IIIIII
i B

OpenGL Game Development
By Example

Design and code your own 2D and 3D games efficiently using
OpenGL and C++

PACKT

OpenGL Game Development
By Example

Design and code your own 2D and 3D games efficiently
using OpenGL and C++

Robert Madsen
Stephen Madsen

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

OpenGL Game Development By Example

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016
Production reference: 1010316

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-819-9

www . packtpub.com

www.packtpub.com

Credits

Authors
Robert Madsen

Stephen Madsen

Reviewers
Artemis Tsouflidou

Simon W. J. Vanhauwaert

Pantelis Lekakis

Commissioning Editor
Julian Ursell

Acquisition Editor
Shaon Basu

Content Development Editor

Siddhesh Salvi

Technical Editor
Parag Topre

Copy Editor
Priyanka Ravi

Project Coordinator
Paushali Desai

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

About the Authors

Robert Madsen is an accomplished game programmer, with dozens of published
games to his credit. He started programming in 1979, and he has been a programmer
for all of his professional life. He entered the game industry in 2004, and he founded
SynapticSwitch, LLC in 2010. As studio director, he continues to code while also
managing the broader needs of an independent game development studio.

Stephen Madsen completed his degree in game development from Full Sail Real
World Education in 2007, beginning his first job as a game programmer in 2008.

He then joined SynapticSwitch, LLC as the lead software engineer in 2012. He has
developed and published many titles on the mobile, console, and personal computer
platforms with OpenGL being the foundational rendering technology for most of
these platforms.

About the Reviewers

Artemis Tsouflidou is a game developer based in London, and she has experience
in gameplay programming. She studied computer engineering at the University of
Thessaly in Greece, and she continued her studies at Goldsmiths University where
she earned a master's degree in computer games. She is interested in programming
and game development.

Simon W. J. Vanhauwaert is a Belgian game development programmer. He
graduated in digital arts and entertainment, and he is currently professionally
employed in the UK.

Pantelis Lekakis has been in the game industry for 4 years now, and he has been
actively programming and developing his own projects since 2002.

His experience lies in rendering and game engines, and he has worked with various
versions of Direct3D and OpenGL.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents

Preface iX
Chapter 1: Building the Foundation 1
Introducing the development environment 1
A quick look at Visual Studio 3
Start screen 3

The Solution Explorer panel 4

The Standard Toolbar panel 4

The code window 5

The output window 6
Starting your project 6
The game loop 7
The game structure 7
Initialization 8

The game loop 8
Shutdown 9
Creating the game structure 9
Port of access 1"

The Windows message loop 11
Introducing OpenGL 13
What is OpenGL? 13
The other GL 14
Downloading OpenGL 14
Adding OpenGL to the project 15
Linking to the OpenGL library 15
Summary 17
Chapter 2: Your Point of View 19
Plotting your revenge 20
The OpenGL coordinate system 20
Making your point 21
Understanding the code 23

[il

Table of Contents

Running the program 26
Stretching your point 27
Getting primitive 29
A triangle by any other name 29

A primitive example 30
From triangles to models 32
Introducing textures 33
Using textures to fill the triangles 33
A matter of reference 35
Hanging out in the quad 36
Coding the quad 37
Rendering a texture 38
Loading the texture 38
Texture wrapping 39
Creating a textured quad 42
Putting the pieces together 43
Summary 44
Chapter 3: A Matter of Character 45
Spritely speaking 45
Sprites versus non-sprites 46
Flipbook animation 46
Framed animation 47
Creating sprites 47
Working with PNGs 47
Linking to the SOIL library 50
Including the SOIL header file 51
Opening an image file 51
Coding a sprite class 52
Creating sprite frames 58
Saving each frame 59
Loading a sprite from individual textures 59
Creating a sprite sheet 60
Loading a sprite sheet 61
Loading our sprites 61
Rendering 65
Adding a render to the game loop 65
Implementing the main Render function 66
Implementing Render in the Sprite class 67
UV mapping 69
One more detail 70
A moving example 70
Adding update to the game loop 71
Implementing the main Update call 71

Lii]

Table of Contents

Implementing Update in the Sprite class 72
Character movement 73
Using delta time 73
Calculating delta time 74
Flipping 75
Scrolling the background 76
Using an atlas 77
Summary 78
Chapter 4: Control Freak 79
A penny for your input 79
The keyboard input 80
Using the mouse 80
Touch 81
Other inputs 81
Someone is listening 82
The WndProc event listener 82
Handling the message queue 84
Handling mouse and keyboard inputs 85
Creating the Input class 86
Virtual key codes 87
Querying for input 88
Implementing the Input class 89
Adding input to the game loop 90
Processing our input 91
Changes to the Sprite class 94
Graphical User Interface 95
Creating a button 95
Enhancing the Input class 95
Adding Ul elements to the list 96
Checking each Ul element 97
Pushing your buttons 98
Adding our pauseButton 99
State management 100
Creating a state manager 101
Pausing the game 101
Summary 104
Chapter 5: Hit and Run 105
Out of bounds! 105
Getting anchored 106

Collision rectangles 110

[iii]

Table of Contents

Embedding 113
Fixing the background 115
Collideables 116
Ready to score 116

A friend indeed 117
Time to spawn 117
Circular collision detection 120
The Pythagorean Theorem 121
Adding the circular collision code 122
Why use circular collision detection? 124
Wiring in the collision detection 125
Rectangular collision detection 127
The enemy within 127
Spawning the enemy 127
Adding the rectangular collision code 130
Wiring continued 132
Summary 132
Chapter 6: Polishing the Silver 133
The state of the game 134
State machines 135
Why do we need a state machine? 135
Planning for state 137
Defining the new state 139
Implementing the state machine 139
Making a splash 143
Creating the splash screen 143
Defining the splash screen 144
Loading our resources 145
What's on the menu? 147
Creating the menu 147
Defining the menu buttons 148
Getting some credit 151
Creating the credits screen 151
Getting back to the main menu 152
Working with fonts 154
Creating the font 154
Drawing text 155
Wiring in the font support 156
Level up! 157
Displaying the score 157

[iv]

Table of Contents

Game progression 158
Defining game levels 159
Game stats 160
The next level screen 161
Continuing the game 161
Game over 162
The game over screen 163
Replaying the game 164
Summary 166
Chapter 7: Audio Adrenaline 167
Bits and bytes 168
A sound by any other name 168
Making noise 169
Revving up your engine 171
Accessing the FMOD .dIl file 172
Linking to the library 172
Point to the include files 175
Initializing FMOD 177
Virtual channels 178
Channel priority 178
Bleeps and bloops 179
Sound effects 179
Setting up the sounds 180
Playing sounds 182

Ul feedback 185
The sound of music 187
Cleaning up the house 188
Release sprites 188
Release input 189
Releasing fonts 190
Releasing audio 190
Summary 190
Chapter 8: Expanding Your Horizons 191
Into the third dimension! 191
Simulating 3D 192
Real 3D 193
3D Coordinate Systems 194
The camera 196
Remember those home movies? 196
Steady as she goes! 197

Table of Contents

The viewport 197
Entering the matrix 199
Vectors 199
Combining vectors 200
Identity matrix 202
Coding in 3D 202
Creating the project 202
Retrieving OpenGL files 204
Linking projects to OpenGL libraries 204
Setting up the OpenGL window 205
Including header files 206
Defining global variables 206
Creating a function to create the OpenGL window 207
Sizing the OpenGL window 207
Initializing the OpenGL window 209
Creating a function to remove the OpenGL window 210
Creating the OpenGL window 211
Creating the Windows event handler 215
The Game loop 216
The finale 217
Summary 218
Chapter 9: Super Models 219
New Space 220
A computer in a computer 220
Drawing your weapons 223
Getting primitive 223
Drawing primitives 224
Making your point 226
Gl_Points 226
Getting in line 226
Gl_Lines 226
Gl_Line_Strip 226
GI_Line_Loop 227
Triangulation 227
Gl_Triangles 228
Gl_Triangle_Strip 228
Gl_Triangle_Fan 228
Being square 229
Gl_Quads 229
Gl_Quad_Strip 229
Saving face 229
Back to Egypt 230

[vil

Table of Contents

A modeling career 231
Blending in 231
Blender overview 232
Building your spaceship 232
Exporting the object 235
Getting loaded 236

Summary 240

Chapter 10: Expanding Space 241

Creation 101 241
Preparing the project 242
Loading game objects 243

The Model class header 244
Implementing the Model class 246
Modifying the game code 253

Taking control 258
Implementing input 258

Asteroid slalom 261
Setting up collision detection 261
Turning on collision 264

Summary 265

Chapter 11: Heads Up 267

Mixing things up 267
The saving state 269
Push and pop 269
Two state rendering 273

A matter of state 277
Adding the state machine 277
Getting ready for a splash 278

Creating the user interface 280
Defining the text system 281
Defining textures 283
Wiring in render, update, and the game loop 285

Summary 290

Chapter 12: Conquer the Universe 291

A fun framework 292
Setting up the Visual Studio project 292
Setting up the Windows environment 293
Setting up the OpenGL environment 294
Setting up the game loop 294

[vii]

Table of Contents

Texture mapping
Loading the texture
Rendering the cube
Mapping operations

Let there be light!
Defining a light source

The skybox

Advanced topics
Game physics
Al

The future

Summary

Index

296
297
298
301
302
303
304
306
306
307
307
307

309

[viii]

Preface

Welcome to OpenGL Game Development Blueprints! We are excited that you chose
this book as your guide to both OpenGL and game development. This section will
provide you with a brief preview of each chapter, followed by the technologies that
are required to complete the work that is presented in the book. Finally, we will
discuss the target audience for this book so that you will know whether this book is
right for you.

What this book covers

Chapter 1, Building the Foundation, guides you through creating the code framework
for the game. Games use a particular structure that is known as the game loop. By
the end of this chapter, you will understand and have created the game loop for the
game as well as initialized the required OpenGL elements.

Chapter 2, Your Point of View, introduces you to the first project in the book —creating
a 2D platform game. The first step in this project will be to define the type of view
that is required by OpenGL, and render the background of the game.

Chapter 3, A Matter of Character, covers the creation of sprites that move on the screen.
2D frame-based animations are the core of any 2D game, and you will learn how to
create simple graphics and render them to the screen.

Chapter 4, Control Freak, teaches you how to build an input system that will allow you
to control the main character and other aspects of the game. You will also create a
basic user interface that allows you to start the game and navigate to various options.

Chapter 5, Hit and Run, covers collision detection. You will learn how to stop the
character from falling through the ground, how to land on objects, and how to detect
whether enemies have hit you or have been hit by player weapons. By the end of this
chapter, you will be able to play the game for the first time.

[ix]

Preface

Chapter 6, Polishing the Silver, covers the topics that make a game presentable (but are
often overlooked by novice developers). You will learn how to implement a scoring
system, game over and game won scenarios, and simple level progression. This
chapter will conclude the 2D project of the book.

Chapter 7, Audio Adrenaline, guides you through implementing sound effects and
music in the game. We will provide links to some audio files that you can use in
your game.

Chapter 8, Expanding Your Horizons, will start the second project of the book—a 3D
first-person space shooter. At the end of this chapter you will have created a new
project, starting the framework for a 3D game.

Chapter 9, Super Models, introduces you to the concepts of 3D art and modeling,
and then guides you through the process of loading 3D models into the game
environment. Although you will be able try your hand at creating a 3D model, the
resources that are required for the game will be provided online.

Chapter 10, Expanding Space, expands on many of the concepts that were covered in
the 2D segment of the book and applies them to a 3D world. Movement and collision
detection are revamped to take this new dimension into consideration. An input
scheme to move in 3D space is implemented. By the end of this chapter, you will be
able to control a 3D model in 3D space.

Chapter 11, Heads Up, guides you through creating a 2D user interface on top of the
3D world. You will create a menu system to start and end the game, as well as a
heads-up-display (HUD) that shows the score and stats in game. By the end of this
chapter, you will have created a playable 3D shooter game.

Chapter 12, Conquer the Universe, introduces you to some of the more advanced
concepts that were beyond the scope of the book, and it gives you some direction to
advance your skills.

What you need for this book

Each chapter in the book will have exercises that you will need to code. Each exercise
is a building block toward creating your first game using OpenGL. It is vitally
important that you actually write the code. In our experience, you can't learn any
kind of computer programming without actually writing code. Don't just read the
book, do the book!

[x]

Preface

The first chapter of the book will go through the details of setting up a development
environment so that you can code the examples in the book. In general, you will
need the following:

* A Windows-based personal computer: You could use a Mac, but the
examples used in the book are based on a Windows 10 operating system.

* A copy of Visual Studio: We will show you how to obtain and install this
for free in chapter one, or you can go to http://www.visualstudio.com/
downloads/download-visual-studio-vs right now. Again, you could use
another development tool and compiler, but you are on your own to set it up.

* A 2D image editor program: We recommend GIMP, which you can
download for free at http://www.gimp.org/.

* A 3D modeling program: We recommend Blender, which you can download
for free at http://www.blender.org/.

* An Internet connection: You could complete the exercises without this, but
an Internet connection is very useful for looking up additional resources.

* Some free time and dedication!

That's it! The good news is that as long as you have a personal computer, the
technology and tools that are used to create games using OpenGL are completely free!

Who this book is for

If you are reading this book, it is pretty obvious that you are interested in game
development. You have either heard of OpenGL or perhaps even used it, and you
want to learn more. Finally, you are already a programmer in some computer
language or you want to be.

Does this sound like you? Read on!

This book assumes that you have some familiarity with computer programming

in the C++ computer language. If you have programmed in some other language,
such as C#, Java, JavaScript, or PHP, then you are pretty familiar with the constructs
of the C++ language. Nevertheless, if have never programmed in C++ then you
may need to brush up on your skills. You can try Microsoft Visual C++ Windows
Applications by Example, also published by Packt Publishing. If you feel comfortable
with programming in general, but have not coded in C++, you can look at the free
online C++ tutorials at http://www.cplusplus.com/doc/tutorial/.

[xi]

http://www.visualstudio.com/downloads/download-visual-studio-vs
http://www.visualstudio.com/downloads/download-visual-studio-vs
http://www.gimp.org/
http://www.blender.org/
http://www.cplusplus.com/doc/tutorial/

Preface

We don't assume that you have any knowledge of OpenGL — that is what this book

is going to give you. We start by explaining the basic concepts of OpenGL and move
through more advanced concepts by example. As you learn, you will also code,
providing you with the opportunity to put what you have learned into practice. This
book won't make you an OpenGL expert overnight, but it will give you the foundation
to understand and use OpenGL. At the end of this book, we will give you some
pointers to other resources that will allow you to learn even more about OpenGL.

We also don't assume that you have any experience developing games. This book is
rather unique in that it provides you with a primer to learn OpenGL and a primer

to learn game development. There are many books out there that teach OpenGL,

but most do so within a more academic or theoretical framework. We felt that it

was better to teach you OpenGL while you were using it to create an actual game.
Actually, you will code two games: one in 2D, and one in 3D. Two for the price of one!

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"As usual, change the middle line in update to call drawQuad."

A block of code is set as follows:

void CheckCollisions ()

{

if (player->IntersectsRect (pickup))
{
pickup->IsVisible (false) ;
pickup->IsActive (false) ;
player->SetValue (player->GetValue () + pickup->GetValue()) ;
pickupSpawnTimer = 0.0f;

[xii]

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

pause->Update (p_deltaTime) ;
resume->Update (p_deltaTime) ;

pickup->Update (p_deltaTime) ;
SpawnPickup (p_deltaTime) ;

CheckCollisions () ;

}

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "For the
Configuration drop-down box, make sure you select All Configurations."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[xiii]

www.packtpub.com/authors

Preface

Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[xiv]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Building the Foundation

Building a game is like building a house. Except this is a crazy house with rooms
sticking out everywhere, and at any time someone might decide to add another room
just here, and remove a room over there. You had better have a good foundation!

This chapter will take you through the process of setting up the foundation to build
your game. You will learn, how to set up a development environment using Visual
Studio. Next, you will set up the game loop, which is the foundation for every game
ever created. Finally, you will set up the development environment to use OpenGL
as your rendering engine.

Introducing the development
environment

The development environment is the set of tools that you use to edit, compile,
and run your program. There are many development tools out there; some tools
are glorified text editors, while others are entire suites of tools that are integrated
into a single application. These more advanced suites are known as Integrated
Development Environments (IDEs).

Microsoft's Visual Studio is by far the most widely used IDE, and the good news is
that you can obtain and use it for free. Go to https://www.visualstudio.com/en-
us/products/visual-studio-express-vs.aspx and follow the links to download
the latest version of Visual Studio Community, previously known as Visual Studio
Express. Visual Studio Community is not a trial version and will not expire. You
will probably see trial versions of Visual Studio being offered, so make sure you
download the free version of Visual Studio Community.

[11]

https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx

Building the Foundation

Visual Studio offers several languages to program in. We will be using C++
throughout this book. When you first use Visual Studio, you may be asked which
language you want to set up the development environment for. I recommend that
you choose the C++ settings. However, you will still be able to use Visual Studio for
C++ even if you choose a different default programming language.

Visual Studio Community 2013 was the current version at the time this book was
written. All of the screenshots you see in the book are from that version. It is quite
likely that a later version of Visual Studio will have come out by the time you get
your hands on this book. The general functionality stays the same from one version
to another, so this should not be a problem. If you are using a different version of
Visual Studio, then the exact location of some commands may not be the same as in
the screenshots in this book.

M Microsoft differentiates between programs written for Windows
Q Desktop and those written for Windows Universal. Ensure that
you download Visual Studio Community Express for Desktop.

When you first start Visual Studio, you will be asked for a few options, so I thought
I'd cover them here:

* If you are asked which programming language you would like to set up
as your default development environment, it really doesn't matter which
language you choose. If you think you will be using C++ a lot, then pick
C++. If you pick another language as your default you will still be able to
code in C++.

* You will be asked to sign into your Microsoft account. If you have ever used
MSN, Hotmail, or Windows Messenger, then you already have a Microsoft
account. At any rate, if you don't have a Microsoft account you can use your
own e-mail address to create one, and it doesn't cost anything.

* You may be asked to set up a developer license for Windows. Just click I
Agree and it will be done. Again, no charge!

[2]

Chapter 1

A quick look at Visual Studio

As Visual Studio can do so many things, it may be a bit intimidating the first time
you use it. have been using Visual Studio for over 20 years and there are still
parts of it that I have never needed! Let's take a look at the key components, in the
following screenshot, that you will use every day:

stat Page = |

Express 2013 for
Windows Desktop

Start
Mew Project...
Open Project...

Open from Source Control...

Recent
RoboRacer2D
HelloWorld
harbles

Start screen

The start screen, as shown in the preceding screenshot, allows you to quickly start
a new project or open an existing project. The most recent projects that you have
worked with can be quickly accessed from the list of recent projects.

[31]

Building the Foundation

The Solution Explorer panel

The Solution Explorer panel allows you to navigate and work with all of the code
and other resources in your project. If you do not see the Solution Explorer window
on your screen, click View | Solution Explorer.

Solution Explorer 1 X

@ e-2amlo &
Search Solution Explorer (Ctrl+;) Pl

fad Solution 'RoboRacerD' (1 project)
4 [%] RoboRacer2D
I L5 External Dependencies
4 L] Header Files
4 Resource.h
RoboRacer2D.h
[stdafi.h
targetver.h
4 Resource Files
3] ReboRacer2Diico
[f] RoboRacer2D.rc
4 smallico
4 Source Files
I *+ RoboRacer2D.cpp
++ stdafu.cpp
B ReadMebt

From this window you can:

* Double-click on any item to open it
* Right-click to add existing items to the project
* Right-click to add new items to the project

* Create folders to organize your code

The Standard Toolbar panel

The Standard Toolbar panel contains buttons for the most common tasks:

e Save the current file

e Save all modified files

[4]

Chapter 1

¢ Undo and Redo

* Run the program

There are basically two ways to run your program. You can

run the program with or without debugging. Debugging mode
allows you to set checkpoints that stop the program and let you
view the state of variables, and perform other operations while
the code is running. If you run the program without debugging,
you will not be able to do these things.

Al

Q

- | (e d‘| = '| P Local Windows Debugger ~ |Debug v| |Win32 v|| M

The code window

The center of the IDE is dominated by the code window. This is where you type

and edit your code. You can have several code windows open at once. Each code
window will add a tab across the top, allowing you to switch from one piece of code
to another with a single click:

L3 ¥4 | Quick Launch (Ctrl+Q) Pl - B x

DQ RoboRacer2D - Microsoft Visual Studio Express 2013 for Windows Desktop

FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST WINDOW HELP Robert Madsen ~
[2 8| 9 - © -] b ootindons Detugger = [paus | [Wrsz | £ i = 5] W :

RoboRacer2D.cpp + X ~ | Solution Explorer

// Global Variables:

HINSTANCE hInst;

TCHAR szTitle[MAX LOADSTRING];
TCHAR szWindowClass[MAX_LOADSTRING]:

// current instance
// The title bar text
// the main window class name

3

3

(Global Scope) - - ml o-2g ,@l o M
/7 RoboRacer2D.cpp : Defines the entry peint for the application. = 5
i] Search Solution Explarer (Ctrl+;) p-
Tl 3 Solution ‘RoboRacer2D' (1 project)
—#?nclude :stdafx.h" i 4[] RoboRacer2D
#include "RoboRacer2D.h b o5 External Dependencies
#define MAX_LOADSTRING 1@@ 4 fal HeaderFiles

B Rescurce.h

B RoboRacer2D.h
B stdafxh

B targetver.h

.| Resource Files

// Forward declarations of functions included in this code module:
ATOM MyRegisterClass(HINSTANCE hInstance);

BOOL InitInstance(HINSTANCE, int);

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

INT_PTR CALLBACK About(HWND, UINT, WPARAM, LPARAM);

int APIENTRY _tWinMain(_In_ HINSTANCE hInstance,
_In_opt_ HINSTANCE hPrevInstance,

=] RoboRacer2D.ico
[RoboRacer2D.rc
= small.ico
4 &) SourceFiles
b ++ RoboRacerD.cpp
*++ stdafrcpp
B ReadMe.txt

In LPTSTR
In int

1pCmdLine,
nCmdshow)

Error List Qutput Find Results

Ready

You will notice that the text is color-coded. This allows you to easily see different
types of code. For example, the comments in the code in the preceding screenshot are
in green, while the C++ objects are in blue. You can also zoom in and out of the code
by holding down the Ctrl button and using the scroll wheel on the mouse.

[51]

Building the Foundation

The output window

The output window is typically at the bottom of the IDE. This window is where you
will look at to see the status of the current run, and where you will find errors when
you try to compile run your program.

If you see an error in the output window, you can usually double-click on it, and
Visual Studio will take you to the line in code that caused the error:

Output * o x
Show output from: |Bui|d v|| | [ET | § EEn |
1s------ Build started: Project: Marbles, Configuration: Debug Win32 ------ -

1> Marbles.cpp

1»c:\users\rmads_#88\documentsivisual studio 2813\projects\marbles‘marbles‘\marbles.cpp(33): error CI
1»c:h\users\rmads_888\documentsvisual studio 2813\projects\marbles‘marbles‘\marbles.cpp(1l83): error (
========== Build: ® succeeded, 1 failed, @ up-to-date, @ skipped ========== -
4 b

Error List el

Starting your project
It's time to stop reading and start doing! We are going to use Visual Studio to start
our game project.

1. Open Visual Studio and click the New Project link in the start window.

2. Navigate to the left-hand side panel and select Win32 under the Visual C++
branch of Templates.

MNew Project ?
b Recent Sort by: |Defau|t v| Search Installed Templates (Ctrl+E) P~
4 |nstalled ++ o
h Win32 Console Application Visual C++ Type: Visual C++
re
4 Templates A project for creating a Win32 application,
ooy o e
b Visual Basic Win32 Project Visual Cs+ conscle application, DLL, or static library
I Visual C#
4 Visual C++
CLR
General
Test
Win32
S0OL Server
Wienial Shoelin Snlitinne -
b Online Click here to go online and find templates.
MName: RoboRacer2D
Location: [D:\\Projects |
Solution name: RoboRacer2D Create directory for solution
[[] Add to source control
| oK | | Cancel

[6]

Chapter 1

3. Select Win32 Project in the center area.

4. Give the project a name. The first game we will be working on is a 2D robot
racing game that we'll call RoboRacer2D.

5. Choose a folder location to store the project, or just leave the default location.

6. The solution name is almost always the same as the project name, so leave
that as it is.

7. Leave Create directory for solution checked.
8. Click OK.
9. On the next screen click Finish.

We need to tell Visual Studio how to work with Unicode characters. Right-click on
the project name in the Solution Explorer panel and choose Properties. Then select
General. Change the Character Set property to Not Set.

Congratulations! You have now created your Windows application and set up
your development environment. It's time to move on to creating the framework
for your game.

The game loop

The game loop is the primary mechanism that moves the game forward in time.
Before we learn how to create this important component, let's briefly take a look at
the structure of most games.

The game structure

There are three phases to most games: the initialization phase, the game loop, and
the shutdown phase. The core of any game is the game loop.

Initialization | * Game Loop + Shutdown

Input

Update

Render

[71

Building the Foundation

The game loop is a sequence of processes that run continuously as long as the game
is running. The three main processes that occur in the game loop are input, update,
and render.

The input process is how the player controls the game. This could be any
combination of keyboard, mouse, or control pad. Newer technologies allow the game
to be controlled via a sensing device that detects gestures, while mobile devices
detect touch, acceleration, and even GPS.

The update process encompasses all of the tasks required to update the game:
calculating where characters and game objects have moved, determining whether
items in the game have collided, and applying physics and other forces in the game.

Once the preceding calculations have been completed, then it is time to draw results.
This is known as the render process. OpenGL is the library of code that handles the
rendering for your game.

. Many people think that OpenGL is a game engine. This is
5 not accurate. OpenGL —the open graphics language—is a
Q rendering library. As you can see, rendering is only one

process involved in the execution of a game.

Let's take a closer look at each stage of the game so that we can get a better idea of
how OpenGL fits in.

Initialization

There are certain parts of the game that must be set up only once before the game can
run. This typically includes initializing variables and loading resources. There are
certain parts of OpenGL that must be initialized during this phase as well.

The game loop

Once the initialization is complete, the game loop takes over. The game loop is
literally an endless loop that cycles until something tells it to stop. This is often the
player telling the game to end.

[8]

Chapter 1

In order to create the illusion of movement, the render phase must occur several
times a second. In general, games strive to render at least 30 frames to the screen
every second, and 60 frames per second (fps) is even better.

M It turns out that 24 fps is the threshold at which the human eye
Q begins to see continuous motion instead of individual frames.
This is why we want the slowest speed for our game to be 30 fps.

Shutdown

When the game does end, it isn't enough to just exit the program. Resources that are
taking up precious computer memory must be properly released to the reclaim that
memory. For example, if you have allocated memory for an image, you will want to
release that memory by the end of the game. OpenGL has to be properly shut down
so that it doesn't continue to control the Graphics Processing Unit (GPU). The final
phase of the game is to return control to the device so that it will continue working
properly in its normal, nongaming mode.

Creating the game structure

Now that we created our RoboRacer2D project in Visual Studio project, let's learn
how to modify this code to create our game structure. Start Visual Studio and open
the project we just created.

You should now see a window with code in it. The name of the code file should be
RoboRacer2D. cpp. If you don't see this code window, then find Solution Explorer,
navigate to RoboRacer2D. cpp, and open it up.

I'll be the first person to admit that the Windows C++ code is both ugly and
intimidating! There is a lot of code created from you by Visual Studio when you
choose the Windows desktop template to create your project. In fact, you can run
this code right now by clicking DEBUG from the menu bar and then choosing Start
Debugging. You can also press the F5 key.

[o]

Building the Foundation

Go ahead and do it!

Microsoft Visual Studio Express 2013 for Win...

This project is out of date:
RoboRacer2D - Debug Win32

Would you like to build it?

Yes Mo Cancel

[1De not show this dialeg again

You will see a window telling you that the project is out of date. This simply means
that Visual Studio needs to process your code and turn it into an executable —a
process called building the project. For the computer science majors out there, this is
where your code is compiled, linked, and then executed by the operating system.

Click Yes to continue.

i1} RoboRacer2D = B

File Help

[10]

Chapter 1

Congratulations! You have now created and run your first program in Visual Studio.
It may not look like much, but there is a lot going on here:

* A fully sizeable and moveable window
* A working menu system with File and Help choices
* A title bar with RoboRacer2D

* Working minimize, maximize, and close buttons
Keep in mind that you haven't written a single line of code yet!

Now that you see it, feel free to use the close button to close the window and return
to Visual Studio.

But wait, this doesn't look like a game!

If you are thinking the RoboRacer2D program doesn't look much like a game, you
are correct! In fact, to make a game we typically strip away about everything that
you now see! However, for this demonstration, we are going to keep the window just
like it is, and worry more about the code than the appearance.

Port of access

Every program has a starting point, and for a Windows program the entry point is
the _twinMain function. Look for the following line of code:

int APIENTRY wWinMain

The _wwinMain function will start running and will set up everything required

to run a Windows desktop program. It is beyond the scope of this book to go into
everything that is going on here. We will just take it for granted that the code we are
looking at sets things up to run in Windows, and we will focus on the things that we
need to modify to make a game.

The Windows message loop

It turns out that _wwWinMain already sets up a loop. In a similar manner to games,
Windows programs actually run in an endless loop, until they receive some kind of
event that tells them to stop. Here's the code:

// Main message loop:
while (GetMessage (&msg, nullptr, 0, 0))

{

if (!TranslateAccelerator (msg.hwnd, hAccelTable, &msg))

{

TranslateMessage (&msg) ;

[11]

Building the Foundation

DispatchMessage (&msg) ;

}
}

As you can see, these lines of code set up a while loop that will continue to run until
the result of the GetMessage call is false.

Again, we won't worry about the exact details, but suffice to say that GetMessage
constantly checks for messages, or events, that are sent by Windows. One particular
message is the quit event, which will return a result of false, ending the while loop,
exiting the _twinMain function, and ending the program.

Our goal is to modify the Windows message loop and turn this block of code into a
game loop:

StartGame () ;
//Game Loop
bool done = false;
while (!done)
{
if (PeekMessage (&msg, NULL, 0, 0, PM REMOVE))
{
if (msg.message == WM_QUIT)
{

done = true;

}

else

{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

}
}

else

{

GameLoop () ;

}
}

EndGame () ;

Study the preceding code. You will see that we have added three new functions:
StartGame,GameLoop,and.EndGame.

* StartGame comes before the Windows message loop, which means that
everything in StartGame will run once before Windows enters its loop. We
will put all of the game initialization code in the StartGame function.

[12]

Chapter 1

* EndGame comes after the Windows message loop. This means that the
code in EndGame will only execute one time after the Windows message loop
has exited. This is the perfect place for us to release resources and shut the
game down.

* GameLoop is interleaved in the Windows message loop. Basically, the code is
saying, "Keep running until you receive a Windows message to quit. While you are
running, check to see if Windows has passed any events that need to be handled. If
there are no messages to handle, then run our game."

Order is important. For example, you have to declare these
M functions before the wWinMain function. This is because
Q they are called by wWinMain, so they have to exist before
tWinMain uses them. In general, a function has to be declared
before the code that uses it.

In order for these new functions to be valid, go to the line just before the _twinMain
and enter some stubs for these three functions:

void StartGame ()

{
}

void GameLoop ()

{
}

void EndGame ()

{
}

The idea here is to help you see how easy it is to convert the standard Windows
message loop into a game loop.

Introducing OpenGL

We have spent a lot of time so far talking about game loops and Visual Studio.
We are finally going to discuss the main topic of this book: OpenGL!

What is OpenGL?

OpenGL makes it possible to render sophisticated 2D and 3D graphics on your
computer screen. In fact, OpenGL is also the technology behind most mobile devices
and tablet devices.

[13]

Building the Foundation

OpenGL works in conjunction with your device's graphics device to draw graphics
on the screen. Most modern computing devices have two processors: the Central
Processing Unit (CPU) and the Graphics Processing Unit (GPU).

Drawing modern 2D and 3D graphics is a very processor intensive task. In order to
free the computer's main processor (the CPU) to do its job, the GPU takes on the task
of rendering to the screen. OpenGL is a language that tells the GPU what to do and
how to do it.

Technically, OpenGL is an API, or application programming
interface. Another way to understand this is that OpenGL is a
M library of code that you can access once you have included the
Q proper headers in your code. There are different versions of
OpenGL. This book uses OpenGL 1.1. Although this is the very
first version of OpenGL, it is included in all versions of Windows
and provides the building blocks for all future versions.

The other GL

By the way, you have probably heard of the "other" graphics engine —Microsoft's
DirectX. Similar to OpenGL, DirectX allows programmers to talk to the GPU. A lot of
people want to know the differences between OpenGL and DirectX, and which is the
best choice.

Although there are certainly going to be fans and defenders of both technologies, the
only real difference between DirectX and OpenGL is the specific way that you code
them. Both technologies are about the same when it comes to features and abilities.

There is one advantage that OpenGL has over DirectX. DirectX only works on
Microsoft technologies, while OpenGL works on Microsoft technologies and many
others, including most modern cell phones, and the Apple Mac line of computers.

Downloading OpenGL

I remember when I was first learning OpenGL. I searched in vain, looking for the
link to download the OpenGL SDK. It turns out that you don't have to download the
OpenGL SDK because it is already installed when you install Visual Studio.

You do want to make sure that you have the latest OpenGL driver for your
video card. To do that, go to http://www.opengl.org/wiki/Getting
started#Downloading_ OpenGL and follow the appropriate link.

[14]

http://www.opengl.org/wiki/Getting_started#Downloading_OpenGL
http://www.opengl.org/wiki/Getting_started#Downloading_OpenGL

Chapter 1

Adding OpenGL to the project

In order to use OpenGL in our program, we will need to add some code. Open the
RoboRacer2D project that we have been working on, and let's do this!

Linking to the OpenGL library

Everything that you need to use OpenGL is found in the openGL32.d11 lib file.
It's up to you to tell Visual Studio that you want to use the OpenGL library in
your project.

Right-click on Project | RoboRacer2D properties.

By the way, Visual Studio first creates a solution, and then puts a
~ project in the solution. The solution is the top entry in the Solution

Q Explorer hierarchy, and the project is the first child. In this case,
make sure you right-click on the project, not the solution.

Configuration: | All Cenfigurations w | Platform: | Active(Win32) W Configuration Manager...

I Commeon Properties A Additional Dependencies v

4 Configuration Properties Ignore All Default Libraries
General Ignore Specific Default Libraries
Debugging Maodule Definition File

VC++ Directories Add Module to Assembly
B CSC++

4 Linker
General
Input
Manifest File
Debugging

Embed Managed Resource File
Force Symbol References
Delay Loaded Dlls

Assembly Link Resource

System
Optimization
Embedded IDL
Windows Metadata
Advanced

All Nintinne

Additional Dependencies
Specifies additional items to add to the link command line [i.e. kernel32.lib]

Cancel

1. For the Configuration drop-down box, make sure you select All
Configurations.

2. Open the Configuration Properties branch, then the Linker branch.
3. Select the Input option.

[15]

Building the Foundation

4. Click the dropdown for Additional Dependencies and choose <Edit...>.
5. Enter OpenGL32.1ib into the dialog window and click OK.

OpenGL32.lib
Glulib32.lib

Inherited values:

kernel32.lib
userid.lib
gdi32.lib
winspool.lib
comdlg32.lib

Inherit from parent or project defaults

6. Close the Property Pages window.
Even if you are writing a 64 bit application, you will use the OpenGL 32 bit library.

Next, we need to tell Visual Studio that you want to include the OpenGL headers in
your program. If you take a look at the top of your code, you will see several headers
already being loaded:

#include "stdafx.h"
#include "RoboRacer2D.h"

Just below these lines, add the following:

#include <Windows.h>
#include <gl\GL.h>
#include <gl\GLU.h>

[16]

Chapter 1

GL.h is the main header for the OpenGL library. GLU. h
M stands for GL Utility and is an additional library of features
Q that make OpenGL a little easier to use. These headers
correspond to the OpenGL32.1ib and Glu32.1lib libraries
that we added to the project.

Congratulations! You have set up the development environment to use OpenGL and
you are now ready to program your first game.

Summary

We covered a lot of ground in this chapter. We learned how to set up your
development environment by downloading and installing Visual Studio. Next, we
created a C++ Windows Desktop application.

We discussed the structure of most games and the importance of the game loop.
Recall that an average game should run at 30 fps, while top-end games shoot for 60
fps to provide smooth animations.

Finally, we learned about OpenGL and how to initialize OpenGL in your project.
Remember, OpenGL is the graphics engine that will be responsible for drawing
every image and piece of text to your screen using the power of your GPU.

After all this work, there still isn't a lot to see. In the next chapter, we will go into
all of the details of how to render your first image to the screen. Believe it or not,
getting your development environment properly set up means you have already
accomplished a great deal toward creating your first game using OpenGL.

[17]

Your Point of View

Imagine that you are making a video. You've got your cell phone out, and you point
it at the area that you want to shoot and press record. You're taking a video of the
Grand Canyon, so you have to pan the camera around to get the whole scene in.
Suddenly, a bird flies past the field of view, and you've captured the whole scene.

The preceding scenario is pretty much how games work as well. The game has a
virtual camera that can be positioned and even moved around. Similarly to the video
camera on your cell phone, the game camera can only see a part of the game world,
so sometimes you have to move it around. Any game objects that move in front of
the camera will be seen by the player.

This chapter will explain how things are rendered in the game. Rendering is the
process of actually displaying images on the screen. In order to get your get your game
onto the screen, you will need to have a solid understating of the following terms:

* Coordinate systems: The coordinate system is the reference that allows you
to position objects in the game

* Primitives: Primitives are the fundamental building blocks of the images that
you see on screen, and OpenGL was designed to work with them

* Textures: Textures are image files that are used to give the objects in your
game a realistic appearance

By the time you have read this chapter, you will understand how to use images to
build your game world and display it on the screen.

[19]

Your Point of View

Plotting your revenge

Okay, so you're not really plotting your revenge. But you are plotting everything in
your game as if you were putting it all down on a piece of graph paper. Remember
high-school geometry? You got out your graph paper, drew a couple of lines for the
X and Y axis, and the plotted points on the graph. OpenGL works in pretty much the
same way.

The OpenGL coordinate system

The OpenGL coordinate system is a standard X and Y axis system that you have
most likely learned all your life. You can conceptualize (0, 0) as being the center of
the screen.

Let's say that we want to display a moving car on the screen. We could start by
plotting our car at position (5, 5) in the coordinate plane. If we then moved the car
from (5, 5) to (6, 5), then (7, 5), and so forth, the car would move to the right (and
eventually leave the screen), as illustrated in the following figure:

A A A A A

We haven't been completely honest with you. Since OpenGL is a 3D rendering engine, there
is actually one more axis called the Z-axis that we haven't discussed. As this part of the book
focuses on 2D game programming, we will ignore the Z axis for now.

[20]

Chapter 2

Making your point

As we learn each concept, we will actually write code to demonstrate each point.
Speaking of points, we will write code to plot points using OpenGL.

We are going to set this project up as a separate project from the actual game. We
will use this project to demonstrate how to code basic OpenGL tasks. To keep this
thing as simple as possible, this project will be created as a console project in Visual
Studio. A console project doesn't have many of the features of a full-blown Windows
project and therefore, the setup code is much smaller.

Start Visual Studio and create a new project. For the project template, choose Win32
Console Application from the Visual C++ group of templates. Name the project
OpenGLFun, and click OK. Click Finish to complete the project wizard.

You should notice that the code is much simpler than the
M . .
~ code that was created in the previous chapter for a full-blown
Windows application. We will return to using the more
complicated code as we continue building the game.

New Project ?

b Recent Sort by: |Defau|t -| i = Search Installed Templates (Ctrl+E) P~
4 Installed ﬁ Win32 Console Application Visual C++ Type: Visual C++
4 Templates A project for creating a Win32 console
v Visual Basic Win32 Project Visual C++ application
b Visual C#
4 Visual C++
CLR
General
Test
Win32
SOL Server
Visual Studio Selutions
Samples
P Online

Click here to go online and find templates,

Mame: [OpenGLFun |
Location: | C\Projects\OpenGL\ -
Solution names OpenGLFun Create directory for solution

[] Add to source control

| QK | | Cancel

[21]

Your Point of View

Once you have the project created, type following the code into the code window:

#include "stdafx.h"
#include <windows.h>
#include "glut.h"

void initGL()
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

}

void drawPoints ()

{

glBegin (GL_POINTS) ;

glColor3f(1.0f, 1.0£f, 1.0f);
glvertex2f (0.1f, -0.6f);
glvertex2f (0.7f, -0.6f)
glvVertex2f (0.4f, -0.1f)

7

7

glEnd () ;

void update ()

{
glClear (GL_COLOR_BUFFER BIT) ;
drawPoints () ;
glFlush() ;

}

int tmain(int argc, _TCHAR* argv(])
{
glutCreateWindow ("GL Fun") ;
glutInitWindowSize (320, 320);
glutInitWindowPosition (50, 50) ;
glutDisplayFunc (update) ;
initGL() ;
glutMainLoop () ;
return 0O;

[22]

Chapter 2

Understanding the code

As we will be using the code to demonstrate the fundamentals of OpenGL, we will
look at it in detail so that you understand what the code is doing.

Header files
This code uses three header files:

* stdafx.h: This header file loads the precompiled header that was created by
Visual Studio when we created the project

* windows.h: This header file allows the window that renders the OpenGL
content to be created

* glut.h: This header file allows us to use the OpenGL Ultility Toolkit, which
simplifies the setup and use of OpenGL

You will need to download the GLUT files and place them in your
R project folder. Download the files from http: //www.javaforge.
~ com/doc/105278. Open the zipped file and copy glut .h,
Q glut32.dll, and glut32.1ib into the folder that contains your
source code. You may have to add glut.h to your project (right-click
onHeader files | Add | Existing item).

Initializing OpenGL

You will notice a function called initGL. This function currently contains a single
line of code whose sole purpose is to set the background color of the screen at the
start of each frame. This is often referred to as the clear color because it is the default
that OpenGL clears the background to before it begins to render additional items:

glClearColor (0.0f, 0.0f, 0.0f, 1.0f);

The four numbers inside the parenthesis define the color, and the opacity of the color.
The first three numbers represent the amount of red, green, and blue (RGB) that will
be used to create the color. The fourth number represents the opacity (or seen another
way, the transparency) of the color. This is also referred to as the alpha channel
(RGBA). The values above create a black background that is 100 percent opaque.

All values in OpenGL have a range from 0 to 1. This means that there will be many
decimal values, known in C++ as floats. Thus, the range in C++ lingo is from 0. 0f
to1.0f.

[23]

http://www.javaforge.com/doc/105278
http://www.javaforge.com/doc/105278

Your Point of View

C++ is different from many languages, which use integers or even hexadecimal
numbers to express their ranges. For example, many other languages use a range of
0 to 255 for each color component. In these cases, integer 0 corresponds to 0.0£f, and
integer 255 corresponds to 1. 0f.

u To convert an integer of range 0 to 255 to OpenGL's system,
S use the formula (1/255) * value, where value is the integer value
Q you are trying to convert. Thus, to convert the number 50, you
would calculate (1/255) * 50, which results in 0.1096.

The main entry point

Every program has to have a starting point, known as the entry point. In our
program, this is the _tmain function. We put this at the very end because C++
expects the functions that are being used to have been defined before the function
that calls them. There are various tricks around this, but we'll keep our examples
simple and just always define _tmain as the last function in the code.

When we start the program, there are a few things that have to be done to set up the
environment to render OpenGL. Here is the anatomy of the _tmain function:

* glutCreateWindow ("GL Fun"): This function creates the window that
will render the OpenGL content. We include the name of the program
as a parameter.

* glutInitWindowSize (320, 320): This function initializes the size of the
window. We have specified 320 pixels by 320 pixels. Feel free to try larger
(or smaller) window sizes.

* glutInitWindowPosition (50, 50): This function sets the position of the
window's upper-left corner in relation to the device's screen. In this case, the
window will start drawing 50 pixels from the left and 50 pixels from the top
of the screen. Feel free to try other positions.

* glutDisplayFunc (update): Remember the previous chapter where we
talked about the game loop? The game loop is the part of the program that
runs over and over again (that is, every frame). We need to tell GLUT the
name of the function that we want to run every frame. In this case, we are
telling GLUT to use a function named update (described in the next section).

* initGL(): This simply calls the initGL function that we described earlier.

* glutMainLoop (): This function starts the main game loop, which in turn will
call our update function every frame. This essentially starts our program,
which will run in an infinite loop until we close the program.

[24]

Chapter 2

return 0: This line is required by the _tmain function. It basically tells our
system that the program has exited and everything is okay. This line of code
won't run until we exit the program.

The update function

The update function is called every frame. Any work that we want to do will have to
be coded in this function. The update function currently has three lines of code:

glClear (GL_COLOR_BUFFER BIT): The glClear function resets the render
buffer to the color that was specified earlier by the glclearColor function.
The render buffer is a separate location in the memory where OpenGL
renders objects before they are displayed on the screen. Later, when all of the
render operations are completed, the contents of the buffer are displayed on
the screen in one fast transfer.

drawPoints () : This is a function that we wrote to display three points on
the screen. Later, we will replace this line of code to draw other objects. This
function is described in the next section.

glFlush (): This function flushes the OpenGL buffer, including the back
buffer that currently holds our render. As a result, the rendering buffer is
flushed, and all of the contents are rendered to the device screen.

OpenGL uses two buffers to draw. One is the screen buffer,
which is what the player currently sees on the computer
M display. The other is the back buffer, which is where we create
Q the objects that we intend to render in the next frame. Once we
are done creating the render in the back buffer, we quickly swap
the contents of the back buffer onto the current screen. This
occurs so quickly that the player cannot detect the swap.

Drawing the points

The drawPoints function does the actual work of determining what to draw, and
where to draw it. Here is what each line of code does:

glBegin (GL_POINTS): The call to glBegin tells OpenGL to prepare to
render items to the screen. We also tell OpenGL what we want to render. In
our example, we are directing OpenGL to interpret the data that we send

it as individual points. Later, we will learn to render other objects, such as
triangles using GL._TRIANGLES, or rectangles using GL_QUADS.

glColor3f(1.0f, 1.0f, 1.0f):Asthe name suggests, glColor sets the
color of the item that is going to be rendered. Remember, OpenGL uses the
RGB color system, so the color will be white (0, 0, 0 specified black).

[25]

Your Point of View

* glvertex2f(0.1f, -0.6£):Each pointin OpenGL is known as a vertex.
This code tells OpenGL to render a single point at the coordinates (0.1,
-0.6). In this case, zero means the center of the screen, and one means one
unit from the center. The settings for the camera determine exactly how far
one unit from the center actually is on the screen. There are three glvertex
calls in our example code, one for each of the points that we want to render
to the screen.

u The names of OpenGL functions give you a clue as to how to use
~ the function. For example, glVertex2f means that this function

Q takes 2 parameters and they will be of type £1oat. In comparison,
the glvertex3f function takes three parameters of type float.

* glEnd():Justlike all good things must come to an end, we have to tell
OpenGL when we are done rendering. That is the purpose of the call to g1End.

You have probably noticed a lot of the use of the lower case letter f;
this stands for float, meaning that a number that may contain a part
o after the decimal point (as opposed to an integer, which is always a
~ whole number). So, a number, such as 0. 0£, is telling C++ to treat
Q the number zero as a floating point number. OpenGL uses a similar
naming convention for its functions. For example, the function
glvertex2f indicates that the function requires two floating point
numbers (in this case, the x and y coordinates of the point to render).

Running the program

Now that you have entered your code, it's time to see it in action. When you run the
program (Debug | Start Debugging), here is what you will see:

[26]

Chapter 2

You'll have to look at it closely, but if all went well, you should see three white
points in the lower-right area of the screen. Congratulations! You have rendered
your first OpenGL objects!

Hopefully, you have been able to follow the code. Think of _tmain as a manager that
controls the program by setting everything up and then calling the main loop (just like
we will do in our game). Then GLUT takes over and calls the update function every
frame. The update function initializes the render buffer, draws objects to the render
buffer, and then transfers the contents of the render buffer to the screen. In a game
running at 60 frames per second, this entire operation will happen 60 times a second!

Stretching your point

Let's see how easy it will be to modify GLFun to draw other objects. This time
we will draw two lines. Add the following function to your code just under the
drawPoints function:

void drawLines ()

{

glBegin (GL_LINES) ;

glColor3f(1.0f, 1.0f, 1.0f);
glvVertex2f (0.1f, -0.6f);
glvVertex2f (0.7f£, -0.6f);

[27]

Your Point of View

glvertex2f(0.7f, -0.6f);
glvertex2f (0.4f, -0.1f);

glEnd () ;

}

Next, go to the update function and replace drawPoints with a call to drawLines.
The new update function will look like this:

void update ()

{

glClear (GL_COLOR_BUFFER_BIT) ;
drawLines () ;
glFlush();

}

You will notice that there are four glvertex calls. Each pair of vertices sets the
beginning and ending points of a line. As there are four points defined, the result is
that two lines are drawn.

< GL Fun = =

[28]

Chapter 2

Getting primitive

Basic objects, such as points and lines, are called primitives. It would be pretty
difficult to create everything out of points and lines, so OpenGL defines other
primitive shapes that you can use to create more complicated objects.

In this section, we will dig a little under the hood and find out how OpenGL actually
creates more realistic images on your screen. It may surprise you that a single,
geometric figure is used to create everything from the simplest to the most complex
graphics. So, roll up your sleeves and get ready to get a little greasy.

A triangle by any other name

Have you ever seen a geodesic dome? Although the dome appears to be spherical, it
is actually built out of a combination of triangles. It turns out that triangles are very
easy to put together in such a way that you can add a slight amount of curvature

to the object. Each triangle can be attached at a slight angle to the others, allowing
you to create a dome made out of flat triangles. Also, consider this: the smaller the
triangle, the more convincing the end result!

[29]

Your Point of View

The basic unit that is used to draw all modern graphics is the humble triangle.
Graphic cards have been specifically engineered to be able to draw triangles —really
small triangles —really fast. A typical graphics card can draw millions of triangles
every second. Higher end cards reach billions of triangles per second.

Remember when we drew points and lines earlier? Each point had one vertex, and
each line had two vertices. Of course, each triangle has three vertices.

A primitive example
It's time to take a look at some code in action. Add the following code after the
drawLines function in the GLFun project:

void drawSolidTriangle ()

{

glBegin (GL_TRIANGLES) ;

glColor3f(0.0f, 0.0f, 1.0f);
glVertex2f (0.1f, -0.6f);
)
)

7

glVertex2f (0.7f£, -0.6f
glVertex2f (0.4f, -0.1f

7

glEnd () ;

}
Then change the middle line of the update function to call drawSolidTriangle:

void update ()

{

glClear (GL_COLOR BUFFER _BIT) ;
drawSolidTriangle () ;
glFlush() ;

}

[30]

Chapter 2

Run the program, and you will see the following output:

You may notice a similarity between the code for drawsolidTriangle and

ol

GL Fun

drawPoints. Look closely at the code, and you will see that the three glvertex

functions define the same three points. However, in this case we told OpenGL to
draw triangles, not points. You should also take a look at the code and make sure
you understand why the triangle is rendered blue.

Let's take one more example. Add the following code below the drawSolidTriangle
function:

void drawGradientTriangle ()

{

glBegin (GL_TRIANGLES) ;

glColor3f(1.0f, 0.0f, 0.0f);
glvertex2f (0.3f, -0.4f);

glColor3f(0.0f, 1.0f, 0.0f);
glvertex2f (0.9f, -0.4f);

glColor3f(0.0£f, 0.0f, 1.0f);
glvertex2f (0.6£f, -0.9f);

glEnd () ;

[31]

Your Point of View

Be sure to change the middle line in update to call drawGradientTriangle:

void update ()

{

glClear (GL_COLOR_BUFFER BIT) ;
drawGradientTriangle () ;
glFlush() ;

}

Run the program, and this is what you will see:

c GL Fun = B

You will immediately notice that this triangle is filled with a gradient instead of
a solid color. If you look closely at the code, you will see that a different color is
being set for each vertex. OpenGL then takes care of interpolating the colors
between each vertex.

From triangles to models

Triangles can be put together in an infinite number of ways to form almost any shape
imaginable. It is important to understand that triangles are just geometry. Triangles
are used to build the shape of your object. We call these shapes models.

[32]

Chapter 2

Building a model using a single triangle at a time would be very time consuming, so
3D graphics programs, such as Maya and Blender, allow you to create models out
more complex shapes (which are themselves built out of triangles). These models can
then be loaded into your game and rendered by OpenGL. OpenGL literally sends a
the list of points to form these triangles directly to the video card, which then creates
and image out of them on the screen. We will see this process in action when we
begin to deal with 3D game design.

Introducing textures

Images in games are called textures. Textures allow us to use real world images to
paint our world. Think about what it would take to create a dirt road. You could
either color the triangles in exactly the right way to make the overall scene look like
dirt, or you could apply an actual image (that is, a texture) of dirt to the triangles.
Which of these do you think would look more realistic?

Using textures to fill the triangles

Let's say that you are going to paint your bedroom. You can either use paint to
color the walls, or you could buy some wallpaper and put that on your walls. Using
images to add color to our triangles is pretty much like using wallpaper to color
our bedroom walls. The image is applied to the triangle, giving it a more complex
appearance than what could be created by color alone:

When we want to get really tricky, we use textures to fill the inside of our triangles
instead of colors. A marble texture has been applied to the triangle in the preceding
image. You could imagine using this technique to create a marble floor.

[33]

Your Point of View

Remember the car we were working with before? It didn't look much like a triangle,
did it? In fact, many real-world objects look more like rectangles than triangles:

It turns out that that all the textures that we use in games are actually rectangles.
Imagine that the car that we have been dealing with is actually embedded inside
an invisible rectangle, depicted in the following image as light gray:

P

Most graphic programs use a checkerboard background to indicate the areas of the
image that are transparent.

e e
AR

Using rectangles for all of our shapes solves one big problem that you might not have
thought of earlier. If you recall, it was very important to position the car at exactly
(5, 5). To do so, we decided to place the bottom-left corner of the car at point (5, 5).

+

+5 R 4

+5

[34]

Chapter 2

Looking at the car, it is actually a little difficult to figure out exactly where the
bottom-left corner would be. Is it the lower left corner of the bumper, the tire, or
somewhere else?

?‘?T.
?

By embedding the car inside of a rectangle, as we just discussed, the problem is
immediately solved.

A matter of reference

When working with a texture, it is very important to know what point is being used
as a reference, usually known as the pivot point. In the following images, a black dot
is used to represent the pivot point. The pivot point affects two critical issues. First,
the pivot point determines exactly where the image will be placed on the screen.
Second, the pivot point is the point on which the image will pivot when rotated.

Compare the two scenarios depicted in the following images:

¢ |

[35]

Your Point of View

The pivot point for the car in the preceding image has been set to the bottom-left
corner of the image. The car has been rotated 90 degrees counter-clockwise.

The pivot point for the car in the preceding image has been set to the center of the
image. The car has been rotated 90 degrees counter-clockwise. Notice how the pivot
point affects not only how the car is rotated but also its final position in relation to its
original position after the rotation is completed.

Hanging out in the quad

So, are you confused yet? First, I tell you that the most basic shape used to create
images is a triangle, and then I tell you that all textures are actually rectangles.
Which one is it?

Just then, your high-school geometry teacher silently walks into the room, goes up to
the chalkboard that just magically appeared on your wall, and draws something like
the following diagram:

Of course! You suddenly realize that two triangles can be fit together to form a
rectangle. In fact, this arrangement is so useful that we have given it a name: quad.

When it comes to 2D graphics, the quad is the king.

[36]

Chapter 2

Coding the quad

It's time to take a look at some code. Add the following code beneath the
drawGradientTriangle function in GLFun:

void drawQuad ()

{

glBegin (GL_QUADS) ;

glColor3f(0.0f, 1.0f, 0.0f);
glvertex2f (0.1£f, -0.1f);
glvertex2f (0.1f, -0.6f);
glvertex2f (0.6£f, -0.6f);
glvertex2f (0.6£f, -0.1f);
glEnd () ;

}

As usual, change the middle line in update to call drawQuad. Run the program, and
you will get a pretty green square, er quad! It's important to note that the points
are defined in order starting from the upper-left corner and then moving counter-
clockwise in order.

< GL Fun = I

[37]

Your Point of View

The order that the points are defined in is known as winding.
By default, a counter-clockwise winding tells OpenGL that the
M side facing out is the side that is considered the front. This helps
Q determine, among other things, whether this face should be lit, and
it becomes even more significant when we begin working in 3D. As
it turns out, GLUT simplifies our life so that it doesn't matter if we
use clockwise or counter-clockwise winding when using GLUT.

Rendering a texture

Rendering a texture consist of two steps: loading the image and rendering the image
using an OpenGL primitive. Our final achievement in this chapter will be to modify
GLFun so that it will render a texture using a quad.

Loading the texture

Our first step is to create a function to load a texture. As it turns out, this isn't all that
easy. So, I'm going to give you the code for a function that loads a 24-bit BMP file,
and we'll treat it like a black box that you can use in your own code.

Add this code to the top of your existing GLFun code:

GLuint texture;
#pragma warning(disable: 4996)
bool loadTexture (const char* filename)
{
unsigned char header[54];
unsigned char* data;
int dataPos;
int width;
int height;
int imageSize;

FILE * file = fopen(filename, "rb");

if (!file) return false;
if (fread(header, 1, 54, file) != 54) return false;
if (header([0] != 'B' || header[1l] != 'M') return false;

dataPos = * (int*) & (header [0x0A]) ;
imageSize = * (int*) & (header[0x22]) ;
width = * (int*) & (header [0x12]) ;
height = *(int*) & (header[0x16]) ;

[38]

Chapter 2

if (imageSize == 0) imageSize = width*height * 3;
if (dataPos == 0) dataPos = 54;

data = new unsigned char [imageSize];
fread(data, 1, imageSize, file);
fclose (file) ;

glGenTextures (1, &texture) ;

glBindTexture (GL TEXTURE 2D, texture);

glTexImage2D (GL TEXTURE 2D, 0, GL_RGB, width, height, 0, GL_RGB,
GL UNSIGNED BYTE, data);

glTexParameteri (GL_TEXTURE 2D, GL TEXTURE MAG FILTER, GL_NEAREST) ;

glTexParameteri (GL TEXTURE 2D, GL_TEXTURE MIN FILTER, GL_ NEAREST) ;

return true;

}
Add these lines of code to initGL:

glEnable (GI,_TEXTURE_2D) ;
glTexEnvf (GL_TEXTURE_ENV, GI, TEXTURE_ENV MODE, GI,_ MODULATE) ;

We are not going to dissect this piece of code line by line. In brief, it opens the image
file, extracts the first 54 bytes of the file (the bmp header data), and stores the rest

of the file as image data. A few OpenGL calls are made to assign this data to an
OpenGL texture and that's it.

You need to have a call that loads the texture in, so add this line of code to tmain
just after the call to initGL:

loadTexture ("car.bmp") ;

Of course, replace car.bmp with the file that you want to load in. Ensure that you
have placed the appropriate graphic files in the source code folder.

Texture wrapping

In order to display a texture on the screen, OpenGL maps the texture onto another
primitive. This process is known as texture wrapping. As textures are rectangular, it
makes sense to map the texture onto a quad.

[39]

Your Point of View

The following image shows a texture the way that OpenGL sees it: a rectangle with
four texture coordinates:

0,0 1,0

0,1 1,1

The upper-left is texture coordinate 0, 0. The lower-right is texture coordinate 1, 1.
You should be able to identify the texture coordinates of the other corners.

It might make it easier to conceptualize OpenGL numbers if you
M convert them to percentage, where 0 is zero percent and 1 is 100
Q percent. For example, you can think of the lower-left corner as
being zero percent of the width of the texture and one-hundred
percent of the height of the texture.

In order to render a texture, we overlay it (or wrap it) onto a quad. So, let's say we
have the following quad defined:

0,0 1,0

0,1 1,1

[40]

Chapter 2

We could map the texture coordinates to the quad coordinates:

Texture Coordinate Maps to | Quad Coordinate
0,0 0,0
1,0 1,0
1,0 1,0
0,1 0,1

The following figure shows this graphically:

0,0 1,0
1,0

A 4

v
Y

) 1,1
0,1 1,1

In its simplest form, texture wrapping is the process of mapping the corners of a
texture to the corners of a quad.

You will see texture wrapping also referred to as uv wrapping.
M I always tried to figure out what uv meant! Here's the real story:
Q x and y were already used to refer to the quad coordinates, and
we had to have something else to call the texture coordinates, so
some bright person said, "Let's use u and v!"

[41]

Your Point of View

Creating a textured quad

Now, we will write the code to render a textured quad. Add the following function
to the code:

void drawTexture ()

{

}

glBindTexture (GL TEXTURE 2D, texture);
glBegin (GL_QUADS) ;

glTexCoord2d (0.0, 0.0); glVertex2d(0.0, 0.0);
glTexCoord2d (1.0, 0.0); glVertex2d(0.5, 0.0);
glTexCoord2d (1.0, 1.0); glVertex2d(0.5, 0.5);
glTexCoord2d (0.0, 1.0); glVertex2d(0.0, 0.5);
glEnd () ;

Here is what this code does:

glBindTexture (GL TEXTURE 2D, texture):Even if we have thousands
of textures in a game, OpenGL can only work with one texture a time. The
call to glBindTexture tells OpenGL which texture we are working with
right now. Each time a texture is created, OpenGL assigns a number to that
texture, called the texture handle.

When we loaded our bitmap, we used the glGenTextures (1, &texture)
command, which instructed OpenGL to generate one texture and save the
handle into the variable called texture. We then pass this value into the
glBindTexture function, along with a flag that tells OpenGL that we are
working with a 2D texture.

glTexCoord2d (0.0, 0.0); glvertex2d (0.0, 0.0): We put these two
lines together because they work together. You should recognize the call to
glvertex2d. This function tells OpenGL how to wrap the texture onto the
quad (you should also recognize that we are drawing a quad because we set
that up in the previous line of code).

Each call to glTexCoord2d defines a texture coordinate. The very next line of
code maps the texture coordinate to a quad coordinate. The order is essential:
first define a texture coordinate, then define the corresponding quad coordinate.

By the way, don't forget to replace the middle line of code in update with the
following line of code:

drawTexture () ;

[42]

Chapter 2

Now, run the program!

= GL Fun

Putting the pieces together
The following image is a composite that illustrates most of the concepts we have
covered so far. See if you can you identify the following:

* The transparent areas

* The triangles

* The vertices

* The pivot point

* The texture

* The quad

Your Point of View

Summary

This chapter has covered the core concepts that are required to display images on
your screen. We started by discussing the OpenGL coordinate system for a 2D game.
The coordinate system allows you to place objects on the screen. This was followed
by a discussion about the camera, OpenGL's way of viewing objects that appear on
your screen.

Next, you learned how triangles and quads are used to create simple graphics, and
how textures can be applied to these primitives to render 2D images to the screen.

You could finally see an image on your screen that has been rendered by OpenGL.
As they say, a picture is worth a thousand lines of code!

In the next chapter, you will learn how to turn your still photography into moving
pictures through the wonder of animation!

[44]

A Matter of Character

A video game wouldn't be much fun without characters, and this chapter is all about
bringing your game characters to life. Games typically have two kinds of characters.
First, there is the character or characters that you are playing as. These are called the
player characters. The characters that are controlled by the computer are called the
non-player characters or NPCs.

This chapter will explain how to create characters for your game. Along the way we
will cover:

* Sprites: Sprites are any textures that the player interacts with in the game.
This includes the player characters, NPCs, and other objects in the game.

* Animation: The art of making an image appear to move is called animation.
You will learn how to use multiple images to make your textures move on
the screen.

* Atlases: Images can be stored one at a time, or they can be combined into
single composite texture known as a sprite sheet or an atlas.

Spritely speaking

Many years ago, a computer geek invented a cool way to render and display small
images on a computer screen. These images would move around on the screen and
even collide with other objects. The computer geek called these images sprites, and
that name has stuck ever since.

[45]

A Matter of Character

Sprites versus non-sprites

A sprite is simply an image that represents an object on the screen. Examples of
sprites include characters, NPCs, weapons, alien spaceships, and rocks. Anything
that can move on the screen or be hit by another object in the game is a sprite.
Objects that don't interact with other objects aren't sprites. Examples might include
mountains in the background, the ground, and the sky.

Obviously, it takes both sprites and non-sprites to implement a game. Also, the
distinction is a little arbitrary. Some games implement all of the images in the
game as sprites because it is more convenient to treat all images in the game in a
consistent manner.

Flipbook animation

Did you ever create a flipbook when you were a kid? To jog your memory, here is
how it worked. First, you sketched a simple figure on a notepad. Then you went to
the next page and sketched the same image, but this time something was slightly
different. You continued sketching images that were slightly different from the
original on successive pages. When you were done, you flipped the pages at the
notebook edge and saw what appeared to be a rudimentary movie.

Another example is a movie. Movies are recorded on film as frames. The film is then
run through a projector, which plays the film back one frame at a time. The key, as
mentioned before, is to play frames back at least 24 frames per second to fool the eye
into thinking that there is fluid motion.

[46]

Chapter 3

Framed animation

2D sprite animation works much like a flipbook. An artist draws successive versions
of an image. When the images are rendered one after another, it appears to move.
Each image in an animation is called a frame. It takes at least 24 or more fps to create
a convincing animation. Obviously, more frames will create a smoother animation.

Frame 1 Frame 2 Frame 3 Frame 4

The preceding image illustrates a very simple animation using four frames. The

only thing that changes is the robot's arm position. Played in sequence from Frame 1
through Frame 4, the arm would appear to swing from the front to the back and then
forward again. If this was combined with moving the sprite to the right, then you
would get a very simple animation of a walking robot.

As the preceding example illustrates, I am not an artist! I am a
o coder, so the art created for this book will be very simple. It is
~ actually common for very simple placeholder art to be used in
Q the initial stages of a game. This allows the programmers to test
features of the game while the art team is working on the real art
that will be put in the game at a later stage.

Creating sprites
Professional 2D artists use programs, such as Adobe Photoshop, to create 2D assets

for a game. Unfortunately, we can't take the time to teach you how to use a program
as sophisticated as Photoshop.

If you want to play around with creating your own assets, then you might try

the Paint program that comes installed on any Windows based computer. If you
really want to dig deep into 2D art creation without digging deeply into your bank
account, then you can download GIMP (http://www.gimp.org), a free, full-features
2D image manipulation program.

Working with PNGs

In the previous chapter, we loaded and rendered a bitmap file. It turns out that
bitmaps aren't the best format to work with sprites because they take more file space
(and therefore, more memory) than PNGs, and bitmaps do not support transparency.

[47]

http://www.gimp.org

A Matter of Character

Before we had image formats that allowed transparency to
M be directly encoded as part of the image, we used a specific
Q background color, and then expected our image library to remove
that color when it handled the image. Magenta was often used as
the background because it is a color rarely used in images.

Bitmaps are larger in file size than PNGs because they are not stored in a compressed
format. Compression allows an image to be stored in less space, and this can be very
important on devices, such as mobile phones.

PNGs are stored using a lossless compression algorithm. Lossless means that the
image quality is not sacrificed to achieve the compression. Other formats, such as
JPEG, can be stored in a compressed format, but use a lossy algorithm that degrades
the image quality.

PNGs also support transparency using an alpha channel. In addition to storing the
red, green, and blue component of each pixel (RGB), PNGs also store each pixel's
transparency in the alpha channel (RGBA).

You will recall from the previous chapter that all textures are represented as
rectangles in a game. However, real shapes aren't rectangular. Trees, cars, and robots
all have much more complex shapes.

If we used bitmaps for all of our images, then the full rectangle of the texture would
be rendered blocking out everything behind the sprite. In the following image, our
robot is passing in front of a pipe, and part of the pipe is occluded by the blank space
in the bitmap.

[48]

Chapter 3

In a PNG image, we set the blank space to be transparent. In the following image, the
pipe is no longer occluded by the transparent parts of the image of the robot:

N
4

In the previous chapter, we wrote a code to load a BMP file. Normally, we would
have to write different code to load a PNG file. In fact, we would have to write a
loader for each different type of image we wanted to work with.

Fortunately, someone has already done all of this work and made it available in a
library known as SOIL: Simple OpenGL Image Library. You can download your
copy from http://www.lonesock.net/soil.html.

There are several advantages to using the SOIL library:

* We no longer have to worry about writing our own loader for every
type of image that we want to use. SOIL supports BMP, PNG, and many
other formats.

* File loading is not completely abstracted. You don't have to worry about how
the code works, only that it does.

* SOIL has other features that may be useful (such as the ability to write out
image files).

The download comes as a zipped folder. Once you unzip the folder, you will see a
folder named Simple OpenGL Image Library. This folder contains a lot of files, but
we only need soil.h.

[49]

http://www.lonesock.net/soil.html

A Matter of Character

Linking to the SOIL library

Now, it is time to add the SOIL library to our project:

1.

ARSI

10.

Find the folder where you unzipped the SOIL code.

Open the 1ib folder and find 1ibSOIL.a.

Copy 1ibsOIL.a to the folder that contains the RoboRacer2D source code.
Open the RoboRacer2D project.

Right-click on the RoboRacer2D project in the Solution Explorer panel and
choose Properties.

For the Configuration drop-down box, make sure that you select All
Configurations.

Open the Configuration Properties branch, then the Linker branch.
Select the Input option.
Click the dropdown for Additional Dependencies and choose <Edit...>.

Enter opengl32.1ib and glu32.1ib on separate lines in the dialog window
and click OK.

Additional Dependencies ?

lua2.lib
openglid.lib
SOIL.lib

Inherited values:

kernel32.lib L
user32.lib

gdi32.lib

winspool.lib

comdlg32.lib

[#] Inherit from parent or project defaults Macross =

QK Cancel

[50]

Chapter 3

Library files for Windows usually end in . 1ib, while those
\ written for UNIX end in . a. The standard SOIL distribution
~ comes with the UNIX library; you need to use the Windows
Q library. You can either find SOIL. 1ib online, use the SOIL
source code to create your own Windows library file, or
download SOIL.lib from the book's website.

Including the SOIL header file

Next, we need to copy the SOIL header file into our project and include it in
our code:

1. Find the folder where you unzipped the SOIL code.
Open the src folder and find soIL.h.
Copy SsOIL.h to the folder that contains the RoboRacer2D source code.
Open the RoboRacer2D project.
Open RoboRacer2D. cpp.

AL N

Add #include "SOIL.h" to the list of includes.

M You will notice that there are many other files that were unzipped
Q as part of the SOIL package. This includes all of the original
source files and several samples for how to use the library.

Opening an image file

Now, we are ready to write a function that loads an image file. We will pass in the
name of the file, and the function will return an integer representing a handle on the
OpenGL texture.

The following lines of code uses SOIL to load an image:

GLuint texture = SOIL load OGL_ texture
(

imageName,

SOIL_LOAD_ AUTO,

SOIL_CREATE_NEW ID,

0

[51]

A Matter of Character

All of the work is done by the call to SOIL_load_ OGL_texture. The four parameters
are the most generic settings:
* The first parameter is the path and filename to the image file.

* The second parameter tells SOIL how to load the image (and in this case, we
indicate that we want SOIL to figure things out automatically).

* The third parameter tells SOIL to create an OpenGL texture ID for us.
* The fourth parameter, if used, can be set to several flag bits that tell SOIL to
perform some custom processing. We are not using this, so we just send a 0.

We will use code, such as this one, to load images into our sprite class.

1
~ If you want to see all of the options available to you, open
SOIL.h and read the source code comments.

Coding a sprite class

In order to easily incorporate sprites into our game, we will create a class specifically
for dealing with sprites.

Let's think about the features that we want:

* An array of images.
* Anindex that represents the current frame.
e A variable that holds the total number of frames.

* Variables to store the current x and y position of the sprite. For this game, this
will be the upper-left corner of the image.

* A variable that stores the x and y components of the current velocity of the
sprite (0 if it isn't moving).

* Variables that store the width and height of the image. Note that if the sprite
has multiple images, they must all be the same size.

* A Boolean that tells us if this sprite collides with other sprites.
* A Boolean that tells us if this sprite should be rendered normal or flipped.
* A Boolean that tells us if this sprite is visible right now.

* A Boolean that tells us if this sprite is active right now.

[52]

Chapter 3

In addition to these properties, we would also like to be able to manipulate the sprite
in several ways. We may add methods to:

* Add an image to the sprite
* Update the position of the sprite
* Update the animation frame for the sprite

* Render the sprite to the screen

Open your game project, and add a new class called sprite.cpp with a header file
called sprite.h.

o In Visual Studio, right-click on the Header Files filter in the
~ Solution Explorer pane. Then choose Add Class. Give the
Q class the name Sprite and click Add. Visual Studio will
create a template header and source code files for you.

Use the following code for sprite.h:

#pragma once:
#include <gl\gl.h>

class Sprite
{

public:
struct Point
{

GLfloat x;

GLfloat vy;

Vi

struct Size
{
GLfloat width;
GLfloat height;
}i
struct Rect
{
GLfloat top;
GLfloat bottom;
GLfloat left;
GLfloat right;

}i

protected:
GLuint* m_textures;

[53]

A Matter of Character

unsigned int m_texturelIndex;
unsigned int m_currentFrame;
unsigned int m numberOfFrames;
GLfloat m animationDelay;
GLfloat m animationElapsed;

Point m position;
Size m_size;
GLfloat m velocity;

bool m isCollideable;
bool m flipHorizontal;
bool m flipVertical;
bool m isVisible;

bool m_isActive;

bool m useTransparency;
bool m isSpriteSheet;

public:
Sprite(const unsigned int m_ pNumberOfTextures) ;
~Sprite();

void Update (const float p deltaTime) ;
void Render () ;

const bool AddTexture (const char* p fileName, const bool p
useTransparency = true) ;

const GLuint GetCurrentFrame () {
if (m_isSpriteSheet)

return m_textures[0];

}

else

return m_textures|[m currentFrame] ;

void SetPosition(const GLfloat p_x, const GLfloat p y) { m_
position.x = p_x; m position.y = p y; }
void SetPosition(const Point p position) { m position = p position;
const Point GetPosition() { return m position; }
const Size GetSize() const { return m size; }

[54]

Chapter 3

void SetFrameSize (const GLfloat p width, const GLfloat p_height) {
m_size.width = p width; m _size.height = p height; }

void SetVelocity(const GLfloat p _velocity) { m velocity = p_
velocity; }

void SetNumberOfFrames (const unsigned int p frames) { m

numberOfFrames = p frames; }
const bool isCollideable() const { return m _isCollideable; }
void IsCollideable (const bool p value) { m_isCollideable = p value; }

void FlipHorizontal (const bool p value) { m _flipHorizontal = p_
value; }
void FlipVertical (const bool p _value) { m flipVertical = p value; }
void IsActive (const bool p value) { m_isActive = p value; }
const bool IsActive() const { return m_isActive; }
void IsVisible (const bool p value) { m_isVisible = p value; }
const bool IsVisible() const { return m isVisible; }
void UseTransparency (const bool p value) { m useTransparency = p_
value; }

}i

I know, it's a lot of code! This is a typical object-oriented class, consisting of protected
properties and public methods. Let's take a look at the features of this class:

* #pragma once: Thisis a C++ directive telling Visual Studio to only include
tiles once if they are included in several source files.

An alternative is to use header guards:
#ifndef SPRITE H
#define SPRITE H
S ...code...
#endif

This stops the code from being included if SPRITE_H has already
been defined. Then the header has already been included and
will not be included more than once.

e Weinclude gl .h in this header file because we need access to the standard
OpenGL variable types.

* Inside the class, we define two very useful structures: point and rect. We
work with points and rectangles so much that it makes sense to have simple
structures that hold their values.

¢ The member variables are as follows:

° m_textures is a GLuint array that will dynamically hold all of the
OpenGL texture handles that make up this sprite.

[55]

A Matter of Character

[e]

m_textureIndex starts at zero, and is incremented each time a
texture is added to the sprite.

m_currentFrame starts at zero, and is incremented each time we
want to advance the frame of the animation.

m_numberOfFrames stores the total number of frames that make up
our animation.

m_animationDelay is the number of seconds that we want to pass
before the animation frame advances. This allows us to control the
speed of the animation.

m_animationElapsed will hold the amount of time that has elapsed
since the last animation frame was changed.

m_position holds the x and y positions of the sprite.
m_size holds the width and height of the sprite.

m_velocity holds the velocity of the sprite. Larger values will cause
the sprite to move more quickly across the screen.

m_isCollideable is a flag that tells us whether or not this sprite
collides with other objects on the screen. When set to false, the
sprite will pass through other objects on the screen.

m_flipHorizontal is a flag that tells the class whether or not the
sprite image should be horizontally flipped when it is rendered. This
technique can be used to save texture memory by reusing a single
texture for both right and left movement.

m_flipVertical is a flag that tells the class whether or not the sprite
image should be vertically flipped when it is rendered.

m_isVisible is a flag that indicates whether the sprite is currently
visible in the game. If this is set to false, then the sprite will not be
rendered.

m_isActive is a flag that indicates whether the sprite is currently
active. If this is set to false, then the sprite animation frame and sprite
position will not be updated.

m_useTransparency is a flag that tells the sprite class whether or not
to use the alpha channel in the sprite. As alpha checking is costly, we
set this to false for images that don't have any transparency (such as
the game background).

m_isSpriteSheet is a flat that tells the sprite class if a single texture is used

to hold all of the frames for this sprite. If set to true, then each frame is
loaded as a separate texture.

[56]

Chapter 3

Next, we have the methods:

o

Sprite is a constructor that takes a single parameter, p_
numberOfTextures. We have to tell the class the number of textures
that will be used when the sprite is created so that the correct amount
of memory can be allocated for the textures dynamic array.

~Sprite is the class destructor.

Update will be used to update the current animation frame and the
current position of the sprite.

Render will be used to actually display the sprite on the screen.

AddTexture is used once the sprite is created to add the required
textures.

GetCurrentFrame is used when the sprite is rendered to determine
which frame of the sprite to render.

The remaining methods are simply accessor methods that allow you to
modify the class properties.

Next, let's start the class implementation. Open Sprite.cpp and add the

following code:

#include

"stdafx.h"

#include "Sprite.h"

#include

"SOIL.h"

Sprite::Sprite(const unsigned int p numberOfTextures)

{

m_textures = new GLuint [p numberOfTextures] ;
m_textureIndex = 0;

m_currentFrame = 0;

m_numberOfFrames = 0;

m_animationDelay = 0.25f;

m_animationElapsed = 0.0f;

m _position.x = 0.0f;

m_position.y
m_size.height = 0.0f;
m_size.width =
m_velocity = 0.0f;

0.0f;

0.0f;

m_isCollideable = true;
m_flipHorizontal = false;
m_flipVertical = false;
m_isVisible = false;
m_isActive = false;
m_isSpriteSheet = false;

[57]

A Matter of Character

}

Sprite::~Sprite ()

{

delete[] m_textures;

}

Here are some details about the implementation code:

* Along with stdafx.h and Sprite.h, we include SOIL.h because this is the
actual code block that we will use to load textures

¢ The sprite constructor:

° Dynamically allocates space for the m_textures array based on
p_numberOfTextures.

° Initializes all of other class properties. Note that most of the Boolean
properties are set to false. The result is that a newly created sprite will
not be active or visible until we specifically set it to be active and visible.

* The ~sprite destructor deallocates the memory used for the m_textures array

We will implement the Update, Render, and AddTexture methods next.

You probably noticed that I prefix many of the variables in
M my code with eitherm_ or p_. m_ is always used to prefix the
Q name of class properties (or member variables), and p_ is used
to prefix variables used as parameters in functions. If a variable
does not have a prefix, it is usually a local variable.

Creating sprite frames
We already discussed how 2D animations are created by drawing multiple frames
of the image with each frame being slightly different. The key points that must be
remembered are:

* Each frame must have exactly the same dimensions

* The placement of the image within the frame must be consistent

* Only the parts of the image that are supposed to move should change from
frame to frame

[58]

Chapter 3

Saving each frame

One technique to save your frames is to save each frame as its own image. As you
will eventually have a lot of sprites and frames to work with, it is important to come
up with a consistent naming convention for all of your images. For example, with
our three frame robot animation that were illustrated previously, we might use the
following filenames:

* robot left 00.png
® robot left 01.png
* robot left 02.png
® robot left 03.png
® robot right 00.png
® robot right 0l1.png
® robot right 02.png
® robot right 03.png

Every image in the game should use the same naming mechanism. This will save you
endless headaches when coding the animation system.

M You should save all of your images in a folder named
Q "resources" which should be created in the same folder
that holds your source files.

Loading a sprite from individual textures

Let's take a look the code to load a sprite that has each frame saved as an
individual file:

robot right = new Sprite(4);

robot right->SetFrameSize (100.0f, 125.0f);

robot right->SetNumberOfFrames (4) ;

robot right->SetPosition(0, screen height - 130.0f);

’

robot right->AddTexture ("resources/robot right 00.png"

’

)

robot right->AddTexture ("resources/robot right 0l.png");
robot right->AddTexture ("resources/robot right 02.png")
()

’

robot right->AddTexture ("resources/robot right 03.png"

[59]

A Matter of Character

The important points to notice about the preceding code are:

* We create a new instance of our sprite class to store the information. We have
to tell the sprite class to allocate space for 4 textures for this sprite.

* We first store the width and height of each frame. In this case, this happens
to be the width and height of each texture that makes up this sprite. As every
texture that makes up a particular sprite must have the same dimensions, we
only have to make this call once.

* We then store the number of frames in this sprite. This might seem to
duplicate the number of textures that we specified in the constructor.
However, as you will see in the next section, the number of textures does not
always equal the number of frames.

* We now add each texture to the sprite. The sprite class takes care of
allocating the necessary memory for us.

Creating a sprite sheet

An alternative method to store your sprites is to use a sprite sheet. A sprite sheet
holds all of the sprites for a particular animation in a single file. The sprites are often
organized into a strip.

As the dimensions of each frame are identical, we can calculate the position of each
frame in a particular animation as an offset from the first frame in the sprite sheet.

You can download a cool little program called Gluelt at
M http://www.varcade.com/blog/glueit-sprite-
Q sheet-maker-download/. This small program allows you
to specify several individual images, and then it glues them
into a sprite sheet for you.

[60]

http://www.varcade.com/blog/glueit-sprite-sheet-maker-download/
http://www.varcade.com/blog/glueit-sprite-sheet-maker-download/

Chapter 3

Loading a sprite sheet

The following code loads a sprite that has been stored as a sprite sheet:

robot_right strip = new Sprite(1);

robot_right strip->SetFrameSize(125.0f, 100.0f);

robot_right strip->SetNumberOfFrames (4) ;

robot_right strip->SetPosition(0, screen height - 130.0f);

robot right strip->AddTexture ("resources/robot_right strip.png");

This code is very similar to the code that we used to create a sprite with individual
textures previously. However, there are important differences:

We only need to allocate space for one texture because we only load one
texture. This is the main advantage of using a sprite sheet because it is
much more efficient to load a single large texture than it is to load several
smaller textures.

Again, we set the width and height of each frame. Note that these are the
same values as when loading individual textures because the important
information is the width and height of each frame, not the width and height
of the texture.

Again, we store the number of frames for this sprite. This sprite still has four
frames, although all of the four frames are stored in a single image.

We then add a single image to the sprite.

o When we get ready to render each frame of the animation, the
~ sprite class will take care of calculating exactly which part the
Q sprite strip to render based on the current frame and the width
of each frame.

Loading our sprites

The following code shows the full code that we will use to load the sprites into our
game. Open the RoboRacer2D project and open RoboRacer . cpp. First we need to
include the Sprite header:

#include "Sprite.h"

Next, we need some global variables to hold our sprites. Add this code in the
variable declarations section of the code (before any functions):

Sprite* robot left;
Sprite* robot right;

Sprite* robot right strip;

[61]

A Matter of Character

Sprite* robot left strip;
Sprite* background;
Sprite* player;

We created pointers for each sprite that we will need in the game until this point:

* A sprite to move the robot left
* A sprite to move the robot right
* A sprite for the background

In order to make it easy for you to work with both types of sprites,
M I defined two sprites for each robot direction. For example,
Q robot_left will define a sprite made up of individual textures,
while robot_left_strip will define a sprite made up of a single
sprite sheet. Normally, you would not use both in a single game!

Now, add the LoadTextures function:

const bool LoadTextures ()

{
background = new Sprite(l);
background->SetFrameSize (1877.0f, 600.0f);
background->SetNumberOfFrames (1) ;
background->AddTexture ("resources/background.png", false);

robot right = new Sprite(4);

robot right->SetFrameSize(100.0f, 125.0f);

robot right->SetNumberOfFrames (4) ;

robot right->SetPosition(0, screen height - 130.0f);
robot right->AddTexture ("resources/robot right 00.png");
robot right->AddTexture ("resources/robot right 01.png");

7

7

)
)
robot right->AddTexture ("resources/robot right 02.png")
)

7

robot right->AddTexture ("resources/robot right 03.png"

robot left = new Sprite(4);

robot left->SetFrameSize(100.0f, 125.0f);
robot left->SetNumberOfFrames (4) ;

robot left->SetPosition(0, screen height - 130.0f);
robot left->AddTexture ("resources/robot left 00.png");
robot left->AddTexture ("resources/robot left 0l.png");
robot left->AddTexture ("resources/robot left 02.png")
robot left->AddTexture ("resources/robot left 03.png")

7

7

[62]

Chapter 3

}

robot right strip = new Sprite(1);

robot right strip->SetFrameSize(125.0f, 100.0f);

robot right strip->SetNumberOfFrames (4) ;

robot right strip->SetPosition(0, screen height - 130.0f);

robot right strip->AddTexture ("resources/robot right strip.png");

robot left strip = new Sprite(1l);

robot left strip->SetFrameSize(125.0f, 100.0f);

robot left strip->SetNumberOfFrames (4) ;

robot right strip->SetPosition(0, screen height - 130.0f);
robot left strip->AddTexture ("resources/robot left strip.png");

background->IsVisible (true) ;
background->IsActive (true) ;
background->SetVelocity (-50.0f) ;

robot right->IsActive (true);
robot right->IsVisible (true) ;
robot right->SetVelocity(50.0f) ;

player = robot right;
player->IsActive (true) ;
player->IsVisible (true) ;
player->SetVelocity (50.0f) ;

return true;

This code is exactly the same as the code that I showed you earlier to load sprites. It
is simply more comprehensive:

LoadTexures loads all of the sprites needed in the game (including duplicate
strip versions so that you can see the difference between using sprite sheets
versus individual textures).

SetPosition is used to set the initial position for the robot sprites. Notice
that we don't do this for the background sprite because its position starts at
(0o, 0),which is the default.

SetVisible and SetActive are used to set the background sprite and the
robot_left strip sprite as active and visible. All of the other sprites will
remain inactive and invisible.

[63]

A Matter of Character

As the loading of textures only needs to occur once in the game, we will add the
call to do this to the startGame function. Modify the startGame function in
RoboRacer. cpp:

void StartGame ()

{

LoadTextures () ;

}

The final step in getting our textures loaded is to implement the AddTexture method
in our sprite class. Open Sprite. cpp and add the following code:

const bool Sprite::AddTexture (const char* p imageName, const bool p
useTransparency)

{

GLuint texture = SOIL load OGL texture(p imageName, SOIL LOAD AUTO,
SOIL_CREATE NEW ID, 0);
if (texture == 0)

return false;

m_textures[m textureIndex] = texture;

m_textureIndex++;

if (m_textureIndex == 1 && m_numberOfFrames > 1)
m_isSpriteSheet= true;

}

else

m_isSpriteSheet = false;
m_useTransparency = p_useTransparency;
return true;

}

AddTexture is used after a new sprite has been created. It adds the required textures
to the m_textures array. Here's how it works:

* p_imageName holds the name and path of the image to load.

* p_useTransparency is used to tell the sprite class whether this image uses
an alpha channel. As most of our sprites will use transparency, this is coded
to default to true. However, if we set p_useTransparency to false, then
any transparency information will be ignored.

[64]

Chapter 3

* SOIL load_OGL_texture does all of the work of loading the texture.
The parameters for this call were described earlier in this chapter. Note that
SOIL is smart enough to load image types based on the file extension.

* If the texture was successfully loaded, SOIL._load OGL_texture will return
an OpenGL texture handle. If not, it will return 0. Generally, we would test
this value and use some kind of error handling, or quit if any texture did not
load correctly.

* Asthem_textures array is allocated in the constructor, we can simply store
texture in the m_textureIndex slot.

* We then increment m_textureIndex.

* We use a little trick to determine if this sprite uses a sprite sheet or individual
sprites. Basically, if there is only one texture but many frames, then we
assume that this sprite uses a sprite sheet and set m_isSpritesheet to true.

* Finally, we set m_useTransparency to the value that was passed in. This will
be used later in the Render method.

Rendering

We did a lot of work creating our sprites, but nothing is going to show up until we
actually render the sprites using OpenGL. Rendering is done for every frame of
the game. First, an Update function is called to update the state of the game, then
everything is rendered to the screen.

Adding a render to the game loop

Let's start by adding a call to Render in the GameLoop RoboRacer.cpp:

void GameLoop ()

{

Render () ;

}

At this point, we are simply calling the main Render function (implemented in the
next section). Every object that can be drawn to the screen will also have a Render
method. In this way, the call to render the game will cascade down through every
renderable object in the game.

[65]

A Matter of Character

Implementing the main Render function

Now, it is time to implement the main Render function. Add the following code to
RoboRacer. cpp:

void Render ()

{

glClear (GL_COLOR_BUFFER BIT) ;
glLoadIdentity () ;

background->Render () ;

robot left->Render () ;

robot right->Render() ;

robot left strip->Render();
robot right strip->Render();

SwapBuffers (hDC) ;

M Notice that we render the background first. In a 2D game, the
Q objects will be rendered in a first come, first rendered basis. This
way the robot will always render on top of the background.

Here's how it works:

We always start our render cycle by resetting the OpenGL render pipeline.
glClear sets the entire color buffer to the background color that we chose
when initializing OpenGL. glLoadIdentify resets the rendering matrix.

Next, we call Render for each sprite. We don't care if the sprite is actually
visible or not. We let the sprite class Render method make that decision.

Once all objects are rendered, we make the call to SwapBuffers. This is

a technique known as double-buffering. When we render our scene, it is
actually created in a buffer off screen. This way the player doesn't actually
see the separate images as they are composited to the screen. Then, a single
call to swapBuffers makes a fast copy of the offscreen buffer to the actual
screen buffer. This makes the screen render appear much more smoothly.

[66]

Chapter 3

Implementing Render in the Sprite class

The last step in our render chain is to add a render method to the sprite class.
This will allow each sprite to render itself to the screen. Open sprite.h and add
the following code

void Sprite::Render ()

{

if

{

(m_isVisible)
if (m_useTransparency)

{

glEnable (GL_BLEND) ;
glBlendFunc (GL_SRC_ALPHA, GL_ONE MINUS_SRC_ALPHA) ;

}

glBindTexture (GL_TEXTURE_2D, GetCurrentFrame()) ;
glBegin (GL_QUADS) ;

GLfloat x = m_position.x;
GLfloat y = m _position.y;

GLfloat w = m_size.width;
GLfloat h = m_size.height;

GLfloat texWidth = (GLfloat)m_textureIndex / (GLfloat)m_

numberOfFrames;

GLfloat texHeight = 1.0f;

GLfloat u = 0.0f;

GLfloat v = 0.0f;

if (m_textureIndex < m_numberOfFrames)

{

u = (GLfloat)m_currentFrame * texWidth;

}

glTexCoord2f (u, Vv); glVertex2f(x, vy);

glTexCoord2f (u + texWidth, v); glVertex2f(x + w, y);
glTexCoord2f (u + texWidth, v + texHeight); glVertex2f(x + w, y +
glTexCoord2f (u, v + texHeight); glVertex2f(x, y + h);

glEnd() ;

if (m_useTransparency)

{

[67]

A Matter of Character

}

glDisable (GL_BLEND) ;

}

This is probably one of the more complex sections of the code because rendering
has to take many things into consideration. Is the sprite visible? Which frame of the
sprite are we rendering? Where on screen should the sprite be rendered? Do we care
about transparency? Let's walk through the code step by step:

First, we check to see if m_visible is true. If not, we bypass the entire render.

Next, we check to see if this sprite uses transparency. If it does, we have

to enable transparency. The technical term to implement transparency is
blending. OpenGL has to blend the current texture with what is already

on the screen. glEnable (GL_BLEND) turns on transparency blending. The
call to g1BlendFunc tells OpenGL exactly what type of blending we want
to implement. Suffice to say that the GL_SRC_ALPHA and GL._ONE_MIUS_
SRC_ALPHA parameters tell OpenGL to allow background images to be seen
through transparent sections of the sprite.

glBindTexture tells OpenGL which texture we want to work with right
now. The call to GetCurrentFrame returns the OpenGL handle of the
appropriate texture.

glBegin tells OpenGL that we are ready to render a particular item. In this
case, we are rendering a quad.

The next two lines of code set up the x and y coordinates for the sprite based
on the x and y values stored in m_position. These values are used in the
glvertex2f£ calls to position the sprite.

We will also need the width and height of the current frame, and the next
two lines store these as w and h for convenience.

Finally, we need to know how much of the texture we are going to render.
Typically, we render the entire texture. However, in the case of a sprite sheet
we will only want to render a section of the texture. We will discuss how this
works in more detail later.

Once we have the position, width, and portion of the texture that we want
to render, we use for pairs of calls to glTexCoord2f and glvertex2f to map
each corner of the texture to the quad. This was discussed in great detail in
Chapter 2, Your Point of View.

The call to g1End tells OpenGL that we are finished with the current render.

As alpha checking is computationally expensive, we turn it off at the end of
the render with a call to glDisable (GL BLEND).

[68]

Chapter 3

UV mapping
UV mapping was covered in detail in Chapter 2, Your Point of View. However, we'll
do a recap here and see how it is implemented in code.

By convention, we assign the left coordinate of the texture to the variable u, and the
top coordinate of the texture to the variable v. This technique is therefore known as
uv mapping.

OpenGL considers the origin of a texture to be at uv coordinates of (0, 0), and the
farthest extent of the texture to be at uv coordinates of (1, 1). So, if we want to render
the entire texture, we will map the entire range from (0, 0) to (1, 1) the four corners
of the quad. However, let's say that we only want to render the first half of the image
width (but the entire height). In this case, we will map the range of uv coordinates
from (0, 1) to (0.5, 1) to the four corners of the quad. Hopefully, you can visualize
that this will only render one-half of the texture.

So, in order to render our sprite sheets, we first determine how wide each frame of
the sprite is by dividing m_textureIndex by m_numberOfFrames. In the case of a
sprite that has four frames, this will give us a value of 0.25.

Next, we determine which frame we are in. The following table shows the uv ranges
for each frame of a sprite with four frames:

Frame u v

0 0.0to 0.25 0.0to 1.0
1 0.25t0 0.5 0.0to 1.0
2 0.5t00.75 0.0to 1.0
3 0.75t0 1.0 0.0to 1.0

As our sprite sheets are set up horizontally, we only need to worry about taking the
correct range of u from the whole texture, while the range for v stays the same.

So, here is how our algorithm works:
* If the sprite is not a sprite sheet, then each frame uses 100 percent of the

texture, and we use a range of uv values from (0,0) to (1, 1)

* If the sprite is based on a sprite sheet, we determine the width of each frame
(texwidth) by dividing m_textureIndex by m_numberOfFrames

* We determine the starting u value by multiplying m_currentFrame
by texwidth

* We determine the extent of u by adding u + texwidth

[69]

A Matter of Character

* We map u to the upper-corner of the quad, and u + texwidth to the lower
corner of the quad

* vis mapped normally because our sprite sheets use 100 percent of the height
of the texture

If you are having a hard time understanding uv mapping,
M don't fret. It took me years of application to fully understand
Q this concept. You can play around with the uv coordinates to
see how things work. For example, try settings of .05, 1, and
1.5 and see what happens!

One more detail

We need to take a closer look at the call to GetCurrentFrame to make sure you
understand what this function does. Here is the implementation:

const GLuint GetCurrentFrame ()

{

if (m_isSpriteSheet)

{

return m_ textures[0];

}

else

{

return m_textures [m_currentFrame] ;

}
}

Here is what is happening:
* If the sprite is a sprite sheet, we always return m_textures [0] because,
by definition, there is only one texture at index 0

* If the sprite is not a sprite sheet, then we return the texture at index
m_currentFrame. m_currentFrame is updated in the sprite update method
(defined next)

A moving example

The code that we created until this point creates a basic scene with our robot and a
background. Now, it's time to bring our robot to life using the power of animation.

[70]

Chapter 3

Animation actually has two components. First, the sprite itself will appear to animate
because we will play each frame of the sprite in sequence. If you use the stock files
that were made for this book, you will see the robot's eyes and arms move.

The second component is movement across the screen. It is the combination of the
robot's horizontal movement and body movements that will make a convincing
animation.

Adding update to the game loop

As with rendering, we start by adding an Update call to the GameLoop function.
Modify the GameLoop function in RoboRacer . cpp

void GameLoop (const float p deltatTime)
{

Update (p_deltatTime) ;

Render () ;

}

We now have two new features:

* Weadded p_deltaTime as a parameter. This represents the amount of time
that has passed in milliseconds since the last frame. We will see how this is
calculated in the following section.

* We added a call to the main Update function (defined in the following
section). Every object in the game will also have an Update method. In this
way, the call to update the game will cascade down through every object in
the game. We pass p_deltatTime so that every subsequent call to Update
will know how much time has passed in the game.

Implementing the main Update call

Our first task is to implement the Update function in RoboRacer . cpp. Add the
following function to RoboRacer . cpp:

void Update (const float p deltaTime)
{
background->Update (p_deltaTime) ;
robot left->Update(p_deltaTime) ;
robot right->Update(p_deltaTime) ;
robot left strip->Update(p deltaTime) ;
robot right strip->Update(p_deltaTime) ;

[71]

A Matter of Character

Notice that we make an Update call to every sprite. At this point, we don't care if the
sprite really needs to be updated. This decision will be made inside the Sprite class.

o In a real game, we would probably have an array of sprites,
~ and we would update them all by iterating through the array
Q and calling update on each element. As this game uses so few
sprites, I have coded each sprite individually.

Implementing Update in the Sprite class

Now it's time to implement the Update method in our Sprite class. This method
does all of the work required to both position the sprite and update the sprite's
internal animation. Add this code to Sprite.h:

void Sprite::Update(const float p deltaTime)

{

float dt = p deltaTime;

if (m_isActive)
m_animationElapsed += dt;
if (m_animationElapsed >= m_animationDelay)
m_currentFrame++;
if (m_currentFrame >= m numberOfFrames) m currentFrame = 0;
m_animationElapsed = 0.0f;
m position.x = m position.x + m velocity * dt;

Here is what this code does:

* Westore p_deltaTime into a local variable dt for convenience. This is useful
because you sometimes want to hardcode the value of dt during testing.

* Next, we test m_active. If this if false, then we bypass the entire update.

* We now handle the sprite's internal animation. We first add dt to
m_animationElapsed to see how much time has elapsed since the last frame
change. If m_animationElapsed exceeds m_animationDelay, then it is time
to increment to the next frame. This means that the higher the value of
m_animationDelay, the slower the sprite will animate.

[72]

Chapter 3

* If necessary, we increment m_currentFrame making sure that once we have
exceeded the total number of frame, we reset to 0.

* If wejust did a frame increment, we also want to reset m_animationElapsed
to o.

* Now ,we move the sprite based on m_velocity and dt. Look at the details
on using delta time to calculate movement in the upcoming sections.

Character movement

In this version of the game, we programmed our robot to move across the screen
from left to right. The key to making our character move is the velocity property.
The velocity property tells the program how many pixels to move our robot each
game cycle.

As the frames come pretty fast, the velocity is typically pretty small. For example, in
a game running at 60 fps, a velocity of 1 would move the robot 60 pixels each game
frame. The sprite would probably be moving too fast to interact with.

Using delta time

There is a small problem with setting the velocity as a fixed value. Obviously, some
computers are faster than other computers. With a fixed velocity, the robot will move
faster on faster computers. This is a problem because it means that people on faster
computers will have to be much better at playing the game!

We can use the computer's clock to solve this problem. The computer keeps track of
the time that has passed since the start of the previous frame. In game terminology,
this is called delta time, and we assign this to a variable that we can access in the
Update loop:

void Update (float deltaTime) ;

In the preceding function definition, deltaTime is a floating value. Remember, our
game is typically running at 60 fps, so deltaTime is going to be a very small number.

When we set up a game to run at 60 fps, it rarely runs at
M exactly that speed. Each frame may take slightly more or less
Q time to finish its calculations. Delta time tells us exactly how
much time has passed, and we can use that information to
adjust the timing or speed of events.

[73]

A Matter of Character

Let's take a closer look at how we use velocity to position our sprites:
m position.x += m velocity * dt;

We multiply m_velocity times dt, and then add this to the current position. This
technique automatically adjusts the velocity based on the amount of time that has
passed since the last frame. If the last frame took a little less time to process, then the
robot will move a little less. If the last frame took a little longer to process, then our
robot will move a little further. The end result is that the robot moves consistently
now on both faster and slower computers.

For slower computers, this could cause other side effects,
M especially regarding collision detection. If too much time goes
Q by, then the sprite will move farther. This could, for example,
cause the sprite to go right through a wall before the collision
detection is checked.

As dt is a very small number, we will now have to use a larger number for our
velocity. The current code uses a value of 50. Of course, in the full game this value
will change based on what is happening to our robot.

Calculating delta time

We already have all of the code in place except the actual code to calculate delta
time. In order to calculate the time that has elapsed during each frame of the game,
we must:

1. Store the time before the frame.

2. Store the time after the frame.

3. Calculate the difference between the two.

Open RoboRacer . cpp and add the following code right after the call to startGame:

int previousTime = glutGet (GLUT_ ELAPSED_TIME) ;

Notice that we are using GLUT to get the current elapsed time. Each call to
glutGet (GLUT_ELAPSED_TIME) will give us the number of milliseconds that have
elapsed since the game started.

M In order to use GLUT, remember to copy glut.h, glut32.dll, and
Q glut32.1ib from the OpenGLFun project to the source code folder
of RoboRacer2D. include glut.h at the top of SpaceRacer2D.cpp.

[74]

Chapter 3

Next, add the following lines directly above the call to GameLoop:

int currentTime = glutGet (GLUT_ ELAPSED TIME) ;

float deltaTime = (float) (currentTime - previousTime) / 1000;
previousTime= currentTime;

GameLoop (deltaTime) ;

Here is what we have done:

» First, we captured the current elapsed time and stored that in
m_currentTime.

* We then calculated the time that elapsed since the last frame by subtracting
m_currentTime fromm previousTime. We converted this to seconds to
make it easier to deal with.

* We then set previousTime to equal current time so that we have a
benchmark for our next calculation.

* Finally, we modified the call to GameLoop to pass the value of deltaTime.
This will subsequently be passed to every Update call in the game.

Flipping

Today's games can be created for and played on a wide variety of devices, ranging
from supercharged PCs to mobile phones. Each of these devices has its own set of
advantages and disadvantages. However, one rule of thumb is that as the device gets
smaller its capabilities become more limited.

One area where these limitations become critical is texture memory. Texture memory
is the location in the memory that stores the textures that are being used in the game.
Mobile devices, in particular, are very limited by the amount of available texture
memory, and game programmers have to be very careful not to exceed this limitation.

2D games tend to use a lot of texture memory. This is because each frame of every
animation has to be stored in the memory to bring the 2D images to life. It is typical for
a 2D game to have thousands of frames of textures that have to be loaded into memory.

[75]

A Matter of Character

One simple way to almost cut the required amount of texture memory in half is to
utilize texture flipping. Simply put, our robot moving to the left is a mirror image of our
robot moving to the right. Instead of using one set of textures to move to the left and
another to move to the right, we can use code to flip the texture when it is rendered.

YE

If you want to try it out sometime, flipping would be implemented by changing the
way you mapped the sprite's uv coordinates to the texture.

Scrolling the background

You may be wondering why we set up our background as a sprite. After all,
we defined sprites as objects that the player interacts with in the game, and the
background is basically ignored by the robot.

The main reason to set up the background as a sprite is that this allows us to handle
all of our textures in a uniform manner. The advantage of this is that we can then
apply the same properties to all of our images. For example, what if we decided that
we wanted our background to move?

Scrolling backgrounds are used in 2D games to give the impression of a continuously
changing background. In fact, the 2D side-scrolling game is considered its own
genre. There are basically two requirements to create a scrolling background:

1. Create a large texture that is wider than the screen.

2. Assign a velocity to the texture so that it moves sideways.

O
I 0§ O iﬁi

[76]

Chapter 3

The parts of the texture background that exceeds the screen width will not be
rendered. As the image moves, the background appears to slide either to the left or
the right. If you set the velocity of the background image to be exactly the same as
the velocity of the player, you get the illusion of a background that is flying by as the
robot runs left or right.

As we already implemented our background image as a sprite, the only thing that
we have to do to make it scroll is to set its velocity. This was already done in the code
for AddTextures:

background->SetVelocity (-50.0f) ;

By setting the background velocity to -50, the background scrolls to the left as the
robot moves to the right.

Using an atlas

As I have mentioned already, texture memory is one of your core resources. In fact,
it is common to run out of memory because of all the textures required to animate
a typical 2D game. It is also time-consuming to load individual textures rather than
loading on a larger texture. So, we have to come up with methods to use texture
memory more efficiently.

One common technique designed to pack more textures into less space is known

as atlasing. A texture atlas works much like a sprite sheet described earlier in this
chapter. Instead of storing each texture as its own image, we pack all of the textures
for the entire game into one or more textures known as atlases.

As the word suggests, an atlas works much like a map. We simply need to know the
location of any particular image, and we can find and extract it out of the atlas. Every
atlas consists of two parts:

* The texture that contains all of the images
* A text file that contains the positions of each image in the atlas
As you can imagine, efficiently packing thousands of images into an atlas and then

keeping track of each image's position within the atlas would be almost impossible to
manage manually. This is why there are programs to do this for us.

I use a free texture atlas tool called Texture Atlas Generator. You can download
this at http://www.gogo-robot .com/2010/03/20/texture-atlas-sprite-sheet-
generator/.

[77]

http://www.gogo-robot.com/2010/03/20/texture-atlas-sprite-sheet-generator/
http://www.gogo-robot.com/2010/03/20/texture-atlas-sprite-sheet-generator/

A Matter of Character

A detailed example of atlasing is beyond the scope of this chapter. If you want to
explore this on your own, here are the steps that you require:

1.
2.
3.

Use a program, such as the one just mentioned, to create your atlas.
Save your data as an XML file.

Write a class to parse the XML saved in the previous step (I suggest
TinyXML at http://www.grinninglizard.com/tinyxml/ as a starter).

Using the code to work with sprite sheets, modify the sprite class to be able
to handle sub-textures from any arbitrary position in a larger texture.

Summary

This chapter has covered a lot of ground. You created a new class specifically to
work with sprites. Consider this class a huge part of your utility box for any game
that you will create. This class handles all of the requirements that you will need to
load, move, and handle textures as objects in your game.

In the next chapter, you will learn how to how to handle input, and actually control
your robot.

[78]

http://www.grinninglizard.com/tinyxml/

Control Freak

Most games are designed to be interactive. This means that the player must have
some way to control what happens during the game. In the last chapter, you wrote
code that displayed the robot and moved him across the screen. Now, you will
control the robot!

This chapter will explain how to implement an input system to control the game's
character, and interact with the game. Topics will include:

* Types of input: There are many ways to interact with your game. Typically,
games written for the PC depended on the mouse and keyboard. Direct
touch input has now become the standard for mobile and tablet devices, and
soon every PC will also have a touch-enabled display. We will cover the most
common methods to receive input in your game.

* Using the mouse and keyboard: In this section, you will write code to
receive input from the mouse and keyboard to control both the game and our
friendly robot.

* Creating the user interface: In addition to controlling our robot, we also need
a way to interact with the game. You will learn how to create an onscreen
interface that allows you to control the game and choose the game options.

* Controlling the character: We want our robot to be able to walk, run, jump,
and play! You will learn how to use the mouse and keyboard to control how
your robot moves about on the screen.

A penny for your input
It's likely that at some point in your life, you have been part of a conversation that

seemed one-sided. The other party was talking and talking, and it didn't seem you
could get a word in. After a while, such a conversation becomes quite boring!

[79]

Control Freak

The same would happen with a computer game that didn't allow any input. Input
is a set of techniques that allows you to control the game. There are many ways to
implement an input system, and we will cover them here.

The keyboard input

The most common form of input for most computers is the keyboard. Obviously,
the keyboard can be used to enter text, but the keyboard can also be used to directly
control the game.

Some examples of this include the following:
* Using the right arrow, left arrow, up arrow, and down arrow keys to control

the character (we'll be using this)

* Usingthe W, A, S, and D keys as to move the character (these keys almost
form a cross on the keyboard, making them a good substitute to move up,
left, down, and right, respectively)

* Using certain keys to perform predefined actions, such as:
° Using the Esc key or Q to quit
° Using the Spacebar or Enter key to fire a projectile

These are just a few examples. In fact, there are some games that seem to use every
key on the keyboard!

Using the mouse

The mouse has been around for a long time, so it makes sense that the mouse is used
in many games. The mouse can be used in several ways:

* The left and right mouse buttons can perform specific actions.

* The wheel can be pushed and used as a third button.

* The mouse wheel can be used to scroll.

* The position of the mouse pointer can be tracked and used in conjunction
with any of the previous actions. We will use a combination of the left mouse
button and the mouse pointer position to click onscreen buttons when we
design our user interface.

[80]

Chapter 4

Touch

More and more devices now respond to touch. Many input systems treat touch very
similarly to the mouse:

* A single touch is equivalent to using the left mouse button

* A single touch that is held is equivalent to using the right mouse button

* The position of the finger can be used in the same way as the mouse pointer
However, there are many features of touch that cannot be easily equated to the
mouse. For example, most touch interfaces allow several touches to be handled
simultaneously. This feature is known as multitouch. This has led to many standard
gestures, including:

* The swipe or flick (moving one or more fingers quickly across the screen)

* The pinch (moving two fingers together)

* The zoom (moving two fingers apart)

Unfortunately, we won't be implementing touch in this game because the target
device for this book is the PC.

Other inputs

The advent of mobile devices was followed by an explosion of input techniques.
Some of the more common ones include:

* The accelerometer, which can be used to track the physical motion of
the device
* Geolocation, which can be used to detect the physical location of the device
* The compass, which can be used to detect the orientation of the device
* The microphone, which can be used to accept voice input
There are many other input techniques, and there is a lot of overlap. For example,
most PCs have a microphone. Again, while many games in the mobile market are

taking advantage of these alternative input methods, our game will be limited to the
keyboard and mouse.

[81]

Control Freak

Someone is listening

Now, it's time to actually write some code to implement input for our game. It turns
out that some rudimentary input has already been implemented. This is because
Windows is an event driven operating system and is already looking for input to
occur. From a simplistic point of view, the main task of Windows (or any modern
operating system) is to listen for events, and then do something based on those events.

So, whenever you hit a key on your keyboard, an event is triggered that wakes up
Windows and says, "Hey, someone hit the keyboard!" Windows then passes that
information to any programs that happen to be listening to keyboard events. The
same occurs when you use the mouse.

The WndProc event listener

We have already told our program that we want it to listen to events. Open
RoboRacer . cpp and locate the wndProc function. WwndProc is part of the code that
was created for us when use used the Win32 Project template to start our game.
wWndProc is known as a callback function.

Here is how a callback function works:

* First, the function name is registered with the operating system. In our case,
this occurs in CreateGLWindow:

wc.lpfnWndProc = (WNDPROC)WndProc;

This line tells our window class to register a function called wndproc as the
event handler for our program.

* Now, any events that are caught by Windows are passed to the wndproc
function. The code in Wwndproc then decides which events to handle. Any
events that aren't handled by wndproc are simply ignored by the program.

As wndpProc was created for a typical Windows application, it contains some things
that we don't need, while there are some things that we can use:

LRESULT CALLBACK WndProc (HWND hWnd, UINT message, WPARAM wParam,
LPARAM 1lParam)

{

int wmId, wmEvent;
PAINTSTRUCT ps;
HDC hdc;

switch (message)

{

[82]

Chapter 4

case WM_COMMAND :
wmId = LOWORD (wParam) ;
wmEvent = HIWORD (wParam) ;
// Parse the menu selections:
switch (wmId)
{
case IDM ABOUT:
DialogBox (hInstance, MAKEINTRESOURCE (IDD ABOUTBOX), hwWnd,

About) ;

}

}

break;
case IDM EXIT:
DestroyWindow (hWnd) ;
break;
default:
return DefWindowProc (hWnd, message, wParam, lParam);
}
break;
case WM_PAINT:
hdc = BeginPaint (hWnd, &ps);
// TODO: Add any drawing code here...
EndPaint (hWnd, &ps);
break;
case WM_DESTROY:
PostQuitMessage (0) ;
break;
default:
return DefWindowProc (hWnd, message, wParam, lParam) ;

return O0;

The main work is done by switch, which handles various windows events (all
prefixed by WM, which is an abbreviation for Windows Message):

The wM_COMMAND events can all be ignored. In a typical Windows application,
you would create a menu and then assign various command events to be
triggered when the user clicks on a command on the menu (for example,
IDM_ABOUT to click on the About command). Games almost never use the
standard Windows menu structure (and so, neither do we).

We also ignore the wv_PAINT event. This event is triggered whenever the
window containing the program needs to be redrawn. However, we are
constantly redrawing our window using OpenGL via the Render function, so
we don't need to add code to do that here.

[83]

Control Freak

* We are already handling the wM_DESTROY event. This event is triggered
when you click the close icon (X) in the upper-right corner of the
Windows. Our handler responds to this by posting its own message using
PostQuitMessage (0). This tells our program that it is time to quit.

Handling the message queue

We discussed the Windows messaging system in Chapter 1, Building the Foundation
but this discussion warrants a recap. If you take a look at the _wWinMain function,
you will see this block of code that sets up the main messaging loop:

bool done = false;
while (!done)
{
if (PeekMessage (&msg, NULL, 0, 0, PM REMOVE))
{
if (msg.message == WM_QUIT)
{

done = true;

}

else
{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}
}

else

{

int currentTime = glutGet (GLUT_ ELAPSED TIME) ;
float deltaTime = (float) (currentTime - previousTime) / 1000;
previousTime= currentTime;
GameLoop (deltaTime) ;
}
}

The relevant part of this discussion is the call to PeekMessage. PeekMessage
queries the message queue. In our case, if the WwM_QUIT message has been posted (by
PostQuitMessage), then done is set to true and the while loop exits, ending the
game. As long as WM_QUIT has not been posted, the while loop will continue and
GameLoop will be called.

[84]

Chapter 4

The event driven system is a great way to handle input and other actions for most
programs, but it doesn't work well with games. Unlike games, most programs just
sit around waiting for some kind of input to occur. For example, a word processing
program waits for either a keystroke, a mouse button click, or a command to be
issued. With this type of system, it makes sense to wake up the program every time
an event happens so that the event can be processed.

Games, on the other hand, do not sleep! Whether or not you are pressing a button,
the game is still running. Furthermore, we need to be able to control the process so
that an input is only processed when we are ready for it to be handled. For example,
we don't want input to interrupt our render loop.

The following diagram shows how Windows is currently rigged to handle input:

Window
Detects
Event

PeekMessage

WndProc
Handles

Event

Message
Queue

Exit Program

PostQuitMessage

Handling mouse and keyboard inputs

We could expand wndproc to handle all of the input events. However, this is a terribly
inefficient way to handle input, especially in a real-time program, such as a game. We
will let Windows handle the case when the user closes the Window. For everything
else, we are going to create our own input class that directly polls for input.

[85]

Control Freak

There are many different ways to design an input system, and I am not going to
presume that this is the best system. However, our input system accomplishes two
important tasks:

* We define a consistent input interface that handles both mouse and
keyboard input

* We handle input by directly polling for mouse and keyboard events during
each frame (instead of waiting for Windows to send them to us)

Creating the Input class

Create a new class called Input. Then add the following code into Input.h:

#pragma once
#include <Windows.h>

class Input

public:

enum Key
K_ESC = VK _ESCAPE,
K_SPACE = VK SPACE,
K _LEFT = VK LEFT,
K _RIGHT = VK RIGHT,
K UP = VK UP,
K _DOWN = VK _DOWN,

KW= 87,
K A = 65,
K S = 83,
KD = 68,
K Q = 81,

K _ENTER = VK _RETURN,
K LB = VK_LBUTTON,
K RB = VK_RBUTTON

Vi

enum Command
{
CM_LEFT,
CM_RIGHT,
CM_STOP,
CM_UP,

[86]

Chapter 4

CM_DOWN,
CM_QUIT

}i

#define KEYDOWN (vk code) ((GetAsyncKeyState(vk code) & 0x8000) ? 1 :
0)

protected:
Command m_command;
HWND m_hWnd;

public:
Input (const HWND m_hWnd) ;
~Input () ;

void Update (const float p detlaTime) ;

const Command GetCommand () const { return m_command; }

}i
As with all of our code, let's take a close look to see how this is designed:

* Weinclude windows . h because we want access to the Windows API virtual
key constants. These are constants that have been defined to represent special
keys on the keyboard and mouse.

* We create the Key enum so that we can easily define values to poll the keys
that we want to handle.

* We create the Command enum so that we can easily map input to command
actions that we want to support.

* We define a C++ macro named KEYDOWN. This greatly simplifies our future
code (see the next step for details).

* The class only has one member variable, m_command, which will be used to
hold the last action that was requested.

* We define three member functions: the constructor, the destructor, Update,
and GetCommand.

Virtual key codes

In order to understand how our input system works, you must first understand
virtual key codes. There are a lot of keys on a keyboard. In addition to letters and
numbers, there are special keys, including shift, control, escape, enter, arrow keys,
and function keys. Coming up with a simple way to identify each key is quite a task!

[87]

Control Freak

Windows uses two techniques to identify keys; for the normal keys (letters and
numbers), each key is identified by the ASCII code of the value that is being tested.
The following table shows the ASCII value for the keys that we use in our game:

ASCII Value Key
87 4%
65 A
83 S

68 D
81 Q

For special keys, Windows defines integer constants to make them easier to work
with. These are known as virtual key codes. The following table shows the virtual
key codes that we will work with in our game:

Virtual key code Key

VK_ESC Esc

VK_SPACE Spacebar

VK_LEFT Left arrow
VK_RIGHT Right arrow

VK_UP Up arrow
VK_DOWN Down arrow
VK_RETURN Enter

VK_LBUTTON Left mouse button
VK_RBUTTON Right mouse button

Notice that there are even virtual key codes for the mouse buttons!

Querying for input
The GetasyncKeyState function is used to query the system for both keyboard and
mouse input. Here is an example of that command:

if ((getAsyncKeyState (VK ESC) & 0x8000) == true)

{

PostQuitMessage (0) ;

}

[88]

Chapter 4

First, we pass in a virtual key code (or ASCII value), then we do a logical and with
the hex value 8000 to strip out information that we don't need. If the result of this
call is true, then the queried key is being pressed.

It's a pretty awkward command to have to use over and over again! So, we create a
C++ macro to make things simpler:

#define KEYDOWN (vk_code) ((GetAsyncKeyState(vk code) & 0x8000) ? 1
0)

KEYDOWN executes the GetAsyncKeyState command. The macro accepts a key code
as a parameter, and returns true if that key is being pressed or false if that key is
not being pressed.

Implementing the Input class

All of the actual work is for our input system is done in the Update function, so let's
implement the Input class. Open Input.cpp and enter the following code:

#include "stdafx.h"
#include "Input.h"

Input::Input (const HWND p hWnd)

{

m_command = Command::CM_STOP;
m_hWnd = p hWnd;

}

Input: : ~Input ()
{
}

void Input::Update(const float p deltaTime)

{
m_command = Command::CM_STOP;
if (KEYDOWN (Key::K LEFT) || KEYDOWN (Key::K A))
{
m_command = Command::CM_LEFT;
}
if (KEYDOWN (Key::K RIGHT) || KEYDOWN (Key::K D))
{
m_command = Command::CM_RIGHT;
}
if (KEYDOWN (Key::K UP) || KEYDOWN (Key::K_LB))

{

[89]

Control Freak

m_command = Command::CM UP;

}

if (KEYDOWN(Key::K DOWN) || KEYDOWN (Key::K RB))

{

m_command = Command::CM DOWN;

}

if (KEYDOWN (Key::K_ESC) || KEYDOWN (Key::K_Q))

{

m_command = Command::CM QUIT;

}
}

In a nutshell, the Update function queries all of the keys that we want to check
simultaneously, and then maps those keys to one of the command enums that we
have defined in the class header. The program then calls the class Get Command
method to determine the current action that has to be taken.

If you are really paying attention, then you may have realized that we only store a
single command result into m_command, yet we are querying many keys. We can get
away with this for two reasons:

* This is an infinitely simple input system with few demands

* The computer cycles through the input at 60 frames per second, so the process
of the player pressing and releasing keys is infinitely slow in comparison

Basically, the last key detected will have its command stored in m_command, and
that's good enough for us.

Also, notice that we set the initial command to Input: : Command: : STOP. As a result,
if no key is currently being held down, then the sTop command will be the final
value of m_command. The result of this is that if we are not pressing keys to make our
robot move, then he will stop.

Adding input to the game loop

Now that we have an input class, we will implement it in our game. We will handle
input by adding it to Update. This gives us total control over when and how we
handle input. We will only rely on the Windows event listener to tell us if the
Window has been closed (so that we can still shut the game down properly).

Open RoboRacer . cpp and modify the Update function so that it looks like the
following code:

void Update (const float p deltaTime)

{

inputManager->Update (p_deltaTime) ;

[90]

Chapter 4

ProcessInput (p_deltaTime) ;

background->Update (p_deltaTime) ;

robot left->Update(p_deltaTime) ;

robot right->Update(p deltaTime) ;

robot left strip->Update(p deltaTime) ;
robot right strip->Update(p_deltaTime) ;

}

Before now, our Update function only updated the game's sprites. If you recall,

the sprite Update method modifies the position of the sprites. So, it makes sense to
perform the input before we update the sprites. The Update method of the Input class
queries the system for input, and then we run a ProcessInput to decide what to do.

Processing our input

Just before we update all of our sprites, we need to process the input. Remember,
the Input class Update method only queries the input and stores a command. It
doesn't actually change anything. This is because the Input class does not have
access to our sprites.

First, open RoboRacer . cpp and include the Input header file:

include "Input.h"

We need to add a variable to point to our Input class. Add the following line in the
variable declarations section:

Input* inputManager;
Then, modify StartGame to instantiate the Input class:

void StartGame ()

{

inputManager = new Input (hWnd) ;
LoadTextures () ;

}

Now, we will create a function to process the input. Add the following function to
RoboRacer. cpp:

void ProcessInput (const float p deltaTime) ;

{

switch (inputManager->GetCommand())

{

case Input::Command::CM_STOP:

[91]

Control Freak

player->SetVelocity (0.0f) ;
background->SetVelocity (0.0f) ;
break;

case Input::Command::CM _LEFT:
if (player == robot right)
{
robot right->IsActive (false);
robot right->IsVisible(false);
robot left->SetPosition(robot right->GetPosition()) ;

}

player = robot left;
player->IsActive (true) ;
player->IsVisible (true) ;
player->SetVelocity (-50.0f) ;
background->SetVelocity (50.0f) ;
break;

case Input::Command::CM_RIGHT:
if (player == robot left)
{
robot left->IsActive(false);
robot left->IsVisible(false) ;
robot right->SetPosition(robot left->GetPosition()) ;

}

player = robot right;
player->IsActive (true) ;
player->IsVisible (true) ;
player->SetVelocity (50.0f) ;
background->SetVelocity (-50.0f) ;
break;

case Input::Command::CM UP:
player->Jump (Sprite: :SpriteState: :UP) ;
break;

case Input::Command: :CM_DOWN:
player->Jump (Sprite: :SpriteState: :DOWN) ;
break;

case Input::Command::CM_QUIT:
PostQuitMessage (0) ;

[92]

Chapter 4

break;

}
}

ProcessInput is where the changes to our game actually take place. Although it
seems like a lot of code, there are really only two things that are happening:

* We query the input system for the latest command using
inputManager->GetCommand ()
* Based on that command we perform the required actions

The following table shows the commands that we have defined, followed by a
description of how this affects the game:

Command Actions
CM_STOP * Set the velocity of player to 0
* Set the background velocity to 0
CM_LEFT * If player is currently moving right, deactivate the right sprite
and make it invisible, and set the left sprite to the right sprite's
position

* Setplayer to the left sprite

* Activate the left sprite and make it visible
* Set the velocity of the left sprite to -50

* Set the velocity of the background to 50

CM_RIGHT * If player is currently moving left, deactivate the left sprite
and make it invisible, and set the right sprite to the left sprite's
position

* Setplayer to the right sprite

* Activate the right sprite and make it visible
* Set the velocity of the right sprite to 50

* Set the velocity of the background to -50

CM_UP * Call the sprite's Jump method with the parameter set to UP
CM_DOWN ¢ (Call the sprite's Jump method with the parameter set to DOWN
CM_QUIT * Quit the game

[93]

Control Freak

Changes to the Sprite class

Now that the robot can jump, we need to add a new method to the Sprite class to
give the robot the ability to jump:

First, we will add an enum to Sprite.h to track the sprite state:

enum SpriteState

{

UP,
DOWN

}i
Next, we need a new member variable to track if an element has been clicked. Add:

bool m_isClicked;

Now go to the constructor in Sprite.cpp and add a line to initialize the new variable:
m_isClicked = false;

Add the following code to Sprite.h:

void Jump (SpriteState p state);
void IsClicked(const bool p value) { m_isClicked = p_value; }
const bool IsClicked() const { return m_ isClicked; }

Then add the following code to sprite.cpp:

void Sprite::Jump(SpriteState p_state)
{
if (p_state == SpriteState::DOWN)
{
if (m_position.y < 470.0f) m _position.y += 75.0f;
}
else if (p_state == SpriteState::UP)
{
if (m_position.y >= 470.0f) m position.y -= 75.0f;
}
}

Our robot is a little unique. When he jumps, he hovers at an elevated level until we
tell him to come back down. The Jump method moves the robot 75 pixels higher
when the player presses the up arrow, and moves him 75 pixels back down when the
player presses the down arrow. However, we want to make sure that we don't allow
a double-jump up or a double-jump down, so we check the current y position before
we apply the change.

[94]

Chapter 4

Now that we are going to use input to control our robot, we no longer need to set the
initial velocity as we did in the previous chapter. Locate the following two lines of
code in LoadTextures and delete them:

background->SetVelocity (-50.0f) ;
player->SetVelocity (50.0f) ;

Run the game. You should now be able to control the robot with the arrow keys,
moving him left and right, up and down. Congratulations, you're a control freak!

Graphical User Interface

It is now time to turn our attention to the graphical user interface, or GUIL The GUI
allows us to control other elements of the game, such as starting or stopping the
game, or setting various options.

In this section, you will learn how to create buttons on the screen that can be clicked
by the mouse. We'll keep it simple by adding a single button to pause the game.
While we are at it, we will learn important lessons about game state.

Creating a button

A button is nothing more than a texture that is being displayed on the screen.
However, we have to perform some special coding to detect whether or not the
button is being clicked. We will add this functionality to the sprite class so that our
buttons are being handled by the same class that handles other image in our game.

We will actually create two buttons: one to Pause and one to Resume. I have used
a simple graphics program to create the following two buttons:

I have saved these buttons as, you guessed it, pause.png and resume . png in the
resources folder.

Enhancing the Input class

In order to integrate Ul into our existing Input class, we are going to have to add
some additional features. We will add a dynamic array to the Input class to hold a
list of Ul elements that we need to check for input.

[95]

Control Freak

Start by adding the following line to the includes for Input.h:

#include "Sprite.h"

We need to include the Sprite class so that we can work with sprites in the
Input class.

Next, we add a new command. Modify the command enum so that it looks like the
following list:

enum Command

{

CM_INVALID,

CM_LEFT,
CM_RIGHT,
CM_STOP,
cM_UP,
CM_DOWN,
CM_QUIT,
CM_UT

bi

We have added cM_ut, which will be set as the current command if any UI element
is clicked.

Now, we define a member variable to hold the list of Ul elements. Add this line of
code to the member variables in Input . h:

Sprite** m uiElements;
unsigned int m_uiCount;

m_uiElements will be a dynamic list of pointers to our elements, while m_uicount
will keep track of the number of elements in the list.

The final change to Input.h is to add the following line in the public methods:

void AddUiElement (Sprite* m pElement) ;

Adding Ul elements to the list

We need to be able to add a list of elements to our Input class so that they can be
checked during the input handling.

First, we have to allocate memory for our list of elements. Add the following lines to
the Input constructor in Input . cpp:

m_uiElements = new Sprite*[10];
m uiCount = 0;

[96]

Chapter 4

I could probably get cleverer than this, but for now, we will allocate enough memory
to hold 10 UI elements. We then initialize m uiCount to 0. Now, we need to add the
following method to Input.cpp:

void Input::AddUiElement (Sprite* p element)
m uiElements [m uiCount] = p element;
m_uiCount++;

}

This method allows us to add a Ul element to our list (internally, each UI element is
a pointer to a sprite). We add the element to the m_uiElements array at the current
index and then increment m_uiCount.

Checking each Ul element

Eventually, the Input class will contain a list of all UI elements that it is supposed

to check. We will need to iterate through that list to see if any of the active elements
have been clicked (if we want to ignore a particular element, we simply set its active
flat to false).

Open Input.cpp and add the following code to Update above the existing code:

for (unsigned int i = 0; i < m uiCount; i++)
Sprite* element = m uiElements([i];
if (element->IsActive () == true)
if (CheckForClick (element))
element->IsClicked (true) ;
m_command = Input::Command::CM UI;
return;

}
}
}

This code iterates through each item in the m_uiElements array. If the element is
active, then checkForcClick is called to see if this element has been clicked. If the
element has been clicked, the Isclicked property of the element is set to true and
m_command is set to CM_UT.

We put this code above the existing code because we want checking the Ul to take
priority over checking for game input. Notice in the preceding code that we exit the
function if we find a Ul element that has been clicked.

[97]

Control Freak

Pushing your buttons

In order to see if an element has been clicked, we need to see if the left mouse button
is down while the mouse pointer is inside the area bounded by the Ul element.

First, open Input.cpp and add the following code:

const bool Input::CheckForClick(Sprite* p_element) const

{

if (KEYDOWN (Key::K LB))

{

POINT cursorPosition;

GetCursorPos (&cursorPosition) ;

ScreenToClient (m_hWnd, &cursorPosition);

float

float
width;

float

float
height;

left = p element->GetPosition() .x;
right = p element->GetPosition().x + p_element->GetSize() .

top = p_element->GetPosition() .y;
bottom = p_element->GetPosition().y + p_element->GetSize().

if (cursorPosition.x >= left &&

cursorPosition.x <= right &&

cursorPosition.y >= top &&

cursorPosition.y <= bottom)

{

return true;

}

else

{

return false;

}

return false;

}

Here is what we are doing:

¢ We first make sure that the left mouse button is down.

* We need to store the current position of the mouse. To do this, we
create a POINT called cursorPosition, then pass that by reference into
GetCursorPos. This will set cursorPosition to the current mouse position
in screen coordinates.

[98]

Chapter 4

* We actually need the mouse position in client coordinates (the actual area
that we have to work with, ignoring windows borders and fluff). To get this,
we pass cursorPosition along with a handle to the current window into
ScreenToClient

¢ Now that we have the cursorPosition, want to test to see if it is inside the
rectangle that bounds our Ul element. We calculate the left, right, top, and
bottom coordinates of the sprite.

* Finally, we check to see if cursorPosition is within the boundaries of the Ul
element. If so, we return true; otherwise, we return false.

Ensure to add the following declaration to Sprite.h:

const bool CheckForClick (Sprite* p element) const;

Adding our pauseButton

We now need to add the code to our game to create and monitor our pause and
resume buttons.

First, we will add two variables for our two new sprites. Add the following two lines
to the variable declaration block of RoboRacer. cpp:

Sprite* pauseButton;
Sprite* resumeButton;

Then, add the following lines to LoadTextures (just before the return statement):

pauseButton = new Sprite(l);
pauseButton->SetFrameSize (75.0f, 38.0f);
pauseButton->SetNumberOfFrames (1) ;
pauseButton->SetPosition(5.0f, 5.0f);
pauseButton->AddTexture ("resources/pauseButton.png") ;
pauseButton->IsVisible (true) ;
pauseButton->IsActive (true) ;
inputManager->AddUiElement (pauseButton) ;

resumeButton = new Sprite(l);
resumeButton->SetFrameSize (75.0f, 38.0f);
resumeButton->SetNumberOfFrames (1) ;
resumeButton->SetPosition(80.0f, 5.0f);
resumeButton—>AddTexture("resources/resumeButton.png");
inputManager->AddUiElement (resumeButton) ;

This code sets up the pause and resume sprites exactly like we set up the other
sprites in our game. Only the pause sprite is set to be active and visible.

[99]

Control Freak

You will notice one important addition: we add each sprite to the Input class with a
call to AdduiElement. This adds the sprite to the list of UI elements that need to be
checked for input.

We must also add code to the Update function in RoboRacer . cpp:

pauseButton->Update (p_deltaTime) ;
resumeButton->Update (p_deltaTime) ;

Similarly, we must add code to the Render function in RoboRacer . cpp (just before
the call to swapBuffers):

pauseButton->Render () ;
resumeButton->Render () ;

That's it! If you run the game now, you should see the new pause button in the
upper-left corner. Unfortunately, it doesn't do anything yet (other than change the
button from Pause to Resume. Before we can actually pause the game, we need to
learn about state management.

State management

Think about it. If we want our game to pause, then we have to set some kind of flag
that tells the game that we want it to take a break. We could set up a Boolean:

bool m_isPaused;

We would set m_isPaused to true if the game is paused, and set it to false if the
game is running,.

The problem with this approach is that there are a lot of special cases that we may
run into in a real game. At any time the game might be:

» Starting

* Ending

* Running

* Paused
These are just some example of game states. A game state is a particular mode that

requires special handling. As there can be so many states, we usually create a state
manager to keep track of the state we are currently in.

[100]

Chapter 4

Creating a state manager

The simplest version of a state manager begins with an enum that defines all of
the game states. Open RoboRacer . cpp and add the following code just under the
include statements:

enum GameState

{

GS_Running,
GS_Paused

}i
Then go to the variable declarations block and add the following line:

GameState m_gameState;

To keep things simple, we are going to define two states: running and paused.
A larger game will have many more states.

Enums have a big advantage over Boolean variables. First, their purpose is generally
clearer. Saying that the game state is GS_Paused or GS_Running is clearer than if we
just had set a Boolean to true or false.

The other advantage is that enums can have more than two values. If we need to add
another state to our game, it is as simple as adding another value to our GameState
enum list.

Our game will start in the running state, so add the following line of code to the
StartGame function:

m_gameState = GS_Running;

Pausing the game

Think about it for a minute. What do we want to do when the game is paused? We
still want to see things on the screen, so that means that we still want to make all of
our Render calls. However, we don't want things to change position or animate. We
also don't want to process game input, though we do need to handle Ul input.

All of this should have you thinking about the update calls. We want to block
updates to everything except the Ul. Modify the Update function in RoboRacer. cpp
so that it contains the following code:

void Update (const float p_deltaTime)

{

inputManager->Update (p_deltaTime) ;

[101]

Control Freak

ProcessInput (p_deltaTime) ;

if (m_gameState == GS_Running)
{
background->Update (p_deltaTime) ;
robot left->Update(p_deltaTime) ;
robot right->Update(p_deltaTime) ;
robot left strip->Update(p deltaTime) ;
robot right strip->Update(p_deltaTime) ;

pauseButton->Update (p_deltaTime) ;
resumeButton->Update (p_deltaTime) ;

}
}

Notice that we will only process the sprite updates if the game state is GS_Running.

We are going to get ready to accept mouse input. First, we are going to setup a timer.
Add the following code in the variable declarations of RoboRacer2d.cpp:

float uiTimer;
const float UI THRESHOLD = 0.2f;

Then add the line of code below to StartGame:

uiTimer = 0.0f;

The time will be used to add a small delay to mouse input. Without the delay, each
click on the mouse would be registered several times instead of a single time.

We still need to handle input, but not all input. Go to the ProcessInput function in
RoboRacer . cpp and make the following changes:

void ProcessInput (const float p deltaTime)
Input: :Command command = inputManager->GetCommand () ;
if (m _gameState == GS_Paused) command = Input::Command::CM UI;

uiTimer += p deltaTime;

if (uiTimer > UI_THRESHOLD)

{

uiTimer = 0.0f;

switch (command)

{

case Input::Command::CM_STOP:
player->SetVelocity (0.0f) ;
background->SetVelocity (0.0f) ;
break;

[102]

Chapter 4

case Input::Command::CM_LEFT:
if (player == robot right)
{
robot right->IsActive (false);
robot right->IsVisible(false);
robot left->SetPosition(robot right->GetPosition()) ;

}

player = robot left;
player->IsActive (true) ;
player->IsVisible (true) ;
player->SetVelocity (-50.0f) ;
background->SetVelocity (50.0f) ;
break;

case Input::Command::CM_RIGHT:
if (player == robot left)
{
robot left->IsActive(false);
robot left->IsVisible(false) ;
robot right->SetPosition(robot left->GetPosition()) ;

}

player = robot right;
player->IsActive (true) ;
player->IsVisible (true) ;
player->SetVelocity (50.0f) ;
background->SetVelocity (-50.0f) ;
break;

case Input::Command::CM UP:
player->Jump (Sprite: :SpriteState: :UP) ;
break;

case Input::Command: :CM_DOWN:
player->Jump (Sprite::SpriteState: :DOWN) ;
break;

case Input::Command::CM_QUIT:
PostQuitMessage (0) ;
break;

case Input::Command::CM UI:
if (pauseButton->IsClicked())
{
pauseButton->IsClicked(false) ;
pauseButton->IsVisible (false) ;

[103]

Control Freak

pauseButton->IsActive (false) ;

resumeButton->IsVisible (true) ;
resumeButton->IsActive (true) ;
m _gameState = GS Paused;

}

if (resumeButton->IsClicked())

{

resumeButton->IsClicked (false) ;
resumeButton->IsVisible (false) ;
resumeButton->IsActive (false) ;

pauseButton->IsVisible (true) ;
pauseButton->IsActive (true) ;
m _gameState = GS_ Running;

}
}
}

command = Input::Command::CM_INVALID;

}

Take a look at the second line. It sets the command to cM_UT if the game is paused.
This means that only Ul commands will be processed while the game is paused. A
hack? Perhaps, but it gets the job done!

We only have two more changes to make. When the pause button is clicked, we need
to change the game state to Gs_Paused, and when the resume button is clicked, we
need to change the game state to GS_Running. Those changes have already been
made in the ¢s_UI case in the preceding code!

When you run the program now, you will see that the game pauses when you click
the pause button. When you click the resume button, everything picks up again.

Summary

Again, you have traveled far! We implemented a basic input class, then modified our
sprite class to handle UL This unified approach allows one class to handle sprites as
game objects as well as sprites as part of the user interface. The same approach to see
if a button has been pushed, can also be used for collision detection for a game object
too. Then you learned how to create a state machine to handle the various states that
the game may be in.

In the next chapter, we will learn to detect when game objects collide.

[104]

Hit and Run

You've already come a long way since beginning the book at the first chapter! You
have managed to render moving images to the screen and control their movement.
You are well on your way toward creating a great game. The next step is to code the
interactions between various objects in the game.

This chapter will explain how to implement collision detection. Collision detection
determines how objects interact with each other when they are in the same location.
Topics will include:

* Boundary detection: When an object reaches the top, bottom, left, or right
edge of the screen, what should happen? There are a surprising number of
choices and you get to choose what to do.

e Collision detection: There are various scenarios that we often need to check
to determine whether two objects have hit each other. We will cover circular
and rectangular collision detection algorithms. We will also discuss when
each type of collision detection is appropriate to use.

Out of bounds!

If you run our current game, you will notice that the robot will go off the screen if
you allow him to continue moving to the left or right. When he reaches the edge of
the screen, he will keep on moving until he is no longer visible. If you reverse his
direction and make him move the same number of steps now, he will reappear on
the screen.

[105]

Hit and Run

Whenever an object reaches the edge of the screen, we often want it to do something
special, such as stopping, or turning around. The code that determines when an
object has reached a screen edge is known as boundary checking. There are many
possibilities for what we can do when an object reaches a boundary:

* Stop the object
* Allow the object to continue past the border (and therefore, disappear)

* Allow the object to continue past the border and reappear at the opposite
border (ever played the arcade version of Asteroids?)

* Scroll the camera and the screen along with the object (aka Mario)

* Allow the object to rebound off the border (ever played Breakout?)

As our Robo is controlled by the player, we will simply force him to stop moving
when he has reached the edge of the screen.

Getting anchored

In order to implement boundary checking, you must first know the exact anchor
point of the image. Technically, the anchor point could be anywhere, but the two
most common locations are the top-left corner and the center of the image.

First, let's see what happens if we just ignore the anchor point. Open the
RoboRacer2D project and then open RoboRacer2D. cpp.

Insert the following function:

void CheckBoundaries (Sprite* p sprite)

{

if (p_sprite->GetPosition().x < 0)

{

p_sprite->SetVelocity(0.0f);

}

else if (p_sprite->GetPosition().x > screen width)

{

p_sprite->SetVelocity (0.0f);

}
}

[106]

Chapter 5

Here is what this code is doing for us:

* The function accepts a sprite as its parameter

* The function first checks to see whether the x position of the sprite is less
than o, where 0 is the x coordinate of the far-left edge of the screen

* The function then checks to see whether the x position of the sprite is greater
than the screen width, where screen width is the x coordinate of the far-
right edge of the screen

* If either check is true, the sprite's velocity is set to 0, effectively stopping the
sprite in its tracks

Now, add the highlighted line of code to the Update function right after
ProcessInput in RoboRacer2D.cpp:

inputManager->Update (p_deltaTime) ;
ProcessInput () ;
CheckBoundaries (player) ;

This simply calls the CheckBoundaries function that we just created and passes in
the player object.

Now, run the program. Move Robo until he reaches the far left of the screen. Then
run him to the far right of the screen. Does anything seem wrong about the way we
have implemented our boundary checking?

> Ignore the way the background scrolls off to the side. We'll
fix this shortly.

Problem 1: Robo doesn't seem to hit the boundary on the left.

The following screenshot shows you what happens if you allow Robo to go to the
far left of the screen. He appears to stop just before reaching the edge. Although you
can't see it in the following screenshot, there is a shadow that always extends to the
left edge of the robot. It is the left edge of the shadow that is being detected as the
edge of the image.

[107]

Hit and Run

It turns out that the default anchor point for images loaded by our image loading
routine is, in fact, the upper-left corner.

RoboRacer 200 - o

Problem 2: Robo moves completely off the screen to the right.

The following screenshot shows you what occurs if you allow Robo to continue
traveling to the right. Now that you understand that the anchor point is at the
upper-left, you may already understand what is happening.

As the boundary checking is based on the x coordinate of the sprite, by the time the
upper-left hand corner exceeds the screen width, the entire sprite has already moved
off the screen. The grayscale image of the robot shows us where his actual position
would be if we could see him:

[108]

Chapter 5

RoboRacer 2D = O

Pause

n]

Problem 3: Once Robo reaches the far left or far right of the screen, he gets stuck.
Changing his direction seems to have no effect!

This problem is known as embedding. Here is what has happened:

* We continued check Robo's position until his x coordinate exceeded
a threshold.

* Once he exceeded that threshold, we set his velocity to o.

* Now that Robo's x coordinate exceeds that threshold, it will always exceed
that threshold. Any attempt to move him in the opposite direction will
trigger the boundary check, which will discover that Robo's x coordinate still
exceeds the threshold and his velocity will be set to 0.

The solution is to set Robo's position to the other side of threshold as soon as
we discover he has crossed it. We will add this correction, but first we have to
understand collision rectangles.

[109]

Hit and Run

Collision rectangles

Take a look at the following image of Robo. The solid rectangle represents the
boundaries of the texture. The dotted rectangle represents the area that we
actually want to consider for boundary and collision detection. This is known
as the collision rectangle.

:

Comparing the two rectangles, here is what we would have to do to convert the
texture rectangle to be the collision rectangle:

* Add about 34 pixels to the left texture boundary

* Subtract about 10 pixels from the right texture boundary

* Both the top and right boundaries require no adjustment
Let's enhance the sprite class by adding functionality to define a collision rectangle.

Open sprite.h and add the following member variable:

Rect m collision;

Then add the two accessor methods:

const Rect GetCollisionRect () const;
void SetCollisionRectOffset (const Rect p rect) { m collision = p rect;

}

The implementation for GetCollisionRect is a little more complex, so we will put
that code into Sprite.cpp:

const Sprite::Rect Sprite::GetCollisionRect () const
{
Rect rect;
rect.left = m position.x + m collision.left;
rect.right = m _position.x + m_size.width + m _collision.right;
rect.top = m position.y + m collision.top;
rect.bottom = m position.y + m size.height + m collision.bottom;

return rect;

[110]

Chapter 5

Here's what we are doing:

* m_collision: This will hold four offset values. These values will represent a
number that must be added to the texture's bounding rectangle to get to the
collision rectangle that we desire.

* SetCollisionRectOffset: This accepts a Rect parameter that contains the
four offsets — top, bottom, left, and right — that must be added to the top,
bottom, left, and right of the texture boundaries to create the collision rectangle.

* GetCollisionRect: This returns the collision rectangle that we can actually
use when checking boundaries and checking for collisions. This is calculated
by adding the width and height to the sprite's current anchor point (the top-
left corner), and then adjusting it by the values inm_collision.

Note that GetCollisionRect is dynamic; it always returns the current collision
rectangle based on the sprite's current position. Thus, we are returning the actual top,
bottom, left, and right boundaries that need to be checked at any moment in the game.

If you look closely at the design, you should be able to see that if no collision
rectangle is defined, GetCollisionRect will return a collision rectangle determined
by the texture's rectangle. Therefore, this new design allows us to use the texture
rectangle as the collision rectangle by default. On the other hand, if we want to
specify our own collision rectangle, we can do so using SetCollisionRectOffset.

Just to be safe, we will want to initialize m_collision by adding the following lines to
the constructor:

m collision.left = 0.0f;
m _collision.right = 0.0f;
m collision.top = 0.0f;
m collision.bottom = 0.0f;

Now that we have the code to support a collision rectangle, we need to define
the collision rectangle for the robot's sprites. Go to the LoadTextures function in
RoboRacer2D. cpp and add the following highlighted lines just before the return
true line of code:

Sprite::Rect collision;

collision.left = 34.0f;

collision.right = -10.0f;

collision.top = 0.0f;

collision.bottom = 0.0f;

robot left->SetCollisionRectOffset(collision);
robot right->SetCollisionRectOffset(collision);

return true;

[111]

Hit and Run

Remember, only add the preceding code that is highlighted. The last line of the code
is shown to provide context.

We are now going to rewrite our boundary detection function to take advantage of
the collision rectangle. Along the way we will solve all three of the problems that
we encountered in our first attempt. The current code uses the anchor point of the
image, which doesn't accurately reflect the actual boundaries that we want to check.
The new code will use the collision rect. Replace the CheckBoundaries function in
RoboRacer2D with the following code:

void CheckBoundaries (Sprite* p sprite)

{

Sprite::Rect check = p sprite->GetCollisionRect () ;

if (check.left < 0.0f)

{

p_sprite->SetVelocity (0.0f);

}

else if (check.right > screen_width)

{

p_sprite->SetVelocity (0.0f);

}
}

This code uses the collision rectangle defined for the sprite that is being checked. As we
already discussed earlier, GetCollisionRect returns the top, bottom, left, and right
boundaries for us based on the current position of the sprite. This greatly simplifies our
code! Now, we just check to see whether the left edge of the sprite is less than zero or
whether the right edge of the sprite is greater than zero, and we're done!

RoboRacer 2D - o

[112]

Chapter 5

Embedding

Hurrah! Robo now successfully stops at the edge of the screen (only the right-hand
side is shown in the preceding image). But boo! He still gets stuck! As we mentioned
earlier, this problem is called embedding. If we zoom in, we can see what's going on:

The vertical line represents the edge of the screen. By the time Robo has stopped,
his right edge has already exceeded the right edge of the screen, so we stop him.

Unfortunately, even if we try to turn him around to go in the other direction, the
CheckBoundaries function will check on the very next frame, before Robo has a

chance to start moving back:

According to the boundary check, the right edge of Robo is still beyond the right
edge of the screen, so once again Robo's velocity is set to zero. Robo is stopped before
he can even take a step!

Here is the solution; as soon as we detect that Robo has exceeded the boundary, we
set his velocity to zero and we reposition Robo to just the other side of the boundary:

[113]

Hit and Run

Now, Robo will be able to move as long as he goes in the other direction.

To implement this change, we are once again going to change the CheckBoundaries
function:

void CheckBoundaries (Sprite* p sprite)
{
Sprite::Rect check = p sprite->GetCollisionRect () ;
float offset;
float x;
float vy;

if (check.left < 0.0f)

{
p_sprite->SetVelocity (0.0f) ;
offset = check.left;
X = p sprite->GetPosition().x - offset;
y = p_sprite->GetPosition() .y;
p_sprite->SetPosition(x, y):;

}

else if (check.right > screen width)

{
p_sprite->SetVelocity (0.0f) ;
offset = screen width - check.right;
X = p sprite->GetPosition().x + offset;
y = p_sprite->GetPosition() .y;
p_sprite->SetPosition(x, y):

if (check.top < 0.0f)

{
p_sprite->SetVelocity (0.0f) ;
offset = check.top;
y = p_sprite->GetPosition().y - offset;
X = p sprite->GetPosition() .x;
p_sprite->SetPosition(x, y):

}

else if (check.bottom > screen height)

{
p_sprite->SetVelocity (0.0f) ;
offset = screen height - check.bottom;
y = p_sprite->GetPosition().y + offset;
X = p sprite->GetPosition() .x;
p_sprite->SetPosition(x, y):

[114]

Chapter 5

The highlighted lines show the added code. Basically, we perform the
following actions:

* Calculate how far past the boundary Robo has gone

* Adjust his position by that much so that he is now positioned right at
the boundary

You'll notice that we also filled out the function to handle the top and bottom
boundaries so that the boundary checking can be used for any sprite travelling in
any direction.

Fixing the background

Now that we have Robo moving the way we want him to, two new problems have
cropped up for the background image:

1. When Robo stops, the background keeps scrolling.

2. When the background image ends at either the right or the left, it slides off
the screen and we are left with a black background.

Before we continue on with collision detection, let's fix the background. First, we will
add the following function to RoboRacer2D. cpp:

void CheckBackground ()
{

float leftThreshold = 0.0f;

float rightThreshold = - (background->GetSize() .width - screen_
width) ;

if (background->GetPosition().x > 0)

{

background->SetPosition (0.0f, background->GetPosition() .y);

}

else if (background->GetPosition().x < rightThreshold)

{

background->SetPosition (rightThreshold, background-
>GetPosition() .y) ;

}
}

This code is very similar to the boundary checking code. If the background anchor
point moves far enough to the left to expose the right edge of the texture, it will be
reset. If the background anchor point moves far enough to the right to expose the left
edge of the texture, it will be reset.

[115]

Hit and Run

Now, add the highlighted line of code to the Update function right after the call to
CheckBoundaries in RoboRacer2D. cpp:

inputManager->Update (p_deltaTime) ;
ProcessInput () ;

CheckBoundaries (player) ;
CheckBackground () ;

The background should now run from edge to edge. Play the game and take a coffee
break. You deserve it!

Collideables

There are many times that we may want to check and see whether objects in the
game have collided with each other. We may want to see whether the player has
struck an obstacle or an enemy. We may have objects that the player can pick up,
often called pickups or powerups.

Collectively, objects in the game that can collide with other objects are known

as collideables. When we created our Sprite class, we actually it designed for

this. Looking at the class constructor, you will notice that member variable m_
isCollideable is set to false. When we write our collision detection code, we will
ignore objects that have m_isCollideable set to false. If we want to allow an object
to collide with other objects, we have to make sure to set m_collideable to true.

Ready to score

To keep our design simple, we are going to create one enemy and one pickup.
Running into an enemy will subtract points from the player's score, while running
into the pickup will increase the player's score. We will add some additional code to
the sprite class to support this feature.

First, let's add some new member variables. Declare a new variable in Sprite.h:
int m_value;
Then add the following methods:

void SetValue (const int p value) { m value = p value; }
const int GetValue() const { return m value; }

With these changes, every sprite will have an intrinsic value. If the value is positive,
then it is a reward. If the value is negative, then it is a penalty.

Don't forget to initialize m_value to zero in the Sprite class constructor!

[116]

Chapter 5

A friend indeed

Let's add the sprite for our pickup. In this case, the pickup is a can of oil to keep
Robo's joints working smoothly.

Add the following sprite definitions to RoboRacer2D:
Sprite* pickup;
Now, we will set up the sprite. Add the following code to LoadTextures:

pickup = new Sprite(l);
pickup->SetFrameSize (26.0f, 50.0f) ;
pickup->SetNumberOfFrames (1) ;
pickup->AddTexture ("resources/oil.png") ;
pickup->IsVisible (false) ;
pickup->IsActive (false) ;
pickup->SetValue (50) ;

This code is essentially the same code that we used to create all of our sprites.

One notable difference is that we use the new Setvalue method to add a value

to the sprite. This represents how many points the player will earn for the collection
of this pickup.

Time to spawn

Note that we have set the sprite as inactive and invisible. Now, we will write a
function to randomly spawn the pickup. First, we need to add two more C++
headers. In RoboRacer2D. cpp add the following headers:

#include <stdlib.hs>
#include <time.h>

We need stdlib for the rand function and time to give us a value to seed the
random generator.

Random numbers are generated from internal tables. In order
u to guarantee that a different random number is chosen each
~ time the program is started, you first seed the random number
Q generator with a value that is guaranteed to be different each
time you start the program. As the time that the program is
started will always be different, we often use time as the seed.

[117]

Hit and Run

Next, we need a timer. Declare the following variables in RoboRacer2D. cpp:

float pickupSpawnThreshold;
float pickupSpawnTimer;

The threshold will be the number of seconds that we want to pass before a pickup is
spawned. The timer will start and zero and count up to that number of seconds.

Let's initialize these values in the StartGame function. The startGame function is
also a great place to seed our random number generator. Add the following three
lines of code to the end of StartGame:

srand (time (NULL)) ;
pickupSpawnThreshold = 15.0f;
pickupSpawnTimer = 0.0f;

The first line seeds the random number generator by passing in an integer
representing the current time. The next line sets a spawn threshold of 15 seconds.
The third line sets the spawn timer to o.

Now, let's create a function to spawn our pickups. Add the following code to
RoboRacer2D. cpp:

void SpawnPickup (float p DeltaTime)
{
if (pickup->IsVisible() == false)
{
pickupSpawnTimer += p DeltaTime;
if (pickupSpawnTimer > pickupSpawnThreshold)
{
float marginX = pickup->GetSize () .width;
float marginY = pickup->GetSize () .height;

float spawnX = (rand() % (int) (screen width - (marginX * 2))) +
marginX;

float spawnY = screen height - ((rand() % (int) (player-
>GetSize () .height - (marginY * 1.5))) + marginy);

pickup->SetPosition (spawnX, spawnY) ;
pickup->IsVisible (true) ;
pickup->IsActive (true) ;
pickupSpawnTimer = 0.0f;

[118]

Chapter 5

This code does the following;:

It checks to make sure that the pickup is not already on the screen
If there is no pickup, then the spawn timer is incremented

If the spawn timer exceeds the spawn threshold, the pickup is spawned at a
random position somewhere within the width of the screen and within the
vertical reach of Robo

Don't get too worried about the particular math being used. Your algorithm to
position the pickup could be completely different. The key here is that a single
pickup will be generated within Robo's reach.

Make sure to add a call to SpawnPickup in the Update function as well as a line to
update the pickup:

if (m_gameState == GS_Running)

{

}

background->Update (p_deltaTime) ;

robot left->Update(p_deltaTime) ;

robot right->Update(p_deltaTime) ;

robot left strip->Update(p deltaTime) ;
robot right strip->Update(p_deltaTime) ;

pause->Update (p_deltaTime) ;
resume->Update (p_deltaTime) ;

pickup->Update (p deltaTime) ;
SpawnPickup (p_deltaTime) ;

We also need to add a line to Render to render the pickup:

void Render ()

{

glClear (GL_COLOR_BUFFER BIT) ;
glLoadIdentity () ;

background->Render () ;
robot left->Render () ;
robot right->Render() ;
robot left strip->Render() ;
robot right strip->Render() ;

pause->Render () ;

[119]

Hit and Run

resume->Render () ;

pickup->Render () ;
SwapBuffers (hDC) ;

}

If you run the game right now, then an oil can should be spawned about five seconds
after the game starts.

The current code has one flaw. It could potentially spawn the
o pickup right on top of Robo. Once we implement collision
~ detection, the result will be that Robo immediately picks up the
Q oil can. This will happen so quickly that you won't even see it
happen. In the name of keeping it simple, we will live with this
particular flaw.

Circular collision detection

One way to detect collision is to see how far each of the objects are from each other's
center. This is known as circular collision detection because it treats each object as

if it is bound by a circle, and uses the radius of that circle to determine whether the
objects are close enough to collide.

Take a look at the following diagram:

d>rl+r2 d<rl+r2

The circles on the left are not colliding, while the circles on the right are colliding. For
the non-colliding circles, the distance (d) between the center points of the two circles
is greater than the sum of the two radii (r1 + r2). For the colliding circles, the distance
(d) between the two centers is less than the sum of the two radii (r1 + r2). We can use
this knowledge to test any two objects for collision based on the radii of the circles
and the distance between the objects center point.

[120]

Chapter 5

So, how do we use this information?

1. We will know r1 and r2 because we set them when we create the sprite.

2. We will calculate two legs of a right-triangle using the x and y coordinates for
the center of each circle.

3. We will calculate d, the distance between two center points, using a variant of
the Pythagorean Theorem.

It will probably hurt your brain a little, but I'd like to refresh your memory one tenet
of basic geometry.

The Pythagorean Theorem

The Pythagorean Theorem allows us to find the distance between any two points in a
two-dimensional space if we know the lengths of the line segments that form a right-
angle between the points.

@+ b=
In our case, we are trying to calculate the distance (c) between the two points.

A little algebra will transform this equation to:

It is computationally expensive to perform the square root. A nice mathematical
trick will actually allow us to perform our collision detection without calculating the
square root.

[121]

Hit and Run

If we were to use square roots to do this calculation, here is what that might
look like:

c = sqgrt(a * a + b * b);

if (¢ <= rl + r2) return true;

Although this would work, there is a nice little mathematical trick that allows us to
accomplish this test without taking the square root. Take a look at this:

c=a*a+ b * b;

if (c<= rl * rl + r2 * r2) return true;

It turns out that we can just keep everything in the equation at the power of 2 and
the comparison still works. This is because we are only interested in the relative
comparison between the distance and the sum of the radii, not the absolute
mathematical values.

If the math we presented here boggles your brain, then don't
worry too much. Circular collision detection is so common
M that the math to detect it is generally already built into the
Q game engine that you will use. However, I wanted you to take
a little look under the hood. After all, game programming is
inherently mathematical, and the more you understand the
math, the better you will be at coding.

Adding the circular collision code

Now, it's time to modify Sprite.h to add support for the circular collision detection.
First, we need to add some member variables to hold the center point and radius.
Add these two properties to Sprite.h:

float m_radius;
Point m center;

Then add the following methods declarations:

void SetRadius (const GLfloat p_radius) { m_radius = p_radius; }
const float GetRadius() const { return m radius; }

void SetCenter (const Point p center) { m _center = p center; |}
const Point GetCenter () const;

const bool IntersectsCircle(const Sprite* p sprite) const;

[122]

Chapter 5

These methods allow us to set and retrieve the center point and radius of the sprite.
The GetCenter method is more than one line, so we will implement it in Sprite. cpp:

const Sprite::Point Sprite::GetCenter () const
Point center;
center.x = this->GetPosition().x + m_center.x;
center.y = this->GetPosition().y + m _center.y;

return center;

}

An important point to note here is that m_center represents an x and y offset from
the sprite's anchor point. So, to return the center point we will add m_center to the
current position of the sprite and this will give us the current center point of the
sprite exactly where it is in the game.

We now need to add the code to perform the collision detection. Add the following
code to Sprite.cpp:

const bool Sprite::IntersectsCircle(const Sprite* p sprite) const

{
if (this->IsCollideable() && p_sprite->IsCollideable() && this-
>IsActive() && p_sprite->IsActive())
{
const Point pl = this->GetCenter() ;
const Point p2 = p_ sprite->GetCenter();
float y = p2.y - pl.y;
float x = p2.x - pl.x;
float d = x*x + y*y;
float rl = this->GetRadius() * this->GetRadius() ;
float r2 = p sprite->GetRadius() * p sprite->GetRadius() ;
if (d <= rl + r2)
{
return true;
}
}

return false;

}

As we have already explained the use of the Pythagorean Theorem, this code should
actually seem a little familiar to you. Here is what we are doing;:

[123]

Hit and Run

The function accepts one sprite to compare with itself.

» First, we check to make sure both sprites are collideable.
* pl and p2 represent the two centers.

* xand y represent the lengths of the a and b sides of a right-angled triangle.
Notice that the calculation is simply the difference between the x and y
position of each sprite, respectively.

* rland r2 are the radii of the two circles (left as a power of 2).
* dis the distance between the two centers (left as a power of 2).

» If disless than or equal to the sum of the two radii, then the circles
are intersecting.

Why use circular collision detection?

As we discussed many times, textures are represented as rectangles. In fact, we
will take advantage of this when we cover rectangular collision detection later in
the chapter. The following figure illustrates how rectangular and circular collision
detection differ (the relative sizes are exaggerated to make a point):

The sprites on the left are colliding using a rectangular bounding box. The sprites on
the right are colliding using a bounding circle. In general, using a bounding circle is
visually more convincing when we are dealing with rounder shapes.

I'll admit the difference in this example is not that big. You
could get away with rectangular or circular collision detection
~ in this example. The round nature of the oil can made it
Q a good candidate for circular collision detection. Circular
collision detection is really essential if the two objects that are
colliding are actually circles (that is, two balls colliding).

[124]

Chapter 5

With the code that we developed, we need to define the center and radius for any
sprites that will use circular collision detection. Add the following code to the
LoadTextures function in RoboRacer . cpp:

Sprite::Point center;
float radius;

center.x = robot right->GetSize().width / 2.0f;
center.y = robot right->GetSize().height / 2.0f;
radius = (center.x + center.y) / 2.0f;

robot right->SetCenter (center) ;
robot right->SetRadius (radius) ;
robot left->SetCenter (center) ;
robot left->SetRadius (radius) ;

center.x = pickup->GetSize().width / 2.0f;

float yOffset = (pickup->GetSize().height / 4.0f) * 3.0f;
center.y = yOffset;

pickup->SetCenter (center) ;

radius = pickup->GetSize().width / 2.0f;
pickup->SetRadius (radius) ;

Don't get too worried about the exact values that we are using here. We are basically
setting up a bounding circle for Robo and the oil can that match the preceding figure.
Robo's bounding circle is set to the middle of the robot, while the oil can's circle is set
to the bottom half of the texture.

Wiring in the collision detection

We are now going to add a new function that will perform all of our collision
detection. Add the following function to RoboRacer2D. cpp:

void CheckCollisions ()

{

if (player->IntersectsCircle (pickup))
{
pickup->IsVisible (false) ;
pickup->IsActive (false) ;
player->SetValue (player->GetValue () + pickup->GetvValue()) ;
pickupSpawnTimer = 0.0f;
}
}

[125]

Hit and Run

The purpose of this code is to check to see whether the player has collided with
the pickup:

If the call to player->IntersectsCircle (pickup) returns true, then the
player has collided with the pickup

The pickup is deactivated and made invisible

The pickup's value is added to the player's value (this will be the base for
scoring in a future chapter)

The spawn timer is reset

We have two small details left. First, you must add a call to CheckCollisions to the
Update function:

if

{

}

(m_gameState == GS Running)

background->Update (p_deltaTime) ;
robot left->Update (p_deltaTime) ;
robot right->Update(p_deltaTime) ;
robot left strip->Update(p deltaTime) ;
robot right strip->Update(p_deltaTime) ;

pause->Update (p_deltaTime) ;
resume->Update (p_deltaTime) ;

pickup->Update (p_deltaTime) ;
SpawnPickup (p_deltaTime) ;

CheckCollisions () ;

Secondly, you need to make the player and pickup collideable. Add these three
lines to the bottom of LoadTextures just before the return statement:

robot left->IsCollideable (true) ;
robot right->IsCollideable (true) ;
pickup->IsCollideable (true) ;

Now, the real fun starts! Play the game and when the oil can spawns, and use Robo
to pick it up. Five seconds later another oil can spawns. The fun never ends!

[126]

Chapter 5

Rectangular collision detection

Now, we are going to learn how to implement rectangular collision detection.
It turns out that both Robo and our enemy (a water bottle) are very rectangular,
making rectangular collision detection the best choice.

The enemy within

Let's introduce our Robo's enemy —a bottle of water to rust his gears. The code for
this is included next.

Add the following sprite definition to RoboRacer2D:
Sprite* enemy;
Now, we will setup the sprite. Add the following code to LoadTextures:

enemy = new Sprite(1l);
enemy->SetFrameSize (32.0f, 50.0f);
enemy->SetNumberOfFrames (1) ;
enemy->AddTexture ("resources/water.png") ;
enemy->IsVisible (false) ;

enemy->IsActive (false) ;
enemy->SetValue (-50) ;
enemy->IsCollideable (true) ;

This code is essentially the same code that we used to create all of our sprites. One
notable difference is that we use the new Setvalue method to add a negative value
to the sprite. This is how many points the player will lose if they hit this enemy. We
also make sure that we set the enemy to be collideable.

Spawning the enemy

Just like the pickups, we need to spawn our enemies. We could use the same
code as the pickups, but I thought it would be nicer if our enemies worked on
a different timer.

Declare the following variables in RoboRacer2D. cpp:

float enemySpawnThreshold;
float enemySpawnTimer;

The threshold will be the amount of seconds that we want to pass before an enemy is
spawned. The timer will start and zero and count up to that number of seconds.

[127]

Hit and Run

Let's initialize these values in the StartGame function. Add the following two lines of
code to the end of StartGame:

enemySpawnThreshold = 7.0f;
enemySpawnTimer = 0.0f;

We set a spawn threshold of 7 seconds, and set the spawn timer to 0.

Now, let's create a function to spawn our enemies. Add the following code to
RoboRacer2D. cpp:

void SpawnEnemy (float p DeltaTime)

{
if (enemy->IsVisible() == false)
{
enemySpawnTimer += p DeltaTime;
if (enemySpawnTimer s>enemySpawnThreshold)
{
float marginX = enemy->GetSize() .width;
float marginY = enemy->GetSize () .height;

float spawnX = (rand() % (int) (screen width - (marginX * 2))) +
marginX;

float spawnY = screen height - ((rand() % (int) (player-
>GetSize () .height - (marginY * 2))) + marginy);

enemy->SetPosition (spawnX, spawnY) ;
enemy->IsVisible (true) ;
enemy->IsActive (true) ;

}

}
This code does the following:

* It checks to make sure that the enemy is not already on the screen
* If there is no enemy, then the spawn timer is incremented

* If the spawn timer exceeds the spawn threshold, the enemy is spawned at a
random position somewhere within the width of the screen and within the
vertical reach of Robo

Don't get too worried about the particular math being used. Your algorithm to
position the enemy can be completely different. The key here is that a single enemy
will be generated within Robo's path.

[128]

Chapter 5

Make sure to add a call to SpawnEnemy in the Update function as well as a line to
update the enemy:

if

{

}

We also need to add a line to Render to render the enemy:

(m_gameState == GS Running)

background->Update (p_deltaTime) ;
robot left->Update (p_deltaTime) ;
robot right->Update(p_deltaTime) ;

robot left strip->Update(p deltaTime) ;
robot right strip->Update(p_deltaTime) ;

pause->Update (p_deltaTime) ;
resume->Update (p_deltaTime) ;

pickup->Update (p_deltaTime) ;
SpawnPickup (p_deltaTime) ;

enemy->Update (p_deltaTime) ;
SpawnEnemy (p deltaTime) ;

CheckCollisions () ;

void Render ()

{

}

glClear (GL,_COLOR_BUFFER_BIT) ;

glLoadIdentity () ;

background->Render () ;
robot left->Render () ;
robot_ right->Render() ;
robot left strip->Render();
robot right strip->Render() ;

pause->Render () ;
resume->Render () ;

pickup->Render () ;
enemy->Render () ;
SwapBuffers (hDC) ;

If you run the game right now, then a water bottle should be spawned about seven
seconds after the game starts.

[129]

Hit and Run

Adding the rectangular collision code

As we have mentioned several times, all sprites are essentially rectangles.
Visually, if any border of these rectangles overlap, we can assume that the two
sprites have collided.

We are going to add a function to our Sprite class that determines whether two
rectangles are intersecting. Open Sprite.h and add the following method declaration:

const bool IntersectsRect (const Sprite*p sprite) const;

Now, let's add the implementation to Sprite. cpp:

const bool Sprite::IntersectsRect (const Sprite* p sprite) const
{

if (this->IsCollideable() && p_sprite->IsCollideable() && this-
>IsActive() && p sprite->IsActive())

{

const Rect recta = this->GetCollisionRect () ;

const Rect rectb = p sprite->GetCollisionRect () ;

if (recta.left >= rectb.left && recta.left <= rectb.right && recta.
top >= rectb.top && recta.top <= rectb.bottom)

{

return true;

}

else if (recta.right >= rectb.left && recta.right <= rectb.right &&
recta.top >= rectb.top && recta.top <= rectb.bottom)

{

return true;

}

else if (recta.left >= rectb.left && recta.right <= rectb.right &&
recta.top < rectb.top && recta.bottom > rectb.bottom)

{

return true;

}

else if (recta.top >= rectb.top && recta.bottom <= rectb.bottom &&
recta.left < rectb.left && recta.right > rectb.right)

{

return true;

}

else if (rectb.left >= recta.left && rectb.left <= recta.right &&
rectb.top >= recta.top && rectb.top <= recta.bottom)

{

return true;

}

[130]

Chapter 5

else if (rectb.right >= recta.left && rectb.right <= recta.right &&

rectb.top >= recta.top && rectb.top <= recta.bottom)

{

return true;

}

else if (rectb.left >= recta.left && rectb.right <= recta.right &&

rectb.top < recta.top && rectb.bottom > recta.bottom)

{

return true;

}

else if (recta.top >= rectb.top && recta.bottom <= rectb.bottom &&

recta.left < rectb.left && recta.right > rectb.right)

{

return true;

}

else if (rectb.top >= recta.top && rectb.bottom <= recta.bottom &&

rectb.left < recta.left && rectb.right > recta.right)

{

return true;

}
}

return false;

}

Here's how this code works:
* This function looks really complicated, but it is really only doing a
few things.
* The function accepts a sprite parameter.

* We set recta to be the collision rectangle of the sprite that called the

IntersectsRect method and set rectb to be the collision rectangle of the

sprite that was passed in.

* We then test every possible combination of the position of the vertices in of
recta to those of rectb. If any test is true, then we return true. Otherwise

we return false.

[131]

Hit and Run

The following figure illustrates some of the ways that two rectangles could interact:

Wiring continued

We have already wired in the collision check using CheckCollisions. We just need
to add the following code to CheckCollisions to the check whether the player is
colliding with an enemy:

if (player->IntersectsRect (enemy))
{
enemy->IsVisible (false) ;
enemy->IsActive (false) ;
enemy->SetValue (player->GetValue () + enemy->GetValue());
enemySpawnTimer = 0.0f;

}

Now, the real fun starts! Play the game and when the water can enemy spawns make
sure Robo avoids it! If you collide with an enemy, you will lose points (as the value
of enemy is set to a negative number). Until we implement a visible score, you may
want to write the score out to the console.

Summary

I'm sure you can now understand that most games would not be possible without
collision detection. Collision detection allows objects in the game to interact with
each other. We used collision detection to get pickups and detect whether we ran
into an enemy.

We also discussed the essential task of boundary checking. Boundary checking is a
special form of collision detection that checks to see whether an object has reached
the screen boundaries. Another type of boundary checking is used to manage the
scene background.

In the next chapter, we will wrap up the game by adding some finishing touches,
including a heads-up display!

[132]

Polishing the Silver

I'm sure that you are as excited as I am about the progress that you have made on
your game. It's almost ready to publish, right? Well, not quite! There is a lot of work
that goes into polishing your game before it is ready, and that's what this chapter is
all about.

Many people have a great idea for a game, and lots of enthusiastic coders, such

as you, actually code their game to the point where we have reached so far.
Unfortunately, this is where a lot of projects die. For some reason, many first-time
game coders don't take the time to really finish their game. There are lots of things
that still need to be done to make your game presentable:

Game state: We already touched on game state a little bit when you learned
how to pause your game. This chapter will continue the discussion of how
you use game state to manage your game at various stages of gameplay.

Splash screen: Most games display one or more screens before the game
starts. These screens, known as splash screens, often display the logo and
name of the studios that were involved in creating the game. A splash screen
shows that you went the extra mile in polishing your game.

Menu screen: Most games start with a menu of choices for the player. We
will create a simple menu that loads after our splash screen and gives the
player a few options.

Scoring and statistics: You probably noticed that our game currently doesn't
keep score. Although it is possible to design a game that doesn't involve
scoring, most players want to know how they are doing in the game.

Winning and losing: Again, while there are certainly games out there where
no one wins or loses, most games have win-or-lose conditions that signal that
the game is over.

[133]

Polishing the Silver

* Game progression: Most games allow the player to continue playing as long
as the player has achieved certain goals. Many games are broken down into
a series of levels, with each level becoming a little more difficult than the
previous one. You will learn how to add this type of progression to your game.

* Credits: Everyone likes to get credit for their work! Just like the movies, it
is traditional to include a screen that shows each person that was involved
in creating the game and what their role was. I'll show you how to create a
simple credits screen.

The state of the game

Remember when we coded the pause button back in Chapter 4, Control Freak? We
had to add some code that told the game whether it was active or paused. In fact, we
defined the following enums:

enum GameState
GS_Running,
GS Paused

bi

These enums defined two game states: GS_Running, and GS_paused. We then set the
default game state to GS_Running in the StartGame function:

void StartGame ()
inputManager = new Input (hWnd) ;
LoadTextures () ;
m gameState = GS Running;

srand (time (NULL)) ;

pickupSpawnThreshold = 5.0f;

pickupSpawnTimer = 0.0f;

}

As long as the game state is set to GS_Running, then the game continues to cycle
through the game loop, processing updates, and rendering the scene. However,
when you click the pause button, the game state is set to GS_pPaused. When the game
is paused, we no longer update the game objects (that is, the robot, pickups, and
enemies), but we do continue to render the scene and process the Ul (user interface)
so that buttons can be clicked.

[134]

Chapter 6

State machines

The mechanism used to set up and control game states is known as a state machine.
A state machine sets up separate and distinct stages (or states) for the game. Each
state defines a certain set of rules for what is supposed to happen or not happen
during each state. For example, our simple state machine has two states with the
following rules, illustrated by the following matrix:

GS_Running GS_Paused
Input All input Only Ul input
Objects Updating All objects Only Ul objects
Collision Detection All collideables No need to check for
collisions
Spawning All spawnables No spawning
Rendering All objects All objects

The state machine also defines the progression from one state to another. Here is a
simple diagram showing the progression in our current state machine:

Running

Paused

This state diagram is pretty simple. If you are in the running state, then it is legal
to go to the paused state. If you are in the paused state, then it is legal to go to the
running state. As we will see, most games are much more complex than this!

Why do we need a state machine?

At first glance, you may wonder why we even need a state machine. You could,
for example, set up several Boolean flags (maybe one called running and one
called paused), and then insert them into the code in the same way that we are
using our enums.

[135]

Polishing the Silver

This solution may work considering that our current game only has two states, but
even then, it starts to get complicated if you choose to use Booleans. For example,
to change the state from running to paused, I would always have to make sure to
properly set both Booleans:

running = false;

paused = true;

When I went from the running state to the paused state, I would have to set both
Booleans again:

running = true;

paused = false;

Imagine the problem if I forgot to change both Booleans and left the game in a state
where it was both running and paused! Then imagine how complicated this becomes
if my game has three, four, or ten states!

Using enums is not the only way to set up a state engine, but it does have immediate
advantages over using Booleans:

* Enums have a descriptive name associated with their value (for example,
GS_Paused), whereas Booleans only have true and false.

* Enums are already mutually exclusive. In order to make a set of Booleans
mutually exclusive, I have to set one to true and all the others to false.

The next consideration as to why we need a state machine is that it simplifies the
coding of the control of the game. Most games have several game states, and it is
important that we are able to easily manage which code runs in which state. An
example of game states that are common to most games includes:

* Loading
» Starting
* Running
e Paused

* Ending

* GameWon
* GameLost
* GameOver
* NextLevel
* Exiting

[136]

Chapter 6

Of course, this is just a representative list, and each coder picks his or her own names
for their game states. But I think that you get the idea: there are a lot of states that a
game can be in, and that means it is important to be able to manage what happens
during each state. Players tend to get angry if their character dies while the game

was paused!

Planning for state

We are going to expand our simple state machine to include several more game
states. This is going to help us to better organize the processing of the game, and
better define which processes should be running at any particular time.

The following table shows the game states that we are going to define for our game:

State Description

Loading The game is loading and the Splash screen should be displayed
Menu The main menu is showing

Running The game is actively running

Paused The game is paused

NextLevel The game is loading the next level

GameOver | The game is over and the stats are being displayed

Credits Showing the Credits screen

Here is our state diagram machine:

Splash | Loading | Menu | Running | Paused | Next | GameOver | Credits
Input None | None Ul All Ul Ul Ul Ul
Updating | Splash | Splash Ul All Ul Ul Ul Ul
Collision | None None None | All None None | None None
Detection
Spawning | None None None | All None None | None None
Rendering | Splash | Splash Menu | Game Game | Game | GameOver | Credits

[137]

Polishing the Silver

Finally, here is our state diagram:

NextLevel

Splash
Loading
M Credit
enu redits
ﬂ
. 4
Playing Paused
ﬁ'
GameOver

It turns out that our state diagram will also double as a UI diagram. A UI diagram is
a diagram of all of the screens in a program and how they interact with each other.

It turns out that each time that we want to change to a different screen in our game,
we are also changing to a different screen. This isn't exactly the case —when the game
is paused, it doesn't launch a completely new screen. However, there is often a very
close correlation between the Ul diagram and the state diagram.

Looking at the state diagram, you can easily see the legal state changes versus the
illegal state changes. For example, it is legal to change the state from playing to
paused, but you can't change the state from playing to credits.

Having this structure in place will guide us as we implement all of the final polish

features that we want to add to our game.

[138]

Chapter 6

Defining the new state

The first step in expanding our game state machine is adding the required enums.
Replace the GameState enum code with the following code:

enum GameState
{
GS Splash,
GS_Loading,
GS_Menu,
GS Credits,
GS_Running,
GS_ NextLevel,
GS_Paused,
GS_GameOver,

bi

As we implement the polish features covered in this chapter, we will implement
code that uses these game states.

Implementing the state machine

In order for our state machine to have any effect, we need to modify the code so that
key decisions are made based on the game state. There are three functions that game
state affects in a big way:

* Update: Some game states update game objects, while other game states
update only the Ul or a particular sprite

* Render: Different game states render different items

* Input: Some game states accept all input, while other game states only
process Ul input

It should come as no surprise then that we will be changing the Update, Render, and
ProcessInput functions.

First, let's modify the Update function. Change the Update function in RoboRacer2D.
cpp to match the following code:

void Update (const float p deltaTime)

{

switch (m_gameState)

{

case GameState::GS Splash:
case GameState::GS_Loading:

{

[139]

Polishing the Silver

}

break;

case GameState::GS_Menu:

{
inputManager->Update (p _deltaTime) ;
ProcessInput (p_deltaTime) ;

}

break;

case GameState::GS_Credits:

{

inputManager->Update (p _deltaTime) ;
ProcessInput (p_deltaTime) ;

}

break;

case GameState::GS_Running:

{

inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;
CheckBoundaries (player) ;
CheckBackground () ;
background->Update (p_deltaTime) ;
robot left->Update(p_deltaTime) ;
robot right->Update(p deltaTime) ;
robot left strip->Update(p deltaTime) ;
robot right strip->Update(p_deltaTime) ;
pauseButton->Update (p_deltaTime) ;
resumeButton->Update (p_deltaTime) ;
pickup->Update (p deltaTime) ;
SpawnPickup (p_deltaTime) ;
SpawnEnemy (p_deltaTime) ;
enemy->Update (p_deltaTime) ;
CheckCollisions () ;

}

break;

case GameState::GS_Paused:

{
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;

}

break;

case GameState::GS NextLevel:

{
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;

}

break;

[140]

Chapter 6

case GameState::GS_GameOver:

{
inputManager->Update (p _deltaTime) ;
ProcessInput (p_deltaTime) ;

}

break;

}

}

As you can see, we are now using a switch statement to handle each game state.
This is a whole lot more readable than using if statements, and it keeps the code
much more structured. If we need to add another game state, we just add another
case to the switch statement.

Notice that each case has its code to run specific to that game state. Some lines of
code are duplicated (almost every state has some input), but this is a small price to
pay for clarity. GS_Running has the most work to do, while Gs_Loading has the least
work to do. We will be adding code to each switch as we add polish features.

Now, let's give the Render function an upgrade. Replace the Render function with
the following code:

switch (m_gameState)

{

case GameState::GS_Splash:
case GameState::GS_Loading:
{

}

break;
case GameState::GS_Menu:

break;
case GameState::GS_Credits:

break;
case GameState::GS_Running:
case GameState::GS_Paused:
{
background->Render () ;
robot left->Render () ;
robot right->Render() ;
robot left strip->Render();
robot right strip->Render();
pauseButton->Render () ;
resumeButton->Render () ;

[141]

Polishing the Silver

pickup->Render () ;
enemy->Render () ;
DrawScore () ;

}

break;
case GameState::GS NextLevel:

{
}

break;
case GameState::GS_GameOver:

{
}

break;

}

SwapBuffers (hDC) ;

}

In this case, we have some work that needs to be done regardless of the game state.
We need to clear the OpenGL buffer, and set the matrix to identity. Then we decide
which items to render based on the game state, and finally, we swap the buffers.

If you look closely, GS_Running and GS_Paused render the same items. This is
because the pause and render buttons are rendered over the top of the gameplay
screen, so we still need to render the entire game even when we are paused. We will
be adding code to each switch as we add polish features.

Finally, we need to apply our state machine to the ProcessInput function. As the
function is so long, I am only showing the top lines of the function. Change all of the
lines above the uiTimer += p_deltaTime; statement to the following code:

Replace highlighted code with:

switch (m gameState)
case GameState::GS Splash:
case GameState::GS_Loading:

{

return;

}
break;

case GameState::GS_ Menu:

case GameState::GS Credits:
case GameState::GS Paused:
case GameState::GS NextLevel:
case GameState::GS_GameOver:

{

[142]

Chapter 6

command = Input::Command::CM UI;

}

break;
case GameState::GS_Running:

{
}

break;

}
}

uiTimer += p deltaTime;

First, we get the latest command. Then, depending on the game state, we perform the
following actions:

* Ignore and return if we are still in the loading state

* Reset the command to only handle Ul commands if the game state is menu,
paused, next level, or game over

* Leave the command unchanged if we are in the running game state

This is exactly what we did in the prior versions, except we only had two game
states to deal with in the prior versions. Once the command is handled, we move
onto the uiTimer += p_deltaTime; (everything after this line is unchanged from
the prior versions).

Making a splash

A splash menu adds a touch of class to your game and also does a little bragging.
Typically, the splash screen shows off your company logo. In fact, many game
projects have multiple studios that work on them, so there are often multiple splash
screens. We will use just one!

It is important to get the splash screen up and running as soon as possible, so we will
do that before we perform any other loading. Part of the function of a splash screen
is to give the player something pretty to look at while the rest of the game is loading.

Creating the splash screen

It's up to you to create a splash screen that defines your game. For convenience, we
have included one in the code resource package for this chapter called splash.png.
Make sure you copy splash.png into your project. The only requirement for the
splash image is that it is 800 x 600 pixels, the same resolution as our game screen.

[143]

Polishing the Silver

Defining the splash screen

As with all images in this game, we will implement the splash screen as a sprite.
Declare the splash sprite at the top of RoboRacer2D. cpp:

Sprite* splashScreen;

We also want to define some timers for the splash screen:

float splashDisplayTimer;
float splashDisplayThreshold;

As we want to define the splash screen separately, we will create a separate function
just to load it. Create the Loadsplash function using the following code:

void LoadSplash()

{

m_gameState = GameState::GS_Splash;

splashScreen = new Sprite(l);
splashScreen->SetFrameSize (800.0f, 600.0f) ;
splashScreen->SetNumberOfFrames (1) ;
splashScreen->AddTexture ("resources/splash.png", false);
splashScreen->IsActive (true) ;
splashScreen->IsVisible (true) ;

}

We are not going to make a significant change to the startGame function. We are
going to only load the splash screen, and defer loading the other game resources.
This will get our splash screen up as soon as possible. Change the startGame
function so that it looks like the following code:

void StartGame ()

{

LoadSplash() ;
inputManager = new Input (hWnd) ;

uiTimer = 0.0f;
srand (time (NULL)) ;

pickupSpawnThreshold = 3.0f;
pickupSpawnTimer = 0.0f;

enemySpawnThreshold = 7.0f;
enemySpawnTimer = 0.0f;

[144]

Chapter 6

splashDisplayTimer = 0.0f;
splashDisplayThreshold = 5.0f;

}

Notice that we only load the splash resources and set a few variables here. We also
set the splash timer so that it will show up for at least five seconds.

Next, modify the Gs_Splash case in the Update function to look like the following code:

switch (m_gameState)

case GameState::GS Splash:
case GameState::GS_Loading:

{

splashScreen->Update (p_deltaTime) ;
splashDisplayTimer += p deltaTime;
if (splashDisplayTimer > splashDisplayThreshold)

{

m_gameState = GameState::GS_Menu;

}
}

break;

This code updates the splash timer. When the timer exceeds our threshold, then the
game state changes to Gs_Menu. We will define the code to load the next menu.

Modify the GS_Splash case in the Render function to look like the following code:

case GameState::GS_Loading:
splashScreen->Render () ;
break;

o As the splash sprite is only a static image, you may wonder
~ why we update the splash sprite. While an update has no
Q effect on our current code, consider a case where I wanted to
implement a dynamic, animated splash screen.

Loading our resources

If you have been paying attention, then you should realize that we removed the
LoadTextures call from the startGame function. Instead, we are going to load
the textures in the GameLoop function. Change GameLoop so that it looks like the
following code:

void GameLoop (const float p deltatTime)

{

[145]

Polishing the Silver

if (m gameState == GameState::GS Splash)
{
LoadTextures () ;
m gameState = GameState::GS Loading;
}
Update (p_deltatTime) ;
Render () ;

}

If you recall, GameLoop is called every frame. We need GameLoop to be running to
display our splash screen, which we have already loaded. But on the first call to
GameLoop, we haven't loaded our other resources.

We check to see whether our game state is GS_sSplash. If it is, we call load textures,
and immediately change the game state to GS_Loading. If we didn't change the game
state, then the game would attempt to load the textures every frame, which would be
a very bad thing! This is another practical example of why we define different game
states in our state machine.

In a way, we haven't created a true splash screen. That is because

our splash still depends on Windows and OpenGL initializing

before the splash screen can even be loaded and rendered. True

~ splash screens use a snippet of code that does not depend on all

Q of this initialization so that they can load before everything else.

Unfortunately, that level of detail is beyond the scope of our
book. Sometimes, the splash screen will run on a separate thread
so that it is independent of the startup code.

RoboRacer 2D - olEN

RoboRacer 2D

..........

[146]

Chapter 6

When you run the game now, you should see the splash screen display, but then
nothing else happens. This is because we changed the game state to Gs_Menu in the
Update function, and we have not coded for that game state yet! If you want to test
your splash screen, change m_gameState = GameState::GS_Menu tom_gameState
= GameState::GS_Running in the Update function. Just don't forget to change it
back before you move on.

The ability to change your game state allows you to reroute
M the flow of your game. This is very useful, for example,
Q when you are trying to code a new game state but you aren't
ready to run it in the game yet. Once the new game state is
coded, then you can wire it in.

What's on the menu?

Main menus may have disappeared in many applications, but they are still alive and
well in games. The main menu gives the player a chance to decide what to do once
the game has loaded. We are going to create a simple menu that allows the player to
start the game, display the credits, or exit the game.

Creating the menu

Our menu will be built out of two components. First, we will load an image to use as
the background. Next, we will load additional images to use as Ul buttons. Together,
these images will create a screen that will allow the player to navigate our game.

We will start by defining a sprite to represent the menu. Add the following line of
code to the variable declarations in RoboRacer2D. cpp:

Sprite* menuScreen;

Next, we will instantiate the menu in the LoadTextures function. Add the following
code to LoadTextures:

menuScreen = new Sprite(l);
menuScreen->SetFrameSize (800.0f, 600.0f) ;
menuScreen->SetNumberOfFrames (1) ;

menuScreen->AddTexture ("resources/mainmenu.png", false);
menuScreen->IsActive (true) ;

menuScreen->IsVisible (true) ;

Make sure that you have downloaded the menu. png texture from the book website,
or that you have created your own background at 800 by 600 pixels.

[147]

Polishing the Silver

Now, we must modify the Update and Render functions. Modify the GS_Menu case in
Update to the following code:

case GameState::GS Menu:

{

menuScreen->Update (p_deltaTime) ;
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;

}

break;

Next, modify the GS_Menu case in the Render function:

case GameState::GS_Menu:

{
}

break;

menuScreen->Render () ;

If you run the game now, the splash screen should display for five seconds, followed
by the menu screen.

Defining the menu buttons

Our next task is to add buttons to the menu screen that the player can click. These
buttons will work similar to the pause and resume buttons that we have already created.

We will start by declaring variables for the buttons. Add the following declarations
to the variables section in RoboRacer2D. cpp:

Sprite* playButton;
Sprite* creditsButton;
Sprite* exitButton;

These three pointers will manage the three buttons on our main menu. Next, add the
following code to LoadTextures to instantiate the buttons:

playButton = new Sprite(l);
playButton->SetFrameSize (75.0f, 38.0f);
playButton->SetNumberOfFrames (1) ;
playButton->SetPosition (390.0f, 300.0f);
playButton->AddTexture ("resources/playButton.png") ;
playButton->IsVisible (true) ;
playButton->IsActive (false) ;
inputManager->AddUiElement (playButton) ;

creditsButton = new Sprite(l);
creditsButton->SetFrameSize (75.0f, 38.0f);

[148]

Chapter 6

creditsButton->SetNumberOfFrames (1) ;
creditsButton->SetPosition(390.0f, 350.0f) ;
creditsButton->AddTexture ("resources/creditsButton.png") ;
creditsButton->IsVisible (true) ;
creditsButton->IsActive (false) ;
inputManager->AddUiElement (creditsButton) ;

exitButton = new Sprite(l);
exitButton->SetFrameSize (75.0f, 38.0f);
exitButton->SetNumberOfFrames (1) ;
exitButton->SetPosition(390.0f, 500.0f);
exitButton->AddTexture ("resources/exitButton.png") ;
exitButton->IsVisible (true) ;
exitButton->IsActive (false) ;
inputManager->AddUiElement (exitButton) ;

This code is mostly the same as the code that we used to instantiate the pause and
resume buttons. One small difference is that we set all three buttons to be visible.
Our code already enforces that these buttons will not render unless we are in the
game state GS_Menu.

We do, however, want to set the buttons as inactive. This way the input class will
ignore them until we want them to be activated.

As with all of our objects, we now need to wire them into the Update and Render
functions. Change the GS_Menu case in the Update function to the following code:

case GameState::GS_Menu:
{
menuScreen->Update (p_deltaTime) ;
playButton->IsActive (true) ;
creditsButton->IsActive (true) ;
exitButton->IsActive (true) ;
playButton->Update (p _deltaTime) ;
creditsButton->Update (p_deltaTime) ;
exitButton->Update (p_deltaTime) ;
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;

}

break;

This is where we set the buttons on our menu to be active. We want to guarantee that
the buttons on the menu are active when we are in the game state Gs_Menu.

Next, change the Gs_Menu case in the Render function to the following code:

case GameState::GS_Menu:

{

menuScreen->Render () ;

[149]

Polishing the Silver

playButton->Render () ;
creditsButton->Render () ;
exitButton->Render () ;

}

break;

In order for the buttons to actually do something, we need to add the following code
to the CM_UI case in ProcessInput:

if (playButton->IsClicked())

{

playButton->IsClicked(false) ;
exitButton->IsActive (false) ;
playButton->IsActive (false) ;
creditsButton->IsActive (false) ;
m_gameState = GameState::GS_Running;

if (creditsButton->IsClicked())

{

creditsButton->IsClicked (false) ;
exitButton->IsActive (false) ;
playButton->IsActive (false) ;
creditsButton->IsActive (false) ;
m_gameState = GameState::GS Credits;

if (exitButton->IsClicked())

{

}

playButton->IsClicked(false) ;
exitButton->IsActive (false) ;
playButton->IsActive (false) ;
creditsButton->IsActive (false) ;
PostQuitMessage (0) ;

Notice that we change the game state if the play button or credits button are clicked
(if the exit button is clicked, we simply post the quit message). Notice that we have
to do a little button management, setting the buttons on the menu to be inactive once
we are no longer in the GS_Menu game state. This is because our input class checks
the input for all buttons that are active. Leaving the buttons active would mean that

they

could still be clicked even though they are not being displayed on the screen.

We don't have to set the buttons to be invisible. This is because changing the state
will automatically stop these buttons from updating or rendering. The same is true of
the menu screen. Once the game state is changed, it will not render or update. This is
one of the big advantages of utilizing a state machine.

[150]

Chapter 6

RoboRacer 2D = E

RoboRacer 2D

Main Menu

N
(=)

)

If you run the program right now, the main menu will display. If you click the play
button, the game will start. If you click the exit button, the game will exit. We will
implement the credit screen next.

Getting some credit

Everyone likes to get credit for their hard work! Most games will implement a
credits screen that shows the name and function of each person involved in creating
the game. For AAA titles, this list may be as long as a list for a movie. For smaller,
independent games, this list might be three people.

Creating the credits screen

Similarly to the main menu, the credits screen will be based on a background image
and a button that can be clicked. We will also need to add text to the screen.

Let's start by declaring a pointer for our screen. Add the following declaration to the
variables section of RoboRacer2D. cpp:

Sprite* creditsScreen;

[151]

Polishing the Silver

Then, we will instantiate the credits screen in LoadTextures:

creditsScreen = new Sprite(l);
creditsScreen->SetFrameSize (800.0f, 600.0f) ;
creditsScreen->SetNumberOfFrames (1) ;
creditsScreen->AddTexture ("resources/credits.png", false);
creditsScreen->IsActive (false) ;
creditsScreen->IsVisible (true) ;

Next, we wire the credits screen into Update:

case GameState::GS_ Credits:

{

creditsScreen->Update (p_deltaTime) ;
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;

}

break;

We also update Render:

case GameState::GS_Credits:

{

creditsScreen->Render () ;

}

break;

Getting back to the main menu

We now need to add a button that allows us to get from the credits screen back to the
main menu. We first declare the pointer in the variables declaration section:

Sprite* menuButton;

We then instantiate the button in LoadTextures:

menuButton = new Sprite(l);
menuButton->SetFrameSize (75.0f, 38.0f);
menuButton->SetNumberOfFrames (1) ;
menuButton->SetPosition(390.0f, 400.0f);
menuButton->AddTexture ("resources/menuButton.png") ;
menuButton->IgVisible (true) ;
menuButton->IgsActive (false) ;
inputManager->AddUiElement (menuButton) ;

Let's add the button to Update:

case GameState::GS_ Credits:

{

[152]

Chapter 6

creditsScreen->Update (p_deltaTime) ;
menuButton->IsActive (true) ;
menuButton->Update (p_deltaTime) ;
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;

}

break;

We also update Render:

case GameState::GS_Credits:

{

creditsScreen->Render () ;
menuButton->Render () ;

}

break;

Similarly to the menu buttons, we now need to add code to the case
Input: :Command: :CM_UI: case in ProcessInput to handle clicking on
the menu button:

if (menuButton->IsClicked())

{

menuButton->IsClicked(false) ;
menuButton->IsActive (false) ;
m_gameState = GameState::GS_Menu;

}

When the menu button is clicked, we change the game state back to menu, and set
the menu button to be inactive. Due to the code that we have already written, the
menu screen will automatically display.

0 RoboRacer 2D - oM

RoboRacer 2D

Credits

Robert Madsen
Author

[153]

Polishing the Silver

Working with fonts

Until now, we embedded any text that we needed inside of an existing texture.
However, there are times when we may want to have the code decide what text to
display. For example, on our credits screen, we don't want to make a graphic for
each person's name who took part in creating the game.

Creating the font

We need a way to render text directly to the screen, and this means that we also need
a way to define the font that we want to use when rendering the text. First, we need
to add a global variable that services as a handle to our fonts. Add the following line
to the variable declarations in the code:

GLuint fontBase;
Now, we need to add the following code to create the font:

GLvoid BuildFont (GLvoid)

{

HFONT newFont;
HFONT tempFont;

fontBase = glGenLists (96) ;

tempFont = CreateFont (-26, // Height

0, // Width

0, // Escapement

0, // Orientation
FW_BOLD, // Weight

FALSE, // Italic

FALSE, // Underline

FALSE, // Strikeout
ANSI_CHARSET, // Character Set

OUT_TT PRECIS, // Output Precision

CLIP_DEFAULT PRECIS, // Clipping Precision
ANTIALIASED QUALITY,// Output Quality
FF_DONTCARE | DEFAULT PITCH, // Family/Pitch
"Courier New") ; // Font Name

newFont = (HFONT)SelectObject (hDC, tempFont) ;
wglUseFontBitmaps (hDC, 32, 96, fontBase);
SelectObject (hDC, newFont) ;

DeleteObject (tempFont) ;

}

This code creates a font using three main elements.

[154]

Chapter 6

First, we use glGenLists to create 96 display lists to hold each letter of our font.

A display list is basically a buffer that can hold rendering data. Next, we call
CreateFont to create a Windows font. The parameters of the createFont function
specify the type of font that we want to create. Finally, we use wglUseFontBitmaps
to assign our new font to the font handle that we created earlier.

One little twist is that we have to create a temporary HFONT object called tempFont
with all the properties, then we assign tempFont to newFont and delete tempFont.

We will want to delete the display lists when the program closes down, so add the
following utility function:

GLvoid KillFont (GLvoid)

{

glDeletelLists (fontBase, 96) ;

}

This code simply uses glDeleteLists to delete the display lists that we created to
hold our font.

Drawing text

Now that we have a font, we need to have a function that will render text to the
screen. Add the following function to the code:

void DrawText (const char* p text, const float p x, const float p vy,
const float r, const float g, const float b)

{

glBindTexture (GL _TEXTURE 2D, 0);

glColor3f(r, g, b);

glRasterPos2f (p_x, p_Vy);
if (p_text != NULL)

{

glPushAttrib (GL_LIST BIT)
glListBase (fontBase - 32)
glCalllLists (strlen(p text
glPopAttrib () ;

}

glColor3f(1.0f, 1.0f, 1.0f);
}

This code takes a string and an x and y position, and draws the text at that position.
It also takes r, g, and b parameters to define the text color:

7

), GL_UNSIGNED BYTE, p_text);

* glBindTexture(GL_TEXTURE_2D, 0): This tells OpenGL that we are going to
be working with 2D textures (i.e. the fonts) glcolor3f (r, g, b): This sets
the color of the font.

[155]

Polishing the Silver

* glRasterPos2f: This is used to set the current draw position on the screen.

* glbPushAttrib(GL_LIST BIT): This tells OpenGL that we are going to
render using display lists.

* glListBase: This sets the current start of the list. We subtract 32 because the
ASCII value for a space is 32, and we don't use any characters with lower
ASCII values.

* glcallLists: Thisis used to retrieve the lists for each character in the text.

* glpopAttrib: This returns the OpenGL attribute to its previous value.

Now, we are ready to draw our credits text:

void DrawCredits ()

{

float startX = 325.0f;

float startY = 250.0f;

float spaceY = 30.0f;

DrawText ("Robert Madsen", startX, startyY, 0.0f, 0.0f, 1.0f);
DrawText ("Author", startX, startY + spaceY, 0.0f, 0.0f, 1.0f);

}

First, we set the position on the screen where we want to draw, then we use the
DrawText function to actually perform the drawing. The first line adds me (a subtle
indulgence), and the second line is for you!

Wiring in the font support

We have a few more book keeping tasks to perform to get the font support to work.
First, modify the GameLoop code, adding the highlighted line:

if (m_gameState == GameState::GS_Splash)

{

BuildFont () ;
LoadTextures () ;
m _gameState = GameState::GS_Loading;

}

This will create our fonts when the game starts up.

Next, fill out the GS_cCredits case of the m_gameState switch in the Render function:

case GameState::GS Credits:
{
creditsScreen->Update (p_deltaTime) ;
menuButton->IsActive (true) ;
menuButton->Update (p_deltaTime) ;
inputManager->Update (p_deltaTime) ;

[156]

Chapter 6

ProcessInput (p_deltaTime) ;

}

break;

This draws the credits text when the game state changes to Gs_cCredits.
Congratulations! You can finally get the credit that you deserve!

Level up!

A lot of the fun in games is trying to increase your score. Part of good game design is
to make the game challenging to play, but not so challenging that the player cannot
score or improve.

Most players also get better at a game as they play, so if the game difficulty does
not increase, the player will eventually get bored because the player will no longer
be challenged.

We will start by simply displaying the score on the screen so that the player can
see how well they are doing. Then we will discuss techniques that are used to
continually increase the difficulty of the game, thus steadily increasing the challenge.

Displaying the score
We already learned how to display text on the screen when we were creating the
credits screen. Now, we will use the same techniques to display the score.

If you recall, we already have a mechanism to keep track of the score. Every sprite
has a value property. For pickups, we assign a positive value so that the player gains
points for each pickup. For enemies, we assign a negative value so that the player
loses points whenever they collide with an enemy. We store the current score in the
value property of the player.

Add the following code to RoboRacer2D. cpp to create the DrawScore function:

void DrawScore ()

{

char score[50];

sprintf s(score, 50, "Score: %i", player->GetValue());
DrawText (score, 350.0f, 25.0f, 0.0f, 0.0f, 1.0f);

}

This code works just like the DrawCredits function that we created earlier. First,
we create a character string that holds the current score and a caption, then we use
DrawText to render the text.

[157]

Polishing the Silver

We also need to wire this into the main game. Modify the GS_Running case of the
m_gameState switch in the Render function with the highlighted line:

case GameState::GS_Running:
case GameState::GS_Paused:

{

background->Render () ;

robot left->Render () ;

robot_ right->Render() ;

robot left strip->Render() ;
robot right strip->Render() ;
pauseButton->Render () ;
resumeButton->Render () ;
pickup->Render () ;
enemy->Render () ;
DrawScore () ;

}

break;

The score will display both when the game is running and when the game is paused.

Game progression

In order to add progression to the game, we need to have certain thresholds
established. For our game, we will set three thresholds:
* Each level will last two minutes

» If the player receives less than five pickups during a level, the game will end,
and the game over screen will be displayed

* If the player receives five or more pickups, then the level ends and the next
level screen is displayed

For each level that the player successfully completes, we will make things a little more
difficult. There are many ways that we could increase the difficulty of each level:

* Increase the spawn time for pickups

* Decrease the speed of the robot
To keep things simple, we will only do one of these. We will increase the spawn

time threshold for pickups by .25 seconds for each level. With pickups spawning less
often, the player will eventually receive too few pickups, and the game will end.

[158]

Chapter 6

Defining game levels

Let's set up the code for level progression. We will start by defining a timer to keep track
of how much time has passed. Add the following declarations to RoboRacer2D. cpp:

float levelTimer;
float levelMaxTime;
float pickupSpawnAdjustment;

int pickupsReceived;
int pickupsThreshold;
int enemiesHit;

We will initialize the variables in the StartGame function:

levelTimer = 0.0f;
levelMaxTime = 30.0f;
pickupSpawnAdjustment = 0.25f;

pickupsReceived = 0;
pickupsThreshold = 5;
enemiesHit =0;

We are setting up a timer that will run for 120 seconds, or two minutes. At the end of
two minutes the level will end and the spawn time for pickups will be incremented
by .25 seconds. We will also check to see whether the player has received five
pickups. If not, the game will be over.

To handle the logic for the level progression, let's add a new function called
NextLevel by adding the following code:

void NextLevel ()

{

if (pickupsReceived < pickupsThreshold)

{

m_gameState = GameState::GS_GameOver;

}

else

{

pickupSpawnThreshold += pickupSpawnAdjustment;
levelTimer = 0.0f;
m_gameState = GameState::GS NextLevel;

}
}

As stated previously, we check to see whether the number of pickups that the robot
has is less than the pickup threshold. If so, we change the game state to GS_GameOver.
Otherwise, we reset the level timer, reset the pickups received counter, increment the
pickup spawn timer, and set the game state back to GS_Running.

[159]

Polishing the Silver

We still need to add some code to update the level timer and check to see whether the
level is over. Add the following code to the GS_Running case in the Update function:

levelTimer += p deltaTime;
if (levelTimer > levelMaxTime)

{
}

This code updates the level timer. If the timer exceeds our threshold, then call
NextLevel to see what happens next.

NextLevel () ;

Finally, we need to add two lines of code to CheckCollisions to count the number
of pickups received by the player. Add the following highlighted line of code to

CheckCollisions

if (player->IntersectsCircle (pickup))
{
pickup->IsVisible (false) ;
pickup->IsActive (false) ;
player->SetValue (player->GetValue () + pickup->GetValue());
pickupSpawnTimer = 0.0f;
pickupsReceived++;

}

if (player->IntersectsRect (enemy))

{

enemy->IsVisible (false) ;

enemy->IsActive (false) ;

player->SetValue (player->GetValue () + enemy->GetValue()) ;
enemySpawnTimer = 0.0f;

enemiesHit++;

Game stats

It would be nice for the player to be able to see how they did between each level.
Let's add a function to display the player stats:

void DrawStats ()

{

char pickupsStat [50];
char enemiesStat [50];
char score[50];

sprintf s(pickupsStat, 50, "Enemies Hit: %i", enemiesHit);
sprintf s(enemiesStat, 50, "Pickups: %i", pickupsReceived) ;
sprintf s(score, 50, "Score: %i", player->GetValue()) ;

DrawText (enemiesStat, 350.0f, 270.0f, 0.0f, 0.0f, 1.0f);
DrawText (pickupsStat, 350.0f, 320.0f, 0.0f, 0.0f, 1.0f);
DrawText (score, 350.0f, 370.0f, 0.0f, 0.0f, 1.0f);

[160]

Chapter 6

We will now wire this into the next level screen.

The next level screen

Now that we have the logic in place to detect the end of the level, it is time to
implement our next level screen. By now, the process should be second nature, so
let's try an abbreviated approach:

1. Declare a pointer to the screen:

Sprite* nextLevelScreen;

2. Instantiate the sprite in LoadTextures:
nextLevelScreen = new Sprite(l);
nextLevelScreen->SetFrameSize (800.0f, 600.0f) ;
nextLevelScreen->SetNumberOfFrames (1) ;
nextLevelScreen->AddTexture ("resources/level.png", false);
nextLevelScreen->IsActive (true) ;
nextLevelScreen->IsVisible (true) ;

3. Modify the Gs_NextLevel case in the Update function:

case GameState::GS NextLevel:

{

nextLevelScreen->Update (p_deltaTime) ;
continueButton->IsActive (true) ;
continueButton->Update (p_deltaTime) ;
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;

break;

}

4. Modify the GS_NextLevel case in the Render function to look like the
following code::

case GameState::GS NextLevel:

{

nextLevelScreen->Render () ;
DrawStats () ;
continueButton->Render () ;

}

break;

Continuing the game

Now, we need to add a button that allows the player to continue the game. Again,
you have done this so many times, so we will use a shorthand approach:

1. Declare a pointer for the button:

Sprite* continueButton;

[161]

Polishing the Silver

2. Instantiate the button in LoadTextures:

continueButton = new Sprite(l);
continueButton->SetFrameSize (75.0f, 38.0f);
continueButton->SetNumberOfFrames (1) ;
continueButton->SetPosition(390.0f, 400.0f) ;
continueButton->AddTexture ("resources/continueButton.png") ;
continueButton->IsVisible (true) ;
continueButton->IsActive (false) ;

inputManager->AddUiElement (continueButton) ;

3. Add this code to Update:

case GameState::GS NextLevel:

{

nextLevelScreen->Update (p_deltaTime) ;
continueButton->IsActive (true) ;
continueButton->Update (p_deltaTime) ;
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;

}

break;

4. Add this code to Render:

case GameState::GS NextLevel:

{

nextLevelScreen->Render () ;
DrawStats () ;
continueButton->Render () ;

}

break;

5. Add this code to ProcessInput:

if (continueButton->IgClicked())

{
continueButton->IgsClicked(false) ;
continueButton->IsActive (false) ;
m_gameState = GameState::GS_Running;

pickupsReceived = 0;

enemiesHit = 0;

}

Clicking the continue button simply changes the game state back to GS_Running.
The level calculations have already occurred when NextLevel was called.

Game over

As the saying goes, all good things must come to an end. If the player doesn't meet
the pickup threshold, the game will end, and the game over screen will be displayed.
The player can choose to replay the game or exit.

[162]

Chapter 6

The game over screen

Our last screen is the game over screen. By now, the process should be second
nature, so let's try an abbreviated approach:

1. Declare a pointer to the screen:

Sprite* gameOverScreen;

2. Instantiate the sprite in LoadTextures:

gameOverScreen = new Sprite(l);
gameOverScreen->SetFrameSize (800.0f, 600.0f) ;
gameOverScreen->SetNumberOfFrames (1) ;
gameOverScreen->AddTexture ("resources/gameover.png", false);
gameOverScreen->IsActive (true) ;
gameOverScreen->IsVisible (true) ;

3. Change the GS_GameOver case in the Update function to look like the
following code:

case GameState::GS_GameOver:

{

gameOverScreen->Update (p_deltaTime) ;
replayButton->IsActive (true) ;
replayButton->Update (p_deltaTime) ;
exitButton->IsActive (true) ;
exitButton->Update (p_deltaTime) ;
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;

}

break;

4. Add the following code to Render:

case GameState::GS_GameOver:

{

gameOverScreen->Render () ;
replayButton->Render () ;
DrawStats () ;

}

break;

As a bonus, we will also draw the game stats on the game over screen.

[rem— a =

RoboRacer 2D

Game Over

Pickups: 1
Enemies Hit: 2
Score: =50

=
=

[163]

Polishing the Silver

Replaying the game

We need a way to reset the game to its initial state. So, let's create a function to do this:

void RestartGame ()

{

player->SetValue (0) ;
robot_right->SetValue (0) ;
robot_left->SetValue (0) ;

pickupSpawnThreshold = 5.0f;
pickupSpawnTimer = 0.0f;
enemySpawnThreshold = 7.0f;
enemySpawnTimer = 0.0f;
splashDisplayTimer = 0.0f;
splashDisplayThreshold = 5.0f;

levelTimer = 0.0f;

pickupsReceived = 0;
pickupsThreshold = 5;
pickupsReceived = 0;

pickup->IsVisible(false) ;
enemy->IsVigible (false) ;

background->SetVelocity (0.0f) ;

robot left->SetPosition(screen width / 2.0f - 50.0f, screen height -
130.0f) ;

robot_ left->IsVisible (false) ;

robot_right->SetPosition(screen width / 2.0f - 50.0f, screen height
- 130.0f) ;

player = robot_right;
player->IsActive (true) ;
player->IsVisible (true) ;
player->SetVelocity (0.0f) ;

}

Next, we need to add a button that allows the player to replay the game. Again, as
you have done this so many times, we will use a shorthand approach:

1. Declare a pointer for the button:

Sprite* replayButton;

[164]

Chapter 6

2. Instantiate the button in LoadTextures:

replayButton = new Sprite(l);
replayButton->SetFrameSize (75.0f, 38.0f);
replayButton->SetNumberOfFrames (1) ;
replayButton->SetPosition (390.0f, 400.0f);
replayButton->AddTexture ("resources/replayButton.png") ;
replayButton->IsVisible (true) ;
replayButton->IsActive (false) ;
inputManager->AddUiElement (replayButton) ;

3. Add the following code to Update:

case GameState::GS_GameOver:
{
gameOverScreen->Update (p_deltaTime) ;
replayButton->IsActive (true) ;
replayButton->Update (p_deltaTime) ;
exitButton->IsActive (true) ;
exitButton->Update (p_deltaTime) ;
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;

}

break;

4. Add the following code to Render:

case GameState::GS_GameOver:
gameOverScreen->Render () ;
replayButton->Render () ;
DrawStats () ;

}

break;

5. Add the following code to ProcessInput:
if (replayButton->IsClicked())

{
replayButton->IsClicked(false) ;
replayButton->IsActive (false) ;
exitButton->IsActive (false) ;
RestartGame () ;
m_gameState = GameState::GS_Running;

}

[165]

Polishing the Silver

Notice how we are reusing the exit button in the Update function. Also, if the player
wants to replay the game, we call the RestartGame function when the player clicks
the replay button. This resets all of the game variables and allows the player to start
all over.

RobeRacer 20 - olEN

RoboRacer 2D

Level Complete

Pickups: 12
Enemies Hit: 0

Score: 450

Summary

We covered a lot of ground in this chapter. The focus of the chapter is to add all

of the final elements to the game that make it a truly polished game. This involves
adding a lot of screens and buttons, and to manage all of this, we introduced a more
advanced state machine. The state machine acts like a traffic director, routing the
game to the correct routines depending on the game state.

In the next chapter, we will add sound effects and music to our game!

[166]

Audio Adrenaline

This is the final chapter on the 2D game that we have been working on. Although
our Robo Racer 2D game is almost complete, there is one element that we have

yet to include to make it a complete game. Unless you like silent movies, you have
probably noticed that we don't have any audio in this game. Most games depend on
audio, and ours is no exception. In this chapter, we will cover audio and a few other
housekeeping items.

Audio formats: It is important to understand how audio is represented in
computers and how it is used in games. We will discuss sample rates and bits
and help you understand how audio works.

Audio engine: We need some kind of audio engine to integrate audio into
our game. We will discuss FMOD, a very popular engine that allows you to
easily integrate audio using C++.

SFEX: Sound effects play a huge role in most games and, we will add sound
effects to our game to bring it to life.

Music: Most games utilize some kind of music. Music is handled in
a different way than sound effects, and you will learn the differences
between the two.

Final housekeeping: On a final note, for our game, we have left the game
shutdown for this chapter. We have not been good programmers in that we
have not properly released the objects in our game. We will learn why it is
important to do so, and how to do it.

[167]

Audio Adrenaline

Bits and bytes

Audio is inherently an analog experience. Sound is created as compressed waves
travel through the air and interact with our ear drums. Until recently, the techniques
used to reproduce audio were also strictly audio as well. For example, a microphone
records sound similarly to how our ears do by capturing changes in air pressure and
converting them to electrical impulses. Speakers do the reverse by converting the
electrical signals back into waves of air pressure.

Computers, on the other hand, are digital. Computers convert audio samples into
bits and bytes by taking samples of the audio. To keep it simple, let's consider a
system where the current frequency of the sound wave (that is, how fast the wave is
moving) is captured as a 16 bit (2 byte) number. It turns out that a 16 bit number can
capture numbers in a range from 0 to 65,536. Each sample of the sound wave must
be encoded as a number in this range. Also, as we actually capture two samples each
time (for stereo sound), we need 4 bytes to capture each sample.

The next important factor is how often you sample the sound. The range of audio
frequencies run roughly from 20 to 20,000 Hz (Hz = cycles per second). A very smart
person named Nyquist figured out that we have to sample audio at twice the
frequency to accurately capture the wave. This means that we have to capture at least
40,000 samples each second to accurately capture a sound. Conversely, we have to
play the sound back at the same frequency. This is why audio on compact discs are
sampled at 44,100 Hz.

You should be able to see by now that it is going to take a lot of disk space and a lot
of memory to work with sound. A one minute piece of audio will take about 10 MB
of storage! This means that the same audio would require 10 MB of memory if we
were to load the entire audio file at once.

You may wonder how modern games function at all. The music scores of some
games are measured in hours, not minutes. Similarly, there may be hundreds or even
thousands of sound effects, not to mention voice, which is also recorded as audio.

A sound by any other name

There are many formats that audio files can be stored in. We will deal with two
common formats that are used in games: WAV files and MP3 files. A WAV file stores
the audio data in an uncompressed format.

Although WAV files can be used for all of your audio, they are typically used for
sound effects. Sound effects are typically very short, often less than 1 second. This
means that the size of the file is going to be relatively small because the audio file is
very short.

[168]

Chapter 7

While sound effects are often saved as WAV files, music, typically, is not. This is
because the length of music tends to be much longer than the length of sound effects.
Loading a music file into memory that is three-to-five minutes long would take an
exorbitant amount of memory.

There are two main techniques that are used to deal with larger audio files.

First, data compression can be used to make the audio files smaller. One of the
most common audio formats that provides data compression is the MP3 format.
Using mathematical trickery, MP3 files store the sound data in less space without
sacrificing any sound quality.

The second technique that is used to handle large files is streaming. Instead of
loading the entire sound file into memory, the file is sent a piece at a time as a
continuous stream of data, which is then played in the game.

There are some limitations to streaming. First, the transfer of data from a hard drive
or another storage device is much slower that the transfer of data from memory.
Streamed audio can suffer from lag, which is the amount of time that it takes for a
sound to play from the time that the sound was triggered to play in code.

Lag is more critical for sound effects than it is for music. This is because a particular
sound effect often coincides with something that just happened in the game. It would
be disconcerting if the sound of a bullet occurred a half second after the bullet was
fired! Music, on the other hand, often starts and runs for several minutes. A small lag
in the start of the music can often be overlooked.

Making noise

Going into a full-blown course on creating sounds and music is, of course, beyond
the scope of this book. However, I did want to give you a few resources to get
you started.

The first question you may ask is where to find sounds. There are literally thousands
of sites on the Web that provide sounds and music that can be used in games. Many
charge a fee, while a few offer free audio.

One thing to keep in mind is that royalty-free doesn't necessarily mean free. Royalty-
free audio means that once you obtain a license to use the audio, you won't have to
pay any additional fees to use the music.

[169]

Audio Adrenaline

So, here's my big tip. Every site that I have found charges a small fee for both sound
effects and music. But there is one way that I have found to obtain sounds for free
using the Unity Asset Store. Go to http://unity3d.comand install the free version
of Unity. Once you have started Unity, perform the following steps:

1.

Create a new project by clicking Create New Project tab from the Unity
Project Wizard. Click Browse and navigate to or create a folder to store your
project in. Then click Select Folder.

Once Unity loads the project, click Window and then Asset Store from
the menu.

When the Asset Store window appears, enter a relevant search term
(for example, music or SFX) in the Search Asset Store text box and press Enter.

Browse the results for free assets. Click on any listing for more details. If you
find something that you like, click the Download link.

Once Unity has downloaded the asset, the Importing Package screen will
appear titled. Click the Import button.

You can now exit Unity and navigate to the folder where you created the
new project. Then navigate inside the Assets folder. From here, it depends
on the structure of the package that you imported, but if you browse around,
you should be able to locate the audio files.

M In fact, we are using a musical piece titled Jolly Bot
Q provided by Robson Cozendey (www.cozendey . com).
We also found a great SFX package from.

7. You can now copy the audio files into your project!

As you browse around for audio files, you will run across
\ some files with the ogg extension. This is a common audio
~ format similar to MP3. However, the engine that we will use
Q does not support ogg files, so you will need to convert them
to MP3 files. Audacity, which is described next, will allow

you to convert audio files from one format to another.

You may find that you want to edit or mix your audio files. Or, you may need to
convert your audio files from one format to another. The best free tool that I found
to work with audio is Audacity, and you can download it at http://audacity.
sourceforge.net/. Audacity is a full-featured audio mixer that will allow you to
play, edit, and convert audio files.

[170]

http://unity3d.com
www.cozendey.com
http://audacity.sourceforge.net/
http://audacity.sourceforge.net/

Chapter 7

M To export files to the MP3 format, you will need a copy of
Q LAME installed on your system. You can download LAME
from http://lame.buanzo.org/#lamewindl.

Revving up your engine

Now that you have a better understanding of how audio works in your computer,
it's time to write some code to bring audio into your game. We generally don't work
with audio directly. Instead, there are audio engines that do all of the hard work for
us, and one of the most popular ones is FMOD.

FMOD is a C and C++ API that allows us to load, manage, and play audio sources.
FMOD is free to use for student and independent projects, so it is the perfect audio
engine for our game. To use FMOD, you will have to go to the FMOD website,
download the appropriate version of the API, and install it on your system:

To download FMOD, go to http://www.FMOD.org/download/.

There several downloads to choose from. Scroll down to the FMOD Ex
Programmer's API, and click the Download button for Windows.

3. You will have to locate the exe file that you just downloaded and install it.
Make a note of the folder that FMOD is installed in.

4. Once you have downloaded FMOD, you will have to incorporate it into the
game project. Start by opening the RoboRacer2D project.

I'm sure that you would like to see the full documentation
o for the FMOD API. If you installed FMOD in the default
~ location, you will find the documentation at C: \Program
Q Files (x86)\FMOD SoundSystem\FMOD Programmers
API Windows\documentation. The main documentation
is found in the file fmodex.chm.

Now, it's time to set up our game to use FMOD. Similar to most third-party libraries,
there are three steps to hooking things up:

1. Accessing the .d11 file.
2. Linking to the library.
3. Point to the include files.

Let' walk through this process.

[171]

http://lame.buanzo.org/#lamewindl
http://www.FMOD.org/download/

Audio Adrenaline

Accessing the FMOD .dll file

There are several .d11 files that are included with FMOD, and it is important to use
the correct file. The following table summarizes the dll files that come with FMOD
and their associated library file:

DIl Description Library

fmodex.dl1l 32 bit FMOD API fmodex vc.lib
fmodexL.d1l1l 32 bit FMOD API with debug logging | fmodexL_vc.lib
fmodex64.d11 64 bit FMOD API fmodex64 vc.lib
fmodexL64.d1l1l 64 bit FMOD API with debug logging fmodexL64 vc.lib

It's up to you to decide whether or not to use the 32-bit or 64-bit versions of the
library. The debug versions of the library write logging information out to a file.
You can find more information in the documentation.

We are going to use the 32-bit file in our game. There are several places where
we can place the file, but the simplest method is to simply copy the .d11 file into
our project:

1. Navigate to C:\Program Files (x86)\FMOD SoundSystem\FMOD
Programmers API Windows\api.

M The preceding path assumes that you used the default
Q install location. You may have to modify the path if you
chose another location.

2. Copy fmodex.d11 to the project folder that contains the RoboRacer2D
source code.

Linking to the library
The next step is to tell Visual Studio that we want to access the FMOD library. This is
done by adding the library to the project properties:

1. Right-click on the project and choose Properties.

2. Open the Linker branch under Configuration Properties and click
on Input.

[172]

Chapter 7

v RoboRacer2D - Microsolt Visual Studio N1 G| Gusck Launch (C1le P - & x

FLE EDT VW PROCT BULD DEBUG TEAM LUA TOOLS TEST ARCHITECTURE WEBESSENTIALS ANALYZE WINDOW HELP 1 Fobert Madsen =
o - Bt - = | I Locsl Windows Debugger = = |Debug = ||Wini2 - .] ~ - ~
Ml Schution Explarer

e : @ -8B F=5
sinclude 7 s B e [Cirls

rincluge | Configuntion: |All Configurations v Platform: ActivelWinid) | Configuration Manager...

i3] Sulution FoboRaces (1 progect)
b Commanprgans ~| | (I a2 openg SOl ety b Sl s
Configuration Properties ignare &ll Default Libraties N T Cotnel Dagarid

g(nuﬂ Kgnare Specifc Defaul Liraris b Haie P

.fwc‘;qa, Module Definiticn File s Images

- Diectries Ackd Module to Assembly b g Resource Files

fenbed Managed Resource File Tl iy
A, Force Symbol References i
e Dieliny Laasded Dl 5
ot ~ P %y RoboRacerllipp
:‘\:l"f(:kllk Assernbly Link Resource b .:1 ‘r:l-.npp
Debugging e sidabecpp
System & Readhietet
Optimizaticn
Ernbedded 101
Wiinlerrs Metedata
Advanced
AR Uprions
Comemand Line
b Manifest Tool
b Ressurces
b XML Docurnent Genena -
3
b G Buenti w | | Spechic
3

[EPTPRRSENY i fe-uts 1| [

3. Click in the Addition Dependencies entry, then click the drop-down arrow
and choose <Edit...>.

4. Add fmodex_vc.1ib to the list of dependencies.

Additional Dependencies 3 - |

glu32.lib
opengl3d.lib
SOILlib
freetype233.lib
fmodex_ve.lib|

Inherited values:

kernel32.lib 2
userddlib
gdi32.lib
winspool.lib
comdlg32.lib

v
Inherit from parent or project defaults Macros> =

5. Click OK to close the Additional Dependencies window.
6. Click OK to close the Property Pages window.

[173]

Audio Adrenaline

Now, we have to tell Visual Studio where to find the library:

1. Right-click on the project and choose Properties.

vq RoboRarer2[- Micrasoft Visial Studio 1 G Gk Ls ’ A - B x
EAE EOIT WEW PROCT FUMD [DEBUG TEAM LUA TOOIS TEST ARCHITECTURE WER ESSENTIALS ANALYZE WINDOW HELP 1 Hobent Madsen =
e - -2 ad + & «| b Locel Windows Debugger = (0 = (Debug -+ || Winl2 - I n

- E—
@ o-2dm F=-8R

RoboRacer2D Property Pages

4 Configpustion: Al Configurations ¥ Plalorm: Aetree{Wend2) ¥ | Cenhgurstion Manages... v
T =51 Seution ‘ReboRacer2 (1 peoject]

Ouutput File SOADIrSTagetName) 5T argetia) 4 /% RobokacerZ0

Mo +4 External Dependencie

0 Header Files

L cremental Linking s

Suppress up Basne s (MOLOGO)
Igncre Import Library Mo

Registes Cutput My

Pet-ustar Redirection Mo w+e RoboRacer!D.cpp
it Spetecpp

Link Libeary Dependencies Ve B4 stdaficpp

Use Library Dependency Inputs Mo S ResdMens

Lirk Status

Mand et File
Debuggng
System
Optimicaticn
Prevent DA Binding

Trean Livdkms Warmiing As Brvors
Force File Output
&1 Optiens Cirste Hot Patchable linage
Command Line Specify Section Atributes
Manifest Tool
* Resources
¥ XML Docu
’
b Build feents

Alicwes the uses to override th

Web Publich Activity Frroe List Output Sookmarks [EELCIEERN Find Resufts 2 Find Symbsol Results PRI Team Explorer Chaws View Rescurce View

Ready

2. Open the Linker branch under Configuration Properties and click on General.

3. (lick in the Additional Library Directories entry, then click the drop-down
arrow and choose <Edit...>:

Additional Library Directories ?

Hal X
Ch\Program Files %628x86%29\FMOD SoundSystem\FMOD Prograrmm

Inherited values:

Inherit from parent or preject defaults Macros> >

[174]

Chapter 7

Click on the New Line icon, and then click the ellipses (...) that appear.

Navigate to C: \Program Files (x86)\FMOD SoundSystem\FMOD
Programmers API Windows\api\lib and click Select Folder.

Click on OK to close the Additional Library Directories window.
Click on OK to close the Property Pages window.

Point to the include files

Whenever you use third-party code, you generally have to include C++ header files
in your code. Sometimes, we just copy the relevant header files into the project folder
(for example, this is what we did with SOIL.h).

With larger code bases, such as FMOD, we point Visual Studio to the location where
the header files are installed:

1. Right-click on the project and choose Properties.

RoboRacer2D Property Pages ?
Configuration: | All Cenfigurations v | Platform: | Active(Win32) L Cenfiguration Manager..,
> Common Properties A v
4 Configuration Properties Additional Zusing Directories
General Debug Information Format
Debugging Commen Language RunTime Supg
WC++ Directories Censume Windows Runtime Exten:
4 C/Ces Suppress Startup Banner Yes (/nelego)
Eael Warning Level Level3 (/W3)
O phmeztion Treat Warnings As Errors Mo (/WX-)
Preprocessar SDL checks Yes /sd)

Code Generation . _
Multi-processor Compilation
Language
Precompiled Heade
Output Files
Browse Information
Advanced
All Options
Command Line
Linker
Manifest Tool
Resources

XML Document Genera
. Additional Include Directories
Browse Information

Build Evente W Specifies one or more directories to add to the include path; separate with semi-colons if
« 3 maore than one. (/I[path])

T T T T T 7

[175]

Audio Adrenaline

2. Open the C/C++ branch under Configuration Properties and click
on General.

3. Click on the Additional Include Directories entry, then click the drop-down
arrow, and choose <Edit...>.

Additional Include Directories ?

Inherited values:

[#] Inherit fram parent or project defaults Macros==

QK Cancel

Click the New Line icon, and then click the ellipses (...) that appear.

5. Navigate to C:\Program Files (x86)\FMOD SoundSystem\FMOD
Programmers API Windows\api\inc and click Select Folder.

6. Click OK to close the Additional Include Directories window.
7. Click OK to close the Property Pages window.

The final step is to include the header files into our program. Open RoboRacer2D.
cpp and add the following line to include the header file:

#include "fmod.hpp"

You are finally ready to use our audio engine!

[176]

Chapter 7

Initializing FMOD
The first code that we need to add is the code that will initialize the audio engine.

Just like we must initialize OpenGL, the code will set up FMOD and check to see if
there are any errors along the way.

Open RoboRacer2D. cpp and add the following code to the variable
declarations area:

FMOD: : System* audiomgr;
Then add the following function:

bool InitFmod ()

{

FMOD RESULT result;
result = FMOD::System Create (&audiomgr) ;
if (result != FMOD_OK)

{

return false;

}

result = audiomgr->init (50, FMOD_INIT NORMAL, NULL) ;
if (result != FMOD_OK)

{

return false;

}

return true;

}
This function creates the FMOD system and initializes it:

e First, we define a variable to catch FMOD error codes
* The System_Create call creates the engine and stores the results in audiomgr

¢ We then initialize FMOD with 50 virtual channels, normal mode, and

Finally, we need call the InitaAudio function. Modify the GameLoop function, adding
the highlighted line:

void GameLoop (const float p deltatTime)

{

if (m_gameState == GameState::GS_Splash)
{

InitFmod () ;

BuildFont () ;

LoadTextures () ;

[177]

Audio Adrenaline

m_gameState = GameState::GS_Loading;
}
Update (p_deltatTime) ;
Render () ;

}

Virtual channels

The most significant feature that FMOD provides for us is virtual channels. Each
sound that you play has to have its own channel to play on. The number of physical
channels to play audio varies from device to device. Early sound cards could only
handle two to four channels of sound at a time. Modern sound cards may be able to
handle eight, sixteen, or even more.

It used to be up to the developer to make sure that the number of sounds playing at
any one time did not exceed the number of channels on the hardware. If the game
triggered a new sound and no channel was available, then the sound wouldn't play.
This led to choppy, unpredictable audio.

Fortunately, FMOD handles all of this for us. FMOD uses virtual channels, and
allows you to decide how many virtual channels you want to use. Behind the scenes,
FMOD decides which virtual channels need to be assigned to a hardware channel at
any given time.

In our code example, we initialized FMOD with 50 virtual channels. This is actually
way more that we will use in this game, but it wouldn't be outrageous for a full
game. When considering how many virtual channels to assign, you should think
about how many audio sources will be loaded at any particular time. These sounds
won't all be playing at one time, just available to play.

Channel priority

FMOD can't make your hardware play more simultaneous sounds than it has
physical sound channels, so you may wonder why you would ever assign more
virtual channels than there are hardware channels.

The first answer to this question is that you really don't know how many hardware
channels will be available on the system where a player is actually playing your
game. The use of virtual channels takes this concern away from you.

The second answer is that virtual channels allow you to design your audio as if you
really had 50 (or 100) channels available to you. FMOD then takes care of managing
those channels behind the scenes.

[178]

Chapter 7

So, what happens if your game needs to play a ninth sound and there are only eight
physical channels? FMOD uses a priority system to decide which of the current eight
channels is no longer needed. For example, channel seven may be assigned to a
sound effect that is no longer playing. FMOD then assigns channel seven to the new
sound that wants to play.

If all physical channels are actually playing a sound right now and FMOD needs

to play a new sound, then it chooses the channel with the lowest priority, stops
playing the sound on that channel, and plays the new sound. Factors that determine
priority include:

* How long ago the sound was triggered

* Whether a sound is set to loop continuously

* The priority assigned by the programmer using the Channel:setPriority
or Sound: : setDefaults functions

* In 3D sound, how far away the sound is

¢ The current volume of the sound

So, you can still end up with sounds that drop out if your sound design exceeds
the number of simultaneous, physical channels. But FMOD does its best to limit the
impact this will have.

Bleeps and bloops

Imagine watching a move that has no sound. As the main character runs down the
alley, there are no footsteps. There is no swishing sound as his arms rub his jacket.
There is no screech as a car comes to a halt just before hitting him.

A movie without sound would be pretty boring, and so would most games. Sounds
bring games to life. The best sound design is one where the player doesn't actually
realize there is a sound design. This means crafting sound effects and music in a way
that complement the game without being obnoxious.

Sound effects

Sound effects generally correspond to some event or action that is happening in the
game. A particular sound often corresponds to something that the player can see, but
sound effects may also occur for something that the player cannot see, perhaps just
round the corner.

[179]

Audio Adrenaline

Let's add our first sound effects to the game. We'll keep it simple and add the
following sounds:

* A rolling sound as Robo moves across the screen

* A sound when Robo jumps up or jumps down

* A happy sound when he collides with an oil can

* A not-so-happy sound when he collides with a water bottle

Setting up the sounds

We'll start by setting up some variables to act as pointers to our sounds. Open
RoboRacer2D. cpp and add the following code in the variable declarations section:

FMOD: : Sound* sfxWater;
FMOD: : Sound* sfxOilcan;
FMOD: : Sound* sfxJump;
FMOD: : Sound* sfxMovement ;
FMOD: : Channel* chMovement;

We have three pointers to sound and one pointer to a channel. We only need one
channel pointer because only one sound (sfxMovement) will be a looping sound.
Looping sounds need a persistent channel pointer while one-shot sounds do not.

Next, we will load these sounds. Add the following function to RoboRacer2D. cpp:

const bool LoadAudio()

{

FMOD RESULT result;

result = audiomgr-> createSound ("resources/oil.wav", FMOD DEFAULT,
0, &sfxOilcan) ;
result audiomgr-> createSound ("resources/water.wav", FMOD

DEFAULT, 0, &sfxWater) ;

result = audiomgr-> createSound ("resources/jump.wav", FMOD DEFAULT,
0, &sfxJump) ;

result = audiomgr->createSound ("resources/movement.wav", FMOD_LOOP_
NORMAL | FMOD 2D | FMOD_HARDWARE, 0, &sfxMovement) ;

result = audiomgr-s>playSound (FMOD CHANNEL FREE, sfxMovement, true,
&chMovement) ;

return true; }

You can download these sounds from the book's website
M .
~ or you can replace them with your own. Just be sure that
you are using very short sounds for oil, water, and jump
because they are intended to play quickly.

[180]

Chapter 7

This function loads our three sound effects files into the audio system.

The createsound function allocates memory for the sound and sets the
FMOD properties for the sound.

FMOD_DEFAULT sets up the following FMOD properties:
° FMOD_LOOP_OFF: The sound plays once and does not loop
° rMoD 2D: This is a 2D sound

° FMOD_HARDWARE: This uses the hardware features of the device to
handle audio

The result variable catches return value. In production games, you would test
this each time to make sure that the sound had successfully loaded (we leave
those error checks off here to save space).

Notice that we call playSound on the movement SFX. We are going to start
this sound, assign it to the next free hardware channel (FMOD_CHANNEL_FREE),
but tell FMOD to immediately pause it (thus the true parameter). When

we want to play the sound, we will play it, and when we want it to stop,

we will pause it.

We will call playSound on the other SFX as needed. As they are not looping
sounds, we do not have to manage their paused state.

Notice that we set sfxJump, sfx0Oilcan, and sfxWater to use the FMOD DEFAULT
settings. However, we will need sfxMovement to loop, so we had to set its setting
flags individually.

There are several flags that you can use to set the properties of a sound, and you can
use the OR operator (|) to combine flags:

FMOD_HARDWARE: This uses the device hardware to handle the audio.

FMOD_SOFTWARE: This uses FMOD's software emulation to handle the audio
(slower, but could give access to features not supported by the device).

FMOD_2D: This is a 2D sound. This is the format we will use for this game!

FMoD_3D: This is a 3D sound. 3D sounds can be placed in 3D space and
appear to have both distance (for example, the sound gets softer as it is
further away) and position (left, right, in front of, behind).

FMOD_LOOP_OFF: The sound plays once and does not loop.

FMOD_LOOP_NORMAL: The sound plays and then starts over again, looping
indefinitely.

There are many other flags that can be set. Take a look at the FMOD documentation
for additional details.

[181]

Audio Adrenaline

Now that we have a function to load our sounds, we have to wire it into the
initialization for the game. Modify the GameLoop function, adding the following
highlighted line:

void GameLoop (const float p deltatTime)

{

if (m_gameState == GameState::GS_Splash)
{
InitFmod () ;
LoadAudio() ;
BuildFont () ;
LoadTextures () ;
m_gameState = GameState::GS_Loading;
}
Update (p_deltatTime) ;
Render () ;

Playing sounds

Now, we need to trigger the sound effects at the appropriate time. Let's start with
Robo's movement SFX. Basically, we want to play this sound any time Robo is
actually moving.

We are going to modify the cM_sSTOP, CM_LEFT, and CM_RIGHT cases in the
processInput function. Update the code inserting the highlighted lines indicated
as follows:

case Input::Command::CM_STOP:
player->SetVelocity (0.0f) ;
background->SetVelocity (0.0f) ;
chMovement->setPaused (true) ;
break;

case Input::Command::CM_LEFT:
if (player == robot right)
{
robot right->IsActive (false);
robot right->IsVisible (false);
robot left->SetPosition(robot right->GetPosition()) ;
robot left->SetValue (robot right->GetValue());
}
player = robot left;
player->IsActive (true) ;
player->IsVisible (true) ;

[182]

Chapter 7

player->SetVelocity (-50.0f) ;
background->SetVelocity (50.0f) ;
chMovement->setPaused (false) ;
break;

case Input::Command::CM_RIGHT:
if (player == robot left)
{
robot left->IsActive(false);
robot left->IsVisible(false) ;
robot right->SetPosition(robot left->GetPosition()) ;
robot right->SetValue (robot left->GetValue());
}
player = robot right;
player->IsActive (true) ;
player->IsVisible (true) ;
player->SetVelocity (50.0f) ;
background->SetVelocity (-50.0f) ;
chMovement->setPaused (false) ;
break;

Remember, we already loaded sfxMovement and assigned it to a virtual channel
(chMovement), then told it to start playing as a paused sound. Actually, in FMOD,
you pause and play the channel, not the sound. So, all we have to do now is call
chMovement - >setPaused (true) when Robo is moving and

chMovement - >set Paused (false) when he is not moving.

Now, we need to handle the oil and water pickups. These can both be handled in
the checkCollisions function. Modify CheckCollisions by adding the following
highlighted lines of code:

void CheckCollisions()

{

if (player->IntersectsCircle (pickup))
{
FMOD: : Channel* channel;

audiomgr->playSound (FMOD CHANNEL FREE, sfxOilcan, false,
&channel) ;

pickup->IsVisible (false) ;

pickup->IsActive (false) ;

player->SetValue (player->GetValue () + pickup->GetValue());
pickupSpawnTimer = 0.0f;

pickupsReceived++;

[183]

Audio Adrenaline

if (player->IntersectsRect (enemy))

{

FMOD: : Channel* channel;

audiomgr->playSound (FMOD CHANNEL FREE, sfxWater, false, &channel);
enemy->IsVisible (false) ;

enemy->IsActive (false) ;

player->SetValue (player->GetValue () + enemy->GetValue()) ;
enemySpawnTimer = 0.0f;

}

Finally, we will add a sound effect for Robo when he jumps up or jumps down.
These changes will be applied to the cM_UP and cM_DOWN cases in the ProcessInput
function. Modify the existing code with the following highlighted lines:

case Input::Command::CM UP:

{

FMOD: : Channel* channel;
audiomgr->playSound (FMOD CHANNEL FREE, sfxJump, false, &channel);
player->Jump (Sprite: :SpriteState: :UP) ;

}

break;

case Input::Command::CM_DOWN:

{

FMOD: : Channel* channel;
audiomgr->playSound (FMOD CHANNEL FREE, sfxJump, false, &channel);
player->Jump (Sprite: :SpriteState: :DOWN) ;

}

break;

These sound effects are one-shot sounds. When they are done playing, we don't need
to worry about them any more until it is time to play them again. For this type of
sound, we create a channel (FMOD: : channel* channel), then call playSound using:

* FMOD_CHANNEL_FREE: This lets FMOD pick the next available hardware
sound channel.

* Sound pointer: sfxWater for the water bottle, sfx0ilcan for the oil, and
sfxJump for the jump SFX.

* false: Don't pause the sound!
* &channel: This is the virtual channel handle. Notice that this is just a local
variable. We don't need to store this anywhere for one-shot SFX.

That's it! If you play the game now, the four SEX should trigger according to our design.

[184]

Chapter 7

Ul feedback

So far, we created sound effects to respond to events and actions in the game. Sound
effects are also used to provide feedback from the user interface. For example, when
the player clicks a button, there should be some kind of audio that plays so that the
player immediately knows that the click was registered.

Fortunately, we already trap each time the user has clicked a Ul button, so it's easy
to trigger a sound each time it happens. Let's start by adding a new sound pointer.
In RoboRacer2D. cpp, add the following line to the variable declarations:

FMOD: : Sound* sfxButton;
Then add the following code to LoadAudio:

result = audiomgr->createSound ("resources/button.wav", FMOD DEFAULT,
0, &sfxButton) ;

Finally, add the following highlighted lines of code to the cM_UT case in
ProcessInput:

case Input::Command::CM UI:
FMOD: : Channel* channel;
if (pauseButton->IsClicked())
{
audiomgr->playSound (FMOD CHANNEL FREE, sfxButton, false, &channel);
pauseButton->IsClicked(false) ;
pauseButton->IsVisible (false) ;
pauseButton->IsActive (false) ;

resumeButton->IsClicked (false) ;
resumeButton->IsVisible (true) ;
resumeButton->IsActive (true) ;
m _gameState = GS_ Paused;

if (resumeButton->IsClicked())
{
audiomgr->playSound (FMOD CHANNEL FREE, sfxButton, false, &channel);
resumeButton->IsClicked (false) ;
resumeButton->IsVisible (false) ;
resumeButton->IsActive (false) ;

pauseButton->IsClicked(false) ;
pauseButton->IsVisible (true) ;
pauseButton->IsActive (true) ;

[185]

Audio Adrenaline

m_gameState = GS_Running;

}

if (playButton->IsClicked())
{
audiomgr->playSound (FMOD CHANNEL FREE, sfxButton, false, &channel);
playButton->IsClicked(false) ;
exitButton->IsActive (false) ;
playButton->IsActive (false) ;
creditsButton->IsActive (false) ;
m_gameState = GameState::GS Running;

}

if (creditsButton->IsClicked())
{
audiomgr->playSound (FMOD CHANNEL FREE, sfxButton, false, &channel);
creditsButton->IsClicked (false) ;
exitButton->IsActive (false) ;
playButton->IsActive (false) ;
creditsButton->IsActive (false) ;
m_gameState = GameState::GS Credits;

}

if (exitButton->IsClicked())
{
audiomgr->playSound (FMOD CHANNEL FREE, sfxButton, false, &channel);
playButton->IsClicked(false) ;
exitButton->IsActive (false) ;
playButton->IsActive (false) ;
creditsButton->IsActive (false) ;
PostQuitMessage (0) ;

if (menuButton->IsClicked())

{

audiomgr->playSound (FMOD CHANNEL FREE, sfxButton, false, &channel);
menuButton->IsClicked(false) ;

menuButton->IsActive (false) ;

m_gameState = GameState::GS_Menu;

}

if (continueButton->IsClicked())

{

[186]

Chapter 7

audiomgr->playSound (FMOD CHANNEL FREE, sfxButton, false, &channel);
continueButton->IsClicked (false) ;

continueButton->IsActive (false) ;

m _gameState = GameState::GS_Running;

}

if (replayButton->IsClicked())

{

audiomgr->playSound (FMOD CHANNEL FREE, sfxButton, false, &channel);
replayButton->IsClicked(false) ;

replayButton->IsActive (false) ;

exitButton->IsActive (false) ;

RestartGame () ;

m_gameState = GameState::GS_Running;

}

break;

At this point, when you run the game you will now hear an SFX each time a button
is clicked.

The sound of music

We now turn to the audio soundtrack for our game. Just like a movie soundtrack,
the music that is played during a game sets the tone for the game. Many games have
huge, orchestrated productions, while others have synthesized or 8-bit music.

As we have already discussed, music files are handled in a different manner from
sound effects. This is because sound effects are usually very short sounds that can be
best stored as wav files. Music files tend to be much longer, and are stored as MP3
files because the data can be compressed, taking less storage and less memory.

We are going to add a single music track to our game. To keep things simple, we will
tell the track to loop so that it runs continuously throughout the game.

We will start by adding a sound pointer. Open RoboRacer2D. cpp and add the
following line of code to the variable declarations:

FMOD: : Sound* musBackground;

Next, go to the Loadaudio function and add the following line:

result = audiomgr->createSound("resources/jollybot.mp3", FMOD LOOP
NORMAL | FMOD 2D | FMOD HARDWARE, 0, &musBackground) ;

FMOD: :Channel* channel;
result = audiomgr-s>playSound (FMOD CHANNEL FREE, musBackground, false,
&channel) ;

[187]

Audio Adrenaline

Notice that we use createStream instead of createSound to load our music file.
As music is so much longer than sound effects, music is streamed from storage rather
than loaded directly into memory.

We want the sound track to start when the game starts, so we start playing the music
in right after it is loaded using playSound.

That's all there is to it! Our game is now enhanced by a vibrant soundscape.

Cleaning up the house

We have a pretty complete game. Sure, it's not going to set any records or make
anyone rich, but if this is your first game, then congratulations!

We have been remiss in one area: good programming dictates that any time we
create an object, we delete it when we are done using it. Up to now, you may be
wondering if we were ever going to do this! Well, now is the time.

We made a placeholder for all of these operations in the EndGame function. Now, we
will add the necessary code to properly release our resources.

Release sprites

Let's start by clearing out our sprites. It is important to remember that when we
remove any resource, we need to make sure that it is also releasing its own resources.
This is the purpose of the class destructor. Let's use the Sprite class as an example.
Open sprite.cpp and you should see a destructor defined using the following code:

Sprite::~Sprite ()
for (int i = 0; i1 < m_textureIndex; i++)

{

glDeleteTextures (1, &m textures([i]);

}

delete[] m_textures;
m_textures = NULL;

}

We first want to release all of the textures in the m_textures array. Then we use
delete[] torelease the m textures array. It is also good programming practice to
set the variable to NULL once an object has been deleted.

[188]

Chapter 7

The sprite destructor will be called when we call delete on a sprite object. So, the
first thing we need to add to EndGame is a delete operation for each sprite that was
created for our game. Add the following lines of code to the EndGame function:

delete robot left;
delete robot right;
delete robot right strip;
delete robot left strip;
delete background;
delete pickup;

delete enemy;

delete pauseButton;
delete resumeButton;
delete splashScreen;
delete menuScreen;
delete creditsScreen;
delete playButton;
delete creditsButton;
delete exitButton;
delete menuButton;
delete nextLevelScreen;
delete continueButton;
delete gameOverScreen;
delete replayButton;

If you look closely, you will notice that we did not delete the
M player object. This is because player was only used as a pointer
Q to sprites that had already been created. Put another way, we
never used player to create a new Sprite. A good rule of thumb
is that there should be exactly one delete for every new.

Release input

Our next system to shut down is the input system. First, let's complete the Input
destructor. Add the highlighted code to the destructor in the Input class:

Input: : ~Input ()

{
delete[] m uiElements;
m uiElements = NULL;

}

[189]

Audio Adrenaline

We have to delete the uiElements array, which was an array of pointers to the
sprites that were part of the input system. Note that we did not delete the actual
sprites here because they were not created by the input system.

Now, add the following line of code to EndGame:

delete inputManager;

Releasing fonts

Add this line to release the display lists we used to store our fonts:

KillFont () ;

Releasing audio

Our final cleanup is the audio system. Add the following lines of code to EndGame:

sfxWater->release() ;
sfxOilcan->release() ;
sfxJump->release () ;
sfxMovement ->release () ;
sfxButton->release() ;
musBackground->release () ;
audiomgr->release() ;

Congratulations! Your house is all cleaned up.

Summary

We covered a lot of material in this chapter, and in the process, we completed our 2D
game. You learned a little about how audio is represented in the computer. Then we
installed the FMOD API and learned how to integrate it into our project. Finally, we
used FMOD to set up and play sound effects and music in our game.

This chapter completes our discussion of game programming in 2D. As you should
now be aware, there is a lot more to completing a game than using the OpenGL
library. Remember, OpenGL is a rendering library. We had to write our own class to
handle input and we used a third-party class to handle audio.

In the next chapter, we begin our foray into the world of 3D programming!

[190]

Expanding Your Horizons

Until this point, we have limited our coding to two dimensions. Now, it is time to
expand to the third dimension. In many ways, this will not be as intimidating as it
sounds. After all, instead of specifying a position using two coordinates (x and y),
we will now simply add a third coordinate (z). However, there are some areas where
the third dimension will add considerable complexity, and it is my job to help you
master that complexity. In this chapter, we will start with the basic understanding of
placing an object in a 3D world, including:

* 3D coordinate systems: You already mastered the Cartesian coordinate
system (x and y coordinates). We will discuss how to expand this into a
third axis.

* 3D cameras: The camera in a 2D game is pretty much fixed while the objects
move past it. In 3D game programming, we often move the camera forward,
backward, side-to-side, or even in circles around the objects in the game.

* 3D views: How exactly does a 2D computer screen represent 3D games? You
will learn the basics of how 3D gets transformed by the graphics pipeline.

* 3D transformations: Moving around in 3D space is quite a bit more
complicated than moving in 2D space. In fact, we use a whole new form of
mathematics to do so. You will learn the basics of matrices, and how they can
be used to move, rotate, and change the size of 3D objects.

Into the third dimension!

You already live in a world with three dimensions. You can walk forward and
backward, side to side, and jump up or duck. The reality of three dimensions
becomes even more apparent if you are flying or even swimming.

[191]

Expanding Your Horizons

Most 2D games operate by allowing the player to move left and right, or jump up or
down. This is what we did when we created RoboRacer2D. In this type of 2D game,
the missing dimension is depth. Our Robot could not move further away from us or
closer to us. Considering that we were drawing him on a flat screen, it shouldn't be
too surprising that he was limited to two dimensions.

Simulating 3D

Of course, artists found a way around this limitation hundreds of years ago by
observing that as an object gets farther away from us, it gets smaller, and as it gets
closer to us it gets larger. So, a simple way to represent 3D in a 2D world is to simply
draw the more distant objects as smaller objects. 2D games learned this trick early on
and used it to simulate 3D:

In the preceding image, the larger tank appears to be closer than the smaller tank.

Another important aspect of depth is perspective. Artists learned that parallel lines
appear to converge toward the center as they move farther away. The point where
they seem to converge is known as the vanishing point:

[192]

Chapter 8

In the preceding image, the walls and floor panels are all parallel, but they appear to
converge inward toward the center of the image.

A third aspect of 3D motion is that objects that are farther away appear to travel
more slowly than objects that are closer. Thus, when you are driving, the telephone
poles pass you by much faster than the distant mountains. Some 2D games take
advantage of this phenomenon, called parallax, by creating a background layer in
the game that moves much slower than the foreground. In fact, this is exactly what
we did in RoboRacer2D because the Robot in the foreground moves more quickly
than the objects in the background.

2D games have used all of these features —size, perspective, and parallax —to
simulate 3D long before we ever had hardware and graphics cards to do them for us.
One of the first games to do this in a convincing way was Pole Position. The game
that really blew everyone away was Doom, which was probably the first game that
allowed the player to freely move in a 3D world.

Real 3D

Modern 3D games take the idea of simulating 3D to the next level. In the simulating
3D section that we just discussed, it is the programmers' task to scale the image so
that it appears smaller as it gets further away, take care of perspective, and handle
parallax. This is now handled by the 3D graphics card.

[193]

Expanding Your Horizons

The preceding image shows a 3D model of a tank. These models are created using
special software, such as Maya or 3ds Max. This model is fundamentally different
than the 2D tank image we showed you previously because it represents the tank in
three dimensions.

We will discuss 3D modeling in more detail in a future chapter. For now, the
important concept is that the data for a 3D tank is sent to the graphics card, and the
graphics card takes care of size, perspective, and parallax as the tank is positioned in
a 3D space. This takes a lot of the load off the programmer!

3D Coordinate Systems

Now that you have a fundamental idea of how the illusion of 3D is created on a 2D
screen, let's learn how adding another dimension affects our coordinate system.

In Chapter 2, Your Point of View I introduced you to the 2D coordinate system that is
used by many game systems.

+Y

+5 o

+5

The preceding diagram shows a car placed at coordinate position (5, 5). Let's add the
third dimension and see how it compares:

[194]

Chapter 8

+Y

a—
oo

+5

+5

+Z

Notice that we added a third axis and labeled it as the Z-axis. Positive values on the
Z-axis are closer to us, while negative values on the Z-axis are farther away. The car
is now placed at coordinate (5, 5, -5) in 3D space. As the car is farther away, it also
appears smaller than it did in the previous 2D image (you can think of 2D space as a
space where all of the z coordinates are 0).

The preceding diagram shows the Z-axis at an angle, but it is important to understand
that the Z-axis is actually perpendicular to the plane of the computer screen.

+Y

+X

[195]

Expanding Your Horizons

Think of the Z-axis as a line the pierces through the center of the monitor from the
front and travels out the back!

There are actually many ways to represent the axes in a

3D world. One distinction between OpenGL and DirectX

is the Z-axis. In OpenGL, positive z values are closer to the

player. In DirectX, Microsoft's 3D rendering engine, negative

~ z values are closer to the player. It's just a good thing to

Q know because you will very likely work with both systems.

OpenGL is known as a right-hand coordinate system, while
DirectX is a left-hand coordinate system. It's a little hard to
explain how they got these names, so perform an Internet
search if you would like to learn more!

The camera

In Chapter 2, Your Point of View we compared creating games to making a video
recording. Your video camera captures a part of the view in front of you. If objects
move into or out of that field of view, they are no longer in the video recording.

3D games use a camera as well. OpenGL allows you to move the game camera on
six axes: up, down, left, right, in, and out. As you move the game camera, the objects
that are in its view change.

Let's say that you center the camera on the car in the scene and pan to the left or
right. The car will move in and out of the field of view. Of course the same occurs
if you pan the camera up or down. Move back (or zoom out) and the car appears
smaller. Move forward (or zoom in) and the car appears larger. Tilt the camera and
the car will appear to be going uphill, downhill, or even appear upside down!

Remember those home movies?

Remember those home movies where the whole scene would jump around as the
camera moved? Obviously, the position and movement of the camera has a lot to do
with the appearance of the car. The same is true in the game world.

OpenGL uses the concept of a camera to determine exactly what shows up on the
screen, and how it shows up. You have the ability to move the camera up or down,
and left or right. You can rotate or tilt the camera. You have complete control!

[196]

Chapter 8

Steady as she goes!

Although you have complete control over moving the camera, some games simply
place the camera at a particular spot and then leave it fixed. This is similar to taking
your home video camera and attaching it to a tripod.

Many 2D games use a fixed camera, and this is exactly what we did in RoboRacer2D.
All of the motion in the game came from changing the position of the objects in the
game, not from changing the position of the camera.

In 3D games, it is very common to move both the camera and objects in the game.
Imagine that we have a 3D scene with a moving car. If the camera remained fixed,
the car would eventually move out of the scene. In order to keep the car in the scene,
we need to move the camera so that it follows the car. Both the car and the camera
need to move.

The viewport

In game terminology, the area that can be seen by the camera at any time is called the
viewport. The viewport defines the area of the game world that the camera can see:

[197]

Expanding Your Horizons

The preceding illustration shows a viewport with a certain width and height. If the
car moves outside of these boundaries, it will no longer be visible. In a 3D world, we
must also define the depth of the image that we want to capture.

Front

Clipping
Field of Plane
View

\ _

A

o

1 R
* \ Rear
Clipping
Plane

The preceding image shows how the 3D viewport is defined:

* The front clipping plane defines how close things can get to the camera.
Anything closer than the front clipping plane will not be rendered on
the screen.

* The rear clipping plane defines how far things can get from the camera.
Anything beyond the rear clipping plane will not be rendered on the screen.

[198]

Chapter 8

* The area between the front and back clipping planes is called the frustum.
Objects inside the frustum will be rendered to the screen.

* The field of view determines how tall and wide the angle of view is from the
camera. A wide field of view will render more area, while a narrow field of
view will render less area. A wider angle will also introduce more distortion
to the image.

Entering the matrix

Now for the topic that strikes fear into the heart of all new game programmers:
matrices. Matrices are a mathematical device (part of linear algebra) that makes it
easier to work with large sets of related numbers.

In its simplest form, a matrix is a table of numbers. Let's say that I wanted to
represent a coordinate in space. I could write its value down as follows:

Vectors

A single row or single column of a matrix is called a vector. Vectors are important
because they can be used to both position things and move things.

The typical matrix used in games contains four values: x, y, z, and w. These x, y,
and z components typically refer to a position in the 3D coordinate system, while
the w is a switch:

* The value 1 means that this vector is a position

* The value 0 means that this vector is a velocity

[199]

Expanding Your Horizons

Here's an example:
* Thevector, (1, 5, 10, 1), representsapointatx=1,y=5andz=10ina
3D coordinate system.

* Thevector, (1, 5, 10, 0),isa point that moves 1 unit in the x direction, 5
units in the y direction, and 10 units in the z direction

M Notice that vectors can be represented as a series of numbers
Q inside of a parenthesis. This is much easier than having to
draw a table every time you need to write down a vector!

Combining vectors

The real power of vectors comes when they are combined. The most common way to
combine vectors is to multiply them. Look at the following example:

1|00 |1 0 3
0|1]0]5 " 1 _ 6
00|16 0 6
00|01 1 1

The matrix on the left is known as a translation matrix because when you multiply it
by a positional vector, the result will be a new position (moving things in a 3D space
is known as translation). In this case, the point at (2, 1, 0) has been translated to a
new position at (3, 6, 6).

M Remember: the last1in (1, 5, 6, 1) and (2, 1, 0, 1) is the w value
Q that simply tells us we are working with a position. Notice that
the w value remained 1 in the final result as well!

[200]

Chapter 8

If you are paying attention, you must be wondering how we got the third matrix! It
turns out that multiplying two matrices is actually more complex that it seems. In order
to multiply the two matrices shown earlier, the following operations had to occur:

e (1*2)+(0*1)+(0*0)+(1*1)=3
« (0*2)+(1*D)+(0*0)+(*1)=6
« (0*2)+(0*1)+1*0)+(6*1)=6
e (0*2)+(0*1)+(0*0)+(1*1)=1

Each cell in each row of the first matrix is multiplied by each cell in each column of
the second matrix.

This might seem like a lot of trouble just to move a point, but when it comes to
quickly moving 3D objects around in a game, matrix math is much faster than
other techniques.

Don't worry! This is about all we are going to say about matrices and vectors. You
should know that OpenGL uses matrices to calculate transformations, including;:

* Moving
* Scaling
* Rotating

If you ever work with both OpenGL and DirectX, you will need
to be aware that there is a difference in the way they handle
matrices. OpenGL uses a row major order, while DirectX users a

M column major order. In a row major matrix, all of the cells in the

Q first column are adjacent, followed by all of the cells in the next

row, and so forth. In a column major matrix, all of the cells in the
first column are adjacent, followed by all of the cells in the next
column, and so forth. This makes a huge difference in how you
manipulate and calculate the matrices!

[201]

Expanding Your Horizons

Identity matrix

I will mention one more special matrix:

0
0
1
0

oo O

S| |IO |
ol|lo|Rr|O

The preceding matrix is known as an identity matrix. If you multiply any matrix by
an identity matrix, the result is the original matrix (just like multiplying any number
by 1 results in the original number). Whenever we want to initialize a matrix, we set
it to an identity matrix.

There are special matrices in OpenGL, and you will be introduced to some of them in
the next code.

Coding in 3D

It's time for us to put our theory into practice and create our first 3D scene. To keep
things simple, we will go through the steps of placing a cube in 3D space. This is also
going to be the start of our 3D game, so let's start by creating a brand new project in
Visual Studio.

Creating the project

When we created a project for our 2D game, we started with a standard Windows
project and then removed (or ignored) the items that we didn't need to use. In

fact, the standard Windows project has a lot of overhead that we don't need. This
is because the Windows project template assumes that Windows is going to be in
charge of rendering and processing. This came in useful for our 2D project, but just
adds a lot of extra code that we don't need.

For this project, we will start with a blank Windows project and then add the
necessary code to initialize and create an OpenGL window. Then, we will work our
way up from there:

1. Begin by opening Visual Studio.

[202]

Chapter 8

2. Once Visual Studio is open, create a new project by clicking on File, New,

Project. From the Visual C++ branch choose Empty Project.

P Recent

4 |nstalled

4 Templates
4 Visual Basic
Windows
Test
I Visual C#
4 Visual C++
CLR
General
Test
Win32
SOL Server
Python

Visual Studio Solutions

Samples

b Online

Narne:
Location:

Selution name:

SpaceRaceriD

Sort by

Empty Project
Lhd
Ej Makefile Proje

New Project

ot

Visual C++

Visual C++

Click here to go enline and find templates.

|C:\Projects\TFS\SpaceRacer3D\,

Search Installed Templates (Ctrl+E)

Type: Visual C++

An empty project for creating a local

application

7 [oowe]

[] Create directory for solution
[7] &dd to source control

< |

p.

N S G

Name the project SpaceRacer3D, place it in the location of your choice, and
click OK. The result is a project that has no code. Let's solve that problem by
creating our main game file.

Right-click on the Source Files folder in the Solution Explorer panel.
Choose Add, New Item....
Click on C++ File (.cpp).

Type spaceRacer3D. cpp for Name and click Add.

Solution Explorer

4

F1

@ o-2

fad Solution 'SpaceRacer3D' (1 project)
4 [%] SpaceRacer3D

+m External Dependencies

+ Header Files
4+ Resource Files
Source Files

™
b *+ SpaceRacer3D.cpp

aigl o &=

Search Solution Explorer (Ctrl+;)

-1

[203]

Expanding Your Horizons

Retrieving OpenGL files

The standard OpenGL library is already installed when you install Visual Studio.
However, the OpenGL utilities library may not be. To make things simple, we will
simply copy the files that we need from our RoboRacer2D project.

Open the RoboRacer2D project folder and select the following files:

¢ glut.h
®¢ glut32.dll
® glut32.1lib

Now copy these files into the SpaceRacer3D source folder. This will be the same
folder that your SpaceRacer3D. cpp file is located.

Linking projects to OpenGL libraries

Now that we have a project and the relevant OpenGL files, we need to link to the
OpenGL libraries. This is done by accessing the project properties.

In the Solution Explorer panel perform the following actions:

1. Right-click on the project name (not the solution), and choose Properties.
2. Open the Linker branch under Configuration Properties, and select Input.

3. Click on Additional Dependencies and then click the drop-down arrow
that appears.

4. Click on <Edit...>.

[204]

Chapter 8

5. Add openGL32.1lib and GLu32.1ib in the Additional Dependencies

dialog window.

Additional Dependencies

OpenGL32lib
Glu3d.lib

Inherited values:

kernel32.lib
user3z.lib
gdi32.lib
winspool.lib
comdlg32.lib

Inherit from parent or project defaults

Macros> >

> EEN]

W

Setting up the OpenGL window

We are now going to add the code required to create an OpenGL window. We did
this once for RoboRacer2D, but now, we are creating a 3D game and there will be

some differences. Here's a look at what we need to do:

1.

® NS XD

Include header files.

Define global variables.

Create the OpenGL window.
Initialize the OpenGL window.
Size the OpenGL window.

Remove the OpenGL window.
Create the Windows event handler.

Create the winMain function.

[205]

Expanding Your Horizons

Notice that we still have to create some code to satisfy Windows. We need an event
handler to process Windows events, and we still need a main function to serve as the
program entry point and run the main program loop. Everything else in this list is
used to set up the OpenGL environment.

I listed the functions tasks that we need in an order that makes
logical sense. When we actually implement the code, we will
M create things in a slightly different order. This is because some
Q functions require another function to already be defined. For
example, the function to create the OpenGL window calls the
function to initialize the OpenGL window, so the initialize
function is coded first.

Including header files

The first step is to in include the appropriate headers. Add the following headers at
the top of SpaceRacer3D. cpp:

#include <windows.h>
#include <gl\GL.h>
#include <gl\GLU.h>
#include "glut.h"

These are the same files that we used in the 2D project, but here is a quick description
of each one so that you don't have to flip back:

* We are still running in Windows, so we must include windows.h

* The core header for OpenGL is GL.h

* There are some great utilities to make our lives easier in GLU. h

* There are also useful utilities in glut.h

Defining global variables

We need some global variables to hold onto references to Windows and OpenGL
objects. Add the following lines of code just under the header lines:

HINSTANCE hInstance = NULL;
HDC hDC = NULL;

HGLRC hRC = NULL;

HWND hWnd = NULL;

bool fullscreen = false;

[206]

Chapter 8

Here is a quick list of what these variables are for:

* hiInstance: This holds a reference to this instance of the application

e hpc: This holds a reference to the GDI device context which is used for
drawing in native Windows

* hrc: This holds a reference to the OpenGL rendering context, used for
rendering 3D

* hwnd: This holds a reference to the actual window the application is
running in

We have also included a global fullscreen variable. If you set this to true, the
game will run in fullscreen mode. If you set this to false, the game will run in
windowed mode.

Creating a function to create the OpenGL
window

We will also include a forward reference to the Windows event handler. Add the
following line of code:

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

A forward reference allows us to define a function whose actual implementation will
appear later in the code. The code for WndProc will be added later.

Sizing the OpenGL window

Next, we will create the function to size the OpenGL window. This function is called
when the program starts as well as any time the window that the application is
running in is resized. Add the following code:

void ReSizeGLScene (const GLsizei p width, const GLsizei p height)
{

GLsizei h = p height;

GLsizei w p_width;

if (h == 0)

glviewport (0, 0, w, h);

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity () ;

[207]

Expanding Your Horizons

gluPerspective (45.0f, (GLfloat)w / (GLfloat)h, 0.1f, 100.0f);

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;

}

This code sets the size of the OpenGL window and prepares the window for
rendering in 3D:

» First, we take the width and height (ensuring that the height is never equal to
0), and use them to define the size viewport using the glviewport function.
The first two parameters are the x and y value of the lower left-hand corner
of the viewport, followed by the width and the height. These four parameters
define the size and location of the viewport.

* Next, we have to define the frustum. After telling OpenGL to use the
projection matrix, we use the gluperspective function, which takes four
parameters: the field of view (in degrees, not radians), the aspect ratio, the
distance of the front clipping plane, and the distance of the rear clipping
plane. The field of view is the angle from the center of the camera. The aspect
ratio is the width divided by the height. These four parameters define the
size of the frustum.

N After you complete this chapter, you may try playing with the
values of this function to see how it changes the rendering.

* Finally, we tell OpenGL to use the model view from this point forward.

If you compare this function to the GLSize function that we used in RoboRacer2D,
you will note one significant difference: we do not make a call to glortho.
Remember, RoboRacer2D was a 2D game. 2D games use an orthographic projection
that removes perspective when the scene is rendered. You don't need perspective

in a 2D game. Most 3D games use a perspective projection, which is defined by the
gluPerspective call.

[208]

Chapter 8

OpenGL Matrices

Just before the gluPerspective call, you will notice two
functions: glMatrixMode, and glLoadIdentity. Remember
from our discussion of matrices that a matrix is used to hold a set
of values. OpenGL has many standard matrices, and one of them

is the projection matrix, which is used to define the view frustum.

If we want to set the values of a matrix, we must first tell
OpenGL that we want to work with this matrix. Next, we
typically initialize the matrix, and finally, we make a call that sets
the values of the matrix.

Looking at the code to set the view frustum, this is exactly what
we do:

CAN * glMatrixMode (GL_PROJECTION): This tells OpenGL
’ that we want to work with the projection matrix. Any
matrix operations after this call will be applied to the
projection matrix.
* glLoadIdentity (): This sets the projection matrix to
an identity matrix, thus, clearing any previous values.
* gluPerspective (45.0f, (GLfloat)w /
(GLfloat)h, 0.1f, 100.0f): This sets the values of
the projection matrix.

You should get used to this pattern because it is used often in
OpenGL: set a matrix to work with, initialize the matrix, then set
the values of the matrix. For example, at the end of this function
we tell OpenGL to use the model view matrix and initialize it.
Any operations after this will affect the model view.

Initializing the OpenGL window
Add the following code to initialize OpenGL:

const bool InitGL()

{

glShadeModel (GL_SMOOTH) ;

glClearColor (0.0£f, 0.0f, 0.0f, 0.0f);
glClearDepth(1.0f) ;

glEnable (GL_DEPTH TEST) ;

glDepthFunc (GL_LEQUAL) ;

glHint (GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST) ;
return true;

[209]

Expanding Your Horizons

This function initializes OpenGL by defining important settings that determine how
a scene will be rendered:

glshadeModel: This tells OpenGL that we want it to smooth the edges of the
vertices. This greatly improves the look of our images.

glclearcColor: This sets the color that is used each time glcClear is called to
clear out the rendering buffer. It is also the default color that will show in the
scene.

glClearDepth(1.0£): This tells OpenGL that we want the entire depth
buffer cleared each time glclear is called. Remember, we are working in 3D
now, and the depth buffer is roughly synonymous with the Z-axis.

glEnable (GL_DEPTH_TEST): This turns on depth checking. Depth checking
is used to determine if a particular piece of data will be rendered.

glDepthFunc (GL_LEQUAL) : This tells OpenGL how you want to perform the
depth test. LEQUAL tells OpenGL to write the data only if the z value of the
incoming data is less than or equal to the z value of the existing data.

glHint ((GL_PERSPECTIVE_ CORRECTION HINT, GL_NICEST)): Thisisan
interesting function. glHint means that this function is going to suggest
that OpenGL use the settings passed as parameters. However, as there are
many different types of devices, there is no guarantee that these settings
will actually be enforced. The GL_PERSPECTIVE hint tells OpenGL to use the
highest quality when rendering perspective, while GL._NICEST means focus
on rendering quality rather than speed.

Creating a function to remove the OpenGL
window

Eventually, we will want to shut things down. Good programming dictates that
we release the resources that were being used by the OpenGL window. Add the
following function to our code:

GLvoid KillGLWindow (GLvoid)

{

if (fullscreen)

{
ChangeDisplaySettings (NULL, O0) ;
ShowCursor (TRUE) ;

if (hRC)

{

wglMakeCurrent (NULL, NULL) ;

[210]

Chapter 8

wglDeleteContext (hRC) ;
hRC = NULL;

1

if (hDC)

{
ReleaseDC (hWwnd, hDC)
hDC = NULL;

if (hwnd)
{
DestroyWindow (hWnd) ;
hWnd = NULL;
}
UnregisterClass ("OpenGL", hInstance)
hInstance = NULL;

}

First, we tell Windows to exit fullscreen mode (if we were running fullscreen) and
turn the cursor back on. Then, we check each object that had a resource attached,
release that object, then set it to null. The objects that need to be released are:

* hrc: This is the OpenGL rendering context

* hpc: This is the Windows device context

* hwnd: This is the handle to the Window

* hiInstance: This is the handle to the application

u You may notice the two functions that start with wgl
~ (wglMakeCurrent and wglDeleteContext). This stands
Q for Windows GL and these are special OpenGL functions
that only work in Windows.

Creating the OpenGL window

Now that we have the other OpenGL support functions defined, we can add the
function to actually create the OpenGL window. Add the following code:

const bool CreateGLWindow(const char* p title, const int p width,
const int p height, const int p bits, const bool p fullscreenflag)

GLuint PixelFormat;
WNDCLASS wcC;
DWORD dwExStyle;

[211]

Expanding Your Horizons

DWORD dwStyle;
RECT WindowRect;

WindowRect.left = (long)o0;
WindowRect.right = (long)p_ width;
WindowRect.top = (long)O0;
WindowRect .bottom = (long)p height;

fullscreen = p fullscreenflag;
GLfloat screen height = (GLfloat)p height;
GLfloat screen width = (GLfloat)p width;

hInstance = GetModuleHandle (NULL) ;
wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC;

wc.lpfnWndProc = (WNDPROC)WndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;

wc.hInstance = hInstance;

wc.hIcon = LoadIcon(NULL, IDI WINLOGO) ;
wc.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wc . hbrBackground = NULL;

wc.lpszMenuName = NULL;

wc.lpszClassName = "OpenGL";

RegisterClass (&wc) ;

if (fullscreen)

{
DEVMODE dmScreenSettings;
memset (&dmScreenSettings, 0, sizeof (dmScreenSettings)) ;
dmScreenSettings.dmSize = sizeof (dmScreenSettings) ;
dmScreenSettings.dmPelsWidth = p width;
dmScreenSettings.dmPelsHeight = p height;
dmScreenSettings.dmBitsPerPel = p bits;

dmScreenSettings.dmFields = DM _BITSPERPEL | DM PELSWIDTH | DM _
PELSHEIGHT;

ChangeDisplaySettings (&dmScreenSettings, CDS_FULLSCREEN) ;

if (fullscreen)

{
dwExStyle = WS EX APPWINDOW;
dwStyle = WS _POPUP;
ShowCursor (false) ;

[212]

Chapter 8

}

else

{
dwExStyle = WS_EX APPWINDOW | WS_EX WINDOWEDGE;
dwStyle = WS OVERLAPPEDWINDOW;

AdjustWindowRectEx (&WindowRect, dwStyle, FALSE, dwExStyle);

hWwnd = CreateWindowEx (dwExStyle, "OpenGL", p title,

dwStyle | WS CLIPSIBLINGS | WS CLIPCHILDREN,

0, 0, WindowRect.right - WindowRect.left, WindowRect.bottom -
WindowRect. top,

NULL, NULL, hInstance, NULL) ;

static PIXELFORMATDESCRIPTOR pfd =
{
sizeof (PIXELFORMATDESCRIPTOR)
1,
PFD DRAW TO WINDOW | PFD SUPPORT OPENGL | PFD DOUBLEBUFFER,
PFD_TYPE RGBA, p bits,
0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, O,

16, 0, 0,
PFD MAIN PLANE,
0, 0, 0, O

}i

hDC = GetDC (hWnd) ;

PixelFormat = ChoosePixelFormat (hDC, &pfd) ;
SetPixelFormat (hDC, PixelFormat, &pfd);
hRC = wglCreateContext (hDC) ;
wglMakeCurrent (hDC, hRC) ;

ShowWindow (hWnd, SW_SHOW) ;
SetForegroundWindow (hWnd) ;

SetFocus (hWwnd) ;

ReSizeGLScene (p_width, p height) ;
InitGL() ;

return true;

[213]

Expanding Your Horizons

The purpose of CreateGLWindow is to create a window with settings that allow it to
work with OpenGL. The main tasks accomplished by this function are as follows:

Set the window properties

Register the application with Windows —RegisterClass

Set up full screen mode if required — ChangeDisplaySettings
Create the Window — CreateWindowEx

Get a Windows device context —GetDC

Set the OpenGL pixel format—SetPixelFormat

Create an OpenGL rendering context —wglCreateContext

Bind the Windows device context and OpenGL rendering context together —
wglMakeCurrent

Show the window — showWindow, Set ForegroundWindow (hWnd), and
SetFocus (hWnd)

Initialize the OpenGL Window —ReSizeGLScene, InitGL; create the
WinMain function

The winMain function is the entry point for the application. Add the following code:

int APIENTRY WinMain(_In_ HINSTANCE hInstance,
_In opt HINSTANCE hPrevInstance,

{

_ LPTSTR lpCmdLine,
__ int nCmdShow)
MSG msg;

bool done = false;

if (!CreateGLWindow ("SpaceRacer3D", 800, 600, 16, false))

return false;

StartGame () ;
int previousTime = glutGet (GLUT_ ELAPSED_TIME) ;
while (!done)

if (PeekMessage (&msg, NULL, 0, 0, PM REMOVE))

{

if (msg.message == WM_QUIT)

{

done = true;

}

else

[214]

Chapter 8

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}
}

else

{

int currentTime = glutGet (GLUT_ ELAPSED TIME) ;
float deltaTime
previousTime = currentTime;

(float) (currentTime - previousTime) / 1000;

GameLoop (deltaTime) ;

}
}

EndGame () ;
return (int)msg.wParam;

}

It calls all of the other functions to initialize Windows, and OpenGL then starts the
main message loop, which we hijack and adapt to be our game loop. As we explained
all of this code in Chapter 1, Building the Foundation we won't do it again here.

Creating the Windows event handler

Finally, we have to have an event handler to receive events from Windows and
process them. We created the forward declaration at the top of the code, and now we
will actually implement the handler. Add the following code:

LRESULT CALLBACK WndProc (HWND hWnd, UINT message, WPARAM wParam,
LPARAM lParam)

{

switch (message)
{
case WM_DESTROY:
PostQuitMessage (0) ;
break;
case WM_SIZE:
ReSizeGLScene (LOWORD (1Param), HIWORD (lParam)) ;
return O0;
default:
return DefWindowProc (hWnd, message, wParam, lParam) ;

}

return false;

[215]

Expanding Your Horizons

This function will be called any time Windows sends an event to our program.
We handle two events: WM_DESTROY and WM_SIZE:

* WM _DESTROY is triggered when the window is closed. When this happens we
use PostQuitMessage to tell our main game loop that it is time to stop.

* WM_SIZE is triggered when the window is resized. When this happens, we
call ReSizeGLScene.

The Game loop

We still need to add some stub functions for our game functions: StartGame, Update,
Render, EndGame, and GameLoop. Add the following code before the winMain function:

void StartGame ()

{

void Update (const float p deltaTime)

{
}

void Render ()

{

glClear (GL_COLOR_BUFFER BIT | GL_DEPTH BUFFER BIT) ;
glMatrixMode (GL_MODELVIEW) ;

glLoadIdentity () ;

DrawCube () ;

SwapBuffers (hDC) ;

void EndGame ()

{
}

void GameLoop (const float p deltatTime)

{

Update (p_deltatTime) ;
Render () ;

}

These functions serve the same purpose that they did in RoboRacer2D. GameLoop is
called from the Windows main loop, and in turn calls Update and Render. StartGame
is called before the Windows main loop, and EndGame is called when the game ends.

[216]

Chapter 8

The finale

If you run the game right now, you will see a nice black window. This is because we
haven't told the program to draw anything yet! It seemed unfair to do all this work
and get a black screen, so if you want to do a little extra work, add the following
code just before the startGame function:

void DrawCube ()

{

}

glClear (GL_COLOR_BUFFER BIT | GL_DEPTH BUFFER BIT) ;
glTranslatef (0.0f, 0.0f, -7.0f);

glRotatef (fRotate, 1.0f, 1.0f, 1.0f);

glBegin (GL_QUADS) ;

glColor3f(0.0f, 1.0f, 0.0f);

glvVertex3f(1.0f, 1.0f, -1.0f); glvertex3f(-1.0f, 1.0f, -1.0f);
glVertex3f(-1.0f£, 1.0f, 1.0f); glvertex3f(1.0f, 1.0f, 1.0f);
glColor3f(1.0f, 0.5f, 0.0f);

glvVertex3f(1.0f, -1.0f, 1.0f); glvertex3f(-1.0f, -1.0f, 1.0f);
glvertex3f(-1.0f, -1.0f, -1.0f); glvVertex3f(1.0f, -1.0f, -1.0f);
glColor3f(1.0f, 0.0f, 0.0f);

glVertex3f(1.0f, 1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
glvVertex3f(-1.0f, -1.0f, 1.0f); glvertex3f(1.0f, -1.0f, 1.0f);
glColor3f(1.0f, 1.0f, 0.0f);

glvertex3f(1.0f, -1.0f, -1.0f); glvVertex3f(-1.0f, -1.0f, -1.0f);
glvVertex3f(-1.0f, 1.0f, -1.0f); glvVvertex3f(1.0f, 1.0f, -1.0f);
glColor3f(0.0f, 0.0f, 1.0f);

glvVertex3f(-1.0f, 1.0f, 1.0f); glvertex3f(-1.0f, 1.0f, -1.0f);
glvertex3f(-1.0f, -1.0f, -1.0f); glvVertex3f(-1.0f, -1.0f, 1.0f);
glColor3f(1.0f, 0.0f, 1.0f);

glVertex3f(1.0f, 1.0f, -1.0f); glvertex3f(1.0f, 1.0f, 1.0f);
glvVertex3f(1.0f, -1.0f, 1.0f); glvertex3f(1.0f, -1.0f, -1.0f);
glEnd () ;

fRotate -= 0.05f;

Also, you need to make sure to declare the following global variable:

float frotate = 1.0f;

Now run the program, and you should see a colorful rotating cube. Don't worry
about how this works yet—we will learn that in the next chapter.

[217]

Expanding Your Horizons

Summary

In this chapter, we covered a lot of new material related to creating a 3D game.

You learned how the game camera worked just like a video camera. Anything in

the camera's frustum will be rendered to the screen. You also learned about the 3D
coordinate system that is used to place objects in a 3D world. Finally, you learned about
matrices and vectors, which form the underpinning of how 3D objects are manipulated.

Finally, we started with a blank project and walked through all of the code required
to set up a 3D game that will use OpenGL to render. Remember, you will never have
to memorize this code! But, it is important that you have a basic understanding of
what purpose each line of code serves.

In the next chapter, you will learn to create and load 3D models from modeling
program.

[218]

Super Models

In the previous chapter, you created a framework to render OpenGL in 3D. At the
very end of that chapter, we added a block of code that rendered a cube. In this
chapter, you will learn how to create 3D objects in Open GL, first using code, and
then using a 3D modeling program. In this chapter, we will cover the following;:

Graphics cards: 3D graphics cards are basically small computers that
are optimized to render objects in 3D. We will take a quick look at how a
graphics card does what it does best.

Vertices: 3D objects are drawn by plotting points and telling OpenGL to use
these points to create an object that can be rendered on the screen.

Triangles: Triangles are used to create all 3D objects. You will learn about the
relationship between vertices and triangles and how they are used to create
simple objects.

Modeling: Once you understand how to create simple 3D objects using code,
you will also understand that you are going to need a more effective tool if
you ever want to create anything complicated. This is where 3D modeling
software comes in and saves the day.

Once you create a 3D model, you have to get the model into the game. We
will create the code to load a 3D model into our game by reading the data
that is created by the modeling software.

[219]

Super Models

New Space

Until now, we have been working only in a two-dimensional space. This means that
we were able create game objects with height and width. This works well because
our computer screens are also two-dimensional. As we move into three-dimensional
space, we need the ability to add another dimension to our objects: depth. As
computer screens don't physically have a third dimension in which to display pixels,
this is all accomplished by mathematical wizardry!

In Chapter 8, Expanding Your Horizons we discussed several methods that have been
used (and are still used) to simulate three-dimensions in a two-dimensional display:

* Objects that are farther away can be made to appear smaller than objects that
are close

* Objects that are farther away can be made to move more slowly than objects
that are close

* Lines that are parallel can be drawn to converge toward the center as they are
farther away

These three techniques have one major shortcoming: they all required the
programmer to write code that makes each visual effect work. For example, the
programmer has to make sure that objects that are receding from the player are
constantly scaled down so that they become increasingly smaller.

In a true 3D game, the only thing that the programmer has to worry about is placing
each object at the right coordinates in 3D space. A special graphics card takes care of
performing all of the calculations to take care of size, speed, and parallax. This frees the
programmer up from doing these calculations, but it actually adds a whole new set of
requirements related to positing and rotating objects in three-dimensional space.

A computer in a computer

The thing about what it takes for your computer to process your game. The computer
must receive input from the player, interpret that input, and then apply the results to
the game. Once the input is completed, the computer must handle the physics of the
game: objects must be moved, collisions must happen, and explosions must ensue.
Once the computer has completed updating all of the objects in the game, it must
then render these results to the screen. Finally, in order to be convincing, all of this
must occur at least 30 times a second and often 60 times a second!

[220]

Chapter 9

It is truly amazing that computers can process this much information that quickly. In
fact, if it were truly up to the central processing unit of your computer to accomplish
this, then it wouldn't be able to keep up.

The 3D graphics card solves this problem by taking care of the rendering process
so that the main CPU of your computer doesn't have to. All your CPU has to do is
deliver the data and the graphics card takes care of the rest, allowing the main CPU
to continue processing other things.

A modern 3D graphics card is really an entire computer system that lives on a

silicon card inside your main computer. The graphics card is a computer inside your

computer! The graphics card has its own input, output, and its own processor known
as the graphics processing unit, or GPU. It also contains its own memory, often up to

4 gigabytes or more.

The following diagram shows you the basic structure of a graphics card and how it
processes information:

Graphics Processing Unit
(GPU)

» Transformation

* Lighting

Graphics bus (Input) & Primitives Render on Display (Output)
= Projection
* Clipping
= Rasterization
* Shading

[221]

Super Models

The preceding sequence that is depicted is known as the graphics pipeline. A detailed
discussion of every step in the process is beyond the scope of our book, but it is good
to have a basic understanding of the graphics pipeline, so here are the basics:

* Graphics bus: In computer lingo, a bus is just a way to move data. Think of
a bus as a freeway: the more lanes you have on our freeway, the faster the
traffic can move. Inside your computer, the traffic is bits of data, and most
modern graphics cards have 64 lanes (known as a 64-bit bus), which allows
up to 64-bits (or 8 bytes) of data to be moved simultaneously. The graphics
bus receives its data directly from the CPU.

o

Graphics Processing Unit: The GPU does all the work, and as you
can see, there is a lot of work to do.

Transformation: Each vertex, represented as a point in 3D space,
must be properly positioned. There are several frames of reference
to deal with. For example, local coordinates may describe how far
a car's tires are from its body, while global coordinates describe
how far the car is from the upcoming cliff. All of the data must be
transformed into a single frame of reference.

Lighting: Each vertex must be lit. This means applying light and
color to each vertex and interpolating the light and color intensity
from one vertex to another. In the same way that the sun lights our
world, while fluorescent tubes light our offices, the GPU uses lighting
data to correctly light the world of your game.

Primitives: These are the simple objects that are used to build

more complicated objects. Similarly to a virtual Lego set, the GPU
constructs everything in your game using triangles, rectangles,
circles, cube, spheres, cones, and cylinders. We will learn more about
this later in the chapter.

Projection: Once the GPU has constructed a 3D model of the world,
it must now create a 3D projection of the world onto 2D space
(remember, your display only has two dimensions). This is similar to
how the sun projects a 2D shadow of 3D objects.

Clipping: Once the 3D scene has been projected into 2D space, some
vertices will be behind other vertices, and, therefore, can't actually

be seen at this time. Clipping, or removing vertices that can't be seen,
removes these vertices from the data, streamlining the entire process.

Rasterization: We now have a 2D model that mathematically
represents the current image that must be displayed onto the screen.
Rasterization is the process of converting this virtual image into
actual pixels that must be displayed on the screen.

[222]

Chapter 9

° Shading: This final process determines the actual color that must
be applied to each pixel on the screen to correctly display the model
that has been created in the earlier phases. Code can even be written
to manipulate the process to create special visual effects. Code that
modifies the shading process in the graphics pipeline is called a shader.

* Render: Of course, the reason that we do all of this is so that we can display
our game on the computer screen. The final output of the graphics pipeline is
a representation of the current screen in the render buffer. Now, all the CPU
has to do is swap the data in the render buffer to the actual screen buffer, and
the result is the next frame in your game!

By the way, you will notice that behind the scenes (the big arrow in the preceding
image) everything is supported by dedicated memory on the graphics card.

All of the data is moved from the CPU to the memory of the graphics card,

where it is manipulated and processed before being sent back to the CPU. This
means that memory on the main computer doesn't have to be set aside to handle
graphics processing.

It is important to understand that the preceding diagram is a
M generic representation of the graphics pipeline. Specific hardware
Q on various graphics cards may handle things differently, and the
OpenGL and DirectX specifications are slightly different, but the
preceding diagram is still the basic pipeline.

Drawing your weapons

It's time for us to learn how to draw things in OpenGL. Whether you are drawing
your weapons, an alien spacecraft, or a blade of grass, it all starts by with very simple
shapes that are combined to make more complex shapes.

Getting primitive
The most basic shapes that can be drawn in OpenGL are known as primitives. The
primitives that can be drawn by OpenGL include:
* Points: As the name suggests, a point renders a single point and is defined by
a single vertex.
* Lines: A line is rendered as a line drawn between two vertices.

* Triangles: A triangle is defined by three vertices and the three lines that pass
from one vertex to the other.

[223]

Super Models

Quads: A quad is defined by four vertices and the four lines that pass from
one vertex to the other. Technically, a quad is actually two triangles that have
been joined together at the hypotenuse.

That's it, folks! Everything known to exist can be created from these four primitives.
Extrapolating into 3D, there are these 3D primitives:

A plane is a 2D extrusion of a line (okay, I know that a plane isn't really 3D!)
A pyramid is a 3D representation of a quad and four triangles
A cube is the 3D extrusion of a quad

A sphere is a 3D construct based on a circle, which is created by lines (yes,
lines, and the shorter each line, the more convincing the circle)

A cylinder is a 3D extrusion of a circle

The objects in the preceding list aren't actually defined as OpenGL primitives.
However, many 3D modeling programs refer to them as primitives because they
are the simplest 3D objects to create.

Drawing primitives

In the previous chapter, we created a cube using the following code:

void DrawCube ()

{

glClear (GL_COLOR_BUFFER BIT | GL_DEPTH BUFFER BIT) ;
glTranslatef (0.0f, 0.0f, -7.0f);

glRotatef (fRotate, 1.0f, 1.0f, 1.0f);

glBegin (GL_QUADS) ;

glColor3f(0.0f, 1.0f, 0.0f);

glvertex3f(1.0f, 1.0f, -1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);
glVertex3f(-1.0£, 1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f);
glColor3f(1.0f, 0.5f, 0.0f);

glvertex3f(1.0f, -1.0f, 1.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
glvVertex3f (-1.0f, -1.0f, -1.0f); glVertex3f(1.0f, -1.0f, -1.0f);
glColor3f(1.0£f, 0.0f, 0.0f);

glvertex3f(1.0f, 1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
glvertex3f(-1.0f, -1.0f, 1.0f); glvertex3f(1.0f, -1.0f, 1.0f);
glColor3f(1.0f, 1.0f, 0.0f);

glvertex3f(1.0f, -1.0f, -1.0f); glvertex3f(-1.0f, -1.0f, -1.0f);
glVertex3f (-1.0£, 1.0f, -1.0f); glVertex3f(1.0f, 1.0f, -1.0f);
glColor3f(0.0f, 0.0f, 1.0f);

glvertex3f(-1.0f, 1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);
glvVertex3f (-1.0f, -1.0f, -1.0f); glVertex3f(-1.0f, -1.0f, 1.0f);

[224]

Chapter 9

}

glColor3f(1.0f, 0.0f, 1.0f);

glvVertex3f(1.0f, 1.0f, -1.0f); glvertex3f(1.0f, 1.0f, 1.0f);
glvVertex3f(1.0f, -1.0f, 1.0f); glvertex3f(1.0f, -1.0f, -1.0f);
glEnd () ;

fRotate -= 0.05f;

Now, let's learn about how this code actually works:

1.

Any time that we want to draw something in OpenGL, we first start by
clearing the render buffer. In other words, every frame is drawn from
scratch. The glclear function clears the buffer so that we can start
drawing to it.

Before we start drawing objects, we want to tell OpenGL where to draw
them. The glTranslatef command moves us to a certain point in 3D space
from which we will start our drawing (actually, glTranslatef moves the
camera, but the effect is the same).

If we want to rotate our object, then we provide that information with
the glrotatef function. Recall that the cube in the previous chapter
slowly rotated.

Just before we provide vertices to OpenGL, we need to tell OpenGL how to
interpret these vertices. Are they single points? Lines? Triangles? In our case,
we defined vertices for the six squares that will make the faces of our cube, so
we specify glBegin (GL_QUADS) to let OpenGL know that we are going to be
providing the vertices for each quad. There are several other possibilities that
we will describe next.

In OpenGL, you specify the properties for each vertex just before you define
the vertex. For example, we use the glColor3f function to define the color
for the next set of vertices that we define. Each succeeding vertex will be
drawn in this specified color until we change the color with another call
toglColor3ft.

Finally, we define each vertex for the quad. As a quad requires four vertices,
the next four glvertex3f£ calls will define one quad. If you look closely at the
code, you will notice that there are six groups of four vertex definitions (each
preceded by a color definition), which all work together to create the six faces
of our cube.

Now that you understand how OpenGL draws quads, let's expand your knowledge
by covering the other types of primitives.

[225]

Super Models

Making your point

There is only one kind of point primitive.

Gl_Points

The glBegin (GL_POINTS) function call tells OpenGL that each following vertex is to
be rendered as a single point. Points can even have texture mapped onto them, and
these are known as point sprites.

Points are actually generated as squares of pixels based on the size defined by the
GL_PROGRAM POINT SIZE parameter of the glEnable function. The size defines the
number of pixels that each side of the point takes up. The point's position is defined
as the center of that square.

The point size must be greater than zero, or else an undefined behavior results. There
is an implementation-defined range for point sizes, and the size given by either
method is clamped to that range. Two additional OpenGL properties determine how
points are rendered: GL_POINT SIZE RANGE (returns 2 floats), and GI, POINT SIZE_
GRANULARITY. This particular OpenGL implementation will clamp sizes to the nearest
multiple of the granularity.

Getting in line
There are three kinds of line primitives, based on different interpretations the
vertex list.

Gl _Lines

When you call glBegin (GL_LINES), every pair of vertices is interpreted as a single
line. Vertices 1 and 2 are considered one line. Vertices 3 and 4 are considered another
line. If the user specifies an odd number of vertices, then the extra vertex is ignored.

Gl_Line_Strip

When you call glBegin (GL_LINES), the first vertex defines the start of the first line.
Each vertex thereafter defines the end of the previous line and the start of the next
line. This has the effect of chaining the lines together up to the last vertex in the list.
Thus, if you pass n vertices, you will get n-1 lines. If the user only specifies only one
vertex, the drawing command is ignored.

[226]

Chapter 9

Gl _Line_Loop

The call glBegin (GL_LINE_LOOP) works almost exactly like line strips, except that the
tirst and last vertices are joined as a line. Thus, you get n lines for n input vertices. If
the user only specifies one vertex, the drawing command is ignored. The line between
the first and last vertices happens after all of the previous lines in the sequence.

Triangulation

A triangle is a primitive formed by three vertices. There are three kinds of triangle
primitives, based again on different interpretations of the vertex stream.

[227]

Super Models

Gl_Triangles

When you call glBegin (GL_TRIANGLES), every three vertices define a triangle.
Vertices 1, 2, and 3 form one triangle. Vertices 4, 5, and 6 form another triangle.
If there are fewer than three vertices at the end of the list, they are ignored:

glBegin (GL_TRIANGLES) ;
glvVertex3f(0.0f, 1.0f, 0.0f);
glvVertex3f(-1.0£f,-1.0f, 0.0f);
glvVertex3f(1.0f,-1.0f, 0.0f);
glEnd() ;

Gl_Triangle_Strip

When you call glBegin (GL_TRIANGLE_STRIP), the first three vertices create the first
triangle. Thereafter, the next two vertices create the next triangle, creating a group of
adjacent triangles. A vertex stream of n length will generate n-2 triangles:

Gl_Triangle_Fan

When you call glBegin (GL_TRIANGLE_FAN), the first vertex defines the point from
which all other triangles are defined. Thereafter, each group of two vertices define a
new triangle with the same apex as the first one, forming a fan. A vertex stream of n
length will generate n-2 triangles. Any leftover vertices will be ignored:

6

[228]

Chapter 9

Being square

A quad is a quadrilateral, having four sides. Don't get confused and think that all
quads are either squares or rectangles. Any shape with four sides is a quad. The
four vertices are expected to be in the same plane and failure to do so can lead to
undefined results. A quad is typically constructed as a pair of triangles, which can
lead to artifacts (unanticipated glitches in the image).

Gl_Quads

When you call glBegin (GL_QUADS), each set of four vertices defines a quad. Vertices
1 to 4 form one quad, while vertices 5 to 8 form another. The vertex list must be a
number of vertices divisible by 4 to work:

glBegin (GL_QUADS) ;

glvertex3f(-1.0£f, 1.0f, 0.0f);

glvertex3f(1.0f, 1.0f, 0.0f);

glvertex3f(1.0f,-1.0£, 0.0f);

glvertex3f(-1.0f,-1.0£, 0.0f);
glEnd () ;

Gl_Quad_Strip

Similarly to triangle strips, a quad strip uses adjacent edges to form the next quad.
In the case of quads, the third and fourth vertices of one quad are used as the edge
of the next quad. So, vertices 1 to 4 define the first quad, while 5 to 6 extend the next
quad. A vertex list of n length will generate (1 - 2)/2 quads:

Saving face

All of the primitives that we discussed are created by creating multiple shapes that are
glued together, more or less. OpenGL needs to know which face of a shape is facing the
camera, and this is determined by the winding order. As you can't see both the front
and back of a primitive, OpenGL uses facing to decide which side must be rendered.

[229]

Super Models

In general, OpenGL takes care of the winding order so that all of the shapes in a
particular list have consistent facing. If you, as a coder, try to take care of facing
manually, you are actually second-guessing OpenGL.

Back to Egypt

As we have already demonstrated the code to draw a cube, let's try something even
more interesting: a pyramid. A pyramid is constructed by four triangles with a
square on the bottom. So, the simplest way to create a pyramid is to create four
GL_TRIANGLE primitives and one GL_QUAD primitive:

int DrawGlPyramid (GLvoid)
{
glClear (GL_COLOR_BUFFER BIT | GL_DEPTH BUFFER BIT) ;
glLoadIdentity () ;
glTranslatef (-1.5£,0.0f,-6.0f);
glBegin (GL_TRIANGLES) ;
glColor3f(1.0£f,0.0£,0.0f)
glvertex3f(0.0f, 1.0f, 0
glColor3f(0.0£f,1.0£,0.0f)
glvertex3f(-1.0£f,-1.0f, 1
glColor3f(0.0£f,0.0£f,1.0£f);
glvertex3f(1.0f,-1.0f, 1.0f);

)

0

)

1

)

7

.0f) ;

7

.0f) ;

7

glColor3f(1.0£f,0.0f,0.0f
glvertex3f(0.0f, 1.0f,
glColor3f(0.0f,0.0f,1.0f
glvertex3f(1.0f,-1.0f,
glColor3f(0.0£f,1.0£,0.0£f);
glvertex3f(1.0f,-1.0f, -1.0f);
glColor3f(1.0£f,0.0£,0.0£f);
glvertex3f(0.0f, 1.0f, 0.0f);
glColor3f(0.0£f,1.0£,0.0£f);
glvertex3f(1.0f,-1.0f, -1.0f);
glColor3f(0.0£f,0.0£f,1.0£f);
glvertex3f(-1.0£f,-1.0f, -1.0f);
glColor3f(1.0£f,0.0£,0.0£f);
glvertex3f(0.0f, 1.0f, 0.0f);
glColor3f(0.0£f,0.0f,1.0£f);
glvertex3f(-1.0f,-1.0f,-1.0£f);
glColor3f(0.0£f,1.0£,0.0£f);
glvertex3f(-1.0f,-1.0f, 1.0f);
glEnd () ;

}

.0f) ;

7

.0f) ;

[230]

Chapter 9

A modeling career

When you consider the amount of code that is required to create even the most basic
shapes, you might despair of ever coding a complicated 3D game! Fortunately, there
are better tools available to create 3D objects. 3D modeling software allows a 3D
modeler to create 3D object similar to how an artist uses drawing software to create
2D images.

The process of getting 3D objects into our game typically has three steps:

1. Creating the 3D object in a 3D modeling tool.
2. Exporting the model as a data file.

3. Loading the data file into our game.

Blending in

There are many popular tools that are used by professionals to create 3D models.
Two of the most popular ones are 3D Max and Maya. However, these tools are also
relatively expensive. It turns out that there is a very capable 3D modeling tool called
Blender that is available for free. We will install Blender and then learn how to use it
to create 3D models for our game.

Blender is a 3D modeling and animation suite that is perfect for beginners who want

to try 3D modeling. Blender is open-source software created by Blender Organization,
and it is available at no cost (although Blender Organization will be glad to accept your
donations). Install Blender on your computer using the following steps:

1. Gotohttp://www.Blender.Org and hit Enter.
2. Click the Download link at the top of the page.

3. Download the files that are compatible with your computer. For my 64-bit
Windows computer, I made the selection circled in the following screenshot:

&= Blender 2.75a for Windows

Compatible with Windows 8 | 7

[Installer (.msi) % Cloase ricroe

4. Once Blender is downloaded, run the installer program and accept all of the
default values to install Blender on your computer.

[231]

http://www.Blender.Org

Super Models

Blender overview

Once you have installed Blender on your computer, open it up and you should see
something like the following screen:

Don't let the complexity of the screen scare you. Blender has a lot of features that you
will learn with time, and they have tried to put many of the features right at your
fingertips (well, mouse tips). They have even created a model of a cube for you so
that you can get started right away.

The middle of the screen is where the action takes place. This is the 3D view. The
grid gives you a reference, but is not part of the model. In the preceding screenshot,
the only model is the cube.

The panels surrounding the middle offer a host of options to create and manipulate
your objects. We won't have time to cover most of these, but there are many tutorials
available online.

Building your spaceship

Just like we did in the 2D portion of the book, we are going to build a simple 3D
spaceship so that we can fly it around in our universe. As I am a programmer and not
a modeler, it will be a ridiculously simple space ship. Let's build it out of a cylinder.

[232]

Chapter 9

To build our space ship, we first want to get rid of the cube. Use your right mouse
button to select the cube. You can tell that it is selected because it will have three
arrows coming from it:

Now press the Delete key on your keyboard, and the cube will disappear.

M If you are like me, you will try and try to use the left mouse
Q button to select objects. However, Blender uses the right
mouse button to select objects!

You will probably notice two other objects in the 3D View:

The object in the preceding image represents the camera. This is not a part of your
game object, but rather it represents the angle of the camera as viewed from inside
Blender. You can hide this by right-clicking on it and pressing H.

The object in the preceding image represents the light source. This is not a part of
your game object, but rather it represents the light source that Blender is using. You
can hide this by right-clicking on it and pressing H.

[233]

Super Models

Now, let's create that cylinder. Locate the Create tab in the left panel and use your
left mouse button to click on it:

49 Blender

B Dlender

e ;

ﬂ"’ﬁe & %0 =1 B3 WB P2 of B8 Qo -u

[234]

Chapter 9

Notice the three arrows. These indicate that the cylinder is the selected object.
The arrows are used to move, size, and rotate objects, but we won't be doing any
of that today.

You should also notice a circle with a concentric dashed circle inside the cylinder.
This indicates the origin of the object, which is the point around which the object will
move, size, and rotate.

There are many more things that we would do if we were modeling a real object. As
this is a coding book and not a modeling book, we won't do those things, but here
are some ideas for future study:

* We could continue creating more and more objects and use them to build a
much more complex spaceship

* We could use textures and materials to give our spaceship a skin

Exporting the object

In order to bring the spaceship into our game, we must first export the object into
a data file that can be read into the game. There are many different formats that we
could use, but for this game, we will use the .obj export type. To export the object,
perform the following action:

1. Click the File command, then click Export.
2. Choose Wavefront (.obj) as the file type.

3. In the next screen, select the location for your export (preferably the location
of your source code for the game) and name it ship.obj.

[235]

Super Models

4. Click the Export OBJ button on the right-hand side of the screen.

43 Blender = O X

Blender Render 5

v Apply Modifiers
v Include Edges

" write Normals
¥ Include UVs

v Write Materials

Congratulations! You are now one step away from bringing this object into
your game.

Getting loaded

The . obj file is simply a text file that stores all of the vertices and other data that is
used to render this object in OpenGL. The following screenshot shows the ship.obj
file opened in Notepad:

[236]

Chapter 9

WE 5
HOME BSERT
-
I'M‘lf
= ¥ Format Painter
Chipbomd
Styles b

Layout Information P4¢ ¥

Nurered Buset [PACET T
Humiered Busiet End P ¥
Hurbsered Bullel Wikhin ¥

Numbered Buset within 7
Fart PacKT] ¥
Part Heading [PACKT] ¥
Part Section FACKT, ¥
Part Tile [PACKT, L
Quate [PACKT] ¥
Quate Within Bulles s ¥
Roman Humbered Bullet ¥
Reman Mumbered Bullet T
Sereen Tedt [PACET] a
Tutle Calumn Cantent ¥
Tebile Celumn Heading | ¥
Tt within Hulist Bac 7
Tip @acaT ¥
how Breview

Disabide Linked Ryles

ETARE

L i

®

1| ship.ab - Notepad =]

Times File dt Fgmat View Help

k Blender v2.75 (sub B) 0B) File: ''# www.blender.orgntllib ship.mtle Cylinderv 3.875974 -3.203766 -5.247818v 3.875974 -1.203766 -5.247818v
3271864 .3.203766 .5.218683y 3.271964 .1.203766 .5,228683v 3 A5BRST .3,203766 -5.17160Bv 3. A58R5T .1.203766 -5.171698v 3.531544 .3.203786
5.879288v 3.631544 -1.283766 -5.879288v 3.7E3088 -3.283766 -4.954925v 1.783088 -1 283766 -4.954005v 3.997443 -3.003766 -4 BR3I3ERv 3.987443
«1.283766 -4.B2138Bv 3.999853 -3.203766 -4.630501v 3.999853 -1.203766 -4.630521v 4.956759 -3.203766 -4.442908v 4.856759 -1.793766 -

4.442908v 4.075974 -3.200766 -4.247818v 4.075974 -1,200766 -4.247618v 4,856759 -3.200766 -4.852728v 4.856759 -1.200766 -4.052718v 1.959853
-3.203766 -3.865135v 3.900852 -1.203766 -3.865135v 3.907443 -3.203766 -3.692248v 3.907443 -1,200766 -3.692248v 3.TEI080 -3.203766 -

3548711 3.783988 -1.203766 -3 540711v 3.631544 -3.203764 -3 416348y 3.631544 -1.203766 -3 41634Bv 3. 458657 -3.203766 -3.323938v 3. 458657

1.203766 -3.323938v 3.271864 -3.203766 -3.267033v 3.271864 -1.203766 -3.267033v 3.075873 -3.003766 -3.247818v 3.075973 -1,.203766
3247818y 2.BEAARY .3.203766 -3.267T@33v 2.B86RR3 .1.283766 -3.267A3Fv 2.693298 -3.203766 -3.323930v 3.693290 .1.203766 -3.323939v 2528483
3. 209766 -3.416340y 2.50040% -1.203766 -3.416349v 2 3EBREE -3,201766 -3.540712v 2.36BB66 -1.203766 -1.540712v 2.244503 -3, 203766
3.69224Bv 2.244503 -1.201766 -1.692248v 2.153894 -1.200766 -1.865115v 2.152094 -1.203766 -3.B65135v 2.895188 -3.203766 -4.85272%v 2.0895188
-1.203766 -4.852720v 2.075974 -3.203766 -4.24T819v 21.075974 -1.203766 -4.247819v 2.005188 -3,203766 -4.442000v 2.095188 -1.203766 -
4.842999y 2.152094 -3.203786 -4 630503y 2.15309d -1.203766 -4.630503v 2.244584 -3 708766 -4 B@33E%v 2.244%04 -1.2037BE -4.503389v 2. 36B85E

-3.203766 -4.954926v 2.368868 -1.203766 -4.954926v 2.520484 -3.203766 -5.07928%¢ 2.520484 -1.203766 -5.079268v 2.693291 -3.203766
5.171698y 2.693291 -1.203765 -5,171698 2850885 -3,203766 -5,228603v 2,830885 -1,203766 -5.228683yn 0.993000 0.000000 -9.995200vn 8.209300
2.000000 -.956908vn .471400 2.000000 -0.881500vn .634400 0.000000 -0.773000vn 8.773000 0.000000 -0.614400vn 0.881900 0.000000 -0.471400
wn 9.956909 0.PA00RY -0.798300un 8.995700 0.0R0A0R -0.BSBAGRV ©.S95200 §.0PBIND ©.89EPRRuN B.956980 .000009 0.793I0MVN 0.BR199D O.BEGAE
2.471408vn 0.77J000 2.000000 0.634480vn 8.634400 0.090000 0.773000vn 0.471400 ©.008000 0.881%3¢vn 2.290380 0.000000 0.956908vn 0.090000
0.000000 ©.995200vn -0.098000 0.000000 ©,995208vn -2, 290300 ©,000080 0.956908vn -0.471429 0090000 0.581900vn -0.634400 0008000 ©.773890vn
-8.773000 0.DOR0E ©.634408vn -0.581900 0000000 B.471400vn -0.956900 B.O0000D B.290300vn -0.995200 B.BO0OOD B.0SGE0GvH -B.995200 O.0ORG0A
9.898908vn -B.956000 0000000 -0.299306vn -0.851900 ©.000000 -B.471408vn -8,773000 ©.PO0000 -B.534400vn -B.635400 0.BOS0BA -0.773088vn
8.471480 6.000000 -0.831900vn 0.000000 1,000000 -0,000000vn -0.095000 0.000000 -0,995208vn -B.290309 0.000008 -0.956988un 8.000G60
1.000000 9.000000usent]l Hones oFFF 1//1 2//1 &//1 3//1F 3//2 8112 6/J2 S//2F S//3 6/13 B3 T/I3F T//4 B/J4& 18714 9 /4F 9175 10//5 12//5
117756 10776 12//6 1406 134768 13077 14//7 16447 15//7F 15//8 16//8 1B//8 17//8F 17//9 1879 30//9 19//9¢F 19//18 30//18 32//18 3177187
207711 224711 247711 237711F 237713 24/712 267712 I5//12F 25//13 26713 28/713 2T/713€ 277714 2B/714 30//14 297 714F 297715 38//15 32//15
I1//156 31//16 32//16 347/16 33/ 164 337717 34//17 36/71T 3S//17F 35//18 36//18 38//18 37//18¢ 37//19 38//19 48//19 39//19F 397720 S0f/20
A2//20 A1//20F 41//21 82//21 447/21 A3/ TLF 83722 A4/[21 4B/ (22 A5/(22F 45723 86//23 4B/[23 &7//23F 47//24 457724 SO//28 49/ (28F 89//25
58//25 52//25 51//35F 51//36 53//36 54736 53//26F 53//27 54(/27 56//27 55//27F 55//28 56//28 58//18 57//2BF 57//¥ SB//29 6R//29 59//29F
S9//30 GB//I8 62//30 61/730F 47731 /431 647731 627431 60//31 S8/ S6//31 S4//31 527731 S0//31 4B//31 &6//31 44//31 42//31 40731 38/
36731 34,431 327731 307731 IR/ 26731 247731 22//31 307731 1B/ /31 164731 147731 127731 18/ /31 B3 67 731F 637732 G432 21732 17733F
61//33 62//33 64//33 63//13F 1//34 3//34 5//M 7//34 97734 11//34 13//34 157734 177734 19//34 21//34 23//34 25//34 27//M 29//34 31//04
33//34 35//34 37//34 397738 41//54 A3/f30 a57/34 AT/ /34 49734 51//34 537734 557730 57//34 59//38 61//34 63//34

<1

3

e #: This defines a comment

e +: This defines a vertex

¢ vt: This defines a texture coordinate

e vn: This defines a normal

e f: This defines a face

We will now write the code to load this data into our game. Open the SpaceRacer3D
project into Visual Studio. Then add the following headers:

#include #include #include enum Primitive

{

Triangles =
=1

Quads

bi

0,

struct Vec2

{

Vec2 ()

{

x = 0.0f;
y = 0.0f;

}

Vec2 (const float p x, const float p_y)

{

[237]

Super Models

X = p_X;
Y = P_Yi

}

float x;
float vy;

}i

struct Vec3

{

Vec3 ()

{

x = 0.0f;
y = 0.0f;
z = 0.0f;

}

Vec3 (const float p x, const float

{

X

Y
Z

}

p_x;
p_Yi
p_z;

float x;
float vy;
float z;

}i

const bool LoadObj (

const char * filepath,
std::vectortemp_vertices;
std::vectortemp normals;

p

FILE * file = fopen(filepath, "xr");

if (file == NULL)

{

return false;

}

bool finished = false;
while (!finished)

{

char line[128];

_Y

int check = fscanf (file, "%s", line);

if (check == EOF)

{

finished = true;

}

else

const float p z)

[238]

Chapter 9

{

if (strcmp(line, "v") == 0)

{

Vec3 vertex;
fscanf (file, "%f %f %$f\n", vertices.size(); i++)

unsigned int vertexIndex = vertices[i];
unsigned int normalIndex = normals[i];

Vec3 vertex = temp vertices|[vertexIndex - 1];
Vec3 normal = temp normals[normalIndex - 1];
o_vertices.push back (vertex) ;
o_normals.push back (normal) ;

}

return true;

}

Before you can compile the code you will need a to add a pre-processor
definition. Open the project properties, and navigate to the C/C++
branch of the Configuration Properties. Add CRT SECURE NO WARNINGS to
the Preprocessor Definitiomns.

Here is what the loader is doing;:
The loader accepts for parameters (one input and three output):

* A filename.

* A pointer to an array of vertices.

* A pointer to an array of uvs.

* A pointer to an array of normal vectors.

* Three vectors (a type of array in C++) are created to hold the data that is
parsed from the file. One to hold the vertices, one to hold the uvs, and
one to hold the normals. A fourth vector is created to pair each vertex
with a uv coordinate.

* Three temporary vectors are created to use as input buffers as the data
is read.

* The £bx file is now read. The program looks for the flags that indicate what
type of data is being read. For our purposes now, we are only concerned with
the vertex data.

* When each piece of data is read, it is put into the appropriate vector.

* The vectors are returned so that they can be processed by the program.

[239]

Super Models

Simple enough, eh? But, there's a lot of code because parsing is always fun! The
most important data that is extracted from the model for our purposes is the array
of vertices.

We haven't discussed uvs and normal vectors because I don't
\ want to this to be a whole book on modeling. Uvs are used to
~ add textures to an object. as we didn't add any textures, we
Q won't have uv data. Normal vectors tell OpenGL which side
of an object is facing out. This data is used to properly render
and light an object.

In the next chapter, we will use this loader to load our model into the game.

Summary

We covered a lot of ground in this chapter. You learned how to create 3D objects in
code using OpenGL. At the same time, you learned that you don't really create 3D
objects in code! Instead, real games use models that have been created in special 3D
modeling software, such as Blender.

Even as a coder, it is useful to learn a little bit about using software, such as Blender,
but you will eventually want to find artists and modelers who really know now to
use these tools to their full extent. You can even find 3D models online and integrate
them into your game.

To close things out, we learned how to load 3D models into our. Spend a few days
playing around with Blender and see what you can come up with, and then on to the
next chapter!

[240]

10

Expanding Space

Now that you know how to build your 3D world, it is time to do stuff! As we are
building a space racing game, we need to be able to move our space ship around.
We will also put some obstacles in the game so that we have something to race
against. In this chapter, you will learn about the following topics:

* Placing game objects: We will take some 3D objects, load them into our
game, and place them in 3D space.

* Transformations: We need to learn how to move in 3D. Moving in 2D was
easy. In 3D, we have another dimension, and we will now also want to
account for rotation as we move around.

* Point of view: We will learn how the point of view affects how we play the
game. Do you want to be in the pilot's seat or just outside the ship?

* Collisions: We performed some collision detection in our 2D game. Collision
detection in 3D is more complicated because we now have to consider all
three spatial dimensions in our checks.

Creation 101

Our first task is to load our world. We need a few basic components. First, we need
a universe. This universe will contain stars, asteroids, and our space ship. Open up
SpaceRacer3D and let's get coding!

[241]

Expanding Space

Preparing the project
Before we get going, we will need to move some code over from our 2D project.
Copy the following files and settings from RoboRacer2D to SpaceRacer3D:

1. Copy Input.cpp and Input.h—we will use these classes to handle user input.

2. Copy Sprite.cpp, Sprite.h, SOIL.h, and SOIL.1ib—we will use them to
support the user interface in the next chapter. You may need to remove the
line #include "stdafx.h" from Sprite.cpp.

3. Copy fmodex.d11l—we need this for audio support.

Copy the settings from the project Configuration Properties/C/C++/
General/Additional Include Directories setting—this is necessary to
provide access to FMOD library:

Additional Include Directories ? >

P SIS
ChProgram Files %628:86%2 9 FMOD SoundSystern\FMOD Programmers APl Windows\apitine

< >

Evaluated value:

C:\Program Files (xBENFMOD SoundSystem\FMOD Programmers APl Windowshapitine 2

Inherited values:

[] Inherit from parent or project defaults Macross »

5. Copy the settings from the project Configuration Properties/Linker/
Input/ Additional Dependencies setting— this is necessary to provide
access to the OpenGL, FMOD, and SOIL libraries:

[242]

Chapter 10

Additional Dependencies

plu3zlib
opengl32.lib
SOILlib
fmedex_velib

Evaluated value:

glu3z.lib
opengl32.lib
SOILlib

fmodex_ve.lib

Inherited values:

kemel32.lib
user32.lib
gdi32.lib
winspool.lib
comdlg32.lib

v

Inherit from parent or project defaults

Macrogs >

6. Copy the settings from the project Configuration Properties/Linker/
General / Additional Library Directories setting — this is also necessary to

provide access to FMOD library:

Inherit from parent or project defaults

Additional Library Directeries % ? X
| |
Ci\Program Files %28:86%:23\FMOD SoundSystem FMOD Programmers APl Windows\apitlib
< >
Evaluated value:
C\Program Files (x86)\FMOD SoundSystem\FMOD Pregrammers APl Windows\api\lib
%(AdditionalLibraryDirectories)
Inherited values:
Macros> >

Cancel

Loading game objects

In the previous chapter, we learned how to create 3D objects in Blender and export
them as obj files. We then added code to our project to load the obj data. Now, we

will use that code to load some models into our game.

[243]

Expanding Space

We are going to load four models into our game: the space ship, and three asteroids.
The idea will be to race through the asteroid field. As our loader holds the model data
as three arrays (vertices, uvs, and normals), we will create a model class that defines
these arrays and then use this class for each model that we want to load into the game.

The Model class header

Create a new class and header file named Model . cpp and Model . h, respectively.
Open Model . h. First, let's get the header set up:

#pragma once
#include <stdlib.h>
#include <math.h>
#include "LoadObj.h"
#include "glut.h"

We need to use some constants defined in math.h, so we need to add a preprocessor
directive. Add USE_MATH DEFINES to Configuration Properties/C/C++/
Preprocessor/Preprocessor Definitions. Also, notice that we include Loadobj .h
because we will load the model from inside this class. Now, let's create the class:

class Model

{
public:

struct Color

{

Color ()

{
r = 0.0f;
g = 0.0f;
b = 0.0f;

}

Color(const float p r, const float p g, const float p b)

{

I
o]

o Q
Il
el
O"lLQ

float r;
float g;
float b;

[244]

Chapter 10

We will be using color a lot, so we are defining a struct to hold the r, g, and b values
to make things more convenient. Now, for our methods we use the following code:

Model (const char* p filepath, const Color p color) ;

~Model () ;

void Update (const float p deltaTime) ;

void Render () ;

void SetPosition(const float p x, const float p y, const float p z);
void SetPosition(const Vec3 p_position);

const Vec3 GetPosition() const;

void SetHeading(const float p x, const float p y, const float p z);
void SetHeading(const Vec3 p_heading) ;

const Vec3 GetHeading() const;

void SetColor(const float p red, const float p green, const float
p_blue) ;

void SetColor (const Color p_color) ;

void SetBaseRotation(const float p x, const float p y, const float
p_Z);

void SetBaseRotation(const Vec3 p_rotation) ;

const Vec3 GetBaseRotation() const;

void SetHeadingRotation(const float p_x, const float p y, const float
p_Z);

void SetHeadingRotation(const Vec3 p_rotation) ;

const Vec3 GetHeadingRotation() const;

void SetVelocity(const float p velocity) ;

const float GetVelocity () const;

const bool IsShip();

void IsShip(const bool p IsShip);

const bool IsVisible() const { return m isVisible; };

void IsVisible (const bool p isVisible) { m isVisible = p isVisible;
Vi

Vi

Here is a short description of each method:
* Model is the constructor. It takes a filename and a color. As our models are
simple shapes, we will use color to give them some pizzazz.
* SetPosition and GetPosition manage the object's position in world space.
* SetHeading and GetHeading manage the direction the object is heading.
* SetColor and GetColor manage the objects color.

* SetBaseRotation and GetBaseRotation manage any local rotation applied
to the object.

* SetHeadingRotation and GetHeadingRotation manage the orientation of
the object in world space.

* SetVelocity and GetVelocity manage the speed of the object.

[245]

Expanding Space

Now, for the variables, we use the following code:

m_vertices;

std: :vectorm normals;
Vec3 m_position;

Vec3 m_heading;

Vec3 m_baseRotation;
Vec3 m_headingRotation;
Color m color;
Primitive m_primitive;
float m_velocity;

bool m_isVisible;
bool m loaded;
bool m_IsShip;

float m_radius;
bool m _collideable;

These are self-explanatory because they directly correspond to the methods
described previously. This header is a good structure for everything that we will
need to do to place objects in our world and move them around.

Implementing the Model class

Now let's implement the class. Open Model . cpp and let's get started. First, we
implement the header, constructor, and destructor:

#include "Model.h"

Model: :Model (const char* p filepath, const Color p color)
{

m filepath = p filepath;

m_loaded = LoadObj (m filepath, m vertices, m normals, m primitive);
SetPosition(0.0f, 0.0f, 0.0f);

SetHeading (0.0f, 0.0f, 0.0f);

SetHeadingRotation (0.0f, 0.0f, 0.0f);
SetBaseRotation(0.0£f, 0.0f, 0.0f);

IsShip(false) ;

SetVelocity (0.0f) ;

SetColor(p_color.r, p color.g, p_color.b);

SetRadius (1.0f) ;

IsCollideable (true) ;

IsVisible (true) ;

}

Model: : ~Model ()

{

[246]

Chapter 10

m _vertices.clear();
m normals.clear() ;

}

The constructor sets everything up. Notice that we call Loadobj from the constructor
to actually load the object into the class. The results will be stored into member
arrays m_vertices and m_normals. m_primitive will hold an enum telling us
whether this object is defined by quads or triangles. The remaining variables are

set to default values. These can be defined at any time in the game by using the
appropriate accessor method:

float Deg2Rad(const float p degrees)

{

return p degrees * (M_PI / 180.0f);

}

Deg2Rad is a helper function that will convert degrees to radians. As we move the
ship around, we keep track of the heading angle in degrees, but we often need to use
radians in OpenGL functions:

void Model: :Update (const float p deltaTime)
Vec3 targetRotation = GetHeadingRotation() ;
Vec3 currentPosition = GetPosition() ;
Vec3 targetPosition = GetPosition() ;

float distance = m _velocity * p_deltaTime;
Vec3 deltaPosition;

deltaPosition.y
deltaPosition.x
deltaPosition.z

cos (Deg2Rad (targetRotation.z)) * distance;
-sin (Deg2Rad (targetRotation.z)) * distance;
sin (Deg2Rad (targetRotation.x)) * distance;

targetPosition.x += deltaPosition.x;
targetPosition.y += deltaPosition.y;
targetPosition.z += deltaPosition.z;
SetPosition (targetPosition) ;

}

The update function updates the position of the object based on the object's velocity.
Finally, we update m_heading, which will be used to orient the world camera during
the render. Then update the object's position in world space:

void Model: :Render ()

{

if (IsVisible())

{

glRotatef (-m_baseRotation.x, 1.0f, 0.0f, 0.0f);

[247]

Expanding Space

glRotatef (-m_baseRotation.y, 0.0f, 1.0f, 0.0f);
glRotatef (-m_baseRotation.z, 0.0f, 0.0f, 1.0f);

Vec3 targetRotation = GetHeadingRotation
Vec3 currentPosition = GetPosition() ;

)i

if (m_IsShip)

{

glPushMatrix () ;

glLoadIdentity () ;

glRotatef (targetRotation.x, 1.0f, 0.0f, 0.0f);

glRotatef (targetRotation.y, 0.0f, 1.0f, 0.0f);

glRotatef (targetRotation.z, 0.0f, 0.0f, 1.0f);

GLfloat matrix[16];

glGetFloatv (GL _MODELVIEW MATRIX, matrix);

glPopMatrix () ;

glTranslatef (currentPosition.x, currentPosition.y,
currentPosition.z) ;

glMultMatrixf (matrix) ;

}

switch (m_primitive)
{
case Primitive::Quads:
glBegin (GL_QUADS) ;
break;
case Primitive::Triangles:
glBegin (GL_TRIANGLES) ;
break;
1
glColor3f (m color.r, m color.g, m color.b);
for (unsigned int 1 = 0; 1 < m _vertices.size(); i++)
{
if (m_IsShip)
{
glVertex3f (m vertices[i] .x, m vertices[i].y, m vertices[i].z);

}

else

glVertex3f (m vertices[i] .x + m position.x, m vertices[i].y + m_
position.y, m vertices[i].z + m position.z);

}
}

glEnd () ;

}
}

The rRender function takes care of rendering this particular object. The setup for
the world matrix will happen in the game code. Then each object in the game will
be rendered.

[248]

Chapter 10

Remember the camera? The camera is a virtual object that is used to view the scene.
In our case, the camera is the ship. Wherever the ship goes, the camera will go.
Whatever the ship points at, the camera will point at.

Now for the real mind-blower; OpenGL doesn't really have a camera. That is, there
really isn't a camera that you move around in the scene. Instead, the camera is
always located at coordinates (0.0, 0.0, 0.0), or the world's origin. This means that our
ship will always be located at the origin. Instead of moving the ship, we will actually
move the other objects in the opposite direction. When we turn the ship, we will
actually rotate the world in the opposite direction.

Now look at the code for the Render function:

» First, we use glRotate to rotate everything the object's base rotation. This
comes in useful if we need to orient the object. For example, the cylinder that
we modeled in the previous chapter is standing up, and it works better in the
game lying on its side. You will see later that we apply a 90 degree rotation to
the cylinder to achieve this.

* Next, we have to decide whether we are going to render quads or triangles.
When Blender exports a model, it exports it as either quads or triang]les.
The loader figures out whether a model is defined as quads or triangles and
stores the result in m_primitive. We then use that to determine whether this
particular object must be rendered using triangles or quads.

* Weuse glcolor to set the color of the object. At this point we haven't
assigned any textures to our models, so color gives us a simple way to give
each object a personality.

Now for the real work! We need to draw each vertex of the object in world space.
To do this, we loop through each point in the vertices array, and we use glvertex3f
to place each point.

The catch is this; the points in the vertices array are in local coordinates. If we drew
every object using these points, then they would all be drawn at the origin. You

will recall that we want to place each object in the game relative to the ship. So, we
draw the ship at the origin, and we draw every other object in the game based on the
position of the ship. We move the universe, not the ship.

[249]

Expanding Space

When the ship moves, the entire coordinate system moves with it. Actually, the
coordinate system stays put and the entire universe moves past it!

If we happen to be rendering the ship, we just draw it using its local coordinates and
it is rendered at the origin. All of the other objects are drawn at a distance away from
the ship based on the ships position.

Now, for the rest of the class implementation, use the following code:

void Model::SetPosition(const float p x, const float p y, const float
p_z)
{

m position.x = p_x;

m position.y = p_vy;

m position.z = p_z;

}

void Model::SetPosition(const Vec3 p position)
m position.x = p position.x;
m position.y = p position.y;
m_position.z = p_position.z;

}

const Vec3 Model: :GetPosition() const

{

return m _position;

}

[250]

Chapter 10

These methods set and retrieve the object's position. The position is changed based
on the object's velocity in the Update method:

void Model::SetHeading(const float p x, const float p_y, const float
p_z)
{

m_heading.x = p_x;

m_heading.

~

1}
e}
<

m_heading.z = p_z;

}

void Model::SetHeading (const Vec3 p_ heading)

{
m_heading.x = p heading.x;
m_heading. p_heading.y;
m _heading.z = p heading.z;

}

const Vec3 Model: :GetHeading() const

{

return m_heading;

}

These methods set and retrieve the object's heading. The heading is changed based
on the object's heading rotations in the Update method. Heading is the direction that
the ship is headed in, and is used to rotate the world so that the ship appears to be
heading in the correct direction:

~
1}

void Model::SetColor (const float p red, const float p green, const
float p_blue)

{
m_color.r = p red;
m _color.g = p_green;
m_color.b = p blue;

}

void Model::SetColor (const Color p_ color)
{

m _color.r = p _color.r;

m _color.g = p_color.g;

m _color.b = p color.b;

}

[251]

Expanding Space

These methods are used to manage the object's color:

void Model::SetVelocity(const float p_velocity)

{

m _velocity = p velocity;

}

const float Model::GetVelocity() const

{

return m velocity;

}

These methods are used to manage the object's velocity. The velocity is set in the
game code during the input phase:

void Model::SetBaseRotation(const float p x, const float p_y, const
float p_=z)

{

m_baseRotation.x = p x;
m_baseRotation.y = p_y;
m_baseRotation.z = p z;

}

void Model::SetBaseRotation (const Vec3 p rotation)

{

m_baseRotation.x = p rotation.x;
m_baseRotation.y = p rotation.y;
m_baseRotation.z = p rotation.z;

}

const Vec3 Model: :GetBaseRotation() const

{

return m baseRotation;

}

These methods are used to manage the object's base rotation. The base rotation is
used to rotate the object in local space:

void Model::SetHeadingRotation(const float p_x, const float p y, const

float p_=z)

{
m_headingRotation.x = p_x;
m_headingRotation.y = p_vy;
m_headingRotation.z = p_z;

}

[252]

Chapter 10

void Model: :SetHeadingRotation (const Vec3 p rotation)
m_headingRotation.x = p rotation.x;
m_headingRotation.y = p rotation.y;
m_headingRotation.z = p rotation.z;

}

const Vec3 Model: :GetHeadingRotation () const

{

return m headingRotation;

}

These methods are used to manage the object's heading rotation. The heading
rotation is used to rotate the world around the object so that the object appears to
be heading in a particular direction. Only one object (the ship) will have a heading
rotation. Another way to think about this is that the heading rotation is the rotation
of the camera, which in our game is attached to the ship.

Modifying the game code

Now it's time to modify our game code so that it can load and manipulate game
models. Open SpaceRacer3D. cpp.

We'll start by adding the appropriate headers. At the top of the code, modify the
header definitions so that they look like the following code:

#include <windows.h>
#include "Model.h"
#include "Sprite.h"
#include "Input.h"
#include "glut.h"

Notice that we have added Model . h to load our models. We also included sprite.h
and Input.h from RoboRacer2D so that we can use those classes in our new game
when necessary.

[253]

Expanding Space

Now, we need to define some global variables to manage model loading. Just under
any global variables that are already defined, add the following code:

Model* ship;

std::vector<Model*> asteroids;

These variables defined pointers to our game objects. As the ship is kind of special,
we give it its own pointer. We want to be able to have an arbitrary number of
asteroids; we set up a vector (a nice dynamic array) of pointers called asteroids.

Move down to the StartGame function, which we use to initialize all of our game
models. Modify the startGame function to look like the following code:

void StartGame ()

{

//Ship

Model: :Color c(0.0f, 0.0f, 1.0f);
ship = new Model ("ship.obj", c);
Vec3 rotation(90.0f, 0.0f, 0.0f);
ship->SetBaseRotation (rotation) ;

ship->IsShip(true) ;
ship->SetVelocity (1.0f) ;

//Asteroid 1

c.r = 1.0f;
c.g = 0.0f;
c.b = 0.0f;

Model* asteroid = new Model ("asteroid.obj",

Vec3 position(0.0f, 0.0f, -10.0f);
asteroid->SetPosition (position) ;

asteroids.push back (asteroid) ;

//Asteroid 2

c.r = 0.0f;
c.g = 1.0f;
0.0f;

c.b
asteroid

position.
position.
position.

X

Yy
zZ

new Model ("asteroid.obj", c);
= 5.0f;

= 0.0f;

= -15.0f;

asteroid->SetPosition (position) ;

asteroids.push back (asteroid) ;

//Asteroid 3

c.r = 0.0f;

[254]

Chapter 10

c.g
c.b
asteroid

position.
position.
position.

1.0f;
1.0f;

X

Y
Z

new Model ("asteroid.obj", c);

5.0f;
5.0f;
-20.0f;

asteroid->SetPosition (position) ;

asteroids.push back (asteroid) ;

}

We are going to create one object for the ship and three asteroids. For each object, we
tirst define a color, then we create a new Model passing the filename of the object and
the color. The Model class will load the object file exported from Blender.

Notice that we set the ship to be the camera with the IsCamera (true) call. We also
attach the ship as the camera for every game object using the AttachCamera (ship) call.

We also set a position for each object. This will set the position in world space. This
way we don't end up drawing every object at the origin!

Each asteroid is put in the asteroids array using the push.back method.

Now, we move to the Update function. Modify the Update function so that it looks
like the following code:

void Update (const float p deltaTime)

{

ship->Update (p_deltaTime) ;

for (unsigned int i = 0; i < asteroids.size(); i++)

{

asteroids[i] ->Update (p_deltaTime) ;

}
}

The update simply calls the Update method for every object in the game. As always,
the update is based on the amount of time that has passed in the game, so we pass
inp deltaTime.

[255]

Expanding Space

Now on to the Render function. Replace the existing code with the following code:

void Render ()

{

glClear (GL_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;

for (unsigned int i = 0; i1 < asteroids.size(); i++)

asteroids[i] ->Render () ;

}

ship->Render () ;
SwapBuffers (hDC) ;

}

The rendering code is the real workhorse of the game. First, we set up the render call
for this frame, then we call the Render method for each game object:

e Glclear: This clears the render buffer.

* GlMatrixMode: This sets the model to the model view. All translations and
rotations are applied to the in the model view.

* glLoadIdentity (): This resets the matrix.
* Next, we call the Render method for each object in the game.

* Finally, we call swapBuffers, which actually renders the scene to the screen.

[256]

Chapter 10

Congratulations! If you run the game now, you should see the ship and the three
asteroids off in the distance. As we set the velocity of the ship to 1.0, you should also
see the ship slowly moving past the asteroids. However, we don't have any way to
control the ship yet because we haven't implemented any input.

!| SpaceRacer3D

[257]

Expanding Space

Taking control

We now have a framework to load and render game objects. But, we don't have any
way to move our ship! The good news is that we already wrote an input class for
RoboRacer2D, and we can reuse that code here.

Implementing input
Earlier in the chapter, I had you copy the Input class from RoboRacer2D into the
source folder for SpaceRacer3D. Now, we have to simply wire it into our game code.

Open SpaceRacer3D. First, we need to include the input header. Add the following
line of code to the headers:

#include "Input.h"

We also need to create a global pointer to manage the Input class. Add the following
line just below the model pointers:

Input* m_input;

Next, we need to create an instance of the Input class. Add the following line of code
to the top of the startGame function:

m_input = new Input (hWwnd) ;

Now, we have to create a function to handle our input. Add the following function
just above the Update method:

void ProcessInput (const float p_deltaTime)

{

Vec3 rotation;

m_input->Update (p_deltaTime) ;

Input::Command command = m_input->GetCommand() ;
switch (command)

{

case Input::CM_STOP:

{

if (ship->GetVelocity () > 0.0f)

{

ship->SetVelocity (0.0f) ;

}

else

{
ship->SetVelocity (1.0f) ;
}
}

break;

[258]

Chapter 10

case Input::CM_DOWN:

rotation = ship->GetHeadingRotation() ;
rotation.x += -1.0f;

if (rotation.x < 0.0f)

{

rotation.x = 359.0f;

if (rotation.x < 359.0f && rotation.x > 180.0f)

{

if (rotation.x < 315.0f)
{
rotation.x = 315.0f;
}
}
ship->SetHeadingRotation (rotation) ;
}
break;
case Input::CM UP:
{
rotation = ship->GetHeadingRotation() ;
rotation.x += 1.0f;
if (rotation.x > 359.0f)
{

rotation.x = 0.0f;
if (rotation.x > 0.0f && rotation.x < 180.0f)

if (rotation.x > 45.0f)

{
rotation.x = 45.0f;
!
1

ship->SetHeadingRotation (rotation) ;

}

break;

case Input::CM_LEFT:

rotation = ship->GetHeadingRotation() ;
rotation.z += 1.0f;

if (rotation.z > 359.0f)

{

rotation.z = 0.0f;

1
if (rotation.z > 0.0f && rotation.z < 180.0f)
{

if (rotation.z > 45.0f)

{

rotation.z = 45.0f;

}

[259]

Expanding Space

}

}

ship->SetHeadingRotation (rotation) ;

}

break;
case Input::CM _RIGHT:

rotation = ship->GetHeadingRotation() ;
rotation.z += -1.0f;
if (rotation.z < 0.0f)

{

rotation.z = 359.0f;

}

if (rotation.z < 359.0f && rotation.z > 180.0f)

{

if (rotation.z < 315.0f)

{

rotation.z = 315.0f;

}
}

ship->SetHeadingRotation (rotation) ;

}

break;

}

This code handles keyboard input. You will recall from RoboRacer2D that we
mapped virtual commands to the following keys:

cM_sTop: This is the spacebar. We use the spacebar as a toggle to both start
and stop the ship. If the ship is stopped, pressing the spacebar sets the
velocity. If the ship's velocity is greater than zero, then pressing the spacebar
sets the velocity to zero.

cM_up: This is both the up arrow and the WV key. Pressing either of these keys
changes the heading rotation so that the ship moves up.

cM_DOWN: This is both the down arrow and the S key. Pressing either of these
keys changes the heading rotation so that the ship moves down.

cM_LEFT: This is both the left arrow and the A key. Pressing either of these
keys changes the heading rotation so that the ship moves left.

CM_RIGHT: This is both the right arrow and the D key. Pressing either of these
keys changes the heading rotation so that the ship moves up.

Every directional command works by retrieving the current heading angle and
changing the appropriate component of the heading vector by one degree. The
heading angle is used by each object's Update method to calculate a heading vector,
which is used to point the camera in the Render method.

[260]

Chapter 10

Finally, we need to call HandleInput from the games Update function. Add the
following line of code to the top of the update method, before the object update calls.
We want to handle input first and then call each object's update method:

ProcessInput (p_deltaTime) ;

That's it! Pat yourself on the back and run the game. You can now use the keyboard
to control the ship and navigate through your universe.

Asteroid slalom

It's now time to implement the final feature of this chapter. We are going to
implement a slalom race with a twist. In a typical slalom, the point is to race around
each obstacle without touching it. To keep things simple, we are going to race
through each asteroid. If you successfully pass through each asteroid, you win

the race.

Setting up collision detection

In order to determine whether you have passed through an asteroid, we have to
implement some 3D collision detection. There are many types of collision detection,
but we are going to keep it simple and implement spherical collision detection.

Spherical collision detection is a simple check to see whether the center of two 3D
objects are within a certain distance of each other. As our asteroids are spheres, this
will be a pretty accurate indication as to whether we have collided with one. The
ship, however, is not a sphere, so this technique isn't perfect.

Let's start our collision detection coding by adding the appropriate methods to the
Model class. Open Model.h and add the following methods:

const bool IsCollideable() ;

void IsCollideable (const bool collideable) ;
const bool CollidedWith (Model* target) ;
const Vec3 GetCenter () const;

void SetRadius(const float p_ radius) ;

const float GetRadius() const;

Here is how we will use each method:

* IsCollideable is used to either get or set the m_collideable flag. Objects
are set to collide by default. All of the objects in our game are set to collide
so that we can detect if the ship has hit an asteroid. However, it is very
common to have some objects in a game that you don't collide with. If you
set IsCollideable (false), then collision detection will be ignored.

[261]

Expanding Space

* Collidedwith is the method that performs the actual collision detection.

* GetCenter is a helper function that calculates the center point of the object in
world space.

* SetRadius and GetRadius are help functions to manage the collision radius
for the object.

We also need to add two variables to track the radius and collision:

float m_radius;
bool m collideable;

Now, open Model . cpp and add the following code to implement the collision
methods.

First, we need to define the radius in the constructor. Add the following line of code
to the constructor:

SetRadius (1.0f) ;
IsCollideable (true) ;

Now add the following methods:

const bool Model: :IsCollideable ()

{
}

return m collideable;

void Model::IsCollideable(const bool p collideable)

{
}

m_collideable = p collideable;

const bool Model::CollidedWith (Model* p target)

{

if (p_target->IsCollideable() && this->IsCollideable())

{

const Vec3 pl = this->GetCenter() ;
const Vec3 p2 = p sprite->GetCenter () ;

float v = p2.y - pl.y;

float x = p2.x - pl.x;

float z = p2.z - pl.z;

float d = x*x + y*y + z*z;

float rl = this->GetRadius() * this->GetRadius/() ;

float r2 = p sprite->GetRadius() * p sprite->GetRadius();

[262]

Chapter 10

if (d <= rl + r2)
{
return true;
}
}

return false;

}

const Vec3 Model::GetCenter () const
Vec3 center;

center = GetPosition() ;

if (m_Isship)

{

center.z

-m_position.y;
center.x = m _position.x;
center.y = m position.z;

}

return center;

}

void Model::SetRadius (const float p radius)

{

m_radius = p radius;

}

const float Model::GetRadius () const

{

return m radius;

}

* IsCollideable and the override are used to either get whether the object
can be collided with or get the state of the collision flag.

* GetCenter returns the current position of the object. As we modeled all of
our objects with the object origin at the center, returning the position also
returns the center of the object. A more sophisticated algorithm would use
the bounding size of the object to calculate the center.

* GetRadius and SetRadius manage the radius, which is required for the
collision check code.

* Collidedwith is the method that performs all the work. After checking that
both the current object and the target objects can collide, then the method
performs the following actions:

° Gets the center point of the two objects

° Calculates the distance in 3D between the two centers

[263]

Expanding Space

° Checks to see whether the distance is less than the sum of the two
radii. If so, the objects have collided:

6;

If you are astute, you will notice that this collision detection is very similar to the
collision detection used in RoboRacer2D. We simply added the z dimension to
the equations.

Turning on collision

Now, we will implement the collision code in our game. Open SpaceRacer3D. cpp
and add the following function just before the Update function:

void CheckCollisions ()
{
bool collision = false;
for (int i = 0; 1 < asteroids.size(); 1i++)
{
Model* item = asteroids|[i];
collision = ship->CollidedWith (item) ;
if (collision)
{
item->IsCollideable (false) ;
item->IsVisible (false) ;
score++;
asteroidsHit++;

}
}
}

[264]

Chapter 10

This method performs the following actions:

* It defines a collision flag.
* Ititerates through all of the asteroids.
* It checks to see whether the asteroid has collided with the ship.

* If the asteroid has collided with the ship, we set IsCollideable for the
asteroid to false. This stops the collision from occurring multiple times as
the ship passes through the asteroid. For our game, we only need to collide
with each asteroid once, so this is sufficient.

We need to wire the collision into the Update function. Add the following line to the
Update method just after the HandleInput call:

HandleCollisions () ;

That's it. We have now implemented basic collision detection!

Summary

We covered a lot of code in this chapter. You implemented a simple, yet effective
framework to create and manage 3D objects in the game. This class included
necessary features to load the model, position the model in 3D space, and check
for collisions.

We also implemented input and collision detection in the game to create a modified
slalom race, requiring you to navigate through each asteroid.

In the next chapter, we will implement a user interface and scoring system to make
this a more complete game.

[265]

11

Heads Up

In this chapter, we will put some finishing touches on Space Racer 3D by adding
some features that you would see in almost any game. Many of these features are
similar to the finishing touches that we put on our Robo Racer 2D game, though
there are some special considerations now that we are working in 3D. The topics that
we will cover include the following;:

2D in a 3D world: So far, we learned how to render in 2D and how to render
in 3D. However, there are special considerations to create 2D in a 3D world.
As our user interface is typically created in 2D, we will learn how to mix the
two types of rendering.

Creating a heads-up-display (HUD): It is very typical for first-person 3D
games to have a continuous status showing information that is relevant to
the game. We will learn how to create a basic heads-up-display or HUD.

More game state: Just as we did in Robo Racer 2D, we will create a basic state
manager to handle the various modes in our completed game.

Scoring: We need a way to keep score in our game, and we need to set up the
basic win and lose conditions.

Game over: When the game is over, we'll give some credit with a 3D twist.

Mixing things up

Now that we are rendering in 3D, it isn't immediately obvious how we will render
things in 2D. This is especially true of our user interface, which must be rendered on
top of the 3D-scene and does not move or rotate with the rest of the world.

[267]

Heads Up

The trick to creating a 2D interface in a 3D world is to first render the 3D world, then
switch modes in OpenGL, and then render the 2D content. The following image
represents the 3D content that we need to render:

The next image represents the 2D text that we want to render:

Scare: 100 Speed: 80.00 kms

[268]

Chapter 11

We want the final result to be the combination of the 3D and 2D content, as shown in
the following figure:

Score: 100 Speed: 80.00 kms

O

The saving state

State is a term that is used in many different ways in game programming. For
example, we will create a state manager later in the chapter that will manage
different states, or modes, in the game. Another way to define state is a set of
conditions. For example, when we set things up to render in 3D, this is one set of
conditions or state. When we set up things to render in 2D, this is another set of
conditions or state.

The trick to being able to render in both 2D and 3D is to be able to set up one state,
and then change to another state. OpenGL saves state in matrices. In order to change
from one state to another, we need a way to save the current matrix, set up another
matrix, and then return to the previous matrix once we are done.

Push and pop

OpenGL provides two methods to save the current state and then retrieve it later:
* glbushMarix (): This command saves the current state by placing it on
the stack.

* glpopMatrix(): This command retrieves the previous state by pulling it off
the stack.

[269]

Heads Up

A stack is a structure that allows you to put data on the top of it (a push), and then
later retrieve the item from the top of it (a pop). A stack is useful when you want to
save data in order, then later retrieve it in reverse order.

Let's say that we start with an initial set of conditions called State A:

State A

glPushMatrix{)

Stack

A call to glpushMatrix () will put State A on the stack:

State B

glPushMatrix()

State A

Stack

[270]

Chapter 11

Next, we set up the conditions for State B. If we want to save this state, we issue

another glPushMatrix () call:

State A

Stack

Now we have two items on the stack, and it should also be very clear why it is called
a stack! We could then define State C. This sequence of steps can continue on as
needed, creating a render state and then pushing it to the stack. In general, we want
to unload the stack in the reverse order that we loaded it in. This is known as a FILO

stack: first in, last out.

We take things off of the stack with the glPopMatrix () command:

State B

State A

Stack

glPopMatrix()

[271]

Heads Up

The result replaces State C, restoring the rendering settings to State B:

State B

State A glPopMatrix(}

Stack

Another call to glpopMatrix () empties the stack and restores the rendering settings
to State A:

Stack

[272]

Chapter 11

The model view allows 32 matrices to be put onto the stack. Each view has its own
stack, so the projection view has a separate stack from the model view. Also, if you
issue glPopMatrix and there is no matrix on the stack, you will receive an error. In
other words, don't try to pop more than you have pushed!

In order to best manage memory, you should always pop
M the states that you have pushed, even if you don't need to
Q do anything with them. This frees up the memory that was
being used to hold the data that was part of the state that
you were saving.

Two state rendering

We are now going to set up our code to be able to render in both 3D and 2D. Open
SpaceRacer3D.cpp. We are going to split up the rendering into two functions:
Render3D, and Render2D. Then, we are going to call these from the main Render
function. Let's start with Render3D. Add the following code just above the Render
function (you can just cut it from the Render function):

void Render3D ()
{
if (gameState == GS_Running)
{
for (unsigned int i = 0; 1 < asteroids.size(); 1i++)
{

asteroids[i] ->Render () ;

}
ship->Render() ;
1
1

Next, we will create two support functions to turn 2D rendering on and off. The first
will be Enable2D. Add the following function above the Render3D function:

void Enable2D ()

{
glColor3f(1.0f, 1.0£f, 1.0f);
glEnable (GL_TEXTURE 2D) ;

glMatrixMode (GL_PROJECTION) ;

glPushMatrix() ;

glLoadIdentity () ;

glOortho (0, SCREEN WIDTH, SCREEN HEIGHT, 0, 0, 1);

[273]

Heads Up

}

glMatrixMode (GL_MODELVIEW) ;
glPushMatrix () ;
glLoadIdentity () ;

glPushAttrib (GL_DEPTH BUFFER BIT) ;
glDisable (GL_DEPTH_TEST) ;

Enable2D performs the tasks that are necessary to change the rendering mode to 2D:

The call to glcolor3f sets the current drawing color to white. This takes
some explanation. We will always render 3D first, then switch to 2D. If we
didn't set the color to white, then all of the colors in the 2D content would

be blended with the last color that was used by the 3D rendering. Setting the
render color to white essentially clears the render color so that the 2D content
will be rendered accurately. Setting the color to white doesn't actually mean
everything will be drawn in white. It means that no additional coloring will
be added to the objects that we render in 2D.

The glEnable (GL_TEXTURE_2D) call is essential if you want to render 2D
textures. If this were left out, then any 2D textures would not render correctly.

The next four lines save the 3D projection matrix and set up the projection
matrix to render in 2D. glPushMatrix pushes the current projection matrix
to the stack. We then initialize the projection matrix with glLoadIdentity.
Finally, we set up an orthographic projection with the call to glortho. Take a
look at RoboRacer2D, and you will notice that it uses the same glortho call
to set up 2D rendering!

The next three lines save the 3D model view matrix and initialize it for
our 2D drawing. glPushMatrix pushes the current model view matrix
to the stack. We then initialize the model view matrix with the call to
glLoadIdentity.

Finally, we need to turn off checking on the depth buffer. The depth buffer
check is only required for 3D rendering, and interferes with 2D rendering.
glpushAttrib works just like glPushMatrix, except that it only pushes a
single OpenGL attribute to the stack. In this case, we are pushing the current
GL_DEPTH_BUFFER_BIT to the attribute stack, thus saving the current state

of this bit from the previous 3D rendering. Next, we turn off depth checking
with the glpisable call.

[274]

Chapter 11

So, setting things up for 2D rendering involves four steps:

1.
2.
3.
4

Now,

Reset the render color and enable 2D textures.

Save the 3D project matrix and set up the 2D projection matrix.

Save the 3D model view matrix and initialize the 2D model view matrix.
Save the 3D depth bit and turn off depth checking in 2D.

we are ready to code the Disable2D function. Create this new function just

below the Enable2D function that we just created:

void Disable2D ()

{

}

glPopAttrib () ;

glMatrixMode (GL_PROJECTION) ;
glPopMatrix () ;

glMatrixMode (GL_MODELVIEW) ;
glPopMatrix () ;

glDisable (GL_TEXTURE_2D) ;

It shouldn't be too surprising that Disable2D performs actions in the reverse order
that we performed them in Enable2D:

First, we restore depth checking by calling glPopAttrib (), which takes the

last attribute that was pushed to the attribute stack off the stack and restores
that attribute in the current render state. This will restore depth checking to

the state that it was in just before we started our 2D rendering.

The next two lines restore the projection matrix to the 3D state it was in.
Again, the call to glPopMatrix takes the item on the top of the stack and
applies it to the current render state.

The next two lines pop the model view matrix.

The final line disables 2D textures.

[275]

Heads Up

Now, it is time to create our Render2D function. Add the following code just above
the Render3D function:

void Render2D ()

{
Enable2D() ;
// Future 2D rendering code here
Disable2D() ;

}

The funny thing is that we don't have any 2D content to render yet! Later in the
chapter, we will fill in the rest of the content of this function. The important thing to
note here is that this function will take care of enabling 2D rendering with the call
to Enable2D. Then the code will be added to render our 2D content. Finally, we will
turn off 2D rendering with the call to Disable2D.

Now that we have all of the necessary supporting code to render in 2D and 3D, we
will modify the Render function:

void Render ()
{
glClear (GL_COLOR_BUFFER BIT | GL_DEPTH BUFFER BIT) ;
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;
Render3D() ;
Render2D() ;
SwapBuffers (hDC) ;

}

You will notice how simple this is now:
1. First, we clear the color buffer and reset the matrix. We always do this once

before each frame of rendering.

Next, we render the 3D content.

Then we render the 2D content.

Finally, we swap the buffers, which renders all of our content to the screen.
If you run the game now, you should notice that nothing has changed. As we
haven't created any 2D content to render, the 3D content will display just as it did

before. Now we are ready add our 2D content. Along the way we will flesh out some
additional features to make a more complete game.

[276]

Chapter 11

A matter of state

Before we move on to actually rendering 2D items, we need to add a state machine
to our game. Just as we did in RoboRacer2D, we need to be able to handle several
different game states: displaying the splash screen, loading resources, displaying the
main menu, running the game, pausing the game, and game over.

Don't let the word state confuse you as it is used in several different ways
\ in computer programming. We just finished a section on render state,
~ learning how to push and pop this state from the OpenGL stacks. Now,
Q we are talking about game state, which you can think of as the different
modes that our game is in. A framework that handles different game
states is known as a state machine.

Adding the state machine

Fortunately, we will be able to take some of the code directly from RoboRacer2D.
Open up RoboRacer2D. cpp. You can do this from inside the SpaceRacer3D project
by clicking File, then Open, and then browsing to RoboRacer2D. cpp. This will allow
you to copy information from RoboRacer2D. cpp and paste it into SpaceRacer3D.

M Opening a file loads it into the current project, but it does not add the file to
Q the current project. However, you want to be careful because if you make
changes to the file and save them, the original source file will be modified.

Copy the GameState enum and then paste it at the top of SpaceRacer3D. cpp just
after the header files:

enum GameState

{
GS Splash,
GS_Loading,
GS_Menu,
GS Credits,
GS_Running,
GS_ NextLevel,
GS_Paused,
GS_GameOver,

bi
We will be copying more code from RoboRacer2D. cpp, so go ahead and leave it open.

Next, we need to create a global game state variable. Add the following definition in
the global variables section of SpaceRacer3D. cpp:

GameState gameState;

The gamestate variable will store the current game state.

[277]

Heads Up

Getting ready for a splash

Just as we did in RoboRacer2D, we are going to start our game with a splash screen. The
splash screen will be quickly loaded before any other resources, and it will be displayed
for a few seconds before moving on to loading the game assets and starting the game.

Just under the definition for gamestate, add the following lines:

float splashDisplayTimer;
float splashDisplayThreshold;

These two variables will handle the splash screen timing. Our splash screen is going
to be one of the many 2D assets that we load into the game. Let's go ahead and
define some variables for our 2D assets. Add the following lines of code to the global
variables section of SpaceRacer3D. cpp:

Sprite* splashScreen;
Sprite* menuScreen;
Sprite* creditsScreen;
Sprite* playButton;
Sprite* creditsButton;
Sprite* exitButton;
Sprite* menuButton;
Sprite* gameOverScreen;
Sprite* replayButton;

You will notice that all of our 2D assets are being handled as Sprites, a class that we
borrowed from RoboRacer2D.

While we are here, let's add the following two lines as well:

float uiTimer;
const float UI_THRESHOLD = 0.1f;

These two variables will be used to add a timing buffer to mouse clicks. Now,
let's create a function to load the splash screen. Add the following function to
SpaceRacer3D.cpp somewhere before the startGame function:

void LoadSplash()

{
gameState = GameState::GS Splash;
splashScreen = new Sprite(l);
splashScreen->SetFrameSize (screenWidth, screenHeight) ;
splashScreen->SetNumberOfFrames (1) ;
splashScreen->AddTexture ("resources/splash.png", false);
splashScreen->IsActive (true) ;
splashScreen->IsVisible (true) ;
splashScreen->SetPosition(0.0f, 0.0f);

}
This code is exactly the same as the code from RoboRacer2D. In fact, feel free to copy
and paste it directly from RoboRacer2D. cpp.

[278]

Chapter 11

Remember: we set up our 2D orthographic viewport to exactly replicate the
settings that we had in RoboRacer2D. This allows us to use the same exact code and
positions for our 2D objects. Even better, it allows us to use the Sprite class from
RoboRacer2D without changing any of the code.

The LoadSplash function loads a file from the game resource

folder called splash.png. You can download this file and all

of the other 2D resources that are used in this chapter, from the
M book website. You should place all of them in a folder named

Q resources under the same folder as the game source code. You

also have to remember to add these resources to the Resource

Files folder in the solution by right-clicking on Resource

Files, then choosing Add Existing Item, then browsing to the

resources folder and adding all of the items in that folder.

Next, we need to modify the StartGame function to load the splash screen. Move to
the startGame function add the following code:

LoadSplash () ;

uiTimer = 0.0f;
splashDisplayTimer = 0.0f;
splashDisplayThreshold = 5.0f;

The first thing that we do is call the LoadSplash function, which sets the game state
to GS_splash, and then loads the splash page. Next, we have to update and render
the splash page. Move to the Update function and modify it so that it looks like this:

void Update (const float p deltaTime)

{

switch (gameState)
case GameState::GS_Splash:
case GameState::GS Loading:

{

splashScreen->Update (p_deltaTime) ;
}
break;
case GameState::GS_Running:
{
inputManager->Update (p _deltaTime) ;
ProcessInput (p_deltaTime) ;
ship->Update (p_deltaTime) ;
ship->SetVelocity (ship->GetVelocity () + ship->GetVelocity()*p
deltaTime/10.0f) ;
speed = ship->GetVelocity () * 1000;
if (maximumSpeed < speed)
{
maximumSpeed = speed;

}

[279]

Heads Up

missionTime = missionTime + p deltaTime * 100.0f;
CheckCollisions () ;
if (ship->GetPosition().z > 10.0f)

{

gameState = GS_GameOver;
menuButton->IsActive (true) ;
gameOverScreen->IsActive (true) ;

}
}

break;
case GameState::GS_GameOver:

{

gameOverScreen->Update (p_deltaTime) ;
replayButton->IsActive (true) ;
replayButton->Update (p_deltaTime) ;
exitButton->IsActive (true) ;
exitButton->Update (p_deltaTime) ;
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;
ship->Update (p_deltaTime) ;
CheckCollisions () ;

}

break;

}
}

The only real change is that we implemented part of the state machine. You will
notice how we moved all of the code to run the game under the GS_Running game
state case. Next, we added an update for the splash screen game state. We will
eventually modify the Update function to handle all of the game states, but we have
some more work to do yet.

Now, we are ready to render the splash screen. Move to the Render2D function and
add the following line of code between the Enable2D and Disable2D calls:

splashScreen->Render () ;

At this point, if you run the game, you will see a splash screen render. The game will
not move beyond the splash screen because we haven't added the code to move on yet.

Creating the user interface

We are now ready to define our user interface, which will consist of 2D screens, text,
and buttons. These will all work exactly as they did in RoboRacer2D. Look at the tip
in the Getting ready for a splash section earlier in this chapter for a reminder of how to
include prebuilt 2D resources in your project.

[280]

Chapter 11

Defining the text system

The 2D text system is built by first creating a font framework, then creating functions
to display text on the screen. Open RoboRacer2D. cpp and copy the following
functions. Then paste them into SpaceRacer3D. cpp:

®* BuildFont

* KillFont

¢® DrawText

We are going to add some new variables to handle the data that we want to display.
Add the following lines of code to the global variables section of SpaceRacer3D. cpp:

int score;
int speed;
int missionTime;
int asteroidsHit;
int maximumSpeed;

These variables will hold the stats and scoring used by the game:

* score: This is the current game score
* speed: This is the current speed of the ship

* missionTime: This is the number of seconds that have elapsed since starting
the mission

* asteroidsHit: This is the number of asteroids hit by the player

* maximumSpeed: This is the maximum speed obtained by the player

Score, speed, and missionTime will all be displayed on the heads-up-display
(HUD) while the player is piloting the ship. Score, asteroidsHit, missionTime,
and maximumSpeed will be displayed as stats at the end of the game.

Let's go to startGame and initialize these variables:

score = 0;
speed = 1.0f;
maximumSpeed = 0
asteroidsHit = 0;
missionTime = 0;

[281]

Heads Up

Now, let's create the functions to render these items on the screen. Add the following
two functions to the game somewhere above the Render2D function:

void DrawUi ()

{
float startY = screenHeight - 50.0f;
float x1 = 50.0f;
float x2 = screenWidth / 2.0f - 50.0f;
float x3 = screenWidth - 250.0f;

char scoreText [50] ;
char speedText [50] ;
char missionTimeText [50] ;

sprintf_ s(scoreText, 50, "Score: %i", score);
sprintf s(speedText, 50, "Speed: %i", speed);
sprintf s(missionTimeText, 50, "Time: %f", missionTime / 100.0f);

DrawText (scoreText, x1, startyY, 0.0f, 1.0f, 0.0f);
DrawText (speedText, x2, startyY, 0.0f, 1.0f, 0.0f);
DrawText (missionTimeText, x3, startyY, 0.0f, 1.0f, 0.0f);

void DrawStats ()

{
float startX = screenWidth - screenWidth / 2.5f;
float startY = 275.0f;
float spaceY = 30.0f;

char asteroidsHitText [50];

char maximumSpeedText [50] ;

char scoreText [50] ;

char missionTimeText [50] ;

sprintf_ s (asteroidsHitText, 50, "Asteroids Hit: %i", asteroidsHit);
sprintf s (maximumSpeedText, 50, "Maximum Speed: %i", maximumSpeed) ;
sprintf_ s(scoreText, 50, "Score: %i", score);

sprintf s(missionTimeText, 50, "Time: %f", missionTime / 100.0f);
DrawText (asteroidsHitText, startX, startyY, 0.0f, 1.0f, 0.0f);
DrawText (maximumSpeedText, startX, startY + spaceY, 0.0f, 1.0f,

0.0f);

DrawText (scoreText, startX, startY + spaceY * 2.0f, 0.0f, 1.0f,
0.0f);

DrawText (missionTimeText, startX, startY + spaceY * 3.0f, 0.0f, 1.0f,
0.0f);

}

void DrawCredits ()

{
float startX = screenWidth - screenWidth / 2.5f;
float startY = 300.0f;
float spaceY = 30.0f;

[282]

Chapter 11

DrawText ("Robert Madsen", startX, startyY, 0.0f, 1.0f, 0.0f);
DrawText ("Author", startX, startY + spaceY, 0.0f, 1.0f, 0.0f);

}

These functions work exactly like their corresponding functions in RoboRacer2D.
First, we use sprintf_s to create a character string with the text that we want to
display. Next, we use glRasterPos2f to set the render position in 2D. Then, we use
glcallLists to actually render the font. In the DrawCredits function, we use the
DrawText helper function to render the text.

Change CheckCollisions to look like the code below:

void CheckCollisions()
{
bool collision = false;
for (int i = 0; 1 < asteroids.size(); 1i++)
{
Model* item = asteroids|[i];
collision = ship->CollidedWith (item) ;
if (collision)
{
item->IsCollideable (false) ;
score++;
asteroidsHit++;

}
}
}

This code updates the score and asteroid stats.

Defining textures

Now, it's time to load all of our textures. Add the following function to the game:

const bool LoadTextures ()

{

menuScreen = new Sprite(1l);

menuScreen->SetFrameSize (screenWidth, screenHeight) ;
menuScreen->SetNumberOfFrames (1) ;
menuScreen->AddTexture ("resources/mainmenu.png", false);
menuScreen->IsActive (true) ;
menuScreen->IsVisible (true) ;
menuScreen->SetPosition(0.0f, 0.0f);

playButton = new Sprite (1) ;
playButton->SetFrameSize (75.0f, 38.0f);
playButton->SetNumberOfFrames (1) ;

[283]

Heads Up

playButton->SetPosition(690.0f, 300.0f);
playButton->AddTexture ("resources/playButton.png") ;
playButton->IsVisible (true) ;
playButton->IsActive (false) ;

inputManager->AddUiElement (playButton) ;

creditsButton = new Sprite(l);
creditsButton->SetFrameSize (75.0f, 38.0f) ;
creditsButton->SetNumberOfFrames (1) ;
creditsButton->SetPosition(690.0f, 350.0f) ;
creditsButton->AddTexture ("resources/creditsButton.png") ;
creditsButton->IsVisible (true) ;
creditsButton->IsActive (false) ;
inputManager->AddUiElement (creditsButton) ;

exitButton = new Sprite(l);
exitButton->SetFrameSize (75.0f, 38.0f);
exitButton->SetNumberOfFrames (1) ;
exitButton->SetPosition(690.0f, 500.0f) ;
exitButton->AddTexture ("resources/exitButton.png") ;
exitButton->IsVisible (true) ;
exitButton->IsActive (false) ;

inputManager->AddUiElement (exitButton) ;

creditsScreen = new Sprite(l);
creditsScreen->SetFrameSize (screenWidth, screenHeight) ;
creditsScreen->SetNumberOfFrames (1) ;
creditsScreen->AddTexture ("resources/credits.png", false);
creditsScreen->IsActive (true) ;
creditsScreen->IsVisible (true) ;

menuButton = new Sprite(1l);
menuButton->SetFrameSize (75.0f, 38.0f);
menuButton->SetNumberOfFrames (1) ;
menuButton->SetPosition(690.0f, 400.0f) ;
menuButton->AddTexture ("resources/menuButton.png") ;
menuButton->IsVisible (true) ;
menuButton->IsActive (false) ;

inputManager->AddUiElement (menuButton) ;

gameOverScreen = new Sprite(l);
gameOverScreen->SetFrameSize (screenWidth, screenHeight) ;
gameOverScreen->SetNumberOfFrames (1) ;
gameOverScreen->AddTexture ("resources/gameover.png", false);
gameOverScreen->IsActive (true) ;
gameOverScreen->IsVisible (true) ;

replayButton = new Sprite(1l);
replayButton->SetFrameSize (75.0f, 38.0f);
replayButton->SetNumberOfFrames (1) ;

[284]

Chapter 11

replayButton->SetPosition (690.0f, 400.0f) ;
replayButton->AddTexture ("resources/replayButton.png") ;
replayButton->IsVisible (true) ;
replayButton->IsActive (false) ;
inputManager->AddUiElement (replayButton) ;

return true;

}

There is nothing new here! We are simply loading all of our 2D assets into the game
as sprites. Here are a few reminders as to how this works:

* Each sprite is loaded from a PNG file, specifying the number of frames. As
none of these sprites are animated they all have one frame.

* We position each sprite with a 2D coordinate.

* We set the properties —visible means that it can be seen, and active means
that it can be clicked on.

* If the object is intended to be a button, we add it to the Ul system.

Wiring in render, update, and the game loop

Now that we have finally loaded all of our 2D assets, we are ready to finish the
Render2D function:

void Render2D ()
{
Enable2D() ;
switch (gameState)

{

case GameState::GS_Loading:

{

splashScreen->Render () ;

break;

case GameState::GS_Menu:
menuScreen->Render () ;
playButton->Render () ;
creditsButton->Render () ;
exitButton->Render () ;

break;

case GameState::GS_Credits:
creditsScreen->Render () ;
menuButton->Render () ;
DrawCredits () ;

[285]

Heads Up

}

break;
case GameState::GS_Running:

{

DrawUi () ;

}

break;
case GameState::GS Splash:

{

splashScreen->Render () ;

}

break;
case GameState::GS_GameOver:

{

gameOverScreen->Render () ;
DrawStats () ;
menuButton->Render () ;

}

break;

}

Disable2D() ;

}

Again, there is nothing here that you haven't seen already. We are simply
implementing the full state engine.

We can also implement the full ProcessInput function now that we have buttons to
click. Add the following lines to the switch statement:

case Input::Command::CM_UI:

{

if (playButton->IsClicked())

{

playButton->IsClicked (false) ;
exitButton->IsActive (false) ;
playButton->IsActive (false) ;
creditsButton->IsActive (false) ;
gameState = GameState::GS_Running;

}

if (creditsButton->IsClicked())

{

creditsButton->IsClicked (false) ;
exitButton->IsActive (false) ;
playButton->IsActive (false) ;
creditsButton->IsActive (false) ;
gameState = GameState::GS_Credits;

[286]

Chapter 11

if (menuButton->IsClicked())

{
menuButton->IsClicked (false) ;
exitButton->IsActive (true) ;
playButton->IsActive (true) ;
menuButton->IsActive (false) ;
switch (gameState)

{

case GameState::GS_ Credits:

{
gameState = GameState::GS_Menu;
}
break;
case GameState::GS_GameOver:
{
StartGame () ;

}
break;
}

}

if (exitButton->IsClicked())

{
playButton->IsClicked(false) ;
exitButton->IsActive (false) ;
playButton->IsActive (false) ;
creditsButton->IsActive (false) ;
PostQuitMessage (0) ;

}

}

break;

}

Yep, we've seen all this before. If you recall, the Input class assigns a command
enum to each button that can be clicked. This code simply processes the command,
if there was any, and sets the state based on which button was just clicked.

We now implement the full Update function to handle our new state machine:

void Update (const float p deltaTime)

{

switch (gameState)

{

case GameState::GS_Splash:
case GameState::GS_Loading:

{

[287]

Heads Up

splashScreen->Update (p_deltaTime) ;
splashDisplayTimer += p deltaTime;

if (splashDisplayTimer > splashDisplayThreshold)
{

gameState = GameState::GS_Menu;

}
}

break;
case GameState::GS_Menu:
{
menuScreen->Update (p_deltaTime) ;
playButton->IsActive (true) ;
creditsButton->IsActive (true) ;
exitButton->IsActive (true) ;
playButton->Update (p _deltaTime) ;
creditsButton->Update (p_deltaTime) ;
exitButton->Update (p_deltaTime) ;
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;
}
break;
case GameState::GS_Credits:
{
creditsScreen->Update (p_deltaTime) ;
menuButton->IsActive (true) ;
menuButton->Update (p_deltaTime) ;
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;
}
break;
case GameState::GS_Running:
{
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;
ship->Update (p_deltaTime) ;
ship->SetVelocity (ship->GetVelocity () + ship->GetVelocity()*p
deltaTime/10.0f) ;
speed = ship->GetVelocity () * 1000;
if (maximumSpeed < speed)
{
maximumSpeed = speed;
}
missionTime = missionTime + p deltaTime * 100.0f;
CheckCollisions () ;

[288]

Chapter 11

if (ship->GetPosition().z > 10.0f)
gameState = GS_GameOver;
menuButton->IsActive (true) ;
gameOverScreen->IsActive (true) ;

}
}

break;

case GameState::GS_GameOver:

{
gameOverScreen->Update (p_deltaTime) ;
replayButton->IsActive (true) ;
replayButton->Update (p_deltaTime) ;
exitButton->IsActive (true) ;
exitButton->Update (p_deltaTime) ;
inputManager->Update (p_deltaTime) ;
ProcessInput (p_deltaTime) ;

}

break;

}

}

Finally, we need to modify the game loop so that it supports all of our new features.
Move to the GameLoop function and modify it so that it looks like the following code:

void GameLoop (const float p deltatTime)

{

if (gameState == GameState::GS_Splash)
{

BuildFont () ;

LoadTextures () ;

gameState = GameState::GS_Loading;

}

Update (p_deltatTime) ;
Render () ;

}

As always, the game loop calls the Update and Render functions. We add a special
case to handle the splash screen. If we are in the GS_Splash game state, we then load
the rest of the resources for the game and change the game state to GS_Loading.

Note that several of the functions referenced previously haven't been created yet! We
will add support for sound, fonts, and textures as we continue.

[289]

Heads Up

Summary

We covered a lot of code in this chapter. The main lesson in this chapter was learning
how to render 2D and 3D at the same time. We then added code to load all of our 2D
resources as sprites. We also added the ability to render text, and now we can see our
score, stats, and credits.

We implemented that state machine for the game and wired that into the input,
update, render, and game loop systems. This included creating states for a splash
screen, loading resources, playing the game, and displaying various game screens.

You now have a complete 3D game. Sure, there is more that you can do with it. In
the next and final chapter, we will learn a few new tricks, then the rest is up to you!

[290]

12

Conquer the Universe

Congratulations! You have come this far. If you are reading this chapter, then you
have already created two games —a 2D game and a 3D game. Sure, they aren't going
to sell and make you a million dollars, but you already completed more games than
90 percent of all people who try.

There is a lot more to learn, and there is no way that we can cover everything in a
single book. This chapter will briefly cover a few more topics and hopefully give you
at least enough information to experiment further after you are done with the book.
In fact, we are going to set up a framework that will allow you to play, so we will call
it the playground.

The topics that we will cover include the following;:

The playground: We will begin by setting up a template that you can use
over and over again as you experiment with different features. This template
will also be a good starting ground for any future games that you may want
to create.

Texture mapping: So far, we worked with color, not textures. It would be
pretty difficult to make realistic games with only color. It turns out that we
can put textures onto our models to make them more realistic. We will learn
the basics of texture mapping on a simple 3D shape.

Lighting: So far, we used the default lighting that was provided by OpenGL.
Most of the time, we want more control over the lighting. We will discuss the
various types of lighting and how they are used.

Skyboxes: The game universe can't go on forever. We often use a device
known as a skybox to surround our game world and make it look like it is
larger than it really is. We will learn how to add a skybox to our space game.

Physics: In the real world, objects bounce, fall, and do other things based on
the laws of physics. We will discuss how objects interact with each other and
the rest of the universe.

[291]

Congquer the Universe

* Al Many games have enemies or weapons seeking to destroy the player.
These enemies are usually controlled by some form of Artificial Intelligence
(AI). We will discuss some simple forms of Al and learn how the game can
control objects in the game.

* Where to go from here: Finally, I'll give you a few tips on how you can
continue to improve your skills once you have completed this book. We'll
talk about game engines and topics for additional study.

A fun framework

Now, it's time to create our playground. Before we start coding, let's decide on the
basic features that we want to set up:

* Visual Studio project

* Windows environment

* OpenGL environment

* Game loop
That's all we are going to do for now. The idea is to set up a basic template that you
can use to start any game or experimental project. We don't want to include too

much in this basic framework, so we will leave out sound, input, sprite, and model
loading for now. These can be added in as they are needed.

Setting up the Visual Studio project

Start a new blank project and name it Funwith3D. Make sure to add the correct
libraries as we have done before in the project Properties, Configuration Properties,
Linker, Input, Additional Dependencies property:

glu32.1lib;opengl32.1ib;SOIL.1lib;

We are going to include the SOIL library because it is so useful to load images. You
will want to copy the following files over from our SpaceRacer3D. cpp project folder:
¢ glut.h
® glut32.1lib
e glut32.dll

® SOIL.h
® SOIL.1lib

[292]

Chapter 12

Add the following libraries to Properties, Configuration Properties, Input, and
Additional Dependencies:

e glut32.1lib
e SOIL.lib

Setting up the Windows environment

Create a new C++ file and name it FunwWith3D. cpp. Then add the following code:

#include <windows.h>
#include <stdio.hs>
#include "glut.h"
#include "SOIL.h"

const int screenWidth = 1024;
const int screenHeight = 768;

// Global Variables:
HINSTANCE hInstance = NULL;
HDC hDC = NULL;

HGLRC hRC = NULL;

HWND hWnd = NULL;

bool fullscreen = false;

// Forward declarations of functions included in this code module:
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

Now, open spaceRacer3D. cpp from the previous project and copy the following
functions:

®* WinMain

®* WndProc

These are the header files and two functions that are required for Windows to do its
stuff. All of this code has been explained in previous chapters, so I'm not going to
re-explain it here. In fact, you could save yourself some typing and copy this code
directly from our previous project.

[293]

Congquer the Universe

Setting up the OpenGL environment

Now, it is time to set up OpenGL. Copy the following function from SpaceRacer3D
and add them after the wndproc declaration:

® ReSizeGLScene

d InitGL
®* KillGLWindow

® (CreateGLWindow

Setting up the game loop

Now, we add the function that defines our game loop. Add these functions after the
OpenGL code that you just added:

void StartGame ()

{
}
void Update (const float p deltaTime)
{
}

void Enable2D()

{
glColor3f(1.0f, 1.0f, 1.0f);
glEnable (GL_TEXTURE_2D) ;

glMatrixMode (GL_PROJECTION) ;

glPushMatrix() ;

glLoadIdentity () ;

glOrtho (0, screenWidth, screenHeight, 0, 0, 1);

glMatrixMode (GL_MODELVIEW) ;
glPushMatrix() ;
glLoadIdentity () ;

glPushAttrib (GL_DEPTH BUFFER BIT) ;
glDisable (GL_DEPTH_TEST) ;

}

void Disable2D()

{

glPopAttrib () ;

glMatrixMode (GL_PROJECTION) ;
glPopMatrix () ;

[294]

Chapter 12

glMatrixMode (GL_MODELVIEW) ;
glPopMatrix () ;

glDisable (GL_TEXTURE_2D) ;

}

void Render2D ()

{

Enable2D() ;
//Add your 2D rendering here
Disable2D() ;

}

void Render3D()

{
}

void Render ()

{

//Add your 3D rendering here

glClear (GL_COLOR_BUFFER BIT | GL_DEPTH BUFFER BIT) ;
Render3D() ;

Render2D () ;

SwapBuffers (hDC) ;

}

void EndGame ()

{
}

void GameLoop (const float p deltatTime)

{

Update (p_deltatTime) ;
Render () ;

}

In order to be consistent with some other code that we have written, you need to
add the following precompile directives in the project Properties, Configuration
Properties, C/C++, Preprocessor, and Preprocessor Definitions property:

* USE_MATH DEFINES
* CRT SECURE NO WARNINGS

Congratulations! You now have a framework that you can use for any future projects
and experiments. You have also just successfully reviewed the OpenGL and game
code that we have been working with throughout the entire book.

[295]

Congquer the Universe

You will notice that I also left the code in so that you will be able render in either
3D or 2D! All together, you now have a small yet effective start for your own game
engine. I suggest that you save a copy of the folder containing this solution and
project. Then, when you are ready to start a new project, you can simply copy the
solution folder, give it another name, and you are ready to go. We are going to use
this as the basis for any code that we write in this chapter.

To save space and keep our little playground simple, I did
. not include some key features, such as input, sprites, models,
~ and sound. If you feel that any of these are essential to your
Q playground, then this will be your first exercise. In general,
you will have to simply copy the relevant files and/or code
into your project folder from the last version of SpaceRacer3D.

Texture mapping

Until now, all of our shapes and models used color, but a whole new world awaits us
when we start applying textures to our models. Adding a 2D texture to a 3D model is
known as texture mapping, or in some cases texture wrapping. Let's see what it takes
to add a little texture to our 3D models. We are going to start with a simple cube.

First, use your favorite image editing software to create a 256 x 256 pixel square and
give it some kind of texture. I will be using the following one:

Save this texture as a bitmap (BMP). We are going to use bitmaps, as opposed to PNGs,
for texture mapping because the internal data structure of a bitmap happens to coincide
with the data structure that is expected by OpenGL. In other words, it is easier!

I always create a folder called resources for my images. It is also a good idea to include
these as resources in the Visual Studio project (right-click on the Resources folder in
the Solution Explorer panel and choose Add Existing..., then navigate to the image).

[296]

Chapter 12

Loading the texture

If you recall, we created a sprite class for our previous projects. We use the
AddTexture method of the sprite class to make a call to the SOIL library to load
the image. We won't be using the sprite class for these textures. The sprite class
has a lot of methods and properties that don't apply to texturing 3D models, so
we are going to write our own texture loader for this use. Add the following code
somewhere above render functions:

void LoadTexture (const char* filepath, GLsizei height, GLsizei width,
unsigned int colordepth, GLuint &texture)

{
unsigned char* data;
FILE* file;

file
data = (unsigned char*)malloc(width * height * colordepth) ;
fread(data, width * height * colordepth, 1, file);
fclose(file) ;

fopen (filepath, "xr");

texture = SOIL load OGL_ texture(filepath, SOIL_ LOAD AUTO, SOIL_
CREATE_NEW ID, 0);
glBindTexture (GL TEXTURE 2D, texture);

glTexImage2D (GL TEXTURE 2D, 0, colordepth == 3 ? GL RGB:GL RGBA,
width, height, 0, colordepth == 3 ? GL_RGB:GL_RGBA, GL_UNSIGNED BYTE,
data) ;

ngexParameteri(GL_TEXTURE_2D, GL _TEXTURE MIN FILTER, GL_LINEAR);
ngexParameteri(GL_TEXTURE_2D, GL _TEXTURE MAG FILTER, GL_LINEAR);
free (data) ;

}

The purpose of LoadTexture is to load a texture into memory, and then set it up

to be a texture map for a 3D object. In order to accomplish this, we actually need to
load the texture twice. First, we directly open the file and read it as a binary file into
a buffer called data. We use the char datatype because we want to store the binary
data as unsigned integers and char does a really great job of this. So, our first few
lines of code:

* Define the data array

* Create a file handle

* Allocate memory for the data

* Read the file into the data buffer
* Close the file (but not the buffer)

[297]

Congquer the Universe

Now, read the image a second time, though this time we use the SOIL library to
read it as an OpenGL texture and use SOIL to load the texture and assign it to the
OpenGL referenced by texture.

Then, we perform some fancy OpenGL operations on it to set it up as a model texture:
* GL_BindTexture simply tells OpenGL that we want this texture to be the

current texture, to which we will apply the settings that follow.

* glTexImage2D tells OpenGL how to interpret the data that we have read in.
We are telling OpenGL to treat the data as a 2D texture of the type RGB or
RGBA (controlled by the colordepth parameter), and that the data is stored
as unsigned integers (thus, the char data type).

* The next two functions, both calls to glTexParameteri, tell OpenGL how to
handle the texture as it gets nearer to or farther away from the camera. They
are both set up to use linear filtering to handle this level of detail.

* Finally, we close the data buffer as it is no longer needed.

We have set the LoadTexture function up so that you can call it for different textures
based on your needs. In our case, we are first going to set up a handle to this texture.
At the top of the code, add this line to the global variables section:

GLuint texMarble;
Next, we will place the call to load the texture in the StartGame function:
LoadTexture ("resources/marble.bmp", 256, 256, 4, texMarble) ;
This call tells the program:

* The location of the file

* The width and height of the image

* The color depth of the image (in this case 4 = RGBA)
* The OpenGL texture handle

Rendering the cube

We are all set up now with a texture, but we need a model to texture. To keep things
simple, we are going to use quads to create a cube and apply the marble texture to
each face of the cube.

[298]

Chapter 12

Just before we get started, we need to add three variables to track rotation. Add these

lines to the global variables section:

float xrot = 1.0f;
float yrot = 1.0f;
float zrot = 1.0f;

Now, create the following function just below the LoadTexture function:

int DrawTexturedCube (GLvoid)

{
glEnable (GL_TEXTURE 2D) ;
glLoadIdentity () ;
glTranslatef (0.0£f, O.
glRotatef (xrot, 1.0f,
glRotatef (yrot, 0.0f,
glRotatef (zrot, 0.0f,

glBindTexture (GL TEXTURE 2D,

glBegin (GL_QUADS) ;
// Font Face
glTexCoord2f
glTexCoord2f
glTexCoord2f
glTexCoord2f
// Back Face
glTexCoord2f
glTexCoord2f
glTexCoord2f
glTexCoord2f
// Top Face
glTexCoord2f
glTexCoord2f
glTexCoord2f
glTexCoord2f (1.
// Bottom Face
glTexCoord2f (1.
glTexCoord2f (0.
glTexCoord2f (0.
glTexCoord2f (1.
// Right face

glTexCoord2f (1.

.0f,
.0f,
.0f,
.0f,

P P O O

1.0f,
1.0f,
0.0f,
0.0f,

o B B O

(
(
(
(

(0.0f,
(0.0f,
(1.0f,
0of,

P O o Br

0of,
0of,
0of,
0of,

o o - B

0of,

0f, -5.0f);

0.0f, 0.0f);
1.0f, 0.0f);
0.0f, 1.0f);

texMarble) ;

glVertex3f (-1.0f,
glVertex3f (1.0f,
glVertex3f (1.0f,

(
(
(
glvVertex3f(-1.0f,

glvVertex3f(-1.0f,

glvVertex3f(-1.0f,

glvertex3f (1.0f,
(

glVertex3f (1.0f,

glvVertex3f (-1.0f,

glvVertex3f(-1.0f,

glvertex3f (1.0f,
(

glVertex3f (1.0f,

glvVertex3f(-1.0f,
glvertex3f (1.0f,
glvertex3f (1.0f,
glvVertex3f(-1.0f,

glvertex3f (1.0f,

-1.0f, 1.0f);
-1.0f, 1.0f);
1.0f, 1.0f);

1.0f, 1.0f);

-1.0f, -1.0f);

1.0f, -1.0f);
1.0f, -1.0f);
-1.0f, -1.0f);

1.0f, -1.0f);

1.0f, 1.0f);
1.0f, 1.0f);
1.0f, -1.0f);

-1.0f, -1.0f);
-1.0f, -1.0f);
-1.0f, 1.0f);

-1.0f, 1.0f);
-1.0f, -1.0f);

[299]

Congquer the Universe

}

glTexCoord2f (1.0£f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f);
glTexCoord2f (0.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f);

glTexCoord2f (0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);
// Left Face

glTexCoord2f (0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f);
glTexCoord2f (1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
glTexCoord2f (1.0£f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
glTexCoord2f (0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);
glEnd () ;

xrot += 0.01f;
yrot += 0.02f;
zrot += 0.03f;
return TRUE;

This code is very similar to the code that we used to draw a cube in a previous
chapter. However, when we drew that cube, we applied color to each vertex. Now,
we will apply our texture to each face. First, we set things up:

1.

The first thing that we do is use glEnable (GL_TEXTURE_2D) to enable 2D
textures. In our initial setup, we disabled 2D textures. If we did not enable
them here, then our texture would not show up!

Next, we use glLoadIdentity () to initialize the current matrix.

We call glTranslatef (0.0f, 0.0f, -5.0f) to move the camera back (so
that we will be outside the cube).

Three calls to glRotate3f will rotate the cube for us.

Then, we use glBindTexture (GL_TEXTURE 2D, texMarble) to inform
OpenGL that for the next draw operations we will be using the texture
referenced by texMarble.

With this setup completed, we are ready to get drawing;:

1.

We start with glBegin (GL_QUADS) to tell OpenGL that we will be
drawing quads.

Now, each call comes in a pair. First a call to glTexCoord2f is followed by a
call to glvertex3£. The call to glTexCoord2f tells OpenGL which part of the
texture to put at the location specified by glvertex3£. In this way, we can
map any point in the texture to any point in the quad. OpenGL takes care of
figuring out which parts of the texture go between vertices.

When we are done drawing the cube, we issue the g1End () command.

The last three lines update the rotation variables.

[300]

Chapter 12

5. Finally, we have to make a call to DrawTexturedCube in the Render3D
function:

DrawTexturedCube () ;

6. Run the program and see the cube in its textured glory!

Mapping operations
I owe you a little more explanation as to how texture mapping works. Take a look at
these four lines of code from DrawTexturedCube:

glTexCoord2f (0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
glTexCoord2f (1.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);
glTexCoord2f (1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f);
glTexCoord2f (0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);

These four lines define one quad. Each vertex consists of a texture coordinate
(9lTexCoord2f) and a vertex coordinate (glvertex3f). When OpenGL looks at a
texture, here is what it sees:

0,0

0,1

[301]

Congquer the Universe

No matter how big a texture is in pixels, in texture coordinates, the texture is exactly
one unit wide and one unit tall. So, the first line of the preceding code tells OpenGL
to take the point (0,0) of the texture (the upper-left corner) and map it to the next
vertex that is defined (which is the upper-left hand corner of the quad, in this
example). You will notice that the third line maps the coordinate (1,1) of the texture
to the lower-right corner of the quad. In effect, we are stretching the texture across
the face of the quad! However, OpenGL also adapts the mapping so that the texture
doesn't look smeared, so this isn't exactly what happens. Instead, you will see some
tiling in our case.

Let there be light!

Until this point, we haven't worried about lighting. In fact, we just assumed that
light would be there so that we could see our images. OpenGL has a light setting that
lights everything equally. This setting is turned on, by default, until we tell OpenGL
that we would like to handle the lighting.

Imagine what our scene would look like if there was no lighting. In fact, this is going
to happen to you some day. You will have everything set up and ready to roll, you'll
run the program, and you'll get a big, black, nothing! What's wrong? You forgot to
turn on the lights! Just as shown in the following image:

]

R

Just like real life, if you don't have a source of light, you aren't going to see anything.
OpenGL has many types of lights. One common light is ambient light. Ambient light
appears to come from all directions at the same time, similarly to how sunlight fills
up a room.

[302]

Chapter 12

Lighting is very important in 3D games, and most games have multiple light sources
to add realism to the game.

Defining a light source

Let's take over and define our own light source. Add the following lines of code to
the top of the DrawTexturedCube function:

glEnable (GL_LIGHTING) ;

GLfloat ambientLight[] = { 0.0f, 0.0f, 1.0f, 1.0f };
glLightModelfv (GL_LIGHT MODEL AMBIENT, ambientLight) ;
glEnable (GL_COLOR MATERIAL) ;

glColorMaterial (GL_FRONT, GL_AMBIENT) ;

Run the program, then come back to see what is happening:

glEnable (GL_LIGHTING) tells OpenGL that we want to take control of
the lighting now. Remember: once you enable lighting, it's up to you. In
fact, if you enable lighting and don't define any lights, then you will get a
completely black scene.

Next, we define a color for our light. In this case, we are creating a blue light.

Now we tell OpenGL what type of lighting we would like to use with
glLightModel£v. In this case, we are turning on a blue, ambient light.

Light has to have a material to reflect from. So, we use glEnable (GL_COLOR_
MATERIAL) to tell OpenGL to use a material that will reflect color.

The call to glColorMaterial (GL_FRONT, GL_AMBIENT) tells OpenGL
that the front of this material should reflect light as if it was ambient light.
Remember, ambient light comes from all directions.

[303]

Congquer the Universe

Of course, you have already seen the result. Our cube is blue! Play around with different
colors. We only have time to barely scratch the surface on lighting. You will also want to
learn about diffuse lighting. Diffuse lights fade with distance. With a diffuse light, you
not only set up the color, but you also place the light at a certain location.

The skybox

While space may be infinite, your computer isn't so there has to be a boundary
somewhere. This boundary is called the skybox.

Imagine that our spaceship is flying through space! Space is big. While we may put
some planets and asteroids in our universe to give the space ship something to interact
with, we certainly won't model every star. Here is what our universe looks like:

‘-1/

|

This is pretty empty, right? You probably already noticed this in our game,
SpaceRacer3D. Of course, we could add some more objects of our own—more asteroids,
add a bunch of stars—and in a real game, we would. But, there is always a limit to how
many objects you can add to the game before you start having performance issues.

For the really distant objects, such as distant stars, we fake it by using 2D textures.
For example, our game could use a texture of stars to imitate the stars and nebula in
space, as shown in the following image:

[304]

Chapter 12

Now, as a cube has six sides, what we really want is six textures. A typical skybox
looks similar to the following image:

It doesn't take too much imagination to see how this texture can be wrapped around
the cube and cover all size sides. This creates an image that covers all of the space
encapsulated by the skybox and gives the illusion of being surrounded by stars and
nebula, as shown in the following image:

[305]

Congquer the Universe

The following illustration shows the skybox in relation to the texture that will be
applied to it from another perspective:

The cube containing the ship and asteroid represents the game world. The ship and
asteroid are real objects in that world. The image on the left is a texture that contains
the stars.

Now, imagine the star texture being wrapped around the cube, and there is your
whole universe composed of the stars, the ship, and the asteroid. The star texture
wrapped around the cube is the skybox.

Advanced topics

Unfortunately, for the last two topics, we only have time to give them an honorable
mention. I included them because you are going to hear about these topics, and you
need to know what these terms mean.

Game physics
Game physics are the rules that define how objects interact with other objects inside
the game universe. For example, in SpaceRacer3D, the ship simply passes through
the asteroids. However, there could be many other outcomes:

* The ship and asteroid could bounce off of each other (rebound)

* The ship could be sucked into the asteroid with the force increasing as the
ship got closer (gravity)

* The asteroid could push against the ship the closer the ship got to it
(reverse gravity)

[306]

Chapter 12

Each of these effects would be programmed into the game. Each of these effects
would also create a different kind of gameplay. An entire genre of games known as
physics-based games simply define the laws of physics for a game universe and then
let things interact to see what will happen.

Al

Al or artificial intelligence, is another set of rules that defines how characters or
objects that are controlled by the compute behave. Al is typically applied to enemies
and other Non-player Characters (NPCs) to give them a life-like appearance in the
game. Some examples of Al include:

* A mine that automatically detects that the enemy is close and blows up

* A homing missile that locks onto a space ship and draws closer no matter
how the ship navigates

* Anenemy character who detects that the player coming and hides behind a
rock

Al is typically considered one of the most difficult areas of game programming. Some
algorithms are quite easy (for example, the homing missile only needs the ships
position to know how to track it), while others are very complex (for example, hiding
behind a rock). Some games even provide an Al opponent for you to play against.

The future

You have, indeed, come a long way. If you are reading these words, and especially
if you wrote all of the code along the way, then you have achieved a great
accomplishment, but there is still so much to learn. I encourage you to find other
books and never stop learning. The only thing that will stop you from becoming a
great game programmer is you!

Summary

As always, we covered a lot of topics in this chapter. You learned how to map a
texture onto an object, then you learned how to turn the lights on. You learned how

a skybox can be used to make your world seem larger than it is. And you got just a
taste of physics and Al, topics which could easily fill entire books on their own. Don't
stop until you have got every piece of code in this book to work for you, and then
start changing the code to different and amazing things.

Good luck!

[307]

Symbols

2D, in 3D world
interface, creating 268, 269
pop 269-273
push 269-273
state, rendering 273-276
state, saving 269
3D Coordinate Systems 194-196
3D game
creating 202
OpenGL files, retrieving 204
project, creating 202, 203
projects, linking to OpenGL libraries 204
3D model 194
3D object
creating 231
creating, with Blender 231
exporting 235
loading 236-239
spaceship, building 232-235
3D space
working on 220
_tWinMain function 11

A

alpha channel 48

ambient light 302

anatomy, _tmain function
glutCreateWindow/() function 24
glutDisplayFunc() function 24
glutlnitWindowPosition() function 24
glutlnitWindowSize() function 24
glutMainLoop() function 24
initGL() function 24

Index

return 0 function 25

animation
about 45
background, scrolling 76, 77
character movement, implementing 73
delta time, calculating 74, 75
delta time, using 73, 74
implementing 71
texture, flipping 75, 76
update, adding to game loop 71
Update function, implementing 71, 72
Update function, implementing in

Sprite class 72,73

artificial intelligence (AI) 307

asteroid slalom
collision detection, setting up 261-263
collision, implementing 264, 265
implementing 261

atlas
about 45
using 77

Audacity 170

audio
about 168
file formats 168, 169
releasing 190
sounds, creating 169, 170

B

Blender
about 33, 231
installing 231
overview 232
URL 231

[309]

boundary checking
about 106
anchor point, determining 106-109
background, defining 115,116
collision rectangle, defining 110-112
embedding 113-115

C

callback function 82
camera
about 196
controlling 196
fixed camera, using 197
viewport 197, 198
Central Processing Unit (CPU) 14
circular collision detection
advantages 124, 125
coding 122-124
implementing 120
Pythagorean Theorem, using 121, 122
wiring 125,126
cleanup, of resources
about 188
audio, releasing 190
fonts, releasing 190
input, releasing 189
sprites, releasing 188, 189
code
header files 23
main entry point 24
points, drawing 25, 26
update function 25
collideables
about 116
score, creating 116
spawn timer, setting 117-120
sprite, adding for pickup 117
column major order 201
composite 43
coordinate system 19
Cozendey
URL 170
credits screen
adding 151
betting back, to main menu 152, 153
creating 151, 152

D

delta time

calculating 74,75
using 73

development environment

about 1,2
project, starting with 6, 7
Visual Studio 3

DirectX

about 14
versus OpenGL 201

drawPoints function 25

E

embedding 109
EndGame function 13
event driven operating system 82

F

FILO stack 271
fixed camera

using 197

flipbook animation 46
flipping, texture 75, 76
FMOD

.dll files, accessing 172

about 171

channel priority 178,179
header files, including 175, 176
initializing 177

linking, to library 172-175
URL 171

virtual channels 178

fonts

creating 154

font support, implementing 156, 157
releasing 190

text, drawing 155, 156

working with 154

framed animation 47
frames per second (fps) 9

[310]

G

game
plotting 20
game engine 8
game level
defining 159
game, continuing 161, 162
game progression, adding 158
game stats, displaying 160, 161
implementing 157
next level screen, implementing 161
score, displaying 157
game loop
about 7
setting up 294-296
GameLoop function 13
game objects, SpaceRacer3D
loading 243
Model class header, creating 244-246
Model class, implementing 246-253
game over screen
adding 162
creating 163
game, replaying 164, 165
game physics 306
game state
defining 134
input function 139
new state, defining 139
render function 139
splash screen, loading 278, 280
state machine 135
state machine, adding 277
state, planning 137, 138
update function 139
game structure
about 7,8
creating 9-11
game loop 8
initialization 8
port of access 11
shutdown 9
Windows message loop 11-13
GIMP
URL 47
glEnd() function 26

glPopMatrix() command 269
glPushMarix() command 269
Gluelt

URL 60
GLUT files

URL, for download 23
graphical user interface

about 95

button, creating 95

buttons, adding 99, 100

buttons, pushing 98, 99

Input class, enhancing 95, 96

Ul element, checking 97

Ul elements, adding 96, 97
graphics bus

about 222

clipping 222

Graphics Processing Unit 222

lighting 222

primitives 222

projection 222

rasterization 222

shading 223

transformation 222
graphics card

processing 220-223

structure 221

Graphics Processing Unit (GPU) 9, 14

H

header files, code
glut.h 23
stdafx.h 23

windows.h 23

identity matrix 202

initGL function 23

input
about 79, 80
adding, to game loop 90
implementing 82
Input class, creating 86, 87
Input class, implementing 89, 90
keyboard input 80
keyboard inputs, handling 85

[311]

message queue, handling 84, 85

mouse, handling 85

mouse, using 80

other inputs 81

processing 91-93

querying 88

releasing 189

Sprite class, modifying 94

touch 81

virtual key codes 87, 88

WndProc event listener, using 82-84

Integrated Development Environments

(IDEs) 1

K

keyboard input 80

L

LAME
URL 171
left-hand coordinate system 196
lights
light source, defining 303
setting up 302, 303
line
Gl_Line_Loop 227
Gl_Lines 226
Gl_Line_Strip 226
lossless compression algorithm 48

matrix
about 199
identity matrix 202
vectors 199, 200
vectors, combining 200, 201
Maya 33
menu
adding 147
buttons, defining 148-151
creating 147, 148
mouse
using 80
music

adding 187

N

Non-player Characters (NPCs) 307
non-sprites
versus sprites 46

(0

OpenGL
about 13,14
adding, to project 15
coordinate system 20
DirectX 14
downloading 14
environment, setting up 294
files, retrieving 204
initializing 23
libraries, linking to projects 204
linking to 15-17
matrices 209
overview 13
URL 14
versus DirectX 201
OpenGL coordinate system
about 20
code, using 23
point, creating 21, 22
point, stretching 27, 28
program, running 26, 27
OpenGL window
creating 211-215
event handler, creating 215, 216
function, creating 207
game, executing 217
Game loop, adding 216
global variables, defining 206
header files, including 206
initializing 209, 210
removing 210, 211
setting up 205, 206
sizing 207-209
orthographic projection 208

P

parallax 193
perspective 192
perspective projection 208

[312]

pickups 116
playground
creating 292
game loop, setting up 294, 296
OpenGL environment, setting up 294
Visual Studio project, setting up 292, 293
Windows environment, setting up 293
PNGs 47,49
point
creating 226
Gl_Points 226
point sprites 226
pop
using 269-273
powerups 116
primitives
about 19, 29
drawing 224, 225
example 30-32
geodesic dome 29, 30
line 223, 226
point 223
point, creating 226
quad 224, 229
triangle 223, 227
triangles, converting to models 32
project 15
push
using 269-273
Pythagorean Theorem
using 121, 122

Q

quad
about 36, 229
coding 37, 38
GIl_Quads 229
Gl_Quad_Strip 229

R

real 3D 193,194

rectangular collision detection
coding 130-132
enemy, creating 127
enemy, spawning 127-129
implementing 127

wiring 132
rendering
about 65, 223
GetCurrentFrame function,
implementing 70
render, adding to game loop 65
Render function, implementing 66
Render function, implementing in
Sprite class 67, 68
UV mapping 69
rendering library 8
render process 8
right-hand coordinate system 196
row major order 201

S

score
displaying 157, 158
Simple OpenGL Image Library (SOIL)
about 49
advantages 49
image file, opening 51
linking 50, 51
SOIL header file, including 51
URL 49
skybox
defining 304-306
solution 15
sound effects
adding 180
need for 179
setting up 180-182
sounds, playing 182-184
used, for Ul feedback 185-187
SpaceRacer3D
game code, modifying 253-256
game code, reusing 258
game objects, loading 243
input, implementing 258-261
loading 241
project, preparing 242
splash screen
adding 143
creating 143
defining 144, 145
loading 278, 280

[313]

resources, loading 145, 147
sprites

about 45

creating 47

flipbook animation 46

framed animation 47

frames, creating 58

frames, saving 59

loading 61-64

loading, from individual textures 59

PNGs 47-49
releasing 188, 189
sprite class, creating 52-58
sprite sheet, creating 60
sprite sheet, loading 61
versus non-sprites 46
sprite sheet 45
stack 270
StartGame function 12
state machine
about 135
adding 277
advantages 135-137
implementing 139-143
state management
about 100
game, pausing 101-104
state manager, creating 101

T

Texture Atlas Generator
URL 77
texture mapping
about 296
cube, rendering 298-300
performing 301, 302
texture, loading 297, 298
textures
about 19, 33
flipping 75, 76
loading 38, 39
quad 36
quad, coding 37, 38
quad, creating 42
reference (pivot point) 35, 36
rendering 38

used, for filling triangles 33-35
wrapping 39-41
texture wrapping. See texture mapping
three dimension (3D)
3D Coordinate Systems 194-196
implementing 191, 192
real 3D 193, 194
simulating 192, 193
TinyXML
URL 78
touch 81
transformations 201
translation matrix 200
triangle
about 227
GIl_Triangle_Fan 228
Gl_Triangles 228
GI_Triangle_Strip 228

U

UI feedback
sound effects, used 185-187
Unity Asset Store
about 170
URL 170
user interface
creating 280
GameLoop function, implementing 285-289
Render function, implementing 285-289
text system, defining 281-283
textures, defining 283-285
Update function, implementing 285-289
UV mapping 69

\'

vanishing point 192
vectors

about 199, 200

combining 200, 201
velocity property 73
viewport 197,198
virtual channels

about 178

priority 178,179
virtual key codes 87, 88

[314]

Visual Studio W

about 2,3

code window 5 weapons

options 2 drawing 223

output window 6 face, saving 229

project, setting up 292, 293 primitives 223

Solution Explorer panel 4 pyramid, creating 230

Standard Toolbar panel 4 Windows environment

start screen 3 setting up 293

URL 1 Windows Message (WM) 83
Visual Studio 2013 Express for Windows

Desktop 2

Visual Studio Express 1

[315]

open source

community experience distilled

PUBLISHING

Thank you for buying
OpenGL Game Development By
Example

About Packt Publishing

Packt, pronounced 'packed’, published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

open source

community experience distilled

PUBLISHING

OpenGL Development
Cookbook

Muhammad Mobeen Movania []

waniibag

OpenGL Development Cookbook

ISBN: 978-1-84969-504-6 Paperback: 326 pages

Over 40 recipes to help you learn, understand, and
implement modern OpenGL in your applications

1. Explores current graphics programming
techniques including GPU-based methods
from the outlook of modern OpenGL 3.3.

2. Includes GPU-based volume rendering
algorithms.

3. Discover how to employ GPU-based path
and ray tracing.

4. Create 3D mesh formats and skeletal animation
with GPU skinning.

Building Android

Games with OpenGL ES

Amerigo Moscaroli

— | PACKT]

Building Android Games with

OpenGL ES [Video]

ISBN: 978-1-78328-613-3 Duration: 01:42 hours

A comprehensive course exploring the creation of
beautiful games with OpenGL ES

1. Create captivating games through creating
simple and effective codes in Java.

2. Develop a version of the classic game Breakout
and see how to monetize it.

3. Step-by-step instructions and theoretical
concepts describe each activity before you
implement them.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

OpenGL 4 Shading
Language Cookbook

Second Edition

OpenGL 4 Shading Language
Cookbook

Second Edition
ISBN: 978-1-78216-702-0 Paperback: 394 pages

Over 70 recipes demonstrating simple and advanced
techniques for producing high-quality, real-time 3D
graphics using OpenGL and GLSL 4.x

1. Discover simple and advanced techniques
for leveraging modern OpenGL and GLSL.

2. Learn how to use the newest features of GLSL
including compute shaders, geometry, and
tessellation shaders.

3. Get to grips with a wide range of techniques
for implementing shadows using shadow
maps, shadow volumes, and more.

Learning Game Physics with
Bullet Physics and OpenGL

Learning Game Physics with

Bullet Physics and OpenGL
ISBN: 978-1-78328-187-9 Paperback: 126 pages

Practical 3D physics simulation experience with
modern feature-rich graphics and physics APIs

1. Create your own physics simulations and
understand the various design concepts of
modern games.

2. Build a real-time complete game application,
implementing 3D graphics and physics entirely
from scratch.

3. Learn the fundamental and advanced concepts
of game programming using step-by-step
instructions and examples.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building the Foundation
	Introducing the development environment
	A quick look at Visual Studio
	Start screen
	The Solution Explorer panel
	The Standard Toolbar panel
	The code window
	The output window

	Starting your project

	The game loop
	The game structure
	Initialization
	The game loop
	Shutdown

	Creating the game structure
	Port of access
	The Windows message loop

	Introducing OpenGL
	What is OpenGL?
	The other GL
	Downloading OpenGL
	Adding OpenGL to the project
	Linking to the OpenGL library

	Summary

	Chapter 2: Your Point of View
	Plotting your revenge
	The OpenGL coordinate system
	Making your point
	Understanding the code
	Running the program
	Stretching your point

	Getting primitive
	A triangle by any other name
	A primitive example
	From triangles to models

	Introducing textures
	Using textures to fill the triangles
	A matter of reference
	Hanging out in the quad
	Coding the quad

	Rendering a texture
	Loading the texture
	Texture wrapping
	Creating a textured quad

	Putting the pieces together
	Summary

	Chapter 3: A Matter of Character
	Spritely speaking
	Sprites versus non-sprites
	Flipbook animation
	Framed animation

	Creating sprites
	Working with PNGs
	Linking to the SOIL library
	Including the SOIL header file
	Opening an image file

	Coding a sprite class
	Creating sprite frames
	Saving each frame
	Loading a sprite from individual textures
	Creating a sprite sheet
	Loading a sprite sheet
	Loading our sprites

	Rendering
	Adding a render to the game loop
	Implementing the main Render function
	Implementing Render in the Sprite class
	UV mapping
	One more detail

	A moving example
	Adding update to the game loop
	Implementing the main Update call
	Implementing Update in the Sprite class
	Character movement
	Using delta time
	Calculating delta time
	Flipping
	Scrolling the background

	Using an atlas
	Summary

	Chapter 4: Control Freak
	A penny for your input
	The keyboard input
	Using the mouse
	Touch
	Other inputs

	Someone is listening
	The WndProc event listener
	Handling the message queue
	Handling mouse and keyboard inputs
	Creating the Input class
	Virtual key codes
	Querying for input
	Implementing the Input class
	Adding input to the game loop
	Processing our input
	Changes to the Sprite class

	Graphical User Interface
	Creating a button
	Enhancing the Input class
	Adding UI elements to the list
	Checking each UI element
	Pushing your buttons
	Adding our pauseButton

	State management
	Creating a state manager
	Pausing the game

	Summary

	Chapter 5: Hit and Run
	Out of bounds!
	Getting anchored
	Collision rectangles
	Embedding
	Fixing the background

	Collideables
	Ready to score
	A friend indeed
	Time to spawn

	Circular collision detection
	The Pythagorean Theorem
	Adding the circular collision code
	Why use circular collision detection?
	Wiring in the collision detection

	Rectangular collision detection
	The enemy within
	Spawning the enemy
	Adding the rectangular collision code
	Wiring continued

	Summary

	Chapter 6: Polishing the Silver
	The state of the game
	State machines
	Why do we need a state machine?
	Planning for state
	Defining the new state
	Implementing the state machine

	Making a splash
	Creating the splash screen
	Defining the splash screen
	Loading our resources

	What's on the menu?
	Creating the menu
	Defining the menu buttons

	Getting some credit
	Creating the credits screen
	Getting back to the main menu

	Working with fonts
	Creating the font
	Drawing text
	Wiring in the font support

	Level up!
	Displaying the score
	Game progression
	Defining game levels
	Game stats
	The next level screen
	Continuing the game

	Game over
	The game over screen
	Replaying the game

	Summary

	Chapter 7: Audio Adrenaline
	Bits and bytes
	A sound by any other name
	Making noise

	Revving up your engine
	Accessing the FMOD .dll file
	Linking to the library
	Point to the include files

	Initializing FMOD
	Virtual channels
	Channel priority

	Bleeps and bloops
	Sound effects
	Setting up the sounds
	Playing sounds

	UI feedback

	The sound of music
	Cleaning up the house
	Release sprites
	Release input
	Releasing fonts
	Releasing audio

	Summary

	Chapter 8: Expanding Your Horizons
	Into the third dimension!
	Simulating 3D
	Real 3D
	3D Coordinate Systems

	The camera
	Remember those home movies?
	Steady as she goes!
	The viewport

	Entering the matrix
	Vectors
	Combining vectors
	Identity matrix

	Coding in 3D
	Creating the project
	Retrieving OpenGL files
	Linking projects to OpenGL libraries

	Setting up the OpenGL window
	Including header files
	Defining global variables
	Creating a function to create the OpenGL window
	Sizing the OpenGL window
	Initializing the OpenGL window
	Creating a function to remove the OpenGL window
	Creating the OpenGL window
	Creating the Windows event handler
	The Game loop
	The finale

	Summary

	Chapter 9: Super Models
	New Space
	A computer in a computer
	Drawing your weapons
	Getting primitive
	Drawing primitives
	Making your point
	Gl_Points

	Getting in line
	Gl_Lines
	Gl_Line_Strip
	Gl_Line_Loop

	Triangulation
	Gl_Triangles
	Gl_Triangle_Strip
	Gl_Triangle_Fan

	Being square
	Gl_Quads
	Gl_Quad_Strip

	Saving face
	Back to Egypt

	A modeling career
	Blending in
	Blender overview
	Building your spaceship
	Exporting the object
	Getting loaded

	Summary

	Chapter 10: Expanding Space
	Creation 101
	Preparing the project
	Loading game objects
	The Model class header
	Implementing the Model class
	Modifying the game code

	Taking control
	Implementing input

	Asteroid slalom
	Setting up collision detection
	Turning on collision

	Summary

	Chapter 11: Heads Up
	Mixing things up
	The saving state
	Push and pop
	Two state rendering

	A matter of state
	Adding the state machine
	Getting ready for a splash

	Creating the user interface
	Defining the text system
	Defining textures
	Wiring in render, update, and the game loop

	Summary

	Chapter 12: Conquer the Universe
	A fun framework
	Setting up the Visual Studio project
	Setting up the Windows environment
	Setting up the OpenGL environment
	Setting up the game loop

	Texture mapping
	Loading the texture
	Rendering the cube
	Mapping operations

	Let there be light!
	Defining a light source

	The skybox
	Advanced topics
	Game physics
	AI

	The future
	Summary

	Index

