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Preface 

Until recently, all but the most trivial computer graphics was the province of 
specialised research groups. Now with the introduction of inexpensive micro­
computers and 'graphics-boards', the subject will reach many more users and its 
full potential can be realised. Computer-generated pictures involving smooth 
shading, shadows and transparent surfaces, for example, have made a major 
impact in television advertising. The 'mysterious' techniques for producing such 
pictures have gained a (false) reputation of complexity for computer graphics. 

This book gives a practical description of these ideas and, after studying the 
contents and implementing the examples and exercises, the reader will be ready 
to attempt most tasks in graphics. 

It is assumed that the reader has an elementary knowledge of the C program­
ming language, and of Cartesian co-ordinate geometry. For those who wish to 
read good texts on these subjects we recommend books by Waite, Prata and 
Martin (1984), Kernighan and Ritchie (1978) and Cohn (1961). This knowledge 
will be used to produce simple diagrams, and to create the basic programming 
tools and routines for the more advanced colour pictures. Then, hopefully, the 
reader will be inspired to seek a greater understanding of geometry and also to 
read the more advanced journals (such as SIGGRAPH and ACM Transactions) 
describing recent research developments in computer graphics. A number of 
relevant references are given throughout the text, but for a more comprehensive 
bibliography readers are advised to refer to Newman and Sproull (1973) and 
Foley and Van Dam (1981). 

The only way to understand any branch of applied computing is to study and 
write a large number of programs; this is why the format of this book is that of 
understanding through program listings and worked examples. The chapters are 
centred around numerous examples and the ideas that lead from them. Many 
students readily understand the theory behind graphics, but they have great 
difficulty in implementing the ideas. Hence great emphasis is placed on the pro­
gram listings; over a hundred are given - some quite substantial. Total under­
standing of the theory given in this book will be achieved only by running these 
programs and experimenting with them. The listings can be thought of as an 
embryonic graphics package, but most importantly they are a means of describing 
the algorithms required in the solution of the given problems. They are readily 
translatable into other computer languages such as Basic, Pascal and FORTRAN. 
The functions given all relate to a small number of graphics primitives, which are 
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Preface ix 

necessarily device or package dependent. Examples of these primitives are given 
for the Tektronix 4100 range, for the G.K.S. standard, and the GINO and sample 
microftlm packages in an appendix. 

On occasions, efficiency has been sacrificed in favour of clarity in the descrip­
tion of algorithms. The programs are written in a modular form, which makes 
the interchanging of program functions relatively straightforward. A unique 
name is given to any function that solves a given problem, but more than one 
example may be given for such functions if different, perhaps more general, 
solutions are required. For example, function facetfill can be used to draw a 
polygon in a ftxed colour, but other manifestations may include smooth shading 
of that polygon and even various textures. 

The main purpose ofthis book, which is essentially a third year undergraduate 
and M.Sc. course at the University of London, is to set the groundwork of com­
puter graphics. Some of the figures given in this book were produced by past 
students of the course. Figure 5.1 was produced by Hilary Green, figure 9.11 by 
Colin Ching, figure 12.5 by Andrew Pullen and figure 18.3 by Paul Mclean 
Thorne. All of the figures can be produced by using the listings in this book 
(with some extensions). I would also like to thank Digital Arts Production Ltd 
for the use of their computing facilities and in particular Gareth Griffith for his 
collaboration on the FORTRAN 77 and Pascal versions of this course, and for 
producing many of the diagrams. The programs given are NOT the only way of 
solving the problems of computer graphics: they reflect the teaching and research 
interests of the author. They do, however, provide a general strategy for gaining 
a thorough understanding of computer graphics and should lead the reader to 
research level in the subject. With this advanced groundwork done, readers can 
reorganise the approach with their own specific interests in mind. The listings are 
in a limited form of C in order to make the programs applicable to many of the 
C subsets now available on microcomputers. 

The package developed in this book is for teaching purposes only. Although 
the author places no copyright restrictions on the use of the listings in a lecture 
course, no commercial exploitation is permitted without his prior agreement. 

Computer graphics is fun! I hope that readers will make this discovery and 
spend many enjoyable and productive hours in front of their graphics console. 

Ian 0. Angell 



1 Familiarisation with Programs, 
Graphics Devices and Primitives 

Computer graphics devices come in all shapes and sizes: storage tubes, raster 
devices, vector refresh displays, flat-bed plotters etc., which is why in recent years 
so much effort has been put into graphics software standards (such as G.K.S. 
(Hopgood et al., 1983)) as well as into the portability of graphics packages 
(GINO, CalComp etc.). This book will concentrate on the techniques of modelling 
and rendering (that is, drawing, colouring, shading etc.) two-dimensional and 
three-dimensional objects, which surprisingly require only a small part of the 
above systems. Rather than restrict the book to one software system, and in 
order to make it relevant to as many different graphics devices as possible, a 
general model for a graphics device will be identified together with a few (nine) 
elementary routines (primitives) for manipulating that model. These primitives 
must be stored in a ftle "primitiv.c" that can be #included in programs. From 
the outset it must be realised that the word 'primitive' is used in the literal sense 
of describing the basic level at which the programs in this book communicate 
with graphics devices; the word has different meanings in other graphics environ­
ments, such as G.K.S. The C programs that follow will use only these primitives 
for drawing on this basic model (apart from a few very exceptional cases.) Since 
even the most complex programs given in this book interface with the model 
device through relatively few primitive routines, the graphics package thus 
created is readily portable. All that is needed is for users to write their own 
device-specific primitives, which relate to their particular graphics device or 
package! Later in this chapter ideas are given of how such primitives may be 
written, and in the appendix there are example listings of primitives suitable for 
some of the more popular graphics devices and standards. The suppliers of your 
graphics device may give you a number of utility C programs, designed specifi­
cally to be machine dependent. These should be placed in a ftle "device.c", 
which can be #included into programs along with < stdio.h >and< math.h >, 
within "primitiv.c". 

The Structure of PROGRAMs in this Book 

The programs in this book are designed to be used with the whole range of com­
puters, from microcomputers to large mainframes. 

1 



2 High-resolution Computer Graphics Using C 

As you progress through this book, you will fmd that the later sophisticated 
programs build on the functions, constants, structure data types and variables 
defined earlier. The C language has an ideal mechanism (#include) to enable this 
requirement. These language constructs (functions, constants, data types and 
variables) can be defined and stored in named files (library files), and these can 
be #included into larger programs. Listing 1.1 is a schematic outline of such a 
me primitiv.c holding the primitive functions mentioned above, and which will 
be included in every graphics program in this book. You will be expected to 
write your own version of this me for your own particular graphics device, using 
as guidelines the examples given in the appendix. 

Each function is intended to solve a specific problem, and there may be a 
number of different versions of each. Groups of functions dealing with a specific 
problem domain will be added to an include-library file. For example, the 
function seefacet is used to prepare the display of a polygonal facet on a three­
dimensional object. There are a number of versions of this function, one which 
prepares to fill the facet in a flXed colour, and others which use smooth shading. 
In this case, the version of seefacet you need for a particular choice of shading, 
along with other functions dealing with the display of objects, will be added to a 
include-library me called display3.c. 

As you delve deeper into this book, culminating with the display of complex 
three-dimensional scenes, you will fmd that most of the functions and include­
library mes that you need have already been given to you. You need only write 
the primitive functions (listing 1.1), and a few functions for modelling space, in 
particular a function scene, which controls all the modelling and display of 
mathematically defmed scenes. If the functions in a particular listing are to be 
added to a library me, then that me will be indicated by a comment at the 
beginning of the code. Listings without such a comment can be expanded into a 
complete program by means of #includ(e)ing these library files. In fact, with 
most of the programs that follow, it is the scene function that initiates the 
sequence of #includes that culminates in complete programs: but more of this 
later. You will be given a number of examples, which will show you how to 
create your own scene functions that can then link into the book's sophisticated 
libraries. 

Because of the experimental nature of this book, and the expectation that 
readers will expand on the given functions, all #include files have ".c" exten­
sions. However, once you are confident in the use of the functions in each me, 
you can compile them, and #include them with the ".obj" me extensions: 
refer to your own system manual for details of achieving this. 

The Model Graphics Device 

We assume that the display of the graphics device contains a viewport (or frame) 
made up from a rectangular array of points (or pixels). This matrix is nxpix 
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Listing 1.1 

/* Structure of the file of primitive functions needed in this book*/ 
I* To be stored as file "primitiv.c" */ 

I* #include *I 
#include <stdio.h> /* standard input/output */ 
#include <math.h> /* standard mathematical functions */ 
#include "device.c" /* device·dependent primitive drivers (if any) *I 

I* #define *I 
#define maxpoly 32 
#define tabnum 256 
#define nxpix 768 
#define nypix 576 

I* maximum size of polygons *I 
I* size of colour table 
I* horizontal pixels 

*I 
*I 
*I I* vertical pixels 

struct pixelvector { int x,y ; } ; I* define pixelvector type *I 

int currcol ; 
float red[tabnumJ ,green[tabnumJ ,blue[tabnumJ 
struct pixelvector lastpixel ; 

I* declare current colour */ 
I* colour table */ 
I* and current position *I 

I* outline definition of the nine primitives*/ 

finish () { •••••••••• } ; 

setcol(col) int col ; { •••••••••• }; 

erase() { •••••••.•• } 

setpix(pixel) struct pixelvector pixel { .......... } ; 

movepix(pixel) struct pixelvector pixel {. ••••••••• } i 

linepix(pixel) struct pixelvector pixel {. ......... } ; 

polypix(n,poly) int n ; struct pixelvector poly[] ; { ••.•••••.. } 

rgblog(i,r,g,b) int i ; float r,g,b ; { •••••••••• } ; 

prepit <> { •••••••••• }; 

pixels horizontally by nypix pixels vertically. The values of nxpix and nypix are 
#defined in listing 1.1 along with constant maxpoly, the maximum size allowed 
for a polygon, the data type pixelvector and the current pixelvector position 
lastpixel. 

An individual pixel in the viewport can be accessed by referring to its pixel co­
ordinates, a pair of integers stored as structure type pixel vector, which give the 
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position of the pixel relative to the bottom left-hand comer of the viewport. The 
current pixelvector position, pixel (say), is the co-ordinate pair (pixel.x, pixel.y) 
which is pixel.x pixels horizontally and pixel.y pixels vertically from the bottom 
left-hand corner (which naturally has pixel co-ordinates (0, 0)). Note that for all 
pixels, 0 ~ pixel.x < nxpix and 0 ~ pixel.y < nypix, and the top right corner is 
( nxpix - 1, nypix - 1 ). See figure 1.1. There are a few commercial graphics 
systems which use top left as (0, 0) and bottom right as ( nxpix - 1, nypix - 1 ), 
but this can be compensated for in the primitives we construct and will not 
require a major rewrite of the larger programs. 

Colour television and RGB colour monitors work on the principle of a colour 
being a mixture of red, green and blue components. Each pixel is made up of 
three tiny dots, one each of red, green and blue, and different colours are pro­
duced by varying the relative brightness of the dots. Red is given by a bright red 
dot with no green or blue; yellow is produced by bright red and green dots with 
no blue, and so on (see chapter 15 for a more detailed description). For this 
reason most graphics devices define colours in terms of red, green and blue com­
ponents. We assume that our graphics device has a colour look-up table which 
contains the definitions in this form of tabnum colours, each accessed by an 
integer value between 0 and tabnum - 1. Only one colour can be used at a time, 
the current colour, integer variable currcol. This is declared in listing 1.1 along 
with the red, green and blue arrays holding the tabnum entries of the colour table. 
Such an integer value is called a logical colour while the entries in the look-up 
table are referred to as actual colours. The entries in the look-up table may be 
redefined by the user, but initially we assume the entries take default values. We 
assume that the display on the model graphics device is based upon a bit-map: 
associated with every pixel there is an integer value (representing a logical colour) 
and the pixel is displayed in the corresponding actual colour. 

We imagine a cursor that moves about the viewport; the pixel co-ordinate, pixel, 
of this cursor at any time is called its cu"ent position. Objects are drawn by 
moving the cursor around the viewport and resetting the value in the bit-map at 
the current position to the required logical colour. 

The Nine Primitives 

The viewport may need some preparatory work done before it can be used for 
graphical display. We assume that this is achieved by the primitive call 

prepit( ); 

After pictures have been drawn some 'housekeeping' may be needed to finish the 
frame (see the section on the command code method later in this chapter for an 
explanation of buffers), and this is done by the primitive call 

finish ( ); 
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Only one logical colour can be used at a time, so to change the cu"ent colour 
currcol to logical colour col, 0 :e;;; col< tabnum, we use the call 

setcol (col); 

We can erase all the pixels in the viewport with the current colour by 

erase ( ); 

If we are using microfilm then erase may also be used to move onto the next 
frame of the film. 

We can colour the current pixel pixel, of structure type pixelvector, in the 
current colour currcol by 

setpix (pixel); 

The graphics cursor can be moved about the viewport to its current position 
pixel without changing the colour by the primitive call 

movepix (pixel); 

Or we can draw a line in the current colour from the current position to a new 
positton pixel 

linepix (pixel); 

pixel then becomes the current position. 
We can fill in a polygon whose vertices are defined by n pixelvectors poly[i], 

i = 0 ... , n- 1 taken in order, by the call 

polypix (n, poly); 

Note that the C language counts the elements in an array starting at 0 (and not 
1), hence the last element in a list of n has index n - 1! We have already seen 
this in our definition of the colour look-up table, and we shall use this counting 
logic throughout this book. But please BE CAREFUL. The change in logic of 
counting from 0 to n - 1, rather than from 1 to n which is so subtly ingrained in 
our thinking, can introduce some very peculiar errors. 

Finally, we need a primitive which defines the actual colours in the colour look­
up table. There are several methods for dealing with such definitions (Ostwald. 
1931; Smith, 1978; Foley and Van Dam, 1981), but we assume that the table 
entry referred to by logical colour i is made up of red (r), green (g) and blue {b) 
components which may be set by 

rgblog (i, r, g, b); 

The intensity of each component is a value between zero and one: zero means 
no component of that colour is present, one means the full colour intensity. For 
example, black has RGB components 0, 0, 0, white has 1, l, 1, red has 1, 0, 0, 
while cyan is 0, 1, 1. These colours can be 'darkened' by reducing the intensities 
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from one to a fractional vah.ie. Initially we shall use just eight default actual 
colours. comprising black (logical 0), red (1), green (2), yellow (3), blue (4). 
magenta ( 5), cyan ( 6) and white (7). Note the three bits of the binary represen­
tation of the numbers 0 to 7 give the presence (1) or absence (0) of the three 
component colours. The default background and foreground logical colours may 
be set by the user. we assume 0 and 7 respectively, although for the purpose of 
diagrams in this book we used black foreground and white background 7 and 0 
for obvious reasons. 

These primitives are by no means the last word. Users of special-purpose 
graphics devices should extend the list of primitives in order to make full use of 
the potential of their particular device. For example, many raster devices have 
different styles of line drawing; thus a line need not simply be drawn in a given 
(numerical) colour, each pixel along the line may be coloured by a bit-wise 
boolean binary operation (such as exclusive OR) on the value of the present 
colour of that pixel and the current drawing colour. A line could be dashed! We 
shall introduce a new (tenth) primitive in chapter 5 for introducing different line 
styles. Another possible primitive would be the window manager referred to 
below. In this book we concentrate on geometric modelling; we do not consider 
the whole area of computer graphics relating to the construction and manipula­
tion of two-dimensional objects which are defmed as groups of pixels (user­
defined characters (Angell, 1985), icons and sprites). You could introduce your 
own primitives for manipulating these objects should your particular graphics 
application need them. 

Implementing the Primitives 

We consider two different ways of writing the f:tle "primitiv.c" of primitive func­
tions. The first is applicable to users who have access to a two-dimensional 
graphics package (either in software or hardware), in which case all communica­
tion between the primitives and the graphics display will be made via that package. 
The second is for users of a device for which all manipulation of the display is 
done by sending a sequence of graphics commands, each command being an 
escape character, followed by a command code, possibly followed by a list of 
integers referring to pixels and/or colours. 

The graphics pockoge method 
Many graphics packages will have their own routines similar to our nine primi­
tives of listing 1.1 and the appendiX. Do not go through the program listings given 
in this book, replacing all references to our nine primitives with the names of the 
equivalent package routines. It is far more efficient to write individual functions 
for our nine primitives, each of which simply calls the corresponding package 
routine. You must, however, be aware of any peculiarities or restrictions of your 
package, in order to ensure that your use of the package corresponds exactly to 
the definition of the nine primitives above. 
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Note that graphics commands for microcomputers, such as the IBM PC, also 
fall into this category. You should further note that some graphics systems (such 
as microfilm· see the appendix) use the concept of addressable points as opposed 
to pixels. If a dot is drawn at such an addressable point, then the area centred at 
that dot will contain a number (certainly tens. perhaps hundreds) of other 
addressable points. To use our system you will have to identify squares of addres­
sable points with individual pixels. 

A graphics package could give you a number of different ways of obtaining 
the effect of one primitive. The most obvious example is that of filling a poly­
gonal area. Some devices give you a normal area fill (or perhaps a triangle fill), 
whereby the polygon defined by the pixel co-ordinates of its vertices is filled in 
the current colour; a flood fill which uses the current colour to fill mall pixels 
in the viewport connected to and of the same colour as an initially specified 
pixel (seed point); a boundary fill which starts at a given pixel, and colours all 
connected pixels out to a given boundary colour. Some give pie fills - that is, 
filling segments of circles. Others allow pattern filling, where areas are filled not 
in single colours but with combinations of different coloured pixels. All of these 
can be included in your own specialised primitives should you have a need for 
them. 

If you are working with a single-colour line-drawing package or one which 
does not give you an area fill, then you have to write your own area-fill primitive 
using sequences of parallel lines (see chapter 5). 

Example primitives for the Graphical Kernel System (G.K.S.) and GINO, and 
sample Microfilm packages are given in the appendix. 

The command code method 
Many high-resolution raster display terminals fall into this category. They are 
normally connected to a host computer, with communication achieved via 
character string transfer along a pre-defined input/output channel. Graphical in­
formation is distinguished from ordinary text by preceding the string of graphics 
information with a special escape symbol, the strings being sent to the tenninal 
by the usual C printf statement. Since this character transfer process can be slow, 
many systems accept buffered and/or encoded information for increased efficiency 
where a section of memory is used to hold a number of commands, and only 
when the buffer is full is the information transferred to the display device. Flush­
ing of a partially filled buffer on the completion of a drawing may be included 
in the finish primitive. Examples of primitives for the Tektronix 4100 series are 
also given in the appendix. 

Listing 1.2 

I* a simple demonstration of use of the primitives */ 

#include "primitiv.c" /* file outlines in LISTING 1.1 */ 

!*······*/ 
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main() 
1*······*1 
{ struct pixelvector ptO,pt1,pt2,pt3,centre ; 

struct pixelvector polygon[3J 
I* Prepare graphics viewport *I 

prepit() ; 
I* Define logical colour 8 to be grey and current colour */ 

rgblog(8,0.5,0.5,0.5) ; setcol(8) ; 
I* Define the vertices of a triangle */ 

polygon[OJ.x=O; polygon[OJ.y=O; 
polygon[1J.x=nxpix·1; polygon[1J.y=O; 
polygon[2J.x=O; polygon[2J.y=nypix·1 ; 

I* Fill in this triangle in current colour*/ 
polypix(3,polygon) ; 

I* Define the vertices of a square centred in the viewport */ 
I* First the bottom left-hand corner */ 

ptO.x=nxpix*0.25 ; pt0.y=nypix*0.25 
I* Then the top right-hand corner *I 

pt2.x=nxpix*0.75 ; pt2.y=nypix*0.75 
I* Then the other two corners *I 

pt1.x=ptO.x ; pt1.y=pt2.y; 
pt3.x=pt2.x ; pt3.y=ptO.y ; 

I* Set current colour to red */ 
set col ( 1) ; 

I* Draw the outline of the square *I 
movepix(ptO) ; 
l inepix(pt1) ; l inepix(pt2) ; 
linepix(pt3) ; linepix(ptO) ; 

I* Draw red dot in the centre of the viewport */ 
centre.x=nxpix*0.5 ; centre.y=nypix*O.S 
setpix(centre) ; 

I* Call the end of frame procedure *I 
finish() ; 

} ; I* End of main */ 

Example 1.1 
In listing 1.2 we give further variables and a main function to complete a con­
trived program which draws a pattern of dots, lines and areas. It uses all nine 
primitives - erase is implicit in prepit. Notice how file "primitiv.c" is #included 
in the listing to complete the program. 

Exercise 1.1 
Many packages allow the construction of more than one viewport on the display 
whereas our routines refer to just one viewport, the current viewport. 

Introduce your own routines which allow for multiple viewports. Assume 
that your display will hold numvpt p 1) viewports. Replace the declarations of 
nxpix and nypix in listing 1.1 with declarations of two mteger variables numvpt 
and nowvpt, two integer arrays nxpix and nypix, and a pixelarray base. The view-
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port i (0 ~ i ~ numvpt- 1) is a rectangle of nxpix [i] pixels by nypix [i] pixels, 
with the bottom left-hand corner of that viewport being a display pixel with 
co-ordinates base[i]. Only one viewport is active at any given time, and the 
index of the current viewport is denoted by nowvpt. You will have to change 
some of the above primitives in me "primitiv.c" accordingly. 

Starting a Graphics Library: Functions that Map Continuous Space onto the 
Viewport 

The use of pixel vectors for drawing (in particular) three-dimensional pictures is 
very limiting. The definition of objects using such discrete pairs of integers has 
very few real applications. We need to consider plotting views on the graphics 
display, where the objects drawn are defined in terms of real units, whether they 
be millimetres or miles. Since our primitives draw using pixels, we have to con­
sider a library of constants, structure types, variables and functions which relate 
real space with the pixels of our viewport. We will store this library in a me 
"graphlib.c". Before attempting this step we must first discuss ways of repre­
senting two-dimensional space by means of Cartesian co-ordinate geometry. 

We may imagine two-dimensional space as the plane of this page, but extend­
ing to infmity in all directions. In order to specify the position of points on this 
plane uniquely, we have to impose a Cartesian co-ordinate system on the plane. 
We start by arbitrarily choosing a fixed point in this space, which is called the 
co-ordinate origin, or origin for short. A line, that extends to infmity in both 
directions, is drawn through the origin -this is the x-axis. The normal conven­
tion, which we follow, is to imagine that we are looking at the page so that the 
x-axis appears from left to right on the page (the horizontal). Another two-way 
infinite axis, they-axis, is drawn through the origin perpendicular to the x-axis; 
hence conventionally this is placed from the top to the bottom of the page (the 
vertical). We now draw a scale along each axis; unit distances need not be the 
same on both axes or even linearly distributed along the axes, but this is nor­
mally the case. We assume that values on the x-axis are positive to the right of 
the origin and negative to the left: values on the y-axis are positive above the 
origin and negative below. 

We can now uniquely fix the position of point p in space with reference to 
this co-ordinate system by specifying its co-ordinates (figure 1.1). The x co­
ordinate, X say, is that distance along the x-axis (positive on the right-hand half­
axis, and negative on the left) at which the line perpendicular to the x-axis, that 
passes through p, cuts the axis. The y co-ordinate, Y say, is correspondingly 
defined by using the y-axis. These two values, called a co-ordinate pair or two­
dimensional point vector, are normally written in brackets thus: (X, Y), the x 
co-ordinate corning before they co-ordinate. We shall usually refer to the pair as 
a vector - the dimension (in this case dimension two) will be understood from 
the context in which we use the term. A vector, as well as defming a point (X, Y) 
in two-dimensional space, may also be used to specify a direction, namely the 
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Y axis (nxpix - 1, nypix - 1) 
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Figure 1.1 

X axis 

direction that is parallel to the line that joins the origin to the point (X, Y) - but 
more of this (and other objects such as lines, curves and polygons) in chapter 3. 

It must be realised that the co-ordinate values of a point in space are totally 
dependent on the choice of co-ordinate system. During our analysis of computer 
graphics algorithms we will be using a number of different co-ordinate systems 
to represent the same objects in space, and so a single point in space may have a 
number of different vector co-ordinate representations. For example, if we have 
two co-ordinate systems with parallel axes but different origins - say separated 
by a distance 1 in the x direction and 2 in they direction - then the point (0, O) 
in one system (its origin) could be (1, 2) in the other: the same point in sp~ce 
but different vector co-ordinates. In order to clarify the relationships between 
different systems we introduce an arbitrary but fixed ABSOLUTE co-ordinate 
system, and ensure that all other systems can be defined in relation to it. This 
ABSOLUTE system, although arbitrarily chosen, remains fixed throughout our 
discussion of two-dimensional space. (Some authors call this the World Co­
ordinate System.) Normally we will define the position and shape of objects in 
relation to this system. 

Having imposed this fixed origin and axes on two-dimensional space, we now 
isolate a rectangular area (or window) of size horiz by vert units, which is 
also defmed relative to the ABSOLUTE system. This window is to be identified 
with the viewport so that we can draw views of two-dimensional scenes on the 
model graphics device. We may wish to move the window about two-dimensional 
space taking different views of the same objects. To do this we create a new co­
ordinate system, the WINDOW system, whose origin is the centre of the window, 
and whose axes are parallel to the edges of the window, are scaled equally in 
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both x and y directions, and extend to infinity outside the window. Since we 
will be defining objects such as lines, polygons etc. in terms of the ABSOLUTE 
system, we have to know the relationship between the ABSOLUTE and WINDOW 
systems - that is, the relative positions of the origins and orientations of the 
respective axes. Having this information, we can relate the ABSOLUTE co­
ordinates of points with their WINDOW co-ordinates and thence represent them 
as pixels in the viewport. 

We begin our graphics package by assuming that the ABSOLUTE and WINDOW 
systems are identical, so that objects defined in the ABSOLUTE system have the 
same co-ordinates in the WINDOW system: in chapter 4 we will consider the 
more general case of the window moving around and about the ABSOLUTE 
system. We give functions that operate on points given as real co-ordinates in the 
WINDOW system, convert them to the equivalent pixels in the viewport, and 
finally operate on these pixels with the graphics primitives mentioned earlier. 
Naturally these functions will then be machine-independent, and to transport 
the package between different computers and graphics displays all that is needed 
is a C compiler and the small number of display specific primitives. Programs 
dealing with the display of two- (and three-) dimensional scenes should rarely 
directly call the primitives: all communication to these primitives should be 
done indirectly using the functions below, which treat objects in terms of their 
real (rather than pixel) co-ordinates (listing 1.3). 

We assume that the window is horiz units horizontally, hence the vertical 
side of the window (vert) is horiz * nypix/nxpix units, and we define the 
WINDOW co-ordinate origin to be at the centre of the window (figure 1.1 ). In 
order to identify the viewport with this window we must be able to find the 
pixel co-ordinates corresponding to any point within the window. The hori­
zontal (and vertical) scaling factor relating window to viewport is xyscale = 
(nxpix- 1)/horiz and since the window origin is in the middle of the window 
we note that any point in space with WINDOW co-ordinates (x, y) will be map­
ped into a pixel in the viewport with horizontal component (int) (x * xyscale 
+ nxpix * 0.5 - 0.5) and vertical component (int) (y * xyscale + nypix * 0.5 
- 0.5). (Note that the vertical scaling must be adjusted if the pixels are not 
square, that is, if the aspect ratio is not unity.) Here the integer cast (int) rounds 
down - hence the final 0.5 for rounding to the nearest integer. These two com­
ponents are programmed as two functions fx and fy included in the library of 
functions "graphlib.c" in listing 1.3. Note the numerator in the definition of 
xyscale is (nxpix - 1) and not as you would expect nxpix. This makes the screen 
dimension slightly larger than the required horiz by vert, however it does ensure 
that the corner points of the graphics frame ( ±horiz/2, ±vert/2) lie on the screen; 
if we had used numerator nxpix then the top right-hand corner of the frame 
would have been scaled to the pixel (nxpix, nypix) which is off the screen! 

All constant, structure data type and variable information regarding the 
dimensions of the window is declared in listing 1.3. From now on all graphics 
programs given in this book (that is, all but those in chapter 2), will use real 
co-ordinate systems via file "graphlib,c". This fl.le contains the main function 
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Listing 1.3 
I* This file nust be stored as "graphl!b.c" *I 

I* Library of constants, structures, variables and functions and •main• *I 
I* function needed for 2·Dimensional Graphics ; measurement in real units *I 

#include "primitiv.c" 

#define pi 3.1415926535 
#define epsilon 0.000001 
#define TRUE 1 
#define FALSE 0 

I* logical constants *I 

struct vector2 { float x,y ; > ; I* define 2·0 and 3·D vector structures *I 
struct vector3 { float x,y,z > 

float horiz,vert,xyscale ; I* declare variables for real screen *I 

1*············*1 
start(horiz> 

1*············*1 
float horiz ; 

{ prepit() ; I* Set up viewport *I 
I* Set up window dimensions *I 

vert=horiz*nypixlnxpix ; xyscale=(nxpix·1)1horiz 
> ; I* End of start *I 

1*·····*1 
fx(x) 

1*·····*1 
float x 

{ return((int)(x*xyscale+nxpix*0.5·0.5)) 
> ; I* End of fx *I 

1*·····*1 
fy(y) 

1*···-·*1 
float y ; 

{ return((int)(y*xyscale+nypix*0.5·0.5)) 
> ; I* End of fy *I 

1*··········*1 
moveto(pt) 

1*··········*1 
struct vector2 pt ; 

{ struct pixelvector pixel 
pixel.x•fx(pt.x) ; pixel.y=fy(pt.y) 
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movepix(pixel) ; 
> ; I* End of moveto *I 

1*··········*1 
l ineto(pt) 

1*··········*1 
struct vector2 pt 

< struct pixelvector pixel 
pixel.x=fx(pt.x) ; pixel.y=fy(pt.y) 
l inepix(pixel) ; 

> ; I* End of lineto *I 

1*···················*1 
polyfill(n,polygon) 

1*···················*1 
int n ; 
struct vector2 polygon[] 

< int i ; 
struct pixelvector pixelpolygon[maxpolyl 

I* Only plot non·trivial polygons *I 
if (n>2) 

< for (i=O; i<n; i++) 
< pixelpolygon[i].x=fx(polygon[i].x) 

pixelpolygon[i].y=fy(polygon[i].y) 
> ; 

polypix(n,pixelpolygon) 
> ; 

>;I* End of polyfill *I 

1*······*1 
main() 

1*······*1 
< printf(" Type in horizontal size of window\n") 
I* Prepare graphics device *I 

scanf("%f",&horiz) ; start(horiz) ; 
I* Draw a picture using a function 'draw_a_picture• *I 

draw_a_picture() ; 
finish() ; 

> ; I* End of main *I 

(needed in all C programs), and #includes file "primitiv.c", and so from now on 
there is no need to include explicitly either a main function or the primitive 
functions. The structure data type vector2 is declared here to hold the real x, y 
co-ordinates of two-dimensional vectors, and for convenience we also declare 
here the equivalent data type for three dimensional vectors vector3. 
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struct vector2 {float x,y;}; 
struct vector3 {float x,y ,z;}; 

We also #define pi{1r), epsilon the smallest acceptable positive floating point 
(real) number, as well as the two Boolean constants TRUE and FALSE. 

Note if we do not assume that ABSOLUTE and WINDOW systems are iden­
tical and we have an object defined in ABSOLUTE system co-ordinates, then 
each point in the object must be transformed to its WINDOW co-ordinates 
before it can be drawn in the viewport - but more of this in chapter 4. 

Exercise 1.2 
Rewrite listing 1.3 (ftle "graphlib.c"), assuming non-square pixels on the graphics 
device. That is, replace xyscale with two different scaling factors xscale (horizon­
tal) and yscale (vertical) and adjust the functions, to allow for the non-unit aspect 
ratio. 

Listing 1.3 also contains the function start which defines a window using the hori­
zontal side length (horiz) given as a parameter. The cleared viewport is identified 
with the window, and the value xyscale is calculated. We assume that in start 
(via prepit), the viewport is cleared in black (logical colour 0) and the current 
colour is set to white (logical 7). These default colours can, of course, be 
changed at the beginning in prepit or at any time using setcol and/or erase. 

In our primitives we have functions which move between pixels or join them 
in pairs with a line (movepix or linepix) and we naturally require functions which 
do the same for points defined in our real WINDOW co-ordinate system. Functions 
moveto and lineto (listing 1.3) do this by changing a real co-ordinate pair to its 
equivalent pixel and then calling either movepix or linepix. You may find that 
with each operation the current cursor position, pixelvector lastpixel, has to be 
stored (see listing A.2). This will usually be done in the device hardware and 
hence you need not worry about it. We also have polyfill, the real equivalent of 
polypix: also see chapter 5 for an alternative polyfill. The main function block 
of listing 1.3 reads in the value for horiz and prepares the screen before calling a 
function draw _a_picture and finishing. From this point all graphics programs will 
#include "graphlib.c", either explicitly or implicitly, and hence call the function 
draw_a_picture, which precipitates the drawing of graphics images on the viewport. 

Example 1.2 
To demonstrate this, a window of horizontal size 4 units is created, and a square 
of side 2 units is drawn inside. (See draw_a_picture of listing 1.4 and figure 1.2a.) 
Note that the order in which the lines are drawn is critical: if the two marked 
lines in the listing had been interchanged, then the incorrect figure 1.2b would 
be produced. 

By compiling and running listing 1.4, "graphlib.c" will be #included, and 
then in turn "primitiv.c". In this way we have the complete program for draw­
ing figure 1.2a. 
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Listing 1.4 
#include "graphlib.e" 

1*················*1 
draw_a_pieture() I* function to draw a simple SQUARE *I 

1*················*1 
< struet veetor2 pt0,pt1,pt2,pt3 ; 

ptO.x=·1 ; ptO.y= 1 ; pt1.x=·1 ; pt1.y=·1 
pt2.x= 1 ; pt2.y=·1 ; pt3.x= 1 ; pt3.y= 1 
moveto(ptO) ; 
I ineto(pt1) ; 
I ineto(pt2) ; 
I fneto(pt3) ; 
I ineto(ptO) ; 

I* 
I* 

** interchange ** 
**these two lines** 

> ; I* End of draw_a_pieture *I 

Exercise 1.3 

*I 
*I 

Alter these functions so that they work with the primitives defmed by exercise 
1.1 for a multi-viewport/window system. This will allow you to have different 
window views of the same two-dimensional scene on the graphics device at the 
same time. In such systems the viewports do not fill the device display area. 
Naturally we do not want lines and polygons extending beyond the window 

(a) {b) 

Figure 1.2 

boundaries. You will have to read the section on clipping in chapter 5 to solve 
this problem. 

Exercise 1. 4 
Draw separate line pictures of a triangle, a pentagon and a hexagon; use only 
moveto and lineto in a program similar to listing 1.4 above. Also draw a picture 
with all of these figures in the same window, but with the polygons drawn in 
different colours (if possible), and at different centres and orientations. Also 
draw solid (or filled) polygons using polyfill. 
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All the co-ordinate points constructed in listing 1.4 are given explicitly in the 
program. This is a relatively rare event; usually the points are implicitly calcula­
ted as the program progresses, as in the next example. 

Example 1.3 
Draw a circle, centred in the window, whose radius value is read by the program. 
Do not assume the availability of a machine-dependent circle function, use only 
moveto and lineto. If your device does include a circle-drawing function then 
also write an alternative circle-drawing function that makes use of this utility. 

In our programs thus far, input is from the keyboard by the scanf function 
and text-screen output with the printf function. Note also that corresponding 
functions fscanf and fprintf can be used to input from, and output to, file by 
using FILE pointers and the fopen and fclose functions. 

As for the circle, obviously it is impossible to draw a true curve with the 
currently defined moveto and lineto functions; we can only draw approxi­
mate straight lines! We are, however, rescued from this dilemma by the inade· 
quacy of the human optical equipment - the failure of our eyes to resolve very 
small lines. If a continuous sequence of short lines is drawn, and this approxi­
mates to the curve, then provided that the lines are small enough, our eyes con­
vince our brain that a true curve has been drawn. Obviously this process can only 
produce a picture up to the quality of the resolution of the graphics device you 
are using. Low-resolution and medium-resolution devices will display circles (and 
lines) with jagged edges - the jaggies or more formally aliasing. Some devices 
have hardware anti-aliasing to minimise this problem (see chapter 5). 

So the problem of drawing a circle reduces to one of specifying which lines 
approximate to that circle. An arbitrary point on a circle of radius rand centre 
(0.0, 0.0) may be represented by a vector (r cos (}, r sin 8), where(} is the angle 
that the radius through the point makes with the positive x-axis. Hence by incre­
menting (} between 0 and 2rr radians in n equal steps or 2rr/n radians, n + 1 
points are produced (the first and last are identical), and these, if joined in the 
order that they are calculated, define an equilateral polygon with n sides (an 
n-gon). If n is large enough then the n-gon approximates to a circle. Listing 1.5 
(which incidentally is almost the solution to exercise 1.3) when it #includes 
"graphlib.c" and then "primitiv.c", draws a circle (a 100-gon) of radius, centred 
in the window. 

Listing 1.5 

#include "graphl ib.c" 

/*·········*/ 
circle(r) 

/*·········*/ 
float r ; 

<float theta=O,thinc=2*pi/100 ; 
int i ; 
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struct vector2 pt ; 
t• Move to first point */ 

pt.x=r ; pt.y=O.O ; moveto(pt) 
t• Draw edges of 100·gon */ 

for (i=O ; i<100 ; i++) 
< theta=theta+thinc ; 

pt.x=r*cos(theta) pt.y=r*sin(theta) 
l ineto(pt) ; 

> ; 
> t• End of circle */ 

/*······ · ·········*/ 
draw_a_picture() I* Drawing a circle*/ 

!*·· · ·············*/ 
< float r ; 
I* Read in radius and draw circle */ 

printf("Please type in circle radius\n") 
scanfC"Xf" , &r) ; circle(r) ; 

> ; t• End of draw_a_picture */ 

The display produced by this program is shown in figure 1.3a and, as previously 
stated, the 100 points are not stored but calculated, used and then discarded as 
the program progresses. This listing may also be used to demonstrate that in a 
C program it is essential to give all angles in radians and not degrees. If angles 
had been given in degrees- that is thine= 3.6 (= 360/100)- then the disastrous 
figure 1.3b is drawn. 

(a) (b) 

Figure 1.3 

Exercise 1.5 
Draw an ellipse with a major axis of 6 units and a minor axis of 4 units centred 
on the window. Choose the horiz value so that the ellipse fits inside the window. 

Note that a typical point on this ellipse may be represented as a vector 
(6 cos 0, 4 sin 0), where 0 E;;; () E;;; 21T, but it must be remembered that this angle() 
is not the angle made by the radius through that point with the positive x-axis; it 
is simply a descriptive parameter. 



18 High-resolution Computer Graphics Using C 

Exercise 1. 6 
Draw a diagram similar to figure 1.4. Note the optical illusion of two diagonal 
'white' lines. 

Figure 1.4 

Exercise 1. 7 
Draw examples of Piet Hein's super-ellipses (Gardner, 1978). These figures are 
given by the general point (a co{ 8, b sin' 8) where r is a ftxed real number. If 
r = 3 we get an astroid, and when r = 0.8 we get a peculiar oval popular among 
architects. 

Example 1.4 
Draw a spiral centred on the origin with six turns, and which has an outer radius 
of six units (see draw_a_picture, listing 1.6). 

Listing 1.6 
#include "graphllb.c" 

1*-·--····----···--··········*1 
spiral(centre,radius,ang,n) 

I*· .•....•••••...•.......... ·*I 
struct vectorZ centre ; 
float radius,ang ; 
int n; 

< float theta=ang,thinc=Z*pil100,r ; 
lnt l,ptnumber=100*n ; 
struct vectorZ pt ; 

I* Move to first point *I 
moveto(centre) ; 

I* Draw spiral of 'n' turns ('ptnumber=n*100' points) *I 
for (i=O ; i<ptnumber ; i++) 

< theta=theta+thinc ; r=radius*ilptnumber ; 
pt.x=r*cos(theta)+centre.x ; 
pt.y=r*sin(theta)+centre.y ; 
l ineto(pt) ; 
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) ; 
> ; I* End of spiral *I 

I*· •••••••••••••• ·*I 
draw_a_picture() I* drawing a SPIRAL *I 

I*· .••••.•.•••••• ·*I 
( struct vector2 centre ; 

centre.x=O ; centre.y=O ; 
spiral(centre,6.0,0.0,6) ; 

> ; I* End of draw_a_picture *I 

Note that a typical point on a spiral of n turns centred on the origin is again 
of the form (r cos (J, r sin 8), where now 0 E;;; (J ~ 2mr and the radius depends on 
(J; r = (J /27r in example 1.4. Since there are likely to be a number of occasions 
when we need to draw a spiral, we give a general function which centres the spiral 
of outer radius radius and n turns at vector2 point centre. Furthermore the 
value of (J {theta) varies between ang and ang + 2n7r. 

In order to complete this example the following function call is needed 

spiral (centre, 6.0, 0.0, 6); 

where 

centre.x = 0.0 and centre.y = 0.0 

whence figure l.Sa is drawn. 

Exercise 1.8 
Using function spiral of listing 1.6, produce another function 

twist (centre, r, ang) 

where centre is a vector2 variable, and r and ang are float, which will draw dia­
grams similar to figure l.Sb. Again centre is the centre of the figure relative to 
the WINDOW origin, r is the radius of the circle containing the four spirals, and 
ang is the initial angular value of one of the spirals. 

Figure 1.5 
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It is now time to consider some more attractive examples to illustrate how, 
even with only a beginner's knowledge of computer graphics, it is still possible to 
draw aesthetically pleasing patterns. Furthermore, you must familiarise yourself 
with your graphics device before going on to the more complex three-dimensional 
displays, and drawing patterns is an ideal way to start. 

Example 1.5 
Produce a general program that places n points (n ~ 1 00), equally spaced on the 
circumference of a unit circle, and then joins each point to every other. 

Figure 1.6 shows the pattern produced by listing 1.7 with n = 30. The n 
points are required over and over again, and so it is sensible to calculate them 
once only, store them in an array and recall them when necessary. The points are 

pt[il = (X1, Y1) =(cos (2rri/n), sin (2rri/n)) i = 0, 2, ... , n- 1 

Also note that if i ~ j then the ith point is not joined to the /h point at this 
stage, since the line will already have been drawn in the opposite direction. See 
chapter 2 for a more detailed explanation of arrays. 

Listing 1. 7 

#include "graph! ib.c" 

1*·----··---·--·--*1 
draw_a_picture() 

I*- ---. -. ----.. -.. *I 
{ struct vector2 pt£100] 

int i,j,n ; 
float theta=O,thinc ; 

I* Simple point to point plot *I 

I* Read in •n•, the number of points *I 
printf("Type in number of points\n") ; scanf("Xd",&n) 

I* Calculate 'n' points on a unit circle *I 
thinc=2*piln ; 
for Ci=O ; i<n ; i++ ) 

{ pt[i].x=cos(theta) pt[i].y=sin(theta) 
theta=theta+thinc ; 

} ; 
I* Join point 'i' to point •j• for all '0 <=I< j < n' *I 

for ( i=O ; i<n·1 ; i++ ) 
{ for ( j=i+1 ; j<n ; j++ ) 

} ; 

{ moveto(pt[il); lineto(pt[j]) 
} ; 

) ; I* End of draw_a_picture *I 
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Figure 1.6 

Exercise 1. 9 
If you are using a pen plotter then listing 1.7 is not a very efficient way of draw­
ing the pattern; the pen goes to and fro across the page and yet half the time no 
line is drawn since the pen is just returning to the start point of a new line. Write 
a program that draws the same diagrams, but is more efficient than this listing. 

Exercise 1.10 
Draw a diagram similar to figure 1. 7. 

This diagram (another 'pin and cotton' picture - so called after the child's 
toy) is drawn by first reading in a value for n . The program then calculates the 
co-ordinates of 4n points {p[i)l i = 0, 2, ... , 4n- 1} around the edges of a unit 
square. There is one point at each corner and the points are placed so that the 
distance between consecutive points is 1/n. Then pairs of points are joined 
according to the following rule: p[i) is joined to p[j), for all non-negative i, j 
less than 4n, such that j - i is a Fibonacci number less than 4n, the subtrac­
tion being carried out modulo 4n. (Note that the sequence of Fibonacci numbers 
is the set of positive integers 1, 2, 3, 5, 8, 13, 21, 34, . .. , where each element is 
the sum of the previous two elements in the sequence.)For example, if n = 10 
then the point p[32) would be joined to p[33], p[34], p[35L p[37l, p[OL 
p[5), p[13) and p[26]. The outer unit square must be drawn as part of the 
diagram and thus, for efficiency, there is no need to join points which lie on the 
same side of the square. 
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Figure 1. 7 

Figure 1.8 

Example 1.6 
We use colour in the draw_a_picture function of listing 1.8 to draw diagrams 
similar to figure 1.8. m sets of n points on regular n-gons , and one set of n coin­
cident points, are given by the following formulae 

The ;th point in the jth set, 0 ~ i < n and 0 ~ j ~ m, is (r cos e, r sin 8) where 
r and e are given by 

r = (j + 1)/m and e = 2Tri/n +a: 

where a:= 0 if i % 2 (i modulo 2) is zero, and Tr/n otherwise. 

Triangles are then formed by joining every pair of neighbouring points on all 
but the inner n-gon to the nearest point inside them. These triangles are then 
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filled in with logical colour 1 (red) and a logical colour 7 (white) edge drawn 
around the outside. 

Listing 1.8 

#include "graphlib.c" 

!*················*/ 
draw_a_picture() /* drawing a simple ROSE pattern */ 

/*················*/ 
( struct vector2 inner[100J,outert100J,trianglet3J 

int i,j,m,n; 
float r,theta,thinc 

I* Read in •n• and 1m' */ 
printf<"Type n and m \n") ; scanf("Xd %d11 ,&n,&m) 
thlnc=2*pi/n ; 

I* Initial inner circle is degenerate */ 
for <1=0 ; i<n ; i++ 

( inner[!] .x=O.O ; inner til .y=O.O 
) ; 

I* Loop through the •m• levels */ 
for (j=1 ; j<=m ; j++) 

( theta=·j*pi/n; r=<float)j/m 
I* Calculate 'n' points on outer circle */ 

for Ci=O ; i<n ; i++) 
( theta=theta+thinc ; 

outer[iJ.x=r*cos(theta) 
outer[i].y=r*sin(theta) 

> 
I* Construct/draw triangles with vertices on inner and outer circles */ 

for (i=O ; i<n ; i++) 
( triangle[OJ=outertil 

triangle[1J=outer[(i+1) X nl 
triangle[2J=inner[i] ; 

I* Fill •triangle' in red*/ 
setcol(1) ; polyfill(3,triangle) 

I* Outline •triangle' in white*/ 

) 

setcol(7) ; moveto(triangle[OJ) 
lineto(triangle[1]) 
lineto(triangle[2]) 
lineto(triangle[Q]) 

I* Copy points on outer circle to inner arrays */ 
for Ci=O ; i<n; i++) 

> ; 

( inner[i].x=outer[i].x 
inner[iJ.y=outer[iJ.y 

) 

> I* End of draw_a_picture */ 
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Exercise 1.11 
Use the methods of examples 1.3 and 1.6 to draw a solid circle (a disc): figure 
1.9 (green with a red edge). Approximate to the disc with a sequence of triangles 
whose vertices consist of the centre of the circle and two neighbouring points on 
the circumference. If your device has a hardware circle-fill (or pie-fill), then in­
corporate this in an alternative function to solve this exercise. 

Figure 1.9 

Example 1.7 
Emulate a Spirograph®, in order to produce diagrams similar to figure 1.1 0. 

A Spirograph consists of a cogged disc inside a cogged circle, which is placed 
on a piece of paper. Let the outer circle have integer radius a and the disc 
integer radius b . The disc is always in contact with the circle. There is a small 
hole in the disc at a distance d (also an integer) from the centre of the disc, 
through which is placed a sharp pencil point. The disc is moved around the circle 
in an anti-clockwise manner , but it must always touch the outer circle; the cogs 
ensure there is no slipping. The pencil traces out a pattern , which is complete 
when the pencil returns to its original position. 

We assume that, initially, the centres of the disc and circle and also the hole 
all lie on the positive x-axis, the centre of the circle being the WINDOW origin. 
In order to emulate the movement of the Spirograph it is essential to specify a 
general point on the track of the pencil point. We let (} be the angle made with 
the positive x-axis by the line joining the origin to the point where the circle and 
disc touch. The point of contact is thus (a cos (}, a sin 8) and the centre of the 
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Figure 1.10 

disc is ((a -b) cos e, (a -b) sin 8). If we let -IP be the angle that the line join­
ing the hole to the centre of the disc makes with the x direction (note the angle 
IP has opposite orientation to e, hence the minus sign), then the co-ordinates of 
the hole are 

((a- b) cos e + d cos IP, (a- b) sine- d sin IP) 

The point of contact between the disc and circle will have moved through a 
distance ae around the circle, and a distance b(O + ¢) around the disc. Since 
there is no slipping these distances must be equal and hence we have the equa­
tion 1P = ((a - b)/b)O. The pencil returns to its original position when both e 
and 1P are integer multiples of 21r. When e = 2n1r then 1P = 21rn (a- b)/b; hence 
the pencil point returns to the original position for the first time when n (a- b)/b 
becomes an integer for the first time, that is, when n is b divided by the highest 
common factor of b and a. The function hcf given in listing 1.9 uses Euclid's 
Algorithm to calculate the h.c.f. of two positive integers (see Davenport, 1952). 
The listing also includes a function spirograph which calculates the value n, and 
then varies e (theta) between 0 and 2n1T in steps of 7T/l 00; for each e' the value 
of ¢ (phi) is calculated and thence the general track is drawn. Obviously the size 
of the window must be chosen so that the shape defined by values of a, b and 
d actually fits into the window: the radius of such a sh:;pe is a+ d-b. Figure 
1.10 is drawn by the call spirograph ( 12, 7, 5) from within draw_a_picture, 
of listing 1.9 which #includes "graphlib.c" and "primitiv.c" to complete the 
program. 
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Listing 1.9 

#include "graphlib.c" 

J*--··-··-*1 
hcf(i,j) 

/*--·--···*/ 
int t,j ; 

J* Returns the h.c.f. of two positive integers •i• and 'j' */ 
J*'i' is initially greater than 'j' */ 
< int remain ; 

do ( remain= f X j ; i=j ; j=remaln ; 
> 

while (remain I= 0) 
return(!) ; 

> ; /* End of hcf */ 

/*----·-·-·-·······*/ 
splrograph(a,b,d) 

, •.. --.--.- ... -·--·*/ 
tnt a,b,d ; 

< tnt f,n,ptnumber; 
float phf,theta=O,th!nc=p!*D.02 ; 
struct vector2 pt ; 
n=b/hcf(a,b) ; ptnumber=n*100 ; 
pt.x=a·b+d ; pt.y=O.O ; moveto(pt) 
for (!=0 ; i<ptnumber ; i++) 

< theta=theta+thinc ; phi=theta*(a·b)/b ; 
pt.x=(a·b)*cos(theta)+d*cos(phi) 
pt.y=(a·b)*s!n(theta)-d*sin(phi) 
I !neto(pt) ; 

> ; 
> ; I* End of spirograph */ 

/*-········-······*/ 
draw_a_picture() /* Spirograph */ 

/*-·--···-·-···-··*/ 
( sp!rograph(12,7,5) ; 
> ; /* End of draw_a_plcture */ 

Exercise 1.12 
Use this function in a program which draws a field of 'flowers', each flower con­
sisting of a thin rectangular (green) stem with multicoloured Spirograph petals. 



2 Data Structures 

In the previous chapter we saw examples of subscripted variables or arrays. Now 
we are going to discuss the general use in computer graphics of this and other 
abstract data structures, and in particular the implementation in C of those 
structures that are necessary for the more complex algorithms given in this book. 
Those readers who do not wish to delve too deeply into data structures at this 
stage may skip this chapter and return to it later in order to understand the com­
plex algorithms. We will limit our discussion to those data structures that will be 
of value in this book; for those who wish to find out more we recommend books 
by Abo, Hopcroft and Ullman (1983), Horowitz and Sahni (1976) and Knuth 
(1973). 

Amys and Subscripted Variables 

It is assumed that readers are aware of the concept of subscripts. That is, the 
grouping together of data of the same type under one name (or identifier), and 
accessing individuals within the grouping (or array) by use of subscripts. Count­
ing for the subscripts can start at either 0 or 1. In FORTRAN 77, for example, 
and in most mathematical texts, counting starts at 1. For example, the first five 
prime numbers can be given the name p - that is, p represents ALL the numbers 
2, 3, 5, 7, 11. p is an array of five elements and an individual from within the 
grouping is indicated by a subscript, and p5 indicates the fifth and fmal member 
of the array (the prime number 11). In the C language, however, subscript counts 
always start at 0 - we have already seen this in chapter 1. So in this example, 
the five prime numbers would be Po, Pt. p2 , p3 , p4 , where the prime 11 is now 
final member p4 of the array, and there is NO member p5 ! The first method of 
counting subscripts (starting at 1) is deeply ingrained in our mathematical 
culture, as well as our thought processes, so a change to the C way of counting 
(the Computer Science way) can cause subtle problems (the idea that the second 
member of a group is p1 !). On the surface it would appear wise to be consistent 
in the method of counting. This obviously has to be the C method since we are 
programming in the C language. It is just as obvious to use the mathematical 
method, because so much of computer graphics relies heavily on the standard 
mathematical. texts of Matrix Algebra! One compromise, often taken by applica­
tions programmers when using C, is to declare an array with one element more 
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than is actually needed and then totally to ignore (and waste) the element with 
subscript 0, thus emulating the mathematical method, and restoring p5 in the 
prime example above! There are many situations in the Computer Science 
domain, however, where it is sensible to start the count at 0! For example, most 
graphics devices with 8 bit-planes, that is, those with a 256 colour display, use 
one 8-bit word to hold the index of the colour table (see chapter 1), and so the 
indices of the colour subscripts are naturally 0 to 255! Because of this impasse, 
this book will mostly use the C method of counting, except in situations where 
it is more convenient to use the mathematical compromise. But you must always 
be aware of which method is being used, or you can easily lose elements from 
the front or back of the arrays! Naturally, in C all statements occur on a line, 
not above or below the line, and so no subscripts (or superscripts for that matter) 
are possible - instead one (or more) subscripts are placed inside sets of square 
brackets. For example, in listing 1.2 the three elements of array polygon are 
polygon[O], polygon[1] and polygon[2]. 

Often the subscript is given by a variable name; therefore Pi is the element i 
(in whatever counting method we are using) of the array, where i must be in the 
range of possible subscripts (allowing for the counting method). In the text that 
follows, double dots ( .. ) will be used to specify a range or subrange of index 
values; for example, p[3 .. k] indicates the array values p[3], p[4], ... , p[k]. 

It is possible for an array to have multiple subscripts; for example, in an m by 
n array (a double subscripted array) identified with the name a, the individual 
element in row i and column j (0.;;;;; i < m and 0 .;;;;j < n) is indicated by aij· In a 
C program, this array would be declared as a[m] [n], and the individual element 
would be a[i] [j], but remember because of index counting elements a[i] [n] 
and a[m] [j] do not exist for any values of i and j. This is a major problem when 
dealing with matrices, and so in this book we differentiate between an m by n 
array and an m by n matrix. Mathematical texts always vary the matrix indices 
from 1 to m and from 1 to n, yet the array a, declared in C above, has indices 
varying from 0 to m - 1 and from 0 to n - 1. Therefore in this book an m by n 
matrix will ALWAYS be declared as a (m + 1) by (n + 1) array, and to further 
highlight this, it will be given an identifier in capital letters (A say)! Then, by 
using the subranges A[1..m] [1..n], it is possible to implement the mathematical 
interpretation of matrices. 

We shall see the importance and power of matrices and arrays when we deal 
with the concept of vertex co-ordinates, lines and facets in the chapters on two­
dimensional and three-dimensional space. (A facet is a closed convex polygon 
which is normally defined by the co-planar vertices that form the corners of the 
polygon.) For example, a set of three-dimensional vertices can be grouped to­
gether and the x, y and z co-ordinates can be stored as an array of structure type 
data, v (say), where the vertex i is v[i]. Hence the vertex i from the set will have 
Cartesian co-ordinates (v[i].x, v[i].y, v[i].z). 
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Pointers 

The use of arrays has drawbacks in certain situations, as in the case where the 
grouping of data in a double subscripted array is sparse. For example, we could 
have m static sets of integer data, where the largest set contains n values, but on 
average the sets contain n/4 values (say). If we stored the sets in an m by n array, 
then only a quarter of the array locations (m * n/4) would be used. One solution 
to this problem is the use of pointers. Many programming languages (including C) 
have pointers built into the language. In C, pointers implicitly use arrays, but it 
is also possible, however, to implement these ideas explicitly inC using arrays, 
which in some cases may prove more efficient. A large array is used to store data 
values, and an integer index, sometimes called a cursor (that is, a pointer), is 
used to indicate an element or group of elements in that array. Our set example 
above can be solved in this way. Suppose each set is indicated by an integer value 
between 0 and numberofsets - 1 and the elements from all sets are placed in 
array listofsets, the values of set i coming immediately after those of set i- 1 in 
the array, where 1.;;;; i < numberofsets. In order to access an individual set stored 
in this way we need to know the start location of that set in listofsets as well as 
the number of elements. We let the set i have size[i] elements stored in locations 

listofsets[firstofset[i)], ... , listofsets[firstofset[i] + size[i] - 1] 

We give a rather artificial program in listing 2.1a to demonstrate this technique. 
Note that in our implementation the final location of set i is not firstofset [i) + 
size [i] but firstofset (i] + size [i] - 1. Also we introduce a variable firstfree 
which points to the first available location in the array. 

In the study of data structures it is often useful to draw diagrams to represent 
them. One-dimensional arrays are normally represented as a row (or column) of 
boxes holding the array values; if necessary array indices are placed outside the 
relevant boxes. If an integer value is used as a pointer then it is sometimes drawn 
in the diagram as an arrow; one end indicates where the integer is stored and the 
other which location is being pointed at. A pointer which points nowhere (?), as 
in the case where the size of a set is zero, the null pointer (see figure 2.4), is 
usually represented by a diagonal line. See figure 2.1 as an example of a data 
structure diagram for listing 2.la. 

Listing 2.la 

#include <stdio.h> 

I* Program to demonstrate sets and cursors */ 

/*······*/ 
main() 

/*······*/ 
< int firstofset[10J,size[10J,listofsets[100] 

int f,j,firstfree,numberofsets,whichset ; 
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I* Create sets and place in array 'listofsets' *I 
fi rstfree=O ; 
do < printf(" How many sets?\n") 

scanf("Xd" ,&nunberofsets) ; 
) 

while ((numberofsets <= 0) II (numberofsets >10)) 
I* Read in members of i'th set *I 

for (!=0 ; f<numberofsets ; I++) 
< firstofset[iJ=firstfree ; 

printf(" How many elements in set Xd\n", i) 
scanf("Xd" ,&size[iJ) ; 
if (sfze[i] I• 0) 

< firstfree=firstofset[iJ+size[iJ 
printf<" Type in Xd integers\n",size[iJ) 

I* Add value to listofsets *I 

) 

) ; 

for (j=O ; j<size[il ; j++) 
scanf( 11Xd11 ,&listofsets[firstofset[!J+j]) 

I* Output any set *I 
do < printf(" llhich set do you wish output\n") 

scanf( 11Xd11 ,&whichset) ; 
I* Run through list of members of •whichset• *I 

if ((whichset >• 0) & (whichset < numberofsets)) 
if (sfze[whichset] •= 0) 

prfntf(" E~ty Set\n") ; 
else < for (j=O ; j<size[whichset] ; j++) 

) 

printf(" Xd11 , l istofsets [fi rstofset[whichsetl + j]) 
printf("\n") 

) ; 

while (whfchset < numberofsets) 
> ; I* End of main *I 

Listing 2.lb 

#Include <stdio.h> 

I* Alternative •set• program to demonstrate pointers *I 

struct setnode < int member ; struct setnode *ptr ; ) ; 

#define maxheap 1000 

1*······*1 
main() 

1*------*1 
< int i,j,numberofsets,size,v,whichset 

struct setnode heap[maxheapl,*heapfree,*p,*set[10J 
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I* Prepare heap *I 
heapfree=&heap[O] 
for (i=O ; i<maxheap·1 ; i++) 

heap[i].ptr=&heap[i+1] ; 
heap[maxheap·1l.ptr=NULL; 

I* Create sets and place in array •set• *I 
do < printf(" How many sets?\n") 

scanf("%d",&nlnlberofsets) ; 
) 

while ((numberofsets <= 0) II (numberofsets >10)) 
for (i=O ; i<numberofsets ; i++) 

I* Read in members of i'th set *I 
{ set[il=NULL ; 

printf(" How many elements in set Xd\n",i) 
scanf("%d",&size) ; 
if (size != 0) 

< printf(" Type in %d integers\n",size) 
for (j=O ; j<size ; j++) 

< scanf( 11%d11 ,&v) ; 
I* Add value •v• to front of set[i] *I 

p=heapfree ; 
heapfree=p·>ptr 
p·>member=v ; 
p· >pt r=set [ i] 
set [il =p ; 

) 

) ; 
) ; 

I* Output any set *I 
do < printf<" Which set do you wish output\n") 

scanf("Xd",&whichset) ; 
if ((whichset >= 0) & (whichset < numberofsets)) 

if (set[whichsetl ==NULL) 
printf(" Empty Set\n") ; 

I* Run through list of members of •whichset' *I 
else< p=set[whichsetl ; 

) 

) 

while (p I= NULL) 
< printf(" Xd" ,p·>member) 

p=p·>ptr 
) ; 

printf<"\n") 

while (whichset < numberofsets) 
> ; I* End of main *I 

31 

This technique is used for storing information about polygonal facets in two­
dimensional and three-dimensional space. For example, in a given scene we could 
have both triangles and dodecagons (say), nof in total, each polygon defined 
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by a list of the vertices on its perimeter, taken in order. Hence the vertices for a 
given polygon in the scene fall into the category of the set type described above, 
and so the method of listing 2.1a will prove very efficient in storing such poly­
gonal information. It is obviously inefficient to use an nof by 12 array to store 
the vertices in the scene if most of the polygons are triangles. 

Exercise 2.1 
There is strictly no need to include the size array in listing 2.la, after all size[i] = 

firstofset [i+1) - firstofset [i]. We use the size array explicitly to aid our expla­
nation in the text. You can change our programs to avoid using the size locations 
if you wish; try with listing 2.1a - note you must now have a value for 
firstofset [ numberofsets] . 

first of sets 

list of sets 

size 

Linked Lists 

number of sets= 4 

Set 0 = 3,9,5,4 
Set 1 = 1 ,3,8 
Set 2 = 5,3,1,6,9 
Set 3= 4,1,2,7 

Figure 2.1 

I ( 

firstfree - 16 

I / 

Not all information is static. There are so-called dynamic data structures where 
information can be added and/or discarded from the grouping. When using arrays 
to represent such structures, we have to allow space for the maximum size of the 
grouping, and furthermore discarded information will leave holes in the array, 
which often requires resequencing of the array values - a very time-consuming 
process. One such dynamic data structure which avoids this problem and which 
is used throughout this book is the linked list or linear list. 

Like an array, a linked list is a means of grouping together elements of the 
same type, but. unlike an array, the information in such a structure is not acces­
sed by an index but by a movable pointer. Although in C this structure is imple­
mented with the implicit use of arrays! A linked list is made up of separate 
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links and each link consists of two parts: the information part which contains a 
value of the type being grouped together, and the pointer part which indicates 
the next link in the chain. This implies the existence of 

(a) a pointer to the front of the list 
(b) a null pointer which indicates an empty list or the end of a list, and 
(c) a facility whereby a variable pointer will enable us to move along the list, 

accessing individual links in the list. 

The manipulation of such a structure can be quite complex. We could have 
functions to 

(I) add new links to the front, back or at a specified position within a list 
(2) read/print/delete links from the front, back or specified position in a list 
(3) make copies of a list 
(4) reverse a list 
(5) add new values to a list so that an ordering is imposed on the values stored 

in the list. 

Since the most implementations of the C language incorporate the identifier 
NULL to represent the null pointer, and this value is usually set to zero, we will 
use the same convention. If NULL is not implicitly part of your system then you 
must #define it as zero in "primitiv.c". 

Listing 2.1 b uses C pointers and linear lists to give a program equivalent to 
that of listing 2.1a. Note the similarities in the programs. This listing demon­
strates how to set up dynamic data structures in C, by creating an array of 
structured data types (called a heap), one of whose members will be a pointer to 
(or address of) another element of the same array. Initially this is organised so 
that element 0 points at element 1, ... , element maxheap - 2 points to element 
maxheap - 1, which finally contains the NULL pointer. Later these pointers can 
be reassigned to produce quite complex structures. This initial organisation can 
be thought of as a list of free locations which are available, so that whenever a 
cell allocation is needed in order to extend a complex data structure, then it is 
readily available from the heap array. Furthermore, if a cell is no longer needed 
then it can be restored to the free list for reallocation. In listing 2.lb, the pointer 
variable heapfree indicates the front of the free list, and all allocation and re­
allocation is done via this pointer. 

There are many, many more possibilities and variations. The list data structure 
is a very powerful tool, and has wide ranging applications in computer science. 
For our needs, however, we will concentrate here on a restricted form of a list 
called a stack of integers. The information part of elements in the list is limited 
to integers, and these can only be added to and deleted from the front of the list: 
respectively the so-called push and pop routines. More complex versions of a 
stack can be seen in chapters 12 and 17. 

One simple method of implementing a stack is to have an array stack (say) 
holding integer information values for each link in the list and a variable top, 
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initially the null pointer NULL (= 0), which points to an element in the array: 
the top of the stack. The inter-link pointers are understood to be the indices of 
the array stack. A push function for such a stack implementation increases the 
value of top by one and puts the value to be stored into location stack [top]. 
The pop function simply finds the value of stack [top 1 then decrements top by 
one. See listing 2.2 and figure 2.2. Note that the free list idea introduced in list­
ing 2.lb is in fact another implementation of a stack, with heapfree being the 
top of the stack! 

Listing 2.2 

#include <stdio.h> 

int top,stack[100l ; 

1*--·-·-----·-----*1 
push(stackvalue) 

1*---··----------·*1 
int stackvalue ; 

I* Routine to 'push' the integer 'stackvalue' onto the •stack' array *I 
< If (top z= 100) 

printf(" Stack size exceeded\n") ; 
else ( top=top+1 ; stack[topl=stackvalue ; 

} ; 
I* Move up •top' of •stack', and store 'stackvalue' there *I 
> ; I* End of push *I 

1*-----*1 
pop() 

1*····-*1 
< lnt stackvalue ; 
I* Routine to 'pop' the •stackvalue• from the array •stack' *I 

if (top == ·1) 
< printf("Stack is empty\n"> ; return(-1) ; } 

else ( stackvalue=stack[topl ; top=top·1 
return(stackvalue) ; } ; 

} ; I* End of pop *I 

1*·-- .. ·*1 
main() I* To demonstrate •push' and 'pop' routines using integer cursor *I 

1*·- .... *1 
< fnt I ; 

top=-1 ; I* Initialise stack pointer*/ 
I* Some sample •push'es *I ; 

push(5) ; push(7) ; 
I* A sample 1pop1 */ 

printfC"popping Xd from stac\\n",pop()) 



I* Another •push' *I 
push(2) ; 

lJataStructures 

I* write out 'top' and first five locations of •stack' array *I 
printf("top of the stack is Xd\n",top) ; 
for (i=O ; i<5 ; i++) 

printf("index=%d stack value=%d\n11 , i ,stack[il) 
} I* End of main *I 

Listing 2.3 

#include <stdio.h> 
#include "stack.c" 

1*······*1 
main() 

1*······*1 

Empty 
Steck 

~ 
Pueh 5 

~ 
Pop 7 Pueh z 

~ ~ 
Figure2.2 

Pueh 7 

~ 

I* Program to demonstrate •push' and 'pop' routines, for manipulating *I 
I* various stacks stored using a 'heap' array *I 
< int stack1,stack2 ; 
I* When using pointers declare the two stacks thus :· 

struct heapcell *stack1,*stack2; *I 
I* Although program should actually work with int declaration !I *I 
I* Prepare the 'heap' *I 

heapstart() ; 
I* Create two stacks : 'stack1 1 and 1stack2' *I 

stack1=NULL ; stack2=NULL ; 
I* Some sample 'push'es *I 

push(&stack2,5) push<&stack1,7) 
push(&stack2,8) ; push(&stack1,3) 

35 
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I* A sample 'pop' *I 
printf("popping Xd from stack2\n",pop(&stack2)) ; 

I* Another •push' *I 
push(&stack1,2) ; 

I* write out the two stacks */ 
printf("stack1\n") ; printstack(stack1) ; 
printf("stack2\n") ; printstack(stack2) ; 

) ; I* End of main */ 

Of course the above method requires one array to be declared for each stack. 
This can prove a costly requirement, so we introduce another method to imple­
ment a stack. The variables and functions are stored in a ftle "stack.c", and it is 
demonstrated by #includ(e)ing it in listing 2.3 - a contrived program which 
manipulates two stacks (stack1 and stack2). Two versions of "stack.c" are given 
in listings 2.4a and 2.4b respectively. The version in listing 2.4b will be used 
extensively throughout this book! 

Both versions use a heap implemented as a variable array heap, each element 
being of structure data type heapcell, with members info and pointer, referring 
to the information part and pointer part of links in the list respectively. The size 
of the array ( maxheap) must be chosen large enough to deal with our applica­
tions, and may be set by a #define declaration. The major difference in the two 
implementations (listings 2.4a and 2.4b) is that in the ftrst the pointer value will 
be the index of another location in the heap array, while in the second it will be 
a pointer to the location within the array using the C pointer system. 

In both listings the heap is organised by the function heapstart, so that the 
heap forms a free list pointed at by variable heapfree. The free list is necessary 
because we do not want to overwrite heap locations used in the construction of 
other lists! Initially the whole heap is free, and starting at heapfree it is possible 
to follow the pointers through the heap until the NULL pointer is reached -
hence the values of heap [0 or 1 ... maxheap - 1] and heapfree initialised in 
heapstart. Note, the NULL pointer is usually identified with a zero value, and so 
location 0 of the array heap cannot be used in listing 2.4a. We have no such 
problem in listing 2.4b! Also note that at this stage no values have been stored in 
the info members of the heap elements - we are only organising the pointer 
system (whether array index or C pointer) between links. 

Stacks/lists (we may have more than one, as in listing 2.3) will be stored on 
the heap. If we wish to place a list on the heap, we first give it an identifier by 
an int in listing 2.4a (or a pointer to a heapcell in listing 2.4b) and set it to the 
empty list (start1 = NULL), and then create it link by link. stack 1 will denote 
the array index (or location) of the link at the front of the list. It is extended by 
a push function, which deletes a heap location from the free list and allocates it 
to the front of the required list. This implies we change the values of stack 1 and 
heapfree, store the relevant information in the identified heap location and set 
the pointer value of this location to the previous stack1 value to maintain the 
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link pointers in stack 1. All links in the list can be accessed by starting at stack 1 
and moving along the sequence of pointers held in the heap array. 

Should we pop (read and delete) an element from a list, we must not only 
change stack 1 to the pointer in the array element indicated by stack 1 , but also 
reallocate the vacated heap location on the free list (garbage collection). Listings 
2.4a and 2.4b hold the two versions of the heapstart, push and pop functions, as 
well as a function printstack which will print out all the elements in a given stack 
list. Listing 2.4b also contains the alloc and realloc for allocating and reallocat­
ing elements on the free list. 

The program in listing 2.3 may use either listing 2.4a or 2.4b (stored as file 
"stack.c") and manipulates two lists stack1 and stack2 - note the author's 
preference for using the mathematical counting method and his avoidance of a 
stackO! Two diagrams of the resulting heap are given in figures 2.3 and 2.4. 
These data structure diagrams are typical examples of those found in most data 
structure textbooks. Figure 2.3 is an array diagram of the final stage of listing 
2.3, and shows a named vertical set of boxes which contain the array values: 
indices are placed alongside the boxes. Figure 2.4 is a box and pointer diagram 
of the final stage of the program, where boxes now show the individual links in 
the linear list, and the arrows indicate connections between the links. 

Listing 2.4a 

I* Store as a file "stack.c" *I 

#define maxheap 100 

struct heapcell (int info,pointer ; } ; 
struct heapcell heap[maxheapl 
int heapfree ; 

1*···········*1 
heaps tart() 

1*···········*1 
I* Initialise the 'heap•. At first no 'info•rmation is stored *I 
I* Only 'pointer', which points to next cell in the 'heap' *I 
( int i ; 

heapfree=1 ; I* cannot use 0, since NULL=O I! *I 
for (1=1 ; i<maxheap·1 ; I++) 

heap[i].pointer=i+1 ; 
heap[maxheap·1].pointer=NULL; 

> ; I* End of heapstart *I 

1*·····················*1 
push(stackname,value) 

1*·····················*1 
int *stackname,value ; 
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I* Routine to 'push' the integer •value• onto the stack-type *I 
I* linear list •stackname• which is stored on a •heap' *I 
{ int location ; 
I* create new node for stackname *I 

if (heapfree == NULL) 
{ printf("Heap size exceeeded\n") 

return(NULL) : } 
else { location=heapfree: heapfree=heap[heapfree].pointer 

I* Obtain 'location' from 'heap', and delete it from 'free' list *I 
I* Add 'location• to front of •stackname•, store •value• there *I 

heap[locationJ.info=value: 
heap[locationJ.pointer=*stackname 
*stackname=location 

} : 
} I* End of push *I 

1*··············*1 
pop(staclmame) 

1*··············*1 
int *stackname ; 

I* Routine to 'pop' the first •value• from the linear list •stackname• */ 
I* •value• is stored at the front of list •stackname' *I 
< int value,location; 

if (*stackname == NULL) 
< printf("Stack is empty\n") ; return(NULL) ; 
} 

else { location=*stackname; value=heap[*stacknameJ.info 
I* Delete front element of stackname, and dispose *I 

*stackname=heap[*stackname].pointer 
heap[locationJ.pointer=heapfree: 
heapfree=location ; return(value) ; 

} : 
> !* End of pop *I 

1*············-········*1 
printstack(stackname) 

1*·····················*1 
{ int location ; 

location=stackname : 
if (stackname == NULL) 

printf(" Empty Set\n") 
else {while (location !=NULL) 

} 

{ printf(" Xd",heap[locationl. info) 
location=heap[locationJ.pointer 

} 

printf("\n") ; 

> I* End of printstack *I 
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Listing 2. 4b 

I* Store as file "stack.c" to be used in rest of book *I 

I* Alternative stack listings using pointers *I 

#define maxheap 5000 

struct heapcell ( int info ; struct heapcell *ptr } 
struct heapcell heap[maxheap] 
struct heapcell *heapfree ; 

I*· ......... ·* I 
heaps tart() 

I*· ......... ·* I 
( int i ; 

heapfree=&heap[OJ 
for (i=O ; i<maxheap·1 ; i++) 

heap[i] .ptr=&heap[i+1J 
heap[maxheap·1J.ptr=NULL 

} ; I* End of heapstart *I 

I*· .......... ·* I 
alloc(point) 

1*············*1 
struct heapcell **point ; 

( *point=heapfree ; 
heapfree=<*point)·>ptr 

> ; I* End of alloc *I 

1*·················*1 
push(stackname,v) 

1*·················*1 
struct heapcell **stackname 
int v ; 

( struct heapcell *p; 
alloc(&p) ; ; 
p·>info=v ; 
p·>ptr=*stackname 
*stackname=p ; 

} ; I* End of push *I 

1*···············*1 
disalloc(point) 

1*···············*1 
struct heapcell *point 
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{ point·>ptr=heapfree ; 
heapfree=point ; 

> ; I* End of disalloc *I 

1*··········-···*1 
pop(stackname) 

1*··········--··*1 
struct heapcell **stackname 

< int v ; 
struct heapcell *p; 
v=C*stackname)·>info ; 
p=(*stackname)·>ptr ; 
disalloc(*stackname) 
*stackname=p ; 
return(v) ; 

> ; I* End of pop *I 

1*·····················*1 
printstack(stackname) 

1*·····················*1 
struct heapcell *stackname; 

< struct heapcell *p; 
if (stackname == NULL) 

printf(" Empty Set\n") 
else < p=stackname ; 

while (pI= NULL) 
< printf(" %d",p·>info) 

p=p·>ptr 
> ; 

printf("\n") ; 
> ; 

> I* End of printstack *I 

info• pointer 

heapfree = 5 

stack1 = 3-+ 

stack2 = 1 

Figure 2.3 
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stack1~1Z] 
stack2~1ZJ 

stack1 ~lilZI 
stack2 ~[[]ZJ 

stack1 o--IZ] 
stack2 o--[]]ZI 

stack 1 o--IIJZ) 
stack2~l!JQI-.[!2] 

stack1 ~~[[IQJ-.(]ZI 

stack20. [[)21 

Figure 2.4 
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Both the array stack and heap methods will be used throughout the book and in 
particular in the quad-tree algorithm we give in chapter 17. File "stack.c'' of 
listing 2.4b is very important in our three-dimensional programs! 

Graphs and Networks 

Another very important data structure in computer graphics is the graph, or 
more specifically the restricted form of graph called a network. A graph is a set 
of nodes and directed edges: see figure 2.5. For simplicity we label then nodes 
of a graph with the integers 0 ... n- 1. A directed edge, say from node ito node j, 
is denoted by {i, j}. A path in a graph is a consecutive sequence of edges- for 
example, the path {i, j, k, /} consists of the three edges {i, j}, {j, k}, {k, /}.A 
network is a graph that does not contain a cycle or loop - that is, there is no 
path, other than the trivial path {i, i}, starting and ending at the same node. 
Figure 2.5 is therefore a network: if an extra edge {5, 2} (say) had been added 
then there would be cycles, such as {2, 5, 2} and {2, 3, 5, 2}, and the graph 
would no longer be a network. 

We implement a graph by defining an array net list of pointers. netlist [ i] will be 
a pointer to a list stored on the heap; the list will be a stack of all nodes j, such 
that there is an edge {i, j} in the graph. See figure 2.6. If such a graph is a net­
work, then we say that the n nodes are partially ordered, and that it is possible 
to print out the node labels in a topological order. A topological order of a net­
work is a permutation of the integers 0 ... n - 1. 

[Io, l1, ... , In-d 

such that there are no i andj, 0.;;;; i <i < n, where there is a path in the network 
leading from node 11 back in the order to node 11. Note a topological order for a 
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network need not be unique. For example, in figure 2.5 both [0, 1, 2, 3, 4, 5, 6] 
and [0, 2, 1, 3, 5, 4, 6] are topological orders. 

A program of the process of finding a topological order for a given network is 
in listing 2.5. The program #includes "stack.c" to deal with all stack manipula­
tion. The method is to keep another stack which holds a list of all nodes with no 
edges entering them. Each time the stack is popped, we delete that node and any 
edges leaving that node, from the network. If this process throws up further 
nodes with no edges entering them, then these are also pushed on the stack. 
After n pops, we have a topological ordering: if the stack becomes empty before 
this point then the graph has a cycle, and is therefore not a network. 

This method is fundamental to the hidden surface algorithm of chapter 13, 
where the nodes represent polygonal facets, and the edges denote overlapping 
relationships between facets. For example, if, on viewing, facet I is behind facet J, 
then there will be an edge from node I to node J in the network representing the 
scene. If the facets do not overlap then there is no edge between them in the net­
work. The topological ordering of such a network gives a (non-unique) order of 
facets in the scene, starting from the back and moving forward, and hence 
furnishes us with a straightforward hidden surface algorithm. 

Figure 2.5 

Node edgein netlist 
number 

6 0 
5 sr;z] 
4 sr;z] 
3 41Ql-- 51/1 
2 3101-- 51/1 

3 IC>J-- 41/1 
0 lot- 21/1 

Figure2.6 



Listing 2.5 
#include <stdio.h> 
#include "stack.c" 

#define maxnet 100 

int edgein[maxnetJ,numnodes 

Data Structures 

struct heapcell *entrystack,*netlist[maxnetl 

I*·· •.....•....... ·*I 
topologicalsort() 

1*·················*1 
I* Routine to calculate the topological order of a'network' of •numnodes'*l 
I* nodes. The 'i'th node has edges entering other nodes and these are *I 
I* stored in a list named •netlist[i]'. *I 
I* •edgein[j]' holds the number of edges entering node 'j' *I 
( int i,node ; 
I* Any node with no edge entering it is •stack'ed *I 
I* Initially •stack' is empty. *I 

entrystack=NULL ; 
for (i=O ; i<numnodes ; i++) 

if (edgein[i] == 0) push(&entrystack,i) 
I* Deal with node stored on top of •entrystack'. *I 
I* Loop through process to consider every node. *I 

for <i=O ; i<numnodes ; i++) 
I* Remove 'node' on the top of 'entrystack' *I 

( if (entrystack == NULL) 
I* If stack is empty then there is an error *I 

< printf<"\n Error loop in the network\n") 
return(·1) ; 

) 

else < node=pop(&entrystack) 
I* write out 'nodevalue' *I 

printf(" %d",node) ; 
I* Call 'denode' to delete 'node' from the network. *I 

denode(node) 
) ; 

) ; 
printf<"\n"> ; 

> ; I* End of topologicalsort *I 

I*·· ............. ·*I 
denode(fromnode) 

1*················*1 
int fromnode ; 

I* Routine to delete the 'fromnode' from network. It must scan *I 
I* the linear list of nodes joined by an edge 'fromnode' •tonode' *I 
I* and decrement their 'edgein• value by 1. *I 
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( int tonode ; 
while ( netllst[fromnode] I= NULL) 

< tonode=popC&netlist[fromnode]) 
edgein[tonodel=edgein[tonodel-1 ; 

I* If this •tonode' now has no edges entering it then it can *I 
I* be pushed onto the stack ready for writing_ *I 

if (edgein[tonode] == 0) 
push(&entrystack,tonode) 

) 

) ; I* End of denode *I 

1*·······*1 
main 0 I* network example *I 

1*·······*1 
I* To demonstrate a simple network and topological sort. The *I 
I* network Is represented by a •net'list of up to •maxheap• stacks *I 
I* The •netlist[i]' stack holds the indices of all nodes •j•, such *I 
I* that there is an edge from •i• to •j•. 1edgein[j] 1 holds the *I 
I* number of edges entering node •j• *I 
{ int i, j ; 

heapstartO ; 
I* Set up the network data structure *I 

printf(" type in nunber of nodes\n") ; scanf( 11%d11 ,&nunnodes) 
for Ci=O ; i<numnodes ; i++) 

{ edgein[il=O ; netlist[il=NULL ; 
) ; 

I* Read in edge information : node 1 11 to node •j• *I 
I* Process ends when •i=j• *I 

printf( 11 type in edges\n") 
scanf("Xd%d11 ,&i ,&j) ; 
while (i != j) 

< edgein[j]=edgein[j]+1 push(&netlist[i],j) 
scanf("XdXd",&i,&j) ; 

) ; 
printf("Topological order of network is\n11 ) 

topologicalsort() ; 
> ; I* End of main network example *I 

Trees 

The last structure we consider in this chapter is a tree of integers, or more 
specifically a binary tree. A binary tree is a special form of network in which 
there is a unique node called the root with no edges entering it. All other nodes 
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have just one edge entering, and at most two edges leaving. A node may be con­
sidered to hold an integer information part, with two pointers (perhaps null) 
referring to two subtrees, one to the left, and one to the right of the node. The 
values stored on the nodes can be used to introduce a left-right ordering on each 
node value, by insisting that all the node values in the left subtree are less than 
the value on the node, and all values in the right subtree are greater than that on 
the node. See figure 2. 7. 

There are a number of different ways of implementing tree in C. Which you 
choose really depends on the complexity of the tree manipulation you require. 
See Knuth ( 1973). You can 

(i) add a node to a tree 
(ii) delete a node 
(iii) copy a tree 
(iv) balance it 
(v) print out the tree in various orders 

preorder, inorder, postorder 

and many more operations. 

Figure 2. 7 

Since we will only be referring to trees in passing in chapter 17, we include a 
simple implementation for completeness. We assume that the tree will be ordered, 
and is created by a stream of integer information. Once created it is used only as 
a storage structure and it will not be changed! The method is to use an array 
stack treelist listing 2.6. treetop points to the top of the stack. Trees are 
inherently recursive, but we use a non-recursive stack in order to implement 
these ideas. New nodes can be added to a tree only as a leaf- that is, a node 
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with no edges leaving it. Each time a new node is created its required position is 
found using the left-right ordering. A variable pointer nodeindex will move left 
or right through the edges of the tree until it finds a null pointer: this null 
pointer is replaced by a pointer to the new node. To create a new node, three 
locations are taken from the top of the stack: one for the integer information 
and two for the (initially null) edge pointers. Figure 2.7 shows the data struc­
ture diagram of the tree created by listing 2.6, and figure 2.8 shows the equiva­
lent array diagram. For a C pointer implementation of trees see Kernighan and 
Ritchie (1978). 

Listing 2.6 

#include <stdio.h> 

int treelist[100],treetop; 

I*·· •.••.........•..•.... ··*I 
leaf(leafvalue,nodeindex) 

I*· .•..................... ·*I 
int leafvalue,nodeindex ; 

I* add a new leaf at the top of the 'treelist' array point at these *I 
I* three new locations with •treelist[nodeindexl' */ 
< if (treetop != 0) treelist[nodeindexJ=treetop; 

treelist[treetopl=leafvalue; 
treelfst[treetop+1J=NULL ; 
treelfst[treetop+2]=NULL 
treetop=treetop+3 ; 

) ; I* End of leaf */ 

!*·················*/ 
extend(leafvalue) 

1*·················*1 
int leafvalue ; 

I* extend tree with 'leafvalue', maintaining left/right order *I 
{ int nodeindex ; 
I* Add new root to an empty tree */ 

if (treetop == 0) 
leaf(leafvalue,treetop) 

I* tree is not empty */ 
else { nodeindex=O ; 

I* If 'leafvalue' is less than value on node with given index then*/ 
I* extend subtree to the left. If subtree is empty then add new leaf */ 

do< if (leafvalue < treelist[nodeindexl) 
{ if (treelist[nodeindex+1] ==NULL) 

{ leaf(leafvalue,nodeindex+1) 
return(O) ; 

) 

else nodeindex=treelist[nodeindex+1] 
) 
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I* If 'leafvalue• is greater than value on node with given index then *I 
I* extend subtree to the right. If subtree is empty then add new leaf */ 

else {if (treelist[nodeindex+2J ==NULL) 
{ leaf(leafvalue,nodeindex+2) 

return(O) ; 
> 

else nodeindex=treelist[nodeindex+2l 
> 

> 
while Cnodeindex I= NULL) 

> 
> I* End of extend *I 

1*······*1 
main() 

I*· .... ·* I 
I* tree example *I 

I* An example to demonstrate a binary tree using arrays *I 
{ int i ; 

static int value[9]={6,1,8,3,7,2,4,5,9); 
I* Binary tree is originally empty, extend with these 9 values *I 

treetop=O ; 
for Ci=O ; i<9 ; i++) 

extend(value[iJ) ; 
I* Write out first thirty elements of the array *I 

for Ci=O ; i<30 ; i++) 
printf("index:Xd array value:Xd\n", i, tree I ist [i]) 

> ; I* End of main *I 

0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 

15 16 17 18 19 20 21 22 23 24 25 26 

I 2 I o I o 1 4 I o 121 I 5 I o I o 1 9 I o I o I 

0 =Information ~=Pointer 

Figure 2.8 

Exercise 2. 2 
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Implement various output functions for a tree constructed in the above manner. 



3 An Introduction to Two-dimensional 
Co-ordinate Geometry 

The underlying mathematical theory is important in any branch of computer 
programming but particularly so in graphics. The majority of techniques presen­
ted in this book rely entirely upon a solid background of co-ordinate and vector 
geometry and it is imperative that the reader gains some grounding in the 
methods involved before progressing to the later applications. 

We work with the x-y rectangular Cartesian co-ordinate system introduced in 
chapter 1 ; the positive x-axis is horizontal and to the right of the co-ordinate 
origin, and the positive y-axis is vertical and above the origin. A typical point in 
this system is represented by the co-ordinate pair (x, y ). The two values x andy 
are the perpendicular projections of the points on the respective axes. This is 
also sometimes called a vector pair, or point vector, and may be given in vector 
notation p = (x, y). Note that= means 'equivalent to'. 

We start with straight lines. Of course a line or, more specifically, a general 
point (x, y) on a line, may be represented in the familiar form of a linear equation 

y=mx+c 

which is better expressed as 

ay = bx + c 

where b/a is the tangent of the angle that the line makes with the positive x-axis 
(called the gradient, or slope, of the line), and cfa (if finite) is the intercept of 
the line with they-axis (see figure 3.1). If cfa is infinite (that is, if a= 0) then 
the line is parallel to they-axis and so has infinite slope. 

Before introducing a second way of representing a line (which, as we shall see, 
is more useful in computer graphics) two operations on vectors, scalar multiple 
and addition, must be defmed along with the magnitude or modulus of a vector. 
Suppose we have two vectors p 1 = (x 1 , y 1 ) and p2 = (x2 , y 2 ), multiplying the 
individual components of the vector p 1 by a scalar real value k gives the scalar 
multiple 

kp 1 =: (k X X 1 , k X y t) 

while adding the x components together and the y components together gives 
the vector 
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P1 +pz =(xl +xz,YI +yz) 

by vector addition. 

(I) 

)( • I ,.. 

c 
i 

Figure 3.1 

t _, .ll 
en 8 x-exls 

The modulus of a vector p 1 is defined as the distance of the point (x 1 , y 1 ) 

from the origin, denoted I p 1 I 

lp~l=v(xl 2 +yt2 ) 

To define a line we choose any two fixed points on the line which we again 
call p 1 = (x 1 , Yd and p2 = (x2 ,y2). The general pointp(t.t) = (x,y) on the line 
is given by the vector combination 

for some real t.t· This is the vector pair 

((1-t.t)xl +t.tX2,(1-t.t)Yl +t.tY2) 

We place the t.t in brackets after p to show the dependence of the vector on the 
value of t.t· Later, when the relationship is more fully understood, the (t.t) will be 
omitted. If 0 ~ t.t ~ 1 then p(t.t) lies on the line somewhere between p 1 and p2 • 

For any specified point p(t.t), the value of t.t is given by the ratio 

distance of p(t.t) from p 1 t.t= ----~::......:...--~ 
distance of p2 from p 1 

where the measure of distance is positive if p(t.t) is on the same side of p 1 as p2 , 

and negative if on the other side. 
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The (positive) distance between any two vector points p 1 and p2 is given by 
(Pythagoras) 

lpz -pll:: V{(xl -Xz)2 +(yl -Yzi} 

Figure 3.2 shows a line segment between points ( -3, -1) = p(O) and (3, 2) = p(1): 
the point (1, 1) lies on the line as p(2/3). Note that (3, 2) is at a distance 3y5 
away from ( -3, -1) whereas (1, 1) is 2y5 away. From now the (J.t) is omitted 
from the point vector representation. 

(3,2) 

x-exla 

(-3,-1) 

Figure3.2 

Example3.1 
This idea is further illustrated by drawing the pattern shown in figure 3.3a. At 
first sight it looks complicated, but on closer inspection it is seen to be simply a 
square, outside a square, outside a square etc. The squares are getting successively 
smaller and they are rotating through a constant angle. In order to draw the 
diagram, a technique is needed which, when given a general square, draws a 
smaller internal square rotated through this fixed angle. Suppose the general 
square has corners {(x1, y1)1i = 0, 1, 2, 3} and the-side i of the square is the 
line joining (x1,y1) to (x1+l,Yt+l)- assuming additions of subscripts are modulo 
4 - that is, 3 + 1 = 0. A general point on this side of the square, (x#, y#), is 
given by 

((1 - J.L) x X;+ J.L x X;+l, (1 - J.t) x y 1 + J.L x Yi+l) where 0 =EO; J.L =EO; 1 

In fact J.t: 1 - /J. is the ratio in which the side is cut by this point. If /J. is fixed and 
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the four points {(x/, yj)i i = 0, 1, 2, 3} are calculated in the above manner, then 
the sides of the new square make an angle 

a:= tan- 1 [~/(1 - ~)] 

with the corresponding side of the outer square. So by keeping~ fixed for each 
new square. the angle between consecutive squares remains constant at a:. In 
figure 3.3a generated by function draw_a_picture given in listing 3.1 which 
#includes "graphlib.c", and hence "primitiv.c", there are 21 squares and~= 0.1. 

(a) (b) 

Figure 3.3 

Listing 3.1 

#include "graphlib.c" 

1*················*1 
draw_a_picture() I* Square in Square pattern *I 

1*···----·----·--·*1 
< struct vector2 ptd[4]; 
I* Initialise the first square *I 

static struct vector2 pt[4]= { 1,1, 1,·1, ·1,·1, ·1,1 ) ; 
float mu=0.1,um=1·mu; 
int i,j,nextj ; 

I* Set •mu• value and produce 20 new squares *I 
for Ci=O ; i<=20 ; i++) 

( moveto(pt[3)) ; 
I* Draw the square and calculate the co-ordinates of the next square *I 

for Cj=O ; j<4 ; j++) 
< lineto(pt[j]) ; 

nextj=Cj+1) X 4 ; 
ptd[j).x=um*pt[j].x+mu*pt[nextj].x; 
ptd[j).y=um*pt[j].y+mu*pt[nextj].y; 

) ; 
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I* Reset square co-ordinates *I 
for Cj=O ; j<4 ; j++) 

> ; 

< pt[j].x=ptd[j].x ; pt[j].y=ptd[j] .y; 
> ; 

> ; I* End of draw_a_picture *I 

There is an unsatisfactory feature of the pattern in figure 3.3a: the inside of the 
pattern is 'untidy', the sides of the innermost square being neither parallel to 
nor at rr/4 radians to the corresponding side of the outermost square. This is 
corrected simply by changing the value of /..1 so as to produce the required 
relationship between the innermost and outermost squares. As was previously 
noted, with the calculation of each new inner square, the corresponding sides 
are rotated through an angle of tan-1 [/..1/(1 - f..l)] radians. After n + 1 squares 
are drawn, the inner square is rotated by n x tan - 1 [/..1/(1 - f..l)] radians relative 
to the outer square. For a satisfactory diagram this angle must be an integer 
multiple of rr/4. That is, n x tan-1 [f..L/(1 - f..l)] = t(rr/4) for some integer t, and 
hence 

tan [t(rr/4n)] /..1 = __ _;;__;'--~-=--
tan [t(rr/4n)] + 1 

To produce figure 3.3b, n = 20 and t = 3 are chosen, making /..1 approximately 
0.08. 

It is useful to note that the vector combination form of a line can be re­
organised 

Pt + f..I(P2 - pt) 

When given in this new representation the vector p 1 may be called a base vector, 
and (p2 - p 1 ) called the direction vector. In fact any point on the line can stand 
as a base vector, it simply acts as a point to anchor a line which is parallel to the 
direction vector. This concept of a vector acting as a direction needs some further 
explanation. It has already been noted that a vector pair, (x,y) say, may repre­
sent a point; a line joining the co-ordinate origin to this point may be thought of 
as specifying a direction - any line in space which is parallel to this line is 
defined to have the same direction vector. A line that goes from the origin 0 
towards (x, y) has the so-called positive sense; a line from (x, y) towards the 
origin has negative sense. 

The linear equation and vector forms of a line are, of course, related. It was 
mentioned earlier that the line ay = bx +chad slope b/a. This means, in fact, 
that the line has direction vector (a, b). Thus given any point on the line, (x 1 , yd 
say, we may derive its vector representation 

Conversely, if aline has vector form b + f..ld (where b = (bx, by) and d = (dx, dy)) 
then it has sloped y/dx and hence analytic (or functional) form 
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d d 'c ' x X y = y X X+ C tOT SOme C 

The value of c' can be determined by inserting the co-ordinates of any point on 
the line into the above equation; in particular we may use (bx, by) 

dx X by = dy X bx + C1 

so 

C 1 = dx X by - dy X bx 

and this gives the equation 

dx X y = dy X X+ dx X by - dy X bx 

This method can be used to obtain the equation of a line joining two given points 
p 1 = (x 1 , y 1 ) and p2 = (x 2, y 2 ). We know that the line has direction vector 
(p 2 -pi)= (x 2 - x 1 ,y2 - yt) and that it passes throughp 1 so we may substi­
tute these values into the above equation 

(x2 -xi)xy=(y2 -yi)xx+(x2 -xi)xy, -(Y2 -yi)xx, 

which gives 

(.x 2 - X I) X (y - Y I) - (y 2 - Y I) X (X - X I) = 0 

The Intersection of Two Lines 

This base and direction representation is also very useful for calculating the 
point of intersection of two lines, a problem that frequently crops up in two­
dimensional graphics. Suppose there are two lines p + p.q and r + Xs, where 
p = (x 1 ,yt), q = (x2 ,Y2), r = (x3,y 3) ands = (x4,y4) for - 00 <p., X< 00• These 
lines will intersect either at no point (if they are parallel and non-identical), an 
infinity of points (if they are identical) or at a unique point. Should such a 
unique point exist, it is defined by values of p. and X satisfying the vector equation 

p +p.q=r+"As 

that is, a point which is common to both lines. This vector equation can be 
written as two separate equations 

x 1 +p.xx2 =x3 +"Axx4 
y, + IJ. X Y2 = Y3 +A X Y4 

Rewriting these equations 

p.xx2 -"Axx4 =x3 -x1 
IJ. X Y2 -X X Y4 = Y3 - y, 

Multiplying (3.3) by y 4 , (3.4) by x 4 and subtracting 

p.x(x2 xy4 -Y2 xx4)=(x3 -xi)xy4 -(y3 -yi)xx4 

(3.1) 
(3.2) 

(3.3) 
(3.4) 
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If (x2 x Y4 - y 2 x x4) = 0 then the lines are parallel and there is no point of 
intersection (J.L does not exist), otherwise 

IJ. = (x3 - x!) x Y4 - (y3 - yt) x X4 
(x2 xy4 -Y2 xx4) 

and similarly 

X= (x3 -x!)xy2 -(y3 -y.)xx2 
(x2 xy4 -Y2 xX4) 

(3.5) 

(3.6) 

The solution becomes even simpler if one of the lines is parallel to a co­
ordinate axis. Suppose this line is x = d, then r = (d, 0) and s = (0, 1), which 
when substituted in equation (3.5) gives 

IJ. = (d- x!)jx2 

and similarly if the line is y = d 

IJ. = (d- Yd/Y2 

Substituting the value of 1J. (or X) thus found into p + J.1.f1 (or r + Xs) yields the 
point of intersection. 

Example3.2 
Find the point of intersection of the two infinite lines (a) joining (1, -1) to 
(-1, -3) and (b)joining (1, 2) to (3, -2). 

The lines may be written: 

(l-JJ,)(1,-1)+JJ.(-1,-3) 
(1 -X) (1, 2) + X(3, -2) 

or when placed in the base/direction vector form 

(1, -1) + JJ.(-2, -2) 
(1, 2) + X(2, -4) 

Substituting these values in equation (3.5) gives 

JJ.= (1-1)x-4-{2+1)x2 =-O.S 
{-2x-4-{-2)x2) 

whence the point of intersection is 

(1, -1)- 0.5 (-2, -2) = (2, 0) 

(3.7) 
(3.8) 

(3.9) 
(3.10) 

The general case is solved by the function ill2 shown in listing 3.2, which should 
be placed in a ftle "utility .c". 
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Listing 3.2 

I* Place function in file "utility.c" *I 
I* "graphlib.c" is needed by this function *I 

I*· ..............•....... ·*/ 
ill2(v1,v2,v3,v4,v,flag) 

I*· ...................... ·*/ 
struct vector2 v1,v2,v3,v4,*v ; 
int *flag ; 

{float mu,delta ; 
I* Finds the point vector of intersection, •v•, of two lines*/ 
I* •v1 + mu.v2 1 and 'v3 + lambda.v4 1 *I 
I* flag is returned as TRUE if intersection exists, else FALSE */ 

delta=v2.x*v4.y·v2.y*v4.x ; 
I* If 'delta' is zero then the lines are parallel : no intersection *I 

if ( fabs(delta) <epsilon ) 
*flag=FALSE ; 

else < *flag=TRUE ; 
I* Find 'mu' value for (v.x,v.y) on first line *I 

mu=((v3.x·v1.x)*v4.y·(v3.y·v1.y)*v4.x)ldelta ; 
I* Calculate x and y co-ordinates of •v• *I 

v·>x=v1.x+mu*v2.x ; v·>y=v1.y+mu*v2.y; 
} ; 

> I* End of ill2 *I 

You can experiment by creating your own exercises. 

Direction Vectors 

Returning to the use of a vector (d = (x, y) i= (0, 0), say) representing a direc­
tion. (Note that any positive scalar multiple kd, fork > 0, represents the same 
direction and sense as d, and if k is negative then the direction has its sense 
inverted.) In particular, setting k = 1/ldl produces a vector (x/v(x2 + y 2 ), 

yjy'(x2 + y 2 )) with unit modulus. 
A general point on a line, p + pd, is a distance I pill from the base point p, and 

if I d I= 1 (dis a unit vector) then the point is a distance I J.,ll from p. 
Now consider the angles made by direction vectors with various fixed direc­

tions. Suppose that 8 is the angle between the line joining 0 (the origin) to 
d = (x, y), and the positive x-axis measured anti-clockwise from the positive 
x-axis. Then x = I d I x cos 8 andy= I d I x sin 8 -see figure 3.4. 

If dis a unit vector (that is, if ldl = 1) then d =(cos 8, sin 8). Note that 
sin 8 = cos (8 - 1!/2) for all values of 8. Thus d may be rewritten as 
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(cos 8, cos(8 - 7r/2)). But 8 - 7r/2 is the angle that the vector makes with the 
positive y-axis. Hence the co-ordinates of a unit direction vector are called its 
direction cosines, since they are the cosines of the angle that the vector makes 
with the corresponding positive axes. 

Before continuing, let us take a brief look at the trigonometric functions avail­
able in C. The two functions sin and cos in (math.h) return the sine and cosine 

I ... 
lcsl.oo•• 

loL••n • 

••••• 

Figure 3.4 

respectively of an angle (in radians) provided as a parameter. The values of sin 
and cos lie, of course, between -1 and 1. C also includes the inverse of the tan­
gent function, atan, which returns an angle whose tangent is equal to the given 
real parameter. The angle returned lies within a principal range between -7r/2 
and 7r/2. 

A necessity often arises, however, to find the angle that a general direction 
d = (x, y) makes with the positive x-axis, and this angle must not be restricted to 
a principal range but must be able to take any value between 0 and 27r. This 
problem is solved by the function angle (listing 3.3) which will be used exten­
sively in the chapters dealing with three dimensions and should also be added to 
file "utility .c". 

Listing 3.3 

I* Add to file "utility.c" */ 

/*·········-······*/ 
float angleCx,y) 

/*·------···-···-·*/ 
float x,y ; 
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I* Returns the •angle' whose tangent is 'YIX' *I 
I* All anomalies such as •x=O• are also checked *I 
< if (fabs(x) < eps! lon) 

if (fabs(y) < epsilon) 
return(O.O) ; 

else if (y > 0.0) 
return(pi*0.5) ; 

else return(pi*1.5) ; 
else if (X < 0.0) 

return(atan(ylx)+pi) ; 
else return(atan(ylx)) ; 

) ; I* End of angle *I 

Now suppose there are two direction vectors A = (x 1 , y 1 ) and B = (x2 , y 2 ) - for 
simplicity both are assumed to be unit vectors and to pass through the origin 
(see figure 3.5). The acute angle, cr, between these lines is required. 
From the figure it is seen that OA = y(x12 + y 12 ) = 1 and OB = y(x2 2 + yl) = 1. 

So by the Cosine Rule 

AB2 = OA2 + OB2 - 2 x OA x OB x cos cr = 2 (1 -cos cr) 

i ... 
A 

B 

••••• 

Figure3.5 

But also, by Pythagoras 

AB2 =(x1 -x2)2 +(y1 -Y2i 
=(x12 +y1 2 )+(x22 +y22)-2(x1 xx2 +y1 xy2) 
=2-2(xl xX2 +y1 xy2) 

Thus (x 1 x x 2 + y 1 x y 2) =cos cr. It is possible that x 1 x x2 + y 1 x Y2 is negative, 
in which case cos-1 (x 1 x x2 + y 1 xy2 ) is obtuse and the required acute angle is 
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rr - a. Since cos (rr - a) = -cos a, the acute angle is given immediately by 
cos-1 (lx1 x x 2 + y 1 x y 2 1). For example, given the two lines with direction 
cosines (v'3/2, 1/2) and (-1/2, -v'3/2), then x 1 x x2 + y 1 x y 2 = -v'3/2 and 
thus a = cos-1 (v'3/2) = rr/6. This simple example was given in order to intro­
duce the scalar product (or dot product, denoted by ·) of two vectors: 
(a, b) • (c, d)= a x c + b x d. Scalar product is extendable into higher-dimen­
sional space (see chapter 6 for a three-dimensional example) and it always has 
the property that it gives the cosine of the angle between any pair of lines with 
directions defined by the two (unit) vectors. 

Now suppose that we have a direction vector d = (dx, dy). We know that any 
line parallel to d can be described by direction vector 'Ad for some Xi= 0, but we 
may also determine the direction vector of any line perpendicular to d. 

Using the scalar product defined above, we know that any vectors= (sx, sy), 
perpendicular to d, must satisfy s • d = 0, since the cosine of the angle between 
the two vectors is zero. That is 

so 

which gives 

- Sx/dy = Sy/dx = p. say. 

Thus 

so 

s=p.(-dy,dx) 

But since p.s is parallel to s for all p. i= 0 we may takes= (-dy, dx) to be the 
direction vector of any line perpendicular to d. If (dx, dy) is a unit vector then 
the perpendicular ( -dy, dx) is also a unit vector. 

This method may also be used to find a perpendicular to a line given in linear 
equation form. Since ay = bx + c has direction vector (a, b), a perpendicular line 
has direction vector ( -b, a) which has equation 

-by = ax + c' for some c' 

The value of c' does not affect the direction of the line so every value of c' gives 
a line perpendicular to ay = bx + c. 
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Curves: Analytic (Functional) Representation and Parametric Fonns 

A curve in two-dimensional space can be considered as a relationship between x 
andy co-ordinate values, the analytic form, or, alternatively the co-ordinates can 
be individually specified in terms of other variables or parameters, the parametric 
form. We use the term 'analytic', as opposed to the equivalent word 'functional', 
to avoid any possible confusion with Functional Programming. 

It has already been seen that a line may be expressed as ay = bx +c. If the 
equation is rearranged so that one side is zero - that is, ay - bx - c = 0, then 
the algebraic expression on the left-hand side of the equation which relates the 
x and y values is called a analytic representation of the line and is written as a 
function definition 

f(x,y) =ay- bx- c 

All, and only, those points with the property f(x,y) =0 lie on the straight line 
{which is a special form of curve). This representation divides all the points in 
two-dimensional space into three sets: the zero set, withf(x,y) = 0; the positive 
set, with f(x, y) > 0 and the negative set with f(x, y) < 0. This is true for all 
curves with given analytic representation f(x, y). If the function divides space 
into the curve and two other connected areas only {that is, any two points in a 
connected area may be joined by a fmite curvilinear line which does not cross 
the curve), then these areas may be identified with the positive and negative sets 
defmed by f. However, be wary, there are many elementary functions (such as 
g(x, y) = cos (y) - sin (x)) which define not one but a series of curves and 
hence divide space into possibly an infinite number of connected areas (note 
g(x, y) = g(x + 2m1r,y + 2n1r) for all integers m and n), so it is possible that two 
disconnected areas can both belong to the positive (or negative) set. 

Note that the analytic representation need not be unique. For example, a line 
can be put in an equivalent form 

f'(x.y) =bx +c-ay 

for which the positive set corresponds to the negative set of the original, and vice 
versa. 

The case where the curve does divide space into two connected areas is very 
useful in computer graphics, as will be seen in the study of two-dimensional and 
(especially) three-dimensional graphics algorithms. Take the straight line for 
example 

f(x,y) =ay- bx- c 

A point (x 1 • y 1 ) is on the same side of the line as (x2 , y 2 ) if and only if f(x 1 , y 1 ) 

has the same non-zero sign as f(x 2 , y 2 ). The analytic representation tells more 
about a point (x 1 , y 1 ) than just on which side of a line it lies -it also enables 
the distance of the point from the line to be calculated. 
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Consider the line defined above. Its direction vector is (a, b). A line perpen­
dicular to this will have direction vector ( -b, a) so the point q on the line closest 
to the point p = (x1 ,y1) is of the form 

q = (x1 ,yt) + J.L( -b, a) 

that is, a new line joining p to q is perpendicular to the original line. Since q lies 
on this original line 

f(q) = [((x1 ,yt) + J.L( -b, a))= 0 

that is 

f(x 1 -pb,y1 +pa)=ax(y1 +pa)-bx(x 1 -~)-c 
=f(x1,yd+J.L(a2 +b2 )=0 

Hence J.L = -[(x1 .y1 )/(a2 + b2 ). 
Thepointqisadistance IJ.L(-b,a)l = IJ.tlv(a2 +b2 )from(x1,yt)which 

naturally means that the distance of(x1 ,y1) from the line is given by l-[(x1, Y1 )/ 
y(a2 + b 2 ) I. The sign of the value of -f(x 1, y 1) denotes the side of the line on 
which the point lies. If a2 + b2 = 1 then lf(x1, y!)l gives the distance of the 
point (x 1 , y 1) from the line. 

We may use these ideas in the consideration of convex areas (an area is con­
vex if it totally contains a straight line segment joining any two points lying 
inside it). More specifically, we consider only convex polygons, but any convex 
area may be approximated by a polygon, provided that the polygon has enough 
sides. 

Consider the convex polygon withn vertices {p1 = (x1,y1)1i = 0, 2, ... , n- 1} 
taken in order around the polygon (either clockwise or anti-clockwise). Such a 
description of a convex polygon is called an oriented convex set of vertices. The 
problem of finding whether such a set is clockwise or anti-clockwise is considered 
in chapter 5. The n boundary edges of the polygon are segments of the lines 

/; (x, y) = (xt+1 - x;) x (y - Yt)- CYt+1 - Y;) x (x - x;) 

where i = 0, ... , n - 1, and the addition in the subscripts is modulo n (that is 
n+j=jforO<..j<n). 

The analytic representation of a given line segment, say the one joining Pt to 
Pi+t for some i, is calculated in the above way in order to take advantage of an 
interesting property of this formulation. If you imagine yourself astride the line 
looking from P; towards Pi+t then the positive side of the line is to the left and 
the negative side to the right. 

If the vertices of a convex polygon are oriented anti-clockwise, then the in­
side of the polygon is classified by the set 

{(x,y)l[;(x,y)>Oforalli, Ooe;;;;i<n} 
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A point on the boundary is given by 

{(x,y)lf1 (x,y)~Oforalli, O~i<n} 
and there is at least one i such that ft (x,y) = 0} 

The outside of the polygon is defined by 

{(x,y)lf1(x, y) < 0 for at least one i, 0 .s;;; i < n} 

This technique of 'inside and outside' is fundamental to the calculation of the 
intersection of two polygons in chapter 5 and the hidden surface algorithms of 
later chapters. 

Example3.3 
Consider the convex polygon with vertices (1, 0}, (5, 2), ( 4, 4) and ( -2, 1 ): see 
figure 3.6. In this order the vertices obviously have an anti-clockwise orientation. 
Are the points {3, 2). (1, 4), {3, 1) inside, outside or on the boundary of the 
polygon? What is the distance of ( 4, 4) from the first line? 

fo(x,y) ===(5-1} x (y- 0}- (2- 0} x (x -1) :4y- 2x + 2 
/ 1 (x,y)===(4- 5) x (y- 2) -(4- 2) x (x- 5):::: -y- 2x + 12 
f2 (x,y) =(-2- 4) x (y- 4)- (I- 4) x (x- 4) = -6y + 3x + 12 
[3(X,y):; (1 + 2) X {y- 1)- (0- 1) X (X+ 2):::: 3y +X- 1 

Hence point (3, 2) is inside the body because / 0 (3, 2)=4, / 1 (3, 2} = 4, / 2 (3, 2) = 9 
and / 3 (3 2) = 8: all have positive signs. 
Point (1, 4) is outside the body because fz(l, 4) = -9 (negative). 
Point (3, 1) is on the boundary because / 0 (3, 1) = 0, and the valuesf1 (3, 1) = 5, 
fz(3, 1) = 15 and / 3 (3, 1) = 5 are all positive. 

Figw-e 3.6 
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(4, 4) is at a distance {0 (4, 4)/y(42 + 22 ) (= 10/y20 = yS) from the first line. 

Having dealt with the analytic representation of a line, what about the para­
metric form? It was noted above that this form is one where the x andy co­
ordinates of a general point on the curve are given in terms of parameter(s) 
(which could be the x or y values themselves), together with a range for the 
parameter. A parametric form of a line has already been considered, it is simply 
the base and direction representation 

b + pd= (x1,yt) + p(x2 ,y2) 
=(x1 +pxx2,y1 +pxy2)where-oo<p<oo 

pis the parameter, and x 1 + p x x2 and y 1 + p x y 2 are the respective x andy 
values which depend only on variable p. 

Analytic representations and parametric forms can be produced for most 
well-behaved curves. For example, a sine curve is given by f(x, y) = y- sin (x) 
in analytic representation, and by (x, sin (x )) with - 00 < x < oo in its parametric 
form. The general conic section (ellipse, parabola and hyperbola) is represented 
by the general function 

{(X, Y) ;: a X X 2 + b X y 2 + h X X X Y + f X X + g X y + C 

Coefficients a, b, c, f, g, h uniquely identify a curve. A circle centred at the origin 
of radius r has a= b= -l,f=g = h = 0 and c = r2 , whencef(x,y) =r2 - x 2 - y 2 • 

All the points (x, y) on the circle are such that f(x, y) = 0, the inside of the 
circle has f(x, y) > 0, and the outside of the circle f(x,y) < 0. The parametric 
form of this circle is (r coso:, r sin o:) where 0 " o: < 27T. (The parametric forms 
of a circle, ellipse and spiral were met in chapter 1.) 

These concepts are very useful in the study of graphics and experimenting 
with them now will prove to be of great value later. There will be many occasions 
when such ideas must be used in the solution of problems including, of course, 
the generation of co-ordinate data for diagrams and model scenes. 

Example3.4 
Draw figure 3.7. A circular ball (radius r) disappears down an elliptical hole 
(major axis a, minor axis b). Parts of both the ellipse and circle may be obscured. 

Figure 3. 7 
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Let the ellipse be centred on the origin with the major axis horizontal, and 
the centre of the circle a distance d vertically above the origin. The ellipse has 
analytic representation 

fe(x,y) =x2 fa 2 + y 2 /b 2 - 1 

and in parametric form (a x cos a:, b x sin a:) with 0 ~ a: < 2tr. 
For the circle 

fc(x, y) = x 2 + (y - d)2 - r2 and in parametric form 
(r x cos {3, d + r x sin (3) where 0 <: (3 < 2tr. 

In order to generate the picture, the points (x, y) common to the circle and 
ellipse (if any) must be calculated. As a useful demonstration the representations 
are mixed in the search for a solution, using the analytic representation for the 
circle and the parametric form of the ellipse. The problem is to find points 
(x, y) =(ax cos a:, b x sin a:) on the ellipse, which also satisfy fc(x,y) = 0. That 
is 

or, expanding the expression 

a2 X COS2 G! + b 2 X Sin2 G!- 2 X b X d X SinG!+~ -72 = 0 

and since cos2 a: = 1 - sin2 a: 

(b 2 - a 2 ) x sin2 a:- 2 x b x d x sin a:+ a2 + d2 - r2 = 0 

This is a simple quadratic equation in the unknown sin a:, which is easily 
solved: the quadratic equation Ax2 + Bx + C = 0 has two roots 

-B ± .../(B2 - 4 X A X C) 
2xA 

For each value of sin a: it is possible to find values for a: with 0 <;;a: < 2tr (if they 
exist) and then calculate the points of intersection (a x cos a:, b x sin a:). Natur­
ally, if a root of the equation is complex or has absolute value greater than 1 , 
then no intersection occurs corresponding to that root. 

There is no universal rule regarding which representation to use in any given 
situation - each has advantages and disadvantages. A feel for the method is 
required and that only comes with experience and an understanding of Euclidean 
geometry (Heath, 1956). 

Exercise 3.1 
Write a program that will draw figure 3. 7. 



4 Matrix Representation of 
Transformations in Two-dimensional 
Space 

In all pictures drawn so far the co-ordinate origin, axes and scale of the window 
have been identified with the ABSOLUTE axes defined for two-dimensional 
space. This is not the general case. Usually we want the window to move around 
in space, not necessarily being anchored to this arbitrary but fixed co-ordinate 
system. We must, therefore, consider what happens to the definition of an object, 
be it a point, line or curve, when the co-ordinate system is changed. As we have 
seen in previous chapters, the drawing of any object in computer graphics may 
ultimately be considered in terms of specifying and joining groups of points, and 
so all that is necessary is to discover what happens to the co-ordinate representa­
tion of a point with a change of co-ordinate system. 

For the purposes of representing two-dimensional or three-dimensional space 
there need only be three fundamental forms of co-ordinate system change. These 
are translation of origin, change of scale and rotation of axes; all other changes 
can be formulated as combinations of these three types. These changes are 
examples of affine transformation. On some devices these operations are available 
in hardware. We shall not assume this to be the case, however, and a full descrip­
tion of the techniques involved is given. The contents of this chapter may seem 
somewhat excessive for dealing with two-dimensional space, but the methods we 
introduce here in the conceptually simpler dimension will prove indispensable 
when dealing with three-dimensional space. 

It will often be necessary to transform large numbers of points, and to do this 
efficiently the transformations are represented by matrices. Before looking at 
these transformations and their matrix representations, a brief reminder of the 
properties of matrices and column vectors is warranted. In fact only square 
matrices are required: so our attention may be restricted to 3 x 3 matrices 
(said 3 by 3) for the study of two-dimensional space. As explained in chapter 2, 
we will declare double[4] [4] arrays to hold the values from a 3 x 3 matrix; note 
that we will only be using locations [1 .. 3] and ignoring the 0 index. The double 
type is used to ensure that rounding errors implicit in matrix multiplication do 
not become critical. Later, 4 x 4 matrices, double[5] [5] arrays will be used 
when considering three-dimensional space! In the programs given in this book a 
matrix identifier is always given in upper-case characters. Such a 3 x 3 matrix 

64 
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(A say) is simply a group of real numbers placed in a block of 3 rows by 3 
columns while a column vector (D say) is a group of numbers placed in a column 
of 3 rows thus 

A general entry in the matrix is usually written A;;. the first subscript denotes 
the ;th row, and the second subscript the jth column (for example, A 23 repre­
sents the value in the second row, third column). The entry in the column vector, 
Dt denotes the value in the ;th row. Remember, we are counting, starting at 1 
and not 0. All these named entries will be explicitly replaced by numerical values. 
It is essential to realise that not only are the values of individual entries in a 
matrix or column vector significant, but also their positions within the structure 
are important. Naturally C programs are written along a line (no subscripts or 
superscripts) and hence matrices and vectors are implemented as arrays and the 
subscript values appear inside square brackets following the array identifier. We 
declare all functions necessary for manipulating these matrices in a file "matrix2.c" 
given in listing 4.1. It can be #included as and when required. 

Matrices can be added. Matrix C =A+ B, the sum of two matrices A and B, is 
defined by the general entry C1; thus 

C;;=A;;+B;; 1.;;;.i,j.;;;.3 

Matrix A can be multiplied by a scalar k to form a new matrix B 

B;; = k X A;; 1 .;;;,_ i,j .;;;,_ 3 

Matrix A can be multiplied by a column vector D to produce another column 
vector E thus 

E; =Ail x D 1 +An x D2 + A;3 x D3 = 1: Atk x Dk where 1 .;;;,. i.;;;,. 3 

The ;th row element of the new column vector is the sum of the products of the 
corresponding elements of the ith row of the matrix with those in the column 
vector. Furthermore, the product (matrix) C =A x B of two matrices A and B 
may be calculated 

C;; =Ail x B1; +An x B2; + Ai3 x B3; = 1: Atk x Bk; where 1.;;;,. i,j.;;;,. 3 

The (i, dh element of the product matrix is the sum of each element in the ith 

row of the first matrix multiplied by the corresponding element in the /h 
column of the second. The product of matrices is not necessarily commutative -
that is, A x B need not be the same as B x A. For example 

1 
0 
0 

0 
1 
0 

1 
0 
0 
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but 

0 
1 
0 
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1 
0 
0 

0 
0 

Experiment with these ideas until you have enough confidence to use them in 
the theory that follows. For those who want more details about the theory of 
matrices, books by Finkbeiner (1978), and by Stroud (1982) are recommended. 

There is a special matrix called the identity matrix I (sometimes called the 
unit matrix) 

I ·G 0 
1 
0 

Every square matrix A has a determinant det (A) 

det(A)=A11 x(A22xA33-A23 xA32)+A12 x(Az3 xA31 -Az1 xA33) 
+A13 x (Az! xA32 -Azz xA3d 

Any matrix whose determinant is non-zero is called non-singular, and those with 
zero determinant are called singular. All non-singular matrices A have an inverse 
A-1 , which has the property that A x A-1 =I and A-1 x A =I. For methods of 
calculating an inverse of a matrix see Finkbeiner (1978): a listing is given in 
chapter 6 (listing 6.8) which uses the Adjoint method. 

Now consider the effects of a transformation of axes. Suppose a point p has 
co-ordinates (x, y) relative to an existing axis system and (x',y') relative to a set 
of axes obtained by a transformation of this system. The transformation is 
totally described if equations are given which relate the new co-ordinate values 
x' and y' to the values of x andy. An affine transformation is one which defines 
the new co-ordinate values in terms of linear combinations of the old -that is, 
the equations contain only multiples of x and y and additional real values: it 
includes neither non-unit powers, products or other functions of x and y, or 
other variables. Such equations may be written 

x' =Au x x +A1z xy +A13 
y'=Az 1 xx+Azz xy+Az3 

The A values are called the coefficients of the equations. The result of the trans­
formation is a combination of multiples of x values, y values and unity. Another 
equation may be added 

1 =A31 xx+A32 xy+A33 

For this to be true for all values of x andy, it follows that A 31 = A32 = 0 and 
A33 = 1. This may seem a rather contrived exercise, but it ensures that A is a 
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square matrix and this will prove very useful. If each point vector (x.y) (alterna­
tively called a row vector for obvious reasons) is set in the form of a three-rowed 
column vector 

then the above three equations can be written in the form of a matrix pre­
multiplying a column vector 

So, if the axes transformation is stored as a matrix, the new co-ordinates of any 
point can be calculated by considering it as a column vector and pre-multiplying 
it by the matrix. 

Many writers on computer graphics do not use column vectors. They prefer 
to extend the row vector - for example, (x, y) to (x, y. 1) - and post-multiply 
the row vector by the transformation matrix so that the above equations in 
matrix form become 

(x',y', 1) = (x,y,!) x (~:~ ~:~ 
A13 A23 

Note that this matrix is the transpose of the matrix of coefficients in the equa­
tions. This causes a great deal of confusion among those who are not confident 
in the use of matrices. It is for this reason that this book keeps to the column 
vector notation. It really does not matter which method you finally use as long 
as you are consistent. (Note that the transpose B of a matrix A is given by 
B;i = Aii• where 1 ~ i, j ~ 3). 

We can now turn our attention to the transformations themselves. Through­
out the following sections, bear in mind that the point itself is not being moved 
- its co-ordinates are simply specified with respect to a new set of axes. 

Translation of Origin 

In this case the co-ordinate axes of the old and new systems are in the same 
direction and are of the same scale; however, the new origin is a point t = (t x. t y) 
relative to the old axes. Hence in the new system the old origin has co-ordinates 
( -t x, -t Y) and the general point (x. y) of the old system is represented in the 
new by (x', y') where 

X 1 = 1 X X + 0 X Y - t X 

y' = 0 X X+ 1 X y- ty 
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so the matrix describing this transformation is: 

0 
1 
0 

A function for generating such a matrix A, tran2, given the values tx and ty 
(corresponding to t x and t y) is given in listing 4.1. 

Listing4.1 

I* Store as file "matrix2.c" *I 

I* Functions for matrix manipulation for two-dimensional modelling *I 

#include "graphl ib.c" 

1*·-············*1 
tran2(tx,ty,A) 

1*··············*1 
float tx, ty ; 
doubt e A [J [4] ; 

I* Calculate 2-D axes translation matrix 'A' *I 
I* Origin translated by vector '(tx,ty)' *I 
{ int i, j ; 

for <i=1 ; i<4 ; i++) 
< for (j=1 ; j<4 ; j++) 

A[i] [jJ =0.0 
A [iJ [il =1.0 ; 

} ; 
A[1J [3J=·tx; A[2J [3J=·ty; 

) ; I* End of tran2 *I 

1*···············*1 
scale2(sx,sy,A) 

1*···············*1 
float sx,sy ; 
doubt e A [J [4] ; 

I* Calculate 2·0 scaling matrix 'A' given scaling vector '(sx,sy)' */ 
I* One unit on the x axis becomes •sx• units */ 
I* and one unit on the y axis becomes •sy' units *I 
{ int i, j ; 

for (i=1 ; i<4 ; i++) 
for (j=1 ; j<4 ; j++) 

A[iJ [j]=O.O ; 
A[1J [1J=sx ; A[2J [2J=sy ; A[3J [3J=1.0 

) ; I* End of scale2 *I 
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1*····-------··*1 
rot2(theta,A) 

1*··--------···*1 
float theta ; 
double A [J [4l ; 

I* Calculate 2·0 axes rotation matrix 'A'. The axes are *I 
I* rotated anti-clockwise through an angle 'theta' radians *I 
< int i ; 

float c,s ; 
for (i=1 ; i<3 ; i++) 

< A[iJ[3J=O.O; A[3J[fl=O.O 
) ; 

A[3J [3]=1.0 ; c•cos(theta) ; s=sin(theta) 
A[1J [1J=c ; A[2] [2J= c ; A[1] [2J=s ; A[2] [1J=·s 

> ; I* End of rot2 *I 

1*············*1 
nult2(A,B,C) 

1*············*1 
double A[J [4J ,BU [4] ,en [4] 

I* Calculate the matrix product •c• of two matrices 'A' and 'B' *I 
< int i,j,k ; 

float ab ; 
for <i=t ; i<4 ; i++) 

for (j=1 ; j<4 j++) 
< ab=O 

for (k=t k<4 ; k++) 
ab=ab+A [i] [kl *B [kl [j] 

c [iJ [j] =ab ; 
) ; 

> I* End of nult2 *I 

1*··--------·*1 
matprint(A) 

1*···········*1 
double AU [4] 

I* print out the matrix 'A' *I 
(intf,j; 

for (i=1 ; i<4 ; f++) 
< for (j=1 ; j<4 ; j++) 

printfC" Xf",A[iJ [j]) 
printf("\n") ; 

) ; 
> I* End of matprint *I 
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Change of Scale 

Now the origin and direction of axes are the same in both systems, but the scale 
of the axes is different; for example, 1 unit on the old x-axis could become 3 
units on the new x-axis, while the scale of they-axis remains the same. Suppose 
a unit distance on the original x-axis becomes Sx on the new x-axis, and a unit 
distance on the oldy-axis becomes Sy on the new. Then a point (x, y) in the old 
system has co-ordinates (x',y') relative to the new where 

x' = Sx x x + 0 x y + 0 
y' = 0 X X + Sy X y + 0 

giving the matrix 

(f 0 
Sy 
0 

The scale2 function in listing 4.1 produces such a scaling matrix A, given the 
values Sx and Sy. 

' ' ' ' ' ' ' ' ' ' 

A p ·.· ..... 6_\. ·. --:. 
.. , . p ... 

A .. -\ e._ .. 

. ---·8 .. ., .-· ·a 

' ' 

B 

Figure4.1 

Rotation of Axes 

The original system is shown in figure 4.1 with solid lines, and the new system 
with equi-spaced dashed lines; the systems have common origin and scale. The 
new axes are derived by rotating the old ones through an angle 8 radians anti­
clockwise about the origin. (This is the usual mathematical way of measuring 
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angles). If the point P in figure 4.1 has co-ordinates (x, y) relative to the old 
system and (x', y') relative to the new then we have the relationships 

x' = OX' = OB' + B'X' = AA' + P'P 
= OA x sin () + AP x cos 8 
= OB x cos() + OA x sin 8 
= COS (J X X + Sin (J X Y + 0 

y' = OY' = A'O - A'Y' = -AP' + AB' 
= -AP x sin 8 + OA x cos 8 
= -08 x sin 8 + OA x cos 8 
= -Sin (J X X + COS (J X y + 0 

and the matrix is 

( 
cos (J 

-~in 8 
sin 8 
cos (J 

0 

The rot2 function to produce a rotation matrix A for an angle 8 is given in list­
ing 4.1. 

Exercise 4.1: other transfonnations 
Obviously these three types of transformation do not exhaust all the possible 
choices of matrix A. There are other types of transformation - shear, for 
example, giving matrices of the types 

a 
1 
0 

0 
1 
0 

which cause distortions in space and axes; however, for our purposes we will 
restrict ourselves to translation, scaling and rotation. Write functions to construct 
such alternative transformation matrices. 

Combination of Transformations 

A very useful property of this matrix representation of transformations is that 
the combination of two transformations, say transformation (or matrix) A 
followed by transformation B, is represented by their product C = B x A. Note 
the order of multiplication - the matrix representing the first transformation is 
pre-multiplied by the second. This is because the final matrix will be used to pre­
multiply a column vector representing a point, and so the first transformation 
must appear on the right of the product and the last on the left. For the mathe­
matically minded, the matrices may be considered as prefix operators on the 
column vectors. (If the row vector method is used then the matrices act as post-
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fix operators, and the product would appear in the natural(?) order from left to 
right - this is the price paid for identifying the transformation matrix with the 
coefficients of the equations.) 

We include a function mult2 (listing 4.1) which multiplies two 3 x 3 matrices 
A andB to return a third 3 x 3 matrix C(=A x Band notB x A). 

We will concentrate on the natural transformations of axes which may be 
reduced to a combination of the three basic forms of affine transformation: 
translation, change of scale and rotation of axes. It should also be noted that all 
valid applications of these transformations return non-singular matrices, that is 
those which have an inverse. 

Inverse Transformations 

For every transformation there is an inverse transformation which will restore 
the co-ordinates of a point to their original value. If a transformation is repre­
sented by a matrix A, then the inverse transformation is represented by the 
inverse matrix A-1 . There is no need to calculate this inverse using listing 6.8, it 
can be found directly by using the functions ir1 listing 4.1, with parameters 
derived from the parameters of the original transformation 

(1) A translation of origin to the point (tx, ty) is irlverted by another transla­
tion to the point ( -t x, -tv). 

(2) A change of scale by Sx and Sy is inverted by changing the scale again by 
1/Sx and 1/Sy. Naturally both Sx and Sy are non-zero, for otherwise the 
two-dimensional space would degenerate into a line or a point. 

(3) A rotation of axes by an angle 8 is inverted by another rotation by an angle 
-8. 

( 4) If the transformation matrix is a product of a number of translation, scaling 
and rotation matrices A x B x C x ... x L x M x N (say), then the inverse 
transformation matrix is 

!V1 X Ar1 X L-1 X ••. X B-1 X A-1 

Note the order of multiplication! 

The Placing of an Object 

Objects may be drawn in various positions within the viewport and at arbitrary 
orientations. While it may be quite simple to calculate the co-ordinates of the 
vertices of an object in a simply defined position, about the origin for instance, 
it may be difficult to do so for some peculiar orientation. If, furthermore the 
same object was to be drawn at several different positions, then it would be very 
inefficient to calculate by hand the vertices for every position. It is preferable to 
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define the object as simply as possible and then to move it to its required position 
and orientation. This process involves transforming the positions of the vertices 
themselves rather than transforming the co-ordinate axes. The same three basic 
transformations - translation, change of scale and rotation - still suffice, how­
ever, and with a small alteration to the parameters, the functions already written 
for the transformation of axes may again be used: 

Translation 
An object is to be moved by a vector t = (t x, t y ); thus a vertex (x, y) is moved to 
(x + tx, y + ty). This is exactly equivalent to keeping the object fixed and trans­
lating the origin of the axes to ( -t x, -t y ). Thus the matrix representing this 
transformation may be calculated by 

tran2(-tx, -ty, A); 

Change of scale and reflection 
The origin is fixed and a general point (x, y) is moved to (Sx x x, Sy x y). This 
transformation is equivalent to changing the scale of the co-ordinate axes so that 
1 unit on the x-axis becomes Sx units and 1 unit on they-axis becomes Sy units. 
The transformation matrix may thus be calculated by 

scale2(sx, sy, A); 

Furthermore, if one of the co-ordinates is multiplied by a negative factor Sx or 
Sy, this corresponds to a reflection in the other axis; for example, Sx = -1, Sy = 1 
gives a reflection in they-axis. 

Rotating an object about the origin 
Rotating an object about the origin anti-clockwise by an angle 0 is equivalent to 
keeping the object fixed and rotating the axes by an angle 0 clockwise, or, 
alternatively, by an angle -0 anti-clockwise. The rotation matrix is therefore 
returned by 

rot2(-theta, A); 

SETUP and ACTUAL Positions 

In order to define a scene consisting of an object in some position and orienta­
tion in two-dimensional space, we define an arbitrary but fixed co-ordinate 
system for two-dimensional space, which we call the ABSOLUTE system. 

Next the co-ordinates of the vertices of the object are defined in some simple 
way, usually about the origin. This we call the SETUP position. Unes and poly-
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gonal facets within the object are defined by specifying the vertices forming 
their end-points or corners. 

Each vertex of the object is moved from its SETUP position to the desired 
position in space by pre-multiplying the column vector holding its co-ordinates 
by the matrix representing the required transformation. (Naturally, each vertex 
undergoes the same transformation.) This new position is called the ACTUAL 
position. Co-ordinates are still specified with respect to the ABSOLUTE system. 
The line and facet relationships are preserved with the transformed vertices. The 
matrix which relates the SETUP to ACTUAL position will be called P through­
out this book (it sometimes has a letter subscript to identify it uniquely from 
other such matrices) and may be calculated using one of, or a combination of, 
the transformations described above. 

We must reiterate that the co-ordinates of all vertices in both the SETUP and 
ACTUAL positions are defined with respect to the same set of axes - those of 
the ABSOLUTE system. 

Storing Information about Scenes 

At this stage we must draw attention to the various different methods of creating 
and storing information about a scene. It will be gathered from chapter 1 that 
this data always consists of number of vertices identified by their co-ordinates 
relative to an arbitrary co-ordinate system which we call the ABSOLUTE system: 
a set of lines, each joining one vertex to another, and polygonal facets which are 
identified by the vertices at its corners. Most of the pictures created so far have 
been drawn by specific functions which both create the data and draw the scene, 
subject to some implicit transformations of the vertex co-ordinates. In much of 
the work that follows, however, the data representing objects undergoes various 
manipulations between its creation and the eventual drawing of the scene and so 
may need to be stored in an easily accessible form in a database. The construc­
tion of a section of the database relevant to one occurrence of one particular 
object will be achieved by a call to a Construction Routine for that object. Con­
struction routines should be placed in a ftle "construc.c'' which can be #included 
when needed (listing 4.4) or they can be declared along with a scene function 
(listing 4.7). 

When required, we use global arrays declared in listing 4.2 (file "model2.c") 
to store this information. The scene is assumed to contain nov vertices, nollines 
and nof facets. The ACTUAL x andy co-ordinates of the nov vertices are stored 
in an array act[maxv] with elements of structure data type, vector2 where maxv 
is not less than nov. A vertex with co-ordinates (act[j].x,act[j] .y) is said to have 
index j. Information about nol lines is stored in an array line[maxl] with ele­
ments of structure data type linepair. The value of maxi must not be less than 
nol, and values line[i].front and line[i].back indicate respectively the indices of 
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the front and back vertices of the line i. The description of facets may vary far 
more than that of either lines or vertices: a vertex always has an x co-ordinate 
and a y co-ordinate, a line always has two end-points taken from the list of 
vertices, but a facet may have any number of sides and hence any number of 
vertices around its boundary. The most efficient method of representing a facet 
without imposing unreasonable limits upon the number of vertices around the 
boundary involves the use of a linear list implemented using three arrays as 
described in chapter 2. A large array of integers, faclist[maxlist], contains a list 
of indices of vertices in the ACTUAL array and each of nof facets is indicated 
by two integer arrays facfront[maxf] and size[maxf]; maxf is not less than nof. 
The value size [i] contains the number of vertices on the boundary of the facet 
i, and these in turn are stored in the faclist array as faclist [ facfront [i] ] , 
faclist[facfront[i] + 1], ...• faclist[facfront[i] + size[i] - 1]. The only con­
straint thus placed upon the number of vertices on the boundary of a facet is 
that the total number on all facets must not exceed the dimension maxlist of 
the faclist array. To aid calculations a special integer variable firstfree points to 
the entry after the last entry of the nof facet in the faclist array. Again it must 
be stated that the use of these structures is somewhat excessive for the two­
dimensional case, but we introduce them in this form so that the methods can be 
fully understood before we consider similar structures for the more complex 
three-dimensional situation. 

We also introduce the idea of attributes associated with facets and lines. 
Initially this will involve only the colour in which they are to be drawn, but 
several more attributes will be introduced when more complex pictures of three­
dimensional objects are considered. These attributes will also be stored in arrays 
relating to the facets. The colour of facet i will be stored in the array 
colour[maxf] as colour[i]. 

Previously many of the construction routines drew lines and facets immediately 
after calculating their position. In what follows these routines will be used 
mostly to update the initially empty database of facets, lines and vertices in their 
ACTUAL positions; the placement of an observer and the drawing of objects will 
be left to other routines including transform, findQ, Jook2 and observe together 
with a special version of function draw_a_picture which initialises the database 
before calling a function scene which will control the construction of the com­
plete scene and the way it is displayed. Function draw_a_picture links the 
modelling and display functions that follow to the primitive functions of "primi­
tiv.c" and the graphics library of "graphlib.c". In order for you to construct and 
draw two-dimensional scenes, you need only write a scene function, and to help 
you in this task a number of example scene functions will follow. Note that 
listing 4.2 me "model2.c" contains a function transform for transforming a 
vector v by a matrix A into a vector w. It also contains #includes "matrix2.c", 
and hence "graphlib.c" and "primitiv.c", so any function that #includes 
"model2.c" need not include these files explicitly. 
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Listing4.2 

I* Store file as "model2.c" *I 

I* Data base and observation functions for two dimensional models */ 

#include 11matrix2.c" 

#define maxv 400 
#define maxl 400 
#define maxf 400 
#define maxlist 2000 

struct linepair {int front,back > 

int firstfree,nov,nol,nof ; 
struct vector2 act[maxvl,obs[maxv],setup[maxvl 
struct linepair line[maxll ; 
int colour[maxfl,facfront[maxfl,faclist[maxlistl,size[maxfl 

float alpha ; 
struct vector2 eye 
double Q [4] [4] ; 

1 .................. , 

transformCv,A,w) 
1*··········-·····*1 

struct vector2 v,*w 
double A[] [4] ; 

I* variables needed to position observer */ 

I* transform column vector •v• using matrix 'A' into column vector •w• */ 
< w·>x=A[1] [1]*v.x + A[1] [2]*v.y + A[1] [3] 

w·>y=A[2] [1]*v.x + A[2][2]*v.y + A[2] [3] 
} ; I* End of transform */ 

/*··-············-*/ 
draw_a_picture() , ... __ ............. , 

{ /*clear the database */ 
firstfree=O ; 
nov=O ; nol=O ; nof=O ; 
scene() ; 

} ; I* End of draw_a_picture */ 

The upper indices, symbolic constants maxv, maxi, maxf and maxlist are #defin· 
ed with values 

maxv = 400 maxi = 400 maxf = 400 maxlist = 2000 
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These values are arbitrarily chosen, and for very complex models they may be 
greatly increased. The counts of vertices, lines and facets for a particular scene or 
model are also declared here 

int firstfree, nov, nol, nof; 

and the ACTUAL co-ordinate vertices of the scene, act, are declared along with 
other interpretations of these co-ordinates, setup and obs (see later) thus: 

struct vector2 act[maxv], obs[maxv], setup[maxv]; 

The lines are declared thus: 

struct linepair{int front, back;}; 
struct linepair line [maxi]; 

Should these lines require peculiar properties - for example, drawn in a particu­
lar colour or in an unusual line type (see chapter 5), then other arrays must be 
declared in this global database to hold these attributes in a manner similar to 
that used to store the description and attributes of the facets: 

int colour [maxf] , facfront [maxf] faclist [maxlist], size [maxf] ; 

If they are required, the SETUP x andy co-ordinates of the vertices and the line 
and facet information of any particular object type are stored in the special 
arrays, specific to that object in a manner similar to those declared above, with 
values either read from flle or perhaps implied by the program listing as in 
examples 4.1 and 4.2. Note we have already declared space for SETUP vertices, 
setup[maxv] above. 

Observing a Scene 

We now introduce the concept of an observer. Our eventual aim is to represent, 
in the graphics viewport, a scene as viewed by a person looking at a position 
specified relative to the ABSOLUTE system for two-dimensional space. Imagine 
standing in front of a large wall, representing the Cartesian plane, which con­
tains the two-dimensional scene to be drawn. When observing such a scene, the 
eye is assumed to be looking directly at vector2 point (eye.x, eye.y) of the 
ABSOLUTE system and the head is tilted anti-clockwise through an angle a 
(alpha). This defines a new co-ordinate system called the OBSERVER system, 
which has vector2 origin eye relative to the ABSOLUTE system, and is rotated 
by an angle a. In order to determine the position at which a point is seen, its 
co-ordinates relative to this OBSERVER system must be calculated. These are 
called the OBSERVED co-ordinates of the point and they are calculated by 
transforming the ACTUAL co-ordinates of the point using the transformation 
which relates the ABSOLUTE axes to the OBSERVER axes (that is, a trans­
lation of the origin to eye followed by a rotation of the axes anti-clockwise 
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through an angle a). The matrix which executes this transformation from 
ACTUAL to OBSERVED co-ordinates will be called Q throughout this book 
and is calculated by the functions findO and look2 listing 4.3 (again note the 
order of matrix multiplication). Q, eye and alpha are declared in listing 4.2 (file 
"model2.c"): 

float alpha; 
struct vector2 eye; 
double 0[4] (4]; 

The OBSERVED co-ordinates 0f vertices will, in general, be stored in the vector2 
array, obs, already declared. 

The co-ordinates (obs(i].x, obs[i].y) correspond to the OBSERVED co-ordi­
nates of the vertex with ACTUAL co-ordinates (act[i].x, act(i].y) (relative to 
ABSOLUTE axes) for all i. This transformation from ABSOLUTE to OBSERVER 
systems is achieved with function observe (also listing 4.3). findQ, look2 and 
observe will be stored in a me "display2.c '. 

Listing4.3 

I* Store as file "display2.c" *I 

1*-------*1 
finclQ() 

1*·--··-·*1 
I* Calculates the observation matrix •o• for en observer *I 
I* given the vector •eye• with head inclined •alpha' radians *I 
< double A [41 [41, B [4] [4] ; 
I* Calculate translation matrix 'A' */ 

tren2Ceye.x,eye.y,A) ; 
I* Calculate rotation matrix '8' *I 

rot2Celphe,B) ; 
I* Combine the transformations to find •Q• *I 

rrul t2CB,A,Q) ; 
} ; I* End of findQ */ 

1*------·*1 
look20 

1*----·-·*1 
I* Reads in position of •eye• end inclination of head*/ 
I* end then calculates the observation matrix '0'*/ 
{ I* Read in observation data */ 

printf("\n Type in eye vector end tilt of heed elpha\n") 
scenf(""f "f "f",&eye.x,&eye.y,&elphe) ; findQ() ; 

} ; I* End of look2 */ 
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1*·········*1 
observe() 

/*·········*/ 
< int i ; 

for <f=O ; i<nov ; i++) 
transform(act[i],Q,&obs[i]) 

> ; I* End of observe *I 

1*········*1 
draw itO 

1*···----·*1 
I* Drawing a •scene•: •nof' facets drawn before •nol' lines *I 
< int i,j,vertex; 

struct vector2 polygon[maxpolyJ 
I* Draw the facets *I 

for (i=O ; i<nof ; i++) 
{ for (j=O ; j<3 ; j++) 

{ vertex=faclist[facfront[i]+j] 
polygon[jJ.x=obs[vertexJ.x; 
polygon[j].y=obs[vertex].y; 

) ; 
setcol(colour[iJ) ; polyfill(3,polygon) 

) ; 
I* Draw the lines in colour 4 *I 

setcol(4) ; 
for (i=O ; i<nol ; i++) 

< moveto(obs[line[i].front]) 
lineto(obs[line[i].backl) 

) ; 
> I* End of drawit *I 

Drawing a Scene 

We now come to the drawing of the scene on the graphics viewport, which is 
initiated from within function scene. We wish to represent in the viewport the 
scene as viewed by the observer. Recall that in chapter 1 we identified the view­
port with a rectangular window in two-dimensional space. We can define such a 
window with axes co-incident with those of the OBSERVER system defined above, 
so the WINDOW co-ordinates of each vertex are identical to the OBSERVED co­
ordinates. The viewport equivalent of each vertex may then be calculated using 
precisely the method devised in chapter 1. It is important to note that the order 
in which lines and facets are drawn may be critical; on raster devices, earlier lines 
and facets can be obscured by later over-drawing. Views of two-dimensional 
scenes will be drawn in the viewport by a function called drawit. 
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The Structure of the scene Construction 

All these ideas must now be put together in a C program for modelling and draw­
ing a two-dimensional scene. We can assume that the previously defined functions 
are properly declared and that draw_a_picture calls the scene function after the 
scale of the graphics WINDOW has been created (in the body of the main function, 
listing 1.3) and the database has been cleared (in the body of the draw_a_picture, 
listing 4.2). Function scene must then model (via construction functions), observe 
(via findQ, look2 and observe) and display (via drawit see later examples) the 
object in the two-dimensional scene, before finish fmally 'flushes the buffers'. 
In general this takes place in three stages. 

(1) The SETUP stage introduces information about vertices, lines and facets of 
given object-types in their SETUP position. This information is usually 
presented to construction functions as input from me in a function we will 
call datain (see later chapters), in a form consistent with the database, or it 
can be calculated by a small program segment, perhaps reading data from 
me, but not in the database format. 

(2) The main body of scene constructs the ACTUAL position of vertices, 
lines and facets for the complete two-dimensional scene. This is normally 
achieved with a sequence of calls to construction routines, which places 
each object within the scene in the required ACTUAL position. You can of 
course input from disk the ACTUAL positions directly without the use of 
construction functions. If this latter method is required, use the function 
datain to replace the data initialisation and construction functions. 

(3) The third stage involves placing the observer, and using functions findQ, 
look2 and observe from "model2.c'', as well as a (yet to be defined) function 
drawit to construct a view of the whole scene which will also be placed in a 
me "display2.c". An example drawit was given in listing 4.3. 

The individual parts of a stage need not be executed together, the functions 
are grouped above simply to differentiate between major tasks. For example, we 
may call look2 before the ACTUAL scene is constructed. We have organised our 
approach to graphics in this modular way, so that users have a clear view of the 
functions they must write, and it also minimises the need to write one-off pro­
grams. For their specific purposes, readers must write the scene function and 
perhaps if required other datain and drawit and construction functions. Note 
that your datain function may read in vertex information in SETUP and/or 
ACTUAL position, and your drawit functions will reflect the order in which you 
wish the lines and facets drawn. These will be in a form similar to the examples 
we give, so this should not prove too difficult. 

This process is only a guideline. You may find that there are some simple 
situations where there is no need to store the data about a given scene, it may be 
drawn directly by the construction routines instead. In this case no drawit 
routine is needed, as in example 4.3. There will be situations when the SETUP 
information can be included directly into the construction routines (example 
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4.1) and there will be no need to have an explicit datain function. What is 
important is that the reader recognises the various stages in construction and 
drawing. 

Example 4.1 
In listings 4.4 and 4.5 we create a database consisting of information relating to 
the flag shown in figure 4.2.1t consists of two triangles (one red, the other green), 
with the edges and sinister diagonal coloured blue, and was SETUP as arrays 
setup, store facet and storecolour in the construction function flag; the line colour 
is implied in the drawit function. You can write your own drawit function, 
which draws the same data but in a different manner, and use it to replace the 
one in "display2.c". The flag construction function is placed in file "construc.c" 
and #include( d) in listing 4.5 (and, incidentally, listing 4.6). Here a scene function 
initialises the ACTUAL database and by calculating the SETUP to ACTUAL 
matrix P and calling flag (with parameter P), it adds one occurrence of the flag 
to the database. In our example, the flag is left in its SETUP position so that 
matrix P is the identity matrix. Then the observation data is read in, so that 
findQ, look2 and observe put the object in OBSERVED position. Finally drawit 
is called to draw figure 4.2. This may seem a wasteful duplication of effort just 
to draw a flag in its original position, but we shall see that this flexible structured 
process can be used in the general case and will pay dividends in the long run -
as with the next example. 

Listing4.4 

I* Store as file "construc.c" *I 

1*·······*1 
flag(P) I* Construction routine for a simple 'flag' *I 

1*·······*1 
double P [] [41 ; 

< int i, j ; 
static int storecolour[2J= {1,2) ; 
static int storefacet[2J [3] = {0,1,3, 3,2,1) ; 

I* 'P' is SETUP to ACTUAL matrix. 'setup' is the array of SETUP vertices *I 
I* 'storeflag' are SETUP facets and •storecolour' SETUP colours for facets *I 

setup[OJ.x= 1 setup[O].y= 1 
setup[1J .x=·1 setup[1J .y= 1 
setup[2] .x=·1 setup[2l .y=-1 
setup[3J.x= 1 setup[3].y=·1 

I* Add facets to data base. Note 'nov• value must be added to *I 
I* facet and line data, since values append data base *I 

for Ci=O ; i<2 ; i++) 
< for (j=O ; j<3 ; j++) 

faclist[firstfree+jl=storefacet[il [j]+nov; 
facfront[nofl=firstfree ; size[nofl=3 ; 
firstfree=firstfree+size[nofl ; 
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cotour[nof)=storecotour[il ; nof=nof+1 
) ; 
I* Add SINISTER line to data base *I 

line[nol).front=1+nov; line[noll.back=3+nov; 
not=nol+1 ; 

I* Add vertex data in ACTUAL position *I 
for (i•O ; i<4 ; i++) 

< transform(setup[i),P,&act[nov)) nov=nov+1 
) ; 

> ; I* End of flag *I 

Listing4.5 

#include "modet2.c" 
#include "construc.c" 
#include "display2. c11 

1*·······*1 
scene() I* Creating a simple flag in SETUP position *I 

1*-······*1 
< doubt e P [4) [4] 

I* SETUP to ACTUAL matrix is identity matrix *I 
tran2(0.0,0.0,P) ; flag(P) ; 

I* create ACTUAL to OBSERVED matrix *I 
took20 ; 

I* Put vertices in OBSERVED position and draw scene *I 
observe() ; drawit() ; 

> ; I* End of scene *I 

Figure 4.2 

Complicated Pictures- the 'Building Block' Method 

Pictures containing a number of similar objects can be drawn with a minimum of 
extra effort. A scene such as figure 4.3 containing four flags, for example, may 
be constructed by calling the flag function several times within the scene function 
(which was called from draw_a_picture etc). Note how, by #includ(e)ing "con­
struc.c", "display2.c" and "model2.c" into the scene listing, we have access to 
"matrix2.c", "graphlib.c" and "primitiv.c", on each occasion with a different 
matrix P. This is called the building block method. Each call to a construction 
function creates a block of data relating to one occurrence of that object type, 
and this is included in the database which models the scene. 
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Listing4.6 

#include "model2.c" 
#include "construc.c" 
#include "display2.c" 

1*·······*1 
scene() 

1*·······*1 
I* Creating a scene of 4 simple flags *I 

{ double A [4) [4) ,B [4) [4), C [4) [4) ,D [4) [4) ,E [4) [4), F[4) [4) 
doubt e G [4) [4) , H [4) [4) , OM [4) [4) , EM [4) [4) , P [4) [4] 
int i ; 

I* Flag a *I 
tran2(0.0,0.0,P) ; flag(P) ; 

I* Flag b *I 
scale2(4.0,2.0,A) ; rot2(·pii6,B) ; tran2(·6.0,·3.0,C) ; 
mult2(B,A,G) ; mult2(C,G,P) ; flag(P) 

I* Flag d *I 
tran2(0.0,·3.0,D) ; tran2(0.0,3.0,DM) ; 
rot2(atan(·0.75),E) ; rot2(atan(0.75),EM) 
scale2(1.0,·1.0,F) ; 
mult2(D,P,G) mult2(E,G,H) ; mult2(F,H,G) 
mult2(EM,G,H) ; mult2CDM,H,P) ; flag(P) 

I* Flag c *I 
mult2(B,C,G) ; mult2(A,G,P) ; flag(P) 

I* Draw 4 views of the same scene *I 
for (i=O ; i<4 ; i++) 

I* create ACTUAL to OBSERVED matrix *I 
< look2() ; observe() ; 

I* Place vertices and draw scene *I 
setcol(D) ; erase() ; drawit() 

> ; 
> : I* End of scene *I 

Example4.2 
We can draw many views of the same scene, including the one in figure 4.3, using 
listing 4.6. There are four flags labelled (a), (b), (c) and (d) on a frame with 
horiz = 120. Flag (a) is placed in the SETUP position, that is Pa = l (the sub-
script a means the matrix relates to flag (a)). Flag (b) is moved from SETUP to 
ACTUAL position by the following transformations 

(I) Scale flag with Sx = 4 and Sy = 2, producing matrix A. 
(2) Rotate figure through rr/6 radians, matrix B. 
(3) Translate flag by t x = 9 and t y = 6, matrix C. 

Note that these transformations are of the object itself, and not of the co-ordin­
ate axes. 
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The complete transformation is given by Rb = Q x Pb = Q x C x B x A (note the 
order of the matrix multiplication). For simplicity, in this example we will 
assume that the observer is already looking at the origin with head upright - that 
is, Q is the identity matrix. 

If the order A x B x C = Pc had been used instead, then 

(
2vl3 -1 9) 

Pb = 2 vl3 6 
0 0 1 

-2 
vl3 

0 

18vf3- 12) 
6vf3 + 9 

1 

which are obviously two different transformations. Matrix Rc = Q x Pc produces 
flag (c). Note how this flag has become distorted, no longer having mutually 
perpendicular adjacent sides, as do the other three flags; be careful with the use 
of scaling - remember that scaling is defmed about the origin and this can cause 
distortions in the shape of an object that is moved away from the origin! 

To further illustrate this example, the ACTUAL positions of the four corners 
of flag (b) in the window are calculated. The co-ordinates of the corners are put 
into column vector form and pre-multiplied by matrix Rb =I x Pb. For example 

cv~ ~~ D X (D = c~;:n 
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When returned to the usual two-dimensional vector form, the four vertices (1, 1 ), 
(-1, 1). (-1, -1) and (1, -1) have been transformed to (2v'3 + 8, v'3 + 8), 
(-2v'3 + 8, v'3 + 4). (-2v'3 + 10, -v'3 + 4) and (2v'3 + 10, -v'3 + 8) respec­
tively. 

Flag (d) is flag (b) reflected in the line 3y = -4x - 9. This line cuts they-axis 
at (0. -3) and makes an angle o: = cos-1 (-3/5) = sin-1 (4/5) = tan-1 (-4/3) 
with the positive x-axis. If the origin is moved by a vector (0, -3), matrix D say. 
this line will go through the new origin. Furthermore, rotating axes by angle o:, 
matrix E say. means the line is now identical with the x-axis. Matrix F can 
reflect the flag in the x-axis, £-1 puts the line back parallel to its original direction, 
and n-1 returns the line to its original position. Matrix G = n-1 X F"1 X F X E X D 
will therefore reflect the ACTUAL vertices of the flag (b) about the line 
3y = -4x - 9, and Rd = Q x Pd = Q x G x Pb can therefore be used to draw flag 
(d). That is matrix Pb is used to move the SETUP flag into position (b), and then 
matrix G to place it in position (d). 

D :G 0 n (-3/5 4/5 D F:G 0 D 1 E = -4/~ -3/5 -1 
0 0 0 

and 

ct4v'3-48 --24v'3 + 7 -279) 
pd = 1/25 -48v'3 + 1~ 7v'3 + 24 -228 

0 25 

Figure 4.3 is drawn using the scene function given in listing 4.4. Note the flag 
and drawit functions (and of course findO, look2, observe etc.) are the same as 
those of example 4.1 obtained by #includ(e)ing "model2.c", "display2.c" and 
"construc.c". This modular approach of solving the problem of defming and 
drawing a picture may not be the most efficient, and is perhaps rather excessive 
in simple two-dimensional scenes. It does, however, greatly clarify the situation 
for beginners, enabling them to ask the right questions about constructing a 
required scene. Also when dealing with multiple views (for example, in anima­
tion), this approach will minimise problems in scenes where not only are the 
objects moving relative to one another, but also the observer itself is moving. 

Exercise 4.2 
Once the scene for figure 4.2 is constructed in its ACI'UAL position, instead of 
drawing the figure, store the information on disk with a function called dataout 
(that is before you enter the observation information) and add it to file 
"model2.c". Then construct a new program which replaces the construction 
function calls in scene by a call to a function of your own, datain, which will 
read the data back off disk, before placing the observer and calling findO, look2, 
observe and drawit (also placed in "model2.c"). 
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The most important reason for this modular approach will be seen when it 
comes to drawing pictures of three-dimensional objects. These three-dimensional 
constructions will be described as an extension of the ideas above, and full under­
standing of two-dimensional transformations is essential before going on to 
higher dimensions. 

In summary, the process from defining vertices to drawing the scene is as 
follows 

(I) Defme the co-ordinates of each vertex as simply as possible relative to the 
ABSOLUTE co-ordinate system - their SETUP position. If the scene is to 
be stored in a database then define also the relationships between the vertices 
(that is, the lines and facets), otherwise these will be generated immediately 
before drawing. 

(2) Move the vertices to their ACTUAL position in space, the co-ordinates still 
being specified in relation to the ABSOLUTE system. The matrix executing 
this transformation is called P. 

(3) Calculate the co-ordinates of each vertex relative to the OBSERVER co­
ordinate system using matrix Q. Note that in this case the vertices themselves 
are not actually being moved - their co-ordinates are simply being specified 
in relation to a different system of axes. The OBSERVED co-ordinates of 
each vertex can be calculated directly from the SETUP co-ordinates by pre­
multiplication by the matrix R = Q x P. 

( 4) The object is finally drawn in the graphics viewport by identifying a WINDOW 
system with the OBSERVER system and calculating the viewport equivalent 
of each vertex using the window to viewport transformation discussed in 
chapter one. The lines and facets connecting the vertices may then be plot­
ted on the viewport. All relationships of lines and facets with vertices are 
maintained throughout all transformations. In general, parts (I) and (2) of 
this process are achieved by scene using construction routines, while part 
(3) is achieved with findO, look2 and observe controlled by scene, and 
fmally part (4) is programmed in drawit. Of course, the whole sequence of 
inclusions is initiated by #inclu(de)sion. 

On some graphics devices the transformation functions may be incorporated 
into the hardware. It is, nevertheless, very important that the reader becomes 
familiar with the idea of axis transformation since it plays a fundamental part in 
the understanding of many of the more complex techniques covered in this book. 
Also it should be noted that the polygonal facet approach for the construction 
of data which we are advancing here is not the only way of tackling the problem. 
The alternative analytic method, which is discussed in chapter I7, defines a scene 
in terms of logical combinations of primitive shapes which are defined by the 
analytic representations of their surfaces. This method also uses the techniques 
of transformations using matrices which we have discussed in this chapter. 
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Exercise 4. 3 
Construct a dynamic scene. With each new view, the objects will move relative to 
one another in some well-defined manner. The observer also should move in 
some simple way; for example, the eye can start looking at the origin, and twenty 
views later it is looking at the point (100, 100), and with each view the head is 
tilted a further 0.1 radians. The values of eye and alpha are no longer read in but 
should, instead, be calculated in scene. See the animation section of chapter 5. 
All other necessary functions can be #include( d)! 

Exercise 4.4 
Construct a scene which is a diagrammatic view of a room in your house - with 
schematic two-dimensional drawings of tables, chairs etc. placed in the room. 
Each different type of object has its own construction routine, and scene should 
read in data for placing objects around the room in their ACTUAL position. 
Once the scene is set, produce a variety of views looking from various points eye 
and orientations (alpha). 

Or you can set up a line-drawing picture of a map, and again view it from 
various orientations. The number of possible choices of scene is enormous! Also 
see the menu method of chapter 5 for ideas on how to move objects into 
ACTUAL position interactively. 

Example4.3 
As we mentioned earlier, there may be situations where it is inefficient to store 
the vertex, line and facet data. For example, in the scene function in listing 4.7 the 
program draws figure 4.4 which is a series of super-ellipses (Gardner, 1978) at a 
variety of orientations and scales. There is no need to store the ACTUAL posi-

Figure 4.4 
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tions, we can go directly from SETUP to OBSERVED position, by pre-multiply­
ing the SETUP vertices by R = Q x P. No lines are stored, vertices are joined by 
lines as soon as they have been evaluated, and then the values discarded. The 
drawing is achieved inside the construction routine superellipse, which takes the 
SETUP to OBSERVED matrix R as a parameter together with the exponent of 
the super-ellipse, and transforms the vertices into OBSERVED position before 
joining them by lines in the correct order. Note that superellipse actually con­
structs the vertices of a super-circle, but scaling matrix A included in matrix P 
distorts it into a super-ellipse. In this case the construction routine is not placed 
in "construc.c", however, we need to #include "model2.c" (to link with the 
graphics primitives) and "display2.c" (for look2, findO and observe). 

Listing4. 7 

#include "model2.c" 
#include "display2.c" 

1 ............................ 1 

float signedpower(r,index) 
1*·-------------------------*1 

float r,index; 
{ float power ; 

power• pow(fabs(r),index) 
if (r<O.O) 

returnC·power) ; 
else return(power) ; 

} ; I* End of signedpower *I 

1*·····················*1 
superellipse(R,index) 

1*·····················*1 
double R [] [4] ; 
float index ; 

I* Construction routine for super-ellipse. SETUP to OBSERVER matrix *I 
I* will distort super·circle into super-ellipse of given 'index• *I 
{static struct vector2 ellsetup={1,0} 

struct vector2 observed ; 
float c,s,theta=O.O,thinc=pi*0.01 
int i ; 
transform(ellsetup,R,&observed) ; moveto(observed) 
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I* Draw lines to 200 successive observed points *I 
for (i=O ; i<200 ; i++) 

< theta=theta+thinc ; 

) 

c=cos(theta) ; s=sin(theta) 
ellsetup.x=signedpower(c,index) 
ellsetup.y=signedpower(s,index) 
transform(ellsetup,R,&observed) lineto(observed) 

> I* End of superellipse *I 

1*·······*1 
scene() 

1*·······*1 
I* function to draw a set of super-ellipses *I 

{ double A(4] (4] ,8(4] (4] ,P(4] (4] ,R(4] (4] 
static float index(3]={0.5,1.0,1.5} 
float phi=O.O,phinc=pi*0.25 ; 
int i, j ; 

I* calculate ACTUAL to OBSERVED matrix 1Q1 *I 
look2() ; 

I* Matrix 'A' changes super-circle into super-ellipse *I 
scale2(3.0,2.0,A) ; 

I* Draw four such objects symmetrically placed around the *I 
I* origin for three choices of 'index' *I 

for (i=O ; i<4 ; i++) 
{ rot2(phi,B) ; 

I* 'P' is SETUP to ACTUAL matrix and 'R' SETUP to OBSERVED matrix *I 
mult2(B,A,P) ; mult2(Q,P,R) ; 
for (j=O ; j<3 ; j++) 

superellipse(R,index(j]) 
phi=phi+phinc ; 

} 

> I* End of scene *I 



5 Techniques for Manipulating 
Two-dimensional Objects 

The methods introduced so far enable us to create and draw a simple representa­
tion of any two-dimensional scene consisting of a set of vertices, lines and 
polygonal facets. In this chapter we shall consider a number of techniques which 
may be used for more complex pictures of two-dimensional scenes along with 
some which we will need when developing algorithms to deal with three-dimen­
sional solid models. Naturally these functions must be #included into complete 
programs at positions that ensure a valid scope. 

Line Clipping in Two Dimensions 

In chapter 4 the drawing of an object was achieved by identifying the viewport 
with a rectangular window centred on the origin of the OBSERVER system. The 
OBSERVER system consists of a pair of axes representing the entire Cartesian 
plane and is consequently of infinite size. The viewport, unfortunately, is not. 
Of course we do not wish to draw the entire Cartesian plane, only that section 
containing the vertices of the scene. No problem arises provided that the window, 
which is identified with the viewport, contains all of the vertices (and hence all 
of the lines and facets). If, however, part of the object lies outside the window 
then we must be able to identify those parts which should be drawn. For the 
moment we shall restrict our attention to dealing with lines. The problem of 
polygons lying wholly, or partly, outside the window area is considered later in 
this chapter. The plotting of single points provides no problem, of course, since 
a point can be plotted if it lies inside the window and cannot be plotted if it 
lies outside. 

In many devices the external line segments are dealt with in hardware or 
system software but on some (in particular microfilm plotters) these lines are 
reflected back into view causing great, but artistic, confusion. This effect may be 
deliberately used to produce some unusual designs such as that shown in figure 
5.1 which is formed by stacking 16 copies of figure 3.3b in a 4 by 4 grid and 
choosing too small a window. 

Many microcomputers have very peculiar algorithms for dealing with such 
situations and on some of the older flat-bed plotters an attempt to draw outside 
the graphics area can actually damage the equipment! 

90 



Techniques for Manipulating Two-dimensional Objects 91 

Figure 5.1 

Usually these external line segments should be suppressed or clipped. For 
example, clipping the line segments external to the outer rectangle in figure 5 .2a 
ought to give figure 5.2b. 

In practice each line will be clipped just before it is to be drawn , so the prob­
lem reduces to calculating which part (if any) of a line segment joining point 
(x 1 , y t) to point (x 2 , Y2) lies within the window. The following algorithm, due 
to Cohen and Sutherland, achieves this. The window is considered to be a 
rectangular area with the co-ordinate origin at its centre. The rectangle is of 
length 2 x clippedx and depth 2 x clippedy so that it has vertices(± clippedx, 
± clippedy). It will be seen that this algorithm may be used to clip lines outside 
any rectangle centred on the origin and not just the window which is identified 
with the viewport, but care should be taken to ensure that any other clipping 
rectangle used lies entirely within this window, otherwise the problem of external 
line segments will remain (unless your system includes hardware clipping). All 
references to the clipping rectangle in the description of this algorithm should be 
understood to apply equally to the entire viewport/window or to a smaller 
rectangle within. 

The sides of the rectangle are extended, thus dividing space into nine sectors, 
see figure 5 .3, in which a number of different line segments have been drawn to 
aid the explanation of the algorithm. Each point in space may now be classified 
by two parameters ix and iy where 
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(a) 

{b) (c) 

Figure 5.2 

(1) ix = -1, 0 or + 1, depending on whether the x-coordinate value of the point 
lies to the left, within thex bounds or to the right of the clipping rectangle. 

(2) iy = -1, 0 or + 1, depending on whether they-coordinate value of the point 
lies below, within they bounds or above the clipping rectangle. 

These values are calculated, when needed, inside the clipping function using 
the function mode (listing 5.1): a point on the boundary of the window is con­
sidered to be inside the window. This is stored in file "clip2.c". 
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IX = -1 IX = 0 IX = +1 
I YA IY = +1 
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E~ 

Figure 5.3 

Listing 5.1 

I* place in file "cl ip2.c" *I 

1*············-···*1 
mode(z,clippedz) 

I*· .............. ·* I 
float z,clippedz ; 

I* Returns ·1 if •z < ·clippedz', *I 
I* 0 if '·clippedz <= z <= clippedz' *I 
I* and 1 if 'clippedz < z• *I 
( if <z < ·clippedz) 

return(-1) ; 
else if (clippedz < z) 

return(1) ; 
else return(O) ; 

) ; I* End of mode *I 

IY 0 

IY -1 

93 

If the two points at the end of the line segment - that is, vector2 points p1 and 
p2 - have parameters ix 1 and iy 1, and ix2 and iy2 respectively, then there are a 
number of possibilities to consider. 

(i) If ix1 = ix2 * 0 or iy1 = iy2 * 0, then the whole line segment is outside 
the rectangle and hence may be safely ignored - for example, line AB in 
figure 5.3. 
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(ii) If ix1 = iy1 = ix2 = iy2 =0, then the whole line segment lies in the rectangle 
and so the complete line must be drawn- for example, line CD. 

(iii) The remaining case must be considered in detail. If ix1 =I= 0 and/or iy1 =I= 0 
then the vector2 point p1 = (x 1 , yJ) lies outside the rectangle and so new 
values for x 1 andy 1 must be found - to avoid confusion these are called x'1 

andy;. p1d = (x; ,y;) is the vector2 point on the line segment nearer to p1 
where the line cuts the rectangle. The formula for this calculation was con­
sidered in chapter 3 - that is, the intersection of a line with another line 
parallel to a co-ordinate axis. If the line misses the rectangle, then p1d is 
defined to be that point where the line cuts one of the extended vertical 
edges. If ix1 = iy1 =0 then p1d = p1. The vector2 point p2=(x;, Yz) is 
calculated in a similar manner. This algorithm is implemented in listing 5.2 
and would be added to file "clip2.c". The required clipped line segment is 
that joining p1d to p2d. If the original line misses the rectangle, then the 
algorithm ensures that p1d = p2d and the new line segment degenerates to a 
point and is ignored. In figure 5.3, for example, EF is clipped to E'F', GH is 
clipped to GH' (G = G') and IJ degenerates to a point I'= J'. 

Thus the function clip takes the two end-points of the line, p1 and p2, and 
discovers which of the above thr~e possibilities is relevant, dealing with it thus 

(i) exit the function immediately or 
(ii) join the two points with a line segment, or 
(iii) calculate the 'dashed' points and join them with a line segment. 

Listing 5.2 

I* Add to file "cl ip2.c" *I 

I* "graphlib.c" must already be #Included*/ 

float clippedx,clippedy; 
I* Remember to initialise •clippedx' and 'clippedy' somewhere*/ 

1*···········*1 
cl ip<p1 ,p2) 

1*··········-*1 
struct vector2 p1,p2 ; 

I* Routine to find that segment of the line from vector 'p1 1 */ 
J* to vector •p2• which lies within the clipping rectangle */ 
I* The required segment will be between vectors 'p1d' and 1p2d' */ 
< struct vector2 p1d,p2d ; 

int ix1,iy1,ix2,fy2 ; 
float xx,yy ; 

I* Initially identify •p1d' with 1 p1 1 and •p2d' with •p2• */ 
p1d.x=p1.x ; p1d.y=p1.y ; p2d.x=p2.x ; p2d.y=p2.y ; 
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I* Find frame 'mode's of 'p1d' and 'p2d' *I 
ix1=modeCp1d.x,clippedx) ; iy1=mode(p1d.y,clippedy) ; 
ix2=modeCp2d.x,clippedx) ; iy2=mode(p2d.y,clippedy) ; 

I* ignore points that are in same sector outside clipping rectangle *I 
if ((ix1*ix2 I= 1) && (iy1*iy2 != 1>> 

( if (iy1 != 0) 
I* If point 1 is outside they bounds of the clipping rectangle *I 
I* then move it to the nearest y edge *I 

< yy=clippedy*iy1 ; 
p1d.x=p1d.x+(p2d.x·p1d.x>*Cyy·p1d.y>ICp2d.y·p1d.y) 
p1d.y=yy; ix1=mode(p1d.x,clippedx); 

> ; 
if Clx1 I= 0) 

I* If point 1 is outside the x bounds of the clipping rectangle *I 
I* then move it to the nearest x edge *I 

( xx=clippedx*ix1 ; 
p1d.y=p1d.y+(p2d.y·p1d.y)*(xx·p1d.x>ICp2d.x·p1d.x) 
p1d.x=xx ; 

> ; 
if (iy2 I= 0) 

I* If point 2 is outside they bounds of the clipping rectangle *I 
I* then move it to the nearest y edge *I 

< yy=clippedy*iy2 ; 
p2d.x=p1d.x+(p2d.x·p1d.x)*(yy·p1d.y>ICp2d.y·p1d.y) 
p2d.y=yy; ix2=mode(p2d.x,clippedx) ; 

> ; 
if Cix2 I= 0) 

I* If point 2 is outside the x bounds of the clipping rectangle *I 
I* then move it to the nearest x edge *I 

< xx=clippedx*ix2 ; 
p2d.y=p1d.y+(p2d.y·p1d.y)*(xx·p1d.x)ICp2d.x·p1d.x) 
p2d.x=xx ; 

> ; 
I* Plot line between new points if they are not coincident *I 
I* If part of the figure is to be blanked (see later) then the calls *I 
I* to •moveto• and 'lineto• should be replaced by a single call: *I 
I* ' blank(p1d,p2d) • *I 

if ((fabs(p1d.x·p2d.x) >epsilon) II (fabsCp1d.y·p2d.y) >epsilon)) 
< moveto(p1d) ; lineto(p2d) ; 
> ; 

> ; 
> ; I* End of clip *I 

If line clipping is required in a program, then each pair of calls to the line-drawing 
functions moveto and lineto should be replaced by a call to clip which may 
subsequently call them to draw the internal segment. This algorithm solves the 
simplified case of clipping around a rectangular area centred on the origin, which 
of course is sufficient to ensure that no drawing is attempted outside the view-
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port. Situations arise, however, where one might want to clip the lines outside a 
rectangle in a peculiar position and orientation. In order to solve this general 
problem, where one pair of the rectangle's sides makes an angle a with the x-axis 
and it has centre with WINDOW co-ordinates (xc, xc), we use the transformation 
techniques of chapter 4. We reiterate that, unless your system includes hardware 
clipping, the transformed clipping rectangle must lie entirely within the window, 
or the clipping function must be called twice - the first time to clip the line to 
the window, the second to clip the rectangle. 

Suppose the clipping rectangle defines a new pair of axes with origin at 
(xc, Yc) and axes parallel to its sides (that is, the x-axis makes an angle a with 
the existing x-axis). If the co-ordinates of the line to be clipped are specified 
with relation to these new axes, then the clipping problem reduces to the simple 
case. The matrix R used to transform the co-ordinates of the end-points may be 
found by calculating the matrix A which translates the origin to (xc,Yc) and 
matrix B which rotates the axes through an angle a, and setting R = B x A. The 
co-ordinates of each point must be pre-multiplied by R and the clipping algorithm 
may proceed as above. However, the end-points of the line to be drawn on the 
viewport must have co-ordinates specified relative to the WINDOW co-ordinate 
system so, before plotting, the co-ordinates must be transformed back to this 
form by pre-multiplication with the matrix R-1 = A-1 X s-1 . There is, of 
course, no need to calculate the inverses of the matrices A and B directly, since 
s-1 represents an axes rotation through -a and A - 1 is the matrix for the trans­
formation of the origin to (-Xc, -Yc). The end-points of the line to be plotted 
may be the original end-points or new 'dashed' points. Either way, care must be 
taken not to corrupt the information in the database during transformation or 
clipping - copies must be made of all co-ordinate variables and these copies 
should be altered, not the originals. 

Exercise 5.1 
Clip figure 1.6 inside a diamond of side y2. (The diamond is a square of side 
y2 rotated through TT/4 radians.) 

Blanking an Area of the Window 

The problem of blanking (or covering) an area of the window, which may arise 
when part of the viewport is to be reserved for text for instance, is the exact 
opposite of clipping. Again we have a rectangle (2 x blankedx by 2 x blankedy), 
but in this case all line segments inside the rectangle are deleted. The values of 
blankedx and blankedy (and, of course, clippedx and clippedy) must be initialised 
before function blank(clip) can be used. Figure 5.2c shows the result of blanking 
the inner rectangle of figure 5.2b. 

If a colour raster scan display is being used, then blanking an area of the view­
port is a trivial exercise. The entire picture is drawn as if no blanking is required 



Techniques for Manipulating Two-dimensional Objects 97 

and then the area to be blanked is simply blotted out using the polygon-filling 
function polyfill. The following algorithm need only be used, therefore, on non­
raster scan devices. 

As with clipping, the problem is simplified by assuming that the blanking 
rectangle has four corners (±blankedx, ±blankedy), and the transformations of 
chapter 4 may be used to manipulate the general case into this simple form. 

Again, two-dimensional space is divided into nine sectors by extending the 
edges of the rectangle. Each point is given two parameters ix and iy using the 
same function mode (listing 5.1 ), and blanking a line segment that joins the 
vector2 points p1 and p2 is achieved by 

blank ( p1, p2); 

which calls the function shown in listing 5.3 and which will also be added to 
''clip2.c". 

Listing 5.3 

I* Add to file "clip2.c" *I 

float blankedx,blankedy ; 
I* Remember to initialise 'blankedx' and 'blankedy' somewhere *I 

1*············*1 
blank(p1,p2) 

1*············*1 
struct vector2 p1,p2 

I* Routine to blank out that segment of the line from 'p1' to 'p2' *I 
I* which lies within the blanking rectangle *I 
{ struct vector2 p1d,p2d ; 

int ix1,iy1,ix2,iy2; 
I* Find frame 'mode's of 1 p1 1 and 'p2 1 *I 

ix1=mode(p1.x,blankedx> ; iy1=mode(p1.y,blankedy) 
ix2=mode(p2.x,blankedx) ; iy2=mode(p2.y,blankedy) 

I* If points are on the same side of one of the extended edges of the *I 
I* blanking rectangle then draw the whole line segment *I 

if ((ix1*ix2 == 1) II (iy1*iy2 == 1)) 
< moveto(p1) ; lineto(p2) ; 
} 

I* The blanked segment will be from 'p1d' to 'p2d' *I 
I* Calculate the first point 1 p1d 1 , corresponding to 1 p1 1 • If 1 p1 1 is *I 
I* outside the x bounds of the blanking rectangle then put point 'p1d'*l 
I* on the nearest x edge, else 'p1d=p1 1 for the moment *I 

else< if (ix1 I= 0) 
( p1d.x=blankedx*ix1 ; 

p1d.y=p1.y+(p2.y·p1.y)*(p1d.x·p1.x)l(p2.x·p1.x) 
iy1=mode(p1d.y,blankedy) ; 

} 
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else< p1d.x=p1.x ; p1d.y=p1.y; 
> ; 

I* If 'p1d 1 is outside the y bounds of the blanking rectangle then *I 
I* move it to the nearest y edge *I 

if Ciy1 I" 0) 
{ p1d.y=blankedy*iy1 ; 

p1d.x=p1.x+(p2.x·p1.x>*Cp1d.y·p1.y>ICp2.y·p1.y) ; 
> ; 

I* Join 1 p1 1 to 1 p1d 1 unless they are almost coincident*/ 
if CCfabs(p1d.x·p1.x) >epsilon> II Cfabs(p1d.y-p1.y) >epsilon)) 

{ moveto(p1) ; linetoCp1d) ; 
> ; 

I* Repeat the above process with 'p2' and •p2d' */ 
if Clx2 I• O> 

< p2d.x=blankedx*ix2 ; 
p2d.y=p1.y+(p2.y·p1.y)*Cp2d.x·p1.x)l(p2.x·p1.x) ; 
fy2=modeCp2d.y,blankedy) ; 

> 
else ( p2d.x=p2.x ; p2d.y=p2.y ; 

> ; 
if (iy2 I= 0) 

< p2d.y=blankedy*iy2 ; 
p2d.x=p1.x+(p2.x·p1.x)*(p2d.y-p1.y)l(p2.y-p1.y) ; 

> ; 
I* Join •p2• to 'p2d• unless they are almost coincident */ 

if CCfabs(p2d.x·p2.x> >epsilon) II (fabs(p2d.y-p2.y) >epsilon)) 
{ moveto(p2) ; lineto(p2d) ; 
> ; 

> ; 
> ; I* End of blank *I 

The algorithm is again explained with reference to figure 5.3. If both of the 
points defining the line segment lie on the same side of one pair of rectangle 
edges (that is, ix1 * ix2 = 1 or iy1 * iy2 = I) then the line lies completely out­
side the rectangle and must be drawn in total (or alternatively sent to the clipping 
routine) -for example, AB. When both points are inside the rectangle (ix1 = 
ix2 = 0 and iy1 = iy2 = 0) then nothing is drawn - for example, CD. When 
neither of these is the case, we calculate (as required) the points p 1 d correspond­
ing to p1 and p2d corresponding to p2. If p1lies inside the rectangle, then p1d = 
p1; if it is outside then p1d is produced in the same way as in the clipping func­
tion. p2d is found in a similar way. The function joins p1 to p1d if the points are 
not coincident, and similarly p2 to p2d. For example, CD is not drawn because 
both C and D lie inside the rectangle; EE' and FF' are drawn, HH' is drawn from 
GH, and since I' = J' lines II' and JJ' combine to give the complete line U. 

If blanking is required in a program, then each call to the line-drawing func­
tions moveto and lineto should be replaced by a call to blank. If both clipping 
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and blanking are required, then the moveto and lineto calls in one of the func­
tions clip or blank, should be replaced by a call to the other. The choice of 
which function should be changed depends upon which process you want 
executed first. Efficiency will dictate which one you choose. 

Exercise 5.2 
Draw figures 5.2a, b and c. 

Exercise 5. 3 
Draw figure 5.4, which is figure 1.6 clipped by a square with side y2 and covered 
by a square with side i, Both squares are centred at the origin - the centre of a 
circle of 30 points. 

Exercise 5.4 
Create a function which clips a line segment to a circular window and a similar 
function which blanks a circular part of a picture. 

These methods for clipping and blanking apply only to line drawings, as we 
mentioned above. Some consideration will be given later (exercise 5.11) to the 
clipping and covering of polygonal areas, but let us frrst look at methods of 
representing lines and polygonal areas on a line-drawing device. 

Figure 5.4 

Line Types 

Before considering what we mean by line types, it is important to realise how a 
line in space is represented on our pixel-based viewport model. The line is 
obviously constructed as a discrete set of pixels joining the pixel equivalents of 
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the end-points of the real line. A number of algorithms for deciding which pixels 
go into this set are available (Newman and Sproull, 1973): we assume that this is 
achieved by the hardware. In general, these algorithms assume that the line in 
space has no thickness and, when transformed to the viewport, all pixels inter­
sected by this line are given a logical colour which is calculated from the line 
colour. The vector graphics device methods of line drawing are not considered 
here. 

In the text thus far we have assumed just one line type - that is. a solid line 
of pixels in the given fixed line colour and intensity that obliterates the original 
colour of every pixel it covers. In reality the variety of graphics devices or 
packages allows the user many different line types. 

Exercise 5.5 
If you do not have built-in dashed lines available, write a function dash(n, p1, p2) 
which draws a line of n dashes between the vector2 points p1 and p2 in the 
window: note the dashes must start and end on these points, so if the distance 
between the two end-points is d and the size of dashes equal the gap size between 
them, then the size of the dash is d/(2n - 1). What if the dashes are twice the 
size of the gaps? What if you wish to make the dash a given size, and the gaps 
approximately the same size as each other? 

The solid line type mentioned above takes no account of the original colour 
of the pixels that define the line. It is possible to have line types where the 
colour of each component pixel depends not only on the logical colour of the 
line but also on the original logical colour of that pixel. Boolean operators 
AND, OR. XOR (exclusive OR) can operate bit-wise on the binary value of these 
two logical colours. Suppose that we have a line of logical colour 6 (binary 110) 
running through pixels coloured 0 through 7 (binary 000 through 111 ). The 
following table shows the resulting 3-bit pixel colours for the above three 
operators. 

Original colour 0 2 3 4 5 6 7 
Binary bits 000 001 010 011 100 101 110 111 
OR with 6 (110) 110 111 110 111 110 111 110 111 
AND with 6 000 000 010 010 100 100 110 110 
XOR with 6 110 111 100 101 010 011 000 001 

If you have such a facility on your machine, then add an extra primitive 
setype(op), where op is an integer, to our earlier list, which enables normal plot­
ting (REPLACE), OR, AND or XOR corresponding to op values 0, 1, 2 or 3 
respectively. (You may also have to adjust the linepix function in your primitives 
to allow for Boolean plotting.) 

These functions are often used in conjunction with a peripheral device called a 
mouse that is held in the hand and moved over a rectangular graphics tablet or 
digitising tablet. The position of the mouse on this tablet corresponds to the 
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position of the cursor in the viewport. They may also be used with an equivalent 
input configuration such as a light pen. In order to access pixel information 
indicated by such a device, another primitive function must be added to the 
library: called by mouse(&p, &status), where p is a pixelvector and status an 
integer). This function returns the pixel co-ordinates p corresponding to the 
present mouse/light-pen position together with a status value status which is set 
to 1 when a special button is pressed (or the pen is pressed down), and 0 other­
wise. 

It is important to note that when two identical XOR lines are drawn one over 
the other, then the pixel components of the line will return to the colours they 
had before the lines were drawn. This type of Boolean plotting is available on 
many microcomputers for drawing blocks of pixels (sprites), and is the basis of 
many video games. Great care must be taken when using XOR in complicated 
scenes; it is very easy to change, inadvertently, parts of objects other than those 
you intend. 

Example5.1 
We use this option to achieve a very useful operation known as rubber-banding. 
To illustrate we give a very simple example in which we draw a line from a fixed 
pixel point pixelvector p1 on the viewport to another, but we are not sure where 
that pixel p is to be positioned. The idea is that a mouse moves around the 
tablet, and with each new position the corresponding cursor indicates a pixel, 
and hence a new line. Naturally the old line has to be deleted and a new line 
drawn for each new pixel position; the process is programmed in listing 5.4 as 
function rubber. Note how XOR is used repeatedly inside a loop to achieve this. 
This function terminates if the status value is reset to 0 (by releasing the button 
on the mouse) and the final value of pis used. If needed, add the function to 
file "utility.c". 

Listing 5.4 

I* Add to "uti! ity.c" *I 

1*····-----·--·*1 
rubber(p1, p2) 

1*------------·*1 
struct pixelvector *p1,*p2 ; 

I* Routine using rubber banding to define a line from fixed *I 
I* pixel point '*p1' to a moveable pixel point '*p2 1 *I 
( struct pixelvector *p ; 

int status ; 
I* Move mouse to initial end of line '*p2' and press button *I 

do mouse(p2,&status) ; 
while (status== 0) ; 
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I* Draw the first line*/ 
setype(O) ; movepix(*p1); linepix(*p2) ; 

I* Kold button down while moving mouse, release button when *I 
I* required end of line achieved*/ 
I* Store old end of line and use mouse for new '*p2' */ 

do ( p->x=p2->x ; p·>y=p2·>y ; mouse(p2,&status) 
I* XOR away the old line *I 

setype(3) ; movepix(*p1), linepix(*p) ; 
I* REPLACE it with new line from '*p1' to '*p2' */ 

setype(O) ; movepix(*p1) ; linepix(*p2) ; 
} 

while (status != 0) ; 
I* exit procedure when button is released */ 
} ; !* End of rubber *I 

Exercise 5. 6 
Use rubber-banding in a program that modifies a polygon on the viewport. A 
mouse is used first to indicate a vertex of the polygon, and then it must indicate 
movement of the chosen vertex about the viewport (the two polygon edges that 
enter that vertex must also move). Note that if XOR plotting is not available, then 
you have to clear the viewport and totally redraw every edge of the polygon for 
each new position of the mouse, and not just the two relevant edges. It is very 
difficult to point at a particular pixel using a mouse, you are lucky to keep your 
hand steady within one or two pixels of the target. In this exercise the nearest 
vertex to the mouse pixel must be found in order to be sure of which vertex is to 
be edited. 

One very useful process in computer graphics is the development of a menu. 
a displayed list of possible options (as text or perhaps icons: idealised symbols, 
stored as blocks of pixels, representing a concept) are drawn on the viewport and 
the mouse is used to indicate which you require. We have not explicitly men­
tioned how to mix text with graphics. This is usually a trivial exercise, and we 
leave it to readers to write their own text primitives. Having written menu 
options on the viewport, we now have to ensure that the correct text or icon is 
indicated, so we imagine a discrete rectangular grid of pixels over the viewport 
and, when the mouse indicates a pixel, it is a simple matter to work out which 
grid point is nearest that pixel. A list of grid points nearest to each displayed 
option is stored or calculated, and it is easy to decide which option is indicated. 

Exercise 5. 7 
Include all these ideas in a draw, drag, delete program. You will have a series of 
functions that can draw two-dimensional objects (such as plan views of chairs, 
tables etc.) at mouse-specified positions in the viewport. The whole scene (for 
example, furniture in a room) must then be edited interactively using a mouse. 
The grid/menu method is used to indicate whether you wish to draw a new 
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occurrence of an object, to drag an indicated object around the viewport using 
XOR plotting, or to delete an object all together. 

The last line type we consider is an anti-aUased line (see Foley and Van Dam, 
1981). Lines of fixed colour and intensity drawn on raster devices tend to look 
jagged (aliased), since they are simply groups of squares (the pixels) that approxi­
mate to the line and so naturally they display this staircase effect. Some graphics 
devices have hardware anti-aliasing, to minimise the effect. Now lines are con­
sidered to have a thickness, and the pixels that are intersected by this line are 
not given a fixed colour; instead they are given a mix of the background colour 
and line colour proportional to just how much of the pixel is covered by the 
thick line. The same ideas are used to construct solid text characters so that they 
do not display the irritating jagged edge effect. If you have hardware anti-aliasing 
then incorporate it in new line-drawing primitives. 

Hatching Polygons 

One of the most useful functions in any line-graphics package is one which hatches 
a polygonal area using equi-spaced parallel lines (see figure 5 .5). This facility is 
built into many graphics systems such as G.K.S. but for the benefit of readers 
not having access to these systems, and also for a useful demonstration of an 
application of the geometry introduced so far, we will discuss the theory behind 
such a function. The polygon is assumed to have m vertices {p1 = (x1, Yt) I i = 0 ... 
m - 1} in order and implemented as the vector2 array p. It may be convex or 
concave and its boundary may even cross itself. 

Figure 5.5 
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Without loss of generality it may be assumed that there is only one set of 
parallel hatching lines. For combinations of sets of hatching lines, the following 
theory is repeated for each set in turn. 

Suppose the direction of the parallel lines is given by vector2 d = (d.x, d.y) 
and the distance between neighbouring hatching lines is defined to be dist. This 
still leaves an infinite numoer of possible sets of parallel lines! To define one set 
uniquely, it is still necessary to specify a base point, b = (b.x, b.y), on any one 
of the lines from the set. 

Note that a line with direction d which passes through b has the general 
vector form in the base/direction vector notation 

b + ,ro where -oo < JJ. < oo 

As we have seen, a straight line may also be defined in the form 

axy=bxx+c 

which has analytic representation 

f(x,y)=a xy- b xx- c 

whence a general point q = (x, y) on the line is given by the equationf(q) = 0. 
Since a hatching line has direction vector d, a may be taken as d.x and b as 

d.y, and so a line is given by 

d.X X y = d.y X X + C 

Each hatching line is defined by a unique 'c-value'. The line which passes through 
b has the 'c-value' cmid given by: 

cmid = d.x x b.y - d.y x b.x 

It is possible to calculate all the 'c-values' for the m lines with direction d 
(not necessarily in the set of hatching lines) which Eass through each of them 
vertices of the polygon, and then find the extreme values cmax and cmin thus 

and 

cmax = max {d.x x Yt- d.y x x;} 
O<t<m 

cmin = min {d.x x Yt- d.y x x,} 
O<t<m 

This means that the polygon lies totally between the two lines 

d.x x y = d.y x x + cmin and d.x x y = d.y x x + cmax 

In order to hatch the given polygon with lines parallel to d, then naturally 
only lines with 'c-values' between these extremes need be considered from the 
set. It should be noted that even though vector b is used to 'anchor' the set of 
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parallel lines with inter-line distance dist, there is no need for the line which 
passes through b to intersect the polygon. 

For ease of calculation it is sensible to resort to the vector notation for lines. 
Note that the hatching lines are all in the form 

q + ~ where -oo < ll < oo 

Here q represents a base point on a general hatching line. So it is necessary to 
find a vector q for each of the hatching lines that cuts the polygon. The q values 
are defined to be the points of intersection of this set of hatching lines with the 
line through b with direction d' (which is perpendicular to d -that is, to the 
hatching lines). Note that d' may be represented by the vector ( -d.y, d.x). 

Hence the base points q are all of the form 

q = b + Xd' where -oo < X< oo 

This formulation naturally represents every point on the new line perpendicular 
to the hatching lines, but only its points of intersection with the hatching lines 
are required. Note that any non-zero scalar multiple of d' may also represent the 
direction of the new line, and choose s = (dist/ I d' I) x d' which means that 
vector s has length (or modulus) dist. Now note that q can be considered 

q = b + ns = b + n x (dist/ I d'l) d' for some n 

If n is an integer, this vector combination gives all, but only, the points of inter­
section of the new line with a set of parallel lines of direction d in which neigh­
bouring lines are a distance dist apart. Since b is one of these intersections (n = 0), 
then this formulation contains the base vectors for the required set of hatching 
lines. However, lines still have to be restricted to those with 'c-values' that lie 
between cmin and cmax. This is achieved by insisting that the 'n-values' of the 
base points of the hatching lines lie between nmin and nmax, where 

nmin =I( em in - cmid)/( dist x I d' I )I and 
nmax = L(cmax -cmid)/(dist x I d' 1)_1 

Here lrl gives the smallest integer not less than r, and Lr _]gives the largest 
integer not greater than r. Note that 0, the 'n-value' corresponding to b, need 
not lie in this range. 

Given any integer n, the corresponding vector q which then identifies one 
hatching line can be calculated. Intersect this line with the edges of the polygon 
defmed by vertices p 0 , •• • , Pm-l· Suppose there is an intersection between points 
Pi and Pi+l , then note that the intersection on this edge may be given in the form 

Pi + O!(pi+l -Pi) where 0.;;;; 0!.;;;; 1, 

as well as by q + 1Jd on the hatching line. The hatching line only cuts the poly­
gon at this edge if the 0! value lies between 0 and 1 . The 1J value for each valid 
intersection must be stored. 
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As i varies through all the edges of the polygon (when i = m then Pm is 
identified with p0 ), all the JJ. values of proper intersections are calculated and 
then placed in increasing numerical order. Care must be taken with rounding 
errors and coincident points! There are always an even number of these JJ. values. 
The points on the hatching line corresponding to the JJ. values are found and the 
first joined to the second, third to the fourth etc., and this gives the correct 
hatching on one line. Varying n between nmin and nmax gives the complete 
hatching for the polygon. The process is programmed as function hatch in listing 
S.Sa. If it is needed, add it to file "utility.c". Listing S.Sb gives a demonstration 
draw_a_picture function that uses hatch. 

Listing 5.5a 

I* Add to "utility.c" if needed *I 

I*· •••.••••.••.•.•.. ·* I 
hatch(m,p,b,d,dist) 

1*····-·----··---·-··*1 
int m ; 
struct vector2 p[J,b,d; 
float dist ; 

I* Hatches an •m-GON' with vertices 1p[O], ••• ,p[m·1] 1 using equf·spaced */ 
I* parallel lines. Distance between neighbouring lines is 'dist• and each *I 
I* line has direction vector 1d1 • One hatching line passes through 'b'. */ 
< int i, isec,j, lasti ,n,nmin,nmax,nint,mp,npoint [maxpolyJ ; 

float alpha,c,cmax,cmld,cmin,dmod,mu[maxpolyJ,mu1,mu2; 
struct vector2 e,inter,p1,p2,q,s ; 

I* Find •cmid 1 , •cmin' and •cmax• *I 
cmid=d.x*b.y-d.y*b.x ; 
cmln=d.x*p[O).y·d.y*p[OJ.x; cmax=cmin; 
for (i=1 ; i<m ; i++) 

{ c=d.x*p[iJ.y-d.y*p[iJ.x; 
if (c < cmin) 

cmin=c ; 
else if (c > cmax) 

cmax=c ; 
> ; 

I* Construct vector •s• */ 
dmod=sqrt(d.x*d.x+d.y*d.y) 
s.x•·distldmod*d.y ; s.y=distldmod*d.x ; 

I* Calculate 'nmin 1 and •nmax• *I 
nmin=(int)((cmin-cmid)l(dist*dmod)+0.9999) 
nmax=(int)((cmax-cmid)l(dist*dmod)) 

I* Hatch the polygon *I 
for (n=nmin ; n<•nmax ; n++) 

I* Find 'q' the base vector of the hatching line*/ 
< q.x=b.x+n*s.x ; q.y=b.y+n*s.y ; 
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I* Find 'nint' intersections of hatching line with edges of polygon *I 
nint=O ; lasti=m·1 ; 
for <i=O ; i<m; i++) 

< e.x=p[iJ.x·p[lastiJ.x; 

) 

e.y=p[i] .y·p[lastiJ .y ; 
ill2(p[lastiJ,e,q,d,&inter,&isec) 
if (isec == 1) 

< alpha=(inter.x·p[lasti].x)le.x; 
if ((alpha >= 0) && (alpha <= 1)) 

{ nint=nint+1 ; 
npoint[nintJ=nint ; 
mu[nintJ=<inter.x·q.x)ld.x ; 

} 

) ; 
lasti=i 

I* Sort 'mu' values into order *I 
for (i=1 ; i<nint; i++) 

for (j=i+1 ; j<=nint ; j++) 
if (ru[npoint[il] < ru[npoint[j]]) 

< nnp=npoint[i] ; 
npoint[i]=npoint[j] 
npoint[jJ=nnp; 

} ; 
I* Join corresponding pairs of intersections *I 

i=1 ; 
while (i < nint) 

) ; 

< mu1=mu[npoint [iJ] ; mu2=ru[npoint [i+1J J 
p1.x=q.x+mu1*d.x; p1.y=q.y+mu1*d.y; 
p2.x=q.x+mu2*d.x ; p2.y=q.y+mu2*d.y ; 
moveto(p1) ; lineto(p2) ; 
i=i+2 

) ; 

} I* End of hatch *I 

Exercise 5.8 
If the polygon is composed of a large number of vertices then there is no need to 
waste time calculating all the intersections, only to find that most of the a values 
do not lie between 0 and 1 and so are irrelevant. A trick to save time is to put 
the hatching line in analytic form 

f(v)= f(x,y)=axy-bxx-c 

Now if consecutive vectors p1 and Pi+l are such that f(p1) and f(P;+l) have the 
same sign - that is, they are both positive or both negative- then there cannot 
be a useful point of intersection between them. Incorporate this into the function 
above. 
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Listing 5.5b 

#include "graphllb.c" 
#include 11utility.c" 

1*················*1 
draw_a_picture() 

1*················*1 
< int i ; 

I* hatch demonstration *I 

I* Setup test values of polygon,dase and direction vectors *I 
static struct vector2 b=<2,1>,d={3,2>; 
static struct vector2 pt[9J= 

{5,1, ·3,·1, 2,4, ·1,·4, ·5,5, 3,·3, 1,2, ·4,6, 3,1}; 
I* Draw outline of polygon *I 

moveto(pt[8l) ; 
for (i=O ; i<9 ; i++) 

lineto(pt[i]) ; 
I* Hatch polygon in red *I 

setcol(1) ; hatch(9,pt,b,d,0.2) ; 
> ; I* End of draw_a_picture *I 

Convex Polygonal Area Filling 

A function which fl.lls in a convex polygon with a given colour is a simple example 
of the general hatching problem, where the hatching lines are horizontal and 
correspond to neighbouring rows of pixels. The algorithm is to find the mini­
mum and the maximum row of pixels 0 ~ ymin ~ ymax < nypix that lie on the 
edge or inside the polygon. For each scan line (row of pixels) in this range, find 
the pixel columns where it cuts the polygon; there will be two intersections 
which are joined by a line of the required colour. This is programmed in listing 
5.6 and should be declared as polyfill in "graphlib.c" if your graphics device 
does not have hardware area-fill. 

Listing5.6 

I* Replacement for 'polyfill 1 in "graphlib.c" *I 

1*·--·---------··*1 
newpolypix(n,q) 

I*·----.--------·*/ 
int n ; 
struct plxelvector q[J 

< int iv,ix,iy,nv,xmin,xmax,ymin,ymax ; 
struct pixelvector pix1,plx2 ; 
float factor ; 
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ymax=q[O].y; ymin=ymax; 
for (iv=1 ; iv<n ; iv++) 

<if (q[iv].y > ymax) 
ymax=q[ivl .y ; 

if (q[ivl .y < ymin) 
ymin=q[ivl .y ; 

) 

if (ymax >= nypix) 
ymax=nypix·1 

if (ymin < 0) 
ymin=O ; 

for (iy=ymin ; iy<=ymax ; iy++) 
{ xmin=nxpix ; xmax=·1 ; iv=n·1 

for (nv=O ; nv<n ; nv++) 
{ if (((q[iv] .y >= iy) II (q[nv] .y >= iy)) && 

((q[ivl .y <= iy) II (q[nv] .y <= iy)) && 

(q[iv] .y != q[nvl .y) ) 
< factor=(float)(q[nv].x·q[iv].X)I(q[nv].y·q[ivJ.y) 

ix=q[ivJ.x+(int)((iy·q[iv].y)*factor) 
if (ix < xmin) xmin=ix ; 
if (ix > xmax) xmax=ix ; 

) 

iv=nv ; 
) 

if (xmax >= nxpix) xmax=nxpix·1 
if (xmin < 0.0) xmin=O ; 
if (xmin <= xmax) 

) ; 

< pix1.x=xmin; pix1.y=iy; 
pix2.x=xmax ; pix2.y=iy ; 
movepix(pix1) ; linepix(pix2) 

) ; 

) ; I* End of newpolypix *I 
1*·············*1 

polyfill(n,p) 
1*·············*1 

int n ; 
struct vector2 p[J 

I* Routine to fill CONVEX polygon *I 
I* Maximum polygon size is '32=vectorarraysize' *I 
{ struct pixelvector q[maxpoly] 

int i ; 
for (i=O ; i<n ; i++) 

< q[i] .x=fx(p[il .x) q[il .y=fy(p[il .y) 
) ; 

newpolypix(n,q) ; 
) ; I* End of polyfill *I 
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Exercise 5. 9 
Write a function which hatches a polygon using both vertical and horizontal 
hatching lines. Again this is an easier problem than the general case. Incorporate 
this function in a program which produces histograms or bar-charts. 

Exercise 5.10 
Write a function which hatches a segment of a circle for use in pie-charts. This 
problem is more involved as checks must also be made for intersections with the 
circular arc. 

The Orientation of a Convex Polygon 

In chapter 3 we defined a convex polygon with n sides in terms of an ordered list 
of its vertices {p1 = (x1, y1) I i = 0 ... n - 1}. These vertices were ordered either as 
they occur in a clockwise direction around the boundary of the polygon or in an 
anti-clockwise direction. As we discovered then, it is very important that we 
know in what orientation the polygon is defined, clockwise or anti-clockwise. 
We shall now consider how to determine this information from the list of vertices. 

Since the polygon is convex, given the relative orientation of any two consecu­
tive sides we may deduce the orientation of the whole. Thus we need consider 
only the first three vertices and the two lines joining them. Consider the line 
from p0 to p 1 . The analytic representation of this line may be written 

fo(x y)=ay- bx- c 

wherea=(x 1 -x0 ),b=(y 1 -y0 )andc=axyl -bxx1. 

In chapter 3 it was shown that looking from Po to p 1 a point (x, y) with 
f 0 (x, y) > 0 lies to the left of the line Po to p 1 , and if fo(x,y) < 0 then (x,y) 
lies to the right. 

From figure 5.6 it may be seen that for the polygon to be in anti-clockwise 
orientation p2 should lie to the left of the line from p 0 to Pt, and for clockwise 
orientation it should lie to the right. Therefore, in order to determine the 
orientation of a polygon defined in the above form, we need simply calculate 
fo(Xz ,J2) 

fo(Xz,J2)=axyz -bxx2 -c 
=(xt-Xo)xY2 -(Yt -Yo)xXz -(Xt -xo)xyl 
+(y1 -Yo)xxl 
= (xt - Xo) x (Y2 - yt)- (Yt -Yo) x (xz - xt) 

If this is positive then the polygon is oriented anti-clockwise, and if negative 
then the orientation is clockwise. If f 0 (?c2 , y 2 ) is zero then the three vertices Po, 
p 1 and p2 are collinear and the orientation of the polygon cannot be thus 
determined. The inclusion of three consecutive collinear vertices in the boundary 
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of a polygon is never necessary and. since it may cause problems, should be 
avoided. The integer function orient2 (listing 5.7) determines the orientation of a 
polygon. The value 1 is returned if the polygon is in anti-clockwise orientation, 
and -1 if it is clockwise. If the polygon is degenerate (that is, if the three points 
are colli11ear or even coincident) then the value 0 is returned. The routine calls a 
function sign (also given in listing 5.7) which returns the sign (+1, 0 or -1) of 
a real number. sign will be used many times in the three-dimensional routines 
that follow Both functions should be added to ftle "utility.c". 

Listing 5. 7 

I* Add functions to file "utility.c" *I 

1*-------*1 
sign(r) 

1*--·-···*1 
float r ; 

I* Returns 1 if r>O, 0 if r=O or ·1 if r<O *I 
{ if <r >epsilon) 

return(1) ; 
else if (r < ·epsilon) 

return(-1) ; 
else return(O) ; 

) ; I* End of sign *I 
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1*---- -- ....... ····*I 
orient2(p0,p1,p2) 

1*·················*1 
struct vector2 p0,p1,p2; 

I* Returns the orientation of the polygon with consecutive *I 
I* vertices pO, p1 and p2 I ·1 : clockwise orientation *I 
I* 
I* 

+1 : anti-clockwise orientation *I 
0 : degenerate • line or point *I 

{ struct vector2 d1,d2 ; 
d1.x=p1.x·pO.x; d1.y=p1.y·pO.y; 
d2.x=p2.x·p1.x ; d2.y=p2.y·p1.y; 
return(sign(d1.x*d2.y·d1.y*d2.x)) ; 

} ; I* End of orient2 *I 

Example5.2 
What is the orientation of the polygon defined by the five vertices: (2, 1 ), ( 5, 4), 
( 4, 7), (1, 8) and ( -1, 5)? 

The three points we use are (2, 1), (5, 4) and (4, 7). Inserting these values 
into the formula above we get 

[ 0 (4, 2)=1(5- 2) X (7- 1)- (4- 1) X (4- 2) = 18-6 = 12 

which is positive and so the polygon is in anti-clockwise orientation. This may be 
checked easily, simply by plotting the points. Note that it does not matter which 
three vertices are used to determine orientation. Try it with any three consecutive 
vertices. You should get a positive result each time. If you take the same three 
vertices in the opposite order, then naturally you get a negative value. 

The Intersection of Two Convex Polygons 

Imagine two convex polygons A and B. Their area of intersection is either null 
or another convex polygon. The following method for finding the polygon of 
intersection of two convex polygons has far-reaching applications in the three­
dimensional work later in this book and should consequently be carefully 
studied. Because the 'inside and outside' method of chapter 3 will be used, it is 
necessary that both polygons are given in the same orientation- we assume anti­
clockwise. This may be checked using the method given above. 

Suppose polygon A has numa vertices and polygon B has numb vertices, the co­
ordinates of which are stored in the arrays apoly [numa] and bpoly [numb]. 
The area of intersection is that part of polygon A which is also part of polygon 
B. The method employed to find this area is to take each of the boundary lines 
of polygon B in turn and repeatedly 'slice off' the area of polygon A which lies 
on the negative side of the extended line. 

In order to describe the process in more detail, we introduce the term feasible 
polygon to mean the polygon which contains precisely the points which have 
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not been proved to lie outside either A or B, the vector2 array f[2] [n] and the 
variables 11, initially of value 0, and 12, initially 1. 

As we have mentioned previously, the array structure is not very flexible. 
The value n must be specified precisely, so a value greater than the maximum 
possible index must be chosen. See chapter 2 for a description of the use of 
arrays. 

Initially, of course, the whole of polygon A may lie within polygon B, so the 
feasible polygon is A and the co-ordinates of the vertices of A, a poly [O .. numa-1] , 
should be copied into array f [11] [O .. numa - 1]. At each stage of the slicing pro­
cess we begin with a feasible polygon C, the numc vertices of which will be stored 
in array f[J1] [O .. numc - 1] , and the parts of this area lying on the negative side 
of the slicing line will be discarded leaving a new feasible polygon C', having 
numcdash vertices, which is entered in array f[l2] [O .. numcdash - 1]. The values 
of 11 and 12 are then swapped and the process repeated with the next line on the 
boundary of polygon B, replacing numc with numcdash. If, at any stage during 
the slicing, the feasible polygon has fewer than 3 vertices then it may be con­
sidered empty (since a triangle is the polygon with fewest vertices) and so the 
process may stop, as no further slicing could revive it. After each of the numb 
boundary lines ofB has been used to slice the feasible polygon, the vertices of the 
true polygon of intersection are left in the array f[l2] [O .. numc- 1]. These may 
be copied into new array cpoly [O .. numc - 1] for return. If the area of inter­
section is empty then the function overlap (listing 5.8), which implements this 
algorithm, returns numc as zero. 

The only question remaining is how to execute the slicing. This is where we 
use the 'inside and outside' technique. We must discard the part of the area of 
possible intersection which lies to the negative side of the slicing line, bpoly [i] 
to bpoly [j] . 

The analytic representation of this line is 

{;=axy-bxx-c 
where a= bpoly[j] .x- bpoly [i] .x; b = bpoly[j] . y- bpoly[i] . y 

c =ax bpoly[i] .y- b x bpoly[i].x; 

It can be determined easily whether vertices of the feasible polygon lie on the 
negative side of the line by finding the value of {;(x, y) for each vertex (x, y). 
The problem is to find the co-ordinates of the points where the slicing line 
actually cuts the boundary of the feasible polygon. We do this by considering this 
boundary one line segment at a time. Consider line segment from vk = f[l1] [k] 
to v1 = f[l1] [I]. If {1(vk);;;;. 0 then vk is copied to the array containing the new 
feasible polygon. If the points vk and v1 lie on strictly opposite sides of the 
slicing line, then find the point of intersection of the line vk to v1 with the slicing 
line and store this. 

This process will, in fact, suffice. k varies from 0 to numc - 1 (with l = k + 1 
modulo numc) for each value of i varying from 0 to numb - 1 (with j = i + 1 
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modulo numb). The process may be understood more easily through study of 
figure 5.7. 

Listing 5.8 

I* Add to file "util ity.c" *I 

I*· ...... -......................... -...... -......... -.............. ·*I 
overlap(numa,apoly,numb,bpoly,numc,cpoly,intersection,orientation) 

1*·········-························································*1 
int numa,numb,*numc,*intersection,orientation ; 
struct vector2 apoly[) ,bpoly[] ,cpoly[] ; 

I* Finds the area of intersection between the two polygons 'apoly' and *I 
I* 'bpoly' with given •orientation's (1 means anti·clockwise,·1 clockwise *I 
I* The area of intersection is returned with •numc' vertices stored in *I 
I* the •cpoly' array. If no intersection exists then 0 'intersection' else 1 *I 
{ int i,j,index1,index2,l1,l2,numcdash ; 

struct vector2 f[2J [maxpol y], end1, end2, v1, v2 ; 
float ca,cb,cc,fv1,fv2,absfv1,absfv2,delta ; 

I* Copy the details of polygon •apoly' into the first 'f' store *I 
11 =0 ; *numc=numa ; 
for Ci=O ; i<*numc ; i++) 

f[l1J [il=apoly[i] ; 
I* Slice feasible polygon (in arrays 'f[1J [1 •• numcl' with each edge of *I 
I* 'bpoly'. The end points of the slicing edge are 'end1 1 and 'end2' *I 

end1=bpoly[numb·1J ; 
for ( i=O ; i<numb ; i++) 

I* Sliced area will be stored in the second storage area 'f[l2J [1 •• newc]' *I 
< l2=1·l1 ; end2=bpoly[i] ; 

I* Calculate the functional representation of the line 'end1 1 to •end2' *I 
I* 1 f(X,Y)=ca*Y+cb*X+cc ' *I 

ca=end2.x·end1.x ; cb=end1.y·end2.y; 
cc=·end1.x*cb·end1.y*ca ; 

I* Consider the feasible polygon one edge at a time. *I 
I* The edge under consideration is from 'v1' to •vz• *I 

v1=f[l1J [*numc·1J ; 
I* Calculate 1f(v1)' and determine whether it lies on, *I 
I* to the inside of or to the outside of the slicing edge. *I 

fv1=ca*v1.y+cb*v1.x+cc ; absfv1=fabs(fv1) ; 
if (absfv1 <epsilon) 

index1=0 ; 
else { index1=sign(fv1)*orientation 

numcdash=O ; 
for (j=O ; j<*numc ; j++) 

{ v2=f[l1][j] ; 
I* Calculate whether 1v2 1 lies on, to the inside of *I 
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I* or to the outside of the slicing edge. */ 
fv2=ca*v2.y+cb*v2.x+cc absfv2=fabs(fv2) 
if (absfv2 < epsilon) 

index2=0 ; 
else index2=sign(fv2)*orientation ; 

I* If 'v1' lies on or to the inside of the slicing edge*/ 
I* edge then include it in the new feasible polygon. */ 

if (index1 >= 0) 
{ f [l2J [nll'llCdashl =v1 ; 

numcdash=numcdash+1 ; 
) ; 

I* If 'v1' and 'v2' lie on strictly opposite sides of the slicing edge*/ 
I* then include the point of intersection in the new feasible polygon */ 

if((index11=0) && (index1!=index2) && (index2!=0)) 
{ delta=absfv1+absfv2 ; 

f[l2] [numcdashl.x=Cabsfv2*v1.x+absfv1*v2.x)/delta 
f[l2l [numcdashl.y=(absfv2*v1.y+absfv1*v2.y)/delta 
numcdash=numcdash+1 ; 

) ; 
I* The second point of this edge will be the first of the next edge*/ 

fv1=fv2 ; absfv1=absfv2 
index1=index2 ; v1=v2 ; 

) ; 
I* If the feasible polygon degenerates then no overlap exists */ 

if Cnumcdash < 3) 
{ *intersection=O ; *numc=O ; return(O) ; 
) 

I* The new feasible polygon becomes the next polygon to be sliced*/ 
else { *numc=numcdash ; l1=l2; end1=end2; 

} ; 
I* Move on to the next edge of bpoly */ 

} ; 
} ; 

I* Reach here when all slicing is complete. Copy the remaining*/ 
I* feasible polygon to the array •cpoly' for return.*/ 

*intersection=1 ; 
for Ci=O ; i<*numc ; i++) 

cpoly[il=f[l1l [i] ; 

> ; I* End of overlap */ 

Exercise 5.11 
The use of this algorithm appears a number of times in this text, particularly in 
the three-dimensional hidden surface removal techniques introduced in chapter 
13, but it may also be used to solve a problem already mentioned -the clipping 
of polygonal areas in two dimensions. 



116 High-resolution Computer Graphics Using C 

..... , 
• 
................. 

Step a ..... 3 

a 
1 

Figure5.7 

When using the area-filffunction (listing 5.6) you will note that clipping with­
in the window rectangle is automatic. This is not necessarily the case with some 
hardware area-filling routines. In order to draw only the part of a polygon which 
lies within the window area, we must draw the area of intersection between the 
polygon and the window rectangle. You can achieve this by adjusting the 
overlap tunction (listing 5.8), using polygon B with four vertices (±clippedx, 
±clippedy) given in anti-clockwise order. 

The overlap algorithm may be used, of course, to clip around any convex 
polygonal area. 

Exercise 5.12 
The problem of blanking does not generally apply to colour graphics since an 
area may be blanked after the drawing is complete by simply drawing a rectangle 
on top, but the overlap routine could be adapted for use as a polygon-blanking 
algorithm and it is a useful exercise. 

Animation 

In this section we consider the cartoon methods of animating two-dimensional 
graphics, as used frequently in television advertising within the framework of the 
program technique described in chapter 4. Rather than use XOR and similar 
plotting methods, here we assume that the movie consists of a number of discrete 
frames which can be brought in view one every 1/24 second (for example, 
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16 mm film). Some systems may have different frame speeds -video works at 
25 frames per second, for instance. The idea is to create a sequence of frames 
such that all consecutive pairs of frames differ slightly from one another, so that 
when viewed in quick succession they create the animated effect - hence the 
name cartoon method. Naturally if the scenes on consecutive frames change 
slowly the animation will be slow and boring, if they change too quickly then 
the animation will stutter and be of no value. The correct amount of change for 
a particular type of scene can only be found by experience and trial and error. 

A ten-second movie will consist of 10 * 24 + 1 frames: note '+ 1 ', there are 24 
changes of frame per second, hence 240 changes of frame and thus a total of 241 
frames. This does not mean that we have to write 241 separate programs! If we 
assume that our graphics system is such that the erase primitive creates the 
next frame in the sequence, it is a simple matter to have a large for loop inside 
the scene function which is called from the draw_a_picture function of listing 
4.2; each pass through the loop causes small changes to be made to certain para­
meters of construction routines, thus automating small changes in pictures in 
consecutive frames. Note that, if you are using 16 mm film for your movie, you 
will have to rotate the scene through 90° because of the mechanism used in 
projectors. This may be incorporated in the ABSOLUTE to OBSERVER matrix 
Q. We illustrate this idea with a number of examples. 

Example5.3 
Line-drawn letters '1', 'A' and 'N' rotate in a movie of 121 frames (numbered 0 
through 120). During the movie the 'I' is to rotate 3 times about an axis through 
the centre of the letter into the frame. The letter 'A' consists of two parts, the 
outer of which is to rotate twice about the horizontal axis through its centre, 
while the inner remains fixed. Finally the 'N' rotates 5 times about the vertical 
through its centre. The example is programmed in listing 5.9a and sample frames 
0, 20, 40, 60. 80, 100, 120, with 90° rotation are shown in figure 5.8.-

Listing 5.9 

#include 11model2.c" 
#include "utility.c" 
#include "display2.c" 

, ......... , 
scene() 

!*····---*! 
{ struct vector2 vi[maxpoly],vao[maxpolyJ,vai[maxpoly],vn[maxpolyl 

double A [41 [4], B [4] [4l,P [4] [4] ,R [4] [4] 
char answer ; 
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I* Prepare angle information for rotating letters *I 
float angi=O.O,angid=6*pil120, 

enga=O.O,angad=4*pil120, 
angn=O.O,angnd=10*pil120 

int !,frame; 
FILE *indata ; 

I* Read in data on letters I, A and N *I 
indata=fopen("ian.dat","r") ; 
for (i=O ; !<12 ; i++) 

fscanf(indata,"%fXf",&vi [i].x,&vi [i].y) ; 
for <i=O ; i<B ; i++) 

fscanf(indata, 11%fXf",&vao[i].x,&vao[i].y) 
for (i=O ; i<3 ; i++) 

fscanf( indata, "%f%f",&vai [i] .x,&vai [i). y) 
for (i=O ; i<10 ; i++) 

fscanf( indata, "%fXf11 ,&vn[i) .x,&vn [i l. y) 
I* Use matrix •Q• to rotate frame thru• 90 degrees if required *I 

eye.x=O.O ; eye.y=O.O ; 
printf(" Do you wish 90 degree rotation : y or n\n") ; 
scanf("X1s 11 ,&answer) 
if ((answer=='y') II (answer=='Y')) 

alpha=·pi*0.5 
else alpha=O.O ; 
findQ() i 

I* Loop through 120 frames *I 
for (frame=O ; frame<121 ; frame++) 

I* Draw letter I *I 
{ rot2(angi,A) ; tran2(2.5,0.0,B) ; mult2(B,A,P) 

mult2(Q,P,R) ; drawpoly(R,12,vi) ; 
I* Draw outside of A */ 

scale2(1.0,cos(anga),A) ; mult2(Q,A,R) drawpoly(R,B,vao) 
I* Draw inside of A *I 

drawpoly(R,3,vai) ; 
I* Draw N *I 

scale2(cos(angn),1.0,A) ; tran2(·2.5,0.0,B) ; 
mult2CB,A,P) ; mult2(Q,P,R) ; drawpoly(R,10,vn) 

I* Update the angles *I 
angi=angi+angid ; anga=anga+angad ; angn=angn+angnd 

I* Move to next frame *I 
setcol(O) erase() 
set col (7) ; 

> 
> ; I* End of scene *I 

File "ian.dat" 

0.90 1.00 0.90 0.50 0.25 0.50 0.25 -0.50 
0.90 -0.50 0.90 ·1.00 ·0.90 ·1.00 ·0.90 ·0.50 

·0.25 ·0.50 -0.25 0.50 -0.90 0.50 ·0.90 1.00 
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0.25 1.00 1.00 ·1.00 0.50 ·1.00 0.375 ·0.666666 
·0.375 ·0.666666 ·0.50 ·1.00 ·1.00 ·1.00 ·0.25 1.00 

0.00 0.333333 0.25 ·0.333333 ·0.25 ·0.333333 

·1.00 1.00 ·0.50 1.00 0.50 ·0.30 0.50 1.00 
1.00 1.00 1.00 ·1.00 0.50 ·1.00 ·0.50 0.30 

·0.50 ·1.00 ·1.00 ·1.00 

~ ~ ~ ~ 
cg ~ b ~ 
G=iJ \10 ~ ~ 
~ ~ ~ ~ 
~ b ~ cg 
cg 4 0J [gJ 

Figure5.8 

The observer is fixed at the origin, and the rotation alpha depends on whether 
a 90° rotation is needed. The line segments for the '1', 'N' and inner and outer 
'A' are defined as polygons given by SETUP vertices read from disk ftle 'ian.dat'. 
With each new frame, the various ACTUAL positions of the four polygons 
are calculated separately (matrix P), and combined with the fixed matrix Q, to 
giveR= Q xP. Angles angi, anga and angn are used to describe the rotations 
of 'I', 'A' and 'N' respectively for each new frame. Rotations of vertices into 
the 'z-direction' are achieved by scaling! A function drawpoly (listing 5.9b stored 
in "utility.c"), with R as a parameter, is then used to draw each letter in its 
correct OBSERVED position. 

Listing 5. 9b 

I* Add to file "util ity.e" */ 

/*···············*/ 
drawpoly(R,n,v) 

/*···············*/ 
double R [] [4] ; 
int n ; 
struet veetor2 v[J 
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< int 
struct vector2 pt ; 

I* Place SETUP vertices of polygon defining letter into OBSERVED *I 
I* position; join with lines. Move to last vertex on OBSERVED polygon *I 

pt.x=R[1J [1J*v[n·1J .x+R[1J [2J*v[n·1J .y+R[1J [3] 
pt. y=R [2] [1J*v[n·1J .x+R [2] [2] *v [n·1J. y+R [2] [3] 
moveto(pt) ; 
for (i=O ; i<n ; i++) 

I* Join successive OBSERVED polygon vertices *I 
< pt.x=R[1J [1J*v[i].x+R[1J [2J*v[iJ .y+R[1J [3] 

pt.y=R[2J [1J*v[i] .x+R[2J [2J*v[iJ .y+R[2J [3] 
l ineto(pt) ; 

} ; 
} ; I* End of drawpoly *I 

Example5.4 
Figure 5.9 shows various stages of the transformation between a square and a 
star. The scene function to achieve this movie of 121 frames is given in listing 
5.10, which uses drawpoly from listing 5.9b. This must be called by the 'draw_a_ 
picture' function of listing 4.2. The two planar objects are read from file 
"sqstar.dat" as two ordered sets of8 vertices{vl[i] I i = 0 .. 7} and {v2[i] I i = 0 .. 7}, 
as with this example they need not be in the same orientation. Each polygonal 
shape is drawn by joining the vertices in the prescribed order. The animation 
method is to calculate and draw an intermediate SETUP set of vertices 
{ vinter[i} I i = 0 .. 7} for each new frame. The position of these SETUP vertices 

Figure5.9 
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in the jth frame is found by moving a proportion j/ 120( = p.) along the line joining 
the ith points from the two original figures: that is 

vinter[i] = (1 - J.t).v1 [i] + J,t.v2 [i] 

The matrix Q is then used to put the vertices directly in their OBSERVED 
position where they are drawn using drawpoly. 

Listing 5.10 

#include "model2.c" 
#include "utility.c" 
#include "display2.c" 

1*·······*1 
scene() 

1*·······*1 
{ struct vector2 v1[8J,v2[8J,vinter[8J 

char answer 
float mu ; 
int i,frame 
FILE *indata ; 

I* Read in data on square and star *I 
indata=fopen("sqstar.dat","r") ; 
for (i=O ; i<B ; i++) 

fscanf(indata,"%f%f 11 ,&v1 [iJ .x,&v1 [iJ .y) 
for (i=O ; i<B ; i++) 

fscanf( indata,"%f%f" ,&v2 [i] .x,&v2 [iJ .y) 
I* Use matrix 'C' to rotate frame thru• 90 degrees if required *I 

eye.x=O.O ; eye.y=O.O ; 
printf(" Do you wish 90 degree rotation : y or n\n") ; 
scanf( "%1s" ,&answer) 
if ((answer=='y') II (answer=='Y')) 

alpha=·pi*O.S 
else alpha=O.O ; 
findC() ; 

I* Loop through 120 frames *I 
for (frame=O ; frame<121 ; frame++) 

I* Find intermediate vertices in SETUP position 'vinter'*l 
{ mu=(float)framel120 ; 

for ( i=O ; i<B ; i++) 
{ vinter[iJ.x=(1·mu)*v1[i].x+mu*v2[iJ.x 

vinter[iJ .y=(1·mu)*v1 [iJ .y+mu*v2[iJ .y; 
} ; 

drawpoly(C,B,vinter) ; 
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J* Move to next frame */ 
setcol(O) ; erase() ; 
setcol(7) ; 

> ; 
> ; J* End of scene */ 

File "sqstar.dat" 

0.0 3.0 3.0 3.0 3.0 
0.0 -3.0 -3.0 ·3.0 ·3.0 

3.0 0.0 1.0 1.0 0.0 

0.0 
0.0 

3.0 
·3.0 0.0 -1.0 -1.0 o.o ·3.0 

Exercise 5.13 

3.0 -3.0 
-3.0 3.0 

-1.0 1.0 
1.0 -1.0 

Use this technique to create a movie of a two-dimensional scene in which objects 
move relative to one another (their ACTUAL position) as well as the observer 
changing (the OBSERVED position). These movement and observation param­
eters will be the values changed inside the animation loop. You can also change 
the size of the viewport/window scale to give the effect of zooming into a scene, 
or this can be achieved by scaling. Clipping may be necessary. 

Exercise 5.14 
You can allow a line drawing to grow as the movie progresses. If the complete 
picture is made up of a sequence of n line segments of total length d units, then 
the jth frame from a move of m + 1 frames will contain a line sequence of length 
d * j/m units. Thus an intermediate picture will contain some lines from the 
complete scene, some will be missing, and one line will be partially drawn. All of 
this can be achieved by creating SETUP co-ordinates for the intermediate lines 
from a file containing data for the complete figure. For example, you can start 
with an empty frame and successively draw the outline of a previously digitised 
land mass, such as Australia. You could clip the scene inside a given rectangle, 
and change the size of the clipping rectangle as the movie progresses. 

Exercise 5.15 
Extend this method so that it can be used with solid polygons as opposed to 
lines. 



6 Three-dimensional Co-ordinate 
Geometry 

Before we lead on to a study of the graphical display of objects in three-dimen­
sional space. we first have to come to terms with the three-dimensional Cartesian 
co-ordinate geometry and introduce some useful procedures for manipulating 
objects in three-dimensional space. (Forfurtherreadingwe recommend books by 
Cohn (1961} and McCrae (1953}}. As in two-dimensional space, we arbitrarily fix 
a point in the space, named the co-ordinate origin (origin for short). We then 
imagine three mutually perpendicular lines through this point, each line extend­
ing to infinity in both directions. These are the x-axis, y-axis and z-axis. Each 
axis is thought to have a positive and a negative half. both starting at the origin 
- that is, distances measured from the origin along the axis are positive on one 
side and negative on the other. We may think of the x andy axes in a similar 
way to two-dimensional space. both lying on the page of this book say, the 
positive x-axis horizontal and to the right of the origin, and the positive y-axis 
vertical and above the origin. This just leaves the position of the z-axis: it has to 
be perpendicular to the page (since it is perpendicular to both x andy axes). 
The positive z-axis can be into the page (the so-called left-handed triad of axes) 
or out of the page (the right-handed triad). You can realise the difference on 
your hands. On either hand, hold the thumb, index finger and middle finger at 
right angles to one another with the middle finger perpendicular to the palm of 
your hand: the thumb may be taken as the positive x-axis, the index finger as 
the positive y-axis and the middle finger the positive z-axis. See figure 6.1. 

X 
X 

z z 

Figure 6.1 

123 
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There are advantages and disadvantages with both systems, however the 
graphics community has standardised on the right-handed triad and so this is the 
axial system we will use throughout this book. What we say in the remainder of 
the book, using right-handed axes, has its equivalent in the left-handed system -
it does not matter which notation you finally decide to use as long as you are 
consistent, and are aware of the implications of your choice. 

We specify a general point 11 in space by a co-ordinate triple or vector (x, y, z ), 
where the individual co-ordinate values are the perpendicular projections of the 
point on to the respective x, y and z axes. By projection we mean the unique 
point on the specified axis such that a line from that point to 11 is perpendicular 
to the axis. 

In order to deal with three-dimensional modelling and display, we reorganise 
our programs in a manner similar to the two-dimensional programs of chapters 3, 
4 and 5. We again will need the constant, structure data type, variable and 
function declarations of "graphlib.c" (and hence "primitiv.c"), together with 
some other useful two-dimensional functions from this and previous chapters 
stored in file "utility.c" to be #included into the programs. Note the structure 
data type vector3 has already been declared in listing 1.3. 

Initially there are two operations we need to consider for three-dimensional 
vectors. Suppose we have two vectors p 1 = (x1 , Yt, z!) and Pz = (xz ,yz, Zz ), 
then a scalar multiple of p 1 , kp 1, is obtained by multiplying the three individual 
co-ordinate values of p 1 by a scalar number k 

kp1 =(kxXt,kxyt,kxzd 

and the vector sum of the two vectors, p 1 + p 2 , is calculated by adding their x 
co-ordinates together, their y co-ordinates together and their z co-ordinates 
together to give a new vector 

Pt +p2 =(xt +x2.Y1 +Yz,Zt +zz) 

Definition of a Straight Line 

A straight line in three-dimensional space passing through two such points 
Pt = (Xt, Yt, z!) and P2 = (x2, Y2, z2) may be defined by describing the co­
ordinates of a general point 11 = (x,y, z) on the line by three equations 

(X- Xt) X (y2 - yt) = (y- yt) X (Xz - Xt) 
(y- yt) x (z2 - zd = (z- zt) x (y2 - yt) 
(z- zt)x(x2 -xt)=(x-xl)x(z2 -zl) 

Although these are three equations in three unknowns, we will find that they are 
linearly dependent (inter-related) and so there is no unique solution (naturally, 
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since we are generating a general form for points on the line, not just one point). 
These equations enable us to calculate two of the co-ordinates in terms of a third 
(see example 6.1}. 

As in the two-dimensional case, this is not the only way of representing a 
straight line. We may also use a direct extension of the vector representation 
introduced in chapter 3. The general point on the line is represented as a vector 
combination of p 1 and p2 dependent upon the real number 1J. 

v(IJ.) = (1 -IJ.)Pl + JJ.Pz where - 00 < 1J. <co 
that is 

V(JJ.)=((l-JJ.}xxl +1J.xXz,(l-1J.}xyl +IJ.xYz,(l-JJ.}xZt +IJ.xZz)) 

The ll may be interpreted in a manner exactly analogous to the two-dimen­
sional case and is again placed in brackets after v to demonstrate the dependence 
of v on its value. However, when this concept has been fully investigated then 
(JJ.) will be omitted. Note that when Jl = 0 the equation returns point p 1 , and 
when Jl = 1 it gives pz. 

We may rewrite this vector expression 

v(JJ.) = P1 + JJ.(Pz - Pt) 

and like its counterpart in two dimensions, p 1 is called abase vector and (pz - P1) 
a direction vector. We normally write this as b + IJ.d. This once again demon­
strates the dual interpretation of a vector. A vector may be used to specify a 
unique point in three-dimensional space, or it may be considered as a general 
direction, namely any line parallel to that line which joins the origin to the point 
it represents. We can move along a line in one of two directions, so we say that 
the direction from the origin to the point has positive sense, and from the point 
to the origin negative sense. Hence vectors d = (x, y, z) and -d = ( -x, - y, -z) 
represent the same line in space but their directions are of opposite senses. We 
define the length of a vector d = (x, y, z) (sometimes called its modulus, or 
absolute value) as I d I, the distance of the point vector from the origin 

I dl= y(x2 + y 2 + z2 ) 

and a vector having unit length is called a unit vector. 
So any point on the line b + IJ.d is found by moving to the point b and then 

travelling along a line which is parallel to the direction d, a distance I jJ.d I in the 
positive sense of d if Jl is positive, and in the negative sense if negative. Note that 
any point on the line can act as a base vector b, and the direction vector d may 
be replaced by any non-zero scalar multiple of itself (a negative scalar multiple 
will reverse the sense of the line). 

If the direction vector d = (x, y, z) with positive sense makes angles Ox, Oy 
and 8z with the respective positive x, y and z axial directions then we have the 
ratio equation 
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X ; y ; Z = COS fJ x ; COS fJ y ; COS fJ z 

which means that 

d =(X x cos Ox, X x cos Oy, X x cos Oz) for some X> 0 

We know from the properties of three-dimensional geometry that 

cos2 fJ + cos2 fJ + cos2 fJ = 1 X y Z 

Hence X = I d I, and if the direction vector is a unit vector (that is, modulus = 
X = 1 ), then the co-ordinates of this vector must be (cos fJ x, cos fJ y, cos fJ z ). The 
co-ordinates of a direction vector given in this way are called the direction 
cosines of the set of lines generated by the vector. In general, if the direction 
vector is d = (x, y, z) then the direction cosines are 

( X y Z) 
Tdi'Tdi'Tdl 

Example 6.1 
Describe the line joining (1, 2, 3) to (-1. 0, 2), using the three methods shown 
so far. 

The general point (x, y, z) on the line satisfies the equations 

(X- 1) X (0- 2): (y- 2) X (-1- 1) 
(y- 2) X (2 - 3): (z - 3) X (0 - 2) 

and (z-3)x(-1-1)=(x-1)x(2-3) 

That is 

-2x + 2y = 2 
-y + 2z = 4 

-2z + x = -5 

(6.1) 
(6.2) 
(6.3) 

Notice that equation (6.1) is -2 times the sum of equations (6.2) and (6.3). 
Thus we need only consider these latter two equations, to get 

y = 2z - 4 and x = 2z - 5 

whence the general point on the line depends only on the one variable, in this 
case z, and it is given by (2z- 5, 2z- 4, z). We easily check this result by noting 
that when z = 3 we get (1, 2, 3) and when z = 2 we get (-1, 0, 2), the two 
original points defining the line. 

In vector form the general point on the line (depending on J.L) is 

V(J.L) = (1- J.L)(1, 2, 3) + J.L(-1, 0, 2) = (1- 2J.L, 2- 2J.L, 3- J.L) 

Again the co-ordinates depend on just one parameter (J.L ), and to check the validity 
ofthisrepresentationofa line we note that v(O) = (1, 2, 3) and v(1) = (-1, 0, 2). 
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If we put the line into base/direction vector form we see that 

v(p) = (1, 2, 3) + p(-2, -2, -1) 

with (1. 2. 3) as the base vector and (-2, -2, -1) as the direction (which 
incidently has modulus y(4 + 4 + 1) = y9 = 3). We also noted that any point on 
the line can act as a base vector, and so we can give another form for the general 
point on this line, v' 

v'(p) = (-1, 0 2) + p(-2, -2, -1) 

We can change the direction vector into its direction cosine form, which is 
(-2/3, -2/3, -1/3). and represent the line in another version of the base/ 
direction form 

v"(p) = (1, 2, 3) + p(-2/3, -2/3, -1/3) 

Naturally the same p value will give different points for different representations 
of the line- for example, v(3) = (-5, -4, 0), v'(3) = (-7, -6, -1) and v"(3) = 
(-1. 0, 2). The direction of this line makes angles 131.81° = cos-1 (-2/3), 
131.81° and 109.47° = cos-1 (-1/3) with the positive x, y and z directions 
respectively. 

The Angle between Two Direction Vectors 

In order to calculate such an angle we first introduce the operator •, the dot 
product or scalar product. This operates on two vectors and returns a scalar 
(real) result thus 

p • q = (x1 ,y1, z1) • (x2 ,y2, z2) = x1 x x2 + Y1 x Y2 + z1 x z2 

See function dot3 in listing 6.1 which is added to "utility.c". 

Listing 6.1 

I* Add to "utility.c11 *I 

1*·················*1 
float dot3(p1,p2) 

1*·················*1 
struct vector3 p1,p2 ; 

I* Returns the scaler product of the two vectors p1 and p2 */ 
{ return(p1.x*p2.x+p1.y*p2.y+p1.z*p2.z) ; 
) ; I* End of dot3 *I 

If p and q are both unit vectors (that is, in direction cosine form), and 8 is the 
angle between the lines, then cos 8 = p • q. The equivalent two-dimensional 
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relationship was mentioned in chapter 3. In general, therefore, the angle between 
two direction vectorsp and q, which we can assume meet at the origin, is 

cos-1 (_!!_ · _!!__) 
lpl lql 

Thus p and q are mutually perpendicular directions if and only if p • q = 0. 

Definition of a Plane 

We now consider a plane in three-dimensional space. The general point v = (x,y, z) 
on the plane is given by the vector equation 

n·v=k 

where k is a scalar, and n is a direction vr.ctor which represents the set of lines 
perpendicular to the plane (see example 6.2). These lines are said to be normal 
to the plane. If a is any point on the plane then naturally n • a = k, and so by 
replacing k in the above equation, we may rewrite it as 

n • v = n • a or n • (v- a)= 0 

This latter equation is self-evident from the property of the dot product, that 
two mutually perpendicular lines have zero dot product. For any point v = (x, y, z) 
m the plane which is not equal to a, we know that (v- a) can be considered as 
the direction of a line in the plane. Since n is normal to the plane, and conse­
quently perpendicular to every line in the plane, n • (v -a)= Ax cos(rr/2) = 0 
(A is a scalar value = In I • I v - a I). 

Expanding the original equation of the plane with normal n = (n 1 , n2 , n3 ), 

we get the usual co-ordinate representation of a plane 

(nt,nz,n3)•(x,y,z)=n1 xx+n2 xy+n3 xz=k 

Note two planes with normals n and m (say) are parallel if and only if one 
normal is a scalar multiple of the other - that is, n = Am for some A =I= 0. 

The Point of Intersection of a Line and a Plane 

Suppose the line is given by b + p.d and the plane by n • v = k. The two either do 
not intersect at all (if they are parallel), intersect at an infmite number of points 
(if the line lies in the plane) or have a unique point of intersection which lies on 
both the line and the plane. We have to find the unique value of p. (if one exists) 
for which 

n • (b + p.d) = k 
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that is 

k -- n • b 
p. = ~--- provided n • d =f- 0 

n·d 

n · d = 0 if the line and plane are parallel and so there is no unique point of 
intersection. 

The Distance of a Point from a Plane 

The distance of a point p 1 from a plane n • v = k is the distance of p 1 from the 
nearest point p2 on the plane. Hence the normal from the plane at p 2 must pass 
through p 1 . This normal line can be written p 1 + p.n, and the J..l value that 
defines p2 is such that: 

f.1 = (k - n • p 1 )/(n • n) from the equation above 

The distance of the point p2 = p 1 + pn from p 1 is 

p.lnl=lk-n•p1 1/lnl 

In particular, if p 1 is the origin 0 then the distance of plane from the origin is 
I k 1/1 n I. Furthermore, if n is a direction cosine (unit) vector we see that the 
distance of the origin from the plane is I k I, the absolute value of the real num­
ber k. 

Example 6.2 
Find the point of intersection of the line joining (1, 2, 3) to ( -1, 0, 2) with the 
plane (0, -2, 1) • v = 5, and also fmd the distance of the plane from the origin. 

b= (1,2,3) 
n = (0, -2, 1) 
d= (-1, 0, 2)- (1, 2, 3) = (-2, -2, -1) 
n • b = (0 X 1 + -2 X 2 + 1 X 3) = -1 
n • d = (0 X -2 + -2 X -2 + 1 X -1) = 3 

hence the f.1 value of the point of intersection is (5- (-1))/3 = 2, and the point 
vector is 

(1, 2, 3) + 2(-2, -2, -1) = (-3, -2, 1) 

and the distance from the origin is 5/1 n I= 5/y5 = y5. 
The function ilpl in listing 6.2 (and added to "utility.c") enables us to calcu­

late the point of intersection of a line and a plane. The line has base vector band 
direction d and the plane has real normal n and real plane constant k. The point 
of intersection is calculated and returned as p. b, d, n and pare all of structure 
data type vector3. 
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Listing 6.2 

I* Add to "util ity.c" *I 

I*· .•.•..••••............. ·*I 
ilpl(b,d,n,k,p,mu,insect) 

1*·········-···············*1 
struct vector3 b,d,n,*p ; 
float k,*mu; 
int *insect ; 

I* Calculates the point of intersection, 'p',of a line 'b+mu.d' *I 
I* and the plane with equation •n.v=k'. *I 
I* 'insect' is returned as 1 if an intersection exists, 0 if not *I 
{float dotprod1,dotprod2,musto; 

dotprod1=dot3(d,n) ; 
I* If the line and plane are parallel then return 'insect=O' *I 

if (fabs(dotprod1) <epsilon) 
*insect=O ; 

I* Else a point of intersection does exist *I 
else { *insect=1 ; dotprod2=dot3(b,n) ; 

musto=(float)(k·dotprod2)1dotprod1 ; 
p·>x=b.x+musto*d.x p·>y=b.y+musto*d.y ; 
p·>z=b.z+musto*d.z ; *mu=musto ; 

} ; 
> I* End of ilpl *I 

The Reflection of a Point in a Plane 

Consider the point p = (x, y, z) and the infinite plane n • v = k. We wish to find 
the point p' = (x' ,y', z'), the reflection of p in the plane (see figure 6.2). 

p • (x,y,z) 

n 

Figure 6.2 
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The perpendicular distance of the reflection p' from the plane is equal to the 
perpendicular distance of p from the plane. Furthermore, p and p' lie on the 
same line perpendicular to the plane but on opposite sides. The vector n is 
simply a direction common to all lines normal to the plane so the normal con­
taining p and p' may be represented by p + Jln, -oo ~ J1 ~ oo. 

If we can find a value J1 such that p + JJ.n lies in the plane n • v = k then the 
reflected point p' is p + 2JJ.n. Thus the J1 value of the point of intersection of the 
line p + p.n with the plane n • v = k must be found using the method above and 
thence the reflected point calculated. 

The function refpp, in listing 6.3 returns r the reflection of p in the plane 
n • v = k. r, p and n are all of structure data type vector3. Again this function is 
stored in "utility .c" if it is needed. 

Listing 6.3 

I* Add to "utility.c" *I 

1*··············*1 
refpp(p,n,lc,r) 

1*··············*1 
struct vector3 p,n,*r ; 
float lc ; 

I* Calculates 'r', the reflection of 'P' in the plane •n.v=lc' *I 
( struct vector3 dummy ; 

float rru ; 
int insect ; 
ilpl(p,n,n,lc,&dummy,&mu,&insect) 
r·>x=p.x+2*mu*n.x ; r·>y=p.y+2*rru*n.y ; r->z=p.z+2*mu*n.z ; 

> ; I* End of refpp *I 

Example 6.3 
What are the reflections of the points (i) ( 1, 1, 1) and (ii) (8, 8, 8) in the plane 
(1' 2, 3) • v = 6? 

(i) for p'' = (1, 1, 1) + 110, 2, 3) to lie in the plane 

(1' 2, 3) • p" = (1' 2, 3) • (1, 1' 1) + JJ.(l' 2, 3) • (1' 2, 3) = 6 

that is 

6 + 14JJ. = 6 so J1 = 0 

which is to be expected as ( 1, 1, 1) lies in the plane! 
So the reflected point p' = (1, 1, 1) + 2JJ.(l, 2, 3) = ( 1, 1, 1 ), a point in the plane 
being reflected into itself. 

(ii) for p" = (8, 8, 8) + JJ.(l, 2, 3) to lie in the plane 

(1, 2, 3). (8, 8, 8) + JJ.(1, 2, 3). {1, 2, 3)= 6 
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that is 

48 + 14s.t = 6 so Sl = -42/14 = -3 

and the point of reflection is (8, 8, 8)- 6(1, 2, 3) = (2, -4, -10). 

The Point of Intersection of Two Lines 

Suppose we have two lines b1 + s.td1 and b2 + Ad2. Their point of intersection, 
if it exists (if the lines are not co-planar or are parallel then they will not inter­
sect), is identified by finding unique values for J.1 and A which satisfy the vector 
equation (three separate co-ordinate equations) 

b1 + J.1d1 = b2 + Ad2 

Three equations in two unknowns means that for the equations to be meaningful 
there must be at least one pair of the equations which are independent, and the 
remaining equation must be a combination of these two. Two lines are parallel 
if one direction vector is a scalar multiple of the other. So we take two inde­
pendent equations, find the values of J.1 and A (we have two equations in two 
unknowns), and put them in the third equation to see if they are consistent. The 
following example 6.4 will demonstrate this method, and the function ill3 in 
listing 6.4 implements it in C: add ill3 to "utility.c". The first line has base and 
direction vectors stored as b1 and d1 respectively and the second line as b2 and 
d2: the calculated point of intersection is returned as p, if it exists, otherwise 
insect is returned as 0. Since the values used are real, equality may not be exact 
in the third equation because of rounding errors. We therefore check that the 
difference between the left-hand side and the right-hand side values is negligible 
(< epsilon), not necessarily zero. Note that if the two independent equations are 

a 11 x J.1.+a12 x A=k1 
a21 x s.t + a22 x A = k2 

then the determinant of this pair of equations, D.= a 11 x a22 - a 12 x a21 , will 
be non-zero (because the equations are not related), and we have the solutions 

J.1 = (a22 x k1 - a12 x k2)/D. 
A= (a11 x k2 - a2 1 x k1)/D. 

Example 6.4 
Find the point of intersection (if any) of 

(a) (1, 1, l)+J.J.(2, 1,3)with(O,O, l)+A(-1, 1, I) 
(b) (2, 3, 4) + J.J.(l, 1, I) with (-2, -3, -4) + A(l, 2, 3). 
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Listing 6.4 

I* Add to "utility.c" *I 

I*· ......................•. ·* I 
ill3(b1,d1,b2,d2,p,insect) 

I*··························* I 
struct vector3 b1,d1,b2,d2,*p; 
int *insect ; 

I* Point of intersection of two lines in 3 dimensions *I 
{ float bb1[3] , bb2 [3] , dd1[3] , dd2 [3] ; 

float delta,value,factor1,factor2,lambda,mu; 
int i,iO,i1,i2 ; 

I* Assume no independent equations then no intersection *I 
*insect=O ; 

I* Find independent equations *I 
bb1[0J=b1.x; bb2[0J=b2.x; dd1[0J=d1.x; dd2[0i=d2.x; 
bb1[1J=b1.y; bb2[1J=b2.y; dd1[1J=d1.y; dd2[1]=d2.y; 
bb1[2J=b1.z; bb2[2J=b2.z; dd1[2J=d1.z; dd2[2J=d2.z; 
for (i=O ; i<3 ; i++) 

< iO=i ; i1= (i+1) % 3 ; 
delta=dd1[i0J*dd2[i1J·dd1[i1J*dd2[i0J 

I* Two independent equations , find point of intersection *I 
if (fabs(delta) >epsilon) 

} ; 

{ factor1=bb2[i0J·bb1[i0J ; factor2=bb2[i1J·bb1[i1l 
mu=(dd2[i1J*factor1·dd2[i0J*factor2)1delta ; 
lambda=(dd1[i1J*factor1·dd1[i0l*factor2)1delta; 
i2=Ci1+1) X 3 ; 
value=bb1[i2J+mu*dd1[i2J·bb2[i2l·lambda*dd2[i2l 
if (fabs(value) <=epsilon) 

} ; 

{ *insect=1 ; 
p·>x=b1.x+mu*d1.x; 
p·>y=b1.y+mu*d1.y; 
p·>z=b1.z+mu*d1.z 
break 

} ; 

} I* End of ill3 *I 

In (a) the three equations are 

1 + 2p. = 0- A 
1+ p.=O+A 
1 + 3p. = 1 +A 
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(6.4) 
(6.5) 
(6.6) 

From equations (6.4) and (6.5) we get p. = -2/3 and A= 1/3, which when sub­
stituted in equation (6.6) gives 1 + 3( -2/3) = -1 on the left-hand side and 
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1 + 1(1/3) = 4/3 on the right-hand side, which are obviously unequal so the lines 
do not intersect. 

From (b) we get the equations 

2 + p. = -2 + A 
3 + p. = -3 +2A 
4 + p. = -4 + 3A 

(6.7) 
(6.8) 
(6.9) 

and from equations (6.7) and (6.8) we get p. = -2 and A= 2, and these values 
also satisfy equation (6.9) (left-hand side = right-hand side= 2). So the point of 
intersection is 

(2, 3. 4) + -2(1, 1, 1) = (-2, -3, -4) + 2(1, 2, 3) = (0, 1, 2) 

We now introduce a new vector operator, the vector product (or cross product) 
which operates on two vectors p and q (say) giving the vector result 

P X q:: (Px• Py• Pz) X (qx, qy, qz) 
= (py xqz -Pz xqy,Pz xqx -Px x qz,Px xqy -Py xqx) 

If p and q are non-parallel direction vectors then p x q is the direction vector 
perpendicular to both p and q. It should also be noted that this operation 
is non-commutative. This means that, in general, for given values of p and q, 
p x q * q x p; these two vectors represent directions in the same line but with 
opposite sense. For example, (1, 0, 0) x (0, 1, 0) = (0, 0, 1) but (0, 1, 0) x 
(1, 0, 0) = (0, 0, -1); (0, 0, 1) and (0, 0, -1) are both parallel to the z-axis (and 
so perpendicular to the directions (1, 0, 0) and (0, 1, 0)) but they are of opposite 
sense. This can also be realised using your hands. Using right or left hand 
(depending on the axial system you choose) identify the palm of the hand with 
the plane holding the two direction vectors, with the thumb pointing along the 
first direction and the index finger along the second direction; the middle finger 
perpendicular to the palm now points along the direction of the cross product. 
Note that to change the order of the vectors in the cross product and thence 
identify the thumb with the second vector and index finger with the first vector 
it is necessary to twist your palm through two right angles, and so now the 
middle finger is pointing along the same line but in an opposite sense. A function, 
vectorproduct, which calculates the vector product of two vectors p and q, 
returning v, is given in listing 6.5 and must be added to "utility.c". Again p, q 
and v are all of structure data type vector3. 

Listing 6.5 

I* Add to "util ity.e" *I 

/*· ..••.••.••..•••••• ·*/ 
veetorproduet(p,q,v) 

/*· ...•.•••••..•.•••• ·*/ 
struet veetor3 p,q,*v ; 
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I* Calculates •v•, the vector product of two vectors 'p' and 'q' *I 
< v·>x=p.y*q.z·p.z*q.y ; 

v·>y=p.z*q.x·p.x*q.z ; 
v·>z=p.x*q.y·p.y*q.x ; 

} ; I* End of vectorproduct *I 

The Minimum Distance between Two Lines 
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It was mentioned above that if two lines are either parallel or non-coplanar then 
they do not intersect. There is therefore a minimum distance between two such 
lines which is greater than zero. We shall now calculate this distance. The cases 
where the lines are parallel and non-parallel are different. We consider first the 
non-parallel case. 

Suppose the two lines are a + IJ.C and b + "A.d. The minimum distance between 
these two lines must be measured along a line perpendicular to both. This line 
must, therefore, be parallel to the direction I= c x d. 

Now, since both a + IJ.C and b + "Ad are perpendicular to I, they both lie in 
planes with I as normal. Also, since we know points on both lines (a and b) we 
may uniquely identify these planes: I· (v- a)== 0 and /• (v- b)== 0. 

These planes are, of course, parallel, and so the required minimum distance is 
simply the distance from a point on one plane, say b, to the other plane. We 
have already derived a formula for this, giving the required answer 

I (c x d) ·a - (c x d) • b I 
lc x dl 

i(cxd)·(a-b)l 
lc x dl 

If the lines are coplanar then this expression yields the result zero, since the lines 
must intersect as they are not parallel. 

Now suppose the two lines a + IJ.C and b + "Ad are parallel. In this case d = 71c 
for some 11 * 0 and consequently I c x d I == 0 and the above expression is un­
defined. 

However, both lines are normal to the same planes. Take the plane containing 
a with normal c (parallel to d) 

c•(v-a)==O 

We simply find the point of intersection, e say, of the line b +"Ad with this plane 
and the required distance is I a - e I 

e == b +"Ad 

where X== c ' (a - b) 
c•d 
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The function mindist in listing 6.6 (added to "utility.c") calculates the minimum 
distance, dist, between two lines using this method. 

Listing 6.6 

I* Add to "util ity.c" *I 

1*·····················*1 
mindist(a,c,b,d,dist) 

1*··········-··········*1 
struct vector3 a,c,b,d ; 
float *dist ; 

I* Finds minimum distance between two lines in 3 dimensions*/ 
{ struct vector3 aminusb,aminuse,p ; 

float lambda,pmod ; 
vectorproduct(c,d,&p) ; pmod=sqrt(dot3(p,p)) ; 
aminusb.x=a.x·b.x ; aminusb.y=a.y·b.y ; aminusb.z=a.z·b.z ; 
if (pmod >epsilon) 

*dist=fabs(dot3(p,aminusb))/pmod ; 
else < lambda=dot3(c,aminusb)ldot3(c,d) 

aminuse.x=a.x·b.x·lambda*d.x ; 
aminuse.y=a.y·b.y·lambda*d.y; 
aminuse.z=a.z·b.z·lambda*d.z; 
*dist=sqrt(dot3(aminuse,aminuse)) 

} ; 
} ; I* End of mindist */ 

Example 6.5 
Find the minimum distance between 

(i) (1, 0, 0) + ~(1, 1, 1) and (0, 0, 0) + A.(l, 2, 3) 
(ii) (2, 4, 0) + ~(1, 1, 1) and (-2, -1, 0) + A-(2, 2, 2). 

In (i) a= (1, 0, 0) 
b =(0, 0, 0) 
(c x d) =(1, -2, 1) 

c=(1, 1, 1) 
d=(l, 2, 3) 
(a-b)=(l,O,O) 

So the minimum distance between the lines is 

I (1, -2, 1) • (1, 0, 0) I 
1(1, -2, 1)1 

In (ii) a= (2, 4, 0) c = (1, 1, 1) 
b=(-2,-1,0) d=(2,2,2) 
(c x d)= (0, 0, 0) so the lines are parallel (d = 2c) 
c • d = 6 a- b = (4, 5, 0) 
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A= (1, 1, 1) • (4, 5, 0) = 2_ = ~ 
6 6 2 

e = (-2, -1, 0) + 3/2(2, 2, 2) = (1, 2, 3) 
(a- e)= (2, 4, 0)- (1, 2, 3) = (1, 2, -3) 

so the minimum distance between the lines is v't4. 

The Plane through Three Given Non-collinear Points 
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Suppose we are given three non-collinear points p 1 , p2 and p3 . Then the two 
vectors p2 - p 1 and p 3 - p2 represent the directions of two lines coincident at 
p2 , both of which lie in the plane containing the three points. We know that the 
normal to the plane is perpendicular to every line in the plane, and in particular 
to the two lines mentioned above. Also, because the points are not collinear, 
p2 - p 1 is not parallel to p 3 - p2 so the normal to the plane is n = (p 2 - p 1 ) x 
(p3 - Pz ). See figure 6.3. 

We know that p 1 lies in the plane so the equation may be written 

((pz - Pd X (p3 - Pz )) • (v- pt) = 0 

The three points in the plane define a triangle, which appears from one side 
of the plane to be in anti-clockwise orientation and from the other side to be in 
clockwise orientation. The above equation imposes a consistent sense upon the 
normal which implies that the normal direction points towards that side of the 
plane from which the triangle appears in anti-clockwise orientation. (This is 
dependent on the use of right-handed axes; in the left-handed system the normal 
thus found points towards the clockwise side). The function, plane, in listing 6.7 
calculates the plane through three non-collinear vector3 points. Again add this to 
file "utility.c' . 

n 

Figure 6.3 



138 High-resolution Computer Graphics Using C 

Listing6.7 
I* Add to util ity.e" 

1*···············-···*1 
plane(p1,p2,p3,n,k) 

1*···················*1 
struet vector3 *n,p1,p2,p3 ; 
float *k ; 

I* calculates the vector equation of the plane passing through *I 
I* the three points 1p1', 'p2' and •p3• */ 
( struct vector3 d1,d2 ; 
I* Calculate the direction vectors of two lines in the plane *I 

d1.x=p2.x·p1.x ; d1.y=p2.y·p1.y; d1.z=p2.z·p1.z ; 
d2.x=p3.x·p2.x ; d2.y=p3.y·p2.y ; d2.z=p3.z·p2.z ; 

I* Calculate the normal to the plane using the vector product of *I 
I* these two lines. Calculate 'k' using point 'p1 1 in the plane*/ 

vectorproduct(d1,d2,n) ; *k=dot3(*n,p1) ; 
> ; I* End of plane */ 

Example6.6 
Give the co-ordinate equation of the plane through the points (0, 1, 1 ), (1, 2, 3) 
and (-2, 3, -1). 

This is given by the general point v = (x,y, z) where 

(((1, 2, 3)- (0, 1, 1)) x ((-2, 3, -1)- (1, 2, 3))) • ((x,y, z)- (0, 1, 1)) = 0 

that is 

((1, 1, 2) x (-3, 1, -4)) • (x,y- 1, z - 1) = 0 

so 

(-6, -2,4) • (x,y -1,z -1)=0 

or, equivalently 

( -6, -2, 4) • Jl = 2 

In co-ordinate form this is -6x- 2y + 4z- 2 = 0 or equivalently 3x + y- 2z = -1 

The Point of Intersection of Three Planes 

We assume that the three planes are defined by equations (6.10) to (6.12) below. 
The point of intersection of these three planes, v = (x,y, z) must lie in all three 
planes and satisfy 

n1 • v=k1 

n2 • v = k2 
n3 • v = k3 

(6.10) 
(6.11) 
(6.12) 
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where n1 = (nu, nu, nu), n2 = (n21, n22, n23) and n3 = (n31, n32, n33). We 
can rewrite these three equations as one matrix equation 

and so the solution for v is given by the column vector 

So any calculation requiring the intersection of three planes necessarily involves 
the inversion of a 3 x 3 matrix. The function, invert, in listing 6.8 uses the 
Adjoint method of fmding AINV, the inverse of matrix A. The value sing is also 
returned, equalling 1 if the matrix A is singular (and so has no inverse) and 0 
otherwise. Again place the function in "utility.c". 

Listing 6.8 
I* Add to "util fty.c" *I 

1*···················*1 
invert(A,AINV,sing) 

1*···················*1 
double A[] [4] ,AI NV[] [4] 
int *sing ; 

I* Calculates 'AINV', the inverse of matrix 'A', using the adjoint method *I 
I* •sing' returned as 1 if 'A' singular and has no inverse, 0 otherwise *I 
< float determinant,adj ; 

int f,i1,i2,j,j1,j2 ; 
I* Find the determinant of 'A' *I 

determinant= A[1] [1J*(A[2] [2l*A[3] [3]·A[2J [3J*A[3] [2]) 
+A[1l [2]*(A[2] [3]*A[3] [1] ·A[2] [1]*A[3] [3]) 
+A[1] [3]*(A[2] [1]*A[3] [2] ·A[2] [2J*A[3] [1]) ; 

I* If 'determinant•=O then 'A' is singular *I 
if Cfabs(determinant) < epsilon) 

*sing=1 ; 
I* Else the inverse is the adjoint matrix divided by determinant *I 

else < *sing=O ; 
for Ci=1 ; i<4 ; i++) 

> ; 

< i1=Ci X 3)+1 ; i2=Ci1 X 3)+1 
for (j=1 ; j<4 ; j++) 

> ; 

< j1=Cj X 3)+1 ; j2=Cj1 X 3)+1 
adj=(A[i1] [j1J*A[i2] [j2] ·A[i1l [j2J*A[i2] [j1]) 
AINV[j][il=adjldeterminant; 

> ; 

> ; I* End of invert *I 
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Again, in the function, i3pl, to fmd the point of intersection of three planes 
(listing 6.9 and "utility .c"), the solution of the equations (v above), is returned 
as vector3 value v; reals k 1, k2 and k3 will contain the plane constants and the 
x, y and z co-ordinates of the normal vectors are given as vector3 values n1, n2 
and n3 respectively. 

Listing 6.9 

I* Add to "utility.c" *I 

I*·· ..•................• ··········*I 
i3pl(n1,k1,n2,k2,n3,k3,v,insect) 

I*· •......•.•.•....... -.-------.-·*/ 
struct vector3 n1,n2,n3,*v ; 
float k1,k2,k3 ; 
int *insect ; 

I* Calculates the point of intersection, •v•, of the three planes *I 
I* 'n1.v=k1' , 'n2.v=k2' , 'n3.v=k3' */ 
I* 'insect' is returned as 1 if such a point exists, 0 otherwise *I 
( double N [4] [4] ,NINV£4] [4] ; 

int sing ; 
I* Copy the 3 normal vectors into the rows of matrix 'N' *I 

N[1l [1l=n1.x; N£1] £2J=n1.y; N[1] [3l=n1.z; 
N[2l [1]=n2.x ; N£2] [2J=n2.y ; N[2] [3J=n2.z ; 
N£3] [1]=n3.x ; N[3] [2]=n3.y ; N[3] [3]=n3.z ; 

I* Calculate the inverse of 'N' *I 
invert(N,NINV,&sing) ; 
if (sing == 1) 

*insect=O ; 
I* If 'N' is singular then no intersection *I 
I* Otherwise calculate the intersection *I 

else < *insect=1 ; 
v·>x=NINV£1] [1]*k1+NINV[1] £2l*k2+NINV[1] [3]*k3 ; 
v·>y=NINV£2] [1]*k1+NINV[2] [2]*k2+NINV[2] [3]*k3 ; 
v·>z=NINV[3l [1l*k1+NINV[3] [2]*k2+NINV[3] [3]*k3 ; 

) ; 
> ; I* End of i3pl *I 

Obviously if any two of the planes are parallel or the three meet in pairs in three 
parallel lines, then sing equals 1 and there is no unique point of intersection. 

Example 6.7 
Find the point of intersection of the three planes (0, 1, 1) • 11 = 2, (I, 2, 3) • 11 = 4 
and (I, 1, I)· 11 = 0. 

In the matrix form we have 

1 
2 
1 
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G 
1 I) c 0 _l) The inverse of 2 3 is 2 -1 
1 1 -1 

and so 

(D c 0 

-D G) CD = 2 -1 X = 
-1 1 

This solution is easily checked 

(0, 1, 1) • (-2, 0, 2) = 2, (1, 2, 3) • (-2, 0, 2) = 4 and 
(1, 1, 1). (-2, 0, 2) = 0 
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which means that the point ( -2, 0, 2) lies on all three planes and so is their 
point of intersection. 

The Line of Intersection of Two Planes 

Let the two planes be p • v = (p 1 , p 2 , p 3 ) • v = k 1 and 
q • v=(q 1 ,q2 ,q3 )• v=k2 

We assume that the planes are not parallel, and sop * Xq for any A.. The line 
common to the two planes naturally lies in each plane, and so it must be per­
pendicular to the normals of both planes (p and q). Thus the direction of this 
line must be d = p x q and the line can be written in the form b + IJil, where b 
can be any point on the line. In order to completely classify the line we have to 
find one such b. We find a point which is the intersection of the two planes 
together with a third which is neither parallel to them, nor cuts them in a com­
mon line. Choosing a plane with normal p x q will satisfy these conditions (and 
remember we have already calculated this vector product). We still need a value 
for k3 , but any will do, so we take k3 = 0, assuming that this third plane goes 
through the origin. Thus b is given by the column vector 

Example6.8 
Find the line common to the planes (0, 1, 1) • v = 2 and (1, 2, 3) • v = 2. 

p = (0, 1, 1) and q = (1, 2, 3), and so 
p X Q = ( 1 X 3 - 1 X 2, 1 X 1 - 0 X 3, 0 X 2 - 1 X } ) = ( 1, 1 , -1 ). 
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We require the inverse of 

1 
2 
1 

~) which is 1/3 
-1 

2 
-1 

1 

and hence the point of intersection of the three planes is 

(
-5 2 

1/3 4 -1 
-1 1 

-D X G) = 1/3 (1) = CD 
and the line is (-2, 2, 0) + #-1(1, 1, -1). 

It is easy to check this result, because all the points on the line should lie in 
both planes 

(0, 1, 1). ((-2, 2, 0) + #-1(1, 1, -1)) = 
(0, 1, I)• (-2,2,0)+#-1(0, 1, 1)· (1, 1,-1)=2 

for all #l and 
(1, 2, 3). ((-2, 2, 0) + #-1(1, 1, -1)) = 

(0, 1' 1) • (-2, 2, 0) + #-1(1' 2, 3) • (I' 1' -1) = 2 
for all #l 

The function commonline, to solve this problem is given in listing 6.10 and 
added to "utility.c". It is very similar to the previous function but returns the 
base vector band the direction d of the common line. 

Listing 6.10 

I* Add to "util ity.c" *I 

I*· •••.•.••••.•...•••••••••.•.••••. ·*I 
commonline(n1,k1,n2,k2,b,d,insect) 

I*· •••••••.••.•.•••••.••••••••••••• ·*/ 
struct vector3 n1,n2,*b,*d; 
float k1,k2 ; 
int *insect ; 

I* Calculates the line common to the two planes 1n1.v=k1' , 'n2.v=k2' *I 
I* 'insect' is returned as 1 if such a line exists, 0 otherwise *I 
I* The base vector of the line is 'b' and direction vector 'd' *I 
{double N[4][4J,NINV[4][4] ; 

int sing ; 
I* Copy the 2 normal vectors into first two rows of matrix 'N' *I 

N[1] [1l=n1.x; N[1l [2Jo:n1.y; N[1l [3J=n1.z ; 
N[2l [1J•n2.x ; N[2l [2J=n2.y; N[2l [3J=n2.z ; 

I* Calculate the direction vector of the line *I 
vectorproduct(n1,n2,d) ; 

I* Create third plane 1d.v=0 1 , and copy into matrix 'N' */ 
N[3) [1l•d·>x ; N[3) [2)•d·>y ; N[3] [3)•d·>z ; 
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I* 'b' is the point of intersection of these three planes *I 
I* Calculate the inverse of 'N' *I 

invert(N,NINV,&sing) ; 
if (sing =o: 1) 

*insect=O ; 
I* If 'N' is singular then no common line *I 
I* Otherwise calculate the intersection *I 

else < *insect=1 ; 
b·>x=NINV[1] [1J*k1+NINV[1] [2J*k2 ; 
b·>y=NINV[2l[1J*k1+NINV[2][2]*k2; 
b·>z=NINV[3] [1J*k1+NINV[3][2J*k2; 

) ; 
> ; I* End of conmonl ine *I 

Analytic Representation of a Surface 
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In our study of two-dimensional space in chapter 3 we noted that curves can be 
represented in an analytic notation. This idea can be extended into three dimen­
sions when we study surfaces. The simplest form of surface is an infinite plane 
with normal n = (n 1 , n2 , n 3 ), which we have seen may be given as a co-ordinate 
equation 

n • II- k:: n1 X X+ n2 X y + n3 X Z- k: 0 

This can be rewritten in analytic form for a general point 11 = (x, y, z) on the 
surface 

{(11) = f(x, y, z) = n 1 x x + n2 x y + n 3 x z- k = n • 11- k 

a simple expression in 11, the variables x, y and z. It enables us to divide all the 
points in space into three sets, those with {(11) = 0 (the zero set), with{(11) < 0 
(the negative set) and j"(11) > 0 (the positive set). A point 11lies on the surface if 
and only if it belongs to the zero set. If the surface divides space into two halves 
(each half being connected- that is, any two points in a given half can be joined 
by a curve which does not cut the surface) then these two halves may be identi­
fied with the positive and negative sets. Again beware. there are many surfaces 
that divide space into more than two connected volumes and then it is impossible 
to relate analytic representation with connected sets- for example,f(x,y, z) = 
cos (y) - sin (x2 + z2 ). There are, however, many useful well-behaved surfaces 
with this property, the sphere of radius r for example 

f(ll)=r~- l11l2 

that is 

f(x,y,z)=r2 -x2 -y2 -z2 

If {(11) = 0 then 11 lies on the sphere, if /(11) < 0 then 11lies outside the sphere, 
and if f(v) > 0 then 11lies inside it. 
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The analytic representation of a surface is a very useful concept. It can be 
used to great effect in the quad-tree, oct-tree and ray tracing algorithms discus­
sed in chapters I5 and I7, and also to define sets of equations necessary in 
calculating the intersections of various objects. Furthermore, we may determine 
whether or not two points p and q (say) lie on the same side of a surface which 
divides space in two: information needed for hidden surface elimination. All we 
need do is compare the signs of f(p) and f(q ). If they are of opposite signs then 
a line joining p and q must cut the surface. For example 

Is a point on the same side of a plane as the origin? 

Suppose the plane is defined (as earlier) by three non-collinear points p 1 , p 2 and 
p 3 . Then the equation of the plane is 

((P2 - pt) X (p3 - P2)) • (v- pt) = 0 

We may rewrite this in analytic form 

f(v) = ((P2 - pt) x (P3 - P2 )) • (v- pt) 

So all we need do for a pointe (say) is to compare f(e) with /(0), where 0 is 
the origin. We assume here that neither 0 nor e lies in the plane. 

Example 6.9 
Are the origin and point (I, 1, 3) on the same side of the plane defined by 
points (0, I, I), (L 2, 3) and (-2, 3, -I)? 

From example 6.6 we see that the analytic representation of the plane is 

f(v) = (( -6, -2, 4) • (v- (0, I, 1)) 

Thus 

f(O, 0, 0) = -(-6, -2, 4) • (0, I, I)= -2 

and 

f(I, I, 3) = (-6, -2, 4) ·((I, I, 3)- (0, I, I))= 2 

Hence (I, I, 3) lies on the opposite side of the plane to the origin and so a line 
segment joining the two points will cut the plane at a point (I - IJ.) (0, 0, 0) + 
IJ.(I, I, 3) where 0 ~ ll'~ 1. 

The Orientation of a Convex Polygon in Three-dimensional Space 

In chapter 5 we introduced a method for determining whether the vertices of a 
convex polygon were in a clockwise or anti-clockwise orientation. Again, all we 
need do is consider the ordered triangle formed by the first three vertices of the 
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polygon p 1 , p 2 and p 3 . We saw earlier that the infinite plane containing this 
triangle is given by the analytic form 

f(v) = ((pz - Pd X (p3- Pz)) • (v- Pd 

Obviously the orientation depends on which side of this plane you view the 
triangle from. One way will be clockwise, the other anti-clockwise. If the triangle 
is set up in the way we describe, relative to right-handed axes, and the observa­
tion point is e, then you will note that if f(e) is positive then the orientation is 
anti-clockwise, and if [(e) is negative then the orientation is clockwise. If f(e) is 
zero then e is on the plane and the question has no meaning. 

When you are constructing three-dimensional objects in later chapters you 
will be expected to set up facets in an anti-clockwise orientation when viewed 
from the outside, so this method will prove an invaluable check! 

Example 6.10 
This idea is programmed as orient3 in listing 6.11 and added to "utility.c". 
Use the function to check on the orientation of the triangle formed by the 
vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1). Note in analytic form this is given by 

f(v)=(l, 1, 1) • (v-(1,0,0)) 

Hence when viewed from ( 1 , 1 , 1 ),[( 1, 1, 1) = 2 so the triangle is anti-clockwise, 
and from (0, 0, 0),[(0, 0, 0) = -1 and thus the triangle is clockwise. 

Listing 6.11 

I* Add to "util ity.c" *I 

1*-------------------*1 
orient3(p1,p2,p3,e) 

I*- - - - - - - - - - - - - - - - - - -*I 
struct vector3 p1,p2,p3,e ; 

I* Returns the orientation of the polygon with consecutive vertices *I 
I* 1p1', 'p2' and 'p3' as viewed from vector position 'e' *I 
I* -1 clockwise orientation *I 
I* +1 : anti-clockwise orientation *I 
I* 0 : degenerate- line or point *I 
{ struct vector3 d1,d2,d1xd2,v ; 

d1.x=p2.x-p1.x ; d1.y=p2.y-p1.y; d1.z=p2.z-p1.z ; 
d2.x=p3.x-p2.x ; d2.y=p3.y-p2.y ; d2.z=p3.z-p2.z ; 
vectorproduct(d1,d2,&d1xd2) ; 
v.x=e.x-p1.x; v.y=e.y-p1.y; v.z=e.z-p1.z; 
return(sign(dot3(d1xd2,v))) 

} ; I* End of orient3 *I 
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The Orientation of a Convex Polygon in Two-dimensional Space 

Again we consider only the flrst three vertices on the boundary of the polygon, 
Pt = (xt.Yt). P2 = (x2. Y2) and PJ =(xJ,YJ). Although these are two-(iimen­
sional co-ordinates, we may assume that the points lie in the xfy plane through 
the origin of three-dimensional space by giving them all a z co-ordinate value of 
zero. We can therefore use the results of the previous section to check on the 
orientation of this now three-dimensional triangle. Now since the triangle lies 
in the xfy plane through the origin, the normal to the plane is of the form 
(0, 0, r). The analytic form is thus 

f(x,y, z) = (0, 0, r) • ((x,y, z)- pt) 
=rxz 

since our three-dimensional system is right-handed and we have calculated the 
normal so it points out of an anti-clockwise triangle. If we assume that (x, y, z) = 
(0, 0, 1) (implying that we are observing from the positive z side of the xfy plane 
through the origin), then f(x, y, z) = r. Hence if r is positive the polygon is 
defined in anti-clockwise orientation and if negative clockwise. 

Because the vector (0, 0, r) is (p2 - p 1) x (p3 - p2 ), the value of r is 
(x2 - xt) x {y3 - y2)- {y2 - yt) x (x3 - x 2) and this expression is identical 
to that derived in chapter 5 (see listing 5.7). 

Exercise 6.1 
Experiment with the methods discussed in this chapter by creating your own 
exercises. The answers may be readily checked using the function!! given. Of 
course you will need to write a body of main function that will call the necessary 
functions when checking your solutions. 



7 Matrix Representation of 
Transformations in Three­
dimensional Space 

Transformations of co-ordinate axes in two-dimensional space were introduced 
in chapter 4. An extension to three-dimensional systems is an essential step 
before we are able to proceed to projections of three-dimensional space onto the 
necessarily two-dimensional graphics viewport. As in the lower dimension, there 
are three basic transformations: translation of origin, change of scale and axes 
rotation; we will ignore all other transformations such as shear. Since we have 
already introduced the idea of matrix representation of transformations in two 
dimensions, we shall move directly to a similar representation of three-dimen­
sional transformations. It should once more be noted that certain graphics 
devices will have these operations in hardware. The techniques are, nevertheless, 
very important so a full description is given. Again the square matrices represent­
ing the transformations will be one dimension greater than the space - that is, 
4 x 4 (remember a 4 x 4 matrix is stored in a double[5] [5] array!) - and a 
general point in space will be represented by, a column vector, relative to some 
triad of co-ordinate axes 

We start with our library of functions used for creating the matrices representing 
three-dimensional transformations. These will be stored as a flle "matrix3.c", 
which in turn #includes "graphlib.c" (and hence "primitiv.c") and two-dimen­
sional utility functions in "utility .c". It is given in listing 7 .1. 

Translation of Origin 

If the origin of the new co-ordinate system is the point t = (t x, t y, t z) relative to 
the old, then the general point (x, y, z) will have new co-ordinates (x', y', z') 
given by 

147 
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X 1 = 1 X X + 0 X Y + 0 X Z - f X 

y' = 0 X X + 1 X Y + 0 X Z - t y 

z' = 0 X X+ 0 X y + 1 X Z- tz 

so that the matrix describing the translation is 

0 0 
1 0 
0 1 
0 0 

The function tran3 for producing such a matrix A, given the parameters tx, ty 
and tz is given in listing 7 .1. 

Listing 7.1 

I* Store as file "matrix3.c" *I 

I* functions for matrix manipulation for three-dimensional modelling *I 

#include "graphl ib.c" 
#include "utility.c" 

1*·················*1 
tran3(tx,ty,tz,A) 

1*··-··············*1 
float tx,ty,tz ; 
double A[] [5] ; 

I* Calculate 3·0 axes translation matrix 'A' *I 
I* Origin translated by vector '(tx,ty,tz)' *I 
< int i, j ; 

for Ci=1 ; i<S ; i++) 
< for (j=1 ; j<S ; j++) 

A[il [j]=O.O ; 
A[i] [i]=1.0 ; 

} ; 
A[1] [4]=·tx; A[2] [4]=·ty; A[3] [4l=·tz 

> ; I* End of tran3 *I 

1*··-···············*1 
scale3(sx,sy,sz,A) 

1*··················*1 
float sx,sy,sz ; 
double A[] [5] ; 

I* Calculate 3·0 scaling matrix 'A' given scaling vector 'Csx,sy,sz)' *I 
I* One unit on the x axis becomes •sx• units, one unit on the y axis *I 
I* becomes •sy' units and one unit on the z axis becomes •sz' units *I 
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{ int i, 1 ; 
for (i=1 ; i<5 ; i++) 

for (j=1 ; j<5 ; j++) 
A[i] [jJ=O.O ; 

A£1] [1J=sx ; A£2] [2J=sy; A£3] [3J=sz A£4] [4]=1.0; 
> ; I* End of scale3 */ 
/*···············*/ 

rot3(m,theta,A) 
1*···············*1 

int m ; 
float theta ; 
double A [J [5] 

I* Calculate 3·D axes rotation matrix 'A'. The axes are rotated *I 
I* anti·cockwise through an angle 'theta• radians about an axis*/ 
I* specified by •m• : m=1 means x axis; m=2 y axis; m=3 z axis *I 
{ int i,j,m1,m2 ; 

float c,s ; 
for (i=1 ; i<5 ; i++) 

for <1=1 ; j<5 ; j++) 
A[i] [jJ=O.O ; 

A[m] [mJ=1.0 ; A£4] [4]=1.0 
m1=(m X 3)+1 ; m2=(m1 X 3)+1 ; c=cos(theta) ; s=sin(theta) 
A [m1J [m1] =c ; A [m2J [m2J = c A [m1J [m2J =s ; A [m2J [m1] =·s ; 

> ; I* End of rot3 *I 

I*· .••••••• ···*I 
mult3(A,8,C) 

1*·················*1 
double A[J [5] ,8[] [5] ,C[] [5] 

I* Calculate the matrix product •c• of two matrices 'A' and '8' *I 
{ int i ,j ,k ; 

float ab ; 
for (i=1 ; i<5 ; i++) 

for (j=1 ; j<5 j++) 
{ ab=O 

for <k=1 k<5 ; k++) 
ab=eb+A [iJ [k] *8 [k] [j] 

C [iJ [j] =ab ; 
} ; 

> I* End of mult3 *I 

I*· •••••••. ··*I 
matprint(A) 

I*· ...••••• ··*I 
double A[] [5] 

I* print out the matrix 'A' *I 
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< int I, j ; 
for ( 1=1 ; i<5 ; i++) 

{ for (j=1 ; j<5 ; j++) 
printf(" "f",A[il [j]) 

printf("\n") ; 
> ; 

> ; I* End of matprint *I 
1*·················*1 

genrot(phl,b,d,A) 
1*·················*1 

float phi ; 
struct vector3 b,d ; 
double A[] [5] ; 

I* Calculates the matrix 'A' representing the rotation of axes through *I 
I* an angle 'phi' about a general line with base 'b' and direction 'd' *I 
{ double f[5][5] ,G[5] [5] ,H[5][5] ,W[5][5] ; 

double Fl [5] [5] ,GI [5] [5] ,HI [5] [5] ,S[5] [5], T[5] [5] 
float beta,theta,v ; 
tran3(b.x,b.y,b.z,F) ; tran3(·b.x,·b.y,·b.z,FI) 
theta=angle(d.x,d.y) ; 
rot3(3,theta,G) ; rot3(3,·theta,GI) ; 
v=sqrt(d.x*d.x+d.y*d.y) ; beta=angle(d.z,v) 
rot3(2,beta,H) ; rot3(2,·beta,HI) ; 
rot3(3,phi ,W) 
mult3(G,F,S) ; mult3(H,S,T) mult3(W,T,S) 
mult3(HI,S,T) ; mult3(GI,T,S) mult3(FI,S,A) ; 

> ; I* End of genrot *I 

Change of Scale 

If the units on the old x,y and z axes are changed to Sx, Sy and Sz units respec­
tively on the new, then the new co-ordinates of the general point (x, y, z) 
become (x',y', z') 

x' = Sx x x + 0 x y + 0 x z + 0 
y' = 0 X X + Sy X y + 0 X z + 0 
z' = 0 x x + 0 x y + Sz x z + 0 

giving the matrix 

(f 
0 
Sy 
0 
0 

0 
0 
Sz 
0 

and the function scale3 (listing 7.1) to create this matrix, A. 



Matrix Representation of Transfonnations in Three-dimensional Space 151 

Rotation of Co-ordinate Axes 

In three-dimensional space, rotation by a given angle implies a torque about a 
line (the axis of rotation). There are obviously an infmite number of directions 
which this line may take and each direction will produce a different form of 
transformation. We begin, therefore, by considering only the simplest cases, 
where the axis of rotation is coincident with one of the co-ordinate axes. If the 
positive half of the axis in question goes out of the page, then the other two 
axes appear to rotate in an anti-clockwise orientation. If a clockwise rotation by 
an angle 8 is required then an anti-clockwise rotation by an angle -8 must be 
used. 

I 
y 

y 

I 
X 

I 
X 

X 

I z 

z-axis out of page y-axis out of page 

(a) (b) 

Figure 7.1 

Rotation by an angle 8 about the z-axis 

I z 
z 

I 
y 

'1£-...L...::---+ y 

x-axis out of page 

(c) 

Referring to figure 7.la, the axis of rotation being perpendicular to the page (the 
positive z-axis is out of the page since we are using right-handed axes), the prob­
lem is reduced to a rotation of the x andy axes in two dimensions, the z co­
ordinates remaining unchanged. Thus, using the formulae from chapter 4, we 
obtain the new co-ordinates, (x 1 ,y1

, Z 1
) of the general point (x,y, z) as follows 

X 1 = cos 8 x x + sin 8 x y 
Y 1 =-Sin 8 X X + COS 8 X Y 

I z =z 
and the matrix: 

sin 8 0 
cos 8 0 
0 1 
0 0 
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Rotation by an angle (J about they-axis 
Referring to figure 7.1b, we now have the positive y-axis out of the page and, 
since we are using right-handed axes, the positive z-axis is horizontal and to the 
right of the origin and the positive x-axis is above the origin. This leads us to the 
equations 

Z 1 =cos (J x z +sin (J x x 
X 1 =-sin (J x z + cos (J x x 
yl=y 

and rearranging 

X 1 = COS (J X X - Sin (J X Z 
I y =y 

Z 1 = sin (J x x + cos (J x z 
which gives the matrix 

(
cos £J 0 
0 1 
sin £J 0 
0 0 

-sin (J 

0 
cos (J 

0 

Rotation by an angle (J about the x-axis 
Referring to figure 7.1 c, we fmd, in a similar manner, that the co-ordinates of 
the general point (x,y, z) become (x 1,y1

, Z 1
) as follows 

Y 1 = COS (J X Y + Sin (J X Z 

Z 1 =-sin £J x y +cos (J x z 
X 1 =x 

which, rearranged, become 
I 

x =x 
Y 1 = COS (J X Y + Sin (J X Z 

Z 1 = -sin (J x y + cos £J x z 

and thus the matrix is 

0 
cos (J 

-sin £J 

0 

0 
sin £J 

cos (J 

0 

A function rot3 to produce A, any one of these three matrices, given the 
angle theta (in radians) and the axis number m (m = 1 for x-axis, m = 2 for 
y-axis and m = 3 for z-axis) is given as listing 7 .1. 
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Exercise 7.1: Other transformations 
We saw in chapter 4 that there are transformations other than the three we have 
mentioned. Write your own function that returns the three-dimensional equivalent 
of the shear transformation, which will give a matrix A in the form of an identity 
matrix except for one extra non-zero entry A[i] [j], where 1 :E;; i, j :E;; 3 and 
i=Fj. 

Combining Transformations 

As with the two-dimensional case, we shall combine sequences of such trans­
formations and hence require a function to multiply two matrices A andB giving 
a product matrix C (see listing 7.4). Remember that we are pre-multiplying the 
matrices and so the right-hand matrix B refers to the initial transformation and 
the left-hand matrix A refers to the second. Remember also that matrix multi­
plication is non-commutative: A x B is not necessarily equal to B x A. 

Inverse Transformations 

Before we can consider the general rotation of axes we must look at inverse 
transformations in three-dimensional space. These are exactly equivalent to their 
two-dimensional counterparts. The inverse of a transformation represented by a 
matrix A is represented by the inverse of A, A-1 . The three basic transformations 
are inverted as follows 

(1) A translation of axes by (tx, ty, tz) is inverted with a translation by 
(-tx, -ty, -tz). 

(2) A change of scale by sx, sy and sz on the x, y and z axes respectively is 
inverted with a change of scale by 1/sx, 1/sy and 1/sz. 

(3) A rotation by an angle () about a given axis is inverted with a rotation by an 
angle -9 about the same axis. 

(4) If the transformation matrix is the product of a number of translation, 
scaling and rotation matrices A x B x C x ... x L x M x N, then the inverse 
transformation is 

F 1 X ~1 X L - 1 X 0 0 0 X c-1 X B-1 X A - 1 

The inverse matrices need not, of course, be calculated directly but may instead 
be obtained by calling the respective transformation matrix creation function 
with the inverse parameters given above. 

Rotation of Axes by an Angle cp about a General Axis b + J.Ld 

Assume b = (bx, by, hz) and d = (dx, dy, dz). The idea is to transform the axes 
so that the line b + JJ-d becomes coincident with the z-axis, with the point bat 
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the origin and sense of direction d along the positive z-axis. The rotation may 
then be executed about this new z-axis, and the axis of rotation subsequently 
transformed back to its original position. We break down the task into a number 
ofsubtasks 

(a) The co-ordinate origin is translated to the point b so that the axis of rota-
tion now passes through the origin. This is achieved by the matrix F 

F = G 
0 0 -b) =0 

0 0 b,) 1 0 -by F-l 1 0 by 
0 1 -bz 0 1 bz 
0 0 1 0 0 1 

The axis of rotation is now of the form f.ld. We now require the axis of 
rotation to be along the z-axis. This is achieved by the next two steps. 

(b) The axes are rotated about the z-axis by an angle 8 =tan -l (dy/dx ). This is 
represented by the matrix G 

0 
0 
v 
0 

c-l = ..!_ dy (
dx 

v 0 
0 

0 
0 
v 
0 

where the positive number vis given by v2 = dx2 + d/. The axis of rotation, 
relative to the resultant co-ordinate axes, is now a line lying in the xjz plane 
passing through the point (v, 0, dz ), 

(c) The axes are then rotated about they-axis by an angle {3 = tan-1 (v/dz), a 
transformation represented by matrix H 

c 0 -v 0) c· 0 v 

D H = _!_ 0 w 0 o n-1 = _!_ o w 0 
w v 0 dz 0 w -v 0 dz 

0 0 0 0 0 0 0 

where w is the positive number given by 

w2 = v2 + d 2 = d 2 + d 2 + d 2 
Z X y Z 

So the co-ordinates of the point (v, 0, dz) are transformed to (0. 0, w), 
hence the axis of rotation is along the z-axis. Thus the combination H x G x F 
transforms the z-axis to the line b + f.ld with the point b at-the origin and d 
along the positive z-axis. 

(d) The problem of rotating the co-ordinate axes about a general line has thus 
been reduced to rotating space about the z-axis. This is achieved by matrix 
W which rotates the triad anti-clockwise through an angle if> about the z-axis 

sin if> 
cos if> 
0 
0 

0 
0 
1 
0 D 
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(e) The required rotation, however, is meant to be relative to the original axis 
positions so the transformations which were used to transform the axes to a 
suitable position for the rotation, F, G and H, must be inverted; therefore 
we pre-multiply by Ir1 , G-1 and fmally p-1 • 

Thus the fmal matrix P which rotates axes by the angle <P about the axis 
b + f.J.d is P = p-1 x G-1 x Ir1 x W x H x G x F. Naturally some of these mat­
rices may reduce to the identity matrix in some special cases. For example, if the 
axis of rotation goes through the ori&in then F and r 1 are identical to the 
identity matrix I and can be ignored. The general case of matrix Pis created by 
the function genrot given in listing 7 .1. 

Example 7.1 
What are the new co-ordinates of the points (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) 
and (1, 1, 1) relative to co-ordinate axes obtained by rotating the existing system 
through rr/4 radians clockwise about an axis (1, 0, 1) + fJ(3, 4, 5)?· 

Using the above theory we note that 

F• 0 
G• ~ (-~ 

0 0 
1 0 
0 1 
0 0 

4 0 
3 0 
0 5 
0 0 

-~) 
-1 

1 

0 0 
1 0 
0 1 
0 0 

-4 0 
3 0 
0 5 
0 0 

H=-1 (~ 
v2 1 

0 

0 -1 
v2 o 

0 1 
0 0 

D 
j) Jr1 =-1 (~ 

v2 -1 
0 

0 1 -v2 o 
0 1 
0 0 

D 
D 
j) 

W=-1 (! 
v2 o 

0 

-1 0 
0 

o -v2 
0 0 

j) 
since a clockwise rotation through rr/4 radians is equivalent to an anti-clockwise 
rotation through -rr/4, and 

p _ 1 -12 + 37v2 ( 
41 + 9v2 

- 5ov2 -15 ~ sv2 

-12 -13v2 
34 + 16v2 

-2o + 35v2 
0 

-15 + 35v2 -26 + 6v2) 
-2o + 5v2 32 - 42v2 

25 + 25v2 -10 + 3ov2 
o 5ov2 

where P = p-1 x G-1 x Ir1 x W x H x G x F is the matrix representation of 
the required transformation. Pre-multiplying the column vectors equivalent to 
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(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, I) by P and changing the result­
ing column vectors back into row form and taking out a factor l/50y2 gives the 
respective co-ordinates 

(-26 + 6y2, 32- 42y2, -10 + 30y2), (15 + 15y2, 20- 5y2, -25 + 25y2), 
(-38-7y2, 66- 26y2, -30 + 65y2), (-41 + 41y2, 12- 37y2, 15 + 55y2) 
and (-12 + 37y2, 34 + 16y2, -20 + 85y2) 

Placing Objects in Space 

Scenes may be constructed in three dimensions in a manner precisely analogous 
to that described in chapter 4 for two-dimensional scenes. We defme an arbitrary 
right·handed triad of axes, which we call the ABSOLUTE system, and we specify 
the co-ordinates of each vertex relative to this triad. Again these co-ordinates 
may be defined in a simple SETUP position and then moved, using matrix trans­
formations, to their ACTUAL position. A detailed description is given in the 
next section. The matrices representing these transformations of vertices in space 
may be calculated using the functions which we have developed for transforming 
axis systems but, as before, the parameters used to call the functions must change 
as follows. 

Translation 
A vertex (x, y, z) is to be moved by a vector t = (tx, ty. tz) to (x + tx,Y + ty, 
z + tz). This is exactly equivalent to keeping the vertex fixed and translating the 
origin of the axes to (-tx, -ty, -tz). Thus the matrix representing this transfor· 
mation may be calculated by 

tran3(-tx, -ty, -tz, A); 

Change of scale and reflection 
The origin is fixed and a general point (x,y,z)is moved to (Sx x x, Sy x y, Sz x z). 
This transformation is equivalent to changing the scale of the co-ordinate axes so 
that 1 unit on the x-axis becomes Sx units, 1 unit on the y·axis becomes Sy units 
and 1 unit on the z-axis becomes Sz units. The transformation matrix may thus 
be calculated by 

scale3(sx, sy, sz, A); 

Furthermore, if one of the co-ordinates is multiplied by a negative factor Sx, Sy 
or Sz, this corresponds to a reflection in the plane containing the other two axes. 
For example, Sx =I, Sy = 1 and Sz = -1 gives a reflection in the x/y plane. 
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Rotating an object about a co-ordinate axis 
Rotating an object about a co-ordinate axis anti-clockwise through an angle 8 
(theta) is equivalent to keeping the object fixed and rotating the axis system 
through an angle 8 clockwise about the same axis, or, alternatively, by an angle 
-8 anti-clockwise. The rotation matrix is therefore returned by 

rot3(m, -theta A); 

where m is the index of the co-ordinate axis about which the rotation occurs. 
Rotation of vertices about a general axis may be achieved in exactly the same 

way we achieved a rotation of axes earlier. Matrices F, G and H are used to 
transform the co-ordinate axes into such a position that the axis of rotation is 
coincident with the z-axis. Then space (not axes) are rotated with the matrix W 
so that the vertices move about this new z-axis. Finally /11 , c-1 and p-1 

replace the axes to their original positions. The complete rotation, as before, 
achieved by F-1 X c-1 X n-1 X w X H X G X F. 

SETUP and ACTUAL Positions 

In order to defme a scene consisting of an object in some position and orienta­
tion in three-dimensional space, we use exactly the same method as was used for 
two-dimensional space. The co-ordinates of the vertices of the object are defined 
in some simple way, usually about the origin. This we call the SETUP position. 
Lines and facets within the object are defmed by specifying the vertices forming 
their end-points or comers. 

Each vertex of the object is moved from its SETUP position to the desired 
position in space by pre-multiplying the column vector holding its co-ordinates 
by the matrix representing the required transformation. (Naturally, each vertex 
undergoes the same transformation.) Again, this new position is called the 
ACTUAL position. Co-ordinates are still specified with respect to the ABSOLUTE 
system. The line and facet relationships are preserved with the transformed 
vertices. The matrix which relates the SETUP to ACTUAL position will be called 
P throughout and may be calculated using one of, or a combination of, the trans­
formations described above. 

We must reiterate that the co-ordinates of all vertices in both the SETUP and 
ACTUAL positions are defmed with respect to the same set of axes - those of 
the ABSOLUTE system. 

Storing Information about Scenes 

The data representing objects in a scene undergoes various manipulations between 
its creation and the eventual drawing and so may need to be stored in an easily 
accessible form in a database. The database itself is declared in listing 7.2 and 
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must be stored as file "model3.c", which in turn #includes file "matrix3.c" (and 
hence implicitly "graphlib.c", "primitiv.c" and "utility.c") and the stack manipu­
lation routines from file "stack.c". The evaluation of a section of the database 
relevant to one occurrence of one particular object will be achieved by a call to a 
Construction Routine for that object, which will normally have a SETUP to 
ACTUAL matrix P as a parameter in order to place the object in its correct 
ACTUAL position. As usual, the SETUP information can be input from file. If 
the same ACTUAL scene is required over and over again, then it is possible to 
skip over the SETUP stage and read in the ACTUAL position of objects in the 
scene with a function we name datain. Remember, if required, datain can read 
vertex information in SETUP and/or ACTUAL position. 

As with two dimensions, we use arrays to store this information. The three­
dimensional scene is assumed to contain nov vertices. The ACTUAL x, y and z 
co-ordinates of these vertices are stored in an array act[maxv] with elements 
of type vector3, where maxv is not less than nov. A vertex with co-ordinates 
(act[j] .x, act[j].y, act[j] .z) is said to have index j. Unlike in two-dimensions, 
we do not store information about lines, but should you require it, you yourself 
can add nol lines stored in an array line [maxi] with elements of structure data 
type linepair. The value of maxi must not be less than no I, and values line [ i]. front 
and line [i] .back indicate respectively the indices of the front and back vertices 
of the line i (compare this with listing 4.2). Our objects will be defined in terms 
of facets, whose description will be far more complex than simple vertices: a 
vertex always has three components, the x, y and z co-ordinates, but a facet may 
have any number of sides and hence any number of vertices around its boundary, 
as well as peculiar colour, reflective and refractive properties etc. Lines may be 
considered as edges offacets; in fact a single line may be described as a degenerate 
one or two-sided facet. We saw in chapter 4 with the two-dimensional equivalent 
that the most efficient method of representing a facet without imposing un­
reasonable limits upon the number of vertices around the boundary involves the 
use of a linear list implemented with three arrays. A large array of integers, 
faclist[maxlist], contains a list of vertices in the ACTUAL array and each of 
nof facets is defined by two integer pointers to this list, contained in arrays 
facfront[maxf] and size[maxf]; maxf is not less than nof, the number of facets 
in the scene. The integer pointer to the facet i, facfront [i], points to the element 
of the faclist array which holds the index of the first vertex of that facet; thus 
facfront [OJ = 0. The value size [i] contains the number of vertices on the bound­
ary of the facet i, and these in turn are stored in the faclist array as faclist [ fac­
front[i]], faclist[facfront[i] + 1], ... , faclist[facfront[i] + size[i] - 1]. The 
only constraint thus placed upon the number of vertices on the boundary of a 
facet is that the total number on all facets must not exceed the dimension of the 
faclist array. An integer variable firstfree indicates the position within faclist for 
the first vertex of the next facet to be added (if any); this is useful in updating 
the database. 
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We also introduce the idea of attributes associated with facets. Initially this 
will involve only the colour in which they are to be drawn but several more 
attributes will be introduced when more complex pictures of three-dimensional 
objects are considered. These attributes will also be stored in arrays relating to 
the facets. The colour of facet i will be stored in the array colour[maxf] as 
colour[i]. 

Two further variables are stored: the integer counts ntv and ntf. These are 
not used yet, but in later chapters they will represent respectively the total num­
bers of vertices and facets in the scene, inclusive of any extra which may be 
created during the processing of the scene. 

The construction routines that follow will be used to update the initially 
empty database of facets and vertices in their ACTUAL position; the placement 
of an observer and the drawing of objects will be left to other functions includ­
ing transform, and findO, look3 and observe of listing 8.1 together with a special 
version of function draw_a_picture which initialises the database before calling a 
function scene which will control the construction of the complete scene and 
the way it is displayed. Function draw_a_picture links the modelling and display 
function that follow to the primitive functions of listing 1.1 and the graphics 
library of listing 1.3 (file "primitiv.c" and "graphlib.c"). In order for you to 
construct and draw three-dimensional scenes, you need only write a scene 
function, which links in all the other necessary functions by use of #include, 
and to help you in this task a number of example scene functions will follow. 

The Structure of the scene Construction 

All these ideas must now be put together in a C program for modelling and dis­
playing a three-dimensional scene. We can assume that the previously defined 
functions have all been properly declared and stored in files to be #included 
where appropriate and in the correct sequence, so that scene is called from 
draw_a_picture and all the functions, constants, variables and structured data 
types from files "model3.c", "matrix3.c", "graphlib.c", "primitiv.c" and 
"utility.c", and are available and obey proper scope constraints. Before calling 
scene, the scale of the graphics WINDOW has been ftxed in the main function, the 
data for a SETUP cube has been stored in arrays cubevert[8] and cubefacet[6] [4], 
and function draw_a_picture clears the database and initialises the stack heap. 
Stacks will be manipulated with the functions from "stack.c", see chapter 2. 
Note listing 7.2 includes a function transform for transforming a vector by a 
matrix and a function cube for adding the data for a cube to the database. Two 
very simple example scene routines are given in this chapter (listings 7.3 and 7.4) 
which merely print out data on a scene containing just one cube. In general, the 
scene function must model (via construction routines declared or #included 
from "construc.c' within scene), observe (via findO, look3 and observe: see 
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chapter 8 and "display3.c") and display (via project, drawit etc. declared or 
#included from "display3.c" within scene) the objects in the three-dimensional 
scene, before finish (in main) finally 'flushes the buffers'. 

Listing 7.2 

I* Store listing as file "model3.c11 */ 

I* data base and observation functions for three dimensional models */ 

#include "matrix3.c" 
#include "stack.c" /* include stack listing 2.4b */ 

#define maxv 400 /* Increase these values if more storage needed */ 
#define maxf 400 /*Decrease them if storage limits exceeded */ 
#define maxlist 2400 

#define max(a,b) ((a) > (b) 7 (a) (b)) 
#define min(a,b) ((a) < (b) 7 (a) (b)) 

int firstfree,nov,ntv,nof,ntf /*counts*/ 
struct vector3 act[maxvJ,obs[maxvJ,setup[maxvJ 
struct vector2 pro[waxvJ ; 
int colour[maxfJ,facfront[maxfJ,size[maxfJ ; 

/*ACTUAL,OBSERVED,SETUP*/ 
/*PROJECTED vertices*/ 
/*FACETS*/ 

int nfac[maxfJ,super[maxfJ ; I* Data on superficial facets */ 
struct heapcell *firstsup[maxfl ; 
int faclist[maxlist] ; /*Array holding all lists of facets*/ 

I* variables needed to position observer, and projection */ 
struct vector3 direct,eye,zero=<O.O,O.O,O.O> 
double a [5] [5] ; 
float eyedist,ppd ; 

I* data for setting up a cube of side 2 */ 
struct vector3 cubevert[SJ= 
{ 1,1,1, 1,·1, 1, 1,·1,·1, 1,1,·1, ·1,1,1, ·1,·1,1, ·1,·1,·1, ·1,1,·1 ) ; 
int cubefacet[6] [4]= 
{ 0,1,2,3, 0,3,7,4, 0,4,5,1, 2,6,7,3, 1,5,6,2, 4,7,6,5); 

/*·-·-····-··-····*/ 
transform(v,A,w) 

/*···-···-·---···-*/ 
struct vector3 v,*w ; 
double A[J [5] ; 

I* transform column vector •v• using matrix 'A' into column vector •w• */ 
< w·>x=A[1J [1J*v.x + A[1J [2J*v.y + A[1J [3J*v.z + A[1J [4] 

w·>y=A[2J [1J*v.x + A[2J [2J*v.y + A[2J [3]*v.z + A[2J [4] 
w·>z=A[3] [1J*v.x + A[3J [2J*v.y + A[3J [3J*v.z + A[3J [4] 

> ; I* End of transform */ 
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1*·······*1 
cubeCP) 

1*·······*1 
double P [] [5] 

I* Construction routine for a rectangular block. Initially a cube *I 
I* the block is distorted by the scaling matrix component of 'P' *I 
I* Assume cube has logical colour 3 *I 
< int i,j ; 
I* Update facet data base with 6 new facets *I 

for Ci=O ; i<6 ; i++) 
{ for (j=O ; j<4 ; j++) 

> 

faclist[firstfree+jl=cubefacet[i][j]+nov; 
facfront[nofl=firstfree ; size[nofl=4 
colour[nofl=3 ; nfac[nofl=nof ; 
super[nofl=·1 ; firstsup[nofl=NULL ; 
firstfree=firstfree+size[nofl ; nof=nof+1 

I* Update vertex data base with 8 new vertices in ACTUAL position *I 
for (i=O ; i<8 ; i++) 

{ transform(cubevert[i],P,&act[nov]); nov=nov+1; 
> ; 

> I* End of cube *I 

1*·········*1 
dataout() I* function to output ACTUAL scene to file •model.out• *I 

1*·········*1 
< int front,i,j ; 

FILE *outdata ; 
outdata=fopen("model.out","w") 
fprintfCoutdata,"Xd Xd\n",nov,nof) 
for (i=O ; i<nov ; i++) 

fprintf(outdata, "%f %f %f\n" ,act [i] .x,act [i]. y,act [i]. z) 
for (i=O ; i<nof ; i++) 

< front•facfront[i] 
fprintf(outdata,"Xd Xd Xd\n11 ,size[il ,colour[il ,super[i]) 
for (j=O ; j<size[i] ; j++) 

fprintf(outdata," Xd",faclist[front+j]) 
fpri ntf(outdata, "\n"> 

) 

fclose(outdata) ; 
> ; I* End of dataout *I 

1*········*1 
detain() I* function to input ACTUAL scene from file 'model.in' *I 

1*········*1 
{ int i,j ; 

FILE *indata 
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indatazfopen("moclel.in11 , 11 r 11 ) : 

fscanf(indata,"%d %d11 ,&nov,&nof) 
for <i=O : i<nov: i++) 

fscanf( indata, "Xf Xf Xf" ,&act [i] .x,&act [i]. y ,&act [i]. z> 
for (i=O: i<nof: i++). 

{ fscanf(indata,"%d %d Xd",&size[iJ,&colour[i],&super[i]) 
for (j=O : j<size[il : j++) 

fscanf(indata," Xd",&facl ist[firstfree+jl) : 
nfac[il=i : facfront[iJ=firstfree : firstfree=firstfree+size[i] 

I* Clear lists of superficial facets *I 
I* See chapter 9 for explanation of storing superficial facets *I 
I* Ensure host facet input before superficial facets *I 

firstsup[iJ=NULL : 
if (super[i] != ·1) 

push(&firstsup[super[ill,i) 
} : 

fclose(indata) : 
} : I* End of datain *I 

1*--·--······-··· ·*I 
draw_a_picture() 

1*················*1 
( I* empty database *I 

firstfree=O : 
nov=O : nof=O : 

I* Prepare heap *I 
heapstart 0 : 

I* Construct and draw scene *I 
scene() : 

} : I* End of draw_a_picture *I 

#define is used to define the maximum indices maxv, maxf and maxlist of arrays 
in the database. These values are arbitrarily chosen (400, 400, 4000 respectively), 
and for very complex models these values can be greatly increased. Some versions 
of C have strict limitations on the amount of global data available, in which case 
these values will have to be reduced. The counts for vertices and facets for a 
particular model are also declared here along with fi rstfree: 

int firstfree, nov, ntv, not, ntf; 

and the ACTUAL co-ordinate vertices of the scene, act, are declared along with 
other interpretations of these co-ordinates, setup and obs (see later) thus: 

struct vector3 act[maxv), obs [maxv), setup[maxv); 

Care must be taken to ensure that all the vertices of a declared facet are coplanar. 
If this is so in SETUP position, then it is maintained through any combination of 
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affine transformations. Other arrays must bll declared in the database to hold a 
description and attributes of these facets: 

int colour[maxf], facfront[maxf], size[maxf]; 
int nfac[maxf], super[maxf]; 
struct heapcell * firstsup[maxf]; 
int faclist[maxlist]; 

The array nfac [maxf] holds an integer pointer for each facet. Later, when draw­
ing facets, it will be necessary to use clipping on the three-dimensional facet 
data. Hence the original facet will have pieces clipped off, and the visible portion 
of each may be represented by a new set of vertices and a new facet (hence the 
need for ntv and ntf, which will be initialised in the drawit function). For any 
clipped facet i, nfac[i] will allow us to point at the new list of entries: 

facfront[nfac[i] ], ... , facfront[nfac[i]] + size[nfac[i]] - 1 

of the faclist array, which indicate the polygon vertices representing the clipped 
part of facet i. Initially we assume that no facets are clipped, and hence nfac[i] 
will equal i for all facets of the objects, and the entries 

facfront[i], ... , facfront[i] + size[i] - 1 

hold the vertex indices of the original facet i. This will not necessarily be the 
case later, so it is advisable to draw some distinction now between (1) the vertex 
entries of a facet prior to clipping and (2) the vertex entries after clipping. This 
distinction will be expanded upon and clarified in chapter 14. Arrays needed to 
store information on superficial facets (super and firstsup: see chapter 9) are also 
declared here. 

Remember that, if they are required, the SETUP x, y and z co-ordinates of 
the vertices and facet information of any particular object type are stored in the 
special arrays, specific to that object in a manner similar to those declared above, 
with values either read from file or perhaps implied by the program listing: see 
the cube data in listing 7 .2. Note we have already declared space for SETUP 
vertices, setup[maxv] ab~ve. As our drawing of scenes gets more sophisticated, 
then more attributes will be needed for the objects and hence expanded and 
extended entries will be needed for the database. When new entries are intro­
duced in the text, you must remember to amend the database declarations 
accordingly. 

So modelling and display takes the form of four stages. 

(1) If required the necessary SETUP information is created within construction 
functions using data read by a datain function. 

(2) The main body of scene calculates the SETUP to ACTUAL information for 
each object within the scene and calls the corresponding construction 
function to place that object in the ACTUAL position. Alternatively the 
complete ACTUAL scene can be read from disk using a datain function 
(listing 7 .2). 
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(3) An observer is defined, and the OBSERVED positions of vertices in the 
scene are calculated (functions findO, look3 and observe: listing 8.1). 

(4) The three-dimensional scene cannot be drawn directly as in two dimensions, 
the routine drawit must first call project which projects the scene onto a 
two-dimensional window before constructing a view on the viewport. 

Organised in this modular way, users will only have to write specific scene 
functions and perhaps datain, drawit and construction functions, and these will 
#include flies "primitiv.c", "graphlib.c" etc. via the draw_a_picture function 
which calls scene. Even these will be in a form similar to the examples we give, 
so this should not prove too difficult. 

There will be situations when the SETUP information can be programmed 
directly into the construction routines and there will be no need to have an 
explicit datain function. In chapter 9, for example, an ellipsoid is constructed by 
function ellipsoid (listing 9.7a). What is important is that the reader recognises 
the various stages in construction and drawing. 

Listing 7.3 

#include 11model3.c" 

1*"""'"*1 
scene() I* Construct scene of one cube *I 

1*""'""*1 
< double P [5][5] 
I* Place Cube as per Example 7.2 in its SETUP position *I 

tran3(0.0,0.0,0.0,P) ; cube(P) ; dataout() ; 
> ; I* End of scene *I 

Example 7.2 
In order that our explanations of the display algorithms are not obscured by too 
complicated objects, we will start all our display descriptions by using a cube. Then 
when these ideas are understood we can add complexity into the scenes with other 
objects. Since the cube is such a useful object we create special SETUP array 
cubevert[8) for the vertices and cubefacet[6) [4) for the facets. The con­
struction function cube is then used to take the information and then 
add a single example of a cube in ACTUAL position to the database, the SETUP 
co-ordinates of the cube are the 8 vertices (1, 1, 1); (1, -1, 1); (1, -1, -1 ); 
(1, 1, -1); (-1, 1, 1); (-1, -1, 1); (-1, -1, -1) and (-1, 1, -1): numbered 1 
through 8. The six facets are thus the sets of four vertices 1, 2, 3, 4; 1, 4, 8, 5; 
1, 5, 6, 2; 3, 7, 8, 4; 2, 6, 7, 3 and 5, 8, 7, 6; see figure 7.2. The peculiar ordering 
of the vertex indices in the facet definitions is to ensure that when viewed from 
outside the object, the vertices occur in an anti·clockwise orientation, an order 
needed for later hidden surface algorithms. If you are not sure if your vertices 
are in the correct order you should check using function orient3 of listing 6.11 
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y-axis Vertices 
1 (+1,+1,+1) 
2 (+1,-1,+1) 
3 (+1,-1,-1) 
4 (+1,+1,-1) 
5 (-1,+1,+1) 

8 4 6 (-1,-1,+1) 
5 7 (-1,-1,-1) 

8 (-1,+1,-1) 

X-OXIS 
Facets 

3 1 1/2/3/4 
6 2 2 1/4/8/5 

Z-OXIS 3 1/5/6/2 
4 3/7/8/4 
5 2/6/7/3 

Figure 7.2 6 5/8/7/6 

in "utility.c". In this example we enter the construction function with an identity 
matrix so that the cube is placed in ACTUAL position identical to its SETUP 
position. Since we are not yet in a position to draw a three-dimensional scene, 
listing 7.3 includes a scene function which takes the cube and places it in this 
simple ACTUAL position and then just stores the ACTUAL scene on disk using 
the dataout function. (The inverse datain function that recreates this ACTUAL 
scene from disk, in the same format generated by dataout, is also given. This 
will be used in the example 8.1.) 

Listing 7.4 

#include "model3.c" 

1* .. ·····*1 
scene() 

1* .... ·-·*1 
I* Construct scene of one cube *I 

{ double A [5J [5J, B [5J [5J, C [5J [5J ,D [5J [5J ,P [5J [5J 
float alpha ; 

I* Place Cube as per Example 7.3 *I 
alpha=·0.927295218 ; rot3(3,·alpha,A) ; 
tran3(1.0,0.0,0.0,B) ; rot3(2,alpha,C) ; 
mult3(B,A,D) ; mult3(C,D,P) ; cube(P) ; 

I* store database *I 
dataout() ; 

} ; I* End of scene *I 



166 High-resolution Computer Graphics Using C 

Example 7.3 
In this example we place the cube in ACTUAL position (scene listing 7 .4) with 
the following three transformations 

(I) Rotate the cube by an angle a:= -0.927295218 radians about the z-axis: 
matrix A. This example is contrived so that cos a: = 3/5 and sin a:= -4/5, 
in order that the rotation matrix consists of uncomplicated elements. 

(2) Translate it by a vector ( -1, 0, 0): matrix B. 
(3) Rotate it by an angle -a: about they-axis: matrix C. 

Remember that these rotations are anti-clockwise with regard to the right­
handed axes. Also note these three transformations are not of axes but of the 
object itself. 

The SETUP to ACTUAL matrix is thus P = C x B x A, where 

A= (!~P~H ~) B= (~! ~ -~) C= (::n 
0 001 0001 00 

and P is given by 

1 -20 ( 
9 

P= 25 -1~ 

12 20 
15 0 

-16 15 
0 0 

-1~) 
20 
25 

4/5 
0 

3/5 
0 

So the above eight vertex SETUP co-ordinates are transformed to the co-ordinate 
triples (26/25, -5/25, 7/25); (2/25, -35/25, 39/25); (-38/25, -35/25, 9/25); 
(-14/25, -5/25, -23/25); (8/25, 35/25, 31/25); (-16/25, 5/25, 63/25); 
(-56/25, 5/25, 33/25) and (-32/25, 35/25, 1/25). 

For example, (1, I, I) is transformed into (26/25, -5/25, 7/25) because 

( 
9 

I -20 
25 -1~ 

12 
15 

-16 
0 

20 
0 

15 
0 

- 1~) x ( ~ ) = _1 ( ~~) 
20 1 25 7 
25 I 25 

The values can be checked by printing out the array values by using dataout. 

Exercise 7.2 
Use the SETUP information of the cube and a scaling matrix as part of the 
SETUP to ACTUAL matrix P so that the cube construction routine places a rec­
tangular block a units long, by b units high by c units deep in its ACTUAL 
position using a matrix P. 
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Exercise 7.3 
Create construction routines for 

(I) A tetrahedron: four vertices {1, I, I); (-I, I, -I); {-I, -I, I) and 
(I, -I, -I){labelled I through 4) and fourfacets I, 2, 3; I, 3, 4; I, 4, 2 and 
4, 3, 2. 

{2) An icosahedron: T = {1 + v'S)/2: twelve vertices {0, I, -r); (T, 0, -1); 
{1, r, 0); (0, -I, -r); (r, 0, I); {-1, T, 0); {0, 1. r); (-r, 0, -1); {1, -T, 0}; 
{0, -1, r); (-T, 0, 1) and {-1, -T, 0). The facets are 1, 3, 2; 1, 2, 4; 1, 4, 8; 
I, 8, 6; I, 6, 3; 2, 3, S; 2, 9, 4; 4, 12, 8; 8, 11, 6; 3,6. 7;2, 5,9;4,9, 12; 
8, I2, 11; 6, 11' 7; 3, 7' 5; 5, IO, 9; 9, 10, I2; I2, IO, 11; 11' 10, 7; 7' IO, s. 

(3) Find your own data for such Archimedean solids as the octahedron, rhom­
bic dodecahedron, pentagonal dodecahedron, cuboctahedron etc. 

Far greater consideration will be given in chapter 9 to the creation of object 
data, but for the moment we need worry only about its form, as the next 
chapter will discuss the representation of a three-dimensional scene on a graphics 
viewport, using the simple cube to illustrate the ideas. 



8 The Observer and the Orthographic 
Projection 

We now address the problem of representing views of three-dimensional scenes 
on the graphics viewport. There are three major stages. In chapter 7 we saw how 
to construct a model of a three-dimensional scene in ACTUAL position. In this 
chapter we consider observing the scene and the display of a corresponding view. 
The display of the scene is co-ordinated by function drawit which may take a 
number of different forms, depending on the type of image required (line draw­
ing, colour etc). This function will be called at the end of the scene function after 
the construction of the model and the positioning of the observer. We shall deal 
with the observer before going on to consider the drawit display. 

We shall assume that the information about the scene to be drawn is stored in 
term:; of vertex co-ordinates in ACTUAL position specified relative to the 
ABSOLUTE co-ordinate system. 

The eye (note only one eye!) is placed at a vector3 position eye relative to 
the ABSOLUTEaxeslookingina fixed vector3 direction direct, say. These values 
are declared in listing 7.2 along with the zero vector. The head can also be tilted, 
but more of this later. We use matrix transformations to calculate the co-ordinates 
of the vertices relative to a triad of axes, called the OESER VER system, which has 
the eye at the origin and direction of view along the negative z-axis. (It would 
make more sense to use left-handed axes here in order that the observer looks 
along the positive z-axis, but because of standardisation we remain with the right­
handed system!) These new co-ordinate values are called the OESER VED co­
ordinates of the vertices. The matrix which represents the transformation from 
ABSOLUTE to OBSERVER systems will be called Q throughout this book and 
is also declared in the database of listing 7 .2. We also declare variables ppd and 
eyedist which are needed for perspective and stereoscopic projections later. 

Construction of the ABSOLUTE to OBSERVER Transformation Matrix Q 

The OBSERVER system has origin eye relative to the ABSOLUTE system with 
negative z-axis parallel to and with the same sense as the direction vector direct. 
See figure 8.1. If the observer wishes to look at the ABSOLUTE origin then 
direct.x = -eye.x, direct.y = -eye.y and direct.z = -eye.z. 

Given a point with co-ordinates specified relative to the ABSOLUTE system, 
we want to determine its co-ordinates relative to the OBSERVER system. These 

168 
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Figure 8.1 

co-ordinates may be found by pre-multiplying a column vector holding the 
ABSOLUTE co-ordinates by a matrix which represents the series of steps required 
to transform the ABSOLUTE axes into the OBSERVER axes. The calculation of 
this matrix is similar to that considered in chapter 7. The rotation of a point 
about a general line b + p.d involved the transformation of the axis system so 
that the origin moved to b and the positive z-axis had direction d. In this case, 
therefore, we take b = (eye.x, eye.y, eye.z) and d= (-direct.x, -direct.y, 
-direct.z), and carry out the equivalent steps (NOTE the minus signs since the 
eye looks along the negative z-axis of the OBSERVER system!). 

(1) The co-ordinate origin is translated to the point b so that the axis of rota­
tion now passes through the origin. This is achieved by the matrix F 

0 
1 
0 
0 

0 
0 
1 
0 

-eye.x ) 
-eye.y 
-eye.z 

1 

The OBSERVER z-axis is now of the form p.d = ll ( -direct.x, -direct.y, 
-direct.z) relative to the transformed system. We now require the z-axis of 
the OBSERVER system and that of the transformed ABSOLUTE system to 
be coincident. This is achieved by the next two steps. 

(2) The axes are rotated about the z-axis by an angle a= tan-1 ( -direct.y/ 
-direct.x). This is represented by the matrix G 

(
-direct.x 

G = .!_ direct.y 
v 0 

0 

-direct.y 
-direct.x 

0 
0 

0 
0 
v 
0 
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(3) 

where the positive number v is given by v2 = direct.x2 + direct.y 2 • The 
OBSERVER z-axis, relative to the resultant co-ordinate axes, is a line lying 
in the xfz plane passing through the point (v, 0, -direct.z), 
The axes are then rotated about the y-axis by an angle {3 = tan- 1 (vf 
-direct.z) a transformation represented by matrix H 

(
-direct.z 0 -v 

H= .!_ 0 w 0 
w v 0 -direct.z 

0 0 0 

where w is the positive number given by 

w2 = v2 + direct.z2 = direct.x2 + direct.y2 + direct.z2 

The combination H x G x F transforms the z-axis of the ABSOLUTE system 
into the z-axis of the OBSERVER system. 

Although the z-axes of the two systems are coincident, this does not mean 
that the triads are identical. Nothing has been said about the positions of the x 
andy axes of the OBSERVER triad. You cannot assume that the ABSOLUTE 
and OBSERVER xfy axes are parallel: far from it. The rotation transformations 
used to relate ABSOLUTE and OBSERVER axes can induce a torque. There is a 
simple physical demonstration of this phenomenon using three rotations. Place 
your right arm at your side, palm inwards. Hold the arm stiff and lift it directly 
in front of you to shoulder level. Now move the arm, keeping at shoulder level, 
until it is to the right of your body. Then, still with the arm stiff, drop it to your 
side. The arm has returned to its original direction but it has twisted through a 
right angle. 

These rotations of the arm were all right angles, arbitrary rotations can intro­
duce quite peculiar torques. We therefore have to standardise in order to avoid 
spurious torques which are by-products of the rotations used in the method of 
linking the two systems and which have nothing to do with the observer or the 
scene. Since the OBSERVER system represents the position and orientation of 
the viewer's head we adopt the convention that they-axis is in the vertical plane, 
parallel to the yfz plane of the ABSOLUTE system, which means that the 
OBSERVER is standing upright. This convention is called maintaining the verti­
cal and results in a vertical line, with general point eye + 1(0, 1, 0) relative to 
the ABSOLUTE system, being transformed to (0, 0, 0) + 1(0, y', z') relative to 
the OBSERVER system. Pre-multiplication of such a point on this line by the 
matrix E = H x G x F gives the new co-ordinates J.l. (v x w) (direct.y x direct.z, 
-w x direct.x, -v x direct.y) = (p, q, r) way. So, in order that the vertical be 
maintained, we must further rotate the system about the z-axis (leaving z co­
ordinates unchanged) so that the vector (p, q, r) has a new x co-ordinate of 
zero. This is achieved by rotation of axes about the z-axis through an angle 
1 = -tan-1 (-direct.y x direct.z/w x direct.x) = -tan-1 (pfq) which is repre­
sented by the matrix U 
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0 
-p 0 

D 1 q 0 U=- 0 t t 
0 0 

where t2 = p 2 + q2 and thus 

u X (D = ~o 
-p 0 

0x C)= G) q 0 
0 t 
0 0 

Thus the complete transformation from co-ordinates in SETUP position to 
those in OBSERVED position is achieved by pre-multiplication with the matrix 
R = Q x P where P is the SETUP to ACTUAL transformation matrix and 
Q = U x H x G x F, the ABSOLUTE to OBSERVER matrix. 

The functions look3 and findQ (listing 8.1 ), given eye and direct, generate 
the matrix Q. The transformation of vertices from ABSOLUTE to OBSERVER 
systems is also given in this listing as function observe (file "display3.c"). 

The OBSERVED co-ordinates of vertices, obs, are declared in the "model3.c" 
database alongside act and setup. 

Listing B. I 

I* Add to file 11display3.c" *I 

1*-------*1 
findQ() I* Calculate observation matrix •Q• for given observer *I 

1*---·---*1 
{ double E [5] [5], F [5] [5] ,G [5] [5], H [5] [5] ,U [5] [5] 

float alpha,beta,gamma,v,w ; 
I* Calculate translation matrix 'f' */ 

tran3(eye.x,eye.y,eye.z,F) ; 
I* Calculate rotation matrix 'G' */ 

alpha=angle(·direct.x,-direct.y) ; rot3(3,alpha,G) 
I* Calculate rotation matrix 'H' *I 

v=sqrt(direct.x*direct.x+direct.y*direct.y) 
beta=angle(-direct.z,v) ; rot3(2,beta,H) 

I* Calculate rotation matrix •u• *I 
w=sqrt(v*v+direct.z*direct.z) ; 
gamma=angle(·direct.x*w,direct.y*direct.z) 
rot3(3,-gamma,U) ; 

I* Combine the transformations to find 1Q1 */ 
mult3(G,F,Q) ; mult3(H,Q,E) ; mult3(U,E,Q) ; 

} ; I* End of findQ */ 
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1*-------*1 
look3() I* Read vector •eye' looking in direction vector 'direct' *I 

1*---·-··*1 
I* Read in observation data *I 
< printf(" Type in eye position and direction of view\n") 

scanf("XfXfXfXfXfXf",&eye.x,&eye.y,&eye.z,&direct.x,&direct.y,&direct.z) 
I* then calculate the observation matrix 'Q' *I 

findOO : 
> : I* End of look3 *I 

1*·-·····-·*1 
observe() 

1*···-·····*1 
< int i : 

for (i=O : i<nov : i++) 
transform(act[i],Q,&obs[i]) : 

> : I* End of observe *I 

Exercise 8.1 

If required, you can extend this function to deal with the situation where the 
head is tilted through an angle 1/> from the vertical. This is achieved by further 
rotating the axes by +1/> about the z-axis. Thus matrix U should rotate about the 
z-axis by an angle 'Y + 1/>. 

Exercise 8.2 
Rewrite the look3 and findO functions so that the position of the observer, the 
direction of view and tilt of the head are given in spherical polar co-ordinates. 

Henceforth, throughout our discussion of projections, all three-dimensional 
co-ordinate values should be understood to refer to the OBSERVER system 
unless otherwise stated. These ideas will be graphically illustrated in example 8.1, 
after we have described how to project a three-dimensional scene onto a graphics 
viewport. 

Projections: the View Plane, the Window and the Viewport 

The viewport is two dimensional (a plane) so, in order to create an image of a 
three-dimensional scene, a mapping from three-dimensional space onto this 
plane is required. 

What the eye sees when looking at a three-dimensional scene is a projection of 
the vertices, lines and facets of the object onto a view plane which is perpendicu­
lar to the line of sight. A projection is defined by a set of lines which we call the 
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lines of projection. The projection of a point onto a plane is the point of inter· 
section of the plane with the unique line of projection which passes through the 
point. The projection of a line onto a plane is the line in the plane joining the 
projections of its two end-points. The projection of a facet onto a plane is 
the polygon formed by the projection of its vertices. 

In the OBSERVER system we note that the view plane is of the form z = -d 
(for some d ~ 0) -a plane parallel to the xjy plane. Vertices are projected onto 
this plane by some method (via a function project), producing projected points 
with co-ordinates of the form (xp, yp, -d) where xp and yp depend upon the 
type of projection and d is the ftxed perpendicular distance of the view plane 
from the eye. The projected values of the obs vertices from the database are also 
declared in listing 7.2 ("model3.c"). 

struct vector2 pro[maxv]; 

The problem is thus reduced to that of representing in the graphics viewport the 
two-dimensional image which is projected onto the view plane. Apart from the 
extra projection step, this is exactly equivalent to the graphical representation of 
two-dimensional space which we discussed in chapter 4. Recall that we identified 
the viewport with a rectangular area of the two-dimensional Cartesian plane 
which we called the window. Points within this window were identified with 
pixels within the viewport using two functions fx and fy which transformed 
their Cartesian x andy co-ordinates to pixel co-ordinates. In order to follow this 
process for the representation of a view of three-dimensional space we must 
simply specify a window and co-ordinate system on the view plane. We define 
such a two-dimensional co-ordinate system, which we call the WINDOW system, 
simply by saying that a point on the view plane with OBSERVED co-ordinates 
(xp, yp, -d) has WINDOW co-ordinates (xp, yp). Thus the x andy axes of the 
WINDOW system are lines in the view plane which are parallel to the x and y 
axes (respectively) of the OBSERVER system and its origin is on the OBSERVER 
z-axis at z = -d. The window itself is defined in a manner exactly equivalent to 
that in two dimensions - as a rectangle, centred on the origin, with edges of 
length horiz parallel to the x-axis and vert parallel to the y-axis. We then 
identify the x andy co-ordinates of points in the window with pixels in the view­
port. Once the vertices have been projected onto the view plane and thence onto 
the viewport, we can construct the projection of facets. The facet definitions in 
terms of vertex indices are preserved whatever position (SETUP, ACTUAL or 
OBSERVED) or co-ordinate system (ABSOLUTE, OBSERVER, WINDOW or 
viewport) we use. Since facets are defined in terms of pointers to vertex indices 
we may use precisely the same definition for the projected facets with the under­
standing that the pointers then refer to the WINDOW co-ordinates and hence 
the viewport representation of these vertices as opposed to the ABSOLUTE or 
OBSERVER systems. 

We are now ready to consider the projection of the vertices onto the view 
plane in function project. As yet we have neither defined the position of the 
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view plane (the value d), nor have we described the type of projection of three­
dimensional space onto the plane. These requirements are closely related. In this 
book we will consider three possible projections- in a later chapter we will deal 
with the perspective and stereoscopic projections, but frrst we introduce the 
simplest projection - the orthographic, sometimes called the axonometric or 
orthogonal projection. 

The Orthographic Projection 

A parallel projection is a projection under which points in three-dimensional 
space are projected along a fJXed direction onto any plane: it is characterised by 
having parallel lines of projection. The orthographic projection is a special case 
whereby the lines of projection are perpendicular to the plane (it is sometimes 
referred to simply as the parallel projection). We can choose the view plane to be 
any plane with normal vector along the line of sight. This means that we can 
choose any plane parallel to the x/y plane of the OBSERVER system and for 
simplicity we take the plane through the origin, given by the equation z = 0. The 
vertices of the object are thus projected onto the view plane by the simple 
expedient of setting their z co-ordinates to zero. Thus any two different points 
with OBSERVED co-ordinates (x, y, z) and (x, y, z') say (where z -::#= z'), are 
projected onto the same point (x, y, 0) on the view plane, and hence the point 
(x, y) in the WINDOW system. Although we can use the x andy co-ordinates of 
the obs values as the projected co-ordinates in this case, this will not be so in 
general. To maintain consistency we copy these into the pro array in function 
project. The orthographic project is given in listing 8.2. Note that the function 
calculates the projection of all ntv vertices and hence ntv must be evaluated 
before the call to project, which in turn must be declared before it is called. 
Note listing 8.2 is stored in file "display3.c" for #includ(e)ing as and when 
needed. 

Listing8.2 

I* Add to a file "display3.c" *I 

1*·-·-·····*1 
project() I* Orthographic projection of OBSERVED vertices *I 

1*·········*1 
( int i ; 

for Ci=O ; i<ntv ; !++) 
( pro [i] • x=obs [i] • x ; pro [i] • y=obs [ il . y ; 

) ; 
> ; I* End of project *I 
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1*···········*1 
wireframe() 

I*·· ..•..•. ··*I 
I* Wire diagram of closed objects + superficial facets *I 
{ int i,j,k,v1,v2; 
I* View each facet 'i' in turn *I 

for (i=O ; i<ntf ; i++) 
{ j=nfac [iJ ; 

if (j != ·1 ) 
{ v1=faclist[facfront[j]+size[j]·1l 

I* For facet 'i' consider the size[j] lines on its boundary *I 
for (k=O ; k<size[j] ; k++) 

I* Typical line joins vertex index 1v1• to vertex index 'v2 1 *I 
I* Only join vertices if •v1<v2' on non-superficial facet *I 
I* If objects in the figure are not closed then rewite the *I 
I* code so that lines are drawn in both directions! *I 

) ; 
) ; 

{ v2=faclist[facfront[jl+kl ; 
if ( (v1 I= v2) II (super [i] ! = ·1 )) 

< moveto(pro[v1]) 
lineto(pro[v2]) 

) ; 
v1=v2 

) ; 

) ; I* End of wireframe *I 

1*········*1 
draw itO I* 3·0 wireframe version *I 

1*········*1 
{ ntv=nov ; ntf=nof 
I* Set vertex counts *I 
I* Project vertices and draw wire frame diagram *I 

project() ; wireframe() 
) ; I* End of drawit *I 

Drawing a Scene 

175 

Most of the remainder of this book will be dealing with the drawing of projec­
tions of three-dimensional scenes. This will include discussions of hidden line 
and surface removal, three-dimensional clipping, shading, shadows etc. The 
necessary functions are declared before and called as required from a controllmg 
function, drawit. Such a routine will be employed in a number of different forms 
throughout the book. In the simplest case (listing 8.2) drawit will call project 
followed by another function wireframe which will draw a line diagram of the 
scene. drawit and wi reframe are also added to "display3.c". 
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Listing 8.3 

#include "model3.c" 
#include "display3.c" 

1*·······*1 
scene() I* Read in ACTUAL scene from disk, and draw it *I 

1*·······*1 
{ datain() ; look3() ; observe() ; drawit() ; 
} ; I* End of scene *I 

(a) 

(c) 

Figure 8.2 

Example 8.1 

(b) 

(d) 

We use the above ideas to draw an orthographic projection of either of the cubes 
defined in example 7.2 or 7 .3. Une-figures such as those in figure 8.2 are called 
wire diagrams or skeletons (for obvious reasons) and are drawn by a function 
wireframe. The required scene function which draws the picture is given in list­
ing 8.3, and uses datain to read in the scene from disk, where it was stored by 
dataout (listing 7.2). 
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In SETUP position (relative to the ABSOLUTE co-ordinate system) the cube 
consisted of eight vertices (1, 1, 1), (1, -1, 1), (1, -1, -1), (1, 1, -1), (-1, 1, 1), 
(-1, -1, 1), (-1, -1, -1) and (-1, 1, -1): labelled numerically 1 to 8. The 
twelve lines, each of which is an edge common to two adjacent facets join ver­
tices 1 to 2, 2 to 3, 3 to 4, 4 to 1; 5 to 6, 6 to 7, 7 to 8, 8 to 1; 1 to 5, 2 to 6, 
3 to 7 and 4 to 8. We do not have the line information stored explicitly, however 
it can be derived from the facet data. Since each line occurs twice in the data of 
a closed convex body and we have oriented the facets anti-clockwise, then if an 
edge on one facet joins vertex I to vertex J, then on an adjacent facet there will 
be an edge joining J to I. Therefore, if, in wireframe (listing 8.3), we go round the 
edges of all the facets in anti-clockwise order, only drawing a line between con­
secutive projected vertices if the larger vertex index follows the smaller, then we 
will draw each line once but only once. The line is assumed to be drawn in the 
current logical colour. wireframe only works with closed objects, that is it is im­
possible to get inside an object other than by passing through a surface facet. If 
you wish to draw non-closed objects, then wireframe must be rewritten so that 
each edge line of every facet is drawn, irrespective of the order of the vertex 
indices! 

Figure 8.2a shows the simplest possible example of an orthographic projec­
tion of the cube, where both the SETUP to ACTUAL matrix and the ABSOLUTE 
to OBSERVER matrix are identity matrices (example 7.2) - that is, the cube 
stays in its SETUP position and the observer is looking along the negative z-axis. 
We get a square. Pairs of parallel lines from the front and back of the cube 
project into the same line on the viewport. 

Figure 8.2b shows the cube from example 7.3 drawn in its ACTUAL position 
but viewed with the observer on the z-axis looking along it in the negative direc­
tion (matrix Q is then the identity matrix). We calculated the eight ACTUAL 
co-ordinate triples to be (26/25, -5/25, 7/25), (2/25, -35/25, 39/25), 
(-38/25, -35/25, 9/25), (-14/25, -5/25, -23/25), (8/25, 35/25, 31/25), 
(-16/25, 5/25, 63/25), (-56/25, 5/25, 33/25) and (-32/25, 35/25, 1/25). Since 
we assume the ABSOLUTE to OBSERVER matrix Q to be the identity matrix, 
the projected WINDOW co-ordinates of the vertices are thus: (26/25, -5/25), 
(2/25, -35/25), (-38/25, -35/25), (-14/25, -5/25), (8/25, 35/25), 
(-16/25, 5/25), (-56/25, 5/25) and (-32/25, 35/25). These WINDOW co­
ordinates are identified with pixels in the viewport and the lines defined above 
are drawn by joining (with straight lines) the projections of the vertices in the 
correct combinations. 

Figure 8.2d shows the image produced of the cube in example 7.2 using these 
methods with the observer at the ABSOLUTE position (I, 2, 3) looking towards 
the origin in the direction ( -1, -2, -3), with the vertical maintained. Figure 
8.2c shows the image produced by the same process with the maintenance of 
vertical omitted. Note that this technique works in all cases except where 
direct.x = direct.z = 0 is the vertical direction, and naturally maintaining the 
vertical makes no sense. In this case the program would not fail; the fmal trans­
formation is just an illogical step, producing an arbitrary rotation. 
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Listing8.4 

#include 11model3.c" 
#include 11display3.c11 

1*·------*1 
scene() 

1*····--·*1 
I* A scene consisting of two cubes *I 

<double A[5][5J,B[5][5J,P[5][5] ; 
I* First Cube*/ 

scale3(1.0,1.0,1.0,P); cube(P); 
I* Second cube */ 

scale3(1.5,1.5,1.5,A) ; tran3(·4.0,·2.0,·4.0,B) ; 
mult3(B,A,P) ; cube(P) ; 

I* Observe, project and draw object */ 
look3() ; observe() ; drawit() 

> ; I* End of scene */ 

Example 8.2 
Listing 8.4 creates a scene consisting of two cubes, one of side 2 placed in its 
SETUP position, the other with side 3 translated to ( 4. 2. 4). Note the com­
plete program #include(s) cube (listing 7 .2), findO, look3, observe (listing 8.1 ), 
project, drawit and wireframe (listing 8.2), as well as the necessary functions 
from listings 1.1, 1.3, 7.1 and 7.2. We noted earlier how the call to scene inside 
function draw_a_picture links the modelling and display to the primitive graphics 
functions. 

Pictures containing a number of similar objects can be drawn with a minimum 
of extra effort. A scene such as figure 8.3 containing two cubes, for example, 
may be constructed using listing 8.4 by calling the cube routine from listing 7.2 
twice within the scene function, on each occasion with a different matrix P. This 
is what we call the building block method. Each construction routine creates 
a block which is included in the model for the scene. Information relating to the 
observer is introduced and look3 and findO calculate the matrix Q which is used 
by observe to calculate the OBSERVED co-ordinates of each vertex. Finally, 
drawit calls project to project these vertices onto the view plane before calling 
wireframe to draw a picture. 

This modular approach of solving the problem of defining and drawing a 
picture does greatly clarify the situation for beginners, enabling them to ask the 
right questions about constructing a required scene. Also when dealing with 
multiple views (for example, in animation), this approach will minimise prob­
lems in scenes where not only are the objects moving relative to one another. but 
also the observer itself is moving. 

In summary, the orthographic projection of each object in a three-dimensional 
scene is produced by the following process 
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(1) Define objects in the scene in their SETUP position with the co-ordinates of 
vertices specified 111 relation to the ABSOLUTE axes. The facets of the 
scene may also be defined at this stage. 

( 2) Calculate the matrix P which moves the vertices of each object to their 
ACTUAL position, the co-ordinates still relating to the ABSOLUTE system, 
by pre-multiplication of their SETUP co-ordinates. These co-ordinates are 
stored in array act. If a scene is to be made up of a number of different 
objects, steps (I) and (2) may be repeated for each, the arrays being up­
dated at every pass. 

(3) Calculate the matrix Q given the position of the eye relative to the ABSO­
LUTE system, and a direction of view, vector3 values eye and direct. Calcu­
late the OBSERVED co-ordinates of the vertices relative to the OBSERVER 
axes with eye at the origin and the negative z-axis along the direction direct, 
by pre-multiplying the co-ordinates of the ACTUAL position by Q. These 
OBSERVED co-ordinates are stored in the xfy co-ordinates of array obs. 

(4) Calculate the WINDOW co-ordinates of the vertices on the view plane, pro. 
For the orthographic projection this simply involves taking their x andy 
OBSERVED co-ordinates, which are already stored in the array obs. Identify 
the projected co-ordinates with the co-ordinate system of the viewport and 
plot the points using the real-to-pixel functions of chapter I. The lines may 
also be drawn by joining their projected end-points. For the moment you 
will draw only the facet edges and not the facets themselves in pictures of 
three-dimensional scenes. Facets will be considered in later chapters. 

Exercise 8. 3 
If you require only a single view of a scene, rather than use the intermediate 
storage of the ACTUAL and OBSERVED positions, it is more efficient to go 
directly from SETUP position to projected WINDOW co-ordinates. Now each 
construction routine must be called with matrix parameter R = Q x P, and the 
vertices immediately projected into pro. Cannibalise the programs from this 
chapter in such a way. 

Figure 8.3 
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The previous chapter introduced our method for constructing and drawing scenes: 
a function scene is used to construct data about a three-dimensional scene via 
construction routines, some input from ftle. Then the vertices are transformed 
into the OBSERVED position, and the function drawit is called to display the 
scene In the following chapters we will give a number of different types of 
drawit, project and facet display functions, dependent only on the projection and 
type of picture you require: line drawing, colour with/without shading, shadows 
etc. All the reader need do is create the relevant scene and construction routines 
and call the correct drawit function. 

All? As you go further into computer graphics you will discover that the vast 
majority of human effort in this subject is put into the construction of data and 
not in the display algorithms. Any technique that will ease this burden is obviously 
of great advantage. In this chapter we shall introduce you to some tricks of the 
trade, which may help you in specific cases, and lead you into the correct 
approach to the construction of data. 

Using File Input with Construction Routines 

In the previous chapter we saw how the method of building blocks can be used 
to construct scenes using just a few elementary construction routines and 
limited SETUP files. We shall see that even this simple idea can give rise to very 
complicated scenes. 

Example 9.1 
To illustratethismethodfurtherwe give a scene function that draws figure 9.la, two 
peculiarly shaped pyramids on a thin rectangular table top. A ftle "pyramid.dat" 
holds the information needed to define a pyramid with a square base of side 
2 units and height 1 unit. The construction routine pyramid uses the SETUP-to­
ACTUAL matrix P to place in the database the data for a pyramid in its proper 
ACTUAL position. The scale of the pyramid can be changed by introducing a 
scaling matrix into the definitiOn of P. Note that the ACTUAL positions of each 
object are individually stated in the definition of the various P matrices in the 
scene of listing 9 .1. Everything is given in absolute terms, the relative positions 
of the objects are not considered. 

180 
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The drawit, project and wireframe functions to achieve figure 9.1a are taken 
from listing 8.2 "display3.c". Figure 9.lb is the same scene drawn in perspective 
and with the hidden lines removed: project now comes from listing 11.1, and 
drawit from listing 10.1 calls hidden (listing 12.1); these functions replacing and 
adding to the original ones in "display3.c". You will note that all other functions 
remain unchanged, which demonstrates the power and ease of use of this modular 
approach. 

(a) 

Listing 9.1 

#include "model3.c" 
#include "display3.c 11 

1*--------------*1 
pyramid(P,col) 

1*--------------*1 
double P [] [5] ; 
int col ; 

(b) 

Figure 9.1 

I* Construction routine for a pyramid. Initially of unit height and, *I 
I* base 2 by 2, the block is distorted by the scaling matrix component *I 
I* of 'P'- Pyramid has logical colour •col' *I 
( int i,j,invalue; 

FILE *indata ; 
indata=fopen("pyramid.dat","r") 

I* Update facet data base with 5 new facets. All are triangular *I 
for (i=O ; i<S ; i++) 

( for (j=O ; j<3 ; j++) 
( fscanf(indata,"%d",&invalue) 

faclist[firstfree+jl=invalue+nov; 
) ; 

facfront[nofl=firstfree ; size[nof]=3 ; 
firstfree=firstfree+size[nofl ; 
colour[nof]=col ; nfac[nofl=nof ; 
super[nofl=-1 ; firstsup[nof]=NULL nof=nof+1 

) ; 
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I* Don't forget the 4 vertices on firstfree facet *I 
size[nof-1l=4 ; faclist[facfront[nof-1J+3J=1+nov ; 
firstfree=firstfree+1 ; 

I* Update vertex data base with 5 new vertices in ACTUAL position *I 
for ( i=O ; 1<5 ; i++) 

< fscanf(indata,"XfXf%f",&setup[iJ.x,&setup[iJ.y,&setup[iJ.z) 
transform(setup[iJ,P,&act[novJ) ; nov=nov+1 ; 

> ; 
fclose(indata) ; 

> ; I* End of pyramid *I 

1*--·-··-*1 
scene() 

1*·--··-·*1 
I* Construct scene of two pyramids on a tabletop *I 

<double A[5J [5] ,8[5] [5],P[5] [5] ; 
I* First the tabletop *I 

scale3(4.0,0.2,4.0,P) cube(P) ; 
I* Then pyramid 1 *I 

scale3(2.5,4.0,2.5,A) tran3(2.0,·0.2,2.0,B) 
mult3(B,A,P); pyramid(P,1) ; 

I* Then pyramid 2 *I 
scale3(2.0,4.0,2.0,A) ; tran3(·3.0,·0.2,0.0,B) 
mult3(B,A,P) ; pyramid(P,2) ; 

I* Observe, project and draw *I 
look3() ; observe() ; dataout() drawit() 

> ; I* End of scene *I 

File "pyramid.dat" 

0 1 2 
0 2 3 
0 3 4 
0 4 
4 3 2 
0.0 1.0 0.0 
1.0 0.0 ·1.0 

·1.0 0.0 ·1.0 
·1.0 0.0 1.0 
1.0 0.0 1.0 

Exercise 9.1 
Use this method to draw arbitrary scenes consisting not only of cubes and 
pyramids, but also the icosahedron, and other Archimedean solids mentioned 
in chapter 7. 
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Graph Paper Construction 

So far we have not considered how to construct the data stored in the files, 
neither the co-ordinates of the vertices nor their order in defming facets. With 
objects like a cube or pyramid this information is relatively easy to visualise, but 
what if an object like one of the idealised houses in figure 9.2b is required? A 
popular method is to draw rough sketches on squared graph paper of partial 
orthographic views of the SETUP object from the x, y and z directions as in 
figure 9 .2a. As in this diagram, vertices are indicated by their index number in 
the database - each may occur in a number of different projections, and the 
x, y and z co-ordinates can be read directly from the graph paper. The orien· 
tation of the facets can also be taken from the graph paper. Note that facets 
representing the windows and doors must be included. In this model they are 
considered to be superficial, simply lying on the surface of another larger host 
facet. So although they have an existence in their own right, each must be asso­
ciated with its relevant host facet. This is achieved by the array attribute super 
stored "in the global database. super [i] has a value j if fac.et i is superficial to 
facet j, otherwise super(i] is set to zero. Furthermore each facet j is allocated a 
linked list of indices of all the facets that are superficial to facet j. This list is 
stored using a heap such as that described in chapter 2. The heap is implemented 
using an array of heapcell elements (each a record of two integer fields info and 
pointer) given in "stack.c" (listing 2.4b), firstsup[j] refers to the cell in the heap 
which contains the first element in the list of facets superficial to facet j. Hence 
super[firstsup[j)] .info is the index of the first facet in the list and super[first­
sup [j] ] .ptr points to the next element in the list. The function for initialising 
the heap heapstart, is called from draw_a_picture of listing 7 .2. 

Example 9.2 
Figure 9.2b shows four such houses defined by data (from file "house.dat") con­
taining superficial facets for doors and windows. They are placed in position by 
scene (listing 9 .2), projected by project (listing 11.1 : perspective) and drawn 
with the hidden line drawit (listing 12.1), all of which must be stored in a ftle 
"display3.c". We could have used the orthographic wireframe drawit of listing 
8.3 Both of these display functions assume that all objects in the scene are 
closed: you will have to change the listings slightly if you wish to draw non-closed 
objects (see chapter 8). 

Listing 9.2 

#include "model3.c" 
#include 11display3.c" 

1*--------*1 
house(P) 

!*-----···*/ 
double P [] [5] 

t* Construction routine for idealised house*/ 
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< int i,host,invalue,nofstore : 
FILE *indata : 
indata=fopenC"house.dat11 ,"r") 

I* Update facet data base with 19 new facets */ 
I* First the 1 faclist• array, then 'facfront' etc. */ 

for Ci=O : i<79 : i++) 
{ fscanf(indata,"%d11 ,&invalue) : 

faclist[firstfree+il=invalue+nov: 
> : 

nofstore=nof : 
for Ci=O : i<19 : i++) 

< facfront[nofl=firstfree : 
fscanf(indata, 11%d11,&size[nof]) 
firstfree=firstfree+size[nof] : nfac[nofl=nof 

I* Deal with superficial facets *I 
if (i<7) 

colour [nof] =3 : 
else colour[nofJ=4 : 
fscanf(indata, 11%d11 ,&super[nofJ) firstsup[nofl=NULL 
if Csuper[nofl != -1) 

< host=super[nofl+nofstore : 
super[nofl=host : 
pushC&firstsup[hostJ,nof) 

) : 
nof=nof+1 : 

> : 
I* Update vertex data base with 59 new vertices in ACTUAL position *I 

for Ci=O : i<59 : i++) 
< fscanf(indata,""f"fXf 11 ,&setup[il.x,&setup[iJ.y,&setup[il .z) 

transform(setup[iJ,P,&act[novJ) : nov=nov+1 : 
> : 

close(indata) : 
> : I* End of house *I 

1*··-··-·*1 
scene() 

1*··--···*1 
I* Create ACTUAL scene of 4 houses *I 

<float piby2 = 1.5707963268: 
double A [5][5] ,B [5] [5] ,P [5] [5] 

I* Create four houses *I 
tran3(0.0,0.0,12.0,P): house(P) 

rot3(2,·piby2,A) : tran3(12.0,0.0,0.0,B) 
mult3CB,A,P) : house(P) : 

rot3(2,pi,A) tran3(0.0,0.0,·12.0,B) 
mult3CB,A,P) house(P) : 



Generation of Model Data 

rot3(2,piby2,A) ; tran3(·12.0,0.0,0.0,B) ; 
mult3(B,A,P) ; house(P) ; 

look3() ; observe() ; drawit() 
} ; I* End of scene */ 

File "house.dat" 

0 1 5 4 4 5 6 9 1 2 7 6 5 
7 8 9 6 3 0 4 9 8 3 2 1 0 

14 15 16 17 18 19 20 21 22 23 24 25 
30 31 32 33 34 35 36 37 38 39 40 41 42 
47 48 49 50 51 52 53 54 55 56 57 58 

4 ·1 4 ·1 5 ·1 4 ·1 4 ·1 5 ·1 4 ·1 
4 0 4 2 4 3 4 3 5 3 4 3 4 3 

·6 0 4 6 0 4 6 0 ·4 ·6 0 ·4 
6 8 4 6 11 0 6 8 ·4 ·6 8 ·4 

·4 1 4 ·1 1 4 ·1 3 4 ·4 3 4 
·1 5 4 ·1 7 4 ·4 7 4 0 0 4 
5 4 4 0 4 4 5 4 4 5 4 
1 7 4 6 5 ·1 6 5 ·3 6 7 ·3 
5 1 ·4 2 1 ·4 2 3 ·4 5 3 ·4 
2 5 ·4 2 7 ·4 5 7 ·4 1 0 ·4 

·1 3 ·4 0 4 ·4 1 3 ·4 ·2 1 ·4 
·5 3 ·4 ·2 3 ·4 ·2 5 ·4 ·5 5 ·4 
·2 7 ·4 ·6 0 , ·6 0 3 ·6 3 3 
·6 5 , ·6 5 3 ·6 7 3 ·6 7 , 
Exercise 9.2 

2 3 8 7 
10 11 12 13 
26 27 28 29 
43 44 45 46 

4 0 4 0 
4 5 4 5 

·6 8 4 
·6 11 0 
·4 5 4 
5 0 4 
4 7 4 
6 7 ·1 
5 5 ·4 

·1 0 ·4 
·5 1 ·4 
·5 7 ·4 
·6 3 , 
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4 0 

Extend the house database to include a chimney, curtains on the windows etc. 
Produce a construction routine for a second style of house. Add garages. Put a 
housing estate of both types of house on a large gridded rectangular area. 

Using the datain function 

Very often the same scene will be required over and over again. We have seen 
that, rather than regenerate the data each time it is needed, it makes more sense 
to create it once, and store the information on backing store with a dataout 
function (listing 7.2). You can create the scene directly by typing data from the 
keyboard into such a file. When it is needed this data can be read directly into 
the database by a datain function (listing 7.2) and drawn, with a minimum of 
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Figure 9.2(b) 

transformations needed. The information may be stored in SETUP or more 
usually in ACTUAL position. You will then use the scene function of listing 8.3 
to initiate the graphics process, using findO, look3, observe and the relevant 
functions drawit, project etc. 

Listing 9.3 

File "model. in" 

20 36 

3.0 3.0 ·3.0 ·3.0 3.0 ·3.0 ·3.0 ·3.0 ·3.0 
3.0 ·3.0 ·3.0 ·3.0 ·3.0 3.0 3.0 ·3.0 3.0 
3.0 3.0 3.0 ·3.0 3.0 3.0 ·3.0 o.o ·3.0 
0.0 ·3.0 ·3.0 3.0 ·3.0 0.0 3.0 0.0 3.0 
0.0 3.0 3.0 ·3.0 3.0 o.o 5.0 ·1.0 1.0 

·1.0 5.0 1.0 ·1.0 ·1.0 ·5.0 ·5.0 1.0 ·1.0 
1.0 ·5.0 ·1.0 1.0 1.0 5.0 
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3 3 -1 0 10 3 3 3 ·1 10 11 5 
3 3 ·1 0 6 11 3 3 ·1 6 0 12 
3 3 ·1 12 13 7 3 3 ·1 13 0 
3 3 ·1 0 8 3 3 ·1 2 8 9 
3 3 ·1 0 3 9 3 3 ·1 7 13 4 
3 3 ·1 13 1 8 3 3 ·1 2 4 8 
3 3 ·1 2 9 4 3 3 ·1 3 10 9 
3 3 ·1 5 4 10 3 3 ·1 4 5 11 
3 3 ·1 11 6 12 3 3 ·1 12 7 4 
3 3 ·1 0 14 10 3 3 ·1 14 11 10 
3 3 ·1 0 11 14 3 3 ·1 12 0 15 
3 3 ·1 12 15 13 3 3 ·1 15 0 13 
3 3 ·1 8 0 16 3 3 ·1 9 8 16 
3 3 ·1 0 9 16 3 3 ·1 4 13 17 
3 3 ·1 17 13 8 3 3 ·1 4 17 8 
3 3 ·1 9 18 4 3 3 ·1 9 10 18 
3 3 ·1 10 4 18 3 3 ·1 11 19 4 
3 3 ·1 11 12 19 3 3 ·1 4 19 12 

Example 9.3 
Figure 9.3 shows an interpenetrant cube (the shape of a Fluorite crystal) con-
structed from the file information given in listing 9 .3. Note that by calling the 
relevant drawit and project functions the object can be drawn in orthographic 
perspective or stereoscopic projection, as a wire diagram or with the hidden 
lines removed; later we will see how it can be drawn in colour, with shadows 
etc. 

Figure 9.3 
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Exercise 9.3 
Save the data for the houses in example 9.2 on backing store wtth dataout. 
Then use the scene function of listing 8.3 to read it back into memory and draw 
figure 9.2. 

Relative Positioning of Objects 

Thus far all objects have been considered independent of one another and they 
are placed in position by a scene function. We often need to create complex 
objects with component parts that are themselves objects with their own con· 
struction files. 

Example 9.4 
Take, for example, the hollow cube shown in figure 9.4. It consists of twenty 
blocks, twelve rectangular prisms and eight cubes. Each has a well-defined 
position relative to every other. In order to create a SETUP position for this 
hollow cube, we can imagine each block being moved into an ACTUAL position 
around the origin, by its own unique SETUP-to-ACTUAL matrix. Pre-multiplying 
each of these twenty matrices by the SETUP-to-ACTUAL matrix of the whole 
object will enable us to calculate the final ACTUAL position of its component 
vertices. Also note that in certain geometrically defined objects (such as this 
hollow cube) it may be possible to calculate these matrices implicitly (within a 
loop) rather than to type them in explicitly. See how the cube data from listing 
7.2 is used in listing 9.4 to achieve this. 

Listing 9.4 

#include "model3.c" 
#include "display3.c" 

1*--···-----*1 
hollow(P1) 

1*--·-·-----*1 
doubt e P1 [] [5] 

I* Routine to place hollowed cube in ACTUAL position *I 
I* 'P1' is matrix that moves hollow cube into position *I 
I* 'P2' is matrix that moves each component prism into an ACTUAL *I 
I* position which is SETUP for the hollow cube *I 
I* 'P=P1xP2' places component into ACTUAL position for final scene *I 
( double A[5] [5] ,B[5l [5] ,P[5] [5] ,P2[5] [5] 

int i ; 
I* Setup the 8 corner cubes *I 

for (i=O ; i<8 ; i++) 
< tran3(4.0*cubevert[iJ.x,4.0*cubevert[i].y,4.0*cubevert[iJ.z,P2) 

mult3(P1,P2,P) ; cube(P) ; 
} ; 
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I* Setup the 12 rectangular prisms which join corner cubes *I 
for <i•O ; i<4 ; i++) 

< scale3(3.0,1.0,1.0,A>; 
tran3(0.0,4.0*cubevert[i).y,4.0*cubevert[i).z,B) 
mult3(A,B,P2) ; mult3(P1,P2,P) ; cube(P) ; 
scale3(1 .0,3.0,1.0,A); 
tran3(4.0*cubevert[i).y,0.0,4.0*cubevert[i].z,B) 
mult3(A,B,P2) ; mult3<P1,P2,P) ; cube(P) ; 
scale3(1.0,1.0,3.0,A) ; 
tran3(4.0*cubevert[i].z,4.0*cubevert[i].y,O.O,B) 
mult3(A,B,P2) ; mult3(P1,P2,P) ; cube(P) ; 

} ; 
> ; I* End of hollow *I 

1*···---·*1 
scene() 

1*· ··-· · ·*1 
I* Construct SCENE of one hollowed cube in SETUP position *I 
<double P[5J[5J ; 

tran3(0.0,0.0,0.0,P) ; hollow<P> 
look3() ; observe() ; drawit() ; 

> ; I* End of scene *I 

Exercise 9. 4 
Much of the data created in the previous example is redundant. Certain facets 
occur twice , perhaps in different orientations, being common to two different 
component blocks; these lie inside the body anyway and may be ignored. Also 
the same absolute vertex may be referred to by different indices; it may have 

Figure 9.4 
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been created separately in different blocks. Write a function which runs through 
the database and removes such inefficient duplication. Also see exercise 12.2. 

Example 9.5 
In example 9.4 all the vertices come ultimately from transforming vertices given 
in a SETUP file. There are some cases where new vertices can be created in con­
struction routines, with positions given relative to other vertex values, perhaps 
explicitly defined in a function. The stellar body shown in figure 9.5 and pro­
grammed in listing 9.5, for example. This is a cube with pyramids added to each 
face. Note that six new vertices are added to the database and that the original 
cube faces are not included in the final object, since they will be totally obscured 
by the pyramids. Their orientation, however, is used to orientate the stars facets. 

Listing 9.5 

#include "model3.c" 
#include "display3.c11 

I*·------- ·*I 
star(P,d) I* function to place stellar body in ACTUAL position *I 

1*---------*1 
double P [] [5] ; 
float d ; 

{ int i,j,v1,v2 ; 
double A[5l [5] ,S[5] [5] 
static struct vector3 vec[6]={1,0,0, 0,1,0, 0,0,1, 0,0,·1, 0,·1,0, -1,0,0} ; 

I* For each side of a cube, update data base with 4 new facets *I 
for (i=O ; i<6 ; i++) 

I* Go round the edges of each cube facet *I 
{ v1=cubefacet[i] [3]+nov ; 

for (j=O ; j<4 ; j++) 
< v2=cubefacet[il [j]+nov; 

I* Add a triangular facet to data base *I 
faclist[firstfree]=v1 ; 
faclist[firstfree+1]=v2; 
faclist[firstfree+2]=nov+8+i 
facfront[nofl=firstfree; size[nofl=3 ; 
firstfree=firstfree+size[nofl ; colour[nofl=3 
nfac[nofl=nof ; super[nofl=-1 ; 
firstsup[nof]=NULL ; v1=v2 ; nof=nof+1 ; 

} ; 
} ; 

I* Update vertex data base with 8 cube corners in ACTUAL position *I 
for <i=O ; i<8 ; I++) 

{ transform(cubevert[i],P,&act[nov]) ; nov=nov+1 ; 
} ; 

I* Update vertex data base with 6 stellar points in ACTUAL position *I 
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/*Data for stellar points must be scaled by 'd' *I 
scale3(d,d,d,A) ; mult3(A,P,S) ; 
for Ci=O ; i<6 ; i++) 

{ transform(vec[i],S,&act[novl) nov=nov+1 
) ; 

) ; I* End of star *I 

1*-------*1 
scene() I* scene of one stellar body in SETUP position *I 

1*-------*1 
<double P[SJ [5] ; 
I* Construct scene of one stellar body in SETUP position *I 

tran3(0.0,0.0,0.0,P) ; star(P,5.0) 
look3() ; observe() ; drawit() ; 

) ; I* End of scene *I 

Figure 9.5 

Exercise 9.5 
Draw stellar bodies based on a tetrahedron, icosahedron etc. 

Extrusion 

We are all used to drawing pictures in two dimensions, but three dimensions is 
another matter. Therefore any method that will enable us to extend a two­
dimensional object into three dimensions will be of enormous value. We will 
consider two methods here. The first, extrusion, takes a two-dimensional poly­
gonal convex facet of say n ordered vertices stored in a vector2 array v, {( v [ i] .x. 
v[i] .y)li = O .. n- 1}, and gives it thickness d. This will result in a three-dimension­
al object of 2 + n facets, the front and back facets (each of n sides) and n four­
sided facets which are created by each of the n edges of the original face being 
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extruded in the negative z direction of the ABSOLUTE right-handed co-ordinate 
system. The whole process is programmed in listing 9.6a. When viewed from out­
side the object, each of the final 2 + n facets in three-dimensional space will have 
the same orientation as the original two-dimensional polygon. This routine is 
stored in a file "construc.c". 

Example 9.6 
Figure 9.6a shows the line-drawn letter H (scene function of listing 9.6b and 
extrude #included from "construc.c") consisting of 3 two-dimensional facets 
after it is extruded into three dimensions. The data for this letter is on file 
"letterH.dat". Figure 9.6b shows it drawn in perspective and in colour with the 
hidden surfaces removed using drawit from listing 10.1. 

Listing 9. 6a 

I* Store in file "construc.c" *I 

1*····················*1 
extrude(P,d,col,n,v) 

I*·· ................. ·*I 
double P [] [5] 
float d ; 
int col,n ; 
struct vector2 v[] 

I* Extrude in colour •col', a 2-D polygon defined in a given *I 
I* orientation by •n• vertices '(v[i].x,v[i].y,D.O) : i=O •• n-1' *I 
I* The new vertices and facets created by the extruding backwards *I 
I* by a distance 'd' are used to extend the ACTUAL data base *I 
{ int i,lasti ; 

struct vector3 v3 ; 
I* First add front and back facets. Front face will contain vertices *I 
I* with indices •nov, •• ,nov+n-1 1 • The back vertices 1nov+n, •• ,nov+2n·1 1 *I 
I* The vertices of the front polygon are in the given orientation *I 
I* so the equivalent back polygon will be of opposite orientation *I 
I* Hence the orientation of the back face must be reversed *I 

for (i=O ; i<n ; i++) 
{ faclist[firstfree+il=nov+i ; 

faclist[firstfree+n+il=nov+2*n·i·1 
) 

facfront[nofl=firstfree; facfront[nof+1l=firstfree+n; 
size[nofl=n ; size[nof+1l=n ; 
nfac[nofl=nof ; nfac[nof+1]=nof+1 ; 
super[nofl=·1 ; super[nof+1]=·1 ; 
firstsup[nofl=NULL ; firstsup[nof+1l=NULL 
colour[nofl=col ; colour[nof+1l=col ; 
firstfree=firstfree+2*n ; nof=nof+2 ; 

I* For each line on the front face there is a quadrilateral side face *I 
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I* If the line joins vertex 'i-1 1 to 'i' of the original polygon (given*/ 
/*orientation), then the side face will have ACTUAL vertices with indices *I 
I* •nov+i,nov+i·1,nov+n+i·1,nov+n+i' (quadrilateral : same orientation)*/ 

lasti=n-1 ; 
for Ci=O ; i<n ; i++) 

< faclist[firstfreel=nov+i 
faclist[firstfree+1l=nov+lasti 
faclist[firstfree+2l=nov+n+lasti 
facl ist[firstfree+3l=nov+n+i ; 
facfront[nofl=firstfree ; 
size[nofl=4 ; nfac[nofl=nof ; 
super[nofl=-1 ; firstsup[nofl=NULL 
colour[nofl=col ; firstfree=firstfree+4 
lasti=i ; nof=nof+1 ; 

> ; 
I* Now set the ACTUAL vertices */ 

for Ci=O ; i<n ; i++) 
< v3.x=v[i].x; v3.y=v[i].y; v3.z=O.O; 

/* Front face vertices in ACTUAL position*/ 
transfonn(v3,P,&act[nov]) ; v3.z=·d; 

I* Back face vertices *I 
transform(v3,P,&act[nov+nl) ; nov=nov+1 

> ; 
nov=nov+n ; 

> ; I* End of extrude */ 

Listing 9.6b 

#include "model3.c" 
#include 11display3.c" 
#include "construc.c" 

1*·······*1 
scene() 

1*·····-·*1 
/*Extruding 2·0 object (a letter H) into 3·0 space */ 

{ struct vector2 letterH[maxpolyl 
int i,j ; 
double P [5] [5] 
FILE *indata ; 

I* Place in SETUP position */ 
tran3(0.0,0.0,0.0,P) ; 
indata=fopenC"letterH.dat","r") 

I* Setup three rectangles from the data file 'letterH.dat' */ 
for (i=O ; i< 3 ; i++) 

< for (j=O ; j<4 ; j++) 
fscanf( indata,"XfXf" ,&letterH [j].x,&letterH [j] .y) 
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I* Extrude then to a depth 2 in colour 1 *I 
extrude(P,2.0,1,4,letterH) 

} ; 
look3() ; observe() ; drawit() 

> ; I* End of scene *I 

File "letterH.dat" 

4 5 2 5 2 ·5 4 ·5 2 1 ·2 1 
·2 ·1 2 ·1 ·2 5 ·4 5 ·4 ·5 ·2 ·5 

(a) 

Figure 9.6 

Exercise 9.6 

195 

{b) 

Try other letters of alphabet. Run the program with the hidden line function 
from listing 12.1 and the drawit of listing 10.1. 

Body of Revolution 

Another method of turning two-dimensional information into a three-dimensional 
object is the body of revolution . This function is given an ordered sequence of 
nvert two-dimensional vertices stored in the vector2 array v which, taken in 
order, define nvert - 1 lines. These may be considered to be three-dimensional 
vertices and lines lying in the xfy plane through the origin. Each line is now 
rotated anti-clockwise by angles 27Ti/nhoriz radians (I <:. i <:. nhoriz) around the 
vertical y-axis into nhoriz positions. A line defined by a pair of vertices, neither 
being on the axis, will define nhoriz quadrilateral facets; those with one vertex 
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on the axis will create nhoriz triangular facets; and those with both vertices on 
the axis are degenerate and ignored. The function bodyrev in listing 9.7a creates 
the data for a body of revolution; this will also be stored in me "construc.c". If 
the last vertex is joined to the first then this creates a polygon whose vertices are 
in the same orientation as the facets on the body of revolution, so if you wish to 
create facets which are oriented anti-clockwise when viewed from outside you 
must ensure that your initial polygon is also anti-clockwise. 

Example 9. 7 
Figure 9.7 shows an ellipsoid created by the construction routine ellipsoid, using 
bodyrev. All data is created by a program from a semicircle of unit radius 
(listing 9.7b) and is not read from me. The routine actually generates a unit 
sphere, but a scaling matrix included in the SETUP-to-ACTUAL matrix can 
distort it into an arbitrary sized ellipsoid. A scene routine is given which creates 
such a shape. Figure 9.8, a goblet, was drawn by the scene and goblet functions 
from listing 9.8 using the same bodyrev function #included from "construc.c"; 
naturally "display3.c" "model3.c" etc. are also needed. Data is read from file 
"goblet.dat". Note that this technique creates data for the surface of the object 
only. If the vertex sequence is not closed or does not start and end on they-axis, 
then it will be possible to look up inside the object, and this could cause prob­
lems with the hidden line and surface algorithms that follow. 

Listing 9. 7a 

I* Add to file "construc.c" *I 

1*·····························*1 
bodyrev(P,col,nvert,nhoriz,v) 

1*·········-···················*1 
double P [] [51 ; 
int col,nvert,nhoriz ; 
struct vector2 v[J ; 

I* Routine to form Body of Revolution by rotating a section of •nvert' *I 
I* points '(v[i].x,v[i].y,O)' around the vertical y axis. Each point in *I 
I* the section is rotated into 'nhoriz' points around the axis */ 
I* (or degenerates into one point on the axis). The method is to take *I 
I* consecutive pairs of vertices from the section, rotate each into *I 
I* 'nhoriz'(or 1) positions in a horizontal slice, and then form*/ 
I* 'nhoriz' facets with each pair of slices. The vertices in the slices *I 
I* are first stored in SETUP position. At any one time we have two slices, *I 
I* a top and a bottom slice. 'index1 1 and 'index2' hold the indices of the *I 
I* vertices of these two slices. Body is logical colour 'col'. Finally*/ 
I* ACTUAL vertices are stored. Orientation of the facets the same as in *I 
I* the original polygon. Maximum polygon size is 100. *I 
<float theta=O.O,thetadiff=2*pilnhoriz 

int i, j,newnov ; 
float c[100J,s[100J ; 
int index1 [101], index2 [1011 
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I* Store the sines and cosines of 'nhoriz• angles around axis *I 
for (i=O ; i<nhoriz ; i++) 

< c[iJ=cos(theta) ; s[iJ=sin(theta) 
theta=theta+thetadiff ; 

) 

I* Update ACTUAL data base with new SETUP vertices *I 
newnov=nov ; 
if (faba(v[O].x) <epsilon) 

I* Top slice is degenerate, so only one slice vertex created *I 
< setup[newnov].x=O.O; 

setup[newnov].y=v[O].y; setup[newnovl.z=O.O 
for (i=O ; i<=nhoriz i++) 

index1[i]=newnov 
newnov=newnov+1 ; 

) 

I* Create 'nhoriz' vertices for top slice *I 
else< for (i=O ; i<nhoriz ; i++) 

) 

< setup[newnov].x= v[O].x*c[il 
setup[newnov].y• v[O].y; 
setup[newnovl.z•-v[OJ.x*s[il 
index1[il=newnov; 
newnov=newnov+1 ; 

) ; 
index1[nhorizl=index1[0] 

I* Run through •nvert-1' lines *I 
for (j=1 ; j<nvert ; j++) 

<if (fabs(v[j].x) <epsilon) 
I* Bottom slice is degenerate, so only one slice vertex created *I 

( setup[newnovJ.x=O.O; 
setup[newnov].y=v[j].y; setuprnewnovl.z=O.O 
for (i=O ; i<=nhoriz i++) 

index2[il=newnov 
newnov=newnov+1 ; 

) 

I* Create 'nhoriz' vertices for bottom slice *I 
else < for (i=O ; i<nhoriz ; i++) 

) 

< setup[newnovl.x= v[j].x*c[il 
setup[newnov].y= v[j].y; 
setup[newnov].z=·v[j].x*s[il 
index2[il=newnov ; 
newnov=newnov+1 ; 

) ; 
index2[nhorizl=index2[0] 

I* Create facets *I 
if (index1 [0] '"' index1 [1]) 

if (index2C0l == index2[1]) 
I* bottom slice is degenerate, top isn't *I 
I* 'nhoriz• oriented triangles formed by degenerate bottom slice *I 

< for <i=O ; i<nhoriz ; i++) 

197 
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< size[nofl=3 ; 
facfront[nofl=firstfree ; 
faclist[firstfreel=index1[i+1J 
faclist[firstfree+1l•index2[il 
faclist[firstfree+2l=index1[il 
firstfree•firstfree+size[nofl ; 
nfac[nofl=nof ; colour[nofl=col ; 
super[nof]=·1 ; firstsup[nofl=NULL 
nofoonof+1 

) ; 

I* neither slice is degenerate *I 
I* 'nhoriz' oriented quadrilaterals formed by top and bottom slices *I 

else < for (i=O ; i<nhoriz ; i++) 

) 

( size[nofl=4 ; 
facfront[nofl•firstfree ; 
faclist[firstfreel=index1[i+1l 
faclist[firstfree+1l•index2[i+1l 
faclist[firstfree+2l=index2[il ; 
faclist[firstfree+3J=index1£il ; 
firstfree=firstfree+size[nofl ; 
nfac[nofl•nof colour[nofl•col ; 
super [nofl•· 1 ; fi rstsup [nofl =NULL 
nof=nof+1 

) ; 

else if (index2[0J I• index2[1J) 
I* top slice is degenerate, bottom isn't */ 
I* •nhoriz• oriented triangles formed by degenerate top slice *I 

for (i=O ; i<nhoriz ; i++) 
( size[nofl=3 ; 

facfront[nofl•flrstfree 
faclist[firstfreel=index2[i+1l 
faclist[firstfree+1l=index2[il 
faclist[firstfree+2l=index1[i] 
firstfree=firstfree+size[nofl ; 
nfac [nofl =nof col our [nofl=col ; 
super[nofl•·1 ; firstsup[nofl=NULL 
nof•nof+1 ; 

) ; 
I* Copy bottom slice into top slice and loop*/ 

for (i=O ; i<=nhoriz ; i++) 
index1 [i]=index2[i] ; 

> ; 
I* Put SETUP vertices in ACTUAL position */ 

for (i=nov ; i<newnov ; i++) 
transform(setup[iJ,P,&act[iJ) 

nov=newnov ; 
> ; I* End of bodyrev */ 
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#include "model3.c" 
#include "display3.c11 

#include 11construc.c" 

1*················*1 
ellipsoid(P,col) 

1*················*1 
double P [] [5J ; 
int col ; 

Generation of Model Data 

I* Construct an ellipsoid. First a semicircle of 21 points. If *I 
I* last point is joined to first we get anticlockwise polygon *I 
< struct vector2 v[21J ; 

float theta=·pi*O.S,thetadiff=pil20 
int i ; 
for (i=O ; i<21; i++) 

< v[iJ.x=cos(theta); v[iJ.y=sin(theta) 
theta=theta+thetadiff ; 

> ; 
I* Call Body of Revolution with 20 rotations *I 

bodyrev(P,col,21,20,v) ; 
> ; I* End of ellipsoid *I 

1*·······*1 
scene() 

1*·······*1 
I* An ellipsoid with x,y and z axes 3,2,1 respectively *I 
< double P [5J [5J ; 

scale3(3.0,2.0,1.0,P); ellipsoid(P,3) 
look3() ; observe() ; drawit() ; 

> ; I* End of scene *I 

199 
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Listing 9.8 

#include 11model3.c" 
#include "display3.c" 
#include "construc.c" 

!*·············*/ 
goblet(P,col) 

/*· · ···········*/ 
double P [] [5] ; 
int col ; 

Figure 9.7 

Figure 9.8 

I* Construct a goblet in ACTUAL position */ 
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{ struct vector2 gobdat[12l 
int i ; 
FILE *indata ; 

I* read in silhouette of goblet into 'goblet.dat' *I 
indata=fopen("goblet.dat","r") ; 
for (i=O ; i<12 ; i++) 

fscanf(indata,"XfXf",&gobdat[i].x,&gobdat[i].y) 
fclose(indata) ; 

I* Body of Revolution with 20 rotations *I 
bodyrev(P,col,12,20,gobdat) 

} ; I* End of goblet *I 

1*·······*1 
scene() I* Create a goblet in SETUP position *I 

1*·······*1 
{ double P [5] [5] 

tran3(0.0,0.0,0.0,P) ; goblet(P,3) 
look3() ; observe() ; drawit() ; 

> ; I* End of scene *I 

File "goblet.dat" 

o.o ·16.0 
1.0 ·2.0 

13.0 14.0 

Exercise 9. 7 

8.0 ·16.0 
6.0 ·1.0 
7.0 2.0 

8.0 ·15.0 
8.0 2.0 
5.0 0.0 

1. 0 ·15.0 
14.0 14.0 
0.0 0.0 

201 

Combine the body of revolution and extrusion techniques to construct the body 
and fins respectively of the rocket of figure 9.9 drawn using draw it from listing 
10.1. 

Figure 9.9 
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Exercise 9.8 
Extend the body of revolution method to create a body of rotation. Now the 
two-dimensional line sequence rotates about the central axis, but with each 
small rotation the defining line also moves a small distance vertically. Create 
pictures like the helix of f~gure 9.10 with this technique. 

Figure 9.10 

Exercise 9. 9 
Write a function which creates handles and spouts for figures created by the body 
of revolution method. This function must be given line sequences that form a 
silhouette, which can be turned into facet data for a handle or spout by impos· 
ing a circular or some other such cross-section on the data. See figure 9.11 . 

Figure 9.11 
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Three-dimensional Animation 

We can use the techniques introduced in chapter 5 to animate three-dimensional 
scenes. Again a loop in scene, called from draw_a_picture (listing 7 .2) #includ(e)­
ing "model3.c" and "display3.c", is used to create individual frames for the 
movie The ACTUAL position of the objects can change, as well as the position 
of the observer. The parameters for calculating the corresponding matrices are 
evaluated inside the loop. For a moving observer, the usual questions in scene 
requesting the observer position must be replaced by a calculation which posi­
tions the observer for any given frame in the animation. 

Example 9.8 
Usting 9.9 creates a movie of 121 frames of a SETUP cube rotating about the 
horizontal ABSOLUTE x-axis through its centre once every 60 frames, while the 
observer moves in a complete horizontal circle centred at the ABSOLUTE origin 
once during the film. 

Listing 9.9 

#include "model3.c" 
#include "display3.c" 

1* .. ·--·-*1 
scene() I* Animation : cube and observer moving independently*/ 

1*"'""'*1 
( double AI [5] [5] ,P [5] [5] ,OE [5] [5], S [5] [5] 

char answer : 
float angcube,diffcube,angobs,diffobs : 
int frame : 
printf("Oo you wish 90 degree rotation : Y or N\n") : 
scanf("Xd",&answer> : 
if ((answer== 'Y') II (answer== 'Y')) 

I* Identity matrix stored as 'AI' *I 
( rot3(3,-pi*0.5,0E) ; tran3(0.0,0.0,0.0,AI) ; 
} : 

I* Initialise angular values*/ 
angcube=O.O : d!ffcube=pil60.0 : 
angobs=O.O : diffobs=pil30.0 : 

I* Loop thru 120 frames */ 
for <frame=O ; frame<121 : frame++) 

< rot3(1,angcube,P) ; cube(P) : 
I* Position cube */ 
I* Position observer */ 

eye.x=cos(angobs) : eye.y=O.O : eye.z=sin(angobs) ; 
direct.x=-eye.x ; direct.y=-eye.y ; direct.z=-eye.z ; 
findQ() ; 
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I* Rotate picture thru 90 degrees if required *I 
if ((answer== 'Y') II (answer== 'Y')) 

I* Copy new observed matrix back into 1 Q1 *I 
{ mult3(QE,Q,S) ; mult3(AI,S,Q) ; 
) ; 

I* Draw the scene and move to next frame *I 
observe() 
setcol(7) ; drawit() ; 
setcol(O) ; erase() ; 

I* Reset the data base *I 
nov=O ; nof=O ; firstfree=O 

I* update angular values *I 
angcube=angcube+diffcube ; angobs=angobs+diffobs 

) ; 
> I* End of scene *I 

Exercise 9.10 
Animate a scene which includes an icosahedron spinning and moving through 
space, while the observer looking at the centre of the icosahedron is also moving 
away on a spiral orbit. 



10 Simple Hidden Line and Surface 
Algorithms 

We are now able to draw wire diagrams representing any scene. We would like, 
however, to consider solid objects, in which case the facets at the front will 
obviously restrict the view of the facets (and boundary lines) at the back. In order 
to produce such a picture we must introduce an algorithm which determines 
which parts of a surface or line are visible and which are not. Such algorithms are 
called hidden surface or hidden line algorithms, depending upon their purpose. 
There are many of these algorithms, some elementary for specially restricted 
situations, others very sophisticated for viewing general complicated scenes 
(Sutherland et al., 1974). In this book we shall consider a variety of approaches 
ranging from the very simplest types in this chapter, to examples of general­
purpose algorithms in chapters 12 and 13. 

The algorithms described in this chapter enable us for the first time to produce 
colour pictures of three-dimensional scenes. We introduce a new function 
seefacet(k) which will be called to display facet k and all associated superficial 
facets. This function will call a further new function, facetfill, which will initiate 
the fllling of an area of pixels. For the moment this will just be an ordinary area­
fill (see chapter 1), but later on we will introduce variants that will allow smooth 
shading, surface texture etc. We must structure the calls to display functions so 
that they are consistent throughout the more complex applications that will 
follow Recall that function drawit co-ordinates the calls to all functions used in 
the display of a scene. The functions which eliminate hidden surfaces or lines will 
be called hidden and these will, in turn, call seefacet to display each visible facet. 
The new drawit is given in listing 10.1, and must be added to "display3.c" along 
with seefacet and facetfill. 
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Listing 10.1 

I* Adc:l to file "display3.c" */ 

1*--·-----*1 
drawit() 

/*----·---*/ 
I* version for wire·frame and simple colour scenes */ 
I* hidc:len lines/surfaces will be removed */ 
( /* Set vertex counts, project and draw */ 

ntv=nov ; ntf=nof ; project() ; hidden() 
) ; I* End of drawit */ 

All of the hidden line and hidden surface algorithms we consider will operate 
upon the OBSERVED co-ordinate data of vertices and facets of objects in a 
three-dimensional scene. 

The first algorithm we shall look at may be used for both line and surface 
drawings of closed convex bodies. A convex body is one in which any line seg· 
ment joining two internal points lies entirely within the body - a direct exten· 
sion of the defmition of a convex polygon in two dimensions. If such a body is 
closed then it is impossible to get inside without crossing through its surface. One 
example of a closed convex body is the extrusion of a convex two-dimensional 
polygon into three-dimensional space. In order to simplify the hidden surface 
algorithm we impose a restriction on the order in which vertices defining each 
facet are stored. For any facet i, nfac[i] gives the index of the stored polygon 
representing facet i. Suppose nfac[i] equals j, then facfront[j) points to the start 
of a list of size [j] vertex indices stored in array faclist. (All declared in listing 
7 .2.) The vertex indices must be in the order in which they occur around the 
edge of the facet, and when viewed from the outside of an object they must be 
in an anti-clockwise orientation. Naturally from the inside of the object the 
vertices taken in this same order would appear clockwise! As before, we will also 
assume that facets intersect only at common edges. Since no lines are given 
explicitly in the data, individual lines not related to facets must be added as 
trivial two-sided facets. We can check that the facets are actually stored as anti­
clockwise sets of vertices by referring to listing 6.11 during the SETUP stage of 
the scene definition. 

Exercise 10.1 
Use listing 6.11 to check that the programs from previous chapters do indeed 
create facets with vertices in the correct anti-clockwise orientation. 

A Hidden Surface Algorithm for a Single Closed Convex Body 

We orthographically project (or use perspective, see chapter 11) all the vertices 
of each facet onto the view plane, noting that a projection of a convex polygon 
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with n sides in three-dimensional space is ann-sided convex polygon in the view 
plane (or degenerates to a line if the three-dimensional polygon is parallel to the 
lines of projection). Taking the projected vertices of any facet in the same order 
as the original, we find that either the new two-dimensional polygon is in anti­
clockwise orientation, in which case we are looking at the outside of the facet, 
or the new vertices are clockwise and we are looking at the underside. The 
orientation of a two-dimensional facet is calculated by the function orient in 
listing 10.2 in a manner similar to that used in listing 5. 7. In this function we 
introduce a method required in a number of later functions when they have to be 
used with different co-ordinate systems: the array holding the vertex co-ordinates 
is passed as parameters, rather than as global variables and thus the functions 
are independent of the co-ordinate system. We are assuming that the observer is 
outside the closed convex body and hence is able to see only the outside of 
facets, the view of their underside being blocked by the bulk of the object. 
Therefore we need only draw the anti-clockwise polygonal facets - a very simple 
algorithm, which can be implemented directly in a construction routine or via a 
hidden function. Note that if we only draw the edges of the visible facets, and 
do not f:lll in the facets in colour, then the above method gives us a simple 
hidden line algorithm. Both orient and hidden must be added to f:lle "display.c". 
Plate V shows a topaz crystal drawn using this method. 

Listing 10.2 

I* Add to file "display3.c" *I 

1*··----------------*1 
int orient(face,v) 

1*------------------*1 
int face ; 
struct vector2 v[J ; 

I* Finds orientation of facet 'face' when projected into *I 
I* 2·0 co-ordinate system defined by array v of 2·0 vertices *I 
I* 1 = anticlockwise, ·1 = clockwise, 0 = degenerate */ 
{ int i,ind1,ind2,ind3 ; 

struct vector2 dv1,dv2 ; 
i=nfac [face] 
if (i == -1) 

return( D) 
else< ind1=faclist[facfront[ill 

ind2=faclist[facfront[iJ+1J 
ind3=faclist[facfront[i]+2J 
dv1.x=v[ind2J.x·v[ind1].x; 
dv1.y=v[ind2J.y·v[ind1J.y; 
dv2.x=v[ind3J.x·v[ind2J.x; 
dv2.y=v[ind3].y·v[ind2J.y; 
return(sign(dv1.x*dv2.y-dv2.x*dv1.y)) 

) ; 
) ; I* End of orient */ 
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Listing 10.3 

I* Add to "display3.c" */ 

1*········*1 
hidden() I* Drawing convex body with hidden surfaces removed */ 

1*········*1 
< int i ; 
I* Take each facet 'i' in turn *I 

for (i=O ; i<nof ; i++) 
I* Deal only with host facets */ 

if (super[!] == ·1 ) 
if (orient(i,pro) == 1) 

seefacet(i) 
> ; I* End of hidden *I 

Listing 10.4 

I* Add to "display3.c" *I 

1*············*1 
facetfill(k) I* constant shading version *I 

1*············*1 
int k ; 

( struct vector2 v[maxpoly] 
int i, index,j ; 

I* Store projected vertices of facet in array 'v' *I 
j=nfac[kl ; 
for <i=O ; !<size[j] ; !++) 

( index=faclist[facfront[j]+i] 
v[i] .x=pro[index] .x ; v[i].y=pro[index] .y ; 

) ; 
I* Draw the facet in given colour */ 

setcol(colour[k]) ; polyfill(size[j],v) 
I* Colour edge lines in black *I 

setcol(O) ; moveto(v[size[j]·1]) 
for (i=O ; !<size[j] ; !++) 

lineto(v[i]) ; 
> ; I* End of facetfill *I 

1*···········*1 
seefacet(k) I* constant shading version *I 

1*···········*1 
int k ; 

I* Colour host facet 'k' and all superficial facets *I 
< struct heapcell *ipt ; 

int supk ; 
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I* colour in facet 'k' *I 
facetfillCk> ; ipt=firstsup[k) 
while Cipt I= NULL) 

< supk=ipt·>info ; ipt=ipt·>ptr ; 
I* colour in superficial facets •supk' */ 
I* find next superficial facet */ 

facetfill(supk) ; 
} ; 

} ; I* End of seefacet */ 

Example 10.1 
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Listing 10.3 holds the hidden function that can be used for both orthographic 
and perspective (see chapter 11) projections. Listing 10.4 gives the necessary 
seefacet and facetfill functions that must also be added to "display3.c". Ensure 
that all calls to these functions are within the scope of their declaration. Figure 
10.1 shows the cube of example 7.2 orthographically projected and drawn with 
hidden surfaces suppressed. This function can be used with any convex body! 
For example, figure 10.2 shows a convex body of rotation (a sphere) with the 
hidden surfaces suppressed, while figure 10.3 shows an extruded convex polygon. 

Example 10.2 
Note how the algorithm in listing 10.3 also works for data containing superficial 
facets which are not considered in hidden. Figure 10.4 shows a die constructed 
by the scene and die construction routine of listing 10.5 and also the "die.dat". 
Note the implied need of cube from listing 7.2. 

Figure 10.1 
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Listing 10.5 

#include "model3.c" 
#include "display3.c" 

/*······*/ 

Figure 10.2 

Figure 10.3 

die(P) 
/*······*/ 

!* Construction routine for a cubic die */ 

double P [] [5] 
{ double A[5] [5] ,8[5] [5] 

static int axis[6]={3,3,2,2,3,3} 
static float angl[6]={0.0,·0.5,0.5,·0.5,0.5,1.0} 
int face,i,index,j,n=16,nofsto; 
float rad=0.15,theta=O.O,thetadiff=2*pi/n 
struct vector3 corner[16J,vertex 
FILE *indata ; 
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I* read in data about position of dots on six faces *I 
I* Place all 21 dots on face X=1 *I 

indata=fopen("die.dat","r") 
for <i=O : i<21 : i++) 

< setup[i].x=1.0: 
fscanf(indata,"XfXf 11 ,&setup[i].y,&setup[i] .z) : 

) : 
I* Rotate face X=1 by pi*angl[j] about axis[j] into j'th face *I 

nofsto=nof : 
I* Each dot will be a •n·gon• of radius •rad' *I 
I* Form the corners of the 'n·gon' on face X=1 *I 

for (f=O : i<n : i++) 
< corner[il.y=rad*cos(theta): corner[il.z=rad*sin(theta) 

corner[i].x=1.0; theta=theta+thetadiff; 
) 

I* First form the cube *I 
cube(P) : 

I* Then look at dot •index• on each of the six faces *I 
index=-1 ; 
for (face=O ; face<6 ; face++) 

I* Store matrix 'B' for rotating dots onto correct face *I 
< rot3(axis[face],angl[facel*pi,A) ; mult3(P,A,B); 

for (i=O ; i<=face ; i++) 
< index=index+1 ; 

I* Update facet data base with each new dot facet *I 
for (j=O : j<n ; j++) 

faclist[firstfree+jl=nov+j ; 
facfront[nofl=firstfree; 

I 

size[nofl=n ; firstfree•firstfree+size[nofl 
colour[nofl=O ; nfac[nofl•nof ; 
super[nofl=nofsto+face ; firstsup[nofl=NULL 
push(&firstsup[nofsto+face],nof) ; nof=nof+1 ; 

I* Now store the vertices *I 
for (j=O ; j<n ; j++) 

) ; 
) ; 

< vertex.x=1.0 ; 
vertex.y=corner[j].y+setup[index].y; 
vertex.z=corner[j].z+setup[indexl.z; 
transform(vertex,B,&act[nov]); nov=nov+1 

) ; 

> I* End of die *I 

1*·······*1 
scene() 

1*·······*1 
<double P£5][5] 

I* Construct scene of one cubic die *I 

211 
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I* Place Die in its SETUP position *I 
tran3(0.0,0.0,0.0,P) : die(P) : 
look3() : observe() : drawit() 

} : I* End of scene *I 

File "die.dat" 

0.0 0.0 ·0.5 ·0.5 0.5 0.5 
·0.5 ·0.5 0.0 0.0 0.5 0.5 
·0.5 0.5 ·0.5 ·0.5 0.5 ·0.5 
0.5 0.5 0.5 0.5 0.5 ·0.5 

·0.5 ·0.5 ·0.5 0.5 0.0 0.0 
·0.5 ·0.5 0.0 ·0.5 0.5 ·0.5 
0.5 0.5 0.0 0.5 ·0.5 0.5 

• 
• • • 
•• • • 
Figure 10.4 

Exercise 10.2 

' ' ' ' ' ' 

Write a construction routine that places superficial flags or alphabetic characters 
on the side of a cube. Do the same for the octahedron and icosahedron. 

Example 10.3 
As with two-dimensional objects, there is no need to go through the whole pro­
cess, we can short-cut the storage of data by including projection and drawing as 
part of the construction routine. See an alternative cube function in listing 10.6 
for such a method of drawing the cube of figure 1 0.1 . 
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Listing 10. 6 

#include "model3.e" 
#include 11display3.e11 

1*········*1 
eube2(R) 

1*········*1 
double R [J [5] 

I* Construction routine for rectangular block in OBSERVED position *I 
I* Initially a cube, block is distorted by sealing matrix component *I 
I* of 'R'. Assume cube has logical colour 3 with black edges *I 
I* Cube Is drawn with orthographic projection *I 
< int i,index0,index1,index2,j ; 

struet veetor2 dv1,dv2,v[maxpolyl ; 
for <i=O ; i<8 ; i++) 

transform(eubevert[iJ,R,&setup[i]) 
for <i=D ; i<6 ; i++) 

< indexO=eubefaeet[iJ [OJ 
index1=eubefaeet[il [1] 
index2=eubefaeet[i] [2] 
dv1.x=setup[index1J.x·setup[indexOJ.x; 
dv1.y=setup[index1J.y·setup[indexOJ.y; 
dv2.x=setup[index2J.x·setup[index1J.x; 
dv2.y=setup[index2J.y·setup[index1J.y; 

I* Draw facet if visible *I 
if (dv1.x*dv2.y·dv2.x*dv1.y > 0.0) 

< for (j=O ; j<4 ; j++) 
( v[j].x=setup[eubefaeet[iJ[jJJ.x; 

v[j].y=setup[eubefaeet[iJ[jJJ.y; 
) : 

I* Draw the facet in colour 3 *I 
seteol(3) ; polyfill(4,v) 

I* Colour edge lines in black *I 
seteol(O) ; moveto(v[3J) 
for (j=O ; j<4 ; j++) 

l i neto(v [j] ) ; 
) 

) : 
) I* End of eube2 *I 

1*·······*1 
scene() 

1*·······*1 
< double P [5] [5] , R [5] [5] 

look3() ; seale3(1.0,2.0,3.0,P) 
mult3(Q,P,R) ; eube2(R) 

) ; I* End of scene *I 
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Exercise 10.3 
Rewrite the body of revolution construction routine so that a single convex 
body of rotation is created with the visible facets being drawn as soon as they 
are calculated. 

The Painter's Algorithm (or the Back-to-Front Method) 

The call for pictures of convex solids is limited, so we now look at another 
simple algorithm that can be used with non-convex figures. When using raster 
graphics devices in normal REPLACE mode (not XOR nor other logical plotting 
modes) you will have noticed that when colouring a new area, all the colours 
previously placed in that section of the viewport will be obliterated. This furnishes 
us with a very simple hidden surface algorithm, namely we draw the areas 
furthest from the eye first and the nearest last. Exactly what we mean by 
furthest/nearest is not that straightforward. However, there are certain situations 
(for example, the next section) where this phrase has a very simple meaning and 
the algorithm is easy to implement. See chapter 13 for a more general painter's 
algorithm. 

Drawing a Special Three-dimensional Surface 

We consider the construction of a restricted type of three-dimensional surface in 
which the y co-ordinate of each point on the surface is given by a single-valued 
function f of the x and z co-ordinates of that point. The method may be used 
with orthographic, perspective or stereoscopic projections. f will be included as a 
function in the program listing 10.7. Since it is impossible to draw every point on 
the surface we have to approximate by considering a subset of these surface 
points. We choose those points with xfz co-ordinate on a grid, in other words, 
when orthographically viewed directly from above (thus ignoring they values), 
the points form a rectangular grid. This grid is composed of nx by nz rectangles 
in the xfz plane. The x co-ordinates of the vertices are equi-spaced and vary 
between xmin and xmax (xmin < xmax) and the equi-spaced z values vary 
between zmin and zmax (zmin < zmax). There are thus (nx + 1) x (nz + 1) 
vertices (X;, Z;) in the grid where 

X;= xmin + i X xstep where 0 ~ i ~ nx and xstep = (xmax- xmin)/nx 
Z; = zmin + j x zstep where 0 ~j ~ nz and zstep = (zmax- zmin)/nz 

The equivalent ACTUAL point on the surface is (X;, Y11, z1) where Y;; = 
f(X;, Z1). Every one of the (nx + 1) x (nz + 1) points generated in this way is 
joined to its four immediate neighbours along the grid (that is, those with equal 
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x or equal z values), unless it lies on the edge in which case it is joined to three, 
or in the case of corners to two neighbours. 

The approximation to the surface may then be formed by nx x nz sets of 
four grid vertices 

{(X;, Z;); (X;, Z;+t); (X;+t ,Z;+d;(X;+t, Z;) 10 ~i <nx and O~j <nz} 

Note that the four surface points corresponding to such a set of four vertices 
may not be coplanar, so strictly we should not call the surface area bounded by 
these vertices a four-sided facet, instead we call it a patch. The patch may 
undulate, so not all the surface area of the patch need be visible from a given 
view point - in fact it may even be partially visible. We devise a very simple 
method to eliminate the hidden surfaces by working from the back of the sur­
face to the front. To simplify the algorithm we assume that the eye is always in 
the positive quadrant - that is eye.x > 0 and eye.z > 0 - and that the eye is 
always looking at the origin (direct = - eye). If the function f is asymmetrical 
and we wish to view it from another quadrant then we simply change the sign of 
x and/or z in the function. We can then transform the vertices on the surface 
into OBSERVED co-ordinates before projecting them onto the window and 
viewport. 

We start by looping through the set of nz patches generated from the consecu­
tive fixed-z ACTUAL grid lines z = Z; and z = Zi+t from the back (i = 0) to the 
front (i = nz- 1); naturally the term 'back-to-front' is used in the sense of the 
OBSERVER co-ordinate system, but the choice of eye.x and eye.z implies this. 
Within each set (defined by i: 0 ~ i < nz) we loop through the individual 
patches generated by the intersection of the fixed-z lines with the fixed-x grid 
lines starting at X = Xo and X :::: x1, working through to X :::: Xnx-1 and X:::: Xnx· 
For each x and z value of a grid point we calculate a y value for the point 
on the patch using the mathematical function f. We can then project the 
ACTUAL patch vertices corresponding to the grid points {(X;, Z;); (X; +I, Z;); 
(X;, Z;+t ); (X;+1 , Z;+d} via their OBSERVED co-ordinates onto the view plane: 
to points p 1 , p2 , p 3 , p 4 say. We consider the polygonal area bounded by these 
four projected points, taken in the same order as defined in the above set. This 
polygonal area will either be considered as two triangles because two of the 
edges of the patch intersect, or a quadrilateral, not necessarily convex, which 
itself can be considered as two triangles. We distinguish between the possibilities 
by 

(1) Finding a point p5 (if one exists) which is the intersection of the line seg­
ments from p 1 to p2 with the segment from p 3 to p4 . Then the two triangles 
formed by p 1 , p 3 and p 5 and by p2 , p4 and p5 are drawn. 

(2) If no proper intersection exists in case (1) then we fmd a point p5 (if one 
exists) which is the intersection of the line segments from p 1 to p 3 with the 
segment from p2 to p4 . Then the two triangles formed by P1, P2 and Ps 
and by p 3 , p4 and p 5 are drawn. 
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(3) If neither case (1) nor (2) is relevant, then the patch is a quadrilateral which 
can be drawn as two triangles formed by p 1 , p2 and p4 and by p 1 , p 3 and 
P4· 

All other combinations are topologically impossible. Having thus drawn the 
two triangles or the quadrilateral (defined as two triangles to avoid problem of 
non-convexity) in the correct back-to-front construction (because eye.x and 
eye.z are positive), we get a correct hidden surface picture. Again note how the 
drawing is achieved inside the construction routine. 

Example 10.4 
This method is programmed in listing 10.7. As an example of its use, figure 10.5 
shows the function y = 4sin(t)/t where t = y(x2 + z2 ). Note that "model3.c" 
and "display3.c" are #included. 

Listing 10. 7 

#include 11model3.c" 
#include "display3.c" 

1*·······*1 
scene() 

1*·-·····*1 
< look3() ; drawgrid() ; 
> ; I* End of scene *I 

I*· ..••••.. - ··*I 
float f(x,z) 

1*···-····-···*1 
float x,z ; 

I* Required function 'y=4sin(sqrt(x*x+z*z))lsqrt(x*x+z*z)' *I 
( float t ; 

t=sqrt(x*x+z*z) ; 
if (fabs(t) < epsilon) 

return(4.0) ; 
else return(4.0*sin(t)lt) 

> ; I* End of f *I 

I*·.- ....••• - .•• - .• ·*I 
triangle(v0,v1,v2) 

1*·-········-·······*1 
struct vector2 vO,v1,v2; 

I* Draw a triangle with corners 'v0','v1' and 1v2' *I 
< struct vector2 poly[3J ; 

poly[OJ.x=vO.x; poly[O].y=vO.y; 
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poly[1].x=v1.x; poly[1].y=v1.y; 
poly[2].x•v2.x; poly[2J.yzv2.y; 
setcol(1) ; polyfill(3,poly) ; setcol(4) ; moveto(poly[2J) 
l ineto(poly[O]) ; l ineto(poly[1J) ; lineto(poly[2]) ; 

> ; I* End of triangle *I 

1*··························*1 
quadrilateral(v0,v1,v3,v2) 

1*··························*1 
struct vector2 vO,v1,v3,v2 ; 

I* Draw a quadrilateral with corners 'v0','v1','v3' and •v2' */ 
( struct vector2 poly[4] ; 

poly[OJ .x=vO.x poly[OJ .y=vO.y ; 
poly[1] .x=v1.x 
poly[2J.x=v3.x 

poly[1J.y=v1.y; 
poly[2J.y=v3.y; 

poly[3J.x=v2.x poly[3].y=v2.y; 
setcol(1) ; polyfill(4,poly) ; setcol(4) moveto(poly[3]) 
l ineto(poly[OJ) ; l ineto(poly[1J) 
lineto(poly[2J) ; lineto(poly[3J) 

> ; I* End of quadrilateral *I 

1*··················*1 
patch(v0,v1,v2,v3) 

1*··················*1 
struct vector2 vO,v1,v2,v3 

I* Find intersection of lines •vO• to 1 v1 1 and •v2' to •v3• */ 
( float denom,mu ; 

struct vector2 v4 ; 
denom=(v1.x·v0.x)*(v3.y·v2.y)·(v1.y·v0.y)*(v3.x·v2.x) 
if (fabs(denom) >epsilon) 

( mu=((v2.x·v0.x)*(v3.y·v2.y)·(v2.y·v0.y)*(v3.x·v2.x))ldenom ; 
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I* If intersection between lines •vo• to 'v1' and •v2' to 'v3•, call it 'v4' */ 
I* and form triangles 'v0;v2;v4' and 'v1;v3;v4' */ 

if ((mu >• 0) && (mu<=1)) 

) ; 

( v4.x=<1·mu)*vO.x+mu*v1.x ; 
v4.y=(1·mu)*v0.y+mu*v1.y ; 
triangle(v0,v2,v4) ; triangle(v1,v3,v4) 
return( D) 

) ; 

I* Else find intersection of lines 'v0' to •v2' and •v1• to •v3 1 *I 
denom=(v2.x·v0.x)*(v3.y·v1.y)·(v2.y·v0.y)*(v3.x·v1.x) ; 
if (fabs(denom) > epsilon) 

( mu=((v1.x·v0.x)*(v3.y·v1.y)·(v1.y·v0.y)*(v3.x·v1.x))/denom; 
I* If intersection between •vo• and •v1•, call it •v4 1 and form*/ 
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I* triangles •vO;v1;v4• and •v2;v3;v4• *I 
if ( (nu >= 0) && (mu<=1)) 

> ; 

< v4.x=<1·nu)*v0.x+mu*v2.x ; 
v4.y=(1·nu)*vO.y+mu*v2.y ; 
triangle(v0,v1,v4) ; triangle(v2,v3,v4) 
return(O) 

> ; 

I* There are no proper intersections so form quadrilateral 'v0;v1;v3;v2' *I 
quadrilateral(v0,v1,v3,v2) 

> ; I* End of patch *I 

1*···-······*1 
drawgrid() 

1*·······-··*1 
I* Draw a mathematical function 'f' *I 
( struct vector2 v[2l [100] ; 

float xf,xmin,xmax,xstep,yij 
float zj,zmin,zmax,zstep; 
int i,j,nx,nz ; 

I* Grid from •xmin' to •xmax• in •nx• steps and •zmin' to •zmax• in •nz' steps *I 
printf(" Type in xmin, xmax, nx\n") scanf("XfXfXd" ,&xmin,&xmax,&nx> 
xstep=(xmax·xmin)lnx ; 
printf<" Type in zmin, zmax, nz\n") scanf("XfXfXd",&zmin,&zmax,&nz) 
zstep=(zmax·zmin)lnz ; xi=xmin ; zj=zmin ; 

I* Calculate grid points on first fixed·z line, find the y·height *I 
I* and transform the points '<xf,yij,zj)' into OBSERVED position *I 
I* OBSERVED first set stored in 'v[0,1 •• nx]'. *I 

for <1=0 ; i<=nx ; i++) 
< yi j=f(xi, zj) ; 

v(OJ [i] .x=Q[1] [1J*xi+Q[1J [2J*yij+Q[1] [3J*zj 
v[Ol (i] .y=Q[2l [1J*xi+Q[2] (2J*yij+Q[2J [3J*zj 
xi=xi+xstep ; 

> ; 
I* Run through consecutive fixed·z lines (the second set) *I 

for (j=O ; j<nz ; j++) 
< xi=xmin ; zj=zj+zstep ; 

I* Calculate grid points on this second set, find the y·height *I 
I* and transform the points '(xi,yij,zj)' into OBSERVED position *I 
I* OBSERVED second set stored in 1v[1,0 •• nx]'. *I 

for (i=O ; i<=nx ; i++) 
< yij=f(xi,zj) ; 

v[1J [i].x=Q(1J (1J*xi+Q[1J [2J*yij+Q[1J [3J*zj 
v[1J [i] .y=Q[2J (1J*xi+Q[2J [2J*yij+Q[2J [3J*zj 
xi=xi+xstep ; 

> ; 
I* Run through the •nx' patches formed by these two sets *I 

for (i=O ; i<nx ; i++) 
patch(v (OJ [i], v [OJ [i +1] , v [1] [i J , v [1] [i+1J > ; 
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I* Copy second fixed·z set into first set *I 
for (i=O ; i<=nx ; i++) 

) ; 

( v[O] [i] .x=v[1] [i] .x ; v[OJ [i] .y=v[1] [i] .y ; 
) ; 

> ; I* End of drawgrid *I 

Figure 10.5 

Exercise 10.4 
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Change the functions f used by this program. For example, use f = 4sin(t) 
where t = v(x2 + z2 ). 

Exercise 10.5 
Use the knowledge of the orientation of the original grid rectangle and the 
orientation of the implied two triangles for each patch to extend the above 
program so that it draws the top side of the surface in a different colour to the 
underside. 

Other Methods 

There are many other simple methods, variations on a theme and even hybrid 
algorithms, that can prove efficient for suppressing hidden surfaces in three­
dimensional scenes with special properties; see project 22 (chapter 18). 

There are some situations (such as project 20 of chapter 18) when a front-to­
hack method can be used. Now instead of the back-to-front painter's method, 
the graphics viewport is cleared and the polygon area-fill must only colour pixels 
which have not already been coloured. Thus going from front to back furnishes a 
hidden surface algorithm. We still have to define what we mean by 'front' and 
'back' of course! A variation on this method proves quite efficient in certain 
line-drawing problems, as in project 20 of chapter 18. 
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Probably the simplest conceptual approach, but which is relatively expensive 
on processing power for less complex models, is the so-called Z-buffer algorithm. 
In the extreme case each pixel in the viewport is given a depth value stored in 
the z-buffer along with a facet index. We can imagine a rectangular (orthographic) 
or pyramidal (perspective) prism leading from the eye, to the pixel and off to 
minus infinity. The z value of the intersection of the axis of this prism with each 
facet is calculated in turn and compared with the buffer value. The larger value 
(closer to the eye) is placed in the buffer. When every facet has been considered 
the buffer holds the z value of the intersection nearest the eye and the facet 
index. giving a simple hidden surface algorithm for each pixel. 

In very special cases only subsets of the pixels need be sampled to achieve a 
hidden surface algorithm, but you will have to be very careful with your scene 
definition if you hope to avoid referencing all the pixels in the viewport. 

Another approach. the scan-line algorithms, considers one scan line of a raster 
screen at a time, and uses information about polygonal facets in the scene to 
colour these scan lines correctly, giving a correct hidden surface picture. 

Yet another way is to seed each facet with a single point in the facet: the so­
called depth-sort algorithm. When transformed into OBSERVED position, the 
seed points are put into an order of increasing distance from the eye, and this 
order is used by the painter's algorithm. This is not a very satisfactory method 
because it will often give incorrect displays of scenes which contain a wide 
variety of facet sizes. 

The ray tracing technique (Appel, 1968; Mathematical Applications Group, 
1968) involves defining a ray from the eye to each pixel on the viewport, and 
then following each ray in turn through space, taking into account reflection, 
refraction etc. The amount of reflection and refraction will of course depend on 
the various properties of the surfaces met by the ray in its travels (see chapter 
15). Each ray could be divided up into its red, green, blue components, each 
with its own refractive properties, and these followed individually, to be com­
bined ultimately to give the colour of the pixel. Since each surface can introduce 
both refraction and reflection of a ray, the initial ray can give rise to a complex 
network of subrays. If the ray is not halted by a non-reflecting surface then 
some stage must be reached when the tracing stops (a decision based on ray 
intensity), and the complete network of rays used to evaluate the colour of the 
corresponding pixel. The definition of surfaces can be considered as a polygonal 
mesh, or more usually is defined as a combination of primitive surfaces such as 
spheres, cylinders etc. (see chapter 17). 



11 Perspective and Stereoscopic 
Projections 

PERSPECTIVE 

The orthographic projection has the property that parallel lines in three-dimen­
sional space are projected into parallel lines on the view plane. Although they 
have their uses, such views do look odd! Our view of space is based upon the 
concept of perspective. Our brains attempt to interpret orthographic figures as if 
they are perspective views, making the cubes of figure 8.1, for instance, look 
distorted. 

Not wanting to linger on such distorted views, we have already referred to the 
perspective version of project in chapter 9, where we noted the need for visual 
realism. It is obviously essential to produce a projection which displays perspec­
tive phenomena - that is, parallel lines should meet on the horizon and an 
object should appear smaller as it moves away from the observer. The drawing­
board methods devised by artists over the centuries are of no value to us, but the 
three-dimensional co-ordinate geometry introduced in chapter 6 furnishes us 
with a relatively straightforward technique. 

What is Perspective Vision? 

To produce a perspective view we introduce a very simple definition of what we 
mean by vision. We imagine every visible point in space sending out a ray which 
enters the eye. Naturally the eye cannot see all of space, it is limited to a cone of 
rays which fall on the retina, the so-called cone of vision, which is outlined by 
the dashed lines of figure 11.1. These rays are the lines of projection. The axis of 
the cone is called the direction of vision (or the straight-ahead ray). In the work 
that follows we assume that all co-ordinates relate to the OBSERVER right­
handed co-ordinate system with the eye at the origin and the straight-ahead ray 
identified with the negative z-axis. 

We place the view plane (which we call the perspective plane in this special 
case) perpendicular to the axis of the cone of vision at a distanced from the eye 
(that is, the plane z = -d). In order to form the perspective projection we mark 
the points of intersection of each ray with this plane. Since there is an infinity 
of such rays this appears to be an impossible task. Actually the problem is not 
that great because we need only consider the rays which emanate from the 
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Figure 11.1 

important points in the scene - for example, the corner vertices of polygonal 
facets. Once the projections of the vertices onto the perspective screen have been 
determined, the problem is reduced to that of reptesenting the perspective plane 
(the view plane) on the graphics viewport. The solution to this problem was dis­
cussed in chapter 8 with regard to the orthographic projection and exactly the 
same process may be followed here - a two-dimensional co-ordinate system, the 
WINDOW system, is defined on the view plane together with a rectangular win­
dow which is identified with the viewport. The image is drawn by joining the 
pixels corresponding to the end-points of lines or the vertices of facets in exactly 
the same manner as that used in the representation of a two-dimensional scene. 

Figure 11.1 shows a cube observed by an eye and projected onto two different 
view planes, the whole scene also being drawn in perspective! Two example rays 
are shown: the first from the eye to A, one of the nearest corners of the cube to 
the eye, and the second to B, one of the far corners. The perspective projections 
of these points onto the near plane are A' and B', and onto the far plane A" and 
B". Note that the projections will have the same shape and orientation, but they 
will be of different sizes. 

Calculation of the Perspective Projection of a Point 

We let the perspective plane by a distance d from the eye (variable ppd declared in 
listing 7 .2). Consider a point p = (x, y, z) (with respectto the OBSERVER system) 
which sends a ray into the eye. We must calculate the point p' = (x', y', -d) 
where this ray cuts the view plane (the z = -d plane) and thus we determine the 
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corresponding WINDOW co-ordinates (x', y'). First consider the value of y' by 
referring to figure 11.2. By similar triangles we see that y'/d = yf I z I, that is 
y' = -y x d/z (remember that points in front of the eye in the OBSERVER 
system have negative z co-ordinates). Similarly x' = -x x d/z and hence 
p' = (-x x d/z, -y x d/z, --d). Thus the WINDOW co-ordinates corresponding to 
p are ( -x x d/z, -y x d/z ). The projection only makes sense if the point has 
negative z co-ordinate (that is, it does not lie behind the eye). So until chapter 
14 we will assume that the eye is positioned in such a way that this is true. 

~·-~ ~···-~·-·· 
.·· -··· p • (a.y.z 1 4 __________ ..... -----------

d 

Figure 11.2 

Example 11.1 
Calculate the perspective projection of a cube with eight vertices (0, 0, - 4) + 
(±1, ±1, ±1) on the perspective plane z = -4, where the eye is origin and the 
direction of vision is along the negative z-axis. 

The projected co-ordinates are calculated by the above method since the co­
ordinates are already specified relative to the OBSERVER axes (ABSOLUTE 
system = OBSERVER system). For example, (1, 1, -3) is projected to 
( -1 x 4/-3, -1 x 4/-3, -4) = (4/3, 4/3, -4) which becomes (4/3, 4/3) in the 
WINDOW system. So we get the eight projections 

(1, 1, -3) 
(-1, 1, -3) 

(1, 1, -5) 
(-1, 1, -5) 

to (4/3,4/3), (1,-1,-3) to (4/3,-4/3) 
to (-4/3,4/3),(-1,-1,-3) to (-4/3,-4/3) 
to (4/5,4/5), (1,-1,-5) to (4/5,-4/5) 
to (-4/5,4/5),(-1,-1,-5) to (-4/5,-4/5) 

which are identified with points in the viewport, and the resulting diagram is 
shown in figure 11.3a. 

Properties of the perspective transformation 
(1) The perspective transformation of a straight line (I' 3 say) is a straight line 

(I'2 say) or a point. This is obvious because the origin (the eye) and the line 
r 3 form a plane (n say) in three-dimensional space and all the rays emanat­
ing from points on r 3 lie in this plane. (If r 3 enters the eye, n degenerates 
into the line r 3 which is projected into a single point.) Naturally n cuts the 
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x-axis -~----- ________ ~ __ X:-~~i~ 

(a) (b) 
Figure 11.3 

perspective plane in a line r2 (or degenerates to a point) and so the perspec­
tive projection of a point on the original line r 3 now lies on the new line 
r 2 . It is important to realise that a line does not become curved in this type 
of perspective projection. Furthermore, we may deduce that the projection 
of a straight line segment joining two points p 1 and p 2 is a straight line seg­
ment in the perspective plane which joins the perspective projections of p 1 
and p 2 . 

(2) The perspective transformation of a three-dimensional facet (a closed 
sequence of coplanar line segments) is a two-dimensional facet in the pers­
pective plane. If the facet is an area bounded by n coplanar line segments 
then the transform of this facet is naturally an area in the z = --d plane 
bounded by the transforms of then line segments since their end-points are 
the projections of the vertices of the projected facet, each of which is com­
mon to two edges. Again note, no curves are introduced in the projection: if 
they were then the task of producing perspective pictures would be far more 
complicated. 

(3) The projection of a convex facet is also convex. Suppose facet Fl is projec­
ted onto facet F2 in the view plane. Since the projection of a closed facet is 
also closed and lines are projected into lines, then points inside Fl are pro­
jected into points inside F2. Suppose F2 is not convex. Then there exist two 
points p 1 and p2 inside F2 such that the line segment joining them goes out­
side this facet. Hence there is at least one point p on this line segment lying 
outside F2. If p 1 and p2 are projections of points q1 and q2 from Fl, then 
p is the projection of some point q on the line joining q 1 and q2 . Since the 
Fl is convex then q must be inside Fl, but then p must be inside F2, thus 
contradicting the assumption that F2 is not convex and so F2 must be 
convex and our proposition is proved. 

(4) All infinitely long parallel lines appear to meet at one point, their so-called 
vanishing point. If we take a general line (with base vector b) from a set of 
parallel lines with direction vector h then 

b +ph= (bx, by, bz) + p.(hx, hy, hz) 
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where hz < 0, and the perspective transform of a general point on this line is 

(
-(bx + p.hx) x d , -(by+ p.hy) x d) 

(bz + P.hz) (bz + p.hz) 

which can be rewritten as 

(
-(hx + hx/P.) x d , -(hy + by/P.) x d) 

(hz + hz/P.) (hz + hz/J.L) 

As we move along the line towards large negative z co-ordinates, that is as 
p. -+ oo, then the line moves towards its vanishing point, which is therefore 
given by (-d x hxfhz, -d x hy/hz). This vanishing point is independent of 
b, the base point of the line, and hence all lines parallel to the direction h 
have the same vanishing point. Of course the case hz > 0 is ignored because 
the line would disappear outside the cone of vision as p.-+ oo. 

(5) The vanishing points of all lines in parallel planes are collinear. Suppose that 
the set of parallel planes have a common normal direction n = (nx, ny, nz). 
If a general line in one of these planes has direction h = (hx, hy, hz), then h 
is perpendicular to n (all lines in these planes are perpendicular to the normal 
n). Thus n • h = 0, which in co-ordinate form is 

nx X hx + ny X hy + nz X hz = 0 

which, dividing by hz, gives 

nx X hxfhz + ny X hy/hz + nz = 0 

and so the vanishing point ( -d x hxfhz, -d x hy/hz) lies on the straight line 

nx x X + ny x y - nz x d = 0 

and the statement is proved. This concept is very familiar to us- the vanish­
ing points of all lines in horizontal planes lie on the horizon! 

Example 11.2 
Find the vanishing points of the edges of the cube in example 11.1, and of the 
diagonals of its top and bottom planes. 

We divide the twelve edges of the cube into three sets of four edges, each set 
being parallel to the x, y and z axis respectively and so having direction vectors 
{1, 0, 0), {0, 1, 0) and (0, 0, -1). The first two sets have zero z values, and so 
their extended edges disappear outside the cone of vision and are ignored, where­
as the third direction has vanishing point (-4 x 0/-1,-4 x 0/-1) = (0, 0) on 
the view plane. On the top and bottom faces the diagonals have directions 
(-1, 0, -1), the major diagonal, and (1, 0, -1), the minor diagonal. The major 
diagonal on the top plane is (1, 1 ,-3) + p.( -1, 0, -1 ), and so the vanishing point 
is (-4 x -1/-1,-4 x 0/-1) = (-4, 0). The minor diagonal on the top plane is 
(-1, 1, -3) + p.(l, 0, -1) ~nd the vanishing point (-4 x 1/-1,-4 x 0/-1) = 
(4, 0). By similar calculations we fmd the vanishing points of the major and 
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minor diagonals on the lower face are also (-4, 0) and (4, 0) respectively. The 
relevant edges are extended to their vanishing points in figure 11.3b. Note that 
all the lines mentioned lie in the two parallel planes (the top and bottom faces of 
the cube) and so the vanishing points should be collinear: they are, because 
(-4, 0), (0, 0) and (4, 0) all lie on the x-axis. By a similar calculation we would 
find that the vanishing points of the diagonals of the side faces lie on a vertical 
line through the origin. 

Exercise 11.1 
Draw a perspective view of a tetrahedron with vertices (1, 1. -5). (1, -1, -3), 
( -1, 1, -3) and ( -1, -1, -5). Find the vanishing points (inside the cone of 
vision) of lines which join pairs of mid-points of edges of the tetrahedron. 

Programming the Perspective Transformation 

The procedure for drawing a perspective view of a three-dimensional scene is the 
same as that for an orthographic projection outlined at the end of chapter 8. in 
all respects other than the calculation of the co-ordinates of the projected 
vertices. Unlike the orthographic, in the perspective projection the co-ordinates 
on the view plane cannot be identified with the OBSERVED x andy co-ordinates 
of the point. Instead, we need to store the perspective transformation so the 
vertex i with OBSERVED co-ordinates vector3 value obs[i] is projected to 
vector2 pro(i]. The values in array pro are given by 

pro [i] .x := -obs [i].x * ppd/obs [i] .z; 
pro[i] .y := -obs[i].y * ppd/obs[i].z; 

for i = 1, 2 ... , nov provided obs [i] . z < 0, and these values are subsequently 
identified with points in the graphics frame for use by a display function. 

As with the orthographic projection, the pro array is calculated in function 
project (listing 11.1) and declared (listing 7 .2) as 

struct vector2 pro [maxv] ; 

So all our previous display functions that are not specifically orthographic can be 
called using co-ordinates produced by this new project, and a perspective version 
of most of our three-dimensional diagrams can be drawn with the simple expedi­
ent of replacing the orthographic project in "display3.c" with that from listing 
11.1. 

The Choice of Perspective Plane 

The only value required for the perspective transformation which we have not 
yet discussed is that of ppd, the distance of the perspective plane from the eye. 
We can see from figure 11.1 that different values of ppd produce pictures of 
different sizes- which one do we choose? Is there a correct value? 
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Consider the practical situation. The observer is sitting m front of the view· 
port of a graphics device and the perspective view plane is identified with the 
plane of that viewport. Normally the observer is sitting at a distance which is 
about three times the width of the viewport from the device. In the scale of our 
mapping from the real-world to the graphics area of pixels, this is a distance 
3 * horiz. If we choose ppd less than this value we get a wide angle effect, while 
if ppd is greater we get the foreshortened effect of a telephoto image. Perspec­
tive pictures are independent of the screen size, only the ratio of ppd to horiz 
matters, not the absolute value of horiz. Therefore, for perspective pictures, 
horiz may be set to the constant value 1.0. ppd is declared in the database in 
listing 7 .2. 

Clipping 

Theoretically. objects may be positioned throughout space, even behind the eye. 
The formulae derived to represent the perspective projection deal only with 
points within the pyramid of vision. An attempt to apply the formulae to points 
outside this area, especially those lying behind the eye, gives nonsensical results. 
The scene must. therefore, be clipped so that all vertices lie within the pyramid 
of vision before the projection may be applied. The solution to such problems 
will be discussed in chapter 14, but for the moment we shall assume that the 
clipping has been done (or is unnecessary) and that all vertices are inside the 
pyramid of vision. Of course if all z values are strictly negative we can use two­
dimensional clipping on the projected scene! 

Example 11.3 
The cube of example 7.2 placed in its SETUP position can be drawn in perspec­
tive (drawit: listing 8.2) using the project of listing 11.1. Figure 11.4 shows 
the cube viewed from (10, 20, 30) looking back towards the ABSOLUTE origin 
with direction ( -10, -20, -30). Remember to ensure at this stage that your 
views keep all of the scene in front of the eye. 

Listing 11.1 
I* Replacement function project() for file "display3.c" '*/ 

!*· ....... ·*I 
project() /* Perspective projection of OBSERVED vertices */ 

1*·········*1 
( int i ; 

ppd=3.0*horiz ; 
for (i=O ; i<ntv ; i++) 

if (obs[i].z < 0) 
( pro[il.x=·obs[il.x'*ppdlobs[i].z; 

pro[i].y=·obs[i].y'*ppd/obs[i].z; 
} ; 

} ; I* End of project */ 
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Figure 11.4 

STEREOSCOPIC VIEWS 

Perspective views are all very well but unfortunately (or fortunately!) we have 
two eyes. Each eye should have its own perspective view, which will differ 
slightly from that of the other eye. This is the means by which we appreciate 
the three-dimensional quality of our world. We use this concept to produce a 
stereoscopic view of space on a colour graphics display, creating a perspective 
view for each eye. This leads to a problem. We cannot simply draw two such 
projections because the left eye will see not only the view created for it, but also 
that made for the right eye, and vice versa. To stop this confusion we must 
ensure that each eye sees its own view, but only its view. There are a number of 
different ways of achieving this: using a stereoscope or special polarised glasses 
synchronised with the appearance of two separate pictures on a screen. We 
describe the least expensive method, a pair of stereoscopic spectacles: two trans­
parent plastic sheets, one red for the left eye and one cyan (or, alternatively, 
blue or green) for the right eye. In this way the left eye cannot see red lines 
because they appear the same colour as the white background, both colours 
having the same red component, but cyan lines appear black, having no red com· 
ponent. Conversely, the right eye cannot see cyan lines, but red lines look black. 
So we must make two line drawings of a scene: one in cyan for the left eye, and 
one in red for the right eye. The brain will merge the two black images into one 
and the cyan and red background into white, to give a three-dimensional effect. 

So we devise a method of producing the stereoscopic projection of a general 
point p = (x, y, z) - that is, two points PI = (xl> Yl) for the left eye and 
Pr = (Xr, Yr) for the right eye - in the WINDOW co-ordinate system on the 
perspective view plane (see figure 11.5). We sensibly choose the same view plane 
for both eyes. We will assume that the OBSERVER origin is between the eyes, 
with the axes otherwise defined in the same way as the previous OBSERVER 
system, the straight-ahead ray being parallel to the z-axis. The eyes have co­
ordinates ( -e, 0, 0), left, and (e, 0, 0), right: in listing 11.2, e is given by variable 
eyedist, which is usually approximately 0.15 * horiz. Again the perspective-View 
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plane is a distance d (variable ppd) from the origin. In order to ftnd Pr we 
translate the co-ordinate origin to (e, 0, 0), the right eye, so that p becomes 
(x - e, y, z) and the perspective transform of this point for the right eye is 
(-(x - e) x d/z, -y x d/z, -d), which, relative to the OBSERVER axes, is 
( -(x - e) x d/z + e, -y x d/z, -d). Similarly the left eye transformation pro­
duces p1 = (-(x +e) x d/z- e, -y x dfz, -d). These points have WINDOW co­
ordinates (-(x - e) x d/z + e, -y x d/z) and (-(x +e) x dfz - e, -y x d/z) 
respectively. 

The program to produce a stereoscopic view of a scene is very similar to the 
perspective program, except that the project function (listing 11.2) is called 
twice to create two separate sets of pro values, one for the left eye and the 
other for the right, and will call wireframe (listing 8.2) for each in turn. The 
ftrst picture is drawn in red (logical colour 1) on a white background (logical 
colour 7), and the second picture in cyan (logical colour 6) with the AND line 
type. This will ensure that whenever a pixel is crossed by lines from both left 
and right views it will be set to black (logical 0); if this were not the case the 
lines in the red figure would appear to have holes. If you wish to use a black 
background, then plotting with the OR line type is required. The new project 
and draw it functions must replace those in "display3.c". 

For stereoscopic displays it is best to make the view plane cut the object being 
viewed- that is, make v(eye.x2 +eye.y2 + eye.z2 ) = ppd (= 3 * horiz). There­
fore in the case of stereoscopic views we cannot keep horiz and vert ftxed, since 
for the best projections horiz (and hence vert) depends on eye. 

Example 11.4 
Draw Plate VI, a stereoscopic view of a cube of example 7 .2. horiz is set to 16 
and the observer is at (10, 20, 30) looking in direction (-10, -20, -30). 

Listing 11.2 

I* Replacement functions for file "display3.c:" *I 

I*· .•..••.•••.... ·*I 
projec:t(eyedist) 

I*· •••••••.•.•••• ·* I 
float eyedist ; 

< int i ; 

I* Stereoscopic: projection of vertices *I 

I* Find per-spective projection for eye position '(eyedist,0,0)' *I 
for <i=O ; i<ntv ; i++) 

if (obs[i].z < 0) 
< pro[iJ.x=·(obs[i].x·eyedist)*ppdlobs[iJ.z+eyedist; 

prom .y=·obs[iJ .y*ppdlobs[iJ.z ; 
) ; 

> ; I* End of project *I 
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1*·····-··*1 
drawit() I* Stereoscopic version of 'drawit' *I 

1*········*1 
< I* Constructs stereoscopic projection *I 
I* Set vertex counts *I 

ntv=nov ; ntf=nof ; 
I* Set eye positions *I 

ppd=3.0*horiz; eyedist=0.15*horiz ; 
I* Consider two eyes (2*eyedist units apart) *I 
I* First draw red on white background : right eye *I 

setype(O) ; setcol(1) ; project(eyedist) ; wireframe() 
I* Then change to left eye and draw XOR with cyan *I 

eyedist=·eyedist ; 
setype(3) ; setcol(6) ; project(eyedist) ; wireframe() 

> ; I* End of drawit *I 

~-----------------z----------------~ 

PL __ ._p -- ....... .............. -PR 

view from above 

~---------d----------~ 

Figure 11.5 

Exercise 11.2 
Draw stereoscopic views of some of the objects drawn previously in orthographic 
and perspective projections, including the bodies of revolution and extruded 
polygons. 

Exercise 11.3 
Produce stereoscopic hidden line pictures of convex bodies. Now you must not 
colour in the facets, just draw the visible edges of the object, once in cyan for 
the left eye, and once in red for the right eye. You will have to change the 
facetfill function in listing 10.4 so that it only draws the edges of visible facets 
and not the facets themselves. 



12 A More General Hidden Line 
Algorithm 

Not all users of computer graphics use colour. In fact there are major application 
areas in architecture and Computer Aided Design with a marked preference for 
the monochrome line-drawing blueprint type output. In this chapter we discuss 
a general hidden line algonthm which, using line-drawing routines only, can pro­
duce architectural designs. machine-parts etc., wtth any line in the scenr, which 
is blocked from view by the bulk of other objects, being suppressed. 

Here we consider such an algorithm for use with the drawit function oflist­
ing 10.1 and the perspective projection. This algorithm is not truly general, there 
is a restriction! No pair of convex polygonal facets in the scene intersect other 
than at a common polygonal edge! As usual objects are defined in their ACTUAL 
position and then the co-ordinates calculated relative to the OBSERVER co­
ordinate system. The x, y, z co-ordinates are stored as the obs array; the pers­
pective projection onto the WINDOW co-ordinate system is stored in array 
pro. 

In order to produce a picture of a given scene with the hidden lines suppres­
sed, each line on the object (an edge of a polygonal facet) must be compared 
with every facet in the scene. Of course parts of a line may be visible and parts 
invisible (behind a facet). We will suppose that a typical line in the OBSERVER 
system is r 3 and it joins two points (x~ ,y~, z~) and (x;, y;, z; ). Thus a general 
point on this line is given by 

{1 - <t>)(x; ,y~, z~) + <t>(x; ,y;, z;) 

Suppose that these two points are projected by perspective onto the two points 
(x 1 ,yt) and (x 2 ·Y2) in the WINDOW system on the perspective plane. Thus line 
r 3 is projected into the line r 2 in this plane, and a general point on the line is 

(1-;\)(x,,yt)+;\(x2.Y2) 

Note that the point ( 1 - <t>)(x~, y~, z~) + <t>(x; ,y;, z;) does not transform into 
the point (I -<I>) {x 1 ,y1 ) + <t>(x2 ,y2 ): that is, <1> is not necessarily equal to X. 

We let a typical n-sided facet !13 be projected into a polygonal area il2 on 
the perspective plane, and we assume that the vertices on this projected facet are 

'il ={(x;.Y;)li= 1, ... ,n} 

231 
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Thus the ;th edge in !12 has a general point 

(I - f.l.;) (:X; • .Y;) + f.l.;(:X;+I ..Yi+1 ) where 0 ~ f.l.t ~ 1 

Again the addition of subscripts is modulo n. 
In a wire frame perspective picture, every line f 2 would be drawn clipped in 

the viewport; in order to avoid problems with perspective projection we still 
assume that every object in the scene lies in front of the eye - three-dimensional 
clipping will be described in chapter 14. Here we assume that objects are solid 
and hence. if a facet n3 lies between the eye and r3 then part, and perhaps all. 
of r 2 will be hidden. Most facets do not interfere with the view of any one line. 
and so we sift out some of the more easily recognisable possibilities. We must be 
careful with the amount of sifting. It is very easy to overdo it and make the over­
all run time of the algorithm larger than the time with no sifting at all. 

(a) We will assume that the facets have been set up with an anti-clockwise 
orientation. Hence any facet which is projected into a clockwise orientation, 
and any related superficial facet. can be ignored for the comparison with 
lines, which, remember. are implicit in the facet data. 

(b) Each line will occur in the facet data as a pair of vertex indices v1 and v2. 
There will be atleast one occurrence of a non-superficialline defined from v1 
towards v2, with v1 < v2, and so we can ignore non-superficial lines with 
v1 > v2 provided that all objects in our scene are closed; this order restric­
tion must be relaxed (implying double the processing) if you insist on non­
closed objects (see chapter 8). 

(c) All lines in a facet which is superficial to an invisible facet can be ignored. 
We cannot ignore a line v1 to v2 ( v1 < v2) on an invisible non-superficial 
facet, since this may be an edge of a visible facet from v2 to v1 which would 
be ignored by (b) above. 

(d) If r3 lies in facet n3. then r3 is on the surface of the facet and any view of 
the line cannot be obscured by that facet. 

Exercise 12.1 
(e) You can program the following sifting method (and three-dimensional clip­

ping: see chapter 14) into listing 12.1. If !12 is not intersected by f 2 • then 
!13 can have no effect on the view of the line r 3 . There are three elementary 
possibilities given 

(1) the vertices 'i1 all lie on the same side of r 2 

(2) V and (x2 • y 2 ) lie on opposite sides of a line through (x 1 • y 1 ) perpendicular 
to r2 

(3) V and (x 1 .yd lie on opposite sides of a line through (x2 ,y2 ) perpendicular 
to f 2 • 

You may check them individually 

( 1) f(x .y) = (y - y I) (x2 - xI) - (x - xI) (y2 - y d is the analytic representa­
tion of f 2 • If f(:X;.Y;) has the same sign for all vertices (:X; • .Y;) belonging to 
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'V, then all the vertices of !12 lie on the same side of r 2 and there is no 
intersection between r 2 and n2 . 

(2) g(x,y) = (y- y 1 HY2 - yt) + (x- xi) (x 2 - xt) is the analytic representa­
tion of the line through (x1 ,yl) perpendicular to f2. If the sign of g(x2 ·Y2) 
is not equal to the sign of g(x1, y1) for all (x1, y1) belonging to 'V, then f 2 
does not intersect n2 . 

(3) h(x,y) = (y- Y2HY 2 - yt) + (x- x 2)(x2 - xt) is the analytic representa­
tion of the line through (x2 • Y2) perpendicular to r 2. In a manner similar to 
(2), a facet is ignored if the sign of h(x 1, yt) is not equal to the sign of 
h(xt . .Y1) for all (x1,y1). 

You may add these sifting methods to listing 12.1 at the point specified. Any 
line that passes these first hurdles has to be considered in detail. 

We assume that f 2 cuts the extended ;th edge of !12 at the point 

(1 -A;) (x;,Jl;) +A; (xi+t•Yi+d 

If A;< 0 or A; > 1, the f 2 intersects the ;th edge at a point outside the poly­
gonal area !12 ; if 0 ~A; ~ 1 then f 2 crosses the area !12 at a point on the ;th 
edge. Since the perspective projection of a convex facet is a convex polygon on 
the perspective plane, then the number of crossing points is either zero (and 
hence there is no intersection and the facet can be ignored) or two. In the latter 
case we find the two crossing points on the line f 2 given by the values llmin and 
llmax. These values must be ordered so that they lie on the line segment between 
(x 1 , y 1) and (x2 , y 2 ) with 0 ~ llmin < llmax ~ 1 - that is, the points of inter­
section are (1 - llmin) (xl, yt) + llmin (x2, Y2) and (1 - llmax) (xl, yt) + 
llmax (x2 ·Y2). 

It is now necessary to discover whether the subsegment of r 2 between these 
two points is visible or not. This is checked by finding the mid-point of the seg­
ment (xmid. Ymid) = {1 - llmid) (xl ,yt) + llmid (x2 ·Y2). where llmid = (llmin + 
llmax)/2. We then find the unique point (x.y,z) on f 3 that has(xmid·Ymict) as 
its perspective projection. The line segment is hidden if and only if (.X. y. z) and 
the eye lie on opposite sides of the infinite plane containing !13 . The equation 
of the plane containing a facet is found by the method of example 6. 7 in the 
function normal (listing 12.2) added to "display3.c", and its analytic representa­
tion can be used to check the above requirement. Note that -.X x ppd/z = Xmid 

and-y x ppd/z = Ymid• and also (.X, y, z) lies on the line f 3 , and so for some 
value cp 

x =(1-cp)x; +tjlx;, y =(1-cp)y; +cpy;, z =(1-cp)z; +cpz; 

Hence 

Xmid = 

Ymid = 

-(x~ + cp (x~ - x~ )) x ppd d 
, , , an 

z1 +cp(z2 -zt) 

-(y~ + cp (y~ - y~ )) X ppd 

z~ +cp(z~ -z~) 
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that is 

Xmid x z~ +x~ x ppd rp = -----'=--=-----=------'~---
-(x ~ -X~) X ppd - X mid X (z; - z;) 

Ymid x z; + y; x ppd 
=--_.::_=~~___:c.....:....__;_...:._ ___ _ 

-(y~ - y;) x ppd- Ymid x (z~ - z;) 

This enables us to calculate rp, and hence (.X. y. z). which in turn is used to find 
whether the sub segment of r 2 is visible or not. 

This algorithm may be more easily understood by referring to figure 12.1. 

ruull •htn 
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I 
I 

I 

I 

lnvlllblt 1tg11tnll blddtn by 
prtviOUIIY contldtrtd hctll 

Figure 12.1 
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Remember that at present we assume that every object is in front of the eye. 
The hidden line algorithm discussed in this chapter is implemented as function 
hidden of listing 12.1 called from drawit of listing 10.1. The method is to com­
pare line j of facet i with facet k (0 < = i, k < nof) in function comparelinewith­
facet As the algorithm progresses the line will be split into a set of visible 
segments, the pair of 1J. values of the end points for each segment is stored in a 
linear list named seglist. Initially the list will hold the complete line (one cell in 
the list holding 1J. values 0 and 1 ). Whenever a new hidden segment is discovered, 
specified by IJ.min and IJ.max (variables mumin and mumax), the seglist is adjusted 
in function adjustsegmentlist. On leaving comparelinewithfacet the seglist is 
either empty and the line is totally invisible, or the list holds the 1J. values of the 
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visible segments which are drawn individually in function drawsegmentlist. All 
these functions must be added to file "display3.c", and replace a previous 
example of hidden. 

Listing 12.1 

I* Add to file "display3.c 11 *I 

#define maxline 100 

struct listnode <float front,back struct listnode *pointer > 
struct listnode segheap[maxline] 
struct listnode *freesegheap 

float djc,eps ; 
int index1,index2 
struct vector2 dj,vj1,vj2 
~truct listnode *seglist 

1*········*1 
hidden() !*version for general hidden line removal*/ 

I*········*/ 
< int fbegin,fend,i,j,k ; 
I* Hidden line algorithm to take the 2·0 perspective picture of 3·0 *I 
I* space and cut the line segments in the picture into visible and *I 
I* invisible parts, and then draw the visible parts. It is assumed *I 
!* that all vertices are in front of the eye and all facets lie*/ 
!* within the graphics window! */ 
I* •eps• is the value that is assumed to be zero. This is */ 
I* sensitive to the word length of your computer, and to the *I 
I* 'horiz' value; so you may have to find your own 'eps' value.*/ 
!*Setting 1 horiz=1' for perspective gives our original •eps' */ 

eps=0.00001*horiz ; 
segheapstart() ; 

I* Take the lines from each clipped facet 'i'. Consider the line*/ 
I* from vertex •index1 1 to 'index2', where 'index1<index2 1 if non-superficial*/ 
I* face. Ignore lines on facets superficial to an invisible facet*/ 
I* Routine only works in scenes where all objects are closed *I 

for (i=O ; i<nof ; i++) 
< printf(" facet Xd\n",i) 

if ((super[il==·1) II ((super[il != ·1) && (orient(super[il,pro>==1))) 
< fbegin=facfront[il ; 

fend=facfront[i]+size[i]·1 ; 
index1=faclist[fend] ; 
for (j=fbegin ; j<=fend ; j++) 

< index2=faclist[j] ; 
if (( index1 < index2) II (super til ! = ·1 )) 

I* •vj1' and •vj2' are end points of j'th projected line of i'th facet*/ 
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/* in 2·D space; direction vector 'dj•. The line is •y*dj.x=x*dj.y+djc• */ 
< vj1.x=pro[index1J.x; vj1.y=pro[index1J.y; 

vj2.x=pro[index2J.x; vj2.y=pro[index2J.y; 
dj.x=vj2.x·vj1.x ; dj.y=vj2.y·vj1.y; 
djc=dj.x*vj1.y·dj.y*vj1.x ; 

/* Initial line segment is the complete line*/ 
I* (Exercise: 3·D CLIP here, to return clipped line in list) */ 

seglistalloc(&seglist) ; seglist·>pointer=NULL 
seglist·>front=O.O ; seglist·>back=1.0 

/*Compare line with every clipped visible facet 'k' */ 
I* Do not compare line with any superficial facet 'k' */ 
I* Check if facet 'i' is superficial to facet 'k' */ 
I* Exit loop if line totally obscured*/ 

k=·1 ; 
do < k=k+1 ; 

if ((super[kJ==·1) && (il=k) && (super[iJI=k)) 
I* Check if clipped facet 'k' is invisible*/ 

) 

if (orient(k,pro>==1> 
comparelinewithfacet(k) 

while ((k!~nof) && (seglisti=NULL)) 
I* Draw line if part is visible*/ 

if (seglist I= NULL) 
drawsegmentlist(vj1,vj2) 

) ; 
/*prepare next line 'j' */ 

index1=index2 
) ; 

) ; 
) ; 

) /* End of hidden */ 

!*························*/ 
drawsegmentlist(vj1,vj2) 

/*· •••••••.....•••••..... ·*/ 
struct vector2 vj1,vj2 ; 

I* Draw visible line segments*/ 
<float mu1,mu2 ; 

struct listnode *oldptr,*ptr 
struct vector2 vp1,vp2 ; 
ptr=segl ist ; 
while(ptr I= NULL) 

I* Segment joins 1vp1 1 to 'vp2 1 */ 
( mu1=ptr·>front ; mu2=ptr·>back ; 

oldptr=ptr ; ptr=ptr·>pointer ; seglistdisalloc(oldptr) 
vp1.x=(1·mu1)*vj1.x+mu1*vj2.x; 
vp1.y=(1·mu1)*vj1.y+mu1*vj2.y; 
vp2.x=(1·mu2)*vj1.x+mu2*vj2.x ; 
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vp2.y=<1·mu2)*vj1.y+mu2*vj2.y; 
if ((fabs(vp1.x·vp2.x) > eps) II (fabs(vp1.y·vp2.y) > eps)) 

{ moveto(vp1) ; lineto(vp2) ; 
} : 

} : 
> I* End of drawsegmentlist *I 

1*······························*1 
adjustsegmentlist(mumin,mumax) 

1*······························*1 
float mumin,mumax ; 

I* Compare 1mu 1 values of each visible segment stored in 'list' *I 
I* with •mumin' and •mumax' of newly obscured segment and adjust list *I 
{ struct listnode *newlist,*ptr,*newptr,*oldptr; 

float mu1,mu2 ; 
newlist=NULL ; ptr=seglist ; 
do < mu1=ptr·>front ; mu2=ptr·>back ; 

} 

if ((mu2 > mumin) && (mu1 < mumax)) 
< if ((mu1 < mumin)) 

} 

{ seglistalloc<&newptr) 
newptr·>front=mu1 ; 
newptr·>back=mumin ; 
newptr·>pointer=newlist 
newlist=newptr 

} : 
if (mumax < mu2) 

< seglistalloc(&newptr) 
newptr·>front=mumax ; 
newptr·>back=mu2 ; 
newptr·>pointer=newlist 
newt ist=newptr 

} ; 

else< seglistalloc(&newptr) 
newptr·>front=mu1 ; 
newptr·>back=mu2 ; 
newptr·>pointer=newlist 
newlist=newptr; 

} : 
oldptr=ptr ; 
ptr=ptr·>pointer seglistdisalloc(oldptr) 

while (ptri=NULL) ; 
seglist=newlist ; 

> ; I* End of adjustsegmentlist */ 

237 
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1*----------·---------···*1 
comparelinewithfacet(k) 

I*········· ··············*I 
int k ; 

< int kbegin,kend,l,lv1,lv2 
float denom,disc,f1,f2,lambda,mu,mumid,mumin,mumax,nk 
struct vector2 d,dl,vmid ; 
struct vector3 n,vhat ; 

I* Does line lie in facet 'k'. Compare with each line in facet •k• *I 
kbegin=facfront[kl ; kend=facfront[k]+size[kl·1 ; 

I* Line '1', facet 'k' joins vertices 'lv1' and 'lv2•. Direction 'dl' *I 
I* If line 'j' is the same as line 'l', consider next line •j• *I 

lv1=faclist[kend] ; 
for (l=kbegin; l<=kend; l++) 

{ lv2=faclist[l] ; 

) 

if ((fabs(dj.x*pro[lv1l.y·dj.y*pro[lv1].x-djc) < eps) 
&& (fabs(dj.x*pro[lv2].y·dj.y*pro[lv2].x·djc) < eps)) 

return(O) 
lv1=lv2 ; 

I* Now find if facet 'k' intersects the line *I 
mumax=O.O ; mumin=1.0 ; 

I* Intersect edge 'l' of facet 'k' with chosen line *I 
for Cl=kbegin ; l<=kend ; 1++) 

< lv2=faclist[l] ; 
dl.x=pro[lv2].x·pro[lv1].x 
dl. y=pro[l v2l. y·pro[l v1l. y 

I* Lines 'j' and 'l' are parallel if 'disc• is zero *I 
disc=dl.x*dj.y·dj.x*dl.y; 
if ( fabs(disc) > eps ) 

I* Direction from •vj1' to vertex 'lv1' is 'd' *I 
< d.x=pro[lv1l.x·vj1.x; 

d.y=pro[lv1].y·vj1.y; 
I* 'lambda' is intersection value on edge 'l' with line 'j' *I 

lambda=(dj.x*d.y·dj.y*d.x)ldisc ; 
I* 'lambda• must be between zero and one *I 

if ((lambda > ·eps) && (lambda < 1.0+eps)) 
I* Equivalent intersection 'mu' value on line 'j' *I 

< mu=(dl.x*d.y·dl.y*d.x)ldisc 
I* Update maximum and minimum •mu• values *I 

) 

) 

) ; 
lv1=lv2 ; 

if Cmumax<mu) mumax=mu 
if (mumin>mu) mumin=mu ; 

I* Ensure two distinct •mu• values lying between zero and one *I 
if Cmumax > 1.0) mumax=1.0 
if (mumin < 0.0) mumin=O.O ; 
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if ((mumax·mumin) < eps) 
return(O) ; 

I* •mumid' is 'mu' value of the mid point •vmid• between them *I 
mumidR(mumax+mumin)*0.5 ; 
vmid.x=<1·mumid)*vj1.x+mumid*vj2.x; 
vmid.y=<1·mumid)*vj1.y+mumid*vj2.y; 

I* 'vhat' projects into 'vmid' *I 
denom=·ppd*(obs[index2J.x·obs[index1].X) 

·vmid.x*(obs[index2].z·obs[index1].z) 
if (fabs(denom) < eps > 

< denom=·ppd*(obs[index2].y·obs[index1].y) 
·vmid.y*(obs [index2l .z·obs [index1]. z) 

mu=(vmid.y*obs[index1].z+ppd*obs[index1J.y)ldenom; 
) 

else mu=(vmid.x*obs[index1J.z+ppd*obs[index1].x)ldenom; 
vhat.z=obs[index1].z+mu*(obs[index2].z·obs[index1].z) 
vhat.x=·vmid.x*vhat.zlppd ; 
vhat.~·vmid.y*vhat.zlppd ; 

I* Find normal to facet 'k' *I 
normal(k,&n,&nk,obs) ; 

I* Compare functional values of 1vhat 1 and 1eye 1 *I 
f1=n.x*vhat.x+n.y*vhat.y+n.z*vhat.z·nk 
f2=·nk ; 
if ( fabs(f1) < eps ) return(O) ; 
if ( fabs(sign(f1)·sign(f2)) <= 1 ) return(O) ; 

I* Section of line 'j' is obscured by facet 'k' *I 
adjustsegmentlist(mumin,mumax) ; 

) ; I* End of comparelinewithfacet *I 

I* Routines for manipulating storage for line segment list *I 

I*· •••••••••••. ·*I 
segheapstart() 

1*··············*1 
< int i ; 

freesegheap=&segheap[O] 
for (i=O ; i<maxline·1 ; i++) 

segheap[i].pointer=&segheap[i+1] 
segheap[maxline·1].pointer=NULL 

> ; I* End of segheapstart *I 

1*···················*1 
seglistalloc(point) 

1*···················*1 
struct listnode **point 

{ *point=freesegheap ; 
freesegheap=(*point)·>pointer 

> ; I* End of seglistalloc *I 

239 
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1*-·····················*1 
seglistdisalloc(point) 

1*······················*1 
struct listnode *point ; 

< point·>pointer=freesegheap ; 
freesegheap=point ; 

> ; I* End of seglistdisalloc *I 

Listing 12.2 

I* Add to file "display3.c" *I 

1*··················*1 
normal(face,n,k,v) 

1*··················*1 
int face ; 
struct vector3 *n,v[J 
float *k ; 

I* To find the plane 'X*n.x+Y*n.y+Z*n.z=k' for facet 'face' */ 
( int indexO,index1,1ndex2,fbegin; 

struct vector3 d1,d2 ; 
I* 'indexo•, 'index1' and 'index2' are first three vertices on 'face' */ 

fbegin=facfront[faceJ ; indexO=faclist[fbeginJ ; 
index1=faclist[fbegin+1J ; index2=faclist[fbegin+2J ; 

I* 'd1' and 'd2 1 are 3·D directions of the first two lines in 'face' */ 
d1.x=v[index1J .x·v[indexOJ .x ; 
d1.y=v[index1J .y·v[indexOJ .y ; 
d1.z=v[index1J.z·v[indexOJ.z; 
d2.x=v[index2J.x·v[index1J.x; 
d2.y=v[index2J.y·v[index1].y; 
d2.z=v[index2J.z·v[index1J.z; 

I* Facet lies in plane • n.v = k '*/ 
n·>x=d1.y*d2.z·d2.y*d1.z; 
n·>y=d1.z*d2.x·d2.z*d1.x; 
n·>z=d1.x*d2.y·d2.x*d1.y ; 
*k=n·>x*v[indexOJ.x+n·>y*v[indexO].y+n·>z*v[indexOJ.z; 

) ; I* End of normal */ 

Exercise 12.2 
We are assuming that all lines on the object will be drawn on the screen. and no 
account is taken of two-dimensional clipping or for vertices being behind the eye. 
The first oversight is a simple one to correct. When the line j of the facet i is 
projected then it must be clipped to the window, and the Jl. values (if any) of the 
clipped line are stored as the original seglist values. Blanking can also be allowed 
for at this stage. Implement these ideas in listing 12.1. After reading chapter 14 
return to the program and allow for three-dimensional clipping where objects 
can be behind as well as in front of the eye. 
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Example 12.1 
Figure 12.2 shows two cubes defined in listing 7.7, drawn in perspective with the 
hidden lines removed. Note that if you wished to turn the cubes into two dice 
(example 10.4) then the database would not have space for all the vertices! You 
would have to expand it to cope with 2 x 342 vertices; however, you could 
reduce the facet space since you only need 2 x 27 facets. 

Exercise 12.3 
Draw figure 12.3, a crystallographic example (after Hauy, see Phillips (1960)), 
which shows how a rhombic dodecahedron can be approximated by a specially 
ordered stacking of cubes. 

Figure 12.2 

Figure 12.3 
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Exercise 12.4 
Use the body of revolution methods of chapter 9 to draw a goblet with the 
hidden lines removed: figure 12.4. 

Figure 12.4 

Exercise 12.5 
In some scenes you will find some abutting facets that are co-planar, as with the 
hollow cube of example 9.4. The lines of intersection of these co-planar facets 
would be drawn as visible when the hidden line algorithm is used. Ideally we 
would wish these intersections to be 'invisible'. If we flag the edges of a facet 
that are meant to be invisible, perhaps by making the index (in the facet descrip­
tion) of the vertex at the end of the invisible edge negative, then the hidden line 
algorithm can be altered so such invisible lines are never considered, and thus 
never drawn. Use these ideas to produce complex architectural pictures such as 
the one given in figure 12.5. 

Figure 12.5 
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Exercise 12.6 
Write a general hidden line algorithm, without the restriction mentioned at the 
beginning of this chapter. You will have to pre-process the description for the 
scene in order to break down the data into extra facets, and introduce more 
invisible lines, so that your new scene defmition is of a form acceptable to the 
routine written for exercise 12.5. 

Exercise 12. 7 
Produce general htdden line algonthms for the orthographic and stereoscopic 
projections. 



13 A More General Hidden Surface 
Algorithm 

By now you should be aware that there are many different types of hidden line 
and/or surface algorithm (Sutherland eta/., 1974). One variety involves a rectan­
gular array representing the totality of pixels on the screen. We imagine rays of 
light entering the eye through each of the pixels on the screen. These rays 
naturally pass through objects in our scene and we can note the co-ordinates of 
these points of intersection. The array will hold the 'z co-ordinate' (initially 
minus infinity) of the nearest pomt of intersectiOn. So we build up a picture by 
adding new objects. finding where the rays cut the object, and changing the 
array values (and the pixel colour on the screen) whenever the latest point of 
intersection is nearer the eye than the corresponding value stored in the array. 
This technique is very useful1f we wish to shade-in areas in subtly differing tones 
of a given colour (chapter 15). It does. however. have enormous storage require­
ments and needs a very powl!rful computer. In th1s chapter we give another type 
of general algorithm more suitable for use With small computer systems and 
raster-scan d1splay dev1ces. wh1ch works on the 'back-to-front' princ1ple men­
tioned earlier. 

We assume that a three-dunenswnal scene 1s set up in the manner described in 
chapter 7, and that the hidden surface algorithm is to be initiated in the drawit 
function which is called from the scene function. We will assume that the perspec­
tive projection is being used: as an exercise, equivalent functions can be written 
for the orthographic projection. We assume that all objects are closed. They need 
not be convex but each must be closed and its surface composed of convex facets 
which are stored in anti-clockwise onentat10n. Thus it 1s imposs1ble to see the 
underside of any facet - that IS, when proJected onto the view plane we only see 
facets which maintain theu ant1-clockwise orientation. Strictly speaking, this 
means that we cannot draw planar objects. If these are required for a particular 
scene then we avoid the problem by storing each facet of a planar object twice -
once clockwise and once anti-clockwise - so whatever the position of the eye, on 
perspective projection we will see one and only one occurrence of the facet. This 
restriction was imposed to speed up the h1dden surface algorithm. 

In order to produce a hidden surface picture of a scene stored in terms of 
right-handed OBSERVED co-ordinates. each facet in the scene must be com­
pared with every other facet ( superf1cial facets excepted) in order to discover 
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Figure 13.1 

whether their projections overlap on the view plane. If this occurs, then one of 
the facets obscures all or part of the other from view (see figure 13.1 ). 

Because of the above restrictions we need only compare the visible facets -
that is, those which when projected keep their anti-clockwise orientation. If they 
do overlap we then need to find which facet lies in front and which behind. 
Once this information is compiled we can work from the back of the scene to 
the front to get a correct hidden surface picture. We do have other limitations: 
we assume that it is impossible for a facet to be simultaneously in front of and 
behind another facet; that is, facets do not intersect one another other than at 
their edges, and we cannot have situations where facet A is in front of(>) facet 
B >facet C >facet A etc., see figure 13.2. 

Exercise 13.1 
The program can be made completely general if you write a function which pre­
processes the data and divides up each problem facet into new subfacets that do 
not violate restrictions of the above type. 

Our algorithm for discovering whether two facets (m and n) from our data­
base do overlap when projected onto the view plane is given in function overlap in 
listing 13.1 which is added to "display3.c". It is a variation of the two-dimen­
sional overlap function of listing 5.8. The method fmds the intersection of the 
projected facets (if any) and identifies the facet nearer the eye (front) and that 
further away (back). This information for all comparisons of pairs of facets in 
the scene enables us to set up a network as described in chapter 2. The complete 
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B 
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Figure 13.2 

network is constructed in function network which uses overlap to discover if 
facet m is in front of facet n, in which case an edge is added to the network lead­
ing from node n to node m. We introduce a new hidden function which executes 
a topological sort on this network to output the facets in back-to-front order, 
calling seefacet to draw each, along with associated superficial facets. We use the 
same drawit function as given in listing 10.1 to initiate the hidden surface 
algorithm. Naturally all these new functions must be added to "display3.c" to 
make them available for the scene and drawit functions . 

The overlap function uses the inside/outside technique of chapter 5. We place 
the x and y co-ordinates of the projected vertices of facet m in vector2 array 
f[O] [O .. size[m]-1] . We then take on projected line from facet nand cut off all 
parts of the facet m that lie on the negative side of the line: the resulting polygon 
is placed in arrays f[1] [O .. numv - 1] , where numv is the number of vertices in 
the polygon of intersection. We then take the next line and compare it with these 
values and store the resulting polygon in f (0] ( .. ] etc. After all the lines from 
facet m have been used then we are left with the polygon common to both 
projected facets. If at any time this polygon becomes empty we know that the 
projected facets do not overlap and so we exit the procedure setting front= 0. 

If the facets do overlap then we take a line from the eye to intersect a point 
inside the common polygon on the view plane and find the intersections of 
this line with facets m and n: the point we choose is the centroid of the first three 
points on the polygon. Comparing the z co-ordinates of the respective inter­
sections enables us to discover which of m and nisin front and which is at back. 
The co-ordinates of the vertices of the area of overlap are returned in the array 
v2d. The overlap function has more parameters than are strictly needed at this 
stage, allowing for use with different co-ordinate systems. These will be needed 
for use by shadow, transparency and reflection functions in chapter 16. 
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Listing 13.1 

I* Add to file "display3.c" *I 

1*·······················································*1 
overlap(m1,n1,front,back,numv,p,v2d,v3d,pd,orientation) 

I*· ..............................................•...... ·*I 
int m1,n1,*front,*back,*numv,orientation ; 
float pd ; 
struct vector2 p[J,v2d[J ; 
struct vector3 v3d[J ; 

I* Finds area of intersection between the window projections of facets *I 
I* 1m1 1 and 1n1 1 • The 3·0 co·ordinate system is given by array 1v3d 1 , *I 
I* while projected co·ordinates are stored in 1v2d1 • The 1numv 1 vertices *I 
I* of the intersection area are returned in arrays 1 p1 *I 
I* The distance of plane of projection from the origin is 1pd 1 */ 
< float musto[2J ; 

int i,j,l,m,n,index1,index2,insect,l1,l2,sizem,sizen 
struct vector2 e1,e2,f[2J[maxpoly],v1,v2; 
float k,ca,cb,cc,denom,mu,fv1,absfv1,fv2,absfv2 ; 
struct vector3 mid,norm,vi ; 

I* 1m1 and 1n1 are the indices of the facets representing 1m1 1 and 1n1 1 *I 
m=nfac[m1l ; n=nfac[n1l ; 

I* Copy facet 1m1 to first storage arrays *I 
l 1 =D ; s izem=s ize [m] ; 

I* If plane 1m1 1 is degenerate return *I 
for <i=D ; i<sizem ; i++) 

f[l 1] [i] =v2d [feel ist [facfront [m]+i]] 
I* The first storage array 1 f[l1J[1 •• sizem] 1 now contains vertices of the *I 
I* feasible polygon. Slice feasible polygon with each edge of facet 1n1 • *I 
I* Slicing edge has endpoints 1e1 1 and 1e2 1 with analytic function *I 
I* 1 ca.y + cb.x + ec = 0 1 • *I 

sizen=size[n] ; e1=v2d[faclist[facfront[nJ+sizen·1ll 
for (iaO ; i<sizen ; i++) 

< e2=v2d[faclist[facfront[n]+i]] 
ca=e2.x·e1.x ; cbae1.y·e2.y ; 
cc=·ca*e1.y·cb*e1.x ; 

I* Slice the feasible polygon edge by edge : 1v1 1 to 1v2 1 • 1 k1 1 and lk2 1 *I 
I* indicate whether the first and second points respectively lie on the *I 
I* slicing edge, on its positive side or on its negative side. *I 

v1=f[l1J[sizem·1l ; fv1=ea*v1.y+cb*v1.x+cc 
absfv1=fabs(fv1) ; 
if (absfv1 < epsilon) 

index1=D ; 
else index1=sign(fv1)*orientation 

I* Initialise second storage array. *I 
*numv=O ; 12=1 ·11 ; 
for (j=O ; j<sizem ; j++) 
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( v2=f[l1J [j] : fv2=ca*v2.y+cb*v2.x+cc 
absfv2•fabs(fv2) : 
if (absfv2 <epsilon) 

index2=0 : 
else index2=sign(fv2)*orientation : 

I* If 1v1' is not on negative side of slicing edge then include it *I 
I* in new storage array 'f[l2J[ ••• ]' *I 

if Cindex1 >'" 0) 
< f[l2J[*numvJ=v1: *numv=*numv+1 
) : 

I* If 1v1' and 1v2' lie on opposite sides of slicing edge then *I 
I* include the intersection with the edge *I 

if ((index1 I• 0) && (index1 I• index2) && (index2 I= 0)) 
( denom=absfv1+absfv2 : 

f[l2J[*numv].x=(absfv2*v1.x+absfv1*v2.x)ldenom; 
f[l2J[*numv].y=(absfv2*v1.y+absfv1*v2.y)ldenom: 
*numva*numv+1 : 

} : 
I* Second point on current edge becomes first point on next edge *I 

fv1=fv2 ; v1=v2 ; 
index1=index2 : absfv1=absfv2 : 

) : 
I* If second array holds fewer than 3 vertices then no overlap exists *I 

if C*numv < 3) 
( *front=·1 : return(O) : 
} ; 

I* Feasible polygon now becomes that stored in second storage array *I 
I* Refer 1 l1 1 to this polygon and slice with next edge of facet 'n' *I 

sizem=*numv: l1=l2 : e1=e2 : 
) : 

I* Reach here if non·empty overlap found. Find point within area of overlap *I 
mid.x=Cf [l1] [0] .x+f [l 1] [1] .x+f [l1J [2] .x)l3 : 
mid. y=Cf[l1l [0] .y+f [l1J [1] .y+f [l 1J [2]. y)l3 : 

I* Find corresponding points on facets in 3·D *I 
mid.z=·pd ; l=m1 ; 
for <1=0 ; 1<2 ; I++) 

< normal(l,&norm,&k,v3d) 
ilpl(zero,mid,norm,k,&vi,&mu,&insect) 
musto[iJ=mu ; l=n1 : 

) : 
I* Determine which lies in 'front' *I 

if (musto[OJ > musto[1J) 
< *front=n1 ; *back=m1 ; 
) 

else < *front=m1 : *back=n1 
} : 

I* Copy area of overlap to arrays for exit *I 
for Ci=O : i<*numv ; i++) 

p[i] =f [l 1] [i] : 

> : I* End of overlap *I 
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/*········*/ 
hidden() I* hidden surface removal *I 

/*········*/ 
/* Executes topological sort on hidden surface network */ 
( struct heapcell *list[maxf],*networkstack 

int i,k,numbervisible,nob[maxfl : 
I* also in the case of reflections 

struct heapcell *rlist[maxfl 
i nt rnob [maxfl : 

*I 
network(&numbervisible,nob,list,obs,pro,1) 

I* Initialise STACK and PUSH on all back facets*/ 
networkstack=NULL : 
for (i=O : i<nof : i++) 

if ((nob[il==O) && (super[il==·1)) 
pushC&networkstack,i) : 

I* pop 'numbervisible' facets off stack in turn.*/ 
I* Draw each and adjust data structure *I 

for (i=O : i<numbervisible i++) 
< k=popC&networkstack) 

if (k==·1) return(O) 
seefacet(k) : 

/* Add following line when using 'hidden• to draw mirror reflections*/ 
I* 

if (tr~olour[kll<O.O) reflekt(k) 
*I 

unstack(k,nob,list,&networkstack) 
> 

> I* End of hidden */ 

/*········································*/ 
network(numvis,nob,list,v,p,orientation) 

/*· .....•.......•.........••..••.•..•...• ·*/ 
int *numvis,nob[],orientation 
struct heapcell *list[] : 
struct vector3 v[] : 
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struct vector2 p[l :1* Constructs network of information on hidden surface ordering *J 
( int back,front,i,j,n : 

struct vector2 w[maxv] : 
I* Initialise number of visible facets*/ 

*numvis=O : 
I* Check orientation of each facet, incrementing •numvis' by one for */ 
I* each visible one (using •orientation'). */ 

for (i=O : i<nof : i++) 
if (orient(i,p) ==orientation) 

( nob[il=O : list[i]=NULL : 
if (super[i]==·1) *numvis=*numvis+1 

> 
else nob[iJ=·1 : 
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I* Compare each pair of visible non-superficial facets */ 
for Cf=O ; f<nof-1 ; i++) 

< printf(" facet Xd\n",i) ; 
if ((nob[iJ '" ·1) && (super[il==-1)) 

for (j=i+1 ; j<nof ; j++) 
if ((nob[jl I= ·1) && (super[jJ==·1)) 

< overlap(f,j,&front,&back,&n,w,p,v,ppd,orientation) 
I* If overlap exists then 'front• obscures 'back' */ 

) ; 

if (front I= ·1) 

) ; 

< nob[frontl=nob[frontl+1 ; 
push<&list[backl,front) 

) ; 

> ; I* End of network */ 

J*···--·-····-················*1 
unstack(face,nob,list,stack) 

/*·································*/ 
int face,nob[] ; 
struct heapcell *list[J,**stack ; 

I* Adjusts network structure after 'face• has been drawn*/ 
< int nf ; 

while ( list[facel != NULL) 
< nf=pop(&list[face]) 

nob[nfl=nob[nfJ-1 ; 
if (nob[nfl == 0) 

push(stack,nf) ; 
) ; 

> ; I* End of unstack */ 

I* Add function •reflekt• (listing 16.6) here for mirror reflections */ 

The next step is to work out how to use this information to produce the net­
work needed for the final picture. This is achieved by network in listing 13.1. 
The method is to compare each visible facet with every other (using overlap) 
and to produce a network of information about the relative positions of the 
facets (in front or behind). For each visible and non-superficial facet (i say), the 
idea is to set up a linked list list [i] containing the indices of all facets that lie 
in front of it, and the array nob [i] will contain the number of facets that facet 
i obscures. Array nob is also used initially to denote if the facet is clockwise 
and hence invisible (nob [i) = -1), or anti-clockwise and visible (nob [i) = 0). 
No invisible facet need be included in any comparison. The function network 
returns the number of visible facets numbervisible, together with all of the 
network edge information. Once again, the co-ordinate arrays are passed as 
parameters to enable the function to be used with different co-ordinate systems. 
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We use this network in function hidden to produce a picture. The function creates 
a stack onto which the index of any facet that does not obscure any other (that 
is, whose nob value is zero) is pushed. Then one at a time these facets are popped 
off the stack and drawn on the viewport followed by all the facets that are 
superficial to it (using the super array). Once the facet is drawn, we go down the 
network linked list for that facet (referred to by list) and decrement the nob 
counts for each facet in the list. If the nob count for any facet becomes zero 
then the index of the facet is pushed onto the stack {function unstack). Eventu­
ally the stack is emptied and we have the correct partial order to give the true 
back-to-front hidden surface view. Each facet is drawn in the viewport using a 
function seefacet, which also displays all associated superficial facets. At this 
stage it will simply use the polygon drawing routine via a call to facetfill (listing 
10.4); later it will become more complex. 

The linked lists (one for each facet) and the stack are implemented using C 
pointers, as described in chapter 2. Because of our restriction that facets can­
not simultaneously be in front of and behind one another, the stack can only 
become empty when all the facets have been displayed. Note that we can turn 
the hidden surface function into a hidden line function by having a plain 
background and drawing each facet in the same (background) colour but with 
the edges of the facet in a different colour. 

Example 13.1 
We can now draw a hidden surface, perspective view of the cube in figure 10.1 
still using the general-purpose drawit function of listing 1 0.1 but now using the 
hidden of listing 13.1 in "display3.c" rather than one given in chapter 10. Placing 
the data for two cubes (example 8.2) in the database, we can draw figure 13.3 
with this function, impossible with the restricted hidden surface function of 
chapter 10. 

Exercise 13.2 
Construct hidden surface views of scenes composed of cubes, tetrahedra. pyra­
mids. octahedra and icosahedra. See Coxeter (1973) for the information needed 
to write construction routines for an octahedron. icosahedron, rhombic dodeca­
hedron etc. 

Exercise 13.3 
Experiment with this function using the objects generated in chapter 9. For 
example. create a scene composed of two objects defined m that chapter: a 
hollow cube containing a star-shaped object as shown in figure 13.4. 

Figures such as the camera in Plate I can be drawn and so we are now in a 
position to consider methods for making our three-dimensional scenes more 
realistic. We first need to introduce three-dimensional clipping, before intro­
ducing such ideas as shading, shadows, reflections etc. Note, however, that all 
of these ideas are introduced in the context of our overall strategy for scene con-
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Figure 13.3 

Figure 13.4 

struction. You will see that the introduction of shadows etc. into scenes that 
have already been defined and drawn will not require a major rewrite of the 
previous programs, so that the generation of shadows etc. will be initiated by 
simple extensions to drawit and perhaps extended alternative facetfill functions 
placed in "display3.c". With the exception of some database entries, most other 
functions scene, network etc., will remain unchanged and the method of linking 
the display of complex models ultimately to the primitive functions of chapter 1 
is still via the draw_a_picture call to scene. 



14 Three-dimensional Clipping 

In chapter 5 we considered the clipping of lines and facets in two-dimensional 
space. determining which parts lay within a rectangular window with dimen­
sions horiz x vert. These methods are also sufficient for dealing with ortho­
graphic projections of three-dimensional scenes since the whole of space can be 
projected onto the view plane and clipped in two dimensions. Dealing with 
perspective projections is rather more complex. Once again we assume that we 
have a view plane some distance from the eye along the negative z-axis of the 
right-handed OBSERVER system. A rectangular (horiz x vert) window on 
this plane is to be identified with the graphics viewport. In previous chapters we 
have assumed that the eye is positioned in such a way that each vertex has a 
strictly negative OBSERVED z co-ordinate. This ensures that every vertex can be 
projected onto the view plane by a standard perspective projection as defined in 
chapter II, whence two-dimensional clipping ascertains which parts of the image 
lie totally within the window. Suppose. however, that we wish to depict a scene 
as viewed from a position within the model, such as a point lying in a landscape 
with a large ground plane. Clearly. parts of the model will lie behind the eye and 
consequently cannot be projected onto the view plane. Such problems cannot be 
resolved by two dimensional clipping and so extended methods must be devel­
oped. Three-dimensional clipping must determine which parts of a line or facet 
can be projected onto the window before the projection occurs. The perspective 
projection and subsequent hidden line or surface elimination must be executed 
upon the clipped scene and hence the information generated by the clipping 
process must be incorporated into the data structure. 

There are consequently two problems that need to be solved. Firstly, we must 
determine which part, if any, of a line or facet lies in the volume of space pro­
jected onto the window, and secondly we must incorporate this information into 
the data structure representing the scene. 

We shall consider only the algorithm for clipping facets for area-fill displays; 
The functions required for clipping are entirely self-contained and stored in 
"clip3.c"; and are incorporated into the program by a simple extension of the 
drawit function (listing 14.2) which replaces the one in "display3.c". 
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The Pyramid of Vision 

The volume of three-dimensional space which is projected onto the window is a 
rectangular pyramid of infinite length. This pyramid, which we call the pyramid 
of vision, has its apex at the eye position (the origin of the OBSERVER co­
ordinate system) and four infinite edges, each passing through one vertex of the 
window on the view plane. It is thus bounded by four planes (clipping planes), 
each of which contains the OBSERVER origin and one edge of the rectangular 
window. 

We number the clipping planes as shown in figure 14.1, from 1 to 4 starting 
from the top plane and moving round clockwise as viewed from the eye position . 
A point, (x , y, z ), lying within the pyramid of vision is projected, by perspective 
projection , onto the point ( -x x d/z, -y x d/z) in the window (dis the perpen­
dicular distance from the eye to the view plane). 

---
Clipping Plane 4 

Clipping Plane 2 

Figure 14.1 

Each clipping plane divides space into two halves. The half-space containing 
the pyramid of vision is said to be the visible side of the plane. The four clipping 
planes must be represented in such a way that we may easily determine whether 
a point lies on their visible side or not. Consider first clipping plane 1. This plane 
passes through the top horizontal edge of the view plane window and is there­
fore perpendicular to the yjz plane. The x orthographic projection of this plane is 
shown in figure 14.2 . 

If a point (x , y,z) lies in this plane we must have, by similar triangles 

y = vert 
-z 2d 

=tan Bv (say) so y =-tan Bv x z 
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Figure 14.2 

and hence for any point lying below the plane, on the visible side 

y <-tan Ov x z 
and for any point above the plane 

y > -tan 8 v x z 
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Clearly this extends directly to the other three clipping planes. Plane number 
3 is defined as above with the angle -Ov which has tangent -tan Ov and hence 
we may derive parameters 

On the plane: y =tan Ov x z 
Above the plane (on the visible side): y > tan Ov x z 

Below the plane (not on the visible side): y <tan Ov x z 
and the two vertical clipping planes, 2 and 4, may be treated likewise, using the 
angle ()h which has tangent horiz/2d. 

For a point to lie within the pyramid of vision it must be on the visible side 
of all four clipping planes. If the z co-ordinate of a point is greater than 0 then 
it is behind the eye and so cannot be on the visible side of all four clipping 
planes: if it lies on the visible side of one clipping plane, then it must be on the 
invisible side of the opposite clipping plane. The function locate (listing 14.1) 
determines whether each vertex of a facet lies on the visible side of a given clip­
ping plane and stored the results in the integer array inside. inside [i] is set to 1 
if vertex i lies on the visible side of the clipping plane, 0 if it lies in the plane and 
-1 if on the other side. The index of vertex i is stored in the array location 
kfacet[O] [i]. The meaning of this array will be explained in due course but for 
the moment we just note its declaration in the database: 

int inside [max poly], kfacet [2] [max poly 1, ksize; 

Any clipping function ih three dimensions must involve the calculation of the 
point of intersection of a given line with a clipping plane. This problem has 
already been solved in chapter 6, given two points on the line and the standard 
vector form for the plane. We must, therefore, determine the vector equations 
for the clipping planes. Recall that the vector equation of a plane is of the form 
n • v = k for any point von the plane, where n is the normal vector to the plane 
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and k = n • a for any fixed point a lying in the plane. Since all four clipping 
planes pass through the origin we may take k = n · 0 = 0 for all n, so each plane 
has the form n • v = 0. All that remains, therefore, is to determine the normal 
vector, n, to each. 

Once more we shall consider the top clipping plane first and the results derived 
from this enable us to find the normals to the other three planes. 

Since the top clipping plane is perpendicular to the y/z plane, its normal is 
parallel to the yjz plane and so has zero x co-ordinate. The line of intersection of 
the clipping plane with the yjz plane has direction (0, tan Ov, -1) and so the 
normal vector is perpendicular to this line: (0, -1, -tan Ov). (The sense of the 
normal vector is not important in this instance.) 

Accordingly, the normals to the other three planes are 

Clipping plane 2: (-1, 0, -tan Oh) 
Clipping plane 3: (0, -1, tan Ov) 
Clipping plane 4: (-1, 0, tan Oh) 

Exercise 14.1 
If desired, it is a relatively simple task to further constrain the visible part of 
space by adding a front and/or back clipping plane. These planes will both be 
perpendicular to the z-axis (which consequently forms the normal to each) and 
have constant z-coordinate zr and zb respectively, say. A point is thus on the 
visible side of the front clipping plane if z < zr and on the visible side of the 
back clipping plane if z > zb. The normal to both planes is, as mentioned above, 
the direction (nx, ny, nz) = (0, 0, 1) and the equations have k values nz x zr 
(= zr) and nz x zb (= zb) for front and back planes respectively. In our programs 
we do not use a front or back clipping plane but it is a useful exercise to incor­
porate them into the functions, calling them clipping planes 5 and 6. 

Polygon Clipping in Three Dimensions 

We may now tackle the clipping of a convex polygon in three dimensions in a 
manner exactly analogous to the polygon clip routine for two dimensions des­
cribed in chapter 5. The facet is sliced in turn by each of the clipping planes, 
whether four or six, and the resulting polygon either degenerates into a polygon 
with fewer than three vertices, in which case it lies entirely outside the pyramid 
of vision, or, having been sliced by all clipping planes, it represents the visible 
portion of the facet, notwithstanding the other facets in the scene. 

The information produced by the clipping process must be incorporated into 
the data structure representing the scene. At the end of the clipping of a facet 
there are three possible outcomes 

(i) The facet remains unchanged since it lay entirely within the pyramid of 
vision. 
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(ii) The facet degenerates on clipping and is therefore not visible since it lay 
entirely outside the pyramid of vision. 

(iii) We are left with a new facet consisting of that part of the original facet 
which lay inside the pyramid of vision. 

Information regarding clipped facets must not corrupt the original data. Recall 
that the original model has nov vertices and nof facets. The total numbers of 
vertices and facets, inclusive of any which may be created during the processing 
of the model, are stored as ntv and ntf respectively. The OBSERVED co-ordinates 
of the vertices are stored in the obs array, and pointers to these arrays are stored 
in the database as the array faclist through which the facets are defined by the 
arrays start and size. These are the facets of the original model prior to clip­
ping. Each facet also has an associated pointer nfac. We may use this pointer 
to refer to a new facet created by the clipping process which is stored at the end 
of the faclist array in the database. Initially nfac[i] is set to i for each facet i, 
thus referring to the polygon defined in the original model.) 

Suppose we are clipping facet i. If case (i) above occurs we have no problem -
the data structure remains unchanged. If case (ii) occurs then the facet must not 
be drawn and hence need not be considered in the hidden surface elimination 
algorithm. We indicate this fact by setting nfac[i] to zero. In subsequent pro­
cesses we use this fact to indicate that facet i lay entirely outside the pyramid 
of vision -it need neither be drawn nor considered in the hidden surface algor­
ithm but we shall find later, when dealing with shadows, that it cannot be 
ignored entirely! Note that in setting nfac [i] to zero we do not affect in any 
way the information in the database which defines facet i. Pointers to its vertices 
are still stored in the faclist array and are accessible via start [i] and size [i] , and 
in order to restore the structure to its original form we need only reset nfac [i] 
to equal i. 

Now consider case (iii). Suppose that facet i lies partially inside the pyramid 
of vision. A new facet is created which represents that part of facet i within the 
pyramid. We store the information concerning this new facet in the next free 
portions of the relevant arrays of the database, updating ntv and ntf. nfac [i] is 
referred to this new facet which is then used instead of facet i in both hidden 
surface elimination and in the final drawing of the object. We must take some 
care in doing this however, primarily ensuring that the information describing 
the original, unclipped, model is not destroyed, and also we must try to be as 
undemanding as possible on extra storage space. It would be easy simply to 
create a brand new set of vertices for the clipped facet and place these en bloc 
at the end of the obs array in the database, but this could necessitate raising 
the value of maxv. In many cases, however, only one vertex of the original is 
clipped out, resulting in only two new vertices being created. We must, there­
fore, strive to use as much of the original information as possible. 

The first requirement is that vertex co-ordinates are not simply copied into 
new arrays as they are in the two-dimensional clipping function, but instead we 
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use an array of pointers to the co-ordinate values in the obs array. We therefore 
introduce a two-dimensional storage array kfacet which shall be used in exactly 
the same manner as the previously used f array (listing 13.1), except that they 
contain integer indices of vertices rather than raw co-ordinates. We use two 
variables, 11 and 12, to distinguish the two portions of the kfacet array. Initially 
11 is set to 0 and 12 to 1. 

At the start of the process of clipping facet i, the contents of the faclist array 
from faclist[start[i]] to faclist[start[i] + size[i] - 1] are copied to array 
kfacet [11] [O .. ksize - 1], the variable ksize being set to equal size [i] . The poly­
gon described by the kfacet array is therefore facet i. A new variable nnv is also 
introduced at this stage to record the total number of vertices in the model prior 
to the clipping of facet i. Its value is therefore set to ntv. 

The facet is clipped by each of the four clipping planes in turn. The polygon 
defined by kfacet [11] [O .. ksize - 1] is clipped and indices of the vertices of the 
resulting polygon are stored as kfacet [1'2] [O .. n - 1]. Any new vertices created by 
the clipping are appended to the obs array and ntv incremented accordingly. The 
values of 11 and 12 are then swapped ksize set to equal n, and the process is 
repeated with the next clipping plane. 

At the end of the clipping process we have an array of pointers referring to 
the vertices of a new facet which may contain a subset of the original vertices 
together with some new vertices. Once again a number of different cases may 
arise. each corresponding to one of the three cases outlined above. Firstly. the 
number of vertices in the reduced polygon may become less than three. indicat­
ing that the facet lay completely outside the pyramid of vision. In this case the 
clipping process may stop - a real gain. particularly if not all of the clipping 
planes have been used. nfac[i] is set to 0 and any new vertices which may have 
been created can be ignored (by setting ntv back to nnv) and subsequently 
overwritten. If this does not happen and no new vertices are created (ntv = nnv) 
then the original facet lay completely within the pyramid of vision and no 
changes need be made to the data structure. The interesting situation, case (iii) 
above, arises when the final polygon contains at least one new vertex. The new 
facet must be copied into the database arrays and be referred to by nfac[i]. It 
is by no means certain, however, that all of the new vertices created during the 
clipping process will be included in the final polygon - many may themselves 
be clipped out later. We therefore introduce a form of garbage collector into the 
routine for filtering out those vertices which have been created but not ulti­
mately used (see listing 14.1). 

A facet is clipped by the function clip in listing 14.1 which is called for each 
facet of the scene in turn (including superficial facets) by the function clipscene. 
The three different cases which may arise from the clipping function are denoted 
by a flag clipindex which is returned from clip with value 1, 2 or 3 corresponding 
to cases (i), (ii) and (iii) respectively. clip creates a new facet, if necessary, and 
stores it as facet ntf. The management of the nfac pointers is then carried out 
by the calling function clipscene. Any drawit function which requires three­
dimensional clipping must #include "clip3.c". 
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Listing 14.1 

/*Add to file "clip3.c" */ 

int inside[maxpolyJ,kfacett2J [maxpolyJ,ksize; 

/*· .•..••.••...•..•..• ·*/ 
locateCl,flag,tth,oc) 

/*· .•..•....•..•..••.. ·*/ 
int l,flag ; 
float tth ; 
struct vector3 oc[J 

/* •flag' (1 or 2) indicates x or y observed co·ordinates from array oc *I 
I* 'tth 1 is the tangent of relevant angle*/ 
/*For each vertex 1 j', 1 inside[j] 1 is returned as follows:*/ 
/* 'inside[j] ,. 11 if 1 j' lies on the visible side of clipping plane */ 
/* 1 inside[j] =·1 1 if 1 j' lies on the invisible side */ 
I* 'inside[j] = 01 if 1 j' lies in the plane */ 
< float stth,abstth,coord ; 

int i,j ; 
stth=sign(tth) ; abstth=fabs(tth) 
for Ci=O ; i<ksize ; i++) 

{ inside[iJ=O ; j=kfacettll [i] 
if (flag == 1) 

) 

coord=oc[j].x; 
else coord=oc[jJ.y; 
if (coord*stth < ·abstth*oc[jJ.z) inside[il= 1 
if (coord*stth > ·abstth*oc[j].z) inside[il=·1 

> I* End of locate*/ 

/*·················*/ 
clip(k,clipindex) 

/*· ............... ·*/ 
int k,*clipindex ; 

I* Clips facet 'k' */ 
{ int i,j,n,f,s,insect,inter,kfi,l1,l2,nnv,np[maxpoly] 

struct vector3 base,dir,ipt,norm; 
int vf,vs ; 
float rval ; 

/* 1 nnv1 is total number of vertices prior to clipping facet 1 k1*/ 
Mv=ntv ; 

/* Copy pointers to facet vertices into first section of 'kfacet 1 array */ 
ksize=sizetkl ; 11=0; 
for (1=0 ; i<ksize ; i++) 

kfacet[l1J [iJ=faclist[facfront[kJ+il 
I* Loop through clipping planes 1 to 4 */ 

for <1=1 ; i<S ; I++) 
{ n=O ; 
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I* Find •norm'al vector of clipping plane and 'in' value of each vertex *I 
norm.x=·((i·1) X 2> ; norm.y=·(i X 2> ; 
if (fabs(norm.x) < epsilon) 

I* Horizontal clipping plane *I 
< norm.z=vert*0.5*(i·2)1ppd ; 

locate( l1 ,2, ·norm. z,obs) 
) 

I* Vertical clipping plane *I 
else { norm.z=horiz*0.5*Cf·3)1ppd ; 

locate(l1,1,·norm.z,obs) 
} ; 

12=1·11 ; f=ksize·1 ; 
I* Slice facet defined by •kfacet' array with clipping plane 'i' *I 
I* Consider facet edge joining vertices 'f'(first) and •s•csecond) *I 

for (j=O ; j<ksize ; j++) 
< s=J ; 

I* If vertex 'f' is •inside' then include in new facet *I 
if (inside[fl >= 0) 

{ kfacet [l2l [n] =kfacet [11] [f] ; n=n+1 ; 
) ; 

I* If vertices 'f' and •s• are on opposite sides of the plane then *I 
I* find the intersection of the edge with the plane and include. *I 

if cinside[fl*inside[s] == -1) 
{ vf=kfacet[l1J[f] 

vs=kf acet [11 l [s] ; 
base=obs [vfl ; 
dir.x=obs[vs].x·base.x 
dir.y=obs[vs].y·base.y; 
dir.z=obs[vs).z·base.z; 
ilpl(base,dir,norm,O.O,&ipt,&rval,&insect) 
obs[ntvJ=ipt ; kfacet[l2J [nJ=ntv ; 

I* When using Gouraud or Phong Shading add following lines 
I* 
I* 
I* 

vno[ntvJ.x=(1·rval)*vno[vf).x+rval*vno[vs).x 
vno[ntvJ.y=c1·rval)*vno[vfl.y+rval*vno[vsJ.y; 
vno[ntv).Z=(1·rval)*vno[vf].z+rval*vno[vs).z 
n=n+1 ; ntv=ntv+1 ; 

) ; 
f=s ; 

) ; 
I* If new facet empty the stop *I 

if en <= 2) 
< *clipindex=2 ; ntv=nnv; returneD> 
) 

else< ksize=n; 11=12; 
} ; 

) ; 
I* Reach here if non·empty facet remains. If new vertices have been *I 
I* created then sort them and store new facet *I 

if (ntv > nnv) 

*I 
*I 
*I 
*I 
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< *clipindex=3 ; 
for (i=O ; i<ksize ; i++) 

np[i] =i ; 
n=nnv ; facfront[ntfl=firstfree ; 
size[ntfl=ksize ; 

I* Storage of vertices with garbage collection: *I 
I* Sort contents of 1 kfacet 1 array into increasing order *I 

for (i=O ; i<ksize ; i++) 
< if (i < ksize·1) 

for (j=i+1 ; j<ksize ; j++) 
if (kfacet [11] [np[i]] > kfacet[l1] [np[j)]) 

< inter=np[il np[i]=np[j] ; 
np[jl=inter ; 

> ; 
I* If vertex is new (I.e. 'kfl>•nnv'> then place in next available *I 
I* location, else refer to old location *I 

> 

) 

kfi=kfacet[l1] [np[i]] ; 
if (kfi >= nnv) 

< faclist[facfront[ntfl+np[ill=n; 
obs[nl=obs[kfil ; n=n+1 ; 

) 

else faclist[facfront[ntf]+np[ill=kfi 

ntv=n ; firstfree=firstfree+size[ntfl ; ntf=ntf+1 

else *clipindex=1 ; 
I* If no new vertices created then no clipping was needed *I 
> ; I* End of clip *I 

1*···········*1 
clipscene() 

1*···········*1 
{ int i,clipindex; 

for (i=O ; i<nof ; i++) 
< clip(i,&clipindex) 

if (clipindex == 3) 
nfac[il=ntf·1 ; 

) 

else if (clipindex == 2) 
nfac [i] =·1 

> I* End of clipscene *I 
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The routine facetfill (listing 10.4) now draws clipped facets rather than the 
whole facet. 
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The State of the Data Structure 

Let us take an overview of the data structure as it stands after the three-dimen­
sional clipping. The vertex counts nov and ntv refer respectively to the number 
of vertices in the original model and the total number of vertices inclusive of all 
those created by clipping. Thus nov~ ntv throughout. Equivalent definitions 
apply to the facet counts nof and ntf. The pointers in the nfac array refer to the 
polygon representing the visible portion of a given facet of the model. nfac [i] is 
no longer necessarily equal to i for every facet i. 

The drawit Function 

We mentioned that the clipping function must be called before any perspective 
projection onto the view plane can occur and so we insert the call in the new 
drawit function (listing 14.2) immediately before the call to the perspective 
project (listing 11.1 ). Note that draw it replaces previous versions in "d isplay3.c", 
and itself #includes "clip3.c". 

Listing 14.2 

I* replacement function drawit for file "display3.c" *I 

#include "clip3.c11 

1*----·---*1 
drawit() I* extend drawit (listing 10.1), allow for 3·0 clipping *I 

1*--·---·-*1 
I* Set vertex counts *I 
{ ntv=nov ; ntf=nof ; ppd=3.0*horiz ; 

clipscene(); project(); hidden() 
) ; I* End of drawit *I 

Example 14.1 
Figure 14.3a shows a table-top scene viewed from a distance and not needing 
clipping. Figure 14.3b shows a close-up clipped view. 

Exercise 14.2 
Use this method to produce hidden line close-up views of three-dimensional 
models. The only major difference between line drawings and surface drawings 
is that edges of the clipped polygon may appear as lines on the edge of the view­
port. These lines must be suppressed in the corresponding line-drawing seefacet 
function. 
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Figure 14.3(a) 



15 Shading 

In chapter 10 we introduced the function facetfill to produce the viewport 
representation of a facet. Up to now this function has consisted of a simple area­
fill using a logical colour prescribed in the data construction routines. We can do 
much more than this! The realism of the images we produce is greatly enhanced 
by the use of shading. We take advantage of the colour display of the graphics 
device to model the different appearances of surfaces depending on the light 
striking them. Plates III. XIII and IX show pictures produced using the shading 
techniques introduced in this chapter. 

Vision is a perception of light reflected onto the retinas of our eyes. Different 
materials reflect light in different ways. enabling us to distinguish between them, 
but all that we actually see is light. The purpose of a shading model is to calcu­
late precisely what light is reflected to the eye from each visible point in a scene 
and use this information, by selecting a suitable display style for the corres­
ponding pixel. to create realistic images of the scene. Thus there are two distinct 
problems to consider. Firstly. a mathematical model must be developed to pro­
vide the information needed about the light reflected from points in a scene, and 
secondly. this information must be interpreted for application to new facet 
display functions. To use any of the functions in this chapter, you must place 
them in fJ.le "display3.c" so they can be #include(d) when needed. Do ensure 
that the scopes of functions and variables are correct. 

(Note that a shading model is not a hidden surface algorithm. Some other 
method must still be employed to determine which are the visible points of a 
scene. Of course. we do not need to consider every visible point individually­
there are an infinite number - we simply deal with the finite number of pixels 
on the graphics viewport. The problem can also be considerably simplified by 
assuming that the intensity of light reflected from each point on a given facet is 
the same, but more of this later.) 

We shall first turn our attention to a mathematical model for reflected light. 
This problem is somewhat different from all those which we have considered so 
far in this book. In previous chapters, we have dealt with purely geometrical 
concepts: points, lines, planes etc. Light is not a static geometrical object, it is 
energy. We can, nevertheless, develop a geometrical model for the transmission 
and reflection of light. 

We assume that light consists of an infinite number of closely packed rays or 
beams which we may represent as vectors. There are two models which may be 
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used for a light source (see figure 15.1 ). The point source model assumes that all 
rays emanate from a single point and may take any direction from this point. 
This idea corresponds to the properties of a single light bulb or, on a larger scale, 
the sun. Paradoxically, the sun may also be considered to fall into the second 
category - parallel beam illumination - which models the illumination pro­
duced by a point light source 'infinitely' far from the object being illuminated 
or, alternatively, by a distributed light source. This model assumes that all rays 
have a common direction. 

Parallel Beam 
Illumination 

Figure 15.1 

Point Light 
Source 

Either a parallel beam or a point light source may be represented by a single 
vector specified in relation to the OBSERVER co-ordinate system. (We shall 
work with the OBSERVER system throughout this chapter.) The position of a 
point source is specified by a vector s while the direction of the beams in the 
parallel beam model is specified by a vector -/. (Note minus! We adopt this 
notation because in most cases we use the vector in the opposite direction: that 
is, /). In order to calculate the light reflected from a point p on a surface we 
work with the normal to the surface at p, which we call n, together with a direc­
tion vector from p to the light source. For the parallel beam model finding this 
direction is easy- it is the vector I for every point p. For the point source model 
the required vector is s - p, which, for consistency, we shall also call /. For 
calculations involving specular reflection (see later) we also need to know the eye 
position which is, of course, the origin of the OBSERVER co-ordinate system. 

In our programs we assume that a point source of light is used. The ACTUAL 
position of the point source is input in routine insource (listing 15.1) as the co­
ordinate triple, the vector3 point v, with respect to the ABSOLUTE system. The 
OBSERVED co-ordinates of this vector3 point, src, are calculated and declared 
in the database: 

struct vector3 src; 
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Listing 15.1 

I* Add function to file "display3.c" *I 

#define ambient 0.4 I* Set ambient light to 0.4 *I 

struct vector3 src; I* OBSERVED co-ordinates of light source *I 

1*··········*1 
insource() I* Reads in position of light source *I 

1*····------*1 
( struct vector3 v ; 

prfntf("Type in the ACTUAL position of the light source\n") 
scanf("XfXfXf 11 ,&v.x,&v.y,&v.z) ; 

I* Convert to OBSERVED co-ordinates *I 
transform(v,a,&src) ; 

) ; I* End of insource *I 

Quantifying Light - Intensity and Colour 

Rays of light may vary in brightness or intensity. Ultimately, we wish to calculate 
the intensity of the light which is reflected to the eye from a point in a three­
dimensional scene and to interpret this information for display on a graphics 
device. In order to do this we must be able to map the measure of intensity onto 
the set of colours or shades available for display. The range of colours on an) 
graphics device is finite - there is a limit on brightness. We must therefore impose 
a maximum value on intensity so we measure the intensity of light using a real 
value between 0 (representing darkness) and 1 (representing 'maximum' bright­
ness). 

White light consists of a wide spectrum of waves of varying wavelength. each 
corresponding to light of a different colour, ranging from red light at one end of 
the spectrum of visible wavelengths to violet at the other. In our somewhat 
simplistic conception of this idea we assume that light consists of three com­
ponents - red, green and blue. We shall quantify light in terms of the intensities 
of each of these three components. We call these three intensity values Ired· 
I green and /blue and each takes a real value between 0 and 1. In white light these 
components are present in equal measure; a value of 1 for Ired· 0 for !green and 
0 for /blue implies bright red light, whereas 0 for /blue and 0.5 for both Ired and 
!green implies a more subdued yellow light. 

The colour of the light is determined by the triple (/red, I green. /blue). A 
colour (X x Ired• X x !green• X x /blue) for some X, 0 ~X~ l, is said to be a shade 
of (Ired• I green• /blue) with intensity X. 
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The Colour of a Surface 

All materials have properties relating the intensity of light which they reflect to 
that of the light striking them (incident light). We call these properties the reflec­
tive coefficients of the material. We divide the properties into three compbnents 
corresponding to the red. green and blue components of the light. The values of 
the Rred· Rgreen and Rblue coefficients represent respectively the proportion 
of the incident red. green and blue light which is reflected, each taking a value 
between 0 and 1. A value of 1 for Rred implies that all incident red light is 
reflected. while values of 0 or 0.5 imply respectively that none or half of the 
incident red light is reflected. 

The absolute colour of a material is determined by the relative magnitudes of 
the Rred· Rgreen and Rblue coefficients. For a white material all three are equal 
to 1. for a black material all are 0. while any material with equal Rred• Rgreen 
and Rblue values between 0 and 1 is a shade of grey. A large Rred coefficient 
combined with small Rgreen and Rblue gives a reddish colour and so on. 

The apparent colour of a point on a surface is the colour of the light reflected 
to the eye from the point. This is obviously dependent on the light shining on 
the surface as well as on the absolute colour and other properties of the surface 
(for example. transparency. gloss - see later). but in the simple case of a dull 
(matt). opaque surface illuminated by white light, the apparent colour is always 
a shade of the absolute colour. 

Reflection of Light 

There are two distinct ways in which light is reflected from a surface. 
All surfaces exhibit diffuse reflection. Reflected light is scattered by the 

surface uniformly in all directions. so the intensity of light reflected to the eye 
is independent of the position from which the surface is viewed. Furthermore, 
the apparent colour of the surface is dependent on both the colour of the surface 
and the colour of the incident light. We shall discuss the precise relationship 
later. 

Glossy surfaces also exhibit specular reflection. the effect which produces the 
highlights observed in Plate Vlll. A perfect reflector (such as a mirror) reflects 
an incident ray along a single direction (r in figure 15.2). (It is this property 
which enables us to see perfectly clear images in mirrors.) This type of reflection 
is called specular reflection - light is not absorbed. it simply bounces off 1the 
surface so the colour of specularly reflected light is not dependent on the reflec­
tive coefficients of the surface. On slightly imperfect reflectors. some light is also 
reflected along directions deviating very slightly from r, the intensity falling off 
sharply with increasing deviation. Highlights of the same colour as the incident 
light are observed when this light is reflected directly to the eye. 
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Point Light 
Source 

n 

p 

Figure 15.2 

./ 

Specular reflection is governed by two parameters which we call m and s. The 
parameter m is a measure of the gloss of the surface material and refers to the 
sharpness of fall-off in intensity of reflection along directions deviating from r. It 
takes an integer value between 0 and about 15. A high value suggests a very 
glossy surface which exhibits bright, concentrated highlights and hence a sharp 
fall-off in intensity around the direction r. Lower values give less glossy surfaces 
with highlights more distributed. The parameter s may be thought of as the 
reflective coefficient of the material for specular reflection and we call this the 
shine of the material. The value of s varies between 0 and 1 . Shiny materials such 
as metals have high s values, close to 1, while dull materials such as paper have 
low values. Those parts of a glossy surface which are not part of a highlight 
exhibit only diffuse reflection. 

Not all light is reflected straight to the eye, of course. Diffuse reflection, for 
instance, scatters light uniformly in all directions. This results in a low level of 
ambient light illuminating any scene. This is background light reflected equally 
in all directions from the ground, walls and any other exposed surfaces. We 
assume that ambient light illuminates all surfaces of the model equally and en­
sures that those surfaces which are not exposed to a genuine light source do not 
appear perfectly black. The colour of ambient light is, of course, dependent on 
the reflective coefficients of the surfaces from which it has been reflected. 

In order to simplify the calculations required in the shading model, we shall 
assume that all incident light (both source and ambient) is white light, thereby 
consisting of equal measures of red, green and blue components. When we talk 
about 'white' light having intensity /, (a real number), this means that the 
intensity of each colour component is I and so the colour may be described by 
the triple (/, I, !). The intensity of ambient light is given a value between 0 and 
1, which we call / 8 • This value is usually fairly low- about 0.4 is best. Note 
ambient was #defined in listing 15.1. The maximum intensity of light which 
may illuminate a scene is 1. This includes both ambient light and light emanat­
ing directly from a source. The intensity of the contribution of incident light 
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from a source is therefore limited to (1 - I 8 ). The intensity of light emitted by 
a source is given a value between 0 and 1, called Is, and the incident light from 
this source therefore has intensity Is x (1 - I 8 ). The models which we describe 
can be extended to allow for coloured light sources, having three different 
component intensity values. 

Developing a Shading Model 

The ideal shading model calculates the precise colour of light reflected to the eye 
from any visible point in a scene. Such a model is therefore required to return 
the intensities of the red. green and blue components of this colour for any given 
point. This we call a colour shading model. 

Not all graphics devices have sufficient colour capability to display this infor­
mation, however. so we also consider a simplified model, called an intensity 
shading model, which simply returns the intensity (a real value, A, between 0 and 
I) of light reflected from a given point on a surface in the scene. The apparent 
colour of the surface at that point is then assumed to be a shade of the surface's 
absolute colour with intensity A. This model therefore assumes that all surfaces 
of the scene are matt and opaque, exhibiting only diffuse reflection. 

The shading models use a set of parameters which we call material properties. 
These are the properties which govern the way in which materials reflect light, 
the reflective coefficients, gloss, shine etc. For an intensity shading model we use 
just one value, R say, which represents a general reflective coefficient between 0 
and 1. A colour shading model may use all of the parameters which we have 
described. 

( 1) Ambient light 
We begin by modelling the reflection of ambient light which illuminates all sur­
faces equally, including those facing away from the genuine light source. Rays 
of ambient light strike a surface from all directions and are reflected uniformly 
in all directions. The intensity of light reflected to the eye Vamb in the intensity 
shading model) is therefore independent of all but the intensity of the ambient 
light and the reflective coefficient of the surface with respect to this light 

Iamb= R xI a 

where Ia is the intensity of incident ambient light and R is the single-valued 
reflective coefficient of the surface for ambient light. (In theory, the reflective 
coefficients for ambient light and incident light from a source may be different 
but we always assume that they are equal.) 

In order to produce a colour shading model for the reflection of ambient light, 
the above equation must be applied three times using the respective reflective 
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coefficients for the three colour components. We use the values Rred• Rgreen and 
Rblue 

lamb(red) = Rred x Ia 
I amb(green) = Rgreen x Ia 
lamb(blue) = Rbtue x Ia 

(2) Diffuse reflection- Lambert's Cosine Law 
Diffuse reflection may be modelled using Lambert's Cosine Law. This relates the 
intensity of light striking a point on a surface to the cosine of the angle (J between 
the normal to the surface at that point and the vector from the point to the light 
source. The intensity of light, /cliff• reflected to the eye by diffuse reflection 
from this point is dependent on the intensity of light striking the point and the 
reflective coefficient of the surface 

ldiff=R x {Is x (1-Ia)x cos()) 

where Is is the intensity of the light emitted by the source. The angle (J is called 
the angle of incklence of the light on the surface. Now the normal to the surface 
is n and the rays of light have direction /, so the angle (J may be calculated 
through the scalar product n • I which is equal to In I x Ill x cos (J. Thus the in­
tensity of diffuse reflection from a surface is given by 

I _ R x Is x (1 - Ia) x (n • /) 
diff - I n I x Ill 

Naturally, if the angle (J is greater than 90° then the surface at p faces away from 
the source and so no light reaches the surface and consequently none is reflected. 
Although /cliff is calculated by the above formula to be less than 0 in this case, it 
should be set to 0. 

The model for diffuse reflection may be further improved by the inclusion of 
a distance factor: the intensity of light from a given source falls off with increas­
ing distance from the source. At a point a distance d from a source producing 
light of intensity Is, the light has intensity ls/rP. Thus, if the point p above is a 
distance d from a given source then the intensity of light from the source which 
strikes pis ls/d2 , and this value may replace / 8 in the equation above. 

More pleasing effects are often achieved by approximating to this fall-off by 
using / 8/(d + C) for some constant C, as the l 8/d2 value gives too harsh a fall-off 
in intensity. Experiment with the value of C to achieve satisfactory results. 

The complete intensity shading model is given by the sum of the values Iamb 
and /cliff· This gives a real value lying between 0 and 1. 

Once again, colour may be introduced into these models by using the equa­
tion three times, once for each of the colour components red, green and blue 

= Rred x / 8 x (1 -I a) x (n • f) 
In I x Ill I diff(red) 
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= Rgreen x Is x (1 - Ia) x (n • I) 
I diff(green) In I x Ill 

I diff(blue) 

Exercise I 5.1 

= Rbtue x Is x (1 -I a) x (n • I) 
In I x Ill 
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We can create a type of fog model by taking into account the distance of the 
point p from the eye ( = I p I). As this distance increases, so too does the 'foggi­
ness' of the image. We simulate this by defining a light grey colour for fog and, 
instead of displaying the apparent colour of the reflecting surface at p, we dis­
play a weighted average of th1s apparent colour and the fog colour, increasing 
the weighting of the fog colour I p I increases. Experiment with this idea. (See 
Plate XVIII.) 

(3) Specular reflection 
Specular reflection. as mentioned previously, is exhibited by glossy surfaces. A 
model for specular reflection, developed by Bui-Tuong Phong (1975), approxi­
mates the intensity of specular reflection at a point by cosm a where a is the 
angle between the direction of perfect reflection of light from the point and 
the vector from that point to the eye (see figure IS .2), and m is the gloss of the 
surface material. The intensity of light specularly reflected from a surface is also 
dependent on a function of the angle of incidence of the light, (J. This function. 
F((J) say, may be thought of as the reflective coefficient of the surface with 
respect to specular reflection, but this coefficient is not constant: incident light 
striking a surface obliquely (high 8) is reflected to a greater extent than that 
striking more directly. In general, we approximate F(8) by the constant values, 
the shine of the surface material. An equation for the intensity of specularly 
reflected light Uspec), derived from Phong's model, is given by 

Ispec =Is x F(8) x cosmQ or, alternatively Ispec =Is x s x cosmQ 

Specular reflection of light is independent of the absolute colour of the reflect­
ing surface. Consequently, for white incident light, the intensity of each colour 
component in the specular!y reflected light is given by Ispec, calculated as above. 

If r is the direction in which light is reflected from the surface and -p is the 
vector from p to the eye, then the value cos a is given by 

coscx= r·(-p) 
lr I x lp I 

We may take advantage of elementary laws of physics and trigonometry to 
simplify this calculation, which enables us to calculate cos a without first 
calculating r. The angle of reflection is defined to be the angle between the 
surface normal at a point p and the direction of reflection r for a perfectly reflect­
ing surface. This angle of reflection is equal in magnitude and opposite in sense 
to the angle of incidence and consequently 
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r 
lr I 

I +­
Ill 

is a vector parallel to n 

Now suppose the angle between I and r is 1/1, then the angle between 1 and n is 
1/1/2. Let us further suppose that the angle between 1 and -pis a, then a:= 1/1- a 
and so o:/2 = (1/1/2- a/2) (see figure 15.3). Thus, if the vector q is given by 

-p I q=IPT+IIi 
then o:/2 is the angle between q and n and so 

n·q cos ( o:/2) = -,---,------''---:­
In I x lq I 

We know that cos a:= cos2 (a:/2)- sin2 (a:/2) = 2 x cos2 (a:/2)- 1 and hence 
we may calculate cos a:. 

Point Light 
Source 

p 

Figure 15.3 

Eye 
-4 Position 

Specular reflection can only be used with a colour shading model since the 
apparent colour of a point near, but not at, a highlight is not simply a shade of 
either the absolute colour of the surface or the colour of the light, but rather a 
mixture of the two colours. 

It should be pointed out that Bui-Tuong Phong's model does not strictly 
simulate the specular reflection of light, but simply produces an effect of similar 
appearance. 

Each colour component in the complete colour shading model is calculated 
by summing the corresponding components of the contributions from reflected 
ambient light, diffuse reflection and specular reflection. If any colour com­
ponent exceeds 1 then it is set to 1. 
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(4) Shadows 
If a point is obscured from exposure to a single light source, then the point is 
said to be in shadow. The light emitted from the point is restricted to reflected 
ambient light, in the absence of other light sources. 

(5) Multiple light sources 
Any of the shading models detailed above may be extended to deal with illumina­
tion from more than one light source simply by taking the average of the con­
tributions from each. The contribution from each light source is calculated as if 
it were the only source, taking into account the same level of ambient light in 
each calculation. 

(6) Transparent surfaces 
For a transparent surface, the apparent colour is also determined by a contribu­
tion from hght arriving from behind the surface. The extent of this contribution 
is measured by the transparency coefficient T, which again takes a value between 
0 and 1. A perfectly transparent surface is indicated by T = 1 while a fully 
opaque surface has T = 0. In chapter 16 we shall examine the geometrical prob­
lems of incorporating transparent surfaces into a scene: in this section we shall 
consider only the shading of such surfaces. 

If the intensity of light arriving at a point p from behind is /b and the inten­
sity of light reflected from p by diffuse and specular reflection is /p, then the 
intensity of light emitted from p is given by 

ltran = T X /b + {1 - n X /p 

Only if ali surfaces have the same absolute colour can transparency be taken 
into account in an intensity shading model, because if different absolute colours 
occur then 'mixes' of these colours have to be calculated and displayed. For a 
colour shading model, transparency coefficients may be separated into three 
components, relating to the proportions of red, green and blue light let through. 
These components may differ in the same way as may the reflective coefficients 
of a material: a red filter, for instance, will let through all red light which strikes 
it, but is perfectly opaque with respect to blue or green light. The three trans­
parency coefficients are, in fact, directly related to the reflective coefficients so 
instead of specifying three transparency coefficients for a surface, we specify 
one general value, T, and use the three values T x Rred• T x Rgreen and T x Rblue 
in the colour equations 

ltran(red) = T x Rred x fp(red) + {1 - T x Rred) x /b(red) 

ltran(green) = T x Rgreen x fp(green) + {1 - T x Rgreen) x /b(green) 

ltran(bkle) = T x Rblue x fp(blue) + {1 - T x Rblue) x /b(blue) 

Exercise 15.2 
Extend the formulae throughout this section so that they deal with a coloured, 
light source. 
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Incorporating Shading into the Programs 

We now turn our attention to the display of information derived from shading 
models. You do not have to use very expensive colour devices with vast ranges of 
available colours in order to produce shaded pictures. Provided that you temper 
your aims according to the capabilities of the display, then satisfactory results 
can almost always be obtained. 

In this section we shall discuss the application of shading techniques to the 
polygon mesh models which we have used thus far in the parts of this book deal­
ing with three dimensions. Nevertheless. it should be understood that the techni­
ques may be applied equally well to the analytic models described in chapter I 7. 

The new drawit function (listing 15.2) which co-ordinates the creation of 
shaded images contains two additional calls - to a function colourtable (listing 
15.6) which initialises the set of shades or display styles which are used for the 
shading and to the function insource given in listing 15.1. We assume that there 
are originally numshade shades for each of numcol colours. The major changes 
occur at a much lower level in the structured sequence of functions, in the 
facet display functions seefacet and facetfill. 

Listing 15. 2 

I* replacement function drawit for file "display3.c" */ 

#include 11clip3.c" 

int numcol,numshade ; 

J*--------*1 
drawit() /* Version of drawit for shading models */ 

J*--------*1 
< /*Set vertex and facet counts */ 

ntv=nov ; ntf=nof ; ppd=3*horiz ; materialin() ; 
I* prepare and draw scene */ 

colourtable() ; clipscene() ; project() ; insource() hidden() 
} ; I* End of drawit */ 

We mentioned at the beginning of this chapter that the implementation of a 
shading model can be simplified by assuming that the apparent colour of points 
on a facet is constant over the facet. For the fi1st two methods outlined below 
we must use this approach since the apparent colour is not displayed explicitly 
by each pixel, rather it is suggested by the densities of various colours over the 
whole facet. 

Recall that the shading models all calculate a measure of the light reflected to 
the eye from a single point on a surface. For constant shading over a facet. such 
as was used for Plate II (a constant shaded version of the camera of Plate I). 
however. a slightly different approach must be adopted. Obviously, the normal 



Shading 275 

vector n is the same for any p on the facet but, if a point light source is used. the 
vector I will vary across the facet and so an average value must be taken. What 
we do is to average the x, y and z co-ordinates of the vertices of the facet and 
use the centroid thus calculated as p, thus determining an average value for I. 
Every point on the facet is then assumed to reflect light of the same colour and 
intensity as that reflected at p. For convex polygons the centroid always lies with­
in the polygon. The centroid of a facet is calculated by a call to the function 
midpoint given in listing 15.3. 

Listing 15.3 

/*Add to file "display3.c" */ 

/*-·-------··--·------*/ 
midpoint(face,midpt) 

1*·-·---·--·-------·--*1 
int face ; 
struct vector3 *midpt ; 

< i nt i, j ; 
I* Finds the mid-point of facet 'face• in OBSERVED co-ordinates */ 

midpt·>x=O.O ; midpt->y=O.O ; midpt->z=O.O ; 
for (i=O ; i<size[face] ; i++) 

{ j=faclist[facfront[face]+i] ; 
midpt·>x=midpt·>x+obs[j].x; 
midpt·>y=midpt·>y+obs[j].y; 
midpt·>z=midpt·>z+obs[j].z; 

} ; 
midpt->x=midpt·>xlsize[face] 
midpt·>y=midpt·>ylsize[face] 
midpt·>z=midpt·>zlsize[face] 

} ; I* End of midpoint *I 

The Implementation of the shading models requires that the material properties 
of the various surfaces be represented in the programs. We use the concept of 
material in the same way as we have used colour in preceding chapters - an 
integer value, colour [i] , is associated with each facet i and this integer now refers 
to a particular material, and a corresponding set of material properties, rather 
than to a logical colour and these must be declared in the database. For intensity 
shading models this declaration consists of an array representing the single-valued 
reflective coefficient and three arrays defining the components of the absolute 
colours of the materials. 

float r[maxmaterl], rm[maxmaterl], gm[maxmaterl], bm[maxmaterl]; 

The value of maxmaterl is #define(d) - we use 10. For later colour shading 
models we require the three reflective coefficients, the gloss and shine parameters 
and the transparency coefficient, and we have the declarations 
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float rm[maxmaterl], gm[maxmaterl], bm[maxmaterl], sm[maxmaterl], 
tr [maxmaterl]; 
int mm [maxmaterl]; 

The material properties must be set up through the scene function. As an 
example we give a materialin function (listing 15.4) which reads the values in 
from a file named "materl.dat". Remember that rm, gm, bm, sm and tr would 
take real values between 0 and 1 while mm is an integer varying between 1 and 
about 15. 

Listing 15.4 

I* Add to file "display3.c" *I 

#define maxmaterl 10 

I* data base for intensity shading model *I 

int nunat ; 
float r[maxmaterl],rm[maxmaterl],gm[maxmaterl],bm[maxmaterlJ 

I* for colour shading model replace above declaration with :· *I 
I* 
float rm[maxmaterl],gm[maxmaterlJ,bm[maxmaterl],sm[maxmaterlJ,tr[maxmaterll 
int rrm[maxmaterll 
*I 

1*··-·········*1 
material in() 

1*············*1 
{ int I ; 

FILE *indata ; 
I* Read number of materials *I 

indata=fopenC"materl.dat","r") 
fscanfCindata,"Xd",&nunat) ; 

I* Read in the material properties for intensity shading model *I 
for Ci=O ; i<numat ; i++) 

fscanf(indata,"%f%f%f%f 11 ,&r[i] ,&rm[i] ,&gm[il ,&bm[i]) ; 
I* For colour shading model replace above statement with :· *I 
I* 

fscanf(indata, "%f%f%f%f%d%f 11 ,&rm[i] ,&gm[i] ,&bm[il ,&sm[il ,&rrm[i] ,&tr [i]) 
*I 

fclose( indata) ; 
> ; I* End of materialin *I 

We now outline various methods for the interpretation of intensity information 
ranging from a simple sampling method to a full implementation of a colour 
model. 
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(I) Random sampling 
This method may be used when a very limited number of colours or shades is 
available; it uses an intensity shading model (implemented in the function 
intensityshade in listing 15.5). 

Listing 15.5 

I* Add to "display3.c" *I 

1*···································*1 
intensityshade(p,norm,index,lambda) 

1*···································*1 
struct vector3 p,norm ; 
int index ; 
float *lambda ; 

I* Intensity shading model : returns intensity 'lambda' *I 
I* vector 'P' is the point from which light is reflected *I 
I* vector •norm• is the surface normal at that point *I 
I* surface material 'index• *I 
< struct vector3 ptosrc ; 

float cosval,dotprod,modnormal,modptosrc ; 
I* Calculate direction from vector 'P' to source *I 

ptosrc.x=src.x·p.x ; 
ptosrc.y=src.y·p.y ; 
ptosrc.z=src.z·p.z ; 

I* Calculate the angle between the surface normal and this direction *I 
dotprod=dot3(norm,ptosrc) ; 
modnormal=sqrt(pow(norm.x,2.0)+pow(norm.y,2.0)+pow(norm.z,2.0)) ; 
modptosrc=sqrtCpowCptosrc.x,2.0)+powCptosrc.y,2.0)+powCptosrc.z,2.0)) 
cosval=dotprodiCmodnormal*modptosrc) ; 
if (cosval < 0 ) cosval=O ; 

I* •lambda• is the intensity returned *I 
*lambda=r[indexl*CC1·ambient)*cosval+ambient) 

> ; I* End of intensityshade *I 

The facetfill function (listing 15.6) displays a facet not by using a simple area-fill 
in a colour indicated by the colour array, but instead by using the intensity value 
as a measure of the probability that any pixel within that area should be dis­
played in a given shade of the chosen logical colour. Suppose we have 3 shades 
(numshade = 3) of each of the numcol colours, graded from dark (index 1) to 
light (index 3), set up in a colour look-up table by a function which we call 
colourtable. If you have a graphics device that can specify colours by their RGB 
values (see later) then you can use the routine given in listing 15 .8, otherwise 
you must write your own routine to create this table. For reasons explained 
later, we suppose the table has indices 1, ... 3 * numcol. If the intensity of 
light reflected from a surface is low, then there is a greater probability of a pixel 
on the surface being a darker shade and correspondingly smaller probabilities for 
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the middle and lighter shades. A high intensity, close to 1, implies a large prob­
ability that a given pixel in the relevant area will be set to the lighter shade. The 
shade for display is chosen by a function randomcolour (listing 15.6} using a 
random function based on the intensity of reflected light. The seefacet and 
facetfill functions which implement the random sampling method are also given 
in this listing. Note that seefacet determines the intensity of light reflected from 
a facet, through a call to intensityshade, and then calls facetfill which displays 
the facet, pixel by pixel, using shades randomly selected by randomcolour. 

Listing 15.6 

I* Add to "display3.c" *I 

int numcol,numshade ; 

unsigned int seed = 12345 

1*··············*1 
float random() 

1*··············*1 
I* Source : C Primer Plus by Waite, Prate and Martin *I 
{ seed= (seed*25173 + 13849) X 65536 ; 

return(Cfloat)seedl65536.0) 
) ; I* End of random *I 

1*························*1 
randomcolour(col,lambda) 

I*··· .................. ···*I 
int col ; 
float lambda ; 

I* Assuming numshade=3 select logical colour between 1+3*col and 3+3*col *I 
I* the colour table having been set up by routine 'colourtable• *I 
{if (lambda< 0.15) 

setcol(1+3*col) ; 
else if (lambda >0.95) 

setcol(3+3*col) 
else if (lambda< 0.55) 

if ((random()*0.4+0.15) < lambda) 
setcolC2+3*col) ; 

else setcol(1+3*col) ; 
else if ((random()*0.4+0.55) < lambda) 

setcol(3+3*col) ; 
else setcol(2+3*col) 

) ; I* End of randomcolour *I 

I*······ ........... ·····*I 
facetfill(face,lambda) I* Version for random sampling shading *I 

1*······················*1 
int face ; 
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float lambda ; 
I* Displays facet 'face• in a 'shade' with intensity lambda *I 
{ int i,index,ix,iy,j,next,pixval,xmax,xmin,ymax,ymin 

struct pixelvector pix,pixpol[maxpolyl 
float bottom,top,factor 
j=nfac [face] ; 
if (j < 0) return(O) ; 

I* Find the pixel co-ordinates of the vertices *I 
for (i=O ; i<size[j] ; i++) 

{ pixpol[iJ.x=fx(pro[faclist[facfront[j]+i]].x) 
pixpol[i].y=fy(pro[faclist[facfront[j]+i]J.y) 

} ; 
I* Fill facet by a scan line approach *I 

ymax=pixpol[O].y; ymin=ymax; 
for (i=1 ; i<size[jl ; i++) 

{if (pixpol[i].y > ymax) ymax=pixpol[iJ.y 
if (pixpol[i].y < ymin) ymin=pixpol[iJ.y 

} 

if (ymax >= nypix) ymax=nypix-1 
if (ymin < 0 ) ymin=O ; 
for (iy=ymin ; iy<=ymax ; iy++) 

{ xmin=nxpix; xmax=-1 ; index=size[jJ-1 
for (next=O ; next<size[j] ; next++) 

{if ((max(pixpol[index].y,pixpol[next].y) >= iy) && 
(min(pixpol[indexJ.y,pixpol[next].y) <= iy) && 
(pixpol[index].y != pixpol[nextJ.y)) 

} 

{ top=pixpol[next].x·pixpol[indexJ.x; 
bottom=pixpol[next].y·pixpol[index].y 
factor=(iy·pixpol[index].y)*toplbottom; 
pixval=pixpol[index].x+(int)(factor+O.S) 
if (pixval < xmin) xmin=pixval 
if (pixval > xmax) xmax=pixval ; 

} 

index=next ; 

if (xmax >= nxpix) xmax=nxpix-1 
if (xmin < 0) xmin=O ; 
if (xmin <= xmax) 

} ; 

for (ix=xmin ; ix<=xmax ; ix++) 
{ pix.x=ix ; pix.y=iy ; 

randomcolour(colour[faceJ,lambda) 
setpix(pix) 

} 

} I* End of facetfill *I 

1*··············*1 
seefacet(face) I* Version for random sampling shading*/ 

1*··············*1 

279 
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I* Also used for pattern shading and constant intensity shading *I 
int face ; 

I* •seefacet' routine for Random Sampling shading *I 
< float lambda,dummy ; 

struct vector3 midpt,norm ; 
struct heapcell *pt 
int newface ; 

I* Find the mid·point and normal of facet •face' *I 
midpoint(face,&midpt) ; normal(face,&norm,&dummy,obs) 

I* Find the intensity of reflected light*/ 
intensityshade(midpt,norm,colour[face],&lambda) 

I* Display the facet */ 
facetfill(face,lambda) ; 

I* Repeat for each superficial facet on facet 'face• */ 
pt=firstsup[face] ; 
while (pt I= NULL) 

< newface=pt·>info ; pt=pt·>ptr ; 

> 

midpoint(newface,&midpt) ; normal(face,&norm,&dummy,obs) 
intensityshade(midpt,norm,colour[face],&lambda) 
facetfill(face,lambda) 

> I* End of seefacet */ 

!*--··-·-·-···-*/ 
colourtable() 

1*·--·····-····*1 
I* Initialises colour look·up table: random sampling*/ 
I* Creates •numshade' shades of •numcol' colours*/ 
< int i ,j,n ; 

float shade ; 
printf("Type in nunber of colours and nl.mber of shades\n"> 
scanf("Xd%d",&numcol,&numshade) ; 

I* Colour 0 is kept for the background colour */ 
n=O ; 

I* Initialise all list pointers*/ 
for Ci=O ; i<ni.IIICol ; i++) 

for (j=O ; j<numshade ; j++) 
{ n=n+1 ; shade=Cfloat)(j+1)/numshade 

rgblog(n,shade*rm[il,shade*gm[il,shade*bm[i]) 
> 

> I* End of colourtable *I 

Listing 15. 7 

I* Replacement facetfill for file "display3.c" *I 

1*·-··-····--·······-···*1 
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faeetfill(faee,lambda) 
1*···· · ·················*1 
I* version with random sampling using patterns *I 

int face ; 
float lambda ; 

< int i,j,pattern ; 
struet veetor2 poly[maxpoly] 

I* Set display style to •pattern' corresponding *I 
I* to intensity 'lambda' and given colour of face *I 

findloglealeolour(eolour[faeeJ,lambda,&pattern); 
patternset(pattern) ; j=nfae[faeel ; 
if (j < 0) return<O> ; 

I* Copy vertex eo·ordinates to 'poly' array *I 
for <i=O ; i<size[j] ; i++) 

{ poly[iJ.x=pro[faelist[faefront[j]+i]].x; 
poly[iJ.y=pro[faelist[faefront[j]+i]].y; 

} ; 
I* Display facet *I 

polyfi ll(size[jl ,poly) 
} ; I* End of faeetfill *I 

Example 15.1 

281 

Figure 15.4 shows a sphere displayed using the random sampling method of 
shading using three colours, black (1), medium grey (2) and white (3). 

Figure 15.4 
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(2) Pixel patterns 
A more formal application of the above idea may be adopted if the device being 
used provides for a patterned area-fill. In this method pixels are not considered 
individually, but in small square blocks of, perhaps, 2 x 2 or 3 x 3 pixels which 
we call pixel patterns. The larger the blocks used, the greater is the number of 
shades that may be obtained but, in turn, resolution is sacrificed. 

Pixel patterns may involve a simple combination of black and white or a 
variety of combinations of shades of the same colour in sets of two, three or 
more. 

There are five elementary 2 x 2 pixel patterns 

~ 
[!E) 
~ 
[!E) 
~ 
~ 

where B = background colour and F = foreground colour. Each of the remaining 
possible combinations gives the same shade as one of these five (there are 24 = I6 
combinations all together). 

If we use B =black and F =white then we have at our disposal five graded 
shades rangmg from black through three shades of grey to white. More shades 
may be created by mixing pairs selected from a small number of shades of the 
same colour. If pairs are selected from a set of three or more colours then the 
sorting of the shades into order of intensity is not automatic. You will have to 
sort them into a suitable order yourself. You will discover that some shades do 
not fit into the order at all and have to be discarded. Nevertheless, with a little 
effort you can usually create a satisfactory set. 

Typically, storage is provided for a number of patterns which may be accessed 
by integer indices ranging from 1 up to a maximum number, numpat, say. 
These patterns are defined in terms of a unit block of (h x v) pixels, say. Each 
pixel within this unit block is given a binary value. 0 or I. A value of 0 implies 
that the pixel is displayed in background colour and a value of I implies fore· 
ground colour. The precise form of this definition varies from device to device. 
An area is pattern-filled using pattern I by repeating the unit block of pattern I 
throughout the area. See the facet fill function of listing 15.7. 

Exercise 15.3 

We assume that numpat (= numcol * numshade) patterns, with indices 1,2, ... , 
numpat, are defined and loaded into the graphics device by a function colour­
table, this time defined by the user. This numbering is used to make the setup of 
patterns equivalent to that of the structure of the colour table we use in listing 
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15.8. Each pattern must represent a shade of a given colour, where the ith shade 
of the jth colour will be pattern i + (j - 1) * numshade. Within each of the 
numcol consecutive sets of numshade patterns, the pattern with the smaller 
indices will represent the darker shades of colour, while those with the higher 
indices will represent the lighter shades. The user must also write a function 
patternset which sets the pattern display style for the graphics device, so that the 
choice of patterns is a meaningful representation of shades of the numcol colours. 
The facetfill function of listing 15.7 will fll.l in the indicated polygonal area with 
the chosen pattern found by findlogicalcolour of the listing 15.8. Of course you 
must ensure that the polyfill function has been rewritten to pattern-fill. The 
display will be co-ordinated by the seefacet function of listing 15.6 for the 
intensity shading model. Note how the real intensity value returned from 
intensityshade is used by selecting the correct pattern for display. 

Example 15.2 
Figure 15 .5 shows an object displayed using 2 x 2 pixel patterns derived from 
five different shades of red. 

Figure 15.5 

(3) The RGB colour model 
Although some graphics devices have relatively few colours, hence the need for 
the random sampling and pattern fill, many devices allow for very flexible defi­
nition of colours through the specification of red, green and blue components. 
On some of these , an effectively infinite range may be available as each com-
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ponent can be specified by a real number between 0 and I. More typically the 
components are defined by three 8-bit integers (between 0 and 255) which, 
nevertheless, gives us a choice from some 16 million possible colours. Only a 
subset of these colours may be displayed at one time and these are stored in the 
colour look-up table. We assume that this table stores the definitions of 256 
actual colours in terms of their red, green and blue component values. Each 
entry in the colour look-up table (that is, each logical colour) has an integer 
index, between 0 and 255. The colour of light reflected from a point is calcu­
lated, and a suitable colour from the colour look-up table is selected for display. 
This method requires careful attention to the storage of and access to colours in 
the colour look-up table. 

The colour look-up table is the only interface between the three-dimensional 
calculations and the image display. The display can be meaningless if the table is 
not properly set up. We use two routines for manipulating the colour look-up 
table. The table is initialised by a function colourtable which is called by the new 
drawit function given in listing 15.2. Having ascertained the colour needed for 
display, we need to find (or define) the corresponding entry in the colour look­
up table. This is essentially a sorting and searching problem, solved by a function 
findlogicalcolour. 

There are two ways in which we can tackle the problem, giving us two pairs 
of colourtable and findlogicalcolour functions. The frrst method is to pre-define 
the entries in the colour look-up table in such a way that we know exactly where 
to find a suitable colour through a simple calculation, without the need for a 
time-consuming search. Use of this method restricts us to an intensity shading 
model (intensityshade in listing 15 .5). Suppose that a scene contains numcol dif­
ferent absolute colours and we want to choose between numshade shades of 
each ranging from zero intensity up to unit intensity. The logical colours are 
divided into numcol equal sized blocks (of numshade entries), each block repre­
senting a series of shades of a given absolute colour. The index of the absolute 
colour of the surface to be displayed indicates which block of logical colours we 
should consider and we use the real intensity value returned by intensityshade to 
determine the position in this block of the logical colour corresponding to that 
intensity. The initial construction of the colour look-up table is executed by the 
function colourtable given in listing 15.8, and the logical colour to be used for 
display is found by the accompanying function findlogicalcolour. The facet is 
then filled by facetfill (listing 15.7) with the correct shade. When you add these 
functions to "display3.c", ensure that old versions of facetfill etc. are removed. 

Listing 15. 8 
I* Add to file "display3.c" */ 

!*······-----------------------------------·*/ 
findlogicalcolourCabscol,intensity,logcol) 

!*··················-··············-----·-··*/ 



I* constant intensity shading *I 
int abscol,*logcol ; 
float intensity ; 

Shading 

I* Routine to find the logical colour, 'logcol', corresponding to *I 
I* a shade of absolute colour •abscol' with given 'intensity' */ 
( *logcol=1+abscol*numshade+(int)(0.9999*intensity*numshade) 
} ; I* End of findlogicalcolour *I 

1*·············*1 
colourtable() /* constant intensity shading */ 

1*·············*1 
/*Initialise colour look·up table*/ 
I* Creates •numshade' shades of •numcol' colours *I 
( int i, j ,n ; 

float shade ; 
printf("Type in number of colours and number of shades\n") 
scanf( 11%crkt" ,&numcol, &numshade) ; 

I* Colour 0 is kept for the background colour */ 
n=O ; 

I* Initialise all list pointers *I 
for ( i=O ; i <numcol ; i++) 

for (j=O ; j<numshade ; j++) 
( n=n+1 ; shade=(float)(j+1)/numshade 

rgblog(n,shade*rm[i],shade*gm[iJ,shade*bm[i]) 
} 

} /* End of colourtable *I 

/*·· ................... ·*I 
facetfill(face,lambda) 

/*·· ................... ·*I 
int face ; 
float lambda ; 

I* constant intensity shading *I 

I* Displays facet 'face• in a •shade' with intensity 'lambda' *I 
( int i,j,index ; 

struct vector2 poly[maxpolyl ; 
findlogicalcolour(colour[face],lambda,&index) 
setcol(index) ; j=nfac[face] 
if (j < 0) return(O) ; 

I* Find the pixel co·ordinates of the vertices */ 
for ( i=O ; i<size[j] ; i++) 

( poly[i].x=pro[faclist[facfront[j]+i]].x 
poly[iJ.y=pro[faclist[facfront[jl+i]].y 

} 

polyfill(size[j],poly); 
} ; /*End of facetfill */ 

285 
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This method substantially restricts the number of possible colour shades, and so 
in order to make full use of our colour shading model, a second method is used 
in which the entries of the colour look-up table must be defined as and when 
required. Three values between 0 and 1, representing the red, green and blue 
components of the apparent colour of a point or surface, are returned by the 
colour shading model implemented in function cshade (listing 15.9). 

Listing 15. 9 

I* Add to "display3.c" *I 

1*································*1 
cshade(p,norm,ic,red,green,blue) 

1*································*1 
struct vector3 p,norm ; 
int ic ; 
float *red,*green,*blue ; 

I* Colour shading model *I 
< struct vector3 ptosrc,q ; 

float cosa,cosaover2,cosval,dotprod,specular 
float modnormal,modp,modptosrc,modq ; 

I* Calculate direction from vector 'P' to source *I 
ptosrc.x=src.x·p.x ; 
ptosrc.y=src.y·p.y ; 
ptosrc.z=src.z·p.z ; 

I* Calculate the angle between the surface normal and this direction *I 
dotprod=dot3Cnorm,ptosrc) ; 
modnormal=sqrt(pow(norm.x,2.0)+pow(norm.y,2.0)+pow(norm.z,2.0)) ; 
modptosrc=sqrt(pow(ptosrc.x,2.0)+pow(ptosrc.y,2.0)+pow(ptosrc.z,2.0)) 
cosval=dotprodl(modnormal*modptosrc) ; 
if (cosval < 0) cosval=O ; 

I* Calculate the diffuse reflection colour components *I 
*red=rm[icJ*((1·ambient)*cosval+ambient) ; 
*green=gm[ic]*((1·ambient)*cosval+ambient) ; 
*blue=bm[ic]*((1·ambient)*cosval+ambient) ; 

I* Calculate the vector 'q' *I 
modp=sqrt(pow(p.x,2.0)+pow(p.y,2.0)+pow(p.z,2.0)) 
q.x=·p.xlmodp+ptosrc.xlmodptosrc ; 
q.y=·p.ylmodp+ptosrc.ylmodptosrc ; 
q.z=·p.zlmodp+ptosrc.zlmodptosrc ; 
modq=sqrt(pow(q.x,2.0)+pow(q.y,2.0)+pow(q.z,2.0)) ; 

I* Calculate the specular reflection contribution *I 
cosaover2=dot3(q,norm)l(modnormal*modq) 
cosa=2*pow(cosaover2,2.0)·1 
if ( cosa < 0.0001 ) 

specular=O.O ; 
else specular=sm[ic]*pow(cosa,(float)mm[ic]) 
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J* Calculate the components of the reflected light*/ 
*red=*red+specular ; 
if ( *red > 1 ) *red=1 ; 
*green=*green+specular ; 
if ( *green > 1 ) *green=1 
*blue=*blue+specular ; 
if ( *blue > 1 ) *blue=1 

> ; J* End of cshade */ 
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Given the three colour components of a colour required for display. a search 
through the existing entries in the colour look-up table is executed to find if a 
'sufficiently similar' colour has been stored. If such a colour is found, then this 
is used for display. If no 'sufficiently similar· colour has been st.ored then a new 
actual colour is created. stored as the next available logical colour. and tltis is 
used for display. Problems arise in determining what is 'sufficiently sintilar' and 
in optimising the search methods used. 

The definition of 'sufficiently similar' depends on two things: the number of 
shades of a colour required and the size of the colour look-up table. If we are 
too strict then we may find that the available number of logical colours is not 
large enough. If we are not strict enough then the accuracy of the image is 
undermined. About 25 different shades of a given colour are sufficient for most 
images. Therefore we consider an existing actual colour to be sufficiently similar 
to a newly calculated colour if each of the calculated R. G and B components 
are within 0.04 of the respective existing components. A larger number of 
different shades may be displayed by decreasing tltis value. but care must be 
taken not to exceed the available number of logical colours. Note that the in­
formation in the colour look-up table must be stored in the program as well as 
in the display device memory fur the implementation of this method. 

The question of search method IS very important. If an image is shaded pixel 
by pixel then the colour look-up table is accessed many thousands of times and 
any slight delay in the search will result in a greatly increased processing time for 
the whole image. What we do is identify a subset of the entries in the colour 
look-up table which have to be considered in a search, and we sort these entries. 
in order of increasing red component, so that the search through this subset is as 
efficient as possible. We implement this method using a number of linked lists 
within the colour look-up table, one list associated with each absolute colour. A 
pointer is associated with each entry in the colour look-up table, referring to the 
next item in the list which contains that entry. The first item in each list is refer­
red to by the array element, matlist[i], for each absolute colour i. The entries in 
the colour look-up table, arrays red [maxcol] 1 green [max col] I blue [maxco_l] and 
the associated linear lists, are declared in the database (listings 1.3 and 15.10): 

int colptr[tabnum] I matlist[maxmaterl] 1 newcolour; 

where newcolour is the next free entry and colptr[i] refers to the next entry in 
the linear list containing logical colour i - 1. 
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When the apparent colour of a point on a surface is calculated, the list of 
logical colours associated with the absolute colour of the surface is scanned until 
one of three cases occurs 

(i) a sufficiently similar colour is found: this colour is used for display 
(ii) a colour with greater red component is found: the new colour is inserted 

into the list before the colour with greater red component and the new 
colour is used for display 

(iii) the end of the list is reached: the new colour is added to the end of the list 
and used for display. 

The colour look-up table is initialised by the new function colourtable, and the 
table is updated and a suitable logical colour found by the new function find­
logicalcolour, both given in listing 15 .I 0. 

Of course, if your graphics device has 'infmite' colours there is no need for a 
colour table, you can identify each facet or pixel with its own unique shade. 

Listing 15.10 

' I* Add to "display3.c" *I 

I* data base for colour shading *I 

int colptr[tabnl.lll],matlist[maxmaterl],newcolour; 

1*·------------*1 
colourtable() 

1*------------·*1 
I* Initialises colour look-up table for colour shading models*/ 
< int i ; 

newcolour=1 ; 
I* Initialise all list pointers *I 

for (i=O ; i<maxmaterl ; i++) matlist[i]=-1 
for (i=O ; i<256 ; i++) colptr[il=-1 

> ; I* End of colourtable *I 

1*---------------------------------*1 
findlogicalcolour(r,g,b,i,colour) I* Version for colour shading *I 

1*·--------------------------------*1 
float r,g,b ; 
int i, *colour ; 

I* Find logical colour corresponding to •r,g,b' components */ 
{float limit • 0.04; 

int go_on,j,newptr ; 
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I* 'j' and 'newptr' refer to logical colour list for absolute colour 'i' *I 
j=matlist[il ; newptr=·1 ; go_on=(j!=·1) ; 
while (go_on) 

{if ((fabs(r·red[j]) <limit) && (fabs(g·green[j]) <limit) 
&& (fabs(b·blue[j]) <limit) ) 

I* Corresponding colour found *I 
{ *colour=j ; return(O) 
) 

else if <<r > red[j])) 
newptr=j ; 

I* Check next item in the list; leave if red value too large *I 
if <r > red[j]·limit) 

{ j=colptr[j] go_on=(j!=·1) ; 
) 

else go_on=FALSE 
) ; 

I* Existing list doesn't contain suitable logical colour: add new colour *I 
if (newptr > ·1) 

{ colptr[newcolourl=colptr[newptrl ; colptr[newptrl=newcolour ; 
) 

else { colptr[newcolourl=matlist[i] ; matlist[il=newcolour; 
) ; 

red[newcolourl=r ; green[newcolour]=g ; blue[newcolourl=b ; 
rgblog(newcolour,r,g,b) ; 

I* Return index of this this new colour : *I 
*colour=newcolour ; newcolour=newcolour+1 

) ; I* End of findlogicalcolour *I 
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The seefacet and facetfill functions used in conjunction with an RGB colour 
shading model may take one of a number of forms. 

(3.1) Constant shading 
The simplest and quickest method of displaying a facet is by constant shading, 
see Plate II. We assume that the shade is constant across any facet and once the 
logical colour referring to the required shade has been determined the surface is 
displayed on the viewport using a simple area-fill. The seefacet and facetfill 
functions used for constant shading are given in listing 15.11. Plate IV shows a 
picture of an Infinite Periodic Minimal Surface (a structure used in crystallo­
graphy) produced using these functions. Again delete old versions of facetfill and 
seefacet from "display3.c", before inserting listing 15.11. 
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Listing 15.11 

I* Add to file "display3.c" *I 

I*·· .........•...•.... ·*I 
facetfill(face,index) I* Version for constant colour shading *I 

I*· ......... - .......•• ·*I 
int face, index ; 

I* Displays facet 'face• in a •shade' with given 'index' *I 
< int i ,j ; 

struct vector2 poly[maxpolyl 
setcol(index) ; j=nfac[face] 
if (j < 0) return(O) ; 

I* Find the pixel co-ordinates of the vertices *I 
for (i=O ; i<size[j] ; i++) 

{ poly[i].x=pro[faclist[facfront[j]+i]].x; 
poly[i].y=~ro[faclist[facfront[j]+i]].y; 

) ; 
polyfill<size[j] ,poly) ; 

) ; I* End of facetfill *I 

1*··············*1 
seefacet(face) 

1*··············*1 
int face ; 

I* Version for constant colour shading *I 

{ float dummy,red,green,blue ; 
struct vector3 midpt,normv ; 
struct heapcell *pt ; 
int index,newface ; 

I* Find the mid-point and normal of facet 'face• *I 
midpoint(face,&midpt) ; normal(face,&normv,&dummy,obs) 

I* Find apparent colour of facet 'face' *I 
cshade(midpt,normv,colour[face],&red,&green,&blue) ; 
findlogicalcolour(red,green,blue,colour[face],&index) 

I* Display the facet *I 
facetfill(fece,index) ; 

I* Repeat for each superficial facet on facet 'face• *I 
pt=firstsup[fece] ; 
while (pt I= NULL) 

{ newface=pt·>info ; pt=pt·>ptr ; 
cshade(midpt,normv,colour[newfecel,&red,&green,&blue) 
findlogicelcolour(red,green,blue,colour[newfacel,&index) 
facetfill(newface,index) 

) 

) ; I* End of seefacet *I 

Although sufficient for scenes made up entirely of matt, planar surfaces, this 
method has a number of disadvantages. The results obtained on models repre-
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senting curved or glossy surfaces are somewhat unsatisfactory -the polygons 
making up the approximation to a curved surface are clearly distinguishable and 
the highlights produced are unconvincing since they are constrained to be made 
up only of entire facets. Increasing the number of facets helps to some extent 
but we may produce far more convincing images of approximated curved surfaces 
by using interpolation methods. 

(3.2) Gouraud shading 
Gouraud's method of intensity interpolation shading (Gouraud, 1971) goes a 
long way towards solving the problems. A surface is displayed by individually 
shading the pixels of its image and thus smoothing out the intensity discontinui­
ties. This is generally referred to as smooth shading. The intensity of light 
reflected at each vertex of a facet is determined and the intensity at each internal 
point may then be calculated by interpolation between these values. The trick is 
in calculating the intensity at the vertices. Suppose we have a number of facets 
approximating to a curved surface. Each vertex lies in the real curved surface and 
is contained in the boundaries of a number of the approximating facets. The 
vertex normal array vna may be found by averaging the surface normals of the 
facets containing the vertex in their boundaries. This is implemented in the 
function setnormal given in listing 15 .12a, which should be called by a new observe 
function which calculates the ACTUAL normal vectors. The OBSERVED co­
ordinates of these vectors, array vno, are subsequently calculated in the new 
observe function, also in listing 15.12a. The vertex intensity (or, alternatively, the 
apparent colour at the vertex) may be calculated using one of the previously 
discussed shading models. The intensity or colour at each point within the facet 
may then be determined, using a scan-line approach, by interpolation between 
the vertex intensities as shown in figure 15.6. The intensity at point A is found 
by interpolating between those at points 1 and 2, the intensity at B is found by 
interpolating between 3 and 4, and finally the intensity at C is found by inter­
polating between A and B. These two functions, setnormal and the new observe, 
are needed by both Gouraud and Phong shading, and must be added to "dis­
play3.c". 

Listing 15.12a 

I* Replacement for 'observe• in file "display3.c" *I 

struct vector3 vna[maxv],vno[maxvl 

1*-----------*1 
set normal() I* Needed for Gouraud and Phong shading *I 

1*-----------*1 
I* Routine to calculate ACTUAL vertex normals *I 
< int i,j,k ; 

struct vector3 norm ; 
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float durmy : 
I* Initialise vertex normals *I 

for <i=O : i<nov : i++) 
< vna[!] .x=O : vna[i].y=O : vna[i].z=O : 
> : 

I* Calculate vertex normals by looping through facets and including the *I 
I* facet normal in the calculation of normal at each vertex on the facet *I 

for (i=O : i<nof : i++) 
< normal(l,&norm,&dummy,act) : 

for (j=O : j<size[il : j++) 

> : 

< k=facllst[facfront[l]+j] 
vna[kl.x=vna[k].x+norm.x: 
vna[k].y=vna[k].y+norm.y: 
vna[k].z=vna[k].z+norm.z 

> : 

> I* End of setnorma l * 1 

1*·········*1 
observe() 

1*·········*1 
I* Needed for Gouraud and Phong shading *I 
< int I : 

setnormal() : 
for (1=0 : i<nov : I++) 

< transform(act[i],O,&obs[il) 
vno[i] .x=Q[1] [1J*vna[i] .x+Q[1] [2]*vna[i] .y+Q[1] [3l*vna[i] .z 
vno[i] .y=0[2l [1]*vna[i] .x+Q[2l [2]*vna[i] .y+Q[2l [3l*vna[i] .z 
vno[i] .z=Q [3] [1J*vna [i] .x+Q [3] [2] *vna [i]. y+Q [3] [3] *vna [i]. z 

> : 
> I* End of observe *I 

1 

4 

c 
-------------- B 

2-----------43 

Figure 15.6 
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Gouraud shading is implemented using the seefacet and facetfill functions in 
listing 15.12 which should replace those in "display3.c". The full implementa­
tion requires a small addition to one other function. Each vertex of the scene has 
associated with it a vertex normal. What about the vertices created by clipping? 
Since a projected facet is displayed by interpolating between the intensities at 
its vertices, we need to know the intensities at these new 'clipping plane' vertices. 
This necessitates a new calculation in the clipping function clip given in listing 
14.2. When a new vertex is created by calculating the point of intersection 
between a facet edge and a clipping plane, its vertex normal is also calculated 
and stored by interpolating between those at the end-points of the facet edge. 
This can be executed using the mu value found by the intersection calculation. 
See the commented entry in listing 14.1. 

Listing 15.12b 

I* Add to file "display3.c" *I 

1*------------------------------*1 
facetfill(face,red,green,blue) I* Gouraud shading version *I 

1*------------------------------*1 
int face ; 
float red[] ,green[] ,blue[] ; 

I* Fills facet using a scan line approach *I 
< int col,i,ix,iy,j,newv,oldv,xmax,xmin,ymax,ymin; 

struct pixelvector pix,poly[maxpoly] ; 
float mu,redval,greenval,blueval,redstep,greenstep,bluestep ; 
float redmax,greenmax,bluemax,redmin,greenmin,bluemin ; 
j=nfac [face] ; 
if (j < 0) return(O) ; 

I* Find the pixel co-ordinates of the vertices *I 
for (i=O ; i<size[j] ; i++) 

( poly[il.x=fx(pro[faclist[facfront[j]+i]J.x) 
poly[i).y=fy(pro[faclfst[facfront[j]+i]].y) 

) ; 
I* Find minimun and maxfmun y values *I 

ymax=poly[O].y; ymin=poly[O].y; 
for (1=1 ; i<size[jl ; I++) 

(if <poly[i].y > ymax) ymax=poly[i].y; 
if (poly[!] .y < ymin) ymin=poly[i].y ; 

) ; 
I* For each y, find maximum and minimum x values and */ 
I* the corresponding interpolated colour values */ 

for (iy=ymin ; iy<=ymax ; iy++) 
< pix.y=iy ; 

xmin=nxpix; xmax=-1 ; oldv=size[jl·1 
for (newv=O ; newv<size[j] ; newv++) 

(if ((max<poly[oldv].y,poly[newv].y) >= iy) && 
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(min(poly[oldv).y,poly[newvl.y) <= iy) && 
(poly[oldv).y I= poly[newv).y)) 

< mu=(float)(iy·poly[oldv).y)l(poly[newv).y·poly[oldv).y) 
ix=(int)((1·mu)*poly[oldv).x+mu*poly[newv).x+0.5) 
redval=<1·mu)*red[oldv)+mu*red[newvl ; 
greenval=(1·mu)*green[oldvl+mu*green[newv) 
blueval=<1·mu)*blue[oldv)+mu*blue[newvl 
if (ix < xmin) 

( xmin=ix ; redmin=redval ; 
greenmin=greenval ; bluemin=blueval 

) ; 
if (ix > xmax) 

< xmax=ix ; redmax=redval ; 
greenmax=greenval ; bluemax=blueval 

) ; 
) ; 

oldv=newv ; 
> ; 

I* Set colour component increments *I 
if (xmin < xmax) 

( redstep=(redmax·redmin)l(xmax·xmin) 
greenstep=(greenmax·greenmin)l(xmax·xmin) 
bluestep=(bluemax·bluemin)l(xmax·xmin) 

) 

else < redstep=O ; greenstep=O ; bluestep=O > ; 
/* For each pixel on scan·line, find colour and display *I 

redval=redmin ; greenval=greenmin ; blueval=bluemin ; 
for <ix=xmin ; ix<•xmax ; ix++) 

< findlogicalcolour(redval,greenval,blueval,colour[facel,&col) 
setcol(col) ; pix.x=ix ; setpix(pix) 
redval=redval+redstep ; 
greenval=greenval+greenstep 
blueval=blueval+bluestep ; 

) ; 
) ; 

> I* End of facetfill *I 

, •............ ··*I 
seefacet(face) I* Gouraud shading version *I 

1*··············*1 
int face ; 

<float dummy,redtmaxpolyJ,greentmaxpolyJ,blue[maxpolyl 
struct vector3 facenorm,norm,p 
struct heapcell *pt ; 
int i,j,newface; 

I* Calculate surface normal to facet 'face• *I 
normal(face,&facenorm,&dummy,obs) ; 

I* Calculate shade at each vertex using vertex normals *I 
for (i=O ; i<size[facel ; i++) 
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< j=faclist[facfront[faceJ+i] ; p=obs[j] 
if ((fabs(vno[j].x) >epsilon) II (fabs(vno[j].y) >epsilon) 

II (fabs(vno[j].z) >epsilon)) 
norm=vno[j] ; 

else norm=facenorm ; 
cshade(p,norm,colour[faceJ,&red[i],&green[iJ,&blue[i]) 

) ; 
I* Display facet, interpolating between these shades */ 

facetfill(face,red,green,blue) ; 
I* Repeat for each superficial facet */ 

pt=firstsup[face] ; 
while (pt 1~ NULL) 

{ newface=pt·>info ; pt=pt·>ptr ; 
for (i=O ; i<size[newface] ; i++) 

< j=faclist[facfront[newfaceJ+i] 
if ((fabs(vno[j].x) >epsilon) II (fabs(vno[j].y) >epsilon) 

II (fabs(vno[j].z) >epsilon)) 
norm=vno [jJ ; 

else norm=facenorm ; 
p=obs [j] ; 
cshade(p,norm,colour[newfaceJ,&red[iJ,&green[iJ,&blue[iJ) 

) ; 
I* Display facet, interpolating between these shades *I 

facetfill(newface,red,green,blue) 
) ; 

) ; I* End of seefacet */ 
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Plate VII shows a goblet displayed using Gouraud shading. Some problems 
remain with Gouraud shading, mainly involving facets which face almost directly 
towards the light source. In figure 15.7, for example, points A and B both have 
the same intensity and so interpolating between them results in a constant 
intensity across the surface, making it appear flat. Problems also occur with the 
depiction of highlights produced by specular reflection. 

Point Light 
Source 

: .... --- ... . -- . ···--·· ... ·-- :::::=·· -· 

Figure 15.7 
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(3.3) Phong interpolation 
These problems are eliminated by using Phong's normal vector interpolation 
shading (Phong, 1975). This method involves the calculation of the normal 
vector at each point on a surface by interpolating between the normals at the 
vertices, and thence calculating the shade by applying a shading model at that 
point. This method produces considerably more accurate and pleasing results 
but is accordingly more time-consuming in implementation. The seefacet and 
facetfill functions needed for normal interpolation shading are given in listing 
15.13, to be added to "display3.c". Even with Gouraud and Phong shading, you 
may fmd the limitations of 256 colours implies a .. wood-grain" effect on some 
surfaces! To solve this, you must resort to 'dithering', or using more colours. The 
addition of new arrays in this chapter, and in chapter 16, can cause storage 
problems on some machines, in which case you will have to reduce the values of 
maxv, maxf and maxlist in the database (listing 7 .2). 

Listing 15.13 

I* replacement facetfill for 11display3.c" *I 

1*··-··-·-··-··-·*1 
facetfill(face) I* Phong shading version *I 

1*···-··-···-····*1 
I* Phong shading needs •seefacet' from listing 10.4 *I 

int face ; 
I* Fills facet using a scan line approach *I 
( int col,i,j,index,inter,ix,fy,newv,oldv,xmax,xmin,ymax,ymin; 

float constant,mu,red,green,blue ; 
struct vector3 facenorm,normv[maxv],p,step,vint,vmin,vmax,windpt; 
struct pixelvector pix,poly[maxpoly] 
j=nfac [face] ; 
if (j < 0) return(O) ; 

I* Find surface normal to 'face• *I 
normal(face,&facenorm,&constant,obs) 

I* Find the pixel co·ordinates of the vertices *I 
for (i=O ; i<size[j] ; i++) 

< index=faclist[facfront[j]+i] 
poly[IJ.x=fx(pro[index].x) ; 
poly[i] .y=fy(pro[index] .y) ; 
normv[i]•vno[index] ; 

} ; 
I* Find minimum and maximum y values */ 

ymax=poly[O].y; ymin=poly[OJ.y; 
for (i=1 ; i<slze[j] ; i++) 

(if (poly[i].y > ymax) ymax=poly[i].y; 
if (poly[i] .y < ymin) ymin=poly[i] .y ; 

} : 
I* For each scan line find maximum and minimum x values and *I 
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I* the corresponding normal vectors *I 
for (iy=ymin : iy<=ymax : iy++) 

< pix.y=iy : 
xmin=nxpix: xmax=·1 : oldv=size[j)·1 
for (newv=O : newv<size[j) : newv++) 

<if ((max(poly[oldv).y,poly[newv].y) >= iy) && 
(min(poly[oldv).y,poly[newv].y) <= iy) && 
(poly[oldv).y != poly[newv].y)) 

) 

< mu=<float)(iy·poly[oldv].y)l(poly[newv).y·poly[oldv].y) 
ix=(int)((1·mu)*poly[oldv).x+mu*poly[newv).x+0.5) 
vint.x=(1·mu)*normv[oldv).x+mu*normv[newv).x 
vint.y=<1·mu)*normv[oldv).y+mu*normv[newv).y 
vint.z=(1·mu)*normv[oldv].z+mu*normv[newv].z 
if (ix < xmin) 

< xmin=ix : vmin=vint : 
) : 

if < ix > xmax) 
< xmax=ix vmax=vint 
) : 

) : 
oldv=newv : 

I* Set colour component increments *I 
if (xmin < xmax) 

( step.x=(vmax.x·vmin.x)l(xmax·xmin) 
step.y=(vmax.y·vmin.y)l(xmax·xmin) 
step.z=<vmax.z·vmin.z)l(xmax·xmin) 

) 

else < step.x=O : step.y=O : step.z=O : > 
I* For each pixel on scan· line, find colour and display *I 

vint.x=vmin.x : vint.y=vmin.y : vint.z=vmin.z : 
for (ix=xmin : ix<xmax : ix++) 

I* Find WINDOW co-ordinates of point *I 

) 

) : 

( windpt.x=ixlxyscale·horiz*0.5 
windpt.y=iylxyscale·vert*0.5 : 
windpt.z=·ppd : 
ilpl<zero,windpt,facenorm,constant,&p,&mu,&inter) 
cshade(p,vint,colour[facel,&red,&green,&blue) : 
findlogicalcolour(red,green,blue,colour[face],&col) 
setcol(col) : pix.x=ix : setpix(pix) : 
vint.x=vint.x+step.x 
vint.y=vint.y+step.y 
vint.z=vint.z+step.z 

> I* End of facetfill *I 
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The camera in Plate III was displayed using Phong's normal interpolation shading 
on the model used to produce Plates I and II. Also see Plate VIII of a Phong 
shaded chess piece. 

Exercise 15.4 
We can use shading models to simulate texture on a surface. The simplest method 
of simulating texture is provided by random variation. The shade of a pixel is 
calculated using one of the shading models detailed above. This shade is then 
altered slightly by a random function and the pixel displayed in this altered 
shade. This gives an appearance of roughness to the surface. 

A more formalised method of texturing is achieved by distorting the normal 
vector using some texture function, see Plate IX. Instead of assuming that the 
normal to a facet is constant across the facet, we use the texture function to 
vary the normal from pixel to pixel, giving each pixel a different shade and 
thereby introducing a textured appearance (Blinn and Newell, 1976; Blinn, 
1978). Experiment with these ideas. 

Various Methods of Colour Definition 

Although the RGB method of colour definition is the one most easily applied to 
a shading model, it is by no means the only method and is probably not the 
most easily understood since it does not correspond to our intuitive classifica­
tion of colours. Other methods attempt to adhere more closely to these intuitions. 

The HLS method (Ostwald, 1931), which is used by Tektronix, defines a 
colour in terms of its Hue, lightness and Saturation. The RGB model is com­
monly represented as a unit cube in three-dimensional space, the three mutually 
perpendicular axes corresponding to red, green and blue (see figure 15.8). Each 
point within this cube (with co-ordinates (R, G, B)) defines a colour. The HLS 
model, on the other hand, is represented by two right hexagonal pyramids joined 
at their bases (figure 15.9). The lightness (L) is measured along the axis of the 
pyramid, ranging from white (L = 1) at the apex of one pyramid, to black 
(L = 0) at the apex of the other. The hue (H) is an angle between 0° and 360° 
measured around the L-axis in an anticlockwise direction as viewed from the point 
L = 1. On the Tektronix system, H = 0° corresponds to blue, H = 60° to magenta, 
followed by red, yellow, green and cyan at 60° intervals. The saturation of a 
colour (or a point) is the distance of the point from the L-axis. S = 1 gives the 
pure colour and S = 0 gives the grey value on the axis. Full intensity colours 
occur at L = 0.5, S = 1. 

Another method, which is similar to the HLS method, is the HSV method 
(Smith, 1978). This model is represented by a single right hexagonal pyramid 
(figure 15.10). The Hue value (H) is measured as an angle around the axis exactly 
as with the HLS model. Value (V) is measured along the axis of the cone and 
ranges from black at the apex (V= 0) to white at the point where the axis inter-
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sects the hexagonal base (V = 1 ). The saturation (S) corresponds exactly to 
saturation in the HIS model. Sis the distance of a point (representing a colour) 
from the axis of the cone. S = 0 represents a grey colour on the axis of the cone 
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Figure 15.9 
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whereas S = 1 gives the pure colour. Full intensity colours occur at V = 1, S = 1. 
Neither the lightness in the HIS model, nor the value in the HSV model 

corresponds to intensity. Our colour shading model must use the RGB model. 
However, you can define the colour of a surface in terms of either HLS or HSV 
and convert the colour to its RGB equivalent before calculating any shades. The 
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functions hlsrgb and hsvrgb given in listing 15.14 may be used to convert HLS 
and HSV respectively to RGB. 

Green fv 
Cyan 

Figure 15.10 

Listing 15.14 

1*··························*1 
float comparison(h,v1,v2) 

I*· ........................ ·* I 
float h,v1,v2 

{ float hue ; 
if (h > 360) 

hue=h-360 
else if Ch < 0) 

hue=h+360 
else hue=h ; 

if (hue < 60) 
return((v2·v1)*huel60+v1) 

else if (hue < 180) 
return(v2) ; 

else if (hue < 240) 
return((v2·v1)*(240·hue)l60+v1) 

else return(v1) 
} I* End of comparison *I 

I*· ...•.....•..•..•.. ·* I 
hlsrgb( h,l,s,r,g,b) 

I*· .................. ·* I 
float h,l,s,*r,*g,*b; 

Yellow 

Red 

I* Converts 'h','l','s' colour to 'r','g','b' using function 'comparison• *I 
I* RANGES:· 'h': 0 to 360, 'l','s','r','g','b': 0 to 1 *I 



{ float v1,v2 ; 
I* Zero saturation means grey *I 

if (s <epsilon) 
< *r=l ; *g=l ; *b=l ; 
) 
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I* Calculate parameters 'v1 1 and 1v2• */ 
else { if Cl < 0.5) 

{ v1=l·l*s; v2=l+l*s; 
) 

else { v1=l·(1·l)*s; v2=l+(1·l)*s 
) ; 

I* Use •v1• and 'v2' to find colour components*/ 
*r=comparison(h,v1,v2) ; 
*g=comparison(h·120,v1,v2) 
*b=comparison(h+120,v1,v2) 

) 

) /* End of hlsrgb *I 

1*················*1 
set(r,g,b,x,y,z) 

1*················*1 
float *r,*g,*b,x,y,z 

I* Sets 'r','g','b' to equal 'x','Y','z' respectively *I 
{ *r=x ; *g=y ; *b=z 
) ; I* End of set */ 

I*· .......•........ ··*/ 
hsvrgb(h,s,v,r,g,b) 

1*···················*1 
float h,s,v,*r,*g,*b ; 

I* Converts 'h','s','v' colour to 'r','g','b' */ 
I* RANGES:· 'h': 0 to 360, 's',v','r','g','b' 0 to 1 *I 
{ float hue,f,x,y,z ; 

int i 
I* Zero saturation means grey */ 

if (s < epsilon) 
{ *r=v ; *g=v ; *b=v ; 
) 

I* Place HUE in range [0,6) */ 
else { if (hue> (360·epsilon)) 

hue=O ; 
else hue=hl60 ; 

I* 'i' is integer part of •hue•, •f• is fractional part*/ 
i=Cint)(hue) ; f=hue·i ; 

I* Calculate parameters 'x','Y' and •z• *I 
x=v*C1·s) ; y=v*(1·s*f) ; z=v*C1·s*C1·f)) 
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I* Find colour components */ 
switch ( i) 
{ case 0 : set(&r,&g,&b,v,z,x) ; break ; 

case 1 : set(&r,&g,&b,y,v,x) ; break ; 
case 2 set(&r,&g,&b,x,v,z) break ; 
case 3 set(&r,&g,&b,x,y,v) ; break ; 
case 4 set(&r,&g,&b,z,x,v) ; break ; 
case 5 set(&r,&g,&b,v,x,y) ; break ; 

) ; 
} ; 

} ; I* End of hsvrgb */ 

There are many other colour models: a comprehensive study is given by Foley 
and Van Dam (1981). 

A vast amount of work has been done in recent years on the development of 
shading models in computer graphics and much has been written on the subject 
(Blinn, 1977; Whitted, 1980). Images of remarkable realism can be achieved and 
you will find it very rewarding to delve deeper into this field. We must move on, 
however. In the next chapter we shall consider the incorporation of such con­
cepts as shadows, reflections and transparent surfaces into our polygon mesh 
model. 



16 Shadows, Transparent Surfaces and 
Renections 

The routines we give in this chapter are meant to be used with the constant 
shading model of chapter 15 (listing 15.11 etc.) and should be added to "dis­
play3.c". 

A facet which obscures all or part of another facet from exposure to a light 
source is said to cast a shadow onto this other facet. A shadow cast by a convex 
polygonal facet, J, onto another convex polygonal facet, I, is also a convex poly­
gon which may be considered to lie on the surface of facet I. We call this polygon 
a shadow polygon . The amount of light reflected from a point in shadow was 
discussed in chapter 15: in this chapter we turn our attention to the finding and 
displaying of shadow polygons. We shall describe an algorithm which may be 
used to achieve this aim. This algorithm is merely an example to show how the 
problem can be tackled. There are many alternative solutions (Crow, 1977). The 
criterion for finding shadows is very similar to that for fmding hidden surfaces 
and most hidden surface algorithms can be adapted accordingly. The method 
which we describe here is based on the general hidden surface algorithm of 
chapter 13. 

There are two main problems to solve 

(i) incorporating shadow polygons into the data structure 
(ii) finding the vertices of the shadow polygons. 

The solution to the first problem is considerably simplified if we use a single 
light source. Initially we shall assume this to be the case and we shall discuss the 
extension to multiple light sources later. 

Representing Shadow Polygons - Superficial Facets 

Superficial facets were introduced in chapter 9 for the representation of surface 
detail polygons. The concept fits exactly our requirement for the storage of 
shadow polygons. A superficial facet lies on the surface of a larger facet which 
we call its host facet. It need not be considered in hidden surface elimination 
since in all cases it is displayed only if its host facet is displayed. 

The shadow polygons are stored in exactly the same way as the ordinary facets 
of a scene and may thus be referred to by simple integer indices which we store 
in the heap (chapter 13). We introduce a new item into the database 

struct heapcell *Ish [maxf] ; 

303 



304 High-resolution Computer Graphics Using C 

Ish [i] is a pointer which points to the starting location of a linear list con­
tained in the heapcell array which holds the indices of all facets which represent 
shadows on facet i of the scene. 

Initially all shadow lists are empty and so Ish [i) is set to null for each i. Now 
suppose we find that facet j casts 11 shadow onto facet i and that this shadow is a 
polygon with nsv vertices. The OBSERVED co-ordinates of these vertices are 
appended, in order, to the obs array and the indices of these vertices are stored 
in the faclist array as faclist[firstfree] ... faclist[firstfree] + nsv- 1]. ntf is 
incremented by 1, start[ntf] is set to firstfree, size[ntf] to nsv, and firstfree is 
reset to firstfree + nsv. Finally the value ntf is pushed onto the list Ish [i] . See 
listing 16.1. 

In order to find the complete set of shadow polygons, we must compare the 
facets of a scene in pairs to determine whether either casts a shadow onto the 
other, hence the similarity to a hidden surface algorithm. We shall examine 
the details of this comparison later, but first let us consider the question of 
precisely which pairs need be compared. We may discard some comparisons 
immediately for one of four reasons 

(i) Both facets lie entirely outside the pyramid of vision or both facets are 
oriented clockwise when projected onto the view plane. In either case we 
can see neither facet and so there is no need to fmd the shadows since they 
are not going to be displayed anyway. It is important to note, however, that 
a facet which we cannot see can still cast a shadow onto a facet which we 
can see. Therefore, if either facet of a pair may be seen then the pair must 
be considered. 

(ii) Both facets are superficial facets. It is important that we find the shadows 
cast by an ordinary facet onto a superficial facet since these will, in general, 
be of a different colour from those cast onto the host facet. However, we 
need not consider shadows cast by a superficial facet since these will only be 
parts of those cast by the larger host facet. 

(iii) One of the facets is superficial to the other: the facets are coplanar and 
hence no shadow is cast. 

(iv) One of the two facets faces away from the light source. If a facet faces away 
from the light source then it can neither cast a shadow nor have a shadow 
cast upon it. No such facet need be considered. 

Each of these cases is checked for in the function shadow (listing 16.1) before 
a pair of facets is compared. This function creates and stores information about 
shadows cast and calls two functions, prepare and compare, which will be des­
cribed later in the chapter (listing 16.3). prepare creates a new co-ordinate 
system which facilitates the calculation of shadows and compare compares two 
facets, i and j, returning the OBSERVED co-ordinates of the vertices of the 
shadow cast (if any) together with the integers front and back indicating that 
facet front casts a shadow onto facet back. If front = - 1 then no shadow is cast. 
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Listing 16.1 

I* Add to file "display3.c" *I 

I* data base for shadows *I 

struct vector2 prol[maxvl ; 
struct vector3 vl[maxvl ; 
struct heapcell *lsh[maxfl ; 
float shadpd ; I* distance of shadow projection plane from source *I 

1*--------*1 
shadow() 

1*--------*1 
I* Calculates and stores all shadow polygons *I 
< int back,front,i,j,k,nsv,toeye[maxfl,tolight[maxfl 

struct vector3 shadpol[maxpolyl ; 
I* Set up co-ordinate system for shadow calculation *I 

prepare() ; 
I* Determine orientation of facets *I 

for ( i=O ; i <nof ; i++) 
{ Ish [il =NULL ; 

} 

if (orient(i,pro) == 1) 
toeye[il=TRUE I* Facet 'i' faces towards eye *I 

else toeye[il=FALSE ; I* Facet 'i' faces away from eye *I 
if (orient(i,prol) == 1) 

tolight[i]=TRUE ; I* Facet 'i' faces towards light *I 
else tolight[i]=FALSE I* Facet 'i' faces away from light *I 

I* Compare pairs of facets : 'i' and 'j' *I 
for (i=O ; i<nof-1 ; i++) 

I* If facet 'i' faces away from light source then don't use it *I 
if (tolight[i]) 

for (j=i+1 ; j<nof ; j++) 
I* If facet 'j' faces away from light source then don't use it *I 
I* If both facets 'i' and 'j' are superficial then don't compare *I 
I* If neither facet 'i' nor 'j' can be seen then don't compare *I 
I* If one facet is superficial to the other then don't compare *I 

if ((to! ight [j]) && 
(toeye[il II toeye[j]) && 
((super[iJ == ·1) II (super[j] == ·1)) && 
((super[il != j) && (super[jJ I= i)) ) 

< compare(i,j,&front,&back,&nsv,shadpol) 
I* No shadow if 'front' facet superficial or •back facet cannot be seen *I 

if ( (front I= ·1) && 
(super[frontl == ·1) && 
(toeye[backl == TRUE) ) 
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I* Create new facet representing shadow polygon *I 
< size[ntfl=nsv ; facfront[ntfl=firstfree ; 

for <k=O ; k<nsv ; k++) 
< obs[ntv]=shadpol[kl ; 

faclist[firstfree+kl=ntv; ntv=ntv+1 
> ; 

firstfree=firstfree+nsv ; 
I* Push the new facet onto the list of shadows ( 1 lsh') facet back *I 

push(&lsh[backJ,ntf) ; ntf=ntf+1 
> ; 

> ; 
> ; I* End of shadow *I 

Displaying shadow polygons 
With the data structure constructed in the manner described above, the display 
of shadows is a relatively trivial matter. There are essentially three problems to 
consider - deciding when to draw a shadow, setting the colour and calculating 
the viewport co-ordinates of the vertices of the polygon to be plotted. 

The first two are easy. When a host facet has been displayed we immediately 
scan the linear list of indices of shadow polygons and draw them in the logical 
colour returned by a shading model considering only ambient light on the 
material of the host facet. The third problem requires a little more consideration. 
The polygon may have to be clipped before it can be displayed, since it may lie 
partly or entirely outside the pyramid of vision. The function clip (listing 14.2) 
is therefore invoked, returning a value clipindex which describes the clipping 
done. If clipindex = 1, then no clipping was necessary and the projections of the 
vertices of the shadow polygon are calculated and the polygon displayed. If 
clipindex = 2 then the shadow polygon lies totally outside the pyramid of vision 
and so should not be displayed. If clipindex = 3 then clipping has occurred and a 
new facet with index ntf has been created. This new facet is displayed and then 
discarded from the database by setting ntv, ntf and firstfree to their previous 
values. 

When all of the shadow polygons on a main facet have been displayed, we 
move onto the superficial facets on that main facet. Each is displayed in turn 
followed by the shadows lying on it. 

This process is programmed in the function displayshadows (listing 16.2) 
which is called from the alternative function see facet (also given in listing 16.2). 

Listing 16.2 

I* Add to file "display3.c" 

1*-----···············*1 
displayshadows(face) 

1*····················*1 
int face ; 
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I* Displays shadows on given •face• */ 
< float redval,greenval,blueval ; 

int clipindex,col,i,newface,nnf,nnv,stofree,verti 
struct heapcell *pt ; 

I* Set colour to that given by reflected ambient light *I 
redval=rm[colour[face]]*ambient ; 
greenval=gm[colour[face]]*ambient ; 
blueval=bm[colour[face]]*ambient ; 
findlogicalcolour(redval,greenval,blueval,colour[face],&col) 

I* Scan list of shadows, drawing each in turn *I 
pt=lsh [face] ; 
while Cpt I= NULL) 

< newface=pt·>info ; pt=pt·>ptr ; 
nnv=ntv ; nnf=ntf ; stofree=firstfree 
clip(newface,&clipindex) 
if (clipindex 1=2) 

< if Cclipindex == 1) 
nfac[newface]cnewface 

else nfac[newface]=ntf·1 ; 
I* Calculate projections of vertices *I 

for Ci=D ; i<size[nfac[newface]] ; i++) 
< verti=faclist[facfront[nfac[newface]]+i] 

pro[vertil.x=·obs[verti].x*ppdlobs[verti].z 
pro[verti].y=·obs[verti].y*ppdlobs[verti].z 

) 

I* Draw shadow *I 
facetfill(newface,col) 
nfac[newfacel=newface ; 
ntv=nnv ; ntf=nnf ; firstfree=stofree 

) 

) ; 
) I* End of displayshadows */ 

1*··············*1 
seefacet(face) I* version for shadows and constant shading *I 

1*··············*1 
int face ; 

I* •seefacet' routine for constant shading display with shadows */ 
< float dummy,red,green,blue ; 

struct vector3 midpt,normv ; 
int index,newface ; 
struct heapcell *pt ; 

I* Find the mid·point and normal of facet'face• *I 
midpoint(face,&midpt) ; normal(face,&normv,&dummy,obs) 

I* Find apparent colour of facet 'face' */ 
cshade(midpt,normv,colour[face],&red,&green,&blue) : 
findlogicalcolour(red,green,blue,colour[facel,&index) 

I* Display the facet *I 
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facetfill(face,index) ; 
displayshadows(face) ; 

I* Repeat for each superficial facet on facet •face' */ 
pt=firstsup[face] ; 
while (pt !=NULL) 

{ newface=pt·>info ; pt=pt·>ptr ; 
cshade(midpt,normv,colour[newface],&red,&green,&blue); 
findlogicalcolour(red,green,blue,colour[newfaceJ,&index); 
facetfill(newface,index) ; displayshadows(newface) ; 

) ; 
> ; I* End of seefacet */ 

Finding the shadow polygons 
All that remains is to find the vertices of a shadow cast by one facet onto 
another. 

A shadow polygon is a projection of one facet onto another (figure 16.1). 

Figure 16.1 

We may make use of the properties of linear projections to enable us to use 
the overlap function (listing 13.1) to find shadow polygons. 

Recall that a projection is described by a set of lines of projection. (For an 
orthographic projection, these lines are parallel; for a perspective projection they 
emanate from a single point.) The projection of a vertex onto a plane is the 
point of intersection between the plane and the line of projection passing 
through the vertex (if such a point exists). The projection of a facet onto a plane 
is the polygon in the plane whose vertices are the pr9jections of the vertices of 
the facet. In this instance, the lines of projection are the light rays. 

Our aim is to find out which, if either, of two facets, I or J, casts a shadow 
onto the other and to calculate the co-ordinates of the vertices of the shadow if 
it exists. If we have a projection plane onto which both facets may be projected, 
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the area of overlap of the two projected facets is the projection of the shadow 
polygon. (If the overlap is empty then no· shadow is cast.) The shadow is cast 
by the facet nearer the light source onto that further away: information which 
may also be gleaned from the overlap routine. We may determine the three­
dimensional co-ordinates of the vertices of the shadow polygon by calculating 
the intersections between the light rays passing through the projections of these 
vertices and the plane containing the host facet. This is the general strategy: how 
do we implement it? 

The first question is which plane do we choose for the projection? We only 
compare facets a pair at a time so, in theory, for any given pair, we can choose 
any plane onto which all of the vertices of both facets may be projected, and 
then choose a different plane for each pair. This method would be excessively 
time-consuming, requiring many transformations for each comparison. It is 
preferable to use the same plane for the projection of each pair of facets and we 
could then calculate and store the projected co-ordinates of all vertices before 
beginning the process of comparisons. Can we find a suitable plane? This depends 
on the choice of type of ligl1t source. 

If we use parallel beam illumination then we have a parallel projection since 
all lines of projection are parallel. In this case we may choose any plane perpen­
dicular to the direction of the light rays and this gives us an orthographic pro­
jection. 

If we use a point light source then all lines of projection emanate from a 
single point - a perspective projection. In this case the choice of plane is not so 
easy and enforces a restriction upon the positioning of the light source. Given a 
point in the centre of the scene. we define a direction vector, d, from the light 
source to this point. We define a new right-handed co-ordinate system, called the 
LIGHT co-ordinate system. with the origin at the light source and the negative 
z-axis along the direction d. The co-ordinates of each vertex relative to this 
system are calculated. We call these co-ordinates light-related co-ordinates. The 
restnction which we impose is that the light source is positioned in such a way 
that every vertex has a strictly negative light-related z co-ordinate, in which case 
any projection plane perpendicular to the negative z-axis of the LIGHT system 
may be used. 

The transformation to a co-ordinate system with the eye at the origin and the 
negative z-axis along a prescribed direction was described in chapter 8 (functions 
findQ, look3 and observe). The situation described above is exactly analogous. 
We find the LIGHT co-ordinate system using a transformation of the OBSERVER 
system. (If we use a parallel beam illumination then there is no particular point 
which may be identified in analogy to the eye so we choose an arbitrary point, 
the existing origin of the OBSERVER system - the choice of this point does 
not affect the shadows found. The negative z-axis takes the direction of the light 
beams. !). From now on we shall assume the use of a point light source. The 
matrix, S. representing the transformation from OBSERVER co-ordinate system 
to LIGHT co-ordinate system, is calculated in the function lightsystem in listing 
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16.3 This calculation is very similar to that in findO in listing 8.1. The function 
also calculates the inverse matrix, s-1 (SI in the listing), for a reason that will 
become clear later. The matrices S and SI are declared in the database 

double S[51 [51, Sl [51 [51; 

along with the light-related co-ordinates of all vertices 

struct vector3 vi [ maxv 1 ; 

The vertices are projected onto the projection plane perpendicular to the nega­
tive z-axis of the LIGHT system and the x andy light-related co-ordinates of the 
points are declared 

struct vector2 pro I [ maxv 1 ; 

These projected co-ordinates are all of the form (x, y, -d) where dis the perpen­
dicular distance of the projection plane from the light source. The value of d 
does not affect the shadows found and so we arbitrarily use the value ppd (the 
perspective plane distance, defined in chapter 11). The light-related co-ordinates 
of all vertices are found in the function prepare (listing 16.3). 

With the co-ordinates of all vertices of a scene stored in this form we may 
proceed with the comparisons. Given the indices of two facets i and j we must 
find the area of overlap between the projections of these facets. We may use the 
overlap function (listing 13.1) to provide this information. Recall that a call to 
this function returns the following information 

front, 
back: if no area of overlap ~xists then front is returned as 0, otherwise 

front and back contain the indices of the facets nearer to the 
origin and further from the origin respectively 

shp: a vector2 array area containing the projected x andy co-ordinates 
of the vertices of the area of overlap relative to the co-ordinate 
system implied by the parameters, in this case the LIGHT system 

This information is all we need. If front is returned as 0 then no action need 
be taken. Otherwise a shadow polygon has been found, representing a shadow 
cast by facet front onto facet back. We must calculate the OBSERVED co· 
ordinates of the vertices of this polygon for return to the shadow function. All 
we have at the moment are the projected light-related co-ordinates of the vertices. 
We may find the three-dimensional light-related co-ordinates by calculating the 
intersections of the light rays passing through these projected vertices with the 
plane containing facet back. The vector representation of this plane may be 
found using the function normal in listing 12.2 and the point of intersection 
found by ilpllisting 6.2. The light ray passing through a point with light-related 
co-ordinates (x, y, z) is given by the line (0, 0, 0) + JJ.(X, y, z) since the light 
source is at the origin. 
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The OBSERVED co-ordinates of the vertices may then be found by applying 
the transformation represented by s-t to the light-related co-ordinates. The 
transformation from projected light-related co-ordinates to OBSERVED co­
ordinates is achieved by the function restore in listing 16.3. 

Listing 16.3 

I* more data for light model *I 
I* add to file "display3.c" *I 

double 5[5] [5] ,SI [5] [5] 

1*·············*1 
lightsystem() 

1*·······--·-··*1 
I* Sets up light co-ordinate system *I 
{ double E [5] [5], F [5] [5], G [5] [5], H [5] [5], V [5] [5], W [5] [5] 

float alpha,beta,gamma,dist,xmax,ymax,zmax,xmin,ymin,zmin ; 
int i ; 
struct vector3 direct ; 

I* Find the centre point of the scene *I 
xmax=-99999.9 ; ymax=-99999.9 zmax=-99999.9 ; 
xmin= 99999.9 ; ymin= 99999.9 ; zmin= 99999.9 ; 
for Ci=O ; i<nov ; i++) 

{if (obs[i].x > xmax) xmax=obs[i].x; 
if (obs[i].x < xmin) xmin=obs[i].x; 
if (obs[i].y > ymax) ymax=obs[i].y; 
if (obs[i].y < ymin) ymin=obs[i].y; 
if (obs[i].z > zmax) zmax=obs[i].z; 
if (obs[i].z < zmin) zmin=obs[i].z 

} 

direct.x=<xmax+xmin>l2·src.x ; 
direct.y=(ymax+ymin)l2·src.y ; 
direct.z=(zmax+zmin>l2·src.z ; 

I* Calculate translation matrix 'f' *I 
tran3(src.x,src.y,src.z,F) ; 

I* Calculate rotation matrix 'G' *I 
alpha=angle(·direct.x,·direct.y) ; rot3(3,alpha,G) 

I* Calculate rotation matrix 'H' *I 
dist=sqrt(pow(direct.x,2.0)+pow(direct.y,2.0)) 
beta=angle(·direct.z,dist) ; rot3(2,beta,H) ; 

I* Calculate rotation matrix 'V' *I 
dist=sqrt(pow(dist,2.0)+pow(direct.z,2.0)) ; 
gamma=angle(·direct.x*dist,direct.y*direct.z) rot3(3,·gamma,V) 

I* Combine the transformations to find 'S' *I 
mult3(G,F,W) ; mult3(H,W,E) ; mult3(V,E,S) ; 

I* Reverse the process to find the inverse of 'S (SI)' *I 
tran3(·src.x,·src.y,·src.z,F) ; 



312 High-resolution Computer Graphics Using C 

rot3(3,-alpha,G) ; rot3(2,·beta,H) ; rot3(3,gamma,V) 
mult3(H,V,W) ; mult3(G,W,E) ; mult3(F,E,SI) ; 
shadpd=dist 

) ; I* End of lightsystem *I 

1*--------·*1 
prepare() 

1*---------*1 
I* Finds light-related co-ordinates of each vertex*/ 
< int i ; 

l i ghtsystemO ; 
for (i=O ; i<ntv ; i++) 

< transform(obs[IJ,S,&vl[i]) 
prol[i].x=(·vl[i].x*shadpd)lvl[i].z 
prol[i].y=(·vl[i].y*shadpd)lvl[i].z 

) ; 
) I* End of prepare *I 

1*····················-----*1 
restore(face,nsh,shadpol) 

1*··-------------·--·······*1 
int face,nsh ; 
struct vector3 shadpol[] ; 

I* Finds OBSERVED co·ords of vertices from projected light·related co·ords *I 
< int i, l ; 

float dLIIII1'f,val 
struct vector3 normv,vectori 
normal(face,&normv,&val,vl) ; 
for ( i=O ; i<nsh ; i++) 

< shadpol[iJ.z=·shadpd; 
ilpl(zero,shadpol[i],normv,val,&vectori,&dummy,&l) 
transform(vectori,SI,&shadpol[i]) 

) ; 
) I* End of restore *I 

1*··------·---·----------------------*1 
compare(i,j,front,back,nsh,shadpol) 

1*··························-----····*1 
lnt i,j,*front,*back,*nsh ; 
struct vector3 shadpol[] ; 

I* Compares facets 'i' and •j•, finding shadow cast by one on other *I 
< int k,stofacl,stofacj ; 

struct vector2 shp[maxpolyl ; 
I* Adjust 'nfac• values so that unclipped shadow is found*/ 

stofaci=nfac[il ; stofacj=nfac[j] 
nfac[i]=i ; nfac[j]=j ; 



Shadows, Transparent Surfaces and Reflections 

I* Call 'overlap' to find the projection of the shadow *I 
overlap(i,j,front,back,nsh,shp,prol,vl,shadpd,1) 

I* Reset 'nfac• values *I 
nfac[iJ=stofaci ; nfac[j]=stofacj ; 

I* If 'front' is ·1 then no shadow is cast *I 
I* Otherwise find OBSERVED co-ordinates of shadow's vertices *I 

if (*front != ·1) 
{ for (k=O ; k<*nsh ; k++) 

> 

{ shadpol[kJ.x=shptkJ.x; 
shadpol[kJ.y=shp[k].y; 

> ; 
restore(*back,*nsh,shadpol) 

> I* End of compare *I 

The drawit function 
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Shadows may be calculated and stored by a single call to shadow. We incor­
porate this call into the new drawit function_ (listi~g 16.~). 

Listing 16A 

#include "clip3.c" 

I* Replacement drawit for file "display3.c" *I 

1*········*1 
draw it() I* Version needed for shadows *I 

1*········*1 
I* Set vertex and facet counts *I 
{ ntv=nov; ntf=nof ; ppd=3*horiz ; materialin() 
I* prepare and draw scene *I 

colourtable() ; clipscene() ; project() 
insource() ; shadow() ; hidden() ; 

> ; I* End of drawit *I 

Example 16.1 
Plate X shows the scene of deck-chairs displaying using shadows. 

Exercise 16.1 
Rewrite the functions given so far in this chapter for use with parallel beam 
illumination instead of a point light source. 

Exercise 16.2 
Note that the ACTUAL positions of shadow polygons are totally independent of 
the eye position. If multiple views of a scene are required, with fixed light source, 
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we may store shadow polygons in such a way that we need not recalculate them 
for each new view. Rewrite the functions to store shadows in this way. You must 
store the ACTUAL co-ordinates of the vertices instead of the OBSERVED co­
ordinates, and hence you must transform the ACTUAL co-ordinates to OB­
SERVED co-ordinates in the displayshadows function before calculating the pro­
jected co-ordinates. Furthermore, you cannot eliminate comparisons so freely in 
the shadow function - you must find the shadows cast onto a facet regardless of 
whether it can be seen in any particular view. Finally, the indices of shadow 
polygons must be stored on the heapcell heap. 

Exercise 16.3 
The algorithm which we describe deals with a single light source. It can be ex­
tended to cope with multiple light sources. The shadow polygons generated by 
each light source must be calculated and stored. With each such polygon an 
integer must be associated, indicating which light source does not illuminate the 
polygon, together with a colour calculated from the illumination by all of the 
other light sources. 

When the time comes to draw a facet the following process must be followed 

(i) Draw the facet. 
(ii) Draw the shadow polygons generated by light source 1. 
(iii) Draw the shadow polygons generated by light source 2, storing the inter­

sections with each of those generated by light source 1. 
(iv) Draw the areas of intersection which have been stored (shadow polygons 

generated by light sources (1 and 2)) in a colour determined by illumination 
by all light sources except 1 and 2. 

(v) Draw the shadow polygons generated by light source 3, storing the areas of 
intersection with each ofthose generated by light sources I, 2 a.1d (I and 2) 
respectively. 

(vi) Draw the shadow polygons generated by light sources (I and 3), then (2 and 
3), then (I, 2 and 3). 

The process must be limited by a maximum number of light sources. The 
implementation of this process is a major programming exercise (see project I9 
in chapter 18). 

Transparent Surfaces 

It was mentioned in chapter 15 that many hidden surface algorithms can be 
adapted to allow for the inclusion of transparent surfaces in the data for a scene. 
This is by no means a trivial exercise. For a full simulation, taking into account 
specular reflection, refraction etc., a ray-tracing approach (mentioned in chapter 
10) must be adopted (Kay and Greenberg, 1979; Whitted, 1980). Nevertheless, if 
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we accept certain limitations, we can deal with transparent surfaces in the poly­
gon mesh model using the topological ordering algorithm of chapter 13. In the 
algorithm described here, we impose some restrictions- we do not allow for the 
inclusion of shadows, nor do we allow for the possibility of rays passing through 
more than one transparent surface (so if there are several transparent facets in a 
scene, they must all be in the same plane, or else viewing positions must be chosen 
carefully). The algorithm can be extended to take these possibilities into account, 
however, and we shall discuss such extensions at the end of the explanation. 

Having imposed the above restrictions, we may adapt the hidden surface 
algorithm with only minimal changes to existing functions (hidden and unstack: 
listing 13.1). Recall that we use the function overlap (listing 13.1) to find the area 
of intersection between the projections of two facets and we deduce that the 
corresponding three-dimensional area on the front facet obscures the corres­
ponding area on the back facet. Suppose, however, that the front facet is trans­
parent. Instead of the overlapped part of the back facet being obscured, it is 
visible in an apparent colour influenced by the colour and extent of transparency 
of the front facet. (Note that a transparent surface is visible from either side and 
so each must be stored twice in the database unless one side is always totally 
obscured by non-transparent surfaces.) 

We implement this idea in the following manner 

(i) Use the function network to construct the network structure as before. 
(ii) Before commencing the drawing of a scene, all of the transparent surfaces 

are displayed. This ensures that all of the parts of these facets which 
'obscure' no other facet will be visible in the completed image. 

(iii) The hidden function proceeds as before, first pushing all those facets which 
obscure no other (nob[i] = 0) onto a stack. 

(iv) One value is popped from the stack, giving the index, k say, of the next 
facet to be displayed. If facet k is transparent (tr[k] > 0) then it is not 
displayed, otherwise it is. 

(v) The list (list[kl) of facets obscuring k is then scanned as before, and each 
corresponding nob value is reduced by 1 and a facet pushed onto the 
stack if its nob value becomes zero. If an obscuring facet is transparent 
then the area of overlap between this facet and facet k is calculated and dis­
played in a colour found by mixing the apparent colour of facet k with that 
of the transparent facet, in the manner described in chapter 15. (Our 
restrictions ensure that this cannot occur if facet k is transparent.) 

(vi) The steps (iv) and (v) are repeated and the process continues until the stack 
becomes empty. 

The new hidden and unstack functions are given in listing 16.5 and the declara­
tion of array tr is given in listing 15.4. 
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Listing 16.5 

I* Replacement hidden,unstack for file "display3.c" *I 

1*-----·-·*1 
hidden() I* Hidden surface 'algorithm for transparent surfaces */ 

1*-·-----·*1 
I* Constant shading *I 
< struct heapcell *list[maxf],*networkstack 

int l,numbervlsible,face : 
int nob[maxfl : 
network(&numbervisible,nob,list,obs,pro,1) networkstack=NULL 
for (i=O : i<nof : i++) 

< if (tr[colour[ill > 0) seefacet(i) : 
if (nob[i] == 0) push(&networkstack,i) 

) : 
for (i=O : l<numbervisible : i++) 

< if (networkstack == NULL) return(O) 
face=pop(&networkstack) : 
if (tr[colour[face]] <epsilon) seefacet(face) 
unstack(face,nob,list,&networkstack) 

) : 
) I* End of hidden *I 

I*·- -- · -- -- --- ·- ·--- · -- --- -- --*I 
unstack(face,nob,llst,stack) 

1*----------------------------*1 
int face,nob[] : 
struct heapcell *list[J,**stack 

< struct vector2 poly[maxpoly] : 

I* transparent surfaces */ 

float red1,green1,blue1,red2,green2,blue2 
float tranval,redtran,greentran,bluetran,dummy 
struct vector3 mid,normv : 
int nf,front,back,n,col : 

I* Calculate apparent colour of facet 'face' : redval, greenval, blueval *I 
normal(face,&normv,&dummy,obs) : midpoint(face,&mid) : 
cshade(mid,normv,colour[facel,&red1,&green1,&blue1) 

I* Scan list of facets obscuring 'face' */ 
while (list[facel I= NULL) 

< nf=popC&list[face]) : nob[nf]=nob[nfl-1 
if (nob[nfl == 0) push(stack,nf) : 

I* If obscuring facet is transparent then find overlap with 'face' and draw */ 
if (tr[colour[nfll > 0) 

( overlap(face,nf,&front,&back,&n,poly,pro,obs,ppd,1) 
normal(nf,&normv,&dummy,obs) : midpoint(face,&mid) : 
cshade(mid,normv,colour[nfl,&red2,&green2,&blue2) 
tranval=tr[colour[nfll ; 
redtran=(1-tranval)*red1+tranval*red2 ; 
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greentran=(1·tranval)*green1+tranval*green2 ; 
bluetran=(1·tranval)*blue1+tranval*blue2 ; 
findlogicalcolour(redtran,greentran,bluetran,colour[nf],&col); 
setcol(col) ; polyfill(n,poly> ; 

) ; 
) ; 

) ; I* End of unstack */ 

I* Ensure function network from listing 13.1 is in "display3.c" */ 

Example 16.2 
Plate XI shows a scene viewed through two coloured transparent facets. 

Exercise 16.4 
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If transparent surfaces overlap in a view then the calculations are not quite so 
simple. When the area of overlap between a transparent facet and the facet k is 
calculated and displayed, it must also be stored as a facet superficial to k. If 
another transparent facet is encountered in the list of those obscuring k, then 
the overlap of this facet with k must be calculated, displayed and stored, alon~ 
with the overlap with the previously created superficial facets. Furthermore. if 
the projections of two transparent facets overlap in an area onto which no other 
facet is projected, then a mixture of the facet colours and the background colour 
must be displayed. Implement a hidden surface algorithm which allows for over­
lapping transparent facets. Note that the order in which you store the areas of 
overlap is important - the part of a facet seen through i transparent facets can· 
not be displayed until those parts viewed throughj {0 <..j < i) transparent facets 
have been displayed. The method of tackling this problem bears many similari­
ties to the solution of the problem of shadows cast by multiple light sources 
(exercise 16.3). 

Exercise 16.5 
The inclusion of shadows in the view of a scene containing transparent surfaces 
poses three problems 

(i) Dealing with shadows cast by transparent surfaces. 
(ii) Dealing with shadows cast onto transparent surfaces. 
(iii) Dealing with shadows on other facets which are visible through a trans­

parent surface. 

The first of these problems proves difficult only in determining the colour of 
the shadow. the other two provide many more difficulties. Think about these 
problems. The implementation of an algorithm which allows for both shadows 
and multiple transparent surfaces is a large exercise (see project 19 in chapter 18) 
and is more easily tackled using a ray-tracing approach. 
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Reflections 

Suppose one facet in a scene is a mirror. We should be able to see the reflection 
of the scene in this mi"or. We can use some of the techniques which we have 
already introduced to produce an image of such a reflection. 

We call the plane containing the mirror facet the mi"or plane. In chapter 6 
we described the calculation of the reflection of a point in a plane. If we calcu­
late the reflection of each vertex of the scene in the mirror plane, we have the 
physical reflection of the scene . (Note that here we are creating a new set of 
points with co-ordinates specified in relation to the same co-ordinate system -
the OBSERVER system.) The facet definitions still hold (with indices now 
referring to the corresponding vertices in the new set of points) except that 
where the vertices were listed in anti-clockwise orientation around a facet in the 
true model. the orientation is clockwise in the reflected model (figure 16.2). 

How can we relate this physical reflection with the reflection observed in the 
mirror? Imagine that the mirror facet is a window surrounded by an infinite 
plane . The reflection in the mirror is precisely the part of the physical reflection 
which can be seen through (and beyond) this window. Those parts of the physi­
cal reflection which lie in front of the mirror cannot be seen in the reflection 
since in the real scene they lie behind the mirror. The problem thus reduces to 
projecting the reflected scene onto the view plane and drawing only those parts 
which intersect with the projection of the mirror and lie behind the mirror in 
reflected space - a problem once again solved by the overlap function (listing 
13.1). There is a major drawback to any algorithm for finding reflections of 
scenes. If you sit in front of a mirror with another mirror behind you, what do 
you see? You see a reflection of yourself in the mirror in front of you, but you 

Actuel 
Scene 

Mirror 
Feoet 

Figure 16.2 

Refleoted 
Scene 
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also see a reflection of the mirror behind you, in which you see a reflection of 
your back and of the mirror in front of you, in which you see a reflection of the 
mirror behind you and so on! The process is infinite and there is no way round 
this. We must either insist that a scene contains no mirrors which may reflect 
each other, or else we simply ignore infinite reflections of mirrors, allowing for 
only a limited number of levels of reflection. We shall impose a limit of one level 
of reflection, so when reflected in another mirror, a mirror facet is considered as 
an ordinary, non-reflecting facet. 

There remain two questions. Firstly, at what stage do we draw the reflection 
and secondly, how do we apply the hidden surface algorithm to the reflected 
scene? The reflection is seen as if it were superficial to the mirror facet. We there­
fore draw it immediately after drawing the mirror facet, in a colour generated by 
mixing the facet colour and the mirror colour. We modify the hidden function 
of listing 13.1 to call a new function reflekt (listing 16.6) with parameter face if 
facet face is a mirror facet. This function calculates and draws the reflection of the 
scene in facet face. We need some method of indicating that a facet is a mirror. 
We use the transparency coefficient stored in the array tr. No mirror may be 
transparent, so this value is redundant (always zero). Therefore we indicate that 
a facet in material i is a mirror by setting facet tdil to - 1.0. 

The function reflekt is of the same form as the function hidden (listing 13.2). 
The reflected co-ordinates of each vertex reflect and the projections proref 
thereof are declared: 

struct vector3 reflect[maxv]; 
struct vector2 proref[ maxv] ; 

The function network is called with the reflected co-ordinate arrays as para­
meters to set up a network of information about which facets obscure others in 
the view of the reflected scene. Two new arrays, pointer rlist[maxf] and integer 
rnob [maxf] are used to store the information about the network. These arrays 
correspond to the arrays list and nob and are used to avoid interference with the 
hidden surface network relating to the general view (see listing 13.1). 

The new network is sorted exactly as before, using a new stack referred to by 
the heapcell pointer stack2 (again used so as not to interfere with the general 
ordering) and the area of overlap between each facet (and all associated super­
ficial facets) is displayed, with the exception of other mirror facets. When the 
stack becomes empty (stack2 = NULL) the function reflekt ends and the draw­
ing of the real scene continues. 
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Listing 16. 6 

I* Add to "display3.c" *I 

I* data base for reflections *I 

struct vector3 reflect[maxvl ; 
struct vector2 proref[maxv] 

1*-------------*1 
reflekt(face) 

1*-------------*1 
int face ; 

I* Calculates and draws the image of the scene as seen reflected in 'face' *I 
< int col,front,back,i,intersection,mirvis,newface,nv ; 

float red1,red2,green1,green2,blue1,blue2 
float val,mu,redval,greenval,blueval 
struct vector3 mid,normv,oddvector ; 
struct vector2 poly[maxpoly] ; 
struct heapcell *rlist[maxfl,*stack2 
i nt rnob [maxfl ; 

I* Initialise the stack of facets to be drawn *I 
stack2=NULL ; 

I* Calculate the normal to •face• and reflection of each vertex *I 
normal(face,&normv,&val,obs) ; midpoint(face,&mid) ; 
cshade(mid,normv,colour[faceJ,&red1,&green1,&blue1) ; 
for Ci=O ; i<ntv ; i++) 

< ilpl(obs[il,normv,normv,val,&oddvector,&mu,&intersection) 
reflect[i).x•obs[i].x+2*mu*normv.x 
reflect[i).y=obs[i).y+2*mu*normv.y; 
reflect[iJ.z=obs[i).z+2*mu*normv.z; 

I* Project the reflected vertices onto the perspective viewing screen *I 
proref[i).x=·reflect[i].x*ppdlreflect[i].z 
proref[i).y=·reflect[i].y*ppdlreflect[i].z 

> 
I* Call •network' to create a topological order of facets to be drawn *I 

networkC&mirvis,rnob,rlist,reflect,proref,-1) 
I* Draw facets in topological order *I 

for Ci=O ; i<nof ; i++) 
if (rnob[i] == 0) push(&stack2,i) 

I* •mirvis• is the number of facets visible in the 'mirror• *I 
for Ci=O ; i<mirvis ; i++) 

{ if (stack2 == NULL) return(O) 
newface=popC&stack2) ; 
if (face I= newface) 

I* Find •overlap• with mirror and draw *I 
{ 

overlap(face,newface,&front,&back,&nv,poly,proref,reflect,ppd,·1) 
if (front == face) 
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{ normal(newface,&normv,&val,obs) ; 
midpoint(newface,&mid) ; 
cshade(mid,normv,colour[newfaceJ,&red2,&green2,&blue2) 
redval=Cred1+red2)/2 ; 
greenval=(green1+green2)/2 ; 
blueval=Cblue1+blue2)/2 ; 

findlogicalcolour(redval,greenval,blueval,colour[newface],&col) 
setcol(col) ; polyfill(nv,poly) ; 

} ; 
} ; 

unstack(newface,rnob,rlist,&stack2) 
} ; 

> ; I* End of reflekt */ 

Example 16.3 
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Plate XII shows a hollow cube reflected in three mutually perpendicular mirrors. 

Exercise 16.6 
Extend the algorithm so that the reflections of shadows may be displayed. 

Exercise 16. 7 
We have allowed for only one level of reflection. The maximum level could, of 
course, take any value. Extend the algorithm to allow for, say, three levels. (You 
must either introduce some form of recursion, or else write a new function for 
each level of reflection.) 

Exercise 16.8 
All of the listings given in this chapter use the constant shading approach, 
assuming that the intensity of reflected light is constant across a facet. Rewrite 
the functions for use in Gouraud's and Phong's interpolation models and pro­
duce scenes such as that shown in Plate VIII. 

As you can see, the inclusion of such concepts as transparent surfaces, mirrors 
and shadows in polygon-based hidden surface functions necessitates excessive 
numbers of comparisons and very careful manipulation of data. We have reached 
the limit of such algorithms. For more realistic images, with almost unlimited 
scope for simulating the many aspects of illumination, we must turn to analytic 
modelling and the techniques of ray-tracing (chapter 1 0) and the quad-tree and 
oct-tree algorithms which we describe in chapter 17. 



17 Analytic Representation of Three­
dimensional Space 

In this chapter we shall discuss an exciting recent development in the representa­
tion of objects in three-dimensional space. We take a totally different approach 
to the definition of a scene: instead of approximating surfaces with a polygonal 
mesh, we defme them as combinations of primitive objects. Each primitive object 
is mathematically defined in terms of an analytic function: we have already 
introduced this idea in the analytic representation of surfaces in chapter 6. This 
approach allows a very simple definition of many scenes, but the ease of defini­
tion has to be paid for with a large increase in processing overheads, although 
not necessarily in program complexity. To illustrate these ideas we look at two 
implementations. The first, the quad-tree (Sidhu and Boute, 1972; Tanimoto, 
1977; Hunter and Steiglitz, 1979; Woodwark, 1984), will be used to draw simple 
molecular models composed of a grouping of spheres of arbitrary radius and 
position. A program, using listings 1.1, 1.3, 3.3, 7.1 and 8.llinked to the draw_ 
a_picture function oflisting 17.1 is used to illustrate it. Apart from the #included 
file "matrix3.c", also required are transform (listing 7 .2), findO, look3 (listing 
8.1), insource (listing 15.1), findlogicalcolour and colourtable (listing 15.10), 
and cshade (listing 15.9). Secondly there is the oct-tree method (Clark, 1976; 
Meagher, 1982): we do not give a program but outline the method and also 
describe the construction of a binary tree defining a scene as the union, inter­
section and complement of various primitives. (Such a description can also be 
used with ray-tracing and the quad-tree method.) 

The Quad-tree Algorithm 

The polygonal mesh method uses the basic philosophy of using polygonal facets 
to approximate a surface, and projecting that approximation ultimately onto the 
viewport where a picture is drawn. The opposite approach of accurately repre­
senting the surface should imply that an infinite number of surface points need 
be considered. The philosophy behind the analytic methods is to do just this, 
knowing that drawing a picture on a graphics viewport infers only a finite number 
of pixels, hence introducing a way to avoid a potentially infinite process. 

Here we introduce a quad-tree approach to an orthographic view of a scene 
composed of a list of objects stored in OBSERVED position. Although we 
restrict ourselves to spheres (the simplest of all three-dimensional objects), the 
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method is valid for many other types of primitive objects, provided the relevant 
functions have been written. 

We start by considering a square of 2N by 2N pixels on the viewport. (At a 
general stage we have a pixel squtUe of 2n by 2n pixels: 0 :E;; n :E;; N.) This can be 
considered as a real square on the orthographic view plane; the proper scaling 
between the two has been created by the start function (listing 1.3). We imagine 
that the view plane square is extruded in front of and behind the plane 
to form an infmitely long square-sectioned prism or rod. The boundary of this 
rod is in fact formed by the orthographic projection lines through every point on 
the real square. Obviously any object in the three-dimensional scene that does 
not intersect this solid rod can have no effect on the colouring of any pixel in 
the corresponding pixel square. 

Given a pixel square, we start with the old list of objects that may possibly 
intersect the corresponding rod and check each possible intersection. Initially, 
when n = N, the list will contain all the objects in the scene. If there is no inter­
section for a given object then that object is deleted from the list; if there is an 
intersection or if there is any doubt (as a result of the use of approximations to 
speed up the processing), then the object is added to the new list. The pixel 
square can be divided up into four smaller pixel squares, each 2n-l by 2n-l 
pixels. We then equate the old list with the new list and repeat the above pro­
cess with all four new squares. If at any time the list becomes empty then no 
object can affect the given pixel square and so the pixels should be left in the 
background colour. Since the scene is not empty then this process of dividing 
pixel squares into quarters can apparently go on indefinitely, except for the fact 
that once n becomes zero we are dealing with a single pixel and the process must 
terminate. 

Only one of the remaining objects in the list which corresponds to a given 
pixel can be used to colour in that pixel. Finding which object is easy, we simply 
take the line of projection through the centre of the pixel and fmd the object in 
the list with largest z co-ordinate on that line. Then we can use the shading 
techniques of chapter 15 in function cshade to colour in the pixel. Listing 17.1 
assumes point source illumination model. Note that there is no need to clip the 
scene before display, clipping is implicit in the quad-tree process. 

Example 17.1 
We implement this idea in listing 17.1 on a list of spheres. Rather than use rods 
with square cross-section, we introduce cylindrical rods that contain the square­
sectioned rods: instead of the rod being formed by extruding a pixel square 2n 
by 2n pixels in the viewport, we extrude the circle of radius 2n /.../2 which passes 
through the four corners of the pixel square. We do this to make calculations 
easier; note any object outside the cylindrical rod must be outside the square­
sectioned rod, however there may be objects that lie outside the square-sectioned 
rod but which intersect the cylindrical rod. This may mean that objects which 
ultimately have no effect may be added to new lists, but this is a small price to 
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pay for the ease of calculation. These irrelevant objects will finally be deleted 
when considering the intersection of the line of pro_iC'ction through the pixel. 

Note how the multiple lists are stored in the listore (list store) array. Because 
the above process is implicitly recursive we have to use a stack to store pixel 
squares and their associated list pointers for future processing. topofstack points 
to the topmost elements of the stack. Each element in the stack is a structure 
of four fields, pix, the pixel coordinates of the bottom left-hand corner of the 
square identified by the stack entry, edge the edge length of that square. left 
and right are pointers into the integer array listore holding the list of spheres 
relevant to this square. Note how the process has built-in garbage collection! 
We assume that the viewport is 768 by 768 pixels, and so initially we divide it 
into nine individual 256 by 256 pixel squares (2 8 by 28 ), and initiate the quad­
tree algorithm for each: this implies that we do not need more than 33 elements 
in the stack (why?). Plate XIII shows a smooth shaded orthographic projection 
of a molecular model composed of spheres defined by the data read by listing 
17.1. 

Listing 17.1 

#include "matrix3.c" 

I* transform(v,A,w) 

struct vector3 eye,direct ; 
double Q [5] [5] 

I* findQO 
look3C) 

#define maxmaterl 10 

int nurnat ; 

from LISTING 7.2 *I 

from LISTING 8.1 *I 

float rm[maxmaterll,gm[maxmaterl],bm[maxmaterl],sm[maxmaterl] 
int mm[maxmaterl] ; 

#define ambient 0.4 I* Set ambient light to 0.4 *I 

struct vector3 src; I* OBSERVED co·ordinates of light source *I 

I* insource() from LISTING 15.1 *I 

I* cshade(p,norm,ic,red,green,blue) 

int colptr[tabnuml,matlist[maxmaterll,newcolour; 
float r[tabnum] ,g[tabnuml ,b[tabnuml ; 

from LISTING 15.9 *I 



Analytic Representation of Three-dimensional Space 

I* colourtable() 
findlogicalcolour(red,green,blue,i,colour) 

#define maxspheres 100 
#define maxlist 5000 
#define maxstack 1000 

from LISTING 15.10 *I 

struct stackvalue { struct pixelvector pix; int edge,left,right; } 
struct stacknode { struct stackvalue info ; struct stacknode *next } 
struct stacknode stack[maxstackl ; 
struct stacknode *stackfree,*topofstack 

float ballrad[maxspheres] ; 
int nball,numats,material[maxspheres],listore[maxlistl 
struct vector3 midpt,act[maxspheres],obs[maxspheres] 

I* functions needed for stack manipulation *I 

1*············*1 
stacks tart() 

1*············*1 
{ int i ; 

stackfree=&stack[Ol 
for Ci=O ; i<maxstack·1 ; i++) 

stack[i].next=&stack[i+1] 
stack[maxstack·1l.next=NULL 

} ; I* End of stackstart *I 

1*·················*1 
stackalloc(point) 

1*·················*1 
struct stacknode **point 

{ *point=stackfree ; 
stackfree=C*point)·>next 

} ; I* End of stackalloc *I 

1*··················*1 
stackpush(q,e,l,r) 

1*···················*1 
struct pixelvector q ; 
int e,l, r ; 

{ struct stacknode *p ; 
struct stackvalue sv ; 
sv.pix.x=q.x ; sv.pix.y=q.y 
sv.edge=e; sv.left=l ; sv.right=r 
stackalloc(&p) ; ; 
p·>info=sv ; 
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p·>next=topofstack ; 
topofstack=p ; 

> ; I* End of stackpush *I 

1*·········-·····*1 
stackdisalloc() 

1*·········-·····*1 
< topofstack·>next=stackfree 

stackfree=topofstack ; 
> ; I* End of disalloc *I 

1*··················*1 
stackpop(sv,e,l,r) 

1*·····-············*1 
struct pixelvector *sv ; 
int *e,*l,*r ; 

{ struct stacknode *p ; 
p=topofstack·>next ; 
*sv=topofstack·>info.pix 
*e=topofstack·>info.edge 
*l=topofstack·>info.left 
*r=topofstack·>info.right 
stackdisalloc(); 
topofstack=p ; 

> ; I* End of stackpop *I 

1*··-····-·*1 
balls in() 

1*·········*1 
< int i ; 

FILE *indata 
I* Read in BALL data. There are 'nball' balls *I 

indata=fopen("spheres.dat","r") 
fscanf<indata,"Xci",&nball) ; 
if (nball > maxspheres) 

printf<" Exceeding maxinun nunber of spheres\n") 
else 

colourtable() ; I* prepare colour table *I 
I* i'th ball has actual centre •act[il' and radius 'ballrad[il' *I 
I* and is composed of •material[il *I 

for (i=O ; i<nball ; i++) 
fscanf ( indata, 11%f%f%f%fXcl" ,&act [i] .x,&act [i]. y,&act [i]. z, 

&ballrad[i] ,&material [i]) 
I* Read in data on •numats' materials *I 

fscanf(indata,"Xci",&numats) ; 
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for Ci=O ; i<numats ; !++) 
fscanfC indata,"%f%f%f%fXd", &rm[i] ,&gm[i] ,&bm[il ,&sm[il ,&mm[i]) 

> ; I* End of ballsin *I 

I*· ............................. ·*I 
quadsplit(pixel,edge,newl,newr) 

1*·······························*1 
struct pixelvector pixel ; 
int edge,newl,newr 

{ struct pixelvector newpixel 
int halfedge,i ; 

I* split given pixel square into four Quarters *I 
I* (also pixel squares, but with sides halved) *I 

if C edge == 1 ) 
I* If we are at pixel level then colour in pixel, and consider *I 
I* next pixel square on the stack *I 

pixballCpixel,newl,newr) ; 
I* Not at pixel level. Break pixel squares in 4 quarters and add *I 
I* to stack. Then take next pixel square off stack and continue *I 

else { if (newr > (maxlist·4)) 
{ printf("listore is full\n") ; return(O) ; 
} ; 

halfedge= (int) (edgel2) ; 
for Ci=1 ; !<=4 ; !++) 

} ; 

{ newpixel.x= pixel.x + halfedge*(int)((i·1) /2) 
newpixel.y= pixel.y + Ci % 2)*halfedge 
stackpush(newpixel,halfedge,newl,newr) 

} 

} /*End of quadsplit */ 

1*························*1 
pixballCpixel,newl,newr) 

I*· ••.••..•..••.•••..... ··*I 
struct pixelvector pixel ; 
int newl,newr ; 

I* find unique ball used to colour given 'pixel' */ 
{ int colour,i,lsi,maxball ; 

float d,distsq,red,green,blue,zz 
struct vector3 normal ; 

I* Find which ball is relevant to current pixel *I 
I* Go through list store and find ball ('maxball') closest to observer *I 

midpt.z=-10000.0 ; maxball=-1 
for <!=newt ; i<=newr ; !++) 

{ lsi=listore[i] ; 
distsq=pow(ballrad[lsil,2.0)·pow(midpt.x·obs[lsi].x,2.0) 

·pow(midpt.y·obs[lsi].y,2.0) 
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if (distsq >= 0.0) 

> : 

< zz=obs[lsi].z+sqrt(distsq) 
if (zz > midpt.z) 

> : 

< midpt.z=zz : maxball=lsf 
> : 

if (maxball I= ·1) 
I* Find vector •normal' to surface of chosen ball *I 
I* at a point which is projected onto (xmid,ymid) *I 

( normal.x=midpt.x·obs[maxball].x: 
normal.y=midpt.y·obs[maxball].y: . 
d=pow(ballrad[maxball],2.0)·pow(normal.x,2.0)·pow(normal.y,2.0) 
if (d < 0.0) 

normal.z=O.O : 
else normal.z=s1rt(d) 

I* Shade the 'pixel' with colour of ball •maxball' */ 
cshadeCmidpt,normal,material[maxballl,&red,&green,&blue) 
findlogicalcolour(red,green,blue,material[maxballl,&colour) 
setcol(colour) : setpix(pixel) 

> : 
> I* End of pixball *I 

1*··········*1 
quadtreeO 

1*·--·-··-··*1 
I* The QUAD·TREE ALGORITHM *I 
( int edge,i,l,lsi,newl,newr,r 

float dist,half,rodrad : 
struct pixelvector pixel : 

I* Pop pixel-square info off stack : process it, stop if stack empty *I 
while (topofstack 1~ NULL) 

I* Pixel square has edge size info.e='edge', and bottom left corner *I 
I* 'info.pixel'. A circle containing the square of pixels is extended *I 
I* backwards to form a rod. Go through •listore' of balls using present *I 
I* pixel square and see which balls are relevant to current rod *I 
I* listore[il where info.left<=i<=info.right holds this information *I 

( stackpopC&pixel,&edge,&l,&r) : 
I* Real centre of pixel square is 'midpt', circle of radius 'rodrad' */ 
I* totally contains pixel square. 'rodrad' thus radius of current rod *I 
I* 'half' is half the edge size of the current real cube*/ 

half=O.S*edgelxyscale : rodrad=sqrt(2.0)*half 
midpt.x=Cfloat)Cpixel.x·nxpix/2)1xyscale+half 
midpt.y=Cfloat)(pixel.y·nypixl2)/xyscale+half 

I* Create a new list of balls relevant to present pixel square and*/ 
I* store in •listore• between indices •newl• and •newr' *I 

newr=r : newl=newr+1 : 
for Ci•l : i<=r : i++) 
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I* Distance between centre of ball (a circle in 2D) and centre of pixel *I 
I* square (in real units) must be less than the combined radii of circle *I 
I* and rod 'lsi' is sphere index of i'th element of •tistore'*l 

< lsi=l istore[il ; 
dist=sqrt(pow(obs[lsi].x·midpt.x,2.D)+pow(obs[lsi].y·midpt.y,2.0)) 

I* If ball 'lsi• still under consideration then add to 'listore• *I 
if (dist <= ballrad[lsi]+rodrad) 

{ newr=newr+1 ; listore[newrl=lsi ; 
} ; 

} ; 
I* If new 'listore' not empty enter 'quadsplit•, pop stack and continue *I 

if (newt <= newr) 
quadsplit(pixel,edge,newl,newr) 

} ; 
> I* End of quadtree *I 

I* Note new values for nxpix and nypix *I 

#define nxpix 768 
#define nypix 768 

1*················*1 
draw_a_picture() 

1*················*1 
< int i,ix,iy; 

struct pixelvector screenpixel 

I* spherical ball model *I 

I* Recalculate xyscale *I 
xyscale•(float)nxpix/horiz ; 
stackstart() ; look3() ; insource() 

I* Read in data on spheres in ACTUAL position */ 
ballsinO ; 

I* Put spheres in observed position, vertex act[i] go to vertex obs[il *I 
for Ci=O ; l<nball ; i++) 

transform(act[i],Q,&obs[il) ; 
I* Viewport assumed to be 768 by 768 pixels. Divide it into *I 
I* 9 256·square pixel blocks and push them onto stack */ 
I* Remember to adjust nxpix and nypix in prepit *I 

topofstack=NULL ; 
for Ci=O ; i<nball ; i++) 

l istore[il=i ; 
for (ix=O ; ix<3 ; ix++) 

for (iy=O ; iy<3 ; iy++) 
< screenpixel.x=ix*256 ; screenpixel.y=iy*256; 

stackpush(screenpixel,256,0,nball·1) 
} ; 

I* Initiate QUAD·TREE process */ 
quadtree() ; 

} ; I* End of draw_a_picture *I 
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Exercise 17.1 
Incorporate the parallel beam shading model into this program. Extend the 
colouring process to allow for multiple light sources. 

Exercise 17.2 
If each pixel is considered to be composed of 2M by 2M sub-pixels then the 
quad-tree process may be continued to the sub-pixel as opposed to the pixel 
level. Should you then combine the colours chosen for each sub-pixel you will 
achieve a simple anti-aliasing method for the colouring of that pixel. Implement 
this. 

Exercise 17.3 
Incorporate shadows in the program. It is a simple matter to discover if a pixel is 
in shadow; just find the three-dimensional surface point equivalent to the pixel 
and draw a line from that point to the light source. If this line intersects any 
other object then the pixel will be in shadow, and you colour it accordingly. 

Exercise 17.4 
Use these ideas in an extended program, including finite cylinders in the model, 
which draws orthographic projections of a 'ball and spoke' molecular model 
which is smooth shaded and exhibiting specular reflection, such as that shown in 
Plate XIV. 

Exercise 17.5 
Use the perspective projection instead of orthographic. Now instead of a cylin­
drical rod, you will have a circular cone with apex at the observer position. 

The Oct-tree Algorithm 

The representation of objects 

We now consider the orthographic projection of more complicated scenes, com­
posed of objects chosen from a small set of object categories: most oct-tree 
programs allow for sphere, half-space, infinite cylinder, cone, torus and helix 
types, but the list can be extended by the user if special shapes are required. For 
each category there will be a primitive object defined in a SETUP position, 
usually around the origin. It will have a well-defined analytic form, allowing us 
to identify its inside, outside and surface, and this will be presented as a sub­
routine in the program. For example, we can consider the primitive sphere with 
unit radius centred at the origin or the primitive half-space defined by that half 
of space with positive y co-ordinates - that is, bounded by the xfz plane through 
the origin with normal (0, 1, 0). That is, the sense of the normal direction points 
into the half-space. 
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To place an object in ACTUAL position it is necessary to transform the 
primitive object from SETUP to ACTUAL position using a matrix P. All infor­
mation about an ACTUAL object will be combined together in a record, which 
must contain 

(1) an identification of the object category 

sphere, half-space, cylinder etc. 

(2) the SETUP-to-ACTUAL matrix P and also the inverse p-1 , and 
(3) colour, texture information etc. 

All the ACTUAL objects in a scene can be listed in an array of records, 
individual objects being identified by their index in the array. 

The complement of an ACTUAL object (all of space except that object) is 
also allowed. If an object has array index n, then the complement is indicated 
by-n. 

For example, if object number 2 is a sphere of radius 2 centred at (6, 2, 0), 
the record for this object would contain 

P=G 
0 
2 
0 
0 

0 
0 
2 
0 

~) and p-1 =(O ~ 0·~ O.~ 
1 0 0 0 

-3) -1 
0 
1 

along with the category identifier (sphere), colour and other material properties 
information. The complement of object 2 is thus identified with index -2. 

4 

2 3 

5 

Figure 17.1 
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Representing a Scene with a Binary Tree 

We will discuss the use of binary trees for representing a combination of primi­
tive three-dimensional objects by referring to figure 17.1 and Plate XV. Figure 
17.1 is a line drawing identifying the various objects in the scene and how they 
inter-relate and Plate XV is a proper oct-tree orthographic view of the scene 
which consists of a hemisphere (sphere 1 intersected with half-space 3) with a 
spherical hole (object 2) cut out, a finite cylinder (infinite cylinder 4 bounded 
by half-spaces -3 and 5) and finally sphere 6. Note how object 3 is used twice 
in the definition of the final scene! 

The tree, will have two types of node. the first holding a spatial operation 
(union 'V' which we identify with the logical operator OR. or intersection ·~· 
which we identify with logical operator AND) and two edges, and the second 
type, a leaf, holding an object index or its complement ('-' which we identify 
with logical operator NOT). We can think of such a binary tree as an operator 
(from the root node) combining the two subtrees indicated by the two edges 
leaving the root. Since a subtree is also a tree, we have a recursive definition that 
leads ultimately to the leaf-subtrees that consist solely of the ACTUAL objects 
in the construction of a scene. We can therefore write out a tree in infix nota­
tion as 

(subtree) operator (subtree) 

Thus in our example, the hemisphere with the hole on its edge is constructed 
first from the intersection of sphere 1 with the complement of sphere 2 

(I)~ (-2) 

and then the resulting subtree intersected with the half-space 3 

((I)~ (-2)) ~ (3) (17.1) 

The finite ·~ylinder with the spherical base is found by intersecting the infinite 
cylinder 4 with the complement (note) of half-space 3 and with half-space 5, 
before adding in sphere 6 

(((-3) ~ (4)) ~ (5)) v (6) (17.2) 

Note it does not matter that part of sphere 6 lies inside the finite cylinder -that 
is, we do not have to slice off the top half of sphere 6 before unioning it with 
the finite cylinder. The two parts (expressions 17.1 and 1 7 .2) are then unioned 
together to give the final tree that describes the scene. The infix notation for this 
tree is thus 

(((1) ~ (-2)) ~ (3)) v ((((-3) ~ (4)) ~ (5)) v (6)) 

There need not be a unique way of setting up a tree for any given scene; in 
particular note that no spatial meaning is implied in the left/right ordering of the 
subtrees for any given node. 
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The Binary Tree Reduction 

The oct-tree approach to the display of a three-dimensional scene assumes that 
the viewport is considered as a square block of2N by 2N (say) pixels, each pixel 
with unit side. Note a square viewport! Each pixel is considered to be the display 
on the viewport of the square which is the orthographic projection of a small 
cube (a voxel or volume pixel) in space onto the view plane. What we do in the 
oct-tree method for displaying a three-dimensional surface is to approximate to 
that surface by covering it with voxels, and to project these voxels into pixels on 
the viewport. Function start (listing 1.3) is used to evaluate the scale relating 
voxels to pixels. 

Extruding this image of a viewport composed of 2N by 2N pixels into three 
dimensions, we can think of the viewport as the projection of a cube of 2N by 
2N by 2N voxels with sides parallel to OBSERVER co-ordinate axes. Nothing 
outside this cube will be drawn, so there is no need for explicit clipping, since 
clipping is implied by the oct-tree algorithm. At a general stage in the process we 
will be using other cubic blocks of say 2n by 2n by 2n voxels (0 ~ n ~ N). By 
transforming the vertices of this real cube, first by Q- 1 (the inverse of the 
ACTUAL to OBSERVED matrix Q) and then by p-1 , it is possible to transform 
the cube relative to the SETUP position of a given primitive object. We then 
evaluate the analytic form of the primitive object to discover if the transformed 
cube lies inside, outside or crosses the surface of the primitive SETUP object. 
That is to see if the untransformed cube intersects the OBSERVED position of 
the ACTUAL object. These three outcomes correspond to the three logical values 
TRUE, FALSE and UNSURE respectively. As our explanation of the algorithm 
progresses you will note that the oct-tree metl"lod does not actually consider 
solid objects. Basically we are in the process of finding every single voxel which 
intersects a surface in the scene: we do not care about cubes of voxels lying 
totally inside or totally outside the objects in the scene. 

We start with the 2N by 2N by 2N cube of voxels and use this information to 
reduce the tree. At a general stage in the process we assume that we are working 
with a cube in three-dimensional space of 2n by 2n by 2n voxels and a given 
tree. We then take each of the objects remaining in the tree and, with their 
corresponding functions, discover if the cube is inside, outside or crosses the 
surface of that object (TRUE, FALSE, UNSURE) and use the results to reduce 
the tree according to the following Boolean rules (compare A, V and - with 
AND, OR and NOT) 

(I) replace the index of each object totally containing the transformed cube by 
TRUE 

(2) replace the index of each object containing no part of the transformed cube 
by FALSE 

(3) leave alone the indices about which we are UNSURE 
(4) (-TRUE) becomes (FALSE) 
(5) (-FALSE) becomes (TRUE) 
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(6) (TRUE)~ (subtree) or (subtree)~ (TRUE) become (subtree) 
(7) (TRUE) V (subtree) or (subtree) V (TRUE) become (TRUE) 
(8) (FALSE) V (subtree) or (subtree) V (FALSE) become (subtree) 
(9} (FALSE)~ (subtree) or (subtree)~ (FALSE) become (FALSE). 

Suppose in our example we evaluate the six objects for a given cube and get 
values UNSURE, FALSE, FALSE, UNSURE, TRUE and UNSURE respectively, 
and we reduce the tree 

(((I)~ ( -2)) ~ (3)) v (((( -3} ~ ( 4)) ~ (5)) v (6}) 
= (((1) ~(-FALSE)) ~(FALSE)) V ((((-FALSE) ~(4)) ~(TRUE)) V(6}} 
=(((I)~ (TRUE))~ (FALSE)) V ((((-FALSE)~ (4)) ~(TRUE)) V (6}) 
= ((1) ~(FALSE)) V ((((-FALSE)~ (4)) ~(TRUE)) V (6)} 
=(FALSE} V ((((-FALSE)~ (4)) ~(TRUE)) V (6)) 
=(((-FALSE)~ (4)) ~(TRUE)) V (6} 
=(((TRUE)~ (4)) ~(TRUE)) V (6) 
= ((4) ~(TRUE)) V (6) 
=(4}V(6} 

and the tree cannot be reduced further: so as far as this cube is concerned only 
objects 4 and 6 and their union are relevant, and the other objects can be ignored. 
Note that although we were UNSURE of object 1, it is still deleted from the tree. 

The Oct-tree Display 

After the binary tree has been reduced we are left with either an empty tree of 
the form (TRUE} or (FALSE) or a non-empty tree which contains no occur­
rence of TRUE or FALSE. A tree is empty when neither that particular cube, 
nor any of its 2n by 2n by 2n constituent voxels, intersect the surface of the 
remaining combination of objects defmed by the binary tree. This means that 
these voxels will have no influence on the colour of their corresponding viewport 
pixels and so no further processing of this cube need be done. Jfthe tree is non­
empty then there is an intersection. Provided n > 0, we break the cube into eight 
cubes (whence oct-tree), each 2n-l by 2n-l by 2n-l voxels, and repeat the pro­
cess on the reduced tree, ensuring that the cubes neart>st the observer along the 
line of projection (that is, with larger OBSERVED z co-ordinates) are proces­
sed before those furthest away. Eventually we reach the level of individual 
voxels (n = 0}, and we have discovered a voxel that intersects the surface of an 
object in the scene. The pixel corresponding to this voxel may then be coloured 
on the viewport. The colour depends on which object, remaining in the tree, is 
nearest the observer, and of course on the particular shading model used. The 
nearest object is found by intersecting the line of projection through the corres­
ponding pixel with each remaining object in turn. Not every one of the 2N by 
2N by 2N voxels in our original cube is considered. The process can be made 
more efficient by noting that when a 2n by 2n square of pixels on the viewport 
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has already been coloured in, then there is no need to consider any cube of 
voxels that lie behind this square. This is the reason we insisted on a particular 
order when breaking a cube ofvoxels into eight. 

It may also be more efficient, in the massive amount of calculation required 
by this algorithm, to use a sphere which totally includes the cube of voxels 
rather than the cube itself. The radius of this sphere will be the scaled equivalent 
of 2n-l x .../3 times the pixel size. This may mean that certain objects will be 
left in the tree when they should have been deleted, but the gain from a simpli­
fied calculation more than compensates. 

The picture of a more complex scene drawn using this process is shown in 
Plate XVI. 

Exercise 17.6 
Implement the orthographic oct-tree method using just spheres, cylinders and 
half-spaces. Shadows can be introduced in a manner similar to the quad-tree 
method. 

Exercise 17. 7 
Each voxel can be considered as 2M by 2M by 2M sub-voxels. If you implement 
the oct-tree process down to the sub-voxel level, and hence create equivalent 
sub-pixels, you can again combine the colours of the sub-pixels to introduce a 
simple anti-aliasing method. 

Exercise 17.8 
Use the perspective projection instead of the orthographic projection. Now 
instead of a cube of voxels in space, you will have slices of a pyramidal cone 
with apex at the observer. 

What Next? 

If you have reached this point in our book and you have understood all the 
methods, then you will now be ready to experiment with the research level 
problems of computer graphics. Problems of animation, texture, display tech· 
niques (polygonal mesh versus ray-tracing versus oct-tree), refraction and reflec­
tion, multiple light sources, more realistic shadows taking diffraction into 
account (that is, with umbra and penumbra), adding patches to polygonal mesh 
models (Bezier, 1974; Gordon and Riesenfeld, 1974), using bicubic curves etc. 
We can recommend you move on to the books of Newman and Sproull (1973) 
and Foley and Van Dam (1981) for excellent surveys of these problems, and we 
wish you much enjoyment in your future study of computer graphics. 
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Project 1 

Produce a program package that can draw Data Diagrams. It must include listings 
for the construction of Bar-Charts and Histograms, Pie-Charts. and both Discrete 
and Continuous graphs. An example of a discrete graph is given in figure 18.1. 
Note you must be able to add text to your diagrams, and also have a facility for 
drawing labelled axes as well as the option of drawing in various graphics modes 
(XOR etc.). See Angell (1985) for an implementation of data diagrams on the 
IBM Personal Computer. 

Project 2 

RADIOACTIVE DECRY OF VARIOUS ISOTOPES 

Figure 18.1 
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Create a database that can be used to draw various orthographic views of the 
Globe. It is best to store the vertex and facet information in its Mercator projec­
tion, and then project this onto a sphere. Use two colours, blue for the sea and 
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green for the land (you could also use white for the ice-caps). Only areas on the 
visible hemisphere need be drawn. If you are using a raster screen then write a 
new primitive function which returns the colour of any specified pixel. Once the 
globe is drawn, the centre of the pixel position on the screen implies a unique 
three-dimensional point on the globe. Use the colour of each pixel and the 
normal to the globe at the corresponding point to smooth-shade the globe, 
assuming one (or even multiple) light sources. See Plate XVII. 

Project 3 

Construct a program that draws musical notation - bar lines, staves, quavers, 
rests etc. Incorporate it in another program that composes{?) music: figure 18.2 
shows the result of one such program. 
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Figure 18.2 

Project 4 

Experiment with optical illusions and 'impossible figures'. You can get ideas 
from the many books on the subject, we recommend Tolansky {1964), to 
produce diagrams such as figure 18.3. 
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Figure 18.3 

Project 5 

Construct a wide range of moire patterns, sometimes called net-curtain patterns. 
These are created by drawing a large number of lines and curves ; the variety and 
density of the small areas caused by the intersections are perceived as a cloudy 
effect. See figure 18.4, formed by the intersection of four sets of concentric 
circles. The density of lines must be carefully chosen: if there are too many lines 
then we see a solid mass; if there are too few then a moire pattern is not dis­
cernible. 

Figure 18.4 

Project 6 

Read Mandelbrot's book on Fractals (Mandelbrot, 1977), and produce two­
dimensional pictures such as figure 18.5. Also use these methods to create three-
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dimensional surfaces. From the work of Hubbard, Peitgen and Richter create 
Julia patterns such as figure 18.6 (see Dewdney (1985)). 

Figure 18.5 

Figure 18.6 
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Project 7 

Write a program that can draw a hemispherical 'wooden' bowl, similar to the one 
shown in figure 18.7. The bowl has a flat rim and base and hemispherical sides. 
It is carved from a tree composed of a number of co-axial cylinders: the surfaces 
of the cylinders (the tree rings) form the pattern on the rim, base and side of the 
bowl; that is, they are the curves of intersection of the base and rim planes and 
side hemisphere with the cylinders. You can imagine the bowl to be part of a 
unit sphere, and the parameters which uniquely define a bowl are the radii of the 
cylinders. the centre of the hemisphere, the normal to the base and rim planes, 
and the fractions which define the base and inner and outer rim. Hint - for ease 
of calculation place the axis of the cylinders along the z-axis and centre the 
sphere on they-axis. 

Alternatively, you could attempt to solve this problem using the quad-tree or 
oct-tree methods. 

Figure 18.7 

Project 8 

As scenes get more sophisticated then the methods we describe for setting up the 
database become inefficient. If a single type of complex object is used repeatedly 
then it may be preferable to store the SETUP data for that object just once, and 
define the scene as a list of matrices and pointers - each pointer indicating the 
SETUP data for a given object, and each matrix being the SETUP to ACTUAL 
matrix which places it in position. Such a reduced description of a three-dimen­
sional scene obviously necessitates a rewrite of many of the functions given in 
this book! 
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Project 9 

All the three-dimensional programs in this book are written using the assumption 
that all facets are convex. Any concave facets must be split into convex facets by 
the programmer before the SETUP stage. Automate the process which inputs 
possibly concave polygonal facets and then changes each non-convex polygon 
into a series of convex polygons (Chazelle and Incerpi, 1984; Fournier and 
Montuno. 1984) and places them directly into our database. 

Project 10 

Construct a variety of two-dimensional mazes (rectangular or circular) on an 
interactive graphics console. Incorporate a facility that enables users to find their 
way through the maze, using a mouse as an indicator. Also program the 'best 
path' through each maze. Use the three-dimensional techniques from this book 
to give three-dimensional views inside the maze. The very special structure of 
mazes should allow you to write your own efficient back-to-front hidden surface 
elimination algorithm. 

Project 11 

Figure I8.8a shows the facets of a cube unfolded and laid out flat. Figure 18.8b 
shows the cube partially reconstructed. Write a movie that follows the complete 
reconstruction of the cube. Use other more complex regular figures - such as a 
pentagonal dodecahedron - instead of a cube. 

(a) (b) 

Figurel8.8 
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Project 12 

Write programs to produce 10-20-second advertisements; any product will do as 
the subject of the film. If computer time is a problem, then produce single 
frames from the advertisement. Mix together the two-dimensional and three­
dimensional techniques of this book, and use any special facilities available on 
your graphics device. 

Project 13 

Write a program that draws tessellated lattice patterns, such as the popular 
Islamic design shown in figure 18.9. It should take a line and/or polygon sequence, 
together with the lattice information, and generate a design clipped inside a 
given rectangle. The symmetry of such patterns can be classified into 17 space 
groups (Dana, 1948; Phillips, 1960; Donnay and Donnay, 1969; Whittaker, 1981) 
which are given the symbols pg, mm etc. Your program should use this standard 
crystallographic notation to indicate the symmetry group. Crystallography is a 
fount of good ideas for drawing unusual patterns. 

Figure 18.9 

Project 14 

Experiment with 'ball and spoke' chemical models. Use the line-drawing techni­
ques of chapter 12 to draw stereoscopic pictures. Expand the quad-tree program 
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of chapter 17 to draw pictures such as Plate XIV. In this case you must include 
an analytic primitive for the cylinder as well as for the sphere. Include specular 
reflections, and even multiple light sources and shadows. 

Project IS 

Suppose you are given two co-planar convex polygons with a non-trivial inter­
section, defined by the two vector sequences {p 1 , p2 , ... , Pm = pt} and 
{q 1 , q2 , ... , qn = q 1 }. Using the 'inside and outside methods' of chapter 3 find 
the new body, not necessarily convex, defined by {r1 , r 2 , . •. , rk = rd, which is 
the union of the two original polygons. 

Figure 18.10 shows a slice through an 'interpenetrant cubic onion'- that is, 
an object that is composed of a series of concentric non-intersecting surfaces 
(or 'skins'), each skin being similar to figure 9.3. The complete slice is the com­
bination of slices through individual surfaces; each single slice is the union of the 
slices through the two cubes that form the skin. Thus the above technique can 
be used. Note that the two polygons formed from each skin may not intersect, 
and in certain cases one or both of the polygons may even be empty. 

This is another example from crystallography: it shows the idealised X-ray 
topograph of the perfect twinned crystal of Fluorite. 

Figure 18.10 

Project 16 

A convex polyhedron can be considered as the body of intersection of a number 
of half-spaces, where each half-space is defined by an infinite plane. Given such 
a set of planes (assuming that the origin is inside the corresponding half-space). 
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then the polyhedron can be calculated using the 'inside and outside' methods of 
chapter 6. If you start with a very large tetrahedron and successively cut away 
any part of the remaining polyhedron that lies outside the half-space, you will 
eventually be left with the required polyhedron. See Plate V. 

Project 17 

Extend the three-dimensional polyhedral description of objects into the fourth 
dimension (Sommerville, 1929; Manning, 1956; Coxeter, 1973; Rucker, 1977; 
Abbot, 1978; Banchoff, 1978). Each vertex will be given by a vector of four 
numbers and so requires a five by five matrix for transformations. Each four­
dimensional polyhedron will have three-dimensional polyhedra for facets. Each 
polyhedron will itself be bounded by two-dimensional facets, which are them­
selves bounded by lines, which are finally defined by pairs of vertices. The 
simplest orthographic projection of a four-dimensional point is where we ignore 
two of the co-ordinates (as opposed to one, z, in three dimensions). There are 
many more complex projections! What are translation, scale and rotation in the 
fourth dimension? See the four-dimensional hypercube in figure 18.11. 

Project 18 

~/ -----+--

/ 

Figure 18.11 

Incorporate our polygonal mesh programs in a CAD/CAM package. All com­
munication with the program must be interactive, including any object definition. 
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Project 19 

Experiment with the advanced ideas mentioned in chapter 16. Extend the 
shadow algorithm to deal with illumination from multiple light sources (see 
exercise 16.3) and include transparent surfaces (see exercise 16.5). 

Project 20 

Write a program which is a line-drawing version of the mathematical surface con­
struction shown in chapter 9. Now you have to use a 'front-to-back' method: the 
opposite of the painter's algorithm. You must superimpose a grid on the figure 
as we did in the colour version, and then find the front edge of the figure and set 
it as a linear list of line segments. This list will be the variable top boundary of 
the picture. Then going back through the lines in the grid, find which grid lines 
cross the top boundary lines in this list, which are below, and which are above. 
Depending on each case you must adjust the boundary linear list of line segments 
- ignoring the 'invisible line segments', while adding the visible segments and 
deleting lines from the boundary list that are no longer on the new top boundary. 
See figure 18.12. 

Figure 18.12 

Project 21 

Study the Bezier Surface (Bezier, 1974) and B-Spline Surface (Gordon and 
Riesenfeld, 1974) methods for constructing a polygonal mesh for three-dimen-
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sional solid objects, given only a small number of reference points. Implement 
the 8-spline technique in conjunction with our three-dimensional display pro­
grams. 

Project 22 

Provided that there are no topological problems relating objects in a scene (that 
is, A over 8 over C over A not allowed), then it is possible to construct a net­
work of facets so that any two facets A and 8 are connected by an edge, A to 8, 
if and only if there is some observation point from which both facets are visible 
and A is behind B. If one such point is found, then it is impossible to find 
another observation point which inverts the connection (Tomlinson, 1982). The 
network of ALL the facets in the scene (not just those visible from a given 
observation point) can be topologically ordered. Drawing only those facets 
visible from any given observation point in this order furnishes a hidden surface 
algorithm, provided objects do not move relative to one another after the net­
work has been constructed. Extend our hidden surface algorithm to include this 
idea. 

Project 23 

A general project which runs throughout this boo~ is to cannibalise the given 
programs to make them more efficient, both in time and storage requirements. 
This will involve rewriting the code for certain algorithms. One obvious example 
is to use 3 by 4 matrices for three-dimensional transformations, since the bottom 
rows of the 4 by 4 matrices we use are always (0 0 0 1 ). There are many 
other places where we placed clarity of explanation before efficiency of code. 
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In chapter 1 we described nine primitive routines needed to interface all the 
programs from this book with a general graphics device. In this appendix we will 
give examples of these routines for specific commercial devices and packages. 

GINO 

This very popular graphics package was designed specifically for line drawing and 
so we implement only the routines needed for wire diagrams and hidden line 
displays in the listing A.l. 

Listing A.l 

/******************************/ 
I* Graphics Primitives for */ 
I* GINO */ 
I* NOTE : line drawing only */ 
/******************************/ 

I* GINO calls are all in capitals */ 

#include <stdio.h> /* standard input/output */ 
#include <math.h> /* standard mathematical functions */ 
#include "device.c" /* device·dependent primitive drivers (if any) */ 

#define maxpoly 32 
#define tabnun 256 

/* maxinun size of polygons */ 
I* size of colour table */ 

I* Assune dimensions of graphics frame is 184 mns by 140 mns. 
Set up viewport dimensions • define pixel to be .1 mm squared*/ 

#define nxpix 1840 /* horizontal pixels */ 
#define nypix 1400 I* vertical pixels *I 

struct pixelvector < fnt x,y ; > ; I* define pixelvector type */ 

int currcol ; 
float red[tabnURa,green[tabnuna,blue[tabnuna 
struct pixelvector lastpfxel ; 
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I* declare current colour */ 
I* colour table */ 
I* and current position */ 
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1*-----· --*1 
finish() 

1*--------*1 
I* Flush buffers */ 
( DEVEND() ; 

High-resolution Computer Graphics Using C 

) ; I* End of finish *I 

1*·------*1 
erase() 

1*-------*1 
I* Move to next frame or clear screen *I 
( PICCLE() ; 
) ; I* End of erase *I 

1*-------------*1 
setpixCpixel) 

1*-------------*1 
struct pixelvector pixel 

< DOTCpixel.x,pixel.y) ; 
) ; I* End of setpix *I 

I* It may seem inefficient to change from float, to pixels and 
back to float in the following three functions. Especially 
since our primitives 'lineto', •moveto' have equivalents 
in GINO ('linto2' and •movto2') - however,the inefficiency is 
outweighed by the alternative requirement to alter all the 
functions in the book. Of course you can do so if you wish! *I 

1*--------- --···*I 
movepixCp!xel) 

1*-----------·-·*1 
struct pixelvector pixel 

( MOVT02Cpixel.x,pixel.y) 
> ; I* End of movepix *I 

I*·------------ ·*I 
llnepixCpixel) 

1*-----------·-·*1 
struct pixelvector pixel 

( LINT02(pixel.x,pixel.y) 
> ; I* End of linepix *I 

1*--------*1 
prep! tO 

1*·-------*1 
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I* Prepare graphics and baud rate, and clear frame. */ 
( DEVBEG() ; DEVSPE(2400) ; UNITS(0.1) ; erase() ; 
> ; I* End of prepit */ 

G.K.S. 
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The Graphical Kernel System allows the use of both vector and raster modes. 
Our primitives can be implemented as listing A.2. 

Listing A.2 

/******************************/ 
J* Graphics Primitives for */ 
I* G.K.S */ 
J* (use local bindings) */ 
/******************************/ 

#include <stdio.h> /* standard input/output */ 
#include <math.h> /* standard mathematical functions */ 
#include "device.c" /* device·dependent primitive drivers (if any) */ 

#define maxpoly 32 
#define tabnum 256 
#define nxpix 512 
#define nypix 512 

I* maximum size of polygons */ 
/* size of colour table */ 
/* horizontal pixels 
/* vertical pixels 

*I 
*I 

struct pixelvector < int x,y ; ) ; /* define pixelvector type *I 

int currcol ; 
float red[tabnunl ,green[tabnun] ,blue [tabnun] 
struct pixelvector lastpixel ; 

int image[1J [1] 

, •........• , 
finish() 

/*········*/ 
I* Flush buffers */ 
(DEACTIVATE WORKSTATION(1) 

CLOSE WORKSTATION(1) ; CLOSE GKS() 
) ; I* End of finish */ 

, •...........• , 
setcol(col) 

, •............. ·*/ 
int col 

I* Select logical colour •col' */ 

I* declare current colour */ 
I* colour table */ 
I* and current position */ 
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{ SET POLYLINE INDEX(col) ; 
SET FILL AREA INDEX(col) 
image[1J [1J=col ; 

> ; I* End of setcol *I 

1*-------*1 
erase() 

1*-------*1 
I* Clear graphics screen *I 
{CLEAR YORKSTATIONC1,ALYAYS) 
> ; I* End of erase *I 

1*----------···*1 
setpixCpixel) 

1*·-----·-·-···*1 
struct pixelvector pixel 

I* Set pixel with co-ordinates pixel to current colour *I 
{CELL ARRAY(pixel.x,pixel.y,1,1,image) 
) ; I* End of setpix *I 

1*··············*1 
movepix(pixel) 

1*··············*1 
struct pixelvector pixel 

I* Store current position in lastpixel *I 
< lastpixel=pixel ; 
) ; I* End of movepix *I 

1*··············*1 
linepix(pixel) 

1*··············*1 
struct pixelvector pixel 

<float x[2],y[2l ; 
I* Draw line to position pixel *I 

x[Ol=lastpixel.x ; y[OJ=lastpixel.y ; 
x[1l=pixel.x ; y[1l=pixel.y ; lastpixel=pixel 
POLYLINE(2,x,y) ; 

) ; I* End of linepix *I 

1*···············*1 
polypix<n,poly) 

1*···············*1 
int n ; 
struct pixelvector poly[] 
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{ int i ; 
float x[maxpolyl,y[maxpolyl 

I* Fills polygonal area with N vertices poly[0], •.• ,poly[n·1l *I 
for (i=O ; i<n ; i++) 

{ x[il=poly[i] .x ; y[i]=poly[i] .y ; 
) ; 

FILL AREA(n,x,y) ; 
) ; I* End of polypix *I 

1*···············*1 
rgblog(i,r,g,b) 

I*· •.•••........ ·* I 
int i 
float r,g,b ; 

I* Sets logical colour i in colour look·up table to (r,g,b) *I 
{ SET COLOUR REPRESENTATION(1,i,r,g,b) ; 

SET POLYLINE REPRESENTATION(1,i,1,1,i) ; 
SET FILL AREA REPRESENTATION(1,i,SOLID,1,i) 

) ; I* End of rgblog *I 

1*········*1 
prepitO 

1*········*1 
{ int j,r,g,b; 
I* You must use correct bindings for following GKS statements *I 

OPEN GKS() ; 
I* Raster Device implied by •s• *I 

OPEN WORKSTATIONC1,6,8) ; 
SET WORKSTATION WINDOWC1,0.0,512.0,0.0,512.0) 
SET WORKSTATION VIEWPORT(1,0.0,1.0,0.0,1.0) 
SELECT NORMALISATION TRANSFORMATION(1) 
ACTIVATE WORKSTATION(1) ; 

I* Set up default colour table *I 
j=O ; 
for (b=O ; b<2 ; b++) 

for (g=O ; g<2 ; g++) 
for (r=O ; r<2 ; r++) 

{ rgblog(j,r,g,b) ; j=j+1 
) ; 

I* Set up default foreground colour *I 
set col (7) ; 

> ; I* End of prepit *I 
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A Microfilm Package: Dimfilm 

This approach (see listing A.3) can be used for line drawings and the pixel-based 
analytic programs, but because it is a photographic process the painter's algorithm 
may not be used! It is possible to implement this algorithm by creating your 
own bit map array and using the graphics commands to alter the values in this 
array. When the plotting is finished you can use the finish function to dump the 
bit-map onto microfllm, pixel by pixel! We set this as an exercise. 

Listing A.3 

I****************************** I 
I* Graphics Primitives for */ 
I* DIMFILM */ 
I* microfilm system *I 
I****************************** I 

#include <stdio.h> /* standard input/output */ 
#include <math.h> /* standard mathematical functions */ 
#include 11device.c" /* device-dependent primitive drivers (if any) */ 

#define maxpoly 32 
#define tabnum 256 
#define nxpix 1024 
#define nypix 768 

/* maximum size of polygons */ 
I* size of colour table */ 
/* horizontal pixels 
I* vertical pixels 

*I 
*I 

struct pixelvector ( int x,y ; > ; /* define pixelvector type *I 

int currcol ; 
float red[tabnuna,green[tabnunO,blue[tabnuna 
struct pixelvector lastpixel ; 

/*All DIMFILM functions written in capitals*/ 

/*········*/ 
finish() 

/*········*/ 
I* Call DJMFILM routine to flush buffer*/ 
( DJMEND() ; 
> ; I* End of finish */ 

/*·--········*/ 
setcol (col> 

/*··············*/ 
int col ; 

I* Select logical colour •col' */ 
I* In DIMFILM colours are integers 0 •• 255 */ 

I* declare current colour */ 
I* colour table */ 
I* and current position */ 
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( RGBCCint)(255*red[col]),(int)C255*green[col]),(int)(255*blue[col])) 
) ; I* End of setcol *I 

1*·······*1 
erase() 

I*··· •• ··*I 
I* The viewport should not be cleared since using microfilm *I 
<I* Null routine *I 
> ; I* End of erase *I 

1*·············*1 
setpix(pixel) 

1*·············*1 
struct pixelvector pixel 

I* Set pixel with co-ordinates 'pixel' to current colour *I 
< POINT(pixel.x,pixel.y) 
) ; I* End of setpix *I 

1*··············*1 
movepixCpixel) 

I*· ..•••••.••.. ·*/ 
struct pixelvector pixel 

< OFF2Cpixel.x,pixel.y) ; 
) ; I* End of movepix *I 

1*··············*1 
linepix(pixel) 

1*··············*1 
struct pixelvector pixel 

( ON2Cpixel.x,pixel.y) ; 
> ; I* End of linepix *I 

1*···············*1 
polypix(n,poly) 

I*· .•......•...• ·*I 
int n ; 
struct pixelvector poly[] 

(I* see LISTING 5.6 , if no area fill available on microfilm *I 
) ; I* End of polypix *I 

1*···············*1 
rgblog(i,r,g,b) 

I*· ••.....•••••. ·*I 
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int f ; 
float r,g,b ; 

I* Sets logical colour i in colour look-up table to (r,g,b) */ 
( red[il•r ; green[i]=g ; blue[il=b ; 
> ; I* End of rgblog */ 

1*--------*1 
prep! tO 

1*--------*1 
< int j,r,g,b; 
/* Prepare 35mm camera and define viewport size */ 

D35C() ; BOUNDS(0.0,1024.0,0.0,768.0) 
/* Set up default colour table*/ 

j=O ; 
for (b=O ; b<2 ; b++) 

for (g=O ; g<2 ; g++) 
for <r=O ; r<2 ; r++) 

( rgblog(j,r,g,b) ; j=J+1 ; 
) ; 

I* Set up default background and foreground colour *I 
setcol(O) ; erase() ; setcol(7) ; 

> ; I* End of prepit */ 

The Tektronix 4100 Range 

This range of machines is very popular although the colour capabilities are 
limited. We implement our primitives in listing A.4. You must refer to the 
sections on random sampling and pixel patterns of chapter 15 to make the best 
use of our functions. 

ListingA.4 

/*****************************/ 
I* Graphics Primitives for *I 
I* TEKTRONIX 4100 Series */ 
I***************************** I 

#include <stdio.h> /* standard input/output */ 
#include <math.h> /* standard mathematical functions */ 
#include 11device.c" /* device·dependent primitive drivers (if any) */ 

#define maxpoly 32 
#define tabnum 256 
#define nxpix 640 
#define nypix 480 

/* maximum size of polygons */ 
I* size of colour table */ 
I* horizontal pixels 
/* vertical pixels 

*I 
*I 
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struct pixelvector < int x,y > I* define pixelvector type *I 

i nt currcol ; 
float red[tabnuml,green[tabnuma,blue[tabnuma 
struct pixelvector lastpixel ; 

char list[8],escape[2J=<' •,27> 
struct pixelvector zero2•<0,0>,pix2=<639.479> 

1*··----------·*1 
host(i,count) 

1*·------------*1 
int i,*count : 

< int j : 
I* Create integer parameter for host syntax *I 

j=abs(i) : 
if (j<16) 

< if (i<O) 
list[*countl=j+32 

else list[*count]=j+48 
*count=*count+1 : 

> 
else< list[*countl=(j I 16)+64; 

if (i<O) 

> 

list[*count+1l=(j X 16)+32 
else 

list[*count+1l=(j X 16)+48: 
*count=*count+2 

> I* End of host *I 

1*·------------------···*1 
convertpixel(pixel,ch) 

1*······················*1 
struct pixelvector pixel 
char ch [] : 

I* declare current colour *I 
I* colour table *I 
I* and current position *I 

I* Converts pixel co-ordinates to character array *I 
( int ex1,ex2,hix,hiy,lox,loy: 

ex2=pixel.x X 4 : 
lox=(pixel.x I 4) X 32 hix=pixel.x I 128: 
ex1=pixel.y X 4 : 
loy=(pixel.y I 4) X 32 hiy=pixel.y I 128 
ch[OJ=32+hiy : ch[1]=96+4*ex1+ex2 : 
ch[2J=96+loy : ch[3J=32+hix : ch[4J=64+lox 

> ; I* End of convertpixel *I 
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1*--------*1 
finish() 

1*--------*1 
I* Return to TEXT mode *I 
< printf("XcXcXI1",escape[0],escape[1]) 
> ; I* End of finish *I 

1*-----------*1 
setcol(col) 

1*--------------*1 
int col ; 

I* Select logical colour •col• *I 
< int count ; 

countzO ; host(col,count) ; 
printf( 11XcXcMLXc",escape[0],escape[1J,list[0]) 
currcol=col ; 

> ; I* End of setcol *I 

1*-------*1 
erase() 

1*-------*1 
I* Clear the screen *I 
< fnt f : 

char c1 [5] ,c2 [5] ; 
convertpixel(zero2,c1) ; convertpfxel(pix2,c2) 
printf( 11XcXcRR" ,escape [0] ,escape [1]) 
for (i=O ; i<5 ; i++) 

printf<"Xc",c1 [i]) 

for (i=O ; 1<5 ; i++) 
printf( 11Xc 11 ,c2[fl > 

printf("0\n11 ) ; 

> ; I* End of erase *I 

1*------------- ·*I 
movepix(pixel) 

1*--------------*1 
struct pixelvector pixel 

I* Move current position to 'pixel' *I 
( int i ; 

char c1[5] ; 
struct pixelvector largepix ; 
largepix.x=(int)(409S.O*pixel.x1639.0+0.5) 
largepix.y=(int)(409S.O*pixel.yl639.0+0.5) 
convertpixel(largepix,c1) ; 
printf("XckLF",escape[Ol ,escape[1]) ; 



for (i=O ; !<5 ; i++) 
printfC"Xc:" ,c1 til) 

printfC"\n") ; 
> ; I* End of movepix *I 

1*··············*1 
linepix(pixel) 

1*··············*1 
struct pixelvector pixel 

I* Draw line to position 'pixel' *I 
< int f ; 

char c1 [5] ; 

Appendix 

struct pixelvector largepix ; 
largepix.x=Cint)(4095.0*pixel.X/639.0+0.5) 
largepix.y=Cint)(4095.0*pixel.y1639.0+0.5) 
convertpixel(largepix,c1> ; 
printf("Xc:Xc:LG",escape[Ol,escape[1]) 
for Ci=O ; i<5 ; i++) 

printfC"Xc:" ,c1 til> 
printf("\n") ; 

> ; I* End of lfnepix *I 

1*·············*1 
setpix(pixel) 

1*·············*1 
struct pixelvector pixel 

I* Set pixel with co-ordinates •pixel' to current colour *I 
< movepixCpixel) ; linepix(pixel) 
> ; I* End of setpix *I 

1*···············*1 
polypix(n,poly) 

1*···············*1 
int n ; 
struct pixelvector poly[] 

I* Fill polygonal area *I 
<char c1[5] ; 

int count,! ; 
struct pixelvector largepix ; 
movepixCpoly[1]) ; count=O; 
host(·currcol,count) ; 
printfC"Xc:Xc:MPXc:\n" ,escape [0] ,escapet1l, list [1]) 
largepix.x=(int)(4095.0*poly[1].xl639.0+0.5) 
largepix.y=(int)(4095.0*poly[1].yl639.0+0.5) 
convertpixel(largepix,c1) ; 
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printf( 11XeXeLP",escape[DJ,escape[1J) 
for <1=0 ; i<5 ; i++) 

printf("Xe",c1 [i] > 
printf( 110\n11 ) ; 

for (i=1 ; i<n ; i++) 
linepix<poly[i]) ; 

printf( 11XeXeLE\n" ,escape [0], escape [1]) 
> ; I* End of polypix *I 

1*-----------····*1 
rgblog(i,r,g,b) 

1*··--·--·-·-····*1 
int i 
float r,g,b; 

I* Sets logical colour i in colour look·up table to (r,g,b) *I 
{ int count,j,red,green,blue ; 

red=(int)(r*100) ; green=(int)(g*100) ; blue=<int)(b*100) 
count=O ; 

I* Create integer array parameters for host syntax *I 
host(i,count) ; host(red,count) ; 
host(green,count) ; host(blue,count) 
printf( 11XeXeTG14 11 ,escape[0],escape[1]) 
for (j=O ; j<count ; j++) 

printf("Xe",l i st [j] > 
printf<"\n"> ; 

> ; I* End of rgblog *I 

1*········*1 
prep it() 

1*········*1 
{ int i,J,r,g,b; 

char c1 [5] , c2 [5] 
I* Define escape character *I 
I* Send device into graphics mode *I 

printf( 11XeXeXID",escape[0],escape[1]) 
printf("XeXeRU1;6",escape[OJ,escape[1]) 
printf("XeXeLL3",escape[0] ,escape[1] > ; 

I* Set up viewport size *I 
convertpixel(zero2,c1) ; convertpixel(pix2,c2) 
printf("XeXeRS",escape[O] ,escape[1]) 
for <1=0 ; 1<5 ; i++) 

printf("Xc",c1 [i]) 
for (i=O ; i<5 ; i++) 

printf("Xc", c2 [I]) 

printf("D\n") ; 
I* Set colour mode to RGB *I 

printf("XeXeTM111",escape[OJ,escape[1]) 



I* Set up default colour table*/ 
j=O : 
for (baO : b<2 : b++) 

for (g=O : g<2 : g++) 
for Cr=O : r<2 : r++) 

Appendix 

< rgblog(j,r,g,b) : j=j+1 : 
) ; 

I* Set up default background and foreground colour */ 
setcol(O) : erase() : setcol(7) 

> : /* End of prepit */ 

A Full-colour Raster Display 

359 

For full implementation of routines given in this book a raster display with at 
least 256 colours is needed. listing A.S gives the primitives for a typical device 
of this type. 

Listing A.5 

I***************************** I 
I* Graphics Primitives for */ 
I* a typical */ 
I* Raster Scan Device *I 
I***************************** I 

#include <stdlo.h> /* standard input/output */ 
#include <math.h> /* standard mathematical functions */ 
#include 11device.c" /* devlce·dependent primitive drivers (if any) */ 

#define maxpoly 32 
#define tabnum 256 
#define nxpix 768 
#define nypix 576 

I* maximum size of polygons */ 
I* size of colour table */ 
I* horizontal pixels */ 
I* vertical pixels */ 

struct pixelvector < int x,y : ) : I* define pixelvector type */ 

int currcol : 
float red[tabnuna,green[tabnuma,blue[tabnuma 
struct pixelvector lastpixel : 

/*········*/ 
finish() 

/*········*/ 
I* This routine Is redundant */ 
< 
> : I* End of finish */ 

I* declare current colour */ 
/* colour table */ 
/* and current position */ 
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1*-----------*1 
set col (col) 

1*--············*1 
fnt col : 

I* Select logical colour •col' *I 
I* Assume typical command SEC • 'SEt Colour' *I 
< prfntf(" #SEC X3d\n",col) 
) : I* End of setcol *I 

1*·······*1 
erase() 

1*·······*1 
I* Clear graphics screen *I 
I* Assume typical command ERA • 'ERAse Screen *I 
< printf(" #ERA\n") ; 
) : I* End of erase *I 

1*···-·········*1 
setpix(pixel) 

I*· •....•..... ·*I 
struct pixelvector pixel 

I* Set pixel with co-ordinates pixel to current colour *I 
I* Assume typical command WPX = 'Write PiXel' *I 
< printf(" #WPX X4d,X4d\n",pixel.x,pixel.y) 
) ; I* End of setpix *I 

I*···· ••.•••. ···*I 
movepix(pixel) 

I*· ..••••..•.. ··*I 
struct pixelvector pixel 

I* Move current position to •pixel' *I 
I* Assume typical command MOV = 'MOVe current position• *I 
< printf(" #MOV X4d,X4d\n",pixel.x,pixel.y) 
) ; I* End of movepix *I 

1*··············*1 
l inepix(pixel) 

1*··············*1 
struct pixelvector pixel 

I* Assume typical command LIN • 'LINe to• *I 
< printf(" #LIN X4d,X4d\n",pixel.x,pixel.y) 
) ; I* End of linepix *I 



1*···············*1 
polypix(n,poly> 

1*···············*1 
int n ; 
struct pixelvector poly[] 

< int i ; 
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I* Assume typical command POL= 'POLygon fill' *I 
printf(" #POL %3d",n); 

I* Fills polygonal area with N vertices poly[0], ••• ,poly[n·1l *I 
for (i=O ; i<n ; i++) 

printf( 11 ,%4d,%4d",poly[i] .x,poly[i] .y) 
printf("\n") ; 

) ; I* End of polypix *I 

I*· ..•••...•.• ···*I 
rgblog(i,r,g,b) 

1*···············*1 
int i 
float r,g,b ; 

I* Sets logical colour i in colour look·up table to (r,g,b) *I 
{ int red,green,blue ; 

red=(int)(r*255) ; green=(int)(g*255) ; blue=(int)(b*255) 
I* Assume typical command SCT = •set Colour Table' *I 

printf(" #SCT %3d,%3d,%3d,%3d\n",i,red,green,blue) 
> ; I* End of rgblog *I 

1*········*1 
prepit() 

1*········*1 
< int j. r ,g,b 
I* Send device into graphics mode, assume escape character is '#' *I 

printf(" #GRA\n") ; 
j=O 
for (b=O ; b<2 ; b++) 

for (g=O ; g<2 ; g++) 
for <r=O ; r<2 ; r++) 

{ rgblog(j,r,g,b) ; j=j+1 ; 
> ; 

I* Set up default background and foreground colours *I 
setcol(O) ; erase() ; setcol(7) ; 

> ; I* End of prepit *I 
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.c 2 

.obj 2 
<math.h> 1, 56 
<stdio.h> 1 
#define 3, 14, 33, 36, 76, 162, 268, 

275 
#include 1, 2, 8, 13, 14, 16, 25, 36, 

42,51,65, 74, 75,81,82,85, 
86,88,90, 124,158-60,164, 
174,178,196,203,216,258, 
262,264,322 

ABSOLUTE 10, 11, 14, 64, 73, 74, 
77, 78, 86, 117, 156, 157, 168-
73,177,179,193,203,223, 
227,265 

absolute colour 267,271, 273,275, 
284,287,288 

absolute value 125 
absorption 267 
abutting facets 242 
act 74, 77, 158, 162 
ACTUAL 73-87, 119, 122, 156-9, 

162-8, 171, 173, 177-80, 187, 
189,196,203,214,215,231, 
265,291,313,314,331-3,340 

actual colour 4-6 
acute 57, 58 
address 33 
addressable point 7 
adjacent facet 177 
adjoint method 66, 139 
advertisement 116 
affine transformations 64, 66, 74, 

163 
algebraic expression 59 
aliasing, anti-aliasing 16, 103, 330, 

335 
alphabet 195,212 
ambient light 268,269,271-3, 306 

analytic (representation) 52, 59-63, 
104,107,110,113,143-6,232, 
233,274,321, Chapter 17,343 

anchor 52 
AND 100, 229, 332, 333 
angle 16, 17, 24, 25,48-52, 55-8, 

70, 73, 77, 78, 85, 96, 119, 127, 
128, 151, 157, 166, 169, 170, 
172,195,270-2,298 

angle of incidence 270 
angle of reflection 271 
animation 85, 87,116,117,120, 

122,178,203,204,335 
anti-clockwise 24, 55, 60, 61, 70, 73, 

77, 110-12, 116,137,144-6, 
151, 154-7, 164,166, 177, 195, 
196,206,207,232,244,245, 
250,298,318 

apex 254, 298, 335 
apparent colour 267,269,271,272, 

274,286,288,291,315 
approximation 16 

365 

arbitrary 170, 177 
arc 110 
Archimedean 167, 182 
area 8, 112, 113 
area-fill 7, 108, 116, 205, 219,253, 

264,277,282,289 
arm 170 
arrays 4,5,20,27-9,32-7,41,45, 

46, 64, 65,74-7, 103,112,113, 
147, 158, 159, 162-6, 179, 183, 
192,195,206,207,226,231, 
244,246,250,251,255,257, 
258,262,275,277,291,296, 
304,315,319,324,331,352 

array index see index 
arrow 29,37 
aspect ratio 11 
astroid 18 
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asymmetry 215 
attribute 75, 158, 163 
axes, axis see co-ordinate axis 
axis number 152 
axis of rotation 151-5, 169, 195, 

202 
axonometric 174 

back 74, 159, 177, 192, 205, 219, 
245,246,250,255,256,310, 
315,318,319 

background (colour) 6, 103,228, 229, 
251,268,282,323 

back-to-front method 214-6, 244, 
246,251,341 

backing store 185, 189 
balancing 45 
ball 62 
ballandspoke 330,342 
bar chart 110, 336 
base point/vector 52-5, 62, 104, 105, 

125, 127, 129, 132, 142,224, 
225 

beam 264 
behind see back 
best path 341 
Bezier surface 335, 345 
bi-cubic 335, 345 
binary 6, 100, 282 
binary tree 44-7, 322, 332-5 
bit map 4, 352 
bit plane 28 
bits 6, 100 
black 5, 6, 14, 228, 229, 267, 268, 

281,282,298 
blank, blanking 96-9, 116, 240 
blankedx, blankedy 96 
block 102, 190, 191,282,284,333 
blue 4-6,81,220,228,266-70, 273, 

283-7,298,336 
blueprint 231 
body of revolution 19 5, 196, 201, 

202,214,230,242 
body of rotation 202, 209, 214 
boolean 6, 14, 100, 101, 333 
bottom left-hand corner 4, 9, 324 
boundary 7, 60, 61, 75, 92, 103, 110, 

113,146,158,205,291,323, 
345 

boundary fill 7 
box 29, 37 
brackets 9, 28, 49, 65, 125 
brightness 266 
B-spline 346 

buffer 4, 7 
building block 82, 178, 180 
button (on mouse) 1 0 1 

c 1, 2, 5, 7, 13, 17,27-9,32, 33, 36, 
45, 46, 56, 65, 80, 159, 162, 
251 

CalComp 1 
camera 251, 274, 298 
capitalletter 28 
Cartesian see co-ordinate geometry 
Cartesian plane 77, 90, 173 
cartoon 116, 117 
category 331 
cell 33, 234 
centre 11, 15, 16, 19, 24, 25, 62, 63, 

91,99, 117,203,204,309,323, 
331,337,340 

change of frame 11 7 
channel 7 
character strings 7 
chess (pieces) 298 
circle 7, 16, 19, 20, 24, 25, 62, 63, 

99,110,202,203,323,341 
circular cone 221,298, 299, 330 
circumference 20, 24 
clip2.c 92, 94, 97 
clip3.c 253, 258, 262 
clippedx, clippedy 91 
clipping (2-dimensional) 15, 90-9, 

115, 116, 122, 240,342 
clipping (3-dimensional) 163, 17 5, 

227,232,240,251, Chapter 14, 
293,306,323 

clipping facet/plane 254-6, 258, 293 
clipping rectangle 91, 92, 96 
clockwise 60, 73, 110, 111, 137, 144-

6, 151, 155, 157, 206,207, 232, 
244,250,254,304,318 

closed 177, 183,206,207,224,232, 
244 

close-up 262 
co-axial cylinders 340 
coefficients 62, 66, 67, 72, 267 
cog 24 
coincident 79, 98,106,111,137, 

169,170 
collinear 110, 111, 137,225,226 
colour 4, 6, 15, 28, 75, 77, 100, 103, 

108, 116, 158, 159, 163, 168, 
180, 188, 193, 205,207,214, 
219,228,230,244,251,266-70, 
274-7,281~8,291,296,298, 
299,304,306,314,315,317, 



colour (cont'd) 
319,323,330,331,334-7,345, 
359 

colour look-up table 4, 5, 28, 277, 282, 
284,286-8 

colour models 298-302 
colour monitor/display see graphics 

display 
colour shading model 269, 272, 273, 

275,286,289,299 
column 28, 29, 65, 108 
column vector 64-7,71,84, 139, 

141, 147,155-7, 169 
combinations of transformations 71, 

153 
command code 4, 6, 7 
comment 2, 293 
commutative see non-commutative 
complement 322, 331 
complex 63 
component 6, 48, 220, 266, 270, 

273,284,287 
compromise 28 
Computer Aided Design (CAD), CAD/ 

CAM 231,344 
computer science 27, 28 
concave 103, 341 
concentric 338, 343 
cone see circular cone 
cone of vision 221,225,226 
conic section 62 
connected 59, 143 
consecutive points/vertices 21, 112, 

215 
consistent 27, 67, 124, 265 
constant shading 274,289,321 
construc.c 74, 81, 82, 85, 88, 159, 

193, 196 
construction function/routine 74, 80-2, 

85-8, 117,158,159, 163-7,178-
80, 185, 191, 196,209,212 

continuous curve/graph 336 
continuous space 9 
control code see command code 
convention 9 
convex 28,60,61, 103,108,110, 

112,116,144,146,177,192, 
206,209,214,215,224,230, 
231,233,244,256,275,303, 
341,343 

co-ordinate 9-11, 14, 21, 25, 28, 53, 
56,66,67, 70-4,77-9,86,96, 
112,113,122,124-6,132,137, 
138, 146, 147, 150, 151, 154-7, 
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co-ordinate (cont'd) 
168-74,178,179,183,207,221, 
226,231,244,250,257,258, 
308-10,314,344 

axes 9-11, 48, 54, 64-7, 70-4, 77-9, 
83, 86, 90, 94, 96, 117' 123, 
124, 147, 151-7, 166-70, 172, 
179,228,298,333 

equation 132, 143 
geometry 9, 28, 48, 123 
origin 9-11, 18, 19, 24, 48, 49, 

52,55,57,62,64,67, 70-3, 
77,84-7,90,91,95,96,99, 
119,123,125,128, 129, 141, 
144-7, 152-7, 168, 169,173, 
174,177,179,189,195,203, 
215,221,223,226-9,254, 
256,265,309,310,330,343 

pair 4, 9, 14, 48 
representation/form 128, 225 
system 9, 10, 48, 64, 73, 77, 173, 

193,207,215,222,228,246, 
250,304,318 

triple, triad 124, 147, 154, 156, 
166, 168, 170, 265,266 

co-planar 28, 132, 135, 162,215, 
224,242,304,343 

comer 11, 21, 28, 50, 74, 84,157, 
215,222,323 

cosine 56, 58, 270 
cosine rule 57 
counting logic 5, 27, 28, 37, 65,251 
covering 96 
cross product see vector product 
cross-section 202 
crossing point/surface 333 
crystallography 241, 289, 342, 343 
cube 159, 163-7, 176-8, 182, 183, 

188-91,203,209,212,221-9, 
241,251,298,333-5,341 

cuboctahedron 167 
current colour 4-7, 14 
current (pixel) position 4, 5 
cursor 4, 14, 29, 101 
curve 10, 16, 59, 62, 64, 143, 224, 

291,338 
cyan 5, 6, 228-30, 298 
cycle 41,42 
cylinder 220, 323, 330-2, 335, 340, 

343 

dashed line 6, 70, 94, 96, 100, 221 
data diagrams 46, 336 
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data structure Chapter 2, 253, 256-8, 
262,303,306 

database 74-7, 80-2, 86, 96, 157-9, 
162-4,168,173,180,183,185, 
191,227,241,245,251,252, 
255,257,265,275,287,296, 
303,306,310,315,336,340, 
341 

default 4, 6, 14 
degenerate 72,94, Ill, 158,196, 

207,223,224,256,257 
degrees 17 
depth sort 220 
depth value 220 
determinant 66, 132 
deviating 268 
device see graphics device 
device.c I 
diagonal 18, 29, 81, 225, 226 
diamond 96 
die 209, 241 
diffraction 335 
diffuse reflection 267-73 
digit ising 1 00, 12 2 
dimension 9 
directed edge/graph 41 
direction 20, 55, 58, 67, 70, 85, 104, 

105, 123, 125, 127-31, 134, 
137, 141, 142, 151, 154, 169, 
174, 177, 179,225,227,229, 
256,265-71,298,309,330 

cosine 56, 58, 126-9 
vector 52-8, 60, 62, 104, 125-9, 

132, 134, 142, 168, 309 
direction of view /vision 168, 1 72, 

221,223 
disc 24, 25 
disconnected see connected 
discontinuity 291 
discrete 116,336 
display see graphics display 
display2.c 78, 80-2, 85, 88 
display3.c 2, 160,171,174,175,181, 

183, 196,203,205,207, 209, 
216,226,229,233,235,245, 
246,251-3,262,264,284,289, 
291,293,296,303 

distance 25, 49, 50, 55, 59-63, 70, 
100, 104, 105, 123, 125, 129, 
131, 135-7, 173,220,221,227, 
228,254,262,270,298,299, 
310 

distance factor 270 
distortion 71, 84 

distributed light source 265 
dithering 296 
dodecagon 31 
door 183 
dot 7,8,28 
dot notation 28 
dot product 58, 127, 128,270 
double 64 
double-subscript 28, 29 
draw, drag, delete 102, 103 
draw_a_picture 14, 75, 80, 159, 164, 

252,322 
drawing a scene 75,79-81, 102, 159, 

160, 163, 164, 168, 175, 178-
80, 226, 252 

drawit 79 
dual interpretation 125 
dull 268 
duplication 190 
dynamic 32, 33 

edge 23, 41-6, 60, 94, 98, 102, 105, 
106,177,199,206,207,215, 
224,226,230-3,245,250,251, 
254,262,332,345 

efficiency 6, 7, 21, 29, 32, 75, 85, 
87, 99, 158, 179, 191,219,287, 
334,335,340,341,346 

elementary function 59 
elements 28, 29, 32, 37, 65, 183 
ellipse 17, 62, 63 
ellipsoid 164, 196 
emission 270, 273 
empty 36, 42, 113, 122,234,246, 

251,304,315,319,323,334, 
343 

encode 7 
end-points 74, 75, 94, 96, 100, 157, 

173, 179, 224, 293 
epsilon 14 
equation 53, 58, 66, 67,104, 124-9, 

132-4, 137-40, 143-5, 151, 
152,233,269-71 

equilateral 16 
equivalent to 48 
erase 5 
error 5 
escape character 6, 7 
Euclidean geometry, space 63 
Euclid's algorithm 25 
evaluate form 333 
exclusive OR see XOR 
exponent 88 



exposed surface 268 
extrusion 192, 193,201,206,209, 

230,323,333 
eye 16, 77, 87,168-73,179,214, 

215,220-3,226-8,232-4,240, 
244-6,253-5,264-71,274, 
309,313 

eyedist 168, 228 

facet 2, 28, 31, 42, 74-80, 86, 87, 
90, 145, 157-9, 162-4, 167, 
172,173,177,179,180,183, 
190-6,202,205-7,214,215, 
220-4,230-4,240-3,244-6, 
250-3,256-8,261-4,274,275, 
278,288-93,295,298,302, 
304,306-10,314-19,321, 
336,341,344,346 

facfront 75, 77, 158, 163 
faclist 75, 77, 158, 163 
fall-off 270 
FALSE 14, 333, 334 
feasible polygon 112, 113 
Fibonacci 21 
file 2, 36, 54, 75, 77, 80,120,122, 

158, 159, 180, 183, 185, 191, 
193, 196,276 

FILE pointer 16 
fill see area-fill 
film 117 
filter/filtering 258, 273 
finger 123, 134 
finish 4 
finite 48 
firstfree 75, 162 
firstsup 163 
fixed point 1 0 
fixed x 215 
fixed z 215 
flag 81-5,212,242,258 
flat 295 
flat bed plotter 1, 90 
floating point 14 
flood fill 7 
fluorite 188, 343 
flushing buffers 7, 80, 160 
fog 271 
foreground (colour) 6, 282 
foreshortened 227 
format 165 
FORTRAN 77 27 
fourth dimension 344 
fractal 338 
frame see graphics frame 

frame speed 116, 117 
free list/location 33-7 
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front 36, 74,158,177,192,205, 
219,234,245,246,250,256, 
310,315,319 

front to back 219, 345 
functional see analytic 
furthest 214 
fx, fy 11 

gap 100 
garbage collector 37, 258, 324 
general point 17-19,24,48-50, 62, 

67, 73, 124-8, 138, 143, 147, 
150-2,156, 170,225,228,231, 
232 

geometric modelling see model/ 
modelling 

geometry see Euclidean geometry 
and co-ordinate geometry 

GINO 1, 7, 347 
GKS 1, 7, 103,349 
globe 336, 337 
gloss 267-9,271,275,291 
goblet 196,242, 295 
Gouraud (intensity interpolation) 

291,293,295,296,321 
gradient 48 
graph 41,42 
graph paper 183 
graphics 

command 6, 7 
device Chapter 1, 108, 147,227, 

266,269,277,282,283,288, 
347 

display 4, 6, 96, 100 
frame, viewport 2-11, 14, 15, 72, 

77, 79,86,90,91,95,96, 
99-102,116,117,120-2, 
147, 164, 167, 168, 172, 173, 
177,179,203,214,215,219, 
223,226,227,232,251,253, 
262,264,289,306,322-4, 
333,334,342 

library 2, 9, 75, 101, 147, 159 
package 1, 6, 7, 344,347 

graphlib.c 9, 11, 14, 16, 25, 51, 75, 
82, 108, 124, 147, 158, 159, 
164 

green 4-6, 24, 26, 81, 220, 228, 
266-70,273,283-7,298,337 

grey 267,271,281,282,298,299 
grid 90, 102, 185,214,215,219,345 
grow 122 



370 Index 

half-space 143, 144, 254, 330-2, 335, 
343,344 

hand 102, 123, 134 
hardware 14, 16, 24, 64, 86, 90, 91, 96, 

100, 103, 108, 116, 147 
hatching 103-10 
heap 33,36,37,41,183,303,314 
helix 202, 330 
hemisphere 332, 337,340 
hexagon 15,299 
hidden line removal 175, 181, 183, 

188, 195, 196, Chapter 10, 
Chapter 12 

hidden surface elimination 4 2, 61 , 
115,144,164, 175,193,196, 
Chapter 10, Chapter 13, 257, 
303,304,314,317,319,341, 
346 

high resolution 7 
highest common factor 25 
highlight 267,268,272,291,295 
histogram 110, 336 
HLS colour model 298-300 
hole 24, 25, 32, 62,229,332 
hollow cube 189,242,251,321 
horiz 10, 11, 229, 253 
horizon 221,225 
horizontal 3, 4, 9, 11, 14, 48, 63, 

108,110,117,123,152,203, 
225,254 

host facet 183,303,304,306,309 
house 183, 185, 189 
HSV colour model 298-300 
hue 298 
hybrid 219 
hyperbola 62 
hypercube 344 

IBM PC 7, 336 
icon 6, 102 
icosahedron 167, 192,204,212,251 
identical 53 
identifier 27, 36, 64, 65, 331 
identity matrix 66, 81, 84, 153, 155, 

165, 177 
illumination 273, 323, 345 
imperfect 267 
implicit calculation 16 
incident light 26 7-71 
increment 16 
independent equations 132 
index, indices 5, 28, 29, 34, 64, 74, 

113, 123, 134, 157, 158, 162, 
177,183,190,206,220,232, 

index, indices (cont'd) 
242,250,251,258,282,283, 
303,304,306,310,331 

infinite, infinity 9, 11, 48, 53, 54, 59, 
90, 104, 123, 128, 130, 143, 
145, 151, 221,224, 233,244, 
254,264,265,283,288,318, 
322,343 

infinite periodic minimal surface 289 
infix 332 ' 
information part 33, 36, 45 
input/output 16 
inside 60-2,92,98, 112,113, 143, 

190,206,246,257,330,343, 
344 

integer 3, 9, 21, 33, 41,44-6,52, 
105,268,275,276,282,284, 
303,304,314,324,333 

intensity 5, 100, 103,220,264-71, 
273-8,282,284,291,293,295, 
299 

intensity interpolation method see 
Gouraud 

intensity shading model 269, 270, 
273,275,277,283,284 

intercept 48 
intermediate 120 
interpenetrant cube 188, 343 
interpolation 291,293,295,296 
intersection 53, 58, 61, 94, 105-8, 

110-13, 128-35, 138-44, 173, 
215,220,221,231-3,244,246, 
254-6,293,308-10,314,315, 
322-4,332,338,340,343 

inverse matrix 66, 72, 96, 139-42, 
153, 155,310,331 

inverse transformation 56, 72, 153, 
155 

invisible 232, 234, 242, 255, 345 
I/0 channel see channel 
Islamic pattern 342 

jaggies, jagged 16, 103 
Julia pattern 339 

keyboard 16, 185 

label 41, 167,336 
Lambert's Cosine Law 270 
landscape 253 
language constructs 2 
lattice 342 
leaf 45, 332 
left eye 228-30 



left-hand side 59, 110, 132-4 
left-handed axes/triad 123, 124, 137, 

168 
left-right order 45, 46 
length 105, 122, 125,254 
letters 11 7, 119 
level of reflection 319, 3 21 
light 244, Chapter 15, Chapter 16 
LIGHT 309,310 
light pen 101 
light related co-ordinates 309-11 
light source 265, 268-70,273,295, 

303,309,310,313,314,317, 
330,335,337,343,345 

lightness 298, 299 
limitation see restriction 
line 6-11, 15, 16, 18, 20, 21, 25, 28, 

29,48,50-4,57-65,70,73-80, 
85-7, 91-101, 103-6, 110, 113, 
119-22, 124-37, 140-4, 151-4, 
157, 158, 169-73, 177-80, 195, 
202,206,207, 215,221-6,229· 
34,240,243,246,253-6,264, 
323,330,332,338,342,344, 
345 

line drawing 7, 87, 168, 176, 219, 
345 

line of projection 173, 174, 207, 
308,309,323,324,334 

line of sight 172, 174 
line style, type 6, 99, 100, 103, 229 
linear combination 66 
linear equations 48, 52, 58 
linear list, linked list 32, 33, 36, 37, 

41, 75, 110, 158, 163, 234, 250, 
251,287,288,304,306,322-4, 
340,345 

linear transformations see affine 
transformations 

linearly dependent 124 
linepix 5 
lineto 14 
list see linear list 
location 29, 32, 34, 46, 64 
logical colour 4-6, 14, 23, 100, 177, 

229,264,275,277,284,287-9, 
306 

logical combinations 86 
logical operator 332 
logical plotting 214 
look-up table see colour look-up 

table 
loop 41, 101, 117, 122,203,215 
Ish 304 
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machine dependent, independent 11,16 
magenta 6, 298 
magnitude see modulus 
main fun.ctionfprogram 8, 11, 13, 80 
maintain vertical 170, 177 
major axis 17, 62, 63 
major diagonal 225 
Mandelbrot 338 
manual 2 
map, mapping 87, 172 
material 264,267-9,271,275,276, 

306,331 
mathematical model 264 
mathematical surface 345 
matrix 28,Chapter4, 119,121,139, 

140, Chapter 7, 168-72, 177-80, 
189,196,203,205,309,310, 
331,340,344,346 

addition, sum 65 
algebra 27 
equation 13 9 
multiplication, product 64, 65, 71, 

72, 78,84,153 
representation Chapter 4, 140, 

Chapter 7, 169-71 
matrix2.c 65, 75, 82 
matrix3.c 158, 159,322 
matt 267, 269, 290 
maxf 74,76, 158,162 
maximum intensity/value 266 
maxi 74, 76,158 
maxlist 75, 76, 158, 162 
maxpoly 3 
maxv 74, 76, 158, 162 
maze 341 
menu 87, 102 
Mercator 336 
metal 268 
microcomputer 7, 90, 101 
microfilm 5, 7, 90,352 
midpoint 233 
minimum distance 135-7 
minor axis 17, 62 
minor diagonal 225, 226 
minus signs 25, 169, 244,265 
mirror(plane) 267,318,319,321 
model, modelling 1, 6, 62,74:-88, 

124,157-204,252,253,257, 
262,264,265,268-70,290 

model graphics device see graphics 
device 

model2.c 74, 75, 78, 80, 82, 85, 88 
model3.c 158,159,171,173,196, 

203,216 
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modular approach 80, 85, 86, 164, 
178, 181 

modulo 21, 22, 50, 60, 113, 114, 
232 

modulus 48, 49, 55, 105, 125-7, 
267,271 

moire 338 
molecular model 322, 324, 330 
monochrome 231 
mouse 100-2, 341 
movepix 5 
moveto 14 
movie 116,117,120,122 
multiple light source 273,314,317, 

330,335,337,343,345 
multiple subscript 28 
musical notation 337 
mutually perpendicular 84, 123, 128, 

298 

nearest 214 
negative axis 123, 168, 169, 177, 

179,221,309 
negative sense 25, 125 
negative set/side 49, 59, 60, 107, 

112,113,143-6,177 
neighbour 22, 24, 104, 214,215 
net curtain 338 
network 41-4,245,246,250,251, 

315,319,346 
new list 323 
new system 67, 70, 71, 147, 150 
nfac 163, 257 
n-gon 16, 22 
node 41-6, 246, 332 
nof 74,158,162 
nol 74 
non-collinear 13 7, 144 
non-commutative 65, 134, 153 
non-convex 214, 216 
non-coplanar 13 5 
non-parallel 134, 135 
non-singular 66, 72 
non-zero 125,132 
normal plotting 1 00 
normal vector 128-31, 135, 137, 

140-3,146,174,225,233,255, 
256,270,271,274,275,291, 
296,298,310,330,337 

NOT 332,333 
notation 265 
nov 74, 158 
ntf 159, 162,257 

ntv 159, 162, 257 
NULL 33, 34, 36 
null pointer 29, 33, 34, 45,46 
numerator 11 
nxpix 2 
nypix 3 

object 144, 157, 158, 163-7, 177, 
183,189,193-6,234,240,244, 
251,322,323,330-4,340 

oblique 271 
obs 77, 78, 162, 171 
obscure 79, 191, 245,250,273, 315 
OBSERVED 77-81, 86, 88, 119-22, 

164,168,171-4,178-80,206, 
215,200,226,244,253,257, 
265,291,304,310,311,314, 
322,333,334 

OBSERVER 77-9, 86, 90, 117, 168-
74, 177, 179,215,221-3,228-
31,253,254,265,309,318,333 

observer, observation point 75, 77, 
79, 84-7, 119, 122, 145, 159, 
164, Chapter 8, 203,204,207, 
215,227,229,335 

obtuse 57 
octahedron 167,212,251 
oct-tree 321,322,330,332,333, 

335,340 
old list 144, 323 
old system 67, 70, 71, 147, 150 
opaque 267,269,273 
operation/operator 6, 100, 332 
optical illusion 18, 337 
option 102 
OR 6, 100, 229, 332, 333 
orbit 204 
order 14, 32, 33, 42, 71, 72, 84, 88, 

106,110, 112,120,134,164, 
195,206,207,282 

•rientation 11, 15, 25, 61, 72, 73, 
87, 96, 110-12, 120, 137, 
144-6,151,157,164,170,177, 
183,188,190-3,196,206,207, 
219,222,232,244,245,304, 
318 

oriented convex polygon/set 60 
origin see co-ordinate origin 
orthogonal 1 7 4 
orthographic 174, 176-9, 183, 206, 

209,214,220-22,226,230, 
243,244,253,254,308,323, 
324,330,332,335,336,344 



outside 61,62,93,96,98, 112,113, 
143,145,193,196,206,207, 
224,246,257,323,330,333, 
343,344 

oval 18 
overlap 42, 116,245, 246, 250, 309, 

310,315,317,318 
overwriting 36, 258 

p 74,81-8, 119,156-8,166,171, 
178-80,331,333 

package see graphics package 
page 151, 152 
painter's algorithm 214,220, 345, 

352 
palm 123, 134, 170 
paper 268 
parabola 62 
parallel 17, 56, 62, 72, 91, 93, 97, 

103-5, 125, 128, 129, 132, 
135-7,140,141,170,173,174, 
177,207,221,224-8,256, 
308-10 

parallel beam illumination 265, 309, 
313,330 

parallel projection 174 
parameter 17, 56, 62, 72, 91, 93, 97, 

117,119, 122,126,148,153, 
156,158,207,246,250,255, 
268,269,319 

parametric form 59, 62, 63 
partial order 41, 251 
patch 215, 216,335 
path 41 
pattern fill 7, 282, 283 
pencil 24, 25 
pentagon 15 
pentagonal dodecahedron 167, 341 
penumbra 335 
perfect reflection/reflector 267, 271 
perfectly transparent 273 
perimeter 3 2 
permutation 41 
perpendicular 9, 48, 58, 60, 105, 

123, 124, 128, 131, 134-7, 141, 
151,172-4,221,225,232,233, 
241,254,256,309,310 

perspective 168,174,181,183,188, 
193,206,209,214, Chapter 11, 
231-3,241,244,251,253,254, 
262,308,309,330,335 

perspective plane 221-6,231,233, 
310 
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Phong 
normal vector interpolation 291, 

296,298,321 
shading model 271, 272 

physical reflection 318 
pi 14 
pie chart 110, 336 
pie fill 7, 24 
pin and cotton 21 
pixel 2-9, 11, 14, 100-3, 108, 173, 

177,179,205,219-22,227, 
229,244,264,274,277,278, 
287,288,291,298,322-4,330, 
333,334,337,352,354 

pixel co-ordinatesjvector 3, 4, 7, 9, 
11,101,173 

pixel patterns 28 2 
pixel square 323 
pixelvector 3 
placing an object 72, 156 
planar object/surface 120, 244, 290 
plane 9, 128-31, 135-46, 156, 172-4, 

221-6,231,233,253-6,264, 
308-10,318,323,343 

plane constant 129, 140 
plot-pen 21 
point 2, 9-11, 14-17, 19-24,48-55, 

59-67,71,72,90-4,97-100, 
106, 112, 121-47, 153-5, 169, 
.170, 173,214,215,220-9,233, 
246,253-6,264-7,269-74,284, 
286,288,291,293,295,298, 
299,303,308-10,318,322,330 

point light source 265,275,313,323 
point vector 9, 48, 50, 67 
pointer 29,32-7,41, 45, 46, 158, 

163, 173, 183,251,257,258, 
262,287,304,324,340 

pointer part 33, 36 
polarised glasses 228 
polyfill 14 
polygon 2, 3, 5, 7, 10, 11, 15, 16, 28, 

31,32,42,60,61, 73,86,90, 
97, 99,102-13,116,119-22, 
144-6,163, 173, 192, 193, 196, 
206-9,215,219-22,230-3,246, 
251,256-8,262,275,283,291, 
303-6,308,310,314,321, 
341-3 

polygonal mesh 220,274, 315, 322, 
335,344,345 

polyhedron 343, 344 
polypix 5 
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pop 33,34,37,42,251,315 
portability 1 
position 72-4,81,87, 96, 120, 121, 

157, 162, 170, 180,189,244, 
253,254,265,322 

positive axis 16, 17, 24, 48, 55, 56, 
123, 151, 154, 168, 169 

positive quadrant 215 
positive sense 52, 125 
positive set/side 49, 59, 60, 107, 112, 

143-6 
postfix 71 
postmultiplication 67, 74 
ppd 174,226 
prefix 71 
pre multiplication 67, 71, 84, 88, 96, 

153, 155, 157, 169-71, 179, 189 
prepit 4 
prime numbers 27, 28 
primitiv.c 1, 2, 6, 8, 9, 13, 14, 16, 25, 

33, 51, 75, 82, 124, 147, 158, 
159, 164 

primitive function Chapter 1, 88, 100, 
102,103, 178,252,337,appen­
dix 

primitive object/surface 220, 322, 
323,330-3 

primitive shape 86, 220 
principal range 56 
printf 7 
prism 189, 220, 323 
pro 174, 226 
probability 277, 278 
program structure 1 , 2 
projection 48, 124, 14 7, 164, 172-5, 

183,209,222,245,253,254, 
308-10,314,317,319,335 

projectors 117 
prol 310 
proportion 121 
push 33, 34, 36, 42,251,315 
pyramid 180, 182, 183, 191,220, 

251,254,298,335 
pyramid of vision 227, 254-8, 304, 

306 
Pythagoras 50, 57 

Q 78,84-8,117,119,121,168,171, 
177-9,333 

quadrant 215 
quadratic equation 63 

quadrilateral 195,215,216 
quad-tree 41, 144, 321-4, 330, 340, 

342 

R 84-8, 96, 119, 171 
radian 16, 17, 52, 56, 70, 83, 87, 96, 

152, 155, 166, 195 
radius 16, 18, 19, 24, 25, 62, 143, 

196,322,323,330,331,335, 
340 

random 278, 298 
random sampling 277, 278,281,283, 

354 
range 28,62 
raster scan (device) 1, 6, 7, 79, 96, 

97,103,214,220,244,337, 
349,359 

ratio 49, 50, 125, 222 
ray 221, 222, 244,264-70, 309,310, 

315,317 
ray-tracing 144,220,314,321,335 
real (co-ordinates) 276, 284 
real units 9, 125,265 
record 183, 331 
rectangle, rectangular 9, 10, 26, 

90-100,102,116,122,173, 
180,214,219,220,222,253, 
254,341,342 

rectangular array 2, 244 
rectangular block 166, 189 
recursion 45, 324, 332 
red 4-6, 23, 24, 81, 220, 228-30, 

266-70,273,283-8,298 
reduction 333, 334 
redundant 190 
reference point 346 
reflection 73, 85, 130-2, 156, 220, 

246,251,264,266-74,278, 
284, Chapter 16, 335 

reflective coefficients 158, 267-71, 
273.275 

refraction 158,220,314, 335 
regular 341 
relationship 86 
relative brightness 4 
relative position 189 
rendering 1 
REPLACE 100,214 
representation 50, 126, 330,332 
resequencing 32 
resolution 16, 282 
restriction 6, 206, 245, 315 



retina 221, 264 
RGB 4, 5, 220,277,283,287,289, 

298-300 
rgblog 5 
rhombic dodecahedron 167, 241,251 
right angle 123, 134, 170 
right eye 228-30 
right hexagonal pyramid 298 
right-hand side 110, 132, 134 
right-handed axes/triad 123, 124, 

137, 145, 146, 151-3,156, 166, 
168, 193,221, 244,253 

rocket 201 
rod 323,330 
root 44, 332 
roots 63 
rotation 50, 64, 70-3, 77, 83, 85, 96, 

117,119,147,151-7,166, 
169-72,177,195,202,344 

roughness 298 
rounding (error) 11, 64, 106, 132 
row 28,29,65,108,346 
row vector 67, 71, 156 
rubber-banding 101, 102 

sampling 276 
saturation 298, 299 
scalar 65, 124, 127, 128 
scalar multiple 48, 55, 105, 124, 125, 

128,132 
scalar product see dot product 
scale/scaling 9-11,64,67, 70-3, 83, 

84, 87, 88, 119, 122, 147, 150, 
153, 156, 166, 180, 196,227, 
323,344 

scaling factor 11 
scan line 108, 220,291 
scant 16 
scattered 267, 268 
schematic 2 
scene 2, 42, 74, 77-80, 82, 156-9, 

165, 175-82, 189, 196, 203-5, 
222,227,231,232,244,252, 
253,256,266,268,269,276, 
303,304,309,310,314,315, 
318,319,322,323,332-4,340, 
346 

scope 90 
screen 11 
search 284, 287 
sector 91, 97 
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seed 7 
segment 91, 93, 94, 96, 98, 99, 345 
semicircle 196 
sense 52, 55, 125, 134, 137,154, 

168,256,271,330 
set 29, 32, 104, 120, 143,215 
setcol 5 
setpix 5 
setup 77, 162 
SETUP 73, 74, 77, 80-8, 119-22, 

156-9,162-6, 171,173, 177-80, 
183, 187, 189, 191, 196,203, 
206,227,330,331,333,340, 
341 

shade/shading 175, 180,25l,Chap­
terl5,323 

shading model 264, 268, 269,274, 
275,334 

shadow 175,180, 188,246,251, 
252, 273, Chapter 16, 330, 335, 
343,345 

shadow polygon 303, 304, 306, 
308-10,313,314 

shape 84, 222 
shear 71 , 14 7, 15 3 
shine/shining 268, 269,271, 275 
shoulders 1 70 
side of line 59, 233 
side of plane 131, 144 
sifting 232, 233 
sign 59-61,107, 111,144,215,232, 

233 
silhouette 202 
similar triangles 223, 254 
sine 56, 62 
single valued function 214 
singular 66, 139 
sinister 81 
size 36, 75, 77, 158, 163 
slice 112, 113, 256, 332,343 
slip 24, 25 
slope 48, 52 
smooth shading 2, 205,291,330,337 
solid 100, 122 
solution 124 
sort 284 
source see light source 
space group 342 
sparse 29 
spectrum 266 
specular reflection 265,267,268, 

271-3,295,314,330,343 
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sphere, spheroid 143, 196,209, 220, 
281,322-4,330-2,335,336, 
340,343 

spherical polars 172 
spin 204 
sprral 18,19,62,204 
sprrograph 24-6 · 
sprite 6 
square 7, 14, 21, 50-2,96,99, 103, 

120,177,180,282,323,324, 
333-5 

square matrix 64-7, 147 
src 265 
stack (of integers) 33-7, 41, 42, 45, 

46, 158, 159, 183,251,315, 
319,324 

stack.c 36, 37, 41, 42, 158, 159, 183 
staircase effect 103 
standard 1, 124,168,170 
star 120, 251 
start 14 
start location 304 
static 29, 32, 264 
status 101 
stellar body 191, 192,251 
stereoscope 228 
stereoscopic 168, 174, 188,214, 

Chapter 11,243, 342 
stereoscopic spectacles 228 
storage tube 1 
straight ahead ray 221, 228 
structure type 3 
stutter 117 
sub-pixel 320, 335 
subrange 28 
subscript 27, 28, 50, 60, 65, 74, 83, 

232 
subsegment 234 
sub-tree 45, 332, 334 
sub-voxel 335 
sufficiently similar 287, 288 
super 163, 183 
super-crrcle 88 
super-ellipse 18, 87, 88 
superficial facet 163, 183, 205, 209, 

221,232,244,246,250,251, 
258,303,304,306,317,319 

superscript 26, 65 
surface 86, 143, 144, 183, 205, 206, 

214,215,220,267-71,274, 
286,288,291,296,298,299, 
330,333,339 

surface normal see normal vector 
symmetry, symmetrical 342 

table top 180, 262 
tablet 100, 101 
tangent 48, 56, 255 
Tektronix 7, 298, 354 
telephoto 227 
tessellation 342 
tetrahedron 167, 192,226,251,344 
text 16, 96, 102, 103 
texture (function) 205,298,331, 

335 
three-dimensional Chapter 6, Chap-

ter 17 
thickness 100, 103, 192 
thumb 123, 134 
tilt of head 77, 87, 168, 172 
top 34, 45, 46,219,254 
top right corner 4, 11 
topaz 207 
topological order/sorting 41, 42, 246, 

315,346 
topologically impossible 216 
torque 151, 170 
torus 330 
transformation Chapter 4, 

Chapter 7 
translation 64, 67, 72, 73, 77, 83, 

147, 148, 153, 156, 166 
transmission 264 ' 
transparency 246, 267, 273, Chapter 

16,345 
transparency coefficient 273, 275, 

319 
transpose 67 
tree see binary tree 
triad see co-ordinate triad 
triangle 7, 15, 22, 24, 31, 32, 81, 

113, 137, 144-6, 196,215,216, 
219 

trigonometry 271 
triple (colour) 268 
TRUE 14, 333, 334 
turn 18, 19 
two-dimensional Chapter 1, Chapter 

5, 146 
two-sided facet 206 
type 32 
typical point see general point 



umbra 335 
underside 207, 219 
undulation 215 
unfolded cube 341 
uniform 268, 269 
union 322, 332, 334, 343 
unique 42, 53, 59, 124, 125, 128, 

129, 132, 189,332 
unit block 282 
unit cube 298 
unit distance/length 9, 21, 150, 166 
unit matrix 66 
unit vector 55-8, 125-7, 129 
unknown 124, 132 
UNSURE 333, 334 
upper case 64 
user-defined 6 
utility 1 
utility.c 54, 56,101,106,111,119, 

124, 127, 129, 131, 132, 134, 
136, 137, 139, 140, 142, 145, 
147,158, 159, 165 

vanishing point 224-6 
variable/name 27, 28, 126, 159,258 
vector 9, 10, 13, 16, 17,48-52, 55-8, 

65, 73, 75, 85, 100, 104-7, 
124-34, 137, 140, 146, 156, 
159, 166, 168, 170, 190,224, 
264,265,270-2,275,291,343, 
344,349 

addition, sum 48, 49, 124 
combination 49, 52, 125 
equation 53, 255 
form/notation/representation 48, 

52, 84, 104, 105, 125, 126, 
255,310 

pair 48, 49, 52 
product 134, 141 
refresh 1 

vector2 13 
vector3 13, 124, 158 
vert 10, 11,229,253 
vertex, vertices 7, 24, 28, 32, 60, 61, 

72-80, 85-91, 102, 103, 107, 
110,112,113,116,119-21, 
144-6, 156-9, 162-8, 171-4, 
177-80,183,189,192,195, 
196,206,207,214,215,222-7, 
232,233,240-2,246,253-8, 
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vertex, vertices (cont'd) 

262,275,291,293,296,303, 
304,306,308-11,314,318,319, 
336,344 

vertex intensity 291 
vertex normal 291,293, 297 
vertical 3, 4, 9, 11, 14, 48, 63, 94, 

110,117,123,170,172,195, 
202,226,255 

video 117 
view point see observation point 
view plane 172-4, 178, 179, 206, 

207,215,221-9,244-6,253, 
254,262,304,318,323,333 

viewport see graphics frame 
violet 266 
visible (facet) 163,214, 215,233-5, 

245,250,254-6,264,345 
vision 221, 264 
vi 310 
volume 253 
voxel 333-5 

wavelength 266 
waves 266 
weighted average 271 
well behaved 143 
white 5, 6, 14, 18, 23,228,229,266, 

297,281,282,298,337 
white light 268 
wide angle 227 
window 10, 11,14-17,25,64, 79, 

84, 86, 90-2, 96, 100, 116, 122, 
164,172,173,183,215,222, 
240,253,254,318 

WINDOW 10, 11, 14, 19, 24, 79, 80, 
86, 96, 159, 173, 174, 177, 179, 
222,223,228-31 

window manager 6 
wireframe, wire diagram 176, 183, 

188,205,229,232,347 
wood grain 296 
wooden bowl 340 
world co-ordinate system 10 

x-axis 9, 16, 17, 24, 48, 55, 56, 70, 
73,85,96,123-5,150-3,170, 
173,203,225,226 

x-co-ordinate 9, 13, 28, 48, 59, 62, 
74, 75, 77, 92, 124, 140, 158, 
163,170,173,174,183,214, 
226,231,246,256,275,310 
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x-direction 10, 11, 25, 127, 183 
XOR 6, 100-3, 116, 214, 336 
xjy plane 146,156,173,174,179, 

195 
xjz plane 154, 170, 214, 330 
xyscale 11 

y-axis 9, 48, 56, 70, 73, 85, 123-5, 
150-6,166,170,173,195,196, 
225,340 

y-eo-ordinate 9, 13, 28, 48, 59, 62, 
74,75,77,92, 124,140,158, 
163,173,174,183,214,226, 
231,246,275,310,330 

y direction 10, 11, 127, 183 

yellow 4, 6, 266, 298 
yjz plane 170, 254, 256 

z-axis 123-5, 134, 150-7, 166-72, 
177,179,221,223,225,228, 
253,256,309,310,340 

z-buffer 220 
z-co-ordinate 28, 124, 140, 146, 

151,158,163,170,174,183, 
214,223,225,231,244,246, 
253,255,256,275,323,334 

z-direction 119, 127, 183, 193 
zero 29, 33, 58, 59, 110, 125, 128, 

135,145,146,168,257,284 
zero set 143 
zoom 122 



Index of Function Listings 

adjustsegment 237 
angle 56 
alloc 39 
ballsin 326 
blank 97 
bodyrev 196 
circle 16 
clip 94,259 
clipscene 261 
colourtable 280, 285, 288 
commonline 142 
compare 312 
comparelinewithfacet 238 
comparison 300 
convertpixel 355 
cshade 286 
cube 161 
cube2 213 
datain 161 
dataout 161 
denode 43 
die 210 
disalloc 39 
displayshadows 306 
dot3 127 
draw_a_picture 15, 17, 19, 20, 23, 

26, 51, 76, 108, 162,329 
drawgrid 218 
drawit 79, 175, 206, 230, 262, 274, 

313 
drawpoly 119 
drawsegment 236 
ellipsoid 199 
erase 3, 348, 350, 353, 356, 360 
extend 46 
extrude 193 
f 216 
facetfill 208,278, 281, 285, 290, 

293,296 
findlogicalcolour 284, 288 
findO 78, 171 
finish 3, 348, 349, 352, 356, 359 

flag 81 
fx 12 
fy 12 
genrot 150 
goblet 200 
hatch 106 
hcf 26 
heapstart 37, 39 
hidden 208,235,249, 316 
hlsrgb 300 
hollow 189 
host 355 
house 183 
hsvrgb 301 
i3pl 140 
i112 55 
i113 133 
ilp1 130 
insource 266 
intensityshade 277 
invert 139 
leaf 46 
lightsystem 311 
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linepix 3, 348, 350, 353, 357, 360 
lineto 13 
locate .259 
look2 78 
look3 172 
main 8, 13, 29, 30, 34, 35, 44, 47 
materialin 276 
matprint 69, 149 
midpoint 275 
mindist 136 
mode 93 
movepix 3, 348, 350, 353, 356, 360 
moveto 12 
mult2 69 
mult3 149 
newpolypix 108 
network 249 
normal 240 
observe 79, 172, 292 
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orient 207 
orient2 112 
orient3 145 
overlap 114, 247 
patch 217 
pixball 327 
plane 138 
polyfill 13, 109 
polypix 3, 350,353,357,361 
pop 34, 38, 40 
prepare 312 
prepit 3, 348,351,354,358,361 
printstack 38, 40 
project 174, 227, 229 
push 27, 34, 39 
pyramid 181 
quadrilateral 21 7 
quadsplit 327 
quadtree 328 
random 278 
randomcolour 278 
reflekt 320 
refpp 131 
restore 312 
rgblog 3, 351,353,358,361 
rot2 69 
rot3 149 
rubber 101 
scale2 68 
scale3 148 
scene 82, 83, 89, 117,121,165, 

176, 178, 182, 184, 190, 192, 
194, 199,201,203,211,213, 
216 

seefacet 208, 279, 290, 294, 307 
segheapstart 239 
seglistalloc 239 
seglistdisalloc 240 
set 301 
setcol 3, 349, 352, 356, 360 
setnormal 291 
setpix 3, 348, 350,353,357, 360 
shadow 305 
sign 111 
signed power 88 
spiral 18 
spirograph 26 
stackalloc 325 
stackdisalloc 326 
stackpop 326 
stackpush 325 
stackstart 325 
star 191 
start 12 
superellipse 88 
topologicalsort 43 
tran2 68 
tran3 148 
transform 76, 160 
triangle 216 
unstack 250,316 
wireframe 175 
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