Quick answers to common problems

OpenGL Development
Cookbook

Over 40 recipes to help you learn, understand, and implement
modern OpenGL in your applications

Muhammad Mobeen Movania

www.it-ebooks.info

http://www.it-ebooks.info/

OpenGL Development
Cookbook

Over 40 recipes to help you learn, understand, and
implement modern OpenGL in your applications

Muhammad Mobeen Movania

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

OpenGL Development Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2013
Production Reference: 1180613

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84969-504-6

www . packtpub.com

Cover Image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author

Muhammad Mobeen Movania

Reviewers
Bastien Berthe

Dimitrios Christopoulos

Oscar Ripolles Mateu

Acquisition Editor
Erol Staveley

Commisioning Editor
Shreerang Deshpande

Lead Technical Editor
Madhuja Chaudhari

Technical Editors
Jeeten Handu

Sharvari H. Baet
Ankita R. Meshram

Priyanka Kalekar

Project Coordinator
Rahul Dixit

Proofreaders
Stephen Silk

Lauren Tobon

Indexer
Tejal R. Soni

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Muhammad Mobeen Movania received his PhD degree in Advance Computer Graphics
and Visualization from Nanyang Technological Unviversity (NTU), Singapore. He completed his
Bachelors of Science Honors (BCS(H)) in Computer Sciences from Iqra University, Karachi with
majors in Computer Graphics and Multimedia. Before joining NTU, he was a junior graphics
programmer at Data Communication and Control (DCC) Pvt. Ltd., Karachi, Pakistan. He was
working on DirectX and OpenGL API for producing real-time interactive tactical simulators

and dynamic integrated training simulators. His research interests include GPU-based
volumetric rendering techniques, GPU technologies, real-time soft body physics, real-time
dynamic shadows, real-time collision detection and response, and hierarchical geometric
data structures. He authored a book chapter in a recent OpenGL book (OpenGL Insights: AK
Peters/CRC Press). He is also the author of the OpenCloth project (http://code.google.
com/p/opencloth), which implements various cloth simulation algorithms in OpenGL. His
blog (http://mmmovania.blogspot .com) lists a lot of useful graphics tips and tricks.
When not involved with computer graphics, he composes music and is an avid squash player.
He is currently working at a research institute in Singapore.

I would like to thank my family: my parents (Mr. and Mrs. Abdul Aziz
Movania), my wife (Tanveer Taji), my brothers and sisters (Mr. Muhammad
Khalid Movania, Mrs. Azra Saleem, Mrs. Sajida Shakir, and Mr. Abdul
Majid Movania), my nephews/nieces, and my new born baby daughter
(Muntaha Movania).

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Bastien Berthe is a young and passionate 3D programmer. Always attracted by 3D and
video games, after a few years of studying in France, he went to the Sherbrooke University in
Canada and received a postgraduate degree in Computer Science, specializing in real-time
systems, 3D visualization, and video games development.

He is now working as a 3D Graphics Specialist Consultant at CAE (Montreal, QC) since 2012
and, more precisely, he is working on a new generation simulator's visualization system using
mainly OpenSceneGraph and OpenGL.

CAE (http://www.cae.com) is a global leader in modeling, simulation, and training for civil
aviation, defence, healthcare, and mining.

Dimitrios Christopoulos studied Computer Engineering and informatics at the University
of Patras, Greece and holds a Master of Science (MSc) in Virtual Reality and Computer
Graphics from the University of Hull in Great Britain. He started game programming in the '80s,
and has been using OpenGL since 1997 for games, demos, European Union research projects,
museum exhibits, and virtual reality productions. His research interests include virtual reality,
human computer interaction, computer graphics, and games, with numerous publications in
relevant conferences and journals. He coauthored the book More OpenGL Game Programming,
Cengage Learning PTR and has also contributed to OpenGL Game Programming. He currently
works as a virtual reality and 3D graphics software engineer producing games, educational
applications, and cultural heritage productions for virtual reality installations.

Oscar Ripolles received his degree in Computer Engineering in 2004 and his Ph.D. in
2009 at the Universitat Jaume | in Castellon, Spain. He has also been a researcher at the
Université de Limoges, France and at the Universidad Politecnica de Valencia, Spain. He

is currently working in neuroimaging at Neuroelectrics in Barcelona, Spain. His research
interests include multiresolution modeling, geometry optimization, hardware programming,
and medical imaging.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@epacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[a] PACKT

http://PacktLib.PacktPub.com

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content

» On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1. Introduction to Modern OpenGL 7
Introduction 7
Setting up the OpenGL v3.3 core profile on Visual Studio 2010 using
the GLEW and freeglut libraries 8
Designing a GLSL shader class 16
Rendering a simple colored triangle using shaders 19
Doing a ripple mesh deformer using the vertex shader 28
Dynamically subdividing a plane using the geometry shader 37
Dynamically subdividing a plane using the geometry shader with
instanced rendering 45
Drawing a 2D image in a window using the fragment shader and
the SOIL image loading library 48
Chapter 2: 3D Viewing and Object Picking 55
Introduction 55
Implementing a vector-based camera with FPS style input support 56
Implementing the free camera 59
Implementing the target camera 63
Implementing view frustum culling 66
Implementing object picking using the depth buffer 72
Implementing object picking using color 74
Implementing object picking using scene intersection queries 76
Chapter 3: Offscreen Rendering and Environment Mapping 81
Introduction 81
Implementing the twirl filter using fragment shader 82
Rendering a skybox using the static cube mapping 85
Implementing a mirror with render-to-texture using FBO 89

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Rendering a reflective object using dynamic cube mapping 93
Implementing area filtering (sharpening/blurring/embossing)
on an image using convolution 98
Implementing the glow effect 101
Chapter 4: Lights and Shadows 107
Introduction 107
Implementing per-vertex and per-fragment point lighting 108
Implementing per-fragment directional light 114
Implementing per-fragment point light with attenuation 117
Implementing per-fragment spot light 120
Implementing shadow mapping with FBO 122
Implemeting shadow mapping with percentage closer filtering (PCF) 128
Implementing variance shadow mapping 132
Chapter 5: Mesh Model Formats and Particle Systems 141
Introduction 141
Implementing terrains using the height map 142
Implementing 3ds model loading using separate buffers 146
Implementing OBJ model loading using interleaved buffers 157
Implementing EZMesh model loading 163
Implementing simple particle system 171
Chapter 6: GPU-based Alpha Blending and Global lllumination 181
Introduction 181
Implementing order-independent transparency using front-to-back peeling 182
Implementing order-independent transparency using dual depth peeling 189
Implementing screen space ambient occlusion (SSAO) 195
Implementing global illumination using spherical harmonics lighting 202
Implementing GPU-based ray tracing 207
Implementing GPU-based path tracing 213
Chapter 7: GPU-based Volume Rendering Techniques 219
Introduction 219
Implementing volume rendering using 3D texture slicing 220
Implementing volume rendering using single-pass GPU ray casting 228
Implementing pseudo-isosurface rendering in single-pass GPU ray casting 232
Implementing volume rendering using splatting 237
Implementing transfer function for volume classification 244
Implementing polygonal isosurface extraction using
the Marching Tetrahedra algorithm 248
Implementing volumetric lighting using the half-angle slicing 254

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 8: Skeletal and Physically-based Simulation on the GPU 261
Introduction 261
Implementing skeletal animation using matrix palette skinning 262
Implementing skeletal animation using dual quaternion skinning 273
Modeling cloth using transform feedback 279
Implementing collision detection and response on a transform
feedback-based cloth model 290
Implementing a particle system using transform feedback 296

Index 307

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

This book is based on modern OpenGL v3.3 and above. It covers a myriad of topics of interest
ranging from basic camera models and view frustum culling to advanced topics, such as dual
quaternion skinning and GPU based simulation techniques. The book follows the cookbook
format whereby a number of steps are detailed showing how to accomplish a specific task
and are later dissected to show how the whole technique works.

The book starts with a gentle introduction to modern OpenGL. It then elaborates how to set
up a basic shader application. Following this discussion, all shader stages are introduced
using practical examples so that readers may understand how the different stages of the
modern GPU pipeline work. Following the introductory chapter, a vector-based camera viewing
model is presented with two camera types: target and free camera. In addition, we also detail
how to carry out picking in modern OpenGL using depth buffer, color buffer, and scene
intersection queries.

In simulation applications and games in particular, skybox is a very useful object. We will
detail its implementation in a simple manner. For reflective objects, such as mirrors and
dynamic reflections, render-to-texture functionality using FBO and dynamic cube mapping
are detailed. In addition to graphics, image processing techniques are also presented to
implement digital convolution filters using the fragment shader, and basic transformation,
such as twirl is also detailed. Moreover, effects such as glow are also covered to enable
rendering of glowing geometry.

Seldom do we find a graphics application without light. Lights play an important role

in portraying the mood of a scene. We will cover point, directional, and spot lights with
attenuation and both per-vertex and per-fragment approaches. In addition, shadow mapping
techniques are also covered including support of percentage closer filtering (PCF) and
variance shadow mapping.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

In typical applications, more complex mesh models are used which are stored in external
model files modeled in a 3D modeling package. We elaborate two techniques for loading
such models by using separate and interleaved buffer objects. Concrete examples are given
by parsing 3DS and OBJ model formats. These model loaders provide support for most
attributes, including materials. Skeletal characters are introduced by a new skeletal animation
format (the EZMesh format). We will see how to load such models with animation using both
matrix palette skinning and dual quaternion skinning. Wherever possible, the recipes also
detail pointers to external libraries and web addresses for more information. Fuzzy objects,
such as smoke are often used to add special effects. Such objects are typically handled using
a particle system. We introduce a stateless and a state-preserving particle system in detail.

When a scene with a high depth complexity is presented, normal alpha blending techniques
fail miserably. Hence, approaches such as depth peeling are used to render the geometry
in the correct depth order with correct blending. We will take a look at the implementation
of both the conventional front-to-back depth peeling as well as the more recent dual depth
peeling approach. All steps needed in the process are detailed.

With computer graphics, we are always pushing the limits of hardware to get a true

life-like rendering. Lighting is one thing that can convincingly represent such a depiction.
Unfortunately however, normal everyday lighting is impossible to simulate in real-time. The
computer graphics community has developed various approximation methods for modeling of
such lighting. These are grouped under global illumination techniques. The recipes elaborate
two common approaches, spherical harmonics and screen space ambient occlusion, on the
modern GPU. Finally, we present two additional methods for rendering scenes, namely, ray
tracing and path tracing. Both of these methods have been detailed and implemented on

the modern GPU.

Computer graphics have influenced several different fields ranging from visual effects in
movies to biomedical and engineering simulations. In the latter domain in particular, computer
graphics and visualization methods have been widely adopted. Modern GPUs have tremendous
horsepower, which can be utilized for advanced visualization methods, and volume rendering
is one of them. We will take a look at several algorithms for volume rendering, namely view-
aligned 3D texture slicing, single-pass GPU ray casting, pseudo-isosurface rendering, splatting,
polygonal isosurface extraction using the Marching Tetrahedra algorithm, and half-angle slicing
method for volumetric lighting.

Physically-based simulations are an important class of algorithms that enable us to predict
the motion of objects through approximations of the physical models. We harness the new
transform feedback mechanism to carry out two physically-based simulations entirely on the
GPU. We first present a model for cloth simulation (with collision detection and response) and
then a model for particle system simulation on the modern GPU.

In summary, this book contains a wealth of information from a wide array of topics. | had a lot
of fun writing this book and | learned a lot of techniques on the way. | do hope that this book
serves as a useful resource for others in the years to come.

—21

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

What this book covers

Chapter 1, Introduction to Modern OpenGL, details how to set up a modern OpenGL v3.3 core
profile application on Visual Studio 2010 professional version.

Chapter 2, 3D Viewing and Object Picking, discusses how to implement a vector-based
camera model for a viewing system. Two camera types are explained along with view
frustum culling. Finally, object picking methods are also detailed.

Chapter 3, Offscreen Rendering and Environment Mapping, explains how to use the
framebuffer object (FBO) for offscreen rendering. Mirror and dynamic cube mapping are
implemented. In addition, image processing using digital convolution and environment
mapping using static cube mapping are also elaborated.

Chapter 4, Lights and Shadows, discusses how to implement point, spot, and directional
lights with attenuation. Moreover, methods of rendering dynamic shadows, such as shadow
mapping, percentage close filtered (PCF) shadow maps, and variance shadow mapping are
also covered in detail.

Chapter 5, Mesh Model Formats and Particle Systems, shows how to parse standard model
formats, such as 3DS and OBJ models using separate and interleaved buffer object formats.
Skeletal animation format using the EZMesh model format is also detailed along with the
simple particle system.

Chapter 6, GPU-based Alpha Blending and Global lllumination, explains how to implement
order-independent transparency with front-to-back and dual depth peeling. It also covers
screen space ambient occlusion (SSAO) and the spherical harmonics method for image-based
lighting and global illumination. Finally, alternate methods to render geometry, that is, GPU
ray tracing and GPU path tracing are presented.

Chapter 7, GPU-based Volume Rendering Techniques, discusses how to implement several
volume rendering algorithms in modern OpenGL including view-aligned 3D texture slicing,
single-pass GPU ray casting, splatting, pseudo-isosurface as well as polygonal isosurface
rendering using Marching Tetrahedra algorithm. Volume classification and volume lighting
using the half-angle slicing technique are also detailed.

Chapter 8, Skeletal and Physically-based Simulation on the GPU, describes how to implement
skeletal animation using matrix palette skinning and dual quaternion skinning on the modern
GPU. In addition, it details how to use the transform feedback mode of the modern GPU for
implementing a cloth simulation system with collision detection and response as well as
particle systems entirely on the GPU.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

What you need for this book

The book assumes that the reader has basic knowledge of using the OpenGL API. The
example code distributed with this book contains Visual Studio 2010 Professional version
project files. In order to build the source code, you will need freeglut, GLEW, GLM, and SOIL
libraries. The code has been tested on a Windows 7 platform with an NVIDIA graphics card
and the following versions of libraries:

» freeglut v2.8.0 (latest version available from: http://freeglut.sourceforge.
net)

» GLEW v1.9.0 (latest version available from: http://glew.sourceforge.net)
» GLMv0.9.4.0 (latest version available from: http://glm.g-truc.net)

» SOIL (latest version available from: http://www.lonesock.net/soil.html)

We recommend using the latest version of these libraries. The code should compile and build
fine with the latest libraries.

Who this book is for

This book is for intermediate graphics programmers who have working experience of any
graphics API, but experience of OpenGL will be a definite plus. Introductory knowledge of

GPU and graphics shaders will be an added advantage. The book and the accompanying code
have been written with simplicity in mind. We have tried to keep it simple to understand. A
wide array of topics are covered and step-by-step instructions are given on how to implement
each technique. Detailed explanations are given that helps in comprehending the content of
the book.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The maximum number of color attachments
supported on any GPU can be queried using the GL_MAX COLOR_ATTACHMENTS field."

A block of code is set as follows:

for(int i=0;i<16;i++)
float indexA = (random(vec4 (gl FragCoord.xyx, 1i))*0.25);
float indexB = (random(vec4 (gl FragCoord.yxy, 1i))*0.25);
sum += textureProj (shadowMap, vShadowCoords +
vec4 (indexA, indexB, 0, 0));

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

void main ()

{

vEyeSpacePosition = (MV*vec4 (vVertex,1l)) .xyz;
vEyeSpaceNormal = N*vNormal;
vShadowCoords = S* (M*vec4 (vVertex, 1)) ;

gl Position MVP*vec4 (vVertex, 1) ;

}

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "by going to the Properties
menu item in the Project menu".

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You
can download this file from http://www.packtpub.com/sites/default/files/
downloads/504 60T _ColoredImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http: //www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern
OpenGL

In this chapter, we will cover:
» Setting up the OpenGL v3.3 core profile on Visual Studio 2010 using the GLEW and
freeglut libraries
» Designing a GLSL shader class
» Rendering a simple colored triangle using shaders
» Doing a ripple mesh deformer using the vertex shader
» Dynamically subdividing a plane using the geometry shader
» Dynamically subdividing a plane using the geometry shader with instanced rendering

» Drawing a 2D image in a window using the fragment shader and SOIL image
loading library

Introduction

The OpenGL API has seen various changes since its creation in 1992. With every new version,
new features were added and additional functionality was exposed on supporting hardware
through extensions. Until OpenGL v2.0 (which was introduced in 2004), the functionality in
the graphics pipeline was fixed, that is, there were fixed set of operations hardwired in the
graphics hardware and it was impossible to modify the graphics pipeline. With OpenGL v2.0,
the shader objects were introduced for the first time. That enabled programmers to modify the
graphics pipeline through special programs called shaders, which were written in a special
language called OpenGL shading language (GLSL).

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

After OpenGL v2.0, the next major version was v3.0. This version introduced two profiles for
working with OpenGL; the core profile and the compatibility profile. The core profile basically
contains all of the non-deprecated functionality whereas the compatibility profile retains
deprecated functionality for backwards compatibility. As of 2012, the latest version of OpenGL
available is OpenGL v4.3. Beyond OpenGL v3.0, the changes introduced in the application
code are not as drastic as compared to those required for moving from OpenGL v2.0 to
OpenGL v3.0 and above.

In this chapter, we will introduce the three shader stages accessible in the OpenGL v3.3 core
profile, that is, vertex, geometry, and fragment shaders. Note that OpenGL v4.0 introduced
two additional shader stages that is tessellation control and tessellation evaluation shaders
between the vertex and geometry shader.

Setting up the OpenGL v3.3 core profile
on Visual Studio 2010 using the GLEW

and freeglut libraries

We will start with a very basic example in which we will set up the modern OpenGL v3.3 core
profile. This example will simply create a blank window and clear the window with red color.

OpenGL or any other graphics API for that matter requires a window to display graphics in.
This is carried out through platform specific codes. Previously, the GLUT library was invented
to provide windowing functionality in a platform independent manner. However, this library
was not maintained with each new OpenGL release. Fortunately, another independent project,
freeglut, followed in the GLUT footsteps by providing similar (and in some cases better)
windowing support in a platform independent way. In addition, it also helps with the creation
of the OpenGL core/compatibility profile contexts. The latest version of freeglut may be
downloaded from http://freeglut.sourceforge.net. The version used in the source
code accompanying this book is v2.8.0. After downloading the freeglut library, you will have to
compile it to generate the libs/dlls.

The extension mechanism provided by OpenGL still exists. To aid with getting the appropriate
function pointers, the GLEW library is used. The latest version can be downloaded from http://
glew.sourceforge.net. The version of GLEW used in the source code accompanying this
book is v1.9.0. If the source release is downloaded, you will have to build GLEW first to generate
the libs and dlls on your platform. You may also download the pre-built binaries.

Prior to OpenGL v3.0, the OpenGL API provided support for matrices by providing specific
matrix stacks such as the modelview, projection, and texture matrix stacks. In addition,
transformation functions such as translate, rotate, and scale, as well as projection functions
were also provided. Moreover, immediate mode rendering was supported, allowing application
programmers to directly push the vertex information to the hardware.

—e1]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

In OpenGL v3.0 and above, all of these functionalities are removed from the core profile,
whereas for backward compatibility they are retained in the compatibility profile. If we use
the core profile (which is the recommended approach), it is our responsibility to implement
all of these functionalities including all matrix handling and transformations. Fortunately, a
library called glm exists that provides math related classes such as vectors and matrices. It
also provides additional convenience functions and classes. For all of the demos in this book,
we will use the glm library. Since this is a headers only library, there are no linker libraries
for glm. The latest version of glm can be downloaded from http://glm.g-truc.net. The
version used for the source code in this book is v0.9.4.0.

There are several image formats available. It is not a trivial task to write an image loader for
such a large number of image formats. Fortunately, there are several image loading libraries
that make image loading a trivial task. In addition, they provide support for both loading as
well as saving of images into various formats. One such library is the SOIL image loading
library. The latest version of SOIL can be downloaded from http://www.lonesock.net/
soil.html.

Once we have downloaded the SOIL library, we extract the file to a location on the hard disk.
Next, we set up the include and library paths in the Visual Studio environment. The include
path on my development machine is D: \Libraries\soil\Simple OpenGL Image
Library\src wWhereas, the library path is setto D: \Libraries\soil\Simple OpenGL
Image Library\1lib\VC10_ Debug. Of course, the path for your system will be different
than mine but these are the folders that the directories should point to.

These steps will help us to set up our development environment. For all of the recipes in this
book, Visual Studio 2010 Professional version is used. Readers may also use the free express
edition or any other version of Visual Studio (for example, Ultimate/Enterprise). Since there
are a myriad of development environments, to make it easier for users on other platforms,

we have provided premake script files as well.

The code for this recipe is in the Chapterl/GettingStarted directory.

Downloading the example code

\\l You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
Q com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

How to do it...

Let us setup the development environment using the following steps:

1. After downloading the required libraries, we set up the Visual Studio 2010
environment settings.

[.NET Frameworkd v | Sort by: [Defautt [E]| search nstatied Tem £
Installed Templates * | Tyne: Visual C
¥ Win32 Console Application Visual e+ [| P VSUELETT
Qtd Projects b A project for creating a Win32 consele
4 Visual Co+ application
M MFC Application Visual Co+
ATL Ficl i
CLR
General | Win32 Project Visual C++
MFC =
Test | Empty Project Visual C++
Win32
Other Languages ATU| ATL Project Visual C++
Other Project Types
Database MR yrepLL Visual C++
Test Projects [Ele|
I Online Templates _[%| Windows Forms Application Visual C++
= CLR Console Application Visual C++
| CLR Empty Project Visual Ce+
'!\ . .y 4 .o M
Name: GettingStarted
Location: D:\MyBook Codest Chapterl =
Selution name: GettingStarted Create directory for solution
[Add to source control

2. We first create a new Win32 Console Application project as shown in the preceding
screenshot. We set up an empty Win32 project as shown in the following screenshot:

Win32 Application Wi
[—]

Application Settings

Overview Application type: Add comman header files for:
Application Settings () Windows application
@ Console application

@ou

) Static lbrary
Additonal options:

Empty project

< Previous Finsh | [Cancel

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Next, we set up the include and library paths for the project by going into the Project
menu and selecting project Properties. This opens a new dialog box. In the left pane,

click on the Configuration Properties option and then on VC++ Directories.
4. Inthe right pane, in the Include Directories field, add the GLEW and freeglut

subfolder paths.

5. Similarly, in the Library Directories, add the path to the lib subfolder of GLEW and
freeglut libraries as shown in the following screenshot:

Include Directories T Library Directories P |5
EIEHE B
DiLibrarieshglew-1.9.0%include - DayLibrarieshglew-1.9.00ib\ -

DiLibraries\freeglut-2.8 O\include

4 1

DihLibraries\freeglut-2.8 04 lib'sE6Y

[4 n

Inherited values:

S(VCInstallDirlinclude

SV CInstallDirjatlmfchinclude
S(WindowsSdkDir)include
S(FrameworkSDKDiNhinclude

|| Inherit from parent or project defaults

Inherited values:

S(VCInstallDir)lib
S(VCInstallDir)atimfclib
S{WindowsSdkDir)lib
S{FrameworkSDKDir\lib

[¥]Inherit from parent or project defaults

Macross =

Macross> >

Next, we add a new . cpp file to the project and name it main. cpp. This is
the main source file of our project. You may also browse through Chapteri1/
GettingStarted/GettingStarted/main.cpp Which does all this setup already.

Let us skim through the Chapterl/ GettingStarted/GettingStarted/main.
cpp file piece by piece.

#include <GL/glew.h>

#include <GL/freeglut.h>

#include <iostream>

These lines are the include files that we will add to all of our projects. The first is the
GLEW header, the second is the freeglut header, and the final include is the standard
input/output header.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

8.

1

1

10.

11.

nt HEIGHT = 960

woid Ontndt{) { (i Deley Loaded Dis
glclearcolor(1,0,0,8); Eatiar Assembly Link Resousce
coutcc Infriall succesefull"ccendl Input

3 Manifest File

vold OnShutdown{) {
coutee™Shutdown o

vold Onllesizelint m, fnt nb) |

wold OnRender() {
BIC1ear(G60_COLOR BUFFER_AIT|GL_DESTH_BUFFER_BIT);

‘ Build Event
) ElutSwapBut fers(); ‘ Cuttoen Buikd Step
srgv) { I Additinesd Dependencies
I Specifies. addfitional iterns to ackd 10 the kek command line [Le. kerneld ib]
UT_GERTH | GLUT_DousLE | GuuT_sea)f|
ElutTy i3, 3; |
ElutInitContextFlags (GLUT_CORE_PROFILE | GLUT_DESUG): ||
Bl Tai sl ansaveBenfi 1o/ (T EADULON FAMBATTALEL: I __U‘-___| Cancel
% - L

In Visual Studio, we can add the required linker libraries in two ways. The first way

is through the Visual Studio environment (by going to the Properties menu item in
the Project menu). This opens the project's property pages. In the configuration
properties tree, we collapse the Linker subtree and click on the Input item. The first
field in the right pane is Additional Dependencies.We can add the linker library
in this field as shown in the following screenshot:

Buid Debug Team Dats Tooh Tet Windew Hep
A4 Add Class. = wimzz - e e e e 8 o
B Chass Wigard.. el St

CtrlaShidta

10 o vl

4 fiuded Mgy e
J Add Exsting fem. Shift Al A

GettingStarted Property Pages

Configuatior: | Active{Debug) =| Piatforms | ActiveWinid) =| | Configuration Manager...

Exchude From Propect

1D Show AllFiles

kemel22 ibeuierd2 Mgl Wb werspeed b corndlyd? b |
Tgrore All Default Libraries

FErgean Solution
Set s St Progect
T GettingStarted Broperties... AlteFT

Add b by
Embed Minaged Resource File

Furce Syrbed References

successfull™ccendl; ‘

The second way is to add the glew32.11ib file to the linker settings
programmatically. This can be achieved by adding the following pragma:

#pragma comment (1lib, "glew32.1lib")

The next line is the using directive to enable access to the functions in the std
namespace. This is not mandatory but we include this here so that we do not have
to prefix std: : to any standard library function from the iostream header file.

using namespace std;

The next lines define the width and height constants which will be the screen
resolution for the window. After these declarations, there are five function definitions
.The onInit () function is used for initializing any OpenGL state or object,
OnShutdown () is used to delete an OpenGL object, OnResize () is used to handle
the resize event, OnRender () helps to handle the paint event, and main () is the
entry point of the application. We start with the definition of the main () function.

const int WIDTH
const int HEIGHT

1280;
960;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

12.

13.

14.

int main(int argc, char** argv)
glutInit (&argc, argv);
glutInitDisplayMode (GLUT DEPTH | GLUT DOUBLE |
GLUT RGBA) ;
glutInitContextVersion (3, 3);
glutInitContextFlags (GLUT CORE PROFILE | GLUT DEBUG) ;
glutInitContextProfile (GLUT FORWARD COMPATIBLE) ;
glutInitWindowSize (WIDTH, HEIGHT) ;

The first line glutInit initializes the GLUT environment. We pass the command line
arguments to this function from our entry point. Next, we set up the display mode

for our application. In this case, we request the GLUT framework to provide support
for a depth buffer, double buffering (that is a front and a back buffer for smooth,
flicker-free rendering), and the format of the frame buffer to be RGBA (that is with
red, green, blue, and alpha channels). Next, we set the required OpenGL context
version we desire by using the glutInitContextVersion. The first parameter

is the major version of OpenGL and the second parameter is the minor version of
OpenGL. For example, if we want to create an OpenGL v4.3 context, we will call
glutInitContextVersion (4, 3).Next, the context flags are specified:

glutInitContextFlags (GLUT CORE PROFILE | GLUT DEBUG) ;
glutInitContextProfile (GLUT FORWARD COMPATIBLE) ;

K In OpenGL v4.3, we can register a callback when any
Ny OpenGL related error occurs. Passing GLUT _DEBUG to the
Q glutInitContextFlags functions creates the OpenGL context
in debug mode which is needed for the debug message callback.

For any version of OpenGL including OpenGL v3.3 and above, there are two profiles
available: the core profile (which is a pure shader based profile without support

for OpenGL fixed functionality) and the compatibility profile (which supports the
OpenGL fixed functionality). All of the matrix stack functionality glMatrixMode (*),
glTranslate*, glRotate*, glScale*, and so on, and immediate mode calls
such as glvertex*, glTexCoord*, and glNormal* of legacy OpenGL, are
retained in the compatibility profile. However, they are removed from the core profile.
In our case, we will request a forward compatible core profile which means that we
will not have any fixed function OpenGL functionality available.

Next, we set the screen size and create the window:

glutInitWindowSize (WIDTH, HEIGHT) ;
glutCreateWindow ("Getting started with OpenGL 3.3");

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

15.

16.

Next, we initialize the GLEW library. It is important to initialize the GLEW library after
the OpenGL context has been created. If the function returns GLEW OK the function
succeeds, otherwise the GLEW initialization fails.

glewExperimental = GL TRUE;
GLenum err = glewInit();

if (GLEW_OK != err) {
cerr<<"Error: "<<glewGetErrorString(err)<<endl;
} else {

if (GLEW_VERSION 3 3)

{
}
}

cout<<"\tUsing glew "<<glewGetString (GLEW VERSION)<<endl;
cout<<"\tVendor: "<<glGetString (GL_VENDOR)<<endl;
cout<<"\tRenderer: "<<glGetString (GL_RENDERER)<<endl;
cout<<"\tVersion: "<<glGetString (GL_VERSION)<<endl;
cout<<"\tGLSL:

"<<glGetString (GL_SHADING LANGUAGE VERSION) <<endl;

cout<<"Driver supports OpenGL 3.3\nDetails:"<<endl;

The glewExperimental global switch allows the GLEW library to report an
extension if it is supported by the hardware but is unsupported by the experimental or
pre-release drivers. After the function is initialized, the GLEW diagnostic information
such as the GLEW version, the graphics vendor, the OpenGL renderer, and the shader
language version are printed to the standard output.

Finally, we call our initialization function OnInit () and then attach our
uninitialization function OnShutdown () as the glutCloseFunc method—the close
callback function which will be called when the window is about to close. Next, we
attach our display and reshape function to their corresponding callbacks. The main
function is terminated with a call to the glutMainLoop () function which starts the
application's main loop.

OnInit () ;

glutCloseFunc (OnShutdown) ;
glutDisplayFunc (OnRender) ;
glutReshapeFunc (OnResize) ;
glutMainLoop () ;

return 0;

}

The remaining functions are defined as follows:

void OnInit ()

glClearColor(1,0,0,0);

Sz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

cout<<"Initialization successfull"<<endl;

}
void OnShutdown () {
cout<<"Shutdown successfull"<<endl;

}

void OnResize (int nw, int nh)

}
void OnRender ()
glClear (GL COLOR BUFFER BIT|GL DEPTH BUFFER BIT);

glutSwapBuffers () ;

}

For this simple example, we set the clear color to red (R:1, G:0, B:0, A:0). The first three are
the red, green, and blue channels and the last is the alpha channel which is used in alpha
blending. The only other function defined in this simple example is the OnRender () function,
which is our display callback function that is called on the paint event. This function first
clears the color and depth buffers to the clear color and clear depth values respectively.

Similar to the color buffer, there is another buffer called the depth buffer.

Its clear value can be set using the glClearDepth function. It is used

for hardware based hidden surface removal. It simply stores the depth of

~ the nearest fragment encountered so far. The incoming fragment's depth
value overwrites the depth buffer value based on the depth clear function
specified for the depth test using the glDepthFunc function. By default the
depth value gets overwritten if the current fragment's depth is lower than the
existing depth in the depth buffer. _

The glutSwapBuffers function is then called to set the current back buffer as the current
front buffer that is shown on screen. This call is required in a double buffered OpenGL
application. Running the code gives us the output shown in the following screenshot.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

Designing a GLSL shader class

We will now have a look at how to set up shaders. Shaders are special programs that are run
on the GPU. There are different shaders for controlling different stages of the programmable
graphics pipeline. In the modern GPU, these include the vertex shader (which is responsible
for calculating the clip-space position of a vertex), the tessellation control shader (which

is responsible for determining the amount of tessellation of a given patch), the tessellation
evaluation shader (which computes the interpolated positions and other attributes on the
tessellation result), the geometry shader (which processes primitives and can add additional
primitives and vertices if needed), and the fragment shader (which converts a rasterized
fragment into a colored pixel and a depth). The modern GPU pipeline highlighting the
different shader stages is shown in the following figure.

Tessellation Tessellation Geometry
control shader evaluation shader shader

Raster Fragment
operations shader

Framebuffer Rasterizer

Note that the tessellation control/evaluation shaders are only available in the hardware
supporting OpenGL v4.0 and above. Since the steps involved in shader handling as well as
compiling and attaching shaders for use in OpenGL applications are similar, we wrap these
steps in a simple class we call GLSLShader.

Getting ready

The GLSLShader class is defined in the GLSLShader. [h/cpp] files. We first declare

the constructor and destructor which initialize the member variables. The next three
functions, LoadFromString, LoadFromFile, and CreateAndLinkProgram handle

the shader compilation, linking, and program creation. The next two functions, Use and
UnUse functions bind and unbind the program. Two std: :map datastructures are used. They
store the attribute's/uniform's name as the key and its location as the value. This is done to
remove the redundant call to get the attribute's/uniform's location each frame or when the
location is required to access the attribute/uniform. The next two functions, AddAttribute
and AdduUniform add the locations of the attribute and uniforms into their respective

std: :map (_attributelList and uniformLocationList).

class GLSLShader

{

public:
GLSLShader (void) ;
~GLSLShader (void) ;

6]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

void LoadFromString (GLenum whichShader, const string& source) ;
void LoadFromFile (GLenum whichShader, const string& filename) ;
void CreateAndLinkProgram() ;

void Use() ;

void UnUse () ;

void AddAttribute (const string& attribute);

void AddUniform(const string& uniform) ;

GLuint operator[] (const string& attribute) ;

GLuint operator () (const string& uniform) ;

void DeleteShaderProgram() ;

private:

}i

enum ShaderType {VERTEX_SHADER , FRAGMENT SHADER, GEOMETRY_SHADER} ;
GLuint program;

int totalShaders;

GLuint _shaders|[3];

map<string,GLuint> attributelist;

map<string,GLuint> uniformLocationList;

To make it convenient to access the attribute and uniform locations from their maps ,

we declare the two indexers. For attributes, we overload the square brackets ([]) whereas
for uniforms, we overload the parenthesis operation (). Finally, we define a function
DeleteShaderProgram for deletion of the shader program object. Following the
function declarations are the member fields.

How to do it...

In a typical shader application, the usage of the GLSLShader object is as follows:

1.

ok 0N

6.

Create the GLSLShader object either on stack (for example, GLSLShader shader;)
or on the heap (for example, GLSLShader* shader=new GLSLShader () ;)

Call LoadFromFile on the GLSLShader object reference
Call createAndLinkProgram on the GLSLShader object reference
Call use on the GLSLShader object reference to bind the shader object

Call Addattribute/AddUniform to store locations of all of the shader's attributes
and uniforms respectively

Call unUse on the GLSLShader object reference to unbind the shader object

Note that the above steps are required at initialization only. We can set the values of the
uniforms that remain constant throughout the execution of the application in the Use/UnUse
block given above.

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

At the rendering step, we access uniform(s), if we have uniforms that change each frame (for
example, the modelview matrices). We first bind the shader by calling the GL.SLShader: : Use
function. We then set the uniform by calling the glUniform{*} function, invoke the rendering
by calling the glbraw{ * } function, and then unbind the shader (3LSLShader : : UnUse). Note
that the g1lDraw{*} call passes the attributes to the GPU.

In a typical OpenGL shader application, the shader specific functions and their sequence of
execution are as follows:

glCreateShader
glShaderSource
glCompileShader
glGetShaderInfoLog

Execution of the above four functions creates a shader object. After the shader object
is created, a shader program object is created using the following set of functions in the
following sequence:

glCreateProgram
glAttachShader
glLinkProgram
glGetProgramInfoLog

1
‘\Q Note that after the shader program has been linked, we can

safely delete the shader object.

In the GLSLShader class, the first four steps are handled in the LoadFromString function
and the later four steps are handled by the CreateAndLinkProgram member function. After
the shader program object has been created, we can set the program for execution on the
GPU. This process is called shader binding. This is carried out by the glUseProgram function
which is called through the Use/UnUse functions in the GLSLShader class.

To enable communication between the application and the shader, there are two different
kinds of fields available in the shader. The first are the attributes which may change during
shader execution across different shader stages. All per-vertex attributes fall in this category.
The second are the uniforms which remain constant throughout the shader execution. Typical
examples include the modelview matrix and the texture samplers.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

In order to communicate with the shader program, the application must obtain the location of
an attribute/uniform after the shader program is bound. The location identifies the attribute/
uniform. In the GLSLShader class, for convenience, we store the locations of attributes and
uniforms in two separate std: :map objects.

For accessing any attribute/uniform location, we provide an indexer in the GLSLShader class.
In cases where there is an error in the compilation or linking stage, the shader log is printed
to the console. Say for example, our GLSLshader object is called shader and our shader
contains a uniform called MvVP. We can first add it to the map of GLSLShader by calling
shader.AddUniform ("MVP"). This function adds the uniform's location to the map.

Then when we want to access the uniform, we directly call shader ("MVP") and it returns
the location of our uniform.

Rendering a simple colored triangle using

shaders

We will now put the GLSLShader class to use by implementing an application to render
a simple colored triangle on screen.

Getting ready

For this recipe, we assume that the reader has created a new empty Win32 project with
OpenGL 3.3 core profile as shown in the first recipe. The code for this recipe is in the
Chapterl/SimpleTriangle directory.

In all of the code samples in this book, you will see a macro GL_
CHECK_ERRORS dispersed throughout. This macro checks the
current error bit for any error which might be raised by passing invalid
s“ arguments to an OpenGL function, or when there is some problem with
the OpenGL state machine. For any such error, this macro traps it and
generates a debug assertion signifying that the OpenGL state machine
has some error. In normal cases, no assertion should be raised, so
adding this macro helps to identify errors. Since this macro calls
glGetError inside a debug assert, it is stripped in the release build.

Now we will look at the different transformation stages through which a vertex goes, before

it is finally rendered on screen. Initially, the vertex position is specified in what is called the
object space. This space is the one in which the vertex location is specified for an object. We
apply modeling transformation to the object space vertex position by multiplying it with an
affine matrix (for example, a matrix for scaling, rotating, translating, and so on). This brings the
object space vertex position into world space. Next, the world space positions are multiplied
by the camera/viewing matrix which brings the position into view/eye/camera space. OpenGL
stores the modeling and viewing transformations in a single (modelview) matrix.

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

The view space positions are then projected by using a projection transformation which
brings the position into clip space. The clip space positions are then normalized to get the
normalized device coordinates which have a canonical viewing volume (coordinates are [-1,-
1,0]to [1,1,1] in X, y, and z coordinates respectively). Finally, the viewport transformation is
applied which brings the vertex into window/screen space.

How to do it...

Let us start this recipe using the following steps:

1.

Define a vertex shader (shaders/shader.vert) to transform the object space
vertex position to clip space.

#version 330 core
layout (location = 0) in vec3 vVertex;
layout (location = 1) in vec3 vColor;
smooth out vec4 vSmoothColor;
uniform mat4 MVP;
void main ()
{
vSmoothColor = vec4 (vColor,1);
gl Position = MVP*vec4 (vVertex,1);

}

Define a fragment shader (shaders/shader. frag) to output a smoothly
interpolated color from the vertex shader to the frame buffer.

#version 330 core

smooth in vec4 vSmoothColor;

layout (location=0) out vec4 vFragColor;
void main ()

{

vFragColor = vSmoothColor;

}

Load the two shaders using the GLSLShader class in the OnInit () function.

shader.LoadFromFile (GL VERTEX SHADER,
"shaders/shader.vert") ; a
shader.LoadFromFile (GL_FRAGMENT SHADER, "shaders/shader.frag
")
shader.CreateAndLinkProgram() ;
shader.Use () ;
shader.AddAttribute ("vVertex") ;
shader.AddAttribute ("vColor") ;
shader.AddUniform ("MVP") ;
shader.UnUse () ;

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Create the geometry and topology. We will store the attributes together in an
interleaved vertex format, that is, we will store the vertex attributes in a struct
containing two attributes, position and color.

vertices[0] .color=glm: :vec3(1,0,0);
vertices[1l] .color=glm::vec3(0,1,0);
vertices[2] .color=glm::vec3(0,0,1);

vertices[0] .position=glm::vec3(-1,-1,0);
vertices[1l] .position=glm::vec3(0,1,0);
vertices[2] .position=glm::vec3(1,-1,0);

indices[0] = 0;
indices[1] = 1;
indices[2] = 2;

Store the geometry and topology in the buffer object(s). The stride parameter controls
the number of bytes to jump to reach the next element of the same attribute. For

the interleaved format, it is typically the size of our vertex struct in bytes, that is,
sizeof (Vertex).

glGenVertexArrays (1, &vaolID) ;

glGenBuffers(l, &vboVerticesgID) ;

glGenBuffers(l, &vboIndicesID) ;
glBindVertexArray (vaolID) ;

glBindBuffer (GL_ARRAY BUFFER, vboVerticesID) ;
glBufferData (GL ARRAY BUFFER, sizeof (vertices),
&vertices[0], a GL_STATIC_DRAW) ;
glEnableVertexAttribArray (shader ["vVertex"]) ;
glVertexAttribPointer (shader ["vVertex"], 3, GL FLOAT,
GL_FALSE, stride, 0) ; a
glEnableVertexAttribArray (shader ["vColor"]) ;
glVertexAttribPointer (shader ["vColor"], 3, GL FLOAT,
GL_FALSE, stride, (const GLvoid*) of fsetof (Vertex, color));

glBindBuffer (GL_ELEMENT ARRAY BUFFER, vboIndicesID) ;
glBufferData (GL_ELEMENT ARRAY BUFFER, sizeof (indices),
&indices[0], GL_STATIC DRAW) ;

Set up the resize handler to set up the viewport and projection matrix.

void OnResize(int w, int h)
glviewport (0, 0, (GLsizei) w, (GLsizei) h);
P = glm::ortho(-1,1,-1,1);

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

7. Set up the rendering code to bind the GLSLShader shader, pass the uniforms, and
then draw the geometry.

void OnRender ()
glClear (GL_COLOR_BUFFER BIT|GL DEPTH BUFFER BIT) ;
shader.Use() ;
glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE,
glm::value ptr (P*MV)) ;
glDrawElements (GL_TRIANGLES, 3, GL_UNSIGNED_SHORT,
0);
shader.UnUse () ;
glutSwapBuffers () ;

}

8. Delete the shader and other OpenGL objects.

void OnShutdown () {
shader.DeleteShaderProgram() ;
glDeleteBuffers (1, &vboVerticesID) ;
glDeleteBuffers (1, &vboIndicesID);
glDeleteVertexArrays (1, &vaolD) ;

For this simple example, we will only use a vertex shader (shaders/shader.vert)and a
fragment shader (shaders/shader. frag). The first line in the shader signifies the GLSL
version of the shader. Starting from OpenGL v3.0, the version specifiers correspond to the
OpenGL version used. So for OpenGL v3.3, the GLSL version is 330. In addition, since we are
interested in the core profile, we add another keyword following the version humber to signify
that we have a core profile shader.

Another important thing to note is the layout qualifier. This is used to bind a specific integral
attribute index to a given per-vertex attribute. While we can give the attribute locations in any
order, for all of the recipes in this book the attribute locations are specified starting from 0
for position, 1 for normals, 2 for texture coordinates, and so on. The layout location qualifier
makes the glBindAttribLocation call redundant as the location index specified in the
shader overrides any glBindAttribLocation call.

The vertex shader simply outputs the input per-vertex color to the output (vSmoothColor).
Such attributes that are interpolated across shader stages are called varying attributes. It

also calculates the clip space position by multiplying the per-vertex position (vvertex) with
the combined modelview projection (MVP) matrix.

vSmoothColor = vec4 (vColor,1);
gl Position = MVP*vec4 (vVertex, 1) ;

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

By prefixing smooth to the output attribute, we tell the GLSL shader
M to do smooth perspective-correct interpolation for the attribute to
Q the next stage of the pipeline. The other qualifiers usable are f1lat
and noperspective. When no qualifier is specified the default
interpolation qualifier is smooth.

The fragment shader writes the input color (vSmoothColor) to the frame buffer
output (vFragColor).

vFragColor = vSmoothColor;

There's more...

In the simple triangle demo application code, we store the GLSLShader object reference in
the global scope so that we can access it in any function we desire. We modify the OnInit ()
function by adding the following lines:

shader.LoadFromFile (GL VERTEX SHADER, "shaders/shader.vert") ;
shader.LoadFromFile(GL_FRAGMENT_SHADER,"shaders/shader.frag");
shader.CreateAndLinkProgram() ;
shader.Use () ;

shader.AddAttribute ("vVertex") ;

shader.AddAttribute ("vColor") ;

shader.AddUniform ("MVP") ;
shader.UnUse () ;

The first two lines create the GLSL shader of the given type by reading the contents of the file
with the given filename. In all of the recipes in this book, the vertex shader files are stored
with a . vert extension, the geometry shader files with a . geom extension, and the fragment
shader files with a . frag extension. Next, the GLSLShader: : CreateAndLinkProgram
function is called to create the shader program from the shader object. Next, the program is
bound and then the locations of attributes and uniforms are stored.

We pass two attributes per-vertex, that is vertex position and vertex color. In order to facilitate
the data transfer to the GPU, we create a simple Vertex struct as follows:

struct Vertex {
glm::vec3 position;
glm: :vec3 color;

Vi

Vertex vertices[3];

GLushort indices[3];

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

Next, we create an array of three vertices in the global scope. In addition, we store the
triangle's vertex indices in the indices global array. Later we initialize these two arrays
inthe onInit () function. The first vertex is assigned the red color, the second vertex
is assigned the green color, and the third vertex is assigned the blue color.

vertices[0] .color=glm::vec3(1,0,0) ;
vertices[1l] .color=glm::vec3(0,1,0);
vertices[2] .color=glm::vec3(0,0,1) ;

vertices [0] .position=glm::vec3(-1,-1,0);
vertices[1] .position=glm::vec3(0,1,0);
vertices[2] .position=glm::vec3(1,-1,0);

indices[0] = 0;
indices[1] = 1;
indices[2] = 2;

Next, the vertex positions are given. The first vertex is assigned an object space position of
(-1,-1, 0), the second vertex is assigned (0,1,0), and the third vertex is assigned (1,-1,0). For
this simple demo, we use an orthographic projection for a view volume of (-1,1,-1,1). Finally,
the three indices are given in a linear order.

In OpenGL v3.3 and above, we typically store the geometry information in buffer objects,
which is a linear array of memory managed by the GPU. In order to facilitate the handling
of buffer object(s) during rendering, we use a vertex array object (VAO). This object stores
references to buffer objects that are bound after the VAO is bound. The advantage we get
from using a VAO is that after the VAO is bound, we do not have to bind the buffer object(s).

In this demo, we declare three variables in global scope; vaoID for VAO handling, and
vboVerticesID and vboIndicesID for buffer object handling. The VAO object is created
by calling the glGenvertexArrays function. The buffer objects are generated using the
glGenBuffers function. The first parameter for both of these functions is the total number
of objects required, and the second parameter is the reference to where the object handle is
stored. These functions are called in the onInit () function.

glGenVertexArrays (1, &vaolID) ;
glGenBuffers(l, &vboVerticesgID) ;
glGenBuffers(l, &vboIndicesID) ;
glBindVertexArray (vaoID) ;

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

After the VAO object is generated, we bind it to the current OpenGL context so that all
successive calls affect the attached VAO object. After the VAO binding, we bind the buffer object
storing vertices (vboVerticesID) using the glBindBuffer function to the GL._ARRAY
BUFFER binding. Next, we pass the data to the buffer object by using the glBufferData
function. This function also needs the binding point, which is again GL._ ARRAY BUFFER. The
second parameter is the size of the vertex array we will push to the GPU memory. The third
parameter is the pointer to the start of the CPU memory. We pass the address of the vertices
global array. The last parameter is the usage hint which tells the GPU that we are not going to
modify the data often.

glBindBuffer (GL_ARRAY BUFFER, vboVerticesID) ;
glBufferData (GL_ARRAY BUFFER, sizeof (vertices), &vertices[O0],
GL_STATIC DRAW) ;

The usage hints have two parts; the first part tells how frequently the data in the buffer object
is modified. These can be STATIC (modified once only), DYNAMIC (modified occasionally),

or STREAM (modified at every use). The second part is the way this data will be used. The
possible values are DRAW (the data will be written but not read), READ (the data will be read
only), and COPY (the data will be neither read nor written). Based on the two hints a qualifier
is generated. For example, GL_STATIC DRAW if the data will never be modified and GL_
DYNAMIC DRAW if the data will be modified occasionally. These hints allow the GPU and the
driver to optimize the read/write access to this memory.

In the next few calls, we enable the vertex attributes. This function needs the location of the
attribute, which we obtain by the GLSLShader: :operator [], passing it the name of the
attribute whose location we require. We then call glvertexAttributePointer to tell the
GPU how many elements there are and what is their type, whether the attribute is normalized,
the stride (which means the total number of bytes to skip to reach the next element; for our
case since the attributes are stored in a Vertex struct, the next element's stride is the size
of our Vertex struct), and finally, the pointer to the attribute in the given array. The last
parameter requires explanation in case we have interleaved attributes (as we have). The
offsetof operator returns the offset in bytes, to the attribute in the given struct. Hence, the
GPU knows how many bytes it needs to skip in order to access the next attribute of the given
type. For the vvertex attribute, the last parameter is 0 since the next element is accessed
immediately after the stride. For the second attribute vColor, it needs to hop 12 bytes before
the next vColor attribute is obtained from the given vertices array.

glEnableVertexAttribArray (shader ["vVertex"]) ;
glVertexAttribPointer (shader ["vVertex"], 3, GL FLOAT,
GL_FALSE, stride, 0) ; a
glEnableVertexAttribArray (shader ["vColor"]) ;
glVertexAttribPointer (shader ["vColor"], 3, GL FLOAT,
GL_FALSE, stride, (const GLvoid*) offsetof (Vertex, color));

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

The indices are pushed similarly using g1BindBuffer and glBufferData but to a different
binding point, that is, GL_ ELEMENT ARRAY BUFFER. Apart from this change, the rest of

the parameters are exactly the same as for the vertices data. The only difference being the
buffer object, which for this case is vboIndicesID. In addition, the passed array to the
glBufferData function is the indices array.

glBindBuffer (GL_ELEMENT ARRAY BUFFER, vboIndicesID) ;
glBufferData (GL_ELEMENT ARRAY BUFFER, sizeof (indices),
&indices[0], GL_STATIC DRAW) ;

To complement the object generation in the onInit () function, we must provide the object
deletion code. This is handled in the OnShutdown () function. We first delete the shader
program by calling the GLSLShader: :DeleteShaderProgram function. Next, we delete
the two buffer objects (vboverticesID and vboIndicesID) and finally we delete the
vertex array object (vaoID).

void OnShutdown () {
shader.DeleteShaderProgram() ;
glDeleteBuffers(l, &vboVerticesID) ;
glDeleteBuffers(l, &vboIndicesID) ;
glDeleteVertexArrays (1, &vaolD) ;

We do a deletion of the shader program because our
M GLSLShader object is allocated globally and the destructor of
Q this object will be called after the main function exits. Therefore,
if we do not delete the object in this function, the shader program
will not be deleted and we will have a graphics memory leak.

The rendering code of the simple triangle demo is as follows:

void OnRender () {
glClear (GL_COLOR_BUFFER BIT|GL_DEPTH BUFFER BIT) ;
shader.Use() ;
glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE,
glm::value ptr (P*MV)) ;
glDrawElements (GL_TRIANGLES, 3, GL UNSIGNED SHORT, O0);
shader.UnUse () ;
glutSwapBuffers () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The rendering code first clears the color and depth buffer and binds the shader

program by calling the GLSLShader: : Use () function. It then passes the combined
modelview and projection matrix to the GPU by invoking the glUniformMatrix4fv
function. The first parameter is the location of the uniform which we obtain from the
GLSLShader: :operator () function, by passing it the name of the uniform whose

location we need. The second parameter is the total number of matrices we wish to pass.
The third parameter is a Boolean signifying if the matrix needs to be transposed, and the
final parameter is the float pointer to the matrix object. Here we use the glm: :value ptr
function to get the float pointer from the matrix object. Note that the OpenGL matrices are
concatenated right to left since it follows a right handed coordinate system in a column major
layout. Hence we keep the projection matrix on the left and the modelview matrix on the right.
For this simple example, the modelview matrix (MV) is set as the identity matrix.

After this function, the glDrawElements call is made. Since we have left our VAO object
(vaoID) bound, we pass 0 to the final parameter of this function. This tells the GPU to use
the references of the GL. ELEMENT ARRAY BUFFER and GL_ARRAY BUFFER binding

points of the bound VAO. Thus we do not need to explicitly bind the vboverticesID and
vboIndicesID buffer objects again. After this call, we unbind the shader program by calling
the GLSLShader: : UnUse () function. Finally, we call the glutSwapBuf fer function to
show the back buffer on screen. After compiling and running, we get the output as shown in
the following figure:

Learn modern 3D graphics programming by Jason L. McKesson at http://www.
arcsynthesis.org/gltut/Basics/Basics.html.

e

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

Doing a ripple mesh deformer using the

vertex shader

In this recipe, we will deform a planar mesh using the vertex shader. We know that the vertex
shader is responsible for outputting the clip space position of the given object space vertex.
In between this conversion, we can apply the modeling transformation to transform the given
object space vertex to world space position.

Getting ready

For this recipe, we assume that the reader knows how to set up a simple triangle on screen
using a vertex and fragment shader as detailed in the previous recipe. The code for this
recipe is in the Chapterl\RippleDeformer directory.

How to do it...

We can implement a ripple shader using the following steps:

1. Define the vertex shader that deforms the object space vertex position.

#version 330 core

layout (location=0) in wvec3 vVertex;
uniform mat4 MVP;

uniform float time;

const float amplitude 0.125;
const float frequency 4;
const float PI = 3.14159;

void main ()

{

float distance = length(vVertex) ;

float y = amplitude*sin(-PI*distance*frequency+time) ;
gl Position = MVP*vec4 (vVertex.x, y, vVertex.z,1l);

}

2. Define a fragment shader that simply outputs a constant color.
#version 330 core

layout (location=0) out vec4 vFragColor;
void main ()

{

vFragColor = vec4(1,1,1,1);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Load the two shaders using the GLSLShader class in the OnInit () function.

shader.LoadFromFile (GL_VERTEX SHADER, "shaders/shader.vert") ;
shader.LoadFromFile (GL FRAGMENT SHADER, "shaders/shader.frag") ;
shader.CreateAndLinkProgram() ;
shader.Use() ;

shader.AddAttribute ("vVertex") ;

shader.AddUniform ("MVP") ;

shader.AddUniform("time") ;
shader.UnUse () ;

Create the geometry and topology.

int count = 0;

int i=0, j=0;

for(j=0;j<=NUM_Z;j++) {

for(i1=0;1<=NUM X;i++) {

vertices[count++] = glm::vec3(
((float (i) /(NUM X-1)) #*2-1)* HALF SIZE X, O,
((float(j)/(NUM_Z-1))*2-1)*HALF SIZE Z);

}

GLushort* id=&indices[0];

for (1 = 0; 1 < NUM Z; i++) {
for (j = 0; j < NUM X; j++) {

i * (NUM_X+1) + J;

int 11 = 10 + 1;

int i2 = i0 + (NUM X+1);

int i3 = 12 + 1;

if ((§+1)%2) {

int i0

*1d++ = 10; *id++ = 12; *id++ = i1l;

*1d++ = 1i1; *id++ = 12; *id++ = i3;
} else {

*1d++ = 10; *id++ = 12; *id++ = i3;

*1d++ = 10; *id++ = 13; *id++ = i1l;

}
Store the geometry and topology in the buffer object(s).

glGenVertexArrays (1, &vaolID) ;

glGenBuffers (1, &vboVerticesID) ;
glGenBuffers (1, &vboIndicesID) ;
glBindVertexArray (vaoID) ;

glBindBuffer (GL_ARRAY BUFFER, vboVerticesID) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

8.

glBufferData (GL ARRAY BUFFER, sizeof (vertices),
&vertices[0], GL_STATIC DRAW) ;
glEnableVertexAttribArray (shader ["vVertex"]) ;
glVertexAttribPointer (shader ["vVertex"], 3, GL FLOAT,
GL_FALSE,0,0) ;

glBindBuffer (GL_ELEMENT ARRAY BUFFER, vboIndicesID) ;
glBufferData (GL_ELEMENT ARRAY BUFFER, sizeof (indices),
&indices[0], GL_STATIC DRAW) ;

Set up the perspective projection matrix in the resize handler.
P = glm::perspective(45.0f, (GLfloat)w/h, 1.f, 1000.f);

Set up the rendering code to bind the GLSLShader shader, pass the uniforms and
then draw the geometry.

void OnRender ()
time = glutGet(GLUT_ELAPSED_TIME)/1000.0f * SPEED;
glm::mat4 T=glm::translate(glm::mat4 (1.0f),
glm::vec3(0.0f, 0.0f, dist));
glm::mat4 Rx= glm::rotate(T, rX, glm::vec3(1.0f, 0.0f,
0.0£));
glm::mat4 MV= glm::rotate(Rx, rY¥, glm::vec3(0.0f, 1.0f,
0.0£));
glm: :mat4 MVP= P*MV;
shader.Use () ;
glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE,
glm::value ptr (MVP)) ;
glUniformlf (shader ("time"), time);
glDrawElements (GL_TRIANGLES, TOTAL INDICES,
GL_UNSIGNED_ SHORT,0) ;
shader.UnUse () ;
glutSwapBuffers () ;

}

Delete the shader and other OpenGL objects.

void OnShutdown () {
shader.DeleteShaderProgram() ;
glDeleteBuffers (1, &vboVerticesID) ;
glDeleteBuffers(1l, &vboIndicesID);
glDeleteVertexArrays (1, &vaolD) ;

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

In this recipe, the only attribute passed in is the per-vertex position (vvertex). There are two
uniforms: the combined modelview projection matrix (MvP) and the current time (time). We
will use the t ime uniform to allow progression of the deformer so we can observe the ripple
movement. After these declarations are three constants, namely amplitude (which controls
how much the ripple moves up and down from the zero base line), frequency (which controls
the total number of waves), and PI (a constant used in the wave formula). Note that we could
have replaced the constants with uniforms and had them modified from the application code.

Now the real work is carried out in the main function. We first find the distance of the given
vertex from the origin. Here we use the 1ength built-in GLSL function. We then create a
simple sinusoid. We know that a general sine wave can be given using the following function:

Here, A is the wave amplitude, £ is the frequency, t is the time, and ¢ is the phase. In order
to get our ripple to start from the origin, we modify the function to the following;:

d(yz) =+ + 2
F(x,y,x) = A.sin(-nfd(x,y,z) +9)

In our formula, we first find the distance (d) of the vertex from the origin by using the
Euclidean distance formula. This is given to us by the 1ength built-in GLSL function.
Next, we input the distance into the sin function multiplying the distance by the
frequency (f£) and (). In our vertex shader, we replace the phase (@) with time.

#version 330 core

layout (location=0) in vec3 vVertex;

uniform mat4 MVP;

uniform float time;

const float amplitude = 0.125;

const float frequency = 4;

const float PI = 3.14159;

void main ()

{
float distance = length(vVertex) ;
float y = amplitude*sin(-PI*distance*frequency+time) ;
gl Position = MVP*vec4 (vVertex.x, y, vVertex.z,1l);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

After calculating the new y value, we multiply the new vertex position with the combined
modelview projection matrix (MvVP). The fragment shader simply outputs a constant color
(in this case white color, vec4 (1,1,1,1)).

#version 330 core
layout (location=0) out vec4 vFragColor;
void main ()
{
vFragColor = vec4(1,1,1,1);

}

Similar to the previous recipe, we declare the GLSLShader object in the global scope to allow
maximum visibility. Next, we initialize the GLSLShader object in the OnInit () function.

shader.LoadFromFile (GL_VERTEX SHADER, "shaders/shader.vert") ;
shader.LoadFromFile(GL_FRAGMENT_SHADER,"shaders/shader.frag");
shader.CreateAndLinkProgram() ;
shader.Use () ;

shader.AddAttribute ("vVertex") ;

shader.AddUniform ("MVP") ;

shader.AddUniform("time") ;
shader.UnUse () ;

The only difference in this recipe is the addition of an additional uniform (time).

We generate a simple 3D planar grid in the XZ plane. The geometry is stored in the vertices
global array. The total number of vertices on the X axis is stored in a global constant NUM_X,
whereas the total number of vertices on the Z axis is stored in another global constant NUM_Z.
The size of the planar grid in world space is stored in two global constants, SIZE_X and
SIZE 2z, and half of these values are stored in the HALF SIZE X and HALF SIZE Z global
constants. Using these constants, we can change the mesh resolution and world space size.

The loop simply iterates (NUM_X+1) * (NUM_Z+1) times and remaps the current vertex
index first into the 0 to 1 range and then into the -1 to 1 range, and finally multiplies it

by the HALF SIZE X and HALF SIZE Z constantsto getthe range from -HALF SIZE X
to HALF SIZE X and -HALF SIZE ZtoHALF SIZE Z.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The topology of the mesh is stored in the indices global array. While there are several ways
to generate the mesh topology, we will look at two common ways. The first method keeps the
same triangulation for all of the mesh quads as shown in the following screenshot:

0 1 2

MU X+1 NUM_ 22 NUM X3

MUN_X-2 MUM_X-1

MNUM_X

This sort of topology can be generated using the following code:

GLushort* id=&indices[0];
for (i = 0; 1 < NUM_Z; i++) {

for (j = 0; j < NUM X;

j++) |

int i0 = i * (NUM X+1) + Jj;

int i1 = i0 + 1;

int i2 = i0 + (NUM X+1);

int i3 = i2 + 1;
*id++ = 10; *id++ =
*id++ = 1i1; *id++ =

i2; *id++ = 11;

i2; *id++ = 13;

s

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

The second method alternates the triangulation at even and odd iterations resulting in a
better looking mesh as shown in the following screenshot:

0 1 2 3 4 MUNM_X-2 MUM_%X-1 NUM_X

NUM| X+ NUEA| %2 NUM| X3

In order to alternate the triangle directions and maintain their winding order, we take two
different combinations, one for an even iteration and second for an odd iteration. This can
be achieved using the following code:

GLushort* id=&indices|[0];
for (i = 0; 1 < NUM_Z; i++) {
for (j = 0; j < NUM X; j++) {

int i0 = i * (NUM X+1) + j;
int i1 = i0 + 1;

int i2 = i0 + (NUM _X+1);
int i3 = i2 + 1;

if ((§+1)%2) {

*1d++ = 10; *id++ = 12; *id++ = 1i1;

*id++ = il; *id++ = i2; *id++ = i3;
} else {

*1d++ = 10; *id++ = 12; *id++ = 1i3;

*id++ = 1i0; *id++ = i3; *id++ = i1;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

After filling the vertices and indices arrays, we push this data to the GPU memory. We first
create a vertex array object (vaoID) and two buffer objects, the GL._ ARRAY BUFFER binding
for vertices and the GL. ELEMENT ARRAY BUFFER binding for the indices array. These calls
are exactly the same as in the previous recipe. The only difference is that now we only have
a single per-vertex attribute, that is, the vertex position (vvertex). The OnShutdown ()
function is also unchanged as in the previous recipe.

The rendering code is slightly changed. We first get the current elapsed time from freeglut so
that we can move the ripple deformer in time. Next, we clear the color and depth buffers. After
this, we set up the modelview matrix. This is carried out by using the matrix transformation
functions provided by the glm library.

glm: :mat4 T=glm::translate(glm::mat4 (1.0f),

glm::vec3(0.0f, 0.0f, dist));

glm: :mat4 Rx= glm::rotate(T, rX, glm::vec3(1.0f, 0.0f, 0.0f));
glm: :mat4 MV= glm::rotate(Rx, rY, glm::vec3(0.0f, 1.0f, 0.0f));
glm: :mat4 MVP= P*MV;

Note that the matrix multiplication in g1lm follows from right to left. So the order in which we
generate the transformations will be applied in the reverse order. In our case the combined
modelview matrix will be calculated as Mv = (T* (Rx*Ry)). The translation amount, dist,
and the rotation values, rX and rY, are calculated in the mouse input functions based on the
user's input.

After calculating the modelview matrix, the combined modelview projection matrix (MVP)

is calculated. The projection matrix (P) is calculated in the OnResize () handler. In this
case, the perspective projection matrix is used with four parameters, the vertical fov, the
aspect ratio, and the near and far clip plane distances. The GLSLShader object is bound
and then the two uniforms, MVP and time are passed to the shader program. The attributes
are then transferred using the glDrawElements call as we saw in the previous recipe. The
GLSLShader object is then unbound and finally, the back buffer is swapped.

In the ripple deformer main function, we attach two new callbacks; glutMouseFunc handled
by the OnMouseDown function and glutMotionFunc handled by the OnMouseMove
function. These functions are defined as follows:

void OnMouseDown (int button, int s, int x, int y) {
if (s == GLUT_DOWN) {
oldX = x;
oldy = y;
}
if (button == GLUT MIDDLE BUTTON)
state = 0;
else
state = 1;

s

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

This function is called whenever the mouse is clicked in our application window. The first
parameter is for the button which was pressed (3LUT LEFT BUTTON for the left mouse
button, GLUT MIDDLE BUTTON for the middle mouse button, and GLUT RIGHT BUTTON for
the right mouse button). The second parameter is the state which can be either GLUT DOWN
or GLUT_UP. The last two parameters are the x and y screen location of the mouse click. In
this simple example, we store the mouse click location and then set a state variable when the
middle mouse button is pressed.

The onMouseMove function is defined as follows:

void OnMouseMove (int x, int y) {

if (state == 0)
dist *= (1 + (y - oldY)/60.0f);
else {

rY += (x - oldX)/5.0f;
rX += (y - oldy)/5.0f;
}
o0ldX = x; oldY = y;
glutPostRedisplay () ;

}

The onMouseMove function has only two parameters, the x and y screen location where
the mouse currently is. The mouse move event is raised whenever the mouse enters and
moves in the application window. Based on the state set in the OnMouseDown function,
we calculate the zoom amount (dist) if the middle mouse button is pressed. Otherwise,
we calculate the two rotation amounts (rX and rY). Next, we update the o1dx and o1dy
positions for the next event. Finally we request the freeglut framework to repaint our
application window by calling glutPostRedisplay () function. This call sends the
repaint event which re-renders our scene.

In order to make it easy for us to see the deformation, we enable wireframe rendering
by calling the glPolygonMode (GL_FRONT AND BACK, GL_LINE) function in the
OnInit () function.

There are two things to be careful about with the glPolygonMode
function. Firstly, the first parameter can only be GL_ FRONT AND

Ql BACK in the core profile. Secondly, make sure that the second
parameter is named GL_LINE instead of GL_LINES which is used
with the glDraw* functions. To disable the wireframe rendering and
return to the default fill rendering, change the second parameter from
GL_LINEtoGL FILL.

NEQ

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Running the demo code shows a ripple deformer propagating the deformation in a mesh grid
as shown in the following screenshot. Hopefully, this recipe should have cleared how to use
vertex shaders, especially for doing per-vertex transformations.

Dynamically subdividing a plane using the
geometry shader

After the vertex shader, the next programmable stage in the OpenGL v3.3 graphics pipeline
is the geometry shader. This shader contains inputs from the vertex shader stage. We can
either feed these unmodified to the next shader stage or we can add/omit/modify vertices
and primitives as desired. One thing that the vertex shaders lack is the availability of the
other vertices of the primitive. Geometry shaders have information of all on the vertices

of a single primitive.

The advantage with geometry shaders is that we can add/remove primitives on the fly.
Moreover it is easier to get all vertices of a single primitive, unlike in the vertex shader,
which has information on a single vertex only. The main drawback of geometry shaders
is the limit on the number of new vertices we can generate, which is dependent on the
hardware. Another disadvantage is the limited availability of the surrounding primitives.

In this recipe, we will dynamically subdivide a planar mesh using the geometry shader.

Eis

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

Getting ready

This recipe assumes that the reader knows how to render a simple triangle using vertex and
fragment shaders using the OpenGL v3.3 core profile. We render four planar meshes in this
recipe which are placed next to each other to create a bigger planar mesh. Each of these
meshes is subdivided using the same geometry shader. The code for this recipe is located in
the Chapterl\SubdivisionGeometryShader directory.

How to do it...

We can implement the geometry shader using the following steps:

1. Define a vertex shader (shaders/shader.vert) which outputs object space vertex
positions directly.

#version 330 core
layout (location=0) in wvec3 vVertex;
void main() {
gl Position = vec4 (vVertex, 1);

}

2. Define a geometry shader (shaders/shader.geom) which performs the subdivision
of the quad. The shader is explained in the next section.

#version 330 core
layout (triangles) in;
layout (triangle strip, max vertices=256) out;
uniform int sub divisions;
uniform mat4 MVP;
void main()
vec4 vO = gl in[0] .gl Position;
vec4 vl = gl in[1] .gl Position;
vecd v2

gl in[2] .gl Position;

float dx = abs(v0.x-v2.x)/sub_divisions;

float dz = abs(v0.z-vl.z)/sub_divisions;

float x=v0.x;

float z=v0.z;

for (int j=0;j<sub_divisions*sub_divisions;j++) {

gl Position = MVP * vec4(x,0,z,1);
EmitVertex () ;

gl Position = MVP * vec4(x,0,z+dz,1);
EmitVertex () ;

gl Position = MVP * vec4 (x+dx,0,z,1);
EmitVertex () ;

gl Position

MVP * vec4 (x+dx,0,z+dz,1) ;

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

EmitVertex () ;

EndPrimitive () ;

X+=dx;

if ((j+1) %sub divisions == 0) ({
xX=v0.X;

z+=d4z;

}

}
}

Define a fragment shader (shaders/shader . frag) that simply outputs a
constant color.

#version 330 core
layout (location=0) out vec4 vFragColor;
void main() {

vFragColor = vec4(1,1,1,1);

}

Load the shaders using the GLSLShader class in the OnInit () function.

shader.LoadFromFile (GL VERTEX SHADER,
"shaders/shader.vert") ;
shader.LoadFromFile (GL GEOMETRY SHADER, "shaders/shader.
geom") ;
shader.LoadFromFile (GL_FRAGMENT_ SHADER, "shaders/shader.
frag") ;
shader.CreateAndLinkProgram() ;
shader.Use () ;
shader.AddAttribute ("vVertex") ;
shader.AddUniform ("MVP") ;
shader.AddUniform("sub divisions");
glUniformli (shader ("sub divisions"), sub divisions);
shader.UnUse () ;

Create the geometry and topology.

vertices[0] = glm::vec3(-5,0,-5);
vertices[1l] = glm::vec3(-5,0,5);
vertices[2] = glm::vec3(5,0,5);
vertices[3] = glm::vec3(5,0,-5);

GLushort* id=&indices[0];

*id++ =
*id++ =
*id++ =
*id++ =
*id++ =

*id++ =

s

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

6.

Store the geometry and topology in the buffer object(s). Also enable the line
display mode.

glGenVertexArrays (1, &vaolID) ;

glGenBuffers (1, &vboVerticesID) ;

glGenBuffers (1, &vboIndicesID) ;
glBindVertexArray (vaoID) ;

glBindBuffer (GL_ARRAY BUFFER, vboVerticesID) ;
glBufferData (GL_ARRAY BUFFER, sizeof (vertices),
&vertices[0], GL_STATIC_DRAW) ;
glEnableVertexAttribArray (shader ["vVertex"]) ;
glVertexAttribPointer (shader ["vVertex"], 3, GL_FLOAT,
GL_FALSE,0,0) ;

ngindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboIndicesID) ;
glBufferData (GL_ELEMENT ARRAY BUFFER, sizeof (indices),
&indices[0], GL_STATIC DRAW) ;

glPolygonMode (GL_FRONT AND BACK, GL_ LINE) ;

Set up the rendering code to bind the GLSLShader shader, pass the uniforms

and then draw the geometry.

void OnRender ()
glClear (GL_COLOR_BUFFER BIT|GL DEPTH BUFFER BIT) ;
glm::mat4 T = glm::translate(glm::mat4(1.0f),
glm::vec3(0.0£,0.0f, dist));
glm::mat4 Rx=glm::rotate(T,rX,glm::vec3(1.0£f, 0.0f,
0.0£f));
glm: :mat4 MV=glm::rotate (Rx,rY,
glm::vec3(0.0£,1.0£,0.0£f));
MV=glm: :translate (MV, glm::vec3(-5,0,-5));
shader.Use () ;
glUniformli (shader ("sub_divisions"), sub_divisions) ;
glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE,
glm::value ptr (P*MV)) ;
glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED_SHORT,
0);

MV=glm: :translate (MV, glm::vec3(10,0,0));
glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE,
glm::value ptr (P*MV)) ;

glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED_SHORT,
0);

MV=glm: :translate (MV, glm::vec3(0,0,10));
glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE,
glm::value ptr (P*MV)) ;

glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED_SHORT,
0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

MV=glm::translate (MV, glm::vec3(-10,0,0));
glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE,
glm: :value ptr (P*MV)) ;
glDrawElements (GL_TRIANGLES, 6, GL UNSIGNED SHORT,
0);

shader.UnUse () ;

glutSwapBuffers() ;

}

8. Delete the shader and other OpenGL objects.

void OnShutdown () {
shader.DeleteShaderProgram() ;
glDeleteBuffers(1l, &vboVerticesID) ;
glDeleteBuffers(1l, &vboIndicesID);
glDeleteVertexArrays (1, &vaolD) ;
cout<<"Shutdown successfull"<<endl;

Let's dissect the geometry shader.

#version 330 core
layout (triangles) in;
layout (triangle strip, max vertices=256) out;

The first line signifies the GLSL version of the shader. The next two lines are important as they
tell the shader processor about the input and output primitives of our geometry shader. In this
case, the input will be triangles and the output will be a triangle strip.

In addition, we also need to give the maximum number of output vertices from this geometry
shader. This is a hardware specific number. For the hardware used in this development, the
max_vertices value is found to be 256. This information can be obtained by querying the
GL_MAX GEOMETRY OUTPUT VERTICES field and it is dependent on the primitive type used
and the number of attributes stored per-vertex.

uniform int sub divisions;
uniform mat4 MVP;

Next, we declare two uniforms, the total number of subdivisions desired (sub_divisions)
and the combined modelview projection matrix (MVP).

void main() {
vec4 vO = gl in[0] .gl Position;
vec4 vl = gl in[1] .gl Position;
vec4 v2 = gl in[2] .gl Position;

@l

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

The bulk of the work takes place in the main entry point function. For each triangle pushed
from the application, the geometry shader is run once. Thus, for each triangle, the positions
of its vertices are obtained from the gl _Position attribute which is stored in the built-in
gl _in array. All other attributes are input as an array in the geometry shader. We store the
input positions in local variable vo0, v1, and v2.

Next, we calculate the size of the smallest quad for the given subdivision based on the size
of the given base triangle and the total number of subdivisions required.

float dx = abs(v0.x-v2.x)/sub_divisions;
float dz = abs(v0.z-vl.z)/sub_divisions;
float x=v0.x;
float z=v0.z;
for(int j=0;j<sub_divisions*sub divisions;j++) {
gl Position = MVP * vec4(x, 0, z,1); EmitVertex(

7

)
gl Position = MVP * vec4(x, 0,z+dz,1); EmitVertex() ;
gl Position = MVP * vec4 (x+dx,0, z,1); EmitVertex();
gl Position = MVP * vec4 (x+dx,0,z+dz,1); EmitVertex();
EndPrimitive () ;

X+=dx;

if((j+1) % sub_divisions == 0) {
x=v0.x;
z+=dz;

}
}
}

We start from the first vertex. We store the x and z values of this vertex in local variables.
Next, we iterate N*N times, where N is the total number of subdivisions required. For example,
if we need to subdivide the mesh three times on both axes, the loop will run nine times, which
is the total number of quads. After calculating the positions of the four vertices, they are
emitted by calling EmitVertex (). This function emits the current values of output variables
to the current output primitive on the primitive stream. Next, the EndPrimitive () call is
issued to signify that we have emitted the four vertices of triangle strip.

After these calculations, the local variable x is incremented by dx amount. If we are at an
iteration that is a multiple of sub_divisions, we reset variable x to the x value of the first
vertex while incrementing the local variable z.

The fragment shader outputs a constant color (white: vec4 (1,1,1,1)).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

There's more...

The application code is similar to the last recipes. We have an additional shader (shaders/
shader.geom), which is our geometry shader that is loaded from file.

shader.LoadFromFile (GL_VERTEX SHADER, "shaders/shader.vert");
shader.LoadFromFile (GL_GEOMETRY SHADER, "shaders/shader.geom") ;
shader.LoadFromFile (GL_FRAGMENT SHADER, "shaders/shader.frag") ;
shader.CreateAndLinkProgram() ;
shader.Use () ;

shader.AddAttribute ("vVertex") ;

shader.AddUniform ("MVP") ;

shader.AddUniform("sub divisions");

glUniformli (shader ("sub divisions"), sub divisions);
shader.UnUse () ;

The notable additions are highlighted, which include the new geometry shader and an
additional uniform for the total subdivisions desired (sub_divisions). We initialize this
uniform at initialization. The buffer object handling is similar to the simple triangle recipe.
The other difference is in the rendering function where there are some additional modeling
transformations (translations) after the viewing transformation.

The onRender () function starts by clearing the color and depth buffers. It then calculates
the viewing transformation as in the previous recipe.

void OnRender ()
glClear (GL_COLOR_BUFFER BIT|GL_DEPTH BUFFER BIT) ;
glm::mat4 T = glm::translate(glm::mat4(1.0f),
glm::vec3(0.0£,0.0f, dist));
glm: :mat4 Rx=glm::rotate(T,rX,glm::vec3(1.0f, 0.0f, 0.0f));
glm: :mat4 MV=glm::rotate(Rx,rY, glm::vec3(0.0f,1.0f£,0.0£f));
MV=glm: :translate(MV, glm::vec3(-5,0,-5));

Since our planer mesh geometry is positioned at origin going from -5 to 5 on the X and Z
axes, we have to place them in the appropriate place by translating them, otherwise they
would overlay each other.

Next, we first bind the shader program. Then we pass the shader uniforms which include

the sub_divisions uniform and the combined modelview projection matrix (MvVP) uniform.
Then we pass the attributes by issuing a call to the glDrawElements function. We then add
the relative translation for each instance to get a new modelview matrix for the next draw call.
This is repeated three times to get all four planar meshes placed properly in the world space.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

In this recipe, we handle keyboard input to allow the user to change the subdivision level
dynamically. We first attach our keyboard event handler (OnKey) to glutKeyboardFunc.
The keyboard event handler is defined as follows:

void OnKey (unsigned char key, int x, int y) {
switch (key) {
case ',': sub divisions--; break;
case '.': sub divisions++; break;
}
sub _divisions = max(1l,min(8, sub_divisions)) ;
glutPostRedisplay () ;

}

We can change the subdivision levels by pressing the , and . keys. We then check to make

sure that the subdivisions are within the allowed limit. Finally, we request the freeglut function,
glutPostRedisplay (), to repaint the window to show the new mesh. Compiling and running
the demo code displays four planar meshes. Pressing the , key decreases the subdivision level
and the . key increases the subdivision level. The output from the subdivision geometry shader
showing multiple subdivision levels is displayed in the following screenshot:

sub-division=1 sub-division=4

sub-division=6 sub-division=8

You can view the Geometry shader tutorial part 1 and 2 at Geeks3D:

http://www.geeks3d.com/20111111/simple-introduction-to-geometry-
shaders-glsl-opengl-tutorial-partl/

http://www.geeks3d.com/20111117/simple-introduction-to-geometry-
shader-in-glsl-part-2/

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Dynamically subdividing a plane using the

geometry shader with instanced rendering

In order to avoid pushing the same data multiple times, we can exploit the instanced
rendering functions. We will now see how we can omit the multiple glDrawElements
calls in the previous recipe with a single glDrawElementsInstanced call.

Getting ready

Before doing this, we assume that the reader knows how to use the geometry
shader in the OpenGL 3.3 core profile. The code for this recipe is in the Chapterl\
SubdivisionGeometryShader Instanced directory.

How to do it...

Converting the previous recipe to use instanced rendering requires the following steps:

1. Change the vertex shader to handle the instance modeling matrix and output world
space positions (shaders/shader.vert).

#version 330 core

layout (location=0) in wvec3 vVertex;
uniform mat4 M[4];

void main ()

{

gl Position = M[gl InstanceID] *vec4 (vVertex, 1);

}

2. Change the geometry shader to replace the MVP matrix with the PV matrix
(shaders/shader.geom).

#version 330 core

layout (triangles) in;

layout (triangle strip, max vertices=256) out;
uniform int sub divisions;

uniform mat4 PV;

void main()

{

vec4 vO = gl in[0] .gl Position;

vec4 vl = gl in[1] .gl Position;

vec4 v2 = gl in[2] .gl Position;
float dx = abs(v0.x-v2.x)/sub divisions;
float dz = abs(v0.z-vl.z)/sub divisions;

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

float x=v0.x;
float z=v0.z;
for(int j=0;j<sub_divisions*sub_divisions;j++) {

gl Position = PV * vec4(x,0,z,1); EmitVertex();
gl Position = PV * vec4(x,0,z+dz,1); EmitVertex() ;
gl Position = PV * vec4(x+dx,0,z,1); EmitVertex();
gl Position = PV * vec4 (x+dx,0,z+dz,1); EmitVertex();
EndPrimitive () ;
X+=dx;
if((j+1) %sub divisions == 0) ({

xX=v0.X;

z+=dz;

}

3. Initialize the per-instance model matrices (M).

void OnInit ()
//set the instance modeling matrix
M[0] = glm::translate(glm::mat4(1l), glm::vec3(-5,0,-5));
M[1l] = glm::translate(M[0], glm::vec3(10,0,0));
M[2] = glm::translate(M[1l], glm::vec3(0,0,10));
M[3] = glm::translate(M[2], glm::vec3(-10,0,0));

shader.Use () ;
shader.AddAttribute ("vVertex") ;
shader.AddUniform("PV") ;
shader.AddUniform("M") ;
shader.AddUniform("sub divisions") ;
glUniformli (shader ("sub divisions"), sub divisions);
glUniformMatrix4fv (shader ("M"), 4, GL FALSE,
glm::value ptr(M[0]));
shader.UnUse () ;

4. Render instances using the glDrawElement Instanced call.

void OnRender ()
glClear (GL_COLOR_BUFFER BIT|GL_DEPTH BUFFER BIT) ;
glm::mat4 T =glm::translate(glm::mat4(1.0f),
glm::vec3(0.0f, 0.0f, dist));
glm::mat4 Rx=glm::rotate(T,rX,glm::vec3(1.0f, 0.0f,
0.0£f));
glm::mat4 V =glm::rotate(Rx,rY,glm::vec3(0.0f,
1.0£,0.0f));
glm: :mat4 PV = P*V;

=)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

shader.Use () ;
glUniformMatrix4fv (shader ("PV"),1,GL FALSE,
glm: :value ptr(PV));
glUniformli (shader ("sub divisions"), sub _divisions) ;
glDrawElementsInstanced (GL TRIANGLES,
6, GL UNSIGNED SHORT, 0, 4);

shader.UnUse () ;

glutSwapBuffers () ;

}

First, we need to store the model matrix for each instance separately. Since we have four
instances, we store a uniform array of four elements (M[4]). Second, we multiply the per-vertex
position (vvertex) with the model matrix for the current instance (M[gl_InstanceID]).

W Note that the g1 _InstanceID built-in attribute will be filled
~ with the index of each instance automatically at the time of the
Q glDrawElementsInstanced call. Also note that this built-in
attribute is only accessible in the vertex shader.

The MVP matrix is omitted from the geometry shader since now the input vertex positions
are in world space. So we only need to multiply them with the combined view projection (PV)
matrix. On the application side, the Mv matrix is removed. Instead, we store the model matrix
array for all four instances (glm: :mat4 M([4]). The values of these matrices are initialized
in the onInit () function as follows:

0] = glm::translate(glm::mat4 (1), glm::vec3(-5,0,-5));

(g

1] = glm::translate(M[0], glm::vec3(10,0,0));
2] = glm::translate(M[1], glm::vec3(0,0,10));
3] = glm::translate(M[2], glm::vec3(-10,0,0));

The rendering function, OnRender (), creates the combined view projection matrix (PV)
and then calls glDrawElementsInsntanced. The first four parameters are similar to the
glDrawElements function. The final parameter is the total number of instances desired.
Instanced rendering is an efficient mechanism for rendering identical geometry whereby
the GL_ARRAY BUFFER and GL_ELEMENT ARRAY BUFFER bindings are shared between
instances allowing the GPU to do efficient resource access and sharing.

void OnRender ()
glClear (GL_COLOR_BUFFER BIT|GL DEPTH BUFFER BIT) ;
glm::mat4 T = glm::translate(glm::mat4(1.0£f),glm::vec3(0.0f,

0.0f, dist));
glm::mat4 Rx = glm::rotate(T, rX, glm::vec3(1.0f, 0.0f,
0.0f));

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

glm::mat4 V = glm::rotate(Rx, rY¥, glm::vec3(0.0f, 1.0f, 0.0f));
glm: :mat4 PV = P*V;
shader.Use () ;
glUniformMatrix4fv (shader ("PV"),1,GL FALSE,
glm: :value ptr(PV));
glUniformli (shader ("sub divisions"), sub divisions);
glDrawElementsInstanced (GL TRIANGLES, 6,GL UNSIGNED SHORT,O,
4);
shader.UnUse () ;
glutSwapBuffers () ;

}

There is always a limit on the maximum number of matrices one can output from the
vertex shader and this has some performance implications as well. Some performance
improvements can be obtained by replacing the matrix storage with translation and scaling
vectors, and an orientation quaternion which can then be converted on the fly into a matrix
in the shader.

The official OpenGL wiki can be found at http://www.opengl .org/wiki/Built-in
Variable %28GLSL%29.

An instance rendering tutorial from OGLDev can be found at http://ogldev.atspace.
co.uk/www/tutorial33/tutorial33.html.

Drawing a 2D image in a window using

the fragment shader and the SOIL image
loading library

We will wrap up this chapter with a recipe for creating a simple image viewer in the OpenGL
v3.3 core profile using the SOIL image loading library.

Getting ready

After setting up the Visual Studio environment, we can now work with the SOIL library. The
code for this recipe is in the Chapterl/ImageLoader directory.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

How to do it...

Let us now implement the image loader by following these steps:

1.

Load the image using the SOIL library. Since the loaded image from SOIL is inverted
vertically, we flip the image on the Y axis.

int texture width = 0, texture height = 0, channels=0;

GLubyte* pData = SOIL load image(filename.c_str(),
&texture width, &texture height, &channels,
SOIL_LOAD_ AUTO) ;

if (pData == NULL) {
cerr<<"Cannot load image: "<<filename.c str()<<endl;
exit (EXIT FAILURE) ;

}

int 1,7;

for(j = 0; j*2 < texture height; ++j)

{

int indexl = j * texture width * channels;

int index2 = (texture height - 1 - j) * texture width *
channels;

for(i = texture width * channels; i > 0; --1i)

{

GLubyte temp = pDatal[indexl];
pData [index1]

pData [index2] ;
pData [index2]

temp;
++indexl;
++index2;

}

Set up the OpenGL texture object and free the data allocated by the SOIL library.

glGenTextures (1, &texturelID) ;
glActiveTexture (GL TEXTUREO) ;
glBindTexture (GL TEXTURE 2D, texturelD);

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE MIN FILTER,
GL_LINEAR) ;

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE MAG FILTER,
GL_LINEAR) ;

glTexParameteri (GL TEXTURE 2D, GL_TEXTURE WRAP S,
GL_CLAMP) ;

glTexParameteri (GL TEXTURE 2D, GL_TEXTURE WRAP T,
GL_CLAMP) ;

glTexImage2D (GL TEXTURE 2D, 0, GL RGB, texture width,
texture height, 0, GL_RGB, GL UNSIGNED BYTE, pData);

SOIL free image data(pData) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

3.

Set up the vertex shader to output the clip space position (shaders/shader

#version 330 core
layout (location=0) in vec2 vVertex;
smooth out vec2 vUV;
void main ()
{
gl Position = vec4 (vVertex*2.0-1,0,1);
vUV = vVertex;

}

Set up the fragment shader that samples our image texture
(shaders/shader. frag).

#version 330 core

layout (location=0) out vec4 vFragColor;
smooth in vec2 vUV;

uniform sampler2D textureMap;

void main ()

{

vFragColor = texture(textureMap, vUV);

}

Set up the application code using the GL.SL.Shader shader class.
shader.LoadFromFile (GL VERTEX SHADER,
"shaders/shader.vert")? B
shader.LoadFromFile(GL_FRAGMENT_SHADER,"shaders/shader.
frag") ;
shader.CreateAndLinkProgram() ;
shader.Use () ;
shader.AddAttribute ("vVertex") ;
shader.AddUniform("textureMap") ;
glUniformli (shader ("textureMap"), 0);
shader.UnUse () ;

.vert).

Set up the geometry and topology and pass data to the GPU using buffer objects.

vertices[0] = glm::vec2(0.0,0.0);
vertices[1l] = glm::vec2(1.0,0.0);
vertices[2] = glm::vec2(1.0,1.0);
vertices[3] = glm::vec2(0.0,1.0);

GLushort* id=&indices[0];
*id++ =0;
*id++ =1;
*id++ =2;
*id++ =0;

*id++ =2;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

*id++ =3;

glGenVertexArrays (1, &vaolD) ;

glGenBuffers (1, &vboVerticesID) ;
glGenBuffers (1, &vboIndicesID) ;
glBindVertexArray (vaoID) ;

glBindBuffer (GL ARRAY BUFFER, vboVerticesID) ;

glBufferData (GL ARRAY BUFFER, sizeof (vertices),
&vertices[0], GL_STATIC DRAW) ;
glEnableVertexAttribArray (shader ["vVertex"]) ;
glVertexAttribPointer (shader ["vVertex"], 2, GL FLOAT,
GL_FALSE,0,0) ;

glBindBuffer (GL_ELEMENT ARRAY BUFFER, vboIndicesID) ;

glBufferData (GL_ELEMENT ARRAY BUFFER, sizeof (indices),
&indices[0], GL_STATIC DRAW) ;

7. Set the shader and render the geometry.

void OnRender ()
glClear (GL_COLOR_BUFFER BIT|GL_DEPTH BUFFER BIT) ;
shader.Use () ;
glDrawElements (GL_TRIANGLES, 6, GL UNSIGNED SHORT, O0);
shader.UnUse () ;
glutSwapBuffers () ;

}

8. Release the allocated resources.

void OnShutdown () {
shader.DeleteShaderProgram() ;
glDeleteBuffers (1, &vboVerticesID) ;
glDeleteBuffers (1, &vboIndicesID);
glDeleteVertexArrays (1, &vaolD) ;
glDeleteTextures (1, &texturelD);

The sOIL library provides a lot of functions but for now we are only interested in the
SOIL load_image function.

int texture width = 0, texture height = 0, channels=0;
GLubyte* pData = SOIL load image(filename.c_str(), &texture width,
&texture height, &channels, SOIL_LOAD AUTO) ;
if (pbData == NULL) {
cerr<<"Cannot load image: "<<filename.c_ str()<<endl;
eXit(EXIT_FAILURE);

}

i

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

The first parameter is the image file name. The next three parameters return the texture width,
texture height, and total color channels in the image. These are used when generating the
OpenGL texture object. The final parameter is the flag which is used to control further processing
on the image. For this simple example, we will use the SOIL LOAD AUTO flag which keeps all

of the loading settings set to default. If the function succeeds, it returns unsigned char* to
the image data. If it fails, the return value is NULL (0). Since the image data loaded by SOIL is
vertically flipped, we then use two nested loops to flip the image data on the Y axis.

int 1i,73;
for(j = 0;
{
int indexl =
int index2 =
channels;
for(i =
{
GLubyte temp =
pData[indexl] =
pData[index2] = temp;
++index1;

++index2;

}

(texture height - 1 - Jj)

texture_width * channels; i > 0;

j*2 < texture height; ++j)

j * texture width * channels;

* texture width *

—-i)

pData [index1] ;
pData [index2] ;

After the image data is loaded, we generate an OpenGL texture object and pass this data to

the texture memory.

glGenTextures (1, &texturelD) ;
glActiveTexture (GL _TEXTUREO) ;
glBindTexture (GL_TEXTURE_2D,
glTexParameteri (GL_TEXTURE_2D,
GL_LINEAR) ;

glTexParameteri (GL_TEXTURE_2D,
GL_LINEAR) ;

glTexParameteri (GL_TEXTURE_2D,
glTexParameteri (GL_TEXTURE_2D,
glTexImage2D (GL TEXTURE 2D, O,
texture_height,_ G
SOIL free image data(pData) ;

texturelD) ;

GL_TEXTURE_MIN FILTER,
GL_TEXTURE_MAG FILTER,

GL_TEXTURE WRAP_S, GL_CLAMP) ;
GL_TEXTURE WRAP_T, GL_CLAMP) ;

GL_RGB, texture_width,

0, GL_RGB, GL_UNSIGNED BYTE, pData) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

As with every other OpenGL object, we have to first call glGenTextures. The first parameter
is the total number of texture objects we need and the second parameter holds the ID of the
texture object generated. After generation of the texture object, we set the active texture unit
by calling glActiveTexture (GL_TEXTUREO) and then bind the texture to the active texture
unit by calling glBindTextures (GL_TEXTURE 2D, &textureID). Next, we adjustthe
texture parameters like the texture filtering for minification and magnification, as well as the
texture wrapping modes for S and T texture coordinates. After these calls, we pass the loaded
image data to the glTexImage2D function.

The glTexImage2D function is where the actual allocation of the texture object takes

place. The first parameter is the texture target (in our case this is GL_ TEXTURE 2D). The
second parameter is the mipmap level which we keep to 0. The third parameter is the internal
format. We can determine this by looking at the image properties. The fourth and fifth
parameters store the texture width and height respectively. The sixth parameter is 0 for no
border and 1 for border. The seventh parameter is the image format. The eighth parameter

is the type of the image data pointer, and the final parameter is the pointer to the raw image
data. After this function, we can safely release the image data allocated by SOIL by calling
SOIL free image data(pData).

There's more...

In this recipe, we use two shaders, the vertex shader and the fragment shader. The vertex
shader outputs the clip space position from the input vertex position (vvertex) by simple
arithmetic. Using the vertex positions, it also generates the texture coordinates (vuv) for
sampling of the texture in the fragment shader.

gl Position = vec4 (vVertex*2.0-1,0,1);
vUV = vVertex;

The fragment shader has the texture coordinates smoothly interpolated from the vertex
shader stage through the rasterizer. The image that we loaded using SOIL is passed to a
texture sampler (uniform sampler2D textureMap) Which is then sampled using the input
texture coordinates (vFragColor = texture (textureMap, vUV)).So inthe end, we get
the image displayed on the screen.

The application side code is similar to the previous recipe. The changes include an addition
of the textureMap sampler uniform.

shader.Use() ;
shader.AddAttribute ("vVertex") ;
shader.AddUniform("textureMap") ;
glUniformli (shader ("textureMap"), 0);
shader.UnUse () ;

-

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Modern OpenGL

Since this uniform will not change throughout the lifetime of the application, we initialize it
once only. The first parameter of glUniformli is the location of the uniform. We set the
value of the sampler uniform to the active texture unit where the texture is bound. In our
case, the texture is bound to texture unit 0, that is, GL._ TEXTUREO. Therefore we pass 0

to the uniform. If it was bound to GL_TEXTUREL, we would pass 1 to the uniform.

The onShutdown () function is similar to the earlier recipes. In addition, this code adds
deletion of the OpenGL texture object. The rendering code first clears the color and depth
buffers. Next, it binds the shader program and then invokes the glDrawElement call to
render the triangles. Finally the shader is unbound and then the glutSwapBuffers function
is called to display the current back buffer as the next front buffer. Compiling and running this
code displays the image in a window as shown in the following screenshot:

Using image loading libraries like SOIL and a fragment shader, we can make a simple
image viewer with basic GLSL functionality. More elaborate effects may be achieved by
using techniques detailed in the later recipes of this book.

=

www.it-ebooks.info

http://www.it-ebooks.info/

3D Viewing and
Object Picking

The recipes covered in this chapter include:

» Implementing a vector-based camera model with FPS style input support
» Implementing the free camera

» Implementing target camera

» Implementing the view frustum culling

» Implementing object picking using the depth buffer

» Implementing object picking using color based picking

» Implementing object picking using scene intersection queries

Introduction

In this chapter, we will look at the recipes for handling 3D viewing tasks and object picking
in OpenGL v3.3 and above. All of the real-time simulations, games, and other graphics
applications require a virtual camera or a virtual viewer from the point of view of which the
3D scene is rendered. The virtual camera is itself placed in the 3D world and has a specific
direction called the camera look direction. Internally, the virtual camera is itself a collection
of translations and rotations, which is stored inside the viewing matrix.

Moreover, projection settings for the virtual camera control how big or small the objects
appear on screen. This is the kind of functionality which is controlled through the real world
camera lens. These are controlled through the projection matrix. In addition to specifying the
viewing and projection matrices, the virtual camera may also help with reducing the amount
of geometry pushed to the GPU. This is through a process called view frustum culling. Rather
than rendering all of the objects in the scene, only those that are visible to the virtual camera
are rendered, thus improving the runtime performance of the application.

www.it-ebooks.info

http://www.it-ebooks.info/

3D Viewing and Object Picking

Implementing a vector-based camera with

FPS style input support

We will begin this chapter by designing a simple class to handle the camera. In a typical
OpenGL application, the viewing operations are carried out to place a virtual object on screen.
We leave the details of the transformations required in between to a typical graduate text on
computer graphics like the one given in the See also section of this recipe. This recipe will
focus on designing a simple and efficient camera class. We create a simple inheritance from
a base class called CAbstractCamera. We will inherit two classes from this parent class,
CFreeCamera and CTargetCamera, as shown in the following figure:

| CFreeCamera | | CTargetCamera|

Getting ready

The code for this recipe is in the Chapter2/src directory. The CAbstractCamera class is
defined in the AbstractCamera. [h/cpp] files.

class CAbstractCamera
{
public:
CAbstractCamera (void) ;
~CAbstractCamera (void) ;
void SetupProjection(const float fovy, const float aspectRatio,
const float near=0.1f, const float far=1000.0f);

virtual void Update() = 0;
virtual void Rotate (const float yaw, const float pitch, const
float roll);

const glm::mat4 GetViewMatrix () const;

const glm::mat4 GetProjectionMatrix() const;

void SetPosition (const glm::vec3& V) ;

const glm::vec3 GetPosition() const;

void SetFOV (const float fov);

const float GetFOV () const;

const float GetAspectRatio() const;

void CalcFrustumPlanes () ;

bool IsPointInFrustum(const glm::vec3& point) ;

bool IsSphereInFrustum(const glm::vec3& center, const float
radius) ;

bool IsBoxInFrustum(const glm::vec3& min, const glm::vec3& max) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

void GetFrustumPlanes (glm::vec4 planes[6]);
glm: :vec3 farPts[4];
glm: :vec3 nearPts[4];
protected:
float yaw, pitch, roll, fov, aspect ratio, Znear, Zfar;
static glm::vec3 UP;
glm: :vec3 look;
glm::vec3 up;
glm::vec3 right;
glm: :vec3 position;
glm: :mat4 V; //view matrix
glm: :mat4 P; //projection matrix
CPlane planes[6]; //Frustum planes

}i

We first declare the constructor/destructor pair. Next, the function for setting the projection
for the camera is specified. Then some functions for updating the camera matrices based on
rotation values are declared. Following these, the accessors and mutators are defined.

The class declaration is concluded with the view frustum culling-specific functions. Finally,

the member fields are declared. The inheriting class needs to provide the implementation of
one pure virtual function—Update (to recalculate the matrices and orientation vectors). The
movement of the camera is based on three orientation vectors, namely, 1ook, up, and right.

How to do it...

In a typical application, we will hot use the CAbstractCamera class. Instead, we will use
either the CFreeCamera class or the CTargetCamera class, as detailed in the following
recipes. In this recipe, we will see how to handle input using the mouse and keyboard.

In order to handle the keyboard events, we perform the following processing in the idle
callback function:

1. Check for the keyboard key press event.
2. Ifthe Wor S key is pressed, move the camera in the 1ook vector direction:

if (GetAsyncKeyState (VK W) & 0x8000)
cam.Walk (dt) ;

if (GetAsyncKeyState (VK S) & 0x8000)
cam.Walk (-dt) ;

3. Ifthe A or D key is pressed, move the camera in the right vector direction:

if (GetAsyncKeyState (VK A) & 0x8000)
cam.Strafe (-dt) ;

if (GetAsyncKeyState (VK D) & 0x8000)
cam.Strafe (dt) ;

7}

www.it-ebooks.info

http://www.it-ebooks.info/

3D Viewing and Object Picking

4. Ifthe Q or Z key is pressed, move the camera in the up vector direction:

if (GetAsyncKeyState (VK Q) & 0x8000)
cam.Lift (dt) ;

if (GetAsyncKeyState (VK Z) & 0x8000)
cam.Lift (-dt) ;

For handling mouse events, we attach two callbacks. One for mouse movement and the other
for the mouse click event handling:
Define the mouse down and mouse move event handlers.

Determine the mouse input choice (the zoom or rotate state) in the mouse down
event handler based on the mouse button clicked:

if (button == GLUT_MIDDLE_BUTTON)
state = 0;

else
state = 1;

3. If zoom state is chosen, calculate the fov value based on the drag amount and then
set up the camera projection matrix:
if (state == 0) {
fov += (y - oldYy)/5.0f;
cam.SetupProjection(fov, cam.GetAspectRatiol()) ;

}

4. If the rotate state is chosen, calculate the rotation amount (pitch and yaw). If
mouse filtering is enabled, use the filtered mouse input, otherwise use the raw
rotation amount:

else {
rY += (y - oldy)/5.0f;
rX += (0ldX-x)/5.0f;
if (useFiltering)
filterMouseMoves (rX, rY);

else {
mouseX = rX;
mouseY = rY;

}

cam.Rotate (mouseX, mouseY, 0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

There's more...

It is always better to use filtered mouse input, which gives smoother movement. In the recipes,
we use a simple average filter of the last 10 inputs weighted based on their temporal distance.
So the previous input is given more weight and the 5th latest input is given less weight. The
filtered result is used as shown in the following code snippet:

void filterMouseMoves (float dx, float dy) {
for (int i = MOUSE_HISTORY BUFFER SIZE - 1; i > 0; --1) {
mouseHistory[i] = mouseHistory[i - 1];
}
mouseHistory[0] = glm::vec2(dx, dy);
float averageX = 0.0f, averageY = 0.0f, averageTotal = 0.0f,
currentWeight = 1.0f;

for (int i = 0; i < MOUSE HISTORY BUFFER SIZE; ++1i) ({
glm: :vec2 tmp=mouseHistory[i];
averageX += tmp.x * currentWeight;
averageY += tmp.y * currentWeight;
averageTotal += 1.0f * currentWeight;
currentWeight *= MOUSE FILTER WEIGHT;
}
mouseX = averageX / averageTotal;
mouseY = averageY / averageTotal;

When using filtered mouse input, make sure that the history buffer
is filled with the appropriate initial value; otherwise you will see a
A . . .
sudden jerk in the first few frames.

» Smooth mouse filtering FAQ by Paul Nettle (http://www.flipcode.com/
archives/Smooth Mouse Filtering.shtml)

» Real-time Rendering 3rd Edition by Tomas Akenine-Moller, Eric Haines, and Naty
Hoffman, AK Peters/CRC Press, 2008

Implementing the free camera

Free camera is the first camera type which we will implement in this recipe. A free camera
does not have a fixed target. However it does have a fixed position from which it can look in
any direction.

s

www.it-ebooks.info

http://www.it-ebooks.info/

3D Viewing and Object Picking

Getting ready

The following figure shows a free viewing camera. When we rotate the camera, it rotates at its
position. When we move the camera, it keeps looking in the same direction.

The source code for this recipe is in the Chapter2/FreeCamera directory. The
CFreeCamera class is defined in the Chapter2/src/FreeCamera. [h/cpp] files.
The class interface is as follows:

class CFreeCamera : public CAbstractCamera
{
public:
CFreeCamera (void) ;
~CFreeCamera (void) ;
void Update() ;
void Walk (const float dt) ;
void Strafe(const float dt);
void Lift (const float dt) ;
void SetTranslation(const glm::vec3& t);
glm::vec3 GetTranslation () const;
void SetSpeed(const float speed) ;
const float GetSpeed() const;
protected:
float speed; //move speed of camera in m/s
glm::vec3 translation;

bi

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

How to do it...

The steps needed to implement the free camera are as follows:

1.
2.

Define the CFreeCamera class and add a vector to store the current translation.

In the Update method, calculate the new orientation (rotation) matrix, using the
current camera orientations (that is, yaw, pitch, and roll amount):

glm::mat4 R = glm::yawPitchRoll (yaw,pitch, roll);

Make sure that the yaw, pitch, and roll angles are in radians.

Translate the camera position by the translation amount:

position+=translation;

If we need to implement a free camera which gradually comes to a halt, we should
gradually decay the translation vector by adding the following code after the key
events are handled:

glm::vec3 t = cam.GetTranslation() ;
if (glm::dot (t,t)>EPSILON2) {
cam.SetTranslation (t*0.95f) ;

}

If no decay is needed, then we should clear the translation vector to 0 in the
CFreeCamera: : Update function after translating the position:

translation = glm::vec3(0);

Transform the 1ook vector by the current rotation matrix, and determine the right
and up vectors to calculate the orthonormal basis:

look = glm::vec3 (R*glm::vec4(0,0,1,0));
up = glm::vec3 (R*glm::vec4(0,1,0,0));
right = glm::cross(look, up);

Determine the camera target point:

glm::vec3 tgt = position+look;

Use the glm: : lookat function to calculate the new view matrix using the camera
position, target, and the up vector:

V = glm::lookAt (position, tgt, up);

[ei-

www.it-ebooks.info

http://www.it-ebooks.info/

3D Viewing and Object Picking

There's more...

The Wwalk function simply translates the camera in the look direction:

void CFreeCamera::Walk(const float dt) {
translation += (look*dt) ;

}
The strafe function translates the camera in the right direction:

void CFreeCamera::Strafe(const float dt) {
translation += (right*dt);

}
The Lift function translates the camera in the up direction:

void CFreeCamera::Lift (const float dt) {
translation += (up*dt);

}

Running the demo application renders an infinite checkered plane as shown in the following
figure. The free camera can be moved around by pressing the keys W, S, A, D, Q, and Z.
Left-clicking the mouse rotates the camera at the current position to change the look
direction. Middle-click zooms the camera in the look direction.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

See also

» DHPOWare OpenGL camera demo - Part 1 (http://www.dhpoware.com/demos/
glCameral.html)

» DHPOWare OpenGL camera demo - Part 2 (http://www.dhpoware.com/demos/
glCamera2.html)

» DHPOWare OpenGL camera demo - Part 3 (http://www.dhpoware.com/demos/
glCamera3.html)

Implementing the target camera

The target camera works the opposite way. Rather than the position, the target remains fixed,
while the camera moves or rotates around the target. Some operations like panning, move
both the target and the camera position together.

Getting ready

The following figure shows an illustration of a target camera. Note that the small box is the
target position for the camera.

The code for this recipe resides in the Chapter2/TargetCamera directory. The
CTargetCamera class is defined in the Chapter2/src/TargetCamera. [h/cpp] files.
The class declaration is as follows:

class CTargetCamera : public CAbstractCamera

{

public:

(&5}

www.it-ebooks.info

http://www.it-ebooks.info/

3D Viewing and Object Picking

CTargetCamera (void) ;

~CTargetCamera (void) ;

void Update () ;

void Rotate(const float yaw, const float pitch, const float
roll) ;

void SetTarget (const glm::vec3 tgt);

const glm::vec3 GetTarget () const;

void Pan(const float dx, const float dy);

void Zoom(const float amount) ;

void Move (const float dx, const float dz);

protected:

}i

glm: :vec3 target;

float minRy, maxRy;

float distance;

float minDistance, maxDistance;

How to do it...

We implement the target camera as follows:

1.

=

Define the CTargetCamera class with a target position (target), the rotation
limits (minRy and maxRy), the distance between the target and the camera position
(distance), and the distance limits (minDistance and maxDistance).

In the Update method, calculate the new orientation (rotation) matrix using the
current camera orientations (that is, yaw, pitch, and roll amount):

glm::mat4 R = glm::yawPitchRoll (yaw,pitch,roll) ;
Use the distance to get a vector and then translate this vector by the current rotation
matrix:

glm::vec3 T = glm::vec3(0,0,distance) ;

T = glm::vec3 (R*glm::vec4 (T,0.0f)) ;

Get the new camera position by adding the translation vector to the target position:

position = target + T;

Recalculate the orthonormal basis and then the view matrix:

look = glm::normalize(target-position) ;
up = glm::vec3 (R*glm::vec4 (UP,0.0f)) ;
right = glm::cross(look, up);

V = glm::lookAt (position, target, up);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The Move function moves both the position and target by the same amount in both 1ook and
right vector directions.

void CTargetCamera::Move (const float dx, const float dy) ({
glm::vec3 X = right*dx;
glm::vec3 Y = look*dy;
position += X + Y;
target += X + Y;
Update () ;

}

The pan function moves in the xy plane only, hence the up vector is used instead of the
look vector:

void CTargetCamera::Pan(const float dx, const float dy)
glm::vec3 X = right*dx;
glm::vec3 Y = up*dy;
position += X + Y;
target += X + Y;
Update () ;

}
The Zoom function moves the position in the 1ook direction:

void CTargetCamera::Zoom(const float amount) {
position += look * amount;
distance = glm::distance(position, target) ;

Distance = std::max (minDistance,
std::min(distance, maxDistance)) ;
Update () ;

}

]

www.it-ebooks.info

http://www.it-ebooks.info/

3D Viewing and Object Picking

The demonstration for this recipe renders an infinite checkered plane, as in the previous
recipe, and is shown in the following figure:

» DHPOWare OpenGL camera demo - Part 1 (http://www.dhpoware.com/demos/
glCameral.html)

» DHPOWare OpenGL camera demo - Part 2 (http://www.dhpoware.com/demos/
glCamera2.html)

» DHPOWare OpenGL camera demo - Part 3 (http://www.dhpoware.com/demos/
glCamera3.html)

Implementing view frustum culling

When working with a lot of polygonal data, there is a need to reduce the amount of geometry
pushed to the GPU for processing. There are several techniques for scene management,

such as quadtrees, octrees, and bsp trees. These techniques help in sorting the geometry in
visibility order, so that the objects are sorted (and some of these even culled from the display).
This helps in reducing the work load on the GPU.

(&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Even before such techniques can be used, there is an additional step which most graphics
applications do and that is view frustum culling. This process removes the geometry if it is not
in the current camera's view frustum. The idea is that if the object is not viewable, it should
not be processed. A frustum is a chopped pyramid with its tip at the camera position and the
base is at the far clip plane. The near clip plane is where the pyramid is chopped, as shown in
the following figure. Any geometry inside the viewing frustum is displayed.

Far clip plane

Near clip plane)

Getting ready

For this recipe, we will create a grid of points that are moved in a sine wave using a

simple vertex shader. The geometry shader does the view frustum culling by only emitting
vertices that are inside the viewing frustum. The calculation of the viewing frustum is
carried out on the CPU, based on the camera projection parameters. We will follow the
geometric approach in this tutorial. The code implementing this recipe is in the Chapter2/
ViewFrustumCulling directory.

How to do it...

We will implement view frustum culling by taking the following steps:

1. Define a vertex shader that displaces the object-space vertex position using a sine
wave in the y axis:

#version 330 core

layout (location = 0) in vec3 vVertex;
uniform float t;

const float PI = 3.141562;

void main ()

&7}

www.it-ebooks.info

http://www.it-ebooks.info/

3D Viewing and Object Picking

{

gl Position=vec4 (vVertex, 1) +vec4 (0,sin(vVertex.x*2*PI+t),0,0);

}

2. Define a geometry shader that performs the view frustum culling calculation on each
vertex passed in from the vertex shader:

#version 330 core
layout (points) in;
layout (points, max vertices=3) out;
uniform mat4 MVP;
uniform vec4 FrustumPlanes]|[6];
bool PointInFrustum(in vec3 p) {
for(int i=0; 1 < 6; 1i++)
{
vec4 plane=FrustumPlanes[i];
if ((dot (plane.xyz, p)+plane.w) < 0)
return false;

}

return true;

}

void main()

{

//get the basic vertices

for(int i=0;i<gl_in.length(); i++) {
vec4 vInPos = gl in[i].gl Position;
vec2 tmp = (vInPos.xz*2-1.0)*5;

vec3 V = vec3 (tmp.x, vInPos.y, tmp.y);
gl Position = MVP*vec4 (V,1);
if (PointInFrustum(V))

EmitVertex () ;

}

EndPrimitive () ;

}

3. To render particles as rounded points, we do a simple trigonometric calculation by
discarding all fragments that fall outside the radius of the circle:

#version 330 core
layout (location = 0) out vec4 vFragColor;
void main() {
vec2 pos = (gl PointCoord.xy-0.5);
if (0.25<dot (pos, pos)) discard;
vFragColor = vec4(0,0,1,1);

}

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

4. Onthe CPU side, call the CAbstractCamera: :CalcFrustumPlanes () function
to calculate the viewing frustum planes. Get the calculated frustum planes as a
glm: :vec4 array by calling CAbstractCamera: : GetFrustumPlanes (), and then
pass these to the shader. The xyz components store the plane's normal, and the w
coordinate stores the distance of the plane. After these calls we draw the points:

pCurrentCam->CalcFrustumPlanes () ;
glm::vecd pl6];
pCurrentCam->GetFrustumPlanes (p) ;
pointShader.Use() ;
glUniformlf (pointShader ("t"), current time);
glUniformMatrix4fv (pointShader ("MVP"), 1, GL FALSE,
glm::value ptr (MVP)) ;
glUniform4fv (pointShader ("FrustumPlanes"), 6,
glm::value ptr(p[0]1));
glBindVertexArray (pointVAOID) ;
glDrawArrays (GL_POINTS, 0,MAX POINTS) ;
pointShader.UnUse () ;

There are two main parts of this recipe: calculation of the viewing frustum planes and
checking if a given point is in the viewing frustum. The first calculation is carried out in the
CAbstractCamera: :CalcFrustumPlanes () function. Refer to the Chapter2/src/
AbstractCamera. cpp files for details.

In this function, we follow the geometric approach, whereby we first calculate the eight points
of the frustum at the near and far clip planes. Theoretical details about this method are well
explained in the reference given in the See also section. Once we have the eight frustum
points, we use three of these points successively to get the bounding planes of the frustum.
Here, we call the CPlane: : FromPoints function, which generates a CPlane object from
the given three points. This is repeated to get all six planes.

Testing whether a point is in the viewing frustum is carried out in the geometry shader's
PointInFrustum function, which is defined as follows:

bool PointInFrustum(in vec3 p)
for(int i=0; i < 6; i++) {
vec4 plane=FrustumPlanes[i];
if ((dot (plane.xyz, p)+plane.w) < 0)
return false;

}

return true;

www.it-ebooks.info

http://www.it-ebooks.info/

3D Viewing and Object Picking

This function iterates through all of the six frustum planes. In each iteration, it checks the
signed distance of the given point p with respect to the ith frustum plane. This is a simple dot
product of the plane normal with the given point and adding the plane distance. If the signed
distance is negative for any of the planes, the point is outside the viewing frustum so we can
safely reject the point. If the point has a positive signed distance for all of the six frustum
planes, it is inside the viewing frustum. Note that the frustum planes are oriented in such a
way that their normals point inside the viewing frustum.

There's more...

The demonstration implementing this recipe shows two cameras, the local camera (camera

1) which shows the sine wave and a world camera (camera 2) which shows the whole

world, including the first camera frustum. We can toggle the current camera by pressing 1

for camera 1 and 2 for camera 2. When in camera 1 view, dragging the left mouse button
rotates the scene, and the information about the total number of points in the viewing frustum
are displayed in the title bar. In the camera 2 view, left-clicking rotates camera 1, and the
displayed viewing frustum is updated so we can see what the camera view should contain.

In order to see the total number of visible vertices emitted from the geometry shader, we use
a hardware query. The whole shader and the rendering code are bracketed in the begin/end
query call as shown in the following code:

glBeginQuery (GL PRIMITIVES GENERATED, query);
pointShader.Use () ;
glUniformlf (pointShader ("t"), current time);
glUniformMatrix4fv (pointShader ("MVP"), 1, GL_ FALSE,
glm::value ptr (MVP)) ; a
glUniform4fv (pointShader ("FrustumPlanes"), 6,
glm: :value ptr(p[0]));
glBindVertexArray (pointVAOID) ;
glDrawArrays (GL_POINTS, 0,MAX POINTS) ;
pointShader.UnUse () ;
glEndQuery (GL PRIMITIVES GENERATED) ;

After these calls, the query result is retrieved by calling:

GLuint res;
glGetQueryObjectuiv (query, GL_QUERY RESULT, &res);

If successful, this call returns the total number of vertices emitted from the geometry shader,
and that is the total number of vertices in the viewing frustum.

Note that for the camera 2 view, all points are emitted. Hence, the
s total number of points is displayed in the title bar.

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

When in the camera 1 view (see the following figure), we see the close-up of the wave as

it displaces the points in the Y direction. In this view, the points are rendered in blue color.
Moreover, the total number of visible points is written in the title bar. The frame rate is also
written to show the performance benefit from view frustum culling.

When in the camera 2 view (see the following figure), we can click-and-drag the left mouse
button to rotate camera 1. This allows us to see the updated viewing frustum and the visible
points. In the camera 2 view, visible points in the camera 1 view frustum are rendered in

magenta color, the viewing frustum planes are in red color, and the invisible points (in
camera 1 viewing frustum) are in blue color.

7}

www.it-ebooks.info

http://www.it-ebooks.info/

3D Viewing and Object Picking

See also

Lighthouse 3D view frustum culling tutorial (http://www.lighthouse3d.com/tutorials/
view-frustum-culling/geometric-approach-extracting-the-planes/).

Implementing object picking using the

depth buffer

Often when working on projects, we need the ability to pick graphical objects on screen. While
in OpenGL versions before OpenGL 3.0, the selection buffer was used for this purpose, this
buffer is removed in the modern OpenGL 3.3 core profile. However, this leaves us with some
alternate methods. We will implement a simple picking technique using the depth buffer in
this recipe.

Getting ready

The code for this recipe is in the Chapter2/Picking DepthBuffer folder. Relevant source
files are in the Chapter2/src folder.

How to do it...

Picking using depth buffer can be implemented as follows:

1. Enable depth testing:
glEnable (GL_DEPTH_TEST) ;

2. Inthe mouse down event handler, read the depth value from the depth buffer using
the glReadPixels function at the clicked point:

glReadPixels(x, HEIGHT-y, 1, 1, GL DEPTH COMPONENT,
GL_FLOAT, &winZ);

3. Unproject the 3D point, vec3 (x, HEIGHT-y,winZ), to obtain the object-space point
from the clicked screen-space point x, y and the depth value winZz. Make sure to
invert the y value by subtracting HEIGHT from the screen-space y value:
glm::vec3 objPt = glm::unProject (glm::vec3
(x,HEIGHT-y,winZ), MV, P, glm::vec4(0,0,WIDTH, HEIGHT));

4. Check the distances of all of the scene objects from the object-space point objPt. If
the distance is within the bounds of the object and the distance of the object is the
nearest to the camera, store the index of the object:
size t 1=0;
float minDist = 1000;
selected box=-1;

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

for (i=0;i<3;i++)
float dist = glm::distance(box positions[i], objPt);
if (dist<l && dist<minDist)
selected box = i;
minDist = dist;

}

5. Based on the selected index, color the object as selected:
glm::mat4 T = glm::translate(glm::mat4 (1),
box positions[0]);
cube->color =
(selected box==0)?glm::vec3(0,1,1):glm::vec3(1,0,0);
cube->Render (glm: :value ptr (MVP*T)) ;

T = glm::translate(glm::mat4 (1), box positions[1]);

cube->color =
(selected box==1)?glm::vec3(0,1,1):glm::vec3(0,1,0);
cube->Render (glm: :value ptr (MVP*T)) ;

T = glm::translate(glm::mat4 (1), box positions([2]);
cube->color =

(selected box==2)?glm::vec3(0,1,1):glm::vec3(0,0,1);
cube->Render (glm: :value ptr (MVP*T)) ;

This recipe renders three cubes in red, green, and blue on the screen. When the user clicks
on any of these cubes, the depth buffer is read to find the depth value at the clicked point.
The object-space point is then obtained by unprojecting (g1lm: :unProject) the clicked point
(x,HEIGHT-y, winZ).Aloop is then iterated over all objects in the scene to find the nearest
object to the object-space point. The index of the nearest intersected object is then stored.

www.it-ebooks.info

http://www.it-ebooks.info/

3D Viewing and Object Picking

There's more...

In the demonstration application for this recipe, when the user clicks on any cube, the currently
selected box changes color to cyan to signify selection, as shown in the following figure:

Picking tutorial at OGLDEV (http://ogldev.atspace.co.uk/www/tutorial29/
tutorial29.html).

Implementing object picking using color

Another method which is used for picking objects in a 3D world is color-based picking. In this
recipe, we will use the same scene as in the last recipe.

Getting ready

The code for this recipe is in the Chapter2/Picking ColorBuffer folder. Relevant source
files are in the Chapter2/src folder.

7

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

How to do it...

To enable picking with the color buffer, the following steps are needed:

1.

Disable dithering. This is done to prevent any color mismatch during the query:
glDisable (GL_DITHER) ;

In the mouse down event handler, read the color value at the clicked position from
the color buffer using the glReadPixels function:

GLubyte pixel[4];
glReadPixels (x, HEIGHT-y, 1, 1, GL RGBA, GL UNSIGNED BYTE,
pixel) ;

Compare the color value at the clicked point to the color values of all objects to find
the intersection:

selected box=-1;

if (pixel [0]==255 && pixel[1l]==0 && pixel[2]==0) {
cout<<"picked box 1"<<endl;
selected box = 0;

}

if (pixel[0]==0 && pixel[1]==255 && pixel[2]==0) {
cout<<"picked box 2"<<endl;
selected box = 1;

}

if (pixel[0]==0 && pixel[1]==0 && pixel[2]==255) {
cout<<"picked box 3"<<endl;
selected box = 2;

}

This method is simple to implement. We simply check the color of the pixel where the mouse
is clicked. Since dithering might generate a different color value, we disable dithering. The
pixel's r, g, and b values are then checked against all of the scene objects and the appropriate
object is selected. We could also have used the float data type, GL_FLOAT, when reading and
comparing the pixel value. However, due to floating point imprecision, we might not have an
accurate test. Therefore, we use the integral data type GL_ UNSIGNED BYTE.

(7]

www.it-ebooks.info

http://www.it-ebooks.info/

3D Viewing and Object Picking

The demonstration application for this recipe uses the scene from the previous recipe. In this
demonstration also, the user left-clicks on a box and the selection is highlighted in cyan, as
shown in the following figure:

Lighthouse3d color coded picking tutorial (http://www.lighthouse3d.com/opengl/
picking/index.php3?colorl).

Implementing object picking using scene

intersection queries

The final method we will cover for picking involves casting rays in the scene to determine the
nearest object to the viewer. We will use the same scene as in the last two recipes, three
cubes (red, green, and blue colored) placed near the origin.

Getting ready

The code for this recipe is in the Chapter2/Picking Scenelntersection folder.
Relevant source files are in the Chapter2/src folder.

7@

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

How to do it...

For picking with scene intersection queries, take the following steps:

1. Get two object-space points by unprojecting the screen-space point (x, HEIGHT-y),
with different depth value, one at z=0 and the other at z=1:
glm::vec3 start = glm::unProject (glm::vec3 (x,HEIGHT-y,0),
MV, P, glm::vec4(0,0,WIDTH,HEIGHT)) ;
glm: :vec3 end = glm::unProject (glm::vec3 (x,HEIGHT-y, 1),
MV, P, glm::vec4(0,0,WIDTH,HEIGHT)) ;

2. Getthe current camera position as eyeRay.origin and get eyeRay.direction
by subtracting and normalizing the difference of the two object-space points, end and
start, as follows:

eyeRay.origin = cam.GetPosition() ;
eyeRay.direction = glm::normalize (end-start);

3. For all of the objects in the scene, find the intersection of the eye ray with the Axially
Aligned Bounding Box (AABB) of the object. Store the nearest intersected
object index:

float tMin = numeric limits<floats>::max();
selected box = -1;
for(int i=0;i<3;i++)
glm::vec2 tMinMax = intersectBox(eyeRay, boxes[i]);
if (tMinMax.x<tMinMax.y && tMinMax.x<tMin) {
selected box=i;
tMin = tMinMax.x;

}
if (selected box==-1)
cout<<"No box picked"<<endl;
else
cout<<"Selected box: "<<selected box<<endl;

The method discussed in this recipe first casts a ray from the camera origin in the clicked

direction, and then checks all of the scene objects' bounding boxes for intersection. There
are two sub parts: estimation of the ray direction from the clicked point and the ray AABB

intersection. We first focus on the estimation of the ray direction from the clicked point.

www.it-ebooks.info

http://www.it-ebooks.info/

3D Viewing and Object Picking

We know that after projection, the x and y values are in the -1 to 1 range. The z or depth values
are in the 0 to 1 range, with O at the near clip plane and 1 at the far clip plane. We first take
the screen-space point and unproject it taking the near clip plane z value of O. This gives us the
object-space point at the near clip plane. Next, we pass the screen-space point and unproject it
with the z value of 1. This gives us the object-space point at the far clip plane. Subtracting the
two unprojected object-space points gives us the ray direction. We store the camera position as
eyeRay.origin and normalize the ray direction as eyeRay.direction.

After calculating the eye ray, we check it for intersection with all of the scene geometries. If
the object-bounding box intersects the eye ray and it is the nearest intersection, we store the
index of the object. The intersectBox function is defined as follows:

glm: :vec2 intersectBox(const Ray& ray, const Box& cube)
glm::vec3 inv dir = 1.0f/ray.direction;

glm: :vec3 tMin = (cube.min - ray.origin) * inv_dir;
glm: :vec3 tMax = (cube.max - ray.origin) * inv_dir;
glm: :vec3 tl = glm::min(tMin, tMax) ;
glm: :vec3 t2 = glm::max(tMin, tMax);

7

float tNear = max(max(tl.x, tl.y), tl.z
float tFar = min(min(t2.x, t2.y), t2.z
return glm::vec2 (tNear, tFar);

}

There's more...

The intersectBox function works by finding the intersection of the ray with a pair of slabs
for each of the three axes individually. Next it finds the tNear and tFar values. The box can
only intersect with the ray if tNear is less than tFar for all of the three axes. So the code
finds the smallest t Far value and the largest tMin value. If the smallest t Far value is less
than the largest tNear value, the ray misses the box. For further details, refer to the See also
section. The output result from the demonstration application for this recipe uses the same
scene as in the last two recipes. In this case also, left-clicking the mouse selects the box,
which is highlighted in cyan, as shown in the following figure:

)
) ;

I

@

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

http://www.siggraph.org/education/materials/HyperGraph/raytrace/
rtinter3.htm

(7]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Offscreen Rendering
and Environment
Mapping

In this chapter, we will cover:

» Implementing the twirl filter using fragment shader

» Rendering a skybox using static cube mapping

» Implementing a mirror with render-to-texture using FBO

» Rendering a reflective object using dynamic cube mapping

» Implementing area filtering (sharpening/blurring/embossing) on an image
using convolution

» Implementing the glow effect

Introduction

Offscreen rendering functionality is a powerful feature of modern graphics API. In modern
OpenGL, this is implemented by using the Framebuffer objects (FBOs). Some of the
applications of the offscreen rendering include post processing effects such as glows,
dynamic cubemaps, mirror effect, deferred rendering techniques, image processing
techniques, and so on. Nowadays almost all games use this feature to carry out stunning
visual effects with high rendering quality and detail. With the FBOs, the offscreen rendering
is greatly simplified, as the programmer uses FBO the way he would use any other OpenGL
object. This chapter will focus on using FBO to carry out image processing effects for
implementing digital convolution and glow. In addition, we will also elaborate on how to use
the FBO for mirror effect and dynamic cube mapping.

www.it-ebooks.info

http://www.it-ebooks.info/

Offscreen Rendering and Environment Mapping

Implementing the twirl filter using the

fragment shader

We will use a simple image manipulation operator in the fragment shader by implementing
the twirl filter on the GPU.

Getting ready

This recipe builds up on the image loading recipe from Chapter 1, Introduction to Modern
OpenGL. The code for this recipe is contained in the Chapter3/TwirlFilter directory.

How to do it...

Let us get started with the recipe as follows:

1. Load the image as in the ImageLoader recipe from Chapter 1, Introduction to
Modern OpenGL. Set the texture wrap mode to GL._CLAMP_TO_ BORDER.

int texture width = 0, texture height = 0, channels=0;
GLubyte* pData = SOIL load image(filename.c_str(),
&texture width, &texture height, &channels,

SOIL_LOAD_ AUTO) ;

int 1i,7;

for(j = 0; j*2 < texture height; ++j)

{

int indexl = j * texture width * channels;

int index2 = (texture height - 1 - j) * texture width *
channels;

for(i = texture width * channels; i > 0; --1i)

{

GLubyte temp = pDatal[indexl];

pDatal[indexl] = pData[index2];
pData[index2] = temp;
++indexl;

++index2;

}

glGenTextures (1, &texturelID) ;
glActiveTexture (GL TEXTUREO) ;
glBindTexture (GL TEXTURE 2D, texturelD);
glTexParameteri (GL TEXTURE 2D, GL_TEXTURE MIN FILTER,
GL_LINEAR) ;

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_LINEAR) ;

glTexParameteri (GL TEXTURE 2D, GL TEXTURE WRAP S,

GL_CLAMP_ TO_BORDER) ;

glTexParameteri (GL TEXTURE 2D, GL TEXTURE WRAP T,

GL_CLAMP TO_BORDER) ;

glTexImage2D (GL TEXTURE 2D, 0, GL_RGB, texture width,
texture_height, 0, GL_RGB, GL_UNSIGNED_BYTE, pData);

SOIL free image data(pData) ;

Set up a simple pass through vertex shader that outputs the texture coordinates
for texture lookup in the fragment shader, as given in the ImageLoader recipe of
Chapter 1.

void main()
gl Position = vec4 (vVertex*2.0-1,0,1);
vUV = vVertex;

}

Set up the fragment shader that first shifts the texture coordinates, performs
the twirl transformation, and then converts the shifted texture coordinates back
for texture lookup.

void main ()
{
vec2 uv = vUV-0.5;
float angle = atan(uv.y, uv.x);
float radius = length(uv);
angle+= radius*twirl amount;
vec2 shifted = radius* vec2(cos(angle), sin(angle)) ;
vFragColor = texture (textureMap, (shifted+0.5));

}

Render a 2D screen space quad and apply the two shaders as was done in the
ImageLoader recipe in Chapter 1.

void OnRender ()
glClear (GL_COLOR_BUFFER BIT|GL_DEPTH BUFFER BIT) ;
shader.Use () ;
glUniformlf (shader ("twirl amount"), twirl amount) ;
glDrawElements (GL_TRIANGLES, 6, GL UNSIGNED SHORT, O0);
shader.UnUse () ;
glutSwapBuffers () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Offscreen Rendering and Environment Mapping

Twirl is a simple 2D transformation which deforms the image. In polar coordinates, this
transformation is given simply as follows:

‘g(r,O):f(r,0+r*f)‘

In this equation, t is the amount of twirl applied on the input image f. In practice, our images
are a 2D function f(x,y) of Cartesian coordinates. We first convert the Cartesian coordinates
to polar coordinates (,0) by using the following transformation:

@ = arctan(y, x)
r=yx*x+y*y

Here, x and y are the two Cartesian coordinates. In the fragment shader, we first offset the
texture coordinates so that the origin is at the center of the image. Next, we get the angle 6
and radius r.

void main() {
vec2 uv = vUV-0.5;
float angle = atan(uv.y, uv.x);
float radius = length(uv);

We then increment the angle by the given amount, multiplied by the radius. Next, we convert
the polar coordinates back to Cartesian coordinates.

angle+= radius*twirl amount;
vec2 shifted = radius* vec2(cos(angle), sin(angle));

Finally, we offset the texture coordinates back to the original position. The transformed texture
coordinates are then used for texture lookup.

vFragColor = texture (textureMap, (shifted+0.5));

}

The demo application implementing this recipe shows a rendered image. Using the - and +
keys, we can adjust the twirl amount as shown in the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

&1 Twir filter - OpenGL 3.3 o= | G [

Since the texture clamping mode was set to GL._CLAMP TO_ BORDER, the out of image

pixels get the black color. In this recipe, we applied the twirl effect to the whole image. As an
exercise, we invite the reader to limit the twirl to a specific zone within the image; for example,
within a radius of, say, 150 pixels from the center of image. Hint: You can constrain the radius
using the given pixel distance.

Rendering a skybox using static cube

mapping

This recipe will show how to render a skybox object using static cube mapping. Cube mapping
is a simple technique for generating a surrounding environment. There are several methods,
such as sky dome, which uses a spherical geometry; skybox, which uses a cubical geometry;
and skyplane, which uses a planar geometry. For this recipe, we will focus on skyboxes using
the static cube mapping approach. The cube mapping process needs six images that are
placed on each face of a cube. The skybox is a very large cube that moves with the camera
but does not rotate with it.

Getting ready

The code for this recipe is contained in the Chapter3/Skybox directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Offscreen Rendering and Environment Mapping

How to do it...

Let us get started with the recipe as follows:

1. Set up the vertex array and vertex buffer objects to store a unit cube geometry.
2. Load the skybox images using an image loading library, such as SOIL.

int texture widths[6];

int texture heights([6];

int channels[6];

GLubyte* pDatal[6];

cout<<"Loading skybox images: ..."<<endl;

for(int i=0;i<6;i++)
cout<<"\tLoading: "<<texture names[i]l<<" ... ";
pData[i] = SOIL load image (texture names([i],
&texture widths[i], &texture heights[i], &channels[i],
SOIL_LOAD_ AUTO) ;

cout<<"done."<<endl;

}

3. Generate a cubemap OpenGL texture object and bind the six loaded images to
the GL_TEXTURE_CUBE_MAP texture targets. Also make sure that the image data
loaded by the SOIL library is deleted after the texture data has been stored into
the OpenGL texture.

glGenTextures (1, &skyboxTexturelD) ;
glActiveTexture (GL TEXTUREO) ;
glBindTexture (GL TEXTURE CUBE MAP, skyboxTexturelD) ;

glTexParameteri (GL_TEXTURE CUBE MAP, GL_TEXTURE MIN FILTER,
GL_LINEAR) ;

glTexParameteri (GL_TEXTURE CUBE MAP, GL TEXTURE MAG FILTER,
GL_LINEAR) ;

glTexParameteri (GL_TEXTURE CUBE MAP, GL TEXTURE WRAP S,
GL_CLAMP_TO EDGE) ;

glTexParameteri (GL_TEXTURE CUBE MAP, GL TEXTURE WRAP T,
GL_CLAMP_TO EDGE) ;

glTexParameteri (GL_TEXTURE CUBE MAP, GL TEXTURE WRAP R,
GL_CLAMP_TO EDGE) ;

GLint format = (channels[0]==4)?GL RGBA:GL _ RGB;

for(int i=0;i<6;i++)
glTexImage2D (GL TEXTURE CUBE MAP POSITIVE X + i, O,
format, texture widths[i], texture heights[i], 0, format,
GL_UNSIGNED BYTE, pDatalil);
SOIL free image data(pDatalil) ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

4. Set up a vertex shader (see Chapter3/Skybox/shaders/skybox.vert) that
outputs the vertex's object space position as the texture coordinate.

smooth out vec3 uv;
void main ()

gl Position = MVP*vec4 (vVertex, 1) ;
uv = vVertex;

}

5. Add a cubemap sampler to the fragment shader. Use the texture coordinates output
from the vertex shader to sample the cubemap sampler object in the fragment
shader (see Chapter3/Skybox/shaders/skybox.frag).
layout (location=0) out vec4 vFragColor;
uniform samplerCube cubeMap;
smooth in wvec3 uv;
void main ()

{
}

There are two parts of this recipe. The first part, which loads an OpenGL cubemap texture, is
self explanatory. We load the six images and bind these to an OpenGL cubemap texture target.
There are six cubemap texture targets corresponding to the six sides of a cube. These targets
are GL_TEXTURE CUBE MAP POSITIVE X,GL TEXTURE CUBE MAP POSITIVE Y,
GL_TEXTURE CUBE MAP POSITIVE Z,GL_TEXTURE CUBE MAP NEGATIVE X, GL_
TEXTURE CUBE_MAP NEGATIVE_ Y, and GL_TEXTURE CUBE MAP NEGATIVE_Z.Since
their identifiers are linearly generated, we offset the target by the loop variable to move to the
next cubemap texture target in the following code:

vFragColor = texture(cubeMap, uv);

for(int i=0;i<6;i++)
glTexImage2D (GL_TEXTURE CUBE MAP POSITIVE X + i, O,

format, texture widths[i], texture heights[i], 0, format,
GL_UNSIGNED BYTE, pDatali]) ;

SOIL free_ image_data(pDatal[il) ;

}

The second part is the shader responsible for sampling the cubemap texture. This work is
carried out in the fragment shader (Chapter3/Skybox/shaders/skybox.frag). In the
rendering code, we set the skybox shader and then render the skybox, passing it the MvP
matrix, which is obtained as follows:

glm::mat4 T = glm::translate(glm::mat4 (1.0f),glm::vec3(0.0£,0.0f,

dist)) ;
glm::mat4 Rx = glm::rotate(glm::mat4 (1), rX, glm::vec3(1l.0f,
0.0f, 0.0f));

www.it-ebooks.info

http://www.it-ebooks.info/

Offscreen Rendering and Environment Mapping

glm::mat4 MV = glm::rotate(Rx, rY, glm::vec3(0.0f, 1.0f, 0.0f));
glm::mat4 S = glm::scale(glm::mat4 (1) ,glm::vec3(1000.0)) ;
glm: :mat4 MVP = P*MV*S;

skybox->Render (glm::value ptr (MVP)) ;

To sample the correct location in the cubemap texture we need a vector. This vector can be
obtained from the object space vertex positions that are passed to the vertex shader. These
are passed through the uv output attribute to the fragment shader.

o In this recipe, we scaled a unit cube. While it is not necessary to have
~ a unit cube, one thing that we have to be careful with is that the size
@ of the cube after scaling should not be greater than the far clip plane
distance. Otherwise, our skybox will be clipped.

The demo application implementing this recipe shows a statically cube mapped skybox which
can be looked around by dragging the left mouse button. This gives a surrounded environment
feeling to the user as shown in the following figure:

(e

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Implementing a mirror with

render-to-texture using FBO

We will now use the FBO to render a mirror object on the screen. In a typical offscreen
rendering OpenGL application, we set up the FBO first, by calling the glGenFramebuffers
function and passing it the number of FBOs desired. The second parameter stores the
returned identifier. After the FBO object is generated, it has to be bound to the GL_
FRAMEBUFFER, GL_DRAW FRAMEBUFFER, of G READ FRAMEBUFFER target. Following
this call, the texture to be bound to the FBOs color attachment is attached by calling the
glFramebufferTexture2D function.

There can be more than one color attachment on an FBO. The maximum number of color
attachments supported on any GPU can be queried using the GL._ MAX COLOR_ATTACHMENTS
field. The type and dimension of the texture has to be specified and it is not necessary to have
the same size as the screen. However, all color attachments on the FBO must have the same
dimensions. At any time, only a single FBO can be bound for a drawing operation and similarly,
only one can be bound for a reading operation. In addition to the color attachment, there

are also depth and stencil attachments on an FBO. The following image shows the different
attachment points on an FBO:

OpenGL Texture 1 ~| GL_COLOR_ATTACHMENTO |
OpenGL Texture 2 |—~| GL_COLOR ATTACHMENTL |

| GL COLOR_ATTACHMENTN |

OpenGL Texture [
(Renderbuffer image) |

Depth Attachment |

| Stencil Attachment |

Renderbuffer object Framebuffer object (FBO)

If depth testing is required, a render buffer is also generated and bound by calling
glGenRenderbuffers followed by the glBindRenderbuffer function. For render buffers,
the depth buffer's data type and its dimensions have to be specified. After all these steps, the
render buffer is attached to the frame buffer by calling the glFramebuf ferRenderbuffer
function.

www.it-ebooks.info

http://www.it-ebooks.info/

Offscreen Rendering and Environment Mapping

After the setup of the frame buffer and render buffer objects, the frame buffer completeness
status has to be checked by calling gl CheckFramebufferStatus by passing it the
framebuffer target. This ensures that the FBO setup is correct. The function returns the
status as an identifier. If this returned value is anything other than GL. FRAMEBUFFER
COMPLETE, the FBO setup is unsuccessful.

\
[‘\Q Make sure to check the Framebuf fer status after the Framebuffer]
is bound.

Similar to other OpenGL objects, we must delete the framebuffer and the renderbuffer
objects and any texture objects used for offscreen rendering after they are no more needed, by
calling the glDeleteFramebuffers and glDeleteRenderbuffers functions. These are
the typical steps needed to enable offscreen rendering using FBO objects in modern OpenGL.

Getting ready

The code for this recipe is contained in the Chapter3 /MirrorUsingFBO directory.

How to do it...

Let us get started with the recipe as follows:

1. Initialize the framebuffer and renderbuf fer objects' color and depth
attachments respectively. The render buffer is required if we need depth testing
for the offscreen rendering, and the depth precision is specified using the
glRenderbufferStorage function.

glGenFramebuffers(l, &fbolID) ;
glBindFramebuffer (GL_DRAW_ FRAMEBUFFER, fboID);
glGenRenderbuffers(l, &rbID);
glBindRenderbuffer (GL_RENDERBUFFER, rbID) ;

glRenderbufferStorage (GL_RENDERBUFFER,
GL_DEPTH COMPONENT32,WIDTH, HEIGHT) ;

2. Generate the offscreen texture on which FBO will render to. The last parameter of
glTexImage2D is NULL, which tells OpenGL that we do not have any content yet,
please provide a new block of GPU memory which gets filled when the FBO is used
as a render target.

glGenTextures (1, &renderTexturelD) ;
glBindTexture (GL TEXTURE 2D, renderTexturelD) ;
glTexParameteri (GL TEXTURE 2D, GL TEXTURE WRAP S,
GL_REPEAT) ; - - a -
glTexParameteri (GL TEXTURE 2D, GL TEXTURE WRAP T,
L_REPEAT) ; - - a -

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE MIN FILTER,
GL_NEAREST) ;

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE MAG FILTER,
GL_NEAREST) ;

glTexImage2D (GL_TEXTURE 2D, 0, GL_RGBA8, WIDTH, HEIGHT, 0,
GL_BGRA, GL_UNSIGNED BYTE, NULL);

Attach Renderbuffer to the bound Framebuf fer object and check for
Framebuf fer completeness.

glFramebufferTexture2D (GL DRAW FRAMEBUFFER,

GL COLOR_ATTACHMENTO,GL TEXTURE 2D, renderTextureID, O0);
glFramebufferRenderbuffer (GL_DRAW FRAMEBUFFER,

GL DEPTH ATTACHMENT, GL RENDERBUFFER, rbID);

GLuint status = glCheckFramebufferStatus (GL DRAW FRAMEBUFFER) ;
if (status==GL_FRAMEBUFFER COMPLETE) {

printf ("FBO setup succeeded.");

} else {

printf ("Exrror in FBO setup.");

}

Unbind the Framebuf fer object as follows:

glBindTexture (GL TEXTURE 2D, O0);
glBindFramebuffer (GL DRAW FRAMEBUFFER, O0) ;

Create a quad geometry to act as a mirror:

mirror = new CQuad(-2);

Render the scene normally from the point of view of camera. Since the unit color
cube is rendered at origin, we translate it on the Y axis to shift it up in Y axis which
effectively moves the unit color cube in Y direction so that the unit color cube's
image can be viewed completely in the mirror.

glClear (GL_COLOR_BUFFER BIT|GL_DEPTH BUFFER BIT) ;
grid->Render (glm: :value ptr (MVP)) ;

localR[3] [1] = 0.5;
cube->Render (glm: :value ptr (P*MV*localR)) ;

Store the current modelview matrix and then change the modelview matrix such that
the camera is placed at the mirror object position. Also make sure to laterally invert
this modelview matrix by scaling by -1 on the X axis.

glm: :mat4 oldMV = MV;

glm: :vec3 target;

glm::vec3 V = glm::vec3(-MV[2] [0], -MV[2][1], -MV[2][2]);
glm::vec3 R = glm::reflect (V, mirror-snormal) ;

MV = glm::lookAt (mirror->position, mirror->position + R,
glm::vec3(0,1,0));

MV = glm::scale(MV, glm::vec3(-1,1,1));

i

www.it-ebooks.info

http://www.it-ebooks.info/

Offscreen Rendering and Environment Mapping

8. Bind the FBO, set up the FBO color attachment for Drawbuf fer (GL_COLOR
ATTACHMENTO) or any other attachment to which texture is attached, and clear
the FBO. The glDrawBuf fer function enables the code to draw to a specific color
attachment on the FBO. In our case, there is a single color attachment so we set
it as the draw buffer.

glBindFramebuffer (GL_DRAW_FRAMEBUFFER, fboID) ;
glDrawBuffer (GL_COLOR_ATTACHMENTO) ;
glClear (GL_COLOR_BUFFER BIT|GL DEPTH BUFFER BIT) ;

9. Set the modified modelview matrix and render the scene again. Also make sure to
only render from the shiny side of the mirror.

if (glm::dot (V,mirror-s>normal)<0) {
grid->Render (glm: :value ptr (P*MV)) ;
cube->Render (glm: :value ptr (P*MV*localR)) ;

}

10. Unbind the FBO and restore the default Drawbuffer (GL BACK LEFT) .

glBindFramebuffer (GL DRAW FRAMEBUFFER, O0) ;
glDrawBuffer (GL_BACK LEFT) ;

Note that there are several aliases for the back buffer. The real back
buffer is GL_BACK_LEFT, which is also referred by the GL_BACK

Ql alias. The default Framebuf fer has up to four color buffers, namely
GL_FRONT LEFT, GL_FRONT RIGHT, GL_BACK LEFT, and
GL_BACK_RIGHT. If stereo rendering is not active, then only the left
buffers are active, that is, GL_ FRONT_LEFT (the active front color
buffer) and GL._BACK_LEFT (the active back color buffer).

11. Finally render the mirror quad at the saved modelview matrix.

MV = oldMV;
glBindTexture (GL TEXTURE 2D, renderTexturelD) ;
mirror->Render (glm::value ptr (P*MV)) ;

The mirror algorithm used in the recipe is very simple. We first get the view direction vector
(v) from the viewing matrix. We reflect this vector on the normal of the mirror (N). Next, the
camera position is moved to the place behind the mirror. Finally, the mirror is scaled by -1
on the X axis. This ensures that the image is laterally inverted as in a mirror. Details of the
method are covered in the reference in the See also section.

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

There's more...

Details of the Framebuf fer object can be obtained from the Framebuffer object

specifications (see the See also section). The output from the demo application implementing
this recipe is as follows:

» The Official OpenGL registry-Framebuffer object specifications can be found at

http://www.opengl.org/registry/specs/EXT/framebuffer object.
txt.

» OpenGL Superbible, Fifth Edition, Chapter 8, pages 354-358, Richard S. Wright,
Addison-Wesley Professional

» FBO tutorial by Song Ho Ahn: http://www.songho.ca/opengl/gl fbo.html

Rendering a reflective object using dynamic

cube mapping

Now we will see how to use dynamic cube mapping to render a real-time scene to a cubemap
render target. This allows us to create reflective surfaces. In modern OpenGL, offscreen
rendering (also called render-to-texture) functionality is exposed through FBOs.

Getting ready

In this recipe, we will render a box with encircling particles. The code is contained in the
Chapter3/DynamicCubemap directory.

55}

www.it-ebooks.info

http://www.it-ebooks.info/

Offscreen Rendering and Environment Mapping

How to do it...

Let us get started with the recipe as follows:

1.

=

Create a cubemap texture object.

glGenTextures (1, &dynamicCubeMapID) ;
glActiveTexture (GL TEXTUREL) ;
glBindTexture (GL TEXTURE CUBE MAP, dynamicCubeMapID) ;

glTexParameterf (GL_TEXTURE CUBE MAP,GL_ TEXTURE MIN FILTER,
GL_LINEAR) ;

glTexParameterf (GL_TEXTURE CUBE MAP, GL_TEXTURE MAG FILTER,
GL_LINEAR) ;

glTexParameterf (GL_TEXTURE CUBE MAP, GL_TEXTURE WRAP_S,
GL_CLAMP_TO_EDGE) ;

glTexParameterf (GL_TEXTURE CUBE MAP, GL_TEXTURE WRAP_T,
GL_CLAMP_TO_EDGE) ;

glTexParameterf (GL_TEXTURE CUBE MAP, GL_TEXTURE WRAP R,

GL_CLAMP_TO EDGE) ;

for (int face = 0; face < 6; face++) {
glTexImage2D (GL_TEXTURE CUBE_MAP POSITIVE X + face, O,
GL_RGBA,CUBEMAP_SIZE, CUBEMAP SIZE, 0, GL RGBA, GL_ FLOAT,
NULL) ;

}

Set up an FBO with the cubemap texture as an attachment.

glGenFramebuffers (1, &fboID) ;
glBindFramebuffer (GL DRAW FRAMEBUFFER, fbolID) ;
glGenRenderbuffers(l, &rboID);
glBindRenderbuffer (GL_RENDERBUFFER, rboID) ;

glRenderbufferStorage (GL_RENDERBUFFER, GL DEPTH COMPONENT,
CUBEMAP_ SIZE, CUBEMAP SIZE) ;

glFramebufferRenderbuffer (GL DRAW FRAMEBUFFER,
GL DEPTH ATTACHMENT, GL RENDERBUFFER, fboID);

glFramebufferTexture2D (GL DRAW FRAMEBUFFER,
GL_COLOR_ATTACHMENTO, GL_TEXTURE CUBE _MAP POSITIVE X,
dynamicCubeMapID, O0);
GLenum status =
glCheckFramebufferStatus (GL_DRAW FRAMEBUFFER) ;
if (status != GL_FRAMEBUFFER COMPLETE) {
cerr<<"Frame buffer object setup error."<<endl;
exit (EXIT FAILURE) ;
} else {
cerr<<"FBO setup successfully."<<endl;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Set the viewport to the size of the offscreen texture and render the scene six times
without the reflective object to the six sides of the cubemap using FBO.

glviewport (0,0, CUBEMAP SIZE, CUBEMAP SIZE) ;
glBindFramebuffer (GL _DRAW FRAMEBUFFER, fboID) ;
glFramebufferTexture2D (GL_DRAW_FRAMEBUFFER,

GL COLOR ATTACHMENTO,GL TEXTURE CUBE MAP POSITIVE X,
dyHamicCHbeMapID, 0); B B B B B

glClear (GL_COLOR_BUFFER BIT|GL DEPTH BUFFER BIT) ;

glm: :mat4 MVl = glm::lookAt (glm::vec3(0),glm::vec3(1,0,0),glm::v
ec3 (0, -

1,0));

DrawScene (MV1*T, Pcubemap) ;

glFramebufferTexture2D (GL_DRAW_FRAMEBUFFER,

GL COLOR ATTACHMENTO, GL TEXTURE CUBE MAP NEGATIVE X,
dyHamicCHbeMapID, 0); B B B B B
glClear (GL_COLOR_BUFFER BIT|GL DEPTH BUFFER BIT) ;

glm::mat4 MV2 = glm::lookAt (glm::vec3(0),glm::vec3(-1,0,0),
glm::vec3(0,-1,0));

DrawScene (MV2*T, Pcubemap) ;

...//similar for rest of the faces
glBindFramebuffer (GL_DRAW FRAMEBUFFER, O0) ;

Restore the viewport and the modelview matrix, and render the scene normally.

glviewport (0,0, WIDTH, HEIGHT) ;
DrawScene (MV, P);

Set the cubemap shader and then render the reflective object.

glBindVertexArray (sphereVAOID) ;

cubemapShader.Use () ;

T = glm::translate(glm::mat4 (1), p);
glUniformMatrix4fv (cubemapShader ("MVP"), 1, GL FALSE,
glm::value ptr (P* (MV*T))) ;

glUniform3fv (cubemapShader ("eyePosition"), 1,
glm::value ptr(eyePos)) ;

glDrawElements (GL_TRIANGLES, indices.size(),
GL_UNSIGNED SHORT,O0) ;

cubemapShader .UnUse () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Offscreen Rendering and Environment Mapping

Dynamic cube mapping renders the scene six times from the reflective object using six cameras
at the reflective object's position. For rendering to the cubemap texture, an FBO is used with a
cubemap texture attachment. The cubemap texture's G TEXTURE CUBE_MAP POSITIVE X
target is bound to the GL._COLOR_ATTACHMENTO color attachment of the FBO. The last
parameter of glTexImage2D is NULL since this call just allocates the memory for offscreen
rendering and the real data will be populated when the FBO is set as the render target.

The scene is then rendered to the cubemap texture without the reflective object by placing six
cameras at the reflective object's position in the six directions. The cubemap projection matrix
(Pcubemap) is given a 90 degree fov.

Pcubemap = glm::perspective(90.0f,1.0£,0.1£,1000.0f) ;

This renders the scene into the cubemap texture. For each side, a new MVP matrix is obtained
by multiplying the new Mv matrix (obtained by using glm: : 1ookaAt function). This is repeated
for all six sides of the cube. Next, the scene is rendered normally and the reflective object is
finally rendered using the generated cubemap to render the reflective environment. Rendering
each frame six times into an offscreen target hinders performance, especially if there are
complex objects in the world. Therefore this technique should be used with caution.

The cubemap vertex shader outputs the object space vertex positions and normals.

#version 330 core
layout (location=0) in wvec3 vVertex;
layout (location=1) in wvec3 vNormal;
uniform mat4 MVP;
smooth out vec3 position;
smooth out wvec3 normal;
void main()
position = vVertex;
normal = vNormal;
gl Position = MVP*vec4 (vVertex,1);

}

The cubemap fragment shader uses the object space vertex positions to determine the
view vector. The reflection vector is then obtained by reflecting the view vector at the object
space normal.

#version 330 core

layout (location=0) out vec4 vFragColor;
uniform samplerCube cubeMap;

smooth in vec3 position;

smooth in vec3 normal;

uniform vec3 eyePosition;

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

void main()
vec3 N = normalize (normal) ;
vec3 V = normalize(position-eyePosition);
vFragColor = texture (cubeMap, reflect(V,N));

}

There's more...

The demo application implementing this recipe renders a reflective sphere with eight cubes
pulsating around it, as shown in the following figure:

In this recipe, we could also use layered rendering by using the geometry shader to output to
a different Framebuf fer object layer. This can be achieved by outputting to the appropriate
gl Layer attribute from the geometry shader and setting the appropriate viewing
transformation. This is left as an exercise for the reader.

» Check the OpenGL wiki page at http://www.opengl .org/wiki/Geometry
Shader#Layered rendering

» FBO tutorial by Song Ho Ahn: http://www.songho.ca/opengl/gl fbo.html

o7}

www.it-ebooks.info

http://www.it-ebooks.info/

Offscreen Rendering and Environment Mapping

Implementing area filtering (sharpening/

blurring/embossing) on an image using
convolution

We will now see how to do area filtering, that is, 2D image convolution to implement

effects like sharpening, blurring, and embossing. There are several ways to achieve image
convolution in the spatial domain. The simplest approach is to use a loop that iterates through
a given image window and computes the sum of products of the image intensities with the
convolution kernel. The more efficient method, as far as the implementation is concerned, is
separable convolution which breaks up the 2D convolution into two 1D convolutions. However,
this approach requires an additional pass.

Getting ready

This recipe is built on top of the image loading recipe discussed in the first chapter. If you feel
a bit lost, we suggest skimming through it to be on page with us. The code for this recipe is
contained in the Chapter3/Convolution directory. For this recipe, most of the work takes
place in the fragment shader.

How to do it...

Let us get started with the recipe as follows:

1. Create a simple pass-through vertex shader that outputs the clip space position
and the texture coordinates which are to be passed into the fragment shader for
texture lookup.

#version 330 core

in vec2 vVertex;

out wvec2 vUV;

void main ()

{
gl Position = vec4 (vVertex*2.0-1,0,1);
vUV = vVertex;

}

2. Inthe fragment shader, we declare a constant array called kernel which stores our
convolution kernel. Changing the convolution kernel values dictates the output
of convolution. The default kernel sets up a sharpening convolution filter. Refer to
Chapter3/Convolution/shaders/shader convolution.frag for details.
const float kernel[]=float[9] (-1,-1,-1,

-1, 8,-1,
-1,-1,-1);

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

3. Inthe fragment shader, we run a nested loop that loops through the current pixel's
neighborhood and multiplies the kernel value with the current pixel's value. This is
continued in an n x n neighborhood, where n is the width/height of the kernel.
for(int j=-1;j<=1;j++) {

for(int i=-1;i<=1;i++)
color += kernel [index--] *
texture (textureMap, vUV+ (vec2(i,j) *delta)) ;

}
}

4. After the nested loops, we divide the color value with the total number of values in
the kernel. For a 3 x 3 kernel, we have nine values. Finally, we add the convolved
color value to the current pixel's value.

color/=9.0;
vFragColor = color + texture(textureMap, vUV);

For a 2D digital image f(x,y), the processed image g(x,y), after the convolution operation with
a kernel h(x,y), is defined mathematically as follows:

ytw o x4w

g, =Y > fl.)*h(x—i,y-))

JEy—wizx—w

For each pixel, we simply sum the product of the current image pixel value with the
corresponding coefficient in the kernel in the given neighborhood. For details about the kernel
coefficients, we refer the reader to any standard text on digital image processing, like the one
given in the See also section.

The overall algorithm works like this. We set up our FBO for offscreen rendering. We render
our image on the offscreen render target of the FBO, instead of the back buffer. Now the FBO
attachment stores our image. Next, we set the output from the first step (that is, the rendered
image on the FBO attachment) as input to the convolution shader in the second pass. We
render a full-screen quad on the back buffer and apply our convolution shader to it. This
performs convolution on the input image. Finally, we swap the back buffer to show the result
on the screen.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Offscreen Rendering and Environment Mapping

After the image is loaded and an OpenGL texture has been generated, we render a
screen-aligned quad. This allows the fragment shader to run for the whole screen. In the
fragment shader, for the current fragment, we iterate through its neighborhood and sum
the product of the corresponding entry in the kernel with the look-up value. After the loop
is terminated, the sum is divided by the total number of kernel coefficients. Finally, the
convolution sum is added to the current pixel's value. There are several different kinds of
kernels. We list the ones we will use in this recipe in the following table.

Based on the wrapping mode set for the texture, for example,
N GL_CLAMP or GL_REPEAT, the convolution result will be
~ different. In case of the GL_ CLAMP wrapping mode, the pixels
Q out of the image are not considered, whereas, in case of
the GL_REPEAT wrapping mode, the out of the image pixel
information is obtained from the pixel at the wrapping position.

Effect Kernel matrix
Sharpening -1 -1 -1
-1 8 -1
-1 -1 -1
Blurring / Unweighted 111
Smoothing
111
111
3 x 3 Gaussian blur D1 0
1 51
010
Emboss north-west —_4 —4
direction 1 12 0
0 0 0
Emboss north-east 0 —4 —4
direction 0 12 —4
00 0

100

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Effect Kernel matrix

Emboss south-east 0o 0 0

direction 0 12 -4
0 —4 —4

Emboss south-west 0 0o 0

direction 4 12 0
-4 —4 0

We just touched the topic of digital image convolution. For details, we refer the reader to the
See also section. In the demo application, the user can set the required kernel and then press
the Space bar key to see the filtered image output. Pressing the Space bar key once again
shows the normal unfiltered image.

See also

» Digital Image Processing, Third Edition, Rafael C. Gonzales and Richard E. Woods,
Prentice Hall

» FBO tutorial by Song Ho Ahn: http://www.songho.ca/opengl/gl fbo.html

Implementing the glow effect

Now that we know how to perform offscreen rendering and blurring, we will put this knowledge
to use by implementing the glow effect. The code for this recipe is in the Chapter3/Glow
directory. In this recipe, we will render a set of points encircling a cube. Every 50 frames, four
alternate points glow.

How to do it...

Let us get started with the recipe as follows:

1. Render the scene normally by rendering the points and the cube. The particle shader
renders the GL_ POINTS value (which by default, renders as quads) as circles.

grid->Render (glm: :value ptr (MVP)) ;
cube->Render (glm: :value ptr (MVP)) ;
glBindVertexArray (particlesVAO) ;
particleShader.Use() ;

www.it-ebooks.info

http://www.it-ebooks.info/

Offscreen Rendering and Environment Mapping

glUniformMatrix4fv (particleShader ("MVP"), 1, GL_FALSE,
glm::value ptr (MVP*Rot)) ;
glDrawArrays (GL_POINTS, 0, 8);

The particle vertex shader is as follows:

#version 330 core

layout (location=0) in wvec3 vVertex;

uniform mat4 MVP;

smooth out vec4 color;

const vec4 colors[8]=vec4[8] (vec4(1,0,0,1), vec4(0,1,0,1),
vec4(0,0,1,1) ,vec4(1,1,0,1), vec4(0,1,1,1), vec4(1,0,1,1),
vec4(0.5,0.5,0.5,1), vec4(1,1,1,1)) ;

void main() {
gl Position = MVP*vec4 (vVertex, 1) ;
color = colors[gl VertexID/4];

}
The particle fragment shader is as follows:

#version 330 core
layout (location=0) out vec4 vFragColor;

smooth in vec4 color;

void main() {
vec2 pos = gl PointCoord-0.5;
if (dot (pos,pos) >0.25)
discard;
else
vFragColor = color;

}

2. Set up a single FBO with two color attachments. The first attachment is for rendering
of scene elements requiring glow and the second attachment is for blurring.

glGenFramebuffers (1, &fboID) ;

glBindFramebuffer (GL DRAW FRAMEBUFFER, fbolID) ;

glGenTextures (2, texID);

glActiveTexture (GL TEXTUREO) ;

for(int i=0;i<2;i++)
glBindTexture (GL TEXTURE 2D, texID[i]) ;

glTexParameterf (GL TEXTURE 2D,
GL_TEXTURE MIN FILTER,GL_LINEAR) ;

glTexParameterf (GL TXTURE 2D,
GL TEXTURE MAG FILTER,GL_LINEAR)

102

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

glTexParameterf (GL_TEXTURE 2D, GL_TEXTURE WRAP_S,
GL_CLAMP_TO_EDGE) ;

glTexParameterf (GL_TEXTURE 2D, GL_TEXTURE WRAP_T,
GL_CLAMP_TO_EDGE) ;

glTexImage2D (GL_TEXTURE 2D, 0, GL_RGBEA,
RENDER_TARGET WIDTH, RENDER TARGET HEIGHT, O,
GL_RGBA,GL_UNSIGNED BYTE, NULL);

glFramebufferTexture2D (GL DRAW FRAMEBUFFER,
GL COLOR_ATTACHMENTO+i,GL TEXTURE 2D,texID[i],0);

}

GLenum status =
glCheckFramebufferStatus (GL_DRAW FRAMEBUFFER) ;

if (status != GL_FRAMEBUFFER COMPLETE) {
cerr<<"Frame buffer object setup error."<<endl;
exit (EXIT FAILURE) ;

} else {
cerr<<"FBO set up successfully."<<endl;

}

glBindFramebuffer (GL DRAW FRAMEBUFFER, O0) ;

Bind FBO, set the viewport to the size of the attachment texture, set Drawbuf fer to
render to the first color attachment (GL_COLOR_ATTACHMENTO), and render the part
of the scene which needs glow.

glBindFramebuffer (GL DRAW FRAMEBUFFER, fbolID) ;
glvViewport (0, 0, RENDER_TARGET WIDTH,RENDER TARGET HEIGHT) ;
glDrawBuffer (GL_COLOR_ATTACHMENTO) ;
glClear (GL_COLOR_BUFFER BIT) ;

glDrawArrays (GL_POINTS, offset, 4);
particleShader.UnUse() ;

Set brawbuffer to render to the second color attachment (GL_ COLOR
ATTACHMENT1) and bind the FBO texture attached to the first color attachment.
Set the blur shader by convolving with a simple unweighted smoothing filter.

ngrawBuffer(GL_COLOR_ATTACHMENTl);
glBindTexture (GL TEXTURE 2D, texID[0]) ;

Render a screen-aligned quad and apply the blur shader to the rendering result
from the first color attachment of the FBO. This output is written to the second
color attachment.

blurShader.Use() ;
glBindVertexArray (quadVAOID) ;
glDrawElements (GL_TRIANGLES, 6,GL_UNSIGNED SHORT, 0) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Offscreen Rendering and Environment Mapping

6.

Disable FBO rendering, reset the default drawbuffer (3L._BACK LEFT) and viewport,
bind the texture attached to the FBO's second color attachment, draw a screen-aligned
quad, and blend the blur output to the existing scene using additive blending.

glBindFramebuffer (GL _DRAW FRAMEBUFFER, O0) ;
glDrawBuffer (GL_BACK LEFT) ;
glBindTexture (GL _TEXTURE 2D, texID[1]);

glViewport (0,0,WIDTH, HEIGHT) ;

glEnable (GL_BLEND) ;

glBlendFunc (GL_ONE, GL_ONE) ;
ngrawElements(GL_TRIANGLES,6,GL_UNSIGNED_SHORT,O);
glBindVertexArray (0) ;

blurShader.UnUse () ;

glDisable (GL_BLEND) ;

The glow effect works by first rendering the candidate elements of the scene for glow into a
separate render target. After rendering, a smoothing filter is applied on the rendered image
containing the elements requiring glow. The smoothed output is then additively blended with
the current rendering on the frame buffer, as shown in the following figure:

104

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Note that we could also enable blending in the fragment shader. Assuming that the two
images to be blended are bound to their texture units and their shader samplers are
texturel and texture2, the additive blending shader code will be like this:

#version 330 core

uniform sampler2D texturel;

uniform sampler2D texture2;

layout (location=0) out vec4 vFragColor;

smooth in vec2 vUV;

void main() {
vec4 colorl = texture(texturel, vUV);
vec4 color2 = texture(texture2, vUV);
vFragColor = colorl+color2;

}

Additionally, we can also apply separable convolution, but that requires two passes. The
process requires three color attachments. We first render the scene normally on the first color
attachment while the glow effect objects are rendered on the second color attachment. The
third color attachment is then set as the render target while the second color attachment
acts as input. A full-screen quad is then rendered with the vertical smoothing shader which
simply iterates through a row of pixels. This vertically smoothed result is written to the third
color attachment.

The second color attachment is then set as output while the output results from the vertical
smoothing pass (which was written to the third color attachment) is set as input. The
horizontal smoothing shader is then applied on a column of pixels which smoothes the entire
image. The image is then rendered to the second color attachment. Finally, the blend shader
combines the result from the first color attachment with the result from the second color
attachment. Note that the same effect could be carried out by using two separate FBOs: a
rendering FBO and a filtering FBO, which gives us more flexibility as we can down sample the
filtering result to take advantage of hardware linear filtering. This technique has been used in
the Implementing variance shadow mapping recipe in Chapter 4, Lights and Shadows.

www.it-ebooks.info

http://www.it-ebooks.info/

Offscreen Rendering and Environment Mapping

There's more...

The demo application for this recipe shows a simple unit cube encircled by eight points. The
first four points are rendered in red and the latter four are rendered in green. The application
applies glow to the first four points. After every 50 frames, the glow shifts to the latter four
points and so on for the lifetime of the application. The output result from the application is
shown in the following figure:

» Glow sample in NVIDIA OpenGL SDK v10
» FBO tutorial by Song Ho Ahn: http://www.songho.ca/opengl/gl fbo.html

106

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

In this chapter, we will cover:

» Implementing per-vertex and per-fragment point lighting

» Implementing per-fragment directional light

» Implementing per-fragment point light with attenuation

» Implementing per-fragment spot light

» Implementing shadow mapping with FBO

» Implementing shadow mapping with percentage closer filtering (PCF)

» Implementing variance shadow mapping

Introduction

Similar to how the real world would be dark without lights, we require simulated lights to see
in our virtual worlds. Visual applications will be incomplete without the presence of lights.
There are several kinds of lights; for example, point lights, directional lights, spot lights, and so
on. Each of these have some common properties, for example, light position. In addition, they
have some specific properties, such as spot direction and spot exponent for spot lights. We
will cover all of these light types as well as how to implement them in the vertex shader stage
or the fragment shader stage.

Although we can leave the lights to just light the environment, our visual system will start to
find problems with such a setting. This is because our eyes are not used to seeing objects

lit but casting no shadows. In addition, without shadows, it is very difficult to judge how near
or far an object is to the other. Therefore, we detail several shadow generation techniques
varying from classic depth shadow mapping to more advanced variance shadow mapping. All
of these will be implemented in OpenGL v3.3 and all implementation details will be given to
enable the reader to implement the technique on their own.

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

Implementing per-vertex and per-fragment

point lighting

To give more realism to 3D graphic scenes, we add lighting. In OpenGL's fixed function
pipeline, per-vertex lighting is provided (which is deprecated in OpenGL v3.3 and above). Using
shaders, we can not only replicate the per-vertex lighting of fixed function pipeline but also

go a step further by implementing per-fragment lighting. The per-vertex lighting is also known
as Gouraud shading and the per-fragment shading is known as Phong shading. So, without
further ado, let's get started.

Getting started

In this recipe, we will render many cubes and a sphere. All of these objects are generated
and stored in the buffer objects. For details, refer to the CreateSphere and CreateCube
functions in Chapter4/PerVertexLighting/main.cpp. These functions generate both
vertex positions as well as per-vertex normals, which are needed for the lighting calculations.
All of the lighting calculations take place in the vertex shader of the per-vertex lighting

recipe (Chapter4/PerVertexLighting/), whereas, for the per-fragment lighting recipe
(Chapter4/PerFragmentLighting/) they take place in the fragment shader.

How to do it...

Let us start our recipe by following these simple steps:

1. Set up the vertex shader that performs the lighting calculation in the view/eye space.
This generates the color after the lighting calculation.

#version 330 core

layout (location=0) in wvec3 vVertex;

layout (location=1) in wvec3 vNormal;

uniform mat4 MVP;

uniform mat4 MV;

uniform mat3 N;

uniform vec3 light position; //light position in object
space

uniform vec3 diffuse color;

uniform vec3 specular color;

uniform float shininess;

smooth out vec4 color;

const vec3 vEyeSpaceCameraPosition = vec3(0,0,0);
void main ()

{

vec4 vEyeSpaceLightPosition = MV*vec4 (light position,1);

108

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

vec4 vEyeSpacePosition = MV*vec4 (vVertex, 1) ;
vec3 vEyeSpaceNormal = normalize (N*vNormal) ;
vec3 L = normalize (vEyeSpacelLightPosition.xyz -
vEyeSpacePosition.xyz) ;

vec3 V = normalize (vEyeSpaceCameraPosition.xyz-
vEyeSpacePosition.xyz) ;

vec3 H = normalize (L+V) ;

float diffuse = max(0, dot(vEyeSpaceNormal, L)) ;

float specular = max(0, pow(dot (vEyeSpaceNormal, H),
shininess)) ;

color = diffuse*vec4 (diffuse color,1) +
specular*vec4 (specular color, 1);

gl Position = MVP*vec4 (vVertex, 1) ;

}

Set up a fragment shader which, inputs the shaded color from the vertex shader
interpolated by the rasterizer, and set it as the current output color.

#version 330 core
layout (location=0) out vec4 vFragColor;
smooth in vec4 color;
void main() {
vFragColor = color;

}

In the rendering code, set the shader and render the objects by passing their
modelview/projection matrices to the shader as shader uniforms.

shader.Use () ;

glBindVertexArray (cubeVAOID) ;

for(int i=0;1<8;1i++)

{
float theta (float) (i/8.0£*2*M _PI) ;
glm::mat4 T = glm::translate(glm::mat4 (1),
glm: :vec3 (radius*cos (theta), 0.5,radius*sin(theta))) ;
glm::mat4 M = T;
glm::mat4 MV = View*M;
glm::mat4 MVP = Proj*MV;
glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE,
glm::value ptr (MVP)) ;

glUniformMatrix4fv (shader ("MV"), 1, GL_FALSE,
glm::value ptr(MV)) ;
glUniformMatrix3fv (shader ("N"), 1, GL FALSE,

glm::value ptr(glm::inverseTranspose (glm::mat3 (MV)))) ;
glUniform3fv (shader ("diffuse color"),1l, &(colors[i].x));
glUniform3fv (shader ("light position"),1,&(lightPos0S.x)) ;
glDrawElements (GL_TRIANGLES, 36, GL UNSIGNED SHORT, 0);

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

}

glBindVertexArray (sphereVAOID) ;

glm::mat4 T = glm::translate(glm::mat4 (1),
glm::vec3(0,1,0));

glm::mat4 M = T;

glm::mat4 MV = View*M;

glm: :mat4 MVP = Proj*MV;

glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE,
glm::value ptr (MVP)) ;

glUniformMatrix4fv (shader ("MV"), 1, GL_FALSE,
glm::value ptr(MV)) ;

glUniformMatrix3fv (shader ("N"), 1, GL FALSE,

glm::value ptr(glm::inverseTranspose (glm::mat3 (MV)))) ;
glUniform3f (shader ("diffuse color"), 0.9f, 0.9f, 1.0f);

glUniform3fv (shader ("light position"),1, &(lightPos0S.x)) ;

glDrawElements (GL_TRIANGLES, totalSphereTriangles,
GL_UNSIGNED SHORT, 0);

shader.UnUse () ;
glBindVertexArray (0) ;
grid->Render (glm: :value ptr (Proj*View)) ;

We can perform the lighting calculations in any coordinate space we wish, that is, object
space, world space, or eye/view space. Similar to the lighting in the fixed function OpenGL
pipeline, in this recipe we also do our calculations in the eye space. The first step in the vertex
shader is to obtain the vertex position and light position in the eye space. This is done by
multiplying the current vertex and light position with the modelview (MV) matrix.

vec4 vEyeSpaceLightPosition = MV*vec4 (light position,1);
vec4 vEyeSpacePosition = MV*vec4 (vVertex, 1) ;

Similarly, we transform the per-vertex normals to eye space, but this time we transform them
with the inverse transpose of the modelview matrix, which is stored in the normal matrix (N).

vec3 vEyeSpaceNormal = normalize (N*vNormal) ;

In the OpenGL versions prior to v3.0, the normal matrix was stored

inthe gl NormalMatrix shader uniform, which is the inverse

transpose of the modelview matrix. Compared to positions, normals

~ are transformed differently since the scaling transformation may
modify the normals in such a way that the normals are not normalized
anymore. Multiplying the normals with the inverse transpose of the
modelview matrix ensures that the normals are only rotated based on
the given matrix, maintaining their unit length.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Next, we obtain the vector from the position of the light in eye space to the position of the
vertex in eye space, and do a dot product of this vector with the eye space normal. This
gives us the diffuse component.

vec3 L = normalize (vEyeSpaceLightPosition.xyz-
vEyeSpacePosition.xyz) ;
float diffuse = max(0, dot (vEyeSpaceNormal, L)) ;

We also calculate two additional vectors, the view vector (V) and the half-way vector (H)
between the light and the view vector.

vec3 V = normalize (vEyeSpaceCameraPosition.xyz-
vEyeSpacePosition.xyz) ;
vec3 H = normalize (L+V) ;

These are used for specular component calculation in the Blinn Phong lighting model. The
specular component is then obtained using pow (dot (N, H) , o), where o is the shininess
value; the larger the shininess, the more focused the specular.

float specular = max(0, pow(dot (vEyeSpaceNormal, H), shininess)) ;

The final color is then obtained by multiplying the diffuse value with the diffuse color and the
specular value with the specular color.

color = diffuse*vec4(diffuse color, 1) +
specular*vec4 (specular color, 1);

The fragment shader in the per-vertex lighting simply outputs the per-vertex color interpolated
by the rasterizer as the current fragment color.

smooth in vec4 color;
void main() {
vFragColor = color;

}

Alternatively, if we move the lighting calculations to the fragment shader, we get a more
pleasing rendering result at the expense of increased processing overhead. Specifically,
we transform the per-vertex position, light position, and normals to eye space in the vertex
shader, shown as follows:

#version 330 core

layout (location=0) in vec3 vVertex;
layout (location=1) in wvec3 vNormal;
uniform mat4 MVP;

uniform mat4 MV;

uniform mat3 N;

smooth out vec3 vEyeSpaceNormal;
smooth out vec3 vEyeSpacePosition;

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

void main()
vEyeSpacePosition = (MV*vec4 (vVertex,1l)) .xyz;
vEyeSpaceNormal = N*vNormal;
gl Position = MVP*vec4 (vVertex, 1) ;

}

In the fragment shader, the rest of the calculation, including the diffuse and specular
component contributions, is carried out.

#version 330 core

layout (location=0) out vec4 vFragColor;

uniform vec3 light position; //light position in object space
uniform vec3 diffuse color;

uniform vec3 specular color;

uniform float shininess;

uniform mat4 MV;

smooth in vec3 vEyeSpaceNormal;

smooth in vec3 vEyeSpacePosition;

const vec3 vEyeSpaceCameraPosition = vec3(0,0,0);

void main() {
vec3 vEyeSpaceLightPosition=(MV*vec4 (light position,1)) .xyz;
vec3 N = normalize (vEyeSpaceNormal) ;
vec3 L = normalize (vEyeSpaceLightPosition-vEyeSpacePosition) ;
vec3 V = normalize (vEyeSpaceCameraPosition.xyz-
vEyeSpacePosition.xyz) ;
vec3 H = normalize (L+V) ;
float diffuse = max(0, dot (N, L));
float specular = max(0, pow(dot (N, H), shininess));
vFragColor = diffuse*vec4 (diffuse color,1) +
specular*vec4 (specular color, 1);

}

We will now dissect the per-fragment lighting fragment shader line-by-line. We first calculate
the light position in eye space. Then we calculate the vector from the light to the vertex in eye
space. We also calculate the view vector (V) and the half way vector (H).

vec3 vEyeSpaceLightPosition = (MV * vec4 (light position, 1)) .xyz;
vec3 N = normalize (vEyeSpaceNormal) ;
vec3 L = normalize (vEyeSpaceLightPosition-vEyeSpacePosition) ;

vec3 V = normalize (vEyeSpaceCameraPosition.xyz-
vEyeSpacePosition.xyz) ;
vec3 H = normalize (L+V) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Next, the diffuse component is calculated using the dot product with the eye space normal.
float diffuse = max(0, dot (vEyeSpaceNormal, L)) ;

The specular component is calculated as in the per-vertex case.
float specular = max(0, pow(dot (N, H), shininess));

Finally, the combined color is obtained by summing the diffuse and specular contributions.
The diffuse contribution is obtained by multiplying the diffuse color with the diffuse
component and the specular contribution is obtained by multiplying the specular component
with the specular color.

vFragColor = diffuse*vec4 (diffuse color,1) +
specular*vec4 (specular color, 1);

There's more...

The output from the demo application for this recipe renders a sphere with eight cubes
moving in and out, as shown in the following screenshot. The following figure shows the
result of the per-vertex lighting. Note the ridge lines clearly visible on the middle sphere,
which represents the vertices where the lighting calculations are carried out. Also note the
appearance of the specular, which is predominantly visible at vertex positions only.

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

Now, let us see the result of the same demo application implementing per-fragment lighting:

Note how the per-fragment lighting gives a smoother result compared to the per-vertex
lighting. In addition, the specular component is clearly visible.

Learning Modern 3D Graphics Programming, Section Ill, Jason L. McKesson: http://www.
arcsynthesis.org/gltut/Illumination/Illumination.html

Implementing per-fragment directional light

In this recipe, we will now implement directional light. The only difference between a point
light and a directional light is that in the case of the directional light source, there is no
position, however, there is direction, as shown in the following figure.

— Normal Vector (N)
Light Vector (L)
o Vertex position
¥ Point light position
“2 Directional light direction

¥ 2

114

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The figure compares directional and point light sources. For a point light source (left-hand

side image), the light vector at each vertex is variable, depending on the relative positioning
of the vertex with respect to the point light source. For directional light source (right-hand side
image), all of the light vectors at vertices are the same and they all point in the direction of the
directional light source.

Getting started

We will build on the geometry handling code from the per-fragment lighting recipe, but,
instead of the pulsating cubes, we will now render a single cube with a sphere. The code for
this recipe is contained in the Chapter4 /DirectionalLight folder. The same code also
works for per-vertex directional light.

How to do it...

Let us start the recipe by following these simple steps:

1. Calculate the light direction in eye space and pass it as shader uniform. Note that the
last component is 0 since now we have a light direction vector.

lightDirectionES = glm::vec3 (MV*
glm: :vec4 (lightDirectionOS, 0)) ;

2. Inthe vertex shader, output the eye space normal.

#version 330 core
layout (location=0) in vec3 vVertex;
layout (location=1) in wvec3 vNormal;
uniform mat4 MVP;
uniform mat3 N;
smooth out vec3 vEyeSpaceNormal;
void main ()
{

vEyeSpaceNormal = N*vNormal;

gl Position = MVP*vec4 (vVertex, 1) ;

}

3. Inthe fragment shader, compute the diffuse component by calculating the dot
product between the light direction vector in eye space with the eye space normal,
and multiply with the diffuse color to get the fragment color. Note that here, the light
vector is independent of the eye space vertex position.

#version 330 core

layout (location=0) out vec4 vFragColor;
uniform vec3 light direction;

uniform vec3 diffuse_color;

smooth in vec3 vEyeSpaceNormal;

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

void main()
vec3 L = (light direction);
float diffuse = max(0, dot (vEyeSpaceNormal, L)) ;
vFragColor = diffuse*vec4 (diffuse color,1);

}

The only difference between this recipe and the previous one is that we now pass the light
direction instead of the position to the fragment shader. The rest of the calculation remains
unchanged. If we want to apply attenuation, we can add the relevant shader snippets from
the previous recipe.

There's more...

The demo application implementing this recipe shows a sphere and a cube object. In this
demo, the direction of the light is shown by using a line segment at origin. The direction of the
light can be changed using the right mouse button. The output from this demo application is
shown in the following screenshot:

» The Implementing per-vertex and per-fragment point lighting recipe

» Learning Modern 3D Graphics Programming, Chapter 9, Lights On, Jason L.
McKesson: http://www.arcsynthesis.org/gltut/Illumination/
Tutorial%2009.html

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Implementing per-fragment point light with

attenuation

The previous recipe handled a directional light source but without attenuation. The relevant
changes to enable per-fragment point light with attenuation will be given in this recipe. We start
by implementing per-fragment point light, as in the Implementing per-vertex and per-fragment
point lighting recipe.

Getting started

The code for this recipe is contained in the Chapter4/PointLight folder.

How to do it...

Implementing per-fragment point light is demonstrated by following these steps:

1. From the vertex shader, output the eye space vertex position and normal.

#version 330 core

layout (location=0) in wvec3 vVertex;
layout (location=1) in wvec3 vNormal;
uniform mat4 MVP;

uniform mat4 MV;

uniform mat3 N;

smooth out vec3 vEyeSpaceNormal;
smooth out vec3 vEyeSpacePosition;

void main()
vEyeSpacePosition = (MV*vec4 (vVertex,1l)) .xyz;
vEyeSpaceNormal = N*vNormal;

gl Position = MVP*vec4 (vVertex, 1) ;

}

2. Inthe fragment shader, calculate the light position in eye space, and then calculate
the vector from the eye space vertex position to the eye space light position. Store the
light distance before normalizing the light vector.

#version 330 core

layout (location=0) out vec4 vFragColor;

uniform vec3 light position; //light position in object space
uniform vec3 diffuse color;

uniform mat4 MV;

smooth in vec3 vEyeSpaceNormal;

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

smooth in vec3 vEyeSpacePosition;

const float kO = 1.0; //constant attenuation
const float k1l =
const float k2 =

0.0; //linear attenuation

0.0; //quadratic attenuation

void main() {
vec3 vEyeSpacelLightPosition =
(MV*vec4 (light position,1)) .xyz;
vec3 L = (vEyeSpacelLightPosition-vEyeSpacePosition) ;
float 4 = length(L);
L = normalize (L) ;
float diffuse = max(0, dot(vEyeSpaceNormal, L)) ;
float attenuationAmount = 1.0/(k0 + (k1*d) + (k2*d*d));
diffuse *= attenuationAmount;
vFragColor = diffuse*vec4 (diffuse color,1);

}

3. Apply attenuation based on the distance from the light source to the diffuse
component.
float attenuationAmount = 1.0/(k0 + (k1*d) + (k2*d*d));

diffuse *= attenuationAmount;

4. Multiply the diffuse component to the diffuse color and set it as the fragment color.

vFragColor = diffuse*vec4 (diffuse color,1);

The recipe follows the Implementing per-fragment directional light recipe. In addition, it
performs the attenuation calculation. The attenuation of light is calculated by using the
following formula:

1
kl+k2*d+k2*d’

Attn(d) =

Here, d is the distance from the current position to the light source and k1, k2, and k3 are
the constant, linear, and quadratic attenuation coefficients respectively. For details about the
values and their effect on lighting, we recommend the references in the See also section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

There's more...

The output from the demo application implementing this recipe is given in the following
screenshot. In this recipe, we render a cube and a sphere. The position of light is shown using
a crosshair on the screen. The camera position can be changed using the left mouse button
and the light position can be changed by using the right mouse button. The light distance can
be changed by using the mouse wheel.

See also

» Real-time Rendering, Third Edition, Tomas Akenine-Moller, Eric Haines, Naty
Hoffman, A K Peters/CRC Press

» Learning Modern 3D Graphics Programming, Chapter 10, Plane Lights, Jason
L. McKesson: http://www.arcsynthesis.org/gltut/I1llumination/
Tutorial%2010.html

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

Implementing per-fragment spot light

We will now implement per-fragment spot light. Spot light is a special point light that emits
light in a directional cone. The size of this cone is determined by the spot cutoff amount,
which is given in angles, as shown in the following figure. In addition, the sharpness of the
spot is controlled by the parameter spot exponent. A higher value of the exponent gives a
sharper falloff and vice versa.

Spot exponent

Spotdkecﬂon'

Spot cutoff angle

Getting started

The code for this recipe is contained in the Chapter4/SpotLight directory. The vertex shader
is the same as in the point light recipe. The fragment shader calculates the diffuse component,
as in the Implementing per-vertex and per-fragment point lighting recipe.

How to do it...

Let us start this recipe by following these simple steps:

1. From the light's object space position and spot light target's position, calculate the
spot light direction vector in eye space.

spotDirectionES = glm::normalize (glm::vec3 (MV*
glm: :vec4 (spotPositionO0S-1ightPos0S,0)))

2. Inthe fragment shader, calculate the diffuse component as in point light. In addition,
calculate the spot effect by finding the angle between the light direction and the spot
direction vector.

vec3 L = (light position.xyz-vEyeSpacePosition) ;
float d = length(L) ;

L = normalize (L) ;

vec3 D = normalize(spot direction);

vecl3d V = -L;

float diffuse = 1;

float spotEffect = dot(V,D);

120

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

3. Ifthe angle is greater than the spot cutoff, apply the spot exponent and then use the
diffuse shader on the fragment.

if (spotEffect > spot cutoff) ({
spotEffect = pow(spotEffect, spot_ exponent) ;
diffuse = max (0, dot (vEyeSpaceNormal, L)) ;
float attenuationAmount = spotEffect/ (k0 + (k1*d) +
(k2*d*d)) ;
diffuse *= attenuationAmount;
vFragColor = diffuse*vec4 (diffuse color,1);

}

The spot light is a special point light source that illuminates in a certain cone of direction.

The amount of cone and the sharpness is controlled using the spot cutoff and spot exponent
parameters respectively. Similar to the point light source, we first calculate the diffuse
component. Instead of using the vector to light source (L) we use the opposite vector, which
points in the direction of light (Vv=-1L). Then we find out if the angle between the spot direction
and the light direction vector is within the cutoff angle range. If it is, we apply the diffuse
shading calculation. In addition, the sharpness of the spot light is controlled using the spot
exponent parameter. This reduces the light in a falloff, giving a more pleasing spot light effect.

There's more...

The demo application implementing this recipe renders the same scene as in the point light
demo. We can change the spot light direction using the right mouse button. The output result
is shown in the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

See also

» Real-time Rendering, Third Edition, Tomas Akenine-Moller, Eric Haines, Naty
Hoffman, A K Peters/CRC Press

» Spot Light in GLSL tutorial at Ozone3D: http://www.ozone3d.net/tutorials/
glsl lighting phong p3.php

Implementing shadow mapping with FBO

Shadows give important cues about the relative positioning of graphical objects. There

are myriads of shadow generation techniques, including shadow volumes, shadow maps,
cascaded shadow maps, and so on. An excellent reference on several shadow generation
techniques is given in the See also section. We will now see how to carry out basic shadow
mapping using FBO.

Getting started

For this recipe, we will use the previous scene but instead of a grid object, we will use a plane
object so that the generated shadows can be seen. The code for this recipe is contained in
the Chapter4/ShadowMapping directory.

How to do it...

Let us start with this recipe by following these simple steps:

1. Create an OpenGL texture object which will be our shadow map texture. Make sure to
set the clamp mode to GL_CLAMP TO BORDER, set the border colorto {1,0,0,0},
give the texture comparison mode to GL._COMPARE_REF TO_ TEXTURE, and set
the compare function to GL._LEQUAL. Set the texture internal format to G DEPTH
COMPONENT24.

glGenTextures (1, &shadowMapTexID) ;
glActiveTexture (GL TEXTUREO) ;
glBindTexture (GL TEXTURE 2D, shadowMapTexID) ;
GLfloat border[4]1={1,0,0,0};

glTexParameteri (GL TEXTURE 2D,GL TEXTURE MAG FILTER,
GL_NEAREST) ;

glTexParameteri (GL TEXTURE 2D,GL TEXTURE MIN FILTER,
GL_NEAREST) ;

glTexParameteri (GL_TEXTURE 2D,GL_TEXTURE WRAP_ S,
GL_CLAMP_TO_ BORDER) ;

glTexParameteri (GL_TEXTURE 2D,GL_TEXTURE WRAP T,
GL_CLAMP_TO_ BORDER) ;

122

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

glTexParameteri (GL_TEXTURE 2D,GL_TEXTURE COMPARE MODE,
GL_COMPARE REF TO TEXTURE) ;

glTexParameteri (GL_TEXTURE 2D,GL_TEXTURE COMPARE FUNC,
GL_LEQUAL);

glTexParameterfv (GL TEXTURE 2D,GL TEXTURE BORDER COLOR,
border) ;

glTexImage2D (GL_TEXTURE_2D,0,GL_DEPTH COMPONENT24,
SHADOWMAP WIDTH, SHADOWMAP HEIGHT,0,GL DEPTH COMPONENT,
GL_UNSIGNED BYTE,NULL) ;

Set up an FBO and use the shadow map texture as a single depth attachment. This
will store the scene's depth from the point of view of light.

glGenFramebuffers (1, &£boID) ;
glBindFramebuffer (GL FRAMEBUFFER, fbolID) ;

glFramebufferTexture2D (GL FRAMEBUFFER,GL DEPTH ATTACHMENT,
GL_TEXTURE 2D, shadowMapTexID,0) ;

GLenum status = glCheckFramebufferStatus (GL FRAMEBUFFER) ;

if (status == GL_FRAMEBUFFER_COMPLETE) {
cout<<"FBO setup successful."<<endl;
} else {

cout<<"Problem in FBO setup."<<endl;

}

glBindFramebuffer (GL FRAMEBUFFER, 0) ;

Using the position and the direction of the light, set up the shadow matrix (S) by
combining the light modelview matrix (Mv_L), projection matrix (P_L), and bias matrix
(B). For reducing runtime calculation, we store the combined projection and bias
matrix (BP) at initialization.

MV L = glm::lookAt (1ightPosOS,glm::vec3(0,0,0),
glm::vec3(0,1,0));

P L = glm::perspective(50.0£,1.0£,1.0f, 25.0f);

B = glm::scale(glm::translate (glm::mat4 (1),
glm::vec3(0.5,0.5,0.5)) ,g9lm::vec3(0.5,0.5,0.5)) ;

BP = B*P L;

S = BP*MV_L;

Bind the FBO and render the scene from the point of view of the light. Make sure

to enable front-face culling (glEnable (GL_CULL_FACE) and glCullFace (GL
FRONT)) so that the back-face depth values are rendered. Otherwise our objects will
suffer from shadow acne.

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

Normally, a simple shader could be used for rendering
\ of a scene in the depth texture. This may also be
Ny achieved by disabling writing to the color buffer
<:zl (glDrawBuffer (GL_NONE)) and then enabling it for
normal rendering. In addition, an offset bias can also be
added in the shader code to reduce shadow acne.

glBindFramebuffer (GL FRAMEBUFFER, fbolID) ;

glClear (GL_DEPTH BUFFER BIT) ;

glvViewport (0, 0, SHADOWMAP WIDTH, SHADOWMAP HEIGHT) ;
glCullFace (GL_FRONT) ;

DrawScene (MV_L, P _L);

glCullFace (GL_BACK) ;

5. Disable FBO, restore default viewport, and render the scene normally from the point
of view of the camera.

glBindFramebuffer (GL FRAMEBUFFER, 0) ;
glViewport (0,0,WIDTH, HEIGHT) ;
DrawScene (MV, P, 0);

6. Inthe vertex shader, multiply the world space vertex positions (M*vec4 (vVertex, 1))
with the shadow matrix (S) to obtain the shadow coordinates. These will be used for
lookup of the depth values from the shadowmap texture in the fragment shader.

#version 330 core
layout (location=0) in wvec3 vVertex;
layout (location=1) in wvec3 vNormal;

uniform mat4 MVP; //modelview projection matrix
uniform mat4 MV; //modelview matrix

uniform mat4 M; //model matrix

uniform mat3 N; //normal matrix

uniform mat4 S; //shadow matrix

smooth out vec3 vEyeSpaceNormal;
smooth out vec3 vEyeSpacePosition;
smooth out vec4 vShadowCoords;
void main ()

{

vEyeSpacePosition = (MV*vec4 (vVertex,1l)) .xyz;
vEyeSpaceNormal = N*vNormal;

vShadowCoords = S* (M*vec4 (vVertex, 1)) ;

gl Position = MVP*vec4 (vVertex, 1) ;

124

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

7. Inthe fragment shader, use the shadow coordinates to lookup the depth value in the
shadow map sampler which is of the sampler2Dshadow type. This sampler can be
used with the textureProj function to return a comparison outcome. We then use
the comparison result to darken the diffuse component, simulating shadows.

#version 330 core

layout (location=0) out vec4 vFragColor;

uniform sampler2DShadow shadowMap;

uniform vec3 light position; //light position in eye space
uniform vec3 diffuse color;

smooth in vec3 vEyeSpaceNormal;

smooth in vec3 vEyeSpacePosition;

smooth in vec4 vShadowCoords;

const float kO = 1.0; //constant attenuation

const float k1 = 0.0; //linear attenuation

const float k2 = 0.0; //quadratic attenuation
uniform bool bIsLightPass; //no shadows in light pass

void main() {
if (bIsLightPass)
return;
vec3 L = (light position.xyz-vEyeSpacePosition) ;

float d = length(L);
L = normalize (L) ;
float attenuationAmount = 1.0/(k0 + (k1*d) + (k2*d*d));
float diffuse = max (0, dot (vEyeSpaceNormal, L)) *
attenuationAmount;
if (vShadowCoords.w>1) {
float shadow = textureProj (shadowMap, vShadowCoords) ;
diffuse = mix(diffuse, diffuse*shadow, 0.5);

}

vFragColor = diffuse*vec4 (diffuse color, 1);

The shadow mapping algorithm works in two passes. In the first pass, the scene is rendered
from the point of view of light, and the depth buffer is stored into a texture called shadowmap.
We use a single FBO with a depth attachment for this purpose. Apart from the conventional
minification/magnification texture filtering, we set the texture wrapping mode to GL._CLAMP__
TO_BORDER, Which ensures that the values are clamped to the specified border color. Had

we set this as GL._CLAMP or GL_CLAMP TO_ EDGE, the border pixels forming the shadow map
would produce visible artefacts.

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

The shadowmap texture has some additional parameters. The first is the GL. TEXTURE
COMPARE_MODE parameter, which is set as the GL_COMPARE_REF_TO_ TEXTURE value.

This enables the texture to be used for depth comparison in the shader. Next, we specify the
GL_TEXTURE COMPARE FUNC parameter, which is set as GL._LEQUAL. This compares the
currently interpolated texture coordinate value (r) with the depth texture's sample value (D).

It returns 1 if r<=D, otherwise it returns O. This means that if the depth of the current sample
is less than or equal to the depth from the shadowmap texture, the sample is not in shadow;
otherwise, it is in shadow. The textureProj GLSL shader function performs this comparison
for us and returns O or 1 based on whether the point is in shadow or not. These are the
texture parameters required for the shadowmap texture.

To ensure that we do not have any shadow acne, we enable front-face culling (g1Enable (GL_
CULL_FACE) and glCullFace (GL_FRONT)) so that the back-face depth values get written
to the shadowmap texture. In the second pass, the scene is rendered normally from the point
of view of the camera and the shadow map is projected on the scene geometry using shaders.

To render the scene from the point of view of light, the modelview matrix of the light (Mv_L),
the projection matrix (P_L), and the bias matrix (B) are calculated. After multiplying with the
projection matrix, the coordinates are in clip space (that is, they range from [-1,-1,-1]). to
[1,1,1]. The bias matrix rescales this range to bring the coordinates from [0,0,0] to [1,1,1]
range so that the shadow lookup can be carried out.

If we have the object's vertex position in the object space given as vob3j, the shadow
coordinates (UvVproj) for the lookup in the shadow map can be given by multiplying the
shadow matrix (S) with the world space position of the object (M*Vobj). The whole series
of transformations is given as follows:

Uy, =S*My*v,,

S=B*P, *MV,

Here, B is the bias matrix, P, is the projection matrix of light, and MV is the modelview matrix
of light. For efficiency, we precompute the bias matrix of the light and the projection matrix,
since they are unchanged for the lifetime of the application. Based on the user input, the
light's modelview is modified and then the shadow matrix is recalculated. This is then passed
to the shader.

In the vertex shader, the shadowmap texture coordinates are obtained by multiplying the
world space vertex position (M*Vob7j) with the shadow matrix (S). In the fragment shader,

the shadow map is looked up using the projected texture coordinate to find if the current
fragment is in shadow. Before the texture lookup, we check the value of the w coordinate of
the projected texture coordinate. We only do our calculations if the w coordinate is greater
than 1. This ensures that we only accept the forward projection and reject the back projection.
Try removing this condition to see what we mean.

126

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The shadow map lookup computation is facilitated by the textureProj GLSL function. The
result from the shadow map lookup returns 1 or O. This result is multiplied with the shading
computation. As it happens in the real world, we never have coal black shadows. Therefore, we
combine the shadow outcome with the shading computation by using the mix GLSL function.

There's more...

The demo application for this recipe shows a plane, a cube, and a sphere. A point light source,
which can be rotated using the right mouse button, is placed. The distance of the light source
can be altered using the mouse wheel. The output result from the demo is displayed in the
following figure:

This recipe detailed the shadow mapping technique for a single light source. With each
additional light source, the processing, as well as storage requirements, increase.

See also

» Real-time Shadows, EImar Eisemann, Michael Schwarz, UIf Assarsson, Michael
Wimmer, A K Peters/CRC Press

» OpenGL 4.0 Shading Language Cookbook, Chapter 7, Shadows, David Wolff, Packt
Publishing

» ShadowMapping with GLSL by Fabien Sanglard: http://www.fabiensanglard.
net/shadowmapping/index.php

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

Implemeting shadow mapping with

percentage closer filtering (PCF)

The shadow mapping algorithm, though simple to implement, suffers from aliasing artefacts,
which are due to the shadowmap resolution. In addition, the shadows produced using this
approach are hard. These can be minimized either by increasing the shadowmap resolution
or taking more samples. The latter approach is called percentage closer filtering (PCF),
where more samples are taken for the shadowmap lookup and the percentage of the samples
is used to estimate if a fragment is in shadow. Thus, in PCF, instead of a single lookup, we
sample an nxn neighborhood of shadowmap and then average the values.

Getting started

The code for this recipe is contained in the Chapter4/ShadowMappingPCF directory. It
builds on top of the previous recipe, Implementing shadow mapping with FBO. We use the
same scene but augment it with PCF.

How to do it...

Let us see how to extend the basic shadow mapping with PCF.

1. Change the shadowmap texture minification/maghnification filtering modes to
GL_LINEAR. Here, we exploit the texture filtering capabilities of the GPU to reduce
aliasing artefacts during sampling of the shadow map. Even with the linear filtering
support, we have to take additional samples to reduce the artefacts.

glTexParameteri (GL_TEXTURE 2D,GL_TEXTURE MAG FILTER,
GL_LINEAR) ;

glTexParameteri (GL_TEXTURE 2D,GL_TEXTURE MIN FILTER,
GL_LINEAR) ;

2. Inthe fragment shader, instead of a single texture lookup as in the shadow
map recipe, we use a number of samples. GLSL provides a convenient function,
textureProjoOffset, to allow calculation of samples using an offset. For this
recipe, we look at a 3x3 neighborhood around the current shadow map point.
Hence, we use a large offset of 2. This helps to reduce sampling artefacts.

if (vShadowCoords.w>1) {
float sum = 0;
sum += textureProjOffset (shadowMap, vShadowCoords,
ivec2(-2,-2));
sum += textureProjOffset (shadowMap, vShadowCoords,
ivec2 (-2, 0));
sum += textureProjOffset (shadowMap, vShadowCoords,
ivec2 (-2, 2));

128

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

sum += textureProjOffset (shadowMap, vShadowCoords,
ivec2(0,-2));

sum += textureProjOffset (shadowMap, vShadowCoords,
ivec2(0, 0));

sum += textureProjOffset (shadowMap, vShadowCoords,
ivec2(0, 2));

sum += textureProjOffset (shadowMap, vShadowCoords,
ivec2(2,-2));

sum += textureProjOffset (shadowMap, vShadowCoords,
ivec2(2, 0));

sum += textureProjOffset (shadowMap, vShadowCoords,
ivec2(2, 2));

float shadow = sum/9.0;

diffuse = mix(diffuse, diffuse*shadow, 0.5);

}

In order to implement PCF, the first change we need is to set the texture filtering mode to
linear filtering. This change enabled the GPU to bilinearly interpolate the shadow value. This
gives smoother edges since the hardware does PCF filtering underneath. However it is not
enough for our purpose. Therefore, we have to take additional samples to improve the result.

Fortunately, we can use a convenient function, textureProjOf fset, which accepts an
offset that is added to the given shadow map texture coordinate. Note that the offset
given to this function must be a constant literal. Thus, we cannot use a loop variable for
dynamic sampling of the shadow map sampler. We, therefore, have to unroll the loop to
sample the neighborhood.

We use an offset of 2 units because we wanted to sample at a value of 1.5. However, since
the textureProjOffset function does not accept a floating point value, we round it to
the nearest integer. The offset is then modified to move to the next sample point until the
entire 3x3 neighborhood is sampled. We then average the sampling result for the entire
neighborhood. The obtained sampling result is then multiplied to the lighting contribution,
thus, producing shadows if the current sample happens to be in an occluded regjon.

Even with adding additional samples, we get sampling artefacts. These can be reduced by
shifting the sampling points randomly. To achieve this, we first implement a pseudo-random
function in GLSL as follows:

float random(vec4d seed)

float dot product = dot(seed, vec4(12.9898,78.233, 45.164,
94.673)) ;

return fract (sin(dot product) * 43758.5453);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

Then, the sampling for PCF uses the noise function to shift the shadow offset, as shown in the
following shader code:

for(int i=0;i<16;i++)
float indexa (random (vec4 (gl_FragCoord.xyx, 1i))*0.25);
float indexB = (random(vec4 (gl FragCoord.yxy, 1i))*0.25);
sum += textureProj (shadowMap, vShadowCoords +
vec4 (indexA, indexB, 0, 0));

}

shadow = sum/16.0;

In the given code, three macros are defined, STRATIFIED 3x3 (for 3x3 stratified sampling),
STRATIFIED 5x5 (for 5x5 stratified sampling), and RANDOM SAMPLING (for 4x4 random
sampling).

There's more...

Making these changes, we get a much better result, as shown in the following figure. If we
take a bigger neighborhood, we get a better result. However, the computational requirements
also increase.

130

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The following figure compares this result of the PCF-filtered shadow map (right) with a normal
shadow map (left). We can see that the PCF-filtered result gives softer shadows with reduced
aliasing artefacts.

The following figure compares the result of the stratified PCF-filtered image (left) against the
random PCF-filtered image (right). As can be seen, the noise-filtered image gives a much
better result.

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

See also

» GPU Gems, Chapter 11, Shadow Map Antialiasing, Michael Bunnell, Fabio Pellacini,
available online at: http://http.developer.nvidia.com/GPUGems/
gpugems_chll.html

» Shadow mapping, Tutorial 16: http://www.opengl-tutorial.org/
intermediate-tutorials/tutorial-16-shadow-mapping/

Implementing variance shadow mapping

In this recipe, we will cover a technique which gives a much better result, has better
performance, and at the same time is easier to calculate. The technique is called variance
shadow mapping. In conventional PCF-filtered shadow mapping, we compare the depth
value of the current fragment to the mean depth value in the shadow map, and based on
the outcome, we shadow the fragment.

In case of variance shadow mapping, the mean depth value (also called first moment) and
the mean squared depth value (also called second moment) are calculated and stored. Then,
rather than directly using the mean depth, the variance is used. The variance calculation
requires both the mean depth as well as the mean of the squared depth. Using the variance,
the probability of whether the given sample is shadowed is estimated. This probability is then
compared to the maximum probability to determine if the current sample is shadowed.

Getting started

For this recipe, we will build on top of the shadow mapping recipe, Implementing
shadow mapping with FBO. The code for this recipe is contained in the Chapter4/
VarianceShadowMapping folder.

How to do it...

Let us start our recipe by following these simple steps:

1. Set up the shadowmap texture as in the shadow map recipe, but this time remove
the depth compare mode (glTexParameteri (GL_TEXTURE 2D,GL_TEXTURE
COMPARE_MODE, GL_COMPARE_REF_TO TEXTURE) and glTexParameteri (GL_
TEXTURE 2D,GL_TEXTURE COMPARE FUNC,GL LEQUAL)). Also set the format of
the texture to the GL_RGBA32F format. Also enable the mipmap generation for this
texture. The mipmaps provide filtered textures across different scales and produces
better alias-free shadows. We request five mipmap levels (by specifying the max level
as 4).

glGenTextures (1, &shadowMapTexID) ;
glActiveTexture (GL TEXTUREO) ;

132

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

glBindTexture (GL TEXTURE 2D, shadowMapTexID) ;

glTexParameteri (GL TEXTURE 2D,GL TEXTURE MAG FILTER,
GL_LINEAR;

glTexParameteri (GL_TEXTURE 2D,GL TEXTURE MIN FILTER,
GL_LINEAR MIPMAP LINEAR) ;

glTexParameteri (GL_TEXTURE_2D,GL_TEXTURE WRAP_S,
GL_CLAMP_TO_ BORDER) ;

glTexParameteri (GL_TEXTURE_2D,GL_TEXTURE WRAP T,
GL_CLAMP_TO_ BORDER) ;

ngexParameteer(GL_TEXTURE_ZD,GL_TEXTURE_BORDER_COLOR,
border;

glTexImage2D (GL_TEXTURE_2D,0,GL_RGBA32F, SHADOWMAP WIDTH,
SHADOWMAP HEIGHT, 0,GL_RGBA,GL_FLOAT,NULL) ;

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri (GL_TEXTURE 2D, GL TEXTURE MAX LEVEL, 4);
glGenerateMipmap (GL TEXTURE 2D) ;

Set up two FBOs: one for shadowmap generation and another for shadowmap
filtering. The shadowmap FBO has a renderbuf fer attached to it for depth
testing. The filtering FBO does not have a renderbuf fer attached to it but it
has two texture attachments.

glGenFramebuffers (1, &£boID) ;
glGenRenderbuffers(l, &rbolID);
glBindFramebuffer (GL FRAMEBUFFER, fboID) ;
glBindRenderbuffer (GL RENDERBUFFER, rboID);
glRenderbufferStorage (GL_RENDERBUFFER,
GL DEPTH COMPONENT32, SHADOWMAP WIDTH,
SHADOWMAP HEIGHT) ;
glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO,
GL TEXTURE_ 2D, shadowMapTexID, 0) ;
glFramebufferRenderbuffer (GL FRAMEBUFFER,
GL DEPTH ATTACHMENT, GL RENDERBUFFER, rbolID);
GLenum status = glCheckFramebufferStatus (GL FRAMEBUFFER) ;

if (status == GL_FRAMEBUFFER_COMPLETE) {
cout<<"FBO setup successful."<<endl;
} else {

cout<<"Problem in FBO setup."<<endl;

}

glBindFramebuffer (GL FRAMEBUFFER, 0) ;

glGenFramebuffers (1, &filterFBOID) ;

glBindFramebuffer (GL FRAMEBUFFER, £ilterFBOID) ;

glGenTextures (2, blurTexID) ;

for(int i=0;i<2;i++)
glActiveTexture (GL _TEXTURE1l+i) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

glBindTexture (GL TEXTURE 2D, blurTexID[i]);
glTexParameteri (GL TEXTURE 2D,GL TEXTURE MAG FILTER,
GL_LINEAR) ;
glTexParameteri (GL TEXTURE 2D,GL TEXTURE MIN FILTER,
GL_LINEAR) ;
glTexParameteri (GL_TEXTURE 2D,GL_TEXTURE WRAP S,
GL_CLAMP_TO BORDER) ;
glTexParameteri (GL_TEXTURE 2D,GL_TEXTURE WRAP T,
GL_CLAMP_TO BORDER) ;
glTexParameterfv (GL_TEXTURE 2D,GL_TEXTURE BORDER COLOR,
border) ;

glTexImage2D (GL_TEXTURE 2D,0,GL RGBA32F, SHADOWMAP WIDTH,
SHADOWMAP HEIGHT, 0,GL_ RGBA,GL FLOAT, NULL) ;
glFramebufferTexture2D (GL FRAMEBUFFER,
GL_COLOR_ATTACHMENTO+i, GL_TEXTURE_2D,blurTexIDI[il,0);

}

status = glCheckFramebufferStatus (GL FRAMEBUFFER) ;

if (status == GL_FRAMEBUFFER COMPLETE) {
cout<<"Filtering FBO setup successful."<<endl;
} else {

cout<<"Problem in Filtering FBO setup."<<endl;

}

glBindFramebuffer (GL FRAMEBUFFER, 0) ;

3. Bind the shadowmap FBO, set the viewport to the size of the shadowmap texture,
and render the scene from the point of view of the light, as in the Implementing
shadow mapping with FBO recipe. In this pass, instead of storing the depth as
in the shadow mapping recipe, we use a custom fragment shader (Chapter4/
VarianceShadowmapping/shaders/firststep. frag) to output the depth and
depth*depth values in the red and green channels of the fragment output color.

glBindFramebuffer (GL FRAMEBUFFER, fbolID) ;
glvViewport (0, 0, SHADOWMAP WIDTH, SHADOWMAP HEIGHT) ;
glDrawBuffer (GL_COLOR_ATTACHMENTO) ;

glClear (GL_COLOR_BUFFER BIT|GL_DEPTH BUFFER BIT) ;
DrawSceneFirstPass (MV_L, P_L);

The shader code is as follows:

#version 330 core

layout (location=0) out vec4 vFragColor;

smooth in vec4 clipSpacePos;

void main ()

{
vec3 pos = clipSpacePos.xyz/clipSpacePos.w; //-1 to 1
pos.z += 0.001; //add some offset to remove the shadow
acne

www.it-ebooks.info

http://www.it-ebooks.info/

float depth = (pos.z +1)*0.5; // 0 to 1
float momentl = depth;

float moment2 = depth * depth;
vFragColor = vec4 (momentl,moment2,0,0);

}

Bind the filtering FBO to filter the shadowmap texture generated in the first pass
using separable Gaussian smoothing filters, which are more efficient and offer
better performance. We first attach the vertical smoothing fragment shader
(Chapter4/VarianceShadowmapping/shaders/GaussV. frag) to filter the

Chapter 4

shadowmap texture and then the horizontal smoothing fragment shader (Chapter4/

VarianceShadowmapping/shaders/GaussH. frag) to smooth the output from
the vertical Gaussian smoothing filter.

glBindFramebuffer (GL FRAMEBUFFER, £ilterFBOID) ;
glDrawBuffer (GL COLOR_ATTACHMENTO) ;

glBindVertexArray (quadVAOID) ;

gaussianV_shader.Use() ;

glDrawElements (GL_TRIANGLES, 6, GL UNSIGNED SHORT, O0);
glDrawBuffer (GL_COLOR_ATTACHMENT1) ;

gaussianH shader.Use() ;

glDrawElements (GL_TRIANGLES, 6, GL UNSIGNED SHORT, O0);
glBindFramebuffer (GL FRAMEBUFFER, 0) ;

The horizontal Gaussian blur shader is as follows:

#version 330 core

layout (location=0) out vec4 vFragColor;
smooth in vec2 vUV;

uniform sampler2D textureMap;

const float kernel[]=float[21] (0.000272337, 0.00089296,
0.002583865, 0.00659813, 0.014869116, 0.029570767,

0.051898313, 0.080381679, 0.109868729, 0.132526984,
0.14107424, 0.132526984, 0.109868729, 0.080381679,
0.051898313, 0.029570767, 0.014869116, 0.00659813,
0.002583865, 0.00089296, 0.000272337) ;

void main()

{

vec2 delta = 1.0/textureSize (textureMap,0) ;
vec4 color = vec4 (0);

int index = 20;

for(int i=-10;i<=10;i++) {
color += kernel[index--]*texture(textureMap, vUV +
(vec2 (i*delta.x,0)));

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows
}

vFragColor = vec4 (color.xy,0,0);

}

In the vertical Gaussian shader, the loop statement is modified, whereas the rest of
the shader is the same.

color += kernel [index--]*texture (textureMap, vUV +
(vec2(0,i*delta.y)));

5. Unbind the FBO, reset the default viewport, and then render the scene normally, as in
the shadow mapping recipe.

glDrawBuffer (GL BACK LEFT) ;
glViewport (0,0,WIDTH, HEIGHT) ;
DrawScene (MV, P);

The variance shadowmap technique tries to represent the depth data such that it can be
filtered linearly. Instead of storing the depth, it stores the depth and depth*depth value in a
floating point texture, which is then filtered to reconstruct the first and second moments of the
depth distribution. Using the moments, it estimates the variance in the filtering neighborhood.
This helps in finding the probability of a fragment at a specific depth to be occluded using
Chebyshev's inequality. For more mathematical details, we refer the reader to the See also
section of this recipe.

From the implementation point of view, similar to the shadow mapping recipe, the
method works in two passes. In the first pass, we render the scene from the point of
view of light. Instead of storing the depth, we store the depth and the depth*depth
values in a floating point texture using the custom fragment shader (see Chapter4/
VarianceShadowmapping/shaders/firststep. frag).

The vertex shader outputs the clip space position to the fragment shader using which the
fragment depth value is calculated. To reduce self-shadowing, a small bias is added to
the z value.

vec3 pos = clipSpacePos.xyz/clipSpacePos.w;
pos.z += 0.001;

float depth = (pos.z +1)*0.5;

float momentl = depth;

float moment2 = depth * depth;

vFragColor = vec4 (momentl,moment2,0,0);

136

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

After the first pass, the shadowmap texture is blurred using a separable Gaussian smoothing
filter. First the vertical and then the horizontal filter is applied to the shadowmap texture by
applying the shadowmap texture to a full-screen quad and alternating the filter FBO's color
attachment. Note that the shadowmap texture is bound to texture unit O whereas the textures
used for filtering are bound to texture unit 1 (attached to GL._ COLOR_ATTTACHMENTO on the
filtering FBO) and texture unit 2 (attached to GL._COLOR_ATTACHMENT1 on the filtering FBO).

glBindFramebuffer (GL FRAMEBUFFER, fbolID) ;
glViewport(0,0,SHADOWMAP_WIDTH, SHADOWMAP_HEIGHT);
ngrawBuffer(GL_COLOR_ATTACHMENTO);
glClear (GL_COLOR_BUFFER BIT|GL DEPTH BUFFER BIT) ;
DrawSceneFirstPass (MV_L, P_L);

glBindFramebuffer (GL _FRAMEBUFFER, filterFBOID) ;
glDrawBuffer (GL_COLOR_ATTACHMENTO) ;
glBindVertexArray (quadVAOID) ;
gaussianV_shader.Use() ;
ngrawElements(GL_TRIANGLES, 6, GL_UNSIGNED SHORT, 0);

ngrawBuffer(GL_COLOR_ATTACHMENTl);
gaussianH shader.Use() ;
ngrawElements(GL_TRIANGLES, 6, GL_UNSIGNED SHORT, 0);
glBindFramebuffer (GL_FRAMEBUFFER, 0) ;
glDrawBuffer (GL_BACK LEFT) ;
glViewport (0,0,WIDTH, HEIGHT) ;

In the second pass, the scene is rendered from the point of view of the camera. The

blurred shadowmap is used in the second pass as a texture to lookup the sample value

(see Chapter4/VarianceShadowmapping/shaders/VarianceShadowMap. {vert,
frag}). The variance shadow mapping vertex shader outputs the shadow texture coordinates,
as in the shadow mapping recipe.

#version 330 core
layout (location=0) in vec3 vVertex;
layout (location=1) in wvec3 vNormal;

uniform mat4 MVP; //modelview projection matrix
uniform mat4 MV; //modelview matrix

uniform mat4 M; //model matrix

uniform mat3 N; //normal matrix

uniform mat4 S; //shadow matrix

smooth out vec3 vEyeSpaceNormal;
smooth out vec3 vEyeSpacePosition;
smooth out vec4 vShadowCoords;
void main ()

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

{

vEyeSpacePosition = (MV*vec4 (vVertex,1l)) .xyz;
vEyeSpaceNormal = N*vNormal;
vShadowCoords = S* (M*vec4 (vVertex,1));

gl Position MVP*vec4 (vVertex, 1) ;

}

The variance shadow mapping fragment shader operates differently. We first make sure

that the shadow coordinates are in front of the light (to prevent back projection), that is,
shadowCoord.w>1. Next, the shadowCoords . xyz values are divided by the homogeneous
coordinate, shadowCoord.w, to get the depth value.

if (vShadowCoords.w>1) {
vec3 uv = vShadowCoords.xyz/vShadowCoords.w;
float depth = uv.z;

The texture coordinates after homogeneous division are used to lookup the shadow map
storing the two moments. The two moments are used to estimate the variance. The variance
is clamped and then the occlusion probability is estimated. The diffuse component is then
modulated based on the obtained occlusion probability.

vec4 moments = texture (shadowMap, uv.xy) ;
float E_x2 = moments.y;
float Ex 2 = moments.x*moments.x;

float var = E x2-Ex_2;

var = max(var, 0.00002) ;

float mD = depth-moments.x;

float mD 2 = mD*mD;

float p max = var/(var+ mD_2);

diffuse *= max(p max, (depth<=moments.x)?1.0:0.2);

}
To recap, here is the complete variance shadow mapping fragment shader:

#version 330 core

layout (location=0) out vec4 vFragColor;

uniform sampler2D shadowMap;

uniform vec3 light position; //light position in object space
uniform vec3 diffuse color;

uniform mat4 MV;

smooth in vec3 vEyeSpaceNormal;

smooth in vec3 vEyeSpacePosition;

smooth in vec4 vShadowCoords;

const float kO = 1.0; //constant attenuation
const float k1l = 0.0; //linear attenuation
138

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

const float k2 = 0.0; //quadratic attenuation
void main() {
vec4 vEyeSpaceLightPosition = (MV*vec4 (light position,1));
vec3 L = (vEyeSpacelLightPosition.xyz-vEyeSpacePosition) ;
float d = length(L);
L = normalize (L) ;
float attenuationAmount = 1.0/(k0 + (k1*d) + (k2*d*d)) ;
float diffuse = max(0, dot (vEyeSpaceNormal, L)) *
attenuationAmount;
if (vShadowCoords.w>1) {
vec3 uv = vShadowCoords.xyz/vShadowCoords.w;
float depth = uv.z;
vec4 moments = texture(shadowMap, uv.xy):;
float E x2 = moments.y;
float Ex 2 = moments.x*moments.x;
float var = E x2-Ex 2;
var = max(var, 0.00002);
float mD = depth-moments.x;
float mD 2 = mD*mD;
float p max = var/(var+ mD 2);
diffuse *= max(p max, (depth<=moments.x)?1.0:0.2);

}

vFragColor = diffuse*vec4 (diffuse color, 1);

}

There's more...

Variance shadow mapping is an interesting idea. However, it does suffer from light bleeding
artefacts. There have been several improvements to the basic technique, such as summed
area variance shadow maps, layered variance shadow maps, and more recently, sample
distribution shadow maps, that are referred to in the See also section of this recipe. After
getting a practical insight into the basic variance shadow mapping idea, we invite the reader
to try and implement the different variants of this algorithm, as detailed in the references in
the See also section.

www.it-ebooks.info

http://www.it-ebooks.info/

Lights and Shadows

The demo application for this recipe shows the same scene (a cube and a sphere on a plane)
lit by a point light source. Right-clicking the mouse button rotates the point light around the
objects. The output result is shown in the following figure:

Comparing this output to the previous shadow mapping recipes, we can see that the output
quality is much better if compared to the conventional shadow mapping and the PCF-based
technigue. When comparing the outputs, variance shadow mapping gives a better output with
a significantly less number of samples. Obtaining the same output using PCF or any other
technique would require a very large neighborhood lookup with more samples. This makes
this technique well-suited for real-time applications such as games.

» Proceedings of the 2006 symposium on Interactive 3D graphics and games, Variance
Shadow Maps, pages 161-165 William Donnelly, Andrew Lauritzen

» GPU Gems 3, Chapter 8, Summed-Area Variance Shadow Maps, Andrew Lauritzen:
http://http.developer.nvidia.com/GPUGems3/gpugems3 ch08.html

» Proceedings of the Graphics Interface 2008, Layered variance shadow maps, pages
139-146, Andrew Lauritzen, Michael McCool

» Sample Distribution Shadow Maps, ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (I3D) 2011, February, Andrew Lauritzen, Marco Salvi, and
Aaron Lefohn

140

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats
and Particle Systems

In this chapter, we will focus on:

» Implementing terrains using height map

» Implementing 3ds model loading using separate buffers

» Implementing OBJ model loading using interleaved buffers
» Implementing EZMesh model loading

» Implementing a simple particle system

Introduction

While simple demos and applications can get along with basic primitives like cubes and
spheres, most real-world applications and games use 3D mesh models which are modelled in
3D modeling software such as 3ds Max and Maya. For games, the models are then exported
into the proprietary game format and then the models are loaded into the game.

While there are many formats available, some formats such as Autodesk® 3ds and
Wavefront® OBJ are common formats. In this chapter, we will look at recipes for loading
these model formats. We will look at how to load the geometry information, stored in the
external files, into the vertex buffer object memory of the GPU. In addition, we will also load
material and texture information which is required to improve the fidelity of the model so that
it appears more realistic. We will also work on loading terrains which are often used to model
outdoor environments. Finally, we will implement a basic particle system for simulating fuzzy
phenomena such as fire and smoke. All of the discussed techniques will be implemented in
the OpenGL v3.3 and above core profile.

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

Implementing terrains using the height map

Several demos and applications require rendering of terrains. This recipe will show how to
implement terrain generation in modern OpenGL. The height map is loaded using the SOIL
image loading library which contains displacement information. A 2D grid is then generated
depending on the required terrain resolution. Then, the displacement information contained
in the height map is used to displace the 2D grid in the vertex shader. Usually, the obtained
displacement value is scaled to increase or decrease the displacement scale as desired.

Getting started

For the terrain, first the 2D grid geometry is generated depending on the terrain resolution.
The steps to generate such geometry were previously covered in the Doing a ripple mesh
deformer using vertex shader recipe in Chapter 1, Introduction to Modern OpenGL. The
code for this recipe is contained in the Chapter5/TerrainLoading directory.

How to do it...

Let us start our recipe by following these simple steps:

1. Load the height map texture using the SOIL image loading library and generate an
OpenGL texture from it. The texture filtering is set to GL._NEAREST as we want to
obtain the exact values from the height map. If we had changed this to GL_LINEAR,
we would get interpolated values. Since the terrain height map is not tiled, we set the
texture wrap mode to GL_ CLAMP.

int texture width = 0, texture height = 0, channels=0;
GLubyte* pData = SOIL load image(filename.c str(),
&texture width, &texture height, &channels, SOIL LOAD L);
//vertically flip the image data

for(j = 0; j*2 < texture height; ++Jj)

{

int indexl = j * texture width ;
int index2 = (texture height - 1 - j) * texture width ;
for(i = texture width ; i > 0; --1)

{

GLubyte temp = pData[indexl];

pData[indexl] = pData[index2];
pData[index2] = temp;
++index1;

++index2;

142

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

glGenTextures (1, &heightMapTexturelD) ;
glActiveTexture (GL TEXTUREO) ;
glBindTexture (GL TEXTURE 2D, heightMapTexturelD) ;

glTexParameteri (GL_TEXTURE 2D, GL TEXTURE MIN FILTER,
GL_NEAREST) ;

glTexParameteri (GL_TEXTURE 2D, GL TEXTURE MAG FILTER,
GL_NEAREST) ;

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE WRAP_ S,
GL_CLAMP) ;

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE WRAP T,
GL_CLAMP) ;

glTexImage2D (GL TEXTURE 2D, 0, GL_RED, texture width,
texture height, 0, GL_RED, GL UNSIGNED BYTE, pData);

SOIL free image data(pData) ;

Set up the terrain geometry by generating a set of points in the XZ plane. The
TERRAIN WIDTH parameter controls the total number of vertices in the X axis
whereas the TERRAIN DEPTH parameter controls the total number of vertices
in the Z axis.

for(j=0;j<TERRAIN DEPTH;j++) {
for(1i=0;i<TERRAIN WIDTH;i++) {
vertices[count] =glm::vec3 ((float (i)/ (TERRAIN WIDTH-
1)), 0, (float(j)/(TERRAIN DEPTH-1)));
count++;

}

Set up the vertex shader that displaces the 2D terrain mesh. Refer to Chapters/
TerrainLoading/shaders/shader.vert for details. The height value is
obtained from the height map. This value is then added to the current vertex position
and finally multiplied with the combined modelview projection (MVP) matrix to get
the clip space position. The HALF _TERRAIN SIZE uniform contains half of the

total number of vertices in both the X and Z axes, that is, HALF_ TERRAIN SIZE =
ivec2 (TERRAIN WIDTH/2, TERRAIN DEPTH/2).Similarly the scale uniform is
used to scale the height read from the height map. The half scale and

HALF TERRAIN SIZE uniforms are used to position the mesh at origin.

#version 330 core

layout (location=0) in vec3 vVertex;
uniform mat4 MVP;

uniform ivec2 HALF TERRAIN SIZE;
uniform sampler2D heightMapTexture;
uniform float scale;

uniform float half scale;

void main ()

{

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

float height = texture(heightMapTexture,
vVertex.xz) .r*scale - half scale;

vec2 pos = (vVertex.xz*2.0-1)*HALF TERRAIN SIZE;
gl Position = MVP*vec4 (pos.x, height, pos.y, 1);

}

4. Load the shaders and the corresponding uniform and attribute locations. Also, set
the values of the uniforms that never change during the lifetime of the application,
at initialization.

shader.LoadFromFile (GL VERTEX SHADER,
"shaders/shader.vert") ;
shader.LoadFromFile (GL FRAGMENT SHADER,
"shaders/shader.frag") ;
shader.CreateAndLinkProgram() ;
shader.Use () ;
shader.AddAttribute ("vVertex") ;
shader.AddUniform("heightMapTexture") ;
shader.AddUniform("scale") ;
shader.AddUniform("half scale");
shader.AddUniform ("HALF_ TERRAIN SIZE") ;
shader.AddUniform ("MVP") ;
glUniformli (shader ("heightMapTexture"), 0);
glUniform2i (shader ("HALF_TERRAIN SIZE"),
TERRAIN WIDTH>>1, TERRAIN DEPTH>>1);
glUniformlf (shader ("scale"), scale);
glUniformlf (shader ("half scale"), half scale);
shader.UnUse () ;

5. Inthe rendering code, set the shader and render the terrain by passing the
modelview/projection matrices to the shader as shader uniforms.

shader.Use () ;
glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE,
glm: :value ptr(MVP));
glDrawElements (GL_TRIANGLES, TOTAL INDICES,
GL_UNSIGNED INT, 0);

shader.UnUse () ;

Terrain rendering is relatively straight forward to implement. The geometry is first generated
on the CPU and is then stored in the GPU buffer objects. Next, the height map is loaded from
an image which is then transferred to the vertex shader as a texture sampler uniform.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In the vertex shader, the height of the vertex is obtained from the height map by texture
lookup using the position of the vertex. The final vertex position is obtained by combining the
height with the input vertex position. The resulting vector is multiplied with the modelview
projection matrix to obtain the clip space position. The vertex displacement technique can
also be used to give realistic surface detail to a low resolution 3D model.

The output from the demo application for this recipe renders a wireframe terrain as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

The method we have presented in this recipe uses the vertex displacement to generate a
terrain from a height map. There are several tools available that can help with the terrain
height map generation. One of them is Terragen (planetside. co.uk). Another useful tool
is World Machine (http://world-machine.com/). A general source of information for
terrains is available at the virtual terrain project (http://vterrain.org/).

We can also use procedural methods to generate terrains such as fractal terrain generation.
Noise methods can also be helpful in the generation of the terrains.

To know more about implementing terrains, you can check the following:

» Focus on 3D Terrain Programming, by Trent Polack, Premier Press, 2002

» Chapter 7, Terrain Level of Detail in Level of Detail for 3D Graphics by David Luebke,
Morgan Kaufmann Publishers, 2003.

Implementing 3ds model loading using

separate buffers

We will now create model loader and renderer for Autodesk® 3ds model format which is a
simple yet efficient binary model format for storing digital assets.

Getting started

The code for this recipe is contained in the Chapter5/3DsViewer folder. This recipe will
be using the Drawing a 2D image in a window using a fragment shader and the SOIL image
loading library recipe from Chapter 1, Introduction to Modern OpenGL, for loading the 3ds
mesh file's textures using the SOIL image loading library.

How to do it...

The steps required to implement a 3ds file viewer are as follows:

1. Create an instance of the C3dsLoader class. Then call the C3dsLoader: :Load3DS
function passing it the name of the mesh file and a set of vectors to store the
submeshes, vertices, normals, uvs, indices, and materials.

if (!loader.Load3DS (mesh filename.c_str(), meshes,
vertices, normals, uvs, faces, indices, materials)) {

146

www.it-ebooks.info

http://www.it-ebooks.info/

cout<<"Cannot load the 3ds mesh"<<endl;
eXit(EXIT_FAILURE);

}

Chapter 5

2. After the mesh is loaded, use the mesh's material list to load the material textures

into the OpenGL texture object.

for(size t k=0;k<materials.size() ;k++) {

for(size t m=0;m< materials[k]->textureMaps.size () ;m++)

{
GLuint id = 0;
glGenTextures (1, &id);
glBindTexture (GL TEXTURE 2D, id);
glTexParameteri (GL TEXTURE 2D, GL_TEXTURE MIN FILTER,
GL_LINEAR) ;
glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE MAG FILTER,
GL_LINEAR) ;
glTexParameteri (GL_TEXTURE 2D, GL TEXTURE WRAP_S,
GL_REPEAT) ;
glTexParameteri (GL_TEXTURE 2D, GL TEXTURE WRAP T,
GL_REPEAT) ;
int texture width = 0, texture height = 0,
channels=0;
const string& filename = materials[k]->
textureMaps [m] ->filename;
std::string full filename = mesh path;
full filename.append(filename) ;
GLubyte* pData = SOIL load image
(full filename.c str(), &texture width,
&texture height, &channels, SOIL_LOAD AUTO) ;
if (pData == NULL) {

cerr<<"Cannot load image: "<<
full filename.c str()<<endl;
exit (EXIT FAILURE) ;

}

//Flip the image on Y axis

int i,3;
for(j = 0; j*2 < texture height; ++j) {
int indexl = j * texture width * channels;
int index2 = (texture height - 1 - j) *
texture width * channels;
for(i = texture width * channels; i > 0; --i){
GLubyte temp = pDatal[indexl];
pDatal[indexl] = pData[index2];
pData[index2] = temp;
++indexl;

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

++index2;

}

GLenum format = GL_ RGBA;
switch (channels)
case 2: format

GL_RG32UI; break;
GL_RGB; break;
GL_RGBA; break;

case 3: format

case 4: format

}

glTexImage2D (GL TEXTURE 2D, 0, format, texture width,
texture height, 0, format, GL UNSIGNED BYTE, pData);
SOIL free image data(pData) ;

textureMaps [filename] =id;

}

3. Pass the loaded per-vertex attributes; that is, positions (vertices), texture
coordinates (uvs), per-vertex normals (normals), and triangle indices (indices) to
GPU memory by allocating separate buffer objects for each attribute. Note that for
easier handling of buffer objects, we bind a single vertex array object (vaoID) first.

glBindVertexArray (vaoID) ;

glBindBuffer (GL ARRAY BUFFER, vboVerticesID);
glBufferData (GL ARRAY BUFFER, sizeof (glm::vec3)*
vertices.size(), &(vertices[0].x), GL STATIC DRAW);
glEnableVertexAttribArray (shader ["vVertex"]) ;
glVertexAttribPointer (shader ["vVertex"], 3, GL FLOAT,
GL_FALSE,0,0) ;

glBindBuffer (GL_ARRAY BUFFER, vboUVsID);
glBufferData (GL ARRAY BUFFER,

sizeof (glm: :vec2) *uvs.size(), &(uvs[0].x),

GL_STATIC DRAW) ;
glEnableVertexAttribArray (shader ["vUV"]) ;
glVertexAttribPointer (shader ["vUV"], 2,GL_FLOAT,

GL FALSE,0, 0);

glBindBuffer (GL ARRAY BUFFER, vboNormalsID) ;
glBufferData (GL ARRAY BUFFER, sizeof (glm::vec3)*
normals.size(), &(normals[0].x), GL_ STATIC DRAW);
glEnableVertexAttribArray (shader ["vNormal"]) ;
glVertexAttribPointer (shader ["vNormal"], 3, GL FLOAT,
GL FALSE, 0, 0);

148

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

If we have only a single material in the 3ds file, we store the face indices into GL_
ELEMENT ARRAY BUFFER so that we can render the whole mesh in a single call.
However, if we have more than one material, we bind the appropriate submeshes
separately. The glBufferData call allocates the GPU memory, however, it is not
initialized. In order to initialize the buffer object memory, we can use the glMapBuffer
function to obtain a direct pointer to the GPU memory. Using this pointer, we can then
write to the GPU memory. An alternative to using glMapBuffer is glBufferSubData
which can modify the GPU memory by copying contents from a CPU buffer.

if (materials.size()==1) {
glBindBuffer (GL ELEMENT ARRAY BUFFER, vboIndicesID);
glBufferData (GL ELEMENT ARRAY BUFFER,
sizeof (GLushort) * B B
3*faces.size(), 0, GL_STATIC_DRAW);
GLushort* pIndices = static_cast<GLushort*>(
glMapBuffer (GL_ELEMENT ARRAY BUFFER, GL WRITE ONLY));

for(size t i=0;i<faces.size();i++) {
* (pIndices++)=faces[i] .a;
* (pIndices++)=faces[i] .b;
* (pIndices++)=faces[i] .c;

}

glUnmapBuffer (GL_ELEMENT ARRAY BUFFER) ;

}

Set up the vertex shader to output the clip space position as well as the per-vertex
texture coordinates. The texture coordinates are then interpolated by the rasterizer
to the fragment shader using an output attribute vUuvout.

#version 330 core

layout (location = 0) in vec3 vVertex;
layout (location = 1) in vec3 vNormal;
layout (location = 2) in vec2 vUV;

smooth out vec2 vUVout;
uniform mat4 P;
uniform mat4 MV;

uniform mat3 N;

smooth out vec3 vEyeSpaceNormal;
smooth out vec3 vEyeSpacePosition;

void main ()

{

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

vUVout=vUV;

vEyeSpacePosition = (MV*vec4 (vVertex,1l)) .xyz;
vEyeSpaceNormal = N*vNormal;

gl Position = P*vec4 (vEyeSpacePosition,1);

}

6. Set up the fragment shader, which looks up the texture map sampler with the
interpolated texture coordinates from the rasterizer. Depending on whether the
submesh has a texture, we linearly interpolate between the texture map color
and the diffused color of the material, using the GLSL mix function.

#version 330 core

uniform sampler2D textureMap;

uniform float hasTexture;

uniform vec3 light position;//light position in object
space

uniform mat4 MV;

smooth in vec3 vEyeSpaceNormal;

smooth in vec3 vEyeSpacePosition;

smooth in vec2 vUVout;

layout (location=0) out vec4 vFragColor;
const float kO

const float k1
const float k2

1.0;//constant attenuation
0.0;//linear attenuation
0.0;//quadratic attenuation

void main()

{
vec4 vEyeSpacelLightPosition =
(MV*vec4 (1ight position,1));
vec3 L = (vEyeSpacelLightPosition.xyz-vEyeSpacePosition) ;
float d = length(L);
L = normalize (L) ;
float diffuse = max(0, dot (vEyeSpaceNormal, L)) ;
float attenuationAmount = 1.0/(k0 + (k1*d) + (k2*d*d));
diffuse *= attenuationAmount;

vFragColor = diffuse*mix(vec4 (1),
texture (textureMap, vUVout), hasTexture);

}

7. The rendering code binds the shader program, sets the shader uniforms, and then
renders the mesh, depending on how many materials the 3ds mesh has. If the mesh
has only a single material, it is drawn in a single call to glDrawElement by using the
indices attached to the GL._ ELEMENT ARRAY BUFFER binding point.

glBindVertexArray (vaoID) ;
shader.Use () ;

150

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

}

glUniformMatrix4fv (shader ("MV"), 1, GL_FALSE,
glm::value ptr(MV)) ;

glUniformMatrix3fv (shader ("N"), 1, GL FALSE,
glm::value ptr(glm::inverseTranspose (glm::mat3 (MV)))) ;
glUniformMatrix4fv (shader ("P"), 1, GL FALSE,

glm::value ptr(P));

glUniform3fv (shader ("light position"),1,

& (lightPos0S.x)) ;

if (materials.size()==1) {

GLint whichIDI[1];
glGetIntegerv (GL_TEXTURE_BINDING_ 2D, whichID) ;
if (textureMaps.size()>0)
if (whichID[0] != textureMaps|
materials[0] ->textureMaps [0] ->filename])
glBindTexture (GL_TEXTURE_2D,
textureMaps [materials[0] ->textureMaps [0]
->filename]) ;
glUniformlf (shader ("hasTexture"),1.0);
}

} else {
glUniformlf (shader ("hasTexture"),0.0);
glUniform3fv (shader ("diffuse color"),1,
materials[0] ->diffuse) ;

}

glDrawElements (GL_TRIANGLES, meshes[0]->faces.size()*3,

GL_UNSIGNED_SHORT, 0);

If the mesh contains more than one material, we iterate through the material list, and
bind the texture map (if the material has one), otherwise we use the diffuse color
stored in the material for the submesh. Finally, we pass the sub_indices array
stored in the material to the glDrawElements function to load those indices only.

else {

for(size t i=0;i<materials.size();i++) {

GLint whichIDI[1];
glGetIntegerv (GL_TEXTURE_BINDING_ 2D, whichID) ;
if (materials[i] ->textureMaps.size()>0)
if (whichID[0] != textureMaps[materials[i]
->textureMaps [0] ->filename])
glBindTexture (GL TEXTURE 2D, textureMaps
[materials[i] ->textureMaps [0] ->filenamel) ;
}
glUniformlf (shader ("hasTexture"),1.0);
} else {
glUniformlf (shader ("hasTexture"),0.0);

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

glUniform3fv (shader ("diffuse color"),1,

materials[i] ->diffuse) ;

glDrawElements (GL_TRIANGLES,

materials[i] ->sub indices.size(), GL UNSIGNED SHORT,
&(materials[i] ->sub indices[0]));

}

shader.UnUse () ;

The main component of this recipe is the C3dsLoader: : Load3DSs function. The 3ds file is a
binary file which is organized into a collection of chunks. Typically, a reader reads the first two
bytes from the file which are stored in the chunk ID. The next four bytes store the chunk length
in bytes. We continue reading chunks, and their lengths, and then store data appropriately
into our vectors/variables until there are no more chunks and we pass reading the end of file.
The 3ds specifications detail all of the chunks and their lengths as well as subchunks,

as shown in the following figure:

0x4D4D // Main Chunk
— 0x3D3D // 3D Editor Chunk
— 0x4000 // Object Block
|— 0x4100 // Triangular Mesh
F— 0x4110 // Vertices List
F— 0x4120 // Faces Descripticn
| | ox4130 // Faces Material
- ox4150 // Smoothing Group List
F— 0x4140 // Mapping Coordinates List
L 0x4160 // Local Coordinates System
L 0x4600 // Light
L 0x4610 // Spotlight
L 0x4700 // Camera
L OxAFFF // Material Block
— 0xA000 // Material Name
|- 0xA010 // Ambient Color
|- 0xA020 // Diffuse Color
I— 0xA030 // Specular Color
|- 0xA200 // Texture Map 1
— 0xA230 // Bump Map
L— 0xA220 // Reflection Map
/* Sub Chunks For Each Map */
F— 0xA300 // Mapping Filename
L 0xA351 // Mapping Parameters
L 0xBO0O // Keyframer Chunk
F— 0xB002 // Mesh Information Block
F— 0xB007 // Spot Light Information Block
L 0xB008 // Frames (Start and End)
F— 0xB010 // Object Name
F— 0xB013 // Object Pivot Point
F— 0xB020 // Position Track
F— 0xB021 // Rotation Track
C

0xB022 // Scale Track
0xB030 // Hierarchy Position

152

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Note that if there is a subchunk that we are interested in, we need to read the parent chunk
as well, to move the file pointer to the appropriate offset in the file, for our required chunk.
The loader first finds the total size of the 3ds mesh file in bytes. Then, it runs a while loop that
checks to see if the current file pointer is within the file's size. If it is, it continues to read the
first two bytes (the chunk's ID) and the next four bytes (the chunk's length).

while (infile.tellg() < fileSize) {
infile.read(reinterpret cast<char*s(&chunk id), 2);
infile.read(reinterpret cast<char*s>(&chunk length), 4);

Then we start a big switch case with all of the required chunk IDs and then read the bytes
from the respective chunks as desired.

switch (chunk_id) {
case 0x4d4d: break;
case 0x3d3d: break;
case 0x4000:
std::string name = "";
char ¢ = ' ';
while(c!='\0") {
infile.read(&c, 1) ;
name.push back(c) ;
}
pMesh = new C3dsMesh (name) ;
meshes.push back (pMesh) ;
} break;
..//rest of the chunks

}

All names (object name, material name, or texture map name) have to be read byte-by-byte
until the null terminator character (\0) is found. For reading vertices, we first read two bytes
that store the total number of vertices (N). Two bytes means that the maximum number

of vertices one mesh can store is 65536. Then, we read the whole chunk of bytes, that is,
sizeof (glm: :vec3) *N, directly into our mesh's vertices, shown as follows:

case 0x4110:
unsigned short total vertices=0;
infile.read(reinterpret cast<char*s>(&total vertices), 2);
pMesh->vertices.resize (total vertices) ;
infile.read(reinterpret cast<char*> (&pMesh->vertices[0] .x),
sizeof (glm: :vec3) *total vertices);

}break;

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

Similar to how the vertex information is stored, the face information stores the three unsigned
short indices of the triangle and another unsigned short index containing the face flags.
Therefore, for a mesh with M triangles, we have to read 4 *M unsigned shorts from the file. We
store the four unsigned shorts into a Face struct for convenience and then read the contents,
as shown in the following code snippet:

case 0x4120:
unsigned short total tris=0;
infile.read(reinterpret cast<char*s>(&total tris), 2);
pMesh->faces.resize(total tris);

infile.read(reinterpret cast<char*>(&pMesh->faces([0].a),
sizeof (Face) *total_ tris);
}break;

The code for reading the material face IDs and texture coordinates follows in the same way
as the total entries are first read and then the appropriate number of bytes are read from the
file. Note that, if a chunk has a color chunk (as for chunk IDs: 0xa010 to 0xa030), the color
information is contained in a subchunk (IDs: 0x0010 to 0x0013) depending on the data type
used to store the color information in the parent chunk.

After the mesh and material information is loaded, we generate global vertices, uvs, and
indices vectors. This makes it easy for us to render the submeshes in the render function.

size t total = materials.size();
for(size t i=0;i<total;i++) {
if (materials[i] ->face_ids.size()==0)
materials.erase (materials.begin()+1i) ;

for(size t i=0;i<meshes.size () ;i++) {
for(size t j=0;j<meshes[i]->vertices.size();Jj++)
vertices.push back (meshes[i] ->vertices[]j]);

for(size t j=0;j<meshes([i]->uvs.size();j++)
uvs.push back (meshes[i] ->uvs[j]);

for(size t j=0;j<meshes[i]->faces.size();j++) {
faces.push back (meshes[i] ->faces[j]);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Note that the 3ds format does not store the per-vertex normal explicitly. It only stores
smoothing groups which tell us which faces have shared normals. After we have the vertex
positions and face information, we can generate the per-vertex normals by averaging the
per-face normals. This is carried out by using the following code snippet in the 3ds. cpp file.
We first allocate space for the per-vertex normals. Then we estimate the face's normal by
using the cross product of the two edges. Finally, we add the face normal to the appropriate
vertex index and then normalize the normal.

normals.resize (vertices.size());
for(size t j=0;j<faces.size();j++) {

Face f =
glm: :vec3
glm: :vec3
glm: :vec3
glm: :vec3
glm: :vec3
glm: :vec3

normals [f.

normals [f

normals [f.

}

faces[j];

v0 = vertices[f.a];

vl = vertices[f.b];

v2 = vertices[f.c];

el = vl - v0;

e2 = v2 - v0;

N = glm::cross(el,e2);
al += N;

.b] += N;

c] += N;

for(size t i=0;i<normals.size();i++) {

normals [i]=glm: :normalize (normals[i]) ;

}

Once we have all the per-vertex attributes and faces information, we use this to group
the triangles by material. We loop through all of the materials and expand their face IDs
to include the three vertex IDs and make the face.

for(size t i=0;i<materials.size();i++) {

Material* pMat

materials[i];

for (int j=0;j<pMat->face ids.size() ;j++) {
pMat->sub_indices.push back (faces [pMat->face ids[jl].a);
pMat->sub_indices.push back (faces [pMat->face ids[j]].b);
pMat->sub_indices.push back (faces [pMat->face ids[j]l].c);

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

There's more...

The output from the demo application implementing this recipe is given in the following figure.
In this recipe, we render three blocks on a quad plane. The camera position can be changed
using the left mouse button. The point light source position can be changed using the right
mouse button. Each block has six textures attached to it, whereas the plane has no texture,
hence it uses the diffuse color value.

Note that the 3ds loader shown in this recipe does not take smoothing groups into
consideration. For a more robust loader, we recommend the 1ib3ds library which provides a
more elaborate 3ds file loader with support for smoothing groups, animation tracks, cameras,
lights, keyframes, and so on.

See also

For more information on implementing 3ds model loading, you can refer to the following links:

» Lib3ds: http://code.google.com/p/lib3ds/

» 3ds file loader by Damiano Vitulli: http://www.spacesimulator.net/wiki/
index.php?title=Tutorials:3ds_Loader

» 3ds file format details on Wikipedia.org: http://en.wikipedia.org/wiki/.3ds

156

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Implementing OBJ model loading using

interleaved buffers

In this recipe we will implement the Wavefront ® OBJ model. Instead of using separate

buffer objects for storing positions, normals, and texture coordinates as in the previous recipe,
we will use a single buffer object with interleaved data. This ensures that we have more
chances of a cache hit since related attributes are stored next to each other in the buffer
object memory.

Getting started

The code for this recipe is contained in the Chapter5/0bjVviewer folder.

How to do it...

Let us start the recipe by following these simple steps:

1. Create a global reference of the ObjLoader object. Call the ObjLoader: : Load
function, passing it the name of the OBJ file. Pass vectors to store the meshes,
vertices, indices, and materials contained in the OBJ file.

ObjLoader obj;

if (!obj.Load (mesh filename.c str(), meshes, vertices,
indices, materials)) ({

cout<<"Cannot load the 3ds mesh"<<endl;
eXit(EXIT_FAILURE);

}

2. Generate OpenGL texture objects for each material using the SOIL library if the
material has a texture map.

for(size t k=0;k<materials.size() ;k++) {
if (materials[k]->map K4 != "") {
GLuint id = 0;
glGenTextures (1, &id);
glBindTexture (GL TEXTURE 2D, id);
glTexParameteri (GL_TEXTURE 2D, GL TEXTURE MIN FILTER,
GL_LINEAR) ;
glTexParameteri (GL_TEXTURE 2D, GL TEXTURE MAG FILTER,
GL_LINEAR);
glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE WRAP S,
GL_REPEAT) ;
glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE WRAP T,
GL_REPEAT) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

int texture width = 0, texture height = 0,
channels=0;

const string& filename = materials[k]->map Kd;
std::string full filename = mesh path;

full filename.append(filename) ;

GLubyte* pData =
SOIL load image(full filename.c str(),
&texture width, &texture height, &channels,
SOIL_LOAD AUTO) ;
if (pData == NULL) {
cerr<<"Cannot load image:
"<<full filename.c_ str()<<endl;
exit (EXIT FAILURE) ;
}
//.. image flipping code
GLenum format = GL_RGBA;
switch (channels) ({
case 2: format = GL_RG32UI; break;
case 3: format = GL _RGB; break;
case 4: format = GL _RGBA; break;
}
glTexImage2D (GL TEXTURE 2D, 0, format, texture width,
texture height, 0, format, GL UNSIGNED BYTE, pData);

SOIL free image data(pData) ;
textures.push back(id) ;

}

3. Set up shaders and generate buffer objects to store the mesh file data in the GPU
memory. The shader setup is similar to the previous recipes.

glGenVertexArrays (1, &vaolD) ;

glGenBuffers (1, &vboVerticesID) ;
glGenBuffers (1, &vboIndicesID) ;
glBindVertexArray (vaoID) ;

glBindBuffer (GL ARRAY BUFFER, vboVerticesID) ;
glBufferData (GL ARRAY BUFFER,

sizeof (Vertex) *vertices.size(),
& (vertices[0] .pos.x), GL STATIC DRAW);

glEnableVertexAttribArray (shader ["vVertex"]) ;
glVertexAttribPointer (shader["vVertex"], 3, GL FLOAT,
GL_FALSE, sizeof (Vertex),0);

glEnableVertexAttribArray (shader ["vNormal"]) ;

158

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

glVertexAttribPointer (shader ["vNormal"], 3, GL FLOAT,
GL_FALSE, sizeof (Vertex), (const GLvoid*) (offsetof (Vertex,
normal)));

glEnableVertexAttribArray (shader ["vUV"]) ;
glVertexAttribPointer (shader ["vUV"], 2, GL_ FLOAT,
GL_FALSE, sizeof (Vertex), (const
GLvoid*) (offsetof (Vertex, uv)));
if (materials.size()==1) {
glBindBuffer (GL_ELEMENT ARRAY BUFFER, vboIndicesID) ;
glBufferData (GL_ELEMENT ARRAY BUFFER,
sizeof (GLushort) *indices.size (), &(indices[0]),
GL_STATIC DRAW) ;

}

4. Bind the vertex array object associated with the mesh, use the shader and pass the
shader uniforms, that is, the modelview (MV), projection (P), normal matrices (N) and
light position, and so on.

glBindVertexArray (vaoID) ;
shader.Use () ;

glUniformMatrix4fv (shader ("MV"), 1, GL_FALSE,

glm: :value ptr(MV)) ;

glUniformMatrix3fv (shader ("N"), 1, GL FALSE,
glm::value ptr(glm::inverseTranspose (glm::mat3 (MV)))) ;
glUniformMatrix4fv (shader ("P"), 1, GL FALSE,

glm: :value ptr(P)) ;

glUniform3fv (shader ("light position"),1,
& (lightPos0S.x)) ;

5. To draw the mesh/submesh, loop through all of the materials in the mesh and then
bind the texture to the GL_ TEXTURE_ 2D target if the material contains a texture
map. Otherwise, use a default color for the mesh. Finally, call the glDrawElements
function to render the mesh/submesh.

for(size t i=0;i<materials.size();i++) {

Material* pMat = materials[i];

if (pMat->map K4 !="") {
glUniformlf (shader ("useDefault"), 0.0);
GLint whichIDI[1];
glGetIntegerv (GL_TEXTURE_BINDING_ 2D, whichID) ;
if (whichID[0] != textures[i])

glBindTexture (GL TEXTURE 2D, textures[i]);

}

else

glUniformlf (shader ("useDefault"), 1.0);

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

if (materials.size()==1)

glDrawElements (GL_TRIANGLES, indices.size(),
GL_UNSIGNED SHORT, 0);

else

glDrawElements (GL_TRIANGLES, pMat-s>count,

GL UNSIGNED SHORT, (const GLvoid*) (& indices
[pMat->offset])) ;

}

shader.UnUse () ;

The main component of this recipe is the ObjLoader: : Load function defined in the

Obj . cpp file. The Wavefront® OBJ file is a text file which has different text descriptors for
different mesh components. Usually, the mesh starts with the geometry definition, that

is, vertices that begin with the letter v followed by three floating point values. If there are
normals, their definitions begin with vn followed by three floating point values. If there are
texture coordinates, their definitions begin with vt, followed by two floating point values.
Comments start with the # character, so whenever a line with this character is encountered,
it is ignored.

Following the geometry definition, the topology is defined. In this case, the line is prefixed with
£ followed by the indices for the polygon vertices. In case of a triangle, three indices sections
are given such that the vertex position indices are given first, followed by texture coordinates
indices (if any), and finally the normal indices (if any). Note that the indices start from 1,

not O.

So, for example, say that we have a quad geometry having four position indices (1,2,3,4)
having four texture coordinate indices (5,6,7,8), and four normal indices (1,1,1,1) then the
topology would be stored as follows:

f 1/5/1 2/6/1 3/7/1 4/8/1

If the mesh is a triangular mesh with position vertices (1,2,3), texture coordinates (7,8,9), and
normals (4,5,6) then the topology would be stored as follows:

f 1/7/4 2/8/5 3/9/6

Now, if the texture coordinates are omitted from the first example, then the topology would be
stored as follows:

£1//1 2//1 3//1 4//1

160

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The OBIJ file stores material information in a separate material (.mt1) file. This file contains
similar text descriptors that define different materials with their ambient, diffuse, and specular
color values, texture maps, and so on. The details of the defined elements are given in the OBJ
format specifications. The material file for the current OBJ file is declared using the mt11ib
keyword followed by the name of the .mt1 file. Usually, the .mt1 file is stored in the same folder
as the OB file. A polygon definition is preceded with a usemt1 keyword followed by the name

of the material to use for the upcoming polygon definition. Several polygonal definitions can be
grouped using the g or o prefix followed by the name of the group/object respectively.

The ObjLoader: : Load function first finds the current prefix. Then, the code branches

to the appropriate section depending on the prefix. The suffix strings are then parsed

and the extracted data is stored in the corresponding vectors. For efficiency, rather than
storing the indices directly, we store them by material so that we can then sort and render
the mesh by material. The associated material library file (.mt1) is loaded using the
ReadMaterialLibrary function. Refer to the Obj . cpp file for details.

The file parsing is the first piece of the puzzle. The second piece is the transfer of this data

to the GPU memory. In this recipe, we use an interleaved buffer, that is, instead of storing
each per-vertex attribute separately in its own vertex buffer object, we store them interleaved
one after the other in a single buffer object. First positions are followed by normals and then
texture coordinates. We achieve this by first defining our vertex format using a custom vertex
struct. Our vertices are a vector of this struct.

struct Vertex {
glm: :vec3 pos, normal;
glm: :vec2 uv;

Vi

We generate the vertex array object and then the vertex buffer object. Next, we bind the buffer
object passing it our vertices. In this case, we specify the stride of each attribute in the data
stream separately as follows:

glBindBuffer (GL_ARRAY BUFFER, vboVerticesID) ;

glBufferData (GL_ARRAY BUFFER, sizeof(Vertex) *vertices.size(),
& (vertices[0] .pos.x), EL_STATIC_DRAW);
glEnableVertexAttribArray (shader ["vVertex"]) ;
glVertexAttribPointer (shader ["vVertex"], 3, GL FLOAT,
GL_FALSE, sizeof (Vertex),0); N
glEnableVertexAttribArray (shader ["vNormal"]) ;
glvertexAttribPointer (shader ["vNormal"], 3, GL FLOAT, GL FALSE,
sizeof (Vertex), (const GLvoid*) (offsetof (Vertex, normal)));
glEnableVertexAttribArray (shader ["vUV"]) ;
glVertexAttribPointer (shader ["vUV"], 2, GL_ FLOAT, GL_ FALSE,
sizeof (Vertex), (const GLvoid*) (offsetof (Vertex, uv)));

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

If the mesh has a single material, we store the mesh indices into a GL. ELEMENT ARRAY
BUFFER target. Otherwise, we render the submeshes by material.

if (materials.size()==1) {
ngindBuffer (GL_ELEMENT_ARRAY_BUFFER, vboIndicesID) ;

glBufferData (GL_ELEMENT ARRAY BUFFER, sizeof (GLushort) *
indices.size(), &(indices[0]), GL_STATIC_ DRAW) ;

}

At the time of rendering, if we have a single material, we render the whole mesh, otherwise
we render the subset stored with the material.

if (materials.size()==1)
glDrawElements (GL _TRIANGLES, indices.size () ,GL_UNSIGNED_ SHORT,0) ;
else

ngrawElements(GL_TRIANGLES, pMat->count, GL UNSIGNED_ SHORT,
(const GLvoid*) (&indices[pMat->offset]));

There's more...

The demo application implementing this recipe shows a scene with three blocks on a planar
quad. The camera view can be rotated with the left mouse button. The light source's position
is shown by a 3D crosshair that can be moved by dragging the right mouse button. The output
from this demo application is shown in the following figure:

See also

You can see the OBJ file specification on Wikipedia at http://en.wikipedia.org/wiki/
Wavefront .obj file

162

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Implementing EZMesh model loading

In this recipe, we will learn how to load and render an EZMesh model. There are several
skeletal animation formats such as Quake's md2 (.mdz2), Autodesk® FBX (. £bx), and Collada
(.dae). The conventional model formats such as Collada are overly complicated for doing
simple skeletal animation. Therefore, in this recipe, we will learn how to load and render an
EZMesh (. ezm) skeletal model.

Getting started

The code for this recipe is contained in the Chapter5/EZMeshViewer directory. For this
recipe, we will be using two external libraries to aid with the EZMesh (. ezm) mesh file parsing.
The first library is called MeshImport and it can be downloaded from http://code.
google.com/p/meshimport/. Make sure to get the latest svn trunk of the code. After
downloading, change directory to the compiler subdirectory which contains the visual studio
solution files. Double-click to open the solution and build the project dlls. After the library is
built successfully, copy MeshImport [x86/x64] .d11 and MeshImportEZM [x86/x64] .
dl1 (subject to your machine configuration) into your current project directory. In addition,
also copy the MeshImport. [h/cpp] files which contain some useful library loading routines.

In addition, since EZMesh is an XML format to support loading of textures, we parse the
EZMesh XML manually with the help of the pugixml library. You can download it from
http://pugixml.org/downloads/. As pugixml is tiny, we can directly include the
source files with the project.

How to do it...

Let us start this recipe by following these simple steps:

1. Create a global reference to an EzmLoader object. Call the EzmLoader: : Load
function passing it the name of the EZMesh (. ezm) file. Pass the vectors to store the
submeshes, vertices, indices, and materials-to-image map. The Load function also
accepts the min and max vectors to store the EZMesh bounding box.

if (!lezm.Load (mesh filename.c str(), submeshes, vertices,
indices, materi;121mageMapT min, max)) {
cout<<"Cannot load the EZMesh mesh"<<endl;
exit (EXIT FAILURE) ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

2. Using the material information, generate the OpenGL textures for the
EZMesh geometry.

for(size t k=0;k<materialNames.size () ;k++) {

GLuint id = 0;

glGenTextures (1, &id);

glBindTexture (GL TEXTURE 2D, id);

glTexParameteri (GL TEXTURE 2D, GL TEXTURE MIN FILTER,
GL_LINEAR) ; B B - -

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE MAG FILTER,
GL_LINEAR) ;

glTexParameteri (GL TEXTURE 2D, GL TEXTURE WRAP S,
GL_REPEAT) ; B B - - B

glTexParameteri (GL_TEXTURE 2D, GL TEXTURE WRAP_ T,
GL_REPEAT) ;

int texture_width = 0, texture_height = 0, channels=0;

const string& filename = materialNames [k];

std::string full filename = mesh path;
full filename.append(filename) ;

//Image loading using SOIL and vertical image flipping
//
GLenum format = GL_RGBA;
switch (channels) {
case 2: format = GL_RG32UI; break;
case 3: format = GL RGB; break;
case 4: format = GL _RGBA; break;

}

glTexImage2D (GL_TEXTURE 2D, 0, format, texture width,
texture _height, 0, format, GL UNSIGNED BYTE, pData);
SOIL free image data(pData) ;

materialMap [filename] = id ;

}

3. Set up the interleaved buffer object as in the previous recipe, Implementing OBJ
model loading using interleaved buffers.

glBindVertexArray (vaoID) ;
glBindBuffer (GL ARRAY BUFFER, vboVerticesID) ;

glBufferData (GL_ARRAY_BUFFER,
sizeof (Vertex) *vertices.size(),
&(vertices[0] .pos.x), GL_DYNAMIC DRAW) ;

glEnableVertexAttribArray (shader ["vVertex"]) ;

glVertexAttribPointer (shader ["vVertex"], 3, GL_ FLOAT,
GL_FALSE, sizeof (Vertex),0) ;

164

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

glEnableVertexAttribArray (shader ["vNormal"]) ;

glVertexAttribPointer (shader ["vNormal"], 3, GL FLOAT,
GL FALSE, sizeof (Vertex), (const
GLvoid*) (offsetof (Vertex, normal)));

glEnableVertexAttribArray (shader ["vUV"]) ;

glVertexAttribPointer (shader ["vUV"], 2, GL_FLOAT,
GL FALSE, sizeof (Vertex), (const GLvoid*)
(offsetof (Vertex, uv)));

4. To render the EZMesh, bind the mesh's vertex array object, set up the shader, and
pass the shader uniforms.

glBindVertexArray (vaoID) ;
shader.Use () ;

glUniformMatrix4fv (shader ("MV"), 1, GL_FALSE,
glm::value ptr(MV)) ;

glUniformMatrix3fv (shader ("N"), 1, GL FALSE,
glm::value ptr(glm::inverseTranspose (glm::mat3 (MV)))) ;
glUniformMatrix4fv (shader ("P"), 1, GL FALSE,

glm: :value ptr(P)) ;
glUniform3fv (shader ("light position"),1,
& (lightPosES.x)) ;

5. Loop through all submeshes, bind the submesh texture, and then issue the
glDrawEements call, passing it the submesh indices. If the submesh has no
materials, a default solid color material is assigned to the submesh.

for(size t i=0;i<submeshes.size();i++) {
if (strlen(submeshes[i] .materialName)>0) {

GLuint id = materialMap[material2ImageMap [
submeshes [i] .materialName]l] ;

GLint whichIDI[1];
glGetIntegerv (GL_TEXTURE_BINDING_ 2D, whichID) ;

if (whichID[0] != id)
glBindTexture (GL TEXTURE 2D, id);
glUniformlf (shader ("useDefault"), 0.0);
} else {
glUniformlf (shader ("useDefault"), 1.0);

1

glDrawElements (GL_TRIANGLES,

submeshes[i] .indices.size (),

GL UNSIGNED INT, &submeshes[i].indices([0]);

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

EZMesh is an XML based skeletal animation format. There are two parts to this recipe: parsing
of the EZMesh file using the MeshImport/pugixml libraries and handling of the data using
OpenGL buffer objects. The first part is handled by the EzmLoader : : Load function. Along
with the filename, this function accepts vectors to store the submeshes, vertices, indices, and
material names map contained in the mesh file.

If we open an EZMesh file, it contains a collection of XML elements. The first element is
MeshSystem. This element contains four child elements: Skeletons, Animations,
Materials, and Meshes. Each of these subelements has a count attribute that stores
the total number of corresponding items in the EZMesh file. Note that we can remove the
element as desired. So the hierarchy is typically as follows:

<MeshSystem>
<Skeletons count="N">
<Animations count="N">
<Materials count="N">
<Meshes count="N">
</MeshSystem>

For this recipe, we are interested in the last two subelements: Materials and Meshes.
We will be using the first two subelements in the skeletal animation recipe in a later chapter
of this book. Each Materials element has a counted number of Material elements.
Each Material element stores the material's name in the name attribute and the
material's details. For example, the texture map file name in the meta_data attribute. In
the EZMLoader : : Load function, we use pugi_xml to parse the Materials element and
its subelements into a material map. This map stores the material's name and its texture
file name. Note that the MeshImport library does provide functions for reading material
information, but they are broken.

pugi::xml node mats = doc.child("MeshSystem") .child("Materials") ;
int totalMaterials = atoi(mats.attribute ("count") .value()) ;
pugi::xml node material = mats.child("Material");
for(int i=0;i<totalMaterials;i++) {
std::string name = material.attribute ("name") .value() ;
std::string metadata = material.attribute("meta data") .value();
//clean up metadata
int len = metadata.length() ;
if (len>0)
string fullName="";
int index = metadata.find last of ("\\");
if (index == string::npos)
fullName.append (metadata) ;
} else {

166

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

std::string fileNameOnly = metadata.substr (index+1,
metadata.length());
fullName.append (fileNameOnly) ;
}
bool exists = true;
if (materialNames.find (name)==materialNames.end ())
exists = false;
if (lexists)
materialNames [name] = (fullName) ;
material = material.next sibling("Material");

}

After the material information is loaded in, we initialize the MeshImport library by calling the
NVSHARE: : loadMeshImporters function and passing it the directory where MeshImport
dlls (MeshImport [x86,x64].d1ll andMeshImportEZM [x86,x64].d1l1) are
placed. Upon success, this function returns the NVSHARE : : MeshImport library object.

Using the MeshImport library object, we first create the mesh system container by calling
the NVSHARE: :MeshImport : : createMeshSystemContainer function. This function
accepts the object name and the EzMesh file contents. If successful, this function returns the
MeshSystemContainer object which is then passed to the NVSHARE: :MeshImport: :get
MeshSystem function which returns the NVSHARE : : MeshSystem object. This represents the
MeshSystem node in the EZMesh XML file.

Once we have the MeshSystem object, we can query all of the subelements. These reside in
the MeshSystem object as member variables. So let's say we want to traverse through all of
the meshes in the current EZMesh file and copy the per-vertex attributes to our own vector
(vertices), we would simply do the following:

for(size t i=0;i<ms->mMeshCount;i++) {
NVSHARE: :Mesh* pMesh = ms->mMeshes[i];
vertices.resize (pMesh->mVertexCount) ;
for(size t j=0;j<pMesh->mVertexCount;j++) {
vertices[j] .pos.x = pMesh->mVertices[j] .mPos[0];
vertices[j] .pos.y = pMesh->mVertices[j] .mPos[1];
vertices[j] .pos.z = pMesh->mVertices[j] .mPos[2];

vertices[j] .normal.x pMesh->mVertices [j] .mNormal [0] ;

vertices[j] .normal.y

pMesh->mVertices [j] .mNormal [1];
vertices[j] .normal.z

pMesh->mVertices [j] .mNormal [2] ;

vertices[j].uv.x

pMesh->mVertices [j] .mTexell [0];
vertices[j].uv.y

pMesh->mVertices[j] .mTexell [1];

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

In an EZMesh file, the indices are sorted by materials into submeshes. We iterate through all
of the submeshes and then store their material name and indices into our container.

submeshes.resize (pMesh->mSubMeshCount) ;

for(size t j=0;j<pMesh->mSubMeshCount;j++) {

}

NVSHARE: : SubMesh* pSubMesh = pMesh->mSubMeshes[]j];
submeshes [j] .materialName = pSubMesh->mMaterialName;
submeshes [j] .indices.resize (pSubMesh->mTriCount * 3);

memcpy (& (submeshes [j] .indices [0]), pSubMesh->mIndices,
sizeof (unsigned int) * pSubMesh->mTriCount * 3);

After the EZMesh file is parsed and we have the per-vertex data stored, we first generate the
OpenGL textures from the EzZMesh materials list. Then we store the texture IDs into a material
map so that we can refer to the textures by material name.

for(size t k=0;k<materialNames.size () ;k++) {

168

GLuint id = 0;
glGenTextures (1, &id);
glBindTexture (GL TEXTURE 2D, id);

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE MIN FILTER,
GL_LINEAR) ;

glTexParameteri (GL_TEXTURE 2D, GL TEXTURE MAG FILTER,
GL_LINEAR) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE WRAP S, GL_REPEAT) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE WRAP T, GL_REPEAT) ;
int texture_width = 0, texture_height = 0, channels=0;
const string& filename = materialNames [k];
std::string full filename = mesh path;
full filename.append(filename) ;
GLubyte* pData = SOIL load_image (full_filename.c_str(),
&texture_width, &texture_height, &channels, SOIL LOAD_AUTO) ;
if (pData == NULL)
cerr<<"Cannot load image: "<<full filename.c_str()<<endl;
exit (EXIT FAILURE) ;
}
//.. Flip the image on Y axis and determine the image format
glTexImage2D (GL TEXTURE 2D, 0, format, texture width,
texture height, 0, format, GL UNSIGNED BYTE, pData) ;
SOIL free image data(pData) ;
materialMap[filename] = id ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

After the materials, the shaders are loaded as in the previous recipes. The per-vertex data is
then transferred to the GPU using vertex array and vertex buffer objects. In this case, we use
the interleaved vertex buffer format.

glGenVertexArrays (1, &vaolID) ;
glGenBuffers(l, &vboVerticesgID) ;
glGenBuffers(l, &vboIndicesID) ;

glBindVertexArray (vaolID) ;

glBindBuffer (GL_ARRAY BUFFER, vboVerticesID) ;

glBufferData (GL ARRAY BUFFER, sizeof (Vertex) *vertices.size(),
& (vertices[0] .pos.x), EL_DYNAMIC_DRAW);
glEnableVertexAttribArray (shader ["vVertex"]) ;

glVertexAttribPointer (shader ["vVertex"], 3, GL FLOAT,

GL_FALSE, sizeof (Vertex),0) ; N
glEnableVertexAttribArray (shader ["vNormal"]) ;
glvertexAttribPointer (shader ["vNormal"], 3, GL FLOAT, GL FALSE,
sizeof (Vertex), (const GLvoid*) (offsetof (Vertex, normal)));
glEnableVertexAttribArray (shader ["vUV"]) ;
glvVertexAttribPointer (shader ["vUV"], 2, GL_ FLOAT, GL_FALSE,
sizeof (Vertex), (const GLvoid*) (offsetof (Vertex, uv)));

For rendering of the mesh, we first bind the vertex array object of the mesh, attach our
shader and pass the shader uniforms. Then we loop over all of the submeshes and bind the
appropriate texture (if the submesh has texture). Otherwise, a default color is used. Finally,
the indices of the submesh are used to draw the mesh using the glDrawElements function.

glBindVertexArray (vaoID) ;
shader.Use() ;

glUniformMatrix4fv (shader ("MV"), 1, GL FALSE,
glm::value ptr(MV)) ; a
glUniformMatrix3fv (shader ("N"), 1, GL FALSE,
glm::value_ptr(glm::inverseTranspose(glm::matB(MV))));
glUniformMatrix4fv (shader ("P"), 1, GL FALSE,

glm: :value ptr(P));
glUniform3fv (shader ("light position"),1, &(lightPosES.x)) ;
for(size t i=0;i<submeshes.size();i++) {
if (strlen(submeshes[i] .materialName)>0) {

GLuint id =

materialMap [material2ImageMap [submeshes[i] .materialName]];

GLint whichID[1];

glGetIntegerv(GL_TEXTURE_BINDING_2D, whichID) ;

if (whichID[0] != id)

glBindTexture (GL TEXTURE 2D, id);

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

glUniformlf (shader ("useDefault"), 0.0);
} else {
glUniformlf (shader ("useDefault"), 1.0);

}

glDrawElements (GL_TRIANGLES, submeshes[i].indices.size(),
GL UNSIGNED INT, &submeshes[i].indices[0]);

}

shader.UnUse () ;

}

There's more...

The demo application implementing this recipe renders a skeletal model with textures. The
point light source can be moved by dragging the right mouse button. The output result is
shown in the following figure:

See also

You can also see John Ratcliff's code repository: A test application for Meshimport library
and showcasing EZMesh at http://codesuppository.blogspot.sg/2009/11/test-
application-for-meshimport-library.html.

170

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Implementing simple particle system

In this recipe, we will implement a simple particle system. Particle systems are a special
category of objects that enable us to simulate fuzzy effects in computer graphics; for example,
fire or smoke. In this recipe, we will implement a simple particle system that emits particles at
the specified rate from an oriented emitter. In this recipe, we will assign particles with a basic
fire color map without texture, to give the effect of fire.

Getting started

The code for this recipe is contained in the Chapter5/SimpleParticles directory. All of
the work for particle simulation is carried out in the vertex shader.

How to do it...

Let us start this recipe by following these simple steps:

1. Create a vertex shader without any per-vertex attribute. The vertex shader generates
the current particle position and outputs a smooth color to the fragment shader for
use as the current fragment color.

#version 330 core
smooth out vec4 vSmoothColor;
uniform mat4 MVP;

uniform float time;

const vec3 a = vec3(0,2,0); //acceleration of particles
//vec3 g = vec3(0,-9.8,0); // acceleration due to gravity

const float rate = 1/500.0; //rate of emission
const float life = 2; //life of particle
//constants

const float PI = 3.14159;
const float TWO_PI = 2*PI;

//colormap colours

const vec3 RED = vec3(1,0,0);
const vec3 GREEN = vec3(0,1,0);
const vec3 YELLOW = vec3(1,1,0);

//pseudorandom number generator
float rand(vec2 co) {

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

return fract (sin(dot (co.xy ,vec2(12.9898,78.233))) *
43758.5453) ;

//pseudorandom direction on a sphere
vec3 uniformRadomDir (vec2 v, out vec2 r) {
r.x = rand(v.xy) ;
r.y = rand(v.yx);
float theta = mix (0.0, PI / 6.0, r.x);
float phi = mix (0.0, TWO PI, r.y);
return vec3(sin(theta) * cos(phi), cos(theta), sin(theta)
* sin(phi)) ;

void main() {
vec3 pos=vec3(0);
float t = gl VertexID*rate;
float alpha = 1;
if (time>t) {
float dt = mod((time-t), life);
vec2 xy = vec2(gl VertexID,t);
vec2 rdm=vec2(0);
pos = ((uniformRadomDir (xy, rdm) + 0.5*a*dt) *dt);
alpha = 1.0 - (dt/life);
}
vSmoothColor = vec4 (mix (RED, YELLOW, alpha) ,alpha) ;
gl Position = MVP*vec4 (pos,1) ;

}

2. The fragment shader outputs the smooth color as the current fragment output color.

#version 330 core
smooth in vec4 vSmoothColor;

layout (location=0) out vec4 vFragColor;

void main() {
vFragColor = vSmoothColor;

}

3. Set up a single vertex array object and bind it.

glGenVertexArrays (1, &vaolD) ;
glBindVertexArray (vaoID) ;

172

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

4. Inthe rendering code, set up the shader and pass the shader uniforms. For example,
pass the current time to the time shader uniform and the combined modelview
projection matrix (MVP). Here we add an emitter transform matrix (emitterXForm)
to the combined MvP matrix that controls the orientation of our particle emitter.

shader.Use () ;

glUniformlf (shader ("time"), time);
glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE,
glm: :value ptr (P*MV*emitterXForm)) ; B

5. Finally, we render the total number of particles (MAX PARTICLES) with a call to the
glbrawArrays function and unbind our shader.

glDrawArrays (GL_POINTS, 0, MAX PARTICLES) ;
shader.UnUse () ;

R Versions of OpenGL prior to OpenGL 3 provided a special particle
~ type called GL_POINT SPRITE. In OpenGL 3.3 and above core
Q profiles, the GL._ POINT SPRITE enum has been deprecated.
Hence, now GL_POINTS acts as point sprites by default.

The entire code from generation of particle positions to assignment of colors and forces is
carried out in the vertex shader. In this recipe, we do not store any per-vertex attribute as in
the previous recipes. Instead, we simply invoke the glDrawArrays call with the number of
particles (MAX PARTICLES) we need to render. This calls our vertex shader for each particle
in turn.

We have two uniforms in the vertex shader, the combined modelview projection matrix (MVP)
and the current simulation time (t ime). The other variables required for particle simulation
are stored as shader constants.

#version 330

smooth out vec4 vSmoothColor;
uniform mat4 MVP;

uniform float time;

const vec3 a = vec3(0,2,0); //acceleration of particles

//vec3 g = vec3(0,-9.8,0); //acceleration due to gravity
const float rate = 1/500.0; //rate of emission of particles
const float life = 2; //particle life

const float PI = 3.14159;

const float TWO_ PI = 2*PI;

const vec3 RED = vec3(1,0,0);
const vec3 GREEN = vec3(0,1,0);
const vec3 YELLOW = vec3(1,1,0);

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

In the main function, we calculate the current particle time (t) by multiplying its vertex ID
(gl_vertexID) with the emission rate (rate). The gl _VertexID attribute is a unique
integer identifier associated with each vertex. We then check the current time (t ime) against
the particle's time (t). If it is greater, we calculate the time step amount (dt) and then
calculate the particle's position using a simple kinematics formula.

void main() {
vec3 pos=vec3(0) ;
float t = gl_VertexID*rate;
float alpha = 1;
if (times>t) {

To generate the particle, we need to have its initial velocity. This is generated on the fly by
using a pseudorandom generator with the vertex ID and time as the seeds using the function
uniformRandomDir which is defined as follows:

//pseudorandom number generator
float rand(vec2 co)
return fract (sin(dot (co.xy ,vec2(12.9898,78.233))) *
43758.5453) ;
}
//pseudorandom direction on a sphere
vec3 uniformRadomDir (vec2 v, out vec2 r) {
r.x = rand(v.xy) ;
r.y = rand(v.yx) ;
float theta = mix (0.0, PI / 6.0, r.x);
float phi = mix(0.0, TWO PI, r.y);
return vec3(sin(theta) * cos(phi), cos(theta), sin(theta) *
sin(phi)) ;

}

The particle's position is then calculated using the current time and the random initial velocity.
To enable respawning, we use the modulus operator (mod) of the difference between the
particle's time and the current time (time-t) with the life of particle (1ife). After calculation
of the position, we calculate the particle's alpha to gently fade it when its life is consumed.

float dt = mod((time-t), life);
vec2 Xy = vec2(gl VertexID,t);

vec2 rdm;
pos = ((uniformRadomDir (xy, rdm) + 0.5*a*dt)*dt) ;
alpha = 1.0 - (dt/life);
}
174

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The alpha value is used to linearly interpolate between red and yellow colors by calling the
GLSL mix function to give the fire effect. Finally, the generated position is multiplied with the
combined modelview projection (MVP) matrix to get the clip space position of the particle.

vSmoothColor = vec4 (mix (RED,YELLOW, alpha),balpha) ;
gl Position = MVP*vec4 (pos,1);

}

The fragment shader simply uses the vSmoothColor output variable from the vertex shader
as the current fragment color.

#version 330 core
smooth in vec4 vSmoothColor;
layout (location=0) out vec4 vFragColor;
void main() {
vFragColor = vSmoothColor;

}

Extending to textured billboarded particles requires us to change only the fragment shader.
The point sprites provide a varying g1_PointCoord that can be used to sample a texture
in the fragment shader as shown in the textured particle fragment shader (Chapter5/
SimpleParticles/shaders/textured. frag).

#version 330 core

smooth in vec4 vSmoothColor;

layout (location=0) out vec4 vFragColor;
uniform sampler2D textureMap;

void main ()

{

vFragColor = texture(textureMap, gl PointCoord) *
vSmoothColor.a;

}
The application loads a particle texture and generates an OpenGL texture object from it.

GLubyte* pData = SOIL load image (texture filename.c_str(),
&texture_width, &texture_height, &channels, SOIL LOAD_AUTO) ;
if (pData == NULL)
cerr<<"Cannot load image: "<<texture_filename.c_str()<<endl;
exit (EXIT FAILURE) ;
}
//Flip the image on Y axis
int 1,3;
for(j = 0; j*2 < texture height; ++j)
{

int indexl = j * texture width * channels;

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

int index2 = (texture height - 1 - j)*texture width* channels;
for(i = texture width * channels; i > 0; --1i)
{

GLubyte temp = pDatal[indexl];

pData [index1]

pData [index2] ;
pData [index2]

temp;
++indexl;
++index2;

}

GLenum format = GL_ RGBA;

switch (channels) {
case 2: format = GL_RG32UI; break;
case 3: format = GL _RGB; break;
case 4: format = GL RGBA; break;

glGenTextures (1, &texturelID) ;
glBindTexture (GL TEXTURE 2D, texturelD);

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE MIN FILTER,
GL_LINEAR) ;

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE MAG FILTER,
GL_LINEAR) ;

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE WRAP_S, GL REPEAT) ;
glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE WRAP_T, GL REPEAT) ;

glTexImage2D (GL TEXTURE 2D, 0, format, texture width,
texture height, 0, format, GL UNSIGNED BYTE, pData);
SOIL free image data(pData) ;

Next, the texture unit to which the texture is bound is passed to the shader.

texturedShader.LoadFromFile (GL_VERTEX SHADER,
"shaders/shader.vert") ;

texturedShader.LoadFromFile (GL_ FRAGMENT SHADER,
"shaders/textured. frag") ;

texturedShader.CreateAndLinkProgram() ;

texturedShader.Use () ;
texturedShader.AddUniform ("MVP") ;
texturedShader.AddUniform("time") ;
texturedShader.AddUniform("textureMap") ;
glUniformli (texturedShader ("textureMap"),0) ;

texturedShader.UnUse () ;

Finally, the particles are rendered using the glDrawArrays call as shown earlier.

176

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

There's more...

The demo application for this recipe renders a particle system to simulate fire emitting from

a point emitter as would typically come out from a rocket's exhaust. We can press the space
bar key to toggle display of textured particles. The current view can be rotated and zoomed by
dragging the left and middle mouse buttons respectively. The output result from the demo is
displayed in the following figure:

The orientation and position of the emitter is controlled using the emitter transformation
matrix (emitterXForm). We can change this matrix to reorient/reposition the particle
system in the 3D space.

The shader code given in the previous subsection generates a particle system from a point
emitter source. If we want to change the source to a rectangular emitter, we can replace
the position calculation with the following shader code snippet:

pos = (uniformRadomDir (xy, rdm) + 0.5*a*dt) *dt;
vec2 rect = (rdm*2.0 - 1.0);
pos += vec3(rect.x, 0, rect.y) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Mesh Model Formats and Particle Systems

This gives the following output:

Changing the emitter to a disc shape further filters the points spawned in the rectangle
emitter by only accepting those which lie inside the circle of a given radius, as given in
the following code snippet:

pos = (uniformRadomDir (xy, rdm) + 0.5*a*dt) *dt;
vec2 rect = (rdm*2.0 - 1.0);

float dotP = dot (rect, rect);

if (dotP<1)

pos += vec3(rect.x, 0, rect.y);

Using this position calculation gives a disc emitter as shown in the following output:

178

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

We can also add additional forces such as air drag, wind, vortex, and so on, by simply adding
to the acceleration or velocity component of the particle system. Another option could be to
direct the emitter to a specific path such as a b-spline. We could also add deflectors to deflect
the generated particles or create particles that spawn other particles as is typically used in

a fireworks particle system. Particle systems are an extremely interesting area in computer
graphics which help us obtain wonderful effects easily.

The recipe detailed here shows how to do a very simple particle system entirely on the GPU.
While such a particle system might be useful for basic effects, more detailed effects would
need more elaborate treatment as detailed in the references in the See also section.

To know more about detailed effects you can refer to the following links:

» Real-time particle systems on the GPU in Dynamic Environment SIGGRAPH
2007 Talk: http://developer.amd.com/wordpress/media/2012/10/
Drone-Real-Time Particles_ Systems_on_the GPU_in Dynamic_
Environments%$28Siggraph07%29.pdf

» GPU Gems 3 Chapter 23-High speed offscreen particles: http://http.
developer.nvidia.com/GPUGems3/gpugems3 ch23.html

» Building a million particle system by Lutz Latta: http://www.gamasutra.
com/view/feature/130535/building a millionparticle system.
php?print=1

» CG Tutorial chapter 6: http://http.developer.nvidia.com/CgTutorial/
cg_tutorial chapter06.html

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha
Blending and Global
lllumination

In this chapter, we will focus on:

» Implementing order-independent transparency using front-to-back peeling
» Implementing order-independent transparency with dual depth peeling

» Implementing screen space ambient occlusion (SSAO)

» Implementing global illumination using spherical harmonics lighting

» Implementing GPU-based ray tracing

» Implementing GPU-based path tracing

Introduction

Even with the introduction of lighting, our virtual objects don't look and feel real. This is
because our lights are a simple approximation of the reflection behavior of the surface. There
is a specific category of algorithms that help bridge the gap between the real-world lighting
and the virtual-world lighting. These are called global illumination methods. Although these
methods had been proven to be expensive to evaluate in real time, new methods have been
proposed that fake the global illumination using clever techniques. One such technique is
spherical harmonics lighting that uses HDR light probes to light a virtual scene having no light
source. The idea is to extract the lighting information from the light probe and give a feeling
that the virtual objects are in the same environment.

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

In addition, rendering of transparent geometry is also problematic since this requires sorting
of geometry in the depth order. If the scene complexity increases, it becomes not only difficult
to maintain the depth order, but the processing overhead also increases. To circumvent these
scenarios and handle the alpha blending for order-independent transparency of the 3D
geometry efficiently, we implement depth peeling and the more efficient dual depth peeling,
on the modern GPU. All of these techniques will be implemented in OpenGL 3.3 core profile.

Implementing order-independent

transparency using front-to-back peeling

When we have to render translucent geometry, for example, a glass window in a graphics
application, care has to be taken to make sure that the geometry is properly rendered in the
depth order such that the opaque objects in the scene are rendered first and the transparent
objects are rendered last. This unfortunately incurs additional overhead where the CPU is
busy sorting objects. In addition, the blending result will be correct only from a specific viewing
direction, as shown in the following figure. Note that the image on the left is the result if we
view from the direction of the Z axis. There is no blending at all in the left image. If the same
scene is viewed from the opposite side, we can see the correct alpha blending result.

182

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Depth peeling (also called front-to-back peeling) is one technique that helps in this process.
In this technique, the scene is rendered in slices in such a way that slices are rendered one
after another from front to back until the whole object is processed, as shown in the following
figure, which is a 2D side view of the same scene as in the previous figure.

EEN EEN E=[EEE
EER BEE EEE EEE
EEE ERN ERE EEE

Depth Layer 1 Depth Layer 2 Depth Layer 3 Depth Layer 4

The number of layers to use for peeling is dependent on the depth complexity of the scene.
This recipe will show how to implement this technique in modern OpenGL.

Getting ready

The code for this recipe is contained in the Chapter6/FrontToBackPeeling directory.

How to do it...

Let us start our recipe by following these simple steps:

1. Set up two frame buffer objects (FBOs) with two color and depth attachments. For
this recipe, we will use rectangle textures (L. TEXTURE RECTANGLE) since they
enable easier handling of images (samplers) in the fragment shader. With rectangle
textures we can access texture values using pixel positions directly. In case of normal
texture (GL_TEXTUR_2D), we have to hormalize the texture coordinates.

glGenFramebuffers (2, fbo) ;
glGenTextures (2, texID);
glGenTextures (2, depthTexID) ;
for(int i=0;i<2;i++)
glBindTexture (GL_TEXTURE_RECTANGLE, depthTexID[i]) ;
//set texture parameters like minification etc.

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

ngeXImageZD(GL_TEXTURE_RECTANGLE , 0,
GL_DEPTH_COMPONENT32F, WIDTH, HEIGHT, O,
GL_DEPTH_COMPONENT, GL_FLOAT, NULL) ;
glBindTexture (GL_TEXTURE_RECTANGLE, texID[i]) ;
//set texture parameters like minification etc.
ngeXImageZD(GL_TEXTURE_RECTANGLE , 0,GL_RGBA, WIDTH,
HEIGHT, 0, GL_RGBA, GL_FLOAT, NULL) ;
glBindFramebuffer (GL FRAMEBUFFER, fbol[il]);
glFramebufferTexture2D (GL FRAMEBUFFER,
GL DEPTH ATTACHMENT, GL TEXTURE RECTANGLE,
depthTexID[i], 0);
glFramebufferTexture2D (GL FRAMEBUFFER,
GL COLOR ATTACHMENTO, GL TEXTURE RECTANGLE,
texID[i], 0);
}
glGenTextures (1, &colorBlenderTexID) ;
glBindTexture (GL TEXTURE RECTANGLE, colorBlenderTexID) ;
//set texture parameters like minification etc.
ngeXImageZD(GL_TEXTURE_RECTANGLE, 0, GL_RGBA, WIDTH,
HEIGHT, 0, GL_RGBA, GL_FLOAT, 0) ;

2. Set another FBO for color blending and check the FBO for completeness. The color
blending FBO uses the depth texture from the first FBO as a depth attachment, as
it uses the depth output from the first step during blending.

glGenFramebuffers(l, &colorBlenderFBOID) ;
glBindFramebuffer (GL FRAMEBUFFER, colorBlenderFBOID) ;
glFramebufferTexture2D (GL FRAMEBUFFER,
GL_DEPTH_ATTACHMENT, GL_ TEXTURE RECTANGLE,

depthTexID[0], 0);

glFramebufferTexture2D (GL FRAMEBUFFER,
GL_COLOR_ATTACHMENTO, GL_TEXTURE RECTANGLE,
colorBlenderTexID, O0);

GLenum status = glCheckFramebufferStatus (GL FRAMEBUFFER) ;

if (status == GL_FRAMEBUFFER COMPLETE)
printf ("FBO setup successful !!! \n");
else

printf ("Problem with FBO setup") ;

glBindFramebuffer (GL FRAMEBUFFER, O0) ;

3. Inthe rendering function, set the color blending FBO as the current render target and
then render the scene normally with depth testing enabled.

glBindFramebuffer (GL FRAMEBUFFER, colorBlenderFBOID) ;
glDrawBuffer (GL COLOR_ATTACHMENTO) ;

glClear (GL_COLOR_BUFFER BIT | GL_DEPTH BUFFER BIT) ;
glEnable (GL_DEPTH_TEST) ;

DrawScene (MVP, cubeShader) ;

184

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

4. Next, bind the other FBO pair alternatively, clear the render target, and enable

depth testing, but disable alpha blending. This is to render the nearest surface in
the offscreen render target. The number of passes dictate the number of layers the
given geometry is peeled into. The more the number of passes, the more continuous
the depth peeling result. For the demo in this recipe, the number of passes is set
as 6. The number of passes is dependent on the depth complexity of the scene. If
the user wants to check the number of samples output from the depth peeling step,
then based on the value of the flag (bUse0Q) an occlusion query is used to find the
number of samples output from the depth peeling step.
int numLayers = (NUM_PASSES - 1) * 2;
for (int layer = 1; bUseOQ || layer < numLayers; layer++) {

int currId = layer % 2;

int prevId = 1 - currId;

glBindFramebuffer (GL FRAMEBUFFER, fbo[currId]);

glDrawBuffer (GL_COLOR ATTACHMENTO) ;

glClearColor (0, 0, 0, 0);

glClear (GL_COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ;

glDisable (GL_BLEND) ;

glEnable (GL_DEPTH TEST) ;
if (bUseOQ)

glBeginQuery (GL_SAMPLES_PASSED_ARB, queryId);

}

Bind the depth texture from the first step so that the nearest fragment can be

used with the attached shaders and then render the scene with the front peeling
shaders. Refer to Chapteré6/FrontToBackPeeling/shaders/front peel.
{vert, frag} for details. We then end the hardware query if the query was initiated.

glBindTexture (GL TEXTURE RECTANGLE, depthTexID [prevId]) ;
DrawScene (MVP, frontPeelShader) ;
if (bUseOQ)

glEndQuery(GL_SAMPLES_PASSED_ARB);

}

Bind the color blender FBO again, disable depth testing, and enable additive
blending; however, specify separate blending so that the color and alpha can be
blended separately. Finally, bind the rendered output from step 5 and then using
a full-screen quad and the blend shader (Chapteré6/FrontToBackPeeling/
shaders/blend. {vert, frag}), blend the whole scene.

glBindFramebuffer (GL FRAMEBUFFER, colorBlenderFBOID) ;
ngrawBuffer(GL_COLOR_ATTACHMENTO);

glDisable (GL_DEPTH TEST) ;

glEnable (GL_BLEND) ;

glBlendEquation (GL_FUNC_ADD) ;

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

glBlendFuncSeparate (GL_DST ALPHA, GL_ONE,GL_ZERO,
GL_ONE_MINUS_SRC ALPHA) ;

glBindTexture (GL TEXTURE RECTANGLE, texID[currId]) ;
blendShader.Use () ;
DrawFullScreenQuad() ;
blendShader.UnUse () ;
glDisable (GL_BLEND) ;

7. In the final step, restore the default draw buffer (GL._BACK LEFT) and disable alpha
blending and depth testing. Use a full-screen quad and a final shader (Chapteré6/
FrontToBackPeeling/shaders/final. frag) to blend the output from the color
blending FBO.

glBindFramebuffer (GL FRAMEBUFFER, O0) ;
glDrawBuffer (GL_BACK LEFT) ;

glDisable (GL_DEPTH TEST) ;

glDisable (GL_BLEND) ;

glBindTexture (GL TEXTURE RECTANGLE, colorBlenderTexID) ;
finalShader.Use () ;
glUniform4fv (finalShader ("vBackgroundColor"), 1,
&bg.x) ;
DrawFullScreenQuad() ;
finalShader.UnUse () ;

The front-to-back depth peeling works in three steps. First, the scene is rendered normally
on a depth FBO with depth testing enabled. This ensures that the scene depth values are
stored in the depth attachment of the FBO. In the second pass, we bind the depth FBO, bind
the depth texture from the first step, and then iteratively clip parts of the geometry by using a
fragment shader (see Chapter6/FrontToBackPeeling/shaders/front peel.frag)
as shown in the following code snippet:

#version 330 core
layout (location = 0) out vec4 vFragColor;
uniform vec4 vColor;
uniform sampler2DRect depthTexture;
void main() {
float frontDepth = texture(depthTexture, gl FragCoord.xy) .r;
if (gl _FragCoord.z <= frontDepth)
discard;
vFragColor = vColor;

}

186

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

This shader simply compares the incoming fragment's depth against the depth value stored
in the depth texture. If the current fragment's depth is less than or equal to the depth in the
depth texture, the fragment is discarded. Otherwise, the fragment color is output.

float frontDepth = texture (depthTexture, gl FragCoord.xy) .r;
if (gl_FragCoord.z <= frontDepth)
discard;

After this step, we bind the color blend FBO, disable depth test, and then enable alpha blending
with separate blending of colors and alpha values. The glBlendFunctionSeparate function
is used here as it enables us to handle color and alpha channels for source and destination
separately. The first parameter is the source RGB, which is assigned the alpha value of the

pixel in the frame buffer. This blends the incoming fragment with the existing color in the frame
buffer. The second parameter, that is, the destination RGB, is set as GL._ONE, which keeps

the value in the destination as is. The third parameter is set as GL_ ZERO, which removes the
source alpha component as we already applied the alpha from the destination using the first
parameter. The final parameter, that is, the destination alpha is set as the conventional
over-compositing alpha value (GL._ONE MINUS SRC ALPHA).

We then bind the texture from the previous step output and then use the blend shader
(see Chapter6/FrontToBackPeeling/shaders/blend.frag) on a full-screen quad
to alpha blend the current fragments with the existing fragments on the frame buffer. The
blend shader is defined as follows:

#version 330 core
uniform sampler2DRect tempTexture;
layout (location = 0) out vec4 vFragColor;
void main() {
vFragColor = texture (tempTexture, gl FragCoord.xy) ;

}

The tempTexture sampler contains the output from the depth peeling step stored in the
colorBlenderFBO attachment. After this step, the alpha blending is disabled, as shown
in the code snippet in step 6 of the How to do it... section.

In the final step, the default draw buffer is restored, depth testing and alpha blending is
disabled, and the final output from the color blend FBO is blended with the background color
using a simple fragment shader. The code snippet is as shown in step 7 of the How to do it...
section. The final fragment shader is defined as follows:

#version 330 core

uniform sampler2DRect colorTexture;

uniform vec4 vBackgroundColor;

layout (location = 0) out vec4 vFragColor;

void main()
vec4 color = texture(colorTexture, gl FragCoord.xy) ;
vFragColor = color + vBackgroundColor*color.a;

}

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

The final shader takes the front peeled result and blends it with the background color using
the alpha value from the front peeled result. This way rather than taking the nearest depth
fragment all fragments are taken into consideration showing a correctly blended result.

The output from the demo application for this recipe renders 27 translucent cubes at the
origin. The camera position can be changed using the left mouse button. The front-to-back
depth peeling gives the following output. Note the blended color, for example, the yellow color
where the green boxes overlay the red ones.

Pressing the Space bar disables front-to-back peeling so that we can see the normal alpha
blending without back-to-front sorting which gives the following output. Note that we do not
see the yellow blended color where the green and red boxes overlap.

188

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Even though the output produced by front-to-back peeling is correct, it requires multiple
passes through the geometry that incur additional processing overhead. The next recipe
details the more robust method called dual depth peeling which tackles this problem.

» Interactive Order-Independent Transparency, Cass Everitt: http://gamedevs.org/
uploads/interactive-order-independent -transparency.pdf

Implementing order-independent

transparency using dual depth peeling

In this recipe, we will implement dual depth peeling. The main idea behind this method is to
peel two depth layers at the same time. This results in a much better performance with the
same output, as dual depth peeling peels two layers at a time; one from the front and one
from the back.

Getting ready

The code for this recipe is contained in the Chapter6/DualDepthPeeling folder.

How to do it...

The steps required to implement dual depth peeling are as follows:

1. Create an FBO and attach six textures in all: two for storing the front buffer, two for
storing the back buffer, and two for storing the depth buffer values.

glGenFramebuffers (1, &dualDepthFBOID) ;

glGenTextures (2, texID);

glGenTextures (2, backTexID) ;

glGenTextures (2, depthTexID) ;

for(int i=0;i<2;i++)

glBindTexture (GL_TEXTURE_RECTANGLE, depthTexID[i]) ;

//set texture parameters

glTexImage2D (GL_TEXTURE RECTANGLE , 0, GL FLOAT RG32 NV,

WIDTH, HEIGHT, 0, GL_RGB, GL_ FLOAT, NULL) ;

glBindTexture (GL_TEXTURE_RECTANGLE, texIDI[1]) ;

//set texture parameters

glTexImage2D (GL_TEXTURE_RECTANGLE , 0, GL _RGBA, WIDTH,

HEIGHT, 0, GL RGBA, GL_FLOAT, NULL) ;

glBindTexture (GL TEXTURE RECTANGLE, backTexID[i]) ;
//set texture parameters

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

190

glTexImage2D (GL TEXTURE RECTANGLE , 0, GL RGBA, WIDTH,
HEIGHT, 0, GL RGBA, GL_FLOAT, NULL);

}

Bind the six textures to the appropriate attachment points on the FBO.

glBindFramebuffer (GL FRAMEBUFFER, dualDepthFBOID) ;

for(int i=0;i<2;i++)
glFramebufferTexture2D (GL FRAMEBUFFER, attachID[i],
GL TEXTURE RECTANGLE, depthTexID[i], O0);
glFramebufferTexture2D (GL FRAMEBUFFER, attachID[i]+1,
GL_TEXTURE_RECTANGLE, texIDI[il, 0);
glFramebufferTexture2D (GL FRAMEBUFFER, attachID[i]+2,
GL_TEXTURE RECTANGLE, backTexIDI[il, 0);

}

Create another FBO for color blending and attach a new texture to it. Also attach this
texture to the first FBO and check the FBO completeness.

glGenTextures (1, &colorBlenderTexID) ;
glBindTexture (GL TEXTURE RECTANGLE, colorBlenderTexID) ;
//set texture parameters
ngexImageZD(GL_TEXTURE_RECTANGLE, 0, GL_RGBA, WIDTH,
HEIGHT, 0, GL RGBA, GL FLOAT, 0);

glGenFramebuffers(l, &colorBlenderFBOID) ;
glBindFramebuffer (GL FRAMEBUFFER, colorBlenderFBOID) ;
glFramebufferTexture2D (GL FRAMEBUFFER,

GL_ COLOR ATTACHMENTO, GL TEXTURE RECTANGLE,
colorBlenderTexID, 0);
glFramebufferTexture2D (GL FRAMEBUFFER,

GL COLOR ATTACHMENT6, GL TEXTURE RECTANGLE,
colorBlenderTexID, 0);

GLenum status = glCheckFramebufferStatus (GL FRAMEBUFFER) ;

if (status == GL_FRAMEBUFFER COMPLETE)
printf ("FBO setup successful !!! \n");
else

printf ("Problem with FBO setup") ;
glBindFramebuffer (GL FRAMEBUFFER, O0) ;

In the render function, first disable depth testing and enable blending and then
bind the depth FBO. Initialize and clear DrawBuf fer to write on the render target
attached to GL._COLOR_ATTACHMENT1 and GL._COLOR_ATTACHMENT2.

glDisable (GL_DEPTH TEST) ;

glEnable (GL_BLEND) ;
glBindFramebuffer (GL FRAMEBUFFER, dualDepthFBOID) ;
glDrawBuffers (2, &drawBuffers[1]);

glClearColor (0, 0, 0, 0);

glClear (GL_COLOR_BUFFER BIT) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Next, set GL_COLOR_ATTACHMENTO as the draw buffer, enable min/max blending
(glBlendEquation (GL_MAX)), and initialize the color attachment using fragment
shader (see Chapteré6/DualDepthPeeling/shaders/dual init.frag). This
completes the first step of dual depth peeling, that is, initialization of the buffers.

glDrawBuffer (drawBuffers[0]) ;
glClearColor (-MAX DEPTH, -MAX DEPTH, 0, 0);
glClear (GL_COLOR_BUFFER_BIT) ;
glBlendEquation (GL MAX) ;

DrawScene (MVP, initShader) ;

Next, set GL_COLOR_ATTACHMENTSé6 as the draw buffer and clear it with background
color. Then, run a loop that alternates two draw buffers and then uses min/max
blending. Then draw the scene again.

glDrawBuffer (drawBuffers[6]) ;

glClearColor (bg.x, bg.y, bg.z, bg.w);

glClear (GL_COLOR BUFFER BIT) ;

int numLayers = (NUM_PASSES - 1) * 2;
int currId = 0;
for (int layer = 1; bUseOQ || layer < numLayers; layer++) {

currld = layer % 2;

int prevId = 1 - currId;

int bufId = currId * 3;

glDrawBuffers (2, &drawBuffers[bufId+1]);
glClearColor (0, 0, 0, 0);

glClear (GL_COLOR_BUFFER_BIT) ;

glDrawBuffer (drawBuffers [bufId+0]) ;
glClearColor (-MAX DEPTH, -MAX DEPTH, 0, 0);

glClear (GL_COLOR_BUFFER_BIT) ;

glDrawBuffers (3, &drawBuffers[bufId+0]) ;
glBlendEquation (GL_ MAX) ;
glActiveTexture (GL _TEXTUREO) ;
glBindTexture (GL TEXTURE RECTANGLE, depthTexID [prevId]) ;
glActiveTexture (GL TEXTUREL) ;

glBindTexture (GL_TEXTURE_RECTANGLE, texID[prevId]);
DrawScene (MVP, dualPeelShader, true,true);

Finally, enable additive blending (g1BlendFunc (GL_FUNC_ADD)) and then draw a
full screen quad with the blend shader. This peels away fragments from the front as
well as the back layer of the rendered geometry and blends the result on the current
draw buffer.

glDrawBuffer (drawBuffers[6]) ;

glBlendEquation (GL_FUNC_ADD) ;

glBlendFunc (GL_SRC_ALPHA, GL ONE MINUS SRC ALPHA);
if (bUseOQ)

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

glBeginQuery (GL_SAMPLES PASSED ARB, queryId);
}
glActiveTexture (GL_TEXTUREO) ;
glBindTexture (GL TEXTURE RECTANGLE, backTexID[currId]) ;
blendShader.Use () ;

DrawFullScreenQuad() ;
blendShader.UnUse () ;

}

8. In the final step, we unbind the FBO and enable rendering on the default back buffer
(GL_BACK_LEFT). Next, we bind the outputs from the depth peeling and blending
steps to their appropriate texture location. Finally, we use a final blending shader
to combine the two peeled and blended fragments.

glBindFramebuffer (GL FRAMEBUFFER, O0) ;
glDrawBuffer (GL BACK LEFT) ;
glBindTexture (GL TEXTURE RECTANGLE, colorBlenderTexID) ;
glActiveTexture (GL TEXTUREO) ;
glBindTexture (GL TEXTURE RECTANGLE, depthTexID[currId]);
glActiveTexture (GL TEXTUREL) ;
glBindTexture (GL TEXTURE RECTANGLE, texID[currId]) :;
glActiveTexture (GL TEXTURE2) ;
glBindTexture (GL TEXTURE RECTANGLE, colorBlenderTexID) ;
finalShader.Use() ;

DrawFullScreenQuad() ;
finalShader.UnUse () ;

Dual depth peeling works in a similar fashion as the front-to-back peeling. However, the
difference is in the way it operates. It peels away depths from both the front and the back
layer at the same time using min/max blending. First, we initialize the fragment depth values
using the fragment shader (Chapteré6/DualDepthPeeling/shaders/dual init.frag)
and min/max blending.

vFragColor.xy = vec2(-gl FragCoord.z, gl FragCoord.z) ;

This initializes the blending buffers. Next, a loop is run but instead of peeling depth layers
front-to-back, we first peel back depths and then the front depths. This is carried out in the
fragment shader (Chapter6/DualDepthPeeling/shaders/dual peel.frag)along
with max blending.

float fragDepth = gl FragCoord.z;

vec2 depthBlender = texture(depthBlenderTex, gl FragCoord.xy) .Xy;
vec4 forwardTemp = texture (frontBlenderTex, gl FragCoord.xy) ;
//initialize variables ..

192

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

if (fragDepth < nearestDepth || fragDepth > farthestDepth) ({
vFragColor0.xy = vec2 (-MAX DEPTH) ;
return;

}

if (fragDepth > nearestDepth && fragDepth < farthestDepth) ({
vFragColor0.xy = vec2 (-fragDepth, fragDepth) ;
return;

}

vFragColor0.xy = vec2 (-MAX DEPTH) ;

if (fragDepth == nearestDepth) ({
vFragColorl.xyz += vColor.rgb * alpha * alphaMultiplier;
vFragColorl.w = 1.0 - alphaMultiplier * (1.0 - alpha);

} else {
vFragColor2 += vec4 (vColor.rgb,alpha) ;

}

The blend shader (Chapter6/DualDepthPeeling/shaders/blend. frag) simply
discards fragments whose alpha values are zero. This ensures that the occlusion query is not
incremented, which would give a wrong number of samples than the actual fragment used in
the depth blending.

vFragColor = texture(tempTexture, gl FragCoord.xy) ;
if (vFragColor.a == 0)
discard;

Finally, the last blend shader (Chapter6/DualDepthPeeling/shaders/final.frag)
takes the blended fragments from the front and back blend textures and blends the results
to get the final fragment color.

vec4 frontColor = texture(frontBlenderTex, gl FragCoord.xy) ;
vec3 backColor = texture (backBlenderTex, gl FragCoord.xy) .rgb;
vFragColor.rgb = frontColor.rgb + backColor * frontColor.a;

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

There's more...

The demo application for this demo is similar to the one shown in the previous recipe. If dual
depth peeling is enabled, we get the result as shown in the following figure:

Pressing the Space bar enables/disables dual depth peeling. If dual peeling is disabled, the
result is as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

See also

» Louis Bavoil and Kevin Myers, Order Independent Transparency with Dual Depth Peeling
demo in NVIDIA OpenGL 10 sdk: http://developer.download.nvidia.com/
SDK/10/opengl/src/dual depth peeling/doc/DualDepthPeeling.pdf

Implementing screen space ambient

occlusion (SSAO)

We have implemented simple lighting recipes in previous chapters. These unfortunately
approximate some aspects of lighting. However, effects such as global illumination are not
handled by the basic lights, as discussed earlier. In this respect, several techniques have been
developed over the years which fake the global illumination effects. One such technique is
Screen Space Ambient Occlusion (SSAO) which we will implement in this recipe.

As the name suggests, this method works in screen space. For any given pixel onscreen, the
amount of occlusion due to its neighboring pixels can be obtained by looking at the difference
in their depth value. In order to reduce the sampling artefacts, the neighbor coordinates are
randomly offset. For a pixel whose depth values are close to one another, they belong to

the geometry which is spatially lying close. Based on the difference of the depth values, an
occlusion value is determined. Given in pseudocode, the algorithm may be given as follows:

Get the position (p), normal (n) and depth (d) value at current pixel
position
For each pixel in the neighborhood of current pixel
Get the position (p0) of the neighborhood pixel
Call proc. CalcAO(p, p0O, n)
End for
Return the ambient occlusion amount as color

The ambient occlusion procedure is defined as follows:

const float DEPTH TOLERANCE = 0.00001;
proc CalcAO (p,p0,n)

diff = pO0-p-DEPTH TOLERANCE;

v = normalize (diff) ;

d = length(diff) *scale;

return max (0.1, dot(n,v)-bias)*(1.0/(1.0+d))*intensity;
end proc

Note that we have three artist control parameters: scale, bias, and intensity. The scale
parameter controls the size of the occlusion area, bias shifts the occlusion, and intensity
controls the strength of the occlusion. The DEPTH TOLERANCE constant is added to remove
depth-fighting artefacts.

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

The whole recipe proceeds as follows. We load our 3D model and render it into an offscreen
texture using FBO. We use two FBOs: one for storing the eye space normals and depth,

and another FBO is for filtering of intermediate results. For both the color attachment

and the depth attachment of first FBO, floating point texture formats are used. For the

color attachment, GL. RGBA32F is used, whereas for depth texture, the GL._ DEPTH
COMPONENT3 2F floating point format is used. Floating point texture formats are used as we
require more precision, otherwise truncation errors will show up in the rendering result. The
second FBO is used for separable Gaussian smoothing as was carried out in the Implementing
variance shadow mapping recipe in Chapter 4, Lights and Shadows. This FBO has two color
attachments with the floating point texture format GL._RGBA32F.

In the rendering function, the scene is first rendered normally. Then, the first shader is

used to output the eye space normals. This is stored in the color attachment and the depth
values are stored in the depth attachment of the first FBO. After this step, the filtering

FBO is bound and the second shader is used, which uses the depth and normal textures
from the first FBO to calculate the ambient occlusion result. Since the neighbor points are
randomly offset, noise is introduced. The noisy result is then smoothed by applying separable
gaussian smoothing. Finally, the filtered result is blended with the existing rendering by using
conventional alpha blending.

Getting ready

The code for this recipe is contained in the Chapteré6/Ssa0 folder. We will be using the Obj
model viewer from Chapter 5, Mesh Model Formats and and Particle Systems. We will add
SSAO to the Obj model.

How to do it...

Let us start the recipe by following these simple steps:

1. Create a global reference of the ObjLoader object. Call the ObjlLoader: : Load
function passing it the name of the OBJ file. Pass vectors to store the meshes,
vertices, indices, and materials contained in the OBJ file.

2. Create a framebuffer object (FBO) with two attachments: first to store the scene
normals and second to store the depth. We will use a floating point texture format
(GL_RGBA32F) for both of these. In addition, we create a second FBO for Gaussian
smoothing of the SSAO output. We are using multiple texture units here as the
second shader expects normal and depth textures to be bound to texture units 1
and 3 respectively.

glGenFramebuffers (1, &fboID) ;
glBindFramebuffer (GL _FRAMEBUFFER, fboID) ;
glGenTextures (1, &normalTexturelD) ;
glGenTextures (1, &depthTexturelD) ;
glActiveTexture (GL TEXTUREL) ;

196

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

glBindTexture (GL TEXTURE 2D, normalTexturelD) ;

//set texture parameters

glTexImage2D (GL TEXTURE 2D, 0, GL RGBA32F, WIDTH, HEIGHT,
0, GL BGRA, GL_FLOAT, NULL);
glActiveTexture (GL TEXTURE3) ;
glBindTexture (GL TEXTURE 2D, depthTexturelD);

//set texture parameters

glTexImage2D (GL_TEXTURE_2D, 0, GL_DEPTH COMPONENT32F,
WIDTH, HEIGHT, 0, GL DEPTH COMPONENT, GL FLOAT, NULL);

glFramebufferTexture2D (GL FRAMEBUFFER,
GL COLOR_ATTACHMENTO, GL TEXTURE 2D, normalTextureID, 0);

glFramebufferTexture2D (GL FRAMEBUFFER,
GL DEPTH ATTACHMENT, GL_TEXTURE 2D, depthTextureID, 0);

glGenFramebuffers (1, &filterFBOID) ;

glBindFramebuffer (GL FRAMEBUFFER, £ilterFBOID) ;

glGenTextures (2, blurTexID) ;

for(int i=0;i<2;i++)
glActiveTexture (GL _TEXTURE4+1i) ;
glBindTexture (GL TEXTURE 2D, blurTexID[i]);
//set texture parameters

glTexImage2D (GL_TEXTURE 2D, 0,GL_RGBA32F,RTT WIDTH,
RTT HEIGHT,0,GL RGBA,GL FLOAT,NULL) ;

glFramebufferTexture2D (GL FRAMEBUFFER,
GL_COLOR ATTACHMENTO+i,GL TEXTURE 2D,blurTexID[i],O0);

}

In the render function, render the scene meshes normally. After this step, bind
the first FBO and then use the first shader program. This program takes the
per-vertex positions/normals of the mesh and outputs the view space normals
from the fragment shader.

glBindFramebuffer (GL FRAMEBUFFER, fboID) ;
glviewport (0, 0,RTT WIDTH, RTT HEIGHT) ;
glDrawBuffer (GL_COLOR_ATTACHMENTO) ;

glClear (GL_COLOR_BUFFER BIT|GL_DEPTH BUFFER BIT) ;
glBindVertexArray (vaoID) ;
ssaoFirstShader.Use () ;

glUniformMatrix4fv (ssaoFirstShader ("MVP"), 1, GL FALSE,
glm: :value ptr (P*MV)) ;
glUniformMatrix3fv (ssaoFirstShader ("N"), 1, GL FALSE,

glm::value ptr(glm::inverseTranspose (glm::mat3 (MV)))) ;
for(size t i=0;i<materials.size();i++) {
Material* pMat = materials[i];
if (materials.size()==1)
glDrawElements (GL_TRIANGLES, indices.size(),
GL_UNSIGNED SHORT, 0);

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

198

else

glDrawElements (GL_TRIANGLES, pMat-s>count,
GL UNSIGNED SHORT, (const GLvoid*) (&indices
[pMat->offset])) ;

}

ssaoFirstShader.UnUse () ;

}

The first vertex shader (Chapteré6/SSA0/shaders/SSAO FirstStep.vert)
outputs the eye space normal as shown in the following code snippet:

#version 330 core
layout (location = 0) in vec3 vVertex;
layout (location = 1) in vec3 vNormal;
uniform mat4 MVP;
uniform mat3 N;
smooth out vec3 vEyeSpaceNormal;
void main() {
vEyeSpaceNormal = N*vNormal;
gl Position = MVP*vec4 (vVertex, 1) ;

}

The fragment shader (Chapter6/SSAO/shaders/SSAO_FirstStep.frag)
returns the interpolated normal, as the fragment color, shown as follows:

#version 330 core

smooth in vec3 vEyeSpaceNormal;

layout (location=0) out vec4 vFragColor;

void main() {
vFragColor = vec4 (normalize (vEyeSpaceNormal)*0.5 + 0.5,
1);

}

Bind the filtering FBO and use the second shader (Chapter6/SSA0/shaders/
SSAO_SecondStep. frag). This shader does the actual SSAO calculation. The input
to the shader is the normals texture from step 3. This shader is invoked on a full
screen quad.

glBindFramebuffer (GL FRAMEBUFFER, £ilterFBOID) ;
glDrawBuffer (GL_COLOR_ATTACHMENTO) ;

glBindVertexArray (quadVAOID) ;

ssaoSecondShader.Use () ;

glUniformlf (ssaoSecondShader ("radius"), sampling radius) ;
glDrawElements (GL_TRIANGLES, 6, GL UNSIGNED SHORT, O0);
ssaoSecondShader.UnUse () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

5. Filter the output from step 4 by using separable Gaussian convolution using two
fragment shaders (Chapteré6/SSA0/shaders/GaussH. frag and Chapteré6/
SSAO/shaders/GaussV. frag). The separable Gaussian smoothing is added in
to smooth out the ambient occlusion result.

glDrawBuffer (GL_COLOR_ATTACHMENT1) ;

glBindVertexArray (quadVAOID) ;

gaussianV_shader.Use() ;

ngrawElements(GL_TRIANGLES, 6, GL_UNSIGNED SHORT, 0);
glDrawBuffer (GL_COLOR_ATTACHMENTO) ;

gaussianH shader.Use() ;

ngrawElements(GL_TRIANGLES, 6, GL_UNSIGNED SHORT, 0);

6. Unbind the filtering FBO, reset the default viewport, and then the default draw buffer.
Enable alpha blending and then use the final shader (Chapter6/SSAO/shaders/
final.frag) to blend the output from steps 3 and 5. This shader simply renders
the final output from the filtering stage using a full-screen quad.

glBindFramebuffer (GL_FRAMEBUFFER, 0) ;

glvViewport (0,0,WIDTH, HEIGHT) ;

glDrawBuffer (GL_BACK LEFT) ;

glEnable (GL_BLEND) ;

glBlendFunc (GL_SRC_ALPHA, GL_ONE MINUS_ SRC_ALPHA) ;
finalShader.Use() ;

ngrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_ SHORT, 0);
finalShader.UnUse() ;

glDisable (GL_BLEND) ;

There are three steps in the SSAO calculation. The first step is the preparation of inputs,
that is, the view space normals and depth. The normals are stored using the first step
vertex shader (Chapter6/SSAO/shaders/SSAO_FirstStep.vert).

vEyeSpaceNormal Depth = N*vNormal;
vecd4d esPos = MV*vec4 (vVertex, 1) ;
gl_Position = P*esPos;

The fragment shader (Chapteré6/SSA0/shaders/SSAO_FirstStep.frag)then outputs
these values. The depth is extracted from the depth attachment of the FBO.

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

The second step is the actual SSAO calculation. We use a fragment shader (Chapter6/SSA0/
shaders/SSAO_SecondStep. frag) to perform this by first rendering a screen-aligned
quad. Then, for each fragment, the corresponding normal and depth values are obtained from
the render target, from the first step. Next, a loop is run to compare the depth values of the
neighboring fragments and then an occlusion value is estimated.

float depth = texture(depthTex, vUV).r;
if (depth<1.0)

{

vec3 n = normalize (texture (normalTex, vUV) .xyz*2.0 - 1.0);
vec4 p = invP*vec4 (vUV,depth, 1) ;
p-Xyz /= p.w;

vec2 random = normalize (texture (noiseTex,
viewportSize/random size * vUV).rg * 2.0 - 1.0);
float ao = 0.0;

for(int 1 = 0; i1 < NUM_SAMPLES; i++)

{
float npw = (pw + radius * samples[i].x * random.x) ;
float nph = (ph + radius * samples[i].y * random.y) ;

vec2 uv = vUV + vec2(npw, nph);

vec4 p0 = invP * vec4 (vUV, texture2D (depthTex, uv).r, 1.0);
p0.xyz /= pO0.w;

ao += calcAO(p0, p, n);

//calculate similar depth points from the neighborhood
//and calcualte ambient occlusion amount

}

ao *= INV_NUM SAMPLES/8.0;

vFragColor = vec4 (vec3(0), ao);

}

After the second shader, we filter the SSAO output using separable Gaussian convolution.
The default draw buffer is then restored and then the Gaussian filtered SSAO output is
alpha blended with the normal rendering.

200

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

There's more...

The demo application implementing this recipe shows the scene with three blocks on a planar
quad. When run, the output is as shown in the following screenshot:

Pressing the Space bar disables SSAO to produce the following output. As can be seen,
ambient occlusion helps in giving shaded cues that approximate how near or far objects
are. We can also change the sampling radius by using the + and - keys.

See also

» A Simple and Practical Approach to SSAO by Jose Maria Mendez: http://www.
gamedev.net/page/resources/ /technical/graphics-programming-
and-theory/a-simple-and-practical-approach-to-ssao-r2753

» SSAO Article at GameRendering.com: http://www.gamerendering.com/
category/lighting/ssao-lighting/

201

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

Implementing global illumination using

spherical harmonics lighting

In this recipe, we will learn about implementing simple global illumination using spherical
harmonics. Spherical harmonics is a class of methods that enable approximation of functions
as a product of a set of coefficients with a set of basis functions. Rather than calculating

the lighting contribution by evaluating the bi-directional reflectance distribution function
(BRDF), this method uses special HDR/RGBE images that store the lighting information. The
only attribute required for this method is the per-vertex normal. These are multiplied with the
spherical harmonics coefficients that are extracted from the HDR/RGBE images.

The RGBE image format was invented by Greg Ward. These images store three bytes for the
RGB value (that is, the red, green, and blue channel) and an additional byte which stores a
shared exponent. This enables these files to have an extended range and precision of floating
point values. For details about the theory behind the spherical harmonics method and the
RGBE format, refer to the references in the See also section of this recipe.

To give an overview of the recipe, using the probe image, the SH coefficients (C1 to C5) are
estimated by projection. Details of the projection method are given in the references in the
See also section. For most of the common lighting HDR probes, the spherical harmonic
coefficients are documented. We use these values as constants in our vertex shader.

Getting ready

The code for this recipe is contained in the Chapter6/SphericalHarmonics directory.
For this recipe, we will be using the Obj mesh loader discussed in the previous chapter.

How to do it...

Let us start this recipe by following these simple steps:

1. Load an obj mesh using the ObjLoader class and fill the OpenGL buffer objects
and the OpenGL textures, using the material information loaded from the file, as in
the previous recipes.

2. Inthe vertex shader that is used for the mesh, perform the lighting calculation using
spherical harmonics. The vertex shader is detailed as follows:

#version 330 core

layout (location = 0) in vec3 vVertex;
layout (location = 1) in vec3 vNormal;
layout (location = 2) in vec2 vUV;

smooth out wvec2 vUVout;
smooth out vec4 diffuse;

202

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

uniform mat4 P;
uniform mat4 MV;
uniform mat3 N;

const float Cl = 0.429043;

const float C2 = 0.511664;

const float C3 = 0.743125;

const float C4 = 0.886227;

const float C5 = 0.247708;

const float PI = 3.1415926535897932384626433832795;
//01d town square probe

const vec3 LO0O = vec3(0.871297, 0.875222, 0.864470) ;
const vec3 Llml = vec3(0.175058, 0.245335, 0.312891) ;
const vec3 L10 = vec3(0.034675, 0.036107, 0.037362) ;
const vec3 L1l = vec3(-0.004629, -0.029448, -0.048028) ;
const vec3 L2m2 = vec3(-0.120535, -0.121160, -0.117507) ;
const vec3 L2ml = vec3(0.003242, 0.003624, 0.007511) ;
const vec3 L20 = vec3(-0.028667, -0.024926, -0.020998) ;
const vec3 L21 = vec3(-0.077539, -0.086325, -0.091591) ;
const vec3 L22 = vec3(-0.161784, -0.191783, -0.219152);
const vec3 scaleFactor = vec3(0.161784/

(0.871297+0.161784) ,

0.219152/(0.864470+0.

void main()

0.191783/(0.875222+0.191783),
219152)) ;

{
vUVout=vUV;
vec3 tmpN = normalize (N*vNormal) ;
vec3 diff = Cl * L22 * (tmpN.x*tmpN.x -
tmpN.y*tmpN.y) +
C3 * L20 * tmpN.z*tmpN.z +
Cc4 * LOO -
C5 * L20 +
2.0 * C1 * L2m2*tmpN.xX*tmpN.y +
2.0 * C1 * L21*tmpN.X*tmpN.z +
2.0 * C1 * L2ml*tmpN.y*tmpN.z +
2.0 * C2 * L11*tmpN.x +
2.0 * C2 * Llml*tmpN.y +
2.0 * C2 * L10*tmpN.z;
diff *= scaleFactor;
diffuse = vec4 (diff, 1);
gl Position = P* (MV*vec4 (vVertex, 1)) ;
}

203

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

3. The per-vertex color calculated by the vertex shader is interpolated by the rasterizer
and then the fragment shader sets the color as the current fragment color.

#version 330 core
uniform sampler2D textureMap;
uniform float useDefault;
smooth in vec4 diffuse;
smooth in vec2 vUVout;
layout (location=0) out vec4 vFragColor;
void main() {
vFragColor = mix(texture (textureMap, vUVout) *diffuse,
diffuse, useDefault);

}

Spherical harmonics is a technique that approximates the lighting, using coefficients and
spherical harmonics basis. The coefficients are obtained at initialization from an HDR/RGBE
image file that contains information about lighting. This allows us to approximate the same
light so the graphical scene feels more immersive.

The method reproduces accurate diffuse reflection using information extracted from an HDR/
RGBE light probe. The light probe itself is not accessed in the code. The spherical harmonics
basis and coefficients are extracted from the original light probe using projection. Since this
is a mathematically involved process, we refer the interested readers to the references in the
See also section. The code for generating the spherical harmonics coefficients is available
online. We used this code to generate the spherical harmonics coefficients for the shader.

The spherical harmonics is a frequency space representation of an image on a sphere. As was
shown by Ramamoorthi and Hanrahan, only the first nine spherical harmonic coefficients are
enough to give a reasonable approximation of the diffuse reflection component of a surface.
These coefficients are obtained by constant, linear, and quadratic polynomial interpolation of
the surface normal. The interpolation result gives us the diffuse component which has to be
normalized by a scale factor which is obtained by summing all of the coefficients as shown in
the following code snippet:

vec3 tmpN = normalize (N*vNormal) ;

vec3 diff = C1 * L22 * (tmpN.xX*tmpN.x - tmpN.y*tmpN.y) +
C3 * L20 * tmpN.z*tmpN.z +

C4 * LOO -

C5 * L20 +

2.0 * C1 * L2m2*tmpN.xX*tmpN.y +
2.0 * C1 * L21*tmpN.xX*tmpN.z +
2.0 * C1 * L2ml*tmpN.y*tmpN.z +
2.0 * C2 * L11*tmpN.x +

2.0 * C2 * Llml*tmpN.y +

2.0 * C2 * L10*tmpN.z;

diff *= scaleFactor;

204

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The obtained per-vertex diffuse component is then forwarded through the rasterizer to the
fragment shader where it is directly multiplied by the texture of the surface.

vFragColor = mix(texture (textureMap, vUVout)*diffuse,
diffuse, useDefault) ;

There's more...

The demo application implementing this recipe renders the same scene as in the previous
recipes, as shown in the following figure. We can rotate the camera view using the left mouse
button, whereas, the point light source can be rotated using the right mouse button. Pressing
the Space bar toggles the use of spherical harmonics. When spherical harmonics lighting is
on, we get the following result:

205

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

Without the spherical harmonics lighting, the result is as follows:

The probe image used for this image is shown in the following figure:

206

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Note that this method approximates global illumination by modifying the diffuse component
using the spherical harmonics coefficients. We can also add the conventional Blinn Phong
lighting model as we did in the earlier recipes. For that we would only need to evaluate the
Blinn Phong lighting model using the normal and light position, as we did in the previous recipe.

» Ravi Ramamoorthi and Pat Hanrahan, An Efficient Representation for Irradiance
Environment Maps: http://wwwl.cs.columbia.edu/~ravir/papers/
envmap/index.html

» RandiJ. Rost, Mill M. Licea-Kane, Dan Ginsburg, John M. Kessenich, Barthold
Lichtenbelt, Hugh Malan, Mike Weiblen, OpenGL Shading Language, Third Edition,
Section 12.3, Lighting and Spherical Harmonics, Addison-Wesley Professional

» Kelly Dempski and Emmanuel Viale, Advanced Lighting and Materials with Shaders,
Chapter 8, Spherical Harmonic Lighting, Jones & Bartlett Publishers

» The RGBE image format specifications: http://www.graphics.cornell.edu/
online/formats/rgbe/

» Paul Debevec HDR light probes: http://www.pauldebevec.com/Probes/

» Spherical harmonics lighting tutorial: http://www.paulsprojects.net/
opengl/sh/sh.html

Implementing GPU-based ray tracing

To this point, all of the recipes rendered 3D geometry using rasterization. In this recipe, we
will implement another method for rendering geometry, which is called ray tracing. Simply
put, ray tracing uses a probing ray from the camera position into the graphical scene. The
intersections of this ray are obtained for each geometry. The good thing with this method is
that only the visible objects are rendered.

The ray tracing algorithm can be given in pseudocode as follows:

For each pixel on screen
Get the eye ray origin and direction using camera position
For the amount of traces required
Cast the ray into scene
For each object in the scene
Check eye ray for intersection
If intersection found
Determine the hit point and surface normal
For each light source
Calculate diffuse and specular comp. at hit point
Cast shadow ray from hit point to light
End For

207

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

Darken diffuse component based on shadow result
Set the hit point as the new ray origin
Reflect the eye ray direction at surface normal
End If
End For
End For
End For

Getting ready

The code for this recipe is contained in the Chapteré6/GPURaytracing directory.

How to do it...

Let us start with this recipe by following these simple steps:

1. Load the Obj mesh model using the Obj loader and store mesh geometry in vectors.
Note that for the GPU ray tracer we use the original vertices and indices lists stored
in the OBJ file.

vector<unsigned short> indices2;
vector<glm: :vec3> vertices2;
if (lobj.Load (mesh filename.c_ str(), meshes, vertices,
indices, materials, aabb, vertices2, indices2)) {
cout<<"Cannot load the 3ds mesh"<<endl;
exit (EXIT FAILURE) ;

}

2. Load the material texture maps into an OpenGL texture array instead of loading each
texture separately, as in previous recipes. We opted for texture arrays because this
helps in simplifying the shader code and we would have no way in determining the
total samplers we would require, as that is dependent on the material textures we
have in the model. In previous recipes, there was a single texture sampler which was
modified for each sub-mesh.

for(size t k=0;k<materials.size() ;k++) {
if (materials[k]->map Kd != "") {
if (k==0) {
glGenTextures (1, &texturelD) ;
glBindTexture (GL_TEXTURE 2D ARRAY, texturelD);
glTexParameteri (GL_TEXTURE 2D ARRAY,
GL TEXTURE MIN FILTER, GL LINEAR) ;

//set other texture parameters

}

//set image name

208

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

GLubyte* pData = SOIL load image(full filename.c str(),
&texture width, &texture height, &channels,
SOIL_LOAD AUTO) ;
if (pData == NULL) {
cerr<<"Cannot load image: "<<full filename.c_ str()<<endl;
exit (EXIT FAILURE) ;
}
//flip the image and set the image format
if (k==0) {
glTexImage3D (GL_TEXTURE 2D ARRAY, 0, format,
texture width, texture height, total, 0, format,
GL_UNSIGNED BYTE, NULL);

}
glTexSubImage3D (GL TEXTURE 2D ARRAY, 0,0,0,k,
texture width, texture height, 1, format,

GL_UNSIGNED BYTE, pData);
SOIL free image data(pData) ;
}

}

Store the vertex positions into a texture for the ray tracing shader. We use a floating
point texture with the GL._RGBA32F internal format.

glGenTextures (1, &texVerticesID) ;
glActiveTexture (GL TEXTUREL) ;

glBindTexture (GL_TEXTURE 2D, texVerticesID);
//set the texture formats

GLfloat* pData = new GLfloat [vertices2.size () *4];

int count = 0;

for(size t i=0;i<vertices2.size();i++) {
pData [count++] = vertices2[i] .x;

pData [count++] = vertices2[i].y;

pData [count++] = vertices2[i].z;

pData [count++] = 0;

}
glTexImage2D (GL TEXTURE 2D, 0, GL RGBA32F,
vertices2.size(),1, 0, GL RGBA, GL FLOAT, pData);

delete [] pData;

Store the list of indices into an integral texture for the ray tracing shader. Note that
for this texture, the internal format is GL_RGBA161I and the format is GL_RGBA
INTEGER.

glGenTextures (1, &texTrianglesID) ;
glActiveTexture (GL TEXTURE2) ;

glBindTexture (GL_TEXTURE 2D, texTrianglesID) ;
//set the texture formats

209

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

GLushort* pData2 = new GLushort[indices2.size()];
count = 0;
for(size t i=0;i<indices2.size();i+=4) {

pData2 [count++] (indices2[1i]) ;

pData2 [count++] = (indices2[i+1]);
pData2 [count++] = (indices2[i+2]);
(

pData2 [count++] = (indices2[i+3]);

}

glTexImage2D (GL TEXTURE 2D, 0, GL RGBAL6I,
indices2.size()/4, 1, 0, GL_ RGBA INTEGER,
GL UNSIGNED SHORT, pData2);

delete [] pData2;

5. Inthe render function, bind the ray tracing shader and then draw a full-screen quad
to invoke the fragment shader for the entire screen.

The main code for ray tracing is the ray tracing fragment shader (Chapteré6/GPURaytracing/
shaders/raytracer. frag). We first set up the camera ray origin and direction using the
parameters passed to the shader as shader uniforms.

eyeRay.origin = eyePos;

cam.U = (invMVP*vec4(1,0,0,0)) .xyz;
(invMVP*vec4 (0,1,0,0)) .xyz;
(invMVP*vec4 (0,0,1,0)) .xyz;
cam.d = 1;

cam.V

cam.W

eyeRay.dir = get direction(uv , cam);
eyeRay.dir += cam.U*uv.x;
eyeRay.dir += cam.V*uv.y;

After the eye ray is set up, we check the ray against the axially aligned bounding box of the
scene. If there is an intersection, we continue further. For this simple example, we use a
brute force method of looping through all of the triangles and testing each of them in turn
for ray intersection.

In ray tracing, we try to find the neatest intersection of a parametric ray with the given triangle.
Any point along the ray is obtained by using a parameter t. We are looking for the nearest
intersection (smallest t value). If there is an intersection and it is the closest so far, we store
the collision information and the normal at the intersection point. The t parameter gives us
the exact position where the intersection occurs.

vec4 val=vec4(t,0,0,0);
vec3 N;
for (int i=O;i<int(TRIANGLE_TEXTURE_SIZE);i++)

{

210

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

vec3 normal;
vec4 res = intersectTriangle (eyeRay.origin, eyeRay.dir, i,
normal) ;
if (res.x>0 && res.x <= val.x) {
val = res;

N = normal;

}

When we plug its value into the parametric equation of a ray, we get the hit point. Then, we
calculate a vector to light from the hit point. This vector is then used to estimate the diffuse
component and the attenuation amount.

if(val.x != t) {
vec3 hit = eyeRay.origin + eyeRay.dir*val.x;
vec3 JjitteredLight = 1light position +

uniformlyRandomVector (gl FragCoord.x) ;

vec3 L = (jitteredLight.xyz-hit) ;

float d = length(L);

L = normalize (L) ;

float diffuse = max(0, dot (N, L));

float attenuationAmount = 1.0/(k0 + (k1*d) + (k2*d*d));
diffuse *= attenuationAmount;

With ray tracing, shadows are very easy to calculate. We simply cast another ray, but this time,
just look at if the ray intersects any object on its way to the light source. If it does, we darken
the final color, otherwise we leave the color as is. Note that to prevent the shadow acne, we
add a slight offset to the ray start position.

float inShadow = shadow (hit+ N*0.0001, L) ;

vFragColor = inShadow*diffuse*mix (texture (textureMaps,
val.yzw), vecd4(l), (val.w==255));
return;

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

The demo application for this recipe renders the same scene as in previous recipes. The
scene can be toggled between rasterization and GPU ray tracing by pressing the Space
bar. We can see that the shadows are clearly visible in the ray tracing scene. Note that the
performance of GPU ray tracing is directly related to how close or far the object is from
the camera, as well as how many triangles are there in the rendered mesh. For better
performance, some acceleration structure, such as uniform grid or kd-tree should be
employed. Also note, soft shadows require us to cast more shadow rays, which also add
additional strain on the ray tracing fragment shader.

Y|

See also

» Timothy Purcell, lan Buck, William R. Mark, and Pat Hanrahan, ACM Transactions on
Graphics 21 (3), Ray Tracing on Programmable Graphics Hardware, pages 703-712:
http://graphics.stanford.edu/papers/rtongfx/

» Real-time GPU Ray-Tracer at Icare3D: http://www.icare3d.org/codes-and-
projects/codes/raytracer gpu full 1-0.html

212

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Implementing GPU-based path tracing

In this recipe, we will implement another method, called path tracing, for rendering geometry.
Similar to ray tracing, path tracing casts rays but these rays are shot randomly from the light
position(s). Since it is usually difficult to approximate real lighting, we can approximate it using
Monte Carlo-based integration schemes. These methods use random sampling and if there are
enough samples, the integration result converges to the true solution.

We can give the path tracing pseudocode as follows:

For each pixel on screen
Create a light ray from light position in a random direction
For the amount of traces required
For each object in the scene
Check light ray for intersection
If intersection found
Determine the hit point and surface normal
Calculate diffuse and specular comp. at hit point
Cast shadow ray in random direction from hit point
Darken diffuse component based on shadow result
Set the randomly jittered hit point as new ray origin
Reflect the light ray direction at surface normal
End If
End For
End For
End For

Getting ready

The code for this recipe is contained in the Chapteré6/GPUPathtracing directory.

How to do it...

Let us start with this recipe by following these simple steps:

1. Load the Obj mesh model using the Obj loader and store the mesh geometry in
vectors. Note that for the GPU path tracer we use the original vertices and indices
lists stored in the OBJ file, as in the previous recipe.

2. Load the material texture maps into an OpenGL texture array instead of loading each
texture separately as in the previous recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination
3.

Store the vertex positions into a texture for the path tracing shader, similar to how we
stored them for ray tracing in the previous recipe. We use a floating point texture with
the GL_RGBA32F internal format.

glGenTextures (1, &texVerticesID) ;
glActiveTexture (GL TEXTUREL) ;

glBindTexture (GL_TEXTURE 2D, texVerticesID);
//set the texture formats

GLfloat* pData = new GLfloat [vertices2.size () *4];
int count = 0;

for(size t i=0;i<vertices2.size();i++) {

pData[count++] = vertices2[i] .x;
pData[count++] = vertices2[i].y;
pData[count++] = vertices2[i].z;
pData[count++] = 0;

}

glTexImage2D (GL_TEXTURE 2D, 0, GL_RGBA32F,
vertices2.size(),1, 0, GL_RGBA, GL FLOAT, pData);
delete [] pData;

Store the indices list into an integral texture for the path tracing shader, as was
done for the ray tracing recipe. Note that for this texture, the internal format is
GL_RGBAL16TI and format is GL_RGBA INTEGER.

glGenTextures (1, &texTrianglesID) ;
glActiveTexture (GL TEXTURE2) ;
glBindTexture(GL_TEXTURE_2D, texTrianglesID) ;
//set the texture formats
GLushort* pData2 = new GLushort [indices2.size()];
count = 0;
for(size t i=0;i<indices2.size();i+=4) {
pData2 [count++] = (indices2[i]);
pData2 [count++] = (indices2[i+1]);
pData2 [count++] = (indices2[i+2]);
pData2 [count++] = (indices2[i+3]);
}
glTexImage2D (GL_TEXTURE 2D, 0, GL_RGBAL6I,
indices2.size()/4, 1, 0, GL RGBA INTEGER,
GL_UNSIGNED SHORT, pData2);

delete [] pData2;

In the render function, bind the path tracing shader and then draw a full-screen quad
to invoke the fragment shader for the entire screen.

pathtraceShader.Use () ;
glUniform3fv (pathtraceShader ("eyePos"), 1,
glm::value ptr(eyePos)) ;

214

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

glUniformlf (pathtraceShader ("time"), current);

glUniform3fv (pathtraceShader ("light position"),1,
& (lightPos0S.x)) ;

glUniformMatrix4fv (pathtraceShader ("invMVvP"), 1,
GL FALSE, glm::value ptr (invMVP)) ;
DrawFullScreenQuad() ;

pathtraceShader.UnUse () ;

The main code for path tracing is carried out in the path tracing fragment shader (Chapter6/
GPUPathtracing/shaders/pathtracer. frag). We first set up the camera ray origin
and direction using the parameters passed to the shader as shader uniforms.

eyeRay.origin = eyePos;

cam.U = (invMVP*vec4(1,0,0,0)) .xyz;
cam.V = (invMVP*vec4(0,1,0,0)) .xyz;
cam.W = (invMVP*vec4(0,0,1,0)) .xyz;

cam.d = 1;

eyeRay.dir = get direction(uv , cam);
eyeRay.dir += cam.U*uv.x;

eyeRay.dir += cam.V*uv.y;

After the eye ray is set up, we check the ray against the scene's axially aligned bounding box.
If there is an intersection, we call our path trace function.

vec2 tNearFar = intersectCube (eyeRay.origin, eyeRay.dir, aabb);
if (tNearFar.x<tNearFar.y) {
t = tNearFar.y+1;
vec3 light = light position + uniformlyRandomVector (time) *
0.1;
vFragColor = vec4 (pathtrace(eyeRay.origin, eyeRay.dir, light,
t),1);

}

Inthe path trace function, we run a loop that iterates for a number of passes. In each
pass, we check the scene geometry for an intersection with the ray. We use a brute force
method of looping through all of the triangles and testing each of them in turn for collision.
If we have an intersection, we check to see if this is the nearest intersection. If it is, we store
the normal and the texture coordinates at the intersection point.

for (int bounce = 0; bounce < MAX BOUNCES; bounce++) {

vec2 tNearFar = intersectCube (origin, ray, aabb);
if (tNearFar.x > tNearFar.y)
continue;

if (tNearFar.y<t)

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

t = tNearFar.y+1;
vec3 N;
vec4 val=vec4(t,0,0,0);
for(int 1=0;i<int (TRIANGLE TEXTURE SIZE) ;i++)

{

vec3 normal;

vec4 res = intersectTriangle (origin, ray, i, normal) ;
if (res.x>0.001 && res.x < val.x) {
val = res;

N = normal;

}

We then check the t parameter value to find the nearest intersection and then use the texture
array to sample the appropriate texture for the output color value for the current fragment.
We then change the current ray origin to the current hit point and then change the current
ray direction to a uniform random direction in the hemisphere above the intersection point.

if(val.x < t) {

surfaceColor = mix(texture (textureMaps, val.yzw), vecd(l),
(val.w==255)) .xyz;

vec3 hit = origin + ray * val.x;

origin = hit;

ray = uniformlyRandomDirection(time + float (bounce)) ;

The diffuse component is then estimated and then the color is accumulated. At the end of the
loop, the final accumulated color is returned.

vec3 JjitteredLight = 1light + ray;

vec3 L = normalize(jitteredLight - hit);

diffuse = max(0.0, dot (L, N));

colorMask *= gsurfaceColor;

float inShadow = shadow (hit+ N*0.0001, L) ;
accumulatedColor += colorMask * diffuse * inShadow;
t = val.x;

}

if (accumulatedColor == vec3(0))
return surfaceColor*diffuse;

else

return accumulatedColor/float(MAX_BOUNCES—l);}

Note that the path tracing output is noisy and a large number of samples are needed to get a
less noisy result.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The demo application for this recipe renders the same scene as in previous recipes. The
scene can be toggled between rasterization and GPU path tracing by pressing the Space bar,
as shown below:

Note that the performance of GPU path tracing is directly related to how close or far the object
is from camera, as well as how many triangles are there in the rendered mesh. In order to
reduce the amount of testing, some acceleration structure, such as uniform grid or kd-tree
should be employed. In addition, since the results obtained from path tracing are generally
noisier as compared to the ray tracing results, noise removal filters, such as Gaussian
smoothing could be carried out on the path traced result.

Ray tracing is poor at approximating global illumination and soft shadows. Path tracing, on
the other hand, handles global illumination and soft shadows well, but it suffers from noise.
To get a good result, it requires a large number of random sampling points. There are other
techniques, such as Metropolis light transport, which uses heuristics to only accept good
sample points and reject bad sampling points. As a result, it converges to a less noisier
result faster as compared to naive path tracing.

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Alpha Blending and Global lllumination

» Tim Purcell, lan Buck, William Mark, and Pat Hanrahan, Ray Tracing on Programmable
Graphics Hardware, ACM Transactions on Graphics 21(3), pp: 703-712, 2002.
Available online: http://graphics.stanford.edu/papers/rtongfx/

» Peter and Karl's GPU Path Tracer: http://gpupathtracer.blogspot.sg/

» Real-time path traced Brigade demo at Siggraph 2012: http://raytracey.
blogspot.co.nz/2012/08/real-time-path-traced-brigade-demo-at.
html

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume
Rendering Techniques

In this chapter, we will focus on:

» Implementing volume rendering using 3D texture slicing

» Implementing volume rendering using single-pass GPU ray casting

» Implementing pseudo isosurface rendering in single-pass GPU ray casting
» Implementing volume rendering using splatting

» Implementing the transfer function for volume classification

» Implementing polygonal isosurface extraction using the Marching
Tetrahedra algorithm

» Implementing volumetric lighting using half-angle slicing

Introduction

Volume rendering techniques are used in various domains in biomedical and engineering
disciplines. They are often used in biomedical imaging to visualize the CT/MRI datasets. In
mechanical engineering, they are used to visualize intermediate results from FEM simulations,
flow, and structural analysis. With the advent of GPU, all of the existing models and methods
of visualization were ported to GPU to harness their computational power. This chapter will
detail several algorithms that are used for volume visualization on the GPU in OpenGL Version
3.3 and above. Specifically, we will look at three widely used methods including 3D texture
slicing, single-pass ray casting with alpha compositing as well as isosurface rendering,

and splatting.

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

After looking at the volume rendering methods, we will look at volume classification by
implementing transfer functions. Polygonal isosurfaces are also often generated to extract out
classified regions, for example, cellular boundaries. We, therefore, implement the Marching
Tetrahedra algorithm. Finally, volume lighting is another area that is actively researched in

the volume rendering community. As there are very few implementations of volume lighting,
and especially half-angle slicing, we detail how to implement volume lighting through the
half-angle slicing technique in modern OpenGL.

Implementing volume rendering using 3D

texture slicing

Volume rendering is a special class of rendering algorithms that allows us to portray fuzzy
phenomena, such as smoke. There are numerous algorithms for volume rendering. To start
our quest, we will focus on the simplest method called 3D texture slicing. This method
approximates the volume-density function by slicing the dataset in front-to-back or back-to-
front order and then blends the proxy slices using hardware-supported blending. Since it relies
on the rasterization hardware, this method is very fast on the modern GPU.

The pseudo code for view-aligned 3D texture slicing is as follows:

1. Get the current view direction vector.

2. Calculate the min/max distance of unit cube vertices by doing a dot product of each
unit cube vertex with the view direction vector.

3. Calculate all possible intersections parameter (A) of the plane perpendicular to the
view direction with all edges of the unit cube going from the nearest to farthest
vertex, using min/max distances from step 1.

4. Use the intersection parameter A (from step 3) to move in the viewing direction and
find the intersection points. Three to six intersection vertices will be generated.

5. Store the intersection points in the specified order to generate triangular primitives,
which are the proxy geometries.

6. Update the buffer object memory with the new vertices.

Getting ready

The code for this recipe is in the Chapter7/3DTextureSlicing directory.

220

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

How to do it...

Let us start our recipe by following these simple steps:

1.

Load the volume dataset by reading the external volume datafile and passing the
data into an OpenGL texture. Also enable hardware mipmap generation. Typically,
the volume datafiles store densities that are obtained from using a cross-sectional
imaging modality such as CT or MRI scans. Each CT/MRI scan is a 2D slice. We
accumulate these slices in Z direction to obtain a 3D texture, which is simply an
array of 2D textures. The densities store different material types, for example, values
ranging from O to 20 are typically occupied by air. As we have an 8-bit unsigned
dataset, we store the dataset into a local array of GLubyte type. If we had an
unsigned 16-bit dataset, we would have stored it into a local array of GLushort type.
In case of 3D textures, in addition to the s and T parameters, we have an additional
parameter R that controls the slice we are at in the 3D texture.

std::ifstream infile(volume file.c str(), std::ios base::binary);
if (infile.good()) {
GLubyte* pData = new GLubyte [XDIM*YDIM*ZDIM] ;
infile.read(reinterpret cast<char*>(pData),
XDIM*YDIM*ZDIM*sizeof (GLubyte)) ;
infile.close();
glGenTextures (1, &texturelD);
glBindTexture (GL TEXTURE 3D, texturelD);
glTexParameteri (GL_TEXTURE 3D, GL_TEXTURE WRAP S,
GL_CLAMP) ;
glTexParameteri (GL_TEXTURE 3D, GL_TEXTURE WRAP T,
GL_CLAMP) ;
glTexParameteri (GL_TEXTURE 3D, GL_TEXTURE WRAP R,
GL_CLAMP) ;
glTexParameteri (GL_TEXTURE 3D, GL TEXTURE MAG FILTER,
GL_LINEAR) ;
glTexParameteri (GL_TEXTURE 3D, GL TEXTURE MIN FILTER,
GL LINEAR MIPMAP LINEAR) ;
glTexParameteri (GL_TEXTURE_3D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri (GL TEXTURE 3D, GL TEXTURE MAX LEVEL, 4);

glTexImage3D (GL_TEXTURE 3D,0,GL RED,XDIM, YDIM, ZDIM, 0,GL RED,GL_
UNSIGNED BYTE,pData) ;

glGenerateMipmap (GL TEXTURE 3D);
return true;

} else {
return false;

221

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

The filtering parameters for 3D textures are similar to the 2D texture parameters that
we have seen before. Mipmaps are collections of down-sampled versions of a texture
that are used for level of detail (LOD) functionality. That is, they help to use a down-
sampled version of the texture if the viewer is very far from the object on which the
texture is applied. This helps improve the performance of the application. We have to
specify the max number of levels (GL_TEXTURE MAX LEVEL), which is the maximum
number of mipmaps generated from the given texture. In addition, the base level
(GL_TEXTURE BASE LEVEL) denotes the first level for the mipmap that is used
when the object is closest.

The glGenerateMipMap function works by generating derived arrays by repeated
filtered reduction operation on the previous level. So let's say that we have three
mipmap levels and our 3D texture has a resolution of 256x256x256 at level 0. For
level 1 mipmap, the level O data will be reduced to half the size by filtered reduction
to 128x128x128. For level 2 mipmap, the level 1 data will be filtered and reduced to
64x64x64. Finally, for level 3 mipmap, the level 2 data will be filtered and reduced to
32x32x32.

2. Setup a vertex array object and a vertex buffer object to store the geometry of the
proxy slices. Make sure that the buffer object usage is specified as GL._DYNAMIC
DRAW. The initial glBufferData call allocates GPU memory for the maximum
number of slices. The vTextureSlices array is defined globally and it stores the
vertices produced by texture slicing operation for triangulation. The glBufferData
is initialized with 0 as the data will be filled at runtime dynamically.

const int MAX SLICES = 512;
glm::vec3 vTextureSlices[MAX SLICES*12];

glGenVertexArrays (1, &volumeVAO) ;

glGenBuffers(l, &volumeVBO) ;

glBindVertexArray (volumeVAO) ;

glBindBuffer (GL_ARRAY_ BUFFER, volumeVBO) ;

glBufferData (GL_ARRAY BUFFER, sizeof (vTextureSlices), 0, GL_
DYNAMIC DRAW) ;

glEnableVertexAttribArray (0) ;

glVertexAttribPointer (0, 3, GL FLOAT, GL_FALSE,0,0);
glBindVertexArray (0) ;

3. Implement slicing of volume by finding intersections of a unit cube with proxy slices
perpendicular to the viewing direction. This is carried out by the S1icevVolume
function. We use a unit cube since our data has equal size in all three axes that is,
256x256x%256. If we have a non-equal sized dataset, we can scale the unit
cube appropriately.

//determine max and min distances
glm::vec3 vecStart[12];
glm: :vec3 vecDir[12];

222

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

float lambdal[1l2];

float lambda inc[12];

float denom = 0;

float plane dist = min dist;

float plane dist_inc = (max dist-min_dist)/float (num_slices) ;

//determine vecStart and vecDir values
glm::vec3 intersection[6];
float dL[12];

for (int i=num slices-1;i>=0;i--) {
for(int e = 0; e < 12; e++)

{

dL[e] = lambdale] + i*lambda inc[e];

if ((dL[0] >= 0.0) && (dL[0] < 1.0)) {
intersection[0] = vecStart[0] +
dL[0] *vecDir [0] ;
}
//like wise for all intersection points
int indices[l={0,1,2, 0,2,3, 0,3,4, 0,4,5};
for(int i=0;i<12;1i++)
vTextureSlices [count++] =intersection[indices[i]];
}
//update buffer object
glBindBuffer (GL_ARRAY BUFFER, volumeVBO) ;

glBufferSubData (GL_ARRAY_BUFFER, 0,
sizeof (vTextureSlices), & (vTextureSlices[0] .x));

In the render function, set the over blending, bind the volume vertex array object,
bind the shader, and then call the glDrawArrays function.

glEnable (GL_BLEND) ;

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_ SRC ALPHA) ;
glBindVertexArray (volumeVAO) ;

shader.Use () ;

glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE, glm::value
ptr (MVP)) ;

glDrawArrays (GL_TRIANGLES, 0, sizeof (vTextureSlices)/
sizeof (vTextureSlices[0])) ;

shader.UnUse () ;

glDisable (GL_BLEND) ;

223

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

Volume rendering using 3D texture slicing approximates the volume rendering integral by
alpha-blending textured slices. The first step is loading and generating a 3D texture from the
volume data. After loading the volume dataset, the slicing of the volume is carried out using
proxy slices. These are oriented perpendicular to the viewing direction. Moreover, we have to
find the intersection of the proxy polygons with the unit cube boundaries. This is carried out
by the S1icevolume function. Note that slicing is carried out only when the view is rotated.

We first obtain the view direction vector (viewDir), which is the third column in the
model-view matrix. The first column of the model-view matrix stores the right vector and the
second column stores the up vector. We will now detail how the S1iceVolume function
works internally. We find the minimum and maximum vertex in the current viewing direction
by calculating the maximum and minimum distance of the 8 unit vertices in the viewing
direction. These distances are obtained using the dot product of each unit cube vertex with
the view direction vector:

float max dist = glm::dot(viewDir, vertexList[0]);
float min dist = max dist;
int max index = 0;
int count = 0;
for(int i=1;i<8;i++)
float dist = glm::dot (viewDir, vertexList[i]) ;
if (dist > max _dist) {
max dist = dist;
max_ index = 1i;
}
if (dist<min dist)
min dist = dist;

int max dim = FindAbsMax (viewDir) ;
min dist -= EPSILON;

max dist += EPSILON;

There are only three unique paths when going from the nearest vertex to the farthest vertex
from the camera. We store all possible paths for each vertex into an edge table, which is
defined as follows:

int edgeList[8] [12]={{0,1,5,6, 4,8,1
{0,4,3,12, 1,2,6,7, 5,9,8,10 }, //vl is front
2,3,7,4

{1,5,0,8, ,3,7,4, 6,10,9,11}, //v2 is front
{ 7,11,10,8, 2,6,1,9, 3,0,4,5 }, // v3 is front
{ 85,9,1, 11,10,7,6, 4,3,0,2 }, // v4 is front
{ 9,6,10,2, 8,11,4,7, 5,0,1,3 }, // v5 is front
{ 9,8,5,4, 6,1,2,0, 10,7,11,3}, // vé6 is front
{ 10,9,6,5, 7,2,3,1, 11,4,8,0 } // v7 is front

224

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Next, plane intersection distances are estimated for the 12 edge indices of the unit cube:

glm::vec3 vecStart[12];

glm: :vec3 vecDir[12];
float lambdal[l2];
float lambda_inc[12];
float denom = 0;

float plane_dist = min_dist;

float plane dist_inc = (max dist-min dist)/float (num_slices) ;

for(int i=0;i<12;i++)

}

vecStart [i] =vertexList [edges [edgeList [max index] [i]] [0]];

vecDir[i] =vertexList [edges [edgeList [max_ index] [1]] [1]]-
vecStart [i];

denom = glm::dot (vecDir[i], viewDir) ;

if (1.0 + denom != 1.0) {
lambda_inc[i] = plane dist inc/denom;
lambda [i] = (plane_dist-glm::dot (vecStart[i],viewDir))/denom;
} else {
lambda [i] = -1.0;

lambda inc[i] 0.0;

Finally, the interpolated intersections with the unit cube edges are carried out by moving
back-to-front in the viewing direction. After proxy slices have been generated, the vertex
buffer object is updated with the new data.

for (int i=num slices-1;i>=0;i--) {

for(int e = 0; e < 12; e++) {
dL[e] = lambdale] + i*lambda inc[e];

1

if ((dL[0] >= 0.0) && (dL[0] < 1.0)) {
intersection[0] = wvecStart[0] + dL[O]*vecDir[0];

} else if ((AL[1] >= 0.0) && (dL[1] < 1.0)) {
intersection[0] = wvecStart[l] + dL[1]*vecDir[1];

} else if ((AL[3] >= 0.0) && (dLI[3] < 1.0)) {
intersection[0] = vecStart[3] + dL[3]*vecDir[3];

} else continue;

if ((dL[2] »= 0.0) && (dL[2] < 1.0)){
intersection[1l] = wvecStart[2] + dL[2]*vecDir[2];

} else if ((AL[0] »= 0.0) && (AL[0] < 1.0)){
intersection[l] = wvecStart[0] + dL[O]*vecDir[0];

} else if ((AL[1] »>= 0.0) && (dL[1] < 1.0)){
intersection[1l] = wvecStart[l] + dL[1l]*vecDir[1];

} else {

225

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

intersection[l] = vecStart[3] + dL[3]*vecDir[3];
//similarly for others edges unitl intersection([5]
int indices[]={0,1,2, 0,2,3, 0,3,4, 0,4,5};
for(int i=0;1<12;i++)
vTextureSlices [count++] =intersection[indices[i]];

glBindBuffer (GL ARRAY BUFFER, volumeVBO) ;
glBufferSubData (GL_ARRAY BUFFER, 0, sizeof (vTextureSlices),
& (vTextureSlices[0] .x));

In the rendering function, the appropriate shader is bound. The vertex shader calculates the
clip space position by multiplying the object space vertex position (vPosition) with the
combined model view projection (MVP) matrix. It also calculates the 3D texture coordinates
(vuv) for the volume data. Since we render a unit cube, the minimum vertex position will be
(-0.5,-0.5,-0.5) and the maximum vertex position will be (0.5,0.5,0.5). Since our 3D texture
lookup requires coordinates from (0,0,0) to (1,1,1), we add (0.5,0.5,0.5) to the object space
vertex position to obtain the correct 3D texture coordinates.

smooth out wvec3 vUV;

void main()
gl Position = MVP*vec4 (vVertex.xyz,1l);
vUV = vVertex + vec3(0.5);

}

The fragment shader then uses the 3D texture coordinates to sample the volume data (which
is now accessed through a new sampler type sampler3D for 3D textures) to display the
density. At the time of creation of the 3D texture, we specified the internal format as GL._RED
(the third parameter of the gl TexImage3D function). Therefore, we can now access our
densities through the red channel of the texture sampler. To get a shader of grey, we set the
same value for green, blue, and alpha channels as well.

smooth in vec3 vUV;
uniform sampler3D volume;
void main(void) {

vFragColor = texture(volume, vUV) .rrrr;

}

In previous OpenGL versions, we would store the volume densities in a special internal format
GL_INTENSITY. This is deprecated in the OpenGL3.3 core profile. So now we have to use
GL_RED, GL_GREEN, GL_BLUE, or GL,_ ALPHA internal formats.

226

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The output from the demo application for this recipe volume renders the engine dataset using
3D texture slicing. In the demo code, we can change the number of slices by pressing
the + and - keys.

We now show how we obtain the result by showing an image containing successive 3D texture
slicing images in the same viewing direction from 8 slices all the way to 256 slices. The
results are given in the following screenshot. The wireframe view is shown in the top row,
whereas the alpha-blended result is shown in the bottom row.

Ty e
= 9 =

8 Slices 16 Slices 32 Slices 64 Slices 128 Slices 256 Slices

As can be seen, increasing the number of slices improves the volume rendering result. When
the total number of slices goes beyond 256 slices, we do not see a significant difference

in the rendering result. However, we begin to see a sharp decrease in performance as we
increase the total number of slices beyond 350. This is because more geometry is transferred
to the GPU and that reduces performance.

Note that we can see the black halo around the volume dataset. This is due to acquisition
artifacts, for example, noise or air that was stored during scanning of the engine dataset.
These kinds of artifacts can be removed by either applying a transfer function to remove the
unwanted densities or simply removing the unwanted densities in the fragment shader as we
will do in the Implementing volumetric lighting using half-angle slicing recipe later.

227

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

» The 3.5.2 Viewport-Aligned Slices section in Chapter 3, GPU-based Volume
Rendering, Real-time Volume Graphics, AK Peters/CRC Press, page numbers
73t0 79

Implementing volume rendering using

single-pass GPU ray casting

In this recipe, we will implement volume rendering using single-pass GPU ray casting. There
are two basic approaches for doing GPU ray casting: the multi-pass approach and the single-
pass approach. Both of these approaches differ in how they estimate the ray marching
direction vectors. The single-pass approach uses a single fragment shader. The steps
described here can be understood easily from the following diagram:

@ Ray entry point
© Ray exit point

position

Volume dataset

First, the camera ray direction is calculated by subtracting the vertex positions from the
camera position. This gives the ray marching direction. The initial ray position (that is, the ray
entry position) is the vertex position. Then based on the ray step size, the initial ray position
is advanced in the ray direction using a loop. The volume dataset is then sampled at this
position to obtain the density value. This process is continued forward advancing the current
ray position until either the ray exits the volume dataset or the alpha value of the color is
completely saturated.

The obtained samples during the ray traversal are composited using the current ray function.
If the average ray function is used, all of the sample densities are added and then divided

by the total number of samples. Similarly, in case of front-to-back alpha compositing, the
alpha value of the current sample is multiplied by the accumulated color alpha value and the
product is subtracted from the current density. This gives the alpha for the previous densities.
This alpha value is then added to the accumulated color alpha. In addition, it is multiplied

by the current density and then the obtained color is added to the accumulated color. The
accumulated color is then returned as the final fragment color.

228

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Getting ready

The code for this recipe is contained in the Chapter7/GPURaycasting folder.

How to do it...

The steps required to implement single-pass GPU ray casting are as follows:

1.

Load the volume data from the file into a 3D OpenGL texture as in the previous
recipe. Refer to the Loadvolume function in Chapter7/GPURaycasting/main.
cpp for details.

Set up a vertex array object and a vertex buffer object to render a unit cube as follows:

glGenVertexArrays (1, &cubeVAOID) ;

glGenBuffers (1, &cubeVBOID) ;

glGenBuffers (1, &cubeIndicesID) ;

glm: :vec3 vertices[8]={ glm::vec3(-0.5£,-0.5f£,-0.5f), glm::vec3(
0.5f£,-0.5f£,-0.5f) ,glm::vec3(0.5f, 0.5f,-0.5f), glm::vec3(-0.5f,
0.5f,-0.5f) ,glm::vec3(-0.5f£,-0.5£, 0.5f), glm::vec3(0.5f,-0.5f,
0.5f),glm::vec3(0.5£, 0.5f, 0.5f), glm::vec3(-0.5f, 0.5f, 0.5f)};

GLushort cubeIndices[36]={0,5,4,5,0,1,3,7,6,3,6,2,7,4,6,6,4,5,2,1,
3,3,1,0,3,0,7,7,0,4,6,5,2,2,5,1};

glBindVertexArray (cubeVAOID) ;
glBindBuffer (GL ARRAY BUFFER, cubeVBOID) ;

glBufferData (GL ARRAY BUFFER, sizeof (vertices), &(vertices([0].x),
GL_STATIC DRAW) ;

glEnableVertexAttribArray (0) ;
glVertexAttribPointer (0, 3, GL FLOAT, GL_FALSE,0,0);

glBindBuffer (GL ELEMENT ARRAY BUFFER, cubeIndicesID) ;

glBufferData (GL ELEMENT ARRAY BUFFER, sizeof (cubeIndices),
&cubeIndices[0], GL_STATIC DRAW) ;

glBindVertexArray (0) ;

In the render function, set the ray casting vertex and fragment shaders (Chapter7/
GPURaycasting/shaders/raycaster.(vert,frag)) and then render the
unit cube.

glEnable (GL_BLEND) ;
glBindVertexArray (cubeVAOID) ;
shader.Use () ;

glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE, glm::value
ptr (MVP)) ;

229

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

230

glUniform3fv (shader ("camPos"), 1, &(camPos.Xx)) ;
glDrawElements (GL_TRIANGLES, 36, GL UNSIGNED SHORT, O0);
shader.UnUse () ;

glDisable (GL_BLEND) ;

From the vertex shader, in addition to the clip space position, output the 3D texture
coordinates for lookup in the fragment shader. We simply offset the object space
vertex positions.

smooth out wvec3 vUV;
void main()
gl Position = MVP*vec4 (vVertex.xyz,1l);
vUV = vVertex + vec3(0.5);

}

In the fragment shader, use the camera position and the 3D texture coordinates
to run a loop in the current viewing direction. Terminate the loop if the current
sample position is outside the volume or the alpha value of the accumulated
color is saturated.

vec3 dataPos = vUV;
vec3 geomDir = normalize ((vUV-vec3(0.5)) - camPos);
vec3 dirStep = geomDir * step size;
bool stop = false;
for (int i = 0; i < MAX_SAMPLES; i++) ({
// advance ray by step
dataPos = dataPos + dirStep;
// stop condition

stop=dot (sign (dataPos-texMin) , sign (texMax-dataPos)) < 3.0;
if (stop)
break;

Composite the current sample value obtained from the volume using an appropriate
operator and finally return the composited color.

float sample = texture(volume, dataPos) .r;

float prev_alpha = sample - (sample * vFragColor.a);
vFragColor.rgb = prev_alpha * vec3(sample) + vFragColor.rgb;
vFragColor.a += prev_alpha;

//early ray termination

if (vFragColor.a>0.99)

break;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

There are two parts of this recipe. The first step is the generation and rendering of the cube
geometry for invoking the fragment shader. Note that we could also use a full-screen quad
for doing this as we did for the GPU ray tracing recipe but for volumetric datasets it is more
efficient to just render the unit cube. The second step is carried out in the shaders.

In the vertex shader (Chapter7/GPURaycasting/shaders/raycast.vert), the 3D
texture coordinates are estimated using the per-vertex position of the unit cube. Since the unit

cube is at origin, we add vec (0.5) to the position to bring the 3D texture coordinates to the
0 to 1 range.

#version 330 core
layout (location = 0) in vec3 vVertex;
uniform mat4 MVP;
smooth out wvec3 vUV;
void main() {
gl Position = MVP*vec4 (vVertex.xyz,1l);
vUV = vVertex + vec3(0.5);

}

Next, the fragment shader uses the 3D texture coordinates and the eye position to estimate
the ray marching directions. A loop is then run in the fragment shader (as shown in step 5)
that marches through the volume dataset and composites the obtained sample values using
the current compositing scheme. This process is continued until the ray exits the volume or
the alpha value of the accumulated color is fully saturated.

The texMin and texMax constants have a value of vec3 (-1,-1,-1) andvec3(1,1,1)
respectively. To determine if the data value is outside the volume data, we use the sign
function. The sign function returns -1 if the value is less than 0, 0 if the value is equal to 0,
and 1 if value is greater than 0. Hence, the sign function for the (sign (dataPos-texMin)
and sign (texMax-dataPos)) calculation will give us vec3 (1,1, 1) atthe possible
minimum and maximum position. When we do a dot product between two vec3 (1,1,1), we
get the answer 3. So to be within the dataset limits, the dot product will return a value less
than 3. If it is greater than 3, we are already out of the volume dataset.

231

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

There's more...

The demo application for this demo shows the engine dataset rendered using single-pass GPU
ray casting. The camera position can be changed using the left-mouse button and the view
can be zoomed in/out by using the middle-mouse button.

See also

» Chapter 7, GPU-based Ray Casting, Real-time Volume Graphics, AK Peters/CRC
Press, page numbers 163 to 184

» Single pass Raycasting at The Little Grasshopper, http://prideout .net/
blog/?p=64

Implementing pseudo-isosurface rendering

in single-pass GPU ray casting

We will now implement pseudo-isosurface rendering in single-pass GPU ray casting. While
much of the setup is the same as for the single-pass GPU ray casting, the difference will be in
the compositing step in the ray casting fragment shader. In this shader, we will try to find the
given isosurface. If it is actually found, we estimate the normal at the sampling point to carry
out the lighting calculation for the isosurface.

In the pseudocode, the pseudo-isosurface rendering in single-pass ray casting can be
elaborated as follows:

Get camera ray direction and ray position
Get the ray step amount
For each sample along the ray direction

232

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Get sample value at current ray position as samplel
Get another sample value at (ray position+step) as sample2
If (samplel-isoValue) < 0 and (sample2-isoValue) >0
Refine the intersection position using Bisection method
Get the gradient at the refined position
Apply Phong illumination at the refined position
Assign current colour as fragment colour
Break
End If

End For

Getting ready

The code for this recipe is in the Chapter7/GPURaycastingIsosurface folder. We will
be starting from the single-pass GPU ray casting recipe using the exact same application
side code.

How to do it...

Let us start the recipe by following these simple steps:

1.

Load the volume data from file into a 3D OpenGL texture as in the previous recipe.
Refer to the Loadvolume function in Chapter7/GPURaycasting/main.cpp
for details.

Set up a vertex array object and a vertex buffer object to render a unit cube as in the
previous recipe.

In the render function, set the ray casting vertex and fragment shaders (Chapter7/
GPURaycasting/shaders/raycasting (vert,frag)) and then render the
unit cube.

glEnable (GL_BLEND) ;
glBindVertexArray (cubeVAOID) ;
shader.Use() ;

glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE, glm::value
ptr (MVP)) ;
glUniform3fv (shader ("camPos"), 1, &(camPos.Xx));

glDrawElements (GL_TRIANGLES, 36, GL UNSIGNED SHORT, O0);
shader.UnUse () ;
glDisable (GL_BLEND) ;

233

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

4.

From the vertex shader, in addition to the clip-space position, output the 3D texture
coordinates for lookup in the fragment shader. We simply offset the object space
vertex positions as follows:

smooth out wvec3d vUV;

void main ()
gl Position = MVP*vec4 (vVertex.xyz,1);
vUV = vVertex + vec3(0.5);

}

In the fragment shader, use the camera position and the 3D texture coordinates
to run a loop in the current viewing direction. The loop is terminated if the current
sample position is outside the volume or the alpha value of the accumulated
color is saturated.

vec3 dataPos = vUV;
vec3 geomDir = normalize((vUV-vec3(0.5)) - camPos);
vec3 dirStep = geomDir * step size;
bool stop = false;
for (int i = 0; i < MAX SAMPLES; i++) ({
// advance ray by step
dataPos = dataPos + dirStep;
// stop condition
stop=dot (sign(dataPos-texMin) , sign (texMax-dataPos)) < 3.0;
if (stop)
break;

For isosurface estimation, we take two sample values to find the zero crossing of
the isofunction inside the volume dataset. If there is a zero crossing, we find the
exact intersection point using bisection based refinement. Finally, we use the Phong
illumination model to shade the isosurface assuming that the light is located at the
camera position.

float sample=texture (volume, dataPos).r;

float sample2=texture(volume, dataPos+dirStep) .r;

if ((sample -isoValue) < 0 && (sample2-isoValue) >= 0.0)
{

vec3 xN = dataPos;

vec3 xF = dataPos+dirStep;

vec3 tc = Bisection(xN, xF, isoValue);

vec3 N = GetGradient (tc);

vec3 V = -geomDir;

vecd3 L = V;

vFragColor = PhongLighting(L,N,V,250, wvec3(0.5));
break;

www.it-ebooks.info

http://www.it-ebooks.info/

The Bisection function is defined as follows:

vec3 Bisection(vec3 left, vec3 right , float iso) {

for(int i=0;i<4;i++)

vec3 midpoint = (right + left) * 0.5;
float cM = texture(volume, midpoint) .x ;

if (cM < iso)

left = midpoint;

else

right = midpoint;

}

return vec3 (right + left) * 0.5;

}

Chapter 7

The Bisection function takes the two samples between which the given sample value lies. It
then runs a loop. In each step, it calculates the midpoint of the two sample points and checks
the density value at the midpoint to the given isovalue. If it is less, the left sample point is
swapped with the mid position otherwise, the right sample point is swapped. This helps to
reduce the search space quickly. The process is repeated and finally, the midpoint between
the left sample point and right sample point is returned. The Gradient function estimates

the gradient of the volume density using center finite difference approximation.

vec3 GetGradient (vec3 uvw)
vec3 sl, s2;
//Using center finite
sl.x = texture(volume,
s2.x = texture(volume,

sl.y = texture(volume,
s2.y = texture(volume,

sl.
s2.z = texture (volume,

texture (volume,

N
1]

difference

uvw-vec3 (DELTA,0.0,0.0)) .
uvw+vec3 (DELTA,0.0,0.0)) .

uvw-vec3(0.0,DELTA,0.0)) .
uvw+vec3 (0.0,DELTA,0.0)) .

uvw-vec3(0.0,0.0,DELTA)) .
uvw+vec3 (0.0,0.0,DELTA)) .

return normalize((sl-s2)/2.0);

www.it-ebooks.info

235

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

While bulk of the code is similar to the single-pass GPU ray casting recipe. There is a

major difference in the ray marching loop. In case of isosurface rendering, we do not use
compositing. Instead, we find the zero crossing of the volume dataset isofunction by sampling
two consecutive samples. This is well illustrated with the following diagram. If there is a zero
crossing, we refine the detected isosurface by using bisection-based refinement.

.. Volume Voxels

O Normal sample HEER L[]

(&) Zero crossing sample Iso-value=40
¥ Marching ray

Sample value 20 30 40 40 40
Sample value-isovalue -20 -10 0 6] 6]

Next, we use the Phong illumination model to render the shaded isosurface and break out
from the ray marching loop. Note that the method shown here renders the nearest isosurface.
If we want to render all the surfaces with the given isovalue, we should remove this

break statement.

There's more...

The demo application implementing this recipe shows the engine dataset rendered using
the pseudo-isosurface rendering mode. When run, the output is as shown in the following
screenshot:

236

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

See also

» Advanced lllumination Techniques for GPU-based Volume Rendering, SIGGRAPH
2008 course notes, Available online at http://www.voreen.org/files/sa08-
coursenotes 1.pdf

Implementing volume rendering using

splatting

In this recipe, we will implement splatting on the GPU. The splatting algorithm converts the
voxel representation into splats by convolving them with a Gaussian kernel. The Gaussian
smoothing kernel reduces high frequencies and smoothes out edges giving a smoothed
rendered output.

Getting ready

The code for this recipe is in the Chapter7/Splatting directory.

How to do it...

Let us start this recipe by following these simple steps:

1. Load the 3D volume data and store it into an array.

std::ifstream infile(filename.c str(), std::ios base::binary) ;

if (infile.good()) {

pVolume = new GLubyte [XDIM*YDIM*ZDIM] ;

infile.read(reinterpret cast<char*s(pVolume), XDIM*YDIM*ZDIM*sizeo
f (GLubyte)) ;

infile.close() ;

return true;

} else {

return false;

}

2. Depending on the sampling box size, run three loops to iterate through the entire
volume voxel by voxel.

vertices.clear () ;
XDIM/X_SAMPLING_DIST;
int dy YDIM/Y_SAMPLING_DIST;
int dz = ZDIM/Z_SAMPLING_DIST;
scale = glm::vec3 (dx,dy,dz) ;
for (int z=0;z<ZDIM;z+=dz)

int dx

237

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

for (int y=0;y<YDIM;y+=dy) {
for (int x=0;x<XDIM;x+=dx) {
SamplevVoxel (x,y,2) ;

}
}
}

The sampleVoxel function is defined in the VolumeSplatter class as follows:

void VolumeSplatter::SampleVoxel (const int x, const int vy,
const int z) {
GLubyte data = SampleVolume(x, y, 2z);
if (data>isovalue)
Vertex v;

V.poOsS.X = X;

V.pos.y = V;

V.pos.z = Z;

v.normal = GetNormal (x, y, z);
v.pos *= invDim;

vertices.push _back (v) ;

}

3. In each sampling step, estimate the volume density values at the current voxel. If the
value is greater than the given isovalue, store the voxel position and normal into a
vertex array.

GLubyte data = SampleVolume (x, y, 2z);
if (data>isovValue)

Vertex v;

V.poOsS.X = X;

V.pos.y = y;

V.pos.z = zZ;

v.normal = GetNormal (x, y, 2z);
v.pos *= invDim;
vertices.push back(v) ;

}

The sampleVolume function takes the given sampling point and returns the nearest
voxel density. It is defined in the VolumeSplatter class as follows:

GLubyte VolumeSplatter::SampleVolume (const int x, const int vy,
const int z)
int index = (x+(y*XDIM)) + z* (XDIM*YDIM) ;
if (index<0)
index = 0;
if (index >= XDIM*YDIM*ZDIM)
index = (XDIM*YDIM*ZDIM)-1;
return pVolume [index] ;

238

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

4. After the sampling step, pass the generated vertices to a vertex array object (VAO)
containing a vertex buffer object (VBO).

glGenVertexArrays (1, &volumeSplatterVAO) ;

glGenBuffers (1, &volumeSplatterVBO) ;

glBindVertexArray (volumeSplatterVAO) ;

glBindBuffer (GL_ARRAY BUFFER, volumeSplatterVBO) ;
glBufferData (GL_ARRAY BUFFER, splatter->GetTotalVertices()
*sizeof (Vertex), splatter->GetVertexPointer (), GL_STATIC_ DRAW) ;
glEnableVertexAttribArray (0) ;

glVertexAttribPointer (0, 3, GL FLOAT, GL_ FALSE, sizeof (Vertex),
0);

glEnableVertexAttribArray (1) ;

glVertexAttribPointer (1, 3, GL FLOAT, GL_ FALSE, sizeof (Vertex),
(const GLvoid*) offsetof (Vertex, normal)) ;

5. Set up two FBOs for offscreen rendering. The first FBO (£i1terFBOID) is used for
Gaussian smoothing.

glGenFramebuffers (1, &£filterFBOID) ;
glBindFramebuffer (GL_FRAMEBUFFER, filterFBOID) ;
glGenTextures (2, blurTexID) ;
for(int i=0;i<2;i++)
glActiveTexture (GL _TEXTURE1l+i) ;
glBindTexture (GL _TEXTURE 2D, blurTexID[i]);
//set texture parameters
glTexImage2D (GL_TEXTURE 2D, 0,GL_RGBA32F, IMAGE WIDTH,
IMAGE HEIGHT,0,GL RGBA,GL_FLOAT, NULL) ;
glFramebufferTexture2D (GL FRAMEBUFFER,
GL_COLOR_ATTACHMENTO+i,GL_TEXTURE_ 2D,blurTexID[il,0);

}

GLenum status = glCheckFramebufferStatus (GL_ FRAMEBUFFER) ;

if (status == GL_FRAMEBUFFER COMPLETE) {
cout<<"Filtering FBO setup successful."<<endl;
} else {

cout<<"Problem in Filtering FBO setup.'"<<endl;

}

6. The second FBO (fboID) is used to render the scene so that the smoothing operation
can be applied on the rendered output from the first pass. Add a render buffer object
to this FBO to enable depth testing.

glGenFramebuffers (1, &£bolID) ;
glGenRenderbuffers (1, &rboID);
glGenTextures (1, &texID);

glBindFramebuffer (GL_FRAMEBUFFER, fboID) ;
glBindRenderbuffer (GL RENDERBUFFER, rbolID) ;

239

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

7.

240

glActiveTexture (GL_ TEXTUREO) ;

glBindTexture (GL _TEXTURE 2D, texID);

//set texture parameters

glTexImage2D (GL_TEXTURE_2D, 0,GL_RGBA32F, IMAGE WIDTH,

IMAGE HEIGHT,O0,GL RGBA,GL FLOAT,NULL) ;
glFramebufferTexture2D (GL FRAMEBUFFER,GL_ COLOR ATTACHMENTO,
GL_TEXTURE 2D, texID, 0);

glFramebufferRenderbuffer (GL_FRAMEBUFFER, GL_DEPTH ATTACHMENT,
GL_ RENDERBUFFER, rbolID);

glRenderbufferStorage (GL_RENDERBUFFER, GL DEPTH COMPONENT32,
IMAGE WIDTH, IMAGE HEIGHT) ;

status = glCheckFramebufferStatus (GL FRAMEBUFFER) ;

if (status == GL_FRAMEBUFFER COMPLETE) {
cout<<"Offscreen rendering FBO setup successful."<<endl;
} else {

cout<<"Problem in offscreen rendering FBO setup."<<endl;

}

In the render function, first render the point splats to a texture using the first
FBO (fboID).

glBindFramebuffer (GL FRAMEBUFFER, fboID) ;
glvViewport (0,0, IMAGE WIDTH, IMAGE HEIGHT) ;
glDrawBuffer (GL_COLOR_ATTACHMENTO) ;
glClear (GL_COLOR_BUFFER BIT|GL_DEPTH BUFFER BIT) ;
glm::mat4 T = glm::translate(glm::mat4 (1),
glm::vec3(-0.5,-0.5,-0.5)) ;
glBindVertexArray (volumeSplatterVAO) ;
shader.Use () ;

glUniformMatrix4fv (shader ("MV"), 1, GL_FALSE,

glm: :value ptr (MV*T)) ;

glUniformMatrix3fv (shader ("N"), 1, GL FALSE,

glm: :value ptr(glm::inverseTranspose (glm::mat3 (MV*T)))) ;
glUniformMatrix4fv (shader ("P"), 1, GL FALSE,

glm: :value ptr(P));
glDrawArrays (GL_POINTS, 0, splatter->GetTotalVertices());
shader.UnUse () ;

The splatting vertex shader (Chapter7/Splatting/shaders/splatShader.
vert) is defined as follows. It calculates the eye space normal. The splat size is
calculated using the volume dimension and the sampling voxel size. This is then
written to the g1 _PointSize variable in the vertex shader.

#version 330 core
layout (location = 0) in vec3 vVertex;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

layout (location = 1) in vec3 vNormal;

uniform mat4 MV;

uniform mat3 N;

uniform mat4 P;

smooth out wvec3 outNormal;

uniform float splatSize;

void main() {
vec4 eyeSpaceVertex = MV*vec4 (vVertex, 1) ;
gl PointSize = 2*splatSize/-eyeSpaceVertex.z;
gl Position = P * eyeSpaceVertex;
outNormal = N*vNormal;

}

The splatting fragment shader (Chapter7/Splatting/shaders/splatShader.
frag) is defined as follows:

#version 330 core

layout (location = 0) out vec4 vFragColor;
smooth in vec3 outNormal;

vec3(0,0,1);

const vec3 V = L;

const vec3 L

const vec4 diffuse color = vec4(0.75,0.5,0.5,1);
const vec4 specular color = vec4 (1) ;
void main() {

vec3 N;

N = normalize (outNormal) ;

vec2 P = gl PointCoord*2.0 - vec2(1.0);

float mag = dot(P.xy,P.xy):;

if (mag > 1)

discard;

float diffuse = max(0, dot(N,L));

vec3 halfVec = normalize (L+V) ;

float specular=pow(max (0, dot (halfVvec,N)),b400);

vFragColor = (specular*specular color) +
(diffuse*diffuse color);

}

8. Next, set the filtering FBO and first apply the vertical and then the horizontal
Gaussian smoothing pass by drawing a full-screen quad as was done in the
Variance shadow mapping recipe in Chapter 4, Lights and Shadows.

glBindVertexArray (quadVAOID) ;
glBindFramebuffer (GL FRAMEBUFFER, filterFBOID) ;

241

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

glDrawBuffer (GL_ COLOR_ATTACHMENTO) ;
gaussianV_shader.Use() ;

glDrawElements (GL_TRIANGLES, 6, GL UNSIGNED SHORT, O0);
glDrawBuffer (GL_COLOR_ ATTACHMENT1) ;

gaussianH shader.Use() ;

glDrawElements (GL_TRIANGLES, 6, GL UNSIGNED SHORT, O0);

9. Unbind the filtering FBO, restore the default draw buffer and render the filtered output
on the screen.

glBindFramebuffer (GL FRAMEBUFFER, 0) ;
glDrawBuffer (GL_BACK LEFT) ;
glviewport (0,0,WIDTH, HEIGHT) ;
quadShader .Use () ;
glDrawElements (GL_TRIANGLES, 6, GL UNSIGNED SHORT, O0);
quadShader .UnUse () ;
glBindVertexArray (0) ;

Splatting algorithm works by rendering the voxels of the volume data as Gaussian blobs and
projecting them on the screen. To achieve this, we first estimate the candidate voxels from the
volume dataset by traversing through the entire volume dataset voxel by voxel for the given
isovalue. If we have the appropriate voxel, we store its normal and position into a vertex array.
For convenience, we wrap all of this functionality into the VolumeSplatter class.

We first create a new instance of the VvolumeSplatter class. Next, we set the volume
dimensions and then load the volume data. Next, we specify the target isovalue and the
number of sampling voxels to use. Finally, we call the VolumeSplatter: :SplatVolume
function that traverses the whole volume voxel by voxel.

splatter = new VolumeSplatter() ;
splatter->SetVolumeDimensions (256,256,256) ;
splatter->LoadVolume (volume file);
splatter->SetIsosurfaceValue (40) ;
splatter->SetNumSamplingVoxels (64,64,64) ;
std: :cout<<"Generating point splats ...";
splatter->SplatVolume () ;
std::cout<<"Done."<<std: :endl;

242

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The splatter stores the vertices and normals into a vertex array. We then generate the
vertex buffer object from this array. In the rendering function, we first draw the entire splat
dataset in a single-pass into an offscreen render target. This is done so that we can filter it
using separable Gaussian convolution filters. Finally, the filtered output is displayed on a
full-screen quad.

The splatting vertex shader (Chapter7/Splatting/shaders/splatShader.vert)
calculates the point size on screen based on the depth of the splat. In order to achieve this in
the vertex shader, we have to enable the GL._ VERTEX PROGRAM POINT SIZE state thatis,
glEnable (GL VERTEX PROGRAM POINT SIZE). The vertex shader also outputs the splat
normals in eye space.

vec4 eyeSpaceVertex = MV*vec4 (vVertex, 1) ;

gl PointSize = 2*gplatSize/-eyeSpaceVertex.z;
gl Position = P * eyeSpaceVertex;

outNormal = N*vNormal;

Since the default point sprite renders as a screen-aligned quad, in the fragment shader
(Chapter7/Splatting/shaders/splatShader. frag), we discard all fragments that
are outside the radius of the splat at the current splat position.

vec3 N;

N = normalize (outNormal) ;

vec2 P = gl PointCoord*2.0 - vec2(1.0);
float mag = dot (P.xy,P.xVy);

if (mag > 1) discard;

Finally, we estimate the diffuse and specular components and output the current fragment
color using the eye space normal of the splat.

float diffuse = max(0, dot(N,L));

vec3 halfVec = normalize (L+V) ;

float specular = pow(max (0, dot (halfVec,N)),400);

vFragColor = (specular*specular color) + (diffuse*diffuse color);

243

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

There's more...

The demo application implementing this recipe renders the engine dataset as in the previous
recipes, as shown in the following screenshot. Note the output appears blurred due to
Gaussian smoothing of the splats.

This recipe gave us an overview on the splatting algorithm. Our brute force approach in
this recipe was to iterate through all of the voxels. For large datasets, we have to employ
an acceleration structure, like an octree, to quickly identify voxels with densities and cull
unnecessary voxels.

» The Qsplat project: http://graphics.stanford.edu/software/gsplat/

» Splatting research at ETH Zurich: (http://graphics.ethz.ch/research/past_
projects/surfels/surfacesplatting/)

Implementing transfer function for volume

classification

In this recipe, we will implement classification to the 3D texture slicing presented before. We
will generate a lookup table to add specific colors to specific densities. This is accomplished
by generating a 1D texture that is looked up in the fragment shader with the current volume
density. The returned color is then used as the color of the current fragment. Apart from

the setup of the transfer function data, all the other content remains the same as in the 3D
texture slicing recipe. Note that the classification method is not limited to 3D texture slicing, it
can be applied to any volume rendering algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Getting ready

The code for this recipe is in the Chapter7/3DTextureSlicingClassification directory.

How to do it...

Let us start this recipe by following these simple steps:

1. Load the volume data and setup the texture slicing as in the Implementing volume
rendering using 3D texture slicing recipe.

2. Create a 1D texture that will be our transfer function texture for color lookup.
We create a set of color values and then interpolate them on the fly. Refer to
LoadTransferFunction in Chapter7/3DTextureSlicingClassification/
main.cpp.

float pDatal256] [4];

int indices|[9];

for(int i=0;i<9;i++)

int index = i*28;

pData[index] [0] = jet values[i].x;
pData[index] [1] = jet values[i].y;
pData[index] [2] = jet values[i].z;
pData[index] [3] = jet values[i].w;
indices[i] = index;

}

for(int j=0;3j<9-1;7j++)

{

float dbDataR
float dbDataG
float dDataB
float dbDataA
int dIndex = indices[j+1]-indices[]j];
float dbDataIncR = dDataR/float (dIndex) ;

)
float dDataIncG = dDataG/float (dIndex) ;

)

)

(pData[indices [j+1]] [0] pDatal[indices[j]] [0]) ;

)
pData[indices[j]] [1]);

)

)

(pData[indices [j+1]1] [1]

7

(pData[indices [j+1]] [2] pData[indices[j]] [2]

7

(pData[indices [j+1]1] [3] pData[indices[j]] [3]

7

float dDataIncB = dDataB/float (dIndex
float dDataIncA = dDataA/float (dIndex) ;
for(int i=indices[jl+1;i<indices[j+1];i++)

{

pData[i] [0] = (pDatal[i-1][0] + dDataIncR) ;
pDatal[i] [1] = (pDatal[i-1][1] + dDataIncG) ;
pDatal[i] [2] = (pDatal[i-1][2] + dDataIncB);
pDatal[i] [3] = (pDatal[i-1][3] + dDatalIncA);

245

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

3.

246

Generate a 1D OpenGL texture from the interpolated lookup data from step 1. We
bind this texture to texture unit 1 (3L._TEXTURE1);

glGenTextures (1, &tfTexID) ;

glActiveTexture (GL TEXTUREL) ;

glBindTexture (GL_TEXTURE_lD, tfTexID) ;

glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE WRAP S, GL_REPEAT) ;
glTexParameteri (GL_TEXTURE_lD, GL_TEXTURE_MAG FILTER, GL_LINEAR) ;
glTexParameteri (GL_TEXTURE_1D, GL TEXTURE MIN FILTER, GL_LINEAR) ;
glTexImagelD (GL TEXTURE 1D, 0,GL RGBA,256,0,GL RGBA,GL
FLOAT,pData); B B B B

In the fragment shader, add a new sampler for the transfer function lookup table.
Since we now have two textures, we bind the volume data to texture unit O (GL_
TEXTUREO) and the transfer function texture to texture unit 1 (3L._TEXTUREL).

shader.LoadFromFile (GL_VERTEX SHADER, "shaders/textureSlicer.
vert") ;
shader.LoadFromFile (GL_FRAGMENT SHADER, "shaders/textureSlicer.
frag") ;
shader.CreateAndLinkProgram() ;
shader.Use () ;
shader.AddAttribute ("vVertex") ;
shader.AddUniform ("MVP") ;
shader.AddUniform("volume") ;
shader.AddUniform("lut");
glUniformli (shader ("volume"),0) ;
glUniformli (shader ("lut"),1);
shader.UnUse () ;

Finally, in the fragment shader, instead of directly returning the current volume
density value, we lookup the density value in the transfer function and return the
appropriate color value. Refer to Chapter7/3DTextureSlicingClassificati
on/shaders/textureSlicer. frag for details.

uniform sampler3D volume;

uniform samplerlD lut;

void main(void) {

vFragColor = texture(lut, texture(volume, vUV).r);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

There are two parts of this recipe: the generation of the transfer function texture and the
lookup of this texture in the fragment shader. Both of these steps are relatively straightforward
to understand. For generation of the transfer function texture, we first create a simple array of
possible colors called jet values, which is defined globally as follows:

const glm::vec4 jet_values[9]={glm::vec4(0,0,0.5,0),
glm::vec4(0,0,1,0.1),
glm::vec4(0,0.5,1,0.3),
glm::vec4(0,1,1,0.5),
glm::vec4(0.5,1,0.5,0.75),
glm::vec4(1,1,0,0.8),
glm::vec4(1,0.5,0,0.6),
glm::vec4(1,0,0,0.5),
glm: :vec4(0.5,0,0,0.0)};

At the time of texture creation, we first reorganize this data into a 256 element array by
interpolation. Then, we find the differences among adjacent values and then increment the
current value using the difference. This is carried out for all items in the jet _values array.
Once the data is ready, it is stored in a 1D texture. This is then passed to the fragment shader
using another sampler object. In the fragment shader, the density value of the sample that

is processed is used as an index into the transfer function texture. Finally, the color obtained
from the transfer function texture is stored as the current fragment color.

There's more...

The demo application for this recipe renders the engine dataset as in the 3D texture slicing
recipe but now the rendered output is colored using a transfer function. The output from the
demo application is displayed in the following screenshot:

247

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

» Chapter 4, Transfer Functions, and Chapter 10, Transfer Functions Reloaded, in
Real-time Volume Graphics, AK Peters/CRC Press.

Implementing polygonal isosurface

extraction using the Marching Tetrahedra
algorithm

In the Implementing pseudo-isosurface rendering in single-pass GPU ray casting recipe, we
implemented pseudo-isosurface rendering in single-pass GPU ray casting. However, these
isosurfaces are not composed of triangles; so it is not possible for us to uniquely address
individual isosurface regions easily to mark different areas in the volume dataset. This can
be achieved by doing an isosurface extraction process for a specific isovalue by traversing the
entire volume dataset. This method is known as the Marching Tetrahedra (MT) algorithm.
This algorithm traverses the whole volume dataset and tries to fit a specific polygon based on
the intersection criterion. This process is repeated for the whole volume and finally, we obtain
the polygonal mesh from the volume dataset.

Getting ready

The code for this recipe is in the Chapter7/MarchingTetrahedra directory. For
convenience, we will wrap the Marching Tetrahedra algorithm in a simple class
called TetrahedraMarcher.

How to do it...

Let us start this recipe by following these simple steps:

1. Load the 3D volume data and store it into an array:

std::ifstream infile(filename.c str(), std::ios base::binary) ;

if (infile.good()) {

pVolume = new GLubyte [XDIM*YDIM*ZDIM] ;

infile.read(reinterpret cast<char*s(pVolume), XDIM*YDIM*ZDIM*sizeo
f (GLubyte)) ;

infile.close() ;

return true;

} else {

return false;

}

248

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Depending on the sampling box size, run three loops to iterate through the entire
volume voxel by voxel:

vertices.clear() ;

int dx = XDIM/X_ SAMPLING DIST;

int dy = YDIM/Y SAMPLING DIST;

int dz = ZDIM/Z SAMPLING DIST;
glm::vec3 scale = glm::vec3 (dx,dy,dz) ;
for (int z=0;z<ZDIM;z+=dz)

for (int y=0;y<¥YDIM;y+=dy) {

for (int x=0;x<XDIM;x+=dx) {
SampleVoxel (x,y,z, scale);
}

}

}

In each sampling step, estimate the volume density values at the eight corners of the
sampling box:

I

GLubyte cubeCornerValues [8];
for(i = 0; 1 < 8; i++) {
cubeCornerValues [i] = SampleVolume (
x + (int) (a2fVertexOffset[i] [0] *scale.x),
y + (int) (a2fVertexOffset[i] [1] *scale.y),
z + (int) (a2fVertexOffset[i] [2] *scale.z)) ;

}

Estimate an edge flag value to identify the matching tetrahedra case based on the
given isovalue:
int flagIndex = 0;
for(i= 0; 1i<8; i++) {
if (cubeCornervValues[i] <= isoValue)
flagIndex |= 1l<<i;

edgeFlags = aiCubeEdgeFlags[flagIndex] ;

Use the lookup tables (a2iEdgeConnection) to find the correct edges for the
case and then use the offset table (a2fvertexOf fset) to find the edge vertices
and normals. These tables are defined in the Tables.h header in the Chapter7/
MarchingTetrahedra/ directory.

for(i = 0; i < 12; i++)

{

if (edgeFlags & (1<<i))

{

float offset = GetOffset (cubeCornerValues |
a2iEdgeConnection[i] [0]],

249

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

6.

250

cubeCornerValues [a2iEdgeConnection([i] [1] 1) ;
edgeVertices[i] .x = x + (a2fVertexOffset|
a2iEdgeConnection[i] [0]] [0] + offset *
a2fEdgeDirection[i] [0]) *scale.x ;
edgeVertices[i]l .y = v + (a2fVertexOffset|[

a2iEdgeConnection[i] [0]] [1] + offset *
a2fEdgeDirection[i] [1]) *scale.y ;

edgeVertices[i] .z = z + (a2fVertexOffset|
a2iEdgeConnection[i] [0]] [2] + offset *
a2fEdgeDirection[i] [2]) *scale.z ;

edgeNormals[i] = GetNormal ((int)edgeVertices[i].x ,
(int) edgeVertices[i] .y , (int) edgeVertices[i]l .z);

}

Finally, loop through the triangle connectivity table to connect the correct vertices and
normals for the given case.
for(i = 0; i< 5; i++) {
if (a2iTriangleConnectionTable [flagIndex] [3*1] < 0)
break;
for(int j= 0; j< 3; j++) {
int vertex = a2iTriangleConnectionTable
[flagIndex] [3*1+]];
Vertex v;
v.normal = (edgeNormals [vertex]) ;
v.pos = (edgeVertices[vertex]) *invDim;
vertices.push back(v) ;

}
}

After the marcher is finished, we pass the generated vertices to a vertex array object
containing a vertex buffer object:

glGenVertexArrays (1, &volumeMarcherVAO) ;

glGenBuffers (1, &volumeMarcherVBO) ;

glBindVertexArray (volumeMarcherVAO) ;

glBindBuffer (GL ARRAY BUFFER, volumeMarcherVBO) ;

glBufferData (GL ARRAY BUFFER, marcher-> GetTotalVertices () *sizeof
(Vertex), marcher-> GetVertexPointer(), GL_STATIC_ DRAW) ;
glEnableVertexAttribArray (0) ;

glVertexAttribPointer (0, 3, GL FLOAT, GL_FALSE, sizeof (Vertex),0);
glEnableVertexAttribArray (1) ;

glVertexAttribPointer (1, 3, GL FLOAT, GL_

FALSE, sizeof (Vertex) , (const GLvoid*)offsetof (Vertex, normal)) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

8. For rendering of the generated geometry, we bind the Marching Tetrahedra VAO, bind
our shader and then render the triangles. For this recipe, we output the per-vertex
normals as color.

glBindVertexArray (volumeMarcherVAO) ;

shader.Use() ;
glUniformMatrix4fv (shader ("MVP") ,1,GL_ FALSE,

glm: :value ptr (MVP*T)) ;
glDrawArrays (GL_TRIANGLES, 0, marcher->GetTotalVertices());
shader.UnUse () ;

For convenience, we wrap the entire recipe in a reusable class called TetrahedraMarcher.
Marching Tetrahedra, as the name suggests, marches a sampling box throughout the whole
volume dataset. To give a bird's eye view there are several cases to consider based on the
distribution of density values at the vertices of the sampling cube. Based on the sampling
values at the eight corners and the given isovalue, a flag index is generated. This flag index
gives us the edge flag by a lookup in a table. This edge flag is then used in an edge lookup
table, which is predefined for all possible edge configurations of the marching tetrahedron.
The edge connection table is then used to find the appropriate offset for the corner values of
the sampling box. These offsets are then used to obtain the edge vertices and normals for the
given tetrahedral case. Once the list of edge vertices and normals are estimated, the triangle
connectivity is obtained based on the given flag index.

Now we will detail the steps in the Marching Tetrahedra algorithm. First, the flag index is
obtained by iterating through all eight sampling cube vertices and comparing the density value
at the vertex location with the given isovalue as shown in the following code. The flag index is
then used to retrieve the edge flags from the looktup table (aiCubeEdgeFlags).

flagIndex = 0;
for(i= 0; i<8; i++) {
if (cubeCornervValues[i] <= isoValue)
flagIndex |= 1<<i;

}

edgeFlags = aiCubeEdgeFlags [flagIndex] ;

The vertices and normals for the given index are stored in a local array by looking up the edge
connection table (a2iEdgeConnection).

for(i = 0; 1 < 12; i++) {
if (edgeFlags & (1l<<i)) {
float offset = GetOffset (cubeCornervValues |
a2iEdgeConnection[i] [0]], cubeCornerValues [
a2iEdgeConnection[i] [1]]);
edgeVertices[i] .x = x + (a2fVertexOffset|[
a2iEdgeConnection[i] [0]] [0] + offset *

251

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

a2fEdgeDirection[i] [0]) *scale.x ;

edgeVertices[i]l .y = vy + (a2fVertexOffset|[
a2iEdgeConnection[i] [0]] [1] + offset *
a2fEdgeDirection[i] [1]) *scale.y ;
edgeVertices[i]l .z = z + (a2fVertexOffset|[
a2iEdgeConnection[i] [0]] [2] + offset *
a2fEdgeDirection[i] [2]) *scale.z ;
edgeNormals [i] = GetNormal ((int)edgeVertices[i].x ,
(int) edgeVertices[i] .y ,
(int) edgeVertices[i]l .z);

}

Finally, the triangle connectivity table (a2iTriangleConnectionTable) is used to obtain
the proper vertex and normal ordering and these attributes are then stored into a vectors.

for(i = 0; i< 5; i++) {

if (a2iTriangleConnectionTable [flagIndex] [3*1] < 0)

break;
for(int j= 0; j< 3; j++) {

int vertex = a2iTriangleConnectionTable[flagIndex] [3*i+j];

Vertex v;

v.normal = (edgeNormals [vertex]) ;

v.pos = (edgeVertices[vertex]) *invDim;

vertices.push back(v) ;

}

After the Marching Tetrahedra code is processed, we store the generated vertices and
normals in a buffer object. In the rendering code, we bind the appropriate vertex array object,
bind our shader and then draw the triangles. The fragment shader for this recipe outputs the
per-vertex normals as colors.

#version 330 core
layout (location = 0) out vec4 vFragColor;
smooth in vec3 outNormal;
void main() {
vFragColor = vec4 (outNormal, 1) ;

252

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

There's more...

The demo application for this recipe renders the engine dataset as shown in the following
screenshot. The fragment shader renders the isosurface normals as color.

Pressing the W key toggles the wireframe display, which shows the underlying isosurface
polygons for isovalue of 40 as shown in the following screenshot:

While in this recipe, we focused on the Marching Tetrahedra algorithm. There is another,
more robust method of triangulation called Marching Cubes, which gives a more robust
polygonisation as compared to the Marching Tetrahedra algorithm.

253

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

See also

» Polygonising a scalar field, Paul Bourke: http://paulbourke.net/
geometry/polygonise/

» Volume Rendering: Marching Cubes Algorithm, http://cns-alumni.
bu.edu/~lavanya/Graphics/cs580/p5/web-page/p5.html

» Animplementation of Marching Cubes and Marching Tetrahedra Algorithms,
http://www.siafoo.net/snippet/100

Implementing volumetric lighting using the

half-angle slicing

In this recipe, we will implement volumetric lighting using the half-angle slicing technique.
Instead of slicing the volume perpendicular to the viewing direction, the slicing direction is set
between the light and the view direction vectors. This enables us to simulate light absorption
slice by slice.

Getting ready

The code for this recipe is in the Chapter7/HalfAngleSlicing directory. As the name
suggests, this recipe will build up on the 3D texture slicing code.

How to do it...

Let us start this recipe by following these simple steps:

1. Setup offscreen rendering using one FBO with two attachments: one for offscreen
rendering of the light buffer and the other for offscreen rendering of the eye buffer.

glGenFramebuffers(l, &lightFBOID) ;

glGenTextures (1, &lightBufferID);

glGenTextures (1, &eyeBufferID);

glActiveTexture (GL TEXTURE2) ;

lightBufferID = CreateTexture (IMAGE WIDTH, IMAGE HEIGHT, GL
RGBA1l6F, GL_RGBA);

eyeBufferID = CreateTexture (IMAGE WIDTH, IMAGE HEIGHT, GL RGBALG6F,
GL_RGBA) ;

glBindFramebuffer (GL _FRAMEBUFFER, lightFBOID) ;
glFramebufferTexture2D (GL FRAMEBUFFER, GL COLOR ATTACHMENTO, GL
TEXTURE 2D, lightBufferID, 0);
glFramebufferTexture2D (GL FRAMEBUFFER, GL COLOR ATTACHMENT1l, GL
TEXTURE 2D, eyeBufferID, 0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

GLenum status = glCheckFramebufferStatus (GL FRAMEBUFFER) ;

if (status == GL_FRAMEBUFFER COMPLETE)
printf ("Light FBO setup successful !!! \n");
else

printf ("Problem with Light FBO setup") ;

The CreateTexture function performs the texture creation and texture format
specification into a single function for convenience. This function is defined
as follows:

GLuint CreateTexture (const int w,const int h,
GLenum internalFormat, GLenum format) {
GLuint texid;

glGenTextures (1, &texid);
glBindTexture (GL _TEXTURE 2D, texid);

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE MAG FILTER,
GL_LINEAR) ;

glTexParameteri (GL TEXTURE 2D, GL_TEXTURE MIN FILTER,
GL_LINEAR) ;

glTexParameteri (GL_TEXTURE 2D, GL TEXTURE WRAP_S,
GL_CLAMP_TO BORDER) ;

glTexParameteri (GL_TEXTURE 2D, GL TEXTURE WRAP T,
GL_CLAMP_TO BORDER) ;

glTexImage2D (GL TEXTURE 2D, 0, internalFormat, w, h, O,
format, GL_FLOAT, 0);

return texid;

}

2. Load the volume data, as in the 3D texture slicing recipe:

std::ifstream infile(volume file.c str(),
std::ios_base::binary) ;
if (infile.good ()) {
GLubyte* pData = new GLubyte [XDIM*YDIM*ZDIM] ;
infile.read(reinterpret cast<char*s>(pData),
XDIM*YDIM*ZDIM*sizeof (GLubyte)) ;
infile.close() ;
glGenTextures (1, &texturelID) ;
glActiveTexture (GL_TEXTUREO) ;
glBindTexture (GL TEXTURE 3D, texturelD);
// set the texture parameters
ngeXImage3D(GL_TEXTURE_3D,O,GL_RED,XDIM,YDIM,ZDIM,O,
GL_RED,GL_UNSIGNED_BYTE,pData);
GL_CHECK_ ERRORS
glGenerateMipmap (GL_TEXTURE 3D) ;
return true;
} else {

255

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

return false;

}

3. Similar to the shadow mapping technique, calculate the shadow matrix by multiplying
the model-view and projection matrices of the light with the bias matrix:

MV_L=glm: :lookAt (1lightPosOS,glm::vec3(0,0,0),
glm::vec3(0,1,0));

P L=glm::perspective(45.0f,1.0£,1.0£f, 200.0f);

B=glm: :scale(glm: :translate (glm: :mat4 (1),

glm::vec3(0.5,0.5,0.5)), glm::vec3(0.5,0.5,0.5));
BP = B*P L;
S = BP*MV_L;

4. Inthe rendering code, calculate the half vector by using the view direction vector and
the light direction vector:
viewVec = -glm::vec3 (MV[0] [2], MV[1] [2], MV[2] [2]);
lightVec = glm::normalize (lightPosOS) ;
bIsViewInverted = glm::dot (viewVec, lightVec)<O0;
halfVvec = glm::normalize((bIsViewInverted?-viewVec:viewVec) +
lightVec) ;

5. Slice the volume data as in the 3D texture slicing recipe. The only difference here is
that instead of slicing the volume data in the direction perpendicular to the view, we
slice it in the direction which is halfway between the view and the light vectors.

float max dist = glm::dot(halfVec, vertexList[0]);
float min dist = max dist;
int max_index = 0;
int count = 0;
for(int i=1;i<8;i++)
float dist = glm::dot(halfVec, vertexList[i]);
if (dist > max dist) {
max dist = dist;
max_index = 1i;
}
if (dist<min dist)
min dist = dist;
}
//rest of the SliceVolume function as in 3D texture slicing but
//viewVec is changed to halfVec

6. Inthe rendering code, bind the FBO and then first clear the light buffer with the white
color (1,1,1,1) and the eye buffer with the color (0,0,0,0):

glBindFramebuffer (GL FRAMEBUFFER, 1ightFBOID) ;
glDrawBuffer (attachIDs [0]) ;
glClearColor(1,1,1,1);

glClear (GL_COLOR_BUFFER BIT) ;

256

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

glDrawBuffer (attachIDs [1]) ;
glClearColor(0,0,0,0) ;
glClear (GL_COLOR_BUFFER BIT);

Bind the volume VAO and then run a loop for the total number of slices. In each
iteration, first render the slice in the eye buffer but bind the light buffer as the texture.
Next, render the slice in the light buffer:

glBindVertexArray (volumeVAO) ;
for(int i =0;i<num slices;i++) {
shaderShadow.Use () ;

glUniformMatrix4fv (shaderShadow ("MVP"), 1, GL_FALSE,
glm::value ptr (MVP)) ;
glUniformMatrix4fv (shaderShadow("S"), 1, GL_FALSE,

glm: :value ptr(S));
glBindTexture (GL TEXTURE 2D, lightBuffer) ;
DrawSliceFromEyePointOfView (i) ;

shader.Use () ;
glUniformMatrix4fv (shader ("MVP"), 1, GL FALSE,
glm::value ptr(P_L*MV L)) ;
DrawSliceFromLightPointOfView (i) ;

}

For the eye buffer rendering step, swap the blend function based on whether the
viewer is viewing in the direction of the light or opposite to it:

void DrawSliceFromEyePointOfView(const int i) {

glDrawBuffer (attachIDs [1]) ;
glvViewport (0, 0, IMAGE WIDTH, IMAGE HEIGHT) ;
if (bIsViewInverted) {

glBlendFunc (GL_ONE MINUS DST ALPHA, GL ONE) ;
} else {

glBlendFunc (GL_ONE, GL_ONE MINUS SRC_ALPHA) ;
}
glDrawArrays (GL_TRIANGLES, 12*i, 12);

}

For the light buffer, we simply blend the slices using the conventional "over" blending:

void DrawSliceFromLightPointOfView(const int i) {
glDrawBuffer (attachIDs [0]) ;
glvViewport (0, 0, IMAGE WIDTH, IMAGE HEIGHT) ;
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;
glDrawArrays (GL_TRIANGLES, 12*i, 12);

257

www.it-ebooks.info

http://www.it-ebooks.info/

GPU-based Volume Rendering Techniques

10. Finally, unbind the FBO and restore the default draw buffer. Next, set the viewport to
the entire screen and then render the eye buffer on screen using a shader:

glBindVertexArray (0) ;

glBindFramebuffer (GL_FRAMEBUFFER, O0);
glDrawBuffer (GL_BACK LEFT) ;

glviewport (0,0,WIDTH, HEIGHT) ;
glBindTexture (GL_TEXTURE 2D, eyeBufferID) ;
glBindVertexArray (quadVAOID) ;
quadShader.Use () ;

glDrawArrays (GL_TRIANGLES, 0, 6);
quadShader.UnUse () ;

glBindVertexArray (0) ;

As the name suggests, this technique renders the volume by accumulating the intermediate
results into two separate buffers by slicing the volume halfway between the light and the
view vectors. When the scene is rendered from the point of view of the eye, the light buffer is
used as texture to find out whether the current fragment is in shadow or not. This is carried
out in the fragment shader by looking up the light buffer by using the shadow matrix as in
the shadow mapping algorithm. In this step, the blending equation is swapped based on the
direction of view with respect to the light direction vector. If the view is inverted, the blending
direction is swapped from front-to-back to back-to-front using glBlendFunc (GL_ONE _
MINUS DST ALPHA, GL_ONE).On the other hand, if the view direction is not inverted, the
blend function is set as glBlendFunc (GL_ONE, GL_ONE MINUS SRC ALPHA). Note that
here we have not used the over compositing since we premultiply the color with its alpha in
the fragment shader (see Chapter7/HalfAngleSlicing/shaders/slicerShadow.
frag), as shown in the following code:

vec3 lightIntensity = textureProj (shadowTex, vLightUVW.xyw) .xyz;
float density = texture(volume, vUV) .r;
if (density > 0.1) {

float alpha = clamp(density, 0.0, 1.0);

alpha *= color.a;

vFragColor = vec4 (color.xyz*lightIntensity*alpha, alpha);

}

In the next step, the scene is rendered from the point of view of the light. This time, the
normal over compositing is used. This ensures that the light contributions accumulate
with each other similar to how light behaves in normal circumstances. In this case, we use
the same fragment shader as was used in the 3D texture slicing recipe (see Chapter7/
HalgAngleSlicing/shaders/textureSlicer.frag).

vFragColor = texture(volume, vUV).rrrr * color

I

258

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

There's more...

The demo application implementing this recipe renders the scene, as shown in the following
screenshot, similar to the previous recipes. The light source position can be changed

using the right mouse button. We can see the shadow changing dynamically for the scene.
Attenuation of light is also controlled by setting a shader uniform. This is the reason why we
can observe a bluish tinge in the output image.

Note that we cannot see the black halo around the volume dataset as was evident in earlier
recipes. The reason for this is the if condition used in the fragment shader. We only perform
these calculations if the current density value is greater than 0.1. This essentially removed air
and other low intensity artifacts, producing a much better result.

» Chapter 39, Volume Rendering Techniques, in GPU Gems 1. Available online at
http://http.developer.nvidia.com/GPUGems/gpugems ch39.html

» Chapter 6, Global Volume lllumination, in Real-time Volume Graphics, AK Peters/
CRC Press.

259

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and
Physically-based
Simulation on the GPU

In this chapter we will focus on the following topics:

>

>

Implementing skeletal animation using matrix palette skinning
Implementing skeletal animation using dual quaternion skinning
Modeling cloth using transform feedback

Implementing collision detection and response on a transform feedback-based
cloth model

Implementing a particle system using transform feedback

Introduction

Most of the real-time graphics applications have interactive elements. We have automated
bots that move and animate in an interactive application. These elements include objects
that are animated using preset sequences of frames. These are called frame-by-frame
animations. There are other scene elements that have motion, which is derived using physical
simulation. These are called physically-based animations. In addition, humanoid or character
models have a special category of animations called skeletal animation. In this chapter,

we will look at recipes for doing skeletal and physically-based simulation on the GPU in
modern OpenGL.

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

Implementing skeletal animation using

matrix palette skinning

When working with games and simulation systems, virtual characters are often used to

give a detailed depiction of scenarios. Such characters are typically represented using a
combination of bones and skin. The vertices of the 3D model are assigned influence weights
(called blend weights) that control how much a bone influences that vertex. Up to four bones
can influence a vertex. The process whereby bone weights are assigned to the vertices of a
3D model is called skinning. Each bone stores its transformation. These stored sequences of
transformations are applied to every frame and every bone in the model and in the end, we
get an animated character on the screen. This representation of animation is called skeletal
animation. There are several methods for skeletal animation. One popular method is matrix
palette skinning, which is also known as linear blend skinning (LBS). This method will be
implemented in this recipe.

Getting ready

The code for this recipe is contained in the Chapters8/MatrixPaletteSkinning directory.
This recipe will be using the Implementing EZMesh model loading recipe from Chapter 5,
Mesh Model Formats and Particle Systems and it will augment it with skeletal animation.

The EZMesh format was developed by John Ratcliff and it is an easy-to-understand format

for storing skeletal animation. Typical skeletal animation formats like COLLADA and FBX are
needlessly complicated, where dozens of segments have to be parsed before the real content
can be loaded. On the other hand, the EZMesh format stores all of the information in an
XML:-based format, which is easier to parse. It is the default skeletal animation format used in
the NVIDIA PhysX sdk. More information about the EZMesh model format and loaders can be
obtained from the references in the See also section of this recipe.

How to do it...

Let us start our recipe by following these simple steps:

1. Load the EZMesh model as we did in the Implementing EZMesh loader recipe from
Chapter 5, Mesh Model Formats and Particle System. In addition to the model
submeshes, vertices, normals, texture coordinates, and materials, we also load the
skeleton information from the EZMesh file.

EzmLoader ezm;
if (!ezm.Load (mesh filename.c str(), skeleton, animations,
submeshes, vertices, indices, material2ImageMap,
min, max)) {
cout<<"Cannot load the EZMesh file"<<endl;
exit (EXIT FAILURE) ;

}
262

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Get the MeshSystem object from the meshImportLibrary object. Then

load the bone transformations contained in the EZMesh file using the

MeshSystem: :mSkeletons array. This is carried out in the EzmLoader: : Load
function. Also generate absolute bone transforms from the relative transforms. This
is done so that the transform of the child bone is influenced by the transform of the
parent bone. This is continued up the hierarchy until the root bone. If the mesh is
modeled in a positive Z axis system, we need to modify the orientation, positions, and
scale by swapping Y and Z axes and changing the sign of one of them. This is done
because we are using a positive Y axis system in OpenGL; otherwise, our mesh will be
lying in the XZ plane rather than the XY plane. We obtain a combined matrix from the
position orientation and scale of the bone. This is stored in the xform field, which is
the relative transform of the bone.

if (ms->mSkeletonCount>0) {

NVSHARE: :MeshSkeleton* pSkel = ms->mSkeletons[0];

Bone b;

for (int i=0;i<pSkel->GetBoneCount ();i++) {
const NVSHARE: :MeshBone pBone = pSkel->mBones/[i];
const int s = strlen(pBone.mName) ;
b.name = new char[s+1];
memset (b.name, 0, sizeof (char)*(s+1));
strncpy_ s (b.name,sizeof (char) * (s+1), pBone.mName, s);
b.orientation = glm::quat (
pBone.mOrientation[3],pBone.mOrientation[0],
pBone.mOrientation[1l] ,pBone.mOrientation[2]) ;
b.position = glm::vec3(pBone.mPosition[0],
pBone.mPosition[1l],pBone.mPosition[2]) ;
b.scale = glm::vec3(pBone.mScale[0], pBone.mScale[l],
pBone.mScale[2]) ;

if (!bYup) {
float tmp = b.position.y;
b.position.y = b.position.z;
b.position.z = -tmp;
tmp = b.orientation.y;
b.orientation.y = b.orientation.z;
b.orientation.z = -tmp;
tmp = b.scale.y;
b.scale.y = b.scale.z;
b.scale.z = -tmp;

}

glm: :mat4 S = glm::scale(glm::mat4(1l), b.scale);

glm: :mat4 R glm: :toMat4 (b.orientation) ;

263

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

glm::mat4 T = glm::translate(glm::mat4 (1), b.position);

b.xform = T*R*S;
b.parent = pBone.mParentIndex;
skeleton.push back (b) ;

}

UpdateCombinedMatrices () ;
bindPose.resize (skeleton.size()) ;
invBindPose.resize (skeleton.size()) ;
animatedXform.resize (skeleton.size()) ;

3. Generate the bind pose and inverse bind pose arrays from the stored

bone transformations:

for(size t i=0;
bindPose [1i]

i<skeleton.size () ;i++) {
= (skeleton[i] .comb) ;

invBindPose [i] = glm::inverse (bindPose[il]) ;

1}

4. Store the blend weights and blend indices of each vertex in the mesh:

5.

264

mesh.vertices[]j].
mesh.vertices[]j].
mesh.vertices[]j].
il.
il.
mesh.vertices[]j].

mesh.vertices
mesh.vertices

mesh.vertices[]j].

[
[
[
[
[
[
[
[

mesh.vertices[]j].

blendWeights.x
blendWeights.y
blendWeights.z
blendWeights.w

pMesh->mVertices [j] .mWeight [0] ;

[
pMesh->mVertices [j] .mWeight [1];
[

pMesh->mVertices [j] .mWeight [2];

pMesh->mVertices [j] .mWeight [3];

blendIndices [0] = pMesh->mVertices[j] .mBonel[0];
blendIndices[1] = pMesh->mVertices[j] .mBonel[l];
blendIndices[2] = pMesh->mVertices[j] .mBonel[2];
blendIndices[3] = pMesh->mVertices[j] .mBonel[3];

In the idle callback function, calculate the amount of time to spend on the current
frame. If the amount has elapsed, move to the next frame and reset the time. After

this, calculate the new

bone transformations as well as new skinning matrices, and

pass them to the shader:

QueryPerformanceCounter (¤t) ;
dt = (double) (current.QuadPart - last.QuadPart) /
(double) freq.QuadPart;

last = current;

static double t

t+=dt;

= 0;

NVSHARE: :MeshAnimation* pAnim = &animations[O0];

float framesPerSecond = pAnim->GetFrameCount () /

pAnim->GetDuration () ;

if(t > 1.0f/ framesPerSecond) ({
currentFrame++;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

t=0;
if (bLoop) {

currentFrame = currentFrame%pAnim->mFrameCount;
} else {

currentFrame=max (-1, min (currentFrame, pAnim->mFrameCount-1)) ;
if (currentFrame == -1)
for(size t i=0;i<skeleton.size();i++) {
skeleton[i] .comb = bindPose[i];
animatedXform[i] = skeleton[i] .comb*invBindPose[1i];

}

else {
for(int j=0;j<pAnim->mTrackCount;j++) {

NVSHARE: :MeshAnimTrack* pTrack = pAnim->mTracks[j];
NVSHARE: :MeshAnimPose* pPose =

pTrack->GetPose (currentFrame) ;

skeleton[j] .position.x = pPose->mPos[0];
skeleton[j] .position.y = pPose->mPos[1];
skeleton[j] .position.z = pPose->mPos[2];

glm: :quat q;
q.x = pPose->mQuat [0] ;

g.y = pPose->mQuat[1];
g.z = pPose->mQuat [2];
g.w = pPose->mQuat [3];
skeleton[j] .scale = glm::vec3 (pPose->mScale[0],
pPose->mScale[1],
pPose->mScale[2]);
if (1bYup) {
skeleton[j] .position.y = pPose->mPos[2];
skeleton[j] .position.z = -pPose->mPos[1];
g.y = pPose->mQuat[2];
g.z = -pPose->mQuat[1];

skeleton[j] .scale.y = pPose->mScale([2];
skeleton[j] .scale.z = -pPose->mScalel[l];

}

skeleton[j] .orientation = g;

glm: :mat4 S =glm::scale(glm::mat4 (1), skeleton[j].scale);

glm: :mat4 R = glm::toMat4 (q) ;

glm: :mat4 T = glm::translate(glm::mat4 (1), skeleton[j].
position) ;

265

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

skeleton[j] .xform = T*R*S;
Bone& b = skeleton[j];

if (b.parent==-1)
b.comb = b.xform;
else
b.comb = skeleton[b.parent].comb * b.xform;

animatedXform[j] = b.comb * invBindPose[j] ;

shader.Use () ;
glUniformMatrix4fv (shader ("Bones") ,animatedXform.size(),
GL FALSE,glm::value ptr(animatedXform[0])) ;

shader.UnUse () ;

shader.UnUse () ;

There are two parts of this recipe: generation of skinning matrices and the calculation of

GPU skinning in the vertex shader. To understand the first step, we will start with the different
transforms that will be used in skinning. Typically, in a simulation or game, a transform is
represented as a 4x4 matrix. For skeletal animation, we have a collection of bones. Each bone
has a local transform (also called relative transform), which tells how the bone is positioned
and oriented with respect to its parent bone. If the bone's local transform is multiplied to the
global transform of its parent, we get the global transform (also called absolute transform)

of the bone. Typically, the animation formats store the local transforms of the bones in the file.

The user application uses this information to generate the global transforms.

We define our bone structure as follows:

struct

glm:
glm:
glm:
glm:

Bone

:quat orientation;
:vec3 position;
:mat4 xform, comb;
:vec3 scale;

char* name;

int parent;

266

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The first field is orientation, which is a quaternion storing the orientation of bone in space
relative to its parent. The position field stores its position relative to its parent. The xform
field is the local (relative) transform, and the comb field is the global (absolute) transform. The
scale field contains the scaling transformation of the bone. In the big picture, the scale
field gives the scaling matrix (S), the orientation field gives the rotation matrix (R), and

the position field gives the translation matrix (T). The combined matrix T*R*S gives us the
relative transform that is calculated when we load the bone information from the EZMesh file
in the second step.

The name field is the unique name of the bone in the skeleton. Finally, the parent field stores
the index of the parent of the current bone in the skeleton array. For the root bone, the parent
is -1. For all of the other bones, it will be a number starting from 0 to N-1, where N is the total
number of bones in the skeleton.

After we have loaded and stored the relative transforms of each bone in the skeleton,
we iterate through each bone to obtain its absolute transform. This is carried out in the
UpdateCombinedMatrices function in Chapter8/MatrixPaletteSkinning/main. cpp.

for(size t i=0;i<skeleton.size();i++) {
Bone& b = gkeleton([i];
if (b.parent==-1)
b.comb = b.xform;
else
b.comb = skeleton[b.parent] .comb * b.xform;

}

After generating the absolute transforms of each bone, we store the bind pose and inverse
bind pose matrices of the skeleton. Simply put, bind pose is the absolute transforms of
the bones in the non-animated state (that is, when no animation is applied). This is usually
when the skeleton is attached (skinned) to the geometry. In other words, it is the default
pose of the skeletal animated mesh. Typically, bones can be in any bind pose (usually, for
humanoid characters, the character may be in A pose, T pose, and so on based on the
convention used). Typically, the inverse bind pose is stored at the time of initialization. So,
continuing to the previous skeleton example, we can get the bind pose and inverse bind
pose matrices as follows:

for(size t i=0;i < skeleton.size(); i++) {
bindPose[i] = skeleton[i] .comb;
invBindPose [i] = glm::inverse (bindPose[i]) ;

}

Note that we do this once at initialization, so that we do not have to calculate the bind pose's
inverse every frame, as it is required during animation.

267

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

When we apply any new transformation (an animation sequence for example) to the skeleton,
we have to first undo the bind pose transformation. This is done by multiplying the animated
transformation with the inverse of the bind pose transformation. This is required because the
given relative transformations will add to the existing transformations of the bone and, if the
bind pose transformation is not undone, the animation output will be wrong.

The final matrix that we get from this process is called the skinning matrix (also called the
final bone matrix). Continuing from the example given in the previous paragraph, let's say we
have modified the relative transforms of bone using the animation sequence. We can then
generate the skinning matrix as follows:

for(size t i=0;i < skeleton.size(); i++) {
Bone& b = skeleton[i];
if (b.parent==-1)
b.comb = b.xform;
else
b.comb = skeleton[b.parent].comb * b.xform;
animatedXForm[i] = b.comb*invBindPose[i];

}

One thing to note here is the order of the different matrices. As you can see, we right multiply
the inverse bind pose matrix with the combined bone transform. We put it this way because
OpenGL and glm matrices work right to left. So the inverse of bind pose matrix will be
multiplied by the given vertex first. Then it will be multiplied with the local transform (xform)
of the current bone. Finally, it will be multiplied with the global transform (comb) of its parent
to get the final transformation matrix.

After we have calculated the skinning matrices, we pass these to the GPU in a single call:

shader.Use () ;
glUniformMatrix4fv (shader ("Bones"), animatedXForm.size(),
GL_FALSE, glm::value ptr(animatedXForm([0])) ;
shader.UnUse () ;

To make sure that the size of the bones array is correct in the vertex shader, we append text to
the shader dynamically by using the overloaded GL.SLShader : : LoadFromFile function.

stringstream str(ios base::app | ios_base::out) ;
str<<"\nconst int NUM BONES="<<skeleton.size()<<";"<<endl;
str<<"uniform mat4 Bones [NUM BONES] ;"<<endl;
shader.LoadFromFile (GL VERTEX SHADER, "shaders/shader.vert", str.
str()); - B
shader.LoadFromFile (GL_FRAGMENT SHADER, "shaders/shader.frag");

This ensures that our vertex shader has the same number of bones as our mesh file.

268

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

. For this simple recipe we have modified the shader code at loading
~ time before compilation. Such shader modification must not be done
Q at runtime as this will require a recompilation of the shader and will

likely hamper application performance.

The Vertex struct storing all of our per-vertex attributes is defined as follows:

struct Vertex {
glm: :vec3 pos,
normal ;
glm::vec2 uv;
glm: :vec4 blendWeights;
glm::ivec4 blendIndices;

Vi

The vertices array is filled in by the EzmLoader: : Load function. We generate a vertex array
object with a vertex buffer object to store our interleaved per-vertex attributes:

glGenVertexArrays (1, &vaolD) ;
glGenBuffers(l, &vboVerticesID) ;
glGenBuffers(l, &vboIndicesID) ;

glBindVertexArray (vaoID) ;

glBindBuffer (GL_ARRAY BUFFER, vboVerticesID) ;

glBufferData (GL ARRAY BUFFER, sizeof (Vertex) *vertices.size(),
&(vertices[0] .pos.x), GL_DYNAMIC DRAW) ;

glEnableVertexAttribArray (shader ["vVertex"]) ;
glVertexAttribPointer (shader ["vVertex"], 3, GL FLOAT, GL_
FALSE, sizeof (Vertex),0) ;

glEnableVertexAttribArray (shader ["vNormal"]) ;
glVertexAttribPointer (shader ["vNormal"], 3, GL FLOAT, GL_FALSE,
sizeof (Vertex), (const GLvoid*) (offsetof (Vertex, normal)));

glEnableVertexAttribArray (shader ["vUV"]) ;
glVertexAttribPointer (shader ["vUV"], 2, GL_FLOAT, GL_FALSE,
sizeof (Vertex), (const GLvoid*) (offsetof (Vertex, uv)));

glEnableVertexAttribArray (shader ["vBlendWeights"]) ;
glVertexAttribPointer (shader ["vBlendWeights"], 4, GL_FLOAT,
GL FALSE, sizeof (Vertex), (const GLvoid*) (offsetof (Vertex,
blendWeights))) ;

glEnableVertexAttribArray (shader ["viBlendIndices"]) ;
glVertexAttribIPointer (shader["viBlendIndices"], 4, GL_INT,
sizeof (Vertex), (const GLvoid*) (offsetof (Vertex, blendIndices)));

269

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

M Note that for blend indices we use the glVertexAttribIPointer
Q function, as the attribute (viBlendIndices) is defined as ivec4 in
the vertex shader.

Finally, in the rendering code, we set the vertex array object and use the shader program.
Then we iterate through all of the submeshes. We then set the material texture for the
current submesh and set the shader uniforms. Finally, we issue a glDrawElements call:

glBindVertexArray (vaoID) ; {
shader.Use() ;

glUniformMatrix4fv (shader ("MV"), 1, GL_FALSE, glm::value ptr(MV)) ;
glUniformMatrix3fv (shader ("N"), 1, GL FALSE, glm::value ptr(glm::inver
seTranspose (glm: :mat3 (MV)))) ;

glUniformMatrix4fv (shader ("P"), 1, GL FALSE, glm::value ptr(P));

glUniform3fv (shader ("light position"),1, &(lightPos0S.x)) ;
for(size t i=0;i<submeshes.size() ;i++) {
if (strlen (submeshes[1i] .materialName) >0) {
GLuint id = materialMap[material2ImageMap [
submeshes [i] .materialName]] ;
GLint whichID[1];
glGetIntegerv (GL TEXTURE BINDING 2D, whichiID) ;

if (whichID[0] != id)
glBindTexture (GL _TEXTURE 2D, id);
glUniformlf (shader ("useDefault"), 0.0);
} else {
glUniformlf (shader ("useDefault"), 1.0);

}

glDrawElements (GL_TRIANGLES, submeshes([i].indices.size(),
GL_UNSIGNED INT, &submeshes[i].indices([0]);
}//end for
shader.UnUse () ;

}

The matrix palette skinning is carried out on the GPU using the vertex shader (Chapters/
MatrixPaletteSkinning/shaders/shader.vert). We simply use the blend indices
and blend weights to calculate the correct vertex position and normal based on the combined
influence of all of the effecting bones. The Bones array contains the skinning matrices that
we generated earlier. The complete vertex shader is as follows:

1
‘Q Note that the Bones uniform array is not declared in the shader, as it is filled

in the shader code dynamically as was shown earlier.

270

www.it-ebooks.info

http://www.it-ebooks.info/

#version 330 core

layout (location = 0) in vec3 vVertex;

layout (location = 1) in vec3 vNormal;

layout (location = 2) in vec2 vUV;

layout (location = 3) in vec4 vBlendWeights;
layout (location = 4) in ivec4 viBlendIndices;

smooth out wvec2 vUVout;
uniform mat4 P;
uniform mat4 MV;
uniform mat3 N;
smooth out vec3 vEyeSpaceNormal;
smooth out vec3 vEyeSpacePosition;
void main() {
vec4 blendVertex=vec4 (0) ;
vec3 blendNormal=vec3 (0) ;
vec4 vVertex4 = vecd (vVertex,1l);

int index = viBlendIndices.x;
blendVertex = (Bones[index] * vVertex4) * +vBlendWeights.x;

blendNormal (Bones [index] * vec4 (vNormal, 0.0)) .xyz *

vBlendWeights.x;

index = viBlendIndices.y;

blendVertex = ((Bones[index] * vVertex4) * vBlendWeights.y)
blendVertex;

blendNormal = (Bones[index] * vec4 (vNormal, 0.0)) .xyz *
vBlendWeights.y + blendNormal;

index = viBlendIndices.z;

Chapter 8

blendVertex = ((Bones[index] * vVertex4) * +vBlendWeights.z)

+ blendVertex;
blendNormal = (Bones[index] * vec4 (vNormal, 0.0)) .xyz *
vBlendWeights.z + blendNormal;

index = viBlendIndices.w;

blendVertex = ((Bones[index] * vVertex4) * vBlendWeights.w)

+ blendVertex;
blendNormal = (Bones[index] * vec4 (vNormal, 0.0)) .xyz *
vBlendWeights.w + blendNormal;

vEyeSpacePosition = (MV*blendVertex) .xyz;
vEyeSpaceNormal = normalize (N*blendNormal) ;
vUVout=vUV;

gl Position = P*vec4 (vEyeSpacePosition,1) ;

}

The fragment shader uses the attenuated point light source for illumination as we have seen
in the Implementing per-fragment point light with attenuation recipe in Chapter 4, Lights

and Shadows.

271

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

There's more...

The output from the demo application for this recipe shows the dude . ezm model animating
using the matrix palette skinning technique as shown in the following figure. The light source
can be rotated by right-clicking on it and dragging. Pressing the | key stops the loop playback.

See also

» NVIDIA DirectX SDK 9.0 Matrix Palette Skinning demo at http://http.download.
nvidia.com/developer/SDK/Individual Samples/DEMOS/Direct3D9/
src/HLSL PaletteSkin/docs/HLSL PaletteSkin.pdf

» John Ratcliff code suppository containing a lot of useful tools, including the EZMesh
format specifications and loaders available online at http://codesuppository.
blogspot.sg/2009/11/test-application-for-meshimport-library.
html

» Improved Skinning demo in the NVIDIA sdk at http://http.download.nvidia.
com/developer/SDK/Individual Samples/samples.html

272

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Implementing skeletal animation using dual

quaternion skinning

Matrix palette skinning suffers from candy wrapping artefacts, especially in regions like
shoulder and elbow, where there are several rotations across various axes. If dual quaternion
skinning is employed, these artefacts are minimized. In this recipe we will implement skeletal
animation using dual quaternion skinning.

Before understanding dual quaternions, let us first see what quaternions are. Quaternions
are a mathematical entity containing three imaginary dimensions (which specify the axis of
rotation) and a real dimension (which specifies the angle of rotation). Quaternions are used in
3D graphics to represent rotation, since they do not suffer from gimbal lock, as Euler angles
do. In order to store translation with rotation simultaneously, dual quaternions are used to
store dual number coefficients instead of real ones. Instead of four components, as in a
quaternion, dual quaternions have eight components.

Even in dual quaternion skinning, the linear blend method is used. However, due to the nature
of transformation in dual quaternion, spherical blending is preferred. After linear blending, the
resulting dual quaternion is renormalized, which generates a spherical blending result, which
is a better approximation as compared to the linear blend skinning. This whole process is
illustrated by the following figure:

Input vertex
Linear blended vertex
tz Dual quaternion blended vertex

W g +ws g

T hra e W

gz

Getting ready

The code for this recipe is contained in the Chapter8/DualQuaternionSkinning folder.
We will be building on top of the previous recipe and replace the skinning matrices with
dual quaternions.

273

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

How to do it...

Converting linear blend skinning to dual quaternion skinning requires the following steps:

1. Load the EZMesh model as we did in the Implementing EZMesh loader recipe from
Chapter 5, Mesh Model Formats and Particle System:

if (!ezm.Load (mesh filename.c str(), skeleton, animations,
submeshes, vertices, indices, material2ImageMap, min, max)) {
cout<<"Cannot load the EZMesh file"<<endl;
exit (EXIT FAILURE); }

2. After loading up the mesh, materials, and textures, load the bone transformations
contained in the EZMesh file using the MeshSystem: :mSkeletons array as we did
in the previous recipe. In addition to the bone matrices, also store the bind pose and
inverse bind pose matrices as we did in the previous recipe. Instead of storing the
skinning matrices, we initialize a vector of dual quaternions. Dual quaternions are a
different representation of the skinning matrices.

UpdateCombinedMatrices () ;

bindPose.resize (skeleton.size()) ;

invBindPose.resize (skeleton.size()) ;

animatedXform.resize (skeleton.size()) ;

dualQuaternions.resize (skeleton.size());

for(size t i=0;i<skeleton.size();i++) ({
bindPose[i] = (skeleton[i] .comb) ;
invBindPose [i] = glm::inverse (bindPose[il]) ;

}

3. Implement the idle callback function as in the previous recipe. Here, in addition to
calculating the skinning matrix, also calculate the dual quaternion for the given skinning
matrix. After all of the joints are done, pass the dual quaternion to the shader:

glm: :mat4 S = glm::scale(glm::mat4 (1), skeleton[j].scale);
glm: :mat4 R = glm::toMat4 (q) ;
glm: :mat4 T = glm::translate(glm::mat4 (1),
skeleton[j] .position) ;
skeleton[j] .xform = T*R*S;
Bone& b = skeleton[j];
if (b.parent==-1)
b.comb = b.xform;

else
b.comb = skeleton[b.parent].comb * b.xform;
animatedXform[j] = b.comb * invBindPose[j];

glm::vec3 t = glm::vec3(animatedXform([j] [3] [0],
animatedXform[j] [3] [1], animatedXform[j] [3][2]);
dualQuaternions[j] .QuatTrans2UDQ (

274

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

glm: : toQuat (animatedXform[jl), t):

shader.Use () ;

glUniform4 fv (shader ("Bones"), skeleton.size()*2,

& (dualQuaternions[0] .ordinary.x));
shader.UnUse () ;

In the vertex shader
vert), calculate the

(Chapter8/DualQuaternionSkinning/shaders/shader.
skinning matrix from the passed dual quaternion and blend

weights of the given vertices. Then proceed with the skinning matrix as we did in

the previous recipe:

#version 330 core

layout (location
layout (location
layout (location

layout (location

(
(
(
layout (location
smooth out vec2
uniform mat4 P;
uniform mat4 MV;
uniform mat3 N;
smooth out vec3

smooth out vec3

void main() {

= 0) 1in vec3 vVertex;

= 1) in vec3 vNormal;

= 2) 1in vec2 vUV;

= 3) in vec4 vBlendWeights;

= 4) 1in ivec4 viBlendIndices;
vUVout ;

vEyeSpaceNormal;

vEyeSpacePosition;

vec4 blendVertex=vec4 (0) ;

vec3 blendNormal=vec3 (0) ;
vec4d blendDQ[2];

float yc = 1.

if (dot(Bones[viBlendIndices.

0, zc = 1.0, we = 1.0;

x
Bones [viBlendIndices.y * 2]) < 0.0)

yc =

if (dot(Bones[viBlendIndices.
Bones [viBlendIndices.

zZC =

-1.0;
2]!
2]) < 0.0)

»
*

N
*

-1.0;

if (dot(Bones[viBlendIndices.x * 2],

Bones [viBlendIndices.w * 2]) < 0.0)

we =
blendDQI[0] =
blendDQI[1] =

-1.0;

Bones [viBlendIndices.x * 2] * vBlendWeights.x;
Bones [viBlendIndices.x * 2 + 1] *
vBlendWeights.x;

blendDQ[0] += yc*Bones[viBlendIndices.y * 2] *

vBlendWeights.y;

275

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

blendDQ[1l] += yc*Bones[viBlendIndices.y * 2 + 1] *
vBlendWeights.y;

blendDQ[0] += zc*Bones[viBlendIndices.z * 2] *
vBlendWeights.z;

blendDQ[1l] += zc*Bones|[viBlendIndices.z * 2 + 1] *
vBlendWeights.z;

blendDQ[0] += wc*Bones[viBlendIndices.w * 2] *
vBlendWeights.w;

blendDQ[1l] += wc*Bones|[viBlendIndices.w * 2 + 1] *
vBlendWeights.w;

mat4 skinTransform = dualQuatToMatrix(blendDQI[0],

blendDQ[1]) ;

blendVertex = skinTransform*vec4 (vVertex,1) ;

blendNormal = (skinTransform*vec4 (vNormal,O0)) .xyz;

vEyeSpacePosition = (MV*blendVertex) .xyz;

vEyeSpaceNormal = N*blendNormal;

vUVout=vUV;

gl Position = P*vec4 (vEyeSpacePosition,1) ;

}

To convert the given dual quaternion to a matrix, we define a function dualQuatToMatrix.
This gives us a matrix, which we can then multiply with the vertex to obtain the transformed
result.

The only difference in this recipe and the previous recipe is the creation of a dual quaternion
from the skinning matrix on the CPU, and its conversion back to a matrix in the vertex shader.
After we have obtained the skinning matrices, we convert them into a dual quaternion array
by using the dual quat: :QuatTrans2UDQ function that gets a dual quaternion from a
rotation quaternion and a translation vector. This function is defined as follows in the

dual quat class (in Chapter8/DualQuaternionSkinning/main. cpp):

void QuatTrans2UDQ (const glm::quat& g0, const glm::vec3& t)
ordinary = go0;

dual.w = -0.5f * (t.x * g0.x + t.y * g0.y + t.z * g0.z);
dual.x = 0.5f * (t.x * g0.w + t.y * g0.2 - t.z * g0.y);
dual.y = 0.5f * (-t.x * g0.z + t.y * g0.w + t.z * g0.x);
dual.z = 0.5f * (t.x * g0.y - t.y * g0.x + t.z * gO0.w);

276

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The dual quaternion array is then passed to the shader instead of the bone matrices. In the
vertex shader, we first do a dot product of the ordinary quaternion with the dual quaternion.
If the dot product of the two quaternions is less than zero, it means they are both facing

in opposite direction. We thus subtract the quaternion from the blended dual quaternion,

otherwise we add it to the blended dual quaternion:

float yc¢ = 1.0, zc = 1.0, wc = 1.0;
if (dot (Bones[viBlendIndices.x * 27,
Bones [viBlendIndices.y * 2])

yc = -1.0;
if (dot (Bones[viBlendIndices.x * 27,
Bones [viBlendIndices.z * 2])

zc = -1.0;
if (dot (Bones[viBlendIndices.x * 27,
Bones [viBlendIndices.w * 2])

wc = -1.0;

blendDQ[0] Bones [viBlendIndices.x *

< 0.0)

< 0.0)

< 0.0)

2] * vBlendWeights.x;

blendDQ[1] = Bones[viBlendIndices.x * 2 + 1] * vBlendWeights.x;
blendDQ[0] += yc*Bones|[viBlendIndices.y * 2] * vBlendWeights.y;
blendDQ[1] += yc*Bones[viBlendIndices.y * 2 +1] * vBlendWeights.y;
blendDQ[0] += zc*Bones[viBlendIndices.z * 2] * vBlendWeights.z;
blendDQ[1] += zc*Bones[viBlendIndices.z * 2 +1] * vBlendWeights.z;
blendDQ[0] += wc*Bones[viBlendIndices.w * 2] * vBlendWeights.w;
blendDQ[1] += wc*Bones[viBlendIndices.w * 2 +1] * vBlendWeights.w;
The blended dual quaternion (b1endDQ) is then converted to a matrix by the
dualQuatToMatrix function, which is defined as follows:

mat4 dualQuatToMatrix(vec4d Qn, vecd 0d) {

mat4 M;

float len2 = dot(Qn, Qn);

float w = On.w, x = Qn.x, y = Qn.y, z = Qn.z;

float t0 = Qd.w, tl1l = Qd.x, t2 = Qd.y, t3 = Qd.z;

M[0] [0] = w*w + X*xX - y*y - z*z;

M[O][1] =2 * x * y + 2 * w * z;

M[0][2] =2 * x * z2 - 2 * w * y;

M[0] [3] = 0;

M[1][0] = 2 * x * y - 2 * w * z;

M[1][1] =w * w +y *y - x X -z * z;

M[1][2] =2 * y * 2 + 2 * w * x;

M[1] [3] = 0O;

277

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

M[2] [0] = 2 * x * z2 + 2 * w * y;

M[2][1] = 2 * vy * 2 - 2 * w * x;

M[2][2] =w * w + 2 * 2 - X * X -y * y;

M[2] [3] = O;

M[3][0] = -2 * £t0 * X + 2 * w * tl - 2 * £t2 * z + 2 * y * t3;
M[3][1] = -2 * £t0 * y + 2 * tl * z - 2 * x * £3 + 2 * w * t2;
M[3][2] = -2 * £t0 * z + 2 * X * t2 + 2 * w * £3 - 2 * tl * y;

M[3] [3] = len2;
M /= len2;

return M;

}

The returned matrix is then multiplied with the given vertex/normal, and then the eye
space position/normal and texture coordinates are obtained. Finally, the clip space
position is calculated:

mat4 skinTransform = dualQuatToMatrix (blendDQ[0], blendDQ[1]) ;
blendVertex = skinTransform*vec4 (vVertex,1) ;

blendNormal = (skinTransform*vec4 (vNormal,O0)) .xyz;
vEyeSpacePosition = (MV*blendVertex) .xyz;
vEyeSpaceNormal = N*blendNormal;

vUVout=vUV;
gl Position = P*vec4 (vEyeSpacePosition,1);

The fragment shader follows the similar steps as it did in the previous recipe to output the lit
textured fragments.

The demo application for this recipe renders the dwarf anim.ezm skeletal model. Even
with extreme rotation at the shoulder joint, the output does not suffer from candy wrapper
artefacts as shown in the following figure:

278

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

On the other hand, if we use the matrix palette skinning, we get the following output, which
clearly shows the candy wrapper artefacts:

See also

» Skinning with Dual Quaternions at http://isg.cs.tcd.ie/projects/
DualQuaternions/

» Skinning with Dual Quaternions demo in NVIDIA DirectX sdk 10.5 at http://
developer.download.nvidia.com/SDK/10.5/direct3d/samples.html

» Dual Quaternion Google Summer of Code 2011 implementation in OGRE at http://
www.ogre3d.org/tikiwiki/tiki-index.php?page=S0C2011%20Dual%20
Quaternion%20Skinning

Modeling cloth using transform feedback

In this recipe we will use the transform feedback mechanism of the modern GPU to model
cloth. Transform feedback is a special mode of modern GPU in which the vertex shader can
directly output to a buffer object. This allows developers to do complex computations without
affecting the rest of the rendering pipeline. We will elaborate how to use this mechanism to
simulate cloth entirely on the GPU.

From the implementation point of view in modern OpenGL, transform feedback exists as an
OpenGL object similar to textures. Working with transform feedback object requires two steps:
first, generation of transform feedback with specification of shader outputs, and second,
usage of the transform feedback for simulation and rendering. We generate it by calling the
glGetTransformFeedbacks function and passing it the number of objects and the variable
to store the returned IDs. After the object is created, it is bound to the current OpenGL context
by calling glBindTransformFeedback, and its only parameter is the ID of the transform
feedback object we are interested to bind.

279

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

Next, we need to register the vertex attributes that we want to record in a transform feedback
buffer. This is done through the glTransformFeedbackVaryings function. The parameters
this function requires are in the following order: the shader program object, the number of
outputs from the shader, the names of the attributes, and the recording mode. Recording
mode can be either GL_INTERLEAVED ATTRIBS (which means that the attributes will all

be stored in a single interleaved buffer object) or GL_SEPARATE ATTRIBS (which means
each attribute will be stored in its own buffer object). Note that the shader program has to be
relinked after the shader output varyings are specified.

We also have to set up our buffer objects that are going to store the attributes' output through
transform feedback. At the rendering stage, we first set up our shader and the required
uniforms. Then, we bind out vertex array objects storing out buffer object binding. Next, we
bind the buffer object for transform feedback by calling the g1lBindBufferBase function.
The first parameter is the index and the second parameter is the buffer object ID, which will
store the shader output attribute. We can bind as many objects as we need, but the total
calls to this function must be at least equal to the total output attributes from the vertex
shader. Once the buffers are bound, we can initiate transform feedback by issuing a call to
glBeginTransformFeedback and the parameter to this function is the output primitive
type. We then issue our glDraw* call and then call glEndTransformFeedback.

OpenGL 4.0 and above provide a very convenient function,
\ glDrawTransformFeedback. We just give it out primitive type and it
~ automatically renders our primitives based on the total number of outputs
Q from the vertex shader. In addition, OpenGL 4.0 provides the ability to pause/
resume the transform feedback object as well as outputting to multiple
transform feedback streams.

For the cloth simulation implementation using transform feedback, this is how we proceed.
We store the current and previous position of the cloth vertices into a pair of buffer objects.
To have convenient access to the buffer objects, we store these into a pair of vertex array
objects. Then in order to deform the cloth, we run a vertex shader that inputs the current and
previous positions from the buffer objects. In the vertex shader, the internal and external
forces are calculated for each pair of cloth vertices and then acceleration is calculated. Using
Verlet integration, the new vertex position is obtained. The new and previous positions are
output from the vertex shader, so they are written out to the attached transform feedback
buffers. Since we have a pair of vertex array objects, we ping pong between the two. This
process is continued and the simulation proceeds forward.

280

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The whole process is well summarized by the following figure:

------ Read Path
— Update VAQ, (—e —— Write Path
Bind Vertex Array
Object
- Update VAO;
Position/
—1 Previous Position
VBO O A
. .| Transform N Draw
Bind Buffer Base Feedback Points
f Position/ !
- Previous Position —e
: VBO4 ! T
Render E Render |
VAQ, ' VAO, H

More details of the inner workings of this method are detailed in the reference in the
See also section.

Getting ready

The code for this recipe is contained in the Chapter8/TransformfeedbackCloth folder.

How to do it...

Let us start the recipe by following these simple steps:

1.

Generate the geometry and topology for a piece of cloth by creating a set of points
and their connectivity. Bind this data to a buffer object. The vectors X and X_last
store the current and last position respectively, and the vector F stores the force for
each vertex:

vector<GLushort> indices;
vector<glm: :vecd> X;
vector<glm: :vec4> X last;
vector<glm: :vec3> F;

281

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

282

indices.resize (numX*numY*2+*3) ;

X.resize(total points);

X last.resize(total points);

F.resize(total points);

for(int j=0;j

<=num¥;j++) {

for (int i=0;i<=numX;i++) {
(((float(i)/(u-1)) *2-1)* hsize,

X[count] = glm::vec4
sizeX+1l, ((float(j)/(v-1))
X last [count] = X[count];
count++;
}
}
GLushort* id=&indices[0];
for (int i = 0; i < num¥; i++) {

for (int j

= 0; j < numX; Jj++)

* gizeY),1);

{

int 10 = i * (numX+1l) + J;
int i1 = 10 + 1;
int i2 = 10 + (numX+1);
int i3 = 12 + 1;
if ((§+1)%2) {
*id++ = 10; *id++ = 12; *id++ = 11;
*id4++ = 1i1l; *id++ = 12; *id++ = 13;
} else {
*id++ = 10; *id++ = 12; *id++ = 13;
*id++ = 10; *id++ = 13; *id++ = 11;
}
}
}
glGenVertexArrays (1, &clothVAOID) ;
glGenBuffers (1, &clothVBOVerticesID) ;
glGenBuffers (1, &clothVBOIndicesID) ;
glBindVertexArray (clothVAOID) ;
glBindBuffer (GL ARRAY BUFFER, clothVBOVerticeslID) ;
glBufferData (GL_ARRAY BUFFER, sizeof (float)*4*X.size(),

&X[0].x, GL_

STATIC_ DRAW) ;

glEnableVertexAttribArray (0) ;
glVertexAttribPointer (0,

4, GL_FLOAT, GL_FALSE,0,0);
glBindBuffer (GL_ELEMENT ARRAY BUFFER, clothVBOIndicesID) ;
glBufferData (GL_ELEMENT ARRAY BUFFER,

sizeof (GLushort) *indices.size (),
glBindVertexArray (0) ;

gindices[0], GL_STATIC DRAW) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Create two pairs of vertex array objects (VAO), one pair for rendering and another
pair for update of points. Bind two buffer objects (containing current positions and
previous positions) to the update VAO, and one buffer object (containing current
positions) to the render VAO. Also attach an element array buffer for geometry
indices. Set the buffer object usage parameter as GL_DYNAMIC COPY). This usage
parameter hints to the GPU that the contents of the buffer object will be frequently
changed, and it will be read in OpenGL or used as a source for GL commands:

glGenVertexArrays (2, vaoUpdatelD) ;
glGenVertexArrays (2, vaoRenderID) ;
glGenBuffers(2, vboID_ Pos) ;
glGenBuffers(2, vboID PrePos) ;
for(int i=0;i<2;i++)
glBindVertexArray (vaoUpdateID[i]) ;
glBindBuffer (GL ARRAY BUFFER, vboID Pos[i]);
glBufferData(GL ARRAY BUFFER, X.size()* sizeof (glm::vec4),
&(X[0] .x), GL_DYNAMIC_COPY) ;
glEnableVertexAttribArray (0) ;
glVertexAttribPointer (0, 4, GL _FLOAT, GL_FALSE, 0, 0);
glBindBuffer (GL ARRAY BUFFER, vboID PrePos[i]);
glBufferData (GL_ARRAY BUFFER,
X last.size() *sizeof (glm::vec4), &(X last[0].x),
GL_DYNAMIC_COPY) ;
glEnableVertexAttribArray (1) ;
glVertexAttribPointer (1, 4, GL_FLOAT, GL_FALSE, 0,0);
}
//set render vao
for(int i=0;i<2;i++)
glBindVertexArray (vaoRenderID[i]) ;
glBindBuffer (GL ARRAY BUFFER, vboID Pos[i]);
glEnableVertexAttribArray (0) ;
glVertexAttribPointer (0, 4, GL _FLOAT, GL_FALSE, 0, 0);
glBindBuffer (GL_ELEMENT ARRAY BUFFER, vboIndices) ;
if (1==0)
glBufferData (GL_ELEMENT_ARRAY_BUFFER,
indices.size () *sizeof (GLushort), &indices[0],
GL_STATIC_DRAW) ;

283

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU
3.

For ease of access in the vertex shader, bind the current and previous position buffer
objects to a set of buffer textures. The buffer textures are one dimensional textures
that are created like normal OpenGL textures using the glGenTextures call, but
they are bound to the GL._TEXTURE_BUFFER target. They provide read access to the
entire buffer object memory in the vertex shader. The data is accessed in the vertex
shader using the texelFetchBuf fer function:
for(int i=0;i<2;i++) {

glBindTexture (GL_TEXTURE BUFFER, texPosID[i]);

glTexBuffer (GL_TEXTURE BUFFER, GL_ RGBA32F, vboID Pos[i]);

glBindTexture (GL_TEXTURE BUFFER, texPrePosID[i]);

glTexBuffer (GL_TEXTURE BUFFER, GL RGBA32F, vboID PrePos[i]);

}

4. Generate a transform feedback object and pass the attribute names that will be

284

output from our deformation vertex shader. Make sure to relink the program.

glGenTransformFeedbacks (1, &tfID);
glBindTransformFeedback (GL_TRANSFORM FEEDBACK, tfID);
const char* varying names[]={"out position mass",
"out prev position"};
glTransformFeedbackVaryings (massSpringShader.GetProgram(), 2,
varying_names, GL_SEPARATE_ATTRIBS) ;
glLinkProgram(massSpringShader.GetProgram()) ;

In the rendering function, bind the cloth deformation shader (Chapters/
TransformFeedbackCloth/shaders/Spring.vert) and then run a loop. In
each loop iteration, bind the texture buffers, and then bind the update vertex array
object. At the same time, bind the previous buffer objects as the transform feedback
buffers. These will store the output from the vertex shader. Disable the rasterizer,
begin the transform feedback mode, and then draw the entire set of cloth vertices.
Use the ping pong approach to swap the read/write pathways:

massSpringShader.Use() ;
glUniformMatrix4fv (massSpringShader ("MVP"), 1, GL FALSE,
glm::value ptr (mMVP)) ;
for(int i=0;i<NUM_ITER;i++) {
glActiveTexture (GL_TEXTUREO) ;
glBindTexture (GL_TEXTURE BUFFER, texPosID|[writeID]) ;
glActiveTexture (GL_TEXTUREL) ;
glBindTexture (GL_TEXTURE BUFFER, texPrePosID[writelID]) ;
glBindVertexArray (vaoUpdateID[writeID]) ;
glBindBufferBase (GL_TRANSFORM_FEEDBACK_BUFFER, 0,
vboID_ Pos [readID]) ;
glBindBufferBase (GL_TRANSFORM_FEEDBACK_BUFFER, 1,
vboID PrePos [readID]) ;
glEnable (GL_RASTERIZER_DISCARD) ; // disable rasrization

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

}

glBeginQuery (GL _TIME ELAPSED, t query) ;
glBeginTransformFeedback (GL_POINTS) ;
glDrawArrays (GL_POINTS, 0, total points);
glEndTransformFeedback () ;

glEndQuery (GL_TIME ELAPSED) ;

glFlush();

glDisable (GL_RASTERIZER DISCARD) ;

int tmp = readID;

readID=writelID;

writeID = tmp;

glGetQueryObjectui64v (t_query, GL_ QUERY RESULT,

&elapsed time) ;

delta_time = elapsed time / 1000000.0f;
massSpringShader.UnUse () ;

After the loop is terminated, bind the render VAO that renders the cloth geometry
and vertices:

glBindVertexArray (vaoRenderID [writeID]) ;
glDisable (GL_DEPTH_TEST) ;
renderShader.Use () ;
glUniformMatrix4fv (renderShader ("MVP"), 1, GL_ FALSE,
glm: :value ptr (mMVP)) ;
glDrawElements (GL_TRIANGLES, indices.size(),
GL_UNSIGNED SHORT, 0) ;
renderShader.UnUse () ;
glEnable (GL_DEPTH TEST) ;
if (bDisplayMasses) {
particleShader.Use() ;
glUniformli (particleShader ("selected index"),
selected index) ;

glUniformMatrix4fv (particleShader ("MV"), 1, GL FALSE,
glm::value ptr(mMV)) ;
glUniformMatrix4fv (particleShader ("MVP"), 1, GL_FALSE,

glm: :value ptr (mMVP)) ;
glDrawArrays (GL_POINTS, 0, total points);
particleShader.UnUse () ;

}

glBindVertexArray (0) ;

285

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

7. Inthe vertex shader, obtain the current and previous position of the cloth vertex.
If the vertex is a pinned vertex, set its mass to 0 so it would not be simulated;
otherwise, add an external force based on gravity. Next loop through all neighbors of
the current vertex by looking up the texture buffer and estimate the internal force:

float m = position mass.w;
vec3 pos = position mass.xyz;
vec3 pos_old = prev _position.xyz;
vec3 vel = (pos - pos_old) / dt;
float ks=0, kd=0;
int index = gl_VertexID;
int ix = index % texsize_ Xx;
int iy = index / texsize x;
if (index ==0 || index == (texsize x-1))
m = 0;
vec3 F = gravity*m + (DEFAULT DAMPING*vel) ;
for (int k=0;k<12;k++)
ivec2 coord = getNextNeighbor (k, ks, kd);

int j = coord.x;

int i = coord.y;

if (((iy + 1) < 0) || ((iy + 1) > (texsize y-1)))
continue;

if (((ix + J) < 0) || ((ix + J) > (texsize x-1)))
continue;

int index neigh = (iy + i) * texsize x + ix + J;

vec3 p2 = texelFetchBuffer (tex position mass,

index neigh) .xyz;

vec3 p2 last = texelFetchBuffer (tex prev position mass,
index neigh) .xyz;

vec2 coord neigh = vec2(ix + j, iy + 1i)*step;

float rest length = length(coord*inv_cloth size);

vec3 v2 = (p2- p2_ last)/dt;

vec3 deltaP = pos - p2;

vecl3 deltaV = vel - v2;

float dist = length(deltaP) ;

float leftTerm = -ks * (dist-rest_ length);
float rightTerm = kd * (dot (deltaVv, deltaP)/dist);
vec3 springForce = (leftTerm + rightTerm) *

normalize (deltaP) ;
F += springForce;

286

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

8. Using the combined force, calculate the acceleration and then estimate the new
position using Verlet integration. Output the appropriate attribute from the shader:

vec3 acc = vec3(0);
if (m!=0)
acc = F/m;
vec3 tmp = pos;
pos = pos * 2.0 - pos_old + acc* dt * dt;
pos_old = tmp;
pos.y=max (0, pos.y);
out_position mass = vec4(pos, m);
out_prev_position = vec4 (pos_old,m);
gl Position = MVP*vec4 (pos, 1);

There are two parts of this recipe, the generation of geometry and identifying output attributes
for transform feedback buffers. We first generate the cloth geometry and then associate our
buffer objects. To enable easier access of current and previous positions, we bind the position
buffer objects as texture buffers.

To enable deformation, we first bind our deformation shader and the update VAO. Next, we
specify the transform feedback buffers that receive the output from the vertex shader. We
disable the rasterizer to prevent the execution of the rest of the pipeline. Next, we begin the
transform feedback mode, render our vertices, and then end the transform feedback mode.
This invokes one step of the integration. To enable more steps, we use a ping pong strategy
by binding the currently written buffer object as the read point for the next iteration.

The actual deformation is carried out in the vertex shader (Chapter8s/
TransformFeedbackCloth/shaders/Spring.vert). We first determine the current and
previous positions. The velocity is then determined. The current vertex ID (g1 _VertexID) is
used to determine the linear index of the current vertex. This is a unique index of each vertex
and can be used by a vertex shader. We use it here to determine if the current vertex is a
pinned vertex. If so, the mass of 0 is assigned to it which makes this vertex immovable:

float m = position mass.w;

vec3 pos = position mass.Xyz;

vec3 pos_old = prev position.xyz;

vec3 vel = (pos - pos_old) / dt;

float ks=0, kd=0;

int index = gl_VertexID;

int ix = index % texsize_ Xx;

int iy = index / texsize_ x;

if (index ==0 || index == (texsize x-1))
m= 0;

287

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

Next, the acceleration due to gravity and velocity damping force is applied. After this, a
loop is run which basically loops through all of the neighbors of the current vertex and
estimates the net internal (spring) force. This force is then added to the combined force
for the current vertex:

vec3 F = gravity*m + (DEFAULT DAMPING*vel) ;

for (int k=0;k<12;k++)
ivec2 coord = getNextNeighbor(k, ks, kd);

int j = coord.x;

int i = coord.y;

if (((iy + 1) < 0) || ((iy + i) > (texsize y-1)))
continue;

if (((ix + J) < 0) || ((ix + j) > (texsize x-1)))
continue;

int index neigh = (iy + 1) * texsize x + ix + Jj;

vec3 p2 = texelFetchBuffer (tex position mass,

index neigh) .xyz;

vec3 p2 last = texelFetchBuffer (tex prev position mass,
index neigh) .xyz;

vec2 coord neigh = vec2(ix + j, iy + 1i)*step;

float rest length = length(coord*inv cloth size);

vec3 v2 = (p2- p2_ last)/dt;

vec3 deltaP = pos - p2;

vec3 deltaV = vel - v2;

float dist = length(deltaP);

float leftTerm = -ks * (dist-rest length);

float rightTerm = kd * (dot(deltaV, deltaP)/dist);

vecl3 springForce = (leftTerm + rightTerm)* normalize (deltaP) ;
F += springForce;

}

From the net force, the acceleration is first obtained and then the new position is obtained
using Verlet integration. Finally, the collision with the ground plane is determined by looking
at the Y value. We end the shader by outputting the output attributes (out _position and
out_prev_position), which are then stored into the buffer objects bound as the transform
feedback buffers:

vec3 acc = vec3(0);
if (m!=0)
acc = F/m;
vec3 tmp = pos;
pos = pos * 2.0 - pos_old + acc* dt * dt;
pos_old = tmp;
pos.y=max (0, pos.y);

288

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

out position mass = vec4 (pos, m);
out_prev position = vec4 (pos_old,m);
gl Position = MVP*vec4 (pos, 1);

The shader, along with the transform feedback mechanism, proceeds to deform all of the
cloth vertices and in the end, we get the cloth vertices deformed.

There's more...

The demo application implementing this recipe shows the piece of cloth falling under gravity.
Several frames from the deformation are shown in the following figure. Using the left mouse
button, we can pick the cloth vertices and move them around.

'5{‘:‘--.-_ _-,-'-":“-" ‘:‘\n ,-f

i .)
‘g,::w\"ﬂhw‘ e

In this recipe we only output to a single stream. We can attach more than one stream and
store results in separate buffer objects. In addition, we can have several transform feedback
objects and we can pause/resume them as required.

» Chapter 17, Real-Time Physically Based Deformation Using Transform Feedback, in
OpenGL Insights, AK Peters CRC press

289

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

Implementing collision detection and

response on a transform feedback-based
cloth model

In this recipe, we will build on top of the previous recipe and add collision detection and
response to the cloth model.

Getting ready

The code for this recipe is contained in the Chapters/
TransformFeedbackClothCollision directory. For this recipe, the setup code and
rendering code remains the same as in the previous recipe. The only change is the addition
of the ellipsoid/sphere collision code.

How to do it...

Let us start this recipe by following these simple steps:

1. Generate the geometry and topology for a piece of cloth by creating a set of points
and their connectivity. Bind this data to a buffer object as in the previous recipe.

2. Set up a pair of vertex array objects and buffer objects as in the previous recipe.
Also attach buffer textures for easier access to the buffer object memory in the
vertex shader.

3. Generate a transform feedback object and pass the attribute names that will be
output from our deformation vertex shader. Make sure to relink the program again:

glGenTransformFeedbacks (1, &tfID);

glBindTransformFeedback (GL_TRANSFORM FEEDBACK, tfID);

const char* varying names[]={"out position mass", "out prev_
position"};

glTransformFeedbackVaryings (massSpringShader.GetProgram(), 2,
varying names, GL_SEPARATE ATTRIBS) ;

glLinkProgram(massSpringShader.GetProgram()) ;

4. Generate an ellipsoid object by using a simple 4x4 matrix. Also store the inverse of
the ellipsoid's transform. The location of the ellipsoid is stored by the translate matrix,
the orientation by the rotate matrix, and the non-uniform scaling by the scale matrix
as follows. When applied, the matrices work in the opposite order. The non-uniform
scaling causes the sphere to compress in the Z direction first. Then, the rotation
orients the ellipsoid such that it is rotated by 45 degrees on the X axis. Finally, the
ellipsoid is shifted by 2 units on the Y axis:

ellipsoid = glm::translate(glm::mat4 (1) ,glm::vec3(0,2,0));
ellipsoid = glm::rotate(ellipsoid, 45.0f ,glm::vec3(1,0,0));

290

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

ellipsoid = glm::scale(ellipsoid,
glm: :vec3 (fRadius, fRadius, fRadius/2)) ;
inverse ellipsoid = glm::inverse(ellipsoid) ;

In the rendering function, bind the cloth deformation shader (Chapters/
TransformFeedbackClothCollision/shaders/Spring.vert)and thenruna
loop. In each iteration, bind the texture buffers, and then bind the update vertex array
object. At the same time, bind the previous buffer objects as the transform feedback
buffers. Do the ping pong strategy as in the previous recipe.

After the loop is terminated, bind the render VAO and render the cloth:

glBindVertexArray (vaoRenderID [writeID]) ;
glDisable (GL_DEPTH_TEST) ;
renderShader.Use () ;
glUniformMatrix4fv (renderShader ("MVP"), 1, GL_ FALSE,
glm: :value ptr (mMVP)) ;
glDrawElements (GL_TRIANGLES, indices.size(),
GL_UNSIGNED SHORT, 0) ;
renderShader.UnUse () ;
glEnable (GL_DEPTH TEST) ;
if (bDisplayMasses) {
particleShader.Use() ;
glUniformli (particleShader ("selected index"),
selected index) ;

glUniformMatrix4fv (particleShader ("MV"), 1, GL FALSE,
glm: :value ptr(mMV)) ;
glUniformMatrix4fv (particleShader ("MVP"), 1, GL_FALSE,

glm::value ptr (mMVP)) ;

glDrawArrays (GL_POINTS, 0, total points);

particleShader.UnUse(); }
glBindVertexArray(0);

In the vertex shader, obtain the current and previous position of the cloth vertex.

If the vertex is a pinned vertex, set its mass to 0 so it would not be simulated,
otherwise, add an external force based on gravity. Next, loop through all neighbors
of the current vertex by looking up the texture buffer and estimate the internal force:

float m = position mass.w;

vec3 pos = position mass.xyz;
vec3 pos_old = prev position.xyz;
vec3 vel = (pos - pos_old) / dt;
float ks=0, kd=0;

int index = gl VertexID;

int ix = index % texsize x;

int iy = index / texsize x;

291

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

if (index ==0 || index == (texsize x-1))

m = 0;
vec3 F = gravity*m + (DEFAULT DAMPING*vel) ;
for (int k=0;k<12;k++) {

ivec2 coord = getNextNeighbor(k, ks, kd);

int j = coord.x;

int i = coord.y;

if (((iy + 1) < 0) || ((iy + i) > (texsize y-1)))
continue;

if (((ix + j) < 0) || ((ix + J) > (texsize x-1)))
continue;

int index neigh = (iy + i) * texsize x + ix + Jj;

vec3 p2 = texelFetchBuffer (tex position mass,

index neigh) .xyz;

vec3 p2 last = texelFetchBuffer(tex prev position mass,
index neigh) .xyz;

vec2 coord neigh = vec2(ix + j, iy + 1i)*step;

float rest length = length(coord*inv cloth size);

vec3 v2 = (p2- p2 last)/dt;

vec3 deltaP = pos - p2;

vec3 deltaV = vel - v2;

float dist = length(deltaP);

float leftTerm = -ks * (dist-rest length);
float rightTerm = kd * (dot(deltaV, deltaP)/dist);
vec3 springForce = (leftTerm + rightTerm) *

normalize (deltaP) ;
F += springForce;

}

8. Using the combined force, calculate the acceleration and then estimate the new
position using Verlet integration. Output the appropriate attribute from the shader:

vec3 acc = vec3(0);
if (m!=0)
acc = F/m;
vec3 tmp = pos;
pos = pos * 2.0 - pos_old + acc* dt * dt;
pos_old = tmp;
pos.y=max (0, pos.y);

292

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

9. After applying the floor collision, check for collision with an ellipsoid. If there is a
collision, modify the position such that the collision is resolved. Finally, output the
appropriate attributes from the vertex shader.

vec4 x0 = inv_ellipsoid*vec4 (pos,1);

vec3 deltal = x0.xyz-ellipsoid.xyz;

float dist2 = dot(deltaO, deltaO);

if (dist2<1) {
delta0 = (ellipsoid.w - dist2) * delta0 / dist2;
vec3 delta;
vec3 transformInv = vec3(ellipsoid xform[0] .x,
ellipsoid xform([1] .x,
ellipsoid xform([2] .x);
transformInv /= dot (transformInv, transformInv) ;
delta.x = dot(deltal0, transformInv) ;
transformInv = vec3(ellipsoid xform[0] .y,
ellipsoid xform([1].y,
ellipsoid xform(2].y);
transformInv /= dot (transformInv, transformInv) ;
delta.y = dot(delta0, transformInv);
transformInv = vec3(ellipsoid xform([0].z,
ellipsoid xform([1] .z,
ellipsoid xform(2].z);
transformInv /= dot (transformInv, transformInv) ;
delta.z = dot(deltal0, transformInv) ;
pos += delta ;
pos_old = pos;

}

out position mass = vec4 (pos, m);

out_prev_position = vec4 (pos_old,m);

gl Position = MVP*vec4 (pos, 1);

The cloth deformation vertex shader has some additional lines of code to enable collision
detection and response. For detection of collision with a plane, we can simply put the current
position in the plane equation to find the distance of the current vertex from the plane. If it is
less than O, we have passed through the plane, in which case, we can move the vertex back in
the plane's normal direction.

void planeCollision(inout vec3 x, vec4d plane) ({
float dist = dot(plane.xyz,x)+ plane.w;
if (dist<0) {
X += plane.xyz*-dist;

}

293

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

Simple geometric primitive, like spheres and ellipsoids, are trivial to handle. In case of
collision with the sphere, we check the distance of the current position from the center of the
sphere. If this distance is less than the sphere's radius, we have a collision. Once we have a
collision, we push the position in the normal direction based on the amount of penetration.

void sphereCollision(inout vec3 x, vec4 sphere)

{

vec3 delta = x - sphere.xyz;
float dist = length(delta);
if (dist < sphere.w)
x = sphere.xyz + delta* (sphere.w / dist);

M Note that in the preceding calculation, we can avoid the square root
Q altogether by comparing against the squared distance. This can provide
significant performance gain when a large number of vertices are there.

For an arbitrarily oriented ellipsoid, we first move the point into the ellipsoid's object space by
multiplying with the inverse of the ellipsoid's transform. In this space, the ellipsoid is a unit
sphere, hence we can then determine collision by simply looking at the distance between the
current vertex and the ellipsoid. If it is less than 1, we have a collision. In this case, we then
transform the point to the ellipsoids world space to find the penetration depth. This is then
used to displace the current position out in the normal direction.

vec4 x0 = inv_ellipsoid*vec4 (pos,1);

vec3 deltal0 = x0.xyz-ellipsoid.xyz;

float dist2 = dot(deltaO, deltaO);

if (dist2<1) |

delta0 = (ellipsoid.w - dist2) * delta0 / dist2;

vec3 delta;

vec3 transformInv = vec3(ellipsoid xform[0] .x, ellipsoid xform[1] .x,
ellipsoid xform([2] .x);

transformInv /= dot (transformInv, transformInv) ;

delta.x = dot(delta0, transformInv) ;

transformInv = vec3(ellipsoid xform[0].y, ellipsoid xform[1] .y,
ellipsoid xform([2].y);

transformInv /= dot (transformInv, transformInv) ;

delta.y = dot(delta0, transformInv) ;

transformInv = vec3(ellipsoid xform[0] .z, ellipsoid xform[1].z,
ellipsoid xform([2].z);

transformInv /= dot (transformInv, transformInv) ;

delta.z = dot(deltal, transformInv) ;

pos += delta ;

pos_old = pos;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

There's more...

The demo application implementing this recipe renders a piece of cloth fixed at two points
and is allowed to fall under gravity. In addition, there is an oriented ellipsoid with which the
cloth collides as shown in the following figure:

Although we have touched upon basic collision primitives, like spheres, oriented ellipsoids,
and plane, more complex primitives can be implemented with the combination of these basic
primitives. In addition, polygonal primitives can also be implemented. We leave that as an
exercise for the reader.

See also

» MOVANIA Muhammad Mobeen and Lin Feng, "A Novel GPU-based Deformation
Pipeline" in ISRN Computer Graphics, Volume 2012(2012), Article ID 936315, available
onlineathttp://downloads.hindawi.com/isrn/cg/2012/936315.pdf

295

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

Implementing a particle system using

transform feedback

In this recipe, we will implement a simple particle system using the transform feedback
mechanism. In this mode, the GPU bypasses the rasterizer and, later, the programmable
graphics pipeline stages to feedback result to the vertex shader. The benefit from this mode is
that using this feature, we can implement a physically-based simulation entirely on the GPU.

Getting ready

The code for this recipe is contained in the Chapter8/TransformFeedbackParticles
directory.

How to do it...

Let us start this recipe by following these simple steps:

1. Set up two vertex array pairs: one for update and another for rendering. Bind two
vertex buffer objects to each of the pairs, as was done in the previous two recipes.
Here, the buffer objects will store the per-particle properties. Also, enable the
corresponding vertex attributes:

glGenVertexArrays (2, vaoUpdatelD) ;

glGenVertexArrays (2, vaoRenderID) ;

glGenBuffers(2, vboID Pos) ;

glGenBuffers(2, vboID PrePos) ;

glGenBuffers(2, vboID Direction);

for(int i=0;i<2;i++)
glBindVertexArray (vaoUpdateID[i]) ;
glBindBuffer(GL_ARRAY BUFFER, vboID_Pos[i]);
glBufferData(GL ARRAY BUFFER, TOTAL PARTICLES*

sizeof (glm::vec4), 0, GL DYNAMIC COPY);

glEnableVertexAttribArray (0) ;
glVertexAttribPointer (0, 4, GL FLOAT, GL_FALSE, 0, 0);
glBindBuffer (GL ARRAY BUFFER, vboID PrePos[il]) ;
glBufferData(GL ARRAY BUFFER, TOTAL PARTICLES*
sizeof (glm::vec4), 0, GL DYNAMIC COPY);
glEnableVertexAttribArray (1) ;
glVertexAttribPointer (1, 4, GL FLOAT, GL_FALSE, 0,0);
glBindBuffer (GL ARRAY BUFFER, vboID Direction[i]);
glBufferData(GL ARRAY BUFFER, TOTAL PARTICLES*
sizeof (glm::vec4), 0, GL DYNAMIC COPY);
glEnableVertexAttribArray (2) ;

296

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

glVertexAttribPointer (2, 4, GL_FLOAT, GL_FALSE, 0,0);
}
for(int i=0;i<2;i++) {
glBindVertexArray (vaoRenderID[i]) ;
glBindBuffer(GL_ARRAY BUFFER, vboID_Pos[i]);
glEnableVertexAttribArray (0) ;
glVertexAttribPointer (0, 4, GL_FLOAT, GL FALSE, 0, 0);

}

Generate a transform feedback object and bind it. Next, specify the output attributes
from the shader that would be stored in the transform feedback buffer. After this
step, relink the shader program:

glGenTransformFeedbacks (1, &tfID);

glBindTransformFeedback (GL_TRANSFORM FEEDBACK, tfID);

const char* varying names[]={"out position",

"out prev_position", "out direction"};
glTransformFeedbackVaryings (particleShader.GetProgram(), 3,
varying names, GL_SEPARATE ATTRIBS) ;
glLinkProgram(particleShader.GetProgram()) ;

In the update function, bind the particle vertex shader that will output to the
transform feedback buffer and set the appropriate uniforms and update vertex array
object. Note that to enable read/write access, we use a pair of vertex array objects
such that we can read from one and write to another:

particleShader.Use() ;
glUniformMatrix4fv (particleShader ("MVP"), 1, GL_ FALSE,
glm: :value ptr (mMVP)) ;
glUniformlf (particleShader ("time"), t);
for(int i=0;i1<NUM_ITER;i++) {
glBindVertexArray (vaoUpdateID [readID]) ;

Bind the vertex buffer objects that will store the outputs from the transform feedback
step using the output attributes from the vertex shader:

ngindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, vboID
Pos [writeID]) ;
ngindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 1, vboID_
PrePos [writeID]) ;
ngindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 2, vboID
Direction[writeID]) ;

297

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

5. Disable the rasterizer to prevent the execution of the later stages of the pipeline and
then begin the transform feedback. Next, issue a call to the glDrawArrays function
to allow the vertices to be passed to the graphics pipeline. After this step, end the
transform feedback and then enable the rasterizer. Note that to correctly determine
the amount of execution time needed, we issue a hardware query. Next, we alternate
the read/write paths by swapping the read and write IDs:

glEnable (GL_RASTERIZER DISCARD) ;
glBeginQuery (GL_TIME_ELAPSED, t_query) ;
glBeginTransformFeedback (GL_POINTS) ;
glDrawArrays (GL_POINTS, 0, TOTAL PARTICLES) ;
glEndTransformFeedback () ;

glEndQuery (GL_TIME ELAPSED) ;
glFlush() ;

glDisable (GL_RASTERIZER DISCARD) ;

int tmp = readID;

readID=writelD;

writeID = tmp;

6. Render the particles using the render shader. First, bind the render vertex array
object and then draw the points using the glDrawArrays function:

glBindVertexArray (vaoRenderID [readID]) ;
renderShader.Use () ;

glUniformMatrix4fv (renderShader ("MVP"), 1, GL_FALSE,
glm: :value ptr (mMVP)) ;

ngrawArrays(GL_POINTS, 0, TOTAL_PARTICLES);
renderShader .UnUse () ;

glBindVertexArray (0) ;

7. Inthe particle vertex shader, check if the particle's life is greater than O. If so,
move the particle and reduce the life. Otherwise, calculate a new random direction
and reset the life to spawn the particle from the origin. Refer to Chapters/
TransformFeedbackParticles/shaders/Particle.vert for details. After
this step, output the appropriate values to the output attributes. The particle vertex
shader is defined as follows:

#version 330 core
precision highp float;
#extension EXT gpu_ shader4 : require

layout (location = 0) 1in vec4 position;
layout (location = 1) 1in vec4 prev_position;
layout (location = 2) in vec4 direction;

uniform mat4 MVP;
uniform float time;
const float PI = 3.14159;

298

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

const float TWO_PI = 2*PI;
const float PI_BY 2 PI*0.5;
const float PI_BY 4 PI BY 2*0.5;

//shader outputs

out vec4 out position;

out vec4 out prev position;
out vec4 out direction;

const float DAMPING COEFFICIENT = 0.9995;

const vec3 emitterForce = vec3(0.0f,-0.001f, 0.0f);
const vec4 collidor = vec4(0,1,0,0);

const vec3 emitterPos = vec3 (0);

float emitterYaw = (0.0f);

float emitterYawVar = TWO_ PI;
float emitterPitch = PI BY 2;
float emitterPitchVar = PI BY 4;
float emitterSpeed = 0.05f;
float emitterSpeedvVar = 0.01f;

int emitterLife = 60;

int emitterLifeVar 15;

const float UINT MAX 4294967295.0;
void main() {
vec3 prevPos = prev position.xyz;
int life = int (prev position.w);
vec3 pos = position.xyz;
float speed = position.w;
vec3 dir = direction.xyz;
if (life > 0) {
prevPos = pos;
pos += dir*speed;
if (dot (pos+emitterPos, collidor.xyz)+ collidor.w <0)
dir = reflect(dir, collidor.xyz);
speed *= DAMPING COEFFICIENT;

}

dir += emitterForce;

life--;
} else {
uint seed = uint (time + gl VertexID) ;

299

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

life = emitterLife + int (randhashf (seed++,
emitterLifeVar)) ;

float yaw = emitterYaw + (randhashf (seed++,
emitterYawVar)) ;

float pitch = emitterPitch + randhashf (seed++,
emitterPitchvar) ;

RotationToDirection (pitch, yaw, dir);

float nspeed = emitterSpeed + (randhashf (seed++,
emitterSpeedvar)) ;

dir *= nspeed;

pos = emitterPos;

prevPos = emitterPos;

speed = 1;

}

out position = vec4 (pos, speed);

out prev position = vec4 (prevPos, life);

out direction = vec4 (dir, 0);

gl Position = MVP*vec4 (pos, 1);

}

The three helper functions randhash, randhashf, and RotationToDirection
are defined as follows:

uint randhash (uint seed) {
uint i=(seed”12345391u) *2654435769u;
i%=(i<<6u) * (i>>26u) ;
1*=2654435769u;
i+=(i<<5u) * (i>>12u) ;
return 1i;

float randhashf (uint seed, float b) {
return float (b * randhash(seed)) / UINT MAX;

void RotationToDirection (float pitch, float yaw,
out vec3 direction) {
direction.x = -sin(yaw) * cos(pitch);

direction.y = sin(pitch);

direction.z = cos(pitch) * cos(yaw);

300

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The transform feedback mechanism allows us to feedback one or more attributes from the
vertex shader or geometry shader back to a buffer object. This feedback path could be used
for implementing a physically-based simulation. This recipe uses this mechanism to output
the particle position after each iteration. After each step, the buffers are swapped and,
therefore, it can simulate the particle motion.

To make the particle system, we first set up three pairs of vertex buffer objects that store the
per-particle attributes that we input to the vertex shader. These include the particle's position,
previous position, life, direction, and speed. These are stored into separate buffer objects

for convenience. We could have stored all of these attributes into a single interleaved buffer
object. Since we output to the buffer object from our shader, we specify the buffer object
usage as GL_DYNAMIC COPY. Similarly, we set up a separate vertex array object for rendering
the particles:

for(int i=0;i<2;i++)
glBindVertexArray (vaoUpdateID[i]) ;
glBindBuffer(GL_ARRAY BUFFER, vboID_Pos[i]);
glBufferData(GL ARRAY BUFFER, TOTAL PARTICLES*
sizeof (glm::vec4), 0, GL DYNAMIC COPY) ;
glEnableVertexAttribArray (0) ;
glVertexAttribPointer (0, 4, GL_FLOAT, GL_FALSE, 0, 0);
glBindBuffer (GL ARRAY BUFFER, vboID PrePos[i]) ;
glBufferData(GL ARRAY BUFFER,
TOTAL PARTICLES*sizeof (glm::vec4), 0, GL DYNAMIC COPY);
glEnableVertexAttribArray (1) ;
glVertexAttribPointer (1, 4, GL_FLOAT, GL FALSE, 0,0);
glBindBuffer (GL ARRAY BUFFER, vboID Direction[il]) ;
glBufferData(GL ARRAY BUFFER,
TOTAL PARTICLES*sizeof (glm::vec4), 0, GL DYNAMIC COPY);
glEnableVertexAttribArray (2) ;
glVertexAttribPointer (2, 4, GL_FLOAT, GL FALSE, 0,0);
}
for(int i=0;i<2;i++)
glBindVertexArray (vaoRenderID[i]) ;
glBindBuffer(GL_ARRAY BUFFER, vboID_Pos[i]);
glEnableVertexAttribArray (0) ;
glVertexAttribPointer (0, 4, GL_FLOAT, GL_FALSE, 0, 0);

301

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

Next, we specify the shader output attributes that we would like to connect to the transform
feedback buffers. We use three outputs, namely out position, out prev position,
and out_direction, which output the particle's current position, particle's previous
position, and the particle's direction along with the particle's speed, current, and initial life,
respectively. We specify that we would connect these to separate buffer objects:

glGenTransformFeedbacks (1, &tfID);

glBindTransformFeedback (GL_TRANSFORM FEEDBACK, tfID);

const char* varying names[]={"out position", "out prev position",
"out direction"};

glTransformFeedbackVaryings (particleShader.GetProgram(), 3, varying
names, GL_SEPARATE ATTRIBS) ;
glLinkProgram(particleShader.GetProgram()) ;

One last step is the actual initialization of the transform feedback. We do so by first binding
the particle vertex shader. Then, we pass the appropriate uniforms to the shader, which
includes the combined modelview projection (MVP) matrix and the time (t):

particleShader.Use() ;
glUniformMatrix4fv(particleShader ("MVP") ,1,GL_FALSE,
glm::value ptr (mMVP)) ;
glUniformlf (particleShader ("time"), t);

We then run a loop for the number of iterations desired. In the loop, we first bind the update
vertex array object and assign the appropriate transform feedback buffer base indices:

for(int i=0;i<NUM_ITER;i++) {
glBindVertexArray (vaoUpdateID[readID]) ;
glBindBufferBase (GL_TRANSFORM FEEDBACK BUFFER, O,
vboID Pos|[writeID]) ;
glBindBufferBase (GL_TRANSFORM FEEDBACK BUFFER, 1,
vboID PrePos[writelID]) ;
glBindBufferBase (GL_TRANSFORM FEEDBACK BUFFER, 2,
vboID Direction[writeID]) ;

We then disable the rasterizer and begin the transform feedback. During this, we issue a
glDrawArrays call to pass the vertices to the vertex shader. Next, we end the transform
feedback and then restore the rasterizer. Finally, we swap the read/write pathways. In
between, to estimate the amount of time needed for this process, we issue an OpenGL
hardware timer query (GL_TIME ELAPSED). This returns the total time in nanoseconds:

glEnable (GL_RASTERIZER_DISCARD) ; // disable rasterization
glBeginQuery (GL_TIME_ELAPSED, t_query) ;
glBeginTransformFeedback (GL_POINTS) ;
glDrawArrays (GL_POINTS, 0, TOTAL PARTICLES) ;
glEndTransformFeedback () ;
glEndQuery (GL_TIME ELAPSED) ;

302

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

glFlush();
glDisable (GL_RASTERIZER DISCARD) ;
int tmp = readID;
readID=writelID;
writeID = tmp;
}
// get the query result
glGetQueryObjectui64v (t_query, GL_QUERY RESULT, &elapsed time);
delta_time = elapsed time / 1000000.0f;
particleShader.UnUse() ;

The main work of particle simulation takes place in the vertex shader (Chapters8/
TransformFeedbackParticles/shaders/Particle.vert). After storing the initia
attributes, the particle's life is checked. If the value is greater than O, we update the position
of the particle using the current direction of the particle and its speed. Next, we then check
the particle for collision with the colliding plane. If there is a collision, we deflect the particle
using the reflect GLSL function, passing it the particle's current direction of motion and the
normal of the collidor. We also reduce the speed on collision. We then increase the direction
of the particle using the emitter's force. We then reduce the life of the particle:

if (1ife > 0) {

prevPos = pos;

pos += dir*speed;

if (dot (pos+emitterPos, collidor.xyz)+ collidor.w <0) {
dir = reflect(dir, collidor.xyz);
speed *= DAMPING COEFFICIENT;

}

dir += emitterForce;

life--;

}

If the life is less than O, we reset the particle's direction of motion to a new random direction.
We reset the life to a random value based on the maximum allowed value. The current and
previous positions of the particle are reset to the emitter origin and finally, the speed is reset
to the default value. We then output the output attributes:

else {
uint seed = uint (time + gl VertexID) ;
life = emitterLife + int (randhashf (seed++, emitterLifeVar)) ;
float yaw = emitterYaw + (randhashf (seed++, emitterYawVar));
float pitch=emitterPitch+randhashf (seed++, emitterPitchvar) ;
RotationToDirection(pitch, yaw, dir);
float nspeed = emitterSpeed + (randhashf (seed++,
emitterSpeedvVar));
dir *= nspeed;

303

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal and Physically-based Simulation on the GPU

pos = emitterPos;
prevPos = emitterPos;
speed = 1;
}
out position = vec4 (pos, speed);
out prev position = vec4 (prevPos, life);
out direction = vec4 (dir, 0);
gl Position = MVP*vec4 (pos, 1);

There's more...

The demo application for this recipe generates a simple particle system running entirely on
the GPU using the transform feedback mechanism coupled with a vertex shader that writes to
output attributes bound as transform feedback buffers. Running the demo application gives
us the output as shown in the following figure:

|WT“‘ SIS 4B mares o e 137 L607 1F T 1431

Note that for this demo, we render the particles as points of size 10 units. We could easily
change the rendering mode to point sprites with size modified in the vertex shader to give the
particles a different look. Also, we can also change the colors and blending modes to achieve
various effects. In addition, we could achieve the same result by using one vertex buffer pair
with interleaved attributes or two separate transform feedback objects. All of these variants
should be straightforward to implement by following the guidelines laid out in this recipe.

304

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

We had already looked at a simple approach of simulating GPU-based particle systems using
vertex shader in Chapter 5, Mesh Model Formats and Particle Systems, we will now detail
pros and cons of each. In Chapter 5 we presented a stateless particle system since all of the
attributes (that is, position and velocity) were generated on the fly using the vertex ID, time,
and basic kinematic equations on each particle vertex.

As the state of the particle is not stored, we cannot reproduce the same simulation every
frame. Hence, collision detection and response are problematic, as we do not have any
information of the previous state of the particle, which is often required for collision response.
On the contrary, the particle simulation technique presented in this recipe uses a state-
preserving particle system. We stored current and previous positions of each particle in buffer
objects. In addition, we used transform feedback and a vertex shader for particle simulation
on the GPU. As the state of the particle is stored, we can carry out collision detection and
response easily.

» OGLDev Tutorial on particle system using transform feedback at http://ogldev.
atspace.co.uk/www/tutorial28/tutorial28.html

» OpenGL 4.0 Shading Language Cookbook, Chapter 9, Animation and Particles, the
Creating a particle system using transform feedback section, Packt Publishing, 2011.

» Noise based Particles, Part Il at The Little Grasshopper, http://prideout .net/
blog/?p=67

305

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

2D image
drawing, fragment shader used 48-54
drawing, SOIL image loading library used
48-54
3D graphics programming
URL 27,114
3ds file format
URL 156
3ds file loader
URL 156
3ds Max 141
3DS model loading
implementing, separate buffers used
146-155
3D texture slicing
about 220
used, for implementing volume rendering
220-227
3 x 3 Gaussian blur effect 100

A

absolute transform. See global transform
area filtering

implementing, on image 98-100
attenuation

per-fragment point light, implementing with

117,118

Autodesk® 3ds 141
Autodesk® FBX (.fbx) 163
Axially Aligned Bounding Box (AABB) 77

Index

bi-directional reflectance distribution function
(BRDF) 202

Bisection function 235

blend weights 262

Blinn Phong lighting model 111

blurring effect 100

C

C3dsLoader class 146
C3dsLoader::Load3DS function 146, 152
CAbstractCamera class 56
CFreeCamera class 56
cloth

modeling, transform feedback used 279-289
COLLADA 262
Collada (.dae) 163
collision detection

implementing 290-295
color

used, for implementing object picking 74, 75
colored triangle

rendering, shaders used 19-27
convolution

area filtering, applying on image 98-100
CreateTexture function 255
CTargetCamera class 56

D

depth buffer
used, for implementing object picking 72, 73

www.it-ebooks.info

http://www.it-ebooks.info/

dual depth peeling
about 189
used, for implementing order independent
transparency 189-193
dual quaternion skinning
used, for implementing skeletal animation
273-279
dynamic cube mapping
used, for rendering reflective object 93-96

E

emboss north-east direction effect 100
emboss north-west direction effect 100
emboss south-east direction effect 101
emboss south-west direction effect 101
EmitVertex() function 42
EndPrimitive() function 42
EZMesh (.ezm) 163
EZMesh format 262
EZMesh model

implementing 163-169
EzmLoader::Load function 263

F

FBO
shadow mapping, implementing with
122-127
used, for implementing mirror object 89-92
FBX 262
final bone matrix. See skinning matrix
FPS style input support
used, for implementing vector-based camera
56-59
fragment shader
about 16
used, for drawing 2D image 48-54
used, for implementing twirl filter 82-85
Framebuffer objects (FBOs) 81
frame-by-frame animations 261
free camera
about 59
implementing 60-62
freeglut libraries
OpenGL v3.3 core profile, setting up on Visual
Studio 2010 8-14
URL, for downloading 8

front-to-back peeling
used, for implementing order independent
transparency 182-188

G

geometry shader
about 16
plane, subdividing with instanced rendering
45-48
URL, for tutorial 44
used, for subdividing plane 37-44
giBindBufferBase function 280
glBufferData function 149
glClearDepth function 15
glDepthFunc function 15
giDrawElements function 159
GLEW
OpenGL v3.3 core profile, setting up on Visual
Studio 2010 8-14
GLEW library
URL, for downloading 8
glFramebufferRenderbuffer function 89
glFramebufferTexture2D function 89
glGetTransformFeedbacks function 279
glMapBuffer function 149
glm library
URL, for downloading 9
global illumination
implementing, spherical harmonics lighting
used 202-206
global illumination methods 181
global transform 266
glow effect
implementing 101-105
GLSL shader class
designing 16-19
GLSLShader::CreateAndLinkProgram
function 23
GLSLShader::operator() function 27
glTeximage3D function 226
glTransformFeedbackVaryings function 280
glutCloseFunc method 14
glutMainLoop() function 14
glutSwapBuffer function 27
glutSwapBuffers function 15
glVertexAttriblPointer function 270

www.it-ebooks.info

http://www.it-ebooks.info/

Gouraud shading 108

GPU-based path tracing
implementing 213-217

GPU-based ray tracing
implementing 207-211

H

half angle slicing
used, for implementing volumetric lighting
254-259
height map
used, for implementing terrains 142-145

image
area filtering, applying on 98-100
interleaved buffers
used, for implementing Wavefront ® Obj
model 157-161
intersectBox function 78

L

level of detail (LOD) 222

Lib3ds
URL 156

Lift function 62

Lighthouse 3D view frustum culling
URL, for tutorial 72

linear blend skinning (LBS) 262

local transform 266

main() function 12
Marching Cubes 253
Marching Tetrahedra (MT) algorithm
about 248
used, for implementing polygonal isosurface
extraction 248-253
matrix palette skinning
about 262
used, for implementing skeletal animation
262-271
Maya 141

Meshimport library
URL 170
MeshSystem::mSkeletons array 263
mirror, with render-to-texture
implementing, FBO used 89-92
modelview projection (MVP) 143
Move function 65

N
NVIDIA PhysX sdk 262

0

object picking
implementing, color used 74, 75

implementing, depth buffer used 72, 73
implementing, scene intersection queries

used 76-78

OBl file specification

URL 162
ObjLoader::Load function 157
ObjLoader object 157
offscreen rendering functionality 81
Onlinit() function 12
OnMouseMove function 36
OnRender() function 12, 15
OnResize() function 12
OnShutdown() function 12, 26, 35, 54
OpenGL 4.3 8
OpenGL API 7
OpenGL shading language (GLSL) 7
OpenGL v2.0 7
OpenGL v3.0 8
OpenGL v3.3 55, 141
OpenGL v3.3 core profile

setting up, on Visual Studio 2010 8-14
order independent transparency

implementing, dual depth peeling used

189-193

implementing, front-to-back peeling used

182-188

P

Pan function 65
particle system
about 171

www.it-ebooks.info

http://www.it-ebooks.info/

implementing 171-179
implementing, transform feedback used
296-305
percentage closer filtering (PCF)
about 128
shadow mapping, implementing with
128-131
per-fragment directional light
about 114
implementing 115, 116
per-fragment point light
implementing 108-113
implementing, with attenuation 117, 118
per-fragment spot light
about 120
implementing 120, 121
per-vertex point lighting
implementing 108-113
Phong shading 108
physically based animations 261
plane
subdividing, geometry shader used 37-44
polygonal isosurface extraction
implementing, Marching Tetrahedra algorithm
used 248-253
pseudo isosurface rendering
implementing, in single-pass GPU ray casting
232-236

Q

Quake's md2 (.md2) 163
Quaternions 273

reflective object
rendering, dynamic cube mapping used 93-
96
relative transform. See local transform
response on cloth model
implementing 290-295
ripple mesh deformer
implementing, vertex shader used 28-36

S

SampleVoxel function 238

310

scene intersection queries
used, for implementing object picking 76-78
screen space ambient occlusion (SSAO)
about 195
implementing 196-201
separate buffers
used, for implementing 3DS model loading
146-155
shader binding 18
shaders
used, for rendering colored triangle 19-27
shadow mapping
implementing, with FBO 122-127
implementing, with percentage closer filtering
(PCF) 128-131
sharpening effect 100
single-pass GPU ray casting
pseudo isosurface rendering, implementing
232-236
used, for implementing volume rendering
228-232
skeletal animation
about 261, 262
implementing, dual quaternion skinning used
273-279
implementing, matrix palette skinning used
262-271
skinning 262
skinning matrix 268
skybox
rendering, static cube mapping used 85-88
SliceVolume function 224
smooth mouse filtering
URL 59
SOIL image loading library 142
URL, for downloading 9
used, for drawing 2D image 48-54
spherical harmonics lighting
used, for implementing global illumination
202-206
splatting
used, for implementing volume rendering
237-244
static cube mapping
used, for rendering skybox 85-88
Strafe function 62

www.it-ebooks.info

http://www.it-ebooks.info/

T

target camera

about 63

implementing 63-66
Terragen 146
TERRAIN_DEPTH parameter 143
terrain height map generation

tools 146
terrain rendering 144
terrains

implementing, height map used 142-145
TERRAIN_WIDTH parameter 143
tessellation control shader 16
tessellation evaluation shader 16
texelFetchBuffer function 284
transfer function

implementing, for volume classification

244-247

transform 266
transform feedback

about 279

used, for implementing particle system

296-304

used, for modeling cloth 279-289
twirl filter

implementing, fragment shader used 82-85

U

unweighted smoothing effect 100

'}

variance shadow mapping
about 132
implementing 132-139
varying attributes 22
vector-based camera
implementing, with FPS style input support
56-59

vertex array object (VAO) 24, 239, 283
vertex buffer object (VBO) 239
vertex shader
about 16
used, for implementing ripple mesh deformer
28-36
view frustum culling
about 66
implementing 67-70
virtual terrain project
about 146
URL 146
volume classification
transfer function, implementing for 244-247
volume rendering
about 219, 220
implementing, 3D texture slicing used
220-227
implementing, single-pass GPU ray casting
used 228-232
implementing, splatting used 237-244
volumetric lighting
implementing, half angle slicing used
254-259

w

Walk function 62
Wavefront® OBJ 141
Wavefront ® Obj model
implementing, interleaved buffers used
157-161
world machine
about 146
URL 146
world space position 28

y 4

Zoom function 65

3n

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
rusLisnine s OpenGL Development
Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub. com.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to authorepacktpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

PUBLISHING

OpenGL 4.0 shading
Language Cookbook

OpenGL 4.0 Shading
Language Cookbook

ISBN: 978-1-84951-476-7 Paperback: 340 pages

Over 60 highly focused, practical recipes to maximize
your use of the OpenGL Shading Language

1. Afull set of recipes demonstrating simple and
advanced techniques for producing high-quality,
real-time 3D graphics using GLSL 4.0

2. How to use the OpenGL Shading Language to
implement lighting and shading techniques

3. Use the new features of GLSL 4.0 including
tessellation and geometry shaders

OpenCV 2 computer Vision
Application Programming Cookbook

OpenCV 2 Computer Vision
Application Programming
Cookbook

ISBN: 978-1-84951-324-1 Paperback: 304 pages

Over 50 recipes to master this library of programming
functions for real-time computer vision

1. Teaches you how to program computer vision
applications in C++ using the different features of
the OpenCV library

2. Demonstrates the important structures and
functions of OpenCV in detail with complete
working examples

3. Describes fundamental concepts in computer
vision and image processing

4. Gives you advice and tips to create more effective
object-oriented computer vision programs

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

PUBLISHING

OpenSceneGraph 3
Cookbook
ISBN: 978-1-84951-688-4 Paperback: 426 pages

Over 80 recipes to show advanced 3D programming
techniques with the OpenSceneGraph API

1. Introduce the latest OpenSceneGraph features to
create stunning graphics, as well as integration

OpenSceneGraph 3 with other famous libraries

Cookbook 2. Produce high-quality programs with short and
: 10 shew adrancad 3D peograrvn familiar code

3. Enriched with a lot of code and the necessary
screenshots

RuiWang XueleiQian [ossnsouce.

banpianiea’

Unity Game Development
Essentials
ISBN: 978-1-84719-818-1 Paperback: 316 pages

Build fully functional, professional 3D games with realistic
environments, sound, dynamic effects, and more!

1. Kick start game development, and build ready-to-
play 3D games with ease

gmtyl Game tE tial 2. Understand key concepts in game design
evelopment Essentiais including scripting, physics, instantiation, particle

effects, and more

3. Test & optimize your game to perfection with
essential tips-and-tricks

4. Written in clear, plain English, this book is packed
with working examples and innovative ideas

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Modern OpenGL
	Introduction
	Setting up the OpenGL v3.3 core profile
on Visual Studio 2010 using the GLEW
and freeglut libraries
	Designing a GLSL shader class
	Rendering a simple colored triangle using shaders
	Doing a ripple mesh deformer using vertex shader
	Dynamically subdividing a plane using the geometry shader
	Dynamically subdividing a plane using the geometry shader with instanced rendering
	Drawing a 2D image in a window using
the fragment shader and the SOIL image loading library

	Chapter 2: 3D Viewing and
Object Picking
	Introduction
	Implementing a vector-based camera with FPS style input support
	Implementing the free camera
	Implementing the target camera
	Implementing view frustum culling
	Implementing object picking using the
depth buffer
	Implementing object picking using color
	Implementing object picking using scene intersection queries

	Chapter 3: Offscreen Rendering and Environment Mapping
	Introduction
	Implementing the twirl filter using fragment shader
	Rendering a skybox using static cube mapping
	Implementing a mirror with
render-to-texture using FBO
	Rendering a reflective object using dynamic cube mapping
	Implementing area filtering (sharpening/blurring/embossing) on an image using convolution
	Implementing the glow effect

	Chapter 4: Lights and Shadows
	Introduction
	Implementing per-vertex and per-fragment point lighting
	Implementing per-fragment directional light
	Implementing per-fragment point light with attenuation
	Implementing per-fragment spot light
	Implementing shadow mapping with FBO
	Implemeting shadow mapping with percentage closer filtering (PCF)
	Implementing variance shadow mapping

	Chapter 5: Mesh Model Formats and Particle Systems
	Introduction
	Implementing terrains using height map
	Implementing 3ds model loading using separate buffers
	Implementing OBJ model loading using interleaved buffers
	Implementing EZMesh model loading
	Implementing simple particle system

	Chapter 6: GPU-based Alpha Blending and Global Illumination
	Introduction
	Implementing order-independent transparency using front-to-back peeling
	Implementing order-independent transparency using dual depth peeling
	Implementing screen space ambient occlusion (SSAO)
	Implementing global illumination using spherical harmonics lighting
	Implementing GPU-based ray tracing
	 Implementing GPU-based path tracing

	Chapter 7: GPU-based Volume Rendering Techniques
	Introduction
	Implementing volume rendering using 3D texture slicing
	Implementing volume rendering using
single-pass GPU ray casting
	Implementing pseudo-isosurface rendering in single-pass GPU ray casting
	Implementing volume rendering using splatting
	Implementing transfer function for volume classification
	Implementing polygonal isosurface extraction using the Marching Tetrahedra algorithm
	Implementing volumetric lighting using the half-angle slicing

	Chapter 8: Skeletal and
Physically-based Simulation on the GPU
	Introduction
	Implementing skeletal animation using matrix palette skinning
	Implementing skeletal animation using dual quaternion skinning
	Modeling cloth using transform feedback
	Implementing collision detection and response on a transform feedback-based cloth model
	Implementing a particle system using transform feedback

	Index

