

— e ememm e _ememm ez

Save yourself the time and trouble
of manual file entry ...

Order the
Fractal Programming in C
disk!

This optional disk contains all the individual programs listed in the
book. Source code for over 100 black and white pictures and over 50 color
pictures are provided, allowing you to reproduce them. MS-DOS format.
Requires PC or clone with EGA or VGA and color monitor; Turbo C, Quick
C or Microsoft C compiler.

To order, return this postage-paid card with your payment to: M&T
Books, 501 Galveston Drive, Redwood City, CA 94063-4728. Or, call
TOLL-FREE 1-800-533-4372 (In CA 1-800-356-2002).

YES! please rush me Fractal Programming in C program disk for $20
CA residents add applicable sales tax %

TOTAL
Check enclosed. Make payable to M&T Books.

Chargemy: ___ VISA __ MasterCard ____ American Express
Card # Exp. date

Name

Address

City State Zip

7032

BUSINESS REPLY MAIL

FIRST CLASS PERMIT 871 REDWOOD CITY, CA

POSTAGE WILL BE PAID BY ADDRESSEE

M&T BOOKS

501 Galveston Drive
Redwood City, CA 94063

PLEASE FOLD ALONG LINE AND STAPLE OR TAPE CLOSED

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

]

Fractal

Programming in C

M&T BOOKS

Fractal

Programming in C

Roger T. Stevens

M&T BOOKS

M&T Publishing, Inc.
Redwood City, California

M&T Books

A Division of M&T Publishing, Inc.
501 Galveston Drive

Redwood City, CA 94063

M&T Books

General Manager, Ellen Ablow
Operations Manager, Michelle Hudun
Project Editor, David Rosenthal
Technical Editor, Alan Norman
Editorial Assistant, Kurt Rosenthal
Cover Art Director, Michael Hollister
Cover Designer, Theresa Tomlin

© 1989 by M&T Publishing, Inc.

Printed in the United States of America
First Edition published 1989

All rights reserved. No part of this book may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or by
any information storage and retrieval system, without prior written permission from
the Publisher. Contact the Publisher for information on foreign rights.

Library of Congress Cataloging in Publication Data

Stevens, Roger T., 1927-

Fractal programming in C / Roger T. Stevens. -- 1st ed.

p. cm.

Includes bibliographical references.

1. Fractals--Computer programs. 2. C (Computer program language)
I. Title.
QA614.86.874 1989
516--dc20

ISBN 1-55851-038-9 (book/disk) $39.95
ISBN 1-55851-037-0 (book) $24.95
ISBN 1-55851-039-7 (disk) $20.00

93 92 91 90 89 5 4 32

For My Wife Barbara

Writing a book requires large amounts of time and concentration which do not
necessarily make the author the easiest person in the world to live with. Without
her understanding and love and encouragement, this book would soon have
become a drag and probably would never have been finished.

Acknowledgments

All of the software in this book was written in Turbo C version 2.0 furnished by
Borland International, 4385 Scotts Valley Drive, Scotts Valley, CA 95066. The
software was also checked with Microsoft C 5.0 furnished by Microsoft Corp.,
16011 NE 36th Way, Redmond, WA 98073.

Valuable technical information on the format of .PCX files and a copy of PC
Paintbrush were supplied by Shannon of Z-Soft Corporation, 1950 Spectrum
Circle, Marietta, GA 30067. Dr. Michael Batty of the University of Wales
Institute of Science and Technology was kind enough to send me several reprints
of his publications and direct me to his book Microcomputer Graphics, which
contains much useful information.

All software was checked out on a computer with a Vega VGA card furnished by
Video Seven, Inc., 46335 Landing Parkway, Fremont, CA 94538, and a NEC
Multisync Plus Color Monitor furnished by NEC Home Electronics (U. S. A.)
Inc.

Limits of Liability
and Disclaimer of Warranty

The Author and Publisher of this book have used their best efforts in preparing
the book and the programs contained in it. These efforts include the
development, research, and testing of the theories and programs to determine their
effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied,
with regard to these programs or the documentation contained in this book. The
Author and Publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

How to Order
the Accompanying Disk

Fractal Programming in C is a comprehensive "how to" book written for pro-
grammers interested in fractals. Learn about reproducing those developments that
have changed our thinking about the physical sciences, and in creating pictures
that have both beauty and an underlying mathematical meaning. Included are
more than 100 black and white pictures and 32 color pictures. All source code to
reproduce these pictures is provided on disk, in MS-DOS format. It requires a PC
or clone with an EGA or VGA card and a color monitor; and a Turbo C, Quick
C, or Microsoft C compiler.

The disk is $20, plus sales tax if you are a California resident. Order by sending
a check, or credit card number and expiration date, to:

Fractal Programming in C Disk
M&T Books
501 Galveston Drive

M&T BOOKS Redwood City, CA 94063

Or, you may order by calling our toll-free number between 8 A.M. and 5:00 P.M.
Pacific Standard Time: 800/533-4372 (800/356-2002 in California). Ask for
Item #039-7.

Contents

Chapter 1: Introduction / 15
"Monster" Curves / 16

Strange Attractors / 17

Population Curves and Bifurcation Diagrams / 18
Mandelbrot and Julia Sets / 19

Iterated Function Systems / 20

The State of Science / 20

Why this Book is Different / 21

Chapter 2: What Are Fractals / 23
The Beginning of Fractal Curves / 23

How are Fractals Used / 24

Basic Considerations / 25

Fractal Dimensions / 26

Background Material / 27

Chapter 3: Hardware Requirements / 29
Display Considerations / 31

Processor Speed / 31

Where do We Go From Here / 33

Chapter 4: Saving and Compressing Display Data / 35
Format for Saving a Screen File / 36

Function to Save a Screen / 42

Function to Restore an EGA Screen / 47

Function to Restore a VGA Screen / 50

Chapter 5: Tools for Graphics Display Generation

Setting the Display Mode / 54
Setting the EGA Palettes / S8
Clearing the Screen / 57
Plotting a Point on the Screen / 58
Displaying a Byte on the Screen / 60
Reading a Pixel from the Screen / 60
Reading a Byte from a Color Plane / 61
Drawing a Line / 62
Filling a Triangle / 64
Filling an Oval / 67
Turtle Graphics / 68

Point | 69

Turn | 69

Step | 70
Function to Display and Move Cursor / 71
Bounds Program / 77
Selecting Colors / 78

Chapter 6: The Lorenz

and Other Strange Attractors / 83
Strange Attractors / 84

The Lorenz Attractor / 84

Runge Kutta Integration / 86

Programming the Lorenz Attractor / 87

Other Strange Attractors / 91

Chapter 7: The Population

Equation and Bifurcation Diagrams / 95
The Population Equation / 95

Bifurcation Diagrams / 96

"Period Three Implies Chaos” / 100

The Feigenbaum Number / 101

/

53

Chapter 8: The Snowflake

and Other von Koch Curves / 107
The von Koch Snowflake / 107

Generic Initiator/Generator Program / 110

The Gosper Curve / 113

Three-Segment Quadric von Koch Curve / 117
Eight-Segment Quadric von Koch Curve / 121
Eighteen-Segment Quadric von Koch Curve / 128§
32-Segment Quadric von Koch Curve / 130
Fifty-Segment von Koch Curve / 13§

Using Other Initiators / 143

Complicated Generators / 146

Chapter 9: Peano Curves / 155
The Original Peano Curve / 155
Modified Peano Curve / 159

Cesaro Triangle Curve / 166

Modified Cesaro Triangle Curve / 170
Variation on the Cesaro Curve / 173
Polya Triangle Curve / 177

The Peano-Gosper Curve / 181

Peano Seven-Segment Snowflake / 185
Peano Thirteen-Segment Curve / 189

Chapter 10: The Hilbert Curve / 197
Generating the Hilbert Curve / 198

Fractal Dimension of the Hilbert Curve / 204

Hilbert Curve in Three Dimensions / 205

Using the Hilbert Curve for Display Data Storage / 208

Chapter 11: The Sierpinski Curve / 211
Sierpinski Gasket / 215

Another Method of Generating the Sierpinski Triangle / 218
Strange Cousins of the Sierpinski Triangle / 221
Sierpinski Box / 222

Chapter 12: Trees / 227

Real Trees / 227

Mathematical Representation of Trees / 228
Tree-Drawing Program / 229

Chapter 13: Working with Circles / 239
Appolonian Packing of Circles / 239

Soddy's Formula / 240

Program for Appolonian Circle Packing / 241
Inversion / 244

Pharaoh's Breastplate / 247

Chapter 14: The Mandelbrot Set / 253
Simplified Mandelbrot Set Program / 285

Improved Mandelbrot Set Program / 258

Precision Considerations / 263

Using Other Color Combinations / 264

Other Mandelbrot-Like Sets / 267

Chapter 15: Julia Sets / 275
Drawing Julia Sets / 276

Number of Iterations / 277

Selecting Colors / 281

Julia Set Displays / 282

Binary Decomposition / 283

Chapter 16: Dragon Curves / 289
Harter-Heightway Dragon / 289

Twin Dragon / 291

Julia Dragon / 294

Self-Squared Dragons / 295

San Marcos Dragon / 300

Dragon Outlines / 301

Color Section / 305

Chapter 17: Phoenix Curves / 321
Maps of the Phoenix Curves / 326

Chapter 18: Three-Dimensional Dragons / 329
Method of Projection / 329
Programming the Three-Dimensional Dragon / 330

Chapter 19: Newton's Method / 335
Programs for Plotting Newton's Method Curves / 336
Mathematical Meaning of the Curves / 339

Chapter 20: Brownian Motion / 343
One-Dimensional Brownian Motion / 344
Two-Dimensional Brownian Motion / 348

Chapter 21: Fractal Landscapes / 353
Midpoint Displacement Technique / 354

Oak Creek Canyon / 357

Pike's Peak at Sunrise / 366

Earth Viewed from the Moon / 371

Chapter 22: Iterated Function Systems / 385
Affine Transformations / 385

The Deterministic Algorithm / 386

Generating a Deterministic Fern / 392

Using the Chaos Algorithm / 394

The Collage Theorem / 399

The Chaos Algorithm in Three Dimensions / 400

Appendix A / 405
Appendix B/ 429
About the Author / 567
Bibliography / 569

Index / 573

1

Introduction

Alfred North Whitehead, the American mathematician and philosopher, was fond
of relating how physicists, at the end of the nineteenth century, considered
physics to be essentially a closed book. Everything of any importance in the
field was already known. All that needed to be done was to clean up a few loose
ends and the volume could be marked "COMPLETE" and closed forever. Then,
in the course of cleaning up the loose ends, Schrodinger discovered quantum me-
chanics and Einstein created the theory of relativity and physics was in a state of
revolution, with more unanswered questions than ever before. To Whitehead, one
of the most significant aspects of this revolution was its effect upon the philo-
sophical outlook of physicists. Never again would they take the smug, self-con-
tained approach that everything was known and complete. Instead, their minds
would always be open to the myriad of possibilities of the unknown.

By 1980, however, things had gone full circle. The cosmologist extraordinaire
Stephen Hawking presented a lecture, "Is the End in Sight for Theoretical
Physics?", in which he postulated that we already know everything about physics
that is important in daily life, and that future discoveries would require huge sums
of money and large machines to discover insignificant refinements. While
Hawking was closing out physics, a revolution in scientific thinking had already
begun that would cut across disciplinary boundaries so that physics, as well as
other sciences, would never be the same again. The name of this revolution is
Chaos.

For centuries, mathematicians were comfortable with an intuitive feeling for what
might happen when they wrote down systems of equations. A simple set of

15

FRACTAL PROGRAMMING IN C

equations would produce simple results. In most cases, the end result would be a
simple, stable expression that represented the end state of the system. If things
got a little more complicated, the equation might blow up, meaning that there
were unfortunate sets of inputs for which the result would go off toward infinity.
In other situations, the result might be a periodic function, which would never
reach an end value, but would at least settle down to a regular repeating function
that could be easily predicted. In the real world, situations existed where the state
of a system could not be predicted at any given time. Mathematicians got around
this problem by representing the system state through the selection of random
numbers. They often referred to the system as noisy, where noise was a function
that took on completely random values, over a given range, through time. The
intuitive feeling was that noise represented the results of some regular functions
that we did not yet know how to define and measure and that as soon as our un-
derstanding and methods improved a little more, we could fully understand, char-
acterize, and eliminate (if necessary) the effects of noise.

"Monster" Curves

The first cracks in this structure began to appear in the late nineteenth and early
twentieth century, when mathematicians such as Cantor, von Koch, and Peano
began to draw curves quite unlike those that mathematicians had ever seen before.
They were often undifferentiable. They were usually self-similar (the shape of
each small segment of the curve was the same as the shape of a much larger seg-
ment), their length could not easily be measured or defined, and their dimension
appeared to differ from the traditional dimension of one for a line and to perhaps
be somewhere between a line and a plane.

Traditional mathematicians called these curves "monsters” and "pathological” and
refused to deal with them at all. Lacking the tools of modern computers, not
much progress was made in studying these curves for many years. In chapters 8,
9, 10, and 11, we shall look at some of these curves in considerable detail and
provide software for drawing and investigating them.

16

CH. 1: INTRODUCTION

Strange Attractors

The chaos revolution really began in about 1961. Edward Lorenz, at the Mas-
sachusetts Institute of Technology, was attempting to develop a model for
weather systems that would make improved weather forecasting possible. His
model appeared to be a fairly good representation of weather patterns, which when
run produced results similar to the kind of weather that actually occurred.

One day, Lorenz wanted to pick up from the middle of a previous computer run
and examine a sequence in greater detail. He typed in his intermediate data and
started the computer going again. To his dismay, the new computer run started
by duplicating the results of the previous one, but then began to diverge farther
and farther. Lorenz satisfied himself that these results were not due to a faulty
computer, and ultimately determined that the cause was that he had typed in the
intermediate results to only three decimal places, whereas the computer had origi-
nally stored them to six decimal places.

This appeared to be bad news for weather forecasters; if over a period of weeks
weather patterns could be completely different due to differences in the fourth or
higher decimal places of input data, there appeared to be little possibility that
forecasters could collect accurate enough data to make accurate long-range fore-
casting possible. Lorenz eventually reduced his model to three simple differential
equations, which also happened to represent fluid flow or the action of a particular
type of water wheel. The result of these equations, over time, was not a single
stable result or a periodic function. But it was not random noise, either. Instead,
a curve appeared that was ordered and predictable, but never the same. Basically,
regardless of input, this set of equations settled down to values from within a
family of curves. Fortunately, the curves took on a set of predictable values; un-
fortunately, the curves continued on to infinity without ever repeating them-
selves. These curves became known as the Lorenz attractor. It was the first of
the strange attractors.

The Lorenz equations, a program for graphing the Lorenz attractor, and equations
and software for other strange attractors are given in Chapter 6.

17

FRACTAL PROGRAMMING IN C

Population Curves and Bifurcation Diagrams

In the early 1970s, Robert May, at the Institute for Advanced Studies at Prince-
ton, was looking at the mathematics of population growth. The critical equation
was:

Xp = rxp-1(1-xpn-1) (Equation 1-1)

This simple equation had been assumed to have two outcomes: either a popula-
tion achieved a stable equilibrium value or it tapered off to extinction.

As May experimented with different values of the parameter r, however, a strange
phenomena occurred. As the parameter grew larger, the result ceased to achieve a
stable equilibrium and instead began to oscillate between two different values. A
little larger value of the parameter and there were four alternating stable states,
then eight, and so forth until the behavior became chaotic and didn't settle down
to any value at all. But then, as the parameter increased some more, a stable
window was found in the middle of chaos, with three alternating states that then
increased to six, twelve, and finally back to chaos again. Another window, far-
ther on, began with seven alternating states.

May's friend James Yorke, at the Institute for Physical Science and Technology at
the University of Maryland, did a rigorous mathematical analysis of the behavior
of this equation and proved that if a regular cycle of period three ever occurs in
any one dimensional system, then the same system will also display regular cy-
cles of every other possible length and various completely chaotic cycles as well.
Yorke and Tien-Yien Li wrote a paper on this, which was mischievously called
Period Three Implies Chaos. This is the origin for the name chaos in this new
field of science.

A few years later, Mitchell Feigenbaum was studying the same equation at the
Los Alamos National Laboratory. He observed a regularity in the period dou-
bling effect, which had a ratio of 4.6692016090, now known as the Feigenbaum
number. Strangely enough, this same ratio applies to period doubling in a wide
variety of iterated equations; almost any iterated equation for which the basic

18

CH. 1: INTRODUCTION

equation produces a curve with a hump. Software to produce bifurcation diagrams
and investigate the Feigenbaum number is found in Chapter 7.

Mandelbrot and Julia Sets

At about this same time, Benoit Mandelbrot at IBM's Thomas J. Watson Re-
search Center, was taking a closer look at the von Koch and Peano curves. A
technique had been developed years before for assigning a dimension greater than
the standard Euclidian dimension to such curves. This dimension is known as the
Hausdorff-Besicovitch dimension. Mandelbrot coined the term "fractals" to de-
scribe all curves whose Hausdorff-Besicovitch dimension is greater than their Eu-
clidian dimension. Mandelbrot was also looking at the characteristics of Julia
sets, an intriguing variety of curves based upon mapping the function:

Zn = zp-12 + ¢ (Equation 1-2)

where z and ¢ are complex numbers. Mandelbrot developed a new way of map-
ping this equation: the Mandelbrot set. This set also turns out to be a kind of
catalog of all possible Julia sets, from which particularly interesting Julia set pa-
rameters may be selected for mapping. Mandelbrot was beginning to discover the
same characteristic discovered by Lorenz; that very simple mathematical expres-
sions can result in chaotic nonperiodic functions, which nonetheless do have a
very rigid kind of order that is completely specified by the original equations. A
complete discussion of the Mandelbrot set, together with software for plotting
and investigating it, is given in Chapter 14.

Chapter 15 describes in detail how to create displays of the Julia sets. Mandel-
brot began to develop an intuition, which has proved to be right in many cases,
that fractals are the natural way of representing many of the shapes in nature.
Thus, just as Euclidian geometry is the natural way of describing man-made
shapes such as squares, triangles, or cubes, fractals are the natural language for
describing clouds, trees, leaves, and other natural objects. This seems to make
sense, since we know that apparently very complex natural objects often are gen-
erated from rather limited genetic codes.

19

FRACTAL PROGRAMMING IN C

Iterated Function Systems

Michael Barnsley, a mathematics professor at Georgia Tech, investigated Julia
sets, looking for ways to produce even more variability and, perhaps, to generate
patterns that matched those of living things. Barnsley discovered what he called
iterated function systems.

Basically, such a system consisted of several sets of equations, each of which
represented a rotation, a translation, and a scaling. By starting with a point and
randomly applying one of his sets of equations, according to specified probability
rules, Barnsley could generate classic fractals, and he soon discovered how to
make the rules for generating ferns and other shapes from nature. Chapter 22
provides a description of this technique and some software for generating various
shapes.

The State of Science

Until scientists equipped with the capabilities of modern computers began inves-
tigating the characteristics of iterated equations, it was assumed that a simple
equation produced a simple result and a more complex equation produced a more
complex result. Investigators delving into either mathematics or physical sci-
ences looked for well-behaved functions and tended to-ignore or bypass nonlinear
effects. The idea that a very simple expression could produce complex, nonperi-
odic, but regular behavior had not been conceived. Evidences of these effects were
passed off as "noise" or as "experimental error."

Today, the effects of investigation into chaos and the application of fractals are
changing the way we think about many aspects of the physical sciences and are
opening up new areas in mathematics. The news for science is good and bad.
The bad news is that things are much more complicated than we thought. The
good news is that things are much simpler than we thought. To expand that
thought, the good news is that many very complex structures and very complex
behaviors can be expressed by very simple iterated equations. The bad news is
that the structures and behaviors are aperiodic and that portions of the curve that
ultimately diverge widely can, at some point, be physically located so close to-

20

CH. 1: INTRODUCTION

gether that absolutely precise knowledge of coordinates is necessary to know
which portion of the curve we are on. We can only predict the future of the curve
accurately, if we know exactly where we are on it, and this requires more precise
measurement of our present position than we are capable of making.

Why this Book is Different

One might guess, from the brief summary given above, that the introduction of
the new field of chaos into the sciences was not greeted with tremendous enthusi-
asm by many scientists. There is a myth that scientists are totally objective,
impassionately conducting experiments and using the results to discover truth.
Actually, scientists are persons, not unlike you and me. Their investigations and
theories are often directed by prejudice, and the "truth” that they come up with is
often only one truth from many, and that truth is the one which their
predisposition has led them to discover. The result, as far as chaos is concerned,
is that those who were pioneers in the field tended to be a particular type of per-
son. They needed to be a unique combination of scientist, philosopher, and
artist, with a reasonable amount of stubbornness and a little eccentricity thrown
in. The result is that many of the books which are currently available on fractals
bear some resemblance to treatises on medieval alchemy.

These books are filled with esoteric equations and beautiful illustrations of re-
sults, but the mechanics of how to get from one to the other is slighted or miss-
ing altogether. This book is taking a completely different approach. Its purpose
is to provide you with software that you can use to duplicate many of the fractal
pictures and basic diagrams of chaos and to proceed from there to easily modify
the software to whatever new results come from your own ideas. If you have
seen some of the beautiful pictures produced by fractal programs and want to pro-
duce the same kind of pictures on your IBM PC (or clone) or perhaps create new
and interesting pictures, or if you are interested in using the basic tools to apply
fractals to problems in the physical sciences, then this book is for you. It dis-
cusses all of the well-known types of fractal curves and provides C language pro-
grams (that will work with Microsoft C or Turbo C) to reproduce all of the pic-
tures that are shown in this book.

21

FRACTAL PROGRAMMING IN C

Hints are given on how to modify parameters to create your own original pic-
tures. These are the tools; how you use them depends strictly on your skill and
imagination. The whole field of chaos is still new. There is plenty of room for
new discoveries or new art. Good luck!

22

2

What are Fractals?

When I tell people that I have been writing a book on fractals, they usually re-
spond with two questions. The first is "What are fractals?" and the second is
"What are fractals good for?" If I am feeling ornery, I respond to the first ques-
tion with Mandelbrot's classical definition: "A fractal is a curve whose Hausdorff-
Besicovitch dimension is larger than its Euclidian dimension." But more is really
required in explaining fractals, so let's start at the beginning.

The Beginning of Fractal Curves

Draw a line on a sheet of paper. Euclidean geometry tells us that this is a figure
of one dimension, namely length. Now extend the line. Make it wind around
and around, back and forth, without crossing itself, until it fills the entire sheet of
paper. Euclidean geometry says that this is still a line, a figure of one dimen-
sion. But our intuition strongly tells us that if the line completely fills the en-
tire plane, it must be two dimensional.

Such thinking started a revolution in mathematics about a hundred years ago.
Mathematicians such as Cantor, von Koch, Peano, Hausdorff, and Besicovitch
drew curves that were called "monsters," "psychotic,” and "pathological” by tradi-
tional mathematicians. A new type of dimensioning was proposed, in which a
curve could have a fractional dimension, not just an integer one. Recursive tech-
niques and iterated expressions were found that could describe curves that have
fractional dimensions. But without high-speed digital computers, the actual

23

FRACTAL PROGRAMMING IN C

drawing of such curves was a long and tedious process. So little progress oc-
curred in this unusual field for nearly a hundred years.

The advent of digital computers made the investigation of such curves a fruitful
field. From the early investigations, we could understand what we were trying to
do. We wanted to draw curves that appeared to have more complex dimensional
characteristics than were explained by traditional geometry.

Computers were turned loose on very simple mathematical iterated expressions in
which the next state of a parameter depended solely on a simple relationship to
the current state of the parameter. The iteration was performed many times and
the resulting location of the parameter at each state was plotted. The resulting
plots turned out to have many interesting characteristics. For one thing, they
never repeated themselves. Furthermore, they tended to have the characteristic of
self-similarity. In other words, if a small portion of the plot was enlarged, its
shape was very much like a large portion of the original plot. The plots turned
out to have shapes of great interest and extreme beauty.

The curves still didn't make much sense in terms of traditional mathematics, and
consequently remained an anathema to traditional mathematicians. Dr. Benoit
Mandelbrot was the first person to make use of a digital computer to investigate
fractals in depth, and his results were not welcomed warmly by traditional math-
ematicians.

How are Fractals Used?

Now we have explained what a fractal is, but explaining how a fractal is used is a
little more difficult. Mandelbrot contends that just as the shapes of traditional
geometry are the natural way of representing man-made objects (squares, circles,
triangles, etc.), fractal curves are the natural way of representing objects that oc-
cur in nature. Thus, fractals have a value both as art objects and as a means of
representing natural scenes. Moreover, fractals occur naturally in the expressions
for mathematical phenomena as varied as the prediction of weather systems, the
describing of turbulent flow of liquid, and the growth and decline of populations.
Fractals are also useful in dimensional transformations that can be used for ex-

24

CH. 2: WHAT ARE FRACTALS?

pressing and compressing graphical data. Ignoring the artistic value, the best an-
swer to the question "What are fractals good for?" is the reply "Fractals appear to
provide solutions to many previously unanswered questions at the frontiers of the
physical sciences." Consequently, to work at the frontiers of science, one needs
to understand what fractals are and how to work with them.

In the later chapters of this book, we shall attempt to do our own experimenting
with the creation and modification of fractal curves. We shall not spend too
much time worrying about the uses of fractals in the sciences, but will concen-
trate on understanding as many different types of fractal curves as possible and
developing computer programs to generate these curves. Then, when we en-
counter a physical problem that requires a fractal solution, we will know what to
do and how to do it.

Basic Considerations

Let's establish some points of orientation that will be useful in practical investi-
gations of the chaotic field of fractals:

1) Intuition leads us to believe that fractal curves should have a dimension
greater than their traditional geometric dimension.

2) There is now sound mathematical grounding for accepting this premise.
3) Fractal curves are associated with many physical and natural phenomena.

4) Fractals often possess a rare and unusual beauty. No doubt, this is partly
true because fractals correspond to the way in which nature produces those
shapes that we are most familiar with and that basically define our ideas of
"the beautiful.”

5) Fractals have the unusual characteristic that they can be defined totally by
relatively simple mathematical equations, yet they are not periodic. Thus,
the progression of the fractal curve may differ widely if we start at just
slightly different points in space, so unless we can measure where we are

25

FRACTAL PROGRAMMING IN C

with absolute precision we cannot be sure just what the progression of the
curve will look like. This is in spite of the fact that the curve is defined
through all of its wanderings by very simple iterated expressions.

6) Most fractals are self-similar, so that the shape that we identify in the plot of

a fractal curve repeats itself on a smaller and smaller scale as we enlarge the
image further and further.

Fractal Dimensions

Let's return to the statement made at the beginning of this chapter that a fractal is
a curve whose Hausdorff-Besicovitch dimension is greater than its Euclidian di-
mension. We now have some idea of the nature of fractal curves and of what this
new definition of dimension means, but that doesn't help much unless we can ac-
tually come up with some meaningful dimensional numbers. A rigorous defini-
tion of the Hausdorff-Besicovitch dimension is a rather lengthy mathematical
process, and for many fractals it is almost impossible to determine this dimen-
sion. However, for a large class of self-similar fractals, which we will discuss in
chapters 8, 9, and 10, the fractal dimension is easily obtained. Suppose that we
start with an initiator that is some simple geometric figure consisting of a num-
ber of connected line segments. It may be a triangle or a square or even just a
straight line. We now define a generator. This generator is is a series of line
segments that is going to replace every line segment of the initiator. The
generator consists of N line segments, each of length r, where r is a fraction of
the line segment being replaced. The arrangement of the N line segments is such
that the distance from the beginning of the generator to its end is the same as the
length of the line segment being replaced. The replacement process repeats an
infinite number of times, each time replacing each line segment of the previous
level curve with a scaled-down replica of the generator. It can then be shown that
the Hausdorff-Besicovitch dimension of the resulting fractal curve is:

D =10g N/ Tog(l/r) (Equation 2-1)

26

CH. 2: WHAT ARE FRACTALS?

Comparing this dimension with the Euclidian dimension gives us some idea of
the properties of a fractal. For example, a D of 1.0 is simply an ordinary line,
whereas a D of 2.0 means that the curve completely fills the plane.

Background Material

With this background in mind, let's begin looking at fractal curves and creating
software to view them and work with them on our IBM PC computers. But first,
we need to get some basic considerations out of the way. We need to talk a little
bit about what hardware is required to do a good job of investigating fractals. We
need to define the software tools that we will use to generate our graphic images.
And we need to have techniques for saving the images of fractals on disk files and
recalling them when we need to view them.

27

Hardware Requirements

With the wide variety of PC clones that are now available, including some that
use 80286 microprocessors at speeds far faster than anything envisioned by IBM,
there is no telling when some strange glitch is going to wreak havoc with your
program. To attempt to minimize that kind of problem, I have attempted to run
most of the programs described in this book on three different systems. One
consists of the following:

Motherboard: Bullet-286E from Wave Mate, Inc., Torrance, CA. This board is
a drop-in replacement for the PC XT motherboard. It uses an 80286 and has
IMB of on-board 0 wait state memory. The memory from 640K to 1MB is used

as a hard disk cache. An 80287-10 math coprocessor was used.

Floppy Disk Controller: MCT-FDC-1.2 from JDR Microdevices, Los
Gatos, CA. This board supports 360K or 1.2MB disk drives.

Floppy Disk Drives: 1 Fujitsu 1.2MB disk drive.
1 Mitsubishi 360K floppy disk drive.

1/0 Board: MCT-IO from JDR Microdevices.
Hard Disk Controller: MCT-RLL from JDR Microdevices.

Hard Disk Drive: LaPine LT300 30MB from Advanced Computer Products,
Santa Ana, CA.

29

FRACTAL PROGRAMMING IN C

Keyboard: Surplus Honeywell keyboard from B. G. Micro, Dallas, TX.

EGA Card: MCT-EGA from JDR Microdevices.

EGA Monitor: Casper EGA Monitor from JDR Microdevices.

The second system consists of:

Motherboard: DTK Baby AT with 80286. Speeds 8 and 12 MHz. 1MB
memory on-board, running with 1 wait state. from U. S. Turbo Systems, South

El Monte, CA.

Floppy Disk Controller: KW 530-D from Mica Computer Center, Santa
Fe Springs, CA.

Floppy Disk Drives: One Fujitsu 1.2MB from Gems Computer and one
360K Qume from Jade Computer, Hawthorne, CA.

VGA Card: Vega VGA from Video Seven, Fremont, CA.

VGA Monitor: NEC Multisync Plus.

Some cards were occasionally swapped between the two systems described above.
In addition, text was printed out on a Hewlett-Packard DeskJet Printer, with 128K
added memory and Soft Fonts, and color pictures were printed out on a Hewlett-

Packard PaintJet Printer.

The third system was a standard IBM PC AT with math coprocessor and a Plus
Passport 40MB hard disk.

Programs that work satisfactorily on such a wide variety of systems as this

should have a good chance of working on your system, too. If you encounter
problems, try to identify how your system differs from the three described above.

30

CH. 3: HARDWARE REQUIREMENTS

Display Considerations

I highly recommend that if you are going to get serious about fractals, you
should buy an EGA or VGA display. Much of the beauty and power of fractal
displays comes from manipulating the colors to match the conceptions of the
programmer/artist. You will find a number of black and white illustrations of
fractal curve results throughout this book. If you must work with a Hercules
Graphics Card or compatible monochrome display, you can reproduce these illus-
trations. You will find full details on how to use the Hercules Graphics mode in
my book Graphics Programming in C (M&T Books, 1989). Not all of the frac-
tal programs in this book will work in monochrome; those that will, and the
program changes needed, are listed in Appendix B. All of the color illustrations
in the book were done using color mode 16 (which is high resolution, 16 colors,
and is common to the EGA and VGA).

You can duplicate all of the color programs using this mode, and if you have a
VGA, you can go to mode 18 and with a few minor changes obtain greater verti-
cal resolution. The VGA also permits you to select the 16 color palettes used in
modes 16 or 18 from 256K shades of color instead of the 64 available with the
EGA. In most cases, however, you are going to find that the EGA gives you
plenty of color capability.

I don't recommend using the CGA color monitor for fractal displays. The
resolution is just not adequate for the detail needed to produce interesting fractals.
If you have a VGA, mode 19 has the same resolution as the CGA, but permits
you to display 256 different colors simultaneously. You're welcome to experi-
ment with that, but I think you will find that the additional picture detail is much
to be preferred over the additional color shades.

Processor Speed

As you get into the more complicated fractal displays, such as the Mandelbrot and
Julia sets, you are going to find that processor speed becomes more and more of a
problem. Even on a fairly fast machine, many of the more interesting displays

31

FRACTAL PROGRAMMING IN C

take days to generate. How can this be resolved? First, code needs to be opti-
mized so that the loops that are iterated most have simple procedures.

More will be said about this later. Next, if you have one of the fast 286 clones,
make sure you have fast enough memory so that you can run the programs at the
highest available clock speed and preferably with no wait states. Finally, get a
math coprocessor chip. Steve Ciarcia wrote in the December 1988 issue of Byte
magazine that tests he ran show that the coprocessor runs the Mandelbrot set
program eight times faster that with the math routines emulated in the C lan-
guage. Either Microsoft or Turbo C can be used without modification with the
coprocessor. Turbo C automatically makes use of the coprocessor if it is avail-
able, and also permits you to compile in a coprocessor-only mode, which may
give a little extra speed.

If you do not have a coprocessor, an attractive alternative might appear to be
generating your own assembly language routines to perform the special math
processing that uses most of the time in generating the Mandelbrot sets and
similar programs. This, however, turns out not only to be difficult, but also to
be less timesaving than one might think. The programmers who wrote the math
routines for the most popular versions of the C language spent a lot of time
making these routines as fast and efficient as possible.

You are not likely to come up with anything faster for a particular operation, and
if you try to save by reducing the precision of the routines, you will probably
find that your display looks inferior compared to ones generated by more conven-
tional means. The remaining timesaving that you might achieve is by holding
results in registers and doing all of the iterations without transferring to memory,
but this will require a lot of register manipulation for 8086 or 80286 machines,
which probably isn't worth it.

There are a couple of exceptions to the above. If you have an 80386-based ma-
chine, the internal 32-bit registers provide sufficient precision to perform good
fractal computations. H. W. Stockman, in the September—October 1988 issue of
Micro Cornucopia, describes how to write 386 assembly language code to com-
pute the Mandelbrot set directly on the microprocessor's internal registers. He
claims that his program is 100 times faster than using floating point math. Once

32

CH. 3: HARDWARE REQUIREMENTS

you understand his assembly language code, you should be able to adapt it for
generating fast Julia sets, dragons, or phoenixes.

Another approach was used by Steve Ciarcia in the October, November, and De-
cember 1988 issues of Byte. Ciarcia built a parallel processor that uses 64 Intel
8051 microprocessors in parallel in a special Mandelbrot set generating computer.
The cost of this monster, in addition to its PC driver, runs around $6,000. Steve
found that it about matched the AT with coprocessor when he used fifteen of the
8051's and was many times faster with 64 parallel processors. And, of course,
there is nothing to prevent you from stopping there. In the extreme, you could
have one 8051 for each pixel on the display, all working simultaneously and
limited only by the time required to dump the results to the display. If you're
going to take either of the above routes, you need some real dedication; in most
cases, an AT type machine with an EGA display and a math coprocessor will
generate all of the fractal displays you will ever need or want without delays that
are objectionably long.

Where Do We Go from Here

I've told you what you need in the way of hardware to delve deeply into fractals,
but what if you've already purchased the book and don't have the recommended
hardware. What can you do, other than save your pennies for an upgrade? Don't
despair. While you're saving, you can begin producing some of the simpler
monochrome displays. Indeed, some of the most interesting areas for investigat-
ing the progress of the new science of Chaos and the applications of fractals to it
are found in some of the more simple displays. If you have a computer that is
IBM compatible, but takes a long long time to generate a fractal display, there is
hope for you, also. In Chapter 4, we will describe techniques for saving a screen
(even if only partially completed) to a disk file and then picking up where we left
off to finish the display at a later date. So if you're halfway through a fractal dis-
play and find that you must have your computer now for a higher priority task,
you need not lose everything that you've done so far.

33

]
]
]
1

[

Nininnties Saving and
Compressmg Display Data

As many as three days may be required to draw some of the fractal pictures that
will be discussed in the following chapters, particularly if you do not have a math
coprocessor. Since we don't want to spend another three days of drawing time
whenever we want to display one of these pictures, it is essential that we have a
quick, simple means of saving a picture that is on the screen to a disk file and
then quickly restoring it to the screen whenever we need it. There are two in-
stances, in particular, where we need this feature:

1. When we are investigating deep within the Mandelbrot set or a similar set,
and wish to start with a set that we have already generated and create an ex-
pansion of a particular part of it, we need to quickly display the last set gen-
erated from a saved disk file, and then use the cursor to select the portion of
it from which a new picture is to be created.

2. When we are in the process of drawing a lengthy picture and discover that we
need our computer for something else, we need the capability to save the
partially drawn picture to a disk file so that we can later recover it and pro-
ceed from where we left off, rather than having to begin the drawing process
all over again.

35

FRACTAL PROGRAMMING IN C

Format for Saving a Screen File

The format chosen for the file that results from saving a screen is that of the
PCX file developed by ZSoft and used with their PC Paintbrush and other draw-
ing programs. This format is widely used and permits your screens to be edited
with PC Paintbrush. Also, ImageSet Corp. in San Francisco, CA has programs
available that can convert these files directly to slides or photographic artwork
suitable for publication. ZSoft is extremely cooperative in making information
on this format available to those who want to write compatible software to use
it. Shannon, of ZSoft's technical support group, provided me with a pamphlet
giving full technical details on the .PCX format. Functions will be listed below
that permit you to save a screen to a disk file using the .PCX format and also to
read the file back from disk to your display.

In addition, there is an excellent public-domain program called ZS which can be
used to display any one or all of your EGA .PCX files or run a slide show of
them. This program is available on bulletin boards or may be obtained directly
by sending $10.00 to:

Bob Montgomery
132 Parsons Rd.
Longwood, FL 32779

The file starts with a 128 byte header, the contents of which are shown in Figure
4-1. Except for the color map, most of the header contents are self-evident. The
floating point numbers for XMax, XMin, YMax, YMin, Pval, and Qval are not
part of the original ZSoft format. They are needed when we save files for Man-
delbrot sets and similar displays to preserve data required to define the figure.
They are transferred to and from the disk file as four characters, each through the
use of the union statement:

union LIMIT
{
float f;
unsigned char c[4];

36

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

Since that part of the ZSoft header which contains XMax, XMin, YMax, YMin,
Pval, and Qval is normally empty, using any other ZSoft compatible program
with these files should not present a problem. If the file is read by one of the
programs described in the later chapters of this book, the values will be extracted
and used as needed. If the file is read by another program, the values will be ig-
nored.

Figure 4-2 shows the contents of a palette register for the EGA color system.

Figure 4-1: Header Data for .PCX Screen File

HEADER DATA |

Size
Byte | (bytes) Name Description

0 1 Password 0AH designates ZSoft.PCX
files.

1 1 Version versions of PC Paintbrush

O=vers25

2 = vers 2.8 w/palette info

3 = vers 2.8 w/o palette
information

5 =vers 3.0

2 1 Encoding Encoding scheme used
1 = .PCX run length en-
coding.

3 1 Bits per No. of bits required to

pixel store data for 1 pixel from

1 plane.

=1 for EGA, VGA or Hercules
= 2 for CGA

4 8 Window 4 integers (2 bytes each)
dimensions giving top left and bottom
right corners of display in
the order x1, y1, x2, y2.

12 2 Horizontal Horizontal resolution of
Resolution display device

= 640 for EGA or VGA
= 320 for CGA

= 720 for Hercules

(continued on next page)

37

FRACTAL PROGRAMMING IN C

Size
Byte | (bytes) Name Description
14 2 Vertical Vertical resolution of
Resolution display device (lines)
= 480 for VGA
= 350 for EGA
=200 for CGA
= 348 for Hercules
16 48 Color Map Information on color
palette settings. See fol-
lowing figures for details.
64 1 Reserved
65 1 Number of Number of color planes in
planes the original image
=1 for CGA, Hercules
=4 for EGA, VGA
66 2 Bytes per Number of bytes per scan
line line in the image
68 2 Palette How to interpret palette.
information 1 = color/monochrome
2 = grayscale
70 16 Picture Four floating point numbers
limits giving the bounds for the
set computation. The order
is XMax, XMin, YMax, YMin.
This section is not used in
original ZSoft format.
86 8 Iteration Values for 'P' and 'Q’ used
Parameters for fractal computation.
This section is not used in
original ZSoft format.
94 32 Not used Fill to end of header block.

Six bits are used, with two each for the primary colors red, green, and blue. The
capital letters represent colors of 75 percent amplitude; the small letters colors of
25 percent amplitude. Thus for each primary colors, four levels are available: 0
(none of that color), 25 percent amplitude, 75 percent amplitude, and 100 percent
amplitude (both capital and small letter bits are one). The color map in the file
header contains 16 sets of triples, one for each EGA palette. For the first byte of
a triple, the values of the capital and small letter position for red are extracted and
combined to produce a number from one to three. This number is multiplied by
85 and stored in the header. The same procedure takes place for the second byte of

38

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

the triple for green and the third byte for blue. The process is repeated sixteen
times, once for each palette. Note that when we set the palette registers on the
EGA, we are setting a write-only register, so that we can never recover the con-
tents if we want to know later what the setting was.

Consequently, our setEGApalette function saves the palette register information
in a global array PALETTE[16]. 1t is this data that we use to write the color
map in the header when we are saving a screen. Figure 4-3 shows the color map
data for the EGA and VGA.

Figure 4-2: Contents of EGA Palette Register

Byte Byte Byte Byte Byte Byte Byte Byte
7 6 5 4 3 2 1 0

r g b R G B
(25%) | (25%) | (25%)) (75%)] (75%) | (75%)

The VGA is quite different in the way that it handles colors. With the VGA,
each palette register contains the number of a color register. The color register
contains six bits for each primary, permitting 64 shades of that color. With the
VGA we can read each palette register to determine which of the 64 color registers
has been selected and then read the selected color register to determine the selected
one of 64 shades each of red, green, and blue that make up the color.

For all but 18, we create the .PCX color map by reading the palette register and
then the color register pointed to by the palette register.and in the color registers.
We then multiply the red, green, and blue values by four and store the resuits in
the triple associated with that palette. Note that when we restore a screen, we
may not assign a color value to the same color register that it was obtained from
originally, and that the palette registers may not select the same color registers.
However, the net result is the same, because each palette register points to a color
register that contains the same color information that was contained in the
original screen.

The VGA also has color modes in which 256 different colors may be displayed
simultaneously. Since this is at a lower resolution (the same resolution as the

39

FRACTAL PROGRAMMING IN C

CGA display), we won't be using it in our screen-saving and restoring functions.
For reference, the format is the same as that used to display the 16-color palette,
but due to the 256 colors, the palette information is much longer. It is appended
at the end of the .PCX file.

To access this information, you must first ascertain that the version number data
in the header (byte 1) is 5 (version 3.0). Then read to the end of the file and
count back 769 bytes. If the value in this byte position is 0CH (12 decimal), the
succeeding information is 256-color palette data.

Figure 4-3: Contents of .PCX File Color Map

Byte Palette Color Description

16 0 Red For the EGA, the values of each
17 0 Green color of each byte of each
18 0 Blue triple are:

19 1 Red

20 1 Green 00H to 54H = 0%

21 1 Blue 55H to A9H = 25%

22 2 Red AAH to FEH = 75%

23 2 Green

24 2 Blue

25 3 Red

26 3 Green For the VGA, the value of each
Z 3 Blue byte is the value of the six-
28 4 Red bit color value from the color
29 4 Green register pointed to by the

K (] 4 _Blue appropriate palette register
31 5 Red for each color of the triple,
32 5 Green multiplied by four.

K<) S Blue

34 6 Red

35 6 Green

K 3] 6 Blue

37 7 Red

38 7 Green

K 2] 7 Blue

40 8 Red

41 8 Green

42 8 Blue

(continued on next page)

40

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

Byte Palette Color Description
43 9 Red
44 9 Green
45 9 Blue
46 10 Red
47 10 Green
48 10 Blue
49 11 Red
50 11 Green
51 11 Blue
52 12 Red
53 12 Green
o 12 Blue
55 13 Red
56 13 Green
57 13 Blue
58 14 Red
59 14 Green
&0 14 Blue
61 15 Red
62 15 Green
63 15 Blue

Data is read from the screen, horizontally from left to right, starting at the pixel
position for the upper left corner. For EGA and VGA, which have multiple
memory planes, a line is read of the color red (to the end of the window boundary,
then the green information for the same line is read, and finally the blue.

The functions that we will develop below only work if the horizontal pixel
boundaries are at a byte interface (the column number must be divisible by eight.)
Data is run length encoded in the following manner: If the byte is unlike the ones
on either side of it, and if its two most significant bits are not /1, it is written to
the file. Otherwise, a count is made of the number of like bytes (up to 63) and
this count is ANDed with COH and the result written to the file, followed by the
value of the byte. If there are more that 63 successive bytes, the count for 63 and
the byte are written and then the count begins all over again. (Note that the case
for a singular byte having the two most significant bits 1 is handled by writing a
count of one followed by the byte value.)

41

FRACTAL PROGRAMMING IN C

Function to Save a Screen

Figure 4-4 lists a function to save the EGA screen. The parameters passed to this
function are the coordinates of the upper left corner of the window to be saved,
the coordinates of the lower right corner, and the name of the file in which the
screen data is to be stored. No protection is afforded for values that are outside
the screen limits; the programmer must provide this in the calling program.
Also, although any pixel location on the screen may be specified, the x value of
each comner, as used by the program, is set up to be a byte boundary, which may
be as much as seven pixels off from the specified value. Normally, this will not
cause a problem; if it does, the programmer should assure that the x values are
divisible by eight. The program assumes that the file name, which is passed to it
as a parameter, consists of six letters followed by two numbers.

The program begins by trying to open the file in the read mode with the given
file name. If the file can be opened (meaning that the file does indeed exist), the
program assumes that the file already contains valuable data and therefore
increments the two-digit ending and tries again. The loop continues until a file
name is generated that cannot be opened, indicating that the file does not exist.
This file is then opened in the write mode for saving of the current screen. Note
that if the two digits get to 99 without a nonexistent file being found, the loop
gives up. Your file will then not be saved.

The function then continues by initiating a sound that continues until the func-
tion has completed its work of generating the screen file. Next, the appropriate
header information is stored, including the palette information, which is generated
as described above. Just preceding the function is shown the global PALETTE
array, which is initialized with the default palette values for the EGA. Whenever
the setEGApalette function is called, in addition to resetting the appropriate
palette register, it also stores the information in a member of this array, so that it
is available for transfer to the .PCX file. The floating point x and y limits and P
and Q values for Mandelbrot or other sets are also stored. This data is stored in a
set of global coordinates, which are defined by the union LIMIT statement defined
above, which permits the limits to be treated as floating point numbers by the
original program and yet read from and written to the disk file as sets of four

42

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

characters. This alleviates any need for conversion in the process of transferring
to and from the disk.

Figure 4-4: Function to Save an EGA Screen to a Disk File

save_screen() = save screen to disk file

f#finclude "tools.h"
#include <stdio.h>

void save_screen(int x1, int yl, int x2, int y2,
char file_name[])
{
extern union LIMIT XMax,XMin,YMax,YMin,Pval,Qval;
extern unsigned char PALETTE[16];
int i,j,k,addl,add2,number,num_out, line_length, end,
start_line, end_line;
unsigned char ch,chl,old_ch,red,green,blue;
FILE *fsave;
sound (256);
while (file_name[6] < 0x3A)
{
if ((fsave = fopen (file_name,"rb")) != NULL)
{
file_name[7]++;
if (file_name[7] >= 0x3A)
{
file_name[7] = 0x30;
file_name[6]++;
}
fclose(fsave);

else

fclose(fsave);
fsave = fopen(file_name,"wb");
fputc(0x0A, fsave):
fputc(0x05,fsave);
fputc(0x01,fsave);
fputc(0x04,fsave);
putw(xl,fsave);
putw(yl,fsave);
putw(x2,fsave);
putw(y2,fsave);
putw(640,fsave);
putw(350,fsave);
ch = 0x00;

43

FRACTAL PROGRAMMING IN C

for (i=0; i<16; i++)
{
red = (((PALETTE[i] & 0x20) >> 5) |
((PALETTE[i] & 0x04) >> 1)) * 85;
green = (((PALETTE[i] & 0x10) >> 4) |
(PALETTE[i] & 0x02)) * 85;
blue = (((PALETTE[i] & 0x08) >> 3) |
((PALETTE[i] & 0x01) << 1)) * 85;
fputc(red, fsave);
fputc(green,fsave);
fputc(blue, fsave);
}
fputc(0x00,fsave);
fputc(0x04,fsave);
start_line = x1/8;
end_line = x2/8 + 1;
line_length = end_line - start_line;
end = start_line + line_length * 4 + 1;
putw(line_length,fsave);
putw(l,fsave);
for (i=0; i<4; i++)
fputc(XMax.c[i],fsave);
for (i=0; i<4; i++)
fputc(XMin.c[i], fsave);
for (i=0; i<4; i++)
fputc(YMax.c[i],fsave);
for (i=0; i<4; i++)
fputc(YMin.c[i],fsave);
for (i=0; i<4; i++)
fputc(Pval.c[i],fsave);
for (i=0; i<4; i++)
fputc(Qval.c[i],fsave);
for (i=94; i<128; i++)
fputc(' ',fsave);
for (k=yl; k<y2:; k++)
{

addl = 80*k;
number = 1;
j=0;

add2 = (start_line);
old_ch = read_screen(addl + add2++,0);
for (i=add2; i<end; i++)
{
if (i ==-end - 1)
ch = old_ch - 1;
else
{
if ((add2) == end_line)
{
J++s
add2 = (start_line);

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

}
ch = read_screen(addl + add2,
J)s
}
if ((ch == old_ch) && number < 63)
number++;
else
{
num_out = ((unsigned char)
number | 0xCO);
if ((number !=1) ||
((old_ch & 0xC0) ==
0xC0))
fputc(num_out, fsave);
fputc(old_ch,fsave);

old_ch = ch;
number = 1;
}
add2++;
}
}
fclose(fsave);
break;
}
}
nosound();

The function initializes some address variables and then starts a loop that reiter-
ates for every line of the display from the first one specified by yl, to the last
one, specified by y2. At the beginning of this loop, the function gets the first
byte of eight pixels from the first plane of the EGA screen. This is stored in
old_ch. Next, another for loop is begun, which reads one byte at a time from the
beginning to the end of the line for each of the four memory planes.

After each read, action is taken based upon comparing the read character with the
previous character, which was stored in old_ch. For the very last pass through
the loop, instead of reading a byte (which wouldn't be there anyway, since we
have already finished the line), we create an artificial character that is always dif-
ferent from old_ch, which forces a write out to the file of the previous data. On
each pass through the loop, we check the value of the address variable add2
(which is incremented at the end of each pass). If it is equal to the value repre-
senting the end of the line, we reset it to the starting value and also increment j,
which determines which memory plane is read.

45

FRACTAL PROGRAMMING IN C

After the character is read, we check it against the previous character value; if it is
the same and if number—which stores the number of like characters so far en-
countered—is less than 63, we simply increment number and return for the next
pass through the loop. If number had reached 63, or if the character read differs
from the previous character, we write out to the file. If number is one, indicating
that the previous character is unlike those on either side of it, and if the value in
old_ch does not have its two most significant bits equal to one, we simply write
this value out to the file. If the value in old_ch was repeated, or if its two most
significant bits are ones, we first write out the value of number with its two
most significant bits set to one. We then write out the value in old_ch. We then
reset number to one and are ready for another pass through the loop. When this
loop and the display line loop have been completed, the disk file is closed and the
sound is turned off.

The function to save a VGA screen is quite similar, except for the way the palette
data is treated. The number of lines for a full screen is different from the EGA,
but since the number of lines is determined by the values of y/ and y2 passed to
the function, this does not require any change in the coding.

Figure 4-5 shows the code that is used to save the color information for the
VGA.

Figure 4-5: Code to Save VGA Color Information

int i,palette,red,green,blue;

for (i=0; i<16; i++)

{
palette = getVGApalette();
readColorReg(palette,&red,&green,&blue);
fputc(red*4);
fputc(green*4);
fputc(blue*4);

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

Function to Restore an EGA Screen

Figure 4-6 lists a function to restore the screen saved by the save-screen function
just described. It will also display any EGA mode 16 screen saved in .PCX for-
mat, although it won't have values for XMax, XMin, YMax, YMin, Pval, or
Qval. The function begins by attempting to open the file whose designation is
passed through the parameter file_name. If the file does not exist, the function
displays Cannot find 'file_name, where file_name is the designated name, and
then returns a value of 0. If the file does exist, the first character of the header is
read. If it is not the password character 0AH for .PCX files, the function displays
file_name is not a valid ZSoft file and then returns a value of 0. If the file ap-
pears to be a valid one, the computer is set to EGA display mode 16 and the
screen is cleared to a black background.

The function then begins to read the header information. The window top left and
bottom right coordinates are read and stored. The color data for each palette is
read from each triple and converted to an IBM EGA format color word, which is
sent to the appropriate palette. The limits and P and Q values for Mandelbrot and
similar sets are read. Dummy reads then take place to get to the end of the header
block. The function then sends data to set up the registers of the EGA for recep-
tion of color data.

Next, a for loop is begun for reading and displaying data for each line of the dis-
play from the top to the bottom of the window. Parameters are set up for the
initial address at screen memory and for the address of the end of the current line.
The parameter j is set to zero so that data will be sent to the first memory plane.
The function then begins a while loop that reads data from the disk file, character
by character. If the character does not have its two most significant bits set to
one, it is simply sent to display memory and the memory address incremented. If
the first two bits are one, these are stripped and the remainder of the byte is used
as a counter.

47

FRACTAL PROGRAMMING IN C

Figure 4-6: Function to Display an EGA Screen from Disk

restore_screen() = paint screen from disk data

f#finclude <stdiio.h>
f#include <stalib.h>
ffinclude "tools.h"
extern union LIMIT XMax, XMin, YMax, YMin, Pval, Qval;
int restore_screen(char file_name[])
{
f#Hinclude <dos.h>
jtdefine graph_out (index, val)
foutp (Ox3CE,index);\ outp (0x3CF, val);}
FILE *fsave;
unsigned char ch,chl,red,green,blue,color,
line_length,end;
int line_end,i.j,k.m,pass,x1l,yl,x2,y2;
if ((fsave = fopen(file_name,"rb")) == NULL)
{
printf("\nCan't find %s.\n",file_name);
return(0);
}
else
{
ch = fgetc(fsave);
if (ch != 0x0A)
{
printf("\n%s is not a valid ZSoft file.\n",
file_name);
fclose(fsave);
return(0);
}
}
setMode(16);
cl1s(0);

for (i=1; i<4; i++)
ch = fgetc(fsave);

x1 = getw(fsave);
yl = getw(fsave);
x2 = getw(fsave);
y2 = getw(fsave);

for (i=12; i<16; i++)
ch = fgetc(fsave);

for (i=0; i<16; i++)

it
red = fgetc(fsave)/85;
green = fgetc(fsave)/85;

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

blue = fgetc(fsave)/85;

color = ((red & 0x01) << 5) | ((red & 0x02)
<< 1) | ((green & 0x01) << 4) | (green
& 0x02) | ((blue & 0x01) << 3) | ((blue &
0x02) >> 1);

setEGApalette(i,color);

}

for (i=64; i<70; i++)

ch = fgetc(fsave);
for (i=0; i<4; i++)

XMax.c[i] = fgetc(fsave);
for (i=0; i<4; i++)

XMin.c[i] = fgetc(fsave);
for (i=0; i<4; i++)

YMax.c[i] = fgetc(fsave);
for (i=0; i<4; i++)

YMin.c[i] = fgetc(fsave);
for (i=0; i<4; i++)

Pval.c[i] = fgetc(fsave);
for (i=0; i<4; i++)

Qval.c[i] = fgetc(fsave);
for (i=94; i<128; i++)

ch = fgetc(fsave);

graph_out(8,0xFF);
graph_out(3,0x10);
for (k=yl; k<y2; k++)
{
i = k*80 + (x1/8);
line_end k* 80 + (x2/8)+1;
j=0;
while (j < 4)
{

chl = fgetc(fsave);
if ((chl & 0xC0) != 0xCO)
{
display(i, j, chl);
i++;
if (i >= line_end)
{
J++;
i = k*80 + (x1/8);

chl &= O0x3F;

pass = chl;

ch = fgetc(fsave);

for (m=0; m<pass; m++)

49

FRACTAL PROGRAMMING IN C

display(i, j. ch);
i++;
if (i >= line_end)
{
j++:
i = k*80 + (x1/8);

}
}
graph_out(3,0);
graph_out(8,0xFF);
fclose(fsave);
return(x2);

The next character is read from disk and repeatedly sent to display memory and the
memory address incremented and the counter decremented each time until the
counter reaches zero. After each incrementing of the memory address, the address
is checked against the value for line end and if that value has been reached, the
memory address is reset to the beginning of the line and the memory plane
indicator is incremented. When this indicator reaches 4, all memory planes have
been completed for the designated line, so the while loop is terminated. When all
lines have been completed, the for loop terminates, the EGA registers are reset,
the disk file is closed, and the function returns with a value of x2 (the end of the
horizontal dimension of the window). This value of x2 is used as a starting point
for continued operations if an incomplete display was saved.

Function to Restore a VGA Screen

The function to restore the VGA screen is just the same as that listed in Figure 4-
6 except for the way the palette and color data is treated. Figure 4-7 shows the
code for this section of the VGA function. Note that we do not try to determine
what palette numbers the original color information was associated with, but
simply determine the color register currently associated with each of the sixteen
palettes that are being displayed and send it the appropriate color data from the
disk file.

S0

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

Figure 4-7: Code for Setting VGA Color Register Data

int palette,red,green,blue;

for (i=0; i<16; i++)

{
palette = getVGApalette();
writeColorReg(palette,red*4,green*4,blue*4);

51

an 5

Tools for Graphics
Display Generation

Most C Languages now contain a reasonably good assortment of tools for graph-
ics display generation. Furthermore, my book Graphics Programming in C con-
tains an extensive graphics library with a full explanation of every function.
Why then do we propose to describe a separate graphics library for fractal genera-
tion in this chapter?

The first answer to this question is that the individual graphics libraries for each
version of C are not usually compatible, so that a program written using one set
of routines is not transferable to another C compiler. It would be ideal if the
producers of the different C language compilers would get together and establish a
standard set of graphics routines that were transferable from one compiler to an-
other. Until they do this, we'll try the next best thing and give a toolbox of rou-
tines here that may be used with either Turbo C or Microsoft and Quick C.

Another consideration is that some of the functions provided in this chapter are a
little unusual because they are tailored especially for the fractal curve generating
programs that appear in later chapters or because they offer some unique capabili-
ties that would not usually be included in a generic package.

We will list in this chapter all of the programs and functions that are included in
the tools library of the program disk that accompanies this book. We won't go
into any detailed description of those routines that are simply duplications of
those described in detail in Graphics Programming in C.

53

FRACTAL PROGRAMMING IN C

We will also avoid a detailed description of how to assemble these functions in a
library; this is fully described in the previous book and also is now described in
the documentation for both Turbo C and Microsoft C.

Setting the Display Mode

Before running a graphics program, the system must be set for a display mode.
These modes are fully described in Graphics Programming in C in which
functions are provided for setting up display modes for the CGA, EGA, VGA,
and Hercules Graphics Card. The function listed in Figure 5-1 is the mode
setting function for CGA, EGA, and VGA. It cannot be used with the Hercules
Graphics Card. We are primarily going to be interested only in mode 16 (10H),
which sets the display for a 640 x 350 pixel display having 16 colors. If you
have a VGA, you can experiment with mode 18, which gives higher vertical
resolution, but you will have to modify the programs to run properly.

These colors are set to default values, but can be changed to any of 64 different
values for the EGA using the setEGApalette function or 256K values for the
VGA using the setEGApalette function to set the palettes and a function of your
own design to set the VGA color registers. (If we're going to save some unusual
VGA colors (other than the default colors) to a disk file, we need to define how
we're going to retrieve and record color register data. At present, not all VGA
cards do things exactly the way IBM specifies that they should be done in this
area, so you need to experiment to determine whether your card can really retrieve
color register data or whether you need to save it in a separate buffer when you're
changing color register values.)

Figure 5-1: Function to Set Display Mode

setMode() = sets video mode

f#include "tools.h"

void setMode(int mode)
{

54

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

#include <dos.h>
union REGS reg;
reg.h.ah = 0;

reg.h.al mode;
int86 (0x10,®,®);

Setting the EGA Palettes

The EGA is capable of displaying sixteen different colors at one time in high
resolution mode 16. This function permits us to set each of the sixteen different
colors (referred to as palettes) to any of the 64 color shades available with the
EGA. Figure 5-2 shows the way in which a color number sent to the EGA by
this function controls the color content for that palette on the display. With one
exception, the palettes are set to a color number matching the palette number in
the default state. Thus, the low intensity set of colors corresponds to a 75 per-
cent level of the colors specified by the bits set. The high intensity colors repre-
sent both the 75 percent and 25 percent bits for the selected colors, giving 100
percent level of that color. The exception is low intensity yellow (brown) which
is palette number 6, but is set to 20H, which sets g een to 25 percent and red to
75 percent.

Figure 5-2: Contents of Color Byte Sent to Palette Register

Bit 7 6 5 4 3 2 1 0
25% 25% 25% 75% 75% 75%
Red Green Blue Red Green Blue

The VGA operates in a different fashion, but for mode 16 it can be quite
transparent and appear to be the same as the EGA. The VGA has 256 color reg-
isters, each of which can be set to 256K color hues. These registers are broken
up into four sets of 64 registers. Any one of these four sets can be used to define
the 64 colors from which the display selects the 16 palettes. When you send a
number from 0 to 63 to the setEGApalette function while using the VGA, you
are actually selecting one of the 64 registers from which the VGA takes the des-
ignated color hue. In the default condition, however, one set of 64 registers is

S5

FRACTAL PROGRAMMING IN C

always selected, and that set contains the same 64 shades of color that are des-
ignated by the numbers O to 63 by the EGA.

Therefore, although the mechanism is quite different, sending a number to the
setEGApalette function for the VGA results in the same color that is called up by
using that function with the EGA. You can develop functions that choose a dif-
ferent set of 64 registers to define the colors and that change the color shadings of
the registers from the default values, which makes it possible for you to access
the highly increased number of color hues available on the VGA. Note, however,
that for mode 16 you are always limited to 16 different colors on a display at one
time.

Figure 5-3 shows the function which sets the EGA palettes. It makes use of the
ROM BIOS services to perform this task. Note that whatever value is sent to a
palette register is also stored in the global array PALETTE. This permits us to
keep track of which colors have been set into the palette registers, since this data
is not recoverable from the EGA hardware.

Thus we can use the contents of PALETTE to obtain color data to store in a file
when we are saving a display and be able to regenerate the display with the same
colors that were originally specified. Note, however, that the price we pay for
this is that we must include PALETTE as a global array in each of our programs
that make use of the setEGApalette function. If we don't do this, we will not be
able to compile and run the program properly. Furthermore, if we are going to
use the save_screen function, we must initialize the PALETTE array with the
proper default colors in order to have the correct color information saved to the
file. The only exception to this initialization requirement is when we are going
to set every one of the sixteen EGA palettes to a new color.

Figure 5-3: Function to Set EGA/VGA Palettes

setEGApalette() = sets the color for an EGA palette number

f#finclude "tools.h"

extern unsigned char PALETTE[16];

56

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

void setEGApalette(int palette, int color)
{
ffinciude <dos.h>

union REGS reg;

PALETTE[palette] = color;
reg.h.ah = 0x10;

reg.h.al = 0;

reg.h.bh = color;
reg.h.bl = palette;
int86(0x10,®,®);

Clearing the Screen

Figure 5-4 is a function to clear the screen and leave it with a designated back-
ground color. This function makes use of the ROM BIOS window scrolling ser-
vice to fill the screen with a designated color. The service shown here is for use
with mode 16. If you are going to use VGA mode 17 or VGA mode 18, you
need to change the value put into register d from 0x/84F to OxID4F to fill the
extra lines provided by the higher vertical resolution of these modes.

Figure 5-4: Function to Clear the Screen

cis() = clears the screen

#include "tools.h”

void cls(int color)
{
#include <dos.h>
union REGS reg;

reg.x.ax = 0x0600;
reg.x.cx = 0;

reg.x.dx = 0x184F;
reg.h.bh = color;

int86(0x10,®,®)

57

FRACTAL PROGRAMMING IN C

Plotting a Point on the Screen

Figure 5-5 is a function to plot a point on the EGA or VGA screen. The func-
tion makes use of in-line assembly language and therefore, if compiled with
Turbo C, must be compiled using the on-line compile command fcc since com-
pilation of assembly language from within the integrated environment package is
not permitted. If you are going to attempt to compile this from Microsoft C,
you will need to refer to MicroSoft's documentation for instructions on how to
proceed. Alternately, you can use the function shown in Figure 5-6, which is
basically the same procedure, but will be much slower due to the additional con-
versions which take place when working entirely through a higher level language.

Figure 5-5: Function to Plot a Point on the Screen

plot() = plots a point at (x,y) in color
for EGA, using assembly
language at critical points

#include "tools.h"

void plot(int x, int y, int color)
{
#include <dos.h>

unsigned int offset;
int mask:

offset = (long)y * 80L + ((long)x / 8L);
mask = 0x80 >> (x % 8);

_ES = 0xA000;

_BX = offset;

_CX = color;
AX = mask;

asm MOV AH,AL

asm MOV AL,08

asm MOV DX,03CEH

asm OUT DX, AX

asm MOV AX, OFFO2H

asm MOV DL, O0C4H

asm OUT DX, AX

asm OR ES:[BX],CH

asm MOV BYTE PTR ES: [BX],00H
asm MOV AH,CL

58

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

asm 0UT DX, AX

asm MOV BYTE PTR ES: [BX],OFFH
asm MOV AH,OFFH

asm QUT DX, AX

asm MOV DL,OCEH

asm MOV AX,0003

asm OUT DX, AX

asm MOV AX,0FFO8H

asm OUT DX, AX

Figure 5-6: Function to Plot a Point on the Screen
Without Using Assembly Language

plot() = plots a point at (x,y) in color
for EGA, using assembly
language at critical points

f#include "tools.h”

void plot(int x, int y, int color)

{

#include <dos.h>

ffdefine seq_out(index,val) {outp(0x3C4, index):;\
outp(0x3C5, val);}

ffdefine graph_out(index,val) {outp(0x3CE,index);\
outp(0x3CF, val);}

unsigned int offset;

int dummy,mask;

offset = (long)y * 80L + ((long)x / 8L);
mem_address = (char far *) 0xA0000000L + offset;
mask = 0x80 >> (x % 8);
graph_out(8,mask);

graph_out(3,0x00);

seq_out(2,0x0F);

dummy = *mem_address;

*mem_address = 0;

seq_out(2,color);

*mem_address = OxFF;

seq_out(2,0x0F);

graph_out(3,0);

graph_out(8,0xFF);

59

FRACTAL PROGRAMMING IN C

Displaying a Byte on the Screen

Figure 5-7 is a function that is used to display data on the screen where we have a
byte representing the condition of eight consecutive points on the screen for a
single color plane. This kind of data is available when we are restoring a screen
from a disk file. Having data collected in bytes and isolated by color plane makes
it possible to display it with a much simpler and faster function than if we had to
plot it point by point using the plot function.

Figure 5-7: Displaying a Byte on the Screen

display() = displays byte on the screen

f#include "tools.h"

void display(unsigned long int address, int color_plane,
unsigned char ch)

{
#include <dos.h>

fidefine seq_out(index,val) {outp(0x3C4,index);\
outp(0x3C5,val);}

char far * mem_address;

char dummy;

mem_address = (char far *) 0xA0000000L + address;
dummy = *mem_address;

seq_out(2,(0x01 << color_plane));

*mem_address = ch;

Reading a Pixel from the Screen

Figure 5-8 is a function that uses the ROM BIOS video services to read a pixel
from the screen. This function is rather slow, but fortunately we don't need to
use it nearly as much as its inverse, which plots a point to the screen.

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

Figure 5-8: Function to Read a Pixel from the Screen

readPixel = reads a pixel from the screen

#include "tools.h”
int readPixel(int x, int y)
{

#include <dos.h>

union REGS reg;

reg.h.ah = 0x0D;
reg.x.cx = x;
reg.x.dx = y;

int86 (0x10,®,®);
return (reg.h.al);

Reading a Byte from a Color Plane

This function bears the same relation to the read_pixel function that display does
to the plot function. In other words, instead of reading a single pixel, it reads in-
formation on eight adjacent pixels from one color plane only. It is used in sav-
ing a screen to a disk file. The function is listed in Figure 5-9.

Figure 5-9: Function to Read a Byte from a Color Plane

read_screen() = reads a byte from the screen

f#include "tools.h"

unsigned char read_screen(unsigned long int address,
int color_plane)
{

f#finclude <dos.h>

ftdefine graph_out(index,val) {outp(0x3CE,index);\
outp(0x3CF,val);}

char far * mem_address;

61

FRACTAL PROGRAMMING IN C

unsigned char pixel_data;

mem_address = (char far *) 0xA0000000L + address;
graph_out(4,color_plane);

graph_out(5,0);

pixel_data = *mem_address;

return (pixel_data);

Drawing a Line

Figure 5-10 is a function for drawing a line on the screen. This function, which
makes use of Bresenham's algorithm, is fully described in my book Graphics
Programming in C.

Figure 5-10: Function to Draw a Line on the Screen

drawlLine() = draws a line from one set of coordinates
to another in a designated color

#include "tools.h"

void drawlLine(int x1, int yl, int x2, int y2, int color)

{

62

f#include <dos.h>

extern int LINEWIDTH;

extern unsigned long int PATTERN;

union REGS reg;

fidefine sign(x) ((x) > 0?2 1: ((x) ==07?0: (-1)))

int dx, dy, dxabs, dyabs, i, j, px, py, sdx, sdy, x, y:
unsigned long int mask=0x80000000;

x1 += 320;

yl =175 - ((y1*93) >> 7);
x2 += 320;

y2 =175 - ((y2*93) >> 7);
dx = x2 - x1;

dy = y2 - yl;

sdx = sign(dx);

sdy = sign(dy);

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

dxabs = abs(dx);
dyabs = abs(dy);
x =0;
y =0;
px = x1;
py = yl;
if (dxabs >= dyabs)
{
for (i=0; i<dxabs; i++)
{
mask = mask ? mask : 0x80000000;
y += dyabs;
if (y>=dxabs)
{
y -= dxabs;
py += sdy;
}
px += sdx;
if (PATTERN & mask)
{
for (j=-LINEWIDTH/2; j<=LINEWIDTH/2; j++)
plot(px,py+j,color);
)
mask >>= 1;

else
for (i=0; i<dyabs; i++)

mask = mask ? mask : 0x80000000;
x += dxabs;
if (x>=dyabs)
{
x -= dyabs;
px += sdx;
}
py += sdy:
if (PATTERN & mask)
{
for (j=-LINEWIDTH/2; j<=LINEWIDTH/2; j++)
plot(px+j,py,color);
}
mask >>= 1;

63

FRACTAL PROGRAMMING IN C

Filling a Triangle

Filling a triangle with a designated color is a function that occurs repeatedly when
we are attempting to create fractal landscapes using the midpoint displacement
method as described in Chapter 21. Graphics Programming in C provides a gen-
eralized function for filling polygons that will fill triangles, but is somewhat
complex for the triangle, which is a very simple form of polygon.

The function described here is a lot simpler and faster, but is confined to the one
case of triangles. It is listed in Figure 5-11. The function uses the same tech-
nique as the line drawing algorithm listed above, but instead of plotting each
point on each of the three lines that make up the triangle, it saves the x and y
values of each point in an array of coordinates.

The algorithm is set up so that the coordinate pairs are ordered from the lowest to
the highest values of y, with the x’s in order from low to high for each y. All
values are then changed, if necessary, to be within the bounds of the display. Fi-
nally, lines are drawn along each y coordinate from the beginning to the ending x
values. The function assumes that once you have ordered all of the coordinate
pairs on the three triangle lines, there can only be two values of x for any y, the
first of which marks the beginning of the fill line, and the second marks the end
of the line. Draw a few differently oriented triangles and you can verify that this
is true.

Figure 5-11: Function to Fill a Triangle

fillTriangle() = fills a triangle in a specified color

#include "tools.h"

void fillTriangle (int x1, int yl, int x2, int y2, int x3,
int y3, int color)

{
fidefine sign(x) ((x) > 0 2 1: ((x) ==07?20: (-1)))

int dx, dy, dxabs, dyabs, i, j, k, px, py, sdx, sdy, x, y,
xpoint[4], ypoint[4], xa[350],xb[350],

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

start,end;
long int check:

int x_coord[350], y_coord[350];

for (i=0; i<350; i++)

{

xali] = 640;

xb[i] = 0;
}
xpoint[0] = x1 + 320;
ypoint[0] = 175 - ((y1*93L) >> 7);
xpoint[1] = x2 + 320;
ypoint[1] = 175 - ((y2*93L) >> 7);
xpoint[2] = x3 + 320;
ypoint[2] = 175 - ((y3*93L) >> 7);
xpoint[3] = xpoint[0];

ypoint[3] = ypoint[0];
px = xpoint[0];

py

= ypoint[0];

for (j=0; j<3; j++)

{

dx = xpoint[j+1] - xpoint(jI;
dy = ypoint[j+1] - ypoint(j];
sdx = sign(dx);

sdy = sign(dy);

dxabs = abs(dx);

dyabs = abs(dy);

x =0;

y =0;

if (dxabs >= dyabs)

{

for (k=0; k<dxabs; k++)
{
y += dyabs;
px += sdx;
if (y>=dxabs)
{
y -= dxabs;
py += sdy;
}

if ((py>=0) && (py<=349))

{
if (px < xalpyl)

xalpy]l = px;
if (px > xblpyl)
xblpy]l = px;

65

FRACTAL PROGRAMMING IN C

for (k=0; k<dyabs; k++)
{
py += sdy;
x += dxabs;
if (x>=dyabs)
{
x -= dyabs;
px += sdx;
)
if ((py>=0) && (py<=349))
{
if (px < xalpyl)

xalpyl = px;
if (px > xb(pyl)
xblpy] = px;

}
}
if (ypoint[0] < ypoint[1])
{
start = ypoint[0];
end = ypoint[1];
}
else

start = ypoint[1];
end = ypoint[0];

for (i=0; i<350; i++)

if (xalil < 0)
xalil = 0;

if (xb[i]l > 639)
xb[i] = 639;

)
if (ypoint[2] < start)
start = ypoint[2];
if (ypoint[2] > end)
end = ypoint[2];
if (start < 0)
start = 0;
if (end > 349)
end = 349;
for (i=start; i<=end; i++)
{
for (j=xalil; j<=xblil; j++)
plot(j,i,color);

66

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

Filling an Oval

We are going to be filling a lot of circles and ovals. The function listed in Fig-
ure 5-12 will perform this task. It is quite an improvement over the function
given in Graphics Programming in C as far as simplicity is concerned and it is
just as fast as the previous function. The original function used Bresenham's al-
gorithm to generate a circle, simultaneously plotting points in four quadrants.
Then a line was drawn from the point determined for the radius minus y coordi-
nate to the corresponding point for the radius plus quadrant. The algorithm used
here scans each point within a rectangle bounding the specified oval, and if the
point is found to be inside the oval plots it on the screen.

Figure 5-12: Function to Fill an Oval

fil10val() = draws an oval centered at (x,y) with
radius in y direction of 'b' with
aspect ratio 'aspect' and fills it
with color 'color’

#include "tools.h”
f#finclude <stdio.h>

void fill0val(float x_cen, float y_cen, float radius,
int color, float aspect)

{
##include <dos.h>

union REGS reg;

ffdefine seq_out(index,val) {outp(0x3C4,index);\
outp(0x3C5,val);}

ftdefine graph_out(index,val) {outp(0x3CE,index);\
outp(0x3CF,val);}

unsigned int offset;

char far * mem_address;

float a,b,aspect_square;

long x,y,col,row,dummy,mask,start_x, start_y,end_x,end_y;
float a_square,b_square,b_test;

a = radius/aspect;

a_square = a*a;
b = .729*radius;

67

FRACTAL PROGRAMMING IN C

b_square = b*b;

X = x_cen + 319;

y =175 - (.729*y_cen);
start_x = max(0,x-a);
end_x = min (639,x+a);
start_y = max(0,y-b);
end_y = min(349,y+b);

for (col=start_x; col<=end_x; col++)
{
b_test = b_square - (b_square*(col-x)*(col-x))/a_square;
mask = 0x80 >> ((col) % 8);
graph_out(8,mask);
seq_out(2,0x0F);
for (row=start_y; row<=end_y; row++)
if ((long)(row-y)*(row-y) <= b_test)
{
offset = (long)row*80L + ((long)(col)/8L);
mem_address = (char far *) 0xA0000000L +
offset;
dummy = *mem_address;
*mem_address = 0;
seq_out(2,color);
*mem_address = OxFF;
seq_out(2,0x0F);
}
}
graph_out(3,0);
graph_out(8,0xFF);

Turtle Graphics

Turtle Graphics was first developed for the LOGO language, which was supposed
to simplify programming for children. It consisted of a "turtle,” which was dis-
played on the graphics screen and could be pointed and moved by simple com-
mands. A variation of turtle graphics has been found to be useful for generating
von Koch and other fractal curves. We have global variables that tell us the
direction that the turtle is pointing, its coordinates, and the size for a step of tur-
tle movement. There are only three functions that we use. They are described
below.

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

Point

The input parameters to the function point are the coordinates of the beginning
and end points of a line. The function determines the turtle angle in relation to
the x axis if the turtle is facing in the direction of the line defined by the input
points. This angle, in degrees, is returned by the function. The function is listed
in Figure 5-13.

Figure 5-13: Point Function

point() = sets the beginning angle for turtle
in tenths of a degree

#include "tools.h"
f#include <math.h>

float point(float x1, float y-one, float x2, float y2)
{
f#finclude <math.h>

float theta;
if ((x2 - x1) == 0)
if (y2 > y-one)
theta = 90;

else
theta

270;
else
theta = atan((y2-y-one)/(x2-x1))*57.295779;
if (x1>x2)
theta += 180;
return(theta);

Turn

For this function, you specify an angle through which you want the turtle to
turn. Positive angles are counter-clockwise and negative angles are clockwise.
The function adds the specified angle to the global variable that defines the current
turtle angle. The function is listed in Figure 5-14.

69

FRACTAL PROGRAMMING IN C

Figure 5-14: Turn Function

turn() = changes turtle pointing direction

f#finclude "tools.h"

void turn(float angle)
{
extern float turtle_theta;

turtle_theta += angle;

Step

This function moves the turtle position by one step. The step length is defined
by the parameter turtle_r. The function makes use of the current turtle position
coordinates turtle_x and turtle_y and the turtle direction angle turtle_theta to de-
termine the new position coordinates after the step has been taken. The function
is listed in Figure 5-15.

Figure 5-15: Step Function

step() = advances turtle by step r in current direction

#include "tools.h"

void step (void)

{
#include <math.h>
extern float turtle_x;
extern float turtle_y;
extern float turtle_r;
extern float turtle_theta;

turtle_x += turtle_r*cos(turtle_theta*.017453292);:
turtle_y += turtle_r*sin(turtle_theta*.017453292);

70

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

Function to Display and Move Cursor

The improved Mandelbrot set program, as well as the programs for generating
similar sets for dragon and phoenix functions, which will be listed later, all make
use of the move_cursor function to position a cursor on the screen and/or use it
to select the limits for a rectangle that defines the limits of the next screen to be
generated. Figure 5-16 lists the move cursor function. The parameters that are
passed to this function are a type number, a number for the color of the cursor,
and the minimum column and row positions.

Figure 5-16: Function to Display and Move Cursor

move_cursor() = moves cursor and saves position

#include <stdio.h>
#include "tools.h"

void move_cursor(int type,int color,int min_col, int min_row)
{
#include <dos.h>

extern int CURSOR_X,CURSOR_Y:

extern union LIMIT XMax,YMax,XMin,YMin,Pval,Qval;
extern float TXMax,TXMin,TYMax,TYMin;

union REGS reg;

unsigned int mask;
int i,j,image,image_store[256],index,ch,temp,1imit{7];
char far *base;

1imit[0] = 11;
1imit[1] = 9;
limit[2] = 10;
1imit[3] = 10;
1imit[4] = 12;
1imit[5] = 14;
limit[6] = 14;
do
{

index = 0;

switch(type)

{

case 0:
for (i=0; i<16; i++)

71

FRACTAL PROGRAMMING IN C

image_store[index++] = plot_point
(CURSOR_X+i,CURSOR_Y,
color);
for (i=1; i<16; i++)
image_store[index++] = plot_point
(CURSOR_X,CURSOR_Y+i,
color);
break;
case 1:
for (i=0; i<16; i++)
image_store[index++] = plot_point
(CURSOR_X+15,CURSOR_Y+i,
color);
for (i=0; i<15; i++)
image_store[index++] = plot_point
(CURSOR_X+1i,CURSOR_Y+15,
color);
break;
case 2:
for (j=0; j<7; j++)
{
for(i=j; i<limit[j]; i++)
{
if((i==8) && (j ==5))
i=10;
if((i==8) && (j ==6))
i=12;
image_store[index++] = plot_point
(CURSOR_X+j ,CURSOR_Y+i,
color);
}
}
image_store[index++] = plot_point(CURSOR_X+7,
CURSOR_Y+7,color);
}
ch = getch();
if (ch != 0x0D)
{
if (ch == 0)
ch = getch() + 256;
index = 0;
switch(type)
{
case 0:
for (i=0; i<16; i++)
plot_point (CURSOR_X+i,CURSOR_Y,
image_store[index++]);
for (i=1; i<16; i++)
plot_point(CURSOR_X,CURSOR_Y+i,
image_store[index++]);
break;

72

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

case 1:
for (i=0; i<16; i++)
plot_point (CURSOR_X+15,CURSOR_Y+i,
image_store[index++]);
for (i=0; i<15; i++)
plot_point (CURSOR_X+i,CURSOR_Y+15,
image_store[index++]);
break;
case 2:
for (j=0; j<7; j++)
{
for(i=j; i<dimit[jl; i++)
{
if((i==8) && (j ==5))
i=10;
if((i==8) && (j ==6))
i=12;
plot (CURSOR_X+j,CURSOR_Y+i,
image_store[index++]);
}
}
plot (CURSOR_X+7,CURSOR_Y+7,
image_storelindex++]);
}
reg.h.ah = 2;
int86(0x16,®,®);
if ((reg.h.al & 0x03) != 0)
{
switch(ch)
{
case 56:
if (CURSOR_Y > min_row)
CURSOR_Y -= 10;
break:
case 52:
if (CURSOR_X > min_col)
CURSOR_X -= 10;
break;
case 54:
if (CURSOR_X < 629)
CURSOR_X += 10;
break;
case 50:
if (CURSOR_Y < 329)
CURSOR_Y += 10;

}

else

{
switch(ch)
{

73

FRACTAL PROGRAMMING IN C

case 333:
if (CURSOR_X < 639)
CURSOR_X++;
break;
case 331:
if (CURSOR_X > min_col)
CURSOR_X--;
break;
case 328:
if (CURSOR_Y > min_row)
CURSOR_Y--;
break;
case 336:
if (CURSOR_Y < 33%)
CURSOR_Y++;
break;
}
}
switch(type)
{
case 0:

TXMin = XMin.f + (XMax.f - XMin.f)/
639*(CURSOR_X) ;

TYMax = YMax.f - (YMax.f - YMin.f)/
349*CURSOR_Y;

gotoxy(5,24);

printf("XMin= %f YMax= %f",TXMin,TYMax);

break;

case 1:

TXMax = XMin.f + (XMax.f - XMin.f)/
639*(CURSOR_X + 16);

TYMin = YMax.f - (YMax.f - YMin.f)/
349* (CURSOR_Y + 16);

gotoxy(41,24);

printf(" XMax= %f VYMin= %f",TXMax,TYMin);

break;

case 2:
Pval.f = XMin.f + (XMax.f - XMin.f)/639*
CURSOR_X;
Qval.f = YMax.f - (YMax.f - YMin.f)/
349*CURSOR_Y;
gotoxy(5,24);
printf(" P=%f Q= %f ",Pval.f,Qval.f);

}

}
while (ch != 0x0D);

74

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

plot_point() = plots a point at (x,y) in color
for EGA, using Turbo C port
output functions and returns
original point color

int plot_point(int x, int y, int color)
{
fidefine seq_out(index,val) {outp(0x3C4,index);\
outp(0x3C5,val);}
ftdefine graph_out(index,val) {outp(0x3CE,index);\
outp(0x3CF,val);}
ffdefine EGAaddress 0xA0000000L

int index,old_color=0;
unsigned char mask, dummy,exist_color;
char far *mem_address;

mem_address = (char far *) (EGAaddress +
((long)y * 80L + ((long)x / 8L)));

mask = 0x80 >> (x % 8);

for (index = 0; index<4; index++)

{
graph_out(4,index);
graph_out(5,0);
exist_color = *mem_address & mask;
if (exist_color !=0)

old_color |=(0x01<<index);

}

graph_out(8,mask);

seq_out(2,0x0F);

dummy = *mem_address;

*mem_address = 0;

seq_out(2,color);

*mem_address = OxFF;

seq_out(2,0x0F);

graph_out(3,0);

graph_out(8,0xFF);

return(old_color);

The initial cursor position is established by the global parameters CURSOR_X
and CURSOR_Y, which are in display coordinates (0,0 is at the top left corner of
the screen; for the EGA, the maximum column is 639 and the maximum row is
349). The move_cursor function makes use of the function plot_point, which is
similar to the plot function except that it has the capability to read a pixel from
the screen, as well as plotting one.

75

FRACTAL PROGRAMMING IN C

When this function is called, if the parameter image is zero, the pixel color at lo-
cation (CURSOR_X, CURSOR_Y) is read and returned by the function. When
image is not zero, the pixel color is read and then a new pixel of the color color
is written. Now, looking at move_cursor you will note that for each type of
cursor that is to be plotted, we plot points to the screen to generate the desired
cursor pattern and at the same time read the original screen contents of those
points into an array. The function then goes into a loop, processing keystrokes
until an Ent is encountered (0x0D), whereupon the loop is terminated.

The only other keystrokes that are recognized are the shifted and unshifted arrow
keys. We can read the keystrokes in normal fashion for the unshifted arrow keys.
We expect a first character of 0x00; if that occurs, the function automatically
reads another character and adds 256 to it to give a unique indication. If one of
the arrow keys is hit, the cursor is moved one pixel in that direction if there is
sufficient space for the movement. The shifted arrow keys look just like ordinary
numbers so we have to call one of the ROM BIOS services to determine if the
Shift key was also activated. If a shifted arrow is encountered, the cursor is
moved ten pixels in the arrow direction if enough space exists.

After each keystroke, the saved background is rewritten at the old cursor position.
The cursor is then redrawn at the new position. For type 0, the ultimate cursor
position defines the values of XMin and YMax that are used in future display
generation. Type / operation is the same, except that the cursor is in the lower
right corner and the values stored and displayed are XMax and YMin. Usually on
the second move_cursor call (type 1), the limiting values for the upper and right
positions of the cursor are the final values stored by the first move_cursor call.
Thus, the lower right corner of the rectangle is prohibited from ever moving to
the left or above the upper left corner.

For type 2, the cursor is an arrow, which is used in such cases as to select the P
and Q parameter locations on a map of the Mandelbrot set in order to generate a
Julia set (more about this later). The position values that are displayed and stored
are for P and Q. The values for these various parameters are calculated within
the move_cursor function and displayed at the bottom of the screen.

76

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

When the do loop finally encounters an Ent keystroke, it terminates; the values
of CURSOR_X and CURSOR_Y are preserved in the global variables and must
be processed as needed by the calling program.

Bounds Program

The values of some or all of XMax, YMax, XMin, YMin, P, and Q are essential
in proceeding from one of the Mandelbrot sets or similar figures to another more
expanded one, in completing a partially generated figure that has been saved on
disk, and in generating one of the Julia or similar sets from the appropriate map
figure. We also would like to know at times the actual color values used in gen-
erating a figure. All of this information is stored on the disk file that stores the
figure for future use.

The program Bounds asks for a figure file name and then displays that file on the
screen. It then overwrites on it the parameters given above and all of the color
palette values. The figure is not displayed primarily for use at this time, but
simply to give you an opportunity to assure that you asked for the right file
name. Thus it doesn't matter much if it gets partially covered up. By then, you
have already identified the figure, and after Bounds is done there is usually enough
of the figure left displayed for satisfactory identification. Figure 5-17 lists the
Bounds program.

Figure 5-17: Function to Show Figure Parameters

bounds = program to get saved screen parameters

f#finclude <stdio.h>
#include <stdlib.h>
f#include <math.h>
f#finclude <dos.h>
ffinclude <process.h>
f#include "tools.h"

int LINEWIDTH=1, OPERATOR=0x00, ANGLE, XCENTER, YCENTER;

unsigned long int PATTERN=OxFFFFFFFF;
unsigned char PALETTE[16]={0,1,2,3,4,5,20,7,56,57,58,59,60,

77

FRACTAL PROGRAMMING IN C

61,62,63};
union LIMIT XMax,YMax,XMin,YMin, Pval, Qval;

char file_name[13];
FILE *f1;

main()
{
int i,color, row, col,error,response,repeat=0x30,start_col;

printf("Enter file name: ");
scanf("%s",file_name);
error = restore_screen(file_name);
if (error == 0)
{
printf("\nCannot find %s. Hit any key to exit",
file_name);
exit(0);
}
else
|
for (i=0; i<16; i++)
printf("\nPalette #%d = %d",i,PALETTE[i]);
printf("\n XMax = %f", XMax.f);
printf("\n XMin = %f" XMin.f);
printf("\n YMax = %f",YMax.f);
printf("\n YMin = %f",YMin.f);
printf("\n P = %f",Pval);
printf("\n Q = %f",Qval);
getch();

Selecting Colors

Sometimes, the best laid plans for creating beautiful colors go astray, and the re-
sulting figure is horribly different from what you anticipated. Of course, you
could go back to the original program, change the setEGApalette statements or in
some other way modify the way in which you specify that colors be generated.
The program described in this section provides an easier method. It will display a
selected screen file on the screen and allow you to change each of the sixteen
palettes to any of the 64 shades available with the EGA. When you are done, it
will save the display together with the new color designations in a new disk file.

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

The program colors is listed in Figure 5-18. At the beginning, the program asks
you for a file name. It can read in any .pcx file on which you have stored a dis-
play. It then permits you to change all of the display colors. Once you start
changing colors with the left and right cursor arrows, a legend will appear at the
bottom of the screen giving the current palette number and color number. Don't
be dismayed; when you are finished changing colors, the display will be redrawn
so that the legend will not appear in your new display file.

Figure 5-18: Function to Change Display Colors

colors = program to change colors of a display

#include <stdio.h>
#include <math.h>
f#include <dos.h>
#include <process.h>
f#finclude "tools.h"

int readPixel(int x, int y);

int LINEWIDTH=1, OPERATOR=0x00;

unsigned Tong int PATTERN=0xFFFFFFFF;

unsigned char PALETTE[16]={0,1,2,3,4,5,20,7,56,57,58,59,60,61,
62,631}

unsigned char SAVER[16];

char file_name[13],file_name2[13] = {"colors00.pcx"};

int ch,i;

int error,color;

int palette_register;

FILE *f1;
union LIMIT XMax, YMax, XMin, YMin, Pval, Qval;

main()

{
printf("Enter file name: ");
scanf("%s",&file_name);
error = restore_screen(file_name);

if (error == 0)
exit(0):
for (;;)
{
ch = 0;

cscanf("%d",&palette_register):

79

FRACTAL PROGRAMMING IN C

if (palette_register > 15)
break;
color = PALETTE[palette_register];
for (;3)
{
ch = getch();
if (ch == 0x0D)
break;
if (ch == 0)
ch = getch() + 256;
if (ch == 333)
color++;
if (ch == 331)
color--;
if (color > 63)
color = 0;
else
if (color < 0)
color = 63;
gotoxy(10,23);
printf("Palette: %d ",palette_register);
gotoxy(10,24);
printf("Color #: %d ",color);
setEGApalette(palette_register,color);
}
}
for (i=0; i<16; i++)
SAVER[i] = PALETTE[i];
error = restore_screen(file_name);
for (i=0; i<16; i++)
PALETTE[i] = SAVER[iI;
save_screen(0,0,639,349,file_name2);

You begin the process by entering a palette number (between 0 and 15), followed
by hitting the Ent key. The color number will be automatically set to that of the
current color shade for the selected palette.

You can change the color number by hitting the right or left arrow keys. Each
time you hit the right arrow, the color number will increase by one and the color
of the selected palette on the display will change accordingly. Each time you hit
the left arrow, the color number will decrease by one and the color of the selected
palette on the display will change accordingly. If you are holding down an arrow
key to scan through color changes and you go too far, you can reverse direction
by using the other arrow key.

80

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

Have no fear, you cannot get out of the permissible color range of 0 to 63; if you
go beyond 63, the color number returns to 0, and if you go below zero, the color
number returns to 63. Once you find the color shade that you like, hitting Ent
freezes that color into the selected palette. You are then ready to enter another
palette number.

When you have the picture colored exactly as you want it, entering a palette
number greater than 15 terminates the program. The screen is rewritten to get rid
of the legend at the bottom. The rewritten screen appears in the original colors.
but your color modifications are saved and will permanently become part of the
new file.

The new display will be saved in a file called colorsnn.pcx, where nn is a pair of
digits from 00 to 99. The program will automatically start out with 00 and
search sequentially for a pair of digits that you have not used yet. When it finds
them, they will be used for the file that is currently being saved.

81

6

The Lorenz and Other

Strange Attractors

In 1962, Edward Lorenz was attempting to develop a model of the weather when
he observed some strange discrepancies in the behavior of his model. When he
attempted to restart the model at a point partway through the original computer
run, the results, although apparently starting at the same point, diverged farther
and farther from the original run as time went on. He verified that this was not a
computer error, but rather was caused by the fact that he had reentered the data to
only three decimal place accuracy, whereas the computer data at that point in the
original computer run was saved to six decimal places. Lorenz simplified his
model until it consisted of only three differential equations, which, in addition to
being a simplified weather model, also described the flow of fluid in a layer of
fluid having a uniform depth and a constant temperature difference between the
upper and lower surfaces. The equations are:

dx/dt = 10(y - x) (Equation 6-1)
dy/dt = xz + 28x -y (Equation 6-2)
dz/dt = xy - (8/3)z (Equation 6-3)

When Lorenz laboriously calculated a number of values for these equations on a
primitive computer, he discovered the first of the strange attractors, and created
the foundation for the discipline of "Chaos," which is creating drastic changes in
all fields of science, and of which the principle drawing tools are fractals.

83

FRACTAL PROGRAMMING IN C

Strange Attractors

What is a strange attractor? To answer this question, we must first plot a
candidate set of equations in phase space—a space of enough dimensions to
permit representing each solution of the equation set at a given time as a single
point. For the Lorenz equations given above, a three-dimensional phase space is
needed. If the solution to this set of equations was constant throughout time, it
would converge in phase space to a single point, the attractor, no matter what the
initial conditions had been. If the solution converged to a periodic function,
which repeated over and over after fixed interval of time, the result in phase space
would be some form of closed curve, the periodic attractor or limit cycle. If
neither of these cases is true, yet the equation has a fully determined path through
phase space, which never recurs, the resulting curve is called a strange attractor.
No matter what initial conditions are specified, the solution always converges
quickly to a point on this curve and continues to follow the path of the curve
from there on.

The Lorenz Attractor

It's time to take a close look at the Lorenz attractor. Plate 1 shows it projected
upon the YZ plane. Note, however, that without most of the traditional cues that
help our senses to convert a two-dimensional drawing to three dimensions, it is
not too easy to understand the exact dimensional qualities of the Lorenz attractor,
no matter what kind of projection we use. The color in the color scheme is
changed each time the value of the x coordinate crosses zero. The curves repre-
sent 4,000 iterations of the equation with a time step of 0.01. Unfortunately, the
resolution of the display screen has proven inadequate to the task of separating
out adjacent portions of the curve. However, no matter how good the resolution
of your display, the curves will exceed the resolution capability if enough itera-
tions are run.

These curves are a sort of encapsulation of what this new science of Chaos is all
about, both in its good and its bad features. You need to watch the curve being
drawn and understand that although the curve seems to intersect with itself in the
projections, it never does touch itself in actual three-dimensional space.

84

CH. 6: THE LORENZ AND OTHER STRANGE ATTRACTORS

The good aspect of Chaos is that this simple set of equations can completely
describe a very rich and complex nonperiodic behavior. Prior to investigating
this kind of equation system with modern high-speed computers, scientists
postulated that such complex behavior must be the result of very complex
systems of equations containing many parameters and variables, with possibly a
number of random variables thrown in. Now it is known that complex behavior
may often be represented in a very simple manner. The bad aspect can be
discovered in the following manner: select a starting point somewhere on the very
crowded part of the curve; attempt to trace the path from there on.

We already pointed out that the display has inadequate resolution, so that a couple
of different portions of the curve double up at the most crowded places. Thus,
you can't be sure that you are tracing the right path, since as the adjacent curves
begin to diverge, your selected path will break in two and you can't be sure which
path to follow. How does this apply in the real case? There is no overlapping
on the infinite resolution display; each set of initial values determines one and
only one path to be followed. But there are an infinite number of paths in the
vicinity of the starting point you selected, and which one will be followed
depends upon how precisely you specified your initial coordinates.

If you selected x = 3.15678, for example, you would travel a totally different path
than if you had selected x = 3.15679. And you must remember that x = 3.15678
is actually x = 3.15678000..., so that by adding another decimal place with a
value other than zero, you can always diverge to a different path altogether. This
means that no matter how accurately you select the initial coordinates, if they are
at all different from the real values that might exist for a natural phenomena, the
value that you predict will diverge farther and farther from the real value as time
progresses. This is bad news for those who wish to measure some initial
conditions and use them to predict long-term results. Note that measuring more
precisely, so as to come closer to the correct long-term values, does not work
because the amount of divergence is not a function of the size of the error, but
can differ widely and unpredictably.

85

FRACTAL PROGRAMMING IN C

Runge Kutta Integration

In order to solve the system of differential equations given above, we must use
some numerical technique that comes up with an accurate value for x, y, and z as
we integrate over time. We have chosen a time step of 0.01. Lorenz, in his
original paper, used a double approximation integration technique. However,
with more sophisticated computers at our disposal, we can use a more
complicated integration method to produce greater accuracy. The method that will
be used is the fourth order Runge Kutta technique. This method is a one-step
procedure that uses only first-order derivatives to achieve the same accuracy
obtainable with an equivalent order Taylor expansion using higher order
derivatives. There are many different sets of coefficients that can be used with the
Runge Kutta integration method; the coefficients that we have selected were
chosen to minimize the computer time required for each iteration. Given a
differential equation:

dy/dt = f(t,y) (Equation 6-4)

once the initial condition is established, at each time step, we have:

Yn+l1 = ¥Yn + ko/6 + k1/3 + kp/3 + k3/6 (Equation 6-5)

where:
kg = h f(ty., yn) (Equation 6-6)
k] = h f(ty + h/2, yp + kg/2) (Equation 6-7)
kp = h f(th + h/2, yn + k1/2) (Equation 6-8)
k3 = h f(typ + h, yp + k2) (Equation 6-9)

and h is the time step (0.01).
You will find this integration technique in the middle of the Lorenz attractor

program. Note that in determining each k, the equation has to be solved for the
appropriate values of ¢ and y.

86

CH. 6: THE LORENZ AND OTHER STRANGE ATTRACTORS

Programming the Lorenz Attractor

Figure 6-1 lists the program to generate the Lorenz attractor. Three loops are
made through the program; one to plot the projection on the YZ plane, one to
plot the projection on the XY plane, and one to provide the three-dimensional
projection. As mentioned above, the color scheme used is to change the color
each time that the curve crosses the x axis. You may want to try some other
color technique. For example, you could use different colors to represent the
position of the curve. The program generates one projection of the curve and
then stops until you hit a key. It then generates the next projection, waits for
another key input and finally generates the three-dimensional projection. You can
insert different angles to change the viewing direction of the three-dimensional
projection, but you may also have to do some additional modification of the
dimensioning to keep part of the curve from falling off of the edge of the display.

Figure 6-1: Program to Generate Lorenz Attractors

lorenz = program to plot Lorenz Attractor

#include <dos.h>
#include <stdio.h>
#include <math.h>
#include "tools.h"

float (radians_to_degrees(float degrees);:

const int maxcol = 639;
const int maxrow 349;

int LINEWIDTH = 3, OPERATOR = 0;

int color = 15;

unsigned long int PATTERN = OxFFFFFFFF;

unsigned char PALETTE[16]={0,1,2,3,4,5,20,7,56,57,58,59,60,61,62,63};
float rad_per_degree=0.0174533,x_angle=45,y_angle=0,z_angle=90;

union LIMIT XMax,YMax,XMin,YMin,Pval,Qval;

char file_name[13] = {"lorenz00.pcx"};

main()
{
double x,y.z,d0_x,d0_y,d0_z,d1_x,dl_y,.dl_z,d2_x,d2_y,d2_z,
d3_x,d3_y,d3_z,xt,yt,zt,dt,dt2,third=0.333333333,
SX,Sy,Sz,Cx,Cy,cz,temp_x,temp_y,old_y;

87

FRACTAL PROGRAMMING IN C

int i, j, row, col, old_row, old_col;

x_angle = radians_to_degrees(x_angle);
sx = sin(x_angle);
cx = cos(x_angle);
y_angle = radians_to_degrees(y_angle);
sy = sin(y_angle);
cy = cos(y_angle);
z_angle = radians_to_degrees(z_angle);
sz = sin(z_angle);
cz = cos(z_angle);
for (j=0; j<3; j++)
{
color = 4;
LINEWIDTH = 3;
x =0;
y =1;
z =0;
setMode(16);
if (j ==0)
{
old_col = y*9;
old_row = 9*z - 240;
drawline(-320,-238,319,-238,15);
drawline(0,-238,0,239,15);
gotoxy(79,24);
printf("Y");
gotoxy(42,1);
printf("Z");
}
if (j ==1)
{
old_col = y*10;
old_row = 10*x;
drawline(-320,0,319,0,15);
drawline(0,-238,0,238,15);
gotoxy(79,12);
printf("Y");
gotoxy(42,1);
printf("X");
}
if (j == 2)
{
old_col = y*9;
old_row = 9*z - 240;
drawline(-320,-238,319,-238,15);
drawline(0,-238,0,239,15);
drawline(0,-238,319,82,15);
gotoxy(79,24);
printf("Y");
gotoxy(42,1);

}

CH. 6: THE LORENZ AND OTHER STRANGE ATTRACTORS

printf("Z");
gotoxy(79,8);
printf("X");

LINEWIDTH = 1;

dt = 0.01;

dt2 = dt/2;

for (i=0; i<8000; i++)

{

d0_x = 10*(y-x)*dt2;
dO_y = (-x*z + 28*x - y)*dt2;
d0_z = (x*y - 8*z/3)*dt2;
xt = x + d0_x;
=y + d0o_y:
zt =z + d0_z;
dl_x = (10*(yt-xt))*dt2;
dl_y = (-xt*zt + 28*xt - yt)*dt2;
dl_z =(xt*yt - 8*zt/3)*dt2;
xt = x + dl_x;
=y +dl_y;
=z +dl_z;
d2_x = (10*(yt-xt))*dt;
d2_y = (-xt*zt + 28*xt - yt)*dt;
d2_z =(xt*yt - 8*zt/3)*dt;

xt = x + d2_x;

yt =y +d2_y;

2t =z + d2_z;

d3_x = (10*(yt - xt))*dt2;

d3_y = (-xt*zt + 28*xt - yt)*dt2;

d3_z (xt*yt - 8*zt/3)*dt2;
old_y = y;

X += (d0_x + dl_x + dl_x + d2_x + d3_x) * third;
y += (dO_y + dl_y + dl_y + d2_y + d3_y) * third;
z += (d0_z + dl_z + dl_z + d2_z + d3_z) * third:
if (j ==0)
{

col = y*9;

row = 9*z - 240;
if (((co1<0) && (old_col >=0)) || ((col > 0)
&& (o0ld_col <= 0)))
color++;
}
if (j ==1)
{
col y*10;
row 10*x;
if (((co1<0) && (old_col >=0)) || ((col > 0)
&& (old_col <= 0)))
color++;

}
if (j ==2)

89

FRACTAL PROGRAMMING IN C

if (((y<0) && (old_y >=0)) || ((y > 0)
&& (old_y <=0)))
color++;

temp_x = x*cx + y*cy + z*cz;

temp_y = x*sx + y*sy + z*sz;

col = temp_x*8;

row = temp_y*7-240;

}
drawlLine(old_col,0ld_row,col,row,color);
old_row row;

old_col col;

}
save_screen(0,0,639,349,file_name);
getch();

float radians_to_degrees(float degrees);
{
float angle;

while (degrees >= 360)
degrees -= 360;
while (degrees < 0)
degrees += 360;
angle = rad_per_degree*degrees;
return angle;

Another thing that you might like to investigate is the number of iterations of
the inner loop. You can reduce or increase it and obtain different amounts of
detail in the displays. Finally, just before the drawLine function, you can insert
an if statement similar to this:

if ((i>= 1400) && (i <= 1900)
This statement will cause only the iterations between 1400 and 1900 to be
displayed. This is the section of the curve that Lorenz used to illustrate his
original paper. You can, if you wish to speed up the program, use an if

statement like:

if (i >= 1400)

90

CH. 6: THE LORENZ AND OTHER STRANGE ATTRACTORS

and change the upper limit of the for loop to 1900 to achieve the same result.
You cannot change the starting value of the for loop to 1400, since you will not
then know what the initial values are for x, y, and z.

Other Strange Attractors

The Lorenz attractor proceeds in an orderly fashion from one point to the next as
time increases, so that we can draw a good picture of it by drawing lines that
connect each pair of adjacent points. Now let's consider a different kind of
strange attractor. This one is a dynamical system first reported by Clifford A.
Pickover. It consists of the system of equations:

Xn+1 = sin(ayp) - zpcos(bxp) (Equation 6-10)
Yn+l = Zpsin(cxp) - cos(dyp) (Equation 6-11)
Zp+1 = sin(xp) (Equation 6-12)

There is no time step here. Moreover, the point in phase space described by the
equations jumps about in what appears to be a totally random fashion. However,
when the points for a large number of iterations are plotted, it becomes evident
that there is a finite set of positions that the point described by the function can
occupy, and that the point ultimately goes to this attractor irrespective of the
initial conditions. Figure 6-2 lists a program for generating this strange attractor
for a specific set of the parameters a, b, c, d, and e and displaying it projected on
first the XY and then the YZ planes. The resulting displays are shown in Figures
6-3 and 6-4, respectively.

Figure 6-2: Program to Generate a Strange Attractor

strange = program to generate strange attractor

#include <stdio.h>
#include <math.h>
#include <dos.h>

ffinclude "tools.h"

91

FRACTAL PROGRAMMING IN C

float Xmax = 2.8,Xmin = -2.8,Ymax = 2,Ymin = -2, X =0, Y =0,
Z=0;
float deltaX,deltaY,Xtemp,Ytemp,Ztemp:
int col,row,j,max_row = 349, max_col = 639,color;
float a = 2.24, b= .43, ¢ = -.65, d = -2.43, e = 1;
long int max_iterations=50000,i;
int OPERATOR = 0;
char ch;
main()
{
setMode(16);
deltaX = max_col/(Xmax - Xmin);
deltaY = max_row/(Ymax - Ymin);
for (j=0; j<2; j++)
{
cls(0);
for (i=0; i<max_iterations; i++)
{
Xtemp = sin(a*Y) - Z*cos(b*X);
Ytemp = Z*sin(c*X) - cos(d*Y);

L = e*sin(X);

X = Xtemp;

Y = Ytemp;

if (j==0)

{
col = (X - Xmin)*deltaX;
row = (Y - Ymin)*deltaY;

}

else

{
col = (Y - Xmin)*deltaX;
row = (Z - Ymin)*deltaY;

if ((col1>0) && (col<=max_col) &&
(row>0) && (row<=max_row))
{

color readPixel(col,row);
color = (++color) %15+1;
plot(col,row,color);

}

getch();
}

92

CH. 6: THE LORENZ AND OTHER STRANGE ATTRACTORS

Figure 6-3: Strange Attractor Projected on XY Plane

93

Figure 6-4: Strange Attractor Projected on YZ Plane

FRACTAL PROGRAMMING IN C

S Ae
st e,

TTT——— g R K R

W iyt i £y
GOV T WY A
wafe

- Ty AT NP e

94

7

The Population Equation
and Bifurcation Diagrams

It was in 1798 that Thomas Malthus made the first well-known attempt to apply
mathematics to the growth and decline of populations. In his paper "An Essay
on the Principle of Population As It Affects the Future Improvement of Society,"
Malthus presented the proposition that population, if unchecked, grows in a ge-
ometric manner while the growth of available food supplies is arithmetic.

Consequently, unless strict birth control measures were introduced, Malthus fore-
saw extended calamity and widespread starvation. Fortunately for us, and unfor-
tunately for the validity of Malthus' theory, improvements in food production
techniques kept pace with population growth and the disaster never occurred.
Consequently Malthus' theory has been out of favor for a number of years. Just a
few years ago, however, the Club of Rome commissioned the development of a
massive computer model to model the future of the world. Its first runs predicted
that population increases will reach the limit of earthly resources and cause, by
the year 2000, the kind of catastrophes that Malthus predicted. Whether one ac-
cepts these results at face value or not, the Malthusian predictions have certainly
gained a new lease on life.

The Population Equation

By the early 1950s, a simplified equation for population growth was being regu-
larly used by ecologists. The equation is:

95

FRACTAL PROGRAMMING IN C

Xn+l = rxp(l - xp) (Equation 7-1)

Rather than simply allow the population to grow at an uncontrolled rate, the use
of the (1 - x) factor implies that the larger the population becomes, the more
forces are applied to reduce growth. Generally speaking, using this equation
(particularly if the parameter r is less than one) causes the population to reach a
maximum when x is equal to 0.5. If the population dies out (x decreases to
zero), it, of course, never recovers and the species is extinct.

On the other hand, the population will also die out if such tremendous over-
growth occurs that the value of x reaches one. Strangely enough, everyone as-
sumed that this equation was well-behaved, and for a long time, no one discovered
the chaotic behavior that could occur when r took on larger values. This is one
of those things that common sense makes obvious once the facts are discovered.
We have things like the seven-year locusts, which have a tremendous population
explosion every seven years. Surely such examples should have made us suspect
that a population value could achieve a stability with more than one stable value
and shift back and forth between these values in successive iterations. But it was
not until 1971 that Robert May, at the Institute for Advanced Study at Princeton,
studied this equation in detail for a wide range of values of r and at last began to
come to an understanding of the complicated behavior that was hidden in the
simple expression.

Bifurcation Diagrams

The best way to make sense of the really complicated behavior of the simple
equation given above is through the use of a graph. These graphs are usually re-
ferred to as bifurcation diagrams. What we are going to do is travel through a
range of values of r, sampling at intervals close enough so that we won't miss
anything. For each r, we will start with the nominal value of 0.5 for x and do
256 iterations. After 64 iterations, x should have settled down to its final steady
state conditions. We then plot the values of x associated with this » from 64 to
256 iterations. For the smaller values of r, where everything is well-behaved, we
find that x has settled to a single value. But at some point, there are two final

96

CH. 7: THE POPULATION EQUATION AND BIFURCATION DIAGRAMS

values for x, then 4, then 8 and so forth. Figure 7-1 is the listing for the pro-
gram to generate our bifurcation diagrams for the population equation.

Figure 7-1: Program to Plot Bifurcation Diagrams

#include <conio.h>
#include <stdio.h>
#include <dos.h>
finclude <math.h>
#include "tools.h"

char ch;
int LINEWIDTH = 1;
unsigned long int PATTERN = OxFFFFFFFF;

void main()

{
float r=.95,x,delta_r;
int i,j, row, col;

setMode(16);
for (j=0; j<2; j++)

{
delta_r = 0.005;

if (j ==1)
{
cls(0);
r = 3.55;

delta_r = 0.0005;
}
for (col=0; co0l1<639; col++)
{

X = .5;

r += delta_r;

for (i=0; i<256; i++)
{

X = r*x*(1-x);
if ((x>1000000) || (x<-1000000))
break;
/*COMPUTATION FOR rx(x-1)*/
row = 349 -(x*350);
/*COMPUTATION FOR x(1-x)
row = 349 - ((x/r)*700);
*/
if ((i>64) && (row<349) && (row>=0) &&
(col>=0) && (c01<639))
{

}

plot(col,row,15);
}
}
getch();

97

FRACTAL PROGRAMMING IN C

Figure 7-2: Bifurcation Diagram for Population Equation

98

CH. 7: THE POPULATION EQUATION AND BIFURCATION DIAGRAMS

Figure 7-3: Expansion of the Bifurcation Diagram

99

FRACTAL PROGRAMMING IN C

We loop through two iterations; the first steps r in steps of 0.005, beginning at
0.95. The resulting diagram is shown in Figure 7-2. The second pass through
the loop does an expansion in the area of period three. It begins with an r of 3.55
and steps in 0.0005 increments. The resulting diagram appears in Figure 7-3.

Now lets take a close look at these diagrams. Beginning at an r value of about
one, the system settles down to a single value greater than zero, which remains
the same no matter how many additional iterations we perform. This stable value
increases as r is increased until at an r in the neighborhood of three there is a split
into two stable values that alternate with each iteration. Next there is another
split and there are now four stable values between which the iterations cycle. The
four then become eight, then sixteen, and so forth, until we reach a state of chaos
in which there are so many values that we never see the repetition with the tools
that we have. Although this is normally called the chaotic region, one must be
careful to remember that the period doubling scenario that we have seen thus far
may be continuing. There may be a repetition, but since there are 2 to a very
high power different values before the cycle repeats, we are unlikely to find it.

If you like scanning tables of numbers, you can develop a program to print out a
large number of values of this function and scan them to see if you can find any
traces of order in the chaos. Interestingly enough, as you can see from Figure 7-
3, there are windows in this chaotic behavior. At one of these, the function re-
verts to cycling between three stable states, then bifurcates to six, then to twelve,
and so forth.

"Period Three Implies Chaos"

Robert May's friend James Yorke did a rigorous mathematical analysis of the be-
havior of the population equation and in December 1975, together with Tien-Yien
Li, published a paper called "Period Three Implies Chaos." What Yorke and Li
were able to show is that, if a function similar to the population equation has a
period of three, then it has periods of every other number, n. Thus it is rigor-
ously established that there is an infinitely rich spectrum of results for this type
of equation.

100

CH. 7: THE POPULATION EQUATION AND BIFURCATION DIAGRAMS

The Feigenbaum Number

If Mitchell Feigenbaum had known of the work of Robert May and James Yorke,
or if he had been able to view May's bifurcation diagrams, he might never have
made his significant discovery. But, in 1976, Feigenbaum was looking at the
population equation from a different point of view. Consider for a moment just
part of the equation:

y = x(1 - x) (Equation 7-2)

This equation has a maximum at x = 0.5. In fact, for the original population
equation, in each set of bifurcations there is a value of r at which y of equation 7-
2 achieves its maximum of 0.5. If Feigenbaum had been into bifurcation dia-
grams, he could have produced something like Figure 7-4 or the expanded version
of Figure 7-5, where for each value of r we plot x(1 - x) instead of rx(1 - x). In
these figures it becomes very clear that each set of bifurcations has one or more
values of r at which y achieves its maximum.

Feigenbaum was trying to determine the values of the r at which the maximum is
reached for each set of bifurcations. If we start with the maximum value of x and
perform 20 ijterations, where n is the number of bifurcations, we should cycle
through all of the bifurcated values of x and be back to the maximum again.
Thus we have the general expression:

xmax = (Pnf)2M" (xmax) (Equation 7-3)
which for the population equation is:

n
Xmax = [rnXmax(l - Xmax)]zm (Equation 7-4)

This equation can be solved easily for xg and with more difficulty for x1, but it
very quickly gets so complicated and has so many roots that a solution becomes
nearly impossible.

101

FRACTAL PROGRAMMING IN C

Figure 7-4: Bifurcation Diagram of x(7 - x)

102

CH. 7: THE POPULATION EQUATION AND BIFURCATION DIAGRAMS

Figure 7-5: Expansion of the Bifurcation Diagram of x(7 - x)

103

FRACTAL PROGRAMMING IN C

The best method of solution is to start with a value for x below the first known
root and increase it very slowly until the next root is encountered and so forth.
Feigenbaum was doing this tediously on a programmable calculator. In looking
for a way to reduce the number of calculations, he discovered a remarkable
universal relationship between adjacent roots. This is expressed as the
Feigenbaum number:

™ - n-1
= 4.6692016091029... (Equation 7-5)
™+l =

To be mathematically precise, the Feigenbaum number is the value that this
constant reaches as n approaches infinity, so that the first few values, especially,
differ by a considerable error. Feigenbaum later discovered that this universal ra-
tio applies to every kind of iterated function that is characterized by having a sin-
gle differentiable maximum. This includes many different kinds of algebraic
equations as well as trigonometric equations that make use of only a single hump
of the curve. Figure 7-6 lists a program to generate the first 19 ry values for the

population equation. It makes use of the maximum precision available from the
IBM PC using Turbo C or MicroSoft C.

Figure 7-6: Program to Generate Roots of Population Equation

f#finclude <stdio.h>
#include <stalib.h>
#include <math.h>
ffinclude "tools.h"

long double x,lambda,f,step_size,old_x,test,lambda_1,1ambda_2,
delta,init_step, old_lambda;

double iterations;

double new_step, old_step;

long int i, iterations;

int j,sign;

main()
{

setMode(3);

lambda = 3.0;

printf("\n n Lambda Delta\n");
init_step = 1;

for (j=1; j<20; j++)

104

CH. 7: THE POPULATION EQUATION AND BIFURCATION DIAGRAMS

if (j%2 == 0)
sign = -1;
else
sign = 1;

gotoxy(0,15+j);;
init_step /= 4.67;
step_size = init_step:
iterations = pow(2,j);
old_x = 0.5;
Tambda+=step_size;
for(;;)
{
x = old_x;
for (i=0; i<iterations; i++)
x = Tambda*x*(1-x);
test = (x - old_x)*sign;
if (test < 0)
{
lambda -= step_size;
step_size = step_size/2;
old_lambda = lambda;
}
if (old_lambda > = lambda) break;
gotoxy(1l,j+3):
printf(" %2d %18.15Lf",j,1ambda);
}
if (j > 2)
{
delta = (lambda_l - lambda_2)/(lambda - lambda_1);
printf(" %20.17Lf",delta);
}
Tambda_2
Tambda_l

lambda_1;
lambda;

Unfortunately, you will note that the precision of the Feigenbaum number
reaches its peak at around the 15th and 16th values and after that, the computer
does not have enough precision to give highly accurate values. Figure 7-7 is a
table of the values obtained by the program of Figure 7-6. The program starts
with a value of x and a step size. The equation is solved with the proper number
of iterations to return to the maximized root, and then the result is compared with
the value of x;,qy. Initially, x is approaching xz;qy from below, so that if the
value hasn't been reached yet, we add the step and try again. We keep loopinig and
doing this until we do exceed xmgx and then we subtract one step value, reduce

105

FRACTAL PROGRAMMING IN C

the step size, and try again. We keep on with this looping until the step is less
than the minimum value that we can handle with the computer. The next root is
approached decreasing from above, so that we have to reverse our test against
Xmax and reduce step size when we get below instead of above. Finally, as we
proceed to higher roots, we need to be careful to assure that the initial step size is
not so large that we jump right over several adjacent roots, and the roots are get-
ting closer together all the time. Consequently we begin reducing the initial step
size by dividing it by 4.7 at each iteration. You will recognize this as a crude
round-off of the Feigenbaum number.

Figure 7-7: Values of Roots and Feigenbaum Number

106

n r delta

1 3.23606797749978969

2 3.49856169932770152

3 3.55464086276882486 4.68077099801069546
4 3.56666737985626851 4.66295961111410222
5 3.56924353163711033 4.66840392591840145
6 3.56979529374994462 4.66895374096762252
7 3.56991346542234851 4.66915718132887754
8 3.56993877423330548 4.66919100248498318
9 3.56994419460806493 4.66919947054711264
10 3.56994535548646858 4.66920113460536986
11 3.56994560411107844 4.66920150943092950
12 3.56994565735885649 4.66920158824756554
13 3.56994566876289996 4.66920160286821290
14 3.56994567120529684 4.66920162588405047
15 3.56994567172838347 4.66920155028815866
16 3.56994567184041260 4.66920176639898966
17 3.56994567186440580 4.66920254147147496
18 3.56994567186954440 4.66921926366696325
19 3.56994567187064489 4.66934028643927598

3

The Snowflake and
Other von Koch Curves

The next few chapters will discuss fractals that are generated using a recursive
initiator/generator technique that results in complete self-similarity. Their
similarity dimension is the same as their fractal and Hausdorff-Besicovitch
dimensions and is easily defined as discussed in Chapter 2. Such curves are
constructed using the following technique.

We start with an initiator, which may be a straight line or a polygon. Each side
of the initiator is then replaced by a generator, which is a connected set of straight
lines that form a path from the beginning to the end of the line being replaced.
(Usually the points of the generator are on a square grid or a grid made up of
equilateral triangles.) Then, each straight line segment of the new figure is
replaced by a scaled-down version of the generator. This process continues
indefinitely. Of course, in reality, we cannot continue the process an infinite
number of times, and even if we did, the result would not be interesting since the
detail would be far beyond the resolution of our computer monitor. In practice,
we perform from two to sixteen repetitions.

The von Koch Snowflake

This figure was first constructed by the mathematician Helge von Koch in 1904.
The initiator, shown in Figure 8-1(a), is an equilateral triangle. The generator,
shown in Figure 8-1(b), divides each line segment into three equal parts. Each

107

FRACTAL PROGRAMMING IN C

segment of the generator has a length (r) of 1/3. The first segment of the
generator follows the original line segment. The next two segments form the
two sides of an equilateral triangle, the base of which is the second third of the
original line. Finally, the fourth segment is identical with the final third of the
original line. Thus the number of segments of the generator, N, is four. From
equation 2.1 of Chapter 2, we find the fractal (or similarity) dimension of the
snowflake to be:

D =109 N/ log (1/r) = log 4 / log 3 = 1.2618 (Equation 8.1)
Figure 8-2 shows the resulting snowflake for 2, 3, 4, and 6 levels.

Figure 8-1: Initiator and Generator for Snowflake

() Snowfiake initiator (b) Snowfiake generator

108

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-2 (a, b, ¢, d): von Koch Snowflakes with 2, 3, 4, and 6 Levels

(b) 'level' =

é:g (@) 'level' =2
| ii?

ﬁ (c) level' = 4
(d) 'level' = 6 %

109

FRACTAL PROGRAMMING IN C

Generic Initiator/Generator Program

Figure 8-3 is a program to generate the von Koch snowflake. It can be considered
as a somewhat generic program for creating this type of curve. As we progress
through the next few chapters, we will encounter various complications as the
generators become more complex, and we will learn how to deal with them.

Figure 8-3: Program to Generate von Koch Snowflake

snoflake = program to generate von Koch snowflake

ffinclude <stdio.h>
f#finclude <math.h>
#include <dos.h>
#include "tools.h"

void generate (float X1, float Y1, float X2, float Y2,
int level);

int combination = 0,LINEWIDTH=1, operator=0:

unsigned long int PATTERN=0xFFFFFFFF;

float turtle_theta;

int i;

int generator_size = 5;

int level;

int init_size = 3;

int initiator_x1[10] = {-150,0,150},initiator_x2[101={0,
150,-150),initiator_y1[10]={-75,185,-75},
initiator_y2[10]={185,-75,-75};

float Xpoints[25], Ypoints[25];

float turtle_x,turtle_y,turtle_r;

main()
{
printf("\nEnter level (1 - 8): ");
scanf("%d",&level);
if (level < 1)
level = 1;
setMode(16);
cl1s(0);
for (i=0; i<init_size; i++)
{
generate(initiator_x1[i], initiator_yl[i],
initiator_x2[i], initiator_y2[i], level);

110

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

}
getch();

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,
int level)

{
int j.k,line;
float a, b, Xpoints[25], Ypoints[25];

level--;

turtle_r = (sqrt((X2 - X1)*(X2 - X1) + (Y2 - Y1)*(Y2 -
¥1)))/3.0;

Xpoints[0] = X1;

Ypoints[0] = Y1;

Xpoints[4] = X2;

Ypoints[4] = Y2;
turtle_theta = point(X1,Y1,X2,Y2);
turtle_x = X1;
turtle_y = Y1;

step();

Xpoints[1] = turtle_x;
Ypoints[1] = turtle_y;
turn(60);

step():

Xpoints[2] = turtle_x;
Ypoints[2] = turtle_y;
turn(-120);

step();

Xpoints[3] = turtle_x;
Ypoints[3] = turtle_y;
if (level > 0)

{

for (j=0; j<generator_size-1; j++)
{

X1 = Xpoints(jl;
X2 = Xpoints[j+1];
Y1 = Ypoints[j];

Y2 = Ypoints[j+1];
generate (X1,Y1,X2,Y2,level);

else
for (k=0; k<generator_size-1; k+t)

drawLine(Xpoints[k],Ypoints[k],

111

FRACTAL PROGRAMMING IN C

Xpoints[k+1],Ypoints[k+1],15);

For each time that we replace a line segment by the generator, we are going to
create an array of coordinate locations (stored in the array Xpoints for the x
coordinates, and in the array Ypoints for the y coordinates) and then draw a line
from the first set of coordinates to the second, from the second to the third, and so
forth until we have drawn as many line segments as are specified by the parameter
generator_size. To generate these coordinate pairs, we will make use of the
modified turtle graphics commands which were developed in Chapter 4.

We first identify the beginning and end of the line segment and store the
coordinates of each as the beginning and end points of our coordinate arrays.
Then we insert these values into the function point which sets the turtle direction
(turtle_theta) along the original line segment. The step size for turtle movement
(turtle_r) is determined by measuring the length of the line segment and dividing
by the proper divisor to get r. Note that for the snowflake, this divisior is 3; we
will see later that it can take on other values for other curves. Next, we use turn,
if necessary, to properly position the turtle. We then use step to advance the
turtle and record its new position in the position arrays. At any time in the
process of stepping through the pattern for the generator, we can record the turtle
position in any set of members of the coordinate arrays. Thus, the turtle does not
have to follow the actual path which makes up the generator, as long as it stops
at every pair of endpoints for the generator lines. We can store every pair of
coordinates that are needed in the proper location, regardless of when it was
generated, so we have considerable flexibility as to how we are going to create the
generator. The von Koch snowflake curve generator is so simple that all we have
to do is trace its path with the turtle.

The main part of the program allows the user to enter level, which determines
how many recursions will be used to generate the figure, and then calls generate
for each line segment of the initiator. The generator function decrements level
and then determines the coordinates of all points needed to draw the generator in
place of the line segment whose beginning and end points passed as parameters to
the function. Then, if the level is greater than O, the function starts a for loop,

112

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

which determines the beginning and end points of each new line segment in the
array of points just created by the turtle functions, and then calls generator to
replace each line segment by a new generator. You should note that the Xpoints
and Ypoints arrays are not global, so that each time generator is called, a new pair
of coordinate arrays is created. Thus, there can be quite a few of them if level is
set to a large number.

When level is finally decremented to zero, the function actually draws the line
segments that are specified by the coordinate arrays at that time and there is no
more recursion, so that the program returns to the previous level and continues
until all of the for loops have been completed.

The Gosper Curve

This variation of the von Koch curve was discovered by W. Gosper. The initiator
is a regular hexagon and the generator consists of three segments on a grid of
equilateral triangles. This and the next curve are a little peculiar in that the line
segment to be replaced does not lie on any of the grid lines. Remembering that
the turtle point function points the turtle in the direction of the line segment, if
you were writing a program to draw this curve, you would have to compute the
angle that the first piece of the generator makes with the line segment and turn
the turtle in this direction before taking the first step. The program listings have
already done that for you in these two curves. Figure 8-4 shows the initiator and
the generator laid out on the grid. Applying a little simple geometry shows that
if the length from one end of the generator to the other is taken to be 1, the
length of each of the three segments is:

r=1/+7 (Equation 8-2)

Since N = 3, the fractal dimension of the Gosper curve is:

D=10og 3/ log (N7)=1.1291 (Equation 8-3)

Figure 8-5 shows the resulting curve for levels to 1, 2, 4, and 6. The program to
generate this curve is given in Figure 8-6. It is the same as the snowflake

113

FRACTAL PROGRAMMING IN C

program except for the change in the values for the initiator and the modification
of the generate function.

Figure 8-4: Initiator and Generator for Gosper Curve

(a) Initiator for Gosper Curve (b) Generator for Gosper Curve

114

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-5: Gosper Curves for Levels 1, 2, 4, and 6

(b) 'level' =2

(d) 'level' =6

(a) 'level' =1

(c) 'level' =4

115

FRACTAL PROGRAMMING IN C

Figure 8-6: Program to Generate Gosper Curves

gosp7 = program to generate gosper curves

f#include <stdio.h>
ffinclude <math.h>
ffinclude <dos.h>

#include "tools.h”

void generate (float X1, float Y1, float X2, float Y2,
int level);

int generator_size = 3;

int init_size = 6;

int level;

int initiator_x1[10] = {0,130,130,0,-130,-130},
initiator_x2[10]={130,130,0,-130,-130,0},
initiator_y1[10]={150,75,-75,-150,-75,75},
initiator_y2[101={75,-75,-150,-75,75,150};

int combination = O,LINEWIDTH=1, OPERATOR=0,

unsigned long int PATTERN=OxFFFFFFFF;

float turtle_theta;

int i;

float Xpoints[25], Ypoints[25];

float turtle_x,turtle_y,turtle_r;

main()
{

printf("\nknter Tevel (1 - 8): ");
scanf("%d",&level);
if (level < 1)
level = 1;
setMode(16);
cls(0);
for (i=0; i<init_size; i++)
generate(initiator_x1[i], initiator_yl[i],
initiator_x2[i],initiator_y2[i], level);
getch();

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,
int level)

116

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

int j,k,line,set_type;

float a, b, Xpoints[25], Ypoints[25], temp,temp_r;

level--;

turtle_r = sqrt(((X2 - X1)*(X2 - X1) + (Y2 - Y1)*
(Y2 - Y1))/7.0);

turtle_x = X1;

turtle_y = Y1;

Xpoints[0] = X1;

Ypoints[0] = Y1;

Xpoints[3] = X2;

Ypoints[3] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

turn(19.1);

step();

Xpoints[1] = turtle_x;
Ypoints[1] = turtle_y;
turn(-60);

step();

Xpoints[2] = turtle_x;
Ypoints[2] = turtle_y;
if (level == 0)
{

for (k=0; k<generator_size; k++)

{

drawLine(Xpoints[k],Ypoints[k],
Xpoints[k+1],Ypoints[k+1],15);

else
for (j=0; j<generator_size; j++)

X1 = Xpoints[jl;

= Xpoints[j+11:

= Ypoints[jl;

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level);

—~< >
- N
.l

Three-Segment Quadric von Koch Curve

The next few curves are called "quadric" because the initiator is a square.
However, there is nothing sacred about the square initiator; it could be any regular
polygon or some other weird figure. An example will be given later.

117

FRACTAL PROGRAMMING IN C

Furthermore, we are going to create our generators on a square grid. For the first
of these curves, a three-segment generator will be used; N is the same as for the
previous curve, but because of the square grid, the length of a segment is:

r=1+5 (Equation 8-4)

and the fractal dimension is different,

D =10g 3/ log (N 5) =1.3652 (Equation 8-5)

Figure 8-7 shows the initiator and generator, and Figure 8-8 shows the curve for
various levels. Again, the generic program is used, with appropriate modification
to the generator function. This function, as modified, is shown in Figure 8-9.
Using it to replace the generator function of Figure 8-6 will yield the three-
segment quadric curve.

Figure 8-7: Initiator and Generator for Three-Segment von Koch Curve

(a) Initiator for Three-Segment (b) Generator for Three-Segment
von Koch Curve von Koch Curve

118

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-8: Three-Segment von Koch Curves for Levels 1 to 6

(b) 'level =2

(d) 'level' =6

(a) level'=1

(c) 'level =4

119

FRACTAL PROGRAMMING IN C

Figure 8-9: Generator Function for Three-Segment von Koch Curves

generate() = Generates curve

void generate (float X1, float Y1, float X2, float Y2,
int level)

{
int j.k,line,set_type:
float a, b, Xpoints[25], Ypoints[25], temp,temp_r;
level--;
turtle_r = sqrt(((X2 - X1)*(X2 - X1) + (Y2 - Y1)*

(Y2 - Y1))/5.0);

turtle_x = X1;
turtle_y = Y1;
Xpoints[0] = X1;
Ypoints[0] = Y1;
Xpoints[3] = X2;
Ypoints[3] = Y2;
turtle_theta = point(X1,Y1,X2,Y2);
turn(26.56);
step();
Xpoints[1] = turtle_x;
Ypoints[1] = turtle_y;
turn(-90);
step();
Xpoints[2] = turtle_x;
Ypoints[2] = turtle_y;
if (level == 0)
{

for (k=0; k<generator_size; k++)

{
drawLine(Xpoints[k],Ypoints[k],
Xpoints[k+1],Ypoints[k+1],15);

else

for (j=0; j<generator_size; j++)

X1 = Xpoints[j];
X2 = Xpoints[j+11;
Y1 = Ypoints[j];
Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,%evel);

120

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Eight-Segment Quadric von Koch Curve

The next few curves are all going to make use of a square grid and turning angles
of 90 degrees. They are a little more regular than the previous curve because the
line segment to be replaced falls along the middle horizontal line of the grid. For
the first curve to be considered, we will let:

r=1/4 (Equation 8-6)

We can now draw various generators, the only limitation being that we want the
curve to have no self-overlap and no self-intersection. If we also want the curve
to have the highest fractal dimension possible, we need to find the generator for
which N is the largest. Mandelbrot states that the highest possible value of N is:

Nmax = 1/2r2 (Equation 8-7)

when r is even and

Nmax = (1 + r2)/2re (Equation 8-8)

when r is odd. Thus, for r = 1/4, we find that Npjax is 8. The fractal dimension
of this curve is thus:

D=10g8/ log4=1.5 (Equation 8-9)

Figure 8-10 shows the initiator and generator for this curve, and Figure 8-11
shows the curve for levels of 1, 2, 4, and 6. The program to generate this curve
is the same generic program of Figure 8-6, with the function generator replaced
by that listed in Figure 8-12, and the parameter generator_size changed as
follows:

int generator_size = 8;
int generator_size = 32;

121

FRACTAL PROGRAMMING IN C

Figure 8-10: Initiator and Generator for Eight-Segment von Koch Curve

(a) Initiator for Eight-Segment (b) Generator for Eight-Segment
von Koch Curve von Koch Curve

122

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-11: Eight-Segment von Koch Curves for Levels 1, 2, 4, and 6

(a) evel'=1

(b) 'level' =2

(c) 'level' =4

(d) 'level' =6

123

FRACTAL PROGRAMMING IN C

Figure 8-12: Generator Function for Eight-Segment von Koch Curves

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,

{

124

int level)

int j,k,line,set_type;

float a, b, Xpoints[25], Ypoints[25], temp,temp_r;

level--;

turtle_r = sqrt((X2 - X1)*(X2 - X1) + (Y2 - Y1)*(Y2 -
Y1))/4.0;

turtle_x = X1;

turtle_y = Y1;

Xpoints[0] = X1;

Ypoints[0] = Y1;

Xpoints[8] = X2;

Ypoints[8] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

step();

Xpoints[1] = turtle_x;

Ypoints[1] = turtle_y;

turn(90);

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtle_y;

turn(-90);

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtle_y:

turn(-90);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtle_y;

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtle_y;

turn(90);

step();

Xpoints[6] = turtle_x;

Ypoints[6] = turtle_y;

turn(90);

step();

Xpoints[7] = turtie_x;

Ypoints[7] = turtle_y:

if (level == 0)

{

for (k=0; k<generator_size; k++)

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

drawlLine(Xpoints[k],Ypoints[k],
Xpoints[k+1],Ypoints[k+1],15);

else
for (j=0; j<generator_size; j++)

X1 = Xpoints[j];

X2 = Xpoints[j+1];
Y1 = Ypoints[j];
Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,1level);

Eighteen-Segment Quadric von Koch Curve

If we let

r=1/6 (Equation 8-10)

we find that Nmax is 18. The fractal dimension of this curve is:

D=1og 18 / log 6 = 1.6131 (Equation 8-11)

Figure 8-13 shows the initiator and generator for this curve and Figure 8-14
shows the curve for levels 1, 2, 3, and 4. The program to generate this curve is
the same generic program of Figure 8-6, with the function generator replaced by
that listed in Figure 8-15, and the parameter generator_size changed as follows:

int generator_size = 18;

125

FRACTAL PROGRAMMING IN C

Figure 8-13: Initiator and Generator for
Eighteen-Segment von Koch Curve

(a) Initiator for Eighteen-Segment
von Koch Curve

(b) Generator for Eighteen-Segment
von Koch Curve

126

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-14: Eighteen-Segment von Koch Curves for Levels 1 to 4

(a) level' =1

(b) 'level' =2

(c) 'level'=3

(d) 'level' =4

127

FRACTAL PROGRAMMING IN C

Figure 8-15: Generator Function for Eighteen-Segment von Koch Curves

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,
int level)

{
int j,k,line,set_type;
float a, b, Xpoints[25], Ypoints[25], temp,temp_r;

level--;

turtle_r = sqrt(((X2 - X1)*(X2 - X1) + (Y2 - Y1)*
(Y2 - Y1)))/6.0;

turtle_x = X1;

turtle_y = Y1;

Xpoints[0] = X1;

Ypoints[0] = Y1;

Xpoints[18] = X2;

Ypoints[18] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

step();

Xpoints[1] = turtle_x;
Ypoints[1] = turtle_y;
turn(90);

step();

Xpoints[2] = turtle_x;
Ypoints[2] = turtle_y;
step();

Xpoints[3] = turtle_x;
Ypoints[3] = turtle_y;
turn(-90);

step();

Xpoints[4] = turtle_x;
Ypoints[4] = turtle_y;
step();

Xpoints[5] = turtle_x;
Ypoints[5] = turtle_y;
turn(-90);

step():

Xpoints[6] = turtle_x;
Ypoints[6] = turtle_y;

turn(-90);

step();

Xpoints[7] = turtle_x;
Ypoints[7] = turtle_y;
turn(90);

128

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

step();

Xpoints[8] = turtle_x;

Ypoints[8] = turtle_y;

turn(90);

step();

Xpoints[9] = turtle_x;

Ypoints[9] = turtle_y;

step():

Xpoints{10] = turtle_x;
Ypoints[10] = turtle_y:
turn(-90);

step();

Xpoints[11] = turtle_x;
Ypoints[11] = turtle_y:
turn(-90);

step();

Xpoints[12] = turtle_x;
Ypoints[12] = turtle_y;
turn(90);

step();

Xpoints[13] = turtle_x;
Ypoints[13] = turtle_y:
turn(90);

step();

Xpoints[14] = turtle_x;
Ypoints[14] = turtle_y:

step();

Xpoints[15] = turtle_x;
Ypoints[15] = turtle_y;
turn(90);

step();

Xpoints[16] = turtle_x;
Ypoints[16] = turtle_y;
step();
Xpoints[17] = turtle_x;
Ypoints[17] = turtle_y;
if (level == 0)
{
for (k=0; k<generator_size; k++)
{
drawLine(Xpoints[k],Ypoints[k],
Xpoints[k+1],Ypoints[k+1],15);

else

for (j=0; j<generator_size; j++)

X1 = Xpoints[jl;
X2 = Xpoints[j+1];
Y1 = Ypoints[j];

129

FRACTAL PROGRAMMING IN C

Y2 = Ypoints[j+1];
generate (X1,Y1,X2,Y2,level);

32-Segment Quadric von Koch Curve

If we let

r=1/8 (Equation 8-12)

we find that Npax is 32. The fractal dimension of this curve is:

D =1og 32 / log 8 = 1.6667 (Equation 8-13)

Figure 8-16: Initiator and Generator for 32-Segment von Koch Curve

(@) Initiator for 32-Segment (b) Generator for 32-Segment
von Koch Curve von Koch Curve

130

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-17: 32 Segment von Koch Curves for Levels 1 to 3

(a) 'level' =1
S5 Ak

(b) 'level'=2

(c) 'level'=3

131

FRACTAL PROGRAMMING IN C

Figure 8-13 shows the initiator and generator for this curve, and Figure 8-14
shows the curve for levels of 1, 2, and 3. The program to generate this curve is
the same generic program of Figure 8-6, with the function generator replaced by

that listed in Figure 8-15, and the parameter generator_size changed as follows:

int generator_size = 32;

Figure 8-18: Generator Function for 32-Segment von Koch Curves

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,

{

int level)

int j.k,line,set_type;
float a, b, Xpoints[55], Ypoints[55], temp,temp_r;

level--;

turtle_r = sqrt((X2 - X1)*(X2 - X1) + (Y2 - Y1)*
(Y2 - Y1))/8.0;

turtle_x = X1;

turtle_y = Y1;

Xpoints[0] = X1;

Ypoints[0] = Y1;

Xpoints[32] = X2;

Ypoints[32] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

turn(90);

step();

Xpoints[1] = turtle_x;

Ypoints[1] = turtle_y;

turn(-90);

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtle_y;

turn(90);

step():

Xpoints[3] = turtle_x;

Ypoints[3] = turtle_y;

turn(90);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtle_y;

turn(-90);

step();

132

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Xpoints[5] = turtle_x:
Ypoints[5] = turtle_y;
turn(-90);

step();

Xpoints[6] = turtle_x;
Ypoints[6] = turtle_y;
step():

Xpoints[7] = turtle_x;
Ypoints[7] = turtle_y;
turn(90);

step():

Xpoints[8] = turtle_x;
Ypoints[8] = turtle_y;
turn(-90);

step();

Xpoints[9] = turtle_x;
Ypoints[9] = turtle_y;
turn(-90);

step();

Xpoints[10] turtle_x;
Ypoints[10] = turtle_y:;
step():
Xpoints{11]
Ypoints[11]
turn(-90);
step();
Xpoints[12] = turtle_x;
Ypoints[12] = turtle_y;
turn(90);

step();

Xpoints[13] = turtie_x;
Ypoints[13] = turtle_y:
turn(90);

step();

Xpoints[14] = turtle_x;
Ypoints[14] = turtle_y;
step();

Xpoints[15] = turtle_x;
Ypoints[15] = turtle_y;
turn(-90);

step();

Xpoints[16] = turtle_x;
Ypoints[16] = turtle_y;
step();

Xpoints[17] = turtle_x;
Ypoints[17] = turtle_y;
turn(90);

step():

Xpoints[18] = turtle_x;
Ypoints[18] = turtle_y:
step();

turtle_x;
turtle_y;

133

FRACTAL PROGRAMMING IN C

Xpoints[19] = turtle_x;
Ypoints[19] = turtle_y:
turn(-90);
step();
Xpoints[20] = turtle_x;
Ypoints[20] = turtle_y;
turn(-90);
step();
Xpoints[21] = turtle_x;
Ypoints[21] = turtle_y;
turn(90);
step();
Xpoints[22] = turtle_x;
Ypoints[22] = turtle_y;
step();
Xpoints[23] = turtle_x;
Ypoints[23] = turtle_y;
turn(90);
step();
Xpoints[24] = turtle_x;
Ypoints[24] = turtle_y:
turn(90);
step();
Xpoints[25] = turtle_x;
Ypoints[25] = turtle_y;
turn(-90);
step();
Xpoints[26] = turtle_x;
Ypoints[26] = turtle_y;
step();
Xpoints[27] = turtle_x:
Ypoints[27] = turtle_y;
turn(90);
step();
Xpoints[28] = turtle_x;
Ypoints[28] = turtle_y;
turn(90);
step():
Xpoints[29] = turtle_x;
Ypoints[29] = turtle_y:
turn(-90);
step();
Xpoints[30] = turtle_x;
Ypoints[30] = turtle_y;
turn(-90);
step();
Xpoints[31] = turtle_x;
Ypoints[31] = turtle_y;
if (level == 0)
{

for (k=0; k<generator_size; k++)

134

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

drawlLine(Xpoints[k],Ypoints[k],
Xpoints[k+1],Ypoints[k+1],15);

}
else
{
for (j=0; j<generator_size; j++)
{
X1 = Xpoints[jl;
X2 = Xpoints(j+1];
Y1 = Ypoints[j];
Y2 = Ypoints[j+1];
generate (X1,Y1,X2,Y2,level);

I

Fifty-Segment Quadric von Koch Curve

If we let

r=1/10 (Equation 8-14)

we find that Npax is 50. The fractal dimension of this curve is:

D =1og 50 / lTog 10 = 1.6990 (Equation 8-15)

As the generator contains more and more segments, it becomes less and less
obvious how it is obtained. The process is a sort of trial and error one, but at
this point it is time to develop some guidelines for generator creation. Figure 8-
19 shows the initiator and generator for the fifty-segment curve. The generator
grid is also shown. Note that slanting dotted lines have been drawn connecting
midpoints of adjacent sides of the grid.

If we are to use the generator to replace line segments that meet at 90-degree
angles, we cannot have any part of the generator outside the bounds of the
diamond created by these dotted lines. This is sufficient to avoid self-
overlapping, but does not prevent self-intersection. To assure against self-
intersection, we mentally merge each pair of parallel sides of the diamond. If the

135

FRACTAL PROGRAMMING IN C

generator touches the diamond side at the same point for both sides of a pair, self-
intersection will occur. Finally, the easiest way to create the generator is to
create it in two parts that are symmetrical (although possibly a mirror image),
each beginning at one end of the line segment being replaced and ending at its
middle. The constraints are thus:

1. Create a half-generator from one end of the line segment to be replaced to its
middle, containing Nmax/2 segments.

2. Do not go outside of the diamond.

3. If the generator intersects a point on one of a pair of parallel diamond sides,
it may not intersect a corresponding point of the other of the pair of sides.

This is where the trial and error comes in. You next seek a path that will contain
the required number of segments and meet the above constraints. Once you have
the half-generator created, you can turn the graph upside down and draw the same
half-generator to complete the process. Figure 8-20 shows the fifty-segment
curve for levels of 1, 2, and 3. The program to generate this curve is the same
generic program of Figure 8-6, with the function generator replaced by that listed
in Figure 8-21, and the parameter generator_size changed as follows:

int generator_size = 50;

136

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-19: Initiator and Generator for Fifty-Segment von Koch Curve

(a) Initiator for 50-Segment (b) Generator for 50-Segment
von Koch Curve von Koch Curve

137

FRACTAL PROGRAMMING IN C

Figure 8-20: Fifty-Segment von Koch Curves for Levels 1 to 3

(b) 'level' =2

(@) 'level' =1

(c) 'level' =3

138

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-21: Generator Function for Fifty-Segment von Koch Curves

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,

{

int level)

int j,k,line,set_type;
float a, b, Xpoints[55], Ypoints[55], temp,temp_r;

level--;

turtle_r = sqrt((X2 - X1)*(X2 - X1) + (Y2 - Y1)*
(Y2 - Y1))/10.0;

turtle_x X1;

turtle_y = Y1;

Xpoints[0] = X1;

Ypoints[0] = Y1;

Xpoints[50] = X2;

Ypoints[50] = Y2;
turtle_theta = point(X1,Y1,X2,Y2);
step();

Xpoints[1] = turtle_x;
Ypoints[1] = turtle_y;
turn(90);

step();

Xpoints[2] = turtle_x;
Ypoints[2] = turtle_y;
turn(-90);
step();
Xpoints[3]
Ypoints[3]
turn(-90);
step();
Xpoints[4] = turtle_x;
Ypoints[4] = turtle_y;
step();

Xpoints[5] = turtle_x;
Ypoints[5] = turtle_y;
step();

Xpoints[6] = turtle_x;
Ypoints[6] = turtle_y;
turn(90);

step();

Xpoints[7] = turtle_x;
Ypoints(7] = turtle_y;
step();

Xpoints[8] = turtle_x;
Ypoints[8] = turtle_y;

turtle_x;
turtle_y;

139

FRACTAL PROGRAMMING IN C

140

turn(-90);
step();
Xpoints[9]
Ypoints[9]
step();

Xpoints[10] =

Ypoints[10]
turn(90);
step();
Xpoints[11]
Ypoints[11]
turn(90);
step();
Xpoints[12]
Ypoints[12]
step();
Xpoints[13]
Ypoints[13]
step();
Xpoints[14]
Ypoints[14]
turn(90);
step();
Xpoints[15]
Ypoints[15]
step();
Xpoints[16]
Ypoints[16]
turn(-90);
step();
Xpoints[17]
Ypoints[17]
step();

Xpoints[18] =

Ypoints[18]
step();
Xpoints[19]
Ypoints[19]
step();
Xpoints[20]
Ypoints[20]
turn(-90);
step();
Xpoints[21]
Ypoints[21]
turn(-90);
step();
Xpoints[22]
Ypoints[22]
step();
Xpoints[23]

= turtle_x;
turtile_y:

turtle_x;
turtle_y;

turtle_x;
turtle_y;

turtle_x;
turtle_y:

turtle_x;
turtle_y;

turtle_x;
turtle_y;
turtle_x;
turtle_y;
turtle_x;
= turtle_y;
turtle_x;

turtle_y;

turtle_x;
= turtle_y;

turtle_x;
turtle_y;

turtle_x;

turtle_y:

turtle_x;
turtle_y;

turtle_x;
turtle_y;

turtle_x;

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Ypoints[23] = turtle_y;
step();

Xpoints[24] = turtle_x;
Ypoints[24] = turtle_y;
turn(90);

step();

Xpoints[25] = turtle_x;
Ypoints[25] = turtle_y;

step();

Xpoints[26] = turtle_x;
Ypoints[(26] = turtle_y;
turn(-90);

step();

Xpoints[27] = turtle_x;
Ypoints[27] = turtle_y;
step();

Xpoints[28] = turtle_x;
Ypoints[28] = turtle_y:
step();

Xpoints[29] = turtle_x;
Ypoints[29] = turtle_y;
turn(90);

step();

Xpoints[30] = turtle_x;
Ypoints[30] = turtle_y;
turn(90);

step();

Xpoints[31] = turtle_x;
Ypoints[31] = turtle_y;
step();

Xpoints[32] = turtle_x;
Ypoints[32] = turtle_y;
step();

Xpoints[33] = turtle_x;
Ypoints[33] = turtle_y;
step();

Xpoints[34] = turtle_x;
Ypoints[34] = turtle_y;
turn(90);

step();

Xpoints[35] = turtle_x;
Ypoints[35] = turtle_y;
step();

Xpoints[36] = turtle_x;
Ypoints[36] = turtle_y;
turn(-90);

step();

Xpoints[37] = turtle_x;
Ypoints[37] = turtle_y;
step();

Xpoints[38] = turtle_x;

141

FRACTAL PROGRAMMING IN C

Ypoints[38] = turtle_y;
step();

Xpoints[39] = turtle_x;
Ypoints[39] = turtle_y;
turn(-90);

step();

Xpoints[40] = turtle_x;
Ypoints[40] = turtle_y;
turn(-90);

step();

Xpoints[41] = turtle_x;
Ypoints[41] = turtle_y;
step();

Xpoints[42] = turtle_x;
Ypoints[42] = turtle_y;
turn(90);

step();

Xpoints[43] = turtle_x;
Ypoints[43] = turtle_y;

step();

Xpoints[44] = turtle_x;
Ypoints[44] = turtle_y;
turn(-90);

step();

Xpoints[45] = turtle_x;
Ypoints[45] = turtle_y;
step();

Xpoints[46] = turtle_x;
Ypoints[46] = turtle_y;
step();
Xpoints[47] = turtle_x;
Ypoints[47] = turtle_y;
turn(90);
step();
Xpoints[48] = turtle_x;
Ypoints[48] = turtle_y;
turn(90);
step();
Xpoints[49] = turtle_x;
Ypoints[49] = turtle_y;
if (level == 0)
{
for (k=0; k<generator_size; k++)
{
drawLine(Xpoints[k],Ypoints[k],
Xpoints[k+1],Ypoints(k+1],15);

}
else
{
for (j=0; j<generator_size; j++)

142

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

X1 = Xpoints[jl;
X2 = Xpoints[j+1];
Y1 = Ypoints[jl;

Y2 = Ypoints[j+11;
generate (X1,Y1,X2,Y2,level);

Using Other Initiators

All of the von Koch curves that have been described above using the square
initiator can easily be adapted to other regular polygon initiators of five or more
sides. (The generators have been set up so as not to be self-overlapping or self-
intersecting as long as the sides of the polygon do not intersect at angles of less
than 90 degrees. You can experiment with figures other than regular polygons as
long as this condition is met.

Figure 8-22 shows the initiator and generator for an eight-segment von Koch
curve using a hexagon as the initiator. Figure 8-23 shows the curve for levels 1,
2,3, and 4. To generate this curve, all you need to do is run the program for the
eight-segment von Koch curve, as given above, with the following changes in
the initial conditions:

int init_size = 6;

int initiator_x1[10] = {-75,75,150,75,-75,-150},
initiator_x2[10]={75,150,75,-75,-150,-75},
initiator_y1[10]={115,115,0,-115,-115,0},
initiator_y2[(10]={115,0,-115,-115,0,115};

143

FRACTAL PROGRAMMING IN C

Figure 8-22: Initiator and Generator for Eight-Segment
von Koch Curve with Hexagonal Generator

(a) Initiator for Hexagonal Generator (b) Generator for Hexagonal Generator
8-Segment Curve 8-Segment Curve

144

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-23: Hexagonal Eight-Segment von Koch Curves for Levels 1 to 4

(a) 'level' =1

(b) 'level =2

(c) 'level' =3

(d) 'level' =4

145

FRACTAL PROGRAMMING IN C

Complicated Generators

Take a look at the generator shown in Figure 8-24(a). This generator was
discovered by Mandelbrot. It is based upon a grid of equilateral triangles. If the
generator consisted of line segments connecting points 0, 1, 2, 3, 4, and 11, it
would be rather simple. However, a smaller replica of this simple generator has
been inserted between points 4 and 9, and then two regular line segments added to
complete the generator. Because two different line segment lengths are used, we
must use the expression:

Y rmD =1 (Equation 8-16)

to determine the fractal dimension (see Chapter 2). First we need to observe that
r for the regular sized segments is 1/3. For the smaller segments, we can use
simple trigonometry to ascertain that r is 0.186339. Thus, we have:

6(.3333)D + 5(.186339)D =1 (Equation 8-17)

which gives a fractal dimension of:

D = 1.8575 (Equation 8-18)

We can easily handle the change in segment length by simply recalculating the
turtle_r (length of turtle step) at the appropriate place in the generate program.
Now, however, look at Figure 8-24(b), which shows the curve for the second
level. In order to make sure the curve is not self-overlapping or self-intersecting,
we have to take some considerable liberties with how we use the generator to
replace each segment of the previous level. There are four variations of the
generator: one is to the right of the original line segment, one is to the left, a
third is to the right (but with the generator reversed), and the fourth is to the left
with the generator reversed. Unfortunately, these are rather arbitrary and a
different set is needed at each level (at least for the first few levels). We have to
thank Mandelbrot for discovering the proper variation to use at each position in
the first few levels; it gives us a starting place from which we can branch off into
our own investigations.

146

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-24: Generator and Second Level for Complex Generator Curve

(a) Generator for Complex (b) Second Level for Complex
Generator Curve Generator Curve

Our software handles the problem by adding two new parameters, sign and type.
In using the turtle graphics to create our generator, we multiply every angle by
sign, which starts out the program with a value of 1. As we enter the generator
function, we take action based upon the value of type. If type is 0, nothing is
changed. The parameter sign retains its original value and the original generator
function is produced on the same side as the previous one. If the type is 1, sign
is multiplied by -1, causing all of the turn angles to be reversed so that the
generator appears on the opposite side of the line segment from the previous one.
If type is 2, we make the beginning line segment coordinates the end ones and
visa-versa, so that the generator is drawn backwards. We also need to reverse all
of the signs for this reverse generator to appear on the same side of the line
segment as the previous generator. Finally, for a type of 3, we reverse
coordinates only so that the generator is both reversed and moved to the opposite
side.

147

FRACTAL PROGRAMMING IN C

Figure 8-25: Complex Generator Curves for Levels 2 to 4

Aol 25 e

Monkey Tree

(b) 'level' =4
Split Snowflake Halls

(c) level'=5

148

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

As we enter the recursion process for each level, we have to define what the type
is to be for every line segment that is to be replaced. This is a somewhat lengthy
process, even using C's switch statement. Fortunately, in this case we only had
to define two levels. The net result is shown in Figure 8-25. Mandelbrot calls
the third-level curve a "Monkey's Tree" and the fourth-level curve "Split
Snowflake Halls." The fourth-level curve is not quite like Mandelbrot's version,
because we did not define the type parameter to match his for every line segment.

Figure 8-26 is the listing of the program to generate these curves.

Figure 8-26: Program to Generate Complex Generator Curves

snowhall = program to generate snowflake halls

f#finclude <stdio.h>
#include <math.h>
f#finclude <dos.h>
f##include "tools.h"

void generate (float X1, float Y1, float X2, float Y2,
int level,int type,int sign);

int combination = 0,LINEWIDTH=1, OPERATOR=0;

unsigned long int PATTERN=O0xFFFFFFFF;

float turtle_theta;

int i;

int generator_size = 12;

int level = 4;

int init_size = 1;

int initiator_x1[10] = {-185},initiator_x2[10]={25},
initiator_yl1[10]=(-120},
initiator_y2[10]={244};

float Xpoints[25], Ypoints[25];

float turtle_x,turtle_y,turtle_r;

main()
{

int sign=1;
int set_type=1;

printf("\nEnter level (1 - 8): ");

scanf("%d",&level);
if (level < 1)

149

FRACTAL PROGRAMMING IN C

level = 1;
setMode(16);
cls(0);
for (i=0; i<init_size; i++)
generate(initiator_x1[i], initiator_yl[i],
initiator_x2[i], initiator_y2[i],
level,set_type,sign);
getch();

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,

{

150

int level, int type, int sign)

int j,k,line,set_type;
float a, b, Xpoints[25], Ypoints[25], temp,temp_r;

switch (type)
{
case 0: break;

case 1: sign *= -1;
break;

case 2: sign *= -1;
case 3: temp = X1;
X1 = X2;
X2 emp;
tem Y1;
Y1 2;
Y2 = temp;
break;

o
< I > |

}

level--;

turtle_r = (sqrt((X2 - X1)*(X2 - X1) + (Y2 - Y1)*
(Y2 - ¥1)))/3.0;

Xpoints[0] = X1;

Ypoints[0] = Y1;

Xpoints[11] = X2;

Ypoints[11] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

turn(60*sign);

turtle_x = X1;

turtle_y = Y1;

step();

Xpoints[1] = turtle_x;

Ypoints[1] = turtle_y:

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

step();

Xpoints[2] = turtle_x:

Ypoints[2] = turtle_y;

turn(-60*sign);

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtle_y:

turn(-60*sign);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtle_y;

turn(-120*sign);

step();

turn(60*sign);

step();

Xpoints[9] = turtle_x;

Ypoints[9] = turtle_y;

turn(120*sign);

step():

Xpoints[10] = turtle_x;

Ypoints[10] = turtle_y:

turtle_r = (sqrt((Xpoints[9] - Xpoints[4])*
(Xpoints[9] - Xpoints[4]) + (Ypoints[9] -
Ypoints[41)*(Ypoints[9] - Ypoints[4])))/3.0;

turtle_theta = point(Xpoints[4],Ypoints[4],
Xpoints[91,Ypoints[9]1);

turn(-60*sign);

turtle_x = Xpoints[4];

turtle_y = Ypoints[4];

step();
Xpoints[5] = turtle_x;
Ypoints[5] = turtle_y;
step();
Xpoints[6] = turtle_x;

Ypoints[6] = turtle_y;
turn(60*sign);
step();
Xpoints(7] = turtle_x;
Ypoints[7] = turtle_y;
turn(60*sign);
step();
Xpoints[8] = turtle_x;
Ypoints[8] = turtle_y:
if (level == 0)
{
for (k=0; k<generator_size-1; k++)
{
drawLine(Xpoints[k],Ypoints[k],
Xpoints[k+1],Ypoints[k+1],15);

151

FRACTAL PROGRAMMING IN C

152

else
{

for (j=0; j<generator_size-1;

{

if (level == 1)

{

}

switch(j)

{

}

case
case
case

case
case

case
case
case

case
case
case

— 00 N

PRI

if (level > 1)

{

switch(j)

{

case
case
case

case

case
case
case

case
case
case
case

H W

O ~NOoOY O,

— N

set_type
break:

set_type
break;

set_type
break;

set_type
break:

set_type
break;

set_type
break;

set_type
break;

set_type

j++)

i
o

I
—

I
N]

]
w

]
o

I
—

]
aN)

I
w

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

break;
}
}
X1 = Xpoints[jl;
X2 = Xpoints[j+11;
Y1 = Ypoints[j];
Y2 = Ypoints[j+11;

generate (X1,Y1,X2,Y2,level,set_type,sign);

153

i 9

oo

Peano Curves

Chapter 8 described a number of curves which were characterized by self-similar-
ity, no self-intersection, and no self-overlapping. They had fractal dimensions
greater than 1 and less than 2. This implies that no matter how many times the
recursion process was applied, the curves would never completely fill the plane.
In this chapter, we will consider curves whose fractal dimension, D, is 2. They
are called Peano curves because the first of the family, which will be described in
the next section, was discovered by Giuseppe Peano in 1900. The fractal dimen-
sion of 2 has two implications. First, the curves must completely fill the plane.
Second, the curves must be self-intersecting—if they fill the plane, there must be
an infinity of points at which each curve intersects itself.

The Original Peano Curve

Figure 9-1 shows the generator for the original Peano curve. The initiator is
simply a horizontal straight line. Unfortunately, because of all of the self-inter-
sections, it is almost impossible to determine the way in which the Peano curve
is drawn, even if arrows are added to the diagram in an attempt to show the flow.
As you look at the diagram, first a step is made up, then a step to the left, then
another up, then one to the right, then a step down, then one to the right, then
one up, then a step to the left, and finally one up. Figure 9-2 shows the Peano
curves for levels of 2, 3, and 4. The way in which the generator is drawn can be
best understood by looking at the turtle graphics part of the listing for the
generator function, which is given in Figure 9-3. The generator consists of nine

155

FRACTAL PROGRAMMING IN C

line segments (N = 9), each of which has a length of 1/3 of the original line (r =
1/3). Thus, the fractal dimension is:

D=10g9/ log 3 =2 (Equation 9-1)

The Peano curves are generated by the same generic program shown in Figure 8-
6, with the generator function of Figure 9-3 substituted for the original generator
function, and the following changes in the initialization conditions:

int generator_size = 9;

int init_size = 1;

int initiator_x1[10] = {0},initiator_x2[10]={0},
initiator_yl1[10]={-100}, initiator_y2[10]={100};

Figure 9-1: Generator for Original Peano Curve

156

CH. 9: PEANO CURVES

Figure 9-2: Original Peano Curves for Levels 2 to 4

(a) 'level' =2

(b) 'level' =3 [)

(c) level'=4

157

FRACTAL PROGRAMMING IN C

Figure 9-3: Generator Function for Original Peano Curve

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,
int level)

{
int j.k,line;
float a, b, Xpoints[25], Ypoints{25];

level--;

turtle_r = (sqrt((X2 - X1)*(X2 - X1) + (Y2 - Y1)*
(Y2 - Y1)))/3.0;

Xpoints{0] = X1;

Ypoints[0] = Y1;

Xpoints[9] = X2;

Ypoints[9] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

turtle_x = X1;

turtle_y = Y1;

step();

Xpoints[1] = turtle_x;
Ypoints[1] = turtle_y;
turn(90);

step();

Xpoints[2] = turtle_x;
Ypoints[2] = turtle_y;
turn(-90);

step();

Xpoints[3] = turtle_x;
Ypoints[3] = turtie_y;
turn(-90);

step();

Xpoints[4] = turtle_x;
Ypoints{4] = turtle_y;
turn(-90);

step();

Xpoints[5] = turtle_x;
Ypoints[5] = turtle_y;
turn(90);

step():

Xpoints[6] = turtle_x;
Ypoints[6] = turtie_y;
turn(90);

step();

Xpoints[7] = turtle_x:

158

CH. 9: PEANO CURVES

Ypoints[7] = turtie_y:
turn(90);

step();

Xpoints[8] = turtle_x;
Ypoints[8] = turtle_y:

if (level > 0)

{
for (j=0: j<generator_size; j++)
{

X1 = Xpoints[jl;
Xpoints[j+13];
Ypoints(jl;

Y2 = Ypoints[j+1];
generate (X1,Y1,X2,Y2,7evel);

—< ><
—_ N
]

else
for (k=0; k<generator_size; k++)

drawlLine(Xpoints[k],Ypoints[k],
Xpoints[k+1],Ypoints[k+1],15);

Modified Peano Curve

Were it not for the self-intersections of the generator for the original Peano curve,
it would be a lot easier to trace the curve and see how it is drawn. Thus, a modi-
fication of the Peano curve has been developed that rounds off the corners to avoid
self-intersection. The resulting generator is shown in Figure 9-4. It must be
noted, however, that this modified generator can only be used at the lowest level,
just before actual curve drawing. If it is used at higher levels, on recursion the
program tries to substitute the generator for each diagonal segment that rounds off
a comner, as well as for the regular line segments. Therefore, the generator for the
original Peano curve is used at the higher levels. The curve is mathematically
interesting because it is not quite a true Peano curve. Because the generator used
in the final recursion is a little shorter in length than that of the original Peano
curve, the fractal dimension, D, is slightly less than 2. As the number of recur-
sions increases, the fractal dimension changes; as the number of recursions ap-
proaches infinity, the fractal dimension approaches 2 as a limit.

159

FRACTAL PROGRAMMING IN C

Figure 9-4: Generator for Modified Peano Curve

Figure 9-5 shows the resulting modified Peano curves for levels of 2 and 3. To
generate these curves, we use the program listed in Figure 9-6. The generator
function for all levels above 1 is the same as for the original Peano curve. For
level 1, a different generator is used. Instead of defining a turtle step (turtle_r) as
1/3 of the original line segment, it is defined as 1/18. The basic generator is then
written to have the turtle traverse the same path as the original Peano curve gen-
erator, using the same turn angles, but taking six steps for each step that was
taken by the original generator. However, the points that are saved for the coor-
dinate array are different. After saving the first set of coordinates, we next save
the location after the fifth step. The next location to be saved is at the end of the
first step after the first corner is turned. The remaining locations to be saved are
after the fifth step of each line segment and after the first step of the next line
segment, except that the fifth step of the very last line segment is not saved. The
result, when the lines are drawn, is that a diagonal line connects points 1/6 of the
distance on each line segment that would normally meet at the corner.

160

CH. 9: PEANO CURVES

Figure 9-5: Modified Peano Curves for Levels 2 and 3

A

U
U

(a) level' =2 (b) 'level =3

Figure 9-6: Program to Generate Modified Peano Curves

peano2 = program to generate modified peano curve

#include <stdio.h>
#include <math.h>
f#finclude <dos.h>
#include "tools.h"

void generate (float X1, float Y1, float X2, float Y2,

int
int
int
int

int

int level);

generator_size = 19;

level;

init_size = 1;

initiator_x1[10] = {0},initiator_x2[10]={0},
initiator_yl1[10]={-200}, initiator_y2[10]={200};
combination = 0,LINEWIDTH=1, OPERATOR=0:

unsigned long int PATTERN=0xFFFFFFFF;
float turtle_theta:
int i;

161

FRACTAL PROGRAMMING IN C

float Xpoints[25], Ypoints[25],Xptemp,Yptemp;
float turtle_x,turtle_y,turtle_r;

main()
{
printf("\nkEnter level (1 - 8): ");
scanf("%d",&level);
if (level < 1)
level = 1;
setMode(16);
cls(0);

Xptemp = initiator_x1[0];
Yptemp = initiator_y1[0];
for (i=0; i<init_size; i++)
generate(initiator_x1[{i], initiator_yl[i],
initiator_x2[i], initiator_y2[i], level);
getch();

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,
int level)

{
int j,k,line;
float a, b, Xpoints[25], Ypoints[25];

level--;

Xpoints[0] = X1;

Ypoints[0] = Y1;

turtle_theta = point(X1,Y1,X2,Y2);
turtle_x = X1;

turtle_y = Y1;

if (level !=0)

{

turtle_r = (sqrt((X2 - X1)*(X2 - X1) +
(Y2 - Y1)*(Y2 - Y1)))/3.0;
Xpoints[9] = X2;

Ypoints[9] = Y2;
step();

Xpoints{1] = turtie_x;
Ypoints[1] = turtle_y;
turn(90);

step():

Xpoints[2] = turtie_x;
Ypoints{2] = turtle_y;
turn(-90);

162

else

step();
Xpoints[3] = turtle_x;
Ypoints[3] = turtie_y;
turn(-90);
step();
Xpoints[4] = turtle_x;
Ypoints[4] = turtie_y;
turn(-90);
step();
Xpoints[5] = turtle_x;
Ypoints[5] = turtle_y;
turn(90);
step();
Xpoints{6] = turtle_x;
Ypoints{6] = turtle_y;
turn(90);
step();
Xpoints[7] = turtle_x;
Ypoints{7] = turtie_y:
turn(90);
step();
Xpoints[8] = turtle_x;
Ypoints[8] = turtle_y;
for (j=0; j<9: j++)
{
X1 = Xpoints[j];
X2 = Xpoints[j+11;
Y1 = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level);

turtle_r =

Xpoints[0]
Ypoints[0]

(sgrt((X2 - X1)*(X2 - X1) +
(Y2 - YI)*(Y2 - Y1)))/18.0;

Xptemp;
Yptemp;

Xpoints[19] = X2;
Ypoints[19] = Y2;

step();
Xpoints([1]
Ypoints[1]
step():
step();
step():
step();
Xpoints[2]
Ypoints[2]
step();
turn(90);

turtie_x;
turtie_y;

turtle_x;
turtle_y;

CH. 9: PEANO CURVES

163

FRACTAL PROGRAMMING IN C

164

step();
Xpoints[3]
Ypoints[3]
step();
step();
step():
step();
Xpoints[4]
Ypoints[4]
step();
turn(-90);
step();
Xpoints[5]
Ypoints[5]
step():
step();
step();
step();
Xpoints[6]
Ypoints[6]
step();
turn(-90);
step();
Xpoints[7]
Ypoints(7]
step();
step();
step();
step():
Xpoints([8]
Ypoints[8]
step():
turn(-90);
step();
Xpoints[9]
Ypoints[9]
step();
step();
step():
step();

Xpoints[10] =

Ypoints[10]
step();
turn(90);
step();
Xpoints[11]
Ypoints[11]
step();
step();
step();
step();

turtie_x;
turtle_y;

turtle_x;
turtle_y;

turtie_x;
turtle_y:

turtle_x;
turtle_y;

turtie_x;
turtie_y;

turtle_x;
turtle_y;

turtle_x;
turtle_y;

turtle_x;
turtle_y;

turtie_x;
turtle_y;

Xpoints[12] = turtle_x;
Ypoints[12] = turtie_y:
step();

turn(90);

step():

Xpoints[13] = turtle_x;
Ypoints[13] = turtle_y;:
step();

step();

step();

step();

Xpoints{14] = turtle_x;
Ypoints[14] = turtie_y;
step();

turn(90);

step();

Xpoints[15] = turtle_x;
Ypoints[15] = turtle_y;
step();

step();

step();

step();

Xpoints[16] = turtle_x;
Ypoints[16] = turtle_y;
step();

turn(-90);

step();

Xpoints[17] = turtle_x;
Ypoints{17] = turtle_y;
step();

step();

step();

step();

Xpoints[18] = turtle_x;
Ypoints[18] = turtle_y:
Xptemp = Xpoints[18];
Yptemp = Ypoints[18]:
for (k=0; k<generator_size-1; k++)
{

drawlLine(Xpoints[k],Ypoints[k],
Xpoints[k+1],Ypoints[k+1],15);

CH. 9: PEANO CURVES

165

FRACTAL PROGRAMMING IN C

Cesaro Triangle Curve

Figure 9-7(a) shows the very simple generator that will be used for the next few
curves. The initiator in each case will be a horizontal straight line. The genera-
tor consists of two sides of a right isoceles triangle. Consequently, N=2 and r =
12. Therefore, the fractal dimension is:

D=1og 2/ log (N2) =2 (Equation 9-2)

Depending upon the conditions which determine whether this generator is placed
to the left or right of each line segment it replaces, many totally different curves
can be produced. The first of these to be considered is the Cesaro triangle discov-
ered by Emest Cesaro in 1905. Figure 9-7(b) shows the first level of this curve.
For any level of construction for this curve, the generator is placed to the right of
each line segment at the top level, to the left of each line segment of the next
lower level, to the right of each line segment of the next lower level, and so on.

Figure 9-7: Generator and First Level for Cesaro Curve

(a) Generator for Cesaro Curve (b) First Level for Cesaro Curve

166

CH. 9: PEANO CURVES

Figure 9-8: Cesaro Triangle Curves for Levels 212

(a) 'level' =2

(b) level' =4

(d) 'level' = 12

167

FRACTAL PROGRAMMING IN C

To do this in our program, we multiply the 90-degree turn angle in the generator
by one of an array of sign. This parameter is set up at the beginning of the pro-
gram to be +1 for the top level, and alternate in sign for each succeeding lower
level. Figure 9-8 shows the resulting Cesaro triangles for levels 2, 4, 8, and 12.
The program to generate this curve is listed in Figure 9-9.

Figure 9-9: Program to Generate Cesaro Triangle Curves

cesaro3 = program to generate original cesaro curve

#include <stdio.h>
#include <math.h>
#include <dos.h>

f#include "tools.h"

void generate (float X1, float Y1, float X2, float Y2,
int level);

int generator_size = 3;

int level;

int init_size = 1;

int initiator_x1[10] = {-150},initiator_x2[10]={150},
initiator_yl1[10]={0}, initiator_y2[10]={0};

int combination = O,LINEWIDTH=1, OPERATOR=0;

unsigned long int PATTERN=OxFFFFFFFF;

float turtle_theta;

int i,sign[16],signl=-1;

float Xpoints[25], Ypoints[25];

float turtle_x,turtle_y,turtle_r;

main()
{
printf("\nEnter level (1 - 16): ");
scanf("%d",&level);
if (level < 1)
level = 1;
setMode(16);
cls(0);
for (i=level; i>=0; i--)
{
sign[i] = signl;
signl *= -1;
}
for (i=0; i<init_size; i++)
generate(initiator_x1[i], initiator_yl[i],

168

CH. 9: PEANO CURVES

initiator_x2[i], initiator_y2[i], level);
getch();

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,

{

int level)

int j,k,line;
float a, b, Xpoints[25], Ypoints[25];

level--;

turtle_r = sqrt(((X2 - XI)*(X2 - X1) + (Y2 - Y1)*
(Y2 - Y1)))/2.0;

Xpoints[0] = X1;

Ypoints[0] = Y1;

Xpoints[2] = X2;

Ypoints[2] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

turtle_x = X1;

turtle_y Y1;

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtle_y;

turn(90*signllevell);

step();

Xpoints[1] = turtle_x;

Ypoints[1] = turtle_y;

if (level > 0)

{

for (j=0; j<generator_size-1; j++)
{
X1 = Xpoints[jJ;

X2 = Xpoints[j+1];
Y1 = Ypoints[j];
Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level);

}
else
{
drawLine(Xpoints[0],Ypoints[0],Xpoints[2],
Ypoints[21,15);
drawLine(Xpoints[1],Ypoints[1],Xpoints[3],
Ypoints[3]1,15);

169

FRACTAL PROGRAMMING IN C

Modified Cesaro Triangle Curve

The Cesaro triangle curve described above is a little hard to trace because the line
going out at right angles from the center of the original line segment actually re-
traces itself, but this is not observable in the drawings. A modification of the
Cesaro curve is possible by changing the angle of the generator from 90 degrees
to 85 degrees for the lowest level before drawing occurs. As with the modified
Peano curve, this results in a curve whose fractal dimension is not quite 2, but
which approaches 2 as a limit when the number of recursions approaches infinity.
Figure 9-10 shows the first level for the modified Cesaro Triangle curve. Figure
9-11 shows the resulting curves for levels 2, 4, 8, and 12. The program to gen-
erate this curve is listed in Figure 9-9, with the generator function replaced by
that listed in Figure 9-12.

Figure 9-10: First Level for Modified Cesaro Curve

170

CH. 9: PEANO CURVES

Figure 9-11: Modified Cesaro Triangle Curves for Levels 2-12

(a) 'level' =2

(b) 'level' =4

O
A
GSEO

000
102620%2%
9.9.9.0.9.0.9
0% 26%0%0% %%
162626720 % %% %%
00020 %0 20 % 20 %020 %20 %

070 00% 00 %20 % %0 %20 % 2%
020207676 %6%6%%4%6%¢ % %%

(c) 'level' =8

(d) 'level = 12

171

FRACTAL PROGRAMMING IN C

We've chosen a slightly different approach here than was used for the modified
Peano curve. We generate the three points that are used in the unmodified
generator and use them for each step in the recursion process. We also generate
two additional points to locate the base of the 85-degree triangle of the two
triangles for the first level, and use these points in drawing the actual curve.

Figure 9-12: Generator for Modified Cesaro Curves

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,
int level)

{
int j,k,line;
float a, b, Xpoints[25], Ypoints[25];

level--;

a = sqrt(((X2 - X1)*(X2 - X1) +
(Y2 - YI)*(Y2 - Y1)))/2.0;

b=a* 0.9128442;

turtle_r = b;

Xpoints[0] = X1;

Ypoints[0] = YI;

Xpoints[2] = X2;

Ypoints[2] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

turtle_x = X1;

turtle_y = Y1;

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtle_y;

turn(85*sign[levell);

turtie_r = a;

step();

Xpoints[1] = turtle_x;

Ypoints[1] = turtle_y;

turn(-170*sign[level]);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtle_y;

if (level > 0)

{

for (j=0; j<generator_size-1; j++)
{
X1 = Xpoints[j];

172

CH. 9: PEANO CURVES

X2 = Xpoints[j+171;
Y1 = Ypoints[jl;
Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,1evel);

else

drawLine(Xpoints[0],Ypoints[0],Xpoints[3],
Ypoints[3]1,15);

drawLine(Xpoints[2],Ypoints[2],Xpoints[4],
Ypoints[4],15);

drawlLine(Xpoints[3],Ypoints[3],Xpoints[1],
Ypoints[1]1,15);

drawLine(Xpoints[41,Ypoints[4],Xpoints[1],
Ypoints[1]1,15);

Variation on the Cesaro Curve

Suppose we start with a curve which has the same generator and the same first
two levels as the Cesaro curve, but then uses a differing arrangement of placing
the generator to the right and left of the original line segment as we go to higher
levels. Many different curves can result. One of them is shown for levels 2, 4,
8, and 16 in Figure 9-13. The program that was used to generate these curves is
listed in Figure 9-14. This can serve as a basis for your experimentation with
various methods of arranging the generator to create a variety of interesting
curves.

173

FRACTAL PROGRAMMING IN C

Figure 9-13: Variation of Cesaro Curves for Levels 2-16

=2

(a) 'level

=4

(b) 'level

=8

(c) 'level

174

CH. 9: PEANO CURVES

Figure 9-14: Program to Generate Variation of Cesaro Curve

cesarol = program to generate variation on cesaro curve

#include <stdio.h>
#include <math.h>
#include <dos.h>
ffinclude "tools.h"

void generate (float X1, float Y1, float X2, float Y2,

int
int
int
int

int

int level,int sign);

generator_size = 3;

level;

init_size = 1;

initiator_x1[10] = {-150},initiator_x2[10]={150},
initiator_yl1[10]={0}, initiator_y2[10]={0};
combination = 0,LINEWIDTH=1, OPERATOR=0;

unsigned long int PATTERN=OxFFFFFFFF;
float turtle_theta;

int

i,sign=1;

float Xpoints[25], Ypoints[25];
float turtle_x,turtle_y,turtle_r;

main()

{

printf("\nknter level (1 - 16): ");
scanf("%d",&level);
if (level < 1)
level = 1;
setMode(16);
cls(0);

for (i=0; idinit_size; i++)
generate(initiator_x1[i], initiator_yl[i],
initiator_x2[i],initiator_y2[i], level,sign);
getch();

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,

{

int level, int sign)

int j,k,line;
float a, b, Xpoints[25], Ypoints[25];

175

FRACTAL PROGRAMMING IN C

level--;

turtle_r = sqrt(((X2 - X1)*(X2 - X1) + (Y2 - YI)*
(Y2 - Y1)))/2.0;

Xpoints[0] = X1;

Ypoints[0] = Y1;

Xpoints[2] = X2;

Ypoints[2] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

turtle_x = X1;

turtie_y = Y1;

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtle_y;

turn(90*sign);

step();

Xpoints[1] = turtle_x;

Ypoints[1] = turtle_y;

sign = -1;

if (level > 0)

{

for (j=0; j<generator_size-1; j++)
{

X1 = Xpoints[j];
X2 = Xpoints[j+171;
Y1 = Ypoints[jl;

Y2 = Ypoints[j+1];
generate (X1,Y1,X2,Y2,level,sign);

}
else
{
drawlLine(Xpoints[0],Ypoints[0],Xpoints[2],
Ypoints[2],15);
drawlLine(Xpoints[1],Ypoints[1],Xpoints[3],
Ypoints[3],15);

int init_size = 1;

int initiator_x1[10] = (-150,150}, initiator_x2[10]=
{150,-150}, initiator_yl[10]={-50},
initiator_y2[10]={-50};

176

CH. 9: PEANO CURVES

Polya Triangle Curve

This curve was discovered by George Polya, a professor at Stanford University.
The initiator and generator are the same as for the Cesaro curve, but the position-
ing of the generator is different. Figure 9-15 shows the first and second levels of
the curve. As with the Cesaro curve, the position of the first generator alternates
from right to left beginning at the top level. For this curve, the position of the
generator also alternates with each line segment of a particular level that is re-
placed. Figure 9-16 shows the resulting curve for levels of 4, 8, and 12. Figure
9-17 lists the program for generating the Polya curve. We use the same tech-
nique that was used for the Cesaro curve of having an array of sign variables,
which are initiated at the beginning of the program. For this curve, we also
modify the sign as we pass through the generate function. In Chapter 16, we
shall discuss the Harter-Heightway dragon curve. Although it is included with
the dragons, it is a member of the family of Peano curves discussed in this chap-
ter. It has the same initiator, generator, and first stage as the Polya triangle
curve, but then diverges.

Figure 9-15: First Two Levels for Polya Triangle Curve

177

FRACTAL PROGRAMMING IN C

Figure 9-16: Polya Triangle Curves for Levels 4 to 12

(@) Yevel' = 4

(b) 'level' =8

h
1assel
oouo

(c) 'level' =12

feasss
Faajea-as S Eapsicaiacisgiaciinsis S aigsiaiiigiaiisaiasy]

178

CH. 9: PEANO CURVES

Figure 9-17: Program to Generate Polya Curves

polya = program to generate polya curve

#include <stdio.h>
#include <math.h>
#include <dos.h>

#include "tools.h"

void generate (float X1, float Y1, float X2, float Y2,
int level);

int combination = O,LINEWIDTH=1, OPERATOR=0;

unsigned long int PATTERN=OxFFFFFFFF;

float turtle_theta;

int i, signl =1;

int generator_size = 3;

int level;

int init_size = 2;

int sign[17];

int initiator_x1[10] = (-150},initiator_x2[10]={150},
initiator_yl[10]={-75}, initiator_y2[10]={-75};

float Xpoints[25], Ypoints[25];

float turtle_x,turtle_y,turtle_r;

main()
{
printf("\nEnter level (1 - 16): ");
scanf("%d",&level);
if (level < 1)
level = 1;

setMode(16);
cls(0);
for (i=level; i>0; i--)
{
sign[i] = signl;
signl *= -1;
}
for (i=0; i<init_size-1; i++)
{
generate(initiator_x1[i], initiator_yl[i],
initiator_x2[i], initiator_y2[i], level);
}
getch();

179

FRACTAL PROGRAMMING IN C

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,
int level)
{
int j,k,line;
float a, b, Xpoints[25], Ypoints[25];
turtle_r = (sqrt((X2 - X1)*(X2 - X1) + (Y2 - Y1)*
(Y2 - Y1)))/1.41421;

Xpoints[0] = X1;
Ypoints[0] = Y1;
Xpoints[2] = X2;
Ypoints[2] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);
turtle_x = X1;

turtle_y = Y1;
turn(sign[level]*(45));

step();

Xpoints[1] = turtle_x;
Ypoints[1] = turtle_y;
level--;

if (level > 0)
{
for (j=0; j<generator_size-1; j++)
{
X1 = Xpoints[j];
X2 = Xpoints[j+11];
Y1 = Ypoints[j];
Y2 = Ypoints[j+1];
generate (X1,Y1,X2,Y2,level);
sign[level] *= -1;

else
for (k=0; k<generator_size-1; k++)

drawLine(Xpoints(k],Ypoints(k],
Xpoints[k+1]1,Ypoints[k+1],15);

180

CH. 9: PEANO CURVES

The Peano-Gosper Curve

Figure 9-18 shows the generator for the Peano-Gosper curve and its associated
grid of equilateral triangles. The geometry of the situation can easily be deter-
mined from this figure. There are seven line segments (N=7), and the length of
each one is:

ro=1/7 (Equation 9-3)

The fractal dimension is

D=1og 7 / log (N7) = 2 (Equation 9-4)

This curve has the interesting characteristic that it just fills the interior of the
Gosper curve given in Chapter 6. Figure 9-19 shows the curves for levels 2, 3,
and 4. The program for this curve is the generic program of Figure 6-6 with the
generator replaced by that shown in Figure 9-20, and the following changes in the
initializing conditions:

int generator_size = 8;

Figure 9-18: Generator for Peano-Gosper Curve

181

PROGRAMMING IN C

Figure 9-19: Peano-Gosper Curves for Levels 2 to 4

(b) 'level'=3

182

CH. 9: PEANO CURVES

Figure 9-20: Generator for Peano-Gosper Curve

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,
int level, int type)

{
int j,k,line,set_type;
float a, b, Xpoints[25], Ypoints[25],sign=1, temp;

switch (type)
{
case 0: break;

case 1: sign *= -1;
break;

~nN

case
case

sign *= -1;
temp X1;
X1 = X2;

X2 emp;
tem Y1;
Y1 2;

Y2 = temp;
break;

w
oo
< Il > |

}

level--;

turtle_r (sqrt((X2 - X1)*(X2 - X1) + (Y2 - Y1)*
(Y2 - Y1)))/2.6457513;

Xpoints[0] = X1;

Ypoints[0] = Y1;

Xpoints[7] X2;

Ypoints[7] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

turn(-19*sign);

turtle_x = X1;

turtle_y = Y1;

step();

Xpoints[1] = turtle_x;

Ypoints[1] = turtle_y;

turn(60*sign);

step():

Xpoints[2] = turtle_x;

Ypoints[2] = turtle_y;

turn(120*sign);

step();
Xpoints[3] = turtle_x;
Ypoints[3] = turtle_y;

183

FRACTAL PROGRAMMING IN C

turn(-60*sign);
step();

Xpoints[4] = turtle_x;
Ypoints[4] = turtle_y;
turn(-120*sign);

step();
Xpoints[5] = turtle_x;
Ypoints[5] = turtle_y;
step();
Xpoints[6] = turtle_x;
Ypoints[6] = turtle_y;

if (level > 0)

{
for (j=0; j<generator_size-1; j++)
{

switch(j)
{
case 0:
case 3:
case 4:
case 5:
set_type = 0;
break;
case 2:
case 1:
case 6:
set_type = 3;
break;
}
X1 = Xpoints[jl;
X2 = Xpoints[j+1];
Y1 = Ypoints[j];

Y2 = Ypoints[j+1];
generate (X1,Y1,X2,Y2,7evel,set_type):
else
for (k=0; k<generator_size-1; k++)

drawlLine(Xpoints[k],Ypoints[k],
Xpoints[k+1],Ypoints[k+1],15);

We need to make use of a generate function which provides for specifying any of
the four possible positions of the generator, as we did with several of the von
Koch curves.

184

CH. 9: PEANO CURVES

Peano Seven-Segment Snowflake

Figure 9-21 shows the generator and first stage of a Peano seven-segment
snowflake curve, discovered by Mandelbrot. Note the similarity of the generator
to that described under the heading "Complicated Generators” in Chapter 6. The
only difference is that, where the generator of Chapter 6 used a smaller replica of
the curve consisting of the first four line segments and then a line to the end to
replace the fifth line segment, this curve does not. The result is that the fractal
dimension is different. Itis:

6(1/3)D + (¥3/3)D =1 (Equation 9-5)

which gives a fractal dimension of:

D=2 (Equation 9-6)

Like the complicated generator of Chapter 6, there are four choices of generator
position and they must be carefully selected for each level and each line segment
to assure that the curve is not self-intersecting or self-overlapping. Figure 9-22
shows the curve for levels 2, 3, and 4. The program to generate this curve is
given in Figure 9-23.

Figure 9-21: First Two Levels for Peano Seven-Segment Snowflake Curve

(a) 'level' =1 (b) 'level' =2

185

FRACTAL PROGRAMMING IN C

Figure 9-22: Peano Seven-Segment Snowflake Curves for Levels 2 to 4

¢ </ §6 (a) level'=3
2
i

(b) 'level' =4

(c) level'=5

186

CH. 9: PEANO CURVES

Figure 9-23: Program to Generate Seven-Segment Snowflake

snow/ = generates snowflake with 7 segment generator

#include <stdio.h>
#include <math.h>
f#include <dos.h>
#include "tools.h"

void generate (float X1, float Y1, float X2, float Y2,
int level, int type, int sign);

int combination = 0,LINEWIDTH=1, OPERATOR=0;

unsigned long int PATTERN=OxFFFFFFFF;

int color,flag = 0,i,start_level;

int generator_size = 7;

int start_level,level;

int init_size = 1,sign = 1;

int initiator_x1[10] = {-125},initiator_x2[10]={125},
initiator_yl[10]={0},initiator_y2[10]={0};

float Xpoints[25], Ypoints[25];

float turtle_x,turtle_y,turtle_r,turtle_theta;

main()
{
printf("\nEnter level (1 - 8): ");
scanf("%d",&level);
if (level < 1)
level = 1;
start_level = level;
setMode(16);
cls(0);

for (i=0; i<init_size; i++)
{
generate(initiator_x1[i], initiator_yl[i],
initiator_x2[i], initiator_y2[i], level,0,
sign);
}
getch();

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,

187

FRACTAL PROGRAMMING IN C

int level, int type, int sign)

int j,k,line,set_type;
float a, b, Xpoints[25], Ypoints[25], temp,temp_r;

switch (type)
{
case 0: break;

case 1: sign *= -1;
break;

[AS]

case
case

sign *= -1;
temp = X1;
X1 = X2;

X2 = temp;
temp = Y1;
Y1 =Y2;

Y2 = temp;
break;

w

}

level--;

turtle_r = (sqrt((X2 - X1)*(X2 - X1) + (Y2 - Y1)*
(Y2 - Y1)))/3.0;

Xpoints[0] = X1;

Ypoints[0] = Y1;

Xpoints[7] = X2;

Ypoints[7] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

turtle_x = X1;

turtle_y = Y1;

turn(60*sign);

step();
Xpoints[1] = turtle_x;
Ypoints[1] = turtle_y;
step();
Xpoints[2] = turtle_x;

Ypoints[2] = turtle_y;
turn(-60*sign);
step();

Xpoints[3] = turtle_x;
Ypoints[3] = turtle_y;
turn(-60*sign);
step();

Xpoints[4] = turtle_x;
Ypoints[4] = turtle_y;
turn(-60*sign);
step();

Xpoints[6] = turtle_x;
Ypoints[6] = turtle_y;
turn(-60*sign);

188

CH. 9: PEANO CURVES

step();
Xpoints[5] = turtle_x;
Ypoints[5] = turtle_y;
if (level == 0)
{

for (k=0; k<generator_size; k++)

{

drawline(Xpoints[k],Ypoints[k],
Xpoints[k+1],Ypoints[k+1],15);

else

for (j=0; j<generator_size; j++)

switch(j)
{
case 5:
case 0:
set_type = 1;
break;
case 1:
case 2:
case 3:
case 6:
set_type = 2;
break;
case 4:
set_type = 3;
break;

}
X1 = Xpoints[jl;

X2 = Xpoints[j+11;
Y1 = Ypoints[jl;
Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,1evel,set_type,sign);

Peano Thirteen-Segment Snowflake

Figure 9-24 shows the generator and first stage of a Peano thirteen-segment
snowflake curve which was also discovered by Mandelbrot. This generator is ob-
tained by replacing the fifth line segment of the generator in Figure 9-21 with a

smaller replica of the entire generator of Figure 9-21. To determine the fractal

dimension of this curve, we note that Equation 9-5 applied to the curve of the

189

FRACTAL PROGRAMMING IN C

previous section, and that the length of the line segment being replaced was 1.
Thus, the fractal dimension is unchanged when this curve is substituted for a line
segment, and the fractal dimension of the thirteen-segment snowflake is still 2.
More generally, we ought to be able to substitute a generator for any line seg-
ment of the original generator and still keep the fractal dimension unchanged.

For this curve also, there are four choices of generator position which must be
carefully selected for each level and each line segment to assure that the curve is
not self-intersecting or self-overlapping. Figure 9-25 shows the curve for levels
of 2, 3, and 4. The program to generate the thirteen-segment curve is listed in
Figure 9-26.

Figure 9-24: First Two Levels for Peano Thirteen-Segment
Snowflake Curve

(a) 'level' =1 (b) "level' =2

190

CH. 9: PEANO CURVES

Figure 9-25: Peano Thirteen-Segment Snowflake Curves for Levels 3 to 5

(a) 'level' =3

(b) "level' = 4

(c) 'level' =5

191

FRACTAL PROGRAMMING IN C

Figure 9-26: Program to Generate Thirteen-Segment Snowflake

snowl3 = generates snowflake with 13-segment generator

f#include <stdio.h>
f#include <math.h>
#include <dos.h>
#include "tools.h"

void generate (float X1, float Y1, float X2, float Y2,
int level, int type, int sign):

int combination = O,LINEWIDTH=1, OPERATOR=0;

unsigned long int PATTERN=0xFFFFFFFF;

int color,flag = 0,i,start_level;

int generator_size = 13;

int start_level,level;

int init_size = 1,sign = 1;

int initiator_x1[10] = {-125},initiator_x2[10]={125},
initiator_yl[10]={0},initiator_y2[10]={0};

float Xpoints[25], Ypoints[25];

float turtle_x,turtle_y,turtle_r,
turtle_theta:

main()
{
printf("\nEnter level (1 - 8): ");
scanf("%d",&level);
if (level < 1)
level = 1;
start_level = level;
setMode(16);
cl1s(0);

for (i=0; i<init_size; i++)
{
generate(initiator_x1[i], initiator_yl[i],
initiator_x2[i], initiator_y2[i], level,O0,
sign);
)
getch();

192

CH. 9: PEANO CURVES

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,

int level, int type, int sign)

int j.k,line,set_type:
float a, b, Xpoints[25], Ypoints[25], temp,temp_r:

switch (type)
{
case 0: break:

case 1: sign *= -1;
break;

case
case

sign *= -1;
temp = X1;

X1 = X2;

X2 = temp;

temp = Y1;

Y1 =Y2:

Y2 = temp;

break;

w N

}

level--;

turtle_r = (sqrt((X2 - X1)*(X2 - X1) + (Y2 - Y1)*
(Y2 - Y1)))/3.0;

Xpoints[0] = X1;

Ypoints[0] = Y1;

Xpoints[13] = X2;

Ypoints[13] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

turtle_x = X1;

turtle_y = Y1;

turn(60*sign);

step():

Xpoints[1] = turtle_x;
Ypoints[1] = turtle_y:
step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtle_y;
turn(-60*sign);
step():

Xpoints[3] = turtle_x;
Ypoints[3] = turtle_y;
turn(-60*sign);
step():

Xpoints[4] = turtle_x;

193

FRACTAL PROGRAMMING IN C

Ypoints[4] = turtle_y;
turn(-60*sign);

step();

Xpoints[12] = turtle_x;
Ypoints[12] = turtle_y;
turn(-60*sign);

step();

Xpoints[11] = turtle_x;
Ypoints[11] = turtle_y;

turtle_r = (sgrt((Xpoints[11] - Xpoints[4])*
(Xpoints[11] - Xpoints[4]) + (Ypoints[11] -
Ypoints[41)*(Ypoints[11] - Ypoints[41)))/3.0;

turtle_theta = point(Xpoints[4],Ypoints[4],
Xpoints[11],Ypoints[11]);

turtle_x = Xpoints[4];

turtie_y = Ypoints[4];

turn(-60*sign);

step();

Xpoints[5] = turtle_x;
Ypoints[5] = turtle_y;
step():

Xpoints[6] = turtle_x;
Ypoints[6] = turtle_y;:
turn(60*sign);

step();

Xpoints[7] = turtle_x;

Ypoints[7] = turtle_y;
turn(60*sign);

step();

Xpoints[8] = turtle_x;
Ypoints[8] = turtle_y;:
turn(60*sign);

step():

Xpoints[10] = turtle_x;
Ypoints[10] = turtle_y:
turn(60*sign);

step();

Xpoints[9] = turtle_x;
Ypoints[9] = turtle_y;:
if (level == 0)

{

for (k=0: k<generator_size; k++)

{
drawLine(Xpoints[k],Ypoints[k],
Xpoints[k+1],Ypoints[k+1],15);

}

else

{
for (j=0; j<generator_size; j++)
{

194

CH. 9: PEANO CURVES

switch(j)

{
case
case
case
case
case
case
case

— O 00 wWwN -

]
o

set_type

break;
case 0
case 5:
case 6:
case 7
case 1
case 1

]
—

set_type
break:

X1 = Xpoints[jl;

X2 = Xpoints[j+11;
Y1 = Ypoints[jl;
Y2 = Ypoints[j+11;

generate (X1,Y1,X2,Y2,level,set_type,sign);

195

= 10
D&%% The Hilbert Curve

The Hilbert curve is one of the Peano family of curves but it has some subtle
differences that make it unique. Figure 10-1 shows the generator and the next
level of the Hilbert curve. Since we're used to pretty straightforward application
of the generator to the line segments of the initiator or previous level of the
curve, it may be quite difficult to visualize what is happening with the Hilbert
curve. The parameters that we use are:

r=1/2 (Equation 10-1)

and

N=24 (Equation 10-2)

In other words, the line segment of the generator is one-half of the line segment
to which it is being applied and the generator is applied four times. But to make
things more complex, each time that we go to a lower level to run the generator
program, we return to the next higher level and draw a line with the same length
being used at the lower level. This sounds a little complex. Try tracing it out
on Figure 10-1(b). Each time you run the generator program, you have to make
sure that it has the proper orientation for the curve to come out correctly.

Starting at the lower right of Figure 10-1(a) we use the generator, then draw a
line segment to the left, use the generator again, draw a line segment up, use the
generator again, draw a line segment to the right, and then use the generator one
final time.

197

FRACTAL PROGRAMMING IN C

Figure 10-1: Generator and Second Level for Hilbert Curve

(a) Generator (b) 'level' =2

Generating the Hilbert Curve

All of the above becomes quite clear from the program listing of Figure 10-2.
This program is quite similar to the generic initiator/generator program of Chap-
ter 8, but since all of our steps are in the + x or * y directions, we don't use the
turtle graphics to keep track of direction but simply step in the proper direction at
each operation. You will note that at each level of generate except the lowest, we
call generate recursively a number of times and also draw line segments of the
proper length between calls to generate. The resulting curves for levels from 3 to
6 are shown in Figure 10-3.

198

CH. 10: THE HILBERT CURVE

Figure 10-2: Program to Generate Hilbert Curve

hilbert = program to generate Hilbert curves

f#finclude <stdio.h>
f#finclude <math.h>
f#Hinclude <dos.h>
f#finclude "tools.h"

void generate (float rl, float r2);

int lTevel,sign=-1;

int combination = O,LINEWIDTH=1, OPERATOR=0;
unsigned long int PATTERN=OxXFFFFFFFF;

int i;

float x1,x2,yl,y2,r;

main()
{
float temp;

printf("Enter level: ");
scanf ("%d",&level);
setMode(16);

cls(0);

r = 400/ (pow(2,level));
x1 = -200;

yl = -200;

x2 = -200;

y2 = -200;
generate(r,0);

getch();

199

FRACTAL PROGRAMMING IN C

generate() = generates curve

void generate (float rl, float r2)
{

level--;

if (level > 0)
generate(r2,rl);

x2 +=rl;

y2 +=r2;

drawlLine(x1,yl,x2,y2,15);

x1l = x2;

yl = y2;

if (level > 0)
generate(rl,r2);

x2 += r2;

y2 +=rl;

drawLine(x1l,yl,x2,y2,15);

x1l = x2;

yl =y2;

if (level > 0)
generate(rl,r2);

x2 -=rl;
y2 -=r2;
drawlLine(x1,yl1,x2,y2,15);
x1l = x2;
yl = y2;

if (level > 0)
generate(-r2,-rl);
level++;

It is worth noting that there is an entirely different way to generate the Hilbert
curve. The program to do this is listed in Figure 10-4. It makes use of four
separate functions to do the generate tasks, and, although elegant, tends to ob-
scure what is going on.

200

CH. 10: THE HILBERT CURVE

Figure 10-3: Hilbert Curve for Levels 3 to 6

(@) Ylevel' =3

(b) 'level' =4

(c) 'level' =5

(d) 'level' =6

201

FRACTAL PROGRAMMING IN C

Figure 10-4: Alternate Program to Draw Hilbert Curve

hilbert = program to generate Hilbert curves

#include <stdio.h>
#include <math.h>
#include <dos.h>
f#finclude "tools.h”

void genl(int i);
void gen2(int i);
void gen3(int i);
void gend(int i);

int combination = 0,LINEWIDTH=1, OPERATOR=0;
unsigned long int PATTERN=OxXFFFFFFFF;

int xa=0,ya=0, x,y,old_x,old_y, i,j,h=448;
int level;

main()
{
printf("\nknter level (1 - 8): ");
scanf("%d",&level);
if (level < 1)
level = 1;
setMode(16);
cls(0);

for (i=1; i<=level; i++)
{
h /=2;
x += h/2;
y += h/2;
old_x = x;
old_y = y;
)
genl(level);
getch();
}

void genl(int i)
{
if(i > 0)
{
gend(i-1);
X -=h;
drawline(old_x,old_y,x,y,15);
old_x = x;

202

old_y = y;
genl(i-1);
y -=h;

drawlLine(old_x,o0ld_y.x,y,15);
old_x = x;

old_y = y:
genl(i-1);
x += h;

drawlLine(old_x,o0ld_y,x,y,15);

old_x = x;
old_y = y;
gen2(i-1);
}
}
void gen2(int 1)
{
if (i > 0)
{
gen3(i-1);
y +=n;

drawLine(old_x,o0ld_y,x,y,15);
old_x = x;:

old_y = y:
gen2(i-1);
x += h;

drawlLine(old_x,old_y,x,y,15);
old_x = x;

old_y =vy:
gen2(i-1);
y -=h;

drawlLine(old_x,o0ld_y,x,y,15);

old_x = x;
old_y = y:
genl(i-1);
}
)
void gen3(int 1)
{
if (i > 0)
{
gen2(i-1);
X += h;

drawlLine(old_x,old_y,x,y,15);
old_x = x;

old_y =y;
gen3(i-1);
y +=h;

drawLine(old_x,o0ld_y,x,y,15);
old_x = x;

CH. 10

: THE HILBERT CURVE

203

FRACTAL PROGRAMMING IN C

}

old_y = y;

gen3(i-1);

X -=h;
drawlLine(old_x,o0ld_y,x,y,15);
old_x = x;

old_y =y;

gend(i-1);

void gend(int 1)

{

if (i > 0)

{
genl(i-1);
y -= h;
drawlLine(old_x,old_y,x,y,15);
old_x = x;
old_y = y;
gend(i-1);
x -= h;
drawLine(old_x,o0ld_y,x,y,15);
old_x = x;
old_y = y;
gend(i-1);
y +=h;
drawlLine(old_x,old_y,x,y,15);
old_x = x;
old_y = y;
gen3(i-1);

Fractal Dimension of the Hilbert Curve

If you take a close look at the Hilbert curve, it is evident that after a sufficiently
large number of iterations, it will pass through every point in the plane. Going
back to the formula for fractal dimension, we have:

D = log(4) / log(2) =2 (Equation 10-2)

This confirms that the Hilbert curve is a Peano Curve and that it passes through
every point on the plane.

204

CH. 10: THE HILBERT CURVE

Hilbert Curve in Three Dimensions

The Hilbert curve can also be drawn in higher dimensions, but it becomes rather
difficult to determine the proper orientations of the generator to assure that every
point is covered without duplication. Figure 10-5 shows the second level of a
three-dimensional curve. The program to draw these two displays is listed in
Figure 10-6. This program breaks down for higher levels, since we haven't found
the proper orientations to insert to assure that they would be correct. You're
welcome to hunt for these if you want to, but they aren't obvious.

Figure 10-5: Three-Dimensional Hilbert Curve

205

FRACTAL PROGRAMMING IN C

Figure 10-6: Program to Draw Three-Dimensional Hilbert Curve

hi13d = program to generate 30 Hilbert curves

f#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <stdlib.h>

#include "tools.h"

void generate (int a, int b, int c);

int level,max_level;
int combination = O,LINEWIDTH=1, OPERATOR=0;
unsigned long int PATTERN=OxFFFFFFFF;

int i;

float point[3],x1,x2,y-one,y2,r;

float x_angle = -55, y_angle = 90, z_angle = 0,cx,cy,cz,SX,
Sy.SZ:

main()

{
printf("Enter level: ");
scanf ("%d",&level);
max_level = level;
setMode(16);

cls(0);

sx = sin(x_angle*.017453292);
sy = sin(y_angle*.017453292);
sz = sin(z_angle*.017453292);
cx = cos(x_angle*.017453292);
cy = cos(y_angle*.017453292);

cz = cos(z_angle*.017453292);

r = 300/(pow(2,1evel));
point[0] = -200;
point[1] = 50;

point[2] = 0;
generate(3,-2,1);
getch();

generate() = generates curve

void generate (int a, int b, int c)
{

206

CH. 10: THE HILBERT CURVE

int sign[3] = {1,1,1};
level--;
if (a < 0)
sign[0] = -1;
a = abs(a)-1;
if (b < 0)
sign[1] = -1;
b = abs(b)-1;
if (c < 0)
sign[2] = -1;

¢ = abs(c)-1;
x1 = point[0]*cx + point[1]l*cy + point[2]*cz;
y-one = point[0]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(-2,1,3);
point[al += (r*sign[0]);
x2 = point[0]*cx + point[1]*cy + point[2]*cz;
y2 = point[0]*sx + point[1]*sy + point[2]*sz;
drawlLine(x1,yl,x2,y2,15);
x1 = point[0]*cx + point[1]*cy + point[2]*cz;
y-one = point[0]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(3,1,-2);
point[b] += (r*sign[1]);
x2 = point[0]*cx + point[1]*cy + point[2]*cz;
y2 = point[0]*sx + point[1]*sy + point[2]*sz;
drawlLine(x1l,yl,x2,y2,15);
x1 = point[0]*cx + point[1l]*cy + point[2]*cz;
y-one = point[0]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(3,1,-2);
point[al -= (r*sign[0]);
x2 = point[0]*cx + point[1]*cy + point[2]*cz;
y2 = point[0]*sx + point[1]*sy + point[2]*sz;
drawlLine(x1,yl,x2,y2,15);
x1 = point[0]*cx + point[1]l*cy + point[2]*cz;
y-one = point[0]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(2,-3,1);
point[c] += (r*sign[2]);
x2 = point[0]*cx + point[1]*cy + point[2]*cz;
y2 = point[0]*sx + point[1]*sy + point[2]*sz;
drawlLine(x1l,yl,x2,y2,15);
x1 = point[0]*cx + point[1]*cy + point[2]*cz;
y-one = point[0]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(-3,1,2);
point[al += (r*sign[0]);
x2 = point[0]*cx + point[1]*cy + point[2]*cz;
y2 = point[0]*sx + point[1]*sy + point[2]*sz;

207

FRACTAL PROGRAMMING IN C

drawlLine(x1l,yl,x2,y2,15);
x1 = point[0]*cx + point[1]*cy + point[2]*cz;
y-one = point[0]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(-2,3,1);
point[b] -= (r*sign[1]);
x2 = point[0]*cx + point[1]*cy + point[2]*cz:
y2 = point[0]*sx + point[1]l*sy + point[2]*sz;
drawlLine(x1l,yl,x2,y2,15);
x1 = point[0]*cx + point[1]*cy + point[2]*cz;
y-one = point[0]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(3,-1,2);
point[a] -= (r*sign[0]1);
x2 = point[0]*cx + point[1l]*cy + point[2]*cz;
y2 = point[0]*sx + point[1]*sy + point[2]*sz;
drawlLine(x1,yl,x2,y2,15);
x1 = point[0]*cx + point[1l]*cy + point[2]*cz;
y-one = point[0]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(-2,-1,-3);
level++;

Using the Hilbert Curve for Display Data Storage

In Chapter 4, we looked at a program for compressing display information and
storing it in a disk file for recovery and redisplay at a later time. The run length
encoding method substantially compressed the data file by requiring only two
bytes to define up to 63 pixels in a color plane if they are all alike. This is not
the optimum run length recording for two reasons. The first is that we are lim-
ited to 63 pixels because we only allowed six bits to define the number of pixels
affected. This was done to allow the two most significant bits to be a flag that
indicates that the byte represents a number rather than a data byte. This whole
scheme, in this case, is constrained by the fact that we are trying to work with
bytes; in a word oriented system, we would have more bits available to work
with. The second reason that we don't have optimum compression is that we
record one line at a time from each of the three color planes. Even if there is a
large block of the same color, it is unlikely that the pixel data from one color
plane line will be the same as that from the next.

208

CH. 10: THE HILBERT CURVE

Now suppose that the color data is represented by a three-dimensional volume in
which the x and y dimensions are the same as they were for the display, but the
third dimension represents color. We would like to record this as a long string in
a single file. One way to do this is to scan through each plane, line by line.
But, as pointed out above, when we move from one line to the next, any
continuity of color data that might let us use maximum run length compression
is lost. What we need is a way of scanning through the three-dimensional space
that will give us a one-dimensional result in which points that were close to-
gether in the original space will still be close together on the resulting line.
Thus a block of a single color on the original display will be lumped together on
the resulting line and is suitable for compression to a few bytes.

The Hilbert curve performs exactly this function. It scans an n dimensional sur-
face and reduces it to a one-dimensional line, and it has the characteristic that
points that are close together on the n-dimensional surface are close together on
the resulting line. Of course, there is some loss of information on the closeness
of points because a single dimension cannot possibly have the same degree of
spatial associativity that can be achieved with a higher dimension of space.
However, this loss is minimal compared with other techniques that might be used
for transforming the data. F. H. Preston, A. F. Lehar, and R. J. Stevens of the
S. R. D. B. Home Office in England have developed algorithms for using the
Hilbert curve to map image data and for compressing the resulting information.
They insist on calling the Hilbert curve a Peano Curve, which is unfortunate,
since, as we have already discovered, there is a whole family of Peano curves, of
which the Hilbert curve is only a single specific type. They have published sev-
eral papers on their results, one of which is referenced in the bibliography of this
book.

209

Ly H

izéninss The Sierpinski Curve

The Sierpinski curve is particularly interesting because there are several ways of
generating it that seem to start with quite different premises but end up producing
essentially the same curve and also because it has practical uses for space-filling
required by clustering algorithms used in route optimization.

We are most familiar with the first method of generating the Sierpinski triangle,
namely the use of the initiator/generator technique first described in Chapter 8.
For this curve, the initiator is a straight line. The generator for the curve and the
resulting curve for levels two and three are shown in Figure 11-1. Curves for
levels four, six, and eight are shown in Figure 11-2. It's not a very good idea to
carry the curve to higher levels than eight, since the triangles begin to fill in too
much and detail is lost. The program to generate the Sierpinski triangle is listed
in Figure 11-3.

211

FRACTAL PROGRAMMING IN C

Figure 11-1: Sierpinski Triangles

(a) Generator

(b) 'level'=2

(c) level'=3

212

CH. 11: THE SIERPINSKI CURVE

Figure 11-2: Higher Levels of Sierpinski Triangles

(a) 'level' =4

SeAC

(b) 'level' =6

X2

A
FY Yy

(c) 'level'=8

213

FRACTAL

PROGRAMMING IN C

Figure 11-3: Program to Generate Sierpinski Triangles

sierp = program to generate sierpinski curves

#finclude <stdio.h>
#include <math.h>
#include <dos.h>
#include "tools.h"

void generate (float X1, float Y1, float X2, float Y2,
int level,int sign);

int generator_size = 3;

int init_size = 1;

int level;

int initiator_x1[10] = {-130,130,130,-130}, initiator_x2[10]=
{130,130,-130,-130}, initiator_y1[10]={0,130,130,-130,

-130}, initiator_y2(10]1={0,130,-130,-130,130};
int combination = O,LINEWIDTH=1, OPERATOR=0;
unsigned long int PATTERN=OxFFFFFFFF;
int i, sign;
float Xpoints[25], Ypoints[25]1,x1,x2,yl,y2:
float turtle_x,turtle_y,turtle_r,angle,turtle_theta;

main()
{
setMode(3);
printf("\nknter level (1 - 12): ");
scanf("%d",&level);
if (level < 1)
level = 1;
setMode(16);
cls(0);
for (i=0; i<init_size; i++)
generate(initiator_x1[i], initiator_yl[i],
initiator_x2[i],initiator_y2[i], Tevel,1):
getch();

generate() = generates curve

void generate (float X1, float Y1, float X2, float Y2,
int level,int sign)

{
int j,k,Tine,int_sign;
float a, b, Xpoints[25], Ypoints[25], temp,temp_r;
turtle_r = sqrt((X2 - X1)*(X2 - X1) + (Y2 - Y1)*

214

(Y2 - Y1))/2.0;

turtle_x = X1;

turtle_y = Y1;

Xpoints[0] = XI1;

Ypoints[0] = Y1;

Xpoints[3] = X2;

Ypoints[3] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);
turn(60*sign);

step():

Xpoints[1] = turtle_x;
Ypoints[1] = turtle_y:
turn(-60*sign);
step();

Xpoints[2] = turtle_x;
Ypoints[2] = turtle_y:
level--;

sign *= -1;

if (level == 0)

{
for (k=0; k<generator_size; k++)
{

CH. 11: THE SIERPINSKI CURVE

drawLine(Xpoints[k],Ypoints[k],Xpoints[k+1],

Ypoints[k+1]1,15);

}
else
{
int_sign = sign;
for (j=0; j<generator_size; j++)
{
X1 = Xpoints[jl;
X2 Xpoints[j+11;
Y1 = Ypoints[j];
Y2 = Ypoints[j+11:

generate (X1,Y1,X2,Y2,1evel,int_sign);

int_sign *= -1;

Sierpinski Gasket

Looking at the triangle of Figure 11-2(c), you'll see that this curve could be pro-
duced by starting with one big filled-in triangle and cutting out smaller and

215

FRACTAL PROGRAMMING IN C

smaller ones from it in appropriate places. This is the technique that is used in
the program listed in Figure 11-4.

Figure 11-4: Program to Generate Sierpinski Gasket

siergask = program to generate sierpinski triangle gasket

f#finclude <stdio.h>
#include <math.h>
#include <dos.h>

#include "tools.h"

void node(int x1, int y01, int x2, int y2, int x3, int y3,
int x4, int y4, int x5, int y5, int x6, int y6,
int level,int length);

void sort(int index, int x_coord[], int y_coord[]);

void fillTriangle (int x1, int y0l, int x2, int y2,
int x3, int y3, int color);

void generate (int x1, int y0l1, int x2, int y2, int x3,
int y3,int level, int length);

int x1,y01,x2,y2,x3,y3,i,level = 5;

int combination = O,LINEWIDTH=1, OPERATOR=0;

unsigned lTong int PATTERN=OxFFFFFFFF;

float turtle_theta;

main()
{
int x1,x2,x3,y01,y2,y3,1ength;

x1 = -256;
y01 = -220;
x2 = 256;

y2 = -220;

x3 = 0;

y3 = 223;
length = 512;
setMode(16);
cls(0);

fillTriangle(x1,y01,x2,y2,x3,y3,15);
generate(x1,y01,x2,y2,x3,y3,7evel,length);
getch();

216

CH. 11: THE SIERPINSKI CURVE

generate() = splits triangle into four small triangles

void generate (int x1,int y0l, int x2, int y2, int x3,
int y3, int level, int length)
{
int line_length,x4,y4,x5,y5,%x6,y6;
line_length = length/2;
x4 = x1 + line_length;
y4 = y01;
x5 x1 + line_length/2;
y5 =yl + 1.732*1ine_length/2;
x6 = x5 + line_length;
yb = y5;
node (x1,y01,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,level,
line_length);

node() = blanks center triangle and calls 'generate'
for three surrounding triangles

void node(int x1, int y0l, int x2, int y2, int x3, int y3,
int x4,int y4, int x5, int y5, int x6, int y6,
int level,int length)

fillTriangle(x4,y4,x5,y5,x6,y6,0);
if (level == 0)

return(0);
generate (x1,y01,x4,y4,x5,y5,1evel-1,1ength);
generate (x4,y4,x2,y2,x6,y6,1evel-1,length);
generate (x5,y5,x6,y6,x3,y3,1evel-1,length);

We first create and fill a large triangle, using the function fill _triangle. Once the
triangle is drawn and filled, the program calls the function generate, which divides
the triangle into four smaller ones. The 'generate’ function then calls the function
node. This function blanks out the center triangle (by using the function fillTri-
angle with the color black) and then calls generate (in a recursion process) to op-
erate upon the three peripheral triangles. The procedure continues to whatever
level you have entered into the parameter level. Note that the technique of re-
moving triangles has a drawback: if you use too high a level, there is insufficient
display resolution to preserve the colored portions of the display and the entire
original triangle is eventually blanked out. The program to perform this opera-

217

FRACTAL PROGRAMMING IN C

tion is listed in Figure 11-4. The resulting Sierpinski triangle is shown in Fig-
ure 11-5. The third method of generating the Sierpinski triangle is through the
use of iterated function systems as explained in Chapter 22. A very short and
simple code describes the triangle to the IFS and results in a good representation
being drawn. For further details, refer to Chapter 22.

Figure 11-5: Sierpinski Gasket

D AA AA A

£ v
A A A A A A A AA A A A A A A A

Another Method of Generating
the Sierpinski Triangle

There is another method of generating the Sierpinski triangle that makes use of
an algorithm similar to that used for generating strange attractors in Chapter 6
and for IFS systems in Chapter 22. The program listing is given in Figure 11-6.
It starts out with a point at a random location on the screen, then randomly se-
lects one of three transformations. The first simply creates a new point at half
the x and y coordinates of the previous point. The second creates a new point

218

CH. 11: THE SIERPINSKI CURVE

whose x coordinate is the previous x plus 639 (distance across the display) divided
by two, and whose y coordinate is half the previous y coordinate value. The third
transformation creates a new point whose x coordinate is the previous x plus 320
(half the distance across the display) divided by two, and whose y coordinate is the
previous y coordinate plus 349 (distance down the display) divided by two. The
result of plotting 120,000 points is the Sierpinski triangle, as shown in Figure
11-7(a).

Figure 11-6: Another Program to Generate the Sierpinski Triangle

sirchet3 = program to generate Sierpinski
triangle with chaos algorithm

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
ffinclude "tools.h"
float s2,x,y:

int switcher;

long int i;

main()
{
setMode(16);
x = 32767/639;
x = random()/x:
y = 32767/349;
y = random()y;
(i=0; i<120000; i++)
{

[/ |

-+
o
3

switcher = 32767/3;
switcher = rand()/switcher;
switch(switcher)
{
case 0: x /=2;
/=2;
break;
case 1: x = (x+639)/2;
y /=2
break
case 2: x = (x+320)/2;
y = (x+349)/2;

}
plot(x,y,15);

219

FRACTAL PROGRAMMING IN C

Figure 11-7: Sierpinski Triangle and Cousins

Al

I,
.;Ve.
A 0 H L

(a) Sierpinski Triangle

A
4

nF:
v
Ry
2
a1
*’
AR

(b) Cousin with 1/3, 2/3 Multipliers

(c) Cousin with .707 Multiplier

220

CH. 11: THE SIERPINSKI CURVE

Figure 11-8: Replacement for case Statements to Generate Cousin of the
Sierpinski Triangle with 1/3 and 2/3 Multipliers

case 0::x /= 3;
y /= 3;
break;
case l::x = (x + 639)*2/3;
y /= 3;
break;
case 2::x = (x + 639)/3;
y = (y + 349)*2/3;
case 3: x /=3;
y = (y+349)*2/3;

Strange Cousins of the Sierpinski Triangle

I am indebted to my friend Chester Stromswold for pointing out to me the
strange cousins of the Sierpinski triangle that can be generated by slight modifi-
cations of the above program. The first variation uses multipliers of 2/3 or 1/3
instead of 1/2 throughout the program. To generate this figure, replace the case
statements in Figure 11-6 with the code listed in Figure 11-8. The resulting
figure is shown in Figure 11-7(b). The second variation uses a multiplier of
.7071068 (reciprocal of the square root of two) instead of 1/2 at several critical
places. Figure 11-9 shows the listing for generating this cousin. The resulting
figure is shown in Figure 11-7(c).

Figure 11-9: Program to Generate Cousin of the Sierpinski Triangle
Using .7071068 Multiplier

sirchet2 = program to generate Sierpinski //// /
triangie .707 Cousin with chaos algorithm !,//

#include <stdio.h>
f#finclude <math.h>
#include <stdlib.h>
f#include "tools.h"
float s2, x, y;
int switcher;

221

FRACTAL PROGRAMMING IN C

long int i;
main()
{
setMode(16);
s2 = sqrt(0.5);
x = 32767/639;
x = rand()/x;
y = 32767/349;
y = rand()/y;
for (i=0; i1<120000; i++)
{
switcher = 322767/3;
switcher = rand()/switcher;

switch(switcher)
{
case 0: x *=s2;
y *=s2;
break;
case 1: x = sqrt((639.*639. + x*x)/2);
y *=s2
break;
case 2: x = sqrt((320.*320. + x*x)/2.);
y = sqrt((349.*349 + y*y)/2.);
}
plot(x,y,15);

Sierpinski Box

The same technique described above for the Sierpinski gasket can be applied to
create a rectangular figure, which I have called a Sierpinski box. The program to
create the box is listed in Figure 11-10, and the result is in Figure 11-11. The
program is much like that described previously. Filling a rectangle aligned with
the rows and columns of the display is a much simpler task than filling a
triangle. The function to perform this task is called fillRect. Once a large square
is created and filled, it is divided into nine smaller squares by a new version of the
generator function. A new version of the function node is then used to blank out
the center square and then call generate for each of the eight peripheral squares.
Again, caution must be used in selecting the value of the parameter level. If
level is too large, lack of display resolution will cause the entire original square
to be blanked out.

222

CH. 11: THE SIERPINSKI CURVE

Figure 11-10: Program to Generate a Sierpinski Box

sierbox = program to generate rectangular Sierpinski

box

f#finclude <stdio.h>
#include <math.h>
#finclude <dos.h>
#finclude "tools.h"

void fillRect(int x1, int yl, int x2, int y2,int color);
void node(int x1, int yl, int x2, int y2, int x3, int y3,

int x4,int y4, int level,int length);

void generate (int x1, int yl, int x2, int y2, int level,

int length);

int x1,y1,x2,y2,x3,y3;
int level = 3;
int combination = 0,LINEWIDTH=1, OPERATOR=0, ANGLE,

XCENTER, YCENTER;

unsigned long int PATTERN=OxFFFFFFFF;

main()

{

int x1,x2,x3,x4,y01,y2,y3,y4,1ength;
x1l = -220;

y01l = -220;

x2 = 220;

y2 = 220;

length = 440;

setMode(16);

cl1s(0);

fillRect(x1,y01,x2,y2,15);
generate(x1,y01,x2,y2,%evel,length);
getch();

generate() = Divides box into nine smaller boxes

void generate(int x1,int y0l,int x2,int y2,int level,int length)

{

int line_length,x3,y3,x4,y4;

line_length = length/3;

x3 = x1 + line_length;

y3 = y01 + line_length;

x4 = x2 - line_length;

y4 = y2 - line_length;

node (x1,y01,x2,y2,x3,y3,x4,y4,1evel,line_length);

223

FRACTAL PROGRAMMING IN C

node() = blanks middle box and calls 'generate’
for eight surrounding boxes

void node(int x1, int y0l, int x2, int y2, int x3, int y3,
int x4, int y4, int level,int length)

{
fillRect(x3,y3,x4,y4,0);
if (level == 0)

return(0);

generate (x1,y01,x3,y3,level-1,1length);
generate (x3,y01,x4,y3,level-1,length);
generate (x4,y01,x2,y3,level-1,1ength);
generate (x1,y3,x3,y4,level-1,1length);
generate (x4,y3,x2,y4,level-1,length);
generate (x1,y4,x3,y2,level-1,1length);
generate (x3,y4,x4,y2,level-1,1ength);
generate (x4,y4,x2,y2,level-1,length);

fillRect() = fills a rectangle with a specified color

void fillRect(int x1, int y0l, int x2, int y2,int color)
{
int i,
x1 += 320;
y01 = 175 - ((y01*93) >> 7);
x2 += 320;
y2 =175 - ((y2*93) >> 7);
for (i=y2; i<=y0l; i++)
{
for (j=x1; j<= x2; j++)
plot(j,i,color);

224

CH. 11: THE SIERPINSKI CURVE

Figure 11-11: Sierpinski Box

225

12

Trees

In the past few chapters, we created fractal curves by repeatedly replacing line
segments with scaled-down replicas of a generator pattern. The results have been
curves that were self-similar—a blown up version of a small section of the curve
has a very similar shape to that of a larger portion of the curve. Now, we are
going to take a different approach. We will start with a stem; at its end we will
branch off in two directions and draw two branches. We will repeatedly perform
this process at the end of each new branch. The result is a tree. Since one of the
purposes of this exercise is to use these curves to represent trees in nature, we
first need to discuss something about real trees.

Real Trees

The rough outline of the tree creation process given above implies that at each
node in the tree creating process, we branch off in two directions. The result is a
two-dimensional tree, but hopefully it will have some relation to real three-di-
mensional trees. Before going further, step outside and look at a few real trees.
First, note that there are two classes of trees, deciduous (trees whose leaves fall
every year) and conifers (evergreens having cones). These two classes of trees are
quite different. The conifers tend to have rings of branches at different heights
around a central trunk. This does not seem to square at all with the binary
branching process, and we will see later that the tree curves that we generate never
look like conifers. Secondly, note that deciduous trees, although they are closer
in appearance to our model, still are much more complex in their structure.
While binary branching is often the rule, there are exceptions—a stem splits into

227

FRACTAL PROGRAMMING IN C

more than two branches, for example. Furthermore, the lengths of stems before
branching occurs differ randomly from the norm, as do the diameters of branches.

The reason for making a point of all this is that we are next going to present
some data on expressions for modeling trees, but we want to make sure that these
are not taken as gospel as representing the way real trees are constructed. In some
literature, authors appear to have been overpowered by their ability to express tree
structures mathematically, to the point that the model supercedes reality. Re-
member, the mathematical formulas are a nice way of generating tree curves, but
the real tree is much more complex and much more interesting. If you want a
real challenge, take the tree program that we will list later and attempt to expand
it to cover each of the possible situations for a real tree.

Mathematical Representation of Trees

Everyone seems to be fond of quoting Leonardo da Vinci's observation to the ef-
fect that the sum of the cross-sectional areas of all tree branches at a given height
is constant. This should not be too surprising; the tree is required to pass nutri-
ents from the roots to the leaves and for a given nutrient requirement one might
expect that the "pipe” cross-sectional area required for nutrient transportation
would be constant, regardless of height or the number of pipes. When we trans-
late this observation to diameters (or widths when we make our two-dimensional
drawings), we have an expression of the form:

Do® = D& + Dy (Equation 12-1)

where Dy is the diameter of the stem, Dj and D) are the diameters of the two
branches that the stem splits into, and « is 2 according to da Vinci. There are
other forms of tree-like structures. The simple model given above probably ap-
plies better to river networks than to trees, since the likelihood that more than
two tributaries of a river system would join at the same place is remote. Other
trees are found in the human body in the form of the arterial blood transportation
system and the bronchi. Investigations have shown that a good approximation
for a for the bronchial system is 3 and for the arteries is 2.7.

228

CH. 12: TREES

When we come to construct our program for tree generation, we shall use the ex-
pression:

Bn+l = 2-1/a g, (Equation 12-2)

where By, is the diameter of theé lower level branch and By 4] represents the
diameter of each of the two branches into which By, splits. We also need to con-
sider the length of the branches. McMahon studied various typical trees and
concluded that a similar recursive formula for length could be written as:

Lp+1 = 2°3/(2a) (Equation 12-3)
where L is the length of the predecessor branch and L, ; is the length of each

of the two successor branches after bifurcation.

Tree-Drawing Program

Figure 12-1 lists a program for drawing trees. It permits entering the initial
length and width of the stem, the value of « for the left and right sides of the tree,
the left and right branching angles, and the level of recursion. You will note that
the program is a lot like those we have been using in the previous few chapters.
It first computes the right and left width and length factors using equations 12-2
and 12-3. Next it sets up the parameters for the beginning and end of the stem
and its width and draws it. The turtle_theta parameter is then set up to point in
the direction of the stem, and is turned to the left angle. The function generator
is run recursively until the lowest level is reached, then the turtle_theta parameter
is reset in the stem direction and turned through the proper angle and the generate
function is run again. Note that the height and width parameters passed to the
generate function are scaled down by multiplying by the appropriate scale factors
at the time of the function call.

229

FRACTAL PROGRAMMING IN C

Figure 12-1: Program to Generate Trees

trees = PROGRAM TO GENERATE TREES

#include <stdio.h>
#include <math.h>
#include <dos.h>
#include <stdlib.h>
#include <time.h>
f#include "tools.h"

int combination = O,LINEWIDTH=1, OPERATOR=0;
unsigned long int PATTERN=OxFFFFFFFF;
int i,j;

float height,width,left_alpha,right_alpha,left_angle,
right_angle,left_width_factor,left_height_factor,
right_width_factor,right_height_factor;

float x,y,x1,y01;

float turtle_x,turtle_y,turtle_r,turtle_theta;

int level;

void generate(float x, float y, float width, float height,
float angle,int level);

main()

{
printf("\nEnter stem height: ");
scanf("%f",&height);
printf("\nEnter stem width: ");
scanf("%f",&width);
printf("\nEnter left alpha: ");
scanf("%f" ,&1eft_alpha);
printf("\nEnter right alpha: ");
scanf("%f", &right_alpha);
printf("\nEnter left branch angle: ");
scanf("%f",&left_angle);
printf("\nkEnter right branch angle: ");
scanf("%f",&right_angle);
printf("\nEnter recursion level: ");
scanf("%d",&level);
left_width_factor = pow(2,-1/1eft_alpha);
left_height_factor = pow(2,-2/(3*1eft_alpha));
right_width_factor = pow(2,-1/right_alpha);
right_height_factor = pow(2,-2/(3*right_alpha));
x =0;
y = -235;
LINEWIDTH = width;

230

}

CH. 12

setMode(16);

cl1s(9);

x1l = 0;

y01 = y + height;

drawline(x,y,x1,y01,15);

turtle_theta = point(x,y,x1,y01);

turn(left_angle);

generate(x1l,y01,left_width_factor*width,
left_height_factor*height,left_angle,level);

turtle_theta = point(x,y,x1l,yl);

turn(-right_angle);

generate(x1l,y01,right_width_factor*width,
right_height_factor*height,right_angle,level);

getch();

void generate(float x, float y, float width, float height,

{

float angle,int level)

float x1,y01;
turtle_x = x;

turtle_y = y;
turtle_r = height;
step();

x1l = turtle_x;
y01 = turtle_y;
LINEWIDTH = width;
level--;
if (level<3)
drawline(x,y,x1,y01,10);
else drawline(x,y,x1,y01,6);
if (level > 0)
{
turtle_theta = point(x1l,yl,x1,y01);
turn(left_angle);
generate(turtle_x,turtle_y,left_width_factor*width,
left_height_factor*height,left_angle,level);
turtle_theta = point(x,y,x1,y01);
turn(-right_angle);
generate(x1,y01,left_width_factor*width,
left_height_factor*height,right_angle,level);

: TREES

The generate function begins by setting the turtle coordinates to the x and y
coordinates passed to the function (which mark the beginning point for the func-
tion's operations. The turtle_r (step size) parameter is set to the height that was
passed to the function. (The turtle angle was already set properly before the

231
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>