
0

PROCEDURAL

ELEMENTS

FOR

COMPUTER GRAPHICS

DAVID F. ROGERS

.S%%S
•S.•.•••.•.S.S

.•.•..
•.•..

INTERNATIONAL STUDENT EDITION;0]

PROCEDURAL

ELEMENTS

FOR COMPUTER

GRAPHICS

David F. Rogers
Professor of Aerospace Engineering

and

Director, Computer Aided Design

and Interactive Graphics

United States Naval Academy, Annapolis, Md.

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogota Hamburg
Johannesburg London Madrid Mexico Montreal New Delhi
Panama Paris São Paulo Singapore Sydney Tokyo Toronto

PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

INTERNATIONAL STUDENT EDITION

Copyright © 1985

Exclusive rights by McGraw-Hill Book Co — Singapore

for manufacture and export. This book cannot

be re-exported from the country to which it is consigned by
McGraw-Hill.

2nd printing 1985

Copyright © 1985 by McGraw-Hill, Inc. All rights reserved.

Printed in the United States of America. Except as

permitted under the United States Copyright Act of 1976,

no part of this publication may be reproduced or distributed

in any form or by any means, or stored in a data base or

retrieval system, without the prior written permission of the

publisher.

This book was computer phototypeset in Times Roman, by

TYX Corporation.

The editors were Kiran Verma and David A. Damstra;

The production supervisor was Joe Campanella;

Project supervision was by the author.

The cover was designed by Fern Logan and the author.

Library of Congress Cataloging in Publication Data

Rogers, David F., date

Procedural elements for computer graphics.

Includes bibliographical references and index.

1. Computer graphics. I. Title.
T385.T63 1985 001.64’43 83-24403

ISBN 0-07-053534-5

When ordering this title use ISBN O-07-Y66503-6

PRINTED IN SINGAPORE BY KEFFORD PRESS

PROCEDURAL ELEMENTS FOR

COMPUTER GRAPHICS

To my mother Gladys Marion (Zoller) Rogers (1906—)

and my father Lewis Freeman Rogers (1906—1981)

who provided such a fine start in life.

CONTENTS

Preface xi

Chapter 1 Introduction to Computer Graphics 1

1-1 Overview of Computer Graphics 1

1-2 Types of Graphics Devices 3

1-3 Storage Tube Graphics Displays 3

1-4 Calligraphic Refresh Graphics Displays 5

1-5 Raster Refresh Graphics Displays 8

1-6 Cathode Ray Tube Basics 15

1-7 Color CRT Raster Scan Basics 16

1-8 Video Basics 17

1-9 Interactive Devices 20

1-10 Summary 28

1-11 References 28

Chapter 2 Raster Scan Graphics 29

2-1 Line Drawing Algorithms 29

2-2 Digital Differential Analyzer 30

2-3 Bresenham’s Algorithm 34

2-4 Integer Bresenham’s Algorithm 38

2-5 General Bresenham’s Algorithm 40

2-6 Circle Generation — Bresenham’s Algorithm 42

2-7 Scan Conversion — Generation of the Display 51

2-8 Real-Time Scan Conversion 52

2-9 Run-Length Encoding 56

2-10 Cell Encoding 60

vi’

viii CONTENTS

2-11 Frame Buffers 62

2-12 Addressing the Raster 64

2-13 Line Display 66

2-14 Character Display 67

2-15 Solid Area Scan Conversion 69

2-16 Polygon Filling 69

2-17 Scan-Converting Polygons 70

2-18 A Simple Ordered Edge List Algorithm 73

2-19 A More Efficient Ordered Edge List Algorithm 74

2-20 The Edge Fill Algorithm 79

2-21 The Edge Flag Algorithm 81

2-22 Seed Fill Algorithms 83

2-23 A Simple Seed Fill Algorithm 85

2-24 A Scan Line Seed Fill Algorithm 88

2-25 Fundamentals of Antialiasing 92

2-26 Simple Area Antialiasing 95

2-27 The Convolution Integral and Antialiasing 98

2-28 Halftoning 102

2-29 References 108

Chapter 3 Clipping 111

3-1 Two-Dimensional Clipping 111

3-2 Sutherland-Cohen Subdivision Line Clipping Algorithm 121

3-3 Midpoint Subdivision Algorithm 125

3-4 Generalized Two Dimensional Line Clipping for

Convex Boundaries 131

3-5 Cyrus-Beck Algorithm 135

3-6 Interior and Exterior Clipping 146

3-7 Identifying Convex Polygons and Determining the

Inward Normal 146

3-8 Splitting Concave Polygons 151

3-9 Three-Dimensional Clipping 152

3-10 Three-Dimensional Midpoint Subdivision Algorithm 155

3-11 Three-Dimensional Cyrus-Beck Algorithm 157

3-12 Clipping in Homogeneous Coordinates 162

3-13 Determining the Inward Normal and Three-Dimensional
Convex Sets 164

3-14 Splitting Concave Volumes 166

3-15 Polygon Clipping 168

3-16 Reentrant Polygon Clipping — Sutherland-Hodgman

Algorithm 169

3-17 Concave Clipping Regions — Weiler-Atherton Algorithm 179

3-18 Character Clipping 185

3-19 References 187

Chapter 4 Hidden Lines and Hidden Surfaces 189

4-1 Introduction 189

4-2 Floating Horizon Algorithm 191

4-3 Roberts Algorithm 205

4-4 Warnock Algorithm 240

4-5 Weiler-Atherton Algorithm 259

CONTENTS ix

4-6 A Subdivision Algorithm for Curved Surfaces 264

4-7 z-Buffer Algorithm 265

4-8 List Priority Algorithms 272

4-9 Scan Line Algorithms 279

4-10 Scan Line z-Buffer Algorithm 280

4-11 A Spanning Scan Line Algorithm 284

4-12 Scan Line Algorithms for Curved Surfaces 292

4-13 A Visible Surface Ray Tracing Algorithm 296

4-14 Summary 305

4-15 References 306

Chapter 5 Rendering 309

5-1 Introduction 309

5-2 A Simple Illumination Model 311

5-3 Determining the Surface Normal 317

5-4 Determining the Reflection Vector 320

5-5 Gouraud Shading 323

5-6 Phong Shading 325

5-7 A Simple Illumination Model with Special Effects 330

5-8 A More Complete Illumination Model 332

5-9 Transparency 340

5-10 Shadows 345

5-11 Texture 354

5-12 A Global Illumination Model Using Ray Tracing 363

5-13 A More Complete Global Illumination Model Using Ray

Tracing 379

5-14 Recent Advances in Rendering 381

5-15 Color 383

5-16 References 408

Appendixes 411

Appendix A Pseudocode 411

Appendix B Projects 417

Index 423

PREFACE

Computer graphics is now a mature discipline. Both hardware and software

are available that facilitate the production of graphical images as diverse as line

drawings and realistic renderings of natural objects. A decade ago the hardware

and software to generate these graphical images cost hundreds of thousands of

dollars. Today, excellent facilities are available for expenditures in the tens

of thousands of dollars and lower performance, but in many cases adequate

facilities are available for tens of hundreds of dollars. The use of computer

graphics to enhance information transfer and understanding is endemic in almost

all scientific and engineering disciplines. Today, no scientist or engineer

should be without a basic understanding of the underlying principles of computer

graphics. Computer graphics is also making deep inroads into the business,

medical, advertising, and entertainment industries. The presence in the

boardroom of presentation slides prepared using computer graphics facilities

as well as more commonplace business applications is considered the norm.

Three-dimensional reconstructions using data obtained from CAT scans is becoming

commonplace in medical applications. Television as well as other advertising

media are now making frequent use of computer graphics and computer

animation. The entertainment industry has embraced computer graphics

with applications as diverse as video games and full-length feature films. Even

art is not immune, as evidenced by some of the photos included in this book.

It is almost a decade now since the appearance of the companion volume

to this book, Mathematical Elements for Computer Graphics. During that time

significant strides in raster scan graphics have been made. The present volume

concentrates on these aspects of computer graphics. The book starts with an

introduction to computer graphics hardware with an emphasis on the concepxi

xii PREFACE

tual understanding of cathode ray tube displ,ays and of interactive devices. The

following chapters look at raster scan graphics including line and circle drawing,

polygon filling, and antialiasing algorithms; two- and three-dimensional clipping

including clipping to arbitrary convex volumes; hidden-line and hidden-

surface algorithms including ray tracing; and finally, rendering, the “art” of

making realistic pictures, including local and global illumination models, texture,
shadows, transparency, and color effects. The book continues the presentation

technique of its predecessor. Each thorough topic discussion is followed

by presentation of a detailed algorithm or a worked example, and where appropriate
both.

The material in the book can be used in its entirety for a semester-long

first formal course in computer graphics at either the senior undergraduate or

graduate level with an emphasis on raster scan graphics. If a first course in computer

graphics based on the material in the companion volume Mathematical

Elements for Computer Graphics is presented, then the material in this book

is ideal for a second course. This is the way it is used by the author. If

broader material coverage in a single-semester course is desired, then the two

volumes can be used together. Suggested topic coverage is: Chapter 1 of both

volumes, followed by Chapters 2 and 3 with selected topics from Chapter 4

of Mathçmatical Elements for Computer Graphics, then selected topics from

Chapter 2 (e.g., 2-1 to 2-5, 2-7, 2-15 to 2-19, 2-22, 2-23, 2-28), Chapter 3 (e.g.,

31, 3-2, 3-4 to 3-6, 3-9, 3-11, 3-15, 3-16), Chapter 4 (e.g., 4-1, part of 4-2 for

backplane culling, 4-3, 4-4, 4-7, 4-9, 4-11, 4-13), and Chapter 5 (e.g., 5-1 to 5-

3, 5-5, 5-6, 5-14) of the present volume. The book is also designed to be useful

to professional programmers, engineers, and scientists. Further, the detailed

algorithms and worked examples make it particularly suitable for self-study at

any level. Sufficient background is provided by college level mathematics and

a knowledge of a higher-level programming language. Some knowledge of data

structures is useful but not necessary.

There are two types of algorithms presented in the book. The first is a

detailed procedural description of the algorithm, presented in narrative style.

The second is more formal and uses an algorithmic ‘language’ for presentation.

Because of the wide appeal of computer graphics, the choice of an algorithmic

presentation language was especially difficult. A number of colleagues

were questioned as to their preference. No consensus developed. Computer

science faculty generally preferred PASCAL but with a strong sprinkling of

C. Industrial colleagues generally preferred FORTRAN for compatibility with

existing software. The author personally prefers BASIC because of its ease of

use. Consequently, detailed algorithms are presented in pseudocode. The pseudocode

used is based on extensive experience teaching computer graphics to

classes that do not enjoy knowledge of a common programming language. The

pseudocode is easily converted to any of the common computer languages. An

appendix discusses the pseudocode used. The pseudocode algorithms presented

in the book have all been either directly implemented from the pseudocode or

the pseudocode has been derived from an operating program in one or more of

PREFACE xlii

the common programming languages. Implementat’ions range from BASIC on
an Apple lIe to PL1 on an IBM 4300 with a number of variations in between.
A suit of demonstration programs in available from the author.

A word about the production of the book may be of interest. The book
was computer typeset using the TEX typesetting system at TYX Corporation
of Reston, Virginia. The manuscript was coded directly from handwritten
copy. Galleys and two sets of page proofs were produced on a laser printer for
editing and page makeup. Final reproduction copy ready for art insertion ws
produced on a phototypesetter. The patience and assistance of Jim Gauthier
and Mark Hoffman at TYX while the limits of the system were explored and
solutions to all the myriad small problems found is gratefully acknowledged.
The outstanding job done by Louise Bohrer and Beth Lessels in coding the
handwritten manuscript is gratefully acknowledged. The usually fine McGraw-
Hill copyediting was supervised by David Damstra and Sylvia Warren.

No book is ever written without the assistance of many individuals. The
book is based on material prepared for use in a graduate level course given
at the Johns Hopkins University Applied Physics Laboratory Center beginning
in 1978. Thanks are due the many students in this and other courses from
whom I have learned so much. Thanks are due Turner Whitted who read the

original outline and made valuable suggestions. Thanks are expressed to my

colleagues Pete Atherton, Brian Barsky, Ed Catmull, Rob Cook, John Dill,

Steve Hansen, Bob Lewand, Gary Meyer, Alvy Ray Smith, Dave Warn, and

Kevin Weiler, all of whom read one or more chapters or sections, usually in

handwritten manuscript form, red pencil in hand. Their many suggestions and

comments served to make this a better book. Thanks are extended to my

colleagues Linda Rybak and Linda Adlum who read the entire manuscript and

checked the examples. Thanks are due three of my students: Bill Meier who

implemented the Roberts algorithm, Gary Boughan who originally suggested

the test for convexity discussed in Sec. 3-7, and Norman Schmidt who originally

suggested the polygon splitting technique discussed in Sec. 3-8. Thanks are due

Mark Meyerson who implemented the splitting algorithms and assured that the

technique was mathematically well founded. The work of Lee Billow and John

Metcalf who prepared all the line drawings is especially appreciated.

Special thanks are due Steve Satterfield who read and commented on all

800 handwritten manuscript pages. Need more be said!

Special thanks are also due my eldest son Stephen who implemented all

of the hidden surface algorithms in Chapter 4 as well as a number of other

algorithms throughout the book. Our many vigorous discussions served to

clarify a number of key points.

Finally, a very special note of appreciation is extended to my wife Nancy

and to my other two children, Karen and Ransom, who watched their husband

and father disappear into his office almost every weeknight and every weekend

for a year and a half with never a protest. That is support! Thanks.

David F. Rogers

CHAPTER

ONE

INTRODUCTION TO COMPUTER GRAPHICS

Computer graphics is now a maturing technology. The underlying elements of
manipulative transformations and curve and surface descriptions are well understood

and documented (see Refs. 1-1 to 1-3). Raster scan technology, clipping,
hidden lines and hidden surfaces, color, shading, texture, and transparency effects

are also understood but still developing. It is these latter topics which are
of present interest.

14 OVERVIEW OF COMPUTER GRAPHICS

Computer graphics is a complex and diversified technology. To begin to understand

the technology it is necessary to subdiyide it into manageable parts. This

can be accomplished by considering that the end product of computer graphics
is a picture. The picture may, of course, be used for a large variety of purposes;

e.g., it may be an engineering drawing, an exploded parts illustration for
a service manual, a business graph, an architectural rendering for a proposed

construction or design project, an advertising illustration, or a single frame

from an animated movie. The picture is the fundamental cohesive concept in
computer graphics. We must therefore consider how

Pictures are represented in computer graphics
Pictures are prepared for presentation

Previously prepared pictures are presented

Interaction with the picture is accomplished

Although many algorithms accept picture data as polygons or edges, each

polygon or edge can in turn be represented by vertex points. Points, then, are
the fundamental building blocks of picture representation. Of equal fundamental

importance is the algorithm which explains how to organize the points. To

2 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

illustrate this consider a unit square in the first quadrant. The unit square can

be represented by its four corner points (see Fig. 1-1)

P1(O, 0), P2(1, 0), P3(1, 1), P4(O, 1)

An associated algorithmic description might be

Connect Pt P2 P3 P4 Pt in sequence

The unit square can also be described by four edges

E1 P1P2, E2 P2P3, E3 P3P4, E4 PP1

Here the algorithmic description is

Display E1 E2 E3 E4 in sequence

Finally, either the points or edges can be used to describe the unit square as a

single polygon, e.g.,

S1 = P1 P2 P3 P4 P1 or P1P4 P3 P2 P1

or Si=E1E2E3E4

The fundamental building blocks, i.e. points, can be represented as either

pairs or triplets of numbers depending on whether the data are two- or three-

dimensional. Thus, (Xi, Yt) or (Xi, yt, zi) would represent a point in either

two- or three-dimensional space. Two points would represent a line or edge,

and a collection of three or more points a polygon. These points, edges, or
polygons are collected or stored in a data base. The data used to prepare
the picture for presentation is rarely the same as that used to present the
picture. The data used to present the picture is frequently called a display
file. The display file will represent some portion, view, or scene of the picture
represented by the total data base. The displayed picture is usually formed by
rotating, translating, scaling, and performing various projections on the data.
These basic orientation or viewing preparations are generally performed using a

4 x 4 transformation matrix operating on the data represented in homogeneous

1.0 P4 E3 P3

E4 S1 E2

______________ “2

0 E) 1 .0 Figure 1.1 Picture data descriptions.

STORAGE TUBE GRAPIHCS DISPLAYS 3

coordinates (see Ref. 1-1). Frequently these operations are implemented in

hardware. Hidden line or hidden surface removal, shading, transparency,

texture, or color effects may be added before final presentation. If the picture
represented by the entire data base is not to be presented, the appropriate
portion must be selected. This is a process called clipping. Clipping may be

two- or three-dimensional as appropriate. In some cases the clipping window or
volume may have holes in it or may be irregularly shaped. Clipping to standard
two- and three-dimensional regions is frequently implemented in hardware.

Almost all pictures involve the presentation of textual material. Characters
can be generated in either hardware or software. If generated in software,
they can be manipulated and treated like any other portion of the picture. If
generated in hardware, they are maintained as character codes until just prior

to display. Usually only limited manipulative capabilities are provided; e.g.,

only limited rotations and sizes are available. Clipping of hardware-generated
characters is generally not possible. Either the entire character is displayed or

none of it is displayed.

12 TYPES OF GRAPHICS DEVICES

The display medium for computer graphics-generated pictures has become

widely diversified. Typical examples are pen-and-ink plotters, dot matrix,

electrostatic or laser printer plotters, film, storage tube, calligraphic refresh,

and raster scan cathode ray tube (CRT) displays. Because the large majority of

computer graphics systems utilize some type of CRT display and because most

of the fundamental display concepts are embodied in CRT display technology,
we will limit our discussion to CRT displays. Other display technologies are
discussed in Refs. 1-1 to 1-3.

The three most common types of CRT display technologies are direct-view

storage tube (line drawing), calligraphic (line drawing) refresh, and raster scan

(point plotting) refresh displays. With recent advances, an individual display

may incorporate more than one technology. In discussing the various displays

we take a user’s, or conceptual, point of view; i.e., we are generally concerned

with functional capabilities and not with the details of the electronics.

1-3 STORAGE TUBE GRAPHICS DISPLAYS

The direct-view storage tube is conceptually the simplest of the CRT displays.

The storage tube display, also called a bistable storage tube, can be considered

a CRT with a long-persistence phosphor. A line or character will remain visible

(up to an hour) until erased. A typical display is shown in Fig. 1-2. To draw a

line on the display the intensity of the electron beam is increased sufficiently to

cause the phosphor to assume its permanent bright “storage” state. The display

is erased by flooding the entire tube with a specific voltage which causes the

4 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 1-2 Storage tube graphics display.

phosphor to assume its dark state. Erasure takes about 1/2 second. Because
the entire tube is flooded, all lines and characters are erased. Thus, individual

lines and characters cannot be erased, and the display of dynamic motion

or animation is not possible. An intermediate state (write-through mode) is

sometimes used to provide limited refresh capability (see below). Here, the

electron beam is intensified to a point that is just below the threshold that

will cause permanent storage but is still sufficient to brighten the phosphor.

Because the image in this mode does not store, it must be redrawn or repainted

continuously in order for it to be visible.

A storage tube display is flicker-free (see below) and capable of displaying

an “unlimited” number of vectors. Resolution is typically 1024 x 1024

addressable points (10 bits) on an 8 x 8 inch square (11-inch-diagonal CRT)

or 4096 x 4096 (12 bits) on either a 14 x 14 inch square (19-inch-diagonal

CRT) or an 18 x 18 inch square (25-inch-diagonal CRT). Typically only

78 percent of the addressable area is viewable in the vertical direction.

A storage tube display is a line drawing or random scan display. This

means that a line (vector) can be drawn directly from any addressable point to

any other addressable point. Hard copy is relatively easy, fast, and inexpensive

CALLIGRAPHIC REFRESH GRAPHICS DISPLAYS 5

to obtain. Conceptually, a storage tube display is somewhat easier to program

than a calligraphic or raster scan refresh display. Storage tube CRT displays can

be combined with microcomputers into stand-alone computer graphics systems

or incorporated into graphics terminals. When incorporated into terminals,

alphanumeric and graphic information are passed to the terminal by a host

computer over an interface. Although parallel interfaces are available, typically

a serial interface which passes information 1 bit at a time is used. Because of

the typically low interface speed and the erasure characteristics, the level of

interactivity with a storage tube display is lower than with either a refresh or

raster scan display.

14 CALLIGRAPHIC REFRESH GRAPHICS DISPLAYS

In contrast to the storage tube display, a calligraphic (line drawing or vector)

refresh CRT display uses a very short-persistence phosphor. These displays

are frequently called random scan displays (see below). Because of the short

persistence of the phosphor, the picture painted on the CRT must be repainted

or refreshed many times each second. The minimum refresh rate is at least 30
times each second, with a recommended rate of 40 to 50 times each second.

Refresh rates much lower than 30 times each second result in a flickering image.

The effect is similar to that observed when a movie film is run too slowly. The

resulting picture is difficult to use and disagreeable to look at.

The basic calligraphic refresh display requires two elements in addition

to the CRT. These are the display buffer and the display controller. The

display buffer is contiguous memory containing all the information required to

draw the picture on the CRT. The display controller’s function is to repeatedly

cycle through this information at the refresh rate. Two factors which limit the

complexity (number of vectors displayed) of the picture are the size of the

display buffer and the speed of the display controller. A further limitation is

the speed at which picture information can be processed, i.e. transformed and

clipped, and textual information generated.

Figure 1-3 shows two block diagrams of two high-performance calligraphic

refresh displays. In both cases it is assumed that picture transformations such

as rotation, translation, scaling, perspective, and clipping are implemented in

hardware in the picture processor. In the first case (Fig. 1-3a) the picture

processor is slower than the refresh rate for useful pictures (4000 to 5000 vectors).

Thus, the picture data sent by the host central processing unit (CPU) to

the graphics display is processed before being stored in the display buffer. Here

the display buffer contains only those precise instructions which are required

by the vector/character generator to draw the picture. Vectors are generally

held in screen coordinates. The display controller reads information from the

display buffer and sends it to the vector/character generator. When the display

controller reaches the end of the display buffer, it returns to the beginning and

cycles through the buffer again.

6 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Host[j Picture Display Display C’r CRT
CPU1 [Processor

Buffer Controller Generator

a

Host ______DisplayU Picture U Display ector/
Character CRT

CPU Buffer Processor Controller Generator

b

Figure 1-3 Conceptual block diagrams of calligraphic refresh displays.

This first configuration also gives rise to the concepts of double buffering

and separate update and refresh rates. Since in this configuration the picture

processor is too slow to generate a complex new or updated picture within one

refresh cycle, the display buffer is divided into two parts. While an updated

picture is being processed and written into one half of the buffer, the display

controller is refreshing the CRT from the other half of the buffer. When

the updated picture is complete, the buffers are swapped and the process is

repeated. Thus, a new or updated picture may be generated every second,

third, fourth, etc., refresh cycle. Double buffering prevents part of the old

picture being displayed along with part of the new updated picture during one

or more refresh cycles.

In the second configuration (see Fig. 1-3b) the picture processor is faster

than the refresh rate for complex pictures. Here, the original picture data

base sent from the host CPU is held directly in the display buffer. Vectors

are generally held in user (world) coordinates as floating point numbers. The

display controller reads information from the display buffer, passes it through

the picture processor, and sends it to the vector generator in one refresh cycle.

This implies that picture transformations are performed “on the fly” within one

refresh cycle.

In either configuration, each vector, character, and picture drawing instruction

exists in the display buffer. Hence, any individual element may be changed

independent of any other element. This feature, in combination with the short

persistence of the CRT phosphor, allows the display of dynamic motion. Figure

1-4 illustrates this concept. Figure 1-4 shows the picture displayed during four

successive refresh cycles. The visible solid line is the displayed line for the

current refresh cycle, and the invisible dotted line is for the previous refresh

cycle. Between refresh cycles the location of the end of the line, B, is changed.

The line will appear to rotate about the point A.

In many pictures only portions of the picture are dynamic. In fact, in many

applications the majority of the picture is static. This leads to the concept of

segmentation of the display buffer. Figure 1-5 illustrates this idea. Here, the

baseline, the cross-hatching, and the letter A used to show the support for the

line AB are static; i.e., they do not change from refresh cycle to refresh cycle.

CALLIGRAPHIC REFRESH GRAPHICS DISPLAYS 7

In contrast, the location of the end of the line AB and the letter B change

from refresh cycle to refresh cycle to show dynamic motion. These separate

portions of the picture data base are placed in separate segments of the display

buffer. Since the static segment of the display buffer does not change, it can be

ignored by the picture processor for the configuration shown in Fig. 1-3a. This

significantly reduces the work load on the picture processor when updating a

picture. In this case, only the picture in the dynamic segment need be updated.
Further, it reduces the amount of data that need be transmitted from the host

CPU to the picture processor during each picture update.

For the configuration shown in Fig. 1-3b a different type of segmentation

is possible. Recall that for this configuration the picture data base is stored

in the display buffer in world (user) coordinates and picture processing occurs

on the fly once each refresh cycle. For the picture in Fig. 1-5 two segments

are created in the display buffer, a static and a dynamic segment. However,

picture processing occurs on the fly. Dynamic update of the information in the

A 77/7,,

Dynamic curve

a b c d

Figure 1-4 Dynamic motion.

Figure 1-5 Display buffer segmentation. Figure 1-6 Intelligent display buffer segmentation.

8 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

dynamic segment can be accomplished using functions available in the picture

processor. Thus, picture update can occur locally within the graphics device,
and communication with the host CPU is unnecessary. For the particular case

shown in Fig. 1-5 the only picture processor function required for local dynamic

update is rotation about the point A.

Figure 1-6 illustrates a picture for which dynamic update requires communication
with the host CPU, i.e., intelligent update of the picture. Again

two segments are created, a static segment comprised of the baseline, cross-

hatching, and the letter A, and a dynamic segment comprised of the curve AB

and the letter B. Assume that the shape of the curve AB will change from

refresh cycle to refresh cycle depending upon physical factors. Thus, the shape

must be computed by an application program running in the host CPU. In order

to update the dynamic picture segment new data, e.g. curve shape, must be

sent to and stored in the display buffer.

Although the concept of picture segmentation has been introduced through

dynamic motion examples, it is not limited to dynamic motion or animation.

Any picture can be segmented. Picture segmentation is particularly useful for

interactive graphics programs. The concept is similar to modular programming.

The choice of modular picture segments, their size, and their complexity

depends on the particular application. Individual picture elements can be as

simple as single points or as complex as complete object descriptions. Reference

1-3 provides additional discussion.

To illustrate the importance of the communication speed, or bandwidth,

between the host CPU and the graphics device consider the requirements for

intelligently updating a curved line with 250 segments or points describing it.

Each point is described by three coordinates. If we assume that a floating point

representation with six significant figures (characters) is used, and that a single

8-bit byte is used to represent a character, then for a refresh rate of 30 frames

per second and an update every refresh cycle the required communication
bandwidth is

30[(no. points)(no. coor./point)(no. of sig. figs./point)(no. bits/char.)]

or 30(250)(3)(6)(8) = 1,080,000 bits/s

Thus, the required bandwidth can easily exceed 1 megabit per second. For

complicated three-dimensional sculptured surfaces, the required bandwidth can

easily exceed 10 times this, i.e., 10 megabits per second. In most cases this

dictates a parallel or direct memory access (DMA) interface between the host

CPU and the graphics device to support real-time intelligent dynamic graphics.

A typical calligraphic refresh display is shown in Fig. 1-7.

1-5 RASTER REFRESH GRAPHICS DISPLAYS

Both the storage tube CRT display and the random scan refresh display are

line drawing devices. That is, a straight line can be drawn directly from any

addressable point to any other addressable point. In contrast is the raster CRT

RASTER REFRESH GRAPHICS DISPLAYS 9

Figure 1-7 Calligraphic refresh display. (Courtesy of Evans & Sutherland Computer
Corp.)

graphics device. A raster CRT graphics device can be considered a matrix of

discrete cells each of which can be made bright. Thus, it is a point plotting

device. It is not possible except in special cases to directly draw a straight line

from one addressable point, or pixel, in the matrix to another addressable point

or pixel. The line can only be approximated by a series of dots (pixels) close

to the path of the line. Figure 1-8 illustrates the basic concept. Only in the

special cases of completely horizontal, vertical, or 45° lines will a straight line

of dots or pixels result. This is shown in Fig. 1-8. All other lines will appear

C D

—Picture element or pixel

—AddressabIe point

—Rasterized approximation

to line AB
A A B

a b

Figure 1-8 Rasterization of a line.

10 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

as a series of stair steps. This is called aliasing or the “jaggies.” Antialiasing is

addressed in Chap. 2.

The most common method of implementing a raster CRT graphics device

utilizes a frame buffer. A frame buffer is a large, contiguous piece of computer

memory. As a minimum there is one memory bit for each location or pixel

(picture element) in the raster. This amount of memory is called a bit plane.

A 512 x 512 element square raster requires 218 (2 = 512; 218 = 512 x 512)

or 262,144 memory bits in a single bit plane. The picture is built up. in the

frame buffer 1 bit at a time. Since a memory bit has only two states (binary

o or 1), a single bit plane yields a black-and-white display. Since the bit plane

is a digital device, while the raster CRT is an analog device which requires

an electrical voltage, conversion from a digital representation to an analog

signal must take place when information is read from the frame buffer and

displayed on the raster CRT graphics device. This is accomplished by a digital-

to-analog converter (DAC). Each pixel in the frame buffer must be accessed

and converted before it is visible on the raster CRT. A schematic diagram of

a single-bit-plane black-and-white frame buffer raster CRT graphics device is

shown in Fig. 1-9.

Color or gray levels can be incorporated into a frame buffer raster graphics

device by using additional bit planes. Figure 1-10 schematically shows an N-

bit-plane gray level frame buffer. The intensity of each pixel on the CRT is

controlled by a corresponding pixel location in each of the N bit planes. The

binary value (0 or 1) from each of the N bit planes is loaded into corresponding

positions in a register. The resulting binary number is interpreted as an intensity

level between 0 and 2’ — 1. This is converted into a voltage between 0 (dark)

and 2N — 1 (full intensity) by the DAC. A total of 2N intensity levels can be

achieved. Figure 1-10 illustrates a system with three bit planes for a total of

8 (2) intensity levels. Each bit plane requires the full complement of memory

for a given raster resolution; e.g., a three-bit-plane frame buffer for a 512 x

512 raster requires 786,432 (3 x 512 x 512) memory bits.

Register

Frame Buffer

DAC

Raster

CRT

Figure 1-9 A single-bit-plane black-and-white frame buffer raster CRT graphics device.

RASTER REFRESH GRAPHICS DISPLAYS 11

Register

N=3 2N Levels

Frame buffer
CRT

Raster

Figure 1-10 An N-bit-plane black-and-white gray level frame buffer.

An increase in the number of available intensity levels can be achieved for

a modest increase in required memory by using a look-up table. This is shown

schematically in Fig. 1-11. Upon reading the bit planes in the frame buffer, the

resulting number is used as an entry index into the look-up table. The look-up

table must contain 2N entries. Each entry in the look-up table can contain W

bits. W may be greater than N. When this occurs, 2’ intensities are available;
but only 2N different intensities are available at one time. To get additional
intensities the look-up table must be changed (reloaded).

Since there are three primary colors, a simple color frame buffer can be
implemented with three bit planes, one for each primary color. Each bit plane
drives an individual color gun for each of the three primary colors used in color
video. These three colors are combined at the CRT to yield eight colors. The

Look-up tables 2” intensity levels

2N At a time

N=3

Frame buffer

Entries

W 4

FIgure 1-11 An N-bit-plane black-and-white gray level frame buffer with a W-bit-wide
look-up table.

12 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

eight obtainable colors and appropriate binary codes are shown in Table 1-1.

A simple color raster frame buffer is shown schematically in Fig. 1-12.

Additional bit planes can be used for each of the three color guns. Figure

1-13 shows a schematic of a multiple-bit-plane color frame buffer with 8 bit

planes per color, i.e., a 24-bit-plane frame buffer. Each group of bit planes

drives an 8-bit DAC. Each group can generate 256 (28) shades or intensities

of red, green, or blue. These can be combined into 16,777,216 [(28)3 = 224)1

possible colors. This is a “full” color frame buffer.

The full color frame buffer can be further expanded by using the groups

of bit planes as indices to color look-up tables. This is shown schematically in

Fig. 1-14. For N bit planes per color with W-bit-wide color look-up tables (23)N

colors from a palette of (2)’ possible colors can be shown at any one time. For

example, for a 24-bit-plane (N = 8) frame buffer with three 10-bit-wide (W =

10) color look-up tables, 16,777,216 (224) colors from a palette of 1,073,741,824

(2°) colors, i.e., about 17 million colors from a palette of a little more than 1
billion, can be obtained.

Because of the large number of pixels in a raster scan graphics device,

achieving real-time performance and acceptable refresh or frame rates can be

Table 1-1 Simple 3-Bit Plane Frame Buffer Color Combinations

Red Green Blue

Black 0 0 0

Red 1 0 0

Green 0 1 0

Blue 0 0 1

Yellow 1 1 0

Cyan 0 1 1

Magenta 1 0 1

White 1 1 1

Registers Color guns

Frame buffer CRT

Raster

Figure 1-12 Simple color frame buffer.

RASTER REFRESH GRAPHICS DISPLAYS 13

difficult. For example, if pixels are accessed individually with an average access

time of 200 nanoseconds (200 x i0 second), then it requires 0.0524 second

to access each of the pixels in a 512 x 512 frame buffer. This is equivalent

to a refresh rate of 19 frames (pictures) per second, well below the required

minimum refresh rate of 30 frames per second. A 1024 x 1024 frame buffer

contains slightly more than 1 million bits (1 megabit) and at 200 nanoseconds

average access time requires 0.21 second to access each of the pixels. This is

5 frames per second. A 4096 x 4096 frame buffer contains 16.78 million bits

per memory plane! At a 200-nanosecond access time per pixel it requires 0.3

second to access each of the pixels. To achieve a refresh rate of 30 frames

per second a 4096 x 4096 raster requires an average effective access rate of 2

nanoseconds per pixel.

Real-time performance with raster scan graphics devices is achieved by

accessing pixels in groups of 16, 32, or 64 or more simultaneously. In the case

of color frame buffers each pixel may contain up to 32 bits; i.e., all bit planes

for an individual pixel are accessed together. With an average access time of

1600 nanoseconds for each group of pixels, real-time performance for 512 x

512 and 1024 x 1024 frame buffers is possible.

Although real-time performance with acceptable refresh rates is more difficult

to achieve with a raster CRT device than with a calligraphic or line draw-

Figure 1-13 A 24-bit-plane color frame buffer.

14 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

/

/

N:

/
Color

— look-up

tables

Blue

2N

Entries

Color guns CRT

Raster

Figure 1-14 A 24-bit-plane color frame buffer with 10-bit-wide look-up tables.

CATHODE RAY TUBE BASICS 15

ing refresh display, solid figure representations in delicate shades of color are

easier. Solid “polygonal” figure representation with a raster is conceptually

simple. This is shown in Fig. 1-15. Here a representation of the solid figure

bounded by the lines L1, L2, L3, L4 is achieved by setting all the pixels within
the bounding polygon to the appropriate code in the frame buffer. This is solid

area “scan conversion,” algorithms for which are discussed in Chap. 2.

Figure 1-15 Solid figures with a raster graphics device.

1-6 CATHODE RAY TUBE BASICS

A frame buffer as described above is not itself a display device. It is simply

used to assemble the picture. The most common display device used with a

frame buffer is a video (TV) monitor. An understanding of raster displays, and

to some extent line drawing refresh displays, requires a basic understanding of

CRTs and video display techniques.

The CRT used in video monitors is shown schematically in Fig. 1-16. A

cathode (negatively charged) is heated until electrons “boil” off in a diverging

cloud (electrons repel each other because they have the same charge). These

electrons are attracted to a highly charged positive anode. This is the phosphor

coating on the inside of the face of the large end of the CRT. If allowed to

continue uninterrupted, the electrons would simply flood the entire face of the

rtica1

deflection

amplifier

Electron Horizontal

focusing deflection

lens-, amplifier

Figure 1-16 Cathode ray tube.

16 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

CRT with a bright glow. However, the cloud of electrons is focused into a

narrow, precisely collimated beam with an electron lens. At this point the
focused electron beam produces a single bright spot at the center of the CRT.
The electron beam is deflected or positioned to the left or right of the center
and/or above or below the center by means of horizontal and vertical deflection

amplifiers.
It is at this point that line drawing displays, both storage and refresh, and

raster scan displays differ. In a line drawing display the electron beam may

be deflected directly from any arbitrary position to any other arbitrary position

on the face of the CRT (anode). Since the phosphor coating on the CRT face

is continuous, a perfectly straight line will result. In contrast, in a raster scan

display the beam is deflected in a set, rigidly controlled pattern. This pattern

comprises the video picture. The phosphor on the face of the raster CRT is not

continuous but rather composed of a myriad of small spots in a fixed pattern.

1-7 COLOR CRT RASTER SCAN BASICS

A color raster scan CRT is similar to the standard black-and-white CRT described

in the previous section. In the color raster scan CRT there are three

electron guns, one for each of the three primary colors, red, green, and blue.

The electron guns are frequently arranged in a triangular pattern corresponding

to a similar triangular pattern of red, green, and blue phosphor dots on the face

of the CRT (see Fig. 1-17). To ensure that the individual electron guns excite

the correct phosphor dots (e.g., the red gun excites only the red phosphor

dot), a perforated metal grid is placed between the electron guns and the
face of the CRT. This is the shadow mask of the standard shadow mask color

CRT. The perforations in the shadow mask are arranged in the same triangular

pattern as the phosphor dots. The distance between perforations is called the
pitch. The color guns are arranged so that the individual beams converge

and intersect at the shadow mask (see Fig. 1-18). Upon passing through

the hole in the shadow mask the red beam, for example, is prevented

9J _) _)))

B R ®OOG

o®orcoo

iN (

Figure 1.17 Phosphor dot pattern for a shadow mask CRT.

VIDEO BASICS 17

or masked from intersecting either the green or blue phosphor dot. It can only

intersect the red phosphor dot. By varying the strength of the electron beam for

each individual primary color, different shades can be obtained. These primary

color shades can be combined into a large number of colors for each pixel. For

a high-resolution display there are usually two to three color triads for each

pixel.

RT Face

Red Green, Blue

Phosphor dots

Figure 1-18 Color CRT electron gun and shadow mask arrangement.

1-8 VIDEO BASICS

The process of converting the rasterized picture stored in a frame buffer to

the rigid display pattern of video is called scan conversion. The scanning

pattern and the frequency of repetition are based on both visual perception

and electronic principles. The human visual perception system requires a finite

amount of time to examine the elements of a picture. However, this time

should be short enough that the persistence of vision will overcome flicker to

give the impression of a continuous presentation. A number of factors affect

flicker, including image brightness and the particular CRT screen phosphor

used. Experience indicates that a practical minimum picture presentation or

update rate is 25 frames per second provided the minimum refresh or repetition

rate is twice this, i.e., 50 frames per second. This is actually what is done

with movie film. With movie film 24 frames per second are presented, but the

presentation of each frame is interrupted so that it is presented twice for an

effective repetition rate of 48 frames per second. Thus, for film the update rate
is 24 and the refresh rate is 48. The same effect is achieved in video with a

technique called interlacing.

Video is a raster scan technique. The American standard video system

uses a total of 525 horizontal lines with a frame or viewing aspect ratio of 4:3;

i.e., the viewing area is three-quarters as high as it is wide. The repetition or

Green beam

;hadow mask

Beam convergence

18 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

frame rate is 30 frames per second. However, each frame is divided into two

fields, each containing one half of the picture. The two fields are interlaced

or interwoven. The fields are presented alternatively every other 1/60 second.

One field contains all the odd-numbered lines (1, 3, 5, ...), and the other the

even-numbered lines (2, 4, 6, ...). The scanning pattern begins at the upper
left corner of the screen with the odd field. Each line in the field is scanned

or presented from the left to the right. As the electron beam moves across

the screen from left to right it also moves vertically downward but at a much

slower rate. Thus, the “horizontal” scan line is in fact slightly slanted. When

the beam reaches the right edge of the screen, it is made invisible and rapidly

returned to the left edge. This is the horizontal retrace which usually requires

approximately 17 percent of the time allowed for one scan line. The process

is then repeated with the next odd scan line. Since half of 525 is 262 1/2 lines,
the beam will be at the bottom center of the screen when the odd scan line

field is complete (see Figs. 1-19 and 1-20). The beam is then quickly returned

to the top center of the screen. This is the odd field vertical retrace. The time

required for the vertical retrace is equivalent to that for 21 lines. The even scan

line field is then presented. The even scan line field ends in the lower right hand

corner. The even field vertical retrace returns the beam to the upper left hand

corner, and the entire sequence is repeated. Thus, two fields are presented

for each frame, i.e., 60 fields per second. Since the eye perceives the field

repetition rate, this technique significantly reduces flicker.

Although the American standard video system calls for 525 lines, only 483

lines are actually visible because a time equivalent to 21 lines is required to

accomplish the vertical retrace for each field.t During this time the electron

2

4

5

6 ZZ

Figure 1.19 Schematic of a seven-line interlaced scan line pattern. The odd field begins
with line 1. The horizontal retrace is shown dashed. The odd field vertical retrace starts

at the bottom center. The even field vertical retrace starts at the bottom right.

tMany raster scan graphics devices use this time for processing other information.

VIDEO BASICS 19

beam is invisible or blanked. The time available for each scan line is easily
calculated for a frame repetition rate of 30 as

1 second
1 frame = 63 5 microseconds

30 frame 525 scan line scan line

Since approximately 10 1/2 microseconds is required for horizontal retrace,

the visible portion of each scan line must be completed in 53 microseconds.

With a normal video aspect ratio of 4:3 there are 644 pixels on each scan line.

The time available to access and display a pixel is thus

microseconds 1 scan line
53

.

x — = 82 nanoseconds

scan line 644 pixels

Many frame buffer-based raster scan displays sample the picture at a resolution

of 512 pixels per scan line. At this resolution approximately 103 nanoseconds

is available to access and display a pixel. Equivalent results are obtained

for the 625-line 25-frame repetition rate used in most of Europe and Great
Britian.

The interlace technique described above is not required when presenting

a video picture. However, this noninterlaced picture will not be compatible

with a standard television set. When such a noninterlaced picture is presented,

the frame repetition rate must be increased to 60 frames per second to avoid

flicker. This; of course, reduces the available pixel access and display time by a

factor of 2. Higher line and pixel-perline resolutions also decrease the available

pixel access and display time; e.g., a 1024 x 1024 resolution requires a pixel

access and display time a quarter of that required by a 512 x 512 resolution—

approximately 25 nanoseconds! Thus, a very fast frame buffer memory and an

equally fast DAC are required.

fOdd scan line fieldj
‘Visible odd’ ‘Odd scan line1

scan lines vertical retrace

241’/2lines 21 lines

I 262’ lines I
I 525

Frame

lEven scan line fieldi
‘Visible even ‘Even scan line’

scan lines vertical retrace

241 V1ines . 21 lines

I 2624 lines I
lines I

Figure 1.20 A 525-line standard frame schematic.

20 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

1-9 INTERACTIVE DEVICES

Once the picture has been presented, interaction with or modification of the

picture is required. To meet this requirement a number of interactive devices

have been developed. Among these devices are tablets, light pens, joysticks,
mice, control dials, function switches or buttons, and of course the common alphanumeric

keyboard. Before discussing these physical devices it is appropriate

to discuss the functional capabilities of interactive graphics devices. The functional

capabilities are generally considered to be of four or five types (see

Refs. 1-3 to 1-6). The logical interaction devices are a locator, a valuator, a

pick, and a button. A fifth functional capability called keyboard is frequently

included because of the general availability of the alphanumeric keyboard. In

fact, a keyboard can conceptually and functionally be considered a collection
of buttons.

The locator function provides coordinate information in either two or three

dimensions. Generally the coordinate numbers returned are in the conceptual

or device space and may be either relative or absolute. The valuator function

provides a single value. Generally this value is a real number between zero and
some real maximum. The button function is used to select and activate events or

procedures which control the interactive flow. It generally provides only binary

(on or off) digital information. The pick function identifies or selects objects or

subpictures within the displayed picture. The logical keyboard processes textual

information. A typical keyboard is shown in Fig. 1-21.

The tablet is the most common locator device. A typical tablet is shown

in Fig. 1-22. Tablets may be used either in conjunction with a CRT graphics

display or stand alone. In the latter case they are frequently referred to as

digitizers. The tablet itself consists of a flat surface and a penlike stylus which

Figure 1-21 An alphanumeric keyard. (Courtesy of Evans & Sutherland Computer
Corp.)

INTERACTIVE DEVICES 21

is used to indicate a location on the tablet surface. Usually the proximity of

the stylus to the tablet surface can also be sensed. When used in conjunction

with a CRT display, feedback from the CRT face is provided by means of a

small tracking symbol which follows the movement of the stylus on the tablet

surface. When used as a stand-alone digitizer, feedback is provided by digital
readouts.

Tablets provide either two- or three-dimensional coordinate information.

A three-dimensional tablet is shown in Fig. 1-23. The values returned are in
tablet coordinates. Software converts the tablet coordinates to user coordinates.

Typical resolution and accuracy is 0.01 to 0.001 inch. When used in conjunction

with a CRT display, the resolution of the tablet should equal or exceed that of

the display.

A number of different principles have been used to implement tablets. The

original RAND tablet (see Ref. 1-7) uses an orthogonal matrix of individual

wires beneath the tablet surface. Each wire is individually coded such that the

stylus acting as a receiver picks up a unique digital code at each intersection.

Decoding yields the x, y coordinates of the stylus. The obvious limitations on

the resolution of such a matrix-encoded tablet are the density of the wires and

the receiver’s ability to resolve a unique code. The accuracy is limited by the

linearity of the individual wires as well as the parallelism of the wires in the two

orthogonal directions.

An interesting implementation for a tablet utilizes sound waves. The stylus

is used to create a spark which generates a sound wave. The sound wave

moves outward from the stylus on the surface of the tablet in a circular wave

front. Two sensitive ribbon microphones are mounted at right angles on the

sides of the tablet. By accurately measuring the time that it takes the sound

Figure 1.22 A typical tablet. (Courtesy of Adage, Inc.)

22 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

wave to travel from the stylus to the microphones, the coordinate distances

can be determined. This technique may be extended to three dimensions (see

Fig. 1-23).

The most popular tablet implementation is based on an electromagnetic

principle. In this tablet implementation electric pulses travel through a sheet of

magnetostrictive material used as the tablet surface. The stylus and appropriate

counters are used to determine the time it takes for alternate pulses parallel to

the x- and y-coordinate axes to travel from the edge of the tablet to the stylus.

These times are readily converted into x, y coordinates.

A locator device similar to a tablet is the touch panel. In a typical touch

panel light emitters are mounted in two adjacent edges with companion light

detectors mounted in the opposite adjacent edges. Anything, e.g. a finger,

interrupting the two orthogonal light beams yields an x, y coordinate pair.

Because of its poor resolution, the touch panel is most useful for gross pointing

operations. In this capacity it is frequently mounted in front of a CRT screen.

Locator devices such as the joystick, track ball, and mouse are frequently

implemented using sensitive variable resistors or potentiometers as part of a

voltage divider. Control dials which are valuators are similarly implemented.

The accuracy is dependent on the quality of the potentiometer, typically 0.1 to

10 percent of full throw. Although resolution of the potentiometer is basically

infinite, use in a digital system requires analog-to-digital (A/D) conversion.

Typically the resolution of the A/D converter ranges from 8 to 14 bits, i.e.,

from 1 part in 28 (256) to 1 part in 2’ (16384). Valuators are also implemented

Figure 1.23 A three-dimensional sonic tablet. (Courtesy of Science Accessories Corp.)

INTERACTIVE DEVICES 23

with digital shaft encoders which, of course, provide a direct digital output for

each incremental rotation of the shaft. Typical resolutions are 1 part in 28 (256)

to 1 part in 210 (1024) for each incremental rotation of the shaft.

A typical valuator is the joystick. A joystick is shown in Fig. 1-24. A
movable joystick is generally implemented with two valuators, either potentiometers

or shaft encoders, mounted in the base. The valuators provide results

proportional to the movement of the shaft. A third dimension can readily be
incorporated into a joystick, e.g., by using a third valuator to sense rotation of
the shaft. A tracking symbol is normally used for feedback.

The track ball is similar to the joystick. It is most often seen in radar installations,

e.g., in air traffic control. Here, a spherical ball is mounted in a base

with only a portion projecting above the surface. The ball is free to rotate in

any direction. Two valuators, either potentiometers or shaft encoders, mounted

in the base sense the rotation of the ball and provide results proportional to

its relative position. In addition to feedback from the normal tracking symbol,
users obtain tactile feedback from the rotation rate or angular momentum of

the ball.

The joystick and track ball both have a fixed location with a fixed origin.

The mouse (Ref. 1-8) on the other hand has only a relative origin. A typical

mouse consists of two rubber-rimmed wheels mounted at right angles in a

small, lightweight box. As the mouse is moved across a surface the wheels

drive the shafts of two valuators, either potentiometers or shaft encoders. The

cumulative movement of the shafts provides x, y coordinates. A typical mouse

is shown in Fig. 1-25. The mouse can be picked up, moved, and set back

Figure 1.24 Joystick. (Courtesy of Meas- Figure 1.25 Mouse. (Courtesy of Apple
urement Systems, Inc.) Computer, Inc.)

24 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

down in a different orientation. In this case the coordinate system in which data

is generated, i.e. the mouse, is changed, but not the data coordinate system

itself. Under these circumstances the tracking symbol used for feedback does
not move when the mouse is not in contact with the surface. The mouse suffers

from inaccuracies due to wheel slippage, especially during diagonal movements.

Recently mice that work on both optical and magnetic principles have become

available. Both eliminate the inaccuracies due to wheel slippage.

Perhaps the simplest of the valuators is the control dial. Control dials,

shown in Fig. 1-26, are essentially sensitive rotating potentiometers or accurate

digital shaft encoders. They generally are used in groups and are particularly

useful for activating rotation, translation, scaling, or zoom functions.

Buttons or function switches, shown in Fig. 1-27, are either toggle or pushbutton

switches. They may be either continuously closed, continuously open, or

momentary-contact switches. The most convenient type of function switch incorporates

both capabilities. Software-controlled lights indicating which switches

or buttons are active are usually provided. Buttons and switches are frequently

incorporated into other devices. For example, the stylus of a tablet

usually has a switch in the tip activated by pushing down on the stylus. A

mouse also incorporates one or more buttons.

The light pen is the only true pick device. The pen, shown schematically in

Fig. 1-28, contains a sensitive photoelectric cell and associated circuitry. Since

the basic information provided by the light pen is timing, it depends on the

picture being repeatedly produced in a predictable manner. This precludes its

use with a storage tube CRT display. The use of a light pen is limited to refresh

displays, either line drawing or raster scan.

Figure 1.26 Control dials. (Courtesy of Evans & Sutherland Computer Corp.)

INTERACTIVE DEVICES 25

Figure 1-27 Function switches. (Courtesy of Adage, Inc.)

When the light pen is activated and placed over an intensified area of the

CRT on a line drawing refresh display, a signal is sent to the display controller

This signal allows the particular instruction in the display buffer being executed

at that time to be determined. Tracing back through the display controller

allows determination of the particular line segment, object, or subpicture that

Photomultiplier

To display

Pulse shaping circuitry controller Figure 1-28 Schematic of
I a light pen.

Holder

Shutter

button

Fiber optic
bundle

tube

26 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

was picked. A light pen can also be used as a locator on a line drawing refresh

device by using a tracking symbol.

Since in a raster scan display the picture is generated in a fixed sequence,

the light pen is used to determine the horizontal scan line (y coordinate) and

the position on the scan line (x coordinate). Again, by tracing back through the

controller, the particular line segment, object, or subpicture can be determined.

This is somewhat complicated by the interlace scheme. The above description

also indicates that, on a raster scan device, a light pen can be used as a locator

rather than as a pick device.

Although physical devices are available to implement all the logical interactive

devices, an individual graphics device may not have the appropriate physical

devices available. Thus, simulation of the logical interactive devices is required.

An example is shown in Fig. 1-29, where a light pen is being used to simulate

a logical button function by picking light buttons from a menu.

The tablet is one of the most versatile of the physical devices. It can be

used as a digitizer to provide x, y coordinate information. In addition, it can

readily be used to simulate all the logical interactive functions. This is shown in

Fig. 1-30. The tablet itself is a locator (a in Fig. 1-30). The button function can

be implemented by using a tracking symbol. The tracking symbol is positioned

FIgure 1.29 A light pen used to simulate a logical button function via menu picking.
(Courtesy of Adage, Inc.)

INTERACTIVE DEVICES 27

at or near menu buttons using the tablet stylus. The tablet coordinates are

compared with the known x, y coordinates of the menu buttons. If a match

is obtained, then that button is activated (b in Fig. 1-30). A keyboard can be

implemented in a similar manner (c in Fig. 1-30).

A single valuator is usually implemented in combination with a button. The

particular function for evaluation is selected by a button, usually in a menu.

The valuator may then be simulated by a “number line” (d in Fig. 1-30).

Moving the tracking symbol along the line generates x and y coordinates one

of which is interpreted as a percentage of the valuator’s range.

The pick function can be implemented using a locator by defining the

relative x and y coordinates of a small “hit window.” The hit window is

then made the tracking symbol, and the stylus used to position it. The x, y

coordinates of each of the line segments, objects, or subpictures of interest

are then compared with those of the current location of the hit window. If a

match is obtained, then that entity is picked. Implemented in software this can

be slow for complex pictures. Implemented in hardware yields no noticeable

delay. Although a light pen cannot be used as a digitizer, it, like the tablet,

can also be used to simulate all the logical interactive functions.

CRT Screen

1•30 A tablet used to simulate

all the logical interactive functions. (a)

Locator, (b) button, (c) keyboard, (d)

valuator, (e) pick.

e

b

Rotate X

Rotate Y

Rotate Z

Trans X

Trans Y

Trans Z

Zoom

Scale

c

123 4E

567 8C

90 . - d

+

28 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

140 SUMMARY

This chapter has attempted to provide a basic conceptual overview of computer

graphics and computer graphics hardware. A more detailed and practical view

can only be obtained by comparing actual hardware and software with these

concepts.

111 REFERENCES

1-1 Rogers, David F., and Adams, J. Alan, Mathematical Elements for Computer Graphics,
McGraw-Hill Book Company, New York, 1976.

1-2 Newman, William M., and Sproull, Robert F., Principles of Interactive Computer
Graphics 2d ed., McGraw-Hill Book Company, New York, 1979.

1-3 Foley, J. D., and Van Dam, A., Fundamentals of Interactive Computer
Graphics, Addison-Wesley Publishing Company, Reading, Mass., 1982.

1-4 Foley, J. D., and Wallace, V. L., “The Art of Natural Man-Machine Conversation,”
Proc. IEEE, Vol. 62, pp. 462—471, 1974.

1-5 Wallace, V. L., “The Semantics of Graphic Input Devices,” Computer Graphics,
Vol. 10, pp. 61—65, 1976.

1-6 Ohison, Mark, “System Design Considerations for Graphics Input Devices,” Computer,
pp. 9—18, Nov. 1978.

1-7 Bergeron, R. D., Bono, P. R., and Foley, J. D., “Graphics Programming Using the
Core System,” Computing Surveys, Vol. 10, pp. 389—443, 1978.

1-8 Davis, M. R., and Ellis, T. 0., “The RAND Tablet: A Man-Machine Graphical
Communication Device,” AFIPS Conf. Proc., Vol. 26, Part I, 1964 FJCC, pp.
325—332, 1964.

CHAPTER

TWO

RASTER SCAN GRAPHICS

Raster scan graphics devices require special procedures to generate the display,
to draw straight lines or curves, and to fill polygons to give the impression of
solid areas. This chapter examines these procedures.

24 LINE DRAWING ALGORITHMS

Since a cathode ray tube (CRT) raster display can be considered a matrix of

discrete cells (pixels) each of which can be made bright, it is not possible

to directly draw a straight line from one point to another. The process of

determining which pixels will provide the best approximation to the desired

line is properly known as rasterization. Combined with the process of rendering

the picture in scan line order it is known as scan conversion. For horizontal,
vertical, and 45° lines the choice of raster elements is obvious. For any other

orientation the choice is more difficult. This is shown in Fig. 2-1.

Before discussing specific line drawing algorithms it is useful to consider the

general requirements for such algorithms, i.e., what are the desirable characteristics

for these lines. Certainly straight lines should appear as straight lines,

and they should start and end accurately. Further, displayed lines should

or

FIgure 2.1 Rasterization of straight lines.

29

30 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

have constant brightness along their length independent of the line length and

orientation. Finally the lines should be drawn rapidly. As with most design

criteria not all can be completely satisfied. The very nature of a raster scan

display precludes the generation of a completely straight line except for special

cases. Nor is it possible for a line to precisely begin and end at specified locations.

However, with reasonable display resolution, acceptable approximations

are possible.

Only for horizontal, vertical, and 45° lines will the brightness be constant

along the length. For all other orientations the rasterization will yield uneven

brightness. This is shown in Fig. 2-1. Even for the special cases, the brightness

is orientation dependent; e.g., note that the effective spacing between pixeI
for the 45° line is greater than for the vertical and horizontal lines. This

will make the vertical and horizontal lines appear brighter than the 45° line.

Providing equal brightness along lines of varying length and orientation requires

the calculation of a square root. This will slow down the calculation. The

compromise generally made is to calculate only an approximate line length,

reduce the calculations to a minimum preferably using integer arithmetic, and

implement the result in hardware or firmware.

Most line drawing algorithms use incremental methods to simplify the calculations.

An algorithmic example of an incremental method is

a simple incremental algorithm

position = start

step = increment

1 if position — end < accuracy then 4

if position > end then 2

if position <end then 3

2 position = position — step

go to 1

3 position = positon + step

go to 1
4 finish

The simple line rasterizing algorithm given in the next section illustrates the

application of incremental methods.

2-2 DIGITAL DIFFERENTIAL ANALYZER

One technique for obtaining a rasterized straight line is to solve the governing

differential equation. For a straight line

4. Y2Y1
= constant or =

dx ISX X2X1

DIGITAL DIFFERENTIAL ANALYZER 31

The solution is

Yi+1 = y + ty

Y2Y1 (2-1)
tSx

X2 — Xi

where x, yi and X2, y2 are the end points of the required straight line and Yl is

the initial value for any given step along the line. In fact, Eq. (2-1) represents

a recursion relation for successive values of y along the required line. Used to

rasterize a line, it is called a digital differential analyzer (DDA). For a simple

DDA either 1x or y, whichever is larger, is chosen as one raster unit. A

simple algorithm which will work in all quadrants is

digital differential analyzer (DDA) routine for rasterizing a line

the line end points are (Xi, yi) and (X2, y2) assumed not equal

Integer is the integer function. Note: Many Integer functions are floor

functions; i.e., Integer(— 8.5) —9 rather than —8. The algorithm assumes
this is the case.

Sign returns —1,0,1 as its argument is <0, = 0,>0

approximate the line length

if abs(x2 — xi) � abs(y2 — yi) then

Length = abs(x2 — xi)
else

Leigth = abs(y2 — yi)
end if

select the larger of x or y to be one raster unit

= (X2 — xi)fLength

= (y — y1)fLength
round the values rather than truncate

using the sign function makes the algorithm work in all quadrants

x xi + 0.5*Sign(x)

y = yi + 0.5*Sign(y)

begin main loop
i=1

while (i � Length)

Plot(Integer(x), Integer(y))
x = x + x

y = y + y
i=i+1

end while

finish

An example illustrates the algorithm.

32 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Example 2-1 Simple DDA First Quadrant

Consider the line from (0, 0) to (5, 5). Use the simple DDA to rasterize this

line. Evaluating the steps in the algorithm yields

initial calculation

xl = 0

yi = 0

X2 = 5

y2 = 5

Length = 5

= 1

= 1

x = 0.5

y = 0.5

incrementing through the main loop yields

Plot x
y

0.5 0.5

1 (0,0)

1.5 1.5

2 (1,1)

2.5 2.5

3 (2,2)

3.5 3.5

4 (3,3)

4.5 4.5

5 (4,4)

5.5 5.5

The results are shown plotted in Fig. 2-2. Note that the end points are

both apparently exact and that the selected pixels are equally spaced along the

line. The appearance of the line is quite acceptable. However, if i is initialized

to zero instead of to one as shown, the pixel at location (5, 5) is activated.

This can lead to undesirable results. If the address of a pixel is given by the

integer coordinates of the lower left corner, then activating the pixel location

(5, 5) will yield an apparently incorrect end point for the line (see Fig. 2-2).

In addition, if a series of successive line segments is drawn, then the pixel at

location (5, 5) will be activated twice; once at the end of a line segment and

again at the beginning of the successive line segment. This may be seen as

either a brighter pixel or perhaps a pixel of a different or odd color. The next

example illustrates results in the third quadrant.

DIGITAL DIFFERENTIAL ANALYZER 33

5

4

3

2

0
FIgure 2-2 Results for a simple DDA in the first

0 1 2 3 4 5 quadrant.

Example 2-2 Simple DDA Third Quadrant

Consider the line from (0, 0) to (—8, —4) in the third quadrant. Evaluating the

algorithm yields

initial calculations

xl = 0

yi = 0
X2 = —8

y2 = —4

Length = 8
= -1

= —0.5

x = —0.5

y = —0.5

incrementing through the main loop

assuming a floor integer function yields

Plot x y

—0.5 —0.5

1 (—1,—i)
—1.5 —1.0

2 (—2,—i)
—2.5 —1.5

3 (—3, —2)
—3.5 —2.0

4 (—4,—2)
—4.5 —2.5

5 (—5,—3)
—5.5 —3.0

6 (—6, —3)
—6.5 —3.5

34 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

7 (—7,—4)

—7.5 —4.0

8 (—8,—4)
—8.5 —4.5

The results are shown in Fig. 2-3.

Although the results shown in Fig. 2-3 appear quite acceptable, considering

the lines from (0, 0) to (—8, 4) and (8, —4) will show that the rasterized line

lies to one side of the actual line and that an extra point occurs at one end of the

line; i.e., the algorithm is orientation dependent. Hence, the end point accuracy

deteriorates. Further, if a true integer function rather than the assumed floor

function is used, the results are again different. Thus, either a more complicated

algorithm which will run slower must be used, or line end point and position

accuracy must be compromised. In addition, the algorithm suffers from the

fact that it must be performed using floating point arithmetic. A more suitable

algorithm is given in the next section.

-8 -7 -6 -5 -4 -3 -2 -1 0

0

—2

—3

—4

FIgure 2-3 Results for a simple DDA in the third quadrant.

2-3 BRESENHAM’S ALGORITHM

Although originally developed for digital plotters, Bresenham’s algorithm

(Ref. 2-1) is equally suited for use with CRT raster devices. The algorithm

seeks to select the optimum raster locations to represent a straight line. To

accomplish this the algorithm always increments by one unit in either x or y

depending on the slope of the line. The increment in the other variable, either

zero or one, is determined by examining the distance between the actual line

location and the nearest grid locations. This distance is called the error.

The algorithm is cleverly constructed so that only the sign of this error

term need be examined. This is illustrated in Fig. 2-4 for a line in the first

octant, i.e., for a line with a slope between zero and one. From Fig. 2-4 note

BRESENHAM’S ALGORITHM 35

Initialize error to—i

error = error+ AX

!�.1�i (error0)
2 AX

Plot (1.1)

o� AY<! (error<0)
AX 2

Plot (1,0)

Figure 2-4 Basis of Bresenham’s algorithm.

that, if the slope of the required line through (0, 0) is greater than 1/2, then its

intercept with the line x = 1 will be closer to the line y = 1 than to the line

y = 0. Hence, the raster point at (1, 1) better represents the path of the line

than that at (1, 0). If the slope is less than 1/2, then the opposite is true. For

a slope of precisely 1/2 there is no clear choice. Here the algorithm chooses
(1, 1).

Not all lines pass precisely through a raster point. This is illustrated in

Fig. 2-5 where a line of slope 3/8 initially passes through the raster point at
(0, 0) and subsequently crosses three pixels. Also illustrated is the calculation
of the error in representing the line by discrete pixels. Since it is desirable to
check only the sign of the error term, it is initialized to — 1/2. Thus, if the slope

0.5

0

— 0.5

Figure 2-5 Error term in Bresenham’s

algorithm.

(0,

1,0)

0

—1

36 PROCEDURAL ELEMENTS FOR COMPUTER GRAPIHCS

of the line is greater than or equal to 1/2, its value at the next raster point one

unit away (1, 0) can be determined by adding the slope of the line to the error
term, i.e.,

ee+m

where m is the slope. In this case, with e initialized to — 1/2,

e= —1/2+3/8—1/8

Since e is negative, the line will pass below the middle of the pixel. Hence, the

pixel at the same horizontal level better approximates the location of the line

soy is not incremented. Again, incrementing the error term by the slope yields

e —1/8+3/841/4

at the next raster point (2, 0). Here, e is positive which shows that the line

passes above the midpoint. The raster element at the next higher vertical location

(2, 1) better approximates the position of the line. Hence, y is incremented

by one unit. Before considering the next pixel, it is necessary to reinitialize the

error term. This is accomplished by subtracting one from it. Thus,

e = 1/4 — I = —3/4

Notice that the intercept of the vertical line at x = 2 and the desired line is

— 1/4 with respect to the line y = 1. Reinitializing to — 1/2 relative to zero for

the error term yields, as above, —3/4. Continuing to the next raster unit yields

e = —3/4 + 3/8 = —3/8

Since e is negative, the y value is not incremented. This discussion illustrates

that the error term is a measure of the y intercept of the desired line at each
raster element referenced to —1/2.

Bresenham’s algorithm for the first octant, i.e., for 0 � y � tx is given
below.

Bresenham’s line rasterization algorithm for the first octant

the line end points are (Xi, Yl) and (X2, Y2) assumed not equal

Integer is the integer function

x, y, x, y are assumed integer; e is real

initialize variables

x = xi

y = yi

= x2 — x1

= y2 — yi

initialize e to compensate for a nonzero intercept

BRESENHAM’S ALGORITHM 37

e = — 1/2

begin the main ioop
for I = 1 to x

Plot(x, y)

while (e � 0)

y=y+1
e=e— 1

end while

x=x+1

e = e + zy/zx
next i

finish

A flowchart is given in Fig. 2-6. An example is given below.

Figure 2-6 Flowchart for Bresenham’s algorithm.

38 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Example 2-3 Bresenham’s Algorithm

Consider the line from (0, 0) to (5, 5). Rasterizing the line with the Bresenham.

algorithm yields

initial calculations

x =0

y=0

= 5

= 5

e = 1 — 1/2 = 1/2

incrementing through the main ioop yields

Plot e x
y

1/2 0 0

1 (0,0)
—1/2 0 1

1/2 1 1

2 (1,1)

—1/2 1 2

1/2 2 2

3 (2,2)
—1/2 2 3

1/2 3 3

4 (3,3)
—1/2 3 4

1/2 4 4

5 (4,4)
—1/2 4 5

1/2 5 5

The results are shown in Fig. 2-7 and are as expected. Note that the raster

unit at (5, 5) is not activated. This raster unit may be activated by changing

the for-next loop to 0 to it. The first raster unit at (0, 0) may be eliminated

by moving the Plot statement to just before next i.

2-4 INTEGER BRESENHAM’S ALGORITHM

Bresenham’s algorithm as presented above requires the use of floating point

arithmetic and division to calculate the slope of the line and to evaluate the

error term. The speed of the algorithm can be increased by using integer

arithmetic and eliminating the division. Since only the sign of the error term is

important, the simple transformation

INTEGER BRESENHAM’S ALGORITHM 39

5

4

3

2

I F
-

-

-

-4 F
I F
-

-

-

-1 -
ii- Figure 2-7 Results for Bresenham algorithm in

V 1 2 3 4 5 the firstoctant.

= 2e&

of the error term in the previous algorithm yields an integer algorithm. This

allows the algorithm to be efficiently implemented in hardware or firmware.

The modified integer arithmetic algorithm for the first octant, i.e., for 0 � iy
� zx, is

Bresenham’s integer algorithm for the first octant

the line end points are (Xi, yi) and (X2, y2) assumed not equal

all variables are assumed integer

X = Xl

y = yi

= X2 — Xi

= y2 — yi

initialize ë to compensate for a nonzero intercept

= 2*y —

begin the main ioop
for i = 1 to x

Plot(x, y)

while (e � 0)

y=y+1
= — 2*x

end while

x=x+1

= + 2*y
next i

finish

The flowchart in Fig. 2-6 is applicable with appropriate changes in the calculation
of the error term.

40 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

x

2-5 GENERAL BRESENHAM’S ALGORITHM

A full implementation of Bresenham’s algorithm requires modification for lines

lying in the other octants. These can easily be developed by considering the

quadrant in which the line lies and its slope. When the absolute magnitude of
the slope of the line is greater than 1, y is incremented by one and Bresenham’s
error criterion is used to determine when to increment x. Whether x or y is

incremented by ±1 depends on the quadrant. This is illustrated in Fig. 2-8.
The general algorithm can be stated as

generalized integer Bresenham’s algorithm for all quadrants

the line end points are (Xi, yi) and (X2, y2) assumed not equal
all variables are assumed integer
the Sign function returns —1,0, 1 as its argument is <0, = 0, or >0

initialize variables

x = xi

y = yi

= abs(x2 — Xi)

= abs(y2 — yi)

5i = Sign(x2 — Xi)

52 = Sign(y2 — yi)

interchange tSx and iy depending on the slope of the line

if y > x then

Temp =
=

= Temp

y

Increment

y by 1

Increment

x by-i

Increment

y byl

Increment

x by I

Figure 2-8 Conditions for general Bresenham’s algorithm.

GENERAL BRESENHAM’S ALGORITHM 41

Interchange = 1
else

Interchange = 0
end if

initialize the error term to compensate for a nonzero intercept
= 2*y —

main loop
for I = I to x

Plot(x, y)

while (� 0)

if Interchange = 1 then
X = X + Si

else

y = y + S2

end if

=

end while

if Interchange = 1 then

y = y + S2
else

X = X + Si

end if

= + 2*y
nexti

finish

Example 24 Generalized Bresenham’s algorithm

To illustrate the general Bresenham algorithm consider the line from

(0, 0) to (—8, —4). This line was previously considered in Example 2-2 using

a simple DDA algorithm

initial calculations

x =0

y=O

= 8

= 4

Sj = —1

52 = — I

Interchange = 0
e =0

incrementing through the main loop

o 0

o —1

—1 —1

—2 —1

—2 —2

—3 —2

—4 —2

—4 —3

—5 —3

—6 —3

—6 —4

—7 —4

—8 —4

— F
- - -

- N -
- -

- N -
- - N -

—_—

i h

Figure 2-9 Results for Bresenham’s general algorithm in the third quadrant.

2-6 CIRCLE GENERATION—BRESENHAM’S ALGORITHM

In addition to rasterizing straight lines it is necessary to rasterize other more

complicated functions. Considerable attention has been given to conic sections,

i.e., circles, ellipses, parabolas, hyperbolas (see Refs. 2-2 to 2-5). The circle

42 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Plot e x y

1 (0,0)

2 (—1,—i)

3 (—2,—i)

4 (—3, —2)

5 (—4, —2)

6 (—5,—3)

7 (—6, —3)

8 (—7,—4)

0

—16

—8

0

—16

—8

0

—16

—8

0

—16

—8

0

The results are shown in Fig. 2-9. Comparison with Fig. 2-3 shows that
the results are different.

—8 —7 —6 —5 —4 —3 —2 —1
h

—1

—2

—3

CIRCLE GENERATION—BRESENHAM’S ALGORITHM 43

1-1 01

10 1]

Figure 2-10 Generation of a complete circle from the first octant.

has of course received the greatest attention. (See also Refs. 2-6 to 2-9.) One

of the most efficient and easiest to derive of the circle algorithms is due to

Bresenham (Ref. 2-10). To begin, note that only one octant of the circle need

be generated. The other parts can be obtained by successive reflections. This

is illustrated in Fig. 2-10. If the first octant (0 to 450 ccw) is generated, the

second octant can be obtained by reflection through the line y = x to yield the

first quadrant. The results in the first quadrant are reflected through the line

x = 0 to obtain those in the second quadrant. The combined results in the
upper semicircle are reflected through the line y = 0 to complete the circle.

Figure 2-10 gives the appropriate two-dimensional reflection matrices.

To derive Bresenham’s circle generation algorithm consider the first quadrant

of an origin-centered circle. Notice that, if the algorithm begins at x = 0,

y = R, then for clockwise generation of the circle y is a monotonically decreasing

function of x in the first quadrant (see Fig. 2-11). Similarly, if the algorithm

y

Reflect first quad rant about x =

flect first octant about y=x
10 1
Li 0

upper semicircle

about y=0 [10]

x FIgure 2-11 First quadrant of a circle.

44 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

begins at y = 0, x = R, then for counterclockwise generation of the circle x is

a monotonically decreasing function of y. Here, clockwise generation starting

at x = 0, y = R is chosen. The center of the circle and the starting point are

both assumed to be located precisely at pixel elements.

For any given point on the circle, then, for clockwise generation of the circle

there are only three possible selections for the next pixel which best represents

the circle: horizontally to the right, diagonally downward to the right, and

vertically downward. These are labeled mH, mD, my, respectively, in Fig. 2-12.

The algorithm chooses the pixel which minimizes the square of the distance

between one of these pixels and the true circle, i.e. the minimum of

mH = (xg + 1)2 + (y)2 — R21

mD=I(xi+1)2+(yI— 1)2—R21

my = I(x)2 + (y — 1)2 — R21

The calculations can be simplified by noting that there are only five possible

types of intersections of the circle and the raster grid in the vicinity of the point

(xi, yj. These are shown in Fig. 2-13.

The difference between the square of the distance from the center of the

circle to the diagonal pixel at (x + 1, y — 1) and the distance to a point on the
circle R2 is

=(x+ 1)2+(y— 1)2—R2

As with the Bresenham line rasterizing algorithm, it is desirable to use only

the sign of an error term, rather than the magnitude, to select the appropriate

pixel which best represents the actual circle.

If <0, then the diagonal point (x + 1, yg — 1) is inside the actual circle,

i.e. case 1 or 2 in Fig. 243. It is clear that either the pixel at (x + 1, y1), i.e.
mH, or that at (x1 ± 1, — 1), i.e. mD, must be chosen. To decide which, first

consider case 1 by examining the difference between the squares of the distance

(x1,y1) (x1÷I,y1)

.

(x,y1—1) (x1÷1,y1—1)

. .
Figure 2-12 First quadrant pixel selections.

CIRCLE GENERATION—BRESENHAM’S ALGORITHM 45

1)

(x1—1 1)

Figure 2-13 Intersection of a circle

and the raster grid.

from the actual circle to the pixel at mH and the distance from the actual circle

to the pixel at mD, i.e.

6 = (xi + 1)2 + (y,)2 —R21 — I(x + 1)2 + (yj — 1)2 —R21

If 6 <0, then the distance from the actual circle to the diagonal pixel (mD)

is greater than that to the horizontal pixel (mH). Conversely, if 6 > 0, then the

distance to the horizontal pixel (mH) is greater. Thus, if

o �o choose mHat(xI+ l,y1)

o > 0 choose mD at (x + 1, y — 1)

The horizontal move has been selected when 0 = 0, i.e., when the distances

are equal.

The work involved in evaluating 0 can be reduced by noting that for
case 1

(x1+ 1)2+(y,)2—R2 �0

(x1+1)2+(y1—1)2—R2<0

because the diagonal pixel at (x + 1, y1 — 1) is always inside the circle and the
horizontal pixel at (x + 1, y1) is always outside the circle. Thus, 0 may be
evaluated as

o =(x+ 1)2+y)2—R2+(x+1)2+(,y— 1)2 R2

Completing the square for the (y)2 term by adding and subtracting —2y, + I
yields

o = 2[(xe+ 1)2+(y— 1)2 —R2]+2y1— 1

Using the definition for iS gives

0 = 2(+ y,) — 1

which is considerably simpler.

46 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

In considering case 2 of Fig. 2-13, note that, since y is a monotonically

decreasing function, the horizontal pixel at (x, + 1, y) must be chosen. Examining

the components of 6 shows that

(x+ 1)+(y1)2—R2 <0

(x1+1)+(y—1)2—R2 <0

since both the horizontal pixel at (x + 1, y) and the diagonal pixel at

(x1 + 1, y — 1) lie inside the actual circle for case 2. Hence, 6 < 0 and the

correct pixel at (x1 + 1, y,) is selected using the same criteria as in case 1.

If > 0, then the diagonal point (x + 1, y, — 1) is outside the actual

circle, i.e. case 3 or 4 in Fig. 2-13. Here, it is clear that either the pixel at

(x, + 1, yj — 1), i.e. mD, or that at (xi, Yl — 1), i.e. my, must be chosen. Again

the decision criteria can be obtained by first considering case 3 and examining

the difference between the squares of the distance from the actual circle to the

diagonal pixel at mD and the distance from the actual circle to the pixel at my,
i.e.

6’ =I(x+ 1)2+(y— 1)2—R21—I(x1)2+(yj— 1)2—R21

If 6’ < 0, then the distance from the actual circle to the vertical pixel at
(xi, Yi — 1) is greater and the diagonal move mD to the pixel at (x + 1, ‘, — 1)
should be chosen. Conversely, if 6’ > 0, then the distance from the actual circle
to the diagonal pixel is greater and the vertical move to the pixel at (xi, y — 1)
should be chosen, Thus, if

6’ � 0 choose mD at (x, + 1, yj — 1)

6’ > 0 choose my at (xi, y, — 1)

Here the diagonal move has been selected when 6’ = 0, i.e., when the distances

are equal.
Again examination of the components of 6’ shows that

(x,+1)2+(y— 1)2—R2 � 0

(x,)2 + (3,, — 1)2 — R2 <0

since the diagonal pixel at (x + 1, y — 1)is outside the actual circle while the
vertical pixel at (x,, Yi — 1) is inside the actual circle for case 3. This allows 6’
to be written as

6’ = (x1 + 1)2 + (y’ — 1)2 — R2 + (x1)2 + (y — 1) — R2

Completing the square for the (x)2 term by adding and subtracting 2x’ + 1 yields

6’ =2[(xj+1)2+(yj—1)2—R2]—2x1— 1

Using the definition of then gives

CIRCLE GENERATION—BRESENHAM’S ALGORITHM 47

6’ = 2(—x,)— 1

Now, considering case 4, again note that, since y is a monotonically decreasing

function as x monotonically increases, the vertical pixel at (xi, y, — 1) must

be selected. Examining the components of 6’ for case 4 shows that

(x,+1)2+(y,—1)2—R2>O

(x)2+(y,— 1)2—R2>O

since both the vertical and diagonal pixels are outside the actual circle. Hence,

6’ > 0 and the correct choice of my is selected using the same criteria developed
for case 3.

It remains only to examine case 5 of Fig. 2-13, which occurs when the

diagonal pixel at (x + 1, y — 1) lies on the actual circle, i.e., for tj = 0.

Examining the components of 6 shows that

(x+ 1)2+(y,)2—R2>0

(x+ 1)2+(y1— 1)2—R2 =0

Hence, 6 > 0 and the diagonal pixel at (x + 1, y, — 1) is selected. Similarly the

components of 6’ are

(x,+ 1)2+(y— 1)2—R2 =0

(xj)2+(yj— 1)2—R2<0

and 6’ < 0 which is the condition for selecting the correct diagonal move to

(x1 + 1, y — 1). Thus, the case of = 0 is satisfied by the same criteria as for
<0 or for > 0.

Summarizing the results above yields

zi < 0
o � 0 choose the pixel at (x, + 1, y,) -+ m

o > 0 choose the pixel at (x + 1, y — 1) .+

ti > 0

0’ > 0 choose the pixel at (x + 1, y — 1) -+ mi

0’ > 0 choose the pixel at (xi, y, — 1) -+ my

= 0 choose the pixel at (x, + 1, y, — 1) -+ m

Simple recursion relationships which yield an incremental implementation

of the algorithm are easily developed. First, consider the horizontal movement

mH to the pixel at (x,+ 1, yj. Call this next pixel location (i+ 1). The coordinates

of the new pixel and the value of zS are then

xi+1=xi+1

Yi+1 = Yi

A i2 i2 n2

i+1 — IXI+1 1) -1- Yi+1 — 1) —

48 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

= (x,+i)2 + 2x+ + 1 + y — 1)2 — R2

=(x,+ 1)2+(y,— 1)2—R2+2x,+i + 1

= tj + 2.j+i + 1

Similarly the coordinates of the new pixel and the value of t, for the move mD

to (x + 1,)‘, — 1) are

x+i = x + 1

Yi+1 = Yi — 1

i+i = + 2x+i — 2y+i + 2

Those for the move my to (xi, y — 1) are

xi+1 = x

Yi+1 = — 1

i+1 = — 2Y+i + 1

A pseudo implementation of the Bresenham circle algorithm is given below.

Bresenham’s incremental circle algorithm for the first quadrant

all variables are assumed integer

initialize the variables

x1 = 0

yi = R

= 2(1 — R)

Limit = 0

P1ot(x, yi)

if y � Limit then 4

determine the case 1 or 2, 4 or 5, or 3

if tS <0 then 2

if tS > 0 then 3

if tS = 0 then 20

determine whether case 1 or 2

2 8=2t+2y—1
if 8 � 0 then 10

if 8 > 0 then 20

determine whether case 4 or 5

3 8’ =2—2x—1

if 8’ �Othen2O

if 8’ > 0 then 30

perform the moves

move mH

10 x1=x1+1
= + 2x + 1

CIRCLE GENERATION—BRESENHAM’S ALGORITHM 49

go to 1

move mD

20 x1=x+1
= — 1

= tS + 2x — 2y1 + 2

go to 1

move my

30 Yi=Y11

= — 2Yi + 1

go to 1
4 finish

The limit variable is set to zero to terminate the algorithm at the horizontal

axis. This yields the circle in the first quadrant. If only a single octant is

desired, then setting Limit = Integer (R/\/5) will yield the second octant (see

Fig. 2-10). Reflection about y = x will then yield the first quadrant. A

flowchart is given in Fig. 2-14.

Figure 2-14 Flowchart for Bresenham’s incremental circle algorithm in the first
quadrant.

50 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Example 2-5 Bresenham’s Circle Algorithm

To illustrate the circle generation algorithm, consider the origin-centered circle

of radius 8. Only the first quadrant is generated.

initial calculations

x=0

y= 8

= 2(1 — 8) = —14

Limit = 0

incrementing through the main ioop

1 Plot(O, 8)

y1> Limit continue

i<0 goto2

2 6=2(—14)+2(8)— 1 =—13<0 gotolO
10 x0+11

= —14+2+1 = —11

go to 1

1 PIot(1, 8)

y> Limit continue

S<0 goto2

2 8=2(—11)+2(8)—1=—7<0gotolO
10 x1+12

= —11 + 2(2) + 1 = —6

go to 1

1 Plot(2,8)

continue

The details of each successive pass through the algorithm are summarized in

the table below. The list of pixels selected by the algorithm is (0, 8), (1, 8),

(2, 8), (3, 7), (4, 7), (5, 6), (6, 5), (7, 4), (7, 3), (8, 2), (8, 1), (8, 0)

Plot iS 6 8’ x
y

—14 0 8

(0, 8)

—11 —13 1 8

(1, 8)

—6—7 2 8

(2, 8)

—12 3 3 7

(3, 7)

—3—11 4 7

(4, 7)

—3 7 5 6

SCAN CONVERSION—GENERATION OF THE DISPLAY 51

(5, 6)

1 5 6 5

(6, 5)

9 —11 7 4

(7, 4)

4 3 7 3

(7, 3)

18 —7 8 2

(8, 2)

17 19 8 1

(8, 1)

18 17 8 0

(8, 0)

complete

The results are shown in Fig. 2-15 along with the actual circle. The algorithm
is easily generalized for other quadrants or for circular arcs.

Circle radius is 8

Bright pixels

0 8

9 1 8
8 2 8
7 3 7

6 4 7

5 5 6

4 6 5
3 7 4

2 7 3
8 2

o 8 1

0123456789
8 0

FIgure 2-15 Results for Bresenham’s incremental circle generation algorithm.

2-7 SCAN CONVERSION—GENERATION OF THE DISPLAY

In order to display the rasterized image using video technology it is necessary to
organize the picture into the precise pattern required by the video display (see

Sec. 1-8). This is the process called scan conversion. In contrast to the display
list for a random scan or line drawing display (see Sec. 1-4) which contains

only information about lines or characters, here the display list must contain

information about every pixel on the screen. Further, it is necessary that this
information be organized and presented at video rates in scan line order, that is,

from the top to the bottom and from left to right. Four ways of accomplishing

this are real-time scan conversion, run-length encoding, cell organization, and
frame buffer memory.

52 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

2-8 REAL-TIME SCAN CONVERSION

In real-time or on-the-fly scan conversion the picture is randomly represented

in terms of visual attributes and geometric properties. Typical visual attributes

are color, shade, and intensity, while x, y coordinates, slopes, and text are

typical geometric properties. These geometric properties are ordered in y. The

processor scans through this information and calculates the intensity of every

pixel on the screen during the presentation of each frame. With real-time scan

conversion large amounts of memory are unnecessary. Memory requirements

are usually limited to that necessary to hold the display list plus one scan line.

Further, since picture information is held in a randomly organized display list,

it is easy to add or delete information from the list. This greatly facilitates

dynamic presentations. However, the complexity of the display is limited by

the speed of the display processor. This usually means that the number of lines

or polygons in the picture, the number of intersections on a scan line, or the

number of gray scales or colors is limited.

The simplest implementation for real-time scan conversion processes the

entire display list to obtain the intersections (if any) of each line in the display

list with a particular scan line each time a scan line is displayed. At video

refresh rates only 63.5 microseconds is available to process the entire display

list each time a scan line is displayed. This short time precludes using this

technique for more than the simplest line drawing display. Since, in general,

not every line in a picture will intersect every scan line, the amount of work

required can be reduced by maintaining an active edge list. The active edge list

contains those lines in the picture which intersect the scan line.

The active edge list can be developed and maintained using a number of

techniques. The lines in the picture are first sorted by the largest value of y.

A particularly simple technique uses two floating pointers into this sorted list.

A begin pointer is used to indicate the beginning of the active edge list, and an

end pointer to indicate the end of the active edge list. A single line drawing

along with three typical scan lines is shownin Fig. 2-16a. Figure 2-16b shows a

typical sorted list of the lines in the figure. The begin pointer is initially set at

the beginning of the list, i.e. at BC. The end pointer is set at the last line in the

list that begins above the scan line under consideration, i.e. at BD. As the scan

moves down the picture the end pointer is moved down to include those new
lines which now start on or above the current scan line. At the same time the

begin pointer is moved down to eliminate lines which end above the current

scan line. This is illustrated in Fig. 2-16b for the scan lines labeled 2 and 3 in

Fig. 2-16a. Figures 2-16c and d illustrate a problem with this simple algorithm.

The sort order of the lines which begin at the same y value influences the size

of the active edge list. For example, in Fig. 2-16d the line BC never drops off

the active edge list. Thus, more information than necessary may be processed.

These and similar problems may be eliminated at the expense of additional
data structure. Further, the calculation of the intersection of each line in the

REAL-TIME SCAN CONVERSION 53

Scan line 1 2 3 1 2 3 1 2 3

BC-b BC BC BA-b BA-b BA BD-b BD—b BD-b

BA BA-b BA BC BC BC-b BA BA BA

BD-e BD BD-b BD—e BD BD BC-e BC BC

CD CD-e CD CD CD—e CD CD CD-e CD

AD AD AD-e AD AD AD-e AD AD AD-e

b c d

Figure 2-16 A simple active edge list.

picture with individual scan lines may be simplified. First, a y-bucket sort

of all the lines in the picture is performed. A y-bucket sort illustrated in
Fig. 2-17b, simply creates a storage location or bucket for each scan line. If,

for example, there are 512 scan lines, then 512 buckets are used. As the lines

in the display list are examined, information about each line is placed in the

bucket corresponding to the largest y value of the line. For simple black-and-

white line drawings only the x intercept on the bucket scan line, ix the change

in the x intercept from scan line to scan line, and ty the number of scan lines

crossed by the line need be recorded. For simple pictures most of the y buckets

will be empty.

The active edge list for the current scan line is formed by adding information

from the y bucket corresponding to that scan line. The x intercepts are

sorted into scan line order, and the active edge list scan-converted. After the

active edge list is scan-converted, ty for each line on the active edge list is

decremented by one. If ty < 0, the line is dropped from the active edge list.

Finally, the x intercepts for the new scan line are obtained by adding tx to the

previous values for each line on the active edge list. The process is repeated

for all scan lines. The active edge list for scan lines 3, 5, and 7 for the simple

line drawing of Fig. 2-17a is given in Fig. 2-17c.

If a fixed y-bucket size is used, a fixed amount of storage is available for
intersections on each scan line. Thus, the maximum number of intersections on

any given scan line is predetermined. Hence, the complexity of the picture is

limited. One technique for avoiding this limit is to use a sequential indexed list

Scan line

3,

a

tA bucket sort is a form of radix sort with the radix equal to the number of buckets (scan
lines). See Knuth, Ref. 2-11.

54 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Scan line 3: XBA + IXBA, IXBA,

‘YBA — I,XBC + lXBC,

IXBC, ‘WBC — 1

Scan line 5: XBA + 3IXBA, IXBA,

‘YBA — 3,XCD + IXCD,

IXCD, ‘WCD — 1

Scan line 7: XCD + 3IXCD, IXCD,

YCD — 3,XAD + IXAD,

ZXAD,ZYAD —

y-bucket

1 null

2 XBA,IXBA,IYBA,

XBC, IXBC, ‘WBC

3 null

4 XCD,1XCD,1YCD

5 null

6 XAD,IXAD,IYAD

7 null

8 null

1 Scan line —______

2 —-

B

a

Active Edge List

b

y-bucket Indexed List

1 _______ 1

2

2f 1

1 1

8 6

7

5j_____ 8

6 12

10

7 __________ 11

12

8 1 13
14

15

d

Completion or null.
I End of scan line.

Figure 2-17 A y-bucket sort, active edge list, and sequential indexed data structure.

REAL-TIME SCAN CONVERSION 55

for the data structure. In this case, each y bucket contains only a pointer to the

location in the data structure of the information for the first line originating on

that scan line. The sequential indexed list and the data structure for Fig. 2-17a

are shown in Fig. 2-17d. For the particular data structure shown, it is assumed

that data for a given scan line are accessed in groups of three until a null or

completion is indicated.

The technique for determining line intersections with individual scan lines

yields acceptable results for vertical and near vertical lines. However, for nearly

horizontal lines very few intersection points will be calculated. This will yield

an unacceptable line representation. A simple solution is to determine the

intersections on two successive scan lines and activate all the pixels between

the intersections. This is shown in Fig. 2-18. For horizontal line segments the

end points are used.

Since the entire picture is processed for each video frame, real-time scan

conversion lends itself to highly interactive graphics. When a y-bucket sort is

used, lines can be added to or deleted from the display list by simply adding or

deleting them from the appropriate y bucket and the associated data structure.

This is easiest for fixed-length y buckets as shown above in Fig. 2-17b. In

order to conveniently add and delete lines to the display, a linked list data

structure is used. This is shown in Fig. 2-19. Note that in the linked list shown

in Fig. 2-19b the end of each data group and the location of the next data

group on that scan line, e.g. item 4, as well as the completion of the link, are

required. If the line BD is now added to the figure, the linked list is modified

as shown in Fig. 2-19d. The information about the line BD is added at the

end of the data list. The display processor is directed to this location by the
modified link instruction at location 8. If the line BC is now deleted from the

figure, the linked list is modified as shown in Fig. 2-19f. Here, notice that the

link instruction at location 4 has been modified to jump around the locations

containing information about the line BC.

This simple example illustrates the basic concepts for modifying a linked

list for interactive graphics applications. However, it does not illustrate all the

Figure 2-18 A simple scan conversion technique for nearly horizontal lines.

56 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

1 Scan line —______ y-bucket Linked list

2

1 I X3

2 ZXBA

: :
____ : :::

8
7 YBC

: __________
__________ End of data group.

6 13

n = n gives the location of
10 XCD

— the next data group on
that scanline. 7 II YCD

_________ Link completion or null. _________ 12
___________ End of scan line. ___________

13 xAD

14 ZXAD

15 YAD

b 16

Figure 2-19 A y-bucket sort and linked list for interactive graphics applications.

required features. For example, it should be obvious that as illustrated the

length of the list will continuously grow unless the “lost” locations (5 to 8 in

Fig. 2-191) are reused or the list is compressed. For further discussion of linked

lists and data structures see, for example, Ref. 2-12.

Because of the difficulty of accomplishing the above algorithm in software

in the short time available for one video frame, successful software implementations

have been used principally for aircraft flight, ship navigation, and similar

simulation systems.

2-9 RUN-LENGTH ENCODING

Run-length encoding seeks to take advantage of the fact that large areas of

the picture have the same intensity or color. In its simplest form run-length

encoding specifies only an intensity and the number of successive pixels on a

a

RUN-LENGTH ENCODING 57

Scan Line —_____

2
- B

Scan line
— _____

B

2 — _____ — ___

3 — ______ — ___

4 - _,c

y-bucket Linked list
C

____ 1

2[I

EI1

] 6

6113 1
“ F I

8I113
14

15

16

17

18

19

d 20

Figure 2-19 (Continued.)

y-bucket Linked list

i

2

[j j

3 I I

ij

i

2

3

XBA

ZXBA

YBA

XBC

:

[

r13

6

7

:
10

XBC

YBC

XCD

&CD

7

8E H

f ii

13

YCD

XAD

f

14

15

16

17

18

19

20

ZXAD

YAD

XBD

&BD

YBD

58 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

[Intensity IRun length]

10

7 11111 0 6 I’I’I 0

20

30O 10 a 20 30

10

.—Lo171 I I8j0j1J

20

30

0 10 20 30
b

Figure 2-20 Run-length-encoded pictures.

given scan line with that intensity. Figure 2-20a shows a simple black-and-white

line drawing on a 30 x 30 raster and the associated encoding for scan lines 1,

15, and 30. The encoded data is to be considered in groups of two. The first

number is the intensity, and the second is the number of successive pixels on

that scan line with that intensity

I Intensity Run Lengthl

Thus, in Fig. 2-20a scan line 1 has 30 pixels of zero intensity, i.e., black or the

background intensity. The complete picture can be encoded with 208 numbers.

Pixel-by-pixel storage, i.e., one piece of information for each pixel (a bit map),

would require 900 intensity values for the 30 x 30 raster of Fig. 2-20a. The

data compression using run-length encoding in this case is 4.33:1.

RUN-LENGTH ENCODING 59

Solid figures are easily handled with run-length encoding. This is shown in
Fig. 2-20b along with the encoding for scan lines 1, 15 and 30. Of particular
interest is scan line 15. For Fig. 2-20b the entire picture can be encoded using
136 numbers for a data compression of 6.62:1. Pictures with solid figures encode
with fewer pieces of information than line or wire frame drawings because two
edges are covered with one pair of intensity-length values.

This simple run-length encoding scheme can easily be extended to include
color. For color, the intensity of each of the red, green, and blue color guns
is given followed by the number of successive pixels for that color on that scan
line, e.g.

I Red Intensity 1 Green Intensity Blue Intensity I Run Length J

For a simple color display in which each individual color gun is either

completely off (0) or fully on (1), the encoding for scan line 15 of Fig. 2-20b

with a yellow triangle on a blue background is (see Table 1-1)

10101117111110181010111151

Data compression for run-length-encoded pictures can approach 10:1. This

is significant not only because it saves memory but also because it saves storage

space for computer-generated animated sequences or film. It also saves transmission

time for wire photos and facsimile where run-length encoding is extensively

used. For example, consider the storage requirements for a 512 x 512

x 8 resolution picture for a 30-second animated film sequence at video rates

(30 frames per second). The storage requirement is

(512 x 512 x 8 x 30 x 30)/(8 bits/byte) = 236 megabytes

This will fit only on the largest disk units. However, even a modest run-length

encoding data compression of 4:1 will allow storage on a single small to medium-
sized disk.

Run-length encoding has disadvantages. Since the run lengths are stored

sequentially, adding or deleting lines or text from the picture is difficult and

time-consuming. There is overhead involved with both encoding and decoding

the picture. Finally the storage requirement can approach twice that for pixel-

by-pixel storage for short runs. This is illustrated in Fig. 2-21 where the picture

consists of alternate black and white vertical lines one pixel wide. Here the

run-length encoding is

Lililolil

repeated 15 times. Thus, a total of 1800 values must be stored for the runlength-encoded

picture in contrast to 900 for pixel-by-pixel storage. This is a

data compression of 1/2.

60 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

0

30j11hji1jhhuiO 15X 11111011]
Figure 2-21 Run-length encoding limits for short runs.

Laws (Ref. 2-13) and Hartke, Sterling, and Shemer (Ref. 2-14) discuss

efficient implementation of run-length encoding schemes.

2-10 CELL ENCODING

Run-length encoding considers the picture linearly or one-dimensionally. Cell

encoding seeks to represent areas of the picture, i.e. cells, with a minimum

of information. The simplest alphanumeric CRT terminal uses cell encoding to

allow real-time operation. In such a terminal the screen area is divided into

cells or areas large enough to contain one character. For example, the screen

may be divided into areas containing 8 x 8 pixels. This yields 64 x 64 cells for

a 512 x 512 display or 60 x 80 cells for a 480 x 640 video compatible display

with a standard 4:3 aspect ratio. A cell of 8 x 8 pixels is usually used for a 5 X

7 dot matrix character display. The extra pixels are used for spacing between

characters and for lower case characters with descenders. An example is shown

in Fig. 2-22. Since every other row of cells is left blank for readability, the

8 8

6 6

4 4
Base

line
2 —2

o o
0 2 4 6 8 0 2 4 6 8

Figure 2-22 A cell-encoded character mask.

CELL ENCODING 61

ly

—..x

a Reflection b Translation c Masking

Figure 2-23 Cell encoding.

latter configuration yields the 30 lines of 80 characters each typical of many

alphanumeric displays. Other cell sizes are also used. For example, a cell

containing 8 x 10 pixels, typically used for 7 x 9 dot matrix characters, yields

an alphanumeric display with 24 lines of 80 characters each. The pixel patterns

for each character are stored in read-only memory.

The cell encoding technique can be extended to include line drawings, by
also storing line segment patterns in read-only memory. Combinations of these

segments in adjacent cells can then be used to construct complete lines. For

any n x n cell there are 2z2 possible pixel patterns. For any reasonable
value of n this is far too many patterns to store; e.g., if n = 8, then

= 1.8 x iO’9. However, not all patterns represent possible line segments.

For example, Bresenham’s algorithm discussed above shows that for lines with

slope between 0 and 1 there are at most 2’ — I patterns which represent line

segments. Finally, Jordan and Barrett (Ref. 2-15) have shown that by using

translation, reflection, and masking techniques only 108 line segment patterns

are required for an 8 x 8 cell.

Figure 2-23 illustrates a line segment starting at the lower left hand corner

of an 8 x 8 cell. The line was rasterized using Bresenham’s algorithm. The

line has a positive slope. Reflection about the x axis (Fig. 2-23a) yields a line of

negative slope starting at the upper left hand corner. Translation vertically in

y yields a line starting above the base of the cell (Fig. 2-23b). Translating both

in x and y yields a line starting in the interior of the cell. Masking off a portion

of a line as shown in Fig. 2-23c provides for the short segments at the end of

a line. In order to allow intersecting lines within a cell, provision is made for

combining cell patterns using a logical OR operator. Successive application of

this operation allows an infinite variety of intersection patterns. This is shown

in Fig. 2-24.

Interacting with a cell-encoded display is discussed by Barrett and Jordan

(Ref. 2-16). Interaction is most efficient when a linked list is used to maintain

the top-to-bottom, left-to-right ordering of the display file. However, the level

of interaction possible is not high.

OR OR

Figure 2-24 Logical OR combinations of cell-encoded line segments.

62 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Cell encoding has been extended to color displays and to solid image representations

(Ref. 2-17). However, data compression rates are not as great as

for black-and-white (bilevel) displays.

2-11 FRAME BUFFERS

In introducing raster refresh graphic displays in Chap. 1 the tacit assumption

was made that the raster display was implemented as a frame buffer. It
was further assumed that the frame buffer consisted of random access semiconductor

memory. Although this is the most common method of implementing

a frame buffer, rotating memory, either disk or drum, can also be used (see
Refs. 2-18 and 2-19).

Frame buffers have also been implemented using shift registers (see Ref.

2-20). A shift register can conceptually be considered as a first in, first out

(FIFO) stack. If the stack is full, then as new data bits are added to the top of

the stack the first data bits are pushed out the bottom. The data pushed out

of the stack can be interpreted as the intensity of a pixel on a scan line. Shift

register frame buffers can be implemented using one shift register per pixel on a

scan line with each shift register as long as the number of scan lines. In this case

each shift register contributes one pixel on a horizontal scan line. Alternately,

they can be implemented as a single large shift register of length equal to the
number of pixels on a scan line times the number of scan lines.

Figure 2-25 shows a simple six-line display with eight pixels per scan line. A

shift register frame buffer is also shown. The frame buffer is implemented with

eight shift registers each 6 bits long. The bit pattern for the display is shown in

the frame buffer. The pattern for the scan line labeled 3 in the display is shown

about to be pushed out of the bottom of the shift registers. The sequencing of

Shift registers
Data in

20 1 1 1 1 1 1 0
6

11 1 1 1 1 1 1 1

60 0 0 0 0 0 0 0

50 0 0 1 0 0 0 0

40 0 0 1 1 0 0 0
2

-—300 1 1 1 1 0 0

12345678

Data out Display

Figure 2-25 Shift register frame buffer.

FRAME BUFFERS 63

Host Update Frame j Refresh Display _________ Video
CPU process buffer] process controller] monitor

Figure 2-26 Frame buffer graphics system.

the output of the shift registers must be carefully controlled to correspond to
the video scan rate.

Both rotating memory and shift register frame buffer implementations exhibit

low levels of interactivity. For rotating memory implementations this is

because of disk access time. For shift register implementations reduced interactivity

occurs because changes can only be made as bits are being added to

the register.

Conceptually the configuration of a frame buffer graphics system is similar

to that for a line drawing refresh display as shown in Fig. 2-26. An application

program running in the host computer updates the frame buffer as needed.

The display controller cycles through the frame buffer in scan line order and

passes the required information to the video monitor to refresh the display. The

frame buffer can be implemented either as part of the host computer memory

or as a separate memory. These configurations are shown in Fig. 2-27 impleCoi

bus

Host sy

bus

a

G

b

Figure 2-27 Frame buffer architecture.

64 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

mented with a common bus structure. Although implementing the frame buffer

in the main memory (see Fig. 2-27a) makes it possible to manipulate the

buffer with the host processor, it is generally more efficient to add a special-

purpose graphics processor to the system. The graphics pfocessor handles the

detailed manipulation of the frame buffer upon receipt of commands from the

main processor. With a single memory and two processors on a common bus,

bus contention can occur. This reduces the overall system performance. Thus,

for high-performance systems the architecture shown in Fig. 2-27b is generally

preferred. Here, the frame buffer memory is separate from the main memory,

which eliminates bus contention. Further, the graphics subsystem can be optimized

to meet the update requirements of the frame buffer and hence increase

system performance.

2-12 ADDRESSING THE RASTER

It is conceptually easiest to consider a pixel in a raster or frame buffer to

have two-dimensional coordinates x, y as shown in Fig. 2-28. Digital memory

is, however, arranged as a single linear list of addresses. Thus, it is necessary

to convert from the two-dimensional x,y representation to the linear list.

Assuming that the starting address in memory is not zero then the conversion

is given by

Address = (Xmax — Xmjn)(Y — Ymin) + (x — x,) + base address

The first term counts the number of rows. The second term adds the location

in the row, and the final term adds the starting address. The pixel is identified

by its lower left hand corner coordinates.

Ymax

--

%-

—Pixel (3,2)

—Pixel (4,2)

y

5

4

3

2

0

-2

-3Ym n

-2 -1 0123456
Xmjn Xmax

Figure 2-28 Raster coordinate

system.

ADDRESSING THE RASTER 65

Example 2-6 Addressing the Raster

Consider the pixel at location (3, 2) in the small raster shown in Fig. 2-28.

Here, Xmax = 6, Xmin = 2, Ymax = 5, and Ymin = —3, with the first pixel in the

lower left hand corner stored in the first memory location; the base or starting

address is 1. Hence, the memory address is

Address = [6 — (—2)][2 — (—3)] + [3 — (—2)] + 1

= (8)(5) + 5 + 1

=40+6

= 46

This can be checked by counting the squares.

The scheme also works for x positive to the right and y positive downward

provided the pixel is addressed by the coordinates of its upper left hand corner.

For a given frame buffer Xmax, Xmin, Ymin and the base address are normally

constant. The equation can thus be rewritten as

Address = K1 + K2y + x

where

K1 = base address — K2Ymjn — Xmin

K2 = Xmax — Xmin

Hence, calculating the pixel address in frame buffer memory requires only

two adds and a multiply. When pixels are addressed successively, incremental

calculations can be used to further reduce the work involved in determining the

pixel address. In particular,

Address(x ± I , y) = K1 + K2y + x ± I

= Address(x, y) ± I

Address(x, y ± I) = K1 + K2(y ± I) + x

= Address(x, y) ± K2

Address(x ± I, y ± I) = K1 + K2(y ± 1) + x ± I

= Address(x, y) ± K2 ± I

Here, only a single add or subtract is needed for either horizontal or vertical

increments in the raster, and only two adds or subtracts for diagonal increments.

The multiply is eliminated.

66 PROCEf)URAL ELEMENTS FOR COMPUTER GRAPHICS

Example 2-7 Incrementally Addressing the Raster

Consider the pixel located at (4, 2) in the raster shown in Fig. 2-28. Here

K2 = 6 — (—2) = 8

Ki = 1 — (8)(—3) — (—2) = 27

and

Address = 27 + (8)(2) + 4 = 47

Recalling the result for the pixel at (3, 2) from the previous example and using

the incremental calculation yields

Address (x + 1, y) = Address (x, y) + I

Address (4, 2) = 46 + I = 47

2-13 LINE DISPLAY

Addressing the frame buffer in this way allows it to conceptually be treated

similar to a storage tube graphics display. The frame buffer is first cleared or

set to the background intensity or color. Instead of writing vectors directly

to the display screen, either the Bresenham or the DDA algorithm is used to

rasterize the line and the appropriate pixels are written to the frame buffer.

When the picture or frame is complete, the display controller reads the frame

buffer in scan line order and presents the result to the video monitor.

Selective erase of lines can be implemented by again using the rasterizing

algorithm to write the appropriate pixels to the frame buffer in the background
intensity or color. This eliminates the line. However, Fig. 2-29 illustrates a

problem with this technique. If the erased line crosses another line, then a
hole will be left in that line. Figure 2-29a shows two intersecting lines. If the

8 8

7 7

6 6

5 5

4 4

3 3

2 2

2 3 4 5 6 7 8 2 3 4 5 6 7 8

a b

Figure 2-29 Selective erase of lines in a frame buffer.

CHARACTER DISPLAY 67

Xm7a:
Figure 2-30 Boxing or minimax tests.

horizontal line at y = 5 is erased by writing the background intensity or color

to the frame buffer, then a hole in the remaining line at pixel (5, 5) results.

It is not difficult to detect these holes and fill them. It is only necessary to

determine the intersection of the deleted line with all other lines in the picture.

For a complex picture this can be time-consuming.

Boxing or minimax tests can be used to reduce the work required. This

technique is shown in Fig. 2-30. Only lines which pass through the dotted box

formed from the minimum and maximum values of x and y for the line segment

ab can possibly intersect ab. The tests for each line segment are then

minimax or boxing test

if (Xlinemax <Xboxmin) or

(Xlinemin> Xboxmax) or

(Ylinemax < Yboxmin) or

(Ylinemin > Yboxmax)
then

no intersection

else

calculate intersection

finish

2-14 CHARACTER DISPLAY

Alphanumeric characters are written to the frame buffer using a mask. A
character mask is a small raster which contains the relative locations of the

pixels used to represent the character (see Fig. 2-22). Special symbols unique

to a particular application, e.g., resistors, capacitors, or mathematical symbols,

can also be represented with a character mask. The mask itself simply contains

binary values indicating whether or not a particular pixel in the mask is used to

represent the character or symbol shape. For simple black-and-white displays

68 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

a 1 normally indicates that a pixel is used in the representation, and a 0 that

it is not. For color displays additional bits are used to provide multiple color

shades directly or as indices to a color look-up table.

The character may be inserted into the frame buffer by indicating the

location in the frame buffer (Xo, Yo) of the origin of the mask. Then each pixel

in the mask is displaced by the amount xo, yo. A simple algorithm to accomplish

this for a binary mask is

Mask insertion into the frame buffer

Xmin, Xmax, Ymin, Ymax are the limits of the mask

xO, yo is the location in the frame buffer

for j = Ymin to Ymax — 1
for i = Xmin to Xmax — 1

If Mask(i,j) <>0 then

write Mask(i, j) to the frame buffer at (xO + 1, yo + j)
else

end if

next i

next

finish

A character in the frame buffer can be erased by rewriting it to the frame

buffer using the background intensity or color.
The character mask can be modified as it is written to the frame buffer to

produce alternate character styles or orientations. Some simple modifications

are shown in Fig. 2-31. Figure 2-31a shows the original character mask. By

writing the mask to two successive frame buffer locations xo and xo + I a boldfaced

character is obtained. This is shown in Fig. 2-31b. The character can be

rotated as shown in Fig. 2-31c or skewed to give the appearance of italics as

shown in Fig. 2-31d.

:‘i’I . Ii

1357 1357 1357 1357

Original Boldface Rotated Italic

a b c d

Figure 2-31 Transformed character masks.

POLYGON FILLING 69

2-15 SOLID AREA SCAN CONVERSION

So far the discussion has been concerned with the presentation of lines on a

raster scan device. However, one of the unique characteristics of a raster scan

device is the ability to present solid areas. The generation of solid areas from

simple edge or vertex descriptions is called solid area scan conversion, polygon

filling, or contour filling. Several techniques can be used to fill a contour. They

generally divide into two broad categories: scan conversion and seed fill.

Scan conversion techniques attempt to determine, in scan line order, whether

or not a point is inside a polygon or contour. These algorithms generally

proceed from the “top” of the polygon or contour to the “bottom.” The scan

conversion techniques are equally applicable to line drawing displays. With

line drawing displays they are used for cross-hatching or shading of contours as

shown in Fig. 2-32.

Seed fill techniques assume that some point inside the closed contour is

known. The algorithms then proceed to search for points adjacent to the

seed point that are inside the contour. If the adjacent point is not inside the

contour, then a boundary of the contour has been found. If the adjacent point

is inside the contour, then it becomes a new seed point and the search continues

recursively. Seed fill algorithms are only applicable to raster devices.

Figure 2-32 Contour cross-hatching or shading.

2-16 POLYGON FILLING

Many closed contours are simple polygons. If the contour is composed of

curved lines, it can be approximated by a suitable polygon or polygons. The

simplest method of filling a polygon is to examine every pixel in the raster to see

if it is inside the polygon. Since most pixels will not be inside the polygon, this

technique is wasteful. The amount of work can be reduced by computing the

bounding box for the polygon. The bounding box is the smallest rectangle that

contains the polygon. Only those points inside the bounding box are examined.

This is shown in Fig. 2-33. Using a bounding box for the polygon shown in

Fig. 2-33a significantly reduces the number of pixels examined. However, for

the polygon shown in Fig. 2-33b, the reduction is considerably smaller.

70 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Raster Raster

ll/

b

Figure 2-33 Polygon bounding box.

2-17 SCAN-CONVERTING POLYGONS

A more efficient technique than the inside test can be developed by taking advantage
of the fact that, except at boundary edges, adjacent pixels are likely to

have the same characteristics. This property is referred to as spatial coherence.

For a raster scan graphics device adjacent pixels on a scan line are likely to
have the same characteristics. This is scan line coherence.

The characteristics of pixels on a given scan line change only where a

polygon edge intersects the scan line. These intersections divide the scan line

into regions.

For the simple polygon shown in Fig. 2-34 the scan line labeled 2 intersects

the polygon at x = 1 and x = 8. These intersections divide the scan line into

three regions

x < I outside the polygon
I � x � 8 inside the polygon
x> 8 outside the polygon

Similarly the scan line labeled 4 is divided into five regions

y

6
P3

4 - —— Scan line 4

2 ——-f.- Scan line 2
P1

x Figure 2-34 Solid area scan conversion.

Bounding

Polygon

I I

Bounding box

I I

a

0

0 2 4 6 8 10

SCAN-CONVERTING POLYGONS 71

x < I outside the polygon
I � x � 4 inside the polygon
4 <x < 6 outside the polygon
6 � x � 8 inside the polygon
x> 8 outside the polygon

The intersections for scan line 4 are not necessarily determined in left-

to-right order. For example, if the polygon is specified by the vertex list

P1P2P3P4P5 and the edge list by successive pairs of vertices, PiP2, P2P3,

P3P4, P4P5, P5P1, then the intersections of the edges with scan line 4 will be

determined as 8, 6, 4, 1. They must then be sorted into ascending order in x,
i.e. 1,4, 6, 8.

In determining the intensity, color, or shade of the pixels on a scan line

the sorted intersections are considered in pairs. For each interval formed by a

pair of intersections, the intensity or color is that of the polygon. For intervals

between pairs of intersections, the intensity or color is that of the background.

Of course, from the beginning of the scan line until the first intersection, and

from the last intersection to the end of the scan line the intensity or color is

that specified for the background. For the polygon in Fig. 2-34 the pixels from

o to 1, 4 to 6, and 8 to 10 on scan line 4 are set at the background color, while

those from I to 4 and 6 to 8 are set at the polygon intensity or color.

Determining exactly which pixels are to be activated requires some care.

Consider the simple rectangular polygon shown in Fig. 2-35. The coordinates

of the rectangle are (1, I), (5, 1), (5, 4), (I, 4). The scan lines 1 to 4 have

intersections with the polygon edges at x = I and 5. Recalling that a pixel is

addressed by its lower left hand corner coordinates, then for each of the scan

lines, the pixels with x coordinates of 1, 2, 3, 4, and 5 would be activated. The

result is shown in Fig. 2-35a. Note that the area covered by the activated pixels

is 20 units, while the true area of the rectangle is 12 units.

Modification of the scan line coordinate system and the activation test corrects

this problem. This is shown in Fig. 2-35b. The scan lines are considered

to pass through the center of the row of pixels, i.e., at the half interval as shown

in Fig. 2-35b. The test for activation is modified to consider whether the center

5 5—
Scan line

— 3.5

2.5

2 2
— 1.5

1 1

0 0— -— ____

0123456 0123456

a b

Figure 2-35 Scan line coordinate systems.

72 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

of the pixel to the right of the intersection is within the interval. However, the

pixels are still addressed by the coordinates of the lower left hand corner. This

technique yields the correct result as shown in Fig. 2-35b.

Horizontal edges cannot intersect a scan line and are thus ignored. This

does not mean that horizontal edges are not formed. They are formed by the

bottom and top edges of the rows of pixels. This is also illustrated in Fig. 2-35.

Figure 2-35b illustrates that the modified scan line coordinate system yields the

correct top and bottom edge for the polygon.

An additional difficulty occurs when a scan line intersects the polygon

precisely at a vertex. Figure 2-36 illustrates this problem. Using the half scan

line convention, the scan line at y = 3.5 intersects the polygon at 2, 2 and 8.

This is an odd number of intersections. Hence, extracting the pixels in pairs

will yield an incorrect result; i.e., the pixels at (0, 3), and (1, 3) will be set at

the background color, the pixel at (2, 3) at the polygon color, those from (3, 3)

to (7, 3) at the background color, and those at (8, 3) and (9, 3) at the polygon

color. Observation suggests that at a scan line-polygon vertex intersection only
one intersection should be counted. For the scan line at y = 3.5, this would

give the correct result. However, examining the scan line at y = 1.5, which has

two intersections at (5, 5), shows that this technique is incorrect. For this scan

line extracting the pixels in pairs will yield the correct result; i.e., only the pixel

at (5, 1) is set to the polygon color. If only one intersection is counted at the

vertex, then the pixels from (0, 1) to (4, 1) are set at the background color and

those from (5, 1) to (9, 1) at the polygon color.

The correct result is obtained by counting two intersections when the scan

line-polygon vertex intersections occur at local maxima or minima of the polygon

and only one if not. Whether the vertex under consideration is a local polygon

maximum or minimum can be determined by examining the end points of the

two edges meeting at the vertex. If the y values of these edges are both greater

than the vertex being considered, then the vertex is a local minimum. If both

are less than the vertex being considered, then the vertex is a local maximum.

If one is greater and one less, then the vertex is neither a local minimum nor

Scan line

-—7.5

-—4.5

——3.5

---1.5

Figure 2-36 Scan line intersection

singularities.0 2 4 6 8 10

A SIMPLE ORDERED EDGE LIST ALGORITHM 73

a local maximum. In Fig. 2-36, P1 is a local minimum, P3 a local maximum,
and P2 and P4 are neither local maxima nor minima. Hence, two scan line

intersections are counted at Pi and P3 and only one at P2 and P4.

2-18 A SIMPLE ORDERED EDGE LIST ALGORITHM

Using the techniques discussed above, efficient algorithms for scan-converting
solid area polygons can be developed. These are called ordered edge list

algorithms. They depend upon sorting the polygon edge-scan line intersections
into scan line order. The efficiency of the algorithms depend on the efficiency

of the sorting. A particularly simple algorithm is

A simple ordered edge list algorithm

To prepare the data:

Determine for each polygon edge the intersections with the half

interval scan lines. A Bresenham or DDA algorithm can be used

for this. Horizontal edges are ignored. •Store each intersection
(x, y + 1/2) in a list.

Sort the list by scan line and increasing x on the scan line; i.e.,

(Xi, yi) precedes (x2, y2) if y > or Yi = y2 and x1�x2.

To scan-convert the data:

Extract pairs of elements from the sorted list (xi, Yi) and (x2, y2).
The structure of the list ensures that y = = y2 and Xi � X2.

Activate pixels on the scan line y for integer values of x such that
Xi � x + 1/2 � X2.

Example 2-8 Simple Ordered Edge List

Consider the polygon shown in Fig. 2-34. The polygon vertices are P s:i, 1),

P2(8, 1), P3(8, 6), P4(5, 3), and P5(1, 7). Intersections with the half interval scan

lines are

scan line 1.5: (8, 1.5), (1, 1.5)

scan line 2.5: (8, 2.5), (1, 2.5)

scan line 3.5: (8, 3.5), (5.5, 3.5), (4.5, 3.5), (1, 3.5)

scan line 4.5: (8, 4.5), (6.5, 4.5), (3.5, 4.5), (1, 4.5)

scan line 5.5: (8, 5.5), (7.5, 5.5), (2.5, 5.5), (1, 5.5)

scan line 6.5: (1.5, 6.5), (1, 6.5)

scan line 7.5: none

The complete list sorted in scan line order from the top to the bottom and then

from left to right is

74 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

(1, 6.5), (1.5, 6.5), (1, 5.5), (2.5, 5.5), (7.5, 5.5), (8, 5.5), (1, 4.5), (3.5, 4.5),

(6.5, 4.5), (8, 4.5), (1, 3.5), (4.5, 3.5), (5.5, 3.5), (8, 3.5), (1,2.5), (8, 2.5),

(1,1.5),(8, 1.5)

Extracting pairs of intersections from the list and applying the algorithm given

above yields the pixel activation list

(1, 6)

(1, 5), (2, 5), (7,5)

(1, 4), (2, 4), (3, 4), (6, 4), (7, 4)

(1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3), (7, 3)

(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)

(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1)

The result is shown in Fig. 2-37. Notice that both vertical edges and the bottom

edge are given corrertly.

y

8

6

4

2

0 x Figure 2-37 Results of solid area scan
0 2 4 6 8 10 conversion of Fig. 2-34.

2-19 MORE EFFICIENT ORDERED EDGE LIST ALGORITHMS

The simple algorithm given in the previous section generates a large list which

must be completely sorted. Making the sort more efficient will improve the

algorithm. This can be accomplished by separating the vertical scan line sort

in y from the horizontal scan line sort in x using a y-bucket sort as previously

discussed in Sec. 2-8. In particular the algorithm is now

A more efficient ordered edge list algorithm

To prepare the data:

Determine for each polygon edge the intersections with the half

interval scan lines, i.e., at y + 1/2. A Bresenham or DDA algorithm

can be used for this. Ignore horizontal edges. Place the x

coordinate of the intersection in the bucket corresponding to y.

As each scan line is addressed, i.e. for each y bucket, sort the

list of x intersections into increasing order; i.e., xI precedes X2 if

X1 � X2.

MORE EFFICIENT ORDERED EDGE LIST ALGORITHMS 75

To scan-convert the data:

For each scan line extract pairs of intersections from the x-sorted

list. Activate pixels on the scan line y corresponding to that bucket

for integer values of x such that Xi � x + 1/2 � x.

The above algorithm first sorts into scan line order with the y-bucket sort

and then into order on the scan line. Thus, scan conversion begins prior

to completion of the full sorting process. Further, with this algorithm it is

somewhat easier to add or delete information from the display list. Here, it

is only necessary to add or delete information from the appropriate y buckets.

Hence, only the individual scan lines affected by the change need be resorted.

An example further illustrates the algorithm.

Example 2-9 A More Efficient Ordered Edge List

Reconsider the polygon shown in Fig. 2-34 and discussed in Example 2-8. First,
y buckets for scan lines 0 to 8 are established as shown in Fig. 2-38. The
intersections obtained by considering each edge in turn counterclockwise from
Pi are also shown in the buckets in Fig. 2-38a unsorted in x. The intersections
were calculated using the half scan line technique. For illustrative purposes
they are also shown sorted in Fig. 2-38b. In practice a small scan line buffer
as shown in Fig. 2-38c may be used to contain the x-sorted intersection values.
This allows more efficient additions to or deletions from the intersection list.

They can simply be added to the end of each y-bucket list since the x sort does

not take place until an individual scan line is moved to the scan line buffer.

Hence, a completely sorted y-bucket list does not need to be maintained.

Extracting pairs of intersections from the x-sorted list and applying the

algorithm above yields the pixel activation list for each scan line. The result is

the same as in Example 2-8. It is shown in Fig. 2-37.

x intersections (sorted)x intersections (unsorted)

8 —

7 —

6 1.5

5 -L L 2 J+ ; :7
4 8

3 8 i 45

0 —

-

; — —

5

— J1 8 I— �

; T7 7 ;;

-j- i3I 7

I 2IL L
L 3jj6.5 ...L
J 4I L

J_ Li2 Z 2 2
-

L

; —

;;

- —

LScan line bufferI 14515.51 8 L—1.——1

b

c

Figure 2-38 y buckets for the scan lines for the polygon of Fig. 2-34.

76 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Although this second algorithm simplifies the sorting task, it either limits

the number of intersections on a given scan line or requires the allocation

of large amounts of storage, much of which may not be used. By using a

linked list this problem can be overcome at the expense of additional data

structure. The precalculation of the intersection of each scan line with each

polygon edge is time-consuming. It also requires the storage of considerable

data. By introducing an active edge list as previously discussed for real-time

scan conversion (see Sec. 2-8), data storage is further reduced and scan line

intersections can be calculated incrementally. The resulting algorithm is

An ordered edge list algorithm using an active edge list

To prepare the data:

Determine for each polygon edge, using the half interval scan lines,

i.e. at y + 1/2, the highest scan lines intersected by the edge.

Place the polygon edge in the y bucket corresponding to this scan
line.

Store the initial x intersection value, the number of scan lines

crossed by the polygon edge, y, and the x increment Sx from scan
line to scan line in a linked list.

To scan-convert the data:

For each scan line examine the corresponding y bucket for any new

edges. Add any new edges to the active edge list.

Sort the x intercepts from the active edge list into increasing order;

i.e., Xi precedes X2 if Xi � X2.

Extract pairs of intersections from the sorted x list. Activate pixels

on the scan line y for integer values of x such that Xi � x + 1/2 � x.

For each edge on the active edge list decrement ty by 1. If ty <

0, drop the edge from the active edge list. Calculate the new x

intercept Xnew = XoId + IX.

Advance to the next scan line.

This algorithm assumes that all data has been previously converted to a polygonal

representation. Whitted (Ref. 2-21) gives a more general algorithm which
removes this restriction.

Example 2-10 Ordered Edge List with an Active Edge List

Again consider the simple polygon shown in Fig. 2-34. Examining the list of

polygon edges shows that scan line 5 is the highest intersected by edges P2P3

and P3P4, and scan line 6 the highest intersected by edgesP4P5 and P5P1. The

structure of the linked list containing data for the nine y buckets corresponding

to the nine scan lines (0 to 8) of Fig. 2-34 is shown conceptually in Fig. 2-39a.

MORE EFFICIENT ORDERED EDGE LIST ALGORITHMS 77

Scan line Linked list of polygon edge data
y-bucket

8

7
Edge P2P3 Edge P3P4

6 j x xyj I I x

5 Ix jxjty I Ix IxIyf—+H’
Edge P4P5 Edge P5P1

4

3

Link termination

or empty y-bucket.

o

a

Scan line Link Linked list

y-bucket Pointer List Link

address x tx ty Pointer

1804121
2

2 7.5 1 2

3 3 1.5 1 II
4

4 1 0 5——-j

5Frl
6rn
7

8

b

Figure 2-39 Conceptual linked list for the polygon of Fig. 2-34.

78 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Scan Active edge list x-sorted
line x zx zy intersections Pixel list

8 jIl 1

7 II

511 131 11 11.51 (1,6)6
10151

I 2.5 I 1 I 2 1
1 I 0 I 4 J 1 2.5 75 8 (1,5), (2,5), (7,5)

7.5 1 2
810141

(1,4), (2,4), (3,4),1 I 0 I I [1 13.51651 8 (6,4),(7,4)
3.5 I 1 I i I

810131

I 6.5 1 f 1

4.5 I 1 1]

(1,3), (2,3), (3,3), (4,3),I I 0 I 2 1
5 55 8 (5,3), (6,3), (7,3)

81012]5.5 -l 1 0

(1,2), (2,2), (3,2), (4,2),2 1 I 0 I 1 1 I 8
(5,2), (6,2), (7,2)810111

(1,1), (2,1), (3,1), (4,1),I 1 I 0 I 0 I
I 8 1 (5,1), (6,1), (7,1)1 1810101

0 1111111

C

Figure 2-39 (Continued.)

THE EDGE FILL ALGORITHM 79

Notice that most of the buckets are empty. A practical implementation is shown

in Fig. 2-39b. Here, the y-bucket list is a one-dimensional array, one element

for each scan line. The array element corresponding to each scan line bucket

contains only a simple pointer into the data array used for the linked list which

is also shown in Fig. 2-39b.

The linked list is implemented as an n X 4 array. For each array index n

the four elements contain the x intersection for a polygon edge with the highest

scan line crossed by that edge, the x increment from scan line to scan line for

that polygon edge, the number of scan lines crossed by the polygon edge, and

the link pointer to the list address for data for the next polygon edge beginning

on that scan line. This is shown in Fig. 2-39b. Note that the y bucket for scan

line 5 contains the link pointer 1 corresponding to the first address in the linked

data list. The first three columns in the linked data list contain data about the

edge P2P3. The number in the fourth column is the link pointer to the next
data address.

The active edge is implemented as an n x 3 stack array. The contents of

the active edge list are shown for all nine scan lines in Fig. 2-39c. The scan

lines (y buckets) are examined sequentially from the top of the picture starting

with scan line 8. Since the y buckets for scan lines 8 and 7 are empty, the active

edge list is also empty. Scan line 6 adds two elements to the active edge list,

and scan line 5 two more. At scan line 2, iy for edges P3P4 and P4P5 become

less than zero. Hence, they are dropped from the active edge list. Similarly,

edges P2P3 and P5P1 are dropped at scan line 0. Finally, note that at scan line

0 the y bucket is empty, that the active edge list is empty, and there are no

further y buckets. Hence, the algorithm is complete.

For each scan line the x intersections of the active edges for that scan

line are extracted from the active edge list, sorted into increasing x order, and

placed in a span buffer implemented as a 1 x n array. From the span buffer

the intersections are extracted in pairs. The active pixel list is then determined

using the above algorithm. The combined pixel list for all the scan lines is the

same as in the previous examples. The result is again shown in Fig. 2-37.

2-20 THE EDGE FILL ALGORITHM

The ordered edge list algorithm is very powerful. Each pixel in the display is

visited only once. Hence, the input/output requirements are minimized. The

end points of each group or span of active pixels are calculated before output.

This allows the use of a shading algorithm along the span to obtain fully shaded

pictures. Since the algorithm is independent of the input/output details, it can

be made device independent. The algorithm’s main disadvantage is the expense

associated with maintaining and sorting the various lists. An alternate solid

area scan conversion technique eliminates most of these lists. This alternate

technique is the edge fill algorithm (Ref. 2-22).

The edge fill algorithm described below is very simple.

80 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Edge fill algorithm

• For each scan line intersecting a polygon edge at (Xi, yi) complement

all pixels whose midpoints lie to the right of (xi, y’) i.e., for

(x,yi),x+ I/2>x.

The half scan line convention is used to calculate the scan line-edge intersections.

The algorithm is applied to each polygon edge individually. The order

in which the polygon edges are considered is unimportant. Figure 2-40 shows

the various stages in scan-converting the solid area of the example polygon

of Fig. 2-34. Notice that the activated pixels are not the same as for the ordered

edge list. In particular the edge fill algorithm does not activate pixels at

(5, 3), (6, 4), (7, 5); i.e., the edge P,P4 is rasterized differently. The difference

is in the way pixels that are exactly half inside and half outside the polygon are

handled. The ordered edge list algorithm always activates these pixels. The

edge fill algorithm activates them only if the inside of the polygon lies to the

left of the center of the pixel.

The algorithm is most conveniently used with a frame buffer. This allows

the polygon edges to be considered in completely arbitrary order. As each

edge is considered, the appropriate pixels in the frame buffer corresponding

to an edge-scan line intersection are addressed. When all edges have been

considered, the frame buffer is read to the display device in scan line order.

Figure 2-40 illustrates the main disadvantages of the algorithm; i.e., for complex

pictures each individual pixel may be addressed many times. Hence, the

algorithm is limited by input/output considerations.

The number of pixels addressed by the edge fill algorithm can be reduced

by introducing a fence (Ref. 2-23). This is the fence fill algorithm. The basic

8 8
-

-%6
% I

\J
I

9-

I

8

4

2

00

8

6

4

2

00 2 4 6 8 10 00 2 4 6 8 10

6 6

4 4

2 2

8 10 00 2 4 6 8 10 00 2 4 6 8 10
Edge PP3 Edge P3P4

8

6

.4

2

Edge P4P5 Edge P5F

Figure 2-40 Edge fill algorithm.

THE EDGE FLAG ALGORITHM 81

idea is illustrated in Fig. 2-41 again for the example polygon of Fig. 2-34. In

particular, the fence fill algorithm is

The fence fill algorithm

For each scan line intersecting a polygon edge:

If the intersection is to the left of the fence, complement all pixels
whose midpoint lies to the right of the intersection of the scan line
and the edge and to the left of the fence.

If the intersection is to the right of the fence, complement all pixels

whose midpoint lies to the left of or on the intersection of the scan

line and the edge and to the right of the fence.

The half scan line conversion is used. A convenient fence location is usually one

of the polygon vertices. Again, the algorithm is most conveniently used with a

frame buffer. The disadvantage of both the edge fill and fence fill algorithms

is the number of pixels addressed more than once. This can be eliminated by

a modification called the edge flag algorithm (Ref. 2-24). The edge fill, fence

fill, and edge flag algorithms are not limited to simple polygons.

Figure 2-41 Fence fill algorithm.

2-21 THE EDGE FLAG ALGORITHM

The edge flag algorithm (Ref. 2-24) is a two-step process. The first step is to

outline the contour. This establishes pairs of span bounding pixels on each scan

8

6

4

2

00

8

6

4

2

004 ó 8 102 10 00 2 4 6 8 102468

8

6

4

2

00 2 4 6 8 10 0 0 2 4 6 8 10
Edge P4 P5

8

6

4

2

Edge P3P4

Edge p5 p1

Edge P2P3
8

6

4

2

82 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

line. The second step is to fill between these bounding pixels. The algorithm

may be more explicitly stated as follows:

The edge flag algorithm

Contour outline:

Using the half scan line convention for each edge intersecting the

polygon, set the leftmost pixel whose midpoint lies to the right of
the intersection; i.e., for x + 1/2> to the boundary value.

Fill:

For each scan line intersecting the polygon
Inside = FALSE

for x = 0 (left) to x = Xm (right)

if the pixel at x is set to the boundary value then negate
Inside

if Inside TRUE then

set the pixel at x to the polygon value
else

reset the pixel at x to the background value
end if

next x

Example 2-11 Edge Flag Algorithm

Consider the application of the edge flag algorithm to the example polygon of

Fig. 2-34. First the contour is outlined. The result is shown in Fig. 2-42a. Pixels at

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 6), (3, 5), (4, 4), (5, 3), (6, 3), (7, 4),

(8, 5), (8, 4), (8, 3), (8, 2), (8, 1) are activated.

The polygon is then filled. To illustrate this the scan line at 3 is extracted

and shown in Fig. 2-42b. Pixels at x = 1, 5, 6, and 8 on this scan line have been

activated to outline the contour. Applying the fill algorithm yields

Initially

Inside = FALSE

For x = 0 The pixel is not set to the boundary value and Inside

= FALSE. Thus, no action is taken.

For x = 1 The pixel is set to the boundary value, Inside is negated

to TRUE. Inside = TRUE so the pixel is set to

the polygon value.

For x = 2, 3, 4 The pixel is not set to the boundary value. Inside =

TRUE so the pixel is set to the polygon value.

For x = 5 The pixel is set to the boundary value, Inside is negated

to FALSE. Inside = FALSE so the pixel is set to

the background value.

For x = 6 The pixel is set to the boundary value, Inside is negated

to TRUE. Inside = TRUE so the pixel is set to

the polygon value.

SEED FILL ALGORITHMS 83

For x = 7 The pixel is not set to the boundary value. Inside =

True so the pixel is set to the polygon value.

For x = 8 The pixel is set to the boundary value, Inside is negated

to FALSE. Inside = FALSE so the pixel is set

to the background.

The result is shown in Fig. 2-42c. The final result for the complete polygon

is the same as for the edge fill algorithm as shown in Fig. 2-40.

The edge flag algorithm visits each pixel only once. Hence, the input/output

requirements are considerably less than for the edge fill or fence fill algorithms.

When used with a frame buffer, none of these algorithms requires

building, maintaining, and sorting edge lists. Implemented in software, the

ordered edge list and the edge flag algorithms execute at about the same speed

(Ref. 2-21). However, the edge flag algorithm is suitable for hardware or

firmware implementation where it executes one to two orders of magnitude

faster than the ordered edge list algorithm (Ref. 2-24). For simple pictures

real-time animation is possible.

y

8

i•ii •i
1 2 3 4 5 6 7 8 9 10

5 b

4;1]

.‘—;0]
1 2 3 4 5 6 7 8 910

0012345678910

Figure 2.42 Edge flag algorithm.

2-22 SEED FILL ALGORITHMS

The algorithms discussed above fill the polygon in scan line order. A different

approach is used in the seed fill algorithms. The seed fill algorithms assume that

at least one pixel interior to a polygon or region is known. The algorithm then

attempts to find and color or fill all other pixels interior to the region. Regions

may be either interior- or boundary-defined. If a region is interior-defined,

then all the pixels in the interior of the region have one color or value and all

the pixels exterior to the region have another as shown in Fig. 2-43. If a region

is boundary-defined, then all the pixels on the region boundary have a unique

84 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

8 8

6 6

4 4

2
2

0

00 2 4 6 8 10 0 2 4 6 8 10

Figure 2-43 Interior-defined region. Figure 244 Boundary-defined region.

value or color as shown in Fig. 2-44. None of the pixels interior to the region

can have this unique value. However, pixels exterior to the boundary may

also have the boundary value. Algorithms that fill interior-defined regions are

referred to as flood fill algorithms, and those that fill boundary-defined regions

as boundary fill algorithms. The discussion below concentrates on boundary fill

algorithms. However, the companion flood fill algorithms can be developed in

an analogous manner.

Interior- or boundary-defined regions may be either 4-connected or 8-

connected. If a region is 4-connected, then every pixel in the region may be

reached by a combination of moves in only four directions: left, right, up,

down. For an 8-connected region every pixel in the region may be reached by

a combination of moves in the two horizontal, two vertical, and four diagonal

directions. An 8-connected algorithm will fill a 4-connected region, but a 4-

connected algorithm will not fill an 8-connected region. Simple examples of 4-,

and 8-connected interior-defined regions are shown in Fig. 2-45. Although each

of the subregions of the 8-connected region shown in Fig. 2-45b is 4-connected,

passage from one subregion to the other requires an 8-connected algorithm.

However, if each of the subregions is a separate 4-connected region, each to

be filled with a separate color or value, then use of an 8-connected algorithm

causes both regions to be incorrectly filled with a single color or value.

Figure 2-46 shows the 8-connected region of Fig. 2-45 redefined as a boundary-defined

region. Figure 2-46 illustrates that where a region is 8-connected,

4-Connected 8-Connected Figure 2-45 Four- and 8-connected interior-dea
b fined regions.

A SIMPLE SEED FILL ALGORITHM 85

Figure 2-46 Four- and 8-connected boundary-defined

regions.

i.e., where the two subregions touch at the corners, the boundary is 4-connected.

It also illustrates that, for 4-connected regions, the boundary is 8-connected.

The discussion below concentrates on 4-connected algorithms. The equivalent

8-connected algorithms can easily be obtained by attempting to fill in eight
rather than four directions.

2-23 A SIMPLE SEED FILL ALGORITHM

A simple seed fill algorithm for a boundary-defined region can be developed

using a stack. A stack is simply an array or other storage space into which values

may be sequentially placed or from which they may be sequentially removed.

As new values are added to or pushed onto the stack, all previously stored

values are pushed down one level. As values are removed or popped from

the stack, previously stored values float or pop up one level. Such a stack is

referred to as a first in, last out (FILO) or push-down stack. A simple seed fill

algorithm is then

Simple seed fill algorithm using a stack

Push the seed pixel onto the stack.

While the stack is not empty

Pop a pixel from the stack.

Set the pixel to the required value.

For each of the 4-connected pixels adjacent to the current pixel,

check if it is a boundary pixel or if it has already been set to the

required value. In either case ignore it. Otherwise, push it onto
the stack.

The algorithm can be modified for 8-connected regions by looking at the 8-

connected pixels rather than only the 4-connected pixels. A more formal statement

of the algorithm assuming the existence of a seed pixel and a boundarydefined

region is

86 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

simple seed fill algorithm for 4-connected boundary-defined regions

Seed(x, y) is the seed pixel

Push is a function for placing a pixel on the stack

Pop is a function for removing a pixel from the stack

Pixel(x, y) = Seed(x, y)
initialize stack

Push Pixel(x,y)

while (stack not empty)

get a pixel from the stack

Pop Pixel(x,y)

if Pixel(x, y) <> New value then

Pixel(x, y) = New value
else

examine the surrounding pixels to see if they should be placed
onto the stack

if (Pixel(x + 1, y) <>New value and

Pixel(x + 1, y) <>Boundary value) then

Push Pixel(x + 1, y)

if (Pixel(x, y + 1) <> New value and

Pixel(x, y+ 1) <>Boundary value) then

Push Pixel(x,y+1)

if (Pixel(x — 1, y) <>New value and

Pixel(x — 1, y) <>Boundary value) then

Push Pixel(x—1,y)

if (Pixel(x, y — 1) <>New value and

Pixel(x, y —1) <>Boundary value) then

Push Pixel(x,y—1)
end if

end while

The algorithm examines the 4-connected pixels and pushes them onto the stack

counterclockwise beginning with the pixel to the right of the current pixel.

7

6 Seed

5 pixel

4 Interior

3 pixel

2 Boundary

I pixel

o Figure 2-47 Seed fill using a
0 2 3 4 5 6 7 8 9 simple stack algorithm.

A SIMPLE SEED FILL ALGORITHM 87

Example 2-12 Simple Seed Fill Algorithm

As an example of the application of the algorithm consider the boundary-

defined polygonal region defined by the vertices (1, 1), (8, 1) (8, 4), (6, 6),

and (1, 6) as shown in Fig. 2-47. The seed pixel is at (4, 3). The algorithm
proceeds to fill the polygon pixel by pixel as shown by the line in Fig. 2-47 with
the arrows. The numbers in each pixel give the stack location of the pixel as the
algorithm proceeds. Notice that some pixels contain more than one number.
This indicates that the pixel has been pushed onto the stack more than once.
When the algorithm reaches pixel (5, 5) the stack is 23 levels deep and contains
the pixels (7, 4), (7, 3), (7, 2), (7, 1), (6, 2), (6, 3), (5, 6), (6, 4), (5, 5), (4, 4),
(3, 4), (3, 5), (2, 4), (2, 3), (2, 2), (3, 2), (5, 1), (3, 2), (5, 2), (3, 3), (4, 4),
(5, 3).

Since all the pixels surrounding that at (5, 5) contain either boundary values
or new values, none are pushed onto the stack. Hence, pixel (7, 4) is popped
off of the stack and the algorithm proceeds to fill the column (7, 4), (7, 3),
(7, 2), (7, 1). When pixel (7, 1) is reached, again the surrounding pixels either
already contain the new value or are boundary pixels. Since the polygon is
completely filled at this point, popping pixels from the stack until it is empty
causes no additional pixels to be filled. When the stack is empty, the algorithm
is complete.

The polygon in Example 2-12 is a simple open region. The algorithm

will also properly fill regions containing holes. This is illustrated in the next

example.

7

6 Seed

5 pixel

4 Interior

pixel

2 Boundary

p ix e I Figure 2-48 Seed fill of a reo

gion containing a hole using a

0 I 2 3 4 5 6 7 8 9 simple stack algorithm.

Example 2-13 Simple Seed Fill Algorithm for Polygon with a Hole

As an example of the application of the algorithm to a polygonal boundary-

defined region containing a hole consider Fig. 2-48. Here, the polygon vertices

are the same as in the previous example, i.e., (1, 1), (8, 1), (8, 4), (6, 6), and

(1, 6). The interior hole is defined by (3, 2), (6, 2), (6, 4), (3, 4). The seed

pixel is at (4, 4). Because of the interior hole the algorithm fills the polygon

along a quite different path than in Example 2-12. This new path is shown

by the arrowed line in Fig. 2-48. Again, the numbers in each pixel give the

stack location as the algorithm proceeds. When the algorithm reaches pixel

(3, 1) all the 4-connected surrounding pixels either contain the new value or

88 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

are boundary pixels. Hence, no pixels are pushed onto the stack. At this point

the stack is 14 levels deep. It contains the pixels (7, 1), (7, 2), (7, 3), (6, 5),

(7, 4), (6, 5), (3, 1), (1, 2), (1, 3), (1, 4), (2, 5), (3, 5), (4, 5), (5, 4).

After popping the pixel (7, 1) from the stack, the algorithm fills the column

(7, 1), (7, 2), (7, 3), (7, 4) without pushing any additional pixels onto the

stack. At pixel (7, 4) again all 4-connected surrounding pixels contain either

the new value or are boundary pixels. Returning to the stack, the algorithm

finds no new pixels until that at (6, 5). Filling the pixel at (6, 5) completes the

polygon fill. The algorithm completes processing of the stack without further

filling. When the stack is empty, the algorithm is complete.

2-24 A SCAN LINE SEED FILL ALGORITHM

Both of the above examples show that the stack can become quite large. Further,

they show that the stack frequently contains duplicate or unnecessary information.

An algorithm which minimizes stack size attempts to seed only one pixel

in any uninterrupted scan line span (Ref. 2-25). This is called a scan line seed

fill algorithm. An uninterrupted span is a group of contiguous pixels on a single

scan line. Here, a heuristic approach is used to develop the algorithm. A more

theoretical approach, based on graph theory, is also possible (Ref. 2-26).

The scan line seed fill algorithm is applicable to boundary-defined regions.

The 4-connected boundary-defined region may be either convex or concave

and may contain one or more holes. The region exterior to and adjacent

to the boundary-defined region may not contain pixels with a value or color

corresponding to the one used to fill the region or polygon. Conceptually, the

algorithm works in four steps.

Scan line seed fill algorithm

A seed pixel on a span is popped from a stack containing the seed pixel.

The span containing the seed pixel is filled to the right and left of the

seed pixel along a scan line until a boundary is found.

The algorithm remembers the extreme left and the extreme right pixels

in the span as Xleft and Xright.

In the range of Xleft � x � Xright the scan lines immediately above and

immediately below the current scan line are examined to see if they

completely contain either boundary pixels or previously filled pixels.

If these scan lines do not contain either boundary or previously filled

pixels, then in the range Xleft � x � Xright the extreme right pixel in

each span is marked as a seed pixel and pushed onto the stack.

The algorithm is initialized by pushing a single seed pixel onto the stack

and is complete when the stack is empty. The algorithm jumps holes and

indentations in the region boundary as shown in Fig. 2-49 and in the example

A SCAN LINE SEED FILL ALGORITHM 89

Boundary pixel

Original seed pixel

El Filled pixel

O 2 4 6 8 10 12

a

0 10

8 8

6 6

4 4

2

00 2 4 6 8 10 1200 2 4 6 8 10 12
b c

10 0

8 8

6 o

4 4

2 2

00 2 4 6 8 10 1200 2 4 6 8 10 12
d e

Figure 2-49 Scan-line-oriented polygon seed fill algorithm.

90 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

below. A more complete statement of the algorithm is given in the pseudo

implementation below.

scan line seed fill algorithm

Seed(x, y) is the seed pixel

Pop is a function for removing a pixel from the stack

Push is a function for placing a pixel on the stack
initialize stack

Push Seed(x, y)

while (stack not empty)

get the seed pixel and set it to new value

Pop Pixel(x,y)

Pixel(x, y) = Fill value

fill the span to the right of the seed pixel
Savex = x

x=x+1

if Pixel(x, y) <>Boundary value then

Pixel(x, y) = Fill value
else

save the extreme right pixel

Xright = x — 1
x = Savex

end if

fill the span to the left of the seed pixel
x=x— 1

if Pixel(x, y) <>Boundary value then

Pixel(x, y) = Fill value
else

save the extreme left pixel
Xleft = x + 1

x = Savex

end if

check that the scan line above is neither a polygon boundary nor has

been previously completely filled

Savey = y
x = Xleft

y=y+1

if (Pixel(x, y) = Boundary value or

Pixel(x, y) = Fill value) then
x=x+ 1

else

if x <Xright then
seed the scan line above

if (Pixel(x, y) <> Boundary value and

A SCAN LINE SEED FILL ALGORITHM 91

x <Xright) then
x=x+1

else

push the extreme right pixel onto the stack

Push Pixel(x — 1,y)

continue checking in case the span is interrupted
x=x+1

while (x <Xright)
if (Pixel(x, y) = Boundary value or

Pixel(x, y) = Fill value) then
x=x+1

else

x=x+1

end if

end while

end if

else

x = Savex

y = Savey
end if

end if

Check that the scan line below is not a polygon boundary nor has

been previously completely filled.

this algorithm is exactly the same as that for checking the scan

line above except that y = y — 1 is subsituted for y = y + 1

end while

finish

Here the function Pop gets the x, y coordinates of a pixel from the stack and

the function Push places them onto the stack.

Example 2-14 Scan Line Seed Fill

Consider the application of the above algorithm to the boundary-defined polygonal
region shown in Fig. 2-49. The algorithm is initialized by pushing the

polygon seed pixel, labeled Seed (5,7) in Fig. 2-49a, onto the stack. This pixel
is initially popped from the stack as the span seed. The span containing the
seed is then filled to the right and to the left. The span limits are found to be
Xright = 9 and Xleft = 1. The scan line above is then examined. It is neither

a boundary nor has it been previously filled. The extreme right hand pixel in
the range I � x � 9 is (8, 8). This pixel, labeled 1 in Fig. 2-49a, is pushed onto
the stack. The scan line below i examined and determined to be neither a

boundary nor previously filled. Within the range Xleft � x � Xright there are
two subspans. The left subspan is seeded with the pixel (3, 6), labeled 2 in
Fig. 2-49a, which is pushed onto the stack. The right subspan is seeded with

92 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

the pixel (9, 6), which is also pushed onto the stack. Notice that this pixel (9, 6)

is not the extreme right pixel in the span. However, it is the extreme right pixel

in the range Xleft � x � Xright, i.e., in the range 1 � x � 9. One pass through

the algorithm is now complete.

The algorithm continues by popping the top pixel from the stack. Here,

it fills spans on the right side of the polygon on successively lower scan lines.

The results are shown in Figs. 2-49b to d. The seed for scan line 3 shown in

Fig. 2-49d is pixel (10, 3). Filling the span to the right and left yields Xleft =

I and Xright = 10. Examining the scan line above yields the seed pixel (3, 4) in

the left subspan which is pushed onto the stack. The right subspan is already

filled. Examining the scan line below yields the seed pixel (3, 2) for the left

subspan and (10, 2) for the right subspan. These pixels are also pushed onto

the stack. The maximum stack depth occurs at this scan line.

From here, the algorithm continues to completion with only one additional

point of interest. After filling the 4-connected polygonal subregions seeded with

the pixels labeled 5, 4 and 3 in Fig. 2-49e, the pixel labeled 2 is popped from

the stack. Here, the algorithm finds that all pixels on the seed scan line, on the

scan line above, and on the scan line below have already been filled. Thus, no

additional pixels are pushed onto the stack. The algorithm then pops the pixel

labeled I as the seed pixel and fills the scan line. Again, no additional pixels

are pushed onto the stack. The stack is now empty, the polygon filled, and the

algorithm complete.

In comparison with the seed fill algorithm of Sec. 2-23 the maximum stack

depth in the above example is five. Other techniques for polygon or region
seed fill are discussed in Ref. 2-27.

2-25 FUNDAMENTALS OF ANTIALIASING

To provide effective antialiasing it is necessary to understand the causes of

aliasing itself. Fundamentally, the appearance of aliasing effects is due to the

fact that lines, polygon edges, color boundaries, etc., are continuous, whereas

a raster device is discrete. To present the line, polygon edge, etc., on the raster

display device it must be sampled at discrete locations. This can have surprising

results. For example, consider a signal such as an edge, as shown in Fig. 2-50a.

A second signal of lower frequency is given in Fig. 2-50c. If both signals are

sampled or rasterized at the same rate, as shown by the small crosses, then the

reconstructed signals are identical, as illustrated in Figs. 2-50b and d. Figure

2-50d is called an alias of the sample in Fig. 2-50b and hence of the signal in

Fig. 2-50a. The high-frequency signal (Fig. 2-50a) has been undersampled. In

order to prevent aliasing, a signal must be sampled at a rate at least twice the

highest frequency in the signal. Undersampling causes highly periodic images

to be rendered incorrectly. For example, a picket fence or venetian blind might

appear as a few broad stripes rather than many individual smaller stripes.

FUNDAMENTALS OF ANTIALIASING 93

UUUUU’U’U’UU1U _FN J.

Figure 2-50 Sampling and aliasing.

The previous sections and the above discussion illustrate two of three general

manifestations of aliasing in computer-generated images: jagged edges and

incorrectly rendered fine detail or texture. The third occurs for very small

objects. If an object is smaller than the size of a pixel or does not cover the

point within a pixel at which the pixel attributes are evaluated, it will not be

included in the resulting picture. Alternately, if the small object covers the

point at which the pixel attributes are calculated, it may overly influence those

attributes. The left hand pixel in Fig. 2-51 shows this. If the center of the pixel

is used to determine the attributes, then the entire pixel would exhibit those of

the small object. The right hand pixels in Fig. 2-51 illustrate objects that would

be ignored or lost. Notice that long, thin objects can also be ignored. These

effects are particularly noticeable in animation sequences. Figure 2-52 shows a

small triangle in three frames of an animation sequence. If pixel attributes are

determined at the pixel center, then in the first frame the object is not visible, in

the second it is, and in the third it is again invisible. In the animation sequence

the small object would flash on and off.

Fundamentally, there are two methods of antialiasing. The first is to

increase the sample rate. This is accomplished by increasing the resolution

of the raster. Finer detail is thus included. However, there is a limit to the

ability of CRT raster scan devices to display very fine rasters. Presently the

practical limit is about 2000 pixels per scan line. This limit suggests that the

raster be calculated at higher resolution and displayed at lower resolution using

some type of averaging to obtain the pixel attributes at the lower resolution

(see Ref. 2-28).

Two types of averaging are shown in Fig. 2-53. Figure 2-53a shows a

uniform average of the surrounding pixels for resolution reductions of 2 and 4.

FIgure 2-51 Aliasing effects on small Figure 2-52 Aliasing effects in animation.
objects.

94 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

• Center of display pixel

+ Center of calculated_pixel

___ 1+ + -‘1+1
rii L÷++1÷J
[+1+1 1+ - 1+]

Resolut ion

reduction Resolution

by factor reduction
of2

byfactorof4

a

o Center of

display pixel

121

2®2
121

Resolution

reduction

by factor of 2

b

123 4 32 1

246 8 64 2

6 9 12 9 6 3

4 8 1 2®l 2 8 4
3 6 9 12 9 6 3

24 68 64 2

123 4 32 1

Resolution reduction

by factor of 4

Figure 2.53 Pixel averaging. (a) Uniform, (b) weighted (numbers indicate relative

weights).

Each display pixel is divided into subpixels to form the higher resolution raster.

Pixel attributes are determined at the center of each subpixel and averaged

to obtain the attributes for the display pixel. Somewhat better results can be

obtained by considering more subpixels and weighting their influence when

calculating the display pixel attributes. Figure 2-53b shows weighted averages

suggested by Crow (Ref. 2-28) for resolution reductions of 2 and 4. For these

weighted averages, resolution reduction by a factor of 2 considers nine sub-

pixels, and reduction by a factor of 4 forty-nine subpixels.

Figure 2-54 shows a complex scene displayed at a resolution of 256 x 256

pixels. Figure 2-54a was calculated at a resolution of 512 x 512 and Fig. 2-54b

at 1024 x 1024. Uniform averaging was used to obtain the displayed resolution

of 256 x 256 pixels. Figures 2-55a and b show the same scene calculated at

resolutions of 512 x 512 and 1024 x 1024, respectively, and displayed at 256

x 256 using the weighted averages of Fig. 2-53b.

a b

FigUre 2-54 High-resolution images displayed at 256 x 256 pixel resolution. (a) Reduced
from 512 x 512, (b) reduced from 1024 x 1024 using uniform averaging. (Courtesy

ofF. Crow.)

SIMPLE AREA ANTIALIASING 95

a b

Figure 2.55 High-resolution images displayed at 256 x 256 pixel resolution. (a) Reduced
from 512 x 512, (b) reduced from 1024 x 1024 using weighted averaging. (Courtesy of
F. Crow.)

The second method of antialiasing is to treat a pixel as a finite area rather

than as a point. A heuristic technique is given in the next section. The

mathematical foundation is given in Sec. 2-27. Treating a pixel as a finite area

is equivalent to prefiltering the image.

2-26 SIMPLE AREA ANTIALIASING

In the line rasterization and polygon fill algorithms discussed above the

intensity or color of a pixel was determined by the intensity or color of a

single point within the pixel area. These techniques assume that the pixel is

a mathematical point rather than a finite area. For example, recalling Fig. 2-4

and the Bresenham algorithm, the intensity of pixels was determined by the

location of the single point of intersection of the line and the pixel boundary.

In the polygon solid area scan conversion techniques discussed above, the

determination of whether or not a pixel was inside or outside the polygon was

based on the location of the center of the pixel. If inside, the entire pixel area

was activated. If outside, the entire pixel area was ignored. For simple biievel

displays, i.e., black or white, polygon color or background color, this technique

is necessary. The result is the characteristic stair step or jagged polygon edge

or .line. Fundamentally the stair step effect is due to undersampling the line

or polygon edge to make it conform to the discrete pixels of the display as

discussed in the previous section.

For multiple intensities, i.e., gray scales or multiple color shades the appearance

of the edge or line can be improved by blurring. A simple heuristic

approach is to let the intensity of a pixel along a polygon edge be proportional

96 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Polygon outside Polygon outside Polygon outside

Polygon edgç Polygon edgç Polygon edge

2 2

1 1

0 0
012345 012345 012345

a b c

Figure 2-56 Simple antialiased polygon edge. (a) No antialiasing, (b) intensity proportional
to area inside polygon, (c) modified Bresenham.

to the area of the pixel inside the polygon. Figure 2-56 illustrates this simple

form of antialiasing. A single polygon edge with slope 5/8 is shown. The inside

of the polygon is to the right. In Fig. 2-56a the polygon edge is rasterized

using a standard Bresenham algorithm with only two intensity levels. The edge

exhibits the characteristic jagged or stair step pattern. In Fig. 2-56b the area

of the pixel inside the polygon is used to select one of eight (0 to 7) intensity

levels. Notice that some pixels that are totally black in Fig. 2-56a are white in

Fig. 2-56b because less than one-eighth of the pixel area is inside the polygon.

A simple modification of Bresenham’s algorithm yields an approximation

to the pixel area inside the polygon (Ref. 2-29). This approximation can be

used to modulate the intensity. When a line of slope m (0 � m � I) crosses a

pixel, either one or two pixels may be involved, as shown in Fig. 2-57. If only

one pixel is crossed (Fig. 2-57a), then the area to the right and below the line is

y, + m/2. If two pixels must be considered (Fig. 2-57b), the area for the lower

pixel is I — (I — y’)2/2m and for the upper (y’ — I + m)2/2m. For a line in the first
octant with slope 0 � m � 1, the area of the upper pixel may be sufficiently
small that it will be ignored by the simple heuristic approach described above,
e.g., pixel (1, 1) in Fig. 2-56b. However, combining this area with that of the

‘Area2 (y-1+)2/2m
Area=y1+m/2

x x+I Area l (I)2/2mj_1’ j%_AI+A2 y+m/2
X1 b x+1

a

Figure 2-57 Bresenham’s algorithm with area antialiasing.

SIMPLE AREA ANTIALIASING 97

lower pixel more realistically represents the polygon edge. The combined area

for the two pixels is given by y, + m/2.

If the quantity w = 1 — m is added to the error term in Bresenham’s original

algorithm, i.e., introduce the transformation = e + w, then 0 � � 1. Now

the error term is a measure of the area of the pixel inside the polygon, i.e.,

of y, + m/2. With these modifications the initial value of the error term is

1/2. With this addition the algorithm given in Fig. 2-6 will always yield an

intensity of one-half the maximum for the first pixel. By relocating the plot or

output statement, a more realistic value is obtained for this first pixel. Further,

the intensity can be obtained directly rather than as a decimal fraction of the

maximum by multiplying the slope (m), the weighting factor (w), and the error

term by the maximum number of available intensity levels I. The modified

algorithm is then

modified Bresenham algorithm with antialiasing

the line is from (xi, y’) to (x2, y2)

I is the number of available intensity levels

all variables are assumed integer

initialize the variables

x = x

y = yi

= x2 — xi

= y2 — yi

m =

w = I — m

= 1/2

Plot(x, y, m/2)

while (x < zx)
if < w then

x=x+1

e=e+m

else

x=x+1

y=y+1

e=e—w

end if

Plot(x, y,)
end while

finish

The intensity for the first pixel assumes that the line starts at a pixel address.

A flowchart is given in Fig. 2-58. Figure 2-56c illustrates the results for a line

with slope m = 5/8 and eight intensity levels. The algorithm can be extended to
the other octants in a manner similar to that for the fundamental Bresenham

algorithm (see Sec. 2-5).

98 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

2-27 THE CONVOLUTION INTEGRAL AND ANTIALIASING

Extension of the simple antialiasing methods discussed in the previous section

requires use of a mathematical technique called the convolution integral. For

antialiasing, the signal, i.e., the picture, is convolved with a convolution kernel.

The result is used to determine the pixel attributes. The convolution integral is

given by

c() = fh(- x)y(x) dx

X 4-- X1

y4_- yt

X

‘y+—y2—y1

1—Max. no.

intensity levels

m —I(y/ x)

w4—I -m

—I /2

Figure 2-58 Area antialiasing Bresenham’s algorithm.

THE CONVOLUTION INTEGRAL AND ANTIALIASING 99

where

h(— x) is the convolution kernel or function

y(x) is the function being convolved

c() is the convolution of h(— x) and y(x)

It is extremely difficult to visualize the physical meaning of the convolution

integral from the mathematical definition. However, a simple graphical analysis

makes it clear (see Ref. 2-30).

Consider the convolution of the function y(x) = x, 0 � x � I with a simple

box or square convolution kernel h(x) = 1, 0 � x � 1. The graphical representation

of the convolution kernel is shown in Fig. 2-59a. The convolution

kernel is reflected about the ordinate to yield h(—x) as shown in Fig. 2-59b. The

reflected kernel is then translated to the right by an amount to form h(— x),

see Fig. 2-59c. This reflected, translated function is then multipled together

with the function being convolved y(x) (see Fig. 2-59d) for various values of

as shown in Fig. 2-59e. The area under the combined curves (functions) is the

value of the convolution integral c() which is also shown in Fig. 2-59e. Notice

that for this case the convolution integral is nonzero only in the range O�x�2.

Thus, determining the convolution integral is equivalent to reflecting the conh(x)

h(-x) h(-x) y(x)

a - b 11 EILr l
-[h(.x) Y(x) h(l-x) y(x) i(>L,àh(4 (2- x)

Figure 2-59 Convolution.

100 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

volution kernel, sliding it past the function, multiplying the two functions together,

and determining the area under the combined curves.

Mathematically the convolution kernel is

h(x)1 O�x�l

Reflecting yields

h(—x)=1 —l�x�O

Translating by gives

h(—x)=l—1�x�

Since both the convolution kernel and the function y(x) being convolved are

nonzero for finite ranges, the limits on the convolution integral are also finite.

How are those limits determined? Figure 2-59 clearly illustrates that the lower
limit is the maximum of the minimum values for which both functions are nonzero

and the upper limit is the minimum of the maximum values for which both
functions are nonzero. Thus,

fc

c() = I h(— x)y(x) dx = I h(— x)y(x) dx O� � I
J—oo Jo

= I h(—x)y(x)dx 1��2
J-1

Substituting for h(— x) and y(x) yields

xl 2
c() = I (1)(x) dx = — I = — O� � 1

Jo 2jo 2

= I (1)(x)dx=—] J(2) l��2
2

which are both parabolic functions as shown in Fig. 2-59e. If the slope of the

line is m rather than 1, then the results generalize to m2l2 and (ml2)(2 —

To see how this technique relates to antialiasing recall the heuristic intensity

modulation technique using the area of the pixel inside the polygon to determine

the pixel intensity. Examining the convolution function c() given above shows

that for m � I the value of the convolution function at the right hand edge of

the pixel, i.e., at x = = 1, is the area of the pixel inside the polygon, i.e. ml 2,

(see Fig. 2-50a with y = 0). For m > I the value of the cohvolution integral

gives the summation of the areas inside the polygon for the two pixels crossed

(see Fig. 2-SOb with y, = 0). The result is easily generalized for y,O. Thus,

the two previous algorithms (the heuristic area modulation algorithm and the

modified Bresenham algorithm) are equivalent to the convolution of the edge

functions, i.e., the straight line y = mx + b, with a box function or convolution

kernel evaluated at the right hand edge of the pixel.

THE CONVOLUTION INTEGRAL AND ANTIALIASING 101

Figure 2-60 Prefiltered antialiased image

at a resolution of 256 X 256 pixels.

(Courtesy of F. Crow.)

The convolution operation is frequently called filtering, where the convolution

kernel is the filter function. The simple area technique discussed above

prefilters the image. Prefiltering adjusts the pixel attributes of the computed

resolution before displaying the image. The technique of computing the image

at a resolution higher than the display resolution and averaging the attributes of

several pixels to obtain those at a lower display resolution may be considered

a postfiltering operation (see Figs. 2-54 and 2-55).

Although the simple box filter or convolution kernel yields acceptable results,

triangular and Gaussian filters yield better results (see Ref. 2-30). Two-

dimensional filters are also used. Simple box, pyramidal, conical, and two-
dimensional Gaussian convolution kernels or filter functions have been investigated

(see Refs. 2-30 to 2-34). Figure 2-60 shows the same scene as Figs. 2-54

and 2-55 computed at a resolution of 256 x 256 pixels, prefiltered with a simple

box filter and displayed at a resolution of 256 x 256.

Simple convolution filters are not always effective for small polygons of

area less than a pixel or for long, thin polygons. However, antialiasing can

be implemented using clipping (see Chap. 3 and Ref. 2-28). The edges of the

pixel area form the clipping window. Each individual polygon is clipped against

the edges of the window. The remaining polygonal area compared to the pixel

area is used to modulate the pixel intensity. If multiple small polygons are

present within a pixel, then the average, either uniform or weighted, of their

attributes is used to modulate the pixel attributes. An example is shown in

Fig. 2-61.

Unclipped Clipped Figure 2-61 Antialiasing using clipping.

102 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

2-28 HALFTONING

Antialiasing is a technique using multiple intensity levels to obtain increased

visual resolution. Haiftoning, on the other hand, is a technique for using

a minimum number of intensity levels, generally black and white, to obtain

increased visual resolution, i.e., gray scaling or multiple intensity levels. The

halftoning technique is quite old. It was originally used in the weaving of silk

pictures and other textiles. Modern halftone printing was invented by Stephen

Hargon in 1880. With this technique a wide range of photographic gray scales

is available using a strictly bilevel display medium: black ink on white paper.

Halftone printing is a screen or cellular process (see Ref. 2-35). The size of

the cell varies depending on the fineness of the screen and length of exposure.

Because of the low paper quality, screens with 50 to 90 dots per inch are used for

newspaper photographs. The higher quality paper used in books and magazines

allows the use of screens with 100 to 300 dots per inch. The success of the

halftone process depends on the human visual system being an integrator; i.e.,
it blends or smooths discrete information.

The visual resolution of computer-generated images can be increased using

a technique called patterning. In contrast to halftone printing, which uses variable

cell sizes, patterning generally uses fixed cell sizes. For a display of fixed

resolution, several pixels are combined to yield a pattern cell. Thus, patterning

trades spatial resolution for improved visual resolution. Fig. 2-62a illustrates

one possible group of patterns for a bilevel black-and-white display. Four pixels

are used for each cell. This arrangement yields five possible intensity or gray

levels (0 to 4). In general, for a bilevel display, the number of possible intensities

is one more than the number of pixels in a cell. Care must be taken in
selecting the patterns, otherwise unwanted small-scale structure is introduced.

For example, neither of the patterns shown in Figs. 2-62b or c should be used.

For a large constant-intensity area Fig. 2-62b will result in unwanted horizontal

lines and Fig. 2-62c in unwanted vertical lines appearing in the image. The

LL L a
4

11
b c

Figure 2-62 2 X 2 bilevel pattern cells.

HALFFONING 103

0 1 2 3 4

__

L1 __ __
___ ___ EEl Ti

5 6 7 8 9

___ ___

iL

I LT

___F.,ow

I wwi wwW

Figure 2-63 3 X 3 bilevel pattern cells.

number of intensity levels available can be increased by increasing the cell size.

Patterns for a 3 x 3 pixel cell are shown in Fig. 2-63. These patterns yield ten

(0 to 9) intensity levels. Pattern cells need not be square. A 3 x 2 pixel cell

yielding seven (0 to 6) intensity levels is shown in Fig. 2-64.

If multiple dot sizes are available, additional intensity levels can be obtained.

Figure 2-65 shows patterns for a 2 x 2 pixel cell with two dot sizes.

This yields 9 intensity levels. A similar 3 x 3 pixel cell with two dot sizes would

yield 27 intensity levels. If more than 1 bit per pixel is available, additional

intensity levels are also possible. For a 2 x 2 pixel pattern cell 2 bits per

pixel will yield 13 intensity levels as shown in Fig. 2-66. More bits per pixel

or larger cell patterns will yield corresponding increases in available intensity

levels (Ref. 2-36).

Patterning results in the loss of spatial resolution. This is acceptable if the

image is of lower resolution than the display. Techniques for improving visual

resolution while maintaining spatial resolution have also been developed (see

Ref. 2-37). The simplest is to use a fixed threshold for each pixel. If the image

intensity exceeds some threshold value the pixel is white, otherwise it is black.

I 1 I ____ ____

3 4 5 6

!LJ__ fl_I_I
Lw,IwI I_i_I I iw’iw’i

Figure 2-64 3 X 2 bilevel pattern cells.

104 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

o 1 2

__ •i .
__ _i.

3 4 5

.. •.,.
.. 1•1•

6 7 8

r. o __ Figure 2-65 Multiple dot size 2 X 2 bilevel pattern cells.

if I(x, y) > T then White else Black

where I(x, y) is the intensity of the image at pixel (x, y), White corresponds to

the maximum display intensity, and Black corresponds to the minimum display

intensity. The threshold is usually set at approximately half the maximum

display intensity. Figure 2-67b shows results for the photograph of Fig. 2-67a

with T = 150. For each pixel location, the intensity of the original photograph

was quantized in the range 0 to 255, i.e. 8 bits. Figure 2-67b illustrates that

a simple thresholding technique results in the loss of considerable fine detail.

This is particularly noticeable in the hair and facial features. The fine detail is

lost because of the relative large errors in displayed intensity for each pixel.

A technique developed by Floyd and Steinberg (Ref. 2-38) distributes this

error to surrounding pixels. Further, the algorithm is cleverly constructed such

that the error is always distributed downward and to the right. Hence, if

the image is computed in scan line order, no backtracking is necessary. In

particular, the Floyd-Steinberg algorithm distributes the error three-eighths to

the right, three-eighths downward, one-fourth diagonally. This is shown in

H I’ ui ‘H: I ‘i[

i}2 f1 fJ Figure 2-66 Two bits per pixel 2 XI I I L I -‘ -‘ 2 pattern cells.

(a)

(b)

Figure 247 Bilevel display techniques.
(a) Original photograph, (b) simple thresholding,

(c) ordered dither with 8 X 8
dither matrix. (Courtesy of I. F. Jarvis,
Bell Laboratories.)

(c)

106 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Fig. 2-68. With the threshold midway between the maximum and minimum

display intensities, T = (Black + White)/2, the algorithm is

Floyd Steinberg eiror distribution algorithm

Xmin, Xmax, Ymin, Ymax are the raster limits for each scan line—top
to bottom

T = (Black + White)/2

for y = Ymax to Ymin step — 1

for each pixel on a scan line—left to right
for x = Xmin to Xmax

determine pixel display value for threshold T and calculate
error

if I(x,y) <Tthen

Pixel(x, y) = Black

Error = I(x, y) — Black
else

Pixel(x, y) = White

Error = I(x, y) — White
end if

display pixel

Display Pixel(x, y)

distribute error to neighboring pixels

I(x+1,y) = I(x+1,y) + 3*Error/8

I(x,y —1) = I(x,y—1) + 3*Error/8

I(x+1,y—1) = I(x+1,y—1) + Error/4
next x

next y

finish

Distributing the error to neighboring pixels improves the detail in the image

because it preserves the information inherent in the image.

Another technique for bilevel displays which increases the visual resolution

without reducing the spatial resolution is dither. The technique attempts to

introduce a random error into the image. This error is added to the image

Present

pixel —

I(x,y)

.
8

3

8

1

4

Figure 2-68 Error distribution for Floyd-Steinberg algorithm.

HALFr0NING 107

intensity of each pixel before comparison with the selected threshold value.
Adding a completely random error does not yield an optimum result. However,
an optimum additive error pattern which minimizes pattern texture effects does
exist (see Ref. 2-39). The error pattern is added to the image in a repeating
checkerboard pattern. This technique is called ordered dither. The smallest
ordered dither pattern or matrix is 2 x 2. An optimum 2 x 2 matrix, orignally
given by Limb (Ref. 2-40), is

[D2] = [0 2
L3 1]

Larger dither patterns, 4 x 4, 8 x 8, etc., are obtained using the recursion

relation (see Ref. 2-37)

[D] = f 4D,,2 4D,,2 + 2U2] n� 4
L4D2 + 3U2 4D2 + Uj2 J

where n is the matrix size and

[U]= 1 1 ... 1

[i’ I
For example, the 4 x 4 dither matrix is

[D4]=ro 8 2 101

112 4 14 6

I 3 ii 1 9

Lis 7 13 5

As these two examples show n2 intensities can be reproduced from a dither

matrix D. Further, the image does not lose spatial resolution as n is increased.

The ordered dither algorithm is

Ordered dither algorithm

Xmin, Xmax, Ymin, Ymax are the raster limits for each scan line—top
to bottom

Mod is a function that returns the modulo value of its arguments

fory = YmaxtoYmin step — 1

for each pixel on a scan line—left to right
for x = Xmin to Xmax

determine position in dither matrix

= (x Mod n) + 1

j = (y Mod n) + 1

108 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

determine pixel display value

If I(x,y) < D(i,j) then

Pixel(x, y) = Black
else

Pixel(x, y) = White
end if

display pixel

Display Pixel(x, y)
next x

next y

finish

Figure 2-67c shows the image in the original photograph of Fig. 2-67a processed

with an 8 x 8 ordered dither matrix. The 8 x 8 dither matrix effectively

introduces 64 intensity levels. Figure 2-67c shows that considerable fine detail

is restored. The Floyd-Steinberg algorithm and ordered dither can be applied

to color images (Ref. 2-41). Patterning techniques can also be used with color

(Ref. 2-42).

2-29 REFERENCES

2-1 Bresenham, J.E., “Algorithm for Computer Control of a Digital Plotter,” IBM
System Journal, Vol. 4, pp. 25—30, 1965.

2-2 Pitteway, M.L.V., “Algorithm for Drawing Ellipses or Hyperbolas with a Digital
Plotter,” Computer Journal, Vol. 10, pp. 282—289, 1967.

2-3 Jordon, B.W., Jr., Lennon, W.J., and Holm, B.D., “An Improved Algorithm for
the Generation of Nonparametric Curves,” IEEE Trans. Comput., Vol. C-22, pp.
1052—1060, 1973.

2-4 Belser, K., Comment on “An Improved Algorithm for the Generation of Nonparametric
Curves,” IEEE Trans. Comput., Vol. C-25, p. 103, 1976.

2-5 Ramot, J., “Nonparametric Curves,” IEEE Trans. Comput., Vol. C-25, pp. 103—
104, 1976.

2-6 Horn, B.K.P., “Circle Generators for Display Devices,” Computer Graphics and
Image Processing, Vol. 5, pp. 280—288, 1976.

2-7 Badler, NI., “Disk Generator for a Raster Display Device,” Computer Graphics
and Image Processing, Vol. 6., pp. 589—593, 1977.

2-8 Doros, M., “Algorithms for Generation of Discrete Circles, Rings, and Disks,”
Computer Graphics and Image Processing, Vol. 10, pp. 366—371, 1979.

2-9 Suenaga, Y., Kamae, T., and Kobayashi, T., “A High-speed Algorithm for the
Generation of Straight Lines and Circular Arcs,” IEEE Trans. Comput., Vol. C-
28, pp. 728—736, 1979.

2-10 Bresenham, J., “A Linear Algorithm for Incremental Digital Display of Circular
Arcs,” CA CM, Vol. 20, pp. 100—106, 1977.

2-11 Standish, Thomas A., Data Structures Techniques, Addison-Wesley Publishing
Company, Reading, Mass., 1980.

2-12 Knuth, Donald, E., The Art of Computer Programming, Vol. 3, Sorting and
Searching, Addison-Wesley Publishing Company, Reading, Mass. 1973.

REFERENCES 109

2-13 Laws, B.A., “A Gray-Scale Graphic Processor Using Run-Length Encoding,” Proc.

IEEE Conf. Comput. Graphics, Pattern Recognition, Data Struct., pp. 7—10, May
1975.

2-14 Hartke, David H., Sterling, Warren M., and Shemer, Jack E., “Design of a Raster

Display Processor for Office Applications,” IEEE Trans. Comput., Vol. C-27, pp.
337—348, 1978.

2-15 Jordan, B.W., and Barrett, R.C. ,“A Cell Organized Raster Display for Line Drawings,

CA CM,” Vol. 17, pp. 70—77, 1974.

2-16 Barrett, R.C., and Jordan, B.W., “Scan Conversion Algorithms for a Cell Organized

Raster Display,” CA CM, Vol. 17, pp. 157—163, 1974.

2-17 Willett, Ken, “The 4027—Adding a Color Dimension to Graphics,” Tekscope, Vol.

10, pp. 3—6.

2-18 Negroponte, N., “Raster Scan Approaches to Computer Graphics,” Computers &

Graphics, Vol. 2, pp. 179—193, 1977.

2-19 Baecker, Ronald, “Digital Video Display Systems and Dynamic Graphics,” Computer

Graphics, Vol. 13, pp. 48—56, 1979 (Proc. SIGGRAPH 79).

2-20 McCracken, T.E., Sherman, B.W., and Dwyer, S.J., III, “An Economical Tonal

Display for Interactive Graphics and Image Analysis Data,” Computers & Graphics,

Vol. 1, pp. 79—94, 1975.

2-21 Whitted, Turner, “A Software Test-Bed for the Development of 3-D Raster Graphics

Systems,” Computer Graphics, Vol. 15, pp. 271—277, 1981 (Proc. SIGGRAPH

81).

2-22 Ackland, Bryan, and Weste, Neil, “Real Time Animation on a Frame Store Display

System,” Computer Graphics, Vol. 14, pp. 182—188, 1980 (Proc. SIGGRAPH 80).

2-23 Dunlavey, Michael R., “Efficient Polygon-Filling Algorithms for Raster Displays,”

Trans. on Graphics, Vol. 2, pp. 264—273, 1983.

2-24 Ackland, Bryan, and Weste, Neil, “The Edge Flag Algorithm—A Fill Method for

Raster Scan Displays,” IEEE Trans. Comput., Vol. C-30, pp. 41—48, 1981.

2-25 Smith, Alvy Ray, “Tint Fill,” Computer Graphics, Vol. 13, pp. 276—283, 1979

(Proc. SIGGRAPH 79).

2-26 Shani, Un, “Filling Regions in Binary Raster Images: A Graph-Theoretic Approach,”

Computer Graphics, Vol. 14, pp. 321—327, 1980 (Proc. SIGGRAPH

80).

2-27 Pavlidis, Theo, “Algorithms for Graphics and Image Processing,” Computer Science
Press, Rockville, Md. 1982.

2-28 Crow, Franklin C., “A Comparism of Antialiasing Techinques,” IEEE CG & A,

Vol. 1, pp. 40—47, 1981.

2-29 Pitteway, M.L.V., and Watkinson, D.J., “Bresenham’s Algorithm with

Gray Scale,” CA CM, Vol. 23, pp. 625—626, 1980.

2-30 Brigham, E. Oran, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs,
1974.

2-31 Crow, Franklin C., “The Aliasing Problem in Computer-Generated Shaded Images,”

CA CM, Vol. 20, pp. 799—805, 1977.

2-32 Feibush, Eliot A., Levoy, Marc, and Cook, Robert L., “Synthetic Texturing Using

Digital Filters,” Computer Graphics, Vol. 14, pp. 294—301, 1980 (Proc. SIGGRAPH

80).

2-33 Warnock, John, “The Display of Characters Using Gray Level Sample Arrays,”

Computer Graphics, Vol. 14, pp. 302—307, 1980 (Proc. SIGGRAPH 80).

2-34 Gupta, Satish, and Sproull, Robert F., “Filtering Edges for Gray-Scale Displays,”

Computer Graphics, Vol. 15, pp. 1—6, 1981 (Proc. SIGGRAPH 81).

110 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

2-35 Halftone Methods for the Graphic Arts (Q3), 3d ed., Eastman Kodak, Rochester,
N.Y. 1982.

2-36 Pirsch, P. and Netravali, A.N., “Transmission of Gray Level Images by Multilevel

Dither Techniques,” Computers & Graphics, Vol. 7, pp. 31—44, 1983.

2-37 Jarvis, J.F., Judice, C.N., and Ninke, W.H., “A Survey of Techniques for the

Display of Continuous Tone Pictures on Bilevel Displays,” Computer Graphics and

Image Processing, Vol. 5, pp. 13—40, 1976.

2-38 Floyd, R., and Steinberg, L., “An Adaptive Algorithm for Spatial Gray Scale, SID

1975,” mt. Symp. Dig. Tech., Pap., pp. 36—37, 1975.

2-39 Bayer, B.E., “An Optimum Method For Two-Level Rendition of Continuous-Tone

Pictures,” mt. Conf. Commun., Conf. Rec., pp. (26-11)—(26-15), 1973.

2-40 Limb, J.O., “Design of Dither Waveforms for Quantized Visual Signals,” Bell

System Technical Journal, Vol. 48, pp. 2555—2582, 1969.

2-41 Heckbert, Paul, “Color Image Quantization For Frame Buffer Display,” Computer

Graphics, Vol. 16, pp. 297—307, 1982, (Proc. SIGGRAPH 82).

2-42 Kubo, Sachio, “Continuous Color Presentation Using a Low-Cost Ink Jet Printer,”

Proc. Comput. Graphics Tokyo 84, 24—27 April, 1984, Tokyo, Japan.

CHAPTER

THREE

CLIPPING

Clipping, the process of extracting a portion of a data base, is fundamental
to several aspects of computer graphics. In addition to its more typical use
in selecting only the specific information required to display a particular scene
or view from a larger environment, Chap. 2 has shown that it is useful for
antialiasing. Succeeding chapters will show that clipping is useful in hidden
line, hidden surface, shadow, and texture algorithms as well. Although beyond

the scope of this text, the algorithms and concepts discussed here can be used
to implement advanced clipping algorithms that clip polygonal volumes against

polygonal volumes. Such algorithms can be used to perform the boolean

operations required for simple solid modelers, e.g. the intersection and union of
simple cubical and quadric volumes. These approximate solutions are adequate
for many applications.

Clipping algorithms are two- or three-dimensional and are for regular or
irregular regions or volumes. Clipping algorithms can be implemented in hardware

or software. When implemented in software, clipping algorithms are
often slower than required for real-time applications. For this reason both two-
and three-dimensional clipping algorithms have been implemented in hardware

or firmware. These implementations are usually confined to regular clipping
regions or volumes. However, very-large-scale integrated (VLSI) circuits offer
the possibility of more general implementations which operate at real-time
speeds (Ref. 3-1) for both regular and irregular clipping regions or volumes.

3-1 TWO-DIMENSIONAL CLIPPING

Figure 3-1 shows a two-dimensional scene and a regular clipping window. It is
defined by left (L), right (R), top (T), and bottom (B) two-dimensional edges.
A regular clipping window is rectangular, with its edges aligned with those
of the object space or display device. The purpose of a clipping algorithm is

111

112 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

om
Figure 3-1 Two-dimensional clipping window.

to determine which points, lines, or portions of lines lie within the clipping

window. These points, lines, or portions of lines are retained for display. All
others are discarded.

Since large numbers of lines or points must be clipped for a typical scene or

picture, the efficiency of clipping algorithms is of particular interest. In many

cases the large majority of points or lines are either interior to or exterior to

the clipping window. Therefore, it is important to be able to quickly accept a

line like ab or a point like p or reject a line like ij or a point like q in Fig. 3-1.

Points are interior to the clipping window provided that

XI�X�XR and YB�Y�YT

The equal sign indicates that points on the window boundary are included within
the window.

Lines are interior to the clipping window and hence visible if both end

points are interior to the window, e.g., line ab in Fig. 3-1. However, if both

end points of a line are exterior to the window, the line is not necessarily

completely exterior to the window, e.g., line gh in Fig. 3-1. If both end points

of a line are completely to the right of, completely to the left of, completely

above, or completely below the window, then the line is completely exterior to

the window and hence invisible. This test will eliminate all the lines labeled if

in Fig. 3-1. It will not eliminate either line gh, which is partially visible, or line

ki, which is totally invisible.

If a and b are the end points of a line, then an algorithm for identifying

completely visible and most invisible lines might be:

simple visibility algorithm

a and b are the end points of the line with components x and y

for each line

check if the line is totally visible

TWO-DIMENSIONAL CLIPPING 113

if any coordinate of either end point is outside the window, then the line

is not totally visible
if Xa <XL or Xa > XR then 1

if Xb <XL or Xb > XR then 1

if Ya <YB or Ya > YT then 1

if yb <YB or Yb > YT then 1
line is totally visible
Draw line

go to 3

check for totally invisible lines

if both end points are left, right, above, or below the window, the line

is trivially invisible
1 IfXa<XLandXb<XLthen2

if Xa > XR and Xb > XR then 2

if Ya > YT and Yb > YT then 2

if Ya <YB and Yb < YB then 2

the line is partially visible or diagonally crosses the corner invisibly
determine the intersections

2 line is invisible

3 next line

I-Jçre XL, Xp, Yr, y8 are the x and y coordinates, respectively, of the left, right,
top, and bottom of the window edges. The order in which the tests for visibility

or invisibility are performed is immaterial. Some lines will require all four tests
before being accepted as totally visible or trivially rejected as totally invisible.
Other lines will require only one test. It is also immaterial whether the test for
totally visible or totally invisible lines is performed first. However, the line—
window edge intersection calculation is computationally expensive and should
be performed last.

The tests for totally visible lines and the region tests given above for totally
invisible lines can be formalized using a technique due to Dan Cohen and Ivan

Sutherland. The technique uses a four-digit (bit) code to indicate which of
nine regions contain the end point of a line. The four-bit codes are shown in
Fig. 3-2. The rightmost bit is the first bit. The bits are set to 1 based on the
following scheme:

First-bit set — if the end point is to the left of the window

Second-bit set — if the end point is to the right of the window

Third-bit set — if the end point is below the window

Fourth-bit set — if the end point is above the window

Otherwise, the bit is set to zero. From this it is obvious that, if both end point
codes are zero, then both ends of the line lie inside the window and the line is
visible.

114 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

R Figure 3-2 Codes for line end point regions.

The end point codes can also be used to trivially reject totally invisible lines.
Consider the truth table:

True and False False 1 and 0 0
False = 0

False and True False 0 and 1 0

False and False False 0 and 0 - 0
True = 1

True and True True 1 and 1 1

which is equivalent to the logical and operator. If the bit-by-bit logical intersection

of the two end point codes is not zero, then the line is totally ijviible
and may be trivially rejected. The several examples shown in Table-1 will

help to clarify these statements. Notice in Table 3-1 that, when the logical

intersection is not zero, the line is in fact totally invisible. However, when the

Line

(see Fig. 3-1)

End poin t codes

(see Fig. 3-2)

Logical
intersection Comments

ab 0000 0000 0000 Totally visible

if 0010 0110 0010 Totally invisible

if 1001 1000 1000 Totally invisible

if 0101 0001 0001 Totally invisible

if 0100 0100 0100 Totally invisible

cd 0000 0010 0000 Partially visible

ef 0001 0000 0000 Partially visible

gh 0001 1000 0000 Partially visible

ki 1000 0010 0000 Totally invisible

1001

T

1000 1010

0001

Window

0000 0010

0101 0 1 00 0110

L

Table 3-1 End Point Codes

TWO-DIMENSIONAL CLIPPING 115

logical intersection is zero, the line may be totally or partially visible, or in fact

totally invisible. It is for this reason that it is necessary to check both end point

codes separately to determine total visibility.

End point code checking can easily be implemented when bit manipulation

routines are available. One possible software implementation that does not use

bit manipulation routines is shown in the algorithms given below.

If totally visible and trivially invisible lines are determined first, then only
potentially partially visible lines, for which the logical intersection of the end

point codes is zero, are passed to the line intersection routine. This routine

must also, of course, properly identify totally invisible lines that are passed to
it.

The intersection between two lines can be determined either parametrically

or nonparametrically. Explicitly the equation of the infinite line through

Pi(xi, y) and P2(x2, Y2) is

y=m(x—xi)+yi or ym(x—x2)+y2

where

m = Y2 — Yi
X2 — Xi

is the slope of the line. The intersections with the window edges are given by

Left: xL,y=m(xLxI)+yI

Right: Xp, = m(xR — xi) + yi

Top: Yr,XXI +(1/m)(y—yi) mO

Bottom: y8,x = x + (1/m)(y8 — yi) m 0

Example 3-1 shows that the explicit method permits rejection of improper

intersections by simply comparing the intersection values with the window edges.

Example 3-1 Explicit Two-Dimensional Clipping

Consider the clipping window and the lines shown in Fig. 3-3. For the line
from P(—3/2, 1/6) to P2(1/2, 3/2) the slope is

Y2Y1 3/2—1/6 2

m = X2 — xj = 1/2 — (—3/2) = 3

and the intersections with the window edge are

Left: x = —1 y = (2/3)[—1 — (—3/2)] + 1/6

= 1/2

Right: x = 1 y = (2/3)[1 — (—3/2)] + 1/6

= 11/6

which is greater than YT and thus rejected.

Top: y = 1 x = —3/2 + (3/2)[1 — 1/6]
= —1/4

Bottom: y = —1 x = —3/2 + (3/2)[—1 — (1/6)]

= —13/4

116 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

which is less than XL and thus rejected.

Similarly for the line from P3(—3/2, — I) to P4(3/2, 2)

Y2Y1
2—(—1)

m = X2 — = 3/2 — (—3/2) = 1
and

Left: x = —1 y = (1)[—1 — (—3/2)] + (—1)

= —1/2

Right: X = 1 y = (1)[1 — (—3/2)] + (—1)

= 3/2

which is greater than Yr and thus rejected.

Top: Y= 1 X= —3/2+(1)[1 — (—1)]
= 1/2

Bottom: Y = —1 X = —3/2 + (1)[— 1 — (—1)]

= —3/2

which is less than XL and thus rejected.

In developing the structure of an efficient clipping algorithm some special

cases must be considered. Recalling the discussion above, if the slope of the

line is infinite, it is parallel to the left and right edges, and only the top and

bottom edges need be checked for intersections. Similarly, if the slope is zero,

the line is parallel to the top and bottom edges, and only the left and right edges

need be checked for intersections. Finally, if either end point code is zero, one

end point is interior to the window, and only one intersection can occur. Figure

3-4 gives a flowchart for an algorithm based on these considerations. A pseudo

implementation is given below.

y

/4/
(—1, 1) Ø1 (I, I

Figure 3-3 Two-dimensional

(- 1,-i) (1,-i) parametric clipping.

TWO-DIMENSIONAL CLIPPING 117

Explicit two-dimensional clipping algorithm

P1 and P2 are the end points of the line

XL, XR, YT, YB are the left, right, top, and bottom window coordinates

Iflag is the vhsibility indicator, —1 invisible, 0 visible

calculate the end point codes

put the codes for each end into I x 4 arrays called Picode and P2code

first end point: P1

If x <XL then Plcode(4) = 1 else Plcode(4) = 0

if Xi > XR then Plcode(3) = 1 else Plcode(3) = 0

if yt <YB then Plcode(2) = 1 else Plcode(2) = 0

if yi > YT then Plcode(1) = 1 else Plcode(1) = 0

second end point: P2

if X2 <XL then P2code(4) = 1 else P2code(4) = 0

if X2 > XR then P2code(3) = 1 else P2code(3) = 0

if y2 <YB then P2code(2) = 1 else P2code(2) = 0

if y2 > YT then P2code(1) = 1 else P2code(1) = 0

initialize the visibility flag, the drawing points P1’ and P2’, and the
counter

Icount = 0

Iflag = 0

P Pi

P2 = P2

check for totally visible line
Suml = 0

Sum2 = 0

for I = 1 to 4

Suml = Suml + Plcode(i)

Sum2 = Sum2 + P2code(i)
next i

if Sumi = 0 and Sum2 = 0 then 7

line is not totally visible

check for trivial invisible case

calculate the logical intersection of the end point codes
Inter = 0

for i = 1 to 4

Inter = Inter + Integer((Plcode(i) + P2code(i))/2)
if Inter < > 0 then

Iflag = —1

go to 7
end if

next i

line may be partially visible

check for first point inside window
if Sumi = 0 then

118 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 3-4 Flowchart for explicit two-dimensional clipping.

TWO.DIMENS10 CLIPPING 119

Figure 3.4 (Continued.)

120 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Icount = 2

P = Pt
P = P2

go to 2

end if

check for second point inside window
if Sum2 = 0 then

Icount = 2

P2 = P2

P = Pi

go to 2

end if

neither end point inside window

Icount = Icount + 1

if Icount � 2 then 7

P = Pi0t

initialize m to a very large number to represent an infinite slope

m = Large

check the left-side intercept

check for vertical line

2 if(x2—xI)=Othen4

m = (y2 — yt)/(x2 — xi)

if XL <P then 3

y =m*(xL — P) +

if y > YT then 3

If y<yB then 3

a proper intercept has been found

Py = y

Px = XL

go to 1

check the right-side intercept

3 ifxR>Pthen4

y = m*(xR — P) +

if Y> YT then 4

if y <YB then 4

a proper intercept has been found

Py = y

Px = XR

go to 1

check the top edge intercept

check for horizontal line
4 ifm=Othenl

if y> P then 5

x = (l/m)*(yT — P) + Px

SUThERLAND.COHEN SUBDIVISION LINE-CLIPPING ALGORITHM 121

If X < XL then 5

if x > XR then 5

a proper intercept has been found
Px = X

Py = yT

go to 1

check the bottom intercept

5 X = (l/m)*(yB — P) + Px
if X <XL then 6

if X > XR then 6

a proper intercept has been found
Px = X

Py = YB
go to 1

the line is really invisible

6 Iflag= —1

completion and drawing routine

7 iflflag= —lthen8

Draw PP

process next line
8 finish

3-2 SUTHERLAND-COHEN SUBDIVISION LINE-CLIPPING

ALGORITHM

The algorithm in the previous section is similar to one developed by Dan Cohen

and Ivan Sutherland. The previous algorithm clips the line successively against

each of the window edges and examines the resulting intersection point to see

if it is within the window, i.e., is a proper intercept. This is done first for the

line P1P2 to yield P1’P2 and then for the line P2P1’ to yield P2’P1’, the clipped
line.

The Sutherland-Cohen algorithm also divides the line at a window edge. In

contrast it does not check to see if the intersection point is within the window

but rather attempts to accept or reject the two resulting segments using the line

end point codes for the segments. Recalling line P1P2 of Fig. 3-3 immediately

reveals a difficulty with this simple technique. If P1P2 is clipped against the left

edge of the window, the two new segments are P1P and P1’P2. The end point

codes for both these segments indicate that they both may be partially visible.

Hence, neither can be rejected as invisible or accepted as visible. The key to

the Sutherland-Cohen algorithm is always knowing that one of the end points is

outside the window. Thus, the segment from this end point to the intersection

point can always be rejected as invisible. The algorithm then proceeds with the

remainder of the line. In effect this replaces the original end point with the

intersection point. Simply stated, the Sutherland-Cohen algorithm is

122 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

For each window edge:

For the line P1P2, determine if the line is totally visible or can be

trivially rejected as invisible.

If P1 is outside the window continue; otherwise, swap P1 and P2.

Replace P1 with the intersection of P1P2 and the window edge.

Example 3-2 further illustrates the algorithm.

Example 3-2 Sutherland-Cohen Clipping

Again consider the line P1P2 clipped against the window shown in Fig. 3-3.
The end point codes for P1(—3/2, 1/6) and P2(1/2, 3/2) are (0001) and (1000),

respectively. The line is neither totally visible nor trivially invisible. P1 is
outside the window.

The intersection with the left edge (x = —1) of the window is P1’(— 1, 1/2).

Replace P1 with P to yield the new line P (— 1, 1/2) to P2(1/2, 3/2).

The end point codes for P1 and P2 are now (0000) and (1000), respectively.
The line is neither totally visible nor trivially invisible.

P1 is inside the window. Swap P1 and P2 to yield the new line P1(1/2, 3/2) to
P2(— 1, 1/2). Also swap the end point codes.

The intersection with the right edge (x = 1) of the window is P “(1, 11/6).

Replace P1 with P1” to yield the new line P1(1, 11/6) to P2(— 1, 1/2).

The end point codes for P1 and P2 are now (1000) and (0000), respectively.
The line is neither totally visible nor trivially invisible.

P1 is outside the window.

The intersection with the top edge (y = 1) of the window is P(— 1/4, 1).

Replace P1 with P to yield the new line P1(— 1/4, 1) to P2(— 1, 1/2).

The end point codes for P1 and P2 are (0000) and (0000), respectively. The
line is totally visible.

The procedure is complete.

Draw the line.

A pseudo implementation of the algorithm is given below. Because the
same concept is repeatedly applied, subroutine modules are used to determine

the visibility of a line segment, the end point codes, and the logical intersection
of the end point codes.

Sutherland-Cohen two-dimensional clipping algorithm

Window is a 1 x 4 array containing the left, right, bottom, and top edges

(XL, XR, yB, yT) of the rectangular clipping window

P1 and P2 are the end points of the line with x and y component P1 x, P1 y,

SUTHERLAND-COHEN SUBDIVISION LINE-CLIPPING ALGORITHM 123

and P2x, P2y

Iflag is used to indicate a vertical slope; —1 vertical, 0 nonvertical

initialize Iflag

Iflag = 0

check for vertical line
ifP2x — P1x = 0 then

Iflag= —1
else

calculate slope

Slope = (P2y — Piy)/(P2x — Pix)
end if

for each window edge
for i = 1 to 4

call Cohen(P1, P2, Window; Visible)

if Visible = yes then 2
if Visible = no then 3

check for a vertical line

if Iflag = —1 and i � 2 then 1

select the appropriate intersection routine
if i � 2 then

Intery = Slope*(Window1 — Pix) + Py
P1x = Window1

Py = Intery
else

if Iflag = — 1 then

Piy = Window
else

Interx = (1/Slope)*(Window — P’y) + Px
Pix = Interx

Piy = Window1
end if

end if

nexti

draw the visible line

2 Draw P1P2

3 finish

subroutine module to determine the visibility of a line segment

subroutine Cohen(P1, P2, Window; Visible)

P1 and P2 are the end points of the line segment with x and y components

P1x, Py and P2x, P2y

Window is a 1 x 4 array containing the left, right, bottom, and top edges

(XL, XR, YB, yT) of the retangular clipping window

Visible is a flag, no, partial, yes as the line segment is totally invisible,

partially visible, or totally visible

calculate the end point codes

124 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

call Endpoint(Pi , Window; Picode, Sumi)

call Endpoint(P2, Window; P2code, Sum2)

check if the line is totally visible

if Sumi = 0 and Sum2 = 0 then Visible = yes

check if the line is trivially invisible

call Logical(Plcode, P2code; Inter)
if Inter < > 0 then Visible = no

the line may be partially visible

Visible partial
check that P1 is outside
if Suml =Othenl

swap the end points

Temp = Pi
P1 = P2

P2 = Temp
return

subroutine module to calculate the end point codes

subroutine Endpoint(P, Window; Pcode, Sum)

P, P are the x and y components of the point P

Window is a 1 x 4 array containing the left, right, bottom, and top edges

(XL, XR, YB, y) of the rectangular clipping window

Pcode is a I x 4 array containing the end point code

Sum is the element-by-element sum of Pcode

determine the end point codes

if P <XL then Pcode(4) = 1 else Pcode(4) = 0

if P > XR then Pcode(3) = 1 else Pcode(3) = 0

if P <yB then Pcode(2) = 1 else Pcode(2) = 0

if P > yr then Pcode(1) = 1 else Pcode(1) = 0
calculate the sum

Sum = 0

for I = 1 to 4

Sum = Sum + Pcode(i)
next i

return

subroutine module to find logical intersection

subroutine Logical(Plcode, P2code; Inter)

Picode is a I x 4 array containing end point codes

P2code is a I x 4 array containing end point codes

Inter is the sum of the bits for the logical intersection

Inter = 0

for i = 1 to 4

Inter = Inter + Integer((Plcode(i) + P2code(i))/2)
next i

return

MIDPOINT SUBDIVISION ALGORITHM 125

3-3 MIDPOINT SUBDIVISION ALGORITHM

The previous algorithm requires the calculation of the intersection of the line

with the window edge. This direct calculation can be avoided by performing

a binary search for the intersection by always dividing the line at its midpoint.

The algorithm, which is a special case of the Sutherland-Cohen algorithm,

was proposed by Sproull and Sutherland (Ref. 3-2) for implementation

in hardware. Implemented in software the algorithm is slower than using direct

calculation of the intersection of the line with the window edge as discussed

above. Implementation in hardware is fast and efficient because a parallel architecture

can be used and hardware addition and division by 2 are very fast.

In hardware, division by 2 can be accomplished by shifting each bit to the right.

For example, the 4-bit binary representation of decimal 6 is 0110. Shifting each

bit to the right by one yields 0011 which is decimal 3 = 6/2.

The algorithm uses the line end point codes and associated tests to immediately

identify totally visible lines, e.g., line a in Fig. 3-5, and trivially invisible

lines, e.g., line b in Fig. 3-5. Lines which cannot be immediately identified

using these tests, e.g., lines c to g in Fig. 3-5, are subdivided into two

equal parts. The tests are then applied to each half until the intersection with

the window edge is found or the length of the divided segments is infinitesimal,

i.e. a point, e.g. linef in Fig. 3-5. The visibility of the point is then determined.

The result is to perform a logarithmic search for the intersection point. The

maximum number of subdivisions is equal to the precision of the representation

of the end points of the line.

To illustrate the technique consider lines c andf of Fig. 3-5. Although linef

is not visible, it crosses the corner and cannot be trivially rejected. Subdivision

at the midpoint Pm1 allows the half PmP2 to be trivially rejected. The half PmPi

again crosses the corner and cannot be trivially rejected. Further, subdivision at

Pm2 allows rejection of Pm2Pi as invisible. Subdivision of the remaining portion

PmiPm2 continues until the intersection of the line with the extension of the right-

hand window edge is found within some specified accuracy. This point is then
examined and found to be invisible. Hence, the entire line is invisible.

‘\Pm

P2\
P2

Figure 3-5 Midpoint subdivision.

126 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

From the end point codes line c of Fig. 3-5 is also neither totally visible,

nor can it be trivially rejected as invisible. Subdivision at the midpoint Pm

yields the same result for both halves. Setting aside the segment PmPi for later

consideration, the segment PmP2 is further subdivided at Pm2• The segment

PmiPm2 is now totally visible, and the segment PP2 partially visible. The

segment PmiPm2 could now be drawn. However, this would result in the visible

portion of the line being inefficiently drawn as a series of short segments.

Instead the point Pm is remembered as the current farthest visible point from

Pi. Subdivision of the segment Pm2P2 continues. Each time a visible midpoint

is found it is declared the current farthest visible point from P1, until the

intersection with the bottom edge of the window is determined to some specified

accuracy. This intersection is then declared the farthest visible point from Pi.

The segment PmPi is then examined in the same way. For line c of Fig. 3-5 the

farthest visible point from P2 is the intersection with the left hand window edge.

The visible portion of the line PiP2 is then drawn between the two intersections.

For lines like c and d of Fig. 3-5 the midpoint subdivision algorithm performs

two logarithmic searches for the two farthest visible points from the ends

of the line. These are the intersections with the window edges. Each midpoint

subdivision is a crude guess at these points. For lines like e and g which have

one end point visible, one of these searches is trivial. In a software implementation

the two searches are performed sequentially. In a hardware implementation

they are performed in parallel. The algorithm can be formalized in three

steps (Ref. 3-3).

For each end point:

If the end point is visible, then it is the farthest visible point. The

process is complete. If not, continue.

If the line is trivially determined to be invisible, no output is generated.

The process is complete. If not, continue.

Guess at the farthest visible point by dividing the line PiP2 at its midpoint

Pm. Apply the tests above to the two segments P1Pm and P,,1P2. If

PmP2 is trivially rejected as invisible, the midpoint is an overestimation

of the farthest visible point. Continue with PiP,,,. Otherwise, the midpoint

is an underestimation of the farthest visible point. Continue with

P2Pm. If the segment becomes so short that the midpoint corresponds

to the accuracy of the machine or, as specified, to the end points,

evaluate the visibility of the point and the process is complete.

A specific example better illustrates the algorithm.

Example 3-3 Midpoint Subdivision

Consider the window in the screen coordinates shown in Fig. 3-5 to have left,
right, bottom, and top edges of 0, 1023, 0, 1023, respectively. The line c has
end points P1(—307, 631) and P2(820, — 136) in screen coordinates. The end
point code for Pi is (0001), and that for P2 is (0100). Both end point codes are

MIDPOINT SUBDIVISION ALGORITHM 127

not zero, so the line is not totally visible. The logical intersection of the end

point codes is (0000). The line may not be trivially rejected as invisible. Look
for the intersections.

The midpoint is

X2+X1 820—307
Xm = 256.5256

= Y2 + = — 1362+ 631 = 247.5 = 247
using integer arithmetic. The end point code for the midpoint is (0000). Neither

segment PiPm nor P2Pm is either totally visible or trivially invisible. Putting

aside the segment P2Pm and continuing with P iPm the subdivision process continues
as shown in Table 3-2.

Table 3-2

Pi P2 Pm Comment

—307, 631 820, —136 256, 247 Save PmP2,

continue P1Pm

—307, 631 256, 247 —26, 439 Continue PmP2

—26, 439 256, 247 115, 343 Continue P1P,,,

—26, 439 115, 343 44, 391 Continue PiP,,,

—26, 439 44, 391 9, 415 Continue PiP,,,

—26, 439 9, 415 —9, 427 Continue PmP2

—9, 427 9, 415 0, 421 J Success
256, 247 820, —136 538, 55 Recall saved PmP2,

continue PmP2

538, 55 820, —136 679, —41 Continue PiPm

538, 55 679, —41 608, 7 Continue P,,P2

608, 7 679, —41 643, —17 Continue PIPm

608, 7 643, —17 625, —5 Continue PiPm

608, 7 625, —5 616, 1 Continue P,,P2

616, 1 625, —5 620, —2 Continue PiP,,,

616, 1 620, —2 618, —1 Continue PIP,,,

616, 1 618, 1 r617, 0 Success

The actual equation of the line P1P2 yields intersection points at (0, 422) and

(620, 0). The differences are due to integer arithmetic truncation.

128 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

A flowchart of the algorithm is shown in Fig. 3-6. A pseudo implementation

of the algorithm is shown below.

midpoint subdivision two-dimensional clipping algorithm

Window is a 1 x 4 array containing the left, right, bottom, and top edges

(XL, XR, YB, YT) of the rectangular clipping window

Pi and P2 are the end points of the line

calculate the end point codes

put the codes for each end into 1 x 4 arrays called Picode and P2code

first end point: P1

call Endpoint(Pi, Window; Picode, Sumi)

second end point: P2

call Endpoint(P2, Window; P2code, Sum2)

check if the line is totally visible
if Sumi = OandSum2 = Othen5

the line is not totally visible

a

Figure 3.6 flowchart for midpoint subdivision algorithm.

yes

MIDPOINT SUBDIVISION ALGORITHM 129

check for trivially invisible case

call Logical(Plcode, P2code; Inter)
if Inter <>0 then 6

line may be partially visible

look for farthest visible point from Pi
i=1

process complete
ifi=2then4

is P2 the farthest visible point from P1?
if Sum2 = 0 then 3

save original Pi
2 Temp =Pi

has intersection been found?

If Pi — P21 <Error then 3

calculate the midpoint
Pm = (P1 + P2)/2

Figure 3-6 (Continued.) b

130 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

save current P1

Save = P1

replace P1 with the midpoint
Pi = Pm

calculate the new end point code for Pi

call Endpoint(Pi, Window; Plcode, Sum 1)

check if the segment PmP2 is trivially invisible

call Logical(Plcode, P2code; Inter)

if Inter = Q then 2
PmP2 invisible, continue with P1 Pm
P1 = Save

P2 = Pm

go to 2

the farthest visible point from Pi has been found

look for the farthest visible point from P2
switch P1 and P2

3 Pi=P2

P2 = Temp

switch the end point codes
Endcode = Plcode

Plcode = P2code

P2code = Endcode

reset counter

i=2

go to 1

both intersections have now been found

check for degenerate invisible point
4 call Logical(Plcode, P2code; Inter)

if Inter < > then 6

5 Drawline

6 finish

subroutine module to calculate the end point codes

subroutine Endpoint(P1, Window; Pcode, Sum)

P,, P are the x and y components of the point P

Window is a 1 x 4 array containing the left, right, bottom, and top edges

(XL, XR, YB, YT) of the rectangular clipping window

Pcode is a 1 x 4 array containing the end point code

Sum is the element by element sum of Pcode

determine the end point codes

if P <XL then Pcode(4) = 1 else Pcode(4) = 0

if P > XR then Pcode(3) = 1 else Pcode(3) = 0

if P <YB then Pcode(2) = 1 else Pcode(2) = 0

if P > YT then Pcode(1) = 1 else Pcode(1) = 0
calculate the sum

Sum = 0

GENERALIZED TWO-DIMENSIONAL LINE CLIPPING FOR CONVEX BOUNDARIES 131

for i = 1 to 4

Sum = Sum + Pcode(i)
next i

return

subroutine module to find logical intersection

subroutine Logical(Plcode, P2code; Inter)

Picode is a 1 x 4 array containing end point codes

P2code is a 1 x 4 array containing end point codes

Inter is the sum of the bits for the intersection

Inter = 0

for i = 1 to 4

Inter = Inter + Integer((Plcode(i) + P2code(i))/2)
next i

return

The previous explicit clipping algorithm determined the end point codes and

their logical intersection within the body of the algorithm. Here subroutine

modules are used because new end point codes and logical intersections are

repeatedly required.

3-4 GENERALIZED TWO-DIMENSIONAL LINE CLIPPING FOR

CONVEX BOUNDARWS

The algorithms presented above assume that the clipping window is a regular

rectangular polygonal boundary. For many purposes the clipping window is

not a regular rectangular polygon. For example, suppose that the rectangular

clipping window is rotated with respect to the coordinate system as shown in

Fig. 3-7. Then neither of the algorithms discussed above is applicable. Cyrus

and Beck have developed an algorithm for clipping to arbitrary convex regions

(Ref. 3-4).

Figure 3-7 Rotated clipping window.

132 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Before specifically developing the Cyrus-Beck algorithm in the next section,

consider clipping a parametrically defined line to a window. The parametric

equation of a line segment from Pi to P2 is

P(t) = P1 + (P2 — P1)t 0 � t � 1 (3-1)

where t is the parameter. Restricting the range of t to 0 � t � 1 makes it a

line segment rather than an infinite line. The parametric description of a line

is independent of any coordinate system. This attribute makes the parametric

form particularly useful for determining the intersection between a line and the

edge of an arbitrary convex polygon. The technique is first illustrated with a

regular rectangular window.

For a two-dimensional Cartesian coordinate system, Eq. (3-1) yields a pair

of parametric equations, one for each coordinate, i.e.,

x(t) = Xi +(X2 X1)t 0�t� 1 (3-2a)

y(t) = yi + (Y2 — yi)t 0 � t � I (3-2b)

For a rectangular clipping window one of the coordinates of the intersection

with each edge is known. Only the other need be calculated. From Eq. (3-1)

the value of the parameter t for any point on the line segment is

= P(t) — P1
P2 - Pi

From Eq. (3-2) the specific value of t corresponding to the intersection with

the window edge is
XL — Xi

For the left edge: t = 0 � t � I

X2 — Xi

For the right edge: = X — Xi 0 � t � I
X2 — Xi

For the top edge:
= Yr — o � � i

Y2 — Yi

YB — Yi
For the bottom edge: t = 0 � t � I

Y2 — Yi

where XL,XR,YB,yT are the coordinates of the left, right, bottom, and top window

edges. If solutions of these equations yield values of t outside the range 0�t� 1,

then those solutions are discarded since they represent points beyond the end

of the line segment.

Example 34 Simple Partially Visible Line

Consider the partially visible line from P1(—3/2, —3/4) to P2(3/2, 1/2) clipped
to the window (—1, 1, —1, 1), i.e., XL,XR,YB,YT as shown in Fig. 3-8.

For the left edge:

GENERALIZED TWO-DIMENSIONAL LINE CLIPPING FOR CONVEX BOUNDARIES 133

XX1 = —1 —(—3/2) = ! = !
X2 — xi 3/2 — (—3/2)3 6

For the right edge:

_____ — 1—(—3/2) 5/25

X2 — xi 3/2 — (—3/2) — 3 — 6

For the bottom edge:

y8—yi—I—(—3/4)—1/4—l
Y2 — y 1/2 — (—3/4)5/4 5

which is less than zero and is thus rejected. For the top edge:

1Yry1 = 1(3/4) 7/47
Y2 — y 1/2 — (—3/4) 5/4 5

which is greater than one and is also rejected. The visible portion of the line is
then from 1/6 < t < 5/6.

The x and y coordinates of the intersection points are obtained from the

parametric equations. In particular, for t = 1/6 Eq. (3-2) yields

x(1/6) = —3/2 + [3/2 — (—3/2)](1/6) = —1

which of course is already known since x = —1 represents the intersection with

the left edge of the window. The y coordinate is

y(l/6) = —3/4 + [1/2 — (—3/4)](1/6) = —13/24

Similarly for t = 5/6

[x(5/6) y(5/6)] [—3/2 —3/4] + [3/2 — (—3/2) 1/2 — (—3/4)] (5/6)

= [1 7/24]

where the separate calculations for the x and y coordinates have been combined

into one. Again, since the line intersects the right hand edge the x coordinate

for the parameter value of 5/6 is already known.

P4

P2

Figure 3-8 Parametric clipping of partially visible lines.

134 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

From the above example the technique appears to be simple and straightforward.

However, there are some difficulties which are best illustrated by further

examples.

Example 3-5 Partially Visible Line

Consider the line from P3(—5/2, —1) to P4(3/2, 2) also shown in Fig. 3-8 and
again clipped to the window (—1, 1, —1, 1). Here, the intersection points are
given by the parametric values

1L3/8 1R7/8 18=0 t=2/3

and all four values of t fall in the range 0 < t < 1.

It is well known that, if a straight line segment intersects a convex polygon,

it can do so in at most two points. Hence, only two of the four parameter values

found in the above example are required. Rearranging the four parameter

values into a numerically increasing sequence yields 18, 1L, t, IR. Inspection of

Fig. 3-8 shows that the required values are IL = 3/8 and t = 2/3 which yield intersection

points at (—1, 1/8) and (1/6, 1), respectively. These parameter values
are the maximum minimum value and the minimum maximum value of the

parameters. Formally determining these values is a simple classical problem in

linear programming. An algorithm for this is given in the next section.

As in any clipping algorithm, the ability to quickly identify and separate

totally visible and totally invisible lines is important. The next two examples
illustrate some further difficulties.

Example 3-6 Totally Visible Lines

Consider the entirely visible line P1(— 1/2, 1/2) to P2(1/2, — 1/2), again clipped
to the window (—1, 1, —1, 1) as shown in Fig. 3-9. The parameter values for
the window edge intersections are

1L = —1/2 tR = 3/2 t8 = 3/2 Ir = —1/2

All these values are outside the range 0 < t < 1.

From Example 3-6 it appears that a technique for identifying totally visible

lines has been found. However, the next example illustrates that this is not the
case.

Example 3.7 Totally Invisible Lines

Consider the totally invisible line P3(3/2, —1/2) to P4(2, 1/2) also shown in

Fig. 3-9. The clipping window is again (—1, 1, —1, 1). Here the parametric

values for the window edge intersections are

1L5 tR1 181/2 1T3/2

Again, all these values are outside the range 0 < t < 1.

CYRUS-BECK ALGORITHM 135

x

Figure 3-9 Parametric clipping of visible

and invisible lines.

The result given in Example 3-7 is the same condition previously identified

with a totally visible line. But in contrast to the line PiP2 of Example

3-6, the line P3P4 is invisible. From these two examples, it is evident that for

parametric lines no simple, unique method for distinguishing totally visible or

totally invisible lines is available. It is also evident that a more formal approach

to the problem is required.

3-5 CYRUS-BECK ALGORITHM

To develop a reliable clipping algorithm it is necessary to find a reliable technique

for determining whether a point on a line is inside, on, or outside a

window. The Cyrus-Beck algorithm (Ref. 3-4) uses the normal vector to accomplish
this.

Consider a convex clipping region R. Although R is not limited to a two-

dimensional region, the examples used for the present discussion will assume

one. Thus, R may be any convex planar polygon. It may not be a concave

polygon. An inward normal vector for any point a on the boundary of R is

given by the vector dot product

n (b — a) � 0

where b is any other point on the boundary of R. To see this, recall that the

dot product of two vectors Vi and V2 is given by

V1V2 = IVlIIV2IcosO

where 0 is the smaller of the angles formed by Vi and V2. Note that if 0 = r/2

then cos 0 = 0 and V1 V2 = 0; i.e., when the dot product of two vectors is

zero, the two vectors are perpendicular. Figure 3-10 shows a convex region

R, i.e. a clipping window. At the point a on the boundary both the inner

normal n, and the outer normal n0 are shown along with several vectors to

other points on the region boundary. The angle between n, and any of the

vectors is always in the range —r/2 � 0 � r/2. In this range the cosine is always

positive. Hence, the dot product is always positive, as stated above. However,

the angle between the outer normal and any of these vectors is always r — 0

and cos (r — 0) = —cos 0 is always negative. To further illustrate this, consider

the following example.

136 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

0

Example 3-8 Inner and Outer Normals

Consider the rectangular region in Fig. 3-10. Here the inner and outer normals

at a are flj = i and n0 = —i, respectively, where i is the unit vector in the x

direction. Table 3-3 shows the values of the dot product of the inner and outer

normals and vectors from a to various points b on the region boundary. As a

specific example note that the inner normal at a is

The vector from a (0,2) to b (4,4)is

The dot product is

ni =

b — a = 41 + 2j

n(b — a) = 1(41 + 2j) = 4

Table 3-3

a b n1 (b — a) n0 (b — a)

(0,2) (0,4) 0 0

(4,4) 4 —4

(8,4) 8 —8

(8,2) 8 —8

(8,0) 8 —8

(4,0) 4 —4

(0,0) 0 0

The zero values in Table 3-3 indicate that the vector and the inner and outer

normals are perpendicular.

4

b (4,4)

0
4

Figure 3-10 Inner and outer normals.

CYRUS-BECK ALGORITHM 137

Returning to the determination of the intersection of a line and a window

edge, again consider the parametric representation of the line from Pi to P2:

P(t) = P1 + (P2 — P1)t 0 � t � 1

If f is a boundary point of the convex region R and n is an inner normal

for one of its boundaries, then for any particular value of t, i.e., any particular

point on the line PiP2,

n [P(t) — f 1 <0

implies that the vector P(t) — f is pointed away from the interior of R.

n [P(t) — f] = 0

implies that P(t) — f is pointed parallel to the plane containing f and perpendicular
to the normal.

n [P(t) — f I > 0

implies that P(t) — f is pointed toward the interior of R as illustrated in Fig. 3-11.

Together these conditions show that, if the convex region R is closed, i.e.,

for the two-dimensional case a closed convex polygon, an infinite line which

intersects the region does so at precisely two points. Further, these two points

do not lie on the same boundary plane or edge. Thus,

n. [P(t) — f] = 0

has only one solution. If the point f lies in the boundary plane or edge for

which n is the inner normal, then that point t on the line PQ) which satisfies

this condition is the intersection of the line and the boundary plane.

Example 3-9 Cyrus-Beck Clipping—Partially Visible Lines

Consider the line from Pi(— 1, 1) to P2(9, 3) clipped to the rectangular region
shown in Fig. 3-12. The equation of the line PIP2 is y = O.2(x + 6) which
intersects the window at (0, 1.2) and (8, 2.8). The parametric representation
of the line P1P2 is

P(t) = Pi + (P2 — P1)t = [—1 1] + [10 2]t

=(lOt—1)1+(2t+1)j 0�t�1

Figure 3-11 Vector directions.

138 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

where I, j are the unit vectors in the x and y directions respectively. The four

inner normals are

Left: flL I

Right: flR = —i

Bottom: n8 = j

Top: flT = —j

Choosing f(0, 0) for the left edge yields

P(t)—f= (lOt— I)i+(2t+ 1)j

and

flL[P(t)f] = lOt—i =0

or

= 1/10

is the intersection of the line and the left edge of the clipping window. Hence,

P(1/10) = [—1 1] + [10 2](1/1O) = [0 1.2]

which is the same as that explicitly calculated.

Choosingf(8, 4) for the right edge yields

P(t)—f= (lOt—9)I+(2t—3)j

and

flR [(P(t) — f I = —(lOt — 9) = 0

or

t=9/10

as the intersection point of the line and the right edge. Specifically

P(9/10)=[—1 1]+[10 2](9/10)=[8 2.8]

which is also the same as the explicit calculation.

Using fib, 0) for the bottom edge yields

n8 [P(t) — I] = (2t + 1) = 0

or

t= —1/2

which is outside the range 0 � t � I and is thus rejected.

Usingf(8, 4) for the top edge yields

flT [P(t) — f] = —(2t — 3) = 0

or

= 3/2

which is also outside the range 0 � t � 1 and is also rejected. The visible range

for the line P1P2 clipped to the rectangular region of Fig. 3-12 is 1/10 � t �

9/10 or from (0, 1.2) to (8, 2.8).

CYRUS-BECK ALGORITHM 139

y

top
f

4

_—. P2(9,3)

left 2 right

f
bottom B

0- I.

0 2 4 6 8

Figure 3-12 Cyrus-Beck clipping—partially visible line.

This example shows that the intersection points can easily be found. Identifying

totally visible and totally invisible lines is illustrated by three further

examples.

Example 3-10 Cyrus-Beck—Totally Visible Lines

Consider the line Pi(1, 1) to P2(7, 3) clipped to the rectangular window shown
in Fig. 3-13. The parametric representation of the line P1P2 is

P(t) [1 1] + [6 2]t

The results, using the inner normals and boundary points of Example 3-9,
are given in Table 3-4.

Table 3-4

Edge n f P(t)—f n. [P(t)—t] t

Left 1 (0, 0) (1 + 6t)1 + (1 + 2t)j I + 6t —1/6

Right —1(8,4) (—7+6t)1+(—3+2t)j7—6t 7/6

Bottom j (0, 0) (1 + 6t) I + (1 + 2t)j I + 2t — 1/2

Top —j(8, 4) (—7 + 6t)1 + (—3 + 2t)j3 — 2t 3/2

All the intersection values for t are outside the range 0 � t � 1. The entire line
is visible.

The next two examples consider two types of invisible lines. One line is

totally to the left of the window and could be declared invisible using the end

point codes discussed above. The second crosses the window corner outside

the window itself. It cannot be declared invisible using the end point codes.

140 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 3-13 Cyrus-Beck clipping—visible and invisible lines.

Example 3-11 Cyrus-Beck—-Trivially Invisible Line

Consider the line P3(—6, —1) to P4(— 1, 4) clipped to the rectangular window

shown in Fig. 3-13. The line is invisible. The parametric representation is

P(t) = [—6 —1] + [5 5]t

The results using the inner normals and boundary points of the previous

examples are given in Table 3-5.

Table 3-5

Edge n f P(t)—f n[P(t)—f] t

Left 1 (0,0) (—6+5t)I+(—I+5t)j—6+5tt= 6/5

Right —1(8,4) (—14+5t)1+(—5+5t)j —(—14+5t)t= 14/5

Bottom j (0,0) (—6+5t)1+(—1+5t)j—1+5tt= 1/5

Top —j (8,4) (—14 + 5t)1 + (—5 + 5t)j—(—5 + 5t)t = 1

Examination of the results in Table 3-5 shows that the intersection values

for the left and right edges are both outside the range 0 � � I, but those for

the top and bottom are both within the range 0 � � 1. Based on this the line

might initially be assumed visible in the range 1/5 � t � 1. However, further

consideration of the intersections for the left and right edges shows that both

intersection values of the parameter are greater than one. This shows that the

window is completely to the right of the line. Hence the line is invisible.

If in the above example P3 and P4 were interchanged, then the results would

show that the window was completely to the left of the line. The direction of

the line is important in arriving at the decision about the invisibility of the line.

The next example further explores this question.

p4 (- f(8,4)

Right

2 4

(6,-2)

CYRUS-BECK ALGORITHM 141

Example 3-12 Cyrus-Beck-—Nontrivially Invisible Line

Here the line from P5(6, —2) to P6(10, 1) again clipped to the rectangular

window of Fig. 3-13, is considered. The parametric representation is

P(t) = [6 —2] + [4 3]t

Using the inner normals and boundary points of the previous examples

yields the results given in Table 3-6.

Table 3-6

Edge n f P(t)—f n[P(t)—f] t

Left 1 (0, 0) (6 + 4t) I + (—2 + 3t)j 6 + 4t t = —3/2

Right — i (8, 4) (—2 + 4t) i + (—6 + 3t)j —(—2 + 4t)= 1/2

Bottom j (0, 0) (6 + 4t) I + (—2 + 3t)j —2 + 3t t = 2/3

Top —j (8,4) (—2+4t)i+(—6+3t)j —(—6+3t) t2

The results show that the intersections for the left and the top edges fall

outside the required range. However, the intersections for the right and bottom

edges are within the proper range. But, considering the direction of the line

to be from P5 to P6, it is not possible for the line to intersect the right edge at

= 1/2 before it intersects the bottom edge at t = 2/3 and still pierce the region

R, i.e. the window. Thus, the line is invisible.

From these examples it is clear that apparently visible lines can be correctly

identified by also considering the direction of the line. This observation is

exploited in the formal statement of the Cyrus-Beck algorithm given below.

To formalize the algorithm, again recall that the parametric representation
of a line is

P(t) = P1 + (P2 — P1)t 0 � t � 1 (3-3)

and that the dot product of an inner normal and the vector from any point on

the parametric line to any other point on the boundary, i.e.,

n1 [P(t) — f,J i = 1, 2, 3, ... (3-4)

is positive, zero, or negative for a point on the parametric line interior to the

region, on the region boundary, or exterior to the region. This relation is

applied for each boundary plane or edge i of the region. Combining Eqs. (3-3)

and (3-4) yields

n1 [P1 + (P2 — P1)t — I] = 0 (3-5)

as the condition for a point on the parametric line which lies on the boundary

of the region, i.e. the intersection point. Alternately, Eq. (3-5) becomes

n1[P1—fJ+n,[P2—P1Jt=0 (3-6)

Noting that the vector P2 — Pi defines the direction of the line and that the

vector P1 — f is proportional to the distance from the end point of the line to

the boundary point, let

142 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

D = P2 — P1

the directorix or direction of the line and

w1 = P1 —

a weighting factor. Equation (3-6) then becomes

t(n, D) + w1 = 0 (3-7)

Solving for t yields

t= ——-‘ D0 i= 1,2,3,... (3-8)

D n can be zero only if D = 0, which implies that P2 = P1, i.e. a point. If

n1 < 0, the point is outside

= 0, on the boundary of
> 0, inside

the region or window.

Equation (3-8) is used to obtain the value of t for the intersection of the

line with each edge of the window. If t is outside the range 0 � t � 1, then it can

be ignored. Although it is known that the line can intersect the convex window

in at most two points, i.e., at two values of t, Eq. (3-8) may yield several values

of t in the range 0 � t � 1. These will separate into two groups, a lower limit

group near the beginning of the line and an upper limit group near the end of

the line. What is required is to find the largest lower limit and the smallest

upper limit. If D1 n1 > 0, then the calculated value of t is near the beginning

of the line and the lower limit value of t is sought. If D na < 0, then the

value of t is near the end of the line and the upper limit value of t is sought.

Figure 3-14 gives a flowchart of an algorithm which uses these conditions to

solve the resulting linear programming problem. A pseudo implementation of

the algorithm is given below.

Cyrus-Beck two-dimensional clipping algorithm

Pi and P2 are the end points of the line

the number of edges for the clipping region is k
the n1 are the k normal vectors

the f1 are the k boundary points, one in eçch edge

D1 is the directorix of the line, P2 — P1

w1 is the weighting function, P1 — f

tL, tu are the lower and upper parameter limits

initialize the parameter limits assuming the entire line is visible
tL = 0

tu = 1
calculate the directorix D

D = P2 — P1

start the main loop
for i = 1 to k

calculate w, D n1 and W n for this value of i

CYRUS-BECK ALGORITHM 143

Figure 3-14 Flowchart for the Cyrus-Beck clipping algorithm.

w1 = P1 — f

call Dotproduct(D, n Ddotn)
call Dotproduct(w1, n wdotn)
is the line a point?
if Ddotn = 0 then 2

Exit-point
invisible

Exit-line

invisible

144 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

the line is not a point, calculate
t = — Wdotn/Ddotn

looking for the upper or the lower limit
if Ddotn > 0 then 1

looking for the upper limit

is t within the range 0 to 1?
if t < 0 then 3

= MIfl(t,t)

go to 3

looking for the lower limit
ift>lthen3

tL = Max(t,tL)

go to 3

the line is a point
2 if Wdotn <0 then 4

the point is visible with respect to the current edge
3 nexti

a normal exit from the loop has occurred

check if the line is in fact invisible
jf t � t then 4

Draw line segment P(tL) to P(t)
4 Process next line

subroutine module to calculate the dot product

subroutine Dotproduct(Vectorl, Vector2; Dproduct)

Vectorl is the first vector with components x and y

Vector2 is the second vector with components x and y

Dproduct is the dot or inner product

Dproduct = Vectorlx*Vector2x + Vectorly*Vector2y
return

1 1

Interior clip Exterior clip

Figure 3-15 Cyrus-Beck interior and exterior clipping of a many-sided polygon.

CYRUS-BECK ALGORITHM 145

To illustrate that the algorithm is not limited to rectangular windows consider

the following example.

Example 3-13 Cyrus-Beck—Irregular Window

Figure 3-15 shows an eight-sided polygonal clipping window. The line Pi(— 1, 1)
to P2(3, 3) is to be clipped to this window. Table 3-7 illustrates the complete
results of the Cyrus-Beck algorithm. As a specific example consider the edge
from V5 to V6. The algorithm yields

D=P2—P1=[3 3]—[—I 1]=[4 2]

For the boundary pointf(2, 3)

w=Pi—f=[—I 1]—[23]=[—3—2]

For the edge V5V6 the inner normal is

n=[—1 —1]

Hence

Dn= -6<0

and the upper limit is being sought.

wn = 5

and

5 5

Table 3-7

Edge n f w wn Dnt tL

V1V2 [1 1] (1,0) [2 1] —1 6 1/6

V2V3 [1 0] (0, 2) [—1 —1]—1 4 1/4

V3V4 [1 —1](0,2) [—1 —1]0 2 0

V4V5 [0 —1](2,3) [—3 —2]2 —2 1

V5V6 [—1 —1](2, 3) [—3 —2]5 —6 5/6

V6V7 [—1 0] (3, 1) [—40] 4 —4 1

V7V8 [—1 1] (3, 1) [—40] 4 —2 2

V8V1 [0 1] (1,0) [—21] 1 2 —1/2

tD n <0 upper limit (ta), D n > 0 lower limit (t,j.

Examining Table 3-7 shows that the maximum lower limit is tL = 1/4 and

the minimum upper limit is tu = 5/6. As shown in Fig. 3-15 the line is visible

from 1/4 t 5/6 or from (0, 3/2) to (7/3, 8/3).

146 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

36 INTERIOR AND EXTERIOR CLIPPING

The emphasis of the discussions in the previous section was on clipping a line to

the interior of a region or polygon. However, it is also possible to clip a line to

the exterior of a region or polygon, i.e., to determine what portion or portions

of a line lie outside a region and to draw those exterior portions. For example,

the visible portions of the line PiP2 of Fig. 3-15 exterior to the window are
O�t< 1/6 and 5/6<t� 1, or from (—1, 1) to (0, 3/2) and (7/3, 8/3) to (3, 3).

The results of both an interior and an exterior clip of the line are shown in

Fig. 3-15.

Exterior clipping is important in a multiwindow display environment as

shown in Fig. 3-16. In Fig. 3-16 windows 1 to 3 have priority over the display

window, and windows I and 3 have priority over window 2. Consequently data

in the display window is clipped to the interior of the display window itself and
to the exterior of windows 1 to 3. Data in window 2 is clipped to the interior
of the window itself and to the exterior of windows I and 3. Data in windows

I and 3 only need be clipped to the interior of the individual windows.

Exterior clipping can also be used to clip a line to a concave polygonal

window. Figure 3-17 shows a concave polygon described by the vertices

V1V2V3V4V5V6V1. A convex polygon can be formed from this concave polygon

by connecting the vertices V3 and 115, as shown by the dashed line in Fig. 3-17.

Using the Cyrus-Beck algorithm, the line P1P2 is clipped to the interior of this

polygon. An exterior clip to the polygon V3V5V4V3 of the resulting line PP

then yields the required result, i.e. P1’P’.

x

FIgure 3-17 Clipping a line to a concave
polygon.

3-7 IDENTIFYING CONVEX POLYGONS AND DETERMINING THE

INWARD NORMAL

To use the Cyrus-Beck clipping algorithm it is necessary to first ensure that

the clipping region is convex and then to determine the inner normals for each

FIgure 316 Clipping in a multiwindow
environment.

IDENTIFYING CONVEX POLYGONS AND DETERMINING THE INWARD NORMAL 147

edge. Two-dimensional polygonal windows can be determined to be either

concave or convex by calculating the vector cross products of adjacent edges.

The conclusions to be drawn from the signs of the vector cross products are

All zero — the polygon is collinear

Some positive and some negative — concave polygon

All positive or zero — convex polygon and the inner normal

points to the left looking along the

direction of the edge
All negative or zero — convex polygon and the inner normal

points to the right looking along the

direction of the edge

This is illustrated in Fig. 3-18.

Alternately, one of the polygon vertices can be selected as a base and the

vector cross products calculated for the vectors from this base to successive

pairs of polygon vertices. The interpretation of the results is unchanged.

The vector cross product is normal to the plane of the polygon. For two

planar vectors V1 and V2 the cross product is (Vs, Vy2 — Vy Vxjk, where k is
the unit vector perpendicular to the plane of the vectors.

The normal vector for a polygon edge can be determined by recalling that

the dot product of two perpendicular vectors is zero. If n and n are the

unknown components of the normal and Ve, and Vey are the components of a

known edge vector, then

fl Ve = (fix’ + fly) (Vej + VeJ) = fixVe + flyVey = 0

or

flxVe = flyVey

Since only the direction of the normal is required, fi is assumed equal to 1

without loss of generality. Hence, the normal vector is

a. Convex b. Concave

Figure 318 Signs for vector cross products.

148 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Ve,
n = ——i+j

Ve

If the edge vector is formed from two polygon vertices V,-1 and V,, and if

the dot product of the vector from V1-1 to V,+i and the normal is positive, n
is the inner normal. Otherwise, n is the outer normal. In this case, the inner

normal is obtained by reversing the signs of the x and y components. A simple

example illustrates the technique.

Example 3-14 Vector Cross Products

Figure 3-18a shows a simple convex polygon and Fig. 3-18b a concave polygon.
Tables 3-8 and 3-9 give complete results. As a specific example, the vector
cross product at V2 and the inner normal for the edge V iV for the polygon of
Fig. 3-18a are determined.

For the adjacent edges at V2

VIV2=2i+j V2V3=2j

The vector cross product is

VIV2 ® V2V3 =4k

where k is the unit normal perpendicular to the plane of the vectors. The cross
product is positive. Table 3-8 shows that the cross products for all the vertices
are positive. The polygon is thus convex. Table 3-9 shows that for the polygon
of Fig. 3-18b the cross product at v3 is negative, whereas all the others are
positive. Hence, this polygon is concave.

The normal for the edge vector V iV2 is

n= —i+j
or alternately

n —i + 2j

The vector V1V3 is

VIV3 2i + 3j

Hence

nVV3 = (—i + 2j)(2i + 3j) 4>0

and this is an inner normal

Table 3-8

Vertex Vectors Cro ss product

V1 V4VI ® V1V2 [0 —3] ® [2 1] + 6

V2 VIV2®V2V3 [2 I]®[0 2] = +4

V3 V2V3 ® V3V4 [0 2] ® [—2 0] + 4

V4 V3V4®V4VI [—2 O]®[0 —3] = +6

IDENTIFYING CONVEX POLYGONS AND DETERMINING THE INWARD NORMAL 149

2

0

y

2 V3V2

0

Table 39

a. Convex

V4

V3 1 2 3

Vertex Vectors Cross product

Vi V5Vi ® V1V2 [0 —3] ® [2 1] = + 6

V2 V1V2®V2V3 [2 I]®[—I1] = +3

V3 V2V3®V3V4 [—II]®[I I] = —2

V4 V3V4 ® V4V5 [I I] ® [—2 0] = + 2

V5 V4V5®V5V1 [—2 0]®[0 —3] = +6

V4

-I

11
VI

V4 1 2 3
0

Figure 3-19 Using rotations and translations to determine convex and concave polygons.

150 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

2 2

2

b. Concave

Figure 319 (Continued.)

SPLITFING CONCAVE POLYGONS 151

Alternately, a procedure involving translation and rotation of the polygonal

window can be used to determine both the convexity of the window and the

inner normal for each edge. The procedure is

For each vertex of the polygonal window, translate the polygon such that

the ith vertex is at the origin.

Rotate the polygonal window about the origin such that the (i + 1)th vertex

is on the positive x axis.

Examine the sign of the y component of the (i + 2)th vertex.

If all the (i + 2)th vertices have the same sign for the y component, the

polygonal window is convex; if not, it is concave.

If the (i+2)th vertex has a zero y component, then the ith, (i+ I)th, (i+2)th
vertices are collinear.

If all the (i + 2)th vertices have zero y components, the polygonal window

is degenerate, i.e., a line.

For each edge of a convex polygon, the inner normal has components in the

rotated coordinate system of zero and the sign of the (i + 2)th y component.

In determining the original direction of the inner normal, only the inverse

rotations are applied.

Figure 3-19 illustrates the various stages in the procedure for both the convex

and concave polygons of Fig. 3-18. The appropriate rotation and translation

algorithms are given in Ref. 1-1.

38 SPLITTING CONCAVE POLYGONS

Many algorithms require that polygonal clipping regions be convex. The Cyrus-

Beck clipping algorithm presented above is an example. Additional examples

are presented in subsequent sections. A simple extension of the translation

and rotation technique for determining whether a polygon is convex or concave

allows splitting or dividing simple concave polygons into multiple convex

polygons. The procedure can be incorporated into the previous algorithm. If

the polygon vertices are specified counterclockwise, the procedure is

For each vertex of the polygon, translate such that the ith vertex is at the

origin.

Rotate the polygon clockwise about the origin such that the (1+ 1)th vertex

is on the positive x axis.

Examine the sign of the y component of the (i + 2)th vertex. If the sign

is positive or zero, the polygon is convex with respect to this edge. If the

sign is negative, the polygon is concave. Split the polygon.

152 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The polygon is split along the positive x axis; i.e., the intersection of each

polygon edge that crosses the coordinate axis is found. Two new polygons
are formed, one from the vertices above the axis and the closest intersection

with x > x+ i, and the second from the vertices below the axis and the same

intersection point.

The algorithm is reentered with the split-off polygons until they are all
declared convex

The algorithm does not yield an optimum split in the sense of the minimum

number of convex polygons. Also, the algorithm will not properly split polygons

whose edges intersect.

An example will further illustrate the procedure.

Example 3-15 Splitting Concave Polygons

Consider the concave polygon shown in Fig. 3-19b. With the vertex V2 at
the origin and V3 on the positive x axis, the sign of the y component of
V4 is negative. Hence, the polygon is concave. Splitting the polygon along
the coordinate axis yields V3V4V5 as the split off polygon below the axis and

V1 V2V3V5 as the split off polygon above the axis. Reentering the algorithm with
V3 V4 V5 and V1 V2 V3 V5 shows that they are both convex. Hence, the algorithm
is complete.

3-9 THREE-DIMENSIONAL CLIPPING

Before extending the methods discussed above to three dimensions, it is necessary

to discuss the shape of the clipping volume. The two common three-

dimensional clipping volumes are a rectangular parallelepiped, i.e. a box, used

for parallel or axonometric projections, and a truncated pyramidal volume, frequently

called a frustum of vision, used for perspective projections. These

volumes, shown in Fig. 3-20, are six-sided; left, right, top, bottom, hither

(near), and yon (far). There is also the necessity of clipping to unusual volumes.

As in two-dimensional clipping, lines that are totally visible or trivially

invisible can be identified using an extension of the Cohen-Sutherland end point

codes. For three-dimensional clipping, a 6-bit end point code is used. Again,

the first bit is the rightmost bit. The bits are set to 1 using an extension of the

two-dimensional scheme. Specifically,

First bit set — if the end point is to the left of the volume

Second bit set — if the end point is to the right of the volume

Third bit set — if the end point is below the volume

Fourth bit set — if the end point is above the volume

Fifth bit set — if the end point is in front of the volume

Sixth bit set — if the end point is behind the volume

THREE-DIMENSIONAL CLIPPING 153

Otherwise, the bit is set to zero. Again, if both end point codes are zero,
then both ends of the line are visible; and the line is visible. Also, if the

bit-by-bit logical intersection of the two end point codes is not zero, then the

line is totally invisible. If the logical intersection is zero, the line may be

partially visible or totally invisible. In this case it is necessary to determine

the intersection of the line and the clipping volume.

Determining the end point codes for a rectangular parallelepiped clipping

volume is a straight forward extension of the two-dimensional algorithm. However,

the perspective clipping volume shown in Fig. 3-20b requires additional

consideration. One technique (see Ref. 1-3) is to transform the clipping volume

into a canonical volume with Xnght = 1, XIeft = 1, Ytop = I , Ybottom = — 1, at

Zyon = 1. If Zhither = a, where 0 <a � 1 and the center of projection is at the

origin, in a left-handed coordinate system, then the end point code conditions

are considerably simplified.

A more straightforward technique, which requires less distortion of the

clipping volume, makes the line connecting the center of projection and the

center of the perspective clipping volume coincident with the z axis in a right-

handed coordinate system as shown in Fig. 3-20b.

A top view of the perspective clipping volume is shown in Fig. 3-21. The

equation of the line which represents the right hand plane in this view is

where

a. Parallel

z —

x= xR=zal+a2
Zy — Z

and a2 = —aiz
XR

a1 =
zy— zcp

y

y

-Right

ottom

z

Left-

x

Right

b. Perspective

Figure 320 Three-dimensional clipping.

154 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The equation of this plane can be used to determine whether a point is to the

right, on, or to the left of the plane, i.e., outside the volume, on the right hand
plane, or inside the volume. Substituting the x and z coordinates of a point P
into x — za — a2 yields the following results

Test functions for the left, top, and bottom planes are:

where

and

+z

fL = X — Z1 —<0

=0

>0

XL

Z — Zp

if P is to the left of the plane

if P is on the plane

if P is to the right of the plane

and 2 = IZcp

-z

fR=x—zal—a2 > 0
=0

<0

if P is to the right of the plane

if P is on the plane

if P is to the left of the plane

-x

Center of

P1

z

—XL

-XR

b

Figure 3-21 Views of perspective clipping volume.

THREE-DIMENSIONAL MIDPOINT SUBDIVISION ALGORITHM 155

fT = y — zyi — 2> 0if P is above the plane
= 0 if P is on the plane
< 0 if P is below the plane

where

yi = YT and Y2 = IZcp
zy — zcp

and

fB = y — zOi — 62 < 0if P is below the plane
= 0 if P is on the plane
> 0 if P is above the plane

where

= and 62 = OIZcp

Finally the test functions for the hither and yon planes are

fH = z — ZH> 0 if P is in front of the plane
= 0 if P is on the plane
< 0 if P is behind the plane

and

f = z — z < 0 if P is behind the plane
= 0 if P is on the plane

> 0 if P is in front of the plane

As Zp approaches infinity, the clipping volume approaches a rectangular

parallelepiped. The test functions also approach those for a rectangular parallelepiped.

As pointed out by Liang and Barsky (Ref. 3-5) this approach may not yield

the correct codes if the end points lie behind the center of projection. This is

because the left and right and the top and bottom planes of the perspective

clipping volume intersect at the center of projection. Thus a point can be right

of right and left of left simultaneously. Liang and Barsky suggest a technique

for correcting this. In principle it is only necessary to reverse the left-right, top-
bottom code bits if z < See also Sec. 3-12.

3-10 THREE-DIMENSIONAL MIDPOINT SUBDIVISION

ALGORITHM

The midpoint subdivision algorithm given above (see Sec. 3-3) extends directly

to three dimensions. For the pseudo code implementation, the array dimensions

for the Pcodes and Window arrays must be changed and the Endpoint and

Logical subroutines rewritten for three dimensions. A pseudo code implementation
for the three-dimensional end point code subroutine is

156 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

subroutine module for calculating three-dimensional perspective volume end

point codes

subroutine Endpoint(P, Window; Pcode, Sum)

P, P, P are the x and y components of the point P

Window is a 1 x 7 array containing the left, right, bottom, top, hither, yon

edges and the center of projection (XL, XR, YB, YT, ZH, Zy, zcp)

Pcode is a I x 6 array containing the end point code

Sum is the element-by-element sum of Pcode

calculate a, a2, 2, 1, y2, 61, 62
= XR/(Zy — zCp)

a2 = —aizcp

= XL/(Zy — zCp)

/32 = /3IZCP

= YT/(ZY — zcp)

Y2 = y1ZCP

= yB/(ZY — zCp)

62 = —ÔIZCP

determine the end point codes

if P — — /32 <0 then Pcode(6) = 1 else Pcode(6) = 0

if P — Pa1 — a2 > 0 then Pcode(5) = 1 else Pcode(5) = 0

if P — P61 — 62 <0 then Pcode(4) = 1 else Pcode(4) = 0

if P — Py1 — 2 > 0 then Pcode(3) = 1 else Pcode(3) = 0

if P — ZH > 0 then Pcode(2) = 1 else Pcode(2) = 0

if Pz — Zy <0 then Pcode(1) = 1 else Pcode(1) = 0
calculate the sum

Sum = 0

for i = 1 to 6

Sum = Sum + Pcode(i)
next i

return

An example for the three-dimensional midpoint clipping algorithm is given
below.

Example 3-16 Three-Dimensional Midpoint Subdivision

Consider a line from Pi(—600, —600, 600) to P2(100, 100, —100) in screen units

clipped to the perspective volume with XR = YT = 500, XL = Ys = —500 at the yon

clipping plane. The hither and yon clipping planes are z,, = 357.14, Zy = —500.

The center of projection is Zp = 2500. A top view is shown in Fig. 3-21a and

a perspective view in 3-21b. The clipping volume test functions are

Right: fR = 6X + z — 2500
Left: fL = 6X — z+2500

Top: fT = 6Y + z—2500
Bottom: f = — z + 2500

Hither: fH = z — 357.14
Yon: f= z+2500

THREE-DIMENSIONAL CYRUS-BECK ALGORITHM 157

The end point code for Pi is (010101), and that for P2 is (000000). Since

both end point codes are not zero, the line is not totally visible. The logical

intersection of the end point codes is (00000). The line is not trivially invisible.

Since the end point code for P2 is (000000), P2 is inside the volume. Hence,

it is the farthest visible point from P. Thus, only one intersection with the

volume occurs. The midpoint is

X2+XI 100+(—600)
Xm

2 = 2
=—250

Y2+YI IOO+(—600)
Ym 2 = 2

250

Z2+Z1 -100+600
z= = _____ = 250

2 2

using integer arithmetic. The end point code for the midpoint is (000000). The

segment PmP2 is totally visible. The segment P Pmj5 partially visible. Continue
with PIPm. The subdivision continues in Table 3-10.

Table 3-10

Pi P2 Pm Comment

—600, —600, 600100, 100, —100 —250, —250, 250 Continue PiP,,,

600, 600, 600 —250, —250, 250 —425, —425, 425 COfltIflUCPmP2

—425, —425, 425 —250, —250, 250 —338, —338, 337 Continue PIP,,,

—425, —425, 425 —338, —338, 337 —382, —382, 381 Continue PmP2

—382, —382, 381 —338, —338, 337 —360, —360, 359 ContinuePmP2

—360, —360, 359 —338, —338, 337 —349, —349, 348 ContinuePiPm

—360, —360, 359 —349, —349, 348 —355, —355, 353 ContinuePiPm

—360, —360, 359 —355, —355, 353 —358, —358, 356 Continue PmP2

—358, —358, 356 —355, —355, 353 —357, —357, 354 ContinuePiP,,,

—358, —358, 356 —357, —357, 354 —358, —358, 355 Continue PmP2

—358, —358, 355 —357, —357, 354 —358, —358, 354 Success

The actual intersection point is (—357. 14, —357. 14, 357.14). The difference is

due to the use of integer arithmetic in the algorithm.

3-11 THREE-DIMENSIONAL CYRUS-BECK ALGORITHM

In developing the Cyrus-Beck algorithm (Ref. 3-4) for two-dimensional clipping,

no restriction was placed on the shape of the clipping region except that

it be convex. The clipping region can therefore be a three-dimensional convex

volume. The algorithm developed previously is directly applicable. Instead of

k being the number of edges, it is now the number of planes (see Fig. 3-14).

158 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

All vectors now have three components; x, y, z. The extension of the Dot-

product subroutine module to three-dimensional vectors is straightforward. To

more fully illustrate the algorithm, consider the following examples. The first

considers clipping to a rectangular parallelepiped, i.e., to a box.

Example 3-17 Three-Dimensional Cyrus-Beck Algorithm

A line from P1(—2, —1, 1/2) to P2(3/2, 3/2, — 1/2) is to be clipped to the volume
(XL, Xft, Ys, YT, ZH, Z = (—1, 1, —1, 1, 1, —1) as shown in Fig. 3-22. By inspection

the six inner normals are

Top: = —j = [0 —10]

Bottom: n8 = j = [0 1 0]

Right: lift = —I = [—10 0]

Left: flL I=[1 0 0]

Hither: flH = —k = [0 0 —1]

Yon: ny= k[0 0 1]

The points in each clipping plane may also be selected by inspection. By

choosing points at the end of a diagonal between opposite corners of the clipping
volume, two are sufficient. Thus,

fT=fR=fH(1, 1,1)

and

fB =fL =f(—1, —1, —1)

Alternately the center or a corner point of each clipping plane could be used.

The directonx for the line P1P2 is

D=P2—P1 =[3/2 3/2 —1/2]—[—2 —1 1/2]

= [7/2 5/2 —1]

For the boundary point fL(-1, —1, —1)

w=P —f = [—2 —1 1/2]—[—1 —1 —1]

= [—1 0 3/2]

and for the left hand clipping plane the inner normal is

flL[1 0 0]

Hence

D flL = [7/2 5/2 —1] [1 0 0] = 7/2 > 0

and the lower limit is being sought

WflL[1 0 3/2][1 0 0]=—1

and

tL = — = 2/7

THREE-DIMENSIONAL CYRUS-BECK ALGORITHM 159

Table 3-11 gives the complete results.

Table 3-11

Plane n f w wn Dnt tL IU

Top [0 —10] (1, 1, 1) [—3 —2 —1/2]2 —5/2 4/5

Bottom [0 1 0] (—1, —1, —1) [—10 3/2] 0 5/2 0

Right [—1 0 0] (1, 1, 1) [—3 —2 —1/2]3 —7/2 6/7

Left [1 0 0] (—1, —1, —1) [—10 3/2] —1 7/2 2/7

Hither [0 0 —1] (1, 1, 1) [—3 —2 —1/2]1/2 1 —1/2

Yon [0 0 1] (—1, —1, —1) [—10 3/2] 3/2 —1 3/2

tD n <0 upper limit (r) D n > 0 lower limit (IL).

Examining Table 3-11 shows that the maximum lower limit is 1L = 2/7 and

the minimum upper limit is r = 4/5. The parametric equation of the line P 1P2
is

P(r) = [—2 —I 1/2] + [7/2 5/2 —lIt

Substituting IL and r yields

P(217) = [—2 —1 1/2] + [7/2 5/2 —11(2/7)

= [—1 —2/7 3/14]

as the intersection point with the left clipping plane and

P(4/5) = [—2 —1 1/2] + [7/2 5/2 —1](4/5)

= [4/5 1 —3/10]

as the intersection with the top clipping plane.

Figure 3-22 Cyrus-Beck clipping
—three-dimensional rectangular
volume.

Clipping to a standard perspective volume is only slightly more complex.
Here, the inner normals must be determined formally rather than by inspection.

-A P2

(1,1,1)

(-1,—1,-1)

Pt

160 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Example 3-18 Clipping to a Perspective Volume

Consider the same line as in Example 3-17, i.e., Pi(—2, —1, 1/2) to P2(3/2,
3/2, — 1/2), clipped to the perspective volume with (cL, Xft, Ys, YT, ZH, Zy) =
(—1, 1, —1, 1, 1, —1), with a center of projection at Zcp= 5. See Fig. 3-20b.

The inner normals for the hither and yon clipping planes may be obtained
by inspection. Those for the remaining four clipping planes may be calculated
from the cross products of vectors from the center of projection to the corners
at z = 0, the plane of projection. These vectors are

V1=[1 1 —5]

V2=[—1 1 —5]

V3 = [—1 —1 —5]

V4=[1 —1 —5]

The inner normals are then

flT=V1®V2=[0 —10 —2]

flL = V2 ® V3 = [10 0 —2]

n8 = V3 ® V4 = [0 10 —2]

flft=V4®Vj=[—10 0—2]

flH = [0 0 —1]

n=[0 0 1]

Since the center of projection is in four of the six planes, it is convenient

to take

fT =fL =f =f(0, 0,5)

and the center of the hither and yon planes

fH(0, 0, 1) and fy(0, 0, 1)

as the boundary points.

The directorix for P 1P2 is again

D=P2—PI=[7/2 5/2 —1]

For the boundary point in the left hand clipping plane

W=P)fL =[—2 —1 1/2]—[0 0 5]

= [—2 —1 —9/2]

Noting thd

DnL = [7/2 5/2 —1][10 0 —2] = 37>0

and the lower limit is being sought. Then for

WflL[2 —1 —9/2][10 0 —2]=--11

and

tL = = = 0.297

THREE-DIMENSIONAL CYRUS-BECK ALGORITHM 161

Table 3-12 gives the complete results.

Table 3-12

Plane n f w wn Dnt tL

Top [0 —10 —2] (0,0, 5) [—2 —1 —9/2] 19 —230.826

Bottom [0 10 —2] (0, 0, 5) [—2 —1 —9/2] —127 0.037

Right [—10 0 —2] (0,0, 5) [—2 —1 —9/2] 29 —330.879

Left [10 0 —2] (0,0, 5) [—2 —1 —9/2] —1137 0.297

Hither [0 0 —1] (0,0, 1) [—2 —l —1/2] 1/21 —0.5

Yon [0 0 1] (0, 0, —1) [—2 —l 3/2] 3/2 —l •1.5

tD n <0 upper limit (ta), D n > 0 lower limit (tL).

Table 3-12 shows that the maximum lower limit is tL = 0.297 and the minimum

upper limit is t = 0.826. From the parametric equation the intersection values
are

P(0.297) = [—0.961 —0.258 0.2031

and

P(0.826) = [0.891 1.065 —0.323]

for the left and top clipping planes.

Pt

—1,—1,—1)

(1,1,1)

Figure 3-23 Cyrus-Beck clipping
—odd three-dimensional volume.

As a final example a nonstandard clipping volume with seven clipping

planes is considered.

Example 3-19 Clipping to an Arbitrary Volume

The clipping volume is shown in Fig. 3-23. It is a cube with one corner

removed. The polygons describing each face have vertices.

Right: (1, —1, 1), (1, —1, —1), (1, 1, —1), (1, 1, 1)

Left: (—1, —1, 1), (—1, —1, —1), (—1, 1, —1), (—1, 1,0), (—1,0, 1)

Bottom: (1, —1, 1), (1, —1, —1), (—1, —1,—I), (1, —1, —1)

Top: (1, 1, 1), (1, 1, —1), (—1, 1, —1), (—1, 1, 0), (0, 1, 1)

162 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Hither: (1, —1, 1), (1, 1, 1), (0, 1, 1), (—1,0, 1), (—1, —1, 1)

Yon: (—1, —1, —1), (1, —1, —1), (1, 1, —1), (—1, 1, —1)

Skew: (—1,0, 1),(0, 1, 1),(—1, 1,0)

Table 3-13 gives the complete results for the line P1(—2, 3/2, 1) to

P2(3/2, —1, — 1/2) clipped to this volume.

Table 3-13

Plane n f w wn Dnf tL t,

Top [0 —10] (1, 1, 1) [—3 1/2 0] —1/25/2 1/5

Bottom [0 1 0] (—1, —1, —1) [—1 5/2 2] 5/2 —5/21

Right [—1 0 0] (1, 1, 1) [—3 1/2 0] 3—7/2 6/7

Left [1 0 0] (—1, —1, —1) [—1 5/2 2] —17/2 2/7

Hither [0 0 —1] (1, 1, 1) [—3 1/2 0] 03/2 0

Yon [0 0 1] (—1, —1, —1) [—1 5/2 2] 2—3/2 4/3

Skew

tD n <0 uppe r lim it (ta) , D n > 0 lowe r limi t (tj.

[1 —1 —1] (—1, 0, 1) [—1 3/2 0] —5/215/2 1/3

From the table the maximum lower limit is tL = 1/3, and the minimum

upper limit is tu = 6/7. The intersection points are thus

P(1/3) = [—5/6 2/3 1/2]

in the skew plane and

P(6/7) = [1 —9/14 —2/7]

in the right hand plane.

Note that the computational expense of the Cyrus-Beck algorithm grows

linearly with the number of edges or planes to be clipped.

3-12 CLIPPING IN HOMOGENEOUS COORDINATES

If clipping is to be performed in homogeneous coordinates (see Ref. 1-1) considerable

care must be taken if a perspective transformation is also used. The

fundamental reason is that a single plane does not necessarily divide a line

into two parts: one inside the clipping region and one outside the clipping

region. The line may “wrap around” through infinity such that two segments

are visible inside the region. Blinn (Ref. 3-6) shows that clipping all line

segments before completing the perspective transformation by dividing by the

homogeneous coordinate eliminates the segments that “return from infinity.”

Liang and Barsky (Ref. 3-5) have developed a line clipping algorithm that includes

homogeneous coordinates. They obtain the correct result by modifying

the limits of the viewing volume which is assumed to be a frustum of vision.

CLIPPING IN HOMOGENEOUS COORDINATES 163

The Cyrus-Beck algorithm correctly clips a line to the perspective frustum

of vision provided that the line exists entirely in front of the eye point or

center of projection (see Example 3-18). However, if the line passes behind the

center of projection, the algorithm rejects the line even if partially visible. In

practice, the correct result is obtained by first clipping the line to the physical

volume described in ordinary coordinate space and then applying the perspective

transformation to the results. Note that any affine transformations (e.g.
rotations, translations, etc.) may be applied to both the clipping volume and

the line before the perspective transformation is applied. A further example
illustrates these points.

Example 3-20 Cyrus-Beck With Line Passing Behind the Center of Projection

Consider the line Pi(0, 1, 6) to P2(0, —1, —6) clipped to the physical volume
(XL, Xft, Ys, YT, ZH, Zy)= (—1, 1, —1, 1, —1, 1) from a center of projection at z =
5. The line PIP2 passes through the clipping volume but originates behind the
center of projection.

After applying the perspective transformation (see Ref. 1-1) the end points
of the line in homogeneous coordinates are

P[0 1 6 —1/5] and P2[0 —1 —6 11/5]

Dividing through by the homogeneous coordinate yields the ordinary coordinates

Pi(0, —5, —30)and P2(0, —5/11, —30/11)

Notice that P, which was originally in front of the clipping volume but behind

the center of projection, has now wrapped around through infinity to a location

behind the clipping volume. Since both end points are now outside the clipping

volume, the Cyrus-Beck algorithm will reject the line as invisible.

Recalling the inner normals and the points in each clipping plane from

Example 3-17, the line is first clipped to the physical volume (—1, 1, —1, 1, —1,
1). Here, the directorix for P1P2 is

D=P2—P)=[0 —1 —6]—[0 I 6]=[0 —2 —12]

The results are given in Table 3-14

Table 3-14

Plane n f w wn Dnt tL i

Top [0 —10] (1, 1, 1) [—1 0 5]0 2 0

Bottom [0 1 0] (—1, —1, —1) [1 2 7]2 —2 1

Right [—1 0 0] (1, 1, 1) [—1 0 5]1 0

Left [1 0 0] (—1, —1, —1) [1 2 7]1 0

Hither [0 0 —1] (1, 1, 1) [—1 0 5] —512 5/12

Yon [0 0 1] (—1, —1, —1) [1 2 7]7 —12 7/12

tD n <0 upper limit (ta), D n > 0 lower limit (tj.

164 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Examining Table 3-14 shows that the line is visible from 5/12 � t � 7/12.

The end points of the clipped line in physical space are•

P(5/12) = [0 1 6] + [0 —2 —12](5/12) = [0 1/6 1]

P(7/12) = [0 1 6] + [0 —2 —12](7/12) = [0 —1/6 —1]

Transforming these end points to perspective space using homogeneous coordinates

(see Ref. 1-1) yields

ro 1/6 1 1] r 0 0 0 1 = ro 5/24 5/4 1
Lo — 1/6 —1 1] I 0 1 0 0Lo —5/36 —5/6 1

L0 0 1 —1/50001

as the visible portion of the line. This is the correct result

3-13 DETERMINING THE INWARD NORMAL AND THREE-

DIMENSIONAL CONVEX SETS

The two-dimensional technique using rotations and translations previously used

to identify convex polygons and to determine the inward normal may be

extended to three-dimensional plane volumes. The three-dimensional procedure
is

For each polygonal face plane of the volume:

Translate the volume such that one of the vertices of the polygon face

is at the origin.

Rotate about the origin such that one of the two adjacent polygon edges

is coincident with one of the coordinate axes, e.g. the x axis.

Rotate about this coordinate axis until the polygonal face lies in the

coordinate plane, e.g. the z = 0 plane.

Examine the sign of the coordinate component perpendicular to this

plane for all other vertices of the volume, e.g. the z component.

If all the vertices have the same sign or are zero, then the volume

is convex with respect to this plane. If the volume is convex for all

its face planes, then it is convex; if not, it is concave.

If for each face the value of the coordinate component perpendicular

to this plane is zero, then the volume is degenerate; i.e., it

is a plane.

For each convex plane, the inner normal has components in the rotated

coordinate system of zero and the sign of the coordinate components

perpendicular to the plane in which the face plane lies.

In determining the original direction of the inner normal, only the

inverse rotations need be applied.

DETERMINING THE INWARD NORMAL AND THREE-DIMENSIONAL CONVEX SETS 165

y

:/
b

x

x

Figure 3-24 Determining a convex volume and the inner normal.

Example 3-21 Determining the Convexity of a Volume

As a specific example, again consider the cube with one corner removed previously

described in Example 3-19. The cube is shown in Fig. 3-24a. The convexity

of the clipping volume with respect to the face labeled abc in Fig. 3-24a is

to be determined using the above algorithm. The volume is first translated such

that point a is at the origin. The 4 x 4 homogeneous coordinate transformation

matrix is (see Ref. 1-1)

[T]= I 0 0 0F 0 1 0 0
100 1 0
LI 0 —I I

The result is shown, projected onto the z = 0 plane, in Fig. 3-24b. Rotation
about the z axis by 0 = —45° makes the edge ab coincident with with the x axis.
The homogeneous coordinate transformation matrix is (see Ref. 1-1)

[Rj = r cos 0 sin 0 0 0
I—sin 0 cosO 0 0
10 0 10

0 0 01

a

c d

166 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The result is shown in Fig. 3-24c again projected onto the z = 0 plane.

It remains to rotate about the x axis to make the plane abc coincident with

the coordinate plane y = 0. The coordinates of the point c in Fig. 3-24c are

(0.565685, 0.565685, —0.8). The rotation angle about x is given by

_1fy\ - /0.565685\
a=tan I—I=tan I 1=—35.2644

\Z) —0.8 /
Rotation by this angle will place the volume below the coordinate plane y =

0. Rotation by (180 —a) degrees will place the volume above the plane. The

latter result is shown in Fig. 3-24d projected onto the z = 0 plane. The rotation
matrix is

[R]=r 1 0 00

cosa sina 0 0

1—sina cosa 1 0

L 0 0 01

The y coordinates of all the other points in the volume are positive. Hence,

the volume is convex with respect to the plane abc.

The inner normal for the plane abc in this orientation is

n’ = [0 Sign(y) 01 = [0 1 01

Applying the inverse rotations yields

n = [0.5774 — 0.5774 — 0.5774]

or

n=[1 —1 —1]

as expected. To prove the volume convex this operation must be performed

for each face plane.

3.14 SPLITTING CONCAVE VOLUMES

The three-dimensional Cyrus-Beck clipping algorithm requires a convex volume.
However, the ability to clip to concave volumes is desirable. This can be accomplished

by internal and external clipping to appropriate convex volumes

which constitute the concave volume. This is similar to the technique previously
discussed for clipping to concave polygons (Sec. 3-6). The task of splitting
simple concave volumes into constituent convex volumes can be accomplished
by an extension of the translation and rotation technique presented in the previous

section. The algorithm assumes that the volume is polyhedral. The procedure
is

For each polygonal face plane of the volume:

Translate such that one of the vertices of the polygon face is at the

origin.

Rotate about the origin such that one of the adjacent polygon edges is

coincident with one of the coordinate axes, e.g. the x axis.

SPLITTING CONCAVE VOLUMES 167

— x

d

Figure 3-25 Concave volume splitting.

Rotate about this coordinate axis until the polygon face lies in the

coordinate plane, e.g. the z = 0 plane.

Examine the sign of the coordinate component perpendicular to this

plane for all other vertices of the volume, e.g. the z component.

If all the vertices have the same sign or are zero, then the volume is

convex with respect to this plane. If not, it is concave. Split the volume

along the coordinate plane in which the face polygon lies.

Reenter the algorithm with each of the split-off volumes. Continue
until each is shown to be convex.

Example 3-22 Splitting Concave Volumes

Consider the concave volume shown in Fig. 3-25a. The polygons describing
each face are

Back: P1(3, 0, 0), P2(0, 0, 0), P3(0, 2, 0), P4(1, 2, 0)

P5(l, 3/2, 0), P6(3/2, 3/2, 0), P7(3/2, 2, 0), P8(3, 2, 0)

Front: P9(3, 0, 2), Pjo(0, 0, 2), P11(0, 2, 2), P12(l, 2, 2)

P13(1, 3/2, 2), P14(3/2, 3/2, 2), P15(3/2, 2, 2), P16(3, 2, 2)

P2(0, 0, 0), Pio(0, 0, 2), Pii(0, 2, 2), P3(0, 2, 0)

x

a b c

e

Left:

168 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Right: Pi(3, 0, 0), P8(3, 2, 0), P16(3, 2, 2), P9(3, 0, 2)

Bottom: P1(3, 0, 0), P2(0, 0, 0), Pio(O, 0, 2), P9(3, 0, 2)

Top left: Pio(O, 0, 2), P4(1, 2, 0), P3(0, 2, 0), Pii(0, 2, 2)

Left notch: P13(1, 3/2, 2), P5(1, 3/2, 0), P4(1, 2, 0), P12(1, 2, 2)

Bottom notch: P13(1, 3/2, 2), P14(3/2, 3/2, 2), P6(3/2, 3/2, 0), P5(1, 3/2, 0)

Right notch: P6(3/2, 3/2, 0), P7(3/2, 2, 0), P15(3/2, 2, 2), P14(3/2, 3/2, 2)

Top right: P16(3, 2, 2), P8(3, 2, 0), P7(3/2, 2, 0), P15(3/2, 2, 2)

Using the above algorithm, the convexity of the volume with respect to

the face called the left notch and labeled abc in Fig. 3-25a is examined. The

volume is first translated such that the point P5, labeled a in Fig. 3-25a, is at the

origin. This also places P13, labeled b in Fig. 3-25a, on the positive z axis. The

translation factors are —1, —3/2, 0 in the x, y, z directions, respectively. The result

is shown projected onto the z = 0 plane in Fig. 3-25b. Rotation about the

z axis by _900 makes the plane abc coincident with the y = 0 coordinate plane.

The result is shown in Figs. 3-25c and d projected onto the z = 0 plane.

Examination of the y coordinates shows that the volume is concave. It is

split into two volumes, Vi and V2, along the plane y = 0. V i is above the plane

y = 0, and V2 below, The face planes in the original orientation are

Vi:
Left: P2(0, 0, 0), P10(O, 0, 2), Pii(O, 2, 2), P3(O, 2, 0)

Right lower: P0(1, 0, 2), P(1, 0, 0), P5(1, 3/2, 0), P13(1, 3/2, 2)
Right upper: P13(1, 3/2, 2), P5(1, 3/2, 0), P4(1, 2, 0), P12(I, 2, 2)
Top: P1o(O, 0, 2), P4(1, 2, 0), P3(O, 2, 0), P11(O, 2, 2)

Bottom: P2(O, 0, 0), P(1, 0, 0), P0(1, 0, 2), P1o(O, 0, 2)
Front: P10(O, 0, 2), P0(1, 0, 2), P13(1, 3/2, 2), P12(1, 2, 2), P11(0, 2, 2)
Back: P(1, 0, 0), P2(O, 0, 0), P3(O, 2, 0), P4(1, 2, 0), P5(1, 3/2, 0)

V2:
Left: P(1, 0, 0), P0(I, 0, 2), P13(1, 3/2, 2), P5(1, 3/2, 0)

Right: P1(3, 0, 0), P8(3, 2, 0), P16(3, 2, 2), P9(3, 0, 2)

Right notch: P6(3/2, 3/2, 0), P7(3/2, 2, 0), P15(3/2, 2, 2), P14(3/2, 3/2, 2)

Bottom notch: P13(1, 3/2, 2), P14(3/2, 3/2, 2), P6(3/2, 3/2, 0), P5(1, 3/2, 0)

Top right: P16(3, 2, 2), P8(3, 2, 0), P7(3/2, 2, 0), P15(3/2, 2, 2)
Bottom: P(1, 0, 0), P1(3, 0, 0), P9(3, 0, 2), P0(1, 0, 2)

When the two volumes are passed through the algorithm a second time,
Vi is declared convex and V2 is split into two volumes which are subsequently
found to be convex. The result is shown in Fig. 3-25e in an exploded view.

3-15 POLYGON CLIPPING

The previous discussion has concentrated on clipping lines. Polygons can of
course be considered as collections of lines. For line drawing applications it is

not too important if polygons are subdivided into lines before clipping. When

a closed polygon is clipped as a collection of lines, the original closed polygon
becomes one or more open polygons or discrete lines as shown in Fig. 3-26.

REENTRANT POLYGON CLIPPING—SUTHERLAND-HODGMAN ALGORITHM 169

Figure 326 Polygon clipping—open polygons.

However, when polygons are considered as solid areas, it is necessary that

closed polygons remain closed. In Fig. 3-26 this requires that the lines be, ef

fg, and ha be added to the polygon description. Adding ef andfg is particularly

difficult. Considerable difficulty also occurs when clipping a polygon results in

several disjoint smaller polygons as shown in Fig. 3-27. For example, the lines

ab and ed shown in Fig. 3-27 are frequently included in the clipped polygon

description. If, for example, the original polygon is declared red on a blue

background, the lines ab and ed will also appear red on a blue background.

This is contrary to expectation.

Clipping T
——____

wind ow

Clip

Figure 327 Polygon clipping—disjoint polygons.

3-16 REENTRANT POLYGON CLIPPING—SUTHERLANDHODGMAN

ALGORITHM

The fundamental idea behind the Sutherland-Hodgman algorithm (Ref. 3-7)

is that it is easy to clip a polygon against a single edge or clipping plane. The

procedure is to clip the original polygon and each resulting intermediate polygon

b

L

Clip

E

F

170 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 3-28 Reentrant polygon clipping.

against a single edge, each edge in succession. Figure 3-28 illustrates the

procedure for a rectangular window. The polygon is originally defined by a list
of vertices Pi P which imply a list of edges P1P2, P2P3 P_1 P,, PP1.

In Fig. 3-28 these edges are first clipped against the left edge of the window to

yield the intermediate polygon shown. The clipping algorithm is then reentered

with the intermediate polygon to be clipped against the top edge. This yields

a second intermediate polygon. The process is repeated until the polygon is

clipped against all the window edges. The steps are shown in Fig. 3-28. Notice

that the addition of the corner point labeled Q8 in the final clipped polygon is

now trivial. The algorithm will clip any polygon, convex or concave, planar or

nonplanar, against any convex polygonal clipping window. The order in which

the polygon is clipped against the various window edges is immaterial.

The output of the algorithm is a list of polygon vertices all of which are on

the visible side of a clipping plane. Since each edge of the polygon is individually

compared with the clipping plane, only the relationship between a single edge

and a single clipping plane need be considered. If each point P, except the

first, in the polygon vertex list is considered as the terminal vertex of an edge,

and if the starting vertex S of that edge is the vertex just previous to P in the

list, then there are only four possible relationships between the edge and the

clipping plane. These are shown in Fig. 3-29.

The result of each polygon edge-clipping plane comparison is the output

to the clipped polygon list of no, one, or two vertices. If the edge is entirely

visible, then P is output. It is not necessary to output S, the starting vertex,

FClipping
I

-.

window

REENTRANT POLYGON CLIPPING—SUTHERLAND-HODGMAN ALGORITHM 171

Visible side Visible side Visible side Visible side

Entirely visible Totally invisible Leaving visible Entering visible
Output P No output Output I Output I
1 point 0 points 1 point Output P

2 points
Figure 3-29 Edge-clipping plane relationships.

since, if each vertex is considered sequentially, S was the terminating vertex of
the previous edge and has already been output. If the edge is entirely invisible,

no output is required.
If the edge is partially visible, then it is either entering or leaving the

visible side of the clipping plane. If the edge is leaving the visible region, the
intersections of the polygon edge and the clipping plane must be calculated

and output. If the edge is entering the visible region, the intersection with the

clipping plane must again be calculated and output. Since P, the terminating

vertex, is now visible, it must also be output.

For the first point of the polygon it is only necessary to determine if it is

visible. If it is visible, then it is output and saved as S. If it is not visible, no

output occurs but it is still saved as S the starting point.
The final edge P,,Pi must be considered separately. This is done by saving

the first point as F. Then the final edge becomes PF and may now be

considered exactly as any other edge.

Before presenting the complete algorithm, there are two additional considerations:

determining the visibility of a point and determining the intersection

of the polygon edge and the clipping plane. Determining the visibility of a

point is equivalent to determining on which side of the clipping plane the point

lies. If successive edges of the clipping polygon are considered in a clockwise

direction, the inside of the polygon is always to the right. If counterclockwise,

the inside is to the left. Previously two methods of determining the location

(visibility) of a point with respect to a line or plane have been considered: examining
the sign of the dot product of the normal vector and a vector from a

point in the line or plane to the point under consideration (see Sec. 3-5) and

substitution of the point coordinates into the equation of the line or plane (see
Sec. 3-9). This latter technique is a variation of that proposed by Sutherland

and Hodgman in Ref. 3-7.

Another technique is to examine the sign of the z component of the cross

product of two vectors which lie in a plane. If two points in the clipping plane
are Pi and P2, and the point under consideration is P3, then these three points

define a plane. Two vectors which lie in that plane are PiP2 and PP3. If this

plane is considered the xy plane, then the vector cross product p1 p3 ® PiP2 has

172 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

y

P2 2

P3. 1 .P3’

______________ P1 _______________________

-3 -2 -l 0 1 2 3

Clipping___,.
Plane -1

Figure 330 Visibility tests.

only a z component given by (x3 — xl)(y2 — y) — (x3 — yI)(x2 — Xi). If the

sign of the z component is positive, zero, or negative, then P3 is to the right,
on, or to the left of the line P1P2.

All these techniques are particularly simple for rectangular clipping windows

parallel to the coordinate axes.

Example 3-23 Relation of a Point to a Plane

Consider a clipping plane at x = w = —1 perpendicular to the x axis as shown
in Fig. 3-30. The locations of two points P3(—2, 1) and P(2, 1) are to be
determined with respect to the clipping plane.

Using the cross-product technique with Pi (—1, 0) and P2(— 1, 2) yields
for P3

(Y3 —yi)(x3 X2) = (1 —0)[--2 — (—1)] = —1 <0

which indicates P3 is to the left of P 1P2, and for P

which indicates P is to the right of P1P2
The substitution technique is particularly simple. Here the test function is

x—w. For P3

X3W=—2 — (—1)=—1<0

and for P

4— w = 2 — (—1) = 3>0

which indicates that P3 and P are to the left and right of PIP2, respectively.
Choosing the inner normal as n = [1 0] and the point in the clipping plane

asf— 1, 0) and taking the dot product of the vectors yields for P3

n[P3—f][1 0][—1 1]=—1<0

and for P

REENTRANT POLYGON CLIPPING—SUTHERLAND-HODGMAN ALGORITHM 173

n[P3’—fJ=[I 01[3 I]=3>O

which again indicates that P3 is to the left and P is to the right of the clipping
plane.

Using these visibility tests, a polygon edge is totally visible or totally invisible
if both end points are totally visible or totally invisible. If one end point

is visible and the other invisible, then the polygon edge intersects the clipping
plane and its intersection point must be calculated. Any of the line intersection

(clipping) techniques discussed above may be used, e.g., Cyrus-Beck (see

Sec. 3-5), explicit or parametric (see Secs. 3-1 and 3-4), or the midpoint subdivision

(see Sec. 3-3). Again, as has been illustrated above, these techniques
are particularly simple for rectangular clipping windows parallel to the coordinate

axis. The Cyrus-Beck and midpoint subdivision techniques are of course
completely general. However, the intersection of two general parametric lines
in the two-dimensional plane requires further discussion.

Two line segments with end points P1, P2 and P3, P4, respectively, can be
parametrically represented as

P(s) = P1 + (P2 — Pi)s 0 � s � I

and

P(t)=P3+(P4—P3)t O�t�I

At the intersection point P(s) = P(t). Recalling that P(s) and P(t) are vector

valued functions, i.e., P(s) = [x(s) y(s)] and P(t) = [x(t) y(t)] yields two equations
in the two unknown parameter values s and t at the intersection; i.e., x(s)

= x(t), y(s) = y(t) at the intersection point. If there is no solution, then the lines

are parallel. If either s or t is outside the required range, the segments do not
intersect. A matrix formulation is particularly convenient.

Example 3-24 Intersection of Parametric Lines

Consider the two line segments Pj[O 0] to P2[3 2] and P3[3 0] to P4[0 2] as
shown in Fig. 3-31. Then

P(s)[0 0]+[3 2]s

P(t) = [3 01 + [—3 2]t

Equating the x and y components yields

3s = 3 — 3t

2s2t

Solving yields

s = t = 1/2

The intersection point is then

P1(s) = [0 0] + [3 2](1/2)

= [3/2 1]

174 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

3

x

Figure 3.31 Intersection of parametric lines.

Sutherland and Hodgman (Ref. 3-7) suggest an alternate approach to generating

successive intermediate polygons as discussed here. In developing the

Sutherland-Hodgman algorithm, recall that each polygon edge is considered

successively. Hence, with minor changes the same code can be used for each

edge. The last vertex is handled specially. Figure 3-32, adapted from Ref. 3-7,

gives a flowchart of the algorithm. Figure 3-32a is applied to every vertex,

while Fig. 3-32b is used only for the last vertex. A pseudo implementation

which generates and stores intermediate polygons is given below.

Close polygon entry

b

y

P2

P3

0

0 1 2

(Enter with input vertex

rNno
there any
output?

yes

Does the
no

line SF cross the

clipping plane?

yes

a

Figure 3.32 Flowchart for Sutherland-Hodgman reentrant polygon clipping.

REENTRANT POLYGON CLIPPING—SUTHERLAND-HODGMAN ALGORITHM 175

Sutherland and Hodgman show how the generation and storage of intermediate

polygon vertices can be avoided. Specifically, instead of clipping each

edge (vertex) of the polygon against a single window plane, each polygon edge
(vertex) is clipped successively against all the window planes. As soon as a

polygon edge (vertex) is clipped against a window plane the algorithm calls

itself recursively to clip the result against the next window plane. This makes
the algorithm more suitable for hardware implementation.

Sutherland-Hodgman polygon clipping algorithm

P is the input polygon array

0 is the output polygon array

W is the clipping window array. The first vertex is repeated as the last vertex

Nm is the number of input polygon vertices

Nout is the number of output polygon vertices

Nw is the number of clipping polygon vertices plus one

all polygon vertices are given in clockwise order

for each window edge
for i = 1 to Nw — 1

set the output counter and zero the output array
Nout = 0

0=0

clip each polygon edge against this window edge

for j = 1 to Nm

treat the first point specially

if j <> 1 then 1

save first point
F =

go to 2

check if this polygon edge crosses the window edge

1 call Cross(S, P, W1, W,+i; Spcross)

if Spcross = no then 2

if the polygon edge crosses the window edge calculate the intersection

point

call Intersect(S, P, W,, W,+1 Pintersect)

output the intersection point

call Output (Pintersect, Nout,Q)

replace the first point

2 S=Pj

check if the second point on the polygon edge (now 5) is visible

call Visible(S, W1, W1+1 Svisible)
if Svisible <0 then 3

if the point is visible output it

call Output(S, Nout, 0)

3 nextj

closure—treat the edge PPi

if there has been no output skip to the next window edge

176 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

if Nout = 0 then 5

check if the last polygon edge crosses the window edge

call Cross(S, F, W1, W1+1 Spcross)

if.Spcross = no then 4

if the polygon edge crosses the window edge calculate the intersection

call Intersect(S, F, W, W+1 Pintersect)

output the intersection

call Output(Pintersect, Nout, Q)

The polygon is now clipped against the edge W to W+1

the algorithm is now reentered with the clipped polygon
4 P=Q

Nm = Nout

5 nexti

finish

subroutine module to determine if the polygon edge and the window edge
intersect

subroutine Cross(Start, Point, Wi, W2; Spcross)

determine the visibility of the starting point of the polygon edge

call Visible(Start, Wi, W2; Pvisible)
Pvisiblel = Pvisible

determine the visibility of the end point of the polygon edge

call Visible(Point, Wi, W2; Pvisible)
Pvisible2 = Pvisible

a polygon edge which begins or ends on a window edge is considered

not to cross the edge. This point will have previously been output
if Pvisiblel <0 and Pvisible2 > 0 or

Pvisiblei > 0 and Pvisible2 <0 then

Spcross = yes

else

Spcross = no
end if

return

subroutine module to determine visibility

subroutine Visible(Point, P1, P2; Pvisible)

the visibility of Point is to be determined with respect to the edge P1P2
Pvisible <0 Point is invisible

= 0 Point is on the edge PiP2

> 0 Point is visible

the routine uses the cross-product technique

the Sign function returns — 1, 0, 1 as the argument is negative, zero, or

positive

Tempi = (Pointx — Pix)*(P2y — Ply)

Temp2 = (Pointy — Piy)*(P2x — Pix)

Temp3 = Tempi — Temp2

REENTRANT POLYGON CLIPPING—SUTHERLAND-HODGMAN ALGORITHM 177

Pvisible = Sign(Temp3)
return

subroutine module to calculate intersection of two lines

subroutine Intersect(Pi, P2, Wi, W2; Pintersect)

the routine uses a parametric line formulation
the lines P1 P2 and W1 W2 are assumed two-dimensional

the matrix for the parameter values is obtained by equating the x and y

components of the two parametric lines

Coeff is a 4 x 4 matrix containing the parameter coefficients

Parameter is a 2 x I matrix containing the parameters

Right is a 2 x I matrix for the right hand sides of the equations

Invert is the matrix inversion function

Parameter(1, i) is the polygon edge intersection value

Multiply is the matrix multiply function

fill the coefficient matrix

Coeff(i, i) = P2x — Pix

Coeff(i, 2) = Wix — W2x

Coeff(2, i) = P2y — Piy

Coeff(2, 2) = Wiy — W2y

fill the right hand side matrix

Right(1, i) = Wix — Pix

Right(2, i) = Wly — Piy

invert the coefficient matrix

it is not necessary to check for a singular matrix because intersection is
ensured

Coeff = Invert(Coeff)

solve for the parameter matrix

Parameter = (Coeff) Multiply (Right)

calculate the intersection points

Pintersect = Pi + (P2 — P1)*Parameter(1, i)
return

subroutine module for polygon output

subroutine Output(Vertex,Nout,Q)

Vertex contains the output point

increment the number of output vertices and add to Q
Nout = Nout + i

Q(Nout) = Vertex
return

Example 3-25 below further illustrates the Sutherland-Hodgman algorithm.

It also illustrates a particular characteristic of the algorithm, i.e., degenerate

boundaries. The existence of these degenerate boundaries is not important in

many applications, e.g., solid area scan conversion. However, some applications,

e.g., some hidden surface algorithms, necessitate their elimination. This

can be accomplished by sorting the vertices as suggested in Ref. 3-7.

178 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Example 3-25 Sutherland-Hodgman Polygon Clipping

Consider the polygon with vertices given in Table 3-15 below and shown in

Fig. 3-33 clipped to the square window with planes X left = X right = I, Y bottom

= — I, yop = I. As a specific example consider the edge from Pi to P2 clipped

to the left hand window plane. Considering the window planes to be given

in clockwise order the inside or visible side is to the right. With the use of

the substitution method described above (see Example 3-23), the test function
x — w is

x—wx—(—1)x+ 1

For Pj(1/2, —3/2)

xj + I = 1/2 + I > 0

Thus, Pi is to the right of the clipping plane and visible.

For P2(—2, —3/2)

X2 + I = —2 + 1 <0

Thus, P2 is invisible. The edge P1P2 crosses the clipping plane. Hence,

the intersection must be calculated. Using the parametric line solution (see

Example 3-24) yields x = —1, y = —3/2.

Table 3-15

Original
polygon

Clipped
against
left edge

Clipped
against
top edge

Clipped
against
right edge

Final

polygon

P1 (1/2, —3/2) (1/2, —3/2) (1/2, —3/2) (1/2, —3/2) (—1, —1)

P2 (—2, —3/2)(—1, —3/2)(—1, —3/2)(—1, —3/2)(—1, 1)

P3 (—2, 2) (—1, 2) (—1, 1) (—1, 1) (1, 1)

P4 (3/2, 2) (3/2, 2) (3/2, 1) (1, 1) (1, 0)

P5 (3/2, 0) (3/2, 0) (3/2, 0) (1, 0) (1/2, 0)

P6 (1/2, 0) (1/2, 0) (1/2, 0) (1/2, 0) (1/2, 1)

P7 (1/2, 3/2) (1/2, 3/2) (1/2, 1) (1/2, 1) (—1, 1)

P8 (—3/2, 3/2) (—1, 3/2) (—1, 1) (—1, 1) (—1, 0)

P9 (—3/2, 1/2) (—1, 0) (—1, 0) (—1, 0) (0, —1)

The results are shown in Fig. 3-33. Of particular interest is the last clipping

stage, i.e., against the bottom window plane. Up until this stage P1 has

survived. Hence, the intermediate polygon vertex lists have remained in the

same order as the original vertex list. However, P 1 is eliminated by the clip

against the bottom window plane. The vertex list now starts at the intermediate

vertex corresponding to P2. The last vertex in the final clipped polygon list

represents the intersection of the polygon edge P9P1 with the bottom window

plane.

Note the four degenerate edges or boundaries in the upper left corner of

the clipping window as shown in Fig. 3-33 for the final polygon.

CONCAVE CLIPPING REGIONS—WEILER-ATHERTON ALGORITHM 179

Original

-

Clip

top edge

Clip

______ right edge
Q1L

The Sutherland-Hodgman algorithm as presented above concentrated on

clipping to a two-dimensional window. In fact, the algorithm is more general.

Any planar or nonpianar polygon can be clipped to a convex clipping volume

by calculating the intersection with a three-dimensional clipping plane using the

Cyrus-Beck algorithm. The Sutherland-Hodgman clipping algorithm can also

be used to split concave polygons (see Sec. 3-8 and Ref. 3-7).

Liang and Barsky (Ref. 3-8) have developed a new algorithm for polygon

clipping. As presented the algorithm is optimized for rectangular clipping

windows but is extendable to arbitrary convex windows. The algorithm is

based on concepts from their two- and three-dimensional line clipping algorithm

(Ref. 3-5). Tests indicate that for rectangular windows the optimized algorithm

is twice as fast as the Sutherland-Hodgman algorithm.

347 CONCAVE CLIPPING REGIONS—WEILERATHERTON

ALGORITHM

The clipping algorithms previously discussed require a convex clipping region.

In the context of many applications, e.g., hidden surface removal, the ability

to clip to concave regions is required. A powerful but somewhat more complex

clipping algorithm developed by Weiler and Atherton (Ref. 3-9) meets this

requirement. The Weiler-Atherton algorithm is capable of clipping a concave

polygon with interior holes to the boundaries of another concave polygon, also

with interior holes. The polygon to be clipped is the subject polygon. The

clipping region is the clip polygon. The new boundaries created by clipping

p3

P2

Clip

left edge

Clip bottom

edge &

final polygon

Figure 3-33 Results for Example 3-24.

180 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

the subject polygon against the clip polygon are identical o portions of the clip

polygon. No new edges are created. Hence, the number of resulting polygons
is minimized.

The algorithm describes both the subject and the clip polygon by a circular

list of vertices. The exterior boundaries of the polygons are described clockwise,

and the interior boundaries or holes counterclockwise. When traversing the

vertex list, this convention ensures that the inside of the polygon is always to

the right. The boundaries of the subject polygon and the clip polygon may or

may not intersect. If they intersect, then the intersections occur in pairs. One

of the intersections occurs when a subject polygon edge enters the inside of

the clip polygon and one when it leaves. Fundamentally, the algorithm starts

at an entering intersection and follows the exterior boundary of the subject

polygon clockwise until an intersection with the clip polygon is found. At the

intersection a right turn is made, and the exterior boundary of the clip polygon

is followed clockwise until an intersection with the subject polygon is found.

Again, at the intersection, a right turn is made, with the subject polygon now

being followed. The process is continued until the starting point is reached.

Interior boundaries of the subject polygon are followed counterclockwise. See

Fig. 3-34.

S

+j2r lfjILs

S2 b S1 polygon

C

Figure 3-34 Weiler-Atherton clipping.

CONCAVE CLIPPING REGIONS—WEILER-ATHERTON ALGORITHM 181

A more formal statement of the algorithm is:

Determine the intersections of the subject and clip polygons.

Add each intersection to the subject and clip polygon vertex lists. Tag
each intersection vertex and establish a bidirectional link between the

subject and clip polygon lists for each intersection vertex.

Process nonintersecting polygon borders.

Establish two holding lists: one for boundaries which lie inside the clip

polygon and one for boundaries which lie outside. Ignore clip polygon

boundaries which are outside the subject polygon. Clip polygon boundaries

inside the subject polygon form holes in the subject polygon.

Consequently a copy of the clip polygon boundary goes on both the

inside and the outside holding list. Place the boundaries on the appropriate

holding list.

Create two intersection vertex lists.

One, the entering list, contains only the intersections for the subject

polygon edge entering the inside of the clip polygon. The other, the

leaving list, contains only the intersections for the subject polygon

edge leaving the inside of the clip polygon. The intersection type will

alternate along the boundary. Thus, only one determination is required

for each pair of intersections.

Perform the actual clipping.

Polygons inside the clipping polygon are found using the following

procedure.

Remove an intersection vertex from the entering list. If the list is

empty, the process is complete.

Follow the subject polygon vertex list until an intersection is found.

Copy the subject polygon list up to this point to the inside holding
list.

Using the link, jump to the clip polygon vertex list.

Follow the clip polygon vertex list until an intersection is found.

Copy the clip polygon vertex list up to this point to the inside

holding list.

Jump back to the subject polygon vertex list.

Repeat until the starting point is again reached. At this point the

new inside polygon has been closed.

Polygons outside the clipping polygon are found using the same procedure,

except that the initial intersection vertex is obtained from the

182 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

leaving list and the clip polygon vertex list is followed in the reverse

direction. The polygon lists are copied to the outside holding list.

Attach any holes, i.e. interior boundaries, to their associated exterior

boundaries. Since exterior boundaries are specified clockwise and

interior boundaries counterclockwise, this is most conveniently accomplished

by testing the directionality of the boundaries. The process is

complete.

Several examples will serve to more fully illustrate the algorithm.

Example 3-26 Weiler-Atherton Polygon Clipping—Simple Polygon

Consider the subject polygon shown in Fig. 3-34a clipped to the square clipping
polygon shown in Fig. 3-34a. The intersection points between the two polygons
are also shown and labeled 1. The subject polygon and the clip polygon vertex
lists are shown below. The intersection vertices 12, 14,16, and 18 are placed on
the entering list and the vertices 11, 1i, 15, 17 on the leaving list.

Start

Subject

polygon list

Clip Subject Clip

polygon list polygon list polygon list

Si CI rS1 Ci

112 Ii Finish
Finish 113 12

C2

13

4S3 14

115 C3

S4 1

16 16

17 C4

17

I 18 18

56 Ci

Ii Start

I S
L S

Inside polygon Outside polygon

To form the inside polygon, the first intersection on the entering list, 12,

is removed. The procedure described above yields the results shown by the

solid line with the arrows in Fig. 3-34a and in the subject and clip polygon lists

shown above. The resulting inside polygon is

121314S315161718561I12

The other intersection vertices on the entering list, i.e. 14,16, and ‘8, yield

the same clipped polygon.

CONCAVE CLIPPING REGIONS—WEILER-ATHERTON ALGORITHM 183

To form the outside polygons, the first intersection on the leaving list, Ij,

is removed. The procedure described above yields the results shown by the

dashed line with the arrows in Fig. 3-34a and in the subject and clip polygon

lists also shown above. Notice that the clip polygon list is traversed in the

reverse direction from 12 to !i. The resulting outside polygon is

11S7S11211

Similarly removing 13, 15, and 17 from the leaving list yields the outside polygons

respectively.

13S21413 and 15S4615 and l7S51g17

A somewhat more complex subject polygon which partially surrounds the

clip polygon is shown in the next example.

Example 3-27 Weiler-Atherton Polygon Clipping—Surrounding Polygon

The subject and clip polygons and their intersections are shown in Fig. 3-34b.
The intersection vertices Ij and 13 are placed on the entering list and 12 and 14
on the leaving list. The subject and clip polygon lists are then

Subject Clip Subject Clip
polygon list polygon list polygon list polygon list

14

rS1 iCq
1S21

531
Li T Finish !2

SI / 1C3I
1 L__.-, It

IS6 7” C41

12•Start “ 14

s71 / 7-c--1
s8T /
S9 / A

i3

4i

SI -Si-i

Inside polygon Outside polygon

Start

Start

To form the inside polygons, remove first and then 13 from the entering

list. The results are shown by the solid line with the arrows in Fig. 3-34b and in

the subject and clip polygon lists above. The resulting clipped inside polygons
are

1iS6l2C3lI and 1314C113

respectively. Notice that two clipped inside polygons result.

184 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Removing 12 from the leaving polygon list yields

12S7S8S913CI14S1S2S3S4S511C312

for the outside polygon. 14 yields the same polygon. The results are indicated

by the dashed line in Fig. 3-34b and in the polygon lists above. Again, notice

that the clip polygon list is traversed in the reverse direction for the outside

polygon.

The final example shows a concave polygon with a hole clipped to a concave
window also having a hole.

Example 3-28 Weiler-Atherton Clipping—Boundaries With Holes

The subject and clip polygons and their intersections are shown in Fig. 3-34c.
The intersection vertices 1, 13, and 15 are placed on the entering list, and 12,
!, and 16 on the leaving list. The subject and clip polygon lists are

Subject Clip
polygon list polygon list

Subject Clip
polygon list polygon list

S1 Cj

C2

141 C3

S2 \ 14

S3 \)l
S4 /C4

Start \ / A 16
12 \ / / Ij Finish
s1

)cx
s5 J/c5
S6 7 ,f \ 12
S7 / / \j C6
1(/ N 13

S8/
i6V C8

rsn Cj

I13 C2

Outer 14 \ C3

border S2 \ 14

S3 \ Is

S4 C4

P ii ‘6

12? Start 11

L1 Cj

s5 \ c5
S6 \? ‘2 Finish

Hole S-i \ C6

border 1 13

S8 C7

16 C8

S C5 S Cs

Inside polygon Outside polygon

Notice that the interior boundaries, i.e. the hole, vertices are listed in counterclockwise

order. The interior and exterior boundary lists are individually

circular.

When !j is removed from the entering list, the algorithm yields

1112C6131415S81611

for the inside polygon as shown by the solid lines with arrows in Fig. 3-34c and

the subject and clip polygon lists above. 13 and 1 from the entering list yield

the same polygon.

CHARACTER CLIPPING 185

Removing 12 from the leaving list yields the outside polygon

!2SI13C612

Note that the subject polygon list contains two separate boundaries, an inner

boundary and an outer boundary, each of which is individually circular.

Therefore, the transfer from S1 at the bottom of the outer boundary list is to

Si at the top of the outer boundary list rather than to S5 on the hole boundary

list. Transfer from an exterior to an interior boundary always occurs by a jump

from the subject to the clip polygon list or vice versa, as shown by the dashed

line in the subject and clip polygon lists above. Similarly, 14 and 16 from the

leaving list both yield the outside polygon

14S2S3S41116S5S6S71514

In order for the Weiler-Atherton algorithm to work correctly, care must

be taken with the identification and placement of intersections. Grazing conditions,

i.e., when a subject polygon vertex or edge lies on or is coincident with a

clip polygon edge, are not considered intersections. Examples of these conditions

are shown in Fig. 3-35a. Similarly, clip and subject polygon intersections

such as those shown in Fig. 3-35b must be placed correctly to avoid degenerate

polygon edges. Specifically, the points marked with an x in Fig. 3-35b are considered
intersections, whereas those marked with a dot are not. Additional

implementation details are given in Refs. 3-10 and 3-11.

1

polygons L

__ci i p
a

polygon

_ 7
I Subject
L

Po1ygons

Lcip

b
polygon

FIgure 3-35 Intersection details for the Weiler-Atherton algorithm.

348 CHARACTER CLIPPING

Characters or text are generated in software, firmware, or hardware. Characters

may be formed from individual lines or strokes or from dot matrix representations.

Stroke characters generated in software may be treated as any other

line; i.e., they may be rotated, translated, scaled, and clipped to arbitrary windows

in arbitrary orientations using the algorithms discussed above. Figure 3-

36 shows a typical example.

186 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Dot matrix character representations generated in software may be treated

in a similar fashion. The process is, however, somewhat more tedious. In particular,

if the character box surrounding the character is clipped to any arbitrary

window, then each pixel of the character mask is compared with the clipped
box to determine if it is inside or outside. If inside, it is activated. If outside,

no action is taken. Figure 3-37 illustrates this.

Clipping of hardware-generated characters is more limited. Generally any

character which is not totally visible is eliminated. This can by accomplished

by clipping the character box against the window. If the entire box is inside the

window, the character is displayed; otherwise, it is not. When the rectangular

character box is aligned with a rectangular window, only one diagonal of the

character box need be compared with the window. See Fig. 3-37. For odd-

shaped windows or when the rectangular character box is not aligned with

the window, both diagonals must be compared with the window as shown in

Fig. 3-38.

When characters are generated in firmware, character clipping facilities may

be very limited or very extensive. The extent depends on the clipping algorithm

also implemented in firmware.

Figure 3-36 Clipping of soft- Figure 337 Clipping of software dot matrixware
stroke-generated characters. generated characters.

L.

a

Figure 338. Clipping of hardware-generated characters.

REFERENCES 187

3-19 REFERENCES

3-1 Clark, James, H., “The Geometry Engine: A VLSI Geometry System for Graphics,”

Computer Graphics, Vol. 16, pp. 127—133, 1982 (Proc. SIGGRAPH 82).

3-2 Sproull, Robert, F., and Sutherland, Ivan, E., “A Clipping Divider,” 1968 Fall

Joint Computer Conference, Thompson Books, Washington, D.C., pp. 765—775,

1968.

3-3 Newman, William, M., and Sproull, Robert, F., Principles of Interactive Computer

Graphics, 2d ed., McGraw-Hill Book Company, New York, 1979.

3-4 Cyrus, M., and Beck, J., “Generalized Two- and Three-Dimensional Clipping,”

Computers & Graphics, Vol. 3, pp. 23—28, 1978.

3-5 Liang, You-Dong and Barsky, Brian, “A New Concept and Method for Line

Clipping,” ACM Transactions on Graphics, to appear.

3-6 Blinn, J.F., and Newell, M. E., “Clipping Using Homogeneous Coordinates,”

Computer Graphics, Vol. 12, pp. 245—251, 1978 (Proc. SIGGRAPH 78).

3-7 Sutherland, Ivan, E., and Hodgman Gary, W., “Reentrant Polygon Clipping,”

CA CM, Vol. 17, pp. 32—42, 1974.

3-8 Liang, You-Dong, and Barsky, Brian, “An Analysis and Algorithm for Polygon

Clipping,” CACM, Vol. 26, pp. 868—877,1983.

3-9 Weiler, Kevin, and Atherton, Peter, “Hidden Surface Removal Using Polygon

Area Sorting,” Computer Graphics, Vol. 11, pp. 214—222, 1977 (Proc. SIGGRAPH

77).

3-10 Weiler, Kevin, “Hidden Surface Removal Using Polygon Area Sorting,” Masters

Thesis, Program of Computer Graphics, Cornell University, January 1978.

3-11 Weiler, Kevin, “Polygon Comparison Using a Graph Representation,” Computer

Graphics, Vol. 14, pp. 10—18, 1980 (Proc. SIGGRAPH 80).

CHAPTER

FOUR

HIDDEN LINES AND HIDDEN SURFACES

The hidden linefhidden surface problem is one of the more difficult in computer
graphics. Hidden line/hidden surface algorithms attempt to determine the lines,
edges, surfaces, or volumes that are visible or invisible to an observer located

at a specific point in space.

4-1 INTRODUCTION

The need for eliminating hidden lines, edges, surfaces, or volumes is illustrated

in Fig. 4-1. Figure 4-la shows a typical wire frame drawing of a cube. A wire

frame drawing represents a three-dimensional object as a line drawing of its

edges. Figure 4-la can be interpreted either as a view of the cube from above

and to the left or from below and to the right. The alternate views can be

seen by blinking and refocusing the eyes. This ambiguity can be eliminated

by removing the lines or surfaces that are invisible from the two alternate

viewpoints. The results are shown in Fig. 4-lb and c.

The complexity of the hidden linefhidden surface problem has resulted in

a large number of diverse solutions. Many of these are for specialized applications.

There is no best solution to the hidden line/hidden surface problem.

Fast algorithms that can provide solutions at video frame rates (30 frames

per second) are required for real-time simulations, e.g. in aircraft simulation.

Algorithms that can provide detailed realistic solutions including shadows,

Figure 4-1 Need for hidden surfaces.

189

190 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

transparency, and texture effects, with reflections and refractions in a multitude

of subtle shades of color, are also required, e.g. in computer animation. These

algorithms are slower, often requiring several minutes or even hours of computation.
Technically, transparency, texture, reflection, etc., are not part of the

hidden Iinefhidden surface problem. They are more appropriately part of the

rendering of the picture. Rendering is the process of interpreting or presenting

a picture or scene realistically. These effects are discussed in detail in Chap. 5.
However, many of these effects are incorporated into hidden surface algorithms

and consequently are touched on in the present discussion. There is a tradeoff

between speed and detail. No single algorithm can provide both. As faster algorithms

are developed, more rendering detail can be incorporated. However,

inevitably more detail will be required.
All hidden linefhidden surface algorithms involve sorting (Ref. 4-1). The

order in which sorting of the geometric coordinates occurs is generally immaterial

to the efficiency of the algorithms. The principal sort is based on the

geometric distance of a volume, surface, edge, or point from the viewpoint.

The fundamental assumption made in this distance sort is that, the farther an

object is from the viewpoint, the more likely the object is to be totally or partially

obscured by one closer to the viewpoint. After establishing the distance

or depth priority, it remains to sort laterally and vertically to determine whether

in fact an object is obscured by those closer to the viewpoint. The efficiency of

a hidden linefhidden surface algorithm depends significantly on the efficiency

of the sorting process. Coherence, i.e., the tendency for the characteristics of

a scene to be locally constant, is used to increase the efficiency of the sort. For

raster scan hidden surface algorithms, the use of coherence to improve sorting

results in algorithms that bear a strong resemblance to the scan-conversion

algorithms discussed previously in Chap. 2.

Hidden linefhidden surface algorithms can be classified based on the coordinate

system or space in which they are implemented (Ref. 4-1). Object

space algorithms are implemented in the physical coordinate system in which

the objects are described. Very precise results, generally to the precision of

the machine, are available. These results can be satisfactorily enlarged many

times. Object space algorithms are particularly useful in precise engineering

applications. Image space algorithms are implemented in the screen coordinate
system in which the objects are viewed. Calculations are performed only to the
precision of the screen representation. This is generally quite crude, typically
512 x 512 integer points. Scenes calculated in image space and significantly

enlarged do not give acceptable results. For example, the end points of lines
may not match. List priority algorithms are partially implemented in both coordinate

systems.

Theoretically, the computational work for an object space algorithm that

compares every object in a scene with every other object in the scene grows

as the number of objects squared (n2). Similarly, the work for an image space

algorithm which compares every object in the scene with every pixel location
in screen coordinates theoretically grows as nN. Here, n is the number of

FLOATING HORIZON ALGORITHM 191

objects (volumes, planes, or edges) in the scene, and N is the number of

pixels. Theoretically, object space algorithms require less work than image

space algorithms for n <N. Since N is typically (512)2, most algorithms should

theoretically be implemented in object space. In practice, this is not the case,

image space algorithms are more efficient because it is easier to take advantage

of coherence in a raster scan implementation of an image space algorithm.

The following sections examine several object and image space algorithms

in detail. Each algorithm illustrates one or more fundamental ideas in the

implementation of hidden line/hidden surface algorithms.

4.2 FLOATING HQRIZON ALGORITHM

The floating horizon algorithm is most frequently used to remove hidden lines

from three-dimensional representations of surface functions of the form

F(x, y, z) = 0

Functions of this form arise from diverse applications in mathematics, engineering,

and science, as well as other disciplines.

A number of algorithms using this technique have been developed (Refs.

4-2 to 4-6). Since the representation of the function is of principal interest, the

algorithm is usually implemented in image space. The fundamental idea behind

the technique is to convert the three-dimensional problem to two dimensions

by intersecting the surface with a series of parallel cutting planes at constant

values of x, y, or z. This is shown in Fig. 4-2, where constant values of z define

the parallel planes. The function F(x, y, z) = 0 is reduced to a curve in each of

these parallel planes, i.e. to

y = f(x, z) or x = g(y, z)

where z is constant for each of the parallel planes.

Thus, the surface is built up of a series of curves in each of these planes,
as shown in Fig. 4-3. Here, it is assumed that the resulting curves are single-

.z3

Figure 4.2 Constant-coordinate

cutting planes.

192 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 4-3 Curves in constant-coordinate cutting planes.

valued functions of the independent variables. If the result is projected onto

the z = 0 plane as shown in Fig. 4-4, an algorithm for removing the hidden

portions of the surface is immediately recognized. The algorithm first sorts

the z = constant planes by increasing distance from the viewpoint. Beginning

with the z = constant plane closest to the viewpoint, the curve in each plane is

generated; i.e., for each x coordinate in image space the appropriate y value is

determined. The hidden line algorithm is then

If at any given value of x the y value of the curve in the current plane is

larger than the y value for any previous curve at that x value, then the curve

is visible. Otherwise, it is hidden.

This is shown by the dashed lines in Fig. 4-4. Implementation of the algorithm

is quite simple. An array of size equal to the resolution of image space in the x

direction is used to contain the largest value of y at each x location. The values

in this array represent the current “horizon.” Thus, the horizon “floats up”

as each succeeding curve is drawn. Effectively, this is a one-line hidden line

algorithm.

The algorithm works fine unless some of the succeeding curves dip below

the first curve, as shown in Fig. 4-5a. These curves are normally visible as the

bottom of the surface, however, the above algorithm will treat them as invisible.

The lower side of the surface is made visible by modifying the algorithm to

accommodate a lower horizon that floats down as the algorithm progresses.

This is implemented by using a second array of size equal to the resolution

of the image space in the x direction containing the smallest value of

y at each x location. The algorithm is now

Z1 Figure 4-4 Projection of curves onto

the z = 0 plane.

z4

z3

Z1 = constant

y

—s

FLOATING HORIZON ALGORITHM 193

z6

z5

z4

z3

z2 \\ / /

b

Figure 4-5 Handling the lower side of the surface.

If at any given value of x the y value of the curve in the current plane is

larger than the maximum y value or smaller than the minimum y value for

any previous curve at that x value, then the curve is visible. Otherwise it
is hidden.

The result is shown in Fig. 4-5b.

The above algorithms assume that the value of the function, i.e. y, is

available at each x location in image space. If, however, y is not available

(calculated) at each x location, then the upper and lower floating horizon arrays

cannot be maintained. In this case linear interpolation between the known

locations is used to fill the upper and lower floating horizon arrays as shown in

Fig. 4-6. If the visibility of the line changes, this simple interpolation technique

will not yield the correct result. The effect is shown in Fig. 4-7a. Assuming

that the fill operation occurs after the visibility check, then when the current

line goes from visible to invisible (segment AB in Fig. 4-7a), the point at Xn+k,

Yn+k is declared invisible, the line from x, y to Xn+k, Yn+k is not drawn, and the

fill operation is not performed. A gap is left between the current line and the

previous line. When a segment of the current line goes from invisible to visible

(segment CD in Fig. 4-7a), the point at Xm+k, Ym+k is declared visible, the line

from Xm, Ym to Xm+k, Ym+k, is drawn, and the fill operation is performed. Thus,

an invisible portion of the segment is drawn. Further, the floating horizon

arrays will not contain the proper values. This can lead to additional adverse

y

a

Linear

interpolation

Figure 46 Linear interpolation between data points.

194 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Available

y values

Available

y values

Figure 4-7 The effect of intersecting lines.

effects for subsequent lines. Hence, it is necessary to solve for the intersection
of the segments of the current and previous lines.

There are several techniques for obtaining the intersection of the lines.
On a raster scan display, x can be incremented by I beginning at x or Xm

(see Fig. 4-7a). The y value at this image space x coordinate is obtained by

adding the slope of the line to the y value at the previous x coordinate. The

visibility of the new point at x + 1 and y + ty is determined. If the point is

visible, its associated pixel is activated. If not, the pixel is not activated and

x is incremented. The process is repeated until Xn+k or Xm+k is reached. This

technique provides a sufficiently accurate intersection for raster scan displays.

A similar but somewhat more elegant method is to perform a binary search for

the intersection (Ref. 4-6).

An accurate intersection of the two interpolated straight lines between x, y,,

and Xn+k,)‘n+k (see Fig. 4-7) on the current and previous lines is given by

1-Oflp — Ync)

x = x + (&Vp — ‘NYc)
and

a

b

y = m(x — x) + y,,

FLOATING HORIZON ALGORITHM 195

where

= Xn+k — X

‘Yp = (Yn+k)p — (Yn)p

Yc = ()‘n+k)c — (Yn)c

m = [(yn+k) — (Yn)]/’X

and the subscripts c and p refer to the current and previous lines, respectively.

The result is shown in Fig. 4-7b. The algorithm is now

If at any given value of x the y value of the curve in the current plane is

larger than the maximum y value or smaller than the minimum y value for

any previous curve at that x value, then the curve is visible. Otherwise it
is hidden.

If the line from the previous x value (x) to the current x value (X+k) is

becoming visible or invisible, calculate the intersection (xJ.

Draw the line from x, to Xn+k if the segment is totally visible, from x, to x

if the segment becomes invisible, or from x to Xn+k if the segment becomes
visible.

Fill the upper and lower floating horizons.

The above algorithm exhibits an anomaly when the curve in one of the

planes further from the viewpoint extends beyond the “edge” of the curves

in the planes closer to the viewpoint. The effect is shown in Fig. 4-8, where

planes n — 1 and n are closer to the viewpoint and have already been processed.

The result shows the effect when the current plane n + 1 is processed. After

processing the lines n — 1 and n, the upper horizon contains the initial value for
x locations 0 and 1, the value for the line n for x locations 2 to 17 and the value
for the line n — 1 for x locations 18 to 20. The lower horizon contains the initial

value for x locations 0 and 1, values for the line n at x locations 2 to 4, and

values for the line n — 1 for x locations 5 to 20. In processing the current line

(n + 1), the algorithm declares it to be visible at x = 4. This is shown by the

solid line in Fig. 4-8. A similar effect occurs at the right hand edge at x = 18.

The effect gives the appearance of a ragged edge. The solution to this ragged

Figure 4-8 The ragged edge effect.

1% PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

edge problem is to insert values into the upper and lower horizon arrays corresponding

to the dashed lines in Fig. 4-8. Effectively this creates a false edge.

An algorithm for accomplishing this for both edges is

Left side fill:

If P is the first point on the first line, save P, as and continue.

Otherwise create the edge from P,—i to P,.

Fill in the upper and lower horizons from this edge and save P, as
Pn-1.

Right side fill:

If P, is the last point on the first line, save P as and continue.

Otherwise create the edge from P,_i to P,.

Fill in the upper and lower horizons from this edge and save P, as
Pn-1.

The complete algorithm is now

For each z = constant plane.

Fill in the left edge.

For each point on the curve in a z = constant plane.

If at any given value of x the y value of the curve in the current

plane is larger than the maximum y value or smaller than the

minimum y value for any previous curve at that x value, then the
curve is visible. Otherwise it is hidden.

If the line from the previous x value (x) to the current x value

(Xn+k) is becoming visible or invisible, calculate the intersection.

Draw the line from x to Xn+k if the segment is totally visible, from

x to x, if the segment becomes invisible, or from x to Xn+k if the

segment becomes visible.

Fill the upper and lower floating horizons.

Fill in the right edge.

If the function contains very narrow regions (spikes), then the algorithm

may yield incorrect results. Figure 4-9 illustrates the effect. Here, the lowest

line (z = 1) contains a spike. At x = 8, the next line (z = 2) is declared visible.

At x = 12, the line (z = 2) is declared invisible, the intersection is determined,

and the line (z = 2) is drawn visibly from x = 8 to the intersection. From

x = 12 to x = 16 the line (z = 2) again becomes visible, the intersection is

determined, and the line is drawn visibly from the intersection to x = 16. On

the next line (z = 3) at x = 8, the line is visible; and it is also dedared visible

at x = 12. Hence, the line is drawn visibly from x = 8 to x = 12, even though

it passes behind the spike. This effect is caused by computing the function and

evaluating the visibility at less than the image space resolution; i.e., the function

is undersampled (see Sec. 2-25). When narrow regions occur, the function must

FLOATING HORIZON ALGORITHM 197

y

z=3

z=2

z=10 8 12 16 2O

Figure 4-9 Very narrow regions.

be computed at more points. In Fig. 4-9, if the function is computed at 0, 2,

4, ..., 18, 20 rather than at 0, 4, ..., 16, 20, the algorithm will correctly draw
the line z = 3.

Figure 4-10 shows a typical floating horizon result. A pseudo implementation

of the algorithm is given below.

floating horizon algorithm

Hscreen is the resolution of the screen in the horizontal direcin

Vscreen is the resolution of the screen in the vertical direct:on

Upper is the array containing the upper horizon values

Lower is the array containing the lower horizon values

Y is the current value of the function y = f(x, z) for z = constant

Cflag is the visibility flag for the current point

Pflag is the visibility flag for the previous point
0 = invisible

1 = visible above upper horizon
— 1 = visible below lower horizon

Draw is a graphics command that draws a visible line between the specified

coordinates

Xmin, Xmax are the minimum and maximum x coordinates for the function
Xinc is the increment between x values

Figure 4-10 The function y = (1/5) sin x cos z — (3/2) cos (7a/4) exp (—a), a = (x — 7r)2
+(z — 7r)2 displayed for 0 to 27r using a floating horizon algorithm.

198 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Zmin, Zmax are the minimum and maximum z coordinates for the function

Zinc is the increment between z = constant planes

Dimension Upper(Hscreen), Lower(Hscreen)
initialize variables

Xleft = — 1

Yleft = — 1

Xright = — 1

Yright = — 1

initialize the horizon arrays

Upper = 0
Lower = Vscreen

evaluate the function for each constant z plane

start with the closest plane, Zmax

for z = Zmax to Zmin step — Zinc

initialize the previous x and y values, Xprev, Yprev

Xprev = Xmin

Yprev = f(Xmin, z)

if a viewing transformation is used it should be applied to Xprev,

Yprev, and z at this point

fill the left side

call EfihI(x, y, Xleft, Yleft; Upper, Lower)

call Visibility(x, y, Upper, Lower; Pflag)

for each point on the curve in the constant z plane

for x = Xmin to Xmax step Xinc

y = f(x,z)

if a viewing transformation is used it should be applied at this point

check the visibility of the current point and fill the horizon as appropria

call Visibility(x, y, Upper, Lower; Cflag)

if Cflag = Pflag then

ifCflag = 1 orCflag = — 1 then

Draw(Xprev, Yprev, x, y)

call Horizon(Xprev, Yprev, x, y; Upper, Lower)
else

end if

if the visibility has changed calculate the intersection and fill the horizon
else

if Cflag = 0 then

if Pflag = 1 then

call Intersect(Xprev, Yprev, x, y, Upper; Xi, Yi)
else

call Intersect(Xprev, Yprev, x, y, Lower; Xi, Yi)
end if

Draw(Xprev, Yprev, Xi, Yi)
call Horizon(Xprev, Yprev, Xi, Yi; Upper, Lower)

FLOATING HORIZON ALGORITHM 199

else

if Cflag = 1 then

if Pflag = 0 then

call Intersect(Xprev, Yprev, x, y, Lower; Xi, Yi)

Draw(Xi, Yi, x, y)

call Horizon(Xi, Yi, x, y; Upper, Lower)
else

call Intersect(Xprev, Yprev, x, y, Lower; Xi, Yi)

Draw(Xprev, Yprev, Xi, Yi)

call Horizon(Xprev, Yprev, Xi, Yi; Upper, Lower)

call Intersect(Xprev Yprev, x, y, Upper; Xi, Yi)

Draw(Xi, Yi, x, y)

call Horizon(Xi, Yi, x, y; Upper, Lower)
end if

else

if Pflag = 0 then

call Intersect(Xprev, Yprev, x, y, Lower; Xi, Yi)

Draw(Xi, Yi, x, y)

call Horizon(Xi, Yi, x, y; Upper, Lower)
else

call Intersect(Xprev, Yprev, x, y, Upper; Xi, Yi)

Draw(Xprev, Yprev, Xi, Yi)

call Horizon(Xprev, Yprev, Xi, Yi; Upper, Lower)

call Intersect(Xprev, Yprev, x, y, Lower; Xi, Yi)
Draw(Xi, Yi, x, y)
call Horizon(Xi, Yi, x, y; Upper, Lower)

end if

end if

end if

end if

reinitialize Pflag, Xprev, Yprev

Pflag = Cflag

Xprev = x

Yprev = y
next x

fill the right side

call Efill(x, y, Xright, Yright; Upper, Lower)
next z

finish

subroutine module to fill the edge

subroutine Efill(x, y, Xedge, Yedge; Upper, Lower)

if Xedge is —1 then this is the first curve and the edge is not created

if Xedge = — 1 then 1

call Horizon(Xedge, Yedge, x, y; Upper, Lower)

Xedge=x

200 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Yedge = y
return

subroutine module to determine the visibility of a point

subroutine Visibility(x, y, Upper, Lower; Cflag)

the visibility of the point is to be determined with respect to the upper and

lower floating horizons. If the point is on the horizon it is declared visible.

Cflag = 0 invisible

= 1 visible above the upper horizon
= — 1 visible below the lower horizon

x is assumed integer

if y < Upper(x) and y> Lower(x) then

Cflag = 0
else

if y � Upper(x) then

Cflag = 1
else

Cflag = — 1
end if

end if

return

subroutine module to fill the floating horizon arrays

subroutine Horizon(X1, Yl, X2, Y2; Upper, Lower)

the algorithm uses linear interpolation to fill the horizon arrays between Xl
and X2.

Max(a, b) yields the larger of a and b

Min(a, b) yields the smaller of a and b

Sign returns —1, 0, 1 if the sign of its argument is <0, = 0, > 0

Xinc is used to determine the direction of the fill

Xinc = Sign (X2 — Xl)

check for vertical slope
if Xinc = 0 then

Upper(X2) = Max(Upper(X2), Y2)
Lower(X2) = Min(Lower(X2), Y2)

else

Slope = (Y2 — Yl) / (X2 — Xl)

for x = Xl to X2 step Xinc

y = Slope*(x — Xl) + Yl

Upper(x) = Max(Upper(x), y)

Lower(x) = Mm (Lower(x), y)
next x

end if

return

subroutine module to calculate the intersection of the current line with the
horizon

FLOATING HORIZON ALGORITHM 201

subroutine Intersect(X1, Yl, X2, Y2, Array; Xi, Yi)

the routine calculates the intersection between two straight lines
Array contains the appropriate horizon

Xinc = Sign(X2 — Xl)

check for an infinite slope
if Xinc = 0 then

Xi = X2

Yi = Array(X2)

else

calculate the intersection

Slope = (Y2 — Yl) / (X2 — Xl)

Ysign = Sign(Y1 — Array(X1 + Xinc))
Yi = Yl

while (Sign(Yi — Array(Xi + Xinc)) = Ysign)
for Xi = Xl to X2 step Xinc

Yi = Yi + Slope
next Xi

end while

Xi = Xi + Xinc

end if

return

An example further illustrates the technique.

Example 4-1 Floating Horizon

Consider the geometric functions described in Table 4-1. The functions are
given in the z = 0, 30, and 60 planes. Two curves are given in each plane.
The first is a straight line, and the second describes a sawtooth wave above and
below the plane in which the straight line lies. Two lines at the same constant z
values are easily processed by the floating horizon algorithm. However, the
order in which they are processed affects the final appearance. Here, the
straight line is considered first.

Table 4-1

Curve Point

number number x y z Comment

0 0 0 Sawtooth

2 2 4 0 wave

3 6 —4 0

4 8 00

2 5 0 0 0 Straight

6 8 0 0 line

3 7 0 0 3 Sawtooth

8 2 4 3 wave

9 6 —4 3

10 8 0 3

202 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Table 4-1 (Cont.)

Curve

number number

Point

x y z Comment

4 11 0 0 3 Straight line
12 8 0 3

5 13

14

15

16

0

2

6

8

0 6 Sawtooth

4

—4

0 6

6

6

wave

6 17

18

0

8

0 6 Straight
0 6 line

Before displaying the surface described in Table 4-1, it is necessary to apply

a viewing transformation. First, the surface is rotated 300 about the y axis,

followed by a 15° rotation about the x axis. The result is projected onto the

z = 0 plane from a point of projection at infinity on the +z axis (see Ref. 1-1).

The resulting 4 x 4 homogeneous coordinate transformation matrix is

0.866 0.129 0 0

0 0.96600

0.5 —0.224 0 0

Applying the transformation yields the results given in Table 4-2. These results

have been scaled to an integer grid with 0 x 100 and —50 y 50, i.e. to

image space coordinates.

Table 4-2

Point

number x ynumber

2

3

4

2 5

6

3 7

8

9

10

4 11

12

o 0

17 41

52 —31

69 10

0 0

69 10

15 —7

32 35

67 —38

84 36

15 —7

84 36

[0

Curve

FLOATING HORIZON ALGORITHM 203

Table 4-2 (Cont.)

Curve

number number

Point

x y

5 13

14

15

16

30

47

82

99

—13

28

—44

—3

6 17

18

30

99

—13

—3

Sorting the curves into z priority order and recalling that the straight line

in each constant z plane is to be processed first shows that the curves are to be

processed in the reverse order given in Table 4-2, namely, 6, 5, 4, 3, 2, 1.

The upper and lower horizons are initialized to —50 and 50 respectively,
as shown in Table 4-3 for selected horizontal screen locations. Also shown in

Table 4-3 and Figs. 4-ha to f are th values (to the nearest integer) as the

algorithm processes each line. The dashed lines are the false edges created by

the left and right edge fill.

Table 4-3

x 0 10 20 30 40 50 60 70 80 90 100

Initiall
U 50 50 50 50 50 50 50 50 50 50 50

y
L 50 50 50 50 50 50 50 50 50 50 50

Fig. 4-ha U —50 —50 —50 —13 —12 —10 —9 —7 —6 —4 —50

curve 6 L 50 50 50 —13 —12 —10 —9 —7 —6 —4 50

Fig. 4-lib U —50 —50 —50 —13 10 221 —7 —6 —4 —50

curve 5 L 50 50 50 —13 —12 —10 —9 —19 —40 —25 50

Fig. 4-ilc U —50 —50 —6 —4 10 221 1 3 1 —50

curve 4 L 50 50 —9 —13 —12 —10 —9 —19 —40 —25 50

Fig. 4-lid U —50 —50 5 29 19 221 1 3 1 —50

curve 3 L 50 50 —9 —13 —12 —10 —23 —30 —40 —25 50

Fig. 4-lie U 0 1 5 29 19 22 9 10 5 1 —50

curve 2 L 0 —4 —9 —13 —12 —10 —23 —30 —40 —25 50

Fig. 4-ihf U 0 24 36 29 19 22 9 10 5 1 —50

curve 1 L 0 —4 —9 —13 —12 —28 —23 —30 —40 —25 50

The above algorithm and example consider the function y = F(x, z) for

constant z only. Frequently it is convenient to plot curves of both constant z
and x. When this is done, a cross-hatching effect is obtained. Initially it might

seem that cross-hatching could be accomplished by superimposing two results,
one with z = constant planes and one with x = constant planes. Figure 4-12

204 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Upper —50 —50 —50 —13 —12 —10 —9 —7 —6 —4 —50—50—50 —50 —13 10 22 1 —7 —6 —4 —50 Upper

40 40

20 20

0 0

-20

-40

0 20 40 60 80 10

Lower 50 50 50 —13 —12 —10 —9 —7 —6 —4 5

a

Upper —50—50—6 —4 10 22 1 1 3 1 —50—50—50 5 29 19 22 1 1 3 1—50 Upper

b

Lower 50 50—9 —13 —12—10 —9 —19—40—25 5050 50—9 —13 —12—10—23—30—40—25 50 Lower

c d

Upper 01529192291051—50 0243629192291051—SOUpper

0 20 40 60 80 20 40 60 80

Lower 0 —4 —9 —13—12—10—23—30—40—25 500 —4 —9 —13 —12—28—23—30—40—25 50 Lower

e f

Figure 4-11 Results for Example 4-1.

ROBERTS ALGORITHM 205

Figure 4-12 Cross-hatching. (a) Lines of constant z, (b) lines of constant x, (c) superposition

of (a) and (b), (d) correct result.

shows that this is not the case (see Ref. 4-3). Notice in particular Fig. 4-12c,
where the arrows indicate the incorrect result. The correct result, shown in

Fig. 4-12d, is obtained by processing the curves in either the z or x = constant
planes, whichever are most nearly horizontal in the usual order. However,

after each nearly horizontal curve is processed, the parts of the curves in the
orthogonal constant planes between this curve and the next curve must be

processed. Of course, the same upper and lower floating horizon arrays must

be used for both sets of curves. In particular, if for the function y = F(x,
y), z = constant curves are most nearly horizontal, then after processing the

curve for z, the curves for x = constant between z iand z 2are processed before

the curve for Z2 is processed. If cross-hatching is used, left and right edge fills
should not be used.

4-3 ROBERTS ALGORITHM

The Roberts algorithm represents the first known solution to the hidden line

problem (Refs. 4-7 and 4-8). It is a mathematically elegant solution which

operates in object space. The algorithm first eliminates the edges or planes

from each volume that are hidden by the volume itself. Subsequently, each

remaining edge of each volume is compared to each of the remaining volumes

to determine what portion or portions, if any, are hidden by these volumes.

Thus, computational requirements for the Roberts algorithm theoretically in-

b

c d

206 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

crease as the number of objects squared. This, in combination with increased

interest in raster scan displays that operate in image space has led to a lack of

interest in the Roberts algorithm. However, the mathematical techniques used

in the algorithm are simple, powerful, and accurate. Further, the algorithm

may be used to illustrate several important concepts. Finally, more recent implementations

using a preliminary z priority sort and simple boxing or minimax

tests exhibit a near linear growth with the number of objects.

The Roberts algorithm requires that all volumes or objects in a picture be

convex. Concave volumes must be subdivided into component convex volumes

(see Sec. 3-13). The algorithm considers a convex planar polygonal volume to

be represented by a collection of intersecting planes. The equation of a plane

in 3-space is

ax+by+cz+d=0 (4-1)

In matrix notation the result is

[xy z 1] a =0

or

[x y z

where [pjT = [a b c d] represents the plane. A convex solid can thus be
represented by a volume matrix of plane equation coefficients, e.g.

a2 ...

lbi b2 b

Cl C2 Cp

Ld d2 d

where each column represents the coefficients of a single plane.

Recall that a general point in space is represented in homogeneous coordinates

by the position vector (see Ref. 1-1):

[Sj = [x y z 1]

Further, recall that, if [S] is on the plane, then [S] [P] = 0 (see Sec. 3-5).

If [S] is not on the plane, the sign of the dot product indicates which side it

is on. The Roberts algorithm uses the convention that points on the side of a

plane corresponding to the inside of a volume yield positive dot products. To

illustrate these ideas, consider the following example.

Example 4-2 Volume Matrix

The six planes describing an origin-centered unit cube are Xl = 1/2, X2 =

—1/2, y = 1/2, Y4 = —1/2, Z5 = 1/2, and Z6 = —1/2 as shown in Fig. 4-13.

The equation of the right hand plane is

ROBERTS ALGORITHM 207

x +Oyi +Ozi—(i/2)0

or

2xi — 1 = 0

The complete volume matrix is

[19= 1 1 0 0 0 0 = 220000

0 0 1 1 0 0 002200

0 0 0 0 1 1 000022

—1/2 1/2 —1/2 1/2 —1/2 1/2—11 —11 —11

This volume matrix must be tested against a point known to be inside the

volume to ensure that the signs of each plane equation are correct. If the sign of

the dot product for any plane is not greater than zero, then the plane equation

must be multiplied by —1. A point inside the cube at x = 1/4, y = 1/4, z = 1/4

has the homogeneous coordinate position vector

[S] = [1/4 1/4 1/4 1] = [1 1 1 4]

Taking the dot product with the volume matrix yields

[S] [1/] = [1 1 1 4] 2 2 0 0 0 0
002200

000022

—11 —11 —11

(D®®®®

=[—2 6 —2 6 —2 6]

Here, the results for the first, third, and fifth plane equations (columns) are
negative and hence are constituted incorrectly. Multiplying these equations
(columns) by —1 yields the correct volume matrix for the cube:

11=r—2 2 0 0 0 0
I 0 0—2 2 0 0

0 0 0 0 —2 2

Li 1 1 1 1 1

In the above example, the plane equations were determined by inspection.

Of course, this is not always possible. There are several useful techniques for

the more general case. Although the equation of a plane, Eq. (4-1), contains

four unknown coefficients, the equation can always be normalized so that

d = 1. Hence, only three noncollinear points are required to determine the

coefficients. Applying the normalized form of Eq. (4-1) to three noncollinear

points (xI,yI,zl),(x2,y2,z,.),(x3,y3,z3) yields

208 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 4-13 Origin-centered unit

cube.

ax + by1 + CZI = —1

aX2 + by2 + CZ2 =

aX3 + by3 + CZ3

In matrix form this is

rxi yi zil ral r—i
1x2 y2 z2IIbI I—i
Lx3 y3 z3J LCJ L—i

or

[X][Cj = [Dj (4-2)

Solving for the coefficients of the plane yields

[C] = [X1[D]

Alternately, if the normal vector to the plane is known, e.g.

n = ai + bj + ck

where I, j, and k are the unit vectors in the x, y, z directions, respectively, then

the plane equation is

ax+by+cz+d=O (4-3)

The value of d is obtained from any point in the plane. In particular, if the

components of a point in the plane are (xi yi , Zi) then

d = —(ax + byi + cz) (4-4)

Because the computational work involved in hidden line/hidden surface

algorithms increases with the number of polygons, it is advantageous to use

polygons with more than three sides to describe surfaces. These polygons may

be both concave and nonplanar. A technique due to Martin Newell (Ref. 4-1)

gives both an exact solution for the plane equation for planar polygons and a

“best” approximation for almost planar polygons. The technique is equivalent

ROBERTS ALGORITHM 209

to determining the normal at each polygon vertex by taking the cross-product

of the adjacent edges and averaging the results. If a, b, c, d are the coefficients

of the plane equation, then

a = j yj)(Zj+ z

b = (z — z)(x + Xj) (45)

c = (x, — xj)(yj + Yj)

where

if i = n thenj = 1 elsej 1+ 1

and d is obtained using any point in the plane. Example 4-3 illustrates these

techniques.

y

VI

V3

z
V4 Figure 4-14 Plane in 3-space.

Example 4-3 Plane Equations

Consider the quadrilateral planar polygon described by the four vertices

Vi(1, 0, 0), V2(O, 1, 0), V3(O, 0, 1), and V4(1, —1, 1). See Fig. 4-14. Using the

vertices V1, V2, V4 and Eq. (4-2) yields

F’ o olFal=F-i
10 1 OlibI I_’

-1 i][cj L’
or solving for the coefficients of the plane equation

fal=r 1 0 ol r-i=r-
IbI I ° 1 oIl—ill—i

Lc] L’ 1] l-’i L’

210 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The plane equation is then

—x—y—z+ 1 =0

or

x+y+z— 1=0

Alternately, the normal to the plane can be obtained by finding the cross-

product of two adjacent vectors at one of the vertices, e.g. V1

I j k

=VIV2®VIV3: (x2—xI) (y—yi) (z2—zj)

(x3—xI) (y3—yI) (z3—zj)

or

ijk

n= —1 1 0 =i+j+k

—1 0 1

where i, j, k are the unit vectors in the x, y, z directions, respectively. Using

Eq. (4-4) and V4. the constant term in the plane equation is

d = —1(1 — 1 + 1) = —1

Hence, the plane equation is again

x+y+z— 1=0

Turning now to Newell’s technique for n =4, Eq. (4-5) yields

a = (yi — y2)(Z1 + zi + (y— y3)(Z2+Z3) +(y3 — y4) (z3 +Z4)

+ (y —yl)(z4+ zi)

= (—1)(0) + (1)(1) + (1)(2) + (—1)(1) = 2

b = (zi — z(xi + x2) + (z2— Z3)(X2 +X3) + (z3 —Z4)(X3 +x4)
+(z4— zl)(x4+xI)

= (0)(I) + (— 1)(0) + (0)(1) + (1)(2) = 2

c = (xl — x2)(yI + Y2) + (x2 — X3)(y2 +)‘3) + (x — x4)(y3 +)‘4)

+ (x4 — xI)(y4 + yi)

= (1)(1) + (0)(1) + (—1)(—1) + (0)(—1) = 2

and using V4 the constant term is

d = —(2 — 2 + 2) = —2

After dividing by 2 the plane equation is again

x+y+z— 1=0

Example 4-4 further illustrates Newell’s technique for almost planar

polygons.

ROBERTS ALGORITHM 211

Example 4-4 Nonplanar Polygons

Consider the almost planar polygon described by the four vertices V1(1, 0, 0),

V2(O, 1, 0), V3(O, 0, 1), and V4(1. 1, —1, 1). Calculating the normal at each

vertex by taking the cross-product of the two adjacent edges yields

n VIV2®VIV4 =I+j+O.9k

fl2 = V2V3®V2VI = I+j + k

fl3 = V3V4®V3V2 = I + 1.lj + ilk

fl4 = V4VI ®V4V3 = 1+ l.lj +k

Averaging the normals yields

n = I + I .05j + k

Solving for the constant term in the plane equation using one of the vertices,

e.g. vi, yields d = —1. Hence the approximate plane equation is

x+ 1.05y+z— 1 =0

Newell’s method gives the same result. In particular,

a = (—1)(0) + (1)(1) + (1)(2) + (—1)(1) = 2

b = (0)(I) + (—1)(0) + (0)(1.1) + (1)(2.1) = 2.1

c = (1)(1) + (0)(1) + (—1.1)(—1) + (0.1)(—1) = 2

Solving for d using Vi and dividing by 2 yields the same approximate plane

equation. The approximate plane passes through the line x = z and contains

the vertices Vi and V3. However, V2 and V4 are slightly displaced on either side

of the plane.

Before applying a hidden line/hidden surface algorithm a three-dimensional

viewing transformation is frequently used to obtain the desired view of the

scene. The volume matrices for the objects in the transformed scene can be

obtained by either transforming the original volume matrices or calculating new

volume matrices from the transformed vertices or points.

If [B] is the homogeneous coordinate matrix representing the original vertices

of a volume and [T] is a 4 x 4 viewing transformation, then the transformed

vertices are (see Ref. 1-1)

[BT] = [B][T] (4-6)

where [BT] is the transformed vertex matrix. Recalling Eq. (4-2) yields the

original plane equations for the volume

[B][V] = [D] (4-7)

where [V] is the volume matrix and [D] is the right hand matrix of zeros. Similarly,

the transformed plane equations are given by

[BT][VT] = [D] (4-8)

212 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

where [VT] is the transformed volume matrix. Equating Eq. (4-7) and (4-8)
yields

[BT][I’T] [B][VJ

Substituting Eq. (4-6), eliminating [B], and premultiplying by [T] gives

[VT] = [7]’[VJ

Thus, the transformed volume matrix is obtained by premultiplying the original
volume matrix by the inverse of the viewing transformation. An example
illustrates this.

Example 4-5 Volume Manipulation

Consider translating the unit cube centered at the origin three units to the right

in the positive x direction. The appropriate 4 x 4 transformation matrix (see

ef. 1-i) is

[T]= 1 0 0 0

0100

0010

3001

and its inverse, which can be obtained formally or by inspection, is

[TJ 1 0 0 0

0100

0010

—3 0 0 1

Premultiplying the volume matrix for the unit cube obtained in Example 4-2 by

[Tr’ yields the volume matrix for the translated cube:

[VT]=[T]’[V]= 1000 —2 2 0000

0100 00—22 00

0010 0000—22

—3 0 0 1 1 1 1 1 1 1

= —22 0 0 0 0

0 0—22 0 0

0 0 0 0—22

7—51 1 1 1

Translating an origin-centered unit cube three units to the right places the left

hand face at x = 2 1/2 and the right hand face at x = 3 1/2. The first column

of the transformed volume matrix yields the plane equation for the right hand
face:

ROBERTS ALGORITHM 213

—2x+7O or x31/2

as required. Similarly the second column yields

2x—5=O or x21/2

for the left hand face as expected.

Recall from Example 4-2 that the point

[S] = [1/4 1/4 1/4 1] = [1 1 1 4]

was inside the untransformed volume. Hence [S] [V] � 0. However, the point

[S] is outside the translated volume. Examining the dot product of [SI and the
transformed volume matrix:

[S][VT]=[1 1 1 4][VT]=[26—18 2 6 2 6]

yields a negative element in the second column corresponding to the left hand

face of the cube. This shows that the point is outside the volume. In fact, it is

to the left of the left hand face, i.e., on the wrong side of the left hand face, as

shown by the negative sign.

If the point matrix [S] is transformed by postmultiplying by the transformation
matrix, then

[STJ = [S][TJ = [1 1 1 4][TJ = [13 1 1 4] [3 1/4 1/4 1/4 1]

Testing the transformed point at x = 3 1/4 against the transformed volume

matrix yields

[STJ[VT]=[2 6 2 6 2 6]

which shows that it is inside the transformed volume.

Recalling that planes are of infinite extent, and that the dot product of a

point and the volume matrix is negative when the point is outside the volume,

suggests a method for using the volume matrix to identify planes which are

hidden by the volume itself. Example 4-5 shows that only the specific plane

(column) in the volume matrix for which a point is declared outside yields

a negative dot product. In Example 4-5, this is the left hand plane (second

column) for the transformed volume [VT] and the untransformed point [S]. The

concept is illustrated in Fig. 4-15.

If the view or eyepoint is at infinity on the positive z axis looking toward

the origin, then the view direction is toward negative infinity on the z axis. In

homogeneous coordinates this vector is represented by (see Ref. 1-1)

[EJ[O 0 —I 0]

[E] also represents the point at infinity on the negative z axis. In fact [E]

represents any point on the plane at z = —co, i.e. any point (x, y, —co). Thus,

if the dot product of [E] and the plane in the volume matrix is negative, then

214 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

y
1

I

I— InsideTinside

Transformed

%mecl
Outside volume[VT}-’

inside

infinite

planes

Figure 4-15 A point outside a volume.

[E] is outside these planes. Consequently, these planes are hidden with respect
to a viewpoint anywhere on the plane at z = 00, and the test point at z = —00 is
hidden by the volume itself, as illustrated in Fig. 4-16. These planes are called
self-hidden planes or backfaces. Hence,

[fJ[VJ<O

identifies self-hidden planes or backfaces. Note that for axonometric projections
(eyepoint at infinity) this is equivalent to looking for positive values in the

third row of the volume matrix.

This technique is the simplest hidden surface algorithm for single convex
polygonal volumes. It is also used to eliminate the self-hidden or backplanes
from a scene before applying most of the hidden surface algorithms subsequently

discussed in this chapter. When used this way it is frequently called
back-plane culling. For convex polygonal volumes the number of polygonal
faces is reduced by approximately half. The technique is equivalent to calculating

the surface normal for each individual polygon. A negative surface normal

-z

Point at negative infinity

[E]=[oo-o]
. Outside

Volurne—f }Dhinside
L -

Infinite T
planes-’---.1

View direction-.. .

Eye point at positive infinity

[E]=[o 01 o]
z

Figure 4-16 Self-hidden planes.

ROBERTS ALGORITHM 215

indicates that the normal points away from the viewer and hence the polygon

is hidden. The technique can also be used for simple shading (see Chap. 5).

The intensity or shade of the polygon is made proportional to the magnitude

of the surface normal. An example further illustrates the concept.

Example 4-6 Self-hidden Planes

Again consider the origin-centered unit cube as shown in Fig. 4-16. The eye-
point is on the positive z axis at [0 0 1 0] looking toward the origin. Thus,
the test point, or direction of view, is given by [E] = [0 0 —1 0]. Taking the
dot product with the volume matrix yields

D®®®® ®®®®

[E].[=[oo—1o]r—2 2 0 0 0 01=[0 0 0 0 2—2]
I 0 0—2 2 0 0

0 0 0 0—22

LI 1 1 1 1 1

and the negative sign in the sixth column indicates that this face is self-hidden.

Inspection of Fig. 4-16 confirms this. The zero results indicate planes that are

parallel to the direction of view.

This technique for identifying self-hidden planes in effect performs an axomometric

projection onto a plane at infinity from any point in 3-space. Viewing

transformations including perspective are applied prior to identifying the self-

hidden planes. When the viewing transformation includes perspective, the

full perspective transformation from one 3-space to another must be used and

not a perspective projection onto some two-dimensional plane (see Ref. 1-1).

The full perspective transformation yields a distorted three-dimensional volume

which in effect is then projected onto a plane at infinity when the self-hidden

planes are identified. The effect is equivalent to a perspective projection from

some point of projection onto a finite plane of projection.

The viewing transformation can be applied to the volume with the eyepoint

remaining fixed. Alternately, the volume remains fixed. The equivalent eye-

point and view direction are obtained by postmultiplying by the inverse of the

viewing transformation. The next example illustrates these techniques.

Example 4-7 Self-hidden Plane with Viewing Transformation

Consider the origin-centered unit cube rotated about the y axis by 450• The

viewing transformation is (see Ref. 1-1)

[R] = cos 0 —sin 0 =

1/V 0 —1/V 0

0 1 0 0 0 1 0 0

sin 0 cos 0 1/V 0 i,v 0

0 0 0 1 P=45° 0 0 0 1

The transformed volume matrix is obtained by premultiplying by the inverse

216 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

of the viewing transformation. For a pure rotation, the inverse of the viewing

transformation is its transpose. Thus

[RJ = [RY]T = cos o sin o 0 1iv 0

o 1 0 0 1 0 0

—sin 0 cos 0 0 1Iv 0

o 0 0 1 0 0 1

The transformed volume matrix is

O

[VT] = [RF’[V] = —2Iv 2Iv 0 0 —21v! 2Iv
0 0 —22 0 0

2Iv —2Iv0 0 —2Iv 2Iv

I I I I I I

From an eyepoint on the positive z axis [0 0 1 0] looking toward the origin,

the view direction or test point is given by

[E]=[O 0 —1 0]

Taking the dot product of [E] and the transformed volume matrix yields

®®® ®

[E][VT] = [—2IJ! 2/v! 0 0 2Iv —2/v]

Hence, the first and sixth planes which correspond to the left and rear planes in
the original orientation are self-hidden. Figure 4-17a confirms this. Notice also

that, when the volume is transformed and the view direction fixed, taking the
dot product of the test point and the transformed volume matrix and looking

for negative signs is equivalent to looking for positive terms in the third row of
the transformed volume matrix.

The equivalent eyepoint for the untransformed volume corresponding to

the rotation about the y axis is

[0 0 1 0][R] = [—IIV 0 I/V! 0] = [—1 0 1 0]

i.e., a point at positive infinity on the line —x = z as shown in Fig. 4-17b.
Similarly the equivalent view direction and test point are

[ET] = [E][R]’ = [0 0 —I 0][R]’ = (I/v’!)[I 0 —l 0]

This is a point at negative infinity on the line —x = z. Taking the dot product
of the equivalent view direction and the untransformed volume matrix yields

[E7][V]=(IV)[—2 2 0 0 2 —2]

which again indicates that the first and sixth planes are self-hidden. Figure
4-17b confirms this.

Having identified the self-hidden planes, it remains to identify the selfhidden

lines. A self-hidden line is formed by the intersection of two self-hidden

ROBERTS ALGORITHM 217

Self hidden I Test point00-i0j Test point

plane —Self hidden line

V \DSelf hidden
A / S.—_plane

I 1 ,I j/ x
View direction

[io-io]
View direction /

Eye Point[0010] [00-10] Eye point[-1010]

Figure 4-17 Viewing transformation and self-hidden planes.

planes. Although in Example 4-6 plane ® is self-hidden, no lines are self-

hidden because only one plane is self-hidden. However, in Example 4-7, the

edge formed by the intersection of planes and ® is self-hidden.

After first eliminating the self-hidden lines, it is necessary to consider

whether an individual line is hidden by any other volume in the picture or scene.

In order to accomplish this, every remaining line or edge must be compared

with all the other volumes in the scene or picture. Here, using a priority sort

(z sort) and simple minimax or bounding box tests allows the elimination of

entire groups or clusters of lines and volumes. For example, if all volumes in

the scene are sorted into a priority list using the z value of the nearest vertex

to represent the distance from the eye, then no volume on the list for which

the nearest vertex is farther from the eye than the farthest end point of a line

can obscure that line. Further, of the remaining volumes, no volume whose

bounding box is completely to the right, to the left, above, or below that for

the line can obscure the line. Using these techniques significantly reduces the

number of volumes with which an individual line or edge must be compared.

To compare a single line P1P2 with a single volume, it is convenient to use

a parametric representation of the line:

P(t) = P1 + (P2 — P1)t 0 � t � 1

or

v = s + dt

where v is the position vector of the line, s is the starting point, and d is the

direction of the line. The objective is to determine whether the line is hidden.

If it is hidden, then the objective is to determine the values of t for which it is

hidden. To accomplish this, another parametric line from any point on P(t) to

the eyepoint at g is formed:

Q(a,t) = u = v+ga = s+dt+ga O�t� 1, a�0

Here a and t perform similar functions. A given value of t yields a point on

the line P(t), and a yields a point on the line from this point to the eyepoint.

b

218 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

i1 [- 0 -2 i] P2 [2 0-2 ij

+ +

.1. -i

+ 1(

Z

Figure 4-18 The parametric

Eye point [o 0 1 o] plane.

In fact, Q(a, t) represents a plane in 3-space. Specifying both a and t locates a

point on this plane. The value of a is positive because only the part of the plane

between the line PQ) and the eyepoint can contain volumes which obscure the

line.

Example 48 Parametric Plane

Consider the line from P1(—2, 0, —2) to P2(2, 0, —2) viewed from a position at

positive infinity in the z direction (see Fig. 4-18). In homogeneous coordinates
Pi and P2 are

P1 = [—2 0 —2 1]

P2=[2 0 —2 1]

Hence

P(t)=v=s+dt=[—2 0 —2 1]+[4 0 0 0]t

The eyepoint vector is

g=[0 0 1 01

and

Q(a,t)=s+dt+ga=[—2 0 —2 1]+[4 0 0 0]t+[0 0 1 0]a

Figure 4-18 and Table 4-4 show the effect of varying t and a. As a specific
example, assume t = 0.5 and a = 3. Then

P(0.5) = v = [—2 0 —2 1] + [4 0 0 01(0.5)

= [0 0 —2 1]

which is the point on the line P 1P2 where it crosses the z axis at z = —2. For
a3

Q(3, 0.5) = v + ga = [0 0 —2 1] + [0 0 1 01(3)

=[00 111

ROBERTS ALGORITHM 219

which is the point on the z axis at z = 1. This point is shown by the dot

in Fig. 4-18. Each of the points given in Table 4-4 is indicated by crosses in

Fig. 4-18. Notice that each of the lines is parallel to the z axis.

Table 4-4

t a v(t) Q(a,t)

0 0 [—2 0 —2 1] [—2 0 —2 1]

1/2 [—2 0 —312 1]

1 [—2 0 —111

2 [—20 0 1]

3 [—20 1 01

1/2 0 [00—2 1] [00—2 1]

1/2 [00 —3/2 1]

1 [00—11]

2 [00 0 1]

3 [00 1 01

1 0 [20—2 1] [20—2 1]

1/2 [2 0 —312 1]

I [2 0 —11]

2 [20 0 1]

3 [20 1 0]

Recall that for a point inside a volume, the dot product of the point

and the volume matrix is positive. If the point is inside the volume, it is

hidden. Therefore, to determine the part of a line hidden by a volume it is

only necessary to find the values of a and t for which the dot product of Q(a, t)

and the volume is positive. Taking the dot product of Q(a, t) = u and the

transformed volume yields

h=u-[VT]=s-[VT]+td-[VT]+ag-[VT]>0 0�t�l,a�0

If each component of h is nonnegative for some t and a, the line is hidden

by the volume for those values of t. Defining

p = s- [VT]

q = d- [VT]

w = g- [VT]

220 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

0-®. 0-0,. • 0-0.

0-0, 0-0.

Total number of solutions for j equations

Figure 4-19 Solution technique for a, t.

the condition

h=p+tq1+aw>0 0�t�1,a�0

where j counts the columns in the volume matrix, must hold for all values of

j; i.e., for all the planes describing a volume. The dividing case for visibility

or invisibility is when h = 0. For h1 = 0 the point lies on the plane. Setting

= 0 for each of the planes yields a series of equations in a, t all of which must

be satisfied. This can be accomplished by solving each of the equations with

each of the others in pairs, to find all possible values of a and r for which the

line is marginally visible. This is shown in Fig. 4-19. The number of possible

solutions for j equations (planes) is (f)(j — 1)12. Each of the solutions in the

range 0 � t � 1, a � 0 is tested against all the other equations to ensure that

the condition h � 0 is satisfied. A search of the valid solutions is performed

to yield the minimum maximum value (minmax) and the maximum minimum

value (maxmin) of the parameter r. The line is hidden from tmmin < I < tminmax

This latter requirement is a simple classical linear programming problem. An

algorithm, similar to that previously given for the Cyrus-Beck clipping algorithm

(see Sec. 3-5), for this solution is given below. First some examples will help

clarify the discussion.

i1 [-2 0-2 1] p2 [2 0-2 1]
4—Hidden portion

I I

Fi

View direction
. Figure 4-20 Testing a line against a

Eye point[0 0 1 o] volume.

ROBERTS ALGORITHM 221

Example 4-9 Testing Lines Against Volumes

Again consider the origin-centered unit cube. The line from Pi[—2 0 —2 1]

to P2[2 0 —2 1] passes behind the cube and is partially hidden by the cube

as shown in Fig. 4-20. Again

PQ)=v=[—2 0 —2 l]+[4 00011

and

s=[—2 0 —2 1]

d=[40 00]

For an eyepoint at infinity on the positive z axis

g=[0 0 1 01

Here the untransformed cube is considered. Hence,

[vIl=[V1=r—2 2 0 0 0 0
I 0 0—2 2 0 0
I 0 0 0 0—2 2
LI 1 i 1 i

Forming p, q, and w by taking the dot product of s, d, and g with [VT] yields

p=s[17]= [5 —3 1 1 5 —3]

q=d[VTJ [—8 8 0 0 0 0]

w=g[VTJ= [0 0 0 0 —2 2]

From these results six equations corresponding to the condition

= pj + tq + awj > 0

are formed, one for each of the six planes representing the faces of the cube.

Specifically,

5—8t >0

—3+8r >0

>0

Q 1 >0

® 5 —2a>0

®—3 +2a>0

The third and fourth of these equations simply state that the condition is always

satisfied. They correspond to the physical condition that the line is always

“inside” the infinitely extended top and bottom surfaces of the cube. Setting

the other four equations to zero yields r = 518, r = 318, a = 512, and a = 312.

Of course, this is a particularly simple example. The equations can essentially

be solved by inspection, however, in general this is not the case.

Each of these equations represents a straight line in a, t space. It is

instructive to consider a graphical solution, as shown in Fig. 4-21. The crosshatching

indicates the side of the line on which possible solutions exist. Clearly,

all the conditions h> 0 are satisfied only within the bounded region indicated.

Thus

tmaxmin = 3/8 and tminmax = 518

222 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The line is hidden for 3/8 < t < 5/8 and visible for 0 t 3/8 and 5/8

I 1.

Usin the parametric equation of the line

P(3/8)=[—2 0 —2 1]+[4 0 0 1](318)=[—1/2 0 —2 1]

and

P(518) = [—2 0 —2 1] + [4 0 0 11(5/8) = [1/2 0 —2 1]

as shown in Fig. 4-20.

The above example yields two values of t. Hence it is possible to assign a

tpjfl and a tminm. What if solution of the equations yields only one value of
t? The next examples illustrate this problem and its solution.

a

t=3/8 t=5/8

(5)
77777 CX=5/2

2
Line is hidden

in this region

a =3/2

o t Figure 4-21 Graphical solution for Example
0 4-9.

Example 4-10 Single Values of

Continuing to use the origin-centered cube, consider the line P1[1 0 —1 1] to

P2[O 0 —1 1] as shown in Fig. 4-22. Here

PQ)=v=[1 0 —1 1]+[—1 0 0 011

and

s= [1 0 —1 1]

d= [—1 0 0 0]

with

g= [0 0 1 0]

for the untransformed cube, i.e. [VT] = [1’], p, q, and w become

ps[VT] [—1 3 1 1 3 —1]

qd[VT][2 —200 0 01

wg[VT] [0 0 0 0 —2 2]

Forming the equations for the h> 0 condition yields

D-1+21 >0

3-2t >0

ROBERTS ALGORITHM 223

QI

+2a>O

Solution of these equations for h = 0 yields t = 1/2, t = 3/2, a = 3/2, a =
1/2. The solution for t = 3/2 is rejected because it is outside the permissible
range 0 t 1. Hence only one value of t is found. The graphical solution is

shown in Fig. 4-23a. Again, the cross-hatching indicates the side of the line on
which possible solutions exist. Clearly no bounded region is formed. However,

the stated solution technique has not considered the boundary conditions represented

by the lines t = 0 and t = 1. As shown in Fig. 4-23b, adding these

lines to the solution clearly forms the required bounded region. Thus,

maxmin — an minmax —

Further, the conditions h1> 0 are all satisfied by both these values of t. Hence
the line is visible for 0 t 1/2, i.e. for

P(0) = [1 0 —1 11+ [—1 0 0 01(0) = [1 0 —1 1]

to

P(1/2)=[1 0 —1 1]+[—1 0 0 0](1/2)=[1/2 0 —1 1]

Reversing the direction of the line, i.e. interchanging P1 and P2, places the

solution region between t = 0 and t 1/2.

>0

>0

—2a >0

I

p2[oo-i p1[i 0—it]

portion

View direction-ei Figure 422 Testing a line with a hid-
Eye point[0 01 0] den end point against a volume.

a
a

2

2 t—0 t—I/2 cDc
t=1/2

77- a—3/2

a-1/2

FFF/i’/

f__d•_,J,1 -

1.0
-

0 10
a b

— Line is hidden

in this region

a—1/2

FIgure 423 Graphical solution for Example 4-10.

224 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

A further example illustrates that the a = 0 boundary must also be considered.

Example 4-11 Alpha Boundary

Consider the untransformed cube and the line P[1 0 2 1] to P2[— 1 0 —2 1]

as shown in Fig. 4-24. The line P P2 penetrates the volume. Here

P(t)=v=[1 0 2 1]+[—2 0 —4 O]r

and

s[10 211

d= [—2 0 —4 0]

Again the eyepoint is at infinity and

g= [0 0 1 01

For the untransformed cube, i.e. [VT] = [V]

p=s[1’7]= [—1 3 1 1 —3 5]

q=d[VI]= [4 —4 0 0 8 —8]

wg[VT] [0 0 0 0 —2 2]

The resulting equations for h> 0 are

—1 +4t >0

cz. 3—4r >0

>0

0 1 >0

® —3 +8t —2a >0

® 5—81+2a>0

Solution of these equations for h = 0 yields a single valid result, r = 114. The
solution is shown graphically in Fig. 4-25a. Again cross-hatching indicates the
side of the line on which possible solutions exist. No valid bounded region
exists. Adding the boundaries at r = 0 and r = I as shown in Fig. 4-25b yields
a bounded region between r = 314 and t = 1. However, as shown by the cross-
hatching, this region is not valid since, for r > 314, h> 0 is not satisfied for
j = 2. Adding the boundary at a = 0 also yields a valid bounded region with
solutions at r = 3/8 and r = 314. It is this region that yields tmaxmin = 3/8 and
tminmax = 314. Hence the line is visible for

0 � t � 3/8 and 3/4 � I � I

or for

P(O) = [1 0 2 1] to P(3/8) = [114 0 1/2 1]

and

P(314)=[—112 0 —I 11to P(1)=[—1 0 —2 1]

ROBERTS ALGORITHM 225

P2[-i f

Hidden portion—f

z

\ P1[1021]
View directiont E e ointro 0 1 01 Figure 4-24 Testing a penetrating lineY P L J against a volume.

The a = 0 boundary solutions occur for penetrating (objects).

One technique for adding the lines at these penetrating junctures to the

scene is to save all the penetrating points. Lines are formed by connecting each

penetrating point in a pair of penetrating volumes to every other penetrating

point in that pair of volumes. These lines are then tested against all remaining

volumes. The visible lines are the juncture lines.

These examples show that solutions satisfying h1 > 0 also exist for the

boundaries of the region described by 0 � t � I and a � 0. Thus the three

equations corresponding to these boundaries, i.e., t = 0, t — 1 = 0, and a = 0,

must be added to the solution set h = 0. The number of solutions is now (j +2)
(I + 3)/2, where j is the number of planes describing a convex volume.

As previously mentioned, selecting the maximum minimum and the minimum
maximum values of t from the possible valid solutions is a simple linear

programming problem. Its solution is equivalent to identifying the valid bounded
region for the graphical solutions shown in Figs. 4-21, 4-23, and 4-25. The

flowchart in Fig. 4-26 provides a solution algorithm for the minimax problem.
It is assumed that the algorithm is used only for lines that are known to be
partially or totally hidden. All self-hidden lines and all totally visible lines are
identified and eliminated before the algorithm is used. The algorithm is entered
with t and a from the solution of the pair of linear equations numbered el and

a

t=1/4 t=3/4

2

hidden

0 ‘ ________
region

0 1.0

Figure 4-25 Graphical solution for Example 4-11.

226 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

and e2, tmin and tm (the current minimum and maximum values of t), and n

(the number of equations in the solution set). The first part of the algorithm

ensures that the condition h > 0 is satisfied. If this condition is satisfied, the

second part looks for tmifl and tm. The result is tmaxmin and

Figure 4-26 An algorithm for finding tmmin and tminm for the Roberts hidden line
technique.

ROBERTS ALGORITHM 227

The solution technique discussed above is computationally expensive.

Hence, it is efficient to look for ways to quickly identify totally visible lines.

The basic idea is to determine if both end points of a line lie between the

eyepoint and a visible plane. Recall that

u = s + td + ag

For a = 0, u represents the line itself. Further, if a = 0, then t = 0 and t =

yield the end points of the line. Also recall that

= u[V11 =pj+ qjt+ wa

and note that, for t = 0, pj is the dot product of the end point of the line and

the jth plane of the volume. Similarly, pj + qj is the dot product of the other

end point of the line and the jth plane of the volume. Finally, recall that the

jth plane of a volume is visible if w � 0. Thus, if w � 0 and pj � 0, then one

end point of the line is either on the visible plane or between the visible plane

and the eyepoint. If pj + qj � 0, then the other end point is also either on the

visible plane or between the plane and the eyepoint. Hence, the line is totally
visible if for any j

w�O and pj�O and p+q�O

These conditions ensure that h � 0 cannot be satisfied for any a � 0 and

0 � t � 1. Thus, no part of the line can be hidden, and it is totally visible.

Example 412 Totally Visible Lines

For the origin-centered cube, consider the line from P1[—2 0 2 1] to P2[2 0 2 1]
which, as shown in Fig. 4-27, passes in front of the cube. Here,

v=s+dt=[—2 0 2 I]+[4 0 0 O]t

and with the eyepoint at infinity in the z direction

s= [—2 0 2 1]

d= [4 0 0 0]

g= [0 0 1 0]

For the untransformed cube [VT] = [11] and

p=s[VT]= [5 —3 1 1 —3 5]

qd[VT][—8 8 0 0 0 0]

w=g’[VT]= [0 0 0 0 —2 21

Note that

W5 <0 and p <0 and p + q <0

Thus, the line is totally visible.

As an additional example, consider the line from P3[—1 1 1 1] to

P4[1 I — I I], which passes diagonally above the cube. This line is also shown

in Fig. 4-27. Here,

228 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

s= [—1 1 1 1]

d= [2 0 —2 0]

g=[O0 10]

and

®®®® ®

p=s[YI]= [3 —1 —1 3 —1 3]

q=d[VT]= [—4 4 0 0 4 —4]

w=g[VT]=[0 0 0 0—2 2]

Note that

W5 <0 and p <0 but p + q > 0

However,

W3 = 0 and j3 <0 and P3 + q3 <0

Again the line is totally visible.

Although the top plane (plane ®) is “edge-on” to an eye-point at infinity

on the z axis, mathematically the line P3P4 of the above example is between the

eye and the visible plane. A similar condition occurs for the bottom and the

two side planes.

Unfortunately, there is no easy test for totally invisible lines. It is, of

course, possible to determine that the end points of a line are both behind a

hidden plane. However, because the plane is of infinite extent, it is not possible

to determine if the ends of the line extend beyond the volume (see Fig. 4-22).

Totally invisible lines must be found using the general solution technique. In

this case, the hidden portion is from t = 0 to t = 1.

An efficient implementation of the Roberts algorithm is given below. The

algorithm is divided into three parts. The first part analyzes each volume

separately to eliminate the self-hidden planes. The second part compares the

remaining edges of each volume against all the others to find the line segments

hidden by the others. The third part constructs the junction lines for penetrating

—1 P4[ii—ii]

3[—iiii] 1

P1 [-2 0 2 i] P2 [2 02 1]

View direction I E t 10 0’ye poin i 427 Totally visible lines.

ROBERTS ALGORITHM 229

volumes. The algorithm assumes that a volume consists of polygonal planar

faces, the faces consist of edges, and the edges consist of individual vertices.

All vertices, edges, and faces are associated with a specific volume.

Eliminate the the self-hidden planes.

For each volume in the scene.

Form face polygons and edges from the volume vertex list.

Calculate the plane equation for each face polygon of the volume.

Check the sign of the plane equation.

Calculate a point inside the volume as the average of the vertices.

Calculate the dot product of the plane equation and the point
inside the volume.

If the dot product is <0, change the sign of the plane equation.

Form the volume matrix.

Premultiply by the inverse of the viewing transformation including

perspective.

Calculate and save the bounding box values Xmax, Xmin, Ymax, Ymin’

Zmax, Zmin for the transformed volume.

Identify the self-hidden planes.

Take the dot product of the test point at infinity and the transformed
volume matrix.

If the dot product is <0, then the plane is hidden.

Eliminate the entire polygon forming the plane. This eliminates

the necessity for separately identifying hidden lines as the intersection

of two hidden planes.

Eliminate the line segments for each volume hidden by all other volumes
in the scene.

If there is only one volume, the algorithm is complete.

Form a priority list of the volumes.

Perform a z sort. Sort on the maximum z coordinate of the vertices

of the transformed volumes. The first and highest priority volume

on the sorted list is the one with minimum maximum z. In the right

handed coordinate system used, this is the farthest volume from an

eyepoint at z infinity.

For each volume on the priority list.

230 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Test the non-self-hidden edges against all other volumes in the

scene. The volume whose edges are being tested is the test object.

The volume against which it is currently being tested is the test

volume. A test object normally need be tested only against lower

priority test volumes.

Perform bounding box tests for the test object and the test
volume.

If xmin(test volume) > xm(test object) or

xm(test volume) <xmin(test object) or

)‘min(test volume) > Ymax(test object) or

ymax(test volume) <ymin(test object)

then the test volumes cannot hide any edges of the test

object. Continue to the next test volume. Otherwise,

Perform preliminary penetration tests to see if the test object

penetrates the test volume and possibly obscures part of it.

Test the maximum z value of the test object against the
minimum z value of the test volume.

If z(test object) <zmjtest volume), then penetration
is not possible. Continue with the next volume.

Otherwise,

Test for visible penetration.

If zma,c(test object) > z(test volume), then the test

object may penetrate the front face of the test volume.

Set the visible penetration flag for later use. Place the

penetrating volume on the penetration list.

If x(test object) > xmjn(test volume) or
Xmin (test object) <x(test volume)

then the test object may penetrate the side of the volume.

Set the visible penetration flag for later use. Place the

penetrating volume on the penetration list.

If y(test object) > Ymax(test volume) or
ymin(test object) <Ymin(test volume)

then the test object may penetrate the top or bottom
of the test volume.

Set the visible penetration flag for later use. Place the

penetrating volume on the penetration list.

If the penetration list is empty, set the no penetration flag.

Perform edge tests.

ROBERTS ALGORITHM 231

Calculate s and d for the edge.

Calculate p, q, w for each plane of the test volume.

Test for total visibility. If the edge is totally visible, skip

to the next edge.

Form the h = 0 equations and solve simultaneously in

pairs, including the t = 0 and t = 1 boundaries. If the

visible penetration flag is set, then include the a = 0 boundary.

Save the penetrating points. Otherwise ignore the

a = 0 boundary.

For each t, a solution check 0 � t � l.a � 0, andh >

0 for all other planes. If these conditions are satisfied,

find tmmjn and mjnm•

Calculate the visible line segments and save for testing

against lower priority volumes.

Determine visible junction lines for penetrating volumes.

If the visible penetration flag is not set, skip to the display routine.

If no penetrating points have been recorded, skip to the display routine.

Form possible junction edges by connecting all penetrating points

for the two penetrating volumes.

Test all junction edges against both penetrating volumes for

visibility.

Test the surviving visible junction edges against all volumes in the

scene for visibility. Save the visible segments.

Display remaining visible edge segments.

Note that the algorithm can also be implemented with a reverse priority

list. The above algorithm was used to produce the dimetric view of the three

objects shown in Fig. 4-28.

Figure 4-28 Hidden lines removed from a dimetric
view of penetrating objects.

232 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Timing results for scenes similar to that shown in Fig. 4-29, with up to

1152 blocks, indicate a very nearly linear growth in computational expense

with the number of blocks (Ref. 4-9). Petty and Mach (Ref. 4-8) note a

similar result for a Roberts algorithm implemented using Warnock-style area

subdivision (see Sec. 4-3). The principal disadvantage of the Roberts algorithm

is the requirement for convex volumes. A detailed illustrative example is given
below.

a b

Figure 4-30 Penetrating blocks for Example 4-13.

Example 4-13 Complete Roberts Algorithm

Consider the two intersecting blocks shown in Fig. 4-30. The blocks are described

by the following vertex point data bases.

Figure 4-29 Test scene for the Roberts algorithm.

8

4

ROBERTS ALGORITHM 233

Bi ock I

Vertex

number x y z

1 00 1

2 20 1

3 20 3

4 00 3

5 06 1

6 26 1

7 26 3

8 06 3

Bi ock 2

Vertex

number x y z

9 12 0

10 3 2 0

11 3 2 4

12 1 2 4

13 1 4 0

14 3 4 0

15 3 4 4

16 1 4 4

The vertex numbers are shown in Fig. 4-30a. The edge lists are

Block 1

Joins

Edge vertices

1 1—2

2 2—3

3 3—4

4 4—1

5 5—6

6 6—7

7 7—8

8 8—5

9 1—5

10 2—6

11 3—7

12 4—8

Block 2

Joins

Edge vertices

13 9—10
14 10—11

15 11—12

16 12—9

17 13—14

18 14—15

19 15—16

20 16—13

21 9—13

22 10—14

23 11—15

24 12—16

These edges are formed into face polygons for two blocks.

1 2,11,6,10

2 4,12,8,9

3 5,6,7,8

4 1,2,3,4

5 3,12,7,11

6 1,10,5,9

7 14,23,18,22

8 21,20,24,16

9 17, 18, 19,20

10 13,14,15,16

11 15,24,19,23

12 13,22,17,21

The volume matrices for the blocks in the given orientation can be developed

at this point, checked for correct sign by taking a point inside, and

then transformed by premultiplying by the inverse of the viewing transformation.

However, in this example the alternate approach of first transforming the

volume vertex matrices by postmultiplying by the viewing transformation and

then determining the transformed plane equations and hence the transformed
volume matrices is used.

Here, a viewing transformation, comprised of a _300 rotation about the y

axis (= 300), followed by a + 150 rotation about the x axis (0 = 15°), is

used. The combined transformation is (see Ref. 1-1)

Block 1 Block 2

Polygon

number Edges

Polygon
number Edges

234 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

[7•] = [R][R] = cos 4 sin 4 sin 0 —sin 4 cos 0 0
o cos0 sin0 0

sin 4 —cos 4 sin 0 cos 4 cos 0 0

_O 0 0 1

- 0.866 —0.129 0.483 0
0.0 0.966 0.259 0

—0.5 —0.224 0.837 0

- 0.0 0.0 0.0 1

Transforming, the point data bases become

a) () CD

[VTi] = —0.866 0.866 0

0.129 —0.129 —0.966

—0.483 0.483 —0.259

2 0 6

0 ® ®

o o.s —0.5 1
0.966 0.224 —0.224

0.259 —0.837 0.837 I
0 3 —1 J

[PT] = [Pj][Tj =

[PT2] = [P2][TJ =

—0.5 —0.224 0.837 1

1.232 —0.483 1.802 1

0.232 —0.933 3.475 1

—1.5 —0.672 2.510 1

—0.5 5.571 2.389 1

1.232 5.313 3.355 1

0.232 4.864 5.028 1

—1.5 5.123 4.062 1

2

3

4

5

6

7

8

and

0.866 1.802 1001 1

2.598 1.544 1.967 1

0.598 0.647 5.313 1

—1.134 0.906 4.347 1

0.866 3.734 1.518 1

2.598 3.475 2.484 1

0.598 2.579 5.830 1

—1.134 2.838 4.864 1

The plane equations for each of the faces of the two blocks in this orientation

can be obtained by Newell’s technique as discussed above. For example, the

face described by polygon 1 uses the four vertices labeled 2, 3, 7, 6 in Fig. 4-30a.

Newell’s technique (see Example 4-3) using the transformed points yields the

plane equation

9

10

11

12

13

14

15

16

—20.791x+3.106y— 11.593z+48.O01 =0

Rewriting this result to correspond to that obtained by transforming the volume

matrix from the original orientation yields

—0.866x + O.l29y — 0.483z + 2 = 0

The transformed volume matrix in this form is then

ROBERTS ALGORITHM 235

and similarly

® ® @

= F0866 0.866 0 0 0.5 —0.5 1
0.129 —0.129 —0.966 0.966 0.224 —0.2241

1—0.483 0.483 —0.259 0.259 —0.837 0.837

L 3 —I4 —2 4 0

With the eyepoint at [0 0 1 0] the test point is

[E]=[0 0 —I 01

Looking for the self-hidden planes in volume 1 yields

ci ® ® ® ® ®

[E][vTi] = [0.483 —0.483 0.259 —0.259 0.837 —0.837]

Similarly for volume 2

® ®‘@ © ©

[E] [VT2] = [0.483 — 0.483 0.259 — 0.259 0.837 — 0.837]

The negative signs show that planes (polygons) 2, 4, and 6 in volume 1 and 8,

10, 12 in volume 2 are self-hidden. Intersections of these polygons represent

invisible edges. In particular, the edges 1, 4, and 9 in the first volume and 13,

16, and 21 in the second volume represent the intersection of two self-hidden

planes and are thus hidden. The result is shown in Fig. 4-30b.

The remaining lines in each volume are checked to see if they are hidden

by the other volume. First check if the volumes interpenetrate. Testing volume

1 against volume 2 using the transformed point vertices shows that

(Zmax)voii = 5.028 > (Zmir)voI2 = 1.001

Hence, penetration is possible. Further,

(Xm)voi = 1 .232> (Xmin)voI2 — 1. 134

and penetration occurs. Thus, the a = 0 boundary must be included in the
solution set.

The remaining edges of volume 1 are tested against volume 2. As a specific

example, consider edge 2 between vertices 2 and 3. Here,

v=s+dt=[I.232 —0.483 1.802 1]+[—1 —0.45 1.673 0]t

Taking the dot product of s and d with [VT2] yields

p=s[VT2]=[1 1 4 —2 31]

qdVT2][0 0 0 0 —2 3]

For an eyepoint at positive infinity in the z direction

g[0 0 1 0]

236 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

and
® ®

w = g [VT2] = [—0.483 0.483 —0.259 0.259 —0.837 0.837]

Checking to see if the line is totally visible shows that the conditions

w�O and p�O and p+q�O

are not satisfied for any plane. This is because the infinite plane containing the
bottom (plane 0) of volume 2 could hide the edge. Forming the hidden edge

conditions h yields

Q I —0.483a�0

(I +0.483a�0

® 4 —0.259a�0

0—2+0.259a�0

® 3 —2t—0.837a�0

® 1+2t+0.837a�0

Solving these equations successively in pairs shows that the condition h� 0 for
all j cannot be met. Hence, no portion of the edge is hidden, and it is totally

visible. The details of the remaining solutions for the edges of volume I hidden

by volume 2 are given in Tables 4-5 and 4-6. Note that g and w are constant.
The solution diagrams for edges 10 and 11 are shown in Figs. 4-31a and b.

Both edges penetrate volume 2. Edge 10 is hidden for 0.244 < : < 0.667.

This corresponds to the line from the point (1.232, 0.8 15, 2.150) to the point
(1.232, 3.381, 2.837). Edge 11 is hidden for 0.282 < : < 0.667, which corresponds

to the line from (0.232, 0.703, 3.913) to (0.232, 2.933, 4.510).
The a = 0 boundary yields penetrating points at: = 0.333 and 0.667 for

both edges. These values oft correspond to the points (1.232, 1.449, 2.320) and

Table 4-5

Edge vertices

Joins

s d

2 2—3 [1.232 —0.483 1.802 1] [—1.0—0.45 1.673 0]

3 3—4 [0.232 —0.931 3.46 1] [—1.7320.259 —0.966 0]

5 5—6 [—0.5 5.571 2.389 1] [1.732 —0.259 0.966 0]

6 6—7 [1.232 5.313 3.355 1] [—1.0 —0.448 1.673 0]

7 7—8 [0.232 4.864 5.028 1] [—1.732 0.259 —0.966 0]

8 8—5 [—1.5 5.123 4.062 1] [1.0 0.448 —1.673 0]

10 2—6 [1.232 —0.483 1.802 1] [0.0 5.796 1.553 0]

11 3—7 [0.232 —0.931 3.475 1] [0.0 5.796 1.553 0]

12 4—8 [—1.5 —0.672 2.510 1] [0.0 5.796 1.553 0]

.0

©

t

v V V V v v
. . ‘ ‘ ‘ ‘

Cl ri Z

—. V V V V

E

8

©

© c c

© C %C

©

- - - e e -

e e

I I I I

C4 r

I I I I

C 00

•6a I I I I I I I I
00 Cl e

237

238 PROCEDURAL ELEMENTS FOR COMPUTER GRAPIHCS

(1.232, 3.381, 2.837)foredge lOand to (0.232, 1.001, 3.993)and(0.232, 2.933,

4.5 10) for edge 11. These four points are saved as penetration points.

Comparing the non-self-hidden edges of volume 2 against volume 1 yields

the results shown in Tables 4-7 and 4-8. Edge 17 is partially hidden by volume 1.

Table 4-7

Edge vertices

Joins
s d

14 10—11 [2.598 1.544 1.967 1] [—2.0 —0.897 3.346 0]

15 11—12 [0.598 0.647 5.313 1] [—1.732 0.259 —0.966 0]

17 13—14 [0.866 3.734 1.518 1] [1.732 —0.259 0.966 0]

18 14—15 [2.598 3.475 2.484 1] [—2.0 —0.897 3.346 0]

19 15—16 [0.598 2.579 5.830 1] [—1.732 0.259 —0.966 0]

20 16—13 [—1.134 2.838 4.864 1] [2.0 0.897 —3.346 0]

22 10—14 [2.60 1.544 1.967 1] [0 1.932 0.518 0]

23 11—15 [0.598 0.647 5.313 1] [0 1.932 0.518 0]

24 12—16 [—1.134 0.906 4.347 1] [0 1.932 0.518 0]

Specifically, as shown in Fig. 4-31c, edge 17 is hidden from 0 � : < 0.211, which

corresponds to the line from (0.866, 3.734, 1.518) to (1.232, 3.679, 1.722). Edge

20 penetrates the front face (plane 5) of volume 1 at: = 0.25. Hence, it is hidden

from 0.25 < : � 1.0 which corresponds to the line from (—0.634, 3.062,

4.28) to (0.866, 3.734, 1.518). The solution region is shown in Fig. 4-31d.

The point (—0.634, 3.062, 4.028) is saved as a penetrating point. The solution

region also shows that the point for t = 0.75, a = 0 is a penetrating point. This

value of : corresponds to the point (0.366, 3.511, 2.355).

There are six penetrating points:

[PP] = 1.232 1.449 2.320 1 ©

1.232 3.381 2.837 1

0.232 1.001 3.993 1 j

0.232 2.933 4.510 1

—0.634 3.062 4.028 1 ®

0.366 3.511 2.355 1 @

Connecting each of these lines to each of the others in turn yields 30 possible

junction lines. Each of these lines must be tested against each of the volumes.

The large majority are invisible. By inspection, only the lines connecting points

18 and 20, and 20 and 21 are of interest. These lines are totally visible. In fact,

they are the junction lines. The details of the complete solution are left as an

exercise. The complete result is shown in Fig. 4-30c.

V V V V V V V
- - -

+ + + + + + +
- -

© VI ©

v V r v V V V V
- b, V - -

‘ V ‘

V V VI V V V V V

_ y) . E“ .
C > >

=
= = = = = = =

E

8

0

I I I I

e e

I I I I

e e e e

I I I I

j)

%C n %C

t I I I I I I I I I

00

239

240 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

C

Figure 4-31 Solutions for Example 4-13.

4-4 WARNOCK ALGORITHM

The basic ideas behind the Warnock algorithm are very general. They are,

by analogy, based on an hypothesis of how the human eye-brain combination

processes information contained in a scene. The hypothesis is that very little

time or effort is expended on areas that contain little information. The majority

of the time and effort is spent on areas of high information content. As an

example, consider an otherwise empty table top with a bowl of fruit on it. The

color, texture, etc., of the entire table top require minimal time to perceive.
Attention is focused on the fruit bowl. Where on the table is it located? How

large is it? What kind of bowl: wooden, ceramic, plastic, glass, metal? What

color bowl: red, blue, silver, dull, glossy, etc.? What kind of fruit does it

contain: peaches, grapes, pears, bananas, apples? What color apples: red,

yellow, green? Does the apple have a stem? In each case the area of interest

narrows, and the level of detail sought increases. Further, if, at a particular

level a specific question cannot be answered immediately, it is temporarily

put aside for later consideration. The Warnock algorithm and its derivatives

attempt to take advantage of the fact that large areas of a display are similar,

e.g., the table in the above discussion. This characteristic is known as area

a

2

a

2

0

a

2

0

0

a b

t=O
t=I

777-. Hidden
— in this

region

a=0

a

2

0

0 1.0

d

WARNOCK ALGORITHM 241

coherence; i.e., adjacent areas (pixels) in both the x and y directions tend to
be similar.

Since the Warnock algorithm is concerned with what is displayed, it works

in image space. It considers a window in image space and seeks to determine

if the window is empty or if the contents of the window are simple enough

to display. If not, the window is subdivided until either the contents of a

subwindow are simple enough to display or the subwindow size is at the limit of

desired resolution. In the latter case, the remaining information in the window

is evaluated and the result displayed at a single intensity or color. Antialiasing

can be incorporated by carrying the subdivision process to less than display

pixel resolution and averaging the subpixel attributes to determine the display

pixel attributes (see Sec. 2-25).

Specific implementations of the Warnock algorithm vary in the method of

subdividing the window and in the details of the criteria used to decide whether

the contents are simple enough to display directly. In Warnock’s original

presentation of the algorithm (Refs. 4-10 and 4-11) each window is subdivided

into four equal subwindows. This implementation of the algorithm and a

common variation allowing for subdivision of the window at polygon boundaries

are discussed in the present section. Another variation that subdivides the

window into polygonal windows developed by Weiler and Atherton (Ref. 4-12)

is discussed in the next section. Catmull (Refs. 4-13 and 4-14) has also applied

the basic subdivision concept to the display of curved surfaces. This technique
is discussed in Sec. 4-6.

Figure 4-32 illustrates the progress of the simplest implementation of the

Warnock algorithm. Here, a window that is too complicated to display is

subdivided into four equal windows. Further, a window that contains anything

is always subdivided until the resolution of the display is reached. Figure 4-32a

shows a scene composed of two simple polygons. Figure 4-32b shows the result

with the hidden lines removed. Notice that the horizontal rectangle is partially

hidden by the vertical rectangle. Figures 4-32c and d show the process of

subdivision for a display resolution of 256 x 256. Since 28 = 256, a maximum

of eight subdivisions are required to reach the resolution of the display. If

the subwindows are considered in the order lower left, lower right, upper left,

upper right, then the subwindows of level la labeled 2a, 4a, 4b, 4c, 5a, 5b are

declared empty and displayed at the background intensity during the course of
the subdivision.

Here, the number indicates the subdivision level, and the letter the quadrant.

The first subwindow examined at the pixel level that contains a feature of

interest is the one labeled 8a. At this point it is necessary to decide whether a

hidden line or a hidden surface algorithm is desired. If a hidden line algorithm

is desired, then the pixel corresponding to subwindow 8a is activated because

a visible edge passes through it. The result is to display the visible edges of the

polygons as a series of pixel-sized dots, as shown in Fig. 4-32e.

Subsequent consideration of the window labeled 8d in Fig. 4-32d best illustrates

the difference between implementation as a hidden line and as a hidden

242 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

surface algorithm. For a hidden line algorithm, the pixel-sized window 8d does

not contain any polygon edges. Therefore, it is declared empty and displayed

at the background intensity or color. For a hidden surface algorithm, the pixel-

sized window 8d is examined to see if it is surrounded by any of the polygons

in the scene. If it is, all the polygons surrounding the pixel are tested to see

which one is closer to the eyepoint at this pixel location. The test is performed

Hidden

surfaces

removed

L

a

EEl

b

2

c d

43J LI

fe

Figure 432 Warnock algorithm subdivision.

WARNOCK ALGORITHM 243

at the pixel center. The pixel is then displayed at the intensity or color of the

closest polygon. If no surrounding polygons are found, the pixel-sized window

is empty. Thus, it is displayed at the background color or intensity. The pixel-

sized window labeled 8d is surrounded by the vertical rectangle. Thus, it is

displayed at the color or intensity for that rectangle. The result is shown in

Fig. 4-32f.

The addition of antialiasing to the hidden surface algorithm is illustrated

by reconsidering window 8a in Fig. 4-32d. Subdividing this window yields four

subpixel-sized windows. Only one of these windows, the upper right hand one,

is surrounded by the polygon. The other three are empty. Averaging the

results for the four subpixels (see Sec. 2-25) shows that the pixel-sized window

8a should be displayed at one-quarter the intensity of the rectangle. Similarly,

the pixel labeled 8b would be displayed at half the intensity of the rectangle.

The pixel-sized windows can, of course, be subdivided more than once to allow

for weighted averaging of the subpixel characteristics, as discussed in Sec. 2-25.

The subdivision process yields a tree structure for the subwindows as shown

in Fig. 433 The root of the tree is the display window. Each node represented
by the box contains the coordinates of the lower left hand corner and the length

of the side of the subwindow. Assuming that subdivided windows are processed

in the order abcd, i.e., from left to right at a particular subdivision level in the

tree, then Fig. 4-33 shows the active path through the tree structure to the

pixel-sized window labeled 8a. The active node at each level is indicated by

the heavy line. Examination of Figs. 4-32 and 4-33 shows that, at a particular

level, all windows to the left of the active node are empty. Thus, they have

been previously displayed at the background color or intensity. All windows to

the right of the active node at a particular level remain to be processed, i.e.,

declared empty or subdivided, as the tree is traversed in the reverse direction.

The above algorithm is sufficient to solve either the hidden line or hidden

surface problem. However, both the simplicity of the subdivision criteria and

the rigidity of the subdivision algorithm maximize the number of subdivisions.

The algorithm can be made more efficient by using both more complex subdivision

algorithms and more complex subdivision criteria. Figure 4-34a illustrates

one common alternate subdivision algorithm and compares it to the previous

fixed subdivision algorithm, as shown in Fig. 4-34b.

The subdivisions shown in Fig. 4-34a are obtained by using the bounding

box of the polygon. Note that the subwindows need not be square. The

algorithm can be recursively applied to any polygon wholly contained within

a window or subwindow. If only a single polygon exists within a window,

and if it is wholly contained within the window, then it is easy to display,

that polygon without further subdivision. A subdivision algorithm such as

this is particularly useful in minimizing the number of subdivisions for simple

scenes (see Fig. 4-34). However, as scene complexity increases, its advantage
decreases.

tThe Warnock algorithm is the first known implementation of a quadtree data structure.

244 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

In considering more complex subdivision criteria, it is convenient to define
the relationship of several types of polygons to a window. In particular, a
polygon is

Figure 4-33 Window tree structure.

WARNOCK ALGORITHM 245

z:::4::
a

Figure 4-34 Comparison of subdivision algorithms.

disjoint if it is totally outside the window

contained if it is totally inside the window

intersecting if it intersects the window

surrounding if it completely contains the window

An example of each of these polygon types is shown in Fig. 4-35. Using

these definitions, the following decision criteria can be applied to a window.

Assembled into an algorithm they yield

For each window:

If all the polygons in the scene are disjoint from the window, then the

window is empty. It is displayed at the background intensity or color
without further subdivision.

If only a single polygon is contained within the window, the area of the

window outside the polygon is filled with the background intensity or

color; and the polygon is filled with the appropriate intensity or color.

If a single polygon intersects the window, the area of the window

outside the polygon is filled with the background intensity or color;

and the portion of the intersecting polygon within the window is filled

with the appropriate intensity or color.

If the window is surrounded by a single polygon, and if there are

no other polygons in the window, then the window is filled with the

intensity or color appropriate for the surrounding polygon.

Disjoint Contained Intersecting Surrounding

Figure 4-35 Polygon types.

b

246 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

If at least one surrounding polygon is found, and if it is the polygon

closest to the eye, then the window is filled with the intensity or color

appropriate for the surrounding polygon.

Otherwise, subdivide the window.

The first four of these criteria deal with the relationship of single polygons

to the window. They are used to reduce the number of subdivisions. The last

criterion is the key to the hidden surface problem. It attempts to find a single

surrounding polygon that is closer to the eye then any other polygon in the

window. Obviously, this surrounding polygon will obscure or hide all the other

polygons in the window. Thus, it represents the visible feature in the scene for
this window.

Implementing these decision criteria requires techniques for determining

whether a polygon is disjoint from, contained within, intersects, or surrounds

a window. For rectangular windows, bounding box or minimax tests can be

used to determine whether a polygon is disjoint from a window (see Secs. 2-13

and 3-1). In particular, if XL,XR,YB,YT define the four edges of a window and

Xmin, Xmax, Ymin’ Ymax the bounding box surrounding a polygon, then the polygon

is disjoint from the window if any of the following conditions is satisfied

Xmin > X

Xmax <XL

Yrnin > Yr

Ymax <YB

as shown in Fig. 4-36a. Further, the polygon is contained within the window if

the bounding box is contained within the window i.e., if

Xmin � XL and Xmax X and Ymin � YB and Ymax Yr

as shown in Fig. 4-36b.

y . y

Window-7 f Window—7
YT 32 Bounding box7 YT 32

24 T___K_<Ymax 24
I I\ I

I I

16 / \ 16

8 &P38
L Ymin

31B 0
Xmin

‘B 0
0 8 16 24 32 40 48 56 0 8 16 24 32

XL XR XL XR
a b

Figure 4-36 Boxing tests for disjoint and contained polygons.

WARNOCK ALGORITHM 247

Example 4-14 Disjoint and Contained Polygons

Consider a square window with edges XL, XR, YB, yr equal to 0, 32, 0,32. Two

polygons, the first with vertices Pj(36, 8), P2(48, 24), and P3(56, 4), and the

second with vertices Pj(8, 4), P2(12, 24), and P3(24, 12), as shown in Fig. 4-36a,

are to be tested against this window.

The bounding box for the first polygon, Xmin,Xm,Ymin,Ymax, is 36, 56,4,
24. Since

(Xmin = 36) > (x = 32)

the polygon is disjoint from the window.

Similarly the bounding box for the second polygon, Xmjn, Xmax, Ymjn’ Ymax
is 8, 24, 4, 24 as shown in Fig. 4-36b. Here the condition

(Xmin = 8) > (XL = 0) and (Xm = 24) <(XR = 32) and

(Ymin = 4) > (YB = 0) and (Ymax = 24) <(YT = 32)

is satisfied. Hence, the polygon is contained within the window.

A simple substitution test can be used to determine if a polygon intersects
a window. The coordinates of the window vertices are substituted into a test

function formed from the equation of the line defining a polygon edge (see

Sec. 3-16 and Example 3-23). If the sign of the test function is the same for

each window vertex, then all the vertices lie on the same side of the line; and

there is no intersection. If the signs are different, then the polygon intersects

the window. If none of the polygon edges intersects the window, the polygon

is either disjoint or surrounds the window. If the equation of the line through

two polygon vertices Pj(xi ,y) and P2(x2,y2) is y = mi+ b, then the test function
is

T.F. = y - - b

where

m=Y2Y1 X2X1�O
X2 — Xi

b = yi — n1i
and

T.F. = x — Xi X2 Xi = 0

An example illustrates the technique.

Example 4-15 Intersecting Polygons

Consider the square window with XL, XR, y& YT equal to 8, 32, 8, 32 and the

two polygons with vertices P1(8, 4), P2(12, 24), and P3(40, 12)and with vertices

P(4, 4), P2(4, 36), P3(40, 36), and P4(32, 4), as shown in Fig. 4-37. The test

function for the polygon edge PiP2 in Fig. 4-37a is obtained from

248 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Y2Y1 24—4 20

m = X2 — = = 1 =
byi —mx =4—5(8)= —36

T.F. =y—mx—b=y—5x+36

Substituting the coordinate of each window corner into the test function yields

T.F.(8,8) = 8— 5(8) + 36 = 4

T.F.(8,32) = 32—5(8) + 36 = 28

T.F.(32, 32) = 32 — 5(32) + 36 = —92

T.F.(32, 8) = 8 — 5(32) + 36 = —116

Since the test function changes sign, the polygon edge intersects the window

edge as shown in Fig. 4-37a. Hence, the polygon is an intersector. There is no

need to check the other polygon edges.

The results for the polygon shown in Fig. 4-37b are given in Table 4-9.

None of the polygon edges intersects the window. Hence, the polygon is either

disjoint or a surrounder. Figure 4-37b shows that it is a surrounder.

Table 4-9

Polygon

edge

Test

function

Window

coordinates

Test function

result Comment

P1P2 x — 4 (8, 8)

(8,32)

(32,32)

(32, 8)

4

4

28

28

Nonintersecting

P2P3 y — 36 (8, 8)

(8,32)

(32,32)

(32, 8)

—28

—4

—4

—28

Nonintersecting

P3P4 y — 4x + 124 (8, 8)

(8,32)

(32,32)

(32, 8)

100

124

28

4

Nonintersecting

P4PI y — 4 (8, 8)

(8,32)

(32,32)

(32, 8)

4

28

28

4

Nonintersecting

WARNOCK ALGORITHM 249

y

YTLXR 8 __________
0 8 16 24 32 40

0

a

Figure 4-37 Intersection tests.

The simple bounding box test discussed above will not identify all disjoint
polygons, e.g., a polygon that encloses a corner of the window as shown in
Fig. 4-38a. More complex tests are required. Two are of particular interest,
the infinite line test and the angle counting test. Both assume that intersecting
and contained polygons have been previously identified. Both can be used to
identify disjoint and surrounding polygons.

For the infinite line test, a line is drawn from any part of the window, e.g.
a corner, to infinity. The number of intersections of the line and the polygon
of interest are counted. If the number is even (or zero), the polygon is disjoint;
if odd, the polygon surrounds the window as shown in Fig. 4-38a. If the line
passes through a vertex of the polygon as shown in Fig. 4-38b, uncertainty
results. This uncertainty is resolved by counting two intersections at a concave
vertex (P2 in Fig. 4-38b) and only one at a convex vertex (P4 in Fig. 4-38b) (see
also Sec. 2-15). Changing the slope of the line also eliminates the uncertainty.

Infinite

0 8 16 24 32 40 48 54
b

y
R

16

8

0

32

24

16

p1

YTL
XR

YB

I I I

0 8 16 24 32 40

b

y

40

32

24

16

8

y

32

24

16

8

0

0 8 16 24 32 40 48
a

Figure 4-38 Surrounding polygon test.

250 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Polygon

a

Figure 4-39 Angle counting test.

b

Polygon

LJ

The angle counting test is illustrated in Fig. 4-39. Proceeding either clockwise

or counterclockwise around the polygon, the angles formed between lines

from any point in the window to the initial and final vertices of a polygon edge

are summed. As shown in Fig. 4-39, the center of the window is a convenient

point. The sum of these angles is interpreted as follows:

Sum = 0 the polygon is disjoint from the window.

Sum = ±360n the polygon surrounds the window n times.

The actual determination of the sum is considerably simplified by realizing

that the precision of the individual angle calculations need not be high. In

fact, sufficient precision is obtained by counting only the whole octants (45°

increments) subtended by the individual angles as shown in Fig. 4-40. The

implementation is similar to that for the line end point codes used for clipping

(see Sec. 3-1). Here, the octant regions are numbered 0 to 7 counterclockwise.

The number of whole octants subtended is obtained by taking the difference

between the region numbers of the polygon edge end points and applying the

following algorithm:

3

4

5

a b

Figure 440 Angle test for disjoint and surrounding polygons.

WARNOCK ALGORITHM 251

= (second end point region number) — (first end point region number):

if ta > 4 then a = — 8

if ta <—4 then ta = ta + 8

if ta = 0 then the polygon edge is split at a window edge and the

process repeated with the two segments.

Summing the individual polygon edge contributions yields

= 0 the polygon is disjoint from the window.

= ± 8n the polygon surrounds the window.

Example 4-16 AngIe Test for Surrounding and Disjoint Polygons

Consider the window and the polygons shown in Fig. 4-40. For the polygon shown
in Fig. 4-40a, the number of octants subtended by the edge P1P2 is

&112 = 2 — 7 = —5 < —4

= —5 + 8 = 3

Similarly, for the remaining polygon edges

za23 = 3 — 2 =

za34 = 5 — 3 = 2

= 7 — 5 = 2

The sum of the angles subtended by all the polygon edges is

= 3 + I + 2+2 = 8

Thus, the polygon surrounds the window.

For the polygon shown in Fig. 4-40b

= I — 7 = —6 < —4

= —6 + 8 = 2

&123 = 2 — I = I

za34 = 0 — 2 = —2

1a45 = 6 — 0 = 6 > 4

= 6 — 8 = —2

= 7 — 6 = I

and

= 2 + 1— 2—2 + I = 0

Thus, the polygon is disjoint from the window.

A hierarchical application of these techniques based on the computational

work involved is advantageous. If only the simplest Warnock algorithm is

implemented, then it is not necessary to identify either contained or intersecting

polygons. Subdivision will eventually make contained or intersecting polygons

252 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

either disjoint or surrounding polygons. Any remaining conflicts are resolved

at the pixel level. For this simple algorithm, only the bounding box test need

be used to identify empty windows. If this simple test fails, the algorithm

subdivides the window until the pixel level is reached. Since even at the pixel

level a disjoint polygon of the form shown in Fig. 4-40b can exist, it is necessary

to apply a more rigorous algorithm to determine if the window is empty or

surrounded by one or more polygons.

The more complex algorithm discussed above attempts to identify contained,

intersector, more complex disjoint polygons, and surrounding polygons

for larger windows in order to avoid subdivision. These tests require more
work. Hence, there is a tradeoff between the work associated with subdivision

and the work associated with early identification of displayable windows. A

more complex algorithm might implement the tests at each window in the following
order.

The simple bounding box test for identifying most empty windows and

windows with a single contained polygon. These windows are immediately

displayed.

The simple intersector test for identifying windows with a single intersecting

polygon. The polygon is clipped and displayed. For example, the polygon

in Fig. 4-34b would be displayed after one subdivision.

The more complex disjoint and surrounder tests for identifying additional

empty windows and windows with a single surrounding polygon. These

windows are immediately displayed.

At this point either subdivision occurs or an attempt is made to find a single

surrounding polygon that is closer to the eyepoint than any other polygon. If

subdivision occurs, this question is delayed until the pixel level. In either case,

a depth calculation is required.

The depth calculation is performed by comparing the depth (z coordinate)

of the planes of the polygons at the window corners. If the depth of a surrounding

polygon is greater than the depth of all other polygons at the corners

of the window, then the surrounding polygon hides all the other polygons in the

window. Hence, the window can be displayed at the intensity or color of the

surrounding polygon. Note that this is a sufficient but not a necessary condition

for a surrounding polygon to hide all other polygons in the window. Figure 4-41

illustrates that extending the plane of a polygon to intersect the window corners

may result in failure to identify a surrounding polygon that hides all others in
the window.

In particular, if an extended polygon is hidden by a surrounding polygon

at the window corners, then the polygon itself is hidden by the surrounding

polygon (as in Fig. 4-41). If an extended polygon is not hidden by the surrounding

polygon, it is not obvious whether the polygon itself is hidden or not

(b in Fig. 4-41). The conflict is resolved by subdividing the window.

WARNOCK ALGORITHM 253

The depth of an extended polygon at the window corners can be obtained

from the plane equations for the polygons (see Sec. 4-3 and Example 4-3). For
example, if the plane equation is

ax + by + cz + d = 0

and the window corner coordinates are x, y, then

z=—(d+ax+by)/c c�O

yields the depth of the extended polygon at the window corner.

All of the above discussion assumes that every polygon is compared to

every window. For complex scenes this is very inefficient. The efficiency can
be improved by performing a depth priority sort (z sort). The sort order of

the polygons is based on the z coordinate of the polygon vertex nearest the

eyepoint. In a right handed coordinate system, the polygon with the maximum

z-coordinate value for its nearest vertex is closest to the eyepoint. This polygon
appears first on the sorted polygon list.

When processing each window, the algorithm looks for surrounding polygons.
When a surrounding polygon is found, its vertex farthest from the eye is

remembered as As each successive polygon on the list is considered, the

z-coordinate value of its nearest vertex Zpmax is compared to Zsmin. If Zpmax <

then clearly this polygon is hidden by the surrounding polygon and need

not be considered further. Figure 4-41 illustrates that this is a sufficient but

not a necessary condition; e.g., the polygons labeled a in Fig. 4-41 need not be

considered further, but the polygon labeled b must.

The size of the list of polygons processed for each window is reduced

by taking advantage of information about the polygon obtained earlier in the

algorithm. In particular, if a polygon surrounds a window, then clearly it

surrounds all subwindows of that window and need not be processed further.

In addition, if a polygon is disjoint from a window, then it is disjoint from

all subwindows of that window and need not be considered when processing

those subwindows. Only intersector and contained polygons from the previous

window need be processed further.

Figure 4-41 Depth comparisons for
surrounding polygons.

254 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

To take advantage of this information, three lists are used; one for surrounding

polygons, one for disjoint polygons, and one for intersecting and contained

polygons (see Ref. 4-11). As the subdivision progresses, polygons are

added or removed from the appropriate list. The level at which a polygon is

first added to a particular list is also retained. This information is used when

the tree in Fig. 4-33 is traversed in the reverse direction. At each subdivision

level, the surrounding polygon list is processed first to find the closest surrounding

polygon. The intersector/contained polygon list is then processed to see if

the surrounding polygon hides all the intersector and contained polygons. The

disjoint polygon list is ignored.

The underlying concept and a number of possible enhancements of the

Warnock algorithm have been discussed. It should be clear that no single

Warnock algorithm exists. The implementation details vary from algorithm

to algorithm. A pseudo code implementation of the most basic algorithm is

given below. If the window size is greater than the display resolution and

contains any feature of interest, the algorithm always subdivides the window.

For windows greater than pixel size, a simple bounding box test is used to

identify disjoint polygons. For pixel-sized windows a more sophisticated test

is used that determines the visible polygon by examining the z coordinate of

each polygon at the center of the pixel. No depth priority sort is used, nor

is advantage taken of prior information about window-polygon relationships.

The algorithm is implemented using a pushdown stack. The maximum stack

length is

3(screen resolution in bits — 1) + 5

This simple algorithm is sufficient to demonstrate the principle without becoming

submerged in data structures. For convex polygonal volumes a back-plane

cull (see Sec. 4-2) is performed before passing polygons to the algorithm. A

flowchart is shown in Fig. 4-42.

a simple implementation of the Warnock algorithm

a square display window is assumed

if there is anything in a window the algorithm always subdivides

the window is subdivided into four equal-sized square windows

every polygon is compared with every window

all data is assumed transformed to display window (image space) coordinates

an initial back-plane cull of self-hidden planes is assumed prior to entering

the algorithm

Vertex is an m x 3 array containing the x, y, z coordinates of each polygon
vertex.

m is the total number of polygon vertices in the scene. The vertices are

assumed specified in clockwise order

N is the number of polygons in the scene

Polygon is an N x 11 array containing information about individual polygons

Polygon(, 1) is a pointer to the location of the first polygon vertex in the

Vertex array

WARNOCK ALGORITHM 255

Figure 4.42 Flowchart for a simple Warnock algorithm.

Polygon(, 2) is the number of vertices for the polygon

Polygon(, 3) is the intensity or color associated with the polygon

Polygon(, 4—7) contain the coefficients of the plane equation, a, b, c, d, for
the polygon

Polygon(, 8—11) contain the bounding box values, Xmjn, Xm, Ymin’ Ymax’ for
the polygon

Push is a function that places windows on a pushdown stack

Pop is a function that removes windows from a pushdown stack

256 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Wmax is the maximum x and y extent of the window. The origin of the

display window is assumed at 0, 0.

Window is a I x 3 array containing the current window origin and size as

Window(Xorigin, Yorigin, Size)

Disjoint is a flag,

= 0 for empty windows

� 1 for nonempty windows

initialize the background color for black

Background = 0

push the display window onto the stack

Push Window(O, 0, Wmax)

while (stack not empty)

get a window from the stack

Pop Window(Xorigin, Yorigin, Size)

initialize polygon counter
i=1

Disjoint = 0

for each polygon perform a bounding box test to find disjoint polygons

while (i � N and Disjoint = 0)

call Box(i, Polygon, Window; Disjoint)
i=i+1

end while

if at least one polygon is not disjoint, subdivide or display pixel

if Disjoint > 0 then

if window is not pixel size, subdivide
if Size > 1 then

Size = Size/2

Push Window(Xorigin + Size, Yorigin + Size, Size)

Push Window(Xorigin, Yorigin + Size, Size)

Push Window(Xorigin + Size, Yorigin, Size)

Push Window(Xorigin, Yorigin, Size)
else

if window is pixel-sized, calculate attributes

call Cover(Vertex, N, Polygon, Window; Pnumber)
if Pnumber > 0 then

call Display(Window, Polygon(Pnumber, 3))
else

display the empty window

call Display(Window, Background)
end if

end if

else

call Display(Window, Background)
end if

WARNOCK ALGORITHM 257

end while

finish

subroutine to perform a simple bounding box test

subroutine Box(i, Polygon, Window; Disjoint)

calculate Xleft, Xright, Ybottom, Ytop

Xleft = Window(1, 1)

Xright = Window(1, 1) + Window(1, 3) — 1

Ybottom = Window(1, 2)

Ytop = Window(1,2) + Window(1,3) — 1

perform bounding box tests

Disjoint = 1

if Polygon (i, 8) > Xright then Disjoint = 0

if Polygon (i, 9) <Xleft then Disjoint = 0

if Polygon (i, 10) > Ytop then Disjoint 0

if Polygon (i, 11) <Ybottom then Disjoint = 0
return

subroutine to display a window

subroutine Display(Window, Intensity)

Setpixel(x, y, I) is a function to set a pixel at coordinates x, y to the intensity I

for j = Window(1, 2) to Window(1, 2) + Window(1, 3) — 1

for i = Window(1, 1) to Window(1, 1) + Window(1, 3) — 1

Setpixel(i, j, Intensity)
next i

next

return

subroutine to check if a polygon covers the center of a window

subroutine Cover(Vertex, N, Polygon, Window; Pnumber)

a polygon covers a pixel-sized window if the center of the window is inside

the polygon

if the polygon vertices are specified in clockwise order, then the inside is

always to the right

the algorithm uses the Visibility subroutine presented in Sec. 3-16

if no covering polygon is found, Pnumber = 0

if at least one covering polygon is found, then Pnumber is set to the visible

polygon

initialize Zmax to zero. This assumes that all polygons are in the positive

half space, Z � 0
Zmax = 0

initially assume there are no covering polygons
Pnumber = 0

set up window center

258 PROCEDURAL ELEMENTS FOR COMPUTER GRAPIHCS

Pointx = Window(1, 1) + Window(1, 3)/2

Pointy = Window(1, 2) + Window(1, 3)/2

for each polygon
for i = 1 to N

Index = Polygon(i, 1)

for each polygon edge

for j = 1 to Polygon (i, 2) — 1

Plx = Vertex(Index, 1)

Ply = Vertex(Index,2)

P2x = Vertex(Index+1,1)

P2y = Vertex(Index + 1,2)

note that Point, P1, P2 are shorthand for Pointx, Pointy, etc.

call Visible(Point, P1, P2; Pvisible)
if Pvisible <0 then 1

Index = Index + 1

next

take care of last edge

Plx = Vertex(Index, 1)

Ply = Vertex(Index, 2)

P2x = Vertex(Polygon(i, 1), 1)

P2y = Vertex(Polygon(i, 1), 2)

call Visible(Point, P1, P2; Pvisible)
if Pvisible � 0 then

call Compute(Vertex, i, Polygon, Window; z)
if z> Zmax then

Zmax = z

Pnumber =

end if

end if

nexti

return

subroutine to calculate the pixel intensity

subroutine Compute(Vertex, N, Polygon, Window; z)

the equation of the polygon plane is used to calculate the polygon nearest the

eyepoint for this pixel

Max is the maximum function

calculate the x and y coordinates of the pixel center

Xcenter = Window(1, 1) + Window(1, 3)/2

Ycenter = Window(1, 2) + Window(1, 3)/2

determine z at the pixel center

check for an edge on the polygon through the pixel center

note that a polygon of this nature may be totally missed or appear as a

WEILER-ATHERTON ALGORITHM 259

disconnected series of dots—an example of aliasing

if Polygon(i, 6) = 0 then

for j = 2 to Polygon(i, 2)

z = Max(Vertex(j, 3), Vertex(j — 1, 3))
next

else

calculate z from the plane equation

A = Polygon(i, 4)

B = Polygon(i, 5)

C = Polygon(i, 6)

D = Polygon(i, 7)

z = — (A*Xcenter + B*Ycenter + D)/C
end if

return

An example serves to illustrate the algorithm.

Example 447 Warnock Algorithm

Consider the three polygons

1: (10, 3, 20), (20, 28, 20), (22, 28, 20), (22, 3, 20)
2: (5, 12, 10), (5, 20, 10), (27, 20, 10), (27, 12, 20)
3: (15, 15, 25), (25, 25, 5), (30, 10,5)

to be displayed at a resolution of 32 x 32 pixels using the simple Warnock algorithm
described above. The first two polygons are rectangles perpendicular

to the z axis at z = 20 and z = 10, respectively. The third is a triangle that
penetrates both rectangles as shown in Fig. 4-43a. Figure 4-43b shows a hidden

line view from a point at infinity on the positive z axis. Figure 4-43c shows
the contents of the frame buffer upon completion of the algorithm. The numbers

in the boxes correspond to the polygon descriptions given above. The
algorithm proceeds from the lower left corner to the right and upward. The
box outlines indicate the size of the window subdivisions processed at each step
in the algorithm. For example, notice the large (8 x 8) empty window in the
lower left corner. This window is displayed without further subdivision. The
figures show that the triangle is partially obscured by the second rectangle,
penetrates the rectangle, is partially visible, is then obscured by the first rectangle,

and then penetrates the first rectangle with the apex visible.

4-5 WEILER-ATHERTON ALGORITHM

Weiler and Atherton (Ref. 4-12) attempt to minimize the number of subdivisions

in a Warnock-style algorithm by subdividing along polygon boundaries.

The basis of the algorithm is the Weiler-Atherton polygon clipper previously

260 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

y

a

0000000

0000000

9 0000000
8

0000000
7

0000000

6 0000000
5

0000000

00000
3

0 0 0 0 01

0 0 0 &i

0 0 0 Ø[
g 0 0 0 Ø[8

0 0 0 Ø7

-i-i

30

4

20

6

5 00 J 1I
4

3 00 00
2 00 00

10

g 000000 00 0 08 000000 00
7

6 00000000
5 00000 00
4

3 00000OØ3 g0

0

vJ

0kJ

000000 00 0

000

I 5I5IkIkIkJI

2131 5IIII

0000000

00000000

00000000

00000 00k,

00000000

000000

000000

0000Ø0 0

k000 000 0

000000 0

000000 0

k000000 0

00000Ø 0

00000000 010 Z,Ø 0 0 ØiØ 0 0 0 0

‘:

k k k

1 2 3 4 5 S 7 8 2 3 4 6 ‘89201 2 3 4 56 7 8 Q301

C

Figure 4-43 Polygon example for the simple Warnock algorithm.

WEILER-ATHERTON ALGORITHM 261

discussed in Sec. 3-17. The output of the algorithm, which operates in object

space to an arbitrary accuracy, is polygons. Since the output consists of complete

polygons, the algorithm can easily be used for hidden line as well as hidden

surface elimination. The hidden surface algorithm involves four steps:

A preliminary depth sort.

A clip or polygon area sort based on the polygon nearest the eyepoint.

Removal of the polygons behind that nearest the eyepoint.

Recursive subdivision, if required, and a final depth sort to remove any

ambiguities.

A preliminary depth sort is used to establish an approximate depth priority

list. Assuming that the eyepoint is located at infinity on the positive z axis, the

polygon closest to the eyepoint and the first polygon on the list is the one with

the vertex having the largest z coordinate.

A copy of the first polygon on the preliminary depth-sorted list is used

as the clip polygon. The remaining polygons on the list, including the first

polygon, are subject polygons. Two lists are established: an inside list and an

outside list. Using the Weiler-Atherton clipping algorithm, each of the subject

polygons is clipped against the clip polygon. This is a two-dimensional clip

of the projections of the clip and the subject polygons. The portion of each

subject polygon inside the clip polygon, if any, is placed on the inside list. The

portion outside the clip polygon, if any, is placed on the outside list. This part

of the algorithm is an xy or area sort. An example is shown in Fig. 4-44. Figure

4-45 illustrates the inside and outside polygon lists for the scene in Fig. 4-44.

The depth of each polygon on the inside list is now compared to that of the clip

polygon. Using the x,y coordinates of the vertices of the subject polygons on

the inside list and their plane equations, the depth (z coordinate) of each vertex

______ z=50

0 20 40 60 80 100 120

80

60

40

, z1OO
4 z25

20

U

a b

Figure 4-44 Priority polygon clipping for the Weiler-Atherton hidden surface algorithm.

262 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Inside polygon list Outside polygon list

Figure 4-45 Inside and outside polygon lists.

is calculated and compared with the minimum z-coordinate value (za for the

clip polygon. If none of the z-coordinate values of the subject polygons on the

inside list is larger than then all the subject polygons on the inside list are

hidden by the clip polygon (see Fig. 4-44). These polygons are eliminated, and

the inside polygon list displayed. Note that here the only remaining polygon

on the inside list is the clip polygon. The algorithm continues with the outside
list.

If the z coordinate for any polygon on the inside list is greater than

then the subject polygon on the inside list lies at least partially in front of

the clip polygon. Figure 4-46 illustrates how this can occur. In this case the

original preliminary depth sort is in error. The algorithm recursively subdivides

the area, using the offending polygon as the new clip polygon. The inside list

is used as the subject polygon list. The original clip polygon is now clipped

against the new clip polygon. Note that the new clip polygon is a copy of the

complete original polygon, not the remainder after the original clip. Using a

copy of the complete polygon for the new clip polygon minimizes the number
of subdivisions.

A simple example more fully illustrates the algorithm.

AZmax
Figure 4-46 Condition for an error in the
initial z sort.

WEILER-ATHERTON ALGORITHM 263

c d

Figure 4.47 Recursive subdivision for the Weiler-Atherton algorithm.

Example 418 Weiler-Atherton Hidden Surface Algorithm

Consider the two rectangular polygons shown in Fig. 4-46. Polygon A has vertices

(5, 0, 25), (40, 0, 5), (40, 40, 5), and (5, 40, 25). Polygon B has vertices

(25, 0, 20), (55, 0, 20) (55, 30, 20), and (25, 30, 20). Figure 4-47a shows the

unclipped scene from an eyepoint at infinity on the positive z axis. Although

polygon B obscures part of polygon A, the preliminary depth sort places A

before B on the sorted list. A copy of polygon A is used as the initial clip

polygon. The initial subject polygon list contains both A and B, as shown in

Table 4-10. Table 4-10 and Fig. 4-47b show the result of clipping the subject

polygon list against polygon A. The inside list now contains polygons A and C,

and the outside list polygon B’. Comparing the depths of polygons A and C to

the clip polygon shows that C is in front of the clip polygon. The algorithm

recursively subdivides the area by using polygon B, of which C is a part, as

the clip polygon and the inside list as the subject polygon list. The result is

shown in Fig. 4-47c and Table 4-10. The portion labeled A’ is clipped away

and placed on the outside list. The portion labeled D is placed on the inside

list. Comparing the polygons C and D on the inside list with the clip polygon
B shows that D is obscured. Hence it is eliminated. C is coincident with B, the

clip polygon. It remains on the inside list. Recursion is not necessary. Polygon

C is displayed. The algorithm continues to completion by extracting polygons

B’ arid A’ from the outside list. The details are given in Table 4-10. The final

result is shown in Fig. 4-47d.

y

40

20

A

y

40

20

0

y

40

20

0

0 20 40 60

a

B clipped by
polygon A

0 20 40 60

b

_____________ Final
40

______ display

I

y

20

0

0 20 40 60

264 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Table 410

Clip

polygon polygons list outside list outside list

Subject Inside Beginning Final Display Comment

A A A B’ Recursion

B

A

A’
C

It1::ide

One additional detail of the algorithm is of interest. When a single polygon

cyclically overlaps the clip polygon, i.e., lies both in front of and behind the

clip polygon (see Fig. 4-48a), no recursive subdivision is required. Here, all

material behind the cyclical polygon has already been removed by the previous

clip. It is only necessary to clip the original polygon against the cyclical polygon

and display the result. The unnecessary recursive subdivision can be prevented

by maintaining a list of polygons previously used as clipping polygons. If during

recursive subdivision the current clipping polygon appears on this list, then

a cyclical overlapping polygon has been found. No additional recursion is

necessary. Note that the algorithm directly handles cases of cyclical overlap

among several polygons, as shown in Fig. 4-48b.

a b

Figure 4.48 Cyclically overlapping polygons.

4-6 A SUBDIVISION ALGORITHM FOR CURVED SURFACES

Both the basic Warnock and the Weiler-Atherton subdivision algorithms assume

that the scene is represented by a collection of planar polygons. However,

many objects are represented by curved surfaces, e.g., aircraft, ships, automobiles,

and chinaware etc. Polygonal approximations to these curved surfaces

z-BUFFER ALGORITHM 265

do not always yield adequate representations; e.g., silhouette edges appear

as short, connected, straight line segments rather than as continuous curves.

Catmull (Refs. 4-13 and 4-14) has developed a Warnock-style subdivision algorithm

for curved surface display. Although Catmull applied the algorithm

to bicubic surface patches, it is general enough to be applied to any curved

surface. In contrast to the Warnock algorithm that recursively divides image

space, the Catmull algorithm recursively subdivides the surface. Simply stated,

the algorithm is

Recursively subdivide the surface into subpatches until a subpatch, transformed

into image space, covers at most one pixel center.

Compute the attributes of the surface at this pixel and display the pixel.

Figure 4-49a shows a surface patch and its subdivision into pixel-sized

subpatches. Unless the surface is highly curved, it is usually sufficient to use a

polygonal approximation to the curved subpatch to decide whether it covers just

one pixel center (see Fig. 4-49b). The subdivision process results in subpatches

that do not cover any pixel center. The attributes of these patches are assigned

to the nearest pixel center. Subpatches that are outside the viewing window

are, of course, discarded. Subpatches that intersect the viewing window edge

are further subdivided until a clear inside or outside decision is possible.

The efficiency of the algorithm depends on the efficiency of the curved

surface subdivision technique. Catmull has suggested one technique for bicubic

surface patches. Cohen, Lyche, and Riesenfeld (Ref. 4-15) suggest a more

general technique for B-spline surfaces.

I,
/

Pixel ——-.-_.

center__\ b

Figure 4-49 Curved surface subdivision.

4-7 z-BUFFER ALGORITHM

The z buffer is one of the simplest of the hidden surface algorithms. The

technique was originally proposed by Catmull (Ref. 4-14) and is an image space

266 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

algorithm. The z buffer is a simple extension of the frame buffer idea. A frame

buffer is used to store the attributes (intensity) of each pixel in image space.

The z buffer is a separate depth buffer used to store the z coordinate or depth

of every visible pixel in image space. In use, the depth or z value of a new

pixel to be written to the frame buffer is compared to the depth of that pixel

stored in the z buffer. If the comparison indicates that the new pixel is in front

of the pixel stored in the frame buffer, then the new pixel is written to the

frame buffer and the z buffer updated with the new z value. If not, no action is

taken. Conceptually, the algorithm is a search over x, y for the largest value of

z(x,y).

The simplicity of the algorithm is its greatest advantage. In addition,

it handles the hidden surface problem and the display of complex surface

intersections trivially. Scenes can be of any complexity. Since image space

is of fixed size, the increase in computational work with the complexity of the

scene is at most linear. Since elements of a scene or picture can be written

to the frame or z buffer in arbitrary order, they need not be sorted into depth

priority order. Hence, the computation time associated with a depth sort is
eliminated.

The amount of storage required is the principal disadvantage of the algorithm.

If the scene is transformed and clipped to a fixed range of z coordinates,

then a z buffer of fixed precision can be used. Depth information

must be maintained to a higher precision than lateral x,y information; 20 bits

is usually sufficient. A 512 x 512 x 24 bit-plane frame buffer, in combination

with a 512 x 512 x 20 bit z buffer, requires almost 1.5 megabytes of storage.

However, decreasing memory costs are making dedicated z-buffer memory and

associated hardware practical.

An alternative to dedicated z-buffer memory is to use either main memory

or mass storage for the z buffer. Smaller amounts of storage result from subdividing

the image space into 4, 16, or more subsquares or bands. In the limit,

a single-scan-line z buffer can be used. In the latter case an interesting scan

line algorithm results (see Sec. 4-9). Because each scene element is processed

multiple times, segmenting the z buffer generally increases the time required to

process a scene. However, area sorting so that all polygons are not processed

for each subsquare or band can significantly reduce the increase.

A further disadvantage of the z buffer is the difficulty and expense of

implementing antialiasing, transparency, and translucency effects. Because the

algorithm writes pixels to the frame buffer in arbitrary order, the necessary

information for prefiltering antialiasing techniques (see Sec. 2-27) is not easily

available. For transparency and translucency effects (see Sec. 5-9), pixels may

be written to the frame buffer in incorrect order, leading to local errors.

Although prefiltering antialiasing techniques are possible (see Ref. 4-13),

they are difficult to apply. However, postfiltering (subpixel averaging) techniques

(see Sec. 2-26) are relatively easy to apply. Recalling that postfiltering

antialiasing techniques compute the scene at an image space resolution greater

than the display resolution; two approaches to postfiltering antialising are pos

z-BUFFER ALGORITHM 267

sible. The first uses a larger than display space resolution image space frame

buffer and a display space resolution z buffer. The depth of the image is

computed only at the center of the group of subpixels to be averaged. If

intensity scaling is used to indicate distance from the observer, this technique

may not be adequate.

The second technique maintains both increased image space resolution

frame and z buffers. Upon displaying the image, both the pixel and the depth information

are averaged. This technique requires very large amounts of storage.

For example, a 512 x 512 x 24 bit-plane image with 20 bits of z buffer computed

at a factor of 2 increase in both x and y resolution and antialiased using

uniform averaging (see Fig. 2-53a) requires almost 6 megabytes of storage.

More formally stated, the z-buffer algorithm is

Set the frame buffer to the background intensity or color.

Set the z buffer to the minimum z value.

Scan-convert each polygon in arbitrary order.

For each Pixel(x,y) in the polygon, calculate the depth z(x,y) at that pixel.

Compare the depth z(x, y) with the value stored in the z buffer at that

location, Zbuffer(x, y).

If z(x,y) > Zbuffer(x,y), then write the polygon attributes (intensity, color,

etc.) to the frame buffer and replace Zbuffer(x,y) with z(x,y).

Otherwise, no action is taken.

A back-face cull (see Sec. 4-2), where appropriate, is applied as a preliminary

step.

If the plane equation for each polygon is available, calculation of the depth

at each pixel on a scan line can be done incrementally. Recall the plane

equation

ax + by + cz + d = 0

and

z= —(ax+by+d)/c0

On a scan line y = constant. Thus, the depth of the pixel at Xi = x + zx along
the scan line is

z—z = —(axj+d)/c+(ax+d)/c=a(x—xi)/c

or

= z — (a/c)zSx

But ix = 1, 50

z = z — (a/c)

An example serves to further illustrate the algorithm.

268 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Example 419 z-Buffer Algorithm

Consider the rectangle with corner coordinates Pj(10, 5, 10), P2(10, 25, 10),

P3(25, 25, 10), P4(25, 5, 10) and the triangle with vertices P5(15, 15, 15),

P6(25, 25, 5), P7(30, 10, 5). The triangle penetrates the rectangle from behind,

as shown in Fig. 4-50. The polygons are to be displayed at an image resolution

of 32 x 32, using a simple 2-bit-plane frame buffer. In the frame buffer the

background is represented by 0, the rectangle by 1, and the triangle by 2. The

z buffer is 32 x 32 x 4 bit planes. The z-buffer range is thus from 0 to 16. The

viewpoint is at infinity on the positive z axis, as shown in Fig. 4-SOb.

Initially both the frame buffer and the z buffer are set to zero. After scanconverting

the rectangle, the frame buffer contents are

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

000000000011 11111111111110000000

000000000011 11111111111110000000

00000000001111111111111110000000

00000000001111111111111110000000

00000000001111111111111 110000000

00000000001111111111111110000000

00000000001111111111111110000000

00000000001111111111111110000000

00000000001111111111111110000000

00000000001111111111111110000000

00000000001111111111111110000000

00000000001111111111111110000000

00000000001111111111111110000000

00000000001111111111111110000000

00000000001111111111111110000000

00000000001111111111111110000000

00000000001111111111111110000000

00000000001111111111111110000000

00000000001111111111111110000000

OOQ0000000I 111111111111110000000
00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

The z-buffer contents are

z-BUFFER ALGORITHM 269

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 1010 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010101010101010 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 1010 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 1010 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010101010101010 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 19 10 10 10 10 10 10 10 10 1010 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 1010 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 1010 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 1010 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 1010 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 1010 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010101010101010 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 1010 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010101010101010 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010101010101010 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010101010101010 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010101010I01010 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010101010101010 0 0 0 0 0 0 0

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

a
b

Figure 450 Penetrating triangle.

270 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Recall that the lower left corner pixel is (0, 0).

Using Newell’s method (see Sec. 4-3, Example 4-3), the plane equation
for the triangle is

3x+y+4z— 1200

Hence, the depth of the triangle at any location is

—(3x+y— 120)/4

For succeeding pixels on a scan line

zj = z — 3/4

Calculating the intersections of the triangle edges with the scan lines, using

the half scan line convention, yields the intersection pairs (24.5, 25.2),

(23.5, 25.5), (22.5, 25.8), (21.5, 26.2), (20.5, 26.5), (19.5, 26.8), (18.5, 27.2),

(17.5, 27.5), (16.5, 27.8), (15.5, 28.2), (16.5, 28.5), (19.5, 28.8), (22.5, 29.2),

(25.5, 29.5), (28.5, 29.8) for scan lines 24 to 10. Recall that a pixel whose center

is inside or on the triangle edge, i.e. for x i x X2, is activated. Scan-

converting and comparing the depth of each pixel with the z-buffer value yields
the new frame buffer contents

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000001111111111111110000000

00000000001111111111111112000000

00000000001111111111111112000000

00000000001111111111111112000000

00000000001111111111111112200000

00000000001111111112111112200000

00000000001111111122111112200000

00000000001111111222211112220000

00000000001111112222211112220000

00000000001111122222211112220000

00000000001111112222221112222000

00000000001111111112221112222000

00000000001111111111111112222000

00000000001111111111111112222200

00000000001111111111111110002200

00000000001111111111111110000000

00000000001111111111111110000000

00000000001111111111111110000000

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0•0 0

00000000001111111111111110000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

z-BUFFER ALGORITHM 271

After processing the triangle the z-buffer contents are

00000000000000000000000000000000

00000000000000000000000•000000000
00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 1010 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 5 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010101010101010 5 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010101010101010 6 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010101010101010 6 5 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010111010101010 6 5 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 12 11 10 10 10 10 10 6 6 0 0 0 0 0

0 0 0 0 0 0 0 0 0 010 10 10 10 10 10 1013 12 11 101010 10 10 7 6 5 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010141312111110101010 7 6 5 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 15 14 13 12 12 1110 10 10 10 7 6 6 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010141313121110101010 7 7 6 5 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010121111101010 8 7 6 5 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010101010101010 8 7 6 6 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010101010101010 8 7 7 6 5 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 6 5 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 1010 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0101010101010101010101010101010 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 1010 10 10 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 1010 10 10 10 0 0 0 0 0 0 0

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

As a specific example, consider the pixel at (20, 15). Evaluating z at the center
of the pixel yields

z = —[(3)(20.5) + 15.5 — 1201/4 = 43/4 = 10.75

Comparing it to the z-buffer value at (20, 15) after processing the rectangle

shows that the triangle is in front of the rectangle. Thus, the frame buffer

value at (20, 15) is changed to 2. Since for the purposes of this example the z

buffer is only 4 bits deep and thus has a range of only 0 to 15, the z value is

rounded to the nearest whole number. Consequently, the value 11 is placed in
the z buffer at location (20, 15).

The line of intersection of the triangle and the rectangle is obtained by

substituting z = 10 into the plane equation for the triangle. The result is

3x + y — 80 = 0

The intersection of this line with the triangle edges is at (20, 20) and (22.5, 12.5).
This line of intersection where the triangle becomes visible is clearly shown by
the frame buffer contents.

272 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The z-buffer algorithm can also be used for surface sectioning. Here, the

comparison is modified to

z(x, y).> Zbuffer(x, y) and z(x, y) � Zsection

where Zsection is the desired section location. The effect is to retain only those
elements at or behind Zsection.

4-8 LIST PRIORITY ALGORITHMS

The implementation of all the hidden line and hidden surface algorithms discussed

above involves establishing the priority, i.e., the depth or distance from

the viewpoint, of objects in a scene. The list priority algorithms attempt to

capitalize on this by performing the depth or priority sort first. The objective

of the sort is to obtain a definitive list of scene elements in depth priority order

based on distance from the viewpoint. If the list is definitive, then no two

elements overlap in depth. Starting with the scene element farthest from the

viewpoint, each element is written to a frame buffer in turn. Closer elements
on the list overwrite the contents of the frame buffer. Thus, the hidden surface

problem is trivially solved. Transparency effects can be incorporated into the

algorithm by only partially overwriting the contents of the frame buffer with

the attributes of the transparent element (see Ref. 4-16 and Sec. 5-8).

For simple scene elements, e.g. polygons, the technique is sometimes called

the painter’s algorithm because it is analogous to that used by an artist in

creating a painting. The artist first paints the background, then the elements

in the intermediate distance, and finally the elements in the foreground. The

artist solves the hidden surface or visibility problem by constructing the painting
in reverse priority order.

For a simple scene, such as that shown in Fig. 4-51a, obtaining a definitive

depth priority list is straightforward. For example, the polygons can be sorted

by either their maximum or minimum z-coordinate value. However, for the

scene shown in Fig. 4-Sib, a definitive depth priority list cannot be obtained

by simply sorting in z. If P and Q in Fig. 4-51b are sorted by the minimum zcoordinate

value (Zmip), then P appears on the depth priority list before Q. If

p

Figure 4.51 Polygonal priority.

LIST PRIORITY ALGORITHMS 273

P and Q are written to the frame buffer in this order, then Q will appear to

partially hide P. However, P in fact partially hides Q. The correct order in the

priority list is obtained by interchanging P and Q.

A further difficulty is illustrated by Fig. 4-52. Here, the polygons cyclically

overlap each other. In Fig. 4-52a P is in front of Q which is in front of R which

in turn is in front of P. For Fig. 4-52b, P is in front of Q which is in front of

P. A similar cyclical overlap occurs for penetrating polygons, e.g., the triangle

that penetrates the rectangle in Fig. 4-50. There, the rectangle is in front of the

triangle which is in front of the rectangle. In both examples a definitive depth

priority list cannot be immediately established. The solution is to cyclically split

the polygons along their plane of intersection until a definitive priority list is

obtained. This is shown by the dashed lines in Figs. 4-52a and b.

Newell, Newell, and Sancha (Ref. 4-16) developed a special sorting technique

for resolving priority conflicts on the depth priority list. This special sorting

technique is incorporated into the Newell-Newell-Sancha algorithm given

below. The algorithm computes a new depth priority list dynamically before

processing each frame of a scene. No restrictions are placed on the complexity

of the scene environment nor on the type of polygon used to describe elements

of the scene. The Newell-Newell-Sancha algorithm is designed to process

polygons. Newell (Ref. 4-17) has extended the concept to three-dimensional

volumes. Newell’s extension is not restricted to polyhedral volumes. It also

allows the processing of volumes of mixed types within the same scene.

The Newell-Newell-Sancha algorithm for polygons is

Establish a preliminary depth priority list, using Zmjn for each polygon as

the sort key. The first polygon on the list is the one with the smallest value

of Zmjn. This polygon, labeled P, is the farthest from a viewpoint at infinity

on the positive z axis. The next polygon on the list is labeled Q.

For each polygon on the list examine the relationship of P to Q.

If the nearest vertex of P, P , is farther from the viewpoint then the

farthest vertex of Q, Q., laxQ � P, then no part of P can hide
Q. Write P to the frame buffer (see Fig. 4-51a).

y

ba

Figure 4-52 Cyclical overlapping polygons.

274 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

If < P, then P potentially obscures not only Q but also any

polygon on the list for which min <max This is the set {Q}. However,
P may not hide any part of any polygon in the set {Q}. If this can be

determined, then P may be written to the frame buffer. A series of

tests of increasing computational difficulty is used to answer this question.

The tests are posed as questions. If the answer to any question

is yes, then P cannot obscure {Q}. P is then immediately written to the
frame buffer. The tests are

Are the bounding boxes of P and Q disjoint in x?

Are the bounding boxes of P and Q disjoint in y?

Is P wholly on the side of the plane of Q farther from the viewpoint?

(See Fig. 4-53a.)

Is Q wholly on the side of the plane of P nearer the viewpoint?

(See Fig. 4-53b.)

Are the projections of P and Q disjoint?

Each test is applied to each element of {Q}. If none of these tests

successfully writes P to the frame buffer, then P can obscure Q.

Interchange P and Q, marking the position of Q on the list. Repeat the

tests with the rearranged list. This is successful for Fig. 4-51b.

If an attempt is made to swap Q again, a cyclical overlap exists (see

Fig. 4-52). In this case, P is split along the plane of Q, the original
polygon removed from the list, and the two parts of P placed on the
list. The tests are then repeated with the new list. This step prevents

infinite looping.

Combined, the first two steps for determining whether P obscures Q are a
normal bounding box test (see Secs. 2-13 and 3-1). Since many scenes are not

square, it is more likely that the polygon bounding boxes will overlap in one
direction than in the other. When polygons are primarily horizontal or vertical,

Figure 4.53 Tests for overlapping polygons.

LIST PRIORITY ALGORITHMS 275

using individual tests is more efficient. As written, the algorithm assume& the

scene is wider than it is high, and thus polygons are primarily horizontal. The

order of the tests is interchanged if the scene is higher than it is wide. If the

scene is square, or if its composition is isomorphic, then the order of the tests
is immaterial.

The third and fourth tests can be implemented using any of the visibility

tests previously discussed (see Sec. 3-15 and Example 3-22). Since the plane

equation or the normal for each polygon is frequently available, a simple substitution

test is convenient. If the relationship of the polygon Q to the polygon
P is desired, then the coordinates of the vertices of Q are substituted into the

plane equation of P. If the signs of the results are all the same, then Q lies

wholly on one side of P. As with the other hidden surface algorithms discussed

previously, a preliminary back-face cull is used if appropriate. Example 4-20

more fully illustrates this for polygons skewed in space.

Example 4-20 Relationship Test for Skewed Polygons

Consider the three polygons P, Q i, Q shown in Fig. 4-54. The polygon vertices
are

P: (1, 1, 1), (4,5, 2), (5, 2,5)

(2, 2, 0.5), (3, 3, 1.75), (6, 1, 0.5)

Q2: (0.5, 2, 5.5), (2, 5, 3), (4, 4, 5)

It is desired to determine if Q i and Q2 are wholly on one side of P. This is not

clear from the three orthographic views in Fig. 4-54. The plane equation of
P is

15x — 8y — 13z + 6 = 0

The test function is then

T.F. 15x — 8y — 13z + 6

Substituting the vertices of Q i into the test function yields

T.F.i = 15(2) — 8(2) — 13(0.5) + 6 = 13.5>0

T.F.2 = 15(3) — 8(3) — 13(1.75)+6 = 4.25>0

T.F.3 = 15(6) — 8(1) — 13(0.5) + 6 = 81.5>0

Since the sign of all the test functions is positive, the polygon Q i lies wholly on

one side of the plane of P.

Substituting the vertices of Q2 into the test function yields

T.F.4 = 15(0.5) — 8(2) — 13(5.5) + 6 = —74<0

T.F.5 = 15(2) — 8(5) — 13(3) + 6 = —43 <0

T.F.6 = 15(4) — 8(4) — 13(5) + 6 = —31 <0

Again, all the signs of the test functions are the same; and the polygon Q2 lies

wholly on one side of the plane of P.

Figure 4-54d clearly shows that Q i is on the side of the plane of P away

from a viewpoint at infinity on the positive z axis. Hence, it is partially obscured

276 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

by P. Similarly, Fig. 4-54d clearly shows that Q2 is on the side of the plane

of P nearer a viewpoint at infinity on the positive z axis. Thus, it will partially
obscure P.

From this example it is clear that

If the signs of the test function for every vertex of a polygon are the

same and positive or zero, then the polygon is on the far (hidden) side

of the plane of P.

If the signs of the test function for every vertex of a polygon are the

same and negative or zero, then the polygon is on the the near (visible)

side of the plane of P.

If the test functions for every vertex of a polygon are zero, then the

polygon lies in the plane of P.

The last of the series of tests is particularly expensive because it requires

a full determination of whether the projections of P and Q are disjoint. These

techniques have previously been discussed in the context of the Warnock algorithm

(see Sec. 4-4).

y

4

2

0-

0

0

0

2

4

y

4

2

1

0
2 0

JL

2

2

4 6
a

4 6

6 4b

z

Figure 4-54 Polygons for Example 4-20.

d

LIST PRIORITY ALGORITHMS 277

If a cyclical overlap exists, the Sutherland-Hodgman polygon clipping algorithm

(see Sec. 3-16) can be used to split the polygons along the line of the

intersections of their planes. Here, the plane of Q is used as the clipping plane.

Each edge of P is clipped against Q to form the two new polygons. The Cyrus-

Beck clipping algorithm (see Sec. 3-11) can be used to find the intersection of

each edge of P with the plane of Q.

The Newell-Newell-Sancha algorithm attempts to solve the hidden surface

problem dynamically by processing all the polygons in the scene for each frame

being presented. If the scene is complex and the frame rate high, as in realtime

simulation systems, sufficient processing capability may not be available

on a general purpose computer (see Ref. 4-18). However, for many real-time

simulations, e.g. aircraft landing, the scene is static and only the viewpoint

changes. Schumacker et al. (Ref. 4-19) take advantage of several more general

priority characteristics to precompute, off-line, the priority list for simulations
of such static environments.

The Schumacher algorithm allows only convex polygons in the scene. These

polygons are grouped into clusters of polygons that are linearly separable.

Clusters are linearly separable if a nonintersecting, dividing plane can be passed

between them. Several two-dimensional clusters are shown in Fig. 4-55a. The

separating planes are labeled a and /3. They divide the scene into four regions,

A, B, C, D. A viewpoint can be located in any of these four regions. The

tree structure shown in Fig. 4-55b establishes the cluster priority for the scene.

For any viewpoint in the two-dimensional plane the cluster priority can be

precomputed. Substituting the coordinates of the viewpoint into the equations

for the separating planes locates the appropriate node in the cluster priority

tree. The hidden surface problem is then solved for each of the clusters in

reverse priority order.

a

Figure 4-55 Cluster priority.

Example 4-21 Cluster Priority

B

2,1,3

y1
+

3,2,1 1,2,3

b

Assume that the separating planes a and 3 shown in Fig. 4-55 intersect at the

origin of the coordinate system. Further assume that a is the y 0 plane and

278 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

/3 the plane through the line y = x, both perpendicular to the paper. The plane
equations and appropriate test functions are then

a: yO (T.F.)iy

/3: y—x=0 (T.F.)2=y—x

A viewpoint on the line 2y — x 0, e.g. at (20, 10), yields

(T.F.)i = 10>0

(T.F.)2 10—20= —10<0

Thus, the viewpoint is in region D. From Fig. 4-55b, the cluster priority is

3, 1, 2.

Clusters are used to subdivide a scene. The simplest cluster is a single
polygon. Clusters can be complex polygonal or nonpolygonal surfaces and

volumes, each with an appropriate hidden surface technique as described by
Newell (Ref. 4-17).

Within certain types of clusters, the priority of individual polygons is independent
of the viewpoint (Refs. 4-19 and 4-20). This observation is one of the

major contributions of the Schumacker algorithm. It allows precomputation of
the entire priority list. Figure 4-56a shows a two-dimensional cluster for which

the individual polygonal priorities can be precalculated. The priority of each

polygon is established by considering whether a given polygon can hide any

other polygon from any viewpoint. The more polygons that a given polygon

can hide, the higher its priority. To establish the polygonal priority within a

cluster for a given viewpoint, the self-hidden polygons are first removed. The

remaining polygons are then in priority order as shown in Fig. 4-56b and c.

The list priority algorithms operate in both object and image space. In
particular, the priority list calculations are carried out in object space and the
result written to an image space frame buffer. The use of a frame buffer is

critical to the algorithm.

Because, like the Warnock and z-buffer algorithms, the list priority algorithms

process polygons in arbitrary order, applying antialiasing techniques to

the resulting images is difficult. However, like the Warnock and z-buffer algorithms,

the postfiltering antialiasing technique is applicable (see Sec. 2-25).

The list priority, Warnock, and z-buffer algorithms may also be implemented
as hidden line algorithms. When implemented as hidden line algor

2 : L.... Viewpoint :

7
ewpoint

a b c

Figure 4-56 Priority within a cluster.

SCAN LINE ALGORITHMS 279

rithms, the edge of each polygon is written to the frame buffer with a unique

attribute. However, the interior of each polygon is written to the frame buffer

with the background attribute. In this way polygons nearer the viewpoint

“obscure” polygon edges further from the viewpoint.

4-9 SCAN LINE ALGORITHMS

The Warnock, z-buffer, and list priority algorithms process scene elements

or polygons in arbitrary order with respect to the display. The scan line

algorithms, as originally developed by Wylie et al. (Ref. 4-21), Bouknight

(Refs. 4-22 to 4-24), and Watkins (Ref. 4-25), process the scene in scan line

order. Scan line algorithms operate in image space.

Scan-conversion of single polygons was discussed in Chap. 2. Scan line

hidden surface and hidden line algorithms are extensions of those techniques.

Scan line algorithms reduce the hidden line/hidden surface problem from three

dimensions to two. A scan plane is defined by the viewpoint at infinity on

the positive z axis and a scan line, as shown in Fig. 4-57. The intersection

of the scan plane and the three-dimensional scene defines a one-scan-line-high

window. The hidden surface problem is solved in this scan plane window.

Figure 4-57b shows the intersection of the scan plane with the polygons. The

figure illustrates that the hidden surface problem is reduced to deciding which

line segment is visible for each point on the scan line.

At first glance it might appear that the ordered edge list algorithm discussed

in Sec. 2-19 could be applied directly. However, Fig. 4-57b clearly shows

that this will yield incorrect results. For example, for the scan line shown in

Fig. 4-57 there are four active edges on the active edge list. The intersections

of these edges with the scan line are shown by the small dots in Fig. 4-57b.

The ordered edge list is shown by the numbers in Fig. 4-57b. Extracting the

intersections in pairs causes the pixels between 1 and 2 and between 3 and 4

to be activated. The pixels between 2 and 3 are not activated. The result is

Screen

Scan plane

z ba

Figure 4-57 Scan plane.

280 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

incorrect. A “hole” is left on the scan line where in fact the scan line intersects

two polygons. Two correct scan line algorithms are discussed in the next two
sections.

4-10 SCAN LINE z-BUFFER ALGORITHM

One of the simplest scan line algorithms that solves the hidden surface problem

is a special case of the z-buffer algorithm discussed in the previous section.

It is called a scan line z-buffer algorithm (Ref. 4-26). In this algorithm the

display window is one scan line high by the horizontal resolution of the display

wide. Both the frame buffer and the z-buffer need only be I bit high by the

horizontal resolution of the display wide by the requisite precision deep. The

required depth precision depends on the range of z. For example, the frame

buffer might be I x 512 x 24 bits and the z buffer I x 512 x 20 bits.

Conceptually, the algorithm is quite simple. For each scan line, the frame

buffer is initialized to the background and the z buffer to the minimum z.

The intersection of the scan line with the two-dimensional projection of each

polygon in the scene, if any, is found. These intersections occur in pairs, as

discussed in Sec. 2-19. As each pixel on the scan line between the intersection

pairs is considered, its depth is compared to the depth recorded in the z buffer

at that location. If the pixel depth is greater than that in the z buffer, then

this line segment is the currently visible segment. Hence the polygon attributes

for this line segment are written to the frame buffer at that pixel location; and

the z buffer for that location is updated. When all the polygons in the scene

have been processed, the scan line frame buffer contains the hidden surface

solution for that scan line. It is copied in scan line order, i.e. left to right, to

the display. Both pre- and postfiltering antialiasing techniques can be used with

the scan line z-buffer algorithm.

In practice, examining each polygon for each scan line is inefficient. A

variation of the ordered edge list discussed in Sec. 2-19 is adopted. In particular,

a y-bucket sort, an active polygon list, and an active edge list are used

to increase the efficiency of the algorithm.

Using these techniques a scan line z-buffer algorithm is

To prepare the data:

For each polygon determine the highest scan line intersected by the

polygon.

Place the polygon in the y bucket corresponding to this scan line.

Store, e.g., on a linked list, at least y, the number of scan lines

crossed by the polygon, a list of the polygon edges, the coefficients

of the plane equation (a, b, c, d), and the rendering attributes for

each polygon in a linked list.

SCAN LINE z-BUFFER ALGORITHM 281

To solve the hidden surface problem:

Initialize the display frame buffer.

For each scan line:

Initialize the scan line frame buffer to the background.

Initialize the scan line z buffer to Zmin.

Examine the scan line y bucket for any new polygons. Add

any new polygons to the active polygon list.

Examine the active polygon list for any new polygons. Add

any new polygon edge pairs to the active edge list.

If either element of a polygon edge pair has dropped off the

active edge list, determine if that polygon is still on the active

polygon list. If it is, complete the edge pair for this polygon

on the active edge list. If not, remove the other element of the

edge pair from the active edge list.

The active edge list contains the following information for each

polygon edge intersection pair.

xi the intersection of the left element of the polygon

edge pair with the current scan line.
tixj the increment in x from scan line to scan line.

yj the number of scan lines crossed by the left side.

Xr the intersection of the right element of the polygon

edge pair with the current scan line.
tiXr the increment in Xr from scan line to scan line.

Yr the number of scan lines crossed by the right side.

z the depth of the polygon at the center of the pixel

corresponding to the left element of a polygon edge

pair.

the increment in z along the scan line. Equal to a/c
for c 0.

the increment in z from scan line to scan line. Equal
to b/c for c 0.

The polygon edge pairs are placed on the active edge list in

arbitrary order. Within an edge pair, the intersections are

sorted into left-right order. More than one edge pair may occur

for a polygon.

For each polygon edge pair on the active edge list:

Extract polygon edge pairs from the active edge list.

Initialize z to z.

282 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

For each pixel such that xi � X + 1/2 � Xr, calculate the

depth z(x + l/2,y + 1/2) at the center of the pixel using the

plane equation for the polygon. On a scan line, this reduces
to the incremental calculation

Z-j = Z LZ

Compare the depth z(x + l/2,y + 1/2) with the value stored

in the scan line z buffer at Zbuffer(X). If z(x + 1/2, y + 1/2)>

Zbuffer(x), then write the polygon attributes to the scan line

frame buffer and replace Zbuffer(X) with z(x + I/2,y + 1/2).

Otherwise no action is taken.

Write the scan line frame buffer to the display.

Update the active edge list:

For each polygon edge pair decrement iyj and ‘Yr. If either

iyj or Ir <0, remove that edge from the list. Flag both its

location on the list and the polygon that generated it.

Calculate the new x intercepts:

Xlnew = XIjd + IXj

Xrnew = Xrold + Xr

Calculate the polygon depth at the left edge using the plane

equation for the polygon. Between scan lines this reduces
to the incremental calculation

Zlnew = Z101d LZX4X — IZy

Decrement the active polygon list. If iy for any polygon

<0, remove that polygon from the list.

Again a preliminary back-plane cull is used if appropriate. An example serves

to illustrate the algorithm more fully.

Example 4-22 Scan Line z-Buffer Algorithm

Reconsider the rectangle and triangle previously discussed in Example 4-19.
Recall that the rectangle had corner coordinates Pi(10, 5, 10), P2(10, 25, 10),
P3(25, 25, 10), P4(25, 5, 10) and the triangle vertices P5(15, 15, 15), P6(25, 25,
5), P7(30, 10, 5) as shown in Fig. 4-50. The display resolution is again 32 x
32 x 2 bit planes. Again, the background is represented by 0, the rectangle
by 1, and the triangle by 2. The viewpoint is at infinity on the positive z axis.
Using the half scan line convention for both polygons the maximum scan line
that intersects the polygons is at y = 24. Thus, only the y = 24 bucket contains
any information. All others are empty.

The active polygon list at y = 24 for the rectangle (polygon 1) and the
triangle (polygon 2) contains

SCAN LINE z-BUFFER ALGORITHM 283

rectangle: 19,2, PIP2, P3P4, 0,0, 1, —10, 1

triangle: 14,3,P5P6,P6P7,P7P5,3,1,4,—120,2

The entries in this list correspond to y, the number of edges, the edge list,

the coefficients of the plane equation (a, b, c, d), and the polygon number,

respectively. Note that for the rectangle the list contains only two edges.

Horizontal edges are ignored.

At scan line 15 (see Fig. 4-58) the active polygon list contains both polygons.

For the rectangle y 11. For the triangle y = 5. Initially the active edge

list contains two pairs of intersections, the first for the rectangle, the second for

the triangle:

rectangle: 10, 0, 19, 25, 0, 19, 10, 0, 0

triangle: 24 1/2, — 1, 9, 25 1/6, 1/3, 14, 5 1/2, 3/4, 1/4

where the elements correspond to xj, iXxi, yj, Xr, Xr, tYr, Zj, zy. Just prior
to processing scan line 15, the active edge list contains

rectangle: 10, 0, 10, 25, 0, 10, 10, 0, 0

triangle: 15 1/2, —1, 0, 28 1/6, 1/3, 5, 14 1/2, 3/4, 1/4

After first resetting the scan line frame and z buffers to 0 and then scan-

converting the rectangle, the buffers contain

Scan line frame buffer

00000000001111111111111110000000

Scan line z buffer

00000000001010101010101010101010101010100000000

Now the triangle is considered. At the left edge z = 14.5, which is greater

than Zbuffer(15) = 10. Thus, the triangle attributes are written to the frame

buffer and the scan line z buffer is updated. The results after scan-conversion

is complete are shown below

Scan line frame buffer

00000000001111222222211112200000

Scan line z buffer

00000000001010101015141312121110101010106600000

where the z-buffer values have been rounded to integers to save space. The

result is the same as the corresponding scan line in Example 4-19. The frame

buffer is copied, in left to right order, to the display.

At this point, the active edge list is updated. Decrementing yields yi =

— 1 < 0. Consequently the edge P6P5 is deleted from the active edge list and

the polygon flagged. Updating the right edge of the triangle yields

Xrnew Xrcjld + IXr = 28 1/6 + 1/3 28 1/2

‘Yrnew = ‘YroId — 1 = 5 — I 4

After updating the active edge list, the active polygon list is decremented.

Since the rectangle remains on the list, the next pass through the algorithm will

insert the edge P5P7 into the active edge list at the flagged location. At scan

284 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

line 14 (y = 14.5) the intersection with the edge P5P7 yields a new xj = 16 1/2.

The triangle depth is

zj —[ax + by + d]/c —[(3)(16.5) + (1)(14.5) — 120]/4 = 14

The resulting active edge list at scan line 14 is then

rectangle: 10, 0, 9, 25, 0, 9, 10, 0, 0

triangle: 16 1/2, 3, 4, 28 1/2, 4, 14, 3/4, 1/4

The complete results are shown in Example 4-19.

Figure 4-58 Polygons for Example

4-22.

4-11 A SPANNING SCAN LINE ALGORITHM

The scan line z-buffer algorithm calculates the polygon depth at every pixel on

the scan line. The number of depth calculations can be reduced by introducing

the concept of spans as in the original Watkins algorithm (Ref. 4-25). Figure

4-59a shows the intersection of two polygons with a scan plane. By dividing

the scan line at each edge crossing into segments called spans (see Fig. 4-59a),

the solution of the hidden surface problem is reduced to selection of the visible

segment in each span. Figure 4-59a shows that only three types of spans are

possible:

The span is empty, e.g. span 1 in Fig. 4-59a. The background is displayed.

The span contains only one segment, e.g. spans 2 and 4 in Fig. 4-59a. The

polygon attributes for that segment are displayed for the span.

The span contains multiple segments, e.g. span 3 in Fig. 4-59a. The depth

of each segment in the span is calculated. The segment with the largest z

value is the visible segment. The polygon attributes for that segment are

displayed for the span.

If penetrating polygons are not allowed, it is sufficient to calculate the depth

of each segment in a span at one end of the span. If two segments touch but

do not penetrate at the end of a span, the depth calculation is performed at the

Scan line

0 10 20 30

A SPANNING SCAN LINE ALGORITHM 285

X 11ETX

1 2 34’ 12 3 451 i,2345’
z z z

Span a b C

Figure 4-59 Scan line spans.

midpoint of the spans as shown in Fig. 4-59b. For span 3, a depth calculation

performed at the left end of the span yields inconclusive results. Performing the

depth calculation at the midpoint of the span, as shown by the x’s in Fig. 4-59b,

yields the correct results.

If penetrating polygons are allowed, then the scan line is divided not only at

each edge crossing but also at each intersection as shown in Fig. 4-59c. Depth

calculations at each span end point will yield indeterminate results. Here it

is sufficient to perform the depth calculation at the midpoint of each span, as

shown by the x’s in Fig. 4-59c.

More sophisticated span generation techniques can reduce the number of

spans and hence the computational requirements. Frequently, simple methods

can also yield surprising results. For example, Watkins (Ref. 4-25) suggested

a simple midpoint subdivision technique. In Fig. 4-60a, a simple comparison

of the end point depths of the lines ab and cd shows that cd is always visible.

However, Fig. 4-60b shows that this is not always the case. But by dividing at

the midpoint of cd it is easy to show that both segments of cd are visible.

Further, it is frequently possible to avoid depth calculations altogether.

Romney et al. (Ref. 4-27) showed that, if penetration is not allowed, and if

exactly the same polygons are present, and if the order of the edge crossings

is exactly the same on a given scan line as on the previous scan line, then

the depth priority of the segments in each span remains unchanged. Hence,

depth priority calculations for the new scan line need not be made. Hamlin

and Gear (Ref. 4-28) show how, in some circumstances, the depth prioity can

be maintained even if the order of the edge crossings changes.

d
C

a

z z

Figure 4-60 Alternate spanning technique.

286 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The basic structure developed for the scan line z-buffer algorithm is also

applicable to a Watkins-style spanning scan line algorithm. Only the inner loop,

i.e., how an individual scan line is processed, and the contents of the active edge

list need be changed. Here it is not necessary to maintain the polygon edge—

scan line intersections in pairs. Individual edges are placed on the active edge

list. The active edge list is sorted into increasing x order. A polygon identifier

and a polygon active flag are used to identify left and right elements of the

edge pair. The polygon active flag is initially set to false at the beginning of a

scan line and complemented each time an edge for that polygon is processed.

Encountering a left edge for a polygon will cause that polygon’s flag to be set

to true, while encountering a right edge for that polygon will return it to false.

Example 4-23 below more fully illustrates the use of the flag.

The spans for each polygon can be determined as a scan line is processed.

If penetration is not allowed, each edge intersection on the active edge list

represents a span boundary. As discussed above, the number of polygons

active within a span determines how a span is processed. Depth calculations

are performed only if more than one polygon is active in a span. If penetration

is allowed, and more than one polygon is active within a span determined by

the edge intersections, then it is necessary to check for possible intersecting

segments within the span (see Fig. 4-59c). A convenient method for doing this

is to compare the signs of the differences in the depths of pairs of segments at

the span end points. Each pair of segments in the span must be examined. For

example, if two segments have depths z1,z ,z 2i,Z2 at the left and right end
points, then

if Sign(zi, — z21) � Sign(zi. — z2) (4-9)

the segments intersect. If the segments intersect, the span is subdivided at the

intersection. The process is repeated with the left hand span until the span is

clear of intersections. For these spans, the depth calculation is performed at

the midpoint of the span.

If either sign in the above test is zero, the segments intersect at the end of

the span. Here, it is sufficient to determine the depth at the opposite end of

the span rather than subdividing the span.

The structure of the spanning scan line algorithm is then

To prepare the data:

Determine for each polygon the highest scan line intersected by the

polygon.

Place the polygon in the y bucket corresponding to this scan line.

Store at least y, the number of scan lines crossed by the polygon, a

list of the polygon edges, the coefficients of the plane equation (a, b, c,

d), and the rendering attributes for each polygon on a linked list.

To solve the hidden surface problem:

For each scan line:

A SPANNING SCAN LINE ALGORITHM 287

Examine the scan line y bucket for any new polygons. Add any

new polygons to the active polygon list.

Examine the active polygon list for any new polygons. Add any

new polygon edges to the active edge list. The active edge list contains

the following information for each polygon edge intersection:

x the intersection of the polygon edge with the current
scan line

x the increment in x from scan line to scan line

iy number of scan lines crossed by the edge
P a polygon identifier

Flag a flag indicating whether the polygon is active on a

given scan line.

Sort the active edge list into increasing x order.

Process the active edge list. The details are shown in the flowchart

given in Fig. 4-61 and the modifications given in Figs. 4-62 and 4-63.

Update the active edge list:

For each edge intersection, decrement y. If iy < 0, remove

the edge from the active edge list.

Calculate the new x intercepts:

Xnew = X01d + £X

Decrement the active polygon list:

For each polygon, decrement yp. If iyp for any polygon <0,

remove the polygon from the list.

The algorithm given above does not take advantage of depth priority coherence

as suggested by Romney. If penetration is not allowed, modification of the

algorithm to take advantage of depth priority coherence results in significant

savings.

The simple spanning algorithm given in Fig. 4-61 assumes that polygon

segments in a span do not intersect. If the segments intersect at a span end,

then, as discussed above, the depth calculation is performed at the opposite

end of the span for these segments. A simple modification of the calculation

block for the flowchart shown in Fig. 4-61 is given in Fig. 4-62.

If the segments intersect within a span, i.e. the polygons penetrate, then

either a more complex spanner must be used or the intersections must be

inserted into the ordered edge list. The spanning algorithm shown in Fig. 4-61

is applicable when penetrating polygons are allowed, provided the active edge

list includes the intersections, each intersection is flagged, the polygon flag

complementation is modified, and the depth priority calculations are carried

out at the center of the span.

288 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 4-63 illustrates a modification of the algorithm given in Fig. 4-61.

The modified algorithm assumes that the active edge list does not contain

the intersection points. The intersection segments must be discovered and

processed on the fly. Here, each span is examined for intersecting segments.

If any are found, the intersection point is calculated and the span subdivided

at the intersection point. The right hand subspan is pushed onto a stack. The

algorithm is recursively applied to the left hand subspan until a subspan with

More_ed)%%flO anleft<)10
eyes yes

Spanright.—x I
segment—Backg round

segment

Return

Figure 4-61 Flowchart for spanner for nonpenetrating polygons.

A SPANNING SCAN LINE ALGORITHM 289

Segm ents touch?

no

At spanleft?

yesCalculate z at

spanleft for Calculate z at

spanright for

Figure 4-62 Flowchart for modified depth calculation for Fig. 4-61.

no Polygon count>

z atCalculate intersection

I span center forpoint x1

leach active polygon

Subdivide span

at the intersection

I Visible segmente-polygon]point
with Zmax

Push right hand

subspan onto an ..— Any spans on
intersection stack jntersection stac

yes

[Process left hand 1 Display visible segmeijportion

Spanright.-x j [S pan left.— SpanrighJ

I Pop span from I

[intersection stackj

____________ 1spanrihtStcva1ueJ

Figure 4-63 Modification of the flowchart in Fig. 4-61 for penetrating polygons.

290 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

no intersections is found. This subspan is displayed, and a new subspan popped

from the stack. The process is repeated until the stack is empty. The technique
is similar to that suggested by Jackson (Ref. 4-29). As a matter of interest the

front and back cover photos were generated with a Watkins algorithm.

For simplicity, the modified algorithm shown in Fig. 4-63 assumes that segments

intersect only if they cross. Because segments may touch at the ends

of the spans, the depth calculation is carried out at the center of the span.

The modified calculation block shown in Fig. 4-62 can be substituted to avoid

this additional computational expense. A further modification of the algorithm

performs a z-priority sort for spans with intersections to determine if the intersecting

segments are visible before subdividing the span. This modification

reduces the number of subspans and increases the algorithm’s efficiency. If

appropriate, a preliminary back-plane cull is also used to increase efficiency.

Example 4-23 Spanning Scan Line Algorithm

Again consider the rectangle and penetrating triangle previously discussed in
Examples 4-19 and 4-22. Scan line 15 is to be considered. The half scan line
convention is used. The intersection of the scan plane at y = 15.5 with the
polygons is shown in Fig. 4-64. Figure 4-58 shows a projection of the polygons
onto the xy plane. Just prior to processing scan line 15, the active edge list,
sorted into x increasing order, contains

10,0, 10, 1,0, 151/2, —1,0, 2,0, 25,0, 10, 1, 0, 281/6, 1/3, 5, 2,0

where the numbers are considered in groups of five, representing x, iy, P,

Flag as defined in the algorithm above. Figure 4-64 shows the five spans that

result from the four intersections given on the active edge list. Figure 4-64 also

shows that the polygon segments intersect within the third span.

The scan line is processed from left to right in scan line order. The first

span contains no polygons. It is displayed (pixels 0 to 9) with the background

attributes. In the second span the rectangle becomes active. Its flag is complemented
to 1:

Flag = —Flag + I

The span contains only one polygon. Consequently it is displayed (pixels 10 to

14) with the rectangle’s attributes.

The third span starts at x = 15 1/2. The triangle becomes active and its

flag is complemented to 1, the polygon count is increased to 2, Spanleft becomes

15 1/2, and the next edge at x = 25 is extracted from the active edge list.

Spanright is set equal to 25. The polygon count is greater than one. The

segments are examined for possible intersection (see Fig. 4-63).

The plane equation for the triangle is (see Example 4-19)

3x + y + 4z — 120 0

For scan line 15, y = 15.5; and the triangle depth at any pixel becomes

z (120 — y — 3x)/4 = (120 — 15.5 — 3x)/4 = (104.5 — 3x)/4

Thus using the center of the pixel, i.e. x + 1/2

A SPANNING SCAN LINE ALGORITHM 291

Z21 = [104.5 — (3)(15.5)]/4 = 14.5

Z2r = [104.5 — (3)(25.5)]/4 = 7.0

Since the rectangle is of constant depth,

zi1= 10

Z1r 10

Recalling Eq. (4-9)

Sign(zi1 — Z21) = Sign(10 — 14.5) <0

Sign(zi — Z2) = Sign(10 — 7) > 0

Since Sign(zi1 — z21) Sign(zi — z2), the segments intersect. The intersection
of the two segments is

z = (120 — 15.5 — 3x)/4 = 10

Xj = 21.5

The span is subdivided at X, = 21.5. The value for Spanright is pushed onto the

stack. Spanright is set to Xi, i.e. 21.5.

The subspan from x = 15.5 to x = 21.5 contains no intersections. The

depth at the center of the subspan, i.e. at x = 18.5, for the triangle is

Z2 = (104.5 — 3x)/4 = [104.5 — (3)(18.5)]/4 12.25

which is greater than z = 10 for the rectangle. Thus, the triangle is displayed

for this subspan (pixels 15 to 20).

Spanleft is set to Spanright and the right hand subspan popped from the

stack. Spanright is set to the stack value, i.e. x = 25. The subspan from

x = 21.5 to x = 25 contains no intersections. The depth at the center of the

subspan, i.e. at x = 23.25, for the triangle is

Z2 = (104.5 — 3x)/4 [104.5 — (3)(23.25)]/4 = 8.69

which is less than z = 10 for the rectangle. Thus, the rectangle is visible for

this subspan (pixels 21 to 24).

The intersection stack is now empty. The routine given in Fig. 4-63 exits

to that in Fig. 4-61. The span right polygon is the rectangle. The rectangle

becomes inactive. Its flag is complemented to 0 which also causes the polygon

count to be reduced to 1. The segment is now displayed using the rectangle’s

attributes. Spanleft is reset to Spanright.

The next edge extracted from the active edge list is for the triangle at

x = 28 1/6. The span is from x = 25 to x = 28 1/6. The polygon count is 1.

The active polygon in the span is the triangle. Consequently, the segment is

displayed with the triangle’s attributes (pixels 25 to 27). The span right polygon

is the triangle. Its flag is complemented to 0, and the triangle becomes inactive.

The polygon count is now 0. Spanleft is set to Spanright, i.e. 28 1/6.

There are no more edges in the active edge list. Here, Xmax 32, 50

Spanleft < Xrn. Thus, Spanright is set to Xmax and the display segment to

the background. The span (pixels 28 to 31) is displayed with the background

attributes, and Spanleft reset to Spanright. Again there are no more edges, but

Spanleft = Xmax, and the processing of the scan line is complete.

The final results are identical to those shown in Example 4-19.

292 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

0 10 20 30

10 ‘f:ianie
z 2 3 4 5

Figure 4-64 Scan plane for Example 4-23.

Scan line algorithms can also be implemented as hidden line algorithms.

For example, Archuleta (Ref. 4-30) has implemented a hidden line version of

the Watkins algorithm.

4-12 SCAN LINE ALGORITHMS FOR CURVED SURFACES

The Catmull subdivision algorithm for curved surfaces (see Sec. 4-6), although

simple and elegant, unfortunately does not present the result in scan line order.

This is inconvenient for raster scan output devices. A curved surface can of

course be polygonally approximated and scan-converted using any of the scan

line algorithms discussed above. However, to obtain a high degree of accuracy

the number of polygons in a reasonably complex scene becomes excessive.

Further, unless shading interpolation techniques are used (see Chap. 5), the

result will have a faceted appearance. In any case, the silhouette edges will be

piecewise linear, i.e., represented as connected, short, straight line segments.

Algorithms that display parametric bipolynomial, typically bicubic, surfaces

directly from the surface description in scan line order have been developed by

Blinn (Ref. 4-31), Whitted (Ref. 4-32), Lane and Carpenter (Refs. 4-33 and 4-

34), and Clark (Ref. 4-35). First the Blinn and Whitted algorithms, which are

similar, are discussed. Then the Lane-Carpenter and Clark algorithms, which
are also similar, are considered.

Recalling that a scan line algorithm intersects the scene with a scan plane

through the eyepoint and a scan line immediately shows the difference between

polygonal and curved (sculptured) parametric surfaces. For a polygonal surface,

all the intersections are straight lines. These straight lines are easily represented

by their end points. For a curved parametric surface the intersection of the scan

plane and the surface is given by the relation

y(u,w) = yscan = constant

where u and w are the parametric values for the surface. The result is a curve,

called either a level curve or a contour. The curve is not necessarily singlevalued.

Further, there may be multiple curves at any contour level. Finally,

having found the curve(s) of intersection with the scan line, it is also necessary

to find each location along the scan line, i.e. each x = x(u,w), and to be able

to calculate the depth at that location, z = z(u,w), to determine its visibility.

SCAN LINE ALGORITHMS FOR CURVED SURFACES 293

Mathematically, the requirement can be stated as: Given a scan line value

y and a location of a point on that scan line x, obtain the inverse solution for

the parameters u,w; i.e. find

u = u(x, y)

w = w(x, y)

Once the parameters u, w are known, the depth is obtained from

z = z(u, w)

Hence, the visibility of that point on the scan line may be determined. Unfortunately,

there is no known closed form solution for these equations. Both Blinn

and Whitted use numerical procedures to obtain a solution. Specifically, a

Newton-Raphson iteration technique is used (see Ref. 4-36). The NewtonRaphson

technique requires an initial estimate. Both algorithms take advantage

of scan line coherence to provide this initial estimate and reduce the number of

iterations per pixel. Unfortunately Newton-Raphson iteration can become unstable.

Kajiya (Ref. 4-37) presents a more robust but more complex procedure

based on concepts from algebraic geometry.

Briefly, in the context of the structure of a scan line algorithm, the inner

loop for the Blinn and Whitted algorithms is

Given a parametric surface from the active patch list with

x =x(u,w)

y =y(u,w)

z = z(u,w)

For each scan line y:

For each pixel x on a scan line:

For each surface intersecting that scan line at x:

Solve for u = u(x,y), w = w(x,y).

Calculate the depth of the surface z = z(u, w).

Determine the visible surface at x,y and display it.

The algorithm illustrates another fundamental difference between a polygonal

surface and a curved parametric surface. The algorithm says, “For each

surface intersecting that scan line.” Surfaces become active at the highest intersecting

scan line and inactive at the lowest intersecting scan line. These

intersections occur at local maxima and minima of the surface. For polygonal

surfaces, local maxima and minima always occur at a vertex. Scan line algorithms

use these vertices and the surface edges that connect them to decide

when a polygon should be added to or deleted from the active polygon and

active edge lists.

For curved surfaces local maxima and minima do not necessarily occur at

vertices. They frequently occur interior to the surface along silhouette edges.

294 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

A silhouette edge interior to a surface is identified by the vanishing of the z

component of the surface normal. Several examples are shown in Fig. 4-65.

For a curved surface, surfaces may be added to or deleted from the active

surface list at silhouette edges, and scan line spans may start and stop at

silhouette edges. Both the Blinn and Whitted algorithms solve this problem

by effectively dividing the surface along the silhouette edges.

The Lane-Carpenter and Clark parametric curved surface algorithms are

basically subdivision techniques. However, in contrast to the original Catmull

subdivision algorithm which proceeds in arbitrary order, these algorithms proceed

in scan line order. The algorithms perform a y-bucket sort of the surface

patches based on the maximum y value for each patch. At each scan line,

patches from an active patch list that intersect that scan line are subdivided

until each subpatch either meets a flatness criterion or no longer intersects the

scan line. Subpatches that no longer intersect the scan line are placed on an inactive

patch list for subsequent consideration. Subpatches that meet the flatness

criterion are treated as planar polygons and scan-converted using a polygonal

scan line algorithm. However, each of these approximately planar polygons is a

parametric subpatch. All the information available for the parametric subpatch

is available for determining individual pixel attributes during polygonal scan-

conversion. Using this information allows subpatches to be blended together

smoothly. In fact, if the flatness criterion is less than one pixel, a smooth silhouette

results. Further, back-facing or self-hidden polygons can be eliminated

by simply determining the normal to the surface (see Sec. 4-3). If the normal

points away from the viewpoint, the subpatch is eliminated. This saves considerable

processing.

Although both the Lane-Carpenter and the Clark algorithms use the idea

expressed above, the Clark algorithm preprocesses the patches before scan-

converting, while the Lane-Carpenter algorithm dynamically subdivides the

patches as the frame is processed. The Lane-Carpenter algorithm requires considerably

less memory but performs more subdivisions than the Clark algorithm.

Figure 4-66 was generated with the Lane-Carpenter algorithm.

Figure 4-65 Silhouette edges.

SCAN LINE ALGORITHMS FOR CURVED SURFACES 295

Figure 4-66 Teapot defined by 28 bicubic patches rendered with the Lane-Carpenter

algorithm. (Courtesy of Loren Carpenter.)

Briefly, in the context of a scan line algorithm, the inner loop for the Lane-

Carpenter algorithm is

For each scan line y:

For each patch on the active patch list:

if the patch is flat then

add the patch to the polygon list
else

split the patch into subpatches

if a subpatch still intersects the scan line then

add it to the active patch list
else

add it to the inactive patch list.
end if

end if

Scan-convert the polygon list.

Both the Lane-Carpenter and the Clark algorithms take advantage of the

characteristics of particular basis functions used to generate parametric patches

to efficiently subdivide the patch. However, the algorithm is applicable for any

parametric surface patch for which an efficient subdivision algorithm is available.

One disadvantage of these adaptive subdivision algorithms is that tears

or holes in the surface can result from mismatches between the approximate

polygonal subpatches and the exact parametric surface subpatches.

Quadric surfaces are generally somewhat simpler than parametric surface

patches. Quadric surfaces are defined by the general quadratic equation

ax2 + a2y2 + a3Z2+ a4Xy + a5yz + a6zx+ a7x + a8y + a9z + aio = 0

296 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Common examples of quadric surfaces are spheres, cones, cylinders, and ellipsoids

and hyperboloids of revolution. If a through a6 are zero, then the

equation reduces to that of a planar polygon.

Spheres as a subset of quadric surfaces are of particular interest in molecular

modeling. Several scan line algorithms specifically for spheres have been developed.

In particular, the algorithms by Porter (Refs. 4-38 and 4-39) and

Staudhammer (Ref. 4-40) implement scan line z-buffer algorithms for spheres.

By restricting the algorithm to orthographic views, Porter effectively uses Bresenham’s

circle algorithm (see Sec. 2-6) to generate the silhouette of the sphere.

Further, since the intersection of the scan plane with a sphere is also a circle,

Bresenham’s circle algorithm can be used to incrementally calculate the depth

of each sphere on the scan line. Finally, by maintaining a priority list of the

spheres based on the depth of the sphere center, Bresenham’s algorithm is used

to antialias the silhouette edges (see Sec. 2-26). The priority sort also allows

transparency effects to be added.

4-13 A VISIBLE SURFACE RAY TRACING ALGORITHM

All the hidden surface algorithms discussed in the previous sections depend

upon some coherence characteristic of the scene to efficiently find the visible

portions of the scene. In comparison, ray tracing is a brute force technique.

The basic idea underlying the technique is that an observer views an object by

means of light from a source that strikes the object and then somehow reaches

the observer. The light may reach the observer by reflection from the surface

or by refraction or transmission through the surface. If light rays from the

source are traced, very few will reach the viewer. Consequently, the process

would be computationally inefficient. Appel (Ref. 4-41) originally suggested

that rays should be traced in the opposite direction, i.e., from the observer to

the object as shown in Fig. 4-67. This technique was successfully implemented

in a solid model display system by MAGI (Ref. 4-42). In the original MAGI

implementation, rays terminated when they intersected the surface of a visible

opaque object; i.e., it was used as a hidden or visible surface processor only.

Subsequently Kay (Refs. 4-43 and 4-44) and Whitted (Ref. 4-45) implemented

ray tracing algorithms in conjunction with global illumination models. These

algorithms account for reflection of one object in the surface of another, refraction,

transparency, and shadow effects. The images are also antialiased. An

algorithm incorporating these effects is discussed in Sec. 5-12. The present

discussion is limited to ray tracing as a hidden or visible surface technique.

Figure 4-67 illustrates the simplest ray tracing algorithm. The algorithm

assumes that the scene has been transformed to image space. A perspective

transformation is not applied. The viewpoint or observer is assumed to be at

infinity, on the positive z axis. Hence, all the light rays are parallel to the z axis.

Each ray passes from the observer through the center of a pixel on the raster

into the scene. The path of each ray is traced to determine which objects in

A VISIBLE SURFACE RAY TRACING ALGORIThM 297

Object

Figure 4-67 Simple ray tracObserver

ing.

the scene, if any, are intersected by the ray. Every object in the scene must be

examined for every ray. If a ray intersects an object, all possible intersections

of the ray and the object are determined. This may yield multiple intersections

for multiple objects. The intersections are sorted in depth. The intersection

with the maximum z value represents the visible surface for that pixel. The

attributes for this object are used to determine the pixel’s characteristics.

When the viewpoint is not located at infinity, the algorithm is only slightly

more complex. Here, the observer is assumed located on the positive z axis.

The image plane, i.e. the raster, is perpendicular to the z axis as shown in

Fig. 4-68. The effect is to perform a single-point perspective projection onto

the image plane (see Ref. 1-1).

The most important element of a visible surface ray tracing algorithm is

the intersection routine. Any object for which an intersection routine can be

written may be included in a scene. Objects in the scene may be composed

of a mixture of planar polygons, polyhedral volumes, or volumes defined or

bounded by quadric or bipolynomial parametric surfaces. Since a ray tracing

algorithm spends 75—95% of its effort in determining intersections, the efficiency

of the intersection routine significantly affects the efficiency of the algorithm.

Determining the intersections of an arbitrary line in space (a ray)

with a particular object may be computationally expensive (see, for example,

Ray

Raster grid

Obj ect

Raster grid

Figure 4-68 Ray tracing with perspective.

298 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Ref. 4-37). To eliminate unnecessary intersections, the intersection of a ray

with the bounding volume of an object is examined. If a ray fails to intersect

the bounding volume of an object, then that object need not be considered

further for that ray. Either a bounding box or a bounding sphere may be used

as a bounding volume. Although, as shown in Fig. 4-69, a bounding sphere

may be inefficient, determining whether a three-dimensional ray intersects a

sphere is simple. In particular, if the distance from the center of the bounding

sphere to the ray is more than the radius of the sphere, then the ray does not

intersect the bounding sphere. Hence, it cannot intersect the object.

The bounding sphere test thus reduces to determining the distance from

a point to a three-dimensional line, i.e. the ray. Using a parametric representation
of the line between the points Pi(x1, yl, Zi) and P2(x2, Y2, z2), i.e.

P(t) = P1 + (P2 — P1)t

with components
x = XI + (x2 — x1)t = Xi + at

y=y +(y2—yI)t=yI +bt

z = Zi + (z2— zj)t = z +ct

the minimum distance d from the line to the point Po(xo, yc, zO) is

d2 =(x—xo)2+(y—yo)2+(z—zQ)2

where the parameter t specifying the point on PQ) for minimum distance is

a(xi —xo)+b(y —yo)+c(zl—zc

a2 + b2 + c2

If d2 > R2, where R is the radius of the bounding sphere, then the ray cannot

intersect the object.

Performing a bounding box test in three dimensions is computationally

expensive. In general, intersection of the ray with at least three of the infinite

planes forming the bounding box must be tested. Since intersections of the

ray may occur outside a face of the bounding box, a containment or inside test

,1•

Figure 4-69 Bounding volumes.

A VISIBLE SURFACE RAY TRACING ALGORITHM 299

must also be performed for each intersection. Consequently, when performed

in three dimensions, the bounding box test is slower than the bounding sphere
test.

A simple procedure reduces the bounding box test to sign comparison,

simplifies the intersection calculation for the object, and simplifies the depth

comparisons among the intersections. The procedure uses translations and

rotations about the coordinate axes (see Ref. 1-1) to make the ray coincident

with the z axis. The same transformations are applied to the bounding box of
the object. The ray intersects the bounding box if, in the translated and rotated

coordinate system, the signs of Xmin and Xmax and of Ymin and Ymax are opposite

as shown in Fig. 4-70.

The simplification of the intersection calculation is illustrated by the general

quadric surface. In any Cartesian coordinate system the general quadric surface

is the locus of points given by

Q(x,y, z) = a1x2 + a2 + a3z2+ b1yz + b2xz + b3xy + c1x + c2y + c3z + d = 0

After applying the combined translation and rotation transformation used to
make the ray coincident with the z axis, the intersection of the ray and the

surface, if any, occurs at x = y = 0. Thus, in general, the intersection points

are given by the solution of

az2 + cz + d’ = 0

i.e.

= —c±P—4ad’
2a3

where the prime indicates the coefficients of the general quadric surface in

the transformed orientation. If c’ — 4ad’ < 0, the solutions are complex

and the ray does not intersect the surface. If an infinite quadric surface (e.g.

cones and cylinders) is constrained by limit planes, then the limit planes must
also be transformed and examined for intersections. If an intersection with

Non- intersecting

Intersecting-

intersecting

Figure 470 Bounding box intersections in the transformed coordinate system.

300 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

an infinite limit plane is found, an inside test must be performed. However,

in the transformed coordinate system, this test can be performed on the two-

dimensional projection of the intersection of the limit plane and the quadric

surface. To obtain the intersections in the original orientation, the inverse

transformation is applied.

Intersection calculations for bipolynomial parametric surface patches are

less straightforward. Whitted (Ref. 4-45) has implemented a simple subdivision

technique for bicubic surface patches. The calculations are carried out with the

surface patch in its original location. If a ray initially intersects the bounding

sphere for a patch, the patch is subdivided using Catmull’s subdivision algorithm

(see Sec. 4-6). The ray is tested against the bounding spheres of the subpatches.

If there is no intersection, the ray does not intersect the patch. If the ray

intersects a bounding sphere for a subpatch, the patch is further subdivided.

The process is continued until no bounding spheres are intersected or the

bounding spheres reach a predetermined minimum size. These minimum-sized

bounding spheres represent the intersections of the ray and the patch.

By transforming the ray to be coincident with the z axis, the subdivision

technique can be utilized with bounding boxes rather than bounding spheres.

This reduces the number of subdivisions and increases the efficiency of the

algorithm. For parametric surfaces that exhibit a convex hull property, e.g.

Bezier and B-spline surfaces (see Ref. 1-1), the number of subdivisions can be

further reduced, at the expense of further complexity., by using the convex hull

rather than the bounding box for the subpatches.

Kajiya (Ref. 4-37) has implemented a technique for bipolynomial parametric

surfaces that does not involve subdivision. Thc thethod is based on concepts

from algebraic geometry. Solutions of the resulting high-degree algebraic equations

are obtained numerically. A similar technique can be implemented in the

transformed coordinate system. Recall that a bipolynomial parametric surface

is defined by

Q(u, w) = 0

with components

x J(u, w)

y = g(u, w)

z = h(u, w)

In the transformed coordinate system x = y = 0. Hence,

flu, w) = 0

g(u, w) 0

Simultaneous solution of this pair of equations yields the values of u and w

for the intersections. Substitution into z h(u, w) yields the z component of

the intersection points. Failure to find a real solution means that the ray does

not intersect the surface. The degree of the system of equations for u, w is the

A VISIBLE SURFACE RAY TRACING ALGORITHM 301

product of the bipolynomial surface degrees, e.g., sixth degree for a bicubic

surface. Consequently, numerical solution techniques are generally required.

Where applicable, intersections of the ray and the convex hull can be used to

obtain an initial estimate of u and w. Again, to obtain the intersections in the

original orientation, the inverse transformation is applied.

For multiple intersections of the ray being traced and objects in the scene, it

is necessary to determine the visible intersection. For the simple opaque visible

surface algorithms discussed in this section, the intersection with the maximum

z coordinate is the visible surface. For more complex algorithms with reflections

and refractions, the intersections must be ordered with respect to the distance

from the point of origin of the ray. The transformed coordinate system allows

this to be accomplished with a simple z sort.

The procedure for a simple opaque surface ray tracing algorithm is then

Prepare the scene data:

Create an object list containing at least the following information

Complete description of the object: type, surface, characteristics,
etc.

Bounding sphere description: center and radius.

Bounding box flag. If the flag is true a bounding box test will

be performed, if false it will be skipped. Note, a bounding box

test is not appropriate for all objects, e.g. a sphere.

Bounding box description: Xmin, Xmax, Ymin’ Ymax’ Zmin, Zmax.

For each ray to be traced:

For each object perform a three-dimensional bounding sphere test

in the original location. If the ray intersects the bounding sphere,

place the object on the active object list.

If the active object list is empty, display the pixel at the background

intensity and continue.

Otherwise, translate and rotate the ray such that it is coincident
with the z axis. Save the combined transformation.

For each object on the active object list:

If the bounding box flag is true, transform the bounding box

to the same orientation as the ray using the combined transformation

and perform the bounding box tests. If he ray does

not intersect the bounding box, continue with the next object.

Otherwise, transform the object to the same orientation as the

ray using the combined transformation and determine the ray’s

intersections, if any, with the object. Place any intersections
on an intersection list.

302 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

If the intersection list is empty, display the pixel at the background

intensity.

Otherwise, determine Zm for the intersection list.

Calculate the inverse for the combined transformation.

Using the inverse transformation determine the intersection point

in the original orientation.

Display the pixel using the intersected object’s attributes and an

appropriate illumination model.

Note that for a simple opaque visible surface algorithm, it is not necessary

to determine the inverse combined transformation nor is it necessary to determine

the intersection point in the original orientation unless an illumination

model requiring surface properties or orientation at the intersection point is incorporated

into the algorithm (see Chap. 5). These steps are included here for

completeness and convenience when implementing a ray tracing algorithm with

global illumination (see Sec. 5-12). An example serves to more fully illustrate
the discussion.

Example 4-24 Ray Tracing Algorithm

Again consider the rectangle and penetrating triangle previously discussed in

Examples 4-19, 4-22, and 4-23. For simplicity, the observer is assumed to be

located at infinity on the positive z axis. Hence, all the rays are parallel to the

z axis. The z axis passes through the 0, 0 point on the raster. Recalling that the

rectangle has corner points P1(10, 5, 10), P2(10, 25, 10), P3(25, 25, 10), P4(25,

5, 10). The center of its bounding sphere is located at (17.5, 15, 10) with radius

12.5. The bounding box for the rectangle, Xmin, Xmax, Ymin’ Ymax’ Zmin, Z max is

10, 25, 5, 25, 10, 10.

The triangle has vertices at P5(15, 15, 15), P6(25, 25, 5), P7(30, 10, 5).

The center of the bounding sphere is at (22.885, 15.962, 8.846) with radius

10.048. The bounding box for the triangle is 15, 30, 10, 25, 5, 15.

The object list thus contains two entries, and both bounding box flags are

true.

The ray through the center of the pixel at (20, 15) is considered. Since the

observer is at infinity, the ray is parallel to the z axis.

First consider the rectangle. Since the ray is parallel to the z axis, the

distance from the center of the bounding sphere to the ray is a two-dimensional

calculation. Specifically, using the center of the pixel, i.e. (20.5, 15.5), yields

d2 = (20.5 — 17.5)2 + (15.5 — 15)2 = 9.25

Since (d2 = 9.25) < (R2 = 156.25), the ray intersects the bounding sphere for
the rectangle. The rectangle is placed on the active object list.

Similarly for the triangle

= (20.5 — 22.885)2 + (15.5 — 15.962)2

= 5.90

A VISIBLE SURFACE RAY TRACING ALGORITHM 303

which is also less than the square of the radius of the bounding sphere; i.e.,

(d2 = 5.90) < (R = 100.96). Thus, the ray intersects the bounding sphere for

the triangle. The triangle is also placed on the active object list.

Since the active object list is not empty, the ray is transformed to be

coincident with the z axis. Here the ray is translated by —20.5, — 15.5, 0 in

the x, y, z directions, respectively.

Translating the rectangle’s bounding box similarly yields —10.5,

4.5, —10.5, 9.5, 10, 10. Since the signs of both Xmin and Xm and Ymin and Ymax

are opposite, the ray intersects the rectangle’s bounding box. The intersection

of the ray and the rectangle is obtained using the plane equation. In both

the transformed and untransformed coordinate systems the rectangle’s plane

equation is

z — 10 = 0

The intersection of the ray thus occurs at z = 10. The intersection is inside the

rectangle. This value is placed on the intersection list.

Translating the bounding box for the triangle yields —5.5, 9.5, —5.5, 9.5,

5, 15. Again, the signs of both Xmin and Xm and Ymjn and Ymax are opposite,

so the ray also intersects the triangle’s bounding box. In the untransformed

coordinate system, the plane equation for the triangle is
-

3x+y+4z— 1200

In the transformed coordinate system it is (see Sec. 4-2)

3x + y + 4z — 43 = 0

and the intersection is at

z = (43 — 3x — y)/4 = 43/4 = 10.75

This value is inside the triangle and is placed on the intersection list.

The intersection list is not empty. The maximum z value is Z max 10.75,

and the triangle is visible. Translating back to the original coordinate system

yields the intersection point at (20.5, 15.5, 10.75). The pixel at (20, 15) is

displayed with the triangle’s attributes.

Two modifications of this simple algorithm considerably increase its efficiency.

The first uses the concept of clustering groups of spatially related

objects together. For example, suppose that a scene consists of a table with a

bowl of fruit and a candy dish on it. The bowl of fruit contains an orange, an

apple, a banana, and a pear. The candy dish contains several pieces of candy

of different shapes and colors. Bounding spheres are defined for groups or

clusters of related objects, e.g. the fruit bowl and all the fruit in it, the candy

dish and all the candy in it, and the table including the fruit dish and fruit and

the candy dish and candy. Bounding spheres that enclose more than one object

are called cluster spheres. If appropriate, cluster bounding boxes may also be

defined. The largest cluster sphere, called the scene sphere, containing all the

objects in the scene is also defined. The bounding spheres are then processed

hierarchically. If a ray does not intersect the scene sphere, then it cannot intersect

any object in the scene. Hence, it is displayed at the background in-

304 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

tensity. If the ray intersects the scene sphere, then the cluster spheres and

the bounding spheres for individual objects not contained within any cluster

sphere, but contained within the scene cluster, are examined for intersections

with the ray. If the ray does not intersect a cluster sphere, that cluster and all

objects or clusters contained within that cluster are not considered further. If

a ray intersects a cluster, the process is repeated recursively until all objects

have been considered. If at any point a ray intersects an individual object

bounding sphere, the object is placed on the active object list. This procedure

significantly reduces the number of ray bounding sphere intersections that must

be calculated and hence increases the efficiency of the algorithm.

The second modification uses a priority sort to reduce the number of ray-

object intersection calculations. Instead of immediately performing a ray-object

intersection calculation as called for in the simple algorithm given above, the

object is placed on an intersection object list. When all objects in the scene

have been considered, the transformed intersection object list is sorted by depth

priority (see Sec. 4-8). The centers of the bounding spheres or the maximum

or minimum z value for the bounding boxes may be used to establish the

priority sort. Intersections of the ray and objects on the intersection object

list are determined in priority order. Unfortunately, as previously discussed

in Sec. 4-8, the intersection of the ray and the first object on the prioritized

intersection object list is not necessarily the visible point. Intersections with

all possibly visible objects, the set {Q} (see Sec. 4-8 for details), must be determined

and placed on the intersection list. The algorithm then proceeds by

sorting the intersection list as described in the simple algorithm. Fortunately

the set of possible visible objects {Q} is generally small compared to the number

of objects on the intersection object list. Hence, the algorithm’s efficiency is

increased. These two modifications are also applicable for the general ray tracing

algorithm incorporating reflection, refraction, and transparency discussed
in Sec. 5-12.

The simple algorithm given here does not take advantage of eliminating

self-hidden faces for polygonal volumes (see Sec. 4-2), nor does it take advantage

of the coherence of the scene. For example, the order in which pixels

are considered is immaterial. Considering the pixels in scan line order would

allow the algorithm to take advantage of scan line coherence. Alternately,

by subdividing the scene, Warnock-style area coherence would lead to fewer

objects being considered for any ray and hence lead to greater efficiency.

Although incorporating these techniques yields a more efficient opaque visible

surface algorithm, they are not applicable for a general ray tracing algorithm incorporating

reflection, refraction, and transparency. For example, when reflection

is incorporated into the algorithm an object totally obscured by another

object may be visible as a reflection in a third object. Since a ray tracing algorithm

is a brute force technique, the opaque visible surface algorithms discussed

in previous sections are more efficient and should be used

tlmplementation of the algorithms as described in the previous sections in the same language
on the same computer system for the scene described in Examples 4-19, and 4-22 to 4-24 yields

performance ratios of Ray tracing: Warnock:Watkins:Scanline z buffer:z buffer as 9.2:6.2:2.1:1.9:1.

SUMMARY 305

Roth (Ref. 4-46) points out that a ray tracing algorithm can also be used

to generate wire frame line drawings for solid objects. The procedure assumes

a scan-line-oriented generation of the rays, i.e. top to bottom and left to right.

The procedure is

If the visible surface at Pixel(x,y) is the background or is different from

the visible surface at Pixel(x — I, y) or at Pixel(x, y — 1), display the pixel.
Otherwise, do not display the pixel.

A ray tracing algorithm can also be used to determine the physical properties

of a solid. A complete analysis is beyond the scope of this text. However, a

simple example illustrates the concept. In particular, the volume of an arbitrary

solid can be determined by approximating it by the sum of a set of small

rectangular parallelepipeds. This is accomplished by generating a set of parallel
rays at known intervals. The intersections of each ray and the volume are

obtained and ordered along the ray. If the ray is translated to be coincident with

the z axis as described above, the volume of each rectangular parallelepiped is
then

V = 11[(z i — Z2) + (z 3 — z) ++ (z —z

where l and 4 are the spacing between rays in the horizontal and vertical

directions, respectively. Each (zn-i — z, represents a portion of the ray inside
the volume. The volume of the solid is then the sum of the volumes of all the

rectangular parallelepipeds. The accuracy of the result depends on the number

of rays used. The accuracy can be increased at reduced computational expense

by recursively subdividing the “pixel” size if the volumes of adjacent rectangular

parallelepipeds differ by more than a specified amount. This technique more

accurately determines the volumes in regions of rapid change, e.g., near the

edges of volumes enclosed by curved surfaces.

Because of the inherently parallel nature of ray tracing (the process for

each ray is the same and independent of the results for any other ray) the

algorithm could be implemented in very large-scale integrated (VLSI) hardware

using parallel processing techniques.

4-14 SUMMARY

The previous sections have discussed, in some detail, a number of fundamental

algorithms used to obtain solutions to the hidden line or hidden surface problem.

These algorithms are by no means all those available. However, having

mastered the concepts presented, the reader should be equipped to understand

new algorithms as they are developed or to invent algorithms specific to a particular

application.

As an example, a recent hidden line algorithm by Hedgeley (Ref. 4-47) is

based on concepts illustrated by the list priority algorithm of Newell, Newell,

and Sancha (Sec. 4-8), the area subdivision algorithm of Warnock (Sec. 4-4),

306 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

the scan line algorithm of Watkins (Sec. 4-9), and intersection and visibility

tests scattered throughout the chapter. The algorithm operates in object space,

accepts convex or concave polygons as input, and exhibits linear computational

growth with the number of objects.

As a further example Atherton (Ref. 4-48) has applied a modified spanning

scan line algorithm (see Sec. 4-11) to the display of images from a constructive

solid modeling system. The inner loop of the spanning scan line algorithm is

modified to solve the one-dimensional Boolean operations required by a solid

modeler using a ray tracing algorithm (see Sec. 4-13). Atherton reports that

the modified scan line algorithm executes in approximately 1/60 of the time

required for a straight ray tracing algorithm.

445 REFERENCES

4-1 Sutherland, Ivan E., Sproul, Robert F., and Schumacker, R. A., “A Characterization
of Ten Hidden-Surface Algorithms,” Computing Surveys, Vol. 6, pp. 1—55,

1974.

4-2 Williams, Hugh, “Algorithm 420, Hidden-Line Plotting Program,” CA CM, Vol.

15, pp. 100—103, 1972.

4-3 Wright, T. J, “A Two-Space Solution to the Hidden Line Problem for Plotting

Functions of Two Variables,” IEEE Trans. Comput., Vol. C—22, pp. 28—33, 1973.

4-4 Watkins, Steven, L., “Algorithm 483, Masked Three-Dimensional Plot Program

with Rotations,” CA CM, Vol. 17, pp. 520—523, 1974.

4-5 Butland, J., “Surface Drawing Made Simple,” CAD Journal, Vol. 11, pp. 19—22,
1979.

4-6 Gottlieb, M. ,“Hidden Line Subroutines for Three Dimensional Plotting,” Byte,

Vol. 3, No. 5, pp. 49—58, 1978.

4-7 Roberts, L. G., “Machine Perception of Three Dimensional Solids,” MIT Lincoln

Lab. Rep., TR 315, May 1963. Also in J. T. Tippet et al. (eds.), Optical and

Electro-Optical Information Processing, MIT Press, Cambridge pp. 159—197, 1964.

4-8 Petty, J. S., and Mach, K. D., “Contouring and Hidden-line Algorithms for Vector

Graphic Displays,” Air Force Applied Physics Lab. Rep., AFAPL-TR-77-3, Jan.
1977, ADA 040 530.

4-9 Rogers, David, F., Meier, William, and Adlum, Linda, “Roberts Algorithm,” U.S.

Naval Academy, Computer Aided Design/Interactive Graphics Group Study, 1982,

unpublished.

4-10 Warnock, John, E., “A Hidden Line Algorithm for Halftone Picture Representation,”

University of Utah Computer Science Dept. Rep., TR 4-5, May 1968, NTIS
AD 761 995.

4-11 Warnock, John, E. “A Hidden-Surface Algorithm for Computer Generated Halftone

Pictures,” University of Utah Computer Science Dept. Rep., TR 4-15, June
1969, NTIS AD 753 671.

4-12 Weiler, K., and Atherton, P., “Hidden Surface Removal Using Polygon Area

Sorting,” Computer Graphics, Vol. 11, pp. 214—222 (Proc. SIGGRAPH 77).

4-13 Catmull, Edwin, “A Subdivision Algorithm for Computer Display of Curved Surfaces,”

Ph.D. Thesis, University of Utah, Dec. 1974. Also UTEC-CSc-74-133, and
NTIS A004 968.

REFERENCES 307

4-14 Catmull, Edwin, “Computer Display of Curved Surfaces,” Proc. IEEE Conf.

Comput. Graphics Pattern Recognition Data Struct., May 1975, p. ii.

4-15 Cohen, Elaine, Lyche, Tom, and Riesenfeld, Richard, F., “Discrete B-splines

and Subdivision Techniques in Computer-Aided Geometric Design and Computer

Graphics,” Computer Graphics Image Processing, Vol. 14, pp. 87—111, 1980. Also

University of Utah, Computer Science Dept. Rep., UUCS-79-117, Oct. 1979.

4-16 Newell, M.E., Newell, R. G., and Sancha, T. L., “A New Approach to the Shaded

Picture Problem,” Proc. ACM Nat!. Conf, 1972, pp. 443—450.

4-17 Newell, M. E., “The Utilization of Procedure Models in Digital Image Synthesis,”

Ph.D. Thesis, University of Utah, 1974. Also UTEC-CSc-76-218 and NTIS AD/A
039 008/LL.

4-18 Schachter, Bruce J., Computer Image Generation, John Wiley, New York, 1982.

4-19 Schumacker, R. A., Brand, B., Gilliland, M., and Sharp, W., “Study for Applying

Computer-generated Images to Visual Simulation,” U.S. Air Force Human Resources

Lab. Tech. Rep., AFHRL-TR-69-14, Sept. 1969, NTIS AD 700 375.

4-20 Fuchs, H., Abram, G. D., and Grant, E. D., “Near Real-Time Shaded Display of

Rigid Objects,” Computer Graphics, Vol. 17, pp. 65—72, 1983 (Proc. SIGGRAPH

83).

4-21 Wylie, C., Romney, G. W., Evans, D. C., and Erdahl, A. C., “Halftone Perspective

Drawings by Computer,” FJCC 1967, Thompson Books, Washington, D.C.,

pp. 49—58.

4-22 Bouknight, W. J., “An Improved Procedure for Generation of Half-tone Computer

Graphics Representations,” University of Illinois Coordinated Science Lab. Tech.

Rep., R-432, Sept. 1969.

4-23 Bouknight, W. J., and Kelly, K. C., “An Algorithm for Producing Half-tone

Computer Graphics Presentations with Shadows and Movable Light Sources,” SJCC

1970, AFIPS Press, Montvale, N. J. pp. 1-10.

4-24 Bouknight, W. J., “A Procedure for Generation of Three-dimensional Half-toned

Computer Graphics Representations,” CACM, Vol. 13, pp. 527—536, 1970.

4-25 Watkins, G. S., “A Real-Time Visible Surface Algorithm,” University of Utah

Computer Science Dept. Tech. Rep., UTEC-CSC-70-101, June 1970, NTIS AD
762 004

4-26 Myers, A. J., “An Efficient Visible Surface Program”, Report to the NSF, Ohio

State University Computer Graphics Research Group, July 1975.

4-27 Romney, G. W., Watkins, G. S., and Evans, D. C., “Real Time Display of

Computer Generated Half-tone Perspective Pictures,” IFIP 1968, North-Holland,

Amsterdam, pp. 973—978.

4-28 Hamlin, G., and Gear, C., “Raster-Scan Hidden Surface Algorithm Techniques”,

Computer Graphics, Vol. 11, pp. 206—213, 1977 (Proc. SIGGRAPH 77).

4-29 Jackson, J. H., “Dynamic Scan-converted Images with a Frame Buffer Display

Device,” Computer Graphics, Vol. 14, pp. 163—169, 1980 (Proc. SIGGRAPH 80).

4-30 Archuleta, M., “Hidden Surface Line Drawing Algorithm,” University of Utah

Computer Science Dept. Tech. Rep., UTEC-CSc-72-121, June 1972.

4-31 Blinn, J. F., “A Scan Line Algorithm for the Computer Display of Parametrically

Defined Surfaces,” Computer Graphics, Vol. 12, 1978 (supplement to Proc. SIGGRAPH

78); see also Ref. 4-33.

4-32 Whitted, T., “A Scan-line Algorithm for Computer Display of Curved Surfaces,”

Computer Graphics, Vol. 12, 1978 (supplement to Proc. SIGGRAPH 78); see also
Ref. 4-33.

308 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

4-33 Lane, J. M., Carpenter, L. C., Whitted, T., and Blinn, J. F., “Scan Line Methods

for Displaying Parametrically Defined Surfaces,” CACM, Vol. 23, pp. 23—34,
1980.

4-34 Lane, J. M., and Carpenter, L. C., “A Generalized Scan Line Algorithm for the

Computer Display of Parametrically Defined Surfaces,” Computer Graphics Image

Processing, Vol. ii, pp. 290—297, 1979.

4-35 Clark, J. H., “A Fast Scan-line Algorithm for Rendering Parametric Surfaces,”

Computer Graphics, Vol. 13, 1979 (supplement to Proc. SIGGRAPH 79).

4-36 Kunz, K. S., Numerical Analysis, McGraw-Hill, New York, 1957.

4-37 Kajiya, J. T., “Ray Tracing Parametric Patches,” Computer Graphics, Vol. 16, pp.

245—254, 1982 (Proc. SIGGRAPH 82).

4-38 Porter, T., “Spherical Shading,” Computer Graphics, Vol. 12, pp. 282—285, 1978

(Proc. SIGGRAPH 78).

4-39 Porter, T., “The Shaded Surface Display of Large Molecules,” Computer Graphics,

Vol. 13, pp. 234—236, 1979 (Proc. SIGGRAPH 79).

4-40 Staudhammer, J., “On the Display of Space Filling Atomic Models in Real Time,”

Computer Graphics, Vol. 12, pp. 167—172, 1978 (Proc. SIGGRAPH 78).

4-41 Appel, A., “Some Techniques for Shading Machine Renderings of Solids,” AFIPS

1968 Spring Joint Comput. Conf., pp. 37—45.

4-42 Goldstein, R. A., and Nagel, R., “3-D Visual Simulation,” Simulation, pp. 25—31,

January 1971.

4-43 Kay, Douglas S., “Transparency, Refraction and Ray Tracing for Computer Synthesized

Images,” Masters thesis, Program of Computer Graphics, Cornell University,
Jan. 1979.

4-44 Kay, Douglas, S., and Greenberg, Donald, “Transparency for Computer Synthesized

Images” Computer Graphics, Vol. 13, pp. 158—164, 1979 (Proc. SIGGRAPH

79).

4-45 Whitted, J. T., “An Improved Illumination Model for Shaded Display,” CACM,

Vol. 23, pp. 343—349, (Proc. SIGGRAPH 79).

4-46 Roth, Scott D., “Ray Casting for Modeling Solids,” Computer Graphics and Image

Processing, Vol. 18, pp. 109-144, 1982.

4-47 Hedgley, David R. Jr., “A General Solution to the Hidden-Line Problem,” NASA
Ref. Pub. 1085, March 1982.

4-48 Atherton, Peter R., “A Scan-line Hidden Surface Removal Procedure for Constructive

Solid Geometry,” Computer Graphics, Vol. 17, pp. 73—82, 1983 (Proc. SIGGRAPH

83).

4-49 Whitted, Turner, and Weimer, David M., “A Software Testbed for the Development

of 3D Raster Graphics Systems,” 4CM Transactions on Graphics, Vol. 1,

pp. 43—58, 1982.

CHAPTER

FIVE

RENDERING

54 INTRODUCTION

Simply defined, rendering is the process of producing realistic images or pictures.

Producing realistic images involves both physics and psychology. Light,

i.e. electromagnetic energy, reaches the eye after interacting with the physical

environment. In the eye, physical and chemical changes take place that

generate electrical pulses that are interpreted, i.e. perceived, by the brain.

Perception is a learned characteristic. The psychology of visual perception has

been extensively studied and written about. An extensive discussion of visual

perception is well beyond the scope of this book. The standard reference work

on visual perception is Cornsweet (Ref. 5-1).

The human eye is a very complex system. The eye is nearly spherical and

about 20 mm in diameter. The eye’s flexible lens is used to focus received light

onto the retina. The retina contains two different types of receptors: cones

and rods. The 6—7 million cones are concentrated in the center of the rear

hemisphere of the eye. Each one has an individual nerve connected to it. The

cones, which are sensitive only to relatively high light levels, are used to resolve

fine detail. The other type of receptor is called a rod. There are between 75

and 150 million rods distributed over the retina. Several rods are connected to

a single nerve. Thus, the rods cannot resolve fine detail. The rods are sensitive

to very low levels of illumination. Interestingly enough, only the cones are

used in perceiving color. Because the cones are sensitive only to relatively high

levels of light, objects viewed with low illumination are seen only with the rods.

Hence, they are not seen in color.

There is good experimental evidence that the eye’s sensitivity to brightness

is logarithmic. The total range of brightness sensitivity is very large, on the

order of 1010. However, the eye cannot simultaneously respond to this large a

309

310 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

brightness range. The eye responds to a much smaller relative brightness range

centered around a brightness adaptation level. The relative brightness range is

on the order of 100—150 (2.2 log units). The rapidity with which the eye adjusts

its brightness adaptation level is different for different parts of the retina. Still,

it is remarkable. The eye perceives brightness at the extremes of the relative

brightness range as either white or black.

Because the eye adapts to the “average” brightness in a scene, an area

of constant brightness or intensity surrounded by a dark area is perceived to

be brighter or lighter than the same area surrounded by a light area. This

phenomenon, illustrated in Fig. 5-1, is called simultaneous contrast. On a

scale of 0—1 the brightness of the center area of Fig. 5-la is 0.5 and that of

the surrounding area 0.2. In Fig. 5-lb the brightness of the center area is again

0.5, but that of the surrounding area is 0.8. A common example is the apparent

difference in brightness of a single streetlight viewed against the sky during the

day and at night. For either Fig. 5-la or a streetlight seen in daylight, the

average intensity or brightness of the scene is greater than for the scene in

Fig. 5-lb or the streetlight at night. Consequently, the contrast is lower and the

intensity or brightness of the streetlight or the center of Fig. 5-la is perceived

as lower. A phenomenon similar to simultaneous contrast occurs for color.

Another characteristic of the eye which has implications for computer graphics

is that the brightness perceived by the eye tends to overshoot at the boundaries

of regions of constant intensity. This characteristic results in areas of constant

intensity being perceived as having varying intensity. The phenomenon

is called the Mach band effect after the Austrian physicist Ernst Mach, who

first observed it. The Mach band effect occurs whenever the slope of the light

intensity curve changes abruptly. At that location, the surface appears brighter

or darker. If the inflection in the intensity curve is concave, the surface appears

brighter; if convex it appears darker. Figure 5-2 illustrates both the concept and
the results.

The Mach band effect is particularly important for shaded polygonally

represented surfaces. If the direction of the normal vector for each individual

a b

Figure 5.1 Simultaneous contrast.

A SIMPLE ILLUMINATION MODEL 311

a b

Figure 5-2 Mach band effects. (a) Piecewise linear, (b) continuous first-derivative
intensity function. (Courtesy of the University of Utah, Ref. 5-2.)

polygon composing the surface is used to determine the displayed intensity,

then the intensity will change abruptly at the polygon edges. The Mach band

effect tends to destroy the ability of the eye to smoothly integrate the scene.

Figure 5-3a illustrates this effect. Figure 5-3b shows that increasing the number

of facets (polygons) decreases the effect but does not eliminate it.

a b

Figure 5-3 Mach band effect for plane polygonal surface representations. (a) Eight-
sided model, (b) 32-sided model. (Courtesy of the University of Utah, Ref. 5-2.)

5.2 A SIMPLE ILLUMINATION MODEL

When light energy falls on a surface, it can be absorbed, reflected, or transmitted.

Some of the light energy incident on a surface is absorbed and converted
to heat. The rest is either reflected or transmitted. It is the reflected or

transmitted light that makes an object visible. If all the incident light energy

is absorbed, the object is invisible. The object is then called a black body.

312 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Reflected or transmitted light energy makes an object visible. The amount

of energy absorbed, reflected, or transmitted depends on the wavelength of

the light. If the intensity of incident light is reduced nearly equally for all

wavelengths, then an object, illuminated with white light which contains all

wavelengths, appears gray. If nearly all the light is aborbed, the object appears

black. If only a small fraction is absorbed, the object appears “white.”

If some wavelengths are selectively absorbed, the light leaving the object has a

different energy distribution. The object appears “colored.” The color of the

object is determined by the wavelengths selectively absorbed.

The character of the light reflected from the surface of an object depends

on the composition, direction, and geometry of the light source, the surface

orientation, and the surface properties of the object. The light reflected from

an object is also characterized by being either diffusely or specularly reflected.

Diffusely reflected light can be considered as light that has penetrated below the

surface of an object, been absorbed, and then reemitted. Diffusely reflected

light is scattered equally in all directions. Hence, the position of the observer

is unimportant. Specularly reflected light is reflected from the outer surface of

the object.

Lambert’s cosine law governs the reflection of light from a point source by

a perfect diffuser. Lambert’s law states that the intensity of light reflected from

a perfect diffuser is proportional to the cosine of the angle between the light

direction and the normal to the surface. Specifically

1=IjkdCOSO O�O�7r/2

where I is the reflected intensity, I is the incident intensity from a point light

source, kd is the diffuse reflection constant (0 � kd � 1), and 0 is the angle

between the light direction and the surface normal, as shown in Fig. 5-4. For

angles greater than 7r/2, the light source is behind the object. The diffuse
reflection coefficient kd varies from material to material. It is also a function

of the wavelength of the light. However, simple illumination models generally
assume it to be constant.

Objects rendered with a simple Lambertian diffuse reflection illumination

model or shader appear to have a dull matte surface. Because a point light

source is assumed, objects that receive no light directly from the source appear

0 n

Figure 5-4 Diffuse reflection.

A SIMPLE ILLUMINATION MODEL 313

black. However, in a real scene objects also receive light scattered back to

them from the surroundings, e.g., the walls of a room. This ambient light

represents a distributed light source. Because the computational requirements

for a distributed light source are very large, computer graphics illumination

models treat it as a constant diffuse term and linearly combine it with the

Lambertian contribution. The simple illumination model is then

I laka+IlkdCOSO O�O�7l/2 (51)

where Ia is the incident ambient light intensity and ka is the ambient diffuse

reflection constant (0 � k � 1).

If the above illumination model is used to determine the intensity of light

reflected from two objects with the same orientation to the light source but at

different distances, the same intensity for both objects results. If the objects

overlap, then it is not possible to distinguish between them. However, it is well

known that the intensity of light decreases inversely as the square of the distance

from the source; i.e., objects farther away appear dimmer. Unfortunately, if

the light source is assumed to be located at infinity, the distance to the object

is infinite. Consequently, if the diffuse term in the above illumination model

is made inversely proportional to the square of the distance from the light

source, it yields no contribution. If a perspective transformation is applied

to the scene, the distance from the perspective viewpoint to the object, d,

can be used as the constant of proportionality for the diffuse term. However,

when the perspective viewpoint is close to the object, lid2 varies rapidly. This

results in objects at nearly the same distance having large unrealistic variations

in intensity. Experience has shown that more realistic results can be obtained

by using a linear attenuation law. The illumination model is then

I = 1a1a + 1jko° (5-2)

where K is an arbitrary constant. When the viewpoint is assumed to be at

infinity, the distance d is determined from the location of the object closest

to the viewpoint. This has the effect of illuminating the object closest to

the viewpoint with the full intensity of the point light source, and all objects

farther from the viewpoint at lower intensities. If the surface is colored, the

illumination model is applied individually to each of the three primary colors.

The intensity of specularly reflected light depends on the angle of incidence,

the wavelength of the incident light, and the material properties. The governing

equation is the Fresnel equation, given in any geometric optics book. Specular

reflection of light is directional. For a perfect reflecting surface (a mirror), the

angle of reflection is equal to the angle of incidence. Thus, only an observer

located at exactly that angle sees any specularly reflected light. This implies that

the sight vector, S in Fig. 5-5, is coincident with the reflection vector R; i.e., the

angle a is zero. For imperfect reflecting surfaces the amount of light reaching

an observer depends on the spatial distribution of the specularly reflected light.

314 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

0

For smooth surfaces the spatial distribution is narrow or focused, while for

rough surfaces it is spread out.

The highlights on a shiny object are due to specular reflection. Because

specularly reflected light is focused along the reflection vector, highlights move

as the observer moves. Further, because the light is reflected from the outer

surface, except for metals and some solid dyes, the reflected light exhibits the

characteristics of the incident light. For example, the highlights on a shiny blue

painted surface illuminated with white light appear white rather than blue.

Because of the complex physical characteristics of specularly reflected light,

an empirical model due to Bui-Tuong Phong (Ref. 5-2) is usually used for

simple illumination models. Specifically,

= Ijw(i, A) COS a (5-3)

where w(i, A), the reflectance curve, gives the ratio of the specularly reflected

light to the incident light as a function of the incidence angle i and the wavelength

A. Here, n is a power that approximates the spatial distribution of the

specularly reflected light. Figure 5-6 shows a for —7r/2 � a � 7r/2 for various

values of n. Large values of n yield focused spatial distributions characteristic

of metals and other shiny surfaces, while small values of n yield more

distributed results characteristic of nonmetallic surfaces, e.g. paper.

Figure 5-5 Specular reflection.

C’,

0

c-)

n

Figure 5-6 Approximate spatial distribution function for specularly reflected light.

A SIMPLE ILLUMINATION MODEL 315

Specular reflectance is directional; i.e., it depends on the angle of the

incident light. Light that strikes a surface perpendicularly can have only a

percentage of the light reflected specularly. The rest must be either absorbed

or reflected diffusely. The amount depends on the material properties and the

wavelength. For some nonmetallic materials the reflectance can be as little as

4%, while for metallic materials it can exceed 80%. Figure 5-7a gives examples

of reflectance curves for typical materials at normal incidence as a function of

wavelength, and Fig. 5-7b gives results as a function of incidence angle. Notice

that at the grazing angle (0 = 90°) all the incident light is reflected (reflectance

= 100%).

Combining the current results with those for ambient and incident diffuse

reflection yields the illumination model

I = Ia1a + dK(d cos 0 + w(i, A)cos a) (5-4)

Because w(i, A) is such a complex function it is frequently replaced by an aesthetically

or experimentally determined constant k. This yields

1 = 1a1a + d+K COS 0 + k COS a) (5-5)

as the illumination model. In computer graphics this model is frequently called

a shading function. It is used to determine the intensity or shade of each point

on an object or of each displayed pixel. Again, individual shading functions are

used for each of the three primary colors to yield a colored image. However,

since the color of specularly reflected light depends on the color of the incident

light, k is usually constant for all three primaries.

If multiple light sources are present, the effects are linearly added. The
illumination model then becomes

m

I = Ia/Ca + E COS O + k COS a) (5-6)

U

U

U

c)

U

a

30 60 90

Angle of incidence, 0

b

Figure 5-7 Reflection curves.

316 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

where m is the number of light sources.

Recalling the formula for the dot product of two vectors allows writing

nL
cos 0 = = n• L

muLl

where ñ and t are the unit vectors in the surface normal and light source
directions, respectively.

Similarly

RS
cos a = = R S

where f and are the unit vectors for the reflected ray and line-of-sight
directions, respectively. Thus, the illumination model for a single light source
is

I = Iaka + d KU(1 t) + k(f{ SY’] (54)

An example more fully illustrates this simple model.

Example 5-1 Simple Illumination Model

Recalling Fig. 5-5 assume that at point P on the surface the normal, light, and

sight vectors are

L=—i+ 2j— k

S= i+1.5j+O.5k

By inspection the reflection vector R is then

R = I + 2j + k

Assuming that there is only one object in the scene, d = 0 and K = 1. The

light source is assumed to be 10 times more intense than the ambient light;

i.e., ‘a = 1 and Ii = 10. The surface is to have a shiny metallic appearance.

Hence, most of the light will be specularly reflected. Thus, assume k = 0.8,

= ka = 0.15 and n = 5. Note that k + kd = 0.95, which implies that 5% of

the energy from the light source is absorbed. Determining the various elements

of the illumination model yields

nL j(i+2jk) 2

muLl vJii+(2)2 +(_1)2
or

0 = cos (2//)= 35.26°

DETERMINING THE SURFACE NORMAL 317

and

-% RS (i+2j+k)(i+1.5j+0.5k)
RS=—=

IRIISI \,f()2 + (2)2 + (1)2Vtl)2 + (1.5)2 + (0.5)2

= 4.5 =4.5
v3 VT

or

a = cos1 (4.5/V’T) = 10.89°

Finally

I = (1)(0.15) + (10/1)[(0.15)(2,/\r6) + (0.8)(4.5/V’i)5]

= 0.15 + 10(0.12 + 0.73)

= 8.65

Because the sight vector is almost coincident with the reflection vector, an

observer would see a bright highlight at the point P. However, if the position

of the observer is changed such that the sight vector is

S = i + 1.5j — 0.5k

then

RS 3.5

- IRIISI - v2T
and

a = 40.2°

Here

I = 0.15 + 10(0.12 + 0.21)

= 3.45

and the observed highlight at P is significantly reduced.

53 DETERMINING THE SURFACE NORMAL

The discussion in the previous section shows that the direction of the surface

normal is representative of the local curvature of the surface and hence of the

direction of specular reflection. If an analytical description of the surface is

known, calculation of the surface normal is straightforward. However, for many

surfaces only a polygonal approximation is known. If the plane equation for

each polygonal facet is known, then the normal for each facet can be determined

from the coefficients of the plane equation (see Sec. 4-3). Here the outward
normal is desired.

318 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

V8

Many hidden line/hidden surface algorithms use only vertices or edges.

In applying an illumination model in conjunction with these algorithms, an

approximation to the surface normal at a vertex and along an edge is required.

If the plane equations of the polygonal facets are available, then the normal

at a vertex can be approximated by averaging the normals of the polygons

surrounding the vertex. For example, the direction of the approximate normal

at V1 in Fig. 5-8 is given by

fly =(ao+ai +a4)i+(bo+b1 +b4)j+(co+ci +c4)k

where ao, a, a4, b0, b1, b4, cO, c1, C4 are the coefficients of the plane equations of

the three polygons Po, P1, P4 surrounding V1. Note that if only the direction of

the normal is required then it is not necessary to formally divide by the number

of surrounding polygons.

Alternately, if the plane equations are not available, the normal at the

vertex can be approximated by averaging the cross products of all the edges that

terminate at the vertex. Again using the vertex V1 of Fig. 5-8, the direction of

the approximate normal is

nv = VIV2®V1V4 + V1V5 ® V1V2 + V1V4 ® V1V5

Care must be taken to average only outward normals. Further, unless a unit

normal is calculated, the magnitude of the approximate normal is influenced

by the number and area of individual polygons or the number and length of

individual edges. Larger polygons and longer edges have more influence. An

example serves to more fully illustrate these techniques.

Example 5-2 Approximating Surface Normals

Consider the polygonal surface shown in Fig. 5-8a. The vertex points are
V1(—1, —1, 1), V2(1, —1, 1), V3(1, 1, 1), V4(—1, 1, 1), V5(—2, —2, 0), V6(2, —2,

0), V7(2, 2, 0), V8(—2, 2, 0). The surface is a truncated pyramid. The plane
equations for the faces labeled Po, Pi, P4 surrounding Vi are

V7

V6
a b

Figure 5-8 Polygonal surface normal approximations.

DETERMINING THE SURFACE NORMAL 319

Po: z—10

P1: —y+z—2=O

P4:—x +z—20

Approximating the normal at V1 by averaging the normals of the surrounding

polygons yields

= (ao + ai + a4)i + (bo + b + b4)j + (co + Cl + C4)k

= —i—j+3k

The magnitude of n i is

nil =V’(—1)2 + (_)2 + (3)2 =

and the unit normal is

= —0.31 — 0.3j + 0.9k
nil

Incidentally, note that dividing by 3 does not yield the unit normal. The cross-
products of the edges meeting at Vi are

V1V2®VIV4 = 4k

V1V5®V1V2= —2j+2k

V1V4®V1V5= —2i+2k

Approximating the normal at V1 by averaging the cross-products yields

Iii = —21 — 2j + 8k

The magnitude of n is now

ni =V’_2)2 + (_2)2 + (8)2 =

and the unit normal is

= —0.24i — 0.24j + 0.94k
nil

Notice that both the direction and the magnitude of the unnormalized surface

normals are different for the two approximation techniques. This is shown
in Fig. 5-8b. Consequently, an illumination model will yield subtly different
results depending on the technique used to approximate the surface normal.

If the surface normal is to be used to determine the intensity, and if a

perspective transformation is used to display the object or scene, the normal

must be determined before the perspective transformation is applied, i.e.,

before perspective division takes place (see Ref. 1-1). Otherwise, the direction

of the normal will be distorted. Consequently, the intensity determined by the
illumination model will be incorrect.

320 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

5-4 DETERMINING THE REFLECTION VECTOR

Determining the direction of the reflection vector is critical in implementing

an illumination model. In Example 5-1 the direction of the reflection vector

was determined by inspection. Three more general techniques are described in

this section. Recall the law of reflection which states that the light vector, the

surface normal, and reflected light vector lie in the same plane and that in this

plane the angle of incidence is equal to the angle of reflectance (see Fig. 5-9a).

Phong (Ref. 5-2) used these conditions to obtain a simple solution when the

light direction is along the z axis. For an illumination model consisting of a

single point light source this is often an excellent assumption. If the origin of

the coordinate system is taken as the point on the surface, then the projection

of the normal and reflected vector onto the xy plane lie on a straight line (see

Fig. 5-9b).
Thus,

= (5-8)
R n,

where L, Ry, ñ, ñ are the x andy components of the unit vectors in the reflected
and normal directions, respectively.

The angle between the unit normal vector and the z axis is 0. Thus the

component in the z direction is

fl=cosO O�O�7r/2

Similarly, the angle between the unit reflection vector and the z axis is 20.

Hence,

= cos2O = 2cos2O— I = 2ñ —1 (5-9)

Recalling that

R + R + R =

y

7

y

R

a C

Figure 5-9 Determining the reflection direction.

DETERMINING THE REFLECTION VECTOR 321

then

+ = I — = i — cos2 20

or

/2

+ 1) = 1— cos22O
Using the ratio of the x and y components of the reflected and normal

vectors above (Eq. 5-8) and recalling that

n + n + = 1

yields

+ n) = Y(1 — n) = 1 — cos2 20

Rewriting the right hand side gives

Y(1 — ñ) = I — (2cos2 0— 1)2 = I — (2ñ — 1)2 = 4fl(1 — fi)

or

= 2ñn (5-10)

From Eq. (5-8)

R =2ññ (5-11)

If the light direction is not along the z axis, e.g., when multiple light sources

are used, the above technique is not applicable. Each light source could, of

course, be translated and rotated until the light direction is along the z axis.

However, it is simpler to translate and rotate the normal vector until it is along

the z axis with point P on the object at the origin. Here, the xy plane is now

the tangent plane to the surface at P, and the x and y components of the unit

light and reflection vectors are the negatives of each other. The z components

of the unit light and reflection vectors are of course equal. The results in the

original orientation are then obtained by applying the inverse transformations.

Specifically, in the rotated-translated coordinate system

R= —L. R= —L R=L

This technique is particularly convenient if the transformations are implemented
in hardware, firmware, or microcode.

The third technique uses the cross-products of the unit normal and the unit

light and reflection vectors to ensure that the three vectors lie in the same plane.

322 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The dot products of the unit normal and the unit light and reflection vectors

are used to ensure that the incident and reflection angles are equal. These

conditions yield

n®L = R®n

or

(nL — nL)i + (fizLx — Lzflx)j + (fixLy — Ln)k =

(nR — nR)i + (nR — nR)j + (nR — nR)k

The directions of the cross-product vectors are the same if their xyz components
are the same. Thus,

— nR + nR = nL — nL
nR — fixRz = fixLz — nL (5-12)

fiyRx + nR = fiyLx — nL

At first glance the reflected vector appears to be determined. Unfortunately,

for each specific case one of the three equations yields no useful information;

i.e., the equations are not independent. Further, the specific equation is not

known a priori.

Recalling that the incident and reflected angles are equal yields

nL = nR

or

nR + nR + nR7 = nL + flL + flL7 (513)

which yields the required additional condition. A matrix formulation including

all four conditions for the three unknowns Rx, R, R is

0 —n n rRxl = flL — nL
flz 0 v I flxLz — nz L

— fly fix 0 [Rz J flyLx — fix L
flx fly flz fixLx + flyLy + nL

or

[N][R] = [B]

Because [N] is not square a trick must be used to obtain a solutiont In
particular

[R] = [[NIT[NJ]’[NJT[B]

tNormally this technique yields a mean solution. However, because one of the equations
(Eq. 5-12) is redundant, here the solution is exact.

GOURAUD SHADING 323

5-5 GOURAUD SHADING

If the illumination model is applied to a polygonal surface using a single constant

normal for each polygon face, a faceted appearance results as illustrated

by the face in Fig. 5-lOa. A smoother appearance is obtained using a technique

developed by Gouraud (Ref. 5-3). If a scan line algorithm is used to render

the object, a value for the intensity of each pixel along the scan line must be

determined from the illumination model. The normals to the surface are approximated
at the polygonal vertices of the surface, as described in the previous

section. However, as shown in Fig. 5-11, a scan line does not necessarily pass

through the polygon vertices. Gouraud shading first determines the intensity

at each polygonal vertex. A bilinear interpolation is then used to determine

the intensity of each pixel on the scan line.

In particular, consider the segment of a polygonal surface shown in Fig. 5-11.

The intensity at P is determined by linearly interpolating the intensities of the

polygon vertices A and B to obtain the intensity of Q, the intersection of the
polygon edge with the scan line, i.e.

IQ = UJA + (1 — U)IB 0 � u � 1

where u = AQIAB. Similarly, the intensities at the polygon vertices B and C

are linearly interpolated to obtain the intensity at R on the scan line, i.e.

a b

Figure 5-10 Polygonal and Gouraud shading. (Courtesy of the University of Utah.)

324 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Plane of

scan line

Figure 5-11 Shading interpolation.

IRWIB+(1W)IC O�w�1

where w = BR/BC. Finally, the intensity at P on the scan line is also obtained

by linearly interpolating along the scan line between Q and R, i.e.

lptIQ+(lt)IR O�t�1

where t = QP/QR.

The intensity calculation along the scan line can be performed incrementally.

For two pixels at ti and t2 on the scan line

II’2 = t2IQ + (1 — t2)IR

and

Ip1 = tlIQ + (1 — tI)IR

Subtracting yields

Ip2 = lp1 + (I — IR)(t2 — t) = Ip + Mtt

along the scan line.The result of applying Gouraud shading to the polygonal approximation

for the face in Fig. 5-lOa is shown in Fig. 5-lOb. The improvement

is startling. However, close examination of Fig. 5-lOb shows faint evidence of

Mach banding, e.g., on the cheek bones, around the eyes, and on the chin.

This is because the shading interpolation rule yields only continuity of intensity

value across polygon boundaries but not continuity of change in intensity. Note

also that the silhouette edges are polygonal, e.g. the eyes and nose.

An additional difficulty with Gouraud shading is illustrated in Fig. 5-12a.

If the normals at the vertices B, C, D are computed using polygon averaging,

then they all have the same direction and hence the same intensity. Linear interpolation

then yields a constant-intensity value from B to D, which makes the

surface appear flat in that area. To achieve a smooth appearance at B, C, and

D it is necessary to introduce additional polygons as shown in Fig. 5-12b. If an

actual crease is required, then the smooth shading must be locally defeated by

“selectively” averaging the surface normals. An example is shown in Fig. 5-12c.

Here flB is computed only from the single face to the right of B. flD and nD2

A

PHONG SHADING 325

Figure 5-12 Gouraud shading effects.

are obtained similarly, while tiC is computed from the average of the faces to

the left and right of C. Gouraud shading then yields a sharp edge at B and D

and an apparent smooth graduation at C. The effect is shown by the lips in

Fig. 5-lOb.

Because of the simplicity of the shading, the shape of individual highlights

from specular reflection is strongly influenced by the polygons used to represent

the object or surface. Consequently a simple diffuse illumination model (see

Eq. 5-1 or 5-2) yields the best results with Gouraud shading.

5-6 PHONG SHADING

Although computationally more expensive, Phong shading (Ref. 5-2) solves

many of the problems of Gouraud shading. Whereas Gouraud shading interpolates

intensity values along a scan line, Phong shading interpolates the normal

vector along the scan line. The illumination model is then applied at each pixel,

using the interpolated normal to determine the intensity. This technique gives a

better local approximation to the surface curvature and hence a better rendering

of the surface. In particular, specular highlights appear more realistic.

Phong shading first approximates the surface curvature at polygonal vertices

by approximating the normal at the vertex (see Sec. 5-3). A bilinear interpolation

is then used to determine the normal at each pixel. In particular, again

using Fig. 5-11, the normal at P is determined by linearly interpolating between

A and B to obtain Q, between B and C to obtain R, and finally between Q and

R to obtain P. Specifically

C

326 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

flQ = UflA + (1 — U)flB 0 � U � 1

fiR = WflB + (1 — w)flC 0 � w � 1

flp = tflQ + (1 — t)flR 0 � t � 1

where again u = AQIAB, w = BR/BC, and t = QP/QR. Again, the normal along

a scan line can be determined incrementally, i.e.

flp2 = flp1 + (nQ — flR)(t2 — t) = np, + fl*t

where the subscripts 1 and 2 indicate successive pixels along the scan line.

Figure 5-13 compares constant, Gouraud, and Phong shading. The left

hand torus is rendered with constant normal shading, the middle torus with

Gouraud shading, and the right hand torus with Phong shading. The illumination

model for the left hand and middle tori is ambient plus diffuse reflection

(Eq. 5-1), while that for the Phong-shaded right hand torus also includes

specular reflection as shown by the highlights (Eq. 5-5 with d = 0,K = 1).

Figure 5-14 compares the highlight obtained with specular reflection for Gouraud

shading and the more realistic Phong shading.

Although Phong shading reduces most of the problems associated with

Gouraud shading, it is still a linear interpolation scheme. Consequently, discontinuities

in the first derivative of the intensity still give rise to Mach band effects.

In general, these effects are smaller than for Gouraud shading. However, Duff

(Ref. 5-4) has shown that in some cases, notably for spheres, Phong shading

yields worse Mach band effects than Gouraud shading. Further, both techniques

potentially render concave polygons incorrectly. For example, consider

the polygon shown in Fig. 5-15. The scan line labeled 1 will use data from the

vertices QRS, while that labeled 2 just below it also uses data from vertex P.

This can give rise to a shading discontinuity.

Figure 5-13 Comparison of rendering techniques. (Left) constant normal, (middle)
Gouraud, (right) Phong. (Courtesy of T. Whitted.)

PHONG SHADING 327

a b

Figure 5-14 Comparison of specular reflection highlights. (a) Gouraud shading, (b)
Phong shading. (Courtesy of the University of Utah.)

Additional difficulties are exhibited by both Gouraud and Phong shading

when used in animation sequences. In particular, the shading varies significantly

from frame to frame. This effect is a result of working in image space and the

fact that the shading rule is not invariant with respect to rotation. Consequently,

as the orientation of an object changes from frame to frame, its shade (color)

also changes. This is quite noticeable. Duff (Ref. 5-4) presents a technique

for rotation independent Gouraud and Phong shading rules.

An example that computes constant, Gouraud, and Phong shading serves

to illustrate the difference between the three techniques.

2

Figure 5-15 Shading anomR
alies for concave polygons.

Example 5-3 Shading

S

Consider the segment of a surface shown in Fig. 5-11. The equations of the

four planes are

328 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

1: 2z —4=0

2: —x + l.732y + 7.5z — 17 = 0

3: —2.25x + 3.897y + lOz — 24.5 = 0

4: 5.5z —11=0

where z is perpendicular to the plane of the paper, x is positive to the right,

and y is positive upward. The point B has coordinates of (0.366, 1.366, 2).

The vector to the eye is S [1 1 Ij, and a single point light source is located

at positive infinity on the z axis. The light vector is thus L [0 0 1]. The’

illumination model is given by Eq. 5-7, with d = 0, K = 1, = 1, Ij = 10,

fl = 2, k = 0.8, kd = ka = 0.15. Since the light direction is along the z axis, the

Phong technique can be used to determine the direction of the reflected light

vector (see Sec. 5-4).

For constant shading the point P is in polygon 3. From the plane equation

for polygon 3 the unit normal is

= -- = —0.211 + 0.36j + 0.91k
“31

The angle between the normal and light vector is

ñ L = (—0.211 + 0.36j + 0.91k) k = 0.91

which yields an incidence angle of about 24.2°.

From Eqs. (5-9) to (5-11)

= 2ii — I = (2)(0.91)2 — I = 0.66

R = 2fin = (2)(0.91)(—0.21) = —0.38

R = 2ñn = (2)(0.91)(0.36) = 0.66
and

= —0.38i + 0.66j + 0.66k

The unit vector in the eye direction is

S = — = — = 0.581 + 0.58j + 0.58k
ISIv’

Using this value, the angle between the reflected light vector and the line
of sight or eye is

R S = (—0.381 + 0.66j + 0.66k) (0.581 + 0.58j + 0.58k)
= 0.55

which yields an angle of about 570•

Recalling the illumination model (Eq. 5-7) yields

Ip = taka + JT_K[kd(ñ L) + k(
= (1)(0.15) + (10/1)[(0.15)(0.91) + (0.8)(0.55]

= 0.15 + 10(0.14 + 0.24) = 0.15 + 3.8

= 3.95

for point P.

PHONG SHADING 329

For Gouraud shading the normal vectors for A, B, C in Fig. 5-11 are required.

Approximating the normals by the average of the normals of the

surrounding planes yields

flA = fl2 + fl3 = —3.251 + 5.63j + 17.5k

flB = fl + fl + fl3 + 114 = —3.251 + 5.63j + 25k

flc = fl3 + 11I = —2.25i + 3.897j + 15.5k

where nj, fl2, 113, 114 are obtained from the plane equations given above. The

unit normals are

flA = = —0.17i+0.3j+0.94k
IflAI

118 = = —0.121 + 0.22j + 0.97k
“81

fic = -- = —0.141 + 0.24j + 0.96k
mci

The unit reflected vectors are

RA = 0.33i + 0.57j + 0.76k

RB = —0.24i + 0.42j + 0.87k

R = —0.27i + 0.46j + 0.84k

The intensities at A, B, C are

IA = 0.15 + 10(0. 14 + 0.27) = 4.25

‘B = 0.15 + 10(0. 15 + 0.30) = 4.65

Ic = 0.15 + 10(0. 14 + 0.29) = 4.45

On a particular scan line u = AQIAB = 0.4 and w = BR/BC = 0.7. Interpolating

to find the intensities at Q and R yields

JQ = UJA + (1 — u)JB = (0.4)(4.25) + (1 — 0.4)(4.65) = 4.49

JR = WIB + (1 — w)Jc = (0.7)(4.65) + (1 — 0.7)(4.45) = 4.59

The point P on the scan line is located at: = QP/QR = 0.5. Interpolating to

find the intensity at P yields

Ip = :IQ + (1 — t)JR = (0.5)(4.49) + (1 — 0.5)(4.59) = 4.54

Phong shading interpolates the normals at A, B, C to first obtain the normal

at P. The normal at P is then used to obtain the intensity at P. First,

interpolating to obtain the unit normals at Q and R yields

flQ= UflA+(lU)flB =(0.4)[—0.17 0.3 0.94]+(0.6)[—0.12 0.22 0.97]

= [—0.14 0.25 0.96] = —0.141 + 0.25j + 0.96k

flR WflB+(lW)flC =(0.7)[—0.12 0.22 0.97]+(0.3)[0.14 0.24 0.96]

= [—0.04 0.23 0.97] = —0.04i + 0.23j + 0.97k

Interpolating the normal along the scan line yields

flp tflQ+(l—t)flR (0.5)[—0.14 0.25 0.96]+(0.5)[—0.04 0.23 0.97]

330 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

= [—0.09 0.24 0.97]

= —0.091 + 0.24j + 0.97k

The unit reflection vector at P is then

Rp = —0.171 + 0.46j + 0.87k

The intensity at P is

Ip = 0.15 + (10)(0.15 + 0.36) = 5.25

Comparing the different shading models yields

Constant: Ip = 3.93

Gouraud: Ij’ = 4.54

Phong: Ip = 5.25

54 A SIMPLE ILLUMINATION MODEL WITH SPECIAL

EFFECTS

Warn (Ref. 5-5) has extended the simple point source illumination model discussed

previously in Sec. 5-2 to include special effects. The model was inspired

by the lighting controls found in a professional photographer’s studio. The

special effects include controls for light direction and for light concentration.

Further, the area illuminated by a light source can be limited.

The Warn model allows the direction of a light source to be controlle independently

of its location, as shown in Fig. 5-16a. Conceptually, the directed

light can be modeled as a single point perfect specularly reflecting pseudo surface,

illuminated by a point light source, as shown in Fig. 5-16b. If the point

light source is located along the direction L normal to the reflecting pseudo surpseudolight

source

Surface

normal

n
Reflected

Light direction

a b

Figure 5-16 Directed lighting model.

A SIMPLE ILLUMINATION MODEL WITH SPECIAL EFFECTS 331

face, then the reflection of that source illuminates the object along the direction

L. Hence, the direction of the light is controlled by rotating the pseudo surface.

With this conceptual model for the directed light source, the same illumination

model can be used for both directed and point source lights in a scene. The

amount of light received at point P from the directed light source as shown in

Fig. 5-16a depends on the angle j3 between L, the light direction vector, and

the line from the location of the light to P. Using the Phong approximation

for specular reflection from a perfect surface, the intensity of the directed light
source along the line from the source to the point P is

Ii cosC 3

where c is a power that determines the spatial concentration of the directed light

source (see Fig. 5-6). If c is large, the beam is narrow, simulating a spotlight.

If c is small, the beam is spread out to simulate a flood light. The contribution

of the directed light source to the overall illumination model (see Eq. 5-6) is
then

= Ii coscj3(k€j, cos O + k cos’7i a1) (5-14)

where j designates the specific light source.

A studio photographer obtains special effects by limiting the area of concentration

of lights using flaps (called barn doors by professional photographers)

mounted on the lights and with special reflectors. The Warn model simulates

these effects with flaps and cones. Flaps oriented to the coordinate planes are

implemented by limiting the maximum and minimum extent in x, y, or z of the

light, as shown in Fig. 5-17a. If a point on the object is within the range of

the flap, e.g. y1 � Yobct y, the contribution from that light is evaluated.
Otherwise, it is ignored. Implementation of arbitrarily oriented flaps is straightforward.

Flaps can also be used to simulate effects that have no physical counterpart.
For example, a flap can be used to drop a curtain across a scene to

limit penetration of a particular light source.
A cone, as shown in Fig. 5-17b, can be used to produce a sharply delineated

spotlight. This is in contrast to the gradual decrease at the edge achieved by

Yma x

Light direction

Light direction
Object surface

-- -
P

a b

Figure 5-17 Flaps and cones.

332 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

varying c in the directed light source model. Again this simulates one effect

available to the commercial photographer. Implementation of the cone effect

is straightforward. If the apex of the cone is located at the light source and y is

the cone angle, then if j3 < y, the effect of that light source on the point P can

be ignored. Otherwise, it is included in the illumination model. In practice,

this is accomplished by comparing cosj3 with cosy; i.e., cosf3 < cosy.

The effects that can be achieved with this illumination model are shown by

the 1983 Chevrolet Camaro in Color Plate 1. Five lights have been used. Two

lights have been used on the left side of the car for back lighting. Two lights

have also been used on the right side of the car. Notice in particular the use

of light concentration to emphasize the crease on the right door and along the

right rear fender. The fifth light, high and behind the car, is used to emphasize

the taillights and the detail on the bumper. The results are exceptional.

5-8 A MORE COMPLETE ILLUMINATION MODEL

The illumination models discussed in the previous sections are relatively simple.

They are based on aesthetic and experimental approximations. This is particularly

true of the specular component of the reflected light. Torrance and

Sparrow (Ref. 5-6) present a theoretical model for reflected light. Correlation

between the Torrance-Sparrow theoretical model and experiment is excellent.

Blinn (Ref. 5-7) and Cook and Torrance (Refs. 5-8 and 5-9) have used this

model to generate synthetic images. Blinn assumed that the specular highlights

were the same color as the incident light. Cook integrated the dependence of

the specular reflectance coefficient on wavelength into the model. The results

show that the color, i.e. the wavelength, of the specular highlights depends

on the material properties. The color of the specular highlights approaches the

color of the light source as the incidence angle approaches 7r/2.

To develop a more complete illumination model, first consider the solid

angle subtended by a light source. The incident energy per unit time per unit

area of the reflecting surface is then related to the intensity of the incident light

per unit projected area per unit solid angle w subtended by the light source by

E1 = 11(ñ L) dw

For rough surfaces, the incident light is reflected over a wide range of angles.

The reflected light intensity is related to the incident energy by

I = rEj

Here, r is the ratio of the reflected intensity for a given direction to the incident

energy from another direction. It is called the bidirectional reflectance.

Combining the two equations yields

1 rli(ñ L)dw

A MORE COMPLETE ILLUMINATION MODEL 333

The bidirectional reflectance is composed of two parts, specular and diffuse,
i.e.

r = kdrd + kr where k1 + k =

Here kd and k are properties of the materials but are not normally known.

Hence, they are usually treated as arbitrary parameters.

Reflection from ambient illumination is needed to complete the model. If a

surrounding hemisphere is considered the source of ambient illumination, part

of that hemisphere may be blocked by other objects. With this in mind, the

reflected intensity due to ambient illumination is

I = fka7aIa

where f is the unblocked fraction of the hemisphere. The ambient reflectance

ra results from integrating the bidirectional reflectance r over the hemisphere.

Consequently ra is a linear combination of rd and r. The constant ka again

depends on the material properties but is normally an arbitrary parameter.

Combining the results yields the Cook-Torrance illumination model for m

multiple light sources, i.e.

I = fkarala + 1(ñ L) dwJ(kdrd + kr)
(5-15)

j+1

Notice that, in contrast to the previous illumination models, the Cook-Torrance

model has the ability to account for multiple light sources of both different intensities

(Ii) and different projected areas (ñ Ldw). This ability can be of

importance. For example, a light source with the same intensity and illumination

angle as another light source but with twice the solid angle yields twice the

reflected intensity; i.e., the surface appears twice as bright. Quite small solid

angles can occur for large distant light sources; e.g., the solid angle for the sun
is 0.000068 steradian.

The components of the model depend on the wavelength of the incident

light, the material properties of the illuminated object, the roughness of the

surface, and the reflection geometry. Because of their considerable influence

on the realism of the resulting synthetic images, the highlights due to specular

reflection are of particular interest. The Torrance-Sparrow model addresses

this problem.

The Torrance-Sparrow model (Ref. 5-6) for reflection from a rough surface

is based on the principles of geometric optics. It is applicable to surfaces

with an average roughness large compared to the wavelength of the incident

light. The model assumes that the surface is composed of randomly oriented

mirrorlike microfacets. The specular reflectance component of the reflected

light r results from single reflections from the mirrorlike microfacets. Diffuse

reflection rd is a result of multiple reflections among the microfacets and from

internal scattering. Figure 5-18 shows the geometry for reflection from a rough

334 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Unit normal to

m icrofacet

Figure 5-18 Geometry for the Torrance-Sparrow reflection model.

surface. Here, ñ is the unit normal to the surface, L is the unit vector in the

direction of the light source, R is the unit reflection vector for the surface, H is

the unit normal for a single microfacet in the surface, and S is the unit reflection

vector for the microfacet and also the direction of the observer. By the laws of

reflection, L, H, and S all lie in the same plane and the incident and reflection

angles are equal. The angle between the normal to the surface Li and the

normal to the microfacet H is 6. Since H is the bisector of the angle between

L and 5,

S+L _S+L

iSi+iîi 2

and

cosØ= tH=SH

Only microfacets with normals in the direction 11 contribute to the specular
reflection seen by an observer in the direction S.

Using the Torrance-Sparrow model, Cook and Torrance give the specular
reflectance r as

F DG

r = (ñ L)(ñS)

where F is the Fresnel term, D is the distribution function for the microfacets

on the surface, and G is a geometric attenuation factor due to shadowing and

masking of one microfacet by another.

If each microfacet is considered as one side of a symmetric V-groove cavity

(see Fig. 5-19), then part of a microfacet may be shadowed from incoming

light (see Fig. 5-19b). Alternatively, part of the light reflected from a facet

may not leave the cavity because it is masked by the opposite cavity wall. This

is shown in Fig. 5-19c. The masking-and-shadowing effect is given by the ratio

i/l. Thus, the geometric attenuation is

A MORE COMPLETE ILLUMINATION MODEL 335

Figure 5-19 Geometric attenuation by the masking-and-shadowing effect. (a) No interference,

(b) shadowing, (c) masking.

G = 1 - rn/i

From the geometry shown in Fig. 5-19 it is obvious that the geometric

attenuation is a function of the angle of the incident light, the included angle

between the sides of the V groove, and the length of the side of the V groove, i.

When there is no interference, rn = 0 and G = 1. Both Torrance and Sparrow

(Ref. 5-6) and Blinn (Ref. 5-7) have determined G for masking and shadowing

effects. For masking (Fig. 5-19c),

— 2(ñH)(ñ L)

G- 1114

For shadowing (Fig. 5-19b), the restilt is the same with and f exchanged;
i.e.

— 2(ñ H)(ñ S) — 2(ñ H)(ñ S)
G-

- hI:

since 11 is the bisector of L and . For any given situation, the geometric
attenuation is the minimum of these values; i.e.

G = Min(1, Gm, G)

Torrance and Sparrow assume that the microfacet distribution on the surface

is Gaussian. Thus,

D = cje6/m)2

where c is an arbitrary constant and m is the root mean square slope of the
microfacets. Cook and Torrance use a more theoretically founded distribution
model proposed by Beckmann (Ref. 5-10). The Beckmann distribution is

D = 1 e16/m)2
m2 cos4 6

a b c

336 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

which provides the absolute magnitude of the distribution function without

arbitrary constants. Figure 5-20 compares the Beckmann distributions for m =

0.2 and 0.6, corresponding to shiny and matte surfaces. Each point on the surface

shown represents the magnitude of the reflected intensity in the direction

S from the point P as the direction of S varies over a hemisphere. For small

values of m, the reflected intensity is concentrated along the mirror direction

R, while for larger values of m it is more evenly distributed. Small values of m

yield shiny surfaces, and large values dull mattelike surfaces. For small values

of m corresponding to specular reflection, there is little difference between the

Gaussian, Beckmann or Phong distribution functions. For larger values of m

the differences are more significant.

If a surface has more than one roughness scale, weighted linear combinations

of the distribution functions for different values of m may be used; e.g

D = w1D(m1)

where the sum of the weighting factors w1 is unity, i.e. w1 = 1.

Ambient, diffuse, and specular reflection all depend on wavelength . The

wavelength dependence of ra, rd, and F is a result of the material properties of

the object. The Fresnel term in the specular reflectance r3 can be theoretically

calculated from the Fresnel equation for unpolarized incident light reflected
from a smooth mirrorlike surface, i.e.

F — ! [sin2 (— 0) + tan2 (— 0)
— 2 [sin2 (+ 0) tan2 (+ 0)

where

sin 0 = sin /i

= index of refraction of the material

Here, 0 = cos1 (LH) = cos1 (H), the angle of incidence. Since the index
of refraction is a function of wavelength, F is also a function of wavelength.

a b

Figure 5-20 Beckmann distribution functions for (a) m = 0.2 and (b) m = 0.6. (Courtesy
of Rob Cook and the Program of Computer Graphics, Cornell University.)

A MORE COMPLETE ILLUMINATION MODEL 337

F

l.0

0.5

0 400 800 X(nm)
a

Figure 5-21 Reflectance p of bronze (a) at normal incidence (b) as a function of incidence
angle calculated from (a) and the Fresnel equation. (Photograph courtesy of Rob Cook
and the Program of Computer Graphics, Cornell University.)

If is not known as a function of wavelength, F may be obtained from experimental

values (see, for example, Ref. 5-11) Figure 5-21a shows F(L) for
bronze at normal incidence. Cook and Torrance suggest the following procedure

for obtaining the angular dependence of F() when only the normal dependence
on wavelength is known. Rewriting F as

F = 1(g — c)2 1 + [c(g + c) — 112
2 (g + c)2 [c(g — c) + 112

where

c=cosq =SH= tn

g2 = 2 + c2 — 1

and noting that at = 0, c = 1, g = , yields

/;i— 1
F0 =

2

+ 1

Solving for , the index of refraction, yields

= 1 -v1P

600

b

Note that the reflectance spectra given in Ref. 5-11 are for polished surfaces. They must be
multiplied by 1/ for rough surfaces.

338 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

This value of is used to determine F(L) from the Fresnel equation. A typical
result is shown in Fig. 5-21b.

The dependence of the specular reflectance on wavelength and angle of

incidence implies that there is a color shift in the specular highlights as the

angle of incidence approaches r/2 (see Fig. 5-21b). At near normal incidence,

• = 0; the specular highlights are the color of the material. Near the grazing

angle of q = r/2, the specular highlights are the color of the incidence light
source (F = 1). Because calculation of the color shift is expensive, Cook

and Torrance suggest a linear interpolation between the color at normal reflectance

(= 0) and the color of the light (= r/2). For example, the red

component is

Red0 = Redo + (Red,2 — Redo)M 0,F9 — Fo)

The blue and green components in an RGB color space (see Sec. 5-15) are

determined similarly.
Cook and Torrance take the diffuse reflectance rd to be the normal reflectance,

= 0, from the surface. Although the diffuse reflectance does vary with

angle, the effect is negligible for incidence angles less than about 700. Hence,

this is a reasonable assumption.
The two vases shown in Color Plate 2 illustrate results for the more complete

illumination model. The left hand vase is bronze-colored plastic. The

plastic is simulated using a colored diffuse component and white specular highlights

(F = 1). The right hand vase is metallic bronze. For metals, reflection

occurs from the surface. There is little penetration of the incident light

below the surface and hence little if any diffuse reflection. Notice that here the

specular reflected highlights have a bronze color. The specific details used by

Cook to generate these images are given in Table 5-1.

Blinn has also used the more complex Torrance-Sparrow model with F = 1,

i.e., without accounting for the color shift. Figure 5-22 by Blinn compares the

shape of the specular highlights obtained using the Phong illumination model

when the object is edge-lit. Edge-lighting occurs when the observer (S) and

the light source (L) are approximately 900 apart. When the light and the
observer are at the same location, i.e. L = S, the results for the two models

are indistinguishable.

The above results are explained by Fig. 5-23 which shows a comparison

of the Phong and Torrance-Sparrow distribution functions for near normal

(25°) and near grazing (65°) angles for incident light. The bump represents

the specular reflectance. Figures 5-23a and b show little difference between

the models for near normal incidence. However, for near grazing angles the

Torrance-Sparrow model exhibits a laterally narrower, vertically oriented specular

reflectance bump which is not quite in the same direction as that for the

Phong model. Incorporating the geometric attenuation factor G into the Phong

illumination model yields results similar to those produced by the TorranceSparrow

model for edge-lit objects.

A MORE COMPLETE ILLUMINATION MODEL 339

Table 5-1

Plastic vase Metallic vase

Two lightsa 1, = CIE standard illumi- I = CIE standard illuminant

D65cJ0 nant D6500

dw1 = 0.0001 and 0.0002 do)1 = 0.0001 and 0.0002

Specular k3 = 0.1 k = 1.0

F = reflectance of a vinyl F = reflectance of a bronze

mirror mirror

D = Beckmann function with D = Beckmann functions with

m0.15 m=0.4

= 0.4

m2 = 0.2

W2 = 0.6

Diffuse = 0.9 kd = 0

rd = the bidirectional reflec- rd = the bidirectional reflectance

of bronze at normal tance of bronze at normal

incidence incidence

Ambient ‘a = 0.0111 ‘a = OOlji

raJrrd ra=Jrrd

a See Sec. 5-15.

a b

Figure 5-22 Comparison of edge-lit specular highlights. (a) Phong, (b) Torrance-
Sparrow, magnesium oxide surface. (Courtesy of the University of Utah.)

340 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

a b

c d

Figure 5-23 Comparison of a light distribution functions at a near normal incidence angle
(25°): (a) Phong, (b) Torrance-Sparrow; and at a near grazing incidence angle (65°): (c)
Phong, (d) Torrance-Sparrow.

5-9 TRANSPARENCY

Prior illumination node1s and hidden line/hidden surface algorithms have considered

only opaque surfaces or objects. Not all objects are opaque; some

transmit light, e.g., glasses, vases, automobile windows, water. When light

passes from one medium to another, e.g., from air to water, the light ray is

bent by refraction. The common childhood observation that a straight stick

partially inserted into a pond appears bent is an example of refraction. The

amount that the light ray is bent is governed by Snell’s law which states that the

refracted ray lies in the same plane as the incident ray and that the relationship

between the incident and refracted angles is

sinO = 712 sinO

where and 712 are the indices of refraction in the first and second mediums.

Here, 0 is the angle of incidence and 0’ the angle of refraction, as shown in

TRANSPARENCY 341

Surface

normal

Medium 1

Incident\\ ,//
Interface

0’

Transmitted
Medium 2

ray

Figure 5-24 Geometry of refraction.

Fig. 5-24. No material transmits all the incident light. Some of it is reflected,

as is also shown in Fig. 5-24.

By analogy with specular and diffuse reflection, light may be transmitted

specularly or diffusely. Transparent materials, e.g. glass, exhibit specular

transmission. Except at the silhouette edges of curved surfaces, objects viewed

through transparent materials appear undistorted. If the transmitted light is

scattered, then diffuse transmission occurs. Materials that diffusely transmit

light appear frosted or translucent. Objects viewed through translucent materials

appear dim or are distorted.

Some of the practical implications of refraction are shown in Fig. 5-25. In

Fig. 5-25 the objects labeled 1 and 2 have equal indices of refraction greater

than that in the surrounding medium. The objects labeled 3 and 4 are opaque.

If the effects of refraction are ignored, the light ray labeled a would intersect

object 3 as shown by the dashed line. However, because the light ray is bent

by refraction, it intersects object 4. Consequently, an object that might not

otherwise be seen is visible. In contrast, if refraction effects are ignored for

the light ray labeled b, then the ray would miss object 3 and intersect object

4. However, the refracted ray intersects object 3. Thus, an object that is

4

Figure 525 Refraction effects.

342 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

visible might not be seen. To generate realistic images these effects must be
considered.

Similar effects occur when a perspective transformation is incorporated into

the viewing transformation. Typically, a perspective transformation is used to

obtain a distorted object that is then displayed using an axonometric projection

with the eyepoint at infinity, as shown in Fig. 5-26. Figure 5-26a shows a

light ray through P that intersects the undistorted object at i. The refracted

ray arrives at the background at point b. Figure 5-26b shows the object after

distortion by a perspective transformation. The light ray now intersects the

object at the transformed point i’, and the refracted ray now intersects the

background at b’ on the opposite side of the centerline from b. This effect is

a result of incorrect angular relationships between the distorted object and the

distorted light ray. At first glance, keeping sufficient information to generate

the correct angular relations at the light ray—object boundaries might yield a

correct result. However, the correct result is not obtained because the length

of the light ray path in the distorted object is also different. This difference in

path length has two effects. First, the exit point of the refracted ray from the

distorted object is not the same as for the undistorted object. Thus, the ray

still will not intersect the background at the correct point. Second, the amount

of light absorbed within the object is also different. Hence, the intensity of the

light ray as it exits the distorted object is changed.

These refraction effects can be eliminated either by using an object space

algorithm or by appropriately transforming between object and image space.

However, they are more easily incorporated into ray tracing visible surface

algorithms that utilize a global illumination model (see Sec. 5-12).

The simplest implementations of transparency effects ignore refraction.

When refraction is ignored, the effects illustrated in Figs. 5-25 and 5-26 do not

>

Background
a

gure5;26Pepectheef:

Backoround distorted, (b) with perspecb
tive distortion.

TRANSPARENCY 343

occur. These simple implementations also ignore the effect that the distance a

light ray travels in a medium has on the intensity. The earliest implementation

of transparency is attributed to Newell, Newell, and Sancha (Ref. 5-12) (see

Sec. 4-8). Simple transparency effects can be directly incorporated into any

of the hidden surface algorithms except the z-buffer algorithm. Transparent

polygons or surfaces are tagged. When the visible surface is transparent, a
linear combination of the two nearest surfaces is written to the frame buffer.

The intensity is then

1=t11+(1—t)12 O�t�1

where J is the visible surface, 12 is the surface immediately behind the visible

surface, and t is the transparency factor for 1. If t = 0, the surface is invisible.

If t = 1, the surface is opaque. If 12 is also transparent, the algorithm is applied

recursively until an opaque surface or the background is found. When polygons

are written to a frame buffer in depth priority order, as in the Newell-NewellSancha

algorithm, 12 corresponds to the value stored in the frame buffer and Ii
to the current surface.

The linear approximation does not provide an adequate model for curved

surfaces. This is because at the silhouette edge of a curved surface, e.g., a

vase or bottle, the thickness of the material reduces its transparency. To more

adequately represent these effects Kay (Refs. 5-13 and 5-14) suggests a simple

nonlinear approximation based on the z component of the surface normal. In

particular, the transparency factor

t = + — tmin)[1 —(1 —

where tmin and tm are the maximum and minimum transparencies for the

object, n is the z component of the unit normal to the surface, and p is a

transparency power factor. Here, t is the transparency for any pixel or point

on the object. Figure 5-27 compares results for the two models. Figure 5-27a

a b

Figure 527 Comparison of simple transparency models. (a) Linear t = 0.5, (b) nonlinear
p = 1. (Courtesy of D. S. Kay and the Program of Computer Graphics, Cornell

University.)

344 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

was rendered using the linear model, and Fig. 5-27b using the nonlinear model.

Transparency effects cannot be added directly to a z-buffer algorithm (see

Sec. 4-7). However, transparency effects may be included by using separate

transparency, intensity, and weighting factor buffers (Ref. 5-15) with the transparent

polygons tagged in the data structure. For a z-buffer algorithm the

procedure is

For each polygon:

If the polygon is transparent, save it on a list.

If the polygon is opaque and if z> Zbuffer ,write it to the opaque frame

buffer and update the opaque z buffer.

For each polygon on the transparent list:

If Z � Zbuffer, add its transparency factor to that in the transparency

weighting buffer.

Combine its intensity with that in the transparency intensity buffer using

‘bn = Ibotbo + Jt

where Ibn is the new intensity value to be placed in the transparency

intensity buffer, I is the old value in the transparency intensity buffer,

I is the intensity of the current polygon, t0 is the old transparency

factor in the transparency weighting buffer, and t is the transparency

factor for the current polygon. This produces a weighted sum of the

intensities of all the transparent polygons in front of the nearest opaque

polygon.

Combine the opaque and transparency intensity frame buffers. A linear
combination rule is

Ifi, = tbolbo + (1 — tbo)Ifl,o

where Iji, is the final intensity in the opaque frame buffer and Iji€ is the old
intensity value in the opaque frame buffer.

Because of the memory requirements for a full z buffer, the procedure is more
appropriate for use with a scan line z-buffer algorithm (see Sec. 4-10).

One interesting application of transparency is in visualization of the interior

of complex objects or spaces. For this technique each polygon or surface is

tagged with a transparency factor. Initially, all transparency factors are 1, i.e.

opaque. Rendering produces an opaque hidden surface view of the outside of

the object or space. By selectively changing the transparency factor for groups

of surfaces to zero, i.e. invisible, the interior of the object or space is revealed

when the scene is again rendered.

Adding refraction effects to the illumination model requires that the visible

surface problem be solved for both the reflected and transmitted light rays

SHADOWS 345

(see Fig. 5-24) as well as for the incident light ray. This is most effectively

accomplished with a global illumination model in conjunction with a ray tracing

visible surface algorithm (see Sec. 5-12). Because of the large number of

diffusely scattered transmitted rays generated by a translucent surface, only

specularly reflected transmitted rays are usually considered. Thus, only transparent

materials are simulated. The illumination model used is then a simple

extension of those discussed previously (see Secs. 5-2, 5-7 and 5-8). In general
the illumination model is

I = + kdld + kI + k111

where the subscripts a, d, s, t specify ambient, diffuse, specular, and transmitted

effects. Most models assume that k1 is a constant and that I, the intensity

of the transmitted light, is determined from Snell’s law.

5-10 SHADOWS

When the observer’s position is coincident with the light source, no shadows

are seen. As the positions of the observer and the light source separate,

shadows appear. Shadows contribute considerably to the realism of the scene

by increasing depth perception. Shadows are also important in simulation. For

example, a specific area of interest may be invisible because it is in shadow.

Further, shadows significantly influence heating, air conditioning, and solar

power calculations for building and spacecraft design applications, as well as in

other application areas.

Observation shows that a shadow consists of two parts, an umbra and a

penumbra. The central dense, black, sharply defined shadow area is the umbra.

The lighter area surrounding the umbra is called the penumbra. The point light

sources generally used in computer graphics generate only umbra shadows. For

distributed light sources of finite dimension both umbra and penumbra shadows

result (see Ref. 5-8). While light is totally excluded from the umbra shadow,

the penumbra receives light from part of the distributed light source.

Because of the computational expense, only the shadow umbra generated

by a point light source is usually considered. The computational difficulty

(and hence expense) of the shadow calculation also depends on the location

of the light source. A light source at infinity is easiest, since an orthographic

projection can be used to determine the shadows. A light source at a finite
distance, but outside the field of view, is somewhat more difficult because a

perspective projection is required. The most difficult case is a light source

located within the field of view. Here, the space must be divided into sectors

and the shadows found in each sector separately.

Fundamentally, to add shadows to a scene the hidden surface problem must

be solved twice: once for the position of each light source and once for the

observer’s position or eyepoint. Thus, it is a two-step process. This is illustrated

346 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

b

Figure 528 Shadows.

in Fig. 5-28 for a single light source at infinity located above, in front, and to the
left of the block. The scene is viewed from in front, above, and to the

right of the block. There are two types of shadows: self-shadows and projected
shadows. Self-shadows result when the object itself prevents light from reaching
some of its planes, e.g., the right hand plane of the block in Fig. 5-28. They are
analogous to self-hidden planes and are found in the same way. Self-shadowed
planes are self-hidden planes when the scene is viewed from the position of the
light source.

A projected shadow results when an intervening object prevents light from
reaching another object in the scene. The shadow on the base plane in Figure
5-28b is an example. Projected shadows are found by projecting all non-
self-hidden planes into the scene from the position of the light source. The
intersections of the projected plane and all other planes in the scene are found.
These polygons are tagged as shadow polygons and added to the data structure.
The number of polygons added to the data structure can be reduced by finding
the silhouette of each object and projecting it instead of each individual plane.

After the shadows have been added to the data structure, the scene is

processed normally from the observer’s position to obtain the desired view.

Note that multiple views may be obtained without recalculating the shadows.

The shadows depend upon the position of the light source and not on that of

the observer. An example illustrates these techniques.

Example 5-4 Shadows

As an explicit example, consider the block shown in Fig. 5-28a. The block

is described by the points Pi(1, 0, 3.5), P2(2, 0, 3.5), P3(2, 0, 5), P4(1, 0, 5),
P5(1, 3, 3.5), P6(2, 3, 3.5), P7(2, 3, 5), P8(1, 3, 5). The block rests on a base

plane given by B1(0, 0, 0), B2(6, 0, 0), B3(6, 0, 6), and B4(0, 0, 6). The light

source is located at infinity along the line connectingP2 and P8. The block and

SHADOWS 347

the base plane are to be observed from infinity on the positive z axis, after first

being rotated —45° about the y axis followed by a 35° rotation about the x axis.

The self-shadowed planes are found by determining the self-hidden planes

from the position of the light source. Using the formal techniques discussed in

Sec. 4-3 and Examples 4-2, 4-6, and 4-7, the volume matrix for the block is

1 0 0 0

I 0 0 1 —I 0
I 0 0 0 0—1

L 2 —1 0 3 5 3.5

where R, L, B, T, H, Y refer to the right, left, bottom, top, hither, yon planes,
based on viewing the untransformed block from a point at infinity on the
positive z axis. The vector from the light source to the block expressed in
homogeneous’ coordinates is

[E] = P2 — P8 = [1 —3 —1.5 0]

Taking the dot product of the light source vector and the self-hidden planes

yields

®Ø®®® 0

[E][V]=[—1 1 —3 3 1.5 —1.5]

The negative signs indicate that, viewed from the light source, the right, bottom,

and yon planes are self-hidden and hence produce self-shadows.

There are several techniques for finding the projected shadows. One is

to translate and rotate the block and its base plane until the vector from the

light source is coincident with the z axis. Since the light source is at infinity, an

orthographic projection of the visible planes of the block onto the transformed

base plane yields the projected shadows. This is accomplished by substituting

the x and y coordinates of the transformed vertices of the block into the plane

equation for the transformed base plane to obtain z. The coordinates of the

projected shadows are then transformed back to the original orientation.

The light vector from infinity through P8P2 can be made coincident with

the x axis by

Translating P2 to the origin

Rotating about the y axis by 33.69° so that P4 is on the z axis

Rotating about the x axis by 59.04° so that P8 is on the z axis.

The combined transformation is

[7] = 0.83 0.48 —0.29 0

0 0.51 0.86 0

0.55 —0.71 0.43 0

—3.59 1.53 —0.93 1

Transforming the base plane and the block yields

348 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

B 0 0 0 1 [T] = —3.591.53 —0.93 1

B2 6 0 0 1 1.39 4.41 —2.67 1

B3 6 0 6 1 4.69 0.15 —0.09 1 Baseplane

B4 0 0 6 1 —0.29 —2.731.65 1

Pi 1 0 3.5 1 —0.84 —0.480.29 1

P2 203.51 0 0 0 1

P3 2 0 5 1 0.82 —1.06 0.64 1

P4 1 0 5 1 0 —1.54 0.93 1

P5 1 3 3.5 1 —0.84 1.06 2.87 1 Block

P6 2 3 3.5 1 0 1.54 2.58 1

P7 2 3 5 1 0.82 0.47 3.22 1

P8 1351 0 0 3.511

Using Newell’s method (see Sec. 4-3, Example 4-3) the equation for the transformed

base plane is

z = —O.6y

Substituting the x and y coordinates of the vertices of the transformed block

into the plane equation to obtain z yields the projection of the shadow onto the

base plane. Specifically,

[P’] = —0.84 —0.48 0.29

0 0 0

0.82 —1.06 0.64

0 —1.54 0.93

—0.84 1.06 —0.64 P5
0 1.54 —0.93 P

0.82 0.48 —0.29 P4
0 0 0 P

where the prime denotes a projected shadow vertex.
Since only the front, left, and top planes are visible from the light source,

only these planes yield projected shadows specifically,

Front: P3P4PgP7 - PPPP4
Left: P1P4P8P5 - PJPPP
Top: P7P8P5P6 - P4PPP

Notice that P2 is not contained in any visible plane. Hence, its projection P
is not contained in any visible projected shadow. The projected shadows are
obtained in the original orientation by applying the inverse transformation, i.e
[T]’. Specifically,

[S] = [P’][T]’ = r 1 0 3.5 1 1
2 0 3.5 1 S2

2 0 5 1 S3

1 0 5 1 S4

2 0 2 1 Ss

3 0 2 1 S6

3 0 3.5 1 S7

2 0 3.5 1 S8

The projected shadow planes projected into the base plane are then S3S4S8S7,

S1S4S8S5, and S7S8S5S6. The silhouette polygon is S1S5S&S-1S3S4.

SHADOWS 349

The result, rotated —45° about the y axis, followed by a 35° rotation about

the x axis, and viewed from a point at infinity on the positive z axis, is shown in

Fig. 5-28b. Here, the right hand plane is visible but is self-shadowed. Hence,
its intensity is shown nearly black. The projected shadow is also shown nearly
black. Notice that, from this viewpoint, part of the projected shadow is hidden.

Incorporating shadows into a hidden surface algorithm was first suggested

by Appel (Ref. 5-16). He suggested both a ray tracing and a scan line approach.

Bouknight and Kelley (Refs. 5-17 to 5-19) improved on Appel’s scan

line approach. Adding shadows to a spanning scan line algorithm, e.g. the

Watkins algorithm, requires two steps.

The first step is to determine the self-shadows and the projected shadows

for every polygon in the scene for every light source, as discussed above in

Example 5-4. Conceptually, this can be considered a binary matrix. The rows

represent polygons that can cast shadows, and the columns represent polygons

that are shadowed. In the binary matrix, a one indicates that a polygon can

possibly cast a shadow on another, and a zero that it cannot. Along the

diagonal, a one indicates that a polygon is self-shadowed.

Since for a scene containing n polygons the number of possible projected

shadows is n(n — 1), efficiently determining this matrix is important. Bouknight

and Kelley project the scene onto a sphere centered at the light source and

use bounding box tests on the projected polygons to eliminate most cases.

Similarly, the technique, described in Example 5-4, of making the direction

of the light source coincident with the z axis may be used. Simple three-

dimensional bounding box tests can then be used to eliminate most cases.

Additional possibilities can be eliminated by using more sophisticated sorting

techniques, e.g., the Newell-Newell-Sancha priority sort (see Sec. 4-8). A

simple example illustrates this.

Example 55 Shadow Matrix

For the simple scene shown in Fig. 5-28, the shadow matrix can be constructed

by inspection. The result is shown in Table 5-2.

Table 5-2

Polygon being shadowed

Right Left Bottom Top Hither Yon Base plane

Polygon Right 1 0 0 0 0 0 1

casting Left 0 0 1 0 0 1 1

the Bottom 0 0 1 0 0 0 1

shadow Top 1 0 0 0 0 0 1

Hither 1 0 1 0 0 0 1

Yon 0 0 0 0 0 1 1

Base plane 0 0 0 0 0 0 0

350 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

In practice, the matrix is incorporated into a linked list that associates the

shadows and the polygons.

The second step processes the scene from the observer’s viewpoint. Two

scanning processes are involved. In a spanning scan line algorithm, e.g. the

Watkins algorithm, the first scanning process determines the visible segment in

a span as described in Sec. 4-11. The second scanning process uses the shadow

linked list to determine if any shadows fall on the polygon that generated the

visible segment for that span. The second scan for the span then proceeds as
follows:

If no shadow polygons are found, the visible segment is displayed.

If shadow polygons are found for the visible segment polygon but none

intersect or cover the span, the visible segment is displayed.

If one or more shadow polygons completely cover the span, the intensity

of the visible segment is modulated with that of the shadow polygons and

the segment displayed.

If one or more shadow polygons partially cover the span, the span is

subdivided at the intersection of the edges of the shadow polygons. The

algorithm is then applied recursively to each subspan until the entire span

is displayed.

The above algorithm states that the intensity of the visible segment is

modulated with that of the shadow polygon. The simplest modulation rule

assumes that the shadow is absolutely black. A few minutes experimenting with

light sources and two objects will show that shadows are not always absolutely

black. The intensity, i.e. the blackness, of the shadow varies with the intensity

of the light source and also with the distance between the plane casting the

shadow and the plane in shadow. This is because the shadow area receives

light from the ambient environment, and because the light source is of finite
size.

A simple modulation rule that partially simulates this effect is to make the

shadow intensity proportional to the intensity of the light source. For multiple

shadows the shadow intensities are additive. A computationally more expensive

rule is to make the shadow intensity proportional to both the intensity of the

light source and the distance between the plane casting the shadow and the

plane in shadow.

The z-buffer algorithm (see Sec. 4-7) may be modified to include shadow

effects (Ref. 5-20). Again, a two-step process is used. The modified algorithm
is

The scene is constructed from the light source direction. The z values for

this view are stored in a separate shadow z buffer. Intensity values are

ignored.

The scene is then constructed from the observer’s point of view. As each

surface or polygon is considered, its depth at each pixel is compared with

SHADOWS 351

that in the observer’s z buffer. If it is the visible surface, a linear transformation

is used to map the x, y, z values in the observer’s view into x’, y’,

z’ values in the light source view. The z’ value is checked for visibility with

respect to the light source by comparing its value with that in the shadow

z buffer at x’, y’. If it is visible to the light source, it is rendered normally

in the frame buffer at x, y. If not, it is in shadow and is rendered using the

appropriate shadow modulation rule. The value in the observer’s z buffer

is updated with z’.

The above algorithm is directly applicable to the scan line z-buffer algorithm

(see Sec. 4-10). Here, the buffers are only one scan line high. Williams

(Ref. 5-20) used a modified procedure to render curved shadows on curved

surfaces. The complete scene is first computed from the observer’s point of

view. The point-by-point linear transformation to the light source direction,

and consequent shadowing, are then applied as a postprocess. As pointed out

by Williams, the modified procedure incorrectly renders highlights, since they

are merely darkened if they lie in shadow. Highlights should, of course, not

appear in shadowed areas. Williams also discusses the quantization effects that

result from performing the transformation from one viewpoint to another in

image space.

Atherton (Refs. 5-21 and 5-22) has extended the hidden surface algorithm

(see Sec. 4-5), based on the Weiler-Atherton clipping algorithm (see Sec. 3-17),

to include shadow generation. The algorithm is important because it operates

in object space. Hence, the results can be used for accurate calculations as well

as to produce pictures. Again, a two-step process is used.

The first step uses the hidden surface algorithm to determine the visible or

illuminated polygons from the light source direction. The illuminated polygons

are saved rather than the shadow polygons in order to increase the efficiency

of the algorithm. If shadow polygons, i.e. invisible polygons, were saved, then

it would also be necessary to save all the self-hidden polygons that are normally

culled before application of the hidden surface algorithm. For convex

polyhedra, this would double the number of polygons processed by the algorithm.

The illuminated polygons are tagged and transformed back to the original

data orientation where they are attached to the original polygons as surface

detail. This operation is accomplished by assigning a unique number to every

polygon in the scene. When a polygon is passed through the hidden surface

algorithm, it may be split into numerous pieces. However, each piece retains

the original unique number. Thus, it is possible to associate each of the fragmented

illuminated polygons with its original source polygon or any fragment

of the source polygon.

In order to avoid false shadows it is necessary that the entire scene be

contained within the view or clipping volume defined from the location of the

light source. If not, then regions outside the clipping volume will be incorrectly

assumed to be in shadow. The result, viewed from the observer’s location, will

then contain false shadows. This restriction also requires that the light source

352 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

not be located within the extremes of the scene environment. This restriction

occurs because no single perspective or axonometr c transformation exists, from

the location of the light source, that can contain the entire scene.

The second step processes the combined polygon data from the observer’s

point of view. If an area is not illuminated, the appropriate shadow modulation

rule is applied. The general procedure is shown in Fig. 5-29.

For multiple light sources, multiple sets of illuminated polygons are added

to the data base. The color image shown in Color Plate 3 illustrates a result

with two light sources.

The visible surface ray tracing algorithm previously discussed in Sec. 4-13

can also be extended to include shadows (Ref. 5-16). Again, a two-step process

Figure 5-29 Procedure for adding shadows to the Weiler-Atherton hidden surface algorithm.
(Photographs courtesy of P. Atherton and the Program of Computer Graphics,

Cornell University.)

SHADOWS 353

is used. The first step traces the ray from the observer or eyepoint through the

plane of projection to determine the visible point, if any, in the scene, as in the

previously discussed algorithm.

The second step traces the vector (ray) from the visible point to the light

source. If any object in the scene lies between the visible point and the light

source, then light from that source cannot reach that point. Hence, the point is

in shadow. The technique is illustrated in Fig. 5-30. The techniques previously
discussed in Sec. 4-13 can be used to make the search along the local light
direction vector more efficient.

Although, as mentioned above, shadow penumbras are not usually included,

Cook (Ref. 5-8) suggests a relatively simple technique for including

them. Since the Cook-Torrance illumination model assumes a finite area light

source subtending a solid angle dw (see Sec. 5-8), blocking a fraction of the

area of the light source reduces the effective solid angle and hence the incident

intensity from the source. The reflected intensity is then also reduced proportionally.

Figure 5-31 illustrates the effect for a simple straight edge and a spherical

light source. The midshadow line is calculated by considering a point light

source at the center of the spherical source. From Fig. 5-31, using similar

triangles, the projection of the penumbra half width r in the direction L is

r(nL) R

d D

where d is the distance from the shadow casting point to the corresponding

point on the midshadow line, D is the distance from the shadow casting point

to the center of the spherical light source, and R is the radius of the spherical

light source.

Viewed from the polygon casting the shadow, the solid angle of the light
source dw is

/ \2

dw=7r)

ALight
source

Observer

Shadow

line\

Figure 5-30 Ray tracing with shadows.

354 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 5-31 Penumbra shadows.

Thus, the penumbra half width is

dR d
r = —-— =I—

ñLD ñLVr

The result shows that the shadow is sharper (i.e., r is smaller) for light resources

that subtend smaller solid angles dw. For a point light source, dw = 0, which

yields r = 0. Hence, no penumbra is generated. Further, as the polygon casting

the shadow approaches the surface, d and r both decrease. This also makes the

shadow sharper.

Within the penumbra the intensity of each point is determined by the

fraction of the light source that is visible. For a spherical light source only

partially visible from — R to a this fraction is

Afrac = fR22 - x2 = ! ! - (a)2 + sin ()]
The results show that a shadow penumba is sharper at one edge. Cook recommends

storing the results of this calculation in a look-up table. However, the

linear approximation

Afrac = + j
yields a less than 7% error and is computationally less expensive.

5-11 TEXTURE

In computer graphics, the surface detail in an object is called texture. Two

aspects of texture are generally considered. The first is the addition of a

Spherical
light source

TEXTURE 355

separately specified pattern to a smooth surface. After the pattern is added, the

surface still appears smooth. Adding a pattern to a smooth surface is basically

a mapping function. The second is adding the appearance of roughness to

the surface. Adding the appearance of roughness to a surface is basically a

perturbation function.

Adding a texture pattern to a smooth surface was first suggested by Catmull

(Ref. 5-23) as a consequence of his subdivision algorithm for curved surfaces

(see Sec. 4-6). This basic idea was extended by Blinn and Newell (Ref. 5-24)

to include reflection and highlights on curved surfaces.

Since the basis of adding texture patterns to smooth surfaces is mapping,

the texture problem reduces to transformation from one coordinate system to

another. If the texture pattern is defined in an orthogonal coordinate system

(u, w) in texture space, and the surface in a second orthogonal coordinate system

(0,), then adding the texture pattern to the surface involves determining or

specifying a mapping function between the two spaces, i.e.

0=f(u,w) tg(u,w)

or alternately

u=r(0,t) w=s(u,w)

Although not necessary, the mapping function is generally assumed to be linear,
i.e.

0=Au+B 0=Cw+D

where the constants A, B, C, D are obtained from the relationship between

known points in the two coordinate systems. A simple example serves to illustrate

the technique.

Example 5-6 Mapping

The pattern shown in Fig. 5-32a is to be mapped onto the surface patch defined
by the octant of the sphere shown in Fig. 5-32b. The pattern is a simple two-
dimensional grid of intersecting lines. The parametric representation of the
octant of the sphere is given by

x = sinOsin
0 � 0 � 3r/2

y = cos
ir/4 � � 3r/2

z = cosOsin

Assuming a linear mapping function

OAu+B bCw+D

and assuming that the corners of the quadrilateral pattern map into the corners

of the quadrilateral surface patch, i.e.

u0,wOatOO r/2
u = I, w = 0 at 0 = r/2, =

u=0,w=IatO=0, q=ir/4

u = I, w = 1 at 0 = = ir/4

356 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

yields

A=.r/2 8=0 C=—r/4 D=.r/2

Thus, the linear mapping function from uw space to O space is

Ou =-w
The inverse mapping from O space to uw space is

u- w=

The results of mapping a single line in uw space into O space and thence

into xyz Cartesian coordinates is shown in Table 5-3. The complete results are

shown in Fig. 5-32c.

Table 5-3

U W 0 x y z

1/4 0

1/4

1/2

3/4

I

ir/2 ir/2

7/163r 0.38 0.20 0.91

3/8ir

5/I6rr 0.32 0.56 0.77

r/4

0.38 0

0.35 0.38 0.85

0.27 0.71

0.92

0.65

The texture pattern shown in rig. 5-32a is a simple mathematical definition.
Other sources of texture might be hand-drawn artwork or scanned-in

(digitized) photographs or other patterns. Displaying a texture pattern on a
surface involves a mapping from object space to image space, as well as the
previously discussed transformation from texture space to object space. Any
viewing transformation must also be applied. Assuming that image space implies

a raster device, there are two slightly different techniques.
The first technique is based on Catmull’s subdivision algorithm (see Sec. 4-

6). Catmull’s algorithm subdivides a surface patch until a subpatch covers a

a b c

Figure 5-32 Mapping.

TEXTURE 357

single pixel center. The parametric values of the center of the subpatch or the

pixel center could then be mapped into texture space and the texture pattern

at that point used to determine the intensity of the pixel. However, as Catmull

points out, this point sampling technique leads to severe aliasing effects. For

example, large portions or perhaps all of the simple mathematically defined

texture pattern shown in Fig. 5-32a might be missed if all the sample points
occurred in the “white” areas of the texture. To alleviate this effect, Catmull

subdivides the texture pattern along with the surface patch. When a subpatch

is found that covers only a single pixel center, the average intensity in the

associated texture subpatch is used to determine the pixel intensity.

In general the texture subpatch will not be rectangular. If the texture

pattern is rasterized, then the intensity of the texture subpatch is taken as

the weighted average of the intensities for the texture pixels in the subpatch.

The weighting function is the ratio of the area of the texture pixels inside the

subpatch to its total area. Blinn and Newell used this technique with a better

2 x 2 pyramidal antialiasing filter suggested by Crow (see Sec. 2-25). Results,

obtained by Barsky, by texture mapping a simple checkerboard pattern onto a

3-spline patch used to construct a bottle are shown in Fig. 5-33.

Conceptually, the Catmull subdivision algorithm starts with the surface

patch in object space and transforms in two directions: one into image space,

and one into texture space. An example serves to further illustrate the technique.

Figure 5-33 Texture pattern mapped onto a 9-spline patch defined
bottle. (Courtesy of B. Barsky.)

Example 5-7 Texture Subdivision Algorithm

Again consider the surface patch formed from the octant of the unit sphere, as
shown in Fig. 5-32b, and the simple grid texture pattern shown in Fig. 5-31a.
The surface patch is to be rotated about the y axis by —45° and then about the x
axis by 35° and displayed on a 32 x 32 raster using an orthographic projection
(see Fig. 5-34a). The simple grid texture pattern is rasterized at a resolution of
64 x 64, with each line assumed to be one pixel wide as shown in Fig. 5-34b.

First the patch is subdivided. It is then transformed into image space with
the object space origin corresponding to the center of the 32 x 32 raster. Figure
5-34a shows that four subdivisions are required before a subpatch covers only
a single pixel center. This subpatch is rectangular in image space and was
generated with parameters 0 � 0 � 3r/32, 31rr/M � � 3r/2 in object space.

358 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Recalling the inverse mapping functions from O object space to u,w texture

space from Example 5-5, i.e.

w=

yields the corners of the subpatch in texture space. Specifically, in texture space

the vertices of the subpatch are

-, u=O,w=O

O=O,=593r/M -, u0,w1/16

O = 3r/32, = 59ir/64 -, u = 1/16, w = 1/16

-. u1/16,w0

As shown in Fig. 5-34b, this is a square in texture space. On a 0 to 64 raster,

1/16 corresponds to 4 raster units as shown in Fig. 5-34b. The other subdivisions

are also shown in Fig. 5-34b.

The intensity of the pixel in image space is obtained by averaging the

intensities of the pixels in the subdivided texture space. The diffuse reflection

component is scaled by this factor. From Fig. 5-34b there are seven black pixels

in the 4 x 4 subdivision. Thus, the intensity of the displayed pixel in image

space (Fig. 5-34a) is 7/16 on a scale of 0 to 1.

iI
Figure 5-34 Texture mapping by patch subdivision.

One of the advantages of the Catmull subdivision algorithm is that it does

not require knowledge of the inverse transformation from image space to object

space or the depth (z value) of the subpatch in image space. However, one of

the disadvantages is that the subpatch may not precisely cover a single pixel in

image space (see Fig. 5-34a). Frequently, the depth (z value) is available from

the visible surface algorithm. The inverse transformation can be determined by

saving the three-dimensional viewing and object-to-image space transformations

prior to projection onto the image plane. Consequently, the precise area

b

TEXTURE 359

covered by a pixel in image space can be transformed to texture space. The

procedure is to transform the pixel area from image space to the surface in

object space and then to texture space. The intensity of the pixel in image space

is determined by averaging the intensity of the pixels covered by that area in

texture space. The diffuse component in the illumination model is then scaled

by this factor. Other more sophisticated antialiasing rules may, of course, be

used. A simple example serves to illustrate the technique.

Example 5-8 Texture by Inverse Pixel Mapping

Again consider the surface patch formed from the octant of a unit sphere as
shown in Fig. 5-32b and the simple grid texture problem rasterized at a 64 x 64
pixel resolution (see Fig. 5-34b). Again the surface patch is to be rotated about
the y axis by —45° and about the x axis by 35° and displayed on a 32 x 32 raster
using an orthographic projection (see Fig. 5-34a).

Consider the intensity of the pixel at P = 21, P, = 15 shown in Fig. 5-34a.
Pixels are specified by their lower left hand corners. The pixel area is then
specified by 21 � P � 22 and 15 � P, � 16. Assuming that the object space
window that corresponds to the 32 x 32 raster in image space is —1 � x’ � 1,
—1 �y’ � 1 yields

Py

x =j-—l Y =j.—1

Recalling the equation for a unit sphere gives

z’ %/iZ’2+y’2)

where x’, y’, z’ represent object space coordinates after application of the

viewing transformation. The object space coordinates of the corners of the

pixel on the surface of the patch are then

Px Py x’ y’ z’

21 15 0.3125 —0.0625 0.948

22 15 0.3750 —0.0625 0.925

22 16 0.3750 0 0.927

21 16 0.3125 0 0.950

The viewing transformation before projection onto the image plane and its
inverse are

[T] = r 0.707 —0.406 0.579 01 [TF’ = 0.707 0 —0.707 0
I 0 0.819 0.574 0 I —0.406 0.819 —0.406 0

I0.707 —0.406 0.579 0 I 0.579 0.574 0.579 0

L 0 0 0 iJ 0 0 0 1

Using the inverse of the viewing transformation yields the corners of the pixel

on the surface patch in the original orientation. Specifically

[x y z 1]=[x’ y’ z’ 1][T]’

360 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

and

yields

Px Py x y

21 15 0.795 0.493 0.341

22 15 0.826 0.479 0.296

22 16 0.802 0.532 0.272

21 16 0.771 0.545 0.329

Recalling that the parametric representation of the unit sphere is

x = sin 0 sin

y = cos

z = cos 0 sin

=cos1y

in parametric space. Recalling the mapping transformation from parametric
space to texture space given in Example 5-6, i.e.

u=—w=

ir/2 ir/4

yields for the corners of the pixel area in texture space

Px Py 0 U W

21 15 60.50° 66.04° 0.734 0.656

22 15 61.34° 70.30° 0.781 0.636

22 16 57.88° 71.28° 0.792 0.714

21 16 56.99° 66.88° 0.743 0.734

The results are shown in Fig. 5-35, where the curved area is approximated by

a quadrilateral.

The rasterized grid pattern passes through the left hand edge of the pixel

area. Again, several techniques can be used to determine the intensity of the

display pixel (see Sec. 2-25). One simple technique is to use a weighted average

of the intensities of the texture pixels whose centers are inside the display pixel

boundaries. Here, the ratio of the “black” texture pixels representing the grid

to the total texture pixels with centers inside the display pixel is 5/18. The

intensity of the diffuse component of the illumination model is scaled by this

factor.

The above techniques add texture patterns to smooth surfaces. The resulting

surfaces also appear smooth. To add the appearance of roughness to a surface

a photograph of a rough-textured pattern could be digitized and mapped to

the surface. Unfortunately, the results are unsatisfactory because they look like

rough-textured patterns painted on a smooth surface. The reason is that true

rough-textured surfaces have a small random component in the surface normal

TEXTURE 361

Figure 5-35 Display pixel in texture space.

and hence in the light reflection direction. Blinn (Ref. 5-25) recognized this

and developed a method for perturbing the surface normal. The results give a

visual impression of rough-textured surfaces.

At any point on a surface Q(u, w) the partial derivatives in the parameter

directions u, w, i.e. Q and Q, lie in the plane tangent to the surface at that

point. The cross-product of Q and Q defines the surface normal n at that

point, i.e.

n = Q ® Q

Blinn defined a new surface giving the visual appearance of having a rough

texture by adding a perturbation function P(u, w) to the surface in the direction

of the normal to the original surface. Thus, for any point on the new surface

Q(u, w) the position vector is

Q’(u, w) = Q(u, w) + P(u, w)jj

The normal vector to the perturbed surface is then

= Q1 ® Q

The partial derivatives Q and Q are

Q—Q + +

Since P is very small, i.e. a perturbation function, the last term may be neglected.
Hence,

Q =Q+Pr

The perturbed normal is then

n’ = Q ® Q + P(n ® + PW(QU ® n) + PP(n® n)
ni ni mi

362 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

a b

Figure 5.36 Texture pattern mapped onto bicubic surface patches. (a) Texture pattern,
(b) result. (Courtesy of T. Van Hook, Adage, Inc.)

The first term is the normal to the unperturbed surface n and the last term is

zero, so

P(n ® Q) PW(QU ® n)
n=n+ +

In! ni

where the last two terms represent the effect of the perturbation on the surface
normal and hence on the illumination model after scaling to unit length.

Almost any function for which the derivatives can be defined may be used

as the texture perturbation function P. Blinn used a simple mathematically
defined grid pattern, character bit maps, z-buffer patterns, and random hand-
drawn patterns. An example, rendered by T. Van Hook, is shown in Fig. 5-36,
where .a texture pattern has been added to bicubic surface patches. For non-
mathematically defined patterns, the perturbation function is represented in a

two-dimensional look-up table indexed by the parameters u, w. Intermediate
values are obtained using bilinear interpolation of the values in the look-up
table, and the derivatives P and P are determined using finite differences.

The rough texture effect is not invariant with scale changes of the object.
In particular, if the object size is scaled by a factor of 2, then the magnitude of
the normal vector will be scaled by a factor of 4, while the perturbation to the
normal vector will be scaled by only a factor of 2. This results in smoothing
the texture effect as the object size increases. However, scale changes due to

object movement toward or away from the viewer in perspective space do not
affect the texture scale.

The results of perturbation texture mapping can also exhibit aliasing effects.

However, if texture area averaging, as described above, or prefiltering antialiasing

techniques are used, the result is to smooth out or reduce the texture effect.

A GLOBAL ILLUMINATION MODEL USING RAY TRACING 363

As pointed out by Blinn (Ref. 5-25), the proper antialiasing technique is to

compute the image at \highr-than-display resolution and postfilter or average
the results to obtain the lowe’ resolution display images (see Sec. 2-25).

A recent rough texture technique uses fractal surfaces. A fractal surface is
composed of stochastically defined polygonal or bipolynomial defined surfaces.

The technique was originally applied to texture generation in computer graphics
by Crpenter (Ref. 5-26)’and Founier and Fussell (Ref. 5-27). Fractal surfaces
have been used to render a number of natural textures, e.g., stones, trees,
terrain, and clouds. The fractal technique is based on original work done by
Mandelbrot (Ref. 5-28).

A polygonal fractal surface is obtained by recursively subdividing an original
polygon as shown in Fig. 5-37. One technique is to define the midpoints of

each of the sides of the polygon and then to perturb the location of these points
using a random function for each individual point. The center of the polygon is
also similarly perturbed. Figure 5-37 illustrates the result. Notice that neither
the original polygon nor any derivative polygon need be planar.

One advantage of fractal surfaces is that they may be “infinitely” subdivided.
Consequently any arbitrary level of detail may be obtained. Further,

the level of detail may be made dependent on the location of the observer; the

closer the observer, the greater the detail. When the observer is far away, considerable

processing can be saved. Any appropriate hidden surface algorithm
and illumination model can be used to render the fractal surface. However, the

number of subsurfaces increases at a greater than linear rate. Hence, the number

of subdivisions and the level of detail must be a compromise, or excessive
computational requirements result.

A typical result, rendered by Kajiya (Ref. 5-29) using an opaque visible
surface ray tracing algorithm, is shown in Color Plate 4. The scene in Color
Plate 4a contains 16,384 fractal triangles, and that in Color Plate 4b contains

262,144 fractal triangles. Notice the self-shadowing in the images.

Original Subdivided

polygon ‘fractal surface

Figure 5.37 Fractal surface subdivision.

5-12 A GLOBAL ILLUMINATION MODEL USING RAY TRACING

An illumination model is designed to determine the intensity of light reflected to

an observer’s eye at each point (pixel) in an image. The illumination model can

364 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

be invoked either locally or globally. Invoked locally, only light incident from

a light source(s) and the surface orientation is considered by the illumination

model in determining the intensity of the light reflected to the observer’s eye.

Invoked globally, the light that reaches a point by reflection from, or

transmission through, other objects in the scene, as well as light incident from

any light sources, is also considered in determining the intensity of the light

reflected from a point to the observer. Using a global illumination model has

significant implications. Figure 5-38 illustrates some of the effects.

The sphere and the triangular and rectangular blocks shown in Fig. 5-38

are assumed to be opaque and to have surfaces capable of a high degree of

specular reflection. An observer located at 0 looking at the point labeled 1 on

the sphere will see not only the sphere but also the triangular block at point 2.

The triangular block, which is otherwise obscured by the rectangular block, is

thus visible because it is reflected in the sphere. Point 5 on the triangular block

is visible at point 3 on the sphere even more indirectly. Here, the image of the

triangle at point 5 is reflected from the back of the rectangular block at point 4

onto the surface of the sphere at point 3 and then to the observer. Point 5 on

the triangle is also visible to the observer at point 1’ with only one reflection

from the surface of the sphere. Hence, multiple images of the triangular block

are observed reflected in the sphere. Since only one reflection is involved, the

image centered around point 1 is reversed. In contrast, the image centered

around point 3 is not reversed, since two reflections occur. This second image

is also less intense. Finally, the back of the rectangular block is visible as a

reflected image in the sphere even though it does not receive any light directly

from the source. It is illuminated by ambient light and by light reflected from

the other objects in the scene.

From this discussion it should be clear that the normal backface culling

operation commonly used by hidden surface algorithms cannot be used with a

global illumination model. Further, an initial priority sort to determine visible
faces also cannot be used. These two considerations eliminate all the hidden

surface algorithms discussed in Chap. 4 except ray tracing. Consequently,

Observer
.

Figure 5.38 Global illumination.

source

0

A GLOBAL ILLUMINATION MODEL USING RAY TRACING 365

global illumination models are implemented as part of ray tracing visible surface

algorithms.
Whitted (Ref. 5-30) and Kay (Refs. 5-13 and 5-14) originally implemented

ray tracing algorithms that utilized global illumination models. Whitted’s algorithm,
which is more general, has been extensively used and extended. Synthetic

images generated by Whitted (Ref. 5-30), Potmesil (Refs. 5-31 and 5-32), and
Barr (Ref. 5-33) with the Whitted algorithm or extensions of the algorithm
are shown in Color Plates 5, 6, and 7. These images illustrate reflection,
transparency, refraction, shadows, and texture effects.

The Potmesil extension replaces the traditional pinhole camera used in

computer graphics with a more realistic model that approximates the lens and

aperture characteristics of a real camera. The model considers the effects of

depth of field, focus, lens distortion, and filtering. In animation sequences
it provides a fade-in, fade-out capability. The technique is a two-step process.

The first step uses a traditional pinhole camera, ray tracing algorithm to

produce a point sampled image. In addition to the usual RGB intensities at

each pixel, z depth and visible surface information are also retained. The second

step, acting as a postprocessor, invokes the finite aperture camera model.

Each sample point is converted to a circle of confusion using the laws of
geometric optics. The size and intensity distribution for the circle of confusion

are determined by the z value at the sample point, the characteristics of the

lens, and the lens aperture. The intensity at a given pixel is determined by

summing the intensities of all the circles of confusion overlapping that pixel.

Typical results are shown in Color Plate 6.

The illumination model used by Whitted retains the ambient, Lambertian

diffuse, and Phong specular reflection terms of the local illumination model

given in Eq. 5-7. The global specular reflection and the transmission terms are

based on the model shown in Fig. 5-39. Here, the incoming ray being traced,
v, reaches the surface at the point Q. At Q the ray is both reflected in the

direction r and, if the surface is transparent, refracted in the direction p. I is

the intensity incoming to the surface at Q along the p direction that is refracted

through the surface and reaches an observer located in the direction —v.

\Is /1
Light source \ (fl+v’)j

L\\r fl/
J\\O.O/

Reflecting/transmitting

12 / Q surface

Pr,

-ñ Figure 5-39 Specular reflec4
tion and transmission effects

i k(ñ+v’) for the Whitted global illumit/’
nation model.

366 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Similarly, I is the intensity of the specularly reflected light incoming along
the direction —r that is reflected at Q and that also reaches the observer located

in the direction —v. n is the surface normal at Q, L is the direction of the jth

light source, S and R are the local sight and reflection vectors, and is the

index of refraction of the media. Here, n is the Phong spatial distribution value

for specularly reflected light (see Sec. 5-2). The intensity reaching the observer
I is then

I = kala + kd 1i(ñ L) + k3 li(S jY + k313 + k,!1 (5-16)

where ka, kd, k3, and k, are the ambient, diffuse, and specular reflection coefficients
and k, is the transmission coefficient. Whitted holds these reflection coefficients

constant. However, any of the previously discussed illumination models

may be used to determine their variation with incidence angle and wavelength.

The first and second summation terms in Eq. 5-16 represent the diffuse and

specular reflection from light sources.

In contrast to the previous opaque surface ray tracing algorithm discussed

in Sec. 4-13, the visibility calculations for the global illumination model do

not end at the first intersection. Here, the incoming ray v is assumed to be

reflected from the surface in the direction r and transmitted through the surface

in the direction p as shown in Fig. 5-39 at point Q. Thus, two additional rays

are generated at the point Q. These two rays are traced to determine their

intersections with objects in the scene. The process is repeated until none of

the rays intersects any object in the scene. The process, illustrated in Fig. 5-40a

for single surface ray intersections, is easily represented using the tree structure

shown in Fig. 5-40b. Each node of the tree represents a ray surface intersection.

At each node of the tree two subbranches are generated. The right hand branch

is due to refraction, and the left due to reflection of the ray at the surface.

Notice that a branch terminates when the ray leaves the scene.

At each surface ray intersection, the directions of the reflected and transmitted

rays are obtained using the laws of geometric optics. In particular, the

z 1

P3 i-i
r3 Reflection Refraction

2 branch branch
b

Figure 5-40 Ray tracing surface reflections and refractions.

A GLOBAL ILLUMINATION MODEL USING RAY TRACING 367

reflected ray r and the incident ray v lie in the same plane and make equal

angles with the surface normal n (see Sec. 5-3). The transmitted ray obeys

Snell’s law of refraction (see Sec. 5-9). In the context of the present model

and notation, the directions of r and p are given by

r = v’ + 2ñ

p = kj(ñ + v’) — ñ

where

V

V =

Iv ni

kf = (kIv’I2 — v’ + fl2)”2

Ti —

where kTi is the ratio of refractive indices and ñ is the unit normal vector in the
direction of the incoming ray. If the denominator of kf is imaginary, then total
internal reflection occurs and I, is assumed zero.

Determining the intensity at each ray-surface intersection requires traversing

the ray tracing tree in the reverse direction. The illumination model is

applied recursively at each node of the tree. The intensity at each node of

the tree is attenuated by the distance between the surface intersection points

before being used as input for the next node up the tree. When the tree has

been completely traversed, the resulting intensity is displayed for that pixel.

Theoretically, the ray tracing tree is infinitely deep. In addition to being

terminated when all rays leave the scene, the tree may be terminated when the

intensity at a node falls below a specified value or when the allocated storage
is exceeded.

Figure 5-41 shows the effect of internal reflection for a closed transparent

object. The rays specularly reflected from the inside surfaces of the object are

trapped within the object and are eventually absorbed. Hence, they cannot

contribute to the light intensity perceived by the observer. However, at each

Observer
v

Reflection Refraction

branch,,,,1branch
a

Figure 5-41 Internal reflection for transparent objects.

368 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

ray-surface intersection a transmitted ray p is generated. These rays escape the
object and may directly or indirectly reach the observer. Thus, they must be
traced.

If shadows are also included in the algorithm, then at each ray-surface

intersection shadow feelers in the direction of each light source L are generated.

If a shadow feeler intersects an object before reaching the light source, then

that ray-surface intersection lies in shadow with respect to that light source.

The contribution of that light source to the local diffuse and specular reflection

at the point is then attenuated (see Sec. 5-10). If the intervening surface is

opaque, no light reaches the surface. If the intervening surface is transparent,

the illumination characteristics of the surface are used to attenuate the light.

Shadow feelers are shown in Fig. 5-40.

Example 5-9 Global Illumination and Ray Tracing

Consider the simple two-dimensional single plane scene in Fig. 5-40a. The
planes are normal to the plane of the paper which is assumed to be the xz
plane. The observer is located at infinity on the positive z axis at x = 5. A
single point light source is located at x = 3, z = 10. The surfaces are defined
using the plane equations, i.e.

Surfacel: x+z—12.5=0 4�x6

Surface2: x—z--2=0 4x6

Surface3: x—3z+9=0 1x3

The illumination characteristics for each surface are

Surface 1: ka 0.15, kd1 0.15, k51 = 0.8, k,1 0.5, k,11 1/1.1

Surface 2: ka2 0.15, kd2 0.15, k32 0.8, k,2 0.5, k,12 1.1

Surface 3: ka3 0.15, kd3 0.15, k33 = 0.8, k,3 = 0, k,13 1.1

The intensity of the ambient light is ‘a = 1.0, and the intensity of the light

source is Ii = 10. The Phong spatial distribution value for specularly reflected

light is n = 50 for each surface.

A ray is fired from the observer toward the scene. The resulting ray tree is

shown in Fig. 5-40b. The ray first intersects surface 1. Noting that the equation
of the ray before it intersects the surface is x = 5 and substituting into the

surface equation yields

x+z—12.55+z—12.50-. z7.5

Thus, the intersection of the ray and the surface, which represents the first node

on the ray tree, occurs at x1 = z = 5 At that point the unit normal to the
surface is

I k
n =—+—

vv

Determining the refracted and reflected rays yields

=

A GLOBAL ILLUMINATION MODEL USING RAY TRACING 369

and

vi —k
=

.

IvnI

The direction of the reflected ray is

Noting that

1 k I k

v1+n =—Vk+—+—=———
\/V! VV!

then
—1/2 2 —1/2

kf = [kIvI2 Iv’ + iII2] = (2) — 1] = 1.238
which yields the refracted ray

/i k\ /1 k

p1 = kj(n1 + v1) — n1 = 1.2381 — — — 1— I — + —

= 0.1681 — 1.582k

At this point the reflected ray leaves the scene and is not considered

further. The intersection of the transmitted refracted ray with the second

surface yields the second node in the ray tree. Writing the refracted ray p1
in parametric form yields

x = 5 + 0.168t

z 7.5 — 1.582t

Substituting into the surface equation yields

x — z —2 = 5 + 0.168t— 7.5 + 1.582t— 2 = 1.75t— 4.5 = 0

Consequently t = 2.571 and the intersection point is

X2 = 5 + (0.168)(2.571) = 5.432

Z2 = 7.5 — (1.582)(2.571) = 3.433

The distance between the two intersection points is

dl2=Vxi)2+(z2_zi)2=V5)2+(3.433_7.5)2=4.O9

The reflected and refracted rays at this intersection point are obtained by

using p1 as the incoming ray, i.e.

v2=p1 =0.168i—1.582k

The unit surface normal is

—1 k
— + —

370 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The results are

P2 = 0.2151 — 1.199k
r2 = —1.278i+0.136k

Here the transmitted refracted ray leaves the scene without intersecting additional
objects. Thus, this ray tree branch terminates. The intersection of the

reflected ray and the third surface yields the third node in the ray tree. Here,

the intersection of r2 and the third surface is required. Using the parametric
form of r2 and the plane equation for the surface yields

x = 5.432 — 1.278t

y = 3.433 + 0.136t

for the ray. Substituting into the plane equation yields

x — 3z + 9 = 5.432 — 1.2781— 3(3.433 + 0.136t) + 9 —1.686t + 4.133 = 0

Consequently, t = 2.45 1 and the intersection point is

x3 = 5.432 — (1.278)(2.451) = 2.299

z3 = 3.433 + (0.136)(2.451) = 3.766

The distance between the two intersection points is

d23 /‘(x3 — x2)2 + (z3 — z

= V2.299 — 5.432)2 + (3.766 — 3433)2 = 3.151

The reflected and refracted rays at this intersection point are obtained using
as the incoming ray, i.e.

V3 = r2 = —1.278i + 0.136k

The unit surface normal on the incoming ray side of the surface is

1 3k
n

The results are

p3 = —1.7131+0.483k

r3 = —1.765i— 1.643k

Here, both the reflected and refracted rays leave the scene. The ray tree
terminates at this point. In fact, examination of the illumination characteristics

for the surfaces shows that k13 = 0. Hence, the surface is opaque and no
transmitted ray is generated.

The intensity calculations begin at the bottom of the ray tree at the third
node. Since surface 3 is opaque, there is no light transmitted through the
surface. A shadow feeler shows that the surface itself is between the incident

ray and the light source. Consequently, the point of intersection of the ray
and the surface is in shadow. Thus., the point receives only ambient light. The
intensity is

13 = ka3la (0.15)(1) = 0.15

A GLOBAL ILLUMINATION MODEL USING RAY TRACING 371

This intensity is transmitted along the reflection vector to the second surface.

When it reaches the second surface, it is attenuated by the distance between

the intersection points d23. Thus,

1S2 = = = 0.0476
d23 3.151

At the second node in the tree representing the intersection of the ray and

the second surface, the shadow feeler does not intersect any object. Hence,

the point receives light from the source. The vector from the point to the light
source is

L2 = (x1 — x2)i + (z1 — z2)k (3 — 5.432)i + (10 — 3.433)k
= —2.432i + 6.567k

and

L = —0.3471 + 0.938k

Consequently

2 = + — (—0.3471 + 0.938k) = 0.909
\v2v)

The reflected direction for the ray from the light source is

R2 = —0.938i + 0.347k

Here the unit sight vector is — and

P1 R2 = (—0. 1681 + 1.582k)(—0.9381 + 0.347k) = 0.707

Thus,

‘2 = ka2la + llkd2(ñ2 L2) + 1ik32(j + k2!32 + k,2!,2

= (0.15)(1) + (10)(0.15)(0.909) + (10)(0.8)(0) + (0.8)(.0476) + (0.5)(0)

= 1.552

This intensity is transmitted along the refraction vector p1 to the first surface

where, attenuated by the distance between the surfaces d12, it becomes

12 1.552
Ill — — —— 0.379

12

Here, the shadow feeler also does not intersect any object. Hence, the

point on the first surface receives light from the source. The vector from the

point to the light source is

L1 = (x1 — x1)i + (zr— zk = (3— 5)i + (10— 7.5)k
= —21 + 2.5k

and

= —0.6251+0.781k

Consequently

372 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

= (—0.6251+0.781k)=0.110

\V v2)

The reflected direction for the ray from the light source is

I = 0.7811—0.625k

Here, the unit sight vector is — and

= (k) (0.7811 — 0.625k) = —0.625

Thus,

= ka,Ia + Ilkd,(ñ1 L) + Iik31(1 1)” + + k11I1
= (0.15)(1) + (1O)(0.15)(0.11) + (10)(O.8)(0) + (0.8)(0) + (0.5)(0.379)

= 0.505

This is the intensity transmitted to the observer. Because the resulting intensity

is low, the point is only dimly seen. The low intensity results because the

surface is almost edge-on to the light source. Further, the results show that

more than a third of the intensity is transmitted through the first surface from

surface 2. Finally because of the large value of n local specular highlights are
not seen.

If color is used, then the above calculation is performed three times, once

for each of the red, green, and blue components. Further, separate illumination

characteristics for each component are required.

Figure 5-42 shows a flowchart for a ray tracing algorithm with global illumination.

The algorithm is implemented using a pushdown ray stack. The
stack serves to communicate reflected and transmitted illumination information

among the elements of the ray tree. Since the stack holds only part of the

ray tree at any one time, it need only be long enough to contain the longest

anticipated branch. A particular branch of the ray tree is terminated when both

the reflected and refracted rays at an object intersection leave the scene or when

the available stack length is exceeded. When both rays leave the scene, their

contribution to the illumination at the source ray is zero. When the available

stack length is exceeded, the algorithm calculates the illumination at the source

ray using only the ambient, diffuse, and specular reflection components at the

source ray intersection. The algorithm can be extended one additional depth

in the tree without exceeding the maximum stack depth. The flowchart for this

modification is shown in Fig. 5-43.

The efficiency of the algorithm can be increased by reducing the average

size of the ray tree or stack and hence the number of required intersection calculations.

The average size of the ray stack can be reduced by placing on it only

rays that significantly contribute to the intensity at the observer’s eye. The maximum

relative contribution of a particular node of the ray tree to the intensity

at the observer’s eye can be approximated using the following technique. The

approximate intensity at the first ray-surface intersection, including any shadow

A GLOBAL ILLUMINATION MODEL USING RAY TRACING 373

ffects, is determined using only a local illumination model, e.g., the ambient,

Lambertian diffuse, and Phong specular reflection terms from Eq. 5-16. This

value is saved. At each succeeding ray-surface intersection the maximum intensity

contribution is approximated by the same local illumination model but

without considering shadow effects. The resulting intensity is attenuated by

the cumulative effects of refraction and reflection and by the cumulative distance

traveled by the ray from the first ray-surface intersection to that under

consideration. For example, the approximate intensity at surface 3 in Fig. 5-40

would be attenuated by k52kt/d23d12 (see Example 5-9). If the resulting intensity

exceeds a fixed percentage of the approximate intensity at the first

ray-surface intersection, then refracted and reflected rays, as appropriate, are

placed on the ray stack. If not, then the ray branch is terminated at that point.

Hall (Refs. 5-34 and 5-35), using a similar technique, found that the average

tree size and the computational expense was reduced by a factor of more than 8.

Unfortunately, the technique is not completely correct. Specifically, if a major

contribution to the intensity at the observer’s eye due to global illumination effects

occurs after the ray tree has been terminated, the resulting image will be

incomplete. However, the probability of this occurring for most general scenes

is small. Thus, the significant savings that result justify use of the technique.

The algorithm assumes an object description list similar to that discussed

in Sec. 4-13 for the opaque visible surface ray tracing algorithm. The ray stack

contains the following information for each ray.

Ray number uniquely assigned for each ray

Ray type v, a pixel ray from the eye; r, a reflected ray; or

p, a refracted ray

Ray source number the number of the ray that generated this ray

Ray source type v, r, or p as above

Intersection flag one if an intersection for this ray has been found,
otherwise zero

Object pointer gives the location of the intersected object in the

object description list
Intersection values x, y, z, coordinates of the intersection that generated

this ray
Direction cosines specify the direction of the ray

d distance between this ray intersection and the intersection

of the source ray

intensity of transmitted light along this ray
i intensity of specularly reflected light along this ray

When a ray is initially pushed onto the stack, the values of is, i, d, and the

intersection flag are set to zero. Subsequent passes through the algorithm

update these values as required.

The Whitted illumination model as shown in Fig. 5-39 is used with the

algorithm. The flowchart shown in Fig. 5-44 corresponds to the block labeled

“Calculate intensity” i, in Fig. 5-42. If color is incorporated into the model,

Figure 5-42 Flowchart for a ray tracing algorithm with global illumination.

374

Figure 5-42 (Continued.)

375

376 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 5-43 Modification of the

global illumination ray tracing

algorithm.

the “Calculate intensity” block is executed three times; once for each color

component. Here, the path of the vectors (shadow feelers) from the surface

intersection point to the various light sources is checked for intersection with

other objects in the scene. If an intersection occurs with an opaque object, that

light source does not contribute to the local diffuse or specular reflection at that

point. If all the intersections along the path are transparent, the intensity of

the light source Ii is attenuated appropriately. In particular, the attenuation
factor is based on the transmission coefficients of the occluding surfaces. Thus,

opaque occluding objects produce sharp black shadows, while transparent occluding

objects yield faint shadows. Refraction of incident light from the source

through transparent objects to the surface is not accounted for. The transmitted

and specularly reflected light incident at a point is attenuated by the distance

between ray intersections. The algorithm assumes that the surface normal is

available from the object description. Other more complex illumination models

can be incorporated into the model by modifying this routine (see Secs. 5-7,

5-8 and 5-13).

The intersection processor was previously described in Sec. 4-13 in the context

of an opaque visible surface ray tracing algorithm. The only modification

required here is to specifically translate the ray-surface intersection point for

each ray to the origin of the coordinate system before rotating to make the ray

coincident with the z axis. The ray points in the direction of —z. The same

procedure is used to determine the intersections of the shadow feelers with

objects.

A GLOBAL ILLUMINATION MODEL USING RAY TRACING 377

In operation, the algorithm described in Fig. 5-42 first generates the ray

tree along the right hand “refraction” branch from the root node until the

branch terminates, as shown in Fig. 5-45 by the dashed line with arrows. The

branch is then traversed upward, calculating the intensities at each node until
the root node is reached. The left hand “reflection” branch from the root node

is then generated and traversed in the reverse direction. At any intermediate

node the process may be repeated. The downward pointing arrows in Fig. 5-45

indicate ray generation (pushed onto the stack), and the upward pointing arrows

indicate intensity generation (popped from the stack). After the intensity

contribution for a ray at a particular node has been determined, the ray is

Figure 5-44 Flowchart for the illumination model for the global illumination ray tracing
algorithm. -

378 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

PS

Figure 5-45 Ray tracing tree.

discarded. When only the root node remains, the pixel intensity is determined

and sent to the display.

Whitted (Ref. 5-30) incorporates antialiasing into the ray tracing algorithm.

Aliasing effects are most apparent for regions with high-intensity gradients, e.g.,

at object edges, at silhouette edges, within texture patterns, and for objects

smaller than the interval between sample points. To reduce computational requirements,

the antialiasing technique used is a dynamically invoked Warnockstyle

recursive subdivision. Instead of tracing rays through each pixel center,

Whitted traces rays through sample points at each corner of the pixel square,

as shown in Fig. 5-46a. For an n x m raster this requires (n + 1) x (m +

1) sample points, which is only a modest increase. If the intensities at the

four corner sample points are nearly equal, and if no small object lies between

them, then the intensity values are averaged and displayed for that pixel. If the

four intensity values are not nearly equal (see Fig. 5-46b), the pixel square is

subdivided into four subsquares and the process repeated. Recursive subdivision

continues until the corner values are nearly equal, the allotted storage is

exceeded, or the resolution of the computer is exceeded. The intensity contribution

of each subpixel is weighted by its area, and the results summed to

obtain the pixel intensity. Although still a point sampling technique, in the

limit, the technique is equivalent to area antialiasing (see Sec. 2-26).

II,’
/

I/a,- /

‘-‘V
— I/I

— iii

: Pixel subdivision

a b

square

Figure 5.46 Antialiasing for ray tracing.

A MORE COMPLETE GLOBAL ILLUMINATION MODEL USING RAY TRACING 379

Implementation of this scheme requires that either a row or column of

sample point intensity values, which ever is smaller, be saved on a rolling basis

as the image is generated. Saving the sample point intensity values makes it

unnecessary to backtrack or regenerate previously determined intensity values.

When a pixel square is subdivided, a stack is used to save intermediate intensity

values as the subdivision progresses. (See the Warnock algorithm in Sec. 4-4.)

Whitted prevents small objects from being lost by using a minimum size

bounding sphere that is larger than the spacing between sample points. When

the algorithm encounters a minimum radius bounding sphere and no ray-object
intersection is found, the four pixel squares that share the ray through that

sample point are recursively subdivided until the object is found. This technique

is adequate for directly viewed objects or for objects viewed indirectly via planar

surfaces. However, objects viewed indirectly via curved surfaces may be lost.

These objects are lost because closely spaced rays reflected or refracted from

highly curved surfaces may diverge sufficiently to miss the object. This effect

is shown in Fig. 5-47 for reflection from a sphere. Continued subdivision may
exceed machine resolution before an intersecting ray is found. Color Plate 5

was generated using these techniques.

Figure 5-47 Reflection from a curved surface.

5-13 A MORE COMPLETE GLOBAL ILLUMINATION MODEL
USING RAY TRACING

Hall (Ref. 5-34) and Hall and Greenberg (Ref. 5-35) have used a more complete

global illumination model than that described in the previous section. The

Hall global illumination model includes the scattering of light directly from light

sources along the refracted or transmitted ray in addition to along the reflected

ray. The scattering model is an adaptation of the Phong model. The model also

uses the Fresnel relationships for the wavelength and angle of incidence dependence

of refracted and reflected light, and uses the filter properties of specific

materials to attenuate light passing through transparent media. Specifically the
Hall global illumination model for flight sources is

380 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

I = kd El,Rd(n L) + k l1Rj(ñ H)”

+k1 liF(ñH’Y” +kaRd+ksRfJsTrdT (5-17)

+ k1F1l1T1”

Here, the ambient globally diffuse term (kaRdla) and the Lambertian diffuse

reflection for light scattered directly from light sources include Rj(A) the

material- and wavelength-dependent diffuse reflection curve. Similarly the

specular reflection term for light scattered directly from light sources and the

global specular reflection term contain R1(A), the material- and wavelength-

dependent Fresnel reflectance curve (see Sec. 5-8). The third term in Eq. 5-17,

which represents the specular transmission of light directly from light sources

along the refracted ray, and the global transmission term include F1, the material-

and wavelength-dependent Fresnel transmissivity curve. From conservation-of-

energy considerations F = 1 — Rf. The approximate technique suggested by

Cook and described in Sec. 5-8 is used to determine Rj(A) and F(A). The global

specular reflection and specular refraction terms also include T, and T the transmissivity

per unit length for the reflected and transmitted (refracted) rays. The

distances traveled by the reflected and transmitted (refracted) rays from the last

intersection are given by d, and d, respectively. Following Kay (see Sec. 5-9),

T, and T1 are raised to a power to represent the effects of passage through a

material. Here, the distances, d, and d are used as the powers.

The specular reflection term for light received directly from light sources

is adapted from the Torrance-Sparrow model discussed in Sec. 5-8. Here, the

angle between the surface normal ñ and the bisector of the angle between the

light source direction and the observer’s direction H, i.e., nH raised to a power

n, is used to represent scattering of specularly reflected light. Similarly, the

angle between the surface normal and a vector H’ raised to a power n’ is used

to represent scattering of specularly transmitted light. The vector H’ represents

the normal direction for Torrance-Sparrow (see Sec. 5-8) surface microfacets

that refract light received directly from a light source in the direction p (see

Fig. 5-39).

The direction of the H’ vector can be calculated using Snell’s laws (see

Sec. 5-9). Referring to Fig. 5-48, using the similar triangles afd and bed, and

Snell’s law yields

ad=bd
Now

ab = v — p

and

ad = ab + bd

RECENT ADVANCES IN RENDERING 381

Thus,

v—p

— 12/’ll — 1

Since

H’ = bd — p

combining these results yields

H’ — v — (‘12/’i1)p
— 1

Color Plate 8 compares results for the Whitted and Hall global illumination

models. Both images are of the same scene and were created using a ray tracing

algorithm. Color Plate 8a was rendered using the Whitted global illumination

model described in Eq. 5-16. Color Plate 8b was rendered with the Hall global

illumination model described in Eq. 5-17. Compare the appearance of the

metallic spheres in both scenes. Notice the color of the blue placemat edge

reflected in the metallic sphere. Compare the color of the transparent spheres.

Notice the slight bluish-green color of the sphere and its shadow in Color Plate

8b. This color results from including the material filter properties in the Hall

model. Although, as shown by Color Plate 8, the Hall global illumination

model is empirically derived and hence, as pointed out by Hall (Ref. 5-34),

fundamentally incorrect, the images are some of the most realistic produced to
date.

Figure 5-48 Determining the H’ vector.

5-14 RECENT ADVANCES IN RENDERING

Although the techniques discussed in previous sections provide powerful tools
for rendering synthetic images, they fall short of realism in a number of areas.

Chief among these are the rendering of natural objects, providing motion

without aliasing, and modeling distributed light sources. Because these are

areas of on-going research, detailed discussions are beyond the scope of this

Ld

n a

p

382 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

book. However, an attempt will be made to direct the reader to some of the
current research.

The typical point light source used in the illumination models discussed

above intrinsically depends on the particle character of light. Thus, each ray

must be traced individually. Accomplishing this for the hundreds of rays generated

by a diffuse light source and/or by diffuse reflection from a surface

is prohibitively expensive. Moravec (Ref. 5-36) suggests a solution based on

the wave characteristics of light. Preliminary results are interesting, but again

prohibitively expensive.

Aliasing in computer-generated animation falls into two broad categories.

The first is typified by the common aliasing problems of small objects appearing

and disappearing from frame to frame and by the phenomenon of “crawling”

along silhouette edges. These effects can be mostly eliminated using standard

spacial antialiasing techniques on each individual static image.

The second category is referred to as temporal antialiaing or motion blur.

When an object moves rapidly through space, it is perceived as slightly blurred.

Three recent papers address this problem. Korein and Badler (Ref. 5-37)

present a technique for generating temporally and spacially synchronized multiple

images of a moving object within a single frame. Potmesil and Chakravarty

(Ref. 5-38) have extended their camera model (Ref. 5-31) to include motion

blur. The effect is obtained by defocusing individual objects and by generating

multiple images (exposures) within a single frame. Reeves (Ref. 5-39) incorporates

motion blur within a stochastic particle system by generating special

particle shapes.

Rendering naturally occurring objects is difficult because they are complex,

rough, dirty, cracked, and otherwise irregular. Examples are fire, smoke,

clouds, fog, grass, and trees. Considerable work has been done in this area.

Selected recent references are Blinn (Ref. 5-40), Dungan (Ref. 5-41), Marshal,

Wilson, and Carlson (Ref. 5-42) and Csuri (Ref. 5-43).

Of particular interest is a particle system presented by Reeves (Ref. 5-

39). Because many natural phenomena are difficult to model with polygons or

curved surfaces, Reeves and his co-workers, as well as a number of previous investigators,

have turned to individual particles as a modeling mechanism. These

particles are “fuzzy”; i.e., they do not have smooth, well-defined surfaces but

rather, irregular, complex surfaces of nonconstant shape. The particles change

form and characteristics with time under the action of physical or stochastic

models. Over time, particles are generated or born into the system, move

within the system, and die or leave the system. With these particle systems the

following procedure is used to generate a single frame

New particles are generated, assigned individual attributes, and introduced

into the system.

Old particles in the system that have died are extinguished.

The remaining particles are moved using an appropriate motion model.

COLOR 383

An image of the remaining particles is rendered.

Some of the most realistic synthetic images to date have been generated using

this technique. An example is shown in Color Plate 10.

545 COLOR

Color has been casually mentioned throughout this text. It now remains to

consider it in some detail. Color is both a psychophysiological phenomenon

and a psychophysical phenomenon. The perception of color depends upon the

physics of light considered as electromagnetic energy and its interaction with

physical materials, and on the interpretation of the resulting phenomena by

the human eye-brain visual system. As such, it is a vast, complex, fascinating

subject, the details of which are well beyond the scope of this text. Additional

information can be obtained by consulting Refs. 5-44 to 5-47. The approach

taken here is to develop a basic color vocabulary, a basic understanding of the

physical phenomena involved, and a basic understanding of color specification

systems and the transformations between them.

The human visual system interprets electromagnetic energy with wavelengths

between approximately 400 and 700 nanometers as visible light. A

nanometer (nm) is iO meter or a billionth of a meter. Light is perceived

either directly from a source of illumination, e.g. a light bulb, or indirectly by

reflection from the surface of an object or refraction through an object.

When perceived light contains all the visible wavelengths with approximately

equal weights, the light source or object is achromatic. An achromatic light

source appears white. When the reflected or transmitted light from an object is

achromatic, it appears white, black, or an intermediate level or shade of gray.

Objects that achromatically reflect more than about 80% of the incident light

from a white light source appear white. Those that achromatically reflect less

than about 3% of the incident light appear black. Intermediate achromatic

reflectance levels yield various shades of gray. It is convenient to consider the

intensity of the reflected light in a range between 0 and 1, with 0 equated to

black and 1 to white. Intermediate values are gray.

Although it is difficult to distinguish between the concepts of lightness and

brightness, lightness is most conveniently considered a perceived property of

a non-self-luminous or reflecting object (white-black), and brightness a characteristic

of the perceived amount of illumination (high-low) present from a self-

luminous or emitting object. The perceived lightness or brightness of an object

is dependent on the relative sensitivity of the eye to various wavelengths. Figure

5-49 shows that for daylight the eye is most sensitive to light at a wavelength

of approximately 550 nm. The eye’s sensitivity decreases rapidly at the ends of

the visible light range or spectrum. The curve in Fig. 5-49 is called a luminous

efficiency function. It provides a measure of the light energy or intensity corrected

for the sensitivity of the eye.

384 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

C

U

U

Figure 5-49 Relative sensitivity of the eye.

When perceived light contains wavelengths in arbitrary unequal amounts,

the color of the light is said to be chromatict If a single concentration of
wavelengths is near the upper end of the visible spectrum, the color of the light

is interpreted as red or “reddish”; i.e., the dominant wavelength is in the red

portion of the visible spectrum. If near the lower end of the visible spectrum,

the color is interpreted as blue or “bluish”; i.e., the dominant wavelength is in

the blue portion of the visible spectrum. However, note that electromagnetic

energy of a particular wavelength has no color. It is the eye-brain combination

that interprets the physical phenomena as the sensation of color. The color of

an object depends on both the distribution of wavelengths of the light source

and the physical characteristics of the object. If an object reflects or transmits

light in only a narrow band of wavelengths, absorbing all others, then the

object is perceived as colored. The wavelengths of the reflected or transmitted

light determine the color. Interaction of the color of incident and reflected or

transmitted light can yield startling results. For example, the reflected light

from a green light incident on a normally white object will also appear green;

i.e., the object is perceived as green. However, a red object illuminated with

green light appears black since no light is reflected.

A chromatic color is psychophysiologically defined by its hue, saturation,

and brightness. Hue is the “color” of the color. It is the name by which

the color is designated. Saturation is a measure of the degree to which the

pure color is diluted by white. A pure color is 100% saturated. As white is

added, the degree of saturation decreases. Achromatic light is 0% saturated.

Brightness is the intensity of the achromatic light.

The psychophysical equivalents of hue, saturation, and brightness are dominant

wavelength, purity, and luminance. A perceived color generated by

electromagnetic energy of a single wavelength in the visible spectrum is monochromatic.

Figure 5-50a shows the energy distribution for such a monochromatic

tThe operative words here are “perceived” and “arbitrary.” As shown later discrete chromatic
lights can be combined in specific ways to generate achromatic perceptions.

Luminosity function
(Day vision)

Violet Wavelength X (nm) Red

COLOR 385

light with a wavelength of 525 nm. Figure 5-50b shows the energy distribution

for a low level of “white” light with energy E2 and a single dominant wavelength

of 525 nm with energy E1. In Fig. 5-50b, the color of the light is determined by

the dominant wavelength, and the purity of the color by the relative magnitudes

of E1 and E2. E2 represents the amount by which the pure color of wavelength

525 nm is diluted by white light. As the magnitude of E2 approaches zero, the

purity of the color approaches 100%. As the magnitude of E2 approaches that

of E1, the color of the light approaches white and the purity approaches zero.

Luminance is proportional to the energy of the light and is usually considered
as intensity per unit area.

Pure monochromatic light is seldom found in practice. Perceived colors are

a mixture. The tristimulus theory of color mixing is based on the assumption

that three types of color-sensing cones exist in the central portion of the eye.

One type of cone senses wavelengths near the middle of the visible light range,
which the eye-brain visual system converts into the sensation called green. The

other two types sense long and short wavelengths near the upper and lower

ends of the visible light range, which are interpreted as the sensations red and

blue, respectively. Figure 5-49, which shows the relative sensitivity of the eye,

indicates that the eye is most sensitive to green and least sensitive to blue. If

all three sets of cones sense equal radiance levels (energy per unit time), the

result is interpreted as white light. Natural white light, of course, contains

radiance levels for all wavelengths in the visible spectrum. However, because

physiologically the eye contains three different types of cones, the sensation of

white light can be produced by a properly blended combination of any three

colors, provided that a mixture of any two of the colors cannot produce the

third. These three colors are called primary colors.

There are two primary color mixing systems of importance in computer

graphics: the red, green, blue (ROB) additive color system and the cyan,

magenta, yellow (CMY) subtractive color system. The two systems are shown

in Fig. 5-51 and in Color Plate 11. The colors in the two systems are complements

of each other. Cyan is the complement of red, magneta the complement

of green, and yellow the complement of blue. A complement is white minus

the color. Thus, cyan is white minus red, magenta is white minus green, and

+—t--mm I
E,t

bII

U I

E21

500 600 70& 400 500 600 700

E1

C

0 400

Violet

Wavelength X(nm)

a

Red Violet Red

Wavelength X (nm)

b

Figure 5.50 Wavelength characteristics of light.

386 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 5-51 The additive (a) and subtractive (b) color mixing systems.

yellow is white minus blue. Although, technically, red can also be considered

the complement of cyan, traditionally red, green, and blue are considered

the primary colors, and cyan, magneta, and yellow their complements. It is

interesting to note that magenta does not appear in the spectrum of colors

created by a rainbow or prism. Hence, it is only a creation of the eye-brain

visual system.

For reflective sources, e.g., printing inks and film and non-light-emitting

displays, the CMY subtractive system is used. In the subtractive color system,

the wavelengths representing the complement of the color are subtracted from

the white light spectrum. For example, when light is reflected from or transmitted

through a magenta colored object, the green portion of the spectrum

is absorbed or subtracted. If the resulting light is then reflected from or transmitted

through a yellow object, the blue portion of the spectrum is subtracted.

The result is red. Finally, if the remaining light is reflected from or transmitted

through a cyan object, the result is black because the entire visible spectrum

has been eliminated (see Color Plate 11). Photographic filters work this way.

For light-emitting sources, e.g., a color CRT display or colored lights, the

ROB additive color system is used. A simple experiment illustrates that three

monochromatic colors is the minimum number required to match or produce

almost all colors in the visible spectrum. The experiment involves a single,

arbitrary, monochromatic test light incident on a background. An observer

attempts to perceptually match (hue, saturation, and brightness) the test light

by shining a monochromatic light or lights onto the background adjacent to the

test light. The intensity of the matching light or lights is variable. If only a

single matching light is used, then it must have the same wavelength as the test

light in order to match the test light. Thus, only one color can be matched by

a single monochromatic matching light. However, if the observer discounts the

hue and saturation of the test light, then, for any intensity of the test light, its

brightness can be matched. This procedure is called photometry. It leads to

gray scale monochromatic reproduction of colored images.

If the observer now uses two superposed monochromatic light sources,

more test lights can be matched. However, there are still a large number that

Cyan =Green÷Blueeen= Cyan÷Yellow

COLOR 387

cannot be matched. Adding a third matching light allows almost all test lights

to be matched, provided that the three matching lights are widely spaced in the

visible spectrum and provided no two of the matching lights can be combined

to yield the third; i.e., the colors represented by the lights are primary colors.

A good choice of lights is one from the high-wavelength end of the visible

spectrum (red), one from the medium wavelengths (green), and one from

the low wavelengths (blue). Adding these three lights together to match the

perceived color of the monochromatic test light mathematically corresponds to

C = rR + gG + bB

where C is the color of the test light to be matched, R, G, and B correspond

to the red, green, and blue matching lights, and r, g, and b correspond to the

relative amounts of the R, G, and B lights used, with values in the range 0
to 1.

However, most of the test lights still cannot be matched by adding the

three matching lights together. For example, if the test light is blue-green,

the observer adds the blue and the green matching lights together, but the

result is too light. Adding red in an attempt to darken the result only makes

it lighter because the energies of the lights add. This effect gives the observer

an idea: Add the red matching light to the test light to lighten it. It works!

The test patches generated by the lights match. Mathematically, adding the red

matching light to the test light corresponds to subtracting it from the other two

matching lights. This is, of course, a physical impossibility, since a negative

light intensity is impossible. Mathematically the result corresponds to

C + rR = gG + bB

or

C = —rR + gG + bB

Figure 5-52 shows the color-matching functions r, g, b for monochromatic

lights at wavelengths of 436, 546, and 700 nm required to match all wavelengths

in the visible spectrum. Notice that, except for wavelengths near 700 nm,

one of these functions is always negative. This corresponds to “adding” the

matching light to the test light. The study of these matching functions is part

of colorimetry.

The observer also discovers that, when the intensity of a test light is doubled,

then the intensities of each of the matching lights are also doubled, i.e.

2C = 2rR + 2gG + 2bB

Finally, the observer discovers that, when the same test light is matched in

two different sessions, the values of r, g, and b are not necessarily the same.

The matching colors for the two different sets of values of r, g, and b are

called metamers of each other. Technically, this means that the test light can

be matched by two different composite light sources, each of different spectral

388 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 5-52 Color matching
functions.

energy distribution. In fact, the test light source can be matched by composite

light sources with an infinite number of different spectral energy distributions.

Figure 5-53 shows two very diverse spectral reflectance distributions that both

yield a medium gray.

The results of this experiment are embodied in Grassman’s laws (see

Ref. 5-44). Simply stated, Grassman’s laws are:

The eye distinguishes three different stimuli. This establishes the three-

dimensional nature of color. The stimuli may, for example, be dominant

wavelength (hue), purity (saturation), and luminance (brightness), or red,

green, and blue.

Four colors are always linearly related; i.e., cC = rR + gG + bB, where

c, r, g, b 0. Consequently, if two colors (cC)i and (cC)2 are mixed, then

(cC)i + (cC)2 = (rR)j + (rR)2 + (gG)j + (gG)2 + (bB)1 + (bB)2. If color C1 =

color C and color C2 = color C, then color Ci = color C2 regardless of the

spectral energy compositions of C, C1, and C2.

400 500 600 700

Wavelength X (nm)

Wavelength X (nm)

FIgure 5-53 Metamers.

COLOR 389

If in a three-color mixture, one color is continuously changed with the

others kept constant, the color of the mixture will change continuously.

This means that three-dimensional color space is continuous.

Based on experiments similar to those described above, it is known that the

visual system is capable of distinguishing approximately 350,000 colors. When

the colors differ only in hue, the visual system can distinguish between colors

with dominant wavelengths differing by about 1 nm in the blue-yellow part of

the spectrum. However, near the spectrum extremes approximately a 10 nm

separation is required. About 128 distinct hues are distinguishable. If only

differences in saturation are present, the visual system’s ability to distinguish

colors is more limited. Approximately 16 different saturations of yellow and

about 23 different saturations of red-violet are distinguishable.

The three-dimensional nature of color suggests plotting the value of each

tristimulus component along orthogonal axes as shown in Fig. 5-54a. The

result is called tristimulus space. Any color C is represented by the vector

from the origin with components rR, gG, and bB. Meyer (Ref. 5-48) gives a

detailed discussion of three-dimensional color space. The intersection of the

vector C with the unit plane gives the relative weights of the R, G, B colors

required to generate C. The relative weights are called the chromaticity values

or coordinates. They are given by

r
—= _____

b

r+g+b g r+g+b r+g+b

Consequently, + + b = 1.0. Projection of the unit plane as shown in

Fig. 5-54b yields a chromaticity diagram. The chromaticity diagram directly

provides a functional relationship between two colors and indirectly with the

third, since, for example, b = I — — . If the color matching functions

shown in Fig. 5-52 are plotted in three space, the result does not entirely lie in

the positive octant. Projection onto a two-dimensional plane would also yield

negative values. These negative values are a mathematical nuisance.

R

gG G

a b

Figure 5-54 Three-dimensional color space.

390 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

The Commission Internationale de L’Eclairage (CIE), at a meeting on

international color definition and measurement standards held in England in

1931, adopted a universal two-dimensional chromaticity diagram and a set of

standard tristimulus observer functions that not only eliminate the negative

values but also exhibit a number of other advantages. The result is, known as

the 1931 CIE chromaticity diagram. The CIE tristimulus values or primaries are

derived from the standard observer functions shown in Fig. 5-55 and tabulated

in Ref. 5-44. The three CIE hypothetical primaries are X, Y, and Z. The CIE

XYZ primaries are hypothetical because eliminating the negative values makes it

impossible for the primaries to correspond to physically real lights. The triangle

formed by X, V. and Z was selected to contain the entire spectrum of visible

light. The CIE chromaticity values xyz are

x V z
(5-18)

and x + y + z = 1. When the XVZ triangle is projected onto a two-dimensional

plane to form the CIE chromaticity diagram, the chromaticity coordinates are

selected as x and y. The chromaticity coordinates represent the relative amounts

of the three primary XYZ colors required to obtain any color. However, they

do not indicate the luminance (intensity) of the resulting color. Luminance

is incorporated into the V value. The X and Z values are then scaled to the Y

value. With this convention, both the chromaticity and the luminance are given

by (x, y, Y) coordinates. The inverse transformation from chromaticity values to
XYZ tristimulus values is

V=V Z(I_x_y)K (5-19)=
yy

x

400 700500 600

Wavelength X (nm)
Figure 5-55 1931 CIE standard observer.

COLOR 391

The final decision of the commission was to align the XYZ triangle so that equal

values of the three hypotetical XYZ primaries produce white.

The 1931 CIE chromaticity diagram is shown in Fig. 5-56. The wing-shaped

outline represents the locus of all visible wavelengths, i.e., the locus of the

visible spectrum. The numbers along the line indicate the wavelength of visible

light at that location. Red is at the lower right corner, green at the point,

and blue in the lower left corner of the diagram. The straight line connecting

the ends of the spectrum locus is called the purple line. The curved line

labeled the blackbody locus represents the color of a theoretical blackbody as

it is heated from approximately 1000° K to infinity. The dashed lines indicate

the temperature along the blackbody locus and also the direction along which

color changes are least discernible to the human eye. The equal energy alignment

white is shown as point E(x = 0.333, y = 0.333). The locations of CIE illuminants
A(0.448, 0.408), B(0.349, 0.352), C(0.310, 0.316), L5oo (0.313, 0.329)

are also shown. Illuminant A approximates the warm color of a gas-filled

tungsten lamp at 2856° K. It is much “redder” than the others. Illuminant B

approximates noon sunlight, and illuminant C the light from an overcast sky at

midday. Illuminant C is used by the National Television Standards Committee

(NTSC) as the alignment white. Illuminant D6500, which corresponds to a black-

body radiating at 6504° K, is a somewhat “greener” white used as the alignment

white for many television monitors.

As Fig. 5-57 illustrates, the chromaticity diagram is quite useful. The

complement of a spectrum color is obtained by extending a line from the color

through the alignment white to the opposite spectrum locus. For example, the

complement of the reddish-orange color C4(. = 610 nm) is the blue-green color

C5(1. 491 nm). A color and its complement added together in the proper

Figure 5-56 CIE diagram showing
the blackbody locus, illuminants A

0.6 0.8 B, C, D6500 (D), and equal-energy

white (E).

0.4

x

0 0.2

392 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

proportions yield white. The dominant wavelength for a color is obtained by

extending a line from the alignment white through the color to the spectrum

locus. For example, in Fig. 5-57 the dominant wavelength for color C6 is 570

nm, a yellow-green. If the extended line intersects the “purple line,” then the

color will have no dominant wavelength in the visible spectrum. In this case,

the dominant wavelength is specified by the complementary spectrum value for

the color with a c suffix. The value is obtained by extending a line “backward”

through the alignment white to the spectrum boundary. For example, the

dominant wavelength for color C-i in Fig. 5-57 is 500c nm.

The pure or fully saturated colors lie on the spectrum locus and are 100%

pure. The alignment white is “fully diluted” with a purity of 0%. The purity of

intermediate colors is given by dividing the distance from the alignment white

to the color by the distance from the alignment white to the spectrum locus or

the purple line. For example, the purity of color C6 in Fig. 5-57 is a/(a + b) and

that of C7, c/(c + d) expressed as a percentage.

The CIE chromaticity coordinates of a mixture of two colors is obtained,

using Grassman’s laws, by adding their primary values. For colors C1(x1, y, Y1)
and C2(x2, Y2, Y2) the mixture of C1 and C2 is

C12 = (X1 + X2) + (Y1 + Y2) + (Z1 + Z2)

Recalling Eqs. (5-18) and (5-19) and defining

0 0.2 0.4

x

T1=— T2=

Yl Y2

the chromaticity coordinates of the mixture are

0.6 0.8 Figure 5-57 Uses of the chromaticity

diagram.

COLOR 393

x1T1 +x2T2 yT +y2T2

X12 T1+T2 Y12= T1+T2

These results are applicable to mixtures of more than two colors when

applied successively to the mixture and each additional color. An example

illustrates the technique.

Example 5-10 Color Mixing

Determine the CIE chromaticiJy coordinates of the mixture of the colors Ci
(0.1, 0.3, 10), C2(0.35, 0.2, 10), and C3(0.2, 0.05, 10) shown in Fig. 5-57. Applying

the above results successively, the mixture of Ci and C2 is first determined.
From the specifications

T1=._L=_=33.33 T2=—=—=50
yi 0.3 Y2 0.2

and

xT + X2T2 (0.1)(33.33) + (0.35)(50)

X12 = T + T2 = 33.33 +
= 0.25

yiTi + y2T2 (0.3)(33.33) + (0.2)(50)

Y12 = T + T2 = 33.33 + 50
= 0.24

Y12 = Yi +Y2 = 10+ 10= 20

Thus, the mixture of Ci and C2 is Ci2(0.25, 0.24, 20). Note that the coordinates

for the mixture lie on the line between Ci and C2 in the chromaticity diagram.

Continuing, the mixture of C1, C2, and C3 is given by the mixture of C 12 and
C3. Hence,

TI2==---=83.33 T3==!.=200
Y12 0.24 y 0.05

X12T12 + X3T3 (0.25)(83.33) + (0.2)(200)

X123 = T12 + T3 = 83.33 + 200
= 0.215

— y12T12 + y3T3 — (0.24)(83.33) + (O.05)(200) — 0 106Y123
T12 + T3 — 83.33 + 200

Y123 = Y12+Y3 =20+10=30

The mixture of Ci, C2, and C3 is C123(0.215, 0.106, 30) and lies on the line

between C12 and C3 in the chromaticity diagram.

Figure 5-58 shows the correspondence between the CIE diagram and common

perceptual color names (see Ref. 5-49). In the abbreviations used in

Fig. 5-58 for the color names, a lowercase letter takes an -ish suffix; e.g., yG is

yellowish-green. For each color area, saturation or purity ranges from nearly

zero, i.e. a very pastel color, near the illuminant area, to a fully saturated,

i.e. a vivid, color near the spectrum boundary. Notice that most of the upper

area of the diagram is occupied by greenish hues, with the reds and blues

394 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 5-58 The 1931 CIE chromaticity diagram with superimposed color names.

crowded into the lower region near the purple line. Consequently, equal areas
or distances on the diagram do not represent equal perceptual differences. A
number of transformations of the diagram have been proposed to correct this
deficiency. These uniform color spaces are discussed in Refs. 5-44 to 5-47.

Color television monitors, color film, printing inks, etc., cannot produce
the full range or gamut of colors in the visible spectrum. For additive color
systems, the reproducible gamut appears as a triangle on the CIE chromaticity
diagram. The vertices of the triangle are the chromaticity coordinates of the
RGB primaries. Any color within the triangle can be reproduced by the primaries.

Figure 559 and Table 5-4 show the gamut of reproducible colors for the
RGB primaries of a typical color CRT monitor and for the NTSC standard
RGB primaries. For comparison, the subtractive CMY color system (converted
to CIE coordinates) used in a color film reproduction process is also shown.
Note that this gamut is not triangular. Note also that the gamut for this color
film is larger than the one for the color monitor. Consequently some film colors

cannot be reproduced by the monitor. The CIE XYZ primary spectrum colors
are also shown. These values lie on the spectrum boundary and correspond
to red at 700 nm, green at 543.1 nm, and blue at 435.8 nm. These primary
spectrum colors are used to produce the matching functions in Fig. 5-52.

The CIE chromaticity coordinates or tristimulus values provide a precise
standard specification of a color. However, each industry that uses color
employs a unique set of primaries or conventions to specify color. Transferring
color information from one industry to another is facilitated by using the CIE
chromaticity coordinates. Thus, transformation from CIE values to another
set of primary colors, and vice versa, is of interest. For computer graphics,

R-Red

B-Blue

0—Green

Y-Yellow

0—Orange

P — Purple

Pk— Pink

Lower case takes suffix ish

y

x

COLOR 395

Table 5-4

CIE chromaticity coefficients for RGB primaries

x y

CIE XYZ primaries Red

Green 0.274 0.717

Blue

0.735 0.265

0.167 0.009

NTSC standard Red

Green 0.210 0.710

Blue

0.670 0.330

0.140 0.080

Color CRT monitor Red

Green 0.268 0.588

Blue

0.628 0.346

0.150 0.070

the most common requirement is to transform between CIE XYZ values and

the RGB primary system used for television monitors. Consequently, the

discussion concentrates on these transformations. More general discussions are

given in Refs. 5-44 to 5-46 and 5-48.

The transformation between two additive color systems is governed by

Grassman’s laws. The transformation from RGB color space to CIE XYZ color

space is given by

y

CIE primary colors

• — NTSC standard

Graphics monitor

o 0.2 0.4 0.6 0.8
x

Figure 5.59 Color gamuts.

3% PROCEDURAL ELEMENTS FOR COMPUTER GRAPIUCS

lxi = FXr Xg Xbl FRi
II jYr Yg YbI IGI (520)

[ZJ [Zr Zg Zbj LBJ
where Xr, Yr, Zr represent the tristimulus values required to produce a unit

amount of the R primary, and similarly for xg, Yg, Zg and Xb, Yb, ZE,. For

example, if R = 1, G = 0, B = 0, then from the equations x = Xr, Y = Yr,
Z = Zr. If the CIE chromaticity values (x,y) of the RGB primaries are known,

Xr xr

Xr Xr+Yr+ZrCr

Yr = Xr + Yr + Zr =
(5-21)

Zr Zr

Zr=lXrYr xr+yr+Zrcr

and similarly for Xg, Yg, Zg and Xb, Yb, With Cg = xg + Yg + Zg and Cb =

xb + Yb + Zb, Eq. 5-20 then becomes

lxi = F XrCr XgCg XbCb 1 FRi
I Yj YrCr ygCg ybCb G (5-22)

LZJ [(1 — Xr — yr)Cr (1 — Xg — yg)Cg (1 — Xb — yb)Cb j [B]
or in more compact notation

[X’] = [C’][R’]

Cr, Cg, and Cb are required to completely specify the transformations between

primary systems. If the luminance Y, Yg, and Yb of the unit amounts of

the RGB primaries is known, then

c- c! c-r g b

Yr Yb

If the tristimulus values for the alignment white (X, Y, i) are known, then

solution of Eq. (5-22) with [R’] = [Cr Cg CbJT and [X’] = [X, Y Z]T

yields the required values. If the chromaticity coordinates and the luminance
(x, Yw, Y) are known instead of the tristimulus values, then (Ref. 5-48)

Cr = (Yw/yw)[xwCvg — Yb) — Yw(Xg — Xb) + XgYb — XbYg]/D

Cg = (Yw/Yw)[XwCyb — Yr) — Yw(Xb — Xr) — XrYb + XbYr]/D(5-23)

Cb = (Yw/Yw)[Xw(Yr — Yg) — Yw(Xr — xg) + XrYg — XgYr]/D

and

D = Xr(J7g — Yb) + Xg7b — Yr) + Xb7r — Yg) (5-24)

The inverse transformation from CIE xYz color space to RGB color space

is then given by

[R’] = [C’]’[X’] = [c’’][:X’] (5—25)

COLOR 397

where [C”] = [C’]’ has components

C = [(Yg — Yb) — XbYg + YbXg] /CrD

C = [(Xb — Xg) — XbYg + XgYb] /CrD

C = [XgYb — XbYg] /CrD

C = [(Yb — Yr) — YbXr + YrXb] /CgD

C = [(Xr — Xb) — XrYb + XbYr] /CgD

C = [XbYr — XrYb] /CgD

C = [(yr — Yg) — YrXg + YgXr] /CbD

c = [(Xg — Xr) — XgYr + XrYg] /CbD

C = [XrYg — XgYrJ /CbD

An example further illustrates the technique.

Example 5-11 CIE to RGB Color Primary Transformations

It is desired to transform a color with CIE chromaticity coordinates x = 0.25,

y = 0.2, and luminance Y = 10.0 for display on a color monitor with RGB

primary chromaticities given in Table 5-4. The monitor is aligned to D6500

white. Consequently, the monitor primary components are

xr0.628 xg=O.268 Xb=O.1SO

Yr = 0.346 g = 0.588 Yb = 0.070

The alignment white components are

x=0.313 Yw=O.329 Yw=1.0

First, calculating D yields

D = Xr(j7g — Yb) + Xg(j7b — Yr) + Xb(j7r — Yg)

= 0.628(0.588 —0.07) + 0.268(0.07 — 0.346) + 0.15(0.346 — 0.588)

= 0.215

Now

DCr /(Y/Yw) = Xw(J7g — Yb) — Yw(Xg — xi,) + XgYb — XbYg
= 0.313(0.588 — 0.07) — 0.329(0.268 —0.15) + 0.268(0.07)

— 0.15(0.588)

= 0.0539

and

0.0539 0.0539 f 1
Cr — D — 0.2 15 0.329) — 0.762

Similarly

398 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Cg = 1.114 Cb = 1.164

Calculating the XYZ tristimulus values from the chromaticity coordinates yields

X = x = 0.25- = 12.5
y 0.2

Z (1 —x—y)— = (1 —0.25—0.2) = 27.5
y 0.2

The transformation is then given by Eq. (5-22)

[R’] = [C’ ‘][X’]

rRl = r 2.739 —1.145 —0.4241 r12.s1 =rll.133
G I I —1.119 2.029 0.033 I I 10.0 I I 7.209

LBJ L 0.138 —0.333 1.105J L27.5J L28.772

The transformation of RGB coordinates to CIE chromaticity coordinates
is accomplished in a similar manner.

Example 5-12 RBG to CIE Color Primary Transformations

Transform the color with RGB components (255,0,0), i.e., the maximum
red intensity on the monitor, to CIE chromaticity coordinates. The monitor
primaries and alignment white are the same as in Example 5-11. Consequently,
D, Cr, Cg, Ci, are also the same. Using Eq. (5-21) yields

rxl = ro.478 0.299 0.1751 r2551 =r121.94
I ‘ I I 0.263 0.655 0.081 I I 0 I I 67.19
LZJ Lo.o2o 0.160 0.908J L 0J L 5.05

The chromaticity values are

— X —121.94
121.94 —0628

XX+y+Zl2l94+67l9+SOSj58
Y 67.19

X+Y+Z = 194.18 =0.346
Y = 67.19

which, of course, are the chromaticity coordinates for the red monitor primary

(see Table 5-4).

The RGB color primary system used for standard color television broadcasting

is dictated by the requirement to confine the broadcast signal to a 0—

6MHz bandwidth and by the requirement for compatibility with the standard

for black-and-white television. In 1953 the NTSC adopted a standard called

the YIQ color primary system. The YIQ color primary system is based on

concepts from the CIE XYZ system. Because of bandwidth restrictions, one

value, Y, was chosen to contain the luminance or brightness information. The

COLOR 399

signal for Y occupies the major portion of the available broadcast bandwidth

(0—4 MHz). The proportions of the NTSC red, green, and blue primaries in the

Y signal were chosen to yield the standard luminosity curve. Since Y contains

the brightness information, only its value or signal is used by a black-and-white

monitor. The NTSC alignment white was originally CIE illuminant C, but

CIE illuminant D6500 is generally used at the present time (Ref. 5-50). The
differences are small.

Certain characteristics of the visual system are used to reduce the bandwidth

required for the color, i.e. hue and saturation, information transmitted. Specifically,

the ability of the eye to sense color decreases with decreasing apparent

object size. Below a certain apparent object size, objects are perceived by a

two-color vision process. Objects below a certain minimum size produce no

perceived color sensation.

The YIQ system uses linear combinations of the differences between the

red, green, and blue values and the Y value to contain the hue and saturation

“color” information. The I color value (or in phase signal) contains orange-cyan

color hue information, while Q (the quadrature signal) contains green-magenta

hue information. The I value contains hue information that provides the all-

important flesh tones while the Q value contains the remainder. Consequently,

a bandwidth of about 1.5 MHz is used for I, but only about 0.6 MHz is used for

Q. The transformation from RGB to YIQ values is given by

Y = 0.299 0.587 0.1141 FR
I 0.596 —0.274 —0.322 I I G

Q 0.211 —0.522 0.311] LB
and from YIQ to RGB as

= Ii 0.956 0.623 Y
I G I 1 —0.272 —0.648 I

LB L1 —1.105 0.705 Q
Transformation from CIE XYZ tristimulus values to YIQ, or vice versa, is

accomplished by combining these equations with Eqs. (5-22) and (5-25).

As with the CIE XYZ tristimulus values, the RGB and CMY color spaces

are three-dimensional. Both the RGB and CMY spaces are conveniently represented

by three-dimensional color cubes or solids as shown in Fig. 5-60.

The RGB color cube uses black as the origin, while the CMY color cube

uses white. For both models the achromatic colors, i.e. the grays, lie along the

diagonal from black to white. Also, the complementary colors lie on opposite

corners. The transformation between RGB and CMY color spaces is

[RGB]=[1 I 1]—[CMY]

Unfortunately, it is difficult for users to specify subjective color concepts

in the systems discussed above. For example, what is the CIE, RGB, or CMY

specification for a pastel reddish-orange (see Fig. 5-58)? Artists specify colors

400 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Figure 5-60 Color cubes. (a) RGB (b) CMY.

in terms of tints, shades, and tones. Given a pure pigment, an artist adds white

to obtain a tint, black to obtain a shade, and both to obtain a tone of the color.

These ideas can be combined into a useful triangular representation, as shown

in Fig. 5-61. The triangular representation shown in Fig. 5-61 is for a single

color. By arranging triangles for each pure color around a central black-white

axis, a useful subjective three-dimensional representation of color is obtained.

This basic idea is central to the Ostwald (Ref. 5-51) color system.

A useful implementation of a basic subjective color model is the HSV (hue,

saturation, value) color solid proposed by Smith (Ref. 5-52). If the RGB color

cube shown in Fig. 5-60a is projected onto a plane along the diagonal looking

from white to black, a hexagon is formed, with the pure RGB primaries and

their complements at each vertex. Decreasing the saturation or purity of the

primary colors decreases the size of the RGB color cube and the gamut of

possible colors. Projection then yields a smaller hexagon. If the projections

of the RGB color cube and its subcubes are stacked along the main diagonal

representing the value or lightness of the color from black = 0 to white =

1, a three-dimensional hexcone is formed. This is the HSV model shown in

Yellow Blue
a b

—Tints

Pure colorWhite

Gray

Black
Figure 5-61 Tints, shades, and tones

of a pure color.

COLOR 401

Cyan Saturation

Figure 5.62 HSV hexcone color solid.

Fig. 5-62. Value increases along the axis of the hexcone from 0 at the apex

to 1 at the top surface, where the maximum value colors occur. Saturation

is given by the distance from the axis, and hue by the angular distance (0 —

3600) measured from red. Here, the projection of the RGB color cube has

been rotated counterclockwise 1200 to place red at 00. The value of saturation

ranges from 0 at the axis to 1 along the outer rim. Notice that saturation is

specified relative to the possible gamut of colors, i.e. relative to the distance

from the axis to the outer rim for any value of V. The fully saturated primary

colors or their complements occur for S = 1. A mixture of three nonzero

primaries cannot be fully saturated. If S = 0, the hue H is undefined and the

color is achromatic, i.e., some shade of gray. The shades of gray occur along
the central axis.

The HSV model corresponds to the way artists form colors. The pure

pigments are given for V = 1, S = 1. Tints are formed by adding white, i.e.

decreasing S. Shades are formed by decreasing V, i.e. adding black, and tones

by decreasing both V and S.

Conversion from HSV to RGB color space using geometrical relations

between the hexcone and the color cube is straightforward. The following

pseudocode algorithm adapted from Smith (Ref. 5-52) accomplishes this.

HSV to RGB conversion algorithm

H is the hue (0—360°) red at 0°

S is the saturation (0—1)

V is the value (0-4)

ROB are the red, green, blue primary colors (0—1)

Floor is the floor function

check for the achromatic case
if S = 0 then

if H = Undefined then

Green

Value

Yellow

Blue Magenta

0 Black

402 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

R=V

G=V

B=V

else

if H has a value an error has been made

end if

else

chromatic case

if H = 360 then

H=O

else

H = H/60

I = Floor(H)
F=H—I

M = V*(1 — S)

N = V*(1 — S * F)

K = V*(1—S*(1—F))

(R, G, B) = (V, K, M)meansR = V, G = K, B = Metc.

if I = 0 then (R, G, B) = (V, K, M)

IfI = lthen(R,G,B) = (N,V,M)

if I = 2then(R,G,B) = (M,V,K)

if I = 3then(R,G,B) = (M,N,V)

if I = 4then(R,G,B) = (K,M,V)

ifl = 5then(R,G,B) = (V,M,N)
end if

end if

finish

Conversion from RGB to HSV color space is given by the following pseudocode

algorithm, also adapted from Smith.

RGB to HSV conversion algorithm

RGB are the red, green, blue primary colors (0—1)
H is the hue (O36O0) red at 00

S is the saturation (0—1)

V is the value (0—1)

Max is the maximum function

Mm is the minimum function

determine the value

V = Max(R, G, B)
determine saturation

Temp = Min(R, G, B)
If V = 0 then

S=0

COLOR 403

else

S = (V — Temp)/V
end if

determine the hue

if S = 0 then

H = Undefined

else

Cr = (V - R)/(V - Temp)

Cg = (V - G)/(V - Temp)

Cb = (V - B)/(V - Temp)

the color is between yellow and magenta

if R = V then H = Cb — Cg

the color is between cyan and yellow
ifG = VthenH = 2 + Cr — Cb

the color is between magenta and cyan

ifB = VthenH = 4 + Cg — Cr

convert to degrees
H = f,O*H

prevent negative value
if H < 0 then H = H + 360

end if

finish

Joblove and Greeenberg (Ref. 5-53) discuss an alternate formulation of an

HSV color space based on a cylindrical rather than a hexcone representation.

An extension of the hexcone model is the HLS (hue, lightness, saturation)

double-hexcone model. Since the HLS model applys to self-luminous sources,

lightness as used here corresponds to brightness as defined at the beginning

of this section. In the HLS model the RGB color cube is projected to yield
a double hexcone as shown in Fig. 5-63, with lightness (value) along the axis

from black = 0 at one apex to white = 1 at the other. Again, as in the HSV

model, saturation is given by the radial distance from the central axis. Here the

fully saturated primary colors and their complements occur at S = 1. Again,
H is undefined when S = 0.

Conversion from HLS to RGB is given below by a pseudocode algorithm

adapted from Refs. 5-54 and 5-55.

HIS to RGB conversion algorithm

H is the hue (0—360°) red at 0°

L is the lightness (0—1)

S is the saturation (0—1)

RGB are the red, green, blue primary colors (0—1)

Max is the maximum function

Mm is the minimum function

404 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Cyan S

Figure 5-63 HLS double-hexcone color model.

If L � 0.5 then

Ml = L*(l—S)
else

Ml = L + S — L*S

end if

M2 = 2*L — Ml

check for zero saturation
If S = 0 then

if H = Undefined

R=l

G=1

B= 1

else

Error because incorrect data has been provided
end If

else

determine RGB values

call RGB(H, Ml, M2; Value)
R = Value + 120

call RGB(H, Ml, M2; Value)
G = Value

call RGB(H, Ml, M2; Value)
B = Value — 120

end if

finish

White

Green Yellow

Blue Magenta

Black

COLOR 405

subroutine to determine the RGB values

subroutine RGB(H, Ml, M2; Value)

H is the hue (0—360°) red at 0°

adjust the hue to the correct range
if H <0 then H = H + 360

if H > 360 then H = H - 360

determine the value

if H < 60 then Value = Ml + (M2—M1)*H160

if H � 60 and H < 180 then Value = M2

if H � 180 and H <240 then Value = Ml + (M2 — Ml)*(240 — H)/60
if H � 240 and H � 360 then Value = Ml

return

Conversion from RGB to HLS is given by the following pseudocode algorithm.

RGB to HLS conversion alogorithm

RGB are the red, green, blue primary color(0—1)

H is the hue (0—360°) red at 0°

L is the lightness (0—1)

S is the saturation (0—1)

Max is the maximum function

Mm is the minimum function

determine the lightness

Ml = Max(R, G, B)

M2 = Min(R, G, B)

L = (Ml + M2)/2
determine the saturation

achromatic case

If Ml = M2 then

s=0

H = Undefined

else

chromatic case

if L � 0.5 then

S = (M1—M2)/(Ml+M2)
else

S = (M1—M2)/(2—Ml+M2)
end if

determine the hue

Cr = (Ml — R)/(Ml — M2)

Cg = (Ml — G)/(M1 — M2)

Cb = (Ml — B)/(Ml — M2)

if R = Ml then H = Cb - Cg

406 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

if G = Ml then H = 2 + Cr — Cb

if B = Ml then H = 4 + Cg — Cr
H = (,(J*H

if H <0 then H = H + 360

end if

finish

A cylindrical representation is also used in the Munsell color-order system

(Ref. 5-56). The Munsell system is based on a collection of color samples.

Hence, it is a reflective standard. In the Munsell system, a color is designated

by its Munsell hue, Munsell chroma (purity or saturation), and Munsell value

(lightness). The central axis of the cylinder represents values between black at

the bottom and white at the top. Increasing radial distance from the central

axis represents increasing chroma or purity for the color. The color hues are

represented by angular positions around the central axis as shown in Fig. 5-64.

One major advantage of the Munsell system that has resulted in wide industrial

acceptance is that equal increments in chroma, hue, and value result in equal

perceptual changes. Because of this characteristic, the entire volume of the

cylinder is not filled. Transformation of the subjective Munsell color representation

into CIE tristimulus values is available (see, for example, Ref. 5-57).

Meyer and Greenberg (Ref. 5-58) have successfully displayed Munsell colors

on a color monitor. They used CIE XYZ tristimulus values as an intermediate

standard color space. First, Munsell color values were transformed to CIE XYZ
tristimulus values, and then these values were transformed to the RGB values

required for the color monitor. Using this technique, Meyer and Greenberg

were able to display some Munsell colors previously known only by extrapolation

from existing samples.

The work by Meyer and Greenberg illustrates the practical value of the

standard CIE XYZ color space. The use of CIE XYZ tristimulus values to

specify colors is particularly important when computer graphics is used to either

simulate existing commercially available colorants, e.g. paints or dyestuffs, or

to design colors for reproduction using commercially available colorants. As

an example consider selection or simulation of the paint color for the Chevrolet

Figure 5-64 Conceptual representation
of the Munsell color-

ordering system.

COLOR 407

Camaro shown in Color Plate 1. If the paint color is selected from that

shown on the monitor, then it is necessary to provide color specifications to

the paint manufacturer. Transforming from the display RGB value to CIE

XYZ values and supplying these to the manufacturer accomplishes this. The

paint manufacturer converts these values to those used to design the paint, e.g.

Munsell hue, chroma, and value. Alternately, if the appearance of the Camaro

with an existing commercially available paint is to be evaluated, then the paint

specifications are converted to CIE XYZ tristimulus values and then to RGB

values for display on the monitor. Other applications are apparent.
If a linear relation between the values obtained from the above color

models and the voltage applied to the electron guns of a television monitor

is assumed, the resulting display will not look right because a color monitor

requires calibration.

The intensity displayed on the monitor is proportional to the voltage supplied

to the electron gun. Specifically,

I = constant(V)

Then for any desired intensity value Ik, the voltage supplied to the monitor
must be

I

Vk=(k
constant

Catmull (Ref. 5-59) discusses a detailed procedure for determining both

the constant and y. Experience shows that I � y � 4 with typical values of 2.3
—2.8 for a color monitor. The results of the calibration are used as values in a

look-up table.

The above procedure, called gamma correction, calibrates only the intensity

of the display. Calibrating the color of the display involves determining the CIE

chromaticities of the red, green, and blue phosphors used in the display as well.

Cowan (Ref. 5-60) discusses a detailed calibration procedure for color monitors

for both gamma correction and determination of the phospher chromaticities.

Applying either Gouraud or Phong shading (see Secs. 5-5 and 5-6) for color

images can yield startling results. The results depend on the color model used

to specify the interpolated shading and the model used to display the results. If

the transformation between the two color models is affine, i.e., a straight line

transforms into a straight line, then the results will be as expected. If not, then

visual discontinuities may appear. As shown above, transformations among
CIE, RGB, CMY, and YIQ color models are affine. However, transformations
between these models and either the HS’’ or HSL color model are not affine.

A similar effect occurs when blending colored transparent effects, e.g., in a

hidden surface algorithm.

Finally, there is the question of color harmony, i.e., how colors are selected

for pleasing effects. The literature is vast on this topic alone. A good starting

place is Marcus (Ref. 5-61) or Judd and Wyszecki (Ref. 5-45). One of the

408 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

basic principles is to select colors using an orderly plan. An acceptable plan

might select the colors from an orderly path in a color model or confine the

colors to a single plane in the color model. It is generally considered best to

select colors that differ by equal perceptual distances. Examples of harmonious

colors are frequently taken from nature, e.g., a sequence of greens. Another

technique is to select colors of constant saturation or hue, i.e., colors that are
more or less alike.

5-16 REFERENCES

5-1 Cornsweet, T.N., Visual Perception, Academic Press, New York, 1970.

5-2 Bui-Tuong, Phong, “Illumination for Computer Generated Images,” doctoral

thesis, University of Utah, 1973. Also as Comp. Sci. Dept. Rep. UTEC-CSc-73-

129, NTIS ADA 008 786. A condensed version is given in CACM, Vol. 18, pp.

311—317, 1975.

5-3 Gouraud, H., “Computer Display of Curved Surfaces,” doctoral thesis, University

of Utah, 1971. Also as Comp. Sci. Dept. Rep. UTEC-CSc-71-113 and NTIS AD

762 018. A condensed version is given in IEEE Trans. C-20, pp. 623—628, 1971.

5-4 Duff, T., “Smooth Shaded Renderings of Polyhedral Objects on Raster Displays,”

Computer Graphics, Vol. 13, pp. 270—275, 1979 (Proc. SIGGRAPH 79).

5-5 Warn, David R., “Lighting Controls for Synthetic Images,” Computer Graphics,

Vol. 17, pp. 13—21, 1983 (Proc. SIGGRAPH 83).

5-6 Torrance, K.E., and Sparrow, E.M., “Theory for Off-Specular Reflection from

Roughened Surfaces,” Journal of the Optical Society of America, Vol. 57, pp. 1105

—1114, 1967.

5-7 Blinn, James F., “Models of Light Reflection for Computer Synthesized Pictures,”

Computer Graphics, Vol. 11, pp. 192—198, 1977 (Proc. SIGGRAPH 77).

5-8 Cook, Robert L., “A Reflection Model for Realistic Image Synthesis,” master’s

thesis, Cornell University, 1982.

5-9 Cook, Robert L., and Torrance, K.E., “A Reflectance Model for Computer Graphics,”

ACM Trans. on Graphics, Vol. 1, pp. 7—24, 1982.

5-10 Beckmann, P., and Spizzichino, A., Scattering of Electromagnetic Waves from

Rough Surfaces, MacMillan, New York, 1963, pp. 1—33, 70—98.

5-11 Purdue University, Thermophysical Properties of Matter, Vol. 7: Thermal Radiative

Properties of Metals, Vol. 8: Thermal Radiative Properties of Nonmetallic Solids,

Vol. 9: Thermal Radiative Properties of Coatings, Plenum, New York, 1970.

5-12 Newell, M.E., Newell, R.G., and Sancha, T.L., “A Solution to the Hidden Surface

Problem,” Proc. ACM Annual Conf., Boston, August 1972, pp. 443—450.

5-13 Kay, Douglas Scott, “Transparency Refraction and Ray Tracing for Computer

Synthesized Images,” master’s thesis, Cornell University, 1979.

5-14 Kay, Douglas Scott, and Greenberg, Donald, “Transparency for Computer

Synthe- sized Images,” Computer Graphics, Vol. 13, pp. 158—164, 1979 (Proc.

SIGGRAPH 79).

5-15 Myers, Allen J., “An Efficient Visible Surface Program,” Rep. to NSF, Div. of

Math. and Comp. Sci., Computer Graphics Res. Group, Ohio State University,

July 1975.

5-16 Appel, Arthur, “Some Techniques for Shading Machine Rendering of Solids,”

SJCC 1968, Thompson Books, Washington, D.C., pp. 37—45.

REFERENCES 409

5-17 Bouknight, Jack, “A Procedure for Generation of Three-dimensional Half-toned

Computer Graphics Presentations,” CACM, Vol. 13, pp. 527—536, 1970.

5-18 Kelley, Karl C., “A Computer Graphics Program for the Generation of Half-tone

Images with Shadows,” master’s thesis, University of Illinois, 1970.

5-19 Bouknight, Jack, and Kelley, Karl C., “An Algorithm for Producing Half-tone

Computer Graphics Presentations with Shadows and Movable Light Sources,”

SJCC 1970, AFIPS Press, Montvale, N.J. pp. 1—10.

5-20 Williams, Lance, “Casting Curved Shadows on Curved Surfaces,” Computer

Graphics, Vol. 12, pp. 270—274, 1978 (Proc. SIGGRAPH 78).

5-21 Atherton, Peter R., “Polygon Shadow Generation with Application to Solar

Rights,” master’s thesis, Cornell University, 1978.

5-22 Atherton, Peter, R., Weiler, Kevin, and Greenberg, Donald, “Polygon Shadow

Generation,” Computer Graphics, Vol. 12, pp. 275—281, 1978 (Proc. SIGGRAPH

78).

5-23 Catmull, Edwin, “A Subdivision Algorithm for Computer Display of Curved Surfaces,”

doctoral thesis, University of Utah, 1974. Also as UTEC-CSc-74-133, NTIS
A004968.

5-24 Blinn, James F., and Newell, Martin, E., “Texture and Reflection in Computer

Generated Images,” CACM, Vol. 19, pp. 542—547, 1976.

5-25 Blinn, James F., “Simulation of Wrinkled Surfaces,” Computer Graphics, Vol. 12,

pp. 286—292, 1978 (Proc. SIGGRAPH 78).

5-26 Carpenter, Loren C., “Computer Rendering of Fractal Curves and Surfaces,” pp.

1—8, suppl. to Proc. SIGGRAPH 80, August 1980.

5-27 Fournier, Alain, and Fussell, Don, “Stochastic Modeling in Computer Graphics,”

pp. 9—15, suppl. to Proc. SIGGRAPH 80, August 1980.

5-28 Mandelbrot, B., Fractals: Form, Chance, and Dimension, W. H. Freeman, San

Francisco, 1977.

5-29 Kajiya, James T., “New Technique for Ray Tracing Procedurally Defined Objects,”

Computer Graphics, Vol. 17, pp. 91—102, 1983 (Proc. SIGGRAPH 83). Also in

ACM Trans. on Graphics, Vol. 2, pp. 161—181, 1983.

5-30 Whitted, Turner, “An Improved Illumination Model for Shaded Display,” CACM,

Vol. 23, pp. 343—349, 1980.

5-31 Potmesil, M., and Chakravarty, I., “A Lens and Aperture Camera Model for

Synthetic Image Generation,” Computer Graphics, Vol. 15, pp. 297—305, 1981

(Proc. SIGGRAPH 81).

5-32 Potmesil, M., and Chakravarty, I., “Synthetic Image Generation with a Lens and

Aperture Camera Model,” ACM Trans. on Graphics, Vol. 1, pp. 85—108, 1982.

5-33 Barr, Alan H., private communication.

5-34 Hall, Roy A., “A Methodology for Realistic Image Synthesis,” master’s thesis,

Cornell University, 1983.

5-35 Hall, Roy A., and Greenberg, Donald, “A Testbed for Realistic Image Synthesis,”

IEEE Compute Graphics and Applications, Vol. 3, pp. 10—20, 1983.

5-36 Moravec, Hans P., “3D Graphics and the Wave Theory,” Computer Graphics, Vol.

15, pp. 289—96, 1981 (Proc. SIGGRAPH 81).

5-37 Korein, ... and Badler, V.R., “Temporal Anti-Aliasing in Computer Generated

AnimaLon,” Computer Graphics, Vol. 17, pp. 377—388, 1983 (Proc. SIGGRAPH

83).

5-38 Potmesil, M., and Chakravarty, I., “Modeling Motion Blur in Computer-Generated

Images,” Computer Graphics, Vol. 17, pp. 389—399, 1983 (Proc. SIGGRAPH 83).

5-39 Reeves, William T., “Particle Systems—A Technique for Modeling a Class of

410 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

Fuzzy Objects,” Computer Graphics, Vol. 17, pp. 359—376, 1983 (Proc. SIGGRAPH

83), and ACM Trans. on Graphics, Vol. 2, pp. 91—108, 1983.

5-40 Blinn, James F., “Light Reflection Functions for Simulation of Clouds and Dusty

Surfaces,” Computer Graphics, Vol. 16, pp. 21—29, 1982 (Proc. SIGGRAPH 82).

5-41 Dungan, W. “A Terrain and Cloud Computer Image Generation Model,”

Computer Graphics, Vol. 13, pp. 143—150, 1979 (Proc. SIGGRAPH 79).

5-42 Marshall, R., Wilson, R., and Carlson, Wayne, “Procedural Models for Generating

Three-dimensional Terrain,” Computer Graphics, Vol. 14, pp. 154—162, 1980

(Proc. SIGGRAPH 80).

5-43 Csuri, C.A., “Panel: The Simulation of Natural Phenomena,” Computer Graphics,

Vol. 17, pp. 137—139, 1983 (Proc. SIGGRAPH 83).

5-44 Wyszecki, G., and Stiles, W.S., Color Science, Wiley, New York, 1967.

5-45 Judd, D.B., and Wyszecki, G., Color in Business, Science and Industry, Wiley,
New York, 1975.

5-46 Hunt, R.W.G., The Reproduction of Color, 3d ed., Wiley, New York, 1975.

5-47 Hunter, Richard S., The Measurement of Appearance, Wiley, New York, 1975.

5-48 Meyer, Gary W., “Colorimetry and Computer Graphics,” Program of Computer

Graphics, Report Number 83-1, Cornell University, April 1983.

5-49 Judd, Deane B., “Colorimetry,” National Bureau of Standards Circular 478, 1950.

Updated in Nimerof, I., “Colorimetry,” NBS monograph 104, 1968.
5-50 Pritchard, D.H. “US Color Television Fundamentals—A Review,” IEEE Trans.

on Consumer Electronics, Vol. CE-23, pp. 467—478, 1977.
5-51 Ostwald, N., Colour Science, Vols. I and 11, Wimsor & Winsor, London, 1931.

5-52 Smith, Alvey Ray, “Color Gamut Transformation Pairs,” Computer Graphics. Vol.

12, pp. 12—19, 1978 (Proc. SIGGRAPH 78).

5-53 Joblove, George H., and Greenberg, Donald, “Color Spaces for Computer

Graphics,” Computer Graphics, Vol. 12, pp. 20—25, 1978 (Proc. SIGGRAPH

78).

5-54 “Status Report of the Graphics Standards Committee,” Computer Graphics, Vol.

13, August 1979.

5-55 Raster Graphics Handbook, Conrac Division, Conrac Corporation, 600 N.
Rimsdale Ave., Covina, California 91722.

5-56 Munsell, A.H., A Color Notation, 9th ed., Munsell Color Company, Baltimore,

1941. The latest Book of Color is available from Munsell Color Company, 2441

North Calvert Street, Baltimore, Maryland 21218.

5-57 Keegan, H.J., Rheinboldt, W.C., Schleter, J.C., Menard, J.P., and Judd, D.B.,

“Digital Reduction of Spectrophotometric Data to Munsell Renotations,” Journal

of the Optical Society of America, Vol. 48, p. 863, 1958.

5-58 Meyer, Gary W., and Greenberg, Donald, “Perceptual Color Spaces for Computer

Graphics,” Computer Graphics, Vol. 14, pp. 254—261, 1980 (Proc. SIGGRAPH

80).

5-59 Catmull, Edwin, “Tutorial on Compensation Tables,” Computer Graphics, Vol.

13, pp. 1—7, 1979 (Proc. SIGGRAPH 79).

5-60 Cowan, William B., “An Inexpensive Scheme for Calibration of a Colour Monitor

in Terms of CIE Standard Coordinates”, Computer Graphics, Vol. 17, pp. 315—

321, 1983 (Proc. SIGGRA PH 83).

5-61 Marcus, Aaron, “Color—A Tool for Computer Graphics Communication,” Closeup,

Vol. 13, pp. 1—9, August 1982.

APPENDIX

A

PSEUDOCODE

The pseudocode described is intended as an aid in understanding and implementing the
algorithms presented in the text. It is not intended as a precise syntactically correct
complete language. The elements of the pseudocode are drawn from several common
computer programming languages: BASIC, FORTRAN, PASCAL, etc. The pseudo-
code contains structured constructs, specifically if-then-else and while. The common unconditional

go to statement is included for convenience. The for-next loop statement is
taken from BASIC. Subroutine modules are included. Functions, and special routines,

e.g. Mm, Max, Push, Pop are individually defined within the algorithms. Draw and Plot
are self-explanatory.

The general conventions used in presenting the algorithms are briefly given here.
All key words are set in bold face, lower case characters. All statements within the body
of an if-then-else, while, or for-next loop are indented. All comments are set in italics
and indented along with the statements to which they refer. Variable names longer than
one character have the first character capitalized. Subsequent characters are lower case.
Single character variables may be either lower case or upper case. Functions are set
bold face with the first character capitalized. Detailed descriptions of these conventions
follow.

A-i COMMENTS

Comment statements are set in italic. They are indented along with the statements to

which they refer. Sufficient comments are given at the beginning of an algorithm to

briefly describe its purpose and to define the variables used.

A-2 CONSTANTS

All constants are decimal numbers unless specified otherwise in comments. For example,

9,—3,6.732, 1. x lO9,—5.3 are all constants.

411

412 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

A-3 VARIABLES

A variable is a name used to store a value. This value may change. The first character

of a long variable name is capitalized. The remaining characters are lower case unless

the use of a capitalized character aids in understanding by comparison with the notation

used in the body of the text. Single character variables may be either lower case or

upper case. Subscripted characters may be used for understanding. Typical examples

are Flag, P,x,y.

A-4 ARRAY VARIABLES

An array variable is the name for an indexed collection of values. Naming conventions

are the same as those for variables. An entire array is referenced by its variable name

alone. Individual elements of the array are referenced by the variable name followed by

a subscript in parentheses. Examples are Window, Window(1, 3).

A-5 ASSIGNMENT STATEMENT

The equal sign is used to assign the value of the expression on the right hand side to the

variable on the left hand side.

A-6 ARITHMETIC EXPRESSIONS

The common arithmetic operators: multiplication, division, addition, and subtraction are

indicated by *, I, +, —.

A-7 LOGICAL AND RELATIONAL OPERATORS

The logical operators and and or are set in boldface lower case as shown. The relational

operators equal, not equal, less than, greater than, less than or equal, greater than or

equal are indicated by =, , <, >, �, � respectively. These operators are used for

testing purposes. The result of the test is either true or false.

A-8 THE finish STATEMENT

The finish statement is used to show termination of the algorithm.

THE IF-THEN STATEMENT 413

A-9 THE while AND end while STATEMENTS

The statements within the while-end while block are executed repeatedly while some

condition is true. The condition is tested at the beginning of the block. When the

condition is no longer true, execution continues with the statement following the end
while. The end while statement is used to indicate the end of a block. All statements

within a while-end while block are indented. The general form is

while (condition)

[statements to be executed]
end while

As an example

i=O

while (1 <5)
x=x+5

1=1+1

end while

finish

A-1O THE if-then STATEMENT

The if-then statement is used to select an alternate execution path or to assign an alternate

value to a variable depending on whether a condition is true or false.

If the argument of the then is a statement number, and if the condition is true,

execution continues with that statement. If not, execution continues with the next

sequential statement. Statement numbers are labels.

If the argument of the then is an assignment statement, and if the condition is

true, then the assignment statement is executed. If not, the assignment statement is not

executed and execution continues with the next sequential statement. The general forms
are

if (condition) then (statement number)

if (condition) then (assignment statement)

Examples are

if (i < 10) then 3

if(i< 10)thenx = x+ I

414 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

A-li THE if-then-else and end if STATEMENTS

The if-then-else statement is used to select alternate blocks of statements for execution

depending on whether a condition is true or false. The end If statement is used to indicate

the end of the if-then-else block. The If-then-else statement does not imply repetition.

Only one of the alternate statement blocks is executed. Execution then continues with

the next sequential statement after the end If statement. All statements within the If-

then-else block are indented. The general form is

if (condition) then

[statements to be executed if the condition is true]
else

[statements to be executed if the condition is false]
end if

An example is

if (1 � 0) then

xx+1

else

x=x— I

end if

If an if-then-else statement is written on a single line the end If statement is omitted.

Note also that if the else and the second group of statements is omitted, a block If-then
statement results.

A-12 THE for-next STATEMENT

Loop control is achieved with a for-next statement as well as the while statement. Execution

of the statements within the body of the for-next loop occurs repeatedly while the

index value is within the specified range. All statements within the body of the loop are

indented. The general form is

for (index variable) = (initial value) to (final value) step (increment in index value)

[statements to be executed]

next (index variable)

If step is absent the increment is assumed to be one. Negative step values are allowed.

The initial, final, and increment values may be variables. An example is

for x = 1 to n step a

y=y+x
next x

FUNCTIONS 415

A-13 THE go to STATEMENT

The go to statement causes an unconditional branch to the statement identified by its

argument. The general form is

go to (statement number)

Statement numbers are labels. They are positioned at the extreme left edge of the
statement.

A-14 SUBROUTINE MODULES

A subroutine is a separate program module. It is invoked by means of the call statement.

The beginning of a subroutine is defined by the subroutine statement. Exit from a

subroutine module is indicated by the return statement. Upon exit from the subroutine

module, control returns to the next sequential statement after the call statement in the

calling program. The subroutine statement contains a list of input and a list of output

variables. Communication between the calling program and the subroutine module

occurs only through these variables. All other variables within a subroutine module

are local to the module. The general form of the call, subroutine, and return statements
is

call name(input variables; output variables)

subroutine name(input variables; output variables)
return

The input and output variable lists for the call and subroutine statements are separated

by a;. The lists must match. The first character of a subroutine name is capitalized.

The remaining characters are lower case. An example of a subroutine module is

subroutine Check(x, y; Flag)

if x <y then

Flag = 0
else

Flag = I
end if

return

A-15 FUNCTIONS

Various functions are defined within specific algorithms throughout the text. The function

names are set in boldface type with the first letter capitalized An example is

Max(xj, X2)

which returns the larger of the values of x 1 and x 2.

APPENDIX

B

PROJECTS

Since computer graphics is very much a learn by doing discipline, a number of programming

projects are given. To reduce computational requirements and also to illustrate

effects by exaggeration, a 32 x 32 raster grid is recommended where a raster device is

assumed. If a raster device with greater resolution is available, this can be accomplished

by addressing a group of pixels as a unit. If a single pixel is not square, then the group

of pixels should be adjusted to be as nearly square as possible. If a vector display is

available a 32 x 32 grid is drawn on the screen as shown in Fig. 4-43c. Pixel activation

is indicated by placing a number in the pixel or by cross-hatching. Suggested projects

are grouped by chapter.

CHAPTER 2

2-1 Using both a simple DDA (Sec. 2-2) and Bresenham’s algorithm (Sec. 2-5),

write a program to draw lines from any point to any other point on a pseudo 32 X 32

raster grid. Use a pseudo frame buffer represented by a single vector array to first store

the image and then write from this pseudo frame buffer to the display. Demonstrate

the program using a test pattern consisting of at least 16 lines from the center of a circle

to points equally spaced around its circumferences. Allow for arbitrary location of the

center of the circle. Compare the results visually. List the activated pixels for the line

from (0,0) to (—8, —3) for both algorithms. How does initialization affect the results?

Compare the computational efficiency of the two algorithms by timing the rasterization

of 100 random lines for each algorithm.

2.2 A rasterized circle can be generated using the Bresenham circle generation

algorithm described in Sec. 2-6. It can also be generated by rasterizing the edges of

an inscribed polygon using Bresenham’s line rasterization algorithm. Write a program

using both techniques to rasterize a circle of radius R = 15 on a 32 x 32 grid. Compare

the results for inscribed polygons of 4,8, 16,32, 64, and 128 sides and the Bresenham

417

418 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

circle generation algorithm. Use a pseudo frame buffer represented by a single vector

array to first store the image and then write from the pseudo frame buffer to the display.

Provide a list of rasterized points using a row-column format for each algorithm assuming

that the origin (0,0) of the pseudo raster is in the lower left corner. Compare the results

both visually and computationally.

2-3 For the polygon with an exterior described by the points (4,4), (4,26), (20,26),

(28, 18), (28,4), (21,4), (21,8), (10,8) and (10,4) and an interior hole described by

(10,12), (10,20), (17,20), (21,16) and (21,12) on a 32 x 32 raster, write a program

using the simple ordered edge list algorithm described in Sec. 2-18 to scan convert and

display the solid area interior to the polygon. List the filled pixels in scan line order

from top to bottom and left to right using a row-column format assuming that (0,0) is
in the lower left hand corner of the raster.

2-4 For the polygon of Project 2-3, write a program using the more efficient

ordered edge list algorithm described in Sec. 2-19 to scan convert and display the solid

area interior to the polygon. Use an active edge list. Use a linked list to implement the

y-bucket sort. List the contents of the active edge list for scan line 18 of the 32 x 32

raster. List the displayed pixels in scan line order and the contents of the linked list.

2-5 Write programs using the edge fill and fence fill algorithms described in Sec.

2-20 to scan convert the solid area interior to the exterior only of the polygon described

in Project 2-3. Use a pseudo frame buffer represented by a two diminsional array to

store the image and then write from the pseudo frame buffer after scan converting each

edge. Compare the results. Compare the computational and input/output efficiencies of

the two algorithms. Is it possible to correctly scan convert the entire polygon, including

the interior hole, with these algorithms?

2-6 Write a program using the edge flag algorithm described in Sec. 2-21 to scan

convert the solid area interior to the exterior only of the polygon described in Project

2-3. Use a pseudo frame buffer represented by a two dimensional array to store the

image and then write from the pseudo frame buffer to the display. Display the frame

buffer contents after determining the contour and after completing the scan conversion.

Compare the results with those of Project 2-5. Is it possible to correctly scan convert the

entire polygon, including the interior hole, with this algorithm? If it is, then, if required,

modify the program to accomplish this. If not, why not?

2-7 Write a program using the simple boundary defined seed fill algorithm describçd

in Sec. 2-23 to fill the interior of the polygon given in Project 2-3. Provide a list of the

boundary pixels. Generate and provide a filled pixel list as the algorithm progresses for

a seed pixel of (14,20). Be able to show the stack contents at any point. What is the

maximum stack depth?

2-8 Perform Project 2-7 using the scan line seed fill algorithm described in Sec.

2-24. Compare the results.

2-9 Using the 2 x 2 bilevel pattern cells shown in Fig. 2-62 develop a program to

show eight “gray” levels from left to right across a 32 x 32 raster. Repeat with 64 x 64

and 128 x 128 rasters and compare the results. Add ordered dither to the 128 x 128

raster and compare the results.

CHAPTER 3 419

CHAPTER 3

3-1 For a two-dimensional rectangular clipping window implement the line clipping

algorithm described in Sec. 3-1, the Sutherland-Cohen line clipping algorithm described

in Sec. 3-2, and the mid-point subdivision line clipping algorithm described in Sec. 3-

3 and compare their efficiencies. The algorithms should immediately identify and draw

totally visible lines and immediately identify and reject totally invisible lines.

3-2 Write a program to implement the two-dimensional Cyrus-Beck line clipping

algorithm for both interior and exterior clipping to an arbitrary convex polygonal clipping

window. The algorithm should identify and reject concave clipping windows. For the

special case of a rectangular clipping window, compare the results with those of Project

3-1. Vary the number of sides of the polygonal clipping window and plot the execution

time versus number of sides. What is the relationship?

3-3 Extend Project 3-2 to arbitrary three-dimensional convex polyhedral volumes

(see Sec. 3-11).

34 Write a program implementing the Sutherland-Hodgman polygon clipping algorithm

described in Sec. 3-16 for arbitrary polygons clipped to rectangular windows.

Show the resulting polygon after each clipping stage. In particular, clip the polygon

described by vertices (—4,2), (8,14), (8,2), (12,6), (12, —2), (4, —2), (4,6), (0,2) to the

window (0, 10,0, 10).

3-5 Extend Project 3-4 to arbitrary convex windows.

36 Using the Sutherland-Hodgman polygon clipping algorithm with the Cyrus-

Beck line clipping algorithm to determine the line end point visibilities and the line

surface intersections, clip the planar polygon defined by the points Pi(—0.4,0.4,0),

P2(0.1, 0.1, 0), P3(0.3, 0.3, 0), P4(0.2, 0, 0), P5(0.3, —0.2, 0), P6(0.1, —0.1, 0), P7(—O.4,

—0.4, 0), P8(—0.2, 0,0) rotated by +45 degrees about the x axis to the cylinder with

axis along the z coordinate direction, a radius of 0.3 and a length along the z axis of

±0.3. Do not forget that the cylinder has ends. The cylinder is to be represented by an

inscribed polygonal volume with 32 sides. Display the cylinder and the clipped polygon

using an appropriate viewing transformation. Provide a list of the polygon points after

clipping.

3-7 Using the data from Project 3-6, modify the Sutherland-Hodgman algorithm

to clip the polygon to the exterior of the cylinder. Display the cylinder and the clipped

polygon using an appropriate viewing transformation. Provide a list of the polygon points

after clipping.

3$ Modify the algorithms developed in Projects 3-6 and 3-7 to clip one cylinder

to another with the capability to perform the classical boolean operations of union and

intersection. This project has implications for solids modeling.

3-9 Write a program implementing the Weiler-Atherton concave polygon clipping

algorithm described in Sec. 3-17. Show the entering and leaving intersection lists. Show

the resulting subject and clip polygon lists. In particular, clip the subject polygon

with exterior boundary (0,0), (20,0), (20, —20), (0, —20) and interior hole (7, —13),

(13, —13), (13, —7), (7, —7) to the clip polygon with exterior boundary (—10, —10),

420 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

(—10,10), (10,10),(10,—10), and interior hole (—5,—5), (5,2 5), (5,5), (2 5,5). See

Fig. 3-34c. Show the original clip and subject polygons and the final clipped polygon.

CHAPTER 4

4.1 Develop a computer program using the floating horizon technique described
in Sec. 4-2 that will remove the hidden lines for the surface function

F(x,z) = 8cos(1.2R)/(R + 1) R 2r � x,z � 2r

viewed from a point at infinity on the positive z axis after having been rotated 250 about

the x axis followed by a 150 rotation about the y axis.

4.2 Using Roberts’ technique, by hand, eliminate the hidden lines from the scene

defined below. The scene is viewed using a dimetric transformation with the observer

at infinity on the positive z axis. A dimetric transformation without projection onto the

z = 0 plane is given in Ref. 1-1 by the 4 x 4 homogeneous coordinate transformation

= ro.92582 0.13363 —0.35355 0
0 0.92541 0.35355 0

0.37796 —0.32732 0.86603 0

0 0 0 1

The inverse of the transformation matrix is its transpose. The scene consists of a cube

and a rectangular parallelepiped given by

cube parallelepiped

3111 127

6 1 11 10 2 7

6 4 11 10 3 7

3 4 11 1 3 7

318 121

618 1021

648 1031

348 131

4-3 Write a program to implement Roberts algorithm. Use the scene from Project
4-2 as a test case.

Projects 4-4 to 4-11 use the basic test scene described in Example 4-19 and a

modification. The basic test scene consists of a triangle penetrating a rectangle from

behind. A 32 x 32 raster grid is used. If required, use a two-dimensional array to

simulate a frame buffer. The corner coordinates of the rectangle are P1(io, 5, 10),

P2(10,25, 10), P3(25, 25, 10), P4(25,5,10) and the triangular vertices are P5(15, 15, 15),

P6(30, 10,5). P7(25, 25,5), The modified scene consists of the rectangle and a non-

penetrating triangle with P5 changed to P5(is, 15,5).

CHAPTER 5 421

4-4 Write a program to implement the basic Warnock algorithm described in Sec.

4-4. Display the results for both test scenes described above. Display each window or

subwindow as the algorithm processes the scene.

4.5 Increase the efficiency of the algorithm of Project 4-4 by implementing a more

sophisticated outsider test. Also add the ability to recognize single surrounder, single

contained, and single intersector polygons. Add a depth priority sort to the algorithm.

Add a list structure to take advantage of prior level information. Add antialiasing to the

algorithm (Sec. 2-26). Use more sophisticated scenes to test and compare the algorithms.

4.6 Write a program to implement the Weiler-Atherton algorithm (see Sec. 4-5)
for the test scenes described above.

4.7 Implement a z buffer algorithm (see Sec. 4-7). Use the two scenes described

above to test it. Display the contents of the frame and the z buffer after each polygon is

processed. What is the effect of truncating the z value to correspond to 32, 16,8,4 bits

of precision for the z buffer?

4.8 Write a program to implement the Newell-Newell-Sandra list priority algorithm

described in Sec. 4-8. Add a diamond with vertices P8(15, 20, 20),P9(20, 25, 20),

Pio(2S, 20,20), P1 i(2O, 15, 20), to the test scenes described above. Display the contents

of the frame buffer after each polygon is processed.

4-9 Implement the scan line z buffer algorithm described in Sec. 4-10. Use the two

scenes described above to test it. Display the result scan line by scan line. Be able to

display the active polygon and edge lists for each scan line.

4-10 Implement the spanning scan line algorithm (Watkins) described in Sec.

4-11. Use the two scenes described above to test it. Display the result scan line by

scan line. Be able to display the active edge list and intersection stack at any scan line.

4-11 Implement the opaque visible surface ray tracing algorithm described in Sec.

4-13. Use the two scenes described above to test it. Assume the observer is at infinity on

the positive z axis. Display the result pixel by pixel as it is generated. Be able to display

the active object list as each pixel is processed. Improve the efficiency of the algorithm

by defining a bounding box for the entire scene and projecting it onto the image plane.

Any pixel outside the projected area need not be traced. Compare the results with and
without this addition.

CHAPTER 5

The following projects are most conveniently implemented with a raster display having

at least 16 intensity levels or colors. More intensity levels or colors will yield more

aesthetically pleasing results. The academic requirements of the projects can be satisfied

on a vector display by converting the binary representation in an n bit plane frame buffer

to a decimal number and displaying the number in the appropriate raster location.

5-1 Consider an n sided polygonal representation of an opaque cylinder of radius

R with its axis normal to the view direction. For n = 8, 16,32, a simple Lambertian plus

422 PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS

ambient illumination model (see Eq. 5-1), and a suitable hidden surface algorithm write

a program to display a cylinder of radius R = 15. See Fig. 5-3. Assume that a single

point light source is located at infinity on the positive z axis as is the observer. Rotate

the cylinder 900 about the z axis and compare the results.

5-2 Add Gouraud shading (see Sec. 5-5) to the cylinder of Project 5-1 using

the simple illumination model. Compare the results. Add specular reflection to the

illumination model (see Eq. 5-7). Vary the parameter n.

5-3 Add Phong shading (see Sec. 5-6) to the cylinder of Project 5-1 using the simple

illumination model. Compare the results to those of Projects 5-1 and 5-2. Add specular

reflection to the illumination model (see Eq. 5-7). Compare the results, in particular the

shape of the specular reflection, to those for Gouraud shading.

5-4 Using the rectangle plus triangle test scene described above for Projects 4-4

to 4-11, write a program to display a transparent triangle (see Sec. 5-9) and an opaque

rectangle using the Newell-Newell-Sancha (see Sec. 4-8) or the spanning scan line hidden

surface algorithm (see Sec. 4-11). Ignore refraction effects. Use a linear combination

of the intensity of the visible transparent surface and the opaque surface immediately

behind it to represent the intensity of the combined surface. Vary the transparency

factor and observe the effects. Make the rectangle transparent and the triangle opaque

and compare the results.

5-5 Add shadows to the spanning scan line algorithm implemented in Project 4-

10. Assume both the triangle and the rectangle are opaque. The observer is located at

infinity on the positive z axis. The single point light source is located at x = 30, z = 40.

How would you handle the shadow from a transparent triangle?

5-6 Add shadows to the opaque visible surface ray tracing algorithm implemented

in Project 4-11. Assume the triangle and the rectangle are opaque, the observer is at

positive infinity on the z axis, and the single point light source is at x = 30, z = 40. How

would you handle the shadow from a transparent triangle?

5-7 Write a program to add the texture pattern shown in Fig. 5-34 to the octant

of the sphere as also shown in Fig. 5-34 using the patch subdivision technique (see Sec.

5-11). Use an appropriate hidden surface algorithm to display the results on a 32 x 32

raster grid. Use a 64 x 64 raster grid and compare the results.

5-8 Implement the global illumination model with the ray tracing algorithm described

in Sec. 5-12 and Figs. 5-42 to 5-44. Use the simple test scene described in Example

5-9 to test the program.

5-9 Write a program to draw simple variable-sized colored squares on a color

monitor. Modify the program to allow the color of the current square to be added

to, subtracted from, or to replace the color of the previous square. Use the program to

verify the additive color system (see Sec. 5-15) e.g. Red + Blue = Magenta. Experiment

with the effects of simultaneous contrast by drawing a small purple square inside both a

bright red and a bright blue square.

achromatic, 383

active edge list, 52-54, 53 (Fig. 2-16), 54 (Fig.

2-17), 79, 279, 280, 417

floating pointers, 52

ordered edge list algorithm, 76

(see also hidden surface, Watkins algorithm)

aliasing, 10, 93 (Fig. 2-50), 382

animation, 93, 93 (Fig. 2-52)

jagged edges, 93

small objects, 93, 93 (Fig. 2-51)

temporal, 382

texture, 93

thin objects, 93

(see also antialiasing)

alignment white, 391

ambient light (see reflection, diffuse)

antialiasing, 10, 92, 93

area, 95, 96, 96 (Fig. 2-56)

Bresenham’s algorithm, 96-98, 96 (Fig.

2-57)

clipping, 101, 101 (Fig. 2-61)

preflltered, 101

preflltered (see also convolution integral)

temporal, 382

uniform averaging, 93, 94, 94 (Fig. 2-

53), 94 (Fig. 2-54)

weighted averaging, 94, 94 (Fig. 2-53),

95 (Fig. 2-55)

(see also aliasing)

(see also convolution integral)

Appel, A., 296, 349

area coherence, 240, 241

Atherton, P. R., 179, 259, 306, 351

averaging, uniform, 93

back face culling, 282, 364

hidden surface, Watkins algorithm, 290

INDEX

back face culling (corn’.):

(see also Roberts algorithm, self-hidden

planes)
Badler, V. R., 382

bandwidth, communication, 8

Barr, A. H., 365

Barsky, B., 155, 162, 179, 357
Beckmann distribution function, 335

Beckmann, P. 335

bit plane, 10

black body, 311

black body locus, 391
Blinn, J. F., 162, 292, 293, 332, 335, 338, 355,

357, 361-363, 382

Bouknight. W. J., 279, 349

bounding box, 67, 67 (Fig. 2-30), 69, 70 (Fig.

2-33)

algorithm, 67

pseudocode, 67

box function (see convolution kernal)

Bresenham’s algorithm:

circle generation, 42-48, 296, 417

algorithm, 48

derivation, 43, 43 (Fig. 2-10)

Example 2-5, 50
flowchart, 49

pixel selection, 44 (Fig. 2-12)

pseudocode algorithm, 48

results, 51 (Fig. 2-15)

line drawing, 34-42, 417

antialiasing, 96-98, 98 (Fig. 2-57)
flowchart, 98

pseudocode, 97

basis, 35 (Fig. 2-4)

error term, 35 (Fig. 2-5), 36

Example 2-3, 37

first octant algorithm, 36

results, 39 (Fig. 2-7)

flowchart, 37 (Fig. 2-6)

generalized algorithm, 40

423

424 INDEX

Bresenham’s algorithm, line drawing,

generalized algorithm (cont.):

Example 2-4, 40

pseudocode, 40, 41

results, 42 (Fig. 2-9)

integer algorithm, 38, 39

pseudocode, 39

pseudocode algorithm, 36, 37

brightness, 383, 384, 403

brightness adaptation, 310

bump mapping (see texture, rough)

Carlson, W. 382

Carpenter, L. C., 292, 363

cathode ray tube, 15, 15 (Fig. 1-16), 16

calligraphic, 3

color, 16, 17 (Fig. 1-18)

pitch, 16

raster scan, 3

shadow mask 16, 16 (Fig. 1-17), 17 (Fig.

1-18)

storage tube, 3

Catmull, E., 265, 355-358, 407

cell encoding, 60, 60 (Fig. 2-22), 61, 61 (Fig.

2-23), 61 (Fig. 2-24)

characters, 60

color, 62

interaction, 61

line drawings, 61

Chakravarty, I., 382

character display, 67

character mask (see mask)

chroma, Munsell, 406

chromaticity coordinates, 389

CIE, 390

CIE XYZ primaries, 394, 395, 395 (Fig.

5-59)

color monitor primaries, 394, 395, 395

(Fig. 5-59)

film, 394, 395, 395 (Fig. 5-59)

NTSC standard primaries, 394, 395, 395

(Fig. 5-59)

chromaticity diagram, 389

CIE, 390, 391, 391 (Fig. 5-56)

use of, 392, 392 (Fig. 5-57)

chromaticity values, CIE, 390

circle generation (see Bresenham’s algorithm)

Clark, J. H., 292

clipping, 140 (Fig. 3-13)

character 185, 186, 186 (Figs. 3-36 to 3-

38)

clipping (corn’.):

Cyrus-Beck algorithm, 131, 135-145, 139

(Fig. 3-12), 157-162, 419

Example 3-9, 137

Example 3-10, 139

Example 3-11, 140

Example 3-12, 141

Example 3-13, 145

exterior clipping, 144 (Fig. 3-15)

flowchart, 143 (Fig. 3-14)

homogeneous coordinates, 163, 164

Example 3-20, 163, 164

irregular window, Example 3-13, 145

nontrivially invisible lines, Example

3-12, 141

partially visible line, Example 3-9, 137,

138

three dimensional, 157, 159 (Fig. 3-

22), 161 (Fig. 3-23)

Example 3-17, 158, 159

Example 3-18, 160, 161

Example 3-19, 161, 162

Example 3-20, 163, 164

totally visible lines, 139

trivially invisible lines, Example 3-11,

140

end point codes, 121

perspective volume, 153-155

three dimensional, 153

two dimensional, 113, 114, 114 (Fig.

3-2)

explicit algorithm, 117, 120, 121

flowchart, 118, 119 (Fig. 3-4)

Example 3-1, 115

pseudocode 117, 120, 121

exterior, 146, 419

generalized two dimensional, 131

homogeneous coordinates, 162-164

Example 3-20, 163, 164

interior, 419

intersection calculation, 115, 125

parametric lines, 116 (Fig. 3-3)

irregular windows, 131 (Fig. 3-7)

midpoint subdivision, 125-131, 125 (Fig.

3-5)

algorithm, 126, 128-131, 419

flowchart, 128, 129 (Fig. 3-6)

Example 3-3, 126, 127

three dimensional, 155

algorithm, 156

Example 3-16, 156, 157

pseudocode algorithm, 128-131

multiwindow, 146 (Fig. 3-16)

normal vectors, 135, 136 (Fig. 3-10)

concave windows, 146 (Fig 3-17), 179-

185

INDEX 425

clipping, normal vectors (corn’.):

Example 3-8, 136

parametric lines, 132, 134

Example 3-4, 132

Example 3-5, 134

Example 3-6, 134

Example 3-7, 134

trivially invisible, 134, 135 (Fig. 3-9)

trivially visible, 134, 135 (Fig. 39)

plane, relation of point to, 170, 171, 171

(Fig. 3-29)

Example 3-23, 172

polygon, 168-185, 169 (Fig. 3-26), 169

(Fig. 3-27)

polygon, concave, 179

Weiler-Atherton algorithm, 179-185,

180 (Fig. 3-34), 181, 185 (Fig.

3-35), 419

Example 3-26, 182, 183

Example 3-27, 183, 184

Example 3-28, 184, 185

polygon, Sutherland-Hodgman algorithm,

169-179, 170 (Fig. 3-28)

Example 3-25, 178

flowchart, 174 (Fig. 3-32)

pseudocode algorithm, 175-177, 419

regular window, 111

simple visibility algorithm, 112

Sutherland-Cohen, 121-124

algorithm, 122, 419

Example 3-2, 122

pseudocode algorithm, 122-124

three dimensional, 152, 153 (Fig. 3-20),

419

perspective, 154

trivially invisible, 112, 114, 115, 153

trivially visible, 112, 113, 115, 153

visibility test, pseudocode 112, 113

volume, 152

window, 112 (Fig. 3-1)

Cohen, E., 265

Cohen-Sutherland (see end point codes)

coherence, 190

area, 240, 241

scan line, 70

spacial, 70

color, 383-408

achromatic, 383

brightness, 384

chromatic, 384

complements, 385, 386

from chromaticity diagram, 391

color, cube (corn’.):

RGB, 399, 400 (Fig. 5-60), 401,

403

dominant wavelength, from chromaticity

diagram, 392

gamut, 394, 395 (Fig. 5-59)

harmony, 407

hue, 384

mixtures, 389, 392

Example 5-10, 393

perceptual names, 393, 394, 394 (Fig. 5-

58)

primaries, 385, 387

saturation, 384

color-matching functions, 387, 388 (Fig. 5-52)

color space, 389, 389 (Fig. 5-54)

NTSC (see color space, YIQ)

YIQ, 398

color system:

additive, 385, 386 (Fig. 5-51)

HSL (hue, saturation, lightness), 403, 404

(Fig. 5-63)

HSV (hue, saturation, value), 400, 401

(Fig. 5-62)

Munsell, 406 (Fig. 5-64)

Ostwald, 400

subtractive, 385, 386 (Fig. 5-51)

transformation from:

CIE-Munsell, 406

CIE-RGB, 396, 397

Example 5-11, 397, 398

CIE-YIQ, 399

CMY-RGB, 399

HLS-RGB pseudocode algorithm,

403, 404

HSV-RGB pseudocode algorithm,

401, 402

Munsell-CIE, 406

RGB-CIE, 395, 396

Example 5-12, 398

RGB-CMY, 399

RGB-HLS pseudocode algorithm,

405, 406

RGB-HSV pseudocode algorithm,

402, 403

RGB-YIQ, 399

YIQ-CIE, 399

YIQ-RGB, 399

colors, distinguishable, 389

complimentary spectrum value, 392

concave polygons, splitting, 151, 152

Example 3-15, 152

concave volumes:

Roberts algorithm, 206

cube:

CMY, 399, 400 (Fig. 5-60)

426 INDEX

concave volumes (con:.):

splitting, 166, 167

Example 3-22, 167, 168

cones, 309

contained polygon (see hidden surface, Warnock

algorithm)

contour filling, 69

convex polygon, identifying, 147, 149-151, 150

(Fig. 3-19)

Example 3-14, 148, 149

convex volume, identifying, 164, 165 (Fig. 3-

24)

Example 3-21, 165, 166

Roberts algorithm, 206

convolution integral, 98, 99 (Fig. 2-59)

graphical explanation, 99

limits, 100

convolution kernal, 98-100

box, 101

conical, 101

Gaussian, 101

pyramidal, 101

triangular, 101

two-dimensional, 101

Cook, R. L., 332, 337, 338, 353, 380

coordinates:

screen, 5

user, 7

world, 6, 7

Cowan, W. B., 407

cross-hatching, 69, 69 (Fig. 2-32)

Crow, F., 94, 357

Csuri, C. A., 382

Cyrus-Beck (see clipping)

depth priority, 190

digital differential analyzer, 30-34, 34 (Fig. 2-

3), 417

algorithm, 31

Example 2-1, 32

Example 2-2, 33

pseudocode, 31

disjoint polygon (see hidden surface, Warnock

algorithm)

display:

buffer, 5, 6

segmentation, 6, 7, 7 (Figs. 1-5 and

1-6)

dynamic, 8

controller, 5, 6

processor, raster, 52

random scan, 4, 5

refresh, 16

brightness adaptation, 310

cones, 309

rods, 309

sensitivity, 309, 383

display (con:.):

storage tube, 4 (Fig. 1-2), 16

distribution function, 334

Beckmann, 335, 336, 336 (Fig. 5-20)

dither (see ordered dither)

dominant wavelength, 384

double buffering, 6

Duff. T., 326

Dungan, W., 382

dynamic display:

linked list, 55

y-bucket sort, 55

dynamic motion, 4, 6, 7 (Fig. 1-4)

raster display, 52

edge fill algorithm, 79

edge fill algorithm (see also scan conversion)

end point codes:

three dimensional, 152

two dimensional, 113

eye, 309

facsimile, 59

fence fill algorithm (see scan conversion)

filtering (see antialiasing)

flicker, 17

rate, 5

storage tube, 4

floating horizon algorithm, 191-205, 420

complete algorithm, 196

cross hatching, 203, 205, 205 (Fig. 4-12)

edge filling, 195, 196

Example 4-1, 201-203

intersection techniques, 194, 195

linear interpolation, 193

lower horizon, 192, 193

narrow regions, 196, 197

pseudocode algorithm, 197-201

upper horizon, 192

flood fill algorithm, 84

Floyd-Steinberg, 104, 106 (Fig. 2-68)

pseudocode algorithm, 106

Fournier, A., 363

fractal surface, 363, 363 (Fig. 5-37)

frame buffer, 10, 10 (Fig. 1-9), 62, 63 (Fig.

2-25), 80, 280, 343

architecture, 63 (Fig. 2-27)

INDEX 427

frame buffer (cont.):

color, 11-14, 12 (Fig. 1-12), 13 (Fig. 1-

13), 14 (Fig. 1-14)

conceptual configuration, 62

gray level, 10, 11 (Figs. 1-10 and 1-11)

memory, 62, 63

shift register, 63

frame rate, video, 18, 19

Fresnel equation, 334, 336, 337 (Fig. 5-21),

379

angular dependence, 338

wavelength dependence, 338

(see also reflection, specular)

frustum of vision, 152, 162, 163

Fussell, D., 363

gamma correction, 407

gamut, 394, 395 (Fig. 5-59)

Gear, C., 285

geometric attenuation, 334, 335 (Fig. 5-19)

global illumination model (see illumination

model, global)

Gouraud, H., 323

Gouraud shading, 323-325, 323 (Fig. 5-10),

325 (Fig. 5-12), 326 (Fig. 3-26, 422

Example 5-3, 327-330

Mach band effect, 324

specular highlights, 327 (Fig. 5-14)

graphics devices, 3

Grassman’s laws, 388, 389, 392, 395, 396

gray kvel, 10

Greenberg, D. 379, 403, 406

half scan line convention, 80-82

halftoning, 102-108 (see also image

processing)

Hall, R. A., 373, 379

Hamlin, G., 285

Hedgeley, D. R., 305

hexcone color solid (see also color system,

HSV and HSL)

hidden line:

floating horizon algorithm, 191-205, 420

(see also floating horizon algorithm)

image space algorithm, 190, 191

list priority algorithm, 278, 279

object space algorithm, 190, 191

ray tracing algorithm, 305

Roberts algorithm, 205-240, 420

(see also Roberts algorithm)

hidden line (corn.):

Warnock algorithm, 241, 242

hidden lines, sorting, 190

hidden surface:

curved surfaces:

Blinn-Whitted algorithm, 293, 294

Catmull subdivision algorithm, 264,

265, 265 (Fig. 4-49), 292, 294

Clark algorithm, 294

Lane-Carpenter algorithm, 294, 295

scan line algorithm, 292-296

image space algorithm, 190, 191

list priority algorithm, 190, 272-280

antialiasing, 278

cyclical overlap, 273 (Fig. 4-52)

depth priority sort, 272

Newell-Newell-Sancha algorithm, 273-

277, 421

cyclical overlap, 277

special sort, 273, 274

Schumacker algorithm, 277

transparency, 272

object space algorithm, 190, 191

ray tracing algorithm, 296-305, 421

calculation of physical properties,
305

cluster priority, 303, 304

Example 4-24, 302, 303

global illumination, 363-381, 422

intersections, 297, 298, 302

bounding box test, 298, 299, 299

(Fig. 4-20)

bounding sphere, 298

parametric surfaces, 300, 301

quadric surfaces, 299, 300

shadows, 352, 353, 353 (Fig. 5-30),
422

(see also ray tracing)

Roberts algorithm, 205-240, 420

scan line algorithm, 279-296

Watkins algorithm, shadows, 350

scan line z-buffer algorithm, 280-284,
421

antialiasing, 280

Example 4-22, 282-284

shadows, 351

sorting, 190

spanning scan line algorithm, 421

Warnock algorithm, 241-260, 421

antialiasing, 241

bounding box test, 245, 246, 246 (Fig.

4-36)

contained polygon, 245, 246

428 INDEX

hidden surface, Warnock algorithm, contained

polygon (corn’.):

Example 4-14, 247

depth priority sort, 253, 254

disjoint polygon, 245, 246

angle counting test, 250 (Fig. 4-

40)

Example 4-14, 247

infinite line test, 249

Example 4-17, 259, 260

flowchart, 255 (Fig. 4-42)

intersecting polygon, 245, 246, 249

(Fig. 4-37)

Example 4-15, 247, 248

polygon types, 245, 245 (Fig. 4-35)

pseudocode algorithm, 254-259

surrounding polygon, 245, 246

angle counting test, 250, 250 (Fig.

4-40), 251

Example 4-16, 251

depth calculation, 252, 253, 253

(Fig. 4-41)

infinite line test, 249, 249 (Fig. 4-

38)

window subdivision, 241, 242 (Fig. 4-

32), 244 (Fig. 4-34), 244-246

window tests, hierarchical application,
252

window tree structure, 243 (Fig. 4-

33), 244

Watkins algorithm, 284-292, 421

active edge list, 286-288

depth calculation, 287, 290

flowchart, 289 (Fig. 4-62)

Example 4-23, 290, 291

flowchart, 288 (Fig. 4-61)

penetrating polygons, 284, 286, 287

flowchart, 289 (Fig. 4-63)

polygon active flag, 286

spans, 284, 285, 285 (Fig. 4-59), 285

(Fig. 4-60)

depth calculations, 285, 286

Weiler-Atherton algorithm, 259-264, 421

cyclical overlap, 264, 264 (Fig. 4-48)

Example 4-18, 263, 264

priority (depth) sort, 261, 262 (Fig.

4-46)

recursive subdivision, 262, 263 (Fig.

4-47)

shadows, 351, 352

z-buffer algorithm, 265-272, 421

antialiasing, 266, 267

depth calculation, 267

hidden surface, z-buffer algorithm (corn’.):

Example 4-19, 268-271

segmentation, 266

shadows, 350

surface sectioning, 272

translucency, 266

transparency, 266

hue, 384

Munsell, 406

illuminants, CIE, 391

illumination model:

Cook-Torrance, 332-335

distance attenuation, 367

global, 296, 345, 364, 365, 422

camera effects, 364, 364 (Fig. 5-38),

365, 365 (Fig. 5-39), Color
Plate 6

Hall model, 379-381, Color Plate 8

Whitted model, 365, 366, 373, 381

local, 364

Phong, 339 (Fig. 5-22), 340 (Fig. 5-23)

simple, 311-317, 422

Example 5-1, 316-317

special effects, 330-332

barn doors, 331

cone, 331, 331 (Fig. 5-17), 332

flaps, 331, 331 (Fig. 5-17)

flood light, 331

spot light, 331

Torrance-Sparrow, 332, 333, 334 (Fig. 5-

18), 335, 339 (Fig. 5-22), 340 (Fig.

5-23), 380

Warn, 330-332

image processing (see ordered dither, patterning,

thresholding)

image space, 190, 191

algorithm, 265

Warnock algorithm, 241

infinite line test (see hidden surface, Warnock

algorithm)

interactive device:

logical:

button, 20

keyboard, 20

locator, 20

pick, 20, 24, 27

simulation, 26

valuator, 20, 22-24, 27

physical:

control dial, 20, 22, 24, 24 (Fig. 1-

26)

INDEX 429

interactive device, physical (cont.):

function switch (button), 20, 24, 25

(Fig. 1-27)

joystick, 20, 22, 23, 23 (Fig. 1-24)

keyboard, 20, 20 (Fig. 1-21)

light pen, 20, 24, 25, 25 (Fig. 1-28),

26, 26 (Fig. 1-29), 27

mouse, 20, 22, 23, 23 (Fig. 1-25), 24

tablet, 20, 21, 21 (Fig. 1-22), 22, 22

(Fig. 1-23), 24, 27, 27 (Fig. 1-

30)

touch panel, 22

track ball, 22, 23

interlacing, 17, 18

intersecting polygon, substitution test, 247

(see also hidden surface, Warnock

algorithm)

Jackson, J. H., 290

jaggies (see aliasing)

Joblove, G. H., 403

Judd, D. B., 407

Kajiya, J., 293, 300, 363

Kay, D. S., 296, 343, 365, 380

Kelley, K. C., 349

Korein, J., 382

Lambert’s cosine law (see reflection, diffuse)

Lane, J. M., 292

Liang, 155, 162, 179

light emitting sources, color system, 386

light, wave characteristics, 382

lightness, 383, 403, 406

line drawing:

algorithms, 29

Bresenham’s algorithm, 34-42

digital differential analyzer, 30-34

incremental methods, 30

requirements, 29

(see also Bresenham’s algorithm)

(see also digital differential analyzer)

line intersection, 173 (Fig. 3-31)

parametric, Example 3-24, 173

linked list (see list, linked)

list:

linked, 55, 56 (Fig. 2-19), 77 (Fig. 2-

39), 79, 417

hidden surface, Watkins algorithm,

286

list, linked (corn):

ordered edge list algorithm, 76

scan line z-buffer algorithm, 280

sequential indexed, 53-55

look-up table, 11, 11 (Fig. 1-11), 14 (Fig. 1-

14)

color, 12

luminance, 384, 385

CIE, 390

Lyche, T., 265

Mach band effect, 310, 311, 311 (Fig. 5-2),

311 (Fig. 5-3)

Gouraud shading, 324

Phong shading, 326

Mach, E., 310

Mandelbrot, B., 363

Marcus, A., 407

Marshal, R., 382

mask:

character, 67

insertion in frame buffer, 68

transformation, 68

metamer, 387, 388 (Fig. 5-53)

Meyer, G. W., 389, 406

minimax test (see bounding box)

monochromatic, 384

Moravec, H. P., 382

motion blur (see antialiasing, temporal)

Munsell chroma, 406

Munsell hue, 406

Munsell value, 406

National Television Standards Committee

(NTSC), 391

natural objects, rendering, 382

Newell, M. E., 273, 278, 343, 355, 357

Newell-Newell-Sancha algorithm (see hidden

surface, list priority algorithm)

Newell-Newell-Sancha priority sort, 273, 274,

349

normal, surface determination, 317-319

Example 5-2, 318, 319

using rotations and translations, 321

normal vector, clipping, 135

determination, 147, 148, 164, 165 (Fig.

3-24)

Example 3-21, 165, 166

NTSC (National Television Standards Committee),

391

430 INDEX

object space, 190, 191, 205

ordered dither, 105 (Fig. 2-67), 106, 418

algorithm, 107, 108

patterns, 107

ordered edge list algorithm (see scan conversion)

Ostwald, N., 400

painters algorithm (see hidden surface, list priority

algorithm)

particle system, 382

patterning, 102-103, 418

2 X 2 cells, 102 (Fig. 2-62)

3 X 2 cells, 103 (Fig. 2-64)

3 X 3 cells, 103 (Fig. 2-63)

multiple bits per pixel, 103

multiple dot sizes, 103, 104 (Fig. 2-65)

Phong, B. T., 325

Phong shading, 325-330, 326 (Fig. 5-13), 422

Example 5-3, 327-330

Mach band effects, 326

specular highlights, 327 (Fig. 5-14)

photometry, 386

picture representation:

edges, 2

points, 1, 2

polygons, 2

pixel, 9

averaging (see antialiasing)

coordinate addressing, 32, 71

half scan line convention, 71

plane equation, 207, 208

Example 4-3, 209, 210

Newell’s method, 209

Example 4-3, 209

Example 4-4, 211

non-planar polygons, 208

Example 4-4, 211

points, representation, 2

polygon filling, scan conversion, 69

simple technique, 69

polygons:

clusters, 277, 278

cluster priority, 277

Example 4-21, 277, 278

concave, 179

splitting, 151, 152

contained 245, 246

convex, identifying 147, 149-151, 150

(Fig. 3-19)

disjoint, 245, 246

intersecting, 245-247, 249 (Fig. 4-37)

polygons (corn.):

linearly separable, 277

non-planar, 208

penetrating, 284, 286, 287

picture, representation with, 2

relationship between, 275, 276

Example 4-20, 275, 276

surrounding, 245, 246

types, 245, 245 (Fig. 4-35)

(see also scan conversion)

(see also hidden surfaces, Warnock

algorithm)

Porter, T., 296

post filtering (see antialiasing)

Potmesil, M., 365, 382

prefiltering (see antialiasing)

primary colors, 387

CMY (cyan, magenta, yellow), 385

RGB (red, green blue), 385

priority sort, 364

pseudocode definitions, 411-415

purity, 384, 406

purple line, 391, 392

quadnc surfaces, 295

raster, 9

addressing, 64, 65

Example 2-6, 65

Example 2-7, 66

coordinate system, 64

display, real time, 12, 13

line display, 66

selective erase, 66 (Fig. 2-29)

rasterization, 29, 29 (Fig. 2-1), 30

ray tracing;

illumination model, global, 422

antialiasing, 378, 378 (Fig. 5-46)

Example 5-9, 368-372

flowchart, 374, 375 (Fig. 5-42), 377

(Fig. 5-44)

object description, 373

shadows, 368

intersections, 366, 376

recursive subdivision, 378

reflected ray direction, 367

reflections, 366, 366 (Fig. 5-40)

refracted ray direction, 367

refractions, 366, 366 (Fig. 5-40)

shadows, 376

stack contents, 373

INDEX 431

ray tracing (corn’.):

tree structure, 366, 368 (Fig. 5-40)

tree termination, 367, 372

(see also hidden surface)

Reeves, W. T., 382

reflectance:

bidirectional, 333

diffuse, angular dependence, 338

specular:

angular dependence, 338

wavelength dependence, 338

reflection, 190, 296

ambient, 313, 366, 373

wavelength dependence, 336

diffuse, 312, 312 (Fig. 5-4), 333, 366

distance effect, 313

Lambertian, 365, 373, 380

Lambert’s cosine law, 312

wavelength dependence, 336

global illumination model, 365

internal, 367, 367 (Fig. 5-41)

light energy, 332

light intensity, 332

specular, 312-315, 314 (Fig. 5-5), 333,

380

angular dependence, 338, 340 (Fig.

5-23)

Fresnel equation, 313

Phong model, 314, 314 (Fig. 5-6),

365, 366, 373

wavelength dependence, 336

reflection direction, determination, 320-322,

320 (Fig. 5-9)

Phong’s method, 320, 321

using cross products, 321, 322

reflection law, 320

reflective sources, color system, 386

refraction, 190, 296

refraction effect, 341, 341 (Fig. 5-25), 342,

342 (Fig. 5-26)

global illumination model, 365

Snell’s law, 340, 341 (Fig. 5-24), 367,

380

specular, 380

refresh:

cycle, 6

display, 3

calligraphic, 3, 5, 6 (Fig. 1-3), 9 (Fig.

1-7)

random scan, 5

raster, 3, 8, 9, 62

rate, 5, 6, 17

storage tube, 4

region:

4-connected, 84, 84 (Fig. 2-45), 85 (Fig.

2-46), 87, 92

8-connected, 84, 84 (Fig. 2-45), 85 (Fig.

2-46)

boundary defined, 83-85, 84 (Fig. 2-44),

85 (Fig. 2-46), 87, 88, 91

clipping, 135, 137, 141

interior defined, 83, 84, 84 (Fig. 2-43),

84 (Fig. 2-45)

Reisenfeld, R., 265

Roberts algorithm:

algorithm for tminmax, tmaxmin, 225,

226

bounding box test, 217

complete example, Example 4-13, 232-

240

efficient algorithm, 228-231

flowchart, (Fig. 4-26), 226

lines hidden by volumes, 217, 218 (Fig.

4-18), 281

conditions for, 220

Example 4-10, 222, 223

Example 4-11, 224

Example 4-19, 221, 222

Example 4-8, 218, 219

solution technique, 220, 220 (Fig. 4-

19), 220 (Fig. 4-20)

penetrating (juncture) lines, 254 (Fig. 4-

24)

Example 4-11, 224

priority sort, 217

self-hidden lines, 216, 217

self-hidden planes, 214, 217 (Fig. 4-17)

Example 4-6, 215

Example 4-7, 215, 216

totally invisible lines, 228

totally visible lines, 227, 227 (Fig. 4-27)

Example 4-12, 226, 227

volume matrix, 206

(see also hidden line)

rods, 309

Romney, G. W., 285, 287

Roth, S. D., 305

run length encoding, 56, 58, 58 (Fig. 2-20),

60 (Fig. 2-21)

color, 59

data compression, 58, 59

disadvantage, 59

solid figures, 59

sampling (see aliasing)

Sancha, T. L., 273, 343

432 INDEX

saturation, 384 , 406

scan conversion, 17, 29

active edge list, 53

display generation, 51

half scan line convention, 80-82

horizontal lines, 55 (Fig. 2-18), 72

polygons, 70

edge fill algorithm, 80, 418

edge flag algorithm, 81-83, 418

Example 2-11, 82

fence fill algorithm, 80, 81, 81 (Fig.

2-41), 418

filling, 69

ordered edge list algorithm, 73, 74,

76, 279, 418

Example 2-8, 73

Example 2-9, 75

Example 2-10, 76

vertex intersections, 72, 72 (Fig. 2-

36)

real time, 52

solid area, 69, 70 (Fig. 2-34), 74 (Fig. 2-

37)

y-bucket sort, 55

(see also seed fill algorithm)

scan line algorithm, Watkins algorithm, 349

scan line, coordinate system, 71 (Fig. 2-35)

half interval, 76

scan plane, 279, 279 (Fig. 4-57)

curve surfaces, 292

Schumacker, R. A., 277

screen coordinates, 5

(see also coordinates)

seed fill, 69

seed fill algorithm, 83, 85, 418

Example 2-12, 87

scan line, 88-91, 89 (Fig. 2-49), 418

Example 2-14, 91

pseudocode, 90, 91

simple, 85-88, 86 (Fig. 2-47), 87 (Fig. 2-

48)

Example 2-13, 87, 88

pseudocode, 86

stack, 86

segmentation, display buffer, 6, 7

shade, color, 400, 400 (Fig. 5-61)

shading function (see illumination model)

shading:

Gouraud, 323-325, 407, 422

Phong, 325-330, 407, 422

simple, 215, 316

(see also illumination model)

shadow matrix, Example 5-5, 349

shadows, 189, 296, 345-354, 346 (Fig. 5-28)

Atherton-Weiler algorithm, 351, 352,

352 (Fig. 5-29)

Example 5-4, 346-349

global illumination model, 365

modulation rules, 350

penumbra, 345

calculation technique, 353, 354, 354

(Fig. 5-32)

projected, 346-348

ray tracing algorithm, 352, 353, 353 (Fig.

5-30), 422

scan line (Watkins) algorithm, 350, 422

scan line z-buffer algorithm, 351

self, 346, 347

umbra, 345

z-buffer algorithm, 350, 351

silhouette edge, 292-294, 294 (Fig. 4-65), 378

transparency, 341, 343

simultaneous contrast, 310

Smith, A. R., 400-402

Snell’s law, 367

Snell’s law (see also refraction)

solid figure, 15, 15 (Fig. 1-15)

span, 88

span (see also hidden surface, Watkins algorithm)

span buffer, 79

Sparrow, E. M., 332, 335

spectrum locus, 391, 392, 394

specular highlights (see reflection, specular)

stack, 86, 88, 91, 92

FIFO (first in first out), 62

FILO (first in last out), 85

push down, 85, 87

shift register, 62

standard observer functions, 390, 390 (Fig. 5-

55)

Staudhammer, J., 296

storage tube display, 3

interactivity, 5

surface normal, simple hidden surface algorithm,

214, 215

surrounding polygon (see hidden surface,

Warnock algorithm)

Sutherland-Hodgman algorithm (see clipping)

texture, 190, 354-363

antialiasing, 363

bump mapping (see texture, rough)

fractals, 363

global illumination model, 365

INDEX 433

texture (con:.):

inverse pixel mapping, 359

Example 5-8, 359, 360

mapping, 355, 356 (Fig. 5-32)

Example 5-6, 355, 356

perturbation mapping (see texture, rough)

rough, 360, 361, 362 (Fig. 5-36)

subdivision, 356-358, 422

Example 5-7, 357, 358

thresholding:

Floyd-Steinberg, 104

pseudocode algorithm, 106

simple, 103-105, 105 (Fig. 2-67)

tint, 400, 400 (Fig. 5-61)

tone, 400, 400 (Fig. 5-61)

Torrance, K. E., 332, 335, 337, 338

translucent, 341

transmission, 296

diffuse, 341

global illumination model, 365

specular, 341

transmission of light, 366

transmissivity, 380

transparency, 190, 296, 340-345, 422

models, 343 (Fig. 5-27)

z-buffer algorithm, 344

transparent materials, 379

tree structure, ray tracing, 366

tristimulus space, 389

tnstimulus theory, 385

tristimulus values (XYZ), 390

update:

dynamic, 8

intelligent, 8

rate, 6, 17

video:

525 line standard, 19

blanking, 19

field, 18

frame rate, 18, 19

horizontal retrace, 18, 18 (Fig. 1-19), 19

interlaced, 18

monitor, (see cathode ray tube)

noninterlaced, 19

scanning pattern, 18, 18 (Fig. 1-19)

standard, 17

vertical retrace, 18, 18 (Fig. 1-19)

visibility of a point, 171, 172 (Fig. 3-30)

Example 3-23, 172

visibility test:

application order, 113

pseudocode algorithm, 112, 113

visible light, 383

visible spectrum, 385

visual perception, 309

volume matrix, 206

Example 4-2, 206, 207

transformation, 211, 212

transformation, Example 4-5, 212, 213

Wam,D.R.,330

Wamock, J., 241

Watkins, G. 5., 279, 284, 285

Weller, K., 179, 259

Whitted, T., 292, 293, 296, 300, 365, 378, 379

Williams, L., 351

Wilson, R., 382

wire photos, 59

write-through mode, 4

Wylie, C., 279

Wyszecki, G., 407

y bucket sort, 54 (Fig. 2-17), 56 (Fig. 2-19),

74, 75, 75 (Fig. 2-38), 76, 79, 280

hidden surface, Watkins algorithm, 287

value, Munsell, 406

Van Hook, T., 362

0

C’
m

OTHER McGRAW-HILL

INTERNATIONAL STUDENT EDITIONS

IN RELATED FIELDS

Ahuja: DESIGN AND ANALYSIS OF COMPUTER COMMUNICATION NETWORKS m
Bartee: DIGITAL COMPUTER FUNDAMENTALS, 6 E e

Bodily: MODERN DECISION MAKING: A GUIDE TO MODELING WITH DECISION m

SUPPORT SYSTEMS 3
Cavanagh: DIGITAL COMPUTER ARITHMETIC m
Ceri: DISTRIBUTED DATABASES: PRINCIPLES AND SYSTEMS

Chapra: NUMERICAL METHODS FOR ENGINEERS WITH PERSONAL COMPUTER
APPLICATIONS

Davis: MANAGEMENT INFORMATION SYSTEMS, 2 E

Dickson: THE MANAGMENT OF INFORMATION SYSTEMS

Fairley: SOFTWARE ENGINEERING

Gear: COMPUTER ORGANIZATION AND PROGRAMMING, 4E

Glisson: INTRODUCTION TO SYSTEM ANALYSIS fl
Gore: COMPUTERS AND INFORMATION SYSTEMS, 2 E 0
Harrington: COMPUTER GRAPHICS

Hayes: DIGITAL SYSTEM DESIGN AND MICROPROCESSORS

Hwang: COMPUTER ARCHITECTURE AND PARALLEL PROCESSING
Keller: A FIRST COURSE IN COMPUTER PROGRAMMING USING PASCAL

Lucas: ANALYSIS, DESIGN AND IMPLEMENTATION OF INFORMATION SYSTEMS, 3E

Orilia: STRUCTURED BASIC: AN INTEGRATED APPROACH

Peckham: BASIC: A HANDS-ON METHOD, 2E

Philippakis-Kazmier: ADVANCED COBOL FOR INFORMATION SYSTEMS Cl
Philippakis-Kazmier: PROGRAM DESIGN CONCEPTS WITH APPLICATIONS IN COBOL
Revesz: INTRODUCTION TO FORMAL LANGUAGES

Sanders: COMPUTERS TODAY, 2”E

Saret: DATA PROCESSING LOGIC

Scott: PRINCIPLES OF MANAGEMENT INFORMATION SYSTEMS a

Senn: ANALYSIS AND DESIGN OF INFORMATION SYSTEMS fl

Tremblay: THEORY AND PRACTICE OF COMPILER WRITING
Tucker: PROGRAMMING LANGUAGES, 2/E

07-Y66503-6;0]

