
iJ
t

R.ge,

Save yourself the time and trouble

of manual file entry

Order the - -
Fractal Programming in C

disk!

This optional disk contains all the individual programs listed in the

I’ book. Source code for over 100 black and white pictures and over 50 color
pictures are provided, allowing you to reproduce them. MS-DOS format.

Requires PC or clone with EGA or VGA and color monitor; Turbo C, Quick

C or Microsoft C compiler.

To order, return this postage-paid card with your payment to: M&T

Books, 501 Galveston Drive, Redwood City, CA 94063-4728. Or, call

TOLL-FREE 1-800-533-4372 (In CA 1-800-356-2002).

YES! Please rush me Fractal Programming in C program disk for $20 __________

CA residents add applicable sales tax % ___________

TOTAL ________

Check enclosed. Make payable to M&T Books.

I: Charge my: VISA MasterCard American Express

I Card # Exp. date ________________________

I Name

Address

[City __ State __________ Zip
I 7032

BUSINESS REPLY MAIL
FIRST CLASS PERMIT 871 REDWOOD CITY, CA

POSTAGE WILL BE PAID BY ADDRESSEE

M&T BOOKS
501 Galveston Drive

Redwood City, CA 94063

PLEASE FOLD ALONG LINE AND STAPLE OR TAPE CLOSED

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATESnnu ______ I

Fractal

Programming in C

M&T BOOKS

Fractal

Programming in C

Roger T. Stevens

I
M&T BOOKS

M&T Publishing, Inc.

Redwood City, California

M&T Books

A Division of M&T Publishing, Inc.

501 Galveston Drive

Redwood City, CA 94063

M&T Books

General Manager, Ellen Ablow

Operations Manager, Michelle Hudun

Project Editor, David Rosenthal

Technical Editor, Alan Norman

Editorial Assistant, Kurt Rosenthal

Cover Art Director, Michael Hollister

Cover Designer, Theresa Tomlin

© 1989 by M&T Publishing, Inc.

Printed in the United States of America

First Edition published 1989

All rights reserved. No part of this book may be reproduced or transmitted in any form

or by any means, electronic or mechanical, including photocopying, recording, or by

any information storage and retrieval system, without prior written permission from

the Publisher. Contact the Publisher for information on foreign rights.

Library of Congress Cataloging in Publication Data

Stevens, Roger T., 1927—

Fractal programming in C / Roger T. Stevens. -- 1st ed.

p. cm.

Includes bibliographical references.

1. Fractals--Computer programs. 2. C (Computer program language)

I. Title.

QA614.86.574 1989

516--dc2O

ISBN 1-55851-038-9 (book/disk) $39.95

ISBN 1-55851-037-0 (book) $24.95

ISBN 1-55851-039-7 (disk) $20.00

9392919089 5432

For My Wife Barbara

Writing a book requires large amounts of time and concentration which do not

necessarily make the author the easiest person in the world to live with. Without

her understanding and love and encouragement, this book would soon have

become a drag and probably would never have been finished.

Acknowledgments

All of the software in this book was written in Turbo C version 2.0 furnished by

Borland International, 4385 Scotts Valley Drive, Scotts Valley, CA 95066. The

software was also checked with Microsoft C 5.0 furnished by Microsoft Corp.,

16011 NE 36th Way, Redmond, WA 98073.

Valuable technical information on the format of .PCX files and a copy of PC

Paintbrush were supplied by Shannon of Z-Soft Corporation, 1950 Spectrum

Circle, Marietta, GA 30067. Dr. Michael Batty of the University of Wales

Institute of Science and Technology was kind enough to send me several reprints

of his publications and direct me to his book Microcomputer Graphics, which

contains much useful information.

All software was checked out on a computer with a Vega VGA card furnished by

Video Seven, Inc., 46335 Landing Parkway, Fremont, CA 94538, and a NEC

Multisync Plus Color Monitor furnished by NEC Home Electronics (U. S. A.)

Inc.

Limits of Liability

and Disclaimer of Warranty

The Author and Publisher of this book have used their best efforts in preparing

the book and the programs contained in it. These efforts include the

development, research, and testing of the theories and programs to determine their
effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied,

with regard to these programs or the documentation contained in this book. The

Author and Publisher shall not be liable in any event for incidental or

consequential damages in connection with, or arising out of, the furnishing,

performance, or use of these programs.

How to Order

the Accompanying Disk

Fractal Programming in C is a comprehensive “how to” book written for programmers

interested in fractals. Learn about reproducing those developments that

have changed our thinking about the physical sciences, and in creating pictures

that have both beauty and an underlying mathematical meaning. Included are

more than 100 black and white pictures and 32 color pictures. All source code to

reproduce these pictures is provided on disk, in MS-DOS format. It requires a PC

or clone with an EGA or VGA card and a color monitor; and a Turbo C, Quick

C, or Microsoft C compiler.

The disk is $20, plus sales tax if you are a California resident. Order by sending

a check, or credit card number and expiration date, to:

Fractal Programming in C Disk
M&T Books

_____ _____ 501 Galveston Drive

M&T BOOKS Redwood City, CA 94063

Or, you may order by calling our toll-free number between 8 AM. and 5:00 P.M.
Pacific Standard Time: 800/533-4372 (800/356-2002 in California). Ask for

Item #039-7.

Contents

Chapter 1: Introduction / 15
“Monster” Curves / 16

Strange Attractors / 17

Population Curves and Bifurcation Diagrams / 18

Mandelbrot and Julia Sets / 19

Iterated Function Systems / 20

The State of Science / 20

Why this Book is Different / 21

Chapter 2: What Are Fractals / 23

The Beginning of Fractal Curves / 23
How are Fractals Used / 24

Basic Considerations / 25

Fractal Dimensions / 26

Background Material / 27

Chapter 3: Hardware Requirements / 29

Display Considerations / 31

Processor Speed / 31
Where do We Go From Here / 33

Chapter 4: Saving and Compressing Display Data / 35
Format for Saving a Screen File / 36
Function to Save a Screen / 42

Function to Restore an EGA Screen / 47

Function to Restore a VGA Screen / 50

Chapter 5: Tools for Graphics Display Generation / 53

Setting the Display Mode / 54

Setting the EGA Palettes / 55

Clearing the Screen / 57

Plotting a Point on the Screen / 58

Displaying a Byte on the Screen / 60

Reading a Pixel from the Screen / 60

Reading a Byte from a Color Plane / 61

Drawing a Line / 62

Filling a Triangle / 64

Filling an Oval / 67

Turtle Graphics / 68
Point / 69

Turn / 69

Step / 70

Function to Display and Move Cursor / 71

Bounds Program / 77

Selecting Colors / 78

Chapter 6: The Lorenz

and Other Strange Attractors / 83

Strange Attractors / 84
The Lorenz Attractor / 84

Runge Kutta Integration / 86

Programming the Lorenz Attractor / 87

Other Strange Attractors / 91

Chapter 7: The Population

Equation and Bifurcation Diagrams / 95
The Population Equation / 95

Bifurcation Diagrams / 96

“Period Three Implies Chaos” / 100

The Feigenbaum Number / 101

Chapter 8: The Snowflake
and Other von Koch Curves / 107

The von Koch Snowflake / 107

Generic Initiator/Generator Program / 110

The Gosper Curve / 113

Three-Segment Quadric von Koch Curve / 117

Eight-Segment Quadric von Koch Curve / 121

Eighteen-Segment Quadric von Koch Curve / 125

32-Segment Quadric von Koch Curve / 130

Fifty-Segment von Koch Curve / 135

Using Other Initiators / 143

Complicated Generators / 146

Chapter 9: Peano Curves / 155

The Original Peano Curve / 155

Modified Peano Curve / 159

Cesaro Triangle Curve / 166

Modified Cesaro Triangle Curve / 170

Variation on the Cesaro Curve / 173

Polya Triangle Curve / 177

The Peano-Gosper Curve / 181

Peano Seven-Segment Snowflake / 185

Peano Thirteen-Segment Curve / 189

Chapter 10: The Hubert Curve / 197

Generating the Hilbert Curve / 198

Fractal Dimension of the Hubert Curve / 204

Hilbert Curve in Three Dimensions / 205

Using the Hilbert Curve for Display Data Storage / 208

Chapter 11: The Sierpinski Curve / 211

Sierpinski Gasket / 215

Another Method of Generating the Sierpinski Triangle / 218

Strange Cousins of the Sierpinski Triangle / 221

Sierpinski Box / 222

Chapter 12: Trees / 227
Real Trees / 227

Mathematical Representation of Trees / 228

Tree-Drawing Program / 229

Chapter 13: Working with Circles / 239

Appolonian Packing of Circles / 239

Soddy’s Formula / 240

Program for Appolonian Circle Packing / 241
Inversion / 244

Pharaoh’s Breastplate / 247

Chapter 14: The Mandelbrot Set / 253
Simplified Mandelbrot Set Program / 255

Improved Mandelbrot Set Program / 258
Precision Considerations / 263

Using Other Color Combinations / 264

Other Mandelbrot-Like Sets / 267

Chapter 15: Julia Sets / 275

Drawing Julia Sets / 276
Number of Iterations / 277

Selecting Colors / 281

Julia Set Displays / 282

Binary Decomposition / 283

Chapter 16: Dragon Curves / 289

Harter-Heightway Dragon / 289

Twin Dragon / 291

Julia Dragon / 294

Self-Squared Dragons / 295

San Marcos Dragon / 300

Dragon Outlines / 301

Color Section / 305

Chapter 17: Phoenix Curves / 321

Maps of the Phoenix Curves / 326

Chapter 18: Three-Dimensional Dragons / 329

Method of Projection / 329

Programming the Three-Dimensional Dragon / 330

Chapter 19: Newton’s Method / 335

Programs for Plotting Newton’s Method Curves / 336

Mathematical Meaning of the Curves / 339

Chapter 20: Brownian Motion / 343
One-Dimensional Brownian Motion / 344

Two-Dimensional Brownian Motion / 348

Chapter 21: Fractal Landscapes / 353

Midpoint Displacement Technique / 354

Oak Creek Canyon / 357
Pike’s Peak at Sunrise / 366

Earth Viewed from the Moon / 371

Chapter 22: Iterated Function Systems / 385
Affine Transformations / 385

The Deterministic Algorithm / 386

Generating a Deterministic Fern / 392

Using the Chaos Algorithm / 394

The Collage Theorem / 399

The Chaos Algorithm in Three Dimensions / 400

Appendix A / 405

Appendix B / 429

About the Author / 567

Bibliography / 569

Index / 573

1

Introduction

Alfred North Whitehead, the American mathematician and philosopher, was fond

of relating how physicists, at the end of the nineteenth century, considered

physics to be essentially a closed book. Everything of any importance in the

field was already known. All that needed to be done was to clean up a few loose

ends and the volume could be marked “COMPLETE” and closed forever. Then,

in the course of cleaning up the loose ends, Schrodinger discovered quantum mechanics

and Einstein created the theory of relativity and physics was in a state of

revolution, with more unanswered questions than ever before. To Whitehead, one

of the most significant aspects of this revolution was its effect upon the philosophical

outlook of physicists. Never again would they take the smug, self-contained

approach that everything was known and complete. Instead, their minds

would always be open to the myriad of possibilities of the unknown.

By 1980, however, things had gone full circle. The cosmologist extraordinaire

Stephen Hawking presented a lecture, “Is the End in Sight for Theoretical

Physics?”, in which he postulated that we already know everything about physics

that is important in daily life, and that future discoveries would require huge sums

of money and large machines to discover insignificant refinements. While

Hawking was closing out physics, a revolution in scientific thinking had already

begun that would cut across disciplinary boundaries so that physics, as well as

other sciences, would never be the same again. The name of this revolution is

Chaos.

For centuries, mathematicians were comfortable with an intuitive feeling for what

might happen when they wrote down systems of equations. A simple set of

15

FRACTAL PROGRAMMING IN C

equations would produce simple results. In most cases, the end result would be a

simple, stable expression that represented the end state of the system. If things

got a little more complicated, the equation might blow up, meaning that there

were unfortunate sets of inputs for which the result would go off toward infinity.

In other situations, the result might be a periodic function, which would never

reach an end value, but would at least settle down to a regular repeating function

that could be easily predicted. In the real world, situations existed where the state

of a system could not be predicted at any given time. Mathematicians got around

this problem by representing the system state through the selection of random

numbers. They often referred to the system as noisy, where noise was a function

that took on completely random values, over a given range, through time. The

intuitive feeling was that noise represented the results of some regular functions

that we did not yet know how to define and measure and that as soon as our understanding

and methods improved a little more, we could fully understand, characterize,

and eliminate (if necessary) the effects of noise.

“Monster” Curves

The first cracks in this structure began to appear in the late nineteenth and early

twentieth century, when mathematicians such as Cantor, von Koch, and Peano

began to draw curves quite unlike those that mathematicians had ever seen before.

They were often undifferentiable. They were usually self-similar (the shape of

each small segment of the curve was the same as the shape of a much larger segment),

their length could not easily be measured or defined, and their dimension

appeared to differ from the traditional dimension of one for a line and to perhaps

be somewhere between a line and a plane.

Traditional mathematicians called these curves “monsters” and “pathological” and

refused to deal with them at all. Lacking the tools of modem computers, not

much progress was made in studying these curves for many years. In chapters 8,

9, 10, and 11, we shall look at some of these curves in considerable detail and

provide software for drawing and investigating them.

16

CII. 1: INTRODUCTION

Strange Attractors

The chaos revolution really began in about 1961. Edward Lorenz, at the Massachusetts

Institute of Technology, was attempting to develop a model for

weather systems that would make improved weather forecasting possible. His

model appeared to be a fairly good representation of weather patterns, which when

run produced results similar to the kind of weather that actually occurred.

One day, Lorenz wanted to pick up from the middle of a previous computer run

and examine a sequence in greater detail. He typed in his intermediate data and

started the computer going again. To his dismay, the new computer run started

by duplicating the results of the previous one, but then began to diverge farther

and farther. Lorenz satisfied himself that these results were not due to a faulty

computer, and ultimately determined that the cause was that he had typed in the

intermediate results to only three decimal places, whereas the computer had originally

stored them to six decimal places.

This appeared to be bad news for weather forecasters; if over a period of weeks

weather patterns could be completely different due to differences in the fourth or

higher decimal places of input data, there appeared to be little possibility that

forecasters could collect accurate enough data to make accurate long-range forecasting

possible. Lorenz eventually reduced his model to three simple differential

equations, which also happened to represent fluid flow or the action of a particular

type of water wheel. The result of these equations, over time, was not a single

stable result or a periodic function. But it was not random noise, either. Instead,

a curve appeared that was ordered and predictable, but never the same. Basically,

regardless of input, this set of equations settled down to values from within a

family of curves. Fortunately, the curves took on a set of predictable values; unfortunately,

the curves continued on to infinity without ever repeating themselves.

These curves became known as the Lorenz attractor. It was the first of

the strange attractors.

The Lorenz equations, a program for graphing the Lorenz attractor, and equations

and software for other strange attractors are given in Chapter 6.

17

FRACTAL PROGRAMMING IN C

Population Curves and Bifurcation Diagrams

In the early 1970s, Robert May, at the Institute for Advanced Studies at Princeton,

was looking at the mathematics of population growth. The critical equation

was:

Xn = rxn1(l-xn-1) (Equation 1-1)

This simple equation had been assumed to have two outcomes: either a population

achieved a stable equilibrium value or it tapered off to extinction.

As May experimented with different values of the parameter r, however, a strange

phenomena occurred. As the parameter grew larger, the result ceased to achieve a

stable equilibrium and instead began to oscillate between two different values. A

little larger value of the parameter and there were four alternating stable states,

then eight, and so forth until the behavior became chaotic and didn’t settle down

to any value at all. But then, as the parameter increased some more, a stable

window was found in the middle of chaos, with three alternating states that then

increased to six, twelve, and finally back to chaos again. Another window, farther

on, began with seven alternating states.

May’s friend James Yorke, at the Institute for Physical Science and Technology at

the University of Maryland, did a rigorous mathematical analysis of the behavior

of this equation and proved that if a regular cycle of period three ever occurs in

any one dimensional system, then the same system will also display regular cycles

of every other possible length and various completely chaotic cycles as well.

Yorke and Tien-Yien Li wrote a paper on this, which was mischievously called

Period Three Implies Chaos. This is the origin for the name chaos in this new

field of science.

A few years later, Mitchell Feigenbaum was studying the same equation at the

Los Alamos National Laboratory. He observed a regularity in the period doubling

effect, which had a ratio of 4.66920 16090, now known as the Feigenbaum

number. Strangely enough, this same ratio applies to period doubling in a wide

variety of iterated equations; almost any iterated equation for which the basic

18

Cl. 1: INTRODUCTION

equation produces a curve with a hump. Software to produce bifurcation diagrams

and investigate the Feigenbaum number is found in Chapter 7.

Mandeibrot and Julia Sets

At about this same time, Benoit Mandeibrot at IBM’s Thomas J. Watson Research

Center, was taking a closer look at the von Koch and Peano curves. A

technique had been developed years before for assigning a dimension greater than

the standard Euclidian dimension to such curves. This dimension is known as the

Hausdorff-Besicovitch dimension. Mandelbrot coined the term “fractals” to describe

all curves whose Hausdorff-Besicovitch dimension is greater than their Euclidian

dimension. Mandelbrot was also looking at the characteristics of Julia

sets, an intriguing variety of curves based upon mapping the function:

Z = Zn-i2 + c (Equation 1-2)

where z and c are complex numbers. Mandelbrot developed a new way of mapping

this equation: the Mandeibrot set. This set also turns out to be a kind of

catalog of all possible Julia sets, from which particularly interesting Julia set parameters

may be selected for mapping. Mandeibrot was beginning to discover the

same characteristic discovered by Lorenz; that very simple mathematical expressions

can result in chaotic nonperiodic functions, which nonetheless do have a

very rigid kind of order that is completely specified by the original equations. A

complete discussion of the Mandelbrot set, together with software for plotting

and investigating it, is given in Chapter 14.

Chapter 15 describes in detail how to create displays of the Julia sets. Mandelbrot

began to develop an intuition, which has proved to be right in many cases,

that fractals are the natural way of representing many of the shapes in nature.

Thus, just as Euclidian geometry is the natural way of describing man-made

shapes such as squares, triangles, or cubes, fractals are the natural language for

describing clouds, trees, leaves, and other natural objects. This seems to make

sense, since we know that apparently very complex natural objects often are generated

from rather limited genetic codes.

19

FRACTAL PROGRAMMING IN C

Iterated Function Systems

Michael Barnsley, a mathematics professor at Georgia Tech, investigated Julia

sets, looking for ways to produce even more variability and, perhaps, to generate

patterns that matched those of living things. Barnsley discovered what he called

iterated function systems.

Basically, such a system consisted of several sets of equations, each of which

represented a rotation, a translation, and a scaling. By starting with a point and

randomly applying one of his sets of equations, according to specified probability

rules, Barnsley could generate classic fractals, and he soon discovered how to

make the rules for generating ferns and other shapes from nature. Chapter 22

provides a description of this technique and some software for generating various

shapes.

The State of Science

Until scientists equipped with the capabilities of modern computers began investigating

the characteristics of iterated equations, it was assumed that a simple

equation produced a simple result and a more complex equation produced a more

complex result. Investigators delving into either mathematics or physical sciences

looked for well-behaved functions and tended toignore or bypass nonlinear

effects. The idea that a very simple expression could produce complex, nonperiodic,

but regular behavior had not been conceived. Evidences of these effects were

passed off as “noise” or as “experimental error.”

Today, the effects of investigation into chaos and the application of fractals are

changing the way we think about many aspects of the physical sciences and are

opening up new areas in mathematics. The news for science is good and bad.

The bad news is that things are much more complicated than we thought. The

good news is that things are much simpler than we thought. To expand that

thought, the good news is that many very complex structures and very complex

behaviors can be expressed by very simple iterated equations. The bad news is

that the structures and behaviors are aperiodic and that portions of the curve that

ultimately diverge widely can, at some point, be physically located so close to20

Cl. 1: INTRODUCTION

gether that absolutely precise knowledge of coordinates is necessary to know

which portion of the curve we are on. We can only predict the future of the curve

accurately, if we know exactly where we are on it, and this requires more precise

measurement of our present position than we are capable of making.

Why this Book is Different

One might guess, from the brief summary given above, that the introduction of

the new field of chaos into the sciences was not greeted with tremendous enthusiasm

by many scientists. There is a myth that scientists are totally objective,

impassionately conducting experiments and using the results to discover truth.

Actually, scientists are persons, not unlike you and me. Their investigations and

theories are often directed by prejudice, and the “truth” that they come up with is

often only one truth from many, and that truth is the one which their

predisposition has led them to discover. The result, as far as chaos is concerned,

is that those who were pioneers in the field tended to be a particular type of person.

They needed to be a unique combination of scientist, philosopher, and

artist, with a reasonable amount of stubbornness and a little eccentricity thrown

in. The result is that many of the books which are currently available on fractals

bear some resemblance to treatises on medieval alchemy.

These books are filled with esoteric equations and beautiful illustrations of results,

but the mechanics of how to get from one to the other is slighted or missing

altogether. This book is taking a completely different approach. Its purpose

is to provide you with software that you can use to duplicate many of the fractal

pictures and basic diagrams of chaos and to proceed from there to easily modify

the software to whatever new results come from your own ideas. If you have

seen some of the beautiful pictures produced by fractal programs and want to produce

the same kind of pictures on your IBM PC (or clone) or perhaps create new

and interesting pictures, or if you are interested in using the basic tools to apply

fractals to problems in the physical sciences, then this book is for you. It discusses

all of the well-known types of fractal curves and provides C language programs

(that will work with Microsoft C or Turbo C) to reproduce all of the pictures

that are shown in this book.

21

FRACTAL PROGRAMMING IN C

Hints are given on how to modify parameters to create your own original pictures.

These are the tools; how you use them depends strictly on your skill and

imagination. The whole field of chaos is still new. There is plenty of room for

new discoveries or new art. Good luck!

22

2

What are Fractals?

When I tell people that I have been writing a book on fractals, they usually respond

with two questions. The first is “What are fractals?” and the second is

“What are fractals good for?” If I am feeling ornery, I respond to the first question

with Mandelbrot’s classical definition: “A fractal is a curve whose HausdorffBesicovitch

dimension is larger than its Euclidian dimension.” But more is really

required in explaining fractals, so let’s start at the beginning.

The Beginning of Fractal Curves

Draw a line on a sheet of paper. Euclidean geometry tells us that this is a figure

of one dimension, namely length. Now extend the line. Make it wind around

and around, back and forth, without crossing itself, until it fills the entire sheet of

paper. Euclidean geometry says that this is still a line, a figure of one dimension.

But our intuition strongly tells us that if the line completely fills the entire

plane, it must be two dimensional.

Such thinking started a revolution in mathematics about a hundred years ago.

Mathematicians such as Cantor, von Koch, Peano, Hausdorff, and Besicovitch

drew curves that were called “monsters,” “psychotic,” and “pathological” by traditional

mathematicians. A new type of dimensioning was proposed, in which a

curve could have a fractional dimension, not just an integer one. Recursive techniques

and iterated expressions were found that could describe curves that have

fractional dimensions. But without high-speed digital computers, the actual

23

FRACTAL PROGRAMMING IN C

drawing of such curves was a long and tedious process. So little progress occuffed

in this unusual field for nearly a hundred years.

The advent of digital computers made the investigation of such curves a fruitful

field. From the early investigations, we could understand what we were trying to

do. We wanted to draw curves that appeared to have more complex dimensional

characteristics than were explained by traditional geometry.

Computers were turned loose on very simple mathematical iterated expressions in

which the next state of a parameter depended solely on a simple relationship to

the current state of the parameter. The iteration was performed many times and

the resulting location of the parameter at each state was plotted. The resulting

plots turned out to have many interesting characteristics. For one thing, they

never repeated themselves. Furthermore, they tended to have the characteristic of

self-similarity. In other words, if a small portion of the plot was enlarged, its

shape was very much like a large portion of the original plot. The plots turned

out to have shapes of great interest and extreme beauty.

The curves still didn’t make much sense in terms of traditional mathematics, and

consequently remained an anathema to traditional mathematicians. Dr. Benoit

Mandelbrot was the first person to make use of a digital computer to investigate

fractals in depth, and his results were not welcomed warmly by traditional mathematicians.

How are Fractals Used?

Now we have explained what a fractal is, but explaining how a fractal is used is a

little more difficult. Mandelbrot contends that just as the shapes of traditional

geometry are the natural way of representing man-made objects (squares, circles,

triangles, etc.), fractal curves are the natural way of representing objects that occur

in nature. Thus, fractals have a value both as art objects and as a means of

representing natural scenes. Moreover, fractals occur naturally in the expressions

for mathematical phenomena as varied as the prediction of weather systems, the

describing of turbulent flow of liquid, and the growth and decline of populations.

Fractals are also useful in dimensional transformations that can be used for ex24

Cl. 2: WHAT ARE FRACTALS?

pressing and compressing graphical data. Ignoring the artistic value, the best answer

to the question “What are fractals good for?” is the reply “Fractals appear to

provide solutions to many previously unanswered questions at the frontiers of the

physical sciences.” Consequently, to work at the frontiers of science, one needs

to understand what fractals are and how to work with them.

In the later chapters of this book, we shall attempt to do our own experimenting

with the creation and modification of fractal curves. We shall not spend too

much time worrying about the uses of fractals in the sciences, but will concentrate

on understanding as many different types of fractal curves as possible and

developing computer programs to generate these curves. Then, when we encounter

a physical problem that requires a fractal solution, we will know what to

do and how to do it.

Basic Considerations

Let’s establish some points of orientation that will be useful in practical investigations

of the chaotic field of fractals:

1) Intuition leads us to believe that fractal curves should have a dimension

greater than their traditional geometric dimension.

2) There is now sound mathematical grounding for accepting this premise.

3) Fractal curves are associated with many physical and natural phenomena.

4) Fractals often possess a rare and unusual beauty. No doubt, this is partly

true because fractals correspond to the way in which nature produces those

shapes that we are most familiar with and that basically define our ideas of

“the beautiful.”

5) Fractals have the unusual characteristic that they can be defined totally by

relatively simple mathematical equations, yet they are not periodic. Thus,

the progression of the fractal curve may differ widely if we start at just

slightly different points in space, so unless we can measure where we are

25

FRACTAL PROGRAMMING IN C

with absolute precision we cannot be sure just what the progression of the

curve will look like. This is in spite of the fact that the curve is defined

through all of its wanderings by very simple iterated expressions.

6) Most fractals are self-similar, so that the shape that we identify in the plot of

a fractal curve repeats itself on a smaller and smaller scale as we enlarge the

image further and further.

Fractal Dimensions

Let’s return to the statement made at the beginning of this chapter that a fractal is

a curve whose Hausdorff-Besicovitch dimension is greater than its Euclidian dimension.

We now have some idea of the nature of fractal curves and of what this

new definition of dimension means, but that doesn’t help much unless we can actually

come up with some meaningful dimensional numbers. A rigorous definition

of the Hausdorff-Besicovitch dimension is a rather lengthy mathematical

process, and for many fractals it is almost impossible to determine this dimension.

However, for a large class of self-similar fractals, which we will discuss in

chapters 8, 9, and 10, the fractal dimension is easily obtained. Suppose that we

start with an initiator that is some simple geometric figure consisting of a number

of connected line segments. It may be a triangle or a square or even just a

straight line. We now define a generator. This generator is is a series of line

segments that is going to replace every line segment of the initiator. The

generator consists of N line segments, each of length r, where r is a fraction of

the line segment being replaced. The arrangement of the N line segments is such

that the distance from the beginning of the generator to its end is the same as the

length of the line segment being replaced. The replacement process repeats an

infinite number of times, each time replacing each line segment of the previous

level curve with a scaled-down replica of the generator. It can then be shown that

the Hausdorff-Besicovitch dimension of the resulting fractal curve is:

D = log N / log(1/r) (Equation 2-1)

26

Cl. 2: WHAT ARE FRACTALS?

Comparing this dimension with the Euclidian dimension gives us some idea of

the properties of a fractal. For example, a D of 1.0 is simply an ordinary line,

whereas a D of 2.0 means that the curve completely fills the plane.

Background Material

With this background in mind, let’s begin looking at fractal curves and creating

software to view them and work with them on our IBM PC computers. But first,

we need to get some basic considerations out of the way. We need to talk a little

bit about what hardware is required to do a good job of investigating fractals. We

need to define the software tools that we will use to generate our graphic images.

And we need to have techniques for saving the images of fractals on disk files and

recalling them when we need to view them.

27

3

Hardware Requirements

With the wide variety of PC clones that are now available, including some that

use 80286 microprocessors at speeds far faster than anything envisioned by IBM,

there is no telling when some strange glitch is going to wreak havoc with your

program. To attempt to minimize that kind of problem, I have attempted to run

most of the programs described in this book on three different systems. One

consists of the following:

Motherboard: Bullet-286E from Wave Mate, Inc., Torrance, CA. This board is

a drop-in replacement for the PC XT motherboard. It uses an 80286 and has

1MB of on-board 0 wait state memory. The memory from 640K to 1MB is used

as a hard disk cache. An 80287-10 math coprocessor was used.

Floppy Disk Controller: MCT-FDC-1.2 from JDR Microdevices, Los

Gatos, CA. This board supports 360K or 1.2MB disk drives.

Floppy Disk Drives: 1 Fujitsu 1.2MB disk drive.

1 Mitsubishi 360K floppy disk drive.

I/O Board: MCT-IO from JDR Microdevices.

Hard Disk Controller: MCT-RLL from JDR Microdevices.

Hard Disk Drive: LaPine LT300 30MB from Advanced Computer Products,

Santa Ana, CA.

29

FRACTAL PROGRAMMING IN C

Keyboard: Surplus Honeywell keyboard from B. G. Micro, Dallas, TX.

EGA Card: MCT-EGA from JDR Microdevices.

EGA Monitor: Casper EGA Monitor from JDR Microdevices.

The second system consists of:

Motherboard: DTK Baby AT with 80286. Speeds 8 and 12 MHz. 1MB

memory on-board, running with 1 wait state. from U. S. Turbo Systems, South

El Monte, CA.

Floppy Disk Controller: KW 530-D from Mica Computer Center, Santa

Fe Springs, CA.

Floppy Disk Drives: One Fujitsu 1.2MB from Gems Computer and one

360K Qume from Jade Computer, Hawthorne, CA.

VGA Card: Vega VGA from Video Seven, Fremont, CA.

VGA Monitor: NEC Multisync Plus.

Some cards were occasionally swapped between the two systems described above.

In addition, text was printed out on a Hewlett-Packard DeskJet Printer, with 128K

added memory and Soft Fonts, and color pictures were printed out on a Hewlett-

Packard PaintJet Printer.

The third system was a standard IBM PC AT with math coprocessor and a Plus

Passport 40MB hard disk.

Programs that work satisfactorily on such a wide variety of systems as this

should have a good chance of working on your system, too. If you encounter

problems, try to identify how your system differs from the three described above.

30

CH. 3: HARDWARE REQUIREMENTS

Display Considerations

I highly recommend that if you are going to get serious about fractals, you

should buy an EGA or VGA display. Much of the beauty and power of fractal

displays comes from manipulating the colors to match the conceptions of the

programmer/artist. You will find a number of black and white illustrations of

fractal curve results throughout this book. If you must work with a Hercules

Graphics Card or compatible monochrome display, you can reproduce these illustrations.

You will find full details on how to use the Hercules Graphics mode in

my book Graphics Programming in C (M&T Books, 1989). Not all of the fractal

programs in this book will work in monochrome; those that will, and the

program changes needed, are listed in Appendix B. All of the color illustrations

in the book were done using color mode 16 (which is high resolution, 16 colors,

and is common to the EGA and VGA).

You can duplicate all of the color programs using this mode, and if you have a

VGA, you can go to mode 18 and with a few minor changes obtain greater vertical

resolution. The VGA also permits you to select the 16 color palettes used in

modes 16 or 18 from 256K shades of color instead of the 64 available with the

EGA. In most cases, however, you are going to find that the EGA gives you

plenty of color capability.

I don’t recommend using the CGA color monitor for fractal displays. The

resolution is just not adequate for the detail needed to produce interesting fractals.

If you have a VGA, mode 19 has the same resolution as the CGA, but permits

you to display 256 different colors simultaneously. You’re welcome to experiment

with that, but I think you will find that the additional picture detail is much

to be preferred over the additional color shades.

Processor Speed

As you get into the more complicated fractal displays, such as the Mandelbrot and

Julia sets, you are going to find that processor speed becomes more and more of a

problem. Even on a fairly fast machine, many of the more interesting displays

31

FRACTAL PROGRAMMING IN C

take days to generate. How can this be resolved? First, code needs to be optimized

so that the loops that are iterated most have simple procedures.

More will be said about this later. Next, if you have one of the fast 286 clones,

make sure you have fast enough memory so that you can run the programs at the

highest available clock speed and preferably with no wait states. Finally, get a

math coprocessor chip. Steve Ciarcia wrote in the December 1988 issue of Byte

magazine that tests he ran show that the coprocessor runs the Mandelbrot set

program eight times faster that with the math routines emulated in the C language.

Either Microsoft or Turbo C can be used without modification with the

coprocessor. Turbo C automatically makes use of the coprocessor if it is available,

and also permits you to compile in a coprocessor-only mode, which may

give a little extra speed.

If you do not have a coprocessor, an attractive alternative might appear to be

generating your own assembly language routines to perform the special math

processing that uses most of the time in generating the Mandelbrot sets and

similar programs. This, however, turns out not only to be difficult, but also to

be less timesaving than one might think. The programmers who wrote the math

routines for the most popular versions of the C language spent a lot of time

making these routines as fast and efficient as possible.

You are not likely to come up with anything faster for a particular operation, and

if you try to save by reducing the precision of the routines, you will probably

find that your display looks inferior compared to ones generated by more conventional

means. The remaining timesaving that you might achieve is by holding

results in registers and doing all of the iterations without transferring to memory,

but this will require a lot of register manipulation for 8086 or 80286 machines,

which probably isn’t worth it.

There are a couple of exceptions to the above. If you have an 80386-based machine,

the internal 32-bit registers provide sufficient precision to perform good

fractal computations. H. W. Stockman, in the September—October 1988 issue of

Micro Cornucopia, describes how to write 386 assembly language code to compute

the Mandelbrot set directly on the microprocessor’s internal registers. He

claims that his program is 100 times faster than using floating point math. Once

32

CH. 3: HARDWARE REQUIREMENTS

you understand his assembly language code, you should be able to adapt it for

generating fast Julia sets, dragons, or phoenixes.

Another approach was used by Steve Ciarcia in the October, November, and December

1988 issues of Byte. Ciarcia built a parallel processor that uses 64 Intel

8051 microprocessors in parallel in a special Mandelbrot set generating computer.

The cost of this monster, in addition to its PC driver, runs around $6,000. Steve

found that it about matched the AT with coprocessor when he used fifteen of the

8051’s and was many times faster with 64 parallel processors. And, of course,

there is nothing to prevent you from stopping there. In the extreme, you could

have one 8051 for each pixel on the display, all working simultaneously and

limited only by the time required to dump the results to the display. If you’re

going to take either of the above routes, you need some real dedication; in most

cases, an AT type machine with an EGA display and a math coprocessor will

generate all of the fractal displays you will ever need or want without delays that

are objectionably long.

Where Do We Go from Here

I’ve told you what you need in the way of hardware to delve deeply into fractals,

but what if you’ve already purchased the book and don’t have the recommended

hardware. What can you do, other than save your pennies for an upgrade? Don’t

despair. While you’re saving, you can begin producing some of the simpler

monochrome displays. Indeed, some of the most interesting areas for investigating

the progress of the new science of Chaos and the applications of fractals to it

are found in some of the more simple displays. If you have a computer that is

IBM compatible, but takes a long long time to generate a fractal display, there is

hope for you, also. In Chapter 4, we will describe techniques for saving a screen

(even if only partially completed) to a disk file and then picking up where we left

off to finish the display at a later date. So if you’re halfway through a fractal display

and find that you must have your computer now for a higher priority task,

you need not lose everything that you’ve done so far.

33

4

Saving and

Compressing Display Data

As many as three days may be required to draw some of the fractal pictures that

will be discussed in the following chapters, particularly if you do not have a math

coprocessor. Since we don’t want to spend another three days of drawing time

whenever we want to display one of these pictures, it is essential that we have a

quick, simple means of saving a picture that is on the screen to a disk file and

then quickly restoring it to the screen whenever we need it. There are two instances,

in particular, where we need this feature:

1. When we are investigating deep within the Mandeibrot set or a similar set,

and wish to start with a set that we have already generated and create an expansion

of a particular part of it, we need to quickly display the last set generated

from a saved disk file, and then use the cursor to select the portion of

it from which a new picture is to be created.

2. When we are in the process of drawing a lengthy picture and discover that we

need our computer for something else, we need the capability to save the

partially drawn picture to a disk file so that we can later recover it and proceed

from where we left off, rather than having to begin the drawing process

all over again.

35

FRACTAL PROGRAMMING IN C

Format for Saving a Screen File

The format chosen for the file that results from saving a screen is that of the

.PCX file developed by ZSoft and used with their PC Paintbrush and other drawing

programs. This format is widely used and permits your screens to be edited

with PC Paintbrush. Also, ImageSet Corp. in San Francisco, CA has programs

available that can convert these files directly to slides or photographic artwork

suitable for publication. ZSoft is extremely cooperative in making information

on this format available to those who want to write compatible software to use

it. Shannon, of ZSoft’s technical support group, provided me with a pamphlet

giving full technical details on the .PCX format. Functions will be listed below

that permit you to save a screen to a disk file using the .PCX format and also to

read the file back from disk to your display.

In addition, there is an excellent public-domain program called ZS which can be

used to display any one or all of your EGA .PCX files or run a slide show of

them. This program is available on bulletin boards or may be obtained directly

by sending $10.00 to:

Bob Montgomery

132 Parsons Rd.

Longwood, FL 32779

The file starts with a 128 byte header, the contents of which are shown in Figure

4-1. Except for the color map, most of the header contents are self-evident. The

floating point numbers for XMax, XMin, YMax, YMin, Pval, and Qval are not

part of the original ZSoft format. They are needed when we save files for Mandelbrot

sets and similar displays to preserve data required to define the figure.

They are transferred to and from the disk file as four characters, each through the

use of the union statement:

union LIMIT

float f;

unsigned char c[4];

36

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

Since that part of the ZSoft header which contains XMax, XMin, YMax, YMin,

Pval, and QvaI is normally empty, using any other ZSoft compatible program

with these files should not present a problem. If the file is read by one of the

programs described in the later chapters of this book, the values will be extracted

and used as needed. If the file is read by another program, the values will be ignored.

Figure 4-2 shows the contents of a palette register for the EGA color system.

Figure 4-1: Header Data for .PCX Screen File

2 Horizontal

Resolution

Horizontal resolution of

display device
= 640 for EGA or VGA

= 320 for CGA

= 720 for Hercules

(continued on next page)

HEADER DATA

Size

Byte (bytes) Name Description

0 1 Password OAH designates ZSoft.PCX
files.

1 1 Version versions of PC Paintbrush

0 = vers 2.5

2 = vers 2.8 w/palette info

3 = vers 2.8 w/o palette
information

5 = vers 3.0

2 1 Encoding Encoding scheme used

1 = .PCX run length encoding.

3 1 Bits per

pixel

No. of bits required to

store data for 1 pixel from

1 plane.
= 1 for EGA, VGA or Hercules
=2 for CGA

4 8 Window

dimensions
4 integers (2 bytes each)

giving top left and bottom

right corners of display in

the order xl, yl, x2, y2.
12

37

FRACTAL PROGRAMMING IN C

Size

Byte (bytes) Name Description

14 2 - Vertical

Resolution

Vertical resolution of

display device (lines)

= 480 for VGA

= 350 for EGA

= 200 for CGA

= 348 for Hercules

16 48 Color Map Information on color

palette settings. See following
figures for details.

64 1 Reserved

65 1 Number of

planes
Number of color planes in
the original image
= 1 for CGA, Hercules
=4 for EGA, VGA

66 2 Bytes per
line

Number of bytes per scan
line in the image

68 2 Palette

Information

How to interpret palette.
1 = color/monochrome

2 = grayscale
70 16 Picture Four floating point numbers

limits giving the bounds for the
set computation. The order
is XMax, XMin, YMax, YMin.
This section is not used in

original ZSoft format.
86 8 Iteration Values for ‘P’ and ‘0’ used

Parameters for fractal computation.
This section is not used in

original ZSoft format.
94 32 Not used Fill to end of header block.

Six bits are used, with two each for the primary colors red, green, and blue. The

capital letters represent colors of 75 percent amplitude; the small letters colors of

25 percent amplitude. Thus for each primary colors, four levels are available: 0

(none of that color), 25 percent amplitude, 75 percent amplitude, and 100 percent

amplitude (both capital and small letter bits are one). The color map in the file

header contains 16 sets of triples, one for each EGA palette. For the first byte of

a triple, the values of the capital and small letter position for red are extracted and

combined to produce a number from one to three. This number is multiplied by

85 and stored in the header. The same procedure takes place for the second byte of

38

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

the triple for green and the third byte for blue. The process is repeated sixteen

times, once for each palette. Note that when we set the palette registers on the

EGA, we are setting a write-only register, so that we can never recover the contents

if we want to know later what the setting was.

Consequently, our setEGApalette function saves the palette register information

in a global array PALETTE[16]. It is this data that we use to write the color

map in the header when we are saving a screen. Figure 4-3 shows the color map

data for the EGA and VGA.

Figure 4-2: Contents of EGA Palette Register

Byte Byte Byte Byte Byte Byte Byte Byte

7 6 5 4 3 2 1 0

r g b R G B

(25%) (25%) (25%) (75%) (75%) (75%)

The VGA is quite different in the way that it handles colors. With the VGA,

each palette register contains the number of a color register. The color register

contains six bits for each primary, permitting 64 shades of that color. With the

VGA we can read each palette register to determine which of the 64 color registers

has been selected and then read the selected color register to determine the selected

one of 64 shades each of red, green, and blue that make up the color.

For all but 18, we create the .PCX color map by reading the palette register and

then the color register pointed to by the palette register.and in the color registers.

We then multiply the red, green, and blue values by four and store the results in

the triple associated with that palette. Note that when we restore a screen, we

may not assign a color value to the same color register that it was obtained from

originally, and that the palette registers may not select the same color registers.

However, the net result is the same, because each palette register points to a color

register that contains the same color information that was contained in the

original screen.

The VGA also has color modes in which 256 different colors may be displayed

simultaneously. Since this is at a lower resolution (the same resolution as the

39

FRACTAL PROGRAMMING IN C

CGA display), we wont be using it in our screen-saving and restoring functions.

For reference, the format is the same as that used to display the 16-color palette,

but due to the 256 colors, the palette information is much longer. It is appended

at the end of the .PCX file.

To access this information, you must first ascertain that the version number data

in the header (byte 1) is 5 (version 3.0). Then read to the end of the file and

count back 769 bytes. If the value in this byte position is OCH (12 decimal), the

succeeding information is 256-color palette data.

Figure 4-3: Contents of .PCX File Color Map

Description

For the EGA, the values of each

color of each byte of each

triple are:

OOH to 54H = 0%

_________ _____ __________ 55H to A9H = 25%

AAH to FEH = 75%

For the VGA, the value of each

byte is the value of the six-
bit color value from the color

register pointed to by the

appropriate palette register

for each color of the triple,

multiplied by four.

Byte Palette Color

16

17

IR

0

0

fl

Red

Green

Rhi

19

20

21

1

1

1

Red

Green

Blue

22

23

24

2

2

2

Red

Green

Blue

25

26

27

3

3

3

Red

Green

Blue

28

29

30

4

4

4

Red

Green

Blue

31

32

33

5

5

5

Red

Green

Blue

34

35

36

6

6

6

Red

Green

Blue

37

38

7

7

7

Red

Green

Bkie

40

41

42

8

8

8

Red

Green

Blue

(continued on next page)

40

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

Data is read from the screen, horizontally from left to right, starting at the pixel

position for the upper left corner. For EGA and VGA, which have multiple

memory planes, a line is read of the color red (to the end of the window boundary,

then the green information for the same line is read, and finally the blue.

The functions that we will develop below only work if the horizontal pixel

boundaries are at a byte interface (the column number must be divisible by eight.)

Data is run length encoded in the following manner: If the byte is unlike the ones

on either side of it, and if its two most significant bits are not 11, it is written to

the file. Otherwise, a count is made of the number of like bytes (up to 63) and

this count is ANDed with COH and the result written to the file, followed by the

value of the byte. If there are more that 63 successive bytes, the count for 63 and

the byte are written and then the count begins all over again. (Note that the case

for a singular byte having the two most significant bits 1 is handled by writing a

count of one followed by the byte value.)

Byte Palette Color

43

44

45

9

9

9

Red

Green

Blue

Description

46

47

48

10

10

10

Red

Green

Blue

49

50

51

11

11

11

Red

Green

Blue

52

53

54

12

12

12

Red

Green

Blue

55

56

57

13

13

13

Red

Green

Blue

58

59

)

14

14

14

Red

Green

Blue

61

62

63

15

15

15

Red

Green

Blue

41

FRACTAL PROGRAMMING IN C

Function to Save a Screen

Figure 4-4 lists a function to save the EGA screen. The parameters passed to this

function are the coordinates of the upper left corner of the window to be saved,

the coordinates of the lower right corner, and the name of the file in which the

screen data is to be stored. No protection is afforded for values that are outside

the screen limits; the programmer must provide this in the calling program.

Also, although any pixel location on the screen may be specified, the x value of

each corner, as used by the program, is set up to be a byte boundary, which may

be as much as seven pixels off from the specified value. Normally, this will not

cause a problem; if it does, the programmer should assure that the x values are

divisible by eight. The program assumes that the file name, which is passed to it

as a parameter, consists of six letters followed by two numbers.

The program begins by trying to open the file in the read mode with the given

file name. If the file can be opened (meaning that the file does indeed exist), the

program assumes that the file already contains valuable data and therefore

increments the two-digit ending and tries again. The loop continues until a file

name is generated that cannot be opened, indicating that the file does not exist.

This file is then opened in the write mode for saving of the current screen. Note

that if the two digits get to 99 without a nonexistent file being found, the loop

gives up. Your file will then not be saved.

The function then continues by initiating a sound that continues until the function

has completed its work of generating the screen file. Next, the appropriate

header information is stored, including the palette information, which is generated

as described above. Just preceding the function is shown the global PALETTE

array, which is initialized with the default palette values for the EGA. Whenever

the setEGApalette function is called, in addition to resetting the appropriate

palette register, it also stores the information in a member of this array, so that it

is available for transfer to the .PCX file. The floating point x and y limits and P

and Q values for Mandelbrot or other sets are also stored. This data is stored in a

set of global coordinates, which are defined by the union LIMIT statement defined

above, which permits the limits to be treated as floating point numbers by the

original program and yet read from and written to the disk file as sets of four

42

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

characters. This alleviates any need for conversion in the process of transferring

to and from the disk.

Figure 4-4: Function to Save an EGA Screen to a Disk File

save_screen() = save screen to disk file

#include “tools.h”

#include <stdio.h>

void save_screen(int xl, mt yl, mt x2, mt y2,

char file_name[])

extern union LIMIT XMax,XMIn,YMax,YMin,Pval ,Qval

extern unsigned char PALETTE[16];

mt i,j,k,addl,add2,number,num_out, line_length, end,

start_line, end_line;

unsigned char ch,chl,old_ch,red,green,blue;

FILE *fsave;

sound (256);

while (file_name[6] < Ox3A)

if ((fsave = fopen (file_name,”rb”)) != NULL)

else

fi le_name[7]-H-;

if (file_name[7] >= Ox3A)

file_name[7] = 0x30;

fi 1 e_name[6]++;

fclose(fsave)

fclose(fsave)

fsave = fopen(file_name,wb”);

fputc(OxOA,fsave);

fputc(0x05,fsave);

fputc(OxOl ,fsave);

fputc(0x04,fsave);

putw(xl ,fsave);

putw(yl ,fsave);

putw(x2,fsave);

putw(y2,fsave);

putw(640,fsave);

putw(350,fsave);

ch = OxOO;

43

FRACTAL PROGRAMMING IN C

for (i=O; 1<16; i++)

red = (((PALETTE[i] & 0x20) >> 5)

((PALETTE[i] & 0x04) >> 1)) * 85;

green = (((PALETTE[i] & OxlO) >> 4)

(PALETTE[i] & 0x02)) * 85;

b’ue = (((PALETTE[i] & 0x08) >> 3)

((PALETTE[1] & OxOl) << 1)) * 85;

fputc(red,fsave);

fputc(green,fsave);

fputc(bue,fsave);

fputc(OxOO,fsave);

fputc(0x04,fsave);

start_Hne = xl/8;

end_Hne = x2/8 + 1;

Hne_length = end_Hne - start_line;

end = start_Hne + Hne_iength * 4 + 1;

putw(i nej ength fsave);

putw(1 ,fsave);

for (i=O; 1<4; i++)

fputc(XMax.c[i I ,fsave);

for (i=O; i<4; i++)

fputc(XMin.c[i I ,fsave);

for (i=O; 1<4; i++)

fputc(YMax.c[i I ,fsave);

for (i=O; i<4; i++)

fputc(YMin.c[i] ,fsave);

for (i=O; i<4; i++)

fputc(Pva .c[i I ,fsave)

for (1=0; 1<4; j++)

fputc(Qva .c[i],fsave);

for (1=94; i<128; j++)

fputc(,fsave);

for (k=yl; k<y2; k++)

addl = 80*k;

number = 1;

j = 0;

add2 = (start_Hne);

old_ch = read_screen(addl + add2++,0);

for (i=add2; i<end; i++)

if (I == end - 1)

ch = od_ch - 1;

else

if ((add2) == end_Hne)

j ++;

add2 = (start_line);

44

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

ch = read_screen(addl + add2,

if ((ch == old_ch) && number < 63)

numb e r++;

e se

num_out = ((unsigned char)

number I OxCO);

if ((number != 1) II
((old_ch & OxCO) ==
OxCO))

fputc(num_out,fsave);

fputc(old_ch,fsave);

old_ch = ch;

number = 1;

add 2++;

fclose(fsave)

break;

nosound();

The function initializes some address variables and then starts a ioop that reiterates

for every line of the display from the first one specified by yl, to the last

one, specified by y2. At the beginning of this loop, the function gets the first

byte of eight pixels from the first plane of the EGA screen. This is stored in

oldch. Next, anotherfor loop is begun, which reads one byte at a time from the

beginning to the end of the line for each of the four memory planes.

After each read, action is taken based upon comparing the read character with the

previous character, which was stored in old_ch. For the very last pass through

the loop, instead of reading a byte (which wouldn’t be there anyway, since we

have already finished the line), we create an artificial character that is always different

from old_ch, which forces a write out to the file of the previous data. On

each pass through the loop, we check the value of the address variable add2

(which is incremented at the end of each pass). If it is equal to the value representing

the end of the line, we reset it to the starting value and also increment j,

which determines which memory plane is read.

45

FRACTAL PROGRAMMING IN C

After the character is read, we check it against the previous character value; if it is

the same and if number—which stores the number of like characters so far encountered—is

less than 63, we simply increment number and return for the next

pass through the ioop. If number had reached 63, or if the character read differs

from the previous character, we write out to the file. If number is one, indicating

that the previous character is unlike those on either side of it, and if the value in

old_ch does not have its two most significant bits equal to one, we simply write

this value out to the file. If the value in old_ch was repeated, or if its two most

significant bits are ones, we first write out the value of number with its two

most significant bits set to one. We then write out the value in old_ch. We then

reset number to one and are ready for another pass through the loop. When this

loop and the display line loop have been completed, the disk file is closed and the

sound is turned off.

The function to save a VGA screen is quite similar, except for the way the palette

data is treated. The number of lines for a full screen is different from the EGA,

but since the number of lines is determined by the values of yl and y2 passed to

the function, this does not require any change in the coding.

Figure 4-5 shows the code that is used to save the color information for the

VGA.

Figure 4-5: Code to Save VGA Color Information

mt i ,palette,red,green,blue;

for (i=O; 1<16; i++)

palette = getVGApaletteU;

readColorReg(palette,&red,&green,&blue);

fputc(red*4);

fputc(green*4);

fputc(blue*4);

46

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

Function to Restore an EGA Screen

Figure 4-6 lists a function to restore the screen saved by the save-screen function

just described. It will also display any EGA mode 16 screen saved in .PCX format,

although it wont have values for XMax, XMin, YMax, YMin, Pval, or

Qval. The function begins by attempting to open the file whose designation is

passed through the parameter filename. If the file does not exist, the function

displays Cannot find filename, where filename is the designated name, and

then returns a value of 0. If the file does exist, the first character of the header is

read. If it is not the password character OAH for .PCX files, the function displays

file_name is not a valid ZSoft file and then returns a value of 0. If the file appears

to be a valid one, the computer is set to EGA display mode 16 and the

screen is cleared to a black background.

The function then begins to read the header information. The window top left and

bottom right coordinates are read and stored. The color data for each palette is

read from each triple and converted to an IBM EGA format color word, which is

sent to the appropriate palette. The limits and P and Q values for Mandelbrot and

similar sets are read. Dummy reads then take place to get to the end of the header

block. The function then sends data to set up the registers of the EGA for reception
of color data.

Next, afor loop is begun for reading and displaying data for each line of the display

from the top to the bottom of the window. Parameters are set up for the

initial address at screen memory and for the address of the end of the current line.

The parameter j is set to zero so that data will be sent to the first memory plane.

The function then begins a while loop that reads data from the disk file, character

by character. If the character does not have its two most significant bits set to

one, it is simply sent to display memory and the memory address incremented. If

the first two bits are one, these are stripped and the remainder of the byte is used

as a counter.

47

FRACTAL PROGRAMMING IN C

Figure 4-6: Function to Display an EGA Screen from Disk

restore_screen() = paint screen from disk data

#include <stdiio.h>

#include <stalib.h>

#include “tools.h”

extern union LIMIT XMax, XMin, YMax, YMin. Pval, Qval;

mt restore_screen(char file_name[])

#include <dos.h>

#define graph_out (index, val)

{outp (Ox3CE,index);\ outp (Ox3CF, val);)
FILE *fsave;

unsigned char ch,chl,red.green,blue,color,

line_length,end;

mt line_end,i .j,k.m,pass,xl.yl.x2.y2;

if ((fsave = fopen(file_name,”rb”)) == NULL)

printf(”\nCan’t find %s.\n”,file_name);

return(O);

else

ch = fgetc(fsave);

if (ch != OxOA)

printf(”\n%s is not a valid ZSoft file.\n”,

file_name);

fclose(fsave);

return(O);

setMode(16);

cls(O);

for (i=1; i<4; i++)

ch = fgetc(fsave);

xl = getw(fsave);

yl = getw(fsave);

x2 = getw(fsave);

y2 = getw(fsave);

for (i=12; i<16; i++)

ch = fgetc(fsave);

for (i=O; i<16; i++)

red = fgetc(fsave)/85;

green = fgetc(fsave)/85;

48

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

blue = fgetc(fsave)/85;

color = ((red & OxOl) << 5) I ((red & 0x02)
<< 1) I ((green & OxOl) << 4) I (green
& 0x02) I ((blue & OxOl) << 3) I ((blue &
0x02) >> 1);

setEGApalette(i .color);

for (i=64; i<70; i++)

ch = fgetc(fsave);
for (i=0; j<4; j++)

XMax.c[i] = fgetc(fsave);
for (i=O; i<4; j++)

XMin.c[i] = fgetc(fsave);
for (i=0; i<4; j++)

YMax.c[i] = fgetc(fsave);
for (i=0; i<4; j++)

YMin.c[i] = fgetc(fsave);
for (i=0; i<4; j++)

Pval.c[i] = fgetc(fsave);
for (i=0; i<4; i++)

Qval.c[i] = fgetc(fsave);
for (i=94; i<128; j++)

ch = fgetc(fsave);

graph_out(8OxFF);
graph_out(3Ox1O);
for (k=yl; k<y2; k++)

i = k*80 + (xl/8);

line_end = k* 80 + (x2/8)+1;

j = 0;
while (j < 4)

chi = fgetc(fsave);
if ((chi & OxCO) != OxCO)

display(i. j. chi);
i ++;

if (i >= line_end)

j ++;
i = k*80 + (xl/8);

else

chi &= Ox3F;

pass = chi;

ch = fgetc(fsave);

for (m=0; m<pass; m++)

49

FRACTAL PROGRAMMING IN C

display(i. j. ch);

i ++;

if (I >= line_end)

j ++;

I = k8O + (xl/8);

graph_out(3.O);

graph_out(8,OxFF);
fclose(fsave);

return(x2);

The next character is read from disk and repeatedly sent to display memory and the

memory address incremented and the counter decremented each time until the

counter reaches zero. After each incrementing of the memory address, the address

is checked against the value for line end and if that value has been reached, the

memory address is reset to the beginning of the line and the memory plane

indicator is incremented. When this indicator reaches 4, all memory planes have

been completed for the designated line, so the while loop is terminated. When all

lines have been completed, the for loop terminates, the EGA registers are reset,

the disk file is closed, and the function returns with a value of x2 (the end of the

horizontal dimension of the window). This value of x2 is used as a starting point

for continued operations if an incomplete display was saved.

Function to Restore a VGA Screen

The function to restore the VGA screen is just the same as that listed in Figure 4-

6 except for the way the palette and color data is treated. Figure 4-7 shows the

code for this section of the VGA function. Note that we do not try to determine

what palette numbers the original color information was associated with, but

simply determine the color register currently associated with each of the sixteen

palettes that are being displayed and send it the appropriate color data from the

disk file.

50

CH. 4: SAVING AND COMPRESSING DISPLAY DATA

Figure 4-7: Code for Setting VGA Color Register Data

mt palette,red.green,blue;

for (1=0; 1<16; i++)

palette = getVGApaletteO;

writeColorReg(palette.red*4,green*4,blue*4);

51

5

Tools for Graphics

Display Generation

Most C Languages now contain a reasonably good assortment of tools for graphics

display generation. Furthermore, my book Graphics Programming in C contains

an extensive graphics library with a full explanation of every function.

Why then do we propose to describe a separate graphics library for fractal generation

in this chapter?

The first answer to this question is that the individual graphics libraries for each

version of C are not usually compatible, so that a program written using one set

of routines is not transferable to another C compiler. It would be ideal if the

producers of the different C language compilers would get together and establish a

standard set of graphics routines that were transferable from one compiler to another.

Until they do this, we’ll try the next best thing and give a toolbox of routines

here that may be used with either Turbo C or Microsoft and Quick C.

Another consideration is that some of the functions provided in this chapter are a

little unusual because they are tailored especially for the fractal curve generating

programs that appear in later chapters or because they offer some unique capabilities

that would not usually be included in a generic package.

We will list in this chapter all of the programs and functions that are included in

the tools library of the program disk that accompanies this book. We won’t go

into any detailed description of those routines that are simply duplications of

those described in detail in Graphics Programming in C.

53

FRACTAL PROGRAMMING IN C

We will also avoid a detailed description of how to assemble these functions in a

library; this is fully described in the previous book and also is now described in

the documentation for both Turbo C and Microsoft C.

Setting the Display Mode

Before running a graphics program, the system must be set for a display mode.

These modes are fully described in Graphics Programming in C in which

functions are provided for setting up display modes for the CGA, EGA, VGA,

and Hercules Graphics Card. The function listed in Figure 5-1 is the mode

setting function for CGA, EGA, and VGA. It cannot be used with the Hercules

Graphics Card. We are primarily going to be interested only in mode 16 (1OH),

which sets the display for a 640 x 350 pixel display having 16 colors. If you

have a VGA, you can experiment with mode 18, which gives higher vertical

resolution, but you will have to modify the programs to run properly.

These colors are set to default values, but can be changed to any of 64 different

values for the EGA using the setEGApalette function or 256K values for the

VGA using the setEGApalette function to set the palettes and a function of your

own design to set the VGA color registers. (If we’re going to save some unusual

VGA colors (other than the default colors) to a disk file, we need to define how

we’re going to retrieve and record color register data. At present, not all VGA

cards do things exactly the way IBM specifies that they should be done in this

area, so you need to experiment to determine whether your card can really retrieve

color register data or whether you need to save it in a separate buffer when you’re

changing color register values.)

Figure 5-1: Function to Set Display Mode

setMode() = sets video mode

#include “tools.h”

void setMode(int mode)

54

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

#include <dos.h>

union REGS reg;

reg.h.ah = 0;

reg.h.al = mode;

1nt86 (OxlO,®,®);

Setting the EGA Palettes

The EGA is capable of displaying sixteen different colors at one time in high

resolution mode 16. This function permits us to set each of the sixteen different

colors (referred to as palettes) to any of the 64 color shades available with the

EGA. Figure 5-2 shows the way in which a color number sent to the EGA by

this function controls the color content for that palette on the display. With one

exception, the palettes are set to a color number matching the palette number in

the default state. Thus, the low intensity set of colors corresponds to a 75 percent

level of the colors specified by the bits set. The high intensity colors represent

both the 75 percent and 25 percent bits for the selected colors, giving 100

percent level of that color. The exception is low intensity yellow (brown) which

is palette number 6, but is set to 20H, which sets g een to 25 percent and red to

75 percent.

Figure 5-2: Contents of Color Byte Sent to Palette Register

Bit 7 6 5 4 3 2 1 0

25% 25% 25% 75% 75% 75%

Red Green Blue Red Green Blue

The VGA operates in a different fashion, but for mode 16 it can be quite

transparent and appear to be the same as the EGA. The VGA has 256 color registers,

each of which can be set to 256K color hues. These registers are broken

up into four sets of 64 registers. Any one of these four sets can be used to define

the 64 colors from which the display selects the 16 palettes. When you send a

number from 0 to 63 to the setEGApalette function while using the VGA, you

are actually selecting one of the 64 registers from which the VGA takes the designated

color hue. In the default condition, however, one set of 64 registers is

55

FRACTAL PROGRAMMING IN C

always selected, and that set contains the same 64 shades of color that are designated

by the numbers 0 to 63 by the EGA.

Therefore, although the mechanism is quite different, sending a number to the

setEGApalette function for the VGA results in the same color that is called up by

using that function with the EGA. You can develop functions that choose a different

set of 64 registers to define the colors and that change the color shadings of

the registers from the default values, which makes it possible for you to access

the highly increased number of color hues available on the VGA. Note, however,

that for mode 16 you are always limited to 16 different colors on a display at one

time.

Figure 5-3 shows the function which sets the EGA palettes. It makes use of the

ROM BIOS services to perform this task. Note that whatever value is sent to a

palette register is also stored in the global array PALETTE. This permits us to

keep track of which colors have been set into the palette registers, since this data

is not recoverable from the EGA hardware.

Thus we can use the contents of PALETTE to obtain color data to store in a file

when we are saving a display and be able to regenerate the display with the same

colors that were originally specified. Note, however, that the price we pay for

this is that we must include PALETTE as a global array in each of our programs

that make use of the setEGApalette function. If we don’t do this, we will not be

able to compile and run the program properly. Furthermore, if we are going to

use the save_screen function, we must initialize the PALETTE array with the

proper default colors in order to have the correct color information saved to the

file. The only exception to this initialization requirement is when we are going

to set every one of the sixteen EGA palettes to a new color.

Figure 5-3: Function to Set EGA/VGA Palettes

setEGApalette() = sets the color for an EGA palette number

#include “tools.h”

extern unsigned char PALETTE[16];

56

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

void setEGApalette(int palette, mt color)

#include <dos.h>

union REGS reg;

PALETTE[palette] = color;

reg.h.ah = OxlO;

reg.h.al = 0;

reg.h.bh = color;

reg.h.bl = palette;

1nt86(OxlO,®,®);

Clearing the Screen

Figure 5-4 is a function to clear the screen and leave it with a designated background

color. This function makes use of the ROM BIOS window scrolling service

to fill the screen with a designated color. The service shown here is for use

with mode 16. If you are going to use VGA mode 17 or VGA mode 18, you

need to change the value put into register d from Ox184F to OxJD4F to fill the

extra lines provided by the higher vertical resolution of these modes.

Figure 5-4: Function to Clear the Screen

cls() = clears the screen

#include “tools.h”

void cls(int color)

#include <dos.h>

union REGS reg;

reg.x.ax = 0x0600;

reg.x.cx = 0;

reg.x.dx = 0x184F;

reg.h.bh = color;

i nt86(OxlO,® ,®)

57

FRACTAL PROGRAMMING IN C

Plotting a Point on the Screen

Figure 5-5 is a function to plot a point on the EGA or VGA screen. The function

makes use of in-line assembly language and therefore, if compiled with

Turbo C, must be compiled using the on-line compile command tcc since compilation

of assembly language from within the integrated environment package is

not permitted. If you are going to attempt to compile this from Microsoft C,

you will need to refer to MicroSoft’s documentation for instructions on how to

proceed. Alternately, you can use the function shown in Figure 5-6, which is

basically the same procedure, but will be much slower due to the additional conversions

which take place when working entirely through a higher level language.

Figure 5-5: Function to Plot a Point on the Screen

plot() = plots a point at (x,y) in color
for EGA, using assembly
language at cr itical points

#include “tools.h”

void plot(int x, mt y, mt color)

#include <dos.h>

unsigned mt offset;

mt mask;

offset = (long)y * 80L + ((long)x / 8L);

mask = 0x80 >> (x % 8);

_ES = OxA000;

_BX = offset;

_CX = color;

_AX = mask;

asm MOV AH,AL

asm MOV AL,08

asm MOV DX,O3CEH

asm OUT DX,AX

asm MOV AX, OFFO2H

asm MOV DL, OC4H

asm OUT DX,AX

asm OR ES:[BX],CH

asm MOV BYTE PTR ES: [BX],00H

asm MOV AH,CL

58

CII. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

asm OUT DX,AX

asm MOV BYTE PTR ES: [BX],OFFH

asm MOV AH,OFFH

asm OUT DX,AX

asm MOV DL,OCEH

asm MOV AX,0003

asm OUT DX,AX

asm MOV AX,OFFO8H

asm OUT DX,AX

Figure 5-6: Function to Plot a Point on the Screen

Without Using Assembly Language

plot() = plots a point at (x,y) in color
for EGA, using assembly

language at cr itical points

#include “tools.h”

void plot(int x, mt y, mt color)

#include <dos.h>

#define seq_out(index,val) {outp(Ox3C4, index);\

outp(Ox3C5, val);

#define graph_out(index,val) {outp(Ox3CE,index);\

outp(Ox3CF, val);

unsigned mt offset;

mt dummy,mask;

offset = (long)y * 80L + ((long)x / 8L);

mem_address = (char far *) OxA0000000L + offset;

mask = 0x80 >> (x % 8);

graph_out(8,mask);

graph_out(3,OxOO);

seq_out(2,OxOF);

dummy = *mem address;

*mem address = 0;

seq_out(2,color);

*mem address = OxFF;

seq_out(2,0x0F);

graph_out(3,0);

graph_out(8,OxFF);

59

FRACTAL PROGRAMMING IN C

Displaying a Byte on the Screen

Figure 5-7 is a function that is used to display data on the screen where we have a

byte representing the condition of eight consecutive points on the screen for a

single color plane. This kind of data is available when we are restoring a screen

from a disk file. Having data collected in bytes and isolated by color plane makes

it possible to display it with a much simpler and faster function than if we had to

plot it point by point using the plot function.

Figure 5-7: Displaying a Byte on the Screen

display() = displays byte on the screen

#include “tools.h”

void display(unsigned long mt address, mt color_plane,

unsigned char ch)

#include <dos.h>

#define seq_out(mndex,val) {outp(Ox3C4,mndex);\

outp(Ox3C5,val);

char far * mem_address;

char dummy;

memaddress = (char far *) OxA0000000L + address;

dummy = *mem address;

seq_out(2,(OxOl << color_plane));

*mem address = ch;

Reading a Pixel from the Screen

Figure 5-8 is a function that uses the ROM BIOS video services to read a pixel

from the screen. This function is rather slow, but fortunately we don’t need to

use it nearly as much as its inverse, which plots a point to the screen.

60

CII. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

Figure 5-8: Function to Read a Pixel from the Screen

readPixel = reads a pixel from the screen

#include “tools.h”

mt readPixel(int x, mt y)

#include <dos.h>

union REGS reg;

reg.h.ah = OxOD;

reg.x.cx = x;

reg.x.dx = y;

int86 (OxlO,®,®);

return (reg.h.al);

Reading a Byte from a Color Plane

This function bears the same relation to the readpixel function that display does

to the plot function. In other words, instead of reading a single pixel, it reads information

on eight adjacent pixels from one color plane only. It is used in saving

a screen to a disk file. The function is listed in Figure 5-9.

Figure 5-9: Function to Read a Byte from a Color Plane

read_screen() = reads a byte from the screen

#include “tools.h”

unsigned char read_screen(unsigned long mt address,

mt color_plane)

#include <dos.h>

#define graph_out(index,val) {outp(Ox3CE,index);\

outp(Ox3CF,val);

char far * mem_address;

61

FRACTAL PROGRAMMING IN C

unsigned char pixel_data;

mem_address = (char far *) OxA0000000L + address;

graph_out(4,color_plane);

graph_out(5,0);

pixel_data = *mem_address;

return (pixel_data);

Drawing a Line

Figure 5-10 is a function for drawing a line on the screen. This function, which

makes use of Bresenham’s algorithm, is fully described in my book Graphics

Programming in C.

Figure 5-10: Function to Draw a Line on the Screen

drawLine() = draws a line from one set of coordinates

to another i n a d esignated color

#include “tools.h”

void drawLine(int xl, mt yl, mt x2, mt y2, mt color)

#include <dos.h>

extern mt LINEWIDTH;

extern unsigned long mt PATTERN;

union REGS reg;

#define sign(x) ((x) > 0 ? 1: ((x) == 0 ? 0: (-1)))

mt dx, dy, dxabs, dyabs, i, j, px, py, sdx, sdy, x, y;

unsigned long mt mask=0x80000000;

xl += 320;

yl = 175 - ((yl*93) >> 7);

x2 += 320;

y2 = 175 - ((y2*93) >> 7);

dx = x2 - xl;

dy = y2 - yl;

sdx = sign(dx);

sdy = sign(dy);

62

CII. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

dxabs = abs(dx);

dyabs = abs(dy);

x = 0;

y = 0;

px = xl;

py = yl;

if (dxabs >= dyabs)

for (i=0; i<dxabs; i++)

mask = mask ? mask : 0x80000000;

y += dyabs;

if (y>=dxabs)

y -= dxabs;

py += sdy;

px += sdx;

if (PATTERN & mask)

for (j- LINEWIDTH/2; j<=LINEWIDTH/2; j++)

plot(px,py+j ,color);

mask >>= 1;

else

for (i=0; i<dyabs; i++)

mask = mask ? mask : 0x80000000;

x += dxabs;

if (x>=dyabs)

x -= dyabs;

px += sdx;

py += sdy;

if (PATTERN & mask)

for (j- LINEWIDTH/2; j<=LINEWIDTH/2; j++)

plot(px+j ,py,color);

mask >>= 1;

63

FRACTAL PROGRAMMING IN C

Filling a Triangle

Filling a triangle with a designated color is a function that occurs repeatedly when

we are attempting to create fractal landscapes using the midpoint displacement

method as described in Chapter 21. Graphics Programming in C provides a generalized

function for filling polygons that will fill triangles, but is somewhat

complex for the triangle, which is a very simple form of polygon.

The function described here is a lot simpler and faster, but is confined to the one

case of triangles. It is listed in Figure 5-11. The function uses the same technique

as the line drawing algorithm listed above, but instead of plotting each

point on each of the three lines that make up the triangle, it saves the x and y

values of each point in an array of coordinates.

The algorithm is set up so that the coordinate pairs are ordered from the lowest to

the highest values of y, with the x’s in order from low to high for each y. All

values are then changed, if necessary, to be within the bounds of the display. Finally,

lines are drawn along each y coordinate from the beginning to the ending x

values. The function assumes that once you have ordered all of the coordinate

pairs on the three triangle lines, there can only be two values of x for any y, the

first of which marks the beginning of the fill line, and the second marks the end

of the line. Draw a few differently oriented triangles and you can verify that this

is true.

Figure 5-11: Function to Fill a Triangle

fillTriangle() = fills a triangle in a specified color

#include “tools.h”

void fillTriangle (mt xl, mt yl, mt x2, mt y2, mt x3,

mt y3, mt color)

#define sign(x) (Cx) > 0 ? 1: ((x) == 0 ? 0: (-1)))

mt dx, dy, dxabs, dyabs, i, j, k, px, py, sdx, sdy, x, y,

xpoint[4], ypoint[4], xa[350],xb[350],

64

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

start,end;

long mt check;

mt x_coord[350], y_coord[350];

for (i=0; i<350; j++)

xa[i] = 640;

xb[ij = 0;

xpoint[0] = xl + 320;

ypoint[0] = 175 - ((yl*93L) >> 7);

xpoint[1] = x2 + 320;

ypoint[1] = 175 - ((y2*93L) >> 7);

xpoint[2] = x3 + 320;

ypoint[2] = 175 - ((y3*93L) >> 7);

xpoint[3] = xpoint[0];

ypoint[3] = ypoint[0];

px = xpoint[0];

py = ypoint[0];

for (j=0; j<3; j±+)

dx = xpoint[j+1] - xpoint[j];

dy = ypoint[j+l] - ypoint[j];

sdx = sign(dx);

sdy = sign(dy);

dxabs = abs(dx);

dyabs = abs(dy);

x = 0;

y = 0;

if (dxabs >= dyabs)

for (k=0; k<dxabs; k++)

y += dyabs;

px += sdx;

if (y>=dxabs)

y -= dxabs;

py += sdy;

if ((py>=O) && (py<=349))

if (px < xa[py])

xa[py] = px;

if (px > xb[py])

xb[py] = px;

else

65

FRACTAL PROGRAMMING IN C

for (k=O; k<dyabs; k++)

py += sdy;

x += dxabs;

if (x>=dyabs)

x -= dyabs;

px += sdx;

if ((py>=O) && (py<=349))

if (px < xa[py])

xa[py] = px;

if (px > xb[py])

xb[py] = px;

if (ypoint[O] < ypoint[1])

start = ypoint[O];

end = ypoint[1];

else

start = ypoint[1];

end = ypoint[O];

for (i=O; i<350; j++)

if (xa[i] < 0)

xa[i] = 0;

if (xb[i] > 639)

xb[i] = 639;

if (ypoint[2] < start)

start = ypoint[2];

if (ypoint[2] > end)

end = ypoint[2];

if (start < 0)

start = 0;

if (end > 349)

end = 349;

for (i=start; i<=end; i++)

for (j=xa[i]; j<=xb[i]; j++)

plot(j,i ,color);

66

CII. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

Filling an Oval

We are going to be filling a lot of circles and ovals. The function listed in Figure

5-12 will perform this task. It is quite an improvement over the function

given in Graphics Programming in C as far as simplicity is concerned and it is

just as fast as the previous function. The original function used Bresenham’s algorithm

to generate a circle, simultaneously plotting points in four quadrants.

Then a line was drawn from the point determined for the radius minus y coordinate

to the corresponding point for the radius plus quadrant. The algorithm used

here scans each point within a rectangle bounding the specified oval, and if the

point is found to be inside the oval plots it on the screen.

Figure 5-12: Function to Fill an Oval

fillOval() = draws an oval centered at (x,y) with
radius in y direction of ‘b’ with
aspect ratio ‘aspect’ and fills it
with color ‘color’

#include “tools.h”

#include <stdio.h>

void fillOval(float x_cen, float y_cen, float radius,

mt color, float aspect)

#include <dos.h>

union REGS reg;

#define seq_out(index,val) {outp(Ox3C4,index);\

outp(Ox3C5,val);

#define graph_out(index,val) {outp(Ox3CE,index);\

outp(Ox3CF,val);

unsigned mt offset;

char far * mem_address;

float a,b,aspect_square;

long x,y,col,row,dummy,mask,start_x, starty,end_x,endy;

float a_square,b_square,b_test;

a = radius/aspect;

a_square = a*a;

b = .729*radius;

67

FRACTAL PROGRAMMING IN C

b_square = b*b;

x = x_cen + 319;

y = 175 - (.729*y_cen);

start_x = max(O,x-a);

end_x = mm (639,x+a);

start_y = max(O,y-b);

end_y = min(349,y+b);

for (col=start_x; col<=end_x; col++)

b_test = b_square - (b_square*(co1x)*(co1x))/a_square;

mask = 0x80 >> ((col) % 8);

graph_out(8,mask);

seq_out(2,OxOF);

for (row=start_y; row<=end_y; row++)

if ((1ong)(rowy)*(rowy) <= b_test)

offset = (long)row*80L + ((long)(col)/8L);

mem_address = (char far *) OxA0000000L +

offset;

dummy = *mem address;

*mem address = 0;

seq_out(2,color);

*mem address = OxFF;

seq_out(2,OxOF);

graph_out(3,O)

graph_out(8,OxFF);

Turtle Graphics

Turtle Graphics was first developed for the LOGO language, which was supposed

to simplify programming for children. It consisted of a “turtle,” which was displayed

on the graphics screen and could be pointed and moved by simple commands.

A variation of turtle graphics has been found to be useful for generating

von Koch and other fractal curves. We have global variables that tell us the

direction that the turtle is pointing, its coordinates, and the size for a step of turtle

movement. There are only three functions that we use. They are described

below.

68

Cl. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

Point

The input parameters to the function point are the coordinates of the beginning

and end points of a line. The function determines the turtle angle in relation to

the x axis if the turtle is facing in the direction of the line defined by the input

points. This angle, in degrees, is returned by the function. The function is listed

in Figure 5-13.

Figure 5-13: Point Function

point() = sets the beginni ng angle for turtle
in tenths of a degree

#include “tools.h”

#include <math.h>

float point(float xl, float y-one, float x2, float y2)

#include <math.h>

float theta;
if ((x2 - xl) == 0)

if (y2 > y-one)

theta = 90;

else

theta = 270;

else

theta = atan((y2yone)/(x2x1))*57.295779;

if (xl>x2)

theta += 180;

return(theta)

Turn

For this function, you specify an angle through which you want the turtle to

turn. Positive angles are counter-clockwise and negative angles are clockwise.

The function adds the specified angle to the global variable that defines the current

turtle angle. The function is listed in Figure 5-14.

69

FRACTAL PROGRAMMING IN C

Figure 5-14: Turn Function

turn() = changes turtle pointing direction

#include “tools.h”

void turn(float angle)

extern float turtle_theta;

turtle_theta += angle;

Step

This function moves the turtle position by one step. The step length is defined

by the parameter turtle_r. The function makes use of the current turtle position

coordinates turtle_x and turtlej and the turtle direction angle turtle_theta to determine

the new position coordinates after the step has been taken. The function

is listed in Figure 5-15.

Figure 5-15: Step Function

step() = advances turtle by step r in current direction

#include “tools.h”

void step (void)

#include <math.h>

extern float turtle_x;

extern float turtle_y;

extern float turtle_r;

extern float turtle_theta;

turtle_x += turtle_r*cos(turtle_theta*.017453292);

turtle_y += turtle_r*sin(turtle_theta*.017453292);

70

Cl. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

Function to Display and Move Cursor

The improved Mandelbrot set program, as well as the programs for generating

similar sets for dragon and phoenix functions, which will be listed later, all make

use of the move_cursor function to position a cursor on the screen and/or use it

to select the limits for a rectangle that defines the limits of the next screen to be

generated. Figure 5-16 lists the move_cursor function. The parameters that are

passed to this function are a type number, a number for the color of the cursor,

and the minimum column and row positions.

Figure 5-16: Function to Display and Move Cursor

move_cursor() = moves cursor and saves position

#include <stdio.h>

#include “tools.h”

void move_cursor(int type,int color,int min_col mt mm_row)

#include <dos.h>

extern mt CURSOR_X,CURSOR_Y;

extern union LIMIT XMax,YMax,XMin,YMin,Pval ,Qval

extern float TXMax,TXMIn,TYMax,TYM1n;

union REGS reg;

unsigned mt mask;

mt I ,j,image,image_store[256],index,ch,temp,limit[7];

char far *base;

limit[O] = 11;

limit[1] = 9;

limit[2] = 10;

limit[3] = 10;

limit[4] = 12;

limit[5] = 14;

limit[6] = 14;

do

index = 0;

swi tch(type)

case 0:

for (i=0; i<16; i++)

71

FRACTAL PROGRAMMING IN C

image_store[index++] = plot_point

(CURSOR_X+i ,CURSOR_Y.

col or);

for (1=1; i<16; i++)

image_store[index-i--i-] = plot_point

(CURSOR_X,CURSOR_Y+i

color);

break;

case 1:

for (1=0; i<16; i++)

image_store[index++] = plot_point

(CURS0R_X+15,CURSOR_Y+i

color);

for (1=0; 1<15; i++)

image_store[index++] = plot.point
(CURSOR_X+i ,CURSOR_Y+15.

color);

break;

case 2:

for (j=0; j<7; j++)

for(i=j; i<limit[j]; i++)

if((i==8) && (j ==5))
i10;

if((i==8) && Ci ==6))
1=12;

image_store[index++] = plot_point

(CURSOR_X+j ,CURSOR_Y+i

color);

image_store[index+-’-] = plot_point(CURSOR_X+7.
CURSOR_Y+7,color);

ch = getch();
if (ch OxOD)

if (ch == 0)

ch = getch() + 256;

index = 0;

swi tch(type)

case 0:

for (1=0; 1<16; i++)

plot_point(CURSOR_X+i ,CURSOR_Y.

image_store[index++]);

for (1=1; i<16; 1-i--i-)

plot_point(CURSOR_X,CURSOR_Y+i

image_store[index++]);

break;

72

CH. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

case 1:

for (1=0; 1<16; i++)

plot_point(CURSOR_X+15,CURSOR_Y+i

image_store[i ndex++]);
for (1=0; 1<15; i++)

plot_point(CURSOR_X+i ,CURSOR_Y+15.

image_store[index++]);

break;

case 2:

for (j0; j<7; j++)

for(i=j; i<limit[j]; i++)

if((i==8) && (j ==5))

i=10;

if((i==8) && (j ==6))

1=12;

plot(CURSOR_X+j ,CURSOR_Y+i

image_store[i ndex++]);

plot (CURSOR_X+7 CURSOR_Y+7.

image_store[index++]);

reg.h.ah = 2;

int86(0x16,®,®);

if ((reg.h.al & 0x03) != 0)

switch(ch)

case 56:

if (CURSOR_Y > mm_row)

CURSOR_Y - 10;

break;

case 52:

if (CURSOR_X > min_col)

CURSOR_X - 10;

break;
case 54:

if (CURSOR_X < 629)

CURSOR_X += 10;

break;

case 50:

if (CURSOR_Y < 329)

CURSOR_Y += 10;

else

switch(ch)

73

FRACTAL PROGRAMMING IN C

case 333:

if (CURSOR_X < 639)

CURSOR_X++;

break;

case 331:

if (CURSOR_X > min_col)

CURSOR_X - -;

break;

case 328:

if (CURSOR_Y > mm_row)

CURSOR_Y - -;

break;

case 336:

if (CURSOR_Y < 335)

CURSOR_Y++;

break;

swi tch(type)

case 0:

TXMIn = XMin.f + (XMax.f - XMIn.f)/

639*(CURSOR_X);

TYMax = YMax.f - (YMax.f - YMin.f)/

349*CURSQRY;

gotoxy(5,24);

printf(”XMIn= %f YMax= %f”.TXMin.TYMax);

break;

case 1:

TXMax = XMIn.f + (XMax.f - XMIn.f)/

639*(CURSOR_X + 16);

TYM1n = YMax.f - (YMax.f - YMIn.f)/

349*(CURSQRY + 16);

gotoxy(41 .24);

printf(” XMax= %f YMIn= %f”.TXMax.TYMIn);
break;

case 2:

Pval.f = XMIn.f + (XMax.f - XMIn.f)/639*

CURSOR_X;

Qval.f = YMax.f - (YMax.f - YMIn.f)/

349*CURSQRY;

gotoxy(5.24);

printf(” P= %f 0= %f “,Pval.f,Oval.f);

while (ch != OxOD);

74

Cl. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

plot_point() = plots a point at (x,y) in color

for EGA, using Turbo C port

output functions and returns

original point color

mt plot_point(int x, mt y, mt color)

#define seq_out(index,val) {outp(Ox3C4,index);\

outp(Ox3C5,val);

#define graph_out(index,val) {outp(Ox3CE,index);\

outp(Ox3CF,val);
#define EGAaddress OxA0000000L

mt index,old_color=O;

unsigned char mask, dummy,exist_color;
char far *mem address

mem_address = (char far *) (EGAaddress +

((long)y * 80L + ((long)x / 8L)));

mask = 0x80 >> Cx % 8);

for (index = 0; index<4; index++)

graph_out(4,index);

graph_out(5,O);

exist_color = *mem address & mask;

if (exist_color != 0)

old_color I=(OxOl<<index);

graph_out(8,mask);

seq_out(2,OxOF);

dummy = *mem address;

*mem address = 0;

seq_out(2,color);

*mem address = OxFF;

seq_out(2,OxOF);

graph_out(3,O);

graph_out(8,OxFF);

return(old_color);

The initial cursor position is established by the global parameters CURSOR_X

and CURSOR_Y, which are in display coordinates (0,0 is at the top left corner of

the screen; for the EGA, the maximum column is 639 and the maximum row is

349). The move_cursor function makes use of the function plot Jioint, which is

similar to the plot function except that it has the capability to read a pixel from

the screen, as well as plotting one.

75

FRACTAL PROGRAMMING IN C

When this function is called, if the parameter image is zero, the pixel color at location

(CURSOR_X, CURSOR_Y) is read and returned by the function. When

image is not zero, the pixel color is read and then a new pixel of the color color

is written. Now, looking at move_cursor you will note that for each type of

cursor that is to be plotted, we plot points to the screen to generate the desired

cursor pattern and at the same time read the original screen contents of those

points into an array. The function then goes into a loop, processing keystrokes

until an Ent is encountered (OxOD), whereupon the loop is terminated.

The only other keystrokes that are recognized are the shifted and unshifted arrow

keys. We can read the keystrokes in normal fashion for the unshifted arrow keys.

We expect a first character of OxOO; if that occurs, the function automatically

reads another character and adds 256 to it to give a unique indication. If one of

the arrow keys is hit, the cursor is moved one pixel in that direction if there is

sufficient space for the movement. The shifted arrow keys look just like ordinary

numbers so we have to call one of the ROM BIOS services to determine if the

Shift key was also activated. If a shifted arrow is encountered, the cursor is

moved ten pixels in the arrow direction if enough space exists.

After each keystroke, the saved background is rewritten at the old cursor position.

The cursor is then redrawn at the new position. For type 0, the ultimate cursor

position defines the values of XMin and YMax that are used in future display

generation. Type 1 operation is the same, except that the cursor is in the lower

right corner and the values stored and displayed are XMax and YMin. Usually on

the second move_cursor call (type 1), the limiting values for the upper and right

positions of the cursor are the final values stored by the first move_cursor call.

Thus, the lower right corner of the rectangle is prohibited from ever moving to

the left or above the upper left corner.

For type 2, the cursor is an arrow, which is used in such cases as to select the P

and Q parameter locations on a map of the Mandelbrot set in order to generate a

Julia set (more about this later). The position values that are displayed and stored

are for P and Q. The values for these various parameters are calculated within

the move_cursor function and displayed at the bottom of the screen.

76

Cl. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

When the do ioop finally encounters an Ent keystroke, it terminates; the values

of CURSOR_X and CURSOR_Y are preserved in the global variables and must

be processed as needed by the calling program.

Bounds Program

The values of some or all of XMax, YMax, XMin, YMin, P, and Q are essential

in proceeding from one of the Mandeibrot sets or similar figures to another more

expanded one, in completing a partially generated figure that has been saved on

disk, and in generating one of the Julia or similar sets from the appropriate map

figure. We also would like to know at times the actual color values used in generating

a figure. All of this information is stored on the disk file that stores the

figure for future use.

The program Bounds asks for a figure file name and then displays that file on the

screen. It then overwrites on it the parameters given above and all of the color

palette values. The figure is not displayed primarily for use at this time, but

simply to give you an opportunity to assure that you asked for the right file

name. Thus it doesn’t matter much if it gets partially covered up. By then, you

have already identified the figure, and after Bounds is done there is usually enough

of the figure left displayed for satisfactory identification. Figure 5-17 lists the

Bounds program.

Figure 5-17: Function to Show Figure Parameters

bounds = program to get saved screen parameters

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <dos.h>

#include <process.h>
#include “tools.h”

mt LINEWIDTH=1, OPERATOR=OxOO, ANGLE, XCENTER, YCENTER;

unsigned long mt PATTERN=OxFFFFFFFF;
unsigned char PALETTE[16]={O, 1,2,3,4,5,20,7,56,57,58,59,60,

77

FRACTAL PROGRAMMING IN C

61, 62 63

union LIMIT XMax,YMax,XMin,YMIn, Pval , Oval

char file_name[13];

FILE *fl;

main(

mt i,color, row, col,error,response,repeat=0x30,start_col;

printf(”Enter file name: “);

scanf(”%s”,file name);

error = restorescreen(filename);

if (error == 0)

printf(”\nCannot find %s. Hit any key to exit”,

fi 1 e_name)

exit(0)

else

for (1=0; i<16; j-H-)

printf(”\nPalette #%d = %d”,i,PALETTE[i]);

printf(”\n XMax = %f”,XMax.f);

printf(”\n XMin = %f”,XMin.f);

printf(”\n YMax = %f”,YMax.f):

printf(”\n YMin = %f”,YMin.f);

printf(”\n P = %f”,Pval);

printf(”\n 0 = %f”,Qval);

getch(

Selecting Colors

Sometimes, the best laid plans for creating beautiful colors go astray, and the resulting

figure is horribly different from what you anticipated. Of course, you

could go back to the original program, change the setEGApalette statements or in

some other way modify the way in which you specify that colors be generated.

The program described in this section provides an easier method. It will display a

selected screen file on the screen and allow you to change each of the sixteen

palettes to any of the 64 shades available with the EGA. When you are done, it

will save the display together with the new color designations in a new disk file.

CII. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

The program colors is listed in Figure 5-18. At the beginning, the program asks

you for a file name. It can read in any .pcx file on which you have stored a display.

It then permits you to change all of the display colors. Once you start

changing colors with the left and right cursor arrows, a legend will appear at the

bottom of the screen giving the current palette number and color number. Don’t

be dismayed; when you are finished changing colors, the display will be redrawn

so that the legend will not appear in your new display file.

Figure 5-18: Function to Change Display Colors

colors = program to change colors of a di splay

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>

#include “tools.h”

mt readPixel(int x, mt y);

mt LINEWIDTH=1, OPERATOR=OxOO;

unsigned long mt PATTERN=OxFFFFFFFF;

unsigned char PALETTE[16]={O,1 ,2,3,4,5,20,7,56,57,58,59,60,61,

62,63);

unsigned char SAVER[16];

char file_name[13],file_name2[13] = {“colorsOO.pcx”};

mt ch,i;

mt error,color;

mt palette_register;

FILE *fl;

union LIMIT XMax, YMax, XMIn, YMin, Pval , Qval

main()

printf(”Enter file name: “);

scanf(”%s”,&file_name);

error = restore_screen(file_name);

if (error == 0)

exmt(0)

for (;;)

ch = 0;

cscanf(”%d”,&palette_regmster);

79

FRACTAL PROGRAMMING IN C

if (palette_register > 15)

break;

color = PALETTE[palette_register];
for (;;)

ch = getch();
if (ch == OxOD)

break;

if (ch == 0)

ch = getch() + 256;
if (ch == 333)

col or++;

if (ch == 331)

color--;

if (color > 63)

color = 0;

else

if (color < 0)

color = 63;

gotoxy(10,23);

printf(”Palette: %d “,palette_register);

gotoxy(10,24);

printf(”Color #: %d “,color);

set EGApa lette(palette_register col or)

for (1=0; 1<16; i++)

SAVER[i] = PALETTE[i];

error = restore_screen(file_name);

for (1=0; 1<16; i++)

PALETTE[i] = SAVER[i];

save_screen(0,0639,349,file_name2);

You begin the process by entering a palette number (between 0 and 15), followed

by hitting the Em key. The color number will be automatically set to that of the

current color shade for the selected palette.

You can change the color number by hitting the right or left arrow keys. Each

time you hit the right arrow, the color number will increase by one and the color

of the selected palette on the display will change accordingly. Each time you hit

the left arrow, the color number will decrease by one and the color of the selected

palette on the display will change accordingly. If you are holding down an arrow

key to scan through color changes and you go too far, you can reverse direction

by using the other arrow key.

80

CII. 5: TOOLS FOR GRAPHICS DISPLAY GENERATION

Have no fear, you cannot get out of the permissible color range of 0 to 63; if you

go beyond 63, the color number returns to 0, and if you go below zero, the color

number returns to 63. Once you find the color shade that you like, hitting Ent

freezes that color into the selected palette. You are then ready to enter another

palette number.

When you have the picture colored exactly as you want it, entering a palette

number greater than 15 terminates the program. The screen is rewritten to get rid

of the legend at the bottom. The rewritten screen appears in the original colors.

but your color modifications are saved and will permanently become part of the

new file.

The new display will be saved in a file called colorsnn.pcx, where nn is a pair of

digits from 00 to 99. The program will automatically start out with 00 and

search sequentially for a pair of digits that you have not used yet. When it finds

them, they will be used for the file that is currently being saved.

81

6

The Lorenz and Other

Strange Attractors

In 1962, Edward Lorenz was attempting to develop a model of the weather when

he observed some strange discrepancies in the behavior of his model. When he

attempted to restart the model at a point partway through the original computer

run, the results, although apparently starting at the same point, diverged farther

and farther from the original run as time went on. He verified that this was not a

computer error, but rather was caused by the fact that he had reentered the data to

only three decimal place accuracy, whereas the computer data at that point in the

original computer run was saved to six decimal places. Lorenz simplified his

model until it consisted of only three differential equations, which, in addition to

being a simplified weather model, also described the flow of fluid in a layer of

fluid having a uniform depth and a constant temperature difference between the

upper and lower surfaces. The equations are:

dx/dt = 1O(y - x) (Equation 6-1)
dy/dt = xz + 28x -y (Equation 6-2)
dz/dt = xy - (8/3)z (Equation 6-3)

When Lorenz laboriously calculated a number of values for these equations on a

primitive computer, he discovered the first of the strange attractors, and created

the foundation for the discipline of “Chaos,” which is creating drastic changes in

all fields of science, and of which the principle drawing tools are fractals.

83

FRACTAL PROGRAMMING IN C

Strange Attractors

What is a strange attractor? To answer this question, we must first plot a

candidate set of equations in phase space—a space of enough dimensions to

permit representing each solution of the equation set at a given time as a single

point. For the Lorenz equations given above, a three-dimensional phase space is

needed. If the solution to this set of equations was constant throughout time, it

would converge in phase space to a single point, the attractor, no matter what the

initial conditions had been. If the solution converged to a periodic function,

which repeated over and over after fixed interval of time, the result in phase space

would be some form of closed curve, the periodic attractor or limit cycle. If

neither of these cases is true, yet the equation has a fully determined path through

phase space, which never recurs, the resulting curve is called a strange attractor.

No matter what initial conditions are specified, the solution always converges

quickly to a point on this curve and continues to follow the path of the curve

from there on.

The Lorenz Attractor

It’s time to take a close look at the Lorenz attractor. Plate 1 shows it projected

upon the YZ plane. Note, however, that without most of the traditional cues that

help our senses to convert a two-dimensional drawing to three dimensions, it is

not too easy to understand the exact dimensional qualities of the Lorenz attractor,

no matter what kind of projection we use. The color in the color scheme is

changed each time the value of the x coordinate crosses zero. The curves represent

4,000 iterations of the equation with a time step of 0.01. Unfortunately, the

resolution of the display screen has proven inadequate to the task of separating

out adjacent portions of the curve. However, no matter how good the resolution

of your display, the curves will exceed the resolution capability if enough iterations

are run.

These curves are a sort of encapsulation of what this new science of Chaos is all

about, both in its good and its bad features. You need to watch the curve being

drawn and understand that although the curve seems to intersect with itself in the

projections, it never does touch itself in actual three-dimensional space.

84

CH. 6: THE LORENZ AND OTHER STRANGE ATTRACTORS

The good aspect of Chaos is that this simple set of equations can completely

describe a very rich and complex nonperiodic behavior. Prior to investigating

this kind of equation system with modern high-speed computers, scientists

postulated that such complex behavior must be the result of very complex

systems of equations containing many parameters and variables, with possibly a

number of random variables thrown in. Now it is known that complex behavior

may often be represented in a very simple manner. The bad aspect can be

discovered in the following manner: select a starting point somewhere on the very

crowded part of the curve; attempt to trace the path from there on.

We afready pointed out that the display has inadequate resolution, so that a couple

of different portions of the curve double up at the most crowded places. Thus,

you can’t be sure that you are tracing the right path, since as the adjacent curves

begin to diverge, your selected path will break in two and you can’t be sure which

path to follow. How does this apply in the real case? There is no overlapping

on the infinite resolution display; each set of initial values determines one and

only one path to be followed. But there are an infinite number of paths in the

vicinity of the starting point you selected, and which one will be followed

depends upon how precisely you specified your initial coordinates.

If you selected x = 3.15678, for example, you would travel a totally different path

than if you had selected x = 3.15679. And you must remember that x = 3.15678

is actually x = 3.15678000..., sO that by adding another decimal place with a

value other than zero, you can always diverge to a different path altogether. This

means that no matter how accurately you select the initial coordinates, if they are

at all different from the real values that might exist for a natural phenomena, the

value that you predict will diverge farther and farther from the real value as time

progresses. This is bad news for those who wish to measure some initial

conditions and use them to predict long-term results. Note that measuring more

precisely, so as to come closer to the correct long-term values, does not work

because the amount of divergence is not a function of the size of the error, but

can differ widely and unpredictably.

85

FRACTAL PROGRAMMING IN C

Runge Kutta Integration

In order to solve the system of differential equations given above, we must use

some numerical technique that comes up with an accurate value for x, y, and z as

we integrate over time. We have chosen a time step of 0.01. Lorenz, in his

original paper, used a double approximation integration technique. However,

with more sophisticated computers at our disposal, we can use a more

complicated integration method to produce greater accuracy. The method that will

be used is the fourth order Runge Kutta technique. This method is a one-step

procedure that uses only first-order derivatives to achieve the same accuracy

obtainable with an equivalent order Taylor expansion using higher order

derivatives. There are many different sets of coefficients that can be used with the

Runge Kutta integration method; the coefficients that we have selected were

chosen to minimize the computer time required for each iteration. Given a

differential equation:

dyldt = f(t,y) (Equation 6-4)

once the initial condition is established, at each time step, we have:

Yn+1 = y + k016 + k113 + k2/3 + k3/6 (Equation 6-5)

where:

k0 = h f(tn, yn) (Equation 6-6)

k1 = h f(t + h/2, y + k0/2) (Equation 6-7)

k2 = h f(tn + h/2, Yn + k1/2) (Equation 6-8)

k3 = h f(tn + h, Yn + k2) (Equation 6-9)

and h is the time step (0.01).

You will find this integration technique in the middle of the Lorenz attractor

program. Note that in determining each k, the equation has to be solved for the

appropriate values oft and y.

86

CH. 6: THE LORENZ AND OTHER STRANGE ATTRACTORS

Programming the Lorenz Attractor

Figure 6-1 lists the program to generate the Lorenz attractor. Three loops are

made through the program; one to plot the projection on the YZ plane, one to

plot the projection on the XY plane, and one to provide the three-dimensional

projection. As mentioned above, the color scheme used is to change the color

each time that the curve crosses the x axis. You may want to try some other

color technique. For example, you could use different colors to represent the

position of the curve. The program generates one projection of the curve and

then stops until you hit a key. It then generates the next projection, waits for

another key input and finally generates the three-dimensional projection. You can

insert different angles to change the viewing direction of the three-dimensional

projection, but you may also have to do some additional modification of the

dimensioning to keep part of the curve from falling off of the edge of the display.

Figure 6-1: Program to Generate Lorenz Attractors

lorenz = program to plot Lorenz Attractor

#include <dos.h>

#include <stdio.h>

#include <math.h>

#include “tools.h”

float (radians_to_degrees(float degrees);;

const mt maxcol = 639;

const mt maxrow = 349;

mt LINEWIDTH = 3, OPERATOR = 0;

mt color = 15;

unsigned long mt PATTERN = OxFFFFFFFF;

unsigned char PALETTE[16]={O,1,2,3,4,5,20,7,56,57,58,59,60,61,62,63}

float rad_per_degree=O .0174533, x_angl e=45 ,y_angl e=0 , z_angl e=90;

union LIMIT XMax,YMax,XMin,YM1n,Pval,Qval;

char file_name[13] = {“lorenzOO.pcx”};

main()

double x,y,z ,dO_x,dOy,dO_z,dl_x,dLy,dl_z,d2_x,d2y,d2_z,

d3_x,d3y,d3_z,xt,yt,zt,dt,dt2,third=0.333333333,

sx , sy , sz ,cx, cy , cz , temp_x , tempy , ol dy;

87

FRACTAL PROGRAMMING IN C

mt 1, j, row, col, old_row, old_col;

x_angle = radians_to_degrees(x_angle);

sx = sin(x_angle);

cx = cos(x_angle);

y_angle = radians_to_degreesCy_angle);

sy = sin(y_angle);

cy = cos(y_angle);

z_angle = radians_to_degrees(z_angle);

sz = sin(z_angle);

cz = cos(z_angle);

for (j=0; j<3; j++)

color = 4;

LINEWIDTH = 3;

x = 0;

y = 1;

z = 0;

setMode(16);

if (j == 0)

old_col = y*9;

old_row = 9*z - 240;

drawLine(-320,-238,319,-238,15);

drawLine(0,-238,0,239,15);

gotoxy(79,24);

printf(”Y”);

gotoxy(42.1);

printf(“Z”);

if (j == 1)

old_col = y*10;

old_row = 10*x;

drawLine(-320,0,319,0,15);

drawLine(0, -238,0,238,15);

gotoxy(79,12);

printf(”Y”);

gotoxy(42,1);

printf(”X”);

if (j == 2)

old_col = y*9;

old_row = 9*z - 240;

drawLine(-320,-238,319,-23815);

drawLine(0,-238,0,239,15);

drawLine(0,-238,319,82,15);

gotoxy(79,24);

printf(”Y”);

gotoxy(42,1);

88

CH. 6: THE LORENZ AND OTHER STRANGE ATTRACTORS

printf(”Z”);

gotoxy(79,8);

printf(”X”);

LINEWIDTH = 1;

dt = 0.01;

dt2 = dt/2;

for (1=0; 1<8000; i++)

dO_x = 1O*(yx)*dt2;

dOy = (x*z + 28*x - y)*dt2;

dO_z = (x*y - 8*z/3)*dt2;

xt = x + dO_x;

yt = y + dO_y;

zt = z + dO_z;

dl_x = (10*(ytxt))*dt2;

dl_y = (xt*zt + 28*xt - yt)*dt2;

dl_z =(xt*yt - 8*zt/3)*dt2;

xt = x + dl_x;

yt = y + dLy;

zt = z + dl_z;

d2_x = (10*(ytxt))*dt;

d2_y = (xt*zt + 28*xt - yt)*dt;

d2_z =(xt*yt - 8*zt/3)*dt;

xt = x + d2_x;

yt = y + d2y;

zt = z + d2_z;

d3_x = (10*(yt - xt))*dt2;

d3y = (xt*zt + 28*xt - yt)*dt2;

d3_z = (xt*yt - 8*zt/3)*dt2;

oldy = y;

x += (dO_x + dl_x + dl_x + d2_x + d3_x) * third;

y += (dOy + dLy + dly + d2y + d3y) * third;

z += (dO_z + dl_z + dl_z + d2_z + d3_z) * third;

if (j == 0)

col = y*9;

row = 9*z - 240;

if (((col<0) && (old_col >= 0)) ((col > 0)

&& (old_col <= 0)))

col or++;

if (j == 1)

col = y*10;

row = 10*x;

if (((col<0) && (old_col >= 0)) ((col > 0)

&& (old_col <= 0)))

color++;

if (j == 2)

89

FRACTAL PROGRAMMING IN C

if (((y<0) && (old_y >=O)) II ((y > 0)
&& (old_y <=0)))
col or++;

temp_x = xcx + ycy + z*cz;

temp_y = xsx + ysy + z*sz;

col = temp_x*8;
row = temp_y*7240;

drawLi ne(old_col old_row col, row , color)
old_row = row;

old_col = col

save_screen(0O,639,349,file_name);

getch();

float radians_to_degrees(float degrees);

float angle;

while (degrees >= 360)

degrees -= 360;
while (degrees < 0)

degrees += 360;

angle = rad_per_degree*degrees;
return angle;

Another thing that you might like to investigate is the number of iterations of

the inner loop. You can reduce or increase it and obtain different amounts of

detail in the displays. Finally, just before the drawLine function, you can insert

an if statement similar to this:

if ((i>= 1400) && (1 <= 1900)

This statement will cause only the iterations between 1400 and 1900 to be

displayed. This is the section of the curve that Lorenz used to illustrate his

original paper. You can, if you wish to speed up the program, use an if

statement like:

if (I >= 1400)

90

CH. 6: THE LORENZ AND OTHER STRANGE ATTRACTORS

and change the upper limit of the for loop to 1900 to achieve the same result.

You cannot change the starting value of the for loop to 1400, since you will not

then know what the initial values are for x, y, and z.

Other Strange Attractors

The Lorenz attractor proceeds in an orderly fashion from one point to the next as

time increases, so that we can draw a good picture of it by drawing lines that

connect each pair of adjacent points. Now let’s consider a different kind of

strange attractor. This one is a dynamical system first reported by Clifford A.

Pickover. It consists of the system of equations:

xfl+1 = sin(ayn) - zncos(bxn) (Equation 610)

Yn+1 = ZnSlfl(Cxn) - cos(dy) (Equation 6-11)

Zfl+1 = Slfl(Xn) (Equation 6-12)

There is no time step here. Moreover, the point in phase space described by the

equations jumps about in what appears to be a totally random fashion. However,

when the points for a large number of iterations are plotted, it becomes evident

that there is a finite set of positions that the point described by the function can

occupy, and that the point ultimately goes to this attractor irrespective of the

initial conditions. Figure 6-2 lists a program for generating this strange attractor

for a specific set of the parameters a, b, c, d, and e and displaying it projected on

first the XY and then the YZ planes. The resulting displays are shown in Figures

6-3 and 6-4, respectively.

Figure 6-2: Program to Generate a Strange Attractor

strange = program to generate strange attractor

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

91

FRACTAL PROGRAMMING IN C

float Xmax = 2.8,Xmin = -2.8,Ymax = 2,Ymin = -2, X = 0, Y = 0,

Z = 0;

float deltaX,deltaY,Xtemp,Ytemp,Ztemp;

mt col,row,j,max_row = 349, max_col = 639,color;

float a = 2.24, b = .43, c = - .65, d = -2.43, e = 1;

long mt max_iterations=50000,i;

mt OPERATOR = 0;

char ch;

main()

setMode(16);

deltaX = max_col/(Xmax - Xmin);

deltaY = max_row/(Ymax - Ymin);

for (j=O; j<2; j++)

cls(O);

for (i=O; i<max_iterations; i++)

Xtemp = sin(a*Y) - Z*cos(b*X);

Ytemp = Z*sin(c*X) - cos(d*Y);
Z = e*smn(X);

X = Xtemp;

Y = Ytemp;

if (j==O)

col = (X - Xmin)*deltaX;

row = (Y - Ymin)*deltaY;

else

col = (Y - Xmin)*deltaX;

row = (Z - Ymin)*deltaY;

if ((col>O) && (col<=max_col) &&

(row>O) && (row<=max_row))

color = readPixel(col,row);

color = (++color) %15+1;

plot(col ,row,color);

getch();

92

CII. 6: THE LORENZ AND OTHER STRANGE ATTRACTORS

Figure 6-3: Strange Attractor Projected on XY Plane

:*:

93

FRACTAL PROGRAMMING IN C

Figure 6-4: Strange Attractor Projected on YZ Plane

.•:
•F•••

- •:•-. :•:

4 -

F
•.

.rb. •:ç-• V
\i.J ••.•••:

I.. .�:“ b.

•!C

94

7

The Population Equation

and Bifurcation Diagrams

It was in 1798 that Thomas Maithus made the first well-known attempt to apply

mathematics to the growth and decline of populations. In his paper “An Essay

on the Principle of Population As It Affects the Future Improvement of Society,”

Malthus presented the proposition that population, if unchecked, grows in a geometric

manner while the growth of available food supplies is arithmetic.

Consequently, unless strict birth control measures were introduced, Malthus foresaw

extended calamity and widespread starvation. Fortunately for us, and unfortunately

for the validity of Malthus’ theory, improvements in food production

techniques kept pace with population growth and the disaster never occurred.

Consequently Malthus’ theory has been out of favor for a number of years. Just a

few years ago, however, the Club of Rome commissioned the development of a

massive computer model to model the future of the world. Its first runs predicted

that population increases will reach the limit of earthly resources and cause, by

the year 2000, the kind of catastrophes that Malthus predicted. Whether one accepts

these results at face value or not, the Malthusian predictions have certainly

gained a new lease on life.

The Population Equation

By the early 1950s, a simplified equation for population growth was being regularly

used by ecologists. The equation is:

95

FRACTAL PROGRAMMING IN C

Xn+1 = rxn(1 - xn) (Equation 71)

Rather than simply allow the population to grow at an uncontrolled rate, the use

of the (1 - x) factor implies that the larger the population becomes, the more

forces are applied to reduce growth. Generally speaking, using this equation

(particularly if the parameter r is less than one) causes the population to reach a

maximum when x is equal to 0.5. If the population dies out (x decreases to

zero), it, of course, never recovers and the species is extinct.

On the other hand, the population will also die out if such tremendous overgrowth

occurs that the value of x reaches one. Strangely enough, everyone assumed

that this equation was well-behaved, and for a long time, no one discovered

the chaotic behavior that could occur when r took on larger values. This is one

of those things that common sense makes obvious once the facts are discovered.

We have things like the seven-year locusts, which have a tremendous population

explosion every seven years. Surely such examples should have made us suspect

that a population value could achieve a stability with more than one stable value

and shift back and forth between these values in successive iterations. But it was

not until 1971 that Robert May, at the Institute for Advanced Study at Princeton,

studied this equation in detail for a wide range of values of r and at last began to

come to an understanding of the complicated behavior that was hidden in the

simple expression.

Bifurcation Diagrams

The best way to make sense of the really complicated behavior of the simple

equation given above is through the use of a graph. These graphs are usually referred

to as bifurcation diagrams. What we are going to do is travel through a

range of values of r, sampling at intervals close enough so that we won’t miss

anything. For each r, we will start with the nominal value of 0.5 for x and do

256 iterations. After 64 iterations, x should have settled down to its final steady

state conditions. We then plot the values of x associated with this r from 64 to

256 iterations. For the smaller values of r, where everything is well-behaved, we

find that x has settled to a single value. But at some point, there are two final

96

CH. 7: THE POPULATION EQUATION AND BIFURCATION DIAGRAMS

values for x, then 4, then 8 and so forth. Figure 7-1 is the listing for the program

to generate our bifurcation diagrams for the population equation.

Figure 7-1: Program to Plot Bifurcation Diagrams

#include <conio.h>

#include <stdio.h>

#include <dos.h>

#include <math.h>

#include “tools.h”

char ch;

mt LINEWIDTH = 1;

unsigned long mt PATTERN = OxFFFFFFFF;

void main()

float r=.95,x,delta_r;

mt i,j, row, col;

setMode(16);

for (j=O; j<2; j++)

delta_r = 0.005;

(j == 1)

cls(0);

r = 3.55;

delta_r = 0.0005;

for (col=O; col<639; col++)

x = .5;

r += delta_r;

for (i=0; i<256; i++)

x = r*x*(1x);

if ((x>1000000) II (x<-1000000))
break;

/*COMPUTATION FOR rx(x1)*/

row = 349 (x*35O);

/*COMPUTATION FOR x(1-x)

row = 349 - ((x/r)*700);
*1

if ((1>64) && (row<349) && (row>=O) &&

(col>=O) && (col<639))

plot(col .row.15);

getch();

97

FRACTAL PROGRAMMING IN C

Figure 7-2: Bifurcation Diagram for Population Equation

98

CH. 7: THE POPULATION EQUATION AND BIFURCATION DIAGRAMS

Figure 7-3: Expansion of the Bifurcation Diagram

99

FRACTAL PROGRAMMING IN C

We ioop through two iterations; the first steps r in steps of 0.005, beginning at

0.95. The resulting diagram is shown in Figure 7-2. The second pass through

the loop does an expansion in the area of period three. It begins with an r of 3.55

and steps in 0.0005 increments. The resulting diagram appears in Figure 7-3.

Now lets take a close look at these diagrams. Beginning at an r value of about

one, the system settles down to a single value greater than zero, which remains

the same no matter how many additional iterations we perform. This stable value

increases as r is increased until at an r in the neighborhood of three there is a split

into two stable values that alternate with each iteration. Next there is another

split and there are now four stable values between which the iterations cycle. The

four then become eight, then sixteen, and so forth, until we reach a state of chaos

in which there are so many values that we never see the repetition with the tools

that we have. Although this is normally called the chaotic region, one must be

careful to remember that the period doubling scenario that we have seen thus far

may be continuing. There may be a repetition, but since there are 2 to a very

high power different values before the cycle repeats, we are unlikely to find it.

If you like scanning tables of numbers, you can develop a program to print out a

large number of values of this function and scan them to see if you can find any

traces of order in the chaos. Interestingly enough, as you can see from Figure 7-

3, there are windows in this chaotic behavior. At one of these, the function reverts

to cycling between three stable states, then bifurcates to six, then to twelve,

and so forth.

“Period Three Implies Chaos”

Robert May’s friend James Yorke did a rigorous mathematical analysis of the behavior

of the population equation and in December 1975, together with Tien-Yien

Li, published a paper called “Period Three Implies Chaos.” What Yorke and Li

were able to show is that, if a function similar to the population equation has a

period of three, then it has periods of every other number, n. Thus it is rigorously

established that there is an infinitely rich spectrum of results for this type

of equation.

100

CH. 7: THE POPULATION EQUATION AND BIFURCATION DIAGRAMS

The Feigenbaum Number

If Mitchell Feigenbaum had known of the work of Robert May and James Yorke,

or if he had been able to view May’s bifurcation diagrams, he might never have

made his significant discovery. But, in 1976, Feigenbaum was looking at the

population equation from a different point of view. Consider for a moment just

part of the equation:

y = x(1 - x) (Equation 7-2)

This equation has a maximum at x = 0.5. In fact, for the original population

equation, in each set of bifurcations there is a value of r at which y of equation 7-

2 achieves its maximum of 0.5. If Feigenbaum had been into bifurcation diagrams,

he could have produced something like Figure 7-4 or the expanded version

of Figure 7-5, where for each value of r we plot x(1 - x) instead of rx(1 - x). In

these figures it becomes very clear that each set of bifurcations has one or more

values of r at which y achieves its maximum.

Feigenbaum was trying to determine the values of the r at which the maximum is

reached for each set of bifurcations. If we start with the maximum value of x and

perform 2 iterations, where n is the number of bifurcations, we should cycle

through all of the bifurcated values of x and be back to the maximum again.

Thus we have the general expression:

Xmax = (rnf)2mn (Xmax) (Equation 7-3)

which for the population equation is:

Xmax = [rnxmax(l - xmax)]2mn (Equation 7-4)

This equation can be solved easily for xo and with more difficulty for xl, but it

very quickly gets so complicated and has so many roots that a solution becomes

nearly impossible.

101

FRACTAL PROGRAMMING IN C

Figure 7-4: Bifurcation Diagram of x(1 - x)

102

CH. 7: THE POPULATION EQUATION AND BIFURCATION DIAGRAMS

Figure 7-5: Expansion of the Bifurcation Diagram of x(1 - x)

103

FRACTAL PROGRAMMING IN C

The best method of solution is to start with a value for x below the first known

root and increase it very slowly until the next root is encountered and so forth.

Feigenbaum was doing this tediously on a programmable calculator. In looking

for a way to reduce the number of calculations, he discovered a remarkable

universal relationship between adjacent roots. This is expressed as the

Feigenbaum number:

rn - rn1

= 4.6692016091029... (Equation 7-5)

rn+1 - rn

To be mathematically precise, the Feigenbaum number is the value that this

constant reaches as n approaches infinity, so that the first few values, especially,

differ by a considerable error. Feigenbaum later discovered that this universal ratio

applies to every kind of iterated function that is characterized by having a single

differentiable maximum. This includes many different kinds of algebraic

equations as well as trigonometric equations that make use of only a single hump

of the curve. Figure 7-6 lists a program to generate the first 19 rn values for the

population equation. It makes use of the maximum precision available from the

IBM PC using Turbo C or MicroSoft C.

Figure 7-6: Program to Generate Roots of Population Equation

#include <stdio.h>

#include <stalib.h>

#include <math.h>

#include “tools.h”

long double x,lambda,f,stepsize,oldx,test,lambdal,lambda2,

delta,init step, old_lambda;

double iterations;

double new_step, Old_step;

long mt i iterations;

mt j,sign;

main()

setMode(3);

lambda = 3.0;

printf(\n n Lambda Delta\n”);

mit_step = 1;

for (j=1; j<20; j++)

104

CH. 7: THE POPULATION EQUATION AND BIFURCATION DIAGRAMS

if (j%2 == 0)

sign = -1;
else

sign = 1;

gotoxy(0,15+j);;

mit_step 1= 4.67;

step_size = mit_step;

iterations = pow(2,j);

old_x = 0.5;

1 ambda+=step_si ze;

for(; ;)

x = oldx;

for (i=0; i<iterations; i++)

x = lambda*x*(ix);

test = Cx - old_x)*sign;

if (test < 0)

lambda -= step_size;

step_size = step_size/2;

old_lambda = lambda;

if (old_lambda > = lambda) break;

gotoxy(1 ,j+3);

printf(” %2d %18.i5Lf”,j,lambda);

if (j > 2)

delta = (lambda_i - lambda_2)/(lambda - lambda_i);

printf(” %20.i7Lf”,delta);

lambda_2 = lambda_i;

lambda_i = lambda;

Unfortunately, you will note that the precision of the Feigenbaum number

reaches its peak at around the 15th and 16th values and after that, the computer

does not have enough precision to give highly accurate values. Figure 7-7 is a

table of the values obtained by the program of Figure 7-6. The program starts

with a value of x and a step size. The equation is solved with the proper number

of iterations to return to the maximized root, and then the result is compared with

the value of Xmax. Initially, x is approaching Xm from below, so that if the

value hasn’t been reached yet, we add the step and try again. We keep looping and

doing this until we do exceed and then we subtract one step value, reduce

105

FRACTAL PROGRAMMING IN C

the step size, and try again. We keep on with this looping until the step is less

than the minimum value that we can handle with the computer. The next root is

approached decreasing from above, so that we have to reverse our test against

Xm and reduce step size when we get below instead of above. Finally, as we

proceed to higher roots, we need to be careful to assure that the initial step size is

not so large that we jump right over several adjacent roots, and the roots are getting

closer together all the time. Consequently we begin reducing the initial step

size by dividing it by 4.7 at each iteration. You will recognize this as a crude

round-off of the Feigenbaum number.

Figure 7-7: Values of Roots and Feigenbaum Number

n r

1 3.23606797749978969

2 3.49856169932770152

3 3.55464086276882486

4 3.56666737985626851

5 3.56924353163711033

6 3.56979529374994462

7 3.56991346542234851

8 3.56993877423330548

9 3.56994419460806493

10 3.56994535548646858

11 3.56994560411107844

12 3.56994565735885649

13 3.56994566876289996

14 3.56994567120529684

15 3.56994567172838347

16 3.56994567184041260

17 3.56994567186440580

18 3.56994567186954440

19 3.56994567187064489

4.68077099801069546

4.66295961111410222

4.66840392591840145

4.66895374096762252

4.66915718132887754

4.66919100248498318

4.66919947054711264

4.66920113460536986

4.66920150943092950

4.66920158824756554

4.66920160286821290

4.66920162588405047

4.66920155028815866

4.66920176639898966

4.66920254147147496

4.66921926366696325

4.66934028643927598

delta

106

8

The Snowflake and

Other von Koch Curves

The next few chapters will discuss fractals that are generated using a recursive

initiator/generator technique that results in complete self-similarity. Their

similarity dimension is the same as their fractal and Hausdorff-Besicovitch

dimensions and is easily defined as discussed in Chapter 2. Such curves are

constructed using the following technique.

We start with an initiator, which may be a straight line or a polygon. Each side

of the initiator is then replaced by a generator, which is a connected set of straight

lines that form a path from the beginning to the end of the line being replaced.

(Usually the points of the generator are on a square grid or a grid made up of

equilateral triangles.) Then, each straight line segment of the new figure is

replaced by a scaled-down version of the generator. This process continues

indefinitely. Of course, in reality, we cannot continue the process an infinite

number of times, and even if we did, the result would not be interesting since the

detail would be far beyond the resolution of our computer monitor. In practice,

we perform from two to sixteen repetitions.

The von Koch Snowflake

This figure was first constructed by the mathematician Helge von Koch in 1904.

The initiator, shown in Figure 8-1(a), is an equilateral triangle. The generator,

shown in Figure 8-1(b), divides each line segment into three equal parts. Each

107

FRACTAL PROGRAMMING IN C

segment of the generator has a length (r) of 1/3. The first segment of the

generator follows the original line segment. The next two segments form the

two sides of an equilateral triangle, the base of which is the second third of the

original line. Finally, the fourth segment is identical with the final third of the

original line. Thus the number of segments of the generator, N, is four. From

equation 2.1 of Chapter 2, we find the fractal (or similarity) dimension of the

snowflake to be:

D = log N / log Cur) = log 4 / log 3 = 1.2618 (Equation 8.1)

Figure 8-2 shows the resulting snowflake for 2, 3, 4, and 6 levels.

Figure 8-1: Initiator and Generator for Snowflake

(b) Snowflake generator(a) Snowflake initiator

lOB

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-2 (a, b, c, d): von Koch Snowflakes with 2, 3, 4, and 6 Leve!s

(a) ‘level’ =2

(b) ‘level’ = 3

(C) ‘level’ =4

(d) ‘level’ =6

109

FRACTAL PROGRAMMING IN C

Generic Initiator/Generator Program

Figure 8-3 is a program to generate the von Koch snowflake. It can be considered

as a somewhat generic program for creating this type of curve. As we progress

through the next few chapters, we will encounter various complications as the

generators become more complex, and we will learn how to deal with them.

Figure 8-3: Program to Generate von Koch Snowflake

snoflake = program to generate von Koch snowflake

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl, float X2, float Y2,

mt level);

mt combination = 0,LINEWIDTH=1, operator=0:

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i;

mt generator_size = 5;

mt level;

mt mit_size = 3;

mt initiator_xl[l0] = 1-150,0,150) ,initiator_x2[1O]=(O,

150, -150) ,initiator_yl[1O]=(-75,185, -75),

initiator_y2[1O]=(185,-75,-75);

float Xpoints[25], Ypoints[25];

float turtle_x,turtley,turtle_r;

main()

printf(”\nEnter level (1 - 8): “1;

scanfV%d”,&level);

if (level < 1)

level = 1;

setMode(16);

cls(0);

for (i=0; i<init_size; I-H-)

generate(initiator_xl[i], initiator_yli],

initiator_x2[i], initiator_y2[i], level);

110

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

getch();

generate() = generates curve

void generate (float Xl, float Yl, float X2, float Y2,

mt level)

mt j,k,line;

float a, b, Xpoints[25], Ypoints[25];

level --;

turtle_r = (sqrt((X2 - Xl)*(X2 - Xl) + (Y2 - Yl)*(Y2 -

Yl)))/3.0;

Xpoints[0] = Xl;

Ypoints[0] = Yl;

Xpoints[4] = X2;

Ypoints[4] = Y2

turtle_theta = point(Xl,Yl,X2,Y2);

turtle_x = Xl;

turtle_y = Yl;

step();

Xpoints[l] = turtle_x;

Ypoints[1] = turtle_y;

turn(60);

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtley;

turn(-120);

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtle_y;

if (level > 0)

for (j=0; j<generator_size-1; j++)

Xl = Xpomnts[j];

X2 = Xpoints[j+1];

Yl = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level);

for (k=0; k<generator_size-1; k++)

drawLine(Xpoints[k] ,Ypoints[k],

else

111

FRACTAL PROGRAMMING IN C

Xpoints[k+1],Ypoints[k+1],15);

For each time that we replace a line segment by the generator, we are going to

create an array of coordinate locations (stored in the array Xpoints for the x

coordinates, and in the array Ypoints for the y coordinates) and then draw a line

from the first set of coordinates to the second, from the second to the third, and so

forth until we have drawn as many line segments as are specified by the parameter

generator_size. To generate these coordinate pairs, we will make use of the

modified turtle graphics commands which were developed in Chapter 4.

We first identify the beginning and end of the line segment and store the

coordinates of each as the beginning and end points of our coordinate arrays.

Then we insert these values into the function point which sets the turtle direction

(turtle_theta) along the original line segment. The step size for turtle movement

(turtle_r) is determined by measuring the length of the line segment and dividing

by the proper divisor to get r. Note that for the snowflake, this divisior is 3; we

will see later that it can take on other values for other curves. Next, we use turn,

if necessary, to properly position the turtle. We then use step to advance the

turtle and record its new position in the position arrays. At any time in the

process of stepping through the pattern for the generator, we can record the turtle

position in any set of members of the coordinate arrays. Thus, the turtle does not

have to follow the actual path which makes up the generator, as long as it stops

at every pair of endpoints for the generator lines. We can store every pair of

coordinates that are needed in the proper location, regardless of when it was

generated, so we have considerable flexibility as to how we are going to create the

generator. The von Koch snowflake curve generator is so simple that all we have

to do is trace its path with the turtle.

The main part of the program allows the user to enter level, which determines

how many recursions will be used to generate the figure, and then calls generate

for each line segment of the initiator. The generator function decrements level

and then determines the coordinates of all points needed to draw the generator in

place of the line segment whose beginning and end points passed as parameters to

the function. Then, if the level is greater than 0, the function starts a for loop,

112

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

which determines the beginning and end points of each new line segment in the

array of points just created by the turtle functions, and then calls generator to

replace each line segment by a new generator. You should note that the Xpoints

and Ypoints arrays are not global, so that each time generator is called, a new pair

of coordinate arrays is created. Thus, there can be quite a few of them if level is

set to a large number.

When level is finally decremented to zero, the function actually draws the line

segments that are specified by the coordinate arrays at that time and there is no

more recursion, so that the program returns to the previous level and continues

until all of the for loops have been completed.

The Gosper Curve

This variation of the von Koch curve was discovered by W. Gosper. The initiator

is a regular hexagon and the generator consists of three segments on a grid of

equilateral triangles. This and the next curve are a little peculiar in that the line

segment to be replaced does not lie on any of the grid lines. Remembering that

the turtle point function points the turtle in the direction of the line segment, if

you were writing a program to draw this curve, you would have to compute the

angle that the first piece of the generator makes with the line segment and turn

the turtle in this direction before taking the first step. The program listings have

already done that for you in these two curves. Figure 8-4 shows the initiator and

the generator laid out on the grid. Applying a little simple geometry shows that

if the length from one end of the generator to the other is taken to be 1, the

length of each of the three segments is:

r = 1/ ‘1 7 (Equation 8-2)

Since N = 3, the fractal dimension of the Gosper curve is:

D = log 3 / log (‘1 7) = 1.1291 (Equation 8-3)

Figure 8-5 shows the resulting curve for levels to 1, 2, 4, and 6. The program to

generate this curve is given in Figure 8-6. It is the same as the snowflake

113

FRACTAL PROGRAMMING IN C

program except for the change in the values for the initiator and the modification

of the generate function.

Figure 8-4: Initiator and Generator for Gosper Curve

/

(a) Initiator for Gosper Curve (b) Generator for Gosper Curve

114

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-5: Gosper Curves for Levels 1, 2, 4, and 6

(a) ‘lever = 1

(b) ‘level’ =2

(c) ‘lever = 4

(d) ‘level’ =6

115

FRACTAL PROGRAMMING IN C

Figure 8-6: Program to Generate Gosper Curves

<stdio.h>#1 nd ude

<math. h>#i nd ude

<dos.h>#1 nd ude

“tools.h”#1 nd ude

void generate (float Xl, float Yl, float X2, float Y2,

mt level);

mt generator_size = 3;

mt mit_size = 6;

mt level;

mt initiator_xl[lO] = (O,l30,l30,O,-l30,-l30},

initiator_x2[lO]=(l30,l30,O,-l30,-l30,O},

initiator_yl[lO]=(l50,75,-75,-l50,-75,75},

initiator_y2[lO]=(75,-75,-150,-75,75,l50};

mt combination = O,LINEWIDTH=1, OPERATOR=O,

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt 1;

float Xpoints[25], Ypoints[25];

float turtle_x,turtle_y,turtle_r;

main()

printf(”\nEnter level (1 - 8): “);

scanf(”%d’,&level);

if (level < 1)

level = 1;

setMode(16);

cls(O);

for (i=O; i<init_size; j++)

generate(initiator_xl[i], initiator_yl[i],

initiator_x2[i],initiator_y2[i], level);

getch();

generate() = generates curve

void generate (float Xl, float Yl, float X2, float Y2,

mt level)

gosp7 = program to generate gosper curves

116

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

mt j,k,line,set_type;

float a, b, Xpoints[25], Ypoints[25], temp,temp_r;

level--;

turtle_r = sqrt(((X2 - X1)*(X2 - Xl) + (Y2 - Yl)*

(Y2 - Y1))/7.0);

turtle_x = Xl;

turtle_y = Yl;

Xpoints[0] = Xl;

Ypoints[0] = Yl;

Xpoints[3] = X2;

Ypoints[3] = Y2;

turtle_theta = point(Xl,Yl,X2,Y2);

turn(l9.l);

step();

Xpoints[l] = turtle_x;

Ypoints[l] = turtle_y;

turn(-60);

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtle_y;

if (level == 0)

for (k=0; k<generator_size; k++)

drawLine(Xpoints[k] ,Ypoints[k].

Xpoints[k+l],Ypoints[k+l],l5)

else

for (j=0; j<generator_size; j++)

Xl = Xpomnts[j];

X2 = Xpoints[j+l];

Yl = Ypoints[j];

Y2 = Ypoints[j+l];

generate (Xl,Yl,X2,Y2.level);

Three-Segment Quadric von Koch Curve

The next few curves are called “quadric” because the initiator is a square.

However, there is nothing sacred about the square initiator; it could be any regular

polygon or some other weird figure. An example will be given later.

117

FRACTAL PROGRAMMING IN C

Furthermore, we are going to create our generators on a square grid. For the first

of these curves, a three-segment generator will be used; N is the same as for the

previous curve, but because of the square grid, the length of a segment is:

r = 1 I 5 (Equation 8-4)

and the fractal dimension is different,

D = log 3 / log (J 5) = 1.3652 (Equation 8-5)

Figure 8-7 shows the initiator and generator, and Figure 8-8 shows the curve for

various levels. Again, the generic program is used, with appropriate modification

to the generator function. This function, as modified, is shown in Figure 8-9.

Using it to replace the generator function of Figure 8-6 will yield the three-

segment quadric curve.

Figure 8-7: Initiator and Generator for Three-Segment von Koch Curve

I

(a) Initiator for Three-Segment
von Koch Curve

.1 I

(b) Generator for Three-Segment
von Koch Curve

118

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-8: Three-Segment von Koch Curves for Levels 1 to 6

(a) ‘level’ = 1

(b) ‘lever =2

(c) ‘lever =4

(d) ‘lever =6

119

FRACTAL PROGRAMMING IN C

Figure 8-9: Generator Function for Three-Segment von Koch Curves

generate() = Generates curve

void generate (float Xl. float Yl. float X2. float Y2.

mt level)

mt j.k.line.set_type;

float a. b. Xpoints[25]. Ypoints[25]. temp.temp_r;

level--;

turtle_r = sqrt(((X2 - Xl)*(X2 - Xl) + (Y2 - Y1)*

(Y2 - Yl))/5.O);

turtle_x = Xl;

turtle..y = Yl;

Xpoints[0] = Xl;

Ypoints[0] = Yl;

Xpoints[3] = X2;

Ypoints[3] = Y2;

turtle_theta = point(Xl.Yl.X2.Y2);

turn(26.56);

step();

Xpoints[l] = turtle_x;

Ypoints[l] = turtley;

turn(-90);

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtle..y;

if (level == 0)

for (k=0; k<generator_size; k++)

drawLine(Xpoints[k] .Ypoints[k].

Xpoints[k+l] .Ypoints[k+l] ,15);

else

for (j=0; j<generator_size; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+l];

Yl = Ypoints[j];

Y2 = Ypoints[j+l];

generate (Xl.Yl.X2.Y2.level);

120

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Eight-Segment Quadric von Koch Curve

The next few curves are all going to make use of a square grid and turning angles

of 90 degrees. They are a little more regular than the previous curve because the

line segment to be replaced falls along the middle horizontal line of the grid. For

the first curve to be considered, we will let:

r = 1/4 (Equation 8-6)

We can now draw various generators, the only limitation being that we want the

curve to have no self-overlap and no self-intersection. If we also want the curve

to have the highest fractal dimension possible, we need to find the generator for

which N is the largest. Mandelbrot states that the highest possible value of N is:

Nmax = 1/2r2 (Equation 8-7)

when r is even and

Nmax = (1 + r2)/2r2 (Equation 8-8)

when r is odd. Thus, for r = 1/4, we find that Nmax is 8. The fractal dimension

of this curve is thus:

D = log 8 / log 4 = 1.5 (Equation 8-9)

Figure 8-10 shows the initiator and generator for this curve, and Figure 8-11

shows the curve for levels of 1, 2, 4, and 6. The program to generate this curve

is the same generic program of Figure 8-6, with the function generator replaced

by that listed in Figure 8-12, and the parameter generator_size changed as

follows:

mt generator_size = 8;

mt generator_size = 32;

121

FRACTAL PROGRAMMING IN C

Figure 8-10: Initiator and Generator for Eight-Segment von Koch Curve

(a) Initiator for Eight-Segment

von Koch Curve

(b) Generator for Eight-Segment

von Koch Curve

122

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-11: Eight-Segment von Koch Curves for Levels 1, 2, 4, and 6

(b) ‘lever =2

(d) ‘level’ =6

(a) ‘lever = 1

(C) ‘lever =4

123

FRACTAL PROGRAMMING IN C

Figure 8-12: Generator Function for Eight-Segment von Koch Curves

generate() = generates curve

void generate (float Xl, float Yl, float X2. float Y2.

mt level)

mt j.k.line.set_type;

float a. b. Xpoints[25]. Ypoints[25]. temp.temp_r;

level--;

turtle_r = sqrt((X2 - Xl)*(X2 - Xl) + (Y2 - Y1)*(Y2 -

Yl))/4.0;

turtle_x = Xl;

turtlej’ = Yl;

Xpoints[O] = Xl;

Ypoints[0] = Yl;

Xpoints[8] = X2;

Ypoints[8] = Y2;

turtle_theta = point(X1.Yl.X2,Y2);

step();

Xpoints[l] = turtle_x;

Ypoints[l] = turtle_y;

turn(90);

step();

Xpomnts[2] = turtle_x;

Ypoints[2] = turtle_y;

turn(-90);

step();

Xpomnts[3] = turtle_x;

Ypoints[3] = turtle_y;

turn(-90);

step();

Xpoints[4] = turtle_x;

Ypomnts[4] = turtle_y;

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtle_y;

turn(90);

step();

Xpomnts[6] = turtle_x;

Ypoints[6] = turtle_y;

turn(90);

step();

Xpoints[7] = turtle_x;

Ypoints[7] = turtle_y;

if (level == 0)

for (k=0; k<generator_size; k++)

124

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

drawLine(Xpoints[k] .Ypoints[k].

Xpoints[k+1] ,Ypoints[k+1] .15);

else

for (j=0; j<generator_size; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+l];

Yl = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1.X2.Y2.level);

Eighteen-Segment Quadric von Koch Curve

If we let

r = 1/6 (Equation 8-10)

we find that Nmax is 18. The fractal dimension of this curve is:

D = log 18 / log 6 = 1.6131 (Equation 8-11)

Figure 8-13 shows the initiator and generator for this curve and Figure 8-14

shows the curve for levels 1, 2, 3, and 4. The program to generate this curve is

the same generic program of Figure 8-6, with the function generator replaced by

that listed in Figure 8-15, and the parameter generator_size changed as follows:

mt generator_size = 18;

125

FRACTAL PROGRAMMING IN C

Figure 8-13: Initiator and Generator for

Eighteen-Segment von Koch Curve

(a) Initiator for Eighteen-Segment
von Koch Curve

(b) Generator for Eighteen-Segment

von Koch Curve

126

CII. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-14: Eighteen-Segment von Koch Curves for Levels 1 to 4

(a) ‘level’ =1

(b) ‘level’ =2

(C) ‘level’ = 3

(d) ‘level’ =4

127

FRACTAL PROGRAMMING IN C

Figure 8-15: Generator Function for Eighteen-Segment von Koch Curves

generate() = generates curve

void generate (float Xl, float Yl, float X2, float Y2,

mt level)

mt j,k,line,set_type;

float a, b, Xpoints[25], Ypoints[25], temp,temp_r;

level--;

turtle_r = sqrt(((X2 - Xl)*(X2 - Xl) + (Y2 - Yl)*

(Y2 - Yl)))/6.O;

turtle.x = Xl;

turtley = Yl;

Xpoints[O] = Xl;

Ypoints[0] = Yl;

Xpoints[18] = X2;

Ypoints[18] = Y2;

turtletheta = point(Xl,Yl,X2,Y2);

step C);

Xpoints[l] = turtlex;

Ypoints[l] = turtley;

turn(90);

step 0;

Xpoints[2] = turtlex;

Ypoints[2] = turtley;

step();

Xpoints[3] = turtlex;

Ypoints[3] = turtley;

turn(-90);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtley;

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtley;

turn(-90);

step();

Xpoints[6] = turtlex;

Ypoints[6] = turtley;

turn(-90);

step();

Xpoints[7] = turtlex;

Ypoints[7] = turtley;

turn(90);

128

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

step();

Xpoints[8] = turtlex;

Ypoints[8] = turtley;

turn(90);

step 0;

Xpoints[9] = turtle_x;

Ypoints[9] = turtley;

step();

Xpoints[10] = turtle_x;

Ypoints[10] = turtley;

turn(-90);

step 0;

Xpoints[11] = turtlex;

Ypoints[11] = turtley;

turn(-90);

step 0;

Xpoints[12] = turtlex;

Ypoints[12] = turtley;

turn(90);

step 0;

Xpoints[13] = turtlex;

Ypoints[13] = turtley;

turn(90);

stepo;

Xpoints[14] = turtlex;

Ypoints[14] = turtley;

step();

Xpoints[15] = turtle_x;

Ypoints[15] = turtley;

turn(90);

step 0;

Xpoints[16] = turtlex;

Ypoints[16] = turtley;

step 0;

Xpoints[17] = turtlex;

Ypoints[17] = turtley;

if (level == 0)

for (k=0; k<generator_size; k++)

drawLine(Xpoints[k] ,Ypoints[k],

Xpoints[k+1] ,Ypoints[k+1] ,15);

else

for (j=0; j<generatorsize; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+l];

Yl = Ypoints[j];

129

FRACTAL PROGRAMMING IN C

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level);

32-Segment Quadric von Koch Curve

If we let

r = 1/8 (Equation 8-12)

we find that Nmax is 32. The fractal dimension of this curve is:

D = log 32 / log 8 = 1.6667 (Equation 8-13)

Figure 8-16: Initiator and Generator for 32-Segment von Koch Curve

(a) Initiator for 32-Segment
von Koch Curve

(b) Generator for 32-Segment

von Koch Curve

130

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-17: 32 Segment von Koch Curves for Levels 1 to 3

(b) ‘level’ =2

(a) ‘level’ = 1

(C) ‘level’ = 3

131

FRACTAL PROGRAMMING IN C

Figure 8-13 shows the initiator and generator for this curve, and Figure 8-14

shows the curve for levels of 1, 2, and 3. The program to generate this curve is

the same generic program of Figure 8-6, with the function generator replaced by

that listed in Figure 8-15, and the parameter generator_size changed as follows:

mt generator_size = 32;

Figure 8-18: Generator Function for 32-Segment von Koch Curves

generate() = generates curve

void generate (float Xl. float Yl, float X2, float Y2,

mt level)

mt j,k,line,set_type;

float a, b, Xpoints[55], Ypomnts[55], temp,temp_r;

level--;

turtle_r = sqrt((X2 - X1)*(X2 - Xl) + (Y2 - Y1)*

(Y2 - Y1))/8.O;

turtle_x = Xl;

turtley = Yl;

Xpoints[0] = Xl;

Ypomnts[0] = Yl;

Xpoints[32] = X2;

Ypoints[32] = Y2;

turtle_theta = point(X1,Yl,X2,Y2);

turn(90);

step():

Xpomnts[1] = turtle_x;

Ypomnts[1] = turtley;

turn(-90);

step();

Xpoints[2] = turtle_x;

Ypomnts[2] = turtle,y;

turn(90);

step();

Xpomnts[3] = turtle_x;

Ypoints[3] = turtle,y;

turn(90);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtle,y;

turn(-90);

step();

132

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Xpoints[5] = turtlex;

Ypoints[5] = turtley;

turn(-90);

step C);

Xpoints[6] = turtlex;

Ypoints[6] = turtley;

step 0;

Xpoints[7] = turtlex;

Ypoints[7] = turtley;

turn(90);

step 0;

Xpoints[8] = turtlex;

Ypoints[8] = turtley:

turn(-90);

step 0;

Xpoints[9] = turtlex;

Ypoints[9] = turtley;

turn(-90);

stepo;

Xpoints[10] = turtlex;

Ypoints[10] = turtley

step 0;

Xpoints[11] = turtle_x;

Ypoints[11] = turtley;

turn(-90);

step 0;

Xpoints[12] = turtlex;

Ypoints[12] = turtley;

turn(90);

step();

Xpoints[13] = turtlex;

Ypoints[13] = turtley;

turn(90);

stèpo;

Xpoints[14] = turtlex;

Ypoints[14] = turtley;

step();

Xpoints[15] = turtlex;

Ypoints[15] = turtley;

turn(-90);

stepo;

Xpoints[16] = turtlex;

Ypoints[16] = turtley;

step();

Xpoints[17] = turtlex;

Ypoints[17] = turtley;
turn(90);

step();

Xpoints[18] = turtlex;

Ypoints[18] = turtley;

step();

133

FRACTAL PROGRAMMING IN C

Xpoints[19] = turtlex;

Ypoints[19] = turtley;

turn(-90);

step U;

Xpoints[20] = turtle_x;

Ypoints[20] = turtley;

turn(-90);

step();

Xpoints[21] = turtle_x;

Ypoints[21] = turtley;

turn(90);

step();

Xpoints[22] = turtlex;

Ypoints[22] = turtley;

step();

Xpoints[23] = turtle_x;

Ypoints[23] = turtley;

turn(90);

step U;

Xpoints[24] = turtlex;

Ypoints[24] = turtley;

turn(90);

step();

Xpoints[25] = turtle_x;

Ypoints[25] = turtley;

turn(-90);

step();

Xpoints[26] = turtle_x;

Ypoints[26] = turtley;

step();

Xpoints[27] = turtle_x;

Ypoints[27] = turtley;

turn(90);

step U;

Xpoints[28] = turtlex;

Ypoints[28] = turtley;

turn(90);

step();

Xpoints[29] = turtlex;

Ypoints[29] = turtley;

turn(-90);

step();

Xpoints[30] = turtlex;

Ypoints[30] = turtley;

turn(-90);

step();

Xpoints[31] = turtle_x;

Ypoints[31] = turtley;

if (level == 0)

for (k=0; k<generatorsize; k++)

134

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

drawLine(Xpoints[k] ,Ypoints[k],

Xpoints[k+1] ,Ypoints[k+1] ,15)

else

for (j=O; j<generator_size; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Yl = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level);

Fifty-Segment Quadric von Koch Curve

If we let

r = 1/10 (Equation 8-14)

we find that Nmax is 50. The fractal dimension of this curve is:

D = log 50 / log 10 = 1.6990 (Equation 8-15)

As the generator contains more and more segments, it becomes less and less

obvious how it is obtained. The process is a sort of trial and error one, but at

this point it is time to develop some guidelines for generator creation. Figure 8-

19 shows the initiator and generator for the fifty-segment curve. The generator

grid is also shown. Note that slanting dotted lines have been drawn connecting

midpoints of adjacent sides of the grid.

If we are to use the generator to replace line segments that meet at 90-degree

angles, we cannot have any part of the generator outside the bounds of the

diamond created by these dotted lines. This is sufficient to avoid selfoverlapping,

but does not prevent self-intersection. To assure against selfintersection,

we mentally merge each pair of parallel sides of the diamond. If the

135

FRACTAL PROGRAMMING IN C

generator touches the diamond side at the same point for both sides of a pair, self-

intersection will occur. Finally, the easiest way to create the generator is to

create it in two parts that are symmetrical (although possibly a mirror image),

each beginning at one end of the line segment being replaced and ending at its

middle. The constraints are thus:

1. Create a half-generator from one end of the line segment to be replaced to its

middle, containing Nmax/2 segments.

2. Do not go outside of the diamond.

3. If the generator intersects a point on one of a pair of parallel diamond sides,

it may not intersect a corresponding point of the other of the pair of sides.

This is where the trial and error comes in. You next seek a path that will contain

the required number of segments and meet the above constraints. Once you have

the half-generator created, you can turn the graph upside down and draw the same

half-generator to complete the process. Figure 8-20 shows the fifty-segment

curve for levels of 1, 2, and 3. The program to generate this curve is the same

generic program of Figure 8-6, with the function generator replaced by that listed

in Figure 8-21, and the parameter generator_size changed as follows:

mt generator_size = 50;

136

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-19: Initiator and Generator for Fifty-Segment von Koch Curve

L__L__J __J L__L__J

(a) Initiator for 50-Segment
von Koch Curve

(b) Generator for 50-Segment

von Koch Curve

137

FRACTAL PROGRAMMING IN C

Figure 8-20: Fifty-Segment von Koch Curves for Levels 1 to 3

(b) ‘level’ =2

(a) ‘lever = 1

(C) ‘level’ =3

138

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-21: Generator Function for Fifty-Segment von Koch Curves

generate() = generates curve

void generate (float Xi, float Vi. float X2, float Y2,

mt level)

mt j,k,line,set_type;

float a, b, Xpoints[55], Ypoints[55], temp,temp_r;

level--;

turtle_r = sqrt((X2 - Xi)*(X2 - Xi) + (Y2 - Yi)*

(Y2 - Yi))/i0.0;

turtle_x = Xi;

turtley = Yi;

Xpoints[0] = Xi;

Ypoints[0] = Yi;

Xpoints[50] = X2;

Ypoints[50] = Y2;

turtl e_theta = point(Xi,Yi,X2,Y2);

step();

Xpomnts[i] = turtle_x;

Ypoints[i] = turtley;

turn(90);

step();

Xpoints[2] = turtle_x;

Ypomnts[2] = turtley;

turn(-90);

step();

Xpomnts[3] = turtle_x;

Ypoints[3] = turtley;

turn(-90);

step();

Xpomnts[4] = turtle_x;

Ypoints[4] = turtley;

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtley;

step();

Xpoints[6] = turtle_x;

Ypomnts[6] = turtle,y;

turn(90);

step();

Xpomnts[7] = turtle_x;

Ypoints[7] = turtle,y;

step();

Xpoints[8] = turtle_x;

Ypoints[8] = turtley;

139

FRACTAL PROGRAMMING IN C

turn(-90);

step();

Xpoints[9] = turtle_x;

Ypoints[9] = turtley;

step();

Xpoints[10] = turtle_x;

Ypoints[10] = turtley;
turn(90);

step();

Xpoints[11] = turtle_x;

Ypoints[11] = turtley;
turn(90);

step();

Xpoints[12] = turtle_x;

Ypoints[12] = turtley;

step();

Xpoints[13] = turtle_x;

Ypoints[13] = turtley;

step();

Xpoints[14] = turtle_x;

Ypoints[14] = turtley;
turn(90);

step();

Xpoints[15] = turtle_x;

Ypoints[15] = turtley;

step();

Xpoints[16] = turtle_x;

Ypoints[16] = turtley;
turn(-90);

step();

Xpoints[17] = turtle_x;

Ypoints[17] = turtley;

step();

Xpoints[18] = turtle_x;

Ypoints[18] = turtley;

step();

Xpoints[19] = turtle_x;

Ypoints[19] = turtley;

step();

Xpoints[20] = turtle_x;

Ypoints[20] = turtley;
turn(-90);

step();

Xpoints[21] = turtle_x;

Ypoints[21] = turtle,y;
turn(-90);

step();

Xpoints[22] = turtle_x;

Ypoints[22] = turtley;

step();

Xpoints[23] = turtle_x;

140

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Ypoints[23] = turtley;

step();

Xpoints[24] = turtle_x;

Ypoints[24] = turtley;
turn(90);

step();

Xpoints[25] = turtle_x;

Ypoints[25] = turtley;

step();

Xpoints[26] = turtle_x;

Ypoints[26] = turtley;
turn(-90);

step 0;

Xpoints[27] = turtle_x;

Ypoints[27] = turtley;

step();

Xpoints[28] = turtle_x;

Ypoints[28] = turtley;

step();

Xpoints[29] = turtle_x;

Ypoints[29] = turtle,y;
turn(90);

step();

Xpoints[30] = turtle_x;

Ypoints[30] = turtle,y;
turn(90);

step();

Xpoints[31] = turtle_x;

Ypoints[31] = turtley;

step();

Xpoints[32] = turtle_x;

Ypoints[32] = turtle,y;

step();

Xpoints[33] = turtle_x;

Ypoints[33] = turtley;

step();

Xpoints[34] = turtle_x;

Ypoints[34] = turtley;
turn(90);

step();

Xpoints[35] = turtle_x;

Ypoints[35] = turtley;

step();

Xpoints[36] = turtle_x;

Ypoints[36] = turtley;
turn(-90);

step();

Xpoints[37] = turtle_x;

Ypoints[37] = turtley;

step();

Xpoints[38] = turtle_x;

141

FRACTAL PROGRAMMING IN C

Ypoints[38] = turtle,y;

step();

Xpoints[39] = turtle_x;

Ypoints[39] = turtley;
turn(-90);

step();

Xpoints[40] = turtle_x;

Ypoints[40] = turtley;
turn(-90);

step();

Xpoints[41] = turtle_x;

Ypoints[41] = turtley;

step();

Xpoints[42] = turtle_x;

Ypoints[42] = turtley;
turn(90);

step();

Xpoints[43] = turtle_x;

Ypoints[43] = turtley;

step();

Xpoints[44] = turtle_x;

Ypoints[44] = turtley;
turn(-90);

step();

Xpoints[45] = turtle_x;

Ypoints[45] = turtley;

step();

Xpoints[46] = turtle_x;

Ypoints[46] = turtley;

step();

Xpoints[47] = turtle_x;

Ypoints[47] = turtley;
turn(90);

step();

Xpoints[48] = turtle_x;

Ypoints[48] = turtley;
turn(90);

step();

Xpoints[49] = turtle_x;

Ypoints[49] = turtle,y;
if (level == 0)

for (k=0; k<generator_size; k++)

drawLine(Xpoints[k],Ypoints[k],

Xpoints[k+1] ,Ypoints[k+1] ,15);

else

for (j=0; j<generator_size; j++)

142

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Yl = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level);

Using Other Initiators

All of the von Koch curves that have been described above using the square

initiator can easily be adapted to other regular polygon initiators of five or more

sides. (The generators have been set up so as not to be self-overlapping or self-

intersecting as long as the sides of the polygon do not intersect at angles of less

than 90 degrees. You can experiment with figures other than regular polygons as

long as this condition is met.

Figure 8-22 shows the initiator and generator for an eight-segment von Koch

curve using a hexagon as the initiator. Figure 8-23 shows the curve for levels 1,

2, 3, and 4. To generate this curve, all you need to do is run the program for the

eight-segment von Koch curve, as given above, with the following changes in

the initial conditions:

mt mit_size = 6;

mt initiator_xl[lO] = {-75,75,150,75,-75,-150},

initiator_x2[1O]={75,150,75,-75,-150,-75},

initiator_yl[1O]={115,115,O, -115, -115,0),

initiator_y2[1O]={115,O,-115,-115,O,115)

143

FRACTAL PROGRAMMING IN C

Figure 8-22: Initiator and Generator for Eight-Segment

von Koch Curve with Hexagonal Generator

(a) Initiator for Hexagonal Generator

8-Segment Curve

(b) Generator for Hexagonal Generator

8-Segment Curve

144

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-23: Hexagonal Eight-Segment von Koch Curves for Levels 1 to 4

(a) ‘lever = 1

(b) ‘level’ =2

(C) ‘level’ =3

(d) ‘level’ =4

145

FRACTAL PROGRAMMING IN C

Complicated Generators

Take a look at the generator shown in Figure 8-24(a). This generator was

discovered by Mandelbrot. It is based upon a grid of equilateral triangles. If the

generator consisted of line segments connecting points 0, 1, 2, 3, 4, and 11, it

would be rather simple. However, a smaller replica of this simple generator has

been inserted between points 4 and 9, and then two regular line segments added to

complete the generator. Because two different line segment lengths are used, we

must use the expression:

rmD = 1 (Equation 8-16)

to determine the fractal dimension (see Chapter 2). First we need to observe that

r for the regular sized segments is 1/3. For the smaller segments, we can use

simple trigonometry to ascertain that r is 0.186339. Thus, we have:

6(.3333)D + 5(.186339)D = 1 (Equation 8-17)

which gives a fractal dimension of:

D = 1.8575 (Equation 8-18)

We can easily handle the change in segment length by simply recalculating the

turtle_r (length of turtle step) at the appropriate place in the generate program.

Now, however, look at Figure 8-24(b), which shows the curve for the second

level. In order to make sure the curve is not self-overlapping or self-intersecting,

we have to take some considerable liberties with how we use the generator to

replace each segment of the previous level. There are four variations of the

generator: one is to the right of the original line segment, one is to the left, a

third is to the right (but with the generator reversed), and the fourth is to the left

with the generator reversed. Unfortunately, these are rather arbitrary and a

different set is needed at each level (at least for the first few levels). We have to

thank Mandelbrot for discovering the proper variation to use at each position in

the first few levels; it gives us a starting place from which we can branch off into

our own investigations.

146

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

Figure 8-24: Generator and Second Level for Complex Generator Curve

Our software handles the problem by adding two new parameters, sign and type.

In using the turtle graphics to create our generator, we multiply every angle by

sign, which starts out the program with a value of 1. As we enter the generator

function, we take action based upon the value of type. If type is 0, nothing is

changed. The parameter sign retains its original value and the original generator

function is produced on the same side as the previous one. If the type is 1, sign

is multiplied by -1, causing all of the turn angles to be reversed so that the

generator appears on the opposite side of the line segment from the previous one.

If type is 2, we make the beginning line segment coordinates the end ones and

visa-versa, so that the generator is drawn backwards. We also need to reverse all

of the signs for this reverse generator to appear on the same side of the line

segment as the previous generator. Finally, for a type of 3, we reverse

coordinates only so that the generator is both reversed and moved to the opposite

side.

/

(a) Generator for Complex
Generator Curve

(b) Second Level for Complex

Generator Curve

147

FRACTAL PROGRAMMING IN C

Figure 8-25: Complex Generator Curves for Levels 2 to 4

(a) “level’ =3

Monkey Tree

(b) ‘level’ =4

Split Snowflake Halls

(C) ‘level’ = 5

148

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

As we enter the recursion process for each level, we have to define what the type

is to be for every line segment that is to be replaced. This is a somewhat lengthy

process, even using Cs switch statement. Fortunately, in this case we only had

to define two levels. The net result is shown in Figure 8-25. Mandelbrot calls

the third-level curve a Monkeys Tree and the fourth-level curve “Split

Snowflake Halls. The fourth-level curve is not quite like Mandelbrot’s version,

because we did not define the type parameter to match his for every line segment.

Figure 8-26 is the listing of the program to generate these curves.

Figure 8-26: Program to Generate Complex Generator Curves

snowhall = program to generate snowflake halls

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl, float X2, float Y2,

mt leveljnttypeint sign);

mt combination = 0,LINEWIDTH=1, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i;

mt generator_size = 12;

mt level = 4;

mt mit_size = 1;

mt initiator_xl[10] = {-185)Jnitiator_x2[10]={25),

initiatoryl[10]={ -1201,

initiatory2[10]={ 244);

float Xpoints[25], Ypoints[25];

float turtle_x,turtle.y,turtle_r;

main()

mt sign=1;

mt set_type=1;

printf(”\nEnter level (1 - 8): “);

scanf(”%d”,&level);

if (level < 1)

149

FRACTAL PROGRAMMING IN C

level = 1;

setMode(16);

cls(O);

for (i=O; i<init_size; i++)

generate(initiator_xl[i 1. initiatoryl[i 1.

initiator_x2[i], initiatory2[i].

level ,set_type,sign);

getch();

generate() = generates curve

void generate (float Xl, float Yl, float X2, float Y2,

mt level, mt type, mt sign)

mt j,k,line,set_type;

float a, b, Xpomnts[25], Ypoints[25], temp,temp_r;

switch (type)

case 0: break;

case 1: sign *= -1;

break;

case 2: sign *= -1;

case 3: temp = Xl;

Xl = X2;

X2 = temp;

temp = Yl;
Yl = Y2;

Y2 = temp;

break;

level --;

turtle_r = (sqrt((X2 - X1)*(X2 - Xl) + (Y2 - Y1)*

(Y2 - Y1)))/3.0;

Xpoints[0] = Xl;

Ypoints[0] = Yl;

Xpomnts[11] = X2;

Ypoints[ll] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

turn(60*sign);

turtle_x = Xl;

turtley = Yl;

step();

Xpoints[1] = turtle_x;

Ypoints[l] = turtley;

150

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtley;

turn(6O*sign);

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtley;

turn(6O*sign);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtley;

turn(12O*sign);

step();

turn(60*sign);

step();

Xpoints[9] = turtle_x;

Ypoints[9] = turtley;

turn(120*sign);

step();

Xpoints[1O] = turtle_x;

Ypoints[1O] = turtley;

turtle_r = (sqrt((Xpoints[9] - Xpoints[4])*

(Xpoints[9] - Xpoints[4]) + (Ypoints[9] -

Ypoints[4])*(Ypoints[9] - Ypoints[4])))/3.O;

turtle_theta = point(Xpoints[4],Ypoints[4].

Xpoints[9] ,Ypoints[9]);

turn(6O*sign);

turtle_x = Xpoints[4];

turtley = Ypoints[4];

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtley;

step();

Xpoints[6] = turtle_x;

Ypoints[6] = turtley;

turn(60*sign);

step();

Xpoints[7] = turtle_x;

Ypoints[7] = turtley;

turn(60*sign);

step();

Xpoints[8] = turtle_x;

Ypoints[8] = turtley;
if (level == 0)

for (k=O; k<generator_size-1; k++)

drawLine(Xpoints[k],Ypoints[k].

Xpoints[k+1] ,Ypoints[k+1] ,15);

151

FRACTAL PROGRAMMING IN C

else

for (j=0; j<generator_size-1; j++)

if (level == 1)

switch(j)

case 2:

case 8:

case 10:

set_type = 0;

break;

case 0:

case 5:

set_type = 1;

break;

case 1:

case 3:

case 4:

set_type = 2;

break;

case 6:

case 7:

case 9:

set_type = 3;

break;

if (level > 1)

switch(j)

case 2:

case 8:

case 10:

set_type = 0;
break;

case 0:

set_type = 1;

break;

case 1:

case 3:

case 4:

set_type = 2;
break;

case 5:

case 6:

case 7:

case 9:

set_type = 3;

152

CH. 8: THE SNOWFLAKE AND OTHER VON KOCH CURVES

break;

Xl = Xpoints[j];

X2 = Xpoints[j+l];

Yl = Ypoints[j];

Y2 = Ypoints[j+l];

generate (Xl,Y1,X2,Y2,level ,set_type,sign);

153

db 9

Peano Curves

Chapter 8 described a number of curves which were characterized by self-similarity,

no self-intersection, and no self-overlapping. They had fractal dimensions

greater than 1 and less than 2. This implies that no matter how many times the

recursion process was applied, the curves would never completely fill the plane.

In this chapter, we will consider curves whose fractal dimension, D, is 2. They

are called Peano curves because the first of the family, which will be described in

the next section, was discovered by Giuseppe Peano in 1900. The fractal dimension

of 2 has two implications. First, the curves must completely fill the plane.

Second, the curves must be self-intersecting—if they fill the plane, there must be

an infinity of points at which each curve intersects itself.

The Original Peano Curve

Figure 9-1 shows the generator for the original Peano curve. The initiator is

simply a horizontal straight line. Unfortunately, because of all of the self-intersections,

it is almost impossible to determine the way in which the Peano curve

is drawn, even if arrows are added to the diagram in an attempt to show the flow.

As you look at the diagram, first a step is made up, then a step to the left, then

another up, then one to the right, then a step down, then one to the right, then

one up, then a step to the left, and finally one up. Figure 9-2 shows the Peano

curves for levels of 2, 3, and 4. The way in which the generator is drawn can be

best understood by looking at the turtle graphics part of the listing for the

generator function, which is given in Figure 9-3. The generator consists of nine

155

FRACTAL PROGRAMMING IN C

line segments (N = 9), each of which has a length of 1/3 of the original line (r =

1/3). Thus, the fractal dimension is:

D = log 9 / log 3 = 2 (Equation 9-1)

The Peano curves are generated by the same generic program shown in Figure 8-

6, with the generator function of Figure 9-3 substituted for the original generator

function, and the following changes in the initialization conditions:

mt generator_size = 9;
mt mit_size = 1;

mt initiator_xl[1O] = {OLinitiator_x2[1O]={O}.

initiatoryl[1O]={-100}. initiatory2[1O]={100);

Figure 9-1: Generator for Original Peano Curve

156

hEr flL1H11L till

LU’

III

CH. 9: PEANO CURVES

Figure 9-2: Original Peano Curves for Levels 2 to 4

(a) ‘level’ =2

(b) ‘level’ = 3

It I III

(C) ‘level’ =4

157

FRACTAL PROGRAMMING IN C

Figure 9-3: Generator Function for Original Peano Curve

generate() = generates curve

void generate (float Xi. float Vi. float X2. float Y2.

mt level)

mt j,k,line;

float a, b, Xpoints[25]. Ypoints[25];

level --;

turtle_r = (sqrt((X2 - Xi)*(X2 - Xi) + (Y2 - Yi)*

(Y2 - Yi)))/3.O;

Xpoints[O] = Xi;

Ypomnts[0] = Vi;

Xpoints[9] = X2;

Ypoints[9] = Y2;

turtle_theta = point(Xi,Yi,X2,Y2);

turtle_x = Xi;

turtley = Yi;

step();

Xpoints[i] = turtle_x;

Vpoints[i] = turtley;

turn(90);

step();

Xpoints[2] = turtle_x;

Vpoints[2] = turtley;

turn(-90);

step();

Xpomnts[3] = turtle_x;

Ypomnts[3] = turtley;

turn(-90);

step();

Xpoints[4] = turtle_x;

Vpoints[4] = turtley;

turn(-90);

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtley;

turn(90);

step();

Xpoints[6] = turtle_x;

Vpoints[6] = turtley;

turn(90);

step();

Xpoints[7] = turtle_x;

158

CH. 9: PEANO CURVES

Ypoints[7] = turtle_y;

turn(90);

step();

Xpoints[8] = turtle_x;

Ypoints[8] = turtle_y;
if (level > 0)

for (j=0; j<generator_size; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+l];

Yl = Ypoints[j];

Y2 = Ypoints[j+l];

generate (X1,Y1,X2,Y2,level);

else

for (k=0; k<generator_size; k++)

drawLine(Xpoints[k] ,Ypoints[k]

Xpoints[k+1] ,Ypoints[k+1] .15);

Modified Peano Curve

Were it not for the self-intersections of the generator for the original Peano curve,

it would be a lot easier to trace the curve and see how it is drawn. Thus, a modification

of the Peano curve has been developed that rounds off the corners to avoid

self-intersection. The resulting generator is shown in Figure 9-4. It must be

noted, however, that this modified generator can only be used at the lowest level,

just before actual curve drawing. If it is used at higher levels, on recursion the

program tries to substitute the generator for each diagonal segment that rounds off

a corner, as well as for the regular line segments. Therefore, the generator for the

original Peano curve is used at the higher levels. The curve is mathematically

interesting because it is not quite a true Peano curve. Because the generator used

in the final recursion is a little shorter in length than that of the original Peano

curve, the fractal dimension, D, is slightly less than 2. As the number of recursions

increases, the fractal dimension changes; as the number of recursions approaches

infinity, the fractal dimension approaches 2 as a limit.

159

FRACTAL PROGRAMMING IN C

Figure 9-4: Generator for Modified Peano Curve

Figure 9-5 shows the resulting modified Peano curves for levels of 2 and 3. To

generate these curves, we use the program listed in Figure 9-6. The generator

function for all levels above 1 is the same as for the original Peano curve. For

level 1, a different generator is used. Instead of defining a turtle step (turtle_r) as

1/3 of the original line segment, it is defined as 1/18. The basic generator is then

written to have the turtle traverse the same path as the original Peano curve generator,

using the same turn angles, but taking six steps for each step that was

taken by the original generator. However, the points that are saved for the coordinate

array are different. After saving the first set of coordinates, we next save

the location after the fifth step. The next location to be saved is at the end of the

first step after the first corner is turned. The remaining locations to be saved are

after the fifth step of each line segment and after the first step of the next line

segment, except that the fifth step of the very last line segment is not saved. The

result, when the lines are drawn, is that a diagonal line connects points 1/6 of the

distance on each line segment that would normally meet at the corner.

160

CH. 9: PEANO CURVES

Figure 9-5: Modified Peano Curves for Levels 2 and 3

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl, float X2, float Y2,

mt level);

mt generator_size = 19;

mt level;

mt mit_size = 1;

mt initiator_xl[lO] = {O},initiator_x2[lO]=O},

initiator_yl[lO]=L200}, initiator_y2[lO]=2OO

mt combination = O,LINEWIDTH=l, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt 1;

nwoB
(1J 1 Ii 1 (ii

(a) ‘lever =2 (b) ‘level’ =3

Figure 9-6: Program to Generate Modified Peano Curves

peano2 = program to generate modified peano curve

161

FRACTAL PROGRAMMING IN C

float Xpoints[25], Ypoints[25] ,Xptemp,Yptemp;

float turtle_x,turtle_y,turtle_r;

main()

printf(”\nEnter level (1 - 8): “);

scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(16);

cls(0);

Xptemp = initiator_xl[0];

Yptemp = initiator_yl[0];

for (1=0; i<init_size; j++)

generate(initiator_xl[i], initiator_yl[i],

initiator_x2[i], initiator_y2[i], level);

getch();

generate() = generates curve

void generate (float Xl, float Yl, float X2, float Y2,

mt level)

mt j,k,line;

float a, b, Xpoints[25], Ypoints[25];

level--;

Xpoints[0] = Xl;

Ypoints[0] = Yl;

turtle_theta = point(X1,Y1,X2,Y2);

turtle_x = Xl;

turtle_y = Yl;

if (level != 0)

turtle_r = (sqrt((X2 - X1)*(X2 - Xl) +

(Y2 - Yl)*(Y2 - Yl)))/3.0;

Xpoints[9] = X2;

Ypoints[9] = Y2;

step();

Xpoints[l] = turtle_x;

Ypoints[l] = turtle_y;

turn(90);

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtle_y;

turn(-90);

162

CH. 9: PEANO CURVES

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtle_y;

turn(-90);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtle_y;

turn(-90);

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtley;

turn(90);

step();

Xpoints[6] = turtle_x;

Ypoints[6] = turtle_y;

turn(90);

step();

Xpoints[7] = turtle_x;

Ypoints[7] = turtle_y;

turn(90);

step();

Xpoints[8] = turtle_x;

Ypoints[8] = turtle_y;

for (j=0; j<9; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+l];

Yl = Ypoints[j];

Y2 = Ypoints[j+l];

generate (Xl,Yl,X2,Y2,level);

else

turtle_r = (sqrt((X2 - Xl)*(X2 - Xl) +
(Y2 - Yl)*(Y2 - Yl)))/l8.O;

Xpoints[0] = Xptemp;

Ypoints[0] = Yptemp;

Xpoints[l9] = X2;

Ypoints[l9] = Y2;

step();

Xpoints[l] = turtle_x;

Ypoints[l] = turtley;

step();

step();

step();

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtley;

step();
turn(90);

163

FRACTAL PROGRAMMING IN C

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtle_y;

step();

step();

step();

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtley;

step();

turn(-90);

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtley;

step();

step();

step();

step();

Xpoints[6] = turtle_x;

Ypoints[6] = turtley;

step();
turn(-90);

step();

Xpoints[7] = turtle_x;

Ypoints[7] = turtley;

step();

step();

step();

step();

Xpoints[8] = turtle_x;

Ypoints[8] = turtley;

step();

turn(-90);

step();

Xpoints[9] = turtle_x;

Ypoints[9] = turtley;

step();

step();

step();

step();

Xpoints[10] = turtle_x;

Ypoints[10] = turtley;

step();
turn(90);

step();

Xpoints[11] = turtle_x;

Ypoints[11] = turtley;

step();

step();

step();

step();

164

CH. 9: PEANO CURVES

Xpoints[12] = turtle_x;

Ypoints[12] = turtle.y;

step();

turn(90);

step();

Xpoints[13] = turtle_x;

Ypoints[13] = turtley;

step();

step();

step();

step():

Xpoints[14] = turtle_x;

Ypoints[14] = turtley:

step();

turn(90);

step();

Xpoints[15] = turtle_x;

Ypoints[15] = turtley;

step();

step();

step();

step();

Xpoints[16] = turtle_x;

Ypoints[16] = turtle_y;

step();

turn(-90);

step();

Xpoints[17] = turtle_x;

Ypoints[17] = turtle_y;

step();

step();

step();

step();

Xpoints[18] = turtle_x;

Ypoints[18] = turtley;

Xptemp = Xpoints[18];

Yptemp = Ypoints[18];

for (k=0; k<generator_size-1; k++)

drawLine(Xpoints[k].Ypoints[k].

Xpoints[k+1] .Ypoints[k+1] .15);

165

FRACTAL PROGRAMMING IN C

Cesaro Triangle Curve

Figure 9-7(a) shows the very simple generator that will be used for the next few

curves. The initiator in each case will be a horizontal straight line. The generator

consists of two sides of a right isoceles triangle. Consequently, N=2 and r =

1/’12. Therefore, the fractal dimension is:

D = log 2 / log (J2) = 2 (Equation 9-2)

Depending upon the conditions which determine whether this generator is placed

to the left or right of each line segment it replaces, many totally different curves

can be produced. The first of these to be considered is the Cesaro triangle discovered

by Ernest Cesaro in 1905. Figure 9-7(b) shows the first level of this curve.

For any level of construction for this curve, the generator is placed to the right of

each line segment at the top level, to the left of each line segment of the next

lower level, to the right of each line segment of the next lower level, and so on.

Figure 9-7: Generator and First Level for Cesaro Curve

(a) Generator for Cesaro Curve (b) First Level for Cesaro Curve

166

CH. 9: PEANO CURVES

Figure 9-8: Cesaro Triangle Curves for Levels 2—i 2

(a) ‘lever =2

(b) ‘level’ =4

(C) ‘level’ =8

(d) ‘level’ = 12

167

FRACTAL PROGRAMMING IN C

To do this in our program, we multiply the 90-degree turn angle in the generator

by one of an array of sign. This parameter is set up at the beginning of the program

to be +1 for the top level, and alternate in sign for each succeeding lower

level. Figure 9-8 shows the resulting Cesaro triangles for levels 2, 4 8, and 12.

The program to generate this curve is listed in Figure 9-9.

Figure 9-9: Program to Generate Cesaro Triangle Curves

cesaro3 = program to generate original cesaro curve

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl, float X2, float Y2,

mt level);

mt generator_size = 3;

mt level;

mt mit_size = 1;

mt initiator_xl[1O] = { -150) ,initiator_x2[1O]={ 150).

initiator_yl[1O]={O), initiator_y2[1O]={O};

mt combination = O,LINEWIDTH=1, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i,sign[16],signl=-1;

float Xpoints[25], Ypoints[25];

float turtle_x,turtle_y,turtle_r;

main()

printf(”\nEnter level (1 - 16): “);

scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(16);

cls(0);

for (i=level; i>=0; i--)

sign[i] = signl;

signl = -1;

for (1=0; i<init_size; i++)

generate(initiator_xl[i], initiator_yl[i],

168

CH. 9: PEANO CURVES

initiator_x2[i], initiator_y2[i], level);

generate() = generates curve

void generate (float Xl, float Vi, float X2, float Y2,

mt level)

mt j,k,line;

float a, b, Xpoints[25], Ypoints[25];

level

turtle_r = sqrt(((X2 - X1)*(X2 - Xl) + (Y2 - Y1)*
(Y2 - Y1)))/2.O;

Xpoints[O] = Xl;

Ypoints[O] = Vi;

Xpoints[2] = X2;

Ypoints[2] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

turtle_x = Xi;

turtle_y = Vi;

step 0;

Xpoints[3] = turtle_x;

Ypoints[3] = turtle_y;

turn(90*sign[level 1);

step();

Xpoints[i] = turtle_x;

Ypoints[i] = turtle_y;
if (level > 0)

for (j=O; j<generator_size-i; j++)

Xi = Xpoints[j];

X2 = Xpoints[j+i];

Yi = Ypoints[j];

Y2 = Ypoints[j+i];

generate (Xi,Yi,X2,Y2,level);

drawLine(Xpoints[O],Ypoints[O],Xpoints[2],

Ypoints[2] ,i5);

drawLine(Xpoints[i],Ypoints[i],Xpoints[3],

Ypoints[3] ,i5);

getch();

{ else

169

FRACTAL PROGRAMMING IN C

Modified Cesaro Triangle Curve

The Cesaro triangle curve described above is a little hard to trace because the line

going out at right angles from the center of the original line segment actually retraces

itself, but this is not observable in the drawings. A modification of the

Cesaro curve is possible by changing the angle of the generator from 90 degrees

to 85 degrees for the lowest level before drawing occurs. As with the modified

Peano curve, this results in a curve whose fractal dimension is not quite 2, but

which approaches 2 as a limit when the number of recursions approaches infinity.

Figure 9-10 shows the first level for the modified Cesaro Triangle curve. Figure

9-11 shows the resulting curves for levels 2, 4, 8, and 12. The program to generate

this curve is listed in Figure 9-9, with the generator function replaced by

that listed in Figure 9-12.

Figure 9-10: First Level for Modified Cesaro Curve

170

CH. 9: PEANO CURVES

Figure 9-11: Modified Cesaro Triangle Curves for Levels 2—12

(a) ‘lever =2

(b) ‘level’ =4

(c) ‘lever =8

(d) ‘level’ = 12

171

FRACTAL PROGRAMMING IN C

We’ve chosen a slightly different approach here than was used for the modified

Peano curve. We generate the three points that are used in the unmodified

generator and use them for each step in the recursion process. We also generate

two additional points to locate the base of the 85-degree triangle of the two

triangles for the first level, and use these points in drawing the actual curve.

Figure 9-12: Generator for Modified Cesaro Curves

generate() = generates curve

void generate (float Xl, float Yl, float X2, float Y2,

mt level)

mt j,k,line;

float a, b, Xpoints[25], Ypoints[25];

level --;

a = sqrt(((X2 - X1)*(X2 - Xl) +

(Y2 - Y1)*(Y2 - Y1)))/2.O;

b = a * 0.9128442;

turtle_r = b;

Xpoints[0] = Xl;

Ypoints[0] = Vi;

Xpoints[2] = X2;

Ypoints[2] = Y2;

turtle_theta = point(Xi,Y1,X2,Y2);

turtle_x = Xi;

turtley = Vi

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtley;

turn(85*sign[level]);

turtle_r = a;

step();

Xpoints[i] = turtle_x;

Vpoints[i] = turtley;

turn(i70*sign[level 1)

step();

Xpoints[4] = turtle_x;

Vpoints[4] = turtley;

if (level > 0)

for (j=0; j<generator_size-i; j++)

Xi = Xpoints[j];

172

CH. 9: PEANO CURVES

X2 = Xpoints[j+1];

Vi = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level);

else

drawLine(Xpoints[O],Ypoints[O],Xpoints[3],

Ypoints[3] ,15);

drawLine(Xpoints[2] ,Ypoints[2] ,Xpoints[4],

Ypoints[4] ,15);

drawLine(Xpoints[3],Ypoints[3],Xpoints[1],

Ypoints[1] ,15);

drawLine(Xpoints[4],Ypoints[4],Xpoints[1],

Ypoints[1] .15);

Variation on the Cesaro Curve

Suppose we start with a curve which has the same generator and the same first

two levels as the Cesaro curve, but then uses a differing arrangement of placing

the generator to the right and left of the original line segment as we go to higher

levels. Many different curves can result. One of them is shown for levels 2, 4,

8, and 16 in Figure 9-13. The program that was used to generate these curves is

listed in Figure 9-14. This can serve as a basis for your experimentation with

various methods of arranging the generator to create a variety of interesting

curves.

‘73

FRACTAL PROGRAMMING IN C

Figure 9-13: Variation of Cesaro Curves for Levels 2—16

(b) ‘level’ =4

(a) ‘level’ =2

(C) ‘level’ =8

(d) ‘level’ = 16

174

CH. 9: PEANO CURVES

Figure 9-14: Program to Generate Variation of Cesaro Curve

cesarol = program to generate variation on cesaro curve

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Vi, float X2, float Y2,

mt level,int sign);

mt generator_size = 3;

mt level;

mt mit_size = 1;

mt initiator_xl[lO] = {-150},initiator_x2[1O]={150},

initiator_yl[1O]={O}, initiator_y2[1O]={O};

mt combination = O,LINEWIDTH=i, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i,sign=i;

float Xpoints[25], Ypoints[25];

float turtle_x,turtley,turtle_r;

main()

printf(”\nEnter level (1 - i6): “);

scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(i6);

cls(O);

for (i=O; i<init_size; i++)

generate(initiator_xi[i], initiatoryi[i],

initiator_x2[i],initiatory2[i], level ,sign);

getch();

generate() = generates curve

void generate (float Xi, float Yl, float X2, float Y2,

mt level, mt sign)

mt j,k,line;

float a, b, Xpoints[25], Ypoints[25];

‘75

FRACTAL PROGRAMMING IN C

level--;

turtle_r = sqrt(((X2 - X1)*(X2 - Xl) + (Y2 - Y1)*
(Y2 - Y1)))/2.O;

Xpoints[O] = Xl;

Ypoints[O] = Vi;

Xpoints[2] = X2;

Ypoints[2] = Y2;

turtle_theta = point(Xl ,Y1 ,X2,Y2);

turtle_x = Xl;

turtle_y = Vi;

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtley;

turn(90*sign);

step();

Xpoints[l] = turtle_x;

Ypoints[l] = turtley;

sign = -1;
if (level > 0)

for (j=0; j<generator_size-i; j++)

Xi = Xpoints[j];

X2 = Xpoints[j+i];

Vi = Ypoints[j];

Y2 = Ypoints[j+i];

generate (Xi,Yi,X2,Y2,level ,sign);

else

drawLine(Xpoints[O],Ypoints[O],Xpoints[2],

Ypoints[2] ,15);

drawLine(Xpoints[i],Ypoints[i],Xpoints[3],

Ypoints[3] ,15);

mt mit_size = 1;

mt initiator_xi[iO] = {-150,150}. initiator_x2[10]=

{150,-150} initiator_yi[iO]={-50}

initiator_y2[iO]={ -50);

176

CH. 9: PEANO CURVES

Polya Triangle Curve

This curve was discovered by George Polya, a professor at Stanford University.

The initiator and generator are the same as for the Cesaro curve, but the positioning

of the generator is different. Figure 9-15 shows the first and second levels of

the curve. As with the Cesaro curve, the position of the first generator alternates

from right to left beginning at the top level. For this curve, the position of the

generator also alternates with each line segment of a particular level that is replaced.

Figure 9-16 shows the resulting curve for levels of 4, 8, and 12. Figure

9-17 lists the program for generating the Polya curve. We use the same technique

that was used for the Cesaro curve of having an array of sign variables,

which are initiated at the beginning of the program. For this curve, we also

modify the sign as we pass through the generate function. In Chapter 16, we

shall discuss the Harter-Heightway dragon curve. Although it is included with

the dragons, it is a member of the family of Peano curves discussed in this chapter.

It has the same initiator, generator, and first stage as the Polya triangle

curve, but then diverges.

Figure 9-15: First Two Levels for Polya Triangle Curve

‘77

FRACTAL PROGRAMMING IN C

Figure 9-16: Polya Triangle Curves for Levels 4 to 12

(a) ‘level’ = 4

(b) ‘lever =8

(c) ‘level’ = 12

178

CH. 9: PEANO CURVES

Figure 9-17: Program to Generate Polya Curves

polya = program to generate polya curve

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl, float X2, float Y2,

mt level);

mt combination = 0,LINEWIDTH=l, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt 1, signl =1;

mt generator_size = 3;

mt level;

mt mit_size = 2;

mt sign[l7];

mt initiator_xl[10] = {-l50),initiator_x2[lO]=={l50),

initiator_yl[lO]={-75), initiator_y2[lO]={-75};

float Xpoints[25], Ypoints[25];

float turtle_x,turtle_y,turtle_r;

main(

printf(”\nEnter level (1 - 16): “);
scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(l6);

cls(O);

for (i=level ; 1>0; 1--)

sign[i] = signl;

signl = -1;

for (1=0; i<init_size-l; i++)

generate(initiator_xl[i], initiator_yl[i],

initiator_x2[i], initiatory2[i], level);

getch();

179

FRACTAL PROGRAMMING IN C

generate() = generates curve

void generate (float Xl, float Yl, float X2, float ‘(2,

mt level)

mt j,k,line;

float a, b, Xpoints[25], Ypoints[25];

turtle_r = (sqrt((X2 - Xl)*(X2 - Xl) + (Y2 - Y1)*

(‘(2 - Yl)))/1.41421;

Xpoints[O] = Xl;

Ypoints[O] = Vi;

Xpoints[2] = X2;

Vpoints[2] = Y2;

turtletheta = point(X1,Y1,X2,Y2);
turtlex = Xi;

turtley = Yl;

turn(sign[level]*(45));

step();

Xpoints[1] = turtlex;

Ypoints[l] = turtley;
level

if (level > 0)

for (j=0; j<generatorsize-1; j++)

Xi = Xpoints[j];

X2 = Xpoints[j+l];

Yl = Ypoints[j];

Y2 = Ypoints[j+l];

generate (X1,Yl,X2,Y2,level);

sign[level] = -1;

else

for (k=0; k<generator_size-i; k++)

drawLine(Xpoints[k] ,Ypoints[k],

Xpoints[k+1] ,Ypoints[k+i] .15);

180

CH. 9: PEANO CURVES

The Peano-Gosper Curve

Figure 9-18 shows the generator for the Peano-Gosper curve and its associated

grid of equilateral triangles. The geometry of the situation can easily be determined

from this figure. There are seven line segments (N=7), and the length of

each one is:

r = 1/I7 (Equation 9-3)

The fractal dimension is

0 = log 7 / log (I7) = 2 (Equation 9-4)

This curve has the interesting characteristic that it just fills the interior of the

Gosper curve given in Chapter 6. Figure 9-19 shows the curves for levels 2, 3,

and 4. The program for this curve is the generic program of Figure 6-6 with the

generator replaced by that shown in Figure 9-20, and the following changes in the

initializing conditions:

mt generator_size = 8;

Figure 9-18: Generator for Peano-Gosper Curve

$

I

/

/‘ I’

I /

I /

/ I

I I

181

FRACTAL PROGRAMMING IN C

7 ,

Figure 9-19: Peano-Gosper Curves for Levels 2 to 4

(a) lever =2

(b) level =3

(c) level =4

182

CH. 9: PEANO CURVES

Figure 9-20: Generator for Peano-Gosper Curve

generate() = generates curve

void generate (float Xi, float Yl, float X2, float Y2,

mt level , mt type)

mt j,k,line,settype;

float a, b, Xpoints[25], Ypoints[25],sign=i, temp;

switch (type)

case 0: break;

case 1: sign = -1;

break;

case 2: sign = -1;

case 3: temp = Xi;

Xi = X2;

X2 = temp;

temp = Yi;

Yi = Y2;

Y2 = temp;

break;

level--;

turtler = (sqrt((X2 - X1)*(X2 - Xl) + (Y2 - Yi)*

(Y2 - Yi)))/2.64575l3;

Xpoints[0] = Xi;

Ypoints[0] = Yi;

Xpoints[7] = X2;

Ypoints[7] = Y2;

turtletheta = point(Xi,Yi,X2,Y2);

turn(i9*sign)

turtle_x = Xi;

turtley = Vi;

step();

Xpoints[i] = turtle_x;

Ypoints[i] = turtley;

turn(60*sign)

step();

Xpoints[2] = turtlex;

Ypoints[2] = turtley;

turn(120*sign);

step();

Xpomnts[3] = turtle_x;

Ypoints[3] = turtle,y;

183

FRACTAL PROGRAMMING IN C

turn(6O*sign);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtley;

turn(12O*sign);

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtley;

step();

Xpoints[6] = turtlex;

Ypoints[6] = turtley;
if (level > 0)

for (j=O; j<generator_size-1; j++)

switch(j)

case 0:

case 3:

case 4:

case 5:

settype = 0;
break;

case 2:

case 1:

case 6:

set_type = 3;

break;

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Yl = Ypoints[j];

Y2 = Ypoints[j+1];

generate (Xl,Y1,X2,Y2,level,settype);

else

for (k=0; k<generator_size-l; k++)

drawLine(Xpoints[k] ,Ypoints[k],

Xpoints[k+l],Ypoints[k+l],l5);

We need to make use of a generate function which provides for specifying any of

the four possible positions of the generator, as we did with several of the von

Koch curves.

184

CH. 9: PEANO CURVES

Peano Seven-Segment Snowflake

Figure 9-21 shows the generator and first stage of a Peano seven-segment

snowflake curve, discovered by Mandelbrot. Note the similarity of the generator

to that described under the heading “Complicated Generators” in Chapter 6. The

only difference is that, where the generator of Chapter 6 used a smaller replica of

the curve consisting of the first four line segments and then a line to the end to

replace the fifth line segment, this curve does not. The result is that the fractal

dimension is different. It is:

6(1/3)0 + (J3/3)0 = 1 (Equation 9-5)

which gives a fractal dimension of:

0 = 2 (Equation 9-6)

Like the complicated generator of Chapter 6, there are four choices of generator

position and they must be carefully selected for each level and each line segment

to assure that the curve is not self-intersecting or self-overlapping. Figure 9-22

shows the curve for levels 2, 3, and 4. The program to generate this curve is

given in Figure 9-23.

Figure 9-21: First Two Levels for Peano Seven-Segment Snowflake Curve

(a) ‘lever = 1 (b) ‘lever =2

185

FRACTAL PROGRAMMING IN C

Figure 9-22: Peano Seven-Segment Snowflake Curves for Levels 2 to 4

(b) lever =4

(a) lever =3

(c) level =5

186

CH. 9: PEANO CURVES

Figure 9-23: Program to Generate Seven-Segment Snowflake

snow7 = generates snowflake with 7 segment generator

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl, float X2, float Y2,

mt level, mt type, mt sign);

mt combination = O,LINEWIDTH==l, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

mt color,flag = O,i,start_level;

mt generator_size = 7;

mt start_level ,level

mt mit_size = l,sign = 1;

mt initiator_xl[lO] = {-125),initiator_x2[lO]={125},

initiator_yl[lO]={OLinitiator_y2[1O]={O);

float Xpoints[25], Ypoints[25];

float turtl e_x ,turtl e_y ,turtl e_r ,turtl e_theta;

main()

printf(”\nEnter level (1 - 8): “);

scanf(”%d”,&level);

if (level < 1)

level = 1;

start_level = level

setMode(16);

cls(0);

for (1=0; i<init_size; i++)

generate(mnitlator_xl[i], initiator_yl[i],

inltiator_x2[i], mnitiator_y2[i], level ,0,

sign);

getch();

generate() = generates curve

void generate (float Xl, float Yl, float X2, float Y2,

187

FRACTAL PROGRAMMING IN C

mt level, mt type, mt sign)

mt j,k,line,set_type;

float a. b. Xpoints[25]. Vpoints[25]. temp,temp_r;

switch (type)

case 0: break;

case 1: sign = -1;

break;

case 2: sign = -1;

case 3: temp = Xl;
Xl = X2;

X2 = temp;

temp = Vi;
Vi = Y2;

Y2 = temp;

break;

level--;

turtle.r = (sqrt((X2 - Xi)*(X2 - Xi) + (Y2 - Yi)*
(Y2 - Vi)))/3.0;

Xpoints[0] = Xi;

Vpoints[O] = Vi;

Xpomnts[7] = X2;

Vpoints[7] = V2;

turtle.theta = point(Xi,Vi,X2,V2);
turtle..x = Xl;

turtlej’ = Vi;

turn(60*sign);

step();

Xpomnts[i] = turtlex;

Vpoints[i] = turtley;

step();

Xpoints[2] = turtle.x;

Vpomnts[2] = turtley;

turn(6O*sign);

step();

Xpoints[3] = turtle.x;

Vpoints[3] = turtley;

turn(6O*sign);

step();

Xpoints[4] = turtle_x;

Vpoints[4] = turtley;

turn(6O*sign);

step();

Xpomnts[6] = turtle_x;

Vpoints[6] = turtley;

turn(6O*sign);

188

CH. 9: PEANO CURVES

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtley;

if (level == 0)

for (k=0; k<generator_size; k++)

drawLine(Xpoints[k] ,Ypoints[k],

Xpoi nts[k+1] ,Ypoi nts[k+1] .15);

else

for (j=0; j<generator_size; j++)

switch(j)

case 5:

case 0:

set_type = 1;

break;

case 1:

case 2:

case 3:

case 6:

set_type = 2;

break;

case 4:

set_type = 3;

break;

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Yl = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level,set_type,sign);

Peano Thirteen-Segment Snowflake

Figure 9-24 shows the generator and first stage of a Peano thirteen-segment

snowflake curve which was also discovered by Mandeibrot. This generator is obtained

by replacing the fifth line segment of the generator in Figure 9-21 with a

smaller replica of the entire generator of Figure 9-2 1. To determine the fractal

dimension of this curve, we note that Equation 9-5 applied to the curve of the

189

FRACTAL PROGRAMMING IN C

previous section, and that the length of the line segment being replaced was 1.

Thus, the fractal dimension is unchanged when this curve is substituted for a line

segment, and the fractal dimension of the thirteen-segment snowflake is still 2.

More generally, we ought to be able to substitute a generator for any line segment

of the original generator and still keep the fractal dimension unchanged.

For this curve also, there are four choices of generator position which must be

carefully selected for each level and each line segment to assure that the curve is

not self-intersecting or self-overlapping. Figure 9-25 shows the curve for levels

of 2, 3, and 4. The program to generate the thirteen-segment curve is listed in

Figure 9-26.

Figure 9-24: First Two Levels for Peano Thirteen-Segment

Snowflake Curve

(a) ‘lever = 1 (b) ‘lever = 2

190

CH. 9: PEANO CURVES

Figure 9-25: Peano Thirteen-Segment Snowflake Curves for Levels 3 to 5

(b) ‘level’ =4

(a) ‘level’ =3

(C) ‘level’ = 5

191

FRACTAL PROGRAMMING IN C

Figure 9-26: Program to Generate Thirteen-Segment Snowflake

snowl3 = generates snowflake with 13-segment generator

#include <stdio.h>

#include <math.h>

#include <dos.h>

1include “tools.h”

void generate (float Xl, float Vi. float X2, float Y2,

mt level, mt type, mt sign);

mt combination = O,LINEWIDTH=l, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

mt color,flag = O,i,start_level;

mt generator_size = 13;

mt start_level ,level

mt mit_size = 1,sign = 1;

mt initiator_xi[1O] = {-125},initiator_x2[1O]={125},

initiator_yi[1O]={O),initiator_y2[1O]={O};

float Xpoints[25], Ypoints[25];

float turtle_x,turtle_y,turtler,

turti etheta;

main()

printf(”\nEnter level (1 - 8): “);

scanf(”%d”,&level);

if (level < 1)

level = 1;

start_level = level;

setMode(16);

cls(O);

for (i=O; i<init_size; i++)

generate(initiator.xl[i], initiator_yl[i],

initiator x2[i], initiator_y2[i], level,O,

sign);

getch();

192

CH. 9: PEANO CURVES

generate() = generates curve

void generate (float Xi, float Vi, float X2, float Y2,

mt level, mt type, mt sign)

mt j,k,line,set_type;

float a, b, Xpomnts[25], Vpoints[25], temp,temp_r;

switch (type)

case 0: break;

case 1: sign = -1;

break;

case 2: sign = -1;

case 3: temp = Xi;
Xi = X2;

X2 = temp;

temp = Vi;
Vi = V2;

V2 = temp;
break;

level--;

turtle_r = (sqrt((X2 - X1)*(X2 - Xi) + (V2 - Y1)*
(V2 - Vi)))/3.0;

Xpoints[0] = Xi;

Vpoints[O] = Vi;

Xpoints[13] = X2;

Vpoints[i3] = V2;

turtle_theta = point(Xi,V1,X2,V2);
turtle_x = Xi;

turtle_y = Vi;

turn(60*sign);

step();

Xpoints[i] = turtle_x;

Vpomnts[i] = turtle_y;

step();

Xpomnts[2] = turtle_x;

Vpoints[2] = turtle_y;

turn(6O*sign);

step();

Xpoints[3] = turtlex;

Vpoints[3] = turtle_y;

turn(6O*sign);

step();

Xpomnts[4] = turtle_x;

193

FRACTAL PROGRAMMING IN C

Ypoints[4] = turtley;

turn(6O*sign);

step():

Xpoints[12] = turtlex;

Ypoints[12] = turtley:

turn(6O*sign);

step();

Xpoints[11] = turtle_x;

Ypoints[11] = turtle_y;

turtle_r = (sqrt((Xpoints[11] - Xpoints[4])*

(Xpoints[11] - Xpoints[4]) + (Ypoints[11] -

Ypoints[4])*(Ypoints[11] - Ypoints[4])))/3.O;

turtle_theta = point(Xpoints[4],Ypoints[4].

Xpoints[11] ,Ypoints[11]);

turtle_x = Xpoints[4];

turtle_y = Ypoints[4];

turn(6O*sign);

step();

Xpoints[5] = turtlex;

Ypoints[5] = turtle_y;

step();

Xpoints[6] = turtle_x;

Ypoints[6] = turtle_y;

turn(60*sign);

step();

Xpoints[7] = turtlex;

Ypoints[7] = turtle_y;

turn(60*sign);

step():

Xpoints[8] = turtle_x;

Ypoints[8] = turtley;

turn(60*sign);

step();

Xpoints[1O] = turtle_x;

Ypoints[1O] = turtle_y;

turn(60*sign);

step();

Xpoints[9] = turtlex;

Ypoints[9] = turtle_y;
if (level == 0)

for (k=0; k<generator.size; k++)

drawLine(Xpoints[k] ,Ypoints[k].

Xpoints[k+1] ,Ypoints[k+1] ,15);

else

for (j=0; j<generator.size; j++)

194

CH. 9: PEANO CURVES

switch(j)

case 1:

case 2:

case 3:

case 4:

case 8:

case 9:

case 12:

set.type = 0;

break;

case 0:

case 5:

case 6:

case 7:

case 10:

case 11:

set.type = 1;

break;

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Vi = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level,set_type,sign);

195

The Hilbert Curve

1 0

The Hubert curve is one of the Peano family of curves but it has some subtle

differences that make it unique. Figure 10-1 shows the generator and the next

level of the Hilbert curve. Since we’re used to pretty straightforward application

of the generator to the line segments of the initiator or previous level of the

curve, it may be quite difficult to visualize what is happening with the Hilbert

curve. The parameters that we use are:

r = 1/2 (Equation 10-1)

N = 4 (Equation 10-2)

In other words, the line segment of the generator is one-half of the line segment

to which it is being applied and the generator is applied four times. But to make

things more complex, each time that we go to a lower level to run the generator

program, we return to the next higher level and draw a line with the same length

being used at the lower level. This sounds a little complex. Try tracing it out

on Figure 10-1(b). Each time you run the generator program, you have to make

sure that it has the proper orientation for the curve to come out correctly.

Starting at the lower right of Figure 10-1(a) we use the generator, then draw a

line segment to the left, use the generator again, draw a line segment up, use the

generator again, draw a line segment to the right, and then use the generator one

final time.

197

FRACTAL PROGRAMMING IN C

Figure 10-1: Generator and Second Level for Hubert Curve

All of the above becomes quite clear from the program listing of Figure 10-2.

This program is quite similar to the generic initiator/generator program of Chapter

8, but since all of our steps are in the ± x or ± y directions, we don’t use the

turtle graphics to keep track of direction but simply step in the proper direction at

each operation. You will note that at each level of generate except the lowest, we

call generate recursively a number of times and also draw line segments of the

proper length between calls to generate. The resulting curves for levels from 3 to

6 are shown in Figure 10-3.

(a) Generator (b) ‘level’ =2

Generating the Hubert Curve

198

CH. 10: THE HILBERT CURVE

Figure 10-2: Program to Generate Hubert Curve

hubert = program to generate Hubert curves

#include <stdio.h>
#include <math.h>
#include <dos.h>
#include “tools.h”

void generate (float ri, float r2);

mt level ,sign=-1;
mt combination = 0,LINEWIDTH=1, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

mt 1;

float xl,x2,yl,y2,r;

main()

float temp;

printf(”Enter level:

scanf (“%d”,&level);

setMode(16);

cl s(0);

r = 400/(pow(2,level));

xl = -200;

yl = -200;

x2 = -200;

y2 = -200:

generate(r,0);

getch():

199

FRACTAL PROGRAMMING IN C

generate() = generates curve

void generate (float ri, float r2)

level --;

if (level > 0)

generate(r2, ri);

x2 += ri;

y2 += r2;

drawLine(xl ,yl ,x2,y2,15);

xl = x2;

yl = y2;

if (level > 0)

generate(ri, r2);

x2 += r2;

y2 += ri;

drawLine(xl,yl,x2,y2,15);

xl = x2;

yl = y2;

if (level > 0)

generate(ri , r2);

x2 -= ri;

y2 -= r2;

drawLine(xl,yl,x2,y2,15);

xl = x2;

yl = y2;

if (level > 0)

generate(-r2,-rl);

level++;

It is worth noting that there is an entirely different way to generate the Hubert

curve. The program to do this is listed in Figure 10-4. It makes use of four

separate functions to do the generate tasks, and, although elegant, tends to obscure

what is going on.

200

CH. 10: THE HILBERT CURVE

Figure 10-3: Hubert Curve for Levels 3 to 6

(a) ‘level’ =3

(b) ‘level’ =4

(C) ‘level’ =5

(d) ‘level’ =6

201

FRACTAL PROGRAMMING IN C

#include <stdio.h>

#include <math. h>

#include <dos.h>

#include “tool s h’

Figure 10-4: Alternate Program to Draw Hilbert Curve

mt combination = O,LINEWIDTH=1, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

mt xa=O,ya=O, x,y,old_x,olcLy, i,j,h=448;

mt level;

ma in C)

printf(”\nEnter level (1 - 8): “);

scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(16);

cls(O);

for (i=1; i<=level ; i++)

h /=2;

x += h/2;

y += h/2;

old_x =

oldy = y;

genl(level);

getch();

void genl(int i)

if(i > 0)

gen4(i -1);

x -= h;

drawLine(old_x,oldy,x,y,15);

old_x = x;

hilbert = program to generate Hilbert curves

void geniCint H;

void gen2(int i);

void gen3(int 1);

void gen4(int i);

202

CH. 10: THE HILBERT CURVE

oldy = y;

genl(i -1);

y -= h;

drawLineC ol d_x ol dy 15)

old_x = x;

oldy = y;

genl(i -1);

x += h;

drawLi ne(ol d_x ol dy 15)

old_x = x;

oldy = y;

gen2(i -1);

void gen2(int 1)

if Ci > 0)

gen3Ci -1);

y +== h;

drawLine(old_x,old_y,x,y,15);

old_x = x;

olcLy = y;

gen2(i -1);

x + h;

drawLine(old_x,oldy,x,y,15);

old_x =

olcLy = y;

gen2Ci -1);

y -= h;

drawLine(old_x,oldy,x,y,15);

old_x = x;

olcLy = y;

genl(i -1);

void gen3(int i)

if Ci > 0)

gen2Ci -1);

x + h;

drawLine(old_x,old_y,x,y,15);

old_x =

olcLy = y;

gen3Ci -1);

y += h;

drawLine(old_x,oldy,x,y,15);

old_x =

203

FRACTAL PROGRAMMING IN C

old_y = y;

gen3(i -1);

x -= h;

drawLi ne(ol d_x ol d_y 15)

old_x =

old_y = y;

gen4(i -1);

void gen4(int i)

if Ci > 0)

genl(i -1);

y -= h;

drawLine(old_x,old_y,x,y,15);

old_x =

old_y = y;

gen4(i -1);

x -= h;

drawLi ne(ol d_x ol d_y x ,y, 15);

old_x =

old_y = y;

gen4(i -1);

y + h;

drawLine(old_x,old_y,x,y,15);

old_x =

old_y = y;

gen3(i -1);

Fractal Dimension of the Hilbert Curve

If you take a close look at the Hubert curve, it is evident that after a sufficiently

large number of iterations, it will pass through every point in the plane. Going

back to the formula for fractal dimension, we have:

D = log(4) / log(2) = 2 (Equation 10-2)

This confirms that the Hilbert curve is a Peano Curve and that it passes through

every point on the plane.

204

CH. 10: THE HILBERT CURVE

Hubert Curve in Three Dimensions

The Hubert curve can also be drawn in higher dimensions, but it becomes rather

difficult to determine the proper orientations of the generator to assure that every

point is covered without duplication. Figure 10-5 shows the second level of a

three-dimensional curve. The program to draw these two displays is listed in

Figure 10-6. This program breaks down for higher levels, since we haven’t found

the proper orientations to insert to assure that they would be correct. You’re

welcome to hunt for these if you want to, but they aren’t obvious.

Figure 10-5: Three-Dimensional Hilbert Curve

205

FRACTAL PROGRAMMING IN C

Figure 10-6: Program to Draw Three-Dimensional Hubert Curve

hil3d = program to generate 30 Hubert curves

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <stdlib.h>

#include “tools.h”

void generate (mt a, mt b, mt C);

mt level ,max_level

mt combination = 0,LINEWIDTH=1, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

mt i;

float point[3],xl,x2,y-one,y2,r;

float x_angle = -55, y_angle = 90, z_angle = 0,cx,cy,cz,sx,

sy SZ;

main(

printf(”Enter level: “);

scanf (“%d”,&level);

max_level = level

setMode(16);

cls(0);

sx = sin(x_angle*.017453292);

sy = sin(y_angle*.017453292);

sz = smn(z_angle*.017453292);

cx = cos(x_angle*.017453292);

cy = cos(y_angle*.017453292);

cz = cos(z_angle*.017453292);

r = 300/(pow(2,level));

point[0] = -200;

point[1] = 50;

point[2] = 0;

generate(3,-2,1);

getch();

generate() = generates curve

void generate (mt a, mt b, mt c)

206

CH. 10: THE HILBERT CURVE

mt sign[3] = {1,1,1);

level--;

if (a < 0)

sign[O] = -1;

a = abs(a)-1;

if (b < 0)

sign[1] = -1;

b = abs(b)-1;

if (C < 0)

sign[2] = -1;

c = abs(c)-1;

xl = point[O]*cx + point[l]*cy + point[2]*cz;

y-one = point[0]*sx + point[l]*sy + point[2]*sz;

if (level > 0)

generate(-2,1 .3);

point[a] += (r*sign[O]);

x2 = point[0]*cx + point[1]*cy + point[2]*cz;

y2 = point[O]*sx + point[1]*sy + point[2]*sz;

drawLine(xl,yl,x2,y2,15);

xl = point[O]*cx + point[1]*cy + point[2]*cz;

y-one = point[0]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(3,1,-2);

point[b] += (r*sign[1]);

x2 = point[O]*cx + point[1]*cy + point[2]*cz;

y2 = point[O]*sx + point[1]*sy + point[2]*sz;

drawLine(xl,yl,x2,y2,15);

xl = point[0]*cx + point[1]*cy + point[2]*cz;

y-one = point[O]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(3,1,-2);

point[a] -= (r*sign[O]);

x2 = point[O]*cx + point[1]*cy + point[2]*cz;

y2 = point[0]*sx + point[1]*sy + point[2]*sz;

drawLine(xl,yl,x2,y2,15);

xl = point[0]*cx + point[1]*cy + point[2]*cz;

y-one = point[O]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(2, -3,1);

pointEd += (r*sign[2]);

x2 = point[0]*cx + point[1]*cy + point[2]*cz;

y2 = point[0]*sx + point[1]*sy + point[2]*sz;

drawLine(xl,yl,x2,y2,15);

xl = point[0]*cx + point[1]*cy + point[2]*cz;

y-one = point[0]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(-3,1.2);

point[a] += (r*sign[0]);

x2 = point[0]*cx + point[l]*cy + point[2]*cz;

y2 = point[0]*sx + point[1]*sy + point[2]*sz;

207

FRACTAL PROGRAMMING IN C

drawLine(xl ,yl,x2,y2,15);

xl = point[O]*cx + point[1]*cy + point[2]*cz;

y-one = point[O]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(-2,3,1);

point[b] -= (r*sign[1]);

x2 = point[O]*cx + point[1]*cy + point[2]*cz;

y2 = point[O]*sx + point[1]*sy + point[2]*sz;

drawLine(xl,yl,x2,y2,15);

xl = point[O]*cx + point[1]*cy + point[2]*cz;

y-one = point[O]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(3,-1,2);

point[a] -= (r*sign[O]);

x2 = point[O]*cx + point[1]*cy + point[2]*cz;

y2 = point[O]*sx + point[1]*sy + point[2]*sz;

drawLine(xl ,yl ,x2,y2,15);
xl point[O]*cx + point[1]*cy + point[2]*cz;

y-one = point[O]*sx + point[1]*sy + point[2]*sz;
if (level > 0)

generate(-2,-1,-3);

1 eve 1 ++;

Using the Hubert Curve for Display Data Storage

In Chapter 4, we looked at a program for compressing display information and

storing it in a disk file for recovery and redisplay at a later time. The run length

encoding method substantially compressed the data file by requiring only two

bytes to define up to 63 pixels in a color plane if they are all alike. This is not

the optimum run length recording for two reasons. The first is that we are limited

to 63 pixels because we only allowed six bits to define the number of pixels

affected. This was done to allow the two most significant bits to be a flag that

indicates that the byte represents a number rather than a data byte. This whole

scheme, in this case, is constrained by the fact that we are trying to work with

bytes; in a word oriented system, we would have more bits available to work

with. The second reason that we don’t have optimum compression is that we

record one line at a time from each of the three color planes. Even if there is a

large block of the same color, it is unlikely that the pixel data from one color

plane line will be the same as that from the next.

208

CH. 10: THE HILBERT CURVE

Now suppose that the color data is represented by a three-dimensional volume in

which the x and y dimensions are the same as they were for the display, but the

third dimension represents color. We would like to record this as a long string in

a single file. One way to do this is to scan through each plane, line by line.

But, as pointed out above, when we move from one line to the next, any

continuity of color data that might let us use maximum run length compression

is lost. What we need is a way of scanning through the three-dimensional space

that will give us a one-dimensional result in which points that were close together

in the original space will still be close together on the resulting line.

Thus a block of a single color on the original display will be lumped together on

the resulting line and is suitable for compression to a few bytes.

The Hilbert curve performs exactly this function. It scans an n dimensional surface

and reduces it to a one-dimensional line, and it has the characteristic that

points that are close together on the n-dimensional surface are close together on

the resulting line. Of course, there is some loss of information on the closeness

of points because a single dimension cannot possibly have the same degree of

spatial associativity that can be achieved with a higher dimension of space.

However, this loss is minimal compared with other techniques that might be used

for transforming the data. F. H. Preston, A. F. Lehar, and R. J. Stevens of the

S. R. D. B. Home Office in England have developed algorithms for using the

Hilbert curve to map image data and for compressing the resulting information.

They insist on calling the Hilbert curve a Peano Curve, which is unfortunate,

since, as we have already discovered, there is a whole family of Peano curves, of

which the Hilbert curve is only a single specific type. They have published severa!

papers on their results, one of which is referenced in the bibliography of this

book.

209

A 11
-- 4D&c

The Sierpinski Curve

The Sierpinski curve is particularly interesting because there are several ways of

generating it that seem to start with quite different premises but end up producing

essentially the same curve and also because it has practical uses for space-filling

required by clustering algorithms used in route optimization.

We are most familiar with the first method of generating the Sierpinski triangle,

namely the use of the initiator/generator technique first described in Chapter 8.

For this curve, the initiator is a straight line. The generator for the curve and the

resulting curve for levels two and three are shown in Figure 11-1. Curves for

levels four, six, and eight are shown in Figure 11-2. It’s not a very good idea to

carry the curve to higher levels than eight, since the triangles begin to fill in too

much and detail is lost. The program to generate the Sierpinski triangle is listed

in Figure 11-3.

211

FRACTAL PROGRAMMING IN C

Figure 11-1: Sierpinski Triangles

(b) ‘level’ =2

(a) Generator

(C) ‘level’ =3

212

CH. 11: THE SIERPINSKI CURVE

Figure 11-2: Higher Levels of Sierpinski Triangles

(a) ‘lever = 4

(b) ‘level’ =6

(C) ‘level’ = 8

213

FRACTAL PROGRAMMING IN C

Figure 11-3: Program to Generate Sierpinski Triangles

sierp = program to generate sierpinski curves

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl. float Yl. float X2. float Y2.

mt level,int sign);

mt generator_size = 3;

mt mit_size = 1;

mt level;

mt initiator_xl[lO] = {-130.130.130,-130}. initiator_x2[1O]=

{130.130.-130.-130) initiatoryl[lO]={O,130,130,-130.

-130). initiatory2[1O]={O,130,-130,-130,130);

mt combination = O,LINEWIDTH=1. OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

mt i. sign;

float Xpomnts[25]. Ypoints[25],xl,x2,yl,y2;

float turtl e_x ,turtl ey ,turtl e_r, angl e,turtl e_theta;

main()

setMode(3);

printf(”\nEnter level (1 - 12): “);

scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(16);

cls(0);

for (i=0; i<init_size; i++)

generate(initiator_xl[i]. initiatoryl[i],

initiator_x2[i],initiatory2[i], level,1);

getch();

generate() = generates curve

void generate (float Xl, float Yl, float X2, float Y2,

mt level ,int sign)

mt j,k,line,int_sign;

float a, b, Xpoints[25], Ypoints[25], temp,temp_r;

turtle_r = sqrt((X2 - X1)*(X2 - Xl) + (Y2 - Y1)*

214

CH. 11: THE SIERPINSKI CURVE

(Y2 - Y1))/2.O:

turtle_x = Xl;

turtle_y = Yl;

Xpoints[O] = Xl

Ypoints[O] = Yl;

Xpoints[3] = X2;

Ypoints[3] = Y2;

turtle_theta = point(Xl,Yl,X2,Y2);

turn(60*sign);

step();

Xpoints[l] = turtle_x;

Ypoints[l] = turtle_y;

turn(6O*sign);

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtle_y;

level --;

sign = -1;

if (level == 0)

for (k=O; k<generator_size; k++)

drawLine(Xpoints[k],Ypoints[k],Xpoints[k+l],

Ypoints[k+l] .15);

else

mt_sign = sign;

for (j=O; j<generator_size; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Yl = Ypoints[j];

Y2 = Ypoints[j+l];

generate (Xl,Yl,X2,Y2,level ,int_sign);

mt_sign *= -1;

Sierpinski Gasket

Looking at the triangle of Figure 11-2(c), you’ll see that this curve could be produced

by starting with one big filled-in triangle and cutting out smaller and

215

FRACTAL PROGRAMMING IN C

smaller ones from it in appropriate places. This is the technique that is used in

the program listed in Figure 11-4.

Figure 11-4: Program to Generate Sierpinski Gasket

siergask = program to generate sierpinski triangle gasket
/

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void node(int xl, mt yOl, mt x2, mt y2, mt x3, mt y3,

mt x4, mt y4, mt x5, mt y5, mt x6, mt y6,

mt level,int length);

void sort(int index, mt x_coord[], mt y_coord[]);

void fillTriangle (mt xl, mt yOl, mt x2, mt y2,

mt x3, mt y3, mt color);

void generate (mt xl, mt yOl, mt x2, mt y2, mt x3,

mt y3int level, mt length);

mt xl,yOl,x2,y2,x3,y3,i,level = 5;

mt combination = 0,LINEWIDTH=1, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

main()

mt xl,x2,x3,yOl,y2,y3,length;

xl = -256;

yOl = -220;

x2 = 256;

y2 = -220;

x3 = 0;

y3 = 223;

length = 512;

setMode(16);

cl s(0);

fillTriangle(xl,yOl,x2,y2,x3,y3,15);

generate(xl,yOl,x2,y2,x3,y3,level,length);

getch();

216

CH. 11: THE SIERPINSKI CURVE

generate() = splits triangle into four small triangles

void generate (mt xl,int yOl, mt x2, mt y2, mt x3,

mt y3, mt level, mt length)

mt 1 ine_length,x4,y4,x5,y5,x6,y6;

line_length = length/2;

x4 = xl + line_length;

y4 = yOl;

x5 = xl + line_length/2;

y5 = yl + 1.732*lmne_length/2;

x6 = x5 + line_length;

y6 = y5;

node (xl,yOl,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,level

line_length);

node() = blanks center triangle and calls ‘generate’

for three surrounding triangles

void node(int xl, mt yOl, mt x2, mt y2, mt x3, mt y3,

mt x4,int y4, mt x5, mt y5, mt x6, mt y6,

mt level,int length)

fillTriangle(x4,y4,x5,y5,x6,y6,O);

if (level == 0)

return(O);

generate (xl,yOl,x4,y4,x5,y5,level-l,length);

generate (x4,y4,x2,y2,x6,y6,level -l,length);

generate (x5,y5,x6,y6,x3,y3,level-l,length);

We first create and fill a large triangle, using the function fill_triangle. Once the

triangle is drawn and filled, the program calls the function generate, which divides

the triangle into four smaller ones. The ‘generate’ function then calls the function

node. This function blanks out the center triangle (by using the function fihiTriangle

with the color black) and then calls generate (in a recursion process) to operate

upon the three peripheral triangles. The procedure continues to whatever

level you have entered into the parameter level. Note that the technique of removing

triangles has a drawback: if you use too high a level, there is insufficient

display resolution to preserve the colored portions of the display and the entire

original triangle is eventually blanked out. The program to perform this opera-

217

FRACTAL PROGRAMMING IN C

tion is listed in Figure 11-4. The resulting Sierpinski triangle is shown in Figure

11-5. The third method of generating the Sierpinski triangle is through the

use of iterated function systems as explained in Chapter 22. A very short and

simple code describes the triangle to the IFS and results in a good representation

being drawn. For further details, refer to Chapter 22.

Figure 11-5: Sierpinski Gasket

Another Method of Generating

the Sierpinski Triangle

There is another method of generating the Sierpinski triangle that makes use of

an algorithm similar to that used for generating strange attractors in Chapter 6

and for IFS systems in Chapter 22. The program listing is given in Figure 11-6.

It starts out with a point at a random location on the screen, then randomly selects

one of three transformations. The first simply creates a new point at half

the x and y coordinates of the previous point. The second creates a new point

218

CH. 11: THE SIERPINSKI CURVE

whose x coordinate is the previous x plus 639 (distance across the display) divided

by two, and whose y coordinate is half the previous y coordinate value. The third

transformation creates a new point whose x coordinate is the previous x plus 320

(half the distance across the display) divided by two, and whose y coordinate is the

previous y coordinate plus 349 (distance down the display) divided by two. The

result of plotting 120,000 points is the Sierpinski triangle, as shown in Figure

11-7(a).

Figure 11-6: Another Program to Generate the Sierpinski Triangle

sirchet3 = program to generate Sierpinski
triangle with chaos algorithm

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include “tools.h”

float s2,x,y;

mt switcher;

long mt 1;

main()

setMode(16);

x = 32767/639;

x = random()/x;

y = 32767/349;

y = random()y;

for (i=0; i<120000; i++)

switcher = 32767/3;

switcher = rand()/switcher;

switch(switcher)

case 0: x /=2;

y /=2;
break;

case 1: x = (x+639)/2;

y /2;

break;

case 2: x = (x+320)/2;

y — (x+349)/2;

plot(x,y,15)

219

FRACTAL PROGRAMMING IN C

Figure 11-7: Sierpinski Triangle and Cousins

(a) Sierpinski Triangle

(b) Cousin with 1/3, 2/3 Multipliers

(c) Cousin with .707 Multiplier

220

CH. 11: THE SIERPINSKI CURVE

Figure 11-8: Replacement for case Statements to Generate Cousin of the

Sierpinski Triangle with 1/3 and 2/3 Multipliers

case O::x 1= 3;

y 1= 3;

break;

case 1::x = (x + 639)*2/3;

y 1= 3;

break;

case 2::x = (x + 639)/3;

y = (y + 349)*2/3;

case 3: x /=3;

y = (y+349)*2/3;

Strange Cousins of the Sierpinski Triangle

I am indebted to my friend Chester Stromswold for pointing out to me the

strange cousins of the Sierpinski triangle that can be generated by slight modifications

of the above program. The first variation uses multipliers of 2/3 or 1/3

instead of 1/2 throughout the program. To generate this figure, replace the case

statements in Figure 11-6 with the code listed in Figure 11-8. The resulting

figure is shown in Figure 11-7(b). The second variation uses a multiplier of

.707 1068 (reciprocal of the square root of two) instead of 1/2 at several critical

places. Figure 11-9 shows the listing for generating this cousin. The resulting

figure is shown in Figure 11-7(c).

Figure 11-9: Program to Generate Cousin of the Sierpinski Triangle

Using .7071068 Multiplier

sirchet2 = program to generate Sierpinski
triangle .707 Cousin with chaos algorithm

/

/ /

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include “tools.h”

float s2. x, y;

mt switcher;

221

FRACTAL PROGRAMMING IN C

long mt 1;

main()

setMode(16);

s2 = sqrt(0.5):

x = 32767/639;

x = rand()/x;

y = 32767/349;

y = rand()/y;

for (1=0; 1<120000; i++)

switcher = 322767/3;

switcher = randU/switcher;

switch(switcher)

case 0: x *s2;

y *s2;

break;

case 1: x = sqrt((639.*639. + x*x)/2);

y = s2

break;

case 2: x = sqrt((320.*320. + x*x)/2.);

y = sqrt((349.*349 + y*y)/2.);

plot(x,y,15);

Sierpinski Box

The same technique described above for the Sierpinski gasket can be applied to

create a rectangular figure, which I have called a Sierpinski box. The program to

create the box is listed in Figure 11-10, and the result is in Figure 11-11. The

program is much like that described previously. Filling a rectangle aligned with

the rows and columns of the display is a much simpler task than filling a

triangle. The function to perform this task is calledfihlRect. Once a large square

is created and filled, it is divided into nine smaller squares by a new version of the

generator function. A new version of the function node is then used to blank out

the center square and then call generate for each of the eight peripheral squares.

Again, caution must be used in selecting the value of the parameter level. If

level is too large, lack of display resolution will cause the entire original square

to be blanked out.

222

CH. 11: THE SIERPINSKI CURVE

Figure 11-10: Program to Generate a Sierpinski Box

sierbox = program to generate rectangular Sierpinski box

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void fillRect(int xl, mt yl, mt x2, mt y2,int color);

void node(int xl, mt yl, mt x2, mt y2, mt x3, mt y3,

mt x4,int y4, mt level,int length);

void generate (mt xl, mt yl, mt x2, mt y2, mt level.

mt length);

mt xl,yl,x2,y2,x3,y3;

mt level = 3;

mt combination = 0,LINEWIDTH=1, OPERATOR=0, ANGLE,

XCENTER, YCENTER;

unsigned long mt PATTERN=OxFFFFFFFF;

main()

mt xl,x2,x3,x4,yOl,y2,y3,y4,length;
xl = -220;

yOl = -220;

x2 = 220;

y2 = 220;

length = 440;

setMode(16);

cls(0);

fillRect(xl,yOl,x2,y2,15);

generate(xl ,yOl, x2 ,y2, level, length)

getch();

generate() = Divides box into nine smaller boxes

void generate(int xl,int yOl,int x2,int y2,int level,int length)

mt line_length,x3,y3,x4,y4;

line_length = length/3;

x3 = xl + line_length;

y3 = yOl + line_length;

x4 = x2 - line_length;

y4 = y2 - line_length;

node (xl,yOl,x2,y2,x3,y3,x4,y4,level,line_length);

223

FRACTAL PROGRAMMING IN C

node() = blanks middle box and c alls ‘genera te’

for eight surrounding boxes

void node(int xl, mt yOl, mt x2, mt y2, mt x3, mt y3,

mt x4, mt y4, mt level ,int length)

fil lRect(x3,y3,x4,y4,O);

if (level == 0)

return(0);

generate (xl,yOl,x3,y3,level -l,length);

generate (x3,yOl,x4,y3,level-1,length);

generate (x4,yOl,x2,y3,level-1,length);

generate (xl,y3,x3,y4,level -1,length);

generate (x4,y3,x2,y4,level -1,length);

generate (xl,y4,x3,y2,level -1,length);

generate (x3,y4,x4,y2,level-1,length);

generate (x4,y4,x2,y2,level -1,length);

fillRect() = fills a rectangle with a specified color

void fillRect(int xl, mt yOl, mt x2, mt y2,int color)

mt Lj;

xl += 320;

yOl = 175 - ((yOl*93) >> 7);

x2 += 320;

y2 = 175 - ((y2*93) >> 7);

for (i=y2; i<=yOl; i++)

for (j=xl; j<= x2; j-i--i-)

plot(j,i ,color);

224

Cl. 11: THE SIERPINSKI CURVE

Figure 11-11: Sierpinski Box

M
::

:

:

: ; ;

U

:

U

:

:

!

: ;

: :w
!!
w

225

12

Trees

In the past few chapters, we created fractal curves by repeatedly replacing line

segments with scaled-down replicas of a generator pattern. The results have been

curves that were self-similar—a blown up version of a small section of the curve

has a very similar shape to that of a larger portion of the curve. Now, we are

going to take a different approach. We will start with a stem; at its end we will

branch off in two directions and draw two branches. We will repeatedly perform

this process at the end of each new branch. The result is a tree. Since one of the

purposes of this exercise is to use these curves to represent trees in nature, we

first need to discuss something about real trees.

Real Trees

The rough outline of the tree creation process given above implies that at each

node in the tree creating process, we branch off in two directions. The result is a

two-dimensional tree, but hopefully it will have some relation to real three-dimensional

trees. Before going further, step outside and look at a few real trees.

First, note that there are two classes of trees, deciduous (trees whose leaves fall

every year) and conifers (evergreens having cones). These two classes of trees are

quite different. The conifers tend to have rings of branches at different heights

around a central trunk. This does not seem to square at all with the binary

branching process, and we will see later that the tree curves that we generate never

look like conifers. Secondly, note that deciduous trees, although they are closer

in appearance to our model, still are much more complex in their structure.

While binary branching is often the rule, there are exceptions—a stem splits into

227

FRACTAL PROGRAMMING IN C

more than two branches, for example. Furthermore, the lengths of stems before

branching occurs differ randomly from the norm, as do the diameters of branches.

The reason for making a point of all this is that we are next going to present

some data on expressions for modeling trees, but we want to make sure that these

are not taken as gospel as representing the way real trees are constructed. In some

literature, authors appear to have been overpowered by their ability to express tree

structures mathematically, to the point that the model supercedes reality. Remember,

the mathematical formulas are a nice way of generating tree curves, but

the real tree is much more complex and much more interesting. If you want a

real challenge, take the tree program that we will list later and attempt to expand

it to cover each of the possible situations for a real tree.

Mathematical Representation of Trees

Everyone seems to be fond of quoting Leonardo da Vinci’s observation to the effect

that the sum of the cross-sectional areas of all tree branches at a given height

is constant. This should not be too surprising; the tree is required to pass nutrients

from the roots to the leaves and for a given nutrient requirement one might

expect that the “pipe” cross-sectional area required for nutrient transportation

would be constant, regardless of height or the number of pipes. When we translate

this observation to diameters (or widths when we make our two-dimensional

drawings), we have an expression of the form:

= + (Equation 12-1)

where D is the diameter of the stem, Dj and D2 are the diameters of the two

branches that the stem splits into, and a is 2 according to da Vinci. There are

other forms of tree-like structures. The simple model given above probably applies

better to river networks than to trees, since the likelihood that more than

two tributaries of a river system would join at the same place is remote. Other

trees are found in the human body in the form of the arterial blood transportation

system and the bronchi. Investigations have shown that a good approximation

for a for the bronchial system is 3 and for the arteries is 2.7.

228

CH. 12: TREES

When we come to construct our program for tree generation, we shall use the expression:

Bn+i = 2-1/a Bn (Equation 12-2)

where B is the diameter of the lower level branch and B+i represents the

diameter of each of the two branches into which Bn splits. We also need to consider

the length of the branches. McMahon studied various typical trees and

concluded that a similar recursive formula for length could be written as:

Ln+i = 23/(2a) Ln (Equation 12-3)

where L is the length of the predecessor branch and Ln+i is the length of each

of the two successor branches after bifurcation.

Tree-Drawing Program

Figure 12-1 lists a program for drawing trees. It permits entering the initial

length and width of the stem, the value of a for the left and right sides of the tree,

the left and right branching angles, and the level of recursion. You will note that

the program is a lot like those we have been using in the previous few chapters.

It first computes the right and left width and length factors using equations 12-2

and 12-3. Next it sets up the parameters for the beginning and end of the stem

and its width and draws it. The turtle_theta parameter is then set up to point in

the direction of the stem, and is turned to the left angle. The function generator

is run recursively until the lowest level is reached, then the turtle_theta parameter

is reset in the stem direction and turned through the proper angle and the generate

function is run again. Note that the height and width parameters passed to the

generate function are scaled down by multiplying by the appropriate scale factors

at the time of the function call.

229

FRACTAL PROGRAMMING IN C

Figure 12-1: Program to Generate Trees

trees = PROGRAM TO GENERATE TREES

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <stdlib.h>

#include <time.h>

#include “tools.h”

mt combination = O,LINEWIDTH=1, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

mt i,j;

float hei ght ,wi dth ,left_alpha, right_alpha ,left_angle,

right_angle, left_width_factor ,left_height_factor,

right_wi dth_factor, ri ghthei ght_factor;

float x,y,xl,yOl;

float turtle_x,turtley,turtle_r,turtle_theta;

mt level;

void generate(float x, float y, float width, float height,

float angle,int level);

main()

printf(”\nEnter stem height: “);

scanf(”%f”,&height);

printf(”\nEnter stem width: “);

scanf(”%f”,&width);

printf(”\nEnter left alpha: “);

scanf(”%f”,&left_alpha);

printf(”\nEnter right alpha: “);

scanf(”%f”,&right_alpha);

printf(”\nEnter left branch angle: “);

scanf(”%f”,&left_angle);

printf(”\nEnter right branch angle: “);

scanf(”%f”,&rightangle);

printf(”\nEnter recursion level: “);

scanf(”%d”,&level);

leftwidth_factor = pow(2,-1/left_alpha);

leftheight_factor = pow(2,2/(3*leftalpha));

right_width_factor = pow(2,-1/right_alpha);

right_height_factor = pow(2,2/(3*right_alpha));

x = 0;

y = -235;

LINEWIDTH = width;

230

CH. 12: TREES

setMode(16);

cls(9);

xl = 0;

yOl = y + height;

drawLine(x,y,xl,yOl,15);

turtle_theta = point(x,y,xl,yOl);

turn(left_angle);

generate(xl ,yOl .1 eft_width_factor*width,

1 eft_hei ght_factor*hei ght ,left_angle, level);

turtle_theta = point(x,y,xl,yl);

turn(-right_angle);

gene rate C xl ,yOl, ri ght_wi dth_f actor*wi dth

ri ght_hei ght_factor*hei ght, right_angle ,level);

getch();

void generate(float x, float y, float width, float height,

float angle,int level)

float xl,yOl;

turtle_x = x;

turtle.y = y;

turtle_r = height;

step();

xl = turtle_x;

yOl = turtley;

LINEWIDTH = width;

level--;

if (level<3)

drawLine(x,y,xl,yOl,1O);

else drawline(x,y,xl,yOl,6);
if (level > 0)

turtle_theta = point(xl,yl,xl,yOl);

turn(left_angle);

generate(turtl e_x turtl ey,left_wi dth_factor*wi dth,

left_height_factor*height,left_angle,level);

turtle_theta = point(x,y,xl,yOl);

turn(-right_angle);

generate(xl ,yOl ,left_wi dth_factor*wi dth,

left_height_factor*height,right_angle,level);

The generate function begins by setting the turtle coordinates to the x and y

coordinates passed to the function (which mark the beginning point for the function’s

operations. The turtle_r (step size) parameter is set to the height that was

passed to the function. (The turtle angle was already set properly before the

231

FRACTAL PROGRAMMING IN C

function was called.) The function makes the turtle step, extracts the new coordinates,

sets the LINEWIDTH parameter to the width passed to the function,

decrements level, and then draws the line. The colors are set to create a brown

trunk and green foliage. If level has reached zero, this is the end; otherwise, the

function turns the turtle by the left angle, appropriately scales down the length

and width, and calls itself to make another left-hand line. When this has been

done recursively, the turtle is reaimed to its original position when the function

was called, rotated by the right angle, and generate is again called with the appropriately

scaled parameters to do the right branch.

Note that it is fairly easy to insert parameters into this program that will cause it

to attempt to exceed the bounds of the display. The function drawLine does not

take kindly to having the bounds of the display exceeded. Not only will it attempt

to draw lines outside the display, sometimes causing strange things to appear

in unusual locations on the display, but also the integer types used in the

function can have their capacity exceeded, with strange results. If you want to be

absolutely safe, rewrite the drawLine function providing safeguards so the display

limits cannot be exceeded. However, you can avoid the necessity for this labor

by just being very careful which parameters you send to the tree generating program.

Figure 12-2 is a chart of the parameters used to generate the trees that appear in

Figures 12-3 through 12-11. Figure 12-3 shows three “stick” trees, each using

the same parameters except for different values of a. They will give you an idea

of how a affects the tree drawing. Figure 12-4 is set up to look as much like a

real bare tree as possible. Figure 12-5 is similar, except that it uses a greater

number of iterations to represent leaves. If you ran the program in color, the

screen is cleared to light blue (color 9), the stem is drawn brown (color 6), and

the lines in the generate function are drawn in light green (color 10) for values of

level less than four and in brown for levels higher than that, giving a fairly

realistically colored tree.

Figure 12-6 is a one-sided curve that shows what happens when a is set close to

zero. You must have a small value inserted or you will get a divide by zero error.

Note that all of the displayed curve is generated very quickly and then a lot of

time is spent computing nothing that will be displayed. Figure 12-7 makes use

232

CH. 12: TREES

of the value of a that is supposed to be representative of the bronchial system.

You can decide for yourself whether it is realistic (if you have ever seen a

bronchial system) or determine how the parameters should be modified for a better

representation.

Figure 12-8 makes use of the value of a that is supposed to represent the arterial

system. Figures 12-9 and 12-10 show the interesting curves that are obtained

when the branching angle is set to 90 degrees. They don’t look much like real

trees. Figure 12-1 1 is the same except that the branching angle is 85 degrees,

which gives a cockeyed tilt to the whole picture.

Figure 12-2: Parameters for Tree-Drawing Program

Left Right

Figure Height Width Left x Right x Angle Angle Level

12-3a 100 1 1.1 1.1 25 25 6

12-3b 100 1 1.5 1.5 25 25 6

12-3c 100 1 2.0 2.0 25 25 6

12-4 120 20 2.0 2.2 24 26 6

12-5 80 20 2.0 2.2 20 28 14

12-6 200 35 2.0 0.00001 55 0 18

12-7 75 10 3.0 3.0 33 33 9

12-8 75 10 2.7 2.7 33 33 9

12-9 250 35 1.2 1.2 90 90 10

12-10 250 100 1.0 1.0 90 90 10

12-11 200 35 1.2 1.2 85 85 9

233

FRACTAL PROGRAMMING IN C

Figure 12-3: Stick Trees with Different a’s

(b) ‘a=1.5

(a) ‘a=1.1

(c) ‘a’=2.O

234

Cl. 12: TREES

Figure 12-4: Bare Tree

Figure 12-5: Tree with Foliage

235

FRACTAL PROGRAMMING IN C

Figure 12-6: One-Sided Tree

Figure 12-7: Bronchial System Tree

236

CH. 12: TREES

Figure 12-8: Arterial System Tree

Figure 12-9: Tree with 90-Degree Branch Angles

237

FRACTAL PROGRAMMING IN C

Figure 12-10: Tree with 90-Degree Branch Angles and Wider Stem

Figure 12-11: Tree with 85-Degree Branch Angles

238

13

Working with Circles

So far, we have done all of our generating of fractals using straight line segments.

Since these simple geometric figures have resulted in very complex fractal

curves that are of great beauty and interest, we might suspect that we can use

circles, which are geometric figures of a greater order of complexity, to generate

fractals that are even more interesting. To some extent this is true. The problem

is that the geometry required to put together a fractal pattern of circles, determining

their radii and their coordinates, is so much more complicated than that used

for fractal lines that it has barely been explored. Those who have investigated it

are not willing to reveal the secrets of how they compute their fractal curves, although

they are more than willing to display their pretty pictures. We’ll therefore

do the best we can. In this chapter we’ll show you how to draw two representative

fractals using circles. In the course of this, you will observe that we have to

make use of some geometric formulas that rarely occur in geometry books, and

when they do, they’re not always clearly explained.

With this introduction, you are on your own. The field of circle fractals is a large

one with lots of room for discovery, but you may have to do a lot more research

into geometry than you thought you might ever want to do.

Apollonian Packing of Circles

This is one of the most basic of fractal curves involving circles. First we draw

three circles, each of which is externally tangent to the other two. The result of

their joining is a curvilinear triangle. Next, we draw the circle that will fit into

239

FRACTAL PROGRAMMING IN C

the curvilinear triangle, being tangent to each of the three given circles. This

yields three more, smaller, curvilinear triangles. In a similar manner, we draw a

circle in each of these triangles, tangent to the three circles that make up the triangle.

Now, from each curvilinear triangle, three more smaller curvilinear triangles are

generated. Continuing the process infinitely yields the ultimate fractal curve, but

for practical programming we will stop the process after six or seven iterations;

before too long, the circles become so small that they either appear on our screen

as dots, or not at all. It can be shown that the resulting curve is fractal and has a

Hausdorif-Besicovitch dimension (discovered by Boyd) of approximately 1.3058.

This begs the question of how to perform this repeated circle drawing task. Provided

we can figure out how to draw a circle within a curvilinear triangle, knowing

the coordinates of the center and the radius of each of the three circles that

generate the curvilinear triangle, then we can use a recursive process similar to

that we have used for previous fractals to draw repeated circles. It is the former

that is the problem, however. Fortunately, by using the principles of analytic

geometry, we can determine the x and y coordinates of the new circle, providing

we know its radius. The process is tedious but not difficult.

Soddy’s Formula

It turns out that there is a formula for the radius of the circle inscribed within the

curvilinear triangle, given solely in terms of the radii of the three circles that

make up the triangle. It is called Soddy’s formula. One form of this formula is

the expression:

2(1/a2 + 1/b2 + 1/c2 + 1/r2) = (1/a + 1/b + 1/c + 1/r) •(Eq. 13-1)

where a, b, and c are the radii of the three given tangent circles and r is the radius

of the circle that is to be drawn tangent to the three given circles. The form of

the expression that we will work with is:

hr = 1/a + 1/b + 1/c + 2I(1/bc + 1/ac + 1/ab) (Eq. 13-2)

240

CH. 13: WORKING WITH CIRCLES

Once we know the radius of the circle to be drawn and the radii and center coordinates

of the three given circles, we can do some complicated but very straightforward

mathematics to determine the x and y coordinates of the center of the circle

to be drawn. We can then draw the circle.

Program for Apollonian Circle Packing

Figure 13-1 lists the program for the Apollonian packing of circles. It first asks

for a level to which recursion will continue before the program terminates. Then

the three original circles are drawn. If you wish to change the location of these

circles, you can either calculate their locations or arrange them by running just

the first part of the program several times and changing the circle coordinates until

you find the desired location and conditions of tangency by trial and error.

Next, the gen circle function is run to draw and fill the new circle in the first

(biggest) curvilinear triangle. It starts by using Soddy’s formula to determine the

radius of the circle to be drawn. Next, it computes the x and y coordinates of the

center for the new circle. Then the circle is filled. The color increments each

time a circle that is drawn, so that there will be a distinction between the different

circles.

Figure 13-1: Program to Perform Apollonian Packing of Circles

apollo = apollonian packing of circles

#include <dos.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include “tools.h”

void gen_circle(float xa,float ya,float a,float xb,float yb.

float b,float xc,float yc,float c, mt level);

void node(float xa ,float ya ,fl oat a ,float xb,fl oat yb,

float b,float xc,float yc,float c, float xs, float ys, float s,

mt level);

mt LINEWIDTH = 1, OPERATOR = 0;

mt color = 1;

241

FRACTAL PROGRAMMING IN C

mt level;

unsigned long mt PATTERN = OxFFFFFFFF;

unsigned char PALETTE[16]={0,1,2,3,4,5,20,7,56,57,58,59,60,61,62,63};

float a, b , c • s xn ,yn ,cs, bs , xa ,xb ,xc ,ya ,yb,yc ,xs ,ys;

main()

float temp;

printfVEnter level: “);

scanfV%d”,&level);

setMode(16);

a = 625;

b = 375;

C = 945;

xa = -725;

ya = 235;

xb = 275;

yb = 268;

xc = 180;

yc = -1048;

fillOval(xa,ya,a,color++,1.0);

fillOval(xb,yb,b,color++,1.O);

fillOval(xc ,yc, c, col or++, 1. 0)

gen_circle(xa,ya,a,xb,yb,b,xc,yc,c,level);

getch();

gen_circle() = funct ion to generate a circle inside

a cur vilinear triangle

void gen_circle(float xa,float ya,float a,float xb,float yb,

float b,float xc,float yc,float c, mt level)

float s, temp;

level

s = 1/a + 1/b + 1/c + 2*(sqrt(1/(b*c) + 1/(c*a) +

5 = us;

if (xb == xa)

temp = (s+a)*(s+a) - (s+c)*(s+c) - xa*xa + xc*xc

- ya*ya + yc*yc;

ys = (temp*(xbxa) - (xc - xa)*((s+a)*(s+a) -

(s+b)*(s+b) - xa*xa + xb*xb - ya*ya + yb*yb))

/(2*((ycya)*(xbxa) - (ybya)* (xc - xa)));

xs = (temp - 2*ys*(yc - ya))/(2*(xc - xa));

242

CH. 13: WORKING WITH CIRCLES

else

temp = (s+a)*(s+a) - (s+b)*(s+b) - xa*xa + xb*xb

- ya*ya + yb*yb;

ys = (temp*(xcxa) - (xb - xa)*((s+a)*(s+a) -

(s+c)*(s+c) - xa*xa + xcxc - ya*ya + yc*yc))

/(2*((ybya)*(xcxa) - (ycya)* (xb - xa)));

xs = (temp - 2*ys*(yb - ya))/(2*(xb - xa));

color = (++color)%14 + 1;

fillOval(xs,ys,s,color,1.O);

color = (++color)%14 + 1;

if (level > 0)

node(xa ,ya a, xb ,yb, b ,xc ,yc c xs ,ys ,s,l evel);

node() = function to generate circles in three new

curvilinear triangles created by ‘gen e’

void node(float xa,float ya,float a,float xb,float yb,

float b,float xc,float yc,float c, float xs, float ys, float s,

mt level)

gen_circle(xa,ya,a,xb,yb,b,xs,ys,s,level);

gen_circle(xb,yb,b,xc,yc,c,xs,ys,s,level);

gen_circle(xa,ya,a,xc,yc,c,xs,ys,s,level);

Note that there are two alternate (and redundant) methods for computing the coordinates

of the center of the circle (xs and ys). Unfortunately, if the x coordinates

of the centers of two of the three circles making up the curvilinear triangle are the

same, using one of these methods will cause a divide by zero, resulting in the

program crashing. Consequently, if one pair of x coordinates are equal, the other

pair is used. Observe that all three x coordinates cannot be the same; if they

were, the three circles would be in a straight line and no curvilinear triangle

would be generated. Once the x and y coordinates of the center of the new circle

and its radius are known, the fihlOval function can then be used to fill the new

circle. Each time gen circle is called, it reduces the level by one from that transferred

by the calling function. When the level is reduced to zero, the function

terminates after filling the new circle; otherwise, the function node is called to

243

FRACTAL PROGRAMMING IN C

compute and fill circles in each of the three new curvilinear triangles comprising

two of the original three circles and the new circle. Plate 3 (in the color section)

shows the figure produced by running this program.

Inversion

In producing fractal curves involving circles, there is an interesting mapping

technique which can transform a fairly simple pattern of circles into a much more

interesting one. The technique also has uses in geometry, where it can often

simplify complex relationships so that proofs of theorems become much simpler.

The technique is called inversion. It makes use of a given circle to map all of the

points on a plane onto the plane, except for the point at the very center of the

circle. The mapping is done as follows:

1. A line is drawn from the center of the circle (0) to the point to be mapped

(P).

2. The new mapped point P’ is placed on the line OP so that the product of the

distances OP and OP’ is equal to the square of the radius of the circle, r2.

Inversion has several interesting properties. They include:

1. Any circle whose circumference passes through the center of the reference

circle, 0, maps into a straight line parallel to the tangent through the circle

being mapped at 0.

2. Any circle which is orthogonal to the circle of inversion inverts into itself.

3. Any other circle maps into a circle.

4. You might suspect that if a circle maps into another circle, the center of the

first circle would map into the center of the new circle, but this is not true.

If you want to perform an inversion and then plot it on the screen, you cannot

successfully use data from the original circle to determine the center and

244

CH. 13: WORKING WITH CIRCLES

radius of the mapped circle and then draw it using this information. You

must map every point on the circle to its new location and plot it there.

In order to perform the inversions in a real computer program, we make use of

the function inversionOval, listed in Figure 13-2. This program draws a circle in

the same manner as the drawOval function in Chapter 5, except that instead of

plotting each point of this circle, the function computes the location of the point

following inversion and plots a point there instead.

Figure 13-2: Function to Perform Inversion on an Oval

inverseOval() = draws the inverse of an oval with

specif ied center, ra dius, color, and

aspect rat io

void inverseOval(float x, float y, float b, mt color,

float aspect)

union REGS reg;

mt i , bnew,new_col , new_row;

float length,new_length;

long a,a_square, b_square, two_a_square, twO_b_square,

four_a_square, four_b_square,d,row,col

b -= LINEWIDTH/2;

a = b/aspect;

for (i=1; i<=LINEWIDTH; i++)

b_square = (long)b*b;

a_square = (a*a);

row = b;

col = 0;

two_a_square = a_square << 1;

four_a_square = a_square << 2;

four_b_square = b_square << 2;

two_b_square = b_square << 1;

d = two_a_square * (((long)row 1)*(row)) + a_square

+ two_b_square*(1a_square);

while (a_square*(row) > b_square * (col))

245

FRACTAL PROGRAMMING IN C

length = sqrt((x_o - col - x)*(x_o - col - x) +

(y_o - row - y)*(yo - row - y));

new_length = r_sq/length;

new_col = x_o - (x_o - col - x)*newjength/length

new_row = -y_o + (y_o - row - y)*new_length/length;

plots(new_col ,new_row,color);

length = sqrt((x_o + col - x)*(x_o + col - x) +

(y_o - row - y)*(yo - row - y));

new_length = r_sq/length;

new_col = x_o - (x_o + col - x)*new_length/length;

new_row = -y_o + (y_o - row - y)*new_length/length;

plots(new_col ,new_row,color);

length = sqrt((x_o - col - x)*(x_o - col - x) +

(y_o + row - y)*(yo + row - y));

new_length = r_sq/length;

new_col = x_o - (x_o - col - x)*new_length/length;

new_row = -yo + (y_o + row - y)*newjength/length;

plots(new_col ,new_row,color);

length = sqrt((x_o + col - x)*(xo + col - x) +

(y_o + row - y)*(yo + row - y));

new_length = r_sq/length;

new_col = x_o - (x_o + col - x)*new_length/length;

new_row = -y_o + (yo + row - y)*new_length/length;

plots(new_col ,new_row,color);
if (d>= 0)

row- -;

d -= four_a_square*(row);

d += two_b_square*(3 + (col<<1));
co 1 ++;

d = two_b_square * (col + 1)*col + two_a_square*(row *

(row -2) +1) + (1two_a_square)*b_square;
while ((row) + 1)

length = sqrt((x_o - col - x)*(x_o - col - x) +

(y_o - row - y)*(yo - row - y));

new_length = r_sq/length;

new_col = x_o - (x_o - col - x)*new_length/length;

new_row = -y_o + (y_o - row - y)*new_length/length;

plots(new_col ,new_row,color);

length = sqrt((x_o + col - x)*(x_o + col - x) +

(y_o - row - y)*(yo - row - y));

new_length = r_sq/length;

new_col = x_o - (x_o + col - x)*new_length/length;

new_row = -y_o + (y_o - row - y)*new_length/length;

plots(new_col ,new_row,color);

length = sqrt((x_o - col - x)*(x_o - col - x) +

(y_o + row - y)*(yo + row - y));

246

CH. 13: WORKING WITH CIRCLES

new_length = r_sq/length;

new_col = x_o - (x_o - col - x)*new_length/length;

new_row = -y_o + (y_o + row - y)*new_length/length;

plots(new_col ,new_row,color);

length = sqrt((x_o + col - x)*(x_o + col - x) +

(y_o + row - y)*(yo + row - y));

new_length = r_sq/length;

new_col = x_o - (x_o + col - x)*new_length/length;

new_row = -y_o + (y_o + row - y)*new_length/length;

plots(new_col ,new_row,color);

if (d<= 0)

Co 1 ++;

d += four_b_square*col

row- -;

d += two_a_square * (3 - (row<<1));

b++;

Pharaoh’s Breastplate

Pharaoh’s Breastplate is the name given by Mandeibrot to a figure created using

inversion. The figure that we are going to generate here is not quite the same as

Mandeibrot’s, but it does make use of inversion and gives you some idea of how

the technique works. Figure 13-3 shows a pattern of circles, before inversion.

The two large circles represent the final reference circles. They are mapped by

inversion into the upper and lower horizontal lines. The other circles are tangent

to each other and to the horizontal lines. They can extend as far to the left and

right as you want them to. The number of circles is set by a parameter in a for

loop. For Figure 13-3, the parameter is set to 3; when we perform the final inversion

program, the parameter is set to 20.

A word needs to be said about the number that is inserted into the program for

r_sq. This is the radius of the reference circle that is used in the inversion mapping.

The center of this circle is always at the point of tangency of the two large

circles, so that they are mapped into straight lines by the inversion. The radius

of the reference circle determines where these two lines are located. All of the

other circles that the program generates are referenced to these two lines. When

247

FRACTAL PROGRAMMING IN C

the inversion of these circles takes place, they end up being referenced to the two

large circles, so that no matter what value is used for the radius of the reference

circle, all of the smaller circles will be referenced to the same place in the final

drawing.

Figure 13-3: Pharaoh’s Breastplate Circles before Inversion

For Figure 13-3, where we are actually showing the uninverted small circles, we

chose a value for r_sq which would cause the two reference straight lines to appear

at a convenient location on the display. There is another consideration,

however. The smaller the reference circle radius, the closer together will be the

two straight lines which represent the mapping of the two large circles. Consequently,

all of the small circles will be smaller, and when we run inverseO vat,

there will be fewer points generated to make up these small circles. If we generate

a lot fewer points than we would normally have drawn to produce the inverted

circle, the resulting circle will be rather coarse and tend to loose its circular shape.

We want to make r_sq large, but not so large that we exceed the range of values

248

CH. 13: WORKING WITH CIRCLES

that the computer can conveniently handle. The value of 400000 used in the

pharaoh program is a good compromise for this particular program.

In both the program that created Figure 13-3 and the final program, we start by

generating the two reference circles and then invert them to create the two parallel

lines. (In the final program, the lines are not drawn.) Then we generate all of the

necessary circles in reference to the two parallel lines. The mathematics is again

complex, but straightforward; if you wish, you can tackle the geometry for determining

the radius and center coordinates of each set of circles to see how the

results given in the program are obtained. It may be that there are some neat

tricks of inversion or recursion that I have missed that will simplify the program,

but the approach used here is the simplest one and gets down to a reasonably fine

detail of circles. If you want to add more circles, go ahead and compute the necessary

radii and center coordinates.

Figure 13-4 is the final program to generate the Pharaoh’s breastplate. The resulting

picture is shown in Figure 13-5.

Figure 13-4: Program to Generate Pharaoh’s Breastplate

pharaoh = program to generate pharaoh’s breastplate

#include <stdio.h>

#include <math.h>

#include “tools.h”

#include <stdlib.h>

#include <dos.h>

void inverseOval(float x, float y, float b, mt color,

float aspect);

void gen_circle(float x,float y,float radius);

unsigned long mt PATTERN = OxFFFFFFFF;

mt i,j,LINEWIDTH = 1,OPERATOR=O;

double a_l ine,b_1 ine,x_o,y_o,radius,r_sq,height;

main()

float xbig,ybig,rbig,xtan,ytan,rtan;

249

FRACTAL PROGRAMMING IN C

setMode(16);

cls(0);

r..sq = 400000;

xbig = 0;

ybig = 0;

rbig = 220;

rtan = 140;

xtan = 0;

ytan = ybig + rbig - rtan;

y_o = ybig - rbig;

x_o = xbig;

drawOval (xbig, ybig,rbig,15,1.0);

draw0val(xtan ,ytan , rtan , 15, 1. 0)

a_line = r_sq/(2*rbig);

b_line = r_sq/(2*rtan);

height = (b..line - a_line);

radius = height/2;

height = radius*sqrt(2.0);

for (1=0; 1<20; i++)

gen_circle(x_o + height*i,yo + ajine + radius,

radi us);

gen..circle(x_o + height*i,y_o + a_line + radius/2,

radius/2);

gen_circle(x_o + height*i,y_o + b_line - radius/2,

radius/2);

gen_circle(x_o + height*i + height/2,y_o + a_line +

3*radjus/4,radius/4);

gen_circle(x_o + height*i + height/2,y_o + b_line -

3*radjus/4,radlus/4);

gen_circle(x_o + height*i + height/2,y_o + a_line +

radius/8, radius/8);

gen_circle(x_o + height*i + height/2,y_o + b_line -

radius/8, radius/8);

gen_circle(x_o + height*i + height/2,y_o + a_line +

5*radius/12,radius/12);

gen_circle(x_o + height*i + height/2,y_o + b_line -

5*radius/12, radius/12);

gen_circle(x_o + height*i + 0.4*height,y_o + a_line +

0.3*radius,radius/10);

gen..circle(x_o + height*i + 0.6*height,y_o + a_line +

0.3*radius,radius/10);

gen..circle(x_o + height*i + 0.4*height,y_o + b_line -

0.3*radius,radius/10);

gen..circle(x_o + height*i + 0.6*height,y_o + b..line -

0.3*radius,radius/10);

getch();

250

CH. 13: WORKING WITH CIRCLES

gen_circle() = performs two inversions

void gen_circle(float x,float y,float radius)

inverseOval(x ,y , radius, 15,1. 0)

inverseOval(-x,y,radius,15,1.O);

Figure 13-5: Pharaoh’s Breastplate

251

14

The Mandeibrot Set

The Mandelbrot set is probably the most well-known of the fractal curves. In

almost every magazine, you will come across an article on the Mandelbrot set

and some examples of the pictures of its displays. Almost every bulletin board

has a Mandelbrot set program. Originally, the Mandelbrot set was discovered by

Benoit Mandelbrot when he was investigating the behavior of the iterated function:

Zn+1 = Zn2 + c (Equation 14-1)

where both z and c are complex numbers. First, to get a feel for the function,

consider the very simple situation where z is a real number and c is zero. If z

is 1, the value of z remains at 1, no matter how many iterations are performed. If

z is less than 1, the function Z will approach zero as n approaches infinity. If

z is greater than one, Z will approach infinity.

The speed at which Z approaches zero for numbers less than one or approaches

infinity for numbers greater than one depends upon the original value of the

function zQ. The smaller this value, the faster the function will approach zero for

starting values less than one. The larger the value, the faster the function will

approach infinity for starting values greater than one.

This over-simplified example is fairly easy to understand. When z becomes a

complex number and/or c becomes a complex number instead of zero, the situation

becomes much more complex. In fact, for years mathematicians steered

away from the complexities of this kind of expression, assuming that it eventu253

FRACTAL PROGRAMMING IN C

ally reached limiting values in some fairly regular fashion. It was only when

computers were applied extensively to the problem that it was discovered that the

behavior of the expressions was quite chaotic and that the result of performing

many iterations of the expression for various values yielded fractal curves.

In plotting the function in some meaningful way, we want to show what happens

to the expression for some range of reasonable initial conditions. To do this, we

shall perform a sufficient number of iterations to determine the behavior of the

iterated function. One attractor for the Mandelbrot set is infinity. It can be

shown that if the magnitude of the function ever exceeds two, it will eventually

be attracted to infinity.

For practical purposes, we find that for most cases, if the magnitude of the

function does not exceed two within 512 iterations, it probably never will. We

will color such points black. The rest of the colors that we have available will

be used to indicate the speed with which the function is approaching infinity,

based upon the number of iterations that are required for the magnitude to

become greater than two.

What we have done is to cycle through the sixteen colors available to us on the

EGA, incrementing the color value once for each iteration. Thus, there is a color

change each time the number of iterations required to blow up increases by one.

However, what you do with the colors is pretty much up to your own imagination.

You can cycle as has been done here or with groups of iterations assigned

to different color values, and you can assign colors any way you wish. The result

is often not only artistic, but reveals a different meaning about how the function

behaves as the parameters are changed.

Once we know what we are going to do with the colors, we have to decide what

the x and y coordinates of our mapping of the function will represent. There are

two basic ways to go here. One is to let z be equal to zero and let the x and y

coordinates of the display represent the real and imaginary parts of c as they

change over some selected range of values. This gives rise to the well-known

Mandelbrot set.

254

CH. 14: THE MANDELBROT SET

The other approach is to select a value for c and let the x and y axis be equal to

the real and imaginary parts of z as it changes over a selected range of values.

This gives rise to the Julia sets, which will be described in Chapter 15.

Interestingly enough, the Mandelbrot set forms a sort of map of the Julia sets; if

you select a point on the Mandelbrot set and enlarge the area around it

sufficiently, you get a pattern that is very similar to the Julia set for that same

point. Thus, you can use the Mandelbrot set to determine which Julia sets you

would like to plot.

Simplified Mandeibrot Set Program

Figure 14-1 lists a plain vanilla program for generating the Mandeibrot set. The

heart of the algorithm consists of two for loops and one while loop. The for

loops make sure that each pixel in the vertical and horizontal directions is assigned

a color value by the algorithm.

Figure 14-1: Program to Generate Mandeibrot Set

mandel = program to map the Mandeibrot set

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>

#include “tools.h”

const mt maxcol = 640;

const mt maxrow = 350;

const mt max_colors = 16;

mt max_iterations = 512;

mt max_size = 4;

mt LINEWIDTH=1. OPERATOR=OxOO, ANGLE. XCENTER, YCENTER;

unsigned long mt PATTERN=OxFFFFFFFF;

float Q[350];

float XMax,YMax,XMIn,YMIn;

main()

float P,deltaP, deltaQ, X. Y, Xsquare. Ysquare;

255

FRACTAL PROGRAMMING IN C

mt i,color, row, col,error,response,repeat=0x30;

XMax = 1.2;

XMIn = -2.0;

YMax = 1.2;

YMIn = -1.2;

setMode(16);

cls(7);

deltaP = (XMax - XMin)/(maxcol);

deltaQ = (YMax - YMin)/(maxrow);

Q[0] = YMax;

for (row=1; row<=maxrow; row++)

Q[row] = Q[row-1] - deltaQ;

P = XMin;

for (colO; col<maxcol ; col++)

if (kbhit() != 0)

exit(0);

for (row=0; row<=maxrow; row++)

X = Y = Xsquare = Ysquare = 0.0;

color = 1;

while ((color<max_iterations) && ((Xsquare +

Ysquare) < max_size))

Xsquare = X*X;

Ysquare =

Y = X;

Y += Y + Q[row];

X = Xsquare - Ysquare + P;

color ++;

plot(col, row, (color % max_colors));

P += del taP;

getch();

The while loop performs the successive iterations of the equations until the

magnitude of the square of the function is larger than 4 or until the number of

iterations reaches 512, whichever occurs first. In squaring the complex function

z, and adding the complex number c, the real part is:

xn = xn-12 - Yn-12 + p (Equation 14-2)

256

CH. 14: THE MANDELBROT SET

and the imaginary part is:

y = 2xn-lyn-1 + q (Equation 14-3)

In determining how to optimize the performance of our algorithm, we need to be

aware of the fact that the while ioop can be iterated as many as 1.147 x 108

times, the for ioop for rows is iterated 224,000 times, and the for ioop for

columns is called only 640 times. Thus, it is important to minimize the time

spent in calculations in the while loop, and fairly important to minimize the

time spent in the for loop for rows. The time spent in the for loop for columns

is relatively insignificant. We have minimized time spent in the while loop by

using the square of the magnitude (x2 + y2) for the comparison, so that we don’t

have to perform any square roots. In addition, in computing y, we have avoided

multiplying by two by substituting an addition, which is a much faster process.

In the row for loop, we have avoided computing the value of q at each pass

through the loop. This would require a total of 224,000 calculations of q during

passes through the loop, although there are only 350 distinct values of q used.

Consequently, we calculate these 350 values first and put them in an array and

then select the proper one for each pass through the loop. The program includes

a test of the keyboard with provision to exit when a key is struck, in case the

user doesn’t want to complete a picture.

This test, however, is done within the outermost for loop. This means that, if a

key is struck, the program will complete the column that it is working on before

exiting. This delays the exit a little, but prevents the key check from slowing up

the program while a picture is being drawn. Plate 4 is a picture of the entire

Mandelbrot set as drawn by this program. The lettered locations indicate points

for P and Q for Julia sets.

257

FRACTAL PROGRAMMING IN C

Improved Mandeibrot Set Program

The program described above produces the Mandeibrot set, but it doesn’t have any

bells and whistles to make our job easier. An improved program would have the

following characteristics:

1. It should be capable of saving a partial picture at any time we want to interrupt

it and then picking up from where it left off to complete the picture at

some future time.

2. It should be capable to save a completed picture and redisplay it on the screen

in just a few seconds.

3. It should be capable of selecting a small section of a picture and blowing it

up to a full screen display.

4. It should be capable of modifying the EGA palette to display any desired

colors.

The program listed in Figure 14-2 will meet all of the requirements for the improved

program. The program begins by asking for a screen number between 00

and 99. Whatever number is entered becomes part of a file name of the form

mandel##.pcx, where ## is the screen number entered. The restore_screen function

described in Chapter 4 is then run to display this file on the screen. If the

file is not found, or if it is not a proper .pcx file, the function displays a

diagnostic message and returns a zero to the calling program.

Figure 14-2: Improved Mandeibrot Set Program

cmandel = advanced program to map the Mandeibrot set

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>

#include “tools.h”

258

CH. 14: THE MANDELBROT SET

const mt maxcol = 639;

const mt maxrow = 349;

const mt max_colors = 16;

mt CURSOR_X=O,CURSOR_Y=O,col ,row;

mt max_iterations = 512;

mt max_size = 4;

mt LINEWIDTH=1, OPERATOR=OxOO, ANGLE, XCENTER, YCENTER;

unsigned long mt PATTERN=OxFFFFFFFF;

unsigned char PALETTE[16]={0,1 ,2,3,4,5,20,7,56,57,58,59,60,

61,62,63);

mt colors[16]={0,1,2,3,4,5,20,7,56,57,58,59,60,61,62,63};

double Q[350];

float TXMax,TXMin,TYMax,TYMIn;

union LIMIT XMax,YMax,XMin,YMin,Pval ,Qval;

char file_name[13] = {“mandelOO.pcx”};

main()

double P,deltaP, deltaQ, X, Y, Xsquare, Ysquare;

mt i,color, row, col,error,response,repeat=0x30,

start_col

printf(”\nEnter background and 15 other colors separated”

by commas: “);

scanf(”%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,”

“%d,%d”,&colors[O],&colors[1],&colors[2],

&col ors[3] ,&col ors[4] ,&col ors[5] ,&col ors[6],

&col ors[7] ,&col ors[8] ,&col ors[9] ,&col ors[1O],

&colors[11] ,&col ors[12] ,&colors[13] ,&colors[14],

&col ors[15]);

printf(”Enter screen number (00 - 99): “);

file_name[6] = getche();

file_name[7] = getche();

getch();

error = restore_screen(file_name);

for (1=0; 1<16; i++)

setEGApalette(i ,colors[i]);
if (error == 0)

printf(”\nEnter 0 to generate first Mandeibrot

“screen”);

printf(”\nEnter 1 to exit: “);

response = getche();

if (response != 0x30)
exit(0);

else

XMax.f = 1.2;

XMin.f = -2.0;

259

FRACTAL PROGRAMMING IN C

YMax.f = 1.2;

YMIn.f = -1.2;

start_col = 0;

setMode(16);

cls(7);

else

if (error < 639)

start_col = 8 * (error/8)

remove(file_name);

else

start_col = 0;

move_cursor(O,15,O,O);

move_cursor(1 ,15,CURSOR_X,CURSOR_Y);

ci s(7);

XMax.f = TXMax;

XMIn.f = TXMin;

YMax.f = TYMax;

YMin.f = TYMIn;

while (repeat == 0x30)

deltaP = (XMax.f - XMin.f)/(maxcol);

deltaQ = (YMax.f - YMIn.f)/(maxrow);

Q[0] = YMax.f;

for (row=1; row<=maxrow; row++)

Q[row] = Q[row-1] - deltaQ;

P = XMIn.f + start_col * deltaP;

for (col=start_col; col<maxcol; col++)

if (kbhit() != 0)

save_screen(O,O,col,349,file_name);

exit(O);

for (row=0; row<=maxrow; row++)

X = Y = Xsquare = Ysquare = 0.0;

color = 1;

while ((color<max_iterations) && ((Xsquare +

Ysquare) < max_size))

Xsquare = X*X;

260

CH. 14: THE MANDELBROT SET

Ysquare =

Y = 2*X*Y + Q[row];

X = Xsquare - Ysquare + P;

color ++;

plot(col. row. (color % max_colors));

P += del taP;

save_screen(0,0,639,349,file_name);

getch();

gotoxy(10,24);

printf(”Enter ‘0’ to run another plot. ‘1’ to

“quit: “);

repeat = getcheO;

if (repeat == 0x30)

move_cursor(0, 15 .0 .0)

move_cursor(1 ,15,CURSOR_X,CURSOR_Y);

XMax.f = TXMax;

XMin.f = TXMin;

YMax.f = TYMax;

YMIn.f = TYMIn;

start_col = 0;

setMode(16);

cls(7)

The program then gives the user the choice of running the original Mandeibrot

set program or exiting. If the first choice is selected, the proper limits for the

display are set up, the starting column is designated as zero and the program then

generates a Mandelbrot set. If the file is successfully displayed, but the ending

column value (returned by the restore_screen function) is less than that for a full

screen, it implies that only a partial Mandelbrot set was generated and saved.

In this case, the display limits are extracted from the file information by the restore_screen

function and placed in the global limit variables XMax, XMin,

YMax, and YMin. The starting column is set to the beginning of the first byte

preceding the end column limit, the display file is then erased, and the program

proceeds to complete the display and then save it to the same file name previously

used by the partial display. If the end column limit is 639, indicating that

261

FRACTAL PROGRAMMING IN C

the display is complete, the program assumes that the user wants to generate a

new Mandelbrot set from only a portion of this display.

The move_cursor function is then called twice. The first time, it is a type 0,

which means that the cursor is drawn as the upper left corner of a rectangle. As

the cursor moves across the Mandelbrot display, the values of XMin and YMax

for the current cursor position are displayed at the bottom of the display. When

the appropriate point for the corner is reached, the Em key is hit, whereupon the

move_cursor function is run again as type 1, which displays the lower right corner

of a rectangle.

The coordinates selected for the top left corner remain displayed on the screen, and

the coordinates for the current cursor position for XMax and YMin are also

displayed and change as the cursor is moved about the display. The move_cursor

function is set up so that the lower right corner can never be set above or to the

left of the top left corner. When the proper position for this corner is set, hitting

the Em key again causes the program to begin to generate a new Mandelbrot set,

with the bounds selected by the cursor.

The algorithm for generating the Mandelbrot set is just the same as that used in

the program shown in Figure 14-1. However, when the program is interrupted

by a keystroke, instead of exiting immediately, the program first saves the partially

completed display in a disk file using the save_screen function described in

Chapter 4.

This function always creates a new file name for the screen being saved unless the

screen is one that was partially completed previously, in which case the same file

name is used. The screen is then saved to the designated file, with the ending

column limit variable set to the column number that was most recently

completed by the Mandelbrot generating part of the program.

262

CH. 14: THE MANDELBROT SET

Figure 14-3: Parameters for Mandelbrot Set Color Plates

Plate # XMin XMax YMin YMax

4 -2.0 1.2 -1.2 1.2

5 -0.702973 -0.642879 0.374785 0.395415

-0.691 594 -0.690089 0.386608 0.387494

6 -0.691 060 -0.690906 0.3871 03 0.387228

7 -0.793114 -0.723005 0.037822 0.140974

-0.749337 -0.744948 0.109349 0.115851

8 -0.745465 -0.745387 0.112896 0.113034

9 -0.745464 -0.745388 0.112967 0.113030

If the program is not interrupted by a keystroke, it runs until the Mandeibrot set

display is completed and then performs the same kind of process just described to

save the completed display to a new disk file. The program then displays at the

bottom of the screen “Enter ‘0’ to run another plot, ‘1’ to quit: “. If you type a

1, the program will terminate; if you type in a 0, the program will run the

move_cursor function twice to permit you to select a sub-section of the display

you just finished to be drawn as a full-sized Mandelbrot set. The program keeps

looping, generating a Mandelbrot set, saving it, and allowing you to select the

bounds for the next one, until a one is entered at the command described above,

causing the loop to terminate and the program to run to completion. Expansions

of the Mandelbrot set are shown in Plates 5 through 9. Figure 14-3 shows

the bounds used for the various color pictures.

Precision Considerations

You will observe that the values of X, deltaX, etc. used in the program in Figure

14-2 are classified as double. The precision of numbers available in C determines

how far we can expand the Mandelbrot set before the calculations begin to break

down so that the pictures are so distorted they’re worthless. If you don’t plan to

expand the Mandelbrot set any further than shown in the color plates, you can

change the double type in the program to float and maybe achieve a faster running

program, although some versions of C are just as fast for doubles as for floats.

The use of the doubles, as shown, permits you to go one level further with the

263

FRACTAL PROGRAMMING IN C

expansion. If you wish to go further yet, you will need to make the boundary

values (XMax, XMin, YMax, and YMin) into doubles. This involves some

complications, since you will have to create a new union statement to allow each

of these variables to be either a double or a string of characters. You will then

have to rearrange the header contents of the .pcx files and change the save_screen

and restore_screen functions accordingly. This is not recommended except for

advanced C programmers.

Using Other Color Combinations

The program listed in Figure 14-2 provides a good utilitarian display of the characteristics

of the Mandelbrot set. As we get into highly expanded sections of this

set, we come upon displays of exceptional beauty, which can be enhanced by the

way in which we use our color capabilities. The first thing that we have to decide

is what shades (out of 64) will be used for the sixteen palettes of the EGA,

or what shades (out of 256K) will be used for the color registers assigned to the

sixteen palette registers of the VGA in mode 12H. Figure 14-4 lists a program

that displays the default shades of the sixteen EGA palettes and permits changing

each one to any of the 64 available colors.

The palette number is given above each color block, and as a palette is changed,

the selected color number appears below the color block. When you have chosen

the desired shades, you can exit this program, but first copy down the palette and

color numbers for use in your program. If you want to, you can assign the same

color to two or three adjacent palettes, which will reduce the amount of detail in

your display, but may enhance the beauty of the picture and/or emphasize certain

details that you wish to stress. Plate 9 makes use of these techniques.

264

CH. 14: THE MANDELBROT SET

Figure 14-4: Program to Display and Change EGA Palette Colors

palette = program to select colors for palette

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void fillRect(int xl, mt yl, mt x2, mt y2, mt color);

#define convert(x,y) {x=(x+319); y=(175((93*y) >> 7));)

mt LINEWIDTH=1, OPERATOR=0, ANGLE, XCENTER, YCENTER;

unsigned long mt PATTERN=OxFFFFFFFF;

unsigned mt PALETTE[16]={0,1 ,2,3,4,5,20,7,56,57,58,59,60,61,

62,63);

main()

mt i,j,k=0;

setMode(16);

gotoxy(4,6);

printf(”0 1 2 3 4 5 6 7 8 9 10”

11 12 13 14 15”);

for (1=0; 1<16; i++0

fillRect((32*i 3O3),1OO,(32*(l+1)3O3),O,i);

while (k<150)

gotoxy(20,22);

printf(”

gotoxy(20,23);

prmntf(”

gotoxy(20,22);

printf(”Enter palette number: “);

scanf(”%d”,&j);

gotoxy(20,23);

printf(”Enter color number: “);

scanf(”%d”,&k);

if (k > 150)

break;

setEGApal ette(j , k);

gotoxy(3+4*j .15);

printf(”%2d” ,k);

265

FRACTAL PROGRAMMING IN C

fillRect() = fills a rectangle whose top left and

bottom right corners are sp ecified

with a specific color

void fillRect(int xl, mt yl, mt x2, mt y2, mt color)

mt I ,first,last,begin,end,start_mask,end_mask,mask,dummy,

page, xs,xe;

long mt ylL, y2L,j;

#define seq_out(index,val) {outp(Ox3C4,index);\

outp(Ox3C5,val);)

{outp(Ox3CE,index);\#define graph_out(index,val)

outp(Ox3CF,val);

unsigned mt offset;
char far * mem_address;

convert(xl,yl);

convert(x2,y2);

ylL = yl*80L;

y2L = y2*80L;

begin = xl/8;
end = x2/8;

first = xl - begin*8;
last = x2 - end*8 + 1;

start_mask = OxFF >> first;

end_mask = OxFF << (8-last);

for (j=ylL; j<=y2L; j+=80)

offset = j + begin;

mem_address = (char far *) OxA0000000L + offset;

graph_out(8,start_mask);

seq_out(2,OxOF);

dummy = *mem address;
*mem address = 0;

seq_out(2color);
*mem address = start_mask;

for (i=begin+l; i<end; i++)

offset = j + i

mem_address = (char far *) OxA0000000L + offset;

graph_out(8,OxFF);

seq_out(2,OxOF);

dummy = *mem address;
*mem address = 0;

seq_out(2,color);
*mem address = OxFF;

266

CH. 14: THE MANDELBROT SET

offset = j + end;

mem_address = (char far *) OxA0000000L + offset;

g ra ph_out (8. end_mask)

seq_out(2,OxOF);

dummy = *mem address;

*mem address = 0;

seq_out(2,color);

*mem address = end_mask;

seq_out(2,OxOF);

graph_out(3,O);

graph_out(8,OxFF);

Other Mandeibrot-Like Sets

Although the Mandelbrot set has received all of the publicity, it is the mapping

of only a single iterated function, namely that of Equation 14-1. It is not as

widely known that for every iterated function there is a set similar to the Mandelbrot

set. We’ll look at dragon curves in Chapter 16 and phoenix curves in Chapter

17. These curves are so-named because plotting them with the same mapping

as used for Julia curves in the next chapter gives pictures that are similar to the

shape of dragons and phoenixes. Each of these sets has a Mandelbrot-like map.

Figure 14-5 is a program to generate the Mandelbrot-like set for dragon curves.

The resulting map is shown in Plate 10. Figure 14-6 is a program to generate

the Mandelbrot-like set for phoenix curves. The resulting map is shown in Plate

11.

Figure 14-5: Program to Generate Mandeibrot-Like Set for Dragon Curves

csdragon = advanced program to map the dragon set

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>

#include “tools.h”

const mt maxcol = 640

267

FRACTAL PROGRAMMING IN C

const mt maxrow = 350;

const mt max_colors = 16;

mt CURSOR_X=320,CURSOR_Y=175,col ,row;

mt max_iterations = 256;

mt max_size = 4;

mt LINEWIDTH=1, OPERATOR=OxOO, ANGLE, XCENTER, YCENTER;

unsigned long mt PATTERN=OxFFFFFFFF;

unsigned char PALETTE[16]=(0,1 ,2.3,4,5,20,7,56,57,58,59,

60,61,62,63};

float Q[350];

float TXMax,TXMin,TYMax,TYMin;

union LIMIT XMax,YMax,XM1n,YMin;

char file_name[13] = {“drgset00.pcx”);

FILE *f1;

main()

float P,deltaP, deltaQ. X, Y, Xsquare, Ysquare,

Xtemp , Ytemp;

mt i,color, row, col,error,response,repeat=0x30,

start_col

printf(”Enter screen number (00 - 99): “);

file_name[6] = getche();

file_name[7] = getche();

getch();

error = restore_screen(file_name);

if (error == 0)

prmntf(”\nEnter 0 to generate first Dragon

“Set screen”);

printf(”\nEnter 1 to exit: “);

response = getche();

if (response != 0x30)

exit(O);

else

XMax.f = 4.2;

XMin.f = -2.2;

YMax.f = 1.5;

YMin.f = -1.5;

setMode(16);

cls(7);

start_col = 0;
07

else

268

CH. 14: THE MANDELBROT SET

if (error < 639)

start_col = 8 * (error/8)

remove(file_name);

else

start_col = 0;

move_cursor(0,15,0,0);

move_cu rsor (1, 15 , CURSOR_X , CURSOR_Y)

setMode(16);

cls(7);

XMax.f = TXMax;

XMin.f = TXMin;

YMax.f = TYMax;

YMin.f = TYMin;

while (repeat == 0x30)

deltaP = (XMax.f - XMin.f)/(maxcol);

deltaQ = (YMax.f - YMIn.f)/(maxrow);

Q[0] = YMax.f;

for (row=1; row<=maxrow; row++)

Q[row] = Q[row-1] - deltaQ;

P = XMin.f + start_col * deltaP;

for (col=start_col; col<maxcol; col++)

if (kbhit() != 0)

save_screen(0,0,col,349,file_name);

exit(0);

for (row=0; row<=maxrow; row++)

X = 0.50;

Y = 0.0;

color = 0;

while (((X*X + *) < max_size) &&

(col or<max_i terati ons))

Xtemp = (Y - X)*(Y + X) + X;

Ytemp = X * Y;

Ytemp = Ytemp + Ytemp - Y;

X = P * Xtemp + QErow] * Ytemp;

V = Q[row] * Xtemp - P * Ytemp;

col or++;

plot(col, row, (color % max_colors));

P += deltaP;

269

FRACTAL PROGRAMMING IN C

save_sc reen C 0 ,0 , 639 , 349 ,f ile_name

getch();

gotoxy(10.24);

printf(”Enter ‘0’ to run another plot, ‘1’ to”

quit: “);

repeat = getche();

if (repeat == 0x30)

move_cursor(O,15,O,O);

move_cu rsor (1, 15 , CURSOR_X , CURSOR_V

XMax.f = TXMax;

XMin.f = TXMin;

YMax.f = TYMax;

YMin.f = TYMIn;

start_col = 0;

setMode(16);

cls(7);

Figure 14-6: Program to Generate Mandeibrot-Like

Set for Phoenix Curves

csphenix = advanced program to map the set for phoenix

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>

#include “tools.h”

const mt maxcol = 640;

const mt maxrow = 350;

const mt max_colors = 16;

mt CURSOR_X=O,CURSOR_Y=O,col ,row;

mt max_iterations = 32;

mt max_size = 4;

mt LINEWIDTH=1. OPERATOR=OxOO, ANGLE, XCENTER, YCENTER;

unsigned long mt PATTERN=OxFFFFFFFF;

unsigned char PALETTE[16]={0,1,2,3,4,5,20,7,56,57,58,59,60,61,62,63};

float Q[350];

float TXMax,TXMin,TYMax,TYMin;

union LIMIT XMax,YMax,XMin,YMin;

270

CH. 14: THE MANDELBROT SET

char file_name[13] = {“phenstOO.pcx”);

FILE *fl;

main()

float P,deltaP. deltaQ, X, Y. Xsquare, Xisquare,Xtemp,

Xitemp,Xi ,Yi

mt i,color, row. col,error,response,repeat=0x30,start_col;

printf(”Enter screen number (00 - 99): “);

file_name[6] = getche();

file_name[7] = getche();

getch();

error = restore_screen(ffle_name);

if (error == 0)

printf(”\nEnter 0 to generate first Phoenix Set
“screen”);

printf(”\nEnter 1 to exit: “);

response = getche();

if (response != 0x30)
exit(0);

else

XMax.f = 1.5;

XMin.f = -2.1;

YMax.f = 2.0;

YMin.f = -2.0;

start_col = 0;

setMode(16);

cls(7);

else

if (error < 639)

start_col = 8 * (error/8);

remove(file_name);

else

start_col = 0;

move_cursor(O,15,0,0);

move_cu rsor (1, 15 , CURSOR_X , CURSOR_V)

setMode(16);

cls(7);

XMax.f = TXMax;

XM1n.f = TXMIn;

YMax.f = TYMax;

271

FRACTAL PROGRAMMING IN C

YMin.f = TYMIn;

while (repeat == 0x30)

deltaP = (XMax.f - XMin.f)/(maxcol);

deltaQ = (YMax.f - YMin.f)/(maxrow);

Q[O] = YMax.f;

for (row=1; row<=maxrow; row++)

Q[row] = Q[row-1] - deltaQ;

P = XMin.f + start_col * deltaP;

for (col=start_col; col<maxcol; col++)

if (kbhit() 0)

save_screen(O,O,col,349.file_name);

exit(O);

for (row=O; row<=maxrow; row++)

V = 0;

Vi = 0;

X = 0;

Xi = 0;

color = 0;

Xsquare = Xisquare = 0;

while ((color<max_iterations) &&

((Xsquare + Xisquare) < max_size))

Xsquare = X*X;

Xisquare = Xi*Xi;

Xtemp = Xsquare - Xisquare + P + Q[row]*Y;

Xitemp = 2*X*Xi + Q[row]*Yi;

Y = X;

Yi = Xi;

X = Xtemp;

Xi = Xitemp;

col or++;

plot(col, row, color%max_colors);

P += deltaP;

save_sc reen (0 ,0 . 639 , 349 ,file_name

getch();

gotoxy(1O,24);

printf(”Enter ‘0’ to run another plot, ‘1’ to quit: “);

repeat = getche();

if (repeat == 0x30)

move_cursor(O,15,O,O);

272

CH. 14: THE MANDELBROT SET

move_cu rsor C 1, 15 CURSOR_X CURSOR_V)

XMax.f = TXMax;

XMIn.f = TXMin;

YMax.f = TYMax;

YM1n.f = TYMin;

start_col = 0;

setMode(16);

cls(7);

273

15

Julia Sets

Chapter 14 discussed the Mandeibrot set, which is produced by plotting the values

of the iterated equation:

Zn+1 = Z2 + C (Equation 15-1)

with the x display coordinate corresponding to the real part of c over a selected

range and the y display coordinate corresponding to the imaginary part of c over a

selected range. For each calculation, the beginning value of z is taken as 0.

It was pointed out that there is another way in which the equation which produces

the Julia sets can be mapped onto the display which produces the Julia sets. For

this other technique, a particular value is selected for c. The equation is then

processed for various values of z over a selected range. The x coordinate of the

display corresponds to the real part of zQ, and the y coordinate corresponds to the

imaginary part of zQ.

It was also mentioned that the Mandelbrot set forms a sort of map of all of the

possible Julia sets. Plate 4 shows the Mandelbrot set, with arrows identifying

the location corresponding to the particular value of c for each of the fourteen Julia

sets, eight of which are displayed in plates 12—19 in the color section. The

first thing to note is where interesting Julia sets occur on the Mandelbrot map.

The most interesting patterns occur for values of c that are very close to the

boundary of the Mandelbrot set and usually also near a cusp. It is also interesting,

but not very useful, to note that if a particular portion of the Mandelbrot set

is expanded to a large enough scale, the resulting pattern is very much like the

275

FRACTAL PROGRAMMING IN C

Julia set for the value of c at the center of the expansion. You can verify this by

selecting a value for drawing a particular Julia set, and then expanding the Mandelbrot

set around the same point, using the program in Chapter 14.

Drawing Julia Sets

Figure 15-1 is a program for plotting Julia sets. When the program begins, you

are asked to enter the maximum number of iterations that will be performed by

the iteration loop. You are then asked for a background color and six display

colors. Next, you are given a choice of quitting, finishing, or expanding a Julia

set, or creating a new set. If you decide to quit, the program terminates. If you

decide to create a new set, you are asked to enter two digits to form a screen

number.

The program then displays the Mandelbrot set having the file name mandelxx.pcx,

where xx are the two digits that you have just entered. If such a file

doesn’t exist, or is not a legitimate .pcx file, the program prints a diagnostic

message and terminates. If a Mandelbrot set display does appear, you are given

the opportunity to move a cursor arrow to select the P (real part of c) and Q

(imaginary part of c) values for a Julia set. As the cursor arrow moves about the

screen, the values of P and Q are displayed at the bottom of the screen. The cursor

moves one pixel each time one of the arrow keys is hit, or 10 pixels at a time

if the shift and arrow keys are hit simultaneously.

If you chose to complete or expand a Julia set, you are asked to enter two numbers

for the Julia set screen number. The program then attempts to display a file

having the file name juliaOxx.pcx, where xx are the two numbers that you just

entered. Again, if the file does not exist, or is not a legitimate .pcx file, the program

terminates. Otherwise, the file is displayed.

If the file is an incomplete display, the program picks up where it left off and

continues work on completing the display. If the file is complete, the program

displays a cursor in the upper-left corner, and permits you to select XMin and

YMax values for your expanded display with the cursor arrows. When the cursor

276

CH. 15: JULIA SETS

is correctly positioned, hitting Ent displays the cursor in the lower-right corner

and allows you to select the desired values of XMax and YMin.

The program then begins to run a set of nested loops very similar to those described

for the Mandelbrot set program, except that P and Q are held constant and

the initial values of X and Y are varied as the program generates a result for each

pixel. A color is plotted to the appropriate pixel after the equation has “blown

up” (by exceeding the magnitude of 2) or the specified maximum number of

iterations has occurred. The color will be either the background color, if the

maximum number of iterations did not occur, or a display color representing the

value of the end result if the program looped through the maximum number of

iterations without blowing up.

Number of Iterations

As this program is used at points very near the border of the Mandelbrot set, a

situation occurs where the precision of the computer is inadequate to prevent the

value of the iterated equation from “drifting off,” and finally “blowing up” if

enough iterations take place (even though it would not blow up if the computer

were absolutely accurate). Thus, if you enter a very large number of iterations,

the program will not only be inordinately slow, but the result will be a completely

blank screen, painted in the background color.

As you begin to reduce the number of iterations, you will start getting a display

which has a great amount of detail, but also a large number of lost points. The

number of iterations required to present a display which is a good compromise

between adequate detail and reasonably complete representation of the pattern

varies depending upon the exact values which you have selected for P and Q.

That is why the program has been set up to allow you to enter the number of iterations.

A good number to begin with is 64 iterations. Then, if the display is

sparse, with a large number of isolated points, you can decrease the number of iterations.

Whereas if the display has large blobs of the same color and appears to

lack detail, you can increase the number of iterations.

277

FRACTAL PROGRAMMING IN C

Figure 15-1: Program to Generate Julia Sets

cjulia = advanced program to map the Julia sets

#include <conio.h>

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>

#include “tools.h”

#include <ctype.h>

const mt maxcol = 639;

const mt maxrow = 349;

const mt max_colors = 16;

mt CURSOR_X=O,CURSOR_Y=O,col ,row;

mt max_iterations; 1* = 96; 32 for dust 64 normal *1

mt max_size = 4;

mt LINEWIDTH=1. OPERATOR=OxOO:

unsigned long mt PATTERN=OxFFFFFFFF;

unsigned char PALETTE[16]={O,1,2,3,4,5,20,7,56,57,58,59,60,61.

62,63);

mt colors[7]={O,1,2,3,4,5,20,7}

float P,Q;

float TXMax,TXMin,TYMax,TYMin;

union LIMIT XMax,YMax,XMin,YMin,Pval,Qval;

char file_name[13] = {“mandelOO.pcx”}

char file_name2[13] = {“julia000.pcx”};

FILE *f1*f2;

ma i n ()

float deltaX, deltaY, X, Y, Xsquare. Ysquare;

mt i,color, row, col,error,response,repeat=0x30,start_col;

cl rscr()

printf(”Enter ‘0’ to quit. ‘1’ to expand

“or finish julia, ‘2’ for new plot: “);
do

repeat = getch();

while ((repeat != 0x30) && (repeat != 0x31) &&

(repeat != 0x32));

while (repeat != 0x30)

printfV\nEnter number of iterations: “);

278

CII. 15: JULIA SETS

scanf(”%d”,&max_iterations);

printf(”\nEnter background and six other colors

“separated by commas: “);

scanf(“%d,%d,%d,%d,%d,%d,%d” ,&colors,&colors[1],

&col ors[2] ,&col ors[3] ,&col ors[4] ,&col ors[5].

&colors[6]);

if (repeat == 0x32)

printf(”\nEnter mandelbrot set number (00 - 99): “);

file_name[6] = getche();

file_name[7] = getche();

if ((isdigit(file_name[6])) && (isdigit(file_name

[7])))

error = restore_screen(file_name);

else

exit(0);

start_col = 0;

move_cursor(2, 15, 0, 0)

XMax.f = 1.8;

XMin.f = -1.8;

YMax.f = 1.2;

YMin.f = -1.2;

P = Pval.f;

o = Qval.f;

cl s(7);

else

printf(”\nEnter julia screen number (00 - 99): “);

file_name2[6] = getche();

file_name2[7] = getche();

if ((isdigit(file_name2[6])) &&

(isdigit(file_name2[7])))

error = restore_screen(file_name2);

else

exit(0);

if (error == 0)

exit(0);

else

if (error < 639)

start_col = 8 * (error/8);

remove(fi 1 e_name2);

P = Pval.f;

o = Qval.f;

else

move_cursor(0,15,0,0);

move_cu rsor (1, 15 , CURSOR_X . CURSOR_V)

279

FRACTAL PROGRAMMING IN C

XMax.f = TXMax;

XMin.f = TXMin;

YMax.f = TYMax;

YMin.f = TYMin;

P = Pval.f;

o = Qval.f;

start_col = 0;

ci s(7);

if (coiors[0] <64)

setEGApaiette(O,coiors[O]);

setEGApaiette(1,coiors[1]);

setEGApaiette(2,coiors[2]);

setEGApal ette(3 ,col ors[3]);

setEGApalette(4,coiors[4]);

setEGApalette(5,coiors[5]);

setEGApaiette(6,coiors[6]);

deitaX = (XMax.f - XMIn.f)/(maxcol);

deitaY = (YMax.f - YMin.f)/(maxrow);

for (coi=start_coi; coi<=maxcol; col++)

if (kbhit() != 0)

Pval.f = P;

Qvai.f = 0;

save_screen(O,O,coi,349,fiie_name2);

exit(0);

for (row=0; row<=maxrow; row++)

X = XMin.f + col * deltaX;

Y = YMax.f - row * deltaY;

Xsquare = 0;

Ysquare = 0;
coior = 0;

whiie ((coior<max_iterations) &&

((Xsquare + Ysquare) < max_size))

Xsquare = X*X;

Ysquare =

Y = 2*X*Y + Q;

X = Xsquare - Ysquare + P;
coi or++;

gotoxy(24,24);

if (coior >= max_iterations)

coior = ((int)((Xsquare + Ysquare) *6.0))%6

280

CII. 15: JULIA SETS

+ 1;

else

color = 0:

plot(col , row, color);

Pval.f =

Qval.f = 0;

save_sc reen (0 ,O , 639 , 349 ,f ile_name2)

getch();

gotoxy(1,24);

printf(”File Name: %s Enter ‘0’ = quit, ‘1’ = expand

plot, ‘2’ = new plot: “,file_name2);

repeat = getche();

getch();

Selecting Colors

You will notice that the use of colors is quite different in the Julia set program

from what it was in the program for generating Mandelbrot sets. In the Mandelbrot

set program, all of the values for which the iterated expression did not blow

up and head for infinity after the maximum number of iterations, are colored

black. The rest of the points are colored depending upon how many iterations

took place before the expression exceeded the magnitude of 2. The colors are recycled

so that for each increment in the number of iterations, a different color is

used than was used to represent the previous number.

For the Julia sets, we color everything that blows up with the background color,

and then cycle through six different colors to represent the values taken on by the

expression after the maximum number of iterations. If you want to use the same

scheme that was used for the Mandelbrot program, you will get displays that look

somewhat similar to blow ups of the Mandelbrot set. Or you can keep the

coloring technique used by the program, and use the default colors by entering the

first color number as greater than 64, and then hitting Ent.

The second approach is to enter the proper color numbers when you are prompted

by the program. If you’re not sure what colors you want to use, you can use the

281

FRACTAL PROGRAMMING IN C

palette program described in Chapter 14 to select a set of colors that go well together.

Then enter them into the Julia set program at the prompt.

When a Julia set is drawn, the resulting color combinations are sometimes different

from what you planned when you were modifying the color palette at the beginning

of the program. It is for this reason, that we included the program colors

in Chapter 5. If you don’t like the colors of a display screen, you can run the

colors program.

Colors first asks you for a file name, and then displays that file on the screen if it

is a legitimate .pcx file. You can then enter a palette number from 0 to 15, followed

by a return. Hitting the left and right cursor arrows then moves that

palette color backward or forward through the 64 colors available for the EGA.

When you find a color you like, hit Ent and you will be ready to enter another

palette number. When you are done changing colors, enter a palette number

greater than 15, and the program will save the newly colored display in a file

called colorsxx.pcx, where xx is a number between 0 and 99.

The colors program displays the palette number and color number at the bottom

of the screen as you are changing colors and palettes. Before the screen is rewritten

to the new file, it is read again from the original file so that the palette and

color information disappears and is not written to the new file. Do not be dismayed

that the redrawn screen is in the original color combination; the new colors

that you have selected have been saved and will be transferred to the new disk

file.

Julia Set Displays

Figure 15-2 shows the parameters used in representative Julia set displays. Some

of these are shown in Plates 12 through 19. The location of these Julia displays

on the Mandelbrot set is shown in Plate 4.

282

CII. 15: JULIA SETS

Loca- Plate Itera

tion # tions P

A few comments need to be made on these displays. E and F are pictures generated

using the same values of P and Q, but with different color schemes and a

different number of iterations. They give a clear comparison of how detail increases,

but parts of the display disappear when the number of iterations increases.

K, L, and M also have identical values of P and Q. L was produced by

continuing the program after K was generated, and using the cursor to select a

new area for enlargement. The new limits are: XMin = -0.673239, XMax = -

0.171831, YMin = 0.171928, and YMax = 0.402292. The picture in M uses

only twenty-four iterations. This is obviously too few in this case, so that too

much detail is lost. The picture does provide some interesting patterns, however.

Binary Decomposition

We have been drawing Julia sets which show a background color if the iteration

of the Julia equation blows up to infinity, and which show one of a set of six

other colors to indicate the value of the magnitude of z when the equation does

not blow up. The program is designed to anticipate the range of values that

might be encountered, and split this into six groups of equal width, one for each

color.

Figure 15-2: Parameters for Julia Set Pictures

0 Colors

A 12 128 0.238498 0.519198 56,62,62,46,35,18,52

B 13 96 -0.743036 0.113467 0,16,34,2,18,22,23

C 64 -0.192175 0.656734 0,1,17,43,31,63,11

D 14 32 0.108294 -0.670487 0,46,38,62,54,55,63

E 64 -0.392488 -0.587966 39,1,13,21,47,54,62

F 256 -0.392488 -0.587966 63,1,2,3,4,5,20

G 15 32 0.138341 0.649857 1,32,12,4,36,37,38

H 16 24 0.278560 -0.003483 25,32,36,54,38,62,63

I 48 -1.258842 0.065330 4,54,51,1,47,44,20

J 48 -1.028482 -0.264756 48,51,2,38,4,16,20

K 64 0.268545 -0.003483 32,55,36,25,4,5,20

L 17 64 0.268545 -0.003483 32,55,36,25,4,5,20

M 24 0.268545 -0.003483 32,55,36,25,4,5,20

N 18 256 0.318623 0.044699 1,62,25,8,62,62,7

0 19 48 0.318623 0.429799 1,38,46,54,62,55,63

283

FRACTAL PROGRAMMING IN C

After we have performed the iterations for each value of the Julia set, there is another

piece of information available that we have thus far ignored—the direction

of the vector heading for infinity when we are in regions where the function

blows up to infinity.

You will remember that at each iteration we obtain a complex number. Furthermore,

the test for the function blowing up is that the magnitude of this complex

number achieves a value greater than 2. Now, if we consider the real and imaginary

parts of the number when that magnitude is achieved, they can be considered

to represent a vector in the complex plane which has a direction from the origin

as well as a magnitude. We determine what the direction angle is, and then color

the corresponding point on the Julia picture black if that angle is between 0 and

180 degrees, and white if the angle is between 180 and 360 degrees. (All points

that don’t blow up have an angle too, namely that of the root which they settle

down to, but that information isn’t too interesting so we just color it black.)

Figure 15-3 is a simplified Julia program to do binary decomposition. You could

modify the more detailed Julia program given in Figure 15-1 to do the same

thing, or you can use the binary decomposition technique with some of the other

curves that will be discussed in future chapters. Figure 15-4 shows the result of

binary decomposition for two Julia sets. The first makes use of a value of 0 for

c. If you were to put this value into the Julia set program of Figure 15-1, the

result would be rather uninteresting—producing only a circle.

You can see that much more detail occurs when binary decomposition is performed.

The second part of the figure shows binary decomposition of a more

typical Julia set. The program of Figure 15-3 includes values of P and Q for

both pictures. As it is currently set up, you will get the second picture; if you

comment out the second set of P and Q values, you will get the first picture.

284

CII. 15: JULIA SETS

Figure 1 5-3: Program for Binary Decomposition of Julia Sets

bindecom = program for binary decomposition

#i nd ude <stdio.h>

#1 nd ude <stdl ib.h>;

#include <math. h>

#1 nd ude <dos.h>

#i nd ude <process. h>

#i nd ude “tools. h”

void plot(int x, mt y, mt color);

void setMode(int mode);

const mt maxcol = 639;

const mt maxrow = 349;

const mt max_colors = 16;

char strings[80];

mt col,row,i;

mt max_iterations = 64;

mt max_size = 4;

mt LINEWIDTH=1, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

float P,Q,Xmax= 2.0. Xmin=-2.0, Ymax=1.50, Ymin=-1.50,theta;

main()

float deltaX, deltaY, X, Y, Xsquare, Ysquare,Ytemp,templ,

temp2;

mt color, row, col;

setMode(16);

cls(7);

P = 0;

o = 0;

P = .318623;

o = .0429799;

deltaX = (Xmax - Xmin)/(maxcol);

deltaY = (Ymax - Ymin)/(maxrow);

for (col=0; col<=maxcol; col++)

if (kbhit() != 0) break;

for (row=0; row<=maxrow; row++)

X = Xmin + col * deltaX;

285

FRACTAL PROGRAMMING IN C

V = Ymax - row * deltaY;

Xsquare = 0;

Ysquare = 0;

i = 0;

while ((i<max_iterations) && ((Xsquare +

Ysquare) < max_size))

Xsquare = X*X;

Ysquare =

Ytemp = 2*X*Y;

X = Xsquare - Ysquare + P;

V = Ytemp + 0;

I ++;

if (X == 0)

color = 15;

else

theta = acos(fabs(X)/(sqrt(X*X + Y*Y)));

if ((X<0) && (Y>=0))

theta += 1.5707963;

if ((X<0) && (Y<0))

theta += 3.14159625;

if ((X>O) && (Y<0))

theta += 4.7123889;

if ((theta>=0) && (theta<=3.14159625))

color = 15:

else

color = 0;

plot(col, row, color);

getch();

286

CH. 15: JULIA SETS

Figure 15-4: Binary Decomposition of Julia Sets

(a) Binary Decomposition of Julia Set: ‘P 0 and 0’ = 0

(b) Binary Decomposition of Julia Set: ‘P = 0.318623 and ‘Q’ = .429799

287

ci

&.-)

1 6

Dragon Curves

The term “dragon curves” covers a lot of territory. Most of these curves were so-

named because they looked somewhat like the traditional conception of a

mythical dragon. There are several families of curves, however, each with its

own distinct mathematical origin. Some of these dragon curves are variations of

other curves that we have already dealt with and should really have been included

with them. Nevertheless, we have chosen to put all the dragons together in this

chapter.

If you have seen some of the traditional Chinese embroidered dragons, you can

note the resemblances as you look at the dragon curves in the later pages of this

chapter. Some of the prettiest and most dragon-like curves are the “self-squared”

dragons first discovered by Mandelbrot. To complicate matters, all of the curves

that are produced from variations of the self-squared dragon equation are called

“dragons” even though some of them do not look anything like dragons, which

makes the whole classification very confusing.

Harter-Heightway Dragon

The Harter-Heightway dragon is one of the family of curves created with the

initiator/generator technique described in Chapter 6. The first three levels of this

curve are shown in Figure 16-1. It can be seen that the first two levels look just

like the Polya triangle sweep discussed in Chapter 8. Two additional rules cause

this curve to diverge from the Polya triangle so that the dragon curve is generated:

289

FRACTAL PROGRAMMING IN C

Figure 16-1: First Three Levels of Harter-Heightway Dragon

/

290

CH. 16: DRAGON CURVES

1. The generator alternates between the right and left of the line segment it is

replacing.

2. The first position at each level is always to the right. We use the generic

curve gen program described in Chapter 6 to generate the dragon curve.

However, we must add to the generator function a sign variable, which

causes the alternation around the line segment being replaced.

Twin Dragon

It is interesting to see what happens when the same initiator is used, but traversed

in the opposite direction. The dragon that is generated fits exactly against the

dragon described above. The program of Figure 16-2 is already set up to generate

the twin dragon, in that it changes color at the end of the for loop, and that the

proper values for the initiator are given to provide the backward traversing of the

original initiator line.

For the single dragon, mt_level was set to 1, so that only one pass is made

through the for loop and the second set of initiator values is not used. By simply

changing the mt level to 2, you can generate the twin dragons in contrasting

colors. The twin dragon curve is shown in Plate 20 of the color section. The

exact fit between the two dragons appears in the plate, but to fully appreciate how

they mesh together, one needs to run the program and watch as the borders of the

second dragon are drawn.

Figure 16-2 is the program that is used to generate both the Harter-Heightway

dragon and the twin dragon. The various levels of detail may be produced by

changing the parameter level. Figure 16-3 shows the dragon figure produced by

setting level to 16.

291

FRACTAL PROGRAMMING IN C

Figure 16-2: Program to Generate Harter-Heightway

and Twin Dragons

twindrag = program to generate a twin dragon

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl, float X2, float Y2,

mt level, mt sign);

union LIMIT XMax,XMIn,YMax,YMin,Pval,Qval;

mt combination = O,LINEWIDTH=l, OPERATORO;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

/*jnt i,flag[24],color = lO;*/

mt i,flag[24],color = 15;

mt generator_size = 3;

mt level;

mt mit_size = 1;

mt initiator_xl[1O] = {-150,150},initiator_x2[1O]={150,-150},

mnitiator.yl[1O]={-25,-25}, initiator.y2[1O]={-25,-25);

float Xpoints[25]. Ypoints[25];

float turtle_x,turtley,turtle_r;

unsigned char PALETTE[16]={O,1,2,3,4,5,20,7,56,57,58,59,60,

61,62,63);

main()

mt sign = 1;

printf(”\nEnter level (1 - 16): “);
scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(16);

cls(O);

for (i=O; i<init_size; i++)

generate(initiator_xl[i], initiatoryl[i],

initiator_x2[i], initiator.y2[i], level, sign);

color = 13;

292

CH. 16: DRAGON CURVES

getch();

generate() = generates curve

void generate (float Xl, float Yl, float X2, float Y2,

mt level, mt sign)

mt j,k,line,sign2=-1;

float a, b, Xpoints[25], Ypoints[25];

turtle_r = (sqrt((X2 - Xl)*(X2 - Xl) + (Y2 - Y1)*
(Y2 - Y1)))/l.41421;

Xpomnts[O] = Xl;

Ypoints[O] = Yl;

Xpoints[2] = X2;

Ypomnts[2] = Y2;

turtle_theta = point(Xl,Yl,X2,Y2);
turtle_x = Xl;

turtlej’ = Yl;

turn(sign*(45));

step();

Xpoints[l] = turtle_x;

Ypomnts[l] = turtlej’;
level--;

if (level > 0)

for (j=0; j<generator_size-l; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+l];

Yl = Ypoints[j];

Y2 = Ypoints[j+l];

generate (Xl,Yl,X2,Y2,level,sign2);

sign2 = -1;

for (k=0; k<generator_size-l; k-H-)

drawLine(Xpoints[k] ,Ypoints[k],

Xpoints[k+l] ,Ypoints[k+l] ,color);

else

293

FRACTAL PROGRAMMING IN C

Figure 16-3: Harter-Heightway Dragon

The Julia sets were described in detail in Chapter 15. Depending upon the

parameters selected, many different shapes may be created. Some of them,

deliberately omitted in Chapter 15, are very dragon-like. One such dragon uses

64 iterations, with palettes 0 to 6 set to the colors 42, 32, 36, 54, 38, 62, and

63, and the parameters of P = 0.383725 and Q = 0.147851.

Julia Dragon

294

CH. 16: DRAGON CURVES

Self-Squared Dragons

The figures that Mandeibrot calls “self-squared dragons” result from iterations of

the expression:

Zn-i = czn(lZn) (Equation 16-1)

where both z and c are complex numbers, the number c being represented in our

program by c = p + iq. You will note that if both c and z are real, the equation is

the same as that for the population growth curve that we discussed in Chapter 7.

As far as I know, no one has looked into the relationship between the bifurcation

diagrams and the corresponding dragon curves in detail. This might be a good

project for a home computer enthusiast.

Figure 16-4 is the detailed program for generating the self-squared dragon curves.

Note that the program is very similar to the program for generating the Julia sets,

except for the code that actually performs the iterations of the equation. The

program starts (unless you opt to display a dragon curve) with the diagram

corresponding to the Mandelbrot set for dragons.

This curve appears in Plate 10. Figure 16-5 lists the parameters for some typical

dragon curves. These pictures are plates 21 and 22. As in the case of the Julia

sets, increasing the number of iterations increases the detail of the display, but

insufficient computer accuracy causes parts of the display to be lost as the iterated

values drift away from the attractor. Typically, if we continue to increase the

number of iterations, the figure will become fragmented, and finally disappear

altogether.

295

FRACTAL PROGRAMMING IN C

Figure 16-4: Program to Generate Self-Squared Dragons

cdragon = advanced program to map the dragon curves

#include <ctype.h>
#include <conio.h>

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>
#include “tools.h”

const mt maxcol = 639;

const mt maxrow = 349;

const mt max_colors = 16;

mt CURSOR_X=O,CURSOR_Y=O,col ,row;

mt max_iterations;

mt max_size = 4;

mt LINEWIDTH=1, OPERATOR=OxOO, ANGLE;

unsigned long mt PATTERN=OxFFFFFFFF;

unsigned char PALETTE[16]={O,1 ,2,3,4,5,20,7,56,57,58,59,60.

61,62,63};

intcolors[8]= {O,1,2,3,4,5,20,7};

float P,Q;

float TXMax,TXMin,TYMax,TYMin;

union LIMIT XMax,YMax,XMin,YMin,Pval ,Qval

char file_name[13] = {“drgsetOO.pcx”);

char file_name2[13] = {“dragonOO.pcx”};

FILE *f1*f2;

main()

deltaX, deltaY, X. Y, Xsquare. Ysquare,Ytemp.

temp_sq temp_xy;

mt i,color, row, col,error,response,repeat=0x32,start_col;

setMode(3);

prmntf(”Enter ‘0’ to quit, ‘1’ to expand

“or finish dragon, ‘2’ for new plot: “);
do

repeat = getch();

296

CH. 16: DRAGON CURVES

while ((repeat 0x30) && (repeat 0x31) &&

(repeat 0x32));

while (repeat != 0x30)

printf(”\nEnter number of iterations: “);

scanf(”%d”,&max_iterations);

printf(”\nEnter background and six other colors

“separated by commas: “);

scanf(”%d,%d,%d,%d,%d,%d,%d”,&colors,&colors[1],

&colors[2] ,&colors[3] ,&colors[4] ,&colors[5],

&colors[6]);

if (repeat == 0x32)

printf(”\nEnter dragon map number

“(00 - 99): “);

file_name[6] = getche();

file_name[7] = getche();

if ((isdigit(file_name[6])) && (isdigit(file_name

[7])))

error = restore_screen(file_name);

else

exit(O);

start_col = 0;

move_cursor(2. 15 ,O , 0)

XMax.f = 1.4;

XMin.f = - .4;

YMax.f = .8;

YMIn.f = - .8;

P = Pval.f;

Q = Qval.f;

cls(7);

else

printf(”\nEnter dragon screen number

“(00 - 99): “);

file_name2[6] = getche();

file_name2[7] = getche();

if ((isdigit(file_name2[6])) &&

(isdigit(file_name2[7])))

error = restore_screen(file_name2);

else

exit(0);

if (error == 0)

exit(O);

else

297

FRACTAL PROGRAMMING IN C

if (error < 639)

start_col = 8 * (error/8);

remove(fi 1 e_name2);

P = Pval.f;

o = Oval.f;

else

move_cursor(O,15,O.O);

move_cu rsor (1, 15 CURSOR_X CURSOR_Y)

XMax.f = TXMax;

XMIn.f = TXMIn;

YMax.f = TYMax;

YMin.f = TYMin;

P = Pval.f;

o = Oval.f;

start_col = 0;

cls(7);

if (colors[0] <64)

setEGApalette(0,colors[O]);

setEGApalette(1 ,colors[1]);

setEGApalette(2,colors[2]);

setEGApalette(3,colors[3]);

setEGApalette(4,colors[4]);

setEGApalette(5.colors[5]);

setEGApalette(6.colors[6]);

deltaX = (XMax.f - XMIn.f)/(maxcol);

deltaY = (YMax.f - YMin.f)/(maxrow);

for (col=start_col; col<=maxcol; col++)

if (kbhit() != 0)

Pval.f = P;

Oval.f = 0;

save_screen(O.O.col,349,file_name2);

fclose(f2);

f2 = fopen (file_name2,”wb”);
Pval.f = P;

Oval.f = 0;

save_screen(0,0,col ,349,

file_name2);

298

CII. 16: DRAGON CURVES

exit(O);

for (row=O; row<=maxrow; row++)

X = XMin.f + col * deltaX;

Y = YMax.f - row * deltaY;

Xsquare = 0;

Ysquare = 0;

color = 0;

while ((color<max_iterations) &&

((Xsquare + Ysquare) < max_size))

Xsquare = X*X;

Ysquare =

temp_sq = Ysquare - Xsquare;

temp_xy = X*Y;

temp_xy += temp_xy;

Ytemp = o*(temp sq + X)p*(tempxy

- Y);

X = P(temp_sq + X)

+ Q*(temp_xy - Y);

Y = Ytemp;

col or++;

if (color >= max_iterations)

color = ((int)((Xsquare + Ysquare)
*60))%6 + 1;

else

color = 0;

plot(col, row, color);

Pval.f = P;

Qval.f = 0;

save_sc reen C 0 ,0 , 639, 349, file_name2)

getch();

gotoxy(1,24);

printf(”File Name: %s Enter ‘0’ = quit, ‘1’ =

“expand plot, ‘2’ = new plot: “,file_name2);

repeat = getche();

getch();

299

FRACTAL PROGRAMMING IN C

Figure: 16-5: Parameters for Dragons

San Marcos Dragon

0

Plate 43 shows what Mandelbrot calls the “San Marcos Dragon,” because it

reminded him of the San Marcos Square in Venice, with its reflection from a wet

pavement. To enhance this fantasy, I’ve used a special color scheme in which

everything where y is greater than or equal to zero is colored in brighter shades,

and everything for y less than zero (the reflection) is colored in darker shades.

Figure 16-6 lists the code that must be inserted in the dragon program of Figure

16-4 to perform the proper coloring. This code is inserted in place of the lines

that define color just prior to the plot statement. Since the cdragon program is

only set to allow you to use six colors, you will need to modify the statements at

the beginning of the program to permit all sixteen colors to be entered and to be

used in setEGApalette statements. Alternately, you can keep to the default colors,

and use the colors program to modify the colors of the finished display.

Plate Iterations P Colors

21 256 1.646009 0.967049 0,1,52,62,38,44,20

64 1.646009 0.967049 0,1,2,3,4,5,20

64 2.447261 -0.924069 0,62,43,1,9,55,20

64 1.325508 0.786533 8,1,2,3,4,5,20

64 1.415414 0.856803 0,63,62,52,4,5,20

32 1.415414 0.856803 57,24,2,18,10,62,63

128 1.255399 0.691977 0,57,58,59,60,61,63

64 2.797809 -0.657593 8,1,2,3,4,5,20

64 3.018153 -0.098854 5,16,2,38,10,62,36

22 64 2.998122 0.004298 43,1,2,3,4,5,46,7,57

57,58,59,60,61,62,63

(See text)

300

CII. 16: DRAGON CURVES

Figure 16-6: Code for Coloring San Marcos Dragon

if (color >= max_iterations)

color = (int)((Xsquare + Ysquare)*100)%6+1;

else

color = 0;

if (row < 175)

color += 8;

Dragon Outlines

Before we leave the subject of dragons, it is worth looking at another technique

for representing at least the outlines of dragon curves. This involves running the

dragon equation backward. Instead of using Equation 16-1, we solve the equation

for Z in terms of zfl+].

We then take a representative point and iterate it many times (in this case 12,000

times), plotting the location of the point at each iteration. (Each iteration requires

taking a square root, which could give either a positive or negative result. To

achieve good results from our display, the program is set up to randomly select

either the positive or negative square root at each iteration.)

The result of all this is that the point tends to be attracted to the outline of the

dragon curve. (The first few points are a little wild before the curve settles down,

so we don’t plot the first ten points.) This technique doesn’t provide the full

beauty and detail of the full-fledged dragon curve program, but it is much faster,

and is therefore useful in discovering the shape of a dragon before you take the

time to make a detailed plot.

301

FRACTAL PROGRAMMING IN C

This also serves as an introduction to techniques that will be gone into in much

greater detail in the chapter on iterated function systems (Chapter 22). (We have

already encountered this method at work in generating the strange attractors in

Chapter 6.) Figure 16-7 lists the program to generate dragon outlines. Two

typical results of running this program are shown in Figure 16-8 (page 304).

Figure 16-7: Program to Generate Dragon Outlines

dragout = program to generate dragon outlines

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

mt i. OPERATOR = OxOO,row,col;

mt x_center = 320. y_center = 175;

float x = .50001. y = O,P,Q.magnitude,scale.temp,temp_x,tempy;

main()

printf(”Enter P and 0 (real and imaginary parameters)

“separated by comma): “);

scanf(”%f.%f”,&P.&Q);

magnitude = P*P + 00;

= 4*p/magnjtude;

0 = 4*Q/magnitude;

printf(”\nEnter Scale: “);

scanf(”%f”,&scale);

scale = x_center*scale;

setMode(16);

cls(O);

for (1=0; 1<12000; i++)

temp_x = x*P - y*Q;

y = x*0 + y*P;

tempy = y;

x = 1 - temp_x;

302

CH. 16: DRAGON CURVES

magnitude = sqrt(x*x + y*y);

y = sqrt((-x + magnitude)/2);

x = sqrt((x + magnitude) /2);

if (tempy < 0)

x = -x;

if (rand() < 16163)

x = -x;

y = -y;

x = (1 - x)/2;

y = y/2;

col = sca1e*(x .5) + x_center;

row = y_center - scale*y;

if (Ci > 10) && (col >= 0) && (col < 640) && (row >= 0)

&& (row < 350))

plot (co1.row15);

getch();

303

FRACTAL PROGRAMMING IN C

Figure 16-8: Dragon Outlines

y
(a) Outline of San Marcos Dragon

(

C’
1•

(b) Outline of Dragon Shown in Plate 21

304

Plate 1: Lorenz Attractor Projected on YZ Plane

Plate 2: Three-Dimensional View of Lorenz Attractor

Plate 3: Apollonian Packing of Circles

Plate 4: Mandelbrot Set Showing Locations for Julia Sets

Plate 5: Expansion of an Area in Plate 4

Plate 6: Expansion of an Area in Plate 5

Plate 7: Expansion of an Area in Plate 4

Plate 8: Expansion of an Area in Plate 7

Plate 9: Expansion of Marked Area in Plate 8 with Color Changes

Plate 10: Mandelbrot-Like Set for Dragon Curves

Plate 11: Mandelbrot-Like Set for Phoenix Curves

Plate 12: Julia Set from Location A of Mandelbrot Set

Plate 13: Julia Set from Location B of Mandelbrot Set

Plate 14: Julia Set from Location D of Mandelbrot Set

Plate 15: Julia Set from Location G of Mandelbrot Set

Plate 16: Julia Set from Location H of Mandeibrot Set

Plate 17: Julia Set from Location L of Mandelbrot Set

Plate 18: Julia Set from Location N of Mandelbrot Set

Plate 19: Julia Set from Location 0 of Mandelbrot Set

Plate 20: Twin Dragon Curve

Plate 21: Self-Squared Dragon

Plate 22: San Marcos Dragon

Plate 23: Original Phoenix Curve

Plate 24: Phoenix Curve

Plate 25: Three-Dimensional Dragon

Plate 26: Three-Dimensional Dragon

Plate 27: Solution of z3 — 1 = 0 by Newton’s Method

Plate 28: Solution of z3 — 2z — 5 = 0 by Newton’s Method

Plate 29: Oak Creek Canyon

Plate 30: Pike’s Peak at Sunrise

Plate 31: Earth Viewed from the Moon

Plate 32: Three-Dimensional Ferns

17

Phoeiiix Curves

The phoenix curve was discovered by Shigehiro Ushiki at Kyoto University. The

equations for the phoenix curve are:

Xn+1 = Xn2 + p + qyn (Equation 17-1)

Yn+1 = Xn (Equation 17-2)

where both x and y are complex. Plate 23 shows the original phoenix curve. To

generate this curve, the values selected for p and q are:

p = 0.56667 (Equation 17-3)

q = -0.5 (Equation 17-4)

and 128 iterations are performed. The graph is of x in the complex plane, but in

order to make the phoenixes stand up correctly, the axes are inverted from normal

usage, with the x axis representing the imaginary part of x and the y axis representing

the real part of x. Figure 17-1 lists the program to generate phoenix

curves. It is quite similar to the programs we used to generate the Julia and

dragon curves, but there are some significant differences.

The first difference is the method of coloring the display. This is a good point to

reiterate the methods that we have been using to color our displays. The methods

used for Mandelbrot sets, Julia sets, dragon curves, and the original phoenix curve

are summarized in Figure 17-2. The program in Figure 17-1 includes the methods

for Mandelbrot sets, Julia sets, and the original phoenix curve; you can

comment out whichever ones you don’t want.

321

FRACTAL PROGRAMMING IN C

Figure 17-1: Program to Generate Phoenix Curves

cphoenix = advanced program to map the phoenix curves

#include <ctype.h>
#include <conio.h>

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>

#include “toos.h”

const mt maxcol = 640;

const mt maxrow = 350;

const mt max_colors = 16;

mt CURSOR_X=0,CURSOR_Y=0,col ,row;

mt max_iterations;

mt max_size = 4;

mt LINEWIDTH=1, OPERATOR=OxOO, ANGLE, XCENTER, YCENTER;

unsigned long mt PATTERN=OxFFFFFFFF;

unsigned char PALETTE[16]={0,1 ,2,3,4,5,20,7,56,57,58,59,60,

61,62,63);

mt colors[7]={88);

float P,Q;

float TXMax,TXM1n,TYMax,TYM1n;

union LIMIT XMax,YMax,XMIn,YM1n,Pval,Qval;

char file_name[13] = {“phenst00.pcx”);

char file_name2[13] = {“phenixO0.pcx”);

FILE *fl,*f2;

main()

float deltaX, deltaXi, X, Y, Xsquare, Ysquare,Ytemp,

temp_sq. temp_xy,Xi ,Xisquare,Yi ,Xtemp,Xitemp;

mt i,coor, row, col,error,response,repeat=0x32,start_col;

cl rscr()

printf(”Enter ‘0’ to quit, ‘1’ to expand

“or finish phoenix ‘2’ for new plot: “);

do

repeat = getch();

while ((repeat != 0x30) && (repeat != 0x31) &&

(repeat != 0x32));

whfle (repeat 0x30)

322

CH. 17: PHOENIX CURVES

printf(”\nEnter number of iterations: “);

scanf(”%d”,&maxjterations);

printf(”\nEnter background and three other colors separated”

by commas: “);

scanf(”%d,%d,%d,%d”,&colors,&colors[1],&colors[2],

&colors[3]);

if (repeat == 0x32)

printf(”\nEnter phoenix map number
“(00 - 99): “);

file_name[6] = getche();

filename[7] = getche();

getch();

if ((isdigit(file_name[6])) && (isdigit(filename

[7])))

error = restore_screen(file_name);
else

exit(0);

start_col = 0;

move_cursor(2, 15,0,0);

XMax.f = 1.5;

XMIn.f = -1.5;

YMax.f = 1.2;

YMin.f = -.7;

P = Pval.f;

o = Oval.f;

printf(”\nP: %f Q: %f”,P,O);

getch();

cls(7);

else

printf(”\nEnter phoenix screen number
“(00 - 99): “);

file_name2[6] = getche();

file_name2[7] = getche();

if ((isdigit(file_name2[6])) &&

(isdigit(file_name2[7])))

error = restore_screen(file_name2);

else

exit(0);

if (error == 0)

exit(O);

else

if (error < 639)

start_col = 8 * (error/8);

remove(file_name2);

P = Pval.f;

323

FRACTAL PROGRAMMING IN C

o = Oval.f;

else

move_cursor(O,15,O,O);

move_cu rsor C 1, 15 , CURSOR_X , CURSOR_Y)

XMax.f = TXMax;

XMin.f = TXMIn;

YMax.f = TYMax;

YMIn.f = TYMIn;

P = Pval.f;

o = Oval.f;

start_col = 0;

cls(7);

if (colors[O] <64)

setEGApalette(O,colors[O]);

setEGApalette(1,coors[1]);

setEGApalette(2,colors[2]);

setEGApa 1 ette(3 , colors [3])

e se

setEGApalette(O,1);

setEGApalette(1,57);

setEGApalette(2,2);

setEGApalette(3,62);

deltaX = (YMax.f - YMIn.f)/(maxrow - 1);

detaXi = (XMax.f - XMin.f)/(maxcol - 1);

for (co=start_col; col<=maxco col++)

if (kbhit() != 0)

Pval.f = P;

OvaLf = 0;

save_screen(0,O,col,349,file_name2);

exit(0);

for (row=0; row<=maxrow; row++)

Y = 0;

Yi = 0;

X = YMax.f - row * deltaX;

Xi = XM1n.f + col * deltaXi;

co’or = 0;

Xsquare = Xisquare = 0;

while ((color<max_iterations) && ((Xsquare +

324

CH. 17: PHOENIX CURVES

Xisquare) < max_size))

Xsquare = X*X;

Xisquare = Xi*Xi;

Xtemp = Xsquare - Xisquare + P + Q*

Xitemp = 2*X*Xi + Q*Yi;

Y = X;

Yi = Xi;

X = Xtemp;

Xi = Xitemp;

col or++;

/* COLOR TECHNIQUE FOR ORIGINAL PHOENIX CURVE */

/* if (color >= max_iterations)

color = 3;

else

if (color >= 64)

color = 2;

else

if (color >= 32)

color = 1;

else

color = 0;

*1

/* COLOR TECHNIQUE FOR MANDELBROT SETS */

/* if (color >= max_iterations)

color = 0;

else

color = color % 16;

*1

/* COLOR TECHNIQUE FOR JULIA SETS */

if (color >= max_iterations)

color = ((int)((Xsquare + Ysquare)

*6O))%6 + 1;

else

color = 0;

plot(col, row, color);

Pval.f = P;

Qval.f =

save_screen(O,O,639,349,file_name2);

getch();

gotoxy(1,25);

printf(”File Name: %s Enter ‘0’ = quit, ‘1’ =

325

FRACTAL PROGRAMMING IN C

“expand plot, ‘2’ = new plot: “,filename2);

repeat = getche();

getch();

Figure 17-2: Coloring Techniques

Type of Figure

Mandelbrot Set

Background Color

All points that

do not blow up

during all iterations.

Other Colors

Cycle through 15 other
colors for number of

iterations required for

blow-up.

Julia Set All points that

blow up to infinity

during iterations.

Cycle through 6 other

colors for ranges of

values of magnitude of
result after iterations

are complete.

Original Phoenix
Curve

All points that

do not blow up

during all iterations.

Three colors: first for

blow-up in 1 to 32

iterations; second for

blow-up in 33 to 64

iterations; third for

blow-up in more than
64 iterations.

Maps of the Phoenix Curves

In Chapter 14 we showed a set that was the equivalent of the Mandelbrot set for

phoenix curves. In previous chapters we used the Mandelbrot set as a map to

permit us to select likely locations for interesting Julia sets, and we have used the

equivalent of the Mandelbrot set for dragon curves to perform a similar function

in selecting likely dragon curves. The use of the set that acts as a map of the

phoenix curves is much less straightforward. First, consider that we have used

the parameters XMin, YMin, XMax, and YMax to save the minimum and maximum

values corresponding to the start of the x and y axes and the end of the x

and y axes, respectively, and that we have saved these values in the screen files.

For the Mandelbrot and Julia sets, and for their equivalents for the dragon curves,

326

CH. 17: PHOENIX CURVES

the XMin and XMax values corresponded either to the real part of a parameter of

the equation or to the real part of the initial value of the function being iterated.

Similarly, the values of YMin and YMax represented the values of the imaginary

part. For the phoenix equivalent of the Mandelbrot set, there are two parameters

and we always take them as being real numbers. (There is no reason why this

has to be true; one could make both parameters complex numbers, resulting in a

function that is a lot more complicated, but might possibly result in some astounding

new and previously undiscovered curves.) At any rate, the set is plotted

with P on the x axis and Q on the y axis, but there is no correspondence between

the real and imaginary parts of any parameter and the x and y axes for this curve.

When we come to the program that generates the phoenix curves themselves, the

plotting is such that the real part of the variable x is plotted on the y axis and the

imaginary part of x is plotted on the x axis. This requires that the program do a

little juggling when it retrieves the XMin values and the P and Q parameters for a

screen file, in order to put them into the proper parameters for the program to

properly generate the phoenix curve.

The correspondence between the Mandelbrot-like set for phoenix curves and the

phoenix curves themselves is much less meaningful than it was for Julia sets and

dragon curves. Since phoenix curves are differently arranged and plot different

parameters than the curve that is supposed to function as a map, it is less likely

that cusps on the map will result in interesting phoenix curves. In fact, the parameters

used to generate the original phoenix curve of Plate 23 do not appear to

be at any interesting point on the map display. The values are also quite critical

for the most interesting displays, although you can produce a curve similar to the

original phoenix curve by coming as close to the values give in Equations 17-3

and 17-4 as you can get with the cursor, using the program. Plate 24 shows a

phoenix curve that was generated using parameters selected from the map display.

Since the map display did not prove too useful in obtaining optimum parameters,

it is likely that there are other curves in this family that are as interesting as the

original phoenix curve, but their parameters have not been discovered yet. The

parameters for some interesting phoenix curves are shown in Figure 17-3. Plate

24 was generated using the color technique of the Mandelbrot set. Whichever

327

FRACTAL PROGRAMMING IN C

color technique is selected makes quite a difference in the appearance of the

resulting picture.

Figure 17-3: Parameters of Phoenix Curves

Plate# p

23 0.56667 -0.50000

0.288732 0.51 0029

24 0.356338 -1.209169

-0.550704 -1 .255014

328

18

Three-Dimensional Dragons

Some of the most interesting fractal curves have been generated by Alan Norton

at IBM’s Thomas J. Watson Research Center. Norton specializes in expressing

the dragon equation in three-dimensional form, using quatemions. His three-dimensional

dragon pictures are not only beautiful, but provide an eerie sense of

familiarity, no doubt because fractals are the language of natural things. Norton

uses IBM’s computer resources to plot a million or more points in three dimensions

to generate a three-dimensional dragon curve. He then runs a ray-tracing

program which determines the illumination of every point, and the positioning of

it on a two-dimensional display. Needless to say, this is beyond the capability of

our personal computers.

Nevertheless, we don’t want to give up on three-dimensional dragons. The program

given below will make use of the dragon outline program given in Chapter

16 to draw cross-sections of the three-dimensional dragon outline. Using P as the

third dimension, it will calculate repeated dragon outlines and project them from

three-dimensional to two-dimensional space. The results are less complete than

Norton’s, but give the appearance of three-dimensional displays.

Method of Projection

Suppose we have a program that generates all of the coordinate information

needed to create an object in three-dimensional space. Our problem is that we

somehow want to display this information on the two-dimensional display

screen. The three-dimensional space is defined by the coordinate system (x, y, z)

329

FRACTAL PROGRAMMING IN C

centered at (0, 0, 0). The display screen is defined by the coordinate system (vx,

vy) with its origin at (0, 0).

First, we place the three-dimensional space so that its origin coincides with the

origin of the display screen. Now, each of the axes of the three-dimensional coordinate

system makes an angle with the display plane. We shall call the angle

between the x axis and the display plane a, the angle between the y axis and the

display plane B, and the angle between the z axis and the display plane F’. Projection

of the three-dimensional space onto the display plane now becomes very

simple. There is only one line that can be drawn perpendicular to the display

plane which intersects any particular point (x, y, z) in the three-dimensional

space. The point where this line intersects the display plane is the projection of

the three-dimensional point onto the display plane. The equations for making

this projection are:

vx = x cos a + y cos B + z cos f (Equation 18-1)

vy = x sin a + y sin B + z sin f (Equation 18-2)

While you can use any angles that you desire for a, B, and F’, some orientations

are not very interesting. You have to be particularly careful not to orient the

three-dimensional figure so that the two-dimensional projection of it is just a flat

on view of one side, with all information about the third dimension lost. The

most common angles that are used are those used for isometric drawing, where a

and B are 30 degrees and F’ is 90 degrees; and the orientation used in many geometry

books, where a and B are 0, and F’ is 135 degrees.

Programming the Three-Dimensional Dragon

Figure 18-1 is a listing of a program to generate three-dimensional dragons. You

will recognize the heart of this program as the program from Chapter 16 which

draws the outline of dragons. We use the same two dimensions as in Chapter 16

for two of the three dimensions of our dragon, and the parameter P (the real part

of the multiplier) as the third dimension. The program allows you to enter the

projection angles, the scale, the parameter Q (the imaginary part of the multi330

CH. 18: THREE-DIMENSIONAL DRAGONS

plier), and an x and y offset. We reiterate the outline drawing program over a

range of values of P, but for each point that is calculated we use the projection

equations given in the section above to determine where to plot the point on the

display screen, instead of plotting it directly. The result is a three-dimensional

dragon image.

Figure 18-1: Program to Draw Three-Dimensional Dragons

3ddrag = program to generate 3-D dragon outlines

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void projection(float x3, float y3. float z3);

float (degrees_to_radians(float degrees);;

union LIMIT XMIn,YMIn,XMax,YMax,Pval,Qval;

mt 1, j, OPERATOR = OxOO,row,col,colorl;

mt x_center = 320, ycenter = 175;

float x= .50001, y=O,z,P,Q,k,sx,cx,sy,cy,sz,cz,

magnitude,scale,temp,tempx,temp,y,step_size=.4,ymax,ymin;

float radper_degree=O.0174533,alpha,beta,gamma;

float OVal ,x_offset, y_offset,upperjimit = 3, lowerjimit = -3;

mt color;

unsigned char PALETTE[16]={O,1 ,2,3,4,5,20,7,56,57,58,59,60,61,

62,63);

main()

printf(”\nEnter alpha: “);

scanf(”%f”,&alpha);

printf(”\nEnter beta: “);

scanf(”%f”,&beta);

printf(”\nEnter gamma: “);

scanf(”%f”,&gamma);

printf(”\nEnter scale: “);

scanf(”%f”,&scale);

scale = x_center * scale;

printf(”\nEnter X offset: “);

scanf(”%f”,&xoffset);

printf(”\nEnter Y offset: “);

scanf(”%f”,&y_offset);

331

FRACTAL PROGRAMMING IN C

printf(”\nEnter 0 parameter: “);
scanf(”%f”,&QVa1);

if (OVal == 0)

Step_size = 0.1;

upper_limit = 1.0;

lower_limit = -1.0;

setMode(16);

cls(0);

alpha = degrees_to_radians(alpha);

sx = sin(alpha);

cx = cos(alpha);

beta = degrees_to_radians(beta);

sy = sin(beta);

cy = cos(beta);

gamma = degrees_to_radians(gamma);

sz = sin(gamma);

cz = cos(gamma);

color = 1;

for (k= upper_limit; k>=lower_limit; k-=step_size)

if ((k<1.0) && (k>-1.0))

step_size = 0.1;
x=.50001;

y = 0;
if (OVal == 0)

magnitude = 1;

o = 4*sqrt(1k*k);

else

magnitude = k*k + OVal*OVal

o = 4*QVal/magnitude;

= 4*k/magnitude;

for (i=0; i<12000; i++)

tempx = x*P - y*Q;

y = x*O + y*P;

tempy = y;

x = 1 - temp_x;

magnitude = sqrt(x*x + y*y);

y = sqrt((-x + magnitude)/2);

x = sqrt((x + magnitude) /2);

if (tempj’ < 0)
x =

if (rand() < 16163)

x =

332

CH. 18: THREE-DIMENSIONAL DRAGONS

y = -y;

x = (1 - x)/2;

y = y/2;

z = P/2;

if (i>10)

projection Cx, y, z);

save_screen(0,O,639,349, “3ddragoO.pcx”);

getch();

projection() = projects three dimensions on two dimensions

void projection(float x3, float y3, float z3)

float temp_x, temp_y;

mt col , row, color;

temp_x = x3*cx + y3*cy + z3*cz;

temp_y = x3*sx + y3*sy + z3*sz;

col = scale * (temp_x- .5) + x_center + x_offset;

row = y_center - scale*tempji + y_offset;

color = (int)abs(y3*7)%7 + 1;

if (y3>0)

color+=8;

if ((col>=O) && (col<640) &&(row>=0) && (row<350))

plot (col,row,color);

degrees_to_radians() = converts degrees to radians

float (degrees_toradians(float degrees);

float angle;

while (degrees >= 360)

degrees -= 360;

while (degrees < 0)

degrees += 360;

angle = rad_per_degree*degrees;

return angle;

333

FRACTAL PROGRAMMING IN C

The weakness of this technique for drawing three-dimensional figures is that it

does not provide cues for separating out hidden surfaces and eliminating them, and

it has no way to determine the illumination that should be associated with each

point. The first is not a major objection. We see the dragon as a sort of semitransparent

entity in which we see the hidden parts of the figure through the parts

that are in front. This gives us a better understanding of the geometry involved,

and is not a great hardship since semi-transparent dragons are certainly within the

realm of possibility. As for the lighting problem, the program makes a crude attempt

to alleviate this by using dark colors to paint points of rearward surfaces,

and light colors to paint the forward ones.

The program provides for two computation options. If you enter a value of 0 for

Q, the program computes values over a range of -ito +1 for the P value. As

the program steps through various values of P, it holds the magnitude of P + iQ

constant at 1, so that values are taken around a unit circle. Plate 26 is an example

of this mode of the program in action. The angles that were used are a = 30

degrees, B = -30 degrees, and F’ = 90 degrees. The scale factor was 0.20, the x

displacement was 0, and the y displacement was +iO. Needless to say, the value

entered for Q was 0.

The other mode of operation occurs when a value of Q other than 0 is entered.

The program then holds the value of Q constant and steps through a range of values

of P from -3.0 to +3.0. Plate 25 is an example of this mode of operation.

For this picture, the angles were a = i5 degrees, B = -i5 degrees, and F’ = 90 degrees.

The scale factor was 0.3 and the value entered for Q was 0.967049. No

offsets were used.

These examples give you some good starting points for your own investigations.

Be warned, however, that it easy to select unfortunate combinations of values

which result in nothing being displayed at all because all points are beyond the

display limits. The best thing to do is use a very small scale factor (0.i or less)

for your first attempt. This will show you what the display looks like and give

you some idea of the scale factor and offsets required for a well-centered final display.

334

44
‘i

N ewlon’s Method

1 9

Newton’s method is an iterated numerical approximation technique developed by

Sir Isaac Newton to obtain the solutions of equations that do not have a closed

form solution. The method works as follows:

1. Suppose we have the generalized equation:

f(z) = 0 (Equation 19-1)

where z may be a complex number.

2. Make a guess as to a root of this equation. Call the guess zo.

3. Compute the expression:

Zn+1 = Zn - (f(Zn))/(f’(Zn)) (Equation 19-2)

where f is the derivative of f, and we start with zo on the right side of the equation

to obtain zi on the left side.

4. Now repeat this process as many times as you desire. Each new value for z

will be a closer approximation to the root of the equation.

Observe that this iteration process is very similar to that which we have used in

previous chapters to obtain the Julia, dragon, and phoenix curves. Thus, we have

opened the door for plotting curves for a very wide family of equations, and for

obtaining graphical results which have a mathematical meaning.

335

FRACTAL PROGRAMMING IN C

Programs for Plotting Newton’s Method Curves

We shall provide programs for plotting the curves of two Newton’s method equation

solutions. From there on, you’re on your own as to setting up similar programs

for any equations you can dream up. Figure 19-1 is the listing of a program

to obtain the Newton’s method solution of the equation:

z3 - 1 = 0 (Equation 19-3)

Figure 19-2 is the listing of a program to obtain the Newton’s method solution

of the equation:

z3 - 2z - 5 = 0 (Equation 19-4)

Figure 19-1: Program to Solve z3 - 1 = 0

cnewton3 = map of Newton’s method for solving 13 = 1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>

#include “tools.h”

const mt maxcol = 639;

const mt maxrow = 349;

const mt max_colors = 16;

char strings[80];

mt col,row,i;

mt max_iterations = 64;

mt max_size = 4;

mt LINEWIDTH=1. OPERATOR=O. ANGLE. XCENTER. YCENTER;

mt CURSOR_X=0,CURSOR_Y=0;

unsigned long mt PATTERN=OxFFFFFFFF;

float Xmax = 3.5, Xmin=-3.5, Ymax=2.50, Ymin=-2.50;

main()

double deltaX. deltaY, X, Y, Xsquare,Xold,Yold.

Ysquare ,Ytemp. tempi , temp2 ,denom,theta;

mt color, row, col;

336

CH. 19: NEWTON’S METHOD

setMode(16);

cls(7)

deltaX = (Xmax - Xmin)/(maxcol);

deltaY = (Ymax - Ymin)/(maxrow);

for (col=0; col<=maxcol; col++)

if (kbhit() 0)

break;

for (row=0; row<=maxrow; row++)

X = Xmin + col * deltaX;

Y = Ymax - row * deltaY;

Xsquare = 0;

Ysquare = 0;

Xold = 42;

Yold = 42;

for (1=0; i<max_iterations; i++)

Xsquare = X*X;

Ysquare =

denom = 3*((Xsquare - Ysquare)*(Xsquare -

Ysquare) + 4*Xsquare*Ysquare);

if (denom == 0)

denom = .00000001;

X = .6666667*X + (Xsquare - Ysquare)/denom;

Y = .6666667*Y - 2*X*Y/denom;

if ((Xold == X) && (Yold == Y))

break;

Xold = X;

Yold = Y;

if (X>0)

color = i%5;

else

if ((X<- .3) && (Y>0))

color = (i%5) + 5;

else

color = (i%6) + 10;

plot(col, row, color);

getch();

337

FRACTAL PROGRAMMING IN C

Figure 19-2: Program to Solve z3 - 2z - 5=0

cnewton = map of Newton’s method for solving Z3-2z - 5 = 0

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>

#include “tools.h”

const mt maxcol = 639;

const mt maxrow = 349;

const mt max_colors = 16;

char strings[80];

mt col,row,i;

mt max_iterations = 64;

mt max_size = 4;

mt LINEWIDTH=1, OPERATOR=O, ANGLE, XCENTER, YCENTER;

mt CURSOR_X=O,CURSOR_Y=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float Xmax = 3.5, Xmin=-3.5, Ymax=2.50, Ymin=-2.50;

main()

double deltaX, deltaY, X, Y, Xsquare,

Ysquare,Ytemp,templ,temp2,temp3,denom,numer,theta;

mt color, row, col;

float Xold,Yold,Xnew,Ynew;

setMode(16);

cls(7)

deltaX = (Xmax - Xmin)/(maxcol);

deltaY = (Ymax - Ymin)/(maxrow);

for (col=O; col<=maxcol; col++)

if (kbhit() != 0)

break;

for (row=0; row<=maxrow; row++)

X = Xmin + col * deltaX;

Y = Ymax - row * deltaY;

Xsquare = 0;

Ysquare = 0;

Xold = 42;

Yold = 42;

for (1=0; i<max_iterations; i++)

338

CII. 19: NEWTON’S METHOD

Xsquare = X*X;

Ysquare =

denom = (3*Xsquare - 3*ysquare - 2);

denom = denom*denom + 36*Xsquare*Ysquare;
if (denom == 0)

denom = .00000001;

templ = X*Xsquare - 3*X*ysquare - 2*X -5;

temp2 = 3*Xsquare - 3*ysquare - 2;

temp3 = 3*Xsquare*y - Ysquare*Y - 2*Y;

X = X - (templ * temp2 - 6*X*Y*temp3)/denom;

Y = Y - (templ * (6*X*y) + temp3 * temp2)

/denom;

Xnew = X;

Ynew = Y;

if ((Xold == Xnew) && (Yold == Ynew))

break;

Xold = X;

Yold = Y;

if (X>0)

color = i%5;

else

if ((X<-.3) && (Y>0))

color = (i%5) + 5;

else

color = (i%6) + 10;

plot(col, row, color);

getch();

Mathematical Meaning of the Curves

Plate 27 shows the resulting curve from running the program of Figure 19-1. If

you will look at the program listing, you will see that the colors are grouped in

sets of 5, 5, and 6, respectively. Since Newton’s method always settles on one of

the roots of the equation, we don’t need to worry about the expression blowing up

to infinity. What we have done, is provide three groups of colors, one for each of

the three roots of the equation to which the solution may be attracted.

339

FRACTAL PROGRAMMING IN C

You need some a prior knowledge of where the roots are located in order to do

this. One way to get this information is to run the program for a little while and

print out the resulting root. However, this is not necessary for the equation z3 -

1 = 0, which can be directly solved since one root is obviously 1. Dividing the

equation by z - 1 leaves a quadratic equation which can be solved by the quadratic

formula to obtain roots of -.5 ± .8666i. Knowing that the ultimate value of z

will always be one of these three values, we can devise some “if’ tests to determine

which color group to use. Later, we used colors to change the sixteen default

colors, so that the group that is attracted toward the root 1 is shades of blue,

the group for -.5+.866i is shades of green, and the group for -.5-.8666i is shades

of red.

Plate 28 shows the resulting curve from running the program of Figure 19-2.

The roots of this equation are different from the roots given above, but once they

were determined, it was observed that the same tests used for the first program

could differentiate between the three sets of roots.

Note that for either program, the different shades of a basic color represent the

number of iterations that were required for the program to converge to a root.

The test for the first program is simply that the same x and y values occurred on

the current iteration as occurred for the previous one. For the second program,

convergence is somewhat slower, so that making two successive values match to

double precision required more iterations than were practical to keep running time

short, so the values were converted to single precision before the test was made.

Now it is time to consider what these curves mean. Any point on the figure represents

a complex number which can be used as a starting point for the Newton’s

method process. It was once assumed that you started by making a “good guess”

as to the value of a root, and that Newton’s method would then converge to the

nearest root. The two figures show very plainly that this is not true. There are

lots of color mixtures and isolated islands of one color within another, which

demonstrate that it is quite possible to pick an initial value that converges to a

root quite far away from the initial value.

Note particularly in Plate 28, the mixed color areas on the left side of the figure.

In these areas, a very tiny change in the initial value selected will result in con340

CII. 19: NEWTON’S METHOD

vergence to a totally different root. Another thing that is of interest is the path

which the variable takes on its way to convergence. We have not attempted to

plot this, but it appears to be very interesting. Note that if we take one of the

initial tiny points of green, for example, on the left side of Plate 28, it must land

on a green point at every step in the convergence process. If it landed on another

color, the succeeding iterations would be just the same as if we had begun at that

point, so convergence would be to a different root, which is a contradiction of

terms.

341

20

Brownian Motion

Up until now, we have been looking at fractals that are deterministically defined

by relatively simple iterated equations. It is tempting to think that by using

these techniques, we can mathematically describe (and consequently realistically

represent) any natural phenomena. But no matter how much rich and apparently

irregular detail appears in fractal curves, they are never exactly like natural phenomena,

which is filled with random irregularities. Your body may have been

generated by the regular fractal patterns defined by your genetic structure, but the

scar on your arm that you got when you cut yourself when you were twelve years

old is a random departure from the fractal pattern that cannot be covered by the

mathematical expressions. Nature is full of these random departures from

regularity, and to properly represent them, we need to look at introducing some

randomness into our fractal techniques.

The first detailed investigation of such randomness in nature was conducted by

Robert Brown in 1828. Brown was looking at the movement of pollen particles.

This movement had irregularites for which there was no mathematical explanation.

Similar movements have since been observed in the dispersion of minute

particles through a fluid and in the mixture of different colored gases. Investigations

of this random movement, called the Brownian motion (after its discoverer),

have suggested that it occurs in particles so small that collisions on a molecular

level are not regular from all directions, so that the unsymmetric application of

kinetic molecular forces causes the particles to be propelled in random direction

and with random velocities over time.

343

FRACTAL PROGRAMMING IN C

This chapter will introduce techniques for generating representations of Brownian

motion. The resulting curves are not too interesting in themselves, but the tools

used here are powerful in generating natural scenes through fractal means.

Unfortunately, in the next chapter, where we provide some scene drawing techniques,

we have not been able to make too much use of the randomized methods.

They do appear in one program—a scene of earth viewed from the moon—but

they don’t make a significant difference at the level of computation required to be

compatible with the limitations of personal computers. They do play a significant

part in creating some of the breathtaking scenes that have been produced on

mainframe computers; consequently, this introduction to the subject is included

so that you can achieve some familiarity with the subject and so that you will

have the tools for your own experimentation.

One-Dimensional Brownian Motion

The simplest form of Brownian motion occurs when time is divided into units

and plotted along the x axis and the length traveled by a particle in that time interval

is plotted on the y axis. For this case, the y values have been shown to

have a gaussian distribution. Figure 20-1 lists a program to plot the simple

Brownian motion.

Figure 20-1: Program to Generate Brownian Fractals

brownian() = program to generate Brownian fractals

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

float gauss(unsigned seed);

void subdivide (mt fi, mt f2, float std);

float Fh[257],ratio;

char combination= OxOO;

unsigned long mt PATTERN=OxFFFFFFFF;

unsigned mt seed=3245;

mt LINEWIDTH = 1;

344

CII. 20: BROWNIAN MOTION

main()

float scale=1000,h=.87,std;

mt 1;

while (seed != 0)

setMode(3);

printf(”Enter seed (0 to quit): “);

scanf(”%d”,&seed);

Fh[0] = gauss(seed) * scale;

Fh[256] = gauss(0) * scale;

ratio = pow(2, -h);

std = scale*ratlo;

subdivide(0,256,std);

setMode(16);

for (1=0; 1<256; i++)

drawLine(2*i26O,Fh[i],2*(i+1)26O,Fh[i+1],15);

drawLine(-260,0,252,0,14);

getch();

subdivide() = function to subdivide line and compute

amplitude at each p oint

void subdivide (mt fl, mt f2, float std)

mt fmid;

float stdmid;

fmid = (fi + f2)/2;

if ((fmid != fi) && (fmid != f2))

Fh[fmid] = (Fh[fl] + Fh[f2])/2.0 + gauss(0) * std;

stdmid = std*ratio;

subdivide(fl,fmid,stdmid);

subdivide(fmid,f2,stdmid);

345

FRACTAL PROGRAMMING IN C

gauss() = function to return a gaussian variable

float gauss(unsigned seed)

mt k;

float value,exponent,gauss;

if (seed 0)

srand(seed);

k = rand() - 16383;

value = k/5461.O;

exponent = (value*va1ue)/2.

gauss = .15915494*exp(exponent);

k = rand();

if (k > 16383)

gauss = -1;

return(gauss)

The program begins with determining a random value of the Brownian function at

the beginning and end of the plot. This determines the y value of the function at

the endpoints. If you want to take some sort of random curve, defined by line

segments, and replace the line segments with Brownian curves, you need to set

the beginning and end points for each line segment to match the beginning and

end coordinates of the line to assure continuity of the function from one line

segment to the next. Alternately, you can use random settings for the beginning

and end points of the first line segment, then use the value that you obtained for

the end point of that segment as the beginning point for the next line segment

and find a random end point for that line segment, and so forth.

Before proceeding further, let’s look at the function gauss, which returns a random

number that has a gaussian distribution. This function begins by looking at a

seed parameter. If this parameter is some number other than zero, the function

reseeds the random number generator; if the seed is zero, the random number generator

proceeds to generate random numbers without being restarted. The random

number generator returns integers between 0 and 32767. The first thing we do is

get a random number and subtract 16383 from it so that we have a random number

between -16383 and +16384. Next, we find a floating point number between

-3.0 and +3.0 by dividing the number that we obtained in the above step by

346

CII. 20: BROWNIAN MOTION

5461. This gives us a point at which to read off a value from the gaussian

distribution. This value (v), for a given number n, is:

v = (1/2n)(exp)n2/2 (Equation 20-1)

Note that the gaussian distribution always results in a positive number. Since

we want to return a number that has equal chances of being positive or negative,

we next select another random number and use it to determine the sign of the

number that is returned by the function.

The heart of this program is a function called subdivide. On the first pass, this

function divides the line connecting the beginning and end points at the center,

and then uses gauss to obtain a random value of the gaussian distribution, which

is multiplied by a scale factor and stored in an array as the y coordinate of the

brownian function at that point. It then calls itself recursively twice to perform

the same procedure with each half of the line, reducing the scale factor for these

new iterations by a specified ratio. This recursive process continues until the

computed midpoint is the same as one of the ends of the line. Since the line coordinates

are integer values, this means that the array of points has been filled so

the function terminates.

The main program, after determining the beginning and end points, establishes

the scale factor and reduction ratio that will be used, then calls subdivide to fill

the array of points, and then utilizes afor loop to draw a line between each pair of

adjacent points. Before each iteration of this process, you are given the opportunity

to enter a seed for the random number generator. Each different seed results

in a unique Brownian curve. If you enter the seed 0, the curve for a zero seed will

be plotted, but the program will terminate upon the next entry of a character on

the keyboard. Figure 20-2 shows several representations of Brownian motion

obtained from this program.

347

FRACTAL PROGRAMMING IN C

Figure 20-2: Typical One-Dimensional Brownian Motion

Two-Dimensional Brownian Motion

The above program was confined to describing particle motion in a single dimension.

If we now expand to consider the motion of a Brownian particle on a plane,

we have two methods of graphing our result. The first technique makes use of a

three-dimensional graph and shows particle position in two dimensions plotted

against time. The second method uses a two-dimensional graph and simply plots

the path of the particle without reference to the time involved. We shall use this

second technique.

Figure 20-3 lists a program to produce a graph of Brownian motion using this

technique. It is essentially the same as the program listed in Figure 20-1 except

that we have increased the number of points to be computed, changed the scale,

and provided for calculating of two dimensions for each point and saving these

values in two arrays. The program then draws a line between each two adjacent

348

CH. 20: BROWNIAN MOTION

sets of x and y coordinates. Figure 20-4 shows several resulting Brownian motion

curves obtained using this program.

Figure 20-3: Program to Generate Two-Dimensional Brownian Fractals

brown2d = program to generate two-dimensional Brownian fractals

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <tools.h>

float gauss(unsigned seed);

void plot(int x, mt y, mt color);

void subdivide (mt fl, mt f2, float std);

void setMode(int mode);

float Fh[2049],Fw[2049],ratio;

char combination= 0x00;

unsigned long mt PATTERN=0xFFFFFFFF;

unsigned mt seed=3245;

mt LINEWIDTH = 1;

main()

float scale=2000,h=.87,std;

mt 1;

while (seed != 0)

setMode(3);

printf(”Enter seed (0 to quit): “);

scanf(%d,&seed);

Fh[0] = 0;

Fh[2048] = gauss(seed) * scale;

Fw[0] = 0;

Fw[2048] = gauss(0) * scale;

ratio = pow(2,-h);

std = scale*ratio;

subdivide(0,2048,std);

setMode(16);

for (i=0; i<2048; i++)

drawLine(Fw[i I Fh[i I Fw[i+1] , Fh[i+1] ,15);

PATTERN = 0x0FOF0F0F;

drawLine(-260,0,252,0,15);

drawLine(0, -220 ,0, 220, 15)

PATTERN = OxEFFEFFEF;

349

FRACTAL PROGRAMMING IN C

getch();

void subdivide (mt fi, mt f2, float std)

mt fmid;

float stdmid;

fmid = (fl + f2)/2;

if (C fmid != fi) && (fmid != f2))

Fh[fmid] = (Fh[fl] + Fh[f2])/2.O + gauss(O) * std;

Fw[fmid] = (Fw[fl] + Fw[f2])/2.O + gauss(O) * std;

stdmid = std*ratio;

subdivide(fl,fmid,stdmid);

subdivide(fmid,f2,stdmid);

float gauss(unsigned seed)

mt k;

float value,exponent,gauss;

if (seed != 0)

srand(seed);

k = rand() - 16383;

value = k/5461.O;

exponent = (value*value)/2.

gauss = .15915494*exp(exponent);
k = rand();

if (k > 16383)

gauss = -1;

return(gauss);

350

CH. 20: BROWNIAN MOTION

Figure 20-4: Typical Two-Dimensional Brownian Motion

351

21

Fractal Landscapes

Some of the most interesting pictures created through the use of fractals are of

extremely realistic landscape scenes. In Mandelbrot’s book, The Fractal Geometry

of Nature, are scenes of rugged mountains and of a planet rising above a desolate

landscape created by Richard Voss at the Thomas J. Watkins Research Laboratory,

which have become almost classics in the art of fractal scene generation.

We still look at these pictures in breathless amazement at their degree of realism.

Other scenes including mountains, lakes, and oceans have been created by Gary

Mastin, Peter Watterberg, and John Mareda at Sandia National Laboratories. The

creators of these scenes seem to be quite reluctant to reveal the details of the

computer code that they use to produce them, so we can only guess as to the exact

details of how they were created.

In general, the technique seems to be that of transforming Gaussian noise to the

frequency domain, passing it through a 1/f filter, and then transforming the result

back to the time domain. Using the result to generate three-dimensional shapes

and then illuminating the shapes from a fictious light source, using a ray-tracing

program, appears to be the method to produce delightful landscapes. We take

note, however, that a number of adjustments need to be made to the raw data before

a life-like scene appears. Since we don’t have the code, we don’t know exactly

how much “tweaking” was done before these expressions of mathematics

began to approach art.

The technique above can require an hour or more of processing time on a VAX

computer; obviously it is not well-suited to the capabilities of our PCs. In fact,

attempts to adapt fractal scene generation to motion pictures encounters pro-

353

FRACTAL PROGRAMMING IN C

hibitive costs in computer time (even for the movies, which are not noted for

economizing), so more efficient techniques were developed. Fournier, Fussell,

and Carpenter developed the midpoint displacement method as an efficient and inexpensive

method of generating fractal landscapes. Mandelbrot points out that

this technique is not as mathematically sound as the one he was using and consequently

the landscapes are not as realistic, but for all practical purpose they are

perfectly acceptable. Moreover, it is our good fortune that an adaptation of this

technique can produce interesting scenes on a personal computer.

Midpoint Displacement Technique

Figure 2 1-1(a) shows the first step in the midpoint displacement process. We

start with a triangle, then go to the midpoint of each side of the triangle and displace

it along the line and at right angles to the line. The amount of each displacement

is determined by applying a Gaussian random multiplier to a proportion

of the line length. Next we connect each displaced midpoint to the two

nearest apexes of the triangle. We then connect together each pair of displaced

midpoints. Finally, we throw away the original sides of the triangle.

In the figure, we show the original triangle sides as wide lines and the new lines

as thin lines. For clarity, we didn’t throw away the original triangle lines in the

figure; you can do that in your imagination. The result of this process is that we

have replaced the original triangle with four new triangles. We then apply the

same process to each of the four new triangles, generating four more triangles

from each so that we then have sixteen triangles. This step is shown in Figure

2 1-1(c), although the sixteen new triangles are a little hard to pick out.

What happens when we have two triangles that have a common side? (Even if

we start with a single triangle, this situation arises after the first set of displacements

is performed.) If we are creating scenes on a large scale using a mainframe

computer, there is no problem in saving the coordinates of each new side as it is

generated, so that once we have performed the midpoint displacement for a side,

that same midpoint displacement is used for each triangle in which the side occurs.

354

CH. 21: FRACTAL LANDSCAPES

(b) Gap resulting from two different

displacements of common side

(c) Second application of midpoint

displacement

Figure 21-1: Midpoint Displacement of Triangle Sides

(a) First application of midpoint displacement

355

FRACTAL PROGRAMMING IN C

For our smaller home computers, we prefer recursive techniques that are most efficient

when we calculate the coordinates of one new triangle at the smallest

level, fill it with some color, and then forget about it completely. Figure 2 1-1(b)

shows what might happen when we do this.

In this particular case, the displacement of the common side for the first triangle

is toward the inside of the first triangle, and the displacement for the same side in

the second triangle is toward the inside of the second triangle. If we assume that

this is at the lowest level, and fill the resulting triangles with color, it is evident

that there is a gap that is not filled, and will leave an objectionable unfilled space

in the resulting picture.

There are two ways of approaching this problem. Michael Batty, at the University

of Wales Institute of Science and Technology, has been applying this technique

to BASIC programs for use with small computers. At each level of the recursion

process except the lowest one, he creates a smaller triangle than the original

and paints it with a color. Hopefully this triangle is small enough so that it

will not mask the desired irregularity of surfaces that is created by the midpoint

displacement process, yet large enough so that it will color in those regions

where gaps might occur at the next downward level of the process. This technique

will be used in the program to generate the Earth Viewed from the Moon

picture that is described below.

Another interesting approach is to use the coordinates of the undisplaced midpoint

of the line that we are working on to generate a unique number. This number is

used as a seed for the random number generator of the computer, which then generates

the random numbers for displacement along and perpendicular to the line.

When the same line occurs in another triangle, since its undisplaced midpoint

still has the same coordinates, the seed that is generated for the random number

generator will be the same and the displacement will be the same, so that there is

no possibility of a gap occurring.

Immediately the question arises, “Are these really random displacements?” The

answer is, “Of course not!” But, then, what are they? They are certainly more

random than displacements that might be generated by any arbitrary technique,

but the are also much less random than if they were generated by truly random

356

CH. 21: FRACTAL LANDSCAPES

numbers that were created without the generator being reset for each line. Interestingly

enough, the resulting boundaries for this process are much rougher than

those achieved by Batty’s process, so that using the same basic generator data for

the two processes does not result in pictures that are equally pleasing or realistic

looking.

Oak Creek Canyon

Figure 21-2 lists a program for generating a western scene that is supposed to be

reminescent of Oak Creek Canyon near Sedona, Arizona. Before going into the

program in detail, we need to consider what percentage of the picture realism is

contributed by fractals and what part is artistic endeavor by the programmer. To

help get a handle on this, take a look at Figure 2 1-3, which is a line drawing

showing the triangles specified by data input to the program. This is the artist’s

contribution to the basic format of the picture. In addition, the parameters that

are used with the function midpoint to specify the displacement of the midpoint

of each line of each triangle have a lot to do with how rugged the landscape looks

and its overall shape. Now look at the final picture as shown in Plate 29 to see

the result of combining artistic feeling with fractal scene generation.

Figure 21-2: Program to Generate Desert Scene

sedona = program to generate Oak Creek Canyon landscape

#include <stdio.h>
#include <math.h>
#include <dos.h>
#include <stdlib.h>
#include “tools.h”

void cactus (mt xl, mt y-one, mt scale, mt level, mt colon,

mt color2);

void gen_quad (mt xl, mt y-one, mt x2, mt y2, mt x3,

mt y3, mt x4, mt y4, mt level, mt colon, mt color2);

void generate(int xl, mt y-one, mt x2, mt y2, mt x3, mt y3,

mt level, mt colorl,int color2);

void midpointO;

void node(int xl, mt y-one, mt x2, mt y2, mt x3, mt y3,

357

FRACTAL PROGRAMMING IN C

mt x4, mt y4, mt x5, mt y5, mt x6, mt y6, mt level,

mt colon, mt color2);

void plot_triangle(mnt xl, mt y-one, mt x2, mt y2, mt x3,

mt y3, mt colorl,int color2);

float random_no (float limit_start, float limit_end);

union LIMIT XMax,XM1n,YMax,YMin;

mt combination = 0,LINEWIDTH=1, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

mt i,j;

mt y_max = 280;

mt level [26] = {3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,

4,4,4,4,4);

mt xl[26] = {-330, -90, -90,120,120,120, -160,-120, -120, -80,

-80,-50,-50,-50, 80,104,104,128,128,152,152,200,

-470,-350,-220,-200);

mt y-one[26] = {-110, -110, -110, -110, -110,-hO, -10, -10, -10, -10,

-10,-10,-10,-10, 50,50,50,50,50,50,50,50,

-300,-280,-280,-280};

mt x2[26] = {-160,-160,0,0,80,200, -160,-160,-120,-120,-80,

-80, -50,0, 100,100,104,104,128,128,152,152,

-250,-60,80,230};

inty2[26] = {0,0,0,0,50,50, 220,220,190,190,230,230,100,180,

180,180,200,205,215,215,160,160, -110,-140,-130,-120);

mt x3[26] = {-90,0,120,80,200,340, -120,-120,-80,-80,-50,

-50,0,0,104,104,128,128,152,152,200,200,

300,300,340,580);

mt y3[26] = {-110,0, -110,50,50, -110, -10,220,-10,200,-10,

235,180,-b, 50,200,50,210,50,220,50,140,

-300,-300,-300,-300};

mt xz,yz,xp,yp;

mt color_value=2;

unsigned char PALETTE[16]={0,1,2,3,4,5,20,7,56,57,58,59,60,

61,62,63);

float x,y;

main()

setMode(16);

cls(9);

for (1=0; i<22; i++)

generate(xl[i] ,y-one[i] ,x2[i] ,y2[i] ,x3[i I ,y3[i] ,level [1],

4,12);

y_max = -100;

gen_quad(-330,-260,-330,-100,330,-100,330,-260,4,6,14);

y_max = 0;

cactus(-h10,-130,3,4,2,10);

cactus(-200,-120,2,4,2,10);

cactus(0,-160,4,4,2,10);

cactus(210, -200,6,4,2,10);

getch();

358

CH. 21: FRACTAL LANDSCAPES

node() — runs ‘generate’ for four new triangles

void node(int xl, mt y-one, mt x2, mt y2, mt x3, mt y3,

mt x4,int y4, mt x5, mt y5, mt x6, mt y6, mt level,

mt colon, mt color2)

if (level 0)

return(O);

generate (xl,y-one,x4,y4,x6,y6,level -1,colorl,color2);

generate (x6,y6,x5,y5,x3,y3,level-1,colorl,color2);

generate (x4,y4,x2,y2,x5,y5,level-1,colorl,color2);

generate (x4,y4,x5,y5,x6,y6,level-1,colorl,color2);

generate() — makes four new triangles from original

triangle

void generate(int xl, mt y-one, mt x2, mt y2, mt x3, mt y3,

i nt level , i nt col on, 1 nt col or2)

mt x4,x5,x6,y4,y5,y6,ax,bx,cx,ay,by,cy;

x = x2 - xl;

y = y2 - y-one;

midpointO;

x4 = xl + xz -xp;

y4 = y-one + yz - yp:

ax = -xp;

ay -yp;

x = x3-xl;

y = y3-y-one;

midpoint();

x6 = xl + xz;

y6 = y-one + yz;

cx xp;

cy = yp;

x x3-x2;

y = y3-y2;

midpointU;

x5 x2 + xz;

y5 = y2 + yz;

bx — -xp;

by — -yp;

if (level —— 0)

359

FRACTAL PROGRAMMING IN C

plot_triangle(xl,y-one,x4,y4,x6,y6,colorl,color2);

plot_triangle(x6.y6.x5,y5.x3,y3,colorl,color2);

plot_triangle(x4.y4.x5,y5.x6.y6.colorl,color2);

plot_triangle(x4,y4,x2,y2,x5,y5,colorl,color2);

else

p1 ot_tri angi e(xl ,y-one,x4+ax,y4+ay ,x6+cx,y6+cy ,col on.
col or2);

p1 ot_tri angl e(x6+cx ,y6+cy ,x5+bx ,y5+by ,x3,y3 ,col on.
col or2);

p1 ot_tni angi e(x4+ax ,y4+ay x5+bx ,y5+by x6+cx .y6+cy.
colon, color2);

plot_triangle(x4+ax,y4+ay,x2,y2,x5+bx,y5+by,colonl.
col or2);

node(xl,y-one,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,level ,colorl,
col or2);

plot_triangle() = dete rmines which color to use and

then calls ‘fill_ triang le’

void plot_triangle(int xl, mt y-one, mt x2, mt y2. mt x3,

mt y3,int colon, mt colon2)

mt ytt,colon;

float zt;

if (y-one > y2)

ytt = y-one;
else

ytt = y2;

if (ytt < y3)

ytt = y3;

zt = (y_max+24O)*(1(float)(ytt+24O)/(y_max+24O)*

(float) (ytt+240) /(y_max+240));

if (random(y_max+241) <= zt)
color = colon;

else

color = color2;

if (ytt + 240 < (.35 * (y_max + 240)))
color = colon;

if (ytt+240 > (.92 * (y_max+240)))
color = color2;

fillTriangle(xl,y-one,x2,y2,x3,y3,color);

360

CH. 21: FRACTAL LANDSCAPES

midpoint() = determines displaced midpoint for a side

void midpoint()

float r,w;

mt signl,sign2;

r = 0.5 + random_no(0. .16666);

w = random_no(.03,.07);

xz = r*x - w*y;

yz = r*y + W*x;

xp = QQ5*y;

yp = 0.05*x;

random_no() = determines random number (positive or

negative) between two limits

float random_no (float limit_start,

float limit_end)

float result;

limit_end -= limit_start;

limit_end = 16383.0/limit_end;

result = (rand() - 16383)/limit_end;

if (result >= 0)

result += limit_start;

else

result -= limit_start;

return(result);

gen_quad() = runs ‘generate’ for a quadralateral

with no gap between two triangles

void gen_quad (mt xl, mt y-one, mt x2, mt y2, mt x3, mt y3,

mt x4, mt y4, mt level, mt colon, mt color2)

genenate(xl,y-one,x2,y2,x3,y3,level,colorl,color2);

genenate(xl,y-one,x4,y4,x3,y3,level ,colorl,colon2);

361

FRACTAL PROGRAMMING IN C

cactus() = generates cactus shape

void cactus (mt xl, mt y-one, mt scale, mt level, mt colon,

mt colon2)

gen_quad(x1,yone,xl,yone+21*sca1e,x1+1.6*scale,yone+22*sca1e,x1+

l.6*sca1e,yone,leve1 ,colonl,colon2);

gen_quad(xl+l . 4scal e ,y - one, xl+l . 4*scal e ,y - one+22*scal e ,xl+

3*scale yone+2l*scale,xl+3*scale,yone,level,colonl,

col or2);

gen_quad(xl,yone+9*scale,xl+7*scale,yone+9*scale,x1+7*scale,

yonefl2*scale, x1,yone+12*scale,O,color1,colon2);

gen_quad(xl ,yone+9*scal e , xl+6*scale ,yonef9*scal e xl+7*scal e.

yonefl2*scale, xl,yone+l2*scale,level,colorl,colon2);

gen_quad(xl+7*scal e ,y - one+9*scal e ,xl+7*scal e ,y - one+16*scal e,

xl+8. 5*scal e ,y - one+17*scal e ,xl+8. 5*scal e ,y - one+9*scal e.
level ,colonl,colon2);

gen_quad(xl+8 4* e ,y - one+9*scal e ,xl+8 4*scal e ,y - one+16*scal e.

x1+1O*scale,yone+17*scale,x1+1O*scale,yone+1O*scale,
level ,colonl,colon2);

gen_quad(x1,yone+7*scale,xl6*scale,yone+7*scale,xl6*scale,

yone+lO*scale, xl,yone+lO*scale,O,color1,color2);

gen_quad(xl,yone+7*scale,xl6*scale,yone+7*scale,x16*scale,

yone+lO*scale, xl,yone+lO*scale,level,colonl,colon2);

gen_quad(x17*scale,yone+8*sca1e,xl7*scale,yone+12*scale,

xl5.4*scale, yone+13*scale,x15.4*scale,yone+7*scale,
level ,colonl,colon2);

gen_quad(xl5.6*scale,yone+7*scale,x15.6*scale,yone+13*scale,

xl4*scale, yone+l2*scale,xl4*scale,yone+7*scale,level
colonl,colon2);

The program to paint this scene uses Michael Batty’s technique of filling reduced

triangles at intermediate stages to avoid objectionable gaps. First, let’s look at

the function generate. This function determines the length in x and y for each

line making up the input triangle, and then calls midpoint to determine the x and

y displacements of the midpoint for that line. The coordinates of the displaced

midpoint are stored and the displacements needed to define a reduced triangle to be

filled at levels above the lowest level are stored in ax, ay, bx, by, cx, and cy.

362

CH. 21: FRACTAL LANDSCAPES

Figure 21-3: Input Data for Oak Creek Canyon Scene

If we are at the lowest level (level 0), the function next calls plot_triangle to determine

the fill color and fill each of the four new triangles. If the lowest level

has not been reached, the function calls plot_triangle to fill each of four reduced

triangles, and then calls node, which recursively calls generate to generate four

new triangles for each of the four triangles that was just generated.

Take a quick look at the function node and you will see that it returns if the level

is 0 and otherwise calls generate for each of the four triangles created by the current

run of generate. Note that the way the program is set up, it should not ever

be possible to enter node with the level set to 0. However, just in case, the first

if statement provides added assurance that the program can never get into an endless

loop.

For convenience, there is also a function gen_quad, which merely runs generate

for two triangles that make up a quadralateral. Since many of the shapes in this

363

FRACTAL PROGRAMMING IN C

scene are of a quadralateral nature, this function makes it easier to define them in

the data.

Next we’ll look at the function midpoint in a little more detail, but first, look at

random no, which midpoint uses in determining the random displacement. The

inputs to this function are the lower and upper limits of a random number to be

generated. These limits have a special meaning in this case, however. Both

limits are assumed to be entered as positive numbers. The returned random

number will be either a negative number that lies between the negative values of

the two numbers entered or a positive number that lies between the two positive

values of the limits. First, the function takes the difference between the two

limits. It then divides 16,383 by this difference to obtain a limit to be applied to

the integer random number routine.

The rand function is then called. This function returns a random number between

o and 32,767. From the returned number, 16,283 is subtracted, giving a number

between -16383 and 16,384. This number is divided by the limit determined

above to give a number that is between the maximum negative and maximum

positive values of the difference between the two input limits. If the resulting

number is negative, the starting limit is subtracted; if it is positive, the starting

limit is added, giving a result that is between the negative values of the two limts

or between their positive values. This number is returned by the function.

The function midpoint begins by selecting a random number that represents the

displacement of the midpoint along the line whose x distance is stored in x and

whose y distance is stored in y. This distance is half the line length plus or minus

a random value between zero and one-sixth times the line length. Next, the

displacement at right angles to the line is computed. It is the line length times a

random number between 0.03 and 0.07 or between -0.03 and -0.07. Batty determines

the direction of the line and then applies trigonometric conversions to the

displacements along and at right angles to the line to determine the displacements

in the x and y directions. However, this is not really necessary, since if you

work out the trigonometry involved, you will find that the sines and cosines of

angles cancel out and the result is those expressions given in the function for xz

and yz. The function also computes xp and yp, which represent the reductions in

364

CH. 21: FRACTAL LANDSCAPES

size that are applied to create the reduced triangles that are color-filled at levels

higher than zero.

Now lets take a look at the function plot_triangle. Its inputs are the coordinates

of the three apexes of a triangle and two color values for the triangle. It also

makes use of the global variable y_max which is an altitude value that controls

the color selection. The function begins by selecting the y value of the highest

apex of the triangle to use as the test criteria. It then creates a test variable, zt,

according to the formula:

(y max)(1 - ytt) (Equation 21-1)

zt — (y_max)(ytt/y_max)

where y_max is the control altitude and ytt is the altitude of the highest apex of

the triangle. Note, however, that both y’s are in terms of system coordinates

which can take on any value between -240 and +240, so that in the function 240

is added to every y value to make it a positive altitude. Once the value of zt is

determined, the function selects a random number between zero and y_max and

compares it with the test value zt. If the random number is less than or equal to

zt, the first color is selected; otherwise the second color is selected. Finally, if

the altitude of ytt is below a selected limit, the color selection is overridden and

the first color is selected. If the altitude of ytt is above a selected limit, the color

selection is overridden and the second color selected. The function then runs fill-

Triangle to fill the triangle with the selected color and then returns.

The plot_triangle function is where you can do a lot of experimentation to modify

your scenes and provide them with additional color variations that are more

complex than the ones used in the scenes depicted in this book. There is no reason

why you need to be restriced to two colors; you can have several variations

for different altitude levels. You don’t need to have altitude as the criteria for

color selection; you can select any criteria that you desire. You can also vary the

controlling altitude and/or the overriding limits.

Finally, there is the function cactus. This function has as inputs an x and y coordinate,

a scale factor, a level, and two colors. It includes the necessary

365

FRACTAL PROGRAMMING IN C

gen_quad function calls to create a picture of a cactus located at the x and y coordinates,

in a size determined by scale and with the specified level and colors.

With these preliminaries out of the way, we are ready to look at the main program.

It begins by running afor loop which calls generate twenty-two times to

create the red rock cliffs. It then runs gen_quad once to paint the yellow and

brown desert floor. It then runs cactus four times to create four cactii at different

locations and of different sizes.

Pike’s Peak at Sunrise

Figure 21-4 lists a program for generating a scene of Pike’s Peak near Colorado

Springs, Colorado at sunrise. Figure 21-5 is a line drawing showing the triangles

specified by data input, which are the artist’s contribution to the program.

The final picture appears in Plate 30.

Figure 21-4: Program to Generate Pike’s Peak Scene

pikespk = program to generate Pike’s Peak landscape

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <stdlib.h>

#include <time.h>

#include “tools.h”

void generate(int xl, mt y-one, mt x2, mt y2, mt x3, mt y3,

mt level ,int colon, mt color2);

void midpointU;

void node(int xl, mt y-one, mt x2, mt y2, mt x3, mt y3,

mt x4,int y4, mt x5, mt y5, mt x6, mt y6, mt level.
mt colon, mt colon2);

void plot_triangle(mnt xl, mt y-one, mt x2, mt y2, mt x3,

mt y3,int colorl,int colon2);

float random_no (float limit_start, float limit_end);

mt combination = O,LINEWIDTH=l, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

unsigned char PALETTE[16]={O, 1,2,3,4,5,20,7 ,56,57,58,59,60,

366

CH. 21: FRACTAL LANDSCAPES

61,62,63);

mt interim;

mt i,j;

mt y_max = 180;

mt level[12] = {6,6,5,5,5,5,4,4,4,4);

mt xl[12] = {-220,-780,-480,-100,-770,-550,-220,-200);

mt y-one[12] = {-240,-200,0,-260,-300,-280,-280,-280};

mt x2[12] = {120,40,-240,240,-250,-60,80,230);

mt y2[12] = {100,130,60,40,-110,-140,-130,-120};

mt x3[12] = {500,420,0,500,600,400,340,580};

mt y3[12] = {-40,-120,-60,-180,-300,-300,-300,-300);

mt colors[16] = {0,1,2,11,10,10,34,31,47,58,18,2,6,27,62,63};

float xz,yz,xp,yp;
mt color_value=2;

float x,y;

main(

randomize 0:

setMode(16);

for (1=0; 1<16; i++)

setEGApalette(i ,colors[i]);
cls(13)

1=0;

for (1=0; 1<4; i++)

if (i==1)

y_max = 160;
else

y_max = 180;

generate(xl[i I ,y-one[i] ,x2[i I ,y2[i],x3[i] ,y3[i I ,level [I],

i+3,i+7);

fillTriangle(-320,-200,-320,-110,319,-110,1);

fillTriangle(319,-110,319,-200,-320,-200,1);

y_max = -100;
for (1=4; 1<8; i++)

generate(xl[i I ,y-one[i I ,x2[i I ,y2[i],x3[i],y3[i] ,level [ii,
11,12);

getch();

void midpomnt()

float r,w;

unsigned mt seed;

unsigned long mt seed_gen;

seed_gen = 350*(y+240) + x + 320;

seed = seed_gen%32760 + 2;

srand(seed);

367

FRACTAL PROGRAMMING IN C

r = 0.5 + random_no(O. .16666);

w = random_no(.015,.035);

xz r*x - (w+.05)*y;

yz = r*y + (w + .05)*x;

generate() = finds coordinates of four triangles

making up a larger triangle

void generate(int xl. mt y-one. mt x2, inty2. mt x3. mt y3.

mt level,int colon. mt color2)

mt x4,x5,x6,y4,y5,y6,ax,bx,cx,ay,by,cy;

x = (x2-xl);

y = (y2-y-one);

midpoint(x.y);

x4 = xl + xz;

y4 = y-one + yz;

x = xl-x3;

y = y-one-y3;

midpoint(x.y);

x6 = x3 + xz;

y6 = y3 + yz;

x = (x3-x2);

y = (y3-y2);

midpoint(x,y);

x5 = x2 + xz;

yS = y2 + yz;

if (level == 0)

plot_triangle(xl,y-one,x6,y6,x4,y4,colorl,color2);

plot_triangle(x2.y2.x4.y4.x5.y5.colorl.color2);

plot_triangle(x3,y3,x5,y5,x6,y6,colorl,color2);

p1 ot_triangi e(x4,y4,x5,y5,x6,y6,col on ,col or2);

else

node(xl ,y-one,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,level ,colorl,

color2);

368

CH. 21: FRACTAL LANDSCAPES

random_no() = gets a floating point random number

between two limits

float random_no (float limit_start, float limit_end)

float result;

limit_end -= limit_start;

limit_end = 16383.0/limit_end;

result = (rand() - 16383)/limit_end;

if (result >= 0)

result += limit_start;

else

result -= limit_start;

return(result);

node() = runs ‘generate’ for four triangles

void node(int xl, mt y-one, mt x2, mt y2, mt x3, mt y3,

mt x4, mt y4, mt x5, mt y5, mt x6, mt y6, mt level,

mt colon, mt color2)

if (level == 0)

return;

generate (xl,y-one,x6,y6,x4,y4,level-1,colorl,color2);

generate (x2,y2,x4,y4,x5,y5,level-1,colorl,color2);

generate (x3,y3,x5,y5,x6,y6,level-1,colorl,color2);

generate (x4,y4,x5,y5,x6,y6,level-1,colorl,color2);

plot_triangle() = determines colors to use to fill a triangle.

void plot_triangle(int xl, mt y-one, mt x2, mt y2, mt x3,

mt y3, mt colon, mt color2)

mt ytt,color;

float zt;

if (y-one > y2)

ytt = y-one;

369

FRACTAL PROGRAMMING IN C

else

ytt = y2;

if (ytt < y3)

ytt = y3;

zt = (y_max+24O)*(1(float)(ytt+240)/(y_max+240)*

(float)(ytt+240)/(y_max+240));

if (random(y_max+241) <= zt)

color = colon;

else

color = color2;

if (ytt + 240 < (.25 * (y_max + 240)))

color = colon;

if (ytt+240 > (.98 * (y_max+240)))

color = colon2;

fillTriangle(xl,y-one,x2,y2,x3,y3,color);

Figure 21-5: Input Data for Pike’s Peak Scene

The program to paint this scene uses the technique of reseeding the random number

generator for each line, prior to computing the midpoint displacement. First,

let’s look at the function generate. It begins very much like generate for the last

program, except that the variables for defining the reduced triangle at higher levels

370

CH. 21: FRACTAL LANDSCAPES

are no longer needed. In addition, the program calls plot_triangle for the four new

triangles only at the lowest (zero) level; at higher levels, it calls node to do the

recursion, without any triangle filling. The node function is exactly the same as

that used with the previous program.

The midpoint function is very similar to the one used in the previous program.

However, it begins by generating a seed to be used with the random_no function.

The seed makes use of the x and y distance of the line being operated upon. Both

x and y values have biases added to assure that they will always be positive. The

y value is then multiplied by 350 and added to the x value to produce a unique

number.

Next, this number is taken modulo 32760 so that it will not exceed the seed

value permitted for the random number generator. The random number generator

is then reset with this seed. The remainder of the function is the same as that

used in the previous program except that the limits of displacement perpendicular

to the line are different, and a small bias is added to the y displacement and subtracted

from the x displacement. The function random_no is the same used with

the previous function.

The plot_triangle function is the same as that used by the previous program except

that the limits for overriding the random color selection have been changed.

Earth Viewed from the Moon

Figure 21-6 lists a program for generating a scene of the earth viewed from the

moon. Figure 21-7 is a line drawing showing the triangles specified by data input

, which are the artist’s contribution to the program. The final picture appears

in Plate 31.

371

FRACTAL PROGRAMMING IN C

Figure 21-6: Program to Generate Earth Viewed from the Moon

planet = program to generate planet from moon

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <stdlib.h>

#include <time.h>

#include “tools.h”

#define convert(x,y) {x = (x + 319); y = (175((93*y) >> 7));)

void ranFillOval(int x, mt y, mt b, mt color, float aspect);

void generate(int xl, mt y-one, mt x2, mt y2, mt x3, mt y3,

mt level, mt colorl,int color2);

void gen_quad (mt xl, mt y-one, mt x2, mt y2, mt x3, mt y3,

mt x4, mt y4, mt level, mt colon, mt colon2);

void midpointO;

void node(int xl, mt y-one, mt x2, mt y2, mt x3, mt y3,

mt x4, mt y4, mt x5, mt y5, mt x6, mt y6. mt level,

mt colon, mt color2);

void plot_triangle(mnt xl. mt y-one, mt x2, mt y2, mt x3,

mt y3, mt colorl,int color2,int type);

void plot(int x, mt y, mt color);

void sort(int index, mt x_coord[], mt y_coord[]);

mt combination = 0,LINEWIDTH=l, 0PERATOR=0;

unsigned long mt PATTERN=0xFFFFFFFF;

unsigned char PALETTE[16]={0,1,2,3,4,5,20,7,56,57,58,59,60,

61,62,63};

mt i,j;

mt y_max = 280;

mt level[26] = {3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,

4,4,4,4,4);

mt xl[27] = {-100,-200,200,12,-280,20, -470,-350,-220,-200};

mt y-one[27] = {-30,-110,-1l0,140,-210,-210, -300,-280,-280,

-280);

mt x2[27] = {-210,-160,-160,0,0,80, -250,-60,80,230};

mnty2[27] = {210,0,0,0,0,50, -110,-140,-130,-120,0);

mt x3[27] = {0,-90,0,120,80,200, 300,300,340,580);

mt y3[27] = {-80,-110,0,-110,50,50, -300,-300,-300,-300};

mt xz,yz,xp,yp,type,row,col;
mt xa[35] = {-82,-80,-90,-70,-50,-30,-25,25,40,42,20,35,40,50,

60,60, -28, 70,100,70,108,81,60,45,48,96,45,38, -8,0, -20,

-28);

mt xb[35] = {-70,-70,-80,-50,-30,25,-25,40,65,65,40,38,40,

60,60,70, -28,100,127,129,92,70,56,48,54,100,38,46,12,14,

372

CH. 21: FRACTAL LANDSCAPES

14,8);

mt xc[35] = { -70,-70,-80,-50,-50,20,30,40,40,58,40,37,50,50,

70,75,20,100,129,120,83,70,45,60,60,54,106,65,12,40,14,-8);

mt xd[35] = { -90,-80,-90,-70,-30,20,20,25,50,50,20,40,50,60,

70,75,20,70,100,108,81,108,45,56,96,45,100,106,8,44,0,-30);

mt ya[35] = {52,52,76,80,76,38,10,80,90,55,50,3,60,60,52,55,

80,115,120,109,76,80,-130,-124,-90,-70,-60,-50,0,-10,10,

90);

mt yb[35] = {52,52,76,80,80,30,30,80,70,70,40,5,8,52,38,38,20,

120,116,104,58,95,-124,-90,-65,-60,-50,-25,0,-10,10,80);

mt yc[35] = {60,80,80,55,56,38,10,90,80,70,3,-5,60,20,38,40,

20,106,104,76,60,110,-124,-100,-100,-65,-50,-25,-18,-30,-

18,75);

mt yd[35] = {60,80,77,55,38,30,30,90,60,60,3, -4,20,27,38,40,

74,109,106,76,80,76,-124,-124,-70,-60,-60,-50,-18,-30,-18,

85}

mt color_value=2;

mt levell = 4;

float x,y;

long mt x_center, y_center, radius;

main()

setMode(16);

cls(0);

setEGApalette(0,8);

setEGApal ette(1,57);

setEGApalette(3,20);

setEGApalette(6,60);

x_center = -100;

y_center = 0;

radius = 150;

for (i=0; 1<2000; j++)

row = randU/93;

col = randO/51;

p1 ot(col, row, 15)

fillOval(-100,0,152,1,1.0);

type = 1;

for (i=0; 1<32; i++)

gen_quad(xa[i]+x_center ,ya[i]+y_center , xb[i]+x_center,

yb[i]+y_center,xc[i]+x_center,yc[i]+y_center,

xd[i]+x_center,yd[i]+y_center,level 1,2,3);

ranFillOval(-100,0, 152 ,0, 1.0)

type = 0;

y_max = -60;

373

FRACTAL PROGRAMMING IN C

for (i=6; 1<10: i++)

generate(xl[i I .y-one[i] .x2[i I .y2[i I .x3[i I .y3[i I ,level [ii,

14.6);

fillOval (-180. -200.10.6. .35);

fillOval (0.-160.10.6. .35);

fillOval (40.-220.16.6. .3);

fillOval (100, -170.6.6. .35);

fillOval (200.-190.12.6. .35);

fillOval (-220. -130.8.6. .35);

fillOval (280. -150.8.6. .35);

getch();

fillTriangle() = fills a triangle in specified color

void fillTriangle (mt xl. mt y-one. mt x2. mt y2. mt x3.

mt y3. mt color)

#define sign(x) ((x) > 0 ? 1: ((x) == 0 ? 0: (-1)))

mt dx. dy. dxabs. dyabs. i. index=0. j. k. px. py. sdx.

sdy. x. y. xpoint[4]. ypoint[4]. toggle. old_sdy.sy0;

long mt check.xa.ya;

mt *xcoord *ycoord;

x_coord = (mt *) malloc(4000 * sizeof(int));

y_coord = (mt *) malloc(4000 * sizeof(int));

xpoint[0] = xl + 319;

ypoint[0] = 175 - ((yone*93L) >> 7);

xpoint[1] = x2 + 319;

ypoint[1] = 175 - ((y2*93L) >> 7);

xpoint[2] = x3 + 319;

ypoint[2] = 175 - ((y3*93L) >> 7);

xpoint[3] = xpoint[0];

ypoint[3] = ypoint[0];
I = 3;

px = xpoint[0];

py = ypoint[0];

if (ypoint[1] == ypoint[0])

x_coord[index] = px;

y_coord[index++] = py;

for (j=0; j<i; j++)

374

CH. 21: FRACTAL LANDSCAPES

dx = xpoint[j+1] - xpoint[j];

dy = ypoint[j+1] - ypoint[j];

sdx = sign(dx);

sdy = sign(dy);

if (j==O)

old_sdy = sdy;

syO = sdy;

dxabs = abs(dx);

dyabs = abs(dy);

x = 0;

y = 0;

if (dxabs >= dyabs)

for (k=0; k<dxabs; k++)

y += dyabs;

if (y>=dxabs)

y -= dxabs;

py += sdy;

if (old_sdy 1= sdy)

old_sdy = sdy;
index--;

x_coord[index] = px+sdx;

y_coord[index+-4-] = py;

px += sdx;

else

for (k=0; k<dyabs; k++)

x += dxabs;

if (x>=dyabs)

x -= dyabs;

px += sdx;

py += sdy;

if (old_sdy 1= sdy)

old_sdy = sdy;

if (sdy != 0)

index--;

375

FRACTAL PROGRAMMING IN C

x_coord[index] = px;

y_coord[index++] = py;

index--;

if (syO + sdy== 0)

index--;

sort(index,x_coord,y_coord);

toggle = 0;

if (x_coord[0] < 0)

x_coord[0] = 0;

if (x_coord[0] > 639)

x_coord[O] = 639;

(i=0; i<index; i++)for

for (j=x_coord[i]; j<=x_coord[i+1]; j++)

xa = j - 319;

ya = (175 - y_coord[i])*128L/93;

if (((xax_center)*(xax_center) + (ya

- y_center)*(ya - y_center))

< (radius*radius) II (type == 0))
plot(j ,y_coord[i] ,color);

toggle = 1;

free(x_coord)

free(y_coord)

sort() = sorts coordinate pairs for drawing and

filling p olygons

void sort(int index, mt x_coord[], mt y_coord[])

mt d=4,i,j,k,temp;

if (x_coord[i+1] < 0)

x_coord[i+1] = 0;
if (x_coord[i+1] > 639)

x_coord[i+1] = 639;

if ((y_coord[i] == y_coord[i+1]) && (toggle == 0) &&
(y_coord[i] >= 0) && (y_coord[i] < 350))

else

toggle = 0;

376

CH. 21: FRACTAL LANDSCAPES

while (d<=index)

d*=2;

d-=1;

while (d>1)

d/=2;

for (j=O; j<=(index-d); j++)

for (i=j; i>=O; i-=d)

if ((y_coord[i+d] < y_coord[i])

((y_coord[i+d] == y_coord[i]) &&

(x_coord[i+d] <= x_coord[i])))

temp = y_coord[i];

y_coord[i] = y_coord[i+d];

y_coord[i+d] = temp;

temp = x_coord[i];

x_coord[i] = x_coord[i+d];

x_coord[i+d] = temp;

void node(int xl, mt y-one, mt x2, mt y2, mt x3, mt y3,

mt x4,int y4, mt x5, mt y5, mt x6, mt y6, mt level,

mt colon, mt color2)

if (level == 0)

return(0);

generate (xl,y-one,x4,y4,x6,y6,level -1,colorl,color2);

generate (x6,y6,x5,y5,x3,y3,level-l,colorl,color2);

generate (x4,y4,x2,y2,x5,y5,level -l,colorl,color2);

generate (x4,y4,x5,y5,x6,y6,level-1,colorl,color2);

void generate(int xl, mt y-one, mt x2, mt y2, mt x3, mt y3,

mt level, mt colon, mt color2)

mt x4,x5,x6,y4,y5,y6,ax,bx,cx,ay,by,cy;

x = x2 - xl;

y = y2 - y-one;

midpoint(x,y);

x4 = xl + xz -xp;

y4 y-one + yz - yp;

ax = -xp;

ay = -yp;

377

FRACTAL PROGRAMMING IN C

x = x3-xl;

y = y3-y-one;

midpoint(x,y);

x6 = xl + xz;

y6 = y-one + yz;

cx = xp;

cy = yp;

x = x3-x2;

y = y3-y2;

midpoint(x.y);

x5 = x2 + xz;

y5 = y2 + yz;

bx = -xp;

by = -yp;

if (level == 0)

plottriangle(x1,y-onex4.y4x6,y6color1.color2.O);

plot_triang1e(x6y6.x5.y5.x3y3.co1orl.color2.O);

plot_triangle(x4.y4.x5.y5.x6.y6.colorl.color2.O);

else

plot_triangle(xl.y-one.x4+axy4+ay.x6+cx.y6+cy.color1,
color2.0);

p1 ot_tri angl e(x6+cx .y6+cy .x5+bx,y5+by .x3 y3 .col on,
color2,O);

p1 ot_tri angl e(x4+ax ,y4+ay , x5+bx ,y5+by , x6+cx ,y6+cy,
colon, colon2,0);

p1 ot_tri angi e(x4+ax .y4+ay .x2 .y2 .x5+bx ,y5+by ,col on,
colon2,O);

node(xl ,y-one,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,level ,colonl,

col or2);

void plottniangle(int xl, mt y-one, mt x2, mt y2, mt x3,

mt y3,int colon, mt colon2jnt type)

mt ytt,colon;

float zt;

if (y-one > y2)

ytt = y-one;
else

ytt = y2;

if (ytt < y3)

ytt = y3;

zt = (ymax+24O)*(l(float)(ytt+24O)/(y_max+24O)*

378

CH. 21: FRACTAL LANDSCAPES

(float)(ytt+240)/(y_max+240));

if (type == 0)

if (random(y_max+241)<= zt)

color = colon;

else

color = color2;

if (ytt + 240 < (.35 * (y_max + 240)))

color = colon;

if (ytt+240 > (.92 * (y_max+240)))

color = color2;

else

if (rand() <= 24000)

color = colon;

else

color = color2;

void midpoint()

float rw;

mt signl.sign2;

if (rand() > 16383)

signl = 1;

else

signl = -1;

if (rand() > 16383)

sign2 = 1;

else

sign2 = -1;

r = 0.5 + signl*(float)rando/196602.0;

w = ((float)(randO/819175.0) + 0.03)*sign2;

r = 0.5 + gauss()/6;

w = gaussO/25 + .03;

xz = r*x - w*y;

yz = r*y + w*X;

xp = 0.05*y;

yp = 0.05*x;

float gauss(void)

mt k;

float value.exponent.gauss;

k = rand() - 16383;

379

FRACTAL PROGRAMMING IN C

value = k/5461.O;

exponent = (value*va1ue)/2.

gauss = .15915494*exp(exponent);

k = randO;

if (k > 16383)

gauss = -1;

return(gauss)

ranFillOval() = draws an oval centered at (x,y) with

radius in y direction of b with

aspect ratio ‘aspect’ and fills it

randomly with color ‘color’

void ranFillOval(int x, mt y, mt b, mt color, float aspect)

union REGS reg;

#define seq_out(index,val) {outp(Ox3C4,index);\

outp(Ox3C5,val);

#define graph_out(index,val) {outp(Ox3CE,index);\

outp(Ox3CF,val);

unsigned mt offset;

char far * mem_address;

float a,aspect_square;

mt col,row,dummy,mask,end_x,end_y,kx;

long a_square,b_square,b_test;

a = b/aspect;

a_square = a*a;

b = (93*b) >> 7;

b_square = b*b;

convert (x,y);

end_x = x+a;

end_y = y+b;

for (col=x-a; col<=end_x; col++)

b_test = b_square - (b_square*(colx)*(colx))/

a_square;

mask = 0x80 >> ((col) % 8);

graph_out(8,mask);

seqout(2,OxOF);

for (row=y-b; row<=end_y; row++)

kx = randO/(32767/(1.3*radius));

if (((rowy)*(rowy) <= b_test) && (kx < (col-x+

380

CH. 21: FRACTAL LANDSCAPES

20)))

offset = (long)row*80L + ((long)(col)/8L);

mem_address = (char far *) OxA0000000L +

offset;

dummy = *mem address;

*mem address = 0;

seq_out(2.color);
*mem address = OxFF;

seq_out(2,OxOF);

graph_out(3,O)

graph_out(8,OxFF);

Figure 21-7: Input Data for Moon Scene

The program to paint this scene uses Michael Batty’s technique of avoiding gaps

by filling in reduced size triangles at higher levels. There are a few significant

differences in this program from the two programs described previously. The

node and generate functions, however, are exactly the same as those used in the

381

FRACTAL PROGRAMMING IN C

program to create Oak Creek Canyon. Note that the data for the planetary surface

is referenced to an arbitrary zero reference point and that the actual call of generate

modifies this reference to be the center of the planetary circle.

The midpoint function is similar to the one used in the previous program, but it

uses different limits and calls a gaussian random function instead of a straight

random number. The gaussian function is gauss. It does not require any inputs,

but instead, internally, uses a random number to choose a point on the positive

half of a gaussian distribution and then gets another random number to determine

whether this result should be positive or negative.

The plot_triangle function is the same as that used by the previous program except

that the limits for overriding the random color selection have been changed

and a new type parameter has been added. For a type 0 selection, the same technique

for selecting colors based on altitude is used, but this technique is not appropriate

for the planetary surface, where altitude is not involved, so for painting

this surface, a color selection based strictly upon a random number selection is

used.

This program also makes use of two new functions. The fillTriangle function is

just the same as that used in the tools library except that it makes use of global

variables that define the center and radius of a circle. If any point plotted by the

new version of fihiTriangle falls outside of the designated circle, it is not plotted.

This permits the planetary surface to be defined without having to precisely determine

that it will fit inside the planetary circle; the fihiTriangle function automatically

cuts off anything that wants to extend outside.

The second new function is ranFillOval. This is the same as the fillOval function

in the library, except that it is set up so that when each point within the

oval is determined, a random decision is made as to whether or not to plot this

point. The probabilities are such that almost no points are plotted on the left

side of the circle, and the probability of plotting points increases as one proceeds

to the right of the circle. After the planet is painted, this function is run with the

same planetary circle defined and the background color as the designated color. It

then blanks out some of the planetary circle to give the appearance of shading to

indicate curvature of the sphere.

382

CH. 21: FRACTAL LANDSCAPES

The main program first sets the color palette and then randomly plots 2000 white

points to represent stars in the night sky. It fills in a circle for the planet, then

executes afor loop to paint the planetary surface on the circle. It then makes use

of ranFillOval to provide the shading to give the circle the appearance of a sphere.

Next, another for loop is run to generate the moon’s surface. Finally, several

ovals are drawn on the moon’s surface to represent meteor craters.

383

4 22

‘1 Iterated Function Systems

Michael Barnsley at the Georgia Institute of Technology calls it the “Chaos

Game” or more formally “Iterated Function Systems”. A point is moved about

the screen, randomly being translated, rotated, and scaled by one of several affine

transformations. Ultimately, an image of the attractors is produced. We have

already seen this technique at work in Chapter 6 where it generated the image of

some strange attractors; in Chapter 16, where it produced the outlines of dragon

curves; and in Chapter 18, where it generated three-dimensional dragons.

Bamsley uses the technique to generate scenes in which a minimum of input data

and a simple conversion program produce tremendous amounts of detail,

representative of compression ratios of up to 10,000 compared to the original

pixel data needed to create a similar scene.

Affine Transformations

The primary tool used in generating scenes with iterated function systems (IFS)

is the affine transformation. As used here, this is a rotation, translation, and

scaling of the coordinates of a point on the display screen (x,y) to a new position

represented by (xn,yn). The transformation is performed as follows:

385

FRACTAL PROGRAMMING IN C

xn x a b x e

= w = + (Equation 22-1)

yn y cd y f

ax + by + e

cx + dy + f

The parameters a, b, c, and d perform a rotation, and their magnitudes result in

the scaling. (For the whole system to work properly, the scaling must always

result in a shrinkage of the distances between points; otherwise repeated iterations

will result in the function blowing up to infinity, which is something your

computer won’t like. The parameters e and f cause a linear translation of the

point being operated upon. Given that you apply this transformation to a

geometric figure, the figure will be translated to a new location and there rotated

and shrunk to a new, smaller size.

The Deterministic Algorithm

Before we begin playing the “chaos game,” we should note that there is a

deterministic version of the method. When we use this method, we take each

point on our display screen and apply to it each of the affine transformations that

make up our IFS for a particular desired figure. The new points are then plotted,

and then the same process is applied again as many times as necessary to obtain a

final result. Figure 22-1 lists the parameters required to generate a Sierpinski

triangle and a fern leaf using the deterministic algorithm. (You probably thought

that by the time we were through with Chapter 11 you had seen every possible

way to generate a Sierpinski triangle, yet two more methods are given in this

chapter.) Figure 22-2 lists the program to generate figures using the

deterministic algorithm.

At this point, we need to be aware of two significant problems with the

deterministic program. First, we have to have a lot of memory available. Just to

specify all of the points on our current screen requires 224K of memory locations

386

CH. 22: ITERATED FUNCTION SYSTEMS

and a like number of locations are required for storing the transformed points as

we generate them.

Figure 22-1: Parameters for Deterministic Generation of Sierpinski

Triangle and Fern Leaf

Figure a b c d e f

Sierpinski Triangle 0.5

0.5

0.5

0

0

0

0

0

0

0.5

0.5

0.5

75

0

150

0

150

150

Fern Leaf 0

0.85

0.2

-0.15

0

0.04 -0.04

-0.26

0.28

0

0.23

0.26

0.16

0.85

0.22

0.24

0

0

0

0

0

40

40

10

Figure 22-2: Program to Generate Figures Using Deterministic Algorithm

ifsdet = program to generate figures using deterministic algorithm

#include <stdio.h>

#include <math.h>

#include <dos.h>

void cls(int color);

void plot(int x, mt y, mt color, mt page);

mt readPixel(int x, mt y, mt page);

void setMode(int mode);

void setPage(int page);

float a[8] = {.5 ,.5, .5). b[8] = {O,OO), c[8] = {O,O,O},

d[8] = {.5,.5,.5) ,e[8] = {75,O,150),f[8] = {O,150,150);

1*

float a[8] = {O,.85. .2,-.15), b[8] = {O,.04,-.26,.28).

c[8] = {O,-.04,.23.26), d[8] = {.16,.85,.22,.24)

,e[8] = {O,O,O,O). f[8] = {O,40,40,1O};

*1

mt i, j, k,m,iter,color,dis_page = 1, back_page = O,temp,

I ndex;

mt OPERATOR = OxOO;

char ch;

main ()

387

FRACTAL PROGRAMMING IN C

setMode(16);

for (1=0; 1<300; i++)

plot (1+100,0,15,0);

plot (1+100,299,15,0);

plot (399,1,15,0);

plot (100,i,15,O);

while ((ch = getch()) 1= OxOD)

setPage(di s_page);

cls(0);

for (1=0; 1<300; i++)

for (j=0; j<300; i-H-)

color = readPixel(i+100,j,back_page);

if (color 1= 0)

iter = 0;

while (a[iter] 1= NULL)

k = a[iter]*1 + b[iter]*j +

e[iter];

m = c[lter]*1 + d[iter]*j +

f[iter++];

if ((k<540) && (m<350) &&

(k>=-100) && (m>=0))

p1 ot(k+100,m, 15,

di s_page);

temp = dis_page;

dis_page = back_page;

back_page = temp;

setMode() = sets video mode

void setMode(int mode)

388

CH. 22: ITERATED FUNCTION SYSTEMS

union REGS reg;

reg.h.ah = 0;

reg.h.al = mode;

int86 (OxlO,®,®)

setPage() = sets the active display page

void setPage(int page)

union REGS reg;

reg.h.ah = 5;

reg.h.al = page;

int86 (OxlO,®,®);

plot() = plots a point on the screen at designated

system coordi nates using selected color

void plot(int x, mt y. mt color. mt page)

#define seq_out(index,val) {outp(Ox3C4,index);\

outp(Ox3C5,val);

#define graph_out(index,val) {outp(Ox3CE,index);\

outp(Ox3CF,val);)

unsigned mt offset;

mt dummy,mask;

char far * mem_address;

offset = (long)y * 80L + ((long)x / 8L);

if (page == 1)
mem_address = (char far *) OxA8000000L + offset;

else

mem_address = (char far *) OxA0000000L + offset;

mask = 0x80 >> (x % 8);

graph_out(8,mask);

389

FRACTAL PROGRAMMING IN C

seq_out(2,OxOF);

dummy = *mem address;

*mem address = 0;

seq_out(2,color);
*mem address = OxEF;

seq_out(2,OxOF);

graph_out(3,O);

graph_out(8,OxFF);

cls() = clears the screen

void cls(int color)

union REGS reg;

reg.x.ax = 0x0600;

reg.x.cx = 0;

reg.x.dx = Ox184F;

reg.h.bh = color;

int86(OxlO,®,®);

readPixel = read a pixel from the screen

mt readPixel(int x, mt y, mt page)

union REGS reg;

reg.h.ah = OxOD;

reg.h.bh = page;

reg.x.cx =

reg.x.dx =

int86 (OxlO,®,®);

return (reg.h.al):

390

Cl. 22: ITERATED FUNCTION SYSTEMS

Figure 22-3: Generation of Sierpinski Triangle by Deterministic Algorithm

(a) Original Rectangle (b) First Iteration

(c) Third Iteration (d) Final Sierpinski Triangle

39’

FRACTAL PROGRAMMING IN C

That is why a deterministic program in Barnsley’s book, Fractals Everywhere,

limits the resulting picture to a tiny size of 100 x 100 pixels. We get around the

problem by making use of the two screens that are available for graphics with the

EGA when it has its full memory complement. This makes the program a little

slow, but still practical. That is why this program includes special versions of

some of the functions that are normally part of the tools library.

The special versions include a parameter that specifies which of the two pages is

to be operated upon. We begin by writing our starting figure (a rectangle) out to

screen 0. Then, we use two for loops to read each pixel from the screen in turn.

If the pixel is not black (the background color) we apply each affine

transformation to the point and plot all the new points generated on screen 1.

When the loops are complete, we give the user an opportunity to exit by hitting

Ent or to make another run by hitting any other key. If the user elects to

continue, the loops are gone through again, this time reading from screen 1 and

storing the transformed points on screen 0. The program, as listed, will produce

the Sierpinski triangle. Figure 22-3 shows the original rectangle, the first

iteration of the program, and two iterations further along. After about eight

iterations, no further change in the program can be observed on the screen.

Generating a Deterministic Fern

You may have noted in the deterministic program listing that one set of data for

the affine transformations was commented out. If you remove the /* and */ that

enclose this data, and comment out the other set of data instead, the program will

generate a fern leaf. This, however, brings up another problem with the use of

the deterministic algorithm. If you aren’t careful about the range over which you

examine points for transformation, you may get some very weird results. Our

Sierpinski triangle worked very well when we transformed over a range of 0 to

200 in both x and y directions. Now look what happens when we use this same

range for the fern leaf. The result is shown in Figure 22-4(a).

392

Cl. 22: ITERATED FUNCTION SYSTEMS

Figure 22-4: Generation of Fern Leaf by Deterministic Algorithm

(b) Complete Leaf

Somehow, we have generated only one side of each leaflet and have only managed

to put one half-leaflet on the left side of the stem. Now change the for loop for

the x coordinate to have a range from -100 to +200. You will now get the whole

leaf, as shown in Figure 22-4(b). Another drawback of the deterministic

algorithm—illustrated when we try to draw the fern—is the slowness of the

process for certain figures. In order to get the pictures in Figure 22-4, we had to

go through 32 iterations of the program, and even more wouldn’t be out of place.

This is quite a lot compared to the few iterations required to produce a good

representation of the Sierpinski triangle. There is no simple way to determine in

advance how many iterations of the deterministic program are needed to produce a

good picture.

393

(a) Partial Leaf Generated Due to

Inadequate Range

r

I

I

FRACTAL PROGRAMMING IN C

Using the Chaos Algorithm

Figure 22-5 is a table of parameters for several figures that can be generated using

the Chaos algorithm. The program for drawing these pictures is listed in Figure

22-6. The program is fairly straightforward. However, the determination of the

probabilities needs to be noted. The program works by selecting one of the affine

transformations at random with some probability that approximately represents

the percentage of the picture that will be painted by that transformation. One

might expect that summing the probabilities with which one selects each affine

transformation, the result would be one (namely, we always have to select one of

the transformations). That is true, but to speed up the operation of the program,

we have adapted the probability numbers to match the random number routine

included in most C language libraries. This function returns an integer between 0

and 32,767. Thus, the fractional probabilities for each transformation have been

scaled up by multiplying them by 32,767.

Figure 22-5: Parameters for Generation of Pictures

Using Chaos Algorithm

Figure a b c d e f p

Sierpinski
Triangle

0.5

0.5

0.5

0

0

0

0

0

0

0.5

0.5

0.5

0

1.0

0.5

0

0

0.5

10813

21626

32767

Fern Leaf 0

0.2

-0.15

0.85

0

-0.26

0.28

0.04

0

0.23

0.26

-0.04

0.16

0.22

0.24

0.85

0

0

0

0

0

0.2

0.2

0.2

328

2621

4915

32767

Tree 0

0.1

0.42

-0.42

0

0

-0.42

0.42

0

0

0.42

-0.42

0.5

0.1

0.42

0.42

0

0

0

0

0

0.2

0.2

0.2

1638

6553

19660

32767

Cantor

Tree

0.333

0.333

0.667

0

0

0

0

0

0

0.333

0.333

0.667

0

1

0.5

0

0

0.5

10813

21626

32767

Note that this program has a background color, a foreground color, x and y scale

factors, and x and y offsets included for each picture. The background color is

determined by the number from 0 to 15 that is passed to the cis function. The

foreground color is a number from 0 to 15 passed to the image_draw function.

394

CH. 22: ITERATED FUNCTION SYSTEMS

The xscale and yscale numbers determine the size of the picture; you can modify

them as you desire to enlarge or reduce the picture. The xoffset and yoffset

parameters have been selected so that the pictures are nicely centered; you can

modify these if you want to reposition the picture on the display.

Figure 22-6: Program to Generate Pictures Using Chaos Algorithm

image = program to generate iterated function systems

#include <stdio.h>

#include <math.h>

#include <dos.h>

/* USER WRITTEN INCLUDES */

#include “tools.h”

1* GLOBALS *1

I nt LINEWIDTH ,OPERATOR, XCENTER,YCENTER,ANGLE;

unsigned long mt PATTERN;

void image_draw(int color);

void plots(int x, mt y, mt color);

mt adapt,mode;

mt j, k, xscale,yscale,xoffset,yoffset,pr,p[4],pk[4];

long unsigned mt I;

float a[4] ,b[4] ,c[4] .d[4] ,e[4] ,f[4] ,x,y,newx;

main()

setMode(16);

a[0] =0; a[1] = .2; a[2] = - .15; a[3] = .85;

b[0] = 0; b[1] = - .26; b[2] = .28; b[3] = .04;

c[0] = 0; cEll = .23; c[2] =.26; c[3] = - .04;

d[0] = .16; dEl] = .22; d[2] = .24; d[3] = .85;

e[0] = 0; eEl] = 0; e[2] = 0; e[3] = 0;

f[0] = 0; f[1] = .2; f[2] = .2; f[3] = .2;

p[0] = 328; p[l] = 2621; p[2] = 4915; p[3] = 32767;

xscale = 300;

yscale = 300;

xoffset = -50;

yoffset = -180;

cis (1);

image_draw(10);

395

FRACTAL PROGRAMMING IN C

getch();

a[0] = 0: a[1] = .1: a[2] = .42; a[3] = .42;

b[0] = 0; b[1] = 0; b[2] = - .42; b[3] = .42;

c[0] = 0; cEll = 0; c[2] = .42; c[3] = - .42;

d[0] = .5; dEl] = .1; d[2] = .42; d[3] = .42;

e[0] = 0; e[1] = 0; e[2] = 0; e[3] = 0;

f[0] = 0; f[1] = .2; f[2] = .2; f[3] = .2;

p[0] = 1638; p[1] = 6553; p[2] = 19660; p[3] = 32767;
xscale = 750;

yscale = 750;

xoffset = 0;

yoffset = -160;

cls(9);

image_draw(13);

getch();

.5; a[1] = .5; a[2] = .5; a[3] = 0;a[0] =

0; bEll = 0; b[2] = 0; b[3] = 0;b[0] =

0; cEll = 0; c[2] = 0; c[3] = 0;c[0] =

.5; d[1] = .5; d[2] = .5; d[3] = 0;d[0] =

0; e[1] = 1.; e[2] = .5; e[3] = 0;e[0] =

0; fEll = 0; f[2] = .5; f[3] = 0;f[0] =

10813; p[1] = 21626; p[2] = 32767; p[3] = 32767;p[0] =
= 200;xscal e

= 200;yscal e

cls(2);

a[0] = .333; a[1] = .333; a[2] = .667; a[3] = 0;

b[0] = 0; b[1] = 0; b[2] = 0; b[3] = 0;

c[0] = 0; c[1] = 0: c[2] = 0; c[3] = 0;

d[0] = .333; dEl] = .333; d[2] = .667; d[3] = 0;

e[0] = 0; e[1] = 1.; e[2] = .5; e[3] = 0;

f[0] = 0; f[1] = 0; f[2] = .5; f[3] = 0;

p[0] = 10813; p[1] = 21626; p[2] = 32767; p[3] = 32767;
xscale = 120;

yscale = 140;

xoffset = -100;

yoffset = -160;

image_draw(14);

getch();

void image_draw(int color)

xoffset = -200;

yoffset = -160;

cls(7);

image_draw(12);

getchO;

396

CH. 22: ITERATED FUNCTION SYSTEMS

mt px,py;

x = 0;

y = 0;

for (i1; i<=10000; i++)

j = rand();

k = (j < p[O]) ? 0 : ((j < p[1]) ? 1 : ((j < p[2])

? 2 : 3));

newx = (a[k]* x + b[k] * y + e[k]);

y = (c[k] * x + d[k] * y + f[k]);

x = newx;

px = x*xscale + xoffset;

py = (y*yscale + yoffset);

if ((px>=-320) && (px<320) && (py>=-240) && (py<240))

plots (px,py,color);

void plots(int x, mt y, mt color)

#define convert(x,y) {x = (x + 319);

y = (175 - ((93*y) >> 7));}

convert(x,y);

plot(x,y,color);

Another thing that you might be interested in doing is to expand the display so

that only a portion of the picture appears as an enlarged display. You can do this

by changing the scale parameters. The resulting pictures are shown in Figure 22-

7.

397

FRACTAL PROGRAMMING IN C

Figure 22-7: Pictures Generated by Chaos Algorithm

t-\ -ç
a/& ¶

(b) Fractal Tree I

(a) Fern Leaf

(C) Sierpinski mangle

-4
Id IEI

‘1 4
(d) Cantor Tree A?J 14

A41 AA

44

398

CH. 22: ITERATED FUNCTION SYSTEMS

The Collage Theorem

Now that you have used the program to generate some pictures with the Chaos

algorithm, you may be getting anxious to create some original pictures of your

own. I regret to tell you that this is a difficult process that will require some

original programming on your part. The theoretical proof that this can be done at

all appears in Barnsley’s book, where he proves what he calls the Collage

theorem. The proof won’t help you too much, however, unless you are a

mathematician who is expert in set theory.

Basically, what the theorem says is that if you can take some picture, or portion

of a picture, and by performing affine transformations end up with smaller

(possibly distorted) versions of the original picture which can be placed so that

they fill in the original picture without very much overlap, without running very

far outside the original picture boundaries and without leaving much of any blank

space, then by using these same affine transformations in the Chaos algorithm

you can produce a good representation of the original picture. Barnsley has a

number of examples.

Now, how do you go about using this theorem. Bamsley doesn’t supply any

examples that give much clue as to how it is done. (That’s not surprising, since

he has just formed a company that will do the job for you if you have a quarter of

a million dollars.) You might begin by adding to your computer the capablity to

display frames captured from a video camera, or you might start with an artist’s

picture drawn, for example, with PC Paintbrush. Then, you need a program that

will perform an affine transformation on the picture or a portion of the picture. It

needs to show the result of the transformation and give you the capability to

change the transformation parameters until you have the transformed version

superimposed just as you want it on part of the original picture. You do this

several more times, until you have the whole picture covered. Your program

then needs to give you the parameters of each of your final affine transformations.

You should then be able to insert these in the chaos algorithm program given

above, although you may have to modify it to permit it to handle colors in a

more sophisticated manner. If this sounds like a very large undertaking, it is.

Maybe it will appear in my next book on advanced fractal programming.

399

FRACTAL PROGRAMMING IN C

The Chaos Algorithm in Three Dimensions

It is possible to make three-dimensional pictures using affine transformations

having the form:

xn x abc x n

+

yn = w y = d e f y q Equation 22-2
+

zn Z g h m y r

ax + by + cZ + n

= dx+ey+fZ +q

gx + hy + mZ + r

We don’t have the capability to display the resulting picture in three dimensions,

so we use the same projection technique that was used for the three-dimensional

dragons in Chapter 18. Figure 22-8 shows the parameters for a three-dimensional

fern leaf. The program in Figure 22-9 is a listing of a program to generate the

three-dimensional fern leaf four times, using a different shade of green or yellow

and different projection angles for each pass through the loop. The program was

set up with the projection angles built in, because it takes considerable

experimentation to get the right selection of angles to give a pleasing display.

The resulting display is shown in Plate 31.

Figure 22-8: Parameters for Three-Dimensional Fern Leaf

a b c d e f g h m n g r p

0 0 0 0.5 .18 0 0 0 0 0 0 0 328

.83 0 0 0.5 .86 .1 0 -.12 .84 0 1.62 0 27879

.22 -.23 0 .24 .22 0 0 0 .32 0 .82 0 30173

-.22 .23 0 .24 .22 0 0 0 .32 0 .82 0 32767

400

CII. 22: ITERATED FUNCTION SYSTEMS

You can have a lot of fun experimenting with this program, by changing offsets

and scale factors for each pass through the ioop, by modifying the angles, and by

increasing the number of passes through the loop to add additional fern leaves.

Figure 22-9: Program to Generate Three-Dimensional Pictures

Using Chaos Algorithm

image3d = program to generate three-dimensional
iterated function systems

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

mt LINEWIDTH,OPERATOR,XCENTER,YCENTER,ANGLE;

unsigned long mt PATTERN;

unsigned char PALETTE[16]={O,1,2,3,4,5,20,7,56,57,58,59,60,61,

62,63);

void image_draw(void);

void plots(mnt x, mt y, mt color);

float degrees_to_radians(float degrees);

mt adapt,mode;

mt j, k, index, xscale,yscale,xoffset,yoffset,pr,p[4],pk[4];

mt hues[8] = {2,1O,11,14);

long unsigned mt 1;

float a[4] ,b[4] ,c[4] ,d[4] ,e[4] ,f[4] ,g[4] ,h[4] ,m[4] ,n[4] ,q[4],

r[4], ca ,cb,cg,sa ,sb,sg,x,y,z,newx,newy,al pha[4] = 130,45,

15,95). beta[4] = {115,105,70,40},gamma[4]={25,70,20,-30);

float rad_per_degree=O.0174533;

main()

setMode(16);

setEGApalette(0,8);

setEGApalette(2,2);

setEGApalette(10,58);

setEGApalette(11,62);

setEGApal ette(14,26);

a[0] =0; a[1] = .83; a[2] = .22; a[3] = - .22;

b[O] = 0; b[1] = 0; b[2] = - .23; b[3] = .23;

cEO] = 0; c[1] = 0; c[2] = 0; c[3] = 0;

d[0] = 0; dEl] = 0; d[2] = .24; d[3] = .24;

e[0] = .18; eEl] = .86; e[2] = .22; e[3] = .22;

f[0] = 0; f[1] = .1; fE2] = 0; f[3] = 0;

401

FRACTAL PROGRAMMING IN C

g[0] = 0; gEl] = 0; g[2] = 0; g[3] = 0;

h[0] = 0; hEll = - .12; h[2] = 0; h[3] = 0;

m[0] = 0; mEl] = .84; m[2] = .32: m[3] = .32;

n[0] = 0; n[1] = 0; n[2] = 0: n[3] = 0;

q[0] = 0: qEl] = 1.62; q[2] = .82; q[3] = .82;
r[0] = 0; r[1] = 0; r[2] = 0; r[3] = 0;

p[0] = 328; pEl] = 27879 ; p[2] = 30173: p[3] = 32767;
xscale = 40;

yscale = 50;

xoffset = 60;

yoffset = -180;

cls (0);

for (index=0; index<4; index++)

ca = cos(alpha[index]*0.0174533);
cb = cos(beta[index]*0.0174533);

cg = cos(gamma[index]*0.0174533);

sa = sin(alpha[index]*0.0174533);
sb = sin(beta[index]*0.0174533);

sg = sin(gamma[index]*0.0174533);

image_draw();

getch();

void image_draw(void)

mt px,py;

float vx,vy;

x = 0;

y= 0;

z= 0;

for (1=1; i<=10000; i++)

1 : ((j < p[2])k = (j < p[0]) ? 0 : (Ci < pEl]) ?

* z + n[k]);newx = (a[k]* x + b[k] * y + c[k]

* z + qEk]):newy = (d[k] * x + e[k] * y + f[k]
+ r[k];z = g[k] * x + h[k] * y + m[k] * z

j = rand();

? 2 : 3));

x = newx;

y = newy;

vx = x*ca + y*cb + z*cg;

px = vx*xscale + xoffset;

vy = x*sa + y*sb + z*sg;

py = (vy*yscale + yoffset);

if ((px>=-320) && (px<320) && (py>=-240) && (py<240))

plots (px,py,hues[index]);

402

CII. 22: ITERATED FUNCTION SYSTEMS

void plots(int x, mt y, mt color)

#define convert(x.y) Ix (x + 319);

y = (175 - ((93*y) >> 7));)

convert(x,y):

plot(x,y,color);

float degrees_to_radians(float degrees)

float angle;

while (degrees >= 360)

degrees -= 360;

while (degrees < 0)

degrees += 360;

angle = rad_per_degree*degrees;

return angle;

403

Appendix A

Tools Library

1*

tools.h = Header file for graphics tools library

*1

void cls(int color);

void display(unsigned long mt address, int color_plane, unsigned char ch);

void drawLine(int xl, mt yl, mt x2, mt y2, mt color):

void fillOval(float x_cen, float y_cen, float radius, mt color,

float aspect);

void fillTriangle (mt xl, mt yl, mt x2, int y2, int x3, mt y3,

mt color);

void gotoxy(int column, mt row);

void move_cursor(int type,int color,int min_col, int min_row;

void plot(int x, mt y, mt color);

float pomnt(float xl, float yl, float x2, float y2);

mt readPixel(int x, mt y);

unsigned char read_screen(unsigned long mt address, int color_plane);

mt restore_screen(char file name[]);

void save screen(int xl, mt yl, mt x2, mt y2, char file_name[]);

void setEGApalette(int palette, mt color);

void setMode(int mode);

void step(void);

void turn(float angle);

union LIMIT

float f;

unsigned char c[4];

FRACTAL PROGRAMMING IN C

Publics by module:

CLS size = 49

ci S

DISPLAY size = 61

_di splay

DRAWLINE size = 512

_drawLi ne

DRAWOVAL size = 767

_d rawOval

FILLOVAL size = 940

_fi ii Oval

FILLTRI size = 917

_filiTriangie

GOTOXY size = 48

_gotoxy

MOVCURS2 size = 1846

_move_cursor _plot_point

PLOT size = 116

_pi ot

PLOTS size = 53

_pi ots

POINT size = 209

_poi nt

READPIX size = 51

_readPi xei

READSCR size = 65

_read_screen

RESTORE size = 814

_restore_screen

SAVESCRN size = 858

_save_screen

406

APPENDIX A: TOOLS LIBRARY

SETEGA size = 58

_setEGApal ette

SETMODE size = 38

_setMode

STEP size = 109

_step

TURN size = 24

turn

cls() = clears the sreen

#include “tools.h”

void cls(int color)

#include <dos.h>

union REGS reg;

reg.x.ax = 0x0600;

reg.x.cx = 0;

reg.x.dx = Ox184F;

reg.h.bh = color;

int86(OxlO,®,®);

display() = displays byte on screen

#include “tools.h”

void display(unsigned long mt address, mt colOr_plane,

unsigned char ch)

#include <dos.h>

#define seq_out(index,val) outp(Ox3C4,index);\

FRACTAL PROGRAMMING IN C

outp(Ox3C5,val);

char far * mem_address;

char dummy;

mem_address = (char far *) OxA0000000L + address;

dummy = *mem address;

seq_out(2,(OxOl << color_plane));

*mem address = ch;

drawLine() = draws a line from one set of coordinates

to another I n a d esignated color

#include “tools.h”

void drawLine(int xl, mt yl, mt x2, mt y2, int color)

#include <dos.h>

extern mt LINEWIDTH;

extern unsigned long mt PATTERN;

union REGS reg;

#define sign(x) ((x) > 0 ? 1: ((x) == 0 ? 0: (-1)))

mt dx, dy, dxabs, dyabs, I, j, px, py, sdx, sdy, x, y;

unsigned long mt mask=0x80000000;

xl += 320;

yl = 175 - ((yl*93) >> 7);

x? += 320;

y2 = 175 - ((y2*93) >> 7);

dx = x2 - xl;

dy = y2 - yl;

sdx = sign(dx);

sdy = sign(dy);

dxabs = abs(dx);

dyabs = abs(dy);

x = 0;

y = 0;

px = xl;

py = yl;

if (dxabs >= dyabs)

for (1=0; i<dxabs; i+±)

mask = mask ? mask : 0x80000000;

40B

APPENDIX A: TOOLS LIBRARY

y += dyabs;

if (y>=dxabs)

y -= dxabs;

py += sdy;

px += sdx;

if (PATTERN & mask)

for (j=- LINEWIDTH/2; j<=LINEWIDTH/2: j+-t-)

plot(px,py+j ,color);

mask >>= 1;

else

for (1=0; i<dyabs; i++)

mask = mask ? mask : 0x80000000;

x += dxabs;

if (x>=dyabs)

x -= dyabs;

px += sdx;

py += sdy;
if (PATTERN & mask)

for (j=-LINEWIDTH/2; j<=LINEWIDTH/2; j++)

plot(px+j ,py,color)

mask >>= 1;

drawOval() = draws an oval centered at (x,y) with

radius in y direction of ‘b’ wi th

aspect ra tb ‘aspect’ in color ‘color’

#include “tools.h”

#include <stdlib.h>

#include <math.h>

void drawOval(int x, mt y, mt b, mt color, float aspect)

FRACTAL PROGRAMMING IN C

#include <dos.h>

extern mt LINEWIDTH;

union REGS reg;

mt ccl, i, row, bnew;

long a,a_square, b_square, two_a_square, two_b_square,

four_a_square, four_b_square,d;

b -= LINEWIDTH/2;

a = b/aspect;
b = (b*93) >> 7;

x + 320;

y = 175 - ((y*93) >> 7);

for (1=1; i<=LINEWIDTH; j++)

b_square = (long)b*b;

a_square = (a*a);
row = b;

col = 0;

two_a_square = a_square <K 1;

four_a_square = a_square <K 2;

four_b_square = b_square <K 2;

two_b_square = b_square <K 1;

d = two_a_square * (((long)row 1)*(row)) + a_square +

two_b_square*(1-a_square);

while (a_square*(row) > b_square * (ccl))

p1 ot(ccl+x, rcw+y ,color);

plot(col+x,y-row, color);

plct(x-col ,row+y,color);

plot(x-ccl,y-row,color);
if (d>= 0)

row--;

d -= four_a_square*(row);

d += two_b_square*(3 + (col << 1));
col++;

d = two_b_square * (col + 1)*col + two_a_square*(rcw *

(row -2) +1) + (1two_a_square)*b_square;
while ((row) + 1)

plot(col+x,row+y,color);

plot(col+x,y-row, color);

p1 ot(x - col , row+y ,color);

plot(x-col,y-row,color);

410

APPENDIX A: TOOLS LIBRARY

if (d<= 0)

col++;

d += four_b_square*col

row- -;

d += two_a_square * (3 - (row <<1));

b++;

fillOval() = draws an oval centered at (x,y) with

radius in y direction of b with

aspect ratio ‘aspect’ and fills it

with color ‘color’

#include “tools.h”

1inc1ude <stdlib.h>

void fillOval(float x_cen, float y_cen, float radius,

mt color, float aspect)

#include <dos.h>

union REGS reg;

#define seq_out(index,val) {outp(Ox3C4,index);\

outp(Ox3C5,val);

#define graph_out(index,val) outp(Ox3CE,index);\

outp(Ox3CF,val);

unsigned mt offset;

char far * mem_address;

float a.b.aspect_square;

long x,y,col,row,dummy.mask,start_x, start_y,end_x,end_y;

float a_square.b_square,b_test;

a = radius/aspect;

a_square = a*a;
b = .729*radius;

b_square = b*b;
x = x_cen + 319;

y = 175 - (.729*y_cen);
start_x =max(0,x-a);

end_x = mm (639,x+a);

start_y = max(O,y-b);

411

FRACTAL PROGRAMMING IN C

end_y = min(349,y+b);

for (col=start_x; col<=end_x; col++)

b_test = b_square - (b_square*(co1x)*(colx))/a_square;

mask = 0x80 >> ((col) % 8);

graph_out(8,mask);

seq_out(2,OxOF);

for (row=start_y; row<=end_y; row++)

if ((rowy)*(rowy) <= b_test)

offset = row*80L + ((col)/8L);

mem_address = (char far *) OxA0000000L +

offset:

dummy = *mem address;

*mem address = 0;

seq_out(2,color);
*mem address = OxFF;

seq_out(2,OxOF)

graph_out(3,0)

graph_out(8,OxFF)

filllriangle() = fills a triangle in specified color

void fillTriangle (mt xl, mt yl, mt x2, mt y2, mt x3,

mt y3, mt color)

#define sign(x) ((x) > 0 ? 1: ((x) == 0 ? 0: (-1)))

mt dx, dy, dxabs, dyabs, I, j, k, px, py, sdx, sdy, x, y,

xpoint[4], ypoint[4], xa[350],xb[350], start,end;

long mt check;

mt x_coord[350], y_coord[350];

for (i=O; 1<350; 1-i--i-)

xa[i] = 640;

xb[i] = 0;

xpoint[0] = xl + 320;

ypomnt[0] = 175 - ((yl*93L) >> 7);

xpoint[1] = x2 + 320;

412

APPENDIX A: TOOLS LIBRARY

ypoint[1] = 175 - ((y2*93L) >> 7);

xpoint[2] = x3 + 320;

ypoint[2] = 175 - ((y3*93L) >> 7);

xpoint[3] = xpoint[0];

ypoint[3] = ypoint[0];

px = xpoint[0];

py = ypoint[O];

for (j=0; j<3; j++)

dx = xpoint[j+1] - xpoint[j];

dy = ypoint[j+1] - ypoint[j];

sdx = sign(dx);

sdy = sign(dy);
dxabs = abs(dx);

dyabs = abs(dy);
x = 0;

y = 0;

if (dxabs >= dyabs)

for (k=0; k<dxabs; k++)

y += dyabs:

px += sdx;

if (y>=dxabs)

y -= dxabs;

py += sdy;

if ((py>=0) && (py<=349))

if (px K xa[py])

xa[py] = px;

if (px > xb[py])

xb[py] = px;

else

for (k=0; k<dyabs; k++)

py += sdy;
x += dxabs;

if (x>=dyabs)

x -= dyabs;

px += sdx;

if ((py>=0) && (py<=349))

if (px K xa[py])

413

FRACTAL PROGRAMMING IN C

xa[py] = px;

if (px > xb[py])

xb[py] = px;

if (ypoint[0] K ypoint[1])

start = ypoint[O];

end = ypoint[1];

else

start = ypoint[1];

end = ypoint[0];

for (i=O; 1<350; i++)

if (xa[i] < 0)

xa[i] = 0;

if (xb[i] > 639)

xb[i] = 639;

if (ypoint[2] K start)

start = ypoint[2];

if (ypoint[2] > end)

end = ypoint[21;
if (start < 0)

start = 0;

if (end > 349)

end = 349;

for (i=start; IK=end; i++)

for (j=xa[i]; j<=xb[i]; j++)

plot(j,i ,color);

gotoxy() = Moves Cursor to Specified x,y Position and Page

#include “tools.h”

void gotoxy(int column, mt row)

414

APPENDIX A: TOOLS LIBRARY

#include <dos.h>

union REGS reg;

reg.h.ah = 2;

reg.h.bh = 0;

reg.h.dh = row;

reg.h.dl = column;

int86 (OxlO,®,®);

move_cursor() = moves cursor and saves position

#include <stdio.h>

#include “tools.h”

void move_cursor(int type,int color,int min_col, mt mm_row)

#include <dos.h>

extern mt CURSOR_X,CURSOR_Y;

extern union LIMIT XMax,YMax,XMin,YMIn,Pval,Qval;

extern float TXMax,TXMIn,TYMax,TYMIn;

union REGS reg;

unsigned mt mask;

mt I ,j,image,image_store[256],index,ch,temp,limit[7];
char far *base;

limit[O] = 11;

limit[1] = 9;

limit[2] = 10;

limit[3] = 10;

limit[4] = 12;

limit[5] = 14;

limit[6] = 14;

do

index = 0;

swi tch(type)

case 0:

for (i=0; 1<16; i++)

image_store[index++] = plot_point

(CURSOR_X+i ,CURSOR_Y,

color);

415

FRACTAL PROGRAMMING IN C

for (1=1; 1<16; i-t-+)

image_store[index-H-] = plot_point

(CURSOR_X,CURSOR_Y+i

color);

break;

case 1:

for (1=0; 1<16; i++)

image_store[index++] = plot_point

(CURSOR_X+15,CURSOR_Y+i

color);

for (1=0; 1<15; i++)

image_store[index-H-] = plot_point

(CURSOR_X+i ,CURSOR_Y+15,

color);

break;

case 2:

for (j=0; j<7; j++)

for(i=j; i<limit[j]; i++)

if((i==8) && (j ==5))

1=10;

if((i==8) && (j ==6))

1=12;

image_store[index++] = plot_point

(CURSOR_X+j ,CURSOR_Y+i

color);

image_store[index++] = plot_point(CURSOR_X+7,

CURSOR_Y+7,color);

ch = getchU;
if (ch != OxOD)

if (ch == 0)

ch = getch() + 256;

index = 0;

swi tch(type)

case 0:

for (1=0; 1<16; i++)

plot_point(CURSOR_X+i ,CURSOR_Y,

I mage_store[i ndex++]);

for (i=1; 1<16; i++)

plot_point(CURSOR_X,CURSOR_Y+i

image_store[index++]);

break;

case 1:

for (1=0; 1<16; i++)

plot_point(CURSOR_X+15,CURSOR_Y+i

416

APPENDIX A: TOOLS LIBRARY

I mage_store[i ndex++]);

for (1=0; 1<15; i++)

plot_point(CURSOR_X+i ,CURSOR_Y+15,

I mage_store[i ndex++]);

break;

case 2:

for (j=0; j<7; j++)

for(i=j; i<limit[j]; i++)

if((i==8) && (j ==5))

1=10;

if((i==8) && (j ==6))

1=12;

p1 ot(CURSOR_X+j,

CURSOR_Y+i

image_store[index++]);

p1 ot(CURSOR_X+7 ,CURSOR_Y+7,

image_store[index++]);

reg.h.ah = 2;

1nt86(0x16,®,®);

if ((reg.h.al & 0x03) != 0)

switch(ch)

case 56:

if (CURSOR_Y > mm_row)

CURSOR_Y -= 10;

break:

case 52:

if (CURSOR_X > mm_cd)

CURSOR_X -= 10;

break;

case 54:

if (CURSOR_X < 629)

CURSOR_X += 10;

break;

case 50:

if (CURSOR_Y < 329)

CURSOR_Y += 10;

else

switch(ch)

case 333:

if (CURSOR_X K 639)

417

FRACTAL PROGRAMMING IN C

CURSOR_X++;

break;

case 331:

if (CURSOR_X > min_col)

CURSOR_X - -;

break;

case 328:

if (CURSOR_Y > mm_row)

CURSOR_Y - -;

break;

case 336:

if (CURSOR_Y < 335)

Cu RSOR_Y++;

break;

switch(type)

case 0:

TXMin = XMIn.f + (XMax.f - XMIn.f)/

639*CuRsOR_x;

TYMax = YMax.f - (YMax.f - YMIn.f)/

349*CuRSQRy;

gotoxy(5,24);

printf(”XMIn= %f YMax= %f”,TXMIn,TYMax);

break;

case 1:

TXMax = XMIn.f + (XMax.f - XMIn.f)/

639*CuRsOR_x + 16);

TYMIn = YMax.f - (YMax.f - YMIn.f)/

349*(CRSQRY + 16);

gotoxy(41 ,24);

printf(” XMax= %f YMin= %f”jXMax,TYMIn);

break;

case 2:

Pval.f = XMin.f + (XMax.f - XMIn.f)/639*

CuRSOR_x;

Qval.f = YMax.f - (YMax.f - YMIn.f)/

349*CuRSQRy;

gotoxy(5,24);

printf(” P= %f 0= %f “,Pval.f,Qval.f);

while (ch != OxOD);

418

APPENDIX A: TOOLS LIBRARY

plot_point() = plots a point at (x,y) in color

for EGA or VGA. using Turbo C port

output functions and returns

original point color

mt plot_point(int x, mt y, mt color)

#define seq_out(index,val) outp(Ox3C4,index);\

outp(Ox3C5,val);

#define graph_out(index,val) outp(Ox3CE,index);\

outp(Ox3CF,val);
#define EGAaddress OxA0000000L

mt index,old_color=O;

unsigned char mask, dummy,exist_color;
char far *mem address

mem_address = (char far *) (EGAaddress +

((long)y * 80L + ((long)x / 8L)));

mask = 0x80 >> (x % 8);

for (index = 0; index<4; index++)

graph_out(4,index);

graph_out(5,0);

exist_color = *mem address & mask;

if (exist_color != 0)

old_color I=(OxOl<<index);

graph_out(8,mask);

seq_out(2,OxOF);

dummy = *mem address;

*mem address = 0;

seq_out(2,color);

*mem address = OxFF;

seq_out(2.OxOF);

graph_out(3,0);

graph_out(8,OxFF);

return(old_color);

419

FRACTAL PROGRAMMING IN C

plot() = plots a point at (x,y) in color for EGA,
using assembly language at critical points.

#include “tools.h”

void plot(int x, mt y, mt color)

#include <dos.h>

unsigned mt offset;
mt mask;

offset = (long)y * 80L + ((long)x / 8L);

mask = 0x80 >> Cx % 8);

_ES = OxA000;

_BX = offset;

_CX = color;

_AX = mask;

asm MOV AH,AL

asm MOV AL,08

asm MOV DX,O3CEH

asm OUT DX,AX

asm MOV AX, OFFO2H

asm MOV DL, OC4H

asm OUT DX,AX

asm OR ES:[BX],CH

asm MOV BYTE PTR ES: [BX],00H

asm MOV AH,CL

asm OUT DX,AX

asm MOV BYTE PTR ES: [BX],OFFH

asm MOV AH,OFFH

asm OUT DX,AX

asm MOV DL,OCEH

asm MOV AX,0003

asm OUT DX,AX

asm MOV AX,OFFO8H

asm OUT DX,AX

plots() = plots a point on the screen at designated

system coordinates using s elected color

void plots(int x, mt y, mt color)

420

APPENDIX A: TOOLS LIBRARY

#define convert(x,y) {x = (x + 319); y = (175 -

((93*y)/128));

convert(x,y);

plot(x,y,color);

point() = sets the beginning angle for turtle

in tenths of a degree

#include <math.h>

#include “tools.h”

float point(float xl, float y_one, float x2, float y2)

float theta;

if ((x2 - xl) == 0)

if (y2 > y_one)
theta 90;

else

theta = 270;

else

theta = atan((y2y_one)/(x2x1))*57.295779;
if (xl>x2)

theta -+-= 180;

return(theta);

readPixel = reads a pixel from the screen

#include “tools.h”

mt readPixel(int x, mt y)

#include <dos.h>

union REGS reg;

reg.h.ah = OxOD;

421

FRACTAL PROGRAMMING IN C

reg.x.cx = x:

reg.x.dx = y;

int86 (OxlO,®,®);

return (reg.h.al);

read_screen() = reads a byte from screen

#include “tools.h”

unsigned char read_screen(unsigned long mt address,

mt color_plane)

#include <dos.h>

#define graph_out(index,val) {outp(Ox3CE,index);\

outp(Ox3CF,val);
char far * mem_address;

unsigned char pixel_data;

mem_address = (char far *) OxA0000000L + address;

graph_out(4,col or_plane);

graph_out(5,O)

pixel_data = *mem address;

return (pixel_data);

restore_screen() = paint screen from disk data

#include <stdio.h>

#include “tools.h”

#include <stdlib.h>

extern union LIMIT XMax, XMIn, YMax, YMIn, Pval , Oval

mt restore_screen(char file_name[])

#include <dos.h>

#define graph_out(index,val) {outp(Ox3CE,index);\

outp(Ox3CF,val);

APPENDIX A: TOOLS LIBRARY

FILE *fsave;

unsigned char ch,chl,red,green,blue,color.

line_length,end;

mt line_end,i ,j,k,m,pass,xl,yl,x2,y2;

if ((fsave = fopen(file_name,”rb”)) == NULL)

printf(”\nCan’t find %s.\n”,file_name);

return(O)

else

ch = fgetc(fsave);

if (ch != OxOA)

printf(”\n%s is not a valid ZSoft file.\n”,

file_name);

fclose(fsave)

return(O)

setMode(16):

cls(O)

for (1=1; 1<4; i++)

ch = fgetc(fsave);

xl = getw(fsave);

yl = getw(fsave);

x2 = getw(fsave);

y2 = getw(fsave);

for (1=12; 1<16; i++)

ch = fgetc(fsave);

for (1=0; 1<16; i++)

red = fgetc(fsave)/85;

green = fgetc(fsave)/85;

blue = fgetc(fsave)/85;

color = ((red & OxOl) << 5) I ((red & 0x02)

<< 1) I ((green & OxOl) << 4) I (green
& 0x02) ((blue & OxOl) << 3) I ((blue &

0x02) >> 1);

setEGApalette(i ,color);

for (i=64; 1<70; i++)

ch = fgetc(fsave);

for (1=0; 1<4; i++)

XMax.c[i] = fgetc(fsave);

for (i=O; 1<4; i++)

XMin.c[i] = fgetc(fsave);

for (i=O; 1<4; j++)

YMax.c[i] = fgetc(fsave);

FRACTAL PROGRAMMING IN C

for (i=O; 1<4; i++)

YM1n.c[i] = fgetc(fsave):

for (i0; 1<4; i++)

Pval .c[i] = fgetc(fsave);

for (1=0; 1<4; i++)

Oval .c[i] = fgetc(fsave);

for (1=94; 1<128; i++)

ch = fgetc(fsave);

graph_out(8,OxFF);

graph_out(3,0x10);

for (k=yl; k<y2; k++)

I = k80 + (xl/8);

line end = k* 80 + (x2/8)+1;

j = 0;

while (j < 4)

chi = fgetc(fsave);
if ((chi & OxC0) != OxCO)

display(i. j, chi):

I ++;

if (1 >= line_end)

j ++;

i = k80 + (xl/8);

else

chi &= Ox3F;

pass = chi;

ch = fgetc(fsave);

for (m=0; m<pass; m++)

display(i, j, ch);
I ++;

if (1 >= line_end)

j ++;
I = k*80 + (xl/8);

graph_out(3,0);
graph_out(8,OxFF);
fclose(fsave)
return(x2)

424

APPENDIX A: TOOLS LIBRARY

save_screen() = save screen to disk file

#include “tools.h”

#include <stdio.h>

void save_screen(int xl, mt yl, mt x2, mt y2,

char file_name[])

extern union LIMIT XMax,XMIn,YMax,YMin,Pval,Qval;

extern unsigned char PALETTE[16];

mt i,j,k,addl,add2,number,num_out, line_length, end.

start_line, end_line;

unsigned char ch,chl ,old_ch,red,green,blue;

FILE *fsave;

sound (256);

while (file_name[6] < Ox3A)

if ((fsave = fopen (file_name,”rb”)) != NULL)

else

fi 1 e_name[7]++;

if (file_name[7] >= Ox3A)

file_name[7] = 0x30;

fi 1 e_name[6]++;

fcl ose(fsave)

fcl ose(fsave)

fsave = fopen(file_name,”wb”);

fputc(OxOA,fsave);

fputc(0x05,fsave)

fputc(OxOl ,fsave);

fputc(0x04,fsave)

putw(xl fsave)

putw(yl ,fsave)

putw(x2,fsave)

putw(y2,fsave)

putw(640,fsave);

putw(350,fsave);

ch = OxOO;

for (1=0; i<16; j++)

red = (((PALETTE[i] & 0x20) >> 5) I
((PALETTE[i] & 0x04) >> 1)) * 85;

425

FRACTAL PROGRAMMING IN C

green = (((PALETTE[i] & OxlO) >> 4)

(PALETTE[i] & 0x02)) * 85;

blue = (((PALETTE[i] & 0x08) >> 3)

((PALETTE[i] & OxOl) << 1)) * 85;

fputc(red,fsave);

f putc C green , f save)

fputc(blue,fsave);

fputc(OxOO,fsave);

fputc(0x04,fsave);

start_line = xl/8;

end_line = x2/8 + 1;

line_length = end_line - start_line;

end = start_line + line_length * 4 + 1;

putw(l ine_length,fsave);

putw(1,fsave);

for (1=0; 1<4; i++)

fputc(XMax.c[i I ,fsave)

for (1=0; i<4; i++)

fputc(XMin.c[i I ,fsave)

for (i=0; 1<4; i++)

fputc(YMax.c[i I ,fsave);

for (1=0; i<4; i++)

fputc(YMIn.c[i I ,fsave);

for (1=0; 1<4; i++)

fputc(Pval .c[i],fsave);

for (1=0; i<4; j++)

fputc(Qval .c[i],fsave);

for (1=94; 1<128; i++)

fputc(’ ,fsave);

for (k=yl; k<y2; k++)

addi = 80*k;

number = 1;

j = 0;

add2 = (start_line);

old_ch = read_screen(addl + add2++,0);

for (i=add2; i<end; i++)

if Ci == end - 1)

ch = old_ch - 1;

else

if ((add2) == end_line)

j ++;

add2 = (start_line);

ch = read_screen(addl + add2,

j):

426

APPENDIX A: TOOLS LIBRARY

if ((ch == old_ch) && number < 63)

numb e r++;

else

num_out = ((unsigned char)

number OxCO);

if ((number != 1) II
((old_ch & OxCO) ==
OxCO))

fputc(num_out.fsave);

fputc(old_ch,fsave);
old_ch = ch;

number = 1;

add2++;

fclose(fsave)

break;

nosound()

setEGApalette() = sets the color for an EGA palette number

#include “tools.h”

extern unsigned char PALETTE[16];

void setEGApalette(int palette. mt color)

#include <dos.h>

union REGS reg;

PALETTE[palette] = color;

reg.h.ah = OxlO;

reg.h.al = 0;

reg.h.bh = color;

reg.h.bl = palette;

1nt86(OxlO,®,®);

427

FRACTAL PROGRAMMING IN C

setMode() = sets video mode

#include “tools.h”

void setMode(int mode)

#include <dos.h>

union REGS reg;

reg.h.ah = 0;

reg.h.al = mode:

int86 (OxlO,®,®);

step() = advances turtle by step r in current direction

#include “tools.h”

void step (void)

#include <math.h>

extern float turtlex;

extern float turtley;

extern float turtler;

extern float turtle_theta;

turtle_x += turtle_r*cos(turtle_theta*.017453292);

turtley += turtle_r*sin(turtle_theta*.017453292);

turn() = changes turtle pointing direction.

Angle is in tenths of a degree

#include “tools.h”

void turn(float angle)

extern float turtle_theta;

turtletheta += angle;

Appendix B

Programs for Hercules
Graphics Adapter

I strongly urge you to get an EGA or VGA card and monitor if you are going to

get at all serious about fractals. Some of the programs in this book cannot even

be run without such a card; others can be run, but their beauty or meaning is

severely degraded on a monochrome display. On the other hand, if you have purchased

this book and are not going to get a high resolution color monitor capability,

you need to do something to recoup your investment, right? So here are

the functions needed for a tools library that is compatible with the Hercules

graphics adapter and the revised versions of those programs that are worth a try at

running in monochrome. Since this book was primarly designed for color, you

aren’t going to find quite as much support for monochrome. If you bought the

disk that comes with the book, you will find when you dearchive the Hercules

software that a compiled library for Turbo C has been supplied, but not one for

Microsoft C. If the Turboc C library does not work with Microsoft C, you will

have to compile each of the tools functions and then combine them into a library

with the Microsoft LIB program.

You will also note that the functions save screen and restore screen, which are

used to save a graphics screen to a disk file and then read it back to the screen, are

not supplied in a Hercules compatible version. If you plan to save and restore

screens, you will have to write your own software using the versions that are

given for the EGA/VGA as a guide. The display programs that use these functions

have been modified for the Hercules so that screens are neither saved or restored.

429

FRACTAL PROGRAMMING IN C

Tools Library for Hercules Graphics Adapter

1*

tools.h = Header file for graphics tools library

*1

void cls(void);

void display(unsigned long mt address, mt color_plane, unsigned char ch);

void drawLine(int xl, mt yl, mt x2, mt y2, mt color);

void fillOval(float x_cen, float y_cen, float radius, mt color,

float aspect);

void fillTriangle (mt xl, mt yl, mt x2, mt y2, mt x3, mt y3,

mt color);

mt getPage(void);

void move_cursor(int type,int color,int mincol, mt mm_row);

void plot(int x, mt y, mt color);

float point(float xl, float yl, float x2, float y2);

mt readPixel(int x, mt y);

unsigned char readscreen(unsigned long mt address, mt color_plane);

mt restore screen(char file_name[]);

void save_screen(int xl, mt yl, mt x2, mt y2, char file_name[]);

void setEGApalette(int palette, mt color);

void setMode(int mode);

void step(void);

void turn(float angle);

void write_horz_char(int x, mt y, mt ch, mt color);

void write_vert_char(int x, mt y, mt ch, mt color);

void write horz str(int x, mt y, char *strjng, mt color);

void write_vert_str(int x, mt y, char *string, mt color);

void write_big_char(int x, mt y, mt ch, mt color);

void write_vid_char(int x, mt y, mt ch, mt color);

void write_big_str(int x, mt y, char *strjng, mt color);

void write_vidstr(int x, mt y, char *string, mt color);

union LIMIT

float f;

unsigned char c[4];

Publics by module

CHARACT size = 2726

_char_table write_big_char

_write_big_str _write_horz_char

430

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

_wri te_horz_str

_wri te_vert_str

_write_vid_str

size = 111

ci s

size = 93

_di splay

size = 538DRAWL INE

_drawLi ne

size = 934DRAWOVAL

_drawOval

size = 652FT LLOVAL

_filiOval

size = 944

_fiiiTriangle

size = 34

_get Page

size = 1518MOVCURS2

_move_cursor

size = 131

—pi Ct

size = 71

_pi ots

size = 209

_poi nt

size = 277

_g raph_reg_data

_text_reg_data

size = 109

_s t e p

size = 24

turn

1*

CHARACTER WRITING FUNCTIONS

C [S

DISPLAY

FT LLTRI

GETPAGE

PLOT

PLOTS

POINT

SETMODE

STEP

TURN

_wri te_vert_cha r

_wri te_vi d_char

_pl ct_pci nt

setMode

431

FRACTAL PROGRAMMING IN C

write horizontal and vertical

and vertical characters and strings.

*1

#include “tools.h”

#include “chars.h”

void write_horzchar(int x, mt y, mt ch, mt color)

mt offset,i,j;

unsigned char char_test;

x = (Cx + 319)*18) >> 4;

y = 174 ((93*y) >> 7);

offset = (ch - 32) * 14;

for (1=0; 1<14; i++)

for (j=O; j<8; j±+)

chartest = 0x80 >> j;

if ((chartable[offset+i] & chartest) 0)

if (color == 1)

plot(x+j,y+i ,1);

else

plot(x+j,y+i ,0);

else

if (color == 1)

plot(x+j,y+i ,0);
else

plot(x+j,y+i ,1);

if (color == 1)

plot(x+j,y+i ,O);
else

plot(x+j,y+i ,1);

void write_vert_char(int x, mt y, mt ch, mt color)

mt offset,i,j;
unsigned char chartest;

x = (Cx + 319)*18) >> 4;

y = 174 - ((93*y) >> 7);
offset = (ch - 32) * 14;
for (1=0; i<14; j++)

for (j=0; j<8; i-H-)

chartest = 0x80 >> j;

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

if ((chartable[offset+i] & chartest) != 0)

if (color == 1)

plot(x+i ,y-j,1);
else

plot(x+i ,y-j,0);

else

if (color == 1)

plot(x+i ,y-j,0);
else

plot(x+i ,y-j,1);

void write_horzstr(int x, mt y, char *strjng, mt color)

mt p=0;

while (string[p])

writehorzchar(x,y,string[p++],color);
x += 8;
if (x>312)

x=-319;

y += 20;

void write vert str(int x, mt y, char *strjng, mt color)

mt p=0;

while (string[p])

writevertchar(x,y,string[p++],color);
y += 12;
if (y>228)

y=-239;
x += 14;

1*

cls() = Clears the Screen

*1

433

FRACTAL PROGRAMMING IN C

#include “tools.h”

void cls(void)

#include <dos.h>

union REGS reg;

char far *address;

unsigned char ch;

unsigned mt i;

outp(0x3B8,2);

ch = inp(Ox3B8);

if (ch == Ox8A)

for (i=0; i<Ox7FFF; i++)

address = (char far *) OxB8000000L + j

*address = 0;

outp(0x3B8,Ox8A);

else

for (1=0; i<Ox7FFF; i±±)

address = (char far *) OxB0000000L + i;

*address = 0;

outp(0X3B8,OxOA);

1*

display() = displays byte on screen

*1

#include “tools.h”

void display(unsigned long mt address, mt color_plane,
unsigned char ch)

#include <dos.h>

char far * mem address;

unsigned char regis:

outp(0x3B8,2);
regis = inp(Ox3B8);
if (regis == Ox8A)

mem_address = (char far *) OxB8000000L + address;
*mem address = ch;

outp(0x3B8,Ox8A);

else

mem_address = (char far *) OxB0000000L + address;

431

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

*mem address = ch;

outp(0X3B8,OxOA);

1*

drawLine() = draws a line from one set of coordinates

to another in a designated color

*1

#include “tools.h”

extern unsigned long mt PATTERN;
extern mt LINEWIDTH;

void drawLineCint xl, mt yl, mt x2, mt y2, mt color)

#define sign(x) (Cx) > 0 ? 1: ((x) == 0 ? 0: (-1)))

mt dx, dy, dxabs, dyabs, i, j, px, py, sdx, sdy, x, y;
unsigned long mt mask=0x80000000;

xl = ((xl + 319)*18) >> 4;

yl = 174 - ((93*yl) >> 7);
x2 = ((x2 + 319)*18) >> 4;

y2 = 174 - ((93*y2) >> 7);

dx = x2 - xl;

dy = y2 - yl;
sdx = sign(dx);
sdy = sign(dy);
dxabs = abs(dx);

dyabs = abs(dy);
x = 0;

y = 0;

px = xl;
py = yl;
if (dxabs >= dyabs)

for (1=0; i<dxabs; i++)

mask = mask ? mask : 0x80000000;

y += dyabs;
if (y>=dxabs)

y -= dxabs;

py += sdy;

px += sdx;
if C PATTERN & mask)

for (j=-LINEWIDTH/2; j<LINEWIDTH/2; j±±)

plot(px,py+j ,color);

435

FRACTAL PROGRAMMING IN C

mask >>= 1;

else

for (i=O; i<dyabs; i++)

mask = mask ? mask : 0x80000000;

x += dxabs;

if (x>=dyabs)

x -= dyabs;

px += sdx;

py += sdy;

if (PATTERN & mask)

for (j- LINEWIDTH/2; j<=LINEWIDTH/2; j++)

plot(px+j ,py,color);

mask >>= 1;

1*

drawOval() = draws an oval with specified center,

radius, color and aspect ratio.

*1

#include “tools.h”

extern mt LINEWIDTH;

void drawOval(int x, mt y, mt b, mt color, float aspect)

mt i;

float a_temp;

long a_square, b_square, two_a_square, two_b_square,

four_a_square, four_b_square, d, a, row, col

x = ((x + 319)*18) >> 4;

y = 174 - ((93*y) >> 7);

a_temp = b/aspect;

a = (((int)(a_temp * 18)) >> 4) - LINEWIDTH/2;

b ((93*b) >> 7) - LINEWIDTH/2;

for (i=1; i<LINEWIDTH; i++)

b_square = b*b;

a_square = a*a;

row = b;

col = 0;

two_a_square = a_square << 1;

436

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

four_a_square = a_square << 2;

four_b_square = b_square << 2;

two_b_square = b_square << 1;

d = two_a_square * ((row 1)*(row)) + a_square +

two_b_square*(1a_square);

while (a_square*(row) > b_square * (col))

p1 ot(col+x, row+y ,color);
plot(col+x,y-row, color);
plot(x-col,row+y,color);
plot(x-col,y-row,color);
if (d>= 0)

row- -;

d -= four_a_square*(row);

d += two_b_square*(3 + (col << 1));
c o 1 ++;

d = two_b_square * (col + 1)*col + two_a_square*(row *

(row -2) +1) + (1two_a_square)*b_square;
while ((row) + 1)

p1 ot(col+x, row+y ,color);

plot(col+x,y-row, color);

plot(x-col,row+y,color);
plot(x-col ,y-row,color);
if (d<= 0)

c 01 +4-;

d += four_b_square*col

row- -;

d += two_a_square * (3 - (row <<1));

b++;

1*

fillOval() = draws an oval centered at (x,y) with

radius in y direction of ‘b’ with

aspect ratio ‘aspect’ and fills it
with color ‘color’.

*1

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include “tools.h”

void fillOval(float x_cen, float y_cen, float radius,

437

FRACTAL PROGRAMMING IN C

mt color, float aspect)

#include <dos.h>

union REGS reg;

#define seq_out(index,val) outp(Ox3C4,index);\

outp(Ox3C5,val);

#define graph_out(index,val) outp(Ox3CE,mndex);\
outp(Ox3CF,val);

unsigned mt offset;
char far * mem_address;

float a,b,aspect_square;
mt x,y,col ,row,dummy,mask,start_x, starty,end_x,endy;
float a_square,b_square,b_test;

a = radius/aspect;
a.square = a*a;
b = .729*radius;

b_square = b*b;
x = x_cen + 319;

y = 175 - (.729*y_cen);
start_x = max(O,x-a);
end_x = mm (639,x+a);

start_y = max(O,y-b);
end_y = min(349,y+b);

for (col=start_x; col<=end_x; col++)

b_test = b_square - (b_square*(colx)*(co1x))/
a_square;

for (row=starty; row<=end_y; row++)
if ((1ong)(rowy)*(rowy) <= b_test)

plot (col,row,color);

ffllTriangle() = fills a triangle in specified color

*1

void fillTriangle (mt xl, mt yOl, mt x2, mt y2, mt x3,
mt y3, mt color)

#define sign(x) ((x) > 0 ? 1: ((x) == 0 ? 0: (-1)))

mt dx, dy. dxabs, dyabs, i, j, k, px, py, sdx, sdy, x, y,
xpoint[4], ypoint[4], xa[350],xb[350],
start ,end;

438

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

long mt check;

mt x_coord[350], y_coord[350];

for (i=0; i<350; I-H-)

xa[i] = 640;

xb[i] = 0;

xpoint[0] = ((xl + 319)*18) >> 4;

ypoint[0] = 174 - ((yOl*93L) >> 7);

xpoint[1] = ((x2 + 319)*18) >> 4;

ypoint[1] = 174 - ((y2*93L) >> 7);

xpoint[2] = ((x3 + 319)*18) >> 4;

ypoint[2] = 174 - ((y3*93L) >> 7);

xpoint[3] = xpoint[O];

ypoint[3] = ypoint[0];
px = xpoint[O];
py = ypoint[O];
for (j=O; j<3; j++)

dx = xpoint[j+1] - xpoint[j];
dy = ypoint[j+1] - ypoint[j];
sdx = sign(dx);
sdy = sign(dy);
dxabs = abs(dx);

dyabs = abs(dy);
x = 0;

y = 0;
if (dxabs >= dyabs)

for (k=0; k<dxabs; k++)

y += dyabs;
px += sdx;
if (y>=dxabs)

y -= dxabs;
py += sdy;

if ((py>=0) && (py<=349))

if (px < xa[py])
xa[py] = px;

if (px > xb[py])
xb[py] = px;

else

for (k=0; k<dyabs; k++)

FRACTAL PROGRAMMING IN C

py += sdy;

x += dxabs;

if (x>=dyabs)

x -= dyabs;

px += sdx;

if ((py>=0) && (py<=349))

if (px < xa[py])

xa[py] = px:

if (px > xb[py])

xb[py] = px;

if (ypoint[0] < ypoint[1])

start = ypoint[O];

end = ypoint[1];

else

start = ypoint[1];

end = ypoint[0];

for (1=0; 1<350; i++)

if (xa[i] < 0)

xa[i] = 0;

if (xb[i] > 639)

xb[i] = 639;

if (ypoint[2] < start)

start = ypoint[2];

if (ypoint[2] > end)

end = ypoint[2];
if (start < 0)

start = 0;

if (end > 349)

end = 349;

for (i=start; i<=end; i++)

for (j=xa[i]; j<=xb[i]; j++)

plot(j,i ,color);

440

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

1*

getPage() = Returns Active Page Number

*1

#include “tools.h”

mt getPage(void)

#include <dos.h>

unsigned char ch;

ch = inp(Ox3B8);

if (ch == Ox8A)

return 1;

else

return(O);

1*

move_cursor() = moves cursor and saves position

*1

#include <stdio.h>

#include “tools.h”

void move_cursor(int type,int color,int min_col, mt mm_row)

#include <dos.h>

extern mt CURSOR_XCURSOR_Y;

extern union LIMIT XMax,YMax,XMin,YMin,Pval .Qval;

extern float TXMax,TXMin,TYMaxTYMin;

union REGS reg;

unsigned mt mask;

mt i ,j.image.image_store[256],index,ch,temp,limit[7];

char far *base;

limit[O] = 11;

limit[1] = 9;

limit[2] = 10;

limit[3] = 10;

limit[4] = 12;

limit[5] = 14;

441

FRACTAL PROGRAMMING IN C

limit[6] = 14;

do

index = 0;

swi tch(type)

case 0:

for (i=0; 1<16; i++)

image_store[index++] = plot_point

(CURSOR_X+i .CURSOR_Y.

col or);

for (1=1; 1<16; i++)

image_store[index++] = plot_point

(CURSOR_X CURS0R_Y+i

color);

break;

case 1:

for (1=0; 1<16; i++)

image_store[index++] = plot_point

(CURSOR_X+15.CURSOR_Y+i

color);

for (1=0; 1<15; i++)

image_store[index++] = plot_point

(CURSOR_X+i ,CURSOR_Y+15,

color);

break;

case 2:

for (j=0; j<7; j++)

for(i=j; i<limit[j]; i++)

if((i==8) && (j ==5))

i=10;

if((i==8) && (j ==6))

1=12;

image_store[index++] = plot_point

(CURSOR_X+j CURS0R_Y+i

color);

image_store[index++] = plot_point(CURSOR_X+7.
CURSOR_Y+7 ,col or);

ch = getch();
if (ch != OxOD)

if (ch == 0)

ch = getch() + 256;

index = 0;

swi tch(type)

442

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

case 0:

for (i=0; 1<16; i++)

plot_point(CURSOR_X+i .CURSOR_Y.

image_store[index++]);

for (1=1; 1<16; i++)

plot_point(CURSOR_X,CURSOR_Y+i

image_store[index-H-]);

break;

case 1:

for (1=0; 1<16; i++)

plot_point(CURSOR_X+15,CURSOR_Y+i.

image_store[index++]);

for (1=0; 1<15; i++)

plot_point(CURSOR_X+i .CURSOR_Y+15,

image_store[i ndex++]);

break;

case 2:

for (j=O; j<7; j++)

for(i=j; i<limit[j]; i++)

if((i==8) && Ci ==5))

1=10;

if((i==8) && Ci ==6))

1=12;

plot(CURSOR_X+j,

CURSOR_Y+i

image_store[index++]);

p1 ot (CURSOR_X+7 CURSOR_Y+7.

image_store[i ndex++]);

reg.h.ah = 2;

int86(0x16,®,®);

if ((reg.h.al & 0x03) != 0)

switch(ch)

case 56:

if (CURSOR_V > mm_row)

CURSOR_V -= 10;

break;

case 52:

if (CURSOR_X > min_col)

CURSOR_X -= 10;

break;

case 54:

if (CURSOR_X < 629)

CURSOR_X += 10;

break;

443

FRACTAL PROGRAMMING IN C

case 50:

if (CURSOR_V < 329)

CURSOR_V += 10;

else

switch(ch)

case 333:

if (CURSOR_X < 639)

CURSOR_X++;

break;

case 331:

if (CURSOR_X > min_col)

CURSOR_X - -;

break;

case 328:

if (CURSOR_V > mm_row)

CURSOR_V - -;

break;

case 336:

if (CURSOR_V < 335)

CURSOR_V++;

break;

switch(type)

case 0:

TXM1n = XMin.f + (XMax.f - XMin.f)/

639*(CURSOR_X);

TVMax = VMax.f - (VMax.f - YMin.f)/

349*CUR5ORV;

break;

case 1:

TXMax = XMIn.f + (XMax.f - XMin.f)/

639*(CURSOR_X + 16);

TVMIn = VMax.f - (VMax.f - VMin.f)/

349*(CUR5ORV + 16);

break;

case 2:

Pval.f = XMin.f + (XMax.f - XMIn.f)/639*

CURSOR_X;

Qval.f = VMax.f - (VMax.f - VMin.f)/

349*CUR5ORV;

444

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

while (ch != OxOD);

1*

plot_point() = Plots a point at (x,y) in color

for Enhanced Graphics Adapter, using

Turbo C port output functions and

returns original point color

1*

mt plot_point(int x, mt y, mt color)

mt index,page,offset;

unsigned char mask, dummy,exist_color;

char far *address;

page = getPageO;

offset = 0x2000 * (y%4) + 0x8000 * page + 90 * (y/4) + x/8;

mask = 0x80 >> (x%8);

address = (char far *)OxB0000000L + offset;

if ((*address & mask) != 0)

exist_color = 1;

*address &= —mask;

else

*address 1= mask;
exist_color = 0;

return(exist_color);

1*

plot() = plots a point to the screen at designated

location in screen coordinates in selected

color.

*1

#include “tools.h”

void plot(int x, mt y, mt color)

unsigned mt offset;

mt page;

445

FRACTAL PROGRAMMING IN C

char mask;

char far *address;

page = getPageO;

offset = 0x2000 * (y%4) + 0x8000 * page + 90 * (y/4) + x/8;

mask = 0x80 >> (x%8);

address = (char far *)0xB0000000L + offset;

if (color == 1)

*address 1= mask;
else

*address &= —mask;

1*

plots() = plots a point to the screen at designated

location in system coordinates

*1

#include “tools.h”

void plots(int x. mt y, mt color)

unsigned mt offset;

mt page;

char mask;

char far *address;

x = (Cx + 319)*18) >> 4;

y = 174 - ((93*y) >> 7);

page = getPageo;

plot(x.y.color);

1*

point() = sets the beginning angle for turtle

in tenths of a degree

1*

#include <math.h>

#include “tools.h”

float point(float xl, float y_one. float x2, float y2)

float theta;

446

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

if ((x2 - xl) == 0)

if (y2 > y_one)

theta = 90;

else

theta = 270;

else

theta = atan((y2y_one)/(x2xl))*57.295779;

if (xl>x2)

theta += 180;

return(theta);

1*

setMode() = Sets Video Mode (Text or Graphics

*1

#include “tools.h”

char graph_reg_data[12] = {0x35,Ox2D.Ox2E,

007. Ox5B 0x02 0x57 0x57 0x02 0x03 OxOO.

OxOO}.text_reg_data[12] = {0x61.0x50.0x52.

OxOF 0x19 0x06 0x19 0x19 ,0x02 ,OxOD.OxOB,OxOC };

void setMode(int mode)

#include <dos.h>

char far *address;

unsigned mt 1;

if (mode == 0)

outp (Ox3BF.0);

outp (0x3B8.0);

for (1=0; i<12; i++)

outp (0x3B4.i);

outp (0x3B5text_reg_data[i]);

for (i=0; i<=Ox7FFF; i+=2)

address = (char far *)OxB0000000L + i;

*address = 00;

*(address + 1) = 0x07;

outp (0x3B8.0x28);

else

447

FRACTAL PROGRAMMING IN C

outp (Ox3BF.3);

outp (0x3B8.2);

for (i=0; 1<12; i++)

outp (0x3B4,i);

outp (Ox3BS,graph_reg_data[i 1);

for (1=0; i<Ox7FFF; i++)

address = (char far *)0xB0000000L + I;

*address = OxOO;

address = (char far *)0xB8000000L + i;

*address = OxOO;

outp (0x3B8.OxOA);

address = (char far *)0x00000449L;

*address = mode;

1*

step() = advances turtle by step r in current direction

*1

#include “tools.h”

void step (void)

#include <math.h>

extern float turtle_x;

extern float turtley;

extern float turtle_r;

extern float turtle_theta;

turtlex += turtler*cos(turtle_theta*.017453292);

turtley += turtle_r*sin(turtle_theta*.017453292);

1*

turn() = changes turtle pointing direction

angle is in tenths of a degree

*1

#include “tools.h”

448

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

void turn(float angle)

extern float turtle_theta;

turtle_theta += angle;

Fractal Programs for Hercules Graphics Adapter

1*

3ddrag = PROGRAM TO GENERATE 3D DRAGON OUTLINES

*1

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void projection(float x3, float y3. float z3);

float degrees_to_radians(float degrees);;

union LIMIT XMin,YMin,XMax,YMax,Pval,Qval;

mt i, j, OPERATOR = OxOO,row,col,colorl;

mt x_center = 320. y_center = 175;

float x= .50001, y=O,z,P,Q,k,sx,cx,sy,cy,sz,cz,

magnitude. scale. temp. temp_x , tempy , step_s ize= .4 , ymax ymin

float rad_per_degree=O.0174533,alpha,beta,gamma;

float OVal ,x_offset, y_offset,upper_limit = 3, lower_limit = -3;
mt color;

unsigned char PALETTE[16]={O,1,2,3,4,5,20,7,56,57,58,59,60,61,

62,63);

main()

printf(”\nEnter alpha: “);

scanf(”%f”,&alpha);

printf(”\nEnter beta: “);
scanf(”%f”,&beta);

printf(”\nEnter gamma: “);

scanf(”%f”,&gamma);

printf(”\nEnter scale: “);
scanf(”%f”,&scale);

scale = x_center * scale;

printf(”\nEnter X offset: “);
scanf(”%f”,&x_offset);

printf(”\nEnter Y offset: “);

449

FRACTAL PROGRAMMING IN C

scanf(”%f”,&y_offset);

printf(”\nEnter 0 parameter: “);

scanf(”%f”,&OVal);

if (OVal == 0)

Step_size = 0.1;

upper_limit = 1.0;

lower_limit = -1.0;

setMode(1);

ci s()

alpha = degrees_to_radians(alpha);

sx = sin(alpha);

cx = cos(alpha);

beta = degrees_to_radians(beta);

sy = sin(beta);

cy = cos(beta);

gamma = degrees_to_radians(gamma);

sz = sin(gamma);

cz = cos(gamma);

color = 1;

for (k= upper_limit; k>=lower_limit; k-=step_size)

if ((k<1.0) && (k>-1.0))

step_size = 0.1;
x=.50001;

y = 0;

if (OVal == 0)

magnitude = 1;

o = 4*sqrt(1k*k);

else

magnitude = k*k + OVal*OVal

o = 4*QVal/magnjtude;

= 4*k/magnitude;

for (i=0; i<12000; i++)

temp_x = x*P - y*Q;

y = x*0 + y*

tempy = y;

x = 1 - temp_x;

magnitude = sqrt(x*x + y*y);

y = sqrt((-x + magnitude)/2);

x = sqrt((x + magnitude) /2);

if (tempy < 0)
x =

if (rand() < 16163)

450

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

x = -x;

y =

x = (1 - x)12;

y = y12;

z = P12;

if (i>1O)

projection (x, y, z);

getch();

setMode(O);

void projection(float x3, float y3, float z3)

float temp_x, temp_y;

mt col , row, color;

temp_x = x3*cx + y3*cy + z3*cz;

temp_y = x3*sx + y3*sy + z3*sz;

col = scale * (temp_x- .5) + x_center + x_offset;

row = y_center - scale*temp_y + y_offset;

if ((col>=O) && (col<720) &&(row>=O) && (rów<348))

plot (col,row,1);

float degrees_to_radians(float degrees)

float angle;

while (degrees >= 360)

degrees -= 360;

while (degrees < 0)

degrees += 360;

angle = rad_per_degree*degrees;

return angle;

1*

apollo = APOLLONIAN PACKING OF CIRCLES

*1

#include <dos.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include “tools.h”

451

FRACTAL PROGRAMMING IN C

vol d gen_ci rd e(float xa ,float ya ,float a ,float xb,float yb.

float b,float xc,float yc,float c, mt level);

void node(float xa,float ya,float a,float xb,float yb,

float b,float xc,float yc,float c, float xs, float ys, float s,

mt level);

mt LINEWIDTH = 1, OPERATOR = 0;

mt color = 1;

mt level;

unsigned long mt PATTERN = OxFFFFFFFF;

unsigned char PALETTE[16]={0,1,2,3,4,5,20,7,56,57,58,59,60,61,

62,63);

float a, b ,C,S, Cs , bs , xa , xb ,xc ,ya ,yb ,yc , xs ,ys;

main()

float temp;

printf(”Enter level: “);
scanf(”%d”,&level);

setMode(1);

a = 625;

b = 375;

c = 945;

xa = -725;

ya = 235;

xb = 275;

yb = 268;

xc = 180;

yc = -1048;

fillOval(xa,ya,a,1,1.O);

fillOval(xb,yb,b,1,1.O);

fillOval(xc,yc,c,1,1.0);

gen_circle(xa,ya,a,xb,yb,b,xc,yc,c,level);

getch();

setMode(0);

void gen_ci rd e(fl oat xa ,fl oat ya ,fl oat a ,fl oat xb,fl oat yb,

float b,float xc,float yc,float c, mt level)

float s, temp;

level--;

s = 1/a + 1/b + 1/c + 2*(sqrt(1/(b*c) + 1/(c*a) + 1/(a*b)));
5 = us;

temp = (s+a)*(s+a) - (s+b)*(s+b) - xa*xa + xb*xb - ya*ya +

yb*yb;

ys = (temp*(xcxa) - (xb - xa)*((s+a)*(s+a) - (s+c)*(s+c)

452

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

- xa*xa + xcxc - ya*ya + yc*yc))/(2*((ybya)*(xcxa)

- (ycya)* (xb - xa)));

xs = (temp - 2*ys*(yb - ya))/(2*(xb - xa));

fillOval(xs,ys,s,1,1.0);

if (level > 0)

node(xa ,ya , a, xb ,yb, b ,xc ,yc c • xs ,ys .5 ,level);

void node(float xa,float ya,float a,float xb,float yb,

float b,float xc,float yc,float c, float xs, float ys,

float s, mt level)

gen_circle(xa,ya,a,xb,yb,b,xs,ys,s,level);

gen_circle(xb,yb,b,xc,yc,c,xs,ys,s,level);

gen_circle(xa,ya,a,xc,yc,c,xs,ys,s,level);

1*

char ch;

mt LINEWIDTH = 1;

unsigned long mt PATTERN = OxFFFFFFFF

void main()

float r=.95,x,delta_r;

mt i,j, row, col;

setMode(16);

for (j=O; j<2; j±+)

delta_.r = 0.005;

if Ci == 1)

cisC);

r = 3.55;

delta_r = 0.0005;

for (col=0; col<719; col++)

*1

#1 nd ude <conio.h>

#i nd ude <stdio.h>

#i nd ude <dos.h>

#i nd ude <math. h>

#i nd ude “toois.h”

bifurc = GENERATES BIFURCATION DIAGRAMSLES

453

FRACTAL PROGRAMMING IN C

x = r*x*(1x);

if ((x>1000000) (x<-1000000))

break;

FOR rx(1-x) *1/* COMPUTATION

row = 347 (x*35O);

FOR x(1-x)/* COMPUTATION

row = 347 ((x/r)*7OO);

if ((i>64) && (row<347) && (row>=O) &&

(col>=O) && (col<719))

const mt maxcol = 719;

const mt maxrow = 347;

plot(col ,row,1);

char strings[80];

mt col,row,i;

mt max_iterations = 64;

mt max_size = 4;

mt LINEWIDTH=1. OPERATOR=O;

mt CURSOR_X=O,CURSOR_Y=O;

unsigned long mt PATTERN=OxFFFFFFFF;

x = .5;

r += delta_r;

for (i=O; i<256; i++)

*1

getch();

setMode(O);

1*

*1

#1 nd ude <stdio.h>

#i nd ude <stdl ib.h>

#i nd ude <math. h>

#i nd ude <dos.h>

#i nd ude <process. h>
#i nd ude “tools.h”

bindecom = program for binary decomposition

454

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

float P,Q,Xmax= 2.0, Xmin=-2.0, Ymax=1.50, Ymin=-1.50,theta;

main()

float deltaX, deltaY, X, Y, Xsquare,Ysquare,Ytemp,templ,temp2;

mt color, j, row, col;

setMode(1);

P = 0;

0 = 0;

for (j=0; j<2; j++)

cl s()

deltaX = (Xmax - Xmin)/(maxcol);

deltaY = (Ymax - Ymin)/(maxrow);

for (col=0; col<=maxcol; col++)

if (kbhit() != 0) break;

for (row=0; row<=maxrow; row++)

X = Xmin + col * deltaX;

Y = Ymax - row * deltaY;

Xsquare = 0;

Ysquare = 0;
I = 0;

while ((i<max_iterations) && ((Xsquare +

Ysquare) < max_size))

Xsquare = X*X;

Ysquare =

Ytemp = 2*X*Y;

X = Xsquare - Ysquare + P;

Y = Ytemp + 0;

if (X == 0)

color = 1;

theta = acos(fabs(X)/(sqrt(X*X +

if ((X<0) && (Y>=O))

theta += 1.5707963;

if ((X<0) && (Y<O))

theta += 3.14159625;

if ((X>0) &&)

theta += 4.7123889;

if ((theta>=0) &&

(theta<=3.14159625))

color = 1;

else

(Y<O)

455

FRACTAL PROGRAMMING IN C

else

color = 0;

plot(col, row, color);

getch();

P = .318623;

0 = .0429799;

setMode(0);

1*

brown2d = PROGRAM TO GENERATE TWO DIMENSIONAL BROWNIAN

FRACTALS

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

float gauss(unsigned seed);

void subdivide (mt fi, mt f2, float std);

float Fh[2049],Fw[2049],ratio;

char combination= OxOO;

unsigned long mt PATTERN=OxFFFFFFFF;

unsigned mt seed=3245;

mt LINEWIDTH = 1;

main()

float scale=2000,h=.87,std;

mt i,pxl,px2,pyl,py2;

while (seed 0)

setMode(0);

printf(”Enter seed (0 to quit): “);
scanf(”%d”,&seed);

Fh[O] = 0;

Fh[2048] = gauss(seed) * scale;

Fw[0] = 0;

Fw[2048] = gauss(0) * scale;

ratio = pow(2, -h);

std = scale*ratio;

456

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

subdivide(0,2048,std);

setMode(1);

for (i=O; 1<2048; i++)

pxl = Fw[i];

pyl = Fh[i];

px2 = Fw[i+1];

py2 = Fh[i+1];

drawLine(pxl,pyl,px2,py2,1);

PATTERN = OxOFOFOFOF;

drawLine(-260.0.252,0,1);

drawLine(0,-220,0,220,1);

PATTERN = OxFFFFFFFF;

getch();

setMode(0);

void subdivide (mt fi, mt f2, float std)

mt fmid;

float stdmid;

fmid = (fi + f2)/2;

if (C fmid fi) && (fmid f2))

Fh[fmid] = (Fh[fl] + Fh[f2])/2.O + gauss(O) * std;

Fw[fmid] = (Fw[fl] + Fw[f2])/2.O + gauss(0) * std;

stdmid = std*ratlo;

subdivide(fl,fmid,stdmid);

subdivide(fmid,f2,stdmid);

float gauss(unsigned seed)

mt k;

float value,exponent,gauss;

if (seed 0)

srand(seed);

k = rand() - 16383;

value = k/5461.O;

exponent = (value*va1ue)/2.

gauss = .15915494*exp(exponent);

k = randO;

if (k > 16383)

gauss = -1;

return(gauss)

457

FRACTAL PROGRAMMING IN C

1*

brownian = PROGRAM TO GENERATE BROWNIAN FRACTALS

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

float gauss(unsigned seed);

void subdivide (mt fl, mt f2, float std);

float Fh[257],ratio;

char combination= OxOO;

unsigned long mt PATTERN=OxFFFFFFFF;

unsigned mt seed=3245;

mt LINEWIDTH = 1;

main()

float scale=1000,h=.87,std;

mt i,pxl,px2;

while (seed != 0)

setMode(0);

printf(”Enter seed (0 to quit): “);

scanf(”%d”,&seed);

Fh[0] = gauss(seed) * scale;

Fh[256] = gauss(0) * scale;

ratio = pow(2,-h);
std = scale*ratio;

subdivide(O,256,std);

setMode(1);

for (i=0; i<256; i++)

pxl = Fh[i];

px2 = Fh[i+1];

drawLine(2*i26O,px1,2*(i+1)26O,px2,1);

PATTERN = OxOFOFOFOF;

drawLine(-260,0,252,0,1);

PATTERN = OxFFFFFFFF;

getch();

458

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

void subdivide (mt fi, mt f2, float std)

mt fmid;

float stdmid;

fmid = (fl + f2)/2;

if (C fmid != fi) && (fmid != f2))

Fh[fmid] = (Fh[fl] + Fh[f2])/2.O + gauss(O) * std;

stdmid = std*ratio;

subdivide(fl,fmid,stdmid);

subdivide(fmid,f2,stdmid);

float gauss(unsigned seed)

mt k;

float value,exponent,gauss;

if (seed != 0)

srand(seed);

k = rand() - 16383;

value = k/5461.O;

exponent = (value*value)/2.

gauss = .15915494*exp(exponent);
k = randO;

if (k > 16383)

gauss = -1;

return(gauss)

1*

cdragon = ADVANCED PROGRAM TO MAP THE DRAGON CURVES

*1

#include <ctype.h>
#include <conio.h>

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>
#include “tools.h”

mt plot_point(int x, mt y. mt color);

const mt maxcol = 719;

const mt maxrow = 347;

459

FRACTAL PROGRAMMING IN C

mt CURSOR_X=O,CURSOR_Y=O,col ,row;

mt max_iterations;

mt max_size = 4;

mt LINEWIDTH=1, OPERATOR=OxOO;

unsigned long mt PATTERN=OxFFFFFFFF;

float P,Q;

union LIMIT XMax,YMax,XMin,YMIn,Pval,Qval;

main()

float deltaX, deltaY, X, Y, Xsquare, Ysquare,Ytemp,temp_sq,

temp_xy;

mt 1, row, col,error,response;

printf(”values for P and 0 sep[arated by a comma: “);
scanf(”%f,%f”,&P,&Q);

pri ntf(“\nEnter number of iterations: “);

scanf(”%d”,&max_iterations);

XMax.f = 1.4;

XMIn.f = - .4;

YMax.f = .8;

YMin.f = - .8;

setMode(1);

ci s(

deitaX = (XMax.f - XMin.f)/(maxcol);

deltaY = (YMax.f - YMIn.f)/(maxrow);

for (col=O; col<=maxcol; col++)

if (kbhit() != 0)

setMode(O);

exit(0);

for (row=0; row<=maxrow; row++)

X = XMin.f + col * deltaX;

Y = YMax.f - row * deltaY;

Xsquare = 0;

Ysquare = 0;
I = 0;

whiie ((i<max_iterations) &&

((Xsquare + Ysquare) < max_size))

Xsquare = X*X;

Ysquare =

temp_sq = Ysquare - Xsquare;

temp_xy = X*Y;

temp_xy += temp_xy;

Ytemp = Q*(temp sq + X)p*(tempxy
- Y);

X = P*(temp_sq + X)

460

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

+ Q*(tempxy -

Y = Ytemp;
i ++;

jf (i >= max_iterations)

plot(col. row. 1);

getch();

setMode(O);

1*

cesarol = PROGRAM TO GENERATE ORIGINAL CESARO CURVE

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl. float Yl. float X2, float Y2.

mt level,int sign);

mt generator_size = 3;

mt level;

mt mit_size = 1;

mt initiator_xl[1O] = {-150),initiator_x2[lO]={150),

initiatoryl[1O]={O). initiatory2[1O]={O);

mt combination = O,LINEWIDTH=1. OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i.sign=1;

float Xpoints[25]. Ypoints[25];

float turtle_x,turtle_y,turtle_r;

main()

printf(”\nEnter level (1 - 16): “);
scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(1);

cls()

for (i=O; i<init_size; i++)

generate(initiator_xl[i]. initiator_yl[i],

461

FRACTAL PROGRAMMING IN C

initiator_x2[i]. initiatory2[i]. level,sign);

getch();

setMode(O);

1*

generate() = Generates curve

*1

void generate (float Xl. float Yl. float X2. float Y2.

mt level. mt sign)

mt j ,k,l ine,pxl,px2,pyl,py2;

float a. b, Xpoints[25]. Ypoints[25];

level--;

turtle_r = sqrt(((X2 - Xl)*(X2 - Xl) + (Y2 - Y1)*
(Y2 - Yl)))/2.O;

Xpoints[O] Xl;

Ypomnts[O] = Yl;

Xpoints[2] = X2;

Ypomnts[2] = Y2;

turtle_theta = point(Xl.Yl,X2,Y2);
turtle_x = Xl;

turtley = Yl;

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtley;
turn(90*sign);

step();

Xpoints[l] = turtle_x;

Ypoints[l] = turtley;

sign = -1;
if (level > 0)

for (j=0; j<generator_size-l; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+l];

Yl = Ypoints[j]:

Y2 = Ypoints[j+l];

generate (Xl,Y1,X2,Y2,level,sign);

else

pxl = Xpoints[0];

pyl = Ypoints[0];

px2 = Xpomnts[2];

462

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

py2 = Ypoints[2];

drawLine(pxl,pyl,px2.py2.1);

pxl = Xpoints[1];

pyl = Ypoints[1];

px2 = Xpoints[3];

py2 = Ypoints[3];

drawLine(pxl,pyl,px2,py2.1);

1*

cesaro2 = PROGRAM TO GENERATE MODIFIED CESARO CURVE

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl. float Yl. float X2. float Y2,

mt level,int sign);

mt generator_size = 3;

mt level;

mt mit_size = 1;

mt initiator_xl[lO] = {-150Linitiator_x2[1O]={150).

initiatoryl[lO]={O). initiatory2[1O]={O);

mt combination = O,LINEWIDTH=l. OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i,sign=1;

float Xpomnts[25]. Ypoints[25];

float turtle_x,turtley,turtle_r;

main()

printf(”\nEnter level (1 - 8): “);
scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(1);

cl s()

for (1=0; i<init_size; j++)

generate(initiator_xl[i]. initiator_yl[i],

initiator_x2[iLinitiatory2[i]. level,sign);

getch();

463

FRACTAL PROGRAMMING IN C

setMode(0);

1*

generate() = Generates curve

*1

void generate (float Xl. float Yl, float X2. float Y2.

mt level, mt sign)

mt j ,k,line,pxl,px2,pyl,py2;

float a, b. Xpoints[25], Ypoints[25];

level--;

a = sqrt(((X2 - Xl)*(X2 - Xl) + (Y2 - Yl)*(Y2 - Yl)))/2.O;

b = a * 0.9128442;

turtle_r = b;

Xpoints[0] = Xl;

Ypoints[O] = Yl;

Xpoints[2] = X2;

Ypoints[2] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);
turtle_x = Xl;

turtley = Yl;

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtley;

turn(85*sign);

turtle_r = a;

step();

Xpoints[1] = turtle_x;

Ypoints[1] = turtley;

turn(170*sign);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtley;

sign = -1;
if (level > 0)

for (j=0; j<generator_size-1; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Yl = Ypoints[j];

Y2 = Ypoints[j+l];

generate (X1,Y1,X2,Y2,level,sign);

464

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

else

pxl = Xpoints[O];

pyl = Ypoints[O];

px2 = Xpoints[3];

py2 = Ypoints[3];

drawLine(pxl.pyl ,px2,py2,1);

pxl = Xpoints[2];

pyl = Ypoints[2];

px2 = Xpoints[4];

py2 = Ypoints[4];

drawLine(pxl,pyl.px2.py2,1);

pxl = Xpoints[3];

pyl = Ypoints[3];

px2 = Xpoints[1];

py2 = Ypoints[1];

drawLine(pxl,pyl,px2.py2.1);

pxl = Xpoints[4];

pyl = Ypoints[4];

drawLine(pxl,pyl,px2,py2,1);

1*

cesaro3 = PROGRAM TO GENERATE ORIGINAL CESARO CURVE

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl. float Yl. float X2. float Y2.

mt level);

mt generator_size = 3;

mt level;

mt mit_size = 1;

mt initiator_xl[lO] = {-150},initiator_x2[lO]={150},

initiatoryl[1O]={O}Jnitiatory2[lO]={O);

mt combination = O,LINEWIDTH=1. OPERATOR=-O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i,sign[16],signl=-l;

float Xpoints[25]. Ypoints[25];

float turtle_x,turtley,turtle_r;

main()

465

FRACTAL PROGRAMMING IN C

printf(”\nEnter level (1 - 16): “);
scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(1);

cl s()

for (i=level ; i>=0; 1--)

sign[i] = signi;

signi = -1;

for (1=0; i<init_size; i++)

generate(initiator_xl[i], initiatoryl[i],

initiator_x2[i], initiatory2[i]. level);

getch();

setMode(0);

1*

generate() = Generates curve

*1

void generate (float Xl, float Yl. float X2, float Y2,
mt level)

mt j ,k,l ine,pxl ,px2,pyl ,py2;

float a, b, Xpoints[25], Ypoints[25];

level --;

turtle_r = sqrt(((X2 - X1)*(X2 - Xl) + (Y2 - Y1)*(Y2
Yl)))/2.0;

Xpomnts[O] = Xl;

Ypoints[0] = Yl;

Xpoints[2] = X2;

Ypoints[2] = Y2;

turtle_theta = point(Xl,Yl,X2,Y2);
turtle_x = Xl;

turtley = Yl;

step();

Xpomnts[3] = turtle_x;

Ypoints[3] = turtley;

turn(90*sign[level]);

step();

Xpoints[l] = turtle_x;

Ypoints[1] = turtley;
if (level > 0)

for (j=0; j<generator_size-l; j++)

466

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Yl = Ypoints[j];

Y2 = Ypoints[j+1];

generate (Xl,Yl,X2,Y2,level);

else

pxl = Xpoints[O];

pyl = Ypoints[O];

px2 = Xpoints[2];

py2 = Ypoints[2];

drawLine(pxl .pyl .px2.py2.l);

pxl = Xpoints[l];

pyl = Ypoints[1];

px2 = Xpoints[3];

py2 = Ypoints[3];

drawLine(pxl.pyl.px2.py2,1);

1*

cesaro4 = PROGRAM TO GENERATE MODIFIRD CESARO CURVE

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl. float Yl, float X2. float Y2,

mt level);

mt generator_size = 3;

mt level;

mt mit_size = 1;

mt initiator_xl[lO] = {-l5OLinitiator_x2[1O]={l50).

mnitiatoryl[lO]={O). initiator_y2[1O]={O};

mt combination = O,LINEWIDTH=1. OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i,sign[l7],signl=-l;

float Xpoints[25], Ypoints[25];

float turtle_x,turtley,turtle_r;

main()

467

FRACTAL PROGRAMMING IN C

printf(”\nEnter level (1 - 16): “);
scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(1);

cls()

for (i=level; i>=0; 1--)

sign[i] = signl;

signl = -1;

for (1=0; i<init_size; i++)

generate(initiator_xl[i]. initiatoryl[i],

initiator_x2[i],initiator.y2[i], level);

getch();

setMode(0);

1*

generate() = Generates curve

*1

void generate (float Xl. float Yl, float X2. float Y2.
mt level)

mt j ,k,l ine,pxl,px2,pyl,py2;

float a. b. Xpoints[25]. Ypoints[25];

level--;

a = sqrt(((X2 - X1)*(X2 - Xl) + (Y2 - Y1)*(Y2 - Y1)))/2.0;
b = a * 0.9128442;

turtle_r = b;

Xpoints[0] = Xl;

Ypoints[0] = Yl;

Xpoints[2] = X2;

Ypoints[2] = Y2;

turtle_theta = point(X1.Y1,X2,Y2);

turtle_x = Xl;

turtle_y = Yl;

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtley;

turn(85*sign[level 1);

turtle_r = a;

step();

Xpoints[l] = turtle_x;

Ypoints[l] = turtle_y;

468

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

turn(17O*sign[level 1);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtley;

if (level > 0)

for (j=0; j<generator_size-1; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Yl = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level);

else

pxl = Xpoints[0];

pyl = Ypoints[O];

px2 = Xpoints[3];

py2 = Ypoints[3];

drawLine(pxl.pyl,px2,py2,1);

pxl = Xpoints[2];

pyl = Ypoints[2];

px2 = Xpoints[4];

py2 = Ypoints[4];

drawLine(pxl,pyl,px2,py2,l);

pxl = Xpoints[3];

pyl = Ypoints[3];

px2 = Xpoints[1];

py2 = Ypoints[l];

drawLine(pxl.pyl.px2.py2.l);

pxl = Xpoints[4];

pyl = Ypoints[4];

px2 = Xpoints[1];

py2 = Ypoints[1];

drawLine(pxl.pyl.px2.py2.1);

1*

cjulia = ADVANCED PROGRAM TO MAP THE JULIA SETS

*1

#include <conio.h>

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>
#include “tools.h”

469

FRACTAL PROGRAMMING IN C

#include <ctype.h>

const mt maxcol = 719;

const mt maxrow = 347;

mt CURSOR_X=O,CURSOR_Y=O,col ,row;

mt max_iterations;

mt max_size = 4;

mt LINEWIDTH=1, OPERATOR=OxOO;

unsigned long mt PATTERN=OxFFFFFFFF;

float P,Q;

float TXMax,TXMIn,TYMax,TYMIn;

union LIMIT XMax,YMax,XMin,YMin,Pval,Qval;

main()

float deltaX, deltaY, X, Y. Xsquare. Ysquare;

mt i,color, row, col,error,response;

setMode(O);

printf(”\nEnter values for P and 0. separated by a
“comma: “);

scanf(”%f,%f”,&P,&Q);

printf(”\nEnter number of iterations: “);
scanf(”%d”,&max_iterations);

setMode(1);

XMax.f = 1.8;

XMin.f = -1.8;

YMax.f = 1.2;

YMIn.f = -1.2;

cls()

deltaX = (XMax.f - XMin.f)/(maxcol);

deltaY = (YMax.f - YMin.f)/(maxrow);

for (col=1; col<=maxcol; col++)

if (kbhit() != 0)

setMode(O);

exit(0);

for (row=O; row<=maxrow; row++)

X = XMin.f + col * deltaX;

Y = YMax.f - row * deltaY;

Xsquare = 0;

Ysquare = 0;
I = 0;

while ((i<max_iterations) &&

((Xsquare + Ysquare) < max_size))

Xsquare = X*X;

Ysquare =

470

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

Y = 2*X*Y + Q;

X = Xsquare - Ysquare + P;

i ++;

if (1 >= max_iterations)

plot(col. row. 1);

getch();

setMode(O);

1*

cmandel = ADVANCED PROGRAM TO MAP THE MANDELBROT SET

*1

Linclude <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>
#include “tools.h”

const mt maxcol = 719;

const mt maxrow = 347;

const mt max_colors = 2;

mt CURSOR_X=O,CURSOR_Y=O,col ,row;

mt max_iterations = 512;

mt max_size = 4;

mt LINEWIDTH=1. OPERATOR=OxOO;

unsigned long mt PATTERN=OxFFFFFFFF;

double Q[350];

float TXMax,TXMin,TYMax,TYMin;

union LIMIT XMax,YMax,XMin,YMin,Pval,Qval;

main()

double P,deltaP. deltaQ. X. Y. Xsquare. Ysquare;

mt i,color. row. col,error,response,repeat=0x30,start_col;

XMax.f = 1.2;

XMin.f = -2.0;

YMax.f = 1.2;

YMin.f = -1.2;

start_col = 0;

setMode(1);

cl s()

while (repeat == 0x30)

deltaP = (XMax.f - XMin.f)/(maxcol);

471

FRACTAL PROGRAMMING IN C

deltaQ = (YMax.f - YMin.f)/(maxrow);

Q[0] = YMax.f;

for (row=1; row<=maxrow; row++)

Q[row] = Q[row-1] - deltaQ;

P = XMin.f + start_col * deltaP;

for (col=start_col; col<maxcol; col++)

if (kbhit() != 0)

exit(0);

for (row=0; row<=maxrow; row++)

X = Y = Xsquare = Ysquare = 0.0;

color = 1;

while ((color<max_iterations) && ((Xsquare +

Ysquare) < max_size))

Xsquare = X*X;

Ysquare =
Y = 2*X*Y + Q[row];

X = Xsquare - Ysquare + P;
color ++;

plot(col. row. (color % max_colors));

P += deltaP;

getch();

write_horz_str(-300,-220,”Enter ‘0’ to run another

“plot. ‘1’ to quit: “.1);

repeat = getche();

if (repeat == 0x30)

move_cursor(0,15,0,0);

move_cu rsor (1. 15 CURSOR_X CURSOR_Y)

XMax.f = TXMax;

XMin.f = TXMin;

YMax.f = TYMax;

YMin.f = TYMin;

start_col = 0;

cls()

setMode(0);

1*

3

472

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

cnewton = MAP OF NEWTON’S METHOD FOR SOLVING Z -2Z-5=O

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>
#include “tools.h”

const mt maxcol = 719;

const mt maxrow = 347;

const mt max_colors = 2;

char strings[80];
mt col,row,i;

mt max_iterations = 64;

mt max_size = 4;

mt LINEWIDTH=1. OPERATOR=O;

mt CURSOR_X=O,CURSOR_Y=O;

unsigned long mt PATTERN=OxFFFFFFFF;

/*float P=- .5,Q=O,Xmax= 1.5. Xmin=-1.5, Ymax=1.20.

Ymin=1.2O;*/

float Xmax = 3.5. Xmin=-3.5, Ymax=2.50. Ymin=-2.50;

main()

double deltaX. deltaY. X. Y. Xsquare.

Ysqua re . Ytemp . templ . temp2 . temp3 . denom. numer ,theta;
mt color, row, col;

float Xold,Yold,Xnew,Ynew;

setMode(1);

cls()

deltaX = (Xmax - Xmin)/(maxcol);

deltaY = (Ymax - Ymin)/(maxrow);

for (col=O; col<=maxcol; col++)

if (kbhit() != 0)

setMode(0);

break;

for (row=0; row<=maxrow; row++)

X = Xmin + col * deltaX;

Y = Ymax - row * deltaY;

Xsquare = 0;

Ysquare = 0;
Xold = 42;

Yold = 42;

473

FRACTAL PROGRAMMING IN C

for (1=0; i<max_iterations; i++)

Xsquare = X*X;

Ysquare =

denom = (3*Xsquare - 3*ysquare - 2);

denom = denom*denom + 36*Xsquare*Ysquare;
if (denom == 0)

denom = .00000001;

templ = X*Xsquare - 3*X*ysquare - 2*X 5;

temp2 = 3*Xsquare - 3*ysquare - 2;

temp3 = 3*Xsquare*y - Ysquare*Y - 2*Y;

X = X - (templ * temp2 - 6*X*Y*temp3)/denom;

Y = Y - (templ * (6*X*y) + temp3 * temp2)
/denom;

Xnew = X;

Ynew = Y;

if ((Xold == Xnew) && (Yold == Ynew))

break;

Xold = X;

Yold = Y;

color = i%max_colors;

plot(col, row, color);

getch();

setMode(0);

1*

3

cnewton = MAP OF NEWTON’S METHOD FOR SOLVING Z =

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>
#include “tools.h”

const mt maxcol = 719;

const mt maxrow = 347;

const mt max_colors = 2;

char strings[80];

mt col,row,i;

mt max_iterations = 64;

mt max_size = 4;

mt LINEWIDTH=1, OPERATOR=0;

mt CURSOR_X=0,CURSOR_Y=0;

unsigned long mt PATTERN=OxFFFFFFFF;

474

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

float Xmax = 3.5, Xmin=-3.5, Ymax=2.50, Ymin=-2.50;

main()

double deltaX, deltaY, X, Y. Xsquare,Xold,Yold.

Ysquare,Ytemp,templ,temp2,denom,theta;
mt color, row, col;

setMode(1);

cls()

deltaX = (Xmax - Xmin)/(maxcol);

deltaY = (Ymax - Ymin)/(maxrow);

for (col=0; col<=maxcol; col++)

if (kbhit() 1= 0)

setMode(0);

break;

for (row=0; row<=maxrow; row++)

X = Xmin + col * deltaX;

Y = Ymax - row * deltaY;

Xsquare = 0;

Ysquare = 0;
Xold = 42;

Yold = 42;

for (i=0; i<max_iterations; i++)

Xsquare = X*X;

Ysquare =

denom = 3*((Xsquare - Ysquare)*(Xsquare -

Ysquare) + 4*Xsquare*Ysquare);
if (denom == 0)

denom = .00000001;

X = .6666667X + (Xsquare - Ysquare)/denom;

Y = . 6666667*Y - 2*X*Y/denom;

if ((Xold == X) && (Yold == Y))

break;

Xold = X;

Yold = Y;

color = i%2;

plot(col, row, color);

getch();
setMode(0);

475

FRACTAL PROGRAMMING IN C

1*

*1

#i nd ude <ctype.h>
#i nd ude <conio.h>

#1 nd ude <stdio.h>

#1 nd ude <math. h>

#i nd ude <dos.h>

#include <process. h>
#1 nd ude “tools.

const mt maxcol = 719;

const mt maxrow = 347;

const mt max_colors = 16;

mt CURSOR_X=O.CURSOR_Y=O.col .row;

mt max_iterations;

mt max_size = 4;

mt LINEWIDTH=1. OPERATOR=OxOO, ANGLE. XCENTER. YCENTER;

unsigned long mt PATTERN=OxFFFFFFFF;

mt colors[7]={88};

float P.0;

float TXMax,TXMin,TYMax,TYMin;

union LIMIT XMax,YMax.XMin.YMin.Pval,Qval;

main()

float deltaX. deltaXi. X. Y. Xsquare. Ysquare.Ytemp.

temp_sq . temp_xy . Xi. Xisqua re . Yi. Xtemp . Xitemp

mt i .color, row. col.error.response.repeat=0x32.start_col;

printf(”Enter P and 0 separated by a comma: “);
scanf(”%f.%f”.&P.&0);

printf(”\nEnter number of iterations: “);
scanf(”%d”.&max_iterations);

XMax.f = 1.5;

XMin.f = -1.5;

YMax.f = 1.2;

YMin.f = -1.2;

setMode(1);

cisO;

deltaX = (YMax.f - YMin.f)/(maxrow - 1);

deltaXi = (XMax.f - XMin.f)/(maxcol - 1);

for (col=O; col<=maxcol; col++)

if (kbhit() 1= 0)

setMode(0);

exit(O);

cphoenix = ADVANCED PROGRAM TO MAP THE PHOENIX CURVES

476

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

for (row=O; row<=maxrow; row++)

Y = 0;

Yi = 0;

X = YMax.f - row * deltaX;

Xi = XMin.f + col * deltaXi;

color = 0;

Xsquare = Xisquare = 0;

while ((color<max_iterations) && ((Xsquare +

Xisquare) < max_size))

Xsquare = X*X;

Xisquare = Xi*Xi;

Xtemp = Xsquare - Xisquare + P + Q*

Xitemp = 2*X*Xi + Q*j;

Y = X;

Yi = Xi;

X = Xtemp;

Xi = Xitemp;

col or++;

if (color > 32)

plot(col. row. 1);

getch();

setMode(0);

1*

csdragon = ADVANCED PROGRAM TO MAP THE DRAGON SET

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>
#include “tools.h”

const mt maxcol = 719;

const mt maxrow = 347;

const mt max_colors = 2;

mt max_iterations = 256;

mt max_size = 4;

mt LINEWIDTH=1, OPERATOR=OxOO;

unsigned long mt PATTERN=OxFFFFFFFF;
float Q[350];

union LIMIT XMax,YMax,XMin,YMin;

477

FRACTAL PROGRAMMING IN C

main()

float P,deltaP, deltaQ, X, V. Xsquare, Ysquare,Xtemp,Ytemp;

mt i,coior, row, coi,error,response;

XMax.f = 4.2;

XMin.f = -2.2;

YMax.f = 1.5;

YMin.f = -1.5;

setMode(1);

ci s()

deltaP = (XMax.f - XMin.f)/(maxcol);

deitaQ = (YMax.f - YMin.f)/(maxrow);

Q[0] = YMax.f;

for (row=1; row<=maxrow; row++)

Q[row] = Q[row-1] - deitaQ;

P = XMIn.f;

for (col=0; coi<maxcoi; col++)

if (kbhit() != 0)

setMode(O);

exit(0);

for (row=0; row<=maxrow; row++)

X = 0.50;

Y = 0.0;

color = 0;

while (((X*X + *) < max_size) &&

(col or<max_i terati ons))

Xtemp = (V - X)*(Y + X) + X;

Ytemp = X *

Ytemp = Ytemp + Ytemp -

X = P * Xtemp + Q[row] * Ytemp;

V = Q[row] * Xtemp - P * Ytemp;

coi or++;

piot(col, row, (color % max_colors));

P += deitaP;

getch();

setMode(0);

1*

csphemix = ADVANCED PROGRAM TO MAP THE SET FOR PHOENIX
*1

478

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <process.h>
#include “tools.h”

const mt maxcol = 719;

const mt maxrow = 347;

const mt max_colors = 2;

mt CURSOR_X=0,CURSOR_Y=0,col ,row;

mt max_iterations = 32;

mt max_size = 4;

mt LINEWIDTH=1, OPERATOR=OxOO;

unsigned long mt PATTERN=OxFFFFFFFF;
float P,Q[350],Qval ,Pval

union LIMIT XMax,YMax,XMin,YMin;

main()

float P,deltaP, deltaQ, X, V. Xsquare, Xisquare,Xtemp,

Xitemp,Xi ,Yi

mt i,color, row, col,error,response;

XMax.f = 1.5;

XMin.f = -2.1;

YMax.f = 2.0;

YMin.f = -2.0;

setMode(1);
cls()

deltaP = (XMax.f - XMin.f)/(maxcol);

deltaQ = (YMax.f - YMin.f)/(maxrow);

Q[0] = YMax.f;

for (row=1; row<=maxrow; row++)

Q[row] = Q[row-1] - deltaQ;

P = XMin.f;

for (col=0; col<maxcol ; col++)

if (kbhit() 0)

setMode(0);

exit(0);

for (row=0; row<=maxrow; row++)

V = 0;

Vi = 0;

X = 0;

Xi = 0;

color = 0;

Xsquare = Xisquare = 0;
while ((color<max_iterations) &&

479

FRACTAL PROGRAMMING IN C

((Xsquare + Xisquare) < max_size))

Xsquare = X*X;

Xisquare = Xi*Xi;

Xtemp = Xsquare - Xisquare + P

+ Q[row]*Y;

Xitemp = 2*X*Xi + Q[row]*Yi;
V = X;

Vi = Xi;

X = Xtemp;

Xi = Xitemp;
col or++;

plot(col, row, color%max_colors);

P += deltaP;

getch();

setMode(0);

1*

dragout = PROGRAM TO GENERATE DRAGON OUTLINES

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

mt m, OPERATOR = OxOO,row,col;

mt x_center = 320, y_center = 175;

float x = .50001, y = O,P.Q,magnitude,scale,temp,temp_x,tempy;

main()

printf(”Enter P and 0 (real and imaginary parameters)

“separated by comma): “);
scanf(”%f,%f”,&P,&Q);

magnitude = P*P + Q*Q;

= 4*p/magnitude;

Q = 4*Q/magnitude;

printf(”\nEnter Scale: “);
scanf(”%f”,&scale);

scale = x_center*scale;

setMode(1);

cl s()

for (i=0; 1<12000; i++)

temp_x = x*P - y*Q;

480

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

y = x*Q + y*P;

temp_y = y;

x = 1 - temp_x;

magnitude = sqrt(x*x + y*y);

y = sqrt((-x + magnitude)/2);

x = sqrt((x + magnitude) /2);

if (tempy < 0)

X = -x;

if (rand() < 16163)

x = -x;

y = -y;

x = (1 - x)/2;

y = y/2;

col = scale*(x .5) + x_center;

row = y_center - scale*y;

if ((i > 10) && (col >= 0) && (col < 720) && (row >= 0)

&& (row < 348))

plot (col,row,1);

getch();

setMode(0);

feigenbm = PROGRAM TO GENERATE FEIGENBAUM NUMBER

*1

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include “tools.h”

long double x,lambda,f,step_size,old_x,test,lambda_1,lambda_2,

delta, I nit_step,ol d_l ambda;

double new_step, old_step;

long mt i,iterations;

mt j,sign;

main()

setMode(3);

lambda = 3.0;

printf(”\n n Lambda Delta\n”);

mit_step = 1;

481

FRACTAL PROGRAMMING IN C

for (j=1; j<20; j++)

if (j%2 == 0)

sign = -1;

else

sign = 1;

gotoxy(O,15+j);

mit_step 1= 4.67;

step_size = mit_step;

iterations = pow(2,j);

old_x = 0.5;

lambda += step_size;

for (;;)

x = old_x;

for (i=0; i<iterations; i++)

x = lambda*x*(1x);

test = (x - old_x)*sign;

if (test < 0)

lambda -= step_size;

step_size = step_size/2;

old_lambda = lambda;

lambda += step_size;

if (old_lambda >= lambda)

break;

gotoxy(i,j+3);

printf(” %2d %18.i5Lf”,j,lambda);

if (j > 2)

delta = (lambda_i - lambda_2)/(lambda - lambda_i);

printf(” %20.i7Lf”,delta);

lambda_2 = lambda_i;

lambda_i = lambda;

1*

gosp7 = PROGRAM TO GENERATE GOSPER CURVES

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

482

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

void generate (float Xi, float Vi, float X2, float Y2,

mt level);

mt generator_size = 3;

mt mit_size = 6;

mt level;

mt initiator_xi[10] = {0,130,130,0,-130,-130},

initiator_x2[1O]={130,130,O, -130, -130,0),

initiator_yi[1O]={150,75,-75,-150,-75,75},

initiator,y2[i0]={75,-75,-150,-75,75,150};

mt combination = 0,LINEWIDTH=1, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt 1;

float Xpomnts[25], Ypoints[25];

float turtle_x,turtle,y,turtle_r;

main()

printf(”\nEnter level (1 - 8): “);

scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(1);

cls()

for (i=0; i<init_size; i++)

generate(mnitiator_xi[i], initiator,yi[i],

initiator_x2[i], mnitiator,y2[i], level);

getch();

setMode(0);

1*

generate() = Generates curve

*1

void generate (float Xi, float Vi, float X2, float Y2,

mt level)

mt j ,k,line,set_type,pxi,pyi,px2,py2;

float a, b, Xpoints[25]. Ypomnts[25], temp,temp_r;

level--;

turtle_r = sqrt(((X2 - Xi)*(X2 - Xi) + (Y2 - Yi)*(Y2 - Vi))

/7.0);

turtle_x = Xl;

turtley = Vi;

483

FRACTAL PROGRAMMING IN C

Xpoints[O] = Xi;

Ypoints[O] = Vi;

Xpoints[3] = X2;

Vpoints[3] = V2;

turti e_theta = point(Xi,Yi,X2,Y2);

turn(i9.1);

step();

Xpoints[i] = turtle_x;

Ypoints[i] = turtle,y;

turn(-60);

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtl ey;

if (level == 0)

for (k=O; k<generator_size; k++)

pxi = Xpoints[k];

pyl = Ypoints[k];

px2 = Xpoints[k+i];

py2 = Ypoints[k+i];

drawLine(pxi,pyi,px2,py2,1);

for (j=O; j<generator_size; j++)

Xi = Xpoints[j];

X2 = Xpoints[j+i];

Vi = Vpoints[j];

V2 = Vpoints[j+i];

generate (Xi,Yi.X2,V2,level);

void generate (float Xi, float Vi, float X2, float Y2,

mt level,int type);

else

1*

*1

#i n cl ude <stdio.h>

#1 nd ude <math. h>

#i nd ude <dos.h>

#include “tools.h”

gosper = PROGRAM TO PEANO-GOSPER CURVES

484

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

mt combination = O,LINEWIDTH1, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i;

mt generator_size = 8;

mt level;

mt mit_size = 1;

mt initiator_xi[iO] = {-150,150},initiator_x2[iO]={150,-150},

initiatoryi[iO]={-50}, initiator_y2[iO]={-50};

float Xpoints[25], Ypoints[25];

mt pxl,px2,pyi,py2;

float turtle_x,turtley,turtle_r;

main()

printf(”\nEnter level (1 - 8): “);
scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(1);

cls()

for (i=O; i<init_size; i++)

generate(initiator_xi[i], initiator,yi[i],

initiator_x2[i], initiator,y2[i], level,O);

getch();

setMode(O);

1*

generate() = Generates curve

*1

void generate (float Xi, float Vi, float X2, float Y2,

mt level, mt type)

mt jk,line,set_type;

float a, b, Xpoints[25], Ypoints[25],sign=i, temp;

switch (type)

case 0: break;

case 1: sign = -1;

break;

485

FRACTAL PROGRAMMING IN C

case 2: sign = -1;

case 3: temp = Xi;

Xi = X2;

X2 = temp;

temp = Vi;

Vi = Y2;

Y2 = temp;

break;

level--;

turtle_r = (sqrt((X2 - Xi)*(X2 - Xi) + (V2 - Vi)*(V2 -

Vi)))/2.64575i3;

Xpoints[O] = Xi;

Vpoints[O] = Vi;

Xpoints[7] = X2;

Vpoints[7] = V2;

turtle_theta = point(Xi,Vi,X2,V2);

turn(i9*sign);

turtle_x = Xi;

turtley = Vi;

step();

Xpoints[i] = turtle_x;

Vpoints[i] = turtle,y;

turn(60*sign);

step();

Xpoints[2] = turtle_x;

Vpoints[2] = turtle,y;

turn(i20*sign);

step();

Xpoints[3] = turtle_x;

Vpoints[3] = turtle,y;

turn(6O*sign);

step();

Xpoints[4] = turtle_x;

Vpoints[4] = turtle,y;

turn(i2O*sign);

step();

Xpoints[5] = turtle_x;

Vpoints[5] = turtle,y;

step();

Xpoints[6] = turtle_x;

Vpoints[6] = turtle,y;

if (level > 0)

for (j=0; j<generator_size-i; j++)

switch(j)

case 0:

case 3:

486

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

case 4:

case 5:

set_type = 0;

break;

case 2:

case 1:

case 6:

set_type = 3;

break;

Xl = Xpoints[j];

X2 = Xpoints[j+l];

Vi = Ypoints[j];

Y2 = Ypoints[j+l];

generate (Xl,Yl,X2,Y2,level,set_type);

else

for (k=0; k<generator_size-l; k++)

pxi = Xpoints[k];

pyl = Ypoints[k];

px2 = Xpoints[k+1];

py2 = Ypoints[k+i];

drawLine(pxi,pyi,px2,py2,1);

1*

hil3d = PROGRAM TO GENERATE 3D HILBERT CURVES

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <stdlib.h>

#include “tools.h”

void generate (mt a, mt b, mt C);

mt level ,max_level

mt combination = O,LINEWIDTH=i, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

mt 1;

float points[3],xi,x2,y_one,y2,r;

mt pxi,pyl,px2,py2;

float x_angle = -55, y_angle = 90, z_angle = 0,cx,cy,cz,sx,sy,

5Z;

487

FRACTAL PROGRAMMING IN C

main()

printf(”Enter level: “);

scanf (“%d”,&level);

max_level = level;

setMode(1);

cl s()

sx = sin(x_angle*.017453292);

sy = sin(y_angle*.017453292);

sz = sin(z_angle*.017453292);

cx = cos(x_angle*.017453292);

cy = cos(y_angle*.017453292);

cz = cos(z_angle*.017453292);

r = 300/(pow(2,level));

points[0] = -200;

points[1] = 50;

points[2] = 0;

generate(3,-2,1);

getch();

setMode(0);

1*

generate() = Generates curve

*1

void generate (mt a, mt b, mt C)

mt sign[3];

sign[0] = 1;

sign[1] = 1;

sign[2] = 1;

level--;

if (a < 0)

sign[0] = -1;

a = abs(a)-1;

if (b < 0)

sign[1] = -1;

b = abs(b)-1;

if (C < 0)

sign[2] = -1;

c = abs(c)-1;

xl = points[0]*cx + points[l]*cy + points[2]*cz;

y_one = points[0]*sx + points[l]*sy + points[2]*sz;
if (level > 0)

488

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

generate(-2,1,3);

points[a] += (r*sign[O]);

x2 = points[O]*cx + points[1]*cy + points[2]*cz;

y2 = points[O]*sx + points[1]*sy + points[2]*sz;

pxl = xl;

pyl = y_one;

px2 = x2;

py2 = y2;

drawLine(pxl,pyl,px2,py2,1);

xl = points[O]*cx + points[1]*cy + points[2]*cz;

y_one = points[O]*sx + points[1]*sy + points[2]*sz;
if (level > 0)

generate(3,1,-2);

points[b] += (r*sign[1]);

x2 = points[0]*cx + points[1]*cy + points[2]*cz;

y2 = points[O]*sx + points[1]*sy + points[2]*sz;

pxl = xl;

pyl = y_one;

px2 = x2;

py2 = y2;

drawLine(pxl,pyl,px2,py2,1);

xl = points[O]*cx + points[1]*cy + points[2]*cz;

y_one = points[0]*sx + points[1]*sy + points[2]*sz;
if (level > 0)

generate(3,1,-2);

points[a] -= (r*sign[0]);

x2 = points[O]*cx + points[1]*cy + points[2]*cz;

y2 = points[O]*sx + points[1]*sy + points[2]*sz;

pxl = xl;

pyl = y_one;

px2 = x2;

py2 = y2;

drawLine(pxl,pyl,px2,py2,1);

xl = points[0]*cx + points[1]*cy + points[2]*cz;

y_one = points[0]*sx + points[1]*sy + points[2]*sz;
if (level > 0)

generate(2,-3,1);

points[c] += (r*sign[2]);

x2 = points[0]*cx + points[1]*cy + points[2]*cz;

y2 = points[O]*sx + points[1]*sy + points[2]*sz;

pxl = xl;

pyl = y_one;

px2 = x2;

py2 = y2;

drawLine(pxl,pyl,px2,py2,1);

xl = points[0]*cx + points[l]*cy + points[2]*cz;

y_one = points[0]*sx + points[l]*sy + points[2]*sz;
if (level > 0)

generate(-3,1,2);

points[a] += (r*sign[0]);

x2 = points[0]*cx + points[l]*cy + points[2]*cz;

489

FRACTAL PROGRAMMING IN C

y2 = points[O]*sx + points[1]*sy + points[2]*sz;

pxl = xl;

pyl = y_one;

px2 = x2;

py2 = y2;

drawLine(pxl,pyl,px2,py2,1);

xl = points[O]*cx + points[1]*cy + points[2]*cz;

y_one = points[O]*sx + points[1]*sy + points[2]*sz;
if (level > 0)

generate(-2,3,1);

points[b] -= (r*sign[1]);

x2 = points[O]*cx + points[1]*cy + points[2]*cz;

y2 = points[O]*sx + points[1]*sy + points[2]*sz;

pxl = xl;

pyl = y_one;

px2 = x2;

py2 = y2;

drawLine(pxl,pyl,px2,py2,1);

xl = points[O]*cx + points[1]*cy + points[2]*cz;

y_one = points[O]*sx + points[1]*sy + points[2]*sz;
if (level > 0)

generate(3,-1,2);

points[a] -= (r*sign[O]);

x2 = points[O]*cx + points[1]*cy + points[2]*cz;

y2 = points[O]*sx + points[1]*sy + points[2]*sz:

pxl = xl;

pyl = y_one;

px2 = x2;

py2 = y2;

drawLine(pxl,pyl,px2,py2,l);

xl = points[0]*cx + points[l]*cy + points[2]*cz;

y_one = points[0]*sx + points[l]*sy + points[2]*sz;
if (level > 0)

generate(-2,-l,-3);

1 e v el ++;

1*

hilbert = PROGRAM TO GENERATE HILBERT CURVES

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float rl, float r2);

mt level,sign=-1;

490

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

mt combination = O,LINEWIDTH=1, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

mt i,pxl,px2,pyl,py2;

float xl,x2,y_one,y2,r;

main()

float temp;

printf(”Enter level: “);

scanf (“%d”,&level);

setMode(1);

cl s()

r = 400/(pow(2,level));

xl = -200;

y_one = -200;

x2 = -200;

y2 = -200;

generate(r,0);

getch();

setMode(0);

1*

generate() = Generates curve

*1

void generate (float rl, float r2)

level--;

if (level > 0)

generate(r2,rl);

x2 += rl;

y2 += r2;

pxl = xl;

pyl = y_one;

px2 = x2;

py2 = y2;

drawLine(pxl,pyl,px2,py2,l);

xl = x2;

y_one = y2;

if (level > 0)

generate(rl,r2);

x2 += r2;

y2 += rl;

pxl = xl;

pyl = y_one;

px2 = x2;

491

FRACTAL PROGRAMMING IN C

py2 = y2;

drawLine(pxl,pyl,px2,py2,1);
xl = x2;

y_one = y2;
if (level > 0)

generate(rl ,r2);

pxl = xl;

pyl = y_one;

px2 = x2;

py2 = y2;

drawLine(pxl,pyl,px2,py2,l);
xl = x2;

y_one = y2;
if (level > 0)

generate(-r2,-rl);
1 e v el ++;

void genl(int i);

void gen2(int I);

void gen3(int I);

void gen4(int i);

mt combination = 0,LINEWIDTH=l. OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

mt xa=0,ya=0, x,y,old_x,oldy, i,j,h=448;
mt level;

main()

printf(”\nEnter level (1 - 8): “);
scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(1);

cl s()

for (i=l; i<=level; 1-H-)

x2 -= rl;

y2 -= r2;

1*

*1

#include <stdio.h>

#i nd ude <math. h>

#indl ude <dos . h>

#indlude “tools.h”

hilbert = PROGRAM TO GENERATE HILBERT CURVES

492

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

h /=2;

x += h/2;

y += h/2;

old_x = x;

oldy=y;

genl(level);

getch();

setMode(O);

void genl(int 1)

if(i > 0)

gen4(i -1);

x -= h:

drawLine(old_x,oldy,x,y,1);

old_x = x;

oldy = y;

genl(i -1);

y -= h;

drawLine(old_x,oldy,x,y,1);

old_x =

oldy = y;

genl(i -1);

x + h;

drawLi ne(ol d_x,oldy ,x,y,1);

old_x = x;

oldy = y;

gen2(i -1);

void gen2(int I)

if (i > 0)

gen3(i -1);

y += h;

drawLine(old_x,oldy,x,y,1);

old_x = x;

oldy = y;

gen2(i -1);

x += h;

drawLine(old_x,oldy,x,y,1);

old_x = x;

oldy = y;

gen2(i -1);

y -= h;

493

FRACTAL PROGRAMMING IN C

drawLine(old_x,oldy,x,y,1);

old_x = x;

oldy = y;

genl(i -1);

void gen3(int i)

if (i > 0)

gen2(i -1);

x += h;

drawLine(old_x,oldy,x,y,1);

old_x =

oldy = y;

gen3(i -1);

y + h;

drawLine(old_x,oldy,x,y,1);

old_x = x;

oldy = y;

gen3(i -1);

x -= h;

drawLine(old_x,oldy,x,y,1);

old_x = x;

oldy = y;

gen4(i -1);

void gen4(int i)

if (i > 0)

genl(i -1);

y -= h;

drawLine(old_x,oldy,x,y,1);

old_x = x;

oldy = y;

gen4(i -1);

x -= h;

drawLine(old_x,oldy,x,y,1);

old_x = x;

oldy = y;

gen4(i -1);

y += h:

drawLine(old_x,oldy,x,y,1);

old_x = x;

oldy = y;

gen3(i -1);

494

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

1*

hkoch8 = PROGRAM TO GENERATE 8 SEGMENT HEXAGONAL KOCH

CURVE

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl. float X2, float Y2,

mt level);

mt generator_size = 8;

mt mit_size = 6;

mt level;

mt initiator_xl[lO] = {-75,75,150,75,-75,-150}.

initiator_x2[lO]={75,150,75,-75,-150,-75},

initiatoryl[lO]={115,115,O,-115,-115,O},

initiatory2[lO]={115,O,-115,-115,O,115};

mt combination = O,LINEWIDTH=l, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt 1;

float Xpoints[25]. Ypoints[25];

float turtle_x,turtley,turtle_r;

mt pxl,px2,pyl,py2;

main()

printf(”\nEnter level (1 - 8): “);
scanf(“%d” ,&l evel);

if (level < 1)

level = 1;

setMode(1);

cl s()

for (i=O; i<init_size; i++)

generate(initiator_xl[i]. initiatoryl[i].

initiator_x2[i],initiatory2[i], level);

getch();
setMode(O);

495

FRACTAL PROGRAMMING IN C

1*

generate() = Generates curve

*1

void generate (float Xl, float Yl, float X2, float Y2,

mt level)

mt j,k,line,set_type;

float a, b, Xpoints[25], Ypoints[25], temp,temp_r;

level --;

turtle_r = sqrt((X2 - Xl)*(X2 - Xl) + (Y2 - Yl)*(Y2 -
Yl))/4.O;

turtle_x = Xl;

turtley = Yl;

Xpoints[O] = Xl;

Ypoints[O] = Yl;

Xpoints[8] = X2;

Ypoints[8] = Y2;

turtle_theta = point(Xl,Yl,X2.Y2);

step 0;

Xpoints[l] = turtle_x;

Ypoints[l] = turtley;
turn(90);

stepO;

Xpoints[2] = turtle_x;

Ypoints[2] = turtley;
turn(-90);

step();

Xpoints[3] = turtle_x;

Ypomnts[3] = turtley;
turn(-90);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtley;

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtle,y;
turn(90);

step();

Xpoints[6] = turtle_x;

Ypoints[6] = turtley;
turn(90);

step();

Xpoints[7] = turtle_x;

Ypoints[7] = turtley;
if (level == 0)

for (k=0; k<generator_size; k++)

496

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

pxl = Xpoints[k];

pyl = Ypoints[k];

px2 = Xpoints[k+1];

py2 = Ypoints[k+1];

drawLine(pxl,pyl,px2,py2,1);

else

for (j=O; j<generator_size; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+l];

Yl = Ypoints[j];

Y2 = Ypoints[j+l];

generate (Xl,Yl,X2,Y2,level);

1*

image = PROGRAM TO GENERATE ITERATED FUNCTION SYSTEMS

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

/* USER WRITTEN INCLUDES */

#include “tools.h”

1* GLOBALS *1

mt LINEWIDTH,OPERATOR;

unsigned long mt PATTERN;

void image_draw(int color);

void plots(int x, mt y, mt color);

mt adapt,mode;

mt j, k, xscale,yscale,xoffset,yoffset,pr,p[4],pk[4];

long unsigned mt i;

float a[4] ,b[4] ,c[4] ,d[4] ,e[4] ,f[4] ,x,y,newx;

main()

setMode(1);

497

FRACTAL PROGRAMMING IN C

a[0] =0; a[1] = .2; a[2] = - .15; a[3] = .85;

cis 0;

image_draw(1);

getch();

cls();

image_draw(1)

getch();

- .26; b[2] = .28; b[3] = .04;b[0] = 0; bEll =

.23; c[2] =.26; c[3] = - .04;cEO] = 0; cEll =

= .22; d[2] = .24; d[3] = .85;d[0] = .16; dEl]

0; e[2] = 0; e[3] = 0;e[0] = 0; eEl] =

.2; f[2] = .2; f[3] = .2;f[0] = 0; f[l] =

= 2621; p[2] = 4915; p[3] = 32767;pEO] = 328; pEl]

a[0] = .5; a[1] = .5; a[2] = .5; a[3] = 0;

b[0] = 0; bEll = 0; b[2] = 0; b[3] = 0;

cEO] = 0; cEll = 0; c[2] = 0; c[3] = 0;

d[0] = .5; dEl] = .5; d[2] = .5; d[3] = 0;

e[0] = 0; eEl] = 1.; e[2] = .5; e[3] = 0;

f[0] = 0; fEll = 0; f[2] = .5; f[3] = 0;

pEO] = 10813; pEl] = 21626; p[2] = 32767; p[3] = 32767;

xscale = 200;

yscale = 200;

xoffset = -200;

yoffset = -160;

ci s()

image_draw(l);

getch();

= .333; a[l] = .333; a[2] = .667; a[3] = 0;a[0]

= 0; bEll = 0; b[2] = 0; b[3] = 0;bEO]

= 0; cEll = 0; c[2] = 0; c[3] = 0;cEO]

= .333; dEl] = .333; d[2] = .667; d[3] = 0;dEO]

= 0; eEl] = 1.; e[2] = .5; e[3] = 0;e[0]

xscaie = 300;

yscaie = 300;

xoffset = -50;

yoffset = -180;

a[0] = 0; aEl] = .1; a[2] = .42; a[3] = .42;

b[0] = 0; bEll = 0; b[2] = - .42; b[3] = .42;

cEO] = 0; cEll = 0; c[2] = .42; c[3] = - .42;

d[0] = .5; dEl] = .1; d[2] = .42; d[3] = .42;

e[0] = 0; eEl] = 0; e[2] = 0; e[3] = 0;

f[0] = 0; fEll = .2; f[2] = .2; f[3] = .2;

pEO] = 1638; pEl] = 6553; p[2] = 19660; p[3] = 32767;
xscaie = 750;

yscaie = 750;

xoffset = 0;

yoffset = -160;

cls()

498

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

f[0] = 0; fEll = 0; f[2] = .5; f[3] = 0;

p[O] = 10813; pEl] = 21626; p[2] = 32767; p[3] = 32767;

xscale = 120;

yscale = 140;

xoffset = -100;

yoffset = -160;

image_draw(1);

getch();

setMode(0);

void image_draw(int color)

mt px,py;

x = 0;

y = 0;

for (1=1; i<=10000; i++)

j = randO;

k = (j < p[0]) ? 0 : ((j < pEl]) ? 1

((j < p[2]) ? 2 : 3));

newx = (a[k]* x + b[k] * y + e[k]);

y = (c[k] * x + d[k] * y + f[k]);

x = newx;

px = x*xscale + xoffset;

py = (y*yscale + yoffset);

if ((px>=-320) && (px<320) && (py>=-240) && (py<240))

plots (px,py,color);

void plots(int x, mt y, mt color)

#define convert(x,y) {x = (x + 319);

y = (175 - ((93*y) >> 7));)

convert(x,y);

plot(x,y,color);

1*

image3d = PROGRAM TO GENERATE THREE DIMENSIONAL

ITERATED FUNCTION SYSTEMS

*1

499

FRACTAL PROGRAMMING IN C

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

mt LINEWIDTH.OPERATOR;

unsigned long mt PATTERN;

void image_draw(void);

float degrees_to_radians(float degrees);

mt adapt.mode;

mt j, k, index, xscale.yscale.xoffset.yoffset.pr.p[4].pk[4];

mt hues[8] = {2.10.11.14);

long unsigned mt I

float a[4] .b[4] .c[4] .d[4] .e[4] .f[4] .g[4] ,h[4] .m[4] .n[4] .q[4],

r[4] .ca,cb.cg.sa.sb.sg.x.y.z.newx.newy.alpha[4] =

{30.45.15.95),beta[4] = {115.105.70.4oLgamma[4]=

{25,70.20.-30);

float rad_per_degree=0.0174533;

main()

setMode(1);

a[0] =0; a[1] = .83; a[2] = .22; a[3] = - .22;

b[0] = 0; bEll = 0; b[2] = - .23; b[3] = .23;

cEO] = 0; cEll = 0; c[2] = 0; c[3] = 0;

d[0] = 0; dEl] = 0; d[2] = .24; d[3] = .24;

e[0] = .18; eEl] = .86; e[2] = .22; e[3] = .22;

f[O] = 0; fEll = .1; f[2] = 0; f[3] = 0;

g[O] = 0; gEl] = 0; g[2] = 0; g[3] = 0;

h[O] = 0; hEll = - .12; h[2] = 0; h[3] = 0;

m[0] = 0; mEl] = .84; m[2] = .32; m[3] = .32;

n[0] = 0; nEll = 0; n[2] = 0; n[3] = 0;

qEO] = 0; q[1] = 1.62; q[2] = .82; q[3] = .82;

r[0] = 0; r[l] = 0; r[2] = 0; r[3] = 0;

pEO] = 328; pEl] = 27879 ; p[2] = 30173; p[3] = 32767;

xscale = 40;

yscale = 50;

xoffset = 60;

yoffset = -180;

cls 0;

for (index=0; index<4; index++)

ca = cos(alpha[mndex]*0.0174533);

cb = cos(beta[index]*0.0174533);

cg = cos(gammaEindex]*0.0174533);

sa = sin(alpha[index]*0.0174533);

sb = sin(beta[index]*0.0174533);

sg = sin(gamma[mndex]*0.0174533);

image_draw();

500

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

getch();

setMode(O);

void image_draw(void)

mt px,py;

float vx,vy;

x = 0;

y = 0;

z = 0;

for (1=1; i<=10000; i++)

j = rand();

k = (j < p[O]) ? 0 : ((j < p[1]) ? 1

((j < p[2]) ? 2 : 3));

newx = (a[k]* x + b[k] * y + c[k] * z + n[k]);

newy = (d[k] * x + e[k] * y + f[k] * z + q[k]);

z = g[k] * x + h[k] * y + m[k] * z + r[k];

x = newx;

y = newy;

vx = x*ca + y*cb + z*cg;

px = vx*xscale + xoffset;

vy = x*sa + y*sb + z*sg;

py = (vy*yscale + yoffset);

if ((px>=-320) && (px<320) && (py>=-240) && (py<240))

plots (px,py,1);

float degrees_to_radians(float degrees)

float angle;

while (degrees >= 360)

degrees -= 360;

while (degrees < 0)

degrees += 360;

angle = rad_per_degree*degrees;

return angle;

1*

lorenz = PROGRAM TO PLOT LORENZ ATTRACTOR

*1

#include <dos.h>

501

FRACTAL PROGRAMMING IN C

#include <stdio.h>

#include <math.h>

#include “tools.h”

float radians_to_degrees(float degrees);;

const mt maxcol = 719;

const mt maxrow = 347;

mt LINEWIDTH = 3, OPERATOR = 0;

unsigned long mt PATTERN = OxFFFFFFFF;

float rad_per_degree=0 .0174533, x_angl e=45 ,y_angl e=0 , z_angl e=90;
union LIMIT XMax,YMax,XMIn,YMIn,Pval,Qval;

main()

double x,y,z,dO_x,d0y,dO_z,dl_x,d1y,dl_z,d2_x,d2y,d2_z,

d3_x,d3y,d3_z,xt,yt,zt,dt,dt2,third=0.333333333,

sx. sy , sz ,cx , cy , cz , temp_x , tempy , old_y;

mt 1, j, row, col, old_row, old_col;

x_angle = radians_to_degrees(x_angle);

sx = sin(x_angle);

cx = cos(x_angle);

y_angle = radians_to_degrees(y_angle);

sy = sin(y_angle);

cy = cos(y_angle);

z_angle = radians_to_degrees(z_angle);

sz = sin(z_angle);

cz = cos(z_angle);

for (j=0; j<3; j++)

LINEWIDTH = 3;

x = 0;

y = 1;

z = 0;

setMode(1);

if (j == 0)

old_col = y*9;

old_row = 9*z - 240;

drawLine(-320,-238,319,-238,1);

drawLine(0,-238,0,239,1);

if (j == 1)

old_col = y*10;

old_row = 10*x;

drawLine(-320,0,319,0,1);

drawLine(0, -238,0,238,1);

502

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

if (j == 2)

old_col = y*9;

ol d_row = 9*z - 240;

drawLine(-320,-238,319,-238,1);

drawLine(0, -238,0,239,1);

drawLine(0,-238,319,82,1);

LINEWIDTH = 1;

dt = 0.01;

dt2 = dt/2;

for (1=0; 1<8000; i++)

dO_x = 10*(yx)*dt2;

dOy = (x*z + 28*x - y)*dt2;

dO_z = (x*y - 8*z/3)*dt2;

xt = x + dO_x;

yt = y + dOy;

zt = z + dO_z;

dl_x = (10*(ytxt))*dt2;

d1y = (xt*zt + 28*xt - yt)*dt2;

dl_z =(xt*yt - 8*zt/3)*dt2;

xt = x + dl_x;

yt = y + dLy;

zt = z + dl_z;

d2_x = (10*(ytxt))*dt;

d2y = (xt*zt + 28*xt - yt)*dt;

d2_z =(xt*yt - 8*zt/3)*dt;

xt = x + d2_x;

yt = y + d2y;

zt = z + d2_z;

d3_x = (10*(yt - xt))*dt2;

d3y = (xt*zt + 28*xt - yt)*dt2;

d3_z = (xt*yt - 8*zt/3)*dt2;

oldy = y;

x += (dO_x + dl_x + dl_x + d2_x + d3_x) * third;

y += (d0y + d1y + d1y + d2y + d3y) * third;

z += (dO_z + dl_z + dl_z + d2_z + d3_z) * third;

if (j == 0)

col = y*9;

row = 9*z - 240;

if Ci == 1)

col = y*10;

row = 10*x;

if (j == 2)

503

FRACTAL PROGRAMMING IN C

temp_x = xcx + y*y + z*cz;

temp_y = xsx + y*y + z*sz;

col = temp_x*8;

row = tempy*7240;

drawLi ne(ol d_col ol d_row col, row ,1)

old_row = row;

old_col = col;

getch();

setMode(0);

float radians_to_degrees(float degrees)

float angle;

while (degrees >= 360)

degrees -= 360;

while (degrees < 0)

degrees += 360;

angle = rad_per_degree*degrees;

return angle;

1*

peanol = PROGRAM TO GENERATE ORIGINAL PEANO CURVE

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl, float X2, float Y2,

mt level);

mt generator_size = 9;

mt level:

mt mit_size = 1;

mt initiator_xl[10] = {0),initiator_x2[l0]={0),

initiatoryl[l0]={-100), initiatory2[1O]={100);

mt combination = 0,LINEWIDTH=1, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i,pxl,px2,pyl,py2;

504

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

float Xpoints[25], Ypoints[25];

float turtle_x,turtley,turtle_r;

main()

printf(”\nEnter level (1 - 8): “);

scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(1);

cl s()

for (1=0; i<init_size; i++)

generate(initi ator_xl[i], initiatoryl[i 1

initiator_x2[i], initiatory2[i], level);

getch();

setMode(0);

1*

generate() = Generates curve

*1

void generate (float Xl, float Yl, float X2, float Y2, mt level)

mt j,k,line;

float a, b, Xpoints[25], Ypoints[25];

level--;

turtle_r = (sqrt((X2 - X1)*(X2 - Xl) + (Y2 - Yl)*(Y2 -

Yl)))/3.0;

Xpoints[0] = Xl;

Ypoints[0] = Yl;

Xpoints[9] = X2;

Ypoints[9] = Y2;

turtle_theta = point(Xl,Yl,X2,Y2);

turtle_x = Xl;

turtley = Yl;

step();

Xpoints[l] = turtle_x;

Ypoints[l] = turtley;

turn(90);

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtley;

turn(-90);

step();

Xpoints[3] = turtle_x;

505

FRACTAL PROGRAMMING IN C

Ypoints[3] = turtley;

turn(-90);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtley;

turn(-90);

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtley;

turn(90);

step();

Xpoints[6] = turtle_x;

Ypoints[6] = turtley;

turn(90);

step();

Xpoints[7] = turtle_x;

Ypoints[7] = turtley;

turn(90);

step();

Xpoints[8] = turtle_x;

Ypoints[8] = turtley;

if (level > 0)

for (j=0; j<generator_size; j++)

Xl = Xpoints[j];

X2 = Xpoints[j-t-l];

Yl = Ypoints[j];

Y2 = Ypoints[j+l];

generate (Xl,Yl,X2,Y2,level);

else

for (k=0; k<generator_size; k++)

pxl = Xpoints[k];

pyl = Ypoints[k];

px2 = Xpoints[k+l];

py2 = Ypoints[k+l];

drawLine(pxl,pyl,px2,py2,1);

1*

peano2 = PROGRAM TO GENERATE MODIFIED PEANO CURVE

*1

506

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl, float X2, float Y2, mt level);

mt generator_size = 19;

mt level;

mt mit_size = 1;

mt initiator_xl[1O] = (O},initiator_x2[1O]={O),

initiatoryl[1O]={-200), initiator_y2[1O]={200);

mt combination = O,LINEWIDTH=1, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i.pxl,px2,pyl,py2;

float Xpoints[25], Ypoints[25],Xptemp,Yptemp;

float turtle_x,turtley,turtle_r;

main()

printf(”\nEnter level (1 - 8): “);

scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(1);

cl s()

Xptemp = initiator_xl[O];

Yptemp = initiatoryl[O];

for (i=O; i<init_size; i++)

generate(initiator_xl[i], initiatoryl[i],

initiator_x2[i], initiatory2[i], level);

getch();

setMode(O);

1*

generate() = Generates curve

*1

void generate (float Xl, float Yl, float X2, float Y2,

mt level)

mt j,k,line;

float a, b, Xpoints[25], Ypoints[25]:

level--;

507

FRACTAL PROGRAMMING IN C

Xpoints[0] = Xi;

Vpoints[0] = Vi;

turtle_theta = point(X1,Vi,X2,V2);

turtle_x = Xi;

turtley = Vi;

if (level != 0)

turtle_r = (sqrt((X2 - Xi)*(X2 - Xi) + (V2 - V1)*(V2
- Vi)))/3.0;

Xpoints[9] = X2;

Vpoints[9] = V2;

step();

Xpoints[i] = turtle_x;

Vpoints[i] = turtley;

turn(90);

step();

Xpoints[2] = turtle_x;

Vpoints[2] = turtley;
turn(-90);

step();

Xpoints[3] = turtle_x;

Vpoints[3] = turtley;
turn(-90);

step();

Xpoints[4] = turtle_x;

Vpoints[4] = turtley;
turn(-90);

step();

Xpoints[5] = turtle_x;

Vpoints[5] = turtley;
turn(90);

step();

Xpoints[6] = turtle_x;

Vpoints[6] = turtley;
turn(90);

step();

Xpoints[7] = turtle_x;

Vpoints[7] = turtley;
turn(90);

step();

Xpoints[8] = turtle_x;

Vpoints[8] = turtley;

for (j=0; j<9; j++)

Xi = Xpoints[j];

X2 = Xpoints[j+i];

Vi = Vpoints[j];

V2 = Vpoints[j+i];

generate (Xi,Vi,X2,V2,level);

508

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

else

turtle_r = (sqrt((X2 - X1)*(X2 - Xl) + (Y2 - Yl)*(Y2

- Y1)))/l8.O;

Xpoints[0] = Xptemp:

Ypoints[0] = Yptemp;

Xpoints[l9] = X2;

Ypoints[l9] = Y2;

step();

Xpoints[l] = turtle_x;

Ypoints[l] = turtle...y;

step();

step();

step();

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtley;

step();

turn(90);

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtley;

step();

step();

step();

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtley;

step();

turn(-90);

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtley;

step();

step();

step();

step();

Xpoints[6] = turtle_x;

Ypoints[6] = turtley;

step();

turn(-90);

step();

Xpoints[7] = turtle_x;

Ypoints[7] = turtley;

step();

step();

step();

step();

Xpoints[8] = turtle_x;

Ypoints[8] = turtley;

step();

509

FRACTAL PROGRAMMING IN C

turn(-90);

step();

Xpoints[9] = turtle_x;

Ypoints[9] = turtley;

step();

step();

step();

step();

Xpoints[10] = turtle_x;

Ypoints[10] = turtley;

step 0;

turn(90);

step();

Xpoints[11] = turtle_x;

Ypoints[11] = turtley;

step();

step();

step();

step();

Xpoints[12] = turtle_x;

Ypoints[12] = turtley;

step();
turn(90);

step();

Xpoints[13] = turtle_x;

Ypoints[13] = turtley;

step();

step();

step();

step();

Xpoints[14] = turtle_x;

Ypoints[14] = turtley;

step();
turn(90);

step();

Xpoints[15] = turtle_x;

Ypoints[15] = turtley;

step();

step();

step();

step();

Xpoints[16] = turtle_x;

Ypoints[16] = turtley;

step();

turn(-90);

step();

Xpoints[17] = turtle_x;

Ypoints[17] = turtley;

step();

step();

step();

510

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

step();

Xpoints[18] = turtle_x;

Ypoints[18] = turtley;

Xptemp = Xpoints[18];

Yptemp = Ypoints[18];

for (k=0; k<generator_size-1; k++)

pxl = Xpoints[k];

pyl = Ypoints[k];

px2 = Xpoints[k+1];

py2 = Ypoints[k+1];

drawLine(pxl,pyl,px2,py2,1);

void drawOval(int x, mt y, mt b, mt color, float aspect);

void inverseOval (float x, float y, float b, mt color, float

aspect);

void gen_circle(float x,float y,float radius);

unsigned long mt PATTERN = OxFFFFFFFF;

mt i,j,LINEWIDTH = 1,OPERATOR=0;

double a_line,b_line,x_o,y_o,radius,r_sq,height;

main()

float xbig,ybig,rbig,xtan,ytan,rtan;

setMode(1);

cl s()

r_sq = 400000;

xbig = 0;

ybig = 0;

rbig = 220;

rtan = 140;

xtan = 0;

ytan = ybi g + rbi g - rtan;

1*

*1

#i nd ude <stdio.h>

#include <math. h>

#i nd ude “tools. h”

#i nd ude <stdlib.h>

#i nd ude <dos.h>

pharaoh = PROGRAM TO GENERATE PHARAOH’S BREASTPLATE

511

FRACTAL PROGRAMMING IN C

y_o = ybig - rbig;

x_o = xbig;

drawOval (xbig. ybig,rbig,1,1.0);

drawOval (xtan,ytan,rtan,1,1.0);

a_line = r_sq/(2*rbig);

b_line = r_sq/(2*rtan):

height = (b_line - a_line);

radius = height/2;

height = radius*sqrt(2.0);

for (1=0; 1<20; i++)

gen_circle(x_o + height*i,y_o + a_line + radius.

radi us);

gen_circle(x_o + height*i,y_o + a_line + radius/2,

radius/2);

gen_circle(x_o + height*i,y_o + b_line - radius/2.

radius/2)

gen_circle(x_o + height*i + height/2,y_o + a_line +

3*radjus/4radius/4);

gen_circle(x_o + height*i + height/2,y_o + b_line -

3*radjus/4radjus/4);

gen_circle(x_o + height*i + height/2,y_o + a_line +

radius/8. radius/8);

gen_circle(x_o + height*i + height/2,y_o + b_line -

radius/8. radius/8);

gen_circle(x_o + height*i + height/2,y_o + a_line +

5*radius/l2radius/12);

gen_circle(x_o + height*i + height/2,y_o + b_line -

5*radius/l2radjus/12);

gen_circle(x_o + height*i + 0.4*height,y_o + a_line +

0.3*radius,radius/10);

gen_circle(x_o + height*i + 0.6*height,y_o + a_line +

0.3*radius,radius/10);

gen_circle(x_o + height*i + 0.4*height,y_o + b_line -

0.3*radius,radius/10);

gen_circle(x_o + height*i + 0.6*height,y_o + b_line -

O.3*radius,radius/10);

getch();

setMode(0);

1*

gen_circle() = performs two inversions

*1

void gen_ci rd e(fl oat x,fl oat y ,fl oat radius)

inverseOval(x,y,radius,1,1.0);

512

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

inverseOval(-x ,y, radi us .1,1. 0)

1*

inverseOval() = draws the inverse of an oval with

specified center, radius, color and

aspect ratio.

*1

void inverseOval (float x, float y, float b. mt color,

float aspect)

union REGS reg;

mt i, bnew,new_col, new_row;

float length,new_length;

long a,a_square. b_square, two_a_square, two_b_square.

four_a_square, four_b_square,d,row,col

b -= LINEWIDTH/2;

a = b/aspect;

for (i=1; i<=LINEWIDTH; i++)

b_square = (long)b*b;

a_square = (a*a);
row = b;

col = 0;

two_a_square = a_square << 1;

four_a_square = a_square << 2;

four_b_square = b_square << 2;

two_b_square = b_square << 1;

d = two_a_square * (((long)row 1)*(row)) + a_square

+ two_b_square*(1a_square);

while (a_square*(row) > b_square * (col))

length = sqrt((x_o - col - x)*(x_o - col - x) +

(y_o - row - y)*(yo - row - y));

new_length = r_sq/length;

new_col = x_o - (x_o - col - x)*new_length/length;

new_row = -y_o + (y_o - row - y)*new length/length;

plots(new_col ,new_row,color);

length = sqrt((x_o + col - x)*(x_o + col - x) +

(y_o - row - y)*(yo - row - y));

new_length = r_sq/length;

new_col = x_o - (x_o + col - x)*new_length/length;

new_row = -y_o + (y_o - row - y)*new length/length;

513

FRACTAL PROGRAMMING IN C

plots(new_col ,new_row,color);

length = sqrt((x_o - col - x)*(x_o - col - x) +

(y_o + row - y)*(yo + row - y));

new_length = r_sq/length;

new_col = x_o - (x_o - col - x)*new_length/length;

new_row = -y_o + (y_o + row - y)*new length/length;

plots(new_col ,new_row,color);

length = sqrt((x_o + col - x)*(x_o + col - x) +

(y_o + row - y)*(yo + row - y));

new_length = r_sq/length;

new_col = x_o - (x_o + col - x)*new_length/length;

new_row = -y_o+ (y_o + row - y)*new length/length;

plots(new_col ,new_row,color);
if (d>= 0)

row- -;

d -= four_a_square*(row);

d += two_b_square*(3 + (col<<1));

CO 1 ++;

d = two_b_square * (col + 1)*col + two_a_square*(row *

(row -2) +1) + (1two_a_square)*b_square;
while ((row) + 1)

length = sqrt((x_o - col - x)*(x_o - col - x) +

(y_o - row - y)*(yo - row - y));

new_length = r_sq/length;

new_col = x_o - (x_o - col - x)*new_length/length;

new_row = -y_o + (y_o - row - y)*new_length/length;

plots(new_col ,new_row,color);

length = sqrt((x_o + col - x)*(x_o + col - x) +

(y_o - row - y)*(yo - row - y));

new_length = r_sq/length;

new_col = x_o - (x_o + col - x)*new_length/length;

new_row = -y_o + (y_o - row - y)*new length/length;

plots(new_col ,new_row,color);

length = sqrt((x_o - col - x)*(x_o - col - x) +

(y_o + row - y)*(yo + row - y));

new_length = r_sq/length;

new_col = x_o - (x_o - col - x)*new_length/length;

new_row = -y_o + (y_o + row - y)*new_length/length;

plots(new_col ,new_row,color);

length = sqrt((x_o + col - x)*(x_o + col - x) +

(y_o + row - y)*(yo + row - y));

new_length = r_sq/length;

new_col = x_o - (x_o + col - x)*new_length/length;

new_row = -y_o + (y_o + row - y)*new length/length;

plots(new_col ,new_row,color);
if (d<= 0)

514

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

Co 1 ++;

d += four_b_square*Col

row--;

d += two_a_square * (3 - (rv<<J);

b++;

1*

pikespk = PROGRAM TO GENERATE PIKE’S PEAK LANDSCAPE

*1

#inClude <stdio.h>

#inClude <math.h>

#inClude <dos.h>

#inClude <stdlib.h>

#inClude <time.h>

#inClude “tools.h”

void generate(int xl, mt y_one, mt x2, mt y2, mt x3,

mt y3, mt leveljnt Colon, mt Color2);

void midpointU;

void node(int xl, mt y_one, mt x2, mt y2, mt x3, mt y3,

mt x4,int y4, mt x5, mt y5, mt x6, mt y6, mt level.

mt Colon, mt Color2);

void plot_triangle(int xl, mt y_one, mt x2, mt y2, mt x3,

mt y3,int Colon, mt C010n2);

float random_no (float limit_start, float limit_end);

mt Combination = O,LINEWIDTH=1, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

mt interim;

mt i,j;

mt y_max = 180;

mt level[12] = (6,6,5,5,5,5,4,4,4,4);

mt xl[12] = {-220,-780,-480,-100,-770,-550,-220,-200};

mt y_one[12] = {-240,-200,0,-260,-300,-280,-280,-280};

mt x2[12] = {120,40,-240,240,-250,-60,80,230};

inty2[12] = {1OO,13O,6O,4O,-11O-14O,-13O,-12O};

mt x3[12] = {500,420,0,500,600,400,340,580};

mt y3[12] = {-40,-120,-60,-180,-300,-300,-300,-300};

mt Colors[16] = {0,1,2,11,10,10,34,31,47,58,18,2,6,27,62,63};

float xz,yz,xp,yp;

mt Color_value=2;

float x,y;

515

FRACTAL PROGRAMMING IN C

main()

setMode(1);

ci s(

i=O;

for (1=0; 1<4; i++)

if (i==1)

y_max = 160;

else

y_max = 180;

generate(xl[i I ,y_one[i],x2[i I .y2[i],x3[i I ,y3[i].

level [ii .1.0);

filiTriangie(-320,-200,-320,-110,319,-110,1);

fillTriangle(319,-110,319,-200,-320.-200.1);

y_max = -100;

for (1=4; 1<8; i++)

generate(xl[i I ,y_one[i I ,x2[i].y2[i],x3[i] ,y3[i 1.

level [11.1.0);

getch();

setMode(0);

void midpoint()

float r,w;

unsigned mt seed;

unsigned long mt seed_gen;

seed_gen = 350*(y+240) + x + 320;

seed = seed_gen%32760 + 2;

srand(seed)

r = 0.5 + random_no(O. .16666);

w = random_no(.015,.035);

xz = r*x - (w+.05)*y;

yz = r*y + (w + .05)*x;

1*

generate() = Finds coordinates of four triangles

making up a larger triangle.

*1

void generate(int xl, mt y_one, mt x2, mt y2, mt x3.

mt y3, mt level,int colon, mt color2)

mt x4,x5,x6,y4,y5,y6,ax,bx,cx,ay,by,cy;

516

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

x = (x2-xl);

y = (y2-y_one);

midpoint(x,y);

x4 = xl + xz;

y4 = y_one + yz;

x = xl-x3;

y = y_one-y3;

midpoint(x,y);

x6 = x3 + xz;

y6 = y3 + yz;

x = (x3-x2);

y = (y3-y2);

midpoint(x,y);

x5 = x2 + xz;

y5 = y2 + yz;

if (level == 0)

plot_triangle(xl,y_one,x6,y6,x4,y4,colorl,color2);

plot_triangle(x2,y2,x4,y4,x5,y5,colorl,color2);

plot_triangle(x3,y3,x5,y5,x6,y6,colorl,color2);

plot_triangle(x4,y4,x5,y5,x6,y6,colorl,color2);

else

node(xl ,y_one,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,level

colorl,color2); I

1*

random_no() = Gets a floating point random number
between two limits.

*1

float random_no (float limit_start, float limit_end)

float result;

limit_end -= limit_start;

limit_end = 16383.0/limit_end;

result = (rand() - 16383)/limit_end;

if (result >= 0)

result += limit_start;

else

result -= limit_start;

return(result);

1*

517

FRACTAL PROGRAMMING IN C

node() = Runs ‘generate’ for four triangles

*1

void node(int xl, mt y_one, mt x2, mt y2, mt x3, mt y3,

mt x4, mt y4, mt x5, mt y5, mt x6, mt y6, mt level.

mt colon, mt color2)

mt x_retl, y_retl, x_ret2, y_ret2, x_ret3, y_ret3;

if (level == 0)

return;

generate (xl,y_one,x6,y6,x4,y4,level-1,colorl,color2);

generate (x2,y2,x4,y4,x5,y5,level -l,colorl,color2);

generate (x3,y3,x5,y5,x6,y6,level-l,colorl,color2);

generate (x4,y4,x5,y5,x6,y6,level-l,colorl,color2);

1*

plot_triangle() = Determines colors to use to fill a

triangle.

*1

void plot_triangle(int xl, mt y_one, mt x2, mt y2, mt x3,

mt y3,int colon, mt color2)

mt ytt,color,temp;
float zt;

if (y_one > y2)

ytt = y_one;
else

ytt = y2;

if (ytt < y3)

ytt = y3;

zt = (y_max+240)*(l(float)(ytt+240)/(y_max+240)*

(float)(ytt+240)/(y_max+240));

temp = 32767/(y_max+240);

temp = randO/temp;

if (temp <= zt)
color = colon;

else

color = color2;

if (ytt + 240 < (.25 * (y_max + 240)))

color = colon;

if (ytt+240 > (.98 * (y_max+240)))

color = color2;

fillTriangle(xl,y_one,x2,y2,x3,y3,color);

518

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

1*

polya = PROGRAM TO GENERATE POLYA CURVE

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xi. float Vi. float X2. float Y2.

mt level);

mt combination = 0,LINEWIDTH=i. 0PERAT0R=0;

unsigned long mt PATTERN=0xFFFFFFFF;

float turtle_theta;

mi. signi=1,pxi,px2,pyl,py2;

mt generator_size = 3;

mt level;

mt mit_size = 2;

mt sign[i7];

mt initiator_xi[i0] = {-i50),initiator_x2[i0]={i50}.

initiator_yi[iO]={ -75).

initiator_y2[10]={ -75);

float Xpoints[25]. Ypoints[25];

float turtle_x,turtle_y,turtle_r;

main()

printf(”\nEnter level (i - i6): “);
scanf(”%d”,&level);

if (level < i)

level =

setMode(i);

cls()

for (i=level; 1>0; i--)

sign[i] = signi;

signi =

for (i=0; i<init_size-i; i++)

generate(initiatorxi[i]. initiatoryl[i].

initiator_x2[i]. initiatory2[i]. level);

getch();
setMode(0);

519

FRACTAL PROGRAMMING IN C

1*

generate() = Generates curve

*1

void generate (float Xi. float Vi. float X2. float Y2.

mt level)

mt j,k,line;

float a. b. Xpoints[25]. Ypomnts[25];

turtler = (sqrt((X2 - Xi)*(X2 - Xi) + (Y2 - Yi)*(Y2 -
Vi)))/i.4i42i;

Xpoints[O] = Xi;

Ypoints[O] = Vi;

Xpoints[2] = X2;

Ypoints[2] = Y2;

turtle_theta = point(Xi.Yi,X2,Y2);
turtle_x = Xl;

turtley = Vi;

turn(sign[level]*(45));

step();

Xpoints[i] = turtle_x;

Ypoints[i] = turtley;
level--;

if (level > 0)

for (j=0; j<generator_size-i; j++)

Xi = Xpoints[j];

X2 = Xpoints[j+i];

Vi = Ypoints[j];

V2 = Vpoints[j+i];

generate (Xi,V1,X2,V2.level);

sign[level] = -1;

else

for (k=0; k<generator_size-i; k++)

pxi = Xpoints[k];

pyi = Vpoints[k];

px2 = Xpoints[k+i];

py2 = Ypoints[k+i];

drawLine(pxl,pyi,px2,py2,i);

520

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

1*

qkochl8 = PROGRAM TO GENERATE KOCH CURVES

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Vi. float X2. float Y2.

mt level);

mt generator_size = 18;

mt mit_size = 4;

mt level;

mt initiator_xi[1O] = {-130,130,130,-130},initiator_x2[1O]=

{130,130,-130,-130),initiatoryi[iO]={130,130,-130,-130),

initiatory2[iO]={130,-130,-130,130};

mt combination = O,LINEWIDTH=1. OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i,pxl,px2,pyl,py2;

float Xpoints[25]. Ypoints[25];

float turtle_x,turtley,turtle_r;

main()

printf(”\nEnter level (1 - 8): “);

scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(1);

cl s()

for (1=0; i<init_size; i++)

generate(initiator_xl[i]. initiator_yl[i],

initiator_x2[i],initiatory2[i]. level);

getch();

setMode(O);

1*

generate() = Generates curve

*1

521

FRACTAL PROGRAMMING IN C

void generate (float Xi, float Yi, float X2, float Y2,

mt level)

mt j,k,line,settype;

float a, b, Xpoints[25], Ypoints[25], temp,temp_r;

level --;

turtle_r = sqrt(((X2 - Xi)*(X2 - Xi) + (Y2 - Yi)*(Y2 -
Vi)))/6.0;

turtle_x = Xl;

turtley = Vi;

Xpomnts[0] = Xi;

Ypoints[0] = Vi;

Xpomnts[18] = X2;

Ypomnts[i8] = Y2;

turtle_theta = point(Xi,Yi,X2,Y2);

step();

Xpoints[l] = turtle_x;

Ypomnts[i] = turtley;
turn(90);

step();

Xpoints[2] = turtle_x;

Vpoints[2] = turtley;

step();

Xpomnts[3] = turtlex;

Vpoints[3] = turtley;
turn(-90);

step();

Xpoints[4] = turtle_x;

Vpomnts[4] = turtley;

step();

Xpomnts[5] = turtle_x;

Vpoints[5] = turtley;
turn(-90);

step();

Xpoints[6] = turtle_x;

Vpomnts[6] = turtley;
turn(-90);

step();

Xpoints[7] = turtle_x;

Vpoints[7] = turtley;
turn(90);

step();

Xpoints[8] = turtlex;

Vpomnts[8] = turtley;
turn(90);

step();

Xpomnts[9] = turtle_x;

Vpomnts[9] = turtley;

step();

522

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

Xpoints[1O] = turtle_x;

Ypoints[10] = turtley;

turn(-90);

step();

Xpoints[11] = turtle_x;

Ypoints[11] = turtley;
turn(-90);

step();

Xpoints[12] = turtle_x;

Ypoints[12] = turtley;
turn(90);

step();

Xpoints[13] = turtle_x;

Ypoints[13] = turtley;
turn(90);

step();

Xpoints[14] = turtle_x;

Ypoints[14] = turtley;

step();

Xpoints[15] = turtle_x;

Ypoints[15] = turtley;
turn(90);

step();

Xpoints[16] = turtle_x;

Ypoints[16] = turtley;

step();

Xpoints[17] = turtle_x;

Ypoints[17] = turtley;
if (level == 0)

for (k=0; k<generator_size; k++)

pxl = Xpoints[k];

pyl = Ypoints[k];

px2 = Xpoints[k+1];

py2 = Ypoints[k+1];

drawLine(pxl,pyl,px2,py2,1);

else

for (j=0; j<generator_size; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Vi = Ypoints[j];

Y2 = Ypoints[j+l];

generate (Xl,Yl,X2,Y2,level);

523

FRACTAL PROGRAMMING IN C

1*

qkoch3 = PROGRAM TO GENERATE THREE SEGMENT KOCH CURVE

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xi, float Vi. float X2. float Y2.

mt level);

mt generator_size = 3;

mt mit_size = 4;

mt level;

mt initiator_xi[iO] = {-130,130,130,-130),initiator_x2[iO]=

{130,130,-130,-130),initiatoryi[iO]={130,130,-130,-130}.

initiatory2[1O]={130,-130,-130,130);

mt combination = O,LINEWIDTH=i, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i;

float Xpoints[25]. Ypoints[25];

float turtle_x,turtley,turtle_r;

main()

printf(”\nEnter level (i - 8): “);
scanf(”%d”,&level);

if (level < i)

level =

setMode(i6);

cls(O);

for (i=O; i<init_size; j++)

generate(initiator_xl[i]. initiatoryl[i],

initiator_x2[i],initiatory2[i], level);

getch();

setMode(O);

1*

generate() = Generates curve

*1

524

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

void generate (float Xi, float Vi. float X2, float Y2,

mt level)

mt j,k,line,set_type;

float a, b, Xpoints[25], Ypomnts[25], temp,temp_r;

level --;

turtle_r = sqrt(((X2 - Xi)*(X2 - Xi) + (Y2 - Yi)*(Y2 -
Vi))/5.O);

turtle_x = Xi;

turtley = Vi;

Xpoints[O] = Xi;

Ypomnts[O] = Vi;

Xpomnts[3] = X2;

Ypomnts[3] = Y2;

turtle_theta = point(Xi,Yi,X2,Y2);
turn(26.56);

step();

Xpoints[i] = turtle_x;

Ypoints[i] = turtley;
turn(-90);

step();

Xpoints[2] = turtle_x;

Vpoints[2] = turtley;
if (level == 0)

for (k=0; k<generator_size; k++)

drawLine(Xpoints[k] ,Vpoints[k],

Xpoints[k+i] ,Vpoints[k+1] ,i5);

else

for (j=0; j<generator_size; j++)

Xi = Xpoints[j];

X2 = Xpoints[j+i];

Vi = Vpoints[j];

V2 = Vpoints[j+i];

generate (Xi,Vi,X2,V2,level);

1*

qkoch32 = PROGRAM TO GENERATE KOCH CURVES

525

FRACTAL PROGRAMMING IN C

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xi. float Vi. float X2. float Y2.

mt level);

mt generator_size = 32;

mt mit_size = 4;

mt level;

mt initiator_xi[iO] = {-iOO,iOO,iOO,-iOO).

initiatorx2[iO]={iOO,iOO,-iOO,-iOO},initiatoryi[iO]=

{iOO,iOO,-iOO,-iOO), initiatory2[iO]={iOO,-iOO,-iOO,iOO);

mt combination = O,LINEWIDTH=i. OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i,pxi,px2,pyl,py2;

float Xpoints[25]. Ypoints[25];

float turtle_x,turtley,turtle_r;

main()

printf(”\nEnter level Ci - 8):
scanf(”%d”,&level);

if (level < i)

level =

setMode(i);

cls()

for (i=O; i<init_size; i++)

generate(initiator_xi[i], initiatoryi[i],

initiator_x2[i], initiatory2[i], level);

getch();

setMode(O);

1*

generate() = Generates curve

*1

void generate (float Xi. float Vi. float X2. float Y2.
mt level)

mt j,k,line,settype;

float a. b. Xpoints[55]. Ypoints[55]. temp,tempj;

526

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

level--;

turtle_r = sqrt((X2 - Xi)*(X2 - Xi) + (Y2 - Y1)*(Y2 -

Vi))/8.0;

turtle_x = Xl;

turtley = Vi;

Xpoints[0] = Xi;

Ypoints[0] = Vi;

Xpoints[32] = X2;

Ypoints[32] = Y2;

turtle_theta = point(Xi.Yi.X2.Y2);
turn(90);

step();

Xpoints[i] = turtlex;

Ypoints[1] = turtley;
turn(-90);

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtley;
turn(90);

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtley;
turn(90);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtley;
turn(-90);

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtley;
turn(-90);

step();

Xpoints[6] = turtlex;

Ypoints[6] = turtley;

step();

Xpoints[7] = turtle_x;

Ypoints[7] = turtley;
turn(90);

step();

Xpoints[8] = turtle_x;

Ypoints[8] = turtley;
turn(-90);

step();

Xpoints[9] = turtle_x;

Ypoints[9] = turtley;
turn(-90);

step();

Xpoints[iO] = turtle_x;

Ypoints[iO] = turtley;

step();

527

FRACTAL PROGRAMMING IN C

Xpoints[11] = turtle_x;

Ypoints[11] = turtley;

turn(-90);

step();

Xpoints[12] = turtle_x;

Ypoints[12] = turtley;

turn(90);

step();

Xpoints[13] = turtle_x;

Ypoints[13] = turtley;

turn(90);

step();

Xpoints[14] = turtle_x;

Ypoints[14] = turtley;

step();

Xpoints[15] = turtle_x;

Ypoints[15] = turtley;

turn(-90);

step();

Xpoints[16] = turtle_x;

Ypoints[16] = turtley;

step();

Xpoints[17] = turtle_x;

Ypoints[17] = turtley;

turn(90);

step();

Xpoints[18] = turtle_x;

Ypoints[18] = turtley;

step();

Xpoints[19] = turtle_x;

Ypoints[19] = turtley;

turn(-90);

step 0;

Xpoints[20] = turtle_x;

Ypoints[20] = turtley;

turn(-90);

step();

Xpoints[21] = turtle_x;

Ypoints[21] = turtley;

turn(90);

step();

Xpoints[22] = turtle_x;

Ypoints[22] = turtley;

step();

Xpoints[23] = turtle_x;

Ypoints[23] = turtley;

turn(90);

step();

Xpoints[24] = turtle_x;

Ypoints[24] = turtley;

turn(90);

528

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

step();

Xpoints[25] = turtle_x;

Ypoints[25] = turtley;

turn(-90);

step();

Xpoints[26] = turtle_x;

Ypoints[26] = turtley;

step();

Xpoints[27] = turtle_x;

Ypoints[27] = turtley;

turn(90);

step();

Xpoints[28] = turtle_x;

Ypoints[28] = turtley;

turn(90);

step();

Xpoints[29] = turtle_x;

Ypoints[29] = turtley;

turn(-90);

step();

Xpoints[30] = turtle_x;

Ypoints[30] = turtley;

turn(-90);

step();

Xpoints[31] = turtle_x;

Ypoints[31] = turtley;

if (level == 0)

for (k=0; k<generator_size; k++)

pxl = Xpoints[k];

pyl = Ypoints[k];

px2 = Xpoints[k+1];

py2 = Ypoints[k+1];

drawLine(pxl,pyl,px2,py2,1);

else

for (j=0; j<generator_size; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+l];

Vi = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level);

1*

529

FRACTAL PROGRAMMING IN C

qkoch5O = PROGRAM TO GENERATE KOCH CURVES

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xi. float Vi. float X2. float Y2.

mt level);

mt generator_size = 50;

mt mit_size = 4;

mt level;

mt initiator_xi[i0] = {-120,120,120,-120),initiator_x2[1O]=

{120,120,-120,-120),initiator_yl[1O]={120,120,-120,-120},

initiator_y2[1O]={120,-120,-120,120);

mt combination = 0,LINEWIDTH=1, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i,pxi,pyi,px2,py2;

float Xpoints[25]. Ypoints[25];

float turtle_x,turtle_y,turtle_r;

main()

prmntf(”\nEnter level (i - 8): “);
scanf(”%d”,&level);

if (level < i)

level =

setMode(i);

cl s()

for (1=0; i<init_size; j++)

generate(initiator_xi[i]. initiator_yi[i],

initiator_x2[i], initiator_y2[i], level);

getch();

setMode(0);

1*

generate() = Generates curve

*1

void generate (float Xi, float Vi, float X2, float Y2,
mt level)

530

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

mt j,k,line,set_type;

float a. b. Xpoints[55]. Ypoints[55]. temp,temp_r;

level --;

turtle_r = sqrt((X2 - X1)*(X2 - Xl) + (Y2 - Y1)*(Y2 -
Vi))/l0.0;

turtle_x = Xl;

turtle_y = Vi;

Xpoints[0] = Xi;

Ypoints[0] = Vi;

Xpoints[50] = X2;

Ypoints[50] = Y2;

turtle_theta = point(Xi,Yi,X2,Y2);

step();

Xpoints[i] = turtle_x;

Ypoints[i] = turtle_y;
turn(90);

step();

Xpoints[2] = turtle_x;

Vpoints[2] = turtle_y;
turn(-90);

step();

Xpoints[3] = turtle_x;

Vpoints[3] = turtle_y;
turn(-90);

step();

Xpoints[4] = turtle_x;

Vpoints[4] = turtle_y;

step 0;

Xpoints[5] = turtle_x;

Vpoints[5] = turtle_y;

step();

Xpoints[6] = turtle_x;

Vpoints[6] = turtle_y;
turn(90);

step();

Xpoints[7] = turtle_x;

Vpoints[7] = turtle_y;

step();

Xpoints[8] = turtle_x;

Vpoints[8] = turtle_y;
turn(-90);

step();

Xpoints[9] = turtle_x;

Vpoints[9] = turtle_y;

step();

Xpoints[i0] = turtle_x;

Vpoints[i0] = turtle_y;
turn(90);

step();

531

FRACTAL PROGRAMMING IN C

Xpoints[11] = turtle_x;

Ypoints[11] = turtley;

turn(90);

step();

Xpoints[12] = turtle_x;

Ypoints[12] = turtley;

step();

Xpoints[13] = turtle_x;

Ypoints[13] = turtley;

step();

Xpoints[14] = turtle_x;

Ypoints[14] = turtley;

turn(90);

step();

Xpoints[15] = turtle_x;

Ypoints[15] = turtley;

step();

Xpoints[16] = turtle_x;

Ypoints[16] = turtley;

turn(-90);

step();

Xpoints[17] = turtle_x;

Ypoints[17] = turtley;

step();

Xpoints[18] = turtle_x;

Ypoints[18] = turtley;

step();

Xpoints[19] = turtle_x;

Ypoints[19] = turtley;

step();

Xpoints[20] = turtle_x;

Ypoints[20] = turtley;

turn(-90);

step (1;

Xpoints[21] = turtle_x;

Ypoints[21] = turtley;

turn(-90);

step();

Xpoints[22] = turtle_x;

Ypoints[22] = turtley;

step();

Xpoints[23] = turtle_x;

Ypoints[23] = turtley;

step();

Xpoints[24] = turtle_x;

Ypoints[24] = turtley;

turn(90);

step();

Xpoints[25] = turtle_x;

Ypoints[25] = turtley;

step();

532

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

Xpoints[26] = turtle_x;

Ypoints[26] = turtley;

turn(-90);

step();

Xpoints[27] = turtle_x;

Ypoints[27] = turtley;

step 0;

Xpoints[28] = turtle_x;

Ypoints[28] = turtley;

step();

Xpoints[29] = turtle_x;

Ypoints[29] = turtley;

turn(90);

step();

Xpoints[30] = turtle_x;

Ypoints[30] = turtley;

turn(90);

step();

Xpoints[31] = turtle_x;

Ypoints[31] = turtley;

step();

Xpoints[32] = turtle_x;

Ypoints[32] = turtley;

stepO;

Xpoints[33] = turtle_x;

Ypoints[33] = turtley;

step();

Xpoints[34] = turtle_x;

Ypoints[34] = turtley;

turn(90);

step();

Xpoints[35] = turtle_x;

Ypoints[35] = turtley;

step();

Xpoints[36] = turtle_x;

Ypoints[36] = turtley;

turn(-90);

step();

Xpoints[37] = turtle_x;

Ypoints[37] = turtley;

step();

Xpoints[38] = turtle_x;

Ypoints[38] = turtley;

step();

Xpoints[39] = turtle_x

Ypoints[39] = turtley;

turn(-90);

step();

Xpoints[40] = turtle_x;

Ypoints[40] = turtley;

turn(-90);

533

FRACTAL PROGRAMMING IN C

step();

Xpoints[41] = turtle_x;

Ypoints[41] = turtley;

step();

Xpoints[42] = turtle_x;

Ypoints[42] = turtley;

turn(90);

step();

Xpoints[43] = turtle_x;

Ypoints[43] = turtley;

step();

Xpoints[44] = turtle_x;

Ypoints[44] = turtley;

turn(-90);

step();

Xpoints[45] = turtle_x;

Ypoints[45] = turtley;

step();

Xpoints[46] = turtle_x;

Ypoints[46] = turtley;

step();

Xpoints[47] = turtle_x;

Ypoints[47] = turtley;

turn(90);

step();

Xpoints[48] = turtle_x;

Ypoints[48] = turtley;

turn(90);

step();

Xpoints[49] = turtle_x;

Ypoints[49] = turtley;

if (level == 0)

for (k=0; k<generator_size; k++)

pxl = Xpoints[k];

pyl = Ypoints[k];

px2 = Xpoints[k+1];

py2 = Ypoints[k+1];

drawLine(pxl,pyl,px2,py2,1);

else

for (j=0; j<generator_size; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+l];

Vi = Ypoints[j];

Y2 = Ypoints[j+i];

generate (X1,Y1,X2,Y2,level);

534

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

1*

qkoch8 = PROGRAM TO GENERATE THREE SEGMENT KOCH CURVE

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Vi, float X2, float Y2,
mt level);

mt generator_size = 8;

mt mit_size = 4;

mt level;

mt initiator_xl[l0] = {-130,130,130,-130},initiator_x2[10]=

{130,130,-130,-130},initiator_yl[1O]={130,130,-130,-130),

initiator_y2[1O]={130,-130,-130,130};

mt combination = 0,LINEWIDTH=i, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i,pxi,pyi,px2,py2;

float Xpomnts[25], Ypoints[25];

float turtle_x,turtle_y,turtle_r;

main()

printf(”\nEnter level (1 - 8): “);
scanf(”%d”,&level);

if (level < 1)

level 1;

setMode(1);

cls()

for (1=0; i<initsize; i++)

generate(initiator_xi[i], initiator_yl[i],

initiator_x2[i], initiator_y2[i], level);

getch();
setMode(0);

1*

generate() = Generates curve

535

FRACTAL PROGRAMMING IN C

*1

void generate (float Xi, float Vi. float X2, float Y2,

mt level)

mt j,k,line,set_type;

float a, b, Xpoints[25], Ypoints[25], temp,temp_r;

level --;

turtle_r = sqrt((X2 - Xi)*(X2 - Xi) + (Y2 - Yi)*(Y2 -
Vi))/4.0;

turtle_x = Xi;

turtle_y = Vi;

Xpoints[0] = Xi;

Ypoints[0] = Vi;

Xpoints[8] = X2;

Ypoints[8] = Y2;

turtle_theta = point(Xi,Yi,X2,Y2);

step();

Xpoints[i] = turtle_x;

Vpoints[i] = turtle_y;
turn(90);

step();

Xpoints[2] = turtle_x;

Vpoints[2] = turtle_y;
turn(-90);

step();

Xpoints[3] = turtle_x;

Vpoints[3] = turtle_y;
turn(-90);

step();

Xpoints[4] = turtle_x;

Vpoints[4] = turtle_y;

step();

Xpoints[5] = turtle_x;

Vpoints[5] = turtle_y;
turn(90);

step();

Xpoints[6] = turtle_x;

Vpoints[6] = turtle_y;
turn(90);

step();

Xpoints[7] = turtle_x;

Vpoints[7] = turtle_y;
if (level == 0)

for (k=0; k<generator_size; k++)

pxi = Xpoints[k];

pyi = Vpoints[k];

536

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

px2 = Xpoints[k+1];

py2 = Ypoints[k+1];

drawLine(pxl,pyl,px2,py2,1);

for (j=0; j<generator_size; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Vi = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level);

const mt maxcol = 719;

const mt maxrow = 347;

const mt combination = 0;

mt max_iterations = 64;

mt max_size = 4;

mt LINEWIDTH=i, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

mt i,x,y,limit=O;

main()

float Xmax= 1.2, Xmin=- .3, Ymax=.60, Ymin=- .60, P=3.O, 0=0,

deltaX, deltaY, X, V. Xtemp, Ytemp,Xstart,Ystart;
mt col,row;

char ch;

setMode(1);

cls()

deltaX = (Xmax - Xmin)/(maxcol);

deltaY = (Ymax - Ymin)/(maxrow);

else

1*

*1

#include <stdio.h>

#i nd ude <math. h>

#i nd ude <dos.h>

#i nd ude <string.h>

#indlude “tools.h”

sanmarco = PROGRAM TO GENERATE SAN MARCOS DRAGON

537

FRACTAL PROGRAMMING IN C

for (col=O; col<=maxcol; col++)

if (kbhit() 0) break;

Xstart = Xmin + col * deltaX;

Ystart = Ymax;

for (row=O; row<=maxrow; row++)

X = Xstart;

Y = Ystart;

for (i=O; i<max_iterations && (X*X + y*y <

max_size); i++)

Ytemp = X+X-1;

Ytemp = Y;

X += (Y+X)*(YX);

=

- P*Ytemp;

X = PX + Q*ytemp;

if (1 >= max_iterations)

plot(col , row, 1);

Ystart -= deltaY;

getch();

setMode(0);

1*

sierbox = PROGRAM TO GENERATE RECTANGULAR SIERPINSKI

GASKET

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void fillRect(int xl, mt yOl, mt x2, mt y2,int color);

void node(int xl, mt yOl, mt x2, mt y2, mt x3, mt y3,

mt x4,int y4, mt level,int length);

void generate (mt xl, mt yOl, mt x2, mt y2, mt level,

mt length);

mt xl,yOl,x2,y2,x3,y3;

mt level = 3;

mt combination = O,LINEWIDTH=l, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

main()

538

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

mt xl,x2,x3,x4,yOl,y2,y3,y4,length;

xl = -220;

yOl = -220;

x2 = 220;

y2 = 220;

length = 440;

setMode(1);

cls(

fillRect(xl,y01,x2,y2,l);

generate(xl,y01,x2,y2,level,length);

getch();

setMode(0);

1*

generate() = Divides box into nine smaller boxes

*1

void generate (mt xl,int yOl, mt x2, mt y2, mt level,

mt length)

mt line_length,x3,y3,x4,y4;

line_length = length/3;

x3 = xl + line_length;

y3 = yOl + line_length;

x4 = x2 - line_length;

y4 = y2 - line_length;

node (xl,yOl,x2,y2,x3,y3,x4,y4,level,line_length);

1*

node() = blanks middle boxe and calls ‘generate’

for eight surrounding boxes

*1

void node(int xl, mt yOl, mt x2, mt y2, mt x3, mt y3,

mt x4, mt y4, mt level ,int length)

fill Rect(x3,y3,x4,y4,0);

if (level == 0)

return(0);

generate (xl,yOl,x3,y3,level -l,length);

generate (x3,yOl,x4,y3,level-l,length);

generate (x4,yOl,x2,y3,level -l,length);

539

FRACTAL PROGRAMMING IN C

1*

*1

fillRect() = fills a rectangle with a specified color

void fillRect(int xl, mt yOl, mt x2, mt y2,int color)

mt i,j;

xl = ((xl + 319)*18) >> 4;

yOl = 174 - ((93*yOl) >> 7);

x2 = ((x2 + 319)*18) >> 4;

y2 = 174 - ((93*y2) >> 7);

for (i=y2; i<=yOl; i++)

for (j=xl; j<= x2; j++)

plot(j,i ,color);

mt x,y;

mt switcher;

long mt 1;

main()

setMode(1);

x = 32767/719;

x = rand()/x;

y = 32767/347;

generate (xl,y3,x3,y4,level-1,length);

generate (x4,y3,x2,y4,level-l,length);

generate (xl,y4,x3,y2,level-1,length);

generate (x3,y4,x4,y2,level-1,length);

generate (x4,y4,x2,y2,level-1,length);

*/

sierchet = GENERATES SIERPINSKI TRIANGLE WITH 1/3

AND 2/3 MULTIPLIERS

<stdio.h>#i nd ude

<math. h>#i nd ude

<stdlib.h>#1 nd ude

“tools.h”#include

540

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

y = rand()/y;

for (1=0; 1<120000; i++)

switcher = 32767/4;

switcher = randO/switcher;

switch(switcher)

case 0: x / 3;

y 1= 3;

break;

case 1: x = (x + 719)*2/3;

y /= 3;

break;

case 2: x = (x + 719)/3;

y = (y + 347)*2/3;

break;

case 3: x /= 3;

y = (y + 347)*2/3;

if ((x>=0) && (x<720) && (y>=0) && (y<348))

plot(x,y,1);

getch();

setMode(0);

siergask = PROGRAM TO GENERATE SIERPINSKI TRIANGLE GASKET

*/

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void node(int xl, mt yOl, mt x2, mt y2, mt x3, mt y3,

mt x4,int y4, mt x5, mt y5, mt x6, mt y6, mt level,

mt length);

void sort(int index, mt x_coord[], mt y_coord[]);

void fillTriangle (mt xl, mt yOl, mt x2, mt y2, mt x3,

mt y3, mt color);

void generate (mt xl, mt yOl, mt x2, mt y2, mt x3, mt y3,

mt level, mt length);

mt xl,yOl,x2,y2,x3,y3;

mt level = 5;

mt combination = O,LINEWIDTH=1, OPERATOR=0;

541

FRACTAL PROGRAMMING IN C

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i, sign;

main()

mt xl,x2,x3,yOl,y2,y3,length;

xl = -256;

y01 = -220;

x2 = 256;

y2 = -220;

x3 = 0;

y3 = 223;

length = 512;

setMode(1);

cl s()

fillTriangle(xl,yOl,x2,y2,x3,y3,1);

generate(xl,y01,x2,y2,x3,y3,level ,length);

getch();

setMode(0);

1*

generate() = splits triangle into four small

small triangles

*1

void generate (mt xl,int yOl, mt x2, mt y2, mt x3, mt y3,

mt level , mt length)

mt line_length,x4,y4,x5,y5,x6,y6;

line_length = length/2;

x4 = xl + line_length;

y4 = yOl;

x5 = xl + line_length/2;

y5 = yOl + 1.732*line_length/2;

x6 = x5 + line_length;

y6 = y5;

node (xl,yOl,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,level

line_length);

1*

fillTriangle() = fills a triangle in specified color

*1

542

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

void filiTriangle (mt xl, mt yOl, mt x2, mt y2, mt x3,

mt y3, mt color)

#define sign(x) ((x) > 0 ? 1: ((x) == 0 ? 0: (-1)))

mt dx, dy, dxabs, dyabs, i, index=0, j, k, px, py, sdx,

sdy, x, y, xpoint[4], ypoint[4], toggle, old_sdy,sy0;

long mt check;

mt *xcoord, *ycoord;

x_coord = (mt *) malloc(4000 * sizeof(int));

y_coord = (mt *) malloc(4000 * sizeof(int));

xpoint[0] = ((xl + 319)*18) >> 4;

ypoint[0] = 174 - ((93*yOl) >> 7);

xpoint[1] = ((x2 + 319)*18) >> 4;

ypomnt[1] = 174 - ((93*y2) >> 7);

xpoint[2] = ((x3 + 319)*18) >> 4;

ypoint[2] = 174 - ((93*y3) >> 7);

xpomnt[3] = xpoint[0];

ypoint[3] = ypoint[0];
I = 3;

px = xpoint[0];

py = ypoint[0];

if (ypomnt[1] == ypoint[0])

x_coord[index] = px;

y_coord[index++] = py;

for (j=0; j<i; j++)

dx = xpoint[j+1] - xpoint[j];

dy = ypoint[j+1] - ypoint[j];

sdx = sign(dx);

sdy = sign(dy);

if (j==0)

old_sdy = sdy;

sy0 = sdy;

dxabs = abs(dx);

dyabs = abs(dy);
x = 0;

y = 0;

if (dxabs >= dyabs)

for (k=0; k<dxabs; k++)

y += dyabs;

if (y>=dxabs)

543

FRACTAL PROGRAMMING IN C

y -= dxabs;

py += sdy;

if (old_sdy sdy)

old_sdy = sdy;

index--;

x_coord[index] = px+sdx;

y_coord[index++] = py;

px += sdx;

else

for (k=O; k<dyabs; k++)

x += dxabs;

if (x>=dyabs)

x -= dyabs;

px += sdx;

py += sdy;

if (old_sdy != sdy)

old_sdy = sdy;

if (sdy 0)

index--;

x_coord[index] = px;

y_coord[index++] = py;

index--;

if (syo + sdy== 0)

index--;

sort(index,x_coord,y_coord);

toggle = 0;

if (x_coord[0] < 0)

x_coord[0] = 0;

if (x_coord[0] > 639)

x_coord[0] = 639;

for (i=0; i<index; i++)

if (x_coord[i+1] < 0)

x_coord[i+1] = 0;

if (x_coord[i+1] > 719)

544

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

x_coord[i+1] = 719;

if ((y_coord[i] == y_coord[i+1]) && (toggle == 0) &&

(y_coord[i] >= 0) && (y_coord[i] < 348))

for (j=x_coord[i]; j<=x_coord[i+1]; j++)

p1 ot(j ,y_coord[i] ,color);

toggle = 1;

else

toggle = 0;

free(x_coord);

free(y_coord);

1*

sort() = sorts coordinate pairs for drawing and

filling polygons.

*1

void sort(int index, mt x_coord[], mt y_coord[])

mt d=4,i,j,k,temp;

while (d<=index)

d*=2;

d-=1;

while (d>1)

d/=2;

for (j=0; j<=(index-d); j++)

for (i=j; i>=0; i-=d)

if ((y_coord[i+d] < y_coord[i]) II
((y_coord[i+d] == y_coord[i]) &&

(x_coord[i+d] <= x_coord[i])))

temp = y_coord[i];

y_coord[i] = y_coord[i+d];

y_coord[i+d] = temp;

temp = x_coord[i];
x_coord[i] = x_coord[i+d];

x_coord[i+d] = temp;

545

FRACTAL PROGRAMMING IN C

1*

node() = blanks center triangle and calls ‘generate’

for three surrounding triangles

*1

void node(int xl, mt yOl, mt x2, mt y2, mt x3, mt y3,

mt x4,int y4, mt x5, mt y5, mt x6, mt y6, mt level,

mt length)

fillTriangle(x4,y4,x5,y5,x6,y6,O);

if (level == 0)

return(O);

generate (xl,yOl,x4,y4,x5,y5,level -1,length);

generate (x4,y4,x2,y2,x6,y6,level-1,length);

generate (x5,y5,x6,y6,x3,y3,level-1,length);

1*

sierp = PROGRAM TO GENERATE SIERPINSKI CURVES

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl, float X2, float Y2,

mt level,int sign);

mt generator_size = 3;

mt mit_size = 1;

mt level;

mt initiator xl[lO] = {-130,l30,l30,-130),initiator_x2[lO]=

{130,130,-130,-130},initiator_yl[lO]={O,130,l30,-130,-130},

initiator_y2[lO]={O,l30,-l30,-130,130};

mt combination = O,LINEWIDTH=l, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mi, sign,pxl,px2,pyl,py2;

float Xpoints[25], Ypoints[25];

float turtle_x,turtle_y,turtle_r,angle;

main()

setMode(0);

546

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

printf(”\nEnter level (1 - 12): “);

scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(1);

cl s()

for (i=O; i<init_size; i++)

generate(initiator_xl[i], initiatoryl[i],

initiator_x2[i], initiatory2[i], level,1);

getch();

setMode(O);

1*

generate() = Generates curve

*1

void generate (float Xl, float Yl, float X2, float Y2,

mt level,int sign)

mt j,k,line,int_sign;

float a, b, Xpoints[25], Ypoints[25], temp,temp_r;

turtle_r = sqrt((X2 - X1)*(X2 - Xl) + (Y2 - Y1)*(Y2 -

Yl))/2.O;

turtle_x = Xl;

turtle_y = Yl;

Xpoints[O] = Xl;

Ypoints[O] = Yl;

Xpoints[3] = X2;

Ypoints[3] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

turn(60*sign);

step();

Xpoints[1] = turtle_x;

Ypoints[1] = turtle_y;

turn(6O*sign);

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtle_y;

level --;

sign = -1;

if (level == 0)

for (k=0; k<generator_size; k++)

pxl = Xpoints[k];

pyl = Ypoints[k];

px2 = Xpoints[k+l];

547

FRACTAL PROGRAMMING IN C

py2 = Ypoints[k+1];

drawLine(pxl,pyl,px2,py2,1);

else

mt_sign = sign;

for (j=0; j<generator_size; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Vi = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level ,int_sign);

mt_sign = -1;

1*

sirchet2 = PROGRAM TO GENERATE SIERPINSKI TRIANGLE

*1

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include “tools.h”

float s2,x,y;

mt switcher;

long mt i;

main()

setMode(1);

s2 = sqrt(0.5);
X = 32767/719;

x = rand()/x;

y = 32767/347;

y = rand()/y;

for (1=0; 1<120000; i++)

switcher = 32767/3;

switcher = rand()/switcher;

switch(switcher)

case 0: x = s2;

y = s2;

break;

case 1: x = sqrt((7l9.*719. + x*x)/2);

548

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

case 2: x = sqrt((340.*340. + x*x)/2.);

y = sqrt((347.*347. + y*y)/2j;

getchO;

setMode(O);

float s2,x,y;

mt switcher;

long mt 1;

main()

setMode(16);

x = 32767/719;

x = rand()/x;

y = 32767/347;

y = rand()/y;

for (i=O; i<120000; i++)

switcher = 32767/3;

switcher = ranclU/switcher;

switch(switcher)

case 0: x /= 2;

y /= 2;

break;

case 1: x = (x + 719)/2;

y /= 2;

break;

case 2: x = (x + 340)/2;

y = (y + 347)/2;

plot(x,y,1);

y = s2;

break;

plot(x,y,1);

sirchet3 = PROGRAM TO GENERATE SIERPINSKI TRIANGLE

*/

#1 nd ude <stdio.h>

#i nd ude <math. h>

#include <stdl ib.h>

#i nd ude “tools.h”

549

FRACTAL PROGRAMMING IN C

getch();

setMode(O);

1*

snoflake() = PROGRAM TO GENERATE KOCH SNOWFLAKE

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Vi, float X2, float Y2,

mt level);

mt combination = O,LINEWIDTH=1, operator=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i;

mt generator_size = 5;

mt level;

mt init_size=3,pxl,px2,pyl,py2;

mt initiator_xl[1O] = { -150,O,i50} ,initiator_x2[iO]={O,

150,-150},initiator_yl[1O]={-75,185,-75},

initiator_y2[1O]={185,-75,-75};

float Xpoints[25], Ypoints[25];

float turtle_x,turtle_y,turtle_r;

main()

printf(”\nEnter level (1 - 8): “);
scanf(”%d”,&level);

if (level < 1)

level = 1;

setMode(1);

cl s()

for (i=O; i<init_size; j++)

generate(initiator_xi[i], initiator_yl[i],

initiator_x2[i], mnitiator_y2[i], level);

getch();

setMode(O);

550

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

1*

generate() = Generates curve

*1

void generate (float Xl, float Vi, float X2, float Y2,

mt level)

mt j,k,line;

float a, b. Xpoints[25], Ypoints[25];

level

turtle_r = (sqrt((X2 - X1)*(X2 - Xl) + (Y2 - Y1)*(Y2 -
Y1)))/3.0;

Xpoints[0] = Xl;

Ypoints[0] = Yl;

Xpoints[4] = X2;

Ypoints[4] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);
turtle_x = Xl;

turtle,y = Yl;

step();

Xpoints[1] = turtle_x;

Ypoints[1] = turtle,y;
turn(60);

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtle,y;
turn(-120);

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtle,y;
if (level > 0)

for (j=0; j<generator_size-1; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Yl = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level);

else

for (k=0; k<generator_size-l; k++)

pxl = Xpoints[k];

pyi Ypoints[k];

px2 = Xpoints[k+1];

551

FRACTAL PROGRAMMING IN C

py2 = Ypoints[k+1];

drawLine(pxl,pyl,px2,py2,1);

1*

snowl3 = generates snowflake with 13 segment generator

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl, float X2, float Y2,

mt level, mt type, mt sign);

mt combination = O,LINEWIDTH=1, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

mt color,flag = O,i,start_level;

mt generator_size = 13;

mt start_level,level,pxl,px2,pyl,py2;

mt mit_size = 1,sign = 1;

mt initiator_xl[1O] = {-125},initiator_x2[1O]={125},

mnitiator,yl[1O]={O} ,initiatory2[1O]={O};

float Xpoints[25], Ypoints[25];

float turtle_x,turtle,y,turtle_r,turtle_theta;

main()

printf(”\nEnter level (1 - 8): “);
scanf(”%d”,&level);

if (level < 1)

level = 1;

start_level = level;

setMode(1);

cl s()

for (1=0; i<init_size; i++)

generate(initiator_xl[i], initiator,yl[i],

initiator_x2[i], initiator,y2[i], level,0,sign);

getch();

setMode(0);

552

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

1*

generate() = Generates curve

*1

void generate (float Xl, float Yl, float X2, float Y2,

mt level, mt type, mt sign)

mt j,k,line,set_type;

float a, b, Xpoints[25], Ypoints[25], temp,temp_r;

switch (type)

case 0: break;

case 1: sign = -1;

break;

case 2: sign = -1;

case 3: temp = Xl;
Xl = X2;

X2 = temp;

temp = Yl;
Yl = Y2;

Y2 = temp;
break;

level

turtle_r = (sqrt((X2 - X1)*(X2 - Xl) + (Y2 - Y1)*(Y2 -
Yl)))/3.0;

Xpoints[0] = Xl;

Ypoints[0] = Yl;

Xpoints[13] X2;

Ypoints[13] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);
turtle_x = Xl;

turtle,y = Yl;

turn(60*sign);

step();

Xpoints[1] = turtle_x;

Ypoints[1] = turtle,y;

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtley;

turn(60*sign)

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtle,y;

turn(6O*sign);

553

FRACTAL PROGRAMMING IN C

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtle,y;

turn(6O*sign)

step();

Xpoints[12] = turtle_x;

Ypoints[12] = turtle,y;

turn(6O*sign);

step();

Xpoints[11] = turtle_x;

Ypoints[11] = turtle,y;

turtle_r = (sqrt((Xpoints[11] - Xpoints[4])*(Xpoints[11]

Xpoints[4]) + (Ypoints[11] - Ypoints[4])*(Ypoints[11]

- Ypoints[4])))/3.O;

turtle_theta = point(Xpoints[4],Ypoints[4],Xpoints[11],

Ypoints[11]);

turtle_x = Xpoints[4];

turtle,y = Ypoints[4];

turn(6O*sign);

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtle,y;

step();

Xpoints[6] = turtle_x;

Ypoints[6] = turtle,y;

turn(60*sign)

step();

Xpoints[7] = turtle_x;

Ypoints[7] = turtle,y;

turn(60*sign);

step 0;

Xpoints[8] = turtle_x;

Ypoints[8] = turtle,y;

turn(60*sign);

step();

Xpoints[1O] = turtle_x;

Ypoints[1O] = turtle,y;

turn(60*sign)

step();

Xpoints[9] = turtle_x;

Ypoints[9] = turtle,y;
if (level == 0)

for (k=0; k<generator_size; k++)

pxl = Xpoints[k];

pyl = Ypoints[k];

px2 = Xpoints[k+1];

py2 = Ypoints[k+1];

drawLine(pxl,pyl,px2,py2,1);

554

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

else

for (j=0; j<generator_size; j-t--t-)

switch(j)

case 1:

case 2:

case 3:

case 4:

case 8:

case 9:

case 12:

set_type = 0;

break;

case 0:

case 5:

case 6:

case 7:

case 10:

case 11:

set_type = 1;

break;

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Yl = Ypoints[j];

Y2 = Ypoints[j+l];

generate (X1,Y1,X2,Y2,level ,set_type,sign);

1*

snow7 = generates snowflake with 7 segment generator

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl, float X2, float Y2,

mt level, mt type, mt sign);

mt combination = 0,LINEWIDTH=1, OPERATOR=0;

unsigned long mt PATTERN=OxFFFFFFFF;

555

FRACTAL PROGRAMMING IN C

mt color,flag = 0,i,start_level;

mt generator_size = 7;

mt start_level ,level

mt init_size=1,sign=1,pxl,px2,pyl,py2;

mt initiator_xl[10] = {-125},initiator_x2[10]={125},

initiatory 1[10]={ 0 } ,mnitiatory2[10]={0}

float Xpoints[25], Ypoints[25];

float turtle_x,turtley,turtle_r,turtle_theta;

main(

printf(”\nEnter level (1 - 8): “);
scanf(”%d”,&level);

if (level < 1)

level = 1;

start_level = level

setMode(1);

cls()

for (1=0; i<init_size; i++)

generate(initiator_xl[i], initiator_yli],

initiator_x2[i], initiator_y2[i], level,O,sign);

getch();

setMode(0);

1*

generate() = Generates curve

*1

void generate (float Xl, float Yl, float X2, float Y2,

mt level, mt type, mt sign)

mt j,k,line,set_type;

float a, b, Xpomnts[25], Ypoints[25], temp,temp_r;

switch (type)

case 0: break;

case 1: sign = -1;
break;

case 2: sign = -1;

case 3: temp = Xl;
Xl = X2;

556

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

X2 = temp;

temp = Yl;

Yl = Y2;

Y2 = temp;

break;

level

turtle_r = (sqrt((X2 - X1)*(X2 - Xl) + (Y2 - Y1)*(Y2 -

Y1)))/3.O;

Xpoints[O] = Xl;

Ypoints[O] = Vi;

Xpoints[7] = X2;

Ypoints[7] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);
turtle_x = Xl;

turtle_y = Yl;

turn(60*sign);

step 0;

Xpoints[l] = turtle_x;

Ypoints[l] = turtle_y;

step 0;

Xpoints[2] = turtle_x;

Ypoints[2] = turtle_y;

turn(6O*sign)

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtle_y;

turn(6O*sign)

step 0;

Xpoints[4] = turtle_x;

Ypoints[4] = turtle_y;

turn(6O*sign);

step();

Xpoints[6] = turtle_x;

Ypoints[6] = turtle_y;

turn(6O*sign);

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtle_y;
if (level == 0)

for (k=0; k<generator_size; k++)

pxl = Xpoints[k];

pyi = Ypoints[k];

px2 = Xpoints[k+l];

py2 = Ypoints[k+l];

drawLine(pxl,pyl,px2,py2,l);

else

557

FRACTAL PROGRAMMING IN C

for (j=O; j<generator.size; j++)

switch(j)

case 5:

case 0:

set_type = 1;

break;

case 1:

case 2:

case 3:

case 6:

set_type = 2;

break;

case 4:

set_type = 3;

break;

Xl = Xpoints[j];

X2 = Xpoints[j+l];

Yl = Ypoints[j];

Y2 = Ypoints[j+l];

generate (Xl,Yl,X2,Y2,level,set_type,sign);

1*

snowhall = PROGRAM TO GENERATE SNOWFLAKE HALLS

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl, float X2, float Y2,

mt level,int type, mt sign);

mt combination = O,LINEWIDTH=1, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i,pxl,px2,pyl,py2;

mt generator_size = 11;

mt level = 4;

mt mit_size = 1;

mt initiator_xl[lO] = {-150),initiator_x2[1O]={150),

558

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

initiatoryl[1O]={ -75),

initiatory2[1O]={ -75);

float Xpoints[25], Ypoints[25];

float turtle_x,turtley,turtle_r;

main()

mt sign=1;

mt set_type=O;

prmntf(”\nEnter level (1 - 8): “);

scanf(“%d” ,&l evel);

if (level < 1)

level = 1;

setMode(1);

cl s()

for (i=O; i<init_size; i++)

generate(initiator_xl[i], initiatoryl[i],

initiator_x2[i], initiatory2[i], level ,set_type,

sign);

getch();

setMode(O);

1*

generate() = Generates curve

*1

void generate (float Xl, float Yl, float X2, float Y2,

mt level, mt type, mt sign)

mt j,k,line,set_type;

float a, b, Xpoints[25], Ypoints[25], temp,temp_r;

switch (type)

case 0: break;

case 1: sign = -1;

break;

case 2: sign = -1;

case 3: temp = Xl;

Xl = X2;

X2 = temp;

temp = Yl;

559

FRACTAL PROGRAMMING IN C

Yl = Y2;

Y2 = temp;

break;

level--;

turtle_r = (sqrt((X2 - X1)*(X2 - Xl) + (Y2 - Y1)*(Y2 -

Yl)))/3.O;

Xpoints[O] = Xl;

Ypoints[O] = Yl;

Xpoints[11] = X2;

Ypoints[11] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);

turtle_x = Xl;

turtle_y = Yl;

turn(60*sign);

step();

Xpoints[1] = turtle_x;

Ypoints[l] = turtle_y;

step();

Xpoints[2] = turtle_x;

Ypoints[2] = turtle_y;

turn(6O*sign);

step();

Xpoints[3] = turtle_x;

Ypoints[3] = turtle_y;

turn(6O*sign);

step();

Xpoints[4] = turtle_x;

Ypoints[4] = turtle_y;

turn(6O*sign);

step();

Xpoints[1O] = turtle_x;

Ypoints[lO] = turtle_y;

turn(6O*sign);

step();

Xpoints[9] = turtle_x;

Ypoints[9] = turtle_y;

turtle_r = (sqrt((Xpoints[9] - Xpoints[4])*(Xpoints[9]

Xpoints[4]) + (Ypoints[9] - Ypoints[4])*(Ypoints[9]

- Ypoints[4])))/3.O;

turtle_theta = point(Xpoints[4],Ypoints[4],Xpoints[9],

Ypoints[9]);

turtle_x = Xpoints[4];

turtley = Ypoints[4];

turn(6O*sign);

step();

Xpoints[5] = turtle_x;

Ypoints[5] = turtle_y;

step();

Xpoints[6] = turtle_x;

Ypoints[6] = turtle_y;

560

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

turn(60*sign);

step 0;

Xpoints[7] = turtle_x;

Ypoints[7] = turtley;

turn(60*sign);

step();

Xpoints[8] = turtle_x;

Ypoints[8] = turtle.y;
if (level == 0)

for (k=0; k<generator_size; k++)

pxl = Xpoints[k];

pyl = Ypoints[k];

px2 = Xpoints[k+1];

py2 = Ypoints[k+1];

drawLine(pxl,pyl,px2,py2,1);

else

for (j=0; j<generator_size; j++)

switch(j)

case 2:

case 8:

case 10:

case 12:

set_type = 0;
break;

case 0:

case 5:

set_type = 1;

break;

case 1:

case 3:

case 4:

set_type = 2;
break;

case 6:

case 7:

case 9:

set_type = 3;

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Yl = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level,set_type,sign);

561

FRACTAL PROGRAMMING IN C

1*

strange = PROGRAM GENERATES STRANGE ATTRACTORS

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

float Xmax = 2.8,Xmin = -2.8,Ymax = 2,Ymin = -2, X = 0, Y = 0,

Z = 0;

float deltaX,deltaY,Xtemp,Ytemp,Ztemp;

mt col,row,j,max_row = 347, max_col = 719,color;

float a = 2.24, b = .43, c = - .65, d = -2.43, e = 1;

long mt max_iterations=50000,i;
mt OPERATOR = 0;

char ch;

main()

setMode(1);

deltaX = max_col/(Xmax - Xmin);

deltaY = max_row/(Ymax - Ymin);

for (j=0; j<2; j++)

cls()

for (i=0; i<max_iterations; i++)

Xtemp = sin(a*Y) - Z*cos(b*X);

Ytemp = Z*sin(c*X) - cos(d*Y);
Z = e*sin(X);

X = Xtemp;

Y = Ytemp;

if (j==0)

col = (X - Xmin)*deltaX;

row = (Y - Ymin)*deltaY;

else

col = (Y - Xmin)*deltaX;

row = (Z - Ymin)*deltaY;

if ((col>0) && (col<=max_col) &&

(row>0) && (row<=max_row))

plot(col ,row,1);

562

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

getch();

setMode(O);

1*

trees = PROGRAM TO GENERATE TREES

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <stdlib.h>

#include <time.h>

#include “tools.h”

mt combination = O,LINEWIDTH=1, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

mt i,j;

float hel ght ,width ,left_alpha, right_alpha ,left_angle,

right_angle, left_width_factor ,left_height_factor,

right_width_factor, right_height_factor;

float x,y,xl,yOl,x2,y2;

float turtle_x,turtle_y,turtle_r,turtle_theta;

mt level,pxl,px2,pyl,py2;

void generate(float x, float y, float width, float height,

float angle, mt level);

main()

printf(”\nEnter stem height: “);

scanf(”%f”,&height);

printf(”\nEnter stem width: “);
scanf(”%f”,&width);

printf(”\nEnter left alpha: “);

scanf(”%f”,&left_alpha);

printf(”\nEnter right alpha: “);

scanf(”%f”,&right_alpha);

printf(”\nEnter left branch angle: “);

scanf(”%f”,&left_angle);

printf(”\nEnter right branch angle: “);

scanf(”%f”,&right_angle);

printf(”\nEnter recursion level: “);
scanf(”%d”,&level);

left_width_factor = pow(2,-1/left_alpha);

563

FRACTAL PROGRAMMING IN C

left_height_factor = pow(2,2/(3*left_alpha));

right_width_factor = pow(2,-1/right_alpha);

right_height_factor = pow(2,2/(3*right_alpha));
x = 0;

y = -235;

LINEWIDTH = width;

setMode(1);

ci s()

xl = 0;

yOl = y + height;

pxl =

pyl = y;

px2 = xl;

py2 = yOl;

drawLine(pxl,pyl,px2,py2,1);

turtle_theta = point(x,y,xl,yOl);

turn(left_angle);

generate(xl ,yOl .1 eft_width_factor*width,

i eft_hei ght_factor*hei ght,left_angle.level);

turtle_theta = point(x,y,xl,yOl);

turn(-right_angle);

generate(xl ,yOl ,right_wi dth_factor*wi dth,

ri ght_hei ght_factor*hei ght, ri ght_angi , 1 evei);

getch();

setMode(0);

void generate(float x, float y, float width, float height,

float angle, mt level)

float xl,yOl;

turtle_x = x;

turtley = y;

turtle_r = height;

step();
xl = turtle_x;

yOl = turtle_y;

LINEWIDTH = width;

level

pxl =

pyl = y;

px2 = xl;

py2 = yOl;

drawLine(pxl,pyl,px2,py2,1);
if (level > 0)

turtle_theta = point(x,y,xl,yOl);

turn(left_angle);

generate(xl ,yOl ,left_wi dth_factor*wi dth,

1 eft_hei ght_factor*hei ght,left_angie, level);

564

APPENDIX B: PROGRAMS FOR HERCULES GRAPHICS ADAPTER

turtle_theta = point(x,y,xl,yOl);

turn(-right_angle);

generate(xl ,yOl ,right_wi dth_factor*width,

ri ght_hei ght_factor*hei ght,right_angle, level);

1*

twindrag = PROGRAM TO GENERATE A TWIN DRAGON

*1

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include “tools.h”

void generate (float Xl, float Yl, float X2, float Y2, mt level,

mt sign);

mt combination = O,LINEWIDTH=1, OPERATOR=O;

unsigned long mt PATTERN=OxFFFFFFFF;

float turtle_theta;

mt i,flag[24],pxl,px2,pyl,py2;

mt generator_size = 3;

mt level = 16;

mt mit_size = 2;

mt initiator_xl[1O] {-150,150},initiator_x2[1O]={150,-150),

initiator_yl[1O]={-25,-25},

initiator_y2[1O]={-25,-25};

float Xpoints[25], Ypoints[25];

float turtle_x,turtle_y,turtle_r;

main()

mt sign = 1;

setMode(1);

cl s()

for (i=O; i<init_size; i++)

generate(mnitiator_xl[i], initiator_yl[i],

initiator_x2[i], initiator_y2[i], level, sign);

getch();

setMode(O);

565

FRACTAL PROGRAMMING IN C

1*

generate() = Generates curve

*1

void generate (float Xl, float Yl, float X2, float Y2,

mt level, mt sign)

intj,k,line,sign2=-1;

float a, b, Xpoints[25], Ypoints[25];

turtle_r = (sqrt((X2 - X1)*(X2 - Xl) + (Y2 - Y1)*(Y2

Yl)))/1 .41421;

Xpoints[O] = Xl;

Ypoints[O] = Yl;

Xpoints[2] = X2;

Ypoints[2] = Y2;

turtle_theta = point(X1,Y1,X2,Y2);
turtle_x = Xl;

turtley = Yl;

turn(sign*(45));

step();

Xpoints[1] = turtle_x;

Ypoints[1] = turtley;
level --;

if (level > 0)

for (j=0; j<generator_size-1; j++)

Xl = Xpoints[j];

X2 = Xpoints[j+1];

Yl = Ypoints[j];

Y2 = Ypoints[j+1];

generate (X1,Y1,X2,Y2,level,sign2);

sign2 = -1;

else

for (k=0; k<generator_size-1; k++)

pxl = Xpoints[k];

pyl = Ypoints[k];

px2 = Xpoints[k+l];

py2 = Ypoints[k+l];

drawLine(pxl,pyl,px2,py2,1);

566

About the Author

Dr. Roger T. Stevens graduated from California Western University, in Santa

Ana, California, with a PhD in Electrical Engineering, but not before attaining

degrees from three other universities, including: a Masters in Engineering in

Systems Engineering at Virginia Polytechnic Institute in Blacksburg, Virginia; a

Master of Arts in Mathematics at Boston University in Boston; and a Bachelor of

Arts in English at Union College in Schenectady, New York.

Dr. Stevens’s engineering career spans over 30 years. He is currently a member

of the technical staff of the MITRE Corporation, Bedford, Massachusetts, in

charge of system engineering support and development for the Defense Test and

Evaluation Suport Agency.

He has written numerous articles for technical magazines and journals, and is the

author of Operational Test and Evaluation: A Systems Engineering Process (John

Wiley, 1978) and Graphics Programming in C (M&T Books, 1988). Dr.

Stevens resides with his wife, Barbara, in Albuquerque, New Mexico.

567

Bibliography

Ackerman, M., “Hubert Curves Made Simple,” Byte, June 1986, pp. 137—138.

Barnsley, M. F., and Sloan, A. D., “A Better Way to Compress Images,” Byte,

January 1988, pp. 215—223.

Bamsley, Michael, Fractals Everyvhere, Boston, 1988, Academic Press, Inc.

Barnsley, M. and Demko, S., “Iterated Function Systems and the Global

Construction of Fractals,” Proceedings R. Soc. Lond, A 399, 1985, pp.

243—275.

Batty, M., and Longley, P. A., “Fractal-Based Description of Urban Form,”

Environment and Planning B: Planning and Design, Vol. 14, 1987, pp.

123—134.

Batty, M., “Fractals—Geometry Between Dimensions,” New Scientist, April

1985, pp. 3 1—35.

Batty, Michael, Microcomputer Graphics, London, 1987, Chapman and Hall.

Batty, M. and Longley, P. A., “Urban Shapes as Fractals,” Area, 19.3, 1987, pp.

2 15—22 1.

Bouville, C., “Bounding Ellipsoids for Ray-Fractal Intersection,” SIGGRAPH

‘85, Vol. 19, No. 3, pp. 45—52.

Butz, A. R., “Alternative Algorithm for Hilbert’s Space-Filling Curve,” IEEE

Transactions on Computers, Vol. C-20, No. 4, April 1971, pp. 424—426.

569

FRACTAL PROGRAMMING IN C

Collet, P., Eckmann, J.-P., and Lanford, 0. E., “Universal Properties of Maps

on an Interval,” Communications in Mathematical Physics, 76, 1980, pp.

211—254.

Demko, S., Hodges, L., and Naylor, B., “Construction of Fractal Objects with

Iterated Function Systems,” SIGGRAPH ‘85, Vol. 19, No. 3, pp. 271—278.

Dewdney, A. K., “Computer Recreations,” Scientific American, September 1986,

pp. 140—145.

Feigenbaum, M. J., “Quantitative Universality for a Class of Nonlinear

Transformations,” Journal of Statistical Physics, Vol. 19, No. 1, January

1978, pp. 25—52.

Fogg, L., “Drawing the Mandelbrot and Julia Sets,” Micro Cornucopia, No. 39,

January—February 1988, pp. 6—9.

Fogg, L., “Fractal Miscellany,” “Micro Cornucopia,” No. 43, September—

October 1988, pp. 48—5 1.

Fogg, L., “Introduction to Fractals,” Micro Cornucopia, No. 33, December—

January 1987, pp. 36-40.

Fournier, A., Fussell, D., and Carpenter, L., “Computer Rendering of Stochastic

Models,” Communications of the ACM, Vol. 25, No. 6, June 1982, pp.

371—384.

Gleick, James, Chaos: Making a New Science, New York, 1987, Viking.

Hirst, K. E., “The Apollonian Packing of Circles,” Journal London Math

Society, 42, 1967, pp. 281—291.

Land, B. R., “Dragon,” Byte, April 1986, pp. 137—138.

570

BIBLIOGRAPHY

Lanford, O.E., “A Computer-Assisted Proof of the Feigenbaum Conjectures,”

Bulletin of the American Mathematical Society, Vol. 6, No. 3, May 1982,

pp. 427-434.

Li, T.Y., and Yorke, J.A., “Period Three Implies Chaos,” American

Mathematical Monthly, 82, December 1975., pp. 985—992.

Lorenz, E.N., “Deterministic Nonperiodic Flow,” Journal of the Atmospheric

Sciences, Vol. 20, March 1963, pp. 130—141.

Mandelbrot, B., “Comment on Computer Rendering of Fractal Stochastic

Models,” Communications of the ACM, Vol. 25, No. 8, pp. 58 1—584.

Mandeibrot, B., The Fractal Geometry of Nature, New York, 1983, W. H.

Freeman and Company.

Mastin, G.A., Watterberg, P.A., and Mareda, J.F., “Fourier Synthesis of Ocean

Scenes,” IEEE Computer Graphics and Applications, March 1987, pp. 16—

24.

Mastin, G. A., “From Research into Art,” IEEE Computer Graphics and

Applications, March 1987, pp. 5—8.

Norton, A., “Generation and Display of Geometric Fractals in 3-D,” Computer

Graphics, Vol. 16, No. 3, July 1982, pp. 61—67.

Patrick, E.A., Anderson, D.R., and Bechtel, F.K., “Mapping Multidimensional

Space to One Dimension for Computer Output Display,” IEEE Transactions

on Computers, Vol. C-17, No. 10, October 1968, pp. 949—953.

Peitgen, H.O., and Richter, P. H., The Beauty of Fractals, Berlin, 1986,

Springer-Verlag.

Peitgen, H.O., Saupe, D., The Science of Fractal Images, Berlin, 1988, SpringerVerlag.

571

FRACTAL PROGRAMMING IN C

Pickover, C.A., “A Note on Rendering 3-D Strange Attractors,” Computers and

Graphics, Vol. 12, No. 2, 1988, pp. 263—267.

Preston, F.H., Lehar, A. F., and Stevens, R. J., “Compressing, Ordering and

Displaying Image Data,” SPIE Vol 359 Applications of Image Processing

IV, 1982, pp. 302—308.

Robinson, F., “Plotting the Mandelbrot Set with the BGI,” Turbo Techix, May-

June 1988, pp. 28—35.

Sorensen, P., “Fractals,” Byte, September 1984, pp. 157—17 1.

Stockman, H. W., “Fast Fractals,” Micro Cornucopia, No. 43, September—

October 1988, pp. 22—29.

Ushiki, S., “Phoenix,” IEEE Transactions on Circuits and Systems, Vol. 35,

No. 7, July 1988, pp. 788—789.

Zorpette, G., “Fractals: Not Just Another Pretty Picture,” IEEE Spectrum,

October 1988, pp. 29—3 1.

572

Index

.PCX 42

.PCX file, color map 40

.PCX file, header data 37

.PCX format 36

3ddrag (for HGA) 449
80386 32

A

affine transformations 385

apollo (for HGA) 451

attractor, Lorenz 84

attractor, Lorenz, listing of program

to generate 87

attractor, strange 84, 91

attractor, strange, listing of program

to generate 91

B

Barnsley, Michael 20, 385, 399

Batty, Michael 356, 357, 362, 381
Besicovitch 22

bifurc (for HGA) 453

bifurcation diagram, listing of

program to generate 104

bifurcation diagram, modified,

picture 102, 103

bifurcation diagram, picture 98, 99

bifurcation diagrams 18, 95, 96

bifurcation diagrams, listing of

program to plot 97

binary decomposition 283

binary decomposition, listing of

program for generating 285

bindecom (for HGA) 454

bounds, listing of program 77

bounds, program to display saved

screen parameters 77

breastplate, Pharaoh’s 247

breastplate, Pharaoh’s, after
inversion 251

breastplate, Pharaoh’s, before
inversion 248

breastplate, Pharaoh’s, listing of

program to generate 249

Brown, Robert 343

brown2d (for HGA) 456

brownian (for HGA) 458
Brownian motion 343

Brownian motion, listing of program

to generate 344

Brownian motion, listing of program

to generate two-dimensional 349

Brownian motion,
one-dimensional 344

Brownian motion, one-dimensional,

picture of 348

Brownian motion,

two-dimensional 348

Brownian motion, two-dimensional,

picture of 351

Byte Magazine 32, 33

byte, displaying on screen 60

byte, reading from color plane 61

byte, reading from color plane, listing
of function 61

573

FRACTAL PROGRAMMING IN C

C

Cantor 16, 22

Carpenter, L. 354

cdragon (for HGA) 459

Cesaro, Ernest 166

Cesaro curve, variation on 173

Cesaro curve, variation on, listing of

program to generate 175

Cesaro curve, variation on, picture of

higher levels 174

Cesaro triangle curve 166

Cesaro triangle curve, fractal

dimension of 166

Cesaro triangle curve, generator and

first level 166

Cesaro triangle curve, listing of

program to generate 168

Cesaro triangle curve, modified 170

Cesaro triangle curve, modified, first

level 170

Cesaro triangle curve, modified,

listing of generator for 172

Cesaro triangle curve, modified,

picture of higher levels 171

Cesaro triangle curve, picture of

higher levels 167

cesaro 1 (for HGA) 461

cesaro2 (for HGA) 463

cesaro3 (for HGA) 465

cesaro4 (for HGA) 467

CGA 31

chaos 15, 20, 33, 83

chaos algorithm 394

chaos algorithm, listing of program

for 395

chaos algorithm, parameters for 394

chaos algorithm, pictures generated

by 398

chaos algorithm in 3D 400

chaos algorithm in three dimensions,

listing of program for 401

chaos game 385

character writing functions

(for HGA) 431

Ciarcia, Steve 32, 33

circles, Apollonian packing of 239

circles, Apollonian packing of,

program listing to perform 241

circles, working with 239

cjulia (for HGA) 469

clones 32

cls() 406

cls() (for HGA) 433

Club of Rome 95

cmandel (for HGA) 471

cnewton (for HGA) 473

cnewton3 (for HGA) 474

collage theorem 399

color combinations, using other 264

color registers, VGA 55

coloring techniques 326

colors, listing of program to change

colors of saved display 78

colors, listing of program to display

and change colors of 265

colors, selection of 78

colors, selection of for Julia sets 281

compressing data 35

cphoenix (for HGA) 476

csdragon (for HGA) 477

cursor, function to display

and move 71

cursor, listing of function to display

and move 71

curve, monkey tree 148

curve, split snowflake halls 148

curve with complicated generator,

initiator and generator for 147

curve with complicated generator,

picture of higher levels of 148

curves with complicated generator,

program listing to generate 149

574

INDEX

curves with complicated

generators 146

curves with complicated generators,
fractal dimension of 146

D

da Vinci, Leonardo 228

data, compressing 35

data, saving 35

decomposition, binary 283

decomposition, binary, listing of

program for generating 285

desert scene, listing of program to

generate 357

deterministic algorithm for iterated

function systems 386

display considerations 31

display, Julia sets 282

displaying and moving cursor 71

displaying byte on screen 60

dragon, Harter-Heightway 289

dragon, Harter-Heightway, first three

levels 290

dragon, Harter-Heightway, listing of

program to generate 292

dragon, Harter-Heightway,

picture of 294

dragon, Julia 294

dragon, San Marcos 300

dragon, San Marcos, listing of code

for coloring 301

dragon, self-squared 289, 295

dragon, self-squared, equation for 295

dragon, self-squared, listing of

program to generate 296

dragon, self-squared, parameters for

generating 300

dragon, twin 291

dragon, twin, listing of program to

generate 292

dragon curve 289

dragon outlines 301

dragon outlines, listing of program to

generate 302

dragon outlines, pictures of 304

dragon set, listing of program to

generate 267

dragons, three-dimensional 329

dragons, three-dimensional, listing of

program for generating 331

dragons, three-dimensional,

parameters for 334

dragons, three-dimensional,

programming 330

dragout (for HGA) 480

drawLine() 407

drawLine() (for HGA) 434

drawOval() 409

drawOval() (for HGA) 436

E

earth viewed from the moon 371

earth viewed from the moon, input
data for 381

earth viewed from the moon, listing

of program to generate 372

EGA 31, 38, 41, 42, 45

EGA palette register contents 39

Euclidian dimension 19, 27

Euclidian Geometry 22

F

Feigenbaum, Mitchell 18, 101

Feigenbaum number 18, 19

Feigenbaum number, equation 104

Feigenbaum number, values of 106

feigenbm (for HGA) 481

fern generated by deterministic

algorithm 393

fern, generating a deterministic 392

fillOval() 410

575

FRACTAL PROGRAMMING IN C

fihlOvalO (for HGA) 437

fihlTriangle() 411

fillTriangle() (for HGA) 438

fluids, motion of 343

format for saving a screen to disk 36

Foumier, A. 354

fractal dimension 22, 26

fractal displays 31

fractal landscapes 353

fractals 19, 20, 22, 23, 24, 25,

26, 33

Fussell, D. 354

G

gases, motion of 343

gaussian distribution, function to

generate 346

generating a deterministic fern 392

generator 107

Georgia Institute of

Technology 20, 385

gosp7 (for HGA) 482

gosper (for HGA) 484

Gosper curves 113

Gosper curves, fractal dimension 113

Gosper curves, listing of program to

generate 116

Gosper curves, picture of higher
levels 115

Gosper curves, picture of initiator and

generator 114

Graphics Programming in C 31, 53

H

hardware 29

Harter-Heightway dragon 289

Harter-Heightway dragon, first three
levels 290

Harter-Heightway dragon, listing of

program to generate 292

Harter-Heightway dragon,

picture of 294
Hausdorif 22

Hausdorff-Besicovitch

dimension 19, 22, 26

Hausdorff-Besicovitch dimension,

definition of 26

Hawking, Stephen 15

Hercules Graphics Adapter, programs
for 429

Hercules Graphics card 31

hexagon curve, eight-segment 143

hexagon curve, eight-segment,

initiator and generator for 144

hexagon curve, eight-segment, picture

of higher levels of 145

hil3d (for HGA) 487

hilbert (alternate form) (for HGA) 492

hilbert (for HGA) 490
Hilbert curve 197

Hilbert curve, fractal

dimension of 204

Hilbert curve, generating 198

Hilbert curve, generator and second
level for 198

Hilbert curve, listing of alternate

program for generating 202

Hilbert curve, listing of program to

generate 199

Hilbert curve, picture of higher
levels 201

Hilbert curve, three-dimensional 205

Hilbert curve, three-dimensional,

listing of program to

generate 206

Hilbert curve, three-dimensional,

picture of 205

Hilbert curve, using to store display
data 208

hkoch8 (for HGA) 495

576

INDEX

I

IBM 19, 329

IBM AT 33

IBM PC 21, 27, 33

image (for HGA) 497

image3d (for HGA) 499

ImageSet Corp. 36

initiator 107

initiator/generator, generic

program 110

Institute for Physical Science and

Technology 18

Institute of Advanced Studies 18

integration, Runge Kutta 86

inversion 244

inversion, listing of function to

perform for oval 245

iterated function systems 20, 385

iterated function systems, chaos

algorithm 394

iterated function systems, chaos

algorithm in 3D, listing of

program 401

iterated function systems, chaos

algorithm in 3D 400

iterated function systems, chaos

algorithm, parameters for 394

iterated function systems, chaos

algorithm, pictures generated

by 398

iterated function systems,

deterministic algorithm, listing

of program 387

iterated function systems,

deterministic algorithm,

parameters for 387

iterated function systems, listing of

program for chaos algorithm 395

iterated functions systems,

deterministic algorithm for 386

iterated functions systems, Sierpinski

triangle from deterministic

algorithm 391

iterations, number of, for Julia set

J

277

Julia dragon 294

Julia set 19, 31, 326

Julia set, number of iterations for 277

Julia sets 255, 275, 321

Julia sets, binary

decomposition of 283

Julia sets, binary decomposition,

listing of program for

generating 285

Julia sets, coloring techniques for 326

Julia sets, displays of 282

Julia sets, drawing 276

Julia sets, equation for 275

Julia sets, listing of program to

generate 278

Julia sets, parameters for

displays of 283

Julia sets, selecting colors for 281

K

Koch, Helge von 16, 19, 22, 107

Koch, von: curves 107

Kyoto University 321

L

landscapes, fractal 353

Li, Tien Yien 18, 100

library, tools 405

library, tools, for Hercules Graphics

Adapter 430
LIMIT statement 42

line, drawing 62

577

FRACTAL PROGRAMMING IN C

line, listing of function to draw 62

Iorenz (for HGA) 501

Lorenz attractor 17, 83, 84

Lorenz attractor, listing of program to

generate 87

Lorenz attractor, programming 87

Lorenz equations 17, 83

Lorenz, Edward 17, 19, 83

Los Alamos National Laboratory 18

M

Malthus, Thomas 95

Mandeibrot, Benoit 19, 22, 23, 247,

253, 289, 300, 353

Mandelbrot-like dragon set, listing of

program to generate 267

Mandelbrot-like phoenix set, listing

of program to generate 270

Mandelbrot-like set for phoenix

curves 327

Mandelbrot-like sets 267

Mandelbrot set 19, 31, 32, 33, 35,

253, 275, 276, 321, 326

Mandelbrot set, color

techniques for 326

Mandelbrot set, equation for 253

Mandelbrot set, listing of improved

program for generating 258

Mandelbrot set, listing of simplified

program for generating 255

Mandelbrot set, parameters for

generating displays 263

Mandelbrot set, precision

considerations 263

Mareda, John 353

Massachusetts Institute of

Technology 17

Mastin, Gary 353

math coprocessor 32

mathematical meaning of curves 339

May, Robert 18, 100, 101

Micro Cornucopia 32

Microsoft C 21, 32

midpoint displacement, picture of 355

midpoint displacement technique 354

mode, setting display 54

mode, setting display, listing 54

monkey tree curve 148

monster curves 16

Montgomery, Bob 36

move_cursor() 414

move_cursor() (for HGA) 441

moving and displaying cursor 71

N

Newton’s method 335

Newton’s method, equations for 335

Newton’s method, mathematical

meaning of plots 339
Newton’s method for

z-cube- 1=0336

Newton’s method for

z-cube-2z-5=0336

noise 16, 20

noise transformation 353

0

Oak Creek Canyon 357

Oak Creek Canyon, input
data for 363

Oak Creek Canyon, listing of

program to generate 357

outlines, dragon 301

outlines, dragon, listing of program

to generate 302

outlines, dragon, pictures of 304

oval, filling 67

oval, listing of function to fill 67

578

INDEX

P

palette colors, listing of program to

display and change 265

palette register, contents of byte
sent to 55

palettes, function to set EGA/VAG,

listing 56

palettes, setting EGA 55

parallel processor 33
PC Paintbrush 36, 399

Peano, Guiseppe 16, 19, 22, 155
Peano curve, modified 159

Peano curve, modified,

generator for 160

Peano curve, modified, picture of

higher levels of 161

Peano curve, modified, program to

generate 161

Peano curve, original 155

Peano curve, original, fractal
dimension of 156

Peano curve, original,

generator for 156

Peano curve, original, listing of

generator for 158

Peano curve, original, picture of

higher levels of 157
Peano curves 155

Peano-Gosper curve 181

Peano-Gosper curve, fractal
dimension of 181

Peano-Gosper curve,

generator for 181

Peano-Gosper curve, listing of

generator for 183

Peano-Gosper curve, picture of higher
levels 182

Peano seven-segment snowflake

curve 185

Peano seven-segment snowflake

curve, first two levels 185

Peano seven-segment snowflake

curve, fractal dimension of 185

Peano seven-segment snowflake

curve, listing of program to

generate 187

Peano seven-segment snowflake

curve, picture of higher
levels 186

Peano thirteen-segment snowflake
curve 189

Peano thirteen-segment snowflake

curve, first two levels 190

Peano thirteen-segment snowflake

curve, listing of program to

generate 192

Peano thirteen-segment snowflake

curve, picture of higher
levels 191

peanol (for HGA) 504

peano2 (for HGA) 506

Period Three Implies Chaos 18, 100

pharaoh (for HGA) 511

Pharaoh’s breastplate 247

Pharaoh’s breastplate, after
inversion 251

Pharaoh’s breastplate, before
inversion 248

Pharaoh’s breastplate, listing of

program to generate 249

phoenix curves 321

phoenix curves, coloring techniques
for 326

phoenix curves, equations for 321

phoenix curves, listing of program to

generate 322

phoenix curves, maps for 326

phoenix curves, parameters for

generating 328

phoenix set, listing of program to

generate 267

physics 15
Pickover, Clifford A. 91

579

FRACTAL PROGRAMMING IN C

Pike’s Peak at sunrise 366

Pike’s Peak at sunrise, input
data for 370

Pike’s Peak at sunrise, listing of

program to generate 366

pikespk (for HGA) 515

pixel, reading from screen 60

pixel, reading from screen, listing of
function 61

plot, listing of function 58

plot, listing of function without

assembly language 59

plot point, listing of function to plot

point and save original color 75

plot_point() 417

plot_point() (for HGA) 445

plot() 418

plot() (for HGA) 445

plots() 419

plots() (for HGA) 446

plotting point on screen 58

point, listing of function 69

point, plotting on screen 58

point() 420

pointO (for HGA) 446

pollen particles 343

polya (for HGA) 519

Polya triangle curve 177

Polya triangle curve, first two
levels 177

Polya triangle curve, listing of

program to generate 178

Polya triangle curve, picture of higher
levels 178

Polya, George 177

population curves 18

population equation 95

population equation (defined) 96

precision considerations 263

prejudice 21
Princeton 18

processor speed 31

projection, equations of 330

projection, method of three-
dimensional 329

Q
qkoch3 (for HGA) 524

qkoch8 (for HGA) 535

qkochl8 (for HGA) 521

qkoch32 (for HGA) 525

qkoch50 (for HGA) 530

quadric curve, 32-segment 130

quadric curve, 32-segment, fractal
dimension of 130

quadric curve, 32-segment, initiator

and generator for 130

quadric curve, 32-segment, listing of

generator for 132

quadric curve, 32-segment, picture of

higher levels of 131

quadric curve, 50-segment 135

quadric curve, 50-segment, fractal
dimension of 135

quadric curve, 50-segment, initiator

and generator for 137

quadric curve, 50-segment, listing of

generator for 139

quadnc curve, 50-segment, picture of

higher levels of 138

quadric curve, eight-segment, fractal
dimension of 121

quadric curve, eight-segment 121

quadric curve, eight-segment, initiator

and generator for 122

quadric curve, eight-segment, listing

of generator for 124

quadric curve, eight-segment, picture

of higher levels of 123

quadric curve, eighteen-segment 125

quadric curve, eighteen-segment,
fractal dimension of 125

580

INDEX

R

read_screen() 421

readPixel() 420

restore_screen 421

Runge Kutta integration 86

S

quadric curve, eighteen-segment,

initiator and generator for 126

quadric curve, eighteen-segment,

listing of generator for 128

quadric curve, eighteen-segment,

picture of higher levels of 127

quadric curve, process for creating

higher segment curves 135

quadric curve, three-segment, initiator

and generator for 118

quadric curve, three-segment, picture

of higher levels of 119

quadric curve, three-segment 117

quadric curve, three-segment, fractal
dimension of 118

quadric curve, three-segment, listing

of generator for 120

screen, function for saving,

listing of 43

screen, function to restore a VGA 50

screen, function to restore a VGA,

code changes 51

screen, function to restore a VGA,

description 50

screen, function to restore an EGA,

description 47

screen, function to restore an EGA,

listing 48

screen, function to restore EGA 47

Sedona, Arizona 357

selecting colors 78

setEGApalette 39

setEGApalette() 426

setMode() 427

setMode() (for HGA) 447

Shannon 36

sierbox (for HGA) 538

sierchet (for HGA) 540

siergask (for HGA) 541

sierp (for HGA) 546

Sierpinski box 222

Sierpinski box, listing of program to

generate 223

Sierpinski box, picture of 225

Sierpinski curve 211

Sierpinski gasket 215

Sierpinski gasket, listing of program

to generate 216

Sierpinski gasket, picture of 218

Sierpinski triangle, another method of

generating 218

Sierpinski triangle, cousin with .707

multiplier, listing of

program 221

Sierpinski triangle, listing of another

program to generate 219

Sierpinski triangle, listing of

program to generate 214

sanmarco (for HGA) 537

save_screen() 424

saving data 35

Schrodinger, Eugene 15
science 20

scientists 21

screen, clearing 57

screen, clearing, listing of
function to 57

screen, code for saving VGA color
information 46

screen, displaying byte on 60

screen, displaying byte on, listing of
function 60

screen, function for saving 42

581

FRACTAL PROGRAMMING IN C

Sierpinski triangle, strange
cousins of 221

Sierpinski triangle and cousins,

picture of 220

Sierpinski triangle by its

deterministic algorithm 391

Sierpinski triangle cousin, code for

with 1/3 and 2/3 multipliers 221

Sierpinski triangles, picture of higher
levels of 213

Sierpinski triangles, picture of several
levels of 212

sirchet2 (for HGA) 548

sirchet3 (for HGA) 549

snoflake (for HGA) 550

snow7 (for HGA) 555

snow 13 (for HGA) 552

snowflake curve 107

snowflake, fractal dimension 108

snowflake, listing of program to

generate 110

snowflake, picture of higher
levels 109

snowflake, picture of initiator and

generator 108

snowhall (for HGA) 558

Soddy’s formula 240

split snowflake halls curve 148

step, listing of function 70

step() 427

step() (for HGA) 448

Stockman, H. W. 32

strange (for HGA) 562

strange attractor 91

strange attractor, listing of program

to generate 91

strange attractors 17, 84

Stromswold, Chester 221

T

techniques, coloring 326
Thomas J. Watson Research Center

19, 329, 353

three-dimensional dragons 329

three-dimensional dragons, listing of

program for generating 331

three-dimensional dragons, parameters
for 334

three-dimensional dragons,

programming 330

tools for graphics display

generation 53

tools library 53, 405

tools library for Hercules Graphics

Adapter 430

tree, arterial system 237

tree, bare 235

tree, bronchial system 236

tree, one-sided 236

tree, with 85 degree branch

angles 238

tree, with 90 degree branch

angles 237, 238

tree, with foliage 235

trees (for HGA) 563

trees, equation for 228

trees, listing of program to draw 230

trees, mathematical

representation of 228

trees, program for drawing 229

trees, program parameters 233

trees, real 227

trees, stick 234

triangle, curvilinear 239

triangle, filling 64

triangle, listing of function to fill 64

trindrag (for HGA) 565
truth 21

Turbo C 21, 32

turn, listing of function 70

582

INDEX

tumO 427

tum() (for HGA) 449

turtle graphics 68 Watterberg, Peter 353

turtle graphics, point function 69 weather forecasting 17

turtle graphics, step function 70 Whitehead, Alfred North 15

turtle graphics, turn function 69

twin dragon, listing of program to

generate 292
Yorke, James 18, 100, 101

U

University of Maryland 18

University of Wales 356 z-cube - 1 = 0 336

Ushiki, Shigehiro 321 z-cube - 1 = 0, listing of program to
solve 336

V
z-cube-2z-5=0336

z-cube - 2z - 5 = 0, listing of program

VGA 31, 39, 41, 46 to solve 336

Voss, Richard 353 ZS 36

ZSoft 36

583

More C Programming Tools
from MLT Books

Graphics Programming in C

by Roger T. Stevens

Graphics Programming in C details the fundamentals of graphics

processes for the IBM PC family and its clones. All the information

you need to program graphics in C, including source code, is presented

in this 656-page book. The provided source code will enable

you to easily modify graphic functions to suit your own needs.

Written for all levels of programmers, this reference will help you

understand the algorithms and techniques necessary to generate

graphic images. You’ll find complete discussions of ROM BIOS, VGA,

EGA, and CGA inherent capabilities; fractals; methods of displaying

points on a screen; improved, faster algorithms for drawing and filling lines, rectangles, polygons,

ovals, circles, and arcs; graphics cursors; techniques for coordinate transformation; dot matrix

characters; and pop-up windows. Graphics Programming in C also features 16 pages of sample 4-

color figures, includes a complete description of how to put together a graphics library and how to

print hard copies of graphics display screens. Both Turbo C and Microsoft C are supported.

Book & Disk (MS-DOS) Item #019-2 $39.95

Book only Item #018-4 $24.95

Dr. Dobb’s Toolbook of C

by the Editors of Dr. Dobbs Journal

More than 700 pages of the best of C articles and source code

from Dr. Dobbs Journal of Software Tools in a single book! Not just

a compilation of reprints, this comprehensive volume contains new

materials by various C experts as well as updates and revisions of
some older articles.

The essays and articles contained within this virtual encyclopedia

of information were designed to give the professional programmer a

deeper understanding of C by addressing real world programming

problems, and how to use C to its fullest.

Some of the highlights include an entire C compiler with support routines, versions of various

utility programs such as Grep, and a C program cross-referencer.

Dr. Dobb’s Toolbook of C is an invaluable resource that you’ll turn to again and again for an indepth

appreciation of C.

Book only Item #599-8 $29.95

More C Programming Tools

C Programming for MIDI

by Jim Conger

Both musicians and programmers can learn how to create useful

programs and libraries of software tools for music applications.

Outlined are the features of MIDI and its support of real-time access

to musical devices. An introduction to C programming fundamentals

as they relate to MIDI is provided. These concepts are fully demonstrated

with two MIDI applications: a patch librarian and a simple

sequencer. Some of the fundamental MIDI programming elements

you’ll learn are: full development of a patch librarian program,

sequencing applications for the MPU-401 interface, how to create

screen displays, and how to write low-level assembly language routines for MIDI. C Programming

for MIDI shows you how to write customized programs to create the sounds and effects you need.

All programs are available on disk with full source code. Supports both Microsoft C and Turbo C.

Book & Disk (MS-DOS) Item #90-9 $37.95

Book only Item #86-0 $22.95

MIDI Sequencing in C

by Jim Conger

MIDI Sequencing in C picks up where the author’s popular book,

C Programming for MIDI, left off, and approaches the recording and

playback of MIDI data from the perspective of both user and programmer.

Covered in detail are key topics such as installation, record

and editing functions, overviews of block operations and note level

edit functions, programming in graphics mode, and much more.

The optional source code disk provides a ready-to-run 8-track

MIDI sequencer with full editing features. Programmers will find all

source code for the MT sequencer/editor is provided along with full

documentation of each function. The MT sequencer runs on IBM PC and AT-type computers using

the Roland MPU-401 MIDI interface or equivalent. CGA, EGA, and VGA video standards are

supported. Both Microsoft and Turbo C compilers are supported.

Book & Disk (MS-DOS) Item #046-X $39.95

Book only Item #045-1 $24.95

More C Programming Tools

C Chest and Other C Treasures

from Dr. Dobb’s Journal

edited by Allen Holub

This comprehensive anthology contains the popular “C Chest”

columns by Allen Holub from Dr. Dobb’s Journal of Software Tools.

For the novice and experienced C programmer alike, C Chest and

Other C Treasures will prove to be an invaluable resource, providing

hours worth of information to be learned and applied.

Just some of the many topics detailed are: pipes, wild-card

expansion, and quoted arguments; sorting routines; command-line

processing; queues and bit maps; is, make and other utilities; expression parsing; hyphenation; an

Fget that edits; redirection; accessing IBM video display memory; trees; an AVL tree database

package; directory transversal; sets; shrinking; and .EXE file images.

The anthology also includes several information-packed articles written by well-known C

experts. Learn from the experts about a flexible program that allows you to find the minima of

complex, multiple dimension equations; cubic-spline routines that provide an efficient way to do a

more restrictive curve-fitting application; an fgrep program that resurrects a very efficient finite-

state-machine based algorithm that can be used in any pattern-matching algorithm, and more!

C Chest and Other C Treasures provides a collection of useful subroutines and practical

programs written in C, and are available on disk with full source code.

Book & Disk (MS-DOS) Item #49-6 $39.95

Book only Item #40-2 $24.95

Turbo C: The Art of Advanced Program Design,

Optimization, and Debugging

by Stephen R. Davis

Packed with useful example programs, this book details the techniques

necessary to skillfully program, optimize, and debug in Turbo

C. Every topic and Turbo C feature is fully demonstrated in Turbo C

source code examples.

Starting with an overview of the C language, the author advances to

topics such as pointers, direct screen I/O; inline statements in Turbo C;

and how to intercept and redirect BIOS calls, all of which are demonstrated

in a RAM resident pop-up program written in Turbo C.

Fully outlined are the differences between UNIX C and Turbo C; the transition from Turbo

Pascal to Turbo C; and the superset of K&R C features implemented in the proposed ANSI C
standard.

Whether you are a C programmer interested in investigating this exciting new dialect of the

language or a Turbo Pascal programmer who is curious to learn more of this C language, Turbo C

is must reading!

Book & Disk (MS-DOS) Item #45-3 $39.95

Book only Item #38-0 $24.95

More C Programming Tools

A Small C Compiler: Language, Usage,

Theory, and Design

by James E. Hendnx

For anyone who wants to examine a C compiler from the inside out,

A Small C Compiler provides all the essential features of a full

compiler with the invaluable extra benefit of full source code. All

programs are written to be upwardly compatible with full C, and best

of all, the book and disk can be yours for only $38.95.

A Small C Compiler contains a full presentation of the design and

operation theory of the Small C compiler and programming language.

This book provides an excellent example for learning basic compiler

theory as well as a full, working Small C compiler. Here is a real compiler that is easy enough to be

understood and modified by computer science students, and may be transformed into a cross-

compiler or completely ported to other processors. Features include code optimizing, internal use of

pseudo code, upward compatibility with full C, recursive descent parsing, a one pass algorithm, and

the generation of assembly language code. You’ll even learn how the compiler can be used to

generate a new version of itself! No other compiler available to the public has ever been so thoroughly

documented. The optional diskette includes an executable compiler, fully documented

source code, and many sample programs. A Microsoft, IBM Macro Assembler or Jim Hendrix’s

own Small Assembler is necessary.

Book & Disk (MS-DOS) item #97-6 $38.95

Book only item #88-7 $23.95

Small Assembler: An 80x86 Macro Assembler

Written in Small C

by James E. Hendnx

Small Assembler is a full macro assembler which was developed

primarily for use with the Small C compiler. In addition to being a

full assembler that generates standard MASM compatible .OBJ files,

the SmallAssembler is written in Small C. It provides an excellent

example for learning the basics of how an assembler works. The

Small Assembler generates .OBJ files for all 80X86 processors, and

will easily adapt to future Intel processors.

The manual provides an overview of the Small Assembler, documents the command lines that

invoke programs, and provides appendixes and reference materials for the programmer. The accompanying
disk includes both the executable assembler and full source code.

Manual & Disk item #024-9 $29.95

More C Programming Tools

Small-Windows: A Library of Windowing

Functions for the C Language

by James E. Hendnx

Small-Windows is an extensive library of C language functions

for creating and manipulating display windows. The manual and disk

package contains 41 windowing functions that allow you to clean,

frame, move, hide, show, scroll, push and pop-up menus.

A file directory illustrates the use of window menu functions and

provides file selection, renaming, and deletion capability. Two test

programs are provided as examples to show you how to use the

library and the window, menu, and directory functions. Small-

Windows is available for MS-DOS systems, and Microsoft C versions 4.0/5.0, Turbo C 1.5, Small-

C, and Lattice C 3.1 compilers. Documentation and full source code included.

Manual & Disk (MS-DOS) Item #35-6 $29.95

(Microsoft C, Small-C, Lattice C, or Turbo C Compiler)

Small-Tools User’s Manual

by James E. Hendnx

This package of programs performs specific modular operations

on text files such as editing, formatting, sorting, merging, listing,

printing, searching, changing, transliterating, copying, and

concantenating. Small-Tools is supplied in source code form. You

can select and adapt these tools to your own purposes. Documentation
is included. MS-DOS.

Manual & Disk (MS-DOS) Item #02-X $29.95

More C Programming Tools

UNIX Programming on the 80286/80386,
2nd Edition

by Alan Deikman

UNiX Programming on the 80286/80386, 2nd Edition, provides experienced

system programmers with an overview of time-saving

UNIX features and an informative discussion of the relationship

between UNIX and DOS. Included are many helpful techniques

specific to programming under the UNIX environment on a PC.

Inside, you’ll find complete coverage of the UNIX program

environment, file systems, shells, and basic utilities; C programming

under UNIX; mass storage programs; 80286 and 80386 architecture;

segment register programming; and UNIX administration and documentation.

UNiX Programming on the 80286/80386, 2nd Edition, completely covers the techniques for

writing and managing device drivers to accommodate the many PC peripherals available. Many

examples of actual code are provided.

Book & Disk (UNiX 5-1/4”) item #062-1 $39.95

Book only item #060-5 $24.95

On Command: Writing a UNIX-Like Shell

for MS-DOS

by Allen Holub

On Command and its ready-to-use program demonstrate how to

write a UNIX-like shell for MS-DOS, with techniques applicable to

most other programming languages as well. The book and disk

include a detailed description and working version of the Shell,

complete C source code, a thorough discussion of low-level MS-DOS

interfacing, and significant examples of C programming at the system
level.

Supported features include: read, aliases, history, redirection and

pipes, UNIX-like command syntax, MS-DOS compatible prompt support, C-like control-flow

statements, and a Shell variable that expands to the contents of a file so that a program can produce

text that is used by Shell scripts.

The ready-to-use program and all C source code are included on disk. For IBM PC and direct

compatibles.

Book & Disk (MS-DOS) Item #29-1 $39.95

More C Programming Tools

/Util: A UNIX-Like Utility Package
Dr.Dob’sMIrnaioI

for MS-DOS

When used :ith the Shell, this collection of utility programs and
/UTIL subroutines provides you with a fully functional subset of the UNIX

environment. Many of the utilities may also be used independently.

You’ll find executable versions of cat, c, date, du, echo, grep, ls,

byAllenHolub mkdir, my, p, pause, printevn, rm, rmdir, sub, and chmod.

The /Util package includes complete source code on disk. All

programs and most of the utility subroutines are fully documented in a

UNIX-style manual. For IBM PCs and direct compatibles.

Manual & Disk (MS-DOS) Item #12-7 $29.95

NR: An Implementation of the UNIX NROFF
DVJauniIo

SOt elbols Word Processor
by Allen Holub

NR is a text formatter that is written in C and is compatible with

NP UNIX’s NROFF. Complete source code is included in theNR

package so that it can be easily customized to fit your needs. NR also
of t)FP includes an implementation of how -ms works. NR does hyphenation

and simple proportional spacing. It supports automatic table of
byAuenuaaub contents and index generation, automatic footnotes and endnotes,

italics, boldface, overstriking, underlining, and left and right margin

adjustment. The NR package also contains: extensive macro and string capability, number registers

in various formats, diversions and diversion traps, and input and output line traps. NR is easily

configurable for most printers. Both the ready-to-use program and full source code are included.

For PC compatibles.

Manual & Disk (MS-DOS) Item #33-X $29.95

More C Programming Tools

Fractal Programming in C

by Roger T. Stevens

Fractals are the visual representation of “chaos,” the revolution

that is currently sweeping through all fields of science. Fractal Programming

in C is a comprehensive “how-to” book written for

programmers interested in fractals. Included are over 100 black and

white pictures and 32 color pictures. All source code to reproduce

these pictures is provided on disk, MS-DOS format. Requires PC or

clone with EGA or VGA and color monitor; Turbo C, Quick C, or

Microsoft C compiler.

Item #038-9 $39.95

Item #037-0 $24.95

— —

To Order: Return this form with your payment to M&T Books, 501 Galveston Drive,

Redwood City, CA 94063 or CALL TOLL-FREE 1-800-533-4372 Mon-Fri 8AM-5PM
Pacific Standard Time (in California, call 1-800-356-2002).

YES! Please send me the following: J Check enclosed, payable to M&T Books.

Item# Description Disk Pric Charge my Visa j MC [AmEx
Card No. - Exp. Date

Signature

Name______________

Address

City

State Zip

7026

Book & Disk (MS-DOS)

Book only

Subtotal

CA residents add sales tax %

Add $2.99 per item for shipping

and handling

TOTAL

ov•r awE

‘ th. autbor and

disk.

Tb. fractal.

this book w•r•

ar• includ.d on tb. 7

liii!
Programming in C

a r t”t ,:,Ici ‘Hir ‘;t ,*ci ,

if o j’rc’rOH, s.eflrc; hr 0h r,rHcic :0 c rcr TO ha ;‘ hr’a” roc;cl

Ianc c:Pr 1_c) ‘ rc;c’hc r*,’, ,, ci c;J;’ r tO’1H:tHe mar’ e’c a1reac;, eraecJ cr c c ‘a* r c’

TH c c m:crt r’rc , .‘ ic h’c i .‘ H 0’ ‘:1 A I r ‘ .e5

no’ f’H haca ‘ ,tj \:Jrt Ir;’ r ‘rc’ TI rm’f:na ‘H

cieeocrr:enr Hat cni : hr;rr: 1rj c ‘fcri rI: it ‘ci Hr H c a

Li’ H’rnL OH jr ‘rilc’, ri; ‘r’rjhirrc’r

ea’1 ‘ Hr Parc; cLjrrcn ‘c; :r’ I 1

ar’ Ic HI’ Ii k r I n H rr ir ,. , cc 1 or .‘ . A

Cope ro ‘H. bee ,r,e :jr,ci ‘H Mar Htcro

H p’4’n’ anI ,r’]IJ’:r,: Hen a ri,’iacec;

of hoc to rrcjt oro,r thrc 31 a ret aria L H;rrnac1e L

rams to repoacce hr more Cm 1 U crloC a’ci cHic ‘artaS and 32 hl1

or frarac :L,crc;tra rc, :0n’c ,t he

A ‘ tHe) cr* to qcne’rite ‘Here’ cturo, c aHairiblu ‘cr ii U in CS-

DC’S fo’r’,at arci “c;urec ‘‘ BC o’ cro;,cj’ b ,ni’H i’ ECA or ‘CA

rmcr:,rlcr and a T,:r ‘ ‘ct L or cr’crcrh C compiler

OR. ROGER T. STEVENS “-“r-‘ “‘ “

‘n’ ‘‘ ;‘n’”’;’

I 53995

M&T Publishing, Inc.

V501
Galveston Drive

Redwood City, CA 94063

9 781558 510388

ISBN 1—55851—038—9

>39.95
MITBOOKS

