Processing, Vol. S, pp. 1340, 1976.

2-38 Floyd, R., and Steinberg, L., “An Adaptive Algorithm for Spatial Gray Scale, SID
1975,” Int. Symp. Dig. Tech., Pap., pp. 36-37, 1975.

2-39 Bayer, B.E., “An Optimum Method For Two-Level Rendition of Continuous-Tone
Pictures,” Int. Conf. Commun., Conf. Rec., pp. (26-11)—(26-15), 1973.

2-40 Limb, J.O., “Design of Dither Waveforms for Quantized Visual Signals,” Bell
System Technical Journal, Vol. 48, pp. 2555-2582, 1969.

2-41 Heckbert, Paul, “Color Image Quantization For Frame Buffer Display,” Computer
Graphics, Vol. 16, pp. 297-307, 1982, (Proc. SIGGRAPH 82).

2-42 Kubo, Sachio, “Continuous Color Presentation Using a Low-Cost Ink Jet Printer,”
Proc. Comput. Graphics Tokyo 84, 24-27 April, 1984, Tokyo, {apan.

CHAPTER

THREE
CLIPPING

Clipping, the process of extracting a portion of a data base, is fundamental
to several aspects of computer graphics. In addition to its more typical use
in selecting only the specific information required to display a particular scene
or view from a larger environment, Chap. 2 has shown that it is useful for
antialiasing. Succeeding chapters will show that clipping is useful in hidden
line, hidden surface, shadow, and texture algorithms as well. Although beyond
the scope of this text, the algorithms and concepts discussed here can be used
to implement advanced clipping algorithms that clip polygonal volumes against
polygonal volumes. Such algorithms can be used to perform the boolean
operations required for simple solid modelers, e.g. the intersection and union of
simple cubical and quadric volumes. These approximate solutions are adequate
for many applications.

Clipping algorithms are two- or three-dimensional and are for regular or
irregular regions or volumes. Clipping algorithms can be implemented in hard-
ware or software. When implemented in software, clipping algorithms are
often slower than required for real-time applications. For this reason both two-
and three-dimensional clipping algorithms have been implemented in hardware
or firmware. These implementations are usually confined to regular clipping
regions or volumes. However, very-large-scale integrated (VLSI) circuits offer
the possibility of more general implementations which operate at real-time
speeds (Ref. 3-1) for both regular and irregular clipping regions or volumes.

3-1 TWO-DIMENSIONAL CLIPPING

Figure 3-1 shows a two-dimensional scene and a regular clipping window. It is
defined by left (L), right (R), top (T), and bottom (B) two-dimensional edges.
A regular clipping window is rectangular, with its edges aligned with those
of the object space or display device. The purpose of a clipping algorithm is

111

112 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

i'ﬁd /h \
.q/ P 1
g

b
/cj\\f/ c//a
i BommLef;/j Right
1

Figure 3-1 Two-dimensional clipping win-
dow.

to determine which points, lines, or portions of lines lie within the clipping
window. These points, lines, or portions of lines are retained for display. All
others are discarded.

Since large numbers of lines or points must be clipped for a typical scene or
picture, the efficiency of clipping algorithms is of particular interest. In many
cases the large majority of points or lines are either interior to or exterior to
the clipping window. Therefore, it is important to be able to quickly accept a
line like ab or a point like p or reject a line like ij or a point like ¢ in Fig. 3-1.

Points are interior to the clipping window provided that

X, S X=x and Vs =<y<yr

The equal sign indicates that points on the window boundary are included within
the window.

Lines are interior to the clipping window and hence visible if both end
points are interior to the window, e.g., line ab in Fig. 3-1. However, if both
end points of a line are exterior to the window, the line is not necessarily
completely exterior to the window, e.g., line gh in Fig. 3-1. If both end points
of a line are completely to the right of, completely to the left of, completely
above, or completely below the window, then the line is completely exterior to
the window and hence invisible. This test will eliminate all the lines labeled ij
in Fig. 3-1. It will not eliminate either line gh, which is partially visible, or line
ki, which is totally invisible.

If a and b are the end points of a line, then an algorithm for identifying
completely visible and most invisible lines might be:

simple visibility algorithm
a and b are the end points of the line with components x and y

for each line
check if the line is totally visible

TWO-DIMENSIONAL CLIPPING 113

if any coordinate of either end point is outside the window, then the line
is not totally visible
if Xa < XL or X, > Xxg then 1
if xp < XL or Xp > Xg then 1
if ys <ys or y. > yr then 1
if y» < ys or yp > yr then 1
line is totally visible
Draw line
goto3
check for totally invisible lines
if both end points are left, right, above, or below the window, the line
is trivially invisible
1 if xa < xL and xp < xr then 2
if xa > xr and xp > xg then 2
if y. > yr and y, > y then 2
if y. <ys and y, < yp then 2
the line is partially visible or diagonally crosses the corner invisibly
determine the intersections
line is invisible
next line

w N

Hegre x., xx, yr, y= are the x and y coordinates, respectively, of the left, right,
top, and bottom of the window edges. The order in which the tests for visibility
or invisibility are performed is immaterial. Some lines will require all four tests
before being accepted as totally visible or trivially rejected as totally invisible.
Other lines will require only one test. It is also immaterial whether the test for
totally visible or totally invisible lines is performed first. However, the line-
window edge intersection calculation is computationally expensive and should
be performed last.

The tests for totally visible lines and the region tests given above for totally
invisible lines can be formalized using a technique due to Dan Cohen and Ivan
Sutherland. The technique uses a four-digit (bit) code to indicate which of
nine regions contain the end point of a line. The four-bit codes are shown in
Fig. 3-2. The rightmost bit is the first bit. The bits are set to 1 based on the
following scheme:

First-bit set — if the end point is to the left of the window
Second-bit set — if the end point is to the right of the window
Third-bit set — if the end point is below the window
Fourth-bit set — if the end point is above the window

Otherwise, the bit is set to zerp. From this it is obvious that, if both end point
codes are zero, then both ends of the line lie inside the window and the line is
visible.

114 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

1001 1000 1010
T
Window
0001 0000 0010
B
0101 0100 o110
L R Figure 3-2 Codes for line end point regions.

The end point codes can also be used to trivially reject totally invisible lines.
Consider the truth table:

True and False d False False = 0 land 0 i 0
False and True d False Oand 1 d 0
False and False - False True-)=] 0and 0 d 0
True and True - True land 1 - 1

which is equivalent to the logical and operator. If the bit-by-bit logical inter-
section of the two end point codes is not zero, then the line is totally ipvisible
and may be trivially rejected. The several examples shown in Table 3-1 will
help to clarify these statements. Notice in Table 3-1 that, when the logical
intersection is not zero, the line is in fact totally invisible. However, when the

Table 3-1 End Point Codes

Line End point codes Logical

(see Fig. 3-1) (see Fig. 3-2) intersection ~ Comments

ab 0000 0000 0000 Totally visible
ij 0010 o110 0010 Totally invisible
ij 1001 1000 1000 Totally invisible
ij 0101 0001 0001 Totally invisible
ij 0100 0100 0100 Totally invisible
cd 0000 0010 0000 Partially visible
ef 0001 0000 0000 Partially visible
gh 0001 1000 0000 Partially visible

kl 1000 0010 0000 Totally invisible

TWO-DIMENSIONAL CLIPPING 115

logical intersection is zero, the line may be totally or partially visible, or in fact
totally invisible. It is for this reason that it is necessary to check both end point
codes separately to determine total visibility.

End point code checking can easily be implemented when bit manipulation
routines are available. One possible software implementation that does not use
bit manipulation routines is shown in the algorithms given below.

If totally visible and trivially invisible lines are determined first, then only
potentially partially visible lines, for which the logical intersection of the end
point codes is zero, are passed to the line intersection routine. This routine
must also, of course, properly identify totally invisible lines that are passed to
it.

The intersection between two lines can be determined either parametri-
cally or nonparametrically. Explicitly the equation of the infinite line through
Pi(x1, y1) and Pa(xz, y2) is

y=mx-—xi)+yr or y=mx-—x)+y
where
_ =N

m=
X2 — X

is the slope of the line. The intersections with the window edges are given by

Left: X,y =mx = x1)+y m#
Right: Xn, Y = m(xe = x1) + 1 m# ®
Top: ynx=x +1/mQy;—yn) m#0

Bottom: y,,x=x; + (I/m)y; —y) m#0

Example 3-1 shows that the explicit method permits rejection of improper
intersections by simply comparing the intersection values with the window edges.

Example 3-1 Explicit Two-Dimensional Clipping

Consider the clipping window and the lines shown in Fig. 3-3. For the line
from Pi(—3/2, 1/6) to P2(1/2, 3/2) the slope is

_Ta o 32-16
X2 — X1 172 = (-3/2)
and the intersections with the window edge are

2
m =z
3

Left: x=-1 y=(23)[-1 - (-3/12)] + /6
=12

Right: x=1 y= (@31 - (=32)]+ /6
=11/6

which is greater than yr and thus rejected.

Top: y=1 x = =3/2+ (3/2)[1 — 1/6]
=-14

=32+ (3/12)[—1 — (1/6)]

—13/4

Bottom: y=-1 x

116 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

which is less than x, and thus rejected.
Similarly for the line from P3(—3/2, —1) to P4(3/2, 2)
2= 2-(=1)
Txmem 32-(-32)

m

and

Left: x=-1 y=M[-1- 3]+ (D
=-12

Right: x=1 y=M[l — (=32)] + (1)
=32

which is greater than y; and thus rejected.

Top: y=1 x= =32+ - (-1
12

-32+()[-1 — (-=1)]
-312

Bottom: y=-1 x

which is less than x, and thus rejected.

In developing the structure of an efficient clipping algorithm some special
cases must be considered. Recalling the discussion above, if the slope of the
line is infinite, it is parallel to the left and right edges, and only the top and
bottom edges need be checked for intersections. Similarly, if the slope is zero,
the line is parallel to the top and bottom edges, and only the left and right edges
need be checked for intersections. Finally, if either end point code is zero, one
end point is interior to the window, and only one intersection can occur. Figure
3-4 gives a flowchart for an algorithm based on these considerations. A pseudo
implementation is given below.

(-1.1) o (L1

b4

P Figure 3-3 Two-dimensional
3 (-11) (1.-1) parametric clipping.

TWO-DIMENSIONAL CLIPPING 117

Explicit two-dimensional clipping algorithm

P, and P, are the end points of the line

XL, XR, YT, yB are the left, right, top, and bottom window coordinates

Iflag is the visibility indicator, —1 invisible, 0 visible
calculate the end point codes
put the codes for each end into 1 x 4 arrays called Plcode and P2code
first end point: P
if x; < x_ then Plcode(4) = 1 else Plcode(4)
if x; > xg then Plcode(3) = 1 else Plcode(3)
if y1 < ys then Plcode(2) = 1 else Plcode(2)
if y1 > yr then Plcode(1) = 1 else Plcode(1)
second end point: P,
if X < x. then P2code(4) = 1 else P2code(4) = 0
if x2 > xg then P2code(3) = 1 else P2code(3) = 0
if y2 < ys then P2code(2) = 1 else P2code(2) = 0
if y2 > yr then P2code(1) = 1 else P2code(1) = 0
initialize the visibility flag, the drawing points P, and P,, and the

SCoOoC

counter

Icount = 0

Iflag = 0

Pl’ = P|

P, =P,

check for totally visible line
Suml =0

Sum2 = 0

fori = 1to4

Suml = Suml + Plcode(i)
Sum2 = Sum2 + P2code(i)
- mext i
if Suml = 0 and Sum2 = 0 then 7
line is not totally visible
check for trivial invisible case
calculate the logical intersection of the end point codes
Inter = 0
fori =1to4
Inter = Inter + Integer((Plcode(i) + P2code(i))/2)
if Inter < > 0 then
Iflag = —1
goto7
end if
next i
line may be partially visible
check for first point inside window
if Suml = 0 then

118 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

ICalc. end point codes]

Set visibility flag
IFLAG=0

/

PP,
PP,

Line
totally visible.
Both end point
odes =0

Line
trivially invisible
Logical intersection
of end point
odes#0

First
end point inside
window, End point
code=0

yes i+—2

Pk —®

Second
end point inside
window. End point
code=0

yes J=—2
Rehats) —’(:)

P —P,

Figure 3-4 Flowchart for explicit two-dimensional clipping.

TWO-DIMENSIONAL CLIPPING 119

Py—y P—x
P, —Xq P;“YB

® | ®

Figure 3-4 (Continued.)

120 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Icount = 2
Pll =P
P=P,
go to 2
end if
check for second point inside window
if Sum2 = 0 then
Icount = 2
le =P,
P=P
go to 2
end if
neither end point inside window
1 Icount = Icount + 1
if Icount = 2 then 7

P = Picount
initialize m to a very large number to represent an infinite slope
m = Large

check the left-side intercept
check for vertical line
2 if(x2 — x1) = O then 4
m = (y2 = y1)/(x2 — x1)
if x. < Py then 3
y =m=*(xL — P,) + Py
if y > yr then 3
if y < yp then 3
a proper intercept has been found

Py =1y
PX—XL
gotol

check the right-side intercept
3 if xr > Py then 4
y = m*(xg — Px) + Py
if y > yr then 4
if y < yp then 4
a proper intercept has been found

Py=y
Px=XR
gotol

check the top edge intercept
check for horizontal line
4 ifm = 0thenl
if y > P, then 5
x = (/m)*(yr — Py) + Py

SUTHERLAND-COHEN SUBDIVISION LINE-CLIPPING ALGORITHM 121

if x < x_ then 5
if x > xg then 5
a proper intercept has been found

P, =x
Py =yr
goto 1

check the bottom intercept
5 x = (/m)*(ys — Py) + Py
if x < x_ then 6
if x > xg then 6
a proper intercept has been found

Py = x

Py =1ys

gotol

the line is really invisible
6 Iflag = —1

completion and drawing routine
7 ifIflag = —1 then 8

Draw PP,

process next line
8 finish

3-2 SUTHERLAND-COHEN SUBDIVISION LINE-CLIPPING
ALGORITHM

The algorithm in the previous section is similar to one developed by Dan Cohen
and Ivan Sutherland. The previous algorithm clips the line successively against
each of the window edges and examines the resulting intersection point to see
if it is within the window, i.e., is a proper intercept. This is done first for the
line P,P, to yield PP, and then for the line P,P, to yield P,P/, the clipped
line.

The Sutherland-Cohen algorithm also divides the line at a window edge. In
contrast it does not check to see if the intersection point is within the window
but rather attempts to accept or reject the two resulting segments using the line
end point codes for the segments. Recalling line P,P, of Fig. 3-3 immediately
reveals a difficulty with this simple technique. If P,P, is clipped against the left
edge of the window, the two new segments are P,P, and P/P,. The end point
codes for both these segments indicate that they both may be partially visible.
Hence, neither can be rejected as invisible or accepted as visible. The key to
the Sutherland-Cohen algorithm is always knowing that one of the end points is
outside the window. Thus, the segment from this end point to the intersection
point can always be rejected as invisible. The algorithm then proceeds with the
remainder of the line. In effect this replaces the original end point with the
intersection point. Simply stated, the Sutherland-Cohen algorithm is

122 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

For each window edge:

For the line P,P,, determine if the line is totally visible or can be
trivially rejected as invisible.

If P, is outside the window continue; otherwise, swap P, and P,.
Replace P, with the intersection of P,P, and the window edge.

Example 3-2 further illustrates the algorithm.

Example 3-2 Sutherland-Cohen Clipping

Again consider the line P P, clipped against the window shown in Fig. 3-3.
The end point codes for P (—3/2, 1/6) and P,(1/2, 3/2) are (0001) and (1000),
respectively. The line is neither totally visible nor trivially invisible. P, is
outside the window.

The intersection with the left edge (x = —1) of the window is P(—1, 1/2).
Replace P, with P| to yield the new line P (—1, 1/2) to P(1/2, 3/2).

The end point codes for P, and P, are now (0000) and (1000), respectively.
The line is neither totally visible nor trivially invisible.

P, is inside the window. Swap P, and P, to yield the new line P,(1/2, 3/2) to
P,(—1, 1/2). Also swap the end point codes.

The intersection with the right edge (x = 1) of the window is P (1, 11/6).
Replace P| with P|" to yield the new line P (1, 11/6) to P,(—1, 1/2).

The end point codes for P, and P, are now (1000) and (0000), respectively.
The line is neither totally visible nor trivially invisible.

P, is outside the window.

The intersection with the top edge (y = 1) of the window is P,(—1/4, 1).
Replace P, with P, to yield the new line P\(—1/4, 1) to P,(—1, 1/2).

The end point codes for P, and P, are (0000) and (0000), respectively. The
line is totally visible.

The procedure is complete.

Draw the line.

A pseudo implementation of the algorithm is given below. Because the
same concept is repeatedly applied, subroutine modules are used to determine
the visibility of a line segment, the end point codes, and the logical intersection
of the end point codes.

Sutherland-Cohen two-dimensional clipping algorithm

Window is a I X 4 array containing the left, right, bottom, and top edges
(XL, XR, YB, Y1) Of the rectangular clipping window
Py and P, are the end points of the line with x and y component P;x, Py,

SUTHERLAND-COHEN SUBDIVISION LINE-CLIPPING ALGORITHM 123

and Pyx, Py
Iflag is used to indicate a vertical slope; — 1 vertical, 0 nonvertical
initialize Iflag
Iflag = 0
check for vertical line
if P;x — P;x = 0 then
Iflag = -1
else
calculate slope
Slope = (sz - Ply)/(sz - Plx)

end if
for each window edge
fori=1to4

call Cohen(P,, P2, Window; Visible)
if Visible = yes then 2
if Visible = no then 3
check for a vertical line
if Iflag = —1andi =<2 then 1
select the appropriate intersection routine
if i <2 then
Intery = Slope*(Window; — P1x) + Py
Pix = Window;
Piy = Intery
else
if Iflag = —1 then
P1y = Window;
else
Interx = (1/Slope)*(Window; — P1y) + Pix
Pix = Interx

P,y = Window;
end if
end if
1 next i
draw the visible line
2 Draw PP,
3 finish

subroutine module to determine the visibility of a line segment
subroutine Cohen(P;, P2, Window; Visible)

P; and P, are the end points of the line segment with x and y components
Pix, P1y and Px, Py
Window is a I x 4 array containing the left, right, bottom, and top edges
(XL, Xr, YB, yT) Of the retangular clipping window
Visible is a flag, no, partial, yes as the line segment is totally invisible,
partially visible, or totally visible

calculate the end point codes

124 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

call Endpoint(P,, Window; P1code, Sum1)
call Endpoint(P,, Window; P2code, Sum2)
check if the line is totally visible
if Suml = 0 and Sum2 = O then Visible = yes
check if the line is trivially invisible
call Logical(P1lcode, P2code; Inter)
if Inter < > 0 then Visible = no
the line may be partially visible
Visible = partial
check that P, is outside
if Suml = O then 1
swap the end points
Temp = P,
P, =P,
P; = Temp
1 return

subroutine module to calculate the end point codes
subroutine Endpoint(P, Window; Pcode, Sum)

Py, Py are the x and y components of the point P

Window is a I X 4 array containing the left, right, bottom, and top edges
(XL, XR, YB, Y1) Of the rectangular clipping window

Pcode is a 1 X 4 array containing the end point code

Sum is the element-by-element sum of Pcode

determine the end point codes

if P, < x_ then Pcode(4) = 1 else Pcode(4) = 0
if P > xg then Pcode(3) = 1 else Pcode(3) = 0
if Py < yg then Pcode(2) = 1 else Pcode(2) = 0
if Py > yr then Pcode(1) = 1 else Pcode(1) = 0
calculate the sum

Sum =0
fori=1to4
Sum = Sum + Pcode(i)
next i
return

subroutine module to find logical intersection
subroutine Logical(P1code, P2code; Inter)

Plcode is a 1 X 4 array containing end point codes
P2code is a 1 X 4 array containing end point codes
Inter is the sum of the bits for the logical intersection

Inter = 0
fori =1to4

Inter = Inter + Integer((Plcode(i) + P2code(i))/2)
next i

return

MIDPOINT SUBDIVISION ALGORITHM 125
3-3 MIDPOINT SUBDIVISION ALGORITHM

The previous algorithm requires the calculation of the intersection of the line
with the window edge. This direct calculation can be avoided by perform-
ing a binary search for the intersection by always dividing the line at its mid-
point. The algorithm, which is a special case of the Sutherland-Cohen algo-
rithm, was proposed by Sproull and Sutherland (Ref. 3-2) for implementation
in hardware. Implemented in software the algorithm is slower than using direct
calculation of the intersection of the line with the window edge as discussed
above. Implementation in hardware is fast and efficient because a parallel ar-
chitecture can be used and hardware addition and division by 2 are very fast.
In hardware, division by 2 can be accomplished by shifting each bit to the right.
For example, the 4-bit binary representation of decimal 6 is 0110. Shifting each
bit to the right by one yields 0011 which is decimal 3 = 6/2.

The algorithm uses the line end point codes and associated tests to im-
mediately identify totally visible lines, e.g., line a in Fig. 3-5, and trivially in-
visible lines, e.g., line & in Fig. 3-5. Lines which cannot be immediately iden-
tified using these tests, e.g., lines ¢ to g in Fig. 3-5, are subdivided into two
equal parts. The tests are then applied to each half until the intersection with
the window edge is found or the length of the divided segments is infinitesimal,
i.e. apoint, e.g. line fin Fig. 3-5. The visibility of the point is then determined.
The result is to perform a logarithmic search for the intersection point. The
maximum number of subdivisions is equal to the precision of the representation
of the end points of the line.

To illustrate the technique consider lines ¢ and f of Fig. 3-5. Although line f
is not visible, it crosses the corner and cannot be trivially rejected. Subdivision
at the midpoint P, allows the half P, P to be trivially rejected. The half P, P,
again crosses the corner and cannot be trivially rejected. Further, subdivision at
P, allows rejection of P, Py as invisible. Subdivision of the remaining portion
Pm,Pm, continues until the intersection of the line with the extension of the right-
hand window edge is found within some specified accuracy. This point is then
examined and found to be invisible. Hence, the entire line is invisible.

Bn,

P 1023
wﬂ Pl\a'Pz P,
B Py \Pz
\ /pz

P, Figure 3-5 Midpoint subdivision.

126 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

From the end point codes line ¢ of Fig. 3-5 is also neither totally visible,
nor can it be trivially rejected as invisible. Subdivision at the midpoint Py,
yields the same result for both halves. Setting aside the segment P, P, for later
consideration, the segment P, P, is further subdivided at Pn,. The segment
Pm,Pm, is now totally visible, and the segment PP, partially visible. The
segment Py, Pm, could now be drawn. However, this would result in the visible
portion of the line being inefficiently drawn as a series of short segments.
Instead the point P, is remembered as the current farthest visible point from
P;. Subdivision of the segment Pn,P, continues. Each time a visible midpoint
is found it is declared the current farthest visible point from P;, until the
intersection with the bottom edge of the window is determined to some specified
accuracy. This intersection is then declared the farthest visible point from P;.
The segment P, P, is then examined in the same way. For line ¢ of Fig. 3-5 the
farthest visible point from P; is the intersection with the left hand window edge.
The visible portion of the line Py P, is then drawn between the two intersections.

For lines like ¢ and d of Fig. 3-5 the midpoint subdivision algorithm per-
forms two logarithmic searches for the two farthest visible points from the ends
of the line. These are the intersections with the window edges. Each midpoint
subdivision is a crude guess at these points. For lines like e and g which have
one end point visible, one of these searches is trivial. In a software implemen-
tation the two searches are performed sequentially. In a hardware implemen-
tation they are performed in parallel. The algorithm can be formalized in three
steps (Ref. 3-3).

For each end point:

If the end point is visible, then it is the farthest visible point. The
process is complete. If not, continue.

If the line is trivially determined to be invisible, no output is generated.
The process is complete. If not, continue.

Guess at the farthest visible point by dividing the line PP, at its mid-
point P,,. Apply the tests above to the two segments PP, and Pn,P>. If
PnP2 is trivially rejected as invisible, the midpoint is an overestimation
of the farthest visible point. Continue with PiPn,. Otherwise, the mid-
point is an underestimation of the farthest visible point. Continue with
PyPn. If the segment becomes so short that the midpoint corresponds
to the accuracy of the machine or, as specified, to the end points,
evaluate the visibility of the point and the process is complete.

A specific example better illustrates the algorithm.

Example 3-3 Midpoint Subdivision

Consider the window in the screen coordinates shown in Fig. 3-5 to have left,
right, bottom, and top edges of 0, 1023, 0, 1023, respectively. The line ¢ has
end points P1(—307, 631) and P»(820, —136) in screen coordinates. The end
point code for P is (0001), and that for P is (0100). Both end point codes are

MIDPOINT SUBDIVISION ALGORITHM 127

not zero, so the line is not totally visible. The logical intersection of the end
point codes is (0000). The line may not be trivially rejected as invisible. Look
for the intersections.

The midpoint is

_xmtx _ 820-307

Xm 2 2 = 256.5 = 256
2 + -
ym=)’ 2}’1 - 1362+631 = 2475 = 247

using integer arithmetic. The end point code for the midpoint is (0000). Neither
segment P1Pm nor PoPn is either totally visible or trivially invisible. Putting
aside the segment P2Pm and continuing with PP, the subdivision process con-
tinues as shown in Table 3-2.

Table 3-2
P P2 Pm Comment
—-307, 631 820, —136 256, 247 Save PmP2,
continue P1Pp,
-307, 631 256, 247 26, 439 Continue PmP;
—26, 439 256, 247 115, 343 Continue P)Pn
—26, 439 115, 343 44, 391 Continue P\ Ppm
—26, 439 44, 391 9, 415 Continue PP,
—26, 439 9, 415 -9, 427 Continue Pp,P2
9,427 9, 415 Success
256, 247 820, —136 538, 55 Recall saved Pn,P3,
continue PmP2
538, 55 820, —136 679, —41 Continue P1Pm
538, 55 679, —41 608, 7 Continue PmP2
608, 7 679, -4l 643, —17 Continue P1Pm
608, 7 643, -17 625, -5 Continue P\Pm
608, 7 625, -5 616, 1 Continue PnP2
616, 1 625, -5 620, -2 Continue PP
616, 1 620, -2 618, -1 Continue P\Pp

616, 1 618, -1 617, O Success

The actual equation of the line PP yields intersection points at (0, 422) and
(620, 0). The differences are due to integer arithmetic truncation.

128 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

A flowchart of the algorithm is shown in Fig. 3-6. A pseudo implementa-
tion of the algorithm is shown below.
midpoint subdivision two-dimensional clipping algorithm
Window is a I X 4 array containing the left, right, bottom, and top edges
(XL, Xr, Y8, Y1) Of the rectangular clipping window
P, and P, are the end points of the line
calculate the end point codes
put the codes for each end into 1 X 4 arrays called Plcode and P2code
first end point: P,
call Endpoint(P;, Window; Plcode, Sum1)
second end point: P,
call Endpoint(P;, Window; P2code, Sum?2)
check if the line is totally visible
if Suml = 0 and Sum2 = 0 then 5

the line is not totally visible

Calc. end point
codes for P&P,

/m

visible? Both yes |Draw
end poin}’ codes line

0
I
ine trivially

invisible? Logical | yes
intersection of end

oint codes =0 Q
Return
\K'no/

Look for the farthest
visible point fromP,

1=

‘ ©

Check for degenerat€
invisible point.
Logical intersection of
end point codes=0

yes

Draw line

yes

P, visible?
End point code for
P2=0‘7

Figure 3-6 Flowchart for midpoint subdivision algorithm.

MIDPOINT SUBDIVISION ALGORITHM

@

1
Save P,
T

—P,
Intersection found?)
|P,—P,|<error

no

Calculate midpoint
Pm=(P|*P2)/2

.|Continue with
mP2

|
Save Pl

Look for .farthest
visible point from P,
Switch P, &P,

P—P,
Pz‘—T

129

S‘— P|

P]‘_Pm

Switch end point codes

E~End point code P,
End point code P;~End point code P,
End point codeP,~—E

Calculate new end
point code for P,

Intersection of end
point codes =0?
no

Continue with P,P,
\—

P;—Pn

j

Figure 3-6 (Continued.)

check for trivially invisible case
call Logical(P1code, P2code; Inter)
if Inter < > 0 then 6

line may be partially visible

look for farthest visible point from P,

i=1

process complete

1 ifi =2 then 4

i

Reset counter
i—2

©

is P, the farthest visible point from P;?
if Sum2 = 0 then 3
save original P,

2 Temp =P,

has intersection been found?
if [P, — P, < Error then 3
calculate the midpoint

Pn = (P; + P2)2

130 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

save current P,

Save = P,

replace P, with the midpoint

Py = Py

calculate the new end point code for P,

call Endpoint(P;, Window; Plcode, Sum1)
check if the segment PyP; is trivially invisible
call Logical(P1code, P2code; Inter)

if Inter = (Q then 2

P P2 invisible, continue with PPy

P; = Save
P; = Pn
go to 2

the farthest visible point from P; has been found
look for the farthest visible point from P,
switch P, and P,
3 P] = Pz
P, = Temp
switch the end point codes
Endcode = Plcode
Plcode = P2code
P2code = Endcode
reset counter
i=2
gotol
both intersections have now been found
check for degenerate invisible point
4 call Logical(Plcode, P2code; Inter)
if Inter < > then 6
5 Drawline
6 finish

subroutine module to calculate the end point codes
subroutine Endpoint(P1, Window; Pcode, Sum)
Py, Py are the x and y components of the point P
Window is a 1 X 4 array containing the left, right, bottom, and top edges
(XL, Xr, YB, Y1) Of the rectangular clipping window
Pcode is a I X 4 array containing the end point code
Sum is the element by element sum of Pcode
determine the end point codes
if Py < x_ then Pcode(4) = 1 else Pcode(4) = 0
if P, > xg then Pcode(3) = 1 else Pcode(3) = 0
if Py < yg then Pcode(2) = 1 else Pcode(2) = 0
if Py > yr then Pcode(1) = 1 else Pcode(1) = 0
calculate the sum
Sum =0

GENERALIZED TWO-DIMENSIONAL LINE CLIPPING FOR CONVEX BOUNDARIES 131

fori=1to4

Sum = Sum + Pcode(i)
next i
return

subroutine module to find logical intersection

subroutine Logical(Plcode, P2code; Inter)

Plcode is a 1 X 4 array containing end point codes
P2code is a 1 X 4 array containing end point codes
Inter is the sum of the bits for the intersection

Inter = 0
fori=1to4
Inter = Inter + Integer((Plcode(i) + P2code(i))/2)
next i
return

The previous explicit clipping algorithm determined the end point codes and
their logical intersection within the body of the algorithm. Here subroutine
modules are used because new end point codes and logical intersections are
repeatedly required.

3-4 GENERALIZED TWO-DIMENSIONAL LINE CLIPPING FOR
CONVEX BOUNDARIES

The algorithms presented above assume that the clipping window is a regular
rectangular polygonal boundary. For many purposes the clipping window is
not a regular rectangular polygon. For example, suppose that the rectangular
clipping window is rotated with respect to the coordinate system as shown in
Fig. 3-7. Then neither of the algorithms discussed above is applicable. Cyrus
and Beck have developed an algorithm for clipping to arbitrary convex regions
(Ref. 3-4).

N

/ Clipping window
\ﬁ- X

Figure 3-7 Rotated clipping window.

132 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Before specifically developing the Cyrus-Beck algorithm in the next section,
consider clipping a parametrically defined line to a window. The parametric
equation of a line segment from P; to P is

P(t)=Py+ (P, —Pi)t 0=t=1 3-1)

where ¢ is the parameter. Restricting the range of 1 to 0 = ¢ <1 makes it a
line segment rather than an infinite line. The parametric description of a line
is independent of any coordinate system. This attribute makes the parametric
form particularly useful for determining the intersection between a line and the
edge of an arbitrary convex polygon. The technique is first illustrated with a
regular rectangular window.

For a two-dimensional Cartesian coordinate system, Eq. (3-1) yields a pair
of parametric equations, one for each coordinate, i.e.,

xH=xi+@x—-x) 0=r=<1 (3-2a)
YO =y+@2—y)x 0st=<] (3-2b)

For a rectangular clipping window one of the coordinates of the intersection
with each edge is known. Only the other need be calculated. From Eq. (3-1)
the value of the parameter ¢ for any point on the line segment is

t= P(t) — P,
P,—-P

From Eq. (3-2) the specific value of ¢ corresponding to the intersection with
the window edge is
XL — X|

For the left edge: t=—— 0=t=1
X2 — X]

For the right edge: p= 22 0=r=1
X2 — X

For the top edge: p= =N O0=st=1
y2=n

For the bottom edge: t= H O0=st=1
2 =N

where x,, xz, ys, yr are the coordinates of the left, right, bottom, and top window
edges. If solutions of these equations yield values of ¢ outside the range 0=t=<1,
then those solutions are discarded since they represent points beyond the end
of the line segment.

Example 3-4 Simple Partially Visible Line

Consider the partially visible line from Pj(—3/2, —3/4) to P2(3/2, 1/2) clipped
to the window (-1, 1, =1, 1), i.e., x,, xs, ys, yr as shown in Fig. 3-8.
For the left edge:

GENERALIZED TWO-DIMENSIONAL LINE CLIPPING FOR CONVEX BOUNDARIES 133

(= X=X _ —1-(-3/2) - l_/g =l
x2—x1 32-(-312) 3 6
For the right edge:
'=xp—x1= 1-(-32) =ﬂ=§
x2—x1 3R-(-372) 3 6

For the bottom edge:
po Yoy _Z1-(C34) —v4 -1
-y 12-(=34) 54 5
which is less than zero and is thus rejected. For the top edge:

y—yn 1-(=3%4) 14 _7
ya—y 12-(=3/4) 54 5
which is greater than one and is also rejected. The visible portion of the line is
then from 1/6 =< ¢ < 5/6.
The x and y coordinates of the intersection points are obtained from the

parametric equations. In particular, for ¢+ = 1/6 Eq. (3-2) yields
x(1/6) = —3/2 + [3/2 — (—3/2))(1/6) = —1

t

which of course is already known since x = —1 represents the intersection with
the left edge of the window. The y coordinate is

¥(1/6) = —=3/4 + [172 — (—3/4))(1/6) = —13/24
Similarly for r = 5/6

[x(5/6) y(5/6)] = [—3/2 —3/4) + (3/2—(=3/2) 1/2 - (—3/4)] (5/6)
=[1 7/24]
where the separate calculations for the x and y coordinates have been combined

into one. Again, since the line intersects the right hand edge the x coordinate
for the parameter value of 5/6 is already known.

P,

JANL L
\
A

Figure 3-8 Parametric clipping of partially visible lines.

134 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

From the above example the technique appears to be simple and straightfor-
ward. However, there are some difficulties which are best illustrated by further
examples.

Example 3-5 Partially Visible Line

Consider the line from P3(—5/2, —1) to P4(3/2, 2) also shown in Fig. 3-8 and
again clipped to the window (-1, 1, —1, 1). Here, the intersection points are
given by the parametric values

1y =3/8 te=7/8 =0 tr=2/3

and all four values of ¢ fall in the range 0 = =< 1.

It is well known that, if a straight line segment intersects a convex polygon,
it can do so in at most two points. Hence, only two of the four parameter values
found in the above example are required. Rearranging the four parameter
values into a numerically increasing sequence yields 5,1, %. Inspection of
Fig. 3-8 shows that the required values are ¢, = 3/8 and ¢ = 2/3 which yield in-
tersection points at (-1, 1/8) and (1/6, 1), respectively. These parameter values
are the maximum minimum value and the minimum maximum value of the ¢
parameters. Formally determining these values is a simple classical problem in
linear programming. An algorithm for this is given in the next section.

As in any clipping algorithm, the ability to quickly identify and separate
totally visible and totally invisible lines is important. The next two examples
illustrate some further difficulties.

Example 3-6 Totally Visible Lines

Consider the entirely visible line P1(—1/2, 1/2) to P2(1/2, —1/2), again clipped
to the window (-1, 1, —1, 1) as shown in Fig. 3-9. The parameter values for
the window edge intersections are

L=-12 tr =372 t, =372 tr=—1/2

All these values are outside the range 0 < ¢ < 1.

From Example 3-6 it appears that a technique for identifying totally visible
lines has been found. However, the next example illustrates that this is not the
case.

Example 3-7 Totally Invisible Lines

Consider the totally invisible line P3(3/2, —1/2) to P42, 1/2) also shown in
Fig. 3-9. The clipping window is again (-1, 1, —1, 1). Here the parametric
values for the window edge intersections are

= -5 tr=—1 ty=—112 tr=32

Again, all these values are outside the range 0 =r=<1.

CYRUS-BECK ALGORITHM 135

!

Figure 3-9 Parametric clipping of visible
- and invisible lines.

The result given in Example 3-7 is the same condition previously identified
with a totally visible line. But in contrast to the line PP, of Example
3-6, the line P3P, is invisible. From these two examples, it is evident that for
parametric lines no simple, unique method for distinguishing totally visible or
totally invisible lines is available. It is also evident that a more formal approach
to the problem is required.

3-5 CYRUS-BECK ALGORITHM

To develop a reliable clipping algorithm it is necessary to find a reliable tech-
nique for determining whether a point on a line is inside, on, or outside a
window. The Cyrus-Beck algorithm (Ref. 3-4) uses the normal vector to ac-
complish this.

Consider a convex clipping region R. Although R is not limited to a two-
dimensional region, the examples used for the present discussion will assume
one. Thus, R may be any convex planar polygon. It may not be a concave
polygon. An inward normal vector for any point a on the boundary of R is
given by the vector dot product

n‘(b—a)=0

where b is any other point on the boundary of R. To see this, recall that the
dot product of two vectors V; and V; is given by

Vi:V, = 'V|”V2| cos 6

where 6 is the smaller of the angles formed by V; and V. Note that if 8 = 7/2
then cos & = 0 and V, -V, = 0; i.e., when the dot product of two vectors is
zero, the two vectors are perpendicular. Figure 3-10 shows a convex region
R, i.e. a clipping window. At the point a on the boundary both the inner
normal n; and the outer normal n, are shown along with several vectors to
other points on the region boundary. The angle between n; and any of the
vectors is always in the range —n/2 <0 =<u/2. In this range the cosine is always
positive. Hence, the dot product is always positive, as stated above. However,
the angle between the outer normal and any of these vectors is always & — 6
and cos (r —) = —cos 6 is always negative. To further illustrate this, consider
the following example.

136 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Y,
b(4,4)
4
\"J
Ng 2 L n;
0 > X
0 4 8

Figure 3-10 Inner and outer normals.

Example 3-8 Inner and Outer Normals

Consider the rectangular region in Fig. 3-10. Here the inner and outer normals
at a are n; = i and n, = —i, respectively, where i is the unit vector in the x
direction. Table 3-3 shows the values of the dot product of the inner and outer
normals and vectors from a to various points b on the region boundary. As a
specific example note that the inner normal at a is

n=i
The vector from a (0,2) to b(4,4) is
b —a = 4i +2j
The dot product is
ni'(b—-a)=i-@4i+2j=4

Table 3-3

a b nj'b—a) no(b—a)
0, 2) 0, 4) 0 0

4,9 4 -4

8, 4) 8 -8

8,2) 8 -8

8,0) 8 -8

4,0) 4 -4

(0, 0) 0 0

The zero values in Table 3-3 indicate that the vector and the inner and outer
normals are perpendicular.

CYRUS-BECK ALGORITHM 137

n-[P(t)-1]>0
ot

[Pw)-f]<0 n [P(O-1]=0
n

P,

R

R

Figure 3-11 Vector directions.

Returning to the determination of the intersection of a line and a window
edge, again consider the parametric representation of the line from P, to P»:
P(t) = Py + (P, — P}t O0==<1

If f is a boundary point of the convex region R and n is an inner normal
for one of its boundaries, then for any particular value of ¢, i.e., any particular
point on the line P, P,,

n-[Pt)—-f1<0
implies that the vector P(t) — f is pointed away from the interior of R.
n-[Pt)—f]1=0

implies that P(t) — f is pointed parallel to the plane containing f and perpen-
dicular to the normal.

n-[Pt)—f1>0

implies that P(t) —fis pointed toward the interior of R as illustrated in Fig. 3-11.
Together these conditions show that, if the convex region R is closed, i.e.,
for the two-dimensional case a closed convex polygon, an infinite line which
intersects the region does so at precisely two points. Further, these two points
do not lie on the same boundary plane or edge. Thus,

n-[P-f]=0

has only one solution. If the point f lies in the boundary plane or edge for
which n is the inner normal, then that point ¢ on the line P(f) which satisfies
this condition is the intersection of the line and the boundary plane.

Example 3-9 Cyrus-Beck Clipping—Partially Visible Lines

Consider the line from P1(—1, 1) to P29, 3) clipped to the rectangular region
shown in Fig. 3-12. The equation of the line PiP2is y = 0.2(x + 6) which
intersects the window at (0, 1.2) and (8, 2.8). The parametric representation
of the line P1P; is

Pit)y=P1+(P2—P)t=[—-1 1]+[10 2}t
=(10t—Di+@r+1)j O0=t=]

138 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

where i, j are the unit vectors in the x and y directions respectively. The four
inner normals are

Left: n =
Right: n = —
Bottom: n; =
Top: n = —j

Choosing f(0, 0) for the left edge yields
Pt)y—f= (10— i+ (2t + 1)j
and
n[Pt)—f]=10t—1=0
or
t=1/10
is the intersection of the line and the left edge of the clipping window. Hence,
P(1/10) = [-1 1]+ [10 2)(1/10) =[0 1.2]

which is the same as that explicitly calculated.
Choosing f(8, 4) for the right edge yields

P(t) — £ = (10f — 9)i + (2 — 3)j
and
n[(Pt)—f]=—-(10t—-9)=0
or
t=9/10
as the intersection point of the line and the right edge. Specifically
P(9/10) = [—1 1]+ [10 2)(9/10) = [8 2.8]

which is also the same as the explicit calculation.
Using f{0, 0) for the bottom edge yields

nPt)—fl=Qt+1)=0
or
t=—112

which is outside the range 0 <t =1 and is thus rejected.
Using (8, 4) for the top edge yields

nT [P)—f]=—-2t-3)=0
or
t=3/2

which is also outside the range 0 <¢= 1 and is also rejected. The visible range
for the line P1P; clipped to the rectangular region of Fig. 3-12is I/10 =t =<
9/10 or from (0, 1.2) to (8, 2.8).

CYRUS-BECK ALGORITHM 139

Y,
top
4 f
__— P, (9,3)
left right
—]
B(-L1) ¢ bottom B

0 . 4 . > X

0 2 4 6 8

Figure 3-12 Cyrus-Beck clipping—patrtially visible line.

This example shows that the intersection points can easily be found. Identi-
fying totally visible and totally invisible lines is illustrated by three further
examples.

Example 3-10 Cyrus-Beck—Totally Visible Lines

Consider the line P1(1, 1) to Px(7, 3) clipped to the rectangular window shown
in Fig. 3-13. The parametric representation of the line P\P; is

P@®y=1[1 1]+[6 2]t

The results, using the inner normals and boundary points of Example 3-9,
are given in Table 3-4.

Table 3-4
Edge n f P(t)—f n*[PO-1] ¢
Left i ©, 0 (1+60i+(1+20j 1+ 6¢ -1/6
Right -1 8,4 (=7+6)i+(—3+20)j 7 — 6t 716
Bottom j ©,0 (1+60i+(1+2n§ 1+2t -12
Top - 8,4 (=7+60)i+(-3+2nj 3-—2t 32

All the intersection values for ¢ are outside the range 0 <7 =< 1. The entire line
is visible. .

The next two examples consider two types of invisible lines. One line is
totally to the left of the window and could be declared invisible using the end
point codes discussed above. The second crosses the window corner outside
the window itself. It cannot be declared invisible using the end point codes.

140 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

3
B, (—1,4)4 Top f(8,4)
)
Left n n Right
25 R
B, (10,1)
_ 100 F%Dportom ns /

10

- { -4 -2 0 2 4 6
}(—6,-|)

Figure 3-13 Cyrus-Beck clipping—visible and invisible lines.

P; 6,-2)

Example 3-11 Cyrus-Beck—Trivially Invisible Line

Consider the line P3(—6, —1) to P4(—1, 4) clipped to the rectangular window
shown in Fig. 3-13. The line is invisible. The parametric representation is

P(ty=[~-6 —11+[5 SNt

The results using the inner normals and boundary points of the previous
examples are given in Table 3-5.

Table 3-5
Edge n f P(t)—f n* [P)—f] t
Left i (0,00 (—6+5pi+(—1+50j -6+5t t=6/5
Right -i 8,4 (—14+5)i+(—-5+5)§5 —-(—14+51) +t=14/5
Bottom j (0,0) (—6+50)i+(=1+5n]j -1+5 t=1/5
Top -j 8,4 (-14+5Di+(-5+5)j —(-5+50) t=1

Examination of the results in Table 3-5 shows that the intersection values
for the left and right edges are both outside the range 0 <= 1, but those for
the top and bottom are both within the range 0 <t =< 1. Based on this the line
might initially be assumed visible in the range 1/5 <t =< 1. However, further
consideration of the intersections for the left and right edges shows that both
intersection values of the parameter are greater than one. This shows that the
window is completely to the right of the line. Hence the line is invisible.

If in the above example P3 and P4 were interchanged, then the results would
show that the window was completely to the left of the line. The direction of
the line is important in arriving at the decision about the invisibility of the line.
The next example further explores this question.

CYRUS-BECK ALGORITHM 141

Example 3-12 Cyrus-Beck—Nontrivially Invisible Line
Here the line from Ps5(6, —2) to Pe(10, 1) again clipped to the rectangular
window of Fig. 3-13, is considered. The parametric representation is
PO =[6 —2]+[4 3}
Using the inner normals and boundary points of the previous examples
yields the results given in Table 3-6.

Table 3-6
Edge n f P)—f n-[P)—f] ¢
Left i 0,00 (6+4ni+(—2+3nj 6+4 t=-312
Right -i 8,4 (2+4)i+(-6+3nj —(-2+4) = 112
Bottom j 0,00 (6+4ni+(-2+30j -2+3t t= 23
Top —-j 8,49 (—2+4ni+(-6+3)j —(-6+31 t= 2

The results show that the intersections for the left and the top edges fall
outside the required range. However, the intersections for the right and bottom
edges are within the proper range. But, considering the direction of the line
to be from Ps to Pe, it is not possible for the line to intersect the right edge at
t = 1/2 before it intersects the bottom edge at ¢t = 2/3 and still pierce the region
R, i.e. the window. Thus, the line is invisible.

From these examples it is clear that apparently visible lines can be correctly
identified by also considering the direction of the line. This observation is
exploited in the formal statement of the Cyrus-Beck algorithm given below.

To formalize the algorithm, again recall that the parametric representation
of a line is

P(t) =P, + (P, — P))t 0<r=<1 (3-3)
and that the dot product of an inner normal and the vector from any point on
the parametric line to any other point on the boundary, i.e.,

n; - [P(t) — f;] i=1,2,3,.. (3-4)

is positive, zero, or negative for a point on the parametric line interior to the
region, on the region boundary, or exterior to the region. This relation is
applied for each boundary plane or edge i of the region. Combining Egs. (3-3)
and (3-4) yields

n: P+ @P:-P)t—f]=0 3-5)
as the condition for a point on the parametric line which lies on the boundary
of the region, i.e. the intersection point. Alternately, Eq. (3-5) becomes

ni:[Pr—fi]+m-[P,—PJt=0 (3-6)
Noting that the vector P, — P, defines the direction of the line and that the
vector P, — f; is proportional to the distance from the end point of the line to
the boundary point, let

142 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

D=P,—-P
the directorix or direction of the line and
w;=P —f;
a weighting factor. Equation (3-6) then becomes
tm;*D) +w;om; =0 (37
Solving for ¢ yields
p=-20 pao i=1,2,3,... (3-8)
D-n;

D - n; can be zero only if D = 0, which implies that P, = Py, i.e. a point. If

wi'n; < 0, the point is outside
= 0, on the boundary of
> 0, inside

the region or window.

Equation (3-8) is used to obtain the value of ¢ for the intersection of the
line with each edge of the window. If ¢ is outside the range 0=<t=1, then it can
be ignored. Although it is known that the line can intersect the convex window
in at most two points, i.e., at two values of ¢, Eq. (3-8) may yield several values
of t in the range 0 =t = 1. These will separate into two groups, a lower limit
group near the beginning of the line and an upper limit group near the end of
the line. What is required is to find the largest lower limit and the smallest
upper limit. If D;-n; > 0, then the calculated value of ¢ is near the beginning
of the line and the lower limit value of ¢ is sought. If D;-n; < 0, then the
value of ¢ is near the end of the line and the upper limit value of ¢ is sought.
Figure 3-14 gives a flowchart of an algorithm which uses these conditions to
solve the resulting linear programming problem. A pseudo implementation of
the algorithm is given below.

Cyrus-Beck two-dimensional clipping algorithm

P\ and P, are the end points of the line

the number of edges for the clipping region is k

the m; are the k normal vectors

the fi are the k boundary points, one in egch edge

D; is the directorix of the line, P, — P,

wi is the weighting function, P, — f;

tL, ty are the lower and upper parameter limits

initialize the parameter limits assuming the entire line is visible
=0
tu=1
calculate the directorix D
D=P,-P
start the main loop
fori=1tok
calculate w;, D-n; and w;-n; for this value of i)

CYRUS-BECK ALGORITHM 143

Initialize variables
t,~-0
ty—1
i—1

k == no. edges for
clipping region

yes ’

Looking for
lower limit

Looking for | no

upper limit
yes
t,—max(t, t,)
no
t,~min(t, t,)

Exit-point
invisible

Draw line segment Exit-line
P(t,) to P(t,) invisible
|

|
[Next line to be clipped |

Figure 3-14 Flowchart for the Cyrus-Beck clipping algorithm.

Wi = P| - fi

call Dotproduct(D, n;; Ddotn)
call Dotproduct(w;, n;; wdotn)
is the line a point?

if Ddotn = 0 then 2

144 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

the line is not a point, calculate t
= — Wdotn/Ddotn
looking for the upper or the lower limit
if Ddotn > 0 then 1
looking for the upper limit
is t within the range 0 to 1?
if t <O then 3
ty = Min(t, ty)
goto3
looking for the lower limit
1 ift> 1 then 3
tL = Max(t, ty)
goto3
the line is a point
2 if Wdotn < 0 then 4
the point is visible with respect to the current edge
3 next i
a normal exit from the loop has occurred
check if the line is in fact invisible
if t. =ty then 4
Draw line segment P(t.) to P(ty)
4 Process next line

subroutine module to calculate the dot product
subroutine Dotproduct(Vectorl, Vector2; Dproduct)

Vectorl is the first vector with components x and 'y
Vector? is the second vector with components x and y
Dproduct is the dot or inner product
Dproduct = Vectorlx*Vector2x + Vectorly*Vector2y
return

T

Interior clip Exterior clip

Figure 3-15 Cyrus-Beck interior and exterior clipping of a many-sided polygon.

CYRUS-BECK ALGORITHM 14§

To illustrate that the algorithm is not limited to rectangular windows consider
the following example.

Example 3-13 Cyrus-Beck—Irregular Window

Figure 3-15 shows an eight-sided polygonal clipping window. The line P1(—1, 1)
to P2(3, 3) is to be clipped to this window. Table 3-7 illustrates the complete
results of the Cyrus-Beck algorithm. As a specific example consider the edge
from Vs to Ve. The algorithm yields

D=P,-P1=[3 3]—-[-1 1]1=[4 2]
For the boundary point f(2, 3)
w=P—f=[-1 1]-[2 3]=[-3 -2]
For the edge VsVe the inner normal is
n=[-1 —1]
Hence
D'n=-6<0

and the upper limit is being sought.

w'n=35
and
‘T -6 6

Table 3-7
Edge n f w w'n D-nt 1 ty
iva [1 11 1,0 [2 11 -1 6 1/6
Va3 [1 0] (0,2 [-1 =11 -1 4 1/4
V3V, [1 =11 (0,2 [-1 -1] 0 2 0
Vavs [0 -11 (2,3 [-3 -2] 2 -2 1
VsVe -1 -1 (2,3) [-3 -2] 5 -6 5/6
VeV7 [—1 0] @G, [—4 0] 4 -4 1
V1Vs [-1 171 @G, (-4 0] 4 -2 2
i [0 11 (1,00 [-2 1] 1 2 —-112

tD *n < 0 upper limit (ty), D*n > 0 lower limit (z,).

Examining Table 3-7 shows that the maximum lower limit is ¢, = 1/4 and
the minimum upper limit is z, = 5/6. As shown in Fig. 3-15 the line is visible
from 1/4 < ¢t < 5/6 or from (0, 3/2) to (7/3, 8/3).

146 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS
3-6 INTERIOR AND EXTERIOR CLIPPING

The emphasis of the discussions in the previous section was on clipping a line to
the interior of a region or polygon. However, it is also possible to clip a line to
the exterior of a region or polygon, i.e., to determine what portion or portions
of a line lie outside a region and to draw those exterior portions. For example,
the visible portions of the line P;P; of Fig. 3-15 exterior to the window are
0=t<1/6and 5/6<t=<1, or from (—1, 1) to (0, 3/2) and (7/3, 8/3) to (3, 3).
The results of both an interior and an exterior clip of the line are shown in
Fig. 3-15.

Exterior clipping is important in a multiwindow display environment as
shown in Fig. 3-16. In Fig. 3-16 windows 1 to 3 have priority over the display
window, and windows 1 and 3 have priority over window 2. Consequently data
in the display window is clipped to the interior of the display window itself and
to the exterior of windows 1 to 3. Data in window 2 is clipped to the interior
of the window itself and to the exterior of windows 1 and 3. Data in windows
1 and 3 only need be clipped to the interior of the individual windows.

Exterior clipping can also be used to clip a line to a concave polygonal
window. Figure 3-17 shows a concave polygon described by the vertices
ViVaV3V4VsVeVi. A convex polygon can be formed from this concave polygon
by connecting the vertices V3 and Vs, as shown by the dashed line in Fig. 3-17.
Using the Cyrus-Beck algorithm, the line P,P; is clipped to the interior of this
polygon. An exterior clip to the polygon V3VsV4Vs of the resulting line P|P,
then yields the required result, i.e. P|P,’.

Display window
Window 2

Windowl6 >

Window 3
Text: Q
X
Figure 3-16 Clipping in a multiwindow Figure 3-17 Clipping a line to a con-

environment. cave polygon.

3-7 IDENTIFYING CONVEX POLYGONS AND DETERMINING THE
INWARD NORMAL

To use the Cyrus-Beck clipping algorithm it is necessary to first ensure that
the clipping region is convex and then to determine the inner normals for each

IDENTIFYING CONVEX POLYGONS AND DETERMINING THE INWARD NORMAL 147

edge. Two-dimensional polygonal windows can be determined to be either
concave or convex by calculating the vector cross products of adjacent edges.
The conclusions to be drawn from the signs of the vector cross products are

All zero — the polygon is collinear
Some positive and some negative — concave polygon
All positive or zero — convex polygon and the inner normal

points to the left looking along the
direction of the edge

All negative or zero — convex polygon and the inner normal
points to the right looking along the
direction of the edge

This is illustrated in Fig. 3-18.

Alternately, one of the polygon vertices can be selected as a base and the
vector cross products calculated for the vectors from this base to successive
pairs of polygon vertices. The interpretation of the results is unchanged.

The vector cross product is normal to the plane of the polygon. For two
planar vectors V| and V; the cross product is (Vx,Vy, — Vy,Vx,)k, where k is
the unit vector perpendicular to the plane of the vectors.

The normal vector for a polygon edge can be determined by recalling that
the dot product of two perpendicular vectors is zero. If n, and n, are the
unknown components of the normal and V., and V., are the components of a
known edge vector, then

n-V, = (nd + nyj)- (Ve,i + Ve.j) = niVe, + n)V, =0
or
nVe, = '”yVe,.

Since only the direction of the normal is required, n, is assumed equal to 1
without loss of generality. Hence, the normal vector is

Y %
3 _V4 V; 3 _V5 V,
® ® ® ®
2 2 oV
® ®
Oy; 1 o Oy i 7 X
a, Convex b. Concave

Figure 3-18 Signs for vector cross products.

148 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

n=-—i+j
€x
If the edge vector is formed from two polygon vertices V;-; and V;, and if
the dot product of the vector from V;—; to V;+; and the normal is positive, n
is the inner normal. Otherwise, n is the outer normal. In this case, the inner
normal is obtained by reversing the signs of the x and y components. A simple
example illustrates the technique.

Example 3-14 Vector Cross Products

Figure 3-18a shows a simple convex polygon and Fig. 3-18b a concave polygon.
Tables 3-8 and 3-9 give complete results. As a specific example, the vector
cross product at V2 and the inner normal for the edge V V2 for the polygon of
Fig. 3-18a are determined.

For the adjacent edges at V2

ViVy =2i+j Va2V3 = 2j
The vector cross product is
ViV2 ® VaV3 =4k

where k is the unit normal perpendicular to the plane of the vectors. The cross
product is positive. Table 3-8 shows that the cross products for all the vertices
are positive. The polygon is thus convex. Table 3-9 shows that for the polygon
of Fig. 3-18b the cross product at V3 is negative, whereas all the others are
positive. Hence, this polygon is concave.

The normal for the edge vector V V2 is

n= —li +j
T
or alternately
n=—i+2j
The vector V V3 is
ViV3 = 2i + 3j

Hence
n-ViVi=(—-i+2j):Qi+3j)=4>0

and this is an inner normal

Table 3-8
Vertex Vectors Cross product
Vi ViVi ® ViV, [0 -3]®[2 1] = +6
V2 ViV @ ViV3 [2 11®[0 2] = +4
Vi ViV @ ViV, [0 2]®[-2 0] = +4
Va ViVa @ ViV, [-2 01®[0 —3] = +6

IDENTIFYING CONVEX POLYGONS AND DETERMINING THE INWARD NORMAL 149

Table 3-9
Vertex Vectors Cross product
12 VsV @ ViV, [0 -3]1®[2 1] = +6
V2 ViV2 @ VV3 [2 11®[—1 11 = +3
V3 ViV3 ® ViV, -t 1®r1 1= -2
V4 ViV4 @ V4Vs [1 11®[-2 0] = +2
Vs ViVs @ VsV [-2 01®[0 -3] = +6
)/
(v,)/
2} M A
O ®
1 —_— 1
0 4 - A X L N v3 X
\' 1 2V, 3 -1 Vv, 1 2
)/
/ b/ v,
®
Vi
2 2
1t 1t
V,
0 . . 0 X : X
A/ 1 2 3 \A 1 2 3

a. Convex

Figure 3-19 Using rotations and translations to determine convex and concave polygons.

150 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

, Y
/1 \ ()
v
2 \A 2
IV,
I ’ S I
\%
X
v, | 2 3 v,
Q
)\
\
2
Vs
11®
> X
1V
-3¢t
Y Y Vi
®
\
2
— bW
Vs
- - X
X v, 1 2 3

b. Concave

Figure 3-19 (Continued.)

SPLITTING CONCAVE POLYGONS 151

Alternately, a procedure involving translation and rotation of the polygonal
window can be used to determine both the convexity of the window and the .
inner normal for each edge. The procedure is

For each vertex of the polygonal window, translate the polygon such that
the ith vertex is at the origin.

Rotate the polygonal window about the origin such that the (i + 1)th vertex
is on the positive x axis.

Examine the sign of the y component of the (i + 2)th vertex.

If all the (i + 2)th vertices have the same sign for the y component, the
polygonal window is convex; if not, it is concave.

If the (i +2)th vertex has a zero y component, then the ith, (i+ 1)th, (i+2)th
vertices are collinear.

If all the (i + 2)th vertices have zero y components, the polygonal window
is degenerate, i.e., a line.

For each edge of a convex polygon, the inner normal has components in the
rotated coordinate system of zero and the sign of the (i +2)th y component.

In determining the original direction of the inner normal, only the inverse
rotations are applied.

Figure 3-19 illustrates the various stages in the procedure for both the con-
vex and concave polygons of Fig. 3-18. The appropriate rotation and transla-
tion algorithms are given in Ref. 1-1.

3-8 SPLITTING CONCAVE POLYGONS

Many algorithms require that polygonal clipping regions be convex. The Cyrus-
Beck clipping algorithm presented above is an example. Additional examples
are presented in subsequent sections. A simple extension of the translation
and rotation technique for determining whether a polygon is convex or con-
cave allows splitting or dividing simple concave polygons into multiple convex
polygons. The procedure can be incorporated into the previous algorithm. If
the polygon vertices are specified counterclockwise, the procedure is

For each vertex of the polygon, translate such that the ith vertex is at the
origin.

Rotate the polygon clockwise about the origin such that the (i + 1)th vertex
is on the positive x axis.

Examine the sign of the y component of the (i + 2)th vertex. If the sign
is positive or zero, the polygon is convex with respect to this edge. If the
sign is negative, the polygon is concave. Split the polygon.

152 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The polygon is split along the positive x axis; i.e., the intersection of each
polygon edge that crosses the coordinate axis is found. Two new polygons
are formed, one from the vertices above the axis and the closest intersection
with x > x;+1, and the second from the vertices below the axis and the same
intersection point.

The algorithm is reentered with the split-off polygons until they are all
declared convex

The algorithm does not yield an optimum split in the sense of the minimum
number of convex polygons. Also, the algorithm will not properly split polygons
whose edges intersect.

An example will further illustrate the procedure.

Example 3-15 Splitting Concave Polygons

Consider the concave polygon shown in Fig. 3-19b. With the vertex V; at
the origin and V3 on the positive x axis, the sign of the y component of
V4 is negative. Hence, the polygon is concave. Splitting the polygon along
the coordinate axis yields V3V4V's as the split off polygon below the axis and
V1V, V3Vs as the split off polygon above the axis. Reentering the algorithm with
V3V4Vs and VV,V3Vs shows that they are both convex. Hence, the algorithm
is complete.

3-9 THREE-DIMENSIONAL CLIPPING

Before extending the methods discussed above to three dimensions, it is neces-
sary to discuss the shape of the clipping volume. The two common three-
dimensional clipping volumes are a rectangular parallelepiped, i.e. a box, used
for parallel or axonometric projections, and a truncated pyramidal volume, fre-
quently called a frustum of vision, used for perspective projections. These
volumes, shown in Fig. 3-20, are six-sided; left, right, top, bottom, hither
(near), and yon (far). There is also the necessity of clipping to unusual volumes.

As in two-dimensional clipping, lines that are totally visible or trivially
invisible can be identified using an extension of the Cohen-Sutherland end point
codes. For three-dimensional clipping, a 6-bit end point code is used. Again,
the first bit is the rightmost bit. The bits are set to 1 using an extension of the
two-dimensional scheme. Specifically,

First bit set — if the end point is to the left of the volume
Second bit set — if the end point is to the right of the volume
Third bit set — if the end point is below the volume

Fourth bit set — if the end point is above the volume

Fifth bit set — if the end point is in front of the volume
Sixth bit set — if the end point is behind the volume

THREE-DIMENSIONAL CLIPPING 153

Otherwise, the bit is set to zero. Again, if both end point codes are zero,
then both ends of the line are visible; and the line is visible. Also, if the
bit-by-bit logical intersection of the two end point codes is not zero, then the
line is totally invisible. If the logical intersection is zero, the line may be
partially visible or totally invisible. In this case it is necessary to determine
the intersection of the line and the clipping volume.

Determining the end point codes for a rectangular parallelepiped clipping
volume is a straight forward extension of the two-dimensional algorithm. How-
ever, the perspective clipping volume shown in Fig. 3-20b requires additional
consideration. One technique (see Ref. 1-3) is to transform the clipping volume
into a canonical volume with xhgne = 1,Xet = —1,Y0p = 1, ¥bottom = —1, at
Zyon = 1. If Znimer = a, where 0 <a =1 and the center of projection is at the
origin, in a left-handed coordinate system, then the end point code conditions
are considerably simplified.

A more straightforward technique, which requires less distortion of the
clipping volume, makes the line connecting the center of projection and the
center of the perspective clipping volume coincident with the z axis in a right-
handed coordinate system as shown in Fig. 3-20b.

A top view of the perspective clipping volume is shown in Fig. 3-21. The
equation of the line which represents the right hand plane in this view is

2~ Zcp
x= Xp = za + a;
ZY ~ Zcp
where
X,
a = —= and @ = —aizer
Zy = Zcp
Yy
y
Top /
Yon ~r>)/
! / Yon
/
[
/ L-/--_ —_———
/ 'I// Right
/ ig
Lert—| // | Left
/ Y
/ ‘ ‘
/ =——Bottom
z Hither
a. Parallel b. Perspective

Figure 3-20 Three-dimensional clipping.

154 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The equation of this plane can be used to determine whether a point is to the
right, on, or to the left of the plane, i.e., outside the volume, on the right hand
plane, or inside the volume. Substituting the x and z coordinates of a point P
into x — za; — a; yields the following results

fri=x—zai—a; >0 if P is to the right of the plane
= 0 if Pis on the plane
< 0 if Pis to the left of the plane

Test functions for the left, top, and bottom planes are:

f=x—-2z81—-B2<0 if P is to the left of the plane
=0 if P is on the plane
> 0 if Pis to the right of the plane

where
X
Bi = L and B = —Bizer
Zy— Zcp
and
-X
P
\\ | Left —X,
Center of ~ Yon
projection Hither N
+Z + + 4\ "z
Zce o .Pz I
Right T —Xr
+X

/
‘
(Pl
b

Figure 3-21 Views of perspective clipping volume.

THREE-DIMENSIONAL MIDPOINT SUBDIVISION ALGORITHM 155

f=y—zyi—y2> 0 if P is above the plane
=0 if P is on the plane
<0 if P is below the plane

where
yr
= d = —
14 Z— Zer an Y2 YiZce
and
fi=y—20,—62< 0 if Pis below the plane
= 0 if Pis on the plane
> 0 if Pis above the plane
where

0 = ze and 02=—01zcr
Finally the test functions for the hither and yon planes are

fe=2—-2,> 0 if Pisin front of the plane
=0 if P is on the plane
<0 if P is behind the plane

and

fr=z-2,< 0 if Pis behind the plane
= 0 if Pis on the plane
> 0 if Pisin front of the plane

As z, approaches infinity, the clipping volume approaches a rectangular
parallelepiped. The test functions also approach those for a rectangular paral-
lelepiped.

As pointed out by Liang and Barsky (Ref. 3-5) this approach may not yield
the correct codes if the end points lie behind the center of projection. This is
because the left and right and the top and bottom planes of the perspective
clipping volume intersect at the center of projection. Thus a point can be right
of right and left of left simultaneously. Liang and Barsky suggest a technique
for correcting this. In principle it is only necessary to reverse the left-right, top-
bottom code bits if z < z,. See also Sec. 3-12.

3-10 THREE-DIMENSIONAL MIDPOINT SUBDIVISION
ALGORITHM

The midpoint subdivision algorithm given above (see Sec. 3-3) extends directly
to three dimensions. For the pseudo code implementation, the array dimen-
sions for the Pcodes and Window arrays must be changed and the Endpoint and
Logical subroutines rewritten for three dimensions. A pseudo code implemen-
tation for the three-dimensional end point code subroutine is

156 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

subroutine module for calculating three-dimensional perspective volume end
point codes

subroutine Endpoint(P, Window; Pcode, Sum)

P«, Py, P, are the x and y components of the point P
Window is a I X 7 array containing the left, right, bottom, top, hither, yon
edges and the center of projection (XL, Xr, YB, YT, ZH, ZY, ZCP)
Pcode is a 1 X 6 array containing the end point code
Sum is the element-by-element sum of Pcode
calculate ai, az, B2, 71, v2, 01, &2

ar = Xr/(zy — zcp)
a; = —aiZcp
B = xul(zy — zcp)
B2 = —Pizcp
Y1 = yr/(zy — zcp)
Y2 = —YiZcp
o1 = ys/(zy — zcp)
02 = —Oizcp

determine the end point codes

if Px — P81 — B2 <0 then Pcode(6) = 1 else Pcode(6) = 0

if P, — P,a; — a2 > 0 then Pcode(5) = 1 else Pcode(S) = 0
0
0

if Py — P;0, — 02 < 0 then Pcode(4) = 1 else Pcode(4) =
if Py — P;y1 — y2 > 0 then Pcode(3) = 1 else Pcode(3) =
if P, — zy > 0 then Pcode(2) = 1 else Pcode(2) = 0

if P, — zy < 0 then Pcode(1) = 1 else Pcode(1) = 0
calculate the sum

Sum =0
fori=1to6
Sum = Sum + Pcode(i)
next i
return

An example for the three-dimensional midpoint clipping algorithm is given
below.

Example 3-16 Three-Dimensional Midpoint Subdivision

Consider a line from P(—600, —600, 600) to P2(100, 100, —100) in screen units
clipped to the perspective volume with xz = y; = 500, x, = y; = —500 at the yon
clipping plane. The hither and yon clipping planes are z, = 357.14, z, = —500.
The center of projection is z¢, = 2500. A top view is shown in Fig. 3-21a and
a perspective view in 3-21b. The clipping volume test functions are

Right: f= = 6x + z—2500
Left: fo = 6x — z+ 2500
Top: fr = 6y + z—2500
Bottom: f; = 6y — z+ 2500
Hither: fu= 2z - 357.14
Yon: fr = z + 2500

THREE-DIMENSIONAL CYRUS-BECK ALGORITHM 157

The end point code for Py is (010101), and that for P2 is (000000). Since
both end point codes are not zero, the line is not totally visible. The logical
intersection of the end point codes is (00000). The line is not trivially invisible.
Since the end point code for P2 is (000000), P2 is inside the volume. Hence,
it is the farthest visible point from P). Thus, only one intersection with the
volume occurs. The midpoint is

+ -
X = x2 + xi _ 100 + (—600) - —250
2 2
_ Y2ty 100+ (=600) _
Ym = 2 = 2 = —250
+ -100 +
, = 2tz _ 100 + 600 250
2 2

using integer arithmetic. The end point code for the midpoint is (000000). The
segment Pn,P2 is totally visible. The segment P \P ,is partially visible. Continue
with P{Pn,. The subdivision continues in Table 3-10.

Table 3-10
P P2 Pm Comment
-600, —600, 600 100, 100, —100 —250, —250, 250 Continue P\ Pn
—600, —600, 600 —250, —250, 250 —425, —425, 425 Continue PmP2
—425, —425,425 —250, —250, 250 —338, —338, 337 Continue P Pn
—425, —425,425 338, —338, 337 —382, —382, 381 Continue PnP2
-382, —382, 381 —338, —338, 337 —360, —360, 359 Continue PnP2
-360, —360, 359 —338, —338, 337 —349, —349, 348 Continue P\ Pn
—360, —360, 359 —349, —349, 348 —355, —355, 353 Continue P Pn
-360, —360, 359 —355, —355, 353 —358, —358, 356 Continue PmP2
—358, —358, 356 —355, —355, 353 —357, —357, 354 Continue P Pn
—358, —358, 356 —357, —357, 354 —358, —358, 355 Continue PnP2
—358, —358, 355 —357, —357, 354 Success

The actual intersection point is (—357.14, —357.14, 357.14). The difference is

due to the use of integer arithmetic in the algorithm.

3-11 THREE-DIMENSIONAL CYRUS-BECK ALGORITHM

In developing the Cyrus-Beck algorithm (Ref. 3-4) for two-dimensional clip-
ping, no restriction was placed on the shape of the clipping region except that
it be convex. The clipping region can therefore be a three-dimensional convex
volume. The algorithm developed previously is directly applicablé. Instead of
k being the number of edges, it is now the number of planes (see Fig. 3-14).

158 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

All vectors now have three components; x, y, z. The extension of the Dot-
product subroutine module to three-dimensional vectors is straightforward. To
more fully illustrate the algorithm, consider the following examples. The first
considers clipping to a rectangular parallelepiped, i.e., to a box.

Example 3-17 Three-Dimensional Cyrus-Beck Algorithm

A line from P1(—2, —1, 1/2) to P2(3/2, 3/2, —1/2) is to be clipped to the volume
(X, Xas Y8, yrr 2w 29 = (=1, 1, =1, 1,1, —1) as shown in Fig. 3-22. By in-
spection the six inner normals are

Top: n, = —-j=[0 -1 0]
Bottom: n, = j=[20 1 0]
Right: n, = —-i=[—1 0 0]
Left: n= i=[1 0 0]
Hither: n,=-k=[0 0 -1]
Yon: nn= k=[0 0 1]

The points in each clipping plane may also be selected by inspection. By
choosing points at the end of a diagonal between opposite corners of the clipping
volume, two are sufficient. Thus,

f=h=M1,11
and
fi=fi=f(-1, -1, 1)

Alternately the center or a corner point of each clipping plane could be used.
The directorix for the line PP is

D=P,—-Py =(32 32 -12)-[-2 -1 172]
=[72 52 -1]

For the boundary point f(—1, =1, —1)
w=P —f=[-2 -1 12]-[-1 -1 —-1]
=[-1 0 372]
and for the left hand clipping plane the inner normal is
n.=[1 0 0]
Hence
D'n.=[72 52 —1]*[1 0 0)=72>0
and the lower limit is being sought
wem,=[-1 0 372][1 0 0] = -1

and

-1
4y = 7/‘2‘—2/7

THREE-DIMENSIONAL CYRUS-BECK ALGORITHM 159

Table 3-11 gives the complete results.

Table 3-11
Plane n f w w'n D*'nt 1 ty
Top [0 -1 o (1, 1, H[-3 -2 —-112] 2 -5 4/5
Bottom [0 1 0] (-1, -1, -1 [—1 0 32] 0 52 0
Right [—1 o 0 (1, 1, D3 -2 -1/221 3 -12 6/7
Left [1 0 0] (-1,-1,-1) [-1 0 32] -1 72 27
Hither [O O -1} (1, 1, D [-3 -2 -12}) 12 1 -12
Yon [0 O 1] (-1, -1, -1) [—1 0 32 32 -1 32

tD*n < 0 upper limit (t;), D*n > 0 lower limit ().

Examining Table 3-11 shows that the maximum lower limit is f, = 2/7 and
the minimum upper limit is t, = 4/5. The parametric equation of the line P P2
is

P =[-2 -1 12]+([72 52 -1}t
Substituting 7, and 1, yields
P27y =[-2 =1 12)+[72 512 —1)27)
=[-1 =27 3/14]
as the intersection point with the left clipping plane and
P@4/5) =[-2 -1 12]+[7/2 512 —1](4/5)
=[4/5 1 -3/10]

as the intersection with the top clipping plane.

(1,1,

Figure 3-22 Cyrus-Beck clipping
—three-dimensional rectangular
volume.

Clipping to a standard perspective volume is only slightly more complex.
Here, the inner normals must be determined formally rather than by inspection.

160 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Example 3-18 Clipping to a Perspective Volume

Consider the same line as in Example 3-17, i.e., P1(-2, —1, 1/2) to P2(3/2,
3/2, —1/2), clipped to the perspective volume with (., Xz, Ys, Yr, zu, 2y) =
(-1,1, -1, 1, 1, —1), with a center of projection at zc,= 5. See Fig. 3-20b.

The inner normals for the hither and yon clipping planes may be obtained
by inspection. Those for the remaining four clipping planes may be calculated
from the cross products of vectors from the center of projection to the corners
at z = 0, the plane of projection. These vectors are

Vi=[1 1 -5

Vi =[-1 1 -5)

Vi=[-1 -1 -5]

Va=[1 -1 -5]

The inner normals are then

n=Vi®Va=[0 -10 -2]
n=Va®Vs=[10 0 -2]
n=Vi®@Vs=[0 10 -2]
n=V4®V,=[-10 0 -2]
n,=[0 0 —1)

n,=000 1]

Since the center of projection is in four of the six planes, it is convenient
to take

fr=1f=1=f(0,0,5)
and the center of the hither and yon planes
f40,0,1) and £(0,0, —1)
as the boundary points.
The directorix for PP is again
D=P,-P,=[72 52 -1]
For the boundary point in the left hand clipping plane
w=P —f, =[-2 -1 12]-[0 0 5]
=[-2 -1 -9/2]
Noting tha
D n.=([72 52 —-1]-[10 0 -2]=37>0
and the lower limit is being sought. Then for
wem,=[-2 -1 =9/2]-[10 0 -2]=-11
and
—11 11

1 37 37 0.297

THREE-DIMENSIONAL CYRUS-BECK ALGORITHM 161

Table 3-12 gives the complete results.

Table 3-12

Plane n f w w'n D*'nt ¢, ty
Top [O —10 -2] 0,0, 5) [-2 -1 -972] 19 -23 0.826
Bottom [O 10 -2] (0,0, 5) [-2 —1 —972] -1 27 0.037

Right [-10 0 -2] (0,0, 5) [-2 —1 -972] 29 -33 0.879
Left [10 0 -2] (0,0, 5) [-2 —1 —972] =11 37 0.297
Hither [O 0 —1] 0,0, 1) [-2 -1 —-172] 12 1 =05

Yon [O O 1].0,0,-1)[-2 -1 372] 32 -1 ' 1.5

tD*n < 0 upper limit (¢,), D*n > 0 lower limit (z,).

Table 3-12 shows that the maximum lower limit is r, = 0.297 and the minimum
upper limit is 7, = 0.826. From the parametric equation the intersection values
are

P(0.297) = [-0.961 —0.258 0.203]
and
P(0.826) = [0.891 1.065 —0.323]
for the left and top clipping planes.

| TN
~N
~
~

(1,1,1)

-1,-1,-1)
Figure 3-23 Cyrus-Beck clipping
—odd three-dimensional volume.

As a final example a nonstandard clipping volume with seven clipping
planes is considered.

Example 3-19 Clipping to an Arbitrary Volume

The clipping volume is shown in Fig. 3-23. It is a cube with one corner
removed. The polygons describing each face have vertices.

Right: a, -1, n,d,-1,-O,1,1,-D,1, 1,1

Left: -1, -1, 1,(-1, -1, =1, (-1,1, -1), (-1, 1,0),(-1,0, 1)
Bottom: (1, —1, 1), (1, =1, =1), (=1, =1,=-1),(1, =1, =1)

Top: 1,1, D,d4,1, -1),1,1, -1),(-1,1,0), (0, 1, 1)

162 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Hither: (1, =1, 1),(1, 1, 1),(0, 1,), (=1,0, 1), (=1, =1, 1)
Yon: (=1, -1, =-1),(1, =1, =D,(, 1, =D, (=1, 1, =1
Skew: (-1,0,1),(0,1,1),(-1,1,0)

Table 3-13 gives the complete results for the line Pi(-2, 3/2, 1) to
P2(3/2, —1, —1/2) clipped to this volume.

Table 3-13

Plane n f w wen D°nt t,

[0 -1 op¢1t1, 1, nH[-3 12 0] -1/2 52 15
Bottom [0 1 0] (-1,-1,-1) [-1 52 2} 572 -512 1
Right [-1 0 o ¢1, 1, H[-3 12 0 3 =72 6/7
Left [1 0 0] (-1,-1,-1)[-1 52 2] -1 721

[0 O

[0 O

[1T -1

Top

Hither =131, 1, nH[-3 112 00 O 32 0
Yon 11, -1,-1)[-1 52 2] 2 =32 4/3
Skew =11 (-1, 0, 1) [—-1 32 0] =52 152 13

tD*n < 0 upper limit (¢;), D*n > 0 lower limit (¢,).

From the table the maximum lower limit is ¢, = 1/3, and the minimum
upper limit is 7, = 6/7. The intersection points are thus

P(173) = [-5/6 2/3 1/2]
in the skew plane and

P6/7)=[1 —914 —2/7)
in the right hand plane.

Note that the computational expense of the Cyrus-Beck algorithm grows
linearly with the number of edges or planes to be clipped.

3-12 CLIPPING IN HOMOGENEOUS COORDINATES

If clipping is to be performed in homogeneous coordinates (see Ref. 1-1) con-
siderable care must be taken if a perspective transformation is also used. The
fundamental reason is that a single plane does not necessarily divide a line
into two parts: one inside the clipping region and one outside the clipping
region. The line may “wrap around” through infinity such that two segments
are visible inside the region. Blinn (Ref. 3-6) shows that clipping all line
segments before completing the perspective transformation by dividing by the
homogeneous coordinate eliminates the segments that “return from infinity.”
Liang and Barsky (Ref. 3-5) have developed a line clipping algorithm that in-
cludes homogeneous coordinates. They obtain the correct result by modifying
the limits of the viewing volume which is assumed to be a frustum of vision.

CLIPPING IN HOMOGENEOUS COORDINATES 163

The Cyrus-Beck algorithm correctly clips a line to the perspective frustum
of vision provided that the line exists entirely in front of the eye point or
center of projection (see Example 3-18). However, if the line passes behind the
center of projection, the algorithm rejects the line even if partially visible. In
practice, the correct result is obtained by first clipping the line to the physical
volume described in ordinary coordinate space and then applying the perspec-
tive transformation to the results. Note that any affine transformations (e.g.
rotations, translations, etc.) may be applied to both the clipping volume and
the line before the perspective transformation is applied. A further example
illustrates these points.

Example 3-20 Cyrus-Beck With Line Passing Behind the Center of Projection

Consider the line P1(0, 1, 6) to P2(0, —1, —6) clipped to the physical volume
(xc, Xz, Y8, y1s 20, 29)= (=1, 1, =1, 1, =1, 1) from a center of projection at z =
5. The line PP, passes through the clipping volume but originates behind the
center of projection.

After applying the perspective transformation (see Ref. 1-1) the end points
of the line in homogeneous coordinates are

Pil0 1 6 —1/5) and P20 —1 —6 11/5]

Dividing through by the homogeneous coordinate yields the ordinary coor-
dinates

P1(0, -5, —30) and P2(0, —5/11, —30/11)

Notice that P, which was originally in front of the clipping volume but behind
the center of projection, has now wrapped around through infinity to a location
behind the clipping volume. Since both end points are now outside the clipping
volume, the Cyrus-Beck algorithm will reject the line as invisible.

Recalling the inner normals and the points in each clipping plane from
Example 3-17, the line is first clipped to the physical volume (-1, 1, -1, 1, —1,
1). Here, the directorix for P \P3 is

D=P,-P;=[0 -1 —6]—[0 1 61=[0 -2 —12]

The results are given in Table 3-14

Table 3-14
Plane n f w w'n D'nt ¢ ty
Top [0 -1 0 (1, 1, 1)[-1 0 5] O 2 0
Bottom [O 1 g -—1,-1,-H[1 271 2 =2 1
Right [-1 0O o0 (1, 1, 1D[-1 0 5] 1 0
Left [1 0o 0o (¢1L,-,-Hh[r1 27 1 0
Hither [O O -1 (1, 1, 1) [-1 O 5] -5 12 5/12
Yon [0 O 1¢,-1,-n{1 277 7 -12 712

tD*n < 0 upper limit (z,), D*n > 0 lower limit (z,).

164 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Examining Table 3-14 shows that the line is visible from 5/12 < ¢ < 7/12.
The end points of the clipped line in physical space are’

P(5/12)=[0 1 6]+[0 —2 —12)(5/12)=[0 1/6 1]
P(7712)=[0 1 6]+[0 -2 —-12)(7/12)=[0 —1/6 —1]

Transforming these end points to perspective space using homogeneous coor-

dinates (see Ref. 1-1) yields
0 1/6 11 0 0 =10 524 54 1
0 -1/6 -1 1 0 o0 0 -—-5/36 —5/6 1

1 -15

0 1

as the visible portion of the line. This is the correct result

(==
SO =0

3-13 DETERMINING THE INWARD NORMAL AND THREE-
DIMENSIONAL CONVEX SETS

The two-dimensional technique using rotations and translations previously used
to identify convex polygons and to determine the inward normal may be
extended to three-dimensional plane volumes. The three-dimensional proce-
dure is

For each polygonal face plane of the volume:

Translate the volume such that one of the vertices of the polygon face
is at the origin.

Rotate about the origin such that one of the two adjacent polygon edges
is coincident with one of the coordinate axes, e.g. the x axis.

Rotate about this coordinate axis until the polygonal face lies in the
coordinate plane, e.g. the z = 0 plane.

Examine the sign of the coordinate component perpendicular to this
plane for all other vertices of the volume, e.g. the z component.

If all the vertices have the same sign or are zero, then the volume
is convex with respect to this plane. If the volume is convex for all
its face planes, then it is convex; if not, it is concave.

If for each face the value of the coordinate component perpen-
dicular to this plane is zero, then the volume is degenerate; i.e., it
is a plane.

For each convex plane, the inner normal has components in the rotated
coordinate system of zero and the sign of the coordinate components
perpendicular to the plane in which the face plane lies.

In determining the original direction of the inner normal, only the
inverse rotations need be applied.

DETERMINING THE INWARD NORMAL AND THREE-DIMENSIONAL CONVEX SETS 165

y

c b

a X
a b

Yl/c\ y
a b X
a [C b X
c d

Figure 3-24 Determining a convex volume and the inner normal.

Example 3-21 Determining the Convexity of a Volume

As a specific example, again consider the cube with one corner removed pre-
viously described in Example 3-19. The cube is shown in Fig. 3-24a. The con-
vexity of the clipping volume with respect to the face labeled abc in Fig. 3-24ais
to be determined using the above algorithm. The volume is first translated such
that point a is at the origin. The 4 x 4 homogeneous coordinate transformation
matrix is (see Ref. 1-1)

The result is shown, projected onto the z = 0 plane, in Fig. 3-24b. Rotation
about the z axis by & = —45° makes the edge ab coincident with with the x axis.
The homogeneous coordinate transformation matrix is (see Ref. 1-1)

[Rz]=] cos @ sin@ 0 0
—sin® cos® O O

0 0 10

0 0 0 1

166 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The result is shown in Fig. 3-24c again projected onto the z = 0 plane.
It remains to rotate about the x axis to make the plane abc coincident with
the coordinate plane y = 0. The coordinates of the point ¢ in Fig. 3-24c are
(0.565685, 0.565685, —0.8). The rotation angle about x is given by

y
a= tan"(;) =tan"! % = -35.2644°

Rotation by this angle will place the volume below the coordinate plane y =
0. Rotation by (180 —a) degrees will place the volume above the plane. The
latter result is shown in Fig. 3-24d projected onto the z = 0 plane. The rotation
matrix is

[Rx] = 1 0 00

cosa sina 0 0

—sina cosa 1 0

0 0 01

The y coordinates of all the other points in the volume are positive. Hence,
the volume is convex with respect to the plane abc.
The inner normal for the plane abc in this orientation is

n' =[0 Sign(y) 0]=1[0 1 0]
Applying the inverse rotations yields
n = [0.5774 —0.5774 - 0.5774]
or
n=[1 -1 -1]

as expected. To prove the volume convex this operation must be performed
for each face plane.

3-14 SPLITTING CONCAVE VOLUMES

The three-dimensional Cyrus-Beck clipping algorithm requires a convex volume.
However, the ability to clip to concave volumes is desirable. This can be ac-
complished by internal and external clipping to appropriate convex volumes
which constitute the concave volume. This is similar to the technique previously
discussed for clipping to concave polygons (Sec. 3-6). The task of splitting
simple concave volumes into constituent convex volumes can be accomplished
by an extension of the translation and rotation technique presented in the previ-
ous section. The algorithm assumes that the volume is polyhedral. The proce-
dure is
For each polygonal face plane of the volume:

Translate such that one of the vertices of the polygon face is at the
origin.

Rotate about the origin such that one of the adjacent polygon edges is
coincident with one of the coordinate axes, e.g. the x axis.

SPLITTING CONCAVE VOLUMES 167

Vi y y,
|

P

Z/ -
\X
a b c
1
<
z//
— :

Figure 3-25 Concave volume splitting.

Rotate about this coordinate axis until the polygon face lies in the
coordinate plane, e.g. the z = 0 plane.

Examine the sign of the coordinate component perpendicular to this
plane for all other vertices of the volume, e.g. the z component.

If all the vertices have the same sign or are zero, then the volume is
convex with respect to this plane. If not, it is concave. Split the volume
along the coordinate plane in which the face polygon lies.

Reenter the algorithm with each of the split-off volumes. Continue
until each is shown to be convex.

Example 3-22 Splitting Concave Volumes

Consider the concave volume shown in Fig. 3-25a. The polygons describing
each face are

Back: P1(3, 0, 0), P2(0, 0, 0), P3(0, 2, 0), P4(1, 2, 0)
Ps(1, 3/2, 0), Pe(3/2, 3/2, 0), P1(3/2, 2, 0), Ps(3, 2, 0)
Front: Ps(3, 0, 2), P10(0, 0, 2), P11(0, 2, 2), P11, 2,2)

Pi3(1, 312, 2), P1a(3/2, 312, 2), P15(3/2, 2, 2), P16(3, 2, 2)
Left: P2(0, 0, 0), P10(0, 0, 2), Pi(0, 2, 2), P3(0, 2, 0)

168 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Right: P13, 0, 0), Ps(3, 2, 0), P16(3, 2, 2), Ps(3, 0, 2)
Bottom: P13, 0, 0), P2(0, 0, 0), P10(0, 0, 2), P9(3, 0, 2)
Top left: P10(0, 0, 2), Pa(1, 2, 0), P3(0, 2, 0), P11(0, 2, 2)

Left notch: P31, 372, 2), Ps(1, 3/2, 0), P4(1, 2,0), P12(1, 2, 2)
Bottom notch: Pi3(1, 3/2, 2), P14(3/2, 3/2, 2), Ps(3/2, 3/2, 0), Ps(1, 3/2, 0)
Right notch: Pe(3/2, 3/2, 0), P7(3/2, 2, 0), P15(3/2, 2, 2), P14(3/2, 3/2, 2)
Top right: P16(3, 2, 2), Pg(3,2,0), P7(3/2, 2,0), P15(3/2,2,2)

Using the above algorithm, the convexity of the volume with respect to
the face called the left notch and labeled abc in Fig. 3-25a is examined. The
volume is first translated such that the point Ps, labeled a in Fig. 3-25a, is at the
origin. This also places P3, labeled b in Fig. 3-25a, on the positive z axis. The
translation factors are —1, —3/2, Oin the x, y, z directions, respectively. The re-
sult is shown projected onto the z = 0 plane in Fig. 3-25b. Rotation about the
z axis by —90° makes the plane abc coincident with the y = 0 coordinate plane.
The result is shown in Figs. 3-25c¢ and d projected onto the z = 0 plane.

Examination of the y coordinates shows that the volume is concave. It is
split into two volumes, V) and V2, along the plane y = 0. Vis above the plane
y = 0, and V3 below, The face planes in the original orientation are

Vi

Left: P2(0, 0, 0), P10(0, 0, 2), P11(0, 2, 2), P3(0, 2, 0)
Right lower: P{(1, 0, 2), P5(1, 0, 0), Ps(1, 3/2, 0), Pi3(1, 3/2, 2)
Right upper: Pi3(1, 3/2, 2), Ps(1, 3/2, 0), P4(1, 2, 0), P12(1, 2, 2)

Top: P10(0, 0, 2), P4(1, 2, 0), P3(0, 2, 0), P11(0, 2, 2)

Bottom: P20, 0, 0), P4(1, 0, 0), P/«(1, 0, 2), P10(0, 0, 2)

Front: P10(0, 0, 2), P{(1, 0, 2), P13(1, 312, 2), P1(1, 2, 2), P11(0, 2, 2)
Back: P(1, 0, 0), P20, 0, 0), P3(0, 2, 0), P4(1, 2, 0), Ps(1, 3/2, 0)

Va:

Left: P4(1,0,0), Pi«(1, 0, 2), P13(1, 3/2, 2), Ps(1, 3/2, 0)

Right: Pi(3, 0, 0), Ps(3, 2, 0), Pi6(3, 2, 2), P93, 0, 2)

Right notch: Ps(3/2, 3/2, 0), P7(3/2, 2, 0), P15(3/2, 2, 2), P1a(3/2, 3/2, 2)
Bottom notch: Pi3(1, 3/2, 2), P14(3/2, 3/2, 2), Ps(3/2, 312, 0), Ps(1, 3/2, 0)
Top right: P63, 2, 2), Ps@, 2, 0), P1(3/2, 2, 0), P15(3/2, 2, 2)
Bottom: PJ(1,0,0), P1(3, 0, 0), Ps(3,0, 2), Pi(1, 0, 2)

When the two volumes are passed through the algorithm a second time,
V) is declared convex and V3 is split into two volumes which are subsequently
found to be convex. The result is shown in Fig. 3-25¢ in an exploded view.

3-15 POLYGON CLIPPING

The previous discussion has concentrated on clipping lines. Polygons can of
course be considered as collections of lines. For line drawing applications it is
not too important if polygons are subdivided into lines before clipping. When
a closed polygon is clipped as a collection of lines, the original closed polygon
becomes one or more open polygons or discrete lines as shown in Fig. 3-26.

REENTRANT POLYGON CLIPPING—SUTHERLAND-HODGMAN ALGORITHM 169

Cllppmg
wnndow /
h

Clip

—

I
!
|
I
|
|
|
1
!

F
Figure 3-26 Polygon clipping—open polygons.

However, when polygons are considered as solid areas, it is necessary that
closed polygons remain closed. In Fig. 3-26 this requires that the lines bc, ef
S8, and ha be added to the polygon description. Adding ef and fg is particularly
difficult. Considerable difficulty also occurs when clipping a polygon results in
several disjoint smaller polygons as shown in Fig. 3-27. For example, the lines
ab and cd shown in Fig. 3-27 are frequently included in the clipped polygon
description. If, for example, the original polygon is declared red on a blue
background, the lines ab and cd will also appear red on a blue background.
This is contrary to expectation.

Clipping :_ _________
window_‘:
|
Clip 1|
—_— { a
I
r\ / b

Figure 3-27 Polygon clipping—disjoint polygons.

3-16 REENTRANT POLYGON CLIPPING—SUTHERLAND-
HODGMAN ALGORITHM

The fundamental idea behind the Sutherland-Hodgman algorithm (Ref. 3-7)
is that it is easy to clip a polygon against a single edge or clipping plane. The
procedure is to clip the original polygon and each resulting intermediate polygon

170 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

.r ~ ciip
| \:left edge
4 +

Clipping
window

M~ cip
! + :top edge
-

i Clip bottom |

|I edge & L-- —
Qq i final polygon
1

Q '\ T~ |Clip
! - EK_*_\E right edge
T ’
Qs |\

Figure 3-28 Reentrant polygon clipping.

against a single edge, each edge in succession. Figure 3-28 illustrates the
procedure for a rectangular window. The polygon is originally defined by a list
of vertices Py, . .., P, which imply a list of edges P1P2, P2P3, ... ,Pu-1Pn, PoPi.
In Fig. 3-28 these edges are first clipped against the left edge of the window to
yield the intermediate polygon shown. The clipping algorithm is then reentered
with the intermediate polygon to be clipped against the top edge. This yields
a second intermediate polygon. The process is repeated until the polygon is
clipped against all the window edges. The steps are shown in Fig. 3-28. Notice
that the addition of the corner point labeled Qg in the final clipped polygon is
now trivial. The algorithm will clip any polygon, convex or concave, planar or
nonplanar, against any convex polygonal clipping window. The order in which
the polygon is clipped against the various window edges is immaterial.

The output of the algorithm is a list of polygon vertices all of which are on
the visible side of a clipping plane. Since each edge of the polygon is individually
compared with the clipping plane, only the relationship between a single edge
and a single clipping plane need be considered. If each point P, except the
first, in the polygon vertex list is considered as the terminal vertex of an edge,
and if the starting vertex S of that edge is the vertex just previous to P in the
list, then there are only four possible relationships between the edge and the
clipping plane. These are shown in Fig. 3-29.

The result of each polygon edge-clipping plane comparison is the output
to the clipped polygon list of no, one, or two vertices. If the edge is entirely
visible, then P is output. It is not necessary to output S, the starting vertex,

REENTRANT POLYGON CLIPPING—SUTHERLAND-HODGMAN ALGORITHM 171

Visible side Visible side Visible side Visible side
P
/ S ’
S _— . I
Clipping Clipping
/ Plane — 7/ P Plane S
Entirely visible Totally invisible Leaving visible Entering visible
Outp}lt P No output Output | Output |
1 point 0 points |1 point Output P
2 points

Figure 3-29 Edge-clipping plane relationships.

since, if each vertex is considered sequentially, S was the terminating vertex of
the previous edge and has already been output. If the edge is entirely invisible,
no output is required.

If the edge is partially visible, then it is either entering or leaving the
visible side of the clipping plane. If the edge is leaving the visible region, the
intersections of the polygon edge and the clipping plane must be calculated
and output. If the edge is entering the visible region, the intersection with the
clipping plane must again be calculated and output. Since P, the terminating
vertex, is now visible, it must also be output.

For the first point of the polygon it is only necessary to determine if it is
visible. If it is visible, then it is output and saved as S. If it is not visible, no
output occurs but it is still saved as S the starting point.

The final edge P.P, must be considered separately. This is done by sav-
ing the first point as F. Then the final edge becomes P,F and may now be
considered exactly as any other edge.

Before presenting the complete algorithm, there are two additional con-
siderations: determining the visibility of a point and determining the intersec-
tion of the polygon edge and the clipping plane. Determining the visibility of a
point is equivalent to determining on which side of the clipping plane the point
lies. If successive edges of the clipping polygon are considered in a clockwise
direction, the inside of the polygon is always to the right. If counterclockwise,
the inside is to the left. Previously two methods of determining the location
(visibility) of a point with respect to a line or plane have been considered: ex-
amining the sign of the dot product of the normal vector and a vector from a
point in the line or plane to the point under consideration (see Sec. 3-5) and
substitution of the point coordinates into the equation of the line or plane (see
Sec. 3-9). This latter technique is a variation of that proposed by Sutherland
and Hodgman in Ref. 3-7.

Another technique is to examine the sign of the z component of the cross
product of two vectors which lie in a plane. If two points in the clipping plane
are P, and P,, and the point under consideration is P3, then these three points
define a plane. Two vectors which lie in that plane are P,P; and P,Ps. If this
plane is considered the xy plane, then the vector cross product P,P; ® PP, has

172 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

y
P2 2'
P3 . l' . P3,

. P, X
-3 -2 -1 0 1 2 3
Clipping

Plane -1

Figure 3-30 Visibility tests.

only a z component given by (x3 — x1)(y2 — y1) — (x3 — y1)(x2 — x1). If the
sign of the z component is positive, zero, or negative, then Pj3 is to the right,
on,

or to the left of the line P, P,.

All these techniques are particularly simple for rectangular clipping win-

dows parallel to the coordinate axes.

Example 3-23 Relation of a Point to a Plane

Consider a clipping plane at x = w = —1 perpendicular to the x axis as shown
in Fig. 3-30. The locations of two points P3(—2, 1) and P3(2, 1) are to be
determined with respect to the clipping plane.

Using the cross-product technique with Pj(—1, 0) and P2(—1, 2) yields
for P3

-y —x)=(1-0[-2 - (-H))=-1<0
which indicates Pj is to the left of P|P2, and for P,
O3 =y —x2)=(1-0)2 = (-] =3>0

which indicates Pj is to the right of PP
The substitution technique is particularly simple. Here the test function is
x —w. For P3

x3-—w=-2-(-1)=-1<0
and for P;
X -w=2-(-1)=3>0

which indicates that P3 and P5 are to the left and right of PP, respectively.
Choosing the inner normal as n = [1 0] and the point in the clipping plane
as f{—1, 0) and taking the dot product of the vectors yields for P3

n'[P3—f]=[1 0]:[-1 1]=-1<0

and for P

REENTRANT POLYGON CLIPPING—SUTHERLAND-HODGMAN ALGORITHM 173

n-[P;—fl=[1 0]-[3 1]1=3>0

which again indicates that P3 is to the left and P is to the right of the clipping
plane.

Using these visibility tests, a polygon edge is totally visible or totally in-
visible if both end points are totally visible or totally invisible. If one end point
is visible and the other invisible, then the polygon edge intersects the clipping
plane and its intersection point must be calculated. Any of the line intersec-
tion (clipping) techniques discussed above may be used, e.g., Cyrus-Beck (see
Sec. 3-5), explicit or parametric (see Secs. 3-1 and 3-4), or the midpoint sub-
division (see Sec. 3-3). Again, as has been illustrated above, these techniques
are particularly simple for rectangular clipping windows parallel to the coor-
dinate axis. The Cyrus-Beck and midpoint subdivision techniques are of course
completely general. However, the intersection of two general parametric lines
in the two-dimensional plane requires further discussion.

Two line segments with end points P, P> and P3, P4, respectively, can be
parametrically represented as

P(s) = P, + (P, — P1)s 0=s=1
and
P(t) = Py + (Ps — P3)t 0=t=1

At the intersection point P(s) = P(f). Recalling that P(s) and P(s) are vector
valued functions, i.e., P(s) = [x(s) y(s)] and P(s) = [x(t) y(1)] yields two equa-
tions in the two unknown parameter values s and r at the intersection; i.e., x(s)
= x(), y(s) = y(t) at the intersection point. If there is no solution, then the lines
are parallel. If either s or ¢ is outside the required range, the segments do not
intersect. A matrix formulation is particularly convenient.

Example 3-24 Intersection of Parametric Lines

Consider the two line segments P1[0 0] to P2[3 2] and P3[3 0] to P4[0 2] as
shown in Fig. 3-31. Then
P(s)=1[0 O] +[3 2]s
P=1[3 0}+[-3 2
Equating the x and y components yields
3s=3-3

. . 2s =2t
Solving yields

=t=112
The intersection point is then
Pi(s) =10 01+ [3 2])(1/2)
=[32 1]

174 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

y
5| Py P
l <4
P Py
0 + + + X
0 1 2 3 Figure 3-31 Intersection of parametric lines.

Sutherland and Hodgman (Ref. 3-7) suggest an alternate approach to gener-
ating successive intermediate polygons as discussed here. In developing the
Sutherland-Hodgman algorithm, recall that each polygon edge is considered
successively. Hence, with minor changes the same code can be used for each
edge. The last vertex is handled specially. Figure 3-32, adapted from Ref. 3-7,
gives a flowchart of the algorithm. Figure 3-32a is applied to every vertex,
while Fig. 3-32b is used only for the last vertex. A pseudo implementation
which generates and stores intermediate polygons is given below.

(_Enter with input vertex P) ((Close polygon entry)

Does the no
line SP cross the
clipping plane?

line SF cross the
clipping plane?

Compute intersection, I,
of SP and the clipping

plane

Comgute intersection, I,
of SF and the clipping
plane

Reset first flag

side of the

clipping
plane?

[Close next stage]

a b

Figure 3-32 Flowchart for Sutherland-Hodgman reentrant polygon clipping.

REENTRANT POLYGON CLIPPING—SUTHERLAND-HODGMAN ALGORITHM 175

Sutherland and Hodgman show how the generation and storage of inter-
mediate polygon vertices can be avoided. Specifically, instead of clipping each
edge (vertex) of the polygon against a single window plane, each polygon edge
(vertex) is clipped successively against all the window planes. As soon as a
polygon edge (vertex) is clipped against a window plane the algorithm calls
itself recursively to clip the result against the next window plane. This makes
the algorithm more suitable for hardware implementation.

Sutherland-Hodgman polygon clipping algorithm

P is the input polygon array

Q is the output polygon array

W is the clipping window array. The first vertex is repeated as the last vertex
Nin is the number of input polygon vertices

Nout is the number of output polygon vertices

Nw is the number of clipping polygon vertices plus one

all polygon vertices are given in clockwise order

for each window edge
fori = 1toNw — 1
set the output counter and zero the output array
Nout = 0
Q=0
clip each polygon edge against this window edge
for j = 1 to Nin
treat the first point specially
if j <> 1 then 1
save first point
F =P
go to 2
check if this polygon edge crosses the window edge
1 call Cross(S, Pj, Wi, Wi+); Spcross)
if Spcross = no then 2
if the polygon edge crosses the window edge calculate the inter-
section point
call Intersect(S, P;, Wi, Wi+,; Pintersect)
output the intersection point
call Output (Pintersect, Nout,Q)
replace the first point
2 S =P
check if the second point on the polygon edge (now S) is visible
call Visible(S, Wi, Wi.; Svisible)
if Svisible < 0 then 3
if the point is visible output it
call Output(S, Nout, Q)
3 nextj
closure—treat the edge P,P,
if there has been no output skip to the next window edge

176 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

if Nout = O then 5
check if the last polygon edge crosses the window edge
call Cross(S, F, Wi, Wi.; Spcross)
if Spcross = no then 4
if the polygon edge crosses the window edge calculate the intersection
call Intersect(S, F, Wi, Wi.;; Pintersect)
output the intersection
call Output(Pintersect, Nout, Q)
The polygon is now clipped against the edge Wi to Wi,
the algorithm is now reentered with the clipped polygon
4 P=Q
Nin = Nout
S5 nexti
finish

subroutine module to determine if the polygon edge and the window edge
intersect

subroutine Cross(Start, Point, W1, W2; Spcross)

determine the visibility of the starting point of the polygon edge
call Visible(Start, W1, W2; Pvisible)
Pvisiblel = Pvisible
determine the visibility of the end point of the polygon edge
call Visible(Point, W1, W2; Pvisible)
Pvisible2 = Pvisible
a polygon edge which begins or ends on a window edge is considered
not to cross the edge. This point will have previously been output
if Pvisiblel < 0 and Pvisible2 > 0 or
Pvisiblel > 0 and Pvisible2 < 0 then
Spcross = yes
else
Spcross = no
end if
return

subroutine module to determine visibility
subroutine Visible(Point, P1, P2; Pvisible)

the visibility of Point is to be determined with respect to the edge PP,
Pvisible <0 Point is invisible
= 0 Point is on the edge P,P;
> 0 Point is visible
the routine uses the cross-product technique
the Sign function returns — 1, 0, 1 as the argument is negative, zero, or
positive
Templ = (Pointx — Plx)*(P2y — Ply)
Temp2 = (Pointy — Ply)*(P2x — Plx)
Temp3 = Templ — Temp2

REENTRANT POLYGON CLIPPING—SUTHERLAND-HODGMAN ALGORITHM 177

Pvisible = Sign(Temp3)
return
subroutine module to calculate intersection of two lines

subroutine Intersect(P1, P2, W1, W2; Pintersect)

the routine uses a parametric line formulation

the lines P1P; and W, W are assumed two-dimensional

the matrix for the parameter values is obtained by equating the x and y
components of the two parametric lines

Coeff is a 4 X 4 matrix containing the parameter coefficients
Parameter is a 2 X 1 matrix containing the parameters

Right is a 2 X 1 matrix for the right hand sides of the equations
Invert is the matrix inversion function

Parameter(1, 1) is the polygon edge intersection value

Multiply is the matrix multiply function

fill the coefficient matrix

Coeff(1, 1) = P2x — Plx

Coeff(1, 2) = Wix — W2x

Coeff(2, 1) = P2y — Ply

Coeff(2,2) = Wly — W2y

fill the right hand side matrix

Right(1, 1) = Wix — Plx

Right(2, 1) = W1y — Ply

invert the coefficient matrix

it is not necessary to check for a singular matrix because intersection is
ensured

Coeff = Invert(Coeff)

solve for the parameter matrix

Parameter = (Coeff) Multiply (Right)
calculate the intersection points

Pintersect = P1 + (P2 — P1)*Parameter(1, 1)
return

subroutine module for polygon output
subroutine Output(Vertex,Nout,Q)

Vertex contains the output point
increment the number of output vertices and add to Q
Nout = Nout + 1
Q(Nout) = Vertex
return

Example 3-25 below further illustrates the Sutherland-Hodgman algorithm.
It also illustrates a particular characteristic of the algorithm, i.e., degenerate
boundaries. The existence of these degenerate boundaries is not important in
many applications, e.g., solid area scan conversion. However, some applica-
tions, e.g., some hidden surface algorithms, necessitate their elimination. This
can be accomplished by sorting the vertices as suggested in Ref. 3-7.

178 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Example 3-25 Sutherland-Hodgman Polygon Clipping

Consider the polygon with vertices given in Table 3-15 below and shown in
Fig. 3-33 clipped to the square window with planes xjeft = —1, X right = 1, ¥ bottom
= —1, ywp = 1. As a specific example consider the edge from P to P clipped
to the left hand window plane. Considering the window planes to be given
in clockwise order the inside or visible side is to the right. With the use of
the substitution method described above (see Example 3-23), the test function
X — wis

x—w=x—(-l)=x+1
For Py(1/2, —3/2)
MA1=12+1>0
Thus, Py is to the right of the clipping plane and visible.
For P2(—2, —312)
n+l=-2+1<0
Thus, P: is invisible. The edge PP crosses the clipping plane. Hence,

the intersection must be calculated. Using the parametric line solution (see
Example 3-24) yields x = =1,y = —3/2.

Table 3-15
Clipped Clipped Clipped

Original against against against Final

polygon left edge top edge right edge polygon
P, (172, =372) (172, =3/2) (172, =3/2) (172, =3/2) (-1, -1
P2 (=2, -32) (-1, =3/2) (=1, =3/2) (-1, =3/2) -1, 1D
Py (-2, 2) 1, 2) -1, 1) -1, 1) 1 D
P4 (32, 2) (372, 2) (372, 1) (1, 1) (1 0
Ps (32, 0) (372, 0) (372, 0) (1, 0) (172, 0)
Pg¢ (172, 0) (172, 0) (172, 0) (172, 0) 12, 1
Py (l/2 3/2) (172, 372 (172, 1) (172, 1) -1, 1
Pg (- 3/2) (-1, 372 (-1, 1) (-1, 1) (-1, 0)
Py (- 1/2) (-1, 0) (-1, 0) (-1, 0) (0,-1

The results are shown in Fig. 3-33. Of particular interest is the last clipping
stage, i.e., against the bottom window plane. Up until this stage P; has
survived. Hence, the intermediate polygon vertex lists have remained in the
same order as the original vertex list. However, P is eliminated by the clip
against the bottom window plane. The vertex list now starts at the intermediate
vertex corresponding to P2. The last vertex in the final clipped polygon list
represents the intersection of the polygon edge PoP1 with the bottom window
plane.

Note the four degenerate edges or boundaries in the upper left corner of
the clipping window as shown in Fig. 3-33 for the final polygon.

CONCAVE CLIPPING REGIONS—WEILER-ATHERTON ALGORITHM 179

Fad

P

-T1

A
|
|
|
|
|
|

&

P

P

/_

P, AN P,

Ps

Q. Q; Qs Qs
Qs +Qs 'Q4
Q Q" =

Original
—_—

S Clipping

window

Clip bottom

edge &

final polygon
-

Figure 3-33 Results for Example 3-24.

Clip

left edge

[N PR |

| I | Clip
f +| ! top edge
_______ 4

Clip
| right edge

The Sutherland-Hodgman algorithm as presented above concentrated on
clipping to a two-dimensional window. In fact, the algorithm is more general.
Any planar or nonplanar polygon can be clipped to a convex clipping volume
by calculating the intersection with a three-dimensional clipping plane using the
Cyrus-Beck algorithm. The Sutherland-Hodgman clipping algorithm can also
be used to split concave polygons (see Sec. 3-8 and Ref. 3-7).

Liang and Barsky (Ref. 3-8) have developed a new algorithm for polygon
clipping. As presented the algorithm is optimized for rectangular clipping
windows but is extendable to arbitrary convex windows.
based on concepts from their two- and three-dimensional line clipping algorithm
(Ref. 3-5). Tests indicate that for rectangular windows the optimized algorithm

is twice as fast as the Sutherland-Hodgman algorithm.

The algorithm is

3-17 CONCAVE CLIPPING REGIONS—WEILER-ATHERTON

ALGORITHM

The clipping algorithms previously discussed require a convex clipping region.
In the context of many applications, e.g., hidden surface removal, the ability
to clip to concave regions is required. A powerful but somewhat more complex
clipping algorithm developed by Weiler and Atherton (Ref. 3-9) meets this
requirement. The Weiler-Atherton algorithm is capable of clipping a concave
polygon with interior holes to the boundaries of another concave polygon, also
with interior holes. The polygon to be clipped is the subject polygon. The
clipping region is the clip polygon. The new boundaries created by clipping

180 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

the subject polygon against the clip polygon are identical to portions of the clip
polygon. No new edges are created. Hence, the number of resulting polygons
is minimized.

The algorithm describes both the subject and the clip polygon by a circular
list of vertices. The exterior boundaries of the polygons are described clockwise,
and the interior boundaries or holes counterclockwise. When traversing the
vertex list, this convention ensures that the inside of the polygon is always to
the right. The boundaries of the subject polygon and the clip polygon may or
may not intersect. If they intersect, then the intersections occur in pairs. One
of the intersections occurs when a subject polygon edge enters the inside of
the clip polygon and one when it leaves. Fundamentally, the algorithm starts
at an entering intersection and follows the exterior boundary of the subject
polygon clockwise until an intersection with the clip polygon is found. At the
intersection a right turn is made, and the exterior boundary of the clip polygon
is followed clockwise until an intersection with the subject polygon is found.
Again, at the intersection, a right turn is made, with the subject polygon now
being followed. The process is continued until the starting point is reached.
Interior boundaries of the subject polygon are followed counterclockwise. See
Fig. 3-34.

Sq

Start

ol o)
I

14

lLJ
I
|

: Clip
:— polygon

! C]' 1 S,
f
I s

Start— 8
CIL"‘T”'_G JC
1
Subject S S
ubjec
polygon~ S S,
c

Figure 3-34 Weiler-Atherton clipping.

CONCAVE CLIPPING REGIONS—WEILER-ATHERTON ALGORITHM 181

A more formal statement of the algorithm is:

Determine the intersections of the subject and clip polygons.

Add each intersection to the subject and clip polygon vertex lists. Tag
each intersection vertex and establish a bidirectional link between the
subject and clip polygon lists for each intersection vertex.

Process nonintersecting polygon borders.

Establish two holding lists: one for boundaries which lie inside the clip
polygon and one for boundaries which lie outside. Ignore clip polygon
boundaries which are outside the subject polygon. Clip polygon bound-
aries inside the subject polygon form holes in the subject polygon.
Consequently a copy of the clip polygon boundary goes on both the
inside and the outside holding list. Place the boundaries on the ap-
propriate holding list.

Create two intersection vertex lists.

One, the entering list, contains only the intersections for the subject
polygon edge entering the inside of the clip polygon. The other, the
leaving list, contains only the intersections for the subject polygon
edge leaving the inside of the clip polygon. The intersection type will
alternate along the boundary. Thus, only one determination is required
for each pair of intersections.

Perform the actual clipping.

Polygons inside the clipping polygon are found using the following
procedure.

Remove an intersection vertex from the entering list. If the list is
empty, the process is complete.

Follow the subject polygon vertex list until an intersection is found.
Copy the subject polygon list up to this point to the inside holding
list.

Using the link, jump to the clip polygon vertex list.

Follow the clip polygon vertex list until an intersection is found.
Copy the clip polygon vertex list up to this point to the inside
holding list.

Jump back to the subject polygon vertex list.

Repeat until the starting point is again reached. At this point the
new inside polygon has been closed.

Polygons outside the clipping polygon are found using the same proce-
dure, except that the initial intersection vertex is obtained from the

182 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

leaving list and the clip polygon vertex list is followed in the reverse
direction. The polygon lists are copied to the outside holding list.

Attach any holes, i.e. interior boundaries, to their associated exter-
ior boundaries. Since exterior boundaries are specified clockwise and
interior boundaries counterclockwise, this is most conveniently accomp-
lished by testing the directionality of the boundaries. The process is

complete.

Several examples will serve to more fully illustrate the algorithm.

Example 3-26 Weiler-Atherton Polygon Clipping—Simple Polygon

Consider the subject polygon shown in Fig. 3-34a clipped to the square clipping
polygon shown in Fig. 3-34a. The intersection points between the two polygons
are also shown and labeled /;. The subject polygon and the clip polygon vertex
lists are shown below. The intersection vertices /2,/s,1¢, and I3 are placed on
the entering list and the vertices /1, /3, I's, /7 on the leaving list.

Subject Clip Subject Clip
polygon list polygon list polygon list polygon list
Si Ci l-Sl-| Ci
Start I I | I2 L\\‘ ¢ /) Finish
I3 I2 Finish | I3 ~p
52 C2 : S C2
In I3 | In I3
§3 Is S3 Is
Is C3 Is C3
S4 Is I'ss Is
Is Is : Ie le
h Cs | I Cs
Ss I | Ss I
Is I | I3 Iy
Se C] Se Ci
h : I Start
S7 | S7;
Si Ls 1
Inside polygon Outside polygon

To form the inside polygon, the first intersection on the entering list, /2,
is removed. The procedure described above yields the results shown by the
solid line with the arrows in Fig. 3-34a and in the subject and clip polygon lists
shown above. The resulting inside polygon is

121314831s161713S6l112

The other intersection vertices on the entering list, i.e. I4, /¢, and I, yield
the same clipped polygon.

CONCAVE CLIPPING REGIONS—WEILER-ATHERTON ALGORITHM 183

To form the outside polygons, the first intersection on the leaving list, /1,
is removed. The procedure described above yields the results shown by the
dashed line with the arrows in Fig. 3-34a and in the subject and clip polygon
lists also shown above. Notice that the clip polygon list is traversed in the
reverse direction from /2 to /1. The resulting outside polygon is

N S18S1121)
Similarly removing /3, I's, and 77 from the leaving list yields the outside polygons
I382al3 and IsSalels and 17Ssl8l7

respectively.

A somewhat more complex subject polygon which partially surrounds the
clip polygon is shown in the next example.

Example 3-27 Weiler-Atherton Polygon Clipping—Surrounding Polygon

The subject and clip polygons and their intersections are shown in Fig. 3-34b.
The intersection vertices /1 and /3 are placed on the entering list and /2 and /4
on the leaving list. The subject and clip polygon lists are then

Subject Clip Subject Clip
polygon list polygon list polygon list polygon list
Si Ci rsi TC1T
S2 Finish IJ | 52|) 13|
53 C2 | Ss‘ 7/ Ca2|
Sa 123 = Sa | Finishe 72 ¥
Ss C3 1 S5 i / Icy !
Start I, Finishe /, i hb——eA——dyy
S Cs | S / Cs |
173 Ia I eStart - 1
$7 Ci- { s / pd tc,
Ss | Ss Y /L
So = So l// i
Start /3 LR
Is e
Si L4

Inside polygon

Outside polygon

To form the inside polygons, remove first /) and then /3 from the entering
list. The results are shown by the solid line with the arrows in Fig. 3-34band in
the subject and clip polygon lists above. The resulting clipped inside polygons

are
hSel2C31h and LI14Ci 13

respectively. Notice that two clipped inside polygons result.

184 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Removing /2 from the leaving polygon list yields

12578585913C 114515253548 511 C3l2

for the outside polygon. /4 yields the same polygon. The results are indicated
by the dashed line in Fig. 3-34b and in the polygon lists above. Again, notice
that the clip polygon list is traversed in the reverse direction for the outside

polygon.

The final example shows a concave polygon with a hole clipped to a concave

window also having a hole.

Example 3-28 Weiler-Atherton Clipping—Boundaries With Holes

The subject and clip polygons and their intersections are shown in Fig. 3-34c.
The intersection vertices /1, /3, and /s are placed on the entering list, and /2,
l4, and I on the leaving list. The subject and clip polygon lists are

Subject Clip Subject Clip
polygon list polygon list polygon list polygon list
S1 Ci TS C
I C2 | 13 '\ C2
I C3 Outer | 14 \ C3
S2 In border ‘I S2 \ In
S3 Is 1 S3 \‘ Is
A\ Ca | S4 \ Cs
Start I,® Is I n \ Is
I I Finish I I2¢ Start I
M Ci '—-S]-' \\ Ci
Ss Cs Ss \ Cs
Se I Se \\ ! I Finish
S7 Ce Hole S7 ' Ce
Is I3 border Is I3
S8 C7 Sg C1
g Cs Ig Cs
Ss Cs Ss Cs

Inside polygon Outside polygon

Notice that the interior boundaries, i.e. the hole, vertices are listed in coun-
terclockwise order. The interior and exterior boundary lists are individually
circular.

When /; is removed from the entering list, the algorithm yields

112Cel3lalsSsl6l

for the inside polygon as shown by the solid lines with arrows in Fig. 3-34c and
the subject and clip polygon lists above. 73 and /s from the entering list yield
the same polygon.

CHARACTER CLIPPING 185

Removing /2 from the leaving list yields the outside polygon
1SI113Cel2

Note that the subject polygon list contains two separate boundaries, an in-
ner boundary and an outer boundary, each of which is individually circular.
Therefore, the transfer from S at the bottom of the outer boundary list is to
S at the top of the outer boundary list rather than to Sson the hole boundary
list. Transfer from an exterior to an interior boundary always occurs by a jump
from the subject to the clip polygon list or vice versa, as shown by the dashed
line in the subject and clip polygon lists above. Similarly, /4 and /¢ from the
leaving list both yield the outside polygon

1452535411165 556571514

In order for the Weiler-Atherton algorithm to work correctly, care must
be taken with the identification and placement of intersections. Grazing condi-
tions, i.e., when a subject polygon vertex or edge lies on or is coincident with a
clip polygon edge, are not considered intersections. Examples of these condi-
tions are shown in Fig. 3-35a. Similarly, clip and subject polygon intersections
such as those shown in Fig. 3-35b must be placed correctly to avoid degenerate
polygon edges. Specifically, the points marked with an x in Fig. 3-35b are con-
sidered intersections, whereas those marked with a dot are not. Additional
implementation details are given in Refs. 3-10 and 3-11.

q b 5

Subject \ | i ISubject

polygons “--------g--- - i el “polygons
Clip Clip
polygon b polygon

Figure 3-35 Intersection details for the Weiler-Atherton algorithm.

3-18 CHARACTER CLIPPING

Characters or text are generated in software, firmware, or hardware. Characters
may be formed from individual lines or strokes or from dot matrix repre-
sentations. Stroke characters generated in software may be treated as any other
line; i.e., they may be rotated, translated, scaled, and clipped to arbitrary win-
dows in arbitrary orientations using the algorithms discussed above. Figure 3-
36 shows a typical example.

186 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

< <

‘ s

Figure 3-36 Clipping of soft- Figure 3-37 Clipping of software dot matrix-
ware stroke-generated characters. generated characters.

Dot matrix character representations generated in software may be treated
in a similar fashion. The process is, however, somewhat more tedious. In par-
ticular, if the character box surrounding the character is clipped to any arbitrary
window, then each pixel of the character mask is compared with the clipped
box to determine if it is inside or outside. If inside, it is activated. If outside,
no action is taken. Figure 3-37 illustrates this.

Clipping of hardware-generated characters is more limited. Generally any
character which is not totally visible is eliminated. This can by accomplished
by clipping the character box against the window. If the entire box is inside the
window, the character is displayed; otherwise, it is not. When the rectangular
character box is aligned with a rectangular window, only one diagonal of the
character box need be compared with the window. See Fig. 3-37. For odd-
shaped windows or when the rectangular character box is not aligned with
the window, both diagonals must be compared with the window as shown in
Fig. 3-38.

When characters are generated in firmware, character clipping facilities may
be very limited or very extensive. The extent depends on the clipping algorithm
also implemented in firmware.

A

HARACTERS

a

Figure 3-38. Clipping of hardware-generated characters.

REFERENCES 187

3-19 REFERENCES

3-1 Clark, James, H., “The Geometry Engine: A VLSI Geometry System for Graphics,”
Computer Graphics, Vol. 16, pp. 127-133, 1982 (Proc. SIGGRAPH 82).

3-2 Sproull, Robert, F., and Sutherland, Ivan, E., “A Clipping Divider,” 1968 Fall
Joint Computer Conference, Thompson Books, Washington, D.C., pp. 765-775,
1968.

3-3 Newman, William, M., and Sproull, Robert, F., Principles of Interactive Computer
Graphics, 2d ed., McGraw-Hill Book Company, New York, 1979.

3-4 Cyrus, M., and Beck, J., “Generalized Two- and Three-Dimensional Clipping,”
Computers & Graphics, Vol. 3, pp. 23-28, 1978.

3-5 Liang, You-Dong and Barsky, Brian, “A New Concept and Method for Line
Clipping,” ACM Transactions on Graphics, to appear.

3-6 Blinn, J.F., and Newell, M. E., “Clipping Using Homogeneous Coordinates,”
Computer Graphics, Vol. 12, pp. 245-251, 1978 (Proc. SIGGRAPH 78).

3-7 Sutherland, Ivan, E., and Hodgman Gary, W., “Reentrant Polygon Clipping,”
CACM, Vol. 17, pp. 3242, 1974.

3-8 Liang, You-Dong, and Barsky, Brian, “An Analysis and Algorithm for Polygon
Clipping,” CACM, Vol. 26, pp. 868-877,1983.

3-9 Weiler, Kevin, and Atherton, Peter, “Hidden Surface Removal Using Polygon
Area Sorting,” Computer Graphics, Vol. 11, pp. 214-222, 1977 (Proc. SIGGRAPH
.

3-10 Weiler, Kevin, “Hidden Surface Removal Using Polygon Area Sorting,” Masters
Thesis, Program of Computer Graphics, Cornell University, January 1978.

3-11 Weiler, Kevin, “Polygon Comparison Using a Graph Representation,” Computer
Graphics, Vol. 14, pp. 10-18, 1980 (Proc. SIGGRAPH 80).

CHAPTER

FOUR
HIDDEN LINES AND HIDDEN SURFACES

The hidden line/hidden surface problem is one of the more difficult in computer
graphics. Hidden line/hidden surface algorithms attempt to determine the lines,
edges, surfaces, or volumes that are visible or invisible to an observer located
at a specific point in space.

4-1 INTRODUCTION

The need for eliminating hidden lines, edges, surfaces, or volumes is illustrated
in Fig. 4-1. Figure 4-1a shows a typical wire frame drawing of a cube. A wire
frame drawing represents a three-dimensional object as a line drawing of its
edges. Figure 4-1a can be interpreted either as a view of the cube from above
and to the left or from below and to the right. The alternate views can be
seen by blinking and refocusing the eyes. This ambiguity can be eliminated
by removing the lines or surfaces that are invisible from the two alternate
viewpoints. The results are shown in Fig. 4-1b and c.

The complexity of the hidden line/hidden surface problem has resulted in
a large number of diverse solutions. Many of these are for specialized ap-
plications. There is no best solution to the hidden line/hidden surface prob-
lem. Fast algorithms that can provide solutions at video frame rates (30 frames
per second) are required for real-time simulations, e.g. in aircraft simulation.
Algorithms that can provide detailed realistic solutions including shadows,

a b c
Figure 4-1 Need for hidden surfaces.

189

190 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

transparency, and texture effects, with reflections and refractions in a multitude
of subtle shades of color, are also required, e.g. in computer animation. These
algorithms are slower, often requiring several minutes or even hours of com-
putation. Technically, transparency, texture, reflection, etc., are not part of the
hidden line/hidden surface problem. They are more appropriately part of the
rendering of the picture. Rendering is the process of interpreting or presenting
a picture or scene realistically. These effects are discussed in detail in Chap. 5.
However, many of these effects are incorporated into hidden surface algorithms
and consequently are touched on in the present discussion. There is a tradeoff
between speed and detail. No single algorithm can provide both. As faster al-
gorithms are developed, more rendering detail can be incorporated. However,
inevitably more detail will be required.

All hidden line/hidden surface algorithms involve sorting (Ref. 4-1). The
order in which sorting of the geometric coordinates occurs is generally im-
material to the efficiency of the algorithms. The principal sort is based on the
geometric distance of a volume, surface, edge, or point from the viewpoint.
The fundamental assumption made in this distance sort is that, the farther an
object is from the viewpoint, the more likely the object is to be totally or par-
tially obscured by one closer to the viewpoint. After establishing the distance
or depth priority, it remains to sort laterally and vertically to determine whether
in fact an object is obscured by those closer to the viewpoint. The efficiency of
a hidden line/hidden surface algorithm depends significantly on the efficiency
of the sorting process. Coherence, i.e., the tendency for the characteristics of
a scene to be locally constant, is used to increase the efficiency of the sort. For
raster scan hidden surface algorithms, the use of coherence to improve sort-
ing results in algorithms that bear a strong resemblance to the scan-conversion
algorithms discussed previously in Chap. 2.

Hidden line/hidden surface algorithms can be classified based on the coor-
dinate system or space in which they are implemented (Ref. 4-1). Object
space algorithms are implemented in the physical coordinate system in which
the objects are described. Very precise results, generally to the precision of
the machine, are available. These results can be satisfactorily enlarged many
times. Object space algorithms are particularly useful in precise engineering
applications. Image space algorithms are implemented in the screen coordinate
system in which the objects are viewed. Calculations are performed only to the
precision of the screen representation. This is generally quite crude, typically
512 x 512 integer points. Scenes calculated in image space and significantly
enlarged do not give acceptable results. For example, the end points of lines
may not match. List priority algorithms are partially implemented in both coor-
dinate systems.

Theoretically, the computational work for an object space algorithm that
compares every object in a scene with every other object in the scene grows
as the number of objects squared n?). Similarly, the work for an image space
algorithm which compares every object in the scene with every pixel location
in screen coordinates theoretically grows as nN. Here, n is the number of

FLOATING HORIZON ALGORITHM 191

objects (volumes, planes, or edges) in the scene, and N is the number of
pixels. Theoretically, object space algorithms require less work than image
space algorithms for n < N. Since N is typically (512)2, most algorithms should
theoretically be implemented in object space. In practice, this is not the case,
image space algorithms are more efficient because it is easier to take advantage
of coherence in a raster scan implementation of an image space algorithm.

The following sections examine several object and image space algorithms
in detail. Each algorithm illustrates one or more fundamental ideas in the
implementation of hidden line/hidden surface algorithms.

4-2 FLOATING HQRIZON ALGORITHM

The floating horizon algorithm is most frequently used to remove hidden lines
from three-dimensional representations of surface functions of the form

Fx,y,2)=0

Functions of this form arise from diverse applications in mathematics, engineer-
ing, and science, as well as other disciplines.

A number of algorithms using this technique have been developed (Refs.
4-2 to 4-6). Since the representation of the function is of principal interest, the
algorithm is usually implemented in image space. The fundamental idea behind
the technique is to convert the three-dimensional problem to two dimensions
by intersecting the surface with a series of parallel cutting planes at constant
values of x, y, or z. This is shown in Fig. 4-2, where constant values of z define
the parallel planes. The function F(x, y, z) = 0 is reduced to a curve in each of
these parallel planes, i.e. to

y=f(x,z) or x=g@,2)

where z is constant for each of the fparallel planes.
Thus, the surface is built up of a series of curves in each of these planes,
as shown in Fig. 4-3. Here, it is assumed that the resulting curves are single-

A

X
Z4
Z;
Zy
/ z,= constant Figure 4-2 Constant-coordinate
z cutting planes.

192 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

y
| e X
/ % z,
/ Z3

//\ z;=constant

Figure 4-3 Curves in constant-coordinate cutting planes.

valued functions of the independent variables. If the result is projected onto
the z = 0 plane as shown in Fig. 4-4, an algorithm for removing the hidden
portions of the surface is immediately recognized. The algorithm first sorts
the z = constant planes by increasing distance from the viewpoint. Beginning
with the z = constant plane closest to the viewpoint, the curve in each plane is
generated; i.e., for each x coordinate in image space the appropriate y value is
determined. The hidden line algorithm is then

If at any given value of x the y value of the curve in the current plane is
larger than the y value for any previous curve at that x value, then the curve
is visible. Otherwise, it is hidden.

This is shown by the dashed lines in Fig. 4-4. Implementation of the algorithm
is quite simple. An array of size equal to the resolution of image space in the x
direction is used to contain the largest value of y at each x location. The values
in this array represent the current “horizon.” Thus, the horizon “floats up”
as each succeeding curve is drawn. Effectively, this is a one-line hidden line
algorithm.

The algorithm works fine unless some of the succeeding curves dip below
the first curve, as shown in Fig. 4-5a. These curves are normally visible as the
bottom of the surface, however, the above algorithm will treat them as invisible.
The lower side of the surface is made visible by modifying the algorithm to
accommodate a lower horizon that floats down as the algorithm progresses.
This is implemented by using a second array of size equal to the reso-
lution of the image space in the x direction containing the smallest value of
y at each x location. The algorithm is now

Figure 4-4 Projection of curves on-
X to the z = 0 plane.

FLOATING HORIZON ALGORITHM 193

y

\
\L 77 z .
g 1
X g

Figure 4-5 Handling the lower side of the surface.

If at any given value of x the y value of the curve in the current plane is
larger than the maximum y value or smaller than the minimum y value for
any previous curve at that x value, then the curve is visible. Otherwise it
is hidden.

The result is shown in Fig. 4-5b.

The above algorithms assume that the value of the function, i.e. y, is
available at each x location in image space. If, however, y is not available
(calculated) at each x location, then the upper and lower floating horizon arrays
cannot be maintained. In this case linear interpolation between the known
locations is used to fill the upper and lower floating horizon arrays as shown in
Fig. 4-6. If the visibility of the line changes, this simple interpolation technique
will not yield the correct result. The effect is shown in Fig. 4-7a. Assuming
that the fill operation occurs after the visibility check, then when the current
line goes from visible to invisible (segment AB in Fig. 4-7a), the point at x,+«,
Yn+k is declared invisible, the line from x,, yn tO X,+&, yn+& is not drawn, and the
fill operation is not performed. A gap is left between the current line and the
previous line. When a segment of the current line goes from invisible to visible
(segment CD in Fig. 4-7a), the point at xm+k, ym+x is declared visible, the line
from xm, ym tO Xm+k, Ym+k, is drawn, and the fill operation is performed. Thus,
an invisible portion of the segment is drawn. Further, the floating horizon
arrays will not contain the proper values. This can lead to additional adverse

Image space

x-locations
y \

Available
|+ y values

ryp | mJ(Yok

Linear
interpolation

Figure 4-6 Linear interpolation between data points.

194 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Y Image space
X- locations-\
Current line \N A\ D Available
I \ //"—‘ y values
evious lin \
N P A ’T ¥,
> Xy N B C; m+k>Ym+k
B i I o N g ¢ Y,
X +k»Vn»k
X
a

Y Image space
x-locations

1 \\

Current line Available

D|
LTy values
L1

Previous line\

Xm+k-Ym-+k
h

Figure 4-7 The effect of intersecting lines.

effects for subsequent lines. Hence, it is necessary to solve for the intersection
of the segments of the current and previous lines.

There are several techniques for obtaining the intersection of the lines.
On a raster scan display, x can be incremented by 1 beginning at x, or x.
(see Fig. 4-7a). The y value at this image space x coordinate is obtained by
adding the slope of the line to the y value at the previous x coordinate. The
visibility of the new point at x + 1 and y + Ay is determined. If the point is
visible, its associated pixel is activated. If not, the pixel is not activated and
x is incrcmented. The process is repeated until x,+¢ O xn+x is reached. This
technique provides a sufficiently accurate intersection for raster scan displays.
A similar but somewhat more elegant method is to perform a binary search for
the intersection (Ref. 4-6).

An accurate intersection of the two interpolated straight lines between x,,, y»
and X,+, ya+k (see Fig. 4-7) on the current and previous lines is given by

+ Ax(y'lp - y'lc)
X = Xp -

(A)’p = Ayo)
and

y =mx — Xxp) + yn

FLOATING HORIZON ALGORITHM 195

where
Ax = Xp4k — Xn

Ayp = On+idp — On)p
A)’c = Wn+k)e — On)e
m = [(Yn+k) — On))/Ax

and the subscripts ¢ and p refer to the current and previous lines, respectively.
The result is shown in Fig. 4-7b. The algorithm is now

If at any given value of x the y value of the curve in the current plane is
larger than the maximum y value or smaller than the minimum y value for
any previous curve at that x value, then the curve is visible. Otherwise it
is hidden.

If the line from the previous x value (x,) to the current x value (x,+4) is
becoming visible or invisible, calculate the intersection (x;).

Draw the line from x, to x,+ if the segment is totally visible, from x, to x;
if the segment becomes invisible, or from x; to x,+ if the segment becomes
visible.

Fill the upper and lower floating horizons.

The above algorithm exhibits an anomaly when the curve in one of the
planes further from the viewpoint extends beyond the “edge” of the curves
in the planes closer to the viewpoint. The effect is shown in Fig. 4-8, where
planes n— 1 and n are closer to the viewpoint and have already been processed.
The result shows the effect when the current plane n + 1 is processed. After
processing the lines n — 1 and n, the upper horizon contains the initial value for
x locations 0 and 1, the value for the line n for x locations 2 to 17 and the value
for the line n — 1 for x locations 18 to 20. The lower horizon contains the initial
value for x locations 0 and 1, values for the line n at x locations 2 to 4, and
values for the line n — 1 for x locations 5 to 20. In processing the current line
(n + 1), the algorithm declares it to be visible at x = 4. This is shown by the
solid line in Fig. 4-8. A similar effect occurs at the right hand edge at x = 18.
The effect gives the appearance of a ragged edge. The solution to this ragged

y

J | T N~
SESEERRRR AN
//X‘\\ \\‘ik\
L \//A \\N\;\L\ n+l
Ry n-1 X
0 5 10 15 20

Figure 4-8 The ragged edge effect.

196 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

edge problem is to insert values into the upper and lower horizon arrays cor-
responding to the dashed lines in Fig. 4-8. Effectively this creates a false edge.
An algorithm for accomplishing this for both edges is

Left side fill:

If P, is the first point on the first line, save P, as P,—; and continue.
Otherwise create the edge from P,-) to P,.

Fill in the upper and lower horizons from this edge and save P, as
P,
Right side fill:
If P, is the last point on the first line, save P, as P,—; and continue.
Otherwise create the edge from P, to P,.

Fill in the upper and lower horizons from this edge and save P, as
Pn-1.

The complete algorithm is now

For each z = constant plane.
Fill in the left edge.
For each point on the curve in a z = constant plane.

If at any given value of x the y value of the curve in the current
plane is larger than the maximum y value or smaller than the
minimum y value for any previous curve at that x value, then the
curve is visible. Otherwise it is hidden.

If the line from the previous x value (x,) to the current x value
(x2+x) is becoming visible or invisible, calculate the intersection.

Draw the line from x, to x,+« if the segment is totally visible, from
xn to x; if the segment becomes invisible, or from x; to x,+ if the
segment becomes visible.

Fill the upper and lower floating horizons.
Fill in the right edge.

If the function contains very narrow regions (spikes), then the algorithm
may yield incorrect results. Figure 4-9 illustrates the effect. Here, the lowest
line (z = 1) contains a spike. At x = 8, the next line (z = 2) is declared visible.
At x = 12, the line (z = 2) is declared invisible, the intersection is determined,
and the line (z = 2) is drawn visibly from x = 8 to the intersection. From
x =12 to x = 16 the line (z = 2) again becomes visible, the intersection is
determined, and the line is drawn visibly from the intersection to x = 16. On
the next line (z = 3) at x = 8, the line is visible; and it is also declared visible
at x = 12. Hence, the line is drawn visibly from x = 8 to x = 12, even though
it passes behind the spike. This effect is caused by computing the function and
evaluating the visibility at less than the image space resolution; i.e., the function
is undersampled (see Sec. 2-25). When narrow regions occur, the function must

FLOATING HORIZON ALGORITHM 197

A
NEEA
/ \ x

z=ly 4 8 12 16 20
Figure 4-9 Very narrow regions.

be computed at more points. In Fig. 4-9, if the function is computed at 0, 2,
4, ..., 18, 20 rather than at 0, 4, ..., 16, 20, the algorithm will correctly draw
the line z = 3.

Figure 4-10 shows a typical floating horizon result. A pseudo implementa-
tion of the algorithm is given below.

floating horizon algorithm

Hscreen is the resolution of the screen in the horizontal direcuon

Vscreen is the resolution of the screen in the vertical direction

Upper is the array containing the upper horizon values

Lower is the array containing the lower horizon values

Y is the current value of the function y = f(x, z) for z = constant

Cflag is the visibility flag for the current point

Pflag is the visibility flag for the previous point

0 = invisible
1 = visible above upper horizon
—1 = visible below lower horizon

Draw is a graphics command that draws a visible line between the specified

coordinates
Xmin, Xmax are the minimum and maximum x coordinates for the function
Xinc is the increment between x values

——
=
Figure 4-10 The function y = (I/S) sin x cos z — (3/2) cos (7a/4) exp (—a), a = (x —)2

+(z — m)? displayed for 0 to 27 using a floating horizon algorithm.

198 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Zmin, Zmax are the minimum and maximum z coordinates for the function
Zinc is the increment between z = constant planes

Dimension Upper(Hscreen), Lower(Hscreen)
initialize variables

Xleft = — 1

Yileft = — 1

Xright = — 1

Yright = — 1

initialize the horizon arrays
Upper = 0

Lower = Vscreen
evaluate the function for each constant z plane
start with the closest plane, Zmax
for z = Zmax to Zmin step — Zinc
initialize the previous x and y values, Xprev, Yprev
Xprev = Xmin
Yprev = f(Xmin, z)
if a viewing transformation is used it should be applied to Xprev,
Yprev, and z at this point
fill the left side
call Efill(x, y, Xleft, Yleft; Upper, Lower)
call Visibility(x, y, Upper, Lower; Pflag)
for each point on the curve in ihe constant z plane
for x = Xmin to Xmax step Xinc
y= f(x’z) ;
if a viewing transformation is used it should be applied at this point !
check the visibility of the current point and fill the horizon as appropri
call Visibility(x, y, Upper, Lower; Cflag)
if Cflag = Pflag then
if Cflag = 1 or Cflag = — 1 then
Draw(Xprev, Yprev, X, y)
call Horizon(Xprev, Yprev, x, y; Upper, Lower)
else
end if
if the visibility has changed calculate the intersection and fill the horizonﬂ
else
if Cflag = O then
if Pflag = 1 then
call Intersect(Xprev, Yprev, x, y, Upper; Xi, Yi)
else
call Intersect(Xprev, Yprev, x, y, Lower; Xi, Yi)
end if
Draw(Xprev, Yprev, Xi, Yi)
call Horizon(Xprev, Yprev, Xi, Yi; Upper, Lower) ‘

FLOATING HORIZON ALGORITHM 199

else
if Cflag = 1 then
if Pflag = O then
call Intersect(Xprev, Yprev, x, y, Lower; Xi, Yi)
Draw(Xi, Yi, x, y)
call Horizon(Xi, Yi, x, y; Upper, Lower)
else
call Intersect(Xprev, Yprev, x, y, Lower; Xi, Yi)
Draw(Xprev, Yprev, Xi, Yi)
call Horizon(Xprev, Yprev, Xi, Yi; Upper, Lower)
call Intersect(Xprev Yprev, x, y, Upper; Xi, Yi)
Draw(Xi, Yi, x, y)
call Horizon(Xi, Yi, x, y; Upper, Lower)
end if
else
if Pflag = O then
call Intersect(Xprev, Yprev, x, y, Lower; Xi, Yi)
Draw(Xi, Yi, x, y)
call Horizon(Xi, Yi, x, y; Upper, Lower)
else
call Intersect(Xprev, Yprev, x, y, Upper; Xi, Yi)
Draw(Xprev, Yprev, Xi, Yi)
call Horizon(Xprev, Yprev, Xi, Yi; Upper, Lower)
call Intersect(Xprev, Yprev, x, y, Lower; Xi, Yi)
Draw(Xi, Yi, x, y)
call Horizon(Xi, Yi, x, y; Upper, Lower)
end if
end if
end if
end if
reinitialize Pflag, Xprev, Yprev
Pflag = Cflag
Xprev = x
Yprev =y
next x
fill the right side
call Efill(x, y, Xright, Yright; Upper, Lower)
next z
finish
subroutine module to fill the edge
subroutine Efill(x, y, Xedge, Yedge; Upper, Lower)
if Xedge is — 1 then this is the first curve and the edge is not created
if Xedge = — 1 then 1
call Horizon(Xedge, Yedge, x, y; Upper, Lower)
1 Xedge = x

200 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Yedge =y
return

subroutine module to determine the visibility of a point
subroutine Visibility(x, y, Upper, Lower; Cflag)
the visibility of the point is to be determined with respect to the upper and
lower floating horizons. If the point is on the horizon it is declared visible.
Cflag = 0 invisible
= 1 visible above the upper horizon
= — 1 visible below the lower horizon
X is assumed integer
if y < Upper(x) and y > Lower(x) then
Cflag = 0
else
if y = Upper(x) then
Cflag = 1
else
Cflag = - 1
end if
end if
return

subroutine module to fill the floating horizon arrays
subroutine Horizon(X1, Y1, X2, Y2; Upper, Lower)
the algorithm uses linear interpolation to fill the horizon arrays between X1
and X2.
Max(a, b) yields the larger of a and b
Min(a, b) yields the smaller of a and b
Sign returns —1, 0, 1 if the sign of its argument is < 0, =0, > 0
Xinc is used to determine the direction of the fill
Xinc = Sign (X2 —X1)
check for vertical slope
if Xinc = O then
Upper(X2) = Max(Upper(X2), Y2)
Lower(X2) = Min(Lower(X2), Y2)
else
Slope = (Y2 — Y1)/(X2 — X1)
for x = X1 to X2 step Xinc
y = Slope*(x — X1) + Y1
Upper(x) = Max(Upper(x), y)
Lower(x) = Min (Lower(x), y)
next x
end if
return

subroutine module to calculate the intersection of the current line with the
horizon

FLOATING HORIZON ALGORITHM 201

subroutine Intersect(X1, Y1, X2, Y2, Array; Xi, Yi)

the routine calculates the intersection between two straight lines
Array contains the appropriate horizon

Xinc = Sign(X2 - X1)
check for an infinite slope
if Xinc = 0 then
Xi = X2
Yi = Array(X2)
else
calculate the intersection
Slope = (Y2 - Y1)/(X2 - X1)
Ysign = Sign(Y1 — Array(X1 + Xinc))
Yi = Y1
while (Sign(Yi — Array(Xi + Xinc)) = Ysign)
for Xi = X1 to X2 step Xinc

Yi = Yi + Slope

next Xi
end while

Xi = Xi + Xinc

end if
return

An example further illustrates the technique.

Example 4-1 Floating Horizon

Consider the geometric functions described in Table 4-1. The functions are
given in the z = 0, 30, and 60 planes. Two curves are given in each plane.
The first is a straight line, and the second describes a sawtooth wave above and
below the plane in which the straight line lies. Two lines at the same constant z
values are easily processed by the floating horizon algorithm. However, the
order in which they are processed affects the final appearance. Here, the
straight line is considered first.

Table 4-1
Curve Point
number number x y z Comment
1 1 0 0 O Sawtooth
2 2 4 0 wave
3 6 -4 0
4 8 0 0
2 5 0 0 O Straight
6 8 0 0 line
3 7 0 0 3 Sawtooth
8 2 4 3 wave
9 6 -4 3
10 8 0 3

202 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Table 4-1 (Cont.)

Curve Point

number number x y z Comment
4 11 0 0 3 Straight line
12 8 0 3
5 13 0 0 6 Sawtooth
14 2 4 6 wave
15 6 -4 6
16 8 0 6
6 17 0 0 6 Straight
18 8 0 6 line

Before displaying the surface described in Table 4-1, it is necessary to apply
a viewing transformation. First, the surface is rotated 30° about the y axis,
followed by a 15° rotation about the x axis. The result is projected onto the
z = 0 plane from a point of projection at infinity on the +z axis (see Ref. 1-1).
The resulting 4 X 4 homogeneous coordinate transformation matrix is

0.866
0
0.5 .
0

Applying the transformation yields the results given in Table 4-2. These results
have been scaled to an integer grid with 0 = x < 100 and —50 = y = 50, i.e. to

image space coordinates.

0.129
0.966
—0.224

0

0
0
0
0

- o OO

Table 4-2
Curve Point
number number x y
1 1 0 0
2 17 41
3 52 =31
4 69 10
2 5 0 0
6 69 10
3 7 15 -7
8 32 35
9 67 —38
10 84 36
4 11 15 -7
12 84 36

FLOATING HORIZON ALGORITHM 203

Table 4-2 (Cont.)

Curve Point

number number x y

5 13 30 -—-13
14 47 28
15 82 -4
16 99 -3

6 17 30 —-13
18 99 -3

Sorting the curves into z priority order and recalling that the straight line
in each constant z plane is to be processed first shows that the curves are to be
processed in the reverse order given in Table 4-2, namely, 6, S, 4, 3, 2, 1.

The upper and lower horizons are initialized to —50 and 50 respectively,
as shown in Table 4-3 for selected horizontal screen locations. Also shown in
Table 4-3 and Figs. 4-11a to f are th@ values (to the nearest integer) as the
algorithm processes each line. The dashed lines are the false edges created by
the left and right edge fill.

Table 4-3

x 0 10 20 30 40 SO 60 70 80 90 100
U -50 —50 —50 —50 —50 —50 —50 —50 -50 —50 —S0

Initially L S0 S0 S0 SO 50 S0 S0 S0 S0 S0 S0
Fig. 4112 U =50 —50 =50 —13 —12 —-10 -9 -7 -6 —4 —50
curve 6 L S0 50 5013 —12-10 -9 -7 -6 —4 50
Fig. 411b U =50 =50 —50 —13 10 22 1 -7 —6 —4 —50
curve 5 L S0 50 50 —13 —12 —10 -9 —19 —40 —25 50
Fig. 411c U -50-5 -6 -4 10 22 1 1 3 1-5
curve 4 L S0 50 -9 —13 —12 —10 -9 —19 —40 —25 50

Fig. 4-11d U-50-50 S 20 19 22 1 1 3 1-50

curve 3 L 50 S0 -9 -13 —12 —10 =23 -30 —-40 -25 50
Fig. 4-11e u o0 1 S 29 19 22 9 10 5 1 -50
curve 2 L 0 -4 -9-13 —-12 -10 —-23 -30 —-40 -25 50
Fig. 4-11f U 0 24 36 29 19 22 9 10 5 1 -50
curve 1 L 0 -4 -9 -13 —-12 -28 —-23 -30 —-40 -25 50

The above algorithm and example consider the function y = F(x,z) for
constant z only. Frequently it is convenient to plot curves of both constant z
and x. When this is done, a cross-hatching effect is obtained. Initially it might
seem that cross-hatching could be accomplished by superimposing two results,
one with z = constant planes and one with x = constant planes. Figure 4-12

204 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Upper -50-50-50 -13 -12 -10 -9 -7 -6 -4 -50

40 «
20}

o0

-20 <
_a0}

0 20 40 60 80 100
Lower 50 SO S0-13-12-10 -9 -7 -6 -4 50
a

Upper -50-50-6 -4 10 22 1 1 3 1-50

40

20

0.

20

40

0 20 40 60 80 100
Lower 50 50 -9 -13-12-10 -9 -19-40-25 50
C

Upper 0 1 5291922 9 10 S 1-50

40

20

0

20

401

0 20 40 60 80 100

Lower 0 -4 -9 -13-12-10-23-30-40-25 S0
e

Figure 4-11 Results for Example 4-1.

-50-50-50-13 10 22 1 -7 -6 -4 -50 Upper

140

120

-40

0 20 40 60 80 100
50 50 50-13 -12 -10 -9 -19-40-25 S0 Lower

b

-50-50 5 29 1922 1 1 3 1-50 Upper

140

0 20 40 60 80 100
50 50 -9 -13 -12-10-23-30-40-25 S0 Lower

d
02436291922 9 10 5 1-50 Upper
140
120
0
1-20
-40

0 20 40 60 8 100
0 -4 -9 -13-12-28-23-30-40-25 50 Lower
f

ROBERTS ALGORITHM 205

(B

& ¢

Figure 4-12 Cross-hatching. (a) Lines of constant z, (b) lines of constant x, (c) super-
position of (a) and (b), (d) correct result.

shows that this is not the case (see Ref. 4-3). Notice in particular Fig. 4-12c,
where the arrows indicate the incorrect result. The correct result, shown in
Fig. 4-12d, is obtained by processing the curves in either the z or x = constant
planes, whichever are most nearly horizontal in the usual order. However,
after each nearly horizontal curve is processed, the parts of the curves in the
orthogonal constant planes between this curve and the next curve must be
processed. Of course, the same upper and lower floating horizon arrays must
be used for both sets of curves. In particular, if for the function y = F(x,
y), z = constant curves are most nearly horizontal, then after processing the
curve for z), the curves for x = constant between zand z ;are processed before
the curve for z; is processed. If cross-hatching is used, left and right edge fills
should not be used.

4-3 ROBERTS ALGORITHM

The Roberts algorithm represents the first known solution to the hidden line
problem (Refs. 4-7 and 4-8). It is a mathematically elegant solution which
operates in object space. The algorithm first eliminates the edges or planes
from each volume that are hidden by the volume itself. Subsequently, each
remaining edge of each volume is compared to each of the remaining volumes
to determine what portion or portions, if any, are hidden by these volumes.
Thus, computational requirements for the Roberts algorithm theoretically in-

206 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

crease as the number of objects squared. This, in combination with increased
interest in raster scan displays that operate in image space has led to a lack of
interest in the Roberts algorithm. However, the mathematical techniques used
in the algorithm are simple, powerful, and accurate. Further, the algorithm
may be used to illustrate several important concepts. Finally, more recent im-
plementations using a preliminary z priority sort and simple boxing or minimax
tests exhibit a near linear growth with the number of objects.

The Roberts algorithm requires that all volumes or objects in a picture be
convex. Concave volumes must be subdivided into component convex volumes
(see Sec. 3-13). The algorithm considers a convex planar polygonal volume to
be represented by a collection of intersecting planes. The equation of a plane
in 3-space is

ax+by+cz+d=0 4-1)
In matrix notation the result is

xyz1]

a0 o8

or
xy z1][PI =0

where [P)” = [a b c d] represents the plane. A convex solid can thus be
represented by a volume matrix of plane equation coefficients, e.g.

VlI=Ta a2 ... an
bl b2 bn
cp 2 Cn
d d dn

where each column represents the coefficients of a single plane.
Recall that a general point in space is represented in homogeneous coor-
dinates by the position vector (see Ref. 1-1):

S1=kyz1]

Further, recall that, if [S] is on the plane, then [S] - [P] = O (see Sec. 3-5).
If [S] is not on the plane, the sign of the dot product indicates which side it
is on. The Roberts algorithm uses the convention that points on the side of a
plane corresponding to the inside of a volume yield positive dot products. To
illustrate these ideas, consider the following example.

Example 4-2 Volume Matrix

The six planes describing an origin-centered unit cube are x; = 1/2, x» =
—1/2,y3 = V2, ya = —1/2, 25 = /2, and z¢ = —1/2 as shown in Fig. 4-13.
The equation of the right hand plane is

ROBERTS ALGORITHM 207

x1+0y;1 +0z;—-(172) =0

or
2x1—-1=0

The complete volume matrix is
©O 0 & ® 6 © ONONONORONO)

v1= 1 1 0 0 0 o0 =l 2 2 0 0 0 O
0 o0 1 1 0o o0 0 0 2 2 0O
0 0 0 0 1 1 0 0 00 2 2
=172 12 =12 12 =112 12 -1 1 -1 1-1 1

This volume matrix must be tested against a point known to be inside the
volume to ensure that the signs of each plane equation are correct. If the sign of
the dot product for any plane is not greater than zero, then the plane equation
must be multiplied by —1. A point inside the cube at x = 1/4, y = 1/4, z = 1/4
has the homogeneous coordinate position vector

[S1=[1/4 1714 174 11=1 1 1 4]

Taking the dot product with the volume matrix yields

ONONONONONO)
S1'M=[1114 2 2 0 0 0 O
0 0 2 2 00
0 0 00 2 2
-1 1 -1 1-1 1
@0 ®06 6
=[-2 6 -2 6 -2 6]

Here, the results for the first, third, and fifth plane equations (columns) are
negative and hence are constituted incorrectly. Multiplying these equations
(columns) by —1 yields the correct volume matrix for the cube:

ONONONONONO)
m=[-2 2 00 00
0 0-2 2 00
0 0 0 0-2 2
11 1 1 11

In the above example, the plane equations were determined by inspection.
Of course, this is not always possible. There are several useful techniques for
the more general case. Although the equation of a plane, Eq. (4-1), contains
four unknown coefficients, the equation can always be normalized so that
d = 1. Hence, only three noncollinear points are required to determine the
coefficients. Applying the normalized form of Eq. (4-1) to three noncollinear

points (x1, y1,z1), (x2,¥2, 22), (x3, y3, z3) yields

208 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 4-13 Origin-centered unit
cube.

ax; + by, + cz; = —1
ax; + by, + cz; = —1

Il
|
—

ax3 + by; + cz3

In matrix form this is

X1 »n Z) al=1-1
xx y» z2]|b -1
x3 ys z3]|c -1
or
[X1(C] = (D] 4-2)
Solving for the coefficients of the plane yields
[C] = [X]7'(D]

Alternately, if the normal vector to the plane is known, e.g.
n=ai+bj+ck

where i, j, and k are the unit vectors in the x, y, z directions, respectively, then
the plane equation is

ax+by+cz+d=0 (4-3)

The value of d is obtained from any point in the plane. In particular, if the
components of a point in the plane are (xi,yi,z;) then

d = —(ax; + by, + czy) (4-4)

Because the computational work involved in hidden line/hidden surface
algorithms increases with the number of polygons, it is advantageous to use
polygons with more than three sides to describe surfaces. These polygons may
be both concave and nonplanar. A technique due to Martin Newell (Ref. 4-1)
gives both an exact solution for the plane equation for planar polygons and a
“best” approximation for almost planar polygons. The technique is equivalent

ROBERTS ALGORITHM 209
to determining the normal at each polygon vertex by taking the cross-product

of the adjacent edges and averaging the results. If a, b, c, d are the coefficients
of the plane equation, then

a=2 0i=y)ei+z)
i=1

b =E zi—z)(xi+ xj) (4-5)
i=1

¢ =2 (i = O +)
i=1
where
ifi=nthenj=lelsej=i+1

and d is obtained using any point in the plane. Example 4-3 illustrates these
techniques.

X

A/ Figure 4-14 Plane in 3-space.

Example 4-3 Plane Equations :
Consider the quadrilateral planar polygon described by the four vertices
Vi, 0, 0), V2(0, 1, 0), V3(0, O, 1), and Va(1,—1, 1). See Fig. 4-14. Using the
vertices V1, V2, V4 and Eq. (4-2) yields

=1 -1

1 00 a
0 1 0]]b -1
1 -1 1 c -1

or solving for the coefficients of the plane equation

al= 1 00 -1]|=] -1
b 010 -1 -1
c -1 11 -1 -1

210 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The plane equation is then
—x—y—z+1=0
or
x+y+z—-1=0
Alternately, the normal to the plane can be obtained by finding the cross-
product of two adjacent vectors at one of the vertices, e.g. V|
i j k
(2 —x1) (2—y) (z2—2z)
(3 —x1) 03—y (z3—2)

n=VV;®V|V3=

or

ijk
-110
-1 01

n= =i+jt+k

where i, j, k are the unit vectors in the x, y, z directions, respectively. Using
Eq. (4-4) and V4, the constant term in the plane equation is

d=-11-1+1)=-1
Hence, the plane equation is again
x+y+z—1=0
Turning now to Newell’s technique for n =4, Eq. (4-5) yields

a=(y1 —y2)(z1+29 +(y2—y3(z2+23) +(y3 — y4) (z3+24)
+ (ya —yi)za + z)

= (=) + (D)D) + (1)2) + (-1} (1) =2
b=(z1— 2)(x1+ x) + (22— z3)(x2 +x3) + (23 — 28) (x3 +x4)
+ (24— z)(xa+ x9)
. = (0)(1) + (—1)0) + (O)(1) + (1)2) = 2

c=(x1 —x2)1 +y2) + (2 — x3)(y2 + y3) + (x3 — xa)(y3 + ya)
+ (x4 — x1)(ya + y1)

=M+ O+ (=D(=D+@O)-1)=2
and using V4 the constant term is
d=-2-2+2)=-2
After dividing by 2 the plane equation is again
x+y+z—1=0

Example 4-4 further illustrates Newell’s technique for almost planar
polygons.

ROBERTS ALGORITHM 211

Example 4-4 Nonplanar Polygons

Consider the almost planar polygon described by the four vertices Vi(1, 0, 0),
V2(0, 1, 0), V3(0, 0, 1), and V4(1.1,—1, 1). Calculating the normal at each
vertex by taking the cross-product of the two adjacent edges yields

n =VV;®V Vs =i+j+09
n=VVi®@VVy =i+j+k

n =ViV4®ViVy =i+ 1.1j+ 1.1k
ng=VaVi®VsVi =i+ 1.1j+k

Averaging the normals yields
n=1i+1.05+k

Solving for the constant term in the plane equation using one of the vertices,
e.g. V), yields d = —1. Hence the approximate plane equation is

x+1.05+z-1=0
Newell’s method gives the same result. In particular,
a=(=DO)+ MM+ 2+ (=1)1) =2
b= (0)1)+ (—1)0) + (0)1.1) + (1)(2.1) = 2.1
c=MM+OM+—1LDED+O.)-1)=2
Solving for d using V| and dividing by 2 yields the same approximate plane
equation. The approximate plane passes through the line x = z and contains

the vertices V) and V3. However, V2 and V 4 are slightly displaced on either side
of the plane.

Before applying a hidden line/hidden surface algorithm a three-dimensional
viewing transformation is frequently used to obtain the desired view of the
scene. The volume matrices for the objects in the transformed scene can be
obtained by either transforming the original volume matrices or calculating new
volume matrices from the transformed vertices or points.

If [B] is the homogeneous coordinate matrix representing the original ver-
tices of a volume and [7] is a 4 X 4 viewing transformation, then the trans-
formed vertices are (see Ref. 1-1)

(BT] = [B][T] (4-6)

where [BT] is the transformed vertex matrix. Recalling Eq. (4-2) yields the
original plane equations for the volume

(B)[V] = [D] 47)

where [V] is the volume matrix and [D] is the right hand matrix of zeros. Sim-
ilarly, the transformed plane equations are given by

[BT][VT] = [D] (4-8)

212 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

where [VT] is the transformed volume matrix. Equating Eq. (4-7) and (4-8)
yields

[BTI(VT] = [B][V]
Substituting Eq. (4-6), eliminating [B], and premultiplying by [T]™! gives
VI =[117'M

Thus, the transformed volume matrix is obtained by premultiplying the original
volume matrix by the inverse of the viewing transformation. An example
illustrates this.

Example 4-5 Volume Manipulation

Consider translating the unit cube centered at the origin three units to the right
in the positive x direction. The appropriate 4 X 4 transformation matrix (see
2ef. 1-1) is

[mM=]1 0 0O
0100
0010
3001
b

and its inverse, which can be obtained formally or by inspection, is

m'=[1000
0100
0010
-3 0 0 1
L.

Premultiplying the volume matrix for the unit cube obtained in Example 4-2 by
(! yields the volume matrix for the translated cube:

ONONONONONO)

vn=m'm=| roo00o0}-2 2 0o o 0 o

o100 o 0-2 2 o0 o

oo10f|f o o o o0-2 2

-3 0 0 1 1 11 1 1 1
ONONORONONO)
=l-2 2 0o 0o 0 o
0 0-2 2 0 0
0 0 0 0-2 2
7-5 1 1 1 1

Translating an origin-centered unit cube three units to the right places the left
hand face at x = 2 1/2 and the right hand face at x = 3 1/2. The first column
of the transformed volume matrix yields the plane equation for the right hand
face:

ROBERTS ALGORITHM 213

-2x+7=0 or x=31/2
as required. Similarly the second column yields
2x—5=0 or x=2172
for the left hand face as expected.
Recall from Example 4-2 that the point
[S1=[1/4 1/4 1/4 1]=[1 1 1 4]

was inside the untransformed volume. Hence [S] * [V] = 0. However, the point
[S] is outside the translated volume. Examining the dot product of [S] and the
transformed volume matrix:

O ONONONONG,
S1[VI1=(1 1 1 4]-[VT1=[26-18 2 6 2 6]

yields a negative element in the second column corresponding to the left hand
face of the cube. This shows that the point is outside the volume. In fact, it is
to the left of the left hand face, i.e., on the wrong side of the left hand face, as
shown by the negative sign.

If the point matrix [S] is transformed by postmultiplying by the transfor-
mation matrix, then

[Sni=(Ssin=0114)TM=(13114=[31/4 1/4 1/4 1]

Testing the transformed point at x = 3 1/4 against the transformed volume
matrix yields

ONONONONONO)
ST1*(VI1=(2 6 2 6 2 6]

which shows that it is inside the transformed volume.

Recalling that planes are of infinite extent, and that the dot product of a
point and the volume matrix is negative when the point is outside the volume,
suggests a method for using the volume matrix to identify planes which are
hidden by the volume itself. Example 4-5 shows that only the specific plane
(column) in the volume matrix for which a point is declared outside yields
a negative dot product. In Example 4-5, this is the left hand plane (second
column) for the transformed volume [VT] and the untransformed point [S]. The
concept is illustrated in Fig. 4-15.

If the view or eyepoint is at infinity on the positive z axis looking toward
the origin, then the view direction is toward negative infinity on the z axis. In
homogeneous coordinates this vector is represented by (see Ref. 1-1)

[E]=[0 0 -1 0]
[E] also represents the point at infinity on the negative z axis. In fact [E]
represents any point on the plane at z = —, i.e. any point (x, y, —©). Thus,

if the dot product of [E] and the plane in the volume matrix is negative, then

214 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

if | |
E-’ Inside *-'E
————— I ! -
T Tlinside Transformed
\U‘;Lr:'r:‘i;i’r med Outside — volume[VTH
i) 3 X
I [R N

Infinite ' :
planes |
Figure 4-15 A point outside a volume.

[E] is outside these planes. Consequently, these planes are hidden with respect
to a viewpoint anywhere on the plane at z = «, and the test point at z = —x is
hidden by the volume itself, as illustrated in Fig. 4-16. These planes are called
self-hidden planes or backfaces. Hence,

(E]-[VI<O

identifies self-hidden planes or backfaces. Note that for axonometric projec-
tions (eyepoint at infinity) this is equivalent to looking for positive values in the
third row of the volume matrix.

This technique is the simplest hidden surface algorithm for single convex
polygonal volumes. It is also used to eliminate the self-hidden or backplanes
from a scene before applying most of the hidden surface algorithms subse-
quently discussed in this chapter. When used this way it is frequently called
back-plane culling. For convex polygonal volumes the number of polygonal
faces is reduced by approximately half. The technique is equivalent to calculat-
ing the surface normal for each individual polygon. A negative surface normal

-Z
Point at negative infinity
Lt EI=[00-1g

e .
@-1 i Putsxde

Volume —— ® rlnside

" S
Infinite] O

planes ! :
View direction—

Eye point at positive infinity
[El=[0010]

Figure 4-16 Self-hidden planes.

ROBERTS ALGORITHM 215

indicates that the normal points away from the viewer and hence the polygon
is hidden. The technique can also be used for simple shading (see Chap. 5).
The intensity or shade of the polygon is made proportional to the magnitude
of the surface normal. An example further illustrates the concept.

Example 4-6 Self-hidden Planes

Again consider the origin-centered unit cube as shown in Fig. 4-16. The eye-
point is on the positive z axis at [0 0 1 0] looking toward the origin. Thus,
the test point, or direction of view, is given by [E] =[0 0 —1 0]. Taking the
dot product with the volume matrix yields

(ONONONONONOEENONONONONONO)
Elrvi=poo-10f-2 2 o0 o o0 ol=(0 0 0 0 2-2)

0 0-2 2 0 0

0 0 0 0-2 2

111 1 11

and the negative sign in the sixth column indicates that this face is self-hidden.
Inspection of Fig. 4-16 confirms this. The zero results indicate planes that are
parallel to the direction of view.

This technique for identifying self-hidden planes in effect performs an axo-
mometric projection onto a plane at infinity from any point in 3-space. Viewing
transformations including perspective are applied prior to identifying the self-
hidden planes. When the viewing transformation includes perspective, the
full perspective transformation from one 3-space to another must be used and
not a perspective projection onto some two-dimensional plane (see Ref. 1-1).
The full perspective transformation yields a distorted three-dimensional volume
which in effect is then projected onto a plane at infinity when the self-hidden
planes are identified. The effect is equivalent to a perspective projection from
some point of projection onto a finite plane of projection.

The viewing transformation can be applied to the volume with the eyepoint
remaining fixed. Alternately, the volume remains fixed. The equivalent eye-
point and view direction are obtained by postmultiplying by the inverse of the
viewing transformation. The next example illustrates these techniques.

Example 4-7 Self-hidden Plane with Viewing Transformation

Consider the origin-centered unit cube rotated about the y axis by 45°. The
viewing transformation is (see Ref. 1-1)

[Ry] =] cos¢p O —singp O = vz 0-1Vv2 0
0 1 0 0 0 1 0 o

sing O cos¢p O Ivz2 0 1/vz 0

0 0 0 1]¢=%"| o0 o o 1

The transformed volume matrix is obtained by premultiplying by the inverse

216 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

of the viewing transformation. For a pure rotation, the inverse of the viewing
transformation is its transpose. Thus

R '=[RJ"=] cos¢p 0 sing 0| = 1V 0 1V O
0 1 0 o0 0 1 0 o0

—sing 0 cos¢ O -1z 0 1/vZI 0O

0 0 0 1]|9=45° 0 0o 0 1

The transformed volume matrix is
O © 0 60 6
VN =R 'VI=]-2vi 2vi 0 0 -2VI 2V3
0 0o -2 2 0 0
2V -2V 0 0 -21vZ 2VZ
1 1 1 1 1 1

From an eyepoint on the positive z axis [0 0 1 0] looking toward the origin,
the view direction or test point is given by

[E}=[0 0 —1 0]

Taking the dot product of [E] and the transformed volume matrix yields

O @ ®® 6 ®
EFVTI=[-2vZ 2vI 0 0 2vi -2Vi

Hence, the first and sixth planes which correspond to the left and rear planes in
the original orientation are self-hidden. Figure 4-17a confirms this. Notice also
that, when the volume is transformed and the view direction fixed, taking the
dot product of the test point and the transformed volume matrix and looking
for negative signs is equivalent to looking for positive terms in the third row of
the transformed volume matrix.

The equivalent eyepoint for the untransformed volume corresponding to
the rotation about the y axis is

001 Q)R '=[-1/vZ O I/VZOI=[-101 0]

i.e., a point at positive infinity on the line —x = z as shown in Fig. 4-17b.
Similarly the equivalent view direction and test point are

[ET] = [E]IRy)™" = [0 O —1 O)R,]”" = (U/vD[1 0 —1 0]

This is a point at negative infinity on the line —x = z. Taking the dot product
of the equivalent view direction and the untransformed volume matrix yields

ONONONORONO,
[ET)*V]=(vD[-2 2 0 0 2 -2]

which again indicates that the first and sixth planes are self-hidden. Figure
4-17b confirms this.

Having identified the self-hidden planes, it remains to identify the self-
hidden lines. A self-hidden line is formed by the intersection of two self-hidden

ROBERTS ALGORITHM 217

1 .
Self hidden zl Test point[00-10] Self hidden olanc Test [lpgm:)]
- elf hidde e
plane -—Self hidden line -zp] e !
Self hidden
Q- line
—X
=N
View direction Self hidden
[10-10] ® plane
) View direction
Eye point[0010]l 00 -10] Eye point[-1010]
a b

Figure 4-17 Viewing transformation and self-hidden planes.

planes. Although in Example 4-6 plane (® is self-hidden, no lines are self-
hidden because only one plane is self-hidden. However, in Example 4-7, the
edge formed by the intersection of planes @ and (® is self-hidden.

After first eliminating the self-hidden lines, it is necessary to consider
whether an individual line is hidden by any other volume in the picture or scene.
In order to accomplish this, every remaining line or edge must be compared
with all the other volumes in the scene or picture. Here, using a priority sort
(z sort) and simple minimax or bounding box tests allows the elimination of
entire groups or clusters of lines and volumes. For example, if all volumes in
the scene are sorted into a priority list using the z value of the nearest vertex
to represent the distance from the eye, then no volume on the list for which
the nearest vertex is farther from the eye than the farthest end point of a line
can obscure that line. Further, of the remaining volumes, no volume whose
bounding box is completely to the right, to the left, above, or below that for
the line can obscure the line. Using these techniques significantly reduces the
number of volumes with which an individual line or edge must be compared.

To compare a single line PP, with a single volume, it is convenient to use
a parametric representation of the line:

P(t) = P, + (P, — P)t 0<t=<1
or '
v=s+d:

where v is the position vector of the line, s is the starting point, and d is the
direction of the line. The objective is to determine whether the line is hidden.
If it is hidden, then the objective is to determine the values of ¢ for which it is
hidden. To accomplish this, another parametric line from any point on P(r) to
the eyepoint at g is formed:

Qa,)=u=v+ga=s+dt+ga 0=st=<1,a=0

Here a and ¢ perform similar functions. A given value of ¢ yields a point on
the line P(¢), and a yields a point on the line from this point to the eyepoint.

218 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

P[-20-21] P,[20-21]
i i
| |
+ 1 +
1 (]
1]
+ -1+ +
1 |
[} !
1 |
! !
i 1 1 \ X
] 1
] 1
|]
+ 19 +
1 !
| z |
Figure 4-18 The parametric
« Eye point[0010] plane.

In fact, Q(a, 1) represents a plane in 3-space. Specifying both a and ¢ locates a
point on this plane. The value of a is positive because only the part of the plane
between the line P(¢) and the eyepoint can contain volumes which obscure the
line.

Example 4-8 Parametric Plane

Consider the line from Pi(—2, 0, —2) to P2, 0, —2) viewed from a position at
positive infinity in the z direction (see Fig. 4-18). In homogeneous coordinates
Py and P; are

Pi=[-20 -2 1]

P2=[20 -21)
Hence

PH)=v=s+dt=[-2 0 -2 1]+[4 0 0 O)
The eyepoint vector is
g=[0 01 0]
and
Qa,n=s+dr+ga=[(-2 0 -2 1]+[4 0 0 0)+[0 O 1 Ola

Figure 4-18 and Table 4-4 show the effect of varying ¢ and a. As a specific
example, assume ¢ = 0.5 and a = 3. Then

PO.5)=v =[-2 0 -2 11+[4 0 O 0)(0.5)
=[00 -2 1]
which is the point on the line P P2 where it crosses the z axis at z = —2. For
a=3
03,05 =v+ga =[0 0 -2 1]+[0 O 1 0](3)
=00 11

ROBERTS ALGORITHM 219

which is the point on the z axis at z = 1. This point is shown by the dot
in Fig. 4-18. Each of the points given in Table 4-4 is indicated by crosses in
Fig. 4-18. Notice that each of the lines is parallel to the z axis.

Table 4-4

t a v Q(a,n

0 0 [-2 0 -2 1] [-20 -2 1]
12 [-2 0 =32 1]
1 [-2 0 -1 1]
2 [-2 0 0 1]
3 [-2 0 1 0]

172 0 [00-21 [O00 -2 1]
12 [00 =32 1]
1 [00 -1 1]
2 [00 0 1]
3 [00 1 0]

1 0 [20-21) [20 -2 1]
12 [20 =32 1]
1 [20 -1 1]
2 [20 0 1]
3 [20 1 0]

Recall that for a point inside a volume, the dot product of the point
and the volume matrix is positive. If the point is inside the volume, it is
hidden. Therefore, to determine the part of a line hidden by a volume it is
only necessary to find the values of a and ¢ for which the dot product of Q(a, 1)
and the volume is positive. Taking the dot product of Q(a,f) = u and the
transformed volume yields

h=u-[VIN=s:[VI]+:td-[VT]+ag-[VT] >0 0=t=<1l,a=0
If each component of h is nonnegative for some ¢ and a, the line is hidden
by the volume for those values of ¢. Defining
p=s-[VT]
q=d-[VT]
w=g[VT]

220 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

O-0. ©-0. - -+ - ©-0.
-6 - - - @-0.

Total number of solutions for j equations =('H2 J).

Figure 4-19 Solution technique for a, .

the condition
hj = pj+tg; + aw; >0 0=t=1,a=0

where j counts the columns in the volume matrix, must hold for all values of
j; i.e., for all the planes describing a volume. The dividing case for visibility
or invisibility is when hj = 0. For hj = 0 the point lies on the plane. Setting
hj = 0 for each of the planes yields a series of equations in a,r all of which must
be satisfied. This can be accomplished by solving each of the equations with
each of the others in pairs, to find all possible values of a and ¢ for which the
line is marginally visible. This is shown in Fig. 4-19. The number of possible
solutions for j equations (planes) is ()i — 1)2. Each of the solutions in the
range 0=<r=<1,a =0 is tested against all the other equations to ensure that
the condition h; = 0 is satisfied. A search of the valid solutions is performed
to yield the minimum maximum value (f;max) and the maximum minimum
value (fpaxmin) Of the parameter ¢. The line is hidden from ¢, i < * < fminmax-
This latter requirement is a simple classical linear programming problem. An
algorithm, similar to that previously given for the Cyrus-Beck clipping algorithm
(see Sec. 3-5), for this solution is given below. First some examples will help
clarify the discussion.

[}
|
rl202] | | p202]
E LE—Hidden portion
H o
= T 2 X
IZJ

Figure 4-20 Testing a line against a

View directi —’t
iew direction Eye point[O 01 0] volume.

ROBERTS ALGORITHM 221

Example 49 Testing Lines Against Volumes

Again consider the origin-centered unit cube. The line from Pj[-2 0 -2 1]
to P2[2 0 —2 1] passes behind the cube and is partially hidden by the cube
as shown in Fig. 4-20. Again

PH)=v=[-20 -2 1]+[4 0 O Ot
and
s=[-20 -2 1]
d=[40 0 0]
For an eyepoint at infinity on the positive z axis
g=1[0 01 0]

Here the untransformed cube is considered. Hence,

vri=[i=1-2 2

|
- O N O

0
2
0 -
1

-0 QO
-0 Qo
-N OO
- OO

Forming p, ¢, and w by taking the dot product of s, d, and g with [VT] yields
p=sVII= [5 -311 5 -3]
g=d:[VT1= [-8 800 0 0]
w=g'[VIfT= [0 000 -2 2]
From these results six equations corresponding to the condition
hj = pj + tq; + aw; >0
are formed, one for each of the six planes representing the faces of the cube.
Specifically,
@® S5-8 >0
@ -3+8 >0

® 1 >0
@ 1 >0
® s -2a>0

® -3 +2a>0

The third and fourth of these equations simply state that the condition is always
satisfied. They correspond to the physical condition that the line is always
“inside” the infinitely extended top and bottom surfaces of the cube. Setting
the other four equations to zero yields ¢+ = 5/8, ¢t = 3/8, a = 5/2, and a = 3/2.
Of course, this is a particularly simple example. The equations can essentially
be solved by inspection, however, in general this is not the case.

Each of these equations represents a straight line in a,t space. It is
instructive to consider a graphical solution, as shown in Fig. 4-21. The cross-
hatching indicates the side of the line on which possible solutions exist. Clearly,
all the conditions h; > 0 are satisfied only within the bounded region indicated.

Thus
Imaxmin = 3/8 and Iminmax = 5/8

222 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The line is hidden for 3/8 < ¢t < 5/8 and visible for 0 < ¢t < 3/8 and 5/8 =
t=1.

Usiné the parametric equation of the line

P3/8)=[-2 0 -2 1]1+[4 0 0 1)3/8)=[-1/2 0 -2 1]
and

P(5/8)=[-2 0 -2 11+[4 0 0 1)(5/8)=[12 0 -2 1]
as shown in Fig. 4-20.

The above example yields two values of r. Hence it is possible to assign a
maxmin and @ fminmax- What if solution of the equations yields only one value of
t? The next examples illustrate this problem and its solution.

a
t=3/8 t=5/8
N
7 7737777 a=5/2
2 — Line is hidden
3 in this region
2L //: Luit o=3/2
1 2
of o
A
C
0 s t Figure 4-21 Graphical solution for Example
0 10 4-9.

Example 4-10 Single Values of ¢

Continuing to use the origin-centered cube, consider the line Pi[1 0 —1 1] to
P2[0 0 —1 1] as shown in Fig. 4-22. Here

P)=v=[10 -1 1]+[-1 0 O O)

and
s=[10 —-11]
d=[-10 0 0]

with
g=10001 0]

for the untransformed cube, i.e. [VT] = [V], p, ¢, and w become
p=s[VIl=[-1 311 3 -1]
g=d-[VIN1=[2 -200 0 0]
w=g'[VI[]=[0 000 -2 2]
Forming the equations for the h;> 0 condition yields
@ -1+2 >0
@ 3-2 >0

ROBERTS ALGORITHM 223

>0
>0
-2a>0
+2a >0

CNONON®,

Solution of these equations for hj = 0 yields t = 12, t = 312, a = 312, a =
1/2. The solution for ¢ = 3/2 is rejected because it is outside the permissible
range 0 =<¢ = 1. Hence only one value of ¢ is found. The graphical solution is
shown in Fig. 4-23a. Again, the cross-hatching indicates the side of the line on
which possible solutions exist. Clearly no bounded region is formed. However,
the stated solution technique has not considered the boundary conditions rep-
resented by the lines t = 0 and ¢t = 1. As shown in Fig. 4-23b, adding these
lines to the solution clearly forms the required bounded region. Thus,

'mmin =112 and 'minmu =1

Further, the conditions h; > 0 are all satisfied by both these values of r. Hence
the line is visible for 0 =< ¢ < 1/2, i.e. for

POY=[10 -1 1]+[-1 0 0 0JO)=[1 O —1 1]
to
P(1/2)=[1 0 =1 1]+[-1 0 0 0)(1/2)=[1/2 0 —1 1]

Reversing the direction of the line, i.e. interchanging P; and P, places the
solution region between ¢ = 0 and ¢ = 1/2.

- -

p[1011]
L‘_u——l-lidden portion

I—— ——

P[0 0-1 1]-E-_l_

1 X

z

Figure 4-22 Testing a line with a hid-

View direction .
—I Eye point[0 010] den end point against a volume.

2 t=1/2 t=0 t=1/2 t=1
A

D ;
szwmv-&mmn' a=3/2 7777777
“

[5]

A\N

77N77 0-3/ 2

7777,

N

N

2 4 4 Line is hidden
1 / Y . "7 in this region
(LL 1//////1/4:11 777973 a-]/z Q= 1/2
, ® . E , © 2 .
P t , X
0 0 1.0 0 10

o

a
Figure 4-23 Graphical solution for Example 4-10.

224 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

A further example illustrates that the a = 0 boundary must also be con-
sidered.

Example 4-11 Alpha Boundary

Consider the untransformed cube and the line Pi[l 0 2 1]Jto P2[-1 0 -2 1]
as shown in Fig. 4-24. The line P P> penetrates the volume. Here

Pty=v=[1 02 11+[-2 0 -4 O}
and
s=[10 21
d=([-2 0 -4 0]
Again the eyepoint is at infinity and
g=1[001 0]
For the untransformed cube, i.e. [VT] = [V]
p=s[VI1=[-1 311 -3 5]
g=d:[VI[I=[4 -4 00 8 -8]
w=g'[VI]=[{ 0 000 -2 2]

The resulting equations for hj> 0 are

® -1 +4 >0
@ 3-4 >0
® 1 >0
@ 1 >0

® -3 +8 -2a>0
® 5-8+2a>0

Solution of these equations for hj = 0 yields a single valid result, r = 1/4. The
solution is shown graphically in Fig. 4-25a. Again cross-hatching indicates the
side of the line on which possible solutions exist. No valid bounded region
exists. Adding the boundaries at ¢+ = 0 and ¢ = 1 as shown in Fig. 4-25b yields
a bounded region between ¢ = 3/4 and ¢t = 1. However, as shown by the cross-
hatching, this region is not valid since, for + > 3/4, hj > 0 is not satisfied for
J = 2. Adding the boundary at a = 0 also yields a valid bounded region with
solutions at + = 3/8 and r = 3/4. It is this region that yields ¢, min = 3/8 and
tminmax = 3/4. Hence the line is visible for

0=¢=3/8 and d=t=<1
or for
PO)=[102 1] to PG38)=[l/4 0 172 1)
and

P(3M4)=[-112 0 —1 1} to PM)=[-10 -2 1]

ROBERTS ALGORITHM 225

P,[-10-21]

4
|
]
]
]

————————

Hidden portion—& I

A}
\)

a A 1

X

4

P[1021]
i i ion—~ . Fi 4-24 Testi trating li
View direction I Eye poml[O 01 0] a;lilr::t : Vomnfz‘mg a penetrating line

The a = 0 boundary solutions occur for penetrating (objects).

One technique for adding the lines at these penetrating junctures to the
scene is to save all the penetrating points. Lines are formed by connecting each
penetrating point in a pair of penetrating volumes to every other penetrating
point in that pair of volumes. These lines are then tested against all remaining
volumes. The visible lines are the juncture lines.

These examples show that solutions satisfying h; > 0 also exist for the
boundaries of the region described by 0 <t =1 and a = 0. Thus the three
equations corresponding to these boundaries, i.e.,t=0,t—1=0,and a = 0,
must be added to the solution set hj = 0. The number of solutions is now (j +2)
(j + 3)/2, where j is the number of planes describing a convex volume.

As previously mentioned, selecting the maximum minimum and the mini-
mum maximum values of ¢ from the possible valid solutions is a simple linear
programming problem. Its solution is equivalent to identifying the valid bound-
ed region for the graphical solutions shown in Figs. 4-21, 4-23, and 4-25. The
flowchart in Fig. 4-26 provides a solution algorithm for the minimax problem.
It is assumed that the algorithm is used only for lines that are known to be
partially or totally hidden. All self-hidden lines and all totally visible lines are
identified and eliminated before the algorithm is used. The algorithm is entered
with 7 and a from the solution of the pair of linear equations numbered e; and

a
t=0 t=3/4
a ®
t=1/4 t=3/4 0) @ M
2 @ @ 2 K
® t=1/4 ,|}y©
l i L @ l t=l
4 2 Y Line is hidden
4 ‘ in this region
04 TR 09 0 !

Figure 4-25 Graphical solution for Example 4-11.

226 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

and e, tmin and fy,, (the current minimum and maximum values of ¢), and n
(the number of equations in the solution set). The first part of the algorithm
ensures that the condition h; > 0 is satisfied. If this condition is satisfied, the
second part looks for f,;, and t,,,. The result is tyaxmin @Nd fninmax -

This part insures
that h;>0

no
<hj=pj+qjt+ awjz0 @
yes &

no

yes
This part finds
tmaxmin & tminmax

es yes
t=tmin y t<tmax Return

no no

tmin=-t

Figure 4-26 An algorithm for finding ¢ axmin aNd ?inmax fOr the Roberts hidden line
technique.

ROBERTS ALGORITHM 227

The solution technique discussed above is computationally expensive.
Hence, it is efficient to look for ways to quickly identify totally visible lines.
The basic idea is to determine if both end points of a line lie between the
eyepoint and a visible plane. Recall that

u=s+ud+ag

For a = 0, u represents the line itself. Further, if a =0, thens=0and¢=1
yield the end points of the line. Also recall that

hj =wu-[VT] = p; + g;t + wja

and note that, for t+ = 0, p; is the dot product of the end point of the line and
the jth plane of the volume. Similarly, p; + g; is the dot product of the other
end point of the line and the jth plane of the volume. Finally, recall that the
Jjth plane of a volume is visible if w; = 0. Thus, if w; =0 and p; = 0, then one
end point of the line is either on the visible plane or between the visible plane
and the eyepoint. If p; + g; = 0, then the other end point is also either on the
visible plane or between the plane and the eyepoint. Hence, the line is totally
visible if for any j

wj=0 and pj=0 and pj+gq;=<0

These conditions ensure that h; = 0 cannot be satisfied for any a = 0 and
0 = ¢ = 1. Thus, no part of the line can be hidden, and it is totally visible.

Example 4-12 Totally Visible Lines

For the origin-centered cube, consider the line fromP;[—2 0 2 1] to P2[2 0 2 1]
which, as shown in Fig. 4-27, passes in front of the cube. Here,

v=s+dr=[-20 2 1]+[4 0 O O

and with the eyepoint at infinity in the z direction
s=[-2021]
d=[4 00 0]
g=[001 0]

For the untransformed cube [VT] = [V] and

ONONONONONO)
p=s[VII=[5 -3 1 1 -3 5]
g=d-[V[1=[-8 8 0 0 0 0]
w=gVf=[0 0 0 0 -2 2]

Note that

ws <0 and ps<0 and ps+qs <0

Thus, the line is totally visible.

As an additional example, consider the line from P3[—1 1 1 1] to
Pa[1 1 —1 1], which passes diagonally above the cube. This line is also shown
in Fig. 4-27. Here,

228 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

s=[-11 11]
d=[2 0 -2 0)
g=[000 10
and
® ® 6 ©
p=s'[VI1=[3 -1 -1 3 -1 3
g=d-[VII=[-4 4 0 0 4 -4]
w=g'VTI=[0 0 0 0 -2 2]
Note that
ws <0 and ps<0 but ps+qs>0
However,

wi=0 and p3<0 and p3+q3i<O

Again the line is totally visible.

Although the top plane (plane) is “edge-on” to an eye-point at infinity
on the z axis, mathematically the line P3P, of the above example is between the
eye and the visible plane. A similar condition occurs for the bottom and the
two side planes.

Unfortunately, there is no easy test for totally invisible lines. It is, of
course, possible to determine that the end points of a line are both behind a
hidden plane. However, because the plane is of infinite extent, it is not possible
to determine if the ends of the line extend beyond the volume (see Fig. 4-22).
Totally invisible lines must be found using the general solution technique. In
this case, the hidden portion is from ¢t =0to ¢ = 1.

An efficient implementation of the Roberts algorithm is given below. The
algorithm is divided into three parts. The first part analyzes each volume
separately to eliminate the self-hidden planes. The second part compares the
remaining edges of each volume against all the others to find the line segments
hidden by the others. The third part constructs the junction lines for penetrating

1 Rl11-11]

R T 2

Rl1111] 11

R[-202] P2021])

A

View direction - :
I Eye point[0010] pigure 4-27 Totally visible lines.

ROBERTS ALGORITHM 229

volumes. The algorithm assumes that a volume consists of polygonal planar
faces, the faces consist of edges, and the edges consist of individual vertices.
All vertices, edges, and faces are associated with a specific volume.

Eliminate the the self-hidden planes.
For each volume in the scene.
Form face polygons and edges from the volume vertex list.
Calculate the plane equation for each face polygon of the volume.
Check the sign of the plane equation.

Calculate a point inside the volume as the average of the ver-
tices.

Calculate the dot product of the plane equation and the point
inside the volume.

If the dot product is < 0, change the sign of the plane equation.
Form the volume matrix.

Premultiply by the inverse of the viewing transformation including
perspective.

Calculate and save the bounding box values xmax, Xmin» Ymaxs Ymins
Zmaxs Zmin fOT the transformed volume.

Identify the self-hidden planes.

Take the dot product of the test point at infinity and the trans-
formed volume matrix.

If the dot product is < 0, then the plane is hidden.

Eliminate the entire polygon forming the plane. This eliminates
the necessity for separately identifying hidden lines as the in-
tersection of two hidden planes.

Eliminate the line segments for each volume hidden by all other volumes
in the scene.

If there is only one volume, the algorithm is complete.
Form a priority list of the volumes.

Perform a zsort. Sort on the maximum z coordinate of the vertices
of the transformed volumes. The first and highest priority volume
on the sorted list is the one with minimum maximum z. In the right
handed coordinate system used, this is the farthest volume from an
eyepoint at z infinity.

For each volume on the priority list.

230 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Test the non-self-hidden edges against all other volumes in the
scene. The volume whose edges are being tested is the test object.
The volume against which it is currently being tested is the test
volume. A test object normally need be tested only against lower

priority test volumes.

Perform bounding box tests for the test object and the test

volume.

If xin(test volume) > x,,.(test object) or

Xmax(test volume) < xiq(test object) or
Ymin(test volume) > y,..(test object) or
Ymax(test volume) < y....(test object)

then the test volumes cannot hide any edges of the test
object. Continue to the next test volume. Otherwise,

Perform preliminary penetration tests to see if the test object
penetrates the test volume and possibly obscures part of it.

Test the maximum z value of the test object against the
minimum z value of the test volume.

If z,,,(test object) < z,.{test volume), then penetra-
tion is not possible. Continue with the next volume.
Otherwise,

Test for visible penetration.

If z,.(test object) > z,(test volume), then the test
object may penetrate the front face of the test volume.

Set the visible penetration flag for later use. Place the
penetrating volume on the penetration list.

If xpmax(test object) > xpin(test volume) or

Xmin (test object) < xp.(test volume)
then the test object may penetrate the side of the vol-
ume.

Set the visible penetration flag for later use. Place the
penetrating volume on the penetration list.

If ymax(test object) >y (test volume) or

Ymin(test object) < yni.(test volume)
then the test object may penetrate the top or bottom
of the test volume.

Set the visible penetration flag for later use. Place the
penetrating volume on the penetration list.

If the penetration list is empty, set the no penetration flag.

Perform edge tests.

ROBERTS ALGORITHM 231

Calculate s and d for the edge.
Calculate p, g, w for each plane of the test volume.

Test for total visibility. If the edge is totally visible, skip
to the next edge.

Form the h; = 0 equations and solve simultancously in
pairs, including the + = 0 and + = 1 boundaries. If the
visible penetration flag is set, then include the a = 0 bound-
ary. Save the penetrating points. Otherwise ignore the
a = 0 boundary.

For each ¢, a solutioncheck 0 =r=<1,a = 0,and h; >
0 for all other planes. If these conditions are satisfied,
find Imaxmin and Iminmax-

Calculate the visible line segments and save for testing
against lower priority volumes.

Determine visible junction lines for penetrating volumes.
If the visible penetration flag is not set, skip to the display routine.
If no penetrating points have been recorded, skip to the display routine.

Form possible junction edges by connecting all penetrating points
for the two penetrating volumes.

Test all junction edges against both penetrating volumes for
visibility.
Test the surviving visible junction edges against all volumes in the
scene for visibility. Save the visible segments.

Display remaining visible edge segments.

Note that the algorithm can also be implemented with a reverse priority
list. The above algorithm was used to produce the dimetric view of the three
objects shown in Fig. 4-28.

Figure 4-28 Hidden lines removed from a dimetric
view of penetrating objects.

232 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 4-29 Test scene for the Roberts algorithm.

Timing results for scenes similar to that shown in Fig. 4-29, with up to
1152 blocks, indicate a very nearly linear growth in computational expense
with the number of blocks (Ref. 4-9). Petty and Mach (Ref. 4-8) note a
similar result for a Roberts algorithm implemented using Warnock-style area
subdivision (see Sec. 4-3). The principal disadvantage of the Roberts algorithm
is the requirement for convex volumes. A detailed illustrative example is given
below.

<>

\/

b c
Figure 4-30 Penetrating blocks for Example 4-13.

Example 4-13 Complete Roberts Algorithm

Consider the two intersecting blocks shown in Fig. 4-30. The blocks are described
by the following vertex point data bases.

ROBERTS ALGORITHM 233

Block 1 Block 2

Vertex Vertex

number x y z number x y z
1 0 0 1 9 1 2 0
2 2 0 1 10 3 2 0
3 2 0 3 11 3 2 4
4 0 0 3 12 1 2 4
5 0 6 1 13 1 4 0
6 2 6 1 14 3 4 0
7 2 6 3 15 3 4 4
8 0 6 3 16 1 4 4

The vertex numbers are shown in Fig. 4-30a. The edge lists are

Block 1 Block 2
Joins Joins
Edge vertices Edge vertices
1 1-2 13 9-10
2 2-3 14 10-11
3 34 15 11-12
4 4-1 16 12- 9
S 5-6 17 13-14
6 6-7 18 14-15
7 7-8 19 15-16
8 8-5 20 16-13
9 1-5 21 9-13
10 2-6 22 10-14
11 37 23 11-15
12

4-8 24 12-16

These edges are formed into face polygons for two blocks.

Block 1 Block 2

Polygon Polygon

number Edges number Edges

1 2,11,6,10 7 14,23,18,22
2 4,12,8,9 8 21,20,24,16
3 5,6,7,8 9 17,18,19,20
4 1,2,3,4 10 13,14, 15,16
5 3,12,7,11 1 15,24,19,23
6 1,10,5,9 12 13,22,17,21

The volume matrices for the blocks in the given orientation can be devel-
oped at this point, checked for correct sign by taking a point inside, and
then transformed by premultiplying by the inverse of the viewing transforma-
tion. However, in this example the alternate approach of first transforming the
volume vertex matrices by postmultiplying by the viewing transformation and
then determining the transformed plane equations and hence the transformed
volume matrices is used.

Here, a viewing transformation, comprised of a —30° rotation about the y
axis (¢ = 30°), followed by a + 15° rotation about the x axis (6 = 15°), is
used. The combined transformation is (see Ref. 1-1)

234 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

[T =[RAIRY)= |cos¢ sing sin@ —sing cosf O
0 cos 6 sin 6 0

sing —cos¢g sin@ cos¢p cosf 0

0 0 0 1

0.866 —0.129 0.483 0
0.0 0.966 0.259 0
-0.5 —0.224 0837 0O
| 0.0 0.0 0.0 1

Transforming, the point data bases become

Pl =PIM = [-05 -0224 0837 1 1
1232 —0.483 1.802 1| 2
0232 -0933 3475 1| 3
-15 -0672 2510 1| 4
-0.5 5571 238 1] s
1232 5313 3355 1| 6
0232 4864 5028 1| 7
-15 523 4062 1| 8
and
PT2) = (PaTl = | 0.866 1.802 1001 1] 9
2.598 1.544 1.967 1] 10
0.598 0.647 5313 1] 11
~1.134 0906 4347 1| 12
0.866 3.734 1.518 1| 13
2.508 3.475 2484 1| 14
0.598 2.579 5.830 1| 15
-1134 2838 4864 1] 16

The plane equations for each of the faces of the two blocks in this orientation
can be obtained by Newell’s technique as discussed above. For example, the
face described by polygon 1 uses the four vertices labeled 2, 3, 7, 6 in Fig. 4-30a.
Newell’s technique (see Example 4-3) using the transformed points yields the
plane equation

—20.791x + 3.106y — 11.593z + 48.001 = 0

Rewriting this result to correspond to that obtained by transforming the volume
matrix from the original orientation yields

—0.866x + 0.129y — 0.483: +2 =0

The transformed volume matrix in this form is then

© & & 6 06 o

Vil = [-0.866 0866 0 0 05 -05
0.129 -0.129 —0.966 0.966 0.224 —0.224
-0.483 0.483 —0.259 0259 —0.837 0.837

2 0 6 0 30 -1

ROBERTS ALGORITHM 23§

and similarly

@ ® ® o

(VTs) = |-0.866 0866 0 0 05 -05
0.129 —0.129 —0.966 0.966 0.224 —0.224
—0.483 0.483 —0.259 0.259 —0.837 0.837

3 -1 4 -2 4 0

With the eyepoint at [0 0 1 0] the test point is
[E1=10 0 —1 0]
Looking for the self-hidden planes in volume 1 yields

® ® ® ® 6 6
[E]*[VTi] = [0.483 —0.483 0.259 —0.259 0.837 —0.837)

Similarly for volume 2
@ ® - ® o
[E]*[VT2] = [0.483 —0.483 0.259 —0.259 0.837 —0.837]

The negative signs show that planes (polygons) 2, 4, and 6 in volume 1 and 8,
10, 12 in volume 2 are self-hidden. Intersections of these polygons represent
invisible edges. In particular, the edges 1, 4, and 9 in the first volume and 13,
16, and 21 in the second volume represent the intersection of two self-hidden
planes and are thus hidden. The result is shown in Fig. 4-30b.

The remaining lines in each volume are checked to see if they are hidden
by the other volume. First check if the volumes interpenetrate. Testing volume
1 against volume 2 using the transformed point vertices shows that

Zmadvol.1 = 5:028 > (z i) yo1.2 = 1.001
Hence, penetration is possible. Further,
Zmadvol.l = 1.232> (Xindvor 2 = —1.134

and penetration occurs. Thus, the @ = 0 boundary must be included in the
solution set.

The remaining edges of volume 1 are tested against volume 2. As a specific
example, consider edge 2 between vertices 2 and 3. Here,

v=s+dr=[1.232 —-0.483 1.802 1]+ [-1 —0.45 1.673 O)s
Taking the dot product of s and d with [VT4] yields
O 060 ®06 6

p=s[VIl1=[1 1 4 -2 3

g=d-[VI2]=[0
For an eyepoint at positive infinity in the z direction
g=1[0 010

236 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

and ® ® ® ® 6O 6
w=g*[VI] = [—0.483 0.483 —0.259 0.259 -—0.837 0.837]

Checking to see if the line is totally visible shows that the conditions
wij<0 and pi=0 and pitqg=0

are not satisfied for any plane. This is because the infinite plane containing the
bottom (plane (®) of volume 2 could hide the edge. Forming the hidden edge
conditions h; yields

-0.483a=0

+0.483a=0

-0.259a=0

+0.259a =0
-2t —0.837a=0
+2t +0.837a=0

@OOOOO
[

Solving these equations successively in pairs shows that the condition & j= 0 for
all j cannot be met. Hence, no portion of the edge is hidden, and it is totally
visible. The details of the remaining solutions for the edges of volume 1 hidden
by volume 2 are given in Tables 4-5 and 4-6. Note that g and w are constant.

The solution diagrams for edges 10 and 11 are shown in Figs. 4-31a and b.
Both edges penetrate volume 2. Edge 10 is hidden for 0.244 < r < 0.667.
This corresponds to the line from the point (1.232, 0.815, 2.150) to the point
(1.232, 3.381, 2.837). Edge 11 is hidden for 0.282 < ¢ < 0.667, which cor-
responds to the line from (0.232, 0.703, 3.913) to (0.232, 2.933, 4.510).

The a = 0 boundary yields penetrating points at ¢ = 0.333 and 0.667 for
both edges. These values of 7 correspond to the points (1.232, 1.449, 2.320) and

Table 4-5

Joins
Edge vertices s d

2-3 [1.232 —-0.483 1.802 1] [-1.0 —0.45 1.673 0]
3-4 [0232 -0.931 346 1] ([-1.732 0.259 -0.966 0]
5-6 [-0.5 5.571 2.389 1] [1.732 -0.259 0.966 0]
6-7 [1.232 5313 3355 1] [-1.0 —0.448 1.673 0]
7-8 [0232 4864 5028 1] [-1.732 0.259 -0.966 0]}
8-5 [-1.5 5.123 4.062 1] [1.0 0.448 -1.673 0]
10 2-6 [1.232 —-0.483 1.802 1] [0.0 5.796 1553 0]
11 3-7 [0232 -0.931 3475 1] [0.0 5.796 1553 0]

0 N A W N

12 4-8 [-1.5 -0.672 2510 1] [0.0 5.796 1.553 0]

237

uonnjos Iy opqstafyeo, [0 0 99-0 01 [E12-+v 1- ¢l 8-t 4!
qre-b 814995 ¢199°0>1>8zoudpply Sunenauad [0 0 99-0 01 [t -v 1 1 L—€ 1
elg-p B14 9951990 > >vpzousppy Bunenauad [0 0 99-0 01 [e€z—¥% 1t 1] 9-C o1
0>€tb+ed ‘o>ed ‘o>EtmidqumuieioL -z 00 0 01 €1 v T— 1- €l S-8 8
0>tb+td ‘o>€d ‘po>Emidqsaheio, 0 0 00 -1 1y -1 1 8-L L
0>tb+ed ‘o>€d ‘g>emidqisafpeior [z z- 00 0 01 ey T—1 1l L-9 9
0>tb+ed ‘o>€d ‘o>tmidqusmaieio, 0 0 00 T T-1 €y T— 1- ¢l 9-¢ S
uonnjos [y ¢iqistahieroL, 0 0 00 -3¢ 1 [t —-v 1 1] v—¢€ €
uonmjos |y 3qqista hreso,. [T - 00 0 o) L ez—¢ 1 1 4 4
uswwo) b d saniaa 98pg

sutof

9-¥ dIqEL

238 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

(1.232, 3.381, 2.837) for edge 10 and to (0.232, 1.001, 3.993) and (0.232, 2.933,

4.510) for edge 11. These four points are saved as penetration points.
Comparing the non-self-hidden edges of volume 2 against volume 1 yields

the results shown in Tables 4-7 and 4-8. Edge 17 is partially hidden by volume 1.

Table 4-7

Joins
Edge vertices s d

14 10—-11" [2.598 1.544 1.967 1] [-2.0 —0.897 3.346 0]
15 11-12 [0.598 0.647 5.313 1] [-1.732 0.259 -0.966 0]
17 13—14 [0.866 3.734 1.518 1] [1.732 -0.259 0.966 0]
18 14—15 [2.598 3.475 2484 1] [-2.0 -0.897 3.346 0]
19 15-16 [0.598 2.579 5.830 1] [-1.732 0.259 -0.966 0]
20 16—13 [—1.134 2.838 4.864 1] [2.0 0.897 -3.346 0]

22 10-14 [2.60 1.544 1967 1] [0 1.932 0.518 0]
23 11-15 [0.598 0.647 5.313 1] [O 1.932 0518 0]
24 12-16 [—-1.134 0.906 4.347 1) [O 1.932 0.518 0]

Specifically, as shown in Fig. 4-31c, edge 17 is hidden from 0 = ¢ < 0.211, which
corresponds to the line from (0.866, 3.734, 1.518) to (1.232, 3.679, 1.722). Edge
20 penetrates the front face (plane 5) of volume 1 at r = 0.25. Hence, it is hid-
den from 0.25 < ¢ = 1.0 which corresponds to the line from (—0.634, 3.062,
4.28) to (0.866, 3.734, 1.518). The solution region is shown in Fig. 4-31d.
The point (—0.634, 3.062, 4.028) is saved as a penetrating point. The solution
region also shows that the point for t = 0.75, a = 0 is a penetrating point. This
value of ¢ corresponds to the point (0.366, 3.511, 2.355).
There are six penetrating points:

- —

(PPI=] 1232 1449 2320 1| @
1.232 3.381 2837 1| @

0.232 1.001 3993 1| ©®

0.232 2933 4510 1| @

-0.634 3.062 4.028 1| &

| 0366 3.511 2.355 1| v)

Connecting each of these lines to each of the others in turn yields 30 possible
junction lines. Each of these lines must be tested against each of the volumes.
The large majority are invisible. By inspection, only the lines connecting points
18 and 20, and 20 and 21 are of interest. These lines are totally visible. In fact,
they are the junction lines. The details of the complete solution are left as an
exercise. The complete result is shown in Fig. 4-30c.

0>$b4sdg>sdo>smidqmnieio, 0 0 ze¢—-0 01 [—zv 111 91-T vT
0>1b4ldg>1do>1mibdquuuieroL, [0 0 T—-0 0] [1—CT¢ve€1-1 gI-N €z
0>1b4ldg>1do>1mbqumuiero, [0 0 z—-0 01 [i—-€ Tve€1-1 vi-ol (44
oOrlsi>gzouspplyBunennoudd [b— ¥ 00 0 01 [-y 1 1] €191 0z
0>$b+sdg>Sdo>SmigqsmieioL, 0 0 00 z-2¢1 [1-¥2T¢€i1-1 91-6l 61
0>1btido>1do>Imtoqsmieo, ¥ v— 00 0 01 [I-€ v T¢€1-] SI-vl 81
1zo>1so‘uoppydenied [0 0 00 ¢ T-1 U-¢ vz1 11 wI-€l Ll
0>sb+sdg>sdo>SmiqsmieolL, [0 0 00 T-2¢1 [1—2T¢ve€I1-] -1l St
0>1b41dg>1dg>1mibdquuadeioL [v— 00 0 01 [I— € T¢veI-1 1i-0l vl
JudWwo) b d soomaa 28pg

sutof

8-v dIqEL

240 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

®
y 77y
®
“””Hidden
——in this
region
a=0
L t
0
o
t=1 t=0 Q® =
2 7777777, ‘; 777,
10 Hidden
® —34 —in this
b region
Hidden 1 g
— in this 7
region 7 0
a=ot 0 % NIII?3 ./@ /(/1/_/ t
1.0 0 10
d

Figure 4-31 Solutions for Example 4-13.

4-4 WARNOCK ALGORITHM

The basic ideas behind the Warnock algorithm are very general. They are,
by analogy, based on an hypothesis of how the human eye-brain combination
processes information contained in a scene. The hypothesis is that very little
time or effort is expended on areas that contain little information. The majority
of the time and effort is spent on areas of high information content. As an
example, consider an otherwise empty table top with a bowl of fruit on it. The
color, texture, etc., of the entire table top require minimal time to perceive.
Attention is focused on the fruit bowl. Where on the table is it located? How
large is it? What kind of bowl: wooden, ceramic, plastic, glass, metal? What
color bowl: red, blue, silver, dull, glossy, etc.? What kind of fruit does it
contain: peaches, grapes, pears, bananas, apples? What color apples: red,
yellow, green? Does the apple have a stem? In each case the area of interest
narrows, and the level of detail sought increases. Further, if, at a particular
level a specific question cannot be answered immediately, it is temporarily
put aside for later consideration. The Warnock algorithm and its derivatives
attempt to take advantage of the fact that large areas of a display are similar,
e.g., the table in the above discussion. This characteristic is known as area

WARNOCK ALGORITHM 241

coherence; i.e., adjacent areas (pixels) in both the x and y directions tend to
be similar.

Since the Warnock algorithm is concerned with what is displayed, it works
in image space. It considers a window in image space and seeks to determine
if the window is empty or if the contents of the window are simple enough
to display. If not, the window is subdivided until either the contents of a
subwindow are simple enough to display or the subwindow size is at the limit of
desired resolution. In the latter case, the remaining information in the window
is evaluated and the result displayed at a single intensity or color. Antialiasing
can be incorporated by carrying the subdivision process to less than display
pixel resolution and averaging the subpixel attributes to determine the display
pixel attributes (see Sec. 2-25).

Specific implementations of the Warnock algorithm vary in the method of
subdividing the window and in the details of the criteria used to decide whether
the contents are simple enough to display directly. In Warnock’s original
presentation of the algorithm (Refs. 4-10 and 4-11) each window is subdivided
into four equal subwindows. This implementation of the algorithm and a
common variation allowing for subdivision of the window at polygon boundaries
are discussed in the present section. Another variation that subdivides the
window into polygonal windows developed by Weiler and Atherton (Ref. 4-12)
is discussed in the next section. Catmull (Refs. 4-13 and 4-14) has also applied
the basic subdivision concept to the display of curved surfaces. This technique
is discussed in Sec. 4-6.

Figure 4-32 illustrates the progress of the simplest implementation of the
Warnock algorithm. Here, a window that is too complicated to display is
subdivided into four equal windows. Further, a window that contains anything
is always subdivided until the resolution of the display is reached. Figure 4-32a
shows a scene composed of two simple polygons. Figure 4-32b shows the result
with the hidden lines removed. Notice that the horizontal rectangle is partially
hidden by the vertical rectangle. Figures 4-32c and d show the process of
subdivision for a display resolution of 256 x 256. Since 28 = 256, a maximum
of eight subdivisions are required to reach the resolution of the display. If
the subwindows are considered in the order lower left, lower right, upper left,
upper right, then the subwindows of level 1a labeled 2a, 4a, 4b, 4c, Sa, 5b are
declared empty and displayed at the background intensity during the course of
the subdivision.

Here, the number indicates the subdivision level, and the letter the quad-
rant. The first subwindow examined at the pixel level that contains a feature of
interest is the one labeled 8a. At this point it is necessary to decide whether a
hidden line or a hidden surface algorithm is desired. If a hidden line algorithm
is desired, then the pixel corresponding to subwindow 8a is activated because
a visible edge passes through it. The result is to display the visible edges of the
polygons as a series of pixel-sized dots, as shown in Fig. 4-32e.

Subsequent consideration of the window labeled 8d in Fig. 4-32d best il-
lustrates the difference between implementation as a hidden line and as a hidden

242 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

surface algorithm. For a hidden line algorithm, the pixel-sized window 8d does
not contain any polygon edges. Therefore, it is declared empty and displayed
at the background intensity or color. For a hidden surface algorithm, the pixel-
sized window 8d is examined to see if it is surrounded by any of the polygons
in the scene. If it is, all the polygons surrounding the pixel are tested to see
which one is closer to the eyepoint at this pixel location. The test is performed

NI

surfaces
removed
a b
255.0 255255 80324 NY6,32
i | :
i -4 i
L 8 | |
! 8b :5d !
F--- T 1 - + === - + ———- 4
; i :
4 ! i
| = ‘
S : :
2a4a7; - + —3b iég__’_ . ESb i
0,0 255,0 ! 296,16
c d

L

e f
Figure 4-32 Warnock algorithm subdivision.

WARNOCK ALGORITHM 243

at the pixel center. The pixel is then displayed at the intensity or color of the
closest polygon. If no surrounding polygons are found, the pixel-sized window
is empty. Thus, it is displayed at the background color or intensity. The pixel-
sized window labeled 8d is surrounded by the vertical rectangle. Thus, it is
displayed at the color or intensity for that rectangle. The result is shown in
Fig. 4-32f.

The addition of antialiasing to the hidden surface algorithm is illustrated
by reconsidering window 8a in Fig. 4-32d. Subdividing this window yields four
subpixel-sized windows. Only one of these windows, the upper right hand one,
is surrounded by the polygon. The other three are empty. Averaging the
results for the four subpixels (see Sec. 2-25) shows that the pixel-sized window
8a should be displayed at one-quarter the intensity of the rectangle. Similarly,
the pixel labeled 8b would be displayed at half the intensity of the rectangle.
The pixel-sized windows can, of course, be subdivided more than once to allow
for weighted averaging of the subpixel characteristics, as discussed in Sec. 2-25.

The subdivision process yields a tree structure for the subwindows as shown
in Fig. 4-331 The root of the tree is the display window. Each node represented
by the box contains the coordinates of the lower left hand corner and the length
of the side of the subwindow. Assuming that subdivided windows are processed
in the order abcd, i.e., from left to right at a particular subdivision level in the
tree, then Fig. 4-33 shows the active path through the tree structure to the
pixel-sized window labeled 8a. The active node at each level is indicated by
the heavy line. Examination of Figs. 4-32 and 4-33 shows that, at a particular
level, all windows to the left of the active node are empty. Thus, they have
been previously displayed at the background color or intensity. All windows to
the right of the active node at a particular level remain to be processed, i.e.,
declared empty or subdivided, as the tree is traversed in the reverse direction.

The above algorithm is sufficient to solve either the hidden line or hidden
surface problem. However, both the simplicity of the subdivision criteria and
the rigidity of the subdivision algorithm maximize the number of subdivisions.
The algorithm can be made more efficient by using both more complex subdivi-
sion algorithms and more complex subdivision criteria. Figure 4-34a illustrates
one common alternate subdivision algorithm and compares it to the previous
fixed subdivision algorithm, as shown in Fig. 4-34b.

The subdivisions shown in Fig. 4-34a are obtained by using the bounding
box of the polygon. Note that the subwindows need not be square. The
algorithm can be recursively applied to any polygon wholly contained within
a window or subwindow. If only a single polygon exists within a window,
and if it is wholly contained within the window, then it is easy to display,
that polygon without further subdivision. A subdivision algorithm such as
this is particularly useful in minimizing the number of subdivisions for simple
scenes (see Fig. 4-34). However, as scene complexity increases, its advantage
decreases.

TThe Warnock algorithm is the first known implementation of a quadtree data structure.

244 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

In considering more complex subdivision criteria, it is convenient to define
the relationship of several types of polygons to a window. In particular, a
polygon is

0,0.256
0

128,0,128 0,128,128 128,128,128
1b lc 1d

0,0,64 64,0,64 0,64,64 64,64,64
2a 2b 2c 2d
64,0, 32 96,0, 32 64, 32,32 96, 32, 32
3a 3b 3c 3d

64,0,16
4a

64,16,16
4c

80,16,8 88.16,8 80, 24,8 88,24.8
S5a 5b Sc 5d

80,24, 4 84,24, 4 80, 28, 4 84,28,4
6a 6b 6c 6d

80, 24,1 81, 24, 1 80, 25, 1 81, 25, 1
8a 8b 8c 8d

Figure 4-33 Window tree structure.

WARNOCK ALGORITHM 245

T T T T
1] 1 1
| Lo
1]]

bt — == =1
+-—-- ! ! H
! |
! |

_____ -+ -4 -
| |
| '
| |
1 1

| [I -t ==
! ' N
| i H 1 1
' ' L

1 1 H
a b

Figure 4-34 Comparison of subdivision algorithms.

disjoint if it is totally outside the window
contained if it is totally inside the window
intersecting if it intersects the window
surrounding if it completely contains the window

An example of each of these polygon types is shown in Fig. 4-35. Using
these definitions, the following decision criteria can be applied to a window.
Assembled into an algorithm they yield

For each window:

ya—

If all the polygons in the scene are disjoint from the window, then the
window is empty. It is displayed at the background intensity or color
without further subdivision.

If only a single polygon is contained within the window, the area of the
window outside the polygon is filled with the background intensity or
color; and the polygon is filled with the appropriate intensity or color.

If a single polygon intersects the window, the area of the window
outside the polygon is filled with the background intensity or color;
and the portion of the intersecting polygon within the window is filled
with the appropriate intensity or color.

If the window is surrounded by a single polygon, and if there are
no other polygons in the window, then the window is filled with the
intensity or color appropriate for the surrounding polygon.

r~

Disjoint Contained Intersecting Surrounding

Figure 4-35 Polygon types.

246 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

If at least one surrounding polygon is found, and if it is the polygon
closest to the eye, then the window is filled with the intensity or color
appropriate for the surrounding polygon.

Otherwise, subdivide the window.

The first four of these criteria deal with the relationship of single polygons
to the window. They are used to reduce the number of subdivisions. The last
criterion is the key to the hidden surface problem. It attempts to find a single
surrounding polygon that is closer to the eye then any other polygon in the
window. Obviously, this surrounding polygon will obscure or hide all the other
polygons in the window. Thus, it represents the visible feature in the scene for
this window.

Implementing these decision criteria requires techniques for determining
whether a polygon is disjoint from, contained within, intersects, or surrounds
a window. For rectangular windows, bounding box or minimax tests can be
used to determine whether a polygon is disjoint from a window (see Secs. 2-13
and 3-1). In particular, if x., xg, ys, yr define the four edges of a window and
Xemins Xmax » Ymin» Ymax the bounding box surrounding a polygon, then the polygon
is disjoint from the window if any of the following conditions is satisfied

Xmin = XR
Xnax < XL
Ymin = YT
Ymax < ¥B

as shown in Fig. 4-36a. Further, the polygon is contained within the window if
the bounding box is contained within the window i.e., if

Xmin = XL and Xmax = XR and Ymin =y8 and yp. =yr

as shown in Fig. 4-36b.

y . y .
Window Window
y 32I 4 . YT 32I -/
T Bounding box
24 Ymax 94
16 16
8 8
Ymin
B 0 Mx Y8 0 — X
0 8 16 24 32 40 48 56 . 0 8 16 24 32
XL a XR XL b XR

Figure 4-36 Boxing tests for disjoint and contained polygons.

WARNOCK ALGORITHM 247

Example 4-14 Disjoint and Contained Polygons

Consider a square window with edges x.,xr, ys, yr equal to 0, 32, 0,32. Two
polygons, the first with vertices P1(36, 8), P2(48, 24), and P3(56, 4), and the
second with vertices P1(8, 4), P2(12, 24), and P3(24, 12), as shown in Fig. 4-36a,
are to be tested against this window.

The bounding box for the first polygon, x in X maxs Y min» Ymax» 1S 36, 56,4,
24. Since

(Xpmin = 36) > (xr = 32)
the polygon is disjoint from the window.

Similarly the bounding box for the second polygon, x,
is 8, 24, 4, 24 as shown in Fig. 4-36b. Here the condition

min® *max> Ymins Ymax

(Kmin = 8) > (L = 0) and (xpex = 24) <k = 32) and,
Omin =4 >08=0) and @max =24) < (yr = 32)

is satisfied. Hence, the polygon is contained within the window.

A simple substitution test can be used to determine if a polygon intersects
a window. The coordinates of the window vertices are substituted into a test
function formed from the equation of the line defining a polygon edge (see
Sec. 3-16 and Example 3-23). If the sign of the test function is the same for
each window vertex, then all the vertices lie on the same side of the line; and
there is no intersection. If the signs are different, then the polygon intersects
the window. If none of the polygon edges intersects the window, the polygon
is either disjoint or surrounds the window. If the equation of the line through
two polygon vertices Py(x1,y1) and Pa(x2,y2) is y = mx+ b, then the test function
is

where -
= 22 ! x2—x1#0
X2 — X1
b=y —mx
and

T.F.=X—X| xz—x1=0

An example illustrates the technique.

Example 4-15 Intersecting Polygons

Consider the square window with xz, xg, y8, y7 equal to 8, 32, 8, 32 and the
two polygons with vertices P (8, 4), P2(12, 24), and P3(40, 12)and with vertices
P1(4, 4), Py(4, 36), P3(40, 36), and P4(32, 4), as shown in Fig. 4-37. The test
function for the polygon edge P1P> in Fig. 4-37ais obtained from

248 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

b=y —mx; =4-5@8) = —36
TF.=y—mx—b=y—5x+36
Substituting the coordinate of each window corner into the test function yields

T.F.8,8)=8-5@8)+36=4
T.F.(8,32) =32-5(8)+36=28
T.F.(32,32)=32-532)+36 = —-92
T.F.(32,8) =8-5(32)+36=—116
Since the test function changes sign, the polygon edge intersects the window
edge as shown in Fig. 4-37a. Hence, the polygon is an intersector. There is no
need to check the other polygon edges.
The results for the polygon shown in Fig. 4-37b are given in Table 4-9.
None of the polygon edges intersects the window. Hence, the polygon is either
disjoint or a surrounder. Figure 4-37b shows that it is a surrounder.

Table 4-9
Polygon Test Window Test function
edge function coordinates result Comment
P1P2 x—4 @3, 8 4 Nonintersecting
(8,32) 4
(32,32) 28
32, 8) 28
P2P3 y—36 8, 8) -28 Nonintersecting
(8,32) -4
(32,32) -4
(32, 8 -28
P3P4 y—4x+ 124 (8, 8) 100 Nonintersecting
8,32) 124
(32,32) 28
32, 8) 4
P4P y—4 @8, 8 4 Nonintersecting
(8,32) 28
(32,32) 28

32, 8 4

WARNOCK ALGORITHM 249

y y
Py P.
X X 3
32|y L R nt yTXL XR
%t 2%
16 16 +
>P3
8 yBL/ 8+ Y8
0 i ! 1 1 1 1 X 0 Pl 1 1 i LP4 1 X
0 8 16 24 32 40 0 8 16 24 32 40
a b

Figure 4-37 Intersection tests.

The simple bounding box test discussed above will not identify all disjoint
polygons, e.g., a polygon that encloses a corner of the window as shown in
Fig. 4-38a. More complex tests are required. Two are of particular interest,
the infinite line test and the angle counting test. Both assume that intersecting
and contained polygons have been previously identified. Both can be used to
identify disjoint and surrounding polygons.

For the infinite line test, a line is drawn from any part of the window, e.g.
a corner, to infinity. The number of intersections of the line and the polygon
of interest are counted. If the number is even (or zero), the polygon is disjoint;
if odd, the polygon surrounds the window as shown in Fig. 4-38a. If the line
passes through a vertex of the polygon as shown in Fig. 4-38b, uncertainty
results. This uncertainty is resolved by counting two intersections at a concave
vertex (P2 in Fig. 4-38b) and only one at a convex vertex (P4 in Fig. 4-38b) (see
also Sec. 2-15). Changing the slope of the line also eliminates the uncertainty.

40 -P Infinite P
line Infinite 1i ’
39L 1 7 3)2! 5 nfinite ||ne7 P, P,_—]
B
24r 24+
P.
16r 16 ’
Py)
8r 8 P R
F—) Py

L 1 Il 1 Ly X

0 1 1 1 X 0 1
0 8 16 2;& 32 40 48 0 8 16 24 32 40 48 54
b

Figure 4-38 Surrounding polygon test.

250 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Polygon

Polygon

a b
Figure 4-39 Angle counting test.

The angle counting test is illustrated in Fig. 4-39. Proceeding either clock-
wise or counterclockwise around the polygon, the angles formed between lines
from any point in the window to the initial and final vertices of a polygon edge
are summed. As shown in Fig. 4-39, the center of the window is a convenient
point. The sum of these angles is interpreted as follows:

Sum = 0 the polygon is disjoint from the window.

Sum +360n the polygon surrounds the window n times.

The actual determination of the sum is considerably simplified by realizing
that the precision of the individual angle calculations need not be high. In
fact, sufficient precision is obtained by counting only the whole octants (45°
increments) subtended by the individual angles as shown in Fig. 4-40. The
implementation is similar to that for the line end point codes used for clipping
(see Sec. 3-1). Here, the octant regions are numbered 0 to 7 counterclockwise.
The number of whole octants subtended is obtained by taking the difference
between the region numbers of the polygon edge end points and applying the
following algorithm:

N
32
4
S 6 7 Sio6
P :
a R b

Figure 4-40 Angle test for disjoint and surrounding polygons.

WARNOCK ALGORITHM 251

Aa = (second end point region number) — (first end point region number):

if Aa >4 then Aa = Aa—8

if Aa < —4 then Aa = Aa + 8

if Aa =0 then the polygon edge is split at a window edge and the
process repeated with the two segments.

Summing the individual polygon edge contributions yields

ZAa =0 the polygon is disjoint from the window.
= #8n the polygon surrounds the window.

Example 4-16 Angle Test for Surrounding and Disjoint Polygons

Consider the window and the polygons shown in Fig. 4-40. For the polygon shown
in Fig. 4-40a, the number of octants subtended by the edge PP is
Aapp=2-7=-5<-4
=-5+8=3

Similarly, for the remaining polygon edges
Aaxy=3-2=1

Aazs =5-3=2
Aag) =7-5=2

The sum of the angles subtended by all the polygon edges is
DAa=3+1+2+2=8
Thus, the polygon surrounds the window.
For the polygon shown in Fig. 4-40b
Aapp=1-7=-6< -4
-6+8=2
Aaz3=2-1=1
Aazug=0-2=-2
Aags =6—-0=6>4
=6-8=-2
Aas; =7-6=1

and
Y Aa=2+1-2-2+1=0

Thus, the polygon is disjoint from the window.

A hierarchical application of these techniques based on the computational
work involved is advantageous. If only the simplest Warnock algorithm is
implemented, then it is not necessary to identify either contained or intersecting
polygons. Subdivision will eventually make contained or intersecting polygons

252 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

either disjoint or surrounding polygons. Any remaining conflicts are resolved
at the pixel level. For this simple algorithm, only the bounding box test need
be used to identify empty windows. If this simple test fails, the algorithm
subdivides the window until the pixel level is reached. Since even at the pixel
level a disjoint polygon of the form shown in Fig. 4-40b can exist, it is necessary
to apply a more rigorous algorithm to determine if the window is empty or
surrounded by one or more polygons.

The more complex algorithm discussed above attempts to identify con-
tained, intersector, more complex disjoint polygons, and surrounding polygons
for larger windows in order to avoid subdivision. These tests require more
work. Hence, there is a tradeoff between the work associated with subdivision
and the work associated with early identification of displayable windows. A
more complex algorithm might implement the tests at each window in the fol-
lowing order.

The simple bounding box test for identifying most empty windows and
windows with a single contained polygon. These windows are immediately
displayed.

The simple intersector test for identifying windows with a single intersecting
polygon. The polygon is clipped and displayed. For example, the polygon
in Fig. 4-34b would be displayed after one subdivision.

The more complex disjoint and surrounder tests for identifying additional
empty windows and windows with a single surrounding polygon. These
windows are immediately displayed.

At this point either subdivision occurs or an attempt is made to find a single
surrounding polygon that is closer to the eyepoint than any other polygon. If
subdivision occurs, this question is delayed until the pixel level. In either case,
a depth calculation is required.

The depth calculation is performed by comparing the depth (z coordinate)
of the planes of the polygons at the window corners. If the depth of a sur-
rounding polygon is greater than the depth of all other polygons at the corners
of the window, then the surrounding polygon hides all the other polygons in the
window. Hence, the window can be displayed at the intensity or color of the
surrounding polygon. Note that this is a sufficient but not a necessary condition
for a surrounding polygon to hide all other polygons in the window. Figure 4-41
illustrates that extending the plane of a polygon to intersect the window corners
may result in failure to identify a surrounding polygon that hides all others in
the window.

In particular, if an extended polygon is hidden by a surrounding polygon
at the window corners, then the polygon itself is hidden by the surrounding
polygon (as in Fig. 4-41). If an extended polygon is not hidden by the sur-
rounding polygon, it is not obvious whether the polygon itself is hidden or not
(b in Fig. 4-41). The conflict is resolved by subdividing the window.

WARNOCK ALGORITHM 253

The depth of an extended polygon at the window corners can be obtained
from the plane equations for the polygons (see Sec. 4-3 and Example 4-3). For
example, if the plane equation is

ax+bytcz+d=0
and the window corner coordinates are x,, y,,, then
z= —(d+ ax,, + by,)c c#0

yields the depth of the extended polygon at the window corner.

All of the above discussion assumes that every polygon is compared to
every window. For complex scenes this is very inefficient. The efficiency can
be improved by performing a depth priority sort (z sort). The sort order of
the polygons is based on the z coordinate of the polygon vertex nearest the
eyepoint. In a right handed coordinate system, the polygon with the maximum
z-coordinate value for its nearest vertex is closest to the eyepoint. This polygon
appears first on the sorted polygon list.

When processing each window, the algorithm looks for surrounding poly-
gons. When a surrounding polygon is found, its vertex farthest from the eye is
remembered as zsmin. As each successive polygon on the list is considered, the
z-coordinate value of its nearest vertex zpma is compared to zsmin. If 2z pmax <
Zsmin, then clearly this polygon is hidden by the surrounding polygon and need
not be considered further. Figure 4-41 illustrates that this is a sufficient but
not a necessary condition; e.g., the polygons labeled a in Fig. 4-41 need not be
considered further, but the polygon labeled b must.

The size of the list of polygons processed for each window is reduced
by taking advantage of information about the polygon obtained earlier in the
algorithm. In particular, if a polygon surrounds a window, then clearly it
surrounds all subwindows of that window and need not be processed further.
In addition, if a polygon is disjoint from a window, then it is disjoint from
all subwindows of that window and need not be considered when processing
those subwindows. Only intersector and contained polygons from the previous
window need be processed further.

Window

Surrounding Figure 4-41 Depth comparisons for
polygon X surrounding polygons.

254 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

To take advantage of this information, three lists are used; one for sur-
rounding polygons, one for disjoint polygons, and one for intersecting and con-
tained polygons (see Ref. 4-11). As the subdivision progresses, polygons are
added or removed from the appropriate list. The level at which a polygon is
first added to a particular list is also retained. This information is used when
the tree in Fig. 4-33 is traversed in the reverse direction. At each subdivision
level, the surrounding polygon list is processed first to find the closest surround-
ing polygon. The intersector/contained polygon list is then processed to see if
the surrounding polygon hides all the intersector and contained polygons. The
disjoint polygon list is ignored.

The underlying concept and a number of possible enhancements of the
Warnock algorithm have been discussed. It should be clear that no single
Warnock algorithm exists. The implementation details vary from algorithm
to algorithm. A pseudo code implementation of the most basic algorithm is
given below. If the window size is greater than the display resolution and
contains any feature of interest, the algorithm always subdivides the window.
For windows greater than pixel size, a simple bounding box test is used to
identify disjoint polygons. For pixel-sized windows a more sophisticated test
is used that determines the visible polygon by examining the z coordinate of
each polygon at the center of the pixel. No depth priority sort is used, nor
is advantage taken of prior information about window-polygon relationships.
The algorithm is implemented using a pushdown stack. The maximum stack
length is

3(screen resolution in bits — 1) + 5

This simple algorithm is sufficient to demonstrate the principle without becom-
ing submerged in data structures. For convex polygonal volumes a back-plane
cull (see Sec. 4-2) is performed before passing polygons to the algorithm. A
flowchart is shown in Fig. 4-42.

a simple implementation of the Warnock algorithm

a square display window is assumed

if there is anything in a window the algorithm always subdivides

the window is subdivided into four equal-sized square windows

every polygon is compared with every window

all data is assumed transformed to display window (image space) coordinates
an initial back-plane cull of self-hidden planes is assumed prior to entering
the algorithm

Vertex is an m X 3 array containing the x, y, z coordinates of each polygon
vertex.

m is the total number of polygon vertices in the scene. The vertices are
assumed specified in clockwise order

N is the number of polygons in the scene

Polygon isan N X 11 array containing information about individual polygons
Polygon(, 1) is a pointer to the location of the first polygon vertex in the
Vertex array

WARNOCK ALGORITHM 255

Push display
window onto stack
0, 0, Wmax

ol B>
no
Pop window

off the stack
Xorigin,Yorigin, Size

Is polygon Display
list complete? empty
I>N window

Is
the polygon
disjoint?

Size<Size/2

Push
] Perform Xorigin+Size, Yorigin+Size, Size
complex disjoint Xorigin, Yorigin+Size, Size
test Xorigin+Size, Yorigin, Size
Xorigin,Yorigin, Size

[

Display
empty pixel
window
Compute z for
all polygons
Y
Display pixel
for polygon
with Zmax
Figure 4-42 Flowchart for a simple Warnock algorithm. -

Polygon(,2) is the number of vertices for the polygon

Polygon(, 3) is the intensity or color associated with the polygon

Polygon(,4-7) contain the coefficients of the plane equation, a, b, c, d, for
the polygon

Polygon(,8-11) contain the bounding box values, xpin, Xmax> Ymin» Ymax» fOT
the polygon

Push is a function that places windows on a pushdown stack

Pop is a function that removes windows from a pushdown stack

256 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Wmax is the maximum x and y extent of the window. The origin of the
display window is assumed at 0, 0.
Window is a I X 3 array containing the current window origin and size as
Window(Xorigin, Yorigin, Size)
Disjoint is a flag,
= 0 for empty windows
=] for nonempty windows
initialize the background color for black
Background = 0
push the display window onto the stack
Push Window(0, 0, Wmax)
while (stack not empty)
get a window from the stack
Pop Window(Xorigin, Yorigin, Size)
initialize polygon counter

i=1

Disjoint = 0

for each polygon perform a bounding box test to find disjoint poly-
gons

while (i = N and Disjoint = 0)
call Box(i, Polygon, Window; Disjoint)
i=i+1
end while
if at least one polygon is not disjoint, subdivide or display pixel
if Disjoint > O then
if window is not pixel size, subdivide
if Size > 1 then
Size = Size/2
Push Window(Xorigin + Size, Yorigin + Size, Size)
Push Window(Xorigin, Yorigin + Size, Size)
Push Window(Xorigin + Size, Yorigin, Size)
Push Window(Xorigin, Yorigin, Size)
else
if window is pixel-sized, calculate attributes
call Cover(Vertex, N, Polygon, Window; Pnumber)
b if Pnumber > 0 then
call Display(Window, Polygon(Pnumber, 3))
else
display the empty window
call Display(Window, Background)
end if
end if
else
call Display(Window, Background)
end if

WARNOCK ALGORITHM 257

end while
finish

subroutine to perform a simple bounding box test
subroutine Box(i, Polygon, Window; Disjoint)
calculate Xleft, Xright, Ybottom, Ytop
Xleft = Window(1,1)
Xright = Window(1, 1) + Window(1,3) — 1
Ybottom = Window(1,2)
Ytop = Window(1,2) + Window(1,3) — 1
perform bounding box tests
Disjoint = 1
if Polygon (i, 8) > Xright then Disjoint = 0
if Polygon (i,9) < Xleft then Disjoint = 0
if Polygon (i, 10) > Ytop then Disjoint = 0
if Polygon (i, 11) < Ybottom then Disjoint = 0
return

subroutine to display a window
subroutine Display(Window, Intensity)
Setpixel(x, y, I) is a function to set a pixel at coordinates x, y to the intensity 1
for j = Window(1,2) to Window(1,2) + Window(1,3) — 1
for i = Window(1, 1) to Window(1,1) + Window(1,3) — 1
Setpixel(i, j, Intensity)
next i
next j
return

subroutine to check if a polygon covers the center of a window
subroutine Cover(Vertex, N, Polygon, Window; Pnumber)

a polygon covers a pixel-sized window if the center of the window is inside
the polygon
if the polygon vertices are specified in clockwise order, then the inside is
always to the right
the algorithm uses the Visibility subroutine presented in Sec. 3-16
if no covering polygon is found, Pnumber = 0
if at least one covering polygon is found, then Pnumber is set to the visible
polygon
initialize Zmax to zero. This assumes that all polygons are in the positive
half space, Z = 0
Zmax =0
initially assume there are no covering polygons
Pnumber = 0
set up window center

258 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Pointx = Window(1,1) + Window(1,3)/2
Pointy = Window(1,2) + Window(1,3)/2
for each polygon
fori =1to N
Index = Polygon(i, 1)
for each polygon edge
for j = 1 to Polygon (i,2) — 1
Plx = Vertex(Index, 1)
Ply = Vertex(Index,2)
P2x = Vertex(Index +1,1)
P2y = Vertex(Index+1,2)
note that Point, P1, P2 are shorthand for Pointx, Pointy, etc.
call Visible(Point, P1, P2; Pvisible)
if Pvisible < 0 then 1
Index = Index + 1
next j
take care of last edge
Plx = Vertex(Index, 1)
Ply = Vertex(Index, 2)
P2x = Vertex(Polygon(i, 1), 1)
P2y = Vertex(Polygon(i, 1), 2)
call Visible(Point, P1, P2; Pvisible)
if Pvisible = 0 then
call Compute(Vertex, i, Polygon, Window; z)
if z > Zmax then
Zmax =z
Pnumber = i
end if
end if
1 nexti
return

subroutine to calculate the pixel intensity
subroutine Compute(Vertex, N, Polygon, Window; z)

the equation of the polygon plane is used to calculate the polygon nearest the
eyepoint for this pixel
Max is the maximum function

calculate the x and y coordinates of the pixel center

Xcenter = Window(1, 1) + Window(1, 3)/2

Ycenter = Window(1, 2) + Window(1, 3) /2

determine z at the pixel center

check for an edge on the polygon through the pixel center

note that a polygon of this nature may be totally missed or appear as a

WEILER-ATHERTON ALGORITHM 259

disconnected series of dots—an example of aliasing
if Polygon(i, 6) = O then
for j = 2 to Polygon(i, 2)
z = Max(Vertex(j, 3), Vertex(j — 1, 3))
next j
else
calculate z from the plane equation
A = Polygon(i, 4)
B = Polygon(i, 5)
C = Polygon(i, 6)
D = Polygon(i, 7)
= — (A*Xcenter + B*Ycenter + D)/C
end if
return

An example serves to illustrate the algorithm.

Example 4-17 Warnock Algorithm
Consider the three polygons

1: (10, 3, 20), (20, 28, 20), (22, 28, 20), (22, 3, 20)
2: (5,12,10), (5, 20, 10), (27, 20, 10), (27, 12, 20)
3: (15,15, 25), (25, 25, 5), (30, 10,5)

to be displayed at a resolution of 32 X 32 pixels using the simple Warnock al-
gorithm described above. The first two polygons are rectangles perpendicular
to the z axis at z = 20 and z = 10, respectively. The third is a triangle that
penetrates both rectangles as shown in Fig. 4-43a. Figure 4-43b shows a hid-
den line view from a point at infinity on the positive z axis. Figure 4-43c shows
the contents of the frame buffer upon completion of the algorithm. The num-
bers in the boxes correspond to the polygon descriptions given above. The
algorithm proceeds from the lower left corner to the right and upward. The
box outlines indicate the size of the window subdivisions processed at each step
in the algorithm. For example, notice the large (8 X 8) empty window in the
lower left corner. This window is displayed without further subdivision. The
figures show that the triangle is partially obscured by the second rectangle,
penetrates the rectangle, is partially visible, is then obscured by the first rec-
tangle, and then penetrates the first rectangle with the apex visible.

4-5

WEILER-ATHERTON ALGORITHM

Weiler and Atherton (Ref. 4-12) attempt to minimize the number of subdivi-
sions in a Warnock-style algorithm by subdividing along polygon boundaries.
The basis of the algorithm is the Weiler-Atherton polygon clipper previously

260 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

\

| RIS EEEEELREE]
S e en| o
elekkle M Slescoccss| ™
1A Prpproclsssssns|?
I MMM Shessssss|®
M a N shssssses|
Mooy cNApMeR e 000@@@0%
AN INIDADS SEeeeeNes|
MNP MR RS S S
— - ERFEREERFFRRE 1)0782
o)) iy g g g g gy SISISI S
~-FEFEFEFERFRFR R R RRE- Sleal &
" FEEEFFEEFEFFEFEFFFERl s
e pEFEFEEREERERE S ZW
—EFEEEPPPEFFFEE Rl
- FFREEEFRERRRFERFRE F-slee
i gy e gy g g ey = Y L
A
CEEEFEEEREEFErr bbbl
JUNND U W Sy S Sy S S S [ES) [Sy (g SN R WER) Sy S "N 02
—-F-FFEFFFFFFFFFF - FEis sl s
SN NN S EEEEEEEE S e
seenhhiinne e 00@@@68@@%
skkavvininiy 227000000000007
sppnnknhnieese See8seQ|
NS S N NN N EISSISESESESE TSR R
s SIS [SESES) 00000@0%
FEE] Beaﬁoaewmoe CRCONaN|
ORI ERECONESRIS]|
SRR SESEURS] SECRCRSESESESES] SESESESESESESES)
eee BeemaﬂaTGGG GGGOOOE.W
“@PONONTMN- JODNODTMN~ ODNODTMN—

S
M N

Figure 4-43 Polygon example for the simple Warnock algorithm.

WEILER-ATHERTON ALGORITHM 261

discussed in Sec. 3-17. The output of the algorithm, which operates in object
space to an arbitrary accuracy, is polygons. Since the output consists of com-
plete polygons, the algorithm can easily be used for hidden line as well as hidden
surface elimination. The hidden surface algorithm involves four steps:

A preliminary depth sort.
A clip or polygon area sort based on the polygon nearest the eyepoint.
Removal of the polygons behind that nearest the eyepoint.

Recursive subdivision, if required, and a final depth sort to remove any
ambiguities.

A preliminary depth sort is used to establish an approximate depth priority
list. Assuming that the eyepoint is located at infinity on the positive z axis, the
polygon closest to the eyepoint and the first polygon on the list is the one with
the vertex having the largest z coordinate.

A copy of the first polygon on the preliminary depth-sorted list is used
as the clip polygon. The remaining polygons on the list, including the first
polygon, are subject polygons. Two lists are established: an inside list and an
outside list. Using the Weiler-Atherton clipping algorithm, each of the subject
polygons is clipped against the clip polygon. This is a two-dimensional clip
of the projections of the clip and the subject polygons. The portion of each
subject polygon inside the clip polygon, if any, is placed on the inside list. The
portion outside the clip polygon, if any, is placed on the outside list. This part
of the algorithm is an xy or area sort. An example is shown in Fig. 4-44. Figure
4-45 illustrates the inside and outside polygon lists for the scene in Fig. 4-44.
The depth of each polygon on the inside list is now compared to that of the clip
polygon. Using the x,y coordinates of the vertices of the subject polygons on
the inside list and their plane equations, the depth (z coordinate) of each vertex

o]

60

s} \

20t 3 z2=50

| |4 z=25

0 - i i i i 1 4 1 i 1 i A
0 20 40 60 80 100 120

a b

Figure 4-44 Priority polygon clipping for the Weiler-Atherton hidden surface algorithm.

262 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Inside polygon list Outside polygon list

Figure 4-45 Inside and outside polygon lists.

is calculated and compared with the minimum z-coordinate value (zcmir) for the
clip polygon. If none of the z-coordinate values of the subject polygons on the
inside list is larger than zcmin, then all the subject polygons on the inside list are
hidden by the clip polygon (see Fig. 4-44). These polygons are eliminated, and
the inside polygon list displayed. Note that here the only remaining polygon
on the inside list is the clip polygon. The algorithm continues with the outside
list.

If the z coordinate for any polygon on the inside list is greater than zmin,
then the subject polygon on the inside list lies at least partially in front of
the clip polygon. Figure 4-46 illustrates how this can occur. In this case the
original preliminary depth sort is in error. The algorithm recursively subdivides
the area, using the offending polygon as the new clip polygon. The inside list
is used as the subject polygon list. The original clip polygon is now clipped
against the new clip polygon. Note that the new clip polygon is a copy of the
complete original polygon, not the remainder after the original clip. Using a
copy of the complete polygon for the new clip polygon minimizes the number
of subdivisions.

A simple example more fully illustrates the algorithm.

X

B Figure 4-46 Condition for an error in the
~OZmenitial z sort.

WEILER-ATHERTON ALGORITHM 263

y y
40 F 40 B clipped by
Unclipped polygon A
20 20 }
A B A
0 1 i 1 i J_.x 0 i 1 1 x
0 20 40 60 0 20 40 60
a b
y y
40} A clipped by 40 Final
polygon B display
20+ 20 F
- L
A D B’ A C B’
o)) " 1 1 X 0 1 1 1 1 1 X
0 20 40 60 0 20 40 60
c d

Figure 4-47 Recursive subdivision for the Weiler-Atherton algorithm.

Example 4-18 Weiler-Atherton Hidden Surface Algorithm

Consider the two rectangular polygons shown in Fig. 4-46. Polygon A has ver-
tices (5, 0, 25), (40, 0, 5), (40, 40, S), and (5, 40, 25). Polygon B has vertices
(25, 0, 20), (55, 0, 20) (55, 30, 20), and (25, 30, 20). Figure 4-47a shows the
unclipped scene from an eyepoint at infinity on the positive z axis. Although
polygon B obscures part of polygon A, the preliminary depth sort places A
before B on the sorted list. A copy of polygon A is used as the initial clip
polygon. The initial subject polygon list contains both A and B, as shown in
Table 4-10. Table 4-10 and Fig. 4-47b show the result of clipping the subject
polygon list against polygon A. The inside list now contains polygons A and C,
and the outside list polygon B'. Comparing the depths of polygons A and C to
the clip polygon shows that C is in front of the clip polygon. The algorithm
recursively subdivides the area by using polygon B, of which C is a part, as
the clip polygon and the inside list as the subject polygon list. The result is
shown in Fig. 4-47c and Table 4-10. The portion labeled A’ is clipped away
and placed on the outside list. The portion labeled D is placed on the inside
list. Comparing the polygons C and D on the inslde list with the clip polygon
B shows that D is obscured. Hence it is eliminated. C is coincident with B, the
clip polygon. It remains on the inside list. Recursion is not necessary. Polygon
C is displayed. The algorithm continues to completion by extracting polygons
B' and A’ from the outside list. The details are given in Table 4-10. The final
result is shown in Fig. 4-47d.

264 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Table 4-10
Clip Subject Inside Beginning Final Display Comment
polygon polygons list outside list outside list
A A A B’ Recursion
B C
B A / c - A’ c Continue
C D with outside
list
Bl
A A A’ B’ B’ A’
5 » '/K)

One additional detail of the algorithm is of interest. When a single polygon
cyclically overlaps the clip polygon, i.e., lies both in front of and behind the
clip polygon (see Fig. 4-48a), no recursive subdivision is required. Here, all
material behind the cyclical polygon has already been removed by the previous
clip. It is only necessary to clip the original polygon against the cyclical polygon
and display the result. The unnecessary recursive subdivision can be prevented
by maintaining a list of polygons previously used as clipping polygons. If during
recursive subdivision the current clipping polygon appears on this list, then
a cyclical overlapping polygon has been found. No additional recursion is
necessary. Note that the algorithm directly handles cases of cyclical overlap
among several polygons, as shown in Fig. 4-48b.

a b
Figure 4-48 Cyclically overlapping polygons.

4-6 A SUBDIVISION ALGORITHM FOR CURVED SURFACES

Both the basic Warnock and the Weiler-Atherton subdivision algorithms as-
sume that the scene is represented by a collection of planar polygons. However,
many objects are represented by curved surfaces, e.g., aircraft, ships, automo-
biles, and chinaware etc. Polygonal approximations to these curved surfaces

z-BUFFER ALGORITHM 265

do not always yield adequate representations; e.g., silhouette edges appear
as short, connected, straight line segments rather than as continuous curves.
Catmull (Refs. 4-13 and 4-14) has developed a Warnock-style subdivision al-
gorithm for curved surface display. Although Catmull applied the algorithm
to bicubic surface patches, it is general enough to be applied to any curved
surface. In contrast to the Warnock algorithm that recursively divides image
space, the Catmull algorithm recursively subdivides the surface. Simply stated,
the algorithm is

Recursively subdivide the surface into subpatches until a subpatch, trans-
formed into image space, covers at most one pixel center.

Compute the attributes of the surface at this pixel and display the pixel.

Figure 4-49a shows a surface patch and its subdivision into pixel-sized
subpatches. Unless the surface is highly curved, it is usually sufficient to use a
polygonal approximation to the curved subpatch to decide whether it covers just
one pixel center (see Fig. 4-49b). The subdivision process results in subpatches
that do not cover any pixel center. The attributes of these patches are assigned
to the nearest pixel center. Subpatches that are outside the viewing window
are, of course, discarded. Subpatches that intersect the viewing window edge
are further subdivided until a clear inside or outside decision is possible.

The efficiency of the algorithm depends on the efficiency of the curved
surface subdivision technique. Catmull has suggested one technique for bicubic
surface patches. Cohen, Lyche, and Riesenfeld (Ref. 4-15) suggest a more
general technique for B-spline surfaces.

Pixel ~—Projected
center—\ surface patch b

Figure 4-49 Curved surface subdivision.

4-7 z-BUFFER ALGORITHM

The z buffer is one of the simplest of the hidden surface algorithms. The
technique was originally proposed by Catmull (Ref. 4-14) and is an image space

266 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

algorithm. The z buffer is a simple extension of the frame buffer idea. A frame
buffer is used to store the attributes (intensity) of each pixel in image space.
The z buffer is a separate depth buffer used to store the z coordinate or depth
of every visible pixel in image space. In use, the depth or z value of a new
pixel to be written to the frame buffer is compared to the depth of that pixel
stored in the z buffer. If the comparison indicates that the new pixel is in front
of the pixel stored in the frame buffer, then the new pixel is written to the
frame buffer and the z buffer updated with the new z value. If not, no action is
taken. Conceptually, the algorithm is a search over x, y for the largest value of
Ax,y).

The simplicity of the algorithm is its greatest advantage. In addition,
it handles the hidden surface problem and the display of complex surface
intersections trivially. Scenes can be of any complexity. Since image space
is of fixed size, the increase in computational work with the complexity of the
scene is at most linear. Since elements of a scene or picture can be written
to the frame or z buffer in arbitrary order, they need not be sorted into depth
priority order. Hence, the computation time associated with a depth sort is
eliminated.

The amount of storage required is the principal disadvantage of the al-
gorithm. If the scene is transformed and clipped to a fixed range of z coor-
dinates, then a z buffer of fixed precision can be used. Depth information
must be maintained to a higher precision than lateral x, y information; 20 bits
is usually sufficient. A 512 X 512 X 24 bit-plane frame buffer, in combination
with a 512 X 512 x 20 bit z buffer, requires almost /.5 megabytes of storage.
However, decreasing memory costs are making dedicated z-buffer memory and
associated hardware practical.

An alternative to dedicated z-buffer memory is to use either main memory
or mass storage for the z buffer. Smaller amounts of storage result from sub-
dividing the image space into 4, 16, or more subsquares or bands. In the limit,
a single-scan-line z buffer can be used. In the latter case an interesting scan
line algorithm results (see Sec. 4-9). Because each scene element is processed
multiple times, segmenting the z buffer generally increases the time required to
process a scene. However, area sorting so that all polygons are not processed
for each subsquare or band can significantly reduce the increase.

A further disadvantage of the z buffer is the difficulty and expense of
implementing antialiasing, transparency, and translucency effects. Because the
algorithm writes pixels to the frame buffer in arbitrary order, the necessary
information for prefiltering antialiasing techniques (see Sec. 2-27) is not easily
available. For transparency and translucency effects (see Sec. 5-9), pixels may
be written to the frame buffer in incorrect order, leading to local errors.

Although prefiltering antialiasing techniques are possible (see Ref. 4-13),
they are difficult to apply. However, postfiltering (subpixel averaging) tech-
niques (see Sec. 2-26) are relatively easy to apply. Recalling that postfiltering
antialiasing techniques compute the scene at an image space resolution greater
than the display resolution; two approaches to postfiltering antialising are pos-

z-BUFFER ALGORITHM 267

sible. The first uses a larger than display space resolution image space frame
buffer and a display space resolution z buffer. The depth of the image is
computed only at the center of the group of subpixels to be averaged. If
intensity scaling is used to indicate distance from the observer, this technique
may not be adequate.

The second technique maintains both increased image space resolution
frame and z buffers. Upon displaying the image, both the pixel and the depth in-
formation are averaged. This technique requires very large amounts of storage.
For example, a 512 X 512 x 24 bit-plane image with 20 bits of z buffer com-
puted at a factor of 2 increase in both x and y resolution and antialiased us-
ing uniform averaging (see Fig. 2-53a) requires almost 6 megabytes of storage.
More formally stated, the z-buffer algorithm is

Set the frame buffer to the background intensity or color.

Set the z buffer to the minimum z value.

Scan-convert each polygon in arbitrary order.

For each Pixel(x, y) in the polygon, calculate the depth z(x,y) at that pixel.

Compare the depth z(x,y) with the value stored in the z buffer at that
location, Zbuffer(x,y).

If z(x, y) > Zbuffer(x, y), then write the polygon attributes (intensity, color,
etc.) to the frame buffer and replace Zbuffer(x,y) with z(x,y).

Otherwise, no action is taken.
A back-face cull (see Sec. 4-2), where appropriate, is applied as a preliminary
step.

If the plane equation for each polygon is available, calculation of the depth

at each pixel on a scan line can be done incrementally. Recall the plane
equation

ax+by+cz+d=0
and
= —(ax+tby+d/c#0

On a scan line y = constant. Thus, the depth of the pixel at x; = x + Ax along
the scan line is

zZ1—z=—(ax1+d)/c+(@ax+d)/c=alx—x)/c
or
z1=2z— (a/c)Ax
But Ax = 1, so
z1=z-(a/c)

An example serves to further illustrate the algorithm.

268 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Example 4-19 z-Buffer Algorithm

Consider the rectangle with corner coordinates P1(10, 5, 10), P2(10, 25, 10),

P3(25, 25, 10), Ps(25,5, 10) and the triangle with vertices Ps(15, 15, 15),

Ps(25, 25, 5), P7(30, 10, 5). The triangle penetrates the rectangle from behind,
as shown in Fig. 4-50. The polygons are to be displayed at an image resolution
of 32 X 32, using a simple 2-bit-plane frame buffer. In the frame buffer the

background is represented by 0, the rectangle by 1, and the triangle by 2. The

z buffer is 32 X 32 X 4 bit planes. The z-buffer range is thus from 0 to 16. The

viewpoint is at infinity on the positive z axis, as shown in Fig. 4-50b.

Initially both the frame buffer and the z buffer are set to zero. After scan-

converting the rectangle, the frame buffer contents are

00000O000DO0O0O0O0DO0OO0OO0OOO0OOOOO0OO0O0OO0O0OO0OO0O0O0O0O00O0

00000O000DO0O0O0O00O0OO0OO0OO0OO0OO0OO0OO0OO0O0O0O0O0O0O0O0O0O00O0

0000000DO0O0O0OO0O0DO0OO0OO0OO0O0O0OO0OO0OO0O0O0OO0OO0OO0O0OOO0OO00O0D0O

00000000O0O000DO0OO0O0OO00O0O0OO0OO0O0O0O0O0OO0O0OO0O0OO0O00O
0000000O0O0O0O00O0OO0OO0OO0O0O0O0OO0OO0OO0O0CO0O0OO0O0O0OOOO00O

0000000O0O0O0O0O0O0OO0OO0OO0O0O0O0OO0OO0O0O0O0O0OO0O0O0O0OO0O00O0

0000000O0O0O0O0O0DO0O0OO0OO0OO0O0O0OO0OO0OO0O0O0O0O0OO0O0O0OO0O0

1110000000
1110000000

1
1

11
11

111111
11

1
1
1

000000000011

1111

000000O0OOCOOTI 1

10000000
10000000
10000000
10000000

11111110000000

1
1
1
1

1
1
1
1

11
111

1111

1
1
1
1

00000O0OO0CO0O0O0T1
00000O0OO0CO0O0O01
00000O0OO0CO0O0O1
0000O0OO0O0OO0COO?1
00000O0OCOO0O01

11
1

1
1

1111

11

1
1
1
1

1
1

1

1

1

11

11

1
111111

1
1

11

10000000O0
10000000
1110000000

1
1

1
1

1
1
1
1
1

1
1
1
1
1

111
1
1

1
1

1

00000O0O0CO0O0OO0T11
0000000O0OOOTI1TI1T1T1T11
00000O0OO0O0O0GOT
000000O0CO0OO0OO0T1
00000O0CO0CO0O0O01
0000O0O0COO0OO0O1
0000O0O0OO0CO0OO0OI1

1
1
1
1

1
1
1
1

10000000
10000000

1
1
1

1
1
1

11111
11111

1

1

00000OO0CDO
111110000000

1

1

11

0000000O0OO0OOCTITI1T11T11

1

11
1

1
1

1111

10000000
10000000
10000000
110000000

1
1
1

1
1
1
1
1
1

1
1
1
1

1
1
1
1

1

1

1

1

00000O0O0O0CO0O1
0000000O0O0OO0OT1TT11

1
1
1
1

1
1
1
1

1
1111

11
1
1

11
11
11

11
1

00000O0O0CO0O0OT
00000O0O0OOOGO1
00QO0O0O0OOCOOO0T1

10000000
10000000

00000O0O00O0O0OO0O0OO0OO0OO0OOOOO0OO0OO0O0OO0O0OO0OO0O0O0O0O0O0
00000O0O00O0O0O0O0OO0OO0OO0OOOOOO0OO0OO0O0O0O0O0O0O0O00O0
00000000O0O000O0OO0O00O0O0OO0OO0OO0O0O0O0O0OO0O0O0OO0OO00O0

00000000O0O0O0O0DO0OO0O0OO0O0O0O0OO0OO0O0O0O0O0O0O0O0OOO00O

1
1

1

111

1

11

0000000O0O0O000O0O0O0O000O0O0O00O00O0OO0O0O0O0OO00O0

The z-buffer contents are

z-BUFFER ALGORITHM 269

000O0O0COOOOOOOCOOOO0OOOOOOOO0OO0OO0OOOOOOOO

000O0O0CO0ODOOOOOOOOOOO0OOOOO0OO0OOO0O0OOOOOCOO

0000O0OO0OO0OOO0OOOOOOOOOOOOOO0OOOOOOOOOO
000O0O0OOOOOOOOOOOOOOOOOOOOOOOOOOOGODO
0000O0OOOOOOOOOOOOOOOOOOOO0OOOOOOOODO
000O0O0OO0OO0OOOOOOOOOOOOOOOO0OOOOO0OOOOOOO
0000O0OO0OO0OOOOOOOOOOOOOOOOOOOOOOOOOO
000O0O0OOOOOO0101010101010101010101010101010 0 0 0 0 0 0 O
000O0O0OOOOOO0101010101010101010101010101010 0 0 0 0 0 0 O
0000O0OO0CO0OO0OOO0101010101010101010101010101010 0 0 0 0 0 0 O
000O0O0OOOOGOO0O0101010101010101010101010101010 0 0 0 0 0 0 O
00O0O0OO0OGOOOOUO0C101010101010101010101010101010 0 0 0 0 0 0 O
000O0OO0OOOGOOOUO0101010101010101010101010101010 0 0 0 0 0 0 O
0000O0OOOOOOO0101010101010101010101010101010 0 0 0 0 0 0 O
000O0O0OOOGOOUO0101010101010101010101010101010 0 0 0 0 0 0 O
0000O0OOO0OOOUO0101010101010101010101010101010 0 0 0 0 0 0 0
000O0O0OOOOOO0101010101010101010101010101010 0 0 0 0 0 0 O
0000O0OOCOOOUO0101010101010101010101010101010 0 0 0 0 0 0 O
000O0O0OOOGOOO0101010101010101010101010101010 0 0 0 0 0 0 O
000OOOOOOO101010101010101010101010101010 0 0 0 0 0 0 O
000O0O0OOOGOOUO0101010101010101010101010101010 0 0 0 0 0 0 O
000O0O0OOO0OOOO0101010101010101010101010101010 0 0 0 0 0 0 O
000O0O0OOOOOO0O101010101010101010101010101010 0 0 0 0 0 0 O
000O0OOOOOOOO0101010101010101010101010101010 0 0 0 0 0 0 O
000O0O0OOOOOOO0101010101010101010101010101010 0 0 0 0 0 0 O
000O0O0OOO0OOOO0101010101010101010101010101010 0 0 0 0 0 0 O
000O0O0OOOOGOO0101010101010101010101010101010 0 0 0 0 0 0 O
000O0OO0OOCDOOOOOOOOOOOOOOOOOOOOOOOOOO
000O0O0DODO0OOOOOOOOOOO0OOOOOO0O0OO0OOOOOO0OO0O0O0

000O0O0OO0OO0OOOOOOOOOOOOOOOO0OOOOO0OOO0OO0O0O0

0000O0ODO0OO0OOOOOOOOOOOOOOOO0OOOOO0OOOO0OO0O0

000O0O0ODOOOOOOOOOOOOOOOOO0O0OOOOO0OOO0OO0O0O0

Figure 4-50 Penetrating triangle.

270 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Recall that the lower left corner pixel is (0, 0).

Using Newell’s method (see Sec. 4-3, Example 4-3), the plane equation

for the triangle is

0

Hence, the depth of the triangle at any location is

3x+y+4z-120

—GBx+y—120)/4

For succeeding pixels on a scan line

z

z1=2z—-3 /4
Calculating the intersections of the triangle edges with the scan lines, us-
ing the half scan line convention, yields the intersection pairs (24.5, 25.2),

(23.5, 25.5), (22.5, 25.8), (21.5, 26.2), (20.5, 26.5), (19.5, 26.8), (18.5, 27.2),

(17.5, 27.5), (16.5, 27.8), (15.5, 28.2), (16.5, 28.5), (19.5, 28.8), (22.5, 29.2),
(25.5, 29.5), (28.5, 29.8) for scan lines 24 to 10. Recall that a pixel whose cen-
converting and comparing the depth of each pixel with the z-buffer value yields
00000O0O00O0O0OO0O0OO0OO0OO0OO0OO0OO0OO0OO0OO0O0O0OO0OO0OO0OO0OOOCOOO
00000O0OO0OO0OO0OOO0OOO0OOO0OOO0OOO0OO0OO0O0O0OO0O0OO0OO0O0OO0OO0OO0O
0000000000O0O0O0O0O0OO0OO0OO0O0O0OO0OO0O0O0O00O0O
000000O0O0O0O0O0OOO0OOO0OOO0OOO0OO0O0O0OO0OO0OO0O0O0OQO
00000O0O0O0OO0OO0OO0OOO0OO0OO0OOOOOO0OO0OO0OO0O0OO0OO0OOOOOO0O
00000000O0OO0CO0O0OO0OOO0OO0OO0OOO0OOO0OO0OO0OOOOOOGOO
00000000O0O0O0O0OO0O0OOO0OO0OO0OO0OO0OO0OO0OOOO0O0O0O

ter is inside or on the triangle edge, i.e. for x; =< x < x», is activated. Scan-
the new frame buffer contents

10000000
12000000
12000000
12000000
12200000
12200000
12200000
12220000
12220000
1112220000

1
1
1
1
1
1
1
1
1

11

1

1
1
1

1
1
1

0000O0O0OO0O0O0OO0OT1 1

1111
1111

1

00000000O0O0O0OTI11
00000O0O0O0O0GO01

1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1
1
1
1

1

1111
11111

1

00000000O0O0CT1T1T11

00000000O0OO0OT1T1T11
0000000O0O0O0OT1T11
000000O0O0O0TO01
00000O0OO0CO0O0OO0T1
00000O0OO0CO0O0O01
00000O0OO0CO0OO O

1

1211

1
1
1

111

11122111

1122221

1222221
112222221

1
1

1
1

1
1

11

12222000
12222000
12222000
112222200

1
1
1

112222221

1

000000000O0OT1 11

12221

1
1
1
1

11

00000000O0OO0OT1 1111
00000O0O0OO0COO0T1
0000O0O0O0OO0OO0TO?1
00000O0O0OO0CO0GO1
00000O0O0OO0O0GO?1

1
1

11 1111

111
1
1

1
1

1
11

1111
1

1
1

10002200
1110000000

1

1111

1
1

1
1

1
1
1
1

111111

10000000
10000000
100000,00
111110000000

0000000O0OO0O0OO0OOO0OOO0OOO0OOOOO0OO0OOOO0OOOOOO
00000O0O0O0OO0OO0OO0OOO0OOO0OOO0OOO0OOO0OO0OO0OOO0OO0OO0O0OO
000000O0O0O0O0O0OO0OO0O0OO0OO0OO0OO0OO0O0O0O0O0OO0O0OO0O0O0O0OOO
000000O0O0OO0O0OO0O0O0OO0OO0OO0OO0OOO0OO0O0O0OO0OO0OO0OO0OO
000000O0O0O0OO0O0O0OO0OO0OO0O0OO0OO0O0OO0OO0O0OO0OOOO0OOO0OOODO

1
1
1

1
1
1

11111111

11111111

0000000O0O0O0OT1T11
00000O0O0OO0COGO1
00000O0O0O0CO0GOT1
0000O0O0O0OO0O0OO1

1
1

1
1

1

1

1111111

11

(= R R I — i — R I I — I — T — I — I — R T R — R — R I — I — I I — N — I — N — N

z-BUFFER ALGORITHM 271

After processing the triangle the z-buffer contents are

oo oo oo o
(== - — = A - -
oo oo o0
(===~ - R -}
oo o0 oo
(== — I = A - -]
(=R — IR~ - I Y

[— I — I)
(=T I - - -)
oo oo C.O (=}
oo oo 0o

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 1010 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 11 1010 10 10 10
10 10 10 10 10 10 10 10 12 11 1010 10 10 10
10 10 10 10 10 10 10 13 12 11 1010 10 10 10
10 10 10 10 10 10 14 13 12 11 11 10 10 10 10
12 1110 10 10 10
10 10 10 10 10 10 14 13 13 12 1110 10 10 10
10 10 10 10 10 10 10 10 10 12 1111 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 1010 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 1010 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 1010 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

OO0 0000000000000 O0O0O0O0O00O0O00O0000O0 0 o
©C 0O 0000000000000 00000O0O00O00O00O00O0 0O
©C 00 0000000000000 0000000CO00CO0O0 0O O
© 0O 0000000000000 O00O0O0000C0O0O00O00 00O
©C 0O 0000000000000 O0000000O0O0000000 OO
©C 00 0000000000000 O000O00O0000000 0O
I e I I I T R R R e G - T TR T R R R R R A R -)
R - - I A R R R N R EEEE S
I I I - T T T R I - - T T T = T T R R R O N PP

5

—

15

—

=5

_

=)

-

o

_-

w

—

»

_

w

_

~N
C 0000 COCOOO00®P®B®ININARAONAGRTUMNUO oo oo o o
C 00 00 CO OO0 OO NNNITIRARARNPNNUMOOOO oo o 0 0o o
©C C 000 OCOC OO0 ArANARNRARANULUOOOOOCOC oo 0 0o o
C 000000000 UMM UNOOOOOOO0O0OC oo o oo o
o R R R T R - I I R e - T T T R e e
C 0 0000000000000 0000000OO O 00000 o

oo oo
(=T R I
oo o o
oo oo
oo oo
oo o0 o0
o 0o oo o
o oo oo
(=2 — IR
oo o oo
o 0o oo
oo oo
o oo o

As a specific example, consider the pixel at (20, 15). Evaluating z at the center
of the pixel yields

z = —[(3)(20.5) + 15.5 — 120] /4 = 43 /4 = 10.75

Comparing it to the z-buffer value at (20, 15) after processing the rectangle
shows that the triangle is in front of the rectangle. Thus, the frame buffer
value at (20, 15) is changed to 2. Since for the purposes of this example the z
buffer is only 4 bits deep and thus has a range of only 0 to 15, the z value is
rounded to the nearest whole number. Consequently, the value 11 is placed in
the z buffer at location (20, 15).

The line of intersection of the triangle and the rectangle is obtained by
substituting z = 10 into the plane equation for the triangle. The result is

3x+y—80=0
The intersection of this line with the triangle edges is at (20, 20) and (22.5, 12.5).

This line of intersection where the triangle becomes visible is clearly shown by
the frame buffer contents.

C 0 00 O0OCPOO OO0 O0O0O0COOCOOCO0O0O0O0O0OC O cc0ce0c00 o

272 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The z-buffer algorithm can also be used for surface sectioning. Here, the
comparison is modified to

2(x,y). > Zbuffer(x,y) and z(x,y) < Zsection

where Zsection is the desired section location. The effect is to retain only those
elements at or behind Zsection.

4-8 LIST PRIORITY ALGORITHMS

The implementation of all the hidden line and hidden surface algorithms dis-
cussed above involves establishing the priority, i.e., the depth or distance from
the viewpoint, of objects in a scene. The list priority algorithms attempt to
capitalize on this by performing the depth or priority sort first. The objective
of the sort is to obtain a definitive list of scene elements in depth priority order
based on distance from the viewpoint. If the list is definitive, then no two
elements overlap in depth. Starting with the scene element farthest from the
viewpoint, each element is written to a frame buffer in turn. Closer elements
on the list overwrite the contents of the frame buffer. Thus, the hidden surface
problem is trivially solved. Transparency effects can be incorporated into the
algorithm by only partially overwriting the contents of the frame buffer with
the attributes of the transparent element (see Ref. 4-16 and Sec. 5-8).

For simple scene elements, e.g. polygons, the technique is sometimes called
the painter’s algorithm because it is analogous to that used by an artist in
creating a painting. The artist first paints the background, then the elements
in the intermediate distance, and finally the elements in the foreground. The
artist solves the hidden surface or visibility problem by constructing the painting
in reverse priority order.

For a simple scene, such as that shown in Fig. 4-51a, obtaining a definitive
depth priority list is straightforward. For example, the polygons can be sorted
by either their maximum or minimum z-coordinate value. However, for the
scene shown in Fig. 4-51b, a definitive depth priority list cannot be obtained
by simply sorting in z. If P and Q in Fig. 4-51b are sorted by the minimum z-
coordinate value (z,;,), then P appears on the depth priority list before Q. If

Figure 4-51 Polygonal priority.

LIST PRIORITY ALGORITHMS 273

P and Q are written to the frame buffer in this order, then Q will appear to
partially hide P. However, P in fact partially hides Q. The correct order in the
priority list is obtained by interchanging P and Q.

A further difficulty is illustrated by Fig. 4-52. Here, the polygons cyclically
overlap each other. In Fig. 4-52a P is in front of Q which is in front of R which
in turn is in front of P. For Fig. 4-52b, P is in front of Q which is in front of
P. A similar cyclical overlap occurs for penetrating polygons, e.g., the triangle
that penetrates the rectangle in Fig. 4-50. There, the rectangle is in front of the
triangle which is in front of the rectangle. In both examples a definitive depth
priority list cannot be immediately established. The solution is to cyclically split
the polygons along their plane of intersection until a definitive priority list is
obtained. This is shown by the dashed lines in Figs. 4-52a and b.

Newell, Newell, and Sancha (Ref. 4-16) developed a special sorting tech-
nique for resolving priority conflicts on the depth priority list. This special sort-
ing technique is incorporated into the Newell-Newell-Sancha algorithm given
below. The algorithm computes a new depth priority list dynamically before
processing each frame of a scene. No restrictions are placed on the complexity
of the scene environment nor on the type of polygon used to describe ele-
ments of the scene. The Newell-Newell-Sancha algorithm is designed to process
polygons. Newell (Ref. 4-17) has extended the concept to three-dimensional
volumes. Newell’s extension is not restricted to polyhedral volumes. It also
allows the processing of volumes of mixed types within the same scene.

The Newell-Newell-Sancha algorithm for polygons is

Establish a preliminary depth priority list, using z,,;, for each polygon as
the sort key. The first polygon on the list is the one with the smallest value
of z,,- This polygon, labeled P, is the farthest from a viewpoint at infinity
on the positive z axis. The next polygon on the list is labeled Q.

For each polygon on the list examine the relationship of P to Q.

If the nearest vertex of P, P; _, is farther from the viewpoint then the
farthest vertex of 0, Q. _, i. e Q, ,=P:__, then no part of P can hide
Q. Write P to the frame buffer (see Fig. "3 51a)

> P

y y

a
Figure 4-52 Cyclical overlapping polygons.

274 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

If Q: < P, then P potentially obscures not only Q but also any
polygon on the ’ilst forwhichQ, <P . Thisis the set {0}. However,
P may not hide any part of any polygon in the set {Q}. If this can be
determined, then P may be written to the frame buffer. A series of
tests of increasing computational difficulty is used to answer this ques-
tion. The tests are posed as questions. If the answer to any question
is yes, then P cannot obscure {Q}. P is then immediately written to the
frame buffer. The tests are

Are the bounding boxes of P and Q disjoint in x?
Atre the bounding boxes of P and Q disjoint in y?

Is P wholly on the side of the plane of Q farther from the viewpoint?
(See Fig. 4-53a.)

Is 0 wholly on the side of the plane of P nearer the viewpoint?
(See Fig. 4-53b.)

Are the projections of P and Q disjoint?

Each test is applied to each element of {Q}. If none of these tests
successfully writes P to the frame buffer, then P can obscure Q.

Interchange P and Q, marking the position of Q on the list. Repeat the
tests with the rearranged list. This is successful for Fig. 4-51b.

If an attempt is made to swap Q again, a cyclical overlap exists (see
Fig. 4-52). In this case, P is split along the plane of Q, the original
polygon removed from the list, and the two parts of P placed on the
list. The tests are then repeated with the new list. This step prevents
infinite looping.

Combined, the first two steps for determining whether P obscures Q are a
normal bounding box test (see Secs. 2-13 and 3-1). Since many scenes are not
square, it is more likely that the polygon bounding boxes will overlap in one
direction than in the other. When polygons are primarily horizontal or vertical,

/x P .
\ Q/\

Figure 4-53 Tests for overlapping polygons.

LIST PRIORITY ALGORITHMS 275

using individual tests is more efficient. As written, the algorithm assumes the
scene is wider than it is high, and thus polygons are primarily horizontal. The
order of the tests is interchanged if the scene is higher than it is wide. If the
scene is square, or if its composition is isomorphic, then the order of the tests
is immaterial.

The third and fourth tests can be implemented using any of the visibility
tests previously discussed (see Sec. 3-15 and Example 3-22). Since the plane
equation or the normal for each polygon is frequently available, a simple sub-
stitution test is convenient. If the relationship of the polygon Q to the polygon
P is desired, then the coordinates of the vertices of Q are substituted into the
plane equation of P. If the signs of the results are all the same, then Q lies
wholly on one side of P. As with the other hidden surface algorithms discussed
previously, a preliminary back-face cull is used if appropriate. Example 4-20
more fully illustrates this for polygons skewed in space.

Example 4-20 Relationship Test for Skewed Polygons

Consider the three polygons P, Q 1, Q2shown in Fig. 4-54. The polygon vertices
are

P: (1,1, 1), 4,572),65,2,5)
Qi1: (2,2,0.5), (3,3, 1.75), (6, 1, 0.5)
Q2: (0.5,2,55),(2,5,3), 4,4,5)

It is desired to determine if Q) and Q7 are wholly on one side of P. This is not
clear from the three orthographic views in Fig. 4-54. The plane equation of
Pis
15x—8y—13z+6=0
The test function is then
TF.=15x—8y—13z+6
Substituting the vertices of Q) into the test function yields

T.F,=152)—-82)—-13(0.5)+6=13.5>0
T.F=153)—-83) - 13(1.75)+6=425>0
T.F.3 =15(6) —8(1) — 13(0.5)+ 6 =81.5>0

Since the sign of all the test functions is positive, the polygon Q |lies wholly on
one side of the plane of P.
Substituting the vertices of Q2 into the test function yields

T.F.4 =150.5)-8(2)—13(55)+6=-74<0
T.F.s=152)—-8(5)—-133)+6=-43<0
T.F.e =154)—84)—13(5)+6=-31<0

Again, all the signs of the test functions are the same; and the polygon Q> lies
wholly on one side of the plane of P.

Figure 4-54d clearly shows that Q is on the side of the plane of P away
from a viewpoint at infinity on the positive z axis. Hence, it is partially obscured

276 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

by P. Similarly, Fig. 4-54d clearly shows that Q> is on the side of the plane
of P nearer a viewpoint at infinity on the positive z axis. Thus, it will partially
obscure P.

From this example it is clear that

If the signs of the test function for every vertex of a polygon are the
same and positive or zero, then the polygon is on the far (hidden) side
of the plane of P.

If the signs of the test function for every vertex of a polygon are the
same and negative or zero, then the polygon is on the the near (visible)
side of the plane of P.

If the test functions for every vertex of a polygon are zero, then the
polygon lies in the plane of P.

The last of the series of tests is particularly expensive because it requires
a full determination of whether the projections of P and Q are disjoint. These
techniques have previously been discussed in the context of the Warnock algo-
rithm (see Sec. 4-4).

y y
-
4+ ’
2+ ¢
0 1 1 1 1 1 1 X Z 1 1 1 1 1 1 0
0 2 4 6 6 4 2 0
a b
0 2 4 6 y
0 T T T T T T X
2} Qi
-
4+
i t P
+
z ¢ d

Figure 4-54 Polygons for Example 4-20.

LIST PRIORITY ALGORITHMS 277

If a cyclical overlap exists, the Sutherland-Hodgman polygon clipping algo-
rithm (see Sec. 3-16) can be used to split the polygons along the line of the
intersections of their planes. Here, the plane of Q is used as the clipping plane.
Each edge of P is clipped against Q to form the two new polygons. The Cyrus-
Beck clipping algorithm (see Sec. 3-11) can be used to find the intersection of
each edge of P with the plane of Q.

The Newell-Newell-Sancha algorithm attempts to solve the hidden surface
problem dynamically by processing all the polygons in the scene for each frame
being presented. If the scene is complex and the frame rate high, as in real-
time simulation systems, sufficient processing capability may not be available
on a general purpose computer (see Ref. 4-18). However, for many real-time
simulations, e.g. aircraft landing, the scene is static and only the viewpoint
changes. Schumacker et al. (Ref. 4-19) take advantage of several more general
priority characteristics to precompute, off-line, the priority list for simulations
of such static environments.

The Schumacher algorithm allows only convex polygons in the scene. These
polygons are grouped into clusters of polygons that are linearly separable.
Clusters are linearly separable if a nonintersecting, dividing plane can be passed
between them. Several two-dimensional clusters are shown in Fig. 4-55a. The
separating planes are labeled a and 8. They divide the scene into four regions,
A, B, C, D. A viewpoint can be located in any of these four regions. The
tree structure shown in Fig. 4-55b establishes the cluster priority for the scene.
For any viewpoint in the two-dimensional plane the cluster priority can be
precomputed. Substituting the coordinates of the viewpoint into the equations
for the separating planes locates the appropriate node in the cluster priority
tree. The hidden surface problem is then solved for each of the clusters in
reverse priority order.

/7

y
Dol 7

C //D +

B/ A ==
% >,
3,1,2 3,21 1,23 2,1,3
@
+ —

g a b
Figure 4-55 Cluster priority.

Example 4-21 Cluster Priority

Assume that the separating planes a and 8 shown in Fig. 4-55 intersect at the
origin of the coordinate system. Further assume that a is the y = 0 plane and

278 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

B the plane through the line y = x, both perpendicular to the paper. The plane
equations and appropriate test functions are then

a: y=0 (TF) =y
B: y—-x=0 TFn=y-x
A viewpoint on the line 2y — x = 0, e.g. at (20, 10), yields

(TF)H=10>0
(TF)2=10-20=-10<0

Thus, the viewpoint is in region D. From Fig. 4-55b, the cluster priority is
3, 12

Clusters are used to subdivide a scene. The simplest cluster is a single
polygon. Clusters can be complex polygonal or nonpolygonal surfaces and
volumes, each with an appropriate hidden surface technique as described by
Newell (Ref. 4-17).

Within certain types of clusters, the priority of individual polygons is inde-
pendent of the viewpoint (Refs. 4-19 and 4-20). This observation is one of the
major contributions of the Schumacker algorithm. It allows precomputation of
the entire priority list. Figure 4-56a shows a two-dimensional cluster for which
the individual polygonal priorities can be precalculated. The priority of each
polygon is established by considering whether a given polygon can hide any
other polygon from any viewpoint. The more polygons that a given polygon
can hide, the higher its priority. To establish the polygonal priority within a
cluster for a given viewpoint, the self-hidden polygons are first removed. The
remaining polygons are then in priority order as shown in Fig. 4-56b and c.

The list priority algorithms operate in both object and image space. In
particular, the priority list calculations are carried out in object space and the
result written to an image space frame buffer. The use of a frame buffer is
critical to the algorithm.

Because, like the Warnock and z-buffer algorithms, the list priority algo-
rithms process polygons in arbitrary order, applying antialiasing techniques to
the resulting images is difficult. However, like the Warnock and z-buffer algo-
rithms, the postfiltering antialiasing technique is applicable (see Sec. 2-25).

The list priority, Warnock, and z-buffer algorithms may also be imple-
mented as hidden line algorithms. When implemented as hidden line algo-

-
,: ~Viewpoint ‘""';
1 | 1 - :
2| — \ —2 3
I L___-____/ﬂ-/; \""J _____ J
\Aewpoint

a b c
Figure 4-56 Priority within a cluster.

SCAN LINE ALGORITHMS 279

rithms, the edge of each polygon is written to the frame buffer with a unique
attribute. However, the interior of each polygon is written to the frame buffer
with the background attribute. In this way polygons nearer the viewpoint
“obscure” polygon edges further from the viewpoint.

4-9 SCAN LINE ALGORITHMS

The Warnock, z-buffer, and list priority algorithms process scene elements
or polygons in arbitrary order with respect to the display. The scan line
algorithms, as originally developed by Wylie et al. (Ref. 4-21), Bouknight
(Refs. 4-22 to 4-24), and Watkins (Ref. 4-25), process the scene in scan line
order. Scan line algorithms operate in image space.

Scan-conversion of single polygons was discussed in Chap. 2. Scan line
hidden surface and hidden line algorithms are extensions of those techniques.
Scan line algorithms reduce the hidden line/hidden surface problem from three
dimensions to two. A scan plane is defined by the viewpoint at infinity on
the positive z axis and a scan line, as shown in Fig. 4-57. The intersection
of the scan plane and the three-dimensional scene defines a one-scan-line-high
window. The hidden surface problem is solved in this scan plane window.
Figure 4-57b shows the intersection of the scan plane with the polygons. The
figure illustrates that the hidden surface problem is reduced to deciding which
line segment is visible for each point on the scan line.

At first glance it might appear that the ordered edge list algorithm discussed
in Sec. 2-19 could be applied directly. However, Fig. 4-57b clearly shows
that this will yield incorrect results. For example, for the scan line shown in
Fig. 4-57 there are four active edges on the active edge list. The intersections
of these edges with the scan line are shown by the small dots in Fig. 4-57b.
The ordered edge list is shown by the numbers in Fig. 4-57b. Extracting the
intersections in pairs causes the pixels between | and 2 and between 3 and 4
to be activated. The pixels between 2 and 3 are not activated. The result is

y

!

—X
1 3
Screen /i
2
~, —1—Scan plane
Scan plane
a z1 b

Figure 4-57 Scan plane.

280 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

incorrect. A “hole” is left on the scan line where in fact the scan line intersects
two polygons. Two correct scan line algorithms are discussed in the next two
sections.

4-10 SCAN LINE z-BUFFER ALGORITHM

One of the simplest scan line algorithms that solves the hidden surface problem
is a special case of the z-buffer algorithm discussed in the previous section.
It is called a scan line z-buffer algorithm (Ref. 4-26). In this algorithm the
display window is one scan line high by the horizontal resolution of the display
wide. Both the frame buffer and the z-buffer need only be 1 bit high by the
horizontal resolution of the display wide by the requisite precision deep. The
required depth precision depends on the range of z. For example, the frame
buffer might be 1 X 512 x 24 bits and the z buffer 1 x 512 x 20 bits.

Conceptually, the algorithm is quite simple. For each scan line, the frame
buffer is initialized to the background and the z buffer to the minimum :z.
The intersection of the scan line with the two-dimensional projection of each
polygon in the scene, if any, is found. These intersections occur in pairs, as
discussed in Sec. 2-19. As each pixel on the scan line between the intersection
pairs is considered, its depth is compared to the depth recorded in the z buffer
at that location. If the pixel depth is greater than that in the z buffer, then
this line segment is the currently visible segment. Hence the polygon attributes
for this line segment are written to the frame buffer at that pixel location; and
the z buffer for that location is updated. When all the polygons in the scene
have been processed, the scan line frame buffer contains the hidden surface
solution for that scan line. It is copied in scan line order, i.e. left to right, to
the display. Both pre- and postfiltering antialiasing techniques can be used with
the scan line z-buffer algorithm.

In practice, examining each polygon for each scan line is inefficient. A
variation of the ordered edge list discussed in Sec. 2-19 is adopted. In par-
ticular, a y-bucket sort, an active polygon list, and an active edge list are used
to increase the efficiency of the algorithm.

Using these techniques a scan line z-buffer algorithm is

To prepare the data:

For each polygon determine the highest scan line intersected by the
polygon.
Place the polygon in the y bucket corresponding to this scan line.

Store, e.g., on a linked list, at least Ay, the number of scan lines
crossed by the polygon, a list of the polygon edges, the coefficients
of the plane equation (g, b, ¢, d), and the rendering attributes for
each polygon in a linked list.

SCAN LINE z-BUFFER ALGORITHM 281

To solve the hidden surface problem:
Initialize the display frame buffer.
For each scan line:
Initialize the scan line frame buffer to the background.
Initialize the scan line z buffer to z

Examine the scan line y bucket for any new polygons. Add
any new polygons to the active polygon list.

Examine the active polygon list for any new polygons. Add
any new polygon edge pairs to the active edge list.

If either element of a polygon edge pair has dropped off the
active edge list, determine if that polygon is still on the active
polygon list. If it is, complete the edge pair for this polygon
on the active edge list. If not, remove the other element of the
edge pair from the active edge list.

The active edge list contains the following information for each
polygon edge intersection pair.

x; the intersection of the left element of the polygon
edge pair with the current scan line.

Ax; the increment in x; from scan line to scan line.

Ay, the number of scan lines crossed by the left side.

x, the intersection of the right element of the polygon
edge pair with the current scan line.

Ax, the increment in x, from scan line to scan line.

Ay, the number of scan lines crossed by the right side.

z; the depth of the polygon at the center of the pixel
corresponding to the left element of a polygon edge
pair.

Az, the increment in z along the scan line. Equal to a/c
for ¢ # 0.

Azy the increment in z from scan line to scan line. Equal
to b/c for ¢ # 0.

The polygon edge pairs are placed on the active edge list in
arbitrary order. Within an edge pair, the intersections are
sorted into left-right order. More than one edge pair may occur
for a polygon.

For each polygon edge pair on the active edge list:
Extract polygon edge pairs from the active edge list.

Initialize z to z,

282 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

For each pixel such that x; = x + 1/2 = x,, calculate the
depth z(x + 1/2,y + 1/2) at the center of the pixel using the
plane equation for the polygon. On a scan line, this reduces
to the incremental calculation

Zyrar = Zx— Az

Compare the depth z(x + 1/2,y + 1/2) with the value stored
in the scan line z buffer at Zbuffer(x). If z(x+ 1/2,y + 1/2) >
Zbuffer(x), then write the polygon attributes to the scan line
frame buffer and replace Zbuffer(x) with z(x + 1/2,y + 1/2).

Otherwise no action is taken.
Write the scan line frame buffer to the display.
Update the active edge list:

For each polygon edge pair decrement Ay, and Ay,. If either
Ay, or Ay, < 0, remove that edge from the list. Flag both its
location on the list and the polygon that generated it.

Calculate the new x intercepts:

Xinew = Xiold + Ax;
Xrnew = Xrold + Ax,

Calculate the polygon depth at the left edge using the plane
equation for the polygon. Between scan lines this reduces
to the incremental calculation

Zmew = Ziold — Az xAx — Az,

Decrement the active polygon list. If Ay for any polygon
< 0, remove that polygon from the list.

Again a preliminary back-plane cull is used if appropriate. An example serves
to illustrate the algorithm more fully.

Example 4-22 Scan Line z-Buffer Algorithm

Reconsider the rectangle and triangle previously discussed in Example 4-19.
Recall that the rectangle had corner coordinates P(10, S, 10), P2(10, 25, 10),
P3(25, 25, 10), P4(25, 5, 10) and the triangle vertices Ps(15, 15, 15), Pe(25, 25,
5), P1(30, 10, 5) as shown in Fig. 4-50. The display resolution is again 32 x
32 x 2 bit planes. Again, the background is represented by 0, the rectangle
by 1, and the triangle by 2. The viewpoint is at infinity on the positive z axis.
Using the half scan line convention for both polygons the maximum scan line
that intersects the polygons is at y = 24. Thus, only the y = 24 bucket contains
any information. All others are empty.

The active polygon list at y = 24 for the rectangle (polygon 1) and the
triangle (polygon 2) contains

SCAN LINE z-BUFFER ALGORITHM 283

rectangle: 19,2,P(P2,P3P4,0,0,1,-10, 1
triangle: 14,3, PsP¢, P6P7, P7Ps,3,1,4, —120,2

The entries in this list correspond to Ay, the number of edges, the edge list,
the coefficients of the plane equation (a, b, ¢, d), and the polygon number,
respectively. Note that for the rectangle the list contains only two edges.
Horizontal edges are ignored.

At scan line 15 (see Fig. 4-58) the active polygon list contains both polygons.
For the rectangle Ay = 11. For the triangle Ay = 5. Initially the active edge
list contains two pairs of intersections, the first for the rectangle, the second for
the triangle:

rectangle: 10,0, 19, 25,0,19,10,0,0
triangle: 24 1/2, —1,9,251/6,1/3,14,5 1/2,3/4, 1/4

where the elements correspond to x4, Axy, Ay, xp, Axy, Ayr, 21, Azx, Azy. Just prior
to processing scan line 15, the active edge list contains

rectangle: 10, 0, 10, 25, 0, 10, 10,0, 0
triangle: 15 1/2, —1,0,28 1/6, 1/3, 5, 14 1/2, 3/4, 1/4

After first resetting the scan line frame and z buffers to 0 and then scan-
converting the rectangle, the buffers contain

Scan line frame buffer
00000000001111111111111110000000

Scan line z buffer
00000000001010101010101010101010101010100000000

Now the triangle is considered. At the left edge z = 14.5, which is greater
than Zbuffer(15) = 10. Thus, the triangle attributes are written to the frame
buffer and the scan line z buffer is updated. The results after scan-conversion
is complete are shown below

Scan line frame buffer
00000000001111222222211112200000

Scan line z buffer
00000000001010101015141312121110101010106600000

where the z-buffer values have been rounded to integers to save space. The
result is the same as the corresponding scan line in Example 4-19. The frame
buffer is copied, in left to right order, to the display.

At this point, the active edge list is updated. Decrementing yields Ay; =
—1 < 0. Consequently the edge PsPs is deleted from the active edge list and
the polygon flagged. Updating the right edge of the triangle yields

Xrmew = Xrold + Ax, = 28 1/6 + 1/3 = 28 1/2
Aymeszy’old_|=5_ 1=4
After updating the active edge list, the active polygon list is decremented.

Since the rectangle remains on the list, the next pass through the algorithm will
insert the edge PsP7 into the active edge list at the flagged location. At scan

284 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

line 14 (y = 14.5) the intersection with the edge PsP7 yields a new x;= 16 1/2.
The triangle depth is

z1= —[ax + by + dJ/c = —[(3)(16.5) + (1)(14.5) — 120)/4 = 14
The resulting active edge list at scan line 14 is then

rectangle: 10,0, 9, 25,0,9,10,0,0
triangle: 161/2, 3, 4, 28 1/2, 4, 14, 3/4, 1/4

The complete results are shown in Example 4-19.

30 =
P, P
P
20 [e
_ Scan line
[-
10 - AP-
7
Pl P4
0 L L ' Figure 4-58 Polygons for Example
0 10 20 30 4-22.

4-11 A SPANNING SCAN LINE ALGORITHM

The scan line z-buffer algorithm calculates the polygon depth at every pixel on
the scan line. The number of depth calculations can be reduced by introducing
the concept of spans as in the original Watkins algorithm (Ref. 4-25). Figure
4-59a shows the intersection of two polygons with a scan plane. By dividing
the scan line at each edge crossing into segments called spans (see Fig. 4-59a),
the solution of the hidden surface problem is reduced to selection of the visible
segment in each span. Figure 4-59a shows that only three types of spans are
possible:

The span is empty, e.g. span 1 in Fig. 4-59a. The background is displayed.

The span contains only one segment, e.g. spans 2 and 4 in Fig. 4-59a. The
polygon attributes for that segment are displayed for the span.

The span contains multiple segments, e.g. span 3 in Fig. 4-59a. The depth
of each segment in the span is calculated. The segment with the largest z
value is the visible segment. The polygon attributes for that segment are
displayed for the span.

If penetrating polygons are not allowed, it is sufficient to calculate the depth
of each segment in a span at one end of the span. If two segments touch but
do not penetrate at the end of a span, the depth calculation is performed at the

A SPANNING SCAN LINE ALGORITHM 285

T T T X X T T T T ™X

| I ! ' ! | | 1 '

' i - o -

| A o
o2 i3 e 1121374 5"

ZlSa’ z g
n
P a b c

Figure 4-59 Scan line spans.

midpoint of the spans as shown in Fig. 4-59b. For span 3, a depth calculation
performed at the left end of the span yields inconclusive results. Performing the
depth calculation at the midpoint of the span, as shown by the x’s in Fig. 4-59b,
yields the correct results.

If penetrating polygons are allowed, then the scan line is divided not only at
each edge crossing but also at each intersection as shown in Fig. 4-59¢c. Depth
calculations at each span end point will yield indeterminate results. Here it
is sufficient to perform the depth calculation at the midpoint of each span, as
shown by the x’s in Fig. 4-59c.

More sophisticated span generation techniques can reduce the number of
spans and hence the computational requirements. Frequently, simple methods
can also yield surprising results. For example, Watkins (Ref. 4-25) suggested
a simple midpoint subdivision technique. In Fig. 4-60a, a simple comparison
of the end point depths of the lines ab and cd shows that cd is always visible.
However, Fig. 4-60b shows that this is not always the case. But by dividing at
the midpoint of cd it is easy to show that both segments of cd are visible.

Further, it is frequently possible to avoid depth calculations altogether.
Romney et al. (Ref. 4-27) showed that, if penetration is not allowed, and if
exactly the same polygons are present, and if the order of the edge crossings
is exactly the same on a given scan line as on the previous scan line, then
the depth priority of the segments in each span remains unchanged. Hence,
depth priority calculations for the new scan line need not be made. Hamlin
and Gear (Ref. 4-28) show how, in some circumstances, the depth prioity can
be maintained even if the order of the edge crossings changes.

X r X
|
]
a b a I
-—//’_c‘l !
c c
z z
a b

Figure 4-60 Alternate spanning technique.

286 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The basic structure developed for the scan line z-buffer algorithm is also
applicable to a Watkins-style spanning scan line algorithm. Only the inner loop,
i.e., how an individual scan line is processed, and the contents of the active edge
list need be changed. Here it is not necessary to maintain the polygon edge-
scan line intersections in pairs. Individual edges are placed on the active edge
list. The active edge list is sorted into increasing x order. A polygon identifier
and a polygon active flag are used to identify left and right elements of the
edge pair. The polygon active flag is initially set to false at the beginning of a
scan line and complemented each time an edge for that polygon is processed.
Encountering a left edge for a polygon will cause that polygon’s flag to be set
to true, while encountering a right edge for that polygon will return it to faise.
Example 4-23 below more fully illustrates the use of the flag.

The spans for each polygon can be determined as a scan line is processed.
If penetration is not allowed, each edge intersection on the active edge list
represents a span boundary. As discussed above, the number of polygons
active within a span determines how a span is processed. Depth calculations
are performed only if more than one polygon is active in a span. If penetration
is allowed, and more than one polygon is active within a span determined by
the edge intersections, then it is necessary to check for possible intersecting
segments within the span (see Fig. 4-59¢). A convenient method for doing this
is to compare the signs of the differences in the depths of pairs of segments at
the span end points. Each pair of segments in the span must be examined. For
example, if two segments have depths z;,z,,22,22, at the left and right end
points, then

if Sign(z1, — z2)) # Sign(z1, — z2,) (4-9)
the segments intersect. If the segments intersect, the span is subdivided at the
intersection. The process is repeated with the left hand span until the span is
clear of intersections. For these spans, the depth calculation is performed at
the midpoint of the span.

If eitper sign in the above test is zero, the segments intersect at the end of
the span. Here, it is sufficient to determine the depth at the opposite end of
the span rather than subdividing the span.

The structure of the spanning scan line algorithm is then

To prepare the data:

Determine for each polygon the highest scan line intersected by the
polygon.
Place the polygon in the y bucket corresponding to this scan line.

Store at least Ay, the number of scan lines crossed by the polygon, a
list of the polygon edges, the coefficients of the plane equation (a, b, c,
d), and the rendering attributes for each polygon on a linked list.

To solve the hidden surface problem:

For each scan line:

A SPANNING SCAN LINE ALGORITHM 287

Examine the scan line y bucket for any new polygons. Add any
new polygons to the active polygon list.

Examine the active polygon list for any new polygons. Add any
new polygon edges to the active edge list. The active edge list con-
tains the following information for each polygon edge intersection:

x the intersection of the polygon edge with the current
scan line

Ax the increment in x from scan line to scan line

Ay number of scan lines crossed by the edge

P a polygon identifier

Flag a flag indicating whether the polygon is active on a
given scan line.

Sort the active edge list into increasing x order.

Process the active edge list. The details are shown in the flowchart
given in Fig. 4-61 and the modifications given in Figs. 4-62 and 4-63.

Update the active edge list:

For each edge intersection, decrement Ay. If Ay < 0, remove
the edge from the active edge list.

Calculate the new x intercepts:
Xnew = Xold + Ax
Decrement the active polygon list:

For each polygon, decrement Ay,. If Ay, for any polygon <0,
remove the polygon from the list.

The algorithm given above does not take advantage of depth priority coherence
as suggested by Romney. If penetration is not allowed, modification of the
algorithm to take advantage of depth priority coherence results in significant
savings. :

The simple spanning algorithm given in Fig. 4-61 assumes that polygon
segments in a span do not intersect. If the segments intersect at a span end,
then, as discussed above, the depth calculation is performed at the opposite
end of the span for these segments. A simple modification of the calculation
block for the flowchart shown in Fig. 4-61 is given in Fig. 4-62.

If the segments intersect within a span, i.e. the polygons penetrate, then
either a more complex spanner must be used or the intersections must be
inserted into the ordered edge list. The spanning algorithm shown in Fig. 4-61
is applicable when penetrating polygons are allowed, provided the active edge
list includes the intersections, each intersection is flagged, the polygon flag
complementation is modified, and the depth priority calculations are carried
out at the center of the span.

288 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 4-63 illustrates a modification of the algorithm given in Fig. 4-61.
The modified algorithm assumes that the active edge list does not contain
the intersection points. The intersection segments must be discovered and
processed on the fly. Here, each span is examined for intersecting segments.
If any are found, the intersection point is calculated and the span subdivided
at the intersection point. The right hand subspan is pushed onto a stack. The
algorithm is recursively applied to the left hand subspan until a subspan with

Spanleft-0
Polygon count=-0

|
More edge
Spanleft<xmax
yes

Extract edge value Spanright+Xmax
from active edge list Visible segment<=-Background

Y]
I Spanright*XedgeI IDispIay visible segment]

yes

Polygon count=0

Polygon count>]
yes
Visible segment - Calculate z at Visible segment =
active polygon spanleft for each Background

active polygon

i

Visible segment--active
polygon with zmax

X
¥

Complement spanright
polygon active flag

1
no Spanright polygon yes
active flag=0

IPolygon count-Polygon count+lJ LPolygon count--Polygon count—ll

Y
[Fisplay visible segment]

[Spanleft=Spanright |
|

Figure 4-61 Flowchart for spanner for nonpenetrating polygons.

yes

A SPANNING SCAN LINE ALGORITHM 289

Segments touch? >
no

1

Calculate z at
spanleft for
each active polygon

fo At spanleft?
yes

Calculate z at
spanright for
each active polygon

|

Figure 4-62 Flowchart for modified depth calculation for Fig. 4-61.

yes

Polygon count>1

- no
<Segments intersect? >-

lyes

point Xxj

Calculate intersection

1

point

Subdivide span
at the intersection

!

Push right hand
_subspan_onto an
intersection stack

1

portion

Process left hand

Spanrightex;

i

Calculate z at
span center for
each active polygon

{

Visible segment<polygon

with Zmax
Any spans on no
intersection stack?
;yes

LDisplay visible segment |

[Spanleft-Spanright |

Pop span from
intersection stack

LSpanrightc-Stackvalu?l

Figure 4-63 Modification of the flowchart in Fig. 4-61 for penetrating polygons.

290 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

no intersections is found. This subspan is displayed, and a new subspan popped
from the stack. The process is repeated until the stack is empty. The technique
is similar to that suggested by Jackson (Ref. 4-29). As a matter of interest the
front and back cover photos were generated with a Watkins algorithm.

For simplicity, the modified algorithm shown in Fig. 4-63 assumes that seg-
ments intersect only if they cross. Because segments may touch at the ends
of the spans, the depth calculation is carried out at the center of the span.
The modified calculation block shown in Fig. 4-62 can be substituted to avoid
this additional computational expense. A further modification of the algorithm
performs a z-priority sort for spans with intersections to determine if the in-
tersecting segments are visible before subdividing the span. This modification
reduces the number of subspans and increases the algorithm’s efficiency. If
appropriate, a preliminary back-plane cull is also used to increase efficiency.

Example 4-23 Spanning Scan Line Algorithm

Again consider the rectangle and penetrating triangle previously discussed in
Examples 4-19 and 4-22. Scan line 15 is to be considered. The half scan line
convention is used. The intersection of the scan plane at y = 15.5 with the
polygons is shown in Fig. 4-64. Figure 4-58 shows a projection of the polygons
onto the xy plane. Just prior to processing scan line 15, the active edge list,
sorted into x increasing order, contains .

10, 0, 10, 1,0, 151/2, -1, 0, 2,0, 25,0, 10, 1, 0, 28 1/6, 1/3, 5, 2,0

where the numbers are considered in groups of five, representing x, Ax, Ay, P,
Flag as defined in the algorithm above. Figure 4-64 shows the five spans that
result from the four intersections given on the active edge list. Figure 4-64 also
shows that the polygon segments intersect within the third span.

The scan line is processed from left to right in scan line order. The first
span contains no polygons. It is displayed (pixels 0 to 9) with the background
attributes. In the second span the rectangle becomes active. Its flag is comple-
mented to 1:

Flag = —Flag + 1

The span contains only one polygon. Consequently it is displayed (pixels 10 to
14) with the rectangle’s attributes.

The third span starts at x = 15 1/2. The triangle becomes active and its
flag is complemented to 1, the polygon count is increased to 2, Spanleft becomes
15 1/2, and the next edge at x = 25 is extracted from the active edge list.
Spanright is set equal to 25. The polygon count is greater than one. The
segments are examined for possible intersection (see Fig. 4-63).

The plane equation for the triangle is (see Example 4-19)
3x+y+4z-120=0
For scan line 15, y = 15.5; and the triangle depth at any pixel becomes
2= (120 — y — 3x)/4 = (120 — 15.5 — 3x)/4 = (104.5 — 3x)/4

Thus using the center of the pixel, i.e. x + 1/2

A SPANNING SCAN LINE ALGORITHM 291

22, = [104.5 — (3)(15.5))/4 = 14.5
22, = [104.5 — (3)(25.5))/4 = 7.0
Since the rectangle is of constant depth,
zy =10
z1,= 10
Recalling Eq. (4-9)
Sign(z1, — z2)) = Sign(10 — 14.5) <0
Sign(z1, — z2,) = Sign(10 — 7) > 0

Since Sign(z); — z2)) # Sign(z1, — z2,), the segments intersect. The intersection
of the two segments is

z2=(120—-155-3x)/4 =10

xi =21.5

The span is subdivided at x; = 21.5. The value for Spanright is pushed onto the
stack. Spanright is set to x;, i.e. 21.5.

The subspan from x = 15.5 to x = 21.5 contains no intersections. The
depth at the center of the subspan, i.e. at x = 18.5, for the triangle is

z2 = (104.5 — 3x)/4 = [104.5 — (3)(18.5))/4 = 12.25

which is greater than z; = 10 for the rectangle. Thus, the triangle is displayed
for this subspan (pixels 15 to 20).

Spanleft is set to Spanright and the right hand subspan popped from the
stack. Spanright is set to the stack value, i.e. x = 25. The subspan from
x = 21.5 to x = 25 contains no intersections. The depth at the center of the
subspan, i.e. at x = 23.25, for the triangle is

22 = (104.5 — 3x)/4 = [104.5 — (3)(23.25))/4 = 8.69

which is less than z; = 10 for the rectangle. Thus, the rectangle is visible for
this subspan (pixels 21 to 24).

The intersection stack is now empty. The routine given in Fig. 4-63 exits
to that in Fig. 4-61. The span right polygon is the rectangle. The rectangle
becomes inactive. Its flag is complemented to 0 which also causes the polygon
count to be reduced to 1. The segment is now displayed using the rectangle’s
attributes. Spanleft is reset to Spanright.

The next edge extracted from the active edge list is for the triangle at
x = 28 1/6. The span is from x = 25 to x = 28 1/6. The polygon count is 1.
The active polygon in the span is the triangle. Consequently, the segment is
displayed with the triangle’s attributes (pixels 25 to 27). The span right polygon
is the triangle. Its flag is complemented to 0, and the triangle becomes inactive.
The polygon count is now 0. Spanleft is set to Spanright, i.e. 28 1/6.

There are no more edges in the active edge list. Here, x,, = 32, so
Spanleft < xg... Thus, Spanright is set to x,, and the display segment to
the background. The span (pixels 28 to 31) is displayed with the background
attributes, and Spanleft reset to Spanright. Again there are no more edges, but
Spanleft = x.,,, and the processing of the scan line is complete.

The final results are identical to those shown in Example 4-19.

292 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

10

T
1
t
1
|
i
1
]

]
20 <Rectangle
zv 1 2 3 45 Figure 4-64 Scan plane for Example 4-23.

Scan line algorithms can also be implemented as hidden line algorithms.
For example, Archuleta (Ref. 4-30) has implemented a hidden line version of
the Watkins algorithm.

4-12 SCAN LINE ALGORITHMS FOR CURVED SURFACES

The Catmull subdivision algorithm for curved surfaces (see Sec. 4-6), although
simple and elegant, unfortunately does not present the result in scan line order.
This is inconvenient for raster scan output devices. A curved surface can of
course be polygonally approximated and scan-converted using any of the scan
line algorithms discussed above. However, to obtain a high degree of accuracy
the number of polygons in a reasonably complex scene becomes excessive.
Further, unless shading interpolation techniques are used (see Chap. 5), the
result will have a faceted appearance. In any case, the silhouette edges will be
piecewise linear, i.e., represented as connected, short, straight line segments.

Algorithms that display parametric bipolynomial, typically bicubic, surfaces
directly from the surface description in scan line order have been developed by
Blinn (Ref. 4-31), Whitted (Ref. 4-32), Lane and Carpenter (Refs. 4-33 and 4-
34), and Clark (Ref. 4-35). First the Blinn and Whitted algorithms, which are
similar, are discussed. Then the Lane-Carpenter and Clark algorithms, which
are also similar, are considered.

Recalling that a scan line algorithm intersects the scene with a scan plane
through the eyepoint and a scan line immediately shows the difference between
polygonal and curved (sculptured) parametric surfaces. For a polygonal surface,
all the intersections are straight lines. These straight lines are easily represented
by their end points. For a curved parametric surface the intersection of the scan
plane and the surface is given by the relation

y(u,w) = yscan = constant

where u and w are the parametric values for the surface. The result is a curve,
called either a level curve or a contour. The curve is not necessarily single-
valued. Further, there may be multiple curves at any contour level. Finally,
having found the curve(s) of intersection with the scan line, it is also necessary
to find each location along the scan line, i.e. each x = x(u,w), and to be able
to calculate the depth at that location, z = z(u,w), to determine its visibility.

SCAN LINE ALGORITHMS FOR CURVED SURFACES 293

Mathematically, the requirement can be stated as: Given a scan line value
y and a location of a point on that scan line x, obtain the inverse solution for
the parameters u,w; i.e. find
u=u(x,y)
w = w(x, y)
Once the parameters u, w are known, the depth is obtained from
= z(u, w)

Hence, the visibility of that point on the scan line may be determined. Unfortu-
nately, there is no known closed form solution for these equations. Both Blinn
and Whitted use numerical procedures to obtain a solution. Specifically, a
Newton-Raphson iteration technique is used (see Ref. 4-36). The Newton-
Raphson technique requires an initial estimate. Both algorithms take advantage
of scan line coherence to provide this initial estimate and reduce the number of
iterations per pixel. Unfortunately Newton-Raphson iteration can become un-
stable. Kajiya (Ref. 4-37) presents a more robust but more complex procedure
based on concepts from algebraic geometry.

Briefly, in the context of the structure of a scan line algorithm, the inner
loop for the Blinn and Whitted algorithms is

Given a parametric surface from the active patch list with

x = x(u,w)
y = y(u,w)
z = 2u,w)

For each scan line y:
For each pixel x on a scan line:
For each surface intersecting that scan line at x:

Solve for u = u(x,y), w = w(x,y).
Calculate the depth of the surface z = z(u, w).

Determine the visible surface at x,y and display it.

The algorithm illustrates another fundamental difference between a poly-
gonal surface and a curved parametric surface. The algorithm says, “For each
surface intersecting that scan line.” Surfaces become active at the highest in-
tersecting scan line and inactive at the lowest intersecting scan line. These
intersections occur at local maxima and minima of the surface. For polygonal
surfaces, local maxima and minima always occur at a vertex. Scan line algo-
rithms use these vertices and the surface edges that connect them to decide
when a polygon should be added to or deleted from the active polygon and
active edge lists.

For curved surfaces local maxima and minima do not necessarily occur at
vertices. They frequently occur interior to the surface along silhouette edges.

294 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

A silhouette edge interior to a surface is identified by the vanishing of the z
component of the surface normal. Several examples are shown in Fig. 4-65.
For a curved surface, surfaces may be added to or deleted from the active
surface list at silhouette edges, and scan line spans may start and stop at
silhouette edges. Both the Blinn and Whitted algorithms solve this problem
by effectively dividing the surface along the silhouette edges.

The Lane-Carpenter and Clark parametric curved surface algorithms are
basically subdivision techniques. However, in contrast to the original Catmull
subdivision algorithm which proceeds in arbitrary order, these algorithms pro-
ceed in scan line order. The algorithms perform a y-bucket sort of the surface
patches based on the maximum y value for each patch. At each scan line,
patches from an active patch list that intersect that scan line are subdivided
until each subpatch either meets a flatness criterion or no longer intersects the
scan line. Subpatches that no longer intersect the scan line are placed on an in-
active patch list for subsequent consideration. Subpatches that meet the flatness
criterion are treated as planar polygons and scan-converted using a polygonal
scan line algorithm. However, each of these approximately planar polygons is a
parametric subpatch. All the information available for the parametric subpatch
is available for determining individual pixel attributes during polygonal scan-
conversion. Using this information allows subpatches to be blended together
smoothly. In fact, if the flatness criterion is less than one pixel, a smooth sil-
houette results. Further, back-facing or self-hidden polygons can be eliminated
by simply determining the normal to the surface (see Sec. 4-3). If the normal
points away from the viewpoint, the subpatch is eliminated. This saves con-
siderable processing.

Although both the Lane-Carpenter and the Clark algorithms use the idea
expressed above, the Clark algorithm preprocesses the patches before scan-
converting, while the Lane-Carpenter algorithm dynamically subdivides the
patches as the frame is processed. The Lane-Carpenter algorithm requires con-
siderably less memory but performs more subdivisions than the Clark algorithm.
Figure 4-66 was generated with the Lane-Carpenter algorithm.

£ O
>

Figure 4-65 Silhouette edges.

SCAN LINE ALGORITHMS FOR CURVED SURFACES 295

Figure 4-66 Teapot defined by 28 bicubic patches rendered with the Lane-Carpen-
ter algorithm. (Courtesy of Loren Carpenter.)

Briefly, in the context of a scan line algorithm, the inner loop for the Lane-
Carpenter algorithm is

For each scan line y:
For each patch on the active patch list:

if the patch is flat then
add the patch to the polygon list
else
split the patch into subpatches
if a subpatch still intersects the scan line then
add it to the active patch list
else
add it to the inactive patch list.
end if
end if
Scan-convert the polygon list.

Both the Lane-Carpenter and the Clark algorithms take advantage of the
characteristics of particular basis functions used to generate parametric patches
to efficiently subdivide the patch. However, the algorithm is applicable for any
parametric surface patch for which an efficient subdivision algorithm is avail-
able. One disadvantage of these adaptive subdivision algorithms is that tears
or holes in the surface can result from mismatches between the approximate
polygonal subpatches and the exact parametric surface subpatches.

Quadric surfaces are generally somewhat simpler than parametric surface
patches. Quadric surfaces are defined by the general quadratic equation

ax® + ayy? + a3z’ + asxy + asyz + agzx + arx + agy + agz + a0 =0

296 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Common examples of quadric surfaces are spheres, cones, cylinders, and el-
lipsoids and hyperboloids of revolution. If a; through as are zero, then the
equation reduces to that of a planar polygon.

Spheres as a subset of quadric surfaces are of particular interest in molecular
modeling. Several scan line algorithms specifically for spheres have been de-
veloped. In particular, the algorithms by Porter (Refs. 4-38 and 4-39) and
Staudhammer (Ref. 4-40) implement scan line z-buffer algorithms for spheres.
By restricting the algorithm to orthographic views, Porter effectively uses Bres-
enham’s circle algorithm (see Sec. 2-6) to generate the silhouette of the sphere.
Further, since the intersection of the scan plane with a sphere is also a circle,
Bresenham’s circle algorithm can be used to incrementally calculate the depth
of each sphere on the scan line. Finally, by maintaining a priority list of the
spheres based on the depth of the sphere center, Bresenham’s algorithm is used
to antialias the silhouette edges (see Sec. 2-26). The priority sort also allows
transparency effects to be added.

4-13 A VISIBLE SURFACE RAY TRACING ALGORITHM

All the hidden surface algorithms discussed in the previous sections depend
upon some coherence characteristic of the scene to efficiently find the visible
portions of the scene. In comparison, ray tracing is a brute force technique.
The basic idea underlying the technique is that an observer views an object by
means of light from a source that strikes the object and then somehow reaches
the observer. The light may reach the observer by reflection from the surface
or by refraction or transmission through the surface. If light rays from the
source are traced, very few will reach the viewer. Consequently, the process
would be computationally inefficient. Appel (Ref. 4-41) originally suggested
that rays should be traced in the opposite direction, i.e., from the observer to
the object as shown in Fig. 4-67. This technique was successfully implemented
in a solid model display system by MAGI (Ref. 4-42). In the original MAGI
implementation, rays terminated when they intersected the surface of a visible
opaque object; i.e., it was used as a hidden or visible surface processor only.
Subsequently Kay (Refs. 4-43 and 4-44) and Whitted (Ref. 4-45) implemented
ray tracing algorithms in conjunction with global illumination models. These
algorithms account for reflection of one object in the surface of another, refrac-
tion, transparency, and shadow effects. The images are also antialiased. An
algorithm incorporating these effects is discussed in Sec. 5-12. The present
discussion is limited to ray tracing as a hidden or visible surface technique.
Figure 4-67 illustrates the simplest ray tracing algorithm. The algorithm
assumes that the scene has been transformed to image space. A perspective
transformation is not applied. The viewpoint or observer is assumed to be at
infinity, on the positive z axis. Hence, all the light rays are parallel to the z axis.
Each ray passes from the observer through the center of a pixel on the raster
into the scene. The path of each ray is traced to determine which objects in

A VISIBLE SURFACE RAY TRACING ALGORITHM 297

Object

Raster grid
Ray Figure 4-67 Simple ray trac-
Observer ing.

the scene, if any, are intersected by the ray. Every object in the scene must be
examined for every ray. If a ray intersects an object, all possible intersections
of the ray and the object are determined. This may yield multiple intersections
for multiple objects. The intersections are sorted in depth. The intersection
with the maximum z value represents the visible surface for that pixel. The
attributes for this object are used to determine the pixel’s characteristics.

When the viewpoint is not located at infinity, the algorithm is only slightly
more complex.- Here, the observer is assumed located on the positive z axis.
The image plane, i.e. the raster, is perpendicular to the z axis as shown in
Fig. 4-68. The effect is to perform a single-point perspective projection onto
the image plane (see Ref. 1-1).

The most important element of a visible surface ray tracing algorithm is
the intersection routine. Any object for which an intersection routine can be
written may be included in a scene. Objects in the scene may be composed
of a mixture of planar polygons, polyhedral volumes, or volumes defined or
bounded by quadric or bipolynomial parametric surfaces. Since a ray trac-
ing algorithm spends 75-95% of its effort in determining intersections, the ef-
ficiency of the intersection routine significantly affects the efficiency of the al-
gorithm. Determining the intersections of an arbitrary line in space (a ray)
with a particular object may be computationally expensive (see, for example,

aus
1

T Object

Raster grid
Ray

L Observer

Figure 4-68 Ray tracing with perspective.

298 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Ref. 4-37). To eliminate unnecessary intersections, the intersection of a ray
with the bounding volume of an object is examined. If a ray fails to intersect
the bounding volume of an object, then that object need not be considered
further for that ray. Either a bounding box or a bounding sphere may be used
as a bounding volume. Although, as shown in Fig. 4-69, a bounding sphere
may be inefficient, determining whether a three-dimensional ray intersects a
sphere is simple. In particular, if the distance from the center of the bounding
sphere to the ray is more than the radius of the sphere, then the ray does not
intersect the bounding sphere. Hence, it cannot intersect the object.

The bounding sphere test thus reduces to determining the distance from
a point to a three-dimensional line, i.e. the ray. Using a parametric repre-
sentation of the line between the points Pi(xi, y1, z1) and Pa(x2, y2, 22), i.e.

P@) =P+ (P2— P}t
with components
x=x1+x2—x;)t=x; +at
y=y+Q2—yt=y +bt
z=z1+ (z2—zPt =12z +ct

the minimum distance d from the line to the point Po(xo, Yo, zo) is

d* = (x —x0)* + (y = yo)? + (z — 29
where the parameter ¢ specifying the point on P(f) for minimum distance is

_a(x1 — xo) + b(y: — yo) + c(z1 — 29

a® + b+ ¢t
If d> > R?, where R is the radius of the bounding sphere, then the ray cannot
intersect the object.

Performing a bounding box test in three dimensions is computationally
expensive. In general, intersection of the ray with at least three of the infinite
planes forming the bounding box must be tested. Since intersections of the
ray may occur outside a face of the bounding box, a containment or inside test

t=

2

Figure 4-69 Bounding volumes.

A VISIBLE SURFACE RAY TRACING ALGORITHM 299

must also be performed for each intersection. Consequently, when performed
in three dimensions, the bounding box test is slower than the bounding sphere
test.

A simple procedure reduces the bounding box test to sign comparison,
simplifies the intersection calculation for the object, and simplifies the depth
comparisons among the intersections. The procedure uses translations and
rotations about the coordinate axes (see Ref. 1-1) to make the ray coincident
with the z axis. The same transformations are applied to the bounding box of
the object. The ray intersects the bounding box if, in the translated and rotated
coordinate system, the signs of x.,;, and x.,, and of y.i, and yn., are opposite
as shown in Fig. 4-70.

The simplification of the intersection calculation is illustrated by the general
quadric surface. In any Cartesian coordinate system the general quadric surface
is the locus of points given by

Q(x,y,) = ax’+ap’+azg?+byz+buz+byxy tex +cy +cz+d=0

After applying the combined translation and rotation transformation used to
make the ray coincident with the z axis, the intersection of the ray and the
surface, if any, occurs at x = y = 0. Thus, in general, the intersection points
are given by the solution of

a;zt+cyz+d' =0

i.e.

A ,2_ Il
cyxA/c's —dayd

!
2a,4

z=

where the prime indicates the coefficients of the general quadric surface in
the transformed orientation. If ¢'3 — 4a;d’ < 0, the solutions are complex
and the ray does not intersect the surface. If an infinite quadric surface (e.g.
cones and cylinders) is constrained by limit planes, then the limit planes must
also be transformed and examined for intersections. If an intersection with

M

Intersecting
_\ D<—Non- intersecting

e —

_ Ray
Non-intersecting ——

Figure 4-70 Bounding box intersections in the transformed coordinate system.

300 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

an infinite limit plane is found, an inside test must be performed. However,
in the transformed coordinate system, this test can be performed on the two-
dimensional projection of the intersection of the limit plane and the quadric
surface. To obtain the intersections in the original orientation, the inverse
transformation is applied.

Intersection calculations for bipolynomial parametric surface patches are
less straightforward. Whitted (Ref. 4-45) has implemented a simple subdivision
technique for bicubic surface patches. The calculations are carried out with the
surface patch in its original location. If a ray initially intersects the bounding
sphere for a patch, the patch is subdivided using Catmull’s subdivision algorithm
(see Sec. 4-6). The ray is tested against the bounding spheres of the subpatches.
If there is no intersection, the ray does not intersect the patch. If the ray
intersects a bounding sphere for a subpatch, the patch is further subdivided.
The process is continued until no bounding spheres are intersected or the
bounding spheres reach a predetermined minimum size. These minimum-sized
bounding spheres represent the intersections of the ray and the patch.

By transforming the ray to be coincident with the z axis, the subdivision
technique can be utilized with bounding boxes rather than bounding spheres.
This reduces the number of subdivisions and increases the efficiency of the
algorithm. For parametric surfaces that exhibit a convex hull property, e.g.
Bezier and B-spline surfaces (see Ref. 1-1), the number of subdivisions can be
further reduced, at the expense of further complexnty, by using the convex hull
rather than the bounding box for the subpatches.

Kajiya (Ref. 4-37) has implemented a technique for bipolynomial paramet-
ric surfaces that does not involve subdivision. The method is based on concepts
from algebraic geometry. Solutions of the resulting high-degree algebraic equa-
tions are obtained numerically. A similar technique can be implemented in the
transformed coordinate system. Recall that a bipolynomial parametric surface
is defined by

Qu, w) =0
with components
x = flu, w)
y = glu, w)
z = h(u, w)

In the transformed coordinate system x = y = 0. Hence,

flu, wy =

glu, w) =0
Simultaneous solution of this pair of equations yields the values of # and w
for the intersections. Substitution into z = h(u,w) yields the z component of

the intersection points. Failure to find a real solution means that the ray does
not intersect the surface. The degree of the system of equations for u,w is the

A VISIBLE SURFACE RAY TRACING ALGORITHM 301

product of the bipolynomial surface degrees, e.g., sixth degree for a bicubic
surface. Consequently, numerical solution techniques are generally required.
Where applicable, intersections of the ray and the convex hull can be used to
obtain an initial estimate of u and w. Again, to obtain the intersections in the
original orientation, the inverse transformation is applied.

For multiple intersections of the ray being traced and objects in the scene, it
is necessary to determine the visible intersection. For the simple opaque visible
surface algorithms discussed in this section, the intersection with the maximum
zcoordinate is the visible surface. For more complex algorithms with reflections
and refractions, the intersections must be ordered with respect to the distance
from the point of origin of the ray. The transformed coordinate system allows
this to be accomplished with a simple z sort.

The procedure for a simple opaque surface ray tracing algorithm is then

Prepare the scene data:
Create an object list containing at least the following information

Complete description of the object: type, surface, characteris-
tics, etc.

Bounding sphere description: center and radius.

Bounding box flag. If the flag is true a bounding box test will
be performed, if false it will be skipped. Note, a bounding box
test is not appropriate for all objects, e.g. a sphere.

Bounding box description: Xpin, Xmaxs Ymins Ymaxs Zmins Zmax-

For each ray to be traced:

For each object perform a three-dimensional bounding sphere test
in the original location. If the ray intersects the bounding sphere,
place the object on the active object list.

If the active object list is empty, display the pixel at the background
intensity and continue.

Otherwise, translate and rotate the ray such that it is coincident
with the z axis. Save the combined transformation.

For each object on the active object list:

If the bounding box flag is true, transform the bounding box
to the same orientation as the ray using the combined transfor-
mation and perform the bounding box tests. If the ray does
not intersect the bounding box, continue with the next object.

Otherwise, transform the object to the same orientation as the
ray using the combined transformation and determine the ray’s
intersections, if any, with the object. Place any intersections
on an intersection list.

302 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

If the intersection list is empty, display the pixel at the background
intensity.

Otherwise, determine z,, for the intersection list.
Calculate the inverse for the combined transformation.

Using the inverse transformation determine the intersection point
in the original orientation.

Display the pixel using the intersected object’s attributes and an
appropriate illumination model.

Note that for a simple opaque visible surface algorithm, it is not necessary
to determine the inverse combined transformation nor is it necessary to deter-
mine the intersection point in the original orientation unless an illumination
model requiring surface properties or orientation at the intersection point is in-
corporated into the algorithm (see Chap. 5). These steps are included here for
completeness and convenience when implementing a ray tracing algorithm with
global illumination (see Sec. 5-12). An example serves to more fully illustrate
the discussion.

Example 4-24 Ray Tracing Algorithm

Again consider the rectangle and penetrating triangle previously discussed in
Examples 4-19, 4-22, and 4-23. For simplicity, the observer is assumed to be
located at infinity on the positive z axis. Hence, all the rays are parallel to the
zaxis. The z axis passes through the 0, O point on the raster. Recalling that the
rectangle has corner points P (10, 5, 10), P10, 25, 10), P3(25, 25, 10), P4(25,
5, 10). The center of its bounding sphere is located at (17.5, 15, 10) with radius
12.5. The bounding box for the rectangle, X in Xmaxs Ymin Ymaxs Zmine Z max IS
10, 25, 5, 25, 10, 10.

The triangle has vertices at Ps(15, 15, 15), Pe(25, 25, 5), P7(30, 10, 5).
The center of the bounding sphere is at (22.885, 15.962, 8.846) with radius
10.048. The bounding box for the triangle is 15, 30, 10, 25, 5, 15.

The object list thus contains two entries, and both bounding box flags are
true.

The ray through the center of the pixel at (20, 15) is considered. Since the
observer is at infinity, the ray is parallel to the z axis.

First consider the rectangle. Since the ray is parallel to the z axis, the
distance from the center of the bounding sphere to the ray is a two-dimensional
calculation. Specifically, using the center of the pixel, i.e. (20.5, 15.5), yields

d* = (20.5 - 17.5)2 + (15.5— 152 = 9.25

Since (d* = 9.25) < (R? = 156.25), the ray intersects the bounding sphere for
the rectangle. The rectangle is placed on the active object list.
Similarly for the triangle
& = (20.5 - 22.885) + (15.5 — 15.962)
=35.90

A VISIBLE SURFACE RAY TRACING ALGORITHM 303

which is also less than the square of the radius of the bounding sphere; i.e.,
(d® = 5.90) < (R* = 100.96). Thus, the ray intersects the bounding sphere for
the triangle. The triangle is also placed on the active object list.

Since the active object list is not empty, the ray is transformed to be
coincident with the z axis. Here the ray is translated by —20.5, —15.5, 0 in
the x, y, z directions, respectively.

Translating the rectangle’s bounding box similarly yields -10.5,
4.5, —10.5, 9.5, 10, 10. Since the signs of both x;, and x,, and y i, and y .,
are opposite, the ray intersects the rectangle’s bounding box. The intersection
of the ray and the rectangle is obtained using the plane equation. In both
the transformed and untransformed coordinate systems the rectangle’s plane
equation is

z—10=0
The intersection of the ray thus occurs at z = 10. The intersection is inside the
rectangle. This value is placed on the intersection list.

Translating the bounding box for the triangle yields —5.5, 9.5, —5.5, 9.5,
5, 15. Again, the signs of both x;, and x, and y_., and y_.. are opposite,
so the ray also intersects the triangle’s bounding box. In the untransformed
coordinate system, the plane equation for the triangle is ’

3x+y+4z-120=0
In the transformed coordinate system it is (see Sec. 4-2)
3x+y+4z-43=0
and the intersection is at
z = (43 — 3x — y)/4 = 43/4 = 10.75

This value is inside the triangle and is placed on the intersection list.

The intersection list is not empty. The maximum z value is z ,,= 10.75,
and the triangle is visible. Translating back to the original coordinate system
yields the intersection point at (20.5, 15.5, 10.75). The pixel at (20, 15) is
displayed with the triangle’s attributes.

Two modifications of this simple algorithm considerably increase its ef-
ficiency. The first uses the concept of clustering groups of spatially related
objects together. For example, suppose that a scene consists of a table with a
bowl of fruit and a candy dish on it. The bowl of fruit contains an orange, an
apple, a banana, and a pear. The candy dish contains several pieces of candy
of different shapes and colors. Bounding spheres are defined for groups or
clusters of related objects, e.g. the fruit bowl and all the fruit in it, the candy
dish and all the candy in it, and the table including the fruit dish and fruit and
the candy dish and candy. Bounding spheres that enclose more than one object
are called cluster spheres. If appropriate, cluster bounding boxes may also be
defined. The largest cluster sphere, called the scene sphere, containing all the
objects in the scene is also defined. The bounding spheres are then processed
hierarchically. If a ray does not intersect the scene sphere, then it cannot in-
tersect any object in the scene. Hence, it is displayed at the background in-

304 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

tensity. If the ray intersects the scene sphere, then the cluster spheres and
the bounding spheres for individual objects not contained within any cluster
sphere, but contained within the scene cluster, are examined for intersections
with the ray. If the ray does not intersect a cluster sphere, that cluster and all
objects or clusters contained within that cluster are not considered further. If
a ray intersects a cluster, the process is repeated recursively until all objects
have been considered. If at any point a ray intersects an individual object
bounding sphere, the object is placed on the active object list. This procedure
significantly reduces the number of ray bounding sphere intersections that must
be calculated and hence increases the efficiency of the algorithm.

The second modification uses a priority sort to reduce the number of ray-
object intersection calculations. Instead of immediately performing a ray-object
intersection calculation as called for in the simple algorithm given above, the
object is placed on an intersection object list. When all objects in the scene
have been considered, the transformed intersection object list is sorted by depth
priority (see Sec. 4-8). The centers of the bounding spheres or the maximum
or minimum z value for the bounding boxes may be used to establish the
priority sort. Intersections of the ray and objects on the intersection object
list are determined in priority order. Unfortunately, as previously discussed
in Sec. 4-8, the intersection of the ray and the first object on the prioritized
intersection object list is not necessarily the visible point. Intersections with
all possibly visible objects, the set {Q} (see Sec. 4-8 for details), must be deter-
mined and placed on the intersection list. The algorithm then proceeds by
sorting the intersection list as described in the simple algorithm. Fortunately
the set of possible visible objects {Q} is generally small compared to the number
of objects on the intersection object list. Hence, the algorithm’s efficiency is
increased. These two modifications are also applicable for the general ray trac-
ing algorithm incorporating reflection, refraction, and transparency discussed
in Sec. 5-12.

The simple algorithm given here does not take advantage of eliminating
self-hidden faces for polygonal volumes (see Sec. 4-2), nor does it take ad-
vantage of the coherence of the scene. For example, the order in which pixels
are considered is immaterial. Considering the pixels in scan line order would
allow the algorithm to take advantage of scan line coherence. Alternately,
by subdividing the scene, Warnock-style area coherence would lead to fewer
objects being considered for any ray and hence lead to greater efficiency.
Although incorporating these techniques yields a more efficient opaque visible
surface algorithm, they are not applicable for a general ray tracing algorithm in-
corporating reflection, refraction, and transparency. For example, when reflec-
tion is incorporated into the algorithm an object totally obscured by another
object may be visible as a reflection in a third object. Since a ray tracing algo-
rithm is a brute force technique, the opaque visible surface algorithms discussed
in previous sections are more efficient and should be used’

Tlmplementation of the algorithms as described in the previous sections in the same language
on the same computer system for the scene described in Examples 4-19, and 4-22 to 4-24 yields
performance ratios of Ray tracing:Warnock:Watkins:Scanline z buffer:z buffer as 9.2:6.2:2.1:1.9:1.

SUMMARY 305

Roth (Ref. 4-46) points out that a ray tracing algorithm can also be used
to generate wire frame line drawings for solid objects. The procedure assumes
a scan-line-oriented generation of the rays, i.e. top to bottom and left to right.
The procedure is

If the visible surface at Pixel(x,y) is the background or is different from
the visible surface at Pixel(x — 1, y) or at Pixel(x, y — 1), display the pixel.
Otherwise, do not display the pixel.

A ray tracing algorithm can also be used to determine the physical proper-
ties of a solid. A complete analysis is beyond the scope of this text. However, a
simple example illustrates the concept. In particular, the volume of an arbitrary
solid can be determined by approximating it by the sum of a set of small
rectangular parallelepipeds. This is accomplished by generating a set of parallel
rays at known intervals. The intersections of each ray and the volume are
obtained and ordered along the ray. If the ray is translated to be coincident with
the z axis as described above, the volume of each rectangular parallelepiped is
then

V=L4(z1i—22) +(23—24) + - +(z2n-1—2,)]

where [, and /, are the spacing between rays in the horizontal and vertical
directions, respectively. Each (z,-) — z,) represents a portion of the ray inside
the volume. The volume of the solid is then the sum of the volumes of all the
rectangular parallelepipeds. The accuracy of the result depends on the number
of rays used. The accuracy can be increased at reduced computational expense
by recursively subdividing the “pixel” size if the volumes of adjacent rectangular
parallelepipeds differ by more than a specified amount. This technique more
accurately determines the volumes in regions of rapid change, e.g., near the
edges of volumes enclosed by curved surfaces.

Because of the inherently parallel nature of ray tracing (the process for
each ray is the same and independent of the results for any other ray) the
algorithm could be implemented in very large-scale integrated (VLSI) hardware
using parallel processing techniques.

4-14 SUMMARY

The previous sections have discussed, in some detail, a number of fundamental
algorithms used to obtain solutions to the hidden line or hidden surface prob-
lem. These algorithms are by no means all those available. However, having
mastered the concepts presented, the reader should be equipped to understand
new algorithms as they are developed or to invent algorithms specific to a par-
ticular application.

As an example, a recent hidden line algorithm by Hedgeley (Ref. 4-47) is
based on concepts illustrated by the list priority algorithm of Newell, Newell,
and Sancha (Sec. 4-8), the area subdivision algorithm of Warnock (Sec. 4-4),

306 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

the scan line algorithm of Watkins (Sec. 4-9), and intersection and visibility
tests scattered throughout the chapter. The algorithm operates in object space,
accepts convex or concave polygons as input, and exhibits linear computational
growth with the number of objects.

As a further example Atherton (Ref. 4-48) has applied a modified spanning
scan line algorithm (see Sec. 4-11) to the display of images from a constructive
solid modeling system. The inner loop of the spanning scan line algorithm is
modified to solve the one-dimensional Boolean operations required by a solid
modeler using a ray tracing algorithm (see Sec. 4-13). Atherton reports that
the modified scan line algorithm executes in approximately 1/60 of the time
required for a straight ray tracing algorithm.

4-15 REFERENCES

4-1 Sutherland, Ivan E., Sproul, Robert F., and Schumacker, R. A., “A Characteriza-
tion of Ten Hidden-Surface Algorithms,” Computing Surveys, Vol. 6, pp. 1-55,
1974.

4-2 Williams, Hugh, “Algorithm 420, Hidden-Line Plotting Program,” CACM, Vol.
15, pp. 100-103, 1972.

4-3 Wright, T. J, “A Two-Space Solution to the Hidden Line Problem for Plotting
Functions of Two Variables,” IEEE Trans. Comput., Vol. C-22, pp. 28-33, 1973.

4-4 Watkins, Steven, L., “Algorithm 483, Masked Three-Dimensional Plot Program
with Rotations,” CACM, Vol. 17, pp. 520-523, 1974.

4-5 Butland, J., “Surface Drawing Made Simple,” CAD Journal, Vol. 11, pp. 19-22,
1979.

4-6 Gottlieb, M.,“Hidden Line Subroutines for Three Dimensional Plotting,” Byte,
Vol. 3, No. 5, pp. 49-58, 1978.

4-7 Roberts, L. G., “Machine Perception of Three Dimensional Solids,” MIT Lincoln
Lab. Rep., TR 315, May 1963. Also in J. T. Tippet et al. (eds.), Optical and
Electro-Optical Information Processing, MIT Press, Cambridge pp. 159-197, 1964.

4-8 Petty, J. S., and Mach, K. D., “Contouring and Hidden-line Algorithms for Vector
Graphic Displays,” Air Force Applied Physics Lab. Rep., AFAPL-TR-77-3, Jan.
1977, ADA 040 530.

4-9 Rogers, David, F., Meier, William, and Adlum, Linda, “Roberts Algorithm,” U.S.
Naval Academy, Computer Aided Design/Interactive Graphics Group Study, 1982,
unpublished.

4-10 Warnock, John, E., “A Hidden Line Algorithm for Halftone Picture Representa-
tion,” University of Utah Computer Science Dept. Rep., TR 4-5, May 1968, NTIS
AD 761 995. .

4-11 Warnock, John, E. “A Hidden-Surface Algorithm for Computer Generated Half-
tone Pictures,” University of Utah Computer Science Dept. Rep., TR 4-15, June
1969, NTIS AD 753 671.

4-12 Weiler, K., and Atherton, P., “Hidden Surface Removal Using Polygon Area
Sorting,” Computer Graphics, Vol. 11, pp. 214-222 (Proc. SIGGRAPH 77).

4-13 Catmull, Edwin, “A Subdivision Algorithm for Computer Display of Curved Sur-
faces,” Ph.D. Thesis, University of Utah, Dec. 1974. Also UTEC-CSc-74-133, and
NTIS A004 968.

REFERENCES 307

4-14 Catmull, Edwin, “Computer Display of Curved Surfaces,” Proc. IEEE Conf.
Comput. Graphics Pattern Recognition Data Struct., May 1975, p. 11.

4-15 Cohen, Elaine, Lyche, Tom, and Riesenfeld, Richard, F., “Discrete B-splines
and Subdivision Techniques in Computer-Aided Geometric Design and Computer
Graphics,” Computer Graphics Image Processing, Vol. 14, pp. 87-111, 1980. Also
University of Utah, Computer Science Dept. Rep., UUCS-79-117, Oct. 1979.

4-16 Newell, M.E., Newell, R. G., and Sancha, T. L., “A New Approach to the Shaded
Picture Problem,” Proc. ACM Natl. Conf., 1972, pp. 443-450.

4-17 Newell, M. E., “The Utilization of Procedure Models in Digital Image Synthesis,”
Ph.D. Thesis, University of Utah, 1974. Also UTEC-CSc-76-218 and NTIS AD/A
039 008/LL.

4-18 Schachter, Bruce J., Computer Image Generation, John Wiley, New York, 1982.

4-19 Schumacker, R. A., Brand, B., Gilliland, M., and Sharp, W., “Study for Applying
Computer-generated Images to Visual Simulation,” U.S. Air Force Human Resour-
ces Lab. Tech. Rep., AFHRL-TR-69-14, Sept. 1969, NTIS AD 700 375.

4-20 Fuchs, H., Abram, G. D., and Grant, E. D., “Near Real-Time Shaded Display of
Rigid Objects,” Computer Graphics, Vol. 17, pp. 65-72, 1983 (Proc. SIGGRAPH
83).

4-21 Wylie, C., Romney, G. W., Evans, D. C., and Erdahl, A. C., “Halftone Perspec-
tive Drawings by Computer,” FJCC 1967, Thompson Books, Washington, D.C.,
pp. 49-58.

4-22 Bouknight, W. J., “An Improved Procedure for Generation of Half-tone Computer
Graphics Representations,” University of Illinois Coordinated Science Lab. Tech.
Rep., R-432, Sept. 1969.

4-23 Bouknight, W. J., and Kelly, K. C., “An Algorithm for Producing Half-tone
Computer Graphics Presentations with Shadows and Movable Light Sources,” SJCC
1970, AFIPS Press, Montvale, N. J. pp. 1-10.

4-24 Bouknight, W. J., “A Procedure for Generation of Three-dimensional Half-toned
Computer Graphics Representations,” CACM, Vol. 13, pp. 527-536, 1970.

4-25 Watkins, G. S., “A Real-Time Visible Surface Algorithm,” University of Utah
Computer Science Dept. Tech. Rep., UTEC-CSC-70-101, June 1970, NTIS AD
762 004

4-26 Myers, A. J., “An Efficient Visible Surface Program”, Report to the NSF, Ohio
State University Computer Graphics Research Group, July 1975.

4-27 Romney, G. W., Watkins, G. S., and Evans, D. C., “Real Time Display of
Computer Generated Half-tone Perspective Pictures,” IFIP 1968, North-Holland,
Amsterdam, pp. 973-978.

4-28 Hamlin, G., and Gear, C., “Raster-Scan Hidden Surface Algorithm Techniques”,
Computer Graphics, Vol. 11, pp. 206-213, 1977 (Proc. SIGGRAPH 77).

4-29 Jackson, J. H., “Dynamic Scan-converted Images with a Frame Buffer Display
Device,” Computer Graphics, Vol. 14, pp. 163-169, 1980 (Proc. SIGGRAPH 80).

4-30 Archuleta, M., “Hidden Surface Line Drawing Algorithm,” University of Utah
Computer Science Dept. Tech. Rep., UTEC-CSc-72-121, June 1972.

4-31 Blinn, J. F., “A Scan Line Algorithm for the Computer Display of Parametrically
Defined Surfaces,” Computer Graphics, Vol. 12, 1978 (supplement to Proc. SIG-
GRAPH 78); see also Ref. 4-33.

4-32 Whitted, T., “A Scan-line Algorithm for Computer Display of Curved Surfaces,”
Computer Graphics, Vol. 12, 1978 (supplement to Proc. SIGGRAPH 78); see also
Ref. 4-33.

308 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

4-33 Lane, J. M., Carpenter, L. C., Whitted, T., and Blinn, J. F., “Scan Line Methods
for Displaying Parametrically Defined Surfaces,” CACM, Vol. 23, pp. 23-34,
1980.

4-34 Lane, J. M., and Carpenter, L. C., “A Generalized Scan Line Algorithm for the
Computer Display of Parametrically Defined Surfaces,” Computer Graphics Image
Processing, Vol. 11, pp. 290-297, 1979.

4-35 Clark, J. H., “A Fast Scan-line Algorithm for Rendering Parametric Surfaces,”
Computer Graphics, Vol. 13, 1979 (supplement to Proc. SIGGRAPH 79).

4-36 Kunz, K. S., Numerical Analysis, McGraw-Hill, New York, 1957.

4-37 Kajiya, J. T., “Ray Tracing Parametric Patches,” Computer Graphics, Vol. 16, pp.
245-254, 1982 (Proc. SIGGRAPH 82). .

4-38 Porter, T., “Spherical Shading,” Computer Graphics, Vol. 12, pp. 282-285, 1978
(Proc. SIGGRAPH 78).

4-39 Porter, T., “The Shaded Surface Display of Large Molecules,” Computer Graphics,
Vol. 13, pp. 234-236, 1979 (Proc. SIGGRAPH 79).

4-40 Staudhammer, J., “On the Display of Space Filling Atomic Models in Real Time,”
Computer Graphics, Vol. 12, pp. 167-172, 1978 (Proc. SIGGRAPH 78).

4-41 Appel, A., “Some Techniques for Shading Machine Renderings of Solids,” AFIPS
1968 Spring Joint Comput. Conf., pp. 37-45.

4-42 Goldstein, R. A., and Nagel, R., “3-D Visual Simulation,” Simulation, pp. 25-31,
January 1971.

4-43 Kay, Douglas S., “Transparency, Refraction and Ray Tracing for Computer Syn-
thesized Images,” Masters thesis, Program of Computer Graphics, Cornell Univers-
ity, Jan. 1979.

4-44 Kay, Douglas, S., and Greenberg, Donald, “Transparency for Computer Synthe-
sized Images” Computer Graphics, Vol. 13, pp. 158-164, 1979 (Proc. SIGGRAPH
79).

4-45 Whitted, J. T., “An Improved Illumination Model for Shaded Display,” CACM,
Vol. 23, pp. 343-349, (Proc. SIGGRAPH 79).

4-46 Roth, Scott D., “Ray Casting for Modeling Solids,” Computer Graphics and Image
Processing, Vol. 18, pp. 109-144, 1982.

4-47 Hedgley, David R. Jr., “A General Solution to the Hidden-Line Problem,” NASA
Ref. Pub. 1085, March 1982.

4-48 Atherton, Peter R., “A Scan-line Hidden Surface Removal Procedure for Construct-
ive Solid Geometry,” Computer Graphics, Vol. 17, pp. 73-82, 1983 (Proc. SIG-
GRAPH 83).

4-49 Whitted, Turner, and Weimer, David M., “A Software Testbed for the Develop-
ment of 3D Raster Graphics Systems,” ACM Transactions on Graphics, Vol. 1,
pp. 43-58, 1982.

CHAPTER

FIVE
RENDERING

5-1 INTRODUCTION

Simply defined, rendering is the process of producing realistic images or pic-
tures. Producing realistic images involves both physics and psychology. Light,
i.e. electromagnetic energy, reaches the eye after interacting with the physi-
cal environment. In the eye, physical and chemical changes take place that
generate electrical pulses that are interpreted, i.e. perceived, by the brain.
Perception is a learned characteristic. The psychology of visual perception has
been extensively studied and written about. An extensive discussion of visual
perception is well beyond the scope of this book. The standard reference work
on visual perception is Cornsweet (Ref. 5-1).

The human eye is a very complex system. The eye is nearly spherical and
about 20 mm in diameter. The eye’s flexible lens is used to focus received light
onto the retina. The retina contains two different types of receptors: cones
and rods. The 6-7 million cones are concentrated in the center of the rear
hemisphere of the eye. Each one has an individual nerve connected to it. The
cones, which are sensitive only to relatively high light levels, are used to resolve
fine detail. The other type of receptor is called a rod. There are between 75
and 150 million rods distributed over the retina. Several rods are connected to
a single nerve. Thus, the rods cannot resolve fine detail. The rods are sensitive
to very low levels of illumination. Interestingly enough, only the cones are
used in perceiving color. Because the cones are sensitive only to relatively high
levels of light, objects viewed with low illumination are seen only with the rods.
Hence, they are not seen in color.

There is good experimental evidence that the eye’s sensitivity to brightness
is logarithmic. The total range of brightness sensitivity is very large, on the
order of 10'°. However, the eye cannot simultaneously respond to this large a

309

310 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

brightness range. The eye responds to a much smaller relative brightness range
centered around a brightness adaptation level. The relative brightness range is
on the order of 100-150 (2.2 log units). The rapidity with which the eye adjusts
its brightness adaptation level is different for different parts of the retina. Still,
it is remarkable. The eye perceives brightness at the extremes of the relative
brightness range as either white or black.

Because the eye adapts to the “average” brightness in a scene, an area
of constant brightness or intensity surrounded by a dark area is perceived to
be brighter or lighter than the same area surrounded by a light area. This
phenomenon, illustrated in Fig. 5-1, is called simultaneous contrast. On a
scale of 0-1 the brightness of the center area of Fig. 5-1a is 0.5 and that of
the surrounding area 0.2. In Fig. 5-1b the brightness of the center area is again
0.5, but that of the surrounding area is 0.8. A common example is the apparent
difference in brightness of a single streetlight viewed against the sky during the
day and at night. For either Fig. 5-1a or a streetlight seen in daylight, the
average intensity or brightness of the scene is greater than for the scene in
Fig. 5-1b or the streetlight at night. Consequently, the contrast is lower and the
intensity or brightness of the streetlight or the center of Fig. 5-1a is perceived
as lower. A phenomenon similar to simultaneous contrast occurs for color.

Another characteristic of the eye which has implications for computer graph-
ics is that the brightness perceived by the eye tends to overshoot at the bound-
aries of regions of constant intensity. This characteristic results in areas of con-
stant intensity being perceived as having varying intensity. The phenomenon
is called the Mach band effect after the Austrian physicist Ernst Mach, who
first observed it. The Mach band effect occurs whenever the slope of the light
intensity curve changes abruptly. At that location, the surface appears brighter
or darker. If the inflection in the intensity curve is concave, the surface appears
brighter; if convex it appears darker. Figure 5-2 illustrates both the concept and
the results.

The Mach band effect is particularly important for shaded polygonally
represented surfaces. If the direction of the normal vector for each individual

a b
Figure 5-1 Simultaneous contrast.

A SIMPLE ILLUMINATION MODEL 311

a b

Figure 5-2 Mach band effects. (a) Piecewise linear, (b) continuous first-derivative
intensity function. (Courtesy of the University of Utah, Ref. 5-2.)

polygon composing the surface is used to determine the displayed intensity,
then the intensity will change abruptly at the polygon edges. The Mach band
effect tends to destroy the ability of the eye to smoothly integrate the scene.
Figure 5-3a illustrates this effect. Figure 5-3b shows that increasing the number
of facets (polygons) decreases the effect but does not eliminate it.

a b

Figure 5-3 Mach band effect for plane polygonal surface representations. (a) Eight-
sided model, (b) 32-sided model. (Courtesy of the University of Utah, Ref. 5-2.)

5-2 A SIMPLE ILLUMINATION MODEL

When light energy falls on a surface, it can be absorbed, reflected, or trans-
mitted. Some of the light energy incident on a surface is absorbed and con-
verted to heat. The rest is either reflected or transmitted. It is the reflected or
transmitted light that makes an object visible. If all the incident light energy
is absorbed, the object is invisible. The object is then called a black body.

312 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Reflected or transmitted light energy makes an object visible. The amount
of energy absorbed, reflected, or transmitted depends on the wavelength of
the light. If the intensity of incident light is reduced nearly equally for all
wavelengths, then an object, illuminated with white light which contains all
wavelengths, appears gray. If nearly all the light is absorbed, the object ap-
pears black. If only a small fraction is absorbed, the object appears “white.”
If some wavelengths are selectively absorbed, the light leaving the object has a
different energy distribution. The object appears “colored.” The color of the
object is determined by the wavelengths selectively absorbed.

The character of the light reflected from the surface of an object depends
on the composition, direction, and geometry of the light source, the surface
orientation, and the surface properties of the object. The light reflected from
an object is also characterized by being either diffusely or specularly reflected.
Diffusely reflected light can be considered as light that has penetrated below the
surface of an object, been absorbed, and then reemitted. Diffusely reflected
light is scattered equally in all directions. Hence, the position of the observer
is unimportant. Specularly reflected light is reflected from the outer surface of
the object.

Lambert’s cosine law governs the reflection of light from a point source by
a perfect diffuser. Lambert’s law states that the intensity of light reflected from
a perfect diffuser is proportional to the cosine of the angle between the light
direction and the normal to the surface. Specifically

I=1Ilkscos0 0=0=nn

where I is the reflected intensity, I; is the incident intensity from a point light
source, kg is the diffuse reflection constant (0 < k; =< 1), and 6 is the angle
between the light direction and the surface normal, as shown in Fig. 5-4. For
angles greater than 7/2, the light source is behind the object. The diffuse
reflection coefficient ks varies from material to material. It is also a function
of the wavelength of the light. However, simple illumination models generally
assume it to be constant.

Objects rendered with a simple Lambertian diffuse reflection illumination
model or shader appear to have a dull matte surface. Because a point light
source is assumed, objects that receive no light directly from the source appear

03 n

Figure 5-4 Diffuse reflection.

A SIMPLE ILLUMINATION MODEL 313

black. However, in a real scene objects also receive light scattered back to
them from the surroundings, e.g., the walls of a room. This ambient light
represents a distributed light source. Because the computational requirements
for a distributed light source are very large, computer graphics illumination
models treat it as a constant diffuse term and linearly combine it with the
Lambertian contribution. The simple illumination model is then

I = Iks + Ltkg cos 6 0=6=nar 5-1

where I, is the incident ambient light intensity and k, is the ambient diffuse
reflection constant (0 < k, =< 1).

If the above illumination model is used to determine the intensity of light
reflected from two objects with the same orientation to the light source but at
different distances, the same intensity for both objects results. If the objects
overlap, then it is not possible to distinguish between them. However, it is well
known that the intensity of light decreases inversely as the square of the distance
from the source; i.e., objects farther away appear dimmer. Unfortunately, if
the light source is assumed to be located at infinity, the distance to the object
is infinite. Consequently, if the diffuse term in the above illumination model
is made inversely proportional to the square of the distance from the light
source, it yields no contribution. If a perspective transformation is applied
to the scene, the distance from the perspective viewpoint to the object, d,
can be used as the constant of proportionality for the diffuse term. However,
when the perspective viewpoint is close to the object, 1/d* varies rapidly. This
results in objects at nearly the same distance having large unrealistic variations
in intensity. Experience has shown that more realistic results can be obtained
by using a linear attenuation law. The illumination model is then

ik cos 6

= Ik, +
I'=lka d+K

(5-2)
where K is an arbitrary constant. When the viewpoint is assumed to be at
infinity, the distance d is determined from the location of the object closest
to the viewpoint. This has the effect of illuminating the object closest to
the viewpoint with the full intensity of the point light source, and all objects
farther from the viewpoint at lower intensities. If the surface is colored, the
illumination model is applied individually to each of the three primary colors.
The intensity of specularly reflected light depends on the angle of incidence,
the wavelength of the incident light, and the material properties. The governing
equation is the Fresnel equation, given in any geometric optics book. Specular
reflection of light is directional. For a perfect reflecting surface (a mirror), the
angle of reflection is equal to the angle of incidence. Thus, only an observer
located at exactly that angle sees any specularly reflected light. This implies that
the sight vector, S in Fig. 5-5, is coincident with the reflection vector R; i.e., the
angle a is zero. For imperfect reflecting surfaces the amount of light reaching
an observer depends on the spatial distribution of the specularly reflected light.

314 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 5-5 Specular reflection.

For smooth surfaces the spatial distribution is narrow or focused, while for
rough surfaces it is spread out.

The highlights on a shiny object are due to specular reflection. Because
specularly reflected light is focused along the reflection vector, highlights move
as the observer moves. Further, because the light is reflected from the outer
surface, except for metals and some solid dyes, the reflected light exhibits the
characteristics of the incident light. For example,-the highlights on a shiny blue
painted surface illuminated with white light appear white rather than blue.

Because of the complex physical characteristics of specularly reflected light,
an empirical model due to Bui-Tuong Phong (Ref. 5-2) is usually used for
simple illumination models. Specifically,

I, = Iw(i,A)cos" a (5-3)

where w(i, 1), the reflectance curve, gives the ratio of the specularly reflected
light to the incident light as a function of the incidence angle i and the wave-
length 4. Here, n is a power that approximates the spatial distribution of the
specularly reflected light. Figure 5-6 shows cos” a for —71/2 < a < n/2 for var-
ious values of n. Large values of n yield focused spatial distributions charac-
teristic of metals and other shiny surfaces, while small values of n yield more
distributed results characteristic of nonmetallic surfaces, e.g. paper.

-m/2 0 /2
Figure 5-6 Approximate spatial distribution function for specularly reflected light.

A SIMPLE ILLUMINATION MODEL 315

Specular reflectance is directional; i.e., it depends on the angle of the
incident light. Light that strikes a surface perpendicularly can have only a
percentage of the light reflected specularly. The rest must be either absorbed
or reflected diffusely. The amount depends on the material properties and the
wavelength. For some nonmetallic materials the reflectance can be as little as
4%, while for metallic materials it can exceed 80%. Figure 5-7a gives examples
of reflectance curves for typical materials at normal incidence as a function of
wavelength, and Fig. 5-7b gives results as a function of incidence angle. Notice
that at the grazing angle (@ = 90°) all the incident light is reflected (reflectance
= 100%).

Combining the current results with those for ambient and incident diffuse
reflection yields the illumination model

I =Lk, + d-lf-_lK(kd cos 8 + w(i,A)cos" a) (5-4)
Because w(i,) is such a complex function it is frequently replaced by an aes-
thetically or experimentally determined constant k;. This yields

I = Lk, + &—j_l—l((kd cos 0 + ks cos” a) (5-5)

as the illumination model. In computer graphics this model is frequently called
a shading function. It is used to determine the intensity or shade of each point
on an object or of each displayed pixel. Again, individual shading functions are
used for each of the three primary colors to yield a colored image. However,
since the color of specularly reflected light depends on the color of the incident
light, &, is usually constant for all three primaries.

If muitiple light sources are present, the effects are linearly added. The
illumination model then becomes

m [,J
I =Lk, + ; T gk cos 6 + ks cos]) (5-6)

- 00rgver ™ ™
]
8
g
= Id |
3 s0[S° .
f=1
S L
E
= L
= ¥ L Dielectric
' 1 | 1 L M| L1 .
% 4 N 07730 60 90
Wavelength,\, (x10 nm) Angle of incidence, 8
a b

Figure 5-7 Reflection curves.

316 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

where m is the number of light sources.
Recalling the formula for the dot product of two vectors allows writing
cos @ = ﬁ =a-L
where i and L are the unit vectors in the surface normal and light source
directions, respectively.
Similarly
RS o 4
cosa = ——=R-S§
IRIIS|
where R and § are the unit vectors for the reflected ray and line-of-sight
directions, respectively. Thus, the illumination model for a single light source
is

- (R .§y g
I = Lk, + d+K[kd(n L)+ k®R-Sm -7

An example more fully illustrates this simple model.

Example 5-1 Simple Illumination Model

Recalling Fig. 5-5 assume that at point P on the surface the normal, light, and
sight vectors are

n= j
L=-i+ 2j- k
S= i+15j+ 0.5k

By inspection the reflection vector R is then
R=i+2j+k

Assuming that there is only one object in the scene, d = 0 and K = 1. The
light source is assumed to be 10 times more intense than the ambient light;
i.e.,, Io = 1 and I; = 10. The surface is to have a shiny metallic appearance.
Hence, most of the light will be specularly reflected. Thus, assume ks = 0.8,
ki = ka = 0.15 and n = 5. Note that ks + k4 = 0.95, which implies that 5% of
the energy from the light source is absorbed. Determining the various elements
of the illumination model yields

nL jr-i+2i-K

irL="—= =

2
Ll Vc12+ @R + (-1 V6

or
0 = cos™' (2/V6)= 35.26°

DETERMINING THE SURFACE NORMAL 317

and
. ~ R°S (i + 2§ +K)* (i + 1.5] + 0.5k)
RS = IRlsi VIE + @)% + V()2 + (1.52 + (0.5
_ 45 45
RV VR
or
a = cos™! (4.5/V21) = 10.89°
Finally

1= (1)0.15) + (10/D[(0.15)(2/V'6) + (0.8)(4.5/V21)’]
=0.15+ 10(0.12 + 0.73)
= 8.65

Because the sight vector is almost coincident with the reflection vector, an
observer would see a bright highlight at the point P. However, if the position
of the observer is changed such that the sight vector is

S=i+1.5j—-0.5k

then
.- RS _33
IRIIS| /21
and
a =40.2°
Here

I1=0.15+10(0.12 + 0.21)
=345

and the observed highlight at P is significantly reduced.

5-3 DETERMINING THE SURFACE NORMAL

The discussion in the previous section shows that the direction of the surface
normal is representative of the local curvature of the surface and hence of the
direction of specular reflection. If an analytical description of the surface is
known, calculation of the surface normal is straightforward. However, for many
surfaces only a polygonal approximation is known. If the plane equation for
each polygonal facet is known, then the normal for each facet can be determined
from the coefficients of the plane equation (see Sec. 4-3). Here the outward
normal is desired.

318 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

% Vi
P,
Vi v,
P, R, P,
v, v,
P,
\ . Vs . b

Figure 5-8 Polygonal surface normal approximations.

Many hidden line/hidden surface algorithms use only vertices or edges.
In applying an illumination model in conjunction with these algorithms, an
approximation to the surface normal at a vertex and along an edge is required.
If the plane equations of the polygonal facets are available, then the normal
at a vertex can be approximated by averaging the normals of the polygons
surrounding the vertex. For example, the direction of the approximate normal
at V, in Fig. 5-8 is given by

ny, = (a0 + a; +aa)i+ (bo + by + ba)j + (co + c1 + ca)k

where ay, ai, as, by, by, ba, o, 1, c4 are the coefficients of the plane equations of
the three polygons P, P, P4 surrounding V. Note that if only the direction of
the normal is required then it is not necessary to formally divide by the number
of surrounding polygons.

Alternately, if the plane equations are not available, the normal at the
vertex can be approximated by averaging the cross products of all the edges that
terminate at the vertex. Again using the vertex V, of Fig. 5-8, the direction of
the approximate normal is

ny, = ViVa®@ViVa + ViVs®@V 1V, + ViV4QV Vs

Care must be taken to average only outward normals. Further, unless a unit
normal is calculated, the magnitude of the approximate normal is influenced
by the number and area of individual polygons or the number and length of
individual edges. Larger polygons and longer edges have more influence. An
example serves to more fully illustrate these techniques.

Example 5-2 Approximating Surface Normals

Consider the polygonal surface shown in Fig. 5-8a. The vertex points are
Vi(=1, —1, 1), Va(1, =1, 1), V3(1, 1, 1), Va(—1, 1, 1), V5(=2, —2, 0), V6(2, -2,
0), V7(2, 2, 0), V8(—2, 2, 0). The surface is a truncated pyramid. The plane
equations for the faces labeled Po, P1, P4 surrounding V) are

DETERMINING THE SURFACE NORMAL 319

Po: z—1=0
Pi: -—-y+:z-2=0
Ps: —x +z-2=0

Approximating the normal at V; by averaging the normals of the surrounding
polygons yields

(a0 + a1 + aa)i+ (bo + b1 + ba)j + (co + c1 + ca)k
—-i—j+3k

n

The magnitude of n) is

| =V(=1)? + (-1 + 3)> = V1T

and the unit normal is
ni
Im1]

Incidentally, note that dividing by 3 does not yield the unit normal. The cross-
products of the edges meeting at V; are

= —0.3i — 0.3j + 0.9k

VIV2®V, V4 = 4k
VIVs®V Vs = —2j + 2k
VIVa®V Vs = —2i + 2k

Approximating the normal at V| by averaging the cross-products yields
n = —2i—2j+8k

The magnitude of n; is now

Il =V(=27 + (-2? + 7 = VT2
and the unit normal is

2L~ _0.24i - 0.24j + 0.94k

Iy
Notice that both the direction and the magnitude of the unnormalized surface
normals are different for the two approximation techniques. This is shown
in Fig. 5-8b. Consequently, an illumination model will yield subtly different
results depending on the technique used to approximate the surface normal.

If the surface normal is to be used to determine the intensity, and if a
perspective transformation is used to display the object or scene, the nor-
mal must be determined before the perspective transformation is applied, i.e.,
before perspective division takes place (see Ref. 1-1). Otherwise, the direction
of the normal will be distorted. Consequently, the intensity determined by the
illumination model will be incorrect.

320 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

5-4 DETERMINING THE REFLECTION VECTOR

Determining the direction of the reflection vector is critical in implementing
an illumination model. In Example 5-1 the direction of the reflection vector
was determined by inspection. Three more general techniques are described in
this section. Recall the law of reflection which states that the light vector, the
surface normal, and reflected light vector lie in the same plane and that in this
plane the angle of incidence is equal to the angle of reflectance (see Fig. 5-9a).
Phong (Ref. 5-2) used these conditions to obtain a simple solution when the
light direction is along the z axis. For an illumination model consisting of a
single point light source this is often an excellent assumption. If the origin of
the coordinate system is taken as the point on the surface, then the projection
of the normal and reflected vector onto the xy plane lie on a straight line (see
Fig. 5-9b).

Thus,

B3
=

d

R
Ey (5-8)

3

y

where R, ﬁy, fix, iy are the x and y components of the unit vectors in the reflected
and normal directions, respectively.

The angle between the unit normal vector and the z axis is . Thus the
component in the z direction is

A, = cos @ 0=<=60=nr2

Similarly, the angle between the unit reflection vector and the z axis is 26.
Hence,

R, =cos20=2cos?0—1=2i2-1 (5-9)
Recalling that

RRE+R+R =1

y y
y
lA‘ _________ R R___
|

\ I , l

n | n |
x [~ : Light ! SR

l —
| Loy gl |
b c

Figure 5-9 Determining the reflection direction.

DETERMINING THE REFLECTION VECTOR 321

then
§3+§§ =1-R=1- cos’26

or

R

« [R?
R§(—’+l) =1- cos?26
y

Using the ratio of the x and y components of the reflected and normal
vectors above (Eq. 5-8) and recalling that

i+ a2+ a2 =1
yields
2 72
ﬁ—g(ﬁi +al) = é(' — %) = 1 — cos?26
Rewriting the right hand side gives

2
ﬁ—;a —A)=1-(cos?0 - 1)} =1- Qa2 - 1)’ = 421 - /D)
y

or

R, = 2i.p, (5-10)
From Eq. (5-8)

R, = 2a.5, (5-11)

If the light direction is not along the z axis, e.g., when multiple light sources
are used, the above technique is not applicable. Each light source could, of
course, be translated and rotated until the light direction is along the z axis.
However, it is simpler to translate and rotate the normal vector until it is along
the z axis with point P on the object at the origin. Here, the xy plane is now
the tangent plane to the surface at P, and the x and y components of the unit
light and reflection vectors are the negatives of each other. The z components
of the unit light and reflection vectors are of course equal. The results in the
original orientation are then obtained by applying the inverse transformations.
Specifically, in the rotated-translated coordinate system

Ro=-L, R=-L, R=L

This technique is particularly convenient if the transformations are implemented
in hardware, firmware, or microcode.

The third technique uses the cross-products of the unit normal and the unit
light and reflection vectors to ensure that the three vectors lie in the same plane.

322 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The dot products of the unit normal and the unit light and reflection vectors
are used to ensure that the incident and reflection angles are equal. These
conditions yield

n®L =R®n
or
(nyL; — n,Ly)i + (n.Ly — L,n,)j + (niLy — Lyny)k =

(any - nsz)i + (R, — ”sz)j + (nny - any)k

The directions of the cross-product vectors are the same if their xyz components
are the same. Thus,

—nRy, +nmR, = nLy —nlL,
nRy — MR, nlL;, — nL, (5-12)
—nyRy + niRy nyLy — n,Ly

At first glance the reflected vector appears to be determined. Unfortunately,
for each specific case one of the three equations yields no useful information;
i.e., the equations are not independent. Further, the specific equation is not
known a priori.

Recalling that the incident and reflected angles are equal yields

n‘L=n-R
or
nRx + myRy + n:R;, = mly + nL, + n.L, (5-13)

which yields the required additional condition. A matrix formulation including
all four conditions for the three unknowns R;, Ry, R; is

0 —n; ny Ry | = | nLy —nlL,
n, 0 —n; Ry nel, — n Ly
—ny ny O R. nyLy — nyLy
ny ny n; nyLy + nyLy + n,L,
or
[N1[R] = [B]

Because [N] is not square a trick must be used to obtain a solution} In
particular

[R] = [IM"IM] ' [M"B]

TNormally this technique yields a mean solution. However, because one of the equations
(Eq. 5-12) is redundant, here the solution is exact.

GOURAUD SHADING 323

5-5 GOURAUD SHADING

If the illumination model is applied to a polygonal surface using a single con-
stant normal for each polygon face, a faceted appearance results as illustrated
by the face in Fig. 5-10a. A smoother appearance is obtained using a technique
developed by Gouraud (Ref. 5-3). If a scan line algorithm is used to render
the object, a value for the intensity of each pixel along the scan line must be
determined from the illumination model. The normals to the surface are ap-
proximated at the polygonal vertices of the surface, as described in the previous
section. However, as shown in Fig. 5-11, a scan line does not necessarily pass
through the polygon vertices. Gouraud shading first determines the intensity
at each polygonal vertex. A bilinear interpolation is then used to determine
the intensity of each pixel on the scan line.

In particular, consider the segment of a polygonal surface shown in Fig. 5-11.
The intensity at P is determined by linearly interpolating the intensities of the
polygon vertices A and B to obtain the intensity of Q, the intersection of the
polygon edge with the scan line, i.e.

Iop = uly + (1 — wip O=su=l

where u = AQ/AB. Similarly, the intensities at the polygon vertices B and C
are linearly interpolated to obtain the intensity at R on the scan line, i.e.

a b
Figure 5-10 Polygonal and Gouraud shading. (Courtesy of the University of Utah.)

324 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

___ Plane of
scan line

Figure 5-11 Shading interpola-
tion.

Ig = wig + (1 — w)l¢ 0=w=1

where w = BR/BC. Finally, the intensity at P on the scan line is also ob-
tained by linearly interpolating along the scan line between Q and R, i.e.

Ip=tg+(1-0g 0<t=<I

where t = QP/QR.
The intensity calculation along the scan line can be performed incremen-
tally. For two pixels at #; and 7, on the scan line

Ip, = tlp + (1 — n)lg
and
Ip; = tllg + (1 — t)lg
Subtracting yields
Ip, = 1Ip, + (Ig — I}ty — 1) = Ip, + Al At

along the scan line.The result of applying Gouraud shading to the polygonal ap-
proximation for the face in Fig. 5-10a is shown in Fig. 5-10b. The improvement
is startling. However, close examination of Fig. 5-10b shows faint evidence of
Mach‘banding, e.g., on the cheek bones, around the eyes, and on the chin.
This is because the shading interpolation rule yields only continuity of intensity
value across polygon boundaries but not continuity of change in intensity. Note
also that the silhouette edges are polygonal, e.g. the eyes and nose.

An additional difficulty with Gouraud shading is illustrated in Fig. 5-12a.
If the normals at the vertices B, C, D are computed using polygon averaging,
then they all have the same direction and hence the same intensity. Linear in-
terpolation then yields a constant-intensity value from B to D, which makes the
surface appear flat in that area. To achieve a smooth appearance at B, C, and
D it is necessary to introduce additional polygons as shown in Fig. 5-12b. If an
actual crease is required, then the smooth shading must be locally defeated by
“selectively” averaging the surface normals. An example is shown in Fig. 5-12c.
Here ng, is computed only from the single face to the right of B. np, and np,

PHONG SHADING 325

Figure 5-12 Gouraud shading effects.

are obtained similarly, while n¢ is computed from the average of the faces to
the left and right of C. Gouraud shading then yields a sharp edge at B and D
and an apparent smooth graduation at C. The effect is shown by the lips in
Fig. 5-10b. A

Because of the simplicity of the shading, the shape of individual highlights
from specular reflection is strongly influenced by the polygons used to represent
the object or surface. Consequently a simple diffuse illumination model (see
Eq. 5-1 or 5-2) yields the best results with Gouraud shading.

5-6 PHONG SHADING

Although computationally more expensive, Phong shading (Ref. 5-2) solves
many of the problems of Gouraud shading. Whereas Gouraud shading inter-
polates intensity values along a scan line, Phong shading interpolates the normal
vector along the scan line. The illumination model is then applied at each pixel,
using the interpolated normal to determine the intensity. This technique gives a
better local approximation to the surface curvature and hence a better rendering
of the surface. In particular, specular highlights appear more realistic.

Phong shading first approximates the surface curvature at polygonal vertices
by approximating the normal at the vertex (see Sec. 5-3). A bilinear interpola-
tion is then used to determine the normal at each pixel. In particular, again
using Fig. 5-11, the normal at P is determined by linearly interpolating between
A and B to obtain Q, between B and C to obtain R, and finally between Q and
R to obtain P. Specifically

326 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

ng = ung + (1 —u)ng O=u=s1l
ng =wng + (I1—-wnc O0=w=1l
np = mg + (1 —1nng 0=sr=1

where again u = AQ/AB, w = BR/BC, and ¢t = QP/QR. Again, the normal along
a scan line can be determined incrementally, i.e.

np, = np, + (Ng — MR)(12 — 1) = np, + An*At

where the subscripts 1 and 2 indicate successive pixels along the scan line.

Figure 5-13 compares constant, Gouraud, and Phong shading. The left
hand torus is rendered with constant normal shading, the middle torus with
Gouraud shading, and the right hand torus with Phong shading. The illumina-
tion model for the left hand and middle tori is ambient plus diffuse reflec-
tion (Eq. 5-1), while that for the Phong-shaded right hand torus also includes
specular reflection as shown by the highlights (Eq. 5-5 with d = 0,K = 1).
Figure 5-14 compares the highlight obtained with specular reflection for Gou-
raud shading and the more realistic Phong shading.

Although Phong shading reduces most of the problems associated with
Gouraud shading, it is still a linear interpolation scheme. Consequently, discon-
tinuities in the first derivative of the intensity still give rise to Mach band effects.
In general, these effects are smaller than for Gouraud shading. However, Duff
(Ref. 5-4) has shown that in some cases, notably for spheres, Phong shading
yields worse Mach band effects than Gouraud shading. Further, both tech-
niques potentially render concave polygons incorrectly. For example, consider
the polygon shown in Fig. 5-15. The scan line labeled 1 will use data from the
vertices QRS, while that labeled 2 just below it also uses data from vertex P.
This can give rise to a shading discontinuity.

Figure 5-13 Comparison of rendering techniques. (Left) constant normal, (mid-
dle) Gouraud, (right) Phong. (Courtesy of T. Whitted.)

PHONG SHADING 327

a b

Figure 5-14 Comparison of specular reflection highlights. (a) Gouraud shading, (b)
Phong shading. (Courtesy of the University of Utah.)

Additional difficulties are exhibited by both Gouraud and Phong shading
when used in animation sequences. In particular, the shading varies significantly
from frame to frame. This effect is a result of working in image space and the
fact that the shading rule is not invariant with respect to rotation. Consequently,
as the orientation of an object changes from frame to frame, its shade (color)
also changes. This is quite noticeable. Duff (Ref. 5-4) presents a technique
for rotation independent Gouraud and Phong shading rules.

An example that computes constant, Gouraud, and Phong shading serves
to illustrate the difference between the three techniques.

/"//S\ .

% N Figure 5-15 Shading anom-
S R

alies for concave polygons.

Example 5-3 Shading

Consider the segment of a surface shown in Fig. 5-11. The equations of the
four planes are

328 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

1: 2z -4=0
2: -x+ 1.732y + 7.5z -17=0
3 —2.25x + 3.897y + 10z — 24.5=0
4: 55z -—-11=0

where z is perpendicular to the plane of the paper, x is positive to the right,
and y is positive upward. The point B has coordinates of (0.366, 1.366, 2).

The vector to the eye is S[1 1 1], and a single point light source is located
at positive infinity on the z axis. The light vector is thus L[0 0 1]. The
illumination model is given by Eq. 5-7, with d=0,K=1,I,=1,1;=10,
n=2, ks =0.8, ka = kg = 0.15. Since the light direction is along the z axis, the
Phong technique can be used to determine the direction of the reflected light
vector (see Sec. 5-4).

For constant shading the point P is in polygon 3. From the plane equation
for polygon 3 the unit normal is

fiy = =2
7 ol

The angle between the normal and light vector is

= —0.21i + 0.36j + 0.91k

i-L= (—0.21i + 0.36j + 0.91k) *k = 0.91

which yields an incidence angle of about 24.2°.
From Egs. (5-9) to (5-11)

R, = 2a2—1= (20917 —1=066
R, = 2i,A, = (2)(0.91)(-0.21) = —0.38
, = 24,4, = (2)(0.91)(0.36) = 0.66

and R
R = —0.38i + 0.66j + 0.66k

The unit vector in the eye direction is
a_ S S . .
S= = — = 0.58i + 0.58j + 0.58k
sl v3

Using this value, the angle between the reflected light vector and the line
of sight or eye is

RS = (—0.38i + 0.66j + 0.66k) - (0.58i + 0.58] + 0.58Kk)
=0.55

which yields an angle of about 57°.
Recalling the illumination model (Eq. 5-7) yields

1 A ~ A
Ip = Ioka + ﬁ[kd(ﬁ‘ L)+ k(®-Sm

= (1)(0.15) + (10/1)[(0.15)(0.91) + (0.8)(0.557¢]
=0.15+10(0.14 + 0.24) = 0.15+ 3.8
=3.95

for point P.

PHONG SHADING 329

For Gouraud shading the normal vectors for A, B, C in Fig. 5-11 are re-
quired. Approximating the normals by the average of the normals of the
surrounding planes yields

na = m +n3 = —3.25i + 5.63j + 17.5k
ng = n; + n2 + n3 + ng = —3.25i + 5.63j + 25k
nc = n3 + ng = —2.25i + 3.897j + 15.5k

where nj, n2, n3, n4 are obtained from the plane equations given above. The
unit normals are

fia = A = —0.17i + 0.3j + 0.94k
|mal

fig = —2 = —0.12i + 0.22j + 0.97k
ns|

fic = =< = —0.14i + 0.24j + 0.96k
Inc|

The unit reflected vectors are
Ra = —0.33i + 0.57j + 0.76k
Rp = —0.24i + 0.42j + 0.87k
Rc = —0.27i + 0.46j + 0.84k
The intensities at A, B, C are

Ia = 0.15+ 10(0.14 + 0.27) = 4.25
Ig = 0.15 + 10(0.15 + 0.30) = 4.65
Ic = 0.15 + 10(0.14 + 0.29) = 4.45

On a particular scan line 4 = AQ/AB = 0.4 and w = BR/BC = 0.7. Interpolating
to find the intensities at Q and R yields

Ig = ula + (1 — w)ig = (0.4)(4.25) + (1 — 0.4)(4.65) = 4.49
Iz = wig + (1 — w)lc = (0.7)(4.65) + (1 — 0.7)(4.45) = 4.59

The point P on the scan line is located at + = QP/QR = 0.5. Interpolating to
find the intensity at P yields

Ip = tg + (1 — Ol = (0.5)(4.49) + (1 — 0.5)(4.59) = 4.54

Phong shading interpolates the normals at A, B, C to first obtain the nor-
mal at P. The normal at P is then used to obtain the intensity at P. First,
interpolating to obtain the unit normals at Q and R yields

g = wuiia + (1 —winp = (0.4)[—0.17 0.3 0.94] + (0.6)[—0.12 0.22 0.97]
=[—0.14 0.25 0.96] = —0.14i + 0.25j + 0.96k

fir = wig + (1 —w)iic = (0.7)[—0.12 0.22 0.97] + (0.3)[0.14 0.24 0.96)
=[-0.04 0.23 0.97}) = —0.04i + 0.23j + 0.97k

Interpolating the normal along the scan line yields
fip = mo + (1 — Nig = (0.5)[—0.14 0.25 0.96] + (0.5)[—0.04 0.23 0.97}

330 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

[(—0.09 0.24 0.97]
—0.09i + 0.24j + 0.97k

The unit reflection vector at P is then
Rp = —0.17i + 0.46j + 0.87k
The intensity at P is
Ip = 0.15 + (10)(0.15 + 0.36) = 5.25
Comparing the different shading models yields

Constant: Ip = 3.93
Gouraud: Ip =4.54
Phong: Ip =525

5-7 A SIMPLE ILLUMINATION MODEL WITH SPECIAL
EFFECTS

Warn (Ref. 5-5) has extended the simple point source illumination model dis-
cussed previously in Sec. 5-2 to include special effects. The model was inspired
by the lighting controls found in a professional photographer’s studio. The
special effects include controls for light direction and for light concentration.
Further, the area illuminated by a light source can be limited.

The Warn model allows the direction of a light source to be controllec in-
dependently of its location, as shown in Fig. 5-16a. Conceptually, the directed
light can be modeled as a single point perfect specularly reflecting pseudo sur-
face, illuminated by a point light source, as shown in Fig. 5-16b. If the point
light source is located along the direction L normal to the reflecting pseudo sur-

Surface
normal
o0
NS
n Reflected é\e’r&‘&
?~°¢o
&
-
Light Light direction
direction
{:} pseudolight
source
a b

Figure 5-16 Directed lighting model.

A SIMPLE ILLUMINATION MODEL WITH SPECIAL EFFECTS 331

face, then the reflection of that source illuminates the object along the direction
L. Hence, the direction of the light is controlled by rotating the pseudo surface.

With this conceptual model for the directed light source, the same illumina-
tion model can be used for both directed and point source lights in a scene. The
amount of light received at point P from the directed light source as shown in
Fig. 5-16a depends on the angle B between L, the light direction vector, and
the line from the location of the light to P. Using the Phong approximation
for specular reflection from a perfect surface, the intensity of the directed light
source along the line from the source to the point P is

Ijjcos” B

where c is a power that determines the spatial concentration of the directed light
source (see Fig. 5-6). If c is large, the beam is narrow, simulating a spotlight.
If c is small, the beam is spread out to simulate a flood light. The contribution
of the directed light source to the overall illumination model (see Eq. 5-6) is
then

I; = Ij; cos® B(ka; cos 0; + ks; cos™ a;) (5-14)

where j designates the specific light source.

A studio photographer obtains special effects by limiting the area of con-
centration of lights using flaps (called barn doors by professional photographers)
mounted on the lights and with special reflectors. The Warn model simulates
these effects with flaps and cones. Flaps oriented to the coordinate planes are
implemented by limiting the maximum and minimum extent in x, y, or z of the
light, as shown in Fig. 5-17a. If a point on the object is within the range of
the flap, €.8. Ymin = Yobject = Ymax» the contribution from that light is evaluated.
Otherwise, it is ignored. Implementation of arbitrarily oriented flaps is straight-
forward. Flaps can also be used to simulate effects that have no physical coun-
terpart. For example, a flap can be used to drop a curtain across a scene to
limit penetration of a particular light source.

A cone, as shown in Fig. 5-17b, can be used to produce a sharply delineated
spotlight. This is in contrast to the gradual decrease at the edge achieved by

__Ymax
Light direction Crease f . . .
Object surface Yo Light direction
________ b 3
Ymin b
a b

Figure 5-17 Flaps and cones.

332 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

varying c in the directed light source model. Again this simulates one effect
available to the commercial photographer. Implementation of the cone effect
is straightforward. If the apex of the cone is located at the light source and y is
the cone angle, then if 8 < y, the effect of that light source on the point P can
be ignored. Otherwise, it is included in the illumination model. In practice,
this is accomplished by comparing cos # with cosy; i.e., cos 8 < cos y.

The effects that can be achieved with this illumination model are shown by
the 1983 Chevrolet Camaro in Color Plate 1. Five lights have been used. Two
lights have been used on the left side of the car for back lighting. Two lights
have also been used on the right side of the car. Notice in particular the use
of light concentration to emphasize the crease on the right door and along the
right rear fender. The fifth light, high and behind the car, is used to emphasize
the taillights and the detail on the bumper. The results are exceptional.

5-8 A MORE COMPLETE ILLUMINATION MODEL

The illumination models discussed in the previous sections are relatively simple.
They are based on aesthetic and experimental approximations. This is par-
ticularly true of the specular component of the reflected light. Torrance and
Sparrow (Ref. 5-6) present a theoretical model for reflected light. Correlation
between the Torrance-Sparrow theoretical model and experiment is excellent.
Blinn (Ref. 5-7) and Cook and Torrance (Refs. 5-8 and 5-9) have used this
model to generate synthetic images. Blinn assumed that the specular highlights
were the same color as the incident light. Cook integrated the dependence of
the specular reflectance coefficient on wavelength into the model. The results
show that the color, i.e. the wavelength, of the specular highlights depends
on the material properties. The color of the specular highlights approaches the
color of the light source as the incidence angle approaches 7/2.

To develop a more complete illumination model, first consider the solid
angle subtended by a light source. The incident energy per unit time per unit
area of the reflecting surface is then related to the intensity of the incident light
per unit projected area per unit solid angle w subtended by the light source by

E =In- i:) dw

For rough surfaces, the incident light is reflected over a wide range of angles.
The reflected light intensity is related to the incident energy by

I =rE;

Here, r is the ratio of the reflected intensity for a given direction to the inci-
dent energy from another direction. It is called the bidirectional reflectance.
Combining the two equations yields

I=rlh- L)do

A MORE COMPLETE ILLUMINATION MODEL 333

The bidirectional reflectance is composed of two parts, specular and diffuse,
i.e.

r = kqra + kerg where kg + k; = 1

Here k4 and k; are properties of the materials but are not normally known.
Hence, they are usually treated as arbitrary parameters.

Reflection from ambient illumination is needed to complete the model. If a
surrounding hemisphere is considered the source of ambient illumination, part
of that hemisphere may be blocked by other objects. With this in mind, the
reflected intensity due to ambient illumination is

I= fkarala

where fis the unblocked fraction of the hemisphere. The ambient reflectance
ra results from integrating the bidirectional reflectance r over the hemisphere.
Consequently r, is a linear combination of r; and r;. The constant k, again
depends on the material properties but is normally an arbitrary parameter.

Combining the results yields the Cook-Torrance illumination model for m
multiple light sources, i.e.

1= fharala + 2 10 L) dojtkara + kr) (5-15)
Y

Notice that, in contrast to the previous illumination models, the Cook-Torrance
model has the ability to account for multiple light sources of both different in-
tensities (/;) and different projected areas (a - Lda)) This ability can be of
importance. For example, a light source with the same intensity and illumina-
tion angle as another light source but with twice the solid angle yields twice the
reflected intensity; i.e., the surface appears twice as bright. Quite small solid
angles can occur for large distant light sources; e.g., the solid angle for the sun
is 0.000068 steradian.

The components of the model depend on the wavelength of the incident
light, the material properties of the illuminated object, the roughness of the
surface, and the reflection geometry. Because of their considerable influence
on the realism of the resulting synthetic images, the highlights due to specular
reflection are of particular interest. The Torrance-Sparrow model addresses
this problem.

The Torrance-Sparrow model (Ref. 5-6) for reflection from a rough surface
is based on the principles of geometric optics. It is applicable to surfaces
with an average roughness large compared to the wavelength of the incident
light. The model assumes that the surface is composed of randomly oriented
mirrorlike microfacets. The specular reflectance component of the reflected
light r, results from single reflections from the mirrorlike microfacets. Diffuse
reflection ry is a result of multiple reflections among the microfacets and from
internal scattering. Figure 5-18 shows the geometry for reflection from a rough

334 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Unit normal
to surface

Unit normal to
microfacet

Surface

Figure 5-18 Geometry for the Torrance-Sparrow reflection model.

surface. Here, i is the unit normal to the surface, L is the unit vector in the
direction of the light source, R is the unit reflection vector for the surface, His
the unit normal for a single microfacet in the surface, and § is the unit reflection
vector for the microfacet and also the direction of the observer. By the laws of
reflection, L, H, and § all lie in the same plane and the incident and reflection
angles ¢ are equal. The angle between the normal to the surface n and the
normal to the microfacet H is 6. Since H is the bisector of the angle between
L andS§,

~ S+L S+1L

H==——=

IS| + | L| 2

and
cos¢p = L-a=8a

Only microfacets with normals in the direction H contribute to the specular
reflection seen by an observer in the direction S.

Using the Torrance-Sparrow model, Cook and Torrance give the specular
reflectance rs as
F__ DG
x@- L)@ 8
where F is the Fresnel term, D is the distribution function for the microfacets
on the surface, and G is a geometric attenuation factor due to shadowing and
masking of one microfacet by another.

If each microfacet is considered as one side of a symmetric V-groove cavity
(see Fig. 5-19), then part of a microfacet may be shadowed from incoming
light (see Fig. 5-19b). Alternatively, part of the light reflected from a facet
may not leave the cavity because it is masked by the opposite cavity wall. This
is shown in Fig. 5-19c. The masking-and-shadowing effect is given by the ratio
m/l. Thus, the geometric attenuation is

rs =

A MORE COMPLETE ILLUMINATION MODEL 335

a

Figure 5-19 Geometric attenuation by the masking-and-shadowing effect. (a) No inter-
ference, (b) shadowing, (c) masking.

G=1-m/

From the geometry shown in Fig. 5-19 it is obvious that the geometric
attenuation is a function of the angle of the incident light, the included angle
between the sides of the V groove, and the length of the side of the V groove, [.
When there is no interference, m = 0 and G = 1. Both Torrance and Sparrow
(Ref. 5-6) and Blinn (Ref. 5-7) have determined G for masking and shadowing
effects. For masking (Fig. 5-19c¢),

_ 26-H)@G- L)
H-L

For shadowing (Fig. 5-19b), the result is the same with Sand L exchanged;

i.e.

G

_2m-B@-S _ 26-W@-S
A-S AL

since f is the bisector of L and §. For any given situation, the geometric
attenuation is the minimum of these values; i.e.

G

G = Min(l, Gm, Gy)

Torrance and Sparrow assume that the microfacet distribution on the sur-
face is Gaussian. Thus,

D = cie”®m"

where ¢; is an arbitrary constant and m is the root mean square slope of the
microfacets. Cook and Torrance use a more theoretically founded distribution
model proposed by Beckmann (Ref. 5-10). The Beckmann distribution is
1 2
D= —— e—(!ané/m)
m? cos* &

336 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

which provides the absolute magnitude of the distribution function without
arbitrary constants. Figure 5-20 compares the Beckmann distributions for m =
0.2 and 0.6, corresponding to shiny and matte surfaces. Each point on the sur-
face shown represents the magnitude of the reflected intensity in the direction
S from the point P as the direction of S varies over a hemisphere For small
values of m, the reflected mtensnty is concentrated along the mirror direction
R, while for larger values of m it is more evenly distributed. Small values of m
yield shiny surfaces, and large values dull mattelike surfaces. For small values
of m corresponding to specular reflection, there is little difference between the
Gaussian, Beckmann or Phong distribution functions. For larger values of m
the differences are more significant.

If a surface has more than one roughness scale, weighted linear combina-
tions of the distribution functions for different values of m may be used; e.g.

D= X wD(m)

where the sum of the weighting factors w; is unity, i.e. £ w; = 1.

Ambient, diffuse, and specular reflection all depend on wavelength A. The
wavelength dependence of r,, r4, and F is a result of the material properties of
the object. The Fresnel term in the specular reflectance r; can be theoretically
calculated from the Fresnel equation for unpolarized incident light reflected
from a smooth mirrorlike surface, i.e.

1 [sin’ (¢ — 6) N tan® (¢ — 6)
sin (¢ + 0) tan’ (¢ +)

F:

where

sinf = sin ¢/
n = index of refraction of the material

Here, 6 = cos ! (L-H) = cos™! (§-H), the angle of incidence. Since the index
of refraction is a function of wavelength, F is also a function of wavelength.

a b

Figure 5-20 Beckmann distribution functions for (a) m = 0.2 and (b) m = 0.6. (Cour-
tesy of Rob Cook and the Program of Computer Graphics, Cornell University.)

A MORE COMPLETE ILLUMINATION MODEL 337

F
10 F
05
0
A
0 400 600 300 Mom)
a b

Figure 5-21 Reflectance p of bronze (a) at normal incidence (b) as a function of incidence
angle calculated from (a) and the Fresnel equation. (Photograph courtesy of Rob Cook
and the Program of Computer Graphics, Cornell University.)

If n is not known as a function of wavelength, F may be obtained from ex-
perimental values (see, for example, Ref. 5-11).T Figure 5-21a shows F(4) for
bronze at normal incidence. Cook and Torrance suggest the following proce-
dure for obtaining the angular dependence of F(4) when only the normal de-
pendence on wavelength is known. Rewriting F as

_1lg-o¢? [e(g + ¢) — 12
F= 2(g+c>2; * [c(g—c)+112$

where
c=cos¢p = S-A=L-f
g2 = 772 +c? -1
and noting that at ¢ = 0, ¢ = 1, g = 7, yields
-1
o= (i)
Solving for 7, the index of refraction, yields

()») _ 1 +VFO()»)
T = T VFod)

TNote that the reflectance spectra given in Ref. 5-11 are for polished surfaces. They must be
multiplied by 1/x for rough surfaces.

338 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

This value of 7 is used to determine F(4) from the Fresnel equation. A typical
result is shown in Fig. 5-21b.

The dependence of the specular reflectance on wavelength and angle of
incidence implies that there is a color shift in the specular highlights as the
angle of incidence approaches /2 (see Fig. 5-21b). At near normal incidence,
¢ = 0; the specular highlights are the color of the material. Near the grazing
angle of ¢ = /2, the specular highlights are the color of the incidence light
source (F = 1). Because calculation of the color shift is expensive, Cook
and Torrance suggest a linear interpolation between the color at normal reflec-
tance (¢ = 0) and the color of the light (¢ = n/2). For example, the red
component is
Max(0, Fg — Fy)

Fan — Fo

The blue and green components in an RGB color space (see Sec. 5-15) are
determined similarly.

Cook and Torrance take the diffuse reflectance rq to be the normal reflec-
tance, ¢ = 0, from the surface. Although the diffuse reflectance does vary with
angle, the effect is negligible for incidence angles less than about 70°. Hence,
this is a reasonable assumption.

The two vases shown in Color Plate 2 illustrate results for the more com-
plete illumination model. The left hand vase is bronze-colored plastic. The
plastic is simulated using a colored diffuse component and white specular high-
lights (F = 1). The right hand vase is metallic bronze. For metals, reflec-
tion occurs from the surface. There is little penetration of the incident light
below the surface and hence little if any diffuse reflection. Notice that here the
specular reflected highlights have a bronze color. The specific details used by
Cook to generate these images are given in Table 5-1.

Blinn has also used the more complex Torrance-Sparrow model with F = 1,
i.e., without accounting for the color shift. Figure 5-22 by Blinn compares the
shape of the specular highlights obtained using the Phong illumination model
when the object is edge-lit. Edge-lighting occurs when the observer (S) and
the light source (L) are approximately 90° apart. When the light and the
observer are at the same location, i.e. L = §, the results for the two models
are indistinguishable.

The above results are explained by Fig. 5-23 which shows a comparison
of the Phong and Torrance-Sparrow distribution functions for near normal
(25°) and near grazing (65°) angles for incident light. The bump represents
the specular reflectance. Figures 5-23a and b show little difference between
the models for near normal incidence. However, for near grazing angles the
Torrance-Sparrow model exhibits a laterally narrower, vertically oriented spec-
ular reflectance bump which is not quite in the same direction as that for the
Phong model. Incorporating the geometric attenuation factor G into the Phong
illumination model yields results similar to those produced by the Torrance-
Sparrow model for edge-lit objects.

Redg = Redo + (Red2 — Redp)

A MORE COMPLETE ILLUMINATION MODEL 339

Table 5-1

Plastic vase

Metallic vase

Two lights? I = CIE standard illumi-
nant Degsoo
dw; = 0.0001 and 0.0002

Specular ks = 0.1
F = reflectance of a vinyl

mirror
D = Beckmann function with
m=0.15
Diffuse ka = 0.9

ra = the bidirectional reflec-
tance of bronze at normal

I, = CIE standard illumi-

nant Dgseo
dw; = 0.0001 and 0.0002
ks = 1.0
F = reflectance of a bronze
mirror
D = Beckmann functions with
m = 0.4
wy = 0.4
mp = 0.2
wy = 0.6
ka=0

rq = the bidirectional reflec-
tance of bronze at normal

incidence incidence
Ambient I, = 0.011; I, = 0.01];
rqg = arg rg = Jrg
2 See Sec. 5-15.
a b

Figure 5-22 Comparison of edge-lit specular highlights. (a) Phong, (b) Torrance-
Sparrow, magnesium oxide surface. (Courtesy of the University of Utah.)

340 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

c d
Figure 5-23 Comparison of a light distribution functions at a near normal incidence angle
(25°): (a) Phong, (b) Torrance-Sparrow; and at a near grazing incidence angle (65°): (c)
Phong, (d) Torrance-Sparrow.

5-9 TRANSPARENCY

Prior illumination models and hidden line/hidden surface algorithms have con-
sidered only opaque surfaces or objects. Not all objects are opaque; some
transmit light, e.g., glasses, vases, automobile windows, water. When light
passes from one medium to another, e.g., from air to water, the light ray is
bent by refraction. The common childhood observation that a straight stick
partially inserted into a pond appears bent is an example of refraction. The
amount that the light ray is bent is governed by Snell’s law which states that the
refracted ray lies in the same plane as the incident ray and that the relationship
between the incident and refracted angles is

71 sin@ = nzsin 6’

where 7, and 7, are the indices of refraction in the first and second mediums.
Here, 0 is the angle of incidence and €' the angle of refraction, as shown in

TRANSPARENCY 341

Surface
normal
s“" Medium |
Incident &b
ray 0 é\g‘c‘
Q.
Interface
0 .
Transmitted Medium 2

ray
Figure 5-24 Geometry of refraction.

Fig. 5-24. No material transmits all the incident light. Some of it is reflected,
as is also shown in Fig. 5-24.

By analogy with specular and diffuse reflection, light may be transmitted
specularly or diffusely. Transparent materials, e.g. glass, exhibit specular
transmission. Except at the silhouette edges of curved surfaces, objects viewed
through transparent materials appear undistorted. If the transmitted light is.
scattered, then diffuse transmission occurs. Materials that diffusely transmit
light appear frosted or translucent. Objects viewed through translucent materials
appear dim or are distorted.

Some of the practical implications of refraction are shown in Fig. 5-25. In
Fig. 5-25 the objects labeled 1 and 2 have equal indices of refraction greater
than that in the surrounding medium. The objects labeled 3 and 4 are opaque.
If the effects of refraction are ignored, the light ray labeled a would intersect
object 3 as shown by the dashed line. However, because the light ray is bent
by refraction, it intersects object 4. Consequently, an object that might not
otherwise be seen is visible. In contrast, if refraction effects are ignored for
the light ray labeled b, then the ray would miss object 3 and intersect object
4. However, the refracted ray intersects object 3. Thus, an object that is

Figure 5-28 Refraction effects.

342 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

visible might not be seen. To generate realistic images these effects must be
considered.

Similar effects occur when a perspective transformation is incorporated into
the viewing transformation. Typically, a perspective transformation is used to
obtain a distorted object that is then displayed using an axonometric projection
with the eyepoint at infinity, as shown in Fig. 5-26. Figure 5-26a shows a
light ray through P that intersects the undistorted object at i. The refracted
ray arrives at the background at point b. Figure 5-26b shows the object after
distortion by a perspective transformation. The light ray now intersects the
object at the transformed point i, and the refracted ray now intersects the
background at b’ on the opposite side of the centerline from b. This effect is
a result of incorrect angular relationships between the distorted object and the
distorted light ray. At first glance, keeping sufficient information to generate
the correct angular relations at the light ray—object boundaries might yield a
correct result. However, the correct result is not obtained because the length
of the light ray path in the distorted object is also different. This difference in
path length has two effects. First, the exit point of the refracted ray from the
distorted object is not the same as for the undistorted object. Thus, the ray
still will not intersect the background at the correct point. Second, the amount
of light absorbed within the object is also different. Hence, the intensity of the
light ray as it exits the distorted object is changed.

These refraction effects can be eliminated either by using an object space
algorithm or by appropriately transforming between object and image space.
However, they are more easily incorporated into ray tracing visible surface
algorithms that utilize a global illumination model (see Sec. 5-12).

The simplest implementations of transparency effects ignore refraction.
When refraction is ignored, the effects illustrated in Figs. 5-25 and 5-26 do not

b \/’ P

Background

a
[
a
_/, Figure 5-26 Perspective ef-
fects on refraction. (a) Un-
Background b distorted, (b) with perspec-

tive distortion.

TRANSPARENCY 343

occur. These simple implementations also ignore the effect that the distance a
light ray travels in a medium has on the intensity. The earliest implementation
of transparency is attributed to Newell, Newell, and Sancha (Ref. 5-12) (see
Sec. 4-8). Simple transparency effects can be directly incorporated into any
of the hidden surface algorithms except the z-buffer algorithm. Transparent
polygons or surfaces are tagged. When the visible surface is transparent, a
linear combination of the two nearest surfaces is written to the frame buffer.
The intensity is then

I'=t+1 -0 O0=¢t=1

where I; is the visible surface, I is the surface immediately behind the visible
surface, and ¢ is the transparency factor for /;. If r = 0, the surface is invisible.
If t = 1, the surface is opaque. If /> is also transparent, the algorithm is applied
recursively until an opaque surface or the background is found. When polygons
are written to a frame buffer in depth priority order, as in the Newell-Newell-
Sancha algorithm, I> corresponds to the value stored in the frame buffer and I
to the current surface.

The linear approximation does not provide an adequate model for curved
surfaces. This is because at the silhouette edge of a curved surface, e.g., a
vase or bottle, the thickness of the material reduces its transparency. To more
adequately represent these effects Kay (Refs. 5-13 and 5-14) suggests a simple
nonlinear approximation based on the z component of the surface normal. In
particular, the transparency factor

1=t + (fmax — tmin)[1 — (1 — |nz|)p]

where ., and t,,, are the maximum and minimum transparencies for the
object, n; is the z component of the unit normal to the surface, and p is a
transparency power factor. Here, ¢ is the transparency for any pixel or point
on the object. Figure 5-27 compares results for the two models. Figure 5-27a

a b

Figure 5-27 Comparison of simple transparency models. (a) Linear ¢+ = 0.5, (b) non-
linear p = 1. (Courtesy of D. S. Kay and the Program of Computer Graphics, Cornell
University.)

344 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

was rendered using the linear model, and Fig. 5-27b using the nonlinear model.
Transparency effects cannot be added directly to a zbuffer algorithm (see
Sec. 4-7). However, transparency effects may be included by using separate
transparency, intensity, and weighting factor buffers (Ref. 5-15) with the trans-
parent polygons tagged in the data structure. For a z-buffer algorithm the
procedure is

For each polygon:

If the polygon is transparent, save it on a list.
If the polygon is opaque and if z > zuufrer , Write it to the opaque frame
buffer and update the opaque z buffer.

For each polygon on the transparent list:

If z= zpurer, add its transparency factor to that in the transparency
weighting buffer.

Combine its intensity with that in the transparency intensity buffer using
Ipn = Ipotpo + Ictc

where I, is the new intensity value to be placed in the transparency
intensity buffer, I, is the old value in the transparency intensity buffer,
I. is the intensity of the current polygon, f, is the old transparency
factor in the transparency weighting buffer, and ¢ is the transparency
factor for the current polygon. This produces a weighted sum of the
intensities of all the transparent polygons in front of the nearest opaque

polygon.

Combine the opaque and transparency intensity frame buffers. A linear
combination rule is

In = trolpo + (1 — tho)lpo

where I is the final intensity in the opaque frame buffer and Ip, is the old
intensity value in the opaque frame buffer.

Because of the memory requirements for a full z buffer, the procedure is more
appropriate for use with a scan line z-buffer algorithm (see Sec. 4-10).

One interesting application of transparency is in visualization of the interior
of complex objects or spaces. For this technique each polygon or surface is
tagged with a transparency factor. Initially, all transparency factors are 1, i.e.
opaque. Rendering produces an opaque hidden surface view of the outside of
the object or space. By selectively changing the transparency factor for groups
of surfaces to zero, i.e. invisible, the interior of the object or space is revealed
when the scene is again rendered.

Adding refraction effects to the illumination model requires that the visible
surface problem be solved for both the reflected and transmitted light rays

SHADOWS 345

(see Fig. 5-24) as well as for the incident light ray. This is most effectively
accomplished with a global illumination model in conjunction with a ray tracing
visible surface algorithm (see Sec. 5-12). Because of the large number of
diffusely scattered transmitted rays generated by a translucent surface, only
specularly reflected transmitted rays are usually considered. Thus, only trans-
parent materials are simulated. The illumination model used is then a simple
extension of those discussed previously (see Secs. 5-2, 5-7 and 5-8). In general
the illumination model is .

I = kol + kaly + ks + kd,

where the subscripts g, d, s, t specify ambient, diffuse, specular, and trans-
mitted effects. Most models assume that k; is a constant and that /;, the intensity
of the transmitted light, is determined from Snell’s law.

5-10 SHADOWS

When the observer’s position is coincident with the light source, no shadows
are seen. As the positions of the observer and the light source separate,
shadows appear. Shadows contribute considerably to the realism of the scene
by increasing depth perception. Shadows are also important in simulation. For
example, a specific area of interest may be invisible because it is in shadow.
Further, shadows significantly influence heating, air conditioning, and solar
power calculations for building and spacecraft design applications, as well as in
other application areas.

Observation shows that a shadow consists of two parts, an umbra and a
penumbra. The central dense, black, sharply defined shadow area is the umbra.
The lighter area surrounding the umbra is called the penumbra. The point light
sources generally used in computer graphics generate only umbra shadows. For
distributed light sources of finite dimension both umbra and penumbra shadows
result (see Ref. 5-8). While light is totally excluded from the umbra shadow,
the penumbra receives light from part of the distributed light source.

Because of the computational expense, only the shadow umbra generated
by a point light source is usually considered. The computational difficulty
(and hence expense) of the shadow calculation also depends on the location
of the light source. A light source at infinity is easiest, since an orthographic
projection can be used to determine the shadows. A light source at a finite
distance, but outside the field of view, is somewhat more difficult because a
perspective projection is required. The most difficult case is a light source
located within the field of view. Here, the space must be divided into sectors
and the shadows found in each sector separately.

Fundamentally, to add shadows to a scene the hidden surface problem must
be solved twice: once for the position of each light source and once for the
observer’s position or eyepoint. Thus, it is a two-step process. This is illustrated

346 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 5-28 Shadows.

in Fig. 5-28 for a single light source at infinity located above, in front, and to the
left of the block. The scene is viewed from in front, above, and to the
right of the block. There are two types of shadows: self-shadows and projected
shadows. Self-shadows result when the object itself prevents light from reaching
some of its planes, e.g., the right hand plane of the block in Fig. 5-28. They are
analogous to self-hidden planes and are found in the same way. Self-shadowed
planes are self-hidden planes when the scene is viewed from the position of the
light source.

A projected shadow results when an intervening object prevents light from
reaching another object in the scene. The shadow on the base plane in Figure
5-28b is an example. Projected shadows are found by projecting all non-
self-hidden planes into the scene from the position of the light source. The
intersections of the projected plane and all other planes in the scene are found.
These polygons are tagged as shadow polygons and added to the data structure.
The number of polygons added to the data structure can be reduced by finding
the silhouette of each object and projecting it instead of each individual plane.

After the shadows have been added to the data structure, the scene is
processed normally from the observer’s position to obtain the desired view.
Note that multiple views may be obtained without recalculating the shadows.
The shadows depend upon the position of the light source and not on that of
the observer. An example illustrates these techniques.

Example 5-4 Shadows

As an explicit example, consider the block shown in Fig. 5-28a. The block
is described by the points Py(1, 0, 3.5), P2(2, 0, 3.5), P32, 0, 5), Pa(1, O, 5),
Ps(1, 3, 3.5), Ps(2, 3, 3.5), P7(2, 3, 5), Ps(1, 3, 5). The block rests on a base
plane given by B1(0, 0, 0), B2(6, 0, 0), B3(6, 0, 6), and B4(0, 0, 6). The light
source is located at infinity along the line connecting: P2 and Ps. The block and

SHADOWS 347

the base plane are to be observed from infinity on the positive z axis, after first
being rotated —45° about the y axis followed by a 35° rotation about the x axis.
The self-shadowed planes are found by determining the self-hidden planes
from the position of the light source. Using the formal techniques discussed in
Sec. 4-3 and Examples 4-2, 4-6, and 4-7, the volume matrix for the block is

® 006 O

(Vl=]-1 1. 0 0 0 O
0O 0 1 -1t 0 O
0 0 0 O0-1 1
2-1 0 3 5 35

where R, L, B, T, H, Y refer to the right, left, bottom, top, hither, yon planes,
based on viewing the untransformed block from a point at infinity on the
positive z axis. The vector from the light source to the block expressed in
homogeneous’ coordinates is

[E1=P2—Pg=[1 -3 —1.5 0]

Taking the dot product of the light source vector and the self-hidden planes
yields

®OEOO® ©
E]'VI=[-1 1 -3 3 15 —15]

The negative signs indicate that, viewed from the light source, the right, bottom,
and yon planes are self-hidden and hence produce self-shadows.

There are several techniques for finding the projected shadows. One is
to translate and rotate the block and its base plane until the vector from the
light source is coincident with the z axis. Since the light source is at infinity, an
orthographic projection of the visible planes of the block onto the transformed
base plane yields the projected shadows. This is accomplished by substituting
the x and y coordinates of the transformed vertices of the block into the plane
equation for the transformed base plane to obtain z. The coordinates of the
projected shadows are then transformed back to the original orientation.

The light vector from infinity through PgP2 can be made coincident with
the x axis by

Translating P to the origin
Rotating about the y axis by 33.69° so that P4 is on the z axis
Rotating about the x axis by 59.04° so that Pg is on the z axis.

The combined transformation is

= 083 048 -029 0
0 051 0860

0.55 —0.71 043 0

-3.59 1.53 —0.93 1

Transforming the base plane and the block yields

348 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Biloo o 1]m=]-35 153 -093 1

B2l60 0 1 139 441 -2.67 1

By |60 6 1 469 0.15 —0.09 1 Base plane
Bs 0O 6 1 -029 -2.73 1.65 1

Pr 10351 -0.84 —0.48 029 1

P2 l20 351 0 0 0 1

Py |20 5 1 0.82 —1.06 064 1

Pafl10 5 1 0 -154 093 1

Ps |13 351 -0.84 106 287 1 Block
Ps | 2 3 351 0 154 258 1

P23 5 1 082 047 322 1

Ps |13 5 1] 0 0 351 1]

Using Newell’s method (see Sec. 4-3, Example 4-3) the equation for the trans-
formed base plane is
z = —0.6y
Substituting the x and y coordinates of the vertices of the transformed block
into the plane equation to obtain z yields the projection of the shadow onto the
base plane. Specifically,
[P'1=|-0.84 —048 029] P/
0 0 0 P,
0.82 —-1.06 0.64 | Py
0 -154 093] P,
-0.84 1.06 —0.64 | Ps
0 1.54 -0.93 | P,
0.82 048 -0.29| P,
| 0 0 0] pPg
where the prime denotes a projected shadow vertex.
Since only the front, left, and top planes are visible from the light source,
only these planes yield projected shadows specifically,

Front: P3PsPgP7 - P3P,PgP,

Left: P\P4PsPs > PP,P4P;

Top: P1PsPsPs > P1PgPsPg
Notice that P; is not contained in any visible plane. Hence, its projection P,
is not contained in any visible projected shadow. The projected shadows are

obtained in the original orientation by applying the inverse transformation, i.e
[T}!. Specifically,

S1=[P'Nn" =] 1035 1} 8
20351(S$2
20 5 1]3S83
10 5 1] Sa
20 2 171Ss
30 2 113
303518
L2 0 35 1|38

The projected shadow planes projected into the base plane are then S35453S7,
$15458Ss, and 575855S6. The silhouette polygon is S15556575354.

SHADOWS 349

The result, rotated —45° about the y axis, followed by a 35° rotation about
the x axis, and viewed from a point at infinity on the positive z axis, is shown in
Fig. 5-28b. Here, the right hand plane is visible but is self-shadowed. Hence,
its intensity is shown nearly black. The projected shadow is also shown nearly
black. Notice that, from this viewpoint, part of the projected shadow is hidden.

Incorporating shadows into a hidden surface algorithm was first suggested
by Appel (Ref. 5-16). He suggested both a ray tracing and a scan line ap-
proach. Bouknight and Kelley (Refs. 5-17 to 5-19) improved on Appel’s scan
line approach. Adding shadows to a spanning scan line algorithm, e.g. the
Watkins algorithm, requires two steps.

The first step is to determine the self-shadows and the projected shadows
for every polygon in the scene for every light source, as discussed above in
Example 5-4. Conceptually, this can be considered a binary matrix. The rows
represent polygons that can cast shadows, and the columns represent polygons
that are shadowed. In the binary matrix, a one indicates that a polygon can
possibly cast a shadow on another, and a zero that it cannot. Along the
diagonal, a one indicates that a polygon is self-shadowed.

Since for a scene containing n polygons the number of possible projected
shadows is n(n — 1), efficiently determining this matrix is important. Bouknight
and Kelley project the scene onto a sphere centered at the light source and
use bounding box tests on the projected polygons to eliminate most cases.
Similarly, the technique, described in Example 5-4, of making the direction
of the light source coincident with the z axis may be used. Simple three-
dimensional bounding box tests can then be used to eliminate most cases.
Additional possibilities can be eliminated by using more sophisticated sorting
techniques, e.g., the Newell-Newell-Sancha priority sort (see Sec. 4-8). A
simple example illustrates this.

Example 5-5 Shadow Matrix

For the simple scene shown in Fig. 5-28, the shadow matrix can be constructed
by inspection. The result is shown in Table 5-2.

Table 5-2
Polygon being shadowed

Right Left Bottom Top Hither Yon Base plane

Polygon Right 1 0o 0 0 0 0 1
casting Left 0 0 1 0o o 1 1
the Bottom 0 0 1 0 0 0 1
shadow Top 1 0 0 0 0 0 1
Hither 1 0 1 0 0 0 1
Yon 0 0 0 0 0 1 1
Base plane 0 0 0 0 0 0 0

350 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

In practice, the matrix is incorporated into a linked list that associates the
shadows and the polygons.

The second step processes the scene from the observer’s viewpoint. Two
scanning processes are involved. In a spanning scan line algorithm, e.g. the
Watkins algorithm, the first scanning process determines the visible segment in
a span as described in Sec. 4-11. The second scanning process uses the shadow
linked list to determine if any shadows fall on the polygon that generated the
visible segment for that span. The second scan for the span then proceeds as
follows:

If no shadow polygons are found, the visible segment is displayed.

If shadow polygons are found for the visible segment polygon but none
intersect or cover the span, the visible segment is displayed.

If one or more shadow polygons completely cover the span, the intensity
of the visible segment is modulated with that of the shadow polygons and
the segment displayed.

If one or more shadow polygons partially cover the span, the span is
subdivided at the intersection of the edges of the shadow polygons. The
algorithm is then applied recursively to each subspan until the entire span
is displayed.

The above algorithm states that the intensity of the visible segment is
modulated with that of the shadow polygon. The simplest modulation rule
assumes that the shadow is absolutely black. A few minutes experimenting with
light sources and two objects will show that shadows are not always absolutely
black. The intensity, i.e. the blackness, of the shadow varies with the intensity
of the light source and also with the distance between the plane casting the
shadow and the plane in shadow. This is because the shadow area receives
light from the ambient environment, and because the light source is of finite
size.

A simple modulation rule that partially simulates this effect is to make the
shadow intensity proportional to the intensity of the light source. For multiple
shadows the shadow intensities are additive. A computationally more expensive
rule is to make the shadow intensity proportional to both the intensity of the
light source and the distance between the plane casting the shadow and the
plane in shadow.

The z-buffer algorithm (see Sec. 4-7) may be modified to include shadow
effects (Ref. 5-20). Again, a two-step process is used. The modified algorithm
is

The scene is constructed from the light source direction. The z values for
this view are stored in a separate shadow z buffer. Intensity values are
ignored.

The scene is then constructed from the observer’s point of view. As each
surface or polygon is considered, its depth at each pixel is compared with

SHADOWS 351

that in the observer’s z buffer. If it is the visible surface, a linear transfor-
mation is used to map the x, y, z values in the observer’s view into x’, y',
z' values in the light source view. The z’ value is checked for visibility with
respect to the light source by comparing its value with that in the shadow
z buffer at x’, y’. If it is visible to the light source, it is rendered normally
in the frame buffer at x, y. If not, it is in shadow and is rendered using the
appropriate shadow modulation rule. The value in the observer’s z buffer
is updated with z'.

The above algorithm is directly applicable to the scan line z-buffer algorithm
(see Sec. 4-10). Here, the buffers are only one scan line high. Williams
(Ref. 5-20) used a modified procedure to render curved shadows on curved
surfaces. The complete scene is first computed from the observer’s point of
view. The point-by-point linear transformation to the light source direction,
and consequent shadowing, are then applied as a postprocess. As pointed out
by Williams, the modified procedure incorrectly renders highlights, since they
are merely darkened if they lie in shadow. Highlights should, of course, not
appear in shadowed areas. Williams also discusses the quantization effects that
result from performing the transformation from one viewpoint to another in
image space.

Atherton (Refs. 5-21 and 5-22) has extended the hidden surface algorithm
(see Sec. 4-5), based on the Weiler-Atherton clipping algorithm (see Sec. 3-17),
to include shadow generation. The algorithm is important because it operates
in object space. Hence, the results can be used for accurate calculations as well
as to produce pictures. Again, a two-step process is used.

The first step uses the hidden surface algorithm to determine the visible or
illuminated polygons from the light source direction. The illuminated polygons
are saved rather than the shadow polygons in order to increase the efficiency
of the algorithm. If shadow polygons, i.e. invisible polygons, were saved, then
it would also be necessary to save all the self-hidden polygons that are nor-
mally culled before application of the hidden surface algorithm. For convex
polyhedra, this would double the number of polygons processed by the algo-
rithm.

The illuminated polygons are tagged and transformed back to the original
data orientation where they are attached to the original polygons as surface
detail. This operation is accomplished by assigning a unique number to every
polygon in the scene. When a polygon is passed through the hidden surface
algorithm, it may be split into numerous pieces. However, each piece retains
the original unique number. Thus, it is possible to associate each of the frag-
mented illuminated polygons with its original source polygon or any fragment
of the source polygon.

In order to avoid false shadows it is necessary that the entire scene be
contained within the view or clipping volume defined from the location of the
light source. If not, then regions outside the clipping volume will be incorrectly
assumed to be in shadow. The result, viewed from the observer’s location, will
then contain false shadows. This restriction also requires that the light source

352 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

not be located within the extremes of the scene environment. This restriction
occurs because no single perspective or axonometric transformation exists, from
the location of the light source, that can contain the entire scene.

The second step processes the combined polygon data from the observer’s
point of view. If an area is not illuminated, the appropriate shadow modulation
rule is applied. The general procedure is shown in Fig. 5-29.

For multiple light sources, multiple sets of illuminated polygons are added
to the data base. The color image shown in Color Plate 3 illustrates a result
with two light sources.

The visible surface ray tracing algorithm previously discussed in Sec. 4-13
can also be extended to include shadows (Ref. 5-16). Again, a two-step process

Transformed r
_Jto view from| _ .
light
direction
|
Transformed to
data orientation
%@ : =)

Figure 5-29 Procedure for adding shadows to the Weiler-Atherton hidden surface algo-
rithm. (Photographs courtesy of P. Atherton and the Program of Computer Graphics,
Cornell University.)

Hidden surface removal
y)

SHADOWS 353

is used. The first step traces the ray from the observer or eyepoint through the
plane of projection to determine the visible point, if any, in the scene, as in the
previously discussed algorithm.

The second step traces the vector (ray) from the visible point to the light
source. If any object in the scene lies between the visible point and the light
source, then light from that source cannot reach that point. Hence, the point is
in shadow. The technique is illustrated in Fig. 5-30. The techniques previously
discussed in Sec. 4-13 can be used to make the search along the local light
direction vector more efficient.

Although, as mentioned above, shadow penumbras are not usually in-
cluded, Cook (Ref. 5-8) suggests a relatively simple technique for including
them. Since the Cook-Torrance illumination model assumes a finite area light
source subtending a solid angle dw (see Sec. 5-8), blocking a fraction of the
area of the light source reduces the effective solid angle and hence the incident
intensity from the source. The reflected intensity is then also reduced propor-
tionally.

Figure 5-31 illustrates the effect for a simple straight edge and a spherical
light source. The midshadow line is calculated by considering a point light
source at the center of the spherical source. From Fig. 5-31, using similar
triangles, the projection of the penumbra half width r in the direction L is

rn-L) R

d D
where d is the distance from the shadow casting point to the corresponding
point on the midshadow line, D is the distance from the shadow casting point
to the center of the spherical light source, and R is the radius of the spherical
light source.
Viewed from the polygon casting the shadow, the solid angle of the light

source dw is
2
R
dw =n (D)

Light
source

Observer
Shadow
lme‘\ 7

Figure 5-30 Ray tracing with shadows.

354 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Spherical

light source “’

Polygon casting
kshadow

Penumbra 7 / d/ \

7
Shadl;)wed No shadow
Hmr ' Mid-shadow
line Figure 5-31 Penumbra shadows.

Thus, the penumbra half width is

__dR__d_ jw
a-LD a-LVa

The result shows that the shadow is sharper (i.e., ris smaller) for light resources
that subtend smaller solid angles dw. For a point light source, dw = 0, which
yields r = 0. Hence, no penumbra is generated. Further, as the polygon casting
the shadow approaches the surface, d and r both decrease. This also makes the
shadow sharper.

Within the penumbra the intensity of each point is determined by the
fraction of the light source that is visible. For a spherical light source only
partially visible from —R to a this fraction is

1 [11 a/ a\?2 a
Afrac = — 2 _ 2 =4+ =1= Y ad +'—| =
fr :tsz-RZVR x“dx >t [R 1 R sin R

The results show that a shadow penumba is sharper at one edge. Cook recom-
mends storing the results of this calculation in a look-up table. However, the
linear approximation

1 a
Apac = ~ 1+ =
frac 2(' R)

yields a less than 7% error and is computationally less expensive.

5-11 TEXTURE

In computer graphics, the surface detail in an object is called texture. Two
aspects of texture are generally considered. The first is the addition of a

TEXTURE 355

separately specified pattern to a smooth surface. After the pattern is added, the
surface still appears smooth. Adding a pattern to a smooth surface is basically
a mapping function. The second is adding the appearance of roughness to
the surface. Adding the appearance of roughness to a surface is basically a
perturbation function.

Adding a texture pattern to a smooth surface was first suggested by Catmull
(Ref. 5-23) as a consequence of his subdivision algorithm for curved surfaces
(see Sec. 4-6). This basic idea was extended by Blinn and Newell (Ref. 5-24)
to include reflection and highlights on curved surfaces.

Since the basis of adding texture patterns to smooth surfaces is mapping,
the texture problem reduces to transformation from one coordinate system to
another. If the texture pattern is defined in an orthogonal coordinate system
(u, w) in texture space, and the surface in a second orthogonal coordinate system
(6, ¢), then adding the texture pattern to the surface involves determining or
specifying a mapping function between the two spaces, i.e.

0 =flu,w) ¢ =gu,w)
or alternately
u=r(6,¢) w = s(u, w)
Although not necessary, the mapping function is generally assumed to be linear,
i.e.
6=Au+B 6=Cw+D

where the constants A, B, C, D are obtained from the relationship between
known points in the two coordinate systems. A simple example serves to il-
lustrate the technique.

Example 5-6 Mapping

The pattern shown in Fig. 5-32ais to be mapped onto the surface patch defined
by the octant of the sphere shown in Fig. 5-32b. The pattern is a simple two-
dimensional grid of intersecting lines. The parametric representation of the
octant of the sphere is given by

x = sinfsin¢g
y = cos¢
cos @sin @

z
Assuming a linear mapping function
6=Au+B ¢=Cw+D

and assuming that the corners of the quadrilateral pattern map into the corners
of the quadrilateral surface patch, i.e.

u=0w=0atf=0 ¢ =n2
u=1l,w=0at =mn2 ¢ = n2
u=0,w=1at0 =0, ¢ = n/4
u=1w=1at =2 ¢ = /4

356 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

yields
A=aR B=0 C=—n/4 D = a2

Thus, the linear mapping function from uw space to 8¢ space is

n T on
6= 2u ¢ = i
The inverse mapping from 6¢ space to uw space is
"] n2—¢
= ee— w=
/2 /4

The results of mapping a single line in uw space into 8¢ space and thence
into xyz Cartesian coordinates is shown in Table 5-3. The complete results are
shown in Fig. 5-32c.

Table 5-3
u w 6 ¢ x y z
174 0 w2 n2 038 0 0.92
1/4 7/16x 0.38 0.20 0.91
172 38 035 0.38 0.85
3/4 5/16zx 0.32 0.56 0.77
1 n/4 0.27 0.71 0.65

The texture pattern shown in Fig. 5-32a is a simple mathematical defini-
tion. Other sources of texture might be hand-drawn artwork or scanned-in
(digitized) photographs or other patterns. Displaying a texture pattern on a
surface involves a mapping from object space to image space, as well as the
previously discussed transformation from texture space to object space. Any
viewing transformation must also be applied. Assuming that image space im-
plies a raster device, there are two slightly different techniques.

The first technique is based on Catmull’s subdivision algorithm (see Sec. 4-
6). Catmull’s algorithm subdivides a surface patch until a subpatch covers a

w, y ¢=1r/4 y

—

a b c

Figure 5-32 Mapping.

TEXTURE 357

single pixel center. The parametric values of the center of the subpatch or the
pixel center could then be mapped into texture space and the texture pattern
at that point used to determine the intensity of the pixel. However, as Catmull
points out, this point sampling technique leads to severe aliasing effects. For
example, large portions or perhaps all of the simple mathematically defined
texture pattern shown in Fig. 5-32a might be missed if all the sample points
occurred in the “white” areas of the texture. To alleviate this effect, Catmull
subdivides the texture pattern along with the surface patch. When a subpatch
is found that covers only a single pixel center, the average intensity in the
associated texture subpatch is used to determine the pixel intensity.

In general the texture subpatch will not be rectangular. If the texture
pattern is rasterized, then the intensity of the texture subpatch is taken as
the weighted average of the intensities for the texture pixels in the subpatch.
The weighting function is the ratio of the area of the texture pixels inside the
subpatch to its total area. Blinn and Newell used this technique with a better
2 x 2 pyramidal antialiasing filter suggested by Crow (see Sec. 2-25). Results,
obtained by Barsky, by texture mapping a simple checkerboard pattern onto a
B-spline patch used to construct a bottle are shown in Fig. 5-33.

Conceptually, the Catmull subdivision algorithm starts with the surface
patch in object space and transforms in two directions: one into image space,
and one into texture space. An example serves to further illustrate the tech-
nique.

Figure 5-33 Texture pattern mapped onto a fS-spline patch de-
fined bottle. (Courtesy of B. Barsky.)

Example 5-7 Texture Subdivision Algorithm

Again consider the surface patch formed from the octant of the unit sphere, as
shown in Fig. 5-32b, and the simple grid texture pattern shown in Fig. 5-31a.
The surface patch is to be rotated about the y axis by —45° and then about the x
axis by 35° and displayed on a 32 x 32 raster using an orthographic projection
(see Fig. 5-34a). The simple grid texture pattern is rasterized at a resolution of
64 X 64, with each line assumed to be one pixel wide as shown in Fig. 5-34b.
First the patch is subdivided. It is then transformed into image space with
the object space origin corresponding to the center of the 32 x 32 raster. Figure
5-34a shows that four subdivisions are required before a subpatch covers only
a single pixel center. This subpatch is rectangular in image space and was
generated with parameters 0 < 0 < 7/32, 3171/64 < ¢ =< 7/2 in object space.

358 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Recalling the inverse mapping functions from ¢ object space to u,w tex-
ture space from Example 5-5, i.e.

9 n2—¢

P

yields the corners of the subpatch in texture space. Specifically, in texture space
the vertices of the subpatch are

6=0,¢=n2 - u=0,w=0
6=0, ¢ = 59n/64 > u=0,w=1/16
0 = /32, ¢ = 59n/64 -> u=116, w=1/16
6 =mn32, ¢ = /2 > u=116,w=0

As shown in Fig. 5-34b, this is a square in texture space. On a 0 to 64 raster,
1/16 corresponds to 4 raster units as shown in Fig. 5-34b. The other subdivisions
are also shown in Fig. 5-34b.

The intensity of the pixel in image space is obtained by averaging the
intensities of the pixels in the subdivided texture space. The diffuse reflection
component is scaled by this factor. From Fig. 5-34b there are seven black pixels
in the 4 X 4 subdivision. Thus, the intensity of the displayed pixel in image
space (Fig. 5-34a) is 7/16 on a scale of 0 to 1.

64 I
32 I
0-71_‘ l
0 32 64
a b

Figure 5-34 Texture mapping by patch subdivision.

One of the advantages of the Catmull subdivision algorithm is that it does
not require knowledge of the inverse transformation from image space to object
space or the depth (z value) of the subpatch in image space. However, one of
the disadvantages is that the subpatch may not precisely cover a single pixel in
image space (see Fig. 5-34a). Frequently, the depth (z value) is available from
the visible surface algorithm. The inverse transformation can be determined by
saving the three-dimensional viewing and object-to-image space transformations
prior to projection onto the image plane. Consequently, the precise area

TEXTURE 359

covered by a pixel in image space can be transformed to texture space. The
procedure is to transform the pixel area from image space to the surface in
object space and then to texture space. The intensity of the pixel in image space
is determined by averaging the intensity of the pixels covered by that area in
texture space. The diffuse component in the illumination model is then scaled
by this factor. Other more sophisticated antialiasing rules may, of course, be
used. A simple example serves to illustrate the technique.

Example 5-8 Texture by Inverse Pixel Mapping

Again consider the surface patch formed from the octant of a unit sphere as
shown in Fig. 5-32b and the simple grid texture problem rasterized at a 64 x 64
pixel resolution (see Fig. 5-34b). Again the surface patch is to be rotated about
the y axis by —45° and about the x axis by 35° and displayed on a 32 X 32 raster
using an orthographic projection (see Fig. 5-34a).

Consider the intensity of the pixel at P, = 21, Py = 15 shown in Fig. 5-34a.
Pixels are specified by their lower left hand corners. The pixel area is then
specified by 21 = P, =22 and 15 = Py = 16. Assuming that the object space
window that corresponds to the 32 x 32 raster in image space is —1=x' =<1,
—-1=y' =1 yields

' PX '

= —— — y_——]

16 16
Recalling the equation for a unit sphere gives

2 =VI1-(x'"2+y')

where x', y', z' represent object space coordinates after application of the
viewing transformation. The object space coordinates of the corners of the
pixel on the surface of the patch are then

! ’

Px Py x’ y 4

21 15 03125 -0.0625 0.948
22 15 0.3750 -0.0625 0.925
22 16 0.3750 0 0.927
21 16 0.3125 0 0.950

The viewing transformation before projection onto the image plane and its

inverse are
[TI=1] 0.707 —0.406 0.579 O m-'=| 0.707 0 -0.707 O
0 0.819 0.574 0 —0.406 0.819 —0.406 0
—0.707 —0.406 0.579 0 0.579 0.574 0.579 0
0 0 0 1 0 0 0 1

Using the inverse of the viewing transformation yields the corners of the pixel
on the surface patch in the original orientation. Specifically

ky:z =Ky 2 10mn"'

360 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

and

Px Py x y z

21 15 0.795 0.493 0.341
22 15 0.826 0.479 0.296
22 16 0.802 0.532 0.272
21 16 0.771 0.545 0.329

Recalling that the parametric representation of the unit sphere is

x =sin@sin ¢
y=cos¢
z=cos @sin¢

¢=cosly ¢ =sin”! (Ex&)

in parametric space. Recalling the mapping transformation from parametric
space to texture space given in Example 5-6, i.e.

0 w2 —¢
- w=
/2 /4
yields for the corners of the pixel area in texture space

yields

u=

Px Py ¢ 6 Uu w

21 15 60.50° 66.04° 0.734 0.656
22 15 61.34° 70.30° 0.781 0.636
22 16 57.88° 71.28° 0.792 0.714
21 16 56.99° 66.88° 0.743 0.734

The results are shown in Fig. 5-35, where the curved area is approximated by
a quadrilateral.

The rasterized grid pattern passes through the left hand edge of the pixel
area. Again, several techniques can be used to determine the intensity of the
display pixel (see Sec. 2-25). One simple technique is to use a weighted average
of the intensities of the texture pixels whose centers are inside the display pixel
boundaries. Here, the ratio of the “black” texture pixels representing the grid
to the total texture pixels with centers inside the display pixel is 5/18. The
intensity of the diffuse component of the illumination model is scaled by this
factor.

The above techniques add texture patterns to smooth surfaces. The result-
ing surfaces also appear smooth. To add the appearance of roughness to a sur-
face a photograph of a rough-textured pattern could be digitized and mapped to
the surface. Unfortunately, the results are unsatisfactory because they look like
rough-textured patterns painted on a smooth surface. The reason is that true
rough-textured surfaces have a small random component in the surface normal

TEXTURE 361

Figure 5-35 Display pixel in texture space.

and hence in the light reflection direction. Blinn (Ref. 5-25) recognized this
and developed a method for perturbing the surface normal. The results give a
visual impression of rough-textured surfaces.

At any point on a surface Q(u, w) the partial derivatives in the parameter
directions u, w, i.e. Q, and Q., lie in the plane tangent to the surface at that
point. The cross-product of Q, and Q. defines the surface normal n at that
point, i.e.

n=Q,® Q.

Blinn defined a new surface giving the visual appearance of having a rough
texture by adding a perturbation function P(u, w) to the surface in the direction
of the normal to the original surface. Thus, for any point on the new surface
Q(u, w) the position vector is

Q'(u, w) = Qu, w) + P(u, Wiy
The normal vector to the perturbed surface is then
n=Q,®Q,

The partial derivatives Q, and Q,, are
= n n
Qu _Qu + Pu|n| +P ([n[) u

Q.,=Q, +P, B+ P(l{}l)w

Since P is very small, i.e. a perturbation function, the last term may be neglected.
Hence,

Q =Q,+P,y
LA, n
Qw - Qw + Pw |n|
The perturbed normal is then

Pun ® Q) , Pu(Qu ®n) , PuPu(n ® m)
In| In| Inf?

n=Q,® Q.+

362 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

a b

Figure 5-36 Texture pattern mapped onto bicubic surface patches. (a) Texture pattern,
(b) result. (Courtesy of T. Van Hook, Adage, Inc.)

The first term is the normal to the unperturbed surface n and the last term is
zero, so

G ep P ® Q) PUQ® N
In| In|

where the last two terms represent the effect of the perturbation on the surface
normal and hence on the illumination model after scaling to unit length.

Almost any function for which the derivatives can be defined may be used
as the texture perturbation function P. Blinn used a simple mathematically
defined grid pattern, character bit maps, z-buffer patterns, and random hand-
drawn patterns. An example, rendered by T. Van Hook, is shown in Fig. 5-36,
where a texture pattern has been added to bicubic surface patches. For non-
mathematically defined patterns, the perturbation function is represented in a
two-dimensional look-up table indexed by the parameters u, w. Intermediate
values are obtained using bilinear interpolation of the values in the look-up
table, and the derivatives P, and P,, are determined using finite differences.

The rough texture effect is not invariant with scale changes of the object.
In particular, if the object size is scaled by a factor of 2, then the magnitude of
the normal vector will be scaled by a factor of 4, while the perturbation to the
normal vector will be scaled by only a factor of 2. This results in smoothing
the texture effect as the object size increases. However, scale changes due to
object movement toward or away from the viewer in perspective space do not
affect the texture scale.

The results of perturbation texture mapping can also exhibit aliasing effects.
However, if texture area averaging, as described above, or prefiltering antialias-
ing techniques are used, the result is to smooth out or reduce the texture effect.

A GLOBAL ILLUMINATION MODEL USING RAY TRACING 363

As pointed out by Blinn (Ref. 5-25), the proper antialiasing teehnique is to
compute the image at a higher-than-display resolution and postfilter or average
the results to obtain the lowex resolution display images (see Sec. 2-25).

A recent rough texture technique uses fractal surfaces. A fractal surface is
composed of stochastically defined polygonal or bipolynomial defined surfaces.
The technique was originally applied to texture generation in computer graphics
by Carpenter (Ref. 5-26)'and Fournier and Fussell (Ref. 5-27). Fractal surfaces
have been used to render a number of natural textures, e.g., stones, trees,
terrain, and clouds. The fractal technique is based on original work done by
Mandelbrot (Ref. 5-28).

A polygonal fractal surface is obtained by recursively subdividing an origi-
nal polygon as shown in Fig. 5-37. One technique is to define the midpoints of
each of the sides of the polygon and then to perturb the location of these points
using a random function for each individual point. The center of the polygon is
also similarly perturbed. Figure 5-37 illustrates the result. Notice that neither
the original polygon nor any derivative polygon need be planar.

One advantage of fractal surfaces is that they may be “infinitely” sub-
divided. Consequently any arbitrary level of detail may be obtained. Further,
the level of detail may be made dependent on the location of the observer; the
closer the observer, the greater the detail. When the observer is far away, con-
siderable processing can be saved. Any appropriate hidden surface algorithm
and illumination model can be used to render the fractal surface. However, the
number of subsurfaces increases at a greater than linear rate. Hence, the num-
ber of subdivisions and the level of detail must be a compromise, or excessive
computational requirements result.

A typical result, rendered by Kajiya (Ref. 5-29) using an opaque visible
surface ray tracing algorithm, is shown in Color Plate 4. The scene in Color
Plate 4a contains 16,384 fractal triangles, and that in Color Plate 4b contains
262,144 fractal triangles. Notice the self-shadowing in the images.

Original Subdivided
polygon — I fractal surface

Figure 5-37 Fractal surface subdi-
vision.

5-12 A GLOBAL ILLUMINATION MODEL USING RAY TRACING

An illumination model is designed to determine the intensity of light reflected to
an observer’s eye at each point (pixel) in an image. The illumination model can

364 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

be invoked either locally or globally. Invoked locally, only light incident from
a light source(s) and the surface orientation is considered by the illumination
model in determining the intensity of the light reflected to the observer’s eye.
Invoked globally, the light that reaches a point by reflection from, or
transmission through, other objects in the scene, as well as light incident from
any light sources, is also considered in determining the intensity of the light
reflected from a point to the observer. Using a global illumination model has
significant implications. Figure 5-38 illustrates some of the effects.

The sphere and the triangular and rectangular blocks shown in Fig. 5-38
are assumed to be opaque and to have surfaces capable of a high degree of
specular reflection. An observer located at O looking at the point labeled 1 on
the sphere will see not only the sphere but also the triangular block at point 2.
The triangular block, which is otherwise obscured by the rectangular block, is
thus visible because it is reflected in the sphere. Point 5 on the triangular block
is visible at point 3 on the sphere even more indirectly. Here, the image of the
triangle at point S is reflected from the back of the rectangular block at point 4
onto the surface of the sphere at point 3 and then to the observer. Point S on
the triangle is also visible to the observer at point 1’ with only one reflection
from the surface of the sphere. Hence, multiple images of the triangular block
are observed reflected in the sphere. Since only one reflection is involved, the
image centered around point 1 is reversed. In contrast, the image centered
around point 3 is not reversed, since two reflections occur. This second image
is also less intense. Finally, the back of the rectangular block is visible as a
reflected image in the sphere even though it does not receive any light directly
from the source. It is illuminated by ambient light and by light reflected from
the other objects in the scene.

From this discussion it should be clear that the normal backface culling
operation commonly used by hidden surface algorithms cannot be used with a
global illumination model. Further, an initial priority sort to determine visible
faces also cannot be used. These two considerations eliminate all the hid-
den surface algorithms discussed in Chap. 4 except ray tracing. Consequently,

Oy Observer b ure 5-38 Global illumination.

A GLOBAL ILLUMINATION MODEL USING RAY TRACING 365

global illumination models are implemented as part of ray tracing visible surface
algorithms.

Whitted (Ref. 5-30) and Kay (Refs. 5-13 and 5-14) originally implemented
ray tracing algorithms that utilized global illumination models. Whitted’s algo-
rithm, which is more general, has been extensively used and extended. Synthetic
images generated by Whitted (Ref. 5-30), Potmesil (Refs. 5-31 and 5-32), and
Barr (Ref. 5-33) with the Whitted algorithm or extensions of the algorithm
are shown in Color Plates 5, 6, and 7. These images illustrate reflection,
transparency, refraction, shadows, and texture effects.

The Potmesil extension replaces the traditional pinhole camera used in
computer graphics with a more realistic model that approximates the lens and
aperture characteristics of a real camera. The model considers the effects of
depth of field, focus, lens distortion, and filtering. In animation sequences
it provides a fade-in, fade-out capability. The technique is a two-step process.

The first step uses a traditional pinhole camera.ray tracing algorithm to
produce a point sampled image. In addition to the usual RGB intensities at
each pixel, z depth and visible surface information are also retained. The sec-
ond step, acting as a postprocessor, invokes the finite aperture camera model.
Each sample point is converted to a circle of confusion using the laws of
geometric optics. The size and intensity distribution for the circle of confusion
are determined by the z value at the sample point, the characteristics of the
lens, and the lens aperture. The intensity at a given pixel is determined by
summing the intensities of all the circles of confusion overlapping that pixel.
Typical results are shown in Color Plate 6.

The illumination model used by Whitted retains the ambient, Lambertian
diffuse, and Phong specular reflection terms of the local illumination model
given in Eq. 5-7. The global specular reflection and the transmission terms are
based on the model shown in Fig. 5-39. Here, the incoming ray being traced,
v, reaches the surface at the point 0. At Q the ray is both reflected in the
direction r and, if the surface is transparent, refracted in the direction p. I is
the intensity incoming to the surface at Q along the p direction that is refracted
through the surface and reaches an observer located in the direction —v.

A

Light source j

Reflecting /transmitting
surface

Figure 5-39 Specular reflec-
tion and transmission effects
I ke(h+v) for the Whitted global illumi-
v/ nation model.

366 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Similarly, s is the intensity of the specularly reflected light incoming along
the direction —r that is reflected at Q and that also reaches the observer located
in the direction —v. n is the surface normal at Q, L; is the direction of the jth
light source, S and R are the local sight and reflection vectors, and 7 is the
index of refraction of the media. Here, n is the Phong spatial distribution value
for specularly reflected light (see Sec. 5-2). The intensity reaching the observer
I is then

I =kida+ ks 200 L) + ke 20,8 R) + kol + ki, (5-16)
J J

where ka, ka, ks, and k, are the ambient, diffuse, and specular reflection coeffi-
cients and & is the transmission coefficient. Whitted holds these reflection coef-
ficients constant. However, any of the previously discussed illumination models
may be used to determine their variation with incidence angle and wavelength.
The first and second summation terms in Eq. 5-16 represent the diffuse and
specular reflection from light sources.

In contrast to the previous opaque surface ray tracing algorithm discussed
in Sec. 4-13, the visibility calculations for the global illumination model do
not end at the first intersection. Here, the incoming ray v is assumed to be
reflected from the surface in the direction r and transmitted through the surface
in the direction p as shown in Fig. 5-39 at point Q. Thus, two additional rays
are generated at the point Q. These two rays are traced to determine their
intersections with objects in the scene. The process is repeated until none of
the rays intersects any object in the scene. The process, illustrated in Fig. 5-40a
for single surface ray intersections, is easily represented using the tree structure
shown in Fig. 5-40b. Each node of the tree represents a ray surface intersection.
At each node of the tree two subbranches are generated. The right hand branch
is due to refraction, and the left due to reflection of the ray at the surface.
Notice that a branch terminates when the ray leaves the scene.

At each surface ray intersection, the directions of the reflected and trans-
mitted rays are obtained using the laws of geometric optics. In particular, the

z 1
Surface 3

1

X Reflection Refraction
branch branch
Q - Shadow
L, feeler
Surface 2
Observer
Surface 1
a b

Figure 5-40 Ray tracing surface reflections and refractions.

A GLOBAL ILLUMINATION MODEL USING RAY TRACING 367

reflected ray r and the incident ray v lie in the same plane and make equal
angles with the surface normal n (see Sec. 5-3). The transmitted ray obeys
Snell’s law of refraction (see Sec. 5-9). In the context of the present model
and notation, the directions of r and p are given by
r=v +2i
p=kh+v)—h
where
v
|v-al
kf = (kfllvrIZ _ lvr + ﬁIZ)—I/Z

’

\4

S

ky = r]?
where k;, is the ratio of refractive indices and- it is the unit normal vector in the
direction of the incoming ray. If the denominator of & is imaginary, then total
internal reflection occurs and I, is assumed zero.

Determining the intensity at each ray-surface intersection requires travers-
ing the ray tracing tree in the reverse direction. The illumination model is
applied recursively at each node of the tree. The intensity at each node of
the tree is attenuated by the distance between the surface intersection points
before being used as input for the next node up the tree. When the tree has
been completely traversed, the resulting intensity is displayed for that pixel.

Theoretically, the ray tracing tree is infinitely deep. In addition to being
terminated when all rays leave the scene, the tree may be terminated when the
intensity at a node falls below a specified value or when the allocated storage
is exceeded.

Figure 5-41 shows the effect of internal reflection for a closed transparent
object. The rays specularly reflected from the inside surfaces of the object are
trapped within the object and are eventually absorbed. Hence, they cannot
contribute to the light intensity perceived by the observer. However, at each

Observer v
Reflection Refraction
P P branch I branch
¢)

A

I3 ‘) 0,

/p;

a b

Figure 5-41 Internal reflection for transparent objects.

368 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

ray-surface intersection a transmitted ray p is generated. These rays escape the
object and may directly or indirectly reach the observer. Thus, they must be
traced.

If shadows are also included in the algorithm, then at each ray-surface
intersection shadow feelers in the direction of each light source L; are generated.
If a shadow feeler intersects an object before reaching the light source, then
that ray-surface intersection lies in shadow with respect to that light source.
The contribution of that light source to the local diffuse and specular reflection
at the point is then attenuated (see Sec. 5-10). If the intervening surface is
opaque, no light reaches the surface. If the intervening surface is transparent,
the illumination characteristics of the surface are used to attenuate the light.
Shadow feelers are shown in Fig. 5-40.

Example 5-9 Global Illumination and Ray Tracing

Consider the simple two-dimensional single plane scene in Fig. 5-40a. The
planes are normal to the plane of the paper which is assumed to be the xz
plane. The observer is located at infinity on the positive z axis at x = 5. A
single point light source is located at x = 3, z = 10. The surfaces are defined
using the plane equations, i.e.

Surface 1: x+z-125=0 4=<x<6
Surface 2: x—2z-2=0 4=x=<6
Surface 3: x—32+9=0 l<=x=<3

The illumination characteristics for each surface are

Surface 1: kg = 0.15, kg, = 0.15, ks, = 0.8, ks, = 0.5, ky, = 1/1.1
Surface 2: kg = 0.15, kay = 0.15, ks, = 0.8, ki, = 0.5, ky, = 1.1
Surface 3: kg = 0.15, kay = 0.15, ks, = 0.8, ks, = 0, ky, = 1.1

The intensity of the ambient light is I = 1.0, and the intensity of the light
source is /; = 10. The Phong spatial distribution value for specularly reflected
light is n = 50 for each surface.

A ray is fired from the observer toward the scene. The resulting ray tree is
shown in Fig. 5-40b. The ray first intersects surface 1. Noting that the equation
of the ray before it intersects the surface is x = 5 and substituting into the
surface equation yields

x+z-125=5+2z2-125=0 - z=1.5

Thus, the intersection of the ray and the surface, which represents the first node
on the ray tree, occurs at x;, = 5, z, = 5 At that point the unit normal to the

surface is
ﬁl = .i_ + L
vz V2
Determining the refracted and reflected rays yields

v, = -k

A GLOBAL ILLUMINATION MODEL USING RAY TRACING 369

and
vi= - X = -V
1 S e a1 " : =
R o ()

The direction of the reflected ray is
ro=v+2, = -Vik+2 [—+

Noting that

v|'+fl|=—\/5k+L+-l(—=L—L

vz VI VI V2
then

—-12 1 2 =12
ky, = [k,z,.lv{l2 = Iv + ﬁ,lz] = [(ﬁ) @ - l] =1238

which yields the refracted ray

' ~ i k i k
P =k, +v) -8, =128 —- — |- [—+ —
1 = k(g + vy 1 (\/7 \/2) <\/2 \/2)
= 0.168i — 1.582k

At this point the reflected ray leaves the scene and is not considered
further. The intersection of the transmitted refracted ray with the second
surface yields the second node in the ray tree. Writing the refracted ray p,
in parametric form yields

x=5+0.168¢
z=17.5-1.582t

Substituting into the surface equation yields
x—z—-2=5+0.168t—7.5+1.582t—-2=1.75t-4.5=0
Consequently t = 2.571 and the intersection point is

x2 =5+ (0.168)(2.571) = 5.432
z2=17.5 — (1.582)(2.571) = 3.433

The distance between the two intersection points is

d;, =Vix2 = x1)? + (22— 202 ="V(5.432 = 5)2+ (3.433 - 7.5)% = 4.09

The reflected and refracted rays at this intersection point are obtained by
using p, as the incoming ray, i.e.

v, = p, = 0.168i — 1.582k

The unit surface normal is

370 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The results are

p, = 0.215i — 1.199%
r, = —1.278i + 0.136k

Here the transmitted refracted ray leaves the scene without intersecting addi-
tional objects. Thus, this ray tree branch terminates. The intersection of the
reflected ray and the third surface yields the third node in the ray tree. Here,
the intersection of r, and the third surface is required. Using the parametric
form of r, and the plane equation for the surface yields

x=5.432-1.278t
y = 3.433 + 0.136:

for the ray. Substituting into the plane equation yields
x—32+9=5432~-1.278:—-3(3.433 + 0.136r) + 9 = —1.686¢ + 4.133 = 0
Consequently, t = 2.451 and the intersection point is

X3 = 5.432 — (1.278)(2.451) = 2.299
z,=3.433 + (0.136)(2.451) = 3.766

The distance between the two intersection points is
dyy =V — 1) + (23— 2)°
=/(2.299 - 5.432) + (3.766 — 3.433% = 3.151

The reflected and refracted rays at this intersection point are obtained using
r, as the incoming ray, i.e.

vy =r, = —1.278i + 0.136k

The unit surface normal on the incoming ray side of the surface is

P i 3k
P VI0 VIO
The results are
p; = —1.713i + 0.483k

—1.765i — 1.643k

ry

Here, both the reflected and refracted rays leave the scene. The ray tree
terminates at this point. In fact, examination of the illumination characteristics
for the surfaces shows that k,, = 0. Hence, the surface is opaque and no
transmitted ray is generated.

The intensity calculations begin at the bottom of the ray tree at the third
node. Since surface 3 is opaque, there is no light transmitted through the
surface. A shadow feeler shows that the surface itself is between the incident
ray and the light source. Consequently, the point of intersection of the ray
and the surface is in shadow. Thus, the point receives only ambient light. The
intensity is

Iy = kg3lg = (0.15)(1) = 0.15

A GLOBAL ILLUMINATION MODEL USING RAY TRACING 371

This intensity is transmitted along the reflection vector r, to the second surface.
When it reaches the second surface, it is attenuated by the distance between
the intersection points d,y. Thus,

At the second node in the tree representing the intersection of the ray and
the second surface, the shadow feeler does not intersect any object. Hence,
the point receives light from the source. The vector from the point to the light
source is

L, = (- x)i+ (z;— z)k = (3 — 5.432)i + (10 — 3.433)k
= —2.432i + 6.567k
and
L = —0.347i + 0.938k

Consequently
i, L, = (% \/L') *(—0.347i + 0.938k) = 0.909
2

The reflected direction for the ray from the light source is

R, = —0.938i + 0.347k

Here the unit sight vector is — p, and

A

~ P, "R, = (~0.168i + 1.582k) * (—0.938i + 0.347k) = 0.707

Thus,
Iy = kayla + hkay(hy« L) + lke(— p, Ry + kel s, + kil
= (0.15)(1) + (10)(0.15)(0.909) + (10)(0.8)(0) + (0.8)(.0476) + (0.5)(0)
=1.552

This intensity is transmitted along the refraction vector p, to the first surface
where, attenuated by the distance between the surfaces dyy, it becomes

Here, the shadow feeler also does not intersect any object. Hence, the
point on the first surface receives light from the source. The vector from the
point to the light source is

Ly =(—x)i+ (@z—z)k =3 —5i+ (10 - 7.5k
= —2i+ 2.5k
and

L, = -0.625i + 0.781k

Consequently

372 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

i £, = (== + 2)+ (~0.625i +0.781) = 0.110
vz V2

The reflected direction for the ray from the light source is

A

R, = 0.781i — 0.625k
Here, the unit sight vector is —v, and
~%, R, = (- (0.781i — 0.625k) = —0.625
Thus,

I, = kada + Ikay(@h, * £) + Ik (=9 R)" + ks, + kudy,
= (0.15)(1) + (10)(0.15)(0.11) + (10)(0.8)(0) + (0.8)(0) + (0.5)(0.379)
= 0.505

This is the intensity transmitted to the observer. Because the resulting intensity
is low, the point is only dimly seen. The low intensity results because the
surface is almost edge-on to the light source. Further, the results show that
more than a third of the intensity is transmitted through the first surface from
surface 2. Finally because of the large value of n local specular highlights are
not seen.

If color is used, then the above calculation is performed three times, once
for each of the red, green, and blue components. Further, separate illumination
characteristics for each component are required.

Figure 5-42 shows a flowchart for a ray tracing algorithm with global il-
lumination. The algorithm is implemented using a pushdown ray stack. The
stack serves to communicate reflected and transmitted illumination information
among the elements of the ray tree. Since the stack holds only part of the
ray tree at any one time, it need only be long enough to contain the longest
anticipated branch. A particular branch of the ray tree is terminated when both
the reflected and refracted rays at an object intersection leave the scene or when
the available stack length is exceeded. When both rays leave the scene, their
contribution to the illumination at the source ray is zero. When the available
stack length is exceeded, the algorithm calculates the illumination at the source
ray using only the ambient, diffuse, and specular reflection components at the
source ray intersection. The algorithm can be extended one additional depth
in the tree without exceeding the maximum stack depth. The flowchart for this
modification is shown in Fig. 5-43.

The efficiency of the algorithm can be increased by reducing the average
size of the ray tree or stack and hence the number of required intersection cal-
culations. The average size of the ray stack can be reduced by placing on it only
rays that significantly contribute to the intensity at the observer’s eye. The max-
imum relative contribution of a particular node of the ray tree to the intensity
at the observer’s eye can be approximated using the following technique. The
approximate intensity at the first ray-surface intersection, including any shadow

A GLOBAL ILLUMINATION MODEL USING RAY TRACING 373

ffects, is determined using only a local illumination model, e.g., the ambient,
Lambertian diffuse, and Phong specular reflection terms from Eq. 5-16. This
value is saved. At each succeeding ray-surface intersection the maximum in-
tensity contribution is approximated by the same local illumination model but
without considering shadow effects. The resulting intensity is attenuated by
the cumulative effects of refraction and reflection and by the cumulative dis-
tance traveled by the ray from the first ray-surface intersection to that under
consideration. For example, the approximate intensity at surface 3 in Fig. 5-40
would be attenuated by ks,k./d23d12 (see Example 5-9). If the resulting in-
tensity exceeds a fixed percentage of the approximate intensity at the first
ray-surface intersection, then refracted and reflected rays, as appropriate, are
placed on the ray stack. If not, then the ray branch is terminated at that point.
Hall (Refs. 5-34 and 5-35), using a similar technique, found that the average
tree size and the computational expense was reduced by a factor of more than 8.
Unfortunately, the technique is not completely correct. Specifically, if a major
contribution to the intensity at the observer’s eye due to global illumination ef-
fects occurs after the ray tree has been terminated, the resulting image will be
incomplete. However, the probability of this occurring for most general scenes
is small. Thus, the significant savings that result justify use of the technique.

The algorithm assumes an object description list similar to that discussed
in Sec. 4-13 for the opaque visible surface ray tracing algorithm. The ray stack
contains the following information for each ray.

Ray number uniquely assigned for each ray
Ray type v, a pixel ray from the eye; r, a reflected ray; or

p, a refracted ray
Ray source number the number of the ray that generated this ray

Ray source type v, r, or p as above

Intersection flag one if an intersection for this ray has been found,
otherwise zero

Object pointer gives the location of the intersected object in the

object description list
Intersection values x, y, z, coordinates of the intersection that gener-
ated this ray

Direction cosines specify the direction of the ray

d distance between this ray intersection and the in-
tersection of the source ray

I, intensity of transmitted light along this ray

Is intensity of specularly reflected light along this ray

When a ray is initially pushed onto the stack, the values of I;, I, d, and the
intersection flag are set to zero. Subsequent passes through the algorithm
update these values as required.

The Whitted illumination model as shown in Fig. 5-39 is used with the
algorithm. The flowchart shown in Fig. 5-44 corresponds to the block labeled
“Calculate intensity” I, in Fig. 5-42. If color is incorporated into the model,

Yoels woij

Ke1 dod

punoi8yoeg—|

(Xewyoels
=uoneIauaId Kes

I Ansudul e
19x1d Aeydsig

S1

[

!

el 351nos 10j
yoris ayy
ut 1 19§

Ael 33In0S 10j
Yoers ayl
ut 3 19§

1 Ayisuajut
Je[noje)

EETY

[¥o®1s O1u0 At A ysnd |

1

[19x1d 10§ 4e1 a 23e13uaD)|

}

0—P
0—51
oM
0—Iaqunu ey
0—uoneIausd Aey
A—2adA) Aey
195 J0U — §e[J uUoId3ISINU]
dzienuj

[}

G

Figure 5-42 Flowchart for a ray tracing algorithm with global illumination.

374

!

}

I

[xov1s o0 Aex paroesjal :msn:

t

[13quinu 4e1 yuswaisuj|
FEXLY

$IS1X9 Ael
paroe1jal sso(

]
[¥oe1s o0 e1 parda[jar ysng|

i

[Jaquinu el judWAIdU|

Ael
92In0s 10§
yoeis ayl

ur S| 1§

Ael

32Ino0s 10§

yoers ayd
ut f19g

S
$1S1X9 Aea
pad3jal1 sso0qg

ou

T»ﬁ pa1dRIjal pue PIdI|Jal 32:2«&
t
TonE:: uoneIdudd Ael juswaIoug _
|
xou: 01U0 Yorq Ael ﬁ:m

t

[821y uondasiaul 195 |

[}

1 Aynsudiul
Jlgole)

I—-p P ‘suol159s13iul
011 Ael uaamiaq

0—51 dueISIp Ar[NI[B)

ldquinu
uoneIouad Aex
wswaIdaq

Figure 5-42 (Continued.)

375

376 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

1

(# Calculate
Calculate refracted ray
reflected ray]

1 Calculate
Calculate refracted ray,
reflected ray intersection
intersection

Calculate
Calculate intensity |
intensity I with Ig=I{=0
with Is=I{=0 :

Calculate

intensity I
for source ray

(; Figure 5-43 Modification of the

global illumination ray tracing
algorithm.

the “Calculate intensity” block is executed three times; once for each color
component. Here, the path of the vectors (shadow feelers) from the surface
intersection point to the various light sources is checked for intersection with
other objects in the scene. If an intersection occurs with an opaque object, that
light source does not contribute to the local diffuse or specular reflection at that
point. If all the intersections along the path are transparent, the intensity of
the light source I, is attenuated appropriately. In particular, the attenuation
factor is based on the transmission coefficients of the occluding surfaces. Thus,
opaque occluding objects produce sharp black shadows, while transparent oc-
cluding objects yield faint shadows. Refraction of incident light from the source
through transparent objects to the surface is not accounted for. The transmitted
and specularly reflected light incident at a point is attenuated by the distance
between ray intersections. The algorithm assumes that the surface normal is
available from the object description. Other more complex illumination models
can be incorporated into the model by modifying this routine (see Secs. 5-7,
5-8 and 5-13).

The intersection processor was previously described in Sec. 4-13 in the con-
text of an opaque visible surface ray tracing algorithm. The only modification
required here is to specifically translate the ray-surface intersection point for
each ray to the origin of the coordinate system before rotating to make the ray
coincident with the z axis. The ray points in the direction of —z. The same
procedure is used to determine the intersections of the shadow feelers with
objects.

A GLOBAL ILLUMINATION MODEL USING RAY TRACING 377

Ener)

Initialize
j—number of light sources
i—0
Ig—0

1=Kala+1+(ksls +kIt)/d|

no
Generate Lj

Intersection?

Is any
intersected object
opaque?

no

yes

For each non-
opaque object
attenuate the
intensi
tensity lgj

|

Eenerate Rjand §j|

I=I+1g kg (aj-L)+Hp ks(SR))
I

Figure 5-44 Flowchart for the illumination model for the global illumination ray tracing
algorithm.

In operation, the algorithm described in Fig. 5-42 first generates the ray
tree along the right hand “refraction” branch from the root node until the
branch terminates, as shown in Fig. 5-45 by the dashed line with arrows. The
branch is then traversed upward, calculating the intensities at each node until
the root node is reached. The left hand “reflection” branch from the root node
is then generated and traversed in the reverse direction. At any intermediate
node the process may be repeated. The downward pointing arrows in Fig. 5-45
indicate ray generation (pushed onto the stack), and the upward pointing arrows
indicate intensity generation (popped from the stack). After the intensity
contribution for a ray at a particular node has been determined, the ray is

378 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 5-45 Ray tracing tree.

discarded. When only the root node remains, the pixel intensity is determined
and sent to the display.

Whitted (Ref. 5-30) incorporates antialiasing into the ray tracing algorithm.
Aliasing effects are most apparent for regions with high-intensity gradients, e.g.,
at object edges, at silhouette edges, within texture patterns, and for objects
smaller than the interval between sample points. To reduce computational re-
quirements, the antialiasing technique used is a dynamically invoked Warnock-
style recursive subdivision. Instead of tracing rays through each pixel center,
Whitted traces rays through sample points at each corner of the pixel square,
as shown in Fig. 5-46a. For an n X m raster this requires (n + 1) X (m +
1) sample points, which is only a modest increase. If the intensities at the
four corner sample points are nearly equal, and if no small object lies between
them, then the intensity values are averaged and displayed for that pixel. If the
four intensity values are not nearly equal (see Fig. 5-46b), the pixel square is
subdivided into four subsquares and the process repeated. Recursive subdivi-
sion continues until the corner values are nearly equal, the allotted storage is
exceeded, or the resolution of the computer is exceeded. The intensity con-
tribution of each subpixel is weighted by its area, and the results summed to
obtain the pixel intensity. Although still a point sampling technique, in the
limit, the technique is equivalent to area antialiasing (see Sec. 2-26).

/
7. 17
Sample ,7/ /7///
oint “,9 < ol
p. \ - //I/ . . _ //// .
. A1
%~ Pixel center 71 "<3— Pixel subdivision
° ° ° °
Pixel square
a b

Figure 5-46 Antialiasing for ray tracing.

A MORE COMPLETE GLOBAL ILLUMINATION MODEL USING RAY TRACING 379

Implementation of this scheme requires that either a row or column of
sample point intensity values, which ever is smaller, be saved on a rolling basis
as the image is generated. Saving the sample point intensity values makes it
unnecessary to backtrack or regenerate previously determined intensity values.
When a pixel square is subdivided, a stack is used to save intermediate intensity
values as the subdivision progresses. (See the Warnock algorithm in Sec. 4-4.)

Whitted prevents small objects from being lost by using a minimum size
bounding sphere that is larger than the spacing between sample points. When
the algorithm encounters a minimum radius bounding sphere and no ray-object
intersection is found, the four pixel squares that share the ray through that
sample point are recursively subdivided until the object is found. This technique
is adequate for directly viewed objects or for objects viewed indirectly via planar
surfaces. However, objects viewed indirectly via curved surfaces may be lost.
These objects are lost because closely spaced rays reflected or refracted from
highly curved surfaces may diverge sufficiently to miss the object. This effect
is shown in Fig. 5-47 for reflection from a sphere. Continued subdivision may
exceed machine resolution before an intersecting ray is found. Color Plate 5
was generated using these techniques.

surface

Figure 5-47 Reflection from a curved surface.

5-13 A MORE COMPLETE GLOBAL ILLUMINATION MODEL
USING RAY TRACING

Hall (Ref. 5-34) and Hall and Greenberg (Ref. 5-35) have used a more com-
plete global illumination model than that described in the previous section. The
Hall global illumination model includes the scattering of light directly from light
sources along the refracted or transmitted ray in addition to along the reflected
ray. The scattering model is an adaptation of the Phong model. The model also
uses the Fresnel relationships for the wavelength and angle of incidence depen-
dence of refracted and reflected light, and uses the filter properties of specific
materials to attenuate light passing through transparent media. Specifically the
Hall global illumination model for j light sources is

380 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS
I = ks R4~ L) + ke 2 IR - A"
J J

+k Zl,jF,(ﬁ “H'Y" + kaRa + ksRA, TH (5-17)
j
+ kF T

Here, the ambient globally diffuse term (k,R4l,;) and the Lambertian dif-
fuse reflection for light scattered directly from light sources include Rs(4) the
material- and wavelength-dependent diffuse reflection curve. Similarly the
specular reflection term for light scattered directly from light sources and the
global specular reflection term contain R(4), the material- and wavelength-
dependent Fresnel reflectance curve (see Sec. 5-8). The third term in Eq. 5-17,
which represents the specular transmission of light directly from light sources
along the refracted ray, and the global transmission term include F,, the material-
and wavelength-dependent Fresnel transmissivity curve. From conservation-of-
energy considerations F; = 1 — R;. The approximate technique suggested by
Cook and described in Sec. 5-8 is used to determine RA4) and F,(4). The global
specular reflection and specular refraction terms also include 7, and T the trans-
missivity per unit length for the reflected and transmitted (refracted) rays. The
distances traveled by the reflected and transmitted (refracted) rays from the last
intersection are given by d, and d, respectively. Following Kay (see Sec. 5-9),
T, and T, are raised to a power to represent the effects of passage through a
material. Here, the distances, d, and d; are used as the powers.

The specular reflection term for light received directly from light sources
is adapted from the Torrance-Sparrow model discussed in Sec. 5-8. Here, the
angle between the surface normal i and the bisector of the angle between the
light source direction and the observer’s direction H, i.e., fi-H raised to a power
n, is used to represent scattering of specularly reflected light. Similarly, the
angle between the surface normal and a vector H' raised to a power n’ is used
to represent scattering of specularly transmitted light. The vector H' represents
the normal direction for Torrance-Sparrow (see Sec. 5-8) surface microfacets
that refract light received directly from a light source in the direction p (see
Fig. 5-39).

The direction of the H' vector can be calculated using Snell’s laws (see
Sec. 5-9). Referring to Fig. 5-48, using the similar triangles afd and bed, and
Snell’s law yields

_n
ad = 7'bd

Now
ab=v-—-p

and

ad = ab + bd

RECENT ADVANCES IN RENDERING 381

Thus,
N A 2
bd = Py -
Since
H =bd-p
combining these results yields
g = Y n/mp
n2/m — 1

Color Plate 8 compares results for the Whitted and Hall global illumination
models. Both images are of the same scene and were created using a ray tracing
algorithm. Color Plate 8a was rendered using the Whitted global illumination
model described in Eq. 5-16. Color Plate 8b was rendered with the Hall global
illumination model described in Eq. 5-17. Compare the appearance of the
metallic spheres in both scenes. Notice the color of the blue placemat edge
reflected in the metallic sphere. Compare the color of the transparent spheres.
Notice the slight bluish-green color of the sphere and its shadow in Color Plate
8b. This color results from including the material filter properties in the Hall
model. Although, as shown by Color Plate 8, the Hall global illumination
model is empirically derived and hence, as pointed out by Hall (Ref. 5-34),
fundamentally incorrect, the images are some of the most realistic produced to
date.

d
£
v

Q

Figure 5-48 Determining the H' vector.

5-14 RECENT ADVANCES IN RENDERING

Although the techniques discussed in previous sections provide powerful tools
for rendering synthetic images, they fall short of realism in a number of areas.
Chief among these are the rendering of natural objects, providing motion
without aliasing, and modeling distributed light sources. Because these are
areas of on-going research, detailed discussions are beyond the scope of this

382 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

book. However, an attempt will be made to direct the reader to some of the
current research.

The typical point light source used in the illumination models discussed
above intrinsically depends on the particle character of light. Thus, each ray
must be traced individually. Accomplishing this for the hundreds of rays gen-
erated by a diffuse light source and/or by diffuse reflection from a surface
is prohibitively expensive. Moravec (Ref. 5-36) suggests a solution based on
the wave characteristics of light. Preliminary results are interesting, but again
prohibitively expensive.

Aliasing in computer-generated animation falls into two broad categories.
The first is typified by the common aliasing problems of small objects appearing
and disappearing from frame to frame and by the phenomenon of “crawling”
along silhouette edges. These effects can be mostly eliminated using standard
spacial antialiasing techniques on each individual static image.

The second category is referred to as temporal antialiasing or motion blur.
When an object moves rapidly through space, it is perceived as slightly blurred.
Three recent papers address this problem. Korein and Badler (Ref. 5-37)
present a technique for generating temporally and spacially synchronized mul-
tiple images of a moving object within a single frame. Potmesil and Chakravarty
(Ref. 5-38) have extended their camera model (Ref. 5-31) to include motion
blur. The effect is obtained by defocusing individual objects and by generating
multiple images (exposures) within a single frame. Reeves (Ref. 5-39) incor-
porates motion blur within a stochastic particle system by generating special
particle shapes.

Rendering naturally occurring objects is difficult because they are complex,
rough, dirty, cracked, and otherwise irregular. Examples are fire, smoke,
clouds, fog, grass, and trees. Considerable work has been done in this area.
Selected recent references are Blinn (Ref. 5-40), Dungan (Ref. 5-41), Marshal,
Wilson, and Carlson (Ref. 5-42) and Csuri (Ref. 5-43).

Of particular interest is a particle system presented by Reeves (Ref. 5-
39). Because many natural phenomena are difficult to model with polygons or
curved surfaces, Reeves and his co-workers, as well as a number of previous in-
vestigators, have turned to individual particles as a modeling mechanism. These
particles are “fuzzy”; i.e., they do not have smooth, well-defined surfaces but
rather, irregular, complex surfaces of nonconstant shape. The particles change
form and characteristics with time under the action of physical or stochastic
models. Over time, particles are generated or born into the system, move
within the system, and die or leave the system. With these particle systems the
following procedure is used to generate a single frame

New particles are generated, assigned individual attributes, and introduced
into the system.

Old particles in the system that have died are extinguished.
The remaining particles are moved using an appropriate motion model.

COLOR 383

An image of the remaining particles is rendered.

Some of the most realistic synthetic images to date have been generated using
this technique. An example is shown in Color Plate 10.

5-15 COLOR

Color has been casually mentioned throughout this text. It now remains to
consider it in some detail. Color is both a psychophysiological phenomenon
and a psychophysical phenomenon. The perception of color depends upon the
physics of light considered as electromagnetic energy and its interaction with
physical materials, and on the interpretation of the resulting phenomena by
the human eye-brain visual system. As such, it is a vast, complex, fascinating
subject, the details of which are well beyond the scope of this text. Additional
information can be obtained by consulting Refs. 5-44 to 5-47. The approach
taken here is to develop a basic color vocabulary, a basic understanding of the
physical phenomena involved, and a basic understanding of color specification
systems and the transformations between them.

The human visual system interprets electromagnetic energy with wave-
lengths between approximately 400 and 700 nanometers as visible light. A
nanometer (nm) is 107° meter or a billionth of a meter. Light is perceived
either directly from a source of illumination, e.g. a light bulb, or indirectly by
reflection from the surface of an object or refraction through an object.

When perceived light contains all the visible wavelengths with approximately
equal weights, the light source or object is achromatic. An achromatic light
source appears white. When the reflected or transmitted light from an object is
achromatic, it appears white, black, or an intermediate level or shade of gray.
Objects that achromatically reflect more than about 80% of the incident light
from a white light source appear white. Those that achromatically reflect less
than about 3% of the incident light appear black. Intermediate achromatic
reflectance levels yield various shades of gray. It is convenient to consider the
intensity of the reflected light in a range between 0 and 1, with 0 equated to
black and 1 to white. Intermediate values are gray.

Although it is difficult to distinguish between the concepts of lightness and
brightness, lightness is most conveniently considered a perceived property of
a non-self-luminous or reflecting object (white-black), and brightness a charac-
teristic of the perceived amount of illumination (high-low) present from a self-
luminous or emitting object. The perceived lightness or brightness of an object
is dependent on the relative sensitivity of the eye to various wavelengths. Figure
5-49 shows that for daylight the eye is most sensitive to light at a wavelength
of approximately 550 nm. The eye’s sensitivity decreases rapidly at the ends of
the visible light range or spectrum. The curve in Fig. 5-49 is called a luminous
efficiency function. It provides a measure of the light energy or intensity cor-
rected for the sensitivity of the eye.

384 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

1.0}
Luminosity function
(Day vision)

Relative sensitivity
(=]
w

400 500 600 700
Violet Wavelength N (nm) Red

Figure 5-49 Relative sensitivity of the eye.

When perceived light contains wavelengths in arbitrary unequal amounts,
the color of the light is said to be chromatic If a single concentration of
wavelengths is near the upper end of the visible spectrum, the color of the light
is interpreted as red or “reddish”; i.e., the dominant wavelength is in the red
portion of the visible spectrum. If near the lower end of the visible spectrum,
the color is interpreted as blue or “bluish”; i.e., the dominant wavelength is in
the blue portion of the visible spectrum. However, note that electromagnetic
energy of a particular wavelength has no color. It is the eye-brain combination
that interprets the physical phenomena as the sensation of color. The color of
an object depends on both the distribution of wavelengths of the light source
and the physical characteristics of the object. If an object reflects or transmits
light in only a narrow band of wavelengths, absorbing all others, then the
object is perceived as colored. The wavelengths of the reflected or transmitted
light determine the color. Interaction of the color of incident and reflected or
transmitted light can yield startling results. For example, the reflected light
from a green light incident on a normally white object will also appear green;
i.e., the object is perceived as green. However, a red object illuminated with
green light appears black since no light is reflected.

A chromatic color is psychophysiologically defined by its hue, saturation,
and brightness. Hue is the “color” of the color. It is the name by which
the color is designated. Saturation is a measure of the degree to which the
pure color is diluted by white. A pure color is 100% saturated. As white is
added, the degree of saturation decreases. Achromatic light is 0% saturated.
Brightness is the intensity of the achromatic light.

The psychophysical equivalents of hue, saturation, and brightness are dom-
inant wavelength, purity, and luminance. A perceived color generated by
electromagnetic energy of a single wavelength in the visible spectrum is mono-
chromatic. Figure 5-50a shows the energy distribution for such a monochromatic

TThe operative words here are “perceived” and “arbitrary.” As shown later discrete chromatic
lights can be combined in specific ways to generate achromatic perceptions.

COLOR 385

light with a wavelength of 525 nm. Figure 5-50b shows the energy distribution
for a low level of “white” light with energy E> and a single dominant wavelength
of 525 nm with energy E;. In Fig. 5-50b, the color of the light is determined by
the dominant wavelength, and the purity of the color by the relative magnitudes
of E; and E,. E, represents the amount by which the pure color of wavelength
525 nm is diluted by white light. As the magnitude of E; approaches zero, the
purity of the color approaches 100%. As the magnitude of E; approaches that
of Ei, the color of the light approaches white and the purity approaches zero.
Luminance is proportional to the energy of the light and is usually considered
as intensity per unit area.

Pure monochromatic light is seldom found in practice. Perceived colors are
a mixture. The tristimulus theory of color mixing is based on the assumption
that three types of color-sensing cones exist in the central portion of the eye.
One type of cone senses wavelengths near the middle of the visible light range,
which the eye-brain visual system converts into the sensation called green. The
other two types sense long and short wavelengths near the upper and lower
ends of the visible light range, which are interpreted as the sensations red and
blue, respectively. Figure 5-49, which shows the relative sensitivity of the eye,
indicates that the eye is most sensitive to green and least sensitive to blue. If
all three sets of cones sense equal radiance levels (energy per unit time), the
result is interpreted as white light. Natural white light, of course, contains
radiance levels for all wavelengths in the visible spectrum. However, because
physiologically the eye contains three different types of cones, the sensation of
white light can be produced by a properly blended combination of any three
colors, provided that a mixture of any two of the colors cannot produce the
third. These three colors are called primary colors.

There are two primary color mixing systems of importance in computer
graphics: the red, green, blue (RGB) additive color system and the cyan,
magenta, yellow (CMY) subtractive color system. The two systems are shown
in Fig. 5-51 and in Color Plate 11. The colors in the two systems are comple-
ments of each other. Cyan is the complement of red, magneta the complement
of green, and yellow the complement of blue. A complement is white minus
the color. Thus, cyan is white minus red, magenta is white minus green, and

E, E
o

= —fe—1nm 5 —~—Inm

; [

L m
wm E>

0 400 500 600 £ T A T T R T E— T —
Violet Red Violet Red
Wavelength \ (nm) Wavelength N\ (nm)
a b

Figure 5-50 Wavelength characteristics of light.

386 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Yellow= Magenta= Blue=

Red+Green Red+Blue Magenta Magenta+
Cyan

White

Red + Black =

Green+ Red Cyan+

Magenta +
Yellow

Cyan=Green+Blue Green=Cyan+Yellow

Figure 5-51 The additive (a) and subtractive (b) color mixing systems.

yellow is white minus blue. Although, technically, red can also be considered
the complement of cyan, traditionally red, green, and blue are considered
the primary colors, and cyan, magneta, and yellow their complements. It is
interesting to note that magenta does not appear in the spectrum of colors
created by a rainbow or prism. Hence, it is only a creation of the eye-brain
visual system.

For reflective sources, e.g., printing inks and film and non-light-emitting
displays, the CMY subtractive system is used. In the subtractive color system,
the wavelengths representing the complement of the color are subtracted from
the white light spectrum. For example, when light is reflected from or trans-
mitted through a magenta colored object, the green portion of the spectrum
is absorbed or subtracted. If the resulting light is then reflected from or trans-
mitted through a yellow object, the blue portion of the spectrum is subtracted.
The result is red. Finally, if the remaining light is reflected from or transmitted
through a cyan object, the result is black because the entire visible spectrum
has been eliminated (see Color Plate 11). Photographic filters work this way.

For light-emitting sources, e.g., a color CRT display or colored lights, the
RGB additive color system is used. A simple experiment illustrates that three
monochromatic colors is the minimum number required to match or produce
almost all colors in the visible spectrum. The experiment involves a single,
arbitrary, monochromatic test light incident on a background. An observer
attempts to perceptually match (hue, saturation, and brightness) the test light
by shining a monochromatic light or lights onto the background adjacent to the
test light. The intensity of the matching light or lights is variable. If only a
single matching light is used, then it must have the same wavelength as the test
light in order to match the test light. Thus, only one color can be matched by
a single monochromatic matching light. However, if the observer discounts the
hue and saturation of the test light, then, for any intensity of the test light, its
brightness can be matched. This procedure is called photometry. It leads to
gray scale monochromatic reproduction of colored images.

If the observer now uses two superposed monochromatic light sources,
more test lights can be matched. However, there are still a large number that

COLOR 387

cannot be matched. Adding a third matching light allows almost all test lights
to be matched, provided that the three matching lights are widely spaced in the
visible spectrum and provided no two of the matching lights can be combined
to yield the third; i.e., the colors represented by the lights are primary colors.
A good choice of lights is one from the high-wavelength end of the visible
spectrum (red), one from the medium wavelengths (green), and one from
the low wavelengths (blue). Adding these three lights together to match the
perceived color of the monochromatic test light mathematically corresponds to

C=rR+gG+bB

where C is the color of the test light to be matched, R, G, and B correspond
to the red, green, and blue matching lights, and r, g, and b correspond to the
relative amounts of the R, G, and B lights used, with values in the range 0
to 1.

However, most of the test lights still cannot be matched by adding the
three matching lights together. For example, if the test light is blue-green,
the observer adds the blue and the green matching lights together, but the
result is too light. Adding red in an attempt to darken the result only makes
it lighter because the energies of the lights add. This effect gives the observer
an idea: Add the red matching light to the test light to lighten it. It works!
The test patches generated by the lights match. Mathematically, adding the red
matching light to the test light corresponds to subtracting it from the other two
matching lights. This is, of course, a physical impossibility, since a negative
light intensity is impossible. Mathematically the result corresponds to

C+rR=gG +bB
or
C=-rR+gG+ bB

Figure 5-52 shows the color-matching functions r, g, b for monochromatic
lights at wavelengths of 436, 546, and 700 nm required to match all wavelengths
in the visible spectrum. Notice that, except for wavelengths near 700 nm,
one of these functions is always negative. This corresponds to “adding” the
matching light to the test light. The study of these matching functions is part
of colorimetry.

The observer also discovers that, when the intensity of a test light is doubled,
then the intensities of each of the matching lights are also doubled, i.e.

2C = 2R + 2gG + 2bB

Finally, the observer discovers that, when the same test light is matched in
two different sessions, the values of r, g, and b are not necessarily the same.
The matching colors for the two different sets of values of r, g, and b are
called metamers of each other. Technically, this means that the test light can
be matched by two different composite light sources, each of different spectral

388 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Tristimulus values

400 500

0 ! d 500 700
! i !

o -] (=3

-~ g o

e

(=]
T
4
S

Figure 5-52 Color matching
Wavelength \ (nm) functions.

energy distribution. In fact, the test light source can be matched by composite
light sources with an infinite number of different spectral energy distributions.
Figure 5-53 shows two very diverse spectral reflectance distributions that both
yield a medium gray.

The results of this experiment are embodied in Grassman’s laws (see
Ref. 5-44). Simply stated, Grassman’s laws are:

The eye distinguishes three different stimuli. This establishes the three-
dimensional nature of color. The stimuli may, for example, be dominant
wavelength (hue), purity (saturation), and luminance (brightness), or red,
green, and blue.

Four colors are always linearly related; i.e., cC = rR + gG + bB, where
¢,r,g,b# 0. Consequently, if two colors (cC); and (cC), are mixed, then
(€O + (cC)2 = (rR) + (rR)2 + (gG)1 + (gG)2 + (bB)) + (bB),. If color C, =
color C and color C; = color C, then color C; = color C, regardless of the
spectral energy compositions of C,C;, and C>.

005t
[3)

~

—— N 4
(3]

2 T e—— p
z f >

e |t 1

400 500 600 700
Wavelength A (nm)

Figure 5-53 Metamers.

COLOR 389

If in a three-color mixture, one color is continuously changed with the
others kept constant, the color of the mixture will change continuously.
This means that three-dimensional color space is continuous.

Based on experiments similar to those described above, it is known that the
visual system is capable of distinguishing approximately 350,000 colors. When
the colors differ only in hue, the visual system can distinguish between colors
with dominant wavelengths differing by about 1 nm in the blue-yellow part of
the spectrum. However, near the spectrum extremes approximately a 10 nm
separation is required. About 128 distinct hues are distinguishable. If only
differences in saturation are present, the visual system’s ability to distinguish
colors is more limited. Approximately 16 different saturations of yellow and
about 23 different saturations of red-violet are distinguishable.

The three-dimensional nature of color suggests plotting the value of each
tristimulus component along orthogonal axes as shown in Fig. 5-54a. The
result is called tristimulus space. Any color C is represented by the vector
from the origin with components rR, gG, and bB. Meyer (Ref. 5-48) gives a
detailed discussion of three-dimensional color space. The intersection of the
vector C with the unit plane gives the relative weights of the R, G, B colors
required to generate C. The relative weights are called the chromaticity values
or coordinates. They are given by

o — T S__8 @ p__b

= g= b=

r+g+b r+g+b r+g+b

Consequently, 7 + g + b = 1.0. Projection of the unit plane as shown in
Fig. 5-54b yields a chromaticity diagram. The chromaticity diagram directly
provides a functional relationship between two colors and indirectly with the
third, since, for example, b=1-7- g. If the color matching functions
shown in Fig. 5-52 are plotted in three space, the result does not entirely lie in
the positive octant. Projection onto a two-dimensional plane would also yield
negative values. These negative values are a mathematical nuisance.

G
1 C
gG b
Unit plane
R+G+B-=1
rR R
bB/____.) 1
R
1 a

B

Figure 5-54 Three-dimensional color space.

390 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The Commission Internationale de L’Eclairage (CIE), at a meeting on
international color definition and measurement standards held in England in
1931, adopted a universal two-dimensional chromaticity diagram and a set of
standard tristimulus observer functions that not only eliminate the negative
values but also exhibit a number of other advantages. The result is, known as
the 1931 CIE chromaticity diagram. The CIE tristimulus values or primaries are
derived from the standard observer functions shown in Fig. 5-55 and tabulated
in Ref. 5-44. The three CIE hypothetical primaries are X, ¥, and Z. The CIE
XYZ primaries are hypothetical because eliminating the negative values makes it
impossible for the primaries to correspond to physically real lights. The triangle
formed by X, Y, and Z was selected to contain the entire spectrum of visible
light. The CIE chromaticity values xyz are

X Y zZ

x+v+z YT x+v+z T x+rv+z G-18)
and x + y + z = 1. When the XYZ triangle is projected onto a two-dimensional
plane to form the CIE chromaticity diagram, the chromaticity coordinates are
selected as x and y. The chromaticity coordinates represent the relative amounts
of the three primary XYZ colors required to obtain any color. However, they
do not indicate the luminance (intensity) of the resulting color. Luminance
is incorporated into the Y value. The X and Z values are then scaled to the Y
value. With this convention, both the chromaticity and the luminance are given
by (x, y, Y) coordinates. The inverse transformation from chromaticity values to
XYZ tristimulus values is

Y Y
X=x= Y=Y Z=(1-x-y-~ (5-19)
y y
1.5F
1.0
-
| 2)
- y X
05
0 A 1 L4
400 500 600 700 Figure 5-55 1931 CIE standard ob-

Wavelength \ (nm) server.

COLOR 391

The final decision of the commission was to align the XYZ triangle so that equal
values of the three hypotetical XYZ primaries produce white.

The 1931 CIE chromaticity diagram is shown in Fig. 5-56. The wing-shaped
outline represents the locus of all visible wavelengths, i.e., the locus of the
visible spectrum. The numbers along the line indicate the wavelength of visible
light at that location. Red is at the lower right corner, green at the point,
and blue in the lower left corner of the diagram. The straight line connect-
ing the ends of the spectrum locus is called the purple line. The curved line
labeled the blackbody locus represents the color of a theoretical blackbody as
it is heated from approximately 1000° K to infinity. The dashed lines indicate
the temperature along the blackbody locus and also the direction along which
color changes are least discernible to the human eye. The equal energy align-
ment white is shown as point E(x = 0.333, y = 0.333). The locations of CIE il-
luminants A(0.448, 0.408), B(0.349, 0.352), C(0.310, 0.316), Desoo (0.313, 0.329)
are also shown. Illuminant A approximates the warm color of a gas-filled
tungsten lamp at 2856° K. It is much “redder” than the others. Illuminant B
approximates noon sunlight, and illuminant C the light from an overcast sky at
midday. Illuminant C is used by the National Television Standards Committee
(NTSC) as the alignment white. Illuminant Dgsoo, Which corresponds to a black-
body radiating at 6504° K, is a somewhat “greener” white used as the alignment
white for many television monitors.

As Fig. 5-57 illustrates, the chromaticity diagram is quite useful. The
complement of a spectrum color is obtained by extending a line from the color
through the alignment white to the opposite spectrum locus. For example, the
complement of the reddish-orange color C4(A = 610nm) is the blue-green color
Cs(A = 491 nm). A color and its complement added together in the proper

Green
[l

Figure 5-56 CIE diagram showing
the blackbody locus, illuminants A
B, C, D¢soo (D), and equal-energy
white (E).

392 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

proportions yield white. The dominant wavelength for a color is obtained by
extending a line from the alignment white through the color to the spectrum
locus. For example, in Fig. 5-57 the dominant wavelength for color C¢ is 570
nm, a yellow-green. If the extended line intersects the “purple line,” then the
color will have no dominant wavelength in the visible spectrum. In this case,
the dominant wavelength is specified by the complementary spectrum value for
the color with a ¢ suffix. The value is obtained by extending a line “backward”
through the alignment white to the spectrum boundary. For example, the
dominant wavelength for color C7 in Fig. 5-57 is 500c nm.

The pure or fully saturated colors lie on the spectrum locus and are 100%
pure. The alignment white is “fully diluted” with a purity of 0%. The purity of
intermediate colors is given by dividing the distance from the alignment white
to the color by the distance from the alignment white to the spectrum locus or
the purple line. For example, the purity of color Cs in Fig. 5-57 is a/(a + b) and
that of C7, ¢/(c + d) expressed as a percentage.

The CIE chromaticity coordinates of a mixture of two colors is obtained,
using Grassman’s laws, by adding their primary values. For colors Ci(xi, yi1, Y1)
and Ca(x2, y2, Y2) the mixture of C, and C; is

Co=X+X)+ (N +)+ (@ +2)
Recalling Eqs. (5-18) and (5-19) and defining
Y, Y

T, =— T,=—"=
N y2

the chromaticity coordinates of the mixture are

~-Green

08 f‘\i"&

w
&
=]

4

Dominant
wavelength
for C6 =570 nm

6 1
L
_ Dgs00 —_\600
O\
CIZ 0,./-@ Cy 770
Red —
Dominant
wavelength

for C7=500c nm _
||

0.6 08 Figure 5-57 Uses of the chromatici-
ty diagram.

COLOR 393

_xT + x0T = nT +yh
T, +T, : T\ +T;
These results are applicable to mixtures of more than two colors when

applied successively to the mixture and each additional color. An example
illustrates the technique.

X12 Yn=rn+r

Example 5-10 Color Mixing

Determine the CIE chromaticity coordinates of the mixture of the colors C)
(0.1, 0.3, 10), C2(0.35, 0.2, 10), and C3(0.2, 0.05, 10) shown in Fig. 5-57. Ap-
plying the above results successively, the mixture of Ci and C; is first deter-
mined. From the specifications

Y1 10 Y> 10
1 y| 03 33.33 2 2 02 50
and
Y1y = x1T1 + x2T2 _ (0.1)(33.33) + (0.35)(50) =025
R Py 33.33 + 50 :
yiTi + 2T (0.3)(33.33) + (0.2)(50)
yi2 = = =0.24
Th+T 33.33 + 50

Y2=Y1+Y2=10+10=20

Thus, the mixture of C and C2 is C12(0.25, 0.24, 20). Note that the coordinates
for the mixture lie on the line between C1 and C2in the chromaticity diagram.
Continuing, the mixture of Ci, C2, and C3 is given by the mixture of C 12 and

C3. Hence,
Yiz 20 Y3 10
Tn="2="_-8333 T===—— =20
2752 024 3 T % T 005
rpy = B12T12 +x3Ts _ (0.25)(83.33) + (0.2)200) _ 0
123 T+ T3 83.33 + 200 :
yiaTi2 + y3T3 (0.24)(83.33) + (0.05)(200)
yizz = = =0.106
Ti2+T3 83.33 + 200

Y1=Y12+Y3=20+10=30

The mixture of Ci, C2, and C3 is C123(0.215, 0.106, 30) and lies on the line
between C12 and C3 in the chromaticity diagram.

Figure 5-58 shows the correspondence between the CIE diagram and com-
mon perceptual color names (see Ref. 5-49). In the abbreviations used in
Fig. 5-58 for the color names, a lowercase letter takes an -ish suffix; e.g., yG is
yellowish-green. For each color area, saturation or purity ranges from nearly
zero, i.e. a very pastel color, near the illuminant area, to a fully saturated,
i.e. a vivid, color near the spectrum boundary. Notice that most of the up-
per area of the diagram is occupied by greenish hues, with the reds and blues

394 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

520
0.8 | !
\ 540
AN
560)
G
R- Red 06 yG
B - Blue 500 YG
G-Green y AP
Y-Yellow 04R bG R s\ ELL
O-Orange ,,0‘1, OPkY 1O
P —Purple BG & Pk RN
Pk-Pink N 170
gB A pPK PR
Lower case takes suffix ish 0.2 B RP
480 P P e
.__47(‘) (
0 450 20|
0 02 04 0.6 08

X
Figure 5-58 The 1931 CIE chromaticity diagram with superimposed color names.

crowded into the lower region near the purple line. Consequently, equal areas
or distances on the diagram do not represent equal perceptual differences. A
number of transformations of the diagram have been proposed to correct this
deficiency. These uniform color spaces are discussed in Refs. 5-44 to 5-47.

Color television monitors, color film, printing inks, etc., cannot produce
the full range or gamut of colors in the visible spectrum. For additive color
systems, the reproducible gamut appears as a triangle on the CIE chromaticity
diagram. The vertices of the triangle are the chromaticity coordinates of the
RGB primaries. Any color within the triangle can be reproduced by the primar-
ies. Figure 5-59 and Table 5-4 show the gamut of reproducible colors for the
RGB primaries of a typical color CRT monitor and for the NTSC standard
RGB primaries. For comparison, the subtractive CMY color system (converted
to CIE coordinates) used in a color film reproduction process is also shown.
Note that this gamut is not triangular. Note also that the gamut for this color
film is larger than the one for the color monitor. Consequently some film colors
cannot be reproduced by the monitor. The CIE XYZ primary spectrum colors
are also shown. These values lie on the spectrum boundary and correspond
to red at 700 nm, green at 543.1 nm, and blue at 435.8 nm. These primary
spectrum colors are used to produce the matching functions in Fig. 5-52.

The CIE chromaticity coordinates or tristimulus values provide a precise
standard specification of a color. However, each industry that uses color
employs a unique set of primaries or conventions to specify color. Transferring
color information from one industry to another is facilitated by using the CIE
chromaticity coordinates. Thus, transformation from CIE values to another
set of primary colors, and vice versa, is of interest. For computer graphics,

Table 5-4

CIE chromaticity coefficients for RGB primaries

X y
CIE XYZ primaries Red 0.735 0.265
Green 0.274 0.717
Blue 0.167 0.009
NTSC standard Red 0670 0.330
Green 0.210 0.710
Blue 0.140 0.080
Color CRT monitor Red 0.628 0.346
Green 0.268 0.588
Blue 0.150 0.070

COLOR 39§

the most common requirement is to transform between CIE XYZ values and

the RGB primary system used for television monitors.

Consequently, the

discussion concentrates on these transformations. More general discussions are

given in Refs. 5-44 to 5-46 and 5-48.

The transformation between two additive color systems is governed by
Grassman’s laws. The transformation from RGB color space to CIE XYZ color

space is given by

Yellow

0.8

Figure 5-59 Color gamuts.

A CIE primary colors

— 520—
08 Grlec'n—r 0=—-— NTSC standard
54‘0 o Graphics monitor
—=--—Color film

I~
4

396 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

x|=|x x, x,| |R
Y Y, Y, ¥,| |G (5-20)
z z 2, | |B

where X;, Y,, Z, represent the tristimulus values required to produce a unit
amount of the R primary, and similarly for X;, Y;, Z; and X,, Y;, Z,. For
example, if R = 1, G = 0, B = 0, then from the equations X = X,, Y = Y,,
Z = Z,. If the CIE chromaticity values (x,y) of the RGB primaries are known,

o =% X
"X +Y.+Z C
Y, Y,
st — = 521
yr X, +7Y +2 C ()
Zr Zr

=l—-x -y, =—2 _Z
o ¥ T X +v.+z G

and similarly for xg, yg, zg and xp, ys, z» With Cg = X+ Y+ Z;and C, =
Xy + Y, + Z,, Eq. 5-20 then becomes

X\l = xC, xCe x5Cp
Y }’rcr ngg)’bcb G (5-22)
z =% —y)Cr (1 —xg=y)Cs (1 —x— y5)Cs B

or in more compact notation
[X'] = [C'][R]

C;, Cg, and C, are required to completely specify the transformations be-
tween primary systems. If the luminance Y,, Y, and Y, of the unit amounts of
the RGB primaries is known, then

C == Cy =
yr ¢ Ye
If the tristimulus values for the alignment white (X., Y., Z,) are known, then
solution of Eq. (5-22) with [R'] = [C, C, Cp)" and [X'] = [Xu Yu Z.JT
yields the required values. If the chromaticity coordinates and the luminance
(xw, Yw, Yw) are known instead of the tristimulus values, then (Ref. 5-48)

Y,
Cb= b
Yb

Cr = (Yw/yw)lxw(yg — yb) — Ywlxg — xp) + Xgyp — Xbyg)/D
Cg = (Yulyu)xwOs = yr) — ywlxs = Xr) — Xyp + XY, J/D (5-23)
Co = (Yulyw)xwQr — yg) — ywlxr — Xg) + Xryg — Xg¥r VD
and
D = x:(yg — yb) + x,(06 — yr) + x6(yr — ¥g) (5-24)

The inverse transformation from CIE XYZ color space to RGB color space
is then given by

[R] =[C'T'[X'] = [C"]IX'] (5-25)

COLOR 1397

where [C"”] = [C']"! has components
C11 = [0 = y») — xpyg + yoxg] /C,D
Ciy = [(x6 — Xg) = XsYg + Xgy] /C,;D
Cy3 = [xgys — xb¥g] /C,:D
Cy1 =[O = yr) = yoxr + yrxs] / CeD
Cpy = [(xr = xb) — x:¥p + 2y, / CgD
Cy3 = [xeyr — %3] /CgD
Cy1 = [0r = yg) — yrxg + yex;] /CoD
Cyy = [(xg — xr) — xgyr + xryg] /CoD
Cy3 = [xryg — xgy] /CsD

An example further illustrates the technique.

Example 5-11 CIE to RGB Color Primary Transformations

It is desired to transform a color with CIE chromaticity coordinates x = 0.25,
y = 0.2, and luminance ¥ = 10.0 for display on a color monitor with RGB
primary chromaticities given in Table 5-4. The monitor is aligned to Desoo
white. Consequently, the monitor primary components are

xr=0628 x;3=0268 xp=0.150
yr=0346 y, =058 y, =0.070

The alignment white components are
Xw = 0.3]3 w = 0.329 Yw =1.0
First, calculating D yields

D = xr(yg = yb) + xg(yb — yr) + x6(yr — yg)
= 0.628(0.588 — 0.07) + 0.268(0.07 — 0.346) + 0.15(0.346 — 0.588)
=0.215
Now

DCr /(Y ! yw) = xw(yg — yb) — Yulxg — Xb) + Xg¥b — Xbyg
= 0.313(0.588 — 0.07) — 0.329(0.268 — 0.15) + 0.268(0.07)

—0.15(0.588)
= 0.0539
and
_ 00539 (rw\ _00s39(1\ _
“="7 (yw) 0.215 (0.329) 0.762

Similarly

398 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Cg=1114 Cp=1.164
Calculating the XYZ tristimulus values from the chromaticity coordinates yields
4
y
Y 10
Z=(1-x y)y =(1-0.25 0.2)0.2 =275

10
X=x== 0.250.2 =125

The transformation is then given by Eq. (5-22)
[R'] = [C"]X']
= 2.739 -1.145 -0.424 12.5 | =|11.133

R
G -1.119 2.029 0.033 10.0 7.209
B 0.138 —-0.333 1.105 27.5 28.772

The transformation of RGB coordinates to CIE chromaticity coordinates
is accomplished in a similar manner.

Example 5-12 RBG to CIE Color Primary Transformations

Transform the color with RGB components (255,0,0), i.e., the maximum
red intensity on the monitor, to CIE chromaticity coordinates. The monitor
primaries and alignment white are the same as in Example 5-11. Consequently,
D, Cr, Cg4, Cp are also the same. Using Eq. (5-21) yields

X| =10478 0.299 0.175 255 | =]121.94
Y 0.263 0.655 0.081 0 67.19
z 0.020 0.160 0.908 0 5.05

The chromaticity values are

[S 121.94 _12194 oo
X+Y+Z 12194+67.19+505 19418
Y 67.19
Y= X¥v+z 19418 0346
Y =67.19

which, of course, are the chromaticity coordinates for the red monitor primary
(see Table 5-4).

The RGB color primary system used for standard color television broad-
casting is dictated by the requirement to confine the broadcast signal to a 0-
6 MHz bandwidth and by the requirement for compatibility with the standard
for black-and-white television. In 1953 the NTSC adopted a standard called
the YIQ color primary system. The YIQ color primary system is based on
concepts from the CIE XYZ system. Because of bandwidth restrictions, one
value, Y, was chosen to contain the luminance or brightness information. The

COLOR 399

signal for Y occupies the major portion of the available broadcast bandwidth
(0-4 MHz). The proportions of the NTSC red, green, and blue primaries in the
Y signal were chosen to yield the standard luminosity curve. Since Y contains
the brightness information, only its value or signal is used by a black-and-white
monitor. The NTSC alignment white was originally CIE illuminant C, but
CIE illuminant Deseo is generally used at the present time (Ref. 5-50). The
differences are small.

Certain characteristics of the visual system are used to reduce the bandwidth
required for the color, i.e. hue and saturation, information transmitted. Specif-
ically, the ability of the eye to sense color decreases with decreasing apparent
object size. Below a certain apparent object size, objects are perceived by a
two-color vision process. Objects below a certain minimum size produce no
perceived color sensation.

The YIQ system uses linear combinations of the differences between the
red, green, and blue values and the Y value to contain the hue and saturation
“color” information. The I color value (or in phase signal) contains orange-cyan
color hue information, while Q (the quadrature signal) contains green-magenta
hue information. The I value contains hue information that provides the all-
important flesh tones while the Q value contains the remainder. Consequently,
a bandwidth of about 1.5 MHz is used for /, but only about 0.6 MHz is used for
Q. The transformation from RGB to YIQ values is given by

v| = [0209 0587 o0.114][r
I 05% -0274 -0322]|G
0 0211 -052 0311|]B

and from YIQ to RGB as

Rl =11 0956 0623] 1Y
G 1 -0272 -0.648] |1
B 1 -1.105 0.705| | Q

Transformation from CIE XYZ tristimulus values to YIQ, or vice versa, is
accomplished by combining these equations with Egs. (5-22) and (5-25).

As with the CIE XYZ tristimulus values, the RGB and CMY color spaces
are three-dimensional. Both the RGB and CMY spaces are conveniently rep-
resented by three-dimensional color cubes or solids as shown in Fig. 5-60.

The RGB color cube uses black as the origin, while the CMY color cube
uses white. For both models the achromatic colors, i.e. the grays, liec along the
diagonal from black to white. Also, the complementary colors lie on opposite
corners. The transformation between RGB and CMY color spaces is

[R G Bl=[111]1-[C M Y]

Unfortunately, it is difficult for users to specify subjective color concepts
in the systems discussed above. For example, what is the CIE, RGB, or CMY
specification for a pastel reddish-orange (see Fig. 5-58)? Artists specify colors

400 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

! Blue

Yellow Blue
a b

Figure 5-60 Color cubes. (a) RGB (b) CMY.

in terms of tints, shades, and tones. Given a pure pigment, an artist adds white
to obtain a tint, black to obtain a shade, and both to obtain a tone of the color.
These ideas can be combined into a useful triangular representation, as shown
in Fig. 5-61. The triangular representation shown in Fig. 5-61 is for a single
color. By arranging triangles for each pure color around a central black-white
axis, a useful subjective three-dimensional representation of color is obtained.
This basic idea is central to the Ostwald (Ref. 5-51) color system.

A useful implementation of a basic subjective color model is the HSV (hue,
saturation, value) color solid proposed by Smith (Ref. 5-52). If the RGB color
cube shown in Fig. 5-60a is projected onto a plane along the diagonal looking
from white to black, a hexagon is formed, with the pure RGB primaries and
their complements at each vertex. Decreasing the saturation or purity of the
primary colors decreases the size of the RGB color cube and the gamut of
possible colors. Projection then yields a smaller hexagon. If the projections
of the RGB color cube and its subcubes are stacked along the main diagonal
representing the value or lightness of the color from black = 0 to white =
1, a three-dimensional hexcone is formed. This is the HSV model shown in

«—Tints —

White Pure color
Gray

Figure 5-61 Tints, shades, and tones
Black of a pure color.

COLOR 401

Value

Green Yellow
/

Hue
Red

Saturation

Cyan

Magenta

0 Black

Figure 5-62 HSV hexcone color solid.

Fig. 5-62. Value increases along the axis of the hexcone from 0 at the apex
to 1 at the top surface, where the maximum value colors occur. Saturation
is given by the distance from the axis, and hue by the angular distance (0 -
360°) measured from red. Here, the projection of the RGB color cube has
been rotated counterclockwise 120° to place red at 0°. The value of saturation
ranges from 0 at the axis to 1 along the outer rim. Notice that saturation is
specified relative to the possible gamut of colors, i.e. relative to the distance
from the axis to the outer rim for any value of V. The fully saturated primary
colors or their complements occur for § = 1. A mixture of three nonzero
primaries cannot be fully saturated. If S = 0, the hue H is undefined and the
color is achromatic, i.e., some shade of gray. The shades of gray occur along
the central axis.

The HSV model corresponds to the way artists form colors. The pure
pigments are given for V. = 1, S = 1. Tints are formed by adding white, i.e.
decreasing S. Shades are formed by decreasing V, i.e. adding black, and tones
by decreasing both V and S.

Conversion from HSV to RGB color space using geometrical relations
between the hexcone and the color cube is straightforward. The following
pseudocode algorithm adapted from Smith (Ref. 5-52) accomplishes this.

HSYV to RGB conversion algorithm

H is the hue (0-360°) red at (°
S is the saturation (0-1)
V is the value (0-1)
RGB are the red, green, blue primary colors (0-1)
Floor is the floor function

check for the achromatic case

if S = 0 then

if H = Undefined then

402 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

R=V
G=V
B=V
else
if H has a value an error has been made
end if
else
chromatic case
if H = 360 then
H 3
else
H = H/60
I = Floor(H)
F=H-1
M = V¥(1 - §)

N=V*x(1-S=*F)
= V*(1-S*(1-F))
(R, G,B) = (V, K, M)means R =V, G = K, B = M etc.

if I = 0 then (R, G, B) = (V,K, M)
ifI = 1then (R,G,B) = (N, V,M)
if I = 2 then (R, G,B) = (M, V,K)
if I = 3then (R,G,B) = (M, N, V)
ifI = 4 then (R, G,B) = (K,M, V)
ifI = Sthen (R, G,B) = (V,M,N)
end if
end if
finish

Conversion from RGB to HSV color space is given by the following pseu-
docode algorithm, also adapted from Smith.

RGB to HSV conversion algorithm

RGB are the red, green, blue primary colors (0-1)
H is the hue (0-360°) red at (°

S is the saturation (0-1)

V is the value (0-1)

Max is the maximum function

Min is the minimum function

determine the value
V = Max(R, G, B)
determine saturation
Temp = Min(R, G, B)
if V = 0 then

S=0

COLOR 403

else
S = (V — Temp)/V
end if
determine the hue
if S = 0 then
H = Undefined
else
Cr = (V — R)/(V — Temp)
Cg = (V - G)/(V — Temp)

Cb = (V — B)/(V — Temp)
the color is between yellow and magenta
ifR=VthenH = Cb - Cg
the color is between cyan and yellow
ifG=VthenH=2+Cr-Cb
the color is between magenta and cyan
ifB=VthenH =4+ Cg - Cr
convert to degrees
H = 60*H
prevent negative value
ifH<OthenH = H + 360

end if

finish

Joblove and Greeenberg (Ref. 5-53) discuss an alternate formulation of an
HSYV color space based on a cylindrical rather than a hexcone representation.

An extension of the hexcone model is the HLS (hue, lightness, saturation)
double-hexcone model. Since the HLS model applys to self-luminous sources,
lightness as used here corresponds to brightness as defined at the beginning
of this section. In the HLS model the RGB color cube is projected to yield
a double hexcone as shown in Fig. 5-63, with lightness (value) along the axis
from black = 0 at one apex to white = 1 at the other. Again, as in the HSV
model, saturation is given by the radial distance from the central axis. Here the
fully saturated primary colors and their complements occur at § = 1. Again,
H is undefined when S = 0.

Conversion from HLS to RGB is given below by a pseudocode algorithm
adapted from Refs. 5-54 and 5-55.

HLS to RGB conversion algorithm

H is the hue (0-360°) red at O°

L is the lightness (0-1)

S is the saturation (0-1)

RGB are the red, green, blue primary colors (0-1)
Max is the maximum function

Min is the minimum function

404 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Yellow

Cyan

Figure 5-63 HLS double-hexcone color model.

if L = 0.5 then

Ml = L*(1-95)
else

Ml =L + S — L+S
end if

M2 = 2+«L — M1
check for zero saturation
if S = 0 then
if H = Undefined
1
1

R
G
B=1

else
Error because incorréct data has been provided

end if

else
determine RGB values
call RGB(H, M1, M2; Value)
R = Value + 120
call RGB(H, M1, M2; Value)
G = Value
call RGB(H, M1, M2; Value)
B = Value - 120

end if

finish

COLOR 405

subroutine to determine the RGB values
subroutine RGB(H, M1, M2; Value)

H is the hue (0-360°) red at O°
adjust the hue to the correct range
ifH<OthenH = H + 360
ifH> 360 then H = H — 360
determine the value
if H < 60 then Value = M1 + (M2-M1)*H/60
if H= 60 and H < 180 then Value = M2
if H = 180 and H < 240 then Value = M1 + (M2-M1)*(240—H)/60
if H = 240 and H = 360 then Value = M1
return

Conversion from RGB to HLS is given by the following pseudocode algo-
rithm.

RGB to HLS conversion alogorithm

RGB are the red, green, blue primary color(0-1)
H is the hue (0-360°) red at O°

L is the lightness (0-1)

S is the saturation (0-1)

Max is the maximum function

Min is the minimum function

determine the lightness
M1 = Max(R, G, B)
M2 = Min(R, G, B)
L = M1 + M2)12
determine the saturation
achromatic case
if M1 = M2 then
S=0
H = Undefined
else
chromatic case
if L < 0.5 then
S = (M1-M2)/(M1+M2)
else
S = (M1-M2)/(2—M1+M2)
end if
determine the hue
Cr = (M1-R)/(M1-M2)
Cg = (M1-G)/((M1-M2)
Cb = (M1-B)/(M1-M2)
if R = M1 then H = Cb-Cg

406 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

if G = M1 then H = 2+Cr—Cb
if B= Ml then H = 4+Cg—Cr

H = 60*H

ifH<OthenH = H + 360
end if
finish

A cylindrical representation is also used in the Munsell color-order system
(Ref. 5-56). The Munsell system is based on a collection of color samples.
Hence, it is a reflective standard. In the Munsell system, a color is designated
by its Munsell hue, Munsell chroma (purity or saturation), and Munsell value
(lightness). The central axis of the cylinder represents values between black at
the bottom and white at the top. Increasing radial distance from the central
axis represents increasing chroma or purity for the color. The color hues are
represented by angular positions around the central axis as shown in Fig. 5-64.
One major advantage of the Munsell system that has resulted in wide industrial
acceptance is that equal increments in chroma, hue, and value result in equal
perceptual changes. Because of this characteristic, the entire volume of the
cylinder is not filled. Transformation of the subjective Munsell color repre-
sentation into CIE tristimulus values is available (see, for example, Ref. 5-57).
Meyer and Greenberg (Ref. 5-58) have successfully displayed Munsell colors
on a color monitor. They used CIE XYZ tristimulus values as an intermediate
standard color space. First, Munsell color values were transformed to CIE XYZ
tristimulus values, and then these values were transformed to the RGB values
required for the color monitor. Using this technique, Meyer and Greenberg
were able to display some Munsell colors previously known only by extrapola-
tion from existing samples.

The work by Meyer and Greenberg illustrates the practical value of the
standard CIE XYZ color space. The use of CIE XYZ tristimulus values to
specify colors is particularly important when computer graphics is used to either
simulate existing commercially available colorants, e.g. paints or dyestuffs, or
to design colors for reproduction using commercially available colorants. As
an example consider selection or simulation of the paint color for the Chevrolet

Value

Chroma

/ H Figure 5-64 Conceptual repre-
ue sentation of the Munsell color-

ordering system.

COLOR 407

Camaro shown in Color Plate 1. If the paint color is selected from that
shown on the monitor, then it is necessary to provide color specifications to
the paint manufacturer. Transforming from the display RGB value to CIE
XYZ values and supplying these to the manufacturer accomplishes this. The
paint manufacturer converts these values to those used to design the paint, e.g.
Munsell hue, chroma, and value. Alternately, if the appearance of the Camaro
with an existing commercially available paint is to be evaluated, then the paint
specifications are converted to CIE XYZ tristimulus values and then to RGB
values for display on the monitor. Other applications are apparent.

If a linear relation between the values obtained from the above color
models and the voltage applied to the electron guns of a television monitor
is assumed, the resulting display will not look right because a color monitor
requires calibration.

The intensity displayed on the monitor is proportional to the voltage sup-
plied to the electron gun. Specifically,

I = constant(V)”

Then for any desired intensity value Ii, the voltage supplied to the monitor

must be
Ik 1y
Vi =
constant

Catmull (Ref. 5-59) discusses a detailed procedure for determining both
the constant and y. Experience shows that 1=y =< 4 with typical values of 2.3
—2.8 for a color monitor. The results of the calibration are used as values in a
look-up table.

The above procedure, called gamma correction, calibrates only the intensity
of the display. Calibrating the color of the display involves determining the CIE
chromaticities of the red, green, and blue phosphors used in the display as well.
Cowan (Ref. 5-60) discusses a detailed calibration procedure for color monitors
for both gamma correction and determination of the phospher chromaticities.

Applying either Gouraud or Phong shading (see Secs. 5-5 and 5-6) for color
images can yield startling results. The results depend on the color model used
to specify the interpolated shading and the model used to display the results. If
the transformation between the two color models is affine, i.e., a straight line
transforms into a straight line, then the results will be as expected. If not, then
visual discontinuities may appear. As shown above, transformations among
CIE, RGB, CMY, and YIQ color models are affine. However, transformations
between these models and either the HSY or HSL color model are not affine.
A similar effect occurs when blending colored transparent effects, e.g., in a
hidden surface algorithm.

Finally, there is the question of color harmony, i.e., how colors are selected
for pleasing effects. The literature is vast on this topic alone. A good starting
place is Marcus (Ref. 5-61) or Judd and Wyszecki (Ref. 5-45). One of the

408 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

basic principles is to select colors using an orderly plan. An acceptable plan
might select the colors from an orderly path in a color model or confine the
colors to a single plane in the color model. It is generally considered best to
select colors that differ by equal perceptual distances. Examples of harmonious
colors are frequently taken from nature, e.g., a sequence of greens. Another
technique is to select colors of constant saturation or hue, i.e., colors that are
more or less alike.

5-16 REFERENCES

5-1 Cornsweet, T.N., Visual Perception, Academic Press, New York, 1970.

5-2 Bui-Tuong, Phong, “Illumination for Computer Generated Images,” doctoral
thesis, University of Utah, 1973. Also as Comp. Sci. Dept. Rep. UTEC-CSc-73-
129, NTIS ADA 008 786. A condensed version is given in CACM, Vol. 18, pp.
311-317, 1975.

5-3 Gouraud, H., “Computer Display of Curved Surfaces,” doctoral thesis, University
of Utah, 1971. Also as Comp. Sci. Dept. Rep. UTEC-CSc-71-113 and NTIS AD
762 018. A condensed version is given in JEEE Trans. C-20, pp. 623-628, 1971.

5-4 Duff, T., “Smooth Shaded Renderings of Polyhedral Objects on Raster Displays,”
Computer Graphics, Vol. 13, pp. 270-275, 1979 (Proc. SIGGRAPH 79).

5-5 Warn, David R., “Lighting Controls for Synthetic Images,” Computer Graphics,
Vol. 17, pp. 13-21, 1983 (Proc. SIGGRAPH 83).

5-6 Torrance, K.E., and Sparrow, E.M., “Theory for Off-Specular Reflection from
Roughened Surfaces,” Journal of the Optical Society of America, Vol. 57, pp. 1105
-1114, 1967.

5-7 Blinn, James F., “Models of Light Reflection for Computer Synthesized Pictures,”
Computer Graphics, Vol. 11, pp. 192-198, 1977 (Proc. SIGGRAPH 77).

5-8 Cook, Robert L., “A Reflection Model for Realistic Image Synthesis,” master’s
thesis, Cornell University, 1982.

5-9 Cook, Robert L., and Torrance, K.E., “A Reflectance Model for Computer Graph-
ics,” ACM Trans. on Graphics, Vol. 1, pp. 7-24, 1982.

5-10 Beckmann, P., and Spizzichino, A., Scattering of Electromagnetic Waves from
Rough Surfaces, MacMillan, New York, 1963, pp. 1-33, 70-98.

5-11 Purdue University, Thermophysical Properties of Matter, Vol. 7: Thermal Radiative
Properties of Metals, Vol. 8: Thermal Radiative Properties of Nonmetallic Solids,
Vol. 9: Thermal Radiative Properties of Coatings, Plenum, New York, 1970.

5-12 Newell, M.E., Newell, R.G., and Sancha, T.L., “A Solution to the Hidden Surface
Problem,” Proc. ACM Annual Conf., Boston, August 1972, pp. 443-450.

5-13 Kay, Douglas Scott, “Transparency Refraction and Ray Tracing for Computer
Synthesized Images,” master’s thesis, Cornell University, 1979.

5-14 Kay, Douglas Scott, and Greenberg, Donald, “Transparency for Computer
Synthe- sized Images,” Computer Graphics, Vol. 13, pp. 158-164, 1979 (Proc.
SIGGRAPH 79).

5-15 Myers, Allen J., “An Efficient Visible Surface Program,” Rep. to NSF, Div. of
Math. and Comp. Sci., Computer Graphics Res. Group, Ohio State University,
July 1975.

5-16 Appel, Arthur, “Some Techniques for Shading Machine Rendering of Solids,”
SJCC 1968, Thompson Books, Washington, D.C., pp. 37-45.

REFERENCES 409

5-17 Bouknight, Jack, “A Procedure for Generation of Three-dimensional Half-toned
Computer Graphics Presentations,” CACM, Vol. 13, pp. 527-536, 1970.

5-18 Kelley, Karl C., “A Computer Graphics Program for the Generation of Half-tone
Images with Shadows,” master’s thesis, University of Illinois, 1970.

5-19 Bouknight, Jack, and Kelley, Karl C., “An Algorithm for Producing Half-tone
Computer Graphics Presentations with Shadows and Movable Light Sources,”
SJCC 1970, AFIPS Press, Montvale, N.J. pp. 1-10.

5-20 Williams, Lance, “Casting Curved Shadows on Curved Surfaces,” Computer
Graphics, Vol. 12, pp. 270-274, 1978 (Proc. SIGGRAPH 178).

5-21 Atherton, Peter R., “Polygon Shadow Generation with Application to Solar
Rights,” master’s thesis, Cornell University, 1978.

5-22 Atherton, Peter, R., Weiler, Kevin, and Greenberg, Donald, “Polygon Shadow
Generation,” Computer Graphics, Vol. 12, pp. 275-281, 1978 (Proc. SIGGRAPH
78).

5-23 Catmull, Edwin, “A Subdivision Algorithm for Computer Display of Curved Sur-
faces,” doctoral thesis, University of Utah, 1974. Also as UTEC-CSc-74-133, NTIS
A004968.

5-24 Blinn, James F., and Newell, Martin, E., “Texture and Reflection in Computer
Generated Images,” CACM, Vol. 19, pp. 542-547, 1976.

5-25 Blinn, James F., “Simulation of Wrinkled Surfaces,” Computer Graphics, Vol. 12,
pp. 286-292, 1978 (Proc. SIGGRAPH 178).

5-26 Carpenter, Loren C., “Computer Rendering of Fractal Curves and Surfaces,” pp.
1-8, suppl. to Proc. SIGGRAPH 80, August 1980.

5-27 Fournier, Alain, and Fussell, Don, “Stochastic Modeling in Computer Graphics,”
pp. 9-15, suppl. to Proc. SIGGRAPH 80, August 1980.

5-28 Mandelbrot, B., Fractals: Form, Chance, and Dimension, W. H. Freeman, San
Francisco, 1977.

5-29 Kajiya, James T., “New Technique for Ray Tracing Procedurally Defined Objects,”
Computer Graphics, Vol. 17, pp. 91-102, 1983 (Proc. SIGGRAPH 83). Also in
ACM Trans. on Graphics, Vol. 2, pp. 161-181, 1983.

5-30 Whitted, Turner, “An Improved Illumination Model for Shaded Display,” CACM,
Vol. 23, pp. 343-349, 1980.

5-31 Potmesil, M., and Chakravarty, 1., “A Lens and Aperture Camera Model for
Synthetic Image Generation,” Computer Graphics, Vol. 15, pp. 297-305, 1981
(Proc. SIGGRAPH 81).

5-32 Potmesil, M., and Chakravarty, I., “Synthetic Image Generation with a Lens and
Aperture Camera Model,” ACM Trans. on Graphics, Vol. 1, pp. 85-108, 1982.

5-33 Barr, Alan H., private communication.

5-34 Hall, Roy A., “A Methodology for Realistic Image Synthesis,” master’s thesis,
Cornell University, 1983.

5-35 Hall, Roy A., and Greenberg, Donald, “A Testbed for Realistic Image Synthesis,”
IEEE Compute:r Graphics and Applications, Vol. 3, pp. 10-20, 1983.

5-36 Moravec, Hans P., “3D Graphics and the Wave Theory,” Computer Graphics, Vol.
15, pp. 289-296, 1981 (Proc. SIGGRAPH 81).

5-37 Korein, .. and Badler, V.R., “Temporal Anti-Aliasing in Computer Generated
Animauon,” Computer Graphics, Vol. 17, pp. 377-388, 1983 (Proc. SSIGGRAPH
83).

5-38 Potmesil, M., and Chakravarty, 1., “Modeling Motion Blur in Computer-Generated
Images,” Computer Graphics, Vol. 17, pp. 389-399, 1983 (Proc. SIGGRAPH 83).

5-39 Reeves, William T., “Particle Systems—A Technique for Modeling a Class of

410 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Fuzzy Objects,” Computer Graphics, Vol. 17, pp. 359-376, 1983 (Proc. SIG-
GRAPH 83), and ACM Trans. on Graphics, Vol. 2, pp. 91-108, 1983.

5-40 Blinn, James F., “Light Reflection Functions for Simulation of Clouds and Dusty
Surfaces,” Computer Graphics, Vol. 16, pp. 21-29, 1982 (Proc. SIGGRAPH 82).

5-41 Dungan, W. “A Terrain and Cloud Computer Image Generation Model,”
Computer Graphics, Vol. 13, pp. 143-150, 1979 (Proc. SIGGRAPH 79).

5-42 Marshall, R., Wilson, R., and Carlson, Wayne, “Procedural Models for Generating
Three-dimensional Terrain,” Computer Graphics, Vol. 14, pp. 154-162, 1980
(Proc. SIGGRAPH 80).

5-43 Csuri, C.A., “Panel: The Simulation of Natural Phenomena,” Computer Graphics,
Vol. 17, pp. 137-139, 1983 (Proc. SIGGRAPH 83).

5-44 Wyszecki, G., and Stiles, W.S., Color Science, Wiley, New York, 1967.

5-45 Judd, D.B., and Wyszecki, G., Color in Business, Science and Industry, Wiley,
New York, 1975.

5-46 Hunt, R.-W.G., The Reproduction of Color, 3d ed., Wiley, New York, 1975.

5-47 Hunter, Richard S., The Measurement of Appearance, Wiley, New York, 1975.

5-48 Meyer, Gary W., “Colorimetry and Computer Graphics,” Program of Computer
Graphics, Report Number 83-1, Cornell University, April 1983.

5-49 Judd, Deane B., “Colorimetry,” National Bureau of Standards Circular 478, 1950.
Updated in Nimerof, I., “Colorimetry,” NBS monograph 104, 1968.

5-50 Pritchard, D.H. “US Color Television Fundamentals—A Review,” IEZE Trans.
on Consumer Electronics, Vol. CE-23, pp. 467-478, 1977.

5-51 Ostwald, N., Colour Science, Vols. I and 11, Wimsor & Winsor, London, 1931.

5-52 Smith, Alvey Ray, “Color Gamut Transformation Pairs,” Computer Graphics, Vol.
12, pp. 12-19, 1978 (Proc. SIGGRAPH 78). ’

5-53 Joblove, George H., and Greenberg, Donald, “Color Spaces for Computer
Graphics,” Computer Graphics, Vol. 12, pp. 20-25, 1978 (Proc. SIGGRAPH
78).

5-54 “Status Report of the Graphics Standards Committee,” Computer Graphics, Vol.
13, August 1979.

5-55 Raster Graphics Handbook, Conrac Division, Conrac Corporation, 600 N.
Rimsdale Ave., Covina, California 91722.

5-56 Munsell, A.H., A Color Notation, 9th ed., Munsell Color Company, Baltimore,
1941. The latest Book of Color is available from Munsell Color Company, 2441
North Calvert Street, Baltimore, Maryland 21218.

5-57 Keegan, H.J., Rheinboldt, W.C., Schleter, J.C., Menard, J.P., and Judd, D.B.,
“Digital Reduction of Spectrophotometric Data to Munsell Renotations,” Journal
of the Optical Society of America, Vol. 48, p. 863, 1958.

5-58 Meyer, Gary W., and Greenberg, Donald, “Perceptual Color Spaces for Computer
Graphics,” Computer Graphics, Vol. 14, pp. 254-261, 1980 (Proc. SIGGRAPH
80).

5-59 Catmull, Edwin, “Tutorial on Compensation Tables,” Computer Graphics, Vol.
13, pp. 1-7, 1979 (Proc. SIGGRAPH 79).

5-60 Cowan, William B., “An Inexpensive Scheme for Calibration of a Colour Monitor
in Terms of CIE Standard Coordinates”, Computer Graphics, Vol. 17, pp. 315-
321, 1983 (Proc. SIGGRAPH 83).

5-61 Marcus, Aaron, “Color—A Tool for Computer Graphics Communication,” Close-
up, Vol. 13, pp. 1-9, August 1982.

APPENDIX

A
PSEUDOCODE

The pseudocode described is intended as an aid in understanding and implementing the
algorithms presented in the text. It is not intended as a precise syntactically correct
complete language. The elements of the pseudocode are drawn from several common
computer programming languages: BASIC, FORTRAN, PASCAL, etc. The pseudo-
code contains structured constructs, specifically if-then-else and while. The common un-
conditienal go to statement is included for convenience. The for-next loop statement is
taken from BASIC. Subroutine modules are included. Functions, and special routines,
e.g. Min, Max, Push, Pop are individually defined within the algorithms. Draw and Plot
are self-explanatory.

The general conventions used in presenting the algorithms are briefly given here.
All key words are set in bold face, lower case characters. All statements within the body
of an if-then-else, while, or for-next loop are indented. All comments are set in italics
and indented along with the statements to which they refer. Variable names longer than
one character have the first character capitalized. Subsequent characters are lower case.
Single character variables may be either lower case or upper case. Functions are set
bold face with the first character capitalized. Detailed descriptions of these conventions
follow.

A-1 COMMENTS

Comment statements are set in italic. They are indented along with the statements to
which they refer. Sufficient comments are given at the beginning of an algorithm to
briefly describe its purpose and to define the variables used.

A-2 CONSTANTS

All constants are decimal numbers unless specified otherwise in comments. For example,
9,-3,6.732, 1. x 107, —5.83 are all constants.

411

412 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

A-3 VARIABLES

A variable is a name used to store a value. This value may change. The first character
of a long variable name is capitalized. The remaining characters are lower case unless
the use of a capitalized character aids in understanding by comparison with the notation
used in the body of the text. Single character variables may be either lower case or
upper case. Subscripted characters may be used for understanding. Typical examples
are Flag, P,,x,y.

A-4 ARRAY VARIABLES

An array variable is the name for an indexed collection of values. Naming conventions
are the same as those for variables. An entire array is referenced by its variable name
alone. Individual elements of the array are referenced by the variable name followed by
a subscript in parentheses. Examples are Window, Window(1, 3).

A-5 ASSIGNMENT STATEMENT

The equal sign is used to assign the value of the expression on the right hand side to the
variable on the left hand side.

A-6 ARITHMETIC EXPRESSIONS

The common arithmetic operators: multiplication, division, addition, and subtraction are
indicated by *, /, +, —.

A-7 LOGICAL AND RELATIONAL OPERATORS

The logical operators and and or are set in boldface lower case as shown. The relational
operators equal, not equal, less than, greater than, less than or equal, greater than or
equal are indicated by =,#, <, >, =, = respectively. These operators are used for
testing purposes. The result of the test is either true or false.

A-8 THE finish STATEMENT

The finish statement is used to show termination of the algorithm.

THE IF-THEN STATEMENT 413

A-9 THE while AND end while STATEMENTS

The statements within the while-end while block are executed repeatedly while some
condition is true. The condition is tested at the beginning of the block. When the
condition is no longer true, execution continues with the statement following the end
while. The end while statement is used to indicate the end of a block. All statements
within a while-end while block are indented. The general form is

while (condition)
[statements to be executed]

end while

As an example

i=0
while (i < 5)
x=x+5
i=i+1
end while
finish

A-10 THE if-then STATEMENT

The if-then statement is used to select an alternate execution path or to assign an alternate
value to a variable depending on whether a condition is true or false.

If the argument of the then is a statement number, and if the condition is true,
execution continues with that statement. If not, execution continues with the next
sequential statement. Statement numbers are labels.

If the argument of the then is an assignment statement, and if the condition is
true, then the assignment statement is executed. If not, the assignment statement is not
executed and execution continues with the next sequential statement. The general forms
are

if (condition) then (statement number)
if (condition) then (assignment statement)

Examples are

if (1 < 10) then 3
if(i<10)thenx =x+1

414 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

A-11 THE if-then-else and end if STATEMENTS

The if-then-else statement is used to select alternate blocks of statements for execution
depending on whether a condition is true or false. The end if statement is used to indicate
the end of the if-then-else block. The if-then-else statement does not imply repetition.
Only one of the alternate statement blocks is executed. Execution then continues with
the next sequential statement after the end if statement. All statements within the if-
then-else block are indented. The general form is

if (condition) then

[statements to be executed if the condition is true)
else

[statements to be executed if the condition is false]
end if

An example is

if (i = 0) then

x=x+1
else

x=x-—1
end if

If an if-then-else statement is written on a single line the end if statement is omitted.
Note also that if the else and the second group of statements is omitted, a block if-then
statement results.

A-12 THE for-next STATEMENT

Loop control is achieved with a for-next statement as well as the while statement. Execu-
tion of the statements within the body of the for-next loop occurs repeatedly while the
index value is within the specified range. All statements within the body of the loop are
indented. The general form is

for (index variable) = (initial value) to (final value) step (increment in index value)
[statements to be executed)
next (index variable)

If step is absent the increment is assumed to be one. Negative step values are allowed.
The initial, final, and increment values may be variables. An example is

for x = 1tonstep a
y=y+x
next x

FUNCTIONS 415

A-13 THE go to STATEMENT

The go to statement causes an unconditional branch to the statement identified by its
argument. The general form is

go to (statement number)

Statement numbers are labels. They are positioned at the extreme left edge of the
statement.

A-14 SUBROUTINE MODULES

A subroutine is a separate program module. It is invoked by means of the call statement.
The beginning of a subroutine is defined by the subroutine statement. Exit from a
subroutine module is indicated by the return statement. Upon exit from the subroutine
module, control returns to the next sequential statement after the call statement in the
calling program. The subroutine statement contains a list of input and a list of output
variables. Communication between the calling program and the subroutine module
occurs only through these variables. All other variables within a subroutine module
are local to the module. The general form of the call, subroutine, and return statements
is

call name(input variables; output variables)
subroutine name(input variables; output variables)
return

The input and output variable lists for the call and subroutine statements are sepa-
rated by a ;. The lists must match. The first character of a subroutine name is capitalized.

The remaining characters are lower case. An example of a subroutine module is

subroutine Check(x, y; Flag)

if x <y then
Flag = 0
else
Flag = 1
end if
return

A-15 FUNCTIONS

Various functions are defined within specific algorithms throughout the text. The func-
tion names are set in boldface type with the first letter capitalized An example is

Max(xi, x2)

which returns the larger of the values of x and x2.

APPENDIX

B
PROJECTS

Since computer graphics is very much a learn by doing discipline, a number of program-
ming projects are given. To reduce computational requirements and also to illustrate
effects by exaggeration, a 32 X 32 raster grid is recommended where a raster device is
assumed. If a raster device with greater resolution is available, this can be accomplished
by addressing a group of pixels as a unit. If a single pixel is not square, then the group
of pixels should be adjusted to be as nearly square as possible. If a vector display is
available a 32 X 32 grid is drawn on the screen as shown in Fig. 4-43c. Pixel activation
is indicated by placing a number in the pixel or by cross-hatching. Suggested projects
are grouped by chapter.

CHAPTER 2

2-1 Using both a simple DDA (Sec. 2-2) and Bresenham’s algorithm (Sec. 2-5),
write a program to draw lines from any point to any other point on a pseudo 32 x 32
raster grid. Use a pseudo frame buffer represented by a single vector array to first store
the image and then write from this pseudo frame buffer to the display. Demonstrate
the program using a test pattern consisting of at least 16 lines from the center of a circle
to points equally spaced around its circumferences. Allow for arbitrary location of the
center of the circle. Compare the results visually. List the activated pixels for the line
from (0,0) to (—8, —3) for both algorithms. How does initialization affect the results?
Compare the computational efficiency of the two algorithms by timing the rasterization
of 100 random lines for each algorithm.

2-2 A rasterized circle can be generated using the Bresenham circle generation
algorithm described in Sec. 2-6. It can also be generated by rasterizing the edges of
an inscribed polygon using Bresenham’s line rasterization algorithm. Write a program
using both techniques to rasterize a circle of radius R = 15 on a 32 X 32 grid. Compare
the results for inscribed polygons of 4,8,16,32,64, and 128 sides and the Bresenham

417

418 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

circle generation algorithm. Use a pseudo frame buffer represented by a single vector
array to first store the image and then write from the pseudo frame buffer to the display.
Provide a list of rasterized points using a row-column format for each algorithm assuming
that the origin (0, 0) of the pseudo raster is in the lower left corner. Compare the results
both visually and computationally.

2-3 For the polygon with an exterior described by the points (4, 4), (4, 26), (20, 26),
(28,18), (28,4), (21,4), (21,8), (10,8) and (10,4) and an interior hole described by
(10,12), (10,20), (17,20), (21,16) and (21, 12) on a 32 X 32 raster, write a program
using the simple ordered edge list algorithm described in Sec. 2-18 to scan convert and
display the solid area interior to the polygon. List the filled pixels in scan line order
from top to bottom and left to right using a row-column format assuming that (0,0) is
in the lower left hand corner of the raster.

2-4 For the polygon of Project 2-3, write a program using the more efficient
ordered edge list algorithm described in Sec. 2-19 to scan convert and display the solid
area interior to the polygon. Use an active edge list. Use a linked list to implement the
y-bucket sort. List the contents of the active edge list for scan line 18 of the 32 x 32
raster. List the displayed pixels in scan line order and the contents of the linked list.

2-5 Write programs using the edge fill and fence fill algorithms described in Sec.
2-20 to scan convert the solid area interior to the exterior only of the polygon described
in Project 2-3. Use a pseudo frame buffer represented by a two diminsional array to
store the image and then write from the pseudo frame buffer after scan converting each
edge. Compare the results. Compare the computational and input/output efficiencies of
the two algorithms. Is it possible to correctly scan convert the entire polygon, including
the interior hole, with these algorithms?

2-6 Write a program using the edge flag algorithm described in Sec. 2-21 to scan
convert the solid area interior to the exterior only of the polygon described in Project
2-3. Use a pseudo frame buffer represented by a two dimensional array to store the
image and then write from the pseudo frame buffer to the display. Display the frame
buffer contents after determining the contour and after completing the scan conversion.
Compare the results with those of Project 2-5. Is it possible to correctly scan convert the
entire polygon, including the interior hole, with this algorithm? If it is, then, if required,
modify the program to accomplish this. If not, why not?

2-7 Write a program using the simple boundary defined seed fill algorithm described
in Sec. 2-23 to fill the interior of the polygon given in Project 2-3. Provide a list of the
boundary pixels. Generate and provide a filled pixel list as the algorithm progresses for
a seed pixel of (14,20). Be able to show the stack contents at any point. What is the
maximum stack depth?

2-8 Perform Project 2-7 using the scan line seed fill algorithm described in Sec.
2-24. Compare the results.

2-9 Using the 2 x 2 bilevel pattern cells shown in Fig. 2-62 develop a program to
show eight “gray” levels from left to right across a 32 x 32 raster. Repeat with 64 x 64
and 128 x 128 rasters and compare the results. Add ordered dither to the 128 x 128
raster and compare the results.

CHAPTER 3 419

CHAPTER 3

3-1 For a two-dimensional rectangular clipping window implement the line clipping
algorithm described in Sec. 3-1, the Sutherland-Cohen line clipping algorithm described
in Sec. 3-2, and the mid-point subdivision line clipping algorithm described in Sec. 3-
3 and compare their efficiencies. The algorithms should immediately identify and draw
totally visible lines and immediately identify and reject totally invisible lines.

3-2 Write a program to implement the two-dimensional Cyrus-Beck line clipping
algorithm for both interior and exterior clipping to an arbitrary convex polygonal clipping
window. The algorithm should identify and reject concave clipping windows. For the
special case of a rectangular clipping window, compare the results with those of Project
3-1. Vary the number of sides of the polygonal clipping window and plot the execution
time versus number of sides. What is the relationship?

3-3 Extend Project 3-2 to arbitrary three-dimensional convex polyhedral volumes
(see Sec. 3-11).

3-4 Write a program implementing the Sutherland-Hodgman polygon clipping al-
gorithm described in Sec. 3-16 for arbitrary polygons clipped to rectangular windows.
Show the resulting polygon after each clipping stage. In particular, clip the polygon
described by vertices (—4,2), (8, 14), (8,2), (12,6), (12, —2), (4, —2), (4,6), (0,2) to the
window (0, 10,0, 10).

3-5 Extend Project 3-4 to arbitrary convex windows.

3-6 Using the Sutherland-Hodgman polygon clipping algorithm with the Cyrus-
Beck line clipping algorithm to determine the line end point visibilities and the line
surface intersections, clip the planar polygon defined by the points P1(-0.4,0.4,0),
P2(0.1, 0.1, 0), P3(0.3, 0.3, 0), P4(0.2, 0, 0), P5(0.3, —0.2, 0), Ps(0.1, —0.1, 0), P7(—0.4,
—-0.4, 0), Pg(—0.2, 0,0) rotated by +45 degrees about the x axis to the cylinder with
axis along the z coordinate direction, a radius of 0.3 and a length along the z axis of
+0.3. Do not forget that the cylinder has ends. The cylinder is to be represented by an
inscribed polygonal volume with 32 sides. Display the cylinder and the clipped polygon
using an appropriate viewing transformation. Provide a list of the polygon points after
clipping.

3-7 Using the data from Project 3-6, modify the Sutherland-Hodgman algorithm
to clip the polygon to the exterior of the cylinder. Display the cylinder and the clipped
polygon using an appropriate viewing transformation. Provide a list of the polygon points
after clipping.

3-8 Modify the algorithms developed in Projects 3-6 and 3-7 to clip one cylinder
to another with the capability to perform the classical boolean operations of union and
intersection. This project has implications for solids modeling.

3-9 Write a program implementing the Weiler-Atherton concave polygon clipping
algorithm described in Sec. 3-17. Show the entering and leaving intersection lists. Show
the resulting subject and clip polygon lists. In particular, clip the subject polygon
with exterior boundary (0,0), (20,0), (20, —20), (0, —20) and interior hole (7, —13),
(13,-13), (13,-7), (7,=7) to the clip polygon with exterior boundary (—10, —10),

420 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

(-10,10), (10, 10),(10, —10), and interior hole (=5, -5), (5,25), (5,5), (25,5). See
Fig. 3-34c. Show the original clip and subject polygons and the final clipped polygon.

CHAPTER 4

4-1 Develop a computer program using the floating horizon technique described
in Sec. 4-2 that will remove the hidden lines for the surface function

F(x,2) =8cos(1.2R)/R+1) R=Vx¥+2? 2n=xz=<2

viewed from a point at infinity on the positive z axis after having been rotated 25° about
the x axis followed by a 15° rotation about the y axis.

4-2 Using Roberts’ technique, by hand, eliminate the hidden lines from the scene
defined below. The scene is viewed using a dimetric transformation with the observer
at infinity on the positive z axis. A dimetric transformation without projection onto the
z = 0 plane is given in Ref. 1-1 by the 4 X 4 homogeneous coordinate transformation

[T1=] 0.92582 0.13363 —0.35355 0
0 0.92541 0.35355 0

0.37796 —0.32732 0.86603 O

0 (1] 0 1

The inverse of the transformation matrix is its transpose. The scene consists of a cube
and a rectangular parallelepiped given by

_ cube _ parallelepiped
31 11 1 27
6 1 11 10 2 7
6 4 11 10 3 7
3411 1 37
31 8 1 21
61 8 10 2 1
6 4 8 10 3 1
3 4 BJ | 1 3 1]

4-3 Write a program to implement Roberts algorithm. Use the scene from Project
4-2 as a test case.

Projects 4-4 to 4-11 use the basic test scene described in Example 4-19 and a
modification. The basic test scene consists of a triangle penetrating a rectangle from
behind. A 32 X 32 raster grid is used. If required, use a two-dimensional array to
simulate a frame buffer. The corner coordinates of the rectangle are Pi(10,5,10),
P3(10,25, 10), P3(25,25, 10), P4(25,5,10) and the triangular vertices are Ps(15, 15, 15),
P6(30,10,5). P1(25,25,5), The modified scene consists of the rectangle and a non-
penetrating triangle with Ps changed to Ps(15, 15, 5).

CHAPTER 5 421

4-4 Write a program to implement the basic Warnock algorithm described in Sec.
4-4. Display the results for both test scenes described above. Display each window or
subwindow as the algorithm processes the scene.

4-5 Increase the efficiency of the algorithm of Project 4-4 by implementing a more
sophisticated outsider test. Also add the ability to recognize single surrounder, single
contained, and single intersector polygons. Add a depth priority sort to the algorithm.
Add a list structure to take advantage of prior level information. Add antialiasing to the
algorithm (Sec. 2-26). Use more sophisticated scenes to test and compare the algorithms.

4-6 Write a program to implement the Weiler-Atherton algorithm (see Sec. 4-5)
for the test scenes described above.

4-7 Implement a z buffer algorithm (see Sec. 4-7). Use the two scenes described
above to test it. Display the contents of the frame and the z buffer after each polygon is
processed. What is the effect of truncating the z value to correspond to 32, 16, 8,4 bits
of precision for the z buffer?

4-8 Write a program to implement the Newell-Newell-Sandra list priority algo-
rithm described in Sec. 4-8. Add a diamond with vertices Pg(15, 20,20), P9(20, 25,20),
P10(25,20,20), P11(20, 15, 20), to the test scenes described above. Display the contents
of the frame buffer after each polygon is processed.

4-9 Implement the scan line z buffer algorithm described in Sec. 4-10. Use the two
scenes described above to test it. Display the result scan line by scan line. Be able to
display the active polygon and edge lists for each scan line.

4-10 Implement the spanning scan line algorithm (Watkins) described in Sec.
4-11. Use the two scenes described above to test it. Display the result scan line by
scan line. Be able to display the active edge list and intersection stack at any scan line.

4-11 Implement the opaque visible surface ray tracing algorithm described in Sec.
4-13. Use the two scenes described above to test it. Assume the observer is at infinity on
the positive z axis. Display the result pixel by pixel as it is generated. Be able to display
the active object list as each pixel is processed. Improve the efficiency of the algorithm
by defining a bounding box for the entire scene and projecting it onto the image plane.
Any pixel outside the projected area need not be traced. Compare the results with and
without this addition.

CHAPTER §

The following projects are most conveniently implemented with a raster display having
at least 16 intensity levels or colors. More intensity levels or colors will yield more
aesthetically pleasing results. The academic requirements of the projects can be satisfied
on a vector display by converting the binary representation in an »n bit plane frame buffer
to a decimal number and displaying the number in the appropriate raster location.

5-1 Consider an n sided polygonal representation of an opaque cylinder of radius
R with its axis normal to the view direction. For n = 8,16, 32, a simple Lambertian plus

422 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

ambient illumination model (see Eq. 5-1), and a suitable hidden surface algorithm write
a program to display a cylinder of radius R = 15. See Fig. 5-3. Assume that a single
point light source is located at infinity on the positive z axis as is the observer. Rotate
the cylinder 90° about the z axis and compare the results.

5-2 Add Gouraud shading (see Sec. 5-5) to the cylinder of Project S-1 using
the simple illumination model. Compare the results. Add specular reflection to the
illumination model (see Eq. 5-7). Vary the parameter n. ‘

5-3 Add Phong shading (see Sec. 5-6) to the cylinder of Project 5-1 using the simple
illumination model. Compare the results to those of Projects 5-1 and 5-2. Add specular
reflection to the illumination model (see Eq. 5-7). Compare the results, in particular the
shape of the specular reflection, to those for Gouraud shading.

5-4 Using the rectangle plus triangle test scene described above for Projects 4-4
to 4-11, write a program to display a transparent triangle (see Sec. 5-9) and an opaque
rectangle using the Newell-Newell-Sancha (see Sec. 4-8) or the spanning scan line hidden
surface algorithm (see Sec. 4-11). Ignore refraction effects. Use a linear combination
of the intensity of the visible transparent surface and the opaque surface immediately
behind it to represent the intensity of the combined surface. Vary the transparency
factor and observe the effects. Make the rectangle transparent and the triangle opaque
and compare the results.

5-5 Add shadows to the spanning scan line algorithm implemented in Project 4-
10. Assume both the triangle and the rectangle are opaque. The observer is located at
infinity on the positive z axis. The single point light source is located at x = 30, z = 40.
How would you handle the shadow from a transparent triangle?

5-6 Add shadows to the opaque visible surface ray tracing algorithm implemented
in Project 4-11. Assume the triangle and the rectangle are opaque, the observer is at
positive infinity on the z axis, and the single point light source is at x = 30, z = 40. How
would you handle the shadow from a transparent triangle?

§-7 Write a program to add the texture pattern shown in Fig. 5-34 to the octant
of the sphere as also shown in Fig. 5-34 using the patch subdivision technique (see Sec.
5-11). Use an appropriate hidden surface algorithm to display the results on a 32 x 32
raster grid. Use a 64 X 64 raster grid and compare the results.

5-8 Implement the global illumination model with the ray tracing algorithm describ-
ed in Sec. 5-12 and Figs. 5-42 to 5-44. Use the simple test scene described in Example
5-9 to test the program.

5-9 Write a program to draw simple variable-sized colored squares on a color
monitor. Modify the program to allow the color of the current square to be added
to, subtracted from, or to replace the color of the previous square. Use the program to
verify the additive color system (see Sec. 5-15) e.g. Red + Blue = Magenta. Experiment
with the effects of simultaneous contrast by drawing a small purple square inside both a
bright red and a bright blue square.

INDEX

achromatic, 383
active edge list, 52-54, 53 (Fig. 2-16), 54 (Fig.
2-17), 79, 279, 280, 417
floating pointers, 52
ordered edge list algorithm, 76
(see also hidden surface, Watkins algo-
rithm)
aliasing, 10, 93 (Fig. 2-50), 382
animation, 93, 93 (Fig. 2-52)
jagged edges, 93
small objects, 93, 93 (Fig. 2-51)
temporal, 382
texture, 93
thin objects, 93
(see also antialiasing)
alignment white, 391
ambient light (see reflection, diffuse)
antialiasing, 10, 92, 93
area, 95, 96, 96 (Fig. 2-56)
Bresenham’s algorithm, 96-98, 96 (Fig.
2-57)
clipping, 101, 101 (Fig. 2-61)
prefiltered, 101
prefiltered (see also convolution in-
tegral)
temporal, 382
uniform averaging, 93, 94, 94 (Fig. 2-
53), 94 (Fig. 2-54)
weighted averaging, 94, 94 (Fig. 2-53),
95 (Fig. 2-55)
(see also aliasing)
(see also convolution integral)
Appel, A., 296, 349
area coherence, 240, 241
Atherton, P. R., 179, 259, 306, 351
averaging, uniform, 93

back face culling, 282, 364
hidden surface, Watkins algorithm, 290

back face culling (cont.):
(see also Roberts algorithm, self-hidden
planes)
Badler, V. R., 382
bandwidth, communication, 8
Barr, A. H., 365
Barsky, B., 155, 162, 179, 357
Beckmann distribution function, 335
Beckmann, P. 335
bit plane, 10
black body, 311
black body locus, 391
Blinn, J. F., 162, 292, 293, 332, 335, 338, 355,
357, 361-363, 382
Bouknight, W. J., 279, 349
bounding box, 67, 67 (Fig. 2-30), 69, 70 (Fig.
2-33)
algorithm, 67
pseudocode, 67
box function (see convolution kernal)
Bresenham’s algorithm:
circle generation, 42-48, 296, 417
algorithm, 48
derivation, 43, 43 (Fig. 2-10)
Example 2-5, 50
flowchart, 49
pixel selection, 44 (Fig. 2-12)
pseudocode algorithm, 48
results, 51 (Fig. 2-15)
line drawing, 34-42, 417
antialiasing, 96-98, 98 (Fig. 2-57)
flowchart, 98
pseudocode, 97
basis, 35 (Fig. 2-4)
error term, 35 (Fig. 2-5), 36
Example 2-3, 37
first octant algorithm, 36
results, 39 (Fig. 2-7)
flowchart, 37 (Fig. 2-6)
generalized algorithm, 40

423

424 INDEX

Bresenham’s algorithm, line drawing,
generalized algorithm (cont.):
Example 2-4, 40
pseudocode, 40, 41
results, 42 (Fig. 2-9)
integer algorithm, 38, 39
pseudocode, 39
pseudocode algorithm, 36, 37
brightness, 383, 384, 403
brightness adaptation, 310
bump mapping (see texture, rough)

Carlson, W. 382
Carpenter, L. C., 292, 363
cathode ray tube, 15, 15 (Fig. 1-16), 16
calligraphic, 3
color, 16, 17 (Fig. 1-18)
pitch, 16
raster scan, 3
shadow mask 16, 16 (Fig. 1-17), 17 (Fig.
1-18)
storage tube, 3
Catmull, E., 265, 355-358, 407
cell encoding, 60, 60 (Fig. 2-22), 61, 61 (Fig.
2-23), 61 (Fig. 2-24)
characters, 60
color, 62
interaction, 61
line drawings, 61
Chakravarty, I., 382
character display, 67
character mask (see mask)
chroma, Munsell, 406
chromaticity coordinates, 389
CIE, 390
CIE XYZ primaries, 394, 395, 395 (Fig.
5-59)
color monitor primaries, 394, 395, 395
(Fig. 5-59)
film, 394, 395, 395 (Fig. 5-59)
NTSC standard primaries, 394, 395, 395
(Fig. 5-59)
chromaticity diagram, 389
CIE, 390, 391, 391 (Fig. 5-56)
use of, 392, 392 (Fig. 5-57)
chromaticity values, CIE, 390
circle generation (see Bresenham’s algorithm)
Clark, J. H., 292
clipping, 140 (Fig. 3-13)
character 185, 186, 186 (Figs. 3-36 to 3-
38)
concave windows, 146 (Fig 3-17), 179-
185

clipping (cont.):
Cyrus-Beck algorithm, 131, 135-145, 139
(Fig. 3-12), 157-162, 419
Example 3-9, 137
Example 3-10, 139
Example 3-11, 140
Example 3-12, 141
Example 3-13, 145
exterior clipping, 144 (Fig. 3-15)
flowchart, 143 (Fig. 3-14)
homogeneous coordinates, 163, 164
Example 3-20, 163, 164
irregular window, Example 3-13, 145
nontrivially invisible lines, Example
3-12, 141
partially visible line, Example 3-9, 137,
138
three dimensional, 157, 159 (Fig. 3-
22), 161 (Fig. 3-23)
Example 3-17, 158, 159
Example 3-18, 160, 161
Example 3-19, 161, 162
Example 3-20, 163, 164
totally visible lines, 139
trivially invisible lines, Example 3-11,
140
end point codes, 121
perspective volume, 153-155
three dimensional, 153
two dimensional, 113, 114, 114 (Fig.
3-2)
explicit algorithm, 117, 120, 121
flowchart, 118, 119 (Fig. 3-4)
Example 3-1, 115
pseudocode 117, 120, 121
exterior, 146, 419
generalized two dimensional, 131
homogeneous coordinates, 162-164
Example 3-20, 163, 164
interior, 419
intersection calculation, 115, 125
parametric lines, 116 (Fig. 3-3)
irregular windows, 131 (Fig. 3-7)
midpoint subdivision, 125-131, 125 (Fig.
3-5)
algorithm, 126, 128-131, 419
flowchart, 128, 129 (Fig. 3-6)
Example 3-3, 126, 127
three dimensional, 155
algorithm, 156
Example 3-16, 156, 157
pseudocode algorithm, 128-131
multiwindow, 146 (Fig. 3-16)
normal vectors, 135, 136 (Fig. 3-10)

clipping, normal vectors (cont.):
Example 3-8, 136
parametric lines, 132, 134
Example 3-4, 132
Example 3-5, 134
Example 3-6, 134
Example 3-7, 134
trivially invisible, 134, 135 (Fig. 3-9)
trivially visible, 134, 135 (Fig. 3-9)
plane, relation of point to, 170, 171, 171
(Fig. 3-29)
Example 3-23, 172
polygon, 168-185, 169 (Fig. 3-26), 169
(Fig. 3-27)
polygon, concave, 179
Weiler-Atherton algorithm, 179-185,
180 (Fig. 3-34), 181, 185 (Fig.
3-35), 419
Example 3-26, 182, 183
Example 3-27, 183, 184
Example 3-28, 184, 185
polygon, Sutherland-Hodgman algorithm,
169-179, 170 (Fig. 3-28)
Example 3-25, 178
flowchart, 174 (Fig. 3-32)
pseudocode algorithm, 175-177, 419
regular window, 111
simple visibility algorithm, 112
Sutherland-Cohen, 121-124
algorithm, 122, 419
Example 3-2, 122
pseudocode algorithm, 122-124
three dimensional, 152, 153 (Fig. 3-20),
419
perspective, 154
trivially invisible, 112, 114, 115, 153
trivially visible, 112, 113, 115, 153
visibility test, pseudocode 112, 113
volume, 152
window, 112 (Fig. 3-1)
Cohen, E., 265
Cohen-Sutherland (see end point codes)
coherence, 190
area, 240, 241
scan line, 70
spacial, 70
color, 383-408
achromatic, 383
brightness, 384
chromatic, 384
complements, 385, 386
from chromaticity diagram, 391
cube:
CMY, 399, 400 (Fig. 5-60)

INDEX 425

color, cube (cont.):
RGB, 399, 400 (Fig. 5-60), 401,
403
dominant wavelength, from chroma-
ticity diagram, 392

gamut, 394, 395 (Fig. 5-59)

harmony, 407

hue, 384

mixtures, 389, 392

Example 5-10, 393
perceptual names, 393, 394, 394 (Fig. 5-
58)

primaries, 385, 387

saturation, 384
color-matching functions, 387, 388 (Fig. 5-52)
color space, 389, 389 (Fig. 5-54)

NTSC (see color space, YIQ)

YIQ, 398
color system:

additive, 385, 386 (Fig. 5-51)

HSL (hue, saturation, lightness), 403, 404

(Fig. 5-63)
HSV (hue, saturation, value), 400, 401
(Fig. 5-62)
Munsell, 406 (Fig. 5-64)
Ostwald, 400
subtractive, 385, 386 (Fig. 5-51)
transformation from:
CIE-Munsell, 406
CIE-RGB, 396, 397
Example 5-11, 397, 398
CIE-YIQ, 399
CMY-RGB, 399
HLS-RGB pseudocode algorithm,
403, 404
HSV-RGB pseudocode algorithm,
401, 402
Munsell-CIE, 406
RGB-CIE, 395, 396
Example 5-12, 398
RGB-CMY, 399
RGB-HLS pseudocode algorithm,
405, 406
RGB-HSV pseudocode algorithm,
402, 403
RGB-YIQ, 399
YIQ-CIE, 399
YIQ-RGB, 399
colors, distinguishable, 389
complimentary spectrum value, 392
concave polygons, splitting, 151, 152
Example 3-15, 152
concave volumes:
Roberts algorithm, 206

426 INDEX

concave volumes (cont.):
splitting, 166, 167
Example 3-22, 167, 168
cones, 309
contained polygon (see hidden surface, War-
nock algorithm)
contour filling, 69
convex polygon, identifying, 147, 149-151, 150
(Fig. 3-19)
Example 3-14, 148, 149
convex volume, identifying, 164, 165 (Fig. 3-
24)
Example 3-21, 165, 166
Roberts algorithm, 206
convolution integral, 98, 99 (Fig. 2-59)
graphical explanation, 99
limits, 100
convolution kernal, 98-100
box, 101
conical, 101
Gaussian, 101
pyramidal, 101
triangular, 101
two-dimensional, 101
Cook, R. L., 332, 337, 338, 353, 380
coordinates:
screen, S
user, 7
world, 6, 7
Cowan, W. B., 407
cross-hatching, 69, 69 (Fig. 2-32)
Crow, F., 94, 357
Csuri, C. A., 382
Cyrus-Beck (see clipping)

depth priority, 190
digital differential analyzer, 30-34, 34 (Fig. 2-
3), 417
algorithm, 31
Example 2-1, 32
Example 2-2, 33
pseudocode, 31
disjoint polygon (see hidden surface, Warnock
algorithm)
display:
buffer, 5, 6
segmentation, 6, 7, 7 (Figs. 1-5 and
1-6)
dynamic, 8
controller, 5, 6
processor, raster, 52
random scan, 4, 5
refresh, 16

display (cont.):
storage tube, 4 (Fig. 1-2), 16
distribution function, 334
Beckmann, 335, 336, 336 (Fig. 5-20)
dither (see ordered dither)
dominant wavelength, 384
double buffering, 6
Duff. T., 326
Dungan, W., 382
dynamic display:
linked list, 55
y-bucket sort, 55
dynamic motion, 4, 6, 7 (Fig. 1-4)
raster display, 52

edge fill algorithm, 79
edge fill algorithm (see also scan conversion)
end point codes:
three dimensional, 152
two dimensional, 113
eye, 309
brightness adaptation, 310
cones, 309
rods, 309
sensitivity, 309, 383

facsimile, 59
fence fill algorithm (see scan conversion)
filtering (see antialiasing)
flicker, 17
rate, 5
storage tube, 4
floating horizon algorithm, 191-205, 420
complete algorithm, 196
cross hatching, 203, 205, 205 (Fig. 4-12)
edge filling, 195, 196
Example 4-1, 201-203
intersection techniques, 194, 195
linear interpolation, 193
lower horizon, 192, 193
narrow regions, 196, 197
pseudocode algorithm, 197-201
upper horizon, 192
flood fill algorithm, 84
Floyd-Steinberg, 104, 106 (Fig. 2-68)
pseudocode algorithm, 106
Fournier, A., 363
fractal surface, 363, 363 (Fig. 5-37)
frame buffer, 10, 10 (Fig. 1-9), 62, 63 (Fig.
2-25), 80, 280, 343
architecture, 63 (Fig. 2-27)

frame buffer (cont.):
color, 11-14, 12 (Fig. 1-12), 13 (Fig. 1-
13), 14 (Fig. 1-14)
conceptual configuration, 62
gray level, 10, 11 (Figs. 1-10 and 1-11)
memory, 62, 63
shift register, 63
frame rate, video, 18, 19
Fresnel equation, 334, 336, 337 (Fig. 5-21),
379
angular dependence, 338
wavelength dependence, 338
(see also reflection, specular)
frustum of vision, 152, 162, 163
Fussell, D., 363

gamma correction, 407
gamut, 394, 395 (Fig. 5-59)
Gear, C., 285
geometric attenuation, 334, 335 (Fig. 5-19)
global illumination model (see illumination
model, global)
Gouraud, H., 323
Gouraud shading, 323-325, 323 (Fig. 5-10),
325 (Fig. 5-12), 326 (Fig. 3-26, 422
Example 5-3, 327-330
Mach band effect, 324
specular highlights, 327 (Fig. 5-14)
graphics devices, 3
Grassman'’s laws, 388, 389, 392, 395, 396
gray level, 10
Greenberg, D. 379, 403, 406

half scan line convention, 80-82
halftoning, 102-108 (see also image
processing)
Hall, R. A., 373, 379
Hamlin, G., 285
Hedgeley, D. R., 305
hexcone color solid (see also color system,
HSV and HSL)
hidden line:
floating horizon algorithm, 191-205, 420
(see also floating horizon algorithm)
image space algorithm, 190, 191
list priority algorithm, 278, 279
object space algorithm, 190, 191
ray tracing algorithm, 305
Roberts algorithm, 205-240, 420
(see also Roberts algorithm)

INDEX 427

hidden line (cont.):
Warnock algorithm, 241, 242
hidden lines, sorting, 190
hidden surface:
curved surfaces:
Blinn-Whitted algorithm, 293, 294
Catmull subdivision algorithm, 264,
265, 265 (Fig. 4-49), 292, 294
Clark algorithm, 294
Lane-Carpenter algorithm, 294, 295
scan line algorithm, 292-296
image space algorithm, 190, 191
list priority algorithm, 190, 272-280
antialiasing, 278
cyclical overlap, 273 (Fig. 4-52)
depth priority sort, 272
Newell-Newell-Sancha algorithm, 273-
277, 421
cyclical overlap, 277
special sort, 273, 274
Schumacker algorithm, 277
transparency, 272
object space algorithm, 190, 191
ray tracing algorithm, 296-305, 421
calculation of physical properties,
305
cluster priority, 303, 304
Example 4-24, 302, 303
global illumination, 363-381, 422
intersections, 297, 298, 302
bounding box test, 298, 299, 299
(Fig. 4-20)
bounding sphere, 298
parametric surfaces, 300, 301
quadric surfaces, 299, 300
shadows, 352, 353, 353 (Fig. 5-30),
422
(see also ray tracing)
Roberts algorithm, 205-240, 420
scan line algorithm, 279-296
Watkins algorithm, shadows, 350
scan line z-buffer algorithm, 280-284,
421
antialiasing, 280
Example 4-22, 282-284
shadows, 351
sorting, 190
spanning scan line algorithm, 421
Warnock algorithm, 241-260, 421
antialiasing, 241
bounding box test, 245, 246, 246 (Fig.
4-36)
contained polygon, 245, 246

428 INDEX

hidden surface, Warnock algorithm, contained
polygon (cont.):
Example 4-14, 247
depth priority sort, 253, 254
disjoint polygon, 245, 246
angle counting test, 250 (Fig. 4-
40)
Example 4-14, 247
infinite line test, 249
Example 4-17, 259, 260
flowchart, 255 (Fig. 4-42)
intersecting polygon, 245, 246, 249
(Fig. 4-37)
Example 4-15, 247, 248
polygon types, 245, 245 (Fig. 4-35)
pseudocode algorithm, 254-259
surrounding polygon, 245, 246
angle counting test, 250, 250 (Fig.
4-40), 251
Example 4-16, 251
depth calculation, 252, 253, 253
(Fig. 4-41)
infinite line test, 249, 249 (Fig. 4-
38)
window subdivision, 241, 242 (Fig. 4-
32), 244 (Fig. 4-34), 244-246
window tests, hierarchical application,
252
window tree structure, 243 (Fig. 4-
33), 244
Watkins algorithm, 284-292, 421
active edge list, 286-288
depth calculation, 287, 290
flowchart, 289 (Fig. 4-62)
Example 4-23, 290, 291
flowchart, 288 (Fig. 4-61)
penetrating polygons, 284, 286, 287
flowchart, 289 (Fig. 4-63)
polygon active flag, 286
spans, 284, 285, 285 (Fig. 4-59), 285
(Fig. 4-60)
depth calculations, 285, 286
Weiler-Atherton algorithm, 259-264, 421
cyclical overlap, 264, 264 (Fig. 4-48)
Example 4-18, 263, 264
priority (depth) sort, 261, 262 (Fig.
4-46)
recursive subdivision, 262, 263 (Fig.
4-47)
shadows, 351, 352
z-buffer algorithm, 265-272, 421
antialiasing, 266, 267
depth calculation, 267

hidden surface, z-buffer algorithm (cont.):
Example 4-19, 268-271
segmentation, 266
shadows, 350
surface sectioning, 272
translucency, 266
transparency, 266

hue, 384

Munsell, 406

illuminants, CIE, 391
illumination model:
Cook-Torrance, 332-335
distance attenuation, 367
global, 296, 345, 364, 365, 422
camera effects, 364, 364 (Fig. 5-38),
365, 365 (Fig. 5-39), Color
Plate 6
Hall model, 379-381, Color Plate 8
Whitted model, 365, 366, 373, 381
local, 364
Phong, 339 (Fig. 5-22), 340 (Fig. 5-23)
simple, 311-317, 422
Example 5-1, 316-317
special effects, 330-332
barn doors, 331
cone, 331, 331 (Fig. 5-17), 332
flaps, 331, 331 (Fig. 5-17)
flood light, 331
spot light, 331
Torrance-Sparrow, 332, 333, 334 (Fig. 5-
18), 335, 339 (Fig. 5-22), 340 (Fig.
5-23), 380
Warn, 330-332
image processing (see ordered dither, pat-
terning, thresholding)
image space, 190, 191
algorithm, 265
Warnock algorithm, 241
infinite line test (see hidden surface, Warnock
algorithm)
interactive device:
logical:
button, 20
keyboard, 20
locator, 20
pick, 20, 24, 27
simulation, 26
valuator, 20, 22-24, 27
physical:
control dial, 20, 22, 24, 24 (Fig. 1-
26)

interactive device, physical (cont.):
function switch (button), 20, 24, 25
(Fig. 1-27)
joystick, 20, 22, 23, 23 (Fig. 1-24)
keyboard, 20, 20 (Fig. 1-21)
light pen, 20, 24, 25, 25 (Fig. 1-28),
26, 26 (Fig. 1-29), 27
mouse, 20, 22, 23, 23 (Fig. 1-25), 24
tablet, 20, 21, 21 (Fig. 1-22), 22, 22
(Fig. 1-23), 24, 27, 27 (Fig. 1-
30)
touch panel, 22
track ball, 22, 23
interlacing, 17, 18
intersecting polygon, substitution test, 247
(see also hidden surface, Warnock
algorithm)

Jackson, J. H., 290
jaggies (see aliasing)
Joblove, G. H., 403
Judd, D. B., 407

Kajiya, J., 293, 300, 363

Kay, D. S., 296, 343, 365, 380
Kelley, K. C., 349

Korein, J., 382

Lambert’s cosine law (see reflection, diffuse)
Lane, J. M., 292
Liang, 155, 162, 179
light emitting sources, color system, 386
light, wave characteristics, 382
lightness, 383, 403, 406
line drawing:
algorithms, 29
Bresenham’s algorithm, 34-42
digital differential analyzer, 30-34
incremental methods, 30
requirements, 29
(see also Bresenham’s algorithm)
(see also digital differential analyzer)
line intersection, 173 (Fig. 3-31)
parametric, Example 3-24, 173
linked list (see list, linked)
list:
linked, 55, 56 (Fig. 2-19), 77 (Fig. 2-
39), 79, 417
hidden surface, Watkins algorithm,
286

INDEX 429

list, linked (cont):
ordered edge list algorithm, 76
scan line z-buffer algorithm, 280
sequential indexed, 53-55
look-up table, 11, 11 (Fig. 1-11), 14 (Fig. 1-
14)
color, 12
luminance, 384, 385
CIE, 390
Lyche, T., 265

Mach band effect, 310, 311, 311 (Fig. 5-2),
311 (Fig. 5-3)

Gouraud shading, 324

Phong shading, 326
Mach, E., 310
Mandelbrot, B., 363
Marcus, A., 407
Marshal, R., 382
mask:

character, 67

insertion in frame buffer, 68
transformation, 68

metamer, 387, 388 (Fig. 5-53)
Meyer, G. W., 389, 406
minimax test (see bounding box)
monochromatic, 384
Moravec, H. P., 382
motion blur (see antialiasing, temporal)
Munsell chroma, 406
Munsell hue, 406
Munsell value, 406

National Television Standards Committee
(NTSC), 391
natural objects, rendering, 382
Newell, M. E., 273, 278, 343, 355, 357
Newell-Newell-Sancha algorithm (see hidden
surface, list priority algorithm)
Newell-Newell-Sancha priority sort, 273, 274,
349
normal, surface determination, 317-319
Example 5-2, 318, 319
using rotations and translations, 321
normal vector, clipping, 135
determination, 147, 148, 164, 165 (Fig.
3-24)
Example 3-21, 165, 166
NTSC (National Television Standards Com-
mittee), 391

430 INDEX

object space, 190, 191, 205
ordered dither, 105 (Fig. 2-67), 106, 418
algorithm, 107, 108
patterns, 107
ordered edge list algorithm (see scan con-
version)
Ostwald, N., 400

painters algorithm (see hidden surface, list pri-
ority algorithm)
particle system, 382
patterning, 102-103, 418
2 X 2 cells, 102 (Fig. 2-62)
3 X 2 cells, 103 (Fig. 2-64)
3 X 3cells, 103 (Fig. 2-63)
multiple bits per pixel, 103
multiple dot sizes, 103, 104 (Fig. 2-65)
Phong, B. T., 325
Phong shading, 325-330, 326 (Fig. 5-13), 422
Example 5-3, 327-330
Mach band effects, 326
specular highlights, 327 (Fig. 5-14)
photometry, 386
picture representation:
edges, 2
points, 1, 2
polygons, 2
pixel, 9
averaging (see antialiasing)
coordinate addressing, 32, 71
half scan line convention, 71
plane equation, 207, 208
Example 4-3, 209, 210
Newell’s method, 209
Example 4-3, 209
Example 4-4, 211
non-planar polygons, 208
Example 4-4, 211
points, representation, 2
polygon filling, scan conversion, 69
simple technique, 69
polygons:
clusters, 277, 278
cluster priority, 277
Example 4-21, 277, 278
concave, 179
splitting, 151, 152
contained 245, 246
convex, identifying 147, 149-151, 150
(Fig. 3-19)
disjoint, 245, 246
intersecting, 245-247, 249 (Fig. 4-37)

polygons (cont.):
linearly separable, 277
non-planar, 208
penetrating, 284, 286, 287
picture, representation with, 2
relationship between, 275, 276
Example 4-20, 275, 276
surrounding, 245, 246
types, 245, 245 (Fig. 4-35)
(see also scan conversion)
(see also hidden surfaces, Warnock
algorithm)
Porter, T., 296
post filtering (see antialiasing)
Potmesil, M., 365, 382
prefiltering (see antialiasing)
primary colors, 387
CMY (cyan, magenta, yellow), 385
RGB (red, green blue), 385
priority sort, 364
pseudocode definitions, 411-415
purity, 384, 406
purple line, 391, 392

quadric surfaces, 295

raster, 9
addressing, 64, 65
Example 2-6, 65
Example 2-7, 66
coordinate system, 64
display, real time, 12, 13
line display, 66
selective erase, 66 (Fig. 2-29)
rasterization, 29, 29 (Fig. 2-1), 30
ray tracing;
illumination model, global, 422
antialiasing, 378, 378 (Fig. 5-46)
Example 5-9, 368-372

flowchart, 374, 375 (Fig. 5-42), 377

(Fig. 5-44)

object description, 373

shadows, 368
intersections, 366, 376
recursive subdivision, 378
reflected ray direction, 367
reflections, 366, 366 (Fig. 5-40)
refracted ray direction, 367
refractions, 366, 366 (Fig. 5-40)
shadows, 376
stack contents, 373

ray tracing (cont.):
tree structure, 366, 368 (Fig. 5-40)
tree termination, 367, 372
(see also hidden surface)
Reeves, W. T., 382
reflectance:
bidirectional, 333
diffuse, angular dependence, 338
specular:
angular dependence, 338
wavelength dependence, 338
reflection, 190, 296
ambient, 313, 366, 373
wavelength dependence, 336
diffuse, 312, 312 (Fig. 5-4), 333, 366
distance effect, 313
Lambertian, 365, 373, 380
Lambert’s cosine law, 312
wavelength dependence, 336
global illumination model, 365
internal, 367, 367 (Fig. 5-41)
light energy, 332
light intensity, 332
specular, 312-315, 314 (Fig. 5-5), 333,
380
angular dependence, 338, 340 (Fig.
5-23)
Fresnel equation, 313
Phong model, 314, 314 (Fig. 5-6),
365, 366, 373
wavelength dependence, 336
reflection direction, determination, 320-322,
320 (Fig. 5-9)
Phong’s method, 320, 321
using cross products, 321, 322
reflection law, 320
reflective sources, color system, 386
refraction, 190, 296
refraction effect, 341, 341 (Fig. 5-25), 342,
342 (Fig. 5-26)
global illumination model, 365
Snell’s law, 340, 341 (Fig. 5-24), 367,
380
specular, 380
refresh:
cycle, 6
display, 3
calligraphic, 3, 5, 6 (Fig. 1-3), 9 (Fig.
1-7)
random scan, 5
raster, 3, 8, 9, 62
rate, 5, 6, 17
storage tube, 4

INDEX 431

region:
4-connected, 84, 84 (Fig. 2-45), 85 (Fig.
2-46), 87, 92
8-connected, 84, 84 (Fig. 2-45), 85 (Fig.
2-46)
boundary defined, 83-85, 84 (Fig. 2-44),
85 (Fig. 2-46), 87, 88, 91
clipping, 135, 137, 141
interior defined, 83, 84, 84 (Fig. 2-43),
84 (Fig. 2-45)
Reisenfeld, R., 265
Roberts algorithm:
algorithm for tminmax, tmaxmin, 225,
226
bounding box test, 217
complete example, Example 4-13, 232-
240
efficient algorithm, 228-231
flowchart, (Fig. 4-26), 226
lines hidden by volumes, 217, 218 (Fig.
4-18), 281
conditions for, 220
Example 4-10, 222, 223
Example 4-11, 224
Example 4-19, 221, 222
Example 4-8, 218, 219
solution technique, 220, 220 (Fig. 4-
19), 220 (Fig. 4-20)
penetrating (juncture) lines, 254 (Fig. 4-
24)

Example 4-11, 224
priority sort, 217
self-hidden lines, 216, 217
self-hidden planes, 214, 217 (Fig. 4-17)
Example 4-6, 215
Example 4-7, 215, 216
totally invisible lines, 228
totally visible lines, 227, 227 (Fig. 4-27)
Example 4-12, 226, 227
volume matrix, 206
(see also hidden line)
rods, 309
Romney, G. W., 285, 287
Roth, S. D., 305
run length encoding, 56, 58, 58 (Fig. 2-20),
60 (Fig. 2-21)
color, 59
data compression, 58, 59
disadvantage, 59
solid figures, 59

sampling (see aliasing)
Sancha, T. L., 273, 343

432 INDEX

saturation, 384 , 406
scan conversion, 17, 29
active edge list, 53
display generation, 51
half scan line convention, 80-82
horizontal lines, 55 (Fig. 2-18), 72
polygons, 70
edge fill algorithm, 80, 418
edge flag algorithm, 81-83, 418
Example 2-11, 82
fence fill algorithm, 80, 81, 81 (Fig.
2-41), 418
filling, 69
ordered edge list algorithm, 73, 74,
76, 279, 418
Example 2-8, 73
Example 2-9, 75
Example 2-10, 76
vertex intersections, 72, 72 (Fig. 2-
36)
real time, 52
solid area, 69, 70 (Fig. 2-34), 74 (Fig. 2-
37)
y-bucket sort, 55
(see also seed fill algorithm)
scan line algorithm, Watkins algorithm, 349
scan line, coordinate system, 71 (Fig. 2-35)
half interval, 76
scan plane, 279, 279 (Fig. 4-57)
curve surfaces, 292
Schumacker, R. A., 277
screen coordinates, 5
(see also coordinates)
seed fill, 69
seed fill algorithm, 83, 85, 418
Example 2-12, 87
scan line, 88-91, 89 (Fig. 2-49), 418
Example 2-14, 91
pseudocode, 90, 91
simple, 85-88, 86 (Fig. 2-47), 87 (Fig. 2-
48)
Example 2-13, 87, 88
pseudocode, 86
stack, 86
segmentation, display buffer, 6, 7
shade, color, 400, 400 (Fig. 5-61)
shading function (see illumination model)
shading:
Gouraud, 323-325, 407, 422
Phong, 325-330, 407, 422
simple, 215, 316
(see also illumination model)
shadow matrix, Example 5-5, 349

shadows, 189, 296, 345-354, 346 (Fig. 5-28)
Atherton-Weiler algorithm, 351, 352,
352 (Fig. 5-29)
Example 5-4, 346-349
global illumination model, 365
modulation rules, 350
penumbra, 345
calculation technique, 353, 354, 354
(Fig. 5-32)
projected, 346-348
ray tracing algorithm, 352, 353, 353 (Fig.
5-30), 422
scan line (Watkins) algorithm, 350, 422
scan line z-buffer algorithm, 351
self, 346, 347
umbra, 345
z-buffer algorithm, 350, 351
silhouette edge, 292-294, 294 (Fig. 4-65), 378
transparency, 341, 343
simultaneous contrast, 310
Smith, A. R., 400-402
Snell’s law, 367
Snell’s law (see also refraction)
solid figure, 15, 15 (Fig. 1-15)
span, 88
span (see also hidden surface, Watkins algo-
rithm)
span buffer, 79
Sparrow, E. M., 332, 335
spectrum locus, 391, 392, 394
specular highlights (see reflection, specular)
stack, 86, 88, 91, 92
FIFO (first in first out), 62
FILO (first in last out), 85
push down, 85, 87
shift register, 62
standard observer functions, 390, 390 (Fig. 5-
55)
Staudhammer, J., 296
storage tube display, 3
interactivity, 5
surface normal, simple hidden surface algo-
rithm, 214, 215
surrounding polygon (see hidden surface,
Warnock algorithm)
Sutherland-Hodgman algorithm (see clipping)

texture, 190, 354-363
antialiasing, 363
bump mapping (see texture, rough)
fractals, 363
global illumination model, 365

texture (cont.):
inverse pixel mapping, 359
Example 5-8, 359, 360
mapping, 355, 356 (Fig. 5-32)
Example 5-6, 355, 356
perturbation mapping (see texture, rough)
rough, 360, 361, 362 (Fig. 5-36)
subdivision, 356-358, 422
Example 5-7, 357, 358
thresholding:
Floyd-Steinberg, 104
pseudocode algorithm, 106
simple, 103-105, 105 (Fig. 2-67)
tint, 400, 400 (Fig. 5-61)
tone, 400, 400 (Fig. 5-61)
Torrance, K. E., 332, 335, 337, 338
translucent, 341
transmission, 296
diffuse, 341
global illumination model, 365
specular, 341
transmission of light, 366
transmissivity, 380
transparency, 190, 296, 340-345, 422
models, 343 (Fig. 5-27)
z-buffer algorithm, 344
transparent materials, 379
tree structure, ray tracing, 366
tristimulus space, 389
tristimulus theory, 385
tristimulus values (XYZ), 390

update:
dynamic, 8
intelligent, 8
rate, 6, 17

value, Munsell, 406
Van Hook, T., 362

INDEX 433

video:
525 line standard, 19
blanking, 19
field, 18
frame rate, 18, 19
horizontal retrace, 18, 18 (Fig. 1-19), 19
interlaced, 18
monitor, (see cathode ray tube)
noninterlaced, 19
scanning pattern, 18, 18 (Fig. 1-19)
standard, 17
vertical retrace, 18, 18 (Fig. 1-19)
visibility of a point, 171, 172 (Fig. 3-30)
Example 3-23, 172
visibility test:
application order, 113
pseudocode algorithm, 112, 113
visible light, 383
visible spectrum, 385
visual perception, 309
volume matrix, 206
Example 4-2, 206, 207
transformation, 211, 212
transformation, Example 4-5, 212, 213

Warmn, D. R,, 330

Warnock, J., 241

Watkins, G. S., 279, 284, 285
Weiler, K., 179, 259
Whitted, T., 292, 293, 296, 300, 365, 378, 379
Williams, L., 351

Wilson, R., 382

wire photos, 59
write-through mode, 4
Wylie, C., 279

Wyszecki, G., 407

y bucket sort, 54 (Fig. 2-17), 56 (Fig. 2-19),
74,75, 75 (Fig. 2-38), 76, 79, 280
hidden surface, Watkins algorithm, 287

